

April 11, 2025

John Dalton Crosman Corporation 7629 State Route 5 & 20 Bloomfield, New York 14469

Re: Site Management

Periodic Review Report Crosman Corporation Site

Site No.: 835012

East Bloomfield (T), Ontario (C)

Dear Mr. Dalton,

The New York State Department of Environmental Conservation (Department) and the New York State Department of Health (NYSDOH) has completed a review of the Periodic Review Report (PRR) dated July 5th, 2024, and IC/EC Certification for following period: June 15, 2023, through June 15, 2024. The Department conditionally approves the PRR based on the modification and clarifications below.

- 1. The Department requests that the *Groundwater Parameter Log* form, for sampling with passive diffusion bags, be added to the Site's Site Management Plan (SMP), which should be revised and submitted to the Department for review and approval within 30 days following receipt of this letter.
- 2. With respect to the request for modification of the groundwater monitoring frequency, the Department declines the request to modify the frequency from semiannually to annually at this time. Additional sampling events will need to be completed utilizing PDBs before the Department, with concurrence from NYSDOH project manager, will consider modification of the sampling frequency.

Your next PRR is due on July 15, 2025. You will receive a courtesy reminder letter and updated certification form 45-days prior to the end of the certifying period. Regardless of receipt or not of the reminder notice, the next PRR including the signed certification form, is still due on the date specified above.

If you have any questions or concerns regarding this letter or need further assistance with the Site, please feel free to contact me at (585) 226-5349 or via email at Joshua.Ramsey@dec.ny.gov.

Sincerely,

Joshua J. Ramsey Project Manager

ec:

William Popham (Arcadis)
Aaron Richardson (Arcadis)
Thomas Walsh (Hiscock & Barclay)
Justin Deming (NYSDOH)
Anthony Perretta (NYSDOH)
Dudley Loew (NYSDEC)
David Pratt (NYSDEC)
Michael Ormanoski (NYSDEC)

Mr. Joshua Ramsey New York State Department of Environmental Conservation 6274 Avon-Lima Road Avon, New York 14414-9519

Date: July 5, 2024 Our Ref: 30005202

Subject: Periodic Review Report

Crosman Corporation Site East Bloomfield, New York

Dear Mr. Ramsey,

Arcadis of New York, Inc. 100 Chestnut Street Suite 1020 Rochester New York 14604 Phone: 585 385 0090

Fax: 585 546 1973

www.arcadis.com

On behalf of Crosman Corporation and New Coleman Holdings, Inc. (collectively, Crosman), Arcadis of New York, Inc. has prepared the attached Periodic Review Report (PRR) in accordance with the approved Site Management Plan and Declaration of Covenants and Restrictions for the Crosman site located in East Bloomfield, New York.

The PRR documents the remedial activities completed at the Crosman site between June 15, 2023 and June 15, 2024, and follows the form of Crosman's previously submitted PRRs.

If you have any questions, please contact me at 585.662.4024.

Sincerely,

Arcadis of New York, Inc.

Aaron Richardson

Senior Environmental Engineer

Email: aaron.richardson@arcadis.com

Direct Line: 585.662.4024

CC. David Pratt, New York State Department of Environmental Conservation Justin Deming, New York State Department of Health

Charles J. Sgro, MacAndrews & Forbes Holdings, Inc. Ed Mammone, MacAndrews & Forbes Holdings, Inc. Allie LeBlanc, MacAndrews & Forbes Holdings, Inc.

Thomas F. Walsh, Esq., Barclay Damon, LLP

Gina Thomas, Velocity Outdoor

William B. Popham, Arcadis of New York, Inc.

Enclosures:

Attachment 1

Crosman Corporation and MacAndrews & Forbes Holdings, Inc.

Periodic Review Report for 2023-2024

Crosman Corporation Site East Bloomfield, New York

July 2024

Periodic Review Report for 2023-2024

Crosman Corporation Site, East Bloomfield, New York

July 2024

Prepared By:

Arcadis of New York, Inc. 100 Chestnut Street, Suite 1020 Rochester New York 14604 Phone: 585 385 0090

Fax: 585 546 1973

Our Ref: 30005202

Prepared For:

Crosman Corporation and MacAndrews & Forbes Holdings, Inc.

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Contents

C	ertific	cation	i
1	Int	troduction/Background	1
2	Ins	stitutional Controls	2
	2.1	Property Usage	2
	2.2	Deed Restriction	2
	2.3	Inspections of Engineering Controls	2
3	En	ngineering Controls	3
	3.1	Sub-Slab Depressurization System	3
	3.1	1.1 System Operation	3
	3.1	1.2 System Effectiveness	3
	3	3.1.2.1 Sub-Slab Vacuum Monitoring	4
	3	3.1.2.2 System Vapor Sampling	4
	3.2	Operation of Pumping Well PW-1	4
	3.3	Concrete Cover System	5
4	Ad	dditional Site Reporting	6
	4.1	Groundwater Sampling	6
	4.2	State Pollutant Discharge Elimination System Monitoring and Reporting	6
5	Su	ummary and Recommendations	7
6	Re	oferences	ç

Tables

- Table 1. Sub-Slab Vacuum Monitoring
- **Table 2. System Vapor Sampling Results**
- **Table 3. VOC Mass Removal Estimate**
- **Table 4. Program Monitoring Wells Groundwater Analytical Results**

Figures

- Figure 1. SSDS and Vacuum Monitoring Point Locations
- Figure 2. Map of Trichloroethylene Concentrations in Groundwater

Appendices

- A Recorded Declaration of Covenants and Restrictions
- **B** SSDS Inspection Forms and Alarm Response Logs
- **C** Site Inspection Form
- **D** NYSDEC Approvals
- **E** SSDS Laboratory Reports
- F Groundwater Monitoring Logs and Laboratory Reports
- **G** Discharge Monitoring Reports
- H Institutional and Engineering Controls Certification Form

Certification

For each institutional or engineering control identified for the site, I certify that all of the following statements are true:

- The inspections of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under my direction;
- The institutional control and engineering control employed at this site is unchanged from the date the controls was put in place, or last approved by the Department;
- Nothing has occurred that would impair the ability of the control to protect the public health and environment;
- Nothing has occurred that would constitute a violation or failure to comply with any site management plan for this control;
- Access to the site will continue to be provided to the Department to evaluate the remedy, including access to
 evaluate the continued maintenance of this control;
- Use of the Site is compliant with the Declaration of Restrictions and Covenants;
- The engineering control systems are performing as designed and are effective;
- To the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program and generally accepted engineering practices; and
- The information presented in this report is accurate and complete.

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, Joseph Molina III, P.E., of Arcadis of New York, Inc., am certifying as Crosman's Designated Site Representative.

JOSEPH MOLINA III, P.E.

DATE: JULY 5, 2024

Joseph Molina III

1 Introduction/Background

On behalf of Crosman Corporation and MacAndrews & Forbes Holdings, Inc. (collectively, Crosman), Arcadis of New York, Inc. (Arcadis) has prepared this Periodic Review Report for 2023-2024 (PRR) to summarize the remedial activities conducted between June 15, 2023 and June 15, 2024 at the Crosman Corporation Site, designated site #835012, located in East Bloomfield, New York (Site). Previous regulatory documents, including the 1993 Administrative Order on Consent (New York State Department of Environmental Conservation [NYSDEC] 1993); 1997 Record of Decision (NYSDEC 1997); and 1998 Administrative Order on Consent (NYSDEC 1998), as well as separate requests for a vapor intrusion investigation (NYSDEC 2012) and a sub-slab depressurization system (SSDS) (NYSDEC 2014), have required Site activities, including the following:

Past installation and former operation of a groundwater pump and treatment system

Past installation and former operation of a soil vapor extraction (SVE) system

Groundwater monitoring

Installation and operation of an SSDS at the Site.

Termination of the groundwater pump and treat system (which operated from 1995 to 1999) and the SVE system (which operated in the east side source area from 1998 to 2001) were previously approved by the NYSDEC.

The Site currently operates under the approved Site Management Plan (SMP; Arcadis 2021) and Declaration of Covenants and Restrictions (Deed Restriction). On August 2, 2021, the NYSDEC approved the April 2021 SMP, and the Deed Restriction was executed on May 4, 2020. Once the SMP and Deed Restriction were in place, the NYSDEC reclassified the Site to a Class 4 site in June 2022. As defined in 6 New York Codes of Rules and Regulations Part 375-2.7(b)(3)(iv), "a class "4" site is one that has been properly closed but that requires continued site management consisting of operation, maintenance and monitoring."

Activities conducted during the current reporting period include semi-annual groundwater monitoring and continued operation of the SSDS, which are described herein. In addition, Crosman has continued the operation of pumping well PW-1 as part of its manufacturing activities.

2 Institutional Controls

The Institutional Controls (ICs) established for the Site are embodied in the Deed Restriction, which was executed on May 4, 2020 and recorded with the Ontario County Clerk on May 13, 2020 at Book 01450, Page 0324, of Deeds (Appendix A). The Deed Restriction includes restrictions on the usage of the property to commercial and industrial uses; compliance with the approved SMP; and conducting routine inspections of ICs and Engineering Controls (ECs).

2.1 Property Usage

The Site continued to be used for industrial purposes during the current reporting period (between June 15, 2023 and June 15, 2024).

2.2 Deed Restriction

The Deed Restriction includes a metes and bounds description of the restricted property, as measured in the instrument survey prepared by Fisher Associates, P.E., L.S. on October 27, 2018. The Deed Restriction was reviewed and approved by the NYSDEC before execution and is attached to the SMP.

2.3 Inspections of Engineering Controls

As further described in Section 3, ECs at the Site include operation of the SSDS and maintenance of the concrete floor, which serves as a cover system over remaining soil contamination at two locations. This includes one location on the western side of the building designated as "Area 1 Affected by SSDS Engineering Control" and a second location on the eastern side of the building designated as "Area 2 Affected by SSDS Engineering Control". All ECs remained in effect during the current reporting period. The SSDS was inspected on a monthly basis, as documented on the inspection forms included in Appendix B. The concrete cover system was inspected as part of the annual site-wide inspection on December 7, 2023, as documented on the Site Inspection Form included in Appendix C.

3 Engineering Controls

In accordance with the NYSDEC's requests and/or requirements, continued operation of the SSDS, and maintenance of the concrete floor cover system were the ECs at the Site between June 15, 2023 and June 15, 2024.

3.1 Sub-Slab Depressurization System

As detailed in the Construction Completion Report (Arcadis 2017), the SSDS was installed and operational at the Site starting in July 2016.

3.1.1 System Operation

During the current reporting period (between June 15, 2023 and June 15, 2024), the only downtime experienced by the system was limited to relatively short periods related to routine operation and maintenance activities and short periods where the system was down due to power outages. Between September 7, 2023 and September 13, 2023, the system was also down due to the storage limit of the programmable logic controller being reached, causing the operating program to be inadvertently wiped from the programmable logic controller. Unneeded historical data was removed to create storage space, allowing the operating program to be re-installed, and the system was restarted on September 13, 2023.

Following each period of downtime, the system was restarted in accordance with the Sub-Slab Depressurization System Operation, Maintenance, and Monitoring Plan, including monitoring the system until it reached a steady-state and confirming that system parameters were within normal operating ranges. An Alarm Response Log was completed upon restarting the system following each alarm condition (Appendix B). The system has been operational 94% of the time for the current reporting period, and other than power outages, no issues that potentially could cause extended downtime were identified.

The treatment portion of the SSDS initially consisted of four 1,000-pound granular-activated carbon (GAC) units and was designed with the ability to pull extracted soil vapor through each GAC unit in series. The vapors being pulled through the system are monitored on a monthly basis at sample points between each GAC unit to monitor for breakthrough.

As reported in previous PRRs, in September 2020, the overall system, including documented influent and effluent concentrations, were re-evaluated and re-modeled using the AERSCREEN modeling system. The modeling output indicated that the system could direct discharge without treatment through GAC and still meet Division of Air Resources-1 short-term and long-term guideline concentrations. This information was provided to the NYSDEC on September 21, 2020 and agreed to by the NYSDEC in an October 9, 2020 email that carbon treatment could be removed from the SSDS (Appendix D). However, while no longer required, the GAC units remained online as an added safety measure throughout the current reporting period.

3.1.2 System Effectiveness

During the current reporting period, monitoring of the SSDS was conducted on a monthly basis, at a minimum. Monthly monitoring was performed to document the effectiveness of the system and included recording sub-slab vacuum pressures and collecting and analyzing soil vapor samples collected throughout the system.

3.1.2.1 Sub-Slab Vacuum Monitoring

Arcadis recorded instantaneous sub-slab differential pressure readings on a monthly basis from the area surrounding the two sub-slab depressurization sump points. With the system operating, instantaneous sub-slab differential pressures were measured using micromanometers capable of measuring to the nearest 0.001 inch of water column at vacuum monitoring points (VMPs) installed by Arcadis. Figure 1 shows the VMP locations. Table 1 summarizes the results and shows that vacuum is being observed throughout the target depressurization area.

As a result of changes to Site operations, including the installation of new (above-slab) equipment, VMP-1, VMP-5, and VMP-10 were no longer accessible; therefore, each location was removed and permanently sealed with hydraulic cement on January 19, 2024. Because the remaining VMPs can be used to demonstrate that the design radius of influence continues to be achieved, new VMPs were not installed.

3.1.2.2 System Vapor Sampling

Arcadis collected soil vapor samples from the influent (both individual SSDS extraction points and the combined influent) and effluent of the SSDS, with the system operating on December 7, 2023 and May 3, 2024. Grab samples were collected using laboratory-provided 1-liter Summa canisters. The Summa canisters were submitted to Eurofins TestAmerica Laboratories in Burlington, Vermont and analyzed for volatile organic compounds (VOCs) using United States Environmental Protection Agency Method TO-15. Table 2 summarizes the results and shows that chlorinated VOCs, primarily trichloroethene (TCE), continue to be effectively removed through the SSDS.

As evidenced by the calculations presented in Table 3, TCE mass continues to be effectively removed by the SSDS. The SSDS removed 2.10 kilograms of TCE during the current reporting period with a total of 207.2 kilograms being removed since the system became operational.

The System Monitoring Log; Performance Monitoring Log; and Monthly Operation, Maintenance, and Monitoring Checklist completed each month for the SSDS are included in Appendix B, and the laboratory analytical reports for each sampling event are included in Appendix E. The laboratory data collected during the December 7, 2023 and May 3, 2024 SSDS monitoring events will be uploaded to the NYSDEC EQuIS database concurrently with submittal of this PRR.

3.2 Operation of Pumping Well PW-1

Although not an EC for the Site, pumping well PW-1 continues to be operated to supply non-contact cooling water to Crosman's manufacturing processes. PW-1 has been demonstrated to maintain hydraulic control over the Site, even during periods of extended downtime, thereby containing the plume of groundwater contamination at the Site. Manufacturing operations at the Site continue to utilize the water generated by PW-1 for non-contact cooling water in its manufacturing processes.

Groundwater elevation contours were recorded during the groundwater monitoring events in October 2023 and April 2024, with each event continuing to show a depression around pumping well PW-1, providing continuing evidence that the long-term history of pumping at this location continues to positively influence groundwater dynamics at the Site.

There were no significant periods of downtime during the current reporting period. The current and continued planned operation of pumping well PW-1 at the Site continues to provide control of the groundwater plume for the foreseeable future.

Pumping well PW-1 will continue to be monitored as part of the long-term groundwater monitoring for the Site, and this PRR and future PRRs will include a report on its continued operation and effectiveness in providing control of the groundwater plume.

3.3 Concrete Cover System

As discussed in the SMP, the concrete floor serves as a cover system over remaining soil contamination identified at the western end of the building and around the SSDS extraction point on the eastern side of the facility. The concrete comprising the cover system is identified on the survey on the western side of the building as "Area 1 Affected by SSDS Engineering Control" and on the eastern side of the building as "Area 2 Affected by SSDS Engineering Control". During the annual site-wide inspection conducted on December 7, 2023, the concrete floor cover system in this area was inspected and found to be acceptable. The Site Inspection Form is included as Appendix C.

4 Additional Site Reporting

4.1 Groundwater Sampling

Routine groundwater sampling was conducted semi-annually during the current reporting period, with sampling events conducted on October 13, 2023 and April 18, 2024. As documented in the Semiannual Groundwater Monitoring and Reporting letter reports (Arcadis 2023, 2024), the results of all routine sampling events continued to show that the plume is not migrating offsite. Results of the recent groundwater sampling events, as well as the results of previous groundwater sampling events, are provided in Table 4 and shown on Figure 2, with the laboratory analytical reports and sampling forms for each event included in Appendix F. The laboratory data collected during the October 13, 2023 and April 18, 2024 groundwater sampling events were uploaded to the NYSDEC EQuIS database on December 2, 2023 and May 30, 2024, respectively.

As initially proposed to the NYSDEC in a November 23, 2022 email, and agreed to by the NYSDEC in a December 2, 2022 email (Appendix D), groundwater sampling at the Site was switched from bailers to passive diffusion bag (PDB) samplers. PDB samplers were first used for the April 2023 sampling event, and have been utilized for each sampling event since that time.

4.2 State Pollutant Discharge Elimination System Monitoring and Reporting

The Crosman facility continued to perform monthly State Pollutant Discharge Elimination System (SPDES) monitoring of Outfall Number 001. In accordance with the SPDES permit (#NY-0103039), monthly sampling included collecting a sample from the outfall and analyzing for VOCs, temperature, and pH. SPDES samples collected during the current reporting period were below the method detection limit of 2 parts per billion TCE, and therefore, were well below the discharge limits of 10 parts per billion TCE, as well as below 90 degrees Fahrenheit (temperature) and within the pH range of 6.0 to 9.0 standard units. Copies of the Discharge Monitoring Reports for the current reporting period are included in Appendix G.

5 Summary and Recommendations

Monitoring (and sampling) of the SSDS continues to show that TCE concentrations in sub-slab soil vapor continue to be effectively removed through the SSDS. Sampling of groundwater at the Site during the current reporting period continued to show an overall stable to decreasing historical trend in contaminant concentrations, with monitoring at the Site perimeter continuing to show that the contaminant plume is not migrating offsite.

As documented within this PRR, and within the Institutional and Engineering Controls Certification Form (Appendix H), the inspections conducted and sample results collected during the current reporting period show that the ICs and ECs in place for the Site are in compliance with and are effectively meeting the remedial action objectives established for the Site.

It is recommended that the ICs and ECs in place during the current reporting period be maintained going forward. Due to the long history of stable to decreasing contaminant concentrations in groundwater, it is recommended that groundwater sampling frequency be reduced from semi-annually to annually, with sampling conducted at monitoring wells MW-3A, MW-4, MW-5, MW-13, MW-14, MW-15, MW-17, MW-18, MW-19, and MW-20, and pumping well PW-1 conducted in April of each year.

6 References

Arcadis. 2017. Construction Completion Report. Crosman Corporation. January 27.

Arcadis. 2021. Site Management Plan. Crosman Corporation. April 13.

Arcadis. 2023. Semiannual Groundwater Monitoring Report. Crosman Corporation. November 13.

Arcadis. 2024. Semiannual Groundwater Monitoring Report. Crosman Corporation. May 20.

NYSDEC. 1993. Administration Order on Consent. Index #B8-0404-92-04. October 1993.

NYSDEC. 1997. Record of Decision. March 25, 1997.

NYSDEC. 1998. Administration Order on Consent. Index #B8-0404-92-04. October 1993.

NYSDEC. 2012. Comment Letter to Soil Vapor Intrusion Evaluation. November 28.

NYSDEC. 2014. Comment Letter to West-side Soil Boring Assessment September 2014 and Draft On-Site Soil Vapor Intrusion Assessment Results March 2014. October 22.

NYSDEC. 2021. Approval of the Site Management Plan. Crosman Corporation.

Tables

Table 1
Sub-Slab Vacuum Monitoring
Periodic Review Report
Crosman Corporation
East Bloomfield, New York

						Sub-Slab	Different	ial Pressu	re (in.wc)				
Date	Time			SDS-	Area					SDS-2	2 Area		
		VMP-1	VMP-2	VMP-3	VMP-4	VMP-5	VMP-6	VMP-7	VMP-8	VMP-9	VMP-10	VMP-11	VMP-12
7/7/2023	9:00	-7.686	-0.034	-0.741	-0.017	-0.048	-0.062	-0.009	-0.378	-0.074	-0.052	-0.242	NA ¹
8/4/2023	9:00	-8.101	-0.035	-0.791	-0.019	-0.050	-0.060	-0.007	-0.379	-0.065	-0.045	-0.223	NA ¹
9/22/2023	9:00	-9.705	-0.033	-0.923	-0.022	-0.059	-0.066	-0.015	-0.388	-0.042	NA ²	NA^2	NA ¹
10/13/2023	9:00	-9.747	-0.031	-0.953	-0.023	-0.060	-0.057	-0.011	-0.407	NA ²	-0.039	NA ²	NA ¹
11/3/2023	8:30	-9.661	-0.023	-0.954	-0.025	-0.061	-0.016	-0.009	-0.400	-0.046	-0.035	-0.258	NA ¹
12/7/2023	10:00	-9.620	-0.020	-0.962	-0.026	-0.061	-0.005	-0.006	-0.330	-0.026	-0.018	NA ²	NA ¹
1/5/2024	9:00	-9.830	-0.023	-0.999	-0.025	-0.067	-0.020	-0.012	-0.360	-0.019	-0.014	-0.258	NA ¹
2/1/2024	9:00	NA ¹	-0.021	-1.059	-0.015	NA ¹	-0.033	-0.005	-0.375	-0.013	NA ¹	-0.388	NA ¹
3/6/2024	9:00	NA ¹	-0.025	-0.971	-0.020	NA ¹	-0.027	-0.007	-0.397	-0.016	NA ¹	-0.423	NA ¹
4/5/2024	9:00	NA ¹	-0.022	-1.000	-0.021	NA ¹	-0.026	-0.011	-0.368	-0.012	NA ¹	-0.409	NA ¹
5/3/2024	8:30	NA ¹	-0.026	-0.968	-0.022	NA ¹	-0.033	-0.003	-0.368	-0.017	NA ¹	-0.405	NA ¹
6/7/2024	9:00	NA ¹	-0.031	-0.876	-0.019	NA ¹	-0.035	-0.002	-0.415	-0.018	NA ¹	-0.372	NA ¹

Notes:

in.wc = inches of water column

SDS = sub-slab depressurization sump

VMP = vacuum monitoring point

NA¹ = no data collected; sample point was abandoned

NA² = no data collected; sample point was inaccessible

2024 PRR Tables 1 thru 3 1/1

Table 2
Soil Vapor Sampling Results
Periodic Review Report
Crosman Corporation
East Bloomfield, New York

Sample ID	SD	S-1	SD	S-2	Pre-VP(GAC-101	Pre-VPC	GAC-104	Post-Dilu	ution-EFF	Post-Blow	er/ Effluent
Location	SDS-1	Influent	SDS-2	Influent	Combine	d Influent	Between VP	GAC 103 and	Between VP	GAC 104 and	Effl	uent
Sample Collection Date	12/7/2023	5/3/2024	12/7/2023	5/3/2024	12/7/2023	5/3/2024	12/7/2023	5/3/2024	12/7/2023	5/3/2024	12/7/2023	5/3/2024
Analyte	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
1,1,1-Trichloroethane	11 U	44 U	11 U	22 U	11 U	22 U	22 U	11 U	11 U	11 U	11 U	11 U
1,1,2,2-Tetrachloroethane	14 U	55 U	14 U	27 U	14 U	27 U	27 U	14 U	14 U	14 U	14 U	14 U
1,1-Dichloroethane	8.3 U	32 U	8.1 U	16 U	8.1 U	16 U	16 U	8.1 U	8.1 U	8.1 U	8.1 U	8.1 U
1,1-Dichloroethene	1.4 U	5.6 U	1.4 U	2.8 U	1.4 U	2.8 U	2.8 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U
Acetone	52 J	480 U	210	240 U	100 J	240 U	320	120 U	73 J	120 U	120 U	120 U
Benzene	6.5 U	26 U	6.4 U	13 U	6.4 U	13 U	13 U	6.4 U	6.4 U	6.4 U	6.4 U	6.4 U
Bromoform	21 U	83 U	21 U	41 U	21 U	41 U	41 U	21 U	21 U	21 U	21 U	21 U
Carbon tetrachloride	2.2 U	8.8 U	2.2 U	4.4 U	2.2 U	4.4 U	4.4 U	2.2 U	2.2 U	2.2 U	2.2 U	2.2 U
Chlorobenzene	9.4 U	37 U	9.2 U	18 U	9.2 U	18 U	18 U	9.2 U	9.2 U	9.2 U	9.2 U	9.2 U
cis-1,2-Dichloroethene	4.1	7.9 U	120	56	80	44	100	89	50	41	56	16
m,p-Xylene	22 U	87 U	22 U	43 U	22 U	43 U	43 U	22 U	22 U	22 U	22 U	22 U
Methylene Chloride	18 U	69 U	17 U	35 U	17 U	35 U	35 U	17 U	17 U	17 U	17 U	17 U
Tetrachloroethene	7 J	6 J	11 J	6.9 J	9.8 J	7 J	27 U	14 U	14 U	14 U	14 U	14 U
Toluene	7.7 U	30 U	2.6 J	15 U	7.5 U	15 U	15 U	7.5 U	7.5 U	4.7 J	7.5 U	7.5 U
trans-1,2-Dichloroethene	0.98 J	32 U	7.9 U	16 U	1.8 J	16 U	16 U	1.8 J	7.9 U	7.9 U	7.9 U	7.9 U
Trichloroethene	7800 D	9800 D	7400 D	4800 D	8100 D	5200 D	16000 D	2300 D	560	1700	820	740
Vinyl chloride	2 U	8 U	2 U	4 U	2 U	4 U	4 U	2 U	2 U	2 U	2 U	2 U
Xylene, o-	8.9 U	35 U	8.7 U	17 U	8.7 U	17 U	17 U	8.7 U	8.7 U	8.7 U	8.7 U	8.7 U
Total VOCs (3)	7,864.08 DJ	9,806 DJ	7,743.6 DJ	4,862.9 DJ	8,291.6 DJ	5,251 DJ	16,420 D	2,390.8 DJ	683 J	1,745.7 J	876	756

Notes:

- 1) Samples analyzed for VOCs by USEPA Method TO-15.
- All concentrations are in μg/m³.
- 3) Total VOCs shown include estimated concentrations (e.g., concentrations with "J" laboratory qualifiers).
- 4) Sampling performed semi-annually.

