

AMANDA LEFTON Acting Commissioner

March 13, 2025

Daniel Fousek Diebold Nixdorf, Incorporated 350 Orchard Avenue NE North Canton, Ohio 44720

Re: Site Management Periodic Review Report Griffin Technology, Inc. Site No.: 835008 Farmington (T), Ontario (C)

Dear Mr. Fousek,

The New York State Department of Environmental Conservation (Department) has completed a review of the Periodic Review Report (PRR) and IC/EC Certification, dated August 27<sup>th</sup>, 2024. Based on the information presented, the Department accepts the PRR and associated Certification.

The results from the PRR are required to be submitted to the property owner. Please notify the Department once the PRR has been sent to the property owner.

The frequency of Periodic Reviews for this Site is biennially, with the next PRR due on February 16, 2026. As a courtesy, you may receive a reminder letter and updated certification form 75 days prior to the due date. Please note that regardless of receipt of this reminder letter, the PRR and certification must be submitted by the due date.

If you have any questions or concerns regarding this letter or need further assistance with the Site, please feel free to contact me at (585) 226-5349 or via email at Joshua.Ramsey@dec.ny.gov.

Sincerely,

Joshua J. Romsey

Joshua J. Ramsey Project Manager

ec: Michael Gutmann (AECOM) David Pratt (NYSDEC) Michael Ormanoski (NYSDEC)

# **PERIODIC REVIEW REPORT 2023**

# FORMER GRIFFIN TECHNOLOGY FACILITY FARMINGTON, ONTARIO COUNTY, NEW YORK

Prepared for Diebold Nixdorf, Inc. North Canton, Ohio

July 2024



50 Lakefront Blvd., Suite 111 Buffalo, New York 14202 716-856-5636 Project No. 60718697



August 27, 2024

Mr. Joshua Ramsey, P.E. New York State Department of Environmental Conservation Division of Environmental Remediation, Region 8 6274 East Avon-Lima Road Avon, New York 14414-9519

### RE: 2023 Periodic Review Report Former Griffin Technology Facility (Site No. 835008) Farmington, New York

Dear Mr. Ramsey:

On behalf of Diebold Nixdorf, Inc. (Diebold), AECOM USA, Inc. [(AECOM) – formerly URS Corporation (URS)] has prepared this Period Review Report to summarize the groundwater sampling data collected between December 1994 and November 2023 from the existing monitoring wells in the vicinity of the above-referenced site.

In order to return to a summer sampling schedule, we plan to perform the next sampling event in Summer 2026.

Please review and contact me at mike.gutmann@aecom.com if you have any questions or comments.

Sincerely,

AECOM USA, Inc. Michael Gutmann, PG Sr. Project Manager

cc: File: 13816402 Daniel G. Fousek, Diebold, Inc. Jeff Reinmann, Diebold, Inc. Ms. Wendlene M. Lavey, Esq., McMahon DeGulis LLP Kevin J. McGovern, PG, CHMM, STS (AECOM)



50 Lakefront Blvd., Suite 111 Buffalo, New York 14202 Tel: 716.856.5636 Fax: 716.856.2545

# 2023 PERIODIC REVIEW REPORT FORMER GRIFFIN TECHNOLOGY FACILITY FARMINGTON, NY INACTIVE HAZARDOUS WASTE DISPOSAL SITE NO. 835008

Submitted to:

# NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION 6274 EAST AVON ROAD AVON, NEW YORK 14414

Prepared by:

AECOM USA, INC. 50 LAKEFRONT BOULEVARD, SUITE 111 BUFFALO, NEW YORK 14202

Prepared for:

DIEBOLD NIXDORF, INC. NORTH CANTON, OHIO 14211 JULY 2024

## **Engineering Certification**

I, Edward M. Murphy, PE, a licensed and registered Professional Engineer in the State of New York do certify in accordance with Section 1.5(b)(5) of the New York State Department of Environmental Conservation (NYSDEC) DER—10 Technical Guidance for Site Investigation and Remediation:

- a) that this Periodic Review Report (PRR) for the Former Griffin Technology Facility, Farmington, New York and all attachments were prepared under my direction, and reviewed by me; and
- b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.
  - DocuSigned by:

The required certification of the Institutional Controls (ICs) and Engineering Controls (ECs) as may be applicable for this Site is included separately in the Certification Form provided in Appendix F of this report.



7/10/2024

Date

It is a violation of Title 8 Article 145 of the New York State Education Law for any person, unless he is acting under the direction of a licensed professional engineer or land surveyor, to alter an item in any way. If an item bearing the seal of an engineer or land surveyor is altered, the altering engineer or land surveyor shall affix to the item his/her seal and the notation "altered by" followed by his signature and the date of such alteration, and a specific description of the alteration.

### **TABLE OF CONTENTS**

| Executi             | e Summaryii                                                   |
|---------------------|---------------------------------------------------------------|
| 1.0                 | Introduction1                                                 |
| 1.1                 | Background – On-Site1                                         |
| 1.2                 | Background – Off-Site1                                        |
| 2.0                 | Site Overview4                                                |
| 2.1                 | Site Description4                                             |
| 2.2                 | Remediation Chronology – On-Site4                             |
| 2.3                 | Remediation Chronology – Off-Site4                            |
| 3.0                 | Off-Site Remedy Performance, Effectiveness and Protectiveness |
| 4.0                 | IC/EC Plan Compliance7                                        |
| 5.0                 | Operation, Maintenance and Monitoring Plan Compliance8        |
| 6.0                 | Conclusions and Recommendations9                              |
|                     | FIGURES                                                       |
| Figure <sup>-</sup> | -1 Site Location                                              |
| Figure 2            | -1 Site Plan                                                  |
| Figure 3            | -1 Trichloroethene Trends (Existing Wells)                    |
|                     | TABLES                                                        |
| Table 3             | 1 Mann-Kendall Statistical Analysis                           |
|                     | ATTACHMENTS                                                   |
| Attachr             | ient A Parcel Reports                                         |

2017 Biennial Groundwater Sampling Letter Report

2019 Biennial Groundwater Sampling Letter Report

2021 Biennial Groundwater Sampling Letter Report

2023 Biennial Groundwater Sampling Letter Report

Institutional and Engineering Controls Certification Form

Attachment B

Attachment C

Attachment D

Attachment E

Attachment F

### **EXECUTIVE SUMMARY**

The Former Griffin Technology Facility (the Site) is located at 6132 Victor-Manchester Road in the Town of Farmington, Ontario County, New York. The Site is 3.74 acres in size, in a commercial/residential area and is currently owned by Case Realty 6132, LLC and Auto Outlets USA Properties Inc.. The Site was added to the New York State Department of Environmental Conservation (NYSDEC) Registry of Inactive Hazardous Waste Disposal Sites (Site No. 835008) in 1991 following the discovery of chlorinated solvents in groundwater.

Griffin Technology entered into a consent order with the NYSDEC in March 1991 (Order on Consent #B8-0315-90-01), which included the requirements of additional soil borings, groundwater sampling, and the operation of a groundwater remediation system (pump and treat) from 1997 to 2007. The extent of groundwater contamination was reduced by the system; however, concentrations of trichloroethene still exceeded NYSDEC groundwater quality standards found in the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1: *Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations*.

S & W Redevelopment of North America, LLC (SWRNA) acquired the property in 2007, and afterward they implemented an in-situ chemical oxidation (ISCO) groundwater remediation strategy that included the injections of potassium permanganate and emulsified vegetable oil (EVO) to break down and extinguish the chlorinated solvent contamination. Overall, SWRNA's groundwater remediation was generally successful in remediating the groundwater at and in the vicinity of the source on site, but some on-site and off-site impacts remain.

As part of the agreement between Diebold Nixdorf, Inc. (Diebold) and the NYSDEC, an Operation, Maintenance and Monitoring (OM&M) Plan for the off-site area was implemented that required annual sampling of the off-site monitoring wells. Based upon groundwater monitoring results since 2011, AECOM USA, Inc. [(AECOM) – formerly URS Corporation (URS)] recommended modifications to the OM&M plan in January 2015. Negotiations between URS and the NYSDEC resulted in the NYSDEC approving modifications to the OM&M plan in May 2015. The approved modifications included decommissioning of four off-site monitoring wells (MW-09S, MW-09D, MW-10D and MW-11D), repair of monitoring well MW-10S, and supplemental sampling of monitoring wells MW-06S and MW-07S for volatile organic compounds, followed by biennial groundwater monitoring of the five remaining monitoring wells. The Summer 2019 sampling event occurred on June 27, 2019, and discussions of its execution and data evaluation were presented in the 2019 Biennial Groundwater Sampling Letter Report (URS, 2019). In the report, URS concluded that the TCE concentration trends show an overall decrease since 1994. URS recommended suspending groundwater sampling at monitoring well MW-10S but continue to collect depth to water data at this location during monitoring events, and that the PRR will be prepared in accordance with NYSDEC's Division of Environmental Remediation (DER-10) Technical Guidance for Site Investigation and Remediation (NYSDEC, 2010), which will summarize sampling data collected to date. An additional round of sampling was recommended in 2021 to confirm the aforementioned TCE trends. Although it had been previously recommended to collect only water levels at MW-10S for the 2021 round, NYSDEC did not approve that change and groundwater monitoring was performed at MW-10S as part of the 2021 and 2023 rounds.

The recommendations of this 2023 Periodic Review Report (PRR) for the off-site area include an additional round of sampling in Summer 2026 to confirm the observed trends, and preparation of a PRR to report this data and subsequent recommendations.

### 1.0 INTRODUCTION

### 1.1 Background – On-Site

The former Griffin Technology facility (Site) is approximately 3.74 acres located at 6132 Victor-Manchester Road in the Town of Farmington, Ontario County (see Figure 1-1). Griffin Technology manufactured laminated plastic identification cards at the Site from 1975 until the mid-1990s. The manufacturing process generated a small amount of trichloroethene (TCE) waste. From 1975 until 1986, these wastes were disposed of in small batches directly onto the ground surface immediately to the west of the building. The facility has been vacant since the 1990s. Subsequent investigations indicated that there were no significant levels of contamination on-site, however, TCE-impacted groundwater was present on the western side of the on-site building, with some contaminant migration off-site to the southwest.

S & W Redevelopment of North America, LLC (SWRNA) acquired the property in 2007, and implemented an in-situ chemical oxidation (ISCO) groundwater remediation strategy that included the injection of potassium permanganate into the groundwater at and near the source of the contamination to break down and extinguish chlorinated solvent contamination. The initial ISCO treatment occurred in 2008 and was completed in approximately six months. Since the initial ISCO application, there have been several additional ISCO injection and emulsified vegetable oil (EVO) applications in the source area to further reduce groundwater contamination, with the latest injection rounds occurring in the spring and fall of 2016. Overall, SWRNA's groundwater remediation was successful in remediating the groundwater at and in the vicinity of the source and in 2009, SWRNA received a Certificate of Completion under New York State's Brownfield Cleanup Program for the Site. The New York State Department of Environmental Conservation (NYSDEC) is still evaluating the effectiveness of the on-site remedy. In the meantime, groundwater is being monitored on a periodic basis. In 2012, SWRNA sold the property to ARFCOM Holdings, LLC, who later sold it to Case Realty 6132, LLC/ Case Realty Holdings, LLC in 2018. Case Realty 6132, LLC owned the eastern 2.4 acres of the site (Tax ID# 29.00-1-12.000). In January 2024, Case Realty 6132, LLC sold its parcel to Bristol Valley Homes LLC (current owner).

Case Realty Holdings, LLC owned the western abutting 6.6 acre parcel (Tax ID# 29.00-1-76.100), which includes the western portion of the site (1.34 acres). On June 24, 2022, Case Realty Holdings, LLC sold its parcel to Auto Outlets USA Properties Inc. (current owner). Details are in the parcel reports included in Attachment A.

### 1.2 Background – Off-Site

In 1995, Griffin Technology was purchased by Diebold, Inc. (Diebold). Under the terms of the Order on Consent (Index #B8-0315-90-01) negotiated with the New York State Department of Environmental Conservation (NYSDEC), Diebold was obligated to perform off-site groundwater monitoring, and off-site soil vapor monitoring. On behalf of Diebold, URS completed the off-site groundwater monitoring and off-site soil vapor monitoring fieldwork in August 2009 and submitted the final report in July 2010 (URS, 2010). In a letter dated September 29, 2010, the NYSDEC approved the report and recommendation for no further action with respect to soil vapor.

Under the terms of the Order on Consent, Diebold is required to continue biennial groundwater monitoring of five remaining off-site monitoring wells in accordance with an Operation, Maintenance and Monitoring (OM&M) Plan. The OM&M Plan was approved in June 2011 and has been implemented since by URS (now AECOM) on behalf of Diebold.

In the 2014 Supplemental Groundwater Sampling Letter Report, URS recommended the decommissioning off-site monitoring wells MW-09S, MW-09D, MW-10S, MW-10D, and MW-11D based on analyses of the data from the 2013 and 2014 sampling events. Subsequent communications between the NYSDEC and Diebold/URS resulted in the agreement to repair MW-10S; decommission MW-09S, MW-09D, MW-10D and MW-11D; and collect supplemental groundwater samples from MW-06S and MW-07S for volatile organic compound (VOC) analyses. These activities were performed in June 2016, and discussions of their execution and data evaluation were presented in the 2016 Periodic Review Report (PRR) (URS, 2017a). The following changes to the Operations and Monitoring Plan for Annual Offsite Groundwater Monitoring (O&M Plan) were recommended in the 2016 PRR:

- Conduct groundwater sampling of the remaining off-site wells (i.e., MW-06S, MW-06D, MW-07S, MW-07D and MW-10S) on a biennial basis, beginning in Summer 2017.
- Generate biennial PRRs using the data from the aforementioned groundwater sampling.

The Summer 2017 sampling event occurred on September 13, 2017, and discussions of its execution and data evaluation were presented in the 2017 Biennial Groundwater Sampling Letter Report (URS, 2017b). In the report, URS concluded that the TCE concentration trends show an overall decrease since 1994. URS recommended an additional round of sampling in Summer 2019 to confirm this trend.

The Summer 2019 sampling event occurred on June 27, 2019, and discussions of its execution and data evaluation were presented in the 2019 Biennial Groundwater Sampling Letter Report (URS, 2019). In the report, URS concluded that the TCE concentration trends show an overall decrease since 1994. URS recommended suspending groundwater sampling at monitoring well MW-10S but continue to collect depth to water data at this location during monitoring events, and that the PRR will be prepared in accordance with NYSDEC's Division of Environmental Remediation (DER-10) Technical Guidance for Site Investigation and Remediation (NYSDEC, 2010), which will summarize sampling data collected to date. An additional round of sampling was recommended in Summer 2021 to confirm the aforementioned TCE trends. Although it had been previously recommended to collect only water levels at MW-10S for this 2021 round, NYSDEC did not approve that change and groundwater monitoring was performed at MW-10S as part of the 2021 and 2023 rounds.

The Fall 2023 field work, which represents the fourth biennial monitoring event, was performed on November 29, 2023, and included collecting water levels and groundwater samples from the five remaining off-site monitoring wells in accordance with the O&M Plan.

This Periodic Review Report (PRR) focuses on the off-site monitoring per the aforementioned, NYSDEC-approved OM&M Plan.

### 2.0 SITE OVERVIEW

### 2.1 <u>Site Description</u>

The manufacturing/office building (approximately 19,000 square feet) on the Site was constructed around 1970 and purchased by Griffin Technology in 1975. An approximately 2,400-square foot warehouse building situated north of the manufacturing building and previously used for storage and equipment painting, was razed by SWRNA.

The Site area is currently zoned manufacturing. The surrounding areas are vacant commercial, motor vehicle servicing, warehouse, supermarket, and residential. The property immediately west of the Site is an automotive servicing business and the property south-southwest of the Site is a grocery store. Residential areas are located south beyond Beaver Creek and on the west of Mertensia Road (Figure 2-1).

### 2.2 <u>Remediation Chronology – On-Site</u>

At the Site, Griffin Technology manufactured plastic photo-identification and data cards used for electronic scanning devices in a two-step process consisting of a photo-developing step followed by a finishing process. Wastewater generated by these processes was reportedly dumped outside the western building door onto the then-gravel driveway. This practice was discontinued in 1986.

Soil and groundwater sampling during subsurface investigations from the early 1990s to 1996 have confirmed the presence of volatile organic compounds (VOCs) at the Site, including TCE, trichloroethane (TCA), cis-1,2-dichloroethene (DCE), acetone, and vinyl chloride.

Between 1996 and 2007, a groundwater treatment system was operating at the Site. In 2007, SWRNA implemented the aforementioned ISCO and EVO groundwater remediation strategy, which was generally successful in remediating the groundwater at and in the vicinity of the source.

### 2.3 <u>Remediation Chronology – Off-Site</u>

Off-site groundwater monitoring was conducted in 2009, 2013 and 2014; data from these events are presented in the 2016 PRR (URS, 2016).

In the 2014 report, URS recommended the decommissioning off-site monitoring wells MW-09S, MW-09D, MW-10S, MW-10D and MW-11D based on the absence of contamination in the 2013 and 2014 sampling events. Subsequent communications between the NYSDEC and Diebold/URS resulted in the agreement to repair MW-10S; decommission MW-09S, MW-09D, MW-10D and MW-11D; and collect supplemental groundwater samples from MW-06S and MW-07S for VOC analyses. These activities were performed in June 2016 and discussion of the data evaluation is presented in the 2016 PRR (URS, 2016).

Between 2017 and 2023, four rounds of groundwater monitoring/sampling occurred at the remaining off-site monitoring wells (Figure 2-1). Data from these events are presented in reports located in Attachments B, C, D and E.

### 3.0 OFF-SITE REMEDY PERFORMANCE, EFFECTIVENESS AND PROTECTIVENESS

The principal elements of the OM&M Plan are off-site groundwater monitoring, hydraulic monitoring, and data evaluation/reporting. As the OM&M contractor for Diebold, URS/AECOM has submitted reports to NYSDEC after each sampling event (see Attachments B through E). A summary of the findings of overall performance, effectiveness, and protectiveness for the off-site OM&M is presented in below.

Figure 3-1 displays graphic trend analyses of TCE concentrations in the off-site monitoring wells MW-06S, MW-06D, MW-07S, MW-07D, and MW-10S between 2009 and 2023. These trends show an overall decrease in TCE concentrations since 2009, indicating the on-site source area remedy has been effective. In addition, the TCE concentration in MW-10S is slightly above its standard for the first time since 2015.

A Mann-Kendall trend analyses was performed on the historical TCE concentrations in wells MW-06S, MW-06D, MW-07S, MW-07D, and MW-10S between 2009 and 2023. The trend analysis is presented in Table 3-1 and shows the following:

- A downward trend in TCE detections in MW-06D, MW-07S and MW-07D
- No trends in the TCE detections in MW-06S and MW-10S.

Attachment E shows upward trends in concentrations of cis-1,2-DCE at MW-06S, MW-06D and MW-07D. This is likely due to reductive dechlorination of TCE, although the magnitude of increase is relatively small.

Overall results of the sampling continue to show decreasing trends in VOC concentrations in the groundwater of the off-site monitoring wells. Attachments B through E present groundwater contours for 2017 through 2023 respectively, which show the groundwater flow to the south-southwest.

### 4.0 IC/EC PLAN COMPLIANCE

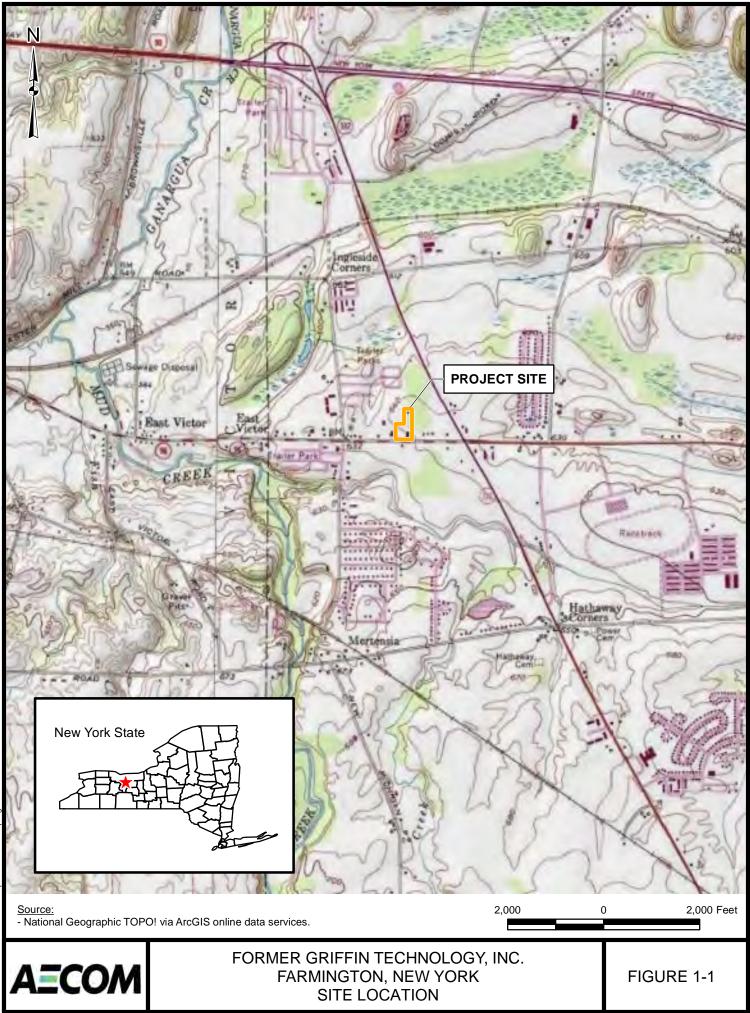
There are no formal Engineering Controls (ECs) currently for the off-site area.

Institutional Controls (ICs) for the off-site area consist of the implementation of the OM&M Plan for periodic off-site groundwater monitoring pursuant to the Order on Consent. The IC Plan has been implemented and the current off-site status is in compliance with certification requirements. A completed Institutional and Engineering Controls Certification Form is included in Attachment F.

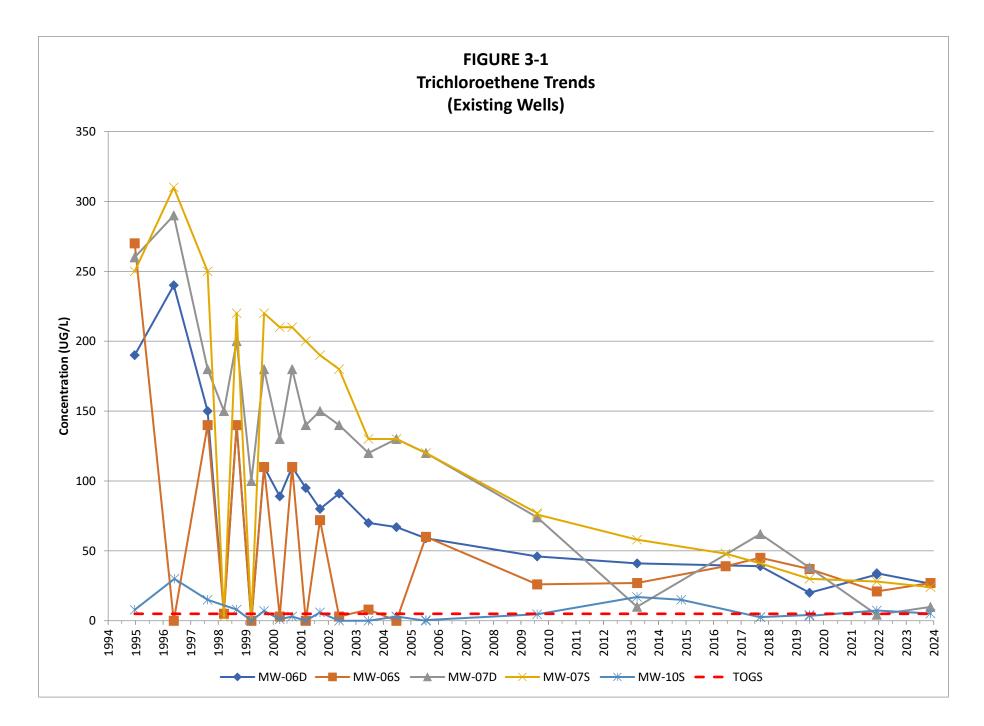
### 5.0 OPERATION, MAINTENANCE AND MONITORING PLAN COMPLIANCE

Diebold is in compliance with the NYSDEC-approved OM&M Plan. The results of the current (Fall 2023) monitoring event are described in detail in Attachment E to this PRR.

The components of the OM&M Plan include hydraulic monitoring, groundwater sampling and data evaluation/reporting. Summaries of OM&M activities performed between 2017 and 2023 are provided in the attached reports, which concludes the following:


- The only VOCs detected at concentrations exceeding their standards were TCE, cis-1,2-DCE and vinyl chloride.
- The TCE concentration trends show an overall decrease since 1994.

### 6.0 CONCLUSIONS AND RECOMMENDATIONS


The remedy at the Former Griffin Technology Facility is operating as designed and remains protective of human health and the environment. AECOM recommends the following for the off-site area:

- Conduct an additional round of sampling in Summer 2026 to confirm the observed trends.
- Generate biennial PRRs to present the data from the aforementioned groundwater monitoring/sampling.

**FIGURES** 







J:\Projects\Small\_Chemistry\_Jobs\DB\Program\EDMS.mde L:\DCS\Projects\13816402\Deliverables\2023-11 Sampling\Figure 3.xlsx, Trichloroethene-plot, 12/21/2023 TABLES

### **TABLE 3-1 GROUNDWATER SAMPLING ANALYTICAL RESULT TRENDS (DETECTED VOCS ONLY)** FORMER GRIFFIN TECHNOLOGY FACILITY SITE

### LOCID: MW-06D

| Parameter                | Matrix | Class | Num of Data<br>Points | Num of Data<br>Point<br>Detections | Mann-Kendall<br>Statistic S | Probabilities (1) | Trend (2)      |
|--------------------------|--------|-------|-----------------------|------------------------------------|-----------------------------|-------------------|----------------|
| 1,1,1-Trichloroethane    | WG     | VOA   | 21                    | 17                                 | -130                        | No Value          | Downward Trend |
| 1,1-Dichloroethane       | WG     | VOA   | 6                     | 3                                  | 9                           | 0.068             | Upward Trend   |
| 1,2-Dichloroethene (cis) | WG     | VOA   | 21                    | 11                                 | 79                          | 0.009             | Upward Trend   |
| Acetone                  | WG     | VOA   | 21                    | 2                                  | 14                          | 0.349             | No Trend       |
| Trichloroethene          | WG     | VOA   | 21                    | 20                                 | -133                        | No Value          | Downward Trend |
| Vinyl chloride           | WG     | VOA   | 21                    | 4                                  | 69                          | 0.021             | Upward Trend   |

### LOCID: MW-06S

| Parameter                | Matrix | Class | Num of Data<br>Points | Num of Data<br>Point<br>Detections | Mann-Kendall<br>Statistic S | Probabilities (1) | Trend (2)      |
|--------------------------|--------|-------|-----------------------|------------------------------------|-----------------------------|-------------------|----------------|
| 1,1,1-Trichloroethane    | WG     | VOA   | 22                    | 13                                 | -62                         | 0.045             | Downward Trend |
| 1,1-Dichloroethane       | WG     | VOA   | 7                     | 3                                  | 12                          | 0.068             | Upward Trend   |
| 1,2-Dichloroethene (cis) | WG     | VOA   | 22                    | 10                                 | 84                          | 0.01              | Upward Trend   |
| Trichloroethene          | WG     | VOA   | 22                    | 18                                 | -19                         | 0.308             | No Trend       |
| Vinyl chloride           | WG     | VOA   | 22                    | 4                                  | 71                          | 0.024             | Upward Trend   |

### LOCID: MW-07D

| Parameter                | Matrix | Class | Num of Data<br>Points | Num of Data<br>Point<br>Detections | Mann-Kendall<br>Statistic S | Probabilities (1) | Trend (2)      |
|--------------------------|--------|-------|-----------------------|------------------------------------|-----------------------------|-------------------|----------------|
| 1,1,1-Trichloroethane    | WG     | VOA   | 21                    | 6                                  | -77                         | 0.011             | Downward Trend |
| 1,1-Dichloroethene       | WG     | VOA   | 6                     | 1                                  | -1                          | 0.5               | No Trend       |
| 1,2-Dichloroethene (cis) | WG     | VOA   | 21                    | 21                                 | 51                          | 0.07              | Upward Trend   |
| Acetone                  | WG     | VOA   | 21                    | 1                                  | 14                          | 0.349             | No Trend       |
| Chloromethane            | WG     | VOA   | 6                     | 1                                  | 5                           | 0.235             | No Trend       |
| Trichloroethene          | WG     | VOA   | 21                    | 21                                 | -156                        | No Value          | Downward Trend |
| Vinyl chloride           | WG     | VOA   | 21                    | 8                                  | 42                          | 0.109             | No Trend       |

### LOCID: MW-07S

| Parameter                | Matrix | Class | Num of Data<br>Points | Num of Data<br>Point<br>Detections | Mann-Kendall<br>Statistic S | Probabilities (1) | Trend (2)      |
|--------------------------|--------|-------|-----------------------|------------------------------------|-----------------------------|-------------------|----------------|
| 1,1,1-Trichloroethane    | WG     | VOA   | 22                    | 15                                 | -135                        | No Value          | Downward Trend |
| 1,2-Dichloroethene (cis) | WG     | VOA   | 22                    | 19                                 | -70                         | 0.027             | Downward Trend |
| Acetone                  | WG     | VOA   | 22                    | 2                                  | 33                          | 0.186             | No Trend       |
| Trichloroethene          | WG     | VOA   | 22                    | 21                                 | -159                        | No Value          | Downward Trend |

For multiple observations per time period, the Mann-Kendall test to the median was used.

Data reported as less than the detection limit were used by assigning a common value to the data that was smaller than the smallest measurement in the data set. (1) - Probabilities for Mann-Kendall Nonparameteric Test for Trend (Gilbert R.O. 1987, Table A18).

(2) - Assuming a probability of error of 10% in the analyis method and or data, then the probability of no trend as calculated by the Mann-Kendall statistic is less than 10%, then it is assumed that there is a trend.

- Number of obsevations too small to calculate probablities.

\*\* - Probability Undefined for S=0 and N=6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31, 34, or 35.

Advanced Selection: Griffin Hist MK4 L:\DCS\Projects\Small\_Chemistry\_Jobs\DB\Program\Stat.MDE 12/20/2023

### **TABLE 3-1 GROUNDWATER SAMPLING ANALYTICAL RESULT TRENDS (DETECTED VOCS ONLY)** FORMER GRIFFIN TECHNOLOGY FACILITY SITE

### LOCID: MW-07S

| Parameter      | Matrix | Class | Num of Data<br>Points | Num of Data<br>Point<br>Detections | Mann-Kendall<br>Statistic S | Probabilities (1) | Trend (2) |
|----------------|--------|-------|-----------------------|------------------------------------|-----------------------------|-------------------|-----------|
| Vinyl chloride | WG     | VOA   | 22                    | 1                                  | 21                          | 0.289             | No Trend  |

### LOCID: MW-10S

| Parameter                   | Matrix | Class | Num of Data<br>Points | Num of Data<br>Point<br>Detections | Mann-Kendall<br>Statistic S | Probabilities (1) | Trend (2) |
|-----------------------------|--------|-------|-----------------------|------------------------------------|-----------------------------|-------------------|-----------|
| 1,1,1-Trichloroethane       | WG     | VOA   | 21                    | 1                                  | -18                         | 0.306             | No Trend  |
| 1,2-Dibromo-3-chloropropane | WG     | VOA   | 7                     | 1                                  | 0                           | Undefined **      |           |
| 1,2-Dichloroethene (cis)    | WG     | VOA   | 21                    | 2                                  | 32                          | 0.177             | No Trend  |
| Trichloroethene             | WG     | VOA   | 21                    | 16                                 | -19                         | 0.306             | No Trend  |

For multiple observations per time period, the Mann-Kendall test to the median was used.

Data reported as less than the detection limit were used by assigning a common value to the data that was smaller than the smallest measurement in the data set. (1) - Probabilities for Mann-Kendall Nonparameteric Test for Trend (Gilbert R.O. 1987, Table A18).

(2) - Assuming a probability of error of 10% in the analyis method and or data, then the probability of no trend as calculated by the Mann-Kendall statistic is less than 10%, then it is assumed that there is a trend.

\* - Number of obsevations too small to calculate probabilities. \*\* - Probability Undefined for S=0 and N=6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31, 34, or 35.

Advanced Selection: Griffin Hist MK4 L:\DCS\Projects\Small\_Chemistry\_Jobs\DB\Program\Stat.MDE 12/20/2023 ATTACHMENTS

# ATTACHMENT A

**Parcel Reports** 



0

0

0

0

Please see Parcel Detail Report for complete information

### Assessed Values

| 5100 |
|------|
| 0000 |
| 0000 |
| (    |

### **Recent Residential Sales**

### Valid Sales Only within the past three years

Date:

Price:



Click here to look up your polling station

Sale Type:

Notes: Deed Book: 1532

745 TITUS AVE

ANNEX BLDG ROCHESTER

Heat:

Fuel:

Water:

Sewer:

Comm/public

Comm/public

**BRISTOL VALLEY HOMES LLC** 

Page: 763 Date Filed: 1/23/2024

NY

% NYS DEC Wetland:

% Flood Zone (A, AE):

% NWI Wetland:

% Steep Slope:

**Owner Information** 

Comments:



THIS MAP AND INFORMATION IS PROVIDED "AS IS" AND ONTARIO COUNTY MAKES NO WARRANTIES OR GUARANTEES, EXPRESSED OR IMPLIED, INCLUDING WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY AND THAT OF FITNESS FOR A PARTICULAR PURPOSE CONCERNING THIS MAP AND THE INFORMATION CONTAINED HEREIN. USER ASSUMES ALL RISKS AND RESPONSIBILITY FOR DETERMINING WHETHER THIS INFORMATION IS SUFFICIENT FOR PURPOSES INTENDED.

14617

|                                                                                                                                                                  | Previ | ous Owners | ;          |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|------------|-----|
| OWNER NAME(S):         CASE REALTY 6 <sup>-1</sup> DEED DATE:         1/5/2018           CLERK NUMBER:         201801050079           COMMENTS:         Comments |       | 1399       | DEED PAGE: | 62  |
| OWNER NAME(S): ARFCOM HOLD<br>DEED DATE: 4/23/2012<br>CLERK NUMBER: 201204230210<br>COMMENTS:                                                                    |       | 1276       | DEED PAGE: | 880 |
| OWNER NAME(S): SW VICTOR-MA<br>DEED DATE: 09/19/2007<br>CLERK NUMBER: 200709190136<br>COMMENTS:                                                                  |       | 1192       | DEED PAGE: | 134 |
| OWNER NAME(S): GRIFFIN TECHN<br>DEED DATE: 7/1/1973<br>CLERK NUMBER:<br>COMMENTS:                                                                                |       | 730        | DEED PAGE: | 290 |



| Tax Information            |       |             |             |             |  |  |  |  |  |  |
|----------------------------|-------|-------------|-------------|-------------|--|--|--|--|--|--|
| SPECIAL DISTRICT TAX RATES |       |             |             |             |  |  |  |  |  |  |
| Special District           | Code  | SD Tax Rate | UN Tax Rate | FE Tax Rate |  |  |  |  |  |  |
| Drainage District #1       | DD281 | 0.178967    | 0           | 0           |  |  |  |  |  |  |
| Farm Fire Protection       | FD281 | 0.491323    | 0           | 0           |  |  |  |  |  |  |
| Cdga-Farm Water            | WD281 | 0.835629    | 0           | 0           |  |  |  |  |  |  |

|                               | EXEMPTIONS |      |         |        |
|-------------------------------|------------|------|---------|--------|
| <b>Exemptions Description</b> | County     | Town | Village | School |

### **ESTIMATED TAXES WORKSHEET**

The workspace below can be used to estimate the TRUE taxes for this property. Users are strongly urged to contact the Ontario County Treasure's Office (585-396-4432) to verify exact total taxes. If the property is in one of the cities, please contact either the City of Canandaigua (585-396-5015) or the City of Geneva (315-789-2114) depending on the location.

| ΤΑΧ ΤΥΡΕ      | TAX RATE |   | TOTAL ASSESSE | D VALUE | TOTAL TAXES | TAX YEAR  |
|---------------|----------|---|---------------|---------|-------------|-----------|
| SCHOOL:       | 14.29625 | X | \$80000.00    | /1000 = | \$1143.70   | 2023-2024 |
| COUNTY:       | 5.980461 | Х | \$80000.00    | /1000 = | \$478.44    | 2023-2024 |
| TOWN OR CITY: | 0.700171 | Х | \$80000.00    | /1000 = | \$56.01     | 2023-2024 |
| VILLAGE:      | 0        | Х | \$80000.00    | /1000 = | \$0.00      | 2023-2024 |

Municipal and School Taxes Subtotal: \$1678.15

- + Special District Taxes Subtotal:
  - **TOTAL ESTIMATED TAXES:**

|                      | SURVEYS                                              |
|----------------------|------------------------------------------------------|
| Survey ID            | Survey Link (copy and paste in browser)              |
| 31046A<br>04/03/2009 | https://oncorng.co.ontario.ny.us/surveys/31046A.tiff |
| 31046B               | https://oncorng.co.ontario.ny.us/surveys/31046B.tiff |
| 04/03/2009           | FILED 3/26/2009, LABELLA ASSOCIATES                  |

# TAX BILLS

|              | Copy and paste link in a browser                                                 |
|--------------|----------------------------------------------------------------------------------|
| School:      | https://oncorng.co.ontario.ny.us/TaxbillSchool/29.00-1-12.000_School.pdf         |
| County/Town: | https://oncorng.co.ontario.ny.us/TaxbillCountyTown/29.00-1-12.000_CountyTown.pdf |
| City:        |                                                                                  |
| Village:     |                                                                                  |



|                        | ADDITI | ONAL I  | NVENT | ORY   |            |         |
|------------------------|--------|---------|-------|-------|------------|---------|
|                        | IN     | /IPROVE | MENTS |       |            |         |
| Structure Description: | Year:  | SqFt:   | Dim1: | Dim2: | Condition: | Grade:  |
| Barn-pole              | 1980   | 2400    | 40    | 60    | Normal     | Average |
| Pavng-asphlt           | 1980   | 9200    | 0     | 0     | Normal     | Average |

| LAND DESCRIPTION                                            |  |  |   |   |   |
|-------------------------------------------------------------|--|--|---|---|---|
| Land Type: Waterfront: Soil Rating: Acres: Depth: Frontage: |  |  |   |   |   |
| Primary                                                     |  |  | 2 | 0 | 0 |



# INDIVIDUAL BUILDING DETAILS

### **RESIDENTIAL BUILDINGS**

Building details are followed by area dimensions provided in square feet

Overall Condition: Construction Grade:

Number of Stories:

**Exterior Wall Material:** 

**Exterior Condition:** 

**Basement Type:** 

**Heating Type:** 

**Fuel Type:** 

Building Style: Actual Year Built: Effective Year Built: Year Remodeled: Number of Bedrooms: Number of Full Baths: Number of Half Baths: Number of Kitchens: Number of Fireplaces:

**Total Living Area:** 

**Additional Story:** 

First Story: Second Story: Half Story: Unfinished: 3/4 Story:

Unfinished:

Central Air (1 = Yes) Finished Basement Area: Finished Attic Area: Finished Rec Room Area: Finished Over Garage:



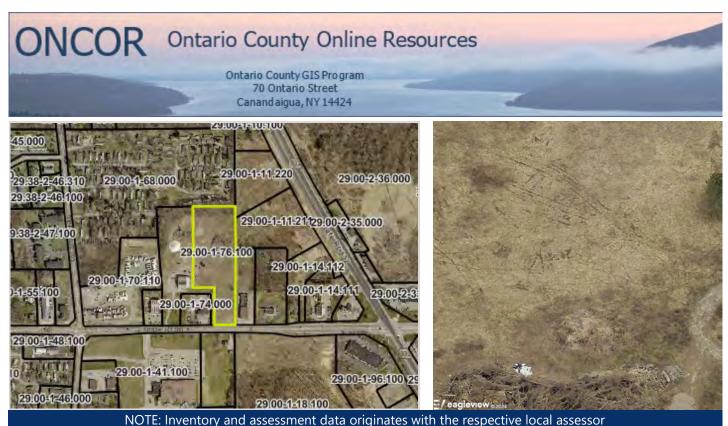
|                            | COMMERC      | CIAL BUILDINGS            |         |
|----------------------------|--------------|---------------------------|---------|
| Building Number:           | 1            | <b>Overall Condition:</b> | Normal  |
| Building Section:          | 1            | Quality:                  | Average |
| Year Built:                | 1980         | Number of Stories:        | 2       |
| Number of Indent Building  | <b>js:</b> 1 | Story Height:             | 14      |
| Percent Air-conditioned:   | 100          | Basement Type:            |         |
| Percent Alarmed:           | 100          | Number of Elevators:      | 0       |
| Percent Sprinkler:         | 0            | Boekh Model Number:       |         |
| Gross Floor Area:          | 12000        | Boekh Model Code:         | 819     |
| Perimeter:                 | 640          | Wall A:                   | 100     |
| Basement Square Footage:   | 0            | Wall B:                   | 0       |
| <b>Basement Perimeter:</b> | 0            | Wall C:                   | 0       |

| Building Number:            | 1    | <b>Overall Condition:</b> | Normal  |
|-----------------------------|------|---------------------------|---------|
| Building Section:           | 2    | Quality:                  | Average |
| Year Built:                 | 1980 | Number of Stories:        | 1       |
| Number of Indent Buildings: | 1    | Story Height:             | 14      |
| Percent Air-conditioned:    | 100  | Basement Type:            |         |
| Percent Alarmed:            | 100  | Number of Elevators:      | 0       |
| Percent Sprinkler:          | 0    | Boekh Model Number:       | :       |
| Gross Floor Area:           | 6000 | Boekh Model Code:         | 811     |
| Perimeter:                  | 320  | Wall A:                   | 100     |
| Basement Square Footage:    | 0    | Wall B:                   | 0       |
| <b>Basement Perimeter:</b>  | 0    | Wall C:                   | 0       |
|                             |      |                           |         |



# PROPERTY ANALYSIS

| Туре:                 | Description:                           | Acres: | % Coverage: |
|-----------------------|----------------------------------------|--------|-------------|
| Ecological Community  | Community Description TBD              | 2.41   | 100.000%    |
| NRCS Soils            | Kendaia loam, 0 to 3 percent slopes    | 0.25   | 10.5%       |
| NRCS Soils            | Farmington loam, 0 to 3 percent slopes | 0.76   | 31.3%       |
| NRCS Soils            | Ovid silt loam, 0 to 3 percent slopes  | 1.40   | 58.2%       |
| Utilities - Electric  | ROCHESTER GAS & ELECTRIC               | 2.41   | 100.0%      |
| Utilities - Gas       | ROCHESTER GAS & ELECTRIC               | 2.41   | 100.0%      |
| Utilities - Telephone | Frontier Telephone of Rochester        | 2.41   | 100.0%      |
| Utilities - Telephone | Finger Lakes Technology Group          | 2.41   | 100.0%      |
| Watershed             | S. Bk-W/S Divide to Hathaway Brook     | 2.41   | 100.0%      |
| Wetlands - NWI        | Freshwater Forested/Shrub Wetland      | 0.00   | 0.0%        |




# LOCAL ZONING

Note: OnCOR users are strongly urged to contact the municipal planning/zoning office to confirm accuracy of the zoning information listed below.

| Туре:                           | Description:               | % Coverage: |
|---------------------------------|----------------------------|-------------|
| Town of Farmington MTOD Overlay | Major Thoroughfare Overlay | 100.0%      |
| Town of Farmington Zoning       | GB - General Business      | 100.0%      |





| PROPERTY | <b>SUMMARY</b> | REPORT |
|----------|----------------|--------|
|----------|----------------|--------|

| Physical Address: St    | Rt 96                   |
|-------------------------|-------------------------|
| Community: To           | wn of Farmington        |
| Easting: 612190 No      | orthing: 1085260        |
| Acres: 6.60 Ne          | eighborhood: 28580      |
| Roll Section: 1 2024 Ut | ilities: Gas & elec     |
| Property Class: 330 Va  | cant comm               |
| School District: Vie    | ctor Central            |
| Frontage: .00 De        | epth: .00 Obstructions: |
| Heat: %                 | NYS DEC Wetland: 0      |
| Fuel: %                 | <b>NWI Wetland:</b> 0   |
| Water: Comm/public %    | Steep Slope: 0          |
| Sewer: Comm/public %    | 6 Flood Zone (A, AE): 0 |

### **Owner Information**

AUTO OUTLETS USA PROPERTIES INC;80%INT; 6162 STATE

WEBSTER NY 14580

### Notes:

**Deed Book:** 1498 **Page:** 995

Date Filed: 6/24/2022

# BUILDING DETAILS (primary building only)Year Built:Square Feet:Year Built:Square Feet:Condition:Frisplace:Style:Central Air:Stories:Central Air:Siding:FileBasement:Half Baths:Full Baths:Half Baths:Bedrooms:Fireplaces:Please see Parcel Detail Rev Tor Complete information

### Assessed Values

| \$377900 |
|----------|
| \$355200 |
| \$355200 |
|          |

### **Recent Residential Sales**

Valid Sales Only within the past three years

Date:

Price:



Click here to look up your polling station

Sale Type:

### Comments:



| Prev                                                                                                                                                   | vious Ov | vners      |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|------|
| OWNER NAME(S): CASE REALTY HOLDINGS LLC<br>DEED DATE: 1/5/2018 DEED BOOK<br>CLERK NUMBER: 201801050081<br>COMMENTS:                                    | : 1399   | DEED PAGE: | 70   |
| OWNER NAME(S): ARFCOM HOLDINGS, LLC<br>DEED DATE: 4/23/2012 DEED BOOK<br>CLERK NUMBER: 201204230210<br>COMMENTS:                                       | : 1276   | DEED PAGE: | 880  |
| OWNER NAME(S): SW VICTOR-MANCHESTER, LLC<br>DEED DATE: 09/19/2007 DEED BOOK<br>CLERK NUMBER: 200709190136<br>COMMENTS:                                 |          | DEED PAGE: | 134  |
| OWNER NAME(S): GRIFFIN TECHNOLOGY, INC.<br>DEED DATE: 12/1/1991 DEED BOOK<br>CLERK NUMBER:<br>COMMENTS:                                                | : 913    | DEED PAGE: | 858  |
| OWNER NAME(S): SOLD 0.40A TO CARTER, ALBER<br>DEED DATE: 12/01/1991 DEED BOOK<br>CLERK NUMBER:<br>COMMENTS:                                            |          | DEED PAGE: | 865  |
| OWNER NAME(S): CARTER TOOL CORP<br>DEED DATE: 01/01/1979 DEED BOOK<br>CLERK NUMBER:<br>COMMENTS:                                                       | : 786    | DEED PAGE: | 323  |
| OWNER NAME(S): CARTER, ALBERT T<br>DEED DATE: 03/01/1978 DEED BOOK<br>CLERK NUMBER:<br>COMMENTS:                                                       | : 776    | DEED PAGE: | 1145 |
| OWNER NAME(S): SCAMPOLE, JAMES V<br>DEED DATE: 11/01/1977 DEED BOOK<br>CLERK NUMBER:<br>COMMENTS:                                                      | : 772    | DEED PAGE: | 442  |
| OWNER NAME(S): SCAMPOLE, JAMES V & BALZA<br>DEED DATE: 06/01/1971 DEED BOOK<br>THIS MAP AND INFORMATION IS PROVIDED 'AS IS" AND ONTARIO COUNTY MAKES I | : 711    | DEED PAGE: | 160  |

THIS MAP AND INFORMATION IS PROVIDED "AS IS" AND ONTARIO COUNTY MAKES NO WARRANTIES OR GUARANTEES, EXPRESSED OR IMPLIED, INCLUDING WARRANTIES OF TITLE, NON-INFRINCEMENT, MERCHANTABILITY AND THAT OF FITNESS FOR A PARTICULAR PURPOSE CONCERNING THIS MAP AND THE INFORMATION CONTAINED HEREIN. USER ASSUMES ALL RISKS AND RESPONSIBILITY FOR DETERMINING WHETHER THIS INFORMATION IS SUFFICIENT FOR PURPOSES INTENDED.



THIS MAP AND INFORMATION IS PROVIDED "AS IS" AND ONTARIO COUNTY MAKES NO WARRANTIES OR GUARANTEES, EXPRESSED OR IMPLIED, INCLUDING WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY AND THAT OF FITNESS FOR A PARTICULAR PURPOSE CONCERNING THIS MAP AND THE INFORMATION CONTAINED HEREIN. USER ASSUMES ALL RISKS AND RESPONSIBILITY FOR DETERMINING WHETHER THIS INFORMATION IS SUFFICIENT FOR PURPOSES INTENDED.

| Tax Information            |       |             |             |             |  |  |  |
|----------------------------|-------|-------------|-------------|-------------|--|--|--|
| SPECIAL DISTRICT TAX RATES |       |             |             |             |  |  |  |
| Special District           | Code  | SD Tax Rate | UN Tax Rate | FE Tax Rate |  |  |  |
| Drainage District #1       | DD281 | 0.178967    | 0           | 0           |  |  |  |
| Farm Fire Protection       | FD281 | 0.491323    | 0           | 0           |  |  |  |
| Cdga-Farm Water            | WD281 | 0.835629    | 0           | 0           |  |  |  |

| EXEMPTIONS                    |        |      |         |        |  |
|-------------------------------|--------|------|---------|--------|--|
| <b>Exemptions Description</b> | County | Town | Village | School |  |

#### **ESTIMATED TAXES WORKSHEET**

The workspace below can be used to estimate the TRUE taxes for this property. Users are strongly urged to contact the Ontario County Treasure's Office (585-396-4432) to verify exact total taxes. If the property is in one of the cities, please contact either the City of Canandaigua (585-396-5015) or the City of Geneva (315-789-2114) depending on the location.

| ΤΑΧ ΤΥΡΕ      | TAX RATE |   | TOTAL ASSESSE | D VALUE | TOTAL TAXES | TAX YEAR  |
|---------------|----------|---|---------------|---------|-------------|-----------|
| SCHOOL:       | 14.29625 | х | \$355200.00   | /1000 = | \$5078.03   | 2023-2024 |
| COUNTY:       | 5.980461 | Х | \$355200.00   | /1000 = | \$2124.26   | 2023-2024 |
| TOWN OR CITY: | 0.700171 | Х | \$355200.00   | /1000 = | \$248.70    | 2023-2024 |
| VILLAGE:      | 0        | Х | \$355200.00   | /1000 = | \$0.00      | 2023-2024 |
|               |          |   |               |         |             |           |

Municipal and School Taxes Subtotal:

+ Special District Taxes Subtotal:

**TOTAL ESTIMATED TAXES:** 

| Survey Link (copy and paste in browser)       |
|-----------------------------------------------|
|                                               |
| //oncorng.co.ontario.ny.us/surveys/19442.tiff |
| 12/11/1991, DJ PARRONE AND ASSOCIATES         |
| -                                             |

## TAX BILLS

|              | Copy and paste link in a browser                                                 |
|--------------|----------------------------------------------------------------------------------|
| School:      | https://oncorng.co.ontario.ny.us/TaxbillSchool/29.00-1-76.100_School.pdf         |
| County/Town: | https://oncorng.co.ontario.ny.us/TaxbillCountyTown/29.00-1-76.100_CountyTown.pdf |
| City:        |                                                                                  |
| Village:     |                                                                                  |



\$7450.99

| ADDITIONAL INVENTORY                                             |  |  |  |  |  |  |  |
|------------------------------------------------------------------|--|--|--|--|--|--|--|
| IMPROVEMENTS                                                     |  |  |  |  |  |  |  |
| Structure Description: Year: SqFt: Dim1: Dim2: Condition: Grade: |  |  |  |  |  |  |  |

| LAND DESCRIPTION |             |              |        |        |           |  |
|------------------|-------------|--------------|--------|--------|-----------|--|
| Land Type:       | Waterfront: | Soil Rating: | Acres: | Depth: | Frontage: |  |
| Primary          |             |              | 2      | 0      | 0         |  |
| Residual         |             |              | 4      | 0      | 0         |  |



# INDIVIDUAL BUILDING DETAILS

### **RESIDENTIAL BUILDINGS**

Building details are followed by area dimensions provided in square feet

Overall Condition: Construction Grade:

Number of Stories:

**Exterior Wall Material:** 

**Exterior Condition:** 

**Basement Type:** 

**Heating Type:** 

**Fuel Type:** 

Building Style: Actual Year Built: Effective Year Built: Year Remodeled: Number of Bedrooms: Number of Full Baths: Number of Half Baths: Number of Kitchens: Number of Fireplaces:

**Total Living Area:** 

**Additional Story:** 

First Story: Second Story: Half Story: Unfinished: 3/4 Story:

Unfinished:

Central Air (1 = Yes) Finished Basement Area: Finished Attic Area: Finished Rec Room Area: Finished Over Garage:



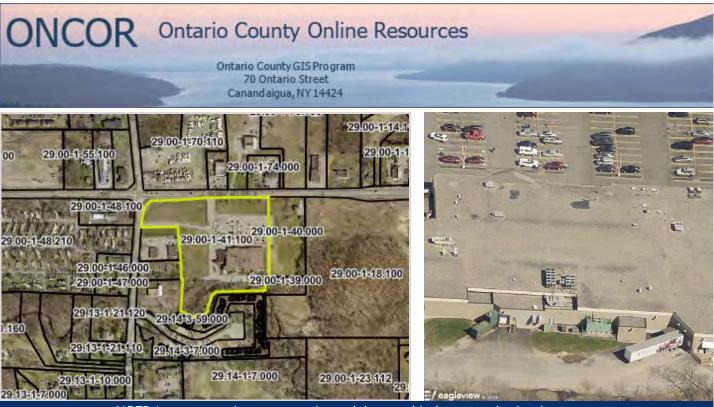
## COMMERCIAL BUILDINGS

| Building Number:            | Overall Condition:   |
|-----------------------------|----------------------|
| Building Section:           | Quality:             |
| Year Built:                 | Number of Stories:   |
| Number of Indent Buildings: | Story Height:        |
| Percent Air-conditioned:    | Basement Type:       |
| Percent Alarmed:            | Number of Elevators: |
| Percent Sprinkler:          | Boekh Model Number:  |
| Gross Floor Area:           | Boekh Model Code:    |
| Perimeter:                  | Wall A:              |
| Basement Square Footage:    | Wall B:              |
| Basement Perimeter:         | Wall C:              |
|                             |                      |



# PROPERTY ANALYSIS

| Туре:                 | Description:                                 | Acres: | % Coverage: |
|-----------------------|----------------------------------------------|--------|-------------|
| Ecological Community  | Community Description TBD                    | 6.60   | 100.000%    |
| NRCS Soils            | Cazenovia silt loam, 3 to 8 percent slopes   | 1.43   | 21.7%       |
| NRCS Soils            | Farmington loam, 3 to 8 percent slopes       | 0.35   | 5.3%        |
| NRCS Soils            | Palmyra gravelly loam, 0 to 3 percent slopes | 0.09   | 1.3%        |
| NRCS Soils            | Kendaia loam, 0 to 3 percent slopes          | 0.36   | 5.5%        |
| NRCS Soils            | Farmington loam, 0 to 3 percent slopes       | 3.23   | 49.0%       |
| NRCS Soils            | Ovid silt loam, 0 to 3 percent slopes        | 1.14   | 17.3%       |
| Utilities - Electric  | ROCHESTER GAS & ELECTRIC                     | 6.60   | 100.0%      |
| Utilities - Gas       | ROCHESTER GAS & ELECTRIC                     | 6.60   | 100.0%      |
| Utilities - Telephone | Frontier Telephone of Rochester              | 6.60   | 100.0%      |
| Utilities - Telephone | Finger Lakes Technology Group                | 6.60   | 100.0%      |
| Watershed             | S. Bk-W/S Divide to Hathaway Brook           | 6.60   | 100.0%      |
|                       |                                              |        |             |




# LOCAL ZONING

Note: OnCOR users are strongly urged to contact the municipal planning/zoning office to confirm accuracy of the zoning information listed below.

| Туре:                           | Description:               | % Coverage: |
|---------------------------------|----------------------------|-------------|
| Town of Farmington MTOD Overlay | Major Thoroughfare Overlay | 100.0%      |
| Town of Farmington Zoning       | GB - General Business      | 100.0%      |





NOTE: Inventory and assessment data originates with the respective local assessor

### **PROPERTY SUMMARY REPORT**

| Tax Map ID:                     |                |       | 29.00-1-41.100           |  |  |  |  |
|---------------------------------|----------------|-------|--------------------------|--|--|--|--|
| Physical Address:               |                |       | 6179 St Rt 96            |  |  |  |  |
| Community:                      |                |       | Town of Farmington       |  |  |  |  |
| Easting:                        | 611714         |       | Northing: 1084272        |  |  |  |  |
| Acres:                          | 14.20          |       | Neighborhood: 28580      |  |  |  |  |
| Roll Sec                        | <b>tion:</b> 1 | 2024  | Utilities: Gas & elec    |  |  |  |  |
| Property Class: 454 Supermarket |                |       |                          |  |  |  |  |
| School [                        | District:      |       | Victor Central           |  |  |  |  |
| Frontage                        | e:             | .00   | Depth: .00 Obstructions: |  |  |  |  |
| Heat:                           |                |       | % NYS DEC Wetland: 0     |  |  |  |  |
| Fuel:                           |                |       | % NWI Wetland: 0         |  |  |  |  |
| Water:                          | Comm/p         | ublic | % Steep Slope: 4         |  |  |  |  |
| Sewer:                          | Comm/p         | ublic | % Flood Zone (A, AE): 9  |  |  |  |  |
|                                 |                |       |                          |  |  |  |  |

| Owner Information     |    |             |           |  |  |  |  |  |
|-----------------------|----|-------------|-----------|--|--|--|--|--|
| FARMINGTON CENTER LLC |    |             |           |  |  |  |  |  |
| 550 LATONA RD         |    |             |           |  |  |  |  |  |
| SUITE 501             |    |             |           |  |  |  |  |  |
| ROCHESTER             | NY | 14626       | -         |  |  |  |  |  |
| Notes:                |    |             |           |  |  |  |  |  |
| Deed Book: 1341 Page: | 31 | Date Filed: | 6/24/2015 |  |  |  |  |  |

#### **BUILDING DETAILS (primary building only)**

|             |               | <b>N N</b>          |        |       |
|-------------|---------------|---------------------|--------|-------|
| Year Built: | 1982          | Square Fe           | et:    | 51151 |
| Condition:  | Good          |                     |        |       |
| Style:      | 1 sty sto     | re load sup         |        |       |
| Stories:    | 1             | Central Ai          | r:     |       |
| Siding:     |               |                     |        |       |
| Basement:   |               |                     |        |       |
| Full Baths: |               | Half Baths          | :      |       |
| Bedrooms:   |               | Fireplaces          | :      |       |
| Please see  | Parcel Detail | Report for complete | inform | ation |
|             |               |                     |        |       |

#### Assessed Values

| \$7665100 |
|-----------|
| \$7205200 |
| \$979800  |
|           |

## **Recent Residential Sales**

Valid Sales Only within the past three years

Date:

Price:



Click here to look up your polling station

Sale Type:

### Comments:



THIS MAP AND INFORMATION IS PROVIDED "AS IS" AND ONTARIO COUNTY MAKES NO WARRANTIES OR GUARANTEES, EXPRESSED OR IMPLIED, INCLUDING WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY AND THAT OF FITNESS FOR A PARTICULAR PURPOSE CONCERNING THIS MAP AND THE INFORMATION CONTAINED HEREIN. USER ASSUMES ALL RISKS AND RESPONSIBILITY FOR DETERMINING WHETHER THIS INFORMATION IS SUFFICIENT FOR PURPOSES INTENDED.

|                                                                                                | Previ      | ous Owners |            |      |
|------------------------------------------------------------------------------------------------|------------|------------|------------|------|
| OWNER NAME(S): WADE, JANE A<br>DEED DATE: 11/2/2009<br>CLERK NUMBER: 200911020159<br>COMMENTS: | DEED BOOK: | 1235       | DEED PAGE: | 44   |
| OWNER NAME(S): WADE, JOHN W<br>DEED DATE: 7/1/1997<br>CLERK NUMBER:<br>COMMENTS:               | DEED BOOK: | 981        | DEED PAGE: | 766  |
| OWNER NAME(S): KEYES, GARY L<br>DEED DATE: 12/01/1994<br>CLERK NUMBER:<br>COMMENTS:            | DEED BOOK: | 948        | DEED PAGE: | 441  |
| OWNER NAME(S): WADE, JOHN W<br>DEED DATE: 9/1/1992<br>CLERK NUMBER:<br>COMMENTS:               | DEED BOOK: | 921        | DEED PAGE: | 270  |
| OWNER NAME(S): ONTARIO CO INI<br>DEED DATE: 07/01/1982<br>CLERK NUMBER:<br>COMMENTS:           |            |            | DEED PAGE: | 20   |
| OWNER NAME(S): 96 MERTENSIA R<br>DEED DATE: 05/01/1982<br>CLERK NUMBER:<br>COMMENTS:           |            | 812        | DEED PAGE: | 883  |
| OWNER NAME(S): WADE'S MARKET<br>DEED DATE: 07/01/1979<br>CLERK NUMBER:<br>COMMENTS:            |            | 790        | DEED PAGE: | 886  |
| OWNER NAME(S): ALAIMO, JAMES<br>DEED DATE: 10/01/1973<br>CLERK NUMBER:<br>COMMENTS:            |            | 731        | DEED PAGE: | 1120 |



|                      | Tax Ir      | nformation       |             |             |
|----------------------|-------------|------------------|-------------|-------------|
|                      | SPECIAL DIS | STRICT TAX RATES | 5           |             |
| Special District     | Code        | SD Tax Rate      | UN Tax Rate | FE Tax Rate |
| Drainage District #1 | DD281       | 0.178967         | 0           | 0           |
| Farm Fire Protection | FD281       | 0.491323         | 0           | 0           |
| Cdga-Farm Water      | WD281       | 0.835629         | 0           | 0           |

|                               | EXEMPTIONS |      |         |        |
|-------------------------------|------------|------|---------|--------|
| <b>Exemptions Description</b> | County     | Town | Village | School |

#### **ESTIMATED TAXES WORKSHEET**

The workspace below can be used to estimate the TRUE taxes for this property. Users are strongly urged to contact the Ontario County Treasure's Office (585-396-4432) to verify exact total taxes. If the property is in one of the cities, please contact either the City of Canandaigua (585-396-5015) or the City of Geneva (315-789-2114) depending on the location.

| ΤΑΧ ΤΥΡΕ      | TAX RATE |      | TOTAL ASSESSE   | D VALUE  | TOTAL TAXES | TAX YEAR  |
|---------------|----------|------|-----------------|----------|-------------|-----------|
| SCHOOL:       | 14.29625 | x    | \$7205200.00    | /1000 =  | \$103007.34 | 2023-2024 |
| COUNTY:       | 5.980461 | Х    | \$7205200.00    | /1000 =  | \$43090.42  | 2023-2024 |
| TOWN OR CITY: | 0.700171 | Х    | \$7205200.00    | /1000 =  | \$5044.87   | 2023-2024 |
| VILLAGE:      | 0        | Х    | \$7205200.00    | /1000 =  | \$0.00      | 2023-2024 |
|               | Municin  | al a | nd School Taxes | Subtotal | \$151142.63 |           |

Municipal and School Taxes Subtotal:

+ Special District Taxes Subtotal:

TOTAL ESTIMATED TAXES:

Survey Link (copy and paste in browser)

## SURVEYS

### Survey ID

https://oncorng.co.ontario.ny.us/surveys/23664.tiff

11/15/2013

23664

## TAX BILLS

 Copy and paste link in a browser

 School:
 https://oncorng.co.ontario.ny.us/TaxbillSchool/29.00-1-41.100\_School.pdf

 County/Town:
 https://oncorng.co.ontario.ny.us/TaxbillCountyTown/29.00-1-41.100\_CountyTown.pdf

 City:
 Village:



| /                      | ADDITI( | ONAL I        | NVENT | ORY   |            |         |
|------------------------|---------|---------------|-------|-------|------------|---------|
|                        | IN      | <b>IPROVE</b> | MENTS |       |            |         |
| Structure Description: | Year:   | SqFt:         | Dim1: | Dim2: | Condition: | Grade:  |
| Pavng-asphlt           | 1983    | 136000        | 0     | 0     | Normal     | Average |

| LAND DESCRIPTION |             |              |        |        |           |
|------------------|-------------|--------------|--------|--------|-----------|
| Land Type:       | Waterfront: | Soil Rating: | Acres: | Depth: | Frontage: |
| Primary          |             |              | 8      | 0      | 0         |
| Residual         |             |              | 6      | 0      | 0         |



# INDIVIDUAL BUILDING DETAILS

### **RESIDENTIAL BUILDINGS**

Building details are followed by area dimensions provided in square feet

Overall Condition: Construction Grade:

Number of Stories:

**Exterior Wall Material:** 

**Exterior Condition:** 

**Basement Type:** 

**Heating Type:** 

**Fuel Type:** 

Building Style: Actual Year Built: Effective Year Built: Year Remodeled: Number of Bedrooms: Number of Full Baths: Number of Half Baths: Number of Kitchens: Number of Fireplaces:

**Total Living Area:** 

**Additional Story:** 

First Story: Second Story: Half Story: Unfinished: 3/4 Story:

Unfinished:

Central Air (1 = Yes) Finished Basement Area: Finished Attic Area: Finished Rec Room Area: Finished Over Garage:



|                             | COMMER | CIAL BUILDINGS            |         |
|-----------------------------|--------|---------------------------|---------|
| Building Number:            | 1      | <b>Overall Condition:</b> | Good    |
| Building Section:           | 1      | Quality:                  | Average |
| Year Built:                 | 1982   | Number of Stories:        | 1       |
| Number of Indent Buildings: | 1      | Story Height:             | 12      |
| Percent Air-conditioned:    | 100    | Basement Type:            |         |
| Percent Alarmed:            | 100    | Number of Elevators:      | 0       |
| Percent Sprinkler:          | 100    | Boekh Model Number:       |         |
| Gross Floor Area:           | 51151  | Boekh Model Code:         | 312     |
| Perimeter:                  | 1183   | Wall A:                   | 0       |
| Basement Square Footage:    | 0      | Wall B:                   | 100     |
| <b>Basement Perimeter:</b>  | 0      | Wall C:                   | 0       |



# PROPERTY ANALYSIS

| Description:                             | Acres:                                                                                                                                                                                                                                     | % Coverage:                                                                                                                                                                                                                                          |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Community Description TBD                | 13.40                                                                                                                                                                                                                                      | 100.000%                                                                                                                                                                                                                                             |
| Galoo loam, 3 to 8 percent slopes, rocky | 0.02                                                                                                                                                                                                                                       | 0.1%                                                                                                                                                                                                                                                 |
| Ovid silt loam, 0 to 3 percent slopes    | 13.39                                                                                                                                                                                                                                      | 99.9%                                                                                                                                                                                                                                                |
| ROCHESTER GAS & ELECTRIC                 | 13.40                                                                                                                                                                                                                                      | 100.0%                                                                                                                                                                                                                                               |
| ROCHESTER GAS & ELECTRIC                 | 13.40                                                                                                                                                                                                                                      | 100.0%                                                                                                                                                                                                                                               |
| Frontier Telephone of Rochester          | 13.40                                                                                                                                                                                                                                      | 100.0%                                                                                                                                                                                                                                               |
| Finger Lakes Technology Group            | 13.40                                                                                                                                                                                                                                      | 100.0%                                                                                                                                                                                                                                               |
| S. Bk-W/S Divide to Hathaway Brook       | 13.40                                                                                                                                                                                                                                      | 100.0%                                                                                                                                                                                                                                               |
|                                          | Community Description TBD<br>Galoo Ioam, 3 to 8 percent slopes, rocky<br>Ovid silt Ioam, 0 to 3 percent slopes<br>ROCHESTER GAS & ELECTRIC<br>ROCHESTER GAS & ELECTRIC<br>Frontier Telephone of Rochester<br>Finger Lakes Technology Group | Community Description TBD13.40Galoo Ioam, 3 to 8 percent slopes, rocky0.02Ovid silt Ioam, 0 to 3 percent slopes13.39ROCHESTER GAS & ELECTRIC13.40ROCHESTER GAS & ELECTRIC13.40Frontier Telephone of Rochester13.40Finger Lakes Technology Group13.40 |



# LOCAL ZONING

Note: OnCOR users are strongly urged to contact the municipal planning/zoning office to confirm accuracy of the zoning information listed below.

| Туре:                           | Description:                      | % Coverage: |
|---------------------------------|-----------------------------------|-------------|
| Town of Farmington MTOD Overlay | Major Thoroughfare Overlay        | 99.3%       |
| Town of Farmington Zoning       | GB - General Business             | 99.6%       |
| Town of Farmington Zoning       | RMF - Residential Multiple-Family | 0.4%        |



## ATTACHMENT B

2017 Biennial Groundwater Sampling Letter Report



November 30, 2017

Mr. Todd M. Caffoe, P.E. New York State Department of Environmental Conservation Division of Environmental Remediation, Region 8 6274 East Avon-Lima Road Avon, New York 14414-9519

### RE: 2017 Biennial Groundwater Sampling Letter Report Former Griffin Technology Facility (Site No. 835008) Farmington, New York

Dear Mr. Caffoe:

On behalf of Diebold, Inc. (Diebold), URS Corporation (URS) has prepared this Biennial Groundwater Sampling Letter Report to summarize field activities as part of the groundwater sampling effort performed in September 2017, in the vicinity of the former Griffin Technology Facility (Site) located in Farmington, New York (Figure 1).

In the 2014 Supplemental Groundwater Sampling Letter Report (URS, 2015), URS recommended the decommissioning of off-site monitoring wells MW-09S, MW-09D, MW-10S, MW-10D and MW-11D based on their analyses of the data from the 2013 and 2014 sampling events. Subsequent communications between the New York State Department of Environmental Conservation (NYSDEC) and Diebold/URS resulted in the agreement to repair MW-10S; decommission MW-09S, MW-09D, MW-10D and MW-11D; and collect supplemental groundwater samples from MW-06S and MW-07S for volatile organic compound (VOC) analyses. These activities were performed in June 2016; and discussions of their execution and data evaluation are presented in the 2016 PRR (URS, 2017), which recommended the following changes to the Operations and Monitoring Plan for Annual Offsite Groundwater Monitoring (O&M Plan) (URS, 2011):

- Conduct groundwater sampling of the remaining off-site wells (i.e., MW-06S, MW-06D, MW07S, MW07D and MW-10S) on a biennial basis, beginning in summer 2017.
- Generate biennial periodic review reports using the data from the aforementioned groundwater sampling.

This field work, which represents the first biennial monitoring event, was performed on September 13, 2017, and included:

- Collecting water levels from the remaining off-site monitoring wells identified in the O&M Plan.
- Collecting groundwater samples from the remaining off-site monitoring wells.

The data generated from the September 2017 field work are discussed below.



#### **Groundwater Levels and Flow Direction**

The water level measurements obtained from the off-site monitoring wells on September 13, 2017 are provided in Table 1; Figure 2 shows the corresponding shallow groundwater potentiometric surface. The data show that groundwater flow in the overburden wells is to the south-southwest towards Beaver Creek. This is consistent with groundwater flow direction observed during prior sampling events in the overburden wells.

In September 2017, horizontal gradients were approximately 0.024 ft./ft. in the overburden. Vertical gradient is downward in monitoring well pair MW-07S/D. There was a slight downward vertical gradient in MW-06S/D.

#### Sampling, Analysis and Data Usability

On September 13, 2017, URS collected groundwater samples from the remaining off-site monitoring wells (MW-06S, MW-06D, MW-07S, MW-07D and MW-10S) plus a QA/QC duplicate sample. Prior to sample collection, water was purged from each well with a peristaltic/bladder pump using dedicated/disposable high-density polyethylene (HDPE) tubing. During the well purging, water quality parameters (pH, temperature, specific conductivity, dissolved oxygen, turbidity and oxidation reduction potential) were measured and documented. These parameters were measured utilizing a flow-through cell. The wells were purged at a rate of 1-liter per minute or less and the purge rate was adjusted to prevent the water level in the well from dropping more than 0.3 feet from the static water level. Each well was purged until the water quality parameters stabilized for a minimum of three readings. Low Flow Purge Logs can be found in Attachment 1.

Collected groundwater samples were transported under chain-of-custody (COC) control to TestAmerica Laboratories, Inc., located in Amherst, New York, for the analysis of VOCs by USEPA Method 8260C. A Data Usability Summary Report (DUSR) was generated for this sampling event. Following data evaluation, the results for 2-butanone, 2-hexanone, 4-methyl-2-pentanone, chloromethane, cyclohexane and trichlorofluoromethane in all the samples were qualified as "UJ" (not detected/ the reported quantitation limit is an estimated value). No other data qualifications were made and all data are usable as reported. The complete validated analytical results are presented in the DUSR in Attachment 2.

#### **Analytical Summary/ Contamination Assessment**

The validated groundwater analytical results are summarized in Table 2. VOCs are compared to NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) No. 1.1.1 Class GA groundwater criteria. Exceedances are indicated with an oval. The locations of detected VOCs that have exceeded their respective criterion are shown on Figure 2. The following is a summary of the analytical results:

- Trichloroethene (TCE) was detected at concentrations exceeding its Class GA groundwater standard (5 micrograms per liter [μg/L]) in the samples collected from MW-06S (45 μg/L), MW-06D (39 μg/L), MW-07S (41 μg/L) and MW-07D (62 μg/L).
- Cis-1,2-Dichloroethene (DCE) was detected at concentrations exceeding its Class GA groundwater standard (5 μg/L) in the samples collected from MW-06S (6.2 μg/L) and MW-07D (22 μg/L).



Mr. Todd M. Caffoe November 30, 2017 Continued – page 3

- 1,2-Dibromo-3-chloropropane was detected at an estimated concentration of 0.71  $\mu$ g/L from MW-10S; exceeding its Class GA groundwater standard of 0.04  $\mu$ g/L. However, the analysis performed on the corresponding field duplicate did not detect this compound. 1,2-Dibromo-3-chloropropane is used in agriculture and is not associated with the former Griffin Technology Facility.
- No other compounds were detected at concentrations exceeding their Class GA groundwater criteria.

TCE is the primary contaminant in the off-site monitoring wells. Figure 3 displays graphic trend analyses of TCE concentrations in these wells, between 1994 and 2017. These trends show an overall decrease in TCE concentrations since 1994, with the following clarifications:

- The concertation in MW-06S is higher than previous results.
- The concentration in MW-10S is below its standard for the first time since 2009.

A Mann-Kendall trend analysis was performed on the historical VOC concentrations between 1994 and 2017, for MW-06S, MW-06D, MW-07S, MW-07D and MW-10S. The trend analysis is presented in Table 3 and shows the following:

- In MW-07D there is a downward trend of 1,1,1-Trichloroethane and an upward trend of cis-1,2-DCE.
- Downward trends of 1,1,1-Trichloroethane and cis-1,2-DCE are present in MW-07S.
- No other trends were present.

### **Conclusions**

The south-southwest direction of groundwater flow at the Site has remained constant since 2009.

The only VOCs detected at concentrations exceeding their standards were TCE, cis-1,2-DCE and 1,2-Dibromo-3-chloropropane. The 1,2-Dibromo-3-chloropropane exceedance was only from MW-10S. This is the only detection of 1,2-Dibromo-3-chloropropane in the history of the monitoring program, and is most likely an anomaly since it is an estimated concentration and was not detected in the corresponding field duplicate.

The TCE concentration trends show an overall decrease since 1994.

#### **Recommendations**

URS recommends conducting an additional round of sampling in summer 2019. Upon completion of that sampling event, a Periodic Review Report (PRR) will be prepared in accordance with NYSDEC's Division of Environmental Remediation (DER-10) *Technical Guidance for Site Investigation and Remediation* (NYSDEC, 2010), which will summarize sampling data collected to date.



Mr. Todd M. Caffoe November 30, 2017 Continued – page 4

### **References**

NYSDEC, 2010. DER-10 / Technical Guidance for Site Investigation and Remediation. May 3.

- URS, 2011. Operations and Monitoring Plan for Annual Offsite Groundwater Monitoring. June
- URS, 2015. Supplemental Groundwater Sampling Letter Report, Former Griffin Technology Facility, Farmington, New York. January
- URS, 2017. Periodic review Report 2016, Former Griffin Technology Facility, Farmington, New York. March

The following tables, figures and attachments are included as part of this field investigation letter report:

**Tables** 

| Table 1            | Groundwater Elevations – September 13, 2017                                                       |  |  |  |  |
|--------------------|---------------------------------------------------------------------------------------------------|--|--|--|--|
| Table 2            | Groundwater Sampling Analytical Results (Detected Compounds Only)                                 |  |  |  |  |
| Table 3            | Groundwater Sampling Analytical Result Trends (Detected VOCs Only)                                |  |  |  |  |
| <u>Figures</u>     |                                                                                                   |  |  |  |  |
| Figure 1           | Site Location                                                                                     |  |  |  |  |
| Figure 2           | 2017 Groundwater Sample Results Exceeding Criteria and Shallow Groundwater Potentiometric Surface |  |  |  |  |
| Figure 3           | Trichloroethene Trends (Existing Wells)                                                           |  |  |  |  |
| <u>Attachments</u> |                                                                                                   |  |  |  |  |
|                    |                                                                                                   |  |  |  |  |

Attachment 1Purge LogsAttachment 2Data Usability Summary Report and Complete Analytical Report

Should you have any questions or comments, please do not hesitate to contact me at 716-856-5636.

Sincerely,

**URS** Corporation

Michael Gutmann Sr. Project Manager

cc: File: 13816402 (R-1) Mr. Robert C. Morvillo, Diebold, Inc. Kevin J. McGovern P.G., CPG, CHMM (URS) TABLES

## TABLE 1 GROUNDWATER ELEVATIONS SEPTEMBER 13, 2017 FORMER GRIFFIN TECHNOLOGY FACILITY - OFF-SITE AREA FARMINGTON, NEW YORK

| Well ID | Top of Casing<br>Elevation (ft. amsl) | Depth to Groundwater<br>(ft. from Top of Casing) | Groundwater<br>Elevation (ft. amsl) |
|---------|---------------------------------------|--------------------------------------------------|-------------------------------------|
| MW-06S  | 636.61                                | 6.21                                             | 630.40                              |
| MW-06D  | 636.83                                | 6.55                                             | 630.28                              |
| MW-07S  | 634.29                                | 6.15                                             | 628.14                              |
| MW-07D  | 634.16                                | 34.25                                            | 599.91                              |
| MW-10S  | 629.00                                | 14.56                                            | 614.44                              |

ft. = feet

amsl = above mean sea level

## TABLE 2 GROUNDWATER ANALYTICAL RESULTS (DETECTED COMPOUNDS ONLY) SEPTEMBER 2017 SAMPLING EVENT FORMER GRIFFIN TECHNOLOGY FACILITY SITE

| Location ID                 |       |           | MW-06D      | MW-06S      | MW-07D      | MW-07S      | MW-10S                |
|-----------------------------|-------|-----------|-------------|-------------|-------------|-------------|-----------------------|
| Sample ID                   |       |           | MW-06D      | MW-06S      | MW-07D      | MW-07S      | FD-20170913           |
| Matrix                      |       |           | Groundwater | Groundwater | Groundwater | Groundwater | Groundwater           |
| Depth Interval (            | ft)   |           | -           | -           | -           | -           | -                     |
| Date Sampled                |       |           | 09/13/17    | 09/13/17    | 09/13/17    | 09/13/17    | 09/13/17              |
| Parameter                   | Units | Criteria* |             |             |             |             | Field Duplicate (1-1) |
| Volatile Organic Compounds  |       |           |             |             |             |             |                       |
| 1,1,1-Trichloroethane       | UG/L  | 5         | 1.6         | 1.5         |             |             |                       |
| 1,1-Dichloroethane          | UG/L  | 5         |             | 0.38 J      |             |             |                       |
| 1,1-Dichloroethene          | UG/L  | 5         |             |             | 0.53 J      |             |                       |
| 1,2-Dibromo-3-chloropropane | UG/L  | 0.04      |             |             |             |             |                       |
| 1,2-Dichloroethene (cis)    | UG/L  | 5         | 4.7         | 6.2         |             | 1.7         |                       |
| Acetone                     | UG/L  | 50        | 3.1 J       |             | 4.0 J       | 3.3 J       |                       |
| Methyl tert-butyl ether     | UG/L  | 10        |             |             | 0.18 J      |             |                       |
| Trichloroethene             | UG/L  | 5         | 39          | 45          | 62          |             | 2.5                   |
| Vinyl chloride              | UG/L  | 2         | 1.5         | 1.5         |             |             |                       |

\*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998, including January 1999 Errata Sheet, April 2000 and June 2004 Addenda. Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

J - The reported concentration is an estimated value. Blank Cell - Not Detected.

Only Detected Results Reported.

### TABLE 2

## GROUNDWATER ANALYTICAL RESULTS (DETECTED COMPOUNDS ONLY) SEPTEMBER 2017 SAMPLING EVENT FORMER GRIFFIN TECHNOLOGY FACILITY SITE

| Location ID                 |       |           | MW-10S      |
|-----------------------------|-------|-----------|-------------|
| Sample ID                   |       |           | MW-10S      |
| Matrix                      |       |           | Groundwater |
| Depth Interval (f           | t)    |           | -           |
| Date Sampled                |       |           | 09/13/17    |
| Parameter                   | Units | Criteria* |             |
| Volatile Organic Compounds  |       |           |             |
| 1,1,1-Trichloroethane       | UG/L  | 5         |             |
| 1,1-Dichloroethane          | UG/L  | 5         |             |
| 1,1-Dichloroethene          | UG/L  | 5         |             |
| 1,2-Dibromo-3-chloropropane | UG/L  | 0.04      | 0.71 J      |
| 1,2-Dichloroethene (cis)    | UG/L  | 5         |             |
| Acetone                     | UG/L  | 50        |             |
| Methyl tert-butyl ether     | UG/L  | 10        |             |
| Trichloroethene             | UG/L  | 5         | 2.6         |
| Vinyl chloride              | UG/L  | 2         |             |

\*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998, including January 1999 Errata Sheet, April 2000 and June 2004 Addenda. Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

J - The reported concentration is an estimated value. Blank Cell - Not Detected.

Only Detected Results Reported.

## TABLE 3 GROUNDWATER SAMPLING ANALYTICAL RESULT TRENDS (DETECTED VOCS ONLY) FORMER GRIFFIN TECHNOLOGY FACILITY SITE

#### LOCID: MW-06D

| Parameter                | Matrix | Class | Num of Data<br>Points | Num of Data<br>Point<br>Detections | Mann-Kendall<br>Statistic S | Probabilities (1) | Trend (2) |
|--------------------------|--------|-------|-----------------------|------------------------------------|-----------------------------|-------------------|-----------|
| 1,1,1-Trichloroethane    | WG     | VOA   | 18                    | 16                                 | -88                         | No Value          |           |
| 1,2-Dichloroethene (cis) | WG     | VOA   | 18                    | 9                                  | 34                          | 0.115             | No Trend  |
| Acetone                  | WG     | VOA   | 18                    | 2                                  | 21                          | 0.227             | No Trend  |
| Trichloroethene          | WG     | VOA   | 18                    | 17                                 | -92                         | No Value          |           |
| Vinyl chloride           | WG     | VOA   | 18                    | 1                                  | 17                          | 0.275             | No Trend  |

### LOCID: MW-06S

| Parameter                | Matrix | Class | Num of Data<br>Points | Num of Data<br>Point<br>Detections | Mann-Kendall<br>Statistic S | Probabilities (1) | Trend (2) |
|--------------------------|--------|-------|-----------------------|------------------------------------|-----------------------------|-------------------|-----------|
| 1,1,1-Trichloroethane    | WG     | VOA   | 19                    | 12                                 | -35                         | 0.119             | No Trend  |
| 1,1-Dichloroethane       | WG     | VOA   | 4                     | 1                                  | 3                           | 0.375             | No Trend  |
| 1,2-Dichloroethene (cis) | WG     | VOA   | 19                    | 8                                  | 35                          | 0.119             | No Trend  |
| Trichloroethene          | WG     | VOA   | 19                    | 15                                 | -16                         | 0.314             | No Trend  |
| Vinyl chloride           | WG     | VOA   | 19                    | 1                                  | 18                          | 0.29              | No Trend  |

#### LOCID: MW-07D

| Parameter                | Matrix | Class | Num of Data<br>Points | Num of Data<br>Point<br>Detections | Mann-Kendall<br>Statistic S | Probabilities (1)   | Trend (2)      |
|--------------------------|--------|-------|-----------------------|------------------------------------|-----------------------------|---------------------|----------------|
| 1,1,1-Trichloroethane    | WG     | VOA   | 18                    | 6                                  | -59                         | 0.016               | Downward Trend |
| 1,1-Dichloroethene       | WG     | VOA   | 3                     | 1                                  |                             | Insufficient Data * |                |
| 1,2-Dichloroethene (cis) | WG     | VOA   | 18                    | 18                                 | 66                          | 0.009               | Upward Trend   |
| Acetone                  | WG     | VOA   | 18                    | 1                                  | 17                          | 0.275               | No Trend       |
| Methyl tert-butyl ether  | WG     | VOA   | 3                     | 1                                  |                             | Insufficient Data * |                |
| Trichloroethene          | WG     | VOA   | 18                    | 18                                 | -104                        | No Value            |                |
| Vinyl chloride           | WG     | VOA   | 18                    | 6                                  | 20                          | 0.25                | No Trend       |

#### LOCID: MW-07S

| Parameter                | Matrix | Class | Num of Data<br>Points | Num of Data<br>Point<br>Detections | Mann-Kendall<br>Statistic S | Probabilities (1) | Trend (2)      |
|--------------------------|--------|-------|-----------------------|------------------------------------|-----------------------------|-------------------|----------------|
| 1,1,1-Trichloroethane    | WG     | VOA   | 19                    | 15                                 | -92                         | 0.001             | Downward Trend |
| 1,2-Dichloroethene (cis) | WG     | VOA   | 19                    | 16                                 | -60                         | 0.021             | Downward Trend |

For multiple observations per time period, the Mann-Kendall test to the median was used.

Data reported as less than the detection limit were used by assigning a common value to the data that was smaller than the smallest measurement in the data set. (1) - Probabilities for Mann-Kendall Nonparameteric Test for Trend (Gilbert R.O. 1987, Table A18).

(2) - Assuming a probability of error of 10% in the analyis method and or data, then the probability of no trend as calculated by the Mann-Kendall statistic is less than 10%, then it is assumed that there is a trend.

\* - Number of obsevations too small to calculate probablities.

\*\* - Probability Undefined for S=0 and N=6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31, 34, or 35.

Advanced Selection: Griffin Hist MK4 J:\Projects\Small\_Chemistry\_Jobs\DB\Program\Stat.mdb 10/10/2017

WHERE [SITEID] = '13807296' AND [MATRIX] = 'WG' AND ( [SACODE] = 'FD' OR [SACODE] = 'N' ) AND [PRCCODE] = 'VOA' AND ( [LOCID] = 'MW-065' OR [LOCID] = 'MW-066' OR [LOCID] = 'MW-075' OR [LOCID] = 'MW-

## TABLE 3 GROUNDWATER SAMPLING ANALYTICAL RESULT TRENDS (DETECTED VOCS ONLY) FORMER GRIFFIN TECHNOLOGY FACILITY SITE

#### LOCID: MW-07S

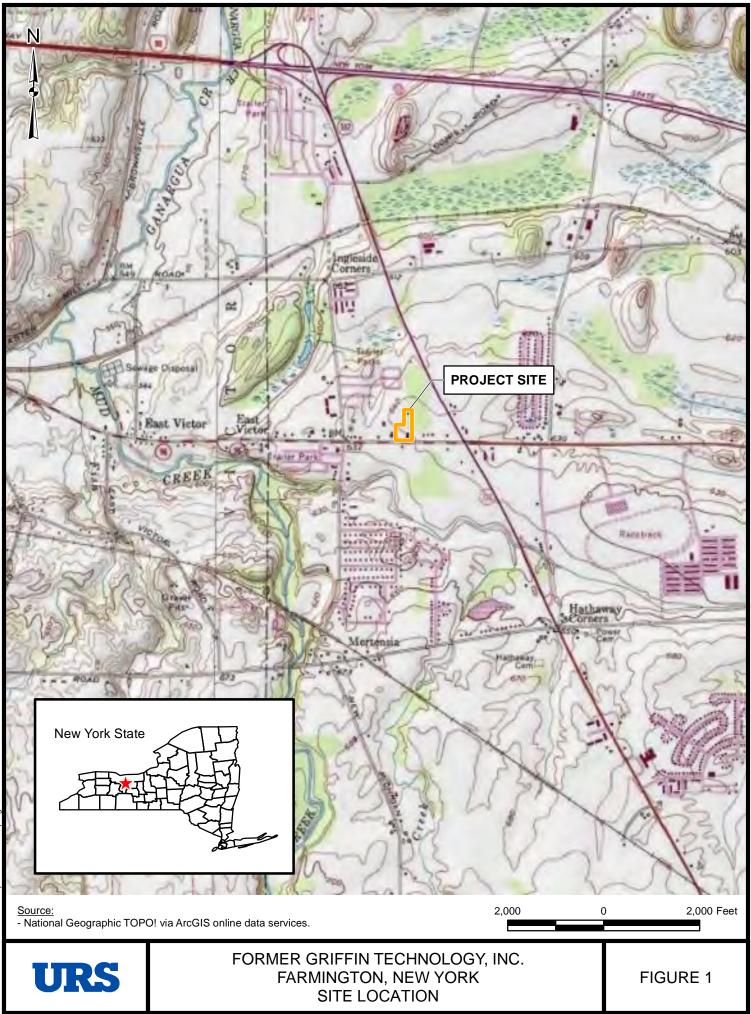
| Parameter       | Matrix | Class | Num of Data<br>Points | Num of Data<br>Point<br>Detections | Mann-Kendall<br>Statistic S | Probabilities (1) | Trend (2) |
|-----------------|--------|-------|-----------------------|------------------------------------|-----------------------------|-------------------|-----------|
| Acetone         | WG     | VOA   | 19                    | 1                                  | 18                          | 0.29              | No Trend  |
| Trichloroethene | WG     | VOA   | 19                    | 18                                 | -111                        | No Value          |           |

#### LOCID: MW-10S

| Parameter                   | Matrix | Class | Num of Data<br>Points | Num of Data<br>Point<br>Detections | Mann-Kendall<br>Statistic S | Probabilities (1) | Trend (2) |
|-----------------------------|--------|-------|-----------------------|------------------------------------|-----------------------------|-------------------|-----------|
| 1,1,1-Trichloroethane       | WG     | VOA   | 18                    | 1                                  | -15                         | 0.3               | No Trend  |
| 1,2-Dibromo-3-chloropropane | WG     | VOA   | 4                     | 1                                  | 3                           | 0.375             | No Trend  |
| 1,2-Dichloroethene (cis)    | WG     | VOA   | 18                    | 1                                  | 15                          | 0.3               | No Trend  |
| Methylcyclohexane           | WG     | VOA   | 4                     | 1                                  | -1                          | 0.625             | No Trend  |
| Trichloroethene             | WG     | VOA   | 18                    | 14                                 | -23                         | 0.205             | No Trend  |

For multiple observations per time period, the Mann-Kendall test to the median was used.

Data reported as less than the detection limit were used by assigning a common value to the data that was smaller than the smallest measurement in the data set. (1) - Probabilities for Mann-Kendall Nonparameteric Test for Trend (Gilbert R.O. 1987, Table A18).


(2) - Assuming a probability of error of 10% in the analyis method and or data, then the probability of no trend as calculated by the Mann-Kendall statistic is less than 10%, then it is assumed that there is a trend.

\* - Number of obsevations too small to calculate probablities.

\*\* - Probability Undefined for S=0 and N=6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31, 34, or 35.

Only Detected Results Reported.

FIGURES



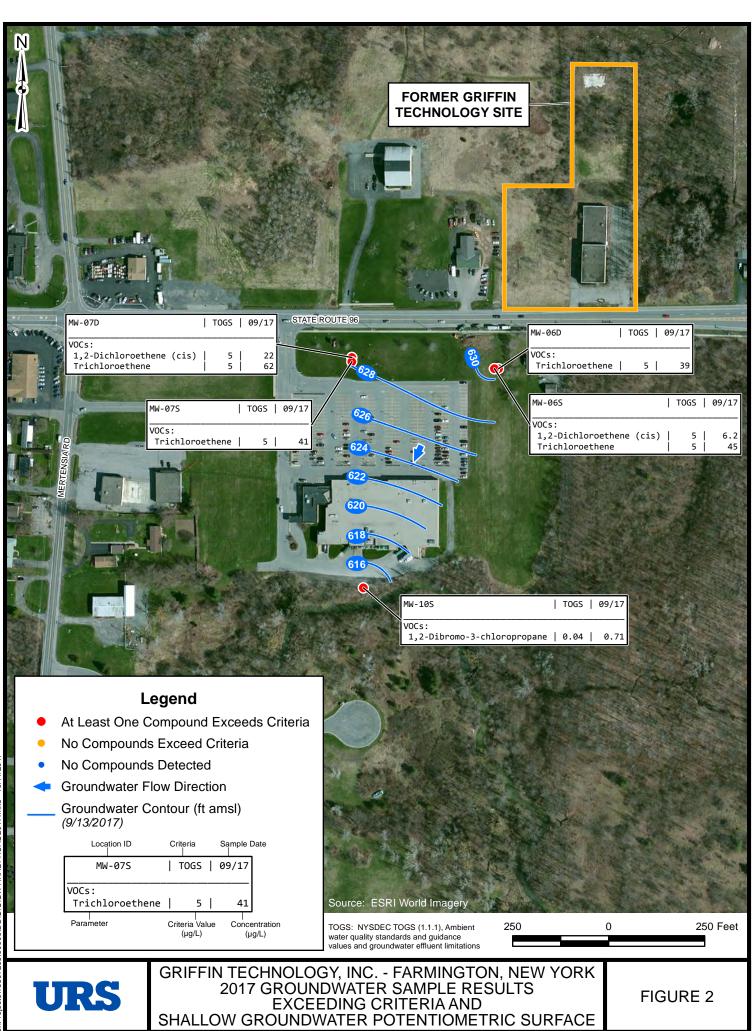
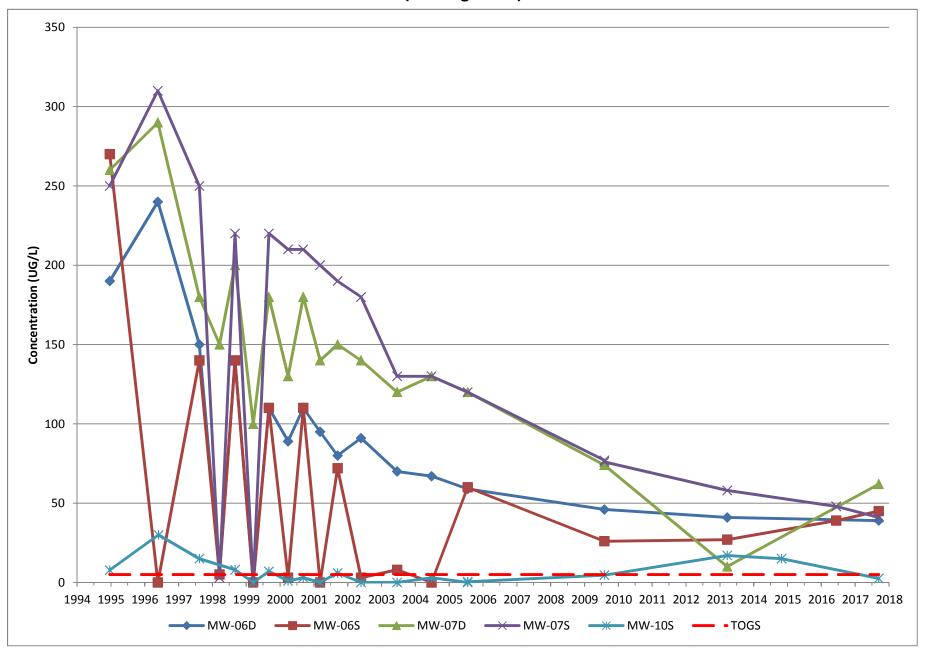




FIGURE 3 Trichloroethene Trends (Existing Wells)



# **ATTACHMENT 1**

# **PURGE LOGS**

| Project:                        | Former Griffin Technology                    | Site:                                   | Griffin                 | Well I.D.:                                | MW-06S                       |  |
|---------------------------------|----------------------------------------------|-----------------------------------------|-------------------------|-------------------------------------------|------------------------------|--|
| Date:                           | <u>9/13/17</u> Sampling Personnel:           | Kevin McGovern                          |                         | Company:                                  | URS Corporation              |  |
| Purging/<br>Sampling<br>Device: | Geopump 2 peristaltic pump                   | _Tubing Type:                           | HDPE                    | Pump/Tubing<br>Inlet<br>Location:         | Screen midpoint              |  |
| Measuring<br>Point:             | Initial Depth<br>Top of Riser to Water: 6.21 | Depth to<br>Well Bottom:                | Well<br>18.90 Diameter: | 2"                                        | Screen<br>Length: <u>10'</u> |  |
| Casing<br>Type:                 | SCH 40 PVC                                   | Volume in 1<br>Well Casing<br>(liters): | 7.83                    | Estimated<br>Purge<br>Volume<br>(liters): | 5                            |  |
| Sample ID:                      | MW-06S                                       | Sample<br>Time:                         | 1125                    | QA/QC:                                    | None                         |  |
| Sample                          | e Parameters: <u>TCL VOCs</u>                |                                         |                         |                                           |                              |  |

## PURGE PARAMETERS

| TIME       | рН   | TEMP (⁰C) | COND.<br>(mS/cm) | DISS. O <sub>2</sub><br>(mg/l) | TURB.<br>(NTU) | ORP (mV)  | FLOW RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(btor) |
|------------|------|-----------|------------------|--------------------------------|----------------|-----------|------------------------|-----------------------------|
| 1100       | 7.03 | 19.21     | 1.32             | 8.71                           | 11.8           | 133       | 200                    | 6.52                        |
| 1105       | 7.01 | 19.19     | 1.33             | 7.78                           | 5.77           | 88        | 200                    | 6.55                        |
| 1110       | 7.00 | 17.33     | 1.34             | 6.44                           | 3.77           | 28        | 200                    | 6.55                        |
| 1115       | 7.00 | 17.30     | 1.37             | 3.35                           | 2.73           | 21        | 200                    | 6.55                        |
| 1120       | 7.00 | 17.00     | 1.39             | 3.42                           | 2.99           | 16        | 200                    | 6.55                        |
| 1125       | 7.00 | 16.71     | 1.40             | 3.50                           | 3.42           | 14        | 200                    | 6.55                        |
|            |      |           |                  |                                |                |           |                        |                             |
|            |      |           |                  |                                |                |           |                        |                             |
|            |      |           |                  |                                |                |           |                        |                             |
|            |      |           |                  |                                |                |           |                        |                             |
|            |      |           |                  |                                |                |           |                        |                             |
|            |      |           |                  |                                |                |           |                        |                             |
| Tolerance: | 0.1  |           | 3%               | 10%                            | 10%            | + or - 10 |                        |                             |

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.; 4 inch diameter well = 2470 ml/ft. ( $vol_{wl} = \pi r^2 h$ )

#### Comments:

Bolt holes on curb box stripped

| Project:                        | Form                       | er Griffin Techno          | ology           | Site:                                   | G     | Griffin           | Well I.D.:                                | MW-0              | 6D  |
|---------------------------------|----------------------------|----------------------------|-----------------|-----------------------------------------|-------|-------------------|-------------------------------------------|-------------------|-----|
| Date:                           | 9/13/17                    | Sampling                   | Personnel:      | Kevin McGovern                          |       | _ Company: _      | URS Corporation                           |                   |     |
| Purging/<br>Sampling<br>Device: | Geopump 2 peristaltic pump |                            |                 | _Tubing Type:                           | HDPE  |                   | Pump/Tubing<br>Inlet<br>Location:         | Screen midpoint   |     |
| Measuring<br>Point:             | Top of Riser               | Initial Depth<br>to Water: | 6.55            | Depth to<br>Well Bottom:                | 37.60 | Well<br>Diameter: | 2"                                        | Screen<br>Length: | 10' |
| Casing<br>Type:                 | SCH 40                     | ) PVC                      |                 | Volume in 1<br>Well Casing<br>(liters): | 19.16 | _                 | Estimated<br>Purge<br>Volume<br>(liters): | 6                 |     |
| Sample ID:                      | MW-06D                     |                            | Sample<br>Time: |                                         |       | QA/QC:            | Non                                       | e                 |     |
| Jamph                           |                            |                            |                 |                                         |       |                   |                                           |                   |     |

## PURGE PARAMETERS

| TIME       | рН   | TEMP (⁰C) | COND.<br>(mS/cm) | DISS. O <sub>2</sub><br>(mg/l) | TURB.<br>(NTU) | ORP (mV)  | FLOW RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(btor) |
|------------|------|-----------|------------------|--------------------------------|----------------|-----------|------------------------|-----------------------------|
| 1136       | 7.01 | 16.82     | 1.10             | 0.84                           | 54.1           | -5        | 200                    | 7.19                        |
| 1141       | 7.01 | 15.90     | 1.15             | 0.17                           | 45.3           | -31       | 200                    | 7.60                        |
| 1146       | 6.97 | 14.63     | 1.29             | 0.00                           | 30.8           | -61       | 200                    | 7.69                        |
| 1151       | 6.97 | 14.49     | 1.26             | 0.00                           | 32             | -63       | 200                    | 7.69                        |
| 1156       | 6.97 | 14.40     | 1.30             | 0.00                           | 23.8           | -65       | 200                    | 7.69                        |
| 1201       | 6.97 | 14.41     | 1.29             | 0.00                           | 21.1           | -66       | 200                    | 7.69                        |
| 1206       | 6.98 | 14.40     | 1.28             | 0.00                           | 22.3           | -66       | 200                    | 7.69                        |
|            |      |           |                  |                                |                |           |                        |                             |
|            |      |           |                  |                                |                |           |                        |                             |
| Tolerance: | 0.1  |           | 3%               | 10%                            | 10%            | + or - 10 |                        |                             |

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.; 4 inch diameter well = 2470 ml/ft. ( $vol_{yl} = \pi r^2h$ )

#### Comments:

Curb box damaged, needs replacement

| Project:                        | Former Griffin Tech                     | nology       | Site:                                   | G     | Griffin           | Well I.D.:                                | MW-07S            |         |
|---------------------------------|-----------------------------------------|--------------|-----------------------------------------|-------|-------------------|-------------------------------------------|-------------------|---------|
| Date:                           | <u>9/13/17</u> Sampling                 | g Personnel: | Kevin McGovern                          | I     |                   | _ Company: _                              | URS Corp          | oration |
| Purging/<br>Sampling<br>Device: | Geopump 2 peristalti                    | c pump       | _Tubing Type:                           | н     | DPE               | Pump/Tubing<br>Inlet<br>Location:         | Screen m          | idpoint |
| Measuring<br>Point:             | Initial Depth<br>Top of Riser to Water: | 6.15         | Depth to<br>Well Bottom:                | 25.72 | Well<br>Diameter: | 2"                                        | Screen<br>Length: | 10'     |
| Casing<br>Type:                 | SCH 40 PVC                              |              | Volume in 1<br>Well Casing<br>(liters): | 12.07 | _                 | Estimated<br>Purge<br>Volume<br>(liters): | 6                 |         |
| Sample ID:                      |                                         |              | Sample<br>Time:                         | 1     | 310               | QA/QC:                                    | Non               | e       |
| Sample                          | e Parameters: <u>TCL VOCs</u>           |              |                                         |       |                   |                                           |                   |         |

## PURGE PARAMETERS

| TIME       | рН   | TEMP (°C) | COND.<br>(mS/cm) | DISS. O <sub>2</sub><br>(mg/l) | TURB.<br>(NTU) | ORP (mV)  | FLOW RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(btor) |
|------------|------|-----------|------------------|--------------------------------|----------------|-----------|------------------------|-----------------------------|
| 1240       | 7.03 | 20.62     | 1.07             | 1.29                           | 130            | 131       | 200                    | 6.55                        |
| 1245       | 6.99 | 20.11     | 1.07             | 0.77                           | 54.7           | 135       | 200                    | 6.70                        |
| 1250       | 6.94 | 19.22     | 1.08             | 0.00                           | 31.5           | 140       | 200                    | 6.72                        |
| 1255       | 6.94 | 18.73     | 1.09             | 0.00                           | 17.4           | 141       | 200                    | 6.72                        |
| 1300       | 6.94 | 18.68     | 1.10             | 0.00                           | 7.21           | 142       | 200                    | 6.72                        |
| 1305       | 6.94 | 18.90     | 1.10             | 0.00                           | 8.17           | 142       | 200                    | 6.72                        |
| 1310       | 6.94 | 19.22     | 1.10             | 0.00                           | 7.63           | 143       | 200                    | 6.72                        |
|            |      |           |                  |                                |                |           |                        |                             |
|            |      |           |                  |                                |                |           |                        |                             |
| Tolerance: | 0.1  |           | 3%               | 10%                            | 10%            | + or - 10 |                        |                             |

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.; 4 inch diameter well = 2470 ml/ft. ( $vol_{yl} = \pi r^2h$ )

Comments:

| Former Griffin Technology |                                  |                                                                         | Site:                                                                                                                |                                                                                                                                                                                                                                                                                                                                                             | Griffin                                                                                                                                                                                                                                                                                                                        | Well I.D.:                                                                                                                                                                                                                                                                                                        | MW-07D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------|----------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9/13/17                   | Sampling                         | Personnel:                                                              | Kevin McGovern                                                                                                       | I                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                | _ Company: _                                                                                                                                                                                                                                                                                                      | URS Corp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | oration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                           | Bladder Pump                     |                                                                         | _Tubing Type:                                                                                                        |                                                                                                                                                                                                                                                                                                                                                             | HDPE                                                                                                                                                                                                                                                                                                                           | Pump/Tubing<br>Inlet<br>Location:                                                                                                                                                                                                                                                                                 | Screen m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | idpoint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Top of Riser              | Initial Depth<br>to Water:       | 32.45                                                                   | Depth to<br>Well Bottom:                                                                                             | 44.40                                                                                                                                                                                                                                                                                                                                                       | Well<br>Diameter:                                                                                                                                                                                                                                                                                                              | 2"                                                                                                                                                                                                                                                                                                                | Screen<br>Length:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SCH 40                    | 0 PVC                            |                                                                         | Volume in 1<br>Well Casing<br>(liters):                                                                              | 7.37                                                                                                                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                              | Estimated<br>Purge<br>Volume<br>(liters):                                                                                                                                                                                                                                                                         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                           | MW-07D                           |                                                                         | Sample<br>Time:                                                                                                      |                                                                                                                                                                                                                                                                                                                                                             | 1400                                                                                                                                                                                                                                                                                                                           | QA/QC:                                                                                                                                                                                                                                                                                                            | Non                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Parameters:               | TCL VOCs                         |                                                                         |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                           | 9/13/17<br>Fop of Riser<br>SCH 4 | <u>9/13/17</u> Sampling Bladder Pump Initial Depth to Water: SCH 40 PVC | 9/13/17 Sampling Personnel:<br>Bladder Pump<br>Initial Depth<br>Top of Riser to Water: 32.45<br>SCH 40 PVC<br>MW-07D | 9/13/17       Sampling Personnel: Kevin McGovern         9/13/17       Sampling Personnel: Kevin McGovern         Bladder Pump       Tubing Type:         Initial Depth       Depth to         Top of Riser       to Water:       32.45         Volume in 1       Well Bottom:         SCH 40 PVC       (liters):         MW-07D       Sample         Time: | 9/13/17       Sampling Personnel: Kevin McGovern         Bladder Pump       Tubing Type:         Bladder Pump       Tubing Type:         Initial Depth       Depth to         Top of Riser       Initial Depth         Volume in 1       Well Casing         SCH 40 PVC       (liters):       7.37         MW-07D       Sample | 9/13/17       Sampling Personnel: Kevin McGovern         Bladder Pump       Tubing Type:       HDPE         Initial Depth       Depth to       Well         Top of Riser       Initial Depth       Well         SCH 40 PVC       Volume in 1       Well Casing         MW-07D       Sample       Time:       1400 | 9/13/17     Sampling Personnel: Kevin McGovern     Company:       9/13/17     Sampling Personnel: Kevin McGovern     Company:       Bladder Pump     Tubing Type:     HDPE     Pump/Tubing Inlet       Bladder Pump     Tubing Type:     HDPE     Location:       Initial Depth     0     Depth to     Well     Uccation:       Fop of Riser     Initial Depth     32.45     Well Bottom:     44.40     Diameter:       Volume in 1     Well Casing     Volume in 1     Well Casing     Volume (liters):       SCH 40 PVC     (liters): | 9/13/17       Sampling Personnel: Kevin McGovern       Company: URS Corp         9/13/17       Sampling Personnel: Kevin McGovern       Pump/Tubing Inlet         Bladder Pump       Tubing Type: HDPE       Pump/Tubing Inlet         Bladder Pump       Tubing Type: HDPE       Location: Screen m         Fop of Riser       Initial Depth       Depth to       Well         Volume in 1       Volume in 1       Screen       Length:         Volume in 1       Well Casing       Volume       Iters):       6         MW-07D       Sample       Time:       1400       QA/QC:       Non |

## PURGE PARAMETERS

| TIME       | рН   | TEMP (⁰C) | COND.<br>(mS/cm) | DISS. O <sub>2</sub><br>(mg/l) | TURB.<br>(NTU) | ORP (mV)  | FLOW RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(btor) |
|------------|------|-----------|------------------|--------------------------------|----------------|-----------|------------------------|-----------------------------|
| 1330       | 6.99 | 16.61     | 1.56             | 1.88                           | 52             | 114       | 200                    | 33.00                       |
| 1335       | 6.97 | 16.06     | 1.57             | 0.84                           | 35.6           | 112       | 200                    | 33.80                       |
| 1340       | 6.90 | 15.35     | 158.00           | 0.00                           | 18.8           | 113       | 200                    | 34.90                       |
| 1345       | 6.96 | 15.50     | 1.60             | 0.00                           | 21.7           | 116       | 200                    | 35.40                       |
| 1350       | 6.96 | 16.17     | 1.62             | 0.00                           | 18.6           | 117       | 200                    | 35.60                       |
| 1355       | 6.95 | 16.49     | 1.61             | 0.00                           | 16.4           | 116       | 200                    | 35.68                       |
| 1400       | 6.95 | 16.62     | 1.60             | 0.00                           | 14.4           | 113       | 200                    | 35.72                       |
|            |      |           |                  |                                |                |           |                        |                             |
| Tolerance: | 0.1  |           | 3%               | 10%                            | 10%            | + or - 10 |                        |                             |

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.; 4 inch diameter well = 2470 ml/ft. ( $vol_{yl} = \pi r^2h$ )

#### Comments:

Curb box lid loose, suggest new curb box

| Project:                        | Former Griffin Technology                     | Site:                                   | Griffin                 | Well I.D.:                                | MW-10S                       |
|---------------------------------|-----------------------------------------------|-----------------------------------------|-------------------------|-------------------------------------------|------------------------------|
| Date:                           | 9/13/17 Sampling Personnel:                   | Kevin McGovern                          |                         | _ Company: _                              | URS Corporation              |
| Purging/<br>Sampling<br>Device: | Geopump 2 peristaltic pump                    | Tubing Type:                            | HDPE                    | Pump/Tubing<br>Inlet<br>Location:         | Screen midpoint              |
| Measuring<br>Point:             | Initial Depth<br>Top of Riser to Water: 14.56 | Depth to<br>Well Bottom:                | Well<br>22.62 Diameter: | 2"                                        | Screen<br>Length: <u>10'</u> |
| Casing<br>Type:                 | SCH 40 PVC                                    | Volume in 1<br>Well Casing<br>(liters): | 4.97                    | Estimated<br>Purge<br>Volume<br>(liters): | 6                            |
| Sample ID:                      | MW-10S                                        | Sample<br>Time:                         | 1032                    | QA/QC:                                    | FD-20170913                  |
| Sample                          | e Parameters: TCL VOCs                        |                                         |                         |                                           |                              |

## PURGE PARAMETERS

| TIME       | рН   | TEMP ( <sup>0</sup> C) | COND.<br>(mS/cm) | DISS. O <sub>2</sub><br>(mg/l) | TURB.<br>(NTU) | ORP (mV)  | FLOW RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(btor) |
|------------|------|------------------------|------------------|--------------------------------|----------------|-----------|------------------------|-----------------------------|
| 1002       | 6.55 | 16.69                  | 1.83             | 4.22                           | 107            | 249       | 200                    | 14.62                       |
| 1007       | 6.63 | 15.87                  | 1.83             | 2.24                           | 82             | 157       | 200                    | 14.68                       |
| 1012       | 6.70 | 15.36                  | 1.86             | 0.37                           | 34.1           | 89        | 200                    | 14.70                       |
| 1017       | 6.72 | 15.34                  | 1.86             | 0.22                           | 24.9           | 88        | 200                    | 14.70                       |
| 1022       | 6.76 | 15.32                  | 1.88             | 0.00                           | 24.2           | 88        | 200                    | 14.70                       |
| 1027       | 6.77 | 15.35                  | 1.39             | 0.00                           | 23.8           | 84        | 200                    | 14.70                       |
| 1032       | 6.79 | 15.38                  | 1.90             | 0.00                           | 23.9           | 83        | 200                    | 14.70                       |
|            |      |                        |                  |                                |                |           |                        |                             |
|            |      |                        |                  |                                |                |           |                        |                             |
| Tolerance: | 0.1  |                        | 3%               | 10%                            | 10%            | + or - 10 |                        |                             |

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.; 4 inch diameter well = 2470 ml/ft. ( $vol_{yl} = \pi r^2h$ )

Comments:

# **ATTACHMENT 2**

# DATA USABILITY SUMMARY REPORT AND COMPLETE ANALYTICAL REPORT

#### **MEMORANDUM**

**TO:** Mike Gutmann

**FROM:** Ann Marie Kropovitch

**DATE:** October 10, 2017

#### SUBJECT: Groundwater Analytical Results Former Griffin Technology Facility

Five groundwater samples and one field duplicate were collected from the Former Griffin Technology Facility site on September 13, 2017 and delivered to TestAmerica Laboratories, Inc. located in Amherst, NY for analysis. A trip blank accompanied the samples. The samples were received by the laboratory on September 13, 2017 intact, properly preserved and under proper chain-of-custody.

The samples were analyzed for volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method 8260C. The analytical method referenced is from "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

The following USEPA Region II standard operating procedure (SOP) was used to evaluate and, when required, qualify the data:

• Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry SW-846 Method 8260B & 8260C, SOP HW-24, Revision 4, October 2014.

A limited data review was performed for completeness of deliverables, and for compliance with method and validation SOP criteria, which includes quantitation limits, holding times, method blanks, trip blanks, surrogate recoveries, laboratory control sample (LCS) recoveries and any items presented in the laboratory's case narrative. Only method and validation SOP non-conformances are discussed in this report.

The analytical results are provided in Table 1. Definitions of USEPA Region II data qualifiers are presented at the end of this memorandum.

#### **VOCs**

The percent difference (%D) between the VOC initial calibration (ICAL) average relative response factor (RRF) and the RRF in the continuing calibration (CCAL) standard associated with samples MW-06D, MW-06S, MW-07D, MW-07S, MW-10S, and FD-20170913 (MW-10S) exceeded the QC limit of 20% for 2-butanone, 2-hexanone, 4-methyl-2-pentanone, chloromethane, cyclohexane, and trichlorofluoromethane. The results for this compound in all samples were qualified 'UJ'.

No other data qualifications were made. All data are usable as reported.

#### **Field Duplicate Results**

Sample FD-20170913 is a field duplicate of MW-10S. There was good agreement between the detected compounds in the sample and field duplicate as shown in Table 2. USEPA Region II validation guidelines do not provide any criteria for RPDs, nor are there any recommendations for the qualification of data based on field duplicate results.

cc: File: 13816402.00000

#### **DEFINITION OF USEPA REGION II DATA QUALIFIERS**

The following are definitions of the qualifiers assigned to results during the data review process.