B = compound was found in the blank and sample

ID = identification

J = Result is less than the reporting limit but greater than or equal to the method detection limit, and the concentration is an approximate value.

NA = not analyzed (Summa canister lost vacuum, sample was not analyzed)

SDS = sub-slab depressurization sump

U = Indicates the analyte was analyzed for but not detected.

 $\mu g/m^3 = microgram per cubic meter$

USEPA = United States Environmental Protection Agency

VOC = volatile organic compound

VPGAC = vapor-phase granular-activated carbon

2024 PRR Tables 1 thru 3

Table 3 VOC Mass Removal Estimate Periodic Review Report Crosman Corporation East Bloomfield, New York

		Peri	od ^(a)		Influent		Used for Mas Calculation (s	ss Removal	Removal	Mass Removal Rate Assigned for	Mass Removed	Cumulative Mass
Sample Date	Start Date	End Date	Duration (days)	Uptime (%) ^(b)	VOCs (μg/m³) ^(c)	SDS-1	SDS-2	Combined Influent	Rate at End of Period (grams/day)	Period (grams/day) ^(e)	Per Period (kg)	Removed Since Startup (kg) ^(f)
12/7/2023	6/5/23	12/7/23	184.625	96.2%	8,290.8	12.5	12.1	25	8.3	6.9	1.22	206.3
5/3/2024	12/7/23	5/3/24	147.583	91.4%	5,295.0	10.7	11.2	22	4.7	6.5	0.88	207.2

Notes:

- = not applicable

% = percent

kg = kilogram

scfm = standard cubic feet per minute

SDS = sub-slab depressurization sump

μg/m³ = microgram per cubic meter

VOC = volatile organic compound

2024 PRR Tables 1 thru 3

^(a) Time periods shown for each sample date begin at previous sample date and end at current sample date.

⁽b) Uptime percentage calculated using system runtime readings from system's human machine interface.

⁽c) Sum of VOCs are based on system vapor sample laboratory analytical results from respective sample date. Combined influent laboratory analytical data have been used for mass removal rate calculations.

⁽d) Flow rates utilized for mass removal rate calculations obtained by measuring air velocity from the individual extraction points using a handheld anemometer.

⁽e) Mass removal rates have been calculated for each sampling date using laboratory analytical data and system flow rates. Representative mass removal rates have been assigned to each time period (i.e., between sampling dates) by averaging the respective mass removal rates from the start and end of the time period.

⁽f) Cumulative mass removed through June 2023 reporting period was 205.1 kg.

Table 4
Program Monitoring Wells
Groundwater Analytical Results
Crosman Site
East Bloomfield, New York

Well I.D.					MW	/-3A				
Date Sampled	22-Apr-15	18-Apr-16	19-Apr-17	3-Apr-18	23-Apr-19	21-Apr-20	30-Apr-21	12-Apr-22	7-Apr-23	18-Apr-24
Volatiles										
Acetone	-	-	-	-	-	-	-	-	-	-
Benzene	-	-	-	-	-	-	-	-	-	-
Bromodichloromethane	-	-	-	-	-	-	-	-	-	-
Bromoform	-	-	-	-	-	-	-	-	-	-
Carbon Disulfide	-	-	-	-	-	-	-	-	-	-
Carbon Tetrachloride	-	-	-	-	-	-	-	-	-	-
Chlorobenzene	-	-	-	-	-	-	-	-	-	-
Chloroform	-	-	-	-	-	-	-	-	-	-
cis-1,2-Dichloroethene	-	-	-	-	-	-	-	-	-	-
trans-1,2-Dichloroethene	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane	-	-	-	-	-	-	-	-	-	-
1,1 - Dichloroethane	-	-	-	-	-	-	-	-	-	-
1,1 - Dichloroethene	-	-	-	-	-	-	-	-	-	-
1,1,2,2 - Tetrachloroethane	-	-	-	-	-	-	-	-	-	-
Methylene Chloride	-	-	-	-	-	-	-	-	-	-
Tetrachloroethene	-	-	-	-	-	-	-	-	-	-
Trichloroethene	250	350	260	190	130	220 D	200	220	46	150
Toluene	-	-	-	-	-	-	-	-	-	-
Xylenes (total)	-	-	-	-	-	-	-	-	-	-

2024 PRR Table 4 1/18

Table 4
Program Monitoring Wells
Groundwater Analytical Results
Crosman Site
East Bloomfield, New York

Well I.D.					MV	V-4				
Date Sampled	29-Oct-14	22-Apr-15	21-Oct-15	18-Apr-16	26-Oct-16	19-Apr-17	17-Oct-17	3-Apr-18	26-Oct-18	23-Apr-19
Volatiles										
Acetone	-	-	-	-	-	-	-	-	-	-
Benzene	-	-	-	-	-	-	-	-	-	-
Bromodichloromethane	-	-	-	-	-	-	-	-	-	-
Bromoform	-	-	-	-	-	-	-	-	-	-
Carbon Disulfide	-	-	-	-	-	-	-	-	-	-
Carbon Tetrachloride	-	-	-	-	-	-	-	-	-	-
Chlorobenzene	-	-	-	-	-	-	-	-	-	-
Chloroform	-	-	-	-	-	-	-	-	-	-
cis-1,2-Dichloroethene	-	-	-	-	-	-	-	-	-	-
trans-1,2-Dichloroethene	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane	-	-	-	-	-	-	-	-	-	-
1,1 - Dichloroethane	-	-	-	-	-	-	-	-	-	-
1,1 - Dichloroethene	-	-	-	-	-	-	-	-	-	-
1,1,2,2 - Tetrachloroethane	-	-	-	-	-	-	-	-	-	-
Methylene Chloride	-	-	-	-	-	-	-	-	-	-
Tetrachloroethene	-	-	-	-	-	-	-	-	-	-
Trichloroethene	-	-	-	-	-	-	-	-	-	-
Toluene	-	-	-	-	-	-	-	-	-	-
Xylenes (total)	-	-	-	-	-	-	-	-	-	-

2024 PRR Table 4 2/18

Table 4
Program Monitoring Wells
Groundwater Analytical Results
Crosman Site
East Bloomfield, New York

Well I.D.					MV	V-4				
Date Sampled	31-Oct-19	21-Apr-20	28-Oct-20	30-Apr-21	25-Oct-21	12-Apr-22	26-Oct-22	7-Apr-23	13-Oct-23	18-Apr-24
Volatiles										
Acetone	-	-	-	-	-	-	-	-	-	-
Benzene	-	-	-	-	-	-	-	-	-	-
Bromodichloromethane	-	-	-	-	-	-	-	-	-	-
Bromoform	-	-	-	-	-	-	-	-	-	-
Carbon Disulfide	-	-	-	-	-	-	-	-	-	-
Carbon Tetrachloride	-	-	-	-	-	-	-	-	-	-
Chlorobenzene	-	-	-	-	-	-	-	-	-	-
Chloroform	-	-	-	-	-	-	-	-	-	-
cis-1,2-Dichloroethene	-	-	-	-	-	-	-	-	-	-
trans-1,2-Dichloroethene	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane	-	-	-	-	-	-	-	-	-	-
1,1 - Dichloroethane	-	-	-	-	-	-	-	-	-	-
1,1 - Dichloroethene	-	-	-	-	-	-	-	-	-	-
1,1,2,2 - Tetrachloroethane	-	-	-	-	-	-	-	-	-	-
Methylene Chloride	-	-	-	-	-	-	-	-	-	-
Tetrachloroethene	-	-	-	-	-	-	-	-	-	-
Trichloroethene	-	-	-	-	-	-	-	-	-	-
Toluene	-	-	-	-	-	-	-	-	-	-
Xylenes (total)	-	-	-	-	-	-	-	-	-	-

2024 PRR Table 4 3/18

Table 4
Program Monitoring Wells
Groundwater Analytical Results
Crosman Site
East Bloomfield, New York

Well I.D.					MV	V-5				
Date Sampled	29-Oct-14	22-Apr-15	21-Oct-15	18-Apr-16	26-Oct-16	19-Apr-17	17-Oct-17	3-Apr-18	26-Oct-18	23-Apr-19
Volatiles										
Acetone	-	-	-	-	-	-	-	-	12	-
Benzene	-	-	-	-	-	-	-	-	-	-
Bromodichloromethane	-	-	-	-	-	-	-	-	-	-
Bromoform	-	-	-	-	-	-	-	-	-	-
Carbon Disulfide	-	-	-	-	-	-	-	-	-	-
Carbon Tetrachloride	-	-	-	-	-	-	-	-	-	-
Chlorobenzene	-	-	-	-	-	-	-	-	-	-
Chloroform	-	-	-	-	-	-	-	-	-	-
cis-1,2-Dichloroethene	8.8	17	15	14	9.4	8.8	9.6	11	8.0	9.5
trans-1,2-Dichloroethene	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane	-	-	-	-	-	-	-	-	-	-
1,1 - Dichloroethane	-	-	-	-	-	-	-	-	-	-
1,1 - Dichloroethene	-	-	-	-	-	-	-	-	-	-
1,1,2,2 - Tetrachloroethane	-	-	-	-	-	-	-	-	-	-
Methylene Chloride	-	-	-	-	-	-	-	-	-	-
Tetrachloroethene	-	-	-	-	-	-	-	-	-	-
Trichloroethene	8.7	5.7	6.4	-	6.1	5.0	17	11	11	9.5
Toluene	-	-	-	-	-	-	-	-	-	-
Xylenes (total)	-	-	-	-	-	-	-	-	-	-

2024 PRR Table 4 4/18

Table 4
Program Monitoring Wells
Groundwater Analytical Results
Crosman Site
East Bloomfield, New York

Well I.D.					MV	V-5				
Date Sampled	31-Oct-19	21-Apr-20	28-Oct-20	30-Apr-21	25-Oct-21	12-Apr-22	26-Oct-22	7-Apr-23	13-Oct-23	18-Apr-24
Volatiles										
Acetone	-	-	-	-	-	-	-	-	-	-
Benzene	-	-	-	-	-	-	-	-	-	-
Bromodichloromethane	-	-	-	-	-	-	-	-	-	-
Bromoform	-	-	-	-	-	-	-	-	-	-
Carbon Disulfide	-	-	-	-	-	-	-	-	-	-
Carbon Tetrachloride	-	-	-	-	-	-	-	-	-	-
Chlorobenzene	-	-	-	-	-	-	-	-	-	-
Chloroform	-	-	-	-	-	-	-	-	-	-
cis-1,2-Dichloroethene	9.4	8.5	8.3	6.7	21	20	13	22	20	22
trans-1,2-Dichloroethene	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane	-	-	-	-	-	-	-	-	-	-
1,1 - Dichloroethane	-	-	-	-	-	-	-	-	-	-
1,1 - Dichloroethene	-	-	-	-	-	-	-	-	-	-
1,1,2,2 - Tetrachloroethane	-	-	-	-	-	-	-	-	-	-
Methylene Chloride	-	-	-	-	-	-	-	-	-	-
Tetrachloroethene	-	-	-	-	-	-	-	-	-	-
Trichloroethene	9.1	7.8	6.8	6.7	-	-	5.3	-	-	-
Toluene	-	-	-	-	-	-	-	-	-	-
Xylenes (total)	-	-	-	-	-	-	-	-	-	-

2024 PRR Table 4 5/18

Table 4
Program Monitoring Wells
Groundwater Analytical Results
Crosman Site
East Bloomfield, New York

Well I.D.					MW	<i>l</i> -13				
Date Sampled	29-Oct-14	22-Apr-15	21-Oct-15	18-Apr-16	26-Oct-16	19-Apr-17	17-Oct-17	3-Apr-18	26-Oct-18	23-Apr-19
Volatiles										
Acetone	-	-	-	-	-	-	-	-	16	-
Benzene	-	-	-	-	-	-	-	-	-	-
Bromodichloromethane	-	-	-	-	-	-	-	-	-	-
Bromoform	-	-	-	-	-	-	-	-	-	-
Carbon Disulfide	-	-	-	-	-	-	-	-	-	-
Carbon Tetrachloride	-	-	-	-	-	-	-	-	-	-
Chlorobenzene	-	-	-	-	-	-	-	-	-	-
Chloroform	-	-	-	-	-	-	-	-	-	-
cis-1,2-Dichloroethene	-	-	29	-	13	16	-	-	15	-
trans-1,2-Dichloroethene	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane	-	-	-	-	-	-	-	-	-	-
1,1 - Dichloroethane	-	-	-	-	-	-	-	-	-	-
1,1 - Dichloroethene	-	-	-	-	-	-	-	-	-	-
1,1,2,2 - Tetrachloroethane	-	-	-	-	-	-	-	-	-	-
Methylene Chloride	-	-	-	-	-	-	-	-	-	-
Tetrachloroethene	-	-	-	-	-	-	-	-	-	-
Trichloroethene	190	180	400 D	130	96	250 D	110	51	140	34
Toluene	-	-	-	-	-	-	-	-	-	-
Xylenes (total)	-	-	-	-	-	-	-	-	-	-

2024 PRR Table 4 6/18

Table 4
Program Monitoring Wells
Groundwater Analytical Results
Crosman Site
East Bloomfield, New York

Well I.D.					MW	<i>l</i> -13				
Date Sampled	31-Oct-19	21-Apr-20	28-Oct-20	30-Apr-21	25-Oct-21	12-Apr-22	26-Oct-22	7-Apr-23	13-Oct-23	18-Apr-24
Volatiles										
Acetone	-	-	-	-	-	-	-	-	-	-
Benzene	-	-	-	-	-	-	-	-	-	-
Bromodichloromethane	-	-	-	-	-	-	-	-	-	-
Bromoform	-	-	-	-	-	-	-	-	-	-
Carbon Disulfide	-	-	-	-	-	-	-	-	-	-
Carbon Tetrachloride	-	-	-	-	-	-	-	-	-	-
Chlorobenzene	-	-	-	-	-	-	-	-	-	-
Chloroform	-	-	-	-	-	-	-	-	-	-
cis-1,2-Dichloroethene	-	19	32	-	7.6	5.1	-	-	-	-
trans-1,2-Dichloroethene	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane	-	-	-	-	-	-	-	-	-	-
1,1 - Dichloroethane	-	-	-	-	-	-	-	-	-	-
1,1 - Dichloroethene	-	-	-	-	-	-	-	-	-	-
1,1,2,2 - Tetrachloroethane	-	-	-	-	-	-	-	-	-	-
Methylene Chloride	-	-	-	-	-	-	-	-	-	-
Tetrachloroethene	-	-	-	-	-	-	-	-	-	-
Trichloroethene	58	340 D	29	-	140	130	160	96	130	80
Toluene	-	-	-	-	-	-	-	-	-	-
Xylenes (total)	-	-	-	-	-	-	-	-	-	-

2024 PRR Table 4 7/18

Table 4
Program Monitoring Wells
Groundwater Analytical Results
Crosman Site
East Bloomfield, New York

Well I.D.					MV	<i>I</i> -14				
Date Sampled	29-Oct-14	22-Apr-15	21-Oct-15	18-Apr-16	26-Oct-16	19-Apr-17	17-Oct-17	3-Apr-18	26-Oct-18	23-Apr-19
Volatiles										
Acetone	-	-	-	-	-	-	-	-	-	-
Benzene	-	-	-	-	-	-	-	-	-	-
Bromodichloromethane	-	-	-	-	-	-	-	-	-	-
Bromoform	-	-	-	-	-	-	-	-	-	-
Carbon Disulfide	-	-	-	-	-	-	-	-	-	-
Carbon Tetrachloride	-	-	-	-	-	-	-	-	-	-
Chlorobenzene	-	-	-	-	-	-	-	-	-	-
Chloroform	-	-	-	-	-	-	-	-	-	-
cis-1,2-Dichloroethene	-	-	-	-	-	-	-	-	-	-
trans-1,2-Dichloroethene	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane	-	-	-	-	-	-	-	-	-	-
1,1 - Dichloroethane	-	-	-	-	-	-	-	-	-	-
1,1 - Dichloroethene	-	-	-	-	-	-	-	-	-	-
1,1,2,2 - Tetrachloroethane	-	-	-	-	-	-	-	-	-	-
Methylene Chloride	-	-	-	-	-	-	-	-	-	-
Tetrachloroethene	-	-	-	-	-	-	-	-	-	-
Trichloroethene	-	-	-	-	-	-	-	-	-	-
Toluene	-	-	-	-	-	-	-	-	-	-
Xylenes (total)	-	-	-	-	-	-	-	-	-	-

2024 PRR Table 4 8/18

Table 4
Program Monitoring Wells
Groundwater Analytical Results
Crosman Site
East Bloomfield, New York

Well I.D.					MW	/-14				
Date Sampled	31-Oct-19	21-Apr-20	28-Oct-20	30-Apr-21	25-Oct-21	12-Apr-22	26-Oct-22	7-Apr-23	13-Oct-23	18-Apr-24
Volatiles										
Acetone	-	-	-	-	-	-	-	-	-	-
Benzene	-	-	-	-	-	-	-	-	-	-
Bromodichloromethane	-	-	-	-	-	-	-	-	-	-
Bromoform	-	-	-	-	-	-	-	-	-	-
Carbon Disulfide	-	-	-	-	-	-	-	-	-	-
Carbon Tetrachloride	-	-	-	-	-	-	-	-	-	-
Chlorobenzene	-	-	-	-	-	-	-	-	-	-
Chloroform	-	-	-	-	-	-	-	-	-	-
cis-1,2-Dichloroethene	-	-	-	-	-	-	-	-	-	-
trans-1,2-Dichloroethene	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane	-	-	-	-	-	-	-	-	-	-
1,1 - Dichloroethane	-	-	-	-	-	-	-	-	-	-
1,1 - Dichloroethene	-	-	-	-	-	-	-	-	-	-
1,1,2,2 - Tetrachloroethane	-	-	-	-	-	-	-	-	-	-
Methylene Chloride	-	-	-	-	-	-	-	-	-	-
Tetrachloroethene	-	-	-	-	-	-	-	-	-	-
Trichloroethene	-	-	15	-	7.3	11	6.6	-	9.9	-
Toluene	-	-	-	-	-	-	-	-	-	-
Xylenes (total)	-	-	-	-	-	-	-	-	-	-

2024 PRR Table 4 9/18

Table 4
Program Monitoring Wells
Groundwater Analytical Results
Crosman Site
East Bloomfield, New York

Well I.D.					MV	<i>l</i> -15				
Date Sampled	29-Oct-14	22-Apr-15	21-Oct-15	18-Apr-16	26-Oct-16	19-Apr-17	17-Oct-17	3-Apr-18	26-Oct-18	23-Apr-19
Volatiles										
Acetone	-	-	-	-	-	-	-	-	15	-
Benzene	-	-	-	-	-	-	-	-	-	-
Bromodichloromethane	-	-	-	-	-	-	-	-	-	-
Bromoform	-	-	-	-	-	-	-	-	-	-
Carbon Disulfide	-	-	-	-	-	-	-	-	-	-
Carbon Tetrachloride	-	-	-	-	-	-	-	-	-	-
Chlorobenzene	-	-	-	-	-	-	-	-	-	-
Chloroform	-	-	-	-	-	-	-	-	-	-
cis-1,2-Dichloroethene	-	-	-	-	-	-	-	-	-	-
trans-1,2-Dichloroethene	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane	-	-	-	-	-	-	-	-	-	-
1,1 - Dichloroethane	-	-	-	-	-	-	-	-	-	-
1,1 - Dichloroethene	-	-	-	-	-	-	-	-	-	-
1,1,2,2 - Tetrachloroethane	-	-	-	-	-	-	-	-	-	-
Methylene Chloride	-	-	-	-	-	-	-	-	-	-
Tetrachloroethene	-	-	-	-	-	-	-	-	-	-
Trichloroethene	-	-	-	-	-	-	-	-	-	-
Toluene	-	-	-	-	-	-	-	-	-	-
Xylenes (total)	-	-	-	-	-	-	-	-	-	-

2024 PRR Table 4 10/18

Table 4
Program Monitoring Wells
Groundwater Analytical Results
Crosman Site
East Bloomfield, New York

Well I.D.					MV	<i>I</i> -15				
Date Sampled	31-Oct-19	21-Apr-20	28-Oct-20	30-Apr-21	25-Oct-21	12-Apr-22	26-Oct-22	7-Apr-23	13-Oct-23	18-Apr-24
Volatiles										
Acetone	-	-	-	-	-	-	-	-	-	-
Benzene	-	-	-	-	-	-	-	-	-	-
Bromodichloromethane	-	-	-	-	-	-	-	-	-	-
Bromoform	-	-	-	-	-	-	-	-	-	-
Carbon Disulfide	-	-	-	-	-	-	-	-	-	-
Carbon Tetrachloride	-	-	-	-	-	-	-	-	-	-
Chlorobenzene	-	-	-	-	-	-	-	-	-	-
Chloroform	-	-	-	-	-	-	-	-	-	-
cis-1,2-Dichloroethene	-	-	-	-	-	-	-	-	-	-
trans-1,2-Dichloroethene	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane	-	-	-	-	-	-	-	-	-	-
1,1 - Dichloroethane	-	-	-	-	-	-	-	-	-	-
1,1 - Dichloroethene	-	-	-	-	-	-	-	-	-	-
1,1,2,2 - Tetrachloroethane	-	-	-	-	-	-	-	-	-	-
Methylene Chloride	-	-	-	-	-	-	-	-	-	-
Tetrachloroethene	-	-	-	-	-	-	-	-	-	-
Trichloroethene	-	-	-	-	-	-	-	-	-	-
Toluene	-	-	-	-	-	-	-	-	-	-
Xylenes (total)	-	-	-	-	-	-	-	-	-	-

2024 PRR Table 4 11/18

Table 4
Program Monitoring Wells
Groundwater Analytical Results
Crosman Site
East Bloomfield, New York