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- **J** The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was analyzed for, but not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.

| Location ID                            |       |           | FIELDQC          | MW-06D      | MW-06S      | MW-07D      | MW-07S      |  |
|----------------------------------------|-------|-----------|------------------|-------------|-------------|-------------|-------------|--|
| Sample ID                              |       |           | TRIP BLANK       | MW-06D      | MW-06S      | MW-07D      | MW-07S      |  |
| Matrix                                 |       |           | Groundwater      | Groundwater | Groundwater | Groundwater | Groundwater |  |
| Depth Interval (f                      | t)    |           | -<br>09/13/17    | -           | -           | -           |             |  |
| Date Sampled                           |       |           |                  | 09/13/17    | 09/13/17    | 09/13/17    | 09/13/17    |  |
| Parameter                              | Units | Criteria* | Trip Blank (1-1) |             |             |             |             |  |
| Volatile Organic Compounds             |       |           |                  |             |             |             |             |  |
| 1,1,1-Trichloroethane                  | UG/L  | 5         | 1.0 U            | 1.6         | 1.5         | 1.0 U       | 1.0 U       |  |
| 1,1,2,2-Tetrachloroethane              | UG/L  | 5         | 1.0 U            | 1.0 U       | 1.0 U       | 1.0 U       | 1.0 U       |  |
| 1,1,2-Trichloro-1,2,2-trifluoroethane  | UG/L  | 5         | 1.0 U            | 1.0 U       | 1.0 U       | 1.0 U       | 1.0 U       |  |
| 1,1,2-Trichloroethane                  | UG/L  | 1         | 1.0 U            | 1.0 U       | 1.0 U       | 1.0 U       | 1.0 U       |  |
| 1,1-Dichloroethane                     | UG/L  | 5         | 1.0 U            | 1.0 U       | 0.38 J      | 1.0 U       | 1.0 U       |  |
| 1,1-Dichloroethene                     | UG/L  | 5         | 1.0 U            | 1.0 U       | 1.0 U       | 0.53 J      | 1.0 U       |  |
| 1,2,4-Trichlorobenzene                 | UG/L  | 5         | 1.0 U            | 1.0 U       | 1.0 U       | 1.0 U       | 1.0 U       |  |
| 1,2-Dibromo-3-chloropropane            | UG/L  | 0.04      | 1.0 U            | 1.0 U       | 1.0 U       | 1.0 U       | 1.0 U       |  |
| 1,2-Dibromoethane (Ethylene dibromide) | UG/L  | 0.006     | 1.0 U            | 1.0 U       | 1.0 U       | 1.0 U       | 1.0 U       |  |
| 1,2-Dichlorobenzene                    | UG/L  | 3         | 1.0 U            | 1.0 U       | 1.0 U       | 1.0 U       | 1.0 U       |  |
| 1,2-Dichloroethane                     | UG/L  | 0.6       | 1.0 U            | 1.0 U       | 1.0 U       | 1.0 U       | 1.0 U       |  |
| 1,2-Dichloroethene (cis)               | UG/L  | 5         | 1.0 U            | 4.7         | 6.2         |             | 1.7         |  |
| 1,2-Dichloroethene (trans)             | UG/L  | 5         | 1.0 U            | 1.0 U       | 1.0 U       | 1.0 U       | 1.0 U       |  |
| 1,2-Dichloropropane                    | UG/L  | 1         | 1.0 U            | 1.0 U       | 1.0 U       | 1.0 U       | 1.0 U       |  |
| 1,3-Dichlorobenzene                    | UG/L  | 3         | 1.0 U            | 1.0 U       | 1.0 U       | 1.0 U       | 1.0 U       |  |
| ,3-Dichloropropene (cis)               | UG/L  | 0.4       | 1.0 U            | 1.0 U       | 1.0 U       | 1.0 U       | 1.0 U       |  |
| ,3-Dichloropropene (trans)             | UG/L  | 0.4       | 1.0 U            | 1.0 U       | 1.0 U       | 1.0 U       | 1.0 U       |  |
| ,4-Dichlorobenzene                     | UG/L  | 3         | 1.0 U            | 1.0 U       | 1.0 U       | 1.0 U       | 1.0 U       |  |
| 2-Hexanone                             | UG/L  | 50        | 5.0 U            | 5.0 UJ      | 5.0 UJ      | 5.0 UJ      | 5.0 UJ      |  |
| I-Methyl-2-pentanone                   | UG/L  | •         | 5.0 U            | 5.0 UJ      | 5.0 UJ      | 5.0 UJ      | 5.0 UJ      |  |
| Acetone                                | UG/L  | 50        | 10 U             | 3.1 J       | 10 U        | 4.0 J       | 3.3 J       |  |
| Benzene                                | UG/L  | 1         | 1.0 U            | 1.0 U       | 1.0 U       | 1.0 U       | 1.0 U       |  |
| Bromodichloromethane                   | UG/L  | 50        | 1.0 U            | 1.0 U       | 1.0 U       | 1.0 U       | 1.0 U       |  |

\*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998, including January 1999 Errata Sheet, April 2000 and June 2004 Addenda. Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

J - The reported concentration is an estimated value.

| Location ID                      |       |           | FIELDQC          | MW-06D      | MW-06S      | MW-07D      | MW-07S           |  |
|----------------------------------|-------|-----------|------------------|-------------|-------------|-------------|------------------|--|
| Sample ID                        |       |           | TRIP BLANK       | MW-06D      | MW-06S      | MW-07D      | MW-07S           |  |
| Matrix                           |       |           | Groundwater      | Groundwater | Groundwater | Groundwater | Groundwater<br>- |  |
| Depth Interval (                 | ft)   |           | -                | -           | -           | -           |                  |  |
| Date Sampled                     | 1     |           | 09/13/17         | 09/13/17    | 09/13/17    | 09/13/17    | 09/13/17         |  |
| Parameter                        | Units | Criteria* | Trip Blank (1-1) |             |             |             |                  |  |
| Volatile Organic Compounds       | Ī     |           |                  |             |             |             |                  |  |
| Bromoform                        | UG/L  | 50        | 1.0 U            | 1.0 U       | 1.0 U       | 1.0 U       | 1.0 U            |  |
| Bromomethane                     | UG/L  | 5         | 1.0 Ų            | 1.0 U       | 1.0 U       | 1.0 U       | 1.0 U            |  |
| Carbon disulfide                 | UG/L  | 60        | 1.0 U            | 1.0 U       | 1.0 U       | 1.0 U       | 1.0 U            |  |
| Carbon tetrachloride             | UG/L  | 5         | 1.0 U            | 1.0 U       | 1.0 U       | 1.0 U       | 1.0 U            |  |
| Chlorobenzene                    | UG/L  | 5         | 1.0 U            | 1.0 U       | 1.0 Ŭ       | 1.0 U       | 1.0 U            |  |
| Chloroethane                     | UG/L  | 5         | 1.0 U            | 1.0 U       | 1.0 U       | 1.0 U       | 1.0 U            |  |
| Chloroform                       | UG/L  | 7         | 1.0 U            | 1.0 U       | 1.0 U       | 1.0 U       | 1.0 U            |  |
| Chloromethane                    | UG/L  | 5         | 1.0 U            | 1.0 UJ      | 1.0 UJ      | 1.0 UJ      | 1.0 UJ           |  |
| Cyclohexane                      | UG/L  | •         | 1.0 U            | 1.0 UJ      | 1.0 UJ      | 1.0 UJ      | 1.0 UJ           |  |
| Dibromochloromethane             | UG/L  | 50        | 1.0 U            | 1.0 U       | 1.0 U       | 1.0 U       | 1.0 U            |  |
| Dichlorodifluoromethane          | UG/L  | 5         | 1.0 U            | 1.0 U       | 1.0 U       | 1.0 U       | 1.0 U            |  |
| Ethylbenzene                     | UG/L  | 5         | 1.0 U            | 1.0 U       | 1.0 U       | 1.0 U       | 1.0 U            |  |
| Isopropylbenzene (Curnene)       | UG/L  | 5         | 1.0 U            | 1.0 U       | 1.0 U       | 1.0 U       | 1.0 U            |  |
| Methyl acetate                   | UG/L  | -         | 2.5 U            | 2.5 U       | 2.5 U       | 2.5 U       | 2.5 U            |  |
| Methyl ethyl ketone (2-Butanone) | UG/L  | 50        | 10 U             | 10 UJ       | 10 UJ       | 10 UJ       | 10 UJ            |  |
| Methyl tert-butyl ether          | UG/L  | 10        | 1.0 U            | 1.0 U       | 1.0 U       | 0.18 J      | 1.0 U            |  |
|                                  | UG/L  | -         | 1.0 U            | 1.0 U       | 1.0 U       | 1.0 U       | 1.0 U            |  |
| Methylene chloride               | UG/L  | 5         | 1.0 U            | 1.0 U       | 1.0 U       | 1.0 U       | 1.0 U            |  |
|                                  | UG/L  | 5         | 1.0 U            | 1.0 U       | 1.0 U       | 1.0 U       | 1.0 U            |  |
|                                  | UG/L  | 5         | 1.0 U            | 1.0 U       | 1.0 U       | 1.0 U       | 1.0 U            |  |
| Foluene                          | UG/L  | 5         | 1.0 U            | 1.0 U       | 1.0 U       | 1.0 U       | 1.0 U            |  |
| l'richloroethene                 | UG/L  | 5         | 1.0 U            |             |             |             | 41               |  |
| Trichlorofluoromethane           | UG/L  | 5         | 1.0 U            | 1.0 UJ      | 1.0 UJ      | 1.0 UJ      | 1.0 UJ           |  |

\*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998, including January 1999 Errata Sheet, April 2000 and June 2004 Addenda. Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

J - The reported concentration is an estimated value.

| Location ID<br>Sample ID<br>Matrix<br>Depth Interval (ft)<br>Date Sampled |       |           | FIELDQC          | MW-06D      | MW-06S      | MW-07D      | MW-07S      |
|---------------------------------------------------------------------------|-------|-----------|------------------|-------------|-------------|-------------|-------------|
|                                                                           |       |           | TRIP BLANK       | MW-06D      | MW-06S      | MW-07D      | MW-07S      |
|                                                                           |       |           | Groundwater      | Groundwater | Groundwater | Groundwater | Groundwater |
|                                                                           |       |           | - 09/13/17       | -           | -           | -           | -           |
|                                                                           |       |           |                  | 09/13/17    | 09/13/17    | 09/13/17    | 09/13/17    |
| Parameter                                                                 | Units | Criteria* | Trip Blank (1-1) |             |             |             |             |
| Volatile Organic Compounds                                                |       |           |                  |             |             |             |             |
| Vinyl chloride                                                            | UG/L  | 2         | 1.0 U            | 1.5         | 1.5         | 1.0 U       | 1.0 U       |
| Kylene (total)                                                            | UG/L  | 5         | 2.0 U            | 2.0 U       | 2.0 U       | 2.0 U       | 2.0 U       |

\*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998, including January 1999 Errata Sheet, April 2000 and June 2004 Addenda. Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

J - The reported concentration is an estimated value.

| Location ID                            |       |           | MW-10S                | MW-10S                |  |
|----------------------------------------|-------|-----------|-----------------------|-----------------------|--|
| Sample ID                              |       |           | FD-20170913           | MW-10S<br>Groundwater |  |
| Matrix                                 |       |           | Groundwater           |                       |  |
| Depth Interval (f                      | t)    |           | -                     | -                     |  |
| Date Sampled                           |       |           | 09/13/17              | 09/13/17              |  |
| Parameter                              | Units | Criteria* | Field Duplicate (1-1) |                       |  |
| Volatile Organic Compounds             |       |           |                       |                       |  |
| 1,1,1-Trichloroethane                  | UG/L  | 5         | 1.0 U                 | 1.0 U                 |  |
| 1,1,2,2-Tetrachioroethane              | UG/L  | 5         | 1.0 U                 | 1.0 U                 |  |
| 1,1,2-Trichloro-1,2,2-trifluoroethane  | UG/L  | 5         | 1.0 U                 | 1.0 U                 |  |
| 1,1,2-Trichloroethane                  | UG/L  | 1         | 1.0 U                 | 1.0 U                 |  |
| 1,1-Dichloroethane                     | UG/L  | 5         | 1.0 U                 | 1.0 U                 |  |
| 1,1-Dichloroethene                     | UG/L  | 5         | 1.0 U                 | 1.0 U                 |  |
| 1,2,4-Trichlorobenzene                 | UG/L  | 5         | 1.0 U                 | 1.0 U                 |  |
| 1,2-Dibromo-3-chloropropane            | UG/L  | 0.04      | 1.0 U                 | 0.71 J                |  |
| 1,2-Dibromoethane (Ethylene dibromide) | UG/L  | 0.006     | 1.0 U                 | 1.0 U                 |  |
| 1,2-Dichlorobenzene                    | UG/L  | 3         | 1.0 U                 | 1.0 U                 |  |
| 1,2-Dichloroethane                     | UG/L  | 0.6       | 1.0 U                 | 1.0 U                 |  |
| 1,2-Dichloroethene (cis)               | UG/L  | 5         | 1.0 U                 | 1.0 U                 |  |
| 1,2-Dichloroethene (trans)             | UG/L  | 5         | 1.0 U                 | 1.0 U                 |  |
| 1,2-Dichloropropane                    | UG/L  | 1         | 1.0 U                 | 1.0 U                 |  |
| 1,3-Dichlorobenzene                    | UG/L  | 3         | 1.0 U                 | 1.0 U                 |  |
| 1,3-Dichloropropene (cis)              | UG/L  | 0.4       | 1.0 U                 | 1.0 U                 |  |
| 1,3-Dichloropropene (trans)            | UG/L  | 0.4       | 1.0 U                 | 1.0 U                 |  |
| 1,4-Dichlorobenzene                    | UG/L  | 3         | 1.0 U                 | 1.0 U                 |  |
| 2-Hexanone                             | UG/L  | 50        | 5.0 UJ                | 5.0 UJ                |  |
| 4-Methyl-2-pentanone                   | UG/L  | •         | 5.0 UJ                | 5.0 UJ                |  |
| Acetone                                | UG/L  | 50        | 10 U                  | 10 U                  |  |
| Benzene                                | UG/L  | 1         | 1.0 U                 | 1.0 U                 |  |
| Bromodichloromethane                   | UG/L  | 50        | 1.0 U                 | 1.0 U                 |  |

\*Criteria- NYSDEC TOGS (1 1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998, including January 1999 Errata Sheet, April 2000 and June 2004 Addenda. Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

J - The reported concentration is an estimated value.

| Location ID                             |       |           | MW-10S                | MW-10S      |  |
|-----------------------------------------|-------|-----------|-----------------------|-------------|--|
| Sample ID                               |       |           | FD-20170913           | MW-10S      |  |
| Matrix                                  |       |           | Groundwater           | Groundwater |  |
| Depth Interval (                        | ft)   |           | -                     | -           |  |
| Date Sampled                            |       |           | 09/13/17              | 09/13/17    |  |
| Parameter                               | Units | Criteria* | Field Duplicate (1-1) |             |  |
| Volatile Organic Compounds              |       |           |                       |             |  |
| Bromoform                               | UG/L  | 50        | 1.0 U                 | 1.0 U       |  |
| Bromomethane                            | UG/L  | 5         | 1.0 U                 | 1.0 U       |  |
| Carbon disulfide                        | UG/L  | 60        | 1.0 U                 | 1.0 U       |  |
| Carbon tetrachloride                    | UG/L  | 5         | 1.0 U                 | 1.0 U       |  |
| Chlorobenzene                           | UG/L  | 5         | 1.0 U                 | 1.0 U       |  |
| Chloroethane                            | UG/L  | 5         | 1.0 U                 | 1.0 U       |  |
| Chloroform                              | UG/L  | 7         | 1.0 U                 | 1.0 U       |  |
| Chloromethane                           | UG/L  | 5         | 1.0 UJ                | 1.0 UJ      |  |
| Cyclohexane                             | UG/L  | -         | 1.0 UJ                | 1.0 UJ      |  |
| Dibromochloromethane                    | UG/L  | 50        | 1.0 U                 | 1.0 U       |  |
| Dichlorodifluoromethane                 | UG/L  | 5         | 1.0 U                 | 1.0 U       |  |
| Ethylbenzene                            | UG/L  | 5         | 1.0 U                 | 1.0 U       |  |
| Isopropyibenzene (Cumene)               | UG/L  | 5         | 1.0 U                 | 1.0 U       |  |
| Methyl acetate                          | UG/L  | -         | 2.5 U                 | 2.5 U       |  |
| Methyl ethyl ketone (2-Butanone)        | UG/L  | 50        | 10 UJ                 | 10 UJ       |  |
| Methyl tert-butyl ether                 | UG/L  | 10        | 1.0 U                 | 1.0 U       |  |
| Methylcyclohexane<br>Methylene chloride | UG/L  | -         | 1.0 U<br>1.0 U        | 1.0 U<br>   |  |
| -                                       | UG/L  | 5         | 1.0 U<br>1.0 U        | 1.0 U       |  |
| Styrene                                 | UG/L  | 5         | 1.0 U                 | 1.0 U       |  |
| Toluene                                 | UG/L  | 5         | 1.0 U                 | 1.0 U       |  |
| Trichloroethene                         | UG/L  | 5         | 2.5                   | 2.6         |  |
| Trichlorofluoromethane                  | UG/L  | 5         | 1.0 UJ                | 1.0 UJ      |  |
|                                         | UG/L  | 5         | 1.0 03                | 1.0 UJ      |  |

\*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998, including January 1999 Errata Sheet, April 2000 and June 2004 Addenda. Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

J - The reported concentration is an estimated value.

| Location ID                |             |             | MW-10S                | MW-10S |  |
|----------------------------|-------------|-------------|-----------------------|--------|--|
| Sample ID                  | FD-20170913 | MW-10S      |                       |        |  |
| Matrix                     | Groundwater | Groundwater |                       |        |  |
| Depth Interval (           | -           | -           |                       |        |  |
| Date Sampled               | 09/13/17    | 09/13/17    |                       |        |  |
| Parameter                  | Units       | Criteria*   | Field Duplicate (1-1) |        |  |
| Volatile Organic Compounds | İ           |             |                       |        |  |
| Vinyl chloride             | UG/L        | 2           | 1.0 U                 | 1.0 U  |  |
| Xylene (total)             | UG/L        | 5           | 2.0 U                 | 2.0 U  |  |

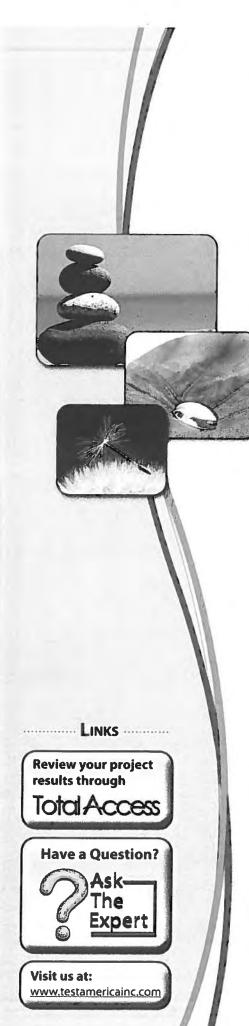
\*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998, including January 1999 Errata Sheet, April 2000 and June 2004 Addenda. Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

J - The reported concentration is an estimated value.

#### TABLE 2 FIELD DUPLICATE COMPARISON FORMER GRIFFIN TECHNOLOGY FACILITY SITE


| Detected Compound           | <b>MW-10S</b><br>(μg/L) | FD-20170913<br>(µg/L) | <b>RPD</b> (%) |
|-----------------------------|-------------------------|-----------------------|----------------|
| 1,2-Dibromo-3-chloropropane | 0.71 J                  | ND                    | NC             |
| Trichloroethene             | 2.6                     | 2.5                   | 3.9            |

RPD – relative percent difference.

 $\mu$ g/L – micrograms per liter.

ND - not detected

NC – not calculated



# TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

# **ANALYTICAL REPORT**

TestAmerica Laboratories, Inc. TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-124095-1 Client Project/Site: Griffin Diebolt

For: AECOM, Inc. 257 West Genesee Street Suite 400 Buffalo, New York 14202-2657

Attn: George Kisluk

Melisso Deyo

Authorized for release by: 9/25/2017 10:51:52 AM

Melissa Deyo, Project Manager I (716)504-9874 melissa.deyo@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

# **Table of Contents**

| Cover Page            | 1  |
|-----------------------|----|
| Table of Contents     | 2  |
| Definitions/Glossary  | 3  |
|                       | 4  |
|                       | 5  |
|                       | 6  |
|                       | 20 |
|                       | 21 |
|                       | 26 |
| Lab Chronicle         | 27 |
| Certification Summary | 29 |
| Method Summary        | 30 |
|                       | 31 |
|                       | 32 |
|                       | 33 |

#### Qualifiers

| J         | Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. |
|-----------|----------------------------------------------------------------------------------------------------------------|
| Qualifler | Qualifier Description                                                                                          |
| GC/MS VOA |                                                                                                                |
|           |                                                                                                                |

#### GC/MS VOA TICs

| Qualifier | Qualifier Description                                                     |  |
|-----------|---------------------------------------------------------------------------|--|
| J         | Indicates an Estimated Value for TICs                                     |  |
| N         | Presumptive evidence of material.                                         |  |
| т         | Result is a tentatively identified compound (TIC) and an estimated value. |  |

#### Glossary

| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 |
|----------------|-------------------------------------------------------------------------------------------------------------|
| 8              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |
| %R             | Percent Recovery                                                                                            |
| CFL            | Contains Free Liquid                                                                                        |
| CNF            | Contains No Free Liquid                                                                                     |
| DER            | Duplicate Error Ratio (normalized absolute difference)                                                      |
| Dil Fac        | Dilution Factor                                                                                             |
| DL             | Detection Limit (DoD/DOE)                                                                                   |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |
| DLC            | Decision Level Concentration (Radiochemistry)                                                               |
| EDL            | Estimated Detection Limit (Dioxin)                                                                          |
| LOD            | Limit of Detection (DoD/DOE)                                                                                |
| LOQ            | Limit of Quantitation (DoD/DOE)                                                                             |
| MDA            | Minimum Detectable Activity (Radiochemistry)                                                                |
| MDC            | Minimum Detectable Concentration (Radiochemistry)                                                           |
| MDL            | Method Detection Limit                                                                                      |
| ML             | Minimum Level (Dioxin)                                                                                      |
| NC             | Not Calculated                                                                                              |
| ND             | Not Detected at the reporting limit (or MDL or EDL if shown)                                                |
| PQL            | Practical Quantitation Limit                                                                                |
| 20             | Quality Control                                                                                             |
| RER            | Relative Error Ratio (Radiochemistry)                                                                       |
| RL             | Reporting Limit or Requested Limit (Radiochemistry)                                                         |
| RPD            | Relative Percent Difference, a measure of the relative difference between two points                        |
| TÉF            | Toxicity Equivalent Factor (Dioxin)                                                                         |
| EQ             | Toxicity Equivalent Quotient (Dioxin)                                                                       |

#### Laboratory: TestAmerica Buffalo

#### Narrative

Job Narrative 480-124095-1

#### Receipt

The samples were received on 9/13/2017 4:31 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.0° C.

#### GC/MS VOA

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-378347 recovered above the upper control limit for 2-Hexanone, Cyclohexane, Chloromethane, 4-Methyl-2-pentanone (MIBK), Trichlorofluoromethane, and 2-Butanone (MEK). The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: MW-06S (480-124095-1), MW-06D (480-124095-2), MW-07S (480-124095-3), MW-07D (480-124095-4), MW-10S (480-124095-5) and FD-20170913 (480-124095-6).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

TestAmerica Job ID: 480-124095-1

#### **Client Sample ID: MW-06S**

TestAmerica Job ID: 480-124095-1

Lab Sample ID: 480-124095-1

Lab Sample ID: 480-124095-2

Lab Sample ID: 480-124095-3

Lab Sample ID: 480-124095-4

Lab Sample ID: 480-124095-5

Lab Sample ID: 480-124095-6

Lab Sample ID: 480-124095-7

5

| Analyte                | Result | Qualifier | RL  | MDL  | Unit | Dil Fac | D | Method | Prep Type |
|------------------------|--------|-----------|-----|------|------|---------|---|--------|-----------|
| 1,1,1-Trichloroethane  | 1.5    |           | 1.0 | 0.82 | ug/L | 1       | - | 8260C  | Total/NA  |
| 1,1-Dichloroethane     | 0.38   | J         | 1.0 | 0.38 | ug/L | 1       |   | 8260C  | Total/NA  |
| cis-1,2-Dichloroethene | 6.2    |           | 1.0 | 0.81 | ug/L | 1       |   | 8260C  | Total/NA  |
| Trichloroethene        | 45     |           | 1.0 | 0.46 | ug/L | 1       |   | 8260C  | Total/NA  |
| Vinyl chloride         | 1.5    |           | 1.0 | 0.90 | ug/L | 1       |   | 8260C  | Total/NA  |

#### **Client Sample ID: MW-06D**

| Analyte                | Result | Qualifier | RL  | MDL  | Unit | Dil Fac | D | Method | Ргер Туре |
|------------------------|--------|-----------|-----|------|------|---------|---|--------|-----------|
| 1,1,1-Trichloroethane  | 1.6    |           | 1.0 | 0.82 | ug/L | 1       | - | 8260C  | Total/NA  |
| Acetone                | 3.1    | J         | 10  | 3.0  | ug/L | 1       |   | 8260C  | Total/NA  |
| cis-1,2-Dichloroethene | 4.7    |           | 1.0 | 0.81 | ug/L | 1       |   | 8260C  | Total/NA  |
| Trichloroethene        | 39     |           | 1.0 | 0.46 | ug/L | 1       |   | 8260C  | Total/NA  |
| Vinyl chloride         | 1.5    |           | 1.0 | 0.90 | ug/L | 1       |   | 8260C  | Total/NA  |

#### **Client Sample ID: MW-07S**

| Analyte                | Result | Qualifier | RL  | MDL  | Unit | Dil Fac | D | Method | Prep Type |
|------------------------|--------|-----------|-----|------|------|---------|---|--------|-----------|
| Acetone                | 3.3    | J         | 10  | 3.0  | ug/L | 1       | _ | 8260C  | Total/NA  |
| cis-1,2-Dichloroethene | 1.7    |           | 1.0 | 0.81 | ug/L | 1       |   | 8260C  | Total/NA  |
| Trichloroethene        | 41     |           | 1.0 | 0.46 | ug/L | 1       |   | 8260C  | Total/NA  |

#### Client Sample ID: MW-07D

| Analyte                 | Result | Qualifier | RL  | MDL  | Unit | Dil Fac | D | Method | Ргер Туре |
|-------------------------|--------|-----------|-----|------|------|---------|---|--------|-----------|
| 1,1-Dichloroethene      | 0.53   | J         | 1.0 | 0.29 | ug/L | 1       | - | 8260C  | Total/NA  |
| Acetone                 | 4.0    | J         | 10  | 3.0  | ug/L | 1       |   | 8260C  | Total/NA  |
| cis-1,2-Dichloroethene  | 22     |           | 1.0 | 0.81 | ug/L | 1       |   | 8260C  | Total/NA  |
| Methyl tert-butyl ether | 0.18   | J         | 1.0 | 0.16 | ug/L | 1       |   | 8260C  | Total/NA  |
| Trichloroethene         | 62     |           | 1.0 | 0.46 | ug/L | 1       |   | 8260C  | Total/NA  |

#### **Client Sample ID: MW-10S**

| pose                        | and the product of the second s |     |      |      |         |   |        |           |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|------|---------|---|--------|-----------|
| Analyte                     | Result Qualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RL  | MDL  | Unit | Dil Fac | D | Method | Prep Type |
| 1,2-Dibromo-3-Chloropropane | 0.71 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0 | 0.39 | ug/L | 1       | - | 8260C  | Total/NA  |
| Trichloroethene             | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0 | 0.46 | ug/L | 1       |   | 8260C  | Total/NA  |

#### Client Sample ID: FD-20170913

| Analyte         | Result C | Qualifier | RL  | MDL  | Unit | Dil Fac | D | Method | Ргер Туре |
|-----------------|----------|-----------|-----|------|------|---------|---|--------|-----------|
| Trichloroethene | 2.5      |           | 1.0 | 0.46 | ug/L | 1       | - | 8260C  | Total/NA  |

#### **Client Sample ID: TRIP BLANK**

No Detections.

This Detection Summary does not include radiochemical test results.

#### Client Sample ID: MW-06S Date Collected: 09/13/17 11:25 Date Received: 09/13/17 16:31

#### Lab Sample ID: 480-124095-1 Matrix: Water

6

| Method: 8260C - Volatile Organic<br>Analyte | Result Qualifier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dii Fac |
|---------------------------------------------|------------------|-----|------|------|---|----------|----------------|---------|
| 1,1,1-Trichloroethane                       | 1.5              | 1.0 | 0.82 | ug/L |   | 61       | 09/23/17 01:40 | 1       |
| 1,1,2,2-Tetrachloroethane                   | ND               | 1.0 | 0.21 | ug/L |   |          | 09/23/17 01:40 | 1       |
| 1,1,2-Trichloroethane                       | ND               | 1.0 | 0.23 | ug/L |   |          | 09/23/17 01:40 | 1       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane       | ND               | 1.0 | 0.31 | ug/L |   |          | 09/23/17 01:40 | 1       |
| 1,1-Dichloroethane                          | 0.38 J           | 1.0 | 0.38 | ug/L |   |          | 09/23/17 01:40 | 1       |
| 1,1-Dichloroethene                          | ND               | 1.0 | 0.29 | ug/L |   |          | 09/23/17 01:40 | 1       |
| 1,2,4-Trichlorobenzene                      | ND               | 1.0 | 0.41 | ug/L |   |          | 09/23/17 01:40 | 1       |
| 1,2-Dibromo-3-Chloropropane                 | ND               | 1.0 | 0.39 | ug/L |   |          | 09/23/17 01:40 | 1       |
| 1,2-Dibromoethane                           | ND               | 1.0 | 0.73 | ug/L |   |          | 09/23/17 01:40 | 1       |
| 1,2-Dichlorobenzene                         | ND               | 1.0 | 0.79 | ug/L |   |          | 09/23/17 01:40 | 1       |
| 1,2-Dichloroethane                          | ND               | 1.0 | 0.21 | ug/L |   |          | 09/23/17 01:40 | 1       |
| 1,2-Dichloropropane                         | ND               | 1.0 | 0.72 |      |   |          | 09/23/17 01:40 | 1       |
| 1,3-Dichlorobenzene                         | ND               | 1.0 | 0.78 | ug/L |   |          | 09/23/17 01:40 | 1       |
| 1,4-Dichlorobenzene                         | ND               | 1.0 |      | -    |   |          | 09/23/17 01:40 | 1       |
| 2-Hexanone                                  | ND JS            | 5.0 | 1.2  | ug/L |   |          | 09/23/17 01:40 | 1       |
| 2-Butanone (MEK)                            | ND JS            | 10  | 1.3  | ug/L |   |          | 09/23/17 01:40 | 1       |
| 4-Methyl-2-pentanone (MIBK)                 |                  | 5.0 | 2.1  | ug/L |   |          | 09/23/17 01:40 | 1       |
| Acetone                                     | ND               | 10  |      | ug/L |   |          | 09/23/17 01:40 | 1       |
| Benzene                                     | ND               | 1.0 |      | ug/L |   |          | 09/23/17 01:40 | 1       |
| Bromodichloromethane                        | ND               | 1.0 |      | ug/L |   |          | 09/23/17 01:40 | 1       |
| Bromoform                                   | ND               | 1.0 |      | ug/L |   |          | 09/23/17 01:40 | 1       |
| Bromomethane                                | ND               | 1.0 |      | ug/L |   |          | 09/23/17 01:40 | 1       |
| Carbon disulfide                            | ND               | 1.0 |      | ug/L |   |          | 09/23/17 01:40 | 1       |
| Carbon tetrachloride                        | ND               | 1.0 |      | ug/L |   |          | 09/23/17 01:40 | 1       |
| Chlorobenzene                               | ND               | 1.0 | 0.75 |      |   |          | 09/23/17 01:40 | 1       |
| Dibromochloromethane                        | ND               | 1.0 |      | ug/L |   |          | 09/23/17 01:40 | 1       |
| Chloroethane                                | ND               | 1.0 | 0.32 | -    |   |          | 09/23/17 01:40 | 1       |
| Chloroform                                  | ND               | 1.0 |      | ug/L |   |          | 09/23/17 01:40 | 1       |
| Chloromethane                               |                  | 1.0 | 0.35 | -    |   |          | 09/23/17 01:40 | 1       |
| cis-1,2-Dichloroethene                      | 6.2              | 1.0 |      | ug/L |   |          | 09/23/17 01:40 | 1       |
| cis-1,3-Dichloropropene                     | ND               | 1.0 |      | ug/L |   |          | 09/23/17 01:40 |         |
| Cyclohexane                                 |                  | 1.0 | 0.18 | -    |   |          | 09/23/17 01:40 | 1       |
| Dichlorodifluoromethane                     | ND               | 1.0 |      | ug/L |   |          | 09/23/17 01:40 | 1       |
| Ethylbenzene                                | ND               | 1.0 |      | ug/L |   |          | 09/23/17 01:40 | 1       |
| isopropylbenzene                            | ND               | 1.0 |      | ug/L |   |          | 09/23/17 01:40 |         |
| Methyl acetate                              | ND               | 2,5 | 1.3  | -    |   |          |                | 1       |
| Methyl tert-butyl ether                     | ND               | 1.0 | 0.16 | -    |   |          | 09/23/17 01:40 | 1       |
| Methylcyclohexane                           | ND               |     |      | -    |   |          | 09/23/17 01:40 | 1       |
| Methylene Chloride                          |                  | 1.0 | 0.16 |      |   |          | 09/23/17 01:40 | 1       |
| Styrene                                     | ND               | 1.0 | 0.44 |      |   |          | 09/23/17 01:40 | 1       |
| Tetrachloroethene                           | ND               | 1.0 | 0.73 | -    |   |          | 09/23/17 01:40 | 1       |
| Toluene                                     | ND               | 1.0 | 0.36 |      |   |          | 09/23/17 01:40 | 1       |
|                                             | ND               | 1.0 | 0.51 |      |   |          | 09/23/17 01:40 | 1       |
| trans-1,2-Dichloroethene                    | ND               | 1.0 | 0.90 |      |   |          | 09/23/17 01:40 | 1       |
| trans-1,3-Dichloropropene                   | ND               | 1.0 | 0.37 | _    |   |          | 09/23/17 01:40 | 1       |
| Trichloroethene                             | 45               | 1.0 | 0.46 | -    |   |          | 09/23/17 01:40 | 1       |
| Trichlorofluoromethane                      |                  | 1.0 | 0.88 |      |   |          | 09/23/17 01:40 | 1       |
| Vinyl chloride                              | 1.5              | 1.0 | 0.90 | -    |   |          | 09/23/17 01:40 | 1       |
| Xylenes, Total                              | ND               | 2.0 | 0.66 | ug/L |   |          | 09/23/17 01:40 | 1       |

# **Client Sample Results**

| Client: AECOM, Inc.           |  |
|-------------------------------|--|
| Project/Site: Griffin Diebolt |  |

.

#### TestAmerica Job ID: 480-124095-1

6

| Client Sample ID: MW-06S        |             |           |          |   |    |         | Lab Sam      | ole ID: 480-12 | 4095-1   |
|---------------------------------|-------------|-----------|----------|---|----|---------|--------------|----------------|----------|
| Date Collected: 09/13/17 11:25  |             |           |          |   |    |         |              | Matrix         | k: Water |
| Date Received: 09/13/17 16:31   |             | •         |          |   |    |         | . <b>1</b> 7 |                |          |
| Tentatively Identified Compound | Est. Result | Qualifier | Unit     | D | RT | CAS No. | Prepared     | Analyzed       | Dil Fac  |
| Tentatively Identified Compound | None        |           | ug/L     |   |    |         |              | 09/23/17 01:40 | 1        |
| Surrogate                       | %Recovery   | Qualifier | Limits   |   |    |         | Prepared     | Analyzed       | Dil Fac  |
| 1,2-Dichloroethane-d4 (Surr)    | 100         |           | 77 - 120 | - |    |         |              | 09/23/17 01:40 | 1        |
| Toluene-d8 (Surr)               | 97          |           | 80 - 120 |   |    |         |              | 09/23/17 01:40 | 1        |
| 4-Bromofluorobenzene (Surr)     | 97          |           | 73 - 120 |   |    |         |              | 09/23/17 01:40 | 1        |

#### Client Sample ID: MW-06D Date Collected: 09/13/17 12:06 Date Received: 09/13/17 16:31

#### TestAmerica Job ID: 480-124095-1

#### Lab Sample ID: 480-124095-2 Matrix: Water

6

| Method: 8260C - Volatile Organic<br>Analyte       | Result Qualifier | DI. | MO     | 11   | - | <b>B</b> |                |         |
|---------------------------------------------------|------------------|-----|--------|------|---|----------|----------------|---------|
| 1,1,1-Trichloroethane                             |                  | RL  |        | Unit | D | Prepared | Analyzed       | Dil Fac |
| 1,1,2,2-Tetrachloroethane                         | 1.6              | 1.0 |        | ug/L |   |          | 09/23/17 02:05 | 1       |
| 1,1,2-Trichloroethane                             | ND<br>ND         | 1.0 | 0.21   | -    |   |          | 09/23/17 02:05 | 1       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane             |                  | 1.0 |        | ug/L |   |          | 09/23/17 02:05 | 1       |
| 1,1-Dichloroethane                                | ND<br>ND         | 1.0 |        | ug/L |   |          | 09/23/17 02:05 | 1       |
| 1,1-Dichloroethene                                | ND               | 1.0 | 0.38   | ug/L |   |          | 09/23/17 02:05 | 1       |
| 1,2,4-Trichlorobenzene                            | ND               | 1.0 | 0.29   | ug/L |   |          | 09/23/17 02:05 | 1       |
| 1,2-Dibromo-3-Chloropropane                       | ND               | 1.0 | 0.41   | -    |   |          | 09/23/17 02:05 | 1       |
| 1,2-Dibromoethane                                 | ND               | 1.0 | 0.39   | ug/L |   |          | 09/23/17 02:05 | 1       |
| 1,2-Dichlorobenzene                               |                  | 1.0 | 0.73   | -    |   |          | 09/23/17 02:05 | 1       |
| 1,2-Dichloroethane                                | ND<br>ND         | 1.0 | 0.79   | ug/L |   |          | 09/23/17 02:05 | 1       |
| 1,2-Dichloropropane                               |                  | 1.0 | 0.21   | ug/L |   |          | 09/23/17 02:05 | 1       |
| 1,3-Dichlorobenzene                               | ND               | 1.0 | 0.72   | -    |   |          | 09/23/17 02:05 | 1       |
| 1,4-Dichlorobenzene                               | ND<br>ND         | 1.0 | 0.78   | ug/L |   |          | 09/23/17 02:05 | 1       |
| 2-Hexanone                                        |                  | 1.0 | 0.84   | ug/L |   |          | 09/23/17 02:05 | 1       |
| 2-Butanone (MEK)                                  |                  | 5.0 |        | ug/L |   |          | 09/23/17 02:05 | 1       |
| 4-Methyl-2-pentanone (MIBK)                       |                  | 10  |        | ug/L |   |          | 09/23/17 02:05 | 1       |
| Acetone                                           | ND OS            | 5.0 |        | ug/L |   |          | 09/23/17 02:05 | 1       |
| Benzene                                           | 3.1 J            | 10  |        | ug/L |   |          | 09/23/17 02:05 | 1       |
| Bromodichloromethane                              | ND               | 1.0 |        | ug/L |   |          | 09/23/17 02:05 | 1       |
| Bromoform                                         | ND               | 1.0 |        | ug/L |   |          | 09/23/17 02:05 | 1       |
| Bromomethane                                      | ND               | 1.0 | 0.26   | -    |   |          | 09/23/17 02:05 | 1       |
| Carbon disulfide                                  | ND               | 1.0 |        | ug/L |   |          | 09/23/17 02:05 | 1       |
| Carbon tetrachloride                              | ND               | 1.0 |        | ug/L |   |          | 09/23/17 02:05 | 1       |
| Chlorobenzene                                     | ND               | 1.0 |        | ug/L |   |          | 09/23/17 02:05 | 1       |
| Dibromochloromethane                              | ND               | 1.0 |        | ug/L |   |          | 09/23/17 02:05 | 1       |
| Chloroethane                                      | ND               | 1.0 |        | ug/L |   |          | 09/23/17 02:05 | 1       |
| Chloroform                                        | ND               | 1.0 | 0.32   | -    |   |          | 09/23/17 02:05 | 1       |
| Chloromethane                                     | ND               | 1.0 |        | ug/L |   |          | 09/23/17 02:05 | 1       |
|                                                   | ND VS            | 1.0 | 0.35   | -    |   |          | 09/23/17 02:05 | 1       |
| cis-1,2-Dichloroethene<br>cis-1,3-Dichloropropene | 4.7<br>ND        | 1.0 |        | ug/L |   |          | 09/23/17 02:05 | 1       |
| Cyclohexane                                       |                  | 1.0 |        | ug/L |   |          | 09/23/17 02:05 | 1       |
| Dichlorodifluoromethane                           |                  | 1.0 | 0.18   | _    |   |          | 09/23/17 02:05 | 1       |
| Ethylbenzene                                      | ND               | 1.0 | 0.68   | -    |   |          | 09/23/17 02:05 | 1       |
|                                                   | ND               | 1.0 |        | ug/L |   |          | 09/23/17 02:05 | 1       |
| isopropylbenzene<br>Methyl acetate                | ND               | 1.0 |        | ug/L |   |          | 09/23/17 02:05 | 1       |
| -                                                 | ND               | 2.5 | 1.3    | -    |   |          | 09/23/17 02:05 | 1       |
| Methyl tert-butyl ether                           | ND               | 1.0 | 0.16   |      |   |          | 09/23/17 02:05 | 1       |
| Methylcyclohexane                                 | ND               | 1.0 | 0.16   |      |   |          | 09/23/17 02:05 | 1       |
| Methylene Chloride                                | ND               | 1.0 | 0.44   |      |   |          | 09/23/17 02:05 | 1       |
| Styrene<br>Tetrachloroethene                      | ND               | 1.0 | 0.73   |      |   |          | 09/23/17 02:05 | 1       |
|                                                   | ND               | 1.0 | 0.36   | -    |   |          | 09/23/17 02:05 | 1       |
| Toluene                                           | ND               | 1.0 | 0.51   |      |   |          | 09/23/17 02:05 | 1       |
| trans-1,2-Dichloroethene                          | ND               | 1.0 | 0.90   | -    |   |          | 09/23/17 02:05 | 1       |
| trans-1,3-Dichloropropene                         | ND               | 1.0 | 0.37 1 |      |   |          | 09/23/17 02:05 | 1       |
| Trichloroethene                                   | 39               | 1.0 | 0.46 1 | -    |   |          | 09/23/17 02:05 | 1       |
|                                                   | ND 32            | 1.0 | 0.88 ( |      |   |          | 09/23/17 02:05 | 1       |
| Vinyl chloride                                    | 1.5              | 1.0 | 0.90 i | -    |   |          | 09/23/17 02:05 | 1       |
| Xylenes, Total                                    | ND               | 2.0 | 0.66 L | Jg/L |   |          | 09/23/17 02:05 | 1       |

# **Client Sample Results**

| Client: AECOM, Inc.           |
|-------------------------------|
| Project/Site: Griffin Diebolt |

# TestAmerica Job ID: 480-124095-1

# Client Sample ID: MW-06D Lab Sample ID: 480-124095-2 Date Collected: 09/13/17 12:06 Matrix: Water Date Received: 09/13/17 16:31 Matrix: Water Tentatively Identified Compound Est. Result Qualifier Unit D RT CAS No. Prepared Analyzed Dil Fac

|           | 10                     |                                  |                                                                                                         |                                                                                                         | 040 110.                                              | 1 / opurou                                            | Analyzeu                                              | Diirac                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------|------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| None      |                        | ug/L                             |                                                                                                         |                                                                                                         |                                                       |                                                       | 09/23/17 02:05                                        | 1                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| %Recovery | Qualifier              | Limits                           |                                                                                                         |                                                                                                         |                                                       | Prepared                                              | Analyzed                                              | Dil Fac                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 101       |                        | 77 - 120                         |                                                                                                         |                                                                                                         |                                                       |                                                       | 09/23/17 02:05                                        | 1                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 97        |                        | 80 - 120                         |                                                                                                         |                                                                                                         |                                                       |                                                       | 09/23/17 02:05                                        | 1                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 98        |                        | 73 - 120                         |                                                                                                         |                                                                                                         |                                                       |                                                       | 09/23/17 02:05                                        | 1                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           | %Recovery<br>101<br>97 | %Recovery Qualifier<br>101<br>97 | %Recovery         Qualifier         Limits           101         77 - 120           97         80 - 120 | %Recovery         Qualifier         Limits           101         77 - 120           97         80 - 120 | Noneug/L%RecoveryQualifierLimits10177 - 1209780 - 120 | Noneug/L%RecoveryQualifierLimits10177 - 1209780 - 120 | Noneug/L%RecoveryQualifierLimits10177 - 1209780 - 120 | None         ug/L         O9/23/17 02:05           %Recovery         Qualifier         Limits         Prepared         Analyzed           101         77 - 120         09/23/17 02:05         09/23/17 02:05           97         80 - 120         09/23/17 02:05         09/23/17 02:05 | None         ug/L         Official of the part of |

#### Client Sample ID: MW-07S Date Collected: 09/13/17 13:10 Date Received: 09/13/17 16:31

#### Lab Sample ID: 480-124095-3 Matrix: Water

| Analyte                                         | Result Qualifier | RL  |        | Unit          | D | Prepared | Analyzed       | DII Fa |
|-------------------------------------------------|------------------|-----|--------|---------------|---|----------|----------------|--------|
| 1,1,1-Trichloroethane                           | ND               | 1.0 | 0.82   | ug/L          |   |          | 09/23/17 02:30 |        |
| 1,1,2,2-Tetrachloroethane                       | ND               | 1.0 | 0.21   | ug/L          |   |          | 09/23/17 02:30 |        |
| 1,1,2-Trichloroethane                           | ND               | 1.0 | 0.23   | ug/L          |   |          | 09/23/17 02:30 |        |
| 1,1,2-Trichloro-1,2,2-trifluoroethane           | ND               | 1.0 | 0.31   | ug/L          |   |          | 09/23/17 02:30 |        |
| 1,1-Dichloroethane                              | ND               | 1.0 | 0.38   | ug/L          |   |          | 09/23/17 02:30 |        |
| 1,1-Dichloroethene                              | ND               | 1.0 | 0.29   | ug/L          |   |          | 09/23/17 02:30 |        |
| 1,2,4-Trichlorobenzene                          | ND               | 1.0 | 0.41   | ug/L          |   |          | 09/23/17 02:30 |        |
| 1,2-Dibromo-3-Chloropropane                     | ND               | 1.0 | 0.39   | ug/L          |   |          | 09/23/17 02:30 |        |
| 1,2-Dibromoethane                               | ND               | 1.0 | 0.73   | ug/L          |   |          | 09/23/17 02:30 | -      |
| 1,2-Dichlorobenzene                             | ND               | 1.0 | 0.79   | ug/L          |   |          | 09/23/17 02:30 |        |
| 1,2-Dichloroethane                              | ND               | 1.0 | 0.21   | ug/L          |   |          | 09/23/17 02:30 |        |
| 1,2-Dichloropropane                             | ND               | 1.0 | 0.72   |               |   |          | 09/23/17 02:30 | 1      |
| 1,3-Dichlorobenzene                             | ND               | 1.0 | 0.78   | ug/L          |   |          | 09/23/17 02:30 | 1      |
| 1,4-Dichlorobenzene                             | ND               | 1.0 | 0.84   | ug/L          |   |          | 09/23/17 02:30 | 1      |
| 2-Hexanone                                      | ND JS            | 5.0 | 1.2    | ug/L          |   |          | 09/23/17 02:30 | 1      |
| 2-Butanone (MEK)                                | ND 05            | 10  |        | ug/L          |   |          | 09/23/17 02:30 | 1      |
| -Methyl-2-pentanone (MIBK)                      |                  | 5.0 |        | ug/L          |   |          | 09/23/17 02:30 | 1      |
| Acetone                                         | 3.3 J            | 10  |        | ug/L          |   |          | 09/23/17 02:30 | 1      |
| Benzene                                         | ND               | 1.0 |        | ug/L          |   |          | 09/23/17 02:30 | 1      |
| Bromodichloromethane                            | ND               | 1.0 |        | ug/L          |   |          | 09/23/17 02:30 | 1      |
| iromoform                                       | ND               | 1.0 |        | ug/L          |   |          | 09/23/17 02:30 | 1      |
| romomethane                                     | ND               | 1.0 |        | ug/L          |   |          | 09/23/17 02:30 | 1      |
| arbon disulfide                                 | ND               | 1.0 |        | ug/L          |   |          | 09/23/17 02:30 | 1      |
| Carbon tetrachloride                            | ND               | 1.0 |        | ug/L          |   |          |                | 1      |
| Chlorobenzene                                   | ND               | 1.0 | 0.75   |               |   |          | 09/23/17 02:30 |        |
| Dibromochloromethane                            | ND               | 1.0 | 0.32   | -             |   |          | 09/23/17 02:30 | 1      |
| Chloroethane                                    | ND               | 1.0 | 0.32   | -             |   |          | 09/23/17 02:30 | 1      |
| Chloroform                                      | ND               |     |        |               |   |          | 09/23/17 02:30 | 1      |
| Chloromethane                                   |                  | 1.0 |        | ug/L          |   |          | 09/23/17 02:30 | 1      |
|                                                 |                  | 1.0 |        | ug/L          |   |          | 09/23/17 02:30 | 1      |
| is-1,2-Dichloroethene<br>is-1,3-Dichloropropene | 1.7              | 1.0 |        | ug/L          |   |          | 09/23/17 02:30 | 1      |
| cyclohexane                                     |                  | 1.0 |        | ug/L          |   |          | 09/23/17 02:30 | 1      |
| lichlorodifluoromethane                         |                  | 1.0 |        | ug/L          |   |          | 09/23/17 02:30 | 1      |
|                                                 | ND               | 1.0 |        | ug/L          |   |          | 09/23/17 02:30 | 1      |
| thylbenzene                                     | ND               | 1.0 |        | ug/L          |   |          | 09/23/17 02:30 | 1      |
| opropylbenzene                                  | ND               | 1.0 |        | ug/L          |   |          | 09/23/17 02:30 | 1      |
| lethyl acetate                                  | ND               | 2.5 | 1.3    | ug/L          |   |          | 09/23/17 02:30 | 1      |
| lethyl tert-butyl ether                         | ND               | 1.0 | 0.16   | -             |   |          | 09/23/17 02:30 | 1      |
| ethylcyclohexane                                | ND               | 1.0 | 0.16   | ug/L          |   |          | 09/23/17 02:30 | 1      |
| ethylene Chloride                               | ND               | 1.0 | 0.44   | ug/L          |   |          | 09/23/17 02:30 | 1      |
| lyrene                                          | ND               | 1.0 | 0.73   | ug/L          |   |          | 09/23/17 02:30 | 1      |
| etrachloroethene                                | ND               | 1.0 | 0.36   | ug/L          |   |          | 09/23/17 02:30 | 1      |
| bluene                                          | ND               | 1.0 | 0.51   | ug/L          |   |          | 09/23/17 02:30 | 1      |
| ans-1,2-Dichloroethene                          | ND               | 1.0 | 0.90   | u <b>g/</b> L |   |          | 09/23/17 02:30 | 1      |
| ans-1,3-Dichloropropene                         | ND               | 1.0 | 0.37   | ug/L          |   |          | 09/23/17 02:30 | 1      |
| richloroethene                                  | 41               | 1.0 | 0.46 ı | ug/L          |   |          | 09/23/17 02:30 | 1      |
| ichlorofluoromethane                            |                  | 1.0 | 0.88 u | -             |   |          | 09/23/17 02:30 | 1      |
| nyl chloride                                    | ND               | 1.0 | 0.90 u |               |   |          | 09/23/17 02:30 | 1      |
| ylenes, Total                                   | ND               | 2.0 | 0.66 เ |               |   |          | 09/23/17 02:30 | 1      |

# **Client Sample Results**

Client: AECOM, Inc. Project/Site: Griffin Diebolt

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Toluene-d8 (Surr)

09/23/17 02:30

09/23/17 02:30

09/23/17 02:30

6

1

1

1

#### Client Sample ID: MW-07S Lab Sample ID: 480-124095-3 Date Collected: 09/13/17 13:10 Matrix: Water Date Received: 09/13/17 16:31 Tentatively Identified Compound Est. Result Qualifier Unit D RT CAS No. Prepared Analyzed Dil Fac Tentatively Identified Compound None ug/L 09/23/17 02:30 1 Surrogate %Recovery Qualifier Limits Prepared Dil Fac Analyzed

77 - 120

80 - 120

73 - 120

99

96

#### Client Sample ID: MW-07D Date Collected: 09/13/17 14:00 Date Received: 09/13/17 16:31

#### TestAmerica Job ID: 480-124095-1

#### Lab Sample ID: 480-124095-4 Matrix: Water

6

| Method: 8260C - Volatile Organi<br>Analyte | c Compounds by GC/MS<br>Result Qualifier | RL  |        | 11-14        |   | <b>-</b> |                |         |
|--------------------------------------------|------------------------------------------|-----|--------|--------------|---|----------|----------------|---------|
| 1,1,1-Trichloroethane                      | ND                                       |     | MDL    |              | D | Prepared | Analyzed       | DII Fac |
| 1,1,2,2-Tetrachloroethane                  | ND                                       | 1.0 | 0.82   |              |   |          | 09/23/17 02:56 | 1       |
| 1,1,2-Trichloroethane                      | ND                                       | 1.0 | 0.21   | -            |   |          | 09/23/17 02:56 | 1       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane      | ND                                       | 1.0 |        | ug/L         |   |          | 09/23/17 02:56 | 1       |
| 1,1-Dichloroethane                         | ND                                       | 1.0 | 0.31   | -            |   |          | 09/23/17 02:56 | 1       |
| 1,1-Dichloroethene                         |                                          | 1.0 | 0.38   | •            |   |          | 09/23/17 02:56 | 1       |
| 1,2,4-Trichlorobenzene                     | 0.53 J                                   | 1.0 | 0.29   | ug/L         |   |          | 09/23/17 02:56 | 1       |
| 1,2-Dibromo-3-Chloropropane                | ND                                       | 1.0 | 0.41   | -            |   |          | 09/23/17 02:56 | 1       |
| 1,2-Dibromoethane                          | ND                                       | 1.0 | 0.39   | ug/L         |   |          | 09/23/17 02:56 | 1       |
| 1,2-Dichlorobenzene                        | ND                                       | 1.0 | 0.73   | -            |   |          | 09/23/17 02:56 | 1       |
| 1,2-Dichloroethane                         | ND                                       | 1.0 | 0.79   | ug/L         |   |          | 09/23/17 02:56 | 1       |
| 1,2-Dichloropropane                        | ND                                       | 1.0 | 0.21   | -            |   |          | 09/23/17 02:56 | 1       |
| 1,3-Dichlorobenzene                        | ND                                       | 1.0 | 0.72   | 1.2          |   |          | 09/23/17 02:56 | 1       |
| 1,4-Dichlorobenzene                        | ND                                       | 1.0 |        | ug/L         |   |          | 09/23/17 02:56 | 1       |
| 2-Hexanone                                 |                                          | 1.0 | 0.84   | -            |   |          | 09/23/17 02:56 | 1       |
|                                            |                                          | 5.0 |        | ug/L         |   |          | 09/23/17 02:56 | 1       |
| 2-Butanone (MEK)                           |                                          | 10  |        | ug/L         |   |          | 09/23/17 02:56 | 1       |
| 4-Methyl-2-pentanone (MIBK)                |                                          | 5.0 |        | ug/L         |   |          | 09/23/17 02:56 | 1       |
| Acetone                                    | 4.0 J                                    | 10  |        | ug/L         |   |          | 09/23/17 02:56 | 1       |
| Benzene                                    | ND                                       | 1.0 |        | ug/L         |   |          | 09/23/17 02:56 | 1       |
| Bromodichloromethane                       | ND                                       | 1.0 | 0.39   |              |   |          | 09/23/17 02:56 | 1       |
| Bromoform                                  | ND                                       | 1.0 |        | ug/L         |   |          | 09/23/17 02:56 | 1       |
| Bromomethane                               | ND                                       | 1.0 | 0.69   | -            |   |          | 09/23/17 02:56 | 1       |
| Carbon disulfide                           | ND                                       | 1.0 |        | ug/L         |   |          | 09/23/17 02:56 | 1       |
| Carbon tetrachloride                       | ND                                       | 1.0 |        | ug/L         |   |          | 09/23/17 02:56 | 1       |
| Chlorobenzene                              | ND                                       | 1.0 |        | ug/L         |   |          | 09/23/17 02:56 | 1       |
| Dibromochloromethane                       | ND                                       | 1.0 | 0.32   | -            |   |          | 09/23/17 02:56 | 1       |
| Chloroethane                               | ND                                       | 1.0 |        | ug/L         |   |          | 09/23/17 02:56 | 1       |
| Chloroform                                 | ND                                       | 1.0 |        | ug/L         |   |          | 09/23/17 02:56 | 1       |
| Chloromethane                              | ND J                                     | 1.0 | 0,35   | -            |   |          | 09/23/17 02:56 | 1       |
| cis-1,2-Dichloroethene                     | 22                                       | 1.0 | 0.81   | ug/L         |   |          | 09/23/17 02:56 | 1       |
| cis-1,3-Dichloropropene                    | ND                                       | 1.0 |        | ug/L         |   |          | 09/23/17 02:56 | 1       |
|                                            | ND US                                    | 1.0 |        | ug/L         |   |          | 09/23/17 02:56 | 1       |
| Dichlorodifluoromethane                    | ND                                       | 1.0 | 0.68   | ug/L         |   |          | 09/23/17 02:56 | 1       |
| Ethylbenzene                               | ND                                       | 1.0 | 0.74   | ug/L         |   |          | 09/23/17 02:56 | 1       |
| Isopropylbenzene                           | ND                                       | 1.0 | 0.79   | ug/L         |   |          | 09/23/17 02:56 | 1       |
| Methyl acetate                             | ND                                       | 2.5 |        | ug/L         |   |          | 09/23/17 02:56 | 1       |
| Methyl tert-butyl ether                    | 0.18 J                                   | 1.0 | 0.16   | ug/L         |   |          | 09/23/17 02:56 | 1       |
| Methylcyclohexane                          | ND                                       | 1.0 | 0.16   | ug/L         |   |          | 09/23/17 02:56 | 1       |
| Methylene Chloride                         | ND                                       | 1.0 | 0.44   |              |   |          | 09/23/17 02:56 | 1       |
| Styrene                                    | ND                                       | 1.0 | 0.73   |              |   |          | 09/23/17 02:56 | 1       |
| Tetrachloroethene                          | ND                                       | 1.0 | 0.36   | ug/L         |   |          | 09/23/17 02:56 | 1       |
| Toluene                                    | ND                                       | 1.0 | 0.51 ( | ug/L         |   |          | 09/23/17 02:56 | 1       |
| trans-1,2-Dichloroethene                   | ND                                       | 1.0 | 0.90 ( | ug/L         |   |          | 09/23/17 02:56 | 1       |
| trans-1,3-Dichloropropene                  | ND                                       | 1.0 | 0.37 ı | ug/L         |   |          | 09/23/17 02:56 | 1       |
| Trichloroethene                            | 62                                       | 1.0 | 0.46 ı | ug/L         |   |          | 09/23/17 02:56 | 1       |
| Trichlorofluoromethane                     | ND VS                                    | 1.0 | 0.88 u | u <b>g/L</b> |   |          | 09/23/17 02:56 | 1       |
| Vinyl chloride                             | ND                                       | 1.0 | 0.90 L | ug/L         |   |          | 09/23/17 02:56 | 1       |
| Xylenes, Total                             | ND                                       | 2.0 | 0.66 L | ug/L         |   |          | 09/23/17 02:56 | 1       |
|                                            |                                          |     |        |              |   |          |                |         |

# **Client Sample Results**

Client: AECOM, Inc.

Project/Site: Griffin Diebolt

4-Bromofluorobenzene (Surr)

TestAmerica Job ID: 480-124095-1

09/23/17 02:56

6

1

| Client Sample ID: MW-07D        |             |           |          |        |       |         | Lab Sam  | ple ID: 480-12 | 4095-4   |
|---------------------------------|-------------|-----------|----------|--------|-------|---------|----------|----------------|----------|
| Date Collected: 09/13/17 14:00  |             |           |          |        |       |         |          | Matrix         | x: Water |
| Date Received: 09/13/17 16:31   |             |           |          | () (() |       |         |          |                |          |
| Tentatively Identified Compound | Est. Result | Qualifier | Unit     | D      | RŤ    | CAS No. | Prepared | Analyzed       | Dil Fac  |
| Hexanal                         | 4.4         | TJN       | ug/L     | _      | 11.12 | 66-25-1 |          | 09/23/17 02:56 | 1        |
| Surrogate                       | %Recovery   | Qualifier | Limits   |        |       |         | Prepared | Analyzed       | Dil Fac  |
| 1,2-Dichloroethane-d4 (Surr)    | 98          |           | 77 - 120 |        |       |         |          | 09/23/17 02:56 | 1        |
| Toluene-d8 (Surr)               | 94          |           | 80 - 120 |        |       |         |          | 09/23/17 02:56 | 1        |

73 - 120

#### Client Sample ID: MW-10S Date Collected: 09/13/17 10:32

Date Received: 09/13/17 16:31

| Analyte                              | Result Qualif | ier RL     | MDL          | Unit | D | Prepared | Analyzed                         | Dil Fa |
|--------------------------------------|---------------|------------|--------------|------|---|----------|----------------------------------|--------|
| ,1,1-Trichloroethane                 | ND            | 1.0        | 0.82         | ug/L |   |          | 09/23/17 03:21                   |        |
| ,1,2,2-Tetrachloroethane             | ND            | 1.0        | 0.21         | ug/L |   |          | 09/23/17 03:21                   |        |
| 1,2-Trichloroethane                  | ND            | 1.0        | 0.23         | ug/L |   |          | 09/23/17 03:21                   |        |
| ,1,2-Trichloro-1,2,2-trifluoroethane | ND            | 1.0        | 0.31         | ug/L |   |          | 09/23/17 03:21                   |        |
| ,1-Dichloroethane                    | ND            | 1.0        | 0.38         | ug/L |   |          | 09/23/17 03:21                   |        |
| ,1-Dichloroethene                    | ND            | 1.0        | 0.29         | ug/L |   |          | 09/23/17 03:21                   |        |
| ,2,4-Trichlorobenzene                | ND            | 1.0        | 0.41         | ug/L |   |          | 09/23/17 03:21                   |        |
| ,2-Dibromo-3-Chloropropane           | 0.71 J        | 1.0        | 0.39         | ug/L |   |          | 09/23/17 03:21                   |        |
| ,2-Dibromoethane                     | ND            | 1.0        | 0.73         | ug/L |   |          | 09/23/17 03:21                   |        |
| ,2-Dichlorobenzene                   | ND            | 1.0        | 0.79         | ug/L |   |          | 09/23/17 03:21                   |        |
| ,2-Dichloroethane                    | ND            | 1.0        | 0.21         | ug/L |   |          | 09/23/17 03:21                   |        |
| ,2-Dichloropropane                   | ND            | 1.0        |              | ug/L |   |          | 09/23/17 03:21                   |        |
| ,3-Dichlorobenzene                   | ND            | 1.0        | 0.78         | ug/L |   |          | 09/23/17 03:21                   |        |
| ,4-Dichlorobenzene                   | ND            | 1.0        | 0.84         | ug/L |   |          | 09/23/17 03:21                   |        |
| Нехаполе                             | ND JS         | 5.0        | 1.2          | ug/L |   |          | 09/23/17 03:21                   |        |
| Butanone (MEK)                       | ND V          | 10         | 1.2          | ug/L |   |          | 09/23/17 03:21                   |        |
| Methyl-2-pentanone (MIBK)            | ND JJ         | 5.0        | 2.1          | ug/L |   |          | 09/23/17 03:21                   |        |
|                                      | ND            | 10         | 3.0          | ug/L |   |          | 09/23/17 03:21                   |        |
| enzene                               | ND            | 1.0        |              | -    |   |          |                                  |        |
| omodichloromethane                   | ND            | 1.0        | 0.41         | ug/L |   |          | 09/23/17 03:21                   |        |
| omoform                              | ND            |            | 0.39         | -    |   |          | 09/23/17 03:21                   |        |
| pmomethane                           | ND            | 1.0        | 0.26         | -    |   |          | 09/23/17 03:21                   |        |
| arbon disulfide                      | ND            | 1.0        | 0.69         | -    |   |          | 09/23/17 03:21                   |        |
| Irbon tetrachloride                  |               | 1.0        |              | ug/L |   |          | 09/23/17 03:21                   |        |
| nlorobenzene                         | ND            | 1.0        | 0.27         | ug/L |   |          | 09/23/17 03:21                   |        |
|                                      | ND            | 1.0        | 0.75         | -    |   |          | 09/23/17 03:21                   |        |
| bromochloromethane                   | ND            | 1.0        | 0.32         |      |   |          | 09/23/17 03:21                   |        |
| loroethane                           | ND            | 1.0        | 0.32         | -    |   |          | 09/23/17 03:21                   |        |
| loroform                             | ND            | 1.0        |              | ug/L |   |          | 09/23/17 03:21                   |        |
| loromethane                          | ND US         | 1.0        | 0.35         | ug/L |   |          | 09/23/17 03:21                   |        |
| -1,2-Dichloroethene                  | ND            | 1.0        | 0.81         | ug/L |   |          | 09/23/17 03:21                   |        |
| -1,3-Dichloropropene                 | ND            | 1.0        | 0.36         | ug/L |   |          | 09/23/17 03:21                   |        |
| clohexane                            |               | 1.0        | 0.18         | ug/L |   |          | 09/23/17 03:21                   |        |
| chlorodifluoromethane                | ND            | 1.0        | 0.68         | ug/L |   |          | 09/23/17 03:21                   |        |
| ylbenzene                            | ND            | 1.0        | 0.74         | ug/L |   |          | 09/23/17 03:21                   |        |
| propylbenzene                        | ND            | 1.0        | 0.79         | ug/L |   |          | 09/23/17 03:21                   |        |
| thyl acetate                         | ND            | 2.5        | 1.3          | ug/L |   |          | 09/23/17 03:21                   |        |
| thy! tert-buty! ether                | ND            | 1.0        | 0.16         | ug/L |   |          | 09/23/17 03:21                   |        |
| thylcyclohexane                      | ND            | 1.0        | 0.16         | ug/L |   |          | 09/23/17 03:21                   |        |
| thylene Chloride                     | ND            | 1.0        | 0.44         | ug/L |   |          | 09/23/17 03:21                   |        |
| rene                                 | ND            | 1.0        | 0.73         |      |   |          | 09/23/17 03:21                   |        |
| rachloroethene                       | ND            | 1.0        | 0.36         |      |   |          | 09/23/17 03:21                   |        |
| uene                                 | ND            | 1.0        | 0.51         | -    |   |          | 09/23/17 03:21                   |        |
| ns-1,2-Dichloroethene                | ND            | 1.0        | 0.90         | -    |   |          | 09/23/17 03:21                   |        |
| Is-1,3-Dichloropropene               | ND            | 1.0        | 0.37         |      |   |          | 09/23/17 03:21                   |        |
| chloroethene                         | 2.6           | 1.0        | 0.37         | -    |   |          |                                  |        |
| hlorofluoromethane                   |               |            |              |      |   |          | 09/23/17 03:21                   |        |
| yl chloride                          |               | 1.0        | 0.88         | -    |   |          | 09/23/17 03:21                   |        |
| enes, Total                          | ND<br>ND      | 1.0<br>2.0 | 0.90<br>0.66 | -    |   |          | 09/23/17 03:21<br>09/23/17 03:21 |        |

6

### **Client Sample Results**

Client: AECOM, Inc. Project/Site: Griffin Diebolt

#### Client Sample ID: MW-10S Date Collected: 09/13/17 10:32 Date Received: 09/13/17 16:31

#### Lab Sample ID: 480-124095-5 Matrix: Water

TestAmerica Job ID: 480-124095-1

Tentatively identified Compound Est. Result Qualifier Unit D RT CAS No. Prepared Analyzed Dil Fac Tentatively Identified Compound None ug/L 09/23/17 03:21 1 Surrogate %Recovery Qualifier Limits Dil Fac Prepared Analyzed 1,2-Dichloroethane-d4 (Surr) 100 77 - 120 09/23/17 03:21 1 Toluene-d8 (Surr) 96 80 - 120 09/23/17 03:21 1 4-Bromofluorobenzene (Surr) 97 73 - 120 09/23/17 03:21 1

#### Client Sample ID: FD-20170913 Date Collected: 09/13/17 00:00

Date Received: 09/13/17 16:31

| Method: 8260C - Volatile Organic (<br>Analyte   | Result Qualifier | RL  | MDL    | Unit | D        | Prepared | Analyzed       | Dii Fa |
|-------------------------------------------------|------------------|-----|--------|------|----------|----------|----------------|--------|
| 1,1,1-Trichloroethane                           | ND               | 1.0 |        |      | <u> </u> | Frepareu | 09/23/17 03:47 |        |
| 1,1,2,2-Tetrachloroethane                       | ND               | 1.0 | 0.21   | ug/L |          |          | 09/23/17 03:47 |        |
| 1,1,2-Trichloroethane                           | ND               | 1.0 | 0.21   | ug/L |          |          | 09/23/17 03:47 |        |
| 1,1,2-Trichloro-1,2,2-trifluoroethane           | ND               | 1.0 |        | - T- |          |          |                |        |
| I,1-Dichloroethane                              | ND               | 1.0 | 0.31   | ug/L |          |          | 09/23/17 03:47 |        |
| I,1-Dichloroethene                              | ND               |     | 0.38   | -    |          |          | 09/23/17 03:47 |        |
| I,2,4-Trichlorobenzene                          |                  | 1.0 | 0.29   | ug/L |          |          | 09/23/17 03:47 |        |
|                                                 | ND               | 1.0 | 0.41   | -    |          |          | 09/23/17 03:47 |        |
| 1,2-Dibromo-3-Chloropropane<br>,2-Dibromoethane | ND               | 1.0 | 0.39   | -    |          |          | 09/23/17 03:47 |        |
|                                                 | ND               | 1.0 | 0.73   |      |          |          | 09/23/17 03:47 |        |
| ,2-Dichlorobenzene                              | ND               | 1.0 | 0.79   | ug/L |          |          | 09/23/17 03:47 |        |
|                                                 | ND               | 1.0 | 0.21   | ug/L |          |          | 09/23/17 03:47 |        |
| ,2-Dichloropropane                              | ND               | 1.0 | 0.72   | ug/L |          |          | 09/23/17 03:47 |        |
| ,3-Dichlorobenzene                              | ND               | 1.0 | 0.78   | ug/L |          |          | 09/23/17 03:47 |        |
| ,4-Dichlorobenzene                              | ND               | 1.0 | 0.84   | ug/L |          |          | 09/23/17 03:47 |        |
| -Hexanone                                       | ND 5             | 5.0 | 1.2    | ug/L |          |          | 09/23/17 03:47 |        |
| -Butanone (MEK)                                 | ND US            | 10  | 1.3    | ug/L |          |          | 09/23/17 03:47 |        |
| -Methyi-2-pentanone (MIBK)                      |                  | 5.0 | 2.1    | ug/L |          |          | 09/23/17 03:47 |        |
| cetone                                          | ND               | 10  | 3.0    | ug/L |          |          | 09/23/17 03:47 |        |
| enzene                                          | ND               | 1.0 | 0.41   | ug/L |          |          | 09/23/17 03:47 |        |
| romodichloromethane                             | ND               | 1.0 | 0.39   | ug/L |          |          | 09/23/17 03:47 |        |
| omoform                                         | ND               | 1.0 | 0.26   | ug/L |          |          | 09/23/17 03:47 |        |
| romomethane                                     | ND               | 1.0 | 0.69   | ug/L |          |          | 09/23/17 03:47 |        |
| arbon disulfide                                 | ND               | 1.0 | 0.19   | ug/L |          |          | 09/23/17 03:47 |        |
| arbon tetrachloride                             | ND               | 1.0 |        | ug/L |          |          | 09/23/17 03:47 |        |
| hlorobenzene                                    | ND               | 1.0 | 0.75   | -    |          |          | 09/23/17 03:47 |        |
| bromochloromethane                              | ND               | 1.0 |        | ug/L |          |          | 09/23/17 03:47 |        |
| hloroethane                                     | ND               | 1,0 | 0.32   | -    |          |          | 09/23/17 03:47 |        |
| hloroform                                       | ND               | 1.0 |        | ug/L |          |          | 09/23/17 03:47 |        |
| nloromethane                                    |                  | 1.0 | 0.35   | -    |          |          | 09/23/17 03:47 |        |
| -1,2-Dichloroethene                             | ND               | 1.0 |        | ug/L |          |          | 09/23/17 03:47 |        |
| -1,3-Dichloropropene                            | ND               | 1.0 | 0.36   | -    |          |          | 09/23/17 03:47 |        |
| vclohexane                                      |                  | 1.0 | 0.18   | -    |          |          | 09/23/17 03:47 | •      |
| chlorodifluoromethane                           | ND               | 1.0 |        | -    |          |          |                |        |
| hylbenzene                                      | ND               | 1.0 |        | ug/L |          |          | 09/23/17 03:47 |        |
| opropylbenzene                                  | ND               |     |        | ug/L |          |          | 09/23/17 03:47 |        |
| ethyl acetate                                   | ND               | 1.0 |        | ug/L |          |          | 09/23/17 03:47 | -      |
|                                                 |                  | 2.5 |        | ug/L |          |          | 09/23/17 03:47 | •      |
| athyl tert-butyl ether                          | ND               | 1.0 | 0.16   |      |          |          | 09/23/17 03:47 |        |
|                                                 | ND               | 1.0 | 0.16   |      |          |          | 09/23/17 03:47 | •      |
| athylene Chloride                               | ND               | 1.0 | 0.44   |      |          |          | 09/23/17 03:47 | 1      |
| rene                                            | ND               | 1.0 | 0.73   | ug/L |          |          | 09/23/17 03:47 |        |
| trachloroethene                                 | ND               | 1.0 | 0.36   | ug/L |          |          | 09/23/17 03:47 |        |
| luene                                           | ND               | 1.0 | 0.51   | ug/L |          |          | 09/23/17 03:47 | -      |
| ns-1,2-Dichloroethene                           | ND               | 1.0 | 0.90   | ug/L |          |          | 09/23/17 03:47 |        |
| ns-1,3-Dichloropropene                          | ND               | 1.0 | 0.37   | ug/L |          |          | 09/23/17 03:47 |        |
| chloroethene                                    | 2.5              | 1.0 | 0.46   | ug/L |          |          | 09/23/17 03:47 | 1      |
| chlorofluoromethane                             | ND               | 1.0 | 0.88 ( |      |          |          | 09/23/17 03:47 | 1      |
| yl chloride                                     | ND               | 1.0 | 0.90 ( | -    |          |          | 09/23/17 03:47 | 1      |
| lenes, Total                                    | ND               | 2.0 | 0.66 เ | -    |          |          | 09/23/17 03:47 | 1      |

mw-105

TestAmerica Job ID: 480-124095-1

#### Lab Sample ID: 480-124095-6 Matrix: Water

6

# **Client Sample Results**

#### Client: AECOM, Inc. Project/Site: Griffin Diebolt

#### TestAmerica Job ID: 480-124095-1

# Client Sample ID: FD-20170913 Lab Sample ID: 480-124095-6 Date Collected: 09/13/17 00:00 Matrix: Water Date Received: 09/13/17 16:31 Matrix: Water Tentatively Identified Compound Est. Result Qualifier Unit D RT CAS No. Prepared Analyzed Dil Fac

|           |                        |                                  | -                                                                                                                                   |                                                       |                                                       |                                                                                                     |                                                                                          | 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------|------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| None      |                        | ug/L                             |                                                                                                                                     |                                                       |                                                       |                                                                                                     | 09/23/17 03:47                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| %Recovery | Qualifier              | Limits                           |                                                                                                                                     |                                                       |                                                       | Prepared                                                                                            | Analyzed                                                                                 | Dil Fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 101       |                        | 77 - 120                         | 2                                                                                                                                   |                                                       |                                                       |                                                                                                     | 09/23/17 03:47                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 96        |                        | 80 - 120                         |                                                                                                                                     |                                                       |                                                       |                                                                                                     | 09/23/17 03:47                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 98        |                        | 73 - 120                         |                                                                                                                                     |                                                       |                                                       |                                                                                                     | 09/23/17 03:47                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           | %Recovery<br>101<br>96 | %Recovery Qualifier<br>101<br>96 | None         ug/L           %Recovery         Qualifier         Limits           101         77 - 120           96         80 - 120 | Noneug/L%RecoveryQualifierLimits10177 - 1209680 - 120 | Noneug/L%RecoveryQualifierLimits10177 - 1209680 - 120 | None     ug/L       %Recovery     Qualifier     Limits       101     77 - 120       96     80 - 120 | None     ug/L       %Recovery     Qualifier       101     77 - 120       96     80 - 120 | None         ug/L         Official         Implete         Implete <thimplete< th=""> <thimplete< th=""> <thimplet< td=""><td>None         ug/L         Old Milling         Milling</td></thimplet<></thimplete<></thimplete<> | None         ug/L         Old Milling         Milling |

# Client Sample ID: TRIP BLANK

Date Collected: 09/13/17 00:00 Date Received: 09/13/17 16:31

#### Lab Sample ID: 480-124095-7 Matrix: Water

6

| Method: 8260C - Volatile Organic<br>Analyte | Compounds by GC/MS<br>Result Qualifier | RL  | MDI    | Unit | D        | Prepared  | Analyzad                         | Dil Fac |
|---------------------------------------------|----------------------------------------|-----|--------|------|----------|-----------|----------------------------------|---------|
| 1,1,1-Trichloroethane                       | ND ND                                  | 1.0 | 0.82   |      | <b>-</b> | - iehaien | Analyzed<br>09/21/17 10:59       |         |
| 1,1,2,2-Tetrachloroethane                   | ND                                     | 1.0 | 0.02   | -    |          |           | 09/21/17 10:59                   |         |
| 1,1,2-Trichloroethane                       | ND                                     | 1.0 |        | ug/L |          |           | 09/21/17 10:59                   | 1       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane       | ND                                     | 1.0 |        | ug/L |          |           | 09/21/17 10:59                   | 1       |
| 1,1-Dichloroethane                          | ND                                     | 1.0 | 0.38   | ug/L |          |           |                                  | 1       |
| 1,1-Dichloroethene                          | ND                                     | 1.0 | 0.29   | ug/L |          |           | 09/21/17 10:59                   | =1      |
| 1,2,4-Trichlorobenzene                      | ND                                     | 1.0 | 0.41   | ug/L |          |           | 09/21/17 10:59                   | 1       |
| 1,2-Dibromo-3-Chloropropane                 | ND                                     | 1.0 | 0.39   | ug/L |          |           | 09/21/17 10:59<br>09/21/17 10:59 | 1       |
| 1,2-Dibromoethane                           | ND                                     | 1.0 | 0.73   | ug/L |          |           | 09/21/17 10:59                   | 1       |
| 1,2-Dichlorobenzene                         | ND                                     | 1.0 | 0.79   | ug/L |          |           | 09/21/17 10:59                   | 1       |
| 1,2-Dichloroethane                          | ND                                     | 1.0 | 0.21   | -    |          |           | 09/21/17 10:59                   | 1       |
| 1,2-Dichloropropane                         | ND                                     | 1.0 | 0.72   | -    |          |           | 09/21/17 10:59                   | 1       |
| 1,3-Dichlorobenzene                         | ND                                     | 1.0 |        | ug/L |          |           | 09/21/17 10:59                   | 1       |
| 1,4-Dichlorobenzene                         | ND                                     | 1.0 |        | ug/L |          |           | 09/21/17 10:59                   | 1       |
| 2-Hexanone                                  | ND                                     | 5.0 |        | ug/L |          |           | 09/21/17 10:59                   | 1       |
| 2-Butanone (MEK)                            | ND                                     | 10  |        | ug/L |          |           | 09/21/17 10:59                   | 1       |
| 4-Methyl-2-pentanone (MIBK)                 | ND                                     | 5.0 |        | ug/L |          |           | 09/21/17 10:59                   | 1       |
| Acetone                                     | ND                                     | 10  |        | ug/L |          |           | 09/21/17 10:59                   | 1       |
| Benzene                                     | ND                                     | 1.0 | 0.41   |      |          |           | 09/21/17 10:59                   | 1       |
| Bromodichloromethane                        | ND                                     | 1.0 |        | ug/L |          |           | 09/21/17 10:59                   | 1       |
| Bromoform                                   | ND                                     | 1.0 | 0.26   | -    |          |           | 09/21/17 10:59                   | 1       |
| Bromomethane                                | ND                                     | 1.0 |        | ug/L |          |           | 09/21/17 10:59                   | 1       |
| Carbon disulfide                            | ND                                     | 1.0 |        | ug/L |          |           | 09/21/17 10:59                   | 1       |
| Carbon tetrachloride                        | ND                                     | 1.0 |        | ug/L |          |           | 09/21/17 10:59                   | 1       |
| Chlorobenzene                               | ND                                     | 1.0 | 0.75   |      |          |           | 09/21/17 10:59                   | 1       |
| Dibromochloromethane                        | ND                                     | 1.0 | 0.32   |      |          |           | 09/21/17 10:59                   | 1       |
| Chloroethane                                | ND                                     | 1.0 | 0.32   |      |          |           | 09/21/17 10:59                   | 1       |
| Chloroform                                  | ND                                     | 1.0 | 0.34   | -    |          |           | 09/21/17 10:59                   | 1       |
| Chloromethane                               | ND                                     | 1.0 |        | ug/L |          |           | 09/21/17 10:59                   | 1       |
| cis-1,2-Dichloroethene                      | ND                                     | 1.0 | 0.81   | -    |          |           | 09/21/17 10:59                   | 1       |
| cis-1,3-Dichloropropene                     | ND                                     | 1.0 | 0.36   | -    |          |           | 09/21/17 10:59                   | 1       |
| Cyclohexane                                 | ND                                     | 1.0 | 0.18   | -    |          |           | 09/21/17 10:59                   | 1       |
| Dichlorodifluoromethane                     | ND                                     | 1.0 | 0.68   | -    |          |           | 09/21/17 10:59                   | 1       |
| Ethylbenzene                                | ND                                     | 1.0 | 0.74   | -    |          |           | 09/21/17 10:59                   | 1       |
| sopropylbenzene                             | ND                                     | 1.0 | 0.79   | -    |          |           | 09/21/17 10:59                   | 1       |
| Methyl acetate                              | ND                                     | 2.5 | 1.3    | -    |          |           | 09/21/17 10:59                   | 1       |
| Methyi tert-butyi ether                     | ND                                     | 1.0 | 0.16   |      |          |           | 09/21/17 10:59                   | 1       |
| Methylcyclohexane                           | ND                                     | 1.0 | 0.16   | -    |          |           | 09/21/17 10:59                   | 1       |
| Methylene Chloride                          | ND                                     | 1.0 | 0.44   |      |          |           | 09/21/17 10:59                   | 1       |
| Styrene                                     | ND                                     | 1.0 | 0.73   |      |          |           | 09/21/17 10:59                   | 1       |
| etrachloroethene                            | ND                                     | 1.0 | 0.36 1 |      |          |           | 09/21/17 10:59                   |         |
| oluene                                      | ND                                     | 1.0 | 0.50 i | -    |          |           | 09/21/17 10:59                   | 1       |
| rans-1,2-Dichloroethene                     | ND                                     | 1.0 | 0.90 i |      |          |           | 09/21/17 10:59                   | 1       |
| rans-1,3-Dichloropropene                    | ND                                     | 1.0 | 0.30 l | -    |          |           |                                  | 1       |
| richloroethene                              | ND                                     | 1.0 | 0.46 L |      |          |           | 09/21/17 10:59                   | 1       |
| richlorofluoromethane                       | ND                                     | 1.0 | 0.88 L |      |          |           | 09/21/17 10:59                   | 1       |
| inyl chloride                               | ND                                     | 1.0 | 0.80 L | -    |          |           | 09/21/17 10:59                   | 1       |
| ylenes, Total                               | ND                                     |     |        | -    |          |           | 09/21/17 10:59                   | 1       |
|                                             |                                        | 2.0 | 0.66 L | 19/L |          |           | 09/21/17 10:59                   | 1       |

# **Client Sample Results**

TestAmerica Job ID: 480-124095-1

# Client Sample ID: TRIP BLANK

Date Collected: 09/13/17 00:00 Date Received: 09/13/17 16:31

Client: AECOM, Inc.

Project/Site: Griffin Diebolt

#### Lab Sample ID: 480-124095-7 Matrix: Water

6

| Tentatively Identified Compound | Est. Result | Qualifier | Unit     | D | RT | CAS No. | Prepared | Analyzed       | Dil Fac |
|---------------------------------|-------------|-----------|----------|---|----|---------|----------|----------------|---------|
| Tentatively Identified Compound | None        |           | ug/L     |   |    |         |          | 09/21/17 10:59 | 1       |
| Surrogate                       | %Recovery   | Qualifier | Limits   |   |    |         | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr)    | . 91        |           | 77 - 120 |   |    |         |          | 09/21/17 10:59 | 1       |
| Toluene-d8 (Surr)               | 91          |           | 80 - 120 |   |    |         |          | 09/21/17 10:59 | 1       |
| 4-Bromofluorobenzene (Surr)     | 86          |           | 73 - 120 |   |    |         |          | 09/21/17 10:59 | 1       |

## Surrogate Summary

Client: AECOM, Inc. Project/Site: Griffin Diebolt

#### Method: 8260C - Volatile Organic Compounds by GC/MS

| Matrix: | Water         |
|---------|---------------|
| maula.  | <b>FRACCI</b> |

Prep Type: Total/NA

7

|                  |                    |          |          | Percent Surrogate Recove | ery (Acceptance Limits) |
|------------------|--------------------|----------|----------|--------------------------|-------------------------|
|                  |                    | 12DCE    | TOL      | BFB                      |                         |
| Lab Sample ID    | Client Sample ID   | (77-120) | (80-120) | (73-120)                 |                         |
| 480-124095-1     | MW-06S             | 100      | 97       | 97                       |                         |
| 480-124095-2     | MW-06D             | 101      | 97       | 98                       |                         |
| 480-124095-3     | MW-07S             | 99       | 96       | 96                       |                         |
| 480-124095-4     | MW-07D             | 98       | 94       | 96                       |                         |
| 480-124095-5     | MW-10S             | 100      | 96       | 97                       |                         |
| 480-124095-6     | FD-20170913        | 101      | 96       | 98                       |                         |
| 480-124095-7     | TRIP BLANK         | 91       | 91       | 86                       |                         |
| LCS 480-377961/4 | Lab Control Sample | 89       | 93       | 90                       |                         |
| LCS 480-378347/4 | Lab Control Sample | 100      | 97       | 97                       |                         |
| MB 480-377961/6  | Method Blank       | 94       | 90       | 86                       |                         |
| MB 480-378347/6  | Method Blank       | 102      | 97       | 98                       |                         |

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

#### TestAmerica Job ID: 480-124095-1

8

#### Method: 8260C - Volatile Organic Compounds by GC/MS

| ab Sample ID: MB 480-377961/6<br>fatrix: Water |        |           |     |      |      |   | Client 5 | ample ID: Metho<br>Prep Type: 1 |        |
|------------------------------------------------|--------|-----------|-----|------|------|---|----------|---------------------------------|--------|
| nalysis Batch: 377961                          |        |           |     |      |      |   |          | гіер туре: і                    | JUGHIN |
|                                                | MB     | МВ        |     |      |      |   |          |                                 |        |
| nalyte                                         | Result | Qualifier | RL  | MDL  | Unit | D | Prepared | Analyzed                        | Dil Fa |
| 1,1-Trichloroethane                            | ND     |           | 1.0 | 0.82 | ug/L |   |          | 09/21/17 10:13                  |        |
| 1,2,2-Tetrachioroethane                        | ND     |           | 1.0 | 0.21 | ug/L |   |          | 09/21/17 10:13                  |        |
| 1,2-Trichloroethane                            | ND     |           | 1.0 | 0.23 | ug/L |   |          | 09/21/17 10:13                  |        |
| 1,2-Trichloro-1,2,2-trifluoroethane            | ND     |           | 1.0 | 0.31 | ug/L |   |          | 09/21/17 10:13                  |        |
| 1-Dichloroethane                               | ND     |           | 1.0 | 0.38 | ug/L |   |          | 09/21/17 10:13                  |        |
| 1-Dichloroethene                               | ND     |           | 1.0 | 0.29 | ug/L |   |          | 09/21/17 10:13                  |        |
| 2,4-Trichlorobenzene                           | ND     |           | 1.0 | 0.41 | ug/L |   |          | 09/21/17 10:13                  |        |
| 2-Dibromo-3-Chloropropane                      | ND     |           | 1.0 | 0.39 | ug/L |   |          | 09/21/17 10:13                  |        |
| 2-Dibromoethane                                | ND     |           | 1.0 | 0.73 | ug/L |   |          | 09/21/17 10:13                  |        |
| 2-Dichlorobenzene                              | ND     |           | 1.0 | 0.79 | ug/L |   |          | 09/21/17 10:13                  |        |
| 2-Dichloroethane                               | ND     |           | 1.0 | 0.21 | ug/L |   |          | 09/21/17 10:13                  |        |
| 2-Dichloropropane                              | ND     |           | 1.0 |      | ug/L |   |          | 09/21/17 10:13                  |        |
| 3-Dichlorobenzene                              | ND     |           | 1.0 |      | ug/L |   |          | 09/21/17 10:13                  |        |
| 4-Dichlorobenzene                              | ND     |           | 1.0 | 0.84 |      |   |          | 09/21/17 10:13                  |        |
| Hexanone                                       | ND     |           | 5.0 |      | ug/L |   |          | 09/21/17 10:13                  |        |
| Butanone (MEK)                                 | ND     |           | 10  |      | ug/L |   |          | 09/21/17 10:13                  |        |
| Methyl-2-pentanone (MIBK)                      | ND     |           | 5.0 |      | ug/L |   |          | 09/21/17 10:13                  |        |
| cetone                                         | ND     |           | 10  |      | ug/L |   |          | 09/21/17 10:13                  |        |
| enzene                                         | ND     |           | 1.0 |      | ug/L |   |          | 09/21/17 10:13                  |        |
| omodichloromethane                             | ND     |           | 1.0 |      | ug/L |   |          | 09/21/17 10:13                  |        |
| omoform                                        | ND     |           | 1.0 |      | ug/L |   |          | 09/21/17 10:13                  |        |
| omomethane                                     | ND     |           | 1.0 |      | ug/L |   |          | 09/21/17 10:13                  |        |
| arbon disulfide                                | ND     |           | 1.0 | 0.19 |      |   |          | 09/21/17 10:13                  |        |
| arbon tetrachloride                            | ND     |           | 1.0 | 0.27 |      |   |          | 09/21/17 10:13                  |        |
| lorobenzene                                    | ND     |           | 1.0 | 0.75 | =    |   |          | 09/21/17 10:13                  |        |
| bromochloromethane                             | ND     |           | 1.0 | 0.32 | -    |   |          | 09/21/17 10:13                  |        |
| loroethane                                     | ND     |           | 1.0 | 0.32 | -    |   |          | 09/21/17 10:13                  |        |
| loroform                                       | ND     |           | 1.0 | 0.34 | -    |   |          | 09/21/17 10:13                  |        |
| loromethane                                    | ND     |           | 1.0 | 0.35 | -    |   |          | 09/21/17 10:13                  |        |
| -1,2-Dichloroethene                            | ND     |           | 1.0 |      | ug/L |   |          | 09/21/17 10:13                  |        |
| -1,3-Dichloropropene                           | ND     |           | 1.0 | 0.36 | -    |   |          |                                 |        |
| clohexane                                      | ND     |           | 1.0 | 0.18 | -    |   |          | 09/21/17 10:13                  |        |
| chlorodifluoromethane                          | ND     |           | 1.0 | 0.68 | =    |   |          | 09/21/17 10:13                  |        |
| nylbenzene                                     | ND     |           | 1.0 | 0.74 | -    |   |          | 09/21/17 10:13                  |        |
| propylbenzene                                  | ND     |           | 1.0 | 0.79 | -    |   |          | 09/21/17 10:13                  |        |
| thylacetate                                    | ND     |           |     |      |      |   |          | 09/21/17 10:13                  |        |
| thy itert-butyl ether                          | ND     |           | 2.5 | 1.3  |      |   |          | 09/21/17 10:13                  |        |
| thylcyclohexane                                |        |           | 1.0 | 0.16 |      |   |          | 09/21/17 10:13                  | •      |
| thylene Chloride                               | ND     |           | 1.0 | 0.16 |      |   |          | 09/21/17 10:13                  |        |
|                                                | ND     |           | 1.0 | 0.44 |      |   |          | 09/21/17 10:13                  |        |
| rrene<br>Imablemethere                         | ND     |           | 1.0 | 0.73 |      |   |          | 09/21/17 10:13                  |        |
| trachloroethene<br>uene                        | ND     |           | 1.0 | 0.36 | -    |   |          | 09/21/17 10:13                  | 1      |
|                                                | ND     |           | 1.0 | 0.51 | -    |   |          | 09/21/17 10:13                  |        |
| 18-1,2-Dichloroethene                          | ND     |           | 1.0 | 0.90 | -    |   |          | 09/21/17 10:13                  | 1      |
| ns-1,3-Dichloropropene                         | ND     |           | 1.0 | 0.37 |      |   |          | 09/21/17 10:13                  |        |
|                                                | ND     |           | 1.0 | 0.46 |      |   |          | 09/21/17 10:13                  | 1      |
| chlorofluoromethane                            | ND     |           | 1.0 | 0.88 |      |   |          | 09/21/17 10:13                  | 1      |
| yl chloride                                    | ND     |           | 1.0 | 0.90 | ug/L |   |          | 09/21/17 10:13                  | 1      |

# **QC Sample Results**

#### Client: AECOM, Inc. Project/Site: Griffin Diebolt

TestAmerica Job ID: 480-124095-1

8

| Tentatively Identified Compound           | Est. Result | Qualifier | Unit         | D                        | RT        | CAS No.      | Prepared     | Analyzed             | Dil Fa |
|-------------------------------------------|-------------|-----------|--------------|--------------------------|-----------|--------------|--------------|----------------------|--------|
| Tentatively Identified Compound           | None        |           | ug/L         | -                        |           |              |              | 09/21/17 10:13       |        |
|                                           | МВ          | мв        |              |                          |           |              |              |                      |        |
| Surrogate                                 | %Recovery   | Qualifier | Limits       |                          |           |              | Prepared     | Analyzed             | Dil Fa |
| 1,2-Dichloroethane-d4 (Surr)              | 94          |           | 77 - 120     |                          |           |              |              | 09/21/17 10:13       |        |
| Toluene-d8 (Surr)                         | 90          |           | 80 - 120     |                          |           |              |              | 09/21/17 10:13       |        |
| 4-Bromofluorobenzene (Surr)               | 86          |           | 73 - 120     |                          |           |              |              | 09/21/17 10:13       |        |
| Lab Sample ID: LCS 480-377961/4           |             |           |              |                          |           | c            | lient Sample | iD: Lab Control      | Sampl  |
| Matrix: Water                             |             |           |              |                          |           |              |              | Prep Type: 1         | otal/N |
| Analysis Batch: 377961                    |             |           |              |                          |           |              |              |                      |        |
| Analuta                                   |             |           | Spike        |                          | LCS       | 11-14        |              | %Rec.                |        |
| Analyte<br>1,1,1-Trichloroethane          |             |           | Added        |                          | Qualifier | Unit         | D %Rec       | Limits               |        |
|                                           |             |           | 25.0         | 23.5                     |           | ug/L         | 94           | 73 - 126             |        |
| 1,1,2,2-Tetrachloroethane                 |             |           | 25.0         | 24.0                     |           | ug/L         | 96           | 76 - 120             |        |
| 1,1,2-Trichloroethane                     |             |           | 25.0         | 24.2                     |           | ug/L         | 97           | 76 - 122             |        |
| 1,1,2-Trichloro-1,2,2-trifluoroetha<br>ne |             |           | 25.0         | 24.0                     |           | ug/L         | 96           | 61 - 148             |        |
| 1,1-Dichloroethane                        |             |           | 25.0         | 24.1                     |           | ug/L         | 96           | 77 - 120             |        |
| 1,1-Dichloroethene                        |             |           | 25.0         | 23.5                     |           | ug/L         | 94           | 66 - 127             |        |
| 1,2,4-Trichlorobenzene                    |             |           | 25.0         | 24.0                     |           | ug/L         | 96           | 79 - 122             |        |
| 1,2-Dibromo-3-Chloropropane               |             |           | 25.0         | 23.8                     |           | ug/L         | 95           | 56 - 134             |        |
| 1,2-Dibromoethane                         |             |           | 25.0         | 23.2                     |           | ug/L         | 93           | 77 - 120             |        |
| 1,2-Dichlorobenzene                       |             |           | 25.0         | 24.3                     |           | ug/L         | 97           | 80 - 124             |        |
| 1,2-Dichloroethane                        |             |           | 25.0         | 22.6                     |           | ug/L         | 90           | 75 - 120             |        |
| 1,2-Dichloropropane                       |             |           | 25.0         | 24.1                     |           | ug/L         | 97           | 76 - 120             |        |
| 1,3-Dichlorobenzene                       |             |           | 25.0         | 24.5                     |           | ug/L         | 98           | 77 - 120             |        |
| 1,4-Dichlorobenzene                       |             |           | 25.0         | 24.3                     |           | ug/L         | 97           | 80 - 120             |        |
| 2-Hexanone                                |             |           | 125          | 129                      |           | ug/L         | 103          | 65 - 127             |        |
| 2-Butanone (MEK)                          |             |           | 125          | 126                      |           | ug/L         | 100          | 57 - 140             |        |
| -Methyl-2-pentanone (MIBK)                |             |           | 125          | 124                      |           | ug/L         | 99           | 71 - 125             |        |
| Acetone                                   |             |           | 125          | 122                      |           | ug/L         | 98           | 56 - 142             |        |
| Benzene                                   |             |           | 25.0         | 24.3                     |           | ug/L         | 97           | 71 - 124             |        |
| Bromodichloromethane                      |             |           | 25.0         | 23.3                     |           | ug/L         | 93           | 80 . 122             |        |
| Bromoform                                 |             |           | 25.0         | 24.5                     |           | ug/L         | 98           | 61 - 132             |        |
| Bromomethane                              |             |           | 25.0         | 22.8                     |           | ug/L         | 91           | 55 - 144             |        |
| Carbon disulfide                          |             |           | 25.0         | 22.2                     |           | ug/L         | 89           | 59 - 134             |        |
| Carbon tetrachloride                      |             |           | 25.0         | 24.9                     |           | ug/L         | 100          | 72 - 134             |        |
| Chlorobenzene                             |             |           | 25.0         | 24.3                     |           | ug/L         | 97           | 80 - 120             |        |
| Dibromochloromethane                      |             |           | 25.0         | 25.5                     |           | ug/L         | 102          | 75 - 125             |        |
| Chloroethane                              |             |           | 25.0         | 26.6                     |           | ug/L         | 102          | 69 - 136             |        |
| Chloroform                                |             |           | 25.0         | 23.1                     |           | ug/L         | 92           | 73 - 127             |        |
| Chloromethane                             |             |           | 25.0         | 26.9                     |           | ug/L         | 107          | 68 - 124             |        |
| is-1,2-Dichloroethene                     |             |           | 25.0         | 23.4                     |           | ug/L         | 93           | 74 - 124             |        |
| is-1,3-Dichloropropene                    |             |           | 25.0         | 23.8                     |           | ug/L         | 95           | 74 - 124             |        |
| Cyclohexane                               |             |           | 25.0         | 26.8                     |           |              |              |                      |        |
| Dichlorodifluoromethane                   | 9           |           | 25.0         | 20.0<br>27.5             |           | ug/L<br>ug/L | 107<br>110   | 59 - 135<br>59 - 135 |        |
| thylbenzene                               |             |           | 25.0         | 24.9                     |           | ug/L         | 100          | 59 - 135<br>77 123   |        |
| sopropylbenzene                           |             |           | 25.0         | 24. <del>3</del><br>24.2 |           |              | 97           | 77 - 123<br>77 - 122 |        |
| lethyl acetate                            |             |           | 125          | 24.2<br>118              |           | ug/L         | 97<br>94     | 77 - 122<br>74 133   |        |
| lethyl tert-butyl ether                   |             |           | 25.0         | 22.7                     |           | ug/L<br>ug/l | 94<br>91     | 74 - 133<br>77 120   |        |
| lethylcyclohexane                         |             |           | 25.0         | 25.9                     |           | ug/L<br>ug/l | 104          | 77 - 120<br>68 134   |        |
| lethylene Chloride                        |             |           | 25.0<br>25.0 | 25.9<br>22.6             |           | ug/L<br>ug/l |              | 68 - 134<br>75 134   |        |
| tyrene                                    |             |           | 25.0<br>25.0 | <b>22</b> .0             |           | ug/L         | 90           | 75 - 124             |        |

8

#### Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

|                                 |       |        |           |      |        |          |            | and the second second second second |
|---------------------------------|-------|--------|-----------|------|--------|----------|------------|-------------------------------------|
| Lab Sample ID: LCS 480-377961/4 |       |        |           |      | Client | t Sample | D: Lab Cor | ntrol Sample                        |
| Matrix: Water                   |       |        |           |      |        | •        |            | pe: Total/NA                        |
| Analysis Batch: 377961          |       |        |           |      |        |          |            |                                     |
|                                 | Spike | LCS    | LCS       |      |        |          | %Rec.      |                                     |
| Analyte                         | Added | Result | Qualifier | Unit | D      | %Rec     | Limits     |                                     |
| Tetrachloroethene               | 25.0  | 25.7   |           | ug/L |        | 103      | 74 - 122   |                                     |
| Toluene                         | 25.0  | 24.7   |           | ug/L |        | 99       | 80 - 122   |                                     |
| trans-1,2-Dichloroethene        | 25.0  | 24.1   |           | ug/L |        | 97       | 73 - 127   |                                     |
| trans-1,3-Dichloropropene       | 25.0  | 25.3   |           | ug/L |        | 101      | 80 - 120   |                                     |
| Trichloroethene                 | 25.0  | 23.5   |           | ug/L |        | 94       | 74 - 123   |                                     |

26.0

27.5

ug/L

ug/L

104

110

62 - 150

65 - 133

**Client Sample ID: Method Blank** 

Prep Type: Total/NA

25.0

25.0

|                              | LCS       | LCS       |          |
|------------------------------|-----------|-----------|----------|
| Surrogate                    | %Recovery | Qualifier | Limits   |
| 1,2-Dichloroethane-d4 (Surr) | 89        |           | 77 - 120 |
| Toluene-d8 (Surr)            | 93        |           | 80 - 120 |
| 4-Bromofluorobenzene (Surr)  | 90        |           | 73 - 120 |

#### Lab Sample ID: MB 480-378347/6

Matrix: Water Analysis Batch: 378347

Chloroform

Chloromethane

cis-1,2-Dichloroethene

Trichlorofluoromethane

Vinyl chloride

MB MB Analyte Qualifier RL MDL Unit Result D Prepared Analyzed **DII Fac** 1,1,1-Trichloroethane ND 1.0 0.82 ug/L 09/22/17 22:24 1 1.1.2.2-Tetrachloroethane ND 1.0 0.21 ug/L 09/22/17 22:24 1 1,1,2-Trichloroethane ND 1.0 0.23 ug/L 09/22/17 22:24 1 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.31 ug/L 1.0 09/22/17 22:24 1 1,1-Dichloroethane ND 1.0 0.38 ug/L 09/22/17 22:24 1 1.1-Dichloroethene ND 1.0 0.29 ug/L 09/22/17 22:24 1 1,2,4-Trichlorobenzene ND 1.0 0.41 ug/L 09/22/17 22:24 1 1,2-Dibromo-3-Chloropropane ND 1.0 0 39 ug/L 09/22/17 22:24 1 1,2-Dibromoethane ND 1.0 0.73 ug/L 09/22/17 22:24 1 1.2-Dichlorobenzene ND 1.0 0.79 ug/L 09/22/17 22:24 1 1,2-Dichloroethane ND 1.0 0.21 ug/L 09/22/17 22:24 1 1,2-Dichloropropane ND 1.0 0.72 ug/L 09/22/17 22:24 1 1,3-Dichlorobenzene ND 1.0 0.78 ug/L 09/22/17 22:24 1 1.4-Dichlorobenzene ND 1.0 0.84 ug/L 09/22/17 22:24 1 2-Hexanone ND 5.0 1.2 ug/L 09/22/17 22:24 1 2-Butanone (MEK) ND 10 09/22/17 22:24 1.3 ug/L 1 4-Methyl-2-pentanone (MIBK) ND 5.0 2.1 ug/L 09/22/17 22:24 1 Acetone ND 10 3.0 ug/L 09/22/17 22:24 1 Benzene ND 1.0 0.41 ug/L 09/22/17 22:24 1 Bromodichloromethane ND 1.0 0.39 ug/L 09/22/17 22:24 1 Bromoform ND 1.0 0.26 ug/L 09/22/17 22:24 1 Bromomethane ND 1.0 0.69 ug/L 09/22/17 22:24 1 Carbon disulfide 0.221 J 1.0 0.19 ug/L 09/22/17 22:24 1 Carbon tetrachloride ND 1.0 0.27 ug/L 09/22/17 22:24 1 Chlorobenzene ND 1.0 0.75 ug/L 09/22/17 22:24 1 Dibromochloromethane ND 1.0 0.32 ug/L 09/22/17 22:24 1 Chloroethane ND 1.0 0.32 ug/L 09/22/17 22:24 1

1.0

1.0

1.0

Page 23 of 33

0.34 ug/L

0.35 ug/L

0.81 ug/L

ND

ND

ND

TestAmerica Buffalo

09/22/17 22:24

09/22/17 22:24

09/22/17 22:24

1

1

8

### Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

| Matrix: Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |                                                                                                        |                                                                                                        |      |      |                                                                      |       | Client                                                                               | Sample ID: Metho<br>Prep Type: 1                                                                                                                                                                                             |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------|------|----------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Analysis Batch: 378347                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |           |                                                                                                        |                                                                                                        |      |      |                                                                      |       |                                                                                      |                                                                                                                                                                                                                              |        |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MB          | MB        |                                                                                                        |                                                                                                        |      |      |                                                                      |       |                                                                                      |                                                                                                                                                                                                                              |        |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Result      | Qualifier | RL                                                                                                     |                                                                                                        | MDL  | Unit |                                                                      | )     | Prepared                                                                             | Analyzed                                                                                                                                                                                                                     | Dii Fa |
| cis-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND          |           | 1.0                                                                                                    |                                                                                                        | 0.36 | ug/L |                                                                      |       |                                                                                      | 09/22/17 22:24                                                                                                                                                                                                               |        |
| Cydohexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND          |           | 1.0                                                                                                    |                                                                                                        | 0.18 | ug/L |                                                                      |       |                                                                                      | 09/22/17 22:24                                                                                                                                                                                                               |        |
| Dichlorodifluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND          |           | 1.0                                                                                                    |                                                                                                        | 0.68 | ug/L |                                                                      |       |                                                                                      | 09/22/17 22:24                                                                                                                                                                                                               |        |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND          |           | 1.0                                                                                                    |                                                                                                        | 0.74 | ug/L |                                                                      |       |                                                                                      | 09/22/17 22:24                                                                                                                                                                                                               |        |
| sopropylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND          |           | 1.0                                                                                                    |                                                                                                        | 0.79 | ug/L |                                                                      |       |                                                                                      | 09/22/17 22:24                                                                                                                                                                                                               |        |
| Nethyl acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND          |           | 2.5                                                                                                    |                                                                                                        | 1.3  | ug/L |                                                                      |       |                                                                                      | 09/22/17 22:24                                                                                                                                                                                                               |        |
| Nethyl tert-butyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND          |           | 1.0                                                                                                    |                                                                                                        | 0.16 | ug/L |                                                                      |       |                                                                                      | 09/22/17 22:24                                                                                                                                                                                                               |        |
| fethylcyclohexane                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND          |           | 1.0                                                                                                    |                                                                                                        | 0.16 | ug/L |                                                                      |       |                                                                                      | 09/22/17 22:24                                                                                                                                                                                                               |        |
| fethylene Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND          |           | 1.0                                                                                                    |                                                                                                        | 0.44 | ug/L |                                                                      |       |                                                                                      | 09/22/17 22:24                                                                                                                                                                                                               |        |
| Styrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND          |           | 1.0                                                                                                    |                                                                                                        | 0.73 | ug/L |                                                                      |       |                                                                                      | 09/22/17 22:24                                                                                                                                                                                                               |        |
| etrachloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND          |           | 1.0                                                                                                    |                                                                                                        | 0.36 | ug/L |                                                                      |       |                                                                                      | 09/22/17 22:24                                                                                                                                                                                                               |        |
| oluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND          |           | 1.0                                                                                                    |                                                                                                        | 0.51 | -    |                                                                      |       |                                                                                      | 09/22/17 22:24                                                                                                                                                                                                               |        |
| rans-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND          |           | 1.0                                                                                                    |                                                                                                        | 0.90 | -    |                                                                      |       |                                                                                      | 09/22/17 22:24                                                                                                                                                                                                               |        |
| ans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND          |           | 1.0                                                                                                    |                                                                                                        | 0.37 |      |                                                                      |       |                                                                                      | 09/22/17 22:24                                                                                                                                                                                                               |        |
| richloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND          |           | 1.0                                                                                                    |                                                                                                        | 0.46 | -    |                                                                      |       |                                                                                      | 09/22/17 22:24                                                                                                                                                                                                               |        |
| richlorofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND          |           | 1.0                                                                                                    |                                                                                                        | 0.88 | -    |                                                                      |       |                                                                                      | 09/22/17 22:24                                                                                                                                                                                                               |        |
| inyl chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND          |           | 1.0                                                                                                    |                                                                                                        | 0.90 | -    |                                                                      |       |                                                                                      | 09/22/17 22:24                                                                                                                                                                                                               |        |
| iylenes, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND          |           | 2.0                                                                                                    |                                                                                                        | 0.66 | -    |                                                                      |       |                                                                                      | 09/22/17 22:24                                                                                                                                                                                                               |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |           | 2.0                                                                                                    |                                                                                                        | 0.00 | ug/L |                                                                      |       |                                                                                      | 00/22/1/ 22.24                                                                                                                                                                                                               |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MB          | MB        |                                                                                                        |                                                                                                        |      |      |                                                                      |       |                                                                                      |                                                                                                                                                                                                                              |        |
| entatively identified Compound                                                                                                                                                                                                                                                                                                                                                                                                                                               | Est. Result | Qualifier | Unit                                                                                                   | D                                                                                                      |      | RT   | CAS No.                                                              |       | Prepared                                                                             | Analyzed                                                                                                                                                                                                                     | Dil Fa |
| entatively Identified Compound                                                                                                                                                                                                                                                                                                                                                                                                                                               | None        |           | ug/L                                                                                                   |                                                                                                        |      |      |                                                                      |       |                                                                                      | 09/22/17 22:24                                                                                                                                                                                                               |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MB          | МВ        |                                                                                                        |                                                                                                        |      |      |                                                                      |       |                                                                                      |                                                                                                                                                                                                                              |        |
| urrogate                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | %Recovery   | Qualifier | Limits                                                                                                 |                                                                                                        |      |      |                                                                      |       | Prepared                                                                             | Analyzed                                                                                                                                                                                                                     | Dil Fa |
| 2-Dichloroethane-d4 (Surr)                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 102         |           |                                                                                                        |                                                                                                        |      |      |                                                                      |       | •                                                                                    | -                                                                                                                                                                                                                            |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 102         |           | 77 - 120                                                                                               |                                                                                                        |      |      |                                                                      |       |                                                                                      | 09/22/17 22:24                                                                                                                                                                                                               |        |
| oluene-d8 (Surr)                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 97          |           | 77 <sub>-</sub> 120<br>80 - 120                                                                        |                                                                                                        |      |      |                                                                      |       |                                                                                      |                                                                                                                                                                                                                              |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |           |                                                                                                        |                                                                                                        |      |      |                                                                      |       |                                                                                      | 09/22/17 22:24<br>09/22/17 22:24<br>09/22/17 22:24                                                                                                                                                                           |        |
| oluene-d8 (Surr)<br>Bromofluorobenzene (Surr)                                                                                                                                                                                                                                                                                                                                                                                                                                | 97          |           | 80 - 120                                                                                               |                                                                                                        |      |      |                                                                      | Clien | t Sample                                                                             | 09/22/17 22:24<br>09/22/17 22:24                                                                                                                                                                                             | Sampl  |
| oluene-d8 (Surr)<br>Bromofluorobenzene (Surr)<br>ab Sample ID: LCS 480-378347/4                                                                                                                                                                                                                                                                                                                                                                                              | 97          |           | 80 - 120                                                                                               |                                                                                                        |      |      |                                                                      | Clien | t Sample                                                                             | 09/22/17 22:24<br>09/22/17 22:24<br>e ID: Lab Control                                                                                                                                                                        | -      |
| oluene-d8 (Surr)<br>Bromofluorobenzene (Surr)<br>ab Sample ID: LCS 480-378347/4<br>latrix: Water                                                                                                                                                                                                                                                                                                                                                                             | 97          |           | 80 - 120                                                                                               |                                                                                                        |      |      |                                                                      | Clien | t Sample                                                                             | 09/22/17 22:24<br>09/22/17 22:24                                                                                                                                                                                             | Sampl  |
| oluene-d8 (Surr)<br>Bromofluorobenzene (Surr)<br>ab Sample ID: LCS 480-378347/4                                                                                                                                                                                                                                                                                                                                                                                              | 97          |           | 80 - 120<br>73 - 120                                                                                   | LCS                                                                                                    | LCS  |      |                                                                      | Clien | t Sample                                                                             | 09/22/17 22:24<br>09/22/17 22:24<br>e ID: Lab Control<br>Prep Type: 1                                                                                                                                                        | Sampl  |
| oluene-d8 (Surr)<br>Bromofluorobenzene (Surr)<br>ab Sample ID: LCS 480-378347/4<br>latrix: Water<br>nalysis Batch: 378347                                                                                                                                                                                                                                                                                                                                                    | 97          |           | 80 - 120<br>73 - 120<br>Spike                                                                          |                                                                                                        |      | fier |                                                                      |       |                                                                                      | 09/22/17 22:24<br>09/22/17 22:24<br>e ID: Lab Control<br>Prep Type: 1<br>%Rec.                                                                                                                                               | Sampl  |
| oluene-d8 (Surr)<br>Bromofluorobenzene (Surr)<br>ab Sample ID: LCS 480-378347/4<br>latrix: Water<br>nalysis Batch: 378347<br>nalyte                                                                                                                                                                                                                                                                                                                                          | 97          |           | 80 - 120<br>73 - 120<br>Spike<br>Added                                                                 | Result                                                                                                 |      | fier | Unit                                                                 | Clien | %Rec                                                                                 | 09/22/17 22:24<br>09/22/17 22:24<br>e ID: Lab Control<br>Prep Type: 1<br>%Rec.<br>Limits                                                                                                                                     | Sampl  |
| oluene-d8 (Surr)<br>Bromofluorobenzene (Surr)<br>ab Sample ID: LCS 480-378347/4<br>latrix: Water<br>nalysis Batch: 378347<br>nalyte<br>1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                   | 97          |           | 80 - 120<br>73 - 120<br>Spike<br>Added<br>25.0                                                         | Result<br>25.5                                                                                         |      | fler | Unit<br>ug/L                                                         |       | %Rec<br>102                                                                          | 09/22/17 22:24<br>09/22/17 22:24<br>e ID: Lab Control<br>Prep Type: 1<br>%Rec.<br>Limits<br>73 - 126                                                                                                                         | Sampl  |
| oluene-d8 (Surr)<br>Bromofluorobenzene (Surr)<br>ab Sample ID: LCS 480-378347/4<br>latrix: Water<br>nalysis Batch: 378347<br>nalyte<br>1,1-Trichloroethane<br>1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                        | 97          |           | 80 - 120<br>73 - 120<br>Spike<br>Added<br>25.0<br>25.0                                                 | Result<br>25.5<br>26.8                                                                                 |      | fier | Unit<br>ug/L<br>ug/L                                                 |       | %Rec<br>102<br>107                                                                   | 09/22/17 22:24<br>09/22/17 22:24<br>e ID: Lab Control<br>Prep Type: T<br>%Rec.<br>Limits<br>73 - 126<br>76 - 120                                                                                                             | -      |
| oluene-d8 (Surr)<br>Bromofluorobenzene (Surr)<br>ab Sample ID: LCS 480-378347/4<br>latrix: Water<br>nalysis Batch: 378347<br>nalyte<br>1,1-Trichloroethane<br>1,2,2-Tetrachloroethane<br>1,2-Trichloroethane                                                                                                                                                                                                                                                                 | 97          |           | 80 - 120<br>73 - 120<br>Spike<br>Added<br>25.0<br>25.0<br>25.0                                         | Result<br>25.5<br>26.8<br>26.0                                                                         |      | fier | Unit<br>ug/L<br>ug/L<br>ug/L                                         |       | %Rec<br>102<br>107<br>104                                                            | 09/22/17 22:24<br>09/22/17 22:24<br>e ID: Lab Control<br>Prep Type: T<br>%Rec.<br>Limits<br>73 - 126<br>76 - 122                                                                                                             | -      |
| oluene-d8 (Surr)<br>Bromofluorobenzene (Surr)<br>ab Sample ID: LCS 480-378347/4<br>latrix: Water<br>nalysis Batch: 378347<br>nalyte<br>1,1-Trichloroethane<br>1,2,2-Tetrachloroethane<br>1,2-Trichloroethane<br>1,2-Trichloroethane                                                                                                                                                                                                                                          | 97          |           | 80 - 120<br>73 - 120<br>Spike<br>Added<br>25.0<br>25.0                                                 | Result<br>25.5<br>26.8                                                                                 |      | fler | Unit<br>ug/L<br>ug/L                                                 |       | %Rec<br>102<br>107                                                                   | 09/22/17 22:24<br>09/22/17 22:24<br>e ID: Lab Control<br>Prep Type: T<br>%Rec.<br>Limits<br>73 - 126<br>76 - 120                                                                                                             | Sampl  |
| oluene-d8 (Surr)<br>Bromofluorobenzene (Surr)<br>ab Sample ID: LCS 480-378347/4<br>latrix: Water<br>nalysis Batch: 378347<br>nalyte<br>1,1-Trichloroethane<br>1,2-Tetrachloroethane<br>1,2-Trichloroethane<br>1,2-Trichloroethane                                                                                                                                                                                                                                            | 97          |           | 80 - 120<br>73 - 120<br>Spike<br>Added<br>25.0<br>25.0<br>25.0<br>25.0                                 | Result<br>25.5<br>26.8<br>26.0<br>23.3                                                                 |      | fler | Unit<br>ug/L<br>ug/L<br>ug/L<br>ug/L                                 |       | %Rec<br>102<br>107<br>104<br>93                                                      | 09/22/17 22:24<br>09/22/17 22:24<br>e ID: Lab Control<br>Prep Type: T<br>%Rec.<br>Limits<br>73 - 126<br>76 - 120<br>76 - 122<br>61 - 148                                                                                     | -      |
| oluene-d8 (Surr)<br>Bromofluorobenzene (Surr)<br>ab Sample ID: LCS 480-378347/4<br>latrix: Water<br>nalysis Batch: 378347<br>halyte<br>1.1-Trichloroethane<br>1.2-Tetrachloroethane<br>1.2-Trichloroethane<br>1.2-Trichloroethane                                                                                                                                                                                                                                            | 97          |           | 80 - 120<br>73 - 120<br>Spike<br>Added<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0                 | Result<br>25.5<br>26.8<br>26.0<br>23.3<br>27.7                                                         |      | fier | Unit<br>ug/L<br>ug/L<br>ug/L<br>ug/L                                 |       | %Rec<br>102<br>107<br>104<br>93<br>111                                               | 09/22/17 22:24<br>09/22/17 22:24<br>e ID: Lab Control<br>Prep Type: T<br>%Rec.<br>Limits<br>73 - 126<br>76 - 122<br>61 - 148<br>77 - 120                                                                                     | -      |
| bluene-d8 (Surr)<br>Bromofluorobenzene (Surr)<br>ab Sample ID: LCS 480-378347/4<br>atrix: Water<br>nalysis Batch: 378347<br>halyte<br>1,1-Trichloroethane<br>1,2-2-Tetrachloroethane<br>1,2-Trichloroethane<br>1,2-Trichloroethane<br>1,2-Trichloroethane                                                                                                                                                                                                                    | 97          |           | 80 - 120<br>73 - 120<br>Spike<br>Added<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0 | Result<br>25.5<br>26.8<br>26.0<br>23.3<br>27.7<br>22.5                                                 |      | fier | Unit<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                         |       | %Rec<br>102<br>107<br>104<br>93<br>111<br>90                                         | 09/22/17 22:24<br>09/22/17 22:24<br>e ID: Lab Control<br>Prep Type: T<br>%Rec.<br>Limits<br>73 - 126<br>76 - 122<br>61 - 148<br>77 - 120<br>66 - 127                                                                         | -      |
| bluene-d8 (Surr)<br>Bromofluorobenzene (Surr)<br>ab Sample ID: LCS 480-378347/4<br>latrix: Water<br>nalysis Batch: 378347<br>1,1-Trichloroethane<br>1,2-2-Tetrachloroethane<br>1,2-Trichloroethane<br>1,2-Trichloroethane<br>1,2-Trichloroethane<br>1,2-Trichloroethane<br>1,2-Trichloroethane<br>2,4-Trichloroethane                                                                                                                                                        | 97          |           | 80 - 120<br>73 - 120<br>Spike<br>Added<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0 | Result<br>25.5<br>26.8<br>26.0<br>23.3<br>27.7<br>22.5<br>21.9                                         |      | fler | Unit<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                 |       | %Rec<br>102<br>107<br>104<br>93<br>111<br>90<br>88                                   | 09/22/17 22:24<br>09/22/17 22:24<br>e ID: Lab Control<br>Prep Type: T<br>%Rec.<br>Limits<br>73 - 126<br>76 - 120<br>76 - 122<br>61 - 148<br>77 - 120<br>66 - 127<br>79 - 122                                                 | -      |
| bluene-d8 (Surr)<br>Bromofluorobenzene (Surr)<br>ab Sample ID: LCS 480-378347/4<br>latrix: Water<br>nalysis Batch: 378347<br>halyte<br>1,1-Trichloroethane<br>1,2-Trichloroethane<br>1,2-Trichloroethane<br>1,2-Trichloroethane<br>1,2-Trichloroethane<br>1-Dichloroethane<br>2,4-Trichloroethene<br>2,4-Trichlorobenzene                                                                                                                                                    | 97          |           | 80 - 120<br>73 - 120<br>Spike<br>Added<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0 | Result<br>25.5<br>26.8<br>26.0<br>23.3<br>27.7<br>22.5<br>21.9<br>25.2                                 |      | fler | Unit<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L         |       | %Rec<br>102<br>107<br>104<br>93<br>111<br>90<br>88<br>101                            | 09/22/17 22:24<br>09/22/17 22:24<br>e ID: Lab Control<br>Prep Type: T<br>%Rec.<br>Limits<br>73 - 126<br>76 - 122<br>61 - 148<br>77 - 120<br>66 - 127<br>79 - 122<br>56 - 134                                                 | -      |
| bluene-d8 (Surr)<br>Bromofluorobenzene (Surr)<br>ab Sample ID: LCS 480-378347/4<br>latrix: Water<br>nalysis Batch: 378347<br>halyte<br>1.1-Trichloroethane<br>1.2-Tetrachloroethane<br>1.2-Trichloroethane<br>1.2-Trichloroethane<br>1.2-Trichloroethane<br>2.4-Trichloroethane<br>2.4-Trichlorobenzene<br>2.Dibromo-3-Chloropropane<br>2.Dibromoethane                                                                                                                      | 97          |           | 80 - 120<br>73 - 120<br>Spike<br>Added<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0 | Result<br>25.5<br>26.8<br>26.0<br>23.3<br>27.7<br>22.5<br>21.9<br>25.2<br>26.4                         |      | fler | Unit<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L |       | %Rec<br>102<br>107<br>104<br>93<br>111<br>90<br>88<br>101<br>105                     | 09/22/17 22:24<br>09/22/17 22:24<br>e ID: Lab Control<br>Prep Type: T<br>%Rec.<br>Limits<br>73 - 126<br>76 - 122<br>61 - 148<br>77 - 120<br>66 - 127<br>79 - 122<br>56 - 134<br>77 - 120                                     | -      |
| bluene-d8 (Surr)<br>Bromofluorobenzene (Surr)<br>ab Sample ID: LCS 480-378347/4<br>atrix: Water<br>nalysis Batch: 378347<br>halyte<br>1,1-Trichloroethane<br>1,2-Tetrachloroethane<br>1,2-Trichloroethane<br>1,2-Trichloroethane<br>1,2-Trichloroethane<br>1-Dichloroethane<br>2-Dichloroothene<br>2-Dibromo-3-Chloropropane<br>2-Dibromoethane<br>2-Dibromoethane                                                                                                           | 97          |           | 80 - 120<br>73 - 120<br>Spike<br>Added<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0 | Result<br>25.5<br>26.8<br>26.0<br>23.3<br>27.7<br>22.5<br>21.9<br>25.2<br>26.4<br>23.7                 |      | fler | Unit<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L |       | %Rec<br>102<br>107<br>104<br>93<br>111<br>90<br>88<br>101<br>105<br>95               | 09/22/17 22:24<br>09/22/17 22:24<br>e ID: Lab Control<br>Prep Type: T<br>%Rec.<br>Limits<br>73 - 126<br>76 - 120<br>76 - 122<br>61 - 148<br>77 - 120<br>66 - 127<br>79 - 122<br>56 - 134<br>77 - 120<br>80 - 124             | -      |
| bluene-d8 (Surr)<br>Bromofluorobenzene (Surr)<br>ab Sample ID: LCS 480-378347/4<br>latrix: Water<br>nalysis Batch: 378347<br>halyte<br>1,1-Trichloroethane<br>1,2-Tetrachloroethane<br>1,2-Trichloroethane<br>1,2-Trichloroethane<br>1,2-Trichloroethane<br>1-Dichloroethane<br>2-Dichloroethane<br>2-Dibromo-3-Chloropropane<br>2-Dibromoethane<br>2-Dibromoethane<br>2-Dichlorobenzene<br>2-Dichlorobenzene<br>2-Dichlorobenzene<br>2-Dichlorobenzene<br>2-Dichlorobenzene | 97          |           | 80 - 120<br>73 - 120<br>Spike<br>Added<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0 | Result<br>25.5<br>26.8<br>26.0<br>23.3<br>27.7<br>22.5<br>21.9<br>25.2<br>26.4<br>23.7<br>27.2         |      | fler | Unit<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L |       | %Rec<br>102<br>107<br>104<br>93<br>111<br>90<br>88<br>101<br>105<br>95<br>109        | 09/22/17 22:24<br>09/22/17 22:24<br>e ID: Lab Control<br>Prep Type: T<br>%Rec.<br>Limits<br>73 - 126<br>76 - 122<br>61 - 148<br>77 - 120<br>66 - 127<br>79 - 122<br>56 - 134<br>77 - 120<br>80 - 124<br>75 - 120             | -      |
| oluene-d8 (Surr)<br>Bromofluorobenzene (Surr)<br>ab Sample ID: LCS 480-378347/4<br>latrix: Water<br>nalysis Batch: 378347<br>halyte<br>1,1-Trichloroethane<br>1,2-Tetrachloroethane<br>1,2-Trichloroethane<br>1,2-Trichloroethane<br>1,2-Trichloroethane<br>1-Dichloroethane<br>2,4-Trichlorobenzene<br>2-Dibromo-3-Chloropropane<br>2-Dibromoethane<br>2-Dichloroethane<br>2-Dichlorobenzene<br>2-Dichloroethane<br>2-Dichloroethane                                        | 97          |           | 80 - 120<br>73 - 120<br>73 - 120<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25         | Result<br>25.5<br>26.8<br>26.0<br>23.3<br>27.7<br>22.5<br>21.9<br>25.2<br>26.4<br>23.7<br>27.2<br>27.7 |      | fler | Unit<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L |       | %Rec<br>102<br>107<br>104<br>93<br>111<br>90<br>88<br>101<br>105<br>95<br>109<br>111 | 09/22/17 22:24<br>09/22/17 22:24<br>e ID: Lab Control<br>Prep Type: T<br>%Rec.<br>Limits<br>73 - 126<br>76 - 122<br>61 - 148<br>77 - 120<br>66 - 127<br>79 - 122<br>56 - 134<br>77 - 120<br>80 - 124<br>75 - 120<br>76 - 120 | -      |
| oluene-d8 (Surr)<br>Bromofluorobenzene (Surr)<br>ab Sample ID: LCS 480-378347/4<br>latrix: Water<br>nalysis Batch: 378347<br>nalyte<br>1,1-Trichloroethane<br>1,2,2-Tetrachloroethane<br>1,2-Trichloroethane<br>1,2-Trichloroethane                                                                                                                                                                                                                                          | 97          |           | 80 - 120<br>73 - 120<br>Spike<br>Added<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0 | Result<br>25.5<br>26.8<br>26.0<br>23.3<br>27.7<br>22.5<br>21.9<br>25.2<br>26.4<br>23.7<br>27.2         |      | fler | Unit<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L |       | %Rec<br>102<br>107<br>104<br>93<br>111<br>90<br>88<br>101<br>105<br>95<br>109        | 09/22/17 22:24<br>09/22/17 22:24<br>e ID: Lab Control<br>Prep Type: T<br>%Rec.<br>Limits<br>73 - 126<br>76 - 122<br>61 - 148<br>77 - 120<br>66 - 127<br>79 - 122<br>56 - 134<br>77 - 120<br>80 - 124<br>75 - 120             | Sampl  |

Toluene-d8 (Surr)

4-Bromofluorobenzene (Surr)

### Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

97

97

| Lab Sample ID: LCS 480-37    | 8347/4    |           |          |        |           |      | Client | t Sample | ID: Lab Co          | ontrol Sample |
|------------------------------|-----------|-----------|----------|--------|-----------|------|--------|----------|---------------------|---------------|
| Matrix: Water                |           |           |          |        |           |      |        | •        |                     | ype: Total/NA |
| Analysis Batch: 378347       |           |           |          |        |           |      |        |          | •                   |               |
|                              |           |           | Spike    | LCS    | LCS       |      |        |          | %Rec.               |               |
| Analyte                      |           |           | Added    | Result | Qualifier | Unit | D      | %Rec     | Limits              |               |
| 2-Butanone (MEK)             |           |           | 125      | 153    |           | ug/L |        | 122      | 57 _ 140            |               |
| 4-Methyl-2-pentanone (MIBK)  |           |           | 125      | 149    |           | ug/L |        | 119      | 71 - 125            |               |
| Acetone                      |           |           | 125      | 143    |           | ug/L |        | 114      | 56 - 142            |               |
| Benzene                      |           |           | 25.0     | 26.9   |           | ug/L |        | 107      | 71 - 124            |               |
| Bromodichloromethane         |           |           | 25.0     | 28.8   |           | ug/L |        | 115      | 80 - 122            |               |
| Bromoform                    |           |           | 25.0     | 26.0   |           | ug/L |        | 104      | 61 - 132            |               |
| Bromomethane                 |           |           | 25.0     | 21.3   |           | ug/L |        | 85       | 55 - 144            |               |
| Carbon disulfide             |           |           | 25.0     | 26.0   |           | ug/L |        | 104      | 59 - 134            |               |
| Carbon tetrachloride         |           |           | 25.0     | 25.2   |           | ug/L |        | 101      | 72 - 134            |               |
| Chlorobenzene                |           |           | 25.0     | 25.1   |           | ug/L |        | 100      | 80 - 120            |               |
| Dibromochloromethane         |           |           | 25.0     | 26.1   |           | ug/L |        | 104      | 75 - 125            |               |
| Chloroethane                 |           |           | 25.0     | 28.6   |           | ug/L |        | 114      | 69 - 136            |               |
| Chloroform                   |           |           | 25.0     | 25.9   |           | ug/L |        | 104      | 73 - 127            |               |
| Chloromethane                |           |           | 25.0     | 27.7   |           | ug/L |        | 111      | 68 - 124            |               |
| cis-1,2-Dichloroethene       |           |           | 25.0     | 25.0   |           | ug/L |        | 100      | 74 - 124            |               |
| cis~1,3-Dichloropropene      |           |           | 25.0     | 26.5   |           | ug/L |        | 106      | 74 - 124            |               |
| Cyclohexane                  |           |           | 25.0     | 25.7   |           | ug/L |        | 103      | 59 - 135            |               |
| Dichlorodifluoromethane      |           |           | 25.0     | 25.8   |           | ug/L |        | 103      | 59 <sub>-</sub> 135 |               |
| Ethylbenzene                 |           |           | 25.0     | 24.4   |           | ug/L |        | 98       | 77 - 123            |               |
| sopropylbenzene              |           |           | 25.0     | 23.7   |           | ug/L |        | 95       | 77 - 122            |               |
| Methyl acetate               |           |           | 50.0     | 61.7   |           | ug/L |        | 123      | 74 - 133            |               |
| Methyl tert-butyl ether      |           |           | 25.0     | 27.0   |           | ug/L |        | 108      | 77 - 120            |               |
| Methylcyclohexane            |           |           | 25.0     | 24.1   |           | ug/L |        | 96       | 68 - 134            |               |
| Methylene Chloride           |           |           | 25.0     | 24.4   |           | ug/L |        | 98       | 75 - 124            |               |
| Styrene                      |           |           | 25.0     | 25.7   |           | ug/L |        | 103      | 80 - 120            |               |
| letrachloroethene            |           |           | 25.0     | 24.2   |           | ug/L |        | 97       | 74 - 122            |               |
| Toluene                      |           |           | 25.0     | 25.5   |           | ug/L |        | 102      | 80 - 122            |               |
| rans-1,2-Dichloroethene      |           |           | 25.0     | 24.3   |           | ug/L |        | 97       | 73 - 127            |               |
| rans-1,3-Dichloropropene     |           |           | 25.0     | 26.5   |           | ug/L |        | 106      | 80 - 120            |               |
| richloroethene               |           |           | 25.0     | 26.5   |           | ug/L |        | 106      | 74 - 123            |               |
| richlorofluoromethane        |           |           | 25.0     | 26.6   |           | ug/L |        | 107      | 62 - 150            |               |
| /inyl chloride               |           |           | 25.0     | 20.8   |           | ug/L |        | 83       | 65 - 133            |               |
|                              |           |           |          |        |           | -    |        |          |                     |               |
|                              |           | LCS       | 6 Aug 24 |        |           |      |        |          |                     |               |
| Surrogate                    | %Recovery | Qualifier | Limits   |        |           |      |        |          |                     |               |
| 1,2-Dichloroethane-d4 (Surr) | 100       |           | 77 - 120 |        |           |      |        |          |                     |               |

80 - 120

73 - 120

## **QC Association Summary**

#### Client: AECOM, Inc. Project/Site: Griffin Diebolt

#### TestAmerica Job ID: 480-124095-1

#### GC/MS VOA

480-124095-3

480-124095-4

480-124095-5

480-124095-6

MB 480-378347/6

LCS 480-378347/4

MW-07S

MW-07D

MW-10S

FD-20170913

Method Blank

Lab Control Sample

#### Analysis Batch: 377961

| Lab Sample ID        | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|----------------------|--------------------|-----------|--------|--------|------------|
| 480-124095-7         | TRIP BLANK         | Total/NA  | Water  | 8260C  |            |
| MB 480-377961/6      | Method Blank       | Total/NA  | Water  | 8260C  |            |
| LCS 480-377961/4     | Lab Control Sample | Total/NA  | Water  | 8260C  |            |
| Analysis Batch: 3783 | 47                 |           |        |        |            |
| Lab Sample ID        | Client Sample ID   | Ргер Туре | Matrix | Method | Prep Batch |
| 480-124095-1         | MVV-06S            | Totai/NA  | Water  | 8260C  |            |
| 480-124095-2         | MW-06D             | Total/NA  | Water  | 8260C  |            |

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Water

Water

Water

Water

Water

Water

8260C

8260C

8260C

8260C

8260C

8260C

Client: AECOM, Inc.

Project/Site: Griffin Diebolt

| <b>Client Samp</b> | ole ID: MW-0                         | 6S     |                                         |                    |                           |                                           | Lal            | o Sample ID                             | ): 480-124095- <sup>,</sup> |
|--------------------|--------------------------------------|--------|-----------------------------------------|--------------------|---------------------------|-------------------------------------------|----------------|-----------------------------------------|-----------------------------|
| -                  | 1: 09/13/17 11:2                     |        |                                         |                    |                           |                                           |                | ·                                       | Matrix: Wate                |
| Date Received      | 1: 09/13/17 16:3                     | 1      |                                         |                    |                           |                                           |                |                                         |                             |
| -                  | Batch                                | Batch  |                                         | Dilution           | Batch                     | Prepared                                  |                |                                         |                             |
| Prep Type          | Туре                                 | Method | Run                                     | Factor             | Number                    | or Analyzed                               | Analyst        | Lab                                     |                             |
| Total/NA           | Analysis                             | 8260C  |                                         | 1                  | 378347                    | 09/23/17 01:40                            | RRS            | TAL BUF                                 |                             |
|                    | 7 that you                           | 02000  |                                         | ,                  | 0/004/                    | 00/20/17 01:40                            | NNO            |                                         |                             |
| Client Samp        | le ID: MW-00                         | 6D     | * ()) - * - ()) * (* (***** * * * * * * |                    |                           |                                           | Lal            | o Sample ID                             | : 480-124095-               |
|                    | 1: 09/13/17 12:0                     |        |                                         |                    |                           |                                           |                |                                         | Matrix: Wate                |
| Date Received      | l: 09/13/17 16:3                     | 1      |                                         |                    |                           |                                           |                |                                         |                             |
|                    | Batch                                | Batch  |                                         | Dilution           | Batch                     | Prepared                                  |                |                                         |                             |
| Prep Type          | Туре                                 | Method | Run                                     | Factor             | Number                    | or Analyzed                               | Analyst        | Lab                                     |                             |
| Total/NA           | Analysis                             | 8260C  |                                         | 1                  | 378347                    | 09/23/17 02:05                            | RRS            | TAL BUF                                 |                             |
| Client Somn        | In ID: BANAL O'                      | 70     |                                         |                    |                           |                                           |                | - Comple ID                             | . 400 404005                |
| •                  | le ID: MW-07                         |        |                                         |                    |                           |                                           | Lai            | 5 Sample IL                             | : 480-124095-3              |
|                    | 1: 09/13/17 13:1                     | -      |                                         |                    |                           |                                           |                |                                         | Matrix: Wate                |
| Date Received      | : 09/13/17 16:3                      | 1      |                                         |                    |                           |                                           |                |                                         |                             |
|                    | Batch                                | Batch  |                                         | Dilution           | Batch                     | Prepared                                  |                |                                         |                             |
| Prep Type          | Туре                                 | Method | Run                                     | Factor             | Number                    | or Analyzed                               | Analyst        | Lab                                     |                             |
| Total/NA           | Analysis                             | 8260C  |                                         | 1                  | 378347                    | 09/23/17 02:30                            | RRS            | TAL BUF                                 |                             |
| Client Same        | le ID: MW-07                         |        |                                         |                    |                           |                                           | Lok            | Sample ID                               | : 480-124095-4              |
|                    | : 09/13/17 14:0                      |        |                                         |                    |                           |                                           | Lai            | Sample in                               |                             |
|                    | : 09/13/17 14:0                      |        |                                         |                    |                           |                                           |                |                                         | Matrix: Water               |
| -                  | Batch                                | Batch  |                                         | Dilution           | Batch                     | Prepared                                  |                |                                         |                             |
| Prep Type          | Туре                                 | Method | Run                                     | Factor             | Number                    | or Analyzed                               | Analyst        | Lab                                     |                             |
| Total/NA           | Analysis                             | 8260C  |                                         |                    | 378347                    | 09/23/17 02:56                            | RRS            | TAL BUF                                 |                             |
| Oliont Come        | 1- ID. BALA/ 4/                      | NO.    |                                         |                    |                           |                                           | 1              | 0                                       | . 400 404005 4              |
| -                  | le ID: MW-10                         |        |                                         |                    |                           |                                           | Lac            | Sample ID                               | : 480-124095-5              |
|                    | : 09/13/17 10:3<br>: 09/13/17 16:31  |        |                                         |                    |                           |                                           |                |                                         | Matrix: Water               |
|                    | Batch                                | Batch  |                                         | Dilution           | Batch                     | Prepared                                  |                |                                         |                             |
| Prep Type          | Туре                                 | Method | Run                                     | Factor             | Number                    | or Analyzed                               | Analyst        | Lab                                     |                             |
| Total/NA           | Analysis                             | 8260C  |                                         | 1                  | 378347                    | 09/23/17 03:21                            | RRS            | TAL BUF                                 |                             |
|                    | le ID: FD-201                        | 70913  |                                         |                    |                           |                                           | Lat            | Sample ID                               | : 480-124095-6              |
| Client Samo        |                                      |        |                                         |                    |                           |                                           | Lat            | - campic ib                             | Matrix: Water               |
| Client Samp        | 09/13/17 00:00                       |        |                                         |                    |                           |                                           |                |                                         | Matrix. Wdter               |
| Date Collected     | : 09/13/17 00:00<br>: 09/13/17 16:31 |        |                                         |                    |                           |                                           |                |                                         |                             |
| Date Collected     | 09/13/17 16:31                       |        |                                         |                    |                           |                                           |                |                                         |                             |
| Date Collected     | : 09/13/17 16:31<br>Batch            | Batch  |                                         | Dilution           | Batch                     | Prepared                                  |                | , and any service and the second second |                             |
| Date Collected     | 09/13/17 16:31                       |        | Run                                     | Dilution<br>Factor | Batch<br>Number<br>378347 | Prepared<br>or Analyzed<br>09/23/17 03:47 | Analyst<br>RRS | Lab<br>TAL BUF                          |                             |

## Lab Chronicle

#### Client: AECOM, Inc. Project/Site: Griffin Diebolt

10

| Client Samp    | le ID: TRIP E    | BLANK           |     |                    |                 |                      | Lal     | b Sample ID: | 480-124095-7  |
|----------------|------------------|-----------------|-----|--------------------|-----------------|----------------------|---------|--------------|---------------|
| Date Collected | I: 09/13/17 00:0 | 0               |     |                    |                 |                      |         | •            | Matrix: Water |
| Date Received  | : 09/13/17 16:3  | 1               |     |                    |                 |                      |         |              |               |
|                |                  |                 |     |                    |                 |                      |         |              |               |
|                | Batch            | Batch           |     | Dilution           | Batch           | Prepared             |         |              |               |
| Ргер Туре      | Batch<br>Type    | Batch<br>Method | Run | Dilution<br>Factor | Batch<br>Number | Prepared or Analyzed | Analyst | Lab          |               |

#### Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TestAmerica Buffalo

# Accreditation/Certification Summary

| Client: AECOM, Inc.           |
|-------------------------------|
| Project/Site: Griffin Diebolt |

#### TestAmerica Job ID: 480-124095-1

| Laboratory: TestA                | merica Buffalo                               |            |                       |                 |  |
|----------------------------------|----------------------------------------------|------------|-----------------------|-----------------|--|
| The accreditations/certification | ns listed below are applicable to this repor | t.<br>     | ( )                   |                 |  |
| Authority                        | Program                                      | EPA Region | Identification Number | Expiration Date |  |
| New York                         | NELAP                                        | 2          | 10026                 | 03-31-18        |  |

## **Method Summary**

#### Client: AECOM, Inc. Project/Site: Griffin Diebolt

| 1 Charles address and the dense of the set of the se |                                     |          |            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------|------------|
| Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Method Description                  | Protocol | Laboratory |
| 8260C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Volatile Organic Compounds by GC/MS | SW846    | TAL BUF    |

#### Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

## Sample Summary

#### Client: AECOM, Inc. Project/Site: Griffin Diebolt

#### TestAmerica Job ID: 480-124095-1

| Lab Sample ID | Cilent Sample ID | Matrix | Collected      | Received       |
|---------------|------------------|--------|----------------|----------------|
| 480-124095-1  | MW-06S           | Water  | 09/13/17 11:25 | 09/13/17 16:31 |
| 480-124095-2  | MW-06D           | Water  | 09/13/17 12:06 | 09/13/17 16:31 |
| 480-124095-3  | MW-07S           | Water  | 09/13/17 13:10 | 09/13/17 16:31 |
| 480-124095-4  | MW-07D           | Water  | 09/13/17 14:00 | 09/13/17 16:31 |
| 480-124095-5  | MW-10S           | Water  | 09/13/17 10:32 | 09/13/17 16:31 |
| 480-124095-6  | FD-20170913      | Water  | 09/13/17 00:00 | 09/13/17 16:31 |
| 480-124095-7  | TRIP BLANK       | Water  | 09/13/17 00:00 | 09/13/17 16:31 |

| <b>TestAmerica Buffalo</b><br>10 Hazelwood Drive<br>Amherst, NY 14228-2288<br>Phone (718) 691-3600 Fav (716) 601-7901 | さ                             | o uie  | f Custo             | Chain of Custody Record | cord                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             | TestAmerica                                                                               | 731              |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------------|--------|---------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------|------------------|
| Client Information                                                                                                    | Sampler.                      | どう     | MeGOUFAN            |                         | Lab PM:<br>Devo, Melissa L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Carrier Tracking No(s):     | COC No<br>480-102015-24242 1                                                              | Г                |
| Cleart Contact<br>George Kisluk                                                                                       | Phone. 716 72                 | 12     | Š                   |                         | E-Mati.<br>melissa.devo@testamericainc.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | Page 1 of 1                                                                               | T                |
| Company:<br>AECOM, Inc.                                                                                               |                               |        |                     |                         | Analysi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Analysis Requested          | # (0)                                                                                     | ŀ                |
| Address<br>257 West Genesee Street Suite 400                                                                          | Due Date Requested:           |        |                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             | tion Code                                                                                 |                  |
| City<br>Buffaio                                                                                                       | TAT Requested (days):         | ¥      |                     | Γ                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             | A-HCL M. Hoxane<br>B-Nerum ne<br>C                                                        |                  |
| State, Zp<br>NY, 14202-2657                                                                                           | T                             |        |                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |                                                                                           |                  |
| Phone: 716 223-1321                                                                                                   | PO#<br>60552483 , Task 1      | _      |                     | (0                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |                                                                                           |                  |
| Email<br>george.kisluk@aecom.com                                                                                      | WO #<br>george.kisluk@urs.com | a.com  |                     | N OC N                  | States and States                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             | J- 480-124095 COC                                                                         |                  |
| Project Name:<br>Griffin Diebolt                                                                                      | Project #.<br>48007525        |        |                     | ₩ <b>Λ</b>              | A DAMAGE AND |                             | ت <u>ب</u>                                                                                |                  |
| Site                                                                                                                  | MMOSS                         |        |                     | igma8                   | W) CE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             | nco ta<br>Cthe<br>T                                                                       |                  |
|                                                                                                                       |                               |        | Sample<br>Type      | Matrix<br>Matrix        | Contract Providence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             | Number                                                                                    |                  |
| Sample Identification                                                                                                 | Sample Date                   | Sample | (C=comp,<br>G=grab) | _                       | Perfo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             | Special Instructions/Note:                                                                |                  |
|                                                                                                                       |                               |        | Preservation Code:  | and the second          | XA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |                                                                                           |                  |
| 320 -mw                                                                                                               | 2/3/17                        | 11:25  | ر۔<br>ا             | Water N                 | N 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                                                                           |                  |
| Q.90 - MM                                                                                                             | , , ,                         | 12:05  |                     | Water /                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |                                                                                           | Γ                |
| 5-60- MW                                                                                                              |                               | 13.10  |                     | Water                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |                                                                                           | l –              |
| 010- MW                                                                                                               |                               | 14:00  |                     | Water                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |                                                                                           |                  |
| 501-111                                                                                                               |                               | 10.72  | -                   | Water                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |                                                                                           | Γ                |
| FD-20170713                                                                                                           |                               | 1      | ΨG                  | Water                   | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 201-274                     |                                                                                           | 1                |
| Taip Beans                                                                                                            | 1                             | T      | 1                   | Water -                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |                                                                                           | (                |
|                                                                                                                       |                               |        |                     | Water                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |                                                                                           | X<br>Y           |
|                                                                                                                       |                               |        |                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |                                                                                           | 101              |
|                                                                                                                       |                               |        |                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |                                                                                           | 2                |
|                                                                                                                       |                               | (      |                     |                         | Sample Disposal ( A fee mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ay be assessed if samples a | retained longer than 1 month)                                                             |                  |
| le Skin Imitant<br>V. Other (soecify)                                                                                 | Poison B Unknown              |        | Radiological        |                         | Return To ClientDisp<br>Snecial Instructions/OC Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Disposal By Lab             | Return To Client Disposel By Lab Darchive For Months  Special Instructions/OC Reminiments | T                |
| Emply Kit Relinquished by                                                                                             | G                             | Date:  |                     | 1                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mathead of Channed          |                                                                                           | T                |
| Beinnichter hur der Anterenden                                                                                        |                               | -916   | ľ                   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |                                                                                           |                  |
| remetament of                                                                                                         | 9/13/17                       | 18     | 2                   | Company<br>Afroire      | Received by Caller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11 Data The                 | 113-1631 ° 108mg                                                                          | Sol and a second |
|                                                                                                                       |                               |        | 2                   | company                 | Kecswed by.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date time                   | Company                                                                                   |                  |
|                                                                                                                       | Date/Time:                    |        | 0                   | Сотралу                 | Received by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date/Time:                  | Company                                                                                   | <b>[</b>         |
| Custody Seals Intact: Custody Seal No.:                                                                               |                               |        |                     |                         | Cooler Temperature(s) *C and Other Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cher Remarks 4 D #          |                                                                                           |                  |
|                                                                                                                       |                               |        |                     |                         | and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                                                                           | 1                |

0 10 1. 10 .....

## Login Sample Receipt Checklist

Client: AECOM, Inc.

Login Number: 124095 List Number: 1 Creator: Conway, Curtis R

| Radioactivity either was not measured or, if measured, is at or below       True         background       True         The cooler's custody seal, if present, is intact.       True         The cooler's custody seal, if present, is intact.       True         Samples were received on ice.       True         Cooler Temperature is acceptable.       True         Cooler Temperature is acceptable.       True         Cooler Temperature is acceptable.       True         COC is present.       True         COC is filled out in ink and legible.       True         COC is filled out with all pertinent information.       True         Is the Field Sampler's name present on COC?       True         Samples are received within Holding Time (Excluding tests with immediate       True         Sample containers have legible labels.       True         Containers are not broken or leaking.       True         Sample collection date/limes are provided.       True         Sample bottles are completely filled.       True         Sample bottles are not broken or leaking.       True         Sample bottles are not broken or leaking.       True         Sample collection date/limes are provided.       True         Sample tottles do not have headspace or bubble is <6mm (1/4") in       True         < | Question                                                            | Answer | Comment |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------|---------|
| The cooler or samples do not appear to have been compromised or tampered with.       True         Samples were received on ice.       True         Cooler Temperature is acceptable.       True         Cooler Temperature is recorded.       True         Cooler Temperature is recorded.       True         COC is present.       True         COC is filled out in hand legible.       True         COC is filled out with all pertinent information.       True         Is the Field Sampler's name present on COC?       True         There are no discrepancies between the sample IDs on the containers and the COC.       True         Samples containers have legible labels.       True         Sample collection date/times are provided.       True         Sample collection date/times are provided.       True         Sample collection date/times are used.       True         Sample collection date/times are used.       True         Sample value don thave headspace or bubble is <6mm (1/4") in diameter.                                                                                                                                                                                                                                                                                                     |                                                                     | True   |         |
| tampered with.       True         Samples were received on ico.       True         Cooler Temperature is acceptable.       True         COC is present.       True         COC is filled out in hand legible.       True         COC is filled out in hand legible.       True         COC is filled out in hand legible.       True         COC is filled out with all pertinent information.       True         Is the Field Sampler's name present on COC?       True         There are no discrepancies between the sample IDs on the containers and the COC.       True         Samples are received within Holding Time (Excluding tests with immediate the COC.       True         Sample containers have legible labels.       True         Containers are not broken or leaking.       True         Sample collection date/times are provided.       True         Sample collection date/times are used.       True         Sample containers are used.       True         Sample to the are completely filed.       True         Sample sample value don thave headspace or bubble is <6mm (1/4") in diameter.                                                                                                                                                                                                             | The cooler's custody seal, if present, is intact.                   | True   |         |
| Cooler Temperature is acceptable.TrueCooler Temperature is recorded.TrueCOC is present.TrueCOC is filled out in ha and legible.TrueCOC is filled out with all pertinent information.TrueIs the Field Sampler's name present on COC?TrueThere are no discrepancies between the sample IDs on the containers and<br>the COC.TrueSamples are received within Holding Time (Excluding tests with immediate<br>HTS).TrueSample containers have legible labels.TrueContainers are not broken or leaking.TrueSample containers are used.TrueSample value to find analyses, incl. any requestedTrueSample bottles are completely filled.TrueIf necessary, staff have been informed of any short hold time or quick TAT<br>needsTrueSamples do not require splitting or compositing.TrueSamples do not require splitting or compositing.TrueSamples do not require splitting or sampling.TrueSamples requiring field filtration have been filtered in the field.N/A                                                                                                                                                  |                                                                     | True   |         |
| Cooler Temperature is recorded.TrueCOC is present.TrueCOC is present.TrueCOC is filled out in ink and legible.TrueCOC is filled out with all pertinent information.TrueIs the Field Sampler's name present on COC?TrueThere are no discrepancies between the sample IDs on the containers and<br>the COC.TrueSamples are received within Holding Time (Excluding tests with immediate<br>HTS).TrueSample containers have legible labels.TrueContainers are not broken or leaking.TrueSample containers are used.TrueSample containers are used.TrueSample containers are used.TrueSample bottles are completely filled.TrueSample bottles are completely filled.TrueSample value do not have headspace or bubble is <6mm (1/4") in<br>diameter.TrueIf necessary, staff have been informed of any short hold time or quick TAT<br>needsTrueSamples do not require splitting or compositing.TrueSamples do not require splitting or compositing.TrueSamples do not require splitting or compositing.TrueSamples do not require splitting or sampling.TrueSamples received within 48 hours of sampling.TrueSamples received within 48 hours of sampling.NASamples requiring field filtration have been filtered in the field.N/A                                                                                                        | Samples were received on ice.                                       | True   |         |
| COC is present.       True         COC is filled out in ink and legible.       True         COC is filled out with all pertinent information.       True         Is the Field Sampler's name present on COC?       True         There are no discrepancies between the sample IDs on the containers and the COC.       True         Samples are received within Holding Time (Excluding tests with immediate HTs).       True         Sample containers have legible labels.       True         Containers are not broken or leaking.       True         Sample containers are used.       True         Sample containers are used.       True         Sample bottles are completely filled.       True         Sample bottles are completely filled.       True         Sample containers are used.       True         Sample bottles are completely filled.       True         Sample bottles are not present.       True         Sample valis do not have headspace or bubble is <6mm (1/4") in diameter.                                                                                     | Cooler Temperature is acceptable.                                   | True   |         |
| COC is filled out in ink and legible.       True         COC is filled out with all pertinent information.       True         Is the Field Sampler's name present on COC?       True         There are no discrepancies between the sample IDs on the containers and the COC.       True         Samples are received within Holding Time (Excluding tests with immediate HTs)       True         Sample containers have legible labels.       True         Containers are not broken or leaking.       True         Sample collection date/times are provided.       True         Appropriate sample containers are used.       True         Sample bottles are completely filled.       True         Sample bottles are completely filled.       True         Sample value values are not have headspace or bubble is <6mm (1/4") in diameter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cooler Temperature is recorded.                                     | True   |         |
| COC is filled out with all pertinent information.TrueIs the Field Sampler's name present on COC?TrueThere are no discrepancies between the sample IDs on the containers and<br>the COC.TrueSamples are received within Holding Time (Excluding tests with immediate<br>HTs)TrueSamples are no broken or leaking.TrueContainers are not broken or leaking.TrueSample collaction date/times are provided.TrueSample containers are used.TrueSample containers are used.TrueSample containers are used.TrueSample perservation VerifiedTrueSample bottles are completely filled.TrueSample bottles are completely filled.TrueNANSDsTrueVOA sample vials do not have headspace or bubble is <6mm (1/4") in<br>diameter.TrueIf necessary, staff have been informed of any short hold time or quick TAT<br>needsTrueSamples do not require splitting or compositing.TrueSamples received within 48 hours of sampling.TrueSamples received within 48 hours of sampling.N/A                                                                                                                                                                                                                                                                                                                                                                  | COC is present.                                                     | True   |         |
| Is the Field Sampler's name present on COC?       True         There are no discrepancies between the sample IDs on the containers and the COC.       True         Samples are received within Holding Time (Excluding tests with immediate HTs).       True         Sample containers have legible labels.       True         Containers are not broken or leaking.       True         Sample collection date/times are provided.       True         Appropriate sample containers are used.       True         Sample bottles are completely filled.       True         Sample reservation Verified       True         There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs       True         VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | COC is filled out in ink and legible.                               | True   |         |
| There are no discrepancies between the sample IDs on the containers and the COC.       True         Samples are received within Holding Time (Excluding tests with immediate HTs).       True         Sample containers have legible labels.       True         Containers are not broken or leaking.       True         Sample collection date/times are provided.       True         Appropriate sample containers are used.       True         Sample bottles are completely filled.       True         Sample reservation Verified       True         There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs       True         VOA sample vials do not have headspace or bubble is <8mm (1/4") in diameter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | COC is filled out with all pertinent information.                   | True   |         |
| the COC.Samples are received within Holding Time (Excluding tests with immediate<br>HTs)TrueSample containers have legible labels.TrueContainers are not broken or leaking.TrueSample collection date/times are provided.TrueAppropriate sample containers are used.TrueSample bottles are completely filled.TrueSample Preservation VerifiedTrueThere is sufficient vol. for all requested analyses, incl. any requested<br>MS/MSDsTrueVOA sample vials do not have headspace or bubble is <6mm (1/4") in<br>needsTrueIf necessary, staff have been informed of any short hold time or quick TAT<br>needsTrueMultiphasic samples are not present.TrueSample Company provided.TrueSample for the splitting or compositing.TrueSamples received within 48 hours of sampling.TrueSamples requiring field filtration have been filtered in the field.N/A                                                                                                                                                                                                                           | Is the Field Sampler's name present on COC?                         | True   |         |
| HTs).       True         Sample containers have legible labels.       True         Containers are not broken or leaking.       True         Sample collection date/times are provided.       True         Appropriate sample containers are used.       True         Sample bottles are completely filled.       True         Sample Preservation Verified       True         There is sufficient vol. for all requested analyses, incl. any requested       True         VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                     | True   |         |
| Containers are not broken or leaking.TrueSample collection date/times are provided.TrueAppropriate sample containers are used.TrueSample bottles are completely filled.TrueSample Preservation VerifiedTrueThere is sufficient vol. for all requested analyses, incl. any requestedTrueMS/MSDsVOA sample vials do not have headspace or bubble is <6mm (1/4") in<br>diameter.TrueIf necessary, staff have been informed of any short hold time or quick TAT<br>needsTrueMultiphasic samples are not present.TrueSample Company provided.TrueSample Sample Company provided.TrueSample Sample Sampling.TrueSample Sample Sampling.TrueSample Sample Sampling field filtration have been filtered in the field.N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     | True   |         |
| Sample collection date/times are provided.       True         Appropriate sample containers are used.       True         Sample bottles are completely filled.       True         Sample Preservation Verified       True         There is sufficient vol. for all requested analyses, incl. any requested       True         VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sample containers have legible labels.                              | True   |         |
| Appropriate sample containers are used.       True         Sample bottles are completely filled.       True         Sample Preservation Verified       True         There is sufficient vol. for all requested analyses, incl. any requested       True         MS/MSDs       True         VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Containers are not broken or leaking.                               | True   |         |
| Sample bottles are completely filled.TrueSample Preservation VerifiedTrueThere is sufficient vol. for all requested analyses, incl. any requested<br>MS/MSDsTrueVOA sample vials do not have headspace or bubble is <6mm (1/4") in<br>diameter.TrueIf necessary, staff have been informed of any short hold time or quick TAT<br>needsTrueMultiphasic samples are not present.TrueSamples do not require splitting or compositing.TrueSamples received within 48 hours of sampling.TrueSamples requiring field filtration have been filtered in the field.N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sample collection date/times are provided.                          | True   |         |
| Sample Preservation Verified       True         There is sufficient vol. for all requested analyses, incl. any requested       True         MS/MSDs       True         VOA sample vials do not have headspace or bubble is <6mm (1/4") in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Appropriate sample containers are used.                             | True   |         |
| There is sufficient vol. for all requested analyses, incl. any requested       True         MS/MSDs       True         VOA sample vials do not have headspace or bubble is <6mm (1/4") in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sample bottles are completely filled.                               | True   |         |
| MS/MSDs<br>VOA sample vials do not have headspace or bubble is <6mm (1/4") in<br>diameter.<br>If necessary, staff have been informed of any short hold time or quick TAT<br>needs<br>Multiphasic samples are not present.<br>Samples do not require splitting or compositing.<br>Samples do not require splitting or compositing.<br>Samples received within 48 hours of sampling.<br>Samples received within 48 hours of sampling.<br>Samples requiring field filtration have been filtered in the field.<br>Samples requires the filtered in the field.<br>Samples requires the filtered in the field.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sample Preservation Verified                                        | True   |         |
| diameter.<br>If necessary, staff have been informed of any short hold time or quick TAT True<br>needs True<br>Multiphasic samples are not present. True<br>Samples do not require splitting or compositing. True<br>Sampling Company provided. True AECOM<br>Samples received within 48 hours of sampling. True<br>Samples requiring field filtration have been filtered in the field. N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                     | True   |         |
| needs Multiphasic samples are not present. Samples do not require splitting or compositing. Sampling Company provided. Samples received within 48 hours of sampling. Samples requiring field filtration have been filtered in the field. N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                     | True   |         |
| Samples do not require splitting or compositing.     True       Sampling Company provided.     True       Samples received within 48 hours of sampling.     True       Samples requiring field filtration have been filtered in the field.     N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                     | True   |         |
| Sampling Company provided.     True     AECOM       Samples received within 48 hours of sampling.     True       Samples requiring field filtration have been filtered in the field.     N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Multiphasic samples are not present.                                | True   |         |
| Samples received within 48 hours of sampling. True Samples requiring field filtration have been filtered in the field. N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Samples do not require splitting or compositing.                    | True   |         |
| Samples requiring field filtration have been filtered in the field. N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sampling Company provided.                                          | True   | AECOM   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Samples received within 48 hours of sampling.                       | True   |         |
| Chlorine Residual checked. N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Samples requiring field filtration have been filtered in the field. | N/A    |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Chlorine Residual checked.                                          | N/A    |         |

List Source: TestAmerica Buffalo

# ATTACHMENT C

2019 Biennial Groundwater Sampling Letter Report



September 12, 2019

Mr. Todd M. Caffoe, P.E. New York State Department of Environmental Conservation Division of Environmental Remediation, Region 8 6274 East Avon-Lima Road Avon, New York 14414-9519

### RE: 2019 Biennial Groundwater Sampling Letter Report Former Griffin Technology Facility (Site No. 835008) Farmington, New York

Dear Mr. Caffoe:

On behalf of Diebold, Inc. (Diebold), URS Corporation (URS) has prepared this Biennial Groundwater Sampling Letter Report to summarize field activities as part of the groundwater sampling effort performed in June 2019, in the vicinity of the former Griffin Technology Facility (Site) located in Farmington, New York (Figure 1).

In the 2014 Supplemental Groundwater Sampling Letter Report (URS, 2015), URS recommended the decommissioning off-site monitoring wells MW-09S, MW-09D, MW-10S, MW-10D, and MW-11D based on analyses of the data from the 2013 and 2014 sampling events. Subsequent communications between the New York State Department of Environmental Conservation (NYSDEC) and Diebold/URS resulted in the agreement to repair MW-10S; decommission MW-09S, MW-09D, MW-10D and MW-11D; and collect supplemental groundwater samples from MW-06S and MW-07S for volatile organic compound (VOC) analyses. These activities were performed in June 2016; and discussions of their execution and data evaluation were presented in the 2016 Periodic Review Report (PRR) (URS, 2017a). The following changes to the *Operations and Monitoring Plan for Annual Offsite Groundwater Monitoring* (O&M Plan) were recommended in the 2016 PRR:

- Conduct groundwater sampling of the remaining off-site wells (i.e., MW-06S, MW-06D, MW07S, MW07D and MW-10S) on a biennial basis, beginning in summer 2017.
- Generate biennial PRRs using the data from the aforementioned groundwater sampling.

The summer 2017 sampling event occurred on September 13, 2017 and discussions of its execution and data evaluation are presented in the 2017 Biennial Groundwater Sampling Letter Report (URS, 2017b). In the report, URS concluded that the trichloroethene (TCE) concentration trends show an overall decrease since 1994. URS recommended an additional round of sampling in summer 2019 to confirm this trend.

The field work, which represents the second biennial monitoring event, was performed on June 27, 2019, and included collecting water levels and groundwater samples from the five remaining off-site monitoring wells.

The data generated from the June 2019 field work are discussed below.

URS Corporation 257 West Genesee St., Suite 400 Buffalo, NY 14202 Tel: 716.856.5636 Fax: 716.856.2545



#### **Groundwater Levels and Flow Direction**

The water level measurements obtained from the June 27, 2019 monitoring event are provided in Table 1. Figure 2 shows the corresponding shallow groundwater potentiometric surface based on the measurements from the three shallow wells. The data show that groundwater flow in the overburden is to the south-southwest towards Beaver Creek. This is consistent with the groundwater flow direction observed during prior sampling events.

In June 2019, horizontal gradients in the overburden were approximately 0.027 foot/foot. The vertical gradient is downward in monitoring well pair MW-07S/D and there was a slight upward vertical gradient in MW-06S/D.

#### Sampling, Analysis and Data Usability

On June 27, 2019, URS collected groundwater samples from the monitoring wells (MW-06S, MW-06D, MW-07S, MW-07D and MW-10S) plus a QA/QC duplicate sample. Prior to sample collection, water was purged from each well with a peristaltic pump for shallow wells and a bladder pump for deep wells. Dedicated/disposable high-density polyethylene tubing was used at each well. During the well purging, water quality parameters (pH, temperature, specific conductivity, dissolved oxygen, turbidity and oxidation reduction potential) were measured utilizing a flow-through cell. The wells were purged at a rate of 1-liter per minute or less and the purge rate was adjusted to prevent the water level in the well from dropping more than 0.3 feet from the static water level. Each well was purged until the water quality parameters stabilized for a minimum of three readings. Low Flow Purge Logs can be found in Attachment 1.

Groundwater samples were transported under chain-of-custody control to Eurofins TestAmerica Laboratories, Inc., located in Amherst, New York, for the analysis of VOCs by USEPA Method 8260C. URS validated the analytical results and prepared a Data Usability Summary Report (DUSR). No data qualifications were made and all data are usable as reported. The complete validated analytical results are presented in the DUSR in Attachment 2.

#### **Analytical Summary/ Contamination Assessment**

The validated groundwater analytical results are summarized in Table 2 and shown in Figure 2. VOCs are compared to NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) No. 1.1.1 Class GA groundwater criteria. Exceedances of the groundwater criteria are indicated with an oval. The following is a summary of the analytical results:

- TCE was detected at concentrations exceeding its Class GA groundwater standard (5 micrograms per liter [μg/L]) in the samples collected from MW-06S (37 μg/L), MW-06D (20 μg/L), MW-07S (30 μg/L) and MW-07D (38 μg/L).
- Cis-1,2-dichloroethene (DCE) was detected at concentrations exceeding its Class GA groundwater standard (5 μg/L) in the samples collected from MW-06S (9.1 μg/L), MW-06D (12 μg/L) and MW-07D (22 μg/L).
- Vinyl Chloride (VC) was detected at concentrations exceeding its Class GA groundwater standard (2  $\mu$ g/L) in the samples collected from MW-06S (3.3  $\mu$ g/L) and MW-06D (7.3  $\mu$ g/L).



• No other compounds were detected at concentrations exceeding their Class GA groundwater criteria.

TCE is the primary contaminant in the off-site monitoring wells. Figure 3 displays a graphic trend analysis of TCE concentrations in these wells during the period of 1994 to 2019. The trends show an overall decrease in TCE concentrations since 1994, with the following clarifications:

- The TCE concertation in MW-06S is lower than previous results in 2017.
- The TCE concentration in MW-10S is below its standard for the second time in a row since 2009.
- All other results are lower than the previous event.

A Mann-Kendall trend analysis was performed on the historical VOC concentrations for the period of 1994 to 2019. The trend analysis is presented in Table 3 and shows the following:

- In MW-06S and MW-06D, there are upward trends for cis-1,2-DCE.
- In MW-07D, there is a downward trend of 1,1,1-trichloroethane and an upward trend of cis-1,2-DCE.
- In MW-07S, there is a downward trend of cis-1,2-DCE.
- In MW-10S, no other trends were present.

#### **Conclusions**

The south-southwest direction of groundwater flow at the Site has remained constant since 2009.

The only VOCs detected at concentrations exceeding their standards were TCE, cis-1,2-DCE and VC. The TCE concentration in MW-10S has been below its Class GA groundwater criteria for two consecutive sampling events. The Mann-Kendall analysis shows upward trends in concentrations of cis-1,2-DCE which is likely due to TCE reductive dichlorination.

The TCE concentration trends show an overall decrease since 1994.

#### **Recommendations**

At this time, URS recommends suspending groundwater sampling at monitoring well MW-10S but continue to collect depth to water data at this location during monitoring events, and that the PRR will be prepared in accordance with NYSDEC's Division of Environmental Remediation (DER-10) *Technical Guidance for Site Investigation and Remediation* (NYSDEC, 2010), which will summarize sampling data collected to date. No other changes to the current monitoring requirements are recommended.



Mr. Todd M. Caffoe September 12, 2019 Continued – page 4

#### **References**

NYSDEC, 2010. DER-10 / Technical Guidance for Site Investigation and Remediation. May 3.

- URS, 2011. Operations and Monitoring Plan for Annual Offsite Groundwater Monitoring. June
- URS, 2015. Supplemental Groundwater Sampling Letter Report, Former Griffin Technology Facility, Farmington, New York. January
- URS, 2017a. Periodic Review Report 2016, Former Griffin Technology Facility, Farmington, New York. March
- URS, 2017b. 2017 Biennial Groundwater Sampling Letter Report, Former Griffin Technology Facility (Site No. 835008), Farmington, New York. November

The following tables, figures and attachments are included as part of this field investigation letter report:

**Tables** 

| Table 1      | Groundwater Elevations – June 27, 2019                                                            |
|--------------|---------------------------------------------------------------------------------------------------|
| Table 2      | Groundwater Analytical Results (Detected Compounds Only)                                          |
| Table 3      | Groundwater Analytical Result Trends (Detected VOCs Only)                                         |
| Figures      |                                                                                                   |
| Figure 1     | Site Location                                                                                     |
| Figure 2     | 2019 Groundwater Sample Results Exceeding Criteria and Shallow Groundwater Potentiometric Surface |
| Figure 3     | Trichloroethene Trends (Existing Wells)                                                           |
| Attachments  |                                                                                                   |
| Attachment 1 | Purge Logs                                                                                        |

Attachment 2 Data Usability Summary Report and Complete Analytical Report

Should you have any questions or comments, please do not hesitate to contact me at 716-856-5636.

Sincerely,

**URS** Corporation

Michael Gutmann, PG Sr. Project Manager cc: File: 13816402 (R-1) Mr. Keely J. O'Bryan, McMahon DeGulis LLP Kevin J. McGovern, PG, CHMM (URS)

TABLES

## TABLE 1 GROUNDWATER ELEVATIONS JUNE 27, 2019 FORMER GRIFFIN TECHNOLOGY FACILITY - OFF-SITE AREA FARMINGTON, NEW YORK

| Well ID | Top of Casing<br>Elevation (ft. amsl) | Depth to Groundwater<br>(ft. from Top of Casing) | Groundwater<br>Elevation (ft. amsl) |
|---------|---------------------------------------|--------------------------------------------------|-------------------------------------|
| MW-06S  | 636.61                                | 3.81                                             | 632.80                              |
| MW-06D  | 636.83                                | 4.00                                             | 632.83                              |
| MW-07S  | 634.29                                | 3.50                                             | 630.79                              |
| MW-07D  | 634.16                                | 30.10                                            | 604.06                              |
| MW-10S  | 629.00                                | 13.91                                            | 615.09                              |

ft. = feet

amsl = above mean sea level

## TABLE 2 GROUNDWATER ANALYTICAL RESULTS (DETECTED COMPOUNDS ONLY) JUNE 2019 SAMPLING EVENT FORMER GRIFFIN TECHNOLOGY FACILITY SITE

| Location ID                |       |           | MW-06D      | MW-06S      | MW-07D      | MW-07S      | MW-10S                |
|----------------------------|-------|-----------|-------------|-------------|-------------|-------------|-----------------------|
| Sample ID                  |       |           | MW-06D      | MW-06S      | MW-07D      | MW-07S      | FD-20190627           |
| Matrix                     |       |           | Groundwater | Groundwater | Groundwater | Groundwater | Groundwater           |
| Depth Interval (           | ft)   |           | -           | -           | -           | -           | -                     |
| Date Sampled               |       |           | 06/27/19    | 06/27/19    | 06/27/19    | 06/27/19    | 06/27/19              |
| Parameter                  | Units | Criteria* |             |             |             |             | Field Duplicate (1-1) |
| Volatile Organic Compounds |       |           |             |             |             |             |                       |
| 1,1,1-Trichloroethane      | UG/L  | 5         |             | 0.99 J      |             |             |                       |
| 1,1-Dichloroethane         | UG/L  | 5         | 0.90 J      | 0.68 J      |             |             |                       |
| 1,2-Dichloroethene (cis)   | UG/L  | 5         |             | 9.1         |             | 2.1         |                       |
| Acetone                    | UG/L  | 50        |             |             |             | 3.6 J       |                       |
| Carbon disulfide           | UG/L  | 60        |             |             |             | 0.21 J      |                       |
| Trichloroethene            | UG/L  | 5         |             |             |             |             | 4.1                   |
| Vinyl chloride             | UG/L  | 2         | 7.3         | 3.3         | 0.90 J      |             |                       |

\*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

J - The reported concentration is an estimated value. Blank Cell - Not Detected.

Only Detected Results Reported.

### TABLE 2

## GROUNDWATER ANALYTICAL RESULTS (DETECTED COMPOUNDS ONLY) JUNE 2019 SAMPLING EVENT FORMER GRIFFIN TECHNOLOGY FACILITY SITE

| Leastion ID                |          |    | MW-10S      |
|----------------------------|----------|----|-------------|
| Location ID                |          |    |             |
| Sample ID                  |          |    | MW-10S      |
| Matrix                     |          |    | Groundwater |
| Depth Interval (f          | -        |    |             |
| Date Sampled               | 06/27/19 |    |             |
| Parameter                  |          |    |             |
| Volatile Organic Compounds |          |    |             |
| 1,1,1-Trichloroethane      | UG/L     | 5  |             |
| 1,1-Dichloroethane         | UG/L     | 5  |             |
| 1,2-Dichloroethene (cis)   | UG/L     | 5  |             |
| Acetone                    | UG/L     | 50 |             |
| Carbon disulfide           | UG/L     | 60 |             |
| Trichloroethene            | UG/L     | 5  | 3.5         |
| Vinyl chloride             | UG/L     | 2  |             |

\*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

J - The reported concentration is an estimated value. Blank Cell - Not Detected.

Only Detected Results Reported.

## TABLE 3 GROUNDWATER SAMPLING ANALYTICAL RESULT TRENDS (DETECTED VOCS ONLY) FORMER GRIFFIN TECHNOLOGY FACILITY SITE

#### LOCID: MW-06D

| Parameter                | Matrix | Class | Num of Data<br>Points | Num of Data<br>Point<br>Detections | Mann-Kendall<br>Statistic S | Probabilities (1) | Trend (2)    |
|--------------------------|--------|-------|-----------------------|------------------------------------|-----------------------------|-------------------|--------------|
| 1,1,1-Trichloroethane    | WG     | VOA   | 19                    | 16                                 | -102                        | No Value          |              |
| 1,1-Dichloroethane       | WG     | VOA   | 4                     | 1                                  | 3                           | 0.375             | No Trend     |
| 1,2-Dichloroethene (cis) | WG     | VOA   | 19                    | 9                                  | 45                          | 0.062             | Upward Trend |
| Acetone                  | WG     | VOA   | 19                    | 2                                  | 18                          | 0.29              | No Trend     |
| Trichloroethene          | WG     | VOA   | 19                    | 18                                 | -106                        | No Value          |              |
| Vinyl chloride           | WG     | VOA   | 19                    | 2                                  | 35                          | 0.119             | No Trend     |

#### LOCID: MW-06S

| Parameter                | Matrix | Class | Num of Data<br>Points | Num of Data<br>Point<br>Detections | Mann-Kendall<br>Statistic S | Probabilities (1) | Trend (2)    |
|--------------------------|--------|-------|-----------------------|------------------------------------|-----------------------------|-------------------|--------------|
| 1,1,1-Trichloroethane    | WG     | VOA   | 20                    | 13                                 | -36                         | 0.13              | No Trend     |
| 1,1-Dichloroethane       | WG     | VOA   | 5                     | 1                                  | 4                           | 0.242             | No Trend     |
| 1,2-Dichloroethene (cis) | WG     | VOA   | 20                    | 8                                  | 45                          | 0.082             | Upward Trend |
| Trichloroethene          | WG     | VOA   | 20                    | 16                                 | -15                         | 0.339             | No Trend     |
| Vinyl chloride           | WG     | VOA   | 20                    | 2                                  | 37                          | 0.13              | No Trend     |

#### LOCID: MW-07D

| Parameter                | Matrix | Class | Num of Data<br>Points | Num of Data<br>Point<br>Detections | Mann-Kendall<br>Statistic S | Probabilities (1) | Trend (2)      |
|--------------------------|--------|-------|-----------------------|------------------------------------|-----------------------------|-------------------|----------------|
| 1,1,1-Trichloroethane    | WG     | VOA   | 19                    | 6                                  | -65                         | 0.012             | Downward Trend |
| 1,1-Dichloroethene       | WG     | VOA   | 4                     | 1                                  | 1                           | 0.625             | No Trend       |
| 1,2-Dichloroethene (cis) | WG     | VOA   | 19                    | 19                                 | 81                          | 0.002             | Upward Trend   |
| Acetone                  | WG     | VOA   | 19                    | 1                                  | 16                          | 0.314             | No Trend       |
| Trichloroethene          | WG     | VOA   | 19                    | 19                                 | -120                        | No Value          |                |
| Vinyl chloride           | WG     | VOA   | 19                    | 7                                  | 29                          | 0.166             | No Trend       |

#### LOCID: MW-07S

| Parameter                | Matrix | Class | Num of Data<br>Points | Num of Data<br>Point<br>Detections | Mann-Kendall<br>Statistic S | Probabilities (1) | Trend (2)      |
|--------------------------|--------|-------|-----------------------|------------------------------------|-----------------------------|-------------------|----------------|
| 1,1,1-Trichloroethane    | WG     | VOA   | 20                    | 15                                 | -105                        | No Value          |                |
| 1,2-Dichloroethene (cis) | WG     | VOA   | 20                    | 17                                 | -62                         | 0.023             | Downward Trend |

For multiple observations per time period, the Mann-Kendall test to the median was used.

Data reported as less than the detection limit were used by assigning a common value to the data that was smaller than the smallest measurement in the data set. (1) - Probabilities for Mann-Kendall Nonparameteric Test for Trend (Gilbert R.O. 1987, Table A18).

(2) - Assuming a probability of error of 10% in the analyis method and or data, then the probability of no trend as calculated by the Mann-Kendall statistic is less than 10%, then it is assumed that there is a trend.

\* - Number of obsevations too small to calculate probablities.

\*\* - Probability Undefined for S=0 and N=6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31, 34, or 35.

Advanced Selection: Griffin Hist MK4 J:\Projects\Small\_Chemistry\_Jobs\DB\Program\Stat.mde 7/15/2019

WHERE [SITEID] = '13807296' AND [MATRIX] = 'WG' AND ( [SACODE] = 'FD' OR [SACODE] = 'N') AND [PRCCODE] = 'VOA' AND ( [LOCID] = 'MW-065' OR [LOCID] = 'MW-066' OR [LOCID] = 'MW-066' OR [LOCID] = 'MW-075' OR [LOCID] = 'MW-0

## TABLE 3 GROUNDWATER SAMPLING ANALYTICAL RESULT TRENDS (DETECTED VOCS ONLY) FORMER GRIFFIN TECHNOLOGY FACILITY SITE

#### LOCID: MW-07S

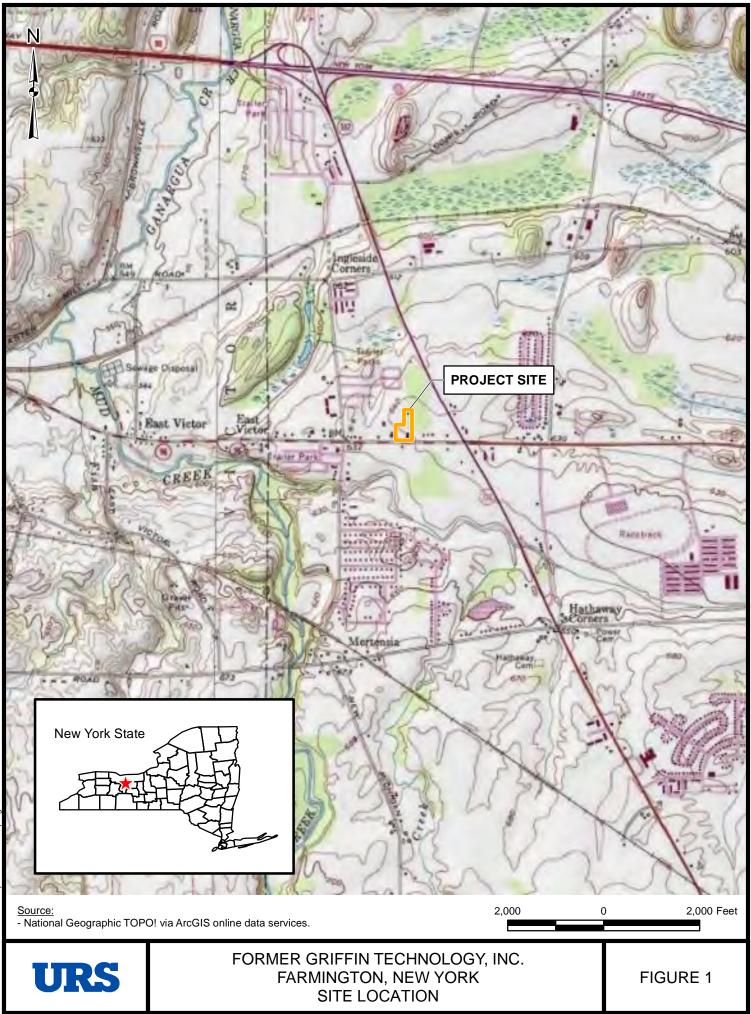
| Parameter       | Matrix | Class | Num of Data<br>Points | Num of Data<br>Point<br>Detections | Mann-Kendall<br>Statistic S | Probabilities (1) | Trend (2) |
|-----------------|--------|-------|-----------------------|------------------------------------|-----------------------------|-------------------|-----------|
| Acetone         | WG     | VOA   | 20                    | 2                                  | 37                          | 0.13              | No Trend  |
| Trichloroethene | WG     | VOA   | 20                    | 19                                 | -126                        | No Value          |           |

#### LOCID: MW-10S

| Parameter                   | Matrix | Class | Num of Data<br>Points | Num of Data<br>Point<br>Detections | Mann-Kendall<br>Statistic S | Probabilities (1) | Trend (2) |
|-----------------------------|--------|-------|-----------------------|------------------------------------|-----------------------------|-------------------|-----------|
| 1,1,1-Trichloroethane       | WG     | VOA   | 19                    | 1                                  | -16                         | 0.314             | No Trend  |
| 1,2-Dibromo-3-chloropropane | WG     | VOA   | 5                     | 1                                  | 2                           | 0.408             | No Trend  |
| 1,2-Dichloroethene (cis)    | WG     | VOA   | 19                    | 1                                  | 14                          | 0.339             | No Trend  |
| Trichloroethene             | WG     | VOA   | 19                    | 14                                 | -26                         | 0.203             | No Trend  |

For multiple observations per time period, the Mann-Kendall test to the median was used.

Data reported as less than the detection limit were used by assigning a common value to the data that was smaller than the smallest measurement in the data set. (1) - Probabilities for Mann-Kendall Nonparameteric Test for Trend (Gilbert R.O. 1987, Table A18).


(2) - Assuming a probability of error of 10% in the analyis method and or data, then the probability of no trend as calculated by the Mann-Kendall statistic is less than 10%, then it is assumed that there is a trend.

\* - Number of obsevations too small to calculate probablities.

\*\* - Probability Undefined for S=0 and N=6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31, 34, or 35.

Only Detected Results Reported.

FIGURES



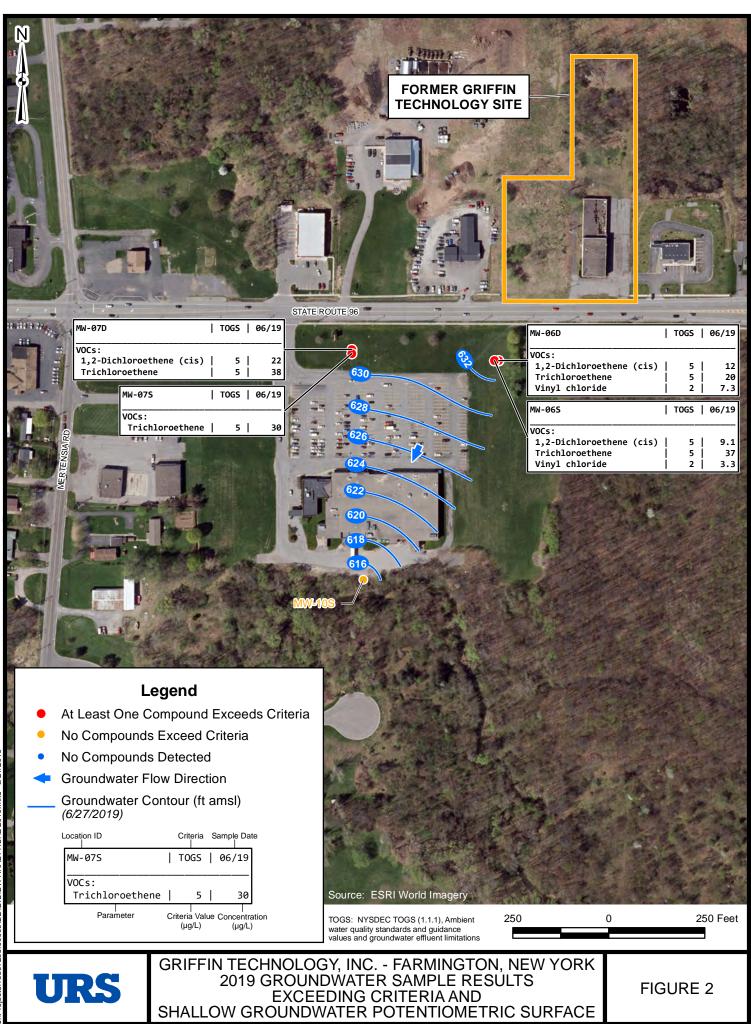



FIGURE 3 Trichloroethene Trends (Existing Wells)



# **ATTACHMENT 1**

# **PURGE LOGS**

| Project:                        | Former Griffin Technology                    | Site:                                   | Griffin                 | Well I.D.:                                | MW-06S                       |  |  |  |  |  |  |
|---------------------------------|----------------------------------------------|-----------------------------------------|-------------------------|-------------------------------------------|------------------------------|--|--|--|--|--|--|
| Date:                           | 6/27/19 Sampling Personnel:                  | Kevin McGovern                          |                         | _ Company: _                              | URS Corporation              |  |  |  |  |  |  |
| Purging/<br>Sampling<br>Device: | Geopump 2 peristaltic pump                   | _Tubing Type:                           | HDPE                    | Pump/Tubing<br>Inlet<br>Location:         | Screen midpoint              |  |  |  |  |  |  |
| Measuring<br>Point:             | Initial Depth<br>Top of Riser to Water: 3.81 | Depth to<br>Well Bottom:                | Well<br>18.90 Diameter: | 2"                                        | Screen<br>Length: <u>10'</u> |  |  |  |  |  |  |
| Casing<br>Type:                 | SCH 40 PVC                                   | Volume in 1<br>Well Casing<br>(liters): | 9.31                    | Estimated<br>Purge<br>Volume<br>(liters): | 5                            |  |  |  |  |  |  |
| Sample ID:                      | MW-06S                                       | Sample<br>Time:                         | 1052                    | QA/QC:                                    | None                         |  |  |  |  |  |  |
| Sampl                           | Sample Parameters: TCL VOCs                  |                                         |                         |                                           |                              |  |  |  |  |  |  |
|                                 |                                              |                                         |                         |                                           |                              |  |  |  |  |  |  |

## PURGE PARAMETERS

| TIME       | рН   | TEMP ( <sup>0</sup> C) | COND.<br>(mS/cm) | DISS. O <sub>2</sub><br>(mg/l) | TURB.<br>(NTU) | ORP (mV)  | FLOW RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(btor) |
|------------|------|------------------------|------------------|--------------------------------|----------------|-----------|------------------------|-----------------------------|
| 1027       | 7.02 | 13.5                   | 1.480            | 2.22                           | 4.55           | 30.6      | 200                    | 4.10                        |
| 1032       | 6.96 | 12.9                   | 1.512            | 0.31                           | 9.14           | -26.3     | 200                    | 4.19                        |
| 1037       | 6.97 | 12.8                   | 1.508            | 0.21                           | 8.01           | -40.3     | 200                    | 4.20                        |
| 1042       | 6.97 | 12.9                   | 1.508            | 0.15                           | 8.00           | -37.7     | 200                    | 4.20                        |
| 1047       | 6.97 | 12.9                   | 1.509            | 0.13                           | 4.00           | -40.0     | 200                    | 4.20                        |
| 1052       | 6.96 | 13.0                   | 1.506            | 0.12                           | 4.37           | -37.7     | 200                    | 4.20                        |
|            |      |                        |                  |                                |                |           |                        |                             |
|            |      |                        |                  |                                |                |           |                        |                             |
|            |      |                        |                  |                                |                |           |                        |                             |
|            |      |                        |                  |                                |                |           |                        |                             |
|            |      |                        |                  |                                |                |           |                        |                             |
|            |      |                        |                  |                                |                |           |                        |                             |
|            |      |                        |                  |                                |                |           |                        |                             |
|            |      |                        |                  |                                |                |           |                        |                             |
|            |      |                        |                  |                                |                |           |                        |                             |
| Tolerance: | 0.1  |                        | 3%               | 10%                            | 10%            | + or - 10 |                        |                             |

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.; 4 inch diameter well = 2470 ml/ft. ( $vol_{wl} = \pi r^2 h$ )

#### Comments:

Bolt holes on curb box stripped

| Project:                        | Former Griffin Technology                    | Site:                                   | Griffin                 | Well I.D.:                                | MW-06D                       |  |  |  |  |  |  |
|---------------------------------|----------------------------------------------|-----------------------------------------|-------------------------|-------------------------------------------|------------------------------|--|--|--|--|--|--|
| Date:                           | <u>6/27/19</u> Sampling Personnel:           | Kevin McGovern                          |                         | _ Company: _                              | URS Corporation              |  |  |  |  |  |  |
| Purging/<br>Sampling<br>Device: | Geopump 2 peristaltic pump                   | _Tubing Type:                           | HDPE                    | Pump/Tubing<br>Inlet<br>Location:         | Screen midpoint              |  |  |  |  |  |  |
| Measuring<br>Point:             | Initial Depth<br>Top of Riser to Water: 4.00 | Depth to<br>Well Bottom:                | Well<br>37.60 Diameter: | 2"                                        | Screen<br>Length: <u>10'</u> |  |  |  |  |  |  |
| Casing<br>Type:                 | SCH 40 PVC                                   | Volume in 1<br>Well Casing<br>(liters): | 20.73                   | Estimated<br>Purge<br>Volume<br>(liters): | 6                            |  |  |  |  |  |  |
| Sample ID:                      | MW-06D                                       | Sample<br>Time:                         | 1128                    | QA/QC:                                    | None                         |  |  |  |  |  |  |
| Sample                          | Sample Parameters: TCL VOCs                  |                                         |                         |                                           |                              |  |  |  |  |  |  |
|                                 |                                              |                                         |                         |                                           |                              |  |  |  |  |  |  |

## PURGE PARAMETERS

| TIME       | рН   | TEMP ( <sup>0</sup> C) | COND.<br>(mS/cm) | DISS. O <sub>2</sub><br>(mg/l) | TURB.<br>(NTU) | ORP (mV)  | FLOW RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(btor) |
|------------|------|------------------------|------------------|--------------------------------|----------------|-----------|------------------------|-----------------------------|
| 1058       | 7.00 | 13.7                   | 1.178            | 1.76                           | 10.90          | -75.0     | 200                    | 4.77                        |
| 1103       | 6.97 | 13.6                   | 1.268            | 0.19                           | 28.30          | -114.5    | 200                    | 5.07                        |
| 1108       | 6.98 | 13.9                   | 1.270            | 0.11                           | 23.11          | -120.0    | 200                    | 5.20                        |
| 1113       | 6.97 | 13.7                   | 1.281            | 0.11                           | 20.11          | -129.5    | 200                    | 5.30                        |
| 1118       | 6.98 | 13.7                   | 1.298            | 0.09                           | 30.00          | -129.8    | 200                    | 5.31                        |
| 1123       | 6.98 | 14.0                   | 1.316            | 0.10                           | 30.00          | -128.2    | 200                    | 5.23                        |
| 1128       | 6.98 | 13.3                   | 1.311            | 0.07                           | 30.00          | -127.8    | 200                    | 5.47                        |
|            |      |                        |                  |                                |                |           |                        |                             |
|            |      |                        |                  |                                |                |           |                        |                             |
|            |      |                        |                  |                                |                |           |                        |                             |
| Tolerance: | 0.1  |                        | 3%               | 10%                            | 10%            | + or - 10 |                        |                             |

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.; 4 inch diameter well = 2470 ml/ft. ( $vol_{wl} = \pi r^2 h$ )

Comments:

Curb box damaged, needs replacement

| Project:                        | Former Griffin Technology                           | Site:                                   | Griffin                 | Well I.D.:                                | MW-07S                       |  |  |  |  |  |  |
|---------------------------------|-----------------------------------------------------|-----------------------------------------|-------------------------|-------------------------------------------|------------------------------|--|--|--|--|--|--|
| Date:                           | 6/27/19 Sampling Personnel:                         | Kevin McGovern                          |                         | _ Company: _                              | URS Corporation              |  |  |  |  |  |  |
| Purging/<br>Sampling<br>Device: | Geopump 2 peristaltic pump                          | _Tubing Type:                           | HDPE                    | Pump/Tubing<br>Inlet<br>Location:         | Screen midpoint              |  |  |  |  |  |  |
| Measuring<br>Point:             | Initial Depth<br>Top of Riser to Water: <u>3.50</u> | Depth to<br>Well Bottom:                | Well<br>25.72 Diameter: | 2"                                        | Screen<br>Length: <u>10'</u> |  |  |  |  |  |  |
| Casing<br>Type:                 | SCH 40 PVC                                          | Volume in 1<br>Well Casing<br>(liters): | 13.71                   | Estimated<br>Purge<br>Volume<br>(liters): | 6                            |  |  |  |  |  |  |
| Sample ID:                      | MW-07S                                              | Sample<br>Time:                         | 1245                    | QA/QC:                                    | None                         |  |  |  |  |  |  |
| Sampl                           | Sample Parameters: TCL VOCs                         |                                         |                         |                                           |                              |  |  |  |  |  |  |
|                                 |                                                     |                                         |                         |                                           |                              |  |  |  |  |  |  |

## PURGE PARAMETERS

| TIME       | рН   | TEMP ( <sup>0</sup> C) | COND.<br>(mS/cm) | DISS. O <sub>2</sub><br>(mg/l) | TURB.<br>(NTU) | ORP (mV)  | FLOW RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(btor) |
|------------|------|------------------------|------------------|--------------------------------|----------------|-----------|------------------------|-----------------------------|
| 1215       | 6.97 | 16.3                   | 1.035            | 5.63                           | 50.30          | 92.3      | 200                    | 3.70                        |
| 1220       | 6.86 | 14.2                   | 1.172            | 0.50                           | 44.30          | 53.2      | 200                    | 4.09                        |
| 1225       | 6.88 | 13.8                   | 117.300          | 0.26                           | 33.00          | 21.0      | 200                    | 4.20                        |
| 1230       | 6.89 | 13.8                   | 1.169            | 0.19                           | 47.00          | -3.8      | 200                    | 4.20                        |
| 1235       | 6.89 | 13.6                   | 1.168            | 0.16                           | 16.00          | -23.2     | 200                    | 4.20                        |
| 1240       | 6.89 | 13.4                   | 1.173            | 0.14                           | 11.00          | -29.1     | 200                    | 4.20                        |
| 1245       | 6.89 | 13.2                   | 1.173            | 0.13                           | 9.11           | -32.3     | 200                    | 4.20                        |
|            |      |                        |                  |                                |                |           |                        |                             |
| Tolerance: | 0.1  |                        | 3%               | 10%                            | 10%            | + or - 10 |                        |                             |

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.; 4 inch diameter well = 2470 ml/ft. ( $vol_{wl} = \pi r^2 h$ )

Comments:

| Project:                        | Former Griffin Technology                     | Site:                                   | Griffin                 | Well I.D.:                                | MW-07D                       |  |
|---------------------------------|-----------------------------------------------|-----------------------------------------|-------------------------|-------------------------------------------|------------------------------|--|
| Date:                           | <u>6/27/19</u> Sampling Personne              | I: <u>Kevin McGovern</u>                |                         | _ Company: _                              | URS Corporation              |  |
| Purging/<br>Sampling<br>Device: | Bladder Pump                                  | _Tubing Type:                           | HDPE                    | Pump/Tubing<br>Inlet<br>Location:         | Screen midpoint              |  |
| Measuring<br>Point:             | Initial Depth<br>Top of Riser to Water: 30.10 | Depth to<br>Well Bottom:                | Well<br>44.40 Diameter: | 2"                                        | Screen<br>Length: <u>10'</u> |  |
| Casing<br>Type:                 | SCH 40 PVC                                    | Volume in 1<br>Well Casing<br>(liters): | 8.82                    | Estimated<br>Purge<br>Volume<br>(liters): | 6                            |  |
| Sample ID:                      | MW-07D                                        | Sample<br>Time:                         | 1325                    | QA/QC:                                    | None                         |  |
| Sample                          | e Parameters: TCL VOCs                        |                                         |                         |                                           |                              |  |

## PURGE PARAMETERS

| TIME       | рН   | TEMP ( <sup>0</sup> C) | COND.<br>(mS/cm) | DISS. O <sub>2</sub><br>(mg/l) | TURB.<br>(NTU) | ORP (mV)  | FLOW RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(btor) |
|------------|------|------------------------|------------------|--------------------------------|----------------|-----------|------------------------|-----------------------------|
| 1255       | 6.96 | 13.3                   | 1.019            | 1.70                           | 104.00         | -3.6      | 200                    | 30.40                       |
| 1300       | 6.88 | 12.9                   | 0.789            | 1.64                           | 168.00         | 3.4       | 200                    | 32.79                       |
| 1305       | 6.89 | 12.8                   | 0.570            | 3.75                           | 45.00          | 16.7      | 200                    | 35.80                       |
| 1310       | 6.92 | 12.7                   | 0.527            | 3.96                           | 40.00          | 22.1      | 200                    | 37.80                       |
| 1315       | 6.93 | 12.7                   | 0.850            | 3.90                           | 35.00          | 20.9      | 200                    | 39.70                       |
| 1320       | 6.93 | 12.7                   | 0.868            | 3.80                           | 34.00          | 19.9      | 200                    | 40.11                       |
| 1325       | 6.94 | 12.8                   | 0.921            | 3.79                           | 32.00          | 16.2      | 200                    | 41.11                       |
|            |      |                        |                  |                                |                |           |                        |                             |
|            |      |                        |                  |                                |                |           |                        |                             |
| Tolerance: | 0.1  | I                      | 3%               | 10%                            | 10%            | + or - 10 |                        |                             |

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.; 4 inch diameter well = 2470 ml/ft. ( $vol_{wl} = \pi r^2 h$ )

#### Comments:

Curb box lid loose, suggest new curb box

| Project:                        | Former Griffin Technology                            | Site:                                   | Griffin                 | Well I.D.:                                | MW-10S                       |
|---------------------------------|------------------------------------------------------|-----------------------------------------|-------------------------|-------------------------------------------|------------------------------|
| Date:                           | 6/27/19 Sampling Personnel:                          | Kevin McGovern                          |                         | _ Company: _                              | URS Corporation              |
| Purging/<br>Sampling<br>Device: | Geopump 2 peristaltic pump                           | Tubing Type:                            | HDPE                    | Pump/Tubing<br>Inlet<br>Location:         | Screen midpoint              |
| Measuring<br>Point:             | Initial Depth<br>Top of Riser to Water: <u>13.91</u> | Depth to<br>Well Bottom:                | Well<br>22.62 Diameter: | 2"                                        | Screen<br>Length: <u>10'</u> |
| Casing<br>Type:                 | SCH 40 PVC                                           | Volume in 1<br>Well Casing<br>(liters): | 5.37                    | Estimated<br>Purge<br>Volume<br>(liters): | 6                            |
| Sample ID:                      | MW-10S                                               | Sample<br>Time:                         | 947                     | QA/QC:                                    | FD-20190627                  |
| Sample                          | Parameters: TCL VOCs                                 |                                         |                         |                                           |                              |

## PURGE PARAMETERS

| TIME       | рН   | TEMP ( <sup>0</sup> C) | COND.<br>(mS/cm) | DISS. O <sub>2</sub><br>(mg/l) | TURB.<br>(NTU) | ORP (mV)  | FLOW RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(btor) |
|------------|------|------------------------|------------------|--------------------------------|----------------|-----------|------------------------|-----------------------------|
| 917        | 6.53 | 13.0                   | 2.777            | 0.81                           | 27.22          | 164.0     | 200                    | 14.23                       |
| 922        | 6.59 | 12.0                   | 2.762            | 0.24                           | 28.47          | 142.0     | 200                    | 14.29                       |
| 927        | 6.65 | 11.9                   | 2.741            | 0.19                           | 34.10          | 117.7     | 200                    | 14.30                       |
| 932        | 6.72 | 12.0                   | 2.679            | 0.15                           | 42.01          | 85.4      | 200                    | 14.30                       |
| 937        | 6.77 | 12.5                   | 2.645            | 0.13                           | 38.56          | 67.0      | 200                    | 14.30                       |
| 942        | 6.78 | 12.6                   | 2.651            | 0.13                           | 25.11          | 63.3      | 200                    | 14.30                       |
| 947        | 6.79 | 12.6                   | 2.649            | 0.12                           | 24.91          | 58.1      | 200                    | 14.30                       |
|            |      |                        |                  |                                |                |           |                        |                             |
|            |      |                        |                  |                                |                |           |                        |                             |
| Tolerance: | 0.1  |                        | 3%               | 10%                            | 10%            | + or - 10 |                        |                             |

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.; 4 inch diameter well = 2470 ml/ft. ( $vol_{wl} = \pi r^2 h$ )

Comments:

# **ATTACHMENT 2**

# DATA USABILITY SUMMARY REPORT AND COMPLETE ANALYTICAL REPORT

#### MEMORANDUM

**TO:** Mike Gutmann

**FROM:** Ann Marie Kropovitch

**DATE:** July 11, 2019

#### SUBJECT: Groundwater Analytical Results Former Griffin Technology Facility

Five groundwater samples and one field duplicate were collected from the Former Griffin Technology Facility site on June 27, 2019 and delivered to TestAmerica Laboratories, Inc. located in Amherst, NY for analysis. A trip blank accompanied the samples. The samples were received by the laboratory on June 27, 2019 intact, properly preserved and under proper chain-of-custody.

The samples were analyzed for volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method 8260C. The analytical method referenced is from "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

The following USEPA Region II standard operating procedure (SOP) was used to evaluate and, when required, qualify the data:

• Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry SW-846 Method 8260B & 8260C, SOP HW-24, Revision 4, October 2014.

A limited data review was performed for completeness of deliverables, and for compliance with method and validation SOP criteria, which includes quantitation limits, holding times, method blanks, trip blanks, surrogate recoveries, laboratory control sample (LCS) recoveries and any items presented in the laboratory's case narrative. Only method and validation SOP non-conformances are discussed in this report.

The analytical results are provided in Table 1. Definitions of USEPA Region II data qualifiers are presented at the end of this memorandum.

#### **VOCs**

No data qualifications were made. All data are usable as reported.

#### **Field Duplicate Results**

Sample FD-20190627 is a field duplicate of MW-10S. There was good agreement between the detected compounds in the sample and field duplicate as shown in Table 2. USEPA Region II validation guidelines do not provide any criteria for RPDs, nor are there any recommendations for

July 11, 2019 Analytical Data Review Former Griffin Technology Facility Page 2

the qualification of data based on field duplicate results.

cc: File: 13816402.00000

#### **DEFINITION OF USEPA REGION II DATA QUALIFIERS**

The following are definitions of the qualifiers assigned to results during the data review process.

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- **J** The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was analyzed for, but not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.

## TABLE 1 GROUNDWATER ANALYTICAL RESULTS FORMER GRIFFIN TECHNOLOGY FACILITY

| Location ID                            | FIELDQC       | MW-06D             | MW-06S      | MW-07D      | MW-07S                |       |  |
|----------------------------------------|---------------|--------------------|-------------|-------------|-----------------------|-------|--|
| Sample ID                              | TRIP BLANK    | MW-06D             | MW-06S      | MW-07D      | MW-07S<br>Groundwater |       |  |
| Matrix                                 | Water Quality | Groundwater        | Groundwater | Groundwater |                       |       |  |
| Depth Interval (ft)                    |               | -                  | •           | -           | -                     | -     |  |
| Date Sampled                           | 06/27/19      | 06/27/19           | 06/27/19    | 06/27/19    | 06/27/19              |       |  |
| Parameter                              | Units         | Trip Blank (1-1)   |             |             |                       |       |  |
| Volatile Organic Compounds             |               |                    |             |             |                       |       |  |
| 1,1,1-Trichloroethane                  | UG/L          | 1.0 U              | 1.0 U       | 0.99 J      | 1.0 U                 | 1.0 U |  |
| 1,1,2,2-Tetrachloroethane              | UG/L          | 1.0 U              | 1.0 U       | 1.0 U       | 1.0 U                 | 1.0 U |  |
| 1,1,2-Trichloro-1,2,2-trifluoroethane  | UG/L          | 1.0 U              | 1.0 U       | 1.0 U       | 1.0 U                 | 1.0 U |  |
| 1,1,2-Trichloroethane                  | UG/L          | 1.0 U              | 1.0 U       | 1.0 U       | 1.0 U                 | 1.0 U |  |
| 1,1-Dichloroethane                     | UG/L          | 1.0 U              | 0.90 J      | 0.68 J      | 1.0 U                 | 1.0 U |  |
| 1,1-Dichloroethene                     | UG/L          | 1.0 U              | 1.0 U       | 1.0 U       | 1.0 U                 | 1.0 U |  |
| 1,2,4-Trichlorobenzene                 | UG/L          | 1.0 U              | 1.0 U       | 1.0 U       | 1.0 U                 | 1.0 U |  |
| I,2-Dibromo-3-chloropropane            | UG/L          | 1.0 U              | 1.0 U       | 1.0 U       | 1.0 U                 | 1.0 U |  |
| 1,2-Dibromoethane (Ethylene dibromide) | UG/L          | 1.0 U              | 1.0 U       | 1.0 U       | · 1.0 U               | 1.0 U |  |
| I,2-Dichlorobenzene                    | UG/L          | 1.0 U              | 1.0 U       | 1.0 U       | 1.0 U                 | 1.0 U |  |
| 1,2-Dichloroethane                     | UG/L          | 1.0 U              | 1.0 U       | 1.0 U       | 1.0 U                 | 1.0 U |  |
| ,2-Dichloroethene (cis)                | UG/L          | 1.0 U              | 12          | 9.1         | 22                    | 2.1   |  |
| I,2-Dichloroethene (trans)             | UG/L          | 1.0 <sup>°</sup> U | 1.0 U       | 1.0 U       | 1.0 U                 | 1.0 U |  |
| ,2-Dichloropropane                     | UG/L          | 1.0 U              | 1.0 U       | . 1.0 U     | 1.0 U                 | 1.0 U |  |
| ,3-Dichlorobenzene                     | UG/L          | 1.0 U              | 1.0 U       | 1.0 U       | 1.0 U                 | 1.0 U |  |
| ,3-Dichloropropene (cis)               | UG/L          | 1.0 U              | 1.0 U       | 1.0 U       | 1.0 U                 | 1.0 U |  |
| ,3-Dichloropropene (trans)             | UG/L          | 1.0 U              | 1.0 U       | 1.0 U       | 1.0 Ú                 | 1.0 U |  |
| ,4-Dichlorobenzene                     | UG/L          | 1.0 U              | 1.0 U       | 1.0 U       | 1.0 U                 | 1.0 U |  |
| -Hexanone                              | UG/L          | 5.0 U              | 5.0 U       | 5.0 U       | 5.0 U                 | 5.0 U |  |
| -Methyl-2-pentanone                    | UG/L          | 5.0 U              | 5.0 U       | 5.0 U       | 5.0 U                 | 5.0 U |  |
| cetone                                 | UG/L          | 10 U               | 10 U        | 10 U        | 10 U                  | 3.6 J |  |
| enzene                                 | UG/L          | 1.0 U              | 1.0 U       | 1.0 U       | 1.0 U                 | 1.0 U |  |
| Bromodichloromethane                   | UG/L          | 1.0 U              | 1.0 U       | 1.0 U       | 1.0 U                 | 1.0 U |  |

Flags assigned during chemistry validation are shown.

U - Not detected above the reported quantitation limit.

J - The reported concentration is an estimated value.

Advanced Selection: amk-tamp J:Projecta\Small\_Chemistry\_Jdba\DB\Program\EDMS.mde Printed: 7/11/2019 10:31:06 AM [LOGDATE] = 69/27/20196

**Detection Limits shown are PQL** 

## TABLE 1 GROUNDWATER ANALYTICAL RESULTS FORMER GRIFFIN TECHNOLOGY FACILITY

| Location ID                      | FIELDQC       | MW-06D           | MW-06S             | MW-07D      | MW-07S                |          |  |
|----------------------------------|---------------|------------------|--------------------|-------------|-----------------------|----------|--|
| Sample ID                        | TRIP BLANK    | MW-06D           | MW-06S             | MW-07D      | MW-07S<br>Groundwater |          |  |
| Matrix                           | Water Quality | Groundwater      | Groundwater        | Groundwater |                       |          |  |
| Depth Interval (ft)              |               | -                | -                  | •           | -                     | •        |  |
| Date Sampled                     |               | 06/27/19         | 06/27/19           | 06/27/19    | 06/27/19              | 06/27/19 |  |
| Parameter                        | Units         | Trip Blank (1-1) |                    |             |                       |          |  |
| Volatile Organic Compounds       |               |                  |                    |             |                       |          |  |
| Bromoform                        | UG/L          | 1.0 U            | 1.0 U              | 1.0 U       | 1.0 U                 | 1.0 U    |  |
| Bromomethane                     | UG/L          | 1.0 U            | <sup>≘</sup> 1.0 U | 1.0 U       | 1.0 U                 | 1.0 U    |  |
| Carbon disulfide                 | UG/L          | 1.0 U            | 1.0 U              | 1.0 U       | 1.0 U                 | 0.21 J   |  |
| Carbon tetrachloride             | UG/L          | 1.0 U            | 1.0 U              | 1.0 U       | 1.0 U                 | 1.0 U    |  |
| Chlorobenzene                    | UG/L          | 1.0 U            | 1.0 U              | 1.0 U       | 1.0 U                 | 1.0 U    |  |
| Chloroethane                     | UG/L          | 1.0 U            | 1.0 U              | 1.0 U       | 1.0 U                 | 1.0 U    |  |
| Chloroform                       | UG/L          | 1.0 U            | 1.0 U              | ່ 1.0 U     | 1.0 U                 | 1.0 U    |  |
| Chloromethane                    | UG/L          | 1.0 U            | 1.0 U              | 1.0 U       | 1.0 U                 | 1.0 U    |  |
| Cyclohexane                      | UG/L          | 1.0 U            | 1.0 U              | 1.0 U       | 1.0 U                 | 1.0 U    |  |
| Dibromochloromethane             | UG/L          | 1.0 U            | 1.0 U              | 1.0 U       | 1.0 U                 | 1.0 U    |  |
| Dichlorodifluoromethane          | UG/L          | 1.0 U            | 1.0 U              | 1.0 U       | 1.0 U                 | 1.0 U    |  |
| Ethylbenzene                     | UG/L          | 1.0 U            | 1.0 U              | 1.0 U       | 1.0 U                 | 1.0 U    |  |
| sopropylbenzene (Cumene)         | UG/L          | 1.0 U            | 1.0 U              | 1.0 U       | 1.0 U 🤅               | 1.0 U    |  |
| Methyl acetate                   | UG/L          | 2.5 U            | 2.5 U              | 2.5 U       | 2.5 U                 | 2.5 U    |  |
| Methyl ethyl ketone (2-Butanone) | UG/L          | 10 U             | 10 U               | 10 U        | 10 U                  | 10 U     |  |
| Methyl tert-butyl ether          | UG/L          | 1.0 U            | 1.0 U              | 1.0 U       | 1.0 U                 | 1.0 U    |  |
| Vethylcyclohexane                | UG/L          | 1.0 U            | 1.0 U              | 1.0 U       | 1.0 U                 | 1.0 U    |  |
| Methylene chloride               | UG/L          | 1.0 U            | 1.0 U              | 1.0 U       | 1.0 U                 | 1.0 U    |  |
| Styrene                          | UG/L          | 1.0 U            | 1.0 U              | 1.0 U       | 1.0 U                 | 1.0 U    |  |
| Tetrachloroethene                | UG/L          | 1.0 U            | 1.0 U              | 1.0 U       | 1.0 U                 | 1.0 U    |  |
| Foluene                          | UG/L          | 1.0 U            | 1.0 U              | 1.0 U       | 1.0 U                 | 1.0 U    |  |
| Frichloroethene                  | UG/L          | 1.0 U            | 20                 | 37          | 38                    | 30       |  |
| Frichlorofluoromethane           | UG/L          | 1.0 U            | 1.0 U              | 1.0 U       | 1.0 U                 | 1.0 U    |  |

Flags assigned during chemistry validation are shown.

U - Not detected above the reported quantitation limit.

J - The reported concentration is an estimated value,

## TABLE 1 GROUNDWATER ANALYTICAL RESULTS FORMER GRIFFIN TECHNOLOGY FACILITY

| Location ID                                | FIELDQC  | MW-06D           | MW-06S                                 | MW-07D      | MW-07S        |               |
|--------------------------------------------|----------|------------------|----------------------------------------|-------------|---------------|---------------|
| Sample ID<br>Matrix<br>Depth Interval (ft) |          | TRIP BLANK       | MW-06D<br>Groundwater<br>-<br>06/27/19 | MW-06S      | MW-07D        | MW-07S        |
|                                            |          | Water Quality    |                                        | Groundwater | Groundwater   | Groundwater   |
|                                            |          | -<br>06/27/19    |                                        | -           | -<br>06/27/19 | -<br>06/27/19 |
| Date Sampled                               | 06/27/19 |                  |                                        |             |               |               |
| Parameter                                  | Units    | Trip Blank (1-1) |                                        |             |               |               |
| Volatile Organic Compounds                 | -        |                  |                                        |             |               |               |
| /inyl chloride                             | UG/L     | 1.0 U            | 7.3                                    | 3.3         | 0.90 J        | 1.0 U         |
| Kylene (total)                             | UG/L     | 2.0 U            | 2.0 U                                  | 2.0 U       | 2.0 U         | 2.0 U         |

Flags assigned during chemistry validation are shown.

U - Not detected above the reported quantitation limit.

J - The reported concentration is an estimated value.

Advanced Selection: amk-temp J:Vrojects\Small\_Chemistry\_Jdos\DBVPogram\EDMS.mde Printed: 7/11/2019 10:31:07 AM [LOGDATE] = 69/27/20196

# TABLE 1GROUNDWATER ANALYTICAL RESULTSFORMER GRIFFIN TECHNOLOGY FACILITY

| Location ID                            | MW-10S    | MW-10S                |             |  |  |  |
|----------------------------------------|-----------|-----------------------|-------------|--|--|--|
| Sample ID                              | Sample ID |                       |             |  |  |  |
| Matrix                                 |           | Groundwater           | Groundwater |  |  |  |
| Depth Interval (ft)                    |           | •                     | • 9n        |  |  |  |
| Date Sampled                           |           | 06/27/19              | 06/27/19    |  |  |  |
| Parameter                              | Units     | Field Duplicate (1-1) |             |  |  |  |
| Volatile Organic Compounds             |           |                       |             |  |  |  |
| 1,1,1-Trichloroethane                  | UG/L      | 1.0 U                 | 1.0 U       |  |  |  |
| 1,1,2,2-Tetrachloroethane              | UG/L      | 1.0 U                 | 1.0 U       |  |  |  |
| 1,1,2-Trichloro-1,2,2-trifluoroethane  | UG/L      | 1.0 U                 | 1.0 U       |  |  |  |
| 1,1,2-Trichloroethane                  | UG/L      | - 1.0 U               | 1.0 U       |  |  |  |
| 1,1-Dichloroethane                     | UG/L      | 1.0 U                 | 1.0 U       |  |  |  |
| 1,1-Dichloroethene                     | UG/L      | 1.0 U                 | 1.0 U       |  |  |  |
| 1,2,4-Trichlorobenzene                 | UG/L      | 1.0 U                 | 1.0 U       |  |  |  |
| 1,2-Dibromo-3-chloropropane            | UG/L      | 1.0 U                 | 1.0 U       |  |  |  |
| 1,2-Dibromoethane (Ethylene dibromide) | UG/L      | 1.0 U                 | 1.0 U       |  |  |  |
| 1,2-Dichlorobenzene                    | UG/L      | 1.0 U                 | 1.0 U       |  |  |  |
| 1,2-Dichloroethane                     | UG/L      | 1.0 U                 | 1.0 U       |  |  |  |
| 1,2-Dichloroethene (cis)               | UG/L      | 1.0 U                 | 1.0 U       |  |  |  |
| 1,2-Dichloroethene (trans)             | UG/L      | 1.0 U                 | 1.0 U       |  |  |  |
| 1,2-Dichloropropane                    | UG/L      | 1.0 U                 | 1.0 U       |  |  |  |
| 1,3-Dichlorobenzene                    | UG/L      | 1.0 U                 | 1.0 U       |  |  |  |
| 1,3-Dichloropropene (cis)              | UG/L      | 1.0 U                 | 1.0 U       |  |  |  |
| 1,3-Dichloropropene (trans)            | UG/L      | 1.0 U                 | 1.0 U       |  |  |  |
| 1,4-Dichlorobenzene                    | UG/L      | 1.0 U                 | 1.0 U       |  |  |  |
| 2-Hexanone                             | UG/L      | 5.0 U                 | 5.0 U       |  |  |  |
| 4-Methyl-2-pentanone                   | UG/L      | 5.0 U                 | 5.0 U       |  |  |  |
| Acetone                                | UG/L      | 10 U                  | 10 U        |  |  |  |
| Benzene                                | UG/L      | 1.0 U                 | 1.0 U       |  |  |  |
| Bromodichloromethane                   | UG/L      | 1.0 U                 | 1.0 U       |  |  |  |

Flags assigned during chemistry validation are shown.

U - Not detected above the reported quantitation limit.

J - The reported concentration is an estimated value.

**Detection Limits shown are PQL** 

#### TABLE 1 GROUNDWATER ANALYTICAL RESULTS FORMER GRIFFIN TECHNOLOGY FACILITY

| Location ID                      |             | MW-10S                | MW-10S      |  |
|----------------------------------|-------------|-----------------------|-------------|--|
| Sample ID                        | FD-20190627 | MW-10S                |             |  |
| Matrix                           |             | Groundwater           | Groundwater |  |
| Depth Interval (ft)              |             | •                     | •           |  |
| Date Sampled                     |             | 06/27/19              | 06/27/19    |  |
| Parameter                        | Units       | Field Duplicate (1-1) |             |  |
| Volatile Organic Compounds       |             |                       |             |  |
| Bromoform                        | UG/L        | 1.0 U                 | 1.0 U       |  |
| Bromomethane                     | UG/L        | 1.0 U                 | 1.0 U       |  |
| Carbon disulfide                 | UG/L        | 1.0 U                 | 1.0 U       |  |
| Carbon tetrachloride             | UG/L        | 1.0 U                 | 1.0 U       |  |
| Chlorobenzene                    | UG/L        | 1.0 U                 | 1.0 U       |  |
| Chioroethane                     | UG/L        | 1.0 U                 | 1.0 U       |  |
| Chloroform                       | UG/L        | 1.0 U                 | 1.0 U       |  |
| Chloromethane                    | UG/L        | 1.0 U                 | 1.0 ⊎       |  |
| Cyclohexane                      | UG/L        | 1.0 U                 | 1.0 U       |  |
| Dibromochloromethane             | UG/L        | 1.0 U                 | 1.0 U       |  |
| Dichlorodifluoromethane          | UG/L        | 1.0 U                 | 1.0 U       |  |
| Ethylbenzene                     | UG/L        | 1.0 U                 | 1.0 U       |  |
| lsopropylbenzene (Cumene)        | UG/L        | 1.0 U                 | 1.0 U       |  |
| Methyl acetate                   | UG/L        | 2.5 U                 | 2.5 U       |  |
| Methyl ethyl ketone (2-Butanone) | UG/L        | 10 U                  | 10 U        |  |
| Methyl tert-butyl ether          | UG/L        | 1.0 U                 | 1.0 U       |  |
| Methylcyclohexane                | UG/L        | 1.0 U                 | 1.0 U       |  |
| Methylene chloride               | UG/L        | 1.0 U                 | 1.0 U       |  |
| Styrene                          | UG/L        | 1.0 U                 | 1.0 U       |  |
| Tetrachioroethene                | UG/L        | 1.0 U                 | 1.0 U       |  |
| Toluene                          | UG/L        | 1.0 U                 | 1.0 U       |  |
| Trichloroethene                  | UG/L        | 4.1                   | 3.5         |  |
| Trichlorofluoromethane           | UG/L        | 1.0 U                 | 1.0 U       |  |

Flags assigned during chemistry validation are shown.

U - Not detected above the reported quantitation limit.

J - The reported concentration is an estimated value.

**Detection Limits shown are PQL** 

## TABLE 1GROUNDWATER ANALYTICAL RESULTSFORMER GRIFFIN TECHNOLOGY FACILITY

| Location ID                | MW-10S      | MW-10S                |         |
|----------------------------|-------------|-----------------------|---------|
| Sample ID                  | Sample ID   |                       |         |
| Matrix                     | Groundwater | Groundwater           |         |
| Depth Interval (ft)        | · ·         | -                     |         |
| Date Sampled               | 06/27/19    | 06/27/19              |         |
| Parameter                  | Units       | Field Duplicate (1-1) | · · · · |
| Volatile Organic Compounds |             |                       |         |
| Vinyl chloride             | UG/L        | ы. <b>1.0</b> U       | 1.0 U   |
| Xylene (total)             | UG/L        | 2.0 U                 | 2.0 U   |

Flags assigned during chemistry validation are shown.

U - Not detected above the reported quantitation limit.

J - The reported concentration is an estimated value.

Advanced Selection: amk-temp J:Projects\Smail\_Chemisty\_kdbt\DB\Program\EDMS.mde Printed: 7/11/2019 10:31:37 AM [LOGDATE] = 66/37/20196

#### TABLE 2 FIELD DUPLICATE COMPARISON FORMER GRIFFIN TECHNOLOGY FACILITY SITE

| Detected Compound | <b>MW-10S</b><br>(µg/L) | <b>FD-20190627</b><br>(µg/L) | <b>RPD</b> (%) |
|-------------------|-------------------------|------------------------------|----------------|
| Trichloroethene   | 3.5                     | 4.1                          | 15.8           |

RPD – relative percent difference.

 $\mu g/L$  – micrograms per liter.

## 🛟 eurofins

## Environment Testing TestAmerica

## **ANALYTICAL REPORT**

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

#### Laboratory Job ID: 480-155574-1

Client Project/Site: Griffin Diebold Project

For:

AECOM 257 West Genesee Street Suite 400 Buffalo, New York 14202-2657

Attn: George Kisluk

Authorized for release by: 7/9/2019 5:49:12 PM Rebecca Jones, Project Management Assistant I rebecca.jones@testamericainc.com

Designee for

John Schove, Project Manager II (716)504-9838 john.schove@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.



## **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 2  |
| Definitions/Glossary   | 3  |
| Case Narrative         | 4  |
| Detection Summary      | 5  |
| Client Sample Results  | 6  |
| Surrogate Summary      | 20 |
| QC Sample Results      | 21 |
| QC Association Summary | 29 |
| Lab Chronicle          | 30 |
| Certification Summary  | 31 |
| Method Summary         | 32 |
| Sample Summary         | 33 |
| Chain of Custody       | 34 |
| Receipt Checklists     | 35 |
|                        |    |

#### Client: AECOM Project/Site: Griffin Diebold Project

Quality Control

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

3

### Q

QC

RER

RPD TEF

TEQ

RL

| Qualifiers             |                                                                                                                |
|------------------------|----------------------------------------------------------------------------------------------------------------|
| GC/MS VOA<br>Qualifier | Qualifier Description                                                                                          |
| J                      | Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. |
| Glossary               |                                                                                                                |
| Abbreviation           | These commonly used abbreviations may or may not be present in this report.                                    |
| ¤                      | Listed under the "D" column to designate that the result is reported on a dry weight basis                     |
| %R                     | Percent Recovery                                                                                               |
| CFL                    | Contains Free Liquid                                                                                           |
| CNF                    | Contains No Free Liquid                                                                                        |
| DER                    | Duplicate Error Ratio (normalized absolute difference)                                                         |
| Dil Fac                | Dilution Factor                                                                                                |
| DL                     | Detection Limit (DoD/DOE)                                                                                      |
| DL, RA, RE, IN         | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample    |
| DLC                    | Decision Level Concentration (Radiochemistry)                                                                  |
| EDL                    | Estimated Detection Limit (Dioxin)                                                                             |
| LOD                    | Limit of Detection (DoD/DOE)                                                                                   |
| LOQ                    | Limit of Quantitation (DoD/DOE)                                                                                |
| MDA                    | Minimum Detectable Activity (Radiochemistry)                                                                   |
| MDC                    | Minimum Detectable Concentration (Radiochemistry)                                                              |
| MDL                    | Method Detection Limit                                                                                         |
| ML                     | Minimum Level (Dioxin)                                                                                         |
| NC                     | Not Calculated                                                                                                 |
| ND                     | Not Detected at the reporting limit (or MDL or EDL if shown)                                                   |
| PQL                    | Practical Quantitation Limit                                                                                   |

#### Job ID: 480-155574-1

#### Laboratory: Eurofins TestAmerica, Buffalo

#### Narrative

Job Narrative 480-155574-1

#### Receipt

The samples were received on 6/27/2019 4:22 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.1° C.

#### GC/MS VOA

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-480707 recovered above the upper control limit for Vinyl chloride. The samples associated with this CCV were non-detect for the affected analyte; therefore, the data have been reported. The following sample is impacted: TRIP BLANK (480-155574-7).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

### **Detection Summary**

#### Client: AECOM Project/Site: Griffin Diebold Project

| Analyte<br>1,1,1-Trichloroethane<br>1,1-Dichloroethane<br>cis-1,2-Dichloroethene | Result     | Qualifier |     |      |      |           |            |            |
|----------------------------------------------------------------------------------|------------|-----------|-----|------|------|-----------|------------|------------|
| 1,1-Dichloroethane                                                               |            |           | RL  | MDL  | Unit | Dil Fac D | Method     | Prep Type  |
|                                                                                  | 0.99       | J         | 1.0 | 0.82 | ug/L | 1         | 8260C      | Total/NA   |
| cis-1,2-Dichloroethene                                                           | 0.68       | J         | 1.0 | 0.38 | ug/L | 1         | 8260C      | Total/NA   |
|                                                                                  | 9.1        |           | 1.0 | 0.81 | ug/L | 1         | 8260C      | Total/NA   |
| Trichloroethene                                                                  | 37         |           | 1.0 | 0.46 | ug/L | 1         | 8260C      | Total/NA   |
| Vinyl chloride                                                                   | 3.3        |           | 1.0 | 0.90 | ug/L | 1         | 8260C      | Total/NA   |
| Client Sample ID: MW-0                                                           | )6D        |           |     |      |      | Lab San   | nple ID: 4 | 80-155574- |
| Analyte                                                                          | Result     | Qualifier | RL  | MDL  | Unit | Dil Fac D | Method     | Prep Type  |
| 1,1-Dichloroethane                                                               | 0.90       |           | 1.0 | 0.38 | ug/L | 1         | 8260C      | Total/NA   |
| cis-1,2-Dichloroethene                                                           | 12         |           | 1.0 | 0.81 | ug/L | 1         | 8260C      | Total/NA   |
| Trichloroethene                                                                  | 20         |           | 1.0 |      | ug/L | 1         | 8260C      | Total/NA   |
| Vinyl chloride                                                                   | 7.3        |           | 1.0 | 0.90 | ug/L | 1         | 8260C      | Total/NA   |
| Client Sample ID: MW-0                                                           | )7S        |           |     |      |      | Lab San   | nple ID: 4 | 80-155574- |
| Analyte                                                                          |            | Qualifier | RL  | MDL  | Unit | Dil Fac D | Method     | Prep Type  |
| Acetone                                                                          | 3.6        | J         | 10  | 3.0  | ug/L | 1         | 8260C      | Total/NA   |
| Carbon disulfide                                                                 | 0.21       | J         | 1.0 | 0.19 | ug/L | 1         | 8260C      | Total/NA   |
| cis-1,2-Dichloroethene                                                           | 2.1        |           | 1.0 | 0.81 | ug/L | 1         | 8260C      | Total/NA   |
| Trichloroethene                                                                  | 30         |           | 1.0 | 0.46 | ug/L | 1         | 8260C      | Total/NA   |
| Client Sample ID: MW-0                                                           | )7D        |           |     |      |      | Lab San   | nple ID: 4 | 80-155574- |
| Analyte                                                                          | Result     | Qualifier | RL  | MDL  | Unit | Dil Fac D | Method     | Prep Type  |
| cis-1,2-Dichloroethene                                                           | 22         |           | 1.0 | 0.81 | ug/L | 1         | 8260C      | Total/NA   |
| Trichloroethene                                                                  | 38         |           | 1.0 | 0.46 | ug/L | 1         | 8260C      | Total/NA   |
| Vinyl chloride                                                                   | 0.90       | J         | 1.0 | 0.90 | ug/L | 1         | 8260C      | Total/NA   |
| Client Sample ID: MW-1                                                           | <b>0</b> S |           |     |      |      | Lab San   | nple ID: 4 | 80-155574- |
| Analyte                                                                          | Result     | Qualifier | RL  | MDL  | Unit | Dil Fac D | Method     | Prep Type  |
| Trichloroethene                                                                  | 3.5        |           | 1.0 | 0.46 | ug/L | 1         | 8260C      | Total/NA   |
| Client Sample ID: FD-20                                                          | )190627    |           |     |      |      | Lab San   | nple ID: 4 | 80-155574- |
| Analyte                                                                          | Result     | Qualifier | RL  | MDL  |      | Dil Fac D | Method     | Prep Type  |
| Trichloroethene                                                                  | 4.1        |           | 1.0 | 0.46 | ug/L | 1         | 8260C      | Total/NA   |

No Detections.

This Detection Summary does not include radiochemical test results.

#### **Client Sample ID: MW-06S** Date Collected: 06/27/19 10:52 Date Received: 06/27/19 16:22

| Job | ID: | 480-1 | 155574 | -1 |
|-----|-----|-------|--------|----|

### Lab Sample ID: 480-155574-1

Matrix: Water

| Analyte                                |          | Qualifier | RL         | MDL          |      | <u>D</u> | Prepared | Analyzed                      | Dil Fac                               |
|----------------------------------------|----------|-----------|------------|--------------|------|----------|----------|-------------------------------|---------------------------------------|
| I,1,1-Trichloroethane                  | 0.99     | J         | 1.0        | 0.82         |      |          |          | 07/06/19 17:46                | 1                                     |
| 1,1,2,2-Tetrachloroethane              | ND       |           | 1.0        | 0.21         |      |          |          | 07/06/19 17:46                | 1                                     |
| 1,1,2-Trichloroethane                  | ND       |           | 1.0        | 0.23         | ug/L |          |          | 07/06/19 17:46                | 1                                     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane  | ND       |           | 1.0        | 0.31         | ug/L |          |          | 07/06/19 17:46                | 1                                     |
| 1,1-Dichloroethane                     | 0.68     | J         | 1.0        | 0.38         | -    |          |          | 07/06/19 17:46                | 1                                     |
| 1,1-Dichloroethene                     | ND       |           | 1.0        | 0.29         | -    |          |          | 07/06/19 17:46                | 1                                     |
| 1,2,4-Trichlorobenzene                 | ND       |           | 1.0        | 0.41         | -    |          |          | 07/06/19 17:46                | 1                                     |
| 1,2-Dibromo-3-Chloropropane            | ND       |           | 1.0        | 0.39         |      |          |          | 07/06/19 17:46                | 1                                     |
| 1,2-Dichlorobenzene                    | ND       |           | 1.0        | 0.79         | -    |          |          | 07/06/19 17:46                | 1                                     |
| 1,2-Dichloroethane                     | ND       |           | 1.0        | 0.21         | -    |          |          | 07/06/19 17:46                | 1                                     |
| 1,2-Dichloropropane                    | ND       |           | 1.0        | 0.72         | -    |          |          | 07/06/19 17:46                | 1                                     |
| 1,3-Dichlorobenzene                    | ND       |           | 1.0        | 0.78         | -    |          |          | 07/06/19 17:46                | 1                                     |
| 1,4-Dichlorobenzene                    | ND       |           | 1.0        | 0.84         | -    |          |          | 07/06/19 17:46                | 1                                     |
| 2-Butanone (MEK)                       | ND       |           | 10         |              | ug/L |          |          | 07/06/19 17:46                | 1                                     |
| 2-Hexanone                             | ND       |           | 5.0        |              | ug/L |          |          | 07/06/19 17:46                | 1                                     |
| 4-Methyl-2-pentanone (MIBK)            | ND       |           | 5.0<br>5.0 |              | ug/L |          |          | 07/06/19 17:46                | 1                                     |
| Acetone                                | ND       |           | 10         |              | ug/L |          |          | 07/06/19 17:46                | 1                                     |
| Benzene                                | ND       |           | 1.0        | 0.41         | -    |          |          | 07/06/19 17:46                | 1                                     |
| Bromodichloromethane                   | ND       |           | 1.0        | 0.41         | -    |          |          | 07/06/19 17:46                | · · · · · · · · · · · · · · · · · · · |
| Bromoform                              | ND       |           | 1.0        | 0.39         | -    |          |          | 07/06/19 17:46                | 1                                     |
| Bromomethane                           | ND       |           | 1.0        | 0.20         | -    |          |          | 07/06/19 17:46                | 1                                     |
| Carbon disulfide                       | ND       |           | 1.0        | 0.69         | -    |          |          | 07/06/19 17:46                | · · · · · · · 1                       |
| Carbon disunde<br>Carbon tetrachloride | ND       |           | 1.0<br>1.0 | 0.19         | -    |          |          | 07/06/19 17:46                | 1                                     |
| Carbon tetrachioride<br>Chlorobenzene  | ND<br>ND |           | 1.0<br>1.0 | 0.27         | -    |          |          | 07/06/19 17:46                | 1                                     |
| Dibromochloromethane                   | ND<br>ND |           | 1.0        | 0.75         |      |          |          | 07/06/19 17:46                | 1<br>                                 |
| Dibromocniorometnane                   | ND<br>ND |           | 1.0<br>1.0 | 0.32         | -    |          |          | 07/06/19 17:46                | 1                                     |
| Chloroethane                           | ND<br>ND |           | 1.0<br>1.0 | 0.32<br>0.34 | -    |          |          | 07/06/19 17:46 07/06/19 17:46 | 1                                     |
|                                        |          |           |            |              | -    |          |          |                               | ۱<br>۲                                |
| Chloromethane                          | ND       |           | 1.0<br>1.0 | 0.35         | -    |          |          | 07/06/19 17:46                | 1                                     |
| cis-1,2-Dichloroethene                 | 9.1      |           | 1.0<br>1.0 | 0.81<br>0.36 | -    |          |          | 07/06/19 17:46                | 1                                     |
| cis-1,3-Dichloropropene                | ND       |           | 1.0        | 0.36         | -    |          |          | 07/06/19 17:46                | 1                                     |
| Cyclohexane                            | ND       |           | 1.0        | 0.18         |      |          |          | 07/06/19 17:46                | 1                                     |
| Dichlorodifluoromethane                | ND       |           | 1.0        | 0.68         |      |          |          | 07/06/19 17:46                | 1                                     |
| Ethylbenzene                           | ND       |           | 1.0        | 0.74         | -    |          |          | 07/06/19 17:46                | 1                                     |
| 1,2-Dibromoethane                      | ND       |           | 1.0        | 0.73         | -    |          |          | 07/06/19 17:46                | 1                                     |
| lsopropylbenzene                       | ND       |           | 1.0        | 0.79         | -    |          |          | 07/06/19 17:46                | 1                                     |
| Methyl acetate                         | ND       |           | 2.5        |              | ug/L |          |          | 07/06/19 17:46                | 1                                     |
| Methyl tert-butyl ether                | ND       |           | 1.0        | 0.16         |      |          |          | 07/06/19 17:46                | 1                                     |
| Methylcyclohexane                      | ND       |           | 1.0        | 0.16         | -    |          |          | 07/06/19 17:46                | 1                                     |
| Methylene Chloride                     | ND       |           | 1.0        | 0.44         | -    |          |          | 07/06/19 17:46                | 1                                     |
| Styrene                                | ND       |           | 1.0        | 0.73         |      |          |          | 07/06/19 17:46                | 1                                     |
| Tetrachloroethene                      | ND       |           | 1.0        | 0.36         | -    |          |          | 07/06/19 17:46                | 1                                     |
| Toluene                                | ND       |           | 1.0        | 0.51         |      |          |          | 07/06/19 17:46                | 1                                     |
| rans-1,2-Dichloroethene                | ND       |           | 1.0        | 0.90         |      |          |          | 07/06/19 17:46                | 1                                     |
| rans-1,3-Dichloropropene               | ND       |           | 1.0        | 0.37         | -    |          |          | 07/06/19 17:46                | 1                                     |
| Frichloroethene                        | 37       |           | 1.0        | 0.46         | ug/L |          |          | 07/06/19 17:46                | 1                                     |
| Trichlorofluoromethane                 | ND       |           | 1.0        | 0.88         |      |          |          | 07/06/19 17:46                | 1                                     |
| /inyl chloride                         | 3.3      |           | 1.0        | 0.90         | -    |          |          | 07/06/19 17:46                | 1                                     |
| Xylenes, Total                         | ND       |           | 2.0        | 0.66         | -    |          |          | 07/06/19 17:46                | 1                                     |

Job ID: 480-155574-1

Matrix: Water

Lab Sample ID: 480-155574-1

#### Client: AECOM Project/Site: Griffin Diebold Project

#### Client Sample ID: MW-06S Date Collected: 06/27/19 10:52 Date Received: 06/27/19 16:22

| Surrogate                    | %Recovery Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
|------------------------------|---------------------|----------|----------|----------------|---------|
| Toluene-d8 (Surr)            | 99                  | 80 - 120 |          | 07/06/19 17:46 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 104                 | 77 - 120 |          | 07/06/19 17:46 | 1       |
| 4-Bromofluorobenzene (Surr)  | 98                  | 73 - 120 |          | 07/06/19 17:46 | 1       |
| Dibromofluoromethane (Surr)  | 101                 | 75 - 123 |          | 07/06/19 17:46 | 1       |

#### Client Sample ID: MW-06D Date Collected: 06/27/19 11:28 Date Received: 06/27/19 16:22

| loh | ın  | 100 . | 166 | 574-1 |  |
|-----|-----|-------|-----|-------|--|
| JOD | ID. | 400-  | 100 | 574-I |  |

## Lab Sample ID: 480-155574-2

Matrix: Water

5

| Analyte                                                   | Result Qualifier | RL  | MDL  |      | D | Prepared | Analyzed                         | Dil Fac         |
|-----------------------------------------------------------|------------------|-----|------|------|---|----------|----------------------------------|-----------------|
| 1,1,1-Trichloroethane                                     | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:09                   | 1               |
| 1,1,2,2-Tetrachloroethane                                 | ND               | 1.0 | 0.21 | -    |   |          | 07/06/19 18:09                   | 1               |
| ,1,2-Trichloroethane                                      | ND               | 1.0 | 0.23 | -    |   |          | 07/06/19 18:09                   | 1               |
| 1,1,2-Trichloro-1,2,2-trifluoroethane                     | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:09                   | 1               |
| 1,1-Dichloroethane                                        | 0.90 J           | 1.0 | 0.38 | ug/L |   |          | 07/06/19 18:09                   | 1               |
| 1,1-Dichloroethene                                        | ND               | 1.0 | 0.29 | ug/L |   |          | 07/06/19 18:09                   | 1               |
| 1,2,4-Trichlorobenzene                                    | ND               | 1.0 | 0.41 | ug/L |   |          | 07/06/19 18:09                   | 1               |
| 1,2-Dibromo-3-Chloropropane                               | ND               | 1.0 | 0.39 | ug/L |   |          | 07/06/19 18:09                   | 1               |
| 1,2-Dichlorobenzene                                       | ND               | 1.0 | 0.79 | ug/L |   |          | 07/06/19 18:09                   | 1               |
| I,2-Dichloroethane                                        | ND               | 1.0 | 0.21 | ug/L |   |          | 07/06/19 18:09                   | 1               |
| 1,2-Dichloropropane                                       | ND               | 1.0 | 0.72 | ug/L |   |          | 07/06/19 18:09                   | 1               |
| 1,3-Dichlorobenzene                                       | ND               | 1.0 | 0.78 | ug/L |   |          | 07/06/19 18:09                   | 1               |
| 1,4-Dichlorobenzene                                       | ND               | 1.0 | 0.84 | ug/L |   |          | 07/06/19 18:09                   | 1               |
| 2-Butanone (MEK)                                          | ND               | 10  | 1.3  | ug/L |   |          | 07/06/19 18:09                   | 1               |
| 2-Hexanone                                                | ND               | 5.0 | 1.2  | ug/L |   |          | 07/06/19 18:09                   | 1               |
| 1-Methyl-2-pentanone (MIBK)                               | ND               | 5.0 | 2.1  | ug/L |   |          | 07/06/19 18:09                   | 1               |
| Acetone                                                   | ND               | 10  |      | ug/L |   |          | 07/06/19 18:09                   | 1               |
| Benzene                                                   | ND               | 1.0 | 0.41 | 0    |   |          | 07/06/19 18:09                   | 1               |
| Bromodichloromethane                                      | ND               | 1.0 | 0.39 |      |   |          | 07/06/19 18:09                   | 1               |
| Bromoform                                                 | ND               | 1.0 | 0.26 | -    |   |          | 07/06/19 18:09                   | 1               |
| Bromomethane                                              | ND               | 1.0 | 0.69 | -    |   |          | 07/06/19 18:09                   | 1               |
| Carbon disulfide                                          | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:09                   |                 |
| Carbon tetrachloride                                      | ND               | 1.0 | 0.27 | -    |   |          | 07/06/19 18:09                   | 1               |
| Chlorobenzene                                             | ND               | 1.0 | 0.75 | 0    |   |          | 07/06/19 18:09                   | 1               |
| Dibromochloromethane                                      | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:09                   | · · · · · · · 1 |
| Chloroethane                                              | ND               | 1.0 | 0.32 | -    |   |          | 07/06/19 18:09                   | 1               |
| Chloroform                                                | ND               | 1.0 | 0.34 | Ū    |   |          | 07/06/19 18:09                   | 1               |
| Chloromethane                                             | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:09                   | · · · · · · · 1 |
|                                                           | 12               | 1.0 |      | ug/L |   |          | 07/06/19 18:09                   | 1               |
| : <b>is-1,2-Dichloroethene</b><br>:is-1,3-Dichloropropene | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:09                   | 1               |
|                                                           |                  |     |      | -    |   |          |                                  |                 |
|                                                           | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:09<br>07/06/19 18:09 | 1               |
| Dichlorodifluoromethane                                   | ND               | 1.0 |      | ug/L |   |          |                                  | •               |
| thylbenzene                                               | ND               | 1.0 | 0.74 |      |   |          | 07/06/19 18:09                   | 1               |
| ,2-Dibromoethane                                          | ND               | 1.0 | 0.73 | -    |   |          | 07/06/19 18:09                   | 1               |
| sopropylbenzene                                           | ND               | 1.0 | 0.79 | -    |   |          | 07/06/19 18:09                   | 1               |
| 1ethyl acetate                                            | ND               | 2.5 |      | ug/L |   |          | 07/06/19 18:09                   | 1               |
| 1ethyl tert-butyl ether                                   | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:09                   | 1               |
| lethylcyclohexane                                         | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:09                   | 1               |
| lethylene Chloride                                        | ND               | 1.0 | 0.44 |      |   |          | 07/06/19 18:09                   | 1               |
| styrene                                                   | ND               | 1.0 | 0.73 |      |   |          | 07/06/19 18:09                   | 1               |
| etrachloroethene                                          | ND               | 1.0 | 0.36 | -    |   |          | 07/06/19 18:09                   | 1               |
| oluene                                                    | ND               | 1.0 | 0.51 |      |   |          | 07/06/19 18:09                   | 1               |
| ans-1,2-Dichloroethene                                    | ND               | 1.0 | 0.90 | 0    |   |          | 07/06/19 18:09                   | 1               |
| ans-1,3-Dichloropropene                                   | ND               | 1.0 | 0.37 | ug/L |   |          | 07/06/19 18:09                   | 1               |
| richloroethene                                            | 20               | 1.0 | 0.46 | ug/L |   |          | 07/06/19 18:09                   | 1               |
| richlorofluoromethane                                     | ND               | 1.0 | 0.88 | ug/L |   |          | 07/06/19 18:09                   | 1               |
| /inyl chloride                                            | 7.3              | 1.0 | 0.90 | ug/L |   |          | 07/06/19 18:09                   | 1               |
| Kylenes, Total                                            | ND               | 2.0 | 0.66 | ug/L |   |          | 07/06/19 18:09                   | 1               |

Job ID: 480-155574-1

Matrix: Water

Lab Sample ID: 480-155574-2

#### Client: AECOM Project/Site: Griffin Diebold Project

#### Client Sample ID: MW-06D Date Collected: 06/27/19 11:28 Date Received: 06/27/19 16:22

| Surrogate                    | %Recovery Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
|------------------------------|---------------------|----------|----------|----------------|---------|
| Toluene-d8 (Surr)            | 99                  | 80 - 120 |          | 07/06/19 18:09 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 106                 | 77 - 120 |          | 07/06/19 18:09 | 1       |
| 4-Bromofluorobenzene (Surr)  | 93                  | 73 - 120 |          | 07/06/19 18:09 | 1       |
| Dibromofluoromethane (Surr)  | 97                  | 75 - 123 |          | 07/06/19 18:09 | 1       |

#### **Client Sample ID: MW-07S** Date Collected: 06/27/19 12:45 Date Received: 06/27/19 16:22

| Job | ID: | 480-1 | 5557 | '4-1 |
|-----|-----|-------|------|------|

## Lab Sample ID: 480-155574-3

Matrix: Water

| Method: 8260C - Volatile Organ<br>Analyte | Result Qualifier | RL  |      | Unit | D | Prepared | Analyzed       | Dil Fac |
|-------------------------------------------|------------------|-----|------|------|---|----------|----------------|---------|
| 1,1,1-Trichloroethane                     | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:32 | 1       |
| 1,1,2,2-Tetrachloroethane                 | ND               | 1.0 | 0.21 | ug/L |   |          | 07/06/19 18:32 | 1       |
| I,1,2-Trichloroethane                     | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:32 | 1       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane     | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:32 | 1       |
| 1,1-Dichloroethane                        | ND               | 1.0 | 0.38 | -    |   |          | 07/06/19 18:32 | 1       |
| 1,1-Dichloroethene                        | ND               | 1.0 | 0.29 | -    |   |          | 07/06/19 18:32 | 1       |
| 1,2,4-Trichlorobenzene                    | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:32 | 1       |
| 1,2-Dibromo-3-Chloropropane               | ND               | 1.0 | 0.39 |      |   |          | 07/06/19 18:32 | 1       |
| 1,2-Dichlorobenzene                       | ND               | 1.0 | 0.79 | -    |   |          | 07/06/19 18:32 | 1       |
| 1,2-Dichloroethane                        | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:32 | 1       |
| 1,2-Dichloropropane                       | ND               | 1.0 | 0.72 | -    |   |          | 07/06/19 18:32 | 1       |
| 1,3-Dichlorobenzene                       | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:32 | 1       |
| 1,4-Dichlorobenzene                       | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:32 | 1       |
| 2-Butanone (MEK)                          | ND               | 10  |      | ug/L |   |          | 07/06/19 18:32 | 1       |
| 2-Hexanone                                | ND               | 5.0 |      | ug/L |   |          | 07/06/19 18:32 | 1       |
| 4-Methyl-2-pentanone (MIBK)               | ND               | 5.0 |      | ug/L |   |          | 07/06/19 18:32 | 1       |
| Acetone                                   | 3.6 J            | 10  |      | ug/L |   |          | 07/06/19 18:32 | 1       |
| Benzene                                   | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:32 | 1       |
| Bromodichloromethane                      | ND               | 1.0 | 0.39 | -    |   |          | 07/06/19 18:32 | 1       |
| Bromoform                                 | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:32 | 1       |
| Bromomethane                              | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:32 | 1       |
| Carbon disulfide                          | 0.21 J           | 1.0 |      | ug/L |   |          | 07/06/19 18:32 | 1       |
| Carbon tetrachloride                      | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:32 | 1       |
| Chlorobenzene                             | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:32 | 1       |
| Dibromochloromethane                      | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:32 | 1       |
| Chloroethane                              | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:32 | 1       |
| Chloroform                                | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:32 | 1       |
| Chloromethane                             | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:32 | 1       |
| cis-1,2-Dichloroethene                    | 2.1              | 1.0 |      | ug/L |   |          | 07/06/19 18:32 | 1       |
| cis-1,3-Dichloropropene                   | ND               | 1.0 | 0.36 | -    |   |          | 07/06/19 18:32 | 1       |
| Cyclohexane                               | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:32 | 1       |
| Dichlorodifluoromethane                   | ND               | 1.0 | 0.68 | -    |   |          | 07/06/19 18:32 | 1       |
| Ethylbenzene                              | ND               | 1.0 | 0.74 | -    |   |          | 07/06/19 18:32 | 1       |
| 1,2-Dibromoethane                         | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:32 | 1       |
| Isopropylbenzene                          | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:32 | 1       |
| Methyl acetate                            | ND               | 2.5 |      | ug/L |   |          | 07/06/19 18:32 | 1       |
| Methyl tert-butyl ether                   | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:32 | 1       |
| Methylcyclohexane                         | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:32 | 1       |
| Methylene Chloride                        | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:32 | 1       |
| Styrene                                   | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:32 | 1       |
| Tetrachloroethene                         | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:32 | 1       |
| Toluene                                   | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:32 | 1       |
| rans-1,2-Dichloroethene                   | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:32 | 1       |
| trans-1,3-Dichloropropene                 | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:32 | 1       |
| Trichloroethene                           | 30               | 1.0 |      | ug/L |   |          | 07/06/19 18:32 | 1       |
| Trichlorofluoromethane                    | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:32 | 1       |
| Vinyl chloride                            | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:32 | 1       |
| Xylenes, Total                            | ND               | 2.0 |      | ug/L |   |          | 07/06/19 18:32 | 1       |

Eurofins TestAmerica, Buffalo

Job ID: 480-155574-1

Matrix: Water

Lab Sample ID: 480-155574-3

#### Client: AECOM Project/Site: Griffin Diebold Project

#### Client Sample ID: MW-07S Date Collected: 06/27/19 12:45 Date Received: 06/27/19 16:22

| Surrogate                    | %Recovery Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
|------------------------------|---------------------|----------|----------|----------------|---------|
| Toluene-d8 (Surr)            | 98                  | 80 - 120 |          | 07/06/19 18:32 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 101                 | 77 - 120 |          | 07/06/19 18:32 | 1       |
| 4-Bromofluorobenzene (Surr)  | 97                  | 73 - 120 |          | 07/06/19 18:32 | 1       |
| Dibromofluoromethane (Surr)  | 98                  | 75 - 123 |          | 07/06/19 18:32 | 1       |

#### Client Sample ID: MW-07D Date Collected: 06/27/19 13:25 Date Received: 06/27/19 16:22

| Job | ID: | 480-1 | 55574-1 |
|-----|-----|-------|---------|

### Lab Sample ID: 480-155574-4

Matrix: Water

5

| Analyte                              | Result Qualifier | RL  | MDL  |      | D | Prepared | Analyzed       | Dil Fac     |
|--------------------------------------|------------------|-----|------|------|---|----------|----------------|-------------|
| I,1,1-Trichloroethane                | ND               | 1.0 | 0.82 | ug/L |   |          | 07/06/19 18:55 | 1           |
| ,1,2,2-Tetrachloroethane             | ND               | 1.0 | 0.21 | ug/L |   |          | 07/06/19 18:55 | 1           |
| ,1,2-Trichloroethane                 | ND               | 1.0 | 0.23 | ug/L |   |          | 07/06/19 18:55 | 1           |
| ,1,2-Trichloro-1,2,2-trifluoroethane | ND               | 1.0 | 0.31 | ug/L |   |          | 07/06/19 18:55 | 1           |
| ,1-Dichloroethane                    | ND               | 1.0 | 0.38 | ug/L |   |          | 07/06/19 18:55 | 1           |
| ,1-Dichloroethene                    | ND               | 1.0 | 0.29 | ug/L |   |          | 07/06/19 18:55 |             |
| ,2,4-Trichlorobenzene                | ND               | 1.0 | 0.41 | ug/L |   |          | 07/06/19 18:55 |             |
| ,2-Dibromo-3-Chloropropane           | ND               | 1.0 | 0.39 | ug/L |   |          | 07/06/19 18:55 |             |
| ,2-Dichlorobenzene                   | ND               | 1.0 | 0.79 | ug/L |   |          | 07/06/19 18:55 |             |
| ,2-Dichloroethane                    | ND               | 1.0 | 0.21 | ug/L |   |          | 07/06/19 18:55 |             |
| ,2-Dichloropropane                   | ND               | 1.0 | 0.72 | ug/L |   |          | 07/06/19 18:55 |             |
| ,3-Dichlorobenzene                   | ND               | 1.0 | 0.78 | -    |   |          | 07/06/19 18:55 |             |
| ,4-Dichlorobenzene                   | ND               | 1.0 | 0.84 | -    |   |          | 07/06/19 18:55 | • • • • • • |
| 2-Butanone (MEK)                     | ND               | 10  |      | ug/L |   |          | 07/06/19 18:55 |             |
| 2-Hexanone                           | ND               | 5.0 |      | ug/L |   |          | 07/06/19 18:55 |             |
| -Methyl-2-pentanone (MIBK)           | ND               | 5.0 |      | ug/L |   |          | 07/06/19 18:55 |             |
| Acetone                              | ND               | 10  |      | ug/L |   |          | 07/06/19 18:55 |             |
| Benzene                              | ND               | 1.0 | 0.41 | •    |   |          | 07/06/19 18:55 |             |
| Bromodichloromethane                 | ND               | 1.0 | 0.39 | -    |   |          | 07/06/19 18:55 |             |
| Bromoform                            | ND               | 1.0 | 0.35 | -    |   |          | 07/06/19 18:55 |             |
| romomethane                          | ND               | 1.0 | 0.69 | -    |   |          | 07/06/19 18:55 |             |
| arbon disulfide                      | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:55 |             |
| Carbon tetrachloride                 | ND               | 1.0 | 0.19 | -    |   |          | 07/06/19 18:55 |             |
|                                      | ND               | 1.0 | 0.27 | -    |   |          | 07/06/19 18:55 |             |
|                                      |                  |     |      | -    |   |          |                |             |
| bibromochloromethane                 | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:55 |             |
| Chloroethane                         | ND               | 1.0 | 0.32 | -    |   |          | 07/06/19 18:55 |             |
| Chloroform                           | ND               | 1.0 | 0.34 | -    |   |          | 07/06/19 18:55 |             |
| Chloromethane                        | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:55 |             |
| is-1,2-Dichloroethene                | 22               | 1.0 | 0.81 | -    |   |          | 07/06/19 18:55 |             |
| is-1,3-Dichloropropene               | ND               | 1.0 | 0.36 | -    |   |          | 07/06/19 18:55 |             |
| Cyclohexane                          | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:55 |             |
| Dichlorodifluoromethane              | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:55 |             |
| thylbenzene                          | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:55 |             |
| ,2-Dibromoethane                     | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:55 |             |
| sopropylbenzene                      | ND               | 1.0 | 0.79 | -    |   |          | 07/06/19 18:55 |             |
| lethyl acetate                       | ND               | 2.5 | 1.3  | ug/L |   |          | 07/06/19 18:55 |             |
| lethyl tert-butyl ether              | ND               | 1.0 | 0.16 | ug/L |   |          | 07/06/19 18:55 |             |
| lethylcyclohexane                    | ND               | 1.0 | 0.16 | ug/L |   |          | 07/06/19 18:55 |             |
| lethylene Chloride                   | ND               | 1.0 | 0.44 | ug/L |   |          | 07/06/19 18:55 |             |
| ityrene                              | ND               | 1.0 | 0.73 | ug/L |   |          | 07/06/19 18:55 |             |
| etrachloroethene                     | ND               | 1.0 | 0.36 | ug/L |   |          | 07/06/19 18:55 |             |
| oluene                               | ND               | 1.0 | 0.51 | ug/L |   |          | 07/06/19 18:55 |             |
| ans-1,2-Dichloroethene               | ND               | 1.0 | 0.90 | ug/L |   |          | 07/06/19 18:55 |             |
| ans-1,3-Dichloropropene              | ND               | 1.0 | 0.37 | ug/L |   |          | 07/06/19 18:55 |             |
| richloroethene                       | 38               | 1.0 |      | ug/L |   |          | 07/06/19 18:55 |             |
| richlorofluoromethane                | ND               | 1.0 |      | ug/L |   |          | 07/06/19 18:55 |             |
| /inyl chloride                       | 0.90 J           | 1.0 | 0.90 | -    |   |          | 07/06/19 18:55 |             |
| (ylenes, Total                       | ND               | 2.0 |      | ug/L |   |          | 07/06/19 18:55 |             |