Well I.D.					MW	<i>I</i> -17				
Date Sampled	22-Apr-15	18-Apr-16	19-Apr-17	3-Apr-18	23-Apr-19	21-Apr-20	30-Apr-21	12-Apr-22	7-Apr-23	18-Apr-24
Volatiles										
Acetone	-	-	-	-	-	-	-	-	-	-
Benzene	-	-	-	-	-	-	-	-	-	-
Bromodichloromethane	-	-	-	-	-	-	-	-	-	-
Bromoform	-	-	-	-	-	-	-	-	-	-
Carbon Disulfide	-	-	-	-	-	-	-	-	-	-
Carbon Tetrachloride	-	-	-	-	-	-	-	-	-	-
Chlorobenzene	-	-	-	-	-	-	-	-	-	-
Chloroform	-	-	-	-	-	-	-	-	-	-
cis-1,2-Dichloroethene	-	-	-	-	-	-	-	-	-	-
trans-1,2-Dichloroethene	-	-	-	-	15	-	-	-	-	17
Dibromochloromethane	-	-	-	-	-	-	-	-	-	-
1,1 - Dichloroethane	-	-	-	-	-	-	-	-	-	-
1,1 - Dichloroethene	-	-	-	-	-	-	-	-	-	-
1,1,2,2 - Tetrachloroethane	-	-	-	-	-	-	-	-	-	-
Methylene Chloride	-	-	-	-	-	-	-	-	-	-
Tetrachloroethene	-	-	-	-	-	-	-	-	-	-
Trichloroethene	400	340	500 D	470	440	440	350	390	230	240
Toluene	-	-	-	-	-	-	-	-	-	-
Xylenes (total)	-	-	-	-	-	-	-	-	-	-

2024 PRR Table 4 12/18

Table 4
Program Monitoring Wells
Groundwater Analytical Results
Crosman Site
East Bloomfield, New York

Well I.D.					MV	<i>I</i> -18				
Date Sampled	22-Apr-15	18-Apr-16	19-Apr-17	3-Apr-18	23-Apr-19	21-Apr-20	30-Apr-21	12-Apr-22	7-Apr-23	18-Apr-24
Volatiles										
Acetone	-	-	-	-	-	-	-	-	-	-
Benzene	-	-	-	-	-	-	-	-	-	-
Bromodichloromethane	-	-	-	-	-	-	-	-	-	-
Bromoform	-	-	-	-	-	-	-	-	-	-
Carbon Disulfide	-	-	-	-	-	-	-	-	-	-
Carbon Tetrachloride	-	-	-	-	-	-	-	-	-	-
Chlorobenzene	-	-	-	-	-	-	-	-	-	-
Chloroform	-	-	-	-	-	-	-	-	-	-
cis-1,2-Dichloroethene	-	-	-	-	-	-	-	-	-	-
trans-1,2-Dichloroethene	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane	-	-	-	-	-	-	-	-	-	-
1,1 - Dichloroethane	-	-	-	-	-	-	-	-	-	-
1,1 - Dichloroethene	-	-	-	-	-	-	-	-	-	-
1,1,2,2 - Tetrachloroethane	-	-	-	-	-	-	-	-	-	-
Methylene Chloride	-	-	-	-	-	-	-	-	-	-
Tetrachloroethene	-	-	-	-	-	-	-	-	-	-
Trichloroethene	-	-	-	-	-	-	-	-	-	-
Toluene	-	-	-	-	-	-	-	-	-	-
Xylenes (total)	-	-	-	-	-	-	-	-	-	-

2024 PRR Table 4 13/18

Table 4
Program Monitoring Wells
Groundwater Analytical Results
Crosman Site
East Bloomfield, New York

Well I.D.		MW-19												
Date Sampled	22-Apr-15	18-Apr-16	19-Apr-17	3-Apr-18	23-Apr-19	21-Apr-20	30-Apr-21	12-Apr-22	7-Apr-23	18-Apr-24				
Volatiles														
Acetone	-	-	-	-	-	-	-	-	-	-				
Benzene	-	-	-	-	-	-	-	-	-	-				
Bromodichloromethane	-	-	-	-	-	-	-	-	-	-				
Bromoform	-	-	-	-	-	-	-	-	-	-				
Carbon Disulfide	-	-	-	-	-	-	-	-	-	-				
Carbon Tetrachloride	-	-	-	-	-	-	-	-	-	-				
Chlorobenzene	-	-	-	-	-	-	-	-	-	-				
Chloroform	-	-	-	-	-	-	-	-	-	-				
cis-1,2-Dichloroethene	-	-	-	-	-	-	-	-	-	-				
trans-1,2-Dichloroethene	-	-	-	-	-	-	-	-	-	-				
Dibromochloromethane	-	-	-	-	-	-	-	-	-	-				
1,1 - Dichloroethane	-	-	-	-	-	-	-	-	-	-				
1,1 - Dichloroethene	-	-	-	-	-	-	-	-	-	-				
1,1,2,2 - Tetrachloroethane	-	-	-	-	-	-	-	-	-	-				
Methylene Chloride	-	-	-	-	-	-	-	-	-	-				
Tetrachloroethene	-	-	-	-	-	-	-	-	-	-				
Trichloroethene	-	-	-	-	-	-	-	-	-	-				
Toluene	-	-	-	-	-	-	-	-	-	-				
Xylenes (total)	-	-	-	-	-	-	-	-	-	-				

2024 PRR Table 4 14/18

Table 4
Program Monitoring Wells
Groundwater Analytical Results
Crosman Site
East Bloomfield, New York

Well I.D.					PV	V-1				
Date Sampled	29-Oct-14	27-Apr-15	21-Oct-15	18-Apr-16	26-Oct-16	19-Apr-17	3-Apr-18	26-Oct-18	23-Apr-19	31-Oct-19
Volatiles										
Acetone	-	-	-	-	-	-	-	-	-	-
Benzene	-	-	-	-	-	-	-	-	-	-
Bromodichloromethane	-	-	-	-	-	-	-	-	-	-
Bromoform	-	-	-	-	-	-	-	-	-	-
Carbon Disulfide	-	-	-	-	-	-	-	-	-	-
Carbon Tetrachloride	-	-	-	-	-	-	-	-	-	-
Chlorobenzene	-	-	-	-	-	-	-	-	-	-
Chloroform	-	-	-	-	-	-	-	-	-	-
cis-1,2-Dichloroethene	-	-	-	-	-	-	-	-	-	-
trans-1,2-Dichloroethene	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane	-	-	-	-	-	-	-	-	-	-
1,1 - Dichloroethane	-	-	-	-	-	-	-	-	-	-
1,1 - Dichloroethene	-	-	-	-	-	-	-	-	-	-
1,1,2,2 - Tetrachloroethane	-	-	-	-	-	-	-	-	-	-
Methylene Chloride	-	-	-	-	-	-	-	-	-	-
Tetrachloroethene	-	-	-	-	-	-	-	-	-	-
Trichloroethene	110	69	98	79	92	41	14	22	15	15
Toluene	-	-	-	-	-	-	-	-	-	-
Xylenes (total)	-	-	-	-	-	-	-	-	-	-

2024 PRR Table 4 15/18

Table 4
Program Monitoring Wells
Groundwater Analytical Results
Crosman Site
East Bloomfield, New York

Well I.D.	PW-1											
Date Sampled	21-Apr-20	28-Oct-20	30-Apr-21	25-Oct-21	12-Apr-22	26-Oct-22	7-Apr-23	13-Oct-23	18-Apr-24			
Volatiles												
Acetone	-	-	-	-	-	-	-	-	-			
Benzene	-	-	-	-	-	-	-	-	-			
Bromodichloromethane	-	-	-	-	-	-	-	-	-			
Bromoform	-	-	-	-	-	-	-	-	-			
Carbon Disulfide	-	-	-	-	-	-	-	-	-			
Carbon Tetrachloride	-	-	-	-	-	-	-	-	-			
Chlorobenzene	-	-	-	-	-	-	-	-	-			
Chloroform	-	-	-	-	-	-	-	-	-			
cis-1,2-Dichloroethene	-	-	-	-	-	-	-	-	-			
trans-1,2-Dichloroethene	-	-	-	-	-	-	-	-	-			
Dibromochloromethane	-	-	-	-	-	-	-	-	-			
1,1 - Dichloroethane	-	-	-	-	-	-	-	-	-			
1,1 - Dichloroethene	-	-	-	-	-	-	-	-	-			
1,1,2,2 - Tetrachloroethane	-	-	-	-	-	-	-	-	-			
Methylene Chloride	-	-	-	-	-	-	-	-	-			
Tetrachloroethene	-	-	-	-	-	-	-	-	-			
Trichloroethene	14	42	37	23	11	35	19	55	28			
Toluene	-	-	-	-	-	-	-	-	-			
Xylenes (total)	-	-	-	-	-	-	-	-	-			

2024 PRR Table 4 16/18

Table 4
Program Monitoring Wells
Groundwater Analytical Results
Crosman Site
East Bloomfield, New York

Well I.D.		MW-20								
Date Sampled	22-Apr-15	18-Apr-16	19-Apr-17	3-Apr-18	23-Apr-19	21-Apr-20	30-Apr-21	12-Apr-22	7-Apr-23	18-Apr-24
Volatiles										
Acetone	-	-	-	-	-	-	-	-	-	-
Benzene	-	-	-	-	-	-	-	-	-	-
Bromodichloromethane	-	-	-	-	-	-	-	-	-	-
Bromoform	-	-	-	-	-	-	-	-	-	-
Carbon Disulfide	-	-	-	-	-	-	-	-	-	-
Carbon Tetrachloride	-	-	-	-	-	-	-	-	-	-
Chlorobenzene	-	-	-	-	-	-	-	-	-	-
Chloroform	-	-	-	-	-	-	-	-	-	-
cis-1,2-Dichloroethene	-	-	-	-	-	-	-	-	-	-
trans-1,2-Dichloroethene	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane	-	-	-	-	-	-	-	-	-	-
1,1 - Dichloroethane	-	-	-	-	-	-	-	-	-	-
1,1 - Dichloroethene	-	-	-	-	-	-	-	-	-	-
1,1,2,2 - Tetrachloroethane	-	-	-	-	-	-	-	-	-	-
Methlyene Chloride	-	-	-	-	-	-	-	-	-	-
Tetrachloroethene	-	-	-	-	-	-	-	-	-	-
Trichloroethene	110	120	160	120	150	180	92	150	23	100
Toluene	-	-	-	-	-	-	-	-	-	-
Xylenes (total)	-	-	-	-	-	-	-	-	-	-

Notes on page 18.

2024 PRR Table 4 17/18

Table 4 Program Monitoring Wells Groundwater Analytical Results Crosman Site East Bloomfield, New York

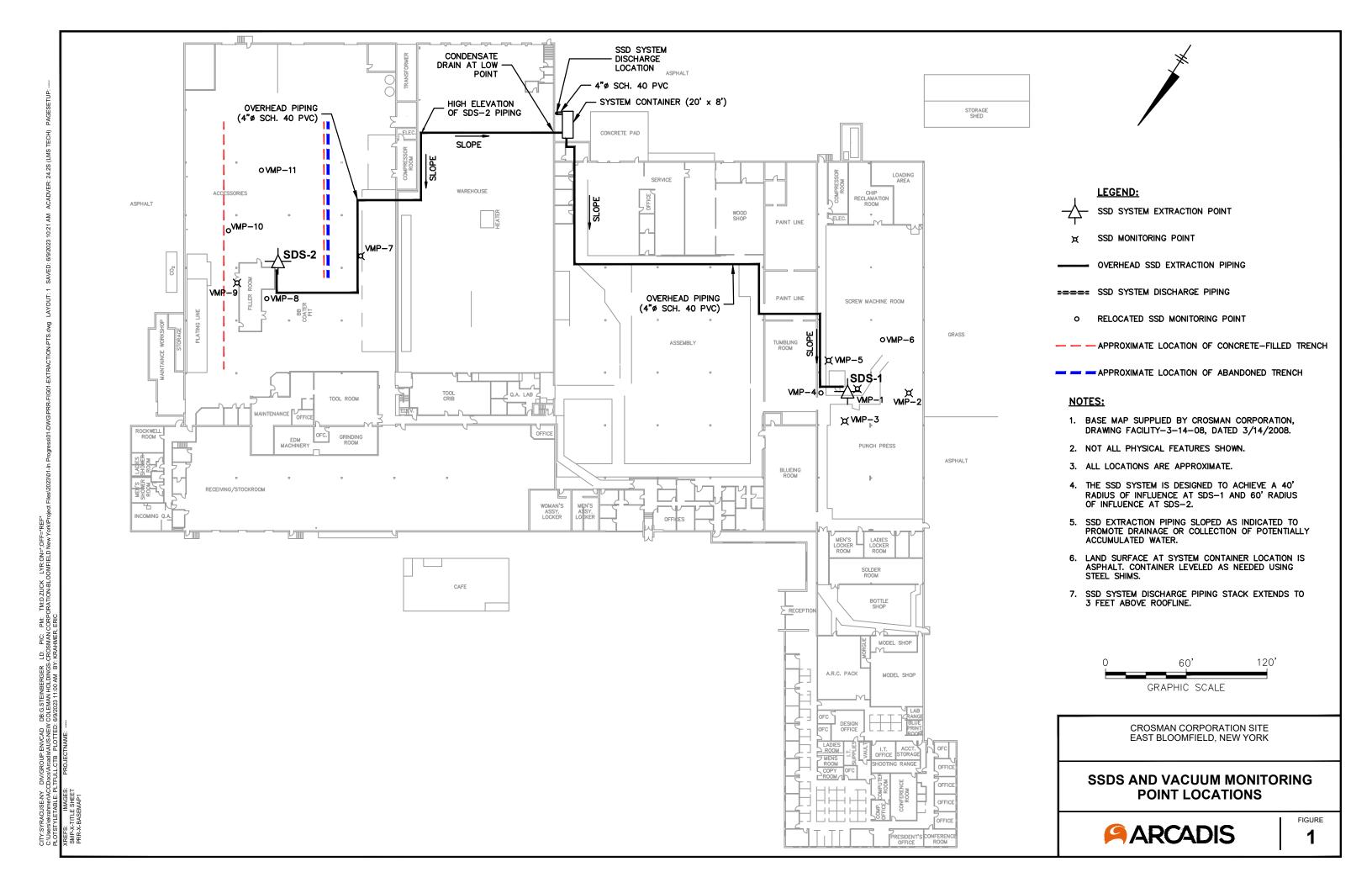
J: The compound was positively identified; however, the associated numerical value

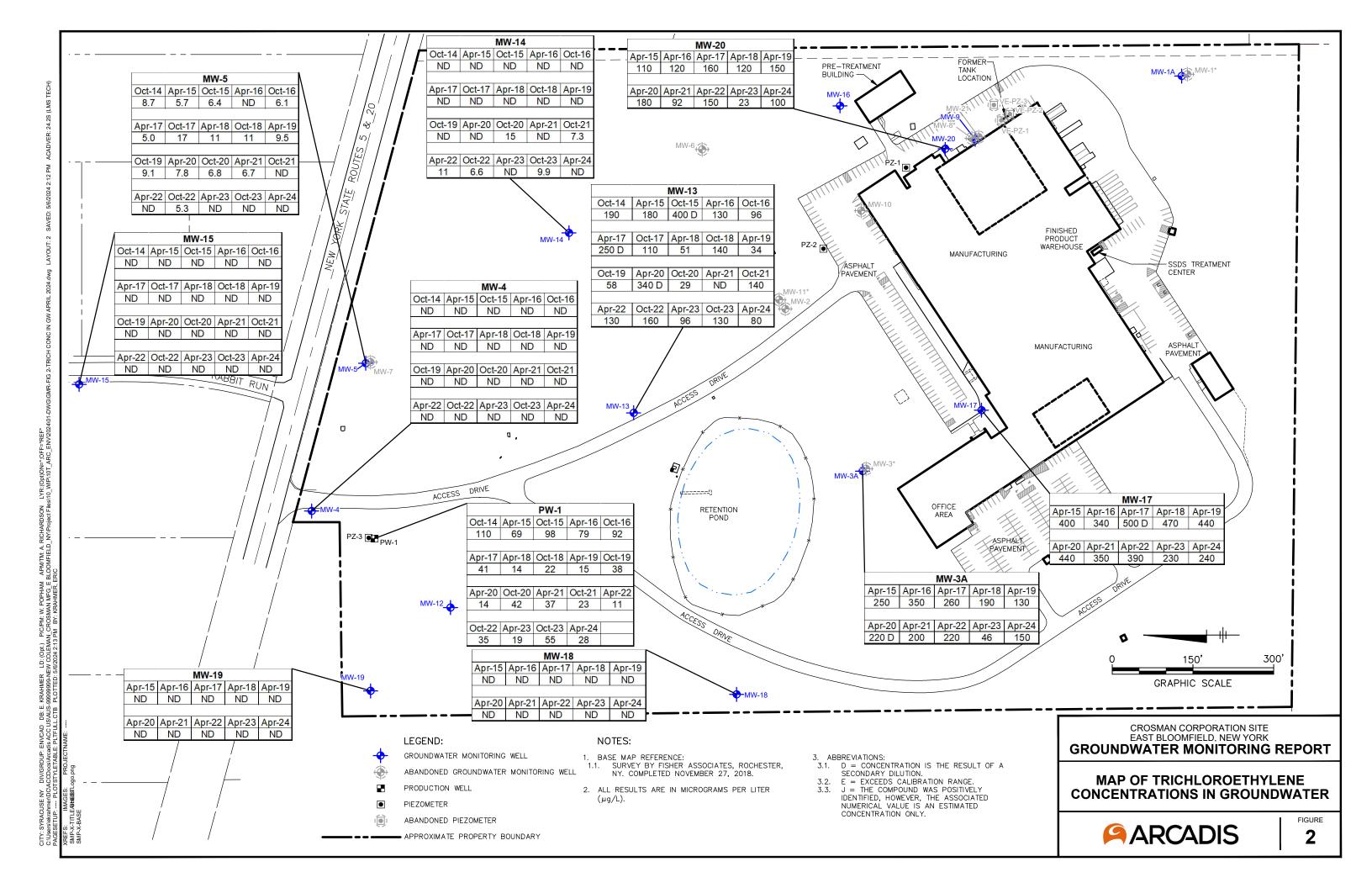
is an estimated concentration.

N: Spiked sample recovery was not within control limits.

S: The reported value was determined by the method of standard additions (MSA).

D: Denotes a secondary dilution.E: Exceeds calibration range.


NA: Denotes not analyzed.


-: Denotes a nondetectable concentration.

Water quality results are expressed in micrograms per liter ($\mu g/L$), equivalent to parts per billion.

2024 PRR Table 4 18/18

Figures

Appendix A

Recorded Declaration of Covenants and Restrictions

Ontario County Clerk Recording Page

Return To

Stewart Title Insurance Company - Upstate

Document Type: DECLARATION

Grantor (Party 1)
CROSMAN CORPORATION

Fees	
Recording Fee Pages Fee State Surcharge	\$20.00 \$30.00 \$20.00
Total Fees Paid:	\$70.00

Matthew J. Hoose, County Clerk

Ontario County Clerk 20 Ontario Street Canandaigua, New York 14424 (585) 396-4200

Receipt Number: 493204

Grantee (Party 2)	

Control #: 202005130107

Property located in **Town of East Bloomfield**

Matthew ()

State of New York County of Ontario

Recorded on May 13th, 2020 at 4:52:59 PM in Liber **01450** of **Deeds** beginning at page **0324**, ending at page **0329**, with a total page count of 6.

Ontario County Clerk

This sheet constitutes the Clerk's endorsement required by section 319 of the Real Property Law of the State of New York

DECLARATION of COVENANTS and RESTRICTIONS

THIS COVENANT is made the 4th day of May 2020, by Crosman Corporation, a corporation organized and existing under the laws of the State of Delaware and having an office for the transaction of business at 7629 Routes 5 and 20, East Bloomfield, New York 14443.

WHEREAS, the Crosman Corporation Site, (Site # 835012) is the subject of an Order on Consent executed by Crosman Corporation and New Coleman Holdings, Inc. (collectively, the "Respondents") as part of the New York State Department of Environmental Conservation's (the "Department's") State Superfund Program, namely that parcel of real property located at the address of 7629 Routes 5 and 20 (Tax Map ID# 080.00-1-04.000), Town of East Bloomfield, County of Ontario, State of New York, being the same as (or part of) that property conveyed to Crosman Corporation by Crosman Products, Inc., by deed(s) dated August 27, 1990, and recorded on September 13, 1990 at the Ontario County Clerk in Liber 900, Page 1065, and being more particularly described in Schedule "A," attached to this declaration and made a part hereof, and hereinafter referred to as the "Property"; and

WHEREAS, the Department approved a remedy to eliminate or mitigate all significant threats to the environment presented by the contamination disposed at the Property and such remedy requires that the Property be subject to restrictive covenants.

NOW, THEREFORE, Crosman Corporation, for itself and its successors and/or assigns, covenants that:

First, the Property subject to this Declaration of Covenants and Restrictions is as described in Schedule "A" and made a part hereof.

Second, unless prior written approval by the Department or, if the Department shall no longer exist, any New York State agency or agencies subsequently created to protect the environment of the State and the health of the State's citizens, hereinafter referred to as the "Relevant Agency," is first obtained, where contamination remains at the Property subject to the provisions of the Site Management Plan ("SMP"), including any and all Department-approved amendments to the SMP, there shall be no construction, use or occupancy of the Property that results in the disturbance or excavation of the Property which threatens the integrity of the engineering controls or which results in unacceptable human exposure to contaminated soils. An up-to-date version of the SMP may be obtained from the New York State Department of Environmental Conservation. Division of Environmental Remediation, Site Control Section, 625 Broadway, Albany, New York, 12233 or DERWEB@dec.nv.gov.

Third, the owner of the Property shall not disturb, remove, or otherwise interfere with the installation, use, operation, and maintenance of engineering controls required for

> Record & Return to: Barelay Damon LLP 2000 Five Stav Benk Plaza 100 Lhestnut Sweet Rochester NY 14604

Page 1 of 5

the Remedy, which are described in the SMP, unless in each instance the owner first

Fourth, the owner of the Property shall prohibit the Property from ever being used for purposes other than for Commercial use as described in 6 NYCRR Part 375-1.8(g)(2)(iii) or Industrial use as described in 6 NYCRR Part 375-1.8(g)(2)(iv), consistent with zoning, without the express written waiver of such prohibition by the Department or Relevant Agency.

obtains a written waiver of such prohibition from the Department or Relevant Agency.

Fifth, the use of groundwater underlying the Property as drinking water is prohibited without necessary water quality treatment as determined by the New York State Department of Health or the Ontario County Department of Health to render it safe for use as drinking water, and the user must first notify and obtain written approval to so use the groundwater as drinking water from the Department; provided, however, that this prohibition is inapplicable to the continued use of the groundwater underlying the Property as non-contact cooling and process water with subsequent discharge primarily pursuant to a State Pollution Discharge Elimination System permit (presently, SPDES Permit No.: NY-0103039) to an unnamed tributary of Fish Creek, but also to an extent, with subsequent discharge to the East Bloomfield Publicly Owned Treatment Works.

Sixth, the owner of the Property shall, at such time as the Department may require pursuant to the SMP, provide a periodic certification, prepared and submitted by a professional engineer or environmental professional acceptable to the Department or Relevant Agency, which will certify that the institutional and engineering controls put in place are unchanged from the previous certification, comply with the SMP, and have not been impaired, unless one or both of the Respondents have already provided such periodic certification which has been accepted by the Department pursuant to the SMP.

Seventh, the owner of the Property shall continue in full force and effect any institutional and engineering controls required by the Remedy, which are described in the SMP, unless the owner first obtains permission to discontinue such controls from the Department or Relevant Agency, in compliance with the approved SMP, which is incorporated and made enforceable hereto, subject to modifications as approved by the Department or Relevant Agency.

Eighth, this Declaration is and shall be deemed a covenant that shall run with the land and shall be binding upon all future owners of the Property, and shall provide that the owner and its successors and assigns consent to enforcement by the Department or Relevant Agency of the prohibitions and restrictions that the Order on Consent requires to be recorded, and hereby covenant not to contest the authority of the Department or Relevant Agency to seek enforcement.

Ninth, access to the Property must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by this Declaration of Covenants and Restrictions.

Tenth, the potential for vapor intrusion must be evaluated for any buildings developed on the Property, and any potential impacts that are identified must be monitored or mitigated.

Eleventh, any deed of conveyance of the Property, or any portion thereof, shall recite, unless the Department or Relevant Agency has consented to the termination of such covenants and restrictions, that said conveyance is subject to this Declaration of Covenants and Restrictions.