Job ID: 480-155574-1

Matrix: Water

5

6

Lab Sample ID: 480-155574-4

#### Client: AECOM Project/Site: Griffin Diebold Project

#### Client Sample ID: MW-07D Date Collected: 06/27/19 13:25 Date Received: 06/27/19 16:22

| Surrogate                    | %Recovery Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
|------------------------------|---------------------|----------|----------|----------------|---------|
| Toluene-d8 (Surr)            | 99                  | 80 - 120 |          | 07/06/19 18:55 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 106                 | 77 - 120 |          | 07/06/19 18:55 | 1       |
| 4-Bromofluorobenzene (Surr)  | 97                  | 73 - 120 |          | 07/06/19 18:55 | 1       |
| Dibromofluoromethane (Surr)  | 99                  | 75 - 123 |          | 07/06/19 18:55 | 1       |

#### **Client Sample ID: MW-10S** Date Collected: 06/27/19 09:47 Date Received: 06/27/19 16:22

| Inh | ID. | 480-1 | 15557 | ′ <b>4</b> _1 |
|-----|-----|-------|-------|---------------|
| 300 | ID. | -00-  | 10001 | <b>--</b> 1   |

## Lab Sample ID: 480-155574-5

Matrix: Water

| Analyte                               | Result Qualifier | RL  | MDL  |      | D | Prepared | Analyzed                         | Dil Fac              |
|---------------------------------------|------------------|-----|------|------|---|----------|----------------------------------|----------------------|
| ,1,1-Trichloroethane                  | ND               | 1.0 | 0.82 | -    |   |          | 07/06/19 19:18                   | 1                    |
| 1,1,2,2-Tetrachloroethane             | ND               | 1.0 | 0.21 | -    |   |          | 07/06/19 19:18                   | 1                    |
| 1,1,2-Trichloroethane                 | ND               | 1.0 | 0.23 | -    |   |          | 07/06/19 19:18                   | 1                    |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND               | 1.0 | 0.31 | ug/L |   |          | 07/06/19 19:18                   | 1                    |
| 1,1-Dichloroethane                    | ND               | 1.0 | 0.38 | -    |   |          | 07/06/19 19:18                   | 1                    |
| 1,1-Dichloroethene                    | ND               | 1.0 | 0.29 | -    |   |          | 07/06/19 19:18                   | 1                    |
| I,2,4-Trichlorobenzene                | ND               | 1.0 | 0.41 | -    |   |          | 07/06/19 19:18                   | 1                    |
| I,2-Dibromo-3-Chloropropane           | ND               | 1.0 | 0.39 | -    |   |          | 07/06/19 19:18                   | 1                    |
| 1,2-Dichlorobenzene                   | ND               | 1.0 | 0.79 | -    |   |          | 07/06/19 19:18                   | 1                    |
| 1,2-Dichloroethane                    | ND               | 1.0 | 0.21 | -    |   |          | 07/06/19 19:18                   | 1                    |
| 1,2-Dichloropropane                   | ND               | 1.0 | 0.72 | -    |   |          | 07/06/19 19:18                   | 1                    |
| I,3-Dichlorobenzene                   | ND               | 1.0 | 0.78 | -    |   |          | 07/06/19 19:18                   | 1                    |
| 1,4-Dichlorobenzene                   | ND               | 1.0 | 0.84 | -    |   |          | 07/06/19 19:18                   | 1                    |
| 2-Butanone (MEK)                      | ND               | 10  |      | ug/L |   |          | 07/06/19 19:18                   | 1                    |
| 2-Hexanone                            | ND               | 5.0 |      | ug/L |   |          | 07/06/19 19:18                   | 1                    |
| I-Methyl-2-pentanone (MIBK)           | ND               | 5.0 |      | ug/L |   |          | 07/06/19 19:18                   |                      |
| Acetone                               | ND               | 10  |      | ug/L |   |          | 07/06/19 19:18                   | 1                    |
| Benzene                               | ND               | 1.0 | 0.41 | -    |   |          | 07/06/19 19:18                   | 1                    |
| Bromodichloromethane                  | ND               | 1.0 | 0.41 | -    |   |          | 07/06/19 19:18                   | ····· 1              |
| Bromoform                             | ND               | 1.0 | 0.39 | -    |   |          | 07/06/19 19:18                   | 1                    |
| Bromomethane                          | ND               | 1.0 | 0.20 | -    |   |          | 07/06/19 19:18                   | 1                    |
| Carbon disulfide                      | ND               | 1.0 | 0.69 | -    |   |          | 07/06/19 19:18                   | ۱<br>۱               |
| Carbon tetrachloride                  | ND               | 1.0 | 0.19 | -    |   |          | 07/06/19 19:18                   | 1                    |
| Carbon tetrachioride                  | ND               | 1.0 | 0.27 | -    |   |          | 07/06/19 19:18<br>07/06/19 19:18 | 1                    |
|                                       |                  |     |      |      |   |          |                                  | ۲<br>۲               |
| Dibromochloromethane                  | ND               | 1.0 | 0.32 | -    |   |          | 07/06/19 19:18                   | 1                    |
| Chloroethane                          | ND               | 1.0 | 0.32 | -    |   |          | 07/06/19 19:18                   | 1                    |
| Chloroform                            | ND               | 1.0 | 0.34 | -    |   |          | 07/06/19 19:18                   | 1                    |
| Chloromethane                         | ND               | 1.0 | 0.35 | -    |   |          | 07/06/19 19:18                   | 1                    |
| cis-1,2-Dichloroethene                | ND               | 1.0 | 0.81 | -    |   |          | 07/06/19 19:18                   | 1                    |
| cis-1,3-Dichloropropene               | ND               | 1.0 | 0.36 | -    |   |          | 07/06/19 19:18                   | 1                    |
| Cyclohexane                           | ND               | 1.0 | 0.18 | -    |   |          | 07/06/19 19:18                   | 1                    |
| Dichlorodifluoromethane               | ND               | 1.0 | 0.68 | -    |   |          | 07/06/19 19:18                   | 1                    |
| Ethylbenzene                          | ND               | 1.0 | 0.74 | -    |   |          | 07/06/19 19:18                   | 1                    |
| 1,2-Dibromoethane                     | ND               | 1.0 | 0.73 |      |   |          | 07/06/19 19:18                   | 1                    |
| sopropylbenzene                       | ND               | 1.0 | 0.79 | -    |   |          | 07/06/19 19:18                   | 1                    |
| Methyl acetate                        | ND               | 2.5 |      | ug/L |   |          | 07/06/19 19:18                   | 1                    |
| Methyl tert-butyl ether               | ND               | 1.0 | 0.16 |      |   |          | 07/06/19 19:18                   | 1                    |
| Methylcyclohexane                     | ND               | 1.0 | 0.16 | -    |   |          | 07/06/19 19:18                   | 1                    |
| Methylene Chloride                    | ND               | 1.0 | 0.44 | ug/L |   |          | 07/06/19 19:18                   | 1                    |
| Styrene                               | ND               | 1.0 | 0.73 | ug/L |   |          | 07/06/19 19:18                   | 1                    |
| etrachloroethene                      | ND               | 1.0 | 0.36 | ug/L |   |          | 07/06/19 19:18                   | 1                    |
| oluene                                | ND               | 1.0 | 0.51 | ug/L |   |          | 07/06/19 19:18                   | 1                    |
| rans-1,2-Dichloroethene               | ND               | 1.0 | 0.90 |      |   |          | 07/06/19 19:18                   | 1                    |
| rans-1,3-Dichloropropene              | ND               | 1.0 | 0.37 | -    |   |          | 07/06/19 19:18                   | 1                    |
| <b>Trichloroethene</b>                | 3.5              | 1.0 | 0.46 | -    |   |          | 07/06/19 19:18                   | 1                    |
| richlorofluoromethane                 | ND               | 1.0 | 0.88 |      |   |          | 07/06/19 19:18                   | ·<br>· · · · · · · 1 |
| inyl chloride                         | ND               | 1.0 | 0.90 |      |   |          | 07/06/19 19:18                   | 1                    |
| kylenes, Total                        | ND               | 2.0 | 0.66 |      |   |          | 07/06/19 19:18                   | 1                    |

Job ID: 480-155574-1

Matrix: Water

Lab Sample ID: 480-155574-5

#### Client: AECOM Project/Site: Griffin Diebold Project

## Date Collected: 06/27/19 09:47

| Surrogate                    | %Recovery Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
|------------------------------|---------------------|----------|----------|----------------|---------|
| Toluene-d8 (Surr)            | 99                  | 80 - 120 |          | 07/06/19 19:18 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 106                 | 77 - 120 |          | 07/06/19 19:18 | 1       |
| 4-Bromofluorobenzene (Surr)  | 100                 | 73 - 120 |          | 07/06/19 19:18 | 1       |
| Dibromofluoromethane (Surr)  | 101                 | 75 - 123 |          | 07/06/19 19:18 | 1       |

## **Client Sample ID: MW-10S**

Date Received: 06/27/19 16:22

#### Client Sample ID: FD-20190627 Date Collected: 06/27/19 00:00 Date Received: 06/27/19 16:22

| Job | ID: | 480-1 | 155574-1 |
|-----|-----|-------|----------|

## Lab Sample ID: 480-155574-6

Matrix: Water

5

| Analyte                              | Result Qualifier | RL  | MDL  |      | <u>D</u> | Prepared | Analyzed       | Dil Fac |
|--------------------------------------|------------------|-----|------|------|----------|----------|----------------|---------|
| ,1,1-Trichloroethane                 | ND               | 1.0 | 0.82 | -    |          |          | 07/06/19 16:58 | 1       |
| I,1,2,2-Tetrachloroethane            | ND               | 1.0 | 0.21 | -    |          |          | 07/06/19 16:58 | 1       |
| 1,1,2-Trichloroethane                | ND               | 1.0 | 0.23 | -    |          |          | 07/06/19 16:58 | 1       |
| ,1,2-Trichloro-1,2,2-trifluoroethane | ND               | 1.0 | 0.31 | ug/L |          |          | 07/06/19 16:58 | 1       |
| ,1-Dichloroethane                    | ND               | 1.0 | 0.38 | ug/L |          |          | 07/06/19 16:58 | 1       |
| ,1-Dichloroethene                    | ND               | 1.0 | 0.29 | ug/L |          |          | 07/06/19 16:58 | 1       |
| ,2,4-Trichlorobenzene                | ND               | 1.0 | 0.41 | ug/L |          |          | 07/06/19 16:58 | 1       |
| ,2-Dibromo-3-Chloropropane           | ND               | 1.0 | 0.39 | ug/L |          |          | 07/06/19 16:58 | 1       |
| ,2-Dichlorobenzene                   | ND               | 1.0 | 0.79 | ug/L |          |          | 07/06/19 16:58 | 1       |
| ,2-Dichloroethane                    | ND               | 1.0 | 0.21 | ug/L |          |          | 07/06/19 16:58 |         |
| ,2-Dichloropropane                   | ND               | 1.0 | 0.72 | ug/L |          |          | 07/06/19 16:58 | 1       |
| ,3-Dichlorobenzene                   | ND               | 1.0 | 0.78 | ug/L |          |          | 07/06/19 16:58 |         |
| ,4-Dichlorobenzene                   | ND               | 1.0 | 0.84 | -    |          |          | 07/06/19 16:58 | 1       |
| P-Butanone (MEK)                     | ND               | 10  |      | ug/L |          |          | 07/06/19 16:58 | 1       |
| -Hexanone                            | ND               | 5.0 |      | ug/L |          |          | 07/06/19 16:58 |         |
| -Methyl-2-pentanone (MIBK)           | ND               | 5.0 |      | ug/L |          |          | 07/06/19 16:58 |         |
| cetone                               | ND               | 10  |      | ug/L |          |          | 07/06/19 16:58 |         |
| enzene                               | ND               | 1.0 | 0.41 | -    |          |          | 07/06/19 16:58 |         |
| romodichloromethane                  | ND               | 1.0 | 0.39 | -    |          |          | 07/06/19 16:58 |         |
| romoform                             | ND               | 1.0 | 0.26 | -    |          |          | 07/06/19 16:58 |         |
| romomethane                          | ND               | 1.0 | 0.69 | •    |          |          | 07/06/19 16:58 |         |
| arbon disulfide                      | ND               | 1.0 | 0.19 |      |          |          | 07/06/19 16:58 |         |
| arbon tetrachloride                  | ND               | 1.0 | 0.27 |      |          |          | 07/06/19 16:58 |         |
| hlorobenzene                         | ND               | 1.0 | 0.27 | -    |          |          | 07/06/19 16:58 |         |
| ibromochloromethane                  | ND               | 1.0 | 0.75 | -    |          |          | 07/06/19 16:58 |         |
| hloroethane                          | ND               | 1.0 | 0.32 | -    |          |          | 07/06/19 16:58 |         |
| hloroform                            | ND               | 1.0 | 0.32 | -    |          |          | 07/06/19 16:58 |         |
|                                      |                  |     |      | -    |          |          |                |         |
| hloromethane                         | ND               | 1.0 | 0.35 | -    |          |          | 07/06/19 16:58 |         |
| s-1,2-Dichloroethene                 | ND               | 1.0 | 0.81 | -    |          |          | 07/06/19 16:58 |         |
| s-1,3-Dichloropropene                | ND               | 1.0 | 0.36 | -    |          |          | 07/06/19 16:58 |         |
| yclohexane                           | ND               | 1.0 | 0.18 | -    |          |          | 07/06/19 16:58 |         |
| ichlorodifluoromethane               | ND               | 1.0 | 0.68 |      |          |          | 07/06/19 16:58 |         |
| thylbenzene                          | ND               | 1.0 | 0.74 |      |          |          | 07/06/19 16:58 |         |
| 2-Dibromoethane                      | ND               | 1.0 | 0.73 | -    |          |          | 07/06/19 16:58 |         |
| sopropylbenzene                      | ND               | 1.0 | 0.79 | -    |          |          | 07/06/19 16:58 |         |
| ethyl acetate                        | ND               | 2.5 |      | ug/L |          |          | 07/06/19 16:58 |         |
| ethyl tert-butyl ether               | ND               | 1.0 | 0.16 |      |          |          | 07/06/19 16:58 |         |
| lethylcyclohexane                    | ND               | 1.0 | 0.16 | -    |          |          | 07/06/19 16:58 |         |
| ethylene Chloride                    | ND               | 1.0 | 0.44 | -    |          |          | 07/06/19 16:58 |         |
| tyrene                               | ND               | 1.0 | 0.73 | ug/L |          |          | 07/06/19 16:58 |         |
| etrachloroethene                     | ND               | 1.0 | 0.36 | ug/L |          |          | 07/06/19 16:58 |         |
| oluene                               | ND               | 1.0 | 0.51 | ug/L |          |          | 07/06/19 16:58 |         |
| ans-1,2-Dichloroethene               | ND               | 1.0 | 0.90 | ug/L |          |          | 07/06/19 16:58 |         |
| ans-1,3-Dichloropropene              | ND               | 1.0 | 0.37 | ug/L |          |          | 07/06/19 16:58 |         |
| richloroethene                       | 4.1              | 1.0 | 0.46 | ug/L |          |          | 07/06/19 16:58 |         |
| richlorofluoromethane                | ND               | 1.0 | 0.88 | ug/L |          |          | 07/06/19 16:58 |         |
| inyl chloride                        | ND               | 1.0 | 0.90 | -    |          |          | 07/06/19 16:58 |         |
| (ylenes, Total                       | ND               | 2.0 | 0.66 | -    |          |          | 07/06/19 16:58 |         |

Job ID: 480-155574-1

Matrix: Water

Lab Sample ID: 480-155574-6

#### Client: AECOM Project/Site: Griffin Diebold Project

#### Client Sample ID: FD-20190627 Date Collected: 06/27/19 00:00 Date Received: 06/27/19 16:22

| Surrogate                    | %Recovery Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
|------------------------------|---------------------|----------|----------|----------------|---------|
| Toluene-d8 (Surr)            | 97                  | 80 - 120 |          | 07/06/19 16:58 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 101                 | 77 - 120 |          | 07/06/19 16:58 | 1       |
| 4-Bromofluorobenzene (Surr)  | 95                  | 73 - 120 |          | 07/06/19 16:58 | 1       |
| Dibromofluoromethane (Surr)  | 99                  | 75 - 123 |          | 07/06/19 16:58 | 1       |

Project/Site: Griffin Diebold Project
Client Sample ID: FD-20190627

#### **Client Sample ID: TRIP BLANK** Date Collected: 06/27/19 00:00 Date Received: 06/27/19 16:22

| Job | ID: | 480-1 | 155574 | -1 |
|-----|-----|-------|--------|----|

## Lab Sample ID: 480-155574-7

Matrix: Water

| Analyte                               | Result Qualifier | RL         | MDL  |              | D | Prepared | Analyzed                      | Dil Fac                               |  |
|---------------------------------------|------------------|------------|------|--------------|---|----------|-------------------------------|---------------------------------------|--|
| 1,1,1-Trichloroethane                 | ND               | 1.0        |      | ug/L         |   |          | 07/03/19 13:12                | 1                                     |  |
| 1,1,2,2-Tetrachloroethane             | ND               | 1.0        |      | ug/L         |   |          | 07/03/19 13:12                | 1                                     |  |
| 1,1,2-Trichloroethane                 | ND               | 1.0        | 0.23 | -            |   |          | 07/03/19 13:12                | 1                                     |  |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND               | 1.0        | 0.31 | ug/L         |   |          | 07/03/19 13:12                | 1                                     |  |
| 1,1-Dichloroethane                    | ND               | 1.0        |      | ug/L         |   |          | 07/03/19 13:12                | 1                                     |  |
| 1,1-Dichloroethene                    | ND               | 1.0        | 0.29 | ug/L         |   |          | 07/03/19 13:12                | 1                                     |  |
| 1,2,4-Trichlorobenzene                | ND               | 1.0        |      | ug/L         |   |          | 07/03/19 13:12                | 1                                     |  |
| 1,2-Dibromo-3-Chloropropane           | ND               | 1.0        | 0.39 | -            |   |          | 07/03/19 13:12                | 1                                     |  |
| 1,2-Dichlorobenzene                   | ND               | 1.0        | 0.79 | -            |   |          | 07/03/19 13:12                | 1                                     |  |
| 1,2-Dichloroethane                    | ND               | 1.0        |      | ug/L         |   |          | 07/03/19 13:12                | 1                                     |  |
| 1,2-Dichloropropane                   | ND               | 1.0        | 0.72 | -            |   |          | 07/03/19 13:12                | 1                                     |  |
| 1,3-Dichlorobenzene                   | ND               | 1.0        | 0.78 | -            |   |          | 07/03/19 13:12                | 1                                     |  |
| 1,4-Dichlorobenzene                   | ND               | 1.0        |      | ug/L         |   |          | 07/03/19 13:12                | · · · · · · · · · · · · · · · · · · · |  |
| 2-Butanone (MEK)                      | ND               | 10         |      | ug/L         |   |          | 07/03/19 13:12                | 1                                     |  |
| 2-Hexanone                            | ND               | 5.0        |      | ug/L         |   |          | 07/03/19 13:12                | 1                                     |  |
| 4-Methyl-2-pentanone (MIBK)           | ND               | 5.0        |      | ug/L         |   |          | 07/03/19 13:12                |                                       |  |
| Acetone                               | ND               | 10         |      | ug/L         |   |          | 07/03/19 13:12                | 1                                     |  |
| Benzene                               | ND               | 1.0        |      | ug/L         |   |          | 07/03/19 13:12                | 1                                     |  |
| Bromodichloromethane                  | ND               | 1.0        | 0.41 | -            |   |          | 07/03/19 13:12                | ····· 1                               |  |
| Bromoform                             | ND               | 1.0        | 0.39 |              |   |          | 07/03/19 13:12                | 1                                     |  |
| Bromomethane                          | ND               | 1.0        |      | ug/L<br>ug/L |   |          | 07/03/19 13:12                | 1                                     |  |
| Carbon disulfide                      | ND               | 1.0        |      | ug/L<br>ug/L |   |          | 07/03/19 13:12                | ا<br>1                                |  |
| Carbon disulfide                      | ND<br>ND         | 1.0        |      | ug/L<br>ug/L |   |          | 07/03/19 13:12 07/03/19 13:12 | 1                                     |  |
|                                       |                  |            |      | -            |   |          |                               | T<br>A                                |  |
| Chlorobenzene<br>Dibromochloromethane | ND               | 1.0<br>1.0 | 0.75 |              |   |          | 07/03/19 13:12                | ۲<br>۲                                |  |
| Dibromochloromethane                  | ND               | 1.0        | 0.32 | -            |   |          | 07/03/19 13:12                | 1                                     |  |
| Chloroethane                          | ND               | 1.0        | 0.32 | -            |   |          | 07/03/19 13:12                | 1                                     |  |
| Chloroform                            | ND               | 1.0        | 0.34 | -            |   |          | 07/03/19 13:12                | 1                                     |  |
| Chloromethane                         | ND               | 1.0        |      | ug/L         |   |          | 07/03/19 13:12                | 1                                     |  |
| cis-1,2-Dichloroethene                | ND               | 1.0        | 0.81 | -            |   |          | 07/03/19 13:12                | 1                                     |  |
| cis-1,3-Dichloropropene               | ND               | 1.0        | 0.36 | -            |   |          | 07/03/19 13:12                | 1                                     |  |
| Cyclohexane                           | ND               | 1.0        |      | ug/L         |   |          | 07/03/19 13:12                | 1                                     |  |
| Dichlorodifluoromethane               | ND               | 1.0        | 0.68 | -            |   |          | 07/03/19 13:12                | 1                                     |  |
| Ethylbenzene                          | ND               | 1.0        | 0.74 | -            |   |          | 07/03/19 13:12                | 1                                     |  |
| 1,2-Dibromoethane                     | ND               | 1.0        | 0.73 | -            |   |          | 07/03/19 13:12                | 1                                     |  |
| Isopropylbenzene                      | ND               | 1.0        | 0.79 | -            |   |          | 07/03/19 13:12                | 1                                     |  |
| Methyl acetate                        | ND               | 2.5        |      | ug/L         |   |          | 07/03/19 13:12                | 1                                     |  |
| Methyl tert-butyl ether               | ND               | 1.0        |      | ug/L         |   |          | 07/03/19 13:12                | 1                                     |  |
| Methylcyclohexane                     | ND               | 1.0        | 0.16 |              |   |          | 07/03/19 13:12                | 1                                     |  |
| Methylene Chloride                    | ND               | 1.0        | 0.44 | ug/L         |   |          | 07/03/19 13:12                | 1                                     |  |
| Styrene                               | ND               | 1.0        | 0.73 | ug/L         |   |          | 07/03/19 13:12                | 1                                     |  |
| Tetrachloroethene                     | ND               | 1.0        | 0.36 | -            |   |          | 07/03/19 13:12                | 1                                     |  |
| Toluene                               | ND               | 1.0        | 0.51 | ug/L         |   |          | 07/03/19 13:12                | 1                                     |  |
| trans-1,2-Dichloroethene              | ND               | 1.0        | 0.90 |              |   |          | 07/03/19 13:12                | 1                                     |  |
| rans-1,3-Dichloropropene              | ND               | 1.0        | 0.37 | -            |   |          | 07/03/19 13:12                | 1                                     |  |
| Trichloroethene                       | ND               | 1.0        | 0.46 |              |   |          | 07/03/19 13:12                | 1                                     |  |
| Trichlorofluoromethane                | ND               | 1.0        | 0.88 |              |   |          | 07/03/19 13:12                | 1                                     |  |
| Vinyl chloride                        | ND               | 1.0        | 0.90 |              |   |          | 07/03/19 13:12                | 1                                     |  |
| Xylenes, Total                        | ND               | 2.0        | 0.66 | -            |   |          | 07/03/19 13:12                | 1                                     |  |

Job ID: 480-155574-1

Matrix: Water

Lab Sample ID: 480-155574-7

#### Client: AECOM Project/Site: Griffin Diebold Project

#### Client Sample ID: TRIP BLANK Date Collected: 06/27/19 00:00 Date Received: 06/27/19 16:22

| l                            |                |              |          |                |         |
|------------------------------|----------------|--------------|----------|----------------|---------|
| Surrogate                    | %Recovery Qual | ifier Limits | Prepared | Analyzed       | Dil Fac |
| Toluene-d8 (Surr)            | 92             | 80 - 120     |          | 07/03/19 13:12 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 89             | 77 - 120     |          | 07/03/19 13:12 | 1       |
| 4-Bromofluorobenzene (Surr)  | 97             | 73 - 120     |          | 07/03/19 13:12 | 1       |
| Dibromofluoromethane (Surr)  | 100            | 75 - 123     |          | 07/03/19 13:12 | 1       |

#### **Surrogate Summary**

#### Method: 8260C - Volatile Organic Compounds by GC/MS Matrix: Water

| Matrix: Water    |                    | ·        | -        |              |                    | Prep Type: Total/NA |   |
|------------------|--------------------|----------|----------|--------------|--------------------|---------------------|---|
| Γ                |                    |          | Pe       | ercent Surre | ogate Recovery (Ad | cceptance Limits)   |   |
|                  |                    | TOL      | DCA      | BFB          | DBFM               |                     | ÷ |
| Lab Sample ID    | Client Sample ID   | (80-120) | (77-120) | (73-120)     | (75-123)           |                     |   |
| 480-155574-1     | MW-06S             | 99       | 104      | 98           | 101                |                     |   |
| 480-155574-2     | MW-06D             | 99       | 106      | 93           | 97                 |                     |   |
| 480-155574-3     | MW-07S             | 98       | 101      | 97           | 98                 |                     | _ |
| 480-155574-4     | MW-07D             | 99       | 106      | 97           | 99                 |                     |   |
| 480-155574-5     | MW-10S             | 99       | 106      | 100          | 101                |                     |   |
| 480-155574-6     | FD-20190627        | 97       | 101      | 95           | 99                 |                     |   |
| 480-155574-7     | TRIP BLANK         | 92       | 89       | 97           | 100                |                     |   |
| LCS 480-480707/5 | Lab Control Sample | 94       | 87       | 95           | 93                 |                     |   |
| LCS 480-481020/5 | Lab Control Sample | 99       | 102      | 95           | 95                 |                     |   |
| LCS 480-481024/5 | Lab Control Sample | 100      | 105      | 101          | 100                |                     |   |
| MB 480-480707/7  | Method Blank       | 96       | 89       | 90           | 99                 |                     |   |
| MB 480-481020/7  | Method Blank       | 98       | 104      | 99           | 102                |                     |   |
| MB 480-481024/7  | Method Blank       | 98       | 102      | 100          | 100                |                     |   |
|                  |                    |          |          |              |                    |                     |   |
| Surrogate Legend |                    |          |          |              |                    |                     |   |

TOL = Toluene-d8 (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

Job ID: 480-155574-1

## 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Eurofins TestAmerica, Buffalo

5

8

#### Method: 8260C - Volatile Organic Compounds by GC/MS

#### Lab Sample ID: MB 480-480707/7 Matrix: Water

Analysis Batch: 480707

#### Client Sample ID: Method Blank Prep Type: Total/NA

| Analysis Batch: 480707                | MB     | МВ        |     |              |      |   |          |                |                 |
|---------------------------------------|--------|-----------|-----|--------------|------|---|----------|----------------|-----------------|
| Analyte                               | Result | Qualifier | RL  | MDL          | Unit | D | Prepared | Analyzed       | Dil Fac         |
| 1,1,1-Trichloroethane                 | ND     |           | 1.0 | 0.82         | ug/L |   |          | 07/03/19 12:09 | 1               |
| 1,1,2,2-Tetrachloroethane             | ND     |           | 1.0 | 0.21         | ug/L |   |          | 07/03/19 12:09 | 1               |
| 1,1,2-Trichloroethane                 | ND     |           | 1.0 | 0.23         | ug/L |   |          | 07/03/19 12:09 | 1               |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND     |           | 1.0 | 0.31         | ug/L |   |          | 07/03/19 12:09 | 1               |
| 1,1-Dichloroethane                    | ND     |           | 1.0 | 0.38         | ug/L |   |          | 07/03/19 12:09 | 1               |
| 1,1-Dichloroethene                    | ND     |           | 1.0 | 0.29         | ug/L |   |          | 07/03/19 12:09 | 1               |
| 1,2,4-Trichlorobenzene                | ND     |           | 1.0 | 0.41         | ug/L |   |          | 07/03/19 12:09 | 1               |
| 1,2-Dibromo-3-Chloropropane           | ND     |           | 1.0 | 0.39         | ug/L |   |          | 07/03/19 12:09 | 1               |
| 1,2-Dichlorobenzene                   | ND     |           | 1.0 | 0.79         | ug/L |   |          | 07/03/19 12:09 | 1               |
| 1,2-Dichloroethane                    | ND     |           | 1.0 | 0.21         | ug/L |   |          | 07/03/19 12:09 | 1               |
| 1,2-Dichloropropane                   | ND     |           | 1.0 | 0.72         | ug/L |   |          | 07/03/19 12:09 | 1               |
| 1,3-Dichlorobenzene                   | ND     |           | 1.0 | 0.78         | ug/L |   |          | 07/03/19 12:09 | 1               |
| 1,4-Dichlorobenzene                   | ND     |           | 1.0 | 0.84         | ug/L |   |          | 07/03/19 12:09 | 1               |
| 2-Butanone (MEK)                      | ND     |           | 10  |              | ug/L |   |          | 07/03/19 12:09 | 1               |
| 2-Hexanone                            | ND     |           | 5.0 |              | ug/L |   |          | 07/03/19 12:09 | 1               |
| 4-Methyl-2-pentanone (MIBK)           | ND     |           | 5.0 |              | ug/L |   |          | 07/03/19 12:09 | 1               |
| Acetone                               | ND     |           | 10  |              | ug/L |   |          | 07/03/19 12:09 | 1               |
| Benzene                               | ND     |           | 1.0 | 0.41         | -    |   |          | 07/03/19 12:09 | 1               |
| Bromodichloromethane                  | ND     |           | 1.0 | 0.39         | -    |   |          | 07/03/19 12:09 |                 |
| Bromoform                             | ND     |           | 1.0 | 0.26         | -    |   |          | 07/03/19 12:09 | 1               |
| Bromomethane                          | ND     |           | 1.0 | 0.69         | -    |   |          | 07/03/19 12:09 | 1               |
| Carbon disulfide                      | ND     |           | 1.0 | 0.19         | -    |   |          | 07/03/19 12:09 |                 |
| Carbon tetrachloride                  | ND     |           | 1.0 | 0.27         | -    |   |          | 07/03/19 12:09 | 1               |
| Chlorobenzene                         | ND     |           | 1.0 | 0.75         | -    |   |          | 07/03/19 12:09 | 1               |
| Dibromochloromethane                  | ND     |           | 1.0 | 0.32         | -    |   |          | 07/03/19 12:09 |                 |
| Chloroethane                          | ND     |           | 1.0 | 0.32         | -    |   |          | 07/03/19 12:09 | 1               |
| Chloroform                            | ND     |           | 1.0 | 0.34         | -    |   |          | 07/03/19 12:09 | 1               |
| Chloromethane                         | ND     |           | 1.0 | 0.35         | -    |   |          | 07/03/19 12:09 |                 |
| cis-1,2-Dichloroethene                | ND     |           | 1.0 | 0.81         | -    |   |          | 07/03/19 12:09 | 1               |
| cis-1,3-Dichloropropene               | ND     |           | 1.0 | 0.36         | -    |   |          | 07/03/19 12:09 | 1               |
| Cyclohexane                           | ND     |           | 1.0 | 0.18         | -    |   |          | 07/03/19 12:09 |                 |
| Dichlorodifluoromethane               | ND     |           | 1.0 | 0.68         | -    |   |          | 07/03/19 12:09 | 1               |
| Ethylbenzene                          | ND     |           | 1.0 |              |      |   |          | 07/03/19 12:09 | 1               |
| 1.2-Dibromoethane                     | ND     |           | 1.0 | 0.74<br>0.73 |      |   |          | 07/03/19 12:09 | · · · · · · · 1 |
| Isopropylbenzene                      | ND     |           | 1.0 | 0.73         | -    |   |          | 07/03/19 12:09 | 1               |
| ,                                     | ND     |           | 2.5 |              | -    |   |          |                | 1               |
| Methyl acetate                        |        |           |     |              | ug/L |   |          | 07/03/19 12:09 |                 |
| Methyl tert-butyl ether               | ND     |           | 1.0 | 0.16         |      |   |          | 07/03/19 12:09 | 1               |
| Methylcyclohexane                     | ND     |           | 1.0 | 0.16         | -    |   |          | 07/03/19 12:09 | 1               |
| Methylene Chloride                    | 0.527  | J         | 1.0 | 0.44         |      |   |          | 07/03/19 12:09 | ۱<br>۸          |
| Styrene                               | ND     |           | 1.0 | 0.73         | U U  |   |          | 07/03/19 12:09 | 1               |
| Tetrachloroethene                     |        |           | 1.0 | 0.36         | -    |   |          | 07/03/19 12:09 | 1               |
| Toluene                               | ND     |           | 1.0 | 0.51         |      |   |          | 07/03/19 12:09 | ۲<br>۲          |
| trans-1,2-Dichloroethene              | ND     |           | 1.0 | 0.90         |      |   |          | 07/03/19 12:09 | 1               |
| trans-1,3-Dichloropropene             | ND     |           | 1.0 | 0.37         |      |   |          | 07/03/19 12:09 | 1               |
| Trichloroethene                       | ND     |           | 1.0 | 0.46         |      |   |          | 07/03/19 12:09 | ۲<br>۲          |
| Trichlorofluoromethane                | ND     |           | 1.0 | 0.88         |      |   |          | 07/03/19 12:09 | 1               |
| Vinyl chloride                        | ND     |           | 1.0 | 0.90         | -    |   |          | 07/03/19 12:09 | 1               |
| Xylenes, Total                        | ND     |           | 2.0 | 0.66         | ug/L |   |          | 07/03/19 12:09 | 1               |

Eurofins TestAmerica, Buffalo

#### Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

#### Lab Sample ID: MB 480-480707/7 Matrix: Water

#### Analysis Batch: 480707

| Client Sample ID | : Method Blank |
|------------------|----------------|
| Prep             | Type: Total/NA |

**Client Sample ID: Lab Control Sample** 

|                              | MB MB            |            |                   |         |
|------------------------------|------------------|------------|-------------------|---------|
| Surrogate                    | %Recovery Qualit | ïer Limits | Prepared Analyzed | Dil Fac |
| Toluene-d8 (Surr)            | 96               | 80 - 120   | 07/03/19 12:09    | 9 1     |
| 1,2-Dichloroethane-d4 (Surr) | 89               | 77 - 120   | 07/03/19 12:09    | 9 1     |
| 4-Bromofluorobenzene (Surr)  | 90               | 73 - 120   | 07/03/19 12:09    | 91      |
| Dibromofluoromethane (Surr)  | 99               | 75 - 123   | 07/03/19 12:09    | 9 1     |

#### Lab Sample ID: LCS 480-480707/5 Matrix: Water

Analysis Batch: 480707

| Analysis Batch. 400707              | Spike | LCS    | LCS       |      |          | %Rec.               |  |
|-------------------------------------|-------|--------|-----------|------|----------|---------------------|--|
| Analyte                             | Added | Result | Qualifier | Unit | D %Rec   | Limits              |  |
| 1,1,1-Trichloroethane               | 25.0  | 23.3   |           | ug/L | 93       | 73 - 126            |  |
| 1,1,2,2-Tetrachloroethane           | 25.0  | 23.7   |           | ug/L | 95       | 76 <sub>-</sub> 120 |  |
| 1,1,2-Trichloroethane               | 25.0  | 24.4   |           | ug/L | 98       | 76 - 122            |  |
| 1,1,2-Trichloro-1,2,2-trifluoroetha | 25.0  | 22.0   |           | ug/L | 88       | 61 - 148            |  |
| ne<br>1,1-Dichloroethane            | 25.0  | 23.1   |           | ug/L | 92       | 77 - 120            |  |
| 1,1-Dichloroethene                  | 25.0  | 23.1   |           | ug/L | 92<br>95 | 66 - 127            |  |
| 1,2,4-Trichlorobenzene              | 25.0  | 23.5   |           | ug/L | 93       | 79 - 122            |  |
| 1,2-Dibromo-3-Chloropropane         | 25.0  | 23.3   |           | ug/L | 94<br>91 | 56 - 134            |  |
| 1,2-Dichlorobenzene                 | 25.0  | 24.3   |           | ug/L | 97       | 80 - 124            |  |
| 1,2-Dichloroethane                  | 25.0  | 21.0   |           | ug/L | 84       | 75 - 120            |  |
| 1,2-Dichloropropane                 | 25.0  | 23.6   |           | ug/L | 94       | 76 - 120            |  |
| 1,3-Dichlorobenzene                 | 25.0  | 24.3   |           | ug/L | 97       | 77 - 120            |  |
| 1,4-Dichlorobenzene                 | 25.0  | 24.0   |           | ug/L | 96       | 80 - 120            |  |
| 2-Butanone (MEK)                    | 125   | 105    |           | ug/L | 84       | 57 <u>-</u> 140     |  |
| 2-Hexanone                          | 125   | 123    |           | ug/L | 98       | 65 - 127            |  |
| 4-Methyl-2-pentanone (MIBK)         | 125   | 120    |           | ug/L | 92       | 71 - 125            |  |
| Acetone                             | 125   | 115    |           | ug/L | 92       | 56 - 142            |  |
| Benzene                             | 25.0  | 24.3   |           | ug/L | 97       | 71 - 124            |  |
| Bromodichloromethane                | 25.0  | 23.2   |           | ug/L | 93       | 80 - 122            |  |
| Bromoform                           | 25.0  | 26.3   |           | ug/L | 105      | 61 - 132            |  |
| Bromomethane                        | 25.0  | 23.7   |           | ug/L | 95       | 55 <u>-</u> 144     |  |
| Carbon disulfide                    | 25.0  | 24.2   |           | ug/L | 97       | 59 - 134            |  |
| Carbon tetrachloride                | 25.0  | 23.4   |           | ug/L | 94       | 72 - 134            |  |
| Chlorobenzene                       | 25.0  | 23.8   |           | ug/L | 95       | 80 - 120            |  |
| Dibromochloromethane                | 25.0  | 25.7   |           | ug/L | 103      | 75 - 125            |  |
| Chloroethane                        | 25.0  | 28.3   |           | ug/L | 113      | 69 - 136            |  |
| Chloroform                          | 25.0  | 20.1   |           | ug/L | 80       | 73 - 127            |  |
| Chloromethane                       | 25.0  | 25.9   |           | ug/L | 104      | 68 - 124            |  |
| cis-1,2-Dichloroethene              | 25.0  | 23.5   |           | ug/L | 94       | 74 <sub>-</sub> 124 |  |
| cis-1,3-Dichloropropene             | 25.0  | 24.6   |           | ug/L | 99       | 74 - 124            |  |
| Cyclohexane                         | 25.0  | 21.0   |           | ug/L | 84       | 59 <sub>-</sub> 135 |  |
| Dichlorodifluoromethane             | 25.0  | 23.6   |           | ug/L | 94       | 59 - 135            |  |
| Ethylbenzene                        | 25.0  | 23.3   |           | ug/L | 93       | 77 - 123            |  |
| 1,2-Dibromoethane                   | 25.0  | 23.4   |           | ug/L | 94       | 77 - 120            |  |
| Isopropylbenzene                    | 25.0  | 23.2   |           | ug/L | 93       | 77 - 122            |  |
| Methyl acetate                      | 50.0  | 41.3   |           | ug/L | 83       | 74 - 133            |  |
| Methyl tert-butyl ether             | 25.0  | 22.6   |           | ug/L | 90       | 77 - 120            |  |
| Methylcyclohexane                   | 25.0  | 22.9   |           | ug/L | 92       | 68 - 134            |  |

Eurofins TestAmerica, Buffalo

Prep Type: Total/NA

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

#### Job ID: 480-155574-1

**Prep Type: Total/NA** 

**Client Sample ID: Lab Control Sample** 

## 1 2 3 4 5 6 7 8

## Client Sample ID: Method Blank

Prep Type: Total/NA

Lab Sample ID: LCS 480-480707/5 Matrix: Water

#### Analysis Batch: 480707

|                           | Spike | LCS    | LCS       |      |   |      | %Rec.    |
|---------------------------|-------|--------|-----------|------|---|------|----------|
| Analyte                   | Added | Result | Qualifier | Unit | D | %Rec | Limits   |
| Methylene Chloride        | 25.0  | 23.0   |           | ug/L |   | 92   | 75 - 124 |
| Styrene                   | 25.0  | 25.2   |           | ug/L |   | 101  | 80 - 120 |
| Tetrachloroethene         | 25.0  | 24.7   |           | ug/L |   | 99   | 74 - 122 |
| Toluene                   | 25.0  | 24.1   |           | ug/L |   | 96   | 80 - 122 |
| trans-1,2-Dichloroethene  | 25.0  | 24.2   |           | ug/L |   | 97   | 73 - 127 |
| trans-1,3-Dichloropropene | 25.0  | 23.5   |           | ug/L |   | 94   | 80 - 120 |
| Trichloroethene           | 25.0  | 23.7   |           | ug/L |   | 95   | 74 - 123 |
| Trichlorofluoromethane    | 25.0  | 23.0   |           | ug/L |   | 92   | 62 - 150 |
| Vinyl chloride            | 25.0  | 28.1   |           | ug/L |   | 112  | 65 - 133 |

|                              | LCS       | LCS       |          |
|------------------------------|-----------|-----------|----------|
| Surrogate                    | %Recovery | Qualifier | Limits   |
| Toluene-d8 (Surr)            | 94        |           | 80 - 120 |
| 1,2-Dichloroethane-d4 (Surr) | 87        |           | 77 - 120 |
| 4-Bromofluorobenzene (Surr)  | 95        |           | 73 - 120 |
| Dibromofluoromethane (Surr)  | 93        |           | 75 - 123 |

#### Lab Sample ID: MB 480-481020/7 Matrix: Water Analysis Batch: 481020

|                                       | MB     | MB        |     |      |      |   |          |                |         |
|---------------------------------------|--------|-----------|-----|------|------|---|----------|----------------|---------|
| Analyte                               | Result | Qualifier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| 1,1,1-Trichloroethane                 | ND     |           | 1.0 | 0.82 | ug/L |   |          | 07/06/19 14:18 | 1       |
| 1,1,2,2-Tetrachloroethane             | ND     |           | 1.0 | 0.21 | ug/L |   |          | 07/06/19 14:18 | 1       |
| 1,1,2-Trichloroethane                 | ND     |           | 1.0 | 0.23 | ug/L |   |          | 07/06/19 14:18 | 1       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND     |           | 1.0 | 0.31 | ug/L |   |          | 07/06/19 14:18 | 1       |
| 1,1-Dichloroethane                    | ND     |           | 1.0 | 0.38 | ug/L |   |          | 07/06/19 14:18 | 1       |
| 1,1-Dichloroethene                    | ND     |           | 1.0 | 0.29 | ug/L |   |          | 07/06/19 14:18 | 1       |
| 1,2,4-Trichlorobenzene                | ND     |           | 1.0 | 0.41 | ug/L |   |          | 07/06/19 14:18 | 1       |
| 1,2-Dibromo-3-Chloropropane           | ND     |           | 1.0 | 0.39 | ug/L |   |          | 07/06/19 14:18 | 1       |
| 1,2-Dichlorobenzene                   | ND     |           | 1.0 | 0.79 | ug/L |   |          | 07/06/19 14:18 | 1       |
| 1,2-Dichloroethane                    | ND     |           | 1.0 | 0.21 | ug/L |   |          | 07/06/19 14:18 | 1       |
| 1,2-Dichloropropane                   | ND     |           | 1.0 | 0.72 | ug/L |   |          | 07/06/19 14:18 | 1       |
| 1,3-Dichlorobenzene                   | ND     |           | 1.0 | 0.78 | ug/L |   |          | 07/06/19 14:18 | 1       |
| 1,4-Dichlorobenzene                   | ND     |           | 1.0 | 0.84 | ug/L |   |          | 07/06/19 14:18 | 1       |
| 2-Butanone (MEK)                      | ND     |           | 10  | 1.3  | ug/L |   |          | 07/06/19 14:18 | 1       |
| 2-Hexanone                            | ND     |           | 5.0 | 1.2  | ug/L |   |          | 07/06/19 14:18 | 1       |
| 4-Methyl-2-pentanone (MIBK)           | ND     |           | 5.0 | 2.1  | ug/L |   |          | 07/06/19 14:18 | 1       |
| Acetone                               | ND     |           | 10  | 3.0  | ug/L |   |          | 07/06/19 14:18 | 1       |
| Benzene                               | ND     |           | 1.0 | 0.41 | ug/L |   |          | 07/06/19 14:18 | 1       |
| Bromodichloromethane                  | ND     |           | 1.0 | 0.39 | ug/L |   |          | 07/06/19 14:18 | 1       |
| Bromoform                             | ND     |           | 1.0 | 0.26 | ug/L |   |          | 07/06/19 14:18 | 1       |
| Bromomethane                          | ND     |           | 1.0 | 0.69 | ug/L |   |          | 07/06/19 14:18 | 1       |
| Carbon disulfide                      | ND     |           | 1.0 | 0.19 | ug/L |   |          | 07/06/19 14:18 | 1       |
| Carbon tetrachloride                  | ND     |           | 1.0 | 0.27 | ug/L |   |          | 07/06/19 14:18 | 1       |
| Chlorobenzene                         | ND     |           | 1.0 | 0.75 | ug/L |   |          | 07/06/19 14:18 | 1       |
| Dibromochloromethane                  | ND     |           | 1.0 | 0.32 | ug/L |   |          | 07/06/19 14:18 | 1       |
| Chloroethane                          | ND     |           | 1.0 | 0.32 | ug/L |   |          | 07/06/19 14:18 | 1       |
| Chloroform                            | ND     |           | 1.0 | 0.34 | ug/L |   |          | 07/06/19 14:18 | 1       |

#### Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

#### Lab Sample ID: MB 480-481020/7 Matrix: Water

Analysis Batch: 481020

| Analysis Datch. 401020    | МВ     | МВ        |     |      |      |   |          |                |         |   |
|---------------------------|--------|-----------|-----|------|------|---|----------|----------------|---------|---|
| Analyte                   | Result | Qualifier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |   |
| Chloromethane             | ND     |           | 1.0 | 0.35 | ug/L |   |          | 07/06/19 14:18 | 1       |   |
| cis-1,2-Dichloroethene    | ND     |           | 1.0 | 0.81 | ug/L |   |          | 07/06/19 14:18 | 1       |   |
| cis-1,3-Dichloropropene   | ND     |           | 1.0 | 0.36 | ug/L |   |          | 07/06/19 14:18 | 1       |   |
| Cyclohexane               | ND     |           | 1.0 | 0.18 | ug/L |   |          | 07/06/19 14:18 | 1       |   |
| Dichlorodifluoromethane   | ND     |           | 1.0 | 0.68 | ug/L |   |          | 07/06/19 14:18 | 1       |   |
| Ethylbenzene              | ND     |           | 1.0 | 0.74 | ug/L |   |          | 07/06/19 14:18 | 1       |   |
| 1,2-Dibromoethane         | ND     |           | 1.0 | 0.73 | ug/L |   |          | 07/06/19 14:18 | 1       |   |
| Isopropylbenzene          | ND     |           | 1.0 | 0.79 | ug/L |   |          | 07/06/19 14:18 | 1       |   |
| Methyl acetate            | ND     |           | 2.5 | 1.3  | ug/L |   |          | 07/06/19 14:18 | 1       | ī |
| Methyl tert-butyl ether   | ND     |           | 1.0 | 0.16 | ug/L |   |          | 07/06/19 14:18 | 1       |   |
| Methylcyclohexane         | ND     |           | 1.0 | 0.16 | ug/L |   |          | 07/06/19 14:18 | 1       |   |
| Methylene Chloride        | ND     |           | 1.0 | 0.44 | ug/L |   |          | 07/06/19 14:18 | 1       |   |
| Styrene                   | ND     |           | 1.0 | 0.73 | ug/L |   |          | 07/06/19 14:18 | 1       |   |
| Tetrachloroethene         | ND     |           | 1.0 | 0.36 | ug/L |   |          | 07/06/19 14:18 | 1       |   |
| Toluene                   | ND     |           | 1.0 | 0.51 | ug/L |   |          | 07/06/19 14:18 | 1       | 2 |
| trans-1,2-Dichloroethene  | ND     |           | 1.0 | 0.90 | ug/L |   |          | 07/06/19 14:18 | 1       |   |
| trans-1,3-Dichloropropene | ND     |           | 1.0 | 0.37 | ug/L |   |          | 07/06/19 14:18 | 1       |   |
| Trichloroethene           | ND     |           | 1.0 | 0.46 | ug/L |   |          | 07/06/19 14:18 | 1       |   |
| Trichlorofluoromethane    | ND     |           | 1.0 | 0.88 | ug/L |   |          | 07/06/19 14:18 | 1       |   |
| Vinyl chloride            | ND     |           | 1.0 | 0.90 | ug/L |   |          | 07/06/19 14:18 | 1       |   |
| Xylenes, Total            | ND     |           | 2.0 | 0.66 | ug/L |   |          | 07/06/19 14:18 | 1       |   |
|                           | МР     | MD        |     |      |      |   |          |                |         |   |

|                              | MB MB              |          |          |                |         |  |
|------------------------------|--------------------|----------|----------|----------------|---------|--|
| Surrogate                    | %Recovery Qualifie | r Limits | Prepared | Analyzed       | Dil Fac |  |
| Toluene-d8 (Surr)            | 98                 | 80 - 120 |          | 07/06/19 14:18 | 1       |  |
| 1,2-Dichloroethane-d4 (Surr) | 104                | 77 - 120 |          | 07/06/19 14:18 | 1       |  |
| 4-Bromofluorobenzene (Surr)  | 99                 | 73 - 120 |          | 07/06/19 14:18 | 1       |  |
| Dibromofluoromethane (Surr)  | 102                | 75 - 123 |          | 07/06/19 14:18 | 1       |  |

#### Lab Sample ID: LCS 480-481020/5 Matrix: Water Analysis Batch: 481020

|                                     | Spike | LCS    | LCS       |      |   |      | %Rec.    |
|-------------------------------------|-------|--------|-----------|------|---|------|----------|
| Analyte                             | Added | Result | Qualifier | Unit | D | %Rec | Limits   |
| 1,1,1-Trichloroethane               | 25.0  | 23.1   |           | ug/L |   | 92   | 73 - 126 |
| 1,1,2,2-Tetrachloroethane           | 25.0  | 23.9   |           | ug/L |   | 96   | 76 - 120 |
| 1,1,2-Trichloroethane               | 25.0  | 22.7   |           | ug/L |   | 91   | 76 - 122 |
| 1,1,2-Trichloro-1,2,2-trifluoroetha | 25.0  | 24.3   |           | ug/L |   | 97   | 61 - 148 |
| ne                                  |       |        |           |      |   |      |          |
| 1,1-Dichloroethane                  | 25.0  | 23.4   |           | ug/L |   | 94   | 77 _ 120 |
| 1,1-Dichloroethene                  | 25.0  | 22.5   |           | ug/L |   | 90   | 66 - 127 |
| 1,2,4-Trichlorobenzene              | 25.0  | 22.5   |           | ug/L |   | 90   | 79 - 122 |
| 1,2-Dibromo-3-Chloropropane         | 25.0  | 23.7   |           | ug/L |   | 95   | 56 - 134 |
| 1,2-Dichlorobenzene                 | 25.0  | 22.9   |           | ug/L |   | 92   | 80 - 124 |
| 1,2-Dichloroethane                  | 25.0  | 23.6   |           | ug/L |   | 94   | 75 - 120 |
| 1,2-Dichloropropane                 | 25.0  | 24.7   |           | ug/L |   | 99   | 76 - 120 |
| 1,3-Dichlorobenzene                 | 25.0  | 23.6   |           | ug/L |   | 94   | 77 - 120 |
| 1,4-Dichlorobenzene                 | 25.0  | 23.2   |           | ug/L |   | 93   | 80 - 120 |
| 2-Butanone (MEK)                    | 125   | 127    |           | ug/L |   | 102  | 57 - 140 |
| 2-Hexanone                          | 125   | 128    |           | ug/L |   | 102  | 65 - 127 |

#### Eurofins TestAmerica, Buffalo

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA

5

#### Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

#### Lab Sample ID: LCS 480-481020/5

#### Matrix: Water Analysis Batch: 481020

| Analysis Batch: 481020      |       |      |           |      |   |     |                     |   |
|-----------------------------|-------|------|-----------|------|---|-----|---------------------|---|
|                             | Spike |      | LCS       |      |   |     | %Rec.               | 5 |
| Analyte                     | Added |      | Qualifier | Unit | D |     | Limits              |   |
| 4-Methyl-2-pentanone (MIBK) | 125   | 127  |           | ug/L |   | 102 | 71 - 125            | 6 |
| Acetone                     | 125   | 121  |           | ug/L |   | 97  | 56 - 142            |   |
| Benzene                     | 25.0  | 23.9 |           | ug/L |   | 96  | 71 - 124            |   |
| Bromodichloromethane        | 25.0  | 23.8 |           | ug/L |   | 95  | 80 - 122            |   |
| Bromoform                   | 25.0  | 24.5 |           | ug/L |   | 98  | 61 - 132            | 8 |
| Bromomethane                | 25.0  | 24.2 |           | ug/L |   | 97  | 55 <sub>-</sub> 144 | 0 |
| Carbon disulfide            | 25.0  | 22.2 |           | ug/L |   | 89  | 59 - 134            |   |
| Carbon tetrachloride        | 25.0  | 23.4 |           | ug/L |   | 94  | 72 - 134            | 9 |
| Chlorobenzene               | 25.0  | 22.9 |           | ug/L |   | 92  | 80 - 120            |   |
| Dibromochloromethane        | 25.0  | 23.1 |           | ug/L |   | 92  | 75 - 125            |   |
| Chloroethane                | 25.0  | 25.7 |           | ug/L |   | 103 | 69 - 136            |   |
| Chloroform                  | 25.0  | 21.4 |           | ug/L |   | 85  | 73 - 127            |   |
| Chloromethane               | 25.0  | 27.6 |           | ug/L |   | 111 | 68 - 124            |   |
| cis-1,2-Dichloroethene      | 25.0  | 23.2 |           | ug/L |   | 93  | 74 - 124            |   |
| cis-1,3-Dichloropropene     | 25.0  | 24.9 |           | ug/L |   | 100 | 74 <sub>-</sub> 124 |   |
| Cyclohexane                 | 25.0  | 25.4 |           | ug/L |   | 102 | 59 <sub>-</sub> 135 |   |
| Dichlorodifluoromethane     | 25.0  | 28.6 |           | ug/L |   | 115 | 59 - 135            |   |
| Ethylbenzene                | 25.0  | 23.2 |           | ug/L |   | 93  | 77 - 123            |   |
| 1,2-Dibromoethane           | 25.0  | 23.4 |           | ug/L |   | 94  | 77 - 120            |   |
| Isopropylbenzene            | 25.0  | 24.2 |           | ug/L |   | 97  | 77 - 122            |   |
| Methyl acetate              | 50.0  | 47.0 |           | ug/L |   | 94  | 74 <sub>-</sub> 133 |   |
| Methyl tert-butyl ether     | 25.0  | 22.8 |           | ug/L |   | 91  | 77 - 120            |   |
| Methylcyclohexane           | 25.0  | 24.4 |           | ug/L |   | 98  | 68 - 134            |   |
| Methylene Chloride          | 25.0  | 23.0 |           | ug/L |   | 92  | 75 - 124            |   |
| Styrene                     | 25.0  | 23.0 |           | ug/L |   | 92  | 80 - 120            |   |
| Tetrachloroethene           | 25.0  | 22.3 |           | ug/L |   | 89  | 74 <sub>-</sub> 122 |   |
| Toluene                     | 25.0  | 22.6 |           | ug/L |   | 90  | 80 - 122            |   |
| trans-1,2-Dichloroethene    | 25.0  | 22.8 |           | ug/L |   | 91  | 73 - 127            |   |
| trans-1,3-Dichloropropene   | 25.0  | 23.8 |           | ug/L |   | 95  | 80 - 120            |   |
| Trichloroethene             | 25.0  | 23.6 |           | ug/L |   | 95  | 74 - 123            |   |
| Trichlorofluoromethane      | 25.0  | 25.7 |           | ug/L |   | 103 | 62 - 150            |   |
| Vinyl chloride              | 25.0  | 27.4 |           | ug/L |   | 110 | 65 - 133            |   |
| 1 · · ·                     |       |      |           | •    |   |     |                     |   |

|                              | LCS       | LCS       |          |
|------------------------------|-----------|-----------|----------|
| Surrogate                    | %Recovery | Qualifier | Limits   |
| Toluene-d8 (Surr)            | 99        |           | 80 - 120 |
| 1,2-Dichloroethane-d4 (Surr) | 102       |           | 77 - 120 |
| 4-Bromofluorobenzene (Surr)  | 95        |           | 73 - 120 |
| Dibromofluoromethane (Surr)  | 95        |           | 75 - 123 |

#### Lab Sample ID: MB 480-481024/7 **Matrix: Water** Analysis Batch: 481024

|                                       | MB       | MB        |     |      |      |   |          |                |         |
|---------------------------------------|----------|-----------|-----|------|------|---|----------|----------------|---------|
| Analyte                               | Result ( | Qualifier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| 1,1,1-Trichloroethane                 | ND       |           | 1.0 | 0.82 | ug/L |   |          | 07/06/19 14:36 | 1       |
| 1,1,2,2-Tetrachloroethane             | ND       |           | 1.0 | 0.21 | ug/L |   |          | 07/06/19 14:36 | 1       |
| 1,1,2-Trichloroethane                 | ND       |           | 1.0 | 0.23 | ug/L |   |          | 07/06/19 14:36 | 1       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND       |           | 1.0 | 0.31 | ug/L |   |          | 07/06/19 14:36 | 1       |

#### Eurofins TestAmerica, Buffalo

**Client Sample ID: Method Blank** 

Prep Type: Total/NA

**Client Sample ID: Lab Control Sample** 

7/9/2019

Prep Type: Total/NA

#### Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

#### Lab Sample ID: MB 480-481024/7 Matrix: Water

Analysis Batch: 481024

| Analysis Balch: 461024        | MB              | мв              |          |      |      |   |          |                |          |
|-------------------------------|-----------------|-----------------|----------|------|------|---|----------|----------------|----------|
| Analyte                       |                 | Qualifier       | RL       | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac  |
| 1,1-Dichloroethane            | ND              |                 | 1.0      | 0.38 | ug/L |   | -        | 07/06/19 14:36 | 1        |
| 1,1-Dichloroethene            | ND              |                 | 1.0      | 0.29 | ug/L |   |          | 07/06/19 14:36 | 1        |
| 1,2,4-Trichlorobenzene        | ND              |                 | 1.0      | 0.41 | ug/L |   |          | 07/06/19 14:36 | 1        |
| 1,2-Dibromo-3-Chloropropane   | ND              |                 | 1.0      | 0.39 | ug/L |   |          | 07/06/19 14:36 | 1        |
| 1,2-Dichlorobenzene           | ND              |                 | 1.0      | 0.79 | ug/L |   |          | 07/06/19 14:36 | 1        |
| 1,2-Dichloroethane            | ND              |                 | 1.0      | 0.21 | ug/L |   |          | 07/06/19 14:36 | 1        |
| 1,2-Dichloropropane           | ND              |                 | 1.0      | 0.72 | ug/L |   |          | 07/06/19 14:36 | 1        |
| 1,3-Dichlorobenzene           | ND              |                 | 1.0      | 0.78 | ug/L |   |          | 07/06/19 14:36 | 1        |
| 1,4-Dichlorobenzene           | ND              |                 | 1.0      | 0.84 | ug/L |   |          | 07/06/19 14:36 | 1        |
| 2-Butanone (MEK)              | ND              |                 | 10       | 1.3  | ug/L |   |          | 07/06/19 14:36 | 1        |
| 2-Hexanone                    | ND              |                 | 5.0      | 1.2  | ug/L |   |          | 07/06/19 14:36 | 1        |
| 4-Methyl-2-pentanone (MIBK)   | ND              |                 | 5.0      | 2.1  | ug/L |   |          | 07/06/19 14:36 | 1        |
| Acetone                       | ND              |                 | 10       | 3.0  | ug/L |   |          | 07/06/19 14:36 | 1        |
| Benzene                       | ND              |                 | 1.0      | 0.41 | ug/L |   |          | 07/06/19 14:36 | 1        |
| Bromodichloromethane          | ND              |                 | 1.0      | 0.39 | ug/L |   |          | 07/06/19 14:36 | 1        |
| Bromoform                     | ND              |                 | 1.0      | 0.26 | ug/L |   |          | 07/06/19 14:36 | 1        |
| Bromomethane                  | ND              |                 | 1.0      | 0.69 | ug/L |   |          | 07/06/19 14:36 | 1        |
| Carbon disulfide              | ND              |                 | 1.0      | 0.19 | -    |   |          | 07/06/19 14:36 | 1        |
| Carbon tetrachloride          | ND              |                 | 1.0      | 0.27 | -    |   |          | 07/06/19 14:36 | 1        |
| Chlorobenzene                 | ND              |                 | 1.0      | 0.75 | ug/L |   |          | 07/06/19 14:36 | 1        |
| Dibromochloromethane          | ND              |                 | 1.0      | 0.32 | -    |   |          | 07/06/19 14:36 | 1        |
| Chloroethane                  | ND              |                 | 1.0      | 0.32 | -    |   |          | 07/06/19 14:36 | 1        |
| Chloroform                    | ND              |                 | 1.0      | 0.34 | -    |   |          | 07/06/19 14:36 | 1        |
| Chloromethane                 | ND              |                 | 1.0      | 0.35 | ug/L |   |          | 07/06/19 14:36 | 1        |
| cis-1,2-Dichloroethene        | ND              |                 | 1.0      | 0.81 | -    |   |          | 07/06/19 14:36 | 1        |
| cis-1,3-Dichloropropene       | ND              |                 | 1.0      | 0.36 | -    |   |          | 07/06/19 14:36 | 1        |
| Cyclohexane                   | ND              |                 | 1.0      | 0.18 | -    |   |          | 07/06/19 14:36 | 1        |
| Dichlorodifluoromethane       | ND              |                 | 1.0      | 0.68 | -    |   |          | 07/06/19 14:36 | 1        |
| Ethylbenzene                  | ND              |                 | 1.0      | 0.74 | -    |   |          | 07/06/19 14:36 | 1        |
| 1,2-Dibromoethane             | ND              |                 | 1.0      | 0.73 | -    |   |          | 07/06/19 14:36 | 1        |
| Isopropylbenzene              | ND              |                 | 1.0      | 0.79 | -    |   |          | 07/06/19 14:36 | 1        |
| Methyl acetate                | ND              |                 | 2.5      |      | ug/L |   |          | 07/06/19 14:36 | 1        |
| Methyl tert-butyl ether       | ND              |                 | 1.0      | 0.16 |      |   |          | 07/06/19 14:36 | 1        |
| Methylcyclohexane             | ND              |                 | 1.0      | 0.16 |      |   |          | 07/06/19 14:36 | 1        |
| Methylene Chloride            | ND              |                 | 1.0      | 0.44 |      |   |          | 07/06/19 14:36 | 1        |
| Styrene                       | ND              |                 | 1.0      | 0.73 | •    |   |          | 07/06/19 14:36 | 1        |
| Tetrachloroethene             | ND              |                 | 1.0      | 0.36 |      |   |          | 07/06/19 14:36 | 1        |
| Toluene                       | ND              |                 | 1.0      | 0.51 | -    |   |          | 07/06/19 14:36 | 1        |
| trans-1,2-Dichloroethene      | ND              |                 | 1.0      | 0.90 | -    |   |          | 07/06/19 14:36 | 1        |
| trans-1,3-Dichloropropene     | ND              |                 | 1.0      | 0.37 | •    |   |          | 07/06/19 14:36 | 1        |
| Trichloroethene               | ND              |                 | 1.0      | 0.46 |      |   |          | 07/06/19 14:36 | 1        |
| Trichlorofluoromethane        | ND              |                 | 1.0      | 0.88 | •    |   |          | 07/06/19 14:36 | 1        |
| Vinyl chloride                | ND              |                 | 1.0      | 0.90 | -    |   |          | 07/06/19 14:36 | 1        |
| Xylenes, Total                | ND              |                 | 2.0      | 0.66 | ug/L |   |          | 07/06/19 14:36 | 1        |
| Surrogate                     | MB<br>%Recovery | MB<br>Qualifier | Limits   |      |      |   | Prepared | Analyzed       | Dil Fac  |
| Toluene-d8 (Surr)             |                 | Quanner         | 80 - 120 |      |      | - | Tiepaieu | 07/06/19 14:36 | <u> </u> |
| 1,2-Dichloroethane-d4 (Surr)  | 90<br>102       |                 | 77 - 120 |      |      |   |          | 07/06/19 14:36 | 1        |
| 1,2-DIGHIOI OCUIANC-04 (Sull) | 102             |                 | 11 - 120 |      |      |   |          | 01/00/19 14.30 | I        |

Prep Type: Total/NA

5

8

**Client Sample ID: Method Blank** 

Eurofins TestAmerica, Buffalo

Lab Sample ID: MB 480-481024/7

Matrix: Water

#### **QC Sample Results**

Prep Type: Total/NA

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued) **Client Sample ID: Method Blank** 

Prep Type: Total/NA

**Client Sample ID: Lab Control Sample** 

| Analysis Batch: 481024      |           |           |          |          |                |         |
|-----------------------------|-----------|-----------|----------|----------|----------------|---------|
|                             | MB        | MB        |          |          |                |         |
| Surrogate                   | %Recovery | Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 100       |           | 73 - 120 |          | 07/06/19 14:36 | 1       |
| Dibromofluoromethane (Surr) | 100       |           | 75 - 123 |          | 07/06/19 14:36 | 1       |

#### Lab Sample ID: LCS 480-481024/5 **Matrix: Water** Analysis Batch: 481024

| Analysis Batch: 481024              | Spike | 1.09 | LCS       |      |   |      | %Rec.               |
|-------------------------------------|-------|------|-----------|------|---|------|---------------------|
| Analyte                             | Added |      | Qualifier | Unit | D | %Rec | Limits              |
| 1,1,1-Trichloroethane               |       | 24.3 |           | ug/L |   | 97   | 73 - 126            |
| 1,1,2,2-Tetrachloroethane           | 25.0  | 24.0 |           | ug/L |   | 108  | 76 - 120            |
| 1,1,2-Trichloroethane               | 25.0  | 25.1 |           | ug/L |   | 100  | 76 - 122            |
| 1,1,2-Trichloro-1,2,2-trifluoroetha | 25.0  | 24.2 |           | ug/L |   | 97   | 61 - 148            |
| ne                                  | 20.0  | 27.2 |           | ug/L |   | 07   | 01-140              |
| 1,1-Dichloroethane                  | 25.0  | 23.8 |           | ug/L |   | 95   | 77 - 120            |
| 1,1-Dichloroethene                  | 25.0  | 23.9 |           | ug/L |   | 96   | 66 - 127            |
| 1,2,4-Trichlorobenzene              | 25.0  | 24.0 |           | ug/L |   | 96   | 79 - 122            |
| 1,2-Dibromo-3-Chloropropane         | 25.0  | 24.1 |           | ug/L |   | 97   | 56 <sub>-</sub> 134 |
| 1,2-Dichlorobenzene                 | 25.0  | 23.6 |           | ug/L |   | 95   | 80 - 124            |
| 1,2-Dichloroethane                  | 25.0  | 24.9 |           | ug/L |   | 100  | 75 <sub>-</sub> 120 |
| 1,2-Dichloropropane                 | 25.0  | 25.0 |           | ug/L |   | 100  | 76 - 120            |
| 1,3-Dichlorobenzene                 | 25.0  | 24.1 |           | ug/L |   | 97   | 77 - 120            |
| 1,4-Dichlorobenzene                 | 25.0  | 24.3 |           | ug/L |   | 97   | 80 - 120            |
| 2-Butanone (MEK)                    | 125   | 134  |           | ug/L |   | 107  | 57 - 140            |
| 2-Hexanone                          | 125   | 125  |           | ug/L |   | 100  | 65 - 127            |
| 4-Methyl-2-pentanone (MIBK)         | 125   | 130  |           | ug/L |   | 104  | 71 - 125            |
| Acetone                             | 125   | 144  |           | ug/L |   | 115  | 56 - 142            |
| Benzene                             | 25.0  | 24.7 |           | ug/L |   | 99   | 71 - 124            |
| Bromodichloromethane                | 25.0  | 24.8 |           | ug/L |   | 99   | 80 - 122            |
| Bromoform                           | 25.0  | 24.7 |           | ug/L |   | 99   | 61 - 132            |
| Bromomethane                        | 25.0  | 26.5 |           | ug/L |   | 106  | 55 <sub>-</sub> 144 |
| Carbon disulfide                    | 25.0  | 23.3 |           | ug/L |   | 93   | 59 <sub>-</sub> 134 |
| Carbon tetrachloride                | 25.0  | 24.3 |           | ug/L |   | 97   | 72 - 134            |
| Chlorobenzene                       | 25.0  | 24.3 |           | ug/L |   | 97   | 80 - 120            |
| Dibromochloromethane                | 25.0  | 24.5 |           | ug/L |   | 98   | 75 - 125            |
| Chloroethane                        | 25.0  | 23.9 |           | ug/L |   | 96   | 69 - 136            |
| Chloroform                          | 25.0  | 23.4 |           | ug/L |   | 93   | 73 - 127            |
| Chloromethane                       | 25.0  | 24.0 |           | ug/L |   | 96   | 68 - 124            |
| cis-1,2-Dichloroethene              | 25.0  | 23.0 |           | ug/L |   | 92   | 74 - 124            |
| cis-1,3-Dichloropropene             | 25.0  | 26.0 |           | ug/L |   | 104  | 74 - 124            |
| Cyclohexane                         | 25.0  | 23.2 |           | ug/L |   | 93   | 59 - 135            |
| Dichlorodifluoromethane             | 25.0  | 27.7 |           | ug/L |   | 111  | 59 - 135            |
| Ethylbenzene                        | 25.0  | 23.9 |           | ug/L |   | 95   | 77 - 123            |
| 1,2-Dibromoethane                   | 25.0  | 24.4 |           | ug/L |   | 98   | 77 - 120            |
| Isopropylbenzene                    | 25.0  | 24.5 |           | ug/L |   | 98   | 77 - 122            |
| Methyl acetate                      | 50.0  | 50.8 |           | ug/L |   | 102  | 74 <sub>-</sub> 133 |
| Methyl tert-butyl ether             | 25.0  | 23.2 |           | ug/L |   | 93   | 77 _ 120            |
| Methylcyclohexane                   | 25.0  | 24.4 |           | ug/L |   | 97   | 68 <sub>-</sub> 134 |
| Methylene Chloride                  | 25.0  | 23.9 |           | ug/L |   | 95   | 75 - 124            |
| Styrene                             | 25.0  | 23.6 |           | ug/L |   | 94   | 80 - 120            |

Eurofins TestAmerica, Buffalo

5

8

#### Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

#### Lab Sample ID: LCS 480-481024/5 Matrix: Water

#### **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

| Analysis Batch: 481024       |           |           |          |        |           |      |   |      |          |
|------------------------------|-----------|-----------|----------|--------|-----------|------|---|------|----------|
| -                            |           |           | Spike    | LCS    | LCS       |      |   |      | %Rec.    |
| Analyte                      |           |           | Added    | Result | Qualifier | Unit | D | %Rec | Limits   |
| Tetrachloroethene            |           |           | 25.0     | 24.9   |           | ug/L |   | 99   | 74 - 122 |
| Toluene                      |           |           | 25.0     | 24.4   |           | ug/L |   | 98   | 80 - 122 |
| trans-1,2-Dichloroethene     |           |           | 25.0     | 23.3   |           | ug/L |   | 93   | 73 - 127 |
| trans-1,3-Dichloropropene    |           |           | 25.0     | 25.8   |           | ug/L |   | 103  | 80 - 120 |
| Trichloroethene              |           |           | 25.0     | 24.7   |           | ug/L |   | 99   | 74 - 123 |
| Trichlorofluoromethane       |           |           | 25.0     | 27.7   |           | ug/L |   | 111  | 62 - 150 |
| Vinyl chloride               |           |           | 25.0     | 25.4   |           | ug/L |   | 102  | 65 - 133 |
|                              | LCS       | LCS       |          |        |           |      |   |      |          |
| Surrogate                    | %Recovery | Qualifier | Limits   |        |           |      |   |      |          |
| Toluene-d8 (Surr)            | 100       |           | 80 - 120 |        |           |      |   |      |          |
| 1,2-Dichloroethane-d4 (Surr) | 105       |           | 77 - 120 |        |           |      |   |      |          |
| 4-Bromofluorobenzene (Surr)  | 101       |           | 73 - 120 |        |           |      |   |      |          |
| Dibromofluoromethane (Surr)  | 100       |           | 75 - 123 |        |           |      |   |      |          |

#### **QC** Association Summary

#### Client: AECOM Project/Site: Griffin Diebold Project

Job ID: 480-155574-1

#### GC/MS VOA

#### Analysis Batch: 480707

| Lab Sample ID    | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|------------------|--------------------|-----------|--------|--------|------------|
| 480-155574-7     | TRIP BLANK         | Total/NA  | Water  | 8260C  |            |
| MB 480-480707/7  | Method Blank       | Total/NA  | Water  | 8260C  |            |
| LCS 480-480707/5 | Lab Control Sample | Total/NA  | Water  | 8260C  |            |

#### Analysis Batch: 481020

| Lab Sample ID    | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|------------------|--------------------|-----------|--------|--------|------------|
| 480-155574-1     | MW-06S             | Total/NA  | Water  | 8260C  |            |
| 480-155574-2     | MW-06D             | Total/NA  | Water  | 8260C  |            |
| 480-155574-3     | MW-07S             | Total/NA  | Water  | 8260C  |            |
| 480-155574-4     | MW-07D             | Total/NA  | Water  | 8260C  |            |
| 480-155574-5     | MW-10S             | Total/NA  | Water  | 8260C  |            |
| MB 480-481020/7  | Method Blank       | Total/NA  | Water  | 8260C  |            |
| LCS 480-481020/5 | Lab Control Sample | Total/NA  | Water  | 8260C  |            |

#### Analysis Batch: 481024

| Lab Sample ID<br>480-155574-6 | Client Sample ID<br>FD-20190627 | Prep Type<br>Total/NA | Matrix<br>Water | Method<br>8260C | Prep Batch |
|-------------------------------|---------------------------------|-----------------------|-----------------|-----------------|------------|
| MB 480-481024/7               | Method Blank                    | Total/NA              | Water           | 8260C           | 1          |
| LCS 480-481024/5              | Lab Control Sample              | Total/NA              | Water           | 8260C           |            |

Client: AECOM Project/Site: Griffin Diebold Project Lab Chronicle

Job ID: 480-155574-1

10

| <b>Client Samp</b>              | ple ID: MW              | /-06S    |      |          |        |                | Lab Sa  | mple ID  | 480-155574-1   |
|---------------------------------|-------------------------|----------|------|----------|--------|----------------|---------|----------|----------------|
| Date Collected<br>Date Received |                         |          |      |          |        |                |         |          | Matrix: Wate   |
|                                 | Batch                   | Batch    |      | Dilution | Batch  | Prepared       |         |          |                |
| Prep Type                       | Туре                    | Method   | Run  | Factor   | Number | or Analyzed    | Analyst | Lab      |                |
| Total/NA                        | Analysis                | 8260C    |      | 1 _      | 481020 | 07/06/19 17:46 | -       | TAL BUF  | -              |
| Client Sam                      |                         | 1-06D    |      |          |        |                | Lah Sa  |          | : 480-155574-2 |
| Date Collecter                  |                         |          |      |          |        |                |         |          | Matrix: Wate   |
| Date Received                   |                         |          |      |          |        |                |         |          |                |
|                                 | Batch                   | Batch    |      | Dilution | Batch  | Prepared       |         |          |                |
| Prep Type                       | Туре                    | Method   | Run  | Factor   | Number | or Analyzed    | Analyst | Lab      |                |
| Total/NA                        | Analysis                | 8260C    | Kuli |          | 481020 | 07/06/19 18:09 | -       | TAL BUF  | -              |
|                                 |                         |          |      |          | 101020 |                |         |          |                |
| Client Samp                     |                         |          |      |          |        |                | Lab Sa  | mple ID: | 480-155574-3   |
| Date Collected                  |                         |          |      |          |        |                |         |          | Matrix: Water  |
| Date Received                   | u: 00/2//19 1           | 0:22     |      |          |        |                |         |          |                |
|                                 | Batch                   | Batch    |      | Dilution | Batch  | Prepared       |         |          |                |
| Prep Type                       | Туре                    | Method   | Run  | Factor   | Number | or Analyzed    | Analyst | Lab      | _              |
| Total/NA                        | Analysis                | 8260C    |      | 1        | 481020 | 07/06/19 18:32 | AMM     | TAL BUF  |                |
| <b>Client Samp</b>              | ole ID: MW              | /-07D    |      |          |        |                | Lab Sa  | mple ID  | 480-155574-4   |
| Date Collected                  | d: 06/27/19 1           | 3:25     |      |          |        |                |         |          | Matrix: Water  |
| Date Received                   | d: 06/27/19 1           | 6:22     |      |          |        |                |         |          |                |
| Γ                               | Batch                   | Batch    |      | Dilution | Batch  | Prepared       |         |          |                |
| Prep Type                       | Туре                    | Method   | Run  | Factor   | Number | or Analyzed    | Analyst | Lab      |                |
| Total/NA                        | Analysis                | 8260C    |      | 1 _      | 481020 | 07/06/19 18:55 | AMM     | TAL BUF  | -              |
| <b>Client Samp</b>              | ole ID: MW              | /-10S    |      |          |        |                | Lab Sa  | mple ID  | 480-155574-5   |
| Date Collecter                  |                         |          |      |          |        |                |         |          | Matrix: Water  |
| Date Received                   |                         |          |      |          |        |                |         |          |                |
|                                 | Batch                   | Batch    |      | Dilution | Batch  | Prepared       |         |          |                |
| Prep Type                       | Туре                    | Method   | Run  | Factor   | Number | or Analyzed    | Analyst | Lab      |                |
| Total/NA                        | Analysis                | 8260C    |      | 1        | 481020 | 07/06/19 19:18 | AMM     | TAL BUF  | -              |
| Client Sam                      | ole ID <sup>.</sup> FD- | 20190627 |      |          |        |                | Lab Sa  | mnle ID  | : 480-155574-6 |
| Date Collecter                  |                         |          |      |          |        |                |         |          | Matrix: Water  |
| Date Received                   |                         |          |      |          |        |                |         |          |                |
| Γ                               | Batch                   | Batch    |      | Dilution | Batch  | Prepared       |         |          |                |
| Prep Type                       | Туре                    | Method   | Run  | Factor   | Number | or Analyzed    | Analyst | Lab      |                |
| Total/NA                        | Analysis                | - 8260C  |      |          | 481024 | 07/06/19 16:58 | -       | TAL BUF  | -              |
|                                 |                         |          |      |          |        |                |         |          |                |
| Client Samp                     |                         |          |      |          |        |                | Lab Sa  | imple ID | 480-155574-7   |
| Date Collected<br>Date Received |                         |          |      |          |        |                |         |          | Matrix: Water  |
|                                 |                         |          |      | <b></b>  |        |                |         |          |                |
|                                 | Batch                   | Batch    | _    | Dilution | Batch  | Prepared       |         |          |                |
| Prep Type                       | Type                    | Method   | Run  | _ Factor | Number | or Analyzed    | Analyst |          | -              |
| Total/NA                        | Analysis                | 8260C    |      | 1        | 480707 | 07/03/19 13:12 | AEM     | TAL BUF  |                |

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Eurofins TestAmerica, Buffalo

#### Accreditation/Certification Summary

Job ID: 480-155574-1

#### Laboratory: Eurofins TestAmerica, Buffalo The accreditations/certifications listed below are applicable to this report.

Authority<br/>New YorkProgram<br/>NELAPEPA Region<br/>2Identification Number<br/>10026Expiration Date<br/>03-31-20

Eurofins TestAmerica, Buffalo

| Method | Method Description                  | Protocol | Laboratory |  |  |
|--------|-------------------------------------|----------|------------|--|--|
| 8260C  | Volatile Organic Compounds by GC/MS | SW846    | TAL BUF    |  |  |
| 5030C  | Purge and Trap                      | SW846    | TAL BUF    |  |  |

#### **Protocol References:**

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

# Sample Summary

## Client: AECOM Project/Site: Griffin Diebold Project

| ab Sample ID. | Client Sample ID | Matrix | Collected      | Received       | Ass |
|---------------|------------------|--------|----------------|----------------|-----|
| 80-155574-1   | MW-06S           | Water  | 06/27/19 10:52 | 06/27/19 16:22 |     |
| 80-155574-2   | MW-06D           | Water  | 06/27/19 11:28 | 06/27/19 16:22 |     |
| 80-155574-3   | MW-07S           | Water  | 06/27/19 12:45 | 06/27/19 16:22 |     |
| 80-155574-4   | MW-07D           | Water  | 06/27/19 13:25 | 06/27/19 16:22 |     |
| 80-155574-5   | MW-10S           | Water  | 06/27/19 09:47 | 06/27/19 16:22 |     |
| 80-155574-6   | FD-20190627      | Water  | 06/27/19 00:00 | 06/27/19 16:22 |     |
| 80-155574-7   | TRIP BLANK       | Water  | 06/27/19 00:00 | 06/27/19 16:22 |     |

| Phone: 716-691-2600 Fax: 716-691-7991         |                        |                |                                       |                                                           |                                |                                            |                                                                                                       |                         |                                           |                                      |
|-----------------------------------------------|------------------------|----------------|---------------------------------------|-----------------------------------------------------------|--------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------|--------------------------------------|
| Client Information                            | Sampler: /com N        | 5              | McGoven                               | 2                                                         | Lab PM:<br>Deyo, Melissa L     | T                                          | Carrier Tracking No(s)                                                                                |                         | COC No:<br>480-132096-29802,1             | 02.1                                 |
| Client Contact:<br>George Kisluk              | Phone: 716             | 255            | 101                                   |                                                           | t:<br>ssa.deyo(                | E-Mail:<br>melissa.deyo@testamericainc.com |                                                                                                       | a a                     | Page:<br>Page 1 of 1                      |                                      |
| Company:<br>AECOM                             |                        |                |                                       |                                                           |                                | Analy                                      | Analysis Requested                                                                                    | ir.                     | :# qop                                    |                                      |
| Address:<br>257 West Genesee Street Suite 400 | Due Date Requested:    | ;pe            |                                       |                                                           |                                |                                            |                                                                                                       |                         | Preservation Codes:                       | les:                                 |
| City.<br>Buffalo                              | TAT Requested (days):  | :(s/t          |                                       |                                                           |                                |                                            |                                                                                                       |                         | A - HCL<br>B - NaOH<br>C - Zn Acetate     | M - Hexane<br>N - None<br>O - AsNaO2 |
| State, Zip:<br>NY, 14202-2657                 |                        |                |                                       |                                                           |                                |                                            |                                                                                                       |                         | D - Nitric Acid<br>E - NaHSO4<br>E - MeOH | P - Na204                            |
| Phone: 716- 923-1321                          | PO#:<br>60552483,1     |                |                                       |                                                           | (0                             |                                            |                                                                                                       |                         | G - Amchlor<br>H - Ascorbic Acid          | S - H2SO4<br>T - TSP Dode            |
| Email:<br>george.kisluk@aecom.com             | WO#<br>george.kisluk@  | aecom.com      |                                       |                                                           |                                |                                            |                                                                                                       |                         | 1 - Ice<br>J - DI Water                   | U - Acetone<br>V - MCAA              |
| Project Name:<br>Griffin Diebold Project      | Project #:<br>48020462 |                |                                       |                                                           | 10 58                          |                                            | 480-155574 Chain of Custody                                                                           |                         | K-EDIA<br>L-EDA                           | Z - other (spe                       |
| Site:                                         | SSOW#:                 |                |                                       |                                                           | A) OS                          |                                            | P T T T T T                                                                                           |                         | Other:                                    |                                      |
| Sample Identification                         | Sample Date            | Sample<br>Time | Sample<br>Type<br>(C=comp,<br>G=grab) | Matrix<br>(www.secolic<br>O-wastololl.<br>BT-Tissue, A-Ar | Field Filtered<br>Perform MS/M | 8260C - TCL VC                             |                                                                                                       | Total Number            | Special Ir                                | Special Instructions//               |
|                                               |                        | X              | Preservation Code                     | tion Code:                                                |                                |                                            |                                                                                                       | X                       | $\left  \right $                          | X                                    |
| M.N. 065                                      | 6/27/19                | 10.52          | U                                     | Water                                                     | X                              | 3                                          |                                                                                                       |                         |                                           |                                      |
| 10m-060                                       | 1                      | 11:25          | 1                                     | Water                                                     | 11                             |                                            |                                                                                                       |                         |                                           |                                      |
| 520-mad                                       |                        | \$1:21         |                                       | Water                                                     |                                |                                            |                                                                                                       |                         |                                           |                                      |
| 220-MW                                        |                        | 57:21          |                                       | Water                                                     |                                |                                            |                                                                                                       |                         |                                           |                                      |
| 501-mind                                      |                        | 74:00          |                                       | Water                                                     |                                |                                            |                                                                                                       |                         |                                           |                                      |
| TU-20190627                                   | 7                      | ١              | >                                     | Water                                                     | 11                             | >                                          |                                                                                                       |                         |                                           |                                      |
| This Bushe                                    | 1                      | ١              | 1                                     | Water                                                     | ł                              | 1                                          |                                                                                                       |                         |                                           |                                      |
|                                               |                        |                |                                       |                                                           |                                |                                            |                                                                                                       |                         |                                           |                                      |
|                                               |                        |                |                                       |                                                           |                                |                                            |                                                                                                       |                         |                                           |                                      |
| Possible Hazard Identification                | t Doison B Unknown     | 1.51           | Radiological                          |                                                           | San                            | ple Disposal ( A fee<br>Return To Client   | Sample Disposal ( A fee may be assessed if samples are retained longer than 1 month) Return To Client | amples are retained lon | ed longer than<br>ve For                  | 1 month)<br>Months                   |
| (, III, IV, Ot                                |                        |                |                                       |                                                           | Spe                            | Special Instructions/QC Requirements       |                                                                                                       |                         |                                           |                                      |
| Empty Kit Relinquished by:                    |                        | Date:          |                                       |                                                           | Time:                          |                                            | Method of                                                                                             | Method of Shipment:     |                                           |                                      |
| Relinquished by:                              | Date/Time: 1/19        | - 16           | 6:23                                  | Company                                                   | 1                              | Received by:                               |                                                                                                       | Date/Time.              |                                           | Company                              |
| Relinquished by:                              | Date/Time:             |                |                                       | Company                                                   |                                | Received by:                               |                                                                                                       | Date/Time               |                                           | Company                              |
| Relinquished by:                              | Date/Time:             |                |                                       | Company                                                   |                                | Received by:                               | A                                                                                                     | Date/Time:<br>10-27-19  | 1622                                      | Company                              |
| Custodie Coole latent: Ductodie Cool No -     |                        |                |                                       |                                                           |                                | The Townson in a lot                       | and Privat Basedan                                                                                    | 1 ~                     |                                           |                                      |

Special Instructions/Note:

Controlins Environment Testing

COC No: 480-132096-29802.1

M - Hexane N - None N - None N - AsNaO2 P - Na2O45 P - Na2O45 R - Na2S203 S - Other (specify) Z - other (specify)

7/9/2019

Custody Seals Intact: A Yes A No

Custody Seal No.:

Ver: 01/16/2019

4

C

Cooler Temperature(s) C and Other Remarks.

## Client: AECOM

### Login Number: 155574 List Number: 1 Creator: Harper, Marcus D

| Question                                                                         | Answer | Comment |
|----------------------------------------------------------------------------------|--------|---------|
| Radioactivity either was not measured or, if measured, is at or below background | True   |         |
| The cooler's custody seal, if present, is intact.                                | True   |         |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |         |
| Samples were received on ice.                                                    | True   |         |
| Cooler Temperature is acceptable.                                                | True   |         |
| Cooler Temperature is recorded.                                                  | True   |         |
| COC is present.                                                                  | True   |         |
| COC is filled out in ink and legible.                                            | True   |         |
| COC is filled out with all pertinent information.                                | True   |         |
| Is the Field Sampler's name present on COC?                                      | True   |         |
| There are no discrepancies between the sample IDs on the containers and the COC. | True   |         |
| Samples are received within Holding Time (Excluding tests with immediate HTs)    | True   |         |
| Sample containers have legible labels.                                           | True   |         |
| Containers are not broken or leaking.                                            | True   |         |
| Sample collection date/times are provided.                                       | True   |         |
| Appropriate sample containers are used.                                          | True   |         |
| Sample bottles are completely filled.                                            | True   |         |
| Sample Preservation Verified                                                     | True   |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |         |
| VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.     | True   |         |
| If necessary, staff have been informed of any short hold time or quick TAT needs | True   |         |
| Multiphasic samples are not present.                                             | True   |         |
| Samples do not require splitting or compositing.                                 | True   |         |
| Sampling Company provided.                                                       | True   | AEC     |
| Samples received within 48 hours of sampling.                                    | True   |         |
| Samples requiring field filtration have been filtered in the field.              | N/A    |         |
| Chlorine Residual checked.                                                       | N/A    |         |

## ATTACHMENT D

2021 Biennial Groundwater Sampling Letter Report



January 7, 2022

Mr. Todd M. Caffoe, P.E. New York State Department of Environmental Conservation Division of Environmental Remediation, Region 8 6274 East Avon-Lima Road Avon, New York 14414-9519

### RE: 2021 Biennial Groundwater Sampling Letter Report Former Griffin Technology Facility (Site No. 835008) Farmington, New York

Dear Mr. Caffoe:

On behalf of Diebold, Inc. (Diebold), AECOM USA, Inc. [(AECOM) – formerly URS Corporation (URS)] has prepared this Biennial Groundwater Sampling Letter Report to summarize field activities as part of the groundwater sampling effort performed in December 2021, in the vicinity of the former Griffin Technology Facility (Site) located in Farmington, New York (Figure 1).

#### **Background**

#### On-Site

The former Griffin Technology facility (Site) is approximately 3.74 acres located at 6132 Victor-Manchester Road in the Town of Farmington, Ontario County (see Figure 1). Griffin Technology manufactured laminated plastic identification cards at the Site from 1975 until the mid-1990s. The manufacturing process generated a small amount of trichloroethene (TCE) waste. From 1975 until 1986, these wastes were disposed of in small batches directly onto the ground surface immediately to the west of the building. The facility has been vacant since the 1990s. Subsequent investigations indicated that were no significant levels of contamination on-site, however, TCE-impacted groundwater was present on the western side of the on-site building, with some contaminant migration off-site to the southwest.

S & W Redevelopment of North America, LLC (SWRNA) acquired the property in 2007, and implemented an insitu chemical oxidation (ISCO) groundwater remediation strategy that included the injection of potassium permanganate into the groundwater at and near the source of the contamination to break down and extinguish chlorinated solvent contamination. The initial ISCO treatment occurred in 2008 and was completed in approximately six months. Since the initial ISCO application, there have been several additional ISCO injection and emulsified vegetable oil (EVO) applications in the source area to further reduce groundwater contamination, with the latest injection rounds occurring in the spring and fall of 2016. Overall, SWRNA's groundwater remediation was successful in remediating the groundwater at and in the vicinity of the source and in 2009, SWRNA received a Certificate of Completion under New York State's Brownfield Cleanup Program for the Site. The NYSDEC is still evaluating the effectiveness of the on-site remedy. In the meantime, groundwater is being monitored on a periodic basis. In 2012, SWRNA sold the property to ARFCOM Holdings, LLC, who later sold it to its current owner (Case Realty 6132, LLC) in 2018. The current owner is reportedly in bankruptcy negotiations.

### Off-Site

In 1995, Griffin Technology was purchased by Diebold, Inc. (Diebold). Under the terms of the Order on Consent (Index #B8-0315-90-01) negotiated with the New York State Department of Environmental Conservation (NYSDEC), Diebold was obligated to perform off-site groundwater monitoring, and off-site soil vapor



One John James Audubon Parkway, Suite 210 Amherst, New York 14228 Tel: 716.856.5636 Fax: 716.856.2545



Mr. Todd M. Caffoe January 7, 2022 Continued – page 2

monitoring at 6179 Victor-Manchester Road, which is immediately south/southwest of the Site and is currently owned by Farmington Center LLC. On behalf of Diebold, URS completed the off-site groundwater monitoring and off-site soil vapor monitoring fieldwork in August 2009 and submitted the final report in July 2010 (URS, 2010). In a letter dated September 29, 2010, the NYSDEC approved the report and recommendation for no further action with respect to soil vapor.

Under the terms of the Order on Consent, Diebold is required to continue biennial groundwater monitoring of five remaining off-site monitoring wells in accordance with an Operation, Maintenance and Monitoring (OM&M) Plan. The OM&M Plan was approved in June 2011 and has been implemented since by AECOM on behalf of Diebold.

In the 2014 Supplemental Groundwater Sampling Letter Report (URS, 2015), URS recommended the decommissioning off-site monitoring wells MW-09S, MW-09D, MW-10S, MW-10D, and MW-11D based on analyses of the data from the 2013 and 2014 sampling events. Subsequent communications between the NYSDEC and Diebold/URS resulted in the agreement to repair MW-10S; decommission MW-09S, MW-09D, MW-10D and MW-11D; and collect supplemental groundwater samples from MW-06S and MW-07S for volatile organic compound (VOC) analyses. These activities were performed in June 2016, and discussions of their execution and data evaluation were presented in the 2016 Periodic Review Report (PRR) (URS, 2017a). The following changes to the *Operations and Monitoring Plan for Annual Offsite Groundwater Monitoring* (O&M Plan) were recommended in the 2016 PRR:

- Conduct groundwater sampling of the remaining off-site wells (i.e., MW-06S, MW-06D, MW-07S, MW-07D and MW-10S) on a biennial basis, beginning in summer 2017.
- Generate biennial PRRs using the data from the aforementioned groundwater sampling.

The summer 2017 sampling event occurred on September 13, 2017 and discussions of its execution and data evaluation were presented in the 2017 Biennial Groundwater Sampling Letter Report (URS, 2017b). In the report, URS concluded that the TCE concentration trends show an overall decrease since 1994. URS recommended an additional round of sampling in summer 2019 to confirm this trend.

The summer 2019 sampling event occurred on June 27, 2019 and discussions of its execution and data evaluation were presented in the 2019 Biennial Groundwater Sampling Letter Report (URS, 2019). In the report, URS concluded that the TCE concentration trends show an overall decrease since 1994. URS recommended suspending groundwater sampling at monitoring well MW-10S but continue to collect depth to water data at this location during monitoring events, and that the PRR will be prepared in accordance with NYSDEC's Division of Environmental Remediation (DER-10) Technical Guidance for Site Investigation and Remediation (NYSDEC, 2010), which will summarize sampling data collected to date. An additional round of sampling was recommended in summer 2021 to confirm the aforementioned TCE trends.

The Fall 2021 field work, which represents the third biennial monitoring event, was performed on December 6, 2021, and included collecting water levels and groundwater samples from the five remaining off-site monitoring wells in accordance with the O&M Plan.

The data generated from the December 2021 field work are discussed below.

#### **Groundwater Levels and Flow Direction**

The water level measurements obtained from the December 6, 2021 monitoring event are provided in Table 1. Figure 2 shows the corresponding shallow groundwater potentiometric surface based on the measurements from the three shallow wells. The data show that groundwater flow in the overburden is to the south-southwest towards Beaver Creek. This is consistent with the groundwater flow direction observed during prior sampling events.



Mr. Todd M. Caffoe January 7, 2022 Continued – page 3

In December 2021, horizontal gradients in the overburden were approximately 0.024 foot/foot. The vertical gradient is downward in monitoring well pair MW-07S/D and there was a very slight upward vertical gradient in monitoring well pair MW-06S/D.

#### Sampling, Analysis and Data Usability

On December 6, 2021, AECOM collected groundwater samples from the monitoring wells (MW-06S, MW-06D, MW-07S, MW-07D, and MW-10S) plus quality assurance/quality control (QA/QC) duplicate sample and matrix spike/duplicate sample. All monitoring wells were found to be appropriately sealed and in good condition without any need for maintenance. Prior to sample collection, water was purged from each well with a peristaltic pump for shallow wells and a bladder pump for deep wells. Dedicated/disposable high-density polyethylene tubing was used at each well. During the well purging, water quality parameters (pH, temperature, specific conductivity, dissolved oxygen, turbidity, and oxidation reduction potential) were measured utilizing a flow-through cell. The wells were purged at a rate of 1-liter per minute or less and the purge rate was adjusted to prevent the water level in the well from dropping more than 0.3 feet from the static water level. Each well was purged until the water quality parameters stabilized for a minimum of three readings. Low Flow Purge Logs can be found in Attachment 1.

Groundwater samples were transported under chain-of-custody control to Eurofins TestAmerica Laboratories, Inc., located in Amherst, New York, for the analysis of volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method 8260C. AECOM validated the analytical results and prepared a Data Usability Summary Report (DUSR). No data qualifications were made, and all data are usable as reported. The complete validated analytical results are presented in the DUSR in Attachment 2.

#### Analytical Summary/ Contamination Assessment

The validated groundwater analytical results are summarized in Table 2 and shown in Figure 2. VOCs are compared to NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) No. 1.1.1 Class GA groundwater criteria. Exceedances of the groundwater criteria are indicated with an oval. The following is a summary of the analytical results:

- TCE was detected at concentrations exceeding its Class GA groundwater standard (5 micrograms per liter [μg/L]) in the samples collected from MW-06S (21 μg/L), MW-06D (34 μg/L), MW-07S (28 μg/L) and MW-10S (7.3 μg/L).
- Cis-1,2-dichloroethene (DCE) was detected at concentrations exceeding its Class GA groundwater standard (5 μg/L) in the samples collected from MW-06S (11 μg/L) and MW-06D (7 μg/L).
- Vinyl Chloride (VC) was detected at concentrations exceeding its Class GA groundwater standard (2 μg/L) in the samples collected from MW-06S (2.2 μg/L) and MW-06D (2.2 μg/L).
- No other compounds were detected at concentrations exceeding their Class GA groundwater criteria.

TCE is the primary contaminant in the off-site monitoring wells. Figure 3 displays a graphic trend analysis of TCE concentrations in these wells during the period of 1994 to 2021. Figure 4 depicts the VOCs detected above New York State Class GA groundwater standards over the last several sampling rounds. The trends show an overall decrease in TCE concentrations since 1994, with the following exceptions:

- The December 2021 TCE concertation in MW-06D is higher than previous results in 2019.
- The December 2021 TCE concentration in MW-10S is slightly above its standard for the first time since 2015.
- All other December 2021 results are lower than the previous event.



A Mann-Kendall trend analysis was performed on the historical VOC concentrations for the period of 1994 to 2021. The trend analysis is presented in Table 3 and shows the following:

- In MW-06S and MW-06D, there are upward trends for cis-1,2-DCE and VC.
- In MW-07D, there is a downward trend of 1,1,1-trichloroethane and an upward trend of cis-1,2-DCE.
- In MW-07S, there is a downward trend of cis-1,2-DCE.
- In MW-10S, no other trends were present.

#### **Conclusions**

The south-southwest direction of groundwater flow at the Site has remained consistent since 2009.

The only VOCs detected at concentrations exceeding their standards were TCE, cis-1,2-DCE and VC. The Mann-Kendall analysis shows an upward trend in concentrations of cis-1,2-DCE which is likely due to reductive dechlorination of TCE, although the magnitude of increase is relatively small. The TCE concentration trends show an overall decrease since 1994.

#### **Recommendations**

Because groundwater analytical results from samples collected from monitoring wells in the off-site downgradient area do not meet New York State Class GA standards, no changes to the current monitoring requirements are recommended at this time. AECOM recommends an additional round of sampling in summer 2023 to confirm the observed trends and that the PRR be prepared in accordance with DER-10 (NYSDEC, 2010).

#### **References**

NYSDEC, 2010. DER-10 / Technical Guidance for Site Investigation and Remediation. May 3.

- URS, 2010. Soil Vapor Intrusion Study/ Groundwater Sampling Letter Report, Former Griffin Technology Facility, Farmington, New York. July
- URS, 2015. Supplemental Groundwater Sampling Letter Report, Former Griffin Technology Facility, Farmington, New York. January
- URS, 2017a. Periodic Review Report 2016, Former Griffin Technology Facility, Farmington, New York. March
- URS, 2017b. 2017 Biennial Groundwater Sampling Letter Report, Former Griffin Technology Facility (Site No. 835008), Farmington, New York. November
- URS, 2019. 2019 Biennial Groundwater Sampling Letter Report, Former Griffin Technology Facility (Site No. 835008), Farmington, New York. September

The following tables, figures and attachments are included as part of this field investigation letter report:

#### **Tables**

| Table 1 | Groundwater Elevations – December 6, 2021                 |
|---------|-----------------------------------------------------------|
| Table 2 | Groundwater Analytical Results (Detected Compounds Only)  |
| Table 3 | Groundwater Analytical Result Trends (Detected VOCs Only) |



#### **Figures**

| Figure 1 | Site Location                                                              |
|----------|----------------------------------------------------------------------------|
| Figure 2 | 2021 Groundwater Sample Results Exceeding Criteria and Shallow Groundwater |
|          | Potentiometric Surface                                                     |
| Figure 3 | Trichloroethene Trends (Existing Wells)                                    |
| Figure 4 | Historical Groundwater Sampling Results                                    |
|          |                                                                            |

#### **Attachments**

| Attachment 1 | Purge Logs                                                   |
|--------------|--------------------------------------------------------------|
| Attachment 2 | Data Usability Summary Report and Complete Analytical Report |

Please contact me at 716-856-5636 if you have any questions or comments.

Sincerely,

AECOM USA, Inc. Michael Gutmann, PG Sr. Project Manager

cc: File: 13816402 (R-1) Daniel G. Fousek, Diebold, Inc. Jeff Reinmann, Diebold, Inc. Ms. Wendlene M. Lavey, Esq., McMahon DeGulis LLP Kevin J. McGovern, PG, CHMM (AECOM) TABLES

## TABLE 1 GROUNDWATER ELEVATIONS DECEMBER 6, 2021 FORMER GRIFFIN TECHNOLOGY FACILITY - OFF-SITE AREA FARMINGTON, NEW YORK

| Well ID | Top of Casing<br>Elevation (ft. amsl) | Depth to Groundwater<br>(ft. from Top of Casing) | Groundwater<br>Elevation (ft. amsl) |
|---------|---------------------------------------|--------------------------------------------------|-------------------------------------|
| MW-06S  | 636.61                                | 5.70                                             | 630.91                              |
| MW-06D  | 636.83                                | 5.95                                             | 630.88                              |
| MW-07S  | 634.29                                | 5.25                                             | 629.04                              |
| MW-07D  | 634.16                                | 30.92                                            | 603.24                              |
| MW-10S  | 629.00                                | 13.83                                            | 615.17                              |

ft. = feet

amsl = above mean sea level

## TABLE 2 GROUNDWATER ANALYTICAL RESULTS (DETECTED COMPOUNDS ONLY) DECEMBER 2021 SAMPLING EVENT FORMER GRIFFIN TECHNOLOGY FACILITY SITE

| Location ID                |       |           | MW-06D                | MW-06D      | MW-06S      | MW-07D      | MW-07S      |
|----------------------------|-------|-----------|-----------------------|-------------|-------------|-------------|-------------|
| Sample ID                  |       |           | FD-120621             | MW-06D      | MW-06S      | MW-07D      | MW-07S      |
| Matrix                     |       |           | Groundwater           | Groundwater | Groundwater | Groundwater | Groundwater |
| Depth Interval (           | ft)   |           | -                     | -           | -           | -           | -           |
| Date Sampled               |       |           | 12/06/21              | 12/06/21    | 12/06/21    | 12/06/21    | 12/06/21    |
| Parameter                  | Units | Criteria* | Field Duplicate (1-1) |             |             |             |             |
| Volatile Organic Compounds |       |           |                       |             |             |             |             |
| 1,1-Dichloroethane         | UG/L  | 5         | 0.98 J                | 0.93 J      | 0.80 J      |             |             |
| 1,2-Dichloroethene (cis)   | UG/L  | 5         |                       | 7.0         |             | 5.0         | 2.2         |
| Trichloroethene            | UG/L  | 5         |                       |             |             | 4.3         | 28          |
| Vinyl chloride             | UG/L  | 2         | 2.2                   | 2.1         | 2.2         |             |             |

\*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

J - The reported concentration is an estimated value. Blank Cell - Not Detected.

Only Detected Results Reported.

## TABLE 2

## GROUNDWATER ANALYTICAL RESULTS (DETECTED COMPOUNDS ONLY) DECEMBER 2021 SAMPLING EVENT FORMER GRIFFIN TECHNOLOGY FACILITY SITE

| Location ID                |       |           | MW-10S      |
|----------------------------|-------|-----------|-------------|
| Sample ID                  |       |           | MW-10S      |
| Matrix                     |       |           | Groundwater |
| Depth Interval (f          | t)    |           | -           |
| Date Sampled               |       |           | 12/06/21    |
| Parameter                  | Units | Criteria* |             |
| Volatile Organic Compounds |       |           |             |
| 1,1-Dichloroethane         | UG/L  | 5         |             |
| 1,2-Dichloroethene (cis)   | UG/L  | 5         |             |
| Trichloroethene            | UG/L  | 5         |             |
| Vinyl chloride             | UG/L  | 2         |             |

\*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

J - The reported concentration is an estimated value. Blank Cell - Not Detected.

## TABLE 3 **GROUNDWATER SAMPLING ANALYTICAL RESULT TRENDS (DETECTED VOCS ONLY)** FORMER GRIFFIN TECHNOLOGY FACILITY SITE

#### LOCID: MW-06D

| Parameter                | Matrix | Class | Num of Data<br>Points | Num of Data<br>Point<br>Detections | Mann-Kendall<br>Statistic S | Probabilities (1) | Trend (2)    |
|--------------------------|--------|-------|-----------------------|------------------------------------|-----------------------------|-------------------|--------------|
| 1,1,1-Trichloroethane    | WG     | VOA   | 20                    | 16                                 | -118                        | No Value          |              |
| 1,1-Dichloroethane       | WG     | VOA   | 5                     | 2                                  | 6                           | 0.117             | No Trend     |
| 1,2-Dichloroethene (cis) | WG     | VOA   | 20                    | 10                                 | 62                          | 0.023             | Upward Trend |
| Acetone                  | WG     | VOA   | 20                    | 2                                  | 16                          | 0.315             | No Trend     |
| Trichloroethene          | WG     | VOA   | 20                    | 19                                 | -119                        | No Value          |              |
| Vinyl chloride           | WG     | VOA   | 20                    | 3                                  | 51                          | 0.056             | Upward Trend |

### LOCID: MW-06S

| Parameter                | Matrix | Class | Num of Data<br>Points | Num of Data<br>Point<br>Detections | Mann-Kendall<br>Statistic S | Probabilities (1) | Trend (2)      |
|--------------------------|--------|-------|-----------------------|------------------------------------|-----------------------------|-------------------|----------------|
| 1,1,1-Trichloroethane    | WG     | VOA   | 21                    | 13                                 | -49                         | 0.079             | Downward Trend |
| 1,1-Dichloroethane       | WG     | VOA   | 6                     | 2                                  | 8                           | 0.136             | No Trend       |
| 1,2-Dichloroethene (cis) | WG     | VOA   | 21                    | 9                                  | 65                          | 0.028             | Upward Trend   |
| Trichloroethene          | WG     | VOA   | 21                    | 17                                 | -19                         | 0.306             | No Trend       |
| Vinyl chloride           | WG     | VOA   | 21                    | 3                                  | 54                          | 0.055             | Upward Trend   |

## LOCID: MW-07D

| Parameter                | Matrix | Class | Num of Data<br>Points | Num of Data<br>Point<br>Detections | Mann-Kendall<br>Statistic S | Probabilities (1) | Trend (2)      |
|--------------------------|--------|-------|-----------------------|------------------------------------|-----------------------------|-------------------|----------------|
| 1,1,1-Trichloroethane    | WG     | VOA   | 20                    | 6                                  | -71                         | 0.012             | Downward Trend |
| 1,1-Dichloroethene       | WG     | VOA   | 5                     | 1                                  | 0                           | 0.592             | No Trend       |
| 1,2-Dichloroethene (cis) | WG     | VOA   | 20                    | 20                                 | 62                          | 0.023             | Upward Trend   |
| Acetone                  | WG     | VOA   | 20                    | 1                                  | 15                          | 0.339             | No Trend       |
| Trichloroethene          | WG     | VOA   | 20                    | 20                                 | -139                        | No Value          |                |
| Vinyl chloride           | WG     | VOA   | 20                    | 7                                  | 22                          | 0.25              | No Trend       |

### LOCID: MW-07S

| Parameter                | Matrix | Class | Num of Data<br>Points | Num of Data<br>Point<br>Detections | Mann-Kendall<br>Statistic S | Probabilities (1) | Trend (2)      |
|--------------------------|--------|-------|-----------------------|------------------------------------|-----------------------------|-------------------|----------------|
| 1,1,1-Trichloroethane    | WG     | VOA   | 21                    | 15                                 | -120                        | No Value          |                |
| 1,2-Dichloroethene (cis) | WG     | VOA   | 21                    | 18                                 | -66                         | 0.024             | Downward Trend |
| Acetone                  | WG     | VOA   | 21                    | 2                                  | 35                          | 0.162             | No Trend       |
| Trichloroethene          | WG     | VOA   | 21                    | 20                                 | -142                        | No Value          |                |

For multiple observations per time period, the Mann-Kendall test to the median was used.

Data reported as less than the detection limit were used by assigning a common value to the data that was smaller than the smallest measurement in the data set. (1) - Probabilities for Mann-Kendall Nonparameteric Test for Trend (Gilbert R.O. 1987, Table A18).

(2) - Assuming a probability of error of 10% in the analyis method and or data, then the probability of no trend as calculated by the Mann-Kendall statistic is less than 10%, then it is assumed that there is a trend.

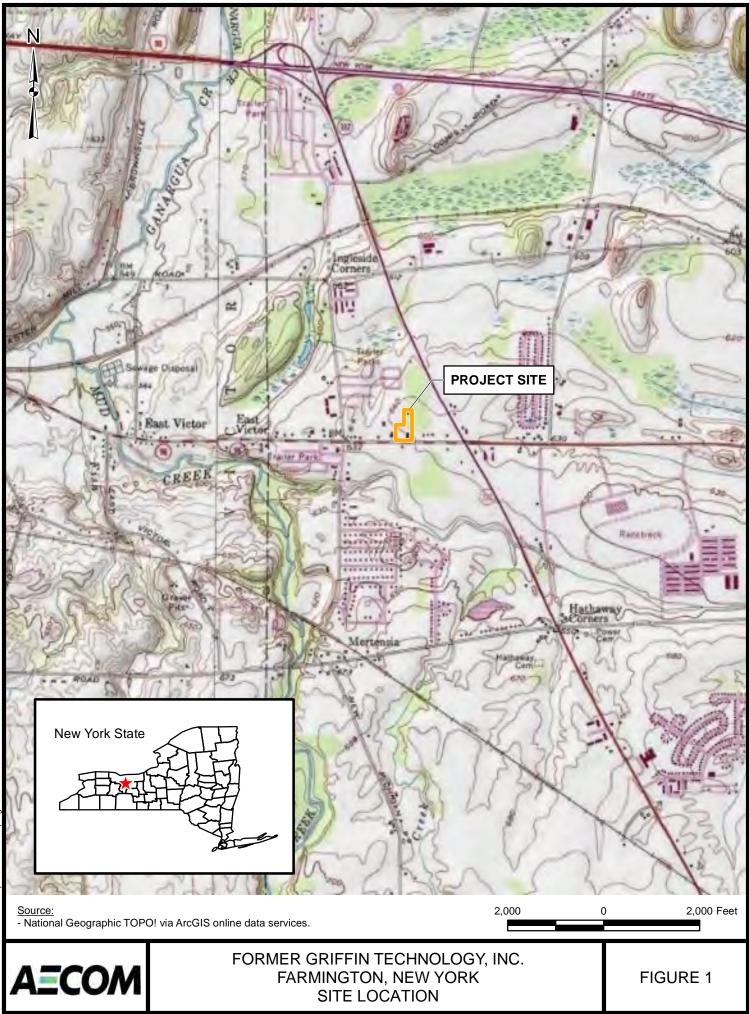
- Number of obsevations too small to calculate probablities.

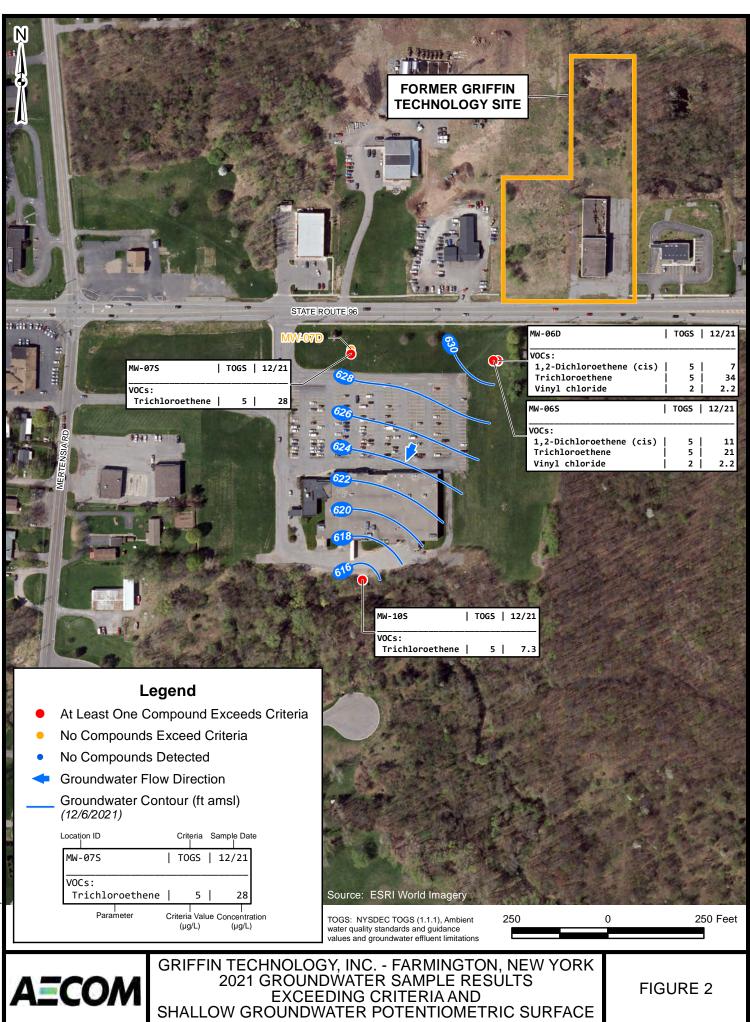
\*\* - Probability Undefined for S=0 and N=6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31, 34, or 35.

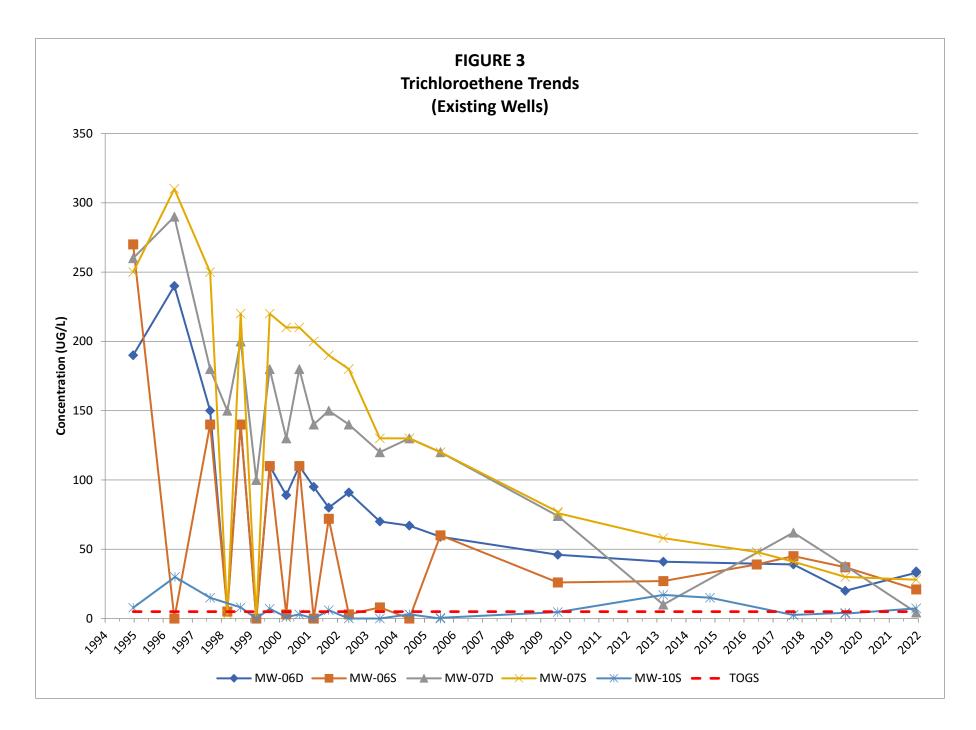
## TABLE 3 **GROUNDWATER SAMPLING ANALYTICAL RESULT TRENDS (DETECTED VOCS ONLY)** FORMER GRIFFIN TECHNOLOGY FACILITY SITE

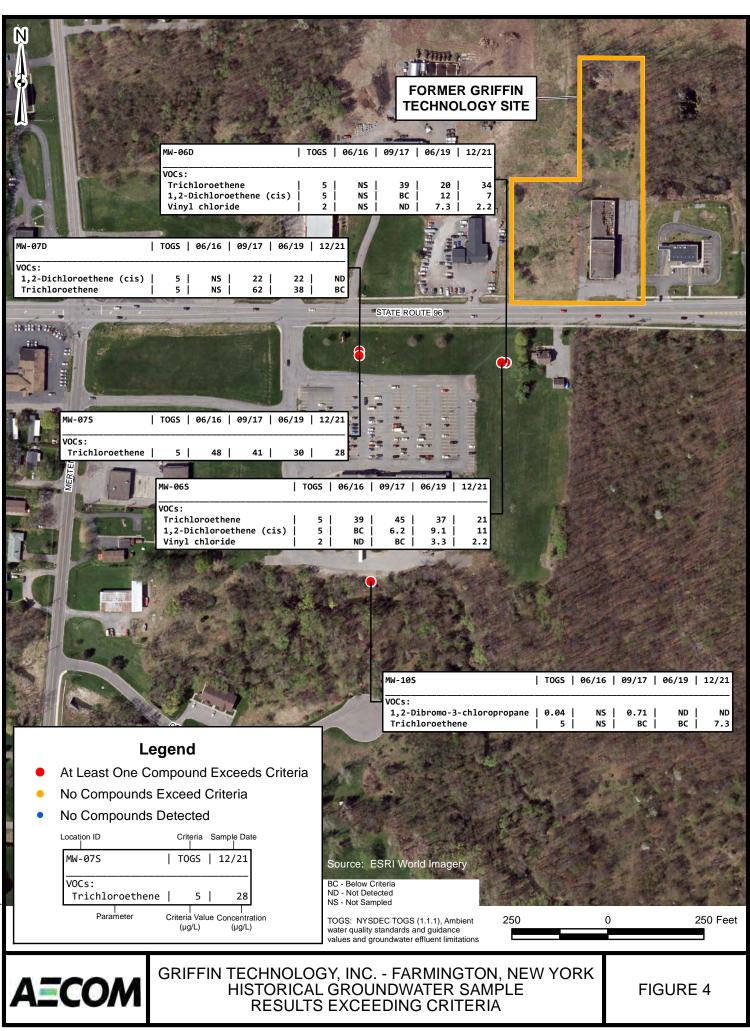
### LOCID: MW-10S

| Parameter                   | Matrix | Class | Num of Data<br>Points | Num of Data<br>Point<br>Detections | Mann-Kendall<br>Statistic S | Probabilities (1) | Trend (2) |
|-----------------------------|--------|-------|-----------------------|------------------------------------|-----------------------------|-------------------|-----------|
| 1,1,1-Trichloroethane       | WG     | VOA   | 20                    | 1                                  | -17                         | 0.315             | No Trend  |
| 1,2-Dibromo-3-chloropropane | WG     | VOA   | 6                     | 1                                  | 1                           | 0.5               | No Trend  |
| 1,2-Dichloroethene (cis)    | WG     | VOA   | 20                    | 1                                  | 13                          | 0.362             | No Trend  |
| Trichloroethene             | WG     | VOA   | 20                    | 15                                 | -20                         | 0.271             | No Trend  |


For multiple observations per time period, the Mann-Kendall test to the median was used.


Data reported as less than the detection limit were used by assigning a common value to the data that was smaller than the smallest measurement in the data set. (1) - Probabilities for Mann-Kendall Nonparameteric Test for Trend (Gilbert R.O. 1987, Table A18).


(2) - Assuming a probability of error of 10% in the analyis method and or data, then the probability of no trend as calculated by the Mann-Kendall statistic is less than 10%, then it is assumed that there is a trend.


\* - Number of obsevations too small to calculate probabilities. \*\* - Probability Undefined for S=0 and N=6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31, 34, or 35.

**FIGURES** 









**ATTACHMENT 1** 

**PURGE LOGS** 

| Former Griffin Technology                  | Site:                                                                                                                                               | Griffin                                                                                                                                                                                                                                                                                                                                                                   | Well I.D.:                                                                                                                                                                                                                                                                                                                                                                | MW-06S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 12/6/21 Sampling Persor                    | nnel: <u>Kevin McGovern</u>                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                           | Company: _                                                                                                                                                                                                                                                                                                                                                                | URS Corporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Geopump 2 peristaltic pump                 | Tubing Type:                                                                                                                                        | HDPE                                                                                                                                                                                                                                                                                                                                                                      | Pump/Tubing<br>Inlet<br>Location:                                                                                                                                                                                                                                                                                                                                         | Screen midpoint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Initial Depth<br>Top of Riserto Water:5.70 | Depth to<br>Well Bottom:                                                                                                                            | Well<br>18.90 Diamete                                                                                                                                                                                                                                                                                                                                                     | er: <u>2"</u>                                                                                                                                                                                                                                                                                                                                                             | Screen<br>Length: <u>10'</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| SCH 40 PVC                                 | Volume in 1<br>Well Casing<br>(liters):                                                                                                             | 8.14                                                                                                                                                                                                                                                                                                                                                                      | Estimated<br>Purge<br>Volume<br>(liters):                                                                                                                                                                                                                                                                                                                                 | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| MW-06S                                     | Sample<br>Time:                                                                                                                                     | 1125                                                                                                                                                                                                                                                                                                                                                                      | QA/QC:                                                                                                                                                                                                                                                                                                                                                                    | MS/MSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Parameters: <u>TCL VOCs</u>                |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                            | 12/6/21       Sampling Persor         Geopump 2 peristaltic pump         Initial Depth         Top of Riser       to Water: 5.70         SCH 40 PVC | Interpretation of Riser         Sampling Personnel:       Kevin McGovern         Geopump 2 peristaltic pump       Tubing Type:         Top of Riser       Initial Depth       Depth to         Top of Riser       to Water:       5.70       Well Bottom:         SCH 40 PVC       Volume in 1       Well Casing (liters):         MW-06S       Sample Time:       Sample | 12/6/21       Sampling Personnel: Kevin McGovern         Geopump 2 peristaltic pump       Tubing Type:       HDPE         Top of Riser       Initial Depth       Depth to       Well         Top of Riser       to Water:       5.70       Well Bottom:       18.90       Diameter         SCH 40 PVC       Volume in 1       Well Casing (liters):       8.14       1125 | 12/6/21       Sampling Personnel:       Kevin McGovern       Company:         12/6/21       Sampling Personnel:       Kevin McGovern       Company:         Geopump 2 peristaltic pump       Tubing Type:       HDPE       Pump/Tubing Inlet Location:         Geopump 2 peristaltic pump       Tubing Type:       HDPE       Location:         Initial Depth       Depth to       Well       Vell         Top of Riser       to Water:       5.70       Well Bottom:       18.90       Diameter:       2"         SCH 40 PVC       Volume in 1       Well Casing (liters):       8.14       Volume (liters):       Sample         MW-06S       Sample       Time:       1125       QA/QC: |  |

## PURGE PARAMETERS

| ТІМЕ       | рН   | TEMP (⁰C) | COND.<br>(mS/cm) | DISS. O <sub>2</sub><br>(mg/l) | TURB.<br>(NTU) | ORP (mV)  | FLOW RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(btor) |
|------------|------|-----------|------------------|--------------------------------|----------------|-----------|------------------------|-----------------------------|
| 1055       | 7.09 | 12.5      | 1.205            | 4.73                           | 15.5           | 61.6      | 200                    | 6.20                        |
| 1100       | 7.02 | 12.7      | 1.329            | 3.06                           | 7.8            | 33.5      | 200                    | 7.27                        |
| 1105       | 7.02 | 12.7      | 1.371            | 2.60                           | 6.3            | 21.4      | 200                    | 7.27                        |
| 1110       | 7.02 | 12.6      | 1.423            | 2.12                           | 7.1            | 12.5      | 200                    | 7.27                        |
| 1115       | 7.01 | 12.7      | 1.441            | 1.83                           | 4.3            | 9.8       | 200                    | 7.27                        |
| 1120       | 7.01 | 12.7      | 1.450            | 1.76                           | 6.2            | 12.0      | 200                    | 7.27                        |
| 1125       | 7.01 | 12.7      | 1.440            | 1.72                           | 4.0            | 10.9      | 200                    | 7.27                        |
|            |      |           |                  |                                |                |           |                        |                             |
|            |      |           |                  |                                |                |           |                        |                             |
| Tolerance: | 0.1  |           | 3%               | 10%                            | 10%            | + or - 10 |                        |                             |

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.; 4 inch diameter well = 2470 ml/ft. (vol<sub>cvi</sub> =  $\pi r^2h$ )

Comments:

Bolt holes on curb box stripped

| Project:                        | Former Griffin Technology                  | Site:                                   | Griffin                        | Well I.D.:                                  | MW-06D                       |
|---------------------------------|--------------------------------------------|-----------------------------------------|--------------------------------|---------------------------------------------|------------------------------|
| Date:                           | 12/6/21 Sampling Personnel:                | Kevin McGovern                          |                                | _ Company: _                                | URS Corporation              |
| Purging/<br>Sampling<br>Device: | Geopump 2 peristaltic pump                 | _Tubing Type:                           | HDPE                           | Pump/Tubing<br>Inlet<br>Location:           | Screen midpoint              |
| Measuring<br>Point:             | Initial Depth<br>Top of Riserto Water:5.95 | Depth to<br>Well Bottom:                | Well<br><u>37.60</u> Diameter: | 2"                                          | Screen<br>Length: <u>10'</u> |
| Casing<br>Type:                 | SCH 40 PVC                                 | Volume in 1<br>Well Casing<br>(liters): | 19.53                          | Estimated<br>Purge<br>Volume<br>(liters): _ | 6                            |
| Sample ID:                      | MW-06D                                     | Sample<br>Time:                         | 1024                           | QA/QC:                                      | FD-120621                    |
| Sample                          | Parameters: TCL VOCs                       |                                         |                                |                                             |                              |
|                                 |                                            |                                         |                                |                                             |                              |

## PURGE PARAMETERS

| TIME       | рН   | TEMP (⁰C) | COND.<br>(mS/cm) | DISS. O <sub>2</sub><br>(mg/l) | TURB.<br>(NTU) | ORP (mV)  | FLOW RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(btor) |
|------------|------|-----------|------------------|--------------------------------|----------------|-----------|------------------------|-----------------------------|
| 954        | 6.84 | 12.0      | 0.850            | 1.71                           | 14.3           | -12.1     | 200                    | 7.12                        |
| 959        | 6.81 | 11.9      | 0.927            | 0.36                           | 14.5           | -40.5     | 200                    | 7.41                        |
| 1004       |      |           |                  | NA                             | A              |           |                        |                             |
| 1009       | 6.91 | 12.0      | 1.093            | 0.07                           | 8.8            | -39.3     | 200                    | 7.70                        |
| 1014       | 6.94 | 12.0      | 1.130            | 0.05                           | 9+.7           | -33.0     | 200                    | 7.70                        |
| 1019       | 6.95 | 12.0      | 1.191            | 0.03                           | 10.8           | -26.0     | 200                    | 7.70                        |
| 1024       | 6.96 | 12.0      | 1.152            | 0.02                           | 11.1           | -27.0     | 200                    | 7.70                        |
|            |      |           |                  |                                |                |           |                        |                             |
|            |      |           |                  |                                |                |           |                        |                             |
|            |      |           |                  |                                |                |           |                        |                             |
|            |      |           |                  |                                |                |           |                        |                             |
|            |      |           |                  |                                |                |           |                        |                             |
|            |      |           |                  |                                |                |           |                        |                             |
|            |      |           |                  |                                |                |           |                        |                             |
|            |      |           |                  |                                |                |           |                        |                             |
| Tolerance: | 0.1  |           | 3%               | 10%                            | 10%            | + or - 10 |                        |                             |

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.; 4 inch diameter well = 2470 ml/ft. (vol<sub>cvi</sub> =  $\pi r^2h$ )

Comments:

Curb box damaged, needs replacement

| MW-07S |  |
|--------|--|
| ration |  |
| lpoint |  |
| 10'    |  |
|        |  |
|        |  |
|        |  |
|        |  |

## PURGE PARAMETERS

| TIME       | рН   | TEMP (⁰C)  | COND.<br>(mS/cm) | DISS. O <sub>2</sub><br>(mg/l) | TURB.<br>(NTU) | ORP (mV)  | FLOW RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(btor) |  |  |  |
|------------|------|------------|------------------|--------------------------------|----------------|-----------|------------------------|-----------------------------|--|--|--|
| 1322       | 7.27 | 12.4       | 1.226            | 2.72                           | 18.0           | 58.1      | 200                    | 5.50                        |  |  |  |
| 1325       |      | Heavy Rain |                  |                                |                |           |                        |                             |  |  |  |
| 1332       |      |            |                  | licavy                         | Tall           | -         |                        |                             |  |  |  |
| 1335       | 6.94 | 12.5       | 1.269            | 0.03                           | 5.7            | 60.2      | 200                    | 5.80                        |  |  |  |
| 1342       | 6.93 | 12.5       | 1.206            | 0.00                           | 12.4           | 58.4      | 200                    | 5.80                        |  |  |  |
| 1345       | 6.93 | 12.5       | 1.207            | 0.00                           | 10.1           | 55.0      | 200                    | 5.80                        |  |  |  |
| 1352       | 6.93 | 12.6       | 1.210            | 0.00                           | 12.1           | 52.0      | 200                    | 5.80                        |  |  |  |
| 1357       | 6.93 | 12.4       | 1.205            | 0.00                           | 10.2           | 51.0      | 200                    | 5.80                        |  |  |  |
|            |      |            |                  |                                |                |           |                        |                             |  |  |  |
|            |      |            |                  |                                |                |           |                        |                             |  |  |  |
|            |      |            |                  |                                |                |           |                        |                             |  |  |  |
|            |      |            |                  |                                |                |           |                        |                             |  |  |  |
|            |      |            |                  |                                |                |           |                        |                             |  |  |  |
|            |      |            |                  |                                |                |           |                        |                             |  |  |  |
|            |      |            |                  |                                |                |           |                        |                             |  |  |  |
| Tolerance: | 0.1  |            | 3%               | 10%                            | 10%            | + or - 10 |                        |                             |  |  |  |

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.; 4 inch diameter well = 2470 ml/ft. (vol<sub>cvi</sub> =  $\pi r^2 h$ )

Comments:

| Project:                        | Former Griffin Technology                     | Site:                                   | Griffin                 | Well I.D.:                                  | MW-07D                       |
|---------------------------------|-----------------------------------------------|-----------------------------------------|-------------------------|---------------------------------------------|------------------------------|
| Date:                           | 12/6/21 Sampling Personne                     | I: Kevin McGovern                       |                         | _ Company: _                                | URS Corporation              |
| Purging/<br>Sampling<br>Device: | Bladder Pump                                  | _Tubing Type:                           | HDPE                    | Pump/Tubing<br>Inlet<br>Location:           | Screen midpoint              |
| Measuring<br>Point:             | Initial Depth<br>Top of Riser to Water: 30.92 | Depth to<br>Well Bottom:                | Well<br>44.40 Diameter: | 2"                                          | Screen<br>Length: <u>10'</u> |
| Casing<br>Type:                 | SCH 40 PVC                                    | Volume in 1<br>Well Casing<br>(liters): | 8.32                    | Estimated<br>Purge<br>Volume<br>(liters): _ | 6                            |
| Sample ID:                      | MW-07D                                        | Sample<br>Time:                         | 1430                    | QA/QC:                                      | None                         |
| Sample                          | Parameters: TCL VOCs                          |                                         |                         |                                             |                              |
|                                 |                                               |                                         |                         |                                             |                              |

## PURGE PARAMETERS

| TIME       | рН   | TEMP (°C) | COND.<br>(mS/cm) | DISS. O <sub>2</sub><br>(mg/l) | TURB.<br>(NTU) | ORP (mV)  | FLOW RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(btor) |
|------------|------|-----------|------------------|--------------------------------|----------------|-----------|------------------------|-----------------------------|
|            |      |           | Started Pur      | ging @ 1400,                   | Heavy Rain     | -         | -                      |                             |
| 1410       | 7.51 | 11.5      | 0.670            | 12.00                          | 115.0          | 71.2      | 200                    | 33.49                       |
| 1415       | 7.71 | 11.3      | 0.700            | 2.90                           | 80.0           | 60.0      | 200                    | 38.12                       |
| 1420       | 7.89 | 113       | 0.770            | 3.20                           | 30.0           | 67.5      | 200                    | 39.99                       |
| 1425       | 7.90 | 11.3      | 0.788            | 3.20                           | 31.0           | 61.0      | 200                    | 40.91                       |
| 1430       | 7.91 | 11.0      | 0.745            | 3.21                           | 32.0           | 62.0      | 200                    | 41.90                       |
|            |      |           |                  |                                |                |           |                        |                             |
|            |      |           |                  |                                |                |           |                        |                             |
|            |      |           |                  |                                |                |           |                        |                             |
|            |      |           |                  |                                |                |           |                        |                             |
|            |      |           |                  |                                |                |           |                        |                             |
|            |      |           |                  |                                |                |           |                        |                             |
|            |      |           |                  |                                |                |           |                        |                             |
|            |      |           |                  |                                |                |           |                        |                             |
|            |      |           |                  |                                |                |           |                        |                             |
| Tolerance: | 0.1  | — I       | 3%               | 10%                            | 10%            | + or - 10 |                        |                             |

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.; 4 inch diameter well = 2470 ml/ft. (vol<sub>cvi</sub> =  $\pi r^2h$ )

Curb box lid loose, suggest new curb box

Comments:

| Former Griffin Technology                | Site:                                                                                                                                          | Griffin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Well I.D.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MW-10S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 12/6/21 Sampling Personnel               | Kevin McGovern                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _ Company: _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | URS Corporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Geopump 2 peristaltic pump               | _Tubing Type:                                                                                                                                  | HDPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pump/Tubing<br>Inlet<br>Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Screen midpoint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Initial Depth Top of Riserto Water:13.83 | Depth to<br>Well Bottom:                                                                                                                       | Well<br>22.62 Diameter:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Screen<br>Length: <u>10'</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| SCH 40 PVC                               | Volume in 1<br>Well Casing<br>(liters):                                                                                                        | 5.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Estimated<br>Purge<br>Volume<br>(liters): _                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| MW-10S                                   | Sample<br>Time:                                                                                                                                | 1252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | QA/QC:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Parameters: <u>TCL VOCs</u>              |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                          | 12/6/21       Sampling Personnel         Geopump 2 peristaltic pump         Top of Riser       Initial Depth         SCH 40 PVC         MW-10S | Interpret to the second secon | Interface         12/6/21       Sampling Personnel: Kevin McGovern         Geopump 2 peristaltic pump       Tubing Type:       HDPE         Geopump 2 peristaltic pump       Tubing Type:       HDPE         Top of Riser       Initial Depth       Depth to       Well         Top of Riser       to Water:       13.83       Well Bottom:       22.62       Diameter:         Volume in 1       Well Casing       (liters):       5.42       Diameter:         MW-10S       Sample       Time:       1252 | 12/6/21       Sampling Personnel: Kevin McGovern       Company:         12/6/21       Sampling Personnel: Kevin McGovern       Company:         Geopump 2 peristaltic pump       Tubing Type:       HDPE       Pump/Tubing Inlet Location:         Geopump 2 peristaltic pump       Tubing Type:       HDPE       Location:         Top of Riser       Initial Depth to Water:       Depth to Well Bottom:       Well Diameter:         SCH 40 PVC       Volume in 1 Well Casing (liters):       5.42       Estimated Purge Volume (liters):         MW-10S       Sample Time:       1252       QA/QC: |  |

## PURGE PARAMETERS

| TIME       | рН   | TEMP (⁰C) | COND.<br>(mS/cm) | DISS. O <sub>2</sub><br>(mg/l) | TURB.<br>(NTU) | ORP (mV)  | FLOW RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(btor) |
|------------|------|-----------|------------------|--------------------------------|----------------|-----------|------------------------|-----------------------------|
| 1222       | 6.75 | 13.1      | 2.399            | 0.23                           | 40.0           | -46.2     | 200                    | 14.18                       |
| 1227       | 6.78 | 13.2      | 2.420            | 0.08                           | 24.0           | -50.9     | 200                    | 14.21                       |
| 1232       | 6.30 | 13.2      | 2.426            | 0.04                           | 16.4           | -53.9     | 200                    | 14.22                       |
| 1237       | 6.32 | 13.1      | 2.441            | 0.01                           | 12.5           | -55.7     | 200                    | 14.22                       |
| 1242       | 6.84 | 13.1      | 2.467            | 0.00                           | 7.6            | -56.3     | 200                    | 14.22                       |
| 1247       | 6.85 | 13.0      | 2.491            | 0.00                           | 5.2            | -55.5     | 200                    | 14.22                       |
| 1252       | 6.90 | 13.0      | 2.501            | 0.00                           | 4.2            | -56.7     | 200                    | 14.22                       |
|            |      |           |                  |                                |                |           |                        |                             |
|            |      |           |                  |                                |                |           |                        |                             |
| Tolerance: | 0.1  |           | 3%               | 10%                            | 10%            | + or - 10 |                        |                             |

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.; 4 inch diameter well = 2470 ml/ft. (vol<sub>cvi</sub> =  $\pi r^2 h$ )

Comments:

# **ATTACHMENT 2**

DATA USABILITY SUMMARY REPORT AND COMPLETE ANALYTICAL REPORT

### MEMORANDUM

TO:Mike GutmannFROM:George Kisluk

DATE: December 15, 2021

## SUBJECT: Groundwater Analytical Results Former Griffin Technology Facility

Five groundwater samples, one matrix spike/matrix spike duplicate pair and one field duplicate were collected from the Former Griffin Technology Facility site on December 6, 2021 and delivered to Eurofins TestAmerica located in Amherst, NY for analysis. A trip blank accompanied the samples. The samples were received by the laboratory on December 6, 2021 intact, properly preserved and under proper chain-of-custody.

The samples were analyzed for volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method 8260C. The analytical method referenced is from *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods*, Third Edition, November 1986 and its updates.

The following USEPA Region II standard operating procedure (SOP) was used to evaluate and, when required, qualify the data:

• Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry SW-846 Method 8260B & 8260C, SOP HW-24, Revision 4, October 2014.

A limited data review was performed for completeness of deliverables, and for compliance with method and validation SOP criteria, which includes quantitation limits, holding times, method blanks, trip blanks, surrogate recoveries, laboratory control sample (LCS) recoveries and any items presented in the laboratory's case narrative. Only method and validation SOP non-conformances are discussed in this report.

The analytical results are provided in Table 1. Definitions of USEPA Region II data qualifiers are presented at the end of this memorandum.

## <u>VOCs</u>

No data qualifications were necessary. All data are usable as reported.

### **Field Duplicate Results**

Sample FD-120621 is a field duplicate of MW-06D. There was good agreement between the detected compounds in the sample and field duplicate as shown in Table 2. USEPA Region II validation guidelines do not provide any criteria for RPDs, nor are there any recommendations for the qualification of data based on field duplicate results.

cc: File: 13816402.00000

| Location ID                            |       | FIELDQC          | MW-06D                | MW-06D      | MW-06S      | MW-07D      |
|----------------------------------------|-------|------------------|-----------------------|-------------|-------------|-------------|
| Sample ID                              |       | ТВ               | FD-120621             | MW-06D      | MW-06S      | MW-07D      |
| Matrix                                 |       | Water Quality    | Groundwater           | Groundwater | Groundwater | Groundwater |
| Depth Interval (ft)                    |       | -                | -                     | -           | -           | -           |
| Date Sampled                           |       | 12/06/21         | 12/06/21              | 12/06/21    | 12/06/21    | 12/06/21    |
| Parameter                              | Units | Trip Blank (1-1) | Field Duplicate (1-1) |             |             |             |
| Volatile Organic Compounds             |       |                  |                       |             |             |             |
| 1,1,1-Trichloroethane                  | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| 1,1,2,2-Tetrachloroethane              | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane  | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| 1,1,2-Trichloroethane                  | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| 1,1-Dichloroethane                     | UG/L  | 1.0 U            | 0.98 J                | 0.93 J      | 0.80 J      | 1.0 U       |
| 1,1-Dichloroethene                     | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| 1,2,4-Trichlorobenzene                 | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| 1,2-Dibromo-3-chloropropane            | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| 1,2-Dibromoethane (Ethylene dibromide) | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| 1,2-Dichlorobenzene                    | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| 1,2-Dichloroethane                     | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| 1,2-Dichloroethene (cis)               | UG/L  | 1.0 U            | 7.0                   | 7.0         | 11          | 5.0         |
| 1,2-Dichloroethene (trans)             | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| 1,2-Dichloropropane                    | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| 1,3-Dichlorobenzene                    | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| 1,3-Dichloropropene (cis)              | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| 1,3-Dichloropropene (trans)            | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| 1,4-Dichlorobenzene                    | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| 2-Hexanone                             | UG/L  | 5.0 U            | 5.0 U                 | 5.0 U       | 5.0 U       | 5.0 U       |
| 4-Methyl-2-pentanone                   | UG/L  | 5.0 U            | 5.0 U                 | 5.0 U       | 5.0 U       | 5.0 U       |
| Acetone                                | UG/L  | 10 U             | 10 U                  | 10 U        | 10 U        | 10 U        |
| Benzene                                | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| Bromodichloromethane                   | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| Bromoform                              | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |

Flags assigned during chemistry validation are shown.

UG/L - Micrograms per liter.

| Location ID                      |       | FIELDQC          | MW-06D                | MW-06D      | MW-06S      | MW-07D      |
|----------------------------------|-------|------------------|-----------------------|-------------|-------------|-------------|
| Sample ID                        |       | ТВ               | FD-120621             | MW-06D      | MW-06S      | MW-07D      |
| Matrix                           |       | Water Quality    | Groundwater           | Groundwater | Groundwater | Groundwater |
| Depth Interval (ft)              |       | -                | -                     | -           | -           | -           |
| Date Sampled                     |       | 12/06/21         | 12/06/21              | 12/06/21    | 12/06/21    | 12/06/21    |
| Parameter                        | Units | Trip Blank (1-1) | Field Duplicate (1-1) |             |             |             |
| Volatile Organic Compounds       |       |                  |                       |             |             |             |
| Bromomethane                     | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| Carbon disulfide                 | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| Carbon tetrachloride             | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| Chlorobenzene                    | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| Chloroethane                     | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| Chloroform                       | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| Chloromethane                    | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| Cyclohexane                      | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| Dibromochloromethane             | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| Dichlorodifluoromethane          | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| Ethylbenzene                     | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| Isopropylbenzene (Cumene)        | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| Methyl acetate                   | UG/L  | 2.5 U            | 2.5 U                 | 2.5 U       | 2.5 U       | 2.5 U       |
| Methyl ethyl ketone (2-Butanone) | UG/L  | 10 U             | 10 U                  | 10 U        | 10 U        | 10 U        |
| Methyl tert-butyl ether          | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| Methylcyclohexane                | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| Methylene chloride               | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| Styrene                          | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| Tetrachloroethene                | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| Toluene                          | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| Trichloroethene                  | UG/L  | 1.0 U            | 33                    | 34          | 21          | 4.3         |
| Trichlorofluoromethane           | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| Vinyl chloride                   | UG/L  | 1.0 U            | 2.2                   | 2.1         | 2.2         | 1.0 U       |
| Xylene (total)                   | UG/L  | 2.0 U            | 2.0 U                 | 2.0 U       | 2.0 U       | 2.0 U       |

Flags assigned during chemistry validation are shown.

UG/L - Micrograms per liter.

| Location ID                            |             | MW-07S                     | MW-10S   |
|----------------------------------------|-------------|----------------------------|----------|
| Sample ID                              | MW-07S      | MW-10S<br>Groundwater<br>- |          |
| Matrix                                 | Groundwater |                            |          |
| Depth Interval (ft)                    | -           |                            |          |
| Date Sampled                           |             | 12/06/21                   | 12/06/21 |
| Parameter                              | Units       |                            |          |
| Volatile Organic Compounds             |             |                            |          |
| 1,1,1-Trichloroethane                  | UG/L        | 1.0 U                      | 1.0 U    |
| 1,1,2,2-Tetrachloroethane              | UG/L        | 1.0 U                      | 1.0 U    |
| 1,1,2-Trichloro-1,2,2-trifluoroethane  | UG/L        | 1.0 U                      | 1.0 U    |
| 1,1,2-Trichloroethane                  | UG/L        | 1.0 U                      | 1.0 U    |
| 1,1-Dichloroethane                     | UG/L        | 1.0 U                      | 1.0 U    |
| 1,1-Dichloroethene                     | UG/L        | 1.0 U                      | 1.0 U    |
| 1,2,4-Trichlorobenzene                 | UG/L        | 1.0 U                      | 1.0 U    |
| 1,2-Dibromo-3-chloropropane            | UG/L        | 1.0 U                      | 1.0 U    |
| 1,2-Dibromoethane (Ethylene dibromide) | UG/L        | 1.0 U                      | 1.0 U    |
| 1,2-Dichlorobenzene                    | UG/L        | 1.0 U                      | 1.0 U    |
| 1,2-Dichloroethane                     | UG/L        | 1.0 U                      | 1.0 U    |
| 1,2-Dichloroethene (cis)               | UG/L        | 2.2                        | 1.0 U    |
| 1,2-Dichloroethene (trans)             | UG/L        | 1.0 U                      | 1.0 U    |
| 1,2-Dichloropropane                    | UG/L        | 1.0 U                      | 1.0 U    |
| 1,3-Dichlorobenzene                    | UG/L        | 1.0 U                      | 1.0 U    |
| 1,3-Dichloropropene (cis)              | UG/L        | 1.0 U                      | 1.0 U    |
| 1,3-Dichloropropene (trans)            | UG/L        | 1.0 U                      | 1.0 U    |
| 1,4-Dichlorobenzene                    | UG/L        | 1.0 U                      | 1.0 U    |
| 2-Hexanone                             | UG/L        | 5.0 U                      | 5.0 U    |
| 4-Methyl-2-pentanone                   | UG/L        | 5.0 U                      | 5.0 U    |
| Acetone                                | UG/L        | 10 U                       | 10 U     |
| Benzene                                | UG/L        | 1.0 U                      | 1.0 U    |
| Bromodichloromethane                   | UG/L        | 1.0 U                      | 1.0 U    |
| Bromoform                              | UG/L        | 1.0 U                      | 1.0 U    |

Flags assigned during chemistry validation are shown.

UG/L - Micrograms per liter.

| Location ID                      |             | MW-07S                | MW-10S   |
|----------------------------------|-------------|-----------------------|----------|
| Sample ID                        | MW-07S      | MW-10S<br>Groundwater |          |
| Matrix                           | Groundwater |                       |          |
| Depth Interval (ft)              | -           | -                     |          |
| Date Sampled                     |             | 12/06/21              | 12/06/21 |
| Parameter                        | Units       |                       |          |
| Volatile Organic Compounds       |             |                       |          |
| Bromomethane                     | UG/L        | 1.0 U                 | 1.0 U    |
| Carbon disulfide                 | UG/L        | 1.0 U                 | 1.0 U    |
| Carbon tetrachloride             | UG/L        | 1.0 U                 | 1.0 U    |
| Chlorobenzene                    | UG/L        | 1.0 U                 | 1.0 U    |
| Chloroethane                     | UG/L        | 1.0 U                 | 1.0 U    |
| Chloroform                       | UG/L        | 1.0 U                 | 1.0 U    |
| Chloromethane                    | UG/L        | 1.0 U                 | 1.0 U    |
| Cyclohexane                      | UG/L        | 1.0 U                 | 1.0 U    |
| Dibromochloromethane             | UG/L        | 1.0 U                 | 1.0 U    |
| Dichlorodifluoromethane          | UG/L        | 1.0 U                 | 1.0 U    |
| Ethylbenzene                     | UG/L        | 1.0 U                 | 1.0 U    |
| Isopropylbenzene (Cumene)        | UG/L        | 1.0 U                 | 1.0 U    |
| Methyl acetate                   | UG/L        | 2.5 U                 | 2.5 U    |
| Methyl ethyl ketone (2-Butanone) | UG/L        | 10 U                  | 10 U     |
| Methyl tert-butyl ether          | UG/L        | 1.0 U                 | 1.0 U    |
| Methylcyclohexane                | UG/L        | 1.0 U                 | 1.0 U    |
| Methylene chloride               | UG/L        | 1.0 U                 | 1.0 U    |
| Styrene                          | UG/L        | 1.0 U                 | 1.0 U    |
| Tetrachloroethene                | UG/L        | 1.0 U                 | 1.0 U    |
| Toluene                          | UG/L        | 1.0 U                 | 1.0 U    |
| Trichloroethene                  | UG/L        | 28                    | 7.3      |
| Trichlorofluoromethane           | UG/L        | 1.0 U                 | 1.0 U    |
| Vinyl chloride                   | UG/L        | 1.0 U                 | 1.0 U    |
| Xylene (total)                   | UG/L        | 2.0 U                 | 2.0 U    |

Flags assigned during chemistry validation are shown.

UG/L - Micrograms per liter.

| TABLE 2                                 |
|-----------------------------------------|
| FIELD DUPLICATE COMPARISON              |
| FORMER GRIFFIN TECHNOLOGY FACILITY SITE |

| Detected Compound        | MW-06D | FD-120621   | RPD |
|--------------------------|--------|-------------|-----|
| Detecteu Compound        | (µg/L) | $(\mu g/L)$ | (%) |
| 1,1-Dichloroethane       | 0.93   | 0.98        | 5.2 |
| 1,2-Dichloroethene (cis) | 7.0    | 7.0         | 0   |
| Trichloroethene          | 34     | 33          | 3.0 |
| Vinyl chloride           | 2.1    | 2.2         | 4.7 |

RPD – relative percent difference.

 $\mu g/L - micrograms$  per liter.

## **DEFINITION OF USEPA REGION II DATA QUALIFIERS**

The following are definitions of the qualifiers assigned to results during the data review process.

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

| Location ID                            |       | FIELDQC          | MW-06D                | MW-06D      | MW-06S      | MW-07D      |
|----------------------------------------|-------|------------------|-----------------------|-------------|-------------|-------------|
| Sample ID                              |       | ТВ               | FD-120621             | MW-06D      | MW-06S      | MW-07D      |
| Matrix                                 |       | Water Quality    | Groundwater           | Groundwater | Groundwater | Groundwater |
| Depth Interval (ft)                    |       | -                | -                     | -           | -           | -           |
| Date Sampled                           |       | 12/06/21         | 12/06/21              | 12/06/21    | 12/06/21    | 12/06/21    |
| Parameter                              | Units | Trip Blank (1-1) | Field Duplicate (1-1) |             |             |             |
| Volatile Organic Compounds             |       |                  |                       |             |             |             |
| 1,1,1-Trichloroethane                  | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| 1,1,2,2-Tetrachloroethane              | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane  | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| 1,1,2-Trichloroethane                  | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| 1,1-Dichloroethane                     | UG/L  | 1.0 U            | 0.98 J                | 0.93 J      | 0.80 J      | 1.0 U       |
| 1,1-Dichloroethene                     | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| 1,2,4-Trichlorobenzene                 | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| 1,2-Dibromo-3-chloropropane            | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| 1,2-Dibromoethane (Ethylene dibromide) | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| 1,2-Dichlorobenzene                    | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| 1,2-Dichloroethane                     | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| 1,2-Dichloroethene (cis)               | UG/L  | 1.0 U            | 7.0                   | 7.0         | 11          | 5.0         |
| 1,2-Dichloroethene (trans)             | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| 1,2-Dichloropropane                    | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| 1,3-Dichlorobenzene                    | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| 1,3-Dichloropropene (cis)              | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| 1,3-Dichloropropene (trans)            | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| 1,4-Dichlorobenzene                    | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| 2-Hexanone                             | UG/L  | 5.0 U            | 5.0 U                 | 5.0 U       | 5.0 U       | 5.0 U       |
| 4-Methyl-2-pentanone                   | UG/L  | 5.0 U            | 5.0 U                 | 5.0 U       | 5.0 U       | 5.0 U       |
| Acetone                                | UG/L  | 10 U             | 10 U                  | 10 U        | 10 U        | 10 U        |
| Benzene                                | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| Bromodichloromethane                   | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| Bromoform                              | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |

Flags assigned during chemistry validation are shown.

UG/L - Micrograms per liter.

| Location ID                      |       | FIELDQC          | MW-06D                | MW-06D      | MW-06S      | MW-07D      |
|----------------------------------|-------|------------------|-----------------------|-------------|-------------|-------------|
| Sample ID                        |       | ТВ               | FD-120621             | MW-06D      | MW-06S      | MW-07D      |
| Matrix                           |       | Water Quality    | Groundwater           | Groundwater | Groundwater | Groundwater |
| Depth Interval (ft)              |       | -                | -                     | -           | -           | -           |
| Date Sampled                     |       | 12/06/21         | 12/06/21              | 12/06/21    | 12/06/21    | 12/06/21    |
| Parameter                        | Units | Trip Blank (1-1) | Field Duplicate (1-1) |             |             |             |
| Volatile Organic Compounds       |       |                  |                       |             |             |             |
| Bromomethane                     | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| Carbon disulfide                 | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| Carbon tetrachloride             | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| Chlorobenzene                    | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| Chloroethane                     | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| Chloroform                       | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| Chloromethane                    | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| Cyclohexane                      | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| Dibromochloromethane             | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| Dichlorodifluoromethane          | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| Ethylbenzene                     | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| Isopropylbenzene (Cumene)        | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| Methyl acetate                   | UG/L  | 2.5 U            | 2.5 U                 | 2.5 U       | 2.5 U       | 2.5 U       |
| Methyl ethyl ketone (2-Butanone) | UG/L  | 10 U             | 10 U                  | 10 U        | 10 U        | 10 U        |
| Methyl tert-butyl ether          | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| Methylcyclohexane                | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| Methylene chloride               | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| Styrene                          | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| Tetrachloroethene                | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| Toluene                          | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| Trichloroethene                  | UG/L  | 1.0 U            | 33                    | 34          | 21          | 4.3         |
| Trichlorofluoromethane           | UG/L  | 1.0 U            | 1.0 U                 | 1.0 U       | 1.0 U       | 1.0 U       |
| Vinyl chloride                   | UG/L  | 1.0 U            | 2.2                   | 2.1         | 2.2         | 1.0 U       |
| Xylene (total)                   | UG/L  | 2.0 U            | 2.0 U                 | 2.0 U       | 2.0 U       | 2.0 U       |

Flags assigned during chemistry validation are shown.

UG/L - Micrograms per liter.

# TABLE 1VALIDATED GROUNDWATER AND TRIP BLANK SAMPLE RESULTSFORMER GRIFFIN TECHNOLOGY FACILITY SITE

| Location ID                            |          | MW-07S      | MW-10S      |
|----------------------------------------|----------|-------------|-------------|
| Sample ID                              |          | MW-07S      | MW-10S      |
| Matrix                                 |          | Groundwater | Groundwater |
| Depth Interval (ft)                    |          | -           | -           |
| Date Sampled                           | 12/06/21 | 12/06/21    |             |
| Parameter                              | Units    |             |             |
| Volatile Organic Compounds             |          |             |             |
| 1,1,1-Trichloroethane                  | UG/L     | 1.0 U       | 1.0 U       |
| 1,1,2,2-Tetrachloroethane              | UG/L     | 1.0 U       | 1.0 U       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane  | UG/L     | 1.0 U       | 1.0 U       |
| 1,1,2-Trichloroethane                  | UG/L     | 1.0 U       | 1.0 U       |
| 1,1-Dichloroethane                     | UG/L     | 1.0 U       | 1.0 U       |
| 1,1-Dichloroethene                     | UG/L     | 1.0 U       | 1.0 U       |
| 1,2,4-Trichlorobenzene                 | UG/L     | 1.0 U       | 1.0 U       |
| 1,2-Dibromo-3-chloropropane            | UG/L     | 1.0 U       | 1.0 U       |
| 1,2-Dibromoethane (Ethylene dibromide) | UG/L     | 1.0 U       | 1.0 U       |
| 1,2-Dichlorobenzene                    | UG/L     | 1.0 U       | 1.0 U       |
| 1,2-Dichloroethane                     | UG/L     | 1.0 U       | 1.0 U       |
| 1,2-Dichloroethene (cis)               | UG/L     | 2.2         | 1.0 U       |
| 1,2-Dichloroethene (trans)             | UG/L     | 1.0 U       | 1.0 U       |
| 1,2-Dichloropropane                    | UG/L     | 1.0 U       | 1.0 U       |
| 1,3-Dichlorobenzene                    | UG/L     | 1.0 U       | 1.0 U       |
| 1,3-Dichloropropene (cis)              | UG/L     | 1.0 U       | 1.0 U       |
| 1,3-Dichloropropene (trans)            | UG/L     | 1.0 U       | 1.0 U       |
| 1,4-Dichlorobenzene                    | UG/L     | 1.0 U       | 1.0 U       |
| 2-Hexanone                             | UG/L     | 5.0 U       | 5.0 U       |
| 4-Methyl-2-pentanone                   | UG/L     | 5.0 U       | 5.0 U       |
| Acetone                                | UG/L     | 10 U        | 10 U        |
| Benzene                                | UG/L     | 1.0 U       | 1.0 U       |
| Bromodichloromethane                   | UG/L     | 1.0 U       | 1.0 U       |
| Bromoform                              | UG/L     | 1.0 U       | 1.0 U       |

Flags assigned during chemistry validation are shown.

UG/L - Micrograms per liter.

J - The reported concentration is an estimated value. U - Not detected above the reported quantitation limit.

# TABLE 1VALIDATED GROUNDWATER AND TRIP BLANK SAMPLE RESULTSFORMER GRIFFIN TECHNOLOGY FACILITY SITE

| Location ID                      | MW-07S   | MW-10S      |             |
|----------------------------------|----------|-------------|-------------|
| Sample ID                        |          | MW-07S      | MW-10S      |
| Matrix                           |          | Groundwater | Groundwater |
| Depth Interval (ft)              |          | -           | -           |
| Date Sampled                     | 12/06/21 | 12/06/21    |             |
| Parameter                        | Units    |             |             |
| Volatile Organic Compounds       |          |             |             |
| Bromomethane                     | UG/L     | 1.0 U       | 1.0 U       |
| Carbon disulfide                 | UG/L     | 1.0 U       | 1.0 U       |
| Carbon tetrachloride             | UG/L     | 1.0 U       | 1.0 U       |
| Chlorobenzene                    | UG/L     | 1.0 U       | 1.0 U       |
| Chloroethane                     | UG/L     | 1.0 U       | 1.0 U       |
| Chloroform                       | UG/L     | 1.0 U       | 1.0 U       |
| Chloromethane                    | UG/L     | 1.0 U       | 1.0 U       |
| Cyclohexane                      | UG/L     | 1.0 U       | 1.0 U       |
| Dibromochloromethane             | UG/L     | 1.0 U       | 1.0 U       |
| Dichlorodifluoromethane          | UG/L     | 1.0 U       | 1.0 U       |
| Ethylbenzene                     | UG/L     | 1.0 U       | 1.0 U       |
| Isopropylbenzene (Cumene)        | UG/L     | 1.0 U       | 1.0 U       |
| Methyl acetate                   | UG/L     | 2.5 U       | 2.5 U       |
| Methyl ethyl ketone (2-Butanone) | UG/L     | 10 U        | 10 U        |
| Methyl tert-butyl ether          | UG/L     | 1.0 U       | 1.0 U       |
| Methylcyclohexane                | UG/L     | 1.0 U       | 1.0 U       |
| Methylene chloride               | UG/L     | 1.0 U       | 1.0 U       |
| Styrene                          | UG/L     | 1.0 U       | 1.0 U       |
| Tetrachloroethene                | UG/L     | 1.0 U       | 1.0 U       |
| Toluene                          | UG/L     | 1.0 U       | 1.0 U       |
| Trichloroethene                  | UG/L     | 28          | 7.3         |
| Trichlorofluoromethane           | UG/L     | 1.0 U       | 1.0 U       |
| Vinyl chloride                   | UG/L     | 1.0 U       | 1.0 U       |
| Xylene (total)                   | UG/L     | 2.0 U       | 2.0 U       |

Flags assigned during chemistry validation are shown.

UG/L - Micrograms per liter.

J - The reported concentration is an estimated value. U - Not detected above the reported quantitation limit.

## 🔅 eurofins

## Environment Testing America

## **ANALYTICAL REPORT**

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

#### Laboratory Job ID: 480-193106-1

Client Project/Site: Griffin Diebold Project

For:

AECOM One John James Audubon Parkway Suite 210 Amherst, New York 14228

Attn: Mike Gutmann

Authorized for release by: 12/9/2021 5:20:11 PM Rebecca Jones, Project Management Assistant I Rebecca.Jones@Eurofinset.com

Designee for

John Schove, Project Manager II (716)504-9838 John.Schove@Eurofinset.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

<section-header><text><text><text><text>

## **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 2  |
| Definitions/Glossary   | 3  |
| Case Narrative         | 4  |
| Detection Summary      | 5  |
| Client Sample Results  | 6  |
| Surrogate Summary      | 20 |
| QC Sample Results      | 21 |
| QC Association Summary | 26 |
| Lab Chronicle          | 27 |
| Certification Summary  | 28 |
| Method Summary         | 29 |
| Sample Summary         | 30 |
| Chain of Custody       | 31 |
| Receipt Checklists     | 32 |
|                        |    |

#### **Definitions/Glossary**

#### Client: AECOM Project/Site: Griffin Diebold Project

Job ID: 480-193106-1

#### Qualifiers

| Qualifiers     |                                                                                                                | 3  |
|----------------|----------------------------------------------------------------------------------------------------------------|----|
| GC/MS VOA      |                                                                                                                |    |
| Qualifier      | Qualifier Description                                                                                          |    |
| *+             | LCS and/or LCSD is outside acceptance limits, high biased.                                                     |    |
| F1             | MS and/or MSD recovery exceeds control limits.                                                                 | 5  |
| J              | Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. |    |
| Glossary       |                                                                                                                |    |
| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                    |    |
| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                     |    |
| %R             | Percent Recovery                                                                                               | Q  |
| CFL            | Contains Free Liquid                                                                                           | 0  |
| CFU            | Colony Forming Unit                                                                                            |    |
| CNF            | Contains No Free Liquid                                                                                        | 9  |
| DER            | Duplicate Error Ratio (normalized absolute difference)                                                         |    |
| Dil Fac        | Dilution Factor                                                                                                |    |
| DL             | Detection Limit (DoD/DOE)                                                                                      |    |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample    |    |
| DLC            | Decision Level Concentration (Radiochemistry)                                                                  |    |
| EDL            | Estimated Detection Limit (Dioxin)                                                                             |    |
| LOD            | Limit of Detection (DoD/DOE)                                                                                   |    |
| LOQ            | Limit of Quantitation (DoD/DOE)                                                                                | 13 |
| MCL            | EPA recommended "Maximum Contaminant Level"                                                                    |    |
| MDA            | Minimum Detectable Activity (Radiochemistry)                                                                   |    |
| MDC            | Minimum Detectable Concentration (Radiochemistry)                                                              |    |
| MDL            | Method Detection Limit                                                                                         |    |
| ML             | Minimum Level (Dioxin)                                                                                         |    |

| Glussaly       |                                                                                                             |
|----------------|-------------------------------------------------------------------------------------------------------------|
| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 |
| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |
| %R             | Percent Recovery                                                                                            |
| CFL            | Contains Free Liquid                                                                                        |
| CFU            | Colony Forming Unit                                                                                         |
| CNF            | Contains No Free Liquid                                                                                     |
| DER            | Duplicate Error Ratio (normalized absolute difference)                                                      |
| Dil Fac        | Dilution Factor                                                                                             |
| DL             | Detection Limit (DoD/DOE)                                                                                   |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |
| DLC            | Decision Level Concentration (Radiochemistry)                                                               |
| EDL            | Estimated Detection Limit (Dioxin)                                                                          |
| LOD            | Limit of Detection (DoD/DOE)                                                                                |
| LOQ            | Limit of Quantitation (DoD/DOE)                                                                             |
| MCL            | EPA recommended "Maximum Contaminant Level"                                                                 |
| MDA            | Minimum Detectable Activity (Radiochemistry)                                                                |
| MDC            | Minimum Detectable Concentration (Radiochemistry)                                                           |
| MDL            | Method Detection Limit                                                                                      |
| ML             | Minimum Level (Dioxin)                                                                                      |
| MPN            | Most Probable Number                                                                                        |
| MQL            | Method Quantitation Limit                                                                                   |
| NC             | Not Calculated                                                                                              |
| ND             | Not Detected at the reporting limit (or MDL or EDL if shown)                                                |
| NEG            | Negative / Absent                                                                                           |
| POS            | Positive / Present                                                                                          |
| PQL            | Practical Quantitation Limit                                                                                |
| PRES           | Presumptive                                                                                                 |
| QC             | Quality Control                                                                                             |
| RER            | Relative Error Ratio (Radiochemistry)                                                                       |
| RL             | Reporting Limit or Requested Limit (Radiochemistry)                                                         |
| RPD            | Relative Percent Difference, a measure of the relative difference between two points                        |
| TEF            | Toxicity Equivalent Factor (Dioxin)                                                                         |
| TEQ            | Toxicity Equivalent Quotient (Dioxin)                                                                       |
| TNTC           | Too Numerous To Count                                                                                       |

#### Job ID: 480-193106-1

#### Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-193106-1

#### Comments

No additional comments.

#### Receipt

The samples were received on 12/6/2021 4:37 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.9° C.

#### GC/MS VOA

Method 8260C: The continuing calibration verification (CCVIS) associated with batch 480-607776 recovered above the upper control limit for Carbon disulfide, Carbon tetrachloride and Vinyl chloride. The samples associated with this CCVIS were non-detect for the affected analytes; therefore, the data have been reported. The associated samples are impacted: MW-07S (480-193106-3), MW-07D (480-193106-4), MW-10S (480-193106-5) and TB (480-193106-7).

Method 8260C: The following sample(s) was collected in a properly preserved vial; however, the pH was outside the required criteria when verified by the laboratory. The sample was analyzed within the 7-day holding time specified for unpreserved samples: MW-07D (480-193106-4). pH is 4.

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-607776 recovered above the upper control limit for Carbon disulfide and Carbon tetrachloride. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: MW-06S (480-193106-1), MW-06D (480-193106-2) and FD-120621 (480-193106-6).

Method 8260C: The continuing calibration verification (CCV) analyzed in 480-607776 was outside the method criteria for the following analyte: Vinyl chloride. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte is considered estimated. The associated samples are impacted: MW-06S (480-193106-1), MW-06D (480-193106-2) and FD-120621 (480-193106-6).

Method 8260C: The laboratory control sample (LCS) for analytical batch 480-607776 recovered outside control limits for the following analyte: Dichlorodifluoromethane. This analyte was biased high in the LCS and was not detected in the associated samples; therefore, the data have been reported. The associated samples are impacted: MW-06S (480-193106-1), MW-06D (480-193106-2), MW-07S (480-193106-3), MW-07D (480-193106-4), MW-10S (480-193106-5), FD-120621 (480-193106-6) and TB (480-193106-7).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### **Detection Summary**

#### Client: AECOM Project/Site: Griffin Diebold Project

|                               | Desult | Qualifier | ы         | MDI  | 11   |         |          | Mathad          | Dren Turne            |
|-------------------------------|--------|-----------|-----------|------|------|---------|----------|-----------------|-----------------------|
| Analyte<br>1.1-Dichloroethane | 0.80   | Qualifier | RL<br>1.0 | 0.38 |      | Dil Fac | <u> </u> | Method<br>8260C | Prep Type<br>Total/NA |
| cis-1.2-Dichloroethene        | 0.80   | J         | 1.0       | 0.38 | •    | 1       |          | 8260C           | Total/NA              |
| Trichloroethene               | 21     |           | 1.0       | 0.81 | •    | 1       |          | 8260C           | Total/NA              |
| Vinyl chloride                | 2.2    |           | 1.0       | 0.40 |      | 1       |          | 8260C           | Total/NA              |
| Client Sample ID: MW-06D      |        |           |           |      |      | Lal     | o S      | ample ID:       | 480-193106            |
| _<br>Analyte                  | Result | Qualifier | RL        | MDL  | Unit | Dil Fac | D        | Method          | Prep Type             |
| 1,1-Dichloroethane            | 0.93   | J         | 1.0       | 0.38 | ug/L | 1       | _        | 8260C           | Total/NA              |
| cis-1,2-Dichloroethene        | 7.0    |           | 1.0       | 0.81 | ug/L | 1       |          | 8260C           | Total/NA              |
| Trichloroethene               | 34     |           | 1.0       | 0.46 | ug/L | 1       |          | 8260C           | Total/NA              |
| Vinyl chloride                | 2.1    |           | 1.0       | 0.90 | ug/L | 1       |          | 8260C           | Total/NA              |
| Client Sample ID: MW-07S      |        |           |           |      |      | Lal     | o S      | ample ID:       | 480-193106            |
| Analyte                       | Result | Qualifier | RL        | MDL  | Unit | Dil Fac | D        | Method          | Prep Type             |
| cis-1,2-Dichloroethene        | 2.2    |           | 1.0       | 0.81 | ug/L | 1       | _        | 8260C           | Total/NA              |
| Trichloroethene               | 28     |           | 1.0       | 0.46 | ug/L | 1       |          | 8260C           | Total/NA              |
| Client Sample ID: MW-07D      |        |           |           |      |      | Lal     | o S      | ample ID:       | 480-193106            |
| -<br>Analyte                  | Result | Qualifier | RL        | MDL  | Unit | Dil Fac | D        | Method          | Prep Type             |
| cis-1,2-Dichloroethene        | 5.0    |           | 1.0       | 0.81 | ug/L | 1       | _        | 8260C           | Total/NA              |
| Trichloroethene               | 4.3    |           | 1.0       | 0.46 | ug/L | 1       |          | 8260C           | Total/NA              |
| Client Sample ID: MW-10S      |        |           |           |      |      | Lal     | o S      | ample ID:       | 480-193106            |
| Analyte                       | Result | Qualifier | RL        | MDL  | Unit | Dil Fac | D        | Method          | Prep Type             |
| Trichloroethene               | 7.3    |           | 1.0       | 0.46 | ug/L | 1       | _        | 8260C           | Total/NA              |
| Client Sample ID: FD-120621   |        |           |           |      |      | Lal     | o S      | ample ID:       | 480-193106            |
| Analyte                       | Result | Qualifier | RL        | MDL  | Unit | Dil Fac | D        | Method          | Prep Type             |
| 1,1-Dichloroethane            | 0.98   | J         | 1.0       | 0.38 | ug/L | 1       | _        | 8260C           | Total/NA              |
| cis-1,2-Dichloroethene        | 7.0    |           | 1.0       | 0.81 | ug/L | 1       |          | 8260C           | Total/NA              |
| Trichloroethene               | 33     |           | 1.0       | 0.46 | ug/L | 1       |          | 8260C           | Total/NA              |
| Vinyl chloride                | 2.2    |           | 1.0       | 0.90 | ug/L | 1       |          | 8260C           | Total/NA              |

No Detections.

This Detection Summary does not include radiochemical test results.

#### Client Sample ID: MW-06S

Date Collected: 12/06/21 11:25 Date Received: 12/06/21 16:37

| Analyte                               | Result   | Qualifier     | RL  | MDL  | Unit | <u>D</u> | Prepared | Analyzed       | Dil Fac  |
|---------------------------------------|----------|---------------|-----|------|------|----------|----------|----------------|----------|
| 1,1,1-Trichloroethane                 | ND       | F1            | 1.0 | 0.82 | ug/L |          |          | 12/07/21 17:22 | 1        |
| 1,1,2,2-Tetrachloroethane             | ND       |               | 1.0 | 0.21 | ug/L |          |          | 12/07/21 17:22 | 1        |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND       |               | 1.0 | 0.31 | ug/L |          |          | 12/07/21 17:22 | 1        |
| 1,1,2-Trichloroethane                 | ND       |               | 1.0 | 0.23 | ug/L |          |          | 12/07/21 17:22 | 1        |
| 1,1-Dichloroethane                    | 0.80     | J             | 1.0 | 0.38 | ug/L |          |          | 12/07/21 17:22 | 1        |
| 1,1-Dichloroethene                    | ND       |               | 1.0 | 0.29 | ug/L |          |          | 12/07/21 17:22 | 1        |
| 1,2,4-Trichlorobenzene                | ND       |               | 1.0 | 0.41 | ug/L |          |          | 12/07/21 17:22 | 1        |
| 1,2-Dibromo-3-Chloropropane           | ND       |               | 1.0 | 0.39 | ug/L |          |          | 12/07/21 17:22 | 1        |
| 1,2-Dibromoethane                     | ND       |               | 1.0 | 0.73 | ug/L |          |          | 12/07/21 17:22 | 1        |
| 1,2-Dichlorobenzene                   | ND       |               | 1.0 | 0.79 | ug/L |          |          | 12/07/21 17:22 | 1        |
| 1,2-Dichloroethane                    | ND       |               | 1.0 | 0.21 | ug/L |          |          | 12/07/21 17:22 | 1        |
| 1,2-Dichloropropane                   | ND       |               | 1.0 | 0.72 | ug/L |          |          | 12/07/21 17:22 | 1        |
| 1,3-Dichlorobenzene                   | ND       |               | 1.0 | 0.78 | ug/L |          |          | 12/07/21 17:22 | 1        |
| 1,4-Dichlorobenzene                   | ND       |               | 1.0 | 0.84 | -    |          |          | 12/07/21 17:22 | 1        |
| 2-Butanone (MEK)                      | ND       |               | 10  |      | ug/L |          |          | 12/07/21 17:22 | 1        |
| 2-Hexanone                            | ND       |               | 5.0 |      | ug/L |          |          | 12/07/21 17:22 |          |
| I-Methyl-2-pentanone (MIBK)           | ND       |               | 5.0 |      | ug/L |          |          | 12/07/21 17:22 | 1        |
| Acetone                               | ND       |               | 10  |      | ug/L |          |          | 12/07/21 17:22 | 1        |
| Benzene                               | ND       |               | 1.0 | 0.41 |      |          |          | 12/07/21 17:22 |          |
| Bromodichloromethane                  | ND       |               | 1.0 | 0.39 | -    |          |          | 12/07/21 17:22 | 1        |
| Bromoform                             | ND       |               | 1.0 | 0.26 | -    |          |          | 12/07/21 17:22 | 1        |
| Bromomethane                          | ND       |               | 1.0 |      | ug/L |          |          | 12/07/21 17:22 |          |
| Carbon disulfide                      | ND       |               | 1.0 | 0.00 | -    |          |          | 12/07/21 17:22 | 1        |
| Carbon tetrachloride                  | ND       | F1            | 1.0 | 0.13 | -    |          |          | 12/07/21 17:22 | 1        |
| Chlorobenzene                         | ND       |               | 1.0 |      | ug/L |          |          | 12/07/21 17:22 | ' 1      |
| Chloroethane                          | ND       |               | 1.0 | 0.32 | -    |          |          | 12/07/21 17:22 | 1        |
| Chloroform                            | ND       |               | 1.0 | 0.32 | -    |          |          | 12/07/21 17:22 | 1        |
| Chloromethane                         | ND       | E1            | 1.0 | 0.34 |      |          |          | 12/07/21 17:22 | ' '<br>1 |
|                                       |          | FI            | 1.0 |      | -    |          |          | 12/07/21 17:22 | 1        |
| cis-1,2-Dichloroethene                | 11<br>ND |               | 1.0 | 0.81 | -    |          |          |                | 1        |
| cis-1,3-Dichloropropene               |          |               |     | 0.36 |      |          |          | 12/07/21 17:22 |          |
|                                       | ND       |               | 1.0 | 0.18 | -    |          |          | 12/07/21 17:22 | 1        |
| Dibromochloromethane                  | ND       | <b>E4</b> + . | 1.0 | 0.32 | -    |          |          | 12/07/21 17:22 | 1        |
| Dichlorodifluoromethane               |          | F1 *+         | 1.0 | 0.68 |      |          |          | 12/07/21 17:22 | 1        |
| Ethylbenzene                          | ND       |               | 1.0 | 0.74 | -    |          |          | 12/07/21 17:22 | 1        |
| sopropylbenzene                       | ND       |               | 1.0 | 0.79 | -    |          |          | 12/07/21 17:22 | 1        |
| Aethyl acetate                        | ND       |               | 2.5 |      | ug/L |          |          | 12/07/21 17:22 | 1        |
| Methyl tert-butyl ether               | ND       |               | 1.0 | 0.16 |      |          |          | 12/07/21 17:22 | 1        |
| Methylcyclohexane                     | ND       |               | 1.0 | 0.16 |      |          |          | 12/07/21 17:22 | 1        |
| Aethylene Chloride                    | ND       |               | 1.0 |      | ug/L |          |          | 12/07/21 17:22 | 1        |
| Styrene                               | ND       |               | 1.0 | 0.73 |      |          |          | 12/07/21 17:22 | 1        |
| etrachloroethene                      | ND       |               | 1.0 | 0.36 | -    |          |          | 12/07/21 17:22 | 1        |
| Foluene                               | ND       |               | 1.0 | 0.51 |      |          |          | 12/07/21 17:22 | 1        |
| rans-1,2-Dichloroethene               | ND       |               | 1.0 | 0.90 | •    |          |          | 12/07/21 17:22 | 1        |
| rans-1,3-Dichloropropene              | ND       |               | 1.0 | 0.37 | ug/L |          |          | 12/07/21 17:22 | 1        |
| <b>Frichloroethene</b>                | 21       |               | 1.0 | 0.46 | ug/L |          |          | 12/07/21 17:22 | 1        |
| Trichlorofluoromethane                | ND       |               | 1.0 | 0.88 | ug/L |          |          | 12/07/21 17:22 | 1        |
| Vinyl chloride                        | 2.2      |               | 1.0 | 0.90 | ug/L |          |          | 12/07/21 17:22 | 1        |
| Kylenes, Total                        | ND       |               | 2.0 | 0.66 | ua/L |          |          | 12/07/21 17:22 | 1        |

Job ID: 480-193106-1

#### Lab Sample ID: 480-193106-1

Matrix: Water

5

6

Matrix: Water

5 6

Lab Sample ID: 480-193106-1

#### Client Sample ID: MW-06S Date Collected: 12/06/21 11:25

Client: AECOM

Date Received: 12/06/21 16:37

| Surrogate                    | %Recovery | Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|----------|----------------|---------|
| 1,2-Dichloroethane-d4 (Surr) | 94        |           | 77 - 120 |          | 12/07/21 17:22 | 1       |
| 4-Bromofluorobenzene (Surr)  | 97        |           | 73 - 120 |          | 12/07/21 17:22 | 1       |
| Dibromofluoromethane (Surr)  | 102       |           | 75 - 123 |          | 12/07/21 17:22 | 1       |
| Toluene-d8 (Surr)            | 95        |           | 80 - 120 |          | 12/07/21 17:22 | 1       |

#### Client Sample ID: MW-06D

Date Collected: 12/06/21 10:24 Date Received: 12/06/21 16:37

| Analyte                               | Result Qualifier | RL  | MDL  | Unit | D Prepared | Analyzed       | Dil Fac |
|---------------------------------------|------------------|-----|------|------|------------|----------------|---------|
| 1,1,1-Trichloroethane                 | ND               | 1.0 | 0.82 | ug/L |            | 12/07/21 17:45 | 1       |
| 1,1,2,2-Tetrachloroethane             | ND               | 1.0 | 0.21 | ug/L |            | 12/07/21 17:45 | 1       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND               | 1.0 | 0.31 | ug/L |            | 12/07/21 17:45 | 1       |
| 1,1,2-Trichloroethane                 | ND               | 1.0 | 0.23 | ug/L |            | 12/07/21 17:45 | 1       |
| 1,1-Dichloroethane                    | 0.93 J           | 1.0 | 0.38 | ug/L |            | 12/07/21 17:45 | 1       |
| 1,1-Dichloroethene                    | ND               | 1.0 | 0.29 | ug/L |            | 12/07/21 17:45 | 1       |
| 1,2,4-Trichlorobenzene                | ND               | 1.0 | 0.41 | ug/L |            | 12/07/21 17:45 | 1       |
| 1,2-Dibromo-3-Chloropropane           | ND               | 1.0 | 0.39 | ug/L |            | 12/07/21 17:45 | 1       |
| 1,2-Dibromoethane                     | ND               | 1.0 | 0.73 | ug/L |            | 12/07/21 17:45 | 1       |
| 1,2-Dichlorobenzene                   | ND               | 1.0 | 0.79 | ug/L |            | 12/07/21 17:45 | 1       |
| 1,2-Dichloroethane                    | ND               | 1.0 | 0.21 | ug/L |            | 12/07/21 17:45 | 1       |
| 1,2-Dichloropropane                   | ND               | 1.0 | 0.72 | ug/L |            | 12/07/21 17:45 | 1       |
| 1,3-Dichlorobenzene                   | ND               | 1.0 | 0.78 | ug/L |            | 12/07/21 17:45 | 1       |
| 1,4-Dichlorobenzene                   | ND               | 1.0 | 0.84 | ug/L |            | 12/07/21 17:45 | 1       |
| 2-Butanone (MEK)                      | ND               | 10  |      | ug/L |            | 12/07/21 17:45 | 1       |
| 2-Hexanone                            | ND               | 5.0 | 1.2  | ug/L |            | 12/07/21 17:45 | 1       |
| 4-Methyl-2-pentanone (MIBK)           | ND               | 5.0 |      | ug/L |            | 12/07/21 17:45 | 1       |
| Acetone                               | ND               | 10  |      | ug/L |            | 12/07/21 17:45 | 1       |
| Benzene                               | ND               | 1.0 | 0.41 |      |            | 12/07/21 17:45 |         |
| Bromodichloromethane                  | ND               | 1.0 |      | ug/L |            | 12/07/21 17:45 | 1       |
| Bromoform                             | ND               | 1.0 |      | ug/L |            | 12/07/21 17:45 | 1       |
| Bromomethane                          | ND               | 1.0 |      | ug/L |            | 12/07/21 17:45 |         |
| Carbon disulfide                      | ND               | 1.0 |      | ug/L |            | 12/07/21 17:45 | 1       |
| Carbon tetrachloride                  | ND               | 1.0 |      | ug/L |            | 12/07/21 17:45 | 1       |
| Chlorobenzene                         | ND               | 1.0 |      | ug/L |            | 12/07/21 17:45 | 1       |
| Chloroethane                          | ND               | 1.0 |      | ug/L |            | 12/07/21 17:45 | 1       |
| Chloroform                            | ND               | 1.0 |      | ug/L |            | 12/07/21 17:45 | 1       |
| Chloromethane                         | ND               | 1.0 |      | ug/L |            | 12/07/21 17:45 | 1       |
| cis-1,2-Dichloroethene                | 7.0              | 1.0 | 0.81 | -    |            | 12/07/21 17:45 | 1       |
| cis-1,3-Dichloropropene               | ND               | 1.0 |      | ug/L |            | 12/07/21 17:45 | 1       |
| Cyclohexane                           | ND               | 1.0 |      | ug/L |            | 12/07/21 17:45 | 1       |
| Dibromochloromethane                  | ND               | 1.0 |      | ug/L |            | 12/07/21 17:45 | 1       |
| Dichlorodifluoromethane               | ND *+            | 1.0 |      | ug/L |            | 12/07/21 17:45 | 1       |
| Ethylbenzene                          | ND               | 1.0 |      | ug/L |            | 12/07/21 17:45 |         |
| Isopropylbenzene                      | ND               | 1.0 |      | ug/L |            | 12/07/21 17:45 | 1       |
| Methyl acetate                        | ND               | 2.5 |      | ug/L |            | 12/07/21 17:45 | 1       |
| Methyl tert-butyl ether               | ND               | 1.0 |      | ug/L |            | 12/07/21 17:45 |         |
| Methylcyclohexane                     | ND               | 1.0 |      | ug/L |            | 12/07/21 17:45 | 1       |
| Methylene Chloride                    | ND               | 1.0 |      | ug/L |            | 12/07/21 17:45 | 1       |
| Styrene                               | ND               | 1.0 |      | ug/L |            | 12/07/21 17:45 |         |
| Tetrachloroethene                     | ND               | 1.0 |      | ug/L |            | 12/07/21 17:45 | 1       |
| Foluene                               | ND               | 1.0 |      | ug/L |            | 12/07/21 17:45 | 1       |
| trans-1,2-Dichloroethene              | ND               | 1.0 |      | ug/L |            | 12/07/21 17:45 |         |
| trans-1,3-Dichloropropene             | ND               | 1.0 |      | ug/L |            | 12/07/21 17:45 | 1       |
| Trichloroethene                       | 34               | 1.0 |      | ug/L |            | 12/07/21 17:45 | 1       |
| Trichlorofluoromethane                | ND               | 1.0 |      | ug/L |            | 12/07/21 17:45 |         |
| Vinyl chloride                        | 2.1              | 1.0 |      | ug/L |            | 12/07/21 17:45 | 1       |
| Xylenes, Total                        | ND               | 2.0 |      | ug/L |            | 12/07/21 17:45 | 1       |

#### Lab Sample ID: 480-193106-2

Matrix: Water

5

6

Matrix: Water

Lab Sample ID: 480-193106-2

### Project/Site: Griffin Diebold Project

Client: AECOM

#### Client Sample ID: MW-06D Date Collected: 12/06/21 10:24

Date Received: 12/06/21 16:37

| Surrogate                    | %Recovery | Qualifier Limits | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|------------------|----------|----------------|---------|
| 1,2-Dichloroethane-d4 (Surr) | 99        | 77 - 120         |          | 12/07/21 17:45 | 1       |
| 4-Bromofluorobenzene (Surr)  | 99        | 73 - 120         |          | 12/07/21 17:45 | 1       |
| Dibromofluoromethane (Surr)  | 104       | 75 - 123         |          | 12/07/21 17:45 | 1       |
| Toluene-d8 (Surr)            | 99        | 80 - 120         |          | 12/07/21 17:45 | 1       |

#### Client Sample ID: MW-07S

Date Collected: 12/06/21 13:57 Date Received: 12/06/21 16:37

| Analyte                               | Result Qualifier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------------------|------------------|-----|------|------|---|----------|----------------|---------|
| 1,1,1-Trichloroethane                 | ND               | 1.0 | 0.82 | ug/L |   |          | 12/07/21 18:08 | 1       |
| 1,1,2,2-Tetrachloroethane             | ND               | 1.0 | 0.21 | ug/L |   |          | 12/07/21 18:08 | 1       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND               | 1.0 | 0.31 | ug/L |   |          | 12/07/21 18:08 | 1       |
| 1,1,2-Trichloroethane                 | ND               | 1.0 | 0.23 | ug/L |   |          | 12/07/21 18:08 | 1       |
| 1,1-Dichloroethane                    | ND               | 1.0 | 0.38 | ug/L |   |          | 12/07/21 18:08 | 1       |
| 1,1-Dichloroethene                    | ND               | 1.0 | 0.29 | ug/L |   |          | 12/07/21 18:08 | 1       |
| 1,2,4-Trichlorobenzene                | ND               | 1.0 | 0.41 | ug/L |   |          | 12/07/21 18:08 | 1       |
| 1,2-Dibromo-3-Chloropropane           | ND               | 1.0 | 0.39 | ug/L |   |          | 12/07/21 18:08 | 1       |
| 1,2-Dibromoethane                     | ND               | 1.0 | 0.73 | ug/L |   |          | 12/07/21 18:08 | 1       |
| 1,2-Dichlorobenzene                   | ND               | 1.0 | 0.79 | ug/L |   |          | 12/07/21 18:08 | 1       |
| 1,2-Dichloroethane                    | ND               | 1.0 | 0.21 | ug/L |   |          | 12/07/21 18:08 | 1       |
| 1,2-Dichloropropane                   | ND               | 1.0 | 0.72 | ug/L |   |          | 12/07/21 18:08 | 1       |
| 1,3-Dichlorobenzene                   | ND               | 1.0 | 0.78 | ug/L |   |          | 12/07/21 18:08 | 1       |
| 1,4-Dichlorobenzene                   | ND               | 1.0 | 0.84 | ug/L |   |          | 12/07/21 18:08 | 1       |
| 2-Butanone (MEK)                      | ND               | 10  | 1.3  | ug/L |   |          | 12/07/21 18:08 | 1       |
| 2-Hexanone                            | ND               | 5.0 | 1.2  | ug/L |   |          | 12/07/21 18:08 | 1       |
| 4-Methyl-2-pentanone (MIBK)           | ND               | 5.0 | 2.1  | ug/L |   |          | 12/07/21 18:08 | 1       |
| Acetone                               | ND               | 10  | 3.0  | ug/L |   |          | 12/07/21 18:08 | 1       |
| Benzene                               | ND               | 1.0 | 0.41 | ug/L |   |          | 12/07/21 18:08 | 1       |
| Bromodichloromethane                  | ND               | 1.0 | 0.39 | ug/L |   |          | 12/07/21 18:08 | 1       |
| Bromoform                             | ND               | 1.0 | 0.26 | ug/L |   |          | 12/07/21 18:08 | 1       |
| Bromomethane                          | ND               | 1.0 | 0.69 | ug/L |   |          | 12/07/21 18:08 | 1       |
| Carbon disulfide                      | ND               | 1.0 | 0.19 | ug/L |   |          | 12/07/21 18:08 | 1       |
| Carbon tetrachloride                  | ND               | 1.0 | 0.27 | ug/L |   |          | 12/07/21 18:08 | 1       |
| Chlorobenzene                         | ND               | 1.0 | 0.75 | ug/L |   |          | 12/07/21 18:08 | 1       |
| Chloroethane                          | ND               | 1.0 | 0.32 | ug/L |   |          | 12/07/21 18:08 | 1       |
| Chloroform                            | ND               | 1.0 | 0.34 | ug/L |   |          | 12/07/21 18:08 | 1       |
| Chloromethane                         | ND               | 1.0 | 0.35 | ug/L |   |          | 12/07/21 18:08 | 1       |
| cis-1,2-Dichloroethene                | 2.2              | 1.0 | 0.81 | ug/L |   |          | 12/07/21 18:08 | 1       |
| cis-1,3-Dichloropropene               | ND               | 1.0 | 0.36 | ug/L |   |          | 12/07/21 18:08 | 1       |
| Cyclohexane                           | ND               | 1.0 | 0.18 | ug/L |   |          | 12/07/21 18:08 | 1       |
| Dibromochloromethane                  | ND               | 1.0 | 0.32 | ug/L |   |          | 12/07/21 18:08 | 1       |
| Dichlorodifluoromethane               | ND *+            | 1.0 | 0.68 | ug/L |   |          | 12/07/21 18:08 | 1       |
| Ethylbenzene                          | ND               | 1.0 | 0.74 | ug/L |   |          | 12/07/21 18:08 | 1       |
| Isopropylbenzene                      | ND               | 1.0 | 0.79 | ug/L |   |          | 12/07/21 18:08 | 1       |
| Methyl acetate                        | ND               | 2.5 | 1.3  | ug/L |   |          | 12/07/21 18:08 | 1       |
| Methyl tert-butyl ether               | ND               | 1.0 | 0.16 | ug/L |   |          | 12/07/21 18:08 | 1       |
| Methylcyclohexane                     | ND               | 1.0 | 0.16 | ug/L |   |          | 12/07/21 18:08 | 1       |
| Methylene Chloride                    | ND               | 1.0 | 0.44 | ug/L |   |          | 12/07/21 18:08 | 1       |
| Styrene                               | ND               | 1.0 | 0.73 | ug/L |   |          | 12/07/21 18:08 | 1       |
| Tetrachloroethene                     | ND               | 1.0 | 0.36 | ug/L |   |          | 12/07/21 18:08 | 1       |
| Toluene                               | ND               | 1.0 | 0.51 | ug/L |   |          | 12/07/21 18:08 | 1       |
| trans-1,2-Dichloroethene              | ND               | 1.0 | 0.90 | ug/L |   |          | 12/07/21 18:08 | 1       |
| trans-1,3-Dichloropropene             | ND               | 1.0 | 0.37 | ug/L |   |          | 12/07/21 18:08 | 1       |
| Trichloroethene                       | 28               | 1.0 | 0.46 | ug/L |   |          | 12/07/21 18:08 | 1       |
| Trichlorofluoromethane                | ND               | 1.0 | 0.88 | ug/L |   |          | 12/07/21 18:08 | 1       |
| Vinyl chloride                        | ND               | 1.0 | 0.90 | ug/L |   |          | 12/07/21 18:08 | 1       |
| Xylenes, Total                        | ND               | 2.0 | 0.66 | ug/L |   |          | 12/07/21 18:08 | 1       |

Job ID: 480-193106-1

Matrix: Water

Lab Sample ID: 480-193106-3

### 2 3 4 5 6 7 8 9

Matrix: Water

Lab Sample ID: 480-193106-3

#### Client: AECOM Project/Site: Griffin Diebold Project

#### Client Sample ID: MW-07S Date Collected: 12/06/21 13:57

| Surrogate                    | %Recovery | Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|----------|----------------|---------|
| 1,2-Dichloroethane-d4 (Surr) | 98        |           | 77 - 120 |          | 12/07/21 18:08 | 1       |
| 4-Bromofluorobenzene (Surr)  | 98        |           | 73 - 120 |          | 12/07/21 18:08 | 1       |
| Dibromofluoromethane (Surr)  | 101       |           | 75 - 123 |          | 12/07/21 18:08 | 1       |
| Toluene-d8 (Surr)            | 96        |           | 80 - 120 |          | 12/07/21 18:08 | 1       |

Date Received: 12/06/21 16:37

#### Client Sample ID: MW-07D

Date Collected: 12/06/21 14:30 Date Received: 12/06/21 16:37

| Analyte                               | Result Qualifier | RL  | MDL  | Unit | <u>D</u> | Prepared | Analyzed       | Dil Fac             |
|---------------------------------------|------------------|-----|------|------|----------|----------|----------------|---------------------|
| 1,1,1-Trichloroethane                 | ND               | 1.0 | 0.82 | ug/L |          |          | 12/07/21 18:31 | 1                   |
| 1,1,2,2-Tetrachloroethane             | ND               | 1.0 | 0.21 | ug/L |          |          | 12/07/21 18:31 | 1                   |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND               | 1.0 | 0.31 | ug/L |          |          | 12/07/21 18:31 | 1                   |
| 1,1,2-Trichloroethane                 | ND               | 1.0 | 0.23 | ug/L |          |          | 12/07/21 18:31 | 1                   |
| 1,1-Dichloroethane                    | ND               | 1.0 | 0.38 | ug/L |          |          | 12/07/21 18:31 | 1                   |
| 1,1-Dichloroethene                    | ND               | 1.0 | 0.29 | ug/L |          |          | 12/07/21 18:31 | 1                   |
| 1,2,4-Trichlorobenzene                | ND               | 1.0 | 0.41 | ug/L |          |          | 12/07/21 18:31 | 1                   |
| 1,2-Dibromo-3-Chloropropane           | ND               | 1.0 | 0.39 | ug/L |          |          | 12/07/21 18:31 | 1                   |
| 1,2-Dibromoethane                     | ND               | 1.0 | 0.73 | ug/L |          |          | 12/07/21 18:31 | 1                   |
| 1,2-Dichlorobenzene                   | ND               | 1.0 | 0.79 | ug/L |          |          | 12/07/21 18:31 | 1                   |
| 1,2-Dichloroethane                    | ND               | 1.0 |      | ug/L |          |          | 12/07/21 18:31 | 1                   |
| 1,2-Dichloropropane                   | ND               | 1.0 |      | ug/L |          |          | 12/07/21 18:31 | 1                   |
| 1,3-Dichlorobenzene                   | ND               | 1.0 |      | ug/L |          |          | 12/07/21 18:31 |                     |
| 1,4-Dichlorobenzene                   | ND               | 1.0 |      | ug/L |          |          | 12/07/21 18:31 | 1                   |
| 2-Butanone (MEK)                      | ND               | 10  |      | ug/L |          |          | 12/07/21 18:31 | 1                   |
| 2-Hexanone                            | ND               | 5.0 |      | ug/L |          |          | 12/07/21 18:31 |                     |
| 4-Methyl-2-pentanone (MIBK)           | ND               | 5.0 |      | ug/L |          |          | 12/07/21 18:31 | 1                   |
| Acetone                               | ND               | 10  |      | ug/L |          |          | 12/07/21 18:31 | 1                   |
| Benzene                               | ND               | 1.0 | 0.41 |      |          |          | 12/07/21 18:31 | · · · · · · · · · 1 |
| Bromodichloromethane                  | ND               | 1.0 | 0.39 |      |          |          | 12/07/21 18:31 | 1                   |
| Bromoform                             | ND               | 1.0 |      | ug/L |          |          | 12/07/21 18:31 | 1                   |
| Bromomethane                          | ND               | 1.0 |      | ug/L |          |          | 12/07/21 18:31 |                     |
| Carbon disulfide                      | ND               | 1.0 |      | -    |          |          |                |                     |
|                                       | ND               | 1.0 |      | ug/L |          |          | 12/07/21 18:31 |                     |
| Carbon tetrachloride                  |                  |     |      | ug/L |          |          | 12/07/21 18:31 |                     |
| Chlorobenzene                         | ND               | 1.0 |      | ug/L |          |          | 12/07/21 18:31 | 1                   |
| Chloroethane                          | ND               | 1.0 |      | ug/L |          |          | 12/07/21 18:31 | 1                   |
| Chloroform                            | ND               | 1.0 |      | ug/L |          |          | 12/07/21 18:31 | 1                   |
| Chloromethane                         | ND               | 1.0 |      | ug/L |          |          | 12/07/21 18:31 | 1                   |
| cis-1,2-Dichloroethene                | 5.0              | 1.0 |      | ug/L |          |          | 12/07/21 18:31 | 1                   |
| cis-1,3-Dichloropropene               | ND               | 1.0 |      | ug/L |          |          | 12/07/21 18:31 | 1                   |
| Cyclohexane                           | ND               | 1.0 |      | ug/L |          |          | 12/07/21 18:31 | 1                   |
| Dibromochloromethane                  | ND               | 1.0 |      | ug/L |          |          | 12/07/21 18:31 | 1                   |
| Dichlorodifluoromethane               | ND *+            | 1.0 |      | ug/L |          |          | 12/07/21 18:31 | 1                   |
| Ethylbenzene                          | ND               | 1.0 |      | ug/L |          |          | 12/07/21 18:31 | 1                   |
| sopropylbenzene                       | ND               | 1.0 |      | ug/L |          |          | 12/07/21 18:31 | 1                   |
| Methyl acetate                        | ND               | 2.5 | 1.3  | ug/L |          |          | 12/07/21 18:31 | 1                   |
| Methyl tert-butyl ether               | ND               | 1.0 | 0.16 | ug/L |          |          | 12/07/21 18:31 | 1                   |
| Methylcyclohexane                     | ND               | 1.0 | 0.16 | ug/L |          |          | 12/07/21 18:31 | 1                   |
| Methylene Chloride                    | ND               | 1.0 | 0.44 | ug/L |          |          | 12/07/21 18:31 | 1                   |
| Styrene                               | ND               | 1.0 | 0.73 | ug/L |          |          | 12/07/21 18:31 | •                   |
| Tetrachloroethene                     | ND               | 1.0 | 0.36 | ug/L |          |          | 12/07/21 18:31 | 1                   |
| Toluene                               | ND               | 1.0 | 0.51 | ug/L |          |          | 12/07/21 18:31 | 1                   |
| rans-1,2-Dichloroethene               | ND               | 1.0 | 0.90 | ug/L |          |          | 12/07/21 18:31 |                     |
| rans-1,3-Dichloropropene              | ND               | 1.0 | 0.37 | ug/L |          |          | 12/07/21 18:31 |                     |
| Trichloroethene                       | 4.3              | 1.0 | 0.46 | ug/L |          |          | 12/07/21 18:31 | 1                   |
| Trichlorofluoromethane                | ND               | 1.0 |      | ug/L |          |          | 12/07/21 18:31 | 1                   |
| Vinyl chloride                        | ND               | 1.0 |      | ug/L |          |          | 12/07/21 18:31 | 1                   |
| Xylenes, Total                        | ND               | 2.0 |      | ug/L |          |          | 12/07/21 18:31 |                     |

#### Lab Sample ID: 480-193106-4

Matrix: Water

5

6

#### **Client Sample Results**

Lab Sample ID: 480-193106-4

#### Client Sample ID: MW-07D Date Collected: 12/06/21 14:30

Date Received: 12/06/21 16:37

|  | Matrix: Water |
|--|---------------|
|  |               |

| Surrogate                    | %Recovery | Qualifier | Limits   | Pi | repared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|----|---------|----------------|---------|
| 1,2-Dichloroethane-d4 (Surr) | 100       |           | 77 - 120 |    |         | 12/07/21 18:31 | 1       |
| 4-Bromofluorobenzene (Surr)  | 99        |           | 73 - 120 |    |         | 12/07/21 18:31 | 1       |
| Dibromofluoromethane (Surr)  | 105       |           | 75 - 123 |    |         | 12/07/21 18:31 | 1       |
| Toluene-d8 (Surr)            | 96        |           | 80 - 120 |    |         | 12/07/21 18:31 | 1       |

|   | ) |   |
|---|---|---|
| ( | 5 | 5 |
|   |   |   |
|   |   |   |
|   | 2 |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   | 6 |
|   |   |   |

### Client Sample ID: MW-10S

Date Collected: 12/06/21 12:52 Date Received: 12/06/21 16:37

| Analyte                               | Result Qualifier | RL  | MDL  | Unit | D Prepared | Analyzed       | Dil Fac |
|---------------------------------------|------------------|-----|------|------|------------|----------------|---------|
| 1,1,1-Trichloroethane                 | ND               | 1.0 | 0.82 | ug/L |            | 12/07/21 18:54 | 1       |
| 1,1,2,2-Tetrachloroethane             | ND               | 1.0 | 0.21 | ug/L |            | 12/07/21 18:54 | 1       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND               | 1.0 | 0.31 | ug/L |            | 12/07/21 18:54 | 1       |
| 1,1,2-Trichloroethane                 | ND               | 1.0 | 0.23 | ug/L |            | 12/07/21 18:54 | 1       |
| 1,1-Dichloroethane                    | ND               | 1.0 | 0.38 | ug/L |            | 12/07/21 18:54 | 1       |
| 1,1-Dichloroethene                    | ND               | 1.0 | 0.29 | ug/L |            | 12/07/21 18:54 | 1       |
| 1,2,4-Trichlorobenzene                | ND               | 1.0 | 0.41 | ug/L |            | 12/07/21 18:54 | 1       |
| 1,2-Dibromo-3-Chloropropane           | ND               | 1.0 | 0.39 | ug/L |            | 12/07/21 18:54 | 1       |
| 1,2-Dibromoethane                     | ND               | 1.0 | 0.73 | ug/L |            | 12/07/21 18:54 | 1       |
| 1,2-Dichlorobenzene                   | ND               | 1.0 | 0.79 | ug/L |            | 12/07/21 18:54 | 1       |
| 1,2-Dichloroethane                    | ND               | 1.0 | 0.21 | ug/L |            | 12/07/21 18:54 | 1       |
| 1,2-Dichloropropane                   | ND               | 1.0 | 0.72 | ug/L |            | 12/07/21 18:54 | 1       |
| 1,3-Dichlorobenzene                   | ND               | 1.0 | 0.78 | ug/L |            | 12/07/21 18:54 | 1       |
| 1,4-Dichlorobenzene                   | ND               | 1.0 | 0.84 | ug/L |            | 12/07/21 18:54 | 1       |
| 2-Butanone (MEK)                      | ND               | 10  | 1.3  | ug/L |            | 12/07/21 18:54 | 1       |
| 2-Hexanone                            | ND               | 5.0 | 1.2  | ug/L |            | 12/07/21 18:54 | 1       |
| 4-Methyl-2-pentanone (MIBK)           | ND               | 5.0 | 2.1  | ug/L |            | 12/07/21 18:54 | 1       |
| Acetone                               | ND               | 10  | 3.0  | ug/L |            | 12/07/21 18:54 | 1       |
| Benzene                               | ND               | 1.0 | 0.41 | ug/L |            | 12/07/21 18:54 | 1       |
| Bromodichloromethane                  | ND               | 1.0 | 0.39 | ug/L |            | 12/07/21 18:54 | 1       |
| Bromoform                             | ND               | 1.0 | 0.26 | ug/L |            | 12/07/21 18:54 | 1       |
| Bromomethane                          | ND               | 1.0 | 0.69 | ug/L |            | 12/07/21 18:54 | 1       |
| Carbon disulfide                      | ND               | 1.0 | 0.19 | ug/L |            | 12/07/21 18:54 | 1       |
| Carbon tetrachloride                  | ND               | 1.0 | 0.27 | ug/L |            | 12/07/21 18:54 | 1       |
| Chlorobenzene                         | ND               | 1.0 | 0.75 | ug/L |            | 12/07/21 18:54 | 1       |
| Chloroethane                          | ND               | 1.0 | 0.32 | ug/L |            | 12/07/21 18:54 | 1       |
| Chloroform                            | ND               | 1.0 | 0.34 | ug/L |            | 12/07/21 18:54 | 1       |
| Chloromethane                         | ND               | 1.0 | 0.35 | ug/L |            | 12/07/21 18:54 | 1       |
| cis-1,2-Dichloroethene                | ND               | 1.0 | 0.81 | ug/L |            | 12/07/21 18:54 | 1       |
| cis-1,3-Dichloropropene               | ND               | 1.0 | 0.36 | ug/L |            | 12/07/21 18:54 | 1       |
| Cyclohexane                           | ND               | 1.0 | 0.18 | ug/L |            | 12/07/21 18:54 | 1       |
| Dibromochloromethane                  | ND               | 1.0 | 0.32 | ug/L |            | 12/07/21 18:54 | 1       |
| Dichlorodifluoromethane               | ND *+            | 1.0 | 0.68 | ug/L |            | 12/07/21 18:54 | 1       |
| Ethylbenzene                          | ND               | 1.0 | 0.74 | ug/L |            | 12/07/21 18:54 | 1       |
| lsopropylbenzene                      | ND               | 1.0 | 0.79 | ug/L |            | 12/07/21 18:54 | 1       |
| Methyl acetate                        | ND               | 2.5 | 1.3  | ug/L |            | 12/07/21 18:54 | 1       |
| Methyl tert-butyl ether               | ND               | 1.0 | 0.16 | ug/L |            | 12/07/21 18:54 | 1       |
| Methylcyclohexane                     | ND               | 1.0 | 0.16 | ug/L |            | 12/07/21 18:54 | 1       |
| Methylene Chloride                    | ND               | 1.0 | 0.44 | ug/L |            | 12/07/21 18:54 | 1       |
| Styrene                               | ND               | 1.0 | 0.73 | ug/L |            | 12/07/21 18:54 | 1       |
| Tetrachloroethene                     | ND               | 1.0 | 0.36 | ug/L |            | 12/07/21 18:54 | 1       |
| Toluene                               | ND               | 1.0 | 0.51 | ug/L |            | 12/07/21 18:54 | 1       |
| rans-1,2-Dichloroethene               | ND               | 1.0 | 0.90 | ug/L |            | 12/07/21 18:54 | 1       |
| rans-1,3-Dichloropropene              | ND               | 1.0 | 0.37 | ug/L |            | 12/07/21 18:54 | 1       |
| Trichloroethene                       | 7.3              | 1.0 | 0.46 | ug/L |            | 12/07/21 18:54 | 1       |
| Trichlorofluoromethane                | ND               | 1.0 | 0.88 | ug/L |            | 12/07/21 18:54 | 1       |
| Vinyl chloride                        | ND               | 1.0 |      | ug/L |            | 12/07/21 18:54 | 1       |
| Xylenes, Total                        | ND               | 2.0 | 0.66 | ug/L |            | 12/07/21 18:54 | 1       |

Job ID: 480-193106-1

#### Lab Sample ID: 480-193106-5

Matrix: Water

5

6

#### **Client Sample Results**

Job ID: 480-193106-1

Matrix: Water

Lab Sample ID: 480-193106-5

#### Client Sample ID: MW-10S Date Collected: 12/06/21 12:52

Date Received: 12/06/21 16:37

| Surrogate                    | %Recovery Q | Qualifier Limits | Prepared | Analyzed       | Dil Fac |
|------------------------------|-------------|------------------|----------|----------------|---------|
| 1,2-Dichloroethane-d4 (Surr) | 96          | 77 - 120         |          | 12/07/21 18:54 | 1       |
| 4-Bromofluorobenzene (Surr)  | 98          | 73 - 120         |          | 12/07/21 18:54 | 1       |
| Dibromofluoromethane (Surr)  | 107         | 75 - 123         |          | 12/07/21 18:54 | 1       |
| Toluene-d8 (Surr)            | 96          | 80 - 120         |          | 12/07/21 18:54 | 1       |

#### Client Sample ID: FD-120621 Date Collected: 12/06/21 00:00

Date Received: 12/06/21 16:37

| Analyte                               | Result Qualifier | RL  | MDL  | Unit | D Prepared | Analyzed                         | Dil Fac |
|---------------------------------------|------------------|-----|------|------|------------|----------------------------------|---------|
| 1,1,1-Trichloroethane                 | ND               | 1.0 | 0.82 | ug/L |            | 12/07/21 19:17                   | 1       |
| 1,1,2,2-Tetrachloroethane             | ND               | 1.0 | 0.21 | ug/L |            | 12/07/21 19:17                   | 1       |
| I,1,2-Trichloro-1,2,2-trifluoroethane | ND               | 1.0 | 0.31 | ug/L |            | 12/07/21 19:17                   | 1       |
| 1,1,2-Trichloroethane                 | ND               | 1.0 | 0.23 | ug/L |            | 12/07/21 19:17                   | 1       |
| I,1-Dichloroethane                    | 0.98 J           | 1.0 | 0.38 | ug/L |            | 12/07/21 19:17                   | 1       |
| 1,1-Dichloroethene                    | ND               | 1.0 | 0.29 | ug/L |            | 12/07/21 19:17                   | 1       |
| 1,2,4-Trichlorobenzene                | ND               | 1.0 | 0.41 | ug/L |            | 12/07/21 19:17                   | 1       |
| ,2-Dibromo-3-Chloropropane            | ND               | 1.0 | 0.39 | ug/L |            | 12/07/21 19:17                   | 1       |
| ,2-Dibromoethane                      | ND               | 1.0 | 0.73 | ug/L |            | 12/07/21 19:17                   | 1       |
| ,2-Dichlorobenzene                    | ND               | 1.0 |      | ug/L |            | 12/07/21 19:17                   | 1       |
| ,2-Dichloroethane                     | ND               | 1.0 |      | ug/L |            | 12/07/21 19:17                   | 1       |
| ,2-Dichloropropane                    | ND               | 1.0 |      | ug/L |            | 12/07/21 19:17                   | 1       |
| ,3-Dichlorobenzene                    | ND               | 1.0 |      | ug/L |            | 12/07/21 19:17                   | 1       |
| ,,- Dichlorobenzene                   | ND               | 1.0 |      | ug/L |            | 12/07/21 19:17                   | 1       |
| 2-Butanone (MEK)                      | ND               | 10  |      | ug/L |            | 12/07/21 19:17                   | 1       |
| -Hexanone                             | ND               | 5.0 |      | ug/L |            | 12/07/21 19:17                   |         |
| -Methyl-2-pentanone (MIBK)            | ND               | 5.0 |      | ug/L |            | 12/07/21 19:17                   |         |
|                                       | ND               | 10  |      | ug/L |            | 12/07/21 19:17                   |         |
| Benzene                               | ND               | 1.0 |      |      |            |                                  |         |
| Bromodichloromethane                  | ND               | 1.0 |      | ug/L |            | 12/07/21 19:17<br>12/07/21 19:17 |         |
|                                       |                  |     |      | ug/L |            |                                  |         |
| romoform                              | ND               | 1.0 |      | ug/L |            | 12/07/21 19:17                   |         |
| romomethane                           | ND               | 1.0 |      | ug/L |            | 12/07/21 19:17                   |         |
| Carbon disulfide                      | ND               | 1.0 |      | ug/L |            | 12/07/21 19:17                   |         |
| Carbon tetrachloride                  | ND               | 1.0 |      | ug/L |            | 12/07/21 19:17                   |         |
| Chlorobenzene                         | ND               | 1.0 |      | ug/L |            | 12/07/21 19:17                   |         |
| Chloroethane                          | ND               | 1.0 |      | ug/L |            | 12/07/21 19:17                   |         |
| Chloroform                            | ND               | 1.0 |      | ug/L |            | 12/07/21 19:17                   |         |
| Chloromethane                         | ND               | 1.0 |      | ug/L |            | 12/07/21 19:17                   |         |
| is-1,2-Dichloroethene                 | 7.0              | 1.0 |      | ug/L |            | 12/07/21 19:17                   |         |
| is-1,3-Dichloropropene                | ND               | 1.0 | 0.36 | ug/L |            | 12/07/21 19:17                   |         |
| Cyclohexane                           | ND               | 1.0 | 0.18 | ug/L |            | 12/07/21 19:17                   |         |
| Dibromochloromethane                  | ND               | 1.0 | 0.32 | ug/L |            | 12/07/21 19:17                   |         |
| Dichlorodifluoromethane               | ND *+            | 1.0 | 0.68 | ug/L |            | 12/07/21 19:17                   |         |
| thylbenzene                           | ND               | 1.0 | 0.74 | ug/L |            | 12/07/21 19:17                   |         |
| sopropylbenzene                       | ND               | 1.0 | 0.79 | ug/L |            | 12/07/21 19:17                   |         |
| lethyl acetate                        | ND               | 2.5 | 1.3  | ug/L |            | 12/07/21 19:17                   |         |
| lethyl tert-butyl ether               | ND               | 1.0 | 0.16 | ug/L |            | 12/07/21 19:17                   |         |
| lethylcyclohexane                     | ND               | 1.0 | 0.16 | ug/L |            | 12/07/21 19:17                   |         |
| lethylene Chloride                    | ND               | 1.0 | 0.44 | ug/L |            | 12/07/21 19:17                   |         |
| tyrene                                | ND               | 1.0 | 0.73 | ug/L |            | 12/07/21 19:17                   |         |
| etrachloroethene                      | ND               | 1.0 | 0.36 | ug/L |            | 12/07/21 19:17                   |         |
| oluene                                | ND               | 1.0 | 0.51 | ug/L |            | 12/07/21 19:17                   |         |
| ans-1,2-Dichloroethene                | ND               | 1.0 |      | ug/L |            | 12/07/21 19:17                   |         |
| ans-1,3-Dichloropropene               | ND               | 1.0 |      | ug/L |            | 12/07/21 19:17                   |         |
| richloroethene                        | 33               | 1.0 |      | ug/L |            | 12/07/21 19:17                   |         |
| richlorofluoromethane                 | ND               | 1.0 |      | ug/L |            | 12/07/21 19:17                   |         |
| linyl chloride                        | 2.2              | 1.0 |      | ug/L |            | 12/07/21 19:17                   |         |
| (ylenes, Total                        | ND               | 2.0 |      | ug/L |            | 12/07/21 19:17                   |         |

#### Lab Sample ID: 480-193106-6

Matrix: Water

5

6

5

6

#### Client Sample ID: FD-120621 Date Collected: 12/06/21 00:00

Date Received: 12/06/21 16:37

| Lab Sample ID: 480-193106-6 |  |
|-----------------------------|--|
| Matrix: Water               |  |
|                             |  |

| Surrogate                    | %Recovery Qual | lifier Limits | Prepared | Analyzed       | Dil Fac |
|------------------------------|----------------|---------------|----------|----------------|---------|
| 1,2-Dichloroethane-d4 (Surr) | 96             | 77 - 120      |          | 12/07/21 19:17 | 1       |
| 4-Bromofluorobenzene (Surr)  | 97             | 73 - 120      |          | 12/07/21 19:17 | 1       |
| Dibromofluoromethane (Surr)  | 107            | 75 - 123      |          | 12/07/21 19:17 | 1       |
| Toluene-d8 (Surr)            | 97             | 80 - 120      |          | 12/07/21 19:17 | 1       |

#### Client Sample ID: TB

Date Collected: 12/06/21 00:00 Date Received: 12/06/21 16:37

| Analyte                               | Result Qualifier | RL  | MDL  | Unit      | D | Prepared | Analyzed       | Dil Fac |
|---------------------------------------|------------------|-----|------|-----------|---|----------|----------------|---------|
| 1,1,1-Trichloroethane                 | ND               | 1.0 | 0.82 | ug/L      |   |          | 12/07/21 19:40 | 1       |
| 1,1,2,2-Tetrachloroethane             | ND               | 1.0 | 0.21 | ug/L      |   |          | 12/07/21 19:40 | 1       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND               | 1.0 | 0.31 | ug/L      |   |          | 12/07/21 19:40 | 1       |
| 1,1,2-Trichloroethane                 | ND               | 1.0 | 0.23 | ug/L      |   |          | 12/07/21 19:40 | 1       |
| 1,1-Dichloroethane                    | ND               | 1.0 | 0.38 | ug/L      |   |          | 12/07/21 19:40 | 1       |
| 1,1-Dichloroethene                    | ND               | 1.0 | 0.29 | ug/L      |   |          | 12/07/21 19:40 | 1       |
| 1,2,4-Trichlorobenzene                | ND               | 1.0 | 0.41 | ug/L      |   |          | 12/07/21 19:40 | 1       |
| 1,2-Dibromo-3-Chloropropane           | ND               | 1.0 | 0.39 | ug/L      |   |          | 12/07/21 19:40 | 1       |
| 1,2-Dibromoethane                     | ND               | 1.0 | 0.73 | ug/L      |   |          | 12/07/21 19:40 | 1       |
| 1,2-Dichlorobenzene                   | ND               | 1.0 | 0.79 | ug/L      |   |          | 12/07/21 19:40 | 1       |
| 1,2-Dichloroethane                    | ND               | 1.0 |      | ug/L      |   |          | 12/07/21 19:40 | 1       |
| 1,2-Dichloropropane                   | ND               | 1.0 |      | ug/L      |   |          | 12/07/21 19:40 | 1       |
| 1,3-Dichlorobenzene                   | ND               | 1.0 |      | ug/L      |   |          | 12/07/21 19:40 | 1       |
| 1,4-Dichlorobenzene                   | ND               | 1.0 |      | ug/L      |   |          | 12/07/21 19:40 | 1       |
| 2-Butanone (MEK)                      | ND               | 10  |      | ug/L      |   |          | 12/07/21 19:40 | 1       |
| 2-Hexanone                            | ND               | 5.0 |      | ug/L      |   |          | 12/07/21 19:40 |         |
| 4-Methyl-2-pentanone (MIBK)           | ND               | 5.0 |      | ug/L      |   |          | 12/07/21 19:40 | 1       |
| Acetone                               | ND               | 10  |      | ug/L      |   |          | 12/07/21 19:40 | 1       |
| Benzene                               | ND               | 1.0 |      | ug/L      |   |          | 12/07/21 19:40 |         |
| Bromodichloromethane                  | ND               | 1.0 |      | ug/L      |   |          | 12/07/21 19:40 | 1       |
| Bromoform                             | ND               | 1.0 |      | -         |   |          | 12/07/21 19:40 | 1       |
| Bromomethane                          | ND               | 1.0 |      | ug/L      |   |          | 12/07/21 19:40 |         |
|                                       |                  |     |      | ug/L      |   |          |                | 1       |
| Carbon disulfide                      | ND               | 1.0 |      | ug/L      |   |          | 12/07/21 19:40 | 1       |
| Carbon tetrachloride                  | ND               | 1.0 |      | ug/L      |   |          | 12/07/21 19:40 | ا<br>م  |
| Chlorobenzene                         | ND               | 1.0 |      | ug/L      |   |          | 12/07/21 19:40 | 1       |
| Chloroethane                          | ND               | 1.0 |      | ug/L      |   |          | 12/07/21 19:40 | 1       |
| Chloroform                            | ND               | 1.0 |      | ug/L<br>" |   |          | 12/07/21 19:40 |         |
| Chloromethane                         | ND               | 1.0 |      | ug/L      |   |          | 12/07/21 19:40 | 1       |
| cis-1,2-Dichloroethene                | ND               | 1.0 |      | ug/L      |   |          | 12/07/21 19:40 | 1       |
| cis-1,3-Dichloropropene               | ND               | 1.0 |      | ug/L      |   |          | 12/07/21 19:40 | 1       |
| Cyclohexane                           | ND               | 1.0 |      | ug/L      |   |          | 12/07/21 19:40 | 1       |
| Dibromochloromethane                  | ND               | 1.0 |      | ug/L      |   |          | 12/07/21 19:40 | 1       |
| Dichlorodifluoromethane               | ND *+            | 1.0 |      | ug/L      |   |          | 12/07/21 19:40 | 1       |
| Ethylbenzene                          | ND               | 1.0 |      | ug/L      |   |          | 12/07/21 19:40 | 1       |
| Isopropylbenzene                      | ND               | 1.0 |      | ug/L      |   |          | 12/07/21 19:40 | 1       |
| Methyl acetate                        | ND               | 2.5 | 1.3  | ug/L      |   |          | 12/07/21 19:40 | 1       |
| Methyl tert-butyl ether               | ND               | 1.0 | 0.16 | ug/L      |   |          | 12/07/21 19:40 | 1       |
| Methylcyclohexane                     | ND               | 1.0 | 0.16 | ug/L      |   |          | 12/07/21 19:40 | 1       |
| Methylene Chloride                    | ND               | 1.0 | 0.44 | ug/L      |   |          | 12/07/21 19:40 | 1       |
| Styrene                               | ND               | 1.0 | 0.73 | ug/L      |   |          | 12/07/21 19:40 | 1       |
| Tetrachloroethene                     | ND               | 1.0 | 0.36 | ug/L      |   |          | 12/07/21 19:40 | 1       |
| Toluene                               | ND               | 1.0 | 0.51 | ug/L      |   |          | 12/07/21 19:40 | 1       |
| trans-1,2-Dichloroethene              | ND               | 1.0 | 0.90 | ug/L      |   |          | 12/07/21 19:40 | 1       |
| trans-1,3-Dichloropropene             | ND               | 1.0 | 0.37 | ug/L      |   |          | 12/07/21 19:40 | 1       |
| Trichloroethene                       | ND               | 1.0 | 0.46 | ug/L      |   |          | 12/07/21 19:40 | 1       |
| Trichlorofluoromethane                | ND               | 1.0 | 0.88 | ug/L      |   |          | 12/07/21 19:40 | 1       |
| Vinyl chloride                        | ND               | 1.0 |      | ug/L      |   |          | 12/07/21 19:40 | 1       |
| Xylenes, Total                        | ND               | 2.0 |      | ug/L      |   |          | 12/07/21 19:40 | 1       |

Job ID: 480-193106-1

#### Lab Sample ID: 480-193106-7

Matrix: Water

5

6

Job ID: 480-193106-1

Lab Sample ID: 480-193106-7

#### Client Sample ID: TB Date Collected: 12/06/21 00:00

Date Received: 12/06/21 16:37

|  |  | Matrix: Water |
|--|--|---------------|
|  |  |               |
|  |  |               |

| Surrogate                    | %Recovery | Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|----------|----------------|---------|
| 1,2-Dichloroethane-d4 (Surr) | 99        |           | 77 - 120 |          | 12/07/21 19:40 | 1       |
| 4-Bromofluorobenzene (Surr)  | 97        |           | 73 - 120 |          | 12/07/21 19:40 | 1       |
| Dibromofluoromethane (Surr)  | 106       |           | 75 - 123 |          | 12/07/21 19:40 | 1       |
| Toluene-d8 (Surr)            | 99        |           | 80 - 120 |          | 12/07/21 19:40 | 1       |

#### Method: 8260C - Volatile Organic Compounds by GC/MS Matrix: Water

| Matrix: Water    |                    |          |          |             |                       | Prep Type: Total/NA |
|------------------|--------------------|----------|----------|-------------|-----------------------|---------------------|
| _                |                    |          |          | Percent Sur | rogate Recovery (Acce | eptance Limits)     |
|                  |                    | DCA      | BFB      | DBFM        | TOL                   |                     |
| Lab Sample ID    | Client Sample ID   | (77-120) | (73-120) | (75-123)    | (80-120)              |                     |
| 480-193106-1     | MW-06S             | 94       | 97       | 102         | 95                    |                     |
| 480-193106-1 MS  | MW-06S             | 90       | 103      | 104         | 99                    |                     |
| 480-193106-1 MSD | MW-06S             | 94       | 106      | 102         | 98                    |                     |
| 480-193106-2     | MW-06D             | 99       | 99       | 104         | 99                    |                     |
| 480-193106-3     | MW-07S             | 98       | 98       | 101         | 96                    |                     |
| 480-193106-4     | MW-07D             | 100      | 99       | 105         | 96                    |                     |
| 480-193106-5     | MW-10S             | 96       | 98       | 107         | 96                    |                     |
| 480-193106-6     | FD-120621          | 96       | 97       | 107         | 97                    |                     |
| 480-193106-7     | ТВ                 | 99       | 97       | 106         | 99                    |                     |
| LCS 480-607776/4 | Lab Control Sample | 89       | 105      | 99          | 98                    |                     |
| MB 480-607776/7  | Method Blank       | 96       | 100      | 102         | 96                    |                     |
| Surrogate Legend |                    |          |          |             |                       |                     |