IN WITNESS WHEREOF, the undersigned has executed this instrument the day written below.

Print Name: Daniel J. Maier

Title: Vice President of Finance Date: 05/04, 2020

Grantor's Acknowledgment

On the day of many in the year 2020, before me, the undersigned, personally appeared months of satisfactory evidence to be the individual(s) whose name(s) is (are) subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their capacity(ies), and that by his/her/their signatures(s) on the instrument, the individual(s), or the person on behalf of which the individual(s) acted, executed the instrument.

July Denny Woodbons Signature

Notary Public State of New York

Notary Stamp & Expiration Date: | 31/21

JULIE DEWEY WOODHAMS
Notory Public - State of New York
NO 01WO4835219
Qualified in Ontaria County

SCHEDULE "A"

to

Declaration of Covenants and Restrictions
For Crosman Corporation Site
Site No. 835012

METES AND BOUNDS DESCRIPTION OF RESTRICTED PROPERTY AS FILED IN ONTARIO COUNTY CLERK'S OFFICE AT LIBER 900 PAGE 1065

ALL THAT CERTAIN PLOT, PIECE OR PARCEL OF LAND, with the buildings and improvements thereon erected, situate, lying and being in the Lot Nos. 28 and 44, Township 10, Range 4, Town of East Bloomfield, County of Ontario and State of New York, bounded and described as follows:

BEGINNING at an iron pipe on the south line of New York State Highway (Routes 5 and 20), on the west line of land formerly owned by Charles Page and now reputedly owned by John Toomey, and

RUNNING THENCE South 8 degrees 32 minutes West along land reputedly owned by said Toomey, 1635.15 feet to an iron pipe at the northeast corner of land reputedly owned by David Hamlin;

THENCE North 80 degrees 26 minutes West along land reputedly owned by said Hamlin, 1231.60 feet to an iron pipe at the southeast corner of land formerly owned by Bridget McDonnell and Bertha M. McKeon and now reputedly owned by Alvin Ayres;

THENCE North 8 degrees 22 minutes East along land reputedly owned by said Ayres, 1764.70 feet to an iron pipe at the southwest corner of land formerly owned by Luella Olmstead, and now reputedly owned by Konrad Meier;

THENCE the following courses and distances along land reputedly owned by said Meier, South 81 degrees 51 minutes East 361.02 feet to an iron pipe and North 8 degrees 57 seconds East 86.55 feet to an iron pipe on the south line of the aforesaid highway;

THENCE South 66 degrees 06 minutes East along the south line of said highway, 907.40 feet to the point or place of BEGINNING.

METES AND BOUNDS DESCRIPTION OF RESTRICTED PROPERTY (AS MEASURED)

IN THE INSTRUMENT SURVEY COMPLETED BY FISHER ASSOCIATES, P.E., L.S. OCTOBER 23, 2018 BEING AND INTENDING TO DESCRIBE THE SAME PROPERTY AS THE ABOVE LEGAL DESCRIPTION

All that tract or parcel of land situate in Town Lots 28 and 44, Township 10, Range 4, Town of East Bloomfield, County of Ontario, State of New York, bounded and described as follows:

Beginning at a point in the southerly highway boundary of the existing New York Route 5 and US Route 20 (99.0' wide), at its intersection with the division line between the lands now or formerly of Crosman Corporation (Tax 10 No. 80.00-1-4) on the west and the lands now or formerly of Lynn Farash LLC (Tax ID No. 80.00-1-5.013) on the east; thence

- South 00°24′24″ East along the easterly line of Crosman Corporation (Tax ID No. 80.00-1-4) a distance of 1635.16 feet to a point on the division line between the hands now or formerly of Crosman Corporation (Tax ID No. 80.00-1-4) on the north and the lands now or formerly of John Lane and Kelly Lane (Tax ID No. 79.00-3-9.1) on the south; thence
- North 89°22'24" West along the last mentioned division line, a distance of 1231.60 feet to a point on the division line between the lands now or formerly of Crosman Corporation (Tax ID No. 80.00-1-4) on the east and the lands now or formerly of Duane A. Ayers and Paulette M. Ayers (Tax ID No. 80.00-1-2.21) on the west; thence
- North 00°34′24″ West along the last mentioned division line a distance of 1764.70 feet to a point on the division line between the lands now or formerly of Crosman Corporation (Tax ID No. 80.00-1-4) on the south and the lands now or formerly of Gregory T. Hart and Melissa L Hart (Tax ID No. 80.00-1-3) on the north; thence
- Easterly and Northerly along the last mentioned division line the following two (2) courses and distances:
 - 1. North 89° 12'36" East, a distance of 361.02 feet to a point; thence
 - North 00°01'36" East, a distance of 86.55 feet to a point in the southerly highway boundary of the existing New York Route 5 and 20 (99.0' wide); thence
- South 75°01'24" East along the southerly highway boundary of the existing New York Route 5 and US Route 20 (99.0' wide), a distance of 907.38 feet to the point of beginning, being 49.684+ acres.

Appendix B

SSDS Inspection Forms and Alarm Response Logs

Date:	7/7/2023	Time:	900	_	Tech	nnician:		BKW		
SYSTE	M STATUS			YES	NO	Notes				
		Is blower	running?	X		None				
	Is virtual hand-off-auto switch	in the "auto"	position?	X		None				
	Are electrical panel of	doors securel	y closed?	X		None				
List	any active alarms including da	ate/time of oc	currence:	None						
Record	electric meter reading (kWh)	NA		R	ecord blo	wer runtime	e (hours)			59029.8
SYSTE	M PARAMETERS									
	SDS-1 applied vacuum (in w	v.c.) (VI-001)	-75	_		Post-air filte	er/pre-VPG/	AC-101 vacuum		-81
	SDS-1 header vacuum (in w	v.c.) (VI-101)	-74				((in w.c.) (VI-102)		
	(transmi	tter VT-101)	69.2	_	Pre	-VPGAC-10	01 vacuum	(in w.c.) (VI-103)		0
	SDS-2 applied vacuum (in w	v.c.) (VI-002)	-72	_	Pre	-VPGAC-10	02 vacuum	(in w.c.) (VI-104)		0
	SDS-2 header vacuum (in w	.c.) (VI-201)	-84	_	Pre	-VPGAC-10	03 vacuum	(in w.c.) (VI-105)		-72
	(transmi	tter VT-201)	69.2	_	Pre	-VPGAC-10	04 vacuum	(in w.c.) (VI-106)		-74
	Knockout tank level (inches is	n site gauge)	<1"	_	Post-VP	PGAC-104/p	ore-dilution	vacuum (VI-107)		-78
	Influent temperat	ture (TI-102)	78	_	Po	ost-dilution/	pre-blower	vacuum (VI-108)		-82
	Influent flow r	rate (FI-101)	NA	_		Post-blowe	er pressure	(in w.c.) (PI-301)		-2.5
	SDS-1 Air Velocity (fpm) (bu	uilding/shed)	92/120	_		Post-blow	er temperat	ure (°F) (TI-301)		158
	SDS-2 Air Velocity (fpm) (bu	uilding/shed)	169/170	_				•		
	Combined Air V	elocity (fpm)	205	_ _						
System	n Valve Positions	OPENED	CLOSED			OPENED	CLOSED		OPENED	CLOSED
SD	S-1 extraction point valve V-00				V-102	×		V-111	0	×
	S-2 extraction point valve V-00	\hookrightarrow			V-103	\Diamond		V-112		\Diamond
	SDS-1 header valve V-10	\leftarrow			V-104		X	V-113		\Diamond
	SDS-2 header valve V-20	o1 🙀			V-105		\Diamond	V-114		\Diamond
	Dilution valve V-11	19			V-106		\Diamond	V-115		\Diamond
	Vacuum relief valve V-12	20	\mathbf{X}		V-107	X		V-116		\Diamond
	Pressure relief valve V-30		\triangleright		V-108	\Diamond		V-117		\Diamond
					V-109	\Diamond		V-118		\Diamond
					V-110		X	, , , ,		
GENER	RAL									
Are the	re any unusual noises, vibratio	ns or odors o	letected at the	system	? <u>N</u>	No				
Inspect	all fittings, piping, relief valves	and sample	ports for leaks	s. Note a	ny observ	vations:	All	good.		
Was en	closure secure upon arrival? (Y/N)	Yes							
Other n	otes: Elbow valves dry. Did r	not drain KO	Γ due to low w	ater leve	l (<1").					

Date:	7/7/2023	Time:	900		Technician:	BKW	
System S	Status		YES	NO	Notes		
		Is blower running	g?		Yes		
	Was monthly OM&M Log	Sheet complete	g? d?		None		
Was	instantaneous sub-slab o moi	differential pressunitoring conducte	ire 💙		None		
	Was air sa	mpling conducte	d?		PID field screen		
	Was 24-hour continous o	differential pressunitoring conducted		X	None		
	Indicate indoor a	ir temperature (°F	=):	85			

Vacuum Monitoring Point	Instantaneous Differential Pressure (in w.c.) [use negative sign to indicate vacuum]	24-Hour Continuous Monitoring Conducted (Y/N)
VMP-1	-7.686	No
VMP-2	-0.034	No
VMP-3	-0.741	No
VMP-4	-0.017	No
VMP-5	-0.048	No
VMP-6	-0.062	No
VMP-7	-0.009	No
VMP-8	-0.378	No
VMP-9	-0.074	No
VMP-10	-0.052	No
VMP-11	-0.242	No
VMP-12	Abandonded	

System Vapor Sampling

Sample Location	Sample Collected (Y/N)	Time	Grab or Integrated	Canister Va	cuum (inHg)	PID	Can ID
Sample Location	pie Location Sample Collected (17N)		Sample?	Start Finish		Measurement	Callid
SDS-1	N	N/A	N/A	N/A	N/A	4.4	N/A
SDS-2	N	N/A	N/A	N/A	N/A	3.4	N/A
Combined Influent	N	N/A	N/A	N/A	N/A	4.9	N/A
Pre-VPGAC4	N	N/A	N/A	N/A	N/A	4.7	N/A
Post-Dilution Eff	N	N/A	N/A	N/A	N/A	0.6	N/A
Post-Blower Eff	N	N/A	N/A	N/A	N/A	0.5	N/A

Date: 7/7/2023		Time: 900	Technic	ian:	BKW
	Tas	sk	Frequency	Conducted (Y/N)	Notes
Complete S	System Monitoring Log		Monthly	Yes	
Complete F	Performance Monitoring L	og	Monthly	Yes	
Complete A	larm Response Log		As Needed	Yes	
Conduct In:	stantaneous Sub-Slab Di	fferential Pressure Monitoring	See Table 4	Yes	
Conduct 24	-Hour Continuous Differe	ential Pressure Monitoring	See Table 4	No	
Conduct Sy	stem Vapor sampling		See Table 5	Yes	PID Field Screen; sampled May and December
Blower Insp	pection		Monthly	Yes	
Knockout T	ank Liquid Level Check a	and/or Draining (1)	Monthly	Yes	
Condensati	on Check ⁽¹⁾		Monthly	Yes	
In-Line Air	Filter Element Inspection	and/or Replacement (2)(3)	Monthly	Yes	
Dilution Lin	e Air Filter Element Inspe	ection and/or Replacement	Monthly	Yes	
Extraction I	Point Riser Inspection		Monthly	Yes	
Discharge S	Stack Inspection		Monthly	Yes	
Knockout T	ank Liquid Level Switche	es Test ⁽⁴⁾⁽⁵⁾	Annual	NA	
Vacuum Tr	ansmitters Test (4)(6)		Annual	NA	
Vacuum Re	elief Valve Test (should o	pen at 80 in w.c. vacuum)	Annual	NA	
Alarm Notif	ication Test		Annual	NA	
VPGAC Ch	angeout		Annual	NA	
Blower Volt	age and Current Check (3)	As Needed	No	

Notes

- 1) Condensation shall be containerized and disposed of in coordination with Crosman Corporation's procedures.
- 2) System shall be shutdown prior to performing.
- 3) Lockout/tagout and work on energized equipment shall be conducted in accordance with Arcadis Safety Program.
- 4) Will cause system shutdown.
- 5) Knockout tank shall be filled with water using lower drain port.
- 6) Vacuum transmitters VT-101 and VT-201 shall read between +/- 5% of vacuum gauges VI-101 and VI-201, respectively.

Date:	8/4/2023	Time:	900	<u> </u>	Technicia	n:	RDC	
SYSTE	M STATUS			YES I	<u> О</u> N	otes		
		Is blower	r running?	\times	N	one		
	Is virtual hand-off-auto switch	in the "auto"	position?		N	one		
	Are electrical panel of	doors securel	y closed?	\mathbf{X}	N	one		
List	any active alarms including da	ate/time of oc	ccurrence:	None				
Record	electric meter reading (kWh)	NA		Recor	d blower ru	ntime (hours)		59681.4
SYSTE	M PARAMETERS							
	SDS-1 applied vacuum (in w	v.c.) (VI-001)	-69	_	Post-a	air filter/pre-VI	PGAC-101 vacuum	-74
	SDS-1 header vacuum (in w	v.c.) (VI-101)	-68	_			(in w.c.) (VI-102)	
	(transmi	tter VT-101)	63.2	_	Pre-VPG	AC-101 vacuu	m (in w.c.) (VI-103)	0
	SDS-2 applied vacuum (in w	v.c.) (VI-002)	-66	_	Pre-VPG	AC-102 vacuu	m (in w.c.) (VI-104)	0
	SDS-2 header vacuum (in w	.c.) (VI-201)	-77	_	Pre-VPG	AC-103 vacuu	m (in w.c.) (VI-105)	-68
	(transmi	tter VT-201)	63.2	_	Pre-VPG	AC-104 vacuu	m (in w.c.) (VI-106)	-70
	Knockout tank level (inches is	n site gauge)	0"	Po	st-VPGAC-	104/pre-dilution	on vacuum (VI-107)	-70
	Influent temperat	ture (TI-102)	80	_	Post-dilu	ution/pre-blow	er vacuum (VI-108)	-74
	Influent flow r	rate (FI-101)	NA	_	Post-	blower pressu	re (in w.c.) (PI-301)	-1
	SDS-1 Air Velocity (fpm) (bu	uilding/shed)	73/71	_	Post	-blower tempe	erature (°F) (TI-301)	154
	SDS-2 Air Velocity (fpm) (bu	uilding/shed)	171/176	_			•	
	Combined Air V	elocity (fpm)	212	_ _				
System	n Valve Positions	OPENED	CLOSED			OPENED		OPENED
SD	S-1 extraction point valve V-00			V- ⁻	102	Ž Õ	V-111	ŤX
	S-2 extraction point valve V-00	\hookrightarrow		V- ⁻	103	$ agray \square $	V-112	
	SDS-1 header valve V-10	\leftarrow		V- ⁻	104) 🗙	V-113	
	SDS-2 header valve V-20	01		V- ⁻	105		V-114	
	Dilution valve V-11	19		V- ⁻	106		V-115	
	Vacuum relief valve V-12	20	X		107		V-116	
	Pressure relief valve V-30		\triangleright		108	arrow	V-117	
					109	ightarrow	V-118	
					110			
GENER	AL							
Are the	re any unusual noises, vibratio	ns or odors o	letected at the	system?	No			
Inspect	all fittings, piping, relief valves	and sample	ports for leaks	s. Note any o	bservations	s: <u> </u>	All good.	
Was en	closure secure upon arrival? (Y/N)	Yes					
Other n	otes: Elbow valves dry. Did r	not drain KO	T due to low w	ater level (0").			

Date:	8/4/2023	Time:	900	٦	Гесhnician:	RDC
System S	Status	In his common more than	YES	NO	Notes	
		Is blower runnin	g?		Yes	
	Was monthly OM&M Log	Sheet complete	g? d?		None	
Was	instantaneous sub-slab o mor	differential pressunitoring conducte	ire		None	
	Was air sa	mpling conducte	d?		PID field screen	
	Was 24-hour continous o	differential pressunitoring conducte		X	None	
	Indicate indoor a	ir temperature (°I	=):	30		

Vacuum Monitoring Point	Instantaneous Differential Pressure (in w.c.) [use negative sign to indicate vacuum]	24-Hour Continuous Monitoring Conducted (Y/N)
VMP-1	-8.101	No
VMP-2	-0.035	No
VMP-3	-0.791	No
VMP-4	-0.019	No
VMP-5	-0.050	No
VMP-6	-0.060	No
VMP-7	-0.007	No
VMP-8	-0.379	No
VMP-9	-0.065	No
VMP-10	-0.045	No
VMP-11	-0.223	No
VMP-12	Abandonded	

System Vapor Sampling

Sample Location	Sample Collected (Y/N)	Time	Grab or Integrated	Canister Va	cuum (inHg)	PID	Can ID
Sample Location		Tille	Sample?	Start	Finish	Measurement	Call ID
SDS-1	N	N/A	N/A	N/A	N/A	11.1	N/A
SDS-2	N	N/A	N/A	N/A	N/A	1.7	N/A
Combined Influent	N	N/A	N/A	N/A	N/A	2.1	N/A
Pre-VPGAC4	N	N/A	N/A	N/A	N/A	1.9	N/A
Post-Dilution Eff	N	N/A	N/A	N/A	N/A	0.6	N/A
Post-Blower Eff	N	N/A	N/A	N/A	N/A	0.0	N/A

Date:	8/4/2023	Time: 900	Technic	ian:	RDC
	Task		Frequency	Conducted (Y/N)	Notes
Complete S	ystem Monitoring Log		Monthly	Yes	
Complete P	erformance Monitoring Log		Monthly	Yes	
Complete A	larm Response Log		As Needed	Yes	
Conduct Ins	tantaneous Sub-Slab Diffe	rential Pressure Monitoring	See Table 4	Yes	
Conduct 24-	Hour Continuous Different	al Pressure Monitoring	See Table 4	No	
Conduct Sys	stem Vapor sampling		See Table 5	Yes	PID Field Screen; sampled May and December
Blower Inspe	ection		Monthly	Yes	
Knockout Ta	ank Liquid Level Check and	d/or Draining ⁽¹⁾	Monthly	Yes	
Condensatio	on Check ⁽¹⁾		Monthly	Yes	
In-Line Air F	ilter Element Inspection ar	nd/or Replacement (2)(3)	Monthly	Yes	
Dilution Line	Air Filter Element Inspect	ion and/or Replacement	Monthly	Yes	
Extraction P	oint Riser Inspection		Monthly	Yes	
Discharge S	tack Inspection		Monthly	Yes	
Knockout Ta	ank Liquid Level Switches	Test ⁽⁴⁾⁽⁵⁾	Annual	NA	
Vacuum Tra	ansmitters Test (4)(6)		Annual	NA	
Vacuum Re	lief Valve Test (should ope	n at 80 in w.c. vacuum)	Annual	NA	
Alarm Notific	cation Test		Annual	NA	
VPGAC Cha	angeout		Annual	NA	
Blower Volta	age and Current Check (3)		As Needed	No	

Notes

- 1) Condensation shall be containerized and disposed of in coordination with Crosman Corporation's procedures.
- 2) System shall be shutdown prior to performing.
- 3) Lockout/tagout and work on energized equipment shall be conducted in accordance with Arcadis Safety Program.
- 4) Will cause system shutdown.
- 5) Knockout tank shall be filled with water using lower drain port.
- 6) Vacuum transmitters VT-101 and VT-201 shall read between +/- 5% of vacuum gauges VI-101 and VI-201, respectively.

Date:	9/22/2023	Time:	900	Technician:	RDC	
SYSTE	EM STATUS			YES NO Notes		
		Is blower	running?	None		
	Is virtual hand-off-auto switc	h in the "auto"	position?	None		
	Are electrical panel	doors securely	/ closed?	None		
Lis	st any active alarms including o	date/time of occ	currence:	None		
Record	d electric meter reading (kWh)	NA		Record blower runtime	(hours)	60707
SYSTE	EM PARAMETERS					
	SDS-1 applied vacuum (in	w.c.) (VI-001)	-79	Post-air filte	er/pre-VPGAC-101 vacuum	-84
	SDS-1 header vacuum (in	w.c.) (VI-101)	-78	_	(in w.c.) (VI-102)	
	(transm	nitter VT-101)	73.8	need to clean dilu	ution air filter 1 W.C.) (VI-103)	0
	SDS-2 applied vacuum (in	w.c.) (VI-002)	-76	Pre-VPGAC-10	2 vacuum (in w.c.) (VI-104)	0
	SDS-2 header vacuum (in	w.c.) (VI-201)	-87	Pre-VPGAC-10	3 vacuum (in w.c.) (VI-105)	-78
	(transm	nitter VT-201)	73.9	Pre-VPGAC-10	4 vacuum (in w.c.) (VI-106)	-80
	Knockout tank level (inches	in site gauge)	0"	Post-VPGAC-104/p	re-dilution vacuum (VI-107)	-81
	Influent tempera	ature (TI-102)	70	Post-dilution/p	ore-blower vacuum (VI-108)	-84
	Influent flow	rate (FI-101)	NA	Post-blowe	r pressure (in w.c.) (PI-301)	0
SDS-1 Air Velocity (fpm) (building/shed) 62/76			62/76	Post-blowe	er temperature (°F) (TI-301)	153
	SDS-2 Air Velocity (fpm) (b	ouilding/shed)	200/225	_		
	Combined Air \	Velocity (fpm)	260	- -		
Syste	m Valve Positions	OPENED	CLOSED	OPENED	CLOSED	OPENED
S	DS-1 extraction point valve V-0		5	V-102	ਹ V-111	
	DS-2 extraction point valve V-0	$\boldsymbol{\longleftrightarrow}$		V-103	V-112	\neg
·	SDS-1 header valve V-1	\leftarrow		V-104	V-113	\neg
	SDS-2 header valve V-2	$\boldsymbol{\longleftrightarrow}$		V-105	V-114	\neg
	Dilution valve V-1	$\boldsymbol{\longleftrightarrow}$		V-106	V-115	\neg
	Vacuum relief valve V-1		\mathbf{X}	V-107	V-116	\neg
	Pressure relief valve V-3		\Diamond	V-108	V-117	\neg
				V-109	V-118	\neg
				V-110		
GENE	RAL					
Are the	ere any unusual noises, vibrati	ons or odors de	etected at the	system? No		
Inspec	ct all fittings, piping, relief valve	s and sample _l	ports for leaks	s. Note any observations:	All good.	
Was e	enclosure secure upon arrival?	(Y/N)	Yes			
Other	notes: Did not drain KOT du	e to low water	evel (0").			