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Job ID: 480-193106-1

#### Method: 8260C - Volatile Organic Compounds by GC/MS

#### Lab Sample ID: MB 480-607776/7

Matrix: Water Analysis Batch: 607776

| Analyse         Result         Qualifier         PL         MD         Unit         D         Prepard         Analysed         Differe           1.1.1-reflockenteme         ND         10         0.21         ugl.         120721113         1           1.1.2-Trinchorsentame         ND         10         0.31         ugl.         120721113         1           1.1.2-Trinchorsentame         ND         10         0.32         ugl.         120721113         1           1.1-Dichorsentame         ND         10         0.33         ugl.         120721113         1           1.2-Trinchorsentame         ND         10         0.73         ugl.         120721113         1           1.2-Dichorsentame         ND         10         0.74         ugl.         120721113         1           1.2-Dichorsentame         ND         10         0.74         ugl. </th <th></th> <th>МВ</th> <th>МВ</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>                                                                |                                       | МВ     | МВ        |     |      |      |   |          |                |         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------|-----------|-----|------|------|---|----------|----------------|---------|
| 11.2.2. Friedrachrouthane       ND       1.0       0.21       0.1       120721 11:33       1         1.1.2. Trichitorostana       ND       1.0       0.31       0.1       120721 11:33       1         1.1.2. Trichitorostana       ND       1.0       0.34       0.1       120721 11:33       1         1.1.2. Trichitorostana       ND       1.0       0.34       0.1       1207721 11:33       1         1.2. Trichitorostana       ND       1.0       0.44       0.1       1207721 11:33       1         1.2. Trichitorostana       ND       1.0       0.74       0.0       1207721 11:33       1         1.2. Obtromosthan       ND       1.0       0.74       0.0       1207721 11:33       1         1.2. Obtromosthan       ND       1.0       0.72       0.0       1207721 11:33       1         1.2. Obtromosthana       ND       1.0       0.74       0.0       1207721 11:33       1         1.2. Obtromosthana       ND       1.0       0.74       0.0       1207721 11:33       1         1.2. Obtromosthana       ND       1.0       0.84       0.0       1207721 11:33       1         1.2. Obtromosthana       ND       0.0       1                                                                                                                                                                                                                               | Analyte                               | Result | Qualifier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| 1,12-Trichiored1ame       ND       1.0       0.21       upL       120721 11:13       1         1,12-Trichiored1ame       ND       1.0       0.23       upL       120721 11:13       1         1,1-Dehtored1ame       ND       1.0       0.29       upL       1207721 11:13       1         1,2-Dehtored1ame       ND       1.0       0.29       upL       1207721 11:13       1         1,2-Dehtored1ame       ND       1.0       0.29       upL       1207721 11:13       1         1,2-Dehtored1ame       ND       1.0       0.73       upL       1207721 11:13       1         1,2-Dehtored1ame       ND       1.0       0.74       upL       1207721 11:13       1         1,2-Dehtored1ame       ND       1.0       0.72       upL       1207721 11:13       1         1,2-Dehtored1ame       ND       1.0       0.74       upL       1207721 11:13       1         1,2-Dehtored1ame       ND       1.0       0.74       upL       1207721 11:13       1         1,2-Dehtored1ame       ND       1.0       0.74       upL       1207721 11:13       1         2-Haranome       ND       1.0       0.74       upL       120772                                                                                                                                                                                                                                                 | 1,1,1-Trichloroethane                 | ND     |           | 1.0 | 0.82 | ug/L |   |          | 12/07/21 11:13 | 1       |
| 1,12-Tackbioxethane         ND         1,0         0.23         00         120721 11:13         1           1,1-Dickborethane         ND         1,0         0.38         ugL         120721 11:13         1           1,2-Dickborethane         ND         1,0         0.38         ugL         120721 11:13         1           1,2-Dickborethane         ND         1,0         0.41         ugL         1207721 11:13         1           1,2-Dickborethane         ND         1,0         0.73         ugL         1207721 11:13         1           1,2-Dickborethane         ND         1,0         0.74         ugL         1207721 11:13         1           1,2-Dickborethane         ND         1,0         0.74         ugL         1207721 11:13         1           1,2-Dickborethane         ND         1,0         0.74         ugL         1207721 11:13         1           1,4-Dickborethane         ND         1,0         0.74         ugL         1207721 11:13         1           1,4-Dickborethane         ND         1,0         0.74         ugL         1207721 11:13         1           1,4-Dickborethane         ND         1,0         0.74         ugL         1207721 11:13                                                                                                                                                                      | 1,1,2,2-Tetrachloroethane             | ND     |           | 1.0 | 0.21 | ug/L |   |          | 12/07/21 11:13 | 1       |
| 1-10/bit/orce/hane       ND       1.0       0.28       upl.       120721 11:13       1         1.1.0/bit/orce/hane       ND       1.0       0.29       upl.       120721 11:13       1         1.2.0/bit/orce/hane       ND       1.0       0.29       upl.       120721 11:13       1         1.2.0/bit/orce/hane       ND       1.0       0.73       upl.       120721 11:13       1         1.2.0/bit/orce/hane       ND       1.0       0.73       upl.       120721 11:13       1         1.2.0/bit/orce/hane       ND       1.0       0.74       upl.       120721 11:13       1         1.2.0/bit/orce/hane       ND       1.0       0.72       upl.       120721 11:13       1         1.2.0/bit/orce/hane       ND       1.0       0.74       upl.       120721 11:13       1         1.2.0/bit/orce/hane       ND       1.0       0.74       upl.       120721 11:13       1         2.4/bacanone       ND       1.0       0.74       upl.       120721 11:13       1         2.4/bacanone       ND       1.0       0.41       upl.       120721 11:13       1         2.4/bacanone       ND       1.0       0.41       upl.                                                                                                                                                                                                                                             | 1,1,2-Trichloro-1,2,2-trifluoroethane | ND     |           | 1.0 | 0.31 | ug/L |   |          | 12/07/21 11:13 | 1       |
| 1.1 Debalarooethane       ND       1.0       0.29       upL       12.047/11/13       1         1.2.4 Finkhorsberzene       ND       1.0       0.41       upL       12.07/21 11/13       1         1.2.0 Laroons-Schorspopane       ND       1.0       0.73       upL       12.07/21 11/13       1         1.2.0 Laroons-Schorspopane       ND       1.0       0.73       upL       12.07/21 11/13       1         1.2.0 Laroonspopane       ND       1.0       0.72       upL       1207/21 11/13       1         1.2.0 Laroonspopane       ND       1.0       0.72       upL       1207/21 11/13       1         1.2.0 Laroonspopane       ND       1.0       0.72       upL       1207/21 11/13       1         1.2.0 Laroonspopane       ND       1.0       0.74       upL       1207/21 11/13       1         2.4 Suanone (MEK)       ND       1.0       0.21       upL       1207/21 11/13       1         2.4 Suanone (MIBK)       ND       1.0       0.41       upL       1207/21 11/13       1         2.4 Suanone (MIBK)       ND       1.0       0.21       upL       1207/21 11/13       1         2.4 Suanone (MIBK)       ND       1.0                                                                                                                                                                                                                                | 1,1,2-Trichloroethane                 | ND     |           | 1.0 | 0.23 | ug/L |   |          | 12/07/21 11:13 | 1       |
| 1.2.4 Tricklorobenzene         ND         1.0         0.41         up/L         12.0 Tricklorobenzene         1           1.2.0 bronnes-Schloropropane         ND         1.0         0.73         up/L         1207711113         1           1.2.0 bronnes/Entreme         ND         1.0         0.73         up/L         1207711113         1           1.2.0 bronnes/Entreme         ND         1.0         0.73         up/L         1207711113         1           1.2.0 bronnes/Entreme         ND         1.0         0.72         up/L         1207711113         1           1.2.0 bronnes/Entreme         ND         1.0         0.78         up/L         1207711113         1           1.2.0 bronnes/entreme         ND         1.0         0.78         up/L         1207711113         1           2.4 bronnes/entreme         ND         1.0         0.78         up/L         12077211113         1           2.4 bronnes/entreme         ND         1.0         0.84         up/L         12077211113         1           2.4 bronnes/entreme         ND         1.0         0.30         up/L         12077211113         1           2.4 bronnes/entreme         ND         1.0         0.34         up/L <td>1,1-Dichloroethane</td> <td>ND</td> <td></td> <td>1.0</td> <td>0.38</td> <td>ug/L</td> <td></td> <td></td> <td>12/07/21 11:13</td> <td>1</td> | 1,1-Dichloroethane                    | ND     |           | 1.0 | 0.38 | ug/L |   |          | 12/07/21 11:13 | 1       |
| 1.2.Dikronor-S-Chloropropane       ND       1.0       0.73       upL       12.0771       11.13       1         1.2.Dikronorehnne       ND       1.0       0.73       upL       12.0721       11.13       1         1.2.Dikronorehnne       ND       0.0       0.73       upL       12.0771       1.13       1         1.2.Dikronorehnne       ND       0.0       0.74       upL       120771       11.3       1         1.3.Dikronorehnne       ND       0.0       0.74       upL       120771       11.3       1         1.4.Dicklorobenzene       ND       0.0       0.74       upL       120771       11.3       1         2.4.Branone (MEK)       ND       0.0       0.73       upL       120771       11.3       1         2.4.Hattry-pertanone (MIK)       ND       0.0       1.0       0.41       upL       120771       11.3       1         Actorno       ND       1.0       0.41       upL       120771       11.3       1         Bromodehne       ND       1.0       0.41       upL       120771       11.3       1         Bromodehne       ND       1.0       0.52       upL       120771                                                                                                                                                                                                                                                                            | 1,1-Dichloroethene                    | ND     |           | 1.0 | 0.29 | ug/L |   |          | 12/07/21 11:13 | 1       |
| 1.2 Dibromethane         ND         1.0         0.73         ugL         1207211113         1           1.2 Diblomethane         ND         1.0         0.73         ugL         1207211113         1           1.2 Diblomethane         ND         1.0         0.73         ugL         1207211113         1           1.2 Diblomethane         ND         1.0         0.73         ugL         1207211113         1           1.3 Diblomethane         ND         1.0         0.74         ugL         1207211113         1           1.3 Diblomethane         ND         1.0         0.84         ugL         1207211113         1           2 Buranoe (MEK)         ND         1.0         0.84         ugL         1207211113         1           2 Hexanoe         ND         1.0         0.41         ugL         120721113         1           Acstone         ND         1.0         0.41         ugL         120721113         1           Bromethane         ND         1.0         0.41         ugL         120721113         1           Carbon tearbone (MIBK)         ND         1.0         0.49         ugL         120721113         1           Bromondom                                                                                                                                                                                                       | 1,2,4-Trichlorobenzene                | ND     |           | 1.0 | 0.41 | ug/L |   |          | 12/07/21 11:13 | 1       |
| 1.2. Dichlorodbanzane       ND       1.0       0.79       ugl.       120721 11:13       1         1.2. Dichlorodbanzene       ND       1.0       0.72       ugl.       120721 11:13       1         1.3. Dichlorodbanzene       ND       1.0       0.78       ugl.       120721 11:13       1         1.4. Dichlorodbanzane       ND       1.0       0.78       ugl.       120721 11:13       1         1.4. Dichlorodbanzane       ND       1.0       0.84       ugl.       120721 11:13       1         2.4. Buanone (MEK)       ND       1.0       0.84       ugl.       120721 11:13       1         2.4. Buanone (MEK)       ND       5.0       1.2       ugl.       120721 11:13       1         Acetone       ND       1.0       0.41       ugl.       120721 11:13       1         Bromodichoromethane       ND       1.0       0.41       ugl.       120721 11:13       1         Bromodichoromethane       ND       1.0       0.26       ugl.       120721 11:13       1         Bromodichoromethane       ND       1.0       0.26       ugl.       120721 11:13       1         Carbon disulfie       ND       1.0       0.27                                                                                                                                                                                                                                           | 1,2-Dibromo-3-Chloropropane           | ND     |           | 1.0 | 0.39 | ug/L |   |          | 12/07/21 11:13 | 1       |
| 1.2. Dichloroethane       ND       1.0       0.21       ugL       12072111:13       1         1.3. Dichlorophorpane       ND       1.0       0.72       ugL       12072111:3       1         1.4. Dichlorophorpane       ND       1.0       0.78       ugL       12072111:3       1         1.4. Dichlorophorpane       ND       1.0       0.84       ugL       12072111:3       1         2-Butanone (MEK)       ND       5.0       1.2       ugL       12072111:3       1         2-Hexanone (MEK)       ND       5.0       1.2       ugL       12072111:3       1         2-Hexanone (MEK)       ND       5.0       1.2       ugL       12072111:3       1         Bromodichoronethane       ND       1.0       0.41       ugL       12072111:3       1         Bromodichoronethane       ND       1.0       0.42       ugL       12072111:3       1         Bromodichoronethane       ND       1.0       0.28       ugL       12072111:3       1         Bromodichoronethane       ND       1.0       0.29       12072111:3       1       1         Carbon disulfiel       ND       1.0       0.29       12072111:3       1 <td>1,2-Dibromoethane</td> <td>ND</td> <td></td> <td>1.0</td> <td>0.73</td> <td>ug/L</td> <td></td> <td></td> <td>12/07/21 11:13</td> <td>1</td>                                                                                                   | 1,2-Dibromoethane                     | ND     |           | 1.0 | 0.73 | ug/L |   |          | 12/07/21 11:13 | 1       |
| 1.2 Dichloropopane       ND       1.0       0.72       ug/L       12072111:13       1         1.3 Dichlorobenzene       ND       1.0       0.78       ug/L       12072111:13       1         2-Butanone (MEK)       ND       1.0       0.84       ug/L       12072111:13       1         2-Hexanone (MEK)       ND       5.0       1.2       ug/L       12072111:13       1         2-Hexanone (MEK)       ND       5.0       2.1       ug/L       12072111:13       1         Acetone       ND       1.0       0.30       ug/L       12072111:13       1         Bernone(hmeme       ND       1.0       0.39       ug/L       12072111:13       1         Bromodichloromethane       ND       1.0       0.39       ug/L       12072111:13       1         Bromodichloromethane       ND       1.0       0.99       ug/L       12072111:13       1         Carbon disulfide       ND       1.0       0.99       ug/L       12072111:13       1         Carbon disulfide       ND       1.0       0.75       ug/L       12072111:13       1         Carbon disulfide       ND       1.0       0.75       ug/L       12072111:13 <td>1,2-Dichlorobenzene</td> <td>ND</td> <td></td> <td>1.0</td> <td>0.79</td> <td>ug/L</td> <td></td> <td></td> <td>12/07/21 11:13</td> <td>1</td>                                                                                                  | 1,2-Dichlorobenzene                   | ND     |           | 1.0 | 0.79 | ug/L |   |          | 12/07/21 11:13 | 1       |
| 1.3-Dichlorobenzene         ND         1.0         0.78         ugl,         12072111:13         1           1.4-Dichlorobenzene         ND         1.0         0.44         ugl,         12072111:13         1           2-Hatanon (MEK)         ND         5.0         1.2         ugl,         12072111:13         1           4-Methy-2-pentanone (MEK)         ND         5.0         2.1         ugl,         12072111:13         1           4-Methy-2-pentanone (MEK)         ND         5.0         2.1         ugl,         12072111:13         1           Benzene         ND         1.0         0.41         ugl,         12072111:3         1           Bromodichloromethane         ND         1.0         0.42         ugl,         12072111:3         1           Bromodern         ND         1.0         0.42         ugl,         12072111:3         1           Carbon tetrachloride         ND         1.0         0.49         ugl,         12072111:3         1           Carbon tetrachloride         ND         1.0         0.49         ugl,         12072111:3         1           Charbon tetrachloride         ND         1.0         0.32         ugl,         12072111:3                                                                                                                                                                           | 1,2-Dichloroethane                    | ND     |           | 1.0 | 0.21 | ug/L |   |          | 12/07/21 11:13 | 1       |
| 1.4. Dichlorobenzene       ND       1.0       0.84       ug/L       12072111:3       1         2-Buznone (MEK)       ND       10       1.2       ug/L       12072111:3       1         2-Hexanone (MEK)       ND       5.0       2.1       ug/L       12072111:3       1         4-Methyl-2-pentanone (MIBK)       ND       5.0       2.1       ug/L       12072111:3       1         Acetone       ND       1.0       0.41       ug/L       12072111:3       1         Benzene       ND       1.0       0.41       ug/L       12072111:3       1         Bromodichloromethane       ND       1.0       0.69       ug/L       12072111:3       1         Bromodichloromethane       ND       1.0       0.69       ug/L       12072111:3       1         Bromodichloromethane       ND       1.0       0.69       ug/L       12072111:3       1         Carbon tetrachoride       ND       1.0       0.29       ug/L       12072111:3       1         Carbon tetrachoride       ND       1.0       0.39       ug/L       12072111:3       1         Chioromethane       ND       1.0       0.39       ug/L       12072111:3                                                                                                                                                                                                                                                         | 1,2-Dichloropropane                   | ND     |           | 1.0 | 0.72 | ug/L |   |          | 12/07/21 11:13 | 1       |
| 2-Butanone (MEK)         ND         10         1.3         upL         12072111:13         1           2-Hoxanone (MIBK)         ND         5.0         2.1         upL         12072111:13         1           Acetone         ND         10         3.0         upL         12072111:13         1           Bercare         ND         10         0.04         upL         12072111:13         1           Bromolchoromethane         ND         1.0         0.44         upL         12072111:13         1           Bromolchoromethane         ND         1.0         0.64         upL         12072111:13         1           Bromolchoromethane         ND         1.0         0.69         upL         12072111:13         1           Grabon disulfide         ND         1.0         0.69         upL         12072111:13         1           Chabon tetrachoride         ND         1.0         0.75         upL         12072111:13         1           Chabon tetrachoride         ND         1.0         0.32         upL         12072111:13         1           Chiorothane         ND         1.0         0.33         upL         12072111:13         1           Chio                                                                                                                                                                                            | 1,3-Dichlorobenzene                   | ND     |           | 1.0 | 0.78 | ug/L |   |          | 12/07/21 11:13 | 1       |
| 2-Hexanone         ND         5.0         1.2         ugl.         120772111:13         1           4-Methyl2-pentanone (MIBK)         ND         5.0         2.1         ugl.         120772111:13         1           Acetone         ND         1.0         0.41         ugl.         120772111:13         1           Benzene         ND         1.0         0.41         ugl.         120772111:13         1           Bromodichloromethane         ND         1.0         0.39         ugl.         120772111:13         1           Bromodichloromethane         ND         1.0         0.56         ugl.         120772111:13         1           Carbon tetrachloride         ND         1.0         0.19         ugl.         120772111:13         1           Carbon tetrachloride         ND         1.0         0.75         ugl.         120772111:13         1           Chloroberzene         ND         1.0         0.32         ugl.         120772111:13         1           Chloromethane         ND         1.0         0.32         ugl.         120772111:13         1           Chloromethane         ND         1.0         0.34         ugl.         120772111:13         1 </td <td>1,4-Dichlorobenzene</td> <td>ND</td> <td></td> <td>1.0</td> <td>0.84</td> <td>ug/L</td> <td></td> <td></td> <td>12/07/21 11:13</td> <td>1</td>                      | 1,4-Dichlorobenzene                   | ND     |           | 1.0 | 0.84 | ug/L |   |          | 12/07/21 11:13 | 1       |
| 4-Methyl-2-pentanone (MBK)         ND         5.0         2.1         ug/L         1207/211113         1           Acetone         ND         10         0.41         ug/L         1207/211113         1           Bernzene         ND         1.0         0.41         ug/L         1207/211113         1           Bromodichloromethane         ND         1.0         0.28         ug/L         1207/211113         1           Bromodichloromethane         ND         1.0         0.28         ug/L         1207/211113         1           Carbon disulfide         ND         1.0         0.19         ug/L         1207/211113         1           Carbon disulfide         ND         1.0         0.75         ug/L         1207/211113         1           Chlorobetnane         ND         1.0         0.32         ug/L         1207/211113         1           Chlorobetnane         ND         1.0         0.32         ug/L         1207/211113         1           Chlorobetnane         ND         1.0         0.34         ug/L         1207/211113         1           Chlorobetnane         ND         1.0         0.34         ug/L         1207/211113         1                                                                                                                                                                                             | 2-Butanone (MEK)                      | ND     |           | 10  | 1.3  | ug/L |   |          | 12/07/21 11:13 | 1       |
| Actone         ND         10         3.0         ug/L         1207/2111:13         1           Berzene         ND         1.0         0.41         ug/L         1207/2111:13         1           Bromodichormethane         ND         1.0         0.39         ug/L         1207/2111:13         1           Bromodermethane         ND         1.0         0.26         ug/L         1207/2111:13         1           Carbon tetrachloride         ND         1.0         0.69         ug/L         1207/2111:13         1           Chlorobenzene         ND         1.0         0.75         ug/L         1207/2111:13         1           Chlorobenzene         ND         1.0         0.75         ug/L         1207/2111:13         1           Chloroferm         ND         1.0         0.35         ug/L         1207/2111:13         1           Chloroferm         ND         1.0         0.35         ug/L         1207/2111:13         1           Chloroferm         ND         1.0         0.35         ug/L         1207/2111:13         1           Chloroferhene         ND         1.0         0.36         ug/L         1207/2111:13         1           Usoropyte                                                                                                                                                                                            | 2-Hexanone                            | ND     |           | 5.0 | 1.2  | ug/L |   |          | 12/07/21 11:13 | 1       |
| Benzene         ND         1.0         0.41         ug/L         1207/2111:13         1           Bromodichloromethane         ND         1.0         0.39         ug/L         1207/2111:13         1           Bromodorm         ND         1.0         0.26         ug/L         1207/2111:13         1           Bromonethane         ND         1.0         0.69         ug/L         1207/2111:13         1           Carbon disulfde         ND         1.0         0.27         ug/L         1207/2111:13         1           Carbon disulfde         ND         1.0         0.27         ug/L         1207/2111:13         1           Chlorobenzene         ND         1.0         0.75         ug/L         1207/2111:13         1           Chlorobenzene         ND         1.0         0.32         ug/L         1207/2111:13         1           Chlorobenzene         ND         1.0         0.34         ug/L         1207/211:13         1           Chlorobethene         ND         1.0         0.35         ug/L         1207/211:13         1           Obchoropropene         ND         1.0         0.36         ug/L         1207/211:13         1           D                                                                                                                                                                                            | 4-Methyl-2-pentanone (MIBK)           | ND     |           | 5.0 | 2.1  | ug/L |   |          | 12/07/21 11:13 | 1       |
| Bromodichioromethane         ND         1.0         0.39         ugL         1207/2111:13         1           Bromodichioromethane         ND         1.0         0.26         ugL         1207/2111:13         1           Bromodichioromethane         ND         1.0         0.69         ugL         1207/2111:13         1           Carbon disulfide         ND         1.0         0.79         ugL         1207/2111:13         1           Carbon disulfide         ND         1.0         0.27         ugL         1207/2111:13         1           Chiorobenzene         ND         1.0         0.32         ugL         1207/2111:13         1           Chiorobenane         ND         1.0         0.32         ugL         1207/2111:13         1           Chiorobenane         ND         1.0         0.34         ugL         1207/2111:13         1           Chiorobenane         ND         1.0         0.34         ugL         1207/2111:13         1           Chiorobenane         ND         1.0         0.41         ugL         1207/2111:13         1           Cyclorexane         ND         1.0         0.41         ugL         1207/2111:13         1                                                                                                                                                                                            | Acetone                               | ND     |           | 10  | 3.0  | ug/L |   |          | 12/07/21 11:13 | 1       |
| Bromoform         ND         1.0         0.2.6         ug/L         1207/21 11:13         1           Bromomethane         ND         1.0         0.69         ug/L         1207/21 11:13         1           Carbon tetrachloride         ND         1.0         0.79         ug/L         1207/21 11:13         1           Chlorobenzene         ND         1.0         0.75         ug/L         1207/21 11:13         1           Chlorobenzene         ND         1.0         0.32         ug/L         1207/21 11:13         1           Chlorobenzene         ND         1.0         0.34         ug/L         1207/21 11:13         1           Chlorobethane         ND         1.0         0.34         ug/L         1207/21 11:13         1           Chlorobethane         ND         1.0         0.35         ug/L         1207/21 11:13         1           cish12-Dichlorobethane         ND         1.0         0.34         ug/L         1207/21 11:13         1           cish2-Dichlorobethane         ND         1.0         0.84         ug/L         1207/21 11:13         1           cish2-Dichlorobethane         ND         1.0         0.48         ug/L         1207/21 11:13 <t< td=""><td>Benzene</td><td>ND</td><td></td><td>1.0</td><td>0.41</td><td>ug/L</td><td></td><td></td><td>12/07/21 11:13</td><td>1</td></t<>                            | Benzene                               | ND     |           | 1.0 | 0.41 | ug/L |   |          | 12/07/21 11:13 | 1       |
| Bromomethane         ND         1.0         0.69         ug/L         12/07/21 11:13         1           Carbon disulfide         ND         1.0         0.19         ug/L         12/07/21 11:13         1           Carbon disulfide         ND         1.0         0.27         ug/L         12/07/21 11:13         1           Chlorobenzene         ND         1.0         0.75         ug/L         12/07/21 11:13         1           Chlorobenzene         ND         1.0         0.32         ug/L         12/07/21 11:13         1           Chlorobenzene         ND         1.0         0.32         ug/L         12/07/21 11:13         1           Chlorobertane         ND         1.0         0.34         ug/L         12/07/21 11:13         1           Chlorobertane         ND         1.0         0.35         ug/L         12/07/21 11:13         1           cis-1.2-Dichlorobertene         ND         1.0         0.81         ug/L         12/07/21 11:13         1           cis-1.2-Dichlorobertene         ND         1.0         0.18         ug/L         12/07/21 11:13         1           Cyclohexane         ND         1.0         0.18         ug/L         12/07/21 11:13                                                                                                                                                                   | Bromodichloromethane                  | ND     |           | 1.0 | 0.39 | ug/L |   |          | 12/07/21 11:13 | 1       |
| Carbon disulfide         ND         1.0         0.1/2         u/L         12/07/21 11:13         1           Carbon tetrachloride         ND         1.0         0.27         u/L         12/07/21 11:13         1           Chlorobenzene         ND         1.0         0.75         u/L         12/07/21 11:13         1           Chloroethane         ND         1.0         0.32         u/L         12/07/21 11:13         1           Chloroethane         ND         1.0         0.32         u/L         12/07/21 11:13         1           Chloroethane         ND         1.0         0.35         u/L         12/07/21 11:13         1           cis1.3-Dichloropropene         ND         1.0         0.36         u/L         12/07/21 11:13         1           Cyclohexane         ND         1.0         0.86         u/L         12/07/21 11:13         1           Dichoroothoromethane         ND         1.0         0.86         u/L         12/07/21 11:13         1           Dichoroothoromethane         ND         1.0         0.74         u/L         12/07/21 11:13         1           Dichoroothoromethane         ND         1.0         0.74         u/L         12/07/21 11:13                                                                                                                                                                 | Bromoform                             | ND     |           | 1.0 | 0.26 | ug/L |   |          | 12/07/21 11:13 | 1       |
| Carbon tetrachloride         ND         1.0         0.27         ug/L         1207/21 11:13         1           Chlorobenzene         ND         1.0         0.75         ug/L         1207/21 11:13         1           Chlorobenzene         ND         1.0         0.32         ug/L         1207/21 11:13         1           Chloroberhane         ND         1.0         0.34         ug/L         1207/21 11:13         1           Chloroberhane         ND         1.0         0.35         ug/L         1207/21 11:13         1           cis-1,2-Dichloroethene         ND         1.0         0.35         ug/L         1207/21 11:13         1           cis-1,3-Dichloropthene         ND         1.0         0.36         ug/L         1207/21 11:13         1           Cyclohexane         ND         1.0         0.36         ug/L         1207/21 11:13         1           Dichorodifluoromethane         ND         1.0         0.32         ug/L         1207/21 11:13         1           Dichorodifluoromethane         ND         1.0         0.74         ug/L         1207/21 11:13         1           Dichorodifluoromethane         ND         1.0         0.74         ug/L         1207/21                                                                                                                                                         | Bromomethane                          | ND     |           | 1.0 | 0.69 | ug/L |   |          | 12/07/21 11:13 | 1       |
| Chlorobenzene         ND         1.0         0.75         ug/L         12/07/21 11:13         1           Chloroethane         ND         1.0         0.32         ug/L         12/07/21 11:13         1           Chloroethane         ND         1.0         0.34         ug/L         12/07/21 11:13         1           Chloroethane         ND         1.0         0.35         ug/L         12/07/21 11:13         1           cis-1.2-Dichloroethene         ND         1.0         0.36         ug/L         12/07/21 11:13         1           cis-1.2-Dichloroptopene         ND         1.0         0.36         ug/L         12/07/21 11:13         1           Cyclohexane         ND         1.0         0.38         ug/L         12/07/21 11:13         1           Dichoroothoromethane         ND         1.0         0.32         ug/L         12/07/21 11:13         1           Dichoroothoromethane         ND         1.0         0.74         ug/L         12/07/21 11:13         1           Booropybenzene         ND         1.0         0.74         ug/L         12/07/21 11:13         1           Methyl acetate         ND         1.0         0.74         ug/L         12/07/21 11:13 <td>Carbon disulfide</td> <td>ND</td> <td></td> <td>1.0</td> <td>0.19</td> <td>ug/L</td> <td></td> <td></td> <td>12/07/21 11:13</td> <td>1</td>            | Carbon disulfide                      | ND     |           | 1.0 | 0.19 | ug/L |   |          | 12/07/21 11:13 | 1       |
| Chloroethane         ND         1.0         0.32         ug/L         12/07/21 11:13         1           Chloroform         ND         1.0         0.34         ug/L         12/07/21 11:13         1           Chloroform         ND         1.0         0.35         ug/L         12/07/21 11:13         1           Chloroform         ND         1.0         0.35         ug/L         12/07/21 11:13         1           cis-1.2-Dichloropropen         ND         1.0         0.81         ug/L         12/07/21 11:13         1           Cyclohexane         ND         1.0         0.82         ug/L         12/07/21 11:13         1           Dichlorodifluoromethane         ND         1.0         0.82         ug/L         12/07/21 11:13         1           Ethylbenzene         ND         1.0         0.68         ug/L         12/07/21 11:13         1           Isopropylbenzene         ND         1.0         0.74         ug/L         12/07/21 11:13         1           Methyl cetate         ND         1.0         0.74         ug/L         12/07/21 11:13         1           Methylopothexane         ND         1.0         0.16         ug/L         12/07/21 11:13         1 </td <td>Carbon tetrachloride</td> <td>ND</td> <td></td> <td>1.0</td> <td>0.27</td> <td>ug/L</td> <td></td> <td></td> <td>12/07/21 11:13</td> <td>1</td>           | Carbon tetrachloride                  | ND     |           | 1.0 | 0.27 | ug/L |   |          | 12/07/21 11:13 | 1       |
| Chloroform         ND         1.0         0.34         ug/L         12/07/21 11:13         1           Chloromethane         ND         1.0         0.35         ug/L         12/07/21 11:13         1           cis-1,2-Dichloroethene         ND         1.0         0.81         ug/L         12/07/21 11:13         1           cis-1,3-Dichloroptopene         ND         1.0         0.36         ug/L         12/07/21 11:13         1           Cyclohexane         ND         1.0         0.32         ug/L         12/07/21 11:13         1           Dichorodifluoromethane         ND         1.0         0.84         ug/L         12/07/21 11:13         1           Dichorodifluoromethane         ND         1.0         0.84         ug/L         12/07/21 11:13         1           Dichorodifluoromethane         ND         1.0         0.74         ug/L         12/07/21 11:13         1           Stopropylbenzene         ND         1.0         0.74         ug/L         12/07/21 11:13         1           Methyl actate         ND         1.0         0.74         ug/L         12/07/21 11:13         1           Methyl actol ether         ND         1.0         0.73         ug/L <t< td=""><td>Chlorobenzene</td><td>ND</td><td></td><td>1.0</td><td>0.75</td><td>ug/L</td><td></td><td></td><td>12/07/21 11:13</td><td>1</td></t<>             | Chlorobenzene                         | ND     |           | 1.0 | 0.75 | ug/L |   |          | 12/07/21 11:13 | 1       |
| Chloromethane         ND         1.0         0.35         uj/L         12/07/21         11:13         1           cis-1,2-Dichloroethene         ND         1.0         0.81         ug/L         12/07/21         11:13         1           cis-1,3-Dichloropropene         ND         1.0         0.36         ug/L         12/07/21         11:13         1           Cyclohexane         ND         1.0         0.32         ug/L         12/07/21         11:13         1           Dibromochloromethane         ND         1.0         0.32         ug/L         12/07/21         11:13         1           Dichlorodifluoromethane         ND         1.0         0.32         ug/L         12/07/21         11:13         1           Isopropylbenzene         ND         1.0         0.74         ug/L         12/07/21         11:13         1           Methyl acetate         ND         1.0         0.79         ug/L         12/07/21         11:13         1           Methyl acetate         ND         1.0         0.16         ug/L         12/07/21         11:13         1           Methyl acetate         ND         1.0         0.16         ug/L         12/07/21         11:13                                                                                                                                                                            | Chloroethane                          | ND     |           | 1.0 | 0.32 | ug/L |   |          | 12/07/21 11:13 | 1       |
| cis-1,2-Dichloroethene         ND         1.0         0.81         ug/L         12/07/21 11:13         1           cis-1,3-Dichloropropene         ND         1.0         0.36         ug/L         12/07/21 11:13         1           Cyclohexane         ND         1.0         0.18         ug/L         12/07/21 11:13         1           Dichlorodifluoromethane         ND         1.0         0.32         ug/L         12/07/21 11:13         1           Dichlorodifluoromethane         ND         1.0         0.48         ug/L         12/07/21 11:13         1           Dichlorodifluoromethane         ND         1.0         0.68         ug/L         12/07/21 11:13         1           Isopropylbenzene         ND         1.0         0.79         ug/L         12/07/21 11:13         1           Methyl acetate         ND         2.5         1.3         ug/L         12/07/21 11:13         1           Methyl acetate         ND         1.0         0.16         ug/L         12/07/21 11:13         1           Methyl acetate         ND         1.0         0.16         ug/L         12/07/21 11:13         1           Methyl acetate         ND         1.0         0.44         ug/L                                                                                                                                                            | Chloroform                            | ND     |           | 1.0 | 0.34 | ug/L |   |          | 12/07/21 11:13 | 1       |
| cis-1,3-Dichloropropene         ND         1.0         0.36         ug/L         12/07/21 11:13         1           Cyclohexane         ND         1.0         0.18         ug/L         12/07/21 11:13         1           Dibromochloromethane         ND         1.0         0.32         ug/L         12/07/21 11:13         1           Dichlorodifluoromethane         ND         1.0         0.68         ug/L         12/07/21 11:13         1           Ethylbenzene         ND         1.0         0.74         ug/L         12/07/21 11:13         1           Isopropylbenzene         ND         1.0         0.74         ug/L         12/07/21 11:13         1           Methyl acetate         ND         1.0         0.74         ug/L         12/07/21 11:13         1           Methyl acetate         ND         1.0         0.74         ug/L         12/07/21 11:13         1           Methyl acetate         ND         1.0         0.16         ug/L         12/07/21 11:13         1           Methyl acetate         ND         1.0         0.16         ug/L         12/07/21 11:13         1           Methyl acetate         ND         1.0         0.16         ug/L         12/07/21 11:13<                                                                                                                                                         | Chloromethane                         | ND     |           | 1.0 | 0.35 | ug/L |   |          | 12/07/21 11:13 | 1       |
| CyclohexaneND1.00.18ug/L12/07/2111:131DibromochloromethaneND1.00.32ug/L12/07/2111:131DichlorodifluoromethaneND1.00.68ug/L12/07/2111:131EthylbenzeneND1.00.74ug/L12/07/2111:131IsopropylbenzeneND1.00.79ug/L12/07/2111:131Methyl acetateND2.51.3ug/L12/07/2111:131Methyl tert-butyl etherND1.00.16ug/L12/07/2111:131MethylechorekaneND1.00.16ug/L12/07/2111:131Methylene ChlorideND1.00.16ug/L12/07/2111:131StyreneND1.00.64ug/L12/07/2111:131TetrachloroetheneND1.00.63ug/L12/07/2111:131Trans-1,2-DichloroetheneND1.00.51ug/L12/07/2111:131TrichloroetheneND1.00.90ug/L12/07/2111:131TrichloroetheneND1.00.91ug/L12/07/2111:131TrichloroetheneND1.00.93ug/L12/07/2111:131TrichloroetheneND1.00.94ug/L12/07/2111:131TrichloroetheneND1.0 <td>cis-1,2-Dichloroethene</td> <td>ND</td> <td></td> <td>1.0</td> <td>0.81</td> <td>ug/L</td> <td></td> <td></td> <td>12/07/21 11:13</td> <td>1</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cis-1,2-Dichloroethene                | ND     |           | 1.0 | 0.81 | ug/L |   |          | 12/07/21 11:13 | 1       |
| DibromochloromethaneND1.00.32ug/L12/07/2111:131DichlorodifluoromethaneND1.00.68ug/L12/07/2111:131EthylbenzeneND1.00.74ug/L12/07/2111:131IsopropylbenzeneND1.00.79ug/L12/07/2111:131Methyl acetateND2.51.3ug/L12/07/2111:131Methyl tert-butyl etherND1.00.16ug/L12/07/2111:131Methylene ChlorideND1.00.16ug/L12/07/2111:131Methylene ChlorideND1.00.44ug/L12/07/2111:131StyreneND1.00.73ug/L12/07/2111:131TetrachloroetheneND1.00.36ug/L12/07/2111:131TolueneND1.00.37ug/L12/07/2111:131trans-1,3-DichloropropeneND1.00.37ug/L12/07/2111:131TrichloroetheneND1.00.37ug/L12/07/2111:131TrichlorofluoromethaneND1.00.88ug/L12/07/2111:131Vinyl chlorideND1.00.90ug/L12/07/2111:131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | cis-1,3-Dichloropropene               | ND     |           | 1.0 | 0.36 | ug/L |   |          | 12/07/21 11:13 | 1       |
| Dichlorodifluoromethane         ND         1.0         0.68         ug/L         12/07/21 11:13         1           Ethylbenzene         ND         1.0         0.74         ug/L         12/07/21 11:13         1           Isopropylbenzene         ND         1.0         0.79         ug/L         12/07/21 11:13         1           Methyl acetate         ND         2.5         1.3         ug/L         12/07/21 11:13         1           Methyl acetate         ND         1.0         0.16         ug/L         12/07/21 11:13         1           Methyl acetate         ND         1.0         0.16         ug/L         12/07/21 11:13         1           Methyl cyclohexane         ND         1.0         0.16         ug/L         12/07/21 11:13         1           Methylene Chloride         ND         1.0         0.44         ug/L         12/07/21 11:13         1           Styrene         ND         1.0         0.73         ug/L         12/07/21 11:13         1           Toluene         ND         1.0         0.36         ug/L         12/07/21 11:13         1           trans-1,2-Dichloroptopene         ND         1.0         0.90         ug/L         12/07/21 11:13                                                                                                                                                                  | Cyclohexane                           | ND     |           | 1.0 | 0.18 | ug/L |   |          | 12/07/21 11:13 | 1       |
| EthylbenzeneND1.00.74ug/L12/07/21 11:131IsopropylbenzeneND1.00.79ug/L12/07/21 11:131Methyl acetateND2.51.3ug/L12/07/21 11:131Methyl tert-butyl etherND1.00.16ug/L12/07/21 11:131Methyl coloexaneND1.00.16ug/L12/07/21 11:131Methylene ChlorideND1.00.16ug/L12/07/21 11:131StyreneND1.00.73ug/L12/07/21 11:131TetrachloroetheneND1.00.73ug/L12/07/21 11:131TolueneND1.00.51ug/L12/07/21 11:131trans-1,2-DichloroetheneND1.00.90ug/L12/07/21 11:131trans-1,3-DichloropropeneND1.00.97ug/L12/07/21 11:131TrichloroetheneND1.00.98ug/L12/07/21 11:131TrichloroetheneND1.00.90ug/L12/07/21 11:131TrichloroetheneND1.00.98ug/L12/07/21 11:131TrichloroetheneND1.00.90ug/L12/07/21 11:131Vinyl chlorideND1.00.90ug/L12/07/21 11:131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dibromochloromethane                  | ND     |           | 1.0 | 0.32 | ug/L |   |          | 12/07/21 11:13 | 1       |
| IsopropylbenzeneND1.00.79ug/L12/07/21 11:131Methyl acetateND2.51.3ug/L12/07/21 11:131Methyl tert-butyl etherND1.00.16ug/L12/07/21 11:131MethylocolohexaneND1.00.16ug/L12/07/21 11:131Methylene ChlorideND1.00.44ug/L12/07/21 11:131StyreneND1.00.73ug/L12/07/21 11:131TetrachloroetheneND1.00.36ug/L12/07/21 11:131TolueneND1.00.90ug/L12/07/21 11:131trans-1,2-DichloroetheneND1.00.90ug/L12/07/21 11:131trans-1,3-DichloropropeneND1.00.37ug/L12/07/21 11:131TrichloroetheneND1.00.44ug/L12/07/21 11:131TrichloroetheneND1.00.90ug/L12/07/21 11:131TrichloroetheneND1.00.98ug/L12/07/21 11:131TrichloroetheneND1.00.90ug/L12/07/21 11:131Vinyl chlorideND1.00.90ug/L12/07/21 11:131Vinyl chlorideND1.00.90ug/L12/07/21 11:131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dichlorodifluoromethane               | ND     |           | 1.0 | 0.68 | ug/L |   |          | 12/07/21 11:13 | 1       |
| Methyl acetateND2.51.3ug/L12/07/21 11:131Methyl tert-butyl etherND1.00.16ug/L12/07/21 11:131MethylcyclohexaneND1.00.16ug/L12/07/21 11:131Methylene ChlorideND1.00.44ug/L12/07/21 11:131StyreneND1.00.73ug/L12/07/21 11:131TetrachloroetheneND1.00.36ug/L12/07/21 11:131TolueneND1.00.51ug/L12/07/21 11:131trans-1,2-DichloroetheneND1.00.90ug/L12/07/21 11:131trans-1,3-DichloropropeneND1.00.37ug/L12/07/21 11:131TrichloroetheneND1.00.46ug/L12/07/21 11:131TrichloroetheneND1.00.90ug/L12/07/21 11:131Vinyl chlorideND1.00.90ug/L12/07/21 11:131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ethylbenzene                          | ND     |           | 1.0 | 0.74 | ug/L |   |          | 12/07/21 11:13 | 1       |
| Methyl tert-butyl etherND1.00.16ug/L12/07/2111:131MethylcyclohexaneND1.00.16ug/L12/07/2111:131Methylene ChlorideND1.00.44ug/L12/07/2111:131StyreneND1.00.73ug/L12/07/2111:131TetrachloroetheneND1.00.36ug/L12/07/2111:131TolueneND1.00.51ug/L12/07/2111:131trans-1,3-DichloropropeneND1.00.90ug/L12/07/2111:131TrichloroetheneND1.00.37ug/L12/07/2111:131TrichloroetheneND1.00.88ug/L12/07/2111:131TrichlorofluoromethaneND1.00.88ug/L12/07/2111:131Vinyl chlorideND1.00.90ug/L12/07/2111:131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Isopropylbenzene                      | ND     |           | 1.0 | 0.79 | ug/L |   |          | 12/07/21 11:13 | 1       |
| MethylcyclohexaneND1.00.16ug/L12/07/21 11:131Methylene ChlorideND1.00.44ug/L12/07/21 11:131StyreneND1.00.73ug/L12/07/21 11:131TetrachloroetheneND1.00.36ug/L12/07/21 11:131TolueneND1.00.51ug/L12/07/21 11:131trans-1,2-DichloroetheneND1.00.90ug/L12/07/21 11:131trans-1,3-DichloropropeneND1.00.37ug/L12/07/21 11:131TrichloroetheneND1.00.44ug/L12/07/21 11:131TrichloroetheneND1.00.37ug/L12/07/21 11:131TrichloroetheneND1.00.48ug/L12/07/21 11:131TrichlorofluoromethaneND1.00.88ug/L12/07/21 11:131Vinyl chlorideND1.00.90ug/L12/07/21 11:131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Methyl acetate                        | ND     |           | 2.5 | 1.3  | ug/L |   |          | 12/07/21 11:13 | 1       |
| Methylene Chloride         ND         1.0         0.44         ug/L         12/07/21 11:13         1           Styrene         ND         1.0         0.73         ug/L         12/07/21 11:13         1           Tetrachloroethene         ND         1.0         0.36         ug/L         12/07/21 11:13         1           Toluene         ND         1.0         0.36         ug/L         12/07/21 11:13         1           trans-1,2-Dichloroethene         ND         1.0         0.51         ug/L         12/07/21 11:13         1           trans-1,2-Dichloroethene         ND         1.0         0.90         ug/L         12/07/21 11:13         1           trans-1,3-Dichloropropene         ND         1.0         0.90         ug/L         12/07/21 11:13         1           Trichloroethene         ND         1.0         0.37         ug/L         12/07/21 11:13         1           Trichloroethene         ND         1.0         0.37         ug/L         12/07/21 11:13         1           Trichloroethene         ND         1.0         0.46         ug/L         12/07/21 11:13         1           Vinyl chloride         ND         1.0         0.90         ug/L         12/07/21                                                                                                                                                          | Methyl tert-butyl ether               | ND     |           | 1.0 | 0.16 | ug/L |   |          | 12/07/21 11:13 | 1       |
| StyreneND1.00.73 ug/L12/07/21 11:131TetrachloroetheneND1.00.36 ug/L12/07/21 11:131TolueneND1.00.51 ug/L12/07/21 11:131trans-1,2-DichloroetheneND1.00.90 ug/L12/07/21 11:131trans-1,3-DichloropropeneND1.00.37 ug/L12/07/21 11:131TrichloroetheneND1.00.46 ug/L12/07/21 11:131TrichlorofluoromethaneND1.00.88 ug/L12/07/21 11:131Vinyl chlorideND1.00.90 ug/L12/07/21 11:131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Methylcyclohexane                     | ND     |           | 1.0 | 0.16 | ug/L |   |          | 12/07/21 11:13 | 1       |
| TerachloroetheneND1.00.36 ug/L12/07/21 11:131TolueneND1.00.51 ug/L12/07/21 11:131trans-1,2-DichloroetheneND1.00.90 ug/L12/07/21 11:131trans-1,3-DichloropropeneND1.00.37 ug/L12/07/21 11:131TrichloroetheneND1.00.46 ug/L12/07/21 11:131TrichloroetheneND1.00.48 ug/L12/07/21 11:131TrichlorofluoromethaneND1.00.90 ug/L12/07/21 11:131Vinyl chlorideND1.00.90 ug/L12/07/21 11:131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Methylene Chloride                    | ND     |           | 1.0 | 0.44 | ug/L |   |          | 12/07/21 11:13 | 1       |
| Toluene         ND         1.0         0.51         ug/L         12/07/21 11:13         1           trans-1,2-Dichloroethene         ND         1.0         0.90         ug/L         12/07/21 11:13         1           trans-1,3-Dichloropropene         ND         1.0         0.37         ug/L         12/07/21 11:13         1           Trichloroethene         ND         1.0         0.46         ug/L         12/07/21 11:13         1           Trichlorofluoromethane         ND         1.0         0.48         ug/L         12/07/21 11:13         1           Vinyl chloride         ND         1.0         0.88         ug/L         12/07/21 11:13         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Styrene                               | ND     |           | 1.0 | 0.73 | ug/L |   |          | 12/07/21 11:13 | 1       |
| trans-1,2-Dichloroethene         ND         1.0         0.90         ug/L         12/07/21 11:13         1           trans-1,3-Dichloropropene         ND         1.0         0.37         ug/L         12/07/21 11:13         1           Trichloroethene         ND         1.0         0.46         ug/L         12/07/21 11:13         1           Trichlorofluoromethane         ND         1.0         0.48         ug/L         12/07/21 11:13         1           Vinyl chloride         ND         1.0         0.88         ug/L         12/07/21 11:13         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tetrachloroethene                     | ND     |           | 1.0 | 0.36 | ug/L |   |          | 12/07/21 11:13 | 1       |
| trans-1,3-Dichloropropene         ND         1.0         0.37         ug/L         12/07/21 11:13         1           Trichloroethene         ND         1.0         0.46         ug/L         12/07/21 11:13         1           Trichlorofluoromethane         ND         1.0         0.88         ug/L         12/07/21 11:13         1           Vinyl chloride         ND         1.0         0.90         ug/L         12/07/21 11:13         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Toluene                               | ND     |           | 1.0 | 0.51 | ug/L |   |          | 12/07/21 11:13 | 1       |
| Trichloroethene         ND         1.0         0.46         ug/L         12/07/21 11:13         1           Trichlorofluoromethane         ND         1.0         0.88         ug/L         12/07/21 11:13         1           Vinyl chloride         ND         1.0         0.90         ug/L         12/07/21 11:13         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | trans-1,2-Dichloroethene              | ND     |           | 1.0 | 0.90 | ug/L |   |          | 12/07/21 11:13 | 1       |
| Trichlorofluoromethane         ND         1.0         0.88         ug/L         12/07/21         11:13         1           Vinyl chloride         ND         1.0         0.90         ug/L         12/07/21         11:13         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | trans-1,3-Dichloropropene             | ND     |           | 1.0 | 0.37 | ug/L |   |          | 12/07/21 11:13 | 1       |
| Vinyl chloride         ND         1.0         0.90         ug/L         12/07/21         11:13         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Trichloroethene                       | ND     |           | 1.0 | 0.46 | ug/L |   |          | 12/07/21 11:13 | 1       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Trichlorofluoromethane                | ND     |           | 1.0 | 0.88 | ug/L |   |          | 12/07/21 11:13 | 1       |
| Xylenes, Total         ND         2.0         0.66         ug/L         12/07/21         11:13         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Vinyl chloride                        | ND     |           | 1.0 | 0.90 | ug/L |   |          | 12/07/21 11:13 | 1       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Xylenes, Total                        | ND     |           | 2.0 | 0.66 | ug/L |   |          | 12/07/21 11:13 | 1       |

Eurofins TestAmerica, Buffalo

Prep Type: Total/NA

**Client Sample ID: Method Blank** 

13

#### Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

#### Lab Sample ID: MB 480-607776/7

#### Matrix: Water Analysis Batch: 607776

|                              | MB        | МВ        |          |          |                |         |
|------------------------------|-----------|-----------|----------|----------|----------------|---------|
| Surrogate                    | %Recovery | Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 96        |           | 77 _ 120 |          | 12/07/21 11:13 | 1       |
| 4-Bromofluorobenzene (Surr)  | 100       |           | 73 - 120 |          | 12/07/21 11:13 | 1       |
| Dibromofluoromethane (Surr)  | 102       |           | 75 - 123 |          | 12/07/21 11:13 | 1       |
| Toluene-d8 (Surr)            | 96        |           | 80 - 120 |          | 12/07/21 11:13 | 1       |

#### Lab Sample ID: LCS 480-607776/4 Matrix: Water

Analysis Batch: 607776

| Analysis Batch: 607776              | Spike | LCS    | LCS       |      |   |      | %Rec.               |
|-------------------------------------|-------|--------|-----------|------|---|------|---------------------|
| Analyte                             | Added | Result | Qualifier | Unit | D | %Rec | Limits              |
| 1,1,1-Trichloroethane               | 25.0  | 29.5   |           | ug/L |   | 118  | 73 - 126            |
| 1,1,2,2-Tetrachloroethane           | 25.0  | 25.3   |           | ug/L |   | 101  | 76 - 120            |
| 1,1,2-Trichloro-1,2,2-trifluoroetha | 25.0  | 27.5   |           | ug/L |   | 110  | 61 - 148            |
| ne                                  |       |        |           |      |   |      |                     |
| 1,1,2-Trichloroethane               | 25.0  | 24.5   |           | ug/L |   | 98   | 76 - 122            |
| 1,1-Dichloroethane                  | 25.0  | 24.4   |           | ug/L |   | 98   | 77 - 120            |
| 1,1-Dichloroethene                  | 25.0  | 27.2   |           | ug/L |   | 109  | 66 - 127            |
| 1,2,4-Trichlorobenzene              | 25.0  | 23.9   |           | ug/L |   | 95   | 79 - 122            |
| 1,2-Dibromo-3-Chloropropane         | 25.0  | 23.7   |           | ug/L |   | 95   | 56 - 134            |
| 1,2-Dibromoethane                   | 25.0  | 25.4   |           | ug/L |   | 102  | 77 _ 120            |
| 1,2-Dichlorobenzene                 | 25.0  | 24.6   |           | ug/L |   | 98   | 80 - 124            |
| 1,2-Dichloroethane                  | 25.0  | 22.2   |           | ug/L |   | 89   | 75 - 120            |
| 1,2-Dichloropropane                 | 25.0  | 26.4   |           | ug/L |   | 106  | 76 - 120            |
| 1,3-Dichlorobenzene                 | 25.0  | 26.1   |           | ug/L |   | 105  | 77 _ 120            |
| 1,4-Dichlorobenzene                 | 25.0  | 25.5   |           | ug/L |   | 102  | 80 - 120            |
| 2-Butanone (MEK)                    | 125   | 142    |           | ug/L |   | 114  | 57 - 140            |
| 2-Hexanone                          | 125   | 138    |           | ug/L |   | 111  | 65 - 127            |
| 4-Methyl-2-pentanone (MIBK)         | 125   | 127    |           | ug/L |   | 101  | 71 - 125            |
| Acetone                             | 125   | 152    |           | ug/L |   | 121  | 56 - 142            |
| Benzene                             | 25.0  | 26.4   |           | ug/L |   | 106  | 71 - 124            |
| Bromodichloromethane                | 25.0  | 26.1   |           | ug/L |   | 104  | 80 - 122            |
| Bromoform                           | 25.0  | 31.3   |           | ug/L |   | 125  | 61 - 132            |
| Bromomethane                        | 25.0  | 26.7   |           | ug/L |   | 107  | 55 - 144            |
| Carbon disulfide                    | 25.0  | 30.6   |           | ug/L |   | 122  | 59 - 134            |
| Carbon tetrachloride                | 25.0  | 32.5   |           | ug/L |   | 130  | 72 - 134            |
| Chlorobenzene                       | 25.0  | 24.7   |           | ug/L |   | 99   | 80 - 120            |
| Chloroethane                        | 25.0  | 26.5   |           | ug/L |   | 106  | 69 - 136            |
| Chloroform                          | 25.0  | 23.3   |           | ug/L |   | 93   | 73 <sub>-</sub> 127 |
| Chloromethane                       | 25.0  | 29.2   |           | ug/L |   | 117  | 68 - 124            |
| cis-1,2-Dichloroethene              | 25.0  | 25.8   |           | ug/L |   | 103  | 74 - 124            |
| cis-1,3-Dichloropropene             | 25.0  | 27.9   |           | ug/L |   | 111  | 74 - 124            |
| Cyclohexane                         | 25.0  | 26.9   |           | ug/L |   | 108  | 59 <sub>-</sub> 135 |
| Dibromochloromethane                | 25.0  | 27.5   |           | ug/L |   | 110  | 75 - 125            |
| Dichlorodifluoromethane             | 25.0  | 35.7   | *+        | ug/L |   | 143  | 59 - 135            |
| Ethylbenzene                        | 25.0  | 25.7   |           | ug/L |   | 103  | 77 _ 123            |
| Isopropylbenzene                    | 25.0  | 26.6   |           | ug/L |   | 106  | 77 - 122            |
| Methyl acetate                      | 50.0  | 49.0   |           | ug/L |   | 98   | 74 - 133            |
| Methyl tert-butyl ether             | 25.0  | 24.2   |           | ug/L |   | 97   | 77 - 120            |
| Methylcyclohexane                   | 25.0  | 27.4   |           | ug/L |   | 109  | 68 - 134            |

Eurofins TestAmerica, Buffalo

Job ID: 480-193106-1

Prep Type: Total/NA

Prep Type: Total/NA

**Client Sample ID: Method Blank** 

**Client Sample ID: Lab Control Sample** 

Spike

Added

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

Limits

#### Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

LCS LCS %Recovery Qualifier

#### Lab Sample ID: LCS 480-607776/4

#### Matrix: Water Analysis Batch: 607776

Analyte

Styrene

Toluene

Methylene Chloride

Tetrachloroethene

Trichloroethene

Vinyl chloride

Surrogate

trans-1,2-Dichloroethene

Trichlorofluoromethane

trans-1,3-Dichloropropene

### Client Sample ID: Lab Control Sample

|   |      | Prep Type: Total/NA | - |
|---|------|---------------------|---|
|   |      | %Rec.               | 5 |
| D | %Rec | Limits              |   |
|   | 113  | 75 <sub>-</sub> 124 | 6 |
|   | 108  | 80 - 120            |   |
|   | 108  | 74 - 122            |   |
|   | 100  | 80 - 122            |   |
|   | 111  | 73 - 127            | 0 |
|   | 104  | 80 - 120            | 8 |
|   | 105  | 74 - 123            |   |
|   | 112  | 62 - 150            | 9 |
|   | 119  | 65 - 133            |   |
|   |      |                     |   |
|   |      |                     |   |
|   |      |                     |   |
|   |      |                     |   |
|   |      |                     |   |

Client Sample ID: MW-06S

Prep Type: Total/NA

| 89  | 77 - 120  |
|-----|-----------|
| 105 | 73 - 120  |
| 99  | 75 - 123  |
| 98  | 80 - 120  |
|     |           |
|     | 105<br>99 |

#### Lab Sample ID: 480-193106-1 MS Matrix: Water Analysis Batch: 607776

|                                     | Sample | Sample    | Spike | MS     | MS        |      |   |      | %Rec.               |
|-------------------------------------|--------|-----------|-------|--------|-----------|------|---|------|---------------------|
| Analyte                             | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits              |
| 1,1,1-Trichloroethane               | ND     | F1        | 25.0  | 32.0   | F1        | ug/L |   | 128  | 73 - 126            |
| 1,1,2,2-Tetrachloroethane           | ND     |           | 25.0  | 26.4   |           | ug/L |   | 106  | 76 - 120            |
| 1,1,2-Trichloro-1,2,2-trifluoroetha | ND     |           | 25.0  | 28.9   |           | ug/L |   | 116  | 61 - 148            |
| ne                                  |        |           |       |        |           |      |   |      |                     |
| 1,1,2-Trichloroethane               | ND     |           | 25.0  | 25.5   |           | ug/L |   | 102  | 76 - 122            |
| 1,1-Dichloroethane                  | 0.80   | J         | 25.0  | 27.6   |           | ug/L |   | 107  | 77 _ 120            |
| 1,1-Dichloroethene                  | ND     |           | 25.0  | 29.4   |           | ug/L |   | 117  | 66 <sub>-</sub> 127 |
| 1,2,4-Trichlorobenzene              | ND     |           | 25.0  | 25.1   |           | ug/L |   | 100  | 79 - 122            |
| 1,2-Dibromo-3-Chloropropane         | ND     |           | 25.0  | 24.1   |           | ug/L |   | 96   | 56 - 134            |
| 1,2-Dibromoethane                   | ND     |           | 25.0  | 26.9   |           | ug/L |   | 108  | 77 - 120            |
| 1,2-Dichlorobenzene                 | ND     |           | 25.0  | 26.4   |           | ug/L |   | 106  | 80 - 124            |
| 1,2-Dichloroethane                  | ND     |           | 25.0  | 23.9   |           | ug/L |   | 96   | 75 - 120            |
| 1,2-Dichloropropane                 | ND     |           | 25.0  | 28.2   |           | ug/L |   | 113  | 76 <sub>-</sub> 120 |
| 1,3-Dichlorobenzene                 | ND     |           | 25.0  | 27.5   |           | ug/L |   | 110  | 77 _ 120            |
| 1,4-Dichlorobenzene                 | ND     |           | 25.0  | 27.3   |           | ug/L |   | 109  | 78 - 124            |
| 2-Butanone (MEK)                    | ND     |           | 125   | 138    |           | ug/L |   | 111  | 57 <sub>-</sub> 140 |
| 2-Hexanone                          | ND     |           | 125   | 141    |           | ug/L |   | 113  | 65 <sub>-</sub> 127 |
| 4-Methyl-2-pentanone (MIBK)         | ND     |           | 125   | 133    |           | ug/L |   | 107  | 71 - 125            |
| Acetone                             | ND     |           | 125   | 133    |           | ug/L |   | 106  | 56 - 142            |
| Benzene                             | ND     |           | 25.0  | 28.6   |           | ug/L |   | 115  | 71 - 124            |
| Bromodichloromethane                | ND     |           | 25.0  | 26.7   |           | ug/L |   | 107  | 80 - 122            |
| Bromoform                           | ND     |           | 25.0  | 29.8   |           | ug/L |   | 119  | 61 - 132            |
| Bromomethane                        | ND     |           | 25.0  | 27.7   |           | ug/L |   | 111  | 55 <sub>-</sub> 144 |
| Carbon disulfide                    | ND     |           | 25.0  | 30.4   |           | ug/L |   | 121  | 59 <sub>-</sub> 134 |
| Carbon tetrachloride                | ND     | F1        | 25.0  | 35.2   | F1        | ug/L |   | 141  | 72 - 134            |
| Chlorobenzene                       | ND     |           | 25.0  | 26.4   |           | ug/L |   | 105  | 80 - 120            |
| Chloroethane                        | ND     |           | 25.0  | 28.0   |           | ug/L |   | 112  | 69 <sub>-</sub> 136 |
| Chloroform                          | ND     |           | 25.0  | 25.4   |           | ug/L |   | 102  | 73 - 127            |

Eurofins TestAmerica, Buffalo

LCS LCS

28.3

27.1

26.9

25.0

27.8

26.0

26.1

27.9

29.8

Result Qualifier

Unit

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

#### Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

#### Lab Sample ID: 480-193106-1 MS

#### Matrix: Water Analysis Batch: 607776

| Analysis Baten. oor rio   | Sample | Sample    | Spike | MS     | MS        |      |   |      | %Rec.               |  |
|---------------------------|--------|-----------|-------|--------|-----------|------|---|------|---------------------|--|
| Analyte                   | -      | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits              |  |
| Chloromethane             | ND     | F1        | 25.0  | 31.0   |           | ug/L |   | 124  | 68 - 124            |  |
| cis-1,2-Dichloroethene    | 11     |           | 25.0  | 38.8   |           | ug/L |   | 111  | 74 - 124            |  |
| cis-1,3-Dichloropropene   | ND     |           | 25.0  | 26.9   |           | ug/L |   | 108  | 74 <sub>-</sub> 124 |  |
| Cyclohexane               | ND     |           | 25.0  | 28.3   |           | ug/L |   | 113  | 59 <sub>-</sub> 135 |  |
| Dibromochloromethane      | ND     |           | 25.0  | 27.3   |           | ug/L |   | 109  | 75 <sub>-</sub> 125 |  |
| Dichlorodifluoromethane   | ND     | F1 *+     | 25.0  | 35.3   | F1        | ug/L |   | 141  | 59 <sub>-</sub> 135 |  |
| Ethylbenzene              | ND     |           | 25.0  | 27.5   |           | ug/L |   | 110  | 77 - 123            |  |
| Isopropylbenzene          | ND     |           | 25.0  | 28.7   |           | ug/L |   | 115  | 77 _ 122            |  |
| Methyl acetate            | ND     |           | 50.0  | 50.1   |           | ug/L |   | 100  | 74 - 133            |  |
| Methyl tert-butyl ether   | ND     |           | 25.0  | 25.2   |           | ug/L |   | 101  | 77 <sub>-</sub> 120 |  |
| Methylcyclohexane         | ND     |           | 25.0  | 27.9   |           | ug/L |   | 112  | 68 - 134            |  |
| Methylene Chloride        | ND     |           | 25.0  | 30.4   |           | ug/L |   | 122  | 75 - 124            |  |
| Styrene                   | ND     |           | 25.0  | 27.9   |           | ug/L |   | 112  | 80 - 120            |  |
| Tetrachloroethene         | ND     |           | 25.0  | 29.1   |           | ug/L |   | 116  | 74 <sub>-</sub> 122 |  |
| Toluene                   | ND     |           | 25.0  | 26.3   |           | ug/L |   | 105  | 80 - 122            |  |
| trans-1,2-Dichloroethene  | ND     |           | 25.0  | 30.5   |           | ug/L |   | 122  | 73 - 127            |  |
| trans-1,3-Dichloropropene | ND     |           | 25.0  | 25.4   |           | ug/L |   | 102  | 80 - 120            |  |
| Trichloroethene           | 21     |           | 25.0  | 48.3   |           | ug/L |   | 110  | 74 - 123            |  |
| Trichlorofluoromethane    | ND     |           | 25.0  | 28.4   |           | ug/L |   | 114  | 62 - 150            |  |
| Vinyl chloride            | 2.2    |           | 25.0  | 34.9   |           | ug/L |   | 131  | 65 <sub>-</sub> 133 |  |

|                              | MS        | MS        |          |
|------------------------------|-----------|-----------|----------|
| Surrogate                    | %Recovery | Qualifier | Limits   |
| 1,2-Dichloroethane-d4 (Surr) |           |           | 77 - 120 |
| 4-Bromofluorobenzene (Surr)  | 103       |           | 73 - 120 |
| Dibromofluoromethane (Surr)  | 104       |           | 75 - 123 |
| Toluene-d8 (Surr)            | 99        |           | 80 - 120 |

#### Lab Sample ID: 480-193106-1 MSD Matrix: Water

#### Analysis Batch: 607776

|                                     | Sample | Sample    | Spike | MSD    | MSD       |      |   |      | %Rec.               |     | RPD   |
|-------------------------------------|--------|-----------|-------|--------|-----------|------|---|------|---------------------|-----|-------|
| Analyte                             | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits              | RPD | Limit |
| 1,1,1-Trichloroethane               | ND     | F1        | 25.0  | 31.8   | F1        | ug/L |   | 127  | 73 - 126            | 1   | 15    |
| 1,1,2,2-Tetrachloroethane           | ND     |           | 25.0  | 26.7   |           | ug/L |   | 107  | 76 - 120            | 1   | 15    |
| 1,1,2-Trichloro-1,2,2-trifluoroetha | ND     |           | 25.0  | 28.2   |           | ug/L |   | 113  | 61 _ 148            | 3   | 20    |
| ne                                  |        |           |       |        |           |      |   |      |                     |     |       |
| 1,1,2-Trichloroethane               | ND     |           | 25.0  | 25.2   |           | ug/L |   | 101  | 76 - 122            | 1   | 15    |
| 1,1-Dichloroethane                  | 0.80   | J         | 25.0  | 27.3   |           | ug/L |   | 106  | 77 _ 120            | 1   | 20    |
| 1,1-Dichloroethene                  | ND     |           | 25.0  | 29.6   |           | ug/L |   | 119  | 66 - 127            | 1   | 16    |
| 1,2,4-Trichlorobenzene              | ND     |           | 25.0  | 24.8   |           | ug/L |   | 99   | 79 - 122            | 1   | 20    |
| 1,2-Dibromo-3-Chloropropane         | ND     |           | 25.0  | 24.8   |           | ug/L |   | 99   | 56 - 134            | 3   | 15    |
| 1,2-Dibromoethane                   | ND     |           | 25.0  | 27.6   |           | ug/L |   | 110  | 77 _ 120            | 3   | 15    |
| 1,2-Dichlorobenzene                 | ND     |           | 25.0  | 25.4   |           | ug/L |   | 102  | 80 - 124            | 4   | 20    |
| 1,2-Dichloroethane                  | ND     |           | 25.0  | 24.3   |           | ug/L |   | 97   | 75 _ 120            | 2   | 20    |
| 1,2-Dichloropropane                 | ND     |           | 25.0  | 29.1   |           | ug/L |   | 116  | 76 - 120            | 3   | 20    |
| 1,3-Dichlorobenzene                 | ND     |           | 25.0  | 27.9   |           | ug/L |   | 112  | 77 _ 120            | 2   | 20    |
| 1,4-Dichlorobenzene                 | ND     |           | 25.0  | 27.4   |           | ug/L |   | 109  | 78 _ 124            | 0   | 20    |
| 2-Butanone (MEK)                    | ND     |           | 125   | 142    |           | ug/L |   | 114  | 57 <sub>-</sub> 140 | 3   | 20    |
| 2-Hexanone                          | ND     |           | 125   | 147    |           | ug/L |   | 117  | 65 <sub>-</sub> 127 | 4   | 15    |

Eurofins TestAmerica, Buffalo

**Client Sample ID: MW-06S** 

Prep Type: Total/NA

#### Client Sample ID: MW-06S Prep Type: Total/NA

#### Project

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

#### Lab Sample ID: 480-193106-1 MSD

Matrix: Water Analysis Batch: 607776

|                              | Sample    | Sample    | Spike    | MSD    | MSD       |      |   |      | %Rec.               |     | RPD   |
|------------------------------|-----------|-----------|----------|--------|-----------|------|---|------|---------------------|-----|-------|
| Analyte                      | Result    | Qualifier | Added    | Result | Qualifier | Unit | D | %Rec | Limits              | RPD | Limit |
| 4-Methyl-2-pentanone (MIBK)  | ND        |           | 125      | 133    |           | ug/L |   | 106  | 71 _ 125            | 0   | 35    |
| Acetone                      | ND        |           | 125      | 131    |           | ug/L |   | 105  | 56 _ 142            | 1   | 15    |
| Benzene                      | ND        |           | 25.0     | 28.4   |           | ug/L |   | 113  | 71 - 124            | 1   | 13    |
| Bromodichloromethane         | ND        |           | 25.0     | 27.0   |           | ug/L |   | 108  | 80 - 122            | 1   | 15    |
| Bromoform                    | ND        |           | 25.0     | 30.4   |           | ug/L |   | 121  | 61 - 132            | 2   | 15    |
| Bromomethane                 | ND        |           | 25.0     | 29.1   |           | ug/L |   | 116  | 55 <sub>-</sub> 144 | 5   | 15    |
| Carbon disulfide             | ND        |           | 25.0     | 30.4   |           | ug/L |   | 121  | 59 - 134            | 0   | 15    |
| Carbon tetrachloride         | ND        | F1        | 25.0     | 35.3   | F1        | ug/L |   | 141  | 72 - 134            | 0   | 15    |
| Chlorobenzene                | ND        |           | 25.0     | 26.9   |           | ug/L |   | 108  | 80 - 120            | 2   | 25    |
| Chloroethane                 | ND        |           | 25.0     | 29.4   |           | ug/L |   | 118  | 69 - 136            | 5   | 15    |
| Chloroform                   | ND        |           | 25.0     | 25.7   |           | ug/L |   | 103  | 73 - 127            | 1   | 20    |
| Chloromethane                | ND        | F1        | 25.0     | 32.1   | F1        | ug/L |   | 128  | 68 - 124            | 4   | 15    |
| cis-1,2-Dichloroethene       | 11        |           | 25.0     | 37.5   |           | ug/L |   | 106  | 74 <sub>-</sub> 124 | 4   | 15    |
| cis-1,3-Dichloropropene      | ND        |           | 25.0     | 27.4   |           | ug/L |   | 109  | 74 <sub>-</sub> 124 | 2   | 15    |
| Cyclohexane                  | ND        |           | 25.0     | 27.2   |           | ug/L |   | 109  | 59 <sub>-</sub> 135 | 4   | 20    |
| Dibromochloromethane         | ND        |           | 25.0     | 28.8   |           | ug/L |   | 115  | 75 <sub>-</sub> 125 | 5   | 15    |
| Dichlorodifluoromethane      | ND        | F1 *+     | 25.0     | 35.4   | F1        | ug/L |   | 142  | 59 <sub>-</sub> 135 | 0   | 20    |
| Ethylbenzene                 | ND        |           | 25.0     | 28.4   |           | ug/L |   | 114  | 77 _ 123            | 3   | 15    |
| Isopropylbenzene             | ND        |           | 25.0     | 28.4   |           | ug/L |   | 113  | 77 _ 122            | 1   | 20    |
| Methyl acetate               | ND        |           | 50.0     | 50.3   |           | ug/L |   | 101  | 74 - 133            | 0   | 20    |
| Methyl tert-butyl ether      | ND        |           | 25.0     | 25.4   |           | ug/L |   | 102  | 77 _ 120            | 1   | 37    |
| Methylcyclohexane            | ND        |           | 25.0     | 26.7   |           | ug/L |   | 107  | 68 - 134            | 5   | 20    |
| Methylene Chloride           | ND        |           | 25.0     | 30.0   |           | ug/L |   | 120  | 75 <sub>-</sub> 124 | 1   | 15    |
| Styrene                      | ND        |           | 25.0     | 28.9   |           | ug/L |   | 116  | 80 - 120            | 3   | 20    |
| Tetrachloroethene            | ND        |           | 25.0     | 29.7   |           | ug/L |   | 119  | 74 - 122            | 2   | 20    |
| Toluene                      | ND        |           | 25.0     | 26.9   |           | ug/L |   | 107  | 80 - 122            | 2   | 15    |
| trans-1,2-Dichloroethene     | ND        |           | 25.0     | 28.8   |           | ug/L |   | 115  | 73 - 127            | 6   | 20    |
| trans-1,3-Dichloropropene    | ND        |           | 25.0     | 25.9   |           | ug/L |   | 104  | 80 - 120            | 2   | 15    |
| Trichloroethene              | 21        |           | 25.0     | 49.5   |           | ug/L |   | 115  | 74 <sub>-</sub> 123 | 2   | 16    |
| Trichlorofluoromethane       | ND        |           | 25.0     | 29.0   |           | ug/L |   | 116  | 62 _ 150            | 2   | 20    |
| Vinyl chloride               | 2.2       |           | 25.0     | 35.4   |           | ug/L |   | 133  | 65 _ 133            | 2   | 15    |
|                              |           |           |          |        |           |      |   |      |                     |     |       |
| •                            | MSD       |           |          |        |           |      |   |      |                     |     |       |
| Surrogate                    | %Recovery | Qualifier | Limits   |        |           |      |   |      |                     |     |       |
| 1,2-Dichloroethane-d4 (Surr) | 94        |           | 77 - 120 |        |           |      |   |      |                     |     |       |
| 4-Bromofluorobenzene (Surr)  | 106       |           | 73 - 120 |        |           |      |   |      |                     |     |       |
| Dibromofluoromethane (Surr)  | 102       |           | 75 - 123 |        |           |      |   |      |                     |     |       |
| Toluene-d8 (Surr)            | 98        |           | 80 - 120 |        |           |      |   |      |                     |     |       |

5

**8** 9

#### Client Sample ID: MW-06S Prep Type: Total/NA

| Client: AECOM                         |
|---------------------------------------|
| Project/Site: Griffin Diebold Project |

#### GC/MS VOA

#### Analysis Batch: 607776

| Lab Sample ID    | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|------------------|--------------------|-----------|--------|--------|------------|
| 480-193106-1     | MW-06S             | Total/NA  | Water  | 8260C  |            |
| 480-193106-2     | MW-06D             | Total/NA  | Water  | 8260C  |            |
| 480-193106-3     | MW-07S             | Total/NA  | Water  | 8260C  |            |
| 480-193106-4     | MW-07D             | Total/NA  | Water  | 8260C  |            |
| 480-193106-5     | MW-10S             | Total/NA  | Water  | 8260C  |            |
| 480-193106-6     | FD-120621          | Total/NA  | Water  | 8260C  |            |
| 480-193106-7     | ТВ                 | Total/NA  | Water  | 8260C  |            |
| MB 480-607776/7  | Method Blank       | Total/NA  | Water  | 8260C  |            |
| LCS 480-607776/4 | Lab Control Sample | Total/NA  | Water  | 8260C  |            |
| 480-193106-1 MS  | MW-06S             | Total/NA  | Water  | 8260C  |            |
| 480-193106-1 MSD | MW-06S             | Total/NA  | Water  | 8260C  |            |

10

| Client Sample<br>Date Collected:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                         |            |                                                                                                      |                                                                            |                                                                                                                         | Lat                                                             | o Sample I                                                                                                      | D: 480-193106-<br>Matrix: Wate                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| ate Received:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                         |            |                                                                                                      |                                                                            |                                                                                                                         |                                                                 |                                                                                                                 |                                                                                                    |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Batch                                                                                                                                                                                                                                                                  | Batch                                                                                                                                                                                                                                                                                   |            | Dilution                                                                                             | Batch                                                                      | Prepared                                                                                                                |                                                                 |                                                                                                                 |                                                                                                    |
| Prep Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Туре                                                                                                                                                                                                                                                                   | Method                                                                                                                                                                                                                                                                                  | Run        | Factor                                                                                               | Number                                                                     | or Analyzed                                                                                                             | Analyst                                                         | Lab                                                                                                             |                                                                                                    |
| Total/NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Analysis                                                                                                                                                                                                                                                               | 8260C                                                                                                                                                                                                                                                                                   |            |                                                                                                      | 607776                                                                     | 12/07/21 17:22                                                                                                          | WJD                                                             | TAL BUF                                                                                                         | -                                                                                                  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                         |            |                                                                                                      |                                                                            |                                                                                                                         |                                                                 | <u> </u>                                                                                                        | <b>D</b> 400 400400                                                                                |
| Client Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                         |            |                                                                                                      |                                                                            |                                                                                                                         | Lat                                                             | o Sample I                                                                                                      | D: 480-193106-                                                                                     |
| Date Collected:<br>Date Received:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                         |            |                                                                                                      |                                                                            |                                                                                                                         |                                                                 |                                                                                                                 | Matrix: Wate                                                                                       |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/00/21 10:01                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                       |            |                                                                                                      |                                                                            |                                                                                                                         |                                                                 |                                                                                                                 |                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Batch                                                                                                                                                                                                                                                                  | Batch                                                                                                                                                                                                                                                                                   |            | Dilution                                                                                             | Batch                                                                      | Prepared                                                                                                                |                                                                 |                                                                                                                 |                                                                                                    |
| Prep Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Туре                                                                                                                                                                                                                                                                   | Method                                                                                                                                                                                                                                                                                  | Run        | Factor                                                                                               | Number                                                                     | or Analyzed                                                                                                             | Analyst                                                         |                                                                                                                 | -                                                                                                  |
| Total/NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Analysis                                                                                                                                                                                                                                                               | 8260C                                                                                                                                                                                                                                                                                   |            | 1                                                                                                    | 607776                                                                     | 12/07/21 17:45                                                                                                          | WJD                                                             | TAL BUF                                                                                                         |                                                                                                    |
| Client Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e ID: MW-07                                                                                                                                                                                                                                                            | 7S                                                                                                                                                                                                                                                                                      |            |                                                                                                      |                                                                            |                                                                                                                         | Lat                                                             | o Sample I                                                                                                      | D: 480-193106-                                                                                     |
| Date Collected:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12/06/21 13:5                                                                                                                                                                                                                                                          | 7                                                                                                                                                                                                                                                                                       |            |                                                                                                      |                                                                            |                                                                                                                         |                                                                 |                                                                                                                 | Matrix: Wat                                                                                        |
| Date Received:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12/06/21 16:3                                                                                                                                                                                                                                                          | 7                                                                                                                                                                                                                                                                                       |            |                                                                                                      |                                                                            |                                                                                                                         |                                                                 |                                                                                                                 |                                                                                                    |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Batch                                                                                                                                                                                                                                                                  | Batch                                                                                                                                                                                                                                                                                   |            | Dilution                                                                                             | Batch                                                                      | Prepared                                                                                                                |                                                                 |                                                                                                                 |                                                                                                    |
| Prep Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Туре                                                                                                                                                                                                                                                                   | Method                                                                                                                                                                                                                                                                                  | Run        | Factor                                                                                               | Number                                                                     | or Analyzed                                                                                                             | Analyst                                                         | Lab                                                                                                             |                                                                                                    |
| Total/NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Analysis                                                                                                                                                                                                                                                               | 8260C                                                                                                                                                                                                                                                                                   |            | 1                                                                                                    | 607776                                                                     | 12/07/21 18:08                                                                                                          | WJD                                                             | TAL BUF                                                                                                         | -                                                                                                  |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                         |            |                                                                                                      |                                                                            |                                                                                                                         | Lak                                                             | . Comula I                                                                                                      | D: 400 400400                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\sim$ ID. NAVA/ 07                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                         |            |                                                                                                      |                                                                            |                                                                                                                         | l ar                                                            | ) Sample I                                                                                                      | D: 480-193106-                                                                                     |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e ID: MW-07                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                         |            |                                                                                                      |                                                                            |                                                                                                                         |                                                                 |                                                                                                                 |                                                                                                    |
| Date Collected:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12/06/21 14:3                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                       |            |                                                                                                      |                                                                            |                                                                                                                         |                                                                 |                                                                                                                 |                                                                                                    |
| Date Collected:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12/06/21 14:3                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                       |            |                                                                                                      |                                                                            |                                                                                                                         | Eux                                                             |                                                                                                                 |                                                                                                    |
| Date Collected:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12/06/21 14:3                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                       |            | Dilution                                                                                             | Batch                                                                      | Prepared                                                                                                                |                                                                 |                                                                                                                 |                                                                                                    |
| Date Collected:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12/06/21 14:3<br>12/06/21 16:3                                                                                                                                                                                                                                         | 0<br>7                                                                                                                                                                                                                                                                                  | Run        | Dilution<br>Factor                                                                                   | Batch<br>Number                                                            | Prepared<br>or Analyzed                                                                                                 | Analyst                                                         | Lab                                                                                                             |                                                                                                    |
| Date Collected:<br>Date Received:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/06/21 14:3<br>12/06/21 16:3<br>Batch                                                                                                                                                                                                                                | 0<br>7<br>Batch                                                                                                                                                                                                                                                                         | Run        |                                                                                                      |                                                                            | -                                                                                                                       |                                                                 |                                                                                                                 | Matrix: Wate                                                                                       |
| Date Collected:<br>Date Received:<br>Prep Type<br>Total/NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12/06/21 14:3<br>12/06/21 16:3<br>Batch<br>Type<br>Analysis                                                                                                                                                                                                            | 0<br>7<br>Batch<br><u>Method</u><br>8260C                                                                                                                                                                                                                                               | Run        | Factor                                                                                               | Number                                                                     | or Analyzed                                                                                                             | Analyst<br>WJD                                                  | Lab<br>TAL BUF                                                                                                  | Matrix: Wate                                                                                       |
| Date Collected:<br>Date Received:<br>Prep Type<br>Total/NA<br>Client Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/06/21 14:3<br>12/06/21 16:3<br>Batch<br>Type<br>Analysis<br>e ID: MW-10                                                                                                                                                                                             | 0<br>7<br>Batch<br><u>Method</u><br>8260C                                                                                                                                                                                                                                               | Run        | Factor                                                                                               | Number                                                                     | or Analyzed                                                                                                             | Analyst<br>WJD                                                  | Lab<br>TAL BUF                                                                                                  | Matrix: Wat                                                                                        |
| Date Collected:<br>Date Received:<br>Prep Type<br>Total/NA<br>Client Sample<br>Date Collected:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12/06/21 14:3<br>12/06/21 16:3<br>Batch<br>Type<br>Analysis<br>e ID: MW-10<br>12/06/21 12:5                                                                                                                                                                            | 0<br>7<br>Batch<br><u>Method</u><br>8260C                                                                                                                                                                                                                                               | <u>Run</u> | Factor                                                                                               | Number                                                                     | or Analyzed                                                                                                             | Analyst<br>WJD                                                  | Lab<br>TAL BUF                                                                                                  | Matrix: Wat                                                                                        |
| Date Collected:<br>Date Received:<br>Prep Type<br>Total/NA<br>Client Sample<br>Date Collected:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12/06/21 14:3<br>12/06/21 16:3<br>Batch<br>Type<br>Analysis<br>e ID: MW-10<br>12/06/21 12:5<br>12/06/21 16:3                                                                                                                                                           | 0<br>7<br>Batch<br><u>Method</u><br>8260C<br>0S<br>2<br>7                                                                                                                                                                                                                               | <u>Run</u> | _ Factor1                                                                                            | Number<br>607776                                                           | or Analyzed<br>12/07/21 18:31                                                                                           | Analyst<br>WJD                                                  | Lab<br>TAL BUF                                                                                                  | Matrix: Wat                                                                                        |
| Date Collected:<br>Date Received:<br>Prep Type<br>Total/NA<br>Client Sample<br>Date Collected:<br>Date Received:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12/06/21 14:3<br>12/06/21 16:3<br>Batch<br>Type<br>Analysis<br>e ID: MW-10<br>12/06/21 12:5<br>12/06/21 16:3<br>Batch                                                                                                                                                  | 0<br>7<br>Batch<br><u>Method</u><br>8260C<br>OS<br>2<br>7<br>Batch                                                                                                                                                                                                                      |            | 1                                                                                                    | Number<br>607776<br>Batch                                                  | or Analyzed<br>12/07/21 18:31<br>Prepared                                                                               | Analyst<br>WJD<br>Lat                                           | - Lab<br>TAL BUF<br>D Sample I                                                                                  | Matrix: Wat                                                                                        |
| Date Collected:<br>Date Received:<br>Prep Type<br>Total/NA<br>Client Sample<br>Date Collected:<br>Date Received:<br>Prep Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12/06/21 14:3<br>12/06/21 16:3<br>Batch<br>Type<br>Analysis<br>e ID: MW-10<br>12/06/21 12:5<br>12/06/21 16:3<br>Batch<br>Type                                                                                                                                          | 0<br>7<br>Batch<br><u>Method</u><br>8260C<br>OS<br>2<br>7<br>Batch<br><u>Method</u>                                                                                                                                                                                                     | Run        | Factor<br>1<br>Dilution<br>Factor                                                                    | Number<br>607776<br>Batch<br>Number                                        | or Analyzed<br>12/07/21 18:31<br>Prepared<br>or Analyzed                                                                | Analyst<br>WJD<br>Lat                                           | - Lab<br>TAL BUF<br>D Sample I                                                                                  | Matrix: Wate                                                                                       |
| Date Collected:<br>Date Received:<br>Prep Type<br>Total/NA<br>Client Sample<br>Date Collected:<br>Date Received:<br>Prep Type<br>Total/NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/06/21 14:3<br>12/06/21 16:3<br>Batch<br>Type<br>Analysis<br>e ID: MW-10<br>12/06/21 12:5<br>12/06/21 16:3<br>Batch<br>Type<br>Analysis                                                                                                                              | 0<br>7<br>Batch<br>8260C<br>0S<br>2<br>7<br>Batch<br>Method<br>8260C                                                                                                                                                                                                                    |            | 1                                                                                                    | Number<br>607776<br>Batch                                                  | or Analyzed<br>12/07/21 18:31<br>Prepared                                                                               | Analyst<br>WJD<br>Lat                                           | - Lab<br>TAL BUF<br>D Sample I<br>- Lab<br>TAL BUF                                                              | Matrix: Wate<br>D: 480-193106-<br>Matrix: Wate                                                     |
| Date Collected:<br>Date Received:<br>Prep Type<br>Total/NA<br>Client Sample<br>Date Collected:<br>Date Received:<br>Prep Type<br>Total/NA<br>Client Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12/06/21 14:3<br>12/06/21 16:3<br>Batch<br>Type<br>Analysis<br>e ID: MW-10<br>12/06/21 12:5<br>12/06/21 16:3<br>Batch<br>Type<br>Analysis<br>e ID: FD-120                                                                                                              | 0<br>7<br>Batch<br><u>Method</u><br>8260C<br>0S<br>2<br>7<br>Batch<br><u>Batch</u><br>8260C<br>0621                                                                                                                                                                                     |            | Factor<br>1<br>Dilution<br>Factor                                                                    | Number<br>607776<br>Batch<br>Number                                        | or Analyzed<br>12/07/21 18:31<br>Prepared<br>or Analyzed                                                                | Analyst<br>WJD<br>Lat                                           | - Lab<br>TAL BUF<br>D Sample I<br>- Lab<br>TAL BUF                                                              | Matrix: Wate<br>D: 480-193106-<br>Matrix: Wate                                                     |
| Date Collected:<br>Date Received:<br>Prep Type<br>Total/NA<br>Client Sample<br>Date Collected:<br>Date Received:<br>Prep Type<br>Total/NA<br>Client Sample<br>Date Collected:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12/06/21 14:3<br>12/06/21 16:3<br>Batch<br>Type<br>Analysis<br>e ID: MW-10<br>12/06/21 12:5<br>12/06/21 16:3<br>Batch<br>Type<br>Analysis<br>e ID: FD-120<br>12/06/21 00:0                                                                                             | 0<br>7<br>Batch<br>8260C<br>0S<br>2<br>7<br>Batch<br>Batch<br>8260C<br>0621<br>0                                                                                                                                                                                                        |            | Factor<br>1<br>Dilution<br>Factor                                                                    | Number<br>607776<br>Batch<br>Number                                        | or Analyzed<br>12/07/21 18:31<br>Prepared<br>or Analyzed                                                                | Analyst<br>WJD<br>Lat                                           | - Lab<br>TAL BUF<br>D Sample I<br>- Lab<br>TAL BUF                                                              | Matrix: Wat                                                                                        |
| Date Collected:<br>Date Received:<br>Prep Type<br>Total/NA<br>Client Sample<br>Date Collected:<br>Date Received:<br>Prep Type<br>Total/NA<br>Client Sample<br>Date Collected:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12/06/21 14:3<br>12/06/21 16:3<br>Batch<br>Type<br>Analysis<br>e ID: MW-10<br>12/06/21 12:5<br>12/06/21 16:3<br>Batch<br>Type<br>Analysis<br>e ID: FD-120<br>12/06/21 00:0                                                                                             | 0<br>7<br>Batch<br>8260C<br>0S<br>2<br>7<br>Batch<br>Batch<br>8260C<br>0621<br>0                                                                                                                                                                                                        |            | Factor<br>1<br>Dilution<br>Factor                                                                    | Number<br>607776<br>Batch<br>Number                                        | or Analyzed<br>12/07/21 18:31<br>Prepared<br>or Analyzed                                                                | Analyst<br>WJD<br>Lat                                           | - Lab<br>TAL BUF<br>D Sample I<br>- Lab<br>TAL BUF                                                              | Matrix: Wat                                                                                        |
| Date Collected:<br>Date Received:<br>Prep Type<br>Total/NA<br>Client Sample<br>Date Collected:<br>Date Received:<br>Prep Type<br>Total/NA<br>Client Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12/06/21 14:3<br>12/06/21 16:3<br>Batch<br>Type<br>Analysis<br>e ID: MW-10<br>12/06/21 12:5<br>12/06/21 16:3<br>Batch<br>Type<br>Analysis<br>e ID: FD-120<br>12/06/21 00:0                                                                                             | 0<br>7<br>Batch<br>8260C<br>0S<br>2<br>7<br>Batch<br>Batch<br>8260C<br>0621<br>0                                                                                                                                                                                                        |            | Factor<br>1<br>Dilution<br>Factor                                                                    | Number<br>607776<br>Batch<br>Number                                        | or Analyzed<br>12/07/21 18:31<br>Prepared<br>or Analyzed                                                                | Analyst<br>WJD<br>Lat                                           | - Lab<br>TAL BUF<br>D Sample I<br>- Lab<br>TAL BUF                                                              | Matrix: Wate<br>D: 480-193106-<br>Matrix: Wate<br>D: 480-193106-                                   |
| Date Collected:<br>Date Received:<br>Prep Type<br>Total/NA<br>Client Sample<br>Date Collected:<br>Date Received:<br>Prep Type<br>Total/NA<br>Client Sample<br>Date Collected:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12/06/21 14:3<br>12/06/21 16:3<br>Batch<br>Type<br>Analysis<br>e ID: MW-10<br>12/06/21 12:5<br>12/06/21 16:3<br>Batch<br>Type<br>Analysis<br>e ID: FD-120<br>12/06/21 00:0<br>12/06/21 16:3                                                                            | 0<br>7<br>Batch<br>8260C<br>0S<br>2<br>7<br>Batch<br>Batch<br>8260C<br>0621<br>0<br>7                                                                                                                                                                                                   |            | 1                                                                                                    | Number<br>607776<br>Batch<br>Number<br>607776                              | or Analyzed<br>12/07/21 18:31<br>Prepared<br>or Analyzed<br>12/07/21 18:54                                              | Analyst<br>WJD<br>Lat                                           | - Lab<br>TAL BUF<br>D Sample I<br>- Lab<br>TAL BUF                                                              | Matrix: Wate<br>D: 480-193106-<br>Matrix: Wate<br>D: 480-193106-                                   |
| Date Collected:<br>Date Received:<br>Total/NA<br>Client Sample<br>Date Collected:<br>Date Received:<br>Total/NA<br>Client Sample<br>Total/NA<br>Client Sample<br>Date Collected:<br>Date Collected:<br>Date Received:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12/06/21 14:3<br>12/06/21 16:3<br>Batch<br>Type<br>Analysis<br>E ID: MW-10<br>12/06/21 12:5<br>12/06/21 16:3<br>Batch<br>Type<br>Analysis<br>E ID: FD-120<br>12/06/21 00:0<br>12/06/21 16:3<br>Batch                                                                   | 0<br>7<br>Batch<br>8260C<br>0S<br>2<br>7<br>Batch<br>8260C<br>0621<br>0<br>7<br>Batch                                                                                                                                                                                                   | Run        | Factor       1       Dilution       Factor       1                                                   | Number<br>607776<br>Batch<br>Number<br>607776<br>Batch                     | or Analyzed<br>12/07/21 18:31<br>Prepared<br>or Analyzed<br>12/07/21 18:54<br>Prepared                                  | Analyst<br>WJD<br>Lat<br>Analyst<br>WJD<br>Lat                  | Lab<br>TAL BUF<br>Sample I<br>Sample J<br>TAL BUF<br>Sample I                                                   | Matrix: Wate<br>D: 480-193106-<br>Matrix: Wate<br>D: 480-193106-                                   |
| Date Collected:<br>Date Received:<br>Total/NA<br>Client Sample<br>Date Collected:<br>Date Received:<br>Total/NA<br>Client Sample<br>Total/NA<br>Client Sample<br>Date Collected:<br>Date Received:<br>Date Received:<br>Date Received:<br>Date Received:<br>Date Received:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12/06/21 14:3<br>12/06/21 16:3<br>Batch<br>Type<br>Analysis<br>e ID: MW-10<br>12/06/21 12:5<br>12/06/21 16:3<br>Batch<br>Type<br>Analysis<br>e ID: FD-120<br>12/06/21 00:0<br>12/06/21 16:3<br>Batch<br>Type<br>Analysis                                               | 0<br>7<br>Batch<br>Method<br>8260C<br>0S<br>2<br>7<br>Batch<br>Method<br>8260C<br>0621<br>0<br>7<br>Batch<br>Method<br>8260C<br>0621<br>0<br>7<br>Batch<br>Method                                                                                                                       | Run        | Factor         1         Dilution         Factor         1         Dilution         Factor         1 | Number<br>607776<br>Batch<br>Number<br>607776<br>Batch<br>Number           | or Analyzed<br>12/07/21 18:31<br>Prepared<br>or Analyzed<br>12/07/21 18:54<br>Prepared<br>or Analyzed                   | Analyst<br>WJD<br>Lat<br>Malyst<br>WJD<br>Lat<br>Analyst<br>WJD | <ul> <li>Lab</li> <li>TAL BUF</li> <li>Sample I</li> <li>TAL BUF</li> <li>Sample I</li> <li>Sample I</li> </ul> | Matrix: Wate<br>D: 480-193106-<br>Matrix: Wate<br>D: 480-193106-<br>Matrix: Wate                   |
| Date Collected:<br>Date Received:<br>Prep Type<br>Total/NA<br>Client Sample<br>Date Collected:<br>Date Received:<br>Prep Type<br>Total/NA<br>Client Sample<br>Date Collected:<br>Date Collected:<br>Client Sample | 12/06/21 14:3<br>12/06/21 16:3<br>Batch<br>Type<br>Analysis<br>e ID: MW-10<br>12/06/21 12:5<br>12/06/21 12:5<br>12/06/21 16:3<br>Batch<br>Type<br>Analysis<br>e ID: FD-120<br>12/06/21 00:0<br>12/06/21 00:0<br>12/06/21 16:3<br>Batch<br>Type<br>Analysis<br>e ID: TB | 0<br>7<br>Batch<br>8260C<br>0S<br>2<br>7<br>Batch<br>8260C<br>0621<br>0<br>7<br>Batch<br>8260C<br>0621<br>0<br>7<br>Batch<br>8260C                                                                                                                                                      | Run        | Factor         1         Dilution         Factor         1         Dilution         Factor         1 | Number<br>607776<br>Batch<br>Number<br>607776<br>Batch<br>Number           | or Analyzed<br>12/07/21 18:31<br>Prepared<br>or Analyzed<br>12/07/21 18:54<br>Prepared<br>or Analyzed                   | Analyst<br>WJD<br>Lat<br>Malyst<br>WJD<br>Lat<br>Analyst<br>WJD | <ul> <li>Lab</li> <li>TAL BUF</li> <li>Sample I</li> <li>TAL BUF</li> <li>Sample I</li> <li>Sample I</li> </ul> | Matrix: Wat                                                                                        |
| Date Collected:<br>Date Received:<br>Total/NA<br>Client Sample<br>Date Collected:<br>Date Received:<br>Prep Type<br>Total/NA<br>Client Sample<br>Date Collected:<br>Date Received:<br>Prep Type<br>Total/NA<br>Client Sample<br>Date Collected:<br>Date Collected:<br>Date Collected:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12/06/21 14:3<br>12/06/21 16:3<br>Batch<br>Type<br>Analysis<br>e ID: MW-10<br>12/06/21 12:5<br>12/06/21 16:3<br>Batch<br>Type<br>Analysis<br>e ID: FD-120<br>12/06/21 00:0<br>12/06/21 16:3<br>Batch<br>Type<br>Analysis<br>e ID: TB<br>12/06/21 00:0                  | 0<br>7<br>Batch<br>Method<br>8260C<br>0S<br>2<br>7<br>Batch<br>Method<br>8260C<br>0621<br>0<br>7<br>Batch<br>Method<br>8260C<br>0621<br>0<br>7<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                         | Run        | Factor         1         Dilution         Factor         1         Dilution         Factor         1 | Number<br>607776<br>Batch<br>Number<br>607776<br>Batch<br>Number           | or Analyzed<br>12/07/21 18:31<br>Prepared<br>or Analyzed<br>12/07/21 18:54<br>Prepared<br>or Analyzed                   | Analyst<br>WJD<br>Lat<br>Malyst<br>WJD<br>Lat<br>Analyst<br>WJD | <ul> <li>Lab</li> <li>TAL BUF</li> <li>Sample I</li> <li>TAL BUF</li> <li>Sample I</li> <li>Sample I</li> </ul> | Matrix: Wat                                                                                        |
| Date Collected:<br>Date Received:<br>Total/NA<br>Client Sample<br>Date Collected:<br>Date Received:<br>Prep Type<br>Total/NA<br>Client Sample<br>Date Collected:<br>Date Received:<br>Prep Type<br>Total/NA<br>Client Sample<br>Date Collected:<br>Date Collected:<br>Date Collected:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12/06/21 14:3<br>12/06/21 16:3<br>Batch<br>Type<br>Analysis<br>e ID: MW-10<br>12/06/21 12:5<br>12/06/21 16:3<br>Batch<br>Type<br>Analysis<br>e ID: FD-120<br>12/06/21 00:0<br>12/06/21 16:3<br>Batch<br>Type<br>Analysis<br>e ID: TB<br>12/06/21 00:0<br>12/06/21 16:3 | 0<br>7<br>Batch<br>Method<br>8260C<br>0<br>8<br>2<br>7<br>Batch<br>Method<br>8260C<br>0<br>6<br>2<br>7<br>Batch<br>Method<br>8260C<br>0<br>7<br>Batch<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>0<br>7<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Run        | Factor       1       Dilution       Factor       1       Dilution       Factor       1               | Number<br>607776<br>Batch<br>Number<br>607776<br>Batch<br>Number<br>607776 | or Analyzed<br>12/07/21 18:31<br>Prepared<br>or Analyzed<br>12/07/21 18:54<br>Prepared<br>or Analyzed<br>12/07/21 19:17 | Analyst<br>WJD<br>Lat<br>Malyst<br>WJD<br>Lat<br>Analyst<br>WJD | <ul> <li>Lab</li> <li>TAL BUF</li> <li>Sample I</li> <li>TAL BUF</li> <li>Sample I</li> <li>Sample I</li> </ul> | Matrix: Wate<br>D: 480-193106-<br>Matrix: Wate<br>D: 480-193106-<br>Matrix: Wate<br>D: 480-193106- |
| Date Collected:<br>Date Received:<br>Total/NA<br>Client Sample<br>Date Collected:<br>Date Received:<br>Total/NA<br>Client Sample<br>Total/NA<br>Client Sample<br>Date Collected:<br>Date Received:<br>Date Received:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12/06/21 14:3<br>12/06/21 16:3<br>Batch<br>Type<br>Analysis<br>e ID: MW-10<br>12/06/21 12:5<br>12/06/21 16:3<br>Batch<br>Type<br>Analysis<br>e ID: FD-120<br>12/06/21 00:0<br>12/06/21 16:3<br>Batch<br>Type<br>Analysis<br>e ID: TB<br>12/06/21 00:0                  | 0<br>7<br>Batch<br>Method<br>8260C<br>0S<br>2<br>7<br>Batch<br>Method<br>8260C<br>0621<br>0<br>7<br>Batch<br>Method<br>8260C<br>0621<br>0<br>7<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                         | Run        | Factor         1         Dilution         Factor         1         Dilution         Factor         1 | Number<br>607776<br>Batch<br>Number<br>607776<br>Batch<br>Number           | or Analyzed<br>12/07/21 18:31<br>Prepared<br>or Analyzed<br>12/07/21 18:54<br>Prepared<br>or Analyzed                   | Analyst<br>WJD<br>Lat<br>Malyst<br>WJD<br>Lat<br>Analyst<br>WJD | <ul> <li>Lab</li> <li>TAL BUF</li> <li>Sample I</li> <li>TAL BUF</li> <li>Sample I</li> <li>Sample I</li> </ul> |                                                                                                    |

#### Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Job ID: 480-193106-1

#### Laboratory: Eurofins TestAmerica, Buffalo The accreditations/certifications listed below are applicable to this report.

AuthorityProgramIdentification NumberExpiration DateNew YorkNELAP1002604-01-22

Eurofins TestAmerica, Buffalo

12/9/2021

| Method | Method Description                  | Protocol | Laboratory |
|--------|-------------------------------------|----------|------------|
| 8260C  | Volatile Organic Compounds by GC/MS | SW846    | TAL BUF    |
| 5030C  | Purge and Trap                      | SW846    | TAL BUF    |

#### Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

#### Client: AECOM Project/Site: Griffin Diebold Project

| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       |
|---------------|------------------|--------|----------------|----------------|
| 480-193106-1  | MW-06S           | Water  | 12/06/21 11:25 | 12/06/21 16:37 |
| 480-193106-2  | MW-06D           | Water  | 12/06/21 10:24 | 12/06/21 16:37 |
| 480-193106-3  | MW-07S           | Water  | 12/06/21 13:57 | 12/06/21 16:37 |
| 480-193106-4  | MW-07D           | Water  | 12/06/21 14:30 | 12/06/21 16:37 |
| 480-193106-5  | MW-10S           | Water  | 12/06/21 12:52 | 12/06/21 16:37 |
| 480-193106-6  | FD-120621        | Water  | 12/06/21 00:00 | 12/06/21 16:37 |
| 480-193106-7  | ТВ               | Water  | 12/06/21 00:00 | 12/06/21 16:37 |

| 10 Hazelwood Drive<br>Amherst, NY 14228-2298<br>Phone: 716-691-2600 Fax: 716-691-7991 | Cha                    | in of Cu        | Chain of Custody Record                         | ecord                                                                               |                             | Contropins Environment Testing America                  |
|---------------------------------------------------------------------------------------|------------------------|-----------------|-------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------|
| Client Information                                                                    | Sampler.               | M. Concert      |                                                 | Lab PM:<br>Schore John D                                                            | Carrier Tracking No(s):     | COC No:                                                 |
| Client Contact:<br>George Kistuk                                                      | 220                    | 1,0 1           |                                                 | e, Jonn K                                                                           | State of Origin:            | 480-168278-36817.1<br>Page:                             |
| Company:                                                                              |                        | PWSID:          | John                                            | John.Schove@Eurofinset.com                                                          |                             | Page 1 of 1                                             |
| AECOM<br>Address:                                                                     | Due Date Requested:    | _               |                                                 | Analysis Requested                                                                  | equested                    | # GOT                                                   |
| One John James Audubon Parkway Suite 210                                              | -                      |                 |                                                 |                                                                                     |                             |                                                         |
| Amherst                                                                               | TAT Requested (days):  |                 |                                                 | 1000                                                                                |                             |                                                         |
| State, Zip.<br>NY, 14228                                                              | oject: ∆               | Yes A No        | T                                               |                                                                                     |                             | C - Zn Acetate O - AsNaO2<br>D - Nitric Acid P - Na2O4S |
| Phone:                                                                                |                        |                 |                                                 |                                                                                     |                             |                                                         |
| Email:                                                                                | WO #:                  |                 | T                                               |                                                                                     |                             |                                                         |
| george.kisluk@aecom.com<br>Proiect Name                                               | george.kisluk@aecon    | n.com           |                                                 |                                                                                     |                             | I - Ice<br>J - DI Water                                 |
| Griffin Diebold Project                                                               | Project #:<br>48020462 |                 |                                                 | ALCONTRACT OF                                                                       |                             | K - EDTA<br>L - EDA                                     |
| QIE:                                                                                  | SSOW#:                 |                 |                                                 | x) as                                                                               |                             | Other:                                                  |
| Sample Identification                                                                 | San<br>San             | Sample (C=comp, | Matrix<br>(w=water,<br>S=soild,<br>O=waste/oil, | eld Filtered 5                                                                      |                             | o redmuki lat                                           |
|                                                                                       | 1                      | 1               | BT=Tissue, A=Air)                               | 4                                                                                   |                             | Special Instructions/Note:                              |
| NW- 065                                                                               | 11 (14)                | 2 52            |                                                 |                                                                                     |                             |                                                         |
| (JC) - 10 W                                                                           | 12/2                   | ╘               |                                                 | ~                                                                                   |                             | 31                                                      |
| 000 mm                                                                                |                        |                 | Water                                           | 2                                                                                   |                             |                                                         |
| NW- 015                                                                               | R.                     | 22              | Water                                           |                                                                                     |                             |                                                         |
| MUL-UTU                                                                               | 14                     | 00              | Water                                           |                                                                                     |                             |                                                         |
| 201 - MM                                                                              | 12.51                  | 2               | Water                                           |                                                                                     |                             |                                                         |
| FU-120621                                                                             |                        |                 | Water                                           |                                                                                     |                             | 1                                                       |
| 713                                                                                   |                        | 1               | Water                                           | 2                                                                                   |                             | rc.                                                     |
|                                                                                       |                        |                 | Water                                           |                                                                                     |                             |                                                         |
|                                                                                       |                        |                 | Water                                           |                                                                                     |                             |                                                         |
|                                                                                       |                        |                 |                                                 |                                                                                     |                             | oco 103106 Chain of Custody                             |
| Possible Hazard Identification                                                        |                        |                 |                                                 | Sample Disnocal / A fac mart t                                                      | -004                        |                                                         |
| Non-Hazard Flammable Skin Imtant                                                      | Poison B Unknown       | Radiological    | cal                                             | Compression A returned by the assessed if samples are retained longer than 1 month) | assessed if samples are ret | ained longer than 1 month)                              |
| Deliverable Requested: I, II, IV, Other (specify)                                     |                        |                 |                                                 | Special Instructions/QC Requirements:                                               | osal by Lab                 | Archive For Months                                      |
| Empty Kit Relinquished by:                                                            | Date:                  |                 | F                                               | Time:                                                                               | Method of Shipment:         |                                                         |
| Relinquished by:                                                                      | Date/Time              | 16.00           | Company                                         |                                                                                     | Date/Time:                  | Сотрани                                                 |
| Relinquished by:                                                                      | ٩.                     | 12.0            | Company                                         | Received by:                                                                        | 12/4/2                      | 1 16:57 MB0C                                            |
| Relinquished by:                                                                      | Date/Time              |                 |                                                 | Astrad                                                                              | Date/ Lime:                 | Company                                                 |
| ala latada.                                                                           | 2                      |                 | Company                                         | Received by:                                                                        | Date/Time:                  | Company                                                 |
| Custody seals intact: Custody seal No.:<br>Δ Yes Δ No                                 |                        | 1               |                                                 | Cooler Temperature(s) & and Other Remarks:                                          | Remarks:                    |                                                         |
|                                                                                       |                        |                 |                                                 | Druport No                                                                          |                             | Ver: 06/08/2021                                         |
|                                                                                       |                        |                 |                                                 |                                                                                     |                             |                                                         |

Euronns lestAmerica, Buffalo 10 Hazelwood Drive

#### Client: AECOM

#### Login Number: 193106 List Number: 1

Creator: Yeager, Brian A

| Question                                                                         | Answer | Comment |
|----------------------------------------------------------------------------------|--------|---------|
| Radioactivity either was not measured or, if measured, is at or below background | True   |         |
| The cooler's custody seal, if present, is intact.                                | True   |         |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |         |
| Samples were received on ice.                                                    | True   |         |
| Cooler Temperature is acceptable.                                                | True   |         |
| Cooler Temperature is recorded.                                                  | True   |         |
| COC is present.                                                                  | True   |         |
| COC is filled out in ink and legible.                                            | True   |         |
| COC is filled out with all pertinent information.                                | True   |         |
| Is the Field Sampler's name present on COC?                                      | True   |         |
| There are no discrepancies between the sample IDs on the containers and the COC. | True   |         |
| Samples are received within Holding Time (Excluding tests with immediate HTs)    | True   |         |
| Sample containers have legible labels.                                           | True   |         |
| Containers are not broken or leaking.                                            | True   |         |
| Sample collection date/times are provided.                                       | True   |         |
| Appropriate sample containers are used.                                          | True   |         |
| Sample bottles are completely filled.                                            | True   |         |
| Sample Preservation Verified                                                     | True   |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |         |
| VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.     | True   |         |
| If necessary, staff have been informed of any short hold time or quick TAT needs | True   |         |
| Multiphasic samples are not present.                                             | True   |         |
| Samples do not require splitting or compositing.                                 | True   |         |
| Sampling Company provided.                                                       | True   | AECOM   |
| Samples received within 48 hours of sampling.                                    | True   |         |
| Samples requiring field filtration have been filtered in the field.              | True   |         |
| Chlorine Residual checked.                                                       | N/A    |         |

List Source: Eurofins TestAmerica, Buffalo

### ATTACHMENT E

2023 Biennial Groundwater Sampling Letter Report



August 27, 2024

Mr. Joshua Ramsey, P.E. New York State Department of Environmental Conservation Division of Environmental Remediation, Region 8 6274 East Avon-Lima Road Avon, New York 14414-9519

#### RE: 2023 Biennial Groundwater Sampling Letter Report Former Griffin Technology Facility (Site No. 835008) Farmington, New York

Dear Mr. Ramsey:

On behalf of Diebold Nixdorf, Inc. (Diebold), AECOM USA, Inc. [(AECOM) – formerly URS Corporation (URS)] has prepared this Biennial Groundwater Sampling Letter Report to summarize field activities as part of the groundwater sampling effort performed in November 2023, in the vicinity of the former Griffin Technology Facility (Site) located in Farmington, New York (Figure 1).

#### **Background**

#### On-Site

The former Griffin Technology facility (Site) is approximately 3.74 acres located at 6132 Victor-Manchester Road in the Town of Farmington, Ontario County (see Figure 1). Griffin Technology manufactured laminated plastic identification cards at the Site from 1975 until the mid-1990s. The manufacturing process generated a small amount of trichloroethene (TCE) waste. From 1975 until 1986, these wastes were disposed of in small batches directly onto the ground surface immediately to the west of the building. The facility has been vacant since the 1990s. Subsequent investigations indicated that were no significant levels of contamination on-site, however, TCE-impacted groundwater was present on the western side of the on-site building, with some contaminant migration off-site to the southwest.

S & W Redevelopment of North America, LLC (SWRNA) acquired the property in 2007, and implemented an insitu chemical oxidation (ISCO) groundwater remediation strategy that included the injection of potassium permanganate into the groundwater at and near the source of the contamination to break down and extinguish chlorinated solvent contamination. The initial ISCO treatment occurred in 2008 and was completed in approximately six months. Since the initial ISCO application, there have been several additional ISCO injection and emulsified vegetable oil (EVO) applications in the source area to further reduce groundwater contamination, with the latest injection rounds occurring in the spring and fall of 2016. Overall, SWRNA's groundwater remediation was successful in remediating the groundwater at and in the vicinity of the source and in 2009, SWRNA received a Certificate of Completion under New York State's Brownfield Cleanup Program for the Site. The New York State Department of Environmental Conservation (NYSDEC) is still evaluating the effectiveness of the on-site remedy. In the meantime, groundwater is being monitored on a periodic basis. In 2012, SWRNA sold the property to ARFCOM Holdings, LLC, who later sold it to Case Realty 6132, LLC/ Case Realty Holdings, LLC in 2018. Case Realty 6132, LLC owned the eastern 2.4 acres of the site (Tax ID# 29.00-1-12.000). In January 2024, Case Realty 6132, LLC sold its parcel to Bristol Valley Homes LLC (current owner).

Case Realty Holdings, LLC owned the western abutting 6.6 acre parcel (Tax ID# 29.00-1-76.100), which includes the western portion of the site (1.34 acres). On June 24, 2022, Case Realty Holdings, LLC sold its parcel to Auto Outlets USA Properties Inc. (current owner). Details are in the parcel reports included in Attachment 1.



50 Lakefront Blvd., Suite 111 Buffalo, New York 14202 Tel: 716.856.5636 Fax: 716.856.2545



## Off-Site

In 1995, Griffin Technology was purchased by Diebold. Under the terms of the Order on Consent (Index #B8-0315-90-01) negotiated with the NYSDEC, Diebold was obligated to perform off-site groundwater monitoring, and off-site soil vapor monitoring at 6179 Victor-Manchester Road, which is immediately south/southwest of the Site and is currently owned by Farmington Center LLC. On behalf of Diebold, URS completed the off-site groundwater monitoring and off-site soil vapor monitoring fieldwork in August 2009 and submitted the final report in July 2010 (URS, 2010). In a letter dated September 29, 2010, the NYSDEC approved the report and recommendation for no further action with respect to soil vapor.

Under the terms of the Order on Consent, Diebold is required to continue biennial groundwater monitoring of five remaining off-site monitoring wells in accordance with an Operation, Maintenance and Monitoring (OM&M) Plan. The OM&M Plan was approved in June 2011 and has been implemented since by AECOM on behalf of Diebold.

In the 2014 Supplemental Groundwater Sampling Letter Report (URS, 2015), URS recommended the decommissioning off-site monitoring wells MW-09S, MW-09D, MW-10S, MW-10D, and MW-11D based on analyses of the data from the 2013 and 2014 sampling events. Subsequent communications between the NYSDEC and Diebold/URS resulted in the agreement to repair MW-10S; decommission MW-09S, MW-09D, MW-10D and MW-11D; and collect supplemental groundwater samples from MW-06S and MW-07S for volatile organic compound (VOC) analyses. These activities were performed in June 2016, and discussions of their execution and data evaluation were presented in the 2016 Periodic Review Report (PRR) (URS, 2017a). The following changes to the OM&M Plan were recommended in the 2016 PRR:

- Conduct groundwater sampling of the remaining off-site wells (i.e., MW-06S, MW-06D, MW-07S, MW-07D and MW-10S) on a biennial basis, beginning in summer 2017.
- Generate biennial PRRs using the data from the aforementioned groundwater sampling.

The summer 2017 sampling event occurred on September 13, 2017, and discussions of its execution and data evaluation were presented in the 2017 Biennial Groundwater Sampling Letter Report (URS, 2017b). In the report, URS concluded that the TCE concentration trends show an overall decrease since 1994. URS recommended an additional round of sampling in summer 2019 to confirm this trend.

The summer 2019 sampling event occurred on June 27, 2019, and discussions of its execution and data evaluation were presented in the 2019 Biennial Groundwater Sampling Letter Report (URS, 2019). In the report, URS concluded that the TCE concentration trends show an overall decrease since 1994. URS recommended suspending groundwater sampling at monitoring well MW-10S but continue to collect depth to water data at this location during monitoring events, and that the PRR will be prepared in accordance with NYSDEC's Division of Environmental Remediation (DER-10) Technical Guidance for Site Investigation and Remediation (NYSDEC, 2010), which will summarize sampling data collected to date. An additional round of sampling was recommended in 2021 to confirm the aforementioned TCE trends. Although it had been previously recommended to collect only water levels at MW-10S for this 2021 round, NYSDEC did not approve that change and groundwater monitoring was performed at MW-10S.

The 2023 field work, which represents the fourth biennial monitoring event, was performed on November 29, 2023, and included collecting water levels and groundwater samples from the five remaining off-site monitoring wells in accordance with the OM&M Plan.

The data generated from the November 2023 field work are discussed below.



Mr. Joshua Ramsey August 27, 2024 Continued – page 3

#### **Groundwater Levels and Flow Direction**

The water level measurements obtained from the November 29, 2023 monitoring event are provided in Table 1. Figure 2 shows the corresponding shallow groundwater potentiometric surface based on the measurements from the three shallow wells. The data show that groundwater flow in the overburden is to the south-southwest towards Beaver Creek. This is consistent with the groundwater flow direction observed during prior sampling events.

In November 2023, horizontal gradients in the overburden were approximately 0.016 foot/foot. The vertical gradient is downward in monitoring well pair MW-07S/D and there was a very slight upward vertical gradient in monitoring well pair MW-06S/D.

## Sampling, Analysis and Data Usability

On November 29, 2023, AECOM collected groundwater samples from the monitoring wells (MW-06S, MW-06D, MW-07S, MW-07D, and MW-10S) plus quality assurance/quality control (QA/QC) duplicate sample and matrix spike/duplicate sample. All monitoring wells were found to be appropriately sealed and in good condition without any need for maintenance. Prior to sample collection, water was purged from each well with a bladder pump for MW-07D and a peristaltic pump for the remaining monitoring wells. Dedicated/disposable high-density polyethylene tubing was used at each well. During the well purging, water quality parameters (pH, temperature, specific conductivity, dissolved oxygen, turbidity, and oxidation reduction potential) were measured utilizing a flow-through cell. The wells were purged at a rate of 1-liter per minute or less and the purge rate was adjusted to prevent the water level in the well from dropping more than 0.3 feet from the static water level. Each well was purged until the water quality parameters stabilized for a minimum of three readings. Low Flow Purge Logs can be found in Attachment 2.

Groundwater samples were transported under chain-of-custody control to ALS Environmental, located in Rochester, New York, for the analysis of volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method 8260C. AECOM validated the analytical results and prepared a Data Usability Summary Report (DUSR). Data qualifiers were added to methyl acetate and acetone, and all data are usable as reported. The complete validated analytical results are presented in the DUSR in Attachment 3.

## Analytical Summary/ Contamination Assessment

The validated groundwater analytical results are summarized in Table 2 and shown in Figure 2. VOCs are compared to NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) No. 1.1.1 Class GA groundwater criteria. Exceedances of the groundwater criteria are indicated with an oval. The following is a summary of the analytical results:

- TCE was detected at concentrations exceeding its Class GA groundwater standard (5 micrograms per liter [μg/L]) in the samples collected from MW-06S (27 μg/L), MW-06D (27 μg/L), MW-07S (24 μg/L), MW-07D (9.9 μg/L) and MW-10S (5.2 μg/L).
- Cis-1,2-dichloroethene (DCE) was detected at concentrations exceeding its Class GA groundwater standard (5 μg/L) in the samples collected from MW-06S (9.6 μg/L), MW-06D (6.9 μg/L) and MW-07D (12 μg/L).
- Vinyl Chloride (VC) was detected at concentrations exceeding its Class GA groundwater standard (2 μg/L) in the samples collected from MW-06D (3.0 μg/L) and MW-07D (5.2 μg/L).
- No other compounds were detected at concentrations exceeding their Class GA groundwater criteria.

TCE is the primary contaminant in the off-site monitoring wells. Figure 3 displays a graphic trend analysis of TCE concentrations in these wells during the period of 1994 to 2024. Figure 4 depicts the VOCs detected



Mr. Joshua Ramsey August 27, 2024 Continued – page 4

above New York State Class GA groundwater standards over the last several sampling rounds. The trends show an overall decrease in TCE concentrations since 1994, with the following exceptions:

- The November 2023 TCE concentration in MW-06S is higher than previous results in 2021.
- The November 2023 TCE concentration in MW-07D is slightly higher than previous results in 2021.
- All other November 2023 results are lower than the previous event.

A Mann-Kendall trend analysis was performed on the historical VOC concentrations for the period of 1994 to 2024. The trend analysis is presented in Table 3 and shows the following:

- In MW-06S, there is a downward trend for 1,1,1-trichloroethane (1,1,1-TCA) and upward trends for 1,1-dichloroethane (1,1-DCA), cis-1,2-DCE and VC.
- In MW-06D, there are downward trends for 1,1,1-TCA and TCE, and upward trends for 1,1-DCA, cis-1,2-DCE, and VC.
- In MW-07D, there are downward trends for 1,1,1-TCA and TCE, and an upward trend for cis-1,2-DCE.
- In MW-07S, there are downward trends for 1,1,1-TCA, cis-1,2-DCE, and TCE.
- In MW-10S, no trends were present.

#### **Conclusions**

The south-southwest direction of groundwater flow at the Site has remained consistent since 2009.

The only VOCs detected at concentrations exceeding their standards were TCE, cis-1,2-DCE and VC. The Mann-Kendall analysis shows an upward trend in concentrations of cis-1,2-DCE which is likely due to reductive dechlorination of TCE, although the magnitude of increase is relatively small. The TCE concentration trends show an overall decrease since 1994.

## **Recommendations**

Because groundwater analytical results from samples collected from monitoring wells in the off-site downgradient area do not meet New York State Class GA standards, and no significant improvements in dissolved phase groundwater contamination at the source area has been reported, no changes to the current monitoring requirements are recommended at this time. AECOM recommends an additional round of sampling in Summer 2026 at all current off-site monitoring wells (MW-06S, MW-06D, MW-07S, MW-07D, and MW-10S) to confirm the observed trends and that the PRR be prepared in accordance with DER-10 (NYSDEC, 2010).

## **References**

NYSDEC, 2010. DER-10 / Technical Guidance for Site Investigation and Remediation. May 3.

- URS, 2010. Soil Vapor Intrusion Study/ Groundwater Sampling Letter Report, Former Griffin Technology Facility, Farmington, New York. July
- URS, 2015. Supplemental Groundwater Sampling Letter Report, Former Griffin Technology Facility, Farmington, New York. January
- URS, 2017a. Periodic Review Report 2016, Former Griffin Technology Facility, Farmington, New York. March



- URS, 2017b. 2017 Biennial Groundwater Sampling Letter Report, Former Griffin Technology Facility (Site No. 835008), Farmington, New York. November
- URS, 2019. 2019 Biennial Groundwater Sampling Letter Report, Former Griffin Technology Facility (Site No. 835008), Farmington, New York. September
- AECOM, 2022. 2021 Biennial Groundwater Sampling Letter Report, Former Griffin Technology Facility (Site No. 835008), Farmington, New York. April

The following tables, figures and attachments are included as part of this field investigation letter report:

**Tables** 

| Table 1 | Groundwater Elevations – November 29, 2023                         |
|---------|--------------------------------------------------------------------|
| Table 2 | Groundwater Analytical Results (Detected Compounds Only)           |
| Table 3 | Groundwater Sampling Analytical Result Trends (Detected VOCs Only) |

#### **Figures**

| Figure 1<br>Figure 2 | Site Location<br>2023 Groundwater Sample Results Exceeding Criteria and Shallow Groundwater<br>Potentiometric Surface |
|----------------------|-----------------------------------------------------------------------------------------------------------------------|
| Figure 3             | Trichloroethene Trends (Existing Wells)                                                                               |
| Figure 4             | Historical Groundwater Sampling Results Exceeding Criteria                                                            |
| <u>Attachments</u>   |                                                                                                                       |

| Attachment 1 | Parcel Reports                                               |
|--------------|--------------------------------------------------------------|
| Attachment 2 | Purge Logs                                                   |
| Attachment 3 | Data Usability Summary Report and Complete Analytical Report |

Please contact me at 716-856-5636 if you have any questions or comments.

Sincerely,

AECOM USA, Inc. Michael Gutmann, PG Sr. Project Manager

cc: File: 13816402 Daniel G. Fousek, Diebold, Inc. Jeff Reinmann, Diebold, Inc. Ms. Wendlene M. Lavey, Esq., McMahon DeGulis LLP Kevin J. McGovern, PG, CHMM, STS (AECOM) TABLES

# TABLE 1 GROUNDWATER ELEVATIONS NOVEMBER 29, 2023 FORMER GRIFFIN TECHNOLOGY FACILITY - OFF-SITE AREA FARMINGTON, NEW YORK

| Well ID | Top of Casing<br>Elevation (ft. amsl) | Depth to Groundwater<br>(ft. from Top of Casing) | Groundwater<br>Elevation (ft. amsl) |
|---------|---------------------------------------|--------------------------------------------------|-------------------------------------|
| MW-06S  | 636.61                                | 11.89                                            | 624.72                              |
| MW-06D  | 636.83                                | 12.10                                            | 624.73                              |
| MW-07S  | 634.29                                | 10.65                                            | 623.64                              |
| MW-07D  | 634.16                                | 34.75                                            | 599.41                              |
| MW-10S  | 629.00                                | 15.00                                            | 614.00                              |

ft. = feet

amsl = above mean sea level

## TABLE 2 GROUNDWATER ANALYTICAL RESULTS (DETECTED COMPOUNDS ONLY) NOVEMBER 2023 SAMPLING EVENT FORMER GRIFFIN TECHNOLOGY FACILITY SITE

| Location ID<br>Sample ID   |       |           | MW-06D                | MW-06D      | MW-06S      | MW-07D      | MW-07S      |
|----------------------------|-------|-----------|-----------------------|-------------|-------------|-------------|-------------|
|                            |       |           | FD-112923             | MW-06D      | MW-06S      | MW-07D      | MW-07S      |
| Matrix                     |       |           | Groundwater           | Groundwater | Groundwater | Groundwater | Groundwater |
| Depth Interval             | (ft)  |           | -                     | -           | -           | -           | -           |
| Date Sample                | d     |           | 11/29/23              | 11/29/23    | 11/29/23    | 11/29/23    | 11/29/23    |
| Parameter                  | Units | Criteria* | Field Duplicate (1-1) |             |             |             |             |
| Volatile Organic Compounds |       |           |                       |             |             |             |             |
| 1,1,1-Trichloroethane      | UG/L  | 5         | 0.60 1                | 0.58 J      | 0.42 J      |             | 0.34 J      |
| 1,1-Dichloroethane         | UG/L  | 5         | 0.83 J                | 0.87 J      | 0.93 J      | 0.23 J      |             |
| 1,2-Dichloroethene (cis)   | UG/L  | 5         | 6.7                   | 6.9         | 9.6         |             | 2.4 J       |
| Chloromethane              | UG/L  | 5         |                       |             |             | 4.3 J       |             |
| Trichloroethene            | UG/L  | 5         |                       |             |             | 9.9         |             |
| Vinyl chloride             | UG/L  | 2         | 2.8 J                 | 3.0 J       | 1.8 J       | 5.2         | 0.89 J      |

\*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

J - The reported concentration is an estimated value. Blank Cell or ND - Not Detected.

Only Detected Results Reported.

## TABLE 2

## GROUNDWATER ANALYTICAL RESULTS (DETECTED COMPOUNDS ONLY) NOVEMBER 2023 SAMPLING EVENT FORMER GRIFFIN TECHNOLOGY FACILITY SITE

| Location ID                | MW-10S |           |             |
|----------------------------|--------|-----------|-------------|
| Sample ID                  | MW-10S |           |             |
| Matrix                     |        |           | Groundwater |
| Depth Interval (f          | t)     |           | -           |
| Date Sampled               |        |           | 11/29/23    |
| Parameter                  | Units  | Criteria* |             |
| Volatile Organic Compounds |        |           |             |
| 1,1,1-Trichloroethane      | UG/L   | 5         |             |
| 1,1-Dichloroethane         | UG/L   | 5         |             |
| 1,2-Dichloroethene (cis)   | UG/L   | 5         | 0.51 J      |
| Chloromethane              | UG/L   | 5         |             |
| Trichloroethene            | UG/L   | 5         | 5.2         |
| Vinyl chloride             | UG/L   | 2         |             |

\*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

J - The reported concentration is an estimated value. Blank Cell or ND - Not Detected.

Only Detected Results Reported.

## TABLE 3 GROUNDWATER SAMPLING ANALYTICAL RESULT TRENDS (DETECTED VOCS ONLY) FORMER GRIFFIN TECHNOLOGY FACILITY SITE

## LOCID: MW-06D

| Parameter                | Matrix | Class | Num of Data<br>Points | Num of Data<br>Point<br>Detections | Mann-Kendall<br>Statistic S | Probabilities (1) | Trend (2)      |
|--------------------------|--------|-------|-----------------------|------------------------------------|-----------------------------|-------------------|----------------|
| 1,1,1-Trichloroethane    | WG     | VOA   | 21                    | 17                                 | -130                        | No Value          | Downward Trend |
| 1,1-Dichloroethane       | WG     | VOA   | 6                     | 3                                  | 9                           | 0.068             | Upward Trend   |
| 1,2-Dichloroethene (cis) | WG     | VOA   | 21                    | 11                                 | 79                          | 0.009             | Upward Trend   |
| Acetone                  | WG     | VOA   | 21                    | 2                                  | 14                          | 0.349             | No Trend       |
| Trichloroethene          | WG     | VOA   | 21                    | 20                                 | -133                        | No Value          | Downward Trend |
| Vinyl chloride           | WG     | VOA   | 21                    | 4                                  | 69                          | 0.021             | Upward Trend   |

## LOCID: MW-06S

| Parameter                | Matrix | Class | Num of Data<br>Points | Num of Data<br>Point<br>Detections | Mann-Kendall<br>Statistic S | Probabilities (1) | Trend (2)      |
|--------------------------|--------|-------|-----------------------|------------------------------------|-----------------------------|-------------------|----------------|
| 1,1,1-Trichloroethane    | WG     | VOA   | 22                    | 13                                 | -62                         | 0.045             | Downward Trend |
| 1,1-Dichloroethane       | WG     | VOA   | 7                     | 3                                  | 12                          | 0.068             | Upward Trend   |
| 1,2-Dichloroethene (cis) | WG     | VOA   | 22                    | 10                                 | 84                          | 0.01              | Upward Trend   |
| Trichloroethene          | WG     | VOA   | 22                    | 18                                 | -19                         | 0.308             | No Trend       |
| Vinyl chloride           | WG     | VOA   | 22                    | 4                                  | 71                          | 0.024             | Upward Trend   |

## LOCID: MW-07D

| Parameter                | Matrix | Class | Num of Data<br>Points | Num of Data<br>Point<br>Detections | Mann-Kendall<br>Statistic S | Probabilities (1) | Trend (2)      |
|--------------------------|--------|-------|-----------------------|------------------------------------|-----------------------------|-------------------|----------------|
| 1,1,1-Trichloroethane    | WG     | VOA   | 21                    | 6                                  | -77                         | 0.011             | Downward Trend |
| 1,1-Dichloroethene       | WG     | VOA   | 6                     | 1                                  | -1                          | 0.5               | No Trend       |
| 1,2-Dichloroethene (cis) | WG     | VOA   | 21                    | 21                                 | 51                          | 0.07              | Upward Trend   |
| Acetone                  | WG     | VOA   | 21                    | 1                                  | 14                          | 0.349             | No Trend       |
| Chloromethane            | WG     | VOA   | 6                     | 1                                  | 5                           | 0.235             | No Trend       |
| Trichloroethene          | WG     | VOA   | 21                    | 21                                 | -156                        | No Value          | Downward Trend |
| Vinyl chloride           | WG     | VOA   | 21                    | 8                                  | 42                          | 0.109             | No Trend       |

## LOCID: MW-07S

| Parameter                | Matrix | Class | Num of Data<br>Points | Num of Data<br>Point<br>Detections | Mann-Kendall<br>Statistic S | Probabilities (1) | Trend (2)      |
|--------------------------|--------|-------|-----------------------|------------------------------------|-----------------------------|-------------------|----------------|
| 1,1,1-Trichloroethane    | WG     | VOA   | 22                    | 15                                 | -135                        | No Value          | Downward Trend |
| 1,2-Dichloroethene (cis) | WG     | VOA   | 22                    | 19                                 | -70                         | 0.027             | Downward Trend |
| Acetone                  | WG     | VOA   | 22                    | 2                                  | 33                          | 0.186             | No Trend       |
| Trichloroethene          | WG     | VOA   | 22                    | 21                                 | -159                        | No Value          | Downward Trend |

For multiple observations per time period, the Mann-Kendall test to the median was used.

Data reported as less than the detection limit were used by assigning a common value to the data that was smaller than the smallest measurement in the data set. (1) - Probabilities for Mann-Kendall Nonparameteric Test for Trend (Gilbert R.O. 1987, Table A18).

(2) - Assuming a probability of error of 10% in the analyis method and or data, then the probability of no trend as calculated by the Mann-Kendall statistic is less than 10%, then it is assumed that there is a trend.

\* - Number of obsevations too small to calculate probablities.

\*\* - Probability Undefined for S=0 and N=6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31, 34, or 35.

Advanced Selection: Griffin Hist MK4 L:\DCS\Projects\Small\_Chemistry\_Jobs\DB\Program\Stat.MDE 12/20/2023

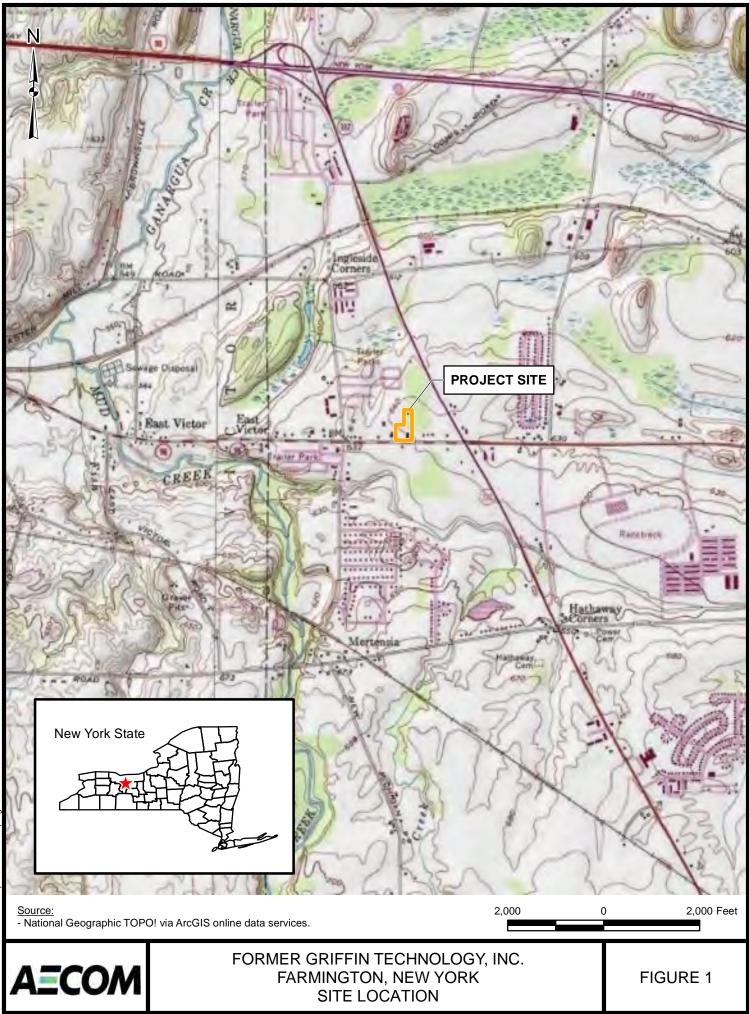
## TABLE 3 **GROUNDWATER SAMPLING ANALYTICAL RESULT TRENDS (DETECTED VOCS ONLY)** FORMER GRIFFIN TECHNOLOGY FACILITY SITE

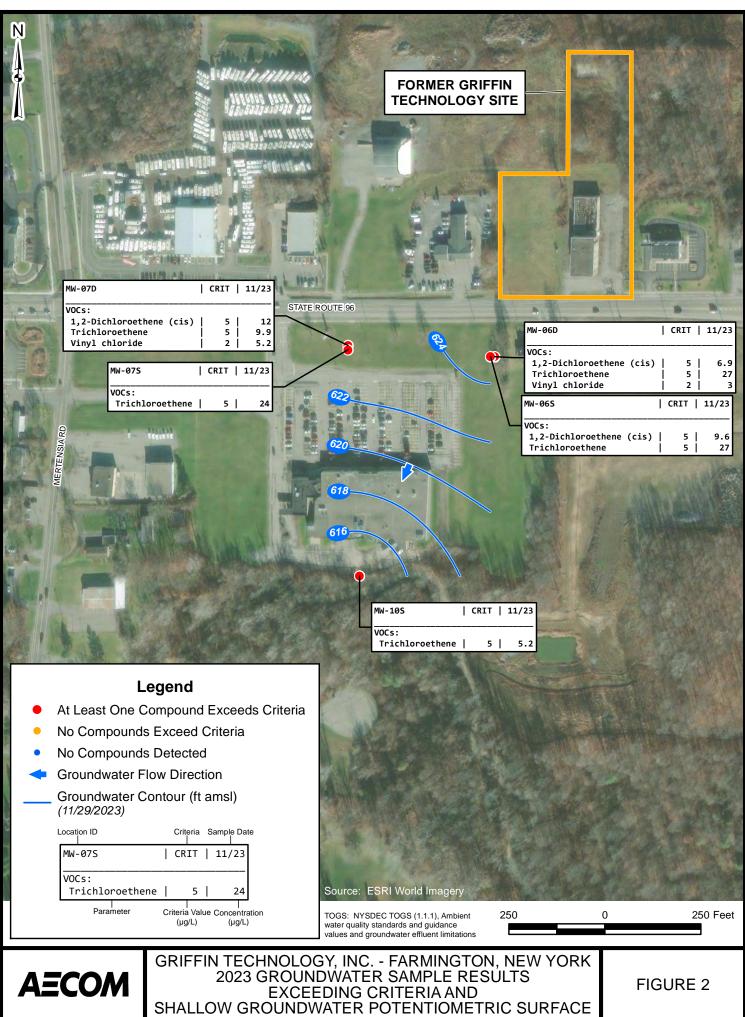
## LOCID: MW-07S

| Parameter      | Matrix | Class | Num of Data<br>Points | Num of Data<br>Point<br>Detections | Mann-Kendall<br>Statistic S | Probabilities (1) | Trend (2) |
|----------------|--------|-------|-----------------------|------------------------------------|-----------------------------|-------------------|-----------|
| Vinyl chloride | WG     | VOA   | 22                    | 1                                  | 21                          | 0.289             | No Trend  |

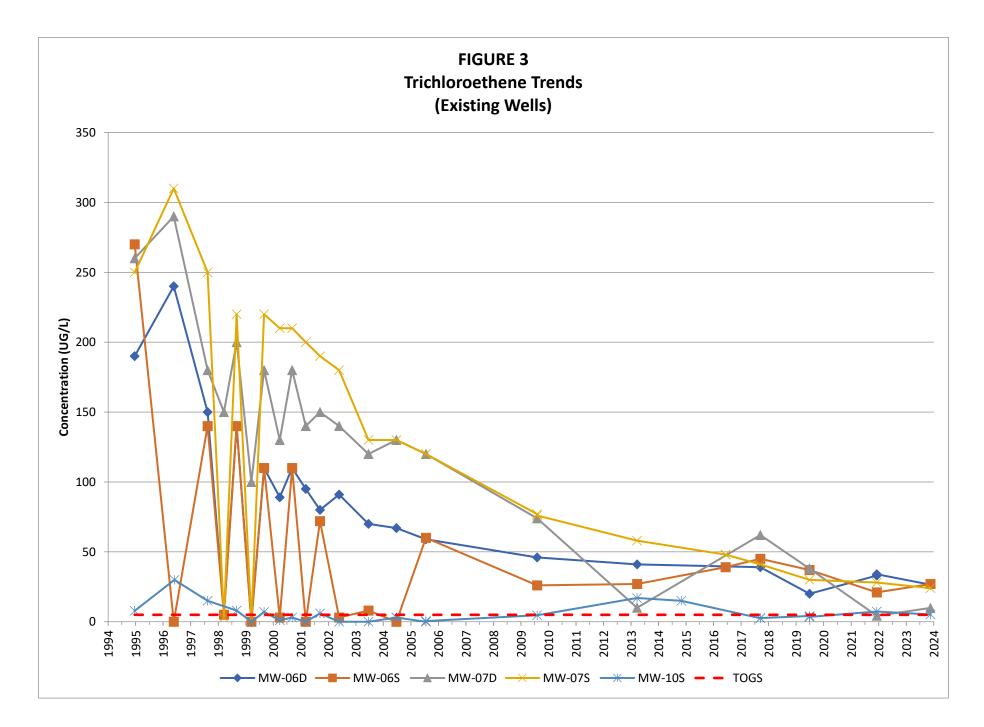
## LOCID: MW-10S

| Parameter                   | Matrix | Class | Num of Data<br>Points | Num of Data<br>Point<br>Detections | Mann-Kendall<br>Statistic S | Probabilities (1) | Trend (2) |
|-----------------------------|--------|-------|-----------------------|------------------------------------|-----------------------------|-------------------|-----------|
| 1,1,1-Trichloroethane       | WG     | VOA   | 21                    | 1                                  | -18                         | 0.306             | No Trend  |
| 1,2-Dibromo-3-chloropropane | WG     | VOA   | 7                     | 1                                  | 0                           | Undefined **      |           |
| 1,2-Dichloroethene (cis)    | WG     | VOA   | 21                    | 2                                  | 32                          | 0.177             | No Trend  |
| Trichloroethene             | WG     | VOA   | 21                    | 16                                 | -19                         | 0.306             | No Trend  |


For multiple observations per time period, the Mann-Kendall test to the median was used.


Data reported as less than the detection limit were used by assigning a common value to the data that was smaller than the smallest measurement in the data set. (1) - Probabilities for Mann-Kendall Nonparameteric Test for Trend (Gilbert R.O. 1987, Table A18).

(2) - Assuming a probability of error of 10% in the analyis method and or data, then the probability of no trend as calculated by the Mann-Kendall statistic is less than 10%, then it is assumed that there is a trend.


\* - Number of obsevations too small to calculate probabilities. \*\* - Probability Undefined for S=0 and N=6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31, 34, or 35.

**FIGURES** 





L:\DCS\Projects\13807296.00000\DB\GIS\GW AN



| MM- e6D   TO6S  <br>VOCs :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MW-07D         TOGS         06/16         09/17         06/19         12/21           VUCS:         1,2-Dichloroethene         (cis)         5         NS         22         2           VOCs:         1,2-Dichloroethene         5         NS         22         22         ND           Trichloroethene         5         NS         22         22         ND         D           VOCs:         1,2-Dichloroethene         5         NS         62         38         BC           Vinyl chloride         2         NS         ND         BC         ND | NS 39 20 34 27<br>NS BC 12 7 6.9<br>NS ND 7.3 2.2 3<br>11/23<br>5.2<br>STATE ROUTE 96                                                                                                                                                                                                                            |
| MW-075         TOGS         06/16         09/17         06/19         12/21           VOCs:         Trichloroethene         5         48         41         30         28           Or         MW-065         TOGS         TOGS         VOCs:         Trichloroethene         5         1,2-Dichloroethene         5         1,2-Dichloroethene         5         Vinyl chloride         2                                                                                                                                                                | 11/23<br>24<br>06/16   09/17   06/19   12/21   11/23<br>39   45   37   21   27<br>BC   6.2   9.1   11   9.6<br>ND   BC   3.3   2.2   BC                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MW-105         TOGS         06/16         09/17         06/19         12/21         11/23           VOCs:         1,2-Dibromo-3-chloropropane         0.04         NS         0.71         ND         ND         ND           Trichloroethene         5         NS         BC         BC         7.3         5.2 |
| Legend<br>• At Least One Compound Exceeds Criteria<br>• No Compounds Exceed Criteria<br>• No Compounds Detected<br>Location ID Criteria Sample Date<br>MW-075   CRIT   11/23<br>VOCs:<br>Trichloroethene   5   24<br>Parameter Criteria Value Concentration<br>(µg/L) (µg/L)                                                                                                                                                                                                                                                                              | Source: ESRI World Imagery         BC - Below Criteria         ND - Not Detected         NS - Not Sampled         TOGS: NYSDEC TOGS (1.1.1), Ambient:         water quality standards and guidance         values and groundwater effluent limitations                                                           |
| <b>AECOM</b><br>GRIFFIN TECHNOLOG<br>HISTORICAL<br>RESULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GY, INC FARMINGTON, NEW YORK<br>GROUNDWATER SAMPLE<br>EXCEEDING CRITERIA                                                                                                                                                                                                                                         |

**ATTACHMENT 1** 

PARCEL REPORTS



0

0

0

0

Please see Parcel Detail Report for complete information

## Assessed Values

| 5100 |
|------|
| 0000 |
| 0000 |
| (    |

## **Recent Residential Sales**

#### Valid Sales Only within the past three years

Date:

Price:



Click here to look up your polling station

Sale Type:

Notes: Deed Book: 1532

745 TITUS AVE

ANNEX BLDG ROCHESTER

Heat:

Fuel:

Water:

Sewer:

Comm/public

Comm/public

**BRISTOL VALLEY HOMES LLC** 

Page: 763 Date Filed: 1/23/2024

NY

% NYS DEC Wetland:

% Flood Zone (A, AE):

% NWI Wetland:

% Steep Slope:

**Owner Information** 

Comments:



THIS MAP AND INFORMATION IS PROVIDED "AS IS" AND ONTARIO COUNTY MAKES NO WARRANTIES OR GUARANTEES, EXPRESSED OR IMPLIED, INCLUDING WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY AND THAT OF FITNESS FOR A PARTICULAR PURPOSE CONCERNING THIS MAP AND THE INFORMATION CONTAINED HEREIN. USER ASSUMES ALL RISKS AND RESPONSIBILITY FOR DETERMINING WHETHER THIS INFORMATION IS SUFFICIENT FOR PURPOSES INTENDED.