Date:	9/22/2023	Time:	900	7	Гесhnician:	RDC
System S	tatus		YES	NO	Notes	
		Is blower runnin	g?		Yes	
1	Was monthly OM&M Log	Sheet complete	g? d?		None	
Wasi	nstantaneous sub-slab d mon	ifferential pressunitoring conducte	ire 🔽		None	
	Was air sa	mpling conducte	d?		PID field screen	
,	Was 24-hour continous d mon	ifferential pressunitoring conducte		X	None	
	Indicate indoor ai	r temperature (°	=). 8	80		

Vacuum Monitoring Point	Instantaneous Differential Pressure (in w.c.) [use negative sign to indicate vacuum]	24-Hour Continuous Monitoring Conducted (Y/N)
VMP-1	-9.705	No
VMP-2	-0.033	No
VMP-3	-0.923	No
VMP-4	-0.022	No
VMP-5	-0.059	No
VMP-6	-0.066	No
VMP-7	-0.015	No
VMP-8	-0.388	No
VMP-9	-0.042	No
VMP-10	Obstructed	No
VMP-11	Obstructed	No
VMP-12	Abandonded	

need to clean dilution air filter

System Vapor Sampling

Sample Location	Sample Collected (Y/N)	Time	Grab or Integrated	Canister Va	cuum (inHg)	PID	Can ID	
Sample Location	Sample Collected (1/14)	Tille	Sample?	Start	Finish	Measurement	Carrib	
SDS-1	N	N/A	N/A	N/A	N/A	8.2	N/A	
SDS-2	N	N/A	N/A	N/A	N/A	1.5	N/A	
Combined Influent	N	N/A	N/A	N/A	N/A	4.9	N/A	
Pre-VPGAC4	N	N/A	N/A	N/A	N/A	3.5	N/A	
Post-Dilution Eff	N	N/A	N/A	N/A	N/A	0.6	N/A	
Post-Blower Eff	N	N/A	N/A	N/A	N/A	0.1	N/A	

Note: Bollard/guard has been installed around SDS-2. Lots of activity/shipping receiving in North area. Two monitoring points covered by pallets/equipment

Date: 9/22/2023 Time: 900	Technic	ian:	RDC		
Task	Frequency	Conducted (Y/N)	Notes		
Complete System Monitoring Log	Monthly	Yes			
Complete Performance Monitoring Log	Monthly	Yes			
Complete Alarm Response Log	As Needed	Yes			
Conduct Instantaneous Sub-Slab Differential Pressure Moni	toring See Table 4	Yes			
Conduct 24-Hour Continuous Differential Pressure Monitorin	g See Table 4	No			
Conduct System Vapor sampling	See Table 5	Yes	PID Field Screen; sampled May and December		
Blower Inspection	Monthly	Yes			
Knockout Tank Liquid Level Check and/or Draining (1)	Monthly	Yes			
Condensation Check (1)	Monthly	Yes			
In-Line Air Filter Element Inspection and/or Replacement (2)(3) Monthly	Yes	need to clean dilution air filter		
Dilution Line Air Filter Element Inspection and/or Replacement	ent Monthly	Yes			
Extraction Point Riser Inspection	Monthly	Yes			
Discharge Stack Inspection	Monthly	Yes			
Knockout Tank Liquid Level Switches Test ⁽⁴⁾⁽⁵⁾	Annual	NA			
Vacuum Transmitters Test (4)(6)	Annual	NA			
Vacuum Relief Valve Test (should open at 80 in w.c. vacuur	n) Annual	NA			
Alarm Notification Test	Annual	NA			
VPGAC Changeout	Annual	NA			
Blower Voltage and Current Check (3)	As Needed	No			

Notes:

- 1) Condensation shall be containerized and disposed of in coordination with Crosman Corporation's procedures.
- 2) System shall be shutdown prior to performing.
- 3) Lockout/tagout and work on energized equipment shall be conducted in accordance with Arcadis Safety Program.
- 4) Will cause system shutdown.
- 5) Knockout tank shall be filled with water using lower drain port.
- 6) Vacuum transmitters VT-101 and VT-201 shall read between +/- 5% of vacuum gauges VI-101 and VI-201, respectively.

Date:	10/13/2023	Time:	1115	_	Tech	nician:		BKW, KCF		
SYSTEM	STATUS			YES	NO	Notes				
		Is blower	r running?	\times		None				
I	s virtual hand-off-auto switch	in the "auto"	position?	X		None				
	Are electrical panel of	doors securel	y closed?	X		None				
List a	any active alarms including da	ate/time of oc	ccurrence:	None						
Record e	electric meter reading (kWh)	NA		Rec	ord blov	wer runtime	(hours)			61219.6
SYSTEM	PARAMETERS									
	SDS-1 applied vacuum (in w	v.c.) (VI-001)	-82	_	ı	Post-air filte		AC-101 vacuum		-86
	SDS-1 header vacuum (in w	v.c.) (VI-101)	-80	_			(in w.c.) (VI-102)		
	(transmi	tter VT-101)	-76.1		Pre-	-VPGAC-10)1 vacuum	(in w.c.) (VI-103)		0
	SDS-2 applied vacuum (in w	v.c.) (VI-002)	-78		Pre-	-VPGAC-10)2 vacuum	in w.c.) (VI-104)		-26
	SDS-2 header vacuum (in w	v.c.) (VI-201)	-90		Pre-	-VPGAC-10	3 vacuum	in w.c.) (VI-105)		-80
	(transmi	tter VT-201)	-76.1	_	Pre-	-VPGAC-10	04 vacuum	in w.c.) (VI-106)		-26
	Knockout tank level (inches i	n site gauge)	<1"	F	Post-VP	GAC-104/p	re-dilution v	vacuum (VI-107)		-84
	Influent temperat	ture (TI-102)	62	_	Po	st-dilution/	pre-blower v	acuum (VI-108)		-86
	Influent flow i	rate (FI-101)	NA	_		Post-blowe	r pressure	in w.c.) (<i>PI-301</i>)		0
	SDS-1 Air Velocity (fpm) (but	uilding/shed)	103/101	_		Post-blow	er temperat	ure (°F) (TI-301)		145
	SDS-2 Air Velocity (fpm) (bu	uilding/shed)	178/203	_				-		
	Combined Air V	elocity (fpm)	242	- -						
System	Valve Positions	OPENED	CLOSED			OPENED	CLOSED		OPENED	CLOSED
SDS	S-1 extraction point valve V-00			,	V-102	×		V-111		×
	6-2 extraction point valve V-00	$\boldsymbol{\longleftrightarrow}$			V-103	\Diamond		V-112		\Diamond
	SDS-1 header valve V-10	\leftarrow			V-104		X	V-113		\Diamond
	SDS-2 header valve V-20	\leftrightarrow			V-105		\Diamond	V-114		\Diamond
	Dilution valve V-1	$\boldsymbol{\longleftrightarrow}$			V-106		\Diamond	V-115		\Diamond
	Vacuum relief valve V-12		X		V-107	X		V-116		\Diamond
	Pressure relief valve V-30		\Diamond		V-108	\Diamond		V-117		\Diamond
					V-109	\Diamond		V-118		\Diamond
					V-110					
GENERA	AL									
Are there	any unusual noises, vibratio	ns or odors o	letected at the	system?	<u>N</u>	lo				
Inspect a	Ill fittings, piping, relief valves	and sample	ports for leaks	s. Note any	observ	ations:	All	good.		
Was enc	losure secure upon arrival? (Y/N)	Yes							
Other not	tes: Elbow valves dry. Did	not drain KO	T due to low w	ater level (<1").					

Date: _	10/13/2023	Time:	900	7	Technician:	BKW, KCF	
System S	tatus		YES	NO	Notes		
		Is blower running	g? X		Yes		
,	Was monthly OM&M Log	Sheet completed	g? d?		None		
Was	instantaneous sub-slab d mor	ifferential pressu	ie V		None		
	Was air sa	mpling conducted	d?		PID field screen		
,	Was 24-hour continous d mor	ifferential pressunitoring conducted		X	None		
	Indicate indoor ai	r temperature (°F	=)-	70			

Vacuum Monitoring Point	Instantaneous Differential Pressure (in w.c.) [use negative sign to indicate vacuum]	24-Hour Continuous Monitoring Conducted (Y/N)
VMP-1	-9.747	No
VMP-2	-0.031	No
VMP-3	-0.953	No
VMP-4	-0.023	No
VMP-5	-0.060	No
VMP-6	-0.057	No
VMP-7	-0.011	No
VMP-8	-0.407	No
VMP-9	Obstructed	No
VMP-10	-0.039	No
VMP-11	Obstructed	No
VMP-12	Abandonded	

System Vapor Sampling

Sample Location	Sample Collected (Y/N)	Time	Grab or Integrated Sample?		cuum (inHg) Finish	PID Measurement	Can ID	
			Sample?	Start	Finish	Measurement		
SDS-1	N	N/A	N/A	N/A	N/A	11.3	N/A	
SDS-2	N	N/A	N/A	N/A	N/A	13.7	N/A	
Combined Influent	N	N/A	N/A	N/A	N/A	11.1	N/A	
Pre-VPGAC4	N	N/A	N/A	N/A	N/A	5.8	N/A	
Post-Dilution Eff	N	N/A	N/A	N/A	N/A	0.2	N/A	
Post-Blower Eff	N	N/A	N/A	N/A	N/A	0.0	N/A	

Note: Lots of activity in North area. VMP-9 and VMP-11 obstructed by pallets.

BKW, KCF Date: 10/13/2023 Time: 900 Technician: Conducted Task Frequency (Y/N) Notes Complete System Monitoring Log Monthly Yes Yes Complete Performance Monitoring Log Monthly Complete Alarm Response Log As Needed Yes Conduct Instantaneous Sub-Slab Differential Pressure Monitoring See Table 4 Yes Conduct 24-Hour Continuous Differential Pressure Monitoring See Table 4 No PID Field Screen; sampled May Conduct System Vapor sampling See Table 5 Yes and December Blower Inspection Monthly Yes Knockout Tank Liquid Level Check and/or Draining (1) Monthly Yes Condensation Check (1) Monthly Yes In-Line Air Filter Element Inspection and/or Replacement (2)(3) Yes Monthly Dilution Line Air Filter Element Inspection and/or Replacement Monthly Yes Monthly **Extraction Point Riser Inspection** Yes Discharge Stack Inspection Monthly Yes Knockout Tank Liquid Level Switches Test (4)(5) Annual NA Vacuum Transmitters Test (4)(6) Annual NA Vacuum Relief Valve Test (should open at 80 in w.c. vacuum) Annual NA Alarm Notification Test Annual NA VPGAC Changeout Annual NA Blower Voltage and Current Check (3) As Needed No

Notes

- 1) Condensation shall be containerized and disposed of in coordination with Crosman Corporation's procedures.
- 2) System shall be shutdown prior to performing.
- 3) Lockout/tagout and work on energized equipment shall be conducted in accordance with Arcadis Safety Program.
- 4) Will cause system shutdown.
- 5) Knockout tank shall be filled with water using lower drain port.
- 6) Vacuum transmitters VT-101 and VT-201 shall read between +/- 5% of vacuum gauges VI-101 and VI-201, respectively.

Date:	11/3/2023	Time:	830	_	Techi	nician:		BKW		
SYSTE	M STATUS			YES	NO	Notes				
		Is blower	running?	X		None				
	Is virtual hand-off-auto switch	n in the "auto"	position?	X		None				
	Are electrical panel	doors securely	y closed?	X		None				
List	any active alarms including d	ate/time of oc	currence:	None						
Record	electric meter reading (kWh)	NA		R	ecord blow	ver runtime	(hours)			61728.3
SYSTE	M PARAMETERS									
	SDS-1 applied vacuum (in v	v.c.) (VI-001)	-82		F	Post-air filte	er/pre-VPG/	AC-101 vacuum		-88
	SDS-1 header vacuum (in v	v.c.) (VI-101)	-82				(in w.c.) (VI-102)		
	(transm	itter VT-101)	-77.1		Pre-	VPGAC-10)1 vacuum (in w.c.) (VI-103)		0
	SDS-2 applied vacuum (in v	v.c.) (VI-002)	-80		Pre-	VPGAC-10)2 vacuum (in w.c.) (VI-104)		-38
	SDS-2 header vacuum (in v	v.c.) (VI-201)	-92		Pre-	VPGAC-10)3 vacuum ((in w.c.) (VI-105)		-80
	(transm	itter VT-201)	-77.1	_	Pre-	VPGAC-10	04 vacuum (in w.c.) (VI-106)		-82
	Knockout tank level (inches	in site gauge)	3"		Post-VP	GAC-104/p	re-dilution v	vacuum (VI-107)		-84
	Influent tempera	ture (TI-102)	56F		Pos	st-dilution/	pre-blower v	vacuum (VI-108)		-88
	Influent flow	rate (FI-101)	NA		F	Post-blowe	r pressure (in w.c.) (PI-301)		0
	SDS-1 Air Velocity (fpm) (b	uilding/shed)	170/225			Post-blow	er temperat	ure (°F) (TI-301)	1	44F
	SDS-2 Air Velocity (fpm) (b	uilding/shed)	180/185					-		
	Combined Air V	elocity (fpm)	247	_						
System	Valve Positions	OPENED	CLOSED			OPENED	CLOSED		OPENED	CLOSED
SD	S-1 extraction point valve V-0				V-102	×		V-111		Š
	S-2 extraction point valve V-0	$\boldsymbol{\longleftrightarrow}$			V-103	\Diamond		V-112		\Diamond
	SDS-1 header valve V-1	$\boldsymbol{\longleftrightarrow}$			V-104			V-113		\Diamond
	SDS-2 header valve V-2	$\boldsymbol{\longleftrightarrow}$			V-105		\Diamond	V-114		\Diamond
	Dilution valve V-1	$\boldsymbol{\longleftrightarrow}$			V-106		\Diamond	V-115		\Diamond
	Vacuum relief valve V-1		\mathbf{X}		V-107	X		V-116		\Diamond
	Pressure relief valve V-3		\Diamond		V-108	\Diamond		V-117		\Diamond
		· .			V-109	\Diamond		V-118		\Diamond
					V-110		\mathbf{Y}			
GENER	AL									
Are ther	re any unusual noises, vibratio	ons or odors d	etected at the	system	? <u>N</u>	0				
Inspect	all fittings, piping, relief valves	s and sample	ports for leak	s. Note a	ny observa	ations:	All	good.		
Was en	closure secure upon arrival?	(Y/N)	Yes							
Other no	otes: Elbow valves dry. Dra	ined 12 gallon	s from KOT.	Placed c	over over \	ent on sys	stem buildin	g for winter.		

Date:	11/3/2023	Time:	830	-	Technician:	BKW	
System Sta	atus		YES		Notes		
		Is blower running	j? X		Yes		
V	as monthly OM&M Log	Sheet completed	g? d? \		None		
Was in	nstantaneous sub-slab o mor	lifferential pressunitoring conducted	re 🔽		None		
	Was air sa	mpling conducted	d? X		PID field screen		
W	as 24-hour continous o	lifferential pressunitoring conducted		X	None		
	Indicate indoor a	ir temperature (°F	·):	60			

Vacuum Monitoring Point	Instantaneous Differential Pressure (in w.c.) [use negative sign to indicate vacuum]	24-Hour Continuous Monitoring Conducted (Y/N)
VMP-1	-9.661	No
VMP-2	-0.023	No
VMP-3	-0.954	No
VMP-4	-0.025	No
VMP-5	-0.061	No
VMP-6	-0.016	No
VMP-7	-0.009	No
VMP-8	-0.400	No
VMP-9	-0.046	No
VMP-10	-0.035	No
VMP-11	-0.258	No
VMP-12	Abandonded	

System Vapor Sampling

Sample Location	Sample Collected (Y/N)	Time	Grab or Integrated		cuum (inHg)	PID	Can ID
Campio Eccation	Campie Concetted (1714)	11110	Sample?	Start	Finish	Measurement	Carrib
SDS-1	N	N/A	N/A	N/A	N/A	7.9	N/A
SDS-2	N	N/A	N/A	N/A	N/A	7.4	N/A
Combined Influent	N	N/A	N/A	N/A	N/A	8.0	N/A
Pre-VPGAC4	N	N/A	N/A	N/A	N/A	6.2	N/A
Post-Dilution Eff	N	N/A	N/A	N/A	N/A	0.8	N/A
Post-Blower Eff	N	N/A	N/A	N/A	N/A	0.5	N/A

Note: Lots of activity in North area. Wall removed opening up room containing SDS-2 to room just north.

Technician: **BKW** Date: 11/3/2023 Time: 900 Conducted Task Frequency (Y/N) Notes Complete System Monitoring Log Monthly Yes Yes Complete Performance Monitoring Log Monthly Complete Alarm Response Log As Needed Yes Conduct Instantaneous Sub-Slab Differential Pressure Monitoring See Table 4 Yes Conduct 24-Hour Continuous Differential Pressure Monitoring See Table 4 No PID Field Screen; sampled May Conduct System Vapor sampling See Table 5 Yes and December Blower Inspection Monthly Yes Knockout Tank Liquid Level Check and/or Draining (1) Monthly Yes Condensation Check (1) Monthly Yes In-Line Air Filter Element Inspection and/or Replacement (2)(3) Yes Monthly Dilution Line Air Filter Element Inspection and/or Replacement Monthly Yes **Extraction Point Riser Inspection** Monthly Yes Discharge Stack Inspection Monthly Yes Knockout Tank Liquid Level Switches Test (4)(5) Annual NA Vacuum Transmitters Test (4)(6) Annual NA Vacuum Relief Valve Test (should open at 80 in w.c. vacuum) Annual NA Alarm Notification Test Annual NA VPGAC Changeout Annual NA Blower Voltage and Current Check (3) As Needed No

Notes

- 1) Condensation shall be containerized and disposed of in coordination with Crosman Corporation's procedures.
- 2) System shall be shutdown prior to performing.
- 3) Lockout/tagout and work on energized equipment shall be conducted in accordance with Arcadis Safety Program.
- 4) Will cause system shutdown.
- 5) Knockout tank shall be filled with water using lower drain port.
- 6) Vacuum transmitters VT-101 and VT-201 shall read between +/- 5% of vacuum gauges VI-101 and VI-201, respectively.

Date:	12/7/2023	Time:	1000	_ Te	echnician: _		BKW		
SYSTI	EM STATUS			YES NO	_		on arrival. Cleared alar	m ("AC Power	
		Is blower	running?			and system star			_
	Is virtual hand-off-auto switch	th in the "auto"	position?		None				_
	Are electrical pane	doors securel	y closed?		None				_
Lis	st any active alarms including	date/time of oc	currence:	None					_
Record	d electric meter reading (kWh)	NA		Record I	blower runtim	e (hours)		6252	0
SYSTI	EM PARAMETERS								
	SDS-1 applied vacuum (in	w.c.) (VI-001)	-84	<u></u>	Post-air fil	ter/pre-VPG	AC-101 vacuum	-87	
	SDS-1 header vacuum (in	w.c.) (VI-101)	-81	<u></u>			(in w.c.) (VI-102)		
	(transr	nitter VT-101)	-76.5	F	re-VPGAC-1	01 vacuum	(in w.c.) (VI-103)	0	
	SDS-2 applied vacuum (in	w.c.) (VI-002)	-74	F	re-VPGAC-1	02 vacuum	(in w.c.) (VI-104)	-28	
	SDS-2 header vacuum (in	w.c.) (VI-201)	-90	F	re-VPGAC-1	03 vacuum	(in w.c.) (VI-105)	-80	
	(transr	nitter VT-201)	-77	 F	re-VPGAC-1	04 vacuum	(in w.c.) (VI-106)	-80	
	Knockout tank level (inches	in site gauge)	8"	Post-	VPGAC-104/	pre-dilution	vacuum (VI-107)	-83	
	Influent temper	ature (TI-102)	50F	_	Post-dilution	/pre-blower	vacuum (VI-108)	-88	
	Influent flow	rate (FI-101)	NA	_	Post-blow	er pressure	(in w.c.) (PI-301)	0	
	SDS-1 Air Velocity (fpm) (building/shed)	190/224	_	Post-blov	ver tempera	ture (°F) (TI-301)	136F	
	SDS-2 Air Velocity (fpm) (building/shed)	178/188	_			•		
	Combined Air	Velocity (fpm)	298						
Syste	m Valve Positions	OPENED	CLOSED		OPENED	CLOSED		OPENED	LUSED
S	DS-1 extraction point valve V-			V-10	2 X		V-111		
S	DS-2 extraction point valve V-	002		V-10	3		V-112		7
	SDS-1 header valve V-	101		V-10-	4	X	V-113		7
	SDS-2 header valve V-	201		V-10	5	X	V-114		7
	Dilution valve V-	119		V-10	6	\mathbf{X}	V-115		7
	Vacuum relief valve V-	120	X	V-10	7		V-116		7
	Pressure relief valve V-	301	\mathbf{X}	V-10	8		V-117		7
				V-10	9		V-118		7
				V-11	0	X	·		_
GENE	RAL								
Are the	ere any unusual noises, vibrat	ons or odors d	letected at the	e system?	No				_
Inspec	et all fittings, piping, relief valve	es and sample	ports for leak	s. Note any obs	ervations:	All	good.		_
Was e	enclosure secure upon arrival?	(Y/N)	Yes						_
Other	notes: Drained 2 gallons fro	m elbow valves	s. Drained 21	gallons from KO	OT.				_

Date:	12/7/2023	Time:	1000	٦	Technician:	BKW
System S	Status		YES	NO	Notes	
		Is blower runnir	ng?		Yes	
	Was monthly OM&M Log	Sheet complete	ng? ed?		None	
Was	instantaneous sub-slab o moi	differential press	ure		None	
	Was air sa	impling conducte	ed?		PID field scree	en and analytical summa canisters
	Was 24-hour continous of more	differential press nitoring conducte		X	None	
	Indicate indoor a	ir temnerature (°	F). !	55		

Vacuum Monitoring Point	Instantaneous Differential Pressure (in w.c.) [use negative sign to indicate vacuum]	24-Hour Continuous Monitoring Conducted (Y/N)
VMP-1	-9.62	No
VMP-2	-0.02	No
VMP-3	-0.962	No
VMP-4	-0.026	No
VMP-5	-0.061	No
VMP-6	-0.005	No
VMP-7	-0.006	No
VMP-8	-0.330	No
VMP-9	-0.026	No
VMP-10	-0.018	No
VMP-11	Obstructed	No
VMP-12	Abandonded	

System Vapor Sampling

Sample Location	Sample Collected (Y/N)	Time	Grab or Integrated	Canister Va	cuum (inHg)	PID	Can ID
Cample Location	Sample Collected (1/14)	Tillio	Sample?	Start	Finish	Measurement	Carrib
SDS-1	Υ	1000	Grab	-30.0	-5.5	3.8	6815
SDS-2	Υ	1005	Grab	-30.0	-6	6.5	6796
Combined Influent	Υ	1010	Grab	-29.0	-6	7.1	6812
Pre-VPGAC4	Υ	1015	Grab	-29.5	-6	9.2	6814
Post-Dilution Eff	Υ	1020	Grab	-29.5	-6	0.7	6803
Post-Blower Eff	Υ	1025	Grab	-29.5	-5	0.3	6801

Note: Lots of activity in North area. Removing above-surface concrete structures to east of SDS-2 (former Plating Line), does not appear to be impacting the slab. Excavation/repair occuring at loading dock at southern end of room SDS-2 is in.

Date:	12/7/2023 Time	900	Technic	ian:	BKW
	Task		Frequency	Conducted (Y/N)	Notes
Complete S	ystem Monitoring Log		Monthly	Yes	
Complete P	erformance Monitoring Log		Monthly	Yes	
Complete A	larm Response Log		As Needed	Yes	
Conduct Ins	tantaneous Sub-Slab Differential	Pressure Monitoring	See Table 4	Yes	
Conduct 24-	-Hour Continuous Differential Pres	ssure Monitoring	See Table 4	No	
Conduct Sys	stem Vapor sampling		See Table 5	Yes	PID Field Screen; sampled May and December
Blower Insp	ection		Monthly	Yes	
Knockout Ta	ank Liquid Level Check and/or Dra	aining ⁽¹⁾	Monthly	Yes	
Condensation	on Check ⁽¹⁾		Monthly	Yes	
In-Line Air F	Filter Element Inspection and/or R	eplacement (2)(3)	Monthly	Yes	
Dilution Line	e Air Filter Element Inspection and	l/or Replacement	Monthly	Yes	
Extraction P	oint Riser Inspection		Monthly	Yes	
Discharge S	Stack Inspection		Monthly	Yes	
Knockout Ta	ank Liquid Level Switches Test ⁽⁴⁾⁽⁵	5)	Annual	NA	
Vacuum Tra	ansmitters Test (4)(6)		Annual	NA	
Vacuum Re	lief Valve Test (should open at 80	in w.c. vacuum)	Annual	NA	
Alarm Notifi	cation Test		Annual	NA	
VPGAC Cha	angeout		Annual	NA	
Blower Volta	age and Current Check (3)		As Needed	No	

Notes:

- 1) Condensation shall be containerized and disposed of in coordination with Crosman Corporation's procedures.
- 2) System shall be shutdown prior to performing.
- 3) Lockout/tagout and work on energized equipment shall be conducted in accordance with Arcadis Safety Program.
- 4) Will cause system shutdown.
- 5) Knockout tank shall be filled with water using lower drain port.
- 6) Vacuum transmitters VT-101 and VT-201 shall read between +/- 5% of vacuum gauges VI-101 and VI-201, respectively.

Date:	1/5/2024	Time:	900	Technic	ian:	BKW	
SYSTI	EM STATUS			YES NO	Notes		
		Is blower	running?	\mathbf{X}	None		
	Is virtual hand-off-auto swite	ch in the "auto"	position?		None		
	Are electrical pane	el doors securel	y closed?		None		
Lis	st any active alarms including	date/time of oc	currence:	None			
Record	d electric meter reading (kWh) <u>NA</u>		Record blower	runtime (hours)		63227
SYSTI	EM PARAMETERS						
	SDS-1 applied vacuum (in	w.c.) (VI-001)	-84	Pos	st-air filter/pre-VP0	GAC-101 vacuum	-88
	SDS-1 header vacuum (in	w.c.) (VI-101)	-813			(in w.c.) (VI-102)	
	(transi	mitter VT-101)	-78.5	Pre-VP	GAC-101 vacuum	(in w.c.) (VI-103)	0
	SDS-2 applied vacuum (in	w.c.) (VI-002)	-76	Pre-VP	GAC-102 vacuum	(in w.c.) (VI-104)	-24
	SDS-2 header vacuum (in	w.c.) (VI-201)	-92	— Pre-VP	GAC-103 vacuum	(in w.c.) (VI-105)	-80
	(transı	mitter VT-201)	-78.7	— Pre-VP	GAC-104 vacuum	(in w.c.) (VI-106)	-82
	Knockout tank level (inche	s in site gauge)	8"	Post-VPGA	.C-104/pre-dilution	vacuum (VI-107)	-85
	Influent temper	rature (TI-102)	50F	Post-	dilution/pre-blowe	vacuum (VI-108)	-89
	Influent flow	w rate (FI-101)	NA	 Pos	st-blower pressure	e (in w.c.) (PI-301)	0
	SDS-1 Air Velocity (fpm) ((building/shed)	190/217	 Po	st-blower tempera	ature (°F) (TI-301)	134F
	SDS-2 Air Velocity (fpm) ((building/shed)	199/242	_		•	
	Combined Air	Velocity (fpm)	321	_			
Syste	m Valve Positions	OPENED	CLOSED		OPENED		OPENED
S	DS-1 extraction point valve V-			V-102	X i	V-111	ŤX
S	DS-2 extraction point valve V-	-002		V-103		V-112	
	SDS-1 header valve V-	-101		V-104		V-113	
	SDS-2 header valve V-	-201		V-105		V-114	
	Dilution valve V-	-119		V-106		V-115	
	Vacuum relief valve V-	-120	X	V-107		V-116	
	Pressure relief valve V-	-301	\triangleright	V-108		V-117	
				V-109		V-118	
				V-110		- L	
GENE	RAL						
Are the	ere any unusual noises, vibrat	tions or odors d	etected at the	e system? No			
Inspec	et all fittings, piping, relief valve	es and sample	ports for leak	s. Note any observation	ons: A	ll good.	
Was e	enclosure secure upon arrival?	' (Y/N)	Yes				
Other	notes: Elbow valves dry. Dr	ained 22 gallon	s from KOT.	Touch screen on PLC	not working.		

Date:	1/5/2024 Tin	ne:	900	•	Technician:	BKW	
System S	tatus		YES	NO	Notes		
	Is blowe	r running?	\mathbf{X}		Yes		
	Was monthly OM&M Log Sheet co	ompleted?	X		None		
Was	instantaneous sub-slab differentia monitoring c		X		None		
	Was air sampling o	onducted?	X		PID field screen		
	Was 24-hour continous differentia monitoring c	•		X	None		
	Indicate indoor air temper	ature (°F):	5	5			

Vacuum Monitoring Point	Instantaneous Differential Pressure (in w.c.) [use negative sign to indicate vacuum]	24-Hour Continuous Monitoring Conducted (Y/N)
VMP-1	-9.83	No
VMP-2	-0.023	No
VMP-3	-0.999	No
VMP-4	-0.025	No
VMP-5	-0.067	No
VMP-6	-0.020	No
VMP-7	-0.012	No
VMP-8	-0.360	No
VMP-9	-0.019	No
VMP-10	-0.014	No
VMP-11	-0.258	No
VMP-12	Abandonded	

System Vapor Sampling

Sample Location	Sample Collected (Y/N)	Time	Grab or Integrated	Canister Va	cuum (inHg)	PID	Can ID
Sample Location	Sample Collected (1/N)	Tille	Sample?	Start	Finish	Measurement	Callid
SDS-1	N	-	-	-	-	6.4	-
SDS-2	N	-	-	-	-	11.7-28.7	-
Combined Influent	N	-	-	-	-	6.4	-
Pre-VPGAC4	N	-	-	-	-	5.1	-
Post-Dilution Eff	N	-	-	-	-	0.4	-
Post-Blower Eff	N	-	-	-	-	0.2	-

Northern area of SDS-2 is being converted to a warehouse. Shelving is installed. VMP-9 and VMP-11 are under shelves. SDS-2 PID reading taken four times, readings in order: 28.7, 26.2, 16.9, 11.7.

Date:	1/5/2024	Time: 900	Technic	ian:	BKW		
	Та	sk	Frequency	Conducted (Y/N)	Notes		
Complete S	system Monitoring Log		Monthly	Yes			
Complete P	erformance Monitoring	Log	Monthly	Yes			
Complete A	larm Response Log		As Needed	Yes			
Conduct Ins	stantaneous Sub-Slab D	ifferential Pressure Monitoring	See Table 4	Yes			
Conduct 24	-Hour Continuous Differ	ential Pressure Monitoring	See Table 4	No			
Conduct Sy	stem Vapor sampling		See Table 5	Yes	PID Field Screen; sampled May and December		
Blower Insp	ection		Monthly	Yes			
Knockout Ta	ank Liquid Level Check	and/or Draining ⁽¹⁾	Monthly	Yes			
Condensation	on Check ⁽¹⁾		Monthly	Yes			
In-Line Air F	Filter Element Inspection	n and/or Replacement (2)(3)	Monthly	Yes			
Dilution Line	e Air Filter Element Insp	ection and/or Replacement	Monthly	Yes			
Extraction P	Point Riser Inspection		Monthly	Yes			
Discharge S	Stack Inspection		Monthly	Yes			
Knockout Tank Liquid Level Switches Test ⁽⁴⁾⁽⁵⁾			Annual	NA			
Vacuum Transmitters Test (4)(6)			Annual	NA			
Vacuum Relief Valve Test (should open at 80 in w.c. vacuum)			Annual	NA			
Alarm Notification Test			Annual	NA			
VPGAC Cha	angeout		Annual	NA			
Blower Volta	age and Current Check	(3)	As Needed	No			

Notes

- 1) Condensation shall be containerized and disposed of in coordination with Crosman Corporation's procedures.
- 2) System shall be shutdown prior to performing.
- 3) Lockout/tagout and work on energized equipment shall be conducted in accordance with Arcadis Safety Program.
- 4) Will cause system shutdown.
- 5) Knockout tank shall be filled with water using lower drain port.
- 6) Vacuum transmitters VT-101 and VT-201 shall read between +/- 5% of vacuum gauges VI-101 and VI-201, respectively.

Date:	2/1/2024	Time:	900	Te	chnician:		BKW	
SYSTE	M STATUS			YES NO	Notes			
		Is blower	r running?	\mathbf{X}	None			
	Is virtual hand-off-auto switch	in the "auto"	position?		None			
	Are electrical panel	doors secure	ly closed?	\mathbf{X}	None			
List	any active alarms including da	ate/time of oc	ccurrence:	High water in I	КОТ			
Record	electric meter reading (kWh)	NA		Record b	lower runtime	e (hours)		63884.5
SYSTE	M PARAMETERS							
	SDS-1 applied vacuum (in w	v.c.) (VI-001)	-82		Post-air filte	er/pre-VPGA	C-101 vacuum	-88
	SDS-1 header vacuum (in w	v.c.) (VI-101)	-82			(i	n w.c.) (VI-102)	
	(transmi	itter VT-101)	-76.9	 P	re-VPGAC-10	01 vacuum (i	n w.c.) (VI-103)	0
	SDS-2 applied vacuum (in v	v.c.) (VI-002)	-72	 P	re-VPGAC-10	02 vacuum (i	n w.c.) (<i>VI-104</i>)	0
	SDS-2 header vacuum (in w	v.c.) (VI-201)	-92	<u>-</u> Р	re-VPGAC-10	03 vacuum (i	n w.c.) (VI-105)	-80
	(transmi	itter VT-201)	-76.4	<u>-</u> Р	re-VPGAC-10	04 vacuum (i	n w.c.) (VI-106)	-82
	Knockout tank level (inches i	in site gauge)	14"	Post-\	/PGAC-104/p	ore-dilution v	acuum (VI-107)	-84
	Influent tempera	ture (TI-102)	54F	_	Post-dilution/	pre-blower v	acuum (VI-108)	-88
	Influent flow	rate (FI-101)	NA	_	Post-blowe	er pressure (i	n w.c.) (<i>PI-301</i>)	0
	SDS-1 Air Velocity (fpm) (b	uilding/shed)	178/210	_	Post-blow	er temperatu	re (°F) (TI-301)	140F
	SDS-2 Air Velocity (fpm) (b	uilding/shed)	189/220	_			•	
	Combined Air V	elocity (fpm)	267	-				
Systen	n Valve Positions	OPENED	CLOSED		OPENED	CLOSED		OPENED
SE	OS-1 extraction point valve V-0	01		V-102			V-111	~ ×
	0S-2 extraction point valve V-0	\leftarrow		V-103			V-112	\neg
	SDS-1 header valve V-1	\leftarrow		V-104		X	V-113	\neg
	SDS-2 header valve V-2	01		V-105		\Diamond	V-114	\neg
	Dilution valve V-1	19		V-106		\Diamond	V-115	
	Vacuum relief valve V-1	20	X	V-107			V-116	\neg
	Pressure relief valve V-3		\triangleright	V-108	\longleftrightarrow		V-117	
				V-109	\leftarrow		V-118	\neg
				V-110		\mathbf{X}		
GENER	RAL							
Are the	re any unusual noises, vibratio	ns or odors o	detected at the	system?	No			
Inspect	all fittings, piping, relief valves	and sample	ports for leaks	s. Note any obse	ervations:	All g	good.	
Was en	closure secure upon arrival? (Y/N)	Yes					
Other n	otes: Drained 2 gallons on c	ondensation	from elbow va	lives and 35 gall	ons from the	КОТ.		

Date:	2/1/2024	Time:	900	_	Technician:	BKW
System S	Status		YES	NO	Notes	
		Is blower running	g? X		Yes	
	Was monthly OM&M Log	Sheet completed	d? 🔽		None	
Was	instantaneous sub-slab o	differential pressunitoring conducted	T		None	
	Was air sa	ampling conducted	d?		PID field scree	n
	Was 24-hour continous of more	differential pressunitoring conducted		X	None	
	Indicate indoor a	ir temperature (°F	:)-	55		

Vacuum Monitoring Point	Instantaneous Differential Pressure (in w.c.) [use negative sign to indicate vacuum]	24-Hour Continuous Monitoring Conducted (Y/N)		
VMP-1	Abandonded			
VMP-2	-0.021	No		
VMP-3	-1.059	No		
VMP-4	-0.015	No		
VMP-5	Abandonded			
VMP-6	-0.033	No		
VMP-7	-0.005	No		
VMP-8	-0.375	No		
VMP-9	-0.013	No		
VMP-10	Abandonded			
VMP-11	-0.388	No		
VMP-12	Abandonded			

System Vapor Sampling

Sample Location	Sample Collected (Y/N)	Time	Grab or Integrated Sample?	Canister Vacuum (inHg)		PID	Can ID
				Start	Finish	Measurement	Callib
SDS-1	N	-	-	-	-	8.0	-
SDS-2	N	-	-	-	-	9.8	-
Combined Influent	N	-	-	-	-	9.9	-
Pre-VPGAC4	N	-	-	-	-	11.9	-
Post-Dilution Eff	N	-	-	-	-	0.9	-
Post-Blower Eff	N	-	-	-	-	0.7	-

On 1/19/2024: VMP-1, VMP-5, and VMP-10 were abandoned (sealed with hydraulic cement) due to new site operations in the area. VMP-2, VMP-7, VMP-9, and VMP-11 were abandoned and relocated to new locations near the original locations. All VMP relocations were made to accommodate new site operations and ensure continued access. All new locations were established at the same distance from their respective SDS extraction location.

Date:	2/1/2024	Time: 90	00	Technic	ian:	BKW	
	Tas	sk		Frequency	Conducted (Y/N)	Notes	
Complete S	System Monitoring Log			Monthly	Yes		
Complete F	Performance Monitoring L	.og		Monthly	Yes		
Complete A	Marm Response Log			As Needed	Yes		
Conduct In:	stantaneous Sub-Slab Di	fferential Pressure Mo	nitoring	See Table 4	Yes		
Conduct 24	-Hour Continuous Differe	ential Pressure Monitor	ing	See Table 4	No		
Conduct Sy	stem Vapor sampling			See Table 5	Yes	PID Field Screen; sampled May and December	
Blower Insp	pection			Monthly	Yes		
Knockout T	ank Liquid Level Check	and/or Draining (1)		Monthly	Yes		
Condensati	on Check (1)			Monthly	Yes		
In-Line Air	Filter Element Inspection	and/or Replacement (2	2)(3)	Monthly	Yes		
Dilution Lin	e Air Filter Element Inspe	ection and/or Replacen	nent	Monthly	Yes		
Extraction I	Point Riser Inspection			Monthly	Yes		
Discharge :	Stack Inspection			Monthly	Yes		
Knockout T	ank Liquid Level Switche	es Test ⁽⁴⁾⁽⁵⁾		Annual	NA		
Vacuum Tr	ansmitters Test (4)(6)			Annual	NA		
Vacuum Re	elief Valve Test (should o	pen at 80 in w.c. vacuu	um)	Annual	NA		
Alarm Notif	ication Test			Annual	NA		
VPGAC Ch	angeout			Annual	NA		
Blower Volt	age and Current Check (3)		As Needed	No		

Notes

- 1) Condensation shall be containerized and disposed of in coordination with Crosman Corporation's procedures.
- 2) System shall be shutdown prior to performing.
- 3) Lockout/tagout and work on energized equipment shall be conducted in accordance with Arcadis Safety Program.
- 4) Will cause system shutdown.
- 5) Knockout tank shall be filled with water using lower drain port.
- 6) Vacuum transmitters VT-101 and VT-201 shall read between +/- 5% of vacuum gauges VI-101 and VI-201, respectively.

Date:	3/6/2024	Time:	900	Tech	nnician:		BKW		
SYST	EM STATUS			YES NO	Notes				
		Is blower	running?	\mathbf{X}	None				
	Is virtual hand-off-auto swite	ch in the "auto"	position?		None				
	Are electrical pane	el doors securel	y closed?		None				
Lis	st any active alarms including	date/time of oc	currence:	None					
Recor	d electric meter reading (kWh) <u>NA</u>		Record blo	wer runtime	(hours)			64666.5
SYST	EM PARAMETERS								
	SDS-1 applied vacuum (in	w.c.) (VI-001)	-80		Post-air filte	er/pre-VPG/	AC-101 vacuum		-86
	SDS-1 header vacuum (in	w.c.) (VI-101)	-80			((in w.c.) (VI-102)		
	(transı	mitter VT-101)	-74.2	Pre	-VPGAC-10	01 vacuum	(in w.c.) (VI-103)		0
	SDS-2 applied vacuum (in	w.c.) (VI-002)	-78	Pre	-VPGAC-10	02 vacuum	(in w.c.) (VI-104)		0
	SDS-2 header vacuum (in	w.c.) (VI-201)	-88	Pre	-VPGAC-10	03 vacuum	(in w.c.) (VI-105)	-	-78
	(transı	mitter VT-201)	-74.2	Pre	-VPGAC-10	04 vacuum	(in w.c.) (VI-106)	-	-80
	Knockout tank level (inche	s in site gauge)	0"	Post-VF	PGAC-104/p	re-dilution v	vacuum (VI-107)	-	-82
	Influent temper	rature (TI-102)	68F	Po	ost-dilution/	pre-blower v	vacuum (VI-108)	-	-88
	Influent flow	w rate (FI-101)	NA		Post-blowe	er pressure	(in w.c.) (PI-301)		0
	SDS-1 Air Velocity (fpm) ((building/shed)	116/129		Post-blow	er temperat	ure (°F) (TI-301)	1	56F
	SDS-2 Air Velocity (fpm) ((building/shed)	217/189						
	Combined Air	Velocity (fpm)	282	_					
Syste	m Valve Positions	OPENED	CLOSED		OPENED	CLOSED		OPENED	CLOSED
S	DS-1 extraction point valve V-			V-102	X		V-111	$\overline{}$	X
S	DS-2 extraction point valve V-	-002		V-103	\mathbf{X}		V-112		\mathbf{X}
	SDS-1 header valve V-	-101		V-104		X	V-113		\mathbf{X}
	SDS-2 header valve V-	-201		V-105			V-114		X
	Dilution valve V-	-119		V-106			V-115		X
	Vacuum relief valve V-	-120	X	V-107	X		V-116		X
	Pressure relief valve V-	-301	X	V-108	X		V-117	-	X
				V-109	\mathbf{X}		V-118		X
				V-110		X			
GENE	RAL								
Are the	ere any unusual noises, vibrat	tions or odors d	etected at the	e system? <u>N</u>	No				
Lots o	f activitiy in area of SDS-1. Of	fice near SDS-	1 removed, ne	eed bollards aroun	nd SDS-1 ris	ser. Mac <u>All</u>	good.		
Was e	enclosure secure upon arrival?	Y (Y/N)	Yes						
Other	notes: Drained elbow valves	s and KOT on 3	3/1/24 due to l	high level in KOT.					

Date:	3/6/2024	Time:	900	-	Technician:	BKW	
System Sta	ntus		YES		Notes		
		ls blower running	g?	1	Yes		
W	as monthly OM&M Log	Sheet complete	g? d?		None		
Was in	stantaneous sub-slab di mon	fferential pressuitoring conducted	ire 🔽		None		
	Was air sar	npling conducte	d?		PID field screen		
W	as 24-hour continous di mon	fferential pressuitoring conducte		X	None		
	Indicate indoor air	temperature (°F	=):	65			

Sub-Slab Differential Pressure Monitoring

Vacuum Monitoring Point	Instantaneous Differential Pressure (in w.c.) [use negative sign to indicate vacuum]	24-Hour Continuous Monitoring Conducted (Y/N)
VMP-1	Abandonded	
VMP-2	-0.025	No
VMP-3	-0.971	No
VMP-4	-0.02	No
VMP-5	Abandonded	
VMP-6	-0.027	No
VMP-7	-0.007	No
VMP-8	-0.397	No
VMP-9	-0.016	No
VMP-10	Abandonded	
VMP-11	-0.423	No
VMP-12	Abandonded	

System Vapor Sampling

Sample Location	Sample Collected (Y/N)	Time	Grab or Integrated	Canister Vacuum (inHg)		PID	Can ID
Cample Location		Time	Sample?	Start	Finish	Measurement	Carrib
SDS-1	N	-	-	-	-	10.1	-
SDS-2	N	-	-	-	-	36.1	-
Combined Influent	N	-	-	-	-	38.6	-
Pre-VPGAC4	N	-	-	-	-	61.4	-
Post-Dilution Eff	N	-	-	-	-	3.4	-
Post-Blower Eff	N	-	-	-	-	1.9	-

Lots of activitiy in area of SDS-1. Office near SDS-1 removed, need bollards around SDS-1 riser. Machinery in process of being removed near VMP-6. VMP-6 filled with oil/water mixure, seal around pins are okay. VMP-6 cap is bent up, should re-check once renovations are complete. Cap on VMP-11 is bent, seal around pin in okay.

Date:	3/6/2024	Time: 900	Technic	ian:	BKW	
	Tas	sk	Frequency	Conducted (Y/N)	Notes	
Complete Sys	stem Monitoring Log		Monthly	Yes		
Complete Pe	rformance Monitoring L	-og	Monthly	Yes		
Complete Ala	arm Response Log		As Needed	Yes		
Conduct Insta	antaneous Sub-Slab Di	fferential Pressure Monitoring	See Table 4	Yes		
Conduct 24-F	lour Continuous Differe	ential Pressure Monitoring	See Table 4	No		
Conduct Syst	em Vapor sampling		See Table 5	Yes	PID Field Screen; sampled May and December	
Blower Inspec	ction		Monthly	Yes		
Knockout Tar	nk Liquid Level Check	and/or Draining ⁽¹⁾	Monthly	Yes		
Condensation	n Check ⁽¹⁾		Monthly	Yes		
In-Line Air Fil	ter Element Inspection	and/or Replacement (2)(3)	Monthly	Yes		
Dilution Line	Air Filter Element Inspe	ection and/or Replacement	Monthly	Yes		
Extraction Po	int Riser Inspection		Monthly	Yes		
Discharge Sta	ack Inspection		Monthly	Yes		
Knockout Tar	nk Liquid Level Switche	es Test ⁽⁴⁾⁽⁵⁾	Annual	NA		
Vacuum Tran	nsmitters Test (4)(6)		Annual	NA		
Vacuum Relie	ef Valve Test (should o	pen at 80 in w.c. vacuum)	Annual	NA		
Alarm Notifica	ation Test		Annual	NA		
VPGAC Char	ngeout		Annual	NA		
Blower Voltag	ge and Current Check (3)	As Needed	No		

Notes

- 1) Condensation shall be containerized and disposed of in coordination with Crosman Corporation's procedures.
- 2) System shall be shutdown prior to performing.
- 3) Lockout/tagout and work on energized equipment shall be conducted in accordance with Arcadis Safety Program.
- 4) Will cause system shutdown.
- 5) Knockout tank shall be filled with water using lower drain port.
- 6) Vacuum transmitters VT-101 and VT-201 shall read between +/- 5% of vacuum gauges VI-101 and VI-201, respectively.

Date:	4/5/2024	Time:	900	Tec	hnician: _		BKW		
SYSTI	EM STATUS			YES NO	Notes				
		Is blower	running?	\mathbf{X}	None				
	Is virtual hand-off-auto swite		_		None				
	Are electrical pane		•		None				
Lis	st any active alarms including	date/time of oc	currence:	None					
Record	d electric meter reading (kWh) <u>NA</u>		Record blo	ower runtime	e (hours)	,		65396.4
SYSTI	EM PARAMETERS								
	SDS-1 applied vacuum (in	w.c.) (VI-001)	-82		Post-air filt	er/pre-VPG/	AC-101 vacuum	-	88
	SDS-1 header vacuum (in	w.c.) (VI-101)	-82	_			(in w.c.) (VI-102)		
	(transı	mitter VT-101)	-76.6	 Pre	e-VPGAC-1	01 vacuum	(in w.c.) (VI-103)		0
	SDS-2 applied vacuum (in	w.c.) (VI-002)	-72	 Pre	e-VPGAC-1	02 vacuum	(in w.c.) (VI-104)		-6
	SDS-2 header vacuum (in	w.c.) (VI-201)	-90	 Pre	e-VPGAC-1	03 vacuum	(in w.c.) (VI-105)	_	80
	(transı	mitter VT-201)	-76.8	 Pre	e-VPGAC-1	04 vacuum	(in w.c.) (VI-106)	_	80
	Knockout tank level (inche	s in site gauge)	9"	Post-VI	PGAC-104/	pre-dilution	vacuum (VI-107)	_	84
	Influent temper	rature (TI-102)	52F	 P	ost-dilution	pre-blower	vacuum (VI-108)	-	88
	Influent flow	v rate (FI-101)	NA	_	Post-blowe	er pressure	(in w.c.) (PI-301)		0
	SDS-1 Air Velocity (fpm) (building/shed)	184/199	_	Post-blow	er temperat	ure (°F) (TI-301)	14	40F
	SDS-2 Air Velocity (fpm) (building/shed)	179/223	_			-		
	Combined Air	Velocity (fpm)	241	_					
Syste	m Valve Positions	OPENED	CLOSED		OPENED	CLOSED		OPENED	CLOSED
S	DS-1 extraction point valve V-			V-102	×		V-111		×
S	DS-2 extraction point valve V-	.002		V-103	\Diamond		V-112		\Diamond
	SDS-1 header valve V-	$\boldsymbol{\longleftrightarrow}$		V-104		X	V-113		\Diamond
	SDS-2 header valve V-	201		V-105		\Diamond	V-114		\Diamond
	Dilution valve V-	119		V-106		\Diamond	V-115		\Diamond
	Vacuum relief valve V-	120	X	V-107	X		V-116		\Diamond
	Pressure relief valve V-	-	\Diamond	V-108	\Diamond		V-117		\Diamond
				V-109	\Diamond		V-118		\Diamond
				V-110		\mathbf{X}	- L		
GENE	RAL								
Are the	ere any unusual noises, vibrat	ions or odors d	letected at the	e system?	No				
Lots of	f activitiy in area of SDS-1, ne	ed bollards aro	und SDS-1 ris	ser. Cap on VMP	-11 is bent,	seal aro All	good.		
Was e	enclosure secure upon arrival?	(Y/N)	Yes						
Other	notes: Drained 25 gallons fr	om elbow valve	es and KOT.						