14617

|                                                                                                                                                                  | Previ | ous Owners | ;          |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|------------|-----|
| OWNER NAME(S):         CASE REALTY 6 <sup>-1</sup> DEED DATE:         1/5/2018           CLERK NUMBER:         201801050079           COMMENTS:         Comments |       | 1399       | DEED PAGE: | 62  |
| OWNER NAME(S): ARFCOM HOLD<br>DEED DATE: 4/23/2012<br>CLERK NUMBER: 201204230210<br>COMMENTS:                                                                    |       | 1276       | DEED PAGE: | 880 |
| OWNER NAME(S): SW VICTOR-MA<br>DEED DATE: 09/19/2007<br>CLERK NUMBER: 200709190136<br>COMMENTS:                                                                  |       | 1192       | DEED PAGE: | 134 |
| OWNER NAME(S): GRIFFIN TECHN<br>DEED DATE: 7/1/1973<br>CLERK NUMBER:<br>COMMENTS:                                                                                |       | 730        | DEED PAGE: | 290 |



| Tax Information            |       |             |             |             |  |  |  |  |
|----------------------------|-------|-------------|-------------|-------------|--|--|--|--|
| SPECIAL DISTRICT TAX RATES |       |             |             |             |  |  |  |  |
| Special District           | Code  | SD Tax Rate | UN Tax Rate | FE Tax Rate |  |  |  |  |
| Drainage District #1       | DD281 | 0.178967    | 0           | 0           |  |  |  |  |
| Farm Fire Protection       | FD281 | 0.491323    | 0           | 0           |  |  |  |  |
| Cdga-Farm Water            | WD281 | 0.835629    | 0           | 0           |  |  |  |  |

|                               | EXEMPTIONS |      |         |        |
|-------------------------------|------------|------|---------|--------|
| <b>Exemptions Description</b> | County     | Town | Village | School |

## **ESTIMATED TAXES WORKSHEET**

The workspace below can be used to estimate the TRUE taxes for this property. Users are strongly urged to contact the Ontario County Treasure's Office (585-396-4432) to verify exact total taxes. If the property is in one of the cities, please contact either the City of Canandaigua (585-396-5015) or the City of Geneva (315-789-2114) depending on the location.

| ΤΑΧ ΤΥΡΕ      | TAX RATE |   | TOTAL ASSESSE | D VALUE | TOTAL TAXES | TAX YEAR  |
|---------------|----------|---|---------------|---------|-------------|-----------|
| SCHOOL:       | 14.29625 | X | \$80000.00    | /1000 = | \$1143.70   | 2023-2024 |
| COUNTY:       | 5.980461 | Х | \$80000.00    | /1000 = | \$478.44    | 2023-2024 |
| TOWN OR CITY: | 0.700171 | Х | \$80000.00    | /1000 = | \$56.01     | 2023-2024 |
| VILLAGE:      | 0        | Х | \$80000.00    | /1000 = | \$0.00      | 2023-2024 |

Municipal and School Taxes Subtotal: \$1678.15

- + Special District Taxes Subtotal:
  - **TOTAL ESTIMATED TAXES:**

|                      | SURVEYS                                              |
|----------------------|------------------------------------------------------|
| Survey ID            | Survey Link (copy and paste in browser)              |
| 31046A<br>04/03/2009 | https://oncorng.co.ontario.ny.us/surveys/31046A.tiff |
| 31046B               | https://oncorng.co.ontario.ny.us/surveys/31046B.tiff |
| 04/03/2009           | FILED 3/26/2009, LABELLA ASSOCIATES                  |

# TAX BILLS

|              | Copy and paste link in a browser                                                 |
|--------------|----------------------------------------------------------------------------------|
| School:      | https://oncorng.co.ontario.ny.us/TaxbillSchool/29.00-1-12.000_School.pdf         |
| County/Town: | https://oncorng.co.ontario.ny.us/TaxbillCountyTown/29.00-1-12.000_CountyTown.pdf |
| City:        |                                                                                  |
| Village:     |                                                                                  |



| ADDITIONAL INVENTORY   |       |       |       |       |            |         |  |
|------------------------|-------|-------|-------|-------|------------|---------|--|
| IMPROVEMENTS           |       |       |       |       |            |         |  |
| Structure Description: | Year: | SqFt: | Dim1: | Dim2: | Condition: | Grade:  |  |
| Barn-pole              | 1980  | 2400  | 40    | 60    | Normal     | Average |  |
| Pavng-asphlt           | 1980  | 9200  | 0     | 0     | Normal     | Average |  |

| LAND DESCRIPTION |             |              |        |        |           |  |
|------------------|-------------|--------------|--------|--------|-----------|--|
| Land Type:       | Waterfront: | Soil Rating: | Acres: | Depth: | Frontage: |  |
| Primary          |             |              | 2      | 0      | 0         |  |



# INDIVIDUAL BUILDING DETAILS

## **RESIDENTIAL BUILDINGS**

Building details are followed by area dimensions provided in square feet

Overall Condition: Construction Grade:

Number of Stories:

**Exterior Wall Material:** 

**Exterior Condition:** 

**Basement Type:** 

**Heating Type:** 

**Fuel Type:** 

Building Style: Actual Year Built: Effective Year Built: Year Remodeled: Number of Bedrooms: Number of Full Baths: Number of Half Baths: Number of Kitchens: Number of Fireplaces:

**Total Living Area:** 

**Additional Story:** 

First Story: Second Story: Half Story: Unfinished: 3/4 Story:

Unfinished:

Central Air (1 = Yes) Finished Basement Area: Finished Attic Area: Finished Rec Room Area: Finished Over Garage:



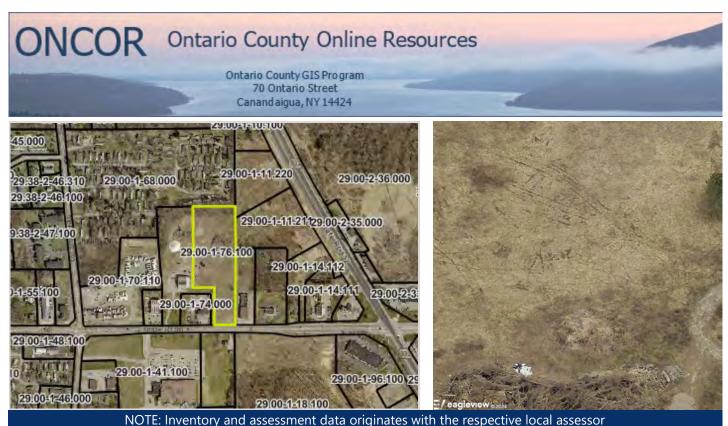
|                            | COMMERC      | CIAL BUILDINGS            |         |
|----------------------------|--------------|---------------------------|---------|
| Building Number:           | 1            | <b>Overall Condition:</b> | Normal  |
| Building Section:          | 1            | Quality:                  | Average |
| Year Built:                | 1980         | Number of Stories:        | 2       |
| Number of Indent Building  | <b>js:</b> 1 | Story Height:             | 14      |
| Percent Air-conditioned:   | 100          | Basement Type:            |         |
| Percent Alarmed:           | 100          | Number of Elevators:      | 0       |
| Percent Sprinkler:         | 0            | Boekh Model Number:       |         |
| Gross Floor Area:          | 12000        | Boekh Model Code:         | 819     |
| Perimeter:                 | 640          | Wall A:                   | 100     |
| Basement Square Footage:   | 0            | Wall B:                   | 0       |
| <b>Basement Perimeter:</b> | 0            | Wall C:                   | 0       |

| Building Number:            | 1    | <b>Overall Condition:</b> | Normal  |
|-----------------------------|------|---------------------------|---------|
| Building Section:           | 2    | Quality:                  | Average |
| Year Built:                 | 1980 | Number of Stories:        | 1       |
| Number of Indent Buildings: | 1    | Story Height:             | 14      |
| Percent Air-conditioned:    | 100  | Basement Type:            |         |
| Percent Alarmed:            | 100  | Number of Elevators:      | 0       |
| Percent Sprinkler:          | 0    | Boekh Model Number:       | :       |
| Gross Floor Area:           | 6000 | Boekh Model Code:         | 811     |
| Perimeter:                  | 320  | Wall A:                   | 100     |
| Basement Square Footage:    | 0    | Wall B:                   | 0       |
| <b>Basement Perimeter:</b>  | 0    | Wall C:                   | 0       |
|                             |      |                           |         |



# PROPERTY ANALYSIS

| Туре:                 | Description:                           | Acres: | % Coverage: |
|-----------------------|----------------------------------------|--------|-------------|
| Ecological Community  | Community Description TBD              | 2.41   | 100.000%    |
| NRCS Soils            | Kendaia loam, 0 to 3 percent slopes    | 0.25   | 10.5%       |
| NRCS Soils            | Farmington loam, 0 to 3 percent slopes | 0.76   | 31.3%       |
| NRCS Soils            | Ovid silt loam, 0 to 3 percent slopes  | 1.40   | 58.2%       |
| Utilities - Electric  | ROCHESTER GAS & ELECTRIC               | 2.41   | 100.0%      |
| Utilities - Gas       | ROCHESTER GAS & ELECTRIC               | 2.41   | 100.0%      |
| Utilities - Telephone | Frontier Telephone of Rochester        | 2.41   | 100.0%      |
| Utilities - Telephone | Finger Lakes Technology Group          | 2.41   | 100.0%      |
| Watershed             | S. Bk-W/S Divide to Hathaway Brook     | 2.41   | 100.0%      |
| Wetlands - NWI        | Freshwater Forested/Shrub Wetland      | 0.00   | 0.0%        |




# LOCAL ZONING

Note: OnCOR users are strongly urged to contact the municipal planning/zoning office to confirm accuracy of the zoning information listed below.

| Туре:                           | Description:               | % Coverage: |
|---------------------------------|----------------------------|-------------|
| Town of Farmington MTOD Overlay | Major Thoroughfare Overlay | 100.0%      |
| Town of Farmington Zoning       | GB - General Business      | 100.0%      |





| PROPERTY | <b>SUMMARY</b> | REPORT |
|----------|----------------|--------|
|----------|----------------|--------|

| Physical Address: St Rt 96                      |                         |  |  |
|-------------------------------------------------|-------------------------|--|--|
| Community: To                                   | wn of Farmington        |  |  |
| <b>Easting:</b> 612190 <b>Northing:</b> 1085260 |                         |  |  |
| <b>Acres:</b> 6.60 <b>Neighborhood:</b> 28580   |                         |  |  |
| Roll Section: 1 2024 Ut                         | ilities: Gas & elec     |  |  |
| Property Class: 330 Vacant comm                 |                         |  |  |
| School District: Vie                            | ctor Central            |  |  |
| Frontage: .00 De                                | epth: .00 Obstructions: |  |  |
| Heat: %                                         | NYS DEC Wetland: 0      |  |  |
| Fuel: %                                         | <b>NWI Wetland:</b> 0   |  |  |
| Water: Comm/public %                            | Steep Slope: 0          |  |  |
| Sewer: Comm/public %                            | 6 Flood Zone (A, AE): 0 |  |  |

## **Owner Information**

AUTO OUTLETS USA PROPERTIES INC;80%INT; 6162 STATE

WEBSTER NY 14580

## Notes:

**Deed Book:** 1498 **Page:** 995

Date Filed: 6/24/2022

# BUILDING DETAILS (primary building only)Year Built:Square Feet:Year Built:Square Feet:Condition:Frisplace:Style:Central Air:Stories:Central Air:Siding:FileBasement:Half Baths:Full Baths:Half Baths:Bedrooms:Fireplaces:Please see Parcel Detail Rev Tor Complete information

## Assessed Values

| \$377900 |
|----------|
| \$355200 |
| \$355200 |
|          |

## **Recent Residential Sales**

Valid Sales Only within the past three years

Date:

Price:



Click here to look up your polling station

Sale Type:

## Comments:



| Prev                                                                                                                                                   | vious Ov | vners      |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|------|
| OWNER NAME(S): CASE REALTY HOLDINGS LLC<br>DEED DATE: 1/5/2018 DEED BOOK<br>CLERK NUMBER: 201801050081<br>COMMENTS:                                    | : 1399   | DEED PAGE: | 70   |
| OWNER NAME(S): ARFCOM HOLDINGS, LLC<br>DEED DATE: 4/23/2012 DEED BOOK<br>CLERK NUMBER: 201204230210<br>COMMENTS:                                       | : 1276   | DEED PAGE: | 880  |
| OWNER NAME(S): SW VICTOR-MANCHESTER, LLC<br>DEED DATE: 09/19/2007 DEED BOOK<br>CLERK NUMBER: 200709190136<br>COMMENTS:                                 |          | DEED PAGE: | 134  |
| OWNER NAME(S): GRIFFIN TECHNOLOGY, INC.<br>DEED DATE: 12/1/1991 DEED BOOK<br>CLERK NUMBER:<br>COMMENTS:                                                | : 913    | DEED PAGE: | 858  |
| OWNER NAME(S): SOLD 0.40A TO CARTER, ALBER<br>DEED DATE: 12/01/1991 DEED BOOK<br>CLERK NUMBER:<br>COMMENTS:                                            |          | DEED PAGE: | 865  |
| OWNER NAME(S): CARTER TOOL CORP<br>DEED DATE: 01/01/1979 DEED BOOK<br>CLERK NUMBER:<br>COMMENTS:                                                       | : 786    | DEED PAGE: | 323  |
| OWNER NAME(S): CARTER, ALBERT T<br>DEED DATE: 03/01/1978 DEED BOOK<br>CLERK NUMBER:<br>COMMENTS:                                                       | : 776    | DEED PAGE: | 1145 |
| OWNER NAME(S): SCAMPOLE, JAMES V<br>DEED DATE: 11/01/1977 DEED BOOK<br>CLERK NUMBER:<br>COMMENTS:                                                      | : 772    | DEED PAGE: | 442  |
| OWNER NAME(S): SCAMPOLE, JAMES V & BALZA<br>DEED DATE: 06/01/1971 DEED BOOK<br>THIS MAP AND INFORMATION IS PROVIDED 'AS IS" AND ONTARIO COUNTY MAKES I | : 711    | DEED PAGE: | 160  |

THIS MAP AND INFORMATION IS PROVIDED "AS IS" AND ONTARIO COUNTY MAKES NO WARRANTIES OR GUARANTEES, EXPRESSED OR IMPLIED, INCLUDING WARRANTIES OF TITLE, NON-INFRINCEMENT, MERCHANTABILITY AND THAT OF FITNESS FOR A PARTICULAR PURPOSE CONCERNING THIS MAP AND THE INFORMATION CONTAINED HEREIN. USER ASSUMES ALL RISKS AND RESPONSIBILITY FOR DETERMINING WHETHER THIS INFORMATION IS SUFFICIENT FOR PURPOSES INTENDED.



THIS MAP AND INFORMATION IS PROVIDED "AS IS" AND ONTARIO COUNTY MAKES NO WARRANTIES OR GUARANTEES, EXPRESSED OR IMPLIED, INCLUDING WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY AND THAT OF FITNESS FOR A PARTICULAR PURPOSE CONCERNING THIS MAP AND THE INFORMATION CONTAINED HEREIN. USER ASSUMES ALL RISKS AND RESPONSIBILITY FOR DETERMINING WHETHER THIS INFORMATION IS SUFFICIENT FOR PURPOSES INTENDED.

| Tax Information            |       |             |             |             |  |  |  |  |  |
|----------------------------|-------|-------------|-------------|-------------|--|--|--|--|--|
| SPECIAL DISTRICT TAX RATES |       |             |             |             |  |  |  |  |  |
| Special District           | Code  | SD Tax Rate | UN Tax Rate | FE Tax Rate |  |  |  |  |  |
| Drainage District #1       | DD281 | 0.178967    | 0           | 0           |  |  |  |  |  |
| Farm Fire Protection       | FD281 | 0.491323    | 0           | 0           |  |  |  |  |  |
| Cdga-Farm Water            | WD281 | 0.835629    | 0           | 0           |  |  |  |  |  |

|                               | EXEMPTIONS |      |         |        |
|-------------------------------|------------|------|---------|--------|
| <b>Exemptions Description</b> | County     | Town | Village | School |

## **ESTIMATED TAXES WORKSHEET**

The workspace below can be used to estimate the TRUE taxes for this property. Users are strongly urged to contact the Ontario County Treasure's Office (585-396-4432) to verify exact total taxes. If the property is in one of the cities, please contact either the City of Canandaigua (585-396-5015) or the City of Geneva (315-789-2114) depending on the location.

| ΤΑΧ ΤΥΡΕ      | TAX RATE |   | TOTAL ASSESSE | D VALUE | TOTAL TAXES | TAX YEAR  |
|---------------|----------|---|---------------|---------|-------------|-----------|
| SCHOOL:       | 14.29625 | х | \$355200.00   | /1000 = | \$5078.03   | 2023-2024 |
| COUNTY:       | 5.980461 | Х | \$355200.00   | /1000 = | \$2124.26   | 2023-2024 |
| TOWN OR CITY: | 0.700171 | Х | \$355200.00   | /1000 = | \$248.70    | 2023-2024 |
| VILLAGE:      | 0        | Х | \$355200.00   | /1000 = | \$0.00      | 2023-2024 |
|               |          |   |               |         |             |           |

Municipal and School Taxes Subtotal:

+ Special District Taxes Subtotal:

**TOTAL ESTIMATED TAXES:** 

| Survey Link (copy and paste in browser)       |
|-----------------------------------------------|
|                                               |
| //oncorng.co.ontario.ny.us/surveys/19442.tiff |
| 12/11/1991, DJ PARRONE AND ASSOCIATES         |
| -                                             |

# TAX BILLS

|              | Copy and paste link in a browser                                                 |
|--------------|----------------------------------------------------------------------------------|
| School:      | https://oncorng.co.ontario.ny.us/TaxbillSchool/29.00-1-76.100_School.pdf         |
| County/Town: | https://oncorng.co.ontario.ny.us/TaxbillCountyTown/29.00-1-76.100_CountyTown.pdf |
| City:        |                                                                                  |
| Village:     |                                                                                  |



\$7450.99

| ADDITIONAL INVENTORY                                                                                             |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| IMPROVEMENTS                                                                                                     |  |  |  |  |  |  |  |  |
| Structure Description:         Year:         SqFt:         Dim1:         Dim2:         Condition:         Grade: |  |  |  |  |  |  |  |  |

| LAND DESCRIPTION |             |              |        |        |           |  |
|------------------|-------------|--------------|--------|--------|-----------|--|
| Land Type:       | Waterfront: | Soil Rating: | Acres: | Depth: | Frontage: |  |
| Primary          |             |              | 2      | 0      | 0         |  |
| Residual         |             |              | 4      | 0      | 0         |  |



# INDIVIDUAL BUILDING DETAILS

## **RESIDENTIAL BUILDINGS**

Building details are followed by area dimensions provided in square feet

Overall Condition: Construction Grade:

Number of Stories:

**Exterior Wall Material:** 

**Exterior Condition:** 

**Basement Type:** 

**Heating Type:** 

**Fuel Type:** 

Building Style: Actual Year Built: Effective Year Built: Year Remodeled: Number of Bedrooms: Number of Full Baths: Number of Half Baths: Number of Kitchens: Number of Fireplaces:

**Total Living Area:** 

**Additional Story:** 

First Story: Second Story: Half Story: Unfinished: 3/4 Story:

Unfinished:

Central Air (1 = Yes) Finished Basement Area: Finished Attic Area: Finished Rec Room Area: Finished Over Garage:



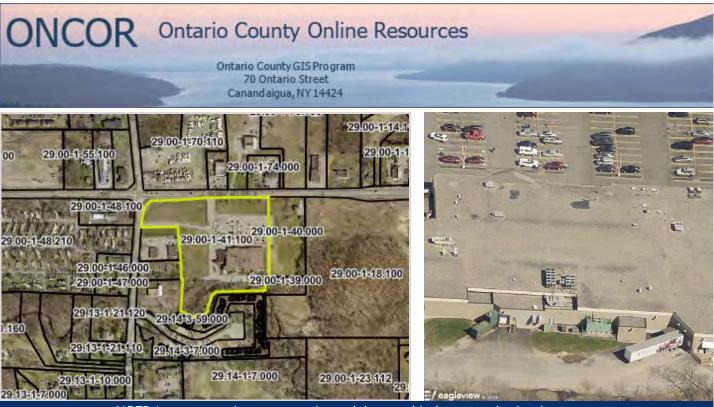
# COMMERCIAL BUILDINGS

| Building Number:            | Overall Condition:   |
|-----------------------------|----------------------|
| Building Section:           | Quality:             |
| Year Built:                 | Number of Stories:   |
| Number of Indent Buildings: | Story Height:        |
| Percent Air-conditioned:    | Basement Type:       |
| Percent Alarmed:            | Number of Elevators: |
| Percent Sprinkler:          | Boekh Model Number:  |
| Gross Floor Area:           | Boekh Model Code:    |
| Perimeter:                  | Wall A:              |
| Basement Square Footage:    | Wall B:              |
| Basement Perimeter:         | Wall C:              |
|                             |                      |



# PROPERTY ANALYSIS

| Туре:                 | Description:                                 | Acres: | % Coverage: |
|-----------------------|----------------------------------------------|--------|-------------|
| Ecological Community  | Community Description TBD                    | 6.60   | 100.000%    |
| NRCS Soils            | Cazenovia silt loam, 3 to 8 percent slopes   | 1.43   | 21.7%       |
| NRCS Soils            | Farmington loam, 3 to 8 percent slopes       | 0.35   | 5.3%        |
| NRCS Soils            | Palmyra gravelly loam, 0 to 3 percent slopes | 0.09   | 1.3%        |
| NRCS Soils            | Kendaia loam, 0 to 3 percent slopes          | 0.36   | 5.5%        |
| NRCS Soils            | Farmington loam, 0 to 3 percent slopes       | 3.23   | 49.0%       |
| NRCS Soils            | Ovid silt loam, 0 to 3 percent slopes        | 1.14   | 17.3%       |
| Utilities - Electric  | ROCHESTER GAS & ELECTRIC                     | 6.60   | 100.0%      |
| Utilities - Gas       | ROCHESTER GAS & ELECTRIC                     | 6.60   | 100.0%      |
| Utilities - Telephone | Frontier Telephone of Rochester              | 6.60   | 100.0%      |
| Utilities - Telephone | Finger Lakes Technology Group                | 6.60   | 100.0%      |
| Watershed             | S. Bk-W/S Divide to Hathaway Brook           | 6.60   | 100.0%      |
|                       |                                              |        |             |




# LOCAL ZONING

Note: OnCOR users are strongly urged to contact the municipal planning/zoning office to confirm accuracy of the zoning information listed below.

| Туре:                           | Description:               | % Coverage: |
|---------------------------------|----------------------------|-------------|
| Town of Farmington MTOD Overlay | Major Thoroughfare Overlay | 100.0%      |
| Town of Farmington Zoning       | GB - General Business      | 100.0%      |





NOTE: Inventory and assessment data originates with the respective local assessor

## **PROPERTY SUMMARY REPORT**

| Tax Map ID:                     |           |       | 29.00-1-41.100           |  |  |  |  |
|---------------------------------|-----------|-------|--------------------------|--|--|--|--|
| Physical Address: 6179 St Rt 96 |           |       | 6179 St Rt 96            |  |  |  |  |
| Community:                      |           |       | Town of Farmington       |  |  |  |  |
| Easting: 611714                 |           |       | Northing: 1084272        |  |  |  |  |
| <b>Acres:</b> 14.20             |           |       | Neighborhood: 28580      |  |  |  |  |
| Roll Section: 1 2024            |           |       | Utilities: Gas & elec    |  |  |  |  |
| Property Class: 454             |           |       | Supermarket              |  |  |  |  |
| School [                        | District: |       | Victor Central           |  |  |  |  |
| Frontage                        | e:        | .00   | Depth: .00 Obstructions: |  |  |  |  |
| Heat:                           |           |       | % NYS DEC Wetland: 0     |  |  |  |  |
| Fuel:                           |           |       | % NWI Wetland: 0         |  |  |  |  |
| Water: Comm/public              |           | ublic | % Steep Slope: 4         |  |  |  |  |
| Sewer:                          | Comm/p    | ublic | % Flood Zone (A, AE): 9  |  |  |  |  |
|                                 |           |       |                          |  |  |  |  |

| Owner                 | Inform | ation       |           |
|-----------------------|--------|-------------|-----------|
| FARMINGTON CENTER LLC |        |             |           |
| 550 LATONA RD         |        |             |           |
| SUITE 501             |        |             |           |
| ROCHESTER             | NY     | 14626       | -         |
| Notes:                |        |             |           |
| Deed Book: 1341 Page: | 31     | Date Filed: | 6/24/2015 |

## **BUILDING DETAILS (primary building only)**

|             |               | <b>N N</b>          |        |       |
|-------------|---------------|---------------------|--------|-------|
| Year Built: | 1982          | Square Fe           | et:    | 51151 |
| Condition:  | Good          |                     |        |       |
| Style:      | 1 sty sto     | re load sup         |        |       |
| Stories:    | 1             | Central Ai          | r:     |       |
| Siding:     |               |                     |        |       |
| Basement:   |               |                     |        |       |
| Full Baths: |               | Half Baths          | :      |       |
| Bedrooms:   |               | Fireplaces          | :      |       |
| Please see  | Parcel Detail | Report for complete | inform | ation |
|             |               |                     |        |       |

## Assessed Values

| \$7665100 |
|-----------|
| \$7205200 |
| \$979800  |
|           |

## **Recent Residential Sales**

Valid Sales Only within the past three years

Date:

Price:



Click here to look up your polling station

Sale Type:

## Comments:



THIS MAP AND INFORMATION IS PROVIDED "AS IS" AND ONTARIO COUNTY MAKES NO WARRANTIES OR GUARANTEES, EXPRESSED OR IMPLIED, INCLUDING WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY AND THAT OF FITNESS FOR A PARTICULAR PURPOSE CONCERNING THIS MAP AND THE INFORMATION CONTAINED HEREIN. USER ASSUMES ALL RISKS AND RESPONSIBILITY FOR DETERMINING WHETHER THIS INFORMATION IS SUFFICIENT FOR PURPOSES INTENDED.

|                                                                                                | Previ      | ous Owners |            |      |
|------------------------------------------------------------------------------------------------|------------|------------|------------|------|
| OWNER NAME(S): WADE, JANE A<br>DEED DATE: 11/2/2009<br>CLERK NUMBER: 200911020159<br>COMMENTS: | DEED BOOK: | 1235       | DEED PAGE: | 44   |
| OWNER NAME(S): WADE, JOHN W<br>DEED DATE: 7/1/1997<br>CLERK NUMBER:<br>COMMENTS:               | DEED BOOK: | 981        | DEED PAGE: | 766  |
| OWNER NAME(S): KEYES, GARY L<br>DEED DATE: 12/01/1994<br>CLERK NUMBER:<br>COMMENTS:            | DEED BOOK: | 948        | DEED PAGE: | 441  |
| OWNER NAME(S): WADE, JOHN W<br>DEED DATE: 9/1/1992<br>CLERK NUMBER:<br>COMMENTS:               | DEED BOOK: | 921        | DEED PAGE: | 270  |
| OWNER NAME(S): ONTARIO CO INI<br>DEED DATE: 07/01/1982<br>CLERK NUMBER:<br>COMMENTS:           |            |            | DEED PAGE: | 20   |
| OWNER NAME(S): 96 MERTENSIA R<br>DEED DATE: 05/01/1982<br>CLERK NUMBER:<br>COMMENTS:           |            | 812        | DEED PAGE: | 883  |
| OWNER NAME(S): WADE'S MARKET<br>DEED DATE: 07/01/1979<br>CLERK NUMBER:<br>COMMENTS:            |            | 790        | DEED PAGE: | 886  |
| OWNER NAME(S): ALAIMO, JAMES<br>DEED DATE: 10/01/1973<br>CLERK NUMBER:<br>COMMENTS:            |            | 731        | DEED PAGE: | 1120 |



| Tax Information            |       |             |             |             |  |  |  |  |
|----------------------------|-------|-------------|-------------|-------------|--|--|--|--|
| SPECIAL DISTRICT TAX RATES |       |             |             |             |  |  |  |  |
| Special District           | Code  | SD Tax Rate | UN Tax Rate | FE Tax Rate |  |  |  |  |
| Drainage District #1       | DD281 | 0.178967    | 0           | 0           |  |  |  |  |
| Farm Fire Protection       | FD281 | 0.491323    | 0           | 0           |  |  |  |  |
| Cdga-Farm Water            | WD281 | 0.835629    | 0           | 0           |  |  |  |  |

|                               | EXEMPTIONS |      |         |        |
|-------------------------------|------------|------|---------|--------|
| <b>Exemptions Description</b> | County     | Town | Village | School |

## **ESTIMATED TAXES WORKSHEET**

The workspace below can be used to estimate the TRUE taxes for this property. Users are strongly urged to contact the Ontario County Treasure's Office (585-396-4432) to verify exact total taxes. If the property is in one of the cities, please contact either the City of Canandaigua (585-396-5015) or the City of Geneva (315-789-2114) depending on the location.

| ΤΑΧ ΤΥΡΕ      | TAX RATE |             | TOTAL ASSESSE | D VALUE | TOTAL TAXES | TAX YEAR  |
|---------------|----------|-------------|---------------|---------|-------------|-----------|
| SCHOOL:       | 14.29625 | x           | \$7205200.00  | /1000 = | \$103007.34 | 2023-2024 |
| COUNTY:       | 5.980461 | Х           | \$7205200.00  | /1000 = | \$43090.42  | 2023-2024 |
| TOWN OR CITY: | 0.700171 | Х           | \$7205200.00  | /1000 = | \$5044.87   | 2023-2024 |
| VILLAGE:      | 0        | Х           | \$7205200.00  | /1000 = | \$0.00      | 2023-2024 |
|               | Municip  | \$151142.63 |               |         |             |           |

Municipal and School Taxes Subtotal:

+ Special District Taxes Subtotal:

TOTAL ESTIMATED TAXES:

Survey Link (copy and paste in browser)

# SURVEYS

## Survey ID

https://oncorng.co.ontario.ny.us/surveys/23664.tiff

11/15/2013

23664

# TAX BILLS

 Copy and paste link in a browser

 School:
 https://oncorng.co.ontario.ny.us/TaxbillSchool/29.00-1-41.100\_School.pdf

 County/Town:
 https://oncorng.co.ontario.ny.us/TaxbillCountyTown/29.00-1-41.100\_CountyTown.pdf

 City:
 Village:



| ADDITIONAL INVENTORY   |       |        |       |       |            |         |  |  |  |
|------------------------|-------|--------|-------|-------|------------|---------|--|--|--|
| IMPROVEMENTS           |       |        |       |       |            |         |  |  |  |
| Structure Description: | Year: | SqFt:  | Dim1: | Dim2: | Condition: | Grade:  |  |  |  |
| Pavng-asphlt           | 1983  | 136000 | 0     | 0     | Normal     | Average |  |  |  |

| LAND DESCRIPTION |             |              |        |        |           |  |  |
|------------------|-------------|--------------|--------|--------|-----------|--|--|
| Land Type:       | Waterfront: | Soil Rating: | Acres: | Depth: | Frontage: |  |  |
| Primary          |             |              | 8      | 0      | 0         |  |  |
| Residual         |             |              | 6      | 0      | 0         |  |  |



### INDIVIDUAL BUILDING DETAILS

### **RESIDENTIAL BUILDINGS**

Building details are followed by area dimensions provided in square feet

Overall Condition: Construction Grade:

Number of Stories:

**Exterior Wall Material:** 

**Exterior Condition:** 

**Basement Type:** 

**Heating Type:** 

**Fuel Type:** 

Building Style: Actual Year Built: Effective Year Built: Year Remodeled: Number of Bedrooms: Number of Full Baths: Number of Half Baths: Number of Kitchens: Number of Fireplaces:

**Total Living Area:** 

**Additional Story:** 

First Story: Second Story: Half Story: Unfinished: 3/4 Story:

Unfinished:

Central Air (1 = Yes) Finished Basement Area: Finished Attic Area: Finished Rec Room Area: Finished Over Garage:



|                             | COMMERCIAL BUILDINGS |                           |         |  |  |  |  |  |  |
|-----------------------------|----------------------|---------------------------|---------|--|--|--|--|--|--|
| Building Number:            | 1                    | <b>Overall Condition:</b> | Good    |  |  |  |  |  |  |
| Building Section:           | 1                    | Quality:                  | Average |  |  |  |  |  |  |
| Year Built:                 | 1982                 | Number of Stories:        | 1       |  |  |  |  |  |  |
| Number of Indent Buildings: | 1                    | Story Height:             | 12      |  |  |  |  |  |  |
| Percent Air-conditioned:    | 100                  | Basement Type:            |         |  |  |  |  |  |  |
| Percent Alarmed:            | 100                  | Number of Elevators:      | 0       |  |  |  |  |  |  |
| Percent Sprinkler:          | 100                  | Boekh Model Number:       |         |  |  |  |  |  |  |
| Gross Floor Area:           | 51151                | Boekh Model Code:         | 312     |  |  |  |  |  |  |
| Perimeter:                  | 1183                 | Wall A:                   | 0       |  |  |  |  |  |  |
| Basement Square Footage:    | 0                    | Wall B:                   | 100     |  |  |  |  |  |  |
| <b>Basement Perimeter:</b>  | 0                    | Wall C:                   | 0       |  |  |  |  |  |  |



### PROPERTY ANALYSIS

| Description:                             | Acres:                                                                                                                                                                                                                                     | % Coverage:                                                                                                                                                                                                                                          |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Community Description TBD                | 13.40                                                                                                                                                                                                                                      | 100.000%                                                                                                                                                                                                                                             |
| Galoo loam, 3 to 8 percent slopes, rocky | 0.02                                                                                                                                                                                                                                       | 0.1%                                                                                                                                                                                                                                                 |
| Ovid silt loam, 0 to 3 percent slopes    | 13.39                                                                                                                                                                                                                                      | 99.9%                                                                                                                                                                                                                                                |
| ROCHESTER GAS & ELECTRIC                 | 13.40                                                                                                                                                                                                                                      | 100.0%                                                                                                                                                                                                                                               |
| ROCHESTER GAS & ELECTRIC                 | 13.40                                                                                                                                                                                                                                      | 100.0%                                                                                                                                                                                                                                               |
| Frontier Telephone of Rochester          | 13.40                                                                                                                                                                                                                                      | 100.0%                                                                                                                                                                                                                                               |
| Finger Lakes Technology Group            | 13.40                                                                                                                                                                                                                                      | 100.0%                                                                                                                                                                                                                                               |
| S. Bk-W/S Divide to Hathaway Brook       | 13.40                                                                                                                                                                                                                                      | 100.0%                                                                                                                                                                                                                                               |
|                                          | Community Description TBD<br>Galoo Ioam, 3 to 8 percent slopes, rocky<br>Ovid silt Ioam, 0 to 3 percent slopes<br>ROCHESTER GAS & ELECTRIC<br>ROCHESTER GAS & ELECTRIC<br>Frontier Telephone of Rochester<br>Finger Lakes Technology Group | Community Description TBD13.40Galoo Ioam, 3 to 8 percent slopes, rocky0.02Ovid silt Ioam, 0 to 3 percent slopes13.39ROCHESTER GAS & ELECTRIC13.40ROCHESTER GAS & ELECTRIC13.40Frontier Telephone of Rochester13.40Finger Lakes Technology Group13.40 |



### LOCAL ZONING

Note: OnCOR users are strongly urged to contact the municipal planning/zoning office to confirm accuracy of the zoning information listed below.

| Туре:                           | Description:                      | % Coverage: |
|---------------------------------|-----------------------------------|-------------|
| Town of Farmington MTOD Overlay | Major Thoroughfare Overlay        | 99.3%       |
| Town of Farmington Zoning       | GB - General Business             | 99.6%       |
| Town of Farmington Zoning       | RMF - Residential Multiple-Family | 0.4%        |



**ATTACHMENT 2** 

**PURGE LOGS** 

| Project:                        | Forme           | er Griffin Techn           | ology      | Site:                                   | (          | Griffin           | Well I.D.:                                | MW-0              | )6S        |
|---------------------------------|-----------------|----------------------------|------------|-----------------------------------------|------------|-------------------|-------------------------------------------|-------------------|------------|
| Date:                           | 11/29/23        | Sampling                   | Personnel: | Kevin McGover                           | n/ Ethan S | Smith             | Company: <u></u>                          | JRS Corporatio    | on (AECOM) |
| Purging/<br>Sampling<br>Device: | Geopu           | imp 2 peristaltic          | pump       | _Tubing Type:                           |            | HDPE              | Pump/Tubing<br>Inlet<br>Location:         | Screen m          | idpoint    |
| Measuring<br>Point:             | Top of Riser    | Initial Depth<br>to Water: | 11.89      | Depth to<br>Well Bottom:                | 18.90      | Well<br>Diameter: | 2"                                        | Screen<br>Length: | 10'        |
| Casing<br>Type:                 | SCH 40          | ) PVC                      |            | Volume in 1<br>Well Casing<br>(liters): | 4.33       |                   | Estimated<br>Purge<br>Volume<br>(liters): | 6                 |            |
| Sample ID:                      |                 | MW-06S                     |            | Sample<br>Time:                         |            | 1141              | QA/QC:                                    | MS/M              | SD         |
| Sample                          | e Parameters: _ | TCL VOCs                   |            |                                         |            |                   |                                           |                   |            |
|                                 | -               |                            |            |                                         |            |                   |                                           |                   |            |

### PURGE PARAMETERS

| TIME       | рН   | TEMP (⁰C) | COND.<br>(mS/cm) | DISS. O <sub>2</sub><br>(mg/l) | TURB.<br>(NTU) | ORP (mV)  | FLOW RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(btor) |
|------------|------|-----------|------------------|--------------------------------|----------------|-----------|------------------------|-----------------------------|
| 1111       | 7.03 | 9.2       | 1.652            | 4.30                           | 60.0           | -1.4      | 200                    | 12.10                       |
| 1116       | 6.99 | 10.6      | 1.681            | 1.22                           | 13.6           | -23.3     | 200                    | 12.20                       |
| 1121       | 7.00 | 10.7      | 1.675            | 0.92                           | 7.8            | -29.3     | 200                    | 12.30                       |
| 1126       | 7.01 | 11.0      | 1.664            | 0.81                           | 8.9            | -31.5     | 200                    | 12.30                       |
| 1131       | 7.01 | 11.0      | 1.662            | 0.78                           | 12.9           | -31.9     | 200                    | 12.30                       |
| 1136       | 7.02 | 10.8      | 1.654            | 0.77                           | 18.8           | -31.7     | 200                    | 12.30                       |
| 1141       | 7.02 | 10.8      | 1.648            | 0.76                           | 25.0           | -31.6     | 200                    | 12.30                       |
|            |      |           |                  |                                |                |           |                        |                             |
| Tolerance: | 0.1  |           | 3%               | 10%                            | 10%            | + or - 10 |                        |                             |

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.; 4 inch diameter well = 2470 ml/ft. ( $vol_{wl} = \pi r^2 h$ )

#### Comments:

Bolt holes on curb box stripped

| Project:                        | Former Griffi                   | n Technology     | Site:                                   | Gr          | iffin             | Well I.D.:                                | MW-0              | 6D         |
|---------------------------------|---------------------------------|------------------|-----------------------------------------|-------------|-------------------|-------------------------------------------|-------------------|------------|
| Date:                           | <u>11/29/23</u> Sa              | mpling Personnel | : <u>Kevin McGover</u>                  | n/ Ethan Sm | nith              | Company: <u></u>                          | JRS Corporatio    | on (AECOM) |
| Purging/<br>Sampling<br>Device: | Geopump 2 p                     | eristaltic pump  | _Tubing Type:                           | HC          | DPE               | Pump/Tubing<br>Inlet<br>Location: _       | Screen m          | idpoint    |
| Measuring<br>Point:             | Initial E<br>Top of Riser to Wa |                  | Depth to<br>Well Bottom:                | 37.60       | Well<br>Diameter: | 2"                                        | Screen<br>Length: | 10'        |
| Casing<br>Type:                 | SCH 40 PVC                      |                  | Volume in 1<br>Well Casing<br>(liters): | 15.73       | -                 | Estimated<br>Purge<br>Volume<br>(liters): | 6                 |            |
| Sample ID:                      | MW                              | -06D             | Sample<br>Time:                         | 10          | )52               | QA/QC:                                    | FD-112            | 2923       |
| Sample                          | e Parameters: <u>TCL VC</u>     | DCs              |                                         |             |                   |                                           |                   |            |
|                                 |                                 |                  |                                         |             |                   |                                           |                   |            |

### PURGE PARAMETERS

| TIME       | рН   | TEMP (°C) | COND.<br>(mS/cm) | DISS. O <sub>2</sub><br>(mg/l) | TURB.<br>(NTU) | ORP (mV)  | FLOW RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(btor) |
|------------|------|-----------|------------------|--------------------------------|----------------|-----------|------------------------|-----------------------------|
| 1022       | 6.80 | 9.2       | 1.171            | 2.98                           | 21.9           | -105.7    | 200                    | 12.16                       |
| 1027       | 6.80 | 9.3       | 1.344            | 1.19                           | 29.0           | -107.2    | 200                    | 13.34                       |
| 1032       | 6.93 | 9.9       | 1.341            | 0.92                           | 15.2           | -108.3    | 200                    | 13.50                       |
| 1037       | 6.96 | 9.5       | 1.644            | 0.87                           | 10.9           | -107.1    | 200                    | 13.55                       |
| 1042       | 6.97 | 9.7       | 1.348            | 0.84                           | 7.5            | -104.3    | 200                    | 13.65                       |
| 1047       | 6.99 | 9.3       | 1.354            | 0.82                           | 6.5            | -99.4     | 200                    | 13.56                       |
| 1052       | 7.00 | 10.1      | 1.356            | 0.77                           | 7.8            | -101.4    | 200                    |                             |
|            |      |           |                  |                                |                |           |                        |                             |
|            |      |           |                  |                                |                |           |                        |                             |
| Tolerance: | 0.1  |           | 3%               | 10%                            | 10%            | + or - 10 |                        |                             |

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.; 4 inch diameter well = 2470 ml/ft. ( $vol_{wl} = \pi r^2 h$ )

#### Comments:

Curb box damaged, needs replacement

| Project:                        | Former Griffin Technology                         | Site:                                   | Griffin                 | Well I.D.:                                | MW-07S                       |  |
|---------------------------------|---------------------------------------------------|-----------------------------------------|-------------------------|-------------------------------------------|------------------------------|--|
| Date:                           | 11/29/23 Sampling Personne                        | l: <u>Kevin McGover</u>                 | n/ Ethan Smith          | _ Company: <u>.</u>                       | JRS Corporation (AECOM)      |  |
| Purging/<br>Sampling<br>Device: | Geopump 2 peristaltic pump                        | Tubing Type:                            | HDPE                    | Pump/Tubing<br>Inlet<br>Location:         | Screen midpoint              |  |
| Measuring<br>Point:             | Initial Depth <u>Top of Riser</u> to Water: 10.65 | Depth to<br>Well Bottom:                | Well<br>25.72 Diameter: | 2"                                        | Screen<br>Length: <u>10'</u> |  |
| Casing<br>Type:                 | SCH 40 PVC                                        | Volume in 1<br>Well Casing<br>(liters): | 9.30                    | Estimated<br>Purge<br>Volume<br>(liters): | 6                            |  |
| Sample ID:                      | MW-07S<br>e Parameters: TCL VOCs                  | Sample<br>Time:                         | 1350                    | _ QA/QC: _                                | None                         |  |
| Sample                          |                                                   |                                         |                         |                                           |                              |  |

### PURGE PARAMETERS

| TIME       | рН   | TEMP ( <sup>0</sup> C) | COND.<br>(mS/cm) | DISS. O <sub>2</sub><br>(mg/l) | TURB.<br>(NTU) | ORP (mV)  | FLOW RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(btor) |
|------------|------|------------------------|------------------|--------------------------------|----------------|-----------|------------------------|-----------------------------|
| 1320       | 7.13 | 9.7                    | 1.362            | 2.59                           | 477.2          | 14.6      | 200                    | 11.31                       |
| 1325       | 7.04 | 10.5                   | 1.338            | 1.19                           | 118.1          | 37.4      | 200                    | 11.40                       |
| 1330       | 7.01 | 10.6                   | 1.341            | 0.92                           | 50.6           | 50.4      | 200                    | 11.49                       |
| 1335       | 7.00 | 10.5                   | 1.339            | 0.86                           | 29.0           | 57.4      | 200                    | 11.49                       |
| 1340       | 7.00 | 10.7                   | 1.342            | 0.84                           | 22.2           | 60.5      | 200                    | 11.49                       |
| 1345       | 7.00 | 10.7                   | 1.341            | 0.81                           | 20.6           | 63.3      | 200                    | 11.49                       |
| 1350       | 7.00 | 10.5                   | 1.346            | 0.80                           | 19.0           | 65.1      | 200                    | 11.49                       |
|            |      |                        |                  |                                |                |           |                        |                             |
|            |      |                        |                  |                                |                |           |                        |                             |
| Tolerance: | 0.1  |                        | 3%               | 10%                            | 10%            | + or - 10 |                        |                             |

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.; 4 inch diameter well = 2470 ml/ft. ( $vol_{wl} = \pi r^2 h$ )

Comments:

| Project:                        | Form          | ner Griffin Techn          | ology      | Site:                                   |          | Griffin           | Well I.D.:                                | MW-0              | 17D        |
|---------------------------------|---------------|----------------------------|------------|-----------------------------------------|----------|-------------------|-------------------------------------------|-------------------|------------|
| Date:                           | 11/29/23      | Sampling                   | Personnel: | Kevin McGover                           | n/ Ethan | Smith             | Company:                                  | URS Corporatio    | on (AECOM) |
| Purging/<br>Sampling<br>Device: |               | Bladder Pump               |            | _Tubing Type:                           |          | HDPE              | Pump/Tubing<br>Inlet<br>Location:         | Screen m          | idpoint    |
| Measuring<br>Point:             | Top of Riser  | Initial Depth<br>to Water: | 34.75      | Depth to<br>Well Bottom:                | 44.40    | Well<br>Diameter: | 2"                                        | Screen<br>Length: | 10'        |
| Casing<br>Type:                 | SCH 4         | 0 PVC                      |            | Volume in 1<br>Well Casing<br>(liters): | 5.95     |                   | Estimated<br>Purge<br>Volume<br>(liters): | 6                 |            |
| Sample ID:                      |               | MW-07D                     |            | Sample<br>Time:                         |          | 1435              | QA/QC:                                    | Non               | e          |
| Sample                          | e Parameters: | ICL VOCs                   |            |                                         |          |                   |                                           |                   |            |

### PURGE PARAMETERS

| TIME       | рН    | TEMP ( <sup>0</sup> C) | COND.<br>(mS/cm) | DISS. O <sub>2</sub><br>(mg/l) | TURB.<br>(NTU) | ORP (mV)  | FLOW RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(btor) |
|------------|-------|------------------------|------------------|--------------------------------|----------------|-----------|------------------------|-----------------------------|
| 1400       | 7.13  | 11.3                   | 1.376            | 4.30                           | 519.2          | 32.8      | 400                    | 36.40                       |
| 1405       | 7.26  | 10.9                   | 1.378            | 7.07                           | 405.2          | 54.8      | 400                    | 37.40                       |
| 1410       | 7.35  | 11.4                   | 1.380            | 8.60                           | 154.7          | 63.8      | 400                    | 39.18                       |
| 1415       | 7.40  | 11.4                   | 1.387            | 8.52                           | 110.6          | 48.7      | 400                    | 40.10                       |
| 1420       | 7.48  | 11.4                   | 1.390            | 8.34                           | 78.0           | 25.5      | 400                    | 40.30                       |
| 1425       | 7.50  | 10.5                   | 1.399            | 8.02                           | 61.5           | 19.2      | 400                    | 41.40                       |
| 1430       | 7.38  | 9.9                    | 1.398            | 8.36                           | 73.2           | 2.7       | 400                    | 41.40                       |
| 1435       | 14.35 | 7.3                    | 1.398            | 8.38                           | 59.8           | -3.2      | 400                    | 41.40                       |
|            |       |                        |                  |                                |                |           |                        |                             |
| Tolerance: | 0.1   |                        | 3%               | 10%                            | 10%            | + or - 10 |                        |                             |

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.; 4 inch diameter well = 2470 ml/ft. ( $vol_{wl} = \pi r^2 h$ )

#### Comments:

Curb box lid loose, suggest new curb box

| Project:                        | Former Griffin Technology                  | Site:                                   | Griffin                 | Well I.D.:                                | MW-10S                       |
|---------------------------------|--------------------------------------------|-----------------------------------------|-------------------------|-------------------------------------------|------------------------------|
| Date:                           | 11/29/23 Sampling Person                   | nel: <u>Kevin McGover</u>               | n/ Ethan Smith          | Company:                                  | URS Corporation (AECOM)      |
| Purging/<br>Sampling<br>Device: | Geopump 2 peristaltic pump                 | Tubing Type:                            | HDPE                    | Pump/Tubing<br>Inlet<br>Location:         | Screen midpoint              |
| Measuring<br>Point:             | Initial Depth Top of Riser to Water: 15.00 | Depth to<br>Well Bottom:                | Well<br>22.62 Diameter: | 2"                                        | Screen<br>Length: <u>10'</u> |
| Casing<br>Type:                 | SCH 40 PVC                                 | Volume in 1<br>Well Casing<br>(liters): | 4.70                    | Estimated<br>Purge<br>Volume<br>(liters): | 6                            |
| Sample ID:                      |                                            | Sample<br>Time:                         | 1244                    | QA/QC:                                    | None                         |
| Sample                          | e Parameters: <u>TCL VOCs</u>              |                                         |                         |                                           |                              |

### PURGE PARAMETERS

| TIME       | рН   | TEMP (°C) | COND.<br>(mS/cm) | DISS. O <sub>2</sub><br>(mg/l) | TURB.<br>(NTU) | ORP (mV)  | FLOW RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(btor) |
|------------|------|-----------|------------------|--------------------------------|----------------|-----------|------------------------|-----------------------------|
| 1214       | 6.79 | 10.9      | 3.332            | 1.77                           | 1050.6         | -103.8    | 200                    | 15.20                       |
| 1219       | 6.81 | 11.4      | 3.326            | 1.02                           | 419.3          | -95.1     | 200                    | 15.20                       |
| 1224       | 6.85 | 11.8      | 3.130            | 0.87                           | 72.1           | -93.6     | 200                    | 15.20                       |
| 1229       | 6.87 | 11.8      | 3.289            | 0.82                           | 30.9           | -92.4     | 200                    | 15.20                       |
| 1234       | 6.88 | 11.7      | 3.222            | 0.76                           | 21.0           | -91.3     | 200                    | 15.20                       |
| 1239       | 6.90 | 12.0      | 3.316            | 0.74                           | 20.6           | -91.2     | 200                    | 15.20                       |
| 1244       | 6.91 | 11.8      | 3.041            | 0.74                           | 13.7           | -91.1     | 200                    | 15.20                       |
|            |      |           |                  |                                |                |           |                        |                             |
| Tolerance: | 0.1  |           | 3%               | 10%                            | 10%            | + or - 10 |                        |                             |

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.; 4 inch diameter well = 2470 ml/ft. ( $vol_{wl} = \pi r^2 h$ )

Comments:

### **ATTACHMENT 3**

DATA USABILITY SUMMARY REPORT AND COMPLETE ANALYTICAL REPORT

### **MEMORANDUM**

TO:Mike GutmannFROM:Ann Marie KropovitchDATE:December 20, 2023

### SUBJECT:Groundwater Analytical ResultsFormer Griffin Technology Facility

Five groundwater samples, one matrix spike/matrix spike duplicate pair and one field duplicate were collected from the Former Griffin Technology Facility site on December 6, 2021 and delivered to Eurofins TestAmerica located in Amherst, NY for analysis. A trip blank accompanied the samples. The samples were received by the laboratory on November 29, 2023 intact, properly preserved and under proper chain-of-custody.

The samples were analyzed for volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method 8260C. The analytical method referenced is from *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods*, Third Edition, November 1986 and its updates.

The following USEPA Region II standard operating procedure (SOP) was used to evaluate and, when required, qualify the data:

• Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry SW-846 Method 8260B & 8260C, SOP HW-24, Revision 4, October 2014.

A limited data review was performed for completeness of deliverables, and for compliance with method and validation SOP criteria, which includes quantitation limits, holding times, method blanks, trip blanks, surrogate recoveries, laboratory control sample (LCS) recoveries and any items presented in the laboratory's case narrative. Only method and validation SOP non-conformances are discussed in this report.

The analytical results are provided in Table 1. Definitions of USEPA Region II data qualifiers are presented at the end of this memorandum.

### **VOCs**

The %R of methyl acetate was below the lower QC limit in the LCS. The results for this compound in all samples has been qualified 'UJ'.

The %D of acetone in the continuing calibration standard (CCAL) was greater than the QC limit and showed a low bias. The results for acetone in all samples were qualified 'UJ'.

All data are usable as reported.

### **Field Duplicate Results**

Sample FD-112923 is a field duplicate of MW-06D. There was good agreement between the detected compounds in the sample and field duplicate as shown in Table 2. USEPA Region II validation guidelines

December 20, 2023 Analytical Data Review Former Griffin Technology Facility Page 2

do not provide any criteria for RPDs, nor are there any recommendations for the qualification of data based on field duplicate results.

cc: File: 13816402.00000

| TABLE 2                                 |
|-----------------------------------------|
| FIELD DUPLICATE COMPARISON              |
| FORMER GRIFFIN TECHNOLOGY FACILITY SITE |

| Detected Compound        | MW-06D      | FD-112923   | RPD |
|--------------------------|-------------|-------------|-----|
| Detected Compound        | $(\mu g/L)$ | $(\mu g/L)$ | (%) |
| 1,1,1-Trichloroethane    | 0.60        | 0.58        | 3.4 |
| 1,1-Dichloroethane       | 0.83        | 0.87        | 4.7 |
| 1,2-Dichloroethene (cis) | 6.7         | 6.9         | 2.9 |
| Trichloroethene          | 26          | 27          | 3.8 |
| Vinyl chloride           | 2.8         | 3.0         | 6.9 |

RPD – relative percent difference.

 $\mu g/L-micrograms \ per \ liter.$ 

December 20, 2023 Analytical Data Review Former Griffin Technology Facility Page 4

### **DEFINITION OF USEPA REGION II DATA QUALIFIERS**

The following are definitions of the qualifiers assigned to results during the data review process.

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

| Location ID                            |       | FIELDQC          | MW-06D                | MW-06D      | MW-06S      | MW-07D      |  |
|----------------------------------------|-------|------------------|-----------------------|-------------|-------------|-------------|--|
| Sample ID                              |       | TRIP BLANK       | FD-112923             | MW-06D      | MW-06S      | MW-07D      |  |
| Matrix                                 |       | Water Quality    | Groundwater           | Groundwater | Groundwater | Groundwater |  |
| Depth Interval (ft)                    |       | -                | -                     | -           | -           | -           |  |
| Date Sampled                           |       | 11/29/23         | 11/29/23              | 11/29/23    | 11/29/23    | 11/29/23    |  |
| Parameter                              | Units | Trip Blank (1-1) | Field Duplicate (1-1) |             |             |             |  |
| Volatile Organic Compounds             |       |                  |                       |             |             |             |  |
| 1,1,1-Trichloroethane                  | UG/L  | 5.0 U            | 0.60 1                | 0.58 J      | 0.42 J      | 5.0 U       |  |
| 1,1,2,2-Tetrachloroethane              | UG/L  | 5.0 U            | 5.0 U                 | 5.0 U       | 5.0 U       | 5.0 U       |  |
| 1,1,2-Trichloro-1,2,2-trifluoroethane  | UG/L  | 5.0 U            | 5.0 U                 | 5.0 U       | 5.0 U       | 5.0 U       |  |
| 1,1,2-Trichloroethane                  | UG/L  | 5.0 U            | 5.0 U                 | 5.0 U       | 5.0 U       | 5.0 U       |  |
| 1,1-Dichloroethane                     | UG/L  | 5.0 U            | 0.83 J                | 0.87 J      | 0.93 J      | 0.23 J      |  |
| 1,1-Dichloroethene                     | UG/L  | 5.0 U            | 5.0 U                 | 5.0 U       | 5.0 U       | 5.0 U       |  |
| 1,2,3-Trichlorobenzene                 | UG/L  | 5.0 U            | 5.0 U                 | 5.0 U       | 5.0 U       | 5.0 U       |  |
| 1,2,4-Trichlorobenzene                 | UG/L  | 5.0 U            | 5.0 U                 | 5.0 U       | 5.0 U       | 5.0 U       |  |
| 1,2-Dibromo-3-chloropropane            | UG/L  | 5.0 U            | 5.0 U                 | 5.0 U       | 5.0 U       | 5.0 U       |  |
| 1,2-Dibromoethane (Ethylene dibromide) | UG/L  | 5.0 U            | 5.0 U                 | 5.0 U       | 5.0 U       | 5.0 U       |  |
| 1,2-Dichlorobenzene                    | UG/L  | 5.0 U            | 5.0 U                 | 5.0 U       | 5.0 U       | 5.0 U       |  |
| 1,2-Dichloroethane                     | UG/L  | 5.0 U            | 5.0 U                 | 5.0 U       | 5.0 U       | 5.0 U       |  |
| 1,2-Dichloroethene (cis)               | UG/L  | 5.0 U            | 6.7                   | 6.9         | 9.6         | 12          |  |
| 1,2-Dichloroethene (trans)             | UG/L  | 5.0 U            | 5.0 U                 | 5.0 U       | 5.0 U       | 5.0 U       |  |
| 1,2-Dichloropropane                    | UG/L  | 5.0 U            | 5.0 U                 | 5.0 U       | 5.0 U       | 5.0 U       |  |
| 1,3-Dichlorobenzene                    | UG/L  | 5.0 U            | 5.0 U                 | 5.0 U       | 5.0 U       | 5.0 U       |  |
| 1,3-Dichloropropene (cis)              | UG/L  | 5.0 U            | 5.0 U                 | 5.0 U       | 5.0 U       | 5.0 U       |  |
| 1,3-Dichloropropene (trans)            | UG/L  | 5.0 U            | 5.0 U                 | 5.0 U       | 5.0 U       | 5.0 U       |  |
| 1,4-Dichlorobenzene                    | UG/L  | 5.0 U            | 5.0 U                 | 5.0 U       | 5.0 U       | 5.0 U       |  |
| 1,4-Dioxane                            | UG/L  | 100 U            | 100 U                 | 100 U       | 100 U       | 100 U       |  |
| 2-Hexanone                             | UG/L  | 10 U             | 10 U                  | 10 U        | 10 U        | 10 U        |  |
| 4-Methyl-2-pentanone                   | UG/L  | 10 U             | 10 U                  | 10 U        | 10 U        | 10 U        |  |
| Acetone                                | UG/L  | 10 UJ            | 10 UJ                 | 10 UJ       | 10 UJ       | 10 UJ       |  |

Flags assigned during chemistry validation are shown.

U - Not detected above the reported quantitation limit.

J - The reported concentration is an estimated value.

UG/L - Micrograms per liter.

| Location ID                      |       | FIELDQC          | MW-06D                | MW-06D      | MW-06S      | MW-07D      |  |
|----------------------------------|-------|------------------|-----------------------|-------------|-------------|-------------|--|
| Sample ID                        |       | TRIP BLANK       | FD-112923             | MW-06D      | MW-06S      | MW-07D      |  |
| Matrix                           |       | Water Quality    | Groundwater           | Groundwater | Groundwater | Groundwater |  |
| Depth Interval (ft)              |       | -                | -                     | -           | -           | -           |  |
| Date Sampled                     |       | 11/29/23         | 11/29/23              | 11/29/23    | 11/29/23    | 11/29/23    |  |
| Parameter                        | Units | Trip Blank (1-1) | Field Duplicate (1-1) |             |             |             |  |
| Volatile Organic Compounds       |       |                  |                       |             |             |             |  |
| Benzene                          | UG/L  | 5.0 U            | 5.0 U                 | 5.0 U       | 5.0 U       | 5.0 U       |  |
| Bromochloromethane               | UG/L  | 5.0 U            | 5.0 U                 | 5.0 U       | 5.0 U       | 5.0 U       |  |
| Bromodichloromethane             | UG/L  | 5.0 U            | 5.0 U                 | 5.0 U       | 5.0 U       | 5.0 U       |  |
| Bromoform                        | UG/L  | 5.0 U            | 5.0 U                 | 5.0 U       | 5.0 U       | 5.0 U       |  |
| Bromomethane                     | UG/L  | 5.0 U            | 5.0 U                 | 5.0 U       | 5.0 U       | 5.0 U       |  |
| Carbon disulfide                 | UG/L  | 10 U             | 10 U                  | 10 U        | 10 U        | 10 U        |  |
| Carbon tetrachloride             | UG/L  | 5.0 U            | 5.0 U                 | 5.0 U       | 5.0 U       | 5.0 U       |  |
| Chlorobenzene                    | UG/L  | 5.0 U            | 5.0 U                 | 5.0 U       | 5.0 U       | 5.0 U       |  |
| Chloroethane                     | UG/L  | 5.0 U            | 5.0 U                 | 5.0 U       | 5.0 U       | 5.0 U       |  |
| Chloroform                       | UG/L  | 5.0 U            | 5.0 U                 | 5.0 U       | 5.0 U       | 5.0 U       |  |
| Chloromethane                    | UG/L  | 5.0 U            | 5.0 U                 | 5.0 U       | 5.0 U       | 4.3 J       |  |
| Cyclohexane                      | UG/L  | 10 U             | 10 U                  | 10 U        | 10 U        | 10 U        |  |
| Dibromochloromethane             | UG/L  | 5.0 U            | 5.0 U                 | 5.0 U       | 5.0 U       | 5.0 U       |  |
| Dichlorodifluoromethane          | UG/L  | 5.0 U            | 5.0 U                 | 5.0 U       | 5.0 U       | 5.0 U       |  |
| Ethylbenzene                     | UG/L  | 5.0 U            | 5.0 U                 | 5.0 U       | 5.0 U       | 5.0 U       |  |
| Isopropylbenzene (Cumene)        | UG/L  | 5.0 U            | 5.0 U                 | 5.0 U       | 5.0 U       | 5.0 U       |  |
| m&p-Xylene                       | UG/L  | 5.0 U            | 5.0 U                 | 5.0 U       | 5.0 U       | 5.0 U       |  |
| Methyl acetate                   | UG/L  | 10 UJ            | 10 UJ                 | 10 UJ       | 10 UJ       | 10 UJ       |  |
| Methyl ethyl ketone (2-Butanone) | UG/L  | 10 U             | 10 U                  | 10 U        | 10 U        | 10 U        |  |
| Methyl tert-butyl ether          | UG/L  | 5.0 U            | 5.0 U                 | 5.0 U       | 5.0 U       | 5.0 U       |  |
| Methylcyclohexane                | UG/L  | 10 U             | 10 U                  | 10 U        | 10 U        | 10 U        |  |
| Methylene chloride               | UG/L  | 5.0 U            | 5.0 U                 | 5.0 U       | 5.0 U       | 5.0 U       |  |
| o-Xylene                         | UG/L  | 5.0 U            | 5.0 U                 | 5.0 U       | 5.0 U       | 5.0 U       |  |

Flags assigned during chemistry validation are shown.

U - Not detected above the reported quantitation limit.

J - The reported concentration is an estimated value.

UG/L - Micrograms per liter.

| Location ID                |       | FIELDQC          | MW-06D                | MW-06D      | MW-06S      | MW-07D      |
|----------------------------|-------|------------------|-----------------------|-------------|-------------|-------------|
| Sample ID                  |       | TRIP BLANK       | FD-112923             | MW-06D      | MW-06S      | MW-07D      |
| Matrix                     |       | Water Quality    | Groundwater           | Groundwater | Groundwater | Groundwater |
| Depth Interval (ft)        |       | -                | -                     | -           | -           | -           |
| Date Sampled               |       | 11/29/23         | 11/29/23              | 11/29/23    | 11/29/23    | 11/29/23    |
| Parameter                  | Units | Trip Blank (1-1) | Field Duplicate (1-1) |             |             |             |
| Volatile Organic Compounds |       |                  |                       |             |             |             |
| Styrene                    | UG/L  | 5.0 U            | 5.0 U                 | 5.0 U       | 5.0 U       | 5.0 U       |
| Tetrachloroethene          | UG/L  | 5.0 U            | 5.0 U                 | 5.0 U       | 5.0 U       | 5.0 U       |
| Toluene                    | UG/L  | 5.0 U            | 5.0 U                 | 5.0 U       | 5.0 U       | 5.0 U       |
| Trichloroethene            | UG/L  | 5.0 U            | 27                    | 26          | 27          | 9.9         |
| Trichlorofluoromethane     | UG/L  | 5.0 U            | 5.0 U                 | 5.0 U       | 5.0 U       | 5.0 U       |
| Vinyl chloride             | UG/L  | 5.0 U            | 2.8 J                 | 3.0 J       | 1.8 J       | 5.2         |

Flags assigned during chemistry validation are shown.

U - Not detected above the reported quantitation limit. J - The reported concentration is an estimated value. UG/L - Micrograms per liter.

| Location ID                            |       | MW-07S      | MW-10S      |  |
|----------------------------------------|-------|-------------|-------------|--|
| Sample ID                              |       | MW-07S      | MW-10S      |  |
| Matrix                                 |       | Groundwater | Groundwater |  |
| Depth Interval (ft)                    | -     | -           |             |  |
| Date Sampled                           |       | 11/29/23    | 11/29/23    |  |
| Parameter                              | Units |             |             |  |
| Volatile Organic Compounds             |       |             |             |  |
| 1,1,1-Trichloroethane                  | UG/L  | 0.34 J      | 5.0 U       |  |
| 1,1,2,2-Tetrachloroethane              | UG/L  | 5.0 U       | 5.0 U       |  |
| 1,1,2-Trichloro-1,2,2-trifluoroethane  | UG/L  | 5.0 U       | 5.0 U       |  |
| 1,1,2-Trichloroethane                  | UG/L  | 5.0 U       | 5.0 U       |  |
| 1,1-Dichloroethane                     | UG/L  | 5.0 U       | 5.0 U       |  |
| 1,1-Dichloroethene                     | UG/L  | 5.0 U       | 5.0 U       |  |
| 1,2,3-Trichlorobenzene                 | UG/L  | 5.0 U       | 5.0 U       |  |
| 1,2,4-Trichlorobenzene                 | UG/L  | 5.0 U       | 5.0 U       |  |
| 1,2-Dibromo-3-chloropropane            | UG/L  | 5.0 U       | 5.0 U       |  |
| 1,2-Dibromoethane (Ethylene dibromide) | UG/L  | 5.0 U       | 5.0 U       |  |
| 1,2-Dichlorobenzene                    | UG/L  | 5.0 U       | 5.0 U       |  |
| 1,2-Dichloroethane                     | UG/L  | 5.0 U       | 5.0 U       |  |
| 1,2-Dichloroethene (cis)               | UG/L  | 2.4 J       | 0.51 J      |  |
| 1,2-Dichloroethene (trans)             | UG/L  | 5.0 U       | 5.0 U       |  |
| 1,2-Dichloropropane                    | UG/L  | 5.0 U       | 5.0 U       |  |
| 1,3-Dichlorobenzene                    | UG/L  | 5.0 U       | 5.0 U       |  |
| 1,3-Dichloropropene (cis)              | UG/L  | 5.0 U       | 5.0 U       |  |
| 1,3-Dichloropropene (trans)            | UG/L  | 5.0 U       | 5.0 U       |  |
| 1,4-Dichlorobenzene                    | UG/L  | 5.0 U       | 5.0 U       |  |
| 1,4-Dioxane                            | UG/L  | 100 U       | 100 U       |  |
| 2-Hexanone                             | UG/L  | 10 U        | 10 U        |  |
| 4-Methyl-2-pentanone                   | UG/L  | 10 U        | 10 U        |  |
| Acetone                                | UG/L  | 10 UJ       | 10 UJ       |  |

Flags assigned during chemistry validation are shown.

U - Not detected above the reported quantitation limit.

J - The reported concentration is an estimated value.

UG/L - Micrograms per liter.

| Location ID                      |       | MW-07S      | MW-10S      |  |
|----------------------------------|-------|-------------|-------------|--|
| Sample ID                        |       | MW-07S      | MW-10S      |  |
| Matrix                           |       | Groundwater | Groundwater |  |
| Depth Interval (ft)              | -     | -           |             |  |
| Date Sampled                     |       | 11/29/23    | 11/29/23    |  |
| Parameter                        | Units |             |             |  |
| Volatile Organic Compounds       |       |             |             |  |
| Benzene                          | UG/L  | 5.0 U       | 5.0 U       |  |
| Bromochloromethane               | UG/L  | 5.0 U       | 5.0 U       |  |
| Bromodichloromethane             | UG/L  | 5.0 U       | 5.0 U       |  |
| Bromoform                        | UG/L  | 5.0 U       | 5.0 U       |  |
| Bromomethane                     | UG/L  | 5.0 U       | 5.0 U       |  |
| Carbon disulfide                 | UG/L  | 10 U        | 10 U        |  |
| Carbon tetrachloride             | UG/L  | 5.0 U       | 5.0 U       |  |
| Chlorobenzene                    | UG/L  | 5.0 U       | 5.0 U       |  |
| Chloroethane                     | UG/L  | 5.0 U       | 5.0 U       |  |
| Chloroform                       | UG/L  | 5.0 U       | 5.0 U       |  |
| Chloromethane                    | UG/L  | 5.0 U       | 5.0 U       |  |
| Cyclohexane                      | UG/L  | 10 U        | 10 U        |  |
| Dibromochloromethane             | UG/L  | 5.0 U       | 5.0 U       |  |
| Dichlorodifluoromethane          | UG/L  | 5.0 U       | 5.0 U       |  |
| Ethylbenzene                     | UG/L  | 5.0 U       | 5.0 U       |  |
| Isopropylbenzene (Cumene)        | UG/L  | 5.0 U       | 5.0 U       |  |
| m&p-Xylene                       | UG/L  | 5.0 U       | 5.0 U       |  |
| Methyl acetate                   | UG/L  | 10 UJ       | 10 UJ       |  |
| Methyl ethyl ketone (2-Butanone) | UG/L  | 10 U        | 10 U        |  |
| Methyl tert-butyl ether          | UG/L  | 5.0 U       | 5.0 U       |  |
| Methylcyclohexane                | UG/L  | 10 U        | 10 U        |  |
| Methylene chloride               | UG/L  | 5.0 U       | 5.0 U       |  |
| o-Xylene                         | UG/L  | 5.0 U       | 5.0 U       |  |

Flags assigned during chemistry validation are shown.

U - Not detected above the reported quantitation limit.

J - The reported concentration is an estimated value.

UG/L - Micrograms per liter.

| Location ID                | MW-07S | MW-10S      |             |
|----------------------------|--------|-------------|-------------|
| Sample ID                  | MW-07S | MW-10S      |             |
| Matrix                     |        | Groundwater | Groundwater |
| Depth Interval (ft)        |        | -           | -           |
| Date Sampled               |        | 11/29/23    | 11/29/23    |
| Parameter                  | Units  |             |             |
| Volatile Organic Compounds |        |             |             |
| Styrene                    | UG/L   | 5.0 U       | 5.0 U       |
| Tetrachloroethene          | UG/L   | 5.0 U       | 5.0 U       |
| Toluene                    | UG/L   | 5.0 U       | 5.0 U       |
| Trichloroethene            | UG/L   | 24          | 5.2         |
| Trichlorofluoromethane     | UG/L   | 5.0 U       | 5.0 U       |
| Vinyl chloride             | UG/L   | 0.89 J      | 5.0 U       |

Flags assigned during chemistry validation are shown.

U - Not detected above the reported quantitation limit. J - The reported concentration is an estimated value. UG/L - Micrograms per liter.

Service Request No:R2310969



Kevin McGovern AECOM 50 Lakefront Blvd Suite 111 Buffalo, NY 14202

### Laboratory Results for: Diebold

Dear Kevin,

Enclosed are the results of the sample(s) submitted to our laboratory November 29, 2023 For your reference, these analyses have been assigned our service request number **R2310969**.

All testing was performed according to our laboratory's quality assurance program and met the requirements of the TNI standards except as noted in the case narrative report. Any testing not included in the lab's accreditation is identified on a Non-Certified Analytes report. All results are intended to be considered in their entirety. ALS Environmental is not responsible for use of less than the complete report. Results apply only to the individual samples submitted to the lab for analysis, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s), and represented by Laboratory Control Sample control limits. Any events, such as QC failures or Holding Time exceedances, which may add to the uncertainty are explained in the report narrative or are flagged with qualifiers. The flags are explained in the Report Qualifiers and Definitions page of this report.

Please contact me if you have any questions. My extension is 7472. You may also contact me via email at Janice.Jaeger@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Jamankty

Janice Jaeger Project Manager

ADDRESS 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 PHONE +1 585 288 5380 | FAX +1 585 288 8475 ALS Group USA, Corp. dba ALS Environmental



## Narrative Documents

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER



| Client:        | AECOM   |
|----------------|---------|
| Project:       | Diebold |
| Sample Matrix: | Water   |

Service Request: R2310969 Date Received: 11/29/2023

#### **CASE NARRATIVE**

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

### Sample Receipt:

Seven water samples were received for analysis at ALS Environmental on 11/29/2023. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

### Volatiles by GC/MS:

Method 8260C, 12/05/2023: The lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.

Method 8260C, 12/05/2023: The upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.

Method 8260C, : The lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.

Method 8260C, : The upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.

Method 8260C, : The lower control limit for the spike recovery of the Laboratory Control Sample (LCS) was exceeded for one analyte. There were no detections of the analyte in the associated field samples. The discrepancy associated with reduced recovery equates to a potential low bias. Additional analysis of the associated field samples was not performed because only the MS/MSD were analyzed on this run and the analyte was within limits for these spiked samples. The analyte is flagged in the LCS Summary.

Jamankto

Approved by

Date

9 12/07/2023



### SAMPLE DETECTION SUMMARY

This form includes only detections above the reporting levels. For a full listing of sample results, continue to the Sample Results section of this Report.

| LIENT ID: MW-06D             | Lab ID: R2310969-001 |      |      |     |       |        |  |  |  |  |  |  |
|------------------------------|----------------------|------|------|-----|-------|--------|--|--|--|--|--|--|
| Analyte                      | Results              | Flag | MDL  | MRL | Units | Method |  |  |  |  |  |  |
| 1,1,1-Trichloroethane (TCA)  | 0.58                 | J    | 0.20 | 5.0 | ug/L  | 8260C  |  |  |  |  |  |  |
| 1,1-Dichloroethane (1,1-DCA) | 0.87                 | J    | 0.20 | 5.0 | ug/L  | 8260C  |  |  |  |  |  |  |
| cis-1,2-Dichloroethene       | 6.9                  |      | 0.23 | 5.0 | ug/L  | 8260C  |  |  |  |  |  |  |
| Trichloroethene (TCE)        | 26                   |      | 0.20 | 5.0 | ug/L  | 8260C  |  |  |  |  |  |  |
| Vinyl Chloride               | 3.0                  | J    | 0.20 | 5.0 | ug/L  | 8260C  |  |  |  |  |  |  |

| CLIENT ID: MW-06S            | Lab ID: R2310969-002 |      |      |     |       |        |  |  |  |  |  |  |
|------------------------------|----------------------|------|------|-----|-------|--------|--|--|--|--|--|--|
| Analyte                      | Results              | Flag | MDL  | MRL | Units | Method |  |  |  |  |  |  |
| 1,1,1-Trichloroethane (TCA)  | 0.42                 | J    | 0.20 | 5.0 | ug/L  | 8260C  |  |  |  |  |  |  |
| 1,1-Dichloroethane (1,1-DCA) | 0.93                 | J    | 0.20 | 5.0 | ug/L  | 8260C  |  |  |  |  |  |  |
| cis-1,2-Dichloroethene       | 9.6                  |      | 0.23 | 5.0 | ug/L  | 8260C  |  |  |  |  |  |  |
| Trichloroethene (TCE)        | 27                   |      | 0.20 | 5.0 | ug/L  | 8260C  |  |  |  |  |  |  |
| Vinyl Chloride               | 1.8                  | J    | 0.20 | 5.0 | ug/L  | 8260C  |  |  |  |  |  |  |

| CLIENT ID: MW-07S           |         | Lab ID: R2310969-004 |      |     |       |        |  |  |  |  |  |  |
|-----------------------------|---------|----------------------|------|-----|-------|--------|--|--|--|--|--|--|
| Analyte                     | Results | Flag                 | MDL  | MRL | Units | Method |  |  |  |  |  |  |
| 1,1,1-Trichloroethane (TCA) | 0.34    | J                    | 0.20 | 5.0 | ug/L  | 8260C  |  |  |  |  |  |  |
| cis-1,2-Dichloroethene      | 2.4     | J                    | 0.23 | 5.0 | ug/L  | 8260C  |  |  |  |  |  |  |
| Trichloroethene (TCE)       | 24      |                      | 0.20 | 5.0 | ug/L  | 8260C  |  |  |  |  |  |  |
| Vinyl Chloride              | 0.89    | J                    | 0.20 | 5.0 | ug/L  | 8260C  |  |  |  |  |  |  |

| CLIENT ID: FD-112923         | Lab ID: R2310969-006 |      |      |     |       |        |  |  |  |  |  |  |
|------------------------------|----------------------|------|------|-----|-------|--------|--|--|--|--|--|--|
| Analyte                      | Results              | Flag | MDL  | MRL | Units | Method |  |  |  |  |  |  |
| 1,1,1-Trichloroethane (TCA)  | 0.60                 | J    | 0.20 | 5.0 | ug/L  | 8260C  |  |  |  |  |  |  |
| 1,1-Dichloroethane (1,1-DCA) | 0.83                 | J    | 0.20 | 5.0 | ug/L  | 8260C  |  |  |  |  |  |  |
| cis-1,2-Dichloroethene       | 6.7                  |      | 0.23 | 5.0 | ug/L  | 8260C  |  |  |  |  |  |  |
| Trichloroethene (TCE)        | 27                   |      | 0.20 | 5.0 | ug/L  | 8260C  |  |  |  |  |  |  |
| Vinyl Chloride               | 2.8                  | J    | 0.20 | 5.0 | ug/L  | 8260C  |  |  |  |  |  |  |

| LIENT ID: MW-07D             | Lab ID: R2310969-005 |      |      |     |       |        |  |  |  |  |  |  |
|------------------------------|----------------------|------|------|-----|-------|--------|--|--|--|--|--|--|
| Analyte                      | Results              | Flag | MDL  | MRL | Units | Method |  |  |  |  |  |  |
| 1,1-Dichloroethane (1,1-DCA) | 0.23                 | J    | 0.20 | 5.0 | ug/L  | 8260C  |  |  |  |  |  |  |
| Chloromethane                | 4.3                  | J    | 0.80 | 5.0 | ug/L  | 8260C  |  |  |  |  |  |  |
| cis-1,2-Dichloroethene       | 12                   |      | 0.23 | 5.0 | ug/L  | 8260C  |  |  |  |  |  |  |
| Trichloroethene (TCE)        | 9.9                  |      | 0.20 | 5.0 | ug/L  | 8260C  |  |  |  |  |  |  |
| Vinyl Chloride               | 5.2                  |      | 0.20 | 5.0 | ug/L  | 8260C  |  |  |  |  |  |  |

| CLIENT ID: MW-10S      |         | Lab ID: R2310969-003 |      |     |       |        |  |  |  |  |  |
|------------------------|---------|----------------------|------|-----|-------|--------|--|--|--|--|--|
| Analyte                | Results | Flag                 | MDL  | MRL | Units | Method |  |  |  |  |  |
| cis-1,2-Dichloroethene | 0.51    | J                    | 0.23 | 5.0 | ug/L  | 8260C  |  |  |  |  |  |
| Trichloroethene (TCE)  | 5.2     |                      | 0.20 | 5.0 | ug/L  | 8260C  |  |  |  |  |  |



# Sample Receipt Information

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

### SAMPLE CROSS-REFERENCE

| SAMPLE #     | CLIENT SAMPLE ID | DATE       | <u>TIME</u> |
|--------------|------------------|------------|-------------|
| R2310969-001 | MW-06D           | 11/29/2023 | 1052        |
| R2310969-002 | MW-06S           | 11/29/2023 | 1141        |
| R2310969-003 | MW-10S           | 11/29/2023 | 1241        |
| R2310969-004 | MW-07S           | 11/29/2023 | 1350        |
| R2310969-005 | MW-07D           | 11/29/2023 | 1435        |
| R2310969-006 | FD-112923        | 11/29/2023 |             |
| R2310969-007 | Trip Blank       | 11/29/2023 | 1052        |



|                                                |                       | Chain                      | of Custody / Analy                              | tical Reques                                      | t Fo     | rm         |         |              |       |            |                  | 1          | 759                  | 943            | 3                             | [                 | SR#:   |              |         |              |              |
|------------------------------------------------|-----------------------|----------------------------|-------------------------------------------------|---------------------------------------------------|----------|------------|---------|--------------|-------|------------|------------------|------------|----------------------|----------------|-------------------------------|-------------------|--------|--------------|---------|--------------|--------------|
| ALS                                            | 1565 Jefferson Road,  | Building 300, S            | uite 360 • Rochest                              | er, NY 14623                                      | 3•+      | 1 58       | 35 2    | 88 5         | 380   | • al       | sglo             | bal.       | com                  |                |                               |                   | Page   | <u>;</u>     | 1       | of           | /            |
|                                                | Report To:            | ALL SHAD                   | ED AREAS <u>MUST</u> BE COM<br>CLIENT / SAMPLER | PLETED BY THE                                     | Pr       | eserv      | ative   | 1            |       |            |                  |            |                      |                |                               |                   |        |              |         |              | 0. None      |
| Company:                                       | AECOM                 | Project Name:              | Diebold                                         |                                                   |          |            |         | •TCLP        | Ы     |            |                  |            |                      | Filter         |                               |                   |        |              |         |              | 1. HCl       |
| Contact:                                       | evin McGovern         | Project Number             | 60718697                                        | · · · · ·                                         | 1        |            |         | 4●T          | TCLP  | Ъ          |                  |            |                      | lab Fi         |                               |                   |        |              |         | - I.         | 2. HNO3      |
| Constitu                                       | 1. mcgovern @ aecom.  | ALS Quote #:               | 231102001                                       | · · · ·                                           | GW       |            |         | <b> </b> ●22 | 625   | • TCLP     |                  | 4          | Nol                  | Field / In-Lab |                               |                   |        |              | ·       |              | 3. H2SO4     |
| Dhoon:                                         | 85) 314-3259          | Sampler's Signat           | wre: flam                                       |                                                   | ww<br>sw | lers       |         | 62           |       | 608        |                  | TCLP       | CT B                 | Field          |                               |                   |        |              |         |              | 4. NAOH      |
| A                                              | ) Lakefront Blvd.     | Email CC:                  |                                                 |                                                   | DW<br>S  | Containers |         | 8260 624 524 | 8270  | ٠          | 608              | 51•        | Sele                 | · pə/          |                               |                   |        |              | ļ       | 1            | 5. Zn Acet.  |
|                                                | rite 111              | Email CC:                  |                                                 |                                                   | L<br>NA  |            |         | • •          | Å     | 8081       | ٠                | - 8151     | Total - Select Below | Dissolved      |                               |                   |        |              |         | - 1          | 6. MeOH      |
|                                                | Alalo, NY 14202       | State Sample<br>(Circle or |                                                 | , Other:                                          |          | Number of  | čdsm/sm | VOA          | SVOA  | les -      | 8082             | des        | 10                   |                |                               |                   |        |              |         | í            | 7. NaHSO4    |
| Lab ID                                         |                       | ple Collection In          |                                                 |                                                   | Matrix   |            |         | GC/MS        | GC/MS | Pesticides |                  | Herbicides | Metals,              | Metals,        |                               |                   |        |              |         | 1            | 8. Other     |
| (ALS)                                          | Sample                | e ID:                      | Date                                            | Time                                              | Ra       | N          | MS      | U<br>U<br>U  | C/    | Pes        | PCBs             | Hei        | Me                   | Me             |                               |                   |        |              |         |              | Notes:       |
|                                                | MW-0                  | 60                         | 11-29-23                                        | 1052                                              | G₩       | 3          |         | $  \times$   |       |            |                  |            |                      |                |                               |                   |        |              |         |              |              |
|                                                | MW-C                  | <u> </u>                   | 11-29-23                                        | 1141                                              | 61       | 9          | Y       | X            |       |            |                  |            |                      |                |                               |                   |        |              |         |              |              |
|                                                | . MW -10              | S .                        | 11-29-23                                        | 1244                                              | GW       | 3          |         | <u> X</u>    |       |            |                  |            |                      |                |                               |                   |        |              |         |              |              |
|                                                | MW-07                 | 75                         | 11-29-23                                        | 1350                                              | GW       | 3          |         | X            |       |            |                  |            |                      |                |                               |                   |        |              |         |              |              |
|                                                | MW-07                 | D                          | 11-29-23                                        | 1435                                              | GV       | 3          |         | X            |       |            |                  |            |                      |                |                               |                   |        |              |         |              | _            |
|                                                | FD - 11292            | 13                         | 11-29-23                                        | -                                                 | GW       | 3          |         | X            |       |            |                  |            |                      |                |                               |                   |        |              |         |              |              |
|                                                |                       |                            |                                                 |                                                   |          |            |         |              |       |            |                  |            |                      |                |                               |                   |        |              |         |              |              |
|                                                |                       |                            |                                                 |                                                   |          |            |         |              |       |            |                  |            |                      |                |                               |                   |        |              |         |              |              |
|                                                |                       |                            |                                                 |                                                   |          |            |         |              |       |            |                  |            |                      |                |                               |                   |        |              |         |              |              |
|                                                |                       |                            |                                                 |                                                   |          |            |         |              |       |            |                  |            |                      |                |                               |                   |        |              |         |              |              |
| Special Ins                                    | tructions / Comments: |                            |                                                 | Turnarour                                         |          | <u> </u>   |         | its          | R     | еро        | rt Ree           | quire      | men                  | ts             | Meta                          | als: RC           | RA 8●1 | PP 13●       | TAL 23  | тс⊮∙         | Other (List) |
|                                                |                       |                            |                                                 | Rush (Suro<br>*Subject to Avai<br>*Please Check w | lability | •          |         |              |       |            | II/Cat<br>IV/Cat |            |                      |                | VOA                           | /SVO.<br>/Stars • | A Rep  | Ort L        | ist (10 | <b>D</b> BTE | X • TCLP •   |
| 1                                              | · ·                   |                            |                                                 |                                                   | (10 Bu   | sines      | s Days  | )            |       | _          | Report           |            |                      |                |                               | Invoi             | ce To  | : <b>(</b> 0 | Same    | as R         | eport To)    |
|                                                |                       |                            | Date Required:                                  |                                                   |          |            |         | EDD:         | X     | Yes _      | N                | 0          |                      | PO #:          | 16                            | 525               | _      |              |         |              |              |
|                                                |                       |                            |                                                 |                                                   |          |            |         |              | EDD   | Type:      | TI               | <u>sd</u>  |                      |                |                               |                   | AE     | cor          | 1       |              |              |
| Relinquished By: Received By: Relinquished By: |                       |                            | Received B                                      | γ;                                                |          | Relin      | quish   | ed By:       |       |            | Receiv           | /ed By     | :                    | Conta          | <u> </u>                      | Michael Gutmann   |        |              |         | <u>~~</u>    |              |
| Sign                                           | ature                 | bic stor                   |                                                 |                                                   |          |            |         |              |       |            |                  |            |                      |                | Email: USAPInoging Daecon cor |                   |        |              |         |              |              |
| Printed I                                      | Name                  | Jedge-                     |                                                 |                                                   |          |            |         |              |       |            |                  |            |                      |                | PY .                          | R2                | 31     | 09(          | 59      |              | 5            |
| Corr                                           | ipany                 | <u>145</u>                 | · · ·                                           |                                                   |          |            |         |              |       |            |                  |            |                      |                | Ľ                             | AECOM<br>Diebold  |        |              |         |              |              |
| Date/                                          | Time                  | 11/273 ,550                |                                                 | Page 7 of 4                                       | 3        |            |         |              |       |            | 1                |            |                      |                |                               |                   |        |              |         |              |              |

~ . ~

Distribution: White - Lab Copy; Yellow - Return to Originator

© 2012 by ALS Group

| Cooler Receipt and Preservation         Project/Client       Allow       Folder Number         Cooler received on       Were Custody seals on outside of cooler?       Y       Y         2       Custody papers properly completed (ink, signed)?       N       S       Perchlorate samples have required headspace?       Y       N         3       Did all bottles arrive in good condition (ubroken?)?       N       S       Did volta for suifide have sig* hubbles?       Y       NA         4       Circle:       Vert B       Dry Ice Gel packs       present?       N       N       S       Did volta for suifide have sig* hubbles?       Y       NA         5       Did volta for suifide have sig* hubbles?       Y       NA       N       Y       N       Y       NA         4       Circle:       Vert B       Dry Ice Gel packs       present?       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Λ                                                                    |                                                                                |                                                        |                                        |                                       | ,               | <sup>-</sup> R2                                                                             | 31096                                     | 9            | 5                    |                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------|---------------------------------------|-----------------|---------------------------------------------------------------------------------------------|-------------------------------------------|--------------|----------------------|---------------------|
| Project/Client $flow       Folder Number         Cooler received on       ull her       ull her ull her $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      | Coolor                                                                         | Dago                                                   | int .                                  | and Dr                                |                 | AECO                                                                                        | 4                                         | -            | -                    |                     |
| Cooler received onUPU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (ALS)                                                                | Cooler                                                                         | Rece                                                   | ihrs                                   |                                       |                 |                                                                                             |                                           |              |                      |                     |
| 1       Were Custody seals on outside of cooler?       Y       N         2       Custody papers properly completed (ink, signed)?       N       Sa       Perchlorate samples have required headspace?       Y       N         3       Did all bottles arrive in good condition (unbroken)?       N       N       Sb       Did VOA vials, Alk,or Sulfide have sig* bubbles?       Y       N         4       Circle:       Verter       Dry lee       Gel packs       present?       N       A         5       Did VOA vials, Alk,or Sulfide have sig* bubbles?       Y       N       A       A         4       Circle:       Verter       Dry lee       Gel packs       present?       N       A         6       Where did the bottles originate?       A       Sint VOA received as:       Bulk       Encore       5035set       A         7       Soil VOA received as:       Bulk       Encore       5035set       A       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Project/Client                                                       | from                                                                           |                                                        |                                        | Folde                                 | r Number_       |                                                                                             | *# (?# (\### )) #  ) <br>                 |              |                      |                     |
| 2       Custody papers properly completed (ink, signed)? $\bigcirc$ N         3       Did all bottles arrive in good condition (unbroken)? $\bigcirc$ N         4       Circle: Veric Dry Lee Gel packs present? $\bigcirc$ N         5       Did VOA vials, Alk_or Sulfide have sig* bubbles?       Y N NA         4       Circle: Veric Dry Lee Gel packs present? $\bigcirc$ N       6         8. Temperature Readings       Date: ulp?       Time: 1557       ID: IR#12 tell]       From: pempBank Sample Bottle         Observed Temp (°C)       1.6       N       Y N       Y N       Y N       Y N         If od°C, were samples frozen?       Y N       Y N       Y N       Y N       Y N       Y N         If od°C, were samples frozen?       Y N       Y N       Y N       Y N       Y N       Y N         If od°C, were samples frozen?       Y N       Y N       Y N       Y N       Y N       Y N         If od°C, were samples frozen?       Y N       Y N       Y N       Y N       Y N       Y N         If od°C, were samples frozen?       Y N       Y N       Y N       Y N       Y N       Y N         If od°C, were samples frozen?       Y N       Y N       Y N       Y N       Y N       Y N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cooler received on                                                   | 129/23                                                                         | by: 🇖                                                  | vh                                     | -                                     | COURIER:        | ALS                                                                                         | UPS FEI                                   | DEX VE       | LOCITY CLA           |                     |
| 3       Did all bottles arrive in good condition (ubbroken?)       N       6       Where did the bottles originate?       CLIENT         4       Circle:       Verted       Dry Lee Gel packs present?       N       7       Soil VOA received as:       Bulk       Encore       5035set       Soil VOA received as:       Encore       5035set       Soil VOA received as:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 Were Custody seals of                                              | n outside of coole                                                             | <b>эт</b> ?                                            |                                        | Y 🔊                                   | 5a Percl        | lorate                                                                                      | samples have                              | required     | headspace?           | YNNA                |
| 4       Circle:       Wet 1c)       Dry Ice       Gel packs       present?       N       7       Soil VOA received as:       Bulk       Encore       5035set       Soil VOA received as:       Final As the soil of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 Custody papers prop                                                | erly completed (in                                                             | ık, sign                                               | ed)?                                   | ØN                                    | 5b Did V        | OA via                                                                                      | ls, Alk,or Sul                            | fide have    | sig* bubbles?        | Y NNA               |
| 8. Temperature Readings       Date:       I/I/A       Time:       1537       ID:       IR#12       R#1       From:       ImpElank       Sample Bottle         Observed Temp (°C)       I,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 Did all bottles arrive in                                          | n good condition                                                               | (unbro                                                 | ken)?                                  | ÓN                                    | 6 When          | e did th                                                                                    | e bottles origi                           | nate?        | ALS/ROC              | CLIENT              |
| Observed Temp (°C)       1.6       Image: Construct of the second secon | 4 Circle: Wet'Ice Dr                                                 | y Ice Gel packs                                                                | pres                                                   | sent?                                  | () N                                  | 7 Soil V        | /OA rec                                                                                     | eived as:                                 | Bulk         | Encore 5035          | set XA              |
| Within 0-6°C? $ID$ Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8. Temperature Readings                                              | Date: 11/2                                                                     | A                                                      | I<br>Time                              | : 1551                                | ID:             | IR#12                                                                                       | <b>R</b> #11                              | Fro          | om: TempBlank        | Sample Bottle       |
| Within 0-6°C? $\square$ $\square$ Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y       N       Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Observed Temp (°C)                                                   | 1.6                                                                            |                                                        |                                        |                                       |                 |                                                                                             |                                           |              |                      |                     |
| If out of Temperature, note packing/ice condition:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Within 0-6°C?                                                        |                                                                                |                                                        | Y                                      | N .                                   | Y N             | ·Y                                                                                          | N Y                                       | N            | Y N                  | Y N                 |
| &Client Approval to Run Samples:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | If <0°C, were samples fro                                            | zen? Y N                                                                       |                                                        | Y                                      | N                                     | Y N             | Y                                                                                           | NY                                        | ' N          | Y N                  | Y N                 |
| 9.Were all bottle labels complete (i.e. analysis, preservation, etc.)?VESNO10.Did all bottle labels and tags agree with custody papers?VESNO11.Were correct containers used for the tests indicated?VESNO12.Were 5035 vials acceptable (no extra labels, not leaking)?YESNO13.Were dissolved metals filtered in the field?YESNO14.Air Samples: Cassettes / Tubes Intact Y / N with MS Y / NCanisters PressurizedTedlar® Bags InflatedPHLot of testReagentPreserved?Lot ReceivedExppHNoYesNoAddedpH $\geq 12$ NaOHImage: Solution of the test in the field?Image: Solution of test in the field? $\leq 2$ HNO3Image: Solution of test in the field in th                                                                                                                                                                                                                                                                                                                                                                                                                                 | All samples held in stora                                            | ge location:                                                                   |                                                        | 2                                      | by Add                                | 01 11/29        | at                                                                                          | 552                                       |              |                      | Y N                 |
| 14.Air Samples: Cassettes / Tubes Intact Y / N with MS Y / N<br>pHCanisters PressurizedTedlar® Bags InflatedN/R $pH$ Lot of test<br>paperReagentPreserved?<br>YesLot ReceivedExp<br>AdjustedSample ID<br>AdjustedVol.<br>AddedLot AddedFinal<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.Were all bottle10.Did all bottle11.Were correct of12.Wore 5035 via | abels complete<br>abels and tags agr<br>ontainers used fo<br>ls acceptable (no | ( <i>i.e.</i> ana<br>ree with<br>r the tes<br>extra la | ilysis,<br>custo<br>sts ind<br>bels, i | preservati<br>dy papers<br>licated?   | on, etc.)?<br>? | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | ES NO<br>AS NO<br>AS NO<br>AS NO<br>AS NO |              | :                    |                     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |                                                                                |                                                        |                                        | with MS Y                             | /N Canis        | -                                                                                           |                                           | Tedlar®      | Bags Inflated        | N/R                 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pH Lot of test                                                       | Reagent                                                                        |                                                        |                                        | Lot Rec                               |                 |                                                                                             |                                           |              |                      | d Final             |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      | N 011                                                                          | Yes                                                    | No                                     |                                       |                 | ļ                                                                                           | Adjusted                                  | Adde         | <u>d</u>             | pH                  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |                                                                                |                                                        |                                        |                                       |                 |                                                                                             |                                           |              |                      |                     |
| <4         NaHSO4            5-9         For 608pest         No=Notify for 3day            Residual         For CN,         If +, contact PM to add            Chlorine         Phenol, 625,         Na2S2O3 (625, 608,            Na2S2O3         CN), ascorbic (phenol).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                      |                                                                                | +                                                      |                                        | + · -                                 | ·               | <u> </u>                                                                                    |                                           |              |                      |                     |
| 5-9         For 608pest         No=Notify for 3day           Residual         For CN,         If +, contact PM to add           Chlorine         Phenol, 625,         Na2S2O3 (625, 608,           (-)         608pest, 522         CN), ascorbic (phenol).           Na2S2O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |                                                                                |                                                        | <u> </u>                               | ·                                     |                 |                                                                                             |                                           | <u>_</u>     |                      |                     |
| Residual<br>Chlorine     For CN,<br>Phenol, 625,<br>(-)     If +, contact PM to add<br>Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> (625, 608,<br>CN), ascorbic (phenol).       Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                      |                                                                                |                                                        | ł                                      | No≃Noti                               | fy for 3day     | <u> </u>                                                                                    | •                                         |              |                      |                     |
| Chlorine         Phenol, 625,<br>608pest, 522         Na2S203 (625, 608,<br>CN), ascorbic (phenol).           Na2S2_O3         Na2S2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                      |                                                                                |                                                        |                                        | · · · · · · · · · · · · · · · · · · · |                 |                                                                                             |                                           |              |                      |                     |
| (-)         608pest, 522         CN), ascorbic (phenol).           Na2S2O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                      | 1 7                                                                            |                                                        | 1                                      |                                       |                 |                                                                                             |                                           | •            |                      |                     |
| Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1                                                                  |                                                                                |                                                        |                                        | CN), asco                             | rbic (phenol).  |                                                                                             |                                           |              |                      |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                      |                                                                                | <u> </u>                                               | †                                      |                                       |                 |                                                                                             |                                           | +            |                      |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                      | ZnAcetate                                                                      |                                                        | -                                      | <b>—</b> —                            |                 | 1 -                                                                                         | **VOAs and                                | 664 Not to   | be tested before ana | lysis.              |
| HCI ** ** 24001661 4126 Otherwise, all bottles of all samples with chemical preservatives are checked (not just representatives).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      |                                                                                | **                                                     | **                                     | 24001                                 | 661             | 4126                                                                                        | Otherwise, all                            | bottles of a | ll samples with chem | nical preservatives |

Bottle lot numbers: 100223 - 3AXH Explain all Discrepancies/ Other Comments:

| HPROD | BULK   |
|-------|--------|
| HTR   | FLDT   |
| SUB   | HGFB   |
| ALS   | LL3541 |

Labels secondary reviewed by: RR PC Secondary Review: \_\_\_\_\_\_

\*significant air bubbles: VOA > 5-6 mm : WC >1 in. diameter

01/23/2023

P:\INTRANET\QAQC\Forms Controlled\Cooler Receipt r20.doc



## Miscellaneous Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER



### **REPORT QUALIFIERS AND DEFINITIONS**

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- \* Indicates that a quality control parameter has exceeded laboratory limits. Under the "Notes" column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- H Analysis was performed out of hold time for tests that have an "immediate" hold time criteria.
- # Spike was diluted out.



# NELAP StatesFlorida ID # E87674New Hampshire ID # 2941New York ID # 10145Pennsylvania ID# 68-786Virginia #460167

### + Correlation coefficient for MSA is <0.995.

- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (≥100% Difference between two GC columns).
- X See Case Narrative for discussion.
- MRL Method Reporting Limit. Also known as:
- LOQ Limit of Quantitation (LOQ) The lowest concentration at which the method analyte may be reliably quantified under the method conditions.
- MDL Method Detection Limit. A statistical value derived from a study designed to provide the lowest concentration that will be detected 99% of the time. Values between the MDL and MRL are estimated (see J qualifier).
- LOD Limit of Detection. A value at or above the MDL which has been verified to be detectable.
- ND Non-Detect. Analyte was not detected at the concentration listed. Same as U qualifier.

| Non-NELAP States       |
|------------------------|
| Connecticut ID #PH0556 |
| Delaware Approved      |
| Maine ID #NY01587      |
| North Carolina #36701  |
| North Carolina #676    |
| Rhode Island LAO00333  |

<sup>1</sup> Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the case narrative. Since not all analyte/method/matrix combinations are offered for state/NELAC accreditation, this report may contain results which are not accredited. For a specific list of accredited analytes, contact the laboratory. To verify NH accredited analytes, go to https://www4.des.state.nh.us/Certified\_Method.aspx.

Rochester Lab ID # for State Accreditations<sup>1</sup>

### **ALS Laboratory Group**

### Acronyms

| ASTM       | American Society for Testing and Materials                                   |
|------------|------------------------------------------------------------------------------|
| A2LA       | American Association for Laboratory Accreditation                            |
| CARB       | California Air Resources Board                                               |
| CAS Number | Chemical Abstract Service registry Number                                    |
| CFC        | Chlorofluorocarbon                                                           |
| CFU        | Colony-Forming Unit                                                          |
| DEC        | Department of Environmental Conservation                                     |
| DEQ        | Department of Environmental Quality                                          |
| DHS        | Department of Health Services                                                |
| DOE        | Department of Ecology                                                        |
| DOH        | Department of Health                                                         |
| EPA        | U. S. Environmental Protection Agency                                        |
| ELAP       | Environmental Laboratory Accreditation Program                               |
| GC         | Gas Chromatography                                                           |
| GC/MS      | Gas Chromatography/Mass Spectrometry                                         |
| LUFT       | Leaking Underground Fuel Tank                                                |
| Μ          | Modified                                                                     |
| MCL        | Maximum Contaminant Level is the highest permissible concentration of a      |
|            | substance allowed in drinking water as established by the USEPA.             |
| MDL        | Method Detection Limit                                                       |
| MPN        | Most Probable Number                                                         |
| MRL        | Method Reporting Limit                                                       |
| NA         | Not Applicable                                                               |
| NC         | Not Calculated                                                               |
| NCASI      | National Council of the Paper Industry for Air and Stream Improvement        |
| ND         | Not Detected                                                                 |
| NIOSH      | National Institute for Occupational Safety and Health                        |
| PQL        | Practical Quantitation Limit                                                 |
| RCRA       | Resource Conservation and Recovery Act                                       |
| SIM        | Selected Ion Monitoring                                                      |
| TPH        | Total Petroleum Hydrocarbons                                                 |
| tr         | Trace level is the concentration of an analyte that is less than the PQL but |
|            | greater than or equal to the MDL.                                            |
|            |                                                                              |

#### ALS Group USA, Corp. dba ALS Environmental

Analyst Summary report

Client: AECOM Project: Diebold/60718697

MW-06D

Water

R2310969-001

Sample Name:

Sample Matrix:

Lab Code:

Service Request: R2310969

**Date Collected:** 11/29/23 **Date Received:** 11/29/23

| <b>Analysis Method</b><br>8260C             |                                     | Extracted/Digested By | <b>Analyzed By</b><br>KRUEST                                      |
|---------------------------------------------|-------------------------------------|-----------------------|-------------------------------------------------------------------|
| Sample Name:<br>Lab Code:<br>Sample Matrix: | MW-06S<br>R2310969-002<br>Water     |                       | <b>Date Collected:</b> 11/29/23<br><b>Date Received:</b> 11/29/23 |
| <b>Analysis Method</b><br>8260C             |                                     | Extracted/Digested By | <b>Analyzed By</b><br>KRUEST                                      |
| Sample Name:<br>Lab Code:<br>Sample Matrix: | MW-06S<br>R2310969-002.R01<br>Water |                       | Date Collected: 11/29/23<br>Date Received: 11/29/23               |
| <b>Analysis Method</b><br>8260C             |                                     | Extracted/Digested By | <b>Analyzed By</b><br>KRUEST                                      |
| Sample Name:<br>Lab Code:<br>Sample Matrix: | MW-10S<br>R2310969-003<br>Water     |                       | <b>Date Collected:</b> 11/29/23<br><b>Date Received:</b> 11/29/23 |
| Analysis Method<br>8260C                    |                                     | Extracted/Digested By | <b>Analyzed By</b><br>KRUEST                                      |
| Sample Name:<br>Lab Code:<br>Sample Matrix: | MW-07S<br>R2310969-004<br>Water     |                       | <b>Date Collected:</b> 11/29/23<br><b>Date Received:</b> 11/29/23 |
| <b>Analysis Method</b><br>8260C             |                                     | Extracted/Digested By | <b>Analyzed By</b><br>KRUEST                                      |

#### ALS Group USA, Corp. dba ALS Environmental

Analyst Summary report

Client: AECOM Project: Diebold/60718697

MW-07D

Water

R2310969-005

Sample Name:

Sample Matrix:

Lab Code:

Service Request: R2310969

**Date Collected:** 11/29/23 **Date Received:** 11/29/23

| <b>Analysis Method</b><br>8260C             |                                     | Extracted/Digested By Analyzed KRUEST       | • |
|---------------------------------------------|-------------------------------------|---------------------------------------------|---|
| Sample Name:<br>Lab Code:<br>Sample Matrix: | FD-112923<br>R2310969-006<br>Water  | Date Collected: 11/2<br>Date Received: 11/2 |   |
| <b>Analysis Method</b><br>8260C             |                                     | Extracted/Digested By Analyzed KRUEST       | • |
| Sample Name:<br>Lab Code:<br>Sample Matrix: | Trip Blank<br>R2310969-007<br>Water | Date Collected: 11/2<br>Date Received: 11/2 |   |
| Analysis Method<br>8260C                    |                                     | Extracted/Digested By Analyzed KRUEST       | • |



The preparation methods associated with this report are found in these tables unless discussed in the case narrative.

### Water/Liquid Matrix

### Solid/Soil/Non-Aqueous Matrix

| Analytical Method                | Preparation Method |
|----------------------------------|--------------------|
| 200.7                            | 200.2              |
| 200.8                            | 200.2              |
| 6010C                            | 3005A/3010A        |
| 6020A                            | ILM05.3            |
| 9034 Sulfide Acid Soluble        | 9030B              |
| SM 4500-CN-E Residual<br>Cyanide | SM 4500-CN-G       |
| SM 4500-CN-E WAD<br>Cyanide      | SM 4500-CN-I       |

| Analytical Method                                      | Preparation<br>Method |  |  |  |
|--------------------------------------------------------|-----------------------|--|--|--|
| 6010C                                                  | 3050B                 |  |  |  |
| 6020A                                                  | 3050B                 |  |  |  |
| 6010C TCLP (1311)                                      | 3005A/3010A           |  |  |  |
| extract                                                |                       |  |  |  |
| 6010 SPLP (1312) extract                               | 3005A/3010A           |  |  |  |
| 7199                                                   | 3060A                 |  |  |  |
| 300.0 Anions/ 350.1/                                   | DI extraction         |  |  |  |
| 353.2/ SM 2320B/ SM                                    |                       |  |  |  |
| 5210B/ 9056A Anions                                    |                       |  |  |  |
| For analytical methods not listed, the preparation     |                       |  |  |  |
| method is the same as the analytical method reference. |                       |  |  |  |
|                                                        |                       |  |  |  |

### RIGHT SOLUTIONS | RIGHT PARTNER



# Sample Results

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER



# Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Analytical Report Service Request: R2310969 AECOM Date Collected: 11/29/23 10:52 **Project:** Diebold/60718697 Sample Matrix: Water Date Received: 11/29/23 15:49 Sample Name: MW-06D Units: ug/L Lab Code: R2310969-001 Basis: NA

#### Volatile Organic Compounds by GC/MS

| Analysis Method: | 8260C     |
|------------------|-----------|
| Prep Method:     | EPA 5030C |

**Client:** 

| Analyte Name                          | Result | MRL | MDL  | Dil. | Date Analyzed  | Q |
|---------------------------------------|--------|-----|------|------|----------------|---|
| 1,1,1-Trichloroethane (TCA)           | 0.58 ј | 5.0 | 0.20 | 1    | 12/05/23 19:37 |   |
| 1,1,2,2-Tetrachloroethane             | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:37 |   |
| 1,1,2-Trichloroethane                 | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:37 |   |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:37 |   |
| 1,1-Dichloroethane (1,1-DCA)          | 0.87 J | 5.0 | 0.20 | 1    | 12/05/23 19:37 |   |
| 1,1-Dichloroethene (1,1-DCE)          | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:37 |   |
| 1,2,3-Trichlorobenzene                | 5.0 U  | 5.0 | 0.25 | 1    | 12/05/23 19:37 |   |
| 1,2,4-Trichlorobenzene                | 5.0 U  | 5.0 | 0.34 | 1    | 12/05/23 19:37 |   |
| 1,2-Dibromo-3-chloropropane (DBCP)    | 5.0 U  | 5.0 | 0.45 | 1    | 12/05/23 19:37 |   |
| 1,2-Dibromoethane                     | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:37 |   |
| 1,2-Dichlorobenzene                   | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:37 |   |
| 1,2-Dichloroethane                    | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:37 |   |
| 1,2-Dichloropropane                   | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:37 |   |
| 1,3-Dichlorobenzene                   | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:37 |   |
| 1,4-Dichlorobenzene                   | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:37 |   |
| 1,4-Dioxane                           | 100 U  | 100 | 13   | 1    | 12/05/23 19:37 |   |
| 2-Butanone (MEK)                      | 10 U   | 10  | 0.78 | 1    | 12/05/23 19:37 |   |
| 2-Hexanone                            | 10 U   | 10  | 0.20 | 1    | 12/05/23 19:37 |   |
| 4-Methyl-2-pentanone                  | 10 U   | 10  | 0.20 | 1    | 12/05/23 19:37 |   |
| Acetone                               | 10 U   | 10  | 5.0  | 1    | 12/05/23 19:37 |   |
| Benzene                               | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:37 |   |
| Bromochloromethane                    | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:37 |   |
| Bromodichloromethane                  | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:37 |   |
| Bromoform                             | 5.0 U  | 5.0 | 0.25 | 1    | 12/05/23 19:37 |   |
| Bromomethane                          | 5.0 U  | 5.0 | 0.70 | 1    | 12/05/23 19:37 |   |
| Carbon Disulfide                      | 10 U   | 10  | 0.42 | 1    | 12/05/23 19:37 |   |
| Carbon Tetrachloride                  | 5.0 U  | 5.0 | 0.34 | 1    | 12/05/23 19:37 |   |
| Chlorobenzene                         | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:37 |   |
| Chloroethane                          | 5.0 U  | 5.0 | 0.23 | 1    | 12/05/23 19:37 |   |
| Chloroform                            | 5.0 U  | 5.0 | 0.51 | 1    | 12/05/23 19:37 |   |
| Chloromethane                         | 5.0 U  | 5.0 | 0.80 | 1    | 12/05/23 19:37 |   |
| Cyclohexane                           | 10 U   | 10  | 0.60 | 1    | 12/05/23 19:37 |   |
| Dibromochloromethane                  | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:37 |   |
| Dichlorodifluoromethane (CFC 12)      | 5.0 U  | 5.0 | 0.21 | 1    | 12/05/23 19:37 |   |
| Dichloromethane                       | 5.0 U  | 5.0 | 0.65 | 1    | 12/05/23 19:37 |   |
| Ethylbenzene                          | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:37 |   |
| Isopropylbenzene (Cumene)             | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:37 |   |
| Methyl Acetate                        | 10 U   | 10  | 0.87 | 1    | 12/05/23 19:37 |   |
| Methyl tert-Butyl Ether               | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:37 |   |
| Methylcyclohexane                     | 10 U   | 10  | 0.20 | 1    | 12/05/23 19:37 |   |
| Styrene                               | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:37 |   |

Analytical Report **Client:** AECOM Service Request: R2310969 **Date Collected:** 11/29/23 10:52 **Project:** Diebold/60718697 Sample Matrix: Water Date Received: 11/29/23 15:49 Sample Name: MW-06D Units: ug/L Lab Code: R2310969-001 Basis: NA

| Analysis Method: | 8260C     |
|------------------|-----------|
| Prep Method:     | EPA 5030C |

| Analyte Name                    | Result | MRL | MDL  | Dil. | Date Analyzed  | Q |
|---------------------------------|--------|-----|------|------|----------------|---|
| Tetrachloroethene (PCE)         | 5.0 U  | 5.0 | 0.21 | 1    | 12/05/23 19:37 |   |
| Toluene                         | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:37 |   |
| Trichloroethene (TCE)           | 26     | 5.0 | 0.20 | 1    | 12/05/23 19:37 |   |
| Trichlorofluoromethane (CFC 11) | 5.0 U  | 5.0 | 0.24 | 1    | 12/05/23 19:37 |   |
| Vinyl Chloride                  | 3.0 J  | 5.0 | 0.20 | 1    | 12/05/23 19:37 |   |
| cis-1,2-Dichloroethene          | 6.9    | 5.0 | 0.23 | 1    | 12/05/23 19:37 |   |
| cis-1,3-Dichloropropene         | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:37 |   |
| m,p-Xylenes                     | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:37 |   |
| o-Xylene                        | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:37 |   |
| trans-1,2-Dichloroethene        | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:37 |   |
| trans-1,3-Dichloropropene       | 5.0 U  | 5.0 | 0.23 | 1    | 12/05/23 19:37 |   |

| Surrogate Name       | % Rec | <b>Control Limits</b> | Date Analyzed  | Q |
|----------------------|-------|-----------------------|----------------|---|
| 4-Bromofluorobenzene | 91    | 85 - 122              | 12/05/23 19:37 |   |
| Dibromofluoromethane | 97    | 80 - 116              | 12/05/23 19:37 |   |
| Toluene-d8           | 99    | 87 - 121              | 12/05/23 19:37 |   |

Analytical Report **Client:** AECOM Service Request: R2310969 Date Collected: 11/29/23 11:41 **Project:** Diebold/60718697 Sample Matrix: Water Date Received: 11/29/23 15:49 Sample Name: MW-06S Units: ug/L Lab Code: R2310969-002 Basis: NA

| Analysis Method: | 8260C     |
|------------------|-----------|
| Prep Method:     | EPA 5030C |

| Analyte Name                          | Result | MRL | MDL  | Dil. | Date Analyzed  | Q |
|---------------------------------------|--------|-----|------|------|----------------|---|
| 1,1,1-Trichloroethane (TCA)           | 0.42 J | 5.0 | 0.20 | 1    | 12/05/23 18:28 |   |
| 1,1,2,2-Tetrachloroethane             | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:28 |   |
| 1,1,2-Trichloroethane                 | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:28 |   |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:28 |   |
| 1,1-Dichloroethane (1,1-DCA)          | 0.93 J | 5.0 | 0.20 | 1    | 12/05/23 18:28 |   |
| 1,1-Dichloroethene (1,1-DCE)          | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:28 |   |
| 1,2,3-Trichlorobenzene                | 5.0 U  | 5.0 | 0.25 | 1    | 12/05/23 18:28 |   |
| 1,2,4-Trichlorobenzene                | 5.0 U  | 5.0 | 0.34 | 1    | 12/05/23 18:28 |   |
| 1,2-Dibromo-3-chloropropane (DBCP)    | 5.0 U  | 5.0 | 0.45 | 1    | 12/05/23 18:28 |   |
| 1,2-Dibromoethane                     | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:28 |   |
| 1,2-Dichlorobenzene                   | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:28 |   |
| 1,2-Dichloroethane                    | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:28 |   |
| 1,2-Dichloropropane                   | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:28 |   |
| 1,3-Dichlorobenzene                   | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:28 |   |
| 1,4-Dichlorobenzene                   | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:28 |   |
| 1,4-Dioxane                           | 100 U  | 100 | 13   | 1    | 12/05/23 18:28 |   |
| 2-Butanone (MEK)                      | 10 U   | 10  | 0.78 | 1    | 12/05/23 18:28 |   |
| 2-Hexanone                            | 10 U   | 10  | 0.20 | 1    | 12/05/23 18:28 |   |
| 4-Methyl-2-pentanone                  | 10 U   | 10  | 0.20 | 1    | 12/05/23 18:28 |   |
| Acetone                               | 10 U   | 10  | 5.0  | 1    | 12/05/23 18:28 |   |
| Benzene                               | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:28 |   |
| Bromochloromethane                    | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:28 |   |
| Bromodichloromethane                  | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:28 |   |
| Bromoform                             | 5.0 U  | 5.0 | 0.25 | 1    | 12/05/23 18:28 |   |
| Bromomethane                          | 5.0 U  | 5.0 | 0.70 | 1    | 12/05/23 18:28 |   |
| Carbon Disulfide                      | 10 U   | 10  | 0.42 | 1    | 12/05/23 18:28 |   |
| Carbon Tetrachloride                  | 5.0 U  | 5.0 | 0.34 | 1    | 12/05/23 18:28 |   |
| Chlorobenzene                         | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:28 |   |
| Chloroethane                          | 5.0 U  | 5.0 | 0.23 | 1    | 12/05/23 18:28 |   |
| Chloroform                            | 5.0 U  | 5.0 | 0.51 | 1    | 12/05/23 18:28 |   |
| Chloromethane                         | 5.0 U  | 5.0 | 0.80 | 1    | 12/05/23 18:28 |   |
| Cyclohexane                           | 10 U   | 10  | 0.60 | 1    | 12/05/23 18:28 |   |
| Dibromochloromethane                  | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:28 |   |
| Dichlorodifluoromethane (CFC 12)      | 5.0 U  | 5.0 | 0.21 | 1    | 12/05/23 18:28 |   |
| Dichloromethane                       | 5.0 U  | 5.0 | 0.65 | 1    | 12/05/23 18:28 |   |
| Ethylbenzene                          | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:28 |   |
| Isopropylbenzene (Cumene)             | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:28 |   |
| Methyl Acetate                        | 10 U   | 10  | 0.87 | 1    | 12/05/23 18:28 |   |
| Methyl tert-Butyl Ether               | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:28 |   |
| Methylcyclohexane                     | 10 U   | 10  | 0.20 | 1    | 12/05/23 18:28 |   |
| Styrene                               | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:28 |   |

Analytical Report **Client:** AECOM Service Request: R2310969 Date Collected: 11/29/23 11:41 **Project:** Diebold/60718697 Sample Matrix: Water Date Received: 11/29/23 15:49 Sample Name: MW-06S Units: ug/L Lab Code: R2310969-002 Basis: NA

| Analysis Method: | 8260C     |
|------------------|-----------|
| Prep Method:     | EPA 5030C |

| Analyte Name                    | Result | MRL | MDL  | Dil. | Date Analyzed  | Q |
|---------------------------------|--------|-----|------|------|----------------|---|
| Tetrachloroethene (PCE)         | 5.0 U  | 5.0 | 0.21 | 1    | 12/05/23 18:28 |   |
| Toluene                         | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:28 |   |
| Trichloroethene (TCE)           | 27     | 5.0 | 0.20 | 1    | 12/05/23 18:28 |   |
| Trichlorofluoromethane (CFC 11) | 5.0 U  | 5.0 | 0.24 | 1    | 12/05/23 18:28 |   |
| Vinyl Chloride                  | 1.8 J  | 5.0 | 0.20 | 1    | 12/05/23 18:28 |   |
| cis-1,2-Dichloroethene          | 9.6    | 5.0 | 0.23 | 1    | 12/05/23 18:28 |   |
| cis-1,3-Dichloropropene         | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:28 |   |
| m,p-Xylenes                     | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:28 |   |
| o-Xylene                        | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:28 |   |
| trans-1,2-Dichloroethene        | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:28 |   |
| trans-1,3-Dichloropropene       | 5.0 U  | 5.0 | 0.23 | 1    | 12/05/23 18:28 |   |

| Surrogate Name       | % Rec | <b>Control Limits</b> | Date Analyzed  | Q |
|----------------------|-------|-----------------------|----------------|---|
| 4-Bromofluorobenzene | 92    | 85 - 122              | 12/05/23 18:28 |   |
| Dibromofluoromethane | 101   | 80 - 116              | 12/05/23 18:28 |   |
| Toluene-d8           | 101   | 87 - 121              | 12/05/23 18:28 |   |

Analytical Report

| Client:        | AECOM            |     | Service Request: | R2310969       |
|----------------|------------------|-----|------------------|----------------|
| Project:       | Diebold/60718697 |     | Date Collected:  | 11/29/23 12:41 |
| Sample Matrix: | Water            |     | Date Received:   | 11/29/23 15:49 |
|                | N 99 100         |     | <b>TT 1</b> /    | <i></i>        |
| Sample Name:   | MW-10S           |     | Units:           | ug/L           |
| Lab Code:      | R2310969-003     |     | Basis:           | NA             |
|                |                  |     |                  |                |
|                |                  | • • |                  |                |

| Analysis Method: | 8260C     |
|------------------|-----------|
| Prep Method:     | EPA 5030C |

| Analyte Name                          | Result | MRL | MDL  | Dil. | Date Analyzed  | Q        |
|---------------------------------------|--------|-----|------|------|----------------|----------|
| 1,1,1-Trichloroethane (TCA)           | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:51 |          |
| 1,1,2,2-Tetrachloroethane             | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:51 |          |
| 1,1,2-Trichloroethane                 | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:51 |          |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:51 |          |
| 1,1-Dichloroethane (1,1-DCA)          | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:51 |          |
| 1,1-Dichloroethene (1,1-DCE)          | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:51 |          |
| 1,2,3-Trichlorobenzene                | 5.0 U  | 5.0 | 0.25 | 1    | 12/05/23 18:51 |          |
| 1,2,4-Trichlorobenzene                | 5.0 U  | 5.0 | 0.34 | 1    | 12/05/23 18:51 |          |
| 1,2-Dibromo-3-chloropropane (DBCP)    | 5.0 U  | 5.0 | 0.45 | 1    | 12/05/23 18:51 |          |
| 1,2-Dibromoethane                     | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:51 |          |
| 1,2-Dichlorobenzene                   | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:51 | <u> </u> |
| 1,2-Dichloroethane                    | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:51 |          |
| 1,2-Dichloropropane                   | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:51 |          |
| 1,3-Dichlorobenzene                   | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:51 |          |
| 1,4-Dichlorobenzene                   | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:51 |          |
| 1,4-Dioxane                           | 100 U  | 100 | 13   | 1    | 12/05/23 18:51 |          |
| 2-Butanone (MEK)                      | 10 U   | 10  | 0.78 | 1    | 12/05/23 18:51 |          |
| 2-Hexanone                            | 10 U   | 10  | 0.20 | 1    | 12/05/23 18:51 |          |
| 4-Methyl-2-pentanone                  | 10 U   | 10  | 0.20 | 1    | 12/05/23 18:51 |          |
| Acetone                               | 10 U   | 10  | 5.0  | 1    | 12/05/23 18:51 |          |
| Benzene                               | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:51 |          |
| Bromochloromethane                    | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:51 |          |
| Bromodichloromethane                  | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:51 |          |
| Bromoform                             | 5.0 U  | 5.0 | 0.25 | 1    | 12/05/23 18:51 |          |
| Bromomethane                          | 5.0 U  | 5.0 | 0.70 | 1    | 12/05/23 18:51 |          |
| Carbon Disulfide                      | 10 U   | 10  | 0.42 | 1    | 12/05/23 18:51 |          |
| Carbon Tetrachloride                  | 5.0 U  | 5.0 | 0.34 | 1    | 12/05/23 18:51 |          |
| Chlorobenzene                         | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:51 |          |
| Chloroethane                          | 5.0 U  | 5.0 | 0.23 | 1    | 12/05/23 18:51 |          |
| Chloroform                            | 5.0 U  | 5.0 | 0.51 | 1    | 12/05/23 18:51 |          |
| Chloromethane                         | 5.0 U  | 5.0 | 0.80 | 1    | 12/05/23 18:51 |          |
| Cyclohexane                           | 10 U   | 10  | 0.60 | 1    | 12/05/23 18:51 |          |
| Dibromochloromethane                  | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:51 |          |
| Dichlorodifluoromethane (CFC 12)      | 5.0 U  | 5.0 | 0.21 | 1    | 12/05/23 18:51 |          |
| Dichloromethane                       | 5.0 U  | 5.0 | 0.65 | 1    | 12/05/23 18:51 |          |
| Ethylbenzene                          | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:51 |          |
| Isopropylbenzene (Cumene)             | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:51 |          |
| Methyl Acetate                        | 10 U   | 10  | 0.87 | 1    | 12/05/23 18:51 |          |
| Methyl tert-Butyl Ether               | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:51 |          |
| Methylcyclohexane                     | 10 Ŭ   | 10  | 0.20 | 1    | 12/05/23 18:51 |          |
| Styrene                               | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:51 |          |
| •                                     | _      |     |      |      |                |          |

Analytical Report

Client:AECOMService Request:R2310969Project:Diebold/60718697Date Collected:11/29/23 12:41Sample Matrix:WaterDate Received:11/29/23 15:49Sample Name:MW-10SUnits:ug/LLab Code:R2310969-003Basis:NA

| Analysis Method: | 8260C     |
|------------------|-----------|
| Prep Method:     | EPA 5030C |

| Analyte Name                    | Result | MRL | MDL  | Dil. | Date Analyzed  | Q |
|---------------------------------|--------|-----|------|------|----------------|---|
| Tetrachloroethene (PCE)         | 5.0 U  | 5.0 | 0.21 | 1    | 12/05/23 18:51 |   |
| Toluene                         | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:51 |   |
| Trichloroethene (TCE)           | 5.2    | 5.0 | 0.20 | 1    | 12/05/23 18:51 |   |
| Trichlorofluoromethane (CFC 11) | 5.0 U  | 5.0 | 0.24 | 1    | 12/05/23 18:51 |   |
| Vinyl Chloride                  | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:51 |   |
| cis-1,2-Dichloroethene          | 0.51 J | 5.0 | 0.23 | 1    | 12/05/23 18:51 |   |
| cis-1,3-Dichloropropene         | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:51 |   |
| m,p-Xylenes                     | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:51 |   |
| o-Xylene                        | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:51 |   |
| trans-1,2-Dichloroethene        | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:51 |   |
| trans-1,3-Dichloropropene       | 5.0 U  | 5.0 | 0.23 | 1    | 12/05/23 18:51 |   |

| Surrogate Name       | % Rec | <b>Control Limits</b> | Date Analyzed  | Q |
|----------------------|-------|-----------------------|----------------|---|
| 4-Bromofluorobenzene | 94    | 85 - 122              | 12/05/23 18:51 |   |
| Dibromofluoromethane | 100   | 80 - 116              | 12/05/23 18:51 |   |
| Toluene-d8           | 101   | 87 - 121              | 12/05/23 18:51 |   |