Date:	4/5/2024 Time:	900	٦	Technician:	BKW
System	Status	YES	NO	Notes	
	Is blower running	?		Yes	
	Was monthly OM&M Log Sheet completed	?		None	
Was	s instantaneous sub-slab differential pressur monitoring conducted	e 🔽		None	
	Was air sampling conducted	?		PID field screen	
	Was 24-hour continous differential pressur monitoring conducted	l I	X	None	
	Indicate indoor air temperature (°F)· 6	5		

Sub-Slab Differential Pressure Monitoring

	1	ı
Vacuum Monitoring Point	Instantaneous Differential Pressure (in w.c.) [use negative sign to indicate vacuum]	24-Hour Continuous Monitoring Conducted (Y/N)
VMP-1	Abandonded	
VMP-2	-0.022	No
VMP-3	-1.000	No
VMP-4	-0.021	No
VMP-5	Abandonded	
VMP-6	-0.026	No
VMP-7	-0.011	No
VMP-8	-0.368	No
VMP-9	-0.012	No
VMP-10	Abandonded	
VMP-11	-0.409	No
VMP-12	Abandonded	

System Vapor Sampling

Sample Location	Sample Collected (Y/N)	Time	Grab or Integrated	Canister Vacuum (inHg)		PID	Can ID
Sample Location		Tille	Sample?	Start	Finish	Measurement	Carrib
SDS-1	N	-	-	-	-	5.5	-
SDS-2	N	-	-	-	-	5.9	-
Combined Influent	N	-	-	-	-	4.5	-
Pre-VPGAC4	N	-	-	-	-	5.9	-
Post-Dilution Eff	N	-	-	-	-	0.5	-
Post-Blower Eff	N	-	-	-	-	0.6	-

Lots of activitiy in area of SDS-1, need bollards around SDS-1 riser. Cap on VMP-11 is bent, seal around pin in okay.

Date:	4/5/2024	Time: 900	Technic	ian:	BKW	
	Tas	sk	Frequency	Conducted (Y/N)	Notes	
Complete S	System Monitoring Log		Monthly	Yes		
Complete F	Performance Monitoring L	og	Monthly	Yes		
Complete A	Marm Response Log		As Needed	Yes		
Conduct In:	stantaneous Sub-Slab Di	fferential Pressure Monitoring	See Table 4	Yes		
Conduct 24	-Hour Continuous Differe	ential Pressure Monitoring	See Table 4	No		
Conduct Sy	stem Vapor sampling		See Table 5	Yes	PID Field Screen; sampled May and December	
Blower Insp	pection		Monthly	Yes		
Knockout T	ank Liquid Level Check	and/or Draining (1)	Monthly	Yes		
Condensati	on Check (1)		Monthly	Yes		
In-Line Air	Filter Element Inspection	and/or Replacement (2)(3)	Monthly	Yes		
Dilution Lin	e Air Filter Element Inspe	ection and/or Replacement	Monthly	Yes		
Extraction I	Point Riser Inspection		Monthly	Yes		
Discharge :	Stack Inspection		Monthly	Yes		
Knockout T	ank Liquid Level Switche	es Test ⁽⁴⁾⁽⁵⁾	Annual	NA		
Vacuum Tr	ansmitters Test (4)(6)		Annual	NA		
Vacuum Re	elief Valve Test (should o	pen at 80 in w.c. vacuum)	Annual	NA		
Alarm Notif	ication Test		Annual	NA		
VPGAC Ch	angeout		Annual	NA		
Blower Volt	age and Current Check (3)	As Needed	No		

Notes

- 1) Condensation shall be containerized and disposed of in coordination with Crosman Corporation's procedures.
- 2) System shall be shutdown prior to performing.
- 3) Lockout/tagout and work on energized equipment shall be conducted in accordance with Arcadis Safety Program.
- 4) Will cause system shutdown.
- 5) Knockout tank shall be filled with water using lower drain port.
- 6) Vacuum transmitters VT-101 and VT-201 shall read between +/- 5% of vacuum gauges VI-101 and VI-201, respectively.

Date:	5/3/2024	Time:	830	Technician:	BKW	
SYST	EM STATUS			YES NO Notes		
		Is blower	running?	None		
	Is virtual hand-off-auto switc	h in the "auto"	position?	None		
	Are electrical panel	doors securel	y closed?	None		
Lis	st any active alarms including o	date/time of oc	currence:	None		
Recor	d electric meter reading (kWh)	NA		Record blower runtime (ho	ours)	65996.9
SYST	EM PARAMETERS					
	SDS-1 applied vacuum (in	w.c.) (VI-001)	-80	Post-air filter/pr	e-VPGAC-101 vacuum _	-86
	SDS-1 header vacuum (in	w.c.) (VI-101)	-79	_	(in w.c.) (VI-102)	
	(transn	nitter VT-101)	-73.8	Pre-VPGAC-101 va	acuum (in w.c.) (VI-103)	0
	SDS-2 applied vacuum (in	w.c.) (VI-002)	-76	Pre-VPGAC-102 va	acuum (in w.c.) (VI-104)	0
	SDS-2 header vacuum (in	w.c.) (VI-201)	-88	Pre-VPGAC-103 va	acuum (in w.c.) (VI-105)	-78
	(transn	nitter VT-201)	-73.8	Pre-VPGAC-104 va	acuum (in w.c.) (VI-106)	-80
	Knockout tank level (inches	in site gauge)	0"	Post-VPGAC-104/pre-c	lilution vacuum (VI-107)	-82
	Influent tempera	ature (TI-102)	70F	Post-dilution/pre-	blower vacuum (VI-108)	-88
	Influent flow	rate (FI-101)	NA	Post-blower pre	essure (in w.c.) (PI-301)	0
	SDS-1 Air Velocity (fpm) (building/shed) 161/150			Post-blower te	emperature (°F) (TI-301)	156F
	SDS-2 Air Velocity (fpm) (b	ouilding/shed)	168/190	_	_	
	Combined Air	Velocity (fpm)	243	- -		
Syste	m Valve Positions	OPENED	CLOSED	OPENED	CLOSED	OPENED
S	DS-1 extraction point valve V-0			V-102	_ਰ V-111	
	DS-2 extraction point valve V-0	$\boldsymbol{\longleftrightarrow}$		V-103	V-112	\dashv \triangleright
Ū	SDS-1 header valve V-	$\boldsymbol{\longleftrightarrow}$		V-104	V-113	\dashv \triangleright
	SDS-2 header valve V-2	$\boldsymbol{\longleftrightarrow}$		V-105	V-114	\dashv \triangleright
	Dilution valve V-	$\boldsymbol{\longleftrightarrow}$		V-106	V-115	\neg
	Vacuum relief valve V-		\mathbf{Y}	V-107	V-116	\neg
	Pressure relief valve V-		\Diamond	V-108	V-117	\dashv \triangleright
				V-109	V-118	\dashv \Diamond
				V-110		
GENE	RAL					
Are the	ere any unusual noises, vibrati	ons or odors d	letected at the	system? No		
Inspec	ct all fittings, piping, relief valve	s and sample	ports for leaks	s. Note any observations:	All good.	
Was e	enclosure secure upon arrival?	(Y/N)	Yes			
Other	notes:					

Date:	5/3/2024	Time:	830		Technician:	BKW
System	Status		YES	NO	Notes	
		Is blower running?	? X		Yes	
	Was monthly OM&M Log	Sheet completed?	\mathbf{X}		None	
Was	s instantaneous sub-slab o mor	differential pressure nitoring conducted?	X		None	
	Was air sa	mpling conducted?	\mathbf{X}		PID field scre	een and Summa Canisters
	Was 24-hour continous of more	differential pressure nitoring conducted?		X	None	
	Indicate indoor a	ir temperature (°F)	:	70		

Sub-Slab Differential Pressure Monitoring

Vacuum Monitoring Point	Instantaneous Differential Pressure (in w.c.) [use negative sign to indicate vacuum]	24-Hour Continuous Monitoring Conducted (Y/N)
VMP-1	Abandonded	
VMP-2	-0.026	No
VMP-3	-0.968	No
VMP-4	-0.022	No
VMP-5	Abandonded	
VMP-6	-0.033	No
VMP-7	-0.003	No
VMP-8	-0.368	No
VMP-9	-0.017	No
VMP-10	Abandonded	
VMP-11	-0.405	No
VMP-12	Abandonded	

System Vapor Sampling

Sample Location	Sample Collected (Y/N)	Time	Grab or Integrated	Canister Vacuum (inHg)		PID	Can ID
	Sample Collected (1/14)	Tille	Sample?	Start	Finish	Measurement	Callid
SDS-1	Υ	1020	Grab	-28.0	-6	1.0	6946
SDS-2	Υ	1025	Grab	-29.0	-6.5	3.7	3583
Combined Influent	Υ	1030	Grab	-29.0	-6	4.2	4656
Pre-VPGAC4	Υ	1035	Grab	-29.0	-6	5.3	4648
Post-Dilution Eff	Υ	1040	Grab	-29.0	-6	0.0	8516
Post-Blower Eff	Y	1045	Grab	-28.5	-2	0.0	34000915
	_						

Date:	5/3/2024	Time: 900	Technic	ian:	BKW
	Tas	k	Frequency	Conducted (Y/N)	Notes
Complete S	system Monitoring Log		Monthly	Yes	
Complete P	erformance Monitoring L	og	Monthly	Yes	
Complete A	larm Response Log		As Needed	Yes	
Conduct Ins	stantaneous Sub-Slab Di	ferential Pressure Monitoring	g See Table 4	Yes	
Conduct 24	-Hour Continuous Differe	ntial Pressure Monitoring	See Table 4	No	
Conduct Sy	stem Vapor sampling		See Table 5	Yes	PID Field Screen; sampled May and December
Blower Insp	ection		Monthly	Yes	
Knockout Ta	ank Liquid Level Check a	and/or Draining ⁽¹⁾	Monthly	Yes	
Condensation	on Check ⁽¹⁾		Monthly	Yes	
In-Line Air F	Filter Element Inspection	and/or Replacement (2)(3)	Monthly	Yes	
Dilution Line	e Air Filter Element Inspe	ection and/or Replacement	Monthly	Yes	
Extraction P	Point Riser Inspection		Monthly	Yes	
Discharge S	Stack Inspection		Monthly	Yes	
Knockout Ta	ank Liquid Level Switche	s Test ⁽⁴⁾⁽⁵⁾	Annual	NA	
Vacuum Tra	ansmitters Test (4)(6)		Annual	NA	
Vacuum Re	elief Valve Test (should o	pen at 80 in w.c. vacuum)	Annual	NA	
Alarm Notifi	cation Test		Annual	NA	
VPGAC Cha	angeout		Annual	NA	
Blower Volta	age and Current Check (3)	As Needed	No	

Notes

- 1) Condensation shall be containerized and disposed of in coordination with Crosman Corporation's procedures.
- 2) System shall be shutdown prior to performing.
- 3) Lockout/tagout and work on energized equipment shall be conducted in accordance with Arcadis Safety Program.
- 4) Will cause system shutdown.
- 5) Knockout tank shall be filled with water using lower drain port.
- 6) Vacuum transmitters VT-101 and VT-201 shall read between +/- 5% of vacuum gauges VI-101 and VI-201, respectively.

Date: 6/6/2024	Time:	900	Technician:	BKW	
SYSTEM STATUS			YES NO Notes		
	Is blower i	running?	None		
Is virtual hand-off-a	uto switch in the "auto" p	oosition?	None		
Are electri	cal panel doors securely	closed?	None		
List any active alarms in	ncluding date/time of occ	urrence:			
Record electric meter reading	ng (kWh) NA		Record blower runtime (hours	s)	66513.1
SYSTEM PARAMETERS					
SDS-1 applied vac	cuum (in w.c.) (VI-001)	-78	Post-air filter/pre-\	PGAC-101 vacuum	-84
SDS-1 header vac	cuum (in w.c.) (<i>VI-101)</i>	-77	_	(in w.c.) (VI-102)	
	(transmitter VT-101)	-71.5	Pre-VPGAC-101 vacu	um (in w.c.) (VI-103)	0
SDS-2 applied va	cuum (in w.c.) (VI-002)	-76	Pre-VPGAC-102 vacu	um (in w.c.) (VI-104)	0
SDS-2 header vac	cuum (in w.c.) (VI-201)	-75	Pre-VPGAC-103 vacu	um (in w.c.) (VI-105)	-77
	(transmitter VT-201)	-71.5	Pre-VPGAC-104 vacu	um (in w.c.) (VI-106)	-78
Knockout tank lev	el (inches in site gauge)	0"	- Post-VPGAC-104/pre-dilu	tion vacuum (VI-107)	-80
Influer	nt temperature (TI-102)	80F	- Post-dilution/pre-blo	wer vacuum (VI-108)	-87
Infl	uent flow rate (FI-101)	NA	Post-blower press	ure (in w.c.) (PI-301)	0
SDS-1 Air Velocit	y (fpm) (building/shed)	158/160	Post-blower temp	perature (°F) (TI-301)	166F
SDS-2 Air Velocit	y (fpm) (building/shed)	172/193	=	-	
Comb	oined Air Velocity (fpm)	221	-		
System Valve Positions	<u>О</u> Ш	SED	ÄE D		VED SED
	OPENED	CLOSED	OPENED		OPENED
SDS-1 extraction point	valve V-001		V-102	V-111	
SDS-2 extraction point	valve V-002		V-103	V-112	
SDS-1 header	valve V-101		V-104	V-113	
SDS-2 header	valve V-201		V-105	V-114	
Dilution	valve V-119		V-106	V-115	
Vacuum relief	valve V-120	X	V-107	V-116	
Pressure relief	valve V-301	X	V-108	V-117	
	<u> </u>		V-109	V-118	
			V-110		
GENERAL				_	
Are there any unusual noise	es, vibrations or odors de	etected at the	system? No		
Inspect all fittings, piping, re	elief valves and sample p	orts for leaks	. Note any observations:	All good.	
Was enclosure secure upor	n arrival? (Y/N)	Yes			
Other notes:					

Date:	6/6/2024	Time:	830	T	echnician:	BKW
System S	Was monthly OM&M Log instantaneous sub-slab of moi Was air sa Was 24-hour continous of	Is blower running g Sheet completed differential pressu nitoring conducted ampling conducted	YES 1? 1? 1? 1? 1? 1?	NO NO	Notes Yes None None PID field scree	
			,·			

Sub-Slab Differential Pressure Monitoring

Vacuum Monitoring Point	Instantaneous Differential Pressure (in w.c.) [use negative sign to indicate vacuum]	24-Hour Continuous Monitoring Conducted (Y/N)
VMP-1	Abandonded	
VMP-2	-0.031	No
VMP-3	-0.876	No
VMP-4	-0.019	No
VMP-5	Abandonded	
VMP-6	-0.035	No
VMP-7	-0.002	No
VMP-8	-0.415	No
VMP-9	-0.018	No
VMP-10	Abandonded	
VMP-11	-0.372	No
VMP-12	Abandonded	

System Vapor Sampling

Sample Location	Sample Collected (Y/N)	Time	Grab or Integrated	Canister Vacuum (inHg)		PID	Can ID
	Sample Collected (1/14)	Tille	Sample?	Start	Finish	Measurement	Call ID
SDS-1	N	-	-	-	-	5.3	-
SDS-2	N	-	-	-	-	4.7	-
Combined Influent	N	-	-	-	-	6.3	-
Pre-VPGAC4	N	-	-	-	-	4.0	-
Post-Dilution Eff	N	-	-	-	-	1.0	-
Post-Blower Eff	N	-	-	-	-	1.0	-

Date:	6/6/2024	Time: 900	Technic	ian:	BKW	
	Task		Frequency	Conducted (Y/N)	Notes	
Complete System	Monitoring Log		Monthly	Yes		
Complete Perform	ance Monitoring Log		Monthly	Yes		
Complete Alarm R	esponse Log		As Needed	Yes		
Conduct Instantan	eous Sub-Slab Differ	ential Pressure Monitoring	See Table 4	Yes		
Conduct 24-Hour	Continuous Differentia	al Pressure Monitoring	See Table 4	No		
Conduct System \	apor sampling		See Table 5	Yes	PID Field Screen; sampled May and December	
Blower Inspection			Monthly	Yes		
Knockout Tank Lic	quid Level Check and	or Draining ⁽¹⁾	Monthly	Yes		
Condensation Che	eck ⁽¹⁾		Monthly	Yes		
In-Line Air Filter E	lement Inspection and	d/or Replacement (2)(3)	Monthly	Yes		
Dilution Line Air Fi	Iter Element Inspection	on and/or Replacement	Monthly	Yes		
Extraction Point R	iser Inspection		Monthly	Yes		
Discharge Stack II	nspection		Monthly	Yes		
Knockout Tank Lic	quid Level Switches T	est ⁽⁴⁾⁽⁵⁾	Annual	NA		
Vacuum Transmitt	ers Test (4)(6)		Annual	NA		
Vacuum Relief Va	lve Test (should oper	at 80 in w.c. vacuum)	Annual	NA		
Alarm Notification	Test		Annual	NA		
VPGAC Changeou	ut		Annual	NA		
Blower Voltage an	d Current Check (3)		As Needed	No		

Notes

- 1) Condensation shall be containerized and disposed of in coordination with Crosman Corporation's procedures.
- 2) System shall be shutdown prior to performing.
- 3) Lockout/tagout and work on energized equipment shall be conducted in accordance with Arcadis Safety Program.
- 4) Will cause system shutdown.
- 5) Knockout tank shall be filled with water using lower drain port.
- 6) Vacuum transmitters VT-101 and VT-201 shall read between +/- 5% of vacuum gauges VI-101 and VI-201, respectively.

Date:	8/1/2023	Time:	1530	Technician:	BKW	
Alama Car	a diti a m					
Alarm Cor						
Power Los	S					
Cause of	Alarm:					
Power Los	s to System					
Corrective	Action:					
Visual syst	tem check, no issue	es				
Reset and	restart system					
Blower Ru	ntime = 59613.2					

Date: _	8/31/2023	Time:	1100	Technician:	BKW	
Alarm Co	ndition:					
Power Los						
Power Los	55					
Cause of	Alarm:					
Power Los	ss to System					
Correctiv	e Action:					
Visual sys	stem check, no issue	es				
Reset and	restart system					
Blower Ru	untime = 60314.2					

Date:	9/13/2023	Time:	1345	Technician:	ADR
Alarm Co					
No alarm r	notice sent, when sy	stem re-start	attempted,	'Blower Fail to Start" Alarm	registered and system would
not run.					
Cause of	A l a				
	start attempts failed				
			have been	wiped from PLC. Cause ur	nknown, but suspected to be due
to reaching	g storage limit of the	PLC.			
Corrective	Action:				
Old data d	eleted to free up sto	orage, Progran	n is reloade	d to PLC.	
Visual sys	tem check, no issue	es			
Reset and	restart system				
Blower Ru	ntime = 60490.0				

Date:	12/7/2023	Time:	840	Technician:	BKW	
Alarm Co						
Power Los	S					
Cause of	Alarm:					
Power Los	s to System					
	<u> </u>					
Corrective	Action:					
Visual sys	tem check, no issue	es				
Reset and	restart system					
Blower Ru	ntime = 62518.9					
,						
			· · · · · · · · · · · · · · · · · · ·			

Date:	3/1/2024	Time:	1245	Technician:	BKW
Alarm Co					
Power Los	SS				
Cause of	Alarm:				
	ss to System				
	,				
Correctiv					
Visual sys	tem check, no issu	es			
Reset and	restart system				
	intime = 64547.7				

Date:	5/1/2024	Time:	945	Technician:	ADR
Alarm Co	ndition:				
Power Lo	SS				
Cause of	Alarm:				
	ss to System				
	<u> </u>				
Correctiv	e Action:				
Visual sys	stem check, no issues	6			
Reset and	d restart system				
Blower Ru	untime = 65949.5				

Date:	5/8/2024	Time:	1230	Technician:	ADR	
Alarm Co						
Power Los	SS					
0	A1					
Cause of						
Power Los	ss to System					
Correctiv	e Action:					
Visual sys	tem check, no issue	es				
Reset and	restart system					
Blower Ru	intime = 66096.6					

Date:	6/3/2024	Time:	1000	Technician:	ADR	
Alarm Co						
UPS Faul	t					
Cause of	Alarm:					
Unknown						
Correctiv	e Action:					
UPS was	reset, no other issu	es observed				
Reset and	d restart system					
Blower Ru	untime = 66440.4					
						_

Appendix C

Site Inspection Form

Date: December 7, 2023 Time: 1130	Personnel:	Aaron D. Richardson
Compliance with Institutional Controls	Conducted (Y/N)	Notes
Is the site being utilized for uses other than General Industrial Use?	N	
Is the site operating in compliance with the Deed Restriction?	Y	
Performance of the Engineering Controls	•	
Is the SSDS operating?	Y	
Have SSDS monitoring sampling been conducted, per the SMP?	Y	Completed in December 2023, planned for May 2024
Any reported issues with the SSDS operation?	N	
Is production well PW-1 operating?	Y	
Has groundwater monitoring been conducted, per the SMP?	Y	Completed in October 2023, planned for April 2024
Any reported issues with production well PW-1?	N	
Is the concrete floor intact at the west end of the building?	Y	
Any cracks or holes identified?	N	
Any reported issues with the concrete floor cover system?	N	
Green Remediation Evaluation		
Are energy conservation controls being implemented?	Y	
Has any solid waste been generated?	N	
Is off-site waste transportation required?	N	
Have water and/or land usage requirements changed?	N	
Are any ecosystems being distrubed by the remedial activities?	N	

Notes:

Appendix D

NYSDEC Approvals

Richardson, Aaron

From: Caffoe, Todd (DEC) <todd.caffoe@dec.ny.gov>

Sent: Friday, October 9, 2020 10:21 AM

To: Richardson, Aaron

Cc: Pratt, David (DEC); Perretta, Anthony C (HEALTH); Popham, William; Pratt, David (DEC)

Subject: RE: Crosman Site SSDS

Aaron,

The Department approves the removal of control equipment for the SSDS discharge. Please include the results of the AERSCREEN modelling in the SMP. I have a few minor edits to the text in the SMP so don't send me a revised plan until I get those to you next week. Thanks.

-Todd

Todd M. Caffoe, P.E.

Division of Environmental Remediation

New York State Department of Environmental Conservation 6274 East Avon-Lima Road, Avon, NY 14414 P: (585) 226-5350 |Todd.Caffoe@dec.ny.gov

www.dec.ny.gov |

From: Richardson, Aaron < Aaron. Richardson@arcadis.com >

Sent: Monday, September 21, 2020 2:25 PM

To: Caffoe, Todd (DEC) <todd.caffoe@dec.ny.gov>

Cc: Pratt, David (DEC) <david.pratt@dec.ny.gov>; Perretta, Anthony C (HEALTH) <anthony.perretta@health.ny.gov>;

Popham, William < William. Popham@arcadis.com >

Subject: RE: Crosman Site SSDS

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Todd.

As requested, please find the attached file which shows the AERSCREEN modelling inputs and results (compared against short and long term guidance concentrations). Please reply with your approval that these results satisfactorily show that carbon treatment can be terminated.

Regarding the SMP language, we have tracked the revisions to the text (in Red Line-Strike Out format) reflecting the termination of the carbon treatment. Please advise if you would like to review these changes (in RLSO) now, before we do a formal revision, or if you just want to see the formal revision after you hear from DOH?

If you have any questions, please let me know. Thank you

From: Caffoe, Todd (DEC) < todd.caffoe@dec.ny.gov > Sent: Thursday, September 17, 2020 12:12 PM

To: Richardson, Aaron < Aaron.Richardson@arcadis.com>

Cc: Pratt, David (DEC) <david.pratt@dec.ny.gov>; Perretta, Anthony C (HEALTH) <anthony.perretta@health.ny.gov>;

Popham, William < William. Popham@arcadis.com >

Subject: Re: Crosman Site SSDS

Hi Aaron,

I am fine with removal of the carbon treatment system as long as it meets Air-Guide 1. I expected discharge from the SSDS would not require controls after startup.

Just provide me with a copy of the results from the AERSCREEN modelling system compared to the short and long-term guidance concentrations.