Analytical Report **Client:** Service Request: R2310969 AECOM Date Collected: 11/29/23 13:50 **Project:** Diebold/60718697 Sample Matrix: Water Date Received: 11/29/23 15:49 Sample Name: MW-07S Units: ug/L Lab Code: R2310969-004 Basis: NA

| Analysis Method: | 8260C     |
|------------------|-----------|
| Prep Method:     | EPA 5030C |

| Analyte Name                          | Result | MRL | MDL  | Dil. | Date Analyzed  | Q        |
|---------------------------------------|--------|-----|------|------|----------------|----------|
| 1,1,1-Trichloroethane (TCA)           | 0.34 J | 5.0 | 0.20 | 1    | 12/05/23 19:14 |          |
| 1,1,2,2-Tetrachloroethane             | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:14 |          |
| 1,1,2-Trichloroethane                 | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:14 |          |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:14 |          |
| 1,1-Dichloroethane (1,1-DCA)          | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:14 |          |
| 1,1-Dichloroethene (1,1-DCE)          | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:14 |          |
| 1,2,3-Trichlorobenzene                | 5.0 U  | 5.0 | 0.25 | 1    | 12/05/23 19:14 |          |
| 1,2,4-Trichlorobenzene                | 5.0 U  | 5.0 | 0.34 | 1    | 12/05/23 19:14 |          |
| 1,2-Dibromo-3-chloropropane (DBCP)    | 5.0 U  | 5.0 | 0.45 | 1    | 12/05/23 19:14 |          |
| 1,2-Dibromoethane                     | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:14 |          |
| 1,2-Dichlorobenzene                   | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:14 |          |
| 1,2-Dichloroethane                    | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:14 |          |
| 1,2-Dichloropropane                   | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:14 |          |
| 1,3-Dichlorobenzene                   | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:14 |          |
| 1,4-Dichlorobenzene                   | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:14 |          |
| 1,4-Dioxane                           | 100 U  | 100 | 13   | 1    | 12/05/23 19:14 |          |
| 2-Butanone (MEK)                      | 10 U   | 10  | 0.78 | 1    | 12/05/23 19:14 |          |
| 2-Hexanone                            | 10 U   | 10  | 0.20 | 1    | 12/05/23 19:14 |          |
| 4-Methyl-2-pentanone                  | 10 U   | 10  | 0.20 | 1    | 12/05/23 19:14 |          |
| Acetone                               | 10 U   | 10  | 5.0  | 1    | 12/05/23 19:14 |          |
| Benzene                               | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:14 |          |
| Bromochloromethane                    | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:14 |          |
| Bromodichloromethane                  | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:14 |          |
| Bromoform                             | 5.0 U  | 5.0 | 0.25 | 1    | 12/05/23 19:14 |          |
| Bromomethane                          | 5.0 U  | 5.0 | 0.70 | 1    | 12/05/23 19:14 |          |
| Carbon Disulfide                      | 10 U   | 10  | 0.42 | 1    | 12/05/23 19:14 |          |
| Carbon Tetrachloride                  | 5.0 U  | 5.0 | 0.34 | 1    | 12/05/23 19:14 |          |
| Chlorobenzene                         | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:14 |          |
| Chloroethane                          | 5.0 U  | 5.0 | 0.23 | 1    | 12/05/23 19:14 |          |
| Chloroform                            | 5.0 U  | 5.0 | 0.51 | 1    | 12/05/23 19:14 |          |
| Chloromethane                         | 5.0 U  | 5.0 | 0.80 | 1    | 12/05/23 19:14 |          |
| Cyclohexane                           | 10 U   | 10  | 0.60 | 1    | 12/05/23 19:14 |          |
| Dibromochloromethane                  | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:14 |          |
| Dichlorodifluoromethane (CFC 12)      | 5.0 U  | 5.0 | 0.21 | 1    | 12/05/23 19:14 |          |
| Dichloromethane                       | 5.0 U  | 5.0 | 0.65 | 1    | 12/05/23 19:14 |          |
| Ethylbenzene                          | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:14 | <u> </u> |
| Isopropylbenzene (Cumene)             | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:14 |          |
| Methyl Acetate                        | 10 U   | 10  | 0.87 | 1    | 12/05/23 19:14 |          |
| Methyl tert-Butyl Ether               | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:14 |          |
| Methylcyclohexane                     | 10 U   | 10  | 0.20 | 1    | 12/05/23 19:14 |          |
| Styrene                               | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:14 |          |

Analytical Report **Client:** AECOM Service Request: R2310969 **Date Collected:** 11/29/23 13:50 **Project:** Diebold/60718697 Sample Matrix: Water Date Received: 11/29/23 15:49 Sample Name: MW-07S Units: ug/L Lab Code: R2310969-004 Basis: NA

| Analysis Method: | 8260C     |
|------------------|-----------|
| Prep Method:     | EPA 5030C |

| Analyte Name                    | Result | MRL | MDL  | Dil. | Date Analyzed  | Q |
|---------------------------------|--------|-----|------|------|----------------|---|
| Tetrachloroethene (PCE)         | 5.0 U  | 5.0 | 0.21 | 1    | 12/05/23 19:14 |   |
| Toluene                         | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:14 |   |
| Trichloroethene (TCE)           | 24     | 5.0 | 0.20 | 1    | 12/05/23 19:14 |   |
| Trichlorofluoromethane (CFC 11) | 5.0 U  | 5.0 | 0.24 | 1    | 12/05/23 19:14 |   |
| Vinyl Chloride                  | 0.89 J | 5.0 | 0.20 | 1    | 12/05/23 19:14 |   |
| cis-1,2-Dichloroethene          | 2.4 Ј  | 5.0 | 0.23 | 1    | 12/05/23 19:14 |   |
| cis-1,3-Dichloropropene         | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:14 |   |
| m,p-Xylenes                     | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:14 |   |
| o-Xylene                        | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:14 |   |
| trans-1,2-Dichloroethene        | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 19:14 |   |
| trans-1,3-Dichloropropene       | 5.0 U  | 5.0 | 0.23 | 1    | 12/05/23 19:14 |   |

| Surrogate Name       | % Rec | <b>Control Limits</b> | Date Analyzed  | Q |
|----------------------|-------|-----------------------|----------------|---|
| 4-Bromofluorobenzene | 93    | 85 - 122              | 12/05/23 19:14 |   |
| Dibromofluoromethane | 95    | 80 - 116              | 12/05/23 19:14 |   |
| Toluene-d8           | 97    | 87 - 121              | 12/05/23 19:14 |   |

Analytical Report

| Client:                    | AECOM                     | <b>Service Request:</b> R2310969<br><b>Date Collected:</b> 11/29/23 14:35 |
|----------------------------|---------------------------|---------------------------------------------------------------------------|
| Project:<br>Sample Matrix: | Diebold/60718697<br>Water | <b>Date Conected:</b> 11/29/23 15:49                                      |
| Sample Name:<br>Lab Code:  | MW-07D<br>R2310969-005    | <b>Units:</b> ug/L<br><b>Basis:</b> NA                                    |
| Lab Code:                  | R2310969-005              | Basis: NA                                                                 |

| Analysis Method: | 8260C     |  |  |  |
|------------------|-----------|--|--|--|
| Prep Method:     | EPA 5030C |  |  |  |

| Analyte Name                          | Result | MRL | MDL  | Dil. | Date Analyzed  | Q |
|---------------------------------------|--------|-----|------|------|----------------|---|
| 1,1,1-Trichloroethane (TCA)           | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:23 |   |
| 1,1,2,2-Tetrachloroethane             | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:23 |   |
| 1,1,2-Trichloroethane                 | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:23 |   |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:23 |   |
| 1,1-Dichloroethane (1,1-DCA)          | 0.23 J | 5.0 | 0.20 | 1    | 12/05/23 20:23 |   |
| 1,1-Dichloroethene (1,1-DCE)          | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:23 |   |
| 1,2,3-Trichlorobenzene                | 5.0 U  | 5.0 | 0.25 | 1    | 12/05/23 20:23 |   |
| 1,2,4-Trichlorobenzene                | 5.0 U  | 5.0 | 0.34 | 1    | 12/05/23 20:23 |   |
| 1,2-Dibromo-3-chloropropane (DBCP)    | 5.0 U  | 5.0 | 0.45 | 1    | 12/05/23 20:23 |   |
| 1,2-Dibromoethane                     | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:23 |   |
| 1,2-Dichlorobenzene                   | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:23 |   |
| 1,2-Dichloroethane                    | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:23 |   |
| 1,2-Dichloropropane                   | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:23 |   |
| 1,3-Dichlorobenzene                   | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:23 |   |
| 1,4-Dichlorobenzene                   | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:23 |   |
| 1,4-Dioxane                           | 100 U  | 100 | 13   | 1    | 12/05/23 20:23 |   |
| 2-Butanone (MEK)                      | 10 U   | 10  | 0.78 | 1    | 12/05/23 20:23 |   |
| 2-Hexanone                            | 10 U   | 10  | 0.20 | 1    | 12/05/23 20:23 |   |
| 4-Methyl-2-pentanone                  | 10 U   | 10  | 0.20 | 1    | 12/05/23 20:23 |   |
| Acetone                               | 10 U   | 10  | 5.0  | 1    | 12/05/23 20:23 |   |
| Benzene                               | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:23 |   |
| Bromochloromethane                    | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:23 |   |
| Bromodichloromethane                  | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:23 |   |
| Bromoform                             | 5.0 U  | 5.0 | 0.25 | 1    | 12/05/23 20:23 |   |
| Bromomethane                          | 5.0 U  | 5.0 | 0.70 | 1    | 12/05/23 20:23 |   |
| Carbon Disulfide                      | 10 U   | 10  | 0.42 | 1    | 12/05/23 20:23 |   |
| Carbon Tetrachloride                  | 5.0 U  | 5.0 | 0.34 | 1    | 12/05/23 20:23 |   |
| Chlorobenzene                         | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:23 |   |
| Chloroethane                          | 5.0 U  | 5.0 | 0.23 | 1    | 12/05/23 20:23 |   |
| Chloroform                            | 5.0 U  | 5.0 | 0.51 | 1    | 12/05/23 20:23 |   |
| Chloromethane                         | 4.3 J  | 5.0 | 0.80 | 1    | 12/05/23 20:23 |   |
| Cyclohexane                           | 10 U   | 10  | 0.60 | 1    | 12/05/23 20:23 |   |
| Dibromochloromethane                  | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:23 |   |
| Dichlorodifluoromethane (CFC 12)      | 5.0 U  | 5.0 | 0.21 | 1    | 12/05/23 20:23 |   |
| Dichloromethane                       | 5.0 U  | 5.0 | 0.65 | 1    | 12/05/23 20:23 |   |
| Ethylbenzene                          | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:23 |   |
| Isopropylbenzene (Cumene)             | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:23 |   |
| Methyl Acetate                        | 10 U   | 10  | 0.87 | 1    | 12/05/23 20:23 |   |
| Methyl tert-Butyl Ether               | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:23 |   |
| Methylcyclohexane                     | 10 U   | 10  | 0.20 | 1    | 12/05/23 20:23 |   |
| Styrene                               | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:23 |   |
| Styrone                               | 5.0 0  | 5.0 | 0.20 | 1    | 12/00/20 20.20 |   |

Analytical Report **Client:** AECOM Service Request: R2310969 Date Collected: 11/29/23 14:35 **Project:** Diebold/60718697 Sample Matrix: Water Date Received: 11/29/23 15:49 Sample Name: **MW-07D** Units: ug/L Lab Code: R2310969-005 Basis: NA

| Analysis Method: | 8260C     |
|------------------|-----------|
| Prep Method:     | EPA 5030C |

| Analyte Name                    | Result | MRL | MDL  | Dil. | Date Analyzed  | Q |
|---------------------------------|--------|-----|------|------|----------------|---|
| Tetrachloroethene (PCE)         | 5.0 U  | 5.0 | 0.21 | 1    | 12/05/23 20:23 |   |
| Toluene                         | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:23 |   |
| Trichloroethene (TCE)           | 9.9    | 5.0 | 0.20 | 1    | 12/05/23 20:23 |   |
| Trichlorofluoromethane (CFC 11) | 5.0 U  | 5.0 | 0.24 | 1    | 12/05/23 20:23 |   |
| Vinyl Chloride                  | 5.2    | 5.0 | 0.20 | 1    | 12/05/23 20:23 |   |
| cis-1,2-Dichloroethene          | 12     | 5.0 | 0.23 | 1    | 12/05/23 20:23 |   |
| cis-1,3-Dichloropropene         | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:23 |   |
| m,p-Xylenes                     | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:23 |   |
| o-Xylene                        | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:23 |   |
| trans-1,2-Dichloroethene        | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:23 |   |
| trans-1,3-Dichloropropene       | 5.0 U  | 5.0 | 0.23 | 1    | 12/05/23 20:23 |   |

| Surrogate Name       | % Rec | <b>Control Limits</b> | Date Analyzed  | Q |
|----------------------|-------|-----------------------|----------------|---|
| 4-Bromofluorobenzene | 95    | 85 - 122              | 12/05/23 20:23 |   |
| Dibromofluoromethane | 98    | 80 - 116              | 12/05/23 20:23 |   |
| Toluene-d8           | 101   | 87 - 121              | 12/05/23 20:23 |   |

Analytical Report

| AECOM            | Service Request: R2310969              |
|------------------|----------------------------------------|
| Diebold/60718697 | Date Collected: 11/29/23               |
| Water            | <b>Date Received:</b> 11/29/23 15:49   |
|                  |                                        |
| FD-112923        | Units: ug/L                            |
| R2310969-006     | Basis: NA                              |
|                  |                                        |
|                  | Diebold/60718697<br>Water<br>FD-112923 |

| Analysis Method: | 8260C     |
|------------------|-----------|
| Prep Method:     | EPA 5030C |

| Analyte Name                          | Result | MRL | MDL  | Dil. | Date Analyzed  | Q |
|---------------------------------------|--------|-----|------|------|----------------|---|
| 1,1,1-Trichloroethane (TCA)           | 0.60 J | 5.0 | 0.20 | 1    | 12/05/23 20:00 |   |
| 1,1,2,2-Tetrachloroethane             | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:00 |   |
| 1,1,2-Trichloroethane                 | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:00 |   |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:00 |   |
| 1,1-Dichloroethane (1,1-DCA)          | 0.83 J | 5.0 | 0.20 | 1    | 12/05/23 20:00 |   |
| 1,1-Dichloroethene (1,1-DCE)          | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:00 |   |
| 1,2,3-Trichlorobenzene                | 5.0 U  | 5.0 | 0.25 | 1    | 12/05/23 20:00 |   |
| 1,2,4-Trichlorobenzene                | 5.0 U  | 5.0 | 0.34 | 1    | 12/05/23 20:00 |   |
| 1,2-Dibromo-3-chloropropane (DBCP)    | 5.0 U  | 5.0 | 0.45 | 1    | 12/05/23 20:00 |   |
| 1,2-Dibromoethane                     | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:00 |   |
| 1,2-Dichlorobenzene                   | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:00 |   |
| 1,2-Dichloroethane                    | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:00 |   |
| 1,2-Dichloropropane                   | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:00 |   |
| 1,3-Dichlorobenzene                   | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:00 |   |
| 1,4-Dichlorobenzene                   | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:00 |   |
| 1,4-Dioxane                           | 100 U  | 100 | 13   | 1    | 12/05/23 20:00 |   |
| 2-Butanone (MEK)                      | 10 U   | 10  | 0.78 | 1    | 12/05/23 20:00 |   |
| 2-Hexanone                            | 10 U   | 10  | 0.20 | 1    | 12/05/23 20:00 |   |
| 4-Methyl-2-pentanone                  | 10 U   | 10  | 0.20 | 1    | 12/05/23 20:00 |   |
| Acetone                               | 10 U   | 10  | 5.0  | 1    | 12/05/23 20:00 |   |
| Benzene                               | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:00 |   |
| Bromochloromethane                    | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:00 |   |
| Bromodichloromethane                  | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:00 |   |
| Bromoform                             | 5.0 U  | 5.0 | 0.25 | 1    | 12/05/23 20:00 |   |
| Bromomethane                          | 5.0 U  | 5.0 | 0.70 | 1    | 12/05/23 20:00 |   |
| Carbon Disulfide                      | 10 U   | 10  | 0.42 | 1    | 12/05/23 20:00 |   |
| Carbon Tetrachloride                  | 5.0 U  | 5.0 | 0.34 | 1    | 12/05/23 20:00 |   |
| Chlorobenzene                         | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:00 |   |
| Chloroethane                          | 5.0 U  | 5.0 | 0.23 | 1    | 12/05/23 20:00 |   |
| Chloroform                            | 5.0 U  | 5.0 | 0.51 | 1    | 12/05/23 20:00 |   |
| Chloromethane                         | 5.0 U  | 5.0 | 0.80 | 1    | 12/05/23 20:00 |   |
| Cyclohexane                           | 10 U   | 10  | 0.60 | 1    | 12/05/23 20:00 |   |
| Dibromochloromethane                  | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:00 |   |
| Dichlorodifluoromethane (CFC 12)      | 5.0 U  | 5.0 | 0.21 | 1    | 12/05/23 20:00 |   |
| Dichloromethane                       | 5.0 U  | 5.0 | 0.65 | 1    | 12/05/23 20:00 |   |
| Ethylbenzene                          | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:00 |   |
| Isopropylbenzene (Cumene)             | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:00 |   |
| Methyl Acetate                        | 10 U   | 10  | 0.87 | 1    | 12/05/23 20:00 |   |
| Methyl tert-Butyl Ether               | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:00 |   |
| Methylcyclohexane                     | 10 U   | 10  | 0.20 | 1    | 12/05/23 20:00 |   |
| Styrene                               | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:00 |   |
| Styrone                               | 5.0 0  | 5.0 | 0.20 | 1    | 12/03/23 20.00 |   |

Analytical Report **Client:** AECOM Service Request: R2310969 **Date Collected:** 11/29/23 **Project:** Diebold/60718697 Sample Matrix: Water Date Received: 11/29/23 15:49 Sample Name: FD-112923 Units: ug/L Lab Code: R2310969-006 Basis: NA

| Analysis Method: | 8260C     |
|------------------|-----------|
| Prep Method:     | EPA 5030C |

| Analyte Name                    | Result | MRL | MDL  | Dil. | Date Analyzed  | Q |
|---------------------------------|--------|-----|------|------|----------------|---|
| Tetrachloroethene (PCE)         | 5.0 U  | 5.0 | 0.21 | 1    | 12/05/23 20:00 |   |
| Toluene                         | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:00 |   |
| Trichloroethene (TCE)           | 27     | 5.0 | 0.20 | 1    | 12/05/23 20:00 |   |
| Trichlorofluoromethane (CFC 11) | 5.0 U  | 5.0 | 0.24 | 1    | 12/05/23 20:00 |   |
| Vinyl Chloride                  | 2.8 J  | 5.0 | 0.20 | 1    | 12/05/23 20:00 |   |
| cis-1,2-Dichloroethene          | 6.7    | 5.0 | 0.23 | 1    | 12/05/23 20:00 |   |
| cis-1,3-Dichloropropene         | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:00 |   |
| m,p-Xylenes                     | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:00 |   |
| o-Xylene                        | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:00 |   |
| trans-1,2-Dichloroethene        | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 20:00 |   |
| trans-1,3-Dichloropropene       | 5.0 U  | 5.0 | 0.23 | 1    | 12/05/23 20:00 |   |

| Surrogate Name       | % Rec | <b>Control Limits</b> | Date Analyzed  | Q |
|----------------------|-------|-----------------------|----------------|---|
| 4-Bromofluorobenzene | 94    | 85 - 122              | 12/05/23 20:00 |   |
| Dibromofluoromethane | 100   | 80 - 116              | 12/05/23 20:00 |   |
| Toluene-d8           | 102   | 87 - 121              | 12/05/23 20:00 |   |

Analytical Report

Client:AECOMService Request:R2310969Project:Diebold/60718697Date Collected:11/29/23 10:52Sample Matrix:WaterDate Received:11/29/23 15:49Sample Name:Trip BlankUnits:ug/LLab Code:R2310969-007Basis:NA

| Analysis Method: | 8260C     |
|------------------|-----------|
| Prep Method:     | EPA 5030C |

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Analyte Name                          | Result | MRL | MDL  | Dil. | Date Analyzed  | Q |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------|-----|------|------|----------------|---|
| 1,12         Trichloroethane         5.0         U         5.0         0.20         1         12/05/23 18/05           1,12-Trichloroethane (1,1-DCA)         5.0         U         5.0         0.20         1         12/05/23 18/05           1,12-bichloroethane (1,1-DCA)         5.0         U         5.0         0.20         1         12/05/23 18/05           1,23-Trichlorobenzene         5.0         U         5.0         0.25         1         12/05/23 18/05           1,2-Dichorobenzene         5.0         U         5.0         0.34         1         12/05/23 18/05           1,2-Dichorobenzene         5.0         U         5.0         0.20         1         12/05/23 18/05           1,2-Dichorobenzene         5.0         U         5.0         0.20         1         12/05/23 18/05           1,2-Dichlorobenzene         5.0         U         5.0                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,1,1-Trichloroethane (TCA)           |        |     |      | 1    |                |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,1,2,2-Tetrachloroethane             |        |     |      | 1    | 12/05/23 18:05 |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,1,2-Trichloroethane                 |        | 5.0 | 0.20 | 1    | 12/05/23 18:05 |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,1,2-Trichloro-1,2,2-trifluoroethane | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:05 |   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,1-Dichloroethane (1,1-DCA)          | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:05 |   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,1-Dichloroethene (1,1-DCE)          | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:05 |   |
| 1,2-Dibromo-3-chloropropane (DBCP)       5.0       U       5.0       0.45       1       12/05/23 18:05         1,2-Dichlorobenzene       5.0       U       5.0       0.20       1       12/05/23 18:05         1,2-Dichlorobenzene       5.0       U       5.0       0.20       1       12/05/23 18:05         1,2-Dichlorobenzene       5.0       U       5.0       0.20       1       12/05/23 18:05         1,3-Dichlorobenzene       5.0       U       5.0       0.20       1       12/05/23 18:05         1,4-Dichlorobenzene       5.0       U       5.0       0.20       1       12/05/23 18:05         1,4-Dichlorobenzene       5.0       U       5.0       0.20       1       12/05/23 18:05         2-Hetanone (MEK)       10       U       10       0.78       1       12/05/23 18:05         2-Hetanone (MEK)       10       U       10       0.78       1       12/05/23 18:05         2-Hetanone       10       U       10       0.20       1       12/05/23 18:05         2-Hetanone       5.0       U       5.0       0.20       1       12/05/23 18:05         Bromochloromethane       5.0       U       5.0       0.20<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,2,3-Trichlorobenzene                | 5.0 U  | 5.0 | 0.25 | 1    | 12/05/23 18:05 |   |
| 1.2-Dibromoethane5.0U5.00.20112/05/2318:051.2-Dichlorobenzene5.0U5.00.20112/05/2318:051.2-Dichlorobethane5.0U5.00.20112/05/2318:051.3-Dichlorobenzene5.0U5.00.20112/05/2318:051.4-Dichlorobenzene5.0U5.00.20112/05/2318:051.4-Dichlorobenzene5.0U5.00.20112/05/2318:051.4-Dichlorobenzene100U10013112/05/2318:052-Butanone (MEK)10U100.20112/05/2318:052-Hexanone10U100.20112/05/2318:054-Methyl-2-pentanone10U100.20112/05/2318:05Benzene5.0U5.00.20112/05/2318:05Bromochloromethane5.0U5.00.20112/05/2318:05Bromodichloromethane5.0U5.00.20112/05/2318:05Bromodethane5.0U5.00.20112/05/2318:05Bromodichloromethane5.0U5.00.20112/05/2318:05Carbon Disulfide10U100.42112/05/2318:05Chlorobetane5.0U5.00.201 <td>1,2,4-Trichlorobenzene</td> <td></td> <td>5.0</td> <td>0.34</td> <td>1</td> <td>12/05/23 18:05</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,2,4-Trichlorobenzene                |        | 5.0 | 0.34 | 1    | 12/05/23 18:05 |   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,2-Dibromo-3-chloropropane (DBCP)    | 5.0 U  | 5.0 | 0.45 | 1    | 12/05/23 18:05 |   |
| 1,2-Dichloropropane       5.0 U       5.0 0.20       1       12/05/23 18:05         1,2-Dichloropropane       5.0 U       5.0 0.20       1       12/05/23 18:05         1,4-Dichlorobenzene       5.0 U       5.0 0.20       1       12/05/23 18:05         1,4-Dichlorobenzene       5.0 U       5.0 0.20       1       12/05/23 18:05         1,4-Dichlorobenzene       5.0 U       5.0 0.20       1       12/05/23 18:05         2-Butanone (MEK)       10 U       10       0.78       1       12/05/23 18:05         2-Hexanone       10 U       10       0.20       1       12/05/23 18:05         2-Hexanone       10 U       10       0.20       1       12/05/23 18:05         Acetone       10 U       10       5.0       0.20       1       12/05/23 18:05         Bromochloromethane       5.0 U       5.0       0.20       1       12/05/23 18:05         Carbon Disulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,2-Dibromoethane                     | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:05 |   |
| 1,2-Dichloropropane       5.0       U       5.0       0.20       1       12/05/23       18:05         1,4-Dichlorobenzene       5.0       U       5.0       0.20       1       12/05/23       18:05         1,4-Dicorane       100       U       100       13       1       12/05/23       18:05         2-Butanone (MEK)       10       U       10       0.78       1       12/05/23       18:05         2-Hexanone       10       U       10       0.20       1       12/05/23       18:05         4-Methyl-2-pentanone       10       U       10       0.20       1       12/05/23       18:05         Benzene       5.0       U       5.0       0.20       1       12/05/23       18:05         Bromochloromethane       5.0       U       5.0       0.20       1       12/05/23       18:05         Bromochloromethane       5.0       U       5.0       0.20       1       12/05/23       18:05         Bromochloromethane       5.0       U       5.0       0.20       1       12/05/23       18:05         Carbon Disulfide       10       U       10       0.42       1       12/05/23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,2-Dichlorobenzene                   |        | 5.0 | 0.20 | 1    | 12/05/23 18:05 |   |
| 1,2-Dichloropropane       5.0       U       5.0       0.20       1       12/05/23       18:05         1,4-Dichlorobenzene       5.0       U       5.0       0.20       1       12/05/23       18:05         1,4-Dicklorobenzene       5.0       U       5.0       0.20       1       12/05/23       18:05         2-Butanone (MEK)       10       U       10       0.78       1       12/05/23       18:05         2-Hexanone       10       U       10       0.20       1       12/05/23       18:05         4-Methyl-2-pentanone       10       U       10       0.20       1       12/05/23       18:05         Acetone       10       U       10       0.20       1       12/05/23       18:05         Bromochloromethane       5.0       U       5.0       0.20       1       12/05/23       18:05         Bromochloromethane       5.0       U       5.0       0.20       1       12/05/23       18:05         Bromochloromethane       5.0       U       5.0       0.20       1       12/05/23       18:05         Carbon Disulfide       10       U       10       0.42       1       12/05/23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,2-Dichloroethane                    | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:05 |   |
| 1,3-Dichlorobenzene         5.0         U         5.0         0.20         1         12/05/23         18:05           1,4-Dichlorobenzene         100         U         100         13         1         12/05/23         18:05           2-Butanone (MEK)         10         U         100         0.78         1         12/05/23         18:05           2-Hexanone         10         U         10         0.78         1         12/05/23         18:05           4-Methyl-2-pentanone         10         U         10         0.20         1         12/05/23         18:05           Acetone         10         U         10         5.0         1         12/05/23         18:05           Branochloromethane         5.0         U         5.0         0.20         1         12/05/23         18:05           Bromochloromethane         5.0         U         5.0         0.20         1         12/05/23         18:05           Bromochloromethane         5.0         U         5.0         0.25         1         12/05/23         18:05           Carbon Disulfide         10         U         10         0.42         1         12/05/23         18:05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,2-Dichloropropane                   | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:05 |   |
| 1.4-Dichlorobenzene         5.0         U         5.0         0.20         1         12/05/23         18:05           I.4-Dickane         100         U         100         13         1         12/05/23         18:05           2-Butanone (MEK)         10         U         10         0.78         1         12/05/23         18:05           2-Hexanone         10         U         10         0.20         1         12/05/23         18:05           2-Hexanone         10         U         10         0.20         1         12/05/23         18:05           Actone         10         U         10         5.0         1         12/05/23         18:05           Benzene         5.0         U         5.0         0.20         1         12/05/23         18:05           Bromochloromethane         5.0         U         5.0         0.20         1         12/05/23         18:05           Bromochloromethane         5.0         U         5.0         0.20         1         12/05/23         18:05           Carbon Disulfide         10         U         5.0         0.25         1         12/05/23         18:05           Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:05 |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:05 |   |
| 2-Butanone (MEK)         10         U         10         0.78         1         12/05/23         18:05           2-Hexanone         10         U         10         0.20         1         12/05/23         18:05           4-Methyl-2-pentanone         10         U         10         0.20         1         12/05/23         18:05           Acetone         10         U         10         5.0         1         12/05/23         18:05           Benzene         5.0         U         5.0         0.20         1         12/05/23         18:05           Bromochloromethane         5.0         U         5.0         0.20         1         12/05/23         18:05           Bromochloromethane         5.0         U         5.0         0.20         1         12/05/23         18:05           Bromochloromethane         5.0         U         5.0         0.25         1         12/05/23         18:05           Bromochloromethane         5.0         U         5.0         0.70         1         12/05/23         18:05           Carbon Disulfide         10         U         10         0.42         1         12/05/23         18:05           Chloro                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | 100 U  | 100 | 13   | 1    | 12/05/23 18:05 |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |        | 10  | 0.78 | 1    | 12/05/23 18:05 |   |
| 4-Methyl-2-pentanone       10 U       10 U       10 0.20       1       12/05/23 18:05         Acetone       10 U       10       5.0       1       12/05/23 18:05         Benzene       5.0 U       5.0       0.20       1       12/05/23 18:05         Bromochloromethane       5.0 U       5.0       0.20       1       12/05/23 18:05         Bromodichloromethane       5.0 U       5.0       0.20       1       12/05/23 18:05         Bromoform       5.0 U       5.0       0.25       1       12/05/23 18:05         Bromomethane       5.0 U       5.0       0.25       1       12/05/23 18:05         Carbon Disulfide       10 U       10       0.42       1       12/05/23 18:05         Carbon Tetrachloride       5.0 U       5.0       0.34       1       12/05/23 18:05         Chlorobenzene       5.0 U       5.0       0.20       1       12/05/23 18:05         Chlorobentane       5.0 U       5.0       0.23       1       12/05/23 18:05         Chlorobentane       5.0 U       5.0       0.23       1       12/05/23 18:05         Chloromethane       5.0 U       5.0       0.20       1       12/05/23 18:05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | 10 U   | 10  | 0.20 | 1    | 12/05/23 18:05 |   |
| Acetone10 U105.0112/05/23 18:05Benzene5.0 U5.00.20112/05/23 18:05Bromochloromethane5.0 U5.00.20112/05/23 18:05Bromodichloromethane5.0 U5.00.20112/05/23 18:05Bromodichloromethane5.0 U5.00.25112/05/23 18:05Bromomethane5.0 U5.00.70112/05/23 18:05Bromomethane5.0 U5.00.70112/05/23 18:05Bromomethane5.0 U5.00.70112/05/23 18:05Carbon Disulfide10 U100.42112/05/23 18:05Carbon Tetrachloride5.0 U5.00.34112/05/23 18:05Chlorobenzene5.0 U5.00.23112/05/23 18:05Chlorobenzene5.0 U5.00.51112/05/23 18:05Chloroform5.0 U5.00.651112/05/23 18:05Chloromethane5.0 U5.00.20112/05/23 18:05Dibromochloromethane5.0 U5.00.20112/05/23 18:05Dibromochloromethane5.0 U5.00.21112/05/23 18:05Dibromothloromethane5.0 U5.00.21112/05/23 18:05Dichlorodifluoromethane5.0 U5.00.20112/05/23 18:05Ethylbenzene5.0 U5.00.20112/05/23 18:05Isopropylbenzene (Cumene)5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |        | 10  | 0.20 | 1    | 12/05/23 18:05 |   |
| Benzene $5.0 \text{ U}$ $5.0 \text{ 0.20}$ $1 \frac{12}{05/23} \frac{18:05}{18:05}$ Bromochloromethane $5.0 \text{ U}$ $5.0 \text{ 0.20}$ $1 \frac{12}{05/23} \frac{18:05}{18:05}$ Bromodichloromethane $5.0 \text{ U}$ $5.0 \text{ 0.20}$ $1 \frac{12}{05/23} \frac{18:05}{18:05}$ Bromoform $5.0 \text{ U}$ $5.0 \text{ 0.25}$ $1 \frac{12}{05/23} \frac{18:05}{18:05}$ Bromomethane $5.0 \text{ U}$ $5.0 \text{ 0.25}$ $1 \frac{12}{05/23} \frac{18:05}{18:05}$ Bromomethane $5.0 \text{ U}$ $5.0 \text{ 0.70}$ $1 \frac{12}{05/23} \frac{18:05}{18:05}$ Carbon Disulfide $10 \text{ U}$ $10 \text{ 0.42}$ $1 \frac{12}{05/23} \frac{18:05}{18:05}$ Carbon Tetrachloride $5.0 \text{ U}$ $5.0 \text{ 0.34}$ $1 \frac{12}{05/23} \frac{18:05}{18:05}$ Chlorobenzene $5.0 \text{ U}$ $5.0 \text{ 0.20}$ $1 \frac{12}{05/23} \frac{18:05}{18:05}$ Chlorotethane $5.0 \text{ U}$ $5.0 \text{ 0.23}$ $1 \frac{12}{05/23} \frac{18:05}{18:05}$ Chlorotethane $5.0 \text{ U}$ $5.0 \text{ 0.80}$ $1 \frac{12}{05/23} \frac{18:05}{18:05}$ Cyclohexane $10 \text{ U}$ $10 \text{ 0.60}$ $1 \frac{12}{05/23} \frac{18:05}{18:05}$ Dibromochloromethane $5.0 \text{ U}$ $5.0 \text{ 0.20}$ $1 \frac{12}{05/23} \frac{18:05}{18:05}$ Dichlorodifluoromethane $5.0 \text{ U}$ $5.0 \text{ 0.20}$ $1 \frac{12}{05/23} \frac{18:05}{18:05}$ Ethylbenzene $5.0 \text{ U}$ $5.0 \text{ 0.20}$ $1 \frac{12}{05/23} \frac{18:05}{18:05}$ Ethylbenzene $5.0 \text{ U}$ $5.0 \text{ 0.20}$ $1 \frac{12}{05/23} \frac{18:05}{18:05}$ Methyl Acetate $10 \text{ U}$ $10 \text{ 0.87}$ $1 \frac{12}{05/23} \frac{18:05}{18:05}$ Methyl kert-Butyl Ether $5.0 \text{ U}$ $5.0$ |                                       |        | 10  | 5.0  | 1    | 12/05/23 18:05 |   |
| Bromodichloromethane5.0U5.00.20112/05/2318:05Bromoform5.0U5.00.25112/05/2318:05Bromomethane5.0U5.00.70112/05/2318:05Carbon Disulfide10U100.42112/05/2318:05Carbon Tetrachloride5.0U5.00.34112/05/2318:05Chlorobenzene5.0U5.00.20112/05/2318:05Chloroform5.0U5.00.23112/05/2318:05Chloromethane5.0U5.00.23112/05/2318:05Chloromethane5.0U5.00.51112/05/2318:05Chloromethane5.0U5.00.80112/05/2318:05Cyclohexane10U100.60112/05/2318:05Dichloromethane5.0U5.00.21112/05/2318:05Dichloromethane5.0U5.00.21112/05/2318:05Dichloromethane5.0U5.00.20112/05/2318:05Ethylbenzene5.0U5.00.20112/05/2318:05Isopropylbenzene (Cumene)5.0U5.00.20112/05/2318:05Methyl Acetate10U100.87112/05/2318:05<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |        | 5.0 | 0.20 | 1    | 12/05/23 18:05 |   |
| Bromodichloromethane5.0U5.00.20112/05/2318:05Bromoform5.0U5.00.25112/05/2318:05Bromomethane5.0U5.00.70112/05/2318:05Carbon Disulfide10U100.42112/05/2318:05Carbon Tetrachloride5.0U5.00.34112/05/2318:05Chlorobenzene5.0U5.00.20112/05/2318:05Chloroform5.0U5.00.23112/05/2318:05Chloromethane5.0U5.00.23112/05/2318:05Chloromethane5.0U5.00.51112/05/2318:05Chloromethane5.0U5.00.80112/05/2318:05Cyclohexane10U100.60112/05/2318:05Dichloromethane5.0U5.00.21112/05/2318:05Dichloromethane5.0U5.00.21112/05/2318:05Dichloromethane5.0U5.00.20112/05/2318:05Ethylbenzene5.0U5.00.20112/05/2318:05Isopropylbenzene (Cumene)5.0U5.00.20112/05/2318:05Methyl Acetate10U100.87112/05/2318:05<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bromochloromethane                    | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:05 |   |
| Bromomethane5.0U5.00.70112/05/2318:05Carbon Disulfide10U100.42112/05/2318:05Carbon Tetrachloride5.0U5.00.34112/05/2318:05Chlorobenzene5.0U5.00.20112/05/2318:05Chloroethane5.0U5.00.23112/05/2318:05Chloroform5.0U5.00.51112/05/2318:05Chloromethane5.0U5.00.51112/05/2318:05Chloromethane5.0U5.00.80112/05/2318:05Cyclohexane10U100.60112/05/2318:05Dibromochloromethane5.0U5.00.20112/05/2318:05Dichlorodifluoromethane5.0U5.00.65112/05/2318:05Dichloromethane5.0U5.00.20112/05/2318:05Dichloromethane5.0U5.00.20112/05/2318:05Ethylbenzene5.0U5.00.20112/05/2318:05Isopropylbenzene (Cumene)5.0U5.00.20112/05/2318:05Methyl Acetate10U100.87112/05/2318:05Methyl tert-Butyl Ether5.0U5.00.20112/05/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |        | 5.0 | 0.20 | 1    | 12/05/23 18:05 |   |
| Bromomethane5.0U5.00.70112/05/2318:05Carbon Disulfide10U100.42112/05/2318:05Carbon Tetrachloride5.0U5.00.34112/05/2318:05Chlorobenzene5.0U5.00.20112/05/2318:05Chloroethane5.0U5.00.23112/05/2318:05Chloroform5.0U5.00.51112/05/2318:05Chloromethane5.0U5.00.51112/05/2318:05Chloromethane5.0U5.00.80112/05/2318:05Cyclohexane10U100.60112/05/2318:05Dibromochloromethane5.0U5.00.20112/05/2318:05Dichlorodifluoromethane5.0U5.00.65112/05/2318:05Dichloromethane5.0U5.00.20112/05/2318:05Dichloromethane5.0U5.00.20112/05/2318:05Ethylbenzene5.0U5.00.20112/05/2318:05Isopropylbenzene (Cumene)5.0U5.00.20112/05/2318:05Methyl Acetate10U100.87112/05/2318:05Methyl tert-Butyl Ether5.0U5.00.20112/05/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bromoform                             | 5.0 U  | 5.0 | 0.25 | 1    | 12/05/23 18:05 |   |
| Carbon Disulfide1010 $0.42$ 1 $12/05/23$ 18:05Carbon Tetrachloride $5.0$ $U$ $5.0$ $0.34$ 1 $12/05/23$ 18:05Chlorobenzene $5.0$ $U$ $5.0$ $0.20$ 1 $12/05/23$ 18:05Chloroethane $5.0$ $U$ $5.0$ $0.23$ 1 $12/05/23$ 18:05Chloroform $5.0$ $U$ $5.0$ $0.23$ 1 $12/05/23$ 18:05Chloromethane $5.0$ $U$ $5.0$ $0.51$ 1 $12/05/23$ 18:05Chloromethane $5.0$ $U$ $5.0$ $0.80$ 1 $12/05/23$ 18:05Cyclohexane10 $U$ 10 $0.60$ 1 $12/05/23$ 18:05Dibromochloromethane $5.0$ $U$ $5.0$ $0.20$ 1 $12/05/23$ 18:05Dichlorodifluoromethane $5.0$ $U$ $5.0$ $0.21$ 1 $12/05/23$ 18:05Dichloromethane $5.0$ $U$ $5.0$ $0.21$ 1 $12/05/23$ 18:05Dichloromethane $5.0$ $U$ $5.0$ $0.20$ 1 $12/05/23$ 18:05Dichloromethane $5.0$ $U$ $5.0$ $0.20$ 1 $12/05/23$ 18:05Ethylbenzene $5.0$ $U$ $5.0$ $0.20$ 1 $12/05/23$ 18:05Isopropylbenzene (Cumene) $5.0$ $U$ $5.0$ $0.20$ 1 $12/05/23$ 18:05Methyl Acetate10 $U$ $10$ $0.87$ 1 $12/05/23$ 18:05Methyl tert-Butyl Ether $5.0$ $U$ $5.0$ $0.20$ <td>Bromomethane</td> <td></td> <td>5.0</td> <td>0.70</td> <td>1</td> <td>12/05/23 18:05</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bromomethane                          |        | 5.0 | 0.70 | 1    | 12/05/23 18:05 |   |
| Chlorobenzene5.0U5.00.20112/05/2318:05Chloroethane5.0U5.00.23112/05/2318:05Chloroform5.0U5.00.51112/05/2318:05Chloromethane5.0U5.00.80112/05/2318:05Cyclohexane10U100.60112/05/2318:05Dibromochloromethane5.0U5.00.20112/05/2318:05Dichlorodifluoromethane5.0U5.00.21112/05/2318:05Dichloromethane5.0U5.00.65112/05/2318:05Dichloromethane5.0U5.00.65112/05/2318:05Ethylbenzene5.0U5.00.20112/05/2318:05Isopropylbenzene (Cumene)5.0U5.00.20112/05/2318:05Methyl Acetate10U100.87112/05/2318:05Methyl tert-Butyl Ether5.0U5.00.20112/05/2318:05Methylcyclohexane10U100.87112/05/2318:05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |        | 10  | 0.42 | 1    | 12/05/23 18:05 |   |
| Chlorobenzene5.0U5.00.20112/05/2318:05Chloroethane5.0U5.00.23112/05/2318:05Chloroform5.0U5.00.51112/05/2318:05Chloromethane5.0U5.00.80112/05/2318:05Cyclohexane10U100.60112/05/2318:05Dibromochloromethane5.0U5.00.20112/05/2318:05Dichlorodifluoromethane5.0U5.00.21112/05/2318:05Dichloromethane5.0U5.00.65112/05/2318:05Dichloromethane5.0U5.00.65112/05/2318:05Ethylbenzene5.0U5.00.20112/05/2318:05Isopropylbenzene (Cumene)5.0U5.00.20112/05/2318:05Methyl Acetate10U100.87112/05/2318:05Methyl tert-Butyl Ether5.0U5.00.20112/05/2318:05Methylcyclohexane10U100.87112/05/2318:05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Carbon Tetrachloride                  | 5.0 U  | 5.0 | 0.34 | 1    | 12/05/23 18:05 |   |
| Chloroethane5.0 U5.0 U5.0 0.23112/05/23 18:05Chloroform5.0 U5.0 U5.0 0.51112/05/23 18:05Chloromethane5.0 U5.0 U0.80112/05/23 18:05Cyclohexane10 U100.60112/05/23 18:05Dibromochloromethane5.0 U5.0 U5.0 0.20112/05/23 18:05Dichlorodifluoromethane (CFC 12)5.0 U5.0 0.21112/05/23 18:05Dichloromethane5.0 U5.0 0.65112/05/23 18:05Ethylbenzene5.0 U5.0 0.20112/05/23 18:05Isopropylbenzene (Cumene)5.0 U5.0 0.20112/05/23 18:05Methyl Acetate10 U100.87112/05/23 18:05Methyl tert-Butyl Ether5.0 U5.0 0.20112/05/23 18:05Methyl ycyclohexane10 U100.87112/05/23 18:05Methyl ycyclohexane10 U100.20112/05/23 18:05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Chlorobenzene                         |        | 5.0 | 0.20 | 1    | 12/05/23 18:05 |   |
| Chloroform5.0 U5.00.51112/05/23 18:05Chloromethane5.0 U5.00.80112/05/23 18:05Cyclohexane10 U100.60112/05/23 18:05Dibromochloromethane5.0 U5.00.20112/05/23 18:05Dichlorodifluoromethane (CFC 12)5.0 U5.00.21112/05/23 18:05Dichloromethane5.0 U5.00.65112/05/23 18:05Ethylbenzene5.0 U5.00.20112/05/23 18:05Isopropylbenzene (Cumene)5.0 U5.00.20112/05/23 18:05Methyl Acetate10 U100.87112/05/23 18:05Methyl tert-Butyl Ether5.0 U5.00.20112/05/23 18:05Methyl cyclohexane10 U100.20112/05/23 18:05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Chloroethane                          |        | 5.0 | 0.23 | 1    | 12/05/23 18:05 |   |
| Chloromethane $5.0 \ U$ $5.0 \ U$ $5.0 \ 0.80$ 1 $12/05/23 \ 18:05$ Cyclohexane10 U100.601 $12/05/23 \ 18:05$ Dibromochloromethane $5.0 \ U$ $5.0 \ U$ $5.0 \ 0.20$ 1 $12/05/23 \ 18:05$ Dichlorodifluoromethane (CFC 12) $5.0 \ U$ $5.0 \ U$ $5.0 \ 0.21$ 1 $12/05/23 \ 18:05$ Dichloromethane $5.0 \ U$ $5.0 \ U$ $5.0 \ 0.21$ 1 $12/05/23 \ 18:05$ Dichloromethane $5.0 \ U$ $5.0 \ U$ $5.0 \ 0.20$ 1 $12/05/23 \ 18:05$ Ethylbenzene $5.0 \ U$ $5.0 \ U$ $5.0 \ 0.20$ 1 $12/05/23 \ 18:05$ Isopropylbenzene (Cumene) $5.0 \ U$ $5.0 \ U$ $5.0 \ 0.20$ 1 $12/05/23 \ 18:05$ Methyl Acetate10 U10 $0.87 \ 1$ $12/05/23 \ 18:05$ Methyl tert-Butyl Ether $5.0 \ U$ $5.0 \ 0.20$ 1 $12/05/23 \ 18:05$ Methyl cyclohexane10 U10 $0.20 \ 1$ $12/05/23 \ 18:05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Chloroform                            |        | 5.0 | 0.51 | 1    | 12/05/23 18:05 |   |
| Cyclohexane10 U100.60112/05/23 18:05Dibromochloromethane5.0 U5.0 0.20112/05/23 18:05Dichlorodifluoromethane (CFC 12)5.0 U5.0 0.21112/05/23 18:05Dichloromethane5.0 U5.0 0.65112/05/23 18:05Ethylbenzene5.0 U5.0 0.20112/05/23 18:05Isopropylbenzene (Cumene)5.0 U5.0 0.20112/05/23 18:05Methyl Acetate10 U100.87112/05/23 18:05Methyl tert-Butyl Ether5.0 U5.0 0.20112/05/23 18:05Methyl vyclohexane10 U100.20112/05/23 18:05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | 5.0 U  | 5.0 | 0.80 | 1    | 12/05/23 18:05 |   |
| Dibromochloromethane5.0 U5.00.20112/05/23 18:05Dichlorodifluoromethane (CFC 12)5.0 U5.0 U5.00.21112/05/23 18:05Dichloromethane5.0 U5.0 U5.00.65112/05/23 18:05Ethylbenzene5.0 U5.0 U5.00.20112/05/23 18:05Isopropylbenzene (Cumene)5.0 U5.00.20112/05/23 18:05Methyl Acetate10 U100.87112/05/23 18:05Methyl tert-Butyl Ether5.0 U5.00.20112/05/23 18:05Methylcyclohexane10 U100.20112/05/23 18:05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |        | 10  | 0.60 | 1    |                |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:05 |   |
| Dichloromethane5.0 U5.00.65112/05/23 18:05Ethylbenzene5.0 U5.0 0.20112/05/23 18:05Isopropylbenzene (Cumene)5.0 U5.0 0.20112/05/23 18:05Methyl Acetate10 U100.87112/05/23 18:05Methyl tert-Butyl Ether5.0 U5.0 U5.0 0.20112/05/23 18:05Methyl cyclohexane10 U100.20112/05/23 18:05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |        | 5.0 | 0.21 | 1    | 12/05/23 18:05 |   |
| Ethylbenzene5.0 U5.00.20112/05/23 18:05Isopropylbenzene (Cumene)5.0 U5.0 U5.00.20112/05/23 18:05Methyl Acetate10 U100.87112/05/23 18:05Methyl tert-Butyl Ether5.0 U5.00.20112/05/23 18:05Methylcyclohexane10 U100.20112/05/23 18:05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |        | 5.0 | 0.65 | 1    | 12/05/23 18:05 |   |
| Isoropylbenzene (Cumene)5.0 U5.00.20112/05/23 18:05Methyl Acetate10 U100.87112/05/23 18:05Methyl tert-Butyl Ether5.0 U5.00.20112/05/23 18:05Methylcyclohexane10 U100.20112/05/23 18:05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:05 |   |
| Methyl Acetate10 U100.87112/05/23 18:05Methyl tert-Butyl Ether5.0 U5.00.20112/05/23 18:05Methylcyclohexane10 U100.20112/05/23 18:05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |        | 5.0 | 0.20 | 1    | 12/05/23 18:05 |   |
| Methyl tert-Butyl Ether5.0 U5.0 U5.0 0.20112/05/23 18:05Methylcyclohexane10 U100.20112/05/23 18:05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |        | 10  | 0.87 | 1    | 12/05/23 18:05 |   |
| Methylcyclohexane 10 U 10 0.20 1 12/05/23 18:05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |        | 5.0 | 0.20 | 1    |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |        | 10  | 0.20 | 1    | 12/05/23 18:05 |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Styrene                               |        | 5.0 |      | 1    |                |   |

Analytical Report **Client:** AECOM Service Request: R2310969 **Date Collected:** 11/29/23 10:52 **Project:** Diebold/60718697 Sample Matrix: Water Date Received: 11/29/23 15:49 Sample Name: Trip Blank Units: ug/L R2310969-007 Lab Code: Basis: NA

| Analysis Method: | 8260C     |
|------------------|-----------|
| Prep Method:     | EPA 5030C |

| Analyte Name                    | Result | MRL | MDL  | Dil. | Date Analyzed  | Q |
|---------------------------------|--------|-----|------|------|----------------|---|
| Tetrachloroethene (PCE)         | 5.0 U  | 5.0 | 0.21 | 1    | 12/05/23 18:05 |   |
| Toluene                         | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:05 |   |
| Trichloroethene (TCE)           | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:05 |   |
| Trichlorofluoromethane (CFC 11) | 5.0 U  | 5.0 | 0.24 | 1    | 12/05/23 18:05 |   |
| Vinyl Chloride                  | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:05 |   |
| cis-1,2-Dichloroethene          | 5.0 U  | 5.0 | 0.23 | 1    | 12/05/23 18:05 |   |
| cis-1,3-Dichloropropene         | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:05 |   |
| m,p-Xylenes                     | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:05 |   |
| o-Xylene                        | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:05 |   |
| trans-1,2-Dichloroethene        | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 18:05 |   |
| trans-1,3-Dichloropropene       | 5.0 U  | 5.0 | 0.23 | 1    | 12/05/23 18:05 |   |

| Surrogate Name       | % Rec | <b>Control Limits</b> | Date Analyzed  | Q |
|----------------------|-------|-----------------------|----------------|---|
| 4-Bromofluorobenzene | 99    | 85 - 122              | 12/05/23 18:05 |   |
| Dibromofluoromethane | 98    | 80 - 116              | 12/05/23 18:05 |   |
| Toluene-d8           | 100   | 87 - 121              | 12/05/23 18:05 |   |



# QC Summary Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER



# Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

QA/QC Report

# Client:AECOMProject:Diebold/60718697Sample Matrix:Water

#### Service Request: R2310969

#### SURROGATE RECOVERY SUMMARY

| Analysis Method:   | 8260C     |
|--------------------|-----------|
| Extraction Method: | EPA 5030C |

|                    |              | 4-Bromofluorobenzene | Dibromofluoromethane | Toluene-d8 |
|--------------------|--------------|----------------------|----------------------|------------|
| Sample Name        | Lab Code     | 85 - 122             | 80 - 116             | 87 - 121   |
| MW-06D             | R2310969-001 | 91                   | 97                   | 99         |
| MW-06S             | R2310969-002 | 92                   | 101                  | 101        |
| MW-10S             | R2310969-003 | 94                   | 100                  | 101        |
| MW-07S             | R2310969-004 | 93                   | 95                   | 97         |
| MW-07D             | R2310969-005 | 95                   | 98                   | 101        |
| FD-112923          | R2310969-006 | 94                   | 100                  | 102        |
| Trip Blank         | R2310969-007 | 99                   | 98                   | 100        |
| Lab Control Sample | RQ2315982-03 | 102                  | 106                  | 103        |
| Method Blank       | RQ2315982-04 | 93                   | 98                   | 101        |
| Lab Control Sample | RQ2316008-03 | 100                  | 101                  | 101        |
| Method Blank       | RQ2316008-04 | 93                   | 99                   | 98         |
| MW-06S MS          | RQ2316008-05 | 104                  | 105                  | 103        |
| MW-06S DMS         | RQ2316008-06 | 101                  | 103                  | 100        |

QA/QC Report

| Client:<br>Project:<br>Sample Matrix:      | AECOM<br>Diebold/60718697<br>Water<br>MW-06S |                | -            | e Matrix Sp<br>anic Compo |           | -            | Service Re<br>Date Colle<br>Date Recei<br>Date Analy<br>Date Extra | cted:<br>ived:<br>yzed: | R2310<br>11/29/2<br>11/29/2<br>12/6/22<br>NA | 23<br>23 |          |
|--------------------------------------------|----------------------------------------------|----------------|--------------|---------------------------|-----------|--------------|--------------------------------------------------------------------|-------------------------|----------------------------------------------|----------|----------|
| Sample Name:                               |                                              |                |              |                           |           |              |                                                                    |                         | ug/L                                         |          |          |
| Lab Code:                                  | R2310969-002                                 |                |              |                           |           |              | 1                                                                  | Basis:                  | NA                                           |          |          |
| Analysis Method:                           | 8260C                                        |                |              |                           |           |              |                                                                    |                         |                                              |          |          |
| Prep Method:                               | EPA 5030C                                    |                |              |                           |           |              |                                                                    |                         |                                              |          |          |
|                                            |                                              |                | Matrix       | Spike                     |           | Duplica      | te Matrix S                                                        | pike                    |                                              |          |          |
|                                            |                                              |                | RQ2316       | -                         |           | -            | 2316008-06                                                         | -                       |                                              |          |          |
|                                            |                                              | Sample         |              | Spike                     |           |              | Spike                                                              |                         | % Rec                                        |          | RPD      |
| Analyte Name                               |                                              | Result         | Result       | Amount                    | % Rec     | Result       | Amount                                                             | % Rec                   | Limits                                       | RPD      | Limit    |
| 1,1,1-Trichloroethane                      | e (TCA)                                      | 0.42 J         | 52.9         | 50.0                      | 105       | 52.3         | 50.0                                                               | 104                     | 74-127                                       | 1        | 30       |
| 1,1,2,2-Tetrachloroeth                     |                                              | 5.0 U          | 45.8         | 50.0                      | 92        | 46.1         | 50.0                                                               | 92                      | 72-122                                       | <1       | 30       |
| 1,1,2-Trichloroethane                      |                                              | 5.0 U          | 48.8         | 50.0                      | 98        | 47.4         | 50.0                                                               | 95                      | 82-121                                       | 3        | 30       |
| 1,1,2-Trichloro-1,2,2-                     | -trifluoroethane                             | 5.0 U          | 46.4         | 50.0                      | 93        | 44.0         | 50.0                                                               | 88                      | 50-147                                       | 5        | 30       |
| 1,1-Dichloroethane (1                      |                                              | 0.93 J         | 51.6         | 50.0                      | 101       | 52.2         | 50.0                                                               | 103                     | 74-132                                       | 1        | 30       |
| 1,1-Dichloroethene (1                      |                                              | 5.0 U          | 45.8         | 50.0                      | 92        | 44.9         | 50.0                                                               | 90                      | 71-118                                       | 2        | 30       |
| 1,2,3-Trichlorobenzer                      |                                              | 5.0 U          | 57.0         | 50.0                      | 114       | 58.3         | 50.0                                                               | 117                     | 59-129                                       | 2        | 30       |
| 1,2,4-Trichlorobenzei                      |                                              | 5.0 U          | 56.2         | 50.0                      | 112       | 55.3         | 50.0                                                               | 111                     | 69-122                                       | 2        | 30       |
| 1,2-Dibromo-3-chloro                       | opropane (DBCP)                              | 5.0 U          | 46.0         | 50.0                      | 92        | 45.4         | 50.0                                                               | 91                      | 37-150                                       | 1        | 30       |
| 1,2-Dibromoethane                          |                                              | 5.0 U          | 49.9         | 50.0                      | 100       | 49.2         | 50.0                                                               | 98                      | 67-127                                       | 1        | 30       |
| 1,2-Dichlorobenzene                        |                                              | 5.0 U          | 47.8         | 50.0                      | 96        | 46.9         | 50.0                                                               | 94                      | 77-120                                       | 2        | 30       |
| 1,2-Dichloroethane                         |                                              | 5.0 U          | 50.6         | 50.0                      | 101       | 50.6         | 50.0                                                               | 101                     | 68-130                                       | <1       | 30       |
| 1,2-Dichloropropane                        |                                              | 5.0 U          | 48.1<br>53.4 | 50.0<br>50.0              | 96<br>107 | 47.4<br>51.3 | 50.0<br>50.0                                                       | 95<br>103               | 79-124<br>83-121                             | 1<br>4   | 30<br>30 |
| 1,3-Dichlorobenzene<br>1,4-Dichlorobenzene |                                              | 5.0 U<br>5.0 U | 35.4<br>46.8 | 50.0<br>50.0              | 94        | 46.2         | 50.0                                                               | 92                      | 83-121<br>82-120                             | 4        | 30<br>30 |
| 1,4-Dioxane                                |                                              | 100 U          | 958          | 1000                      | 96        | 986          | 1000                                                               | 92                      | 44-154                                       | 3        | 30       |
| 2-Butanone (MEK)                           |                                              | 100 U          | 37.1         | 50.0                      | 74        | 37.3         | 50.0                                                               | 75                      | 61-137                                       | <1       | 30       |
| 2-Hexanone                                 |                                              | 10 U           | 44.0         | 50.0                      | 88        | 43.5         | 50.0                                                               | 87                      | 56-132                                       | 1        | 30       |
| 4-Methyl-2-pentanon                        | e                                            | 10 U           | 46.5         | 50.0                      | 93        | 45.6         | 50.0                                                               | 91                      | 60-141                                       | 2        | 30       |
| Acetone                                    |                                              | 10 U           | 36.8         | 50.0                      | 74        | 35.6         | 50.0                                                               | 71                      | 35-183                                       | 3        | 30       |
| Benzene                                    |                                              | 5.0 U          | 50.4         | 50.0                      | 101       | 49.7         | 50.0                                                               | 99                      | 76-129                                       | 1        | 30       |
| Bromochloromethane                         |                                              | 5.0 U          | 54.2         | 50.0                      | 108       | 55.2         | 50.0                                                               | 110                     | 80-122                                       | 2        | 30       |
| Bromodichlorometha                         | ne                                           | 5.0 U          | 50.0         | 50.0                      | 100       | 50.2         | 50.0                                                               | 100                     | 78-133                                       | <1       | 30       |
| Bromoform                                  |                                              | 5.0 U          | 52.6         | 50.0                      | 105       | 53.7         | 50.0                                                               | 107                     | 58-133                                       | 2        | 30       |
| Bromomethane                               |                                              | 5.0 U          | 60.6         | 50.0                      | 121       | 57.7         | 50.0                                                               | 115                     | 10-184                                       | 5        | 30       |
| Carbon Disulfide                           |                                              | 10 U           | 38.3         | 50.0                      | 77        | 38.5         | 50.0                                                               | 77                      | 59-140                                       | <1       | 30       |
| Carbon Tetrachloride                       |                                              | 5.0 U          | 51.2         | 50.0                      | 102       | 50.0         | 50.0                                                               | 100                     | 65-135                                       | 2        | 30       |
| Chlorobenzene                              |                                              | 5.0 U          | 49.1         | 50.0                      | 98<br>01  | 47.4         | 50.0                                                               | 95<br>95                | 76-125                                       | 3        | 30       |
| Chloroethane                               |                                              | 5.0 U          | 45.5         | 50.0                      | 91<br>06  | 42.7         | 50.0                                                               | 85                      | 48-146                                       | 6        | 30       |
| Chloroform                                 |                                              | 5.0 U<br>5.0 U | 47.9         | 50.0                      | 96        | 46.8         | 50.0                                                               | 94                      | 75-130                                       | 2        | 30       |
| Chloromethane                              |                                              | 5.0 U<br>10 U  | 55.0<br>41.6 | 50.0<br>50.0              | 110<br>83 | 54.1<br>38.5 | 50.0<br>50.0                                                       | 108<br>77               | 55-160<br>52-145                             | 2<br>8   | 30<br>30 |
| Cyclohexane<br>Dibromochlorometha          | ne                                           | 10 U<br>5.0 U  | 41.0<br>50.0 | 50.0<br>50.0              | 85<br>100 | 58.5<br>51.6 | 50.0                                                               | 103                     | 32-143<br>72-128                             | 8<br>3   | 30<br>30 |
| Dioromocniorometha                         |                                              | 5.00           | 50.0         | 50.0                      | 100       | 51.0         | 50.0                                                               | 105                     | 12-120                                       | 5        | 50       |

Results flagged with an asterisk (\*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

QA/QC Report

| Client:<br>Project:<br>Sample Matrix:                                                                                                                                                                                                                 | AECOM<br>Diebold/60718697<br>Water          | 7                                                                                                 |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                             |                                                                                              | Service Re<br>Date Colle<br>Date Recei<br>Date Analy<br>Date Extra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cted:<br>ved:<br>/zed:                                                  | R2310<br>11/29/2<br>11/29/2<br>12/6/23<br>NA                                                                                   | 23<br>23                                                                                        |                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                       |                                             |                                                                                                   | -                                                                                           | e Matrix Sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                             | •                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                         |                                                                                                                                |                                                                                                 |                                                                                 |
|                                                                                                                                                                                                                                                       |                                             | Ve                                                                                                | olatile Org                                                                                 | anic Compo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ounds by                                                                    | GC/MS                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                         |                                                                                                                                |                                                                                                 |                                                                                 |
| Sample Name:                                                                                                                                                                                                                                          | MW-06S                                      |                                                                                                   |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                             |                                                                                              | τ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | J <b>nits:</b>                                                          | ug/L                                                                                                                           |                                                                                                 |                                                                                 |
| Lab Code:                                                                                                                                                                                                                                             | R2310969-002                                |                                                                                                   |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                             |                                                                                              | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | asis:                                                                   | NA                                                                                                                             |                                                                                                 |                                                                                 |
| Analysis Method:                                                                                                                                                                                                                                      | 8260C                                       |                                                                                                   |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                             |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                         |                                                                                                                                |                                                                                                 |                                                                                 |
| Prep Method:                                                                                                                                                                                                                                          | EPA 5030C                                   |                                                                                                   |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                             |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                         |                                                                                                                                |                                                                                                 |                                                                                 |
| -                                                                                                                                                                                                                                                     |                                             |                                                                                                   | Matrix                                                                                      | Snike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                             | Dunlics                                                                                      | ate Matrix S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nike                                                                    |                                                                                                                                |                                                                                                 |                                                                                 |
|                                                                                                                                                                                                                                                       |                                             |                                                                                                   | RQ2316                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                             | -                                                                                            | 2316008-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                       |                                                                                                                                |                                                                                                 |                                                                                 |
|                                                                                                                                                                                                                                                       |                                             | Sample                                                                                            |                                                                                             | Spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                             |                                                                                              | Spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         | % Rec                                                                                                                          |                                                                                                 | RPD                                                                             |
| Analyte Name                                                                                                                                                                                                                                          |                                             | Result                                                                                            | Result                                                                                      | Amount                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | % Rec                                                                       | Result                                                                                       | Amount                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | % Rec                                                                   | Limits                                                                                                                         | RPD                                                                                             | Limit                                                                           |
| Dichlorodifluorometh                                                                                                                                                                                                                                  | nane (CFC 12)                               | 5.0 U                                                                                             | 54.4                                                                                        | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109                                                                         | 54.3                                                                                         | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109                                                                     | 49-154                                                                                                                         | <1                                                                                              | 30                                                                              |
| Dichloromethane                                                                                                                                                                                                                                       |                                             | 5.0 U                                                                                             | 49.9                                                                                        | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100                                                                         | 50.5                                                                                         | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 101                                                                     | 73-122                                                                                                                         | 1                                                                                               | 30                                                                              |
| Ethylbenzene                                                                                                                                                                                                                                          |                                             | 5.0 U                                                                                             | 49.7                                                                                        | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 99                                                                          | 47.2                                                                                         | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 94                                                                      | 72-134                                                                                                                         | 5                                                                                               | 30                                                                              |
|                                                                                                                                                                                                                                                       |                                             |                                                                                                   |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                             |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                         |                                                                                                                                |                                                                                                 |                                                                                 |
| Isopropylbenzene (Cu                                                                                                                                                                                                                                  | imene)                                      | 5.0 U                                                                                             | 49.9                                                                                        | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100                                                                         | 46.8                                                                                         | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 94                                                                      | 77-128                                                                                                                         | 7                                                                                               | 30                                                                              |
| Methyl Acetate                                                                                                                                                                                                                                        | ,                                           | 10 U                                                                                              | 26.5                                                                                        | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 53                                                                          | 26.4                                                                                         | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 53                                                                      | 77-128<br>26-121                                                                                                               | 7<br><1                                                                                         | 30                                                                              |
| Methyl Acetate<br>Methyl tert-Butyl Eth                                                                                                                                                                                                               | ,                                           | 10 U<br>5.0 U                                                                                     | 26.5<br>47.4                                                                                | 50.0<br>50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53<br>95                                                                    | 26.4<br>47.8                                                                                 | 50.0<br>50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53<br>96                                                                | 77-128<br>26-121<br>75-119                                                                                                     | 7<br><1<br><1                                                                                   | 30<br>30                                                                        |
| Methyl Acetate<br>Methyl tert-Butyl Eth<br>Methylcyclohexane                                                                                                                                                                                          | ,                                           | 10 U<br>5.0 U<br>10 U                                                                             | 26.5<br>47.4<br>41.5                                                                        | 50.0<br>50.0<br>50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 53<br>95<br>83                                                              | 26.4<br>47.8<br>38.4                                                                         | 50.0<br>50.0<br>50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 53<br>96<br>77                                                          | 77-128<br>26-121<br>75-119<br>45-146                                                                                           | 7<br><1<br><1<br>8                                                                              | 30<br>30<br>30                                                                  |
| Methyl Acetate<br>Methyl tert-Butyl Eth<br>Methylcyclohexane<br>Styrene                                                                                                                                                                               | er                                          | 10 U<br>5.0 U<br>10 U<br>5.0 U                                                                    | 26.5<br>47.4<br>41.5<br>52.8                                                                | 50.0<br>50.0<br>50.0<br>50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53<br>95<br>83<br>106                                                       | 26.4<br>47.8<br>38.4<br>50.2                                                                 | 50.0<br>50.0<br>50.0<br>50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53<br>96<br>77<br>100                                                   | 77-128<br>26-121<br>75-119<br>45-146<br>74-136                                                                                 | 7<br><1<br><1<br>8<br>5                                                                         | 30<br>30<br>30<br>30                                                            |
| Methyl Acetate<br>Methyl tert-Butyl Eth<br>Methylcyclohexane<br>Styrene<br>Tetrachloroethene (PO                                                                                                                                                      | er                                          | 10 U<br>5.0 U<br>10 U<br>5.0 U<br>5.0 U                                                           | 26.5<br>47.4<br>41.5<br>52.8<br>50.7                                                        | 50.0<br>50.0<br>50.0<br>50.0<br>50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 53<br>95<br>83<br>106<br>101                                                | 26.4<br>47.8<br>38.4<br>50.2<br>47.8                                                         | 50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53<br>96<br>77<br>100<br>96                                             | 77-128<br>26-121<br>75-119<br>45-146<br>74-136<br>72-125                                                                       | 7<br><1<br><1<br>8<br>5<br>6                                                                    | 30<br>30<br>30<br>30<br>30<br>30                                                |
| Methyl Acetate<br>Methyl tert-Butyl Eth<br>Methylcyclohexane<br>Styrene<br>Tetrachloroethene (Po<br>Toluene                                                                                                                                           | er<br>CE)                                   | 10 U<br>5.0 U<br>10 U<br>5.0 U<br>5.0 U<br>5.0 U                                                  | 26.5<br>47.4<br>41.5<br>52.8<br>50.7<br>51.9                                                | 50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53<br>95<br>83<br>106<br>101<br>104                                         | 26.4<br>47.8<br>38.4<br>50.2<br>47.8<br>49.3                                                 | 50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 53<br>96<br>77<br>100<br>96<br>99                                       | 77-128<br>26-121<br>75-119<br>45-146<br>74-136<br>72-125<br>79-119                                                             | 7<br><1<br><1<br>8<br>5<br>6<br>5                                                               | 30<br>30<br>30<br>30<br>30<br>30<br>30                                          |
| Methyl Acetate<br>Methyl tert-Butyl Eth<br>Methylcyclohexane<br>Styrene<br>Tetrachloroethene (PO<br>Toluene<br>Trichloroethene (TCE                                                                                                                   | er<br>CE)<br>E)                             | 10 U<br>5.0 U<br>10 U<br>5.0 U<br>5.0 U<br>5.0 U<br>27                                            | 26.5<br>47.4<br>41.5<br>52.8<br>50.7<br>51.9<br>82.2                                        | 50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53<br>95<br>83<br>106<br>101<br>104<br>110                                  | 26.4<br>47.8<br>38.4<br>50.2<br>47.8<br>49.3<br>79.2                                         | 50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53<br>96<br>77<br>100<br>96<br>99<br>104                                | 77-128<br>26-121<br>75-119<br>45-146<br>74-136<br>72-125<br>79-119<br>74-122                                                   | 7<br><1<br><1<br>8<br>5<br>6<br>5<br>4                                                          | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30                              |
| Methyl Acetate<br>Methyl tert-Butyl Eth<br>Methylcyclohexane<br>Styrene<br>Tetrachloroethene (PC<br>Toluene<br>Trichloroethene (TCE<br>Trichlorofluorometha                                                                                           | er<br>CE)<br>E)                             | 10 U<br>5.0 U<br>10 U<br>5.0 U<br>5.0 U<br>5.0 U<br>27<br>5.0 U                                   | 26.5<br>47.4<br>41.5<br>52.8<br>50.7<br>51.9<br>82.2<br>51.6                                | 50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53<br>95<br>83<br>106<br>101<br>104<br>110<br>103                           | 26.4<br>47.8<br>38.4<br>50.2<br>47.8<br>49.3<br>79.2<br>49.6                                 | 50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53<br>96<br>77<br>100<br>96<br>99<br>104<br>99                          | 77-128<br>26-121<br>75-119<br>45-146<br>74-136<br>72-125<br>79-119<br>74-122<br>71-136                                         | 7<br><1<br><1<br>8<br>5<br>6<br>5<br>4<br>4                                                     | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30                        |
| Methyl Acetate<br>Methyl tert-Butyl Eth<br>Methylcyclohexane<br>Styrene<br>Tetrachloroethene (PC<br>Toluene<br>Trichloroethene (TCE<br>Trichlorofluorometha<br>Vinyl Chloride                                                                         | er<br>CE)<br>E)<br>ne (CFC 11)              | 10 U<br>5.0 U<br>10 U<br>5.0 U<br>5.0 U<br>5.0 U<br>27<br>5.0 U<br>1.8 J                          | 26.5<br>47.4<br>41.5<br>52.8<br>50.7<br>51.9<br>82.2<br>51.6<br>49.2                        | 50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53<br>95<br>83<br>106<br>101<br>104<br>110<br>103<br>95                     | 26.4<br>47.8<br>38.4<br>50.2<br>47.8<br>49.3<br>79.2<br>49.6<br>47.6                         | 50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53<br>96<br>77<br>100<br>96<br>99<br>104<br>99<br>92                    | 77-128<br>26-121<br>75-119<br>45-146<br>74-136<br>72-125<br>79-119<br>74-122<br>71-136<br>74-159                               | 7<br><1<br><1<br>8<br>5<br>6<br>5<br>4<br>4<br>3                                                | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30                        |
| Methyl Acetate<br>Methyl tert-Butyl Eth<br>Methylcyclohexane<br>Styrene<br>Tetrachloroethene (PC<br>Toluene<br>Trichloroethene (TCH<br>Trichlorofluorometha<br>Vinyl Chloride<br>cis-1,2-Dichloroethen                                                | er<br>CE)<br>E)<br>ne (CFC 11)<br>ee        | 10 U<br>5.0 U<br>10 U<br>5.0 U<br>5.0 U<br>5.0 U<br>27<br>5.0 U<br>1.8 J<br>9.6                   | 26.5<br>47.4<br>41.5<br>52.8<br>50.7<br>51.9<br>82.2<br>51.6<br>49.2<br>57.5                | $ \begin{array}{r} 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 5$ | 53<br>95<br>83<br>106<br>101<br>104<br>110<br>103<br>95<br>96               | 26.4<br>47.8<br>38.4<br>50.2<br>47.8<br>49.3<br>79.2<br>49.6<br>47.6<br>57.1                 | $ \begin{array}{r} 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 5$ | 53<br>96<br>77<br>100<br>96<br>99<br>104<br>99<br>92<br>92<br>95        | 77-128<br>26-121<br>75-119<br>45-146<br>74-136<br>72-125<br>79-119<br>74-122<br>71-136<br>74-159<br>77-127                     | $ \begin{array}{c} 7 \\ <1 \\ <1 \\ 8 \\ 5 \\ 6 \\ 5 \\ 4 \\ 4 \\ 3 \\ <1 \end{array} $         | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30            |
| Methyl Acetate<br>Methyl tert-Butyl Eth<br>Methylcyclohexane<br>Styrene<br>Tetrachloroethene (PC<br>Toluene<br>Trichloroethene (TCH<br>Trichlorofluorometha<br>Vinyl Chloride<br>cis-1,2-Dichloroethen<br>cis-1,3-Dichloroprope                       | er<br>CE)<br>E)<br>ne (CFC 11)<br>ee        | 10 U<br>5.0 U<br>10 U<br>5.0 U<br>5.0 U<br>5.0 U<br>27<br>5.0 U<br>1.8 J<br>9.6<br>5.0 U          | 26.5<br>47.4<br>41.5<br>52.8<br>50.7<br>51.9<br>82.2<br>51.6<br>49.2<br>57.5<br>51.3        | $ \begin{array}{r} 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 5$ | 53<br>95<br>83<br>106<br>101<br>104<br>110<br>103<br>95<br>96<br>103        | 26.4<br>47.8<br>38.4<br>50.2<br>47.8<br>49.3<br>79.2<br>49.6<br>47.6<br>57.1<br>50.1         | $ \begin{array}{r} 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 5$ | 53<br>96<br>77<br>100<br>96<br>99<br>104<br>99<br>92<br>95<br>100       | 77-128<br>26-121<br>75-119<br>45-146<br>74-136<br>72-125<br>79-119<br>74-122<br>71-136<br>74-159<br>77-127<br>52-134           | $ \begin{array}{c} 7 \\ <1 \\ <1 \\ 8 \\ 5 \\ 6 \\ 5 \\ 4 \\ 4 \\ 3 \\ <1 \\ 2 \\ \end{array} $ | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30      |
| Methyl Acetate<br>Methyl tert-Butyl Eth<br>Methylcyclohexane<br>Styrene<br>Tetrachloroethene (PC<br>Toluene<br>Trichloroethene (TCE<br><u>Trichlorofluorometha</u><br>Vinyl Chloride<br>cis-1,2-Dichloroethen<br>cis-1,3-Dichloroprope<br>m,p-Xylenes | er<br>CE)<br>E)<br>ne (CFC 11)<br>ee        | 10 U<br>5.0 U<br>10 U<br>5.0 U<br>5.0 U<br>5.0 U<br>27<br>5.0 U<br>1.8 J<br>9.6<br>5.0 U<br>5.0 U | 26.5<br>47.4<br>41.5<br>52.8<br>50.7<br>51.9<br>82.2<br>51.6<br>49.2<br>57.5<br>51.3<br>102 | $ \begin{array}{r} 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 100 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 53<br>95<br>83<br>106<br>101<br>104<br>110<br>103<br>95<br>96<br>103<br>102 | 26.4<br>47.8<br>38.4<br>50.2<br>47.8<br>49.3<br>79.2<br>49.6<br>47.6<br>57.1<br>50.1<br>97.4 | $ \begin{array}{r} 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 100 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 53<br>96<br>77<br>100<br>96<br>99<br>104<br>99<br>92<br>95<br>100<br>97 | 77-128<br>26-121<br>75-119<br>45-146<br>74-136<br>72-125<br>79-119<br>74-122<br>71-136<br>74-159<br>77-127<br>52-134<br>80-126 | $ \begin{array}{c} 7 \\ <1 \\ 8 \\ 5 \\ 6 \\ 5 \\ 4 \\ 4 \\ 3 \\ <1 \\ 2 \\ 5 \\ \end{array} $  | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>3 |
| Methyl Acetate<br>Methyl tert-Butyl Eth<br>Methylcyclohexane<br>Styrene<br>Tetrachloroethene (PC<br>Toluene<br>Trichloroethene (TCH<br>Trichlorofluorometha<br>Vinyl Chloride<br>cis-1,2-Dichloroethen<br>cis-1,3-Dichloroprope                       | er<br>CE)<br>B)<br>ne (CFC 11)<br>ee<br>ene | 10 U<br>5.0 U<br>10 U<br>5.0 U<br>5.0 U<br>5.0 U<br>27<br>5.0 U<br>1.8 J<br>9.6<br>5.0 U          | 26.5<br>47.4<br>41.5<br>52.8<br>50.7<br>51.9<br>82.2<br>51.6<br>49.2<br>57.5<br>51.3        | $ \begin{array}{r} 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 5$ | 53<br>95<br>83<br>106<br>101<br>104<br>110<br>103<br>95<br>96<br>103        | 26.4<br>47.8<br>38.4<br>50.2<br>47.8<br>49.3<br>79.2<br>49.6<br>47.6<br>57.1<br>50.1         | $ \begin{array}{r} 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 5$ | 53<br>96<br>77<br>100<br>96<br>99<br>104<br>99<br>92<br>95<br>100       | 77-128<br>26-121<br>75-119<br>45-146<br>74-136<br>72-125<br>79-119<br>74-122<br>71-136<br>74-159<br>77-127<br>52-134           | $ \begin{array}{c} 7 \\ <1 \\ <1 \\ 8 \\ 5 \\ 6 \\ 5 \\ 4 \\ 4 \\ 3 \\ <1 \\ 2 \\ \end{array} $ | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30      |

Results flagged with an asterisk (\*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Analytical Report

Client:AECOMService Request:R2310969Project:Diebold/60718697Date Collectet:NASample Matrix:WaterDate Received:NASample Name:Method BlankUnits:ug/LRQ2315982-04Basis:NA

| Analysis Method: | 8260C     |
|------------------|-----------|
| Prep Method:     | EPA 5030C |

| Analyte Name                          | Result | MRL | MDL  | Dil. | Date Analyzed  | Q |
|---------------------------------------|--------|-----|------|------|----------------|---|
| 1,1,1-Trichloroethane (TCA)           | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 17:42 |   |
| 1,1,2,2-Tetrachloroethane             | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 17:42 |   |
| 1,1,2-Trichloroethane                 | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 17:42 |   |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 17:42 |   |
| 1,1-Dichloroethane (1,1-DCA)          | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 17:42 |   |
| 1,1-Dichloroethene (1,1-DCE)          | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 17:42 |   |
| 1,2,3-Trichlorobenzene                | 5.0 U  | 5.0 | 0.25 | 1    | 12/05/23 17:42 |   |
| 1,2,4-Trichlorobenzene                | 5.0 U  | 5.0 | 0.34 | 1    | 12/05/23 17:42 |   |
| 1,2-Dibromo-3-chloropropane (DBCP)    | 5.0 U  | 5.0 | 0.45 | 1    | 12/05/23 17:42 |   |
| 1,2-Dibromoethane                     | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 17:42 |   |
| 1,2-Dichlorobenzene                   | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 17:42 |   |
| 1,2-Dichloroethane                    | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 17:42 |   |
| 1,2-Dichloropropane                   | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 17:42 |   |
| 1,3-Dichlorobenzene                   | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 17:42 |   |
| 1,4-Dichlorobenzene                   | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 17:42 |   |
| 1,4-Dioxane                           | 100 U  | 100 | 13   | 1    | 12/05/23 17:42 |   |
| 2-Butanone (MEK)                      | 10 U   | 10  | 0.78 | 1    | 12/05/23 17:42 |   |
| 2-Hexanone                            | 10 U   | 10  | 0.20 | 1    | 12/05/23 17:42 |   |
| 4-Methyl-2-pentanone                  | 10 U   | 10  | 0.20 | 1    | 12/05/23 17:42 |   |
| Acetone                               | 10 U   | 10  | 5.0  | 1    | 12/05/23 17:42 |   |
| Benzene                               | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 17:42 |   |
| Bromochloromethane                    | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 17:42 |   |
| Bromodichloromethane                  | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 17:42 |   |
| Bromoform                             | 5.0 U  | 5.0 | 0.25 | 1    | 12/05/23 17:42 |   |
| Bromomethane                          | 5.0 U  | 5.0 | 0.70 | 1    | 12/05/23 17:42 |   |
| Carbon Disulfide                      | 10 U   | 10  | 0.42 | 1    | 12/05/23 17:42 |   |
| Carbon Tetrachloride                  | 5.0 U  | 5.0 | 0.34 | 1    | 12/05/23 17:42 |   |
| Chlorobenzene                         | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 17:42 |   |
| Chloroethane                          | 5.0 U  | 5.0 | 0.23 | 1    | 12/05/23 17:42 |   |
| Chloroform                            | 5.0 U  | 5.0 | 0.51 | 1    | 12/05/23 17:42 |   |
| Chloromethane                         | 5.0 U  | 5.0 | 0.80 | 1    | 12/05/23 17:42 |   |
| Cyclohexane                           | 10 U   | 10  | 0.60 | 1    | 12/05/23 17:42 |   |
| Dibromochloromethane                  | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 17:42 |   |
| Dichlorodifluoromethane (CFC 12)      | 5.0 U  | 5.0 | 0.21 | 1    | 12/05/23 17:42 |   |
| Dichloromethane                       | 5.0 U  | 5.0 | 0.65 | 1    | 12/05/23 17:42 |   |
| Ethylbenzene                          | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 17:42 |   |
| Isopropylbenzene (Cumene)             | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 17:42 |   |
| Methyl Acetate                        | 10 U   | 10  | 0.87 | 1    | 12/05/23 17:42 |   |
| Methyl tert-Butyl Ether               | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 17:42 |   |
| Methylcyclohexane                     | 10 U   | 10  | 0.20 | 1    | 12/05/23 17:42 |   |
| Styrene                               | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 17:42 |   |

Analytical Report **Client:** AECOM Service Request: R2310969 **Project:** Diebold/60718697 Date Collected: NA Sample Matrix: Water Date Received: NA Sample Name: Method Blank Units: ug/L Lab Code: RQ2315982-04 Basis: NA

| Analysis Method: | 8260C     |
|------------------|-----------|
| Prep Method:     | EPA 5030C |

| Analyte Name                    | Result | MRL | MDL  | Dil. | Date Analyzed  | Q |
|---------------------------------|--------|-----|------|------|----------------|---|
| Tetrachloroethene (PCE)         | 5.0 U  | 5.0 | 0.21 | 1    | 12/05/23 17:42 |   |
| Toluene                         | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 17:42 |   |
| Trichloroethene (TCE)           | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 17:42 |   |
| Trichlorofluoromethane (CFC 11) | 5.0 U  | 5.0 | 0.24 | 1    | 12/05/23 17:42 |   |
| Vinyl Chloride                  | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 17:42 |   |
| cis-1,2-Dichloroethene          | 5.0 U  | 5.0 | 0.23 | 1    | 12/05/23 17:42 |   |
| cis-1,3-Dichloropropene         | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 17:42 |   |
| m,p-Xylenes                     | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 17:42 |   |
| o-Xylene                        | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 17:42 |   |
| trans-1,2-Dichloroethene        | 5.0 U  | 5.0 | 0.20 | 1    | 12/05/23 17:42 |   |
| trans-1,3-Dichloropropene       | 5.0 U  | 5.0 | 0.23 | 1    | 12/05/23 17:42 |   |

| Surrogate Name       | % Rec | <b>Control Limits</b> | Date Analyzed  | Q |
|----------------------|-------|-----------------------|----------------|---|
| 4-Bromofluorobenzene | 93    | 85 - 122              | 12/05/23 17:42 |   |
| Dibromofluoromethane | 98    | 80 - 116              | 12/05/23 17:42 |   |
| Toluene-d8           | 101   | 87 - 121              | 12/05/23 17:42 |   |

Analytical Report

Client:AECOMService Request:R2310969Project:Diebold/60718697Date Collectet:NASample Matrix:WaterDate Received:NASample Name:Method BlankUnits:ug/LRQ2316008-04Basis:NA

| Analysis Method: | 8260C     |
|------------------|-----------|
| Prep Method:     | EPA 5030C |

| Analyte Name                          | Result | MRL | MDL  | Dil. | Date Analyzed  | Q        |
|---------------------------------------|--------|-----|------|------|----------------|----------|
| 1,1,1-Trichloroethane (TCA)           | 5.0 U  | 5.0 | 0.20 | 1    | 12/06/23 11:49 |          |
| 1,1,2,2-Tetrachloroethane             | 5.0 U  | 5.0 | 0.20 | 1    | 12/06/23 11:49 |          |
| 1,1,2-Trichloroethane                 | 5.0 U  | 5.0 | 0.20 | 1    | 12/06/23 11:49 |          |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 5.0 U  | 5.0 | 0.20 | 1    | 12/06/23 11:49 |          |
| 1,1-Dichloroethane (1,1-DCA)          | 5.0 U  | 5.0 | 0.20 | 1    | 12/06/23 11:49 |          |
| 1,1-Dichloroethene (1,1-DCE)          | 5.0 U  | 5.0 | 0.20 | 1    | 12/06/23 11:49 |          |
| 1,2,3-Trichlorobenzene                | 5.0 U  | 5.0 | 0.25 | 1    | 12/06/23 11:49 |          |
| 1,2,4-Trichlorobenzene                | 5.0 U  | 5.0 | 0.34 | 1    | 12/06/23 11:49 |          |
| 1,2-Dibromo-3-chloropropane (DBCP)    | 5.0 U  | 5.0 | 0.45 | 1    | 12/06/23 11:49 |          |
| 1,2-Dibromoethane                     | 5.0 U  | 5.0 | 0.20 | 1    | 12/06/23 11:49 |          |
| 1,2-Dichlorobenzene                   | 5.0 U  | 5.0 | 0.20 | 1    | 12/06/23 11:49 |          |
| 1,2-Dichloroethane                    | 5.0 U  | 5.0 | 0.20 | 1    | 12/06/23 11:49 |          |
| 1,2-Dichloropropane                   | 5.0 U  | 5.0 | 0.20 | 1    | 12/06/23 11:49 |          |
| 1,3-Dichlorobenzene                   | 5.0 U  | 5.0 | 0.20 | 1    | 12/06/23 11:49 |          |
| 1,4-Dichlorobenzene                   | 5.0 U  | 5.0 | 0.20 | 1    | 12/06/23 11:49 |          |
| 1,4-Dioxane                           | 100 U  | 100 | 13   | 1    | 12/06/23 11:49 |          |
| 2-Butanone (MEK)                      | 10 U   | 10  | 0.78 | 1    | 12/06/23 11:49 |          |
| 2-Hexanone                            | 10 U   | 10  | 0.20 | 1    | 12/06/23 11:49 |          |
| 4-Methyl-2-pentanone                  | 10 U   | 10  | 0.20 | 1    | 12/06/23 11:49 |          |
| Acetone                               | 10 U   | 10  | 5.0  | 1    | 12/06/23 11:49 |          |
| Benzene                               | 5.0 U  | 5.0 | 0.20 | 1    | 12/06/23 11:49 |          |
| Bromochloromethane                    | 5.0 U  | 5.0 | 0.20 | 1    | 12/06/23 11:49 |          |
| Bromodichloromethane                  | 5.0 U  | 5.0 | 0.20 | 1    | 12/06/23 11:49 |          |
| Bromoform                             | 5.0 U  | 5.0 | 0.25 | 1    | 12/06/23 11:49 |          |
| Bromomethane                          | 5.0 U  | 5.0 | 0.70 | 1    | 12/06/23 11:49 |          |
| Carbon Disulfide                      | 10 U   | 10  | 0.42 | 1    | 12/06/23 11:49 |          |
| Carbon Tetrachloride                  | 5.0 U  | 5.0 | 0.34 | 1    | 12/06/23 11:49 |          |
| Chlorobenzene                         | 5.0 U  | 5.0 | 0.20 | 1    | 12/06/23 11:49 |          |
| Chloroethane                          | 5.0 U  | 5.0 | 0.23 | 1    | 12/06/23 11:49 |          |
| Chloroform                            | 5.0 U  | 5.0 | 0.51 | 1    | 12/06/23 11:49 |          |
| Chloromethane                         | 5.0 U  | 5.0 | 0.80 | 1    | 12/06/23 11:49 | <u> </u> |
| Cyclohexane                           | 10 U   | 10  | 0.60 | 1    | 12/06/23 11:49 |          |
| Dibromochloromethane                  | 5.0 U  | 5.0 | 0.20 | 1    | 12/06/23 11:49 |          |
| Dichlorodifluoromethane (CFC 12)      | 5.0 U  | 5.0 | 0.21 | 1    | 12/06/23 11:49 |          |
| Dichloromethane                       | 5.0 U  | 5.0 | 0.65 | 1    | 12/06/23 11:49 |          |
| Ethylbenzene                          | 5.0 U  | 5.0 | 0.20 | 1    | 12/06/23 11:49 |          |
| Isopropylbenzene (Cumene)             | 5.0 U  | 5.0 | 0.20 | 1    | 12/06/23 11:49 |          |
| Methyl Acetate                        | 10 U   | 10  | 0.87 | 1    | 12/06/23 11:49 |          |
| Methyl tert-Butyl Ether               | 5.0 U  | 5.0 | 0.20 | 1    | 12/06/23 11:49 |          |
| Methylcyclohexane                     | 10 U   | 10  | 0.20 | 1    | 12/06/23 11:49 |          |
| Styrene                               | 5.0 U  | 5.0 | 0.20 | 1    | 12/06/23 11:49 |          |
| •                                     | _      |     |      |      |                |          |

Analytical Report **Client:** AECOM Service Request: R2310969 **Project:** Diebold/60718697 Date Collected: NA Sample Matrix: Water Date Received: NA Sample Name: Method Blank Units: ug/L Lab Code: RQ2316008-04 Basis: NA

| Analysis Method: | 8260C     |
|------------------|-----------|
| Prep Method:     | EPA 5030C |

| Analyte Name                    | Result | MRL | MDL  | Dil. | Date Analyzed  | Q |
|---------------------------------|--------|-----|------|------|----------------|---|
| Tetrachloroethene (PCE)         | 5.0 U  | 5.0 | 0.21 | 1    | 12/06/23 11:49 |   |
| Toluene                         | 5.0 U  | 5.0 | 0.20 | 1    | 12/06/23 11:49 |   |
| Trichloroethene (TCE)           | 5.0 U  | 5.0 | 0.20 | 1    | 12/06/23 11:49 |   |
| Trichlorofluoromethane (CFC 11) | 5.0 U  | 5.0 | 0.24 | 1    | 12/06/23 11:49 |   |
| Vinyl Chloride                  | 5.0 U  | 5.0 | 0.20 | 1    | 12/06/23 11:49 |   |
| cis-1,2-Dichloroethene          | 5.0 U  | 5.0 | 0.23 | 1    | 12/06/23 11:49 |   |
| cis-1,3-Dichloropropene         | 5.0 U  | 5.0 | 0.20 | 1    | 12/06/23 11:49 |   |
| m,p-Xylenes                     | 5.0 U  | 5.0 | 0.20 | 1    | 12/06/23 11:49 |   |
| o-Xylene                        | 5.0 U  | 5.0 | 0.20 | 1    | 12/06/23 11:49 |   |
| trans-1,2-Dichloroethene        | 5.0 U  | 5.0 | 0.20 | 1    | 12/06/23 11:49 |   |
| trans-1,3-Dichloropropene       | 5.0 U  | 5.0 | 0.23 | 1    | 12/06/23 11:49 |   |

| Surrogate Name       | % Rec | <b>Control Limits</b> | Date Analyzed  | Q |
|----------------------|-------|-----------------------|----------------|---|
| 4-Bromofluorobenzene | 93    | 85 - 122              | 12/06/23 11:49 |   |
| Dibromofluoromethane | 99    | 80 - 116              | 12/06/23 11:49 |   |
| Toluene-d8           | 98    | 87 - 121              | 12/06/23 11:49 |   |

QA/QC Report

Client: Project: Sample Matrix: AECOM Diebold/60718697 Water

#### **Service Request:** R2310969 **Date Analyzed:** 12/05/23

#### Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

#### Lab Control Sample RQ2315982-03

| Analyte Name                          | Analytical<br>Method | Result | Spike Amount | % Rec             | % Rec Limits  |
|---------------------------------------|----------------------|--------|--------------|-------------------|---------------|
| 1,1,1-Trichloroethane (TCA)           | 8260C                | 19.3   | 20.0         | 97                | 75-125        |
| 1,1,2,2-Tetrachloroethane             | 8260C                | 18.3   | 20.0         | 91                | 78-126        |
| 1,1,2-Trichloroethane                 | 8260C                | 18.5   | 20.0         | 92                | 82-121        |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 8260C                | 18.9   | 20.0         | 95                | 67-124        |
| 1,1-Dichloroethane (1,1-DCA)          | 8260C                | 19.3   | 20.0         | 96                | 80-124        |
| 1,1-Dichloroethene (1,1-DCE)          | 8260C                | 17.6   | 20.0         | 88                | 69-142        |
| 1,2,3-Trichlorobenzene                | 8260C                | 23.3   | 20.0         | 117               | 67-136        |
| 1,2,4-Trichlorobenzene                | 8260C                | 22.2   | 20.0         | 111               | 75-132        |
| 1,2-Dibromo-3-chloropropane (DBCP)    | 8260C                | 17.4   | 20.0         | 87                | 55-136        |
| 1,2-Dibromoethane                     | 8260C                | 19.3   | 20.0         | 97                | 82-127        |
| 1,2-Dichlorobenzene                   | 8260C                | 18.8   | 20.0         | 94                | 80-119        |
| 1,2-Dichloroethane                    | 8260C                | 19.6   | 20.0         | 98                | 71-127        |
| 1,2-Dichloropropane                   | 8260C                | 18.1   | 20.0         | 91                | 80-119        |
| 1,3-Dichlorobenzene                   | 8260C                | 20.4   | 20.0         | 102               | 83-121        |
| 1,4-Dichlorobenzene                   | 8260C                | 18.2   | 20.0         | 91                | 79-119        |
| 1,4-Dioxane                           | 8260C                | 352    | 400          | 88                | 44-154        |
| 2-Butanone (MEK)                      | 8260C                | 14.2   | 20.0         | 71                | 61-137        |
| 2-Hexanone                            | 8260C                | 17.0   | 20.0         | 85                | 63-124        |
| 4-Methyl-2-pentanone                  | 8260C                | 17.5   | 20.0         | 87                | 66-124        |
| Acetone                               | 8260C                | 14.3   | 20.0         | 71                | 40-161        |
| Benzene                               | 8260C                | 19.0   | 20.0         | 95                | 79-119        |
| Bromochloromethane                    | 8260C                | 21.3   | 20.0         | 106               | 81-126        |
| Bromodichloromethane                  | 8260C                | 18.5   | 20.0         | 93                | 81-123        |
| Bromoform                             | 8260C                | 19.4   | 20.0         | 97                | 65-146        |
| Bromomethane                          | 8260C                | 18.3   | 20.0         | 91                | 42-166        |
| Carbon Disulfide                      | 8260C                | 15.2   | 20.0         | 76                | 66-128        |
| Carbon Tetrachloride                  | 8260C                | 18.6   | 20.0         | 93                | 70-127        |
| Chlorobenzene                         | 8260C                | 18.6   | 20.0         | 93                | 80-121        |
| Chloroethane                          | 8260C                | 16.4   | 20.0         | 82                | 62-131        |
| Chloroform                            | 8260C                | 18.3   | 20.0         | 91                | 79-120        |
| Chloromethane                         | 8260C                | 21.3   | 20.0         | 106               | 72-179        |
| Cyclohexane                           | 8260C                | 17.1   | 20.0         | 85                | 69-120        |
| Dibromochloromethane                  | 8260C                | 18.9   | 20.0         | 94                | 72-128        |
| Printed 12/7/2023 6:05:25 PM          |                      |        | Superset I   | Reference:23-0000 | 682706 rev 00 |

QA/QC Report

Client: Project: Sample Matrix: AECOM Diebold/60718697 Water

#### **Service Request:** R2310969 **Date Analyzed:** 12/05/23

#### Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

#### Lab Control Sample RQ2315982-03

|                                  | Analytical | <b>D</b> |              | 0 ( D |              |
|----------------------------------|------------|----------|--------------|-------|--------------|
| Analyte Name                     | Method     | Result   | Spike Amount | % Rec | % Rec Limits |
| Dichlorodifluoromethane (CFC 12) | 8260C      | 24.2     | 20.0         | 121   | 59-155       |
| Dichloromethane                  | 8260C      | 19.9     | 20.0         | 99    | 73-122       |
| Ethylbenzene                     | 8260C      | 18.2     | 20.0         | 91    | 76-120       |
| Isopropylbenzene (Cumene)        | 8260C      | 18.0     | 20.0         | 90    | 77-128       |
| Methyl Acetate                   | 8260C      | 12.2     | 20.0         | 61    | 61-133       |
| Methyl tert-Butyl Ether          | 8260C      | 18.8     | 20.0         | 94    | 75-118       |
| Methylcyclohexane                | 8260C      | 17.7     | 20.0         | 88    | 51-129       |
| Styrene                          | 8260C      | 19.1     | 20.0         | 95    | 80-124       |
| Tetrachloroethene (PCE)          | 8260C      | 18.7     | 20.0         | 94    | 72-125       |
| Toluene                          | 8260C      | 18.8     | 20.0         | 94    | 79-119       |
| Trichloroethene (TCE)            | 8260C      | 19.8     | 20.0         | 99    | 74-122       |
| Trichlorofluoromethane (CFC 11)  | 8260C      | 20.0     | 20.0         | 100   | 71-136       |
| Vinyl Chloride                   | 8260C      | 18.4     | 20.0         | 92    | 74-159       |
| cis-1,2-Dichloroethene           | 8260C      | 18.4     | 20.0         | 92    | 80-121       |
| cis-1,3-Dichloropropene          | 8260C      | 19.6     | 20.0         | 98    | 77-122       |
| m,p-Xylenes                      | 8260C      | 36.8     | 40.0         | 92    | 80-126       |
| o-Xylene                         | 8260C      | 18.2     | 20.0         | 91    | 79-123       |
| trans-1,2-Dichloroethene         | 8260C      | 18.2     | 20.0         | 91    | 73-118       |
| trans-1,3-Dichloropropene        | 8260C      | 20.1     | 20.0         | 100   | 71-133       |

QA/QC Report

Client: Project: Sample Matrix: AECOM Diebold/60718697 Water

#### **Service Request:** R2310969 **Date Analyzed:** 12/06/23

#### Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

#### Lab Control Sample RQ2316008-03

| Analyte Name                          | Analytical<br>Method | Result                                  | Spike Amount | % Rec | % Rec Limits |  |
|---------------------------------------|----------------------|-----------------------------------------|--------------|-------|--------------|--|
| 1,1,1-Trichloroethane (TCA)           | 8260C                | 19.6                                    | 20.0         | 98    | 75-125       |  |
| 1,1,2,2-Tetrachloroethane             | 8260C                | 17.8                                    | 20.0         | 89    | 78-126       |  |
| 1,1,2-Trichloroethane                 | 8260C                | 18.5                                    | 20.0         | 92    | 82-121       |  |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 8260C                | 19.5                                    | 20.0         | 98    | 67-124       |  |
| 1,1-Dichloroethane (1,1-DCA)          | 8260C                | 19.3                                    | 20.0         | 97    | 80-124       |  |
| 1,1-Dichloroethene (1,1-DCE)          | 8260C                | 17.9                                    | 20.0         | 89    | 69-142       |  |
| 1,2,3-Trichlorobenzene                | 8260C                | 23.4                                    | 20.0         | 117   | 67-136       |  |
| 1,2,4-Trichlorobenzene                | 8260C                | 22.1                                    | 20.0         | 111   | 75-132       |  |
| 1,2-Dibromo-3-chloropropane (DBCP)    | 8260C                | 16.7                                    | 20.0         | 84    | 55-136       |  |
| 1,2-Dibromoethane                     | 8260C                | 19.1                                    | 20.0         | 96    | 82-127       |  |
| 1,2-Dichlorobenzene                   | 8260C                | 18.6                                    | 20.0         | 93    | 80-119       |  |
| 1,2-Dichloroethane                    | 8260C                | 19.7                                    | 20.0         | 99    | 71-127       |  |
| 1,2-Dichloropropane                   | 8260C                | 19.1                                    | 20.0         | 95    | 80-119       |  |
| 1,3-Dichlorobenzene                   | 8260C                | 20.5                                    | 20.0         | 103   | 83-121       |  |
| 1,4-Dichlorobenzene                   | 8260C                | 18.7                                    | 20.0         | 93    | 79-119       |  |
| 1,4-Dioxane                           | 8260C                | 372                                     | 400          | 93    | 44-154       |  |
| 2-Butanone (MEK)                      | 8260C                | 16.1                                    | 20.0         | 81    | 61-137       |  |
| 2-Hexanone                            | 8260C                | 18.0                                    | 20.0         | 90    | 63-124       |  |
| 4-Methyl-2-pentanone                  | 8260C                | 18.6                                    | 20.0         | 93    | 66-124       |  |
| Acetone                               | 8260C                | 15.0                                    | 20.0         | 75    | 40-161       |  |
| Benzene                               | 8260C                | 19.3                                    | 20.0         | 96    | 79-119       |  |
| Bromochloromethane                    | 8260C                | 20.8                                    | 20.0         | 104   | 81-126       |  |
| Bromodichloromethane                  | 8260C                | 19.0                                    | 20.0         | 95    | 81-123       |  |
| Bromoform                             | 8260C                | 19.1                                    | 20.0         | 96    | 65-146       |  |
| Bromomethane                          | 8260C                | 17.2                                    | 20.0         | 86    | 42-166       |  |
| Carbon Disulfide                      | 8260C                | 15.8                                    | 20.0         | 79    | 66-128       |  |
| Carbon Tetrachloride                  | 8260C                | 19.2                                    | 20.0         | 96    | 70-127       |  |
| Chlorobenzene                         | 8260C                | 18.7                                    | 20.0         | 94    | 80-121       |  |
| Chloroethane                          | 8260C                | 16.8                                    | 20.0         | 84    | 62-131       |  |
| Chloroform                            | 8260C                | 18.2                                    | 20.0         | 91    | 79-120       |  |
| Chloromethane                         | 8260C                | 21.7                                    | 20.0         | 108   | 72-179       |  |
| Cyclohexane                           | 8260C                | 15.4                                    | 20.0         | 77    | 69-120       |  |
| Dibromochloromethane                  | 8260C                | 18.7                                    | 20.0         | 93    | 72-128       |  |
| Printed 12/7/2023 6:05:27 PM          |                      | Superset Reference:23-0000682706 rev 00 |              |       |              |  |

QA/QC Report

Client: Project: Sample Matrix: AECOM Diebold/60718697 Water

#### **Service Request:** R2310969 **Date Analyzed:** 12/06/23

#### Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

#### Lab Control Sample RQ2316008-03

|                                  | Analytical | D14    | G 1 A 4      | 0/ D  | 0/ D I       |
|----------------------------------|------------|--------|--------------|-------|--------------|
| Analyte Name                     | Method     | Result | Spike Amount | % Rec | % Rec Limits |
| Dichlorodifluoromethane (CFC 12) | 8260C      | 24.1   | 20.0         | 121   | 59-155       |
| Dichloromethane                  | 8260C      | 19.7   | 20.0         | 99    | 73-122       |
| Ethylbenzene                     | 8260C      | 18.8   | 20.0         | 94    | 76-120       |
| Isopropylbenzene (Cumene)        | 8260C      | 18.7   | 20.0         | 93    | 77-128       |
| Methyl Acetate                   | 8260C      | 11.8   | 20.0         | 59 *  | 61-133       |
| Methyl tert-Butyl Ether          | 8260C      | 18.7   | 20.0         | 94    | 75-118       |
| Methylcyclohexane                | 8260C      | 15.7   | 20.0         | 78    | 51-129       |
| Styrene                          | 8260C      | 19.3   | 20.0         | 97    | 80-124       |
| Tetrachloroethene (PCE)          | 8260C      | 19.4   | 20.0         | 97    | 72-125       |
| Toluene                          | 8260C      | 19.2   | 20.0         | 96    | 79-119       |
| Trichloroethene (TCE)            | 8260C      | 20.0   | 20.0         | 100   | 74-122       |
| Trichlorofluoromethane (CFC 11)  | 8260C      | 20.6   | 20.0         | 103   | 71-136       |
| Vinyl Chloride                   | 8260C      | 18.6   | 20.0         | 93    | 74-159       |
| cis-1,2-Dichloroethene           | 8260C      | 18.4   | 20.0         | 92    | 80-121       |
| cis-1,3-Dichloropropene          | 8260C      | 19.5   | 20.0         | 97    | 77-122       |
| m,p-Xylenes                      | 8260C      | 37.8   | 40.0         | 94    | 80-126       |
| o-Xylene                         | 8260C      | 18.6   | 20.0         | 93    | 79-123       |
| trans-1,2-Dichloroethene         | 8260C      | 19.1   | 20.0         | 96    | 73-118       |
| trans-1,3-Dichloropropene        | 8260C      | 19.8   | 20.0         | 99    | 71-133       |

## ATTACHMENT F

Institutional and Engineering Controls Certification Form



#### Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form



| Sit                                                                                                                                                                                                                                                 | te No.                                                                                                                                                                           | 835008                                            | Sit              | te Details        |               | Во   | x 1 |     |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------|-------------------|---------------|------|-----|-----|--|
| Sit                                                                                                                                                                                                                                                 | te Name                                                                                                                                                                          | Griffin Technology,                               | Inc. – OFF-SIT   | E                 |               |      |     |     |  |
| Cit<br>Co                                                                                                                                                                                                                                           | Site Address: 6132 Victor Manchester Road Zip Code: 14425<br>City/Town: Farmington<br>County: Ontario<br>Site Acreage: 3.6                                                       |                                                   |                  |                   |               |      |     |     |  |
| Re                                                                                                                                                                                                                                                  | Reporting Period: December 31, 2021 to December 31, 2023                                                                                                                         |                                                   |                  |                   |               |      |     |     |  |
|                                                                                                                                                                                                                                                     |                                                                                                                                                                                  |                                                   |                  |                   | `             | YES  | NO  | N/A |  |
| 1.                                                                                                                                                                                                                                                  |                                                                                                                                                                                  | nformation above corre<br>nclude handwritten ab   |                  | arate sheet.      |               | V    |     |     |  |
| <ul> <li>2. Has some or all of the OFF-SITE property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?</li> <li>3. Has there been any change of use at the site during this Reporting Period</li> </ul> |                                                                                                                                                                                  |                                                   |                  |                   |               | ~    |     |     |  |
| 3.                                                                                                                                                                                                                                                  |                                                                                                                                                                                  | VYCRR 375-1.11(d))?                               |                  |                   | renou         |      |     | ~   |  |
| 4.                                                                                                                                                                                                                                                  | <ul> <li>Have any federal, state, and/or local permits (e.g., building, discharge) been issued</li> <li>for or at the OFF-SITE property during this Reporting Period?</li> </ul> |                                                   |                  |                   |               |      |     |     |  |
|                                                                                                                                                                                                                                                     |                                                                                                                                                                                  | answered YES to que<br>ocumentation has bee       |                  |                   |               |      |     |     |  |
| 5.                                                                                                                                                                                                                                                  | Is the C                                                                                                                                                                         | DFF-SITE property cur                             | rently undergoin | g development?    | l             |      | ~   |     |  |
|                                                                                                                                                                                                                                                     |                                                                                                                                                                                  |                                                   |                  |                   |               | Во   | x 2 |     |  |
|                                                                                                                                                                                                                                                     |                                                                                                                                                                                  |                                                   |                  |                   | 、             | YES  | NO  | N/A |  |
| 6.                                                                                                                                                                                                                                                  |                                                                                                                                                                                  | eurrent site use consist<br>ercial and Industrial | ent with the use | (s) listed below? |               | ~    |     |     |  |
| 7.                                                                                                                                                                                                                                                  | Are all                                                                                                                                                                          | ICs/ECs in place and f                            | unctioning as de | esigned?          |               | ~    |     |     |  |
|                                                                                                                                                                                                                                                     | IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.                                                |                                                   |                  |                   |               |      |     |     |  |
| A Corr                                                                                                                                                                                                                                              | A Corrective Measures Work Plan must be submitted along with this form to address these issues.                                                                                  |                                                   |                  |                   |               |      |     |     |  |
|                                                                                                                                                                                                                                                     | Janiel S. Burnk                                                                                                                                                                  |                                                   |                  |                   |               |      |     |     |  |
|                                                                                                                                                                                                                                                     | Vaniel                                                                                                                                                                           | N. Durch                                          |                  |                   | August 23, 20 | 0.24 |     |     |  |

| SITE NO. 83500                                                                                                                                                                                                                       | 8 – OFF-SITE                         | Box 3                 |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------|--|--|
| Descrip                                                                                                                                                                                                                              | tion of Institutional Controls       |                       |  |  |
| Parcel                                                                                                                                                                                                                               | Owner                                | Institutional Control |  |  |
| Off-site Controls: Pursuant to Consent Order Index #B8-315-90-01, implementation of the Operations and Maintenance Plan for Periodic Off-site Groundwater Monitoring dated June 28, 2011 and subsequently modified in December 2016. |                                      |                       |  |  |
| Provide period                                                                                                                                                                                                                       | ic groundwater monitoring reports to | the Department.       |  |  |
| Descrip                                                                                                                                                                                                                              | tion of Engineering Controls         | Box 4                 |  |  |
| Not A                                                                                                                                                                                                                                | pplicable/No EC's                    |                       |  |  |
|                                                                                                                                                                                                                                      |                                      |                       |  |  |
|                                                                                                                                                                                                                                      |                                      |                       |  |  |

|    | Box 5<br>Periodic Review Report (PRR) Certification Statements                                                                                                                                                                                                              |  |  |  |  |  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 1. | I certify by checking "YES" below that:                                                                                                                                                                                                                                     |  |  |  |  |  |
|    | a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;                                                                                                                                |  |  |  |  |  |
|    | <ul> <li>b) to the best of my knowledge and belief, the work and conclusions described in this certification<br/>are in accordance with the requirements of the site remedial program, and generally accepted<br/>YES NO</li> </ul>                                         |  |  |  |  |  |
|    | ✓ □                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| 2. | <ol> <li>If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional<br/>or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the<br/>following statements are true:</li> </ol> |  |  |  |  |  |
|    | (a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;                                                                                    |  |  |  |  |  |
|    | nothing has occurred that would impair the ability of such Control, to protect public health and environment;                                                                                                                                                               |  |  |  |  |  |
|    | access to the site will continue to be provided to the Department, to evaluate the remedy, including access to aluate the continued maintenance of this Control;                                                                                                            |  |  |  |  |  |
|    | nothing has occurred that would constitute a violation or failure to comply with the Operation and Maintenance Plan this Control; and                                                                                                                                       |  |  |  |  |  |
|    | if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid d sufficient for its intended purpose established in the document.                                                                                       |  |  |  |  |  |
|    | YES NO                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|    | $\checkmark$                                                                                                                                                                                                                                                                |  |  |  |  |  |
|    | IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.                                                                                                                                                       |  |  |  |  |  |
| AC | A Corrective Measures Work Plan must be submitted along with this form to address these issues.                                                                                                                                                                             |  |  |  |  |  |
|    | Vaniel S. Busek August 23, 2024                                                                                                                                                                                                                                             |  |  |  |  |  |

Signature of Owner, Remedial Party or Designated Representative

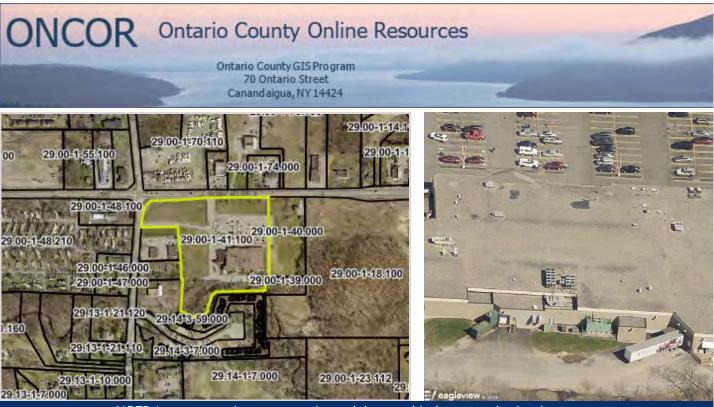
August 23, 2024 Date

#### **IC CERTIFICATIONS** SITE NO. 835008

Box 6

#### SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.


| Daniel G. Fousek          | at 350 Orchard Avenue              | at 350 Orchard Avenue NE, North Canton, Ohio 44720 |  |  |  |
|---------------------------|------------------------------------|----------------------------------------------------|--|--|--|
| print name                | print bu                           | siness address                                     |  |  |  |
| am certifying as          | Remedial Party                     | (Owner or Remedial Party)                          |  |  |  |
| for the Site named in the | Site Details Section of this form. |                                                    |  |  |  |
| Daniel S. Fusek           | Ĺ                                  | August 23, 2024                                    |  |  |  |

Signature of Owner, Remedial Party, or Designated Representative Rendering Certification

August 23, 2024

Date

| IC/EC CE                                                                                               | RTIFICATIONS                                                              |                |
|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------|
|                                                                                                        | Signature                                                                 | Box 7          |
| I certify that all information in Boxes 4 and 5 are trupunishable as a Class "A" misdemeanor, pursuant |                                                                           | nade herein is |
| I_Edward M. Murphy, PEat <u>AECOM</u><br>print name                                                    | <u>1, 50 Lakefront Boulevard, Suite 111, Βι</u><br>print business address | uffalo, NY     |
| am certifying as a Profesional Engineer for the                                                        | or Stamp                                                                  |                |
| Remedial Party, Rendering Certification<br>BAE01649EB46494                                             | (Required for PE)                                                         | _              |



NOTE: Inventory and assessment data originates with the respective local assessor

#### **PROPERTY SUMMARY REPORT**

| Tax Map ID:         29.00-1-41.100 |                |       |                          |  |  |
|------------------------------------|----------------|-------|--------------------------|--|--|
| Physical                           | Address:       |       | 6179 St Rt 96            |  |  |
| Commu                              | nity:          |       | Town of Farmington       |  |  |
| Easting:                           | 611714         |       | Northing: 1084272        |  |  |
| Acres:                             | 14.20          |       | Neighborhood: 28580      |  |  |
| Roll Sec                           | <b>tion:</b> 1 | 2024  | Utilities: Gas & elec    |  |  |
| Property                           | / Class:       | 454   | Supermarket              |  |  |
| School [                           | District:      |       | Victor Central           |  |  |
| Frontage                           | e:             | .00   | Depth: .00 Obstructions: |  |  |
| Heat:                              |                |       | % NYS DEC Wetland: 0     |  |  |
| Fuel:                              |                |       | % NWI Wetland: 0         |  |  |
| Water:                             | Comm/p         | ublic | % Steep Slope: 4         |  |  |
| Sewer:                             | Comm/p         | ublic | % Flood Zone (A, AE): 9  |  |  |
|                                    |                |       |                          |  |  |

| Owner                 | Inform | ation       |           |
|-----------------------|--------|-------------|-----------|
| FARMINGTON CENTER LLC |        |             |           |
| 550 LATONA RD         |        |             |           |
| SUITE 501             |        |             |           |
| ROCHESTER             | NY     | 14626       | -         |
| Notes:                |        |             |           |
| Deed Book: 1341 Page: | 31     | Date Filed: | 6/24/2015 |

#### **BUILDING DETAILS (primary building only)**

|             |               | <b>N N</b>          |        |       |
|-------------|---------------|---------------------|--------|-------|
| Year Built: | 1982          | Square Fe           | et:    | 51151 |
| Condition:  | Good          |                     |        |       |
| Style:      | 1 sty sto     | re load sup         |        |       |
| Stories:    | 1             | Central Ai          | r:     |       |
| Siding:     |               |                     |        |       |
| Basement:   |               |                     |        |       |
| Full Baths: |               | Half Baths          | :      |       |
| Bedrooms:   |               | Fireplaces          | :      |       |
| Please see  | Parcel Detail | Report for complete | inform | ation |
|             |               |                     |        |       |

#### Assessed Values

| \$7665100 |
|-----------|
| \$7205200 |
| \$979800  |
|           |

#### **Recent Residential Sales**

Valid Sales Only within the past three years

Date:

Price:



Click here to look up your polling station

Sale Type:

#### Comments:



THIS MAP AND INFORMATION IS PROVIDED "AS IS" AND ONTARIO COUNTY MAKES NO WARRANTIES OR GUARANTEES, EXPRESSED OR IMPLIED, INCLUDING WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY AND THAT OF FITNESS FOR A PARTICULAR PURPOSE CONCERNING THIS MAP AND THE INFORMATION CONTAINED HEREIN. USER ASSUMES ALL RISKS AND RESPONSIBILITY FOR DETERMINING WHETHER THIS INFORMATION IS SUFFICIENT FOR PURPOSES INTENDED.

|                                                                                                | Previ      | ous Owners |            |      |
|------------------------------------------------------------------------------------------------|------------|------------|------------|------|
| OWNER NAME(S): WADE, JANE A<br>DEED DATE: 11/2/2009<br>CLERK NUMBER: 200911020159<br>COMMENTS: | DEED BOOK: | 1235       | DEED PAGE: | 44   |
| OWNER NAME(S): WADE, JOHN W<br>DEED DATE: 7/1/1997<br>CLERK NUMBER:<br>COMMENTS:               | DEED BOOK: | 981        | DEED PAGE: | 766  |
| OWNER NAME(S): KEYES, GARY L<br>DEED DATE: 12/01/1994<br>CLERK NUMBER:<br>COMMENTS:            | DEED BOOK: | 948        | DEED PAGE: | 441  |
| OWNER NAME(S): WADE, JOHN W<br>DEED DATE: 9/1/1992<br>CLERK NUMBER:<br>COMMENTS:               | DEED BOOK: | 921        | DEED PAGE: | 270  |
| OWNER NAME(S): ONTARIO CO INI<br>DEED DATE: 07/01/1982<br>CLERK NUMBER:<br>COMMENTS:           |            |            | DEED PAGE: | 20   |
| OWNER NAME(S): 96 MERTENSIA R<br>DEED DATE: 05/01/1982<br>CLERK NUMBER:<br>COMMENTS:           |            | 812        | DEED PAGE: | 883  |
| OWNER NAME(S): WADE'S MARKET<br>DEED DATE: 07/01/1979<br>CLERK NUMBER:<br>COMMENTS:            |            | 790        | DEED PAGE: | 886  |
| OWNER NAME(S): ALAIMO, JAMES<br>DEED DATE: 10/01/1973<br>CLERK NUMBER:<br>COMMENTS:            |            | 731        | DEED PAGE: | 1120 |



| Tax Information            |       |             |             |             |  |  |  |  |
|----------------------------|-------|-------------|-------------|-------------|--|--|--|--|
| SPECIAL DISTRICT TAX RATES |       |             |             |             |  |  |  |  |
| Special District           | Code  | SD Tax Rate | UN Tax Rate | FE Tax Rate |  |  |  |  |
| Drainage District #1       | DD281 | 0.178967    | 0           | 0           |  |  |  |  |
| Farm Fire Protection       | FD281 | 0.491323    | 0           | 0           |  |  |  |  |
| Cdga-Farm Water            | WD281 | 0.835629    | 0           | 0           |  |  |  |  |

|                               | EXEMPTIONS |      |         |        |
|-------------------------------|------------|------|---------|--------|
| <b>Exemptions Description</b> | County     | Town | Village | School |

#### **ESTIMATED TAXES WORKSHEET**

The workspace below can be used to estimate the TRUE taxes for this property. Users are strongly urged to contact the Ontario County Treasure's Office (585-396-4432) to verify exact total taxes. If the property is in one of the cities, please contact either the City of Canandaigua (585-396-5015) or the City of Geneva (315-789-2114) depending on the location.

| ΤΑΧ ΤΥΡΕ      | TAX RATE |           | TOTAL ASSESSE | D VALUE | TOTAL TAXES | TAX YEAR  |
|---------------|----------|-----------|---------------|---------|-------------|-----------|
| SCHOOL:       | 14.29625 | x         | \$7205200.00  | /1000 = | \$103007.34 | 2023-2024 |
| COUNTY:       | 5.980461 | Х         | \$7205200.00  | /1000 = | \$43090.42  | 2023-2024 |
| TOWN OR CITY: | 0.700171 | Х         | \$7205200.00  | /1000 = | \$5044.87   | 2023-2024 |
| VILLAGE:      | 0        | Х         | \$7205200.00  | /1000 = | \$0.00      | 2023-2024 |
|               | Municin  | Subtotal: | \$151142.63   |         |             |           |

Municipal and School Taxes Subtotal:

+ Special District Taxes Subtotal:

TOTAL ESTIMATED TAXES:

Survey Link (copy and paste in browser)

## SURVEYS

#### Survey ID

https://oncorng.co.ontario.ny.us/surveys/23664.tiff

11/15/2013

23664

### TAX BILLS

 Copy and paste link in a browser

 School:
 https://oncorng.co.ontario.ny.us/TaxbillSchool/29.00-1-41.100\_School.pdf

 County/Town:
 https://oncorng.co.ontario.ny.us/TaxbillCountyTown/29.00-1-41.100\_CountyTown.pdf

 City:
 Village:



| ADDITIONAL INVENTORY                                             |      |        |   |   |        |         |
|------------------------------------------------------------------|------|--------|---|---|--------|---------|
| IMPROVEMENTS                                                     |      |        |   |   |        |         |
| Structure Description: Year: SqFt: Dim1: Dim2: Condition: Grade: |      |        |   |   |        |         |
| Pavng-asphlt                                                     | 1983 | 136000 | 0 | 0 | Normal | Average |

| LAND DESCRIPTION |             |              |        |        |           |  |
|------------------|-------------|--------------|--------|--------|-----------|--|
| Land Type:       | Waterfront: | Soil Rating: | Acres: | Depth: | Frontage: |  |
| Primary          |             |              | 8      | 0      | 0         |  |
| Residual         |             |              | 6      | 0      | 0         |  |



## INDIVIDUAL BUILDING DETAILS

#### **RESIDENTIAL BUILDINGS**

Building details are followed by area dimensions provided in square feet

Overall Condition: Construction Grade:

Number of Stories:

**Exterior Wall Material:** 

**Exterior Condition:** 

**Basement Type:** 

**Heating Type:** 

**Fuel Type:** 

Building Style: Actual Year Built: Effective Year Built: Year Remodeled: Number of Bedrooms: Number of Full Baths: Number of Half Baths: Number of Kitchens: Number of Fireplaces:

**Total Living Area:** 

**Additional Story:** 

First Story: Second Story: Half Story: Unfinished: 3/4 Story:

Unfinished:

Central Air (1 = Yes) Finished Basement Area: Finished Attic Area: Finished Rec Room Area: Finished Over Garage:

|                             | COMMER | CIAL BUILDINGS            |         |
|-----------------------------|--------|---------------------------|---------|
| Building Number:            | 1      | <b>Overall Condition:</b> | Good    |
| Building Section:           | 1      | Quality:                  | Average |
| Year Built:                 | 1982   | Number of Stories:        | 1       |
| Number of Indent Buildings: | 1      | Story Height:             | 12      |
| Percent Air-conditioned:    | 100    | Basement Type:            |         |
| Percent Alarmed:            | 100    | Number of Elevators:      | 0       |
| Percent Sprinkler:          | 100    | Boekh Model Number:       |         |
| Gross Floor Area:           | 51151  | Boekh Model Code:         | 312     |
| Perimeter:                  | 1183   | Wall A:                   | 0       |
| Basement Square Footage:    | 0      | Wall B:                   | 100     |
| <b>Basement Perimeter:</b>  | 0      | Wall C:                   | 0       |



# PROPERTY ANALYSIS

| Туре:                 | Description:                             | Acres: | % Coverage: |
|-----------------------|------------------------------------------|--------|-------------|
| Ecological Community  | Community Description TBD                | 13.40  | 100.000%    |
| NRCS Soils            | Galoo loam, 3 to 8 percent slopes, rocky | 0.02   | 0.1%        |
| NRCS Soils            | Ovid silt loam, 0 to 3 percent slopes    | 13.39  | 99.9%       |
| Utilities - Electric  | ROCHESTER GAS & ELECTRIC                 | 13.40  | 100.0%      |
| Utilities - Gas       | ROCHESTER GAS & ELECTRIC                 | 13.40  | 100.0%      |
| Utilities - Telephone | Frontier Telephone of Rochester          | 13.40  | 100.0%      |
| Utilities - Telephone | Finger Lakes Technology Group            | 13.40  | 100.0%      |
| Watershed             | S. Bk-W/S Divide to Hathaway Brook       | 13.40  | 100.0%      |



## LOCAL ZONING

Note: OnCOR users are strongly urged to contact the municipal planning/zoning office to confirm accuracy of the zoning information listed below.

| Туре:                           | Description:                      | % Coverage: |
|---------------------------------|-----------------------------------|-------------|
| Town of Farmington MTOD Overlay | Major Thoroughfare Overlay        | 99.3%       |
| Town of Farmington Zoning       | GB - General Business             | 99.6%       |
| Town of Farmington Zoning       | RMF - Residential Multiple-Family | 0.4%        |