Please feel free to revise the language in the SMP accordingly. I have not heard back from DOH yet on the SMP so don't send me the revised SMP until I hear from them.

Thanks. Please let me know if you have any additional questions.

-Todd

Due to the COVID-19 Health Crisis, I will mainly be working from home until further notice. Please e-mail if you need to reach me. If you need immediate assistance, please contact our unit secretary, Teri Cotter, at teri.cotter@dec.ny.gov or 585-226-5353, and she will direct your inquiry.

Todd M. Caffoe, P.E.

Division of Environmental Remediation

New York State Department of Environmental Conservation

6274 East Avon-Lima Road, Avon, NY 14414

P: (585) 226-5350 | Todd.Caffoe@dec.ny.gov

From: Richardson, Aaron < <u>Aaron.Richardson@arcadis.com</u>>

Sent: Wednesday, September 16, 2020 1:24 PM **To:** Caffoe, Todd (DEC) < todd.caffoe@dec.ny.gov **Cc:** Popham, William < William. Popham@arcadis.com>

Subject: Crosman Site SSDS

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Hello Todd,

For the SSDS at the Crosman site, we were planning to change out the carbon later this fall, when the question was raised as to whether we actually needed to treat through carbon any longer. In order to determine this, we had our internal air experts evaluate the system, putting the 2020 analytical data, along with all of the site parameters, into the AERSCREEN modelling system. The resulting output indicates that we could direct discharge (without any treatment) and still be below, both the DAR-1 short and long-term guideline concentrations.

With that in mind, and knowing that the SMP is still pending approval, we were thinking that it may make sense to revise the language within the SMP (as it relates to SSDS treatment) now before it is finalized. Please let us know your thoughts on this, and also let us know what you would like to see from us to demonstrate that we can run the SSDS without treatment? Is a simple email summarizing the modelling inputs/outputs adequate and/or would you like to see a formal request (i.e. letter) to terminate treatment? Please advise, or let us know if you'd like to talk through details.

Aaron Richardson | Senior Environmental Engineer | aaron.richardson@arcadis.com Arcadis | Arcadis of New York, Inc.

100 Chestnut Street Suite 1020 Rochester NY | 14604 | USA
T. +1 585 662 4024 | M. +1 585 202 4393

Connect with us! www.arcadis.com | LinkedIn | Twitter | Facebook | Connect App

Be green, leave it on the screen.

DOWNLOAD OUR MOBILE APP

This email and any files transmitted with it are the property of Arcadis and its affiliates. All rights, including without limitation copyright, are reserved. This email contains information that may be confidential and may also be privileged. It is for the exclusive use of the intended recipient(s). If you are not an intended recipient, please note that any form of distribution, copying or use of this communication or the information in it is strictly prohibited and may be unlawful. If you have received this communication in error, please return it to the sender and then delete the email and destroy any copies of it. While reasonable precautions have been taken to ensure that no software or viruses are present in our emails, we cannot guarantee that this email or any attachment is virus free or has not been intercepted or changed. Any opinions or other information in this email that do not relate to the official business of Arcadis are neither given nor endorsed by it.

This email and any files transmitted with it are the property of Arcadis and its affiliates. All rights, including without limitation copyright, are reserved. This email contains information that may be confidential and may also be privileged. It is for the exclusive use of the intended recipient(s). If you are not an intended recipient, please note that any form of distribution, copying or use of this communication or the information in it is strictly prohibited and may be unlawful. If you have received this communication in error, please return it to the sender and then delete the email and destroy any copies of it. While reasonable precautions have been taken to ensure that no software or viruses are present in our emails, we cannot guarantee that this email or any

attachment is virus free or has not been intercepted or changed. Any opinions or other information in this email that do not relate to the official busines of Arcadis are neither given nor endorsed by it.
4

Parameters	Crossman SSDS Stack	Units
AERSCREEN Model Input		
Lanimator Stack (UTM E)	299769	m
Lanimator Stack (UTM N)	4752097	m
UTM Zone	18	
Source Type	Point	
Emission Rate	1	g/s
Stack Height	38	ft
Stack Height	11.58	m
Stack Inside Diameter	4	in
Stack Inside Diameter	0.102	m
Air Flow Rate	130	cfm
Stack Gas Exit Temperature	100	F
Stack Gas Exit Temperature	310.93	K
Rain Cap?	No	
Land use	Rural	
Stack Orientation	Vertical	
Building Info	BPIP used	ft
Shortest Distance to Property Line	114.00	m

Pollutant	Emission Rates Pollutant		Aerscreen impact at 1 g/s (ug/m3/g/s)		Scaled Impact (ug/m3)		Guideline Conc. (ug/m3)	
	lb/hr	g/s	1-hr	Annual	1-hr	Annual	1-hr	Annual
TCE	1.62E-03	2.04E-04	1741.00	174.1	0.36	0.036	20.00	0.20

Date	TCE (ug/m3)	TCE (ug/m3)	Influent Flow Rate (scfm) ⁽¹⁾	Post-Dilution Flow Rate (scfm) ⁽²⁾	Stack Exit Concentration (ug/m3)	Emission Rate (lb/hr)
1/29/2020	16000 D	16,000	27	130	3323.08	0.00162
2/26/2020	17000 D	17000	21	130	2746.15	0.00134
3/31/2020	11000	11000	26	130	2200.00	0.00107
4/22/2020	6500 D	6500	21	130	1050.00	0.00051
5/27/2020	12000 D	12000	23	130	2123.08	0.00103
6/23/2020	11000	11000	19	130	1607.69	0.00078
7/22/2020	9700	9700	22	130	1641.54	0.00080

⁽¹⁾ Based on anemometer readings at suction points SDS-1 and SDS-2, converted from acfm to scfm.

 $lb/hr = ug/m3 \times 1 g/1,000,000 ug \times lb/453.59 g \times scfm \times 0.028 m3/ft3 \times 60 min/hr$

⁽²⁾ Typical value, based on blower performance curve.

Richardson, Aaron

From: Caffoe, Todd (DEC) <todd.caffoe@dec.ny.gov>

Sent: Friday, December 2, 2022 11:44 AM

To:Richardson, AaronCc:Pratt, David (DEC)Subject:RE: Crosman Site

Hi Aaron

It will be acceptable to use passive diffusion bag samplers going forward. There is plenty of data available for this site so if anything odd shows up with the change in sampling methodology we will know. Passive diffusion bag sampling methods are used at several sites throughout the region.

I have accepted a promotion to the Division of Water and will no longer be the contact for this project. A new DEC Project Manager has not yet been assigned. In the interim, please send correspondence to David Pratt until otherwise directed. It has been good working with you over the many years on this project and others.

Thank you.

-Todd

From: Richardson, Aaron < Aaron. Richardson@arcadis.com >

Sent: Wednesday, November 23, 2022 9:11 AM **To:** Caffoe, Todd (DEC) <todd.caffoe@dec.ny.gov>

Subject: Crosman Site

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Good morning Todd,

We are preparing our report for the GW sampling at the Crosman site (no surprises, data is consistent with past results), and also putting together our cost estimates for 2023. I would like to switch the site over to passive diffusion bag samplers (from the current dedicated bailers with a 3 volume purge). Before I put that as a recommendation in the report, and put money in our budget, I wanted to run that by you. Please let me know your thoughts; would you need to see any supporting information/justification/etc.?

Aaron Richardson | Senior Environmental Engineer | aaron.richardson@arcadis.com Arcadis | Arcadis of New York, Inc.

100 Chestnut Street Suite 1020 Rochester NY | 14604 | USA
T. +1 585 662 4024 | M. +1 585 202 4393

Connect with us! www.arcadis.com | LinkedIn | Twitter | Facebook | Connect App

Be green, leave it on the screen.

This email and any files transmitted with it are the property of Arcadis and its affiliates. All rights, including without limitation copyright, are reserved. This email contains information that may be confidential and may also be privileged. It is for the exclusive use of the intended recipient(s). If you are not an intended recipient, please note that any form of distribution, copying or use of this communication or the information in it is strictly prohibited and may be unlawful. If you have received this communication in error, please return it to the sender and then delete the email and destroy any copies of it. While reasonable precautions have been taken to ensure that no software or viruses are present in our emails, we cannot guarantee that this email or any attachment is virus free or has not been intercepted or changed. Any opinions or other information in this email that do not relate to the official business of Arcadis are neither given nor endorsed by it.

Appendix E

SSDS Laboratory Reports

PREPARED FOR

Attn: Christopher Davern
ARCADIS U.S. Inc
201 Fuller Road
Suite 201
Albany, New York 12203
Generated 12/18/2023 2:32:22 PM

JOB DESCRIPTION

Crosman Vapor 200-71154-1

JOB NUMBER

200-71154-1

Eurofins Burlington 530 Community Drive Suite 11 South Burlington VT 05403

Eurofins Burlington

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins TestAmerica Project Manager.

Authorization

Elizabeth a Nyc

Generated 12/18/2023 2:32:22 PM

Authorized for release by Elizabeth Nye, Project Manager I Elizabeth.Nye@et.eurofinsus.com (802)923-1029

Page 2 of 37

12/18/2023

Client: ARCADIS U.S. Inc Project/Site: Crosman Vapor Laboratory Job ID: 200-71154-1 SDG: 200-71154-1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	8
QC Sample Results	14
QC Association Summary	18
Lab Chronicle	19
Certification Summary	20
Method Summary	21
Sample Summary	22
Canister QC Documents	23
Chain of Custody	24
Receipt Checklists	26
Clean Canister Certification	27
Pre-Ship Certification	27
Clean Canister Data	28
Air Canister Dilution	37

4

6

8

10

12

14

13

Definitions/Glossary

Client: ARCADIS U.S. Inc Job ID: 200-71154-1 Project/Site: Crosman Vapor SDG: 200-71154-1

Qualifiers

Qualifier

Air - GC/MS VOA

Qualifier Description D Sample results are obtained from a dilution; the surrogate or matrix spike recoveries reported are calculated from diluted samples.

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. J

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) EDL LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

Method Detection Limit MDL ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

Practical Quantitation Limit PQL

PRES Presumptive **Quality Control** QC

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) **TEF TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

12/18/2023

Case Narrative

Client: ARCADIS U.S. Inc Project: Crosman Vapor

Job ID: 200-71154-1 Eurofins Burlington

CASE NARRATIVE

Client: ARCADIS U.S. Inc

Project: Crosman Vapor

Report Number: 200-71154-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 12/08/2023; the samples arrived in good condition.

VOLATILE ORGANIC COMPOUNDS

Samples SDS-1-120723, SDS-2-120723, Combined Influent-120723, Pre-VPGAC4-120723, Post-Dilution Eff-120723 and Post-Blower Eff-120723 were analyzed for Volatile Organic Compounds in accordance with EPA Method TO-15. The samples were analyzed on 12/12/2023 and 12/13/2023.

Samples SDS-1-120723[10.2X], SDS-1-120723[99.8X], SDS-2-120723[10X], SDS-2-120723[100X], Combined Influent-120723[99.7X], Pre-VPGAC4-120723[101X], Pre-VPGAC4-120723[20X], Post-Dilution Eff-120723[10X] and Post-Blower Eff-120723[10X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Job ID: 200-71154-1

-

5

7

9

10

12

13

15

Client: ARCADIS U.S. Inc
Project/Site: Crosman Vapor

Job ID: 200-71154-1
SDG: 200-71154-1

Client Sample ID: SDS-1-120723

Lab Sample ID: 200-71154-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac [Method	Prep Type
Acetone		J	51	16	ppb v/v	10.2	TO-15	Total/NA
trans-1,2-Dichloroethene	0.25	J	2.0	0.23	ppb v/v	10.2	TO-15	Total/NA
cis-1,2-Dichloroethene	1.0		0.51	0.21	ppb v/v	10.2	TO-15	Total/NA
1,2-Dichloroethene, Total	1.3	J	4.1	0.21	ppb v/v	10.2	TO-15	Total/NA
Tetrachloroethene	1.0	J	2.0	0.21	ppb v/v	10.2	TO-15	Total/NA
Trichloroethene - DL	1500	D	3.5	2.5	ppb v/v	99.8	TO-15	Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac I	Method	Prep Type
Acetone	52	J	120	39	ug/m3	10.2	TO-15	Total/NA
trans-1,2-Dichloroethene	0.98	J	8.1	0.93	ug/m3	10.2	TO-15	Total/NA
cis-1,2-Dichloroethene	4.1		2.0	0.85	ug/m3	10.2	TO-15	Total/NA
1,2-Dichloroethene, Total	5.0	J	16	0.85	ug/m3	10.2	TO-15	Total/NA
Tetrachloroethene	7.0	J	14	1.5	ug/m3	10.2	TO-15	Total/NA
Trichloroethene - DL	7800	D	19	13	ug/m3	99.8	TO-15	Total/NA

Client Sample ID: SDS-2-120723

Lab Sample ID: 200-71154-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D I	Method	Prep Type
Acetone	87		50	16	ppb v/v	10	_ 1	TO-15	Total/NA
cis-1,2-Dichloroethene	29		0.50	0.21	ppb v/v	10	٦	TO-15	Total/NA
1,2-Dichloroethene, Total	29		4.0	0.21	ppb v/v	10	٦	TO-15	Total/NA
Toluene	0.70	J	2.0	0.62	ppb v/v	10	1	TO-15	Total/NA
Tetrachloroethene	1.6	J	2.0	0.21	ppb v/v	10	٦	TO-15	Total/NA
Trichloroethene - DL	1400	D	3.5	2.5	ppb v/v	100	٦	TO-15	Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D I	Method	Prep Type
Acetone	210		120	38	ug/m3	10	_ 7	TO-15	Total/NA
cis-1,2-Dichloroethene	120		2.0	0.83	ug/m3	10	٦	TO-15	Total/NA
1,2-Dichloroethene, Total	110		16	0.83	ug/m3	10	7	TO-15	Total/NA
Toluene	2.6	J	7.5	2.3	ug/m3	10	1	TO-15	Total/NA
Tetrachloroethene	11	J	14	1.4	ug/m3	10	٦	TO-15	Total/NA
Trichloroethene - DL	7400	D	19	13	ug/m3	100	-	TO-15	Total/NA

Client Sample ID: Combined Influent-120723

Lab Sample ID: 200-71154-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	43	J	50	16	ppb v/v	10	_	TO-15	Total/NA
trans-1,2-Dichloroethene	0.45	J	2.0	0.23	ppb v/v	10		TO-15	Total/NA
cis-1,2-Dichloroethene	20		0.50	0.21	ppb v/v	10		TO-15	Total/NA
1,2-Dichloroethene, Total	20		4.0	0.21	ppb v/v	10		TO-15	Total/NA
Tetrachloroethene	1.4	J	2.0	0.21	ppb v/v	10		TO-15	Total/NA
Trichloroethene - DL	1500	D	3.5	2.5	ppb v/v	99.7		TO-15	Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	100	J	120	38	ug/m3	10	_	TO-15	Total/NA
trans-1,2-Dichloroethene	1.8	J	7.9	0.91	ug/m3	10		TO-15	Total/NA
cis-1,2-Dichloroethene	80		2.0	0.83	ug/m3	10		TO-15	Total/NA
1,2-Dichloroethene, Total	81		16	0.83	ug/m3	10		TO-15	Total/NA
Tetrachloroethene	9.8	J	14	1.4	ug/m3	10		TO-15	Total/NA
Trichloroethene - DL	8100	D	19	13	ug/m3	99.7		TO-15	Total/NA

Client Sample ID: Pre-VPGAC4-120723

Lab Sample ID: 200-71154-4

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	DI	Method	Prep Type
Acetone	140	100	32	ppb v/v	20		TO-15	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Burlington

Page 6 of 37

2

3

-

7

q

12

1 *1*

19

17

12/18/2023

Detection Summary

Client: ARCADIS U.S. Inc
Project/Site: Crosman Vapor

Job ID: 200-71154-1
SDG: 200-71154-1

Client Sample ID: Pre-VPGAC4-120723 (Continued)

Lab Sample ID: 200-71154-4 Dil Fac D Method Prep Type

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	26		1.0	0.42	ppb v/v	20	_	TO-15	Total/NA
1,2-Dichloroethene, Total	26		8.0	0.42	ppb v/v	20		TO-15	Total/NA
Trichloroethene - DL	3000	D	3.5	2.5	ppb v/v	101		TO-15	Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	320		240	76	ug/m3	20	_	TO-15	Total/NA
cis-1,2-Dichloroethene	100		4.0	1.7	ug/m3	20		TO-15	Total/NA
1,2-Dichloroethene, Total	100		32	1.7	ug/m3	20		TO-15	Total/NA
Trichloroethene - DL	16000	D	19	14	ug/m3	101		TO-15	Total/NA

Client Sample ID: Post-Dilution Eff-120723

Lab Sample ID: 200-71154-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	31	J	50	16	ppb v/v	10	_	TO-15	Total/NA
cis-1,2-Dichloroethene	13		0.50	0.21	ppb v/v	10		TO-15	Total/NA
1,2-Dichloroethene, Total	13		4.0	0.21	ppb v/v	10		TO-15	Total/NA
Trichloroethene	100		0.35	0.25	ppb v/v	10		TO-15	Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	73	J	120	38	ug/m3	10	_	TO-15	Total/NA
cis-1,2-Dichloroethene	50		2.0	0.83	ug/m3	10		TO-15	Total/NA
1,2-Dichloroethene, Total	52		16	0.83	ug/m3	10		TO-15	Total/NA
Trichloroethene	560		1.9	1.3	ug/m3	10		TO-15	Total/NA

Client Sample ID: Post-Blower Eff-120723

Lab Sample ID: 200-71154-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	14		0.50	0.21	ppb v/v	10	_	TO-15	Total/NA
1,2-Dichloroethene, Total	14		4.0	0.21	ppb v/v	10		TO-15	Total/NA
Trichloroethene	150		0.35	0.25	ppb v/v	10		TO-15	Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	56		2.0	0.83	ug/m3	10	_	TO-15	Total/NA
1,2-Dichloroethene, Total	56		16	0.83	ug/m3	10		TO-15	Total/NA
Trichloroethene	820		1.9	1.3	ug/m3	10		TO-15	Total/NA

This Detection Summary does not include radiochemical test results.

5

7

9

11

13

15

16

17

12/18/2023

Client: ARCADIS U.S. Inc
Project/Site: Crosman Vapor

Job ID: 200-71154-1
SDG: 200-71154-1

RL

0.80

0.36

MDL Unit

0.27 ppb v/v

ppb v/v

0.21

D

Prepared

Client Sample ID: SDS-1-120723

Date Collected: 12/07/23 10:00 Date Received: 12/08/23 10:20

Analyte

Analyte

Analyte

Trichloroethene

Trichloroethene

Vinyl chloride

1,1-Dichloroethene

Sample Container: Summa Canister 1L

Method: EPA TO-15 - Volatile Organic Compounds in Ambient Air

Method: EPA TO-15 - Volatile Organic Compounds in Ambient Air - DL

Result Qualifier

Result Qualifier

1500 D

7800 D

Result Qualifier

0.80 U

0.36 U

Lab Sample ID: 200-71154-1

Analyzed

12/12/23 18:23

12/12/23 18:23

Matrix: Air

5

5

Dil Fac

10.2

10.2

7

8

10

12

14

16

.,	0.00	•	0.00	0	PP-0 1/1			,, _ 0 . 0 0	
Acetone	22	J	51	16	ppb v/v			12/12/23 18:23	10.2
Methylene Chloride	5.1	U	5.1	1.8	ppb v/v			12/12/23 18:23	10.2
trans-1,2-Dichloroethene	0.25	J	2.0	0.23	ppb v/v			12/12/23 18:23	10.2
1,1-Dichloroethane	2.0	U	2.0	0.26	ppb v/v			12/12/23 18:23	10.2
cis-1,2-Dichloroethene	1.0		0.51	0.21	ppb v/v			12/12/23 18:23	10.2
1,2-Dichloroethene, Total	1.3	J	4.1	0.21	ppb v/v			12/12/23 18:23	10.2
1,1,1-Trichloroethane	2.0	U	2.0	0.45	ppb v/v			12/12/23 18:23	10.2
Carbon tetrachloride	0.36	U	0.36	0.22	ppb v/v			12/12/23 18:23	10.2
Benzene	2.0	U	2.0	0.45	ppb v/v			12/12/23 18:23	10.2
Toluene	2.0	U	2.0	0.63	ppb v/v			12/12/23 18:23	10.2
Tetrachloroethene	1.0	J	2.0	0.21	ppb v/v			12/12/23 18:23	10.2
Chlorobenzene	2.0	U	2.0	0.45	ppb v/v			12/12/23 18:23	10.2
m,p-Xylene	5.1	U	5.1	0.97	ppb v/v			12/12/23 18:23	10.2
Xylene, o-	2.0	U	2.0	0.64	ppb v/v			12/12/23 18:23	10.2
Bromoform	2.0	U	2.0	1.2	ppb v/v			12/12/23 18:23	10.2
1,1,2,2-Tetrachloroethane	2.0	U	2.0	0.44	ppb v/v			12/12/23 18:23	10.2
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	2.0	U	2.0	0.55	ug/m3			12/12/23 18:23	10.2
1,1-Dichloroethene	1.4	U	1.4	1.1	ug/m3			12/12/23 18:23	10.2
Acetone	52	J	120	39	ug/m3			12/12/23 18:23	10.2
Methylene Chloride	18	U	18	6.4	ug/m3			12/12/23 18:23	10.2
trans-1,2-Dichloroethene	0.98	J	8.1	0.93	ug/m3			12/12/23 18:23	10.2
1,1-Dichloroethane	8.3	U	8.3	1.0	ug/m3			12/12/23 18:23	10.2
cis-1,2-Dichloroethene	4.1		2.0	0.85	ug/m3			12/12/23 18:23	10.2
1,2-Dichloroethene, Total	5.0	J	16	0.85	ug/m3			12/12/23 18:23	10.2
1,1,1-Trichloroethane	11	U	11	2.4	ug/m3			12/12/23 18:23	10.2
Carbon tetrachloride	2.2	U	2.2	1.4	ug/m3			12/12/23 18:23	10.2
Benzene	6.5	U	6.5	1.4	ug/m3			12/12/23 18:23	10.2
Toluene	7.7	U	7.7	2.4	ug/m3			12/12/23 18:23	10.2
Tetrachloroethene		· · · · · · · · · · · · · · · · · · ·	14	1.5	ug/m3			12/12/23 18:23	10.2
2	7.0	J							400
Chlorobenzene	7. 0 9.4		9.4	2.1	ug/m3			12/12/23 18:23	10.2
Chlorobenzene m,p-Xylene		U			ug/m3 ug/m3			12/12/23 18:23 12/12/23 18:23	10.2 10.2
	9.4	U U	9.4	4.2	-				
m,p-Xylene	9.4 22	U U U	9.4 22	4.2 2.8	ug/m3			12/12/23 18:23	10.2

Analyzed

12/13/23 17:35

Analyzed

12/13/23 17:35

RL

3.5

RL

19

MDL Unit

MDL Unit

2.5 ppb v/v

13 ug/m3

D

D

Prepared

Prepared

Dil Fac

Dil Fac

99.8

99.8

Client: ARCADIS U.S. Inc
Project/Site: Crosman Vapor

Job ID: 200-71154-1
SDG: 200-71154-1

Client Sample ID: SDS-2-120723

Date Collected: 12/07/23 10:05 Date Received: 12/08/23 10:20

Sample Container: Summa Canister 1L

Lab Sample ID: 200-71154-2

Matrix: Air

5

7

9

11

14

16

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.78	U	0.78	0.21	ppb v/v			12/12/23 21:48	10
1,1-Dichloroethene	0.35	U	0.35	0.26	ppb v/v			12/12/23 21:48	10
Acetone	87		50	16	ppb v/v			12/12/23 21:48	10
Methylene Chloride	5.0	U	5.0	1.8	ppb v/v			12/12/23 21:48	10
trans-1,2-Dichloroethene	2.0	U	2.0	0.23	ppb v/v			12/12/23 21:48	10
1,1-Dichloroethane	2.0	U	2.0	0.25	ppb v/v			12/12/23 21:48	10
cis-1,2-Dichloroethene	29		0.50	0.21	ppb v/v			12/12/23 21:48	10
1,2-Dichloroethene, Total	29		4.0	0.21	ppb v/v			12/12/23 21:48	10
1,1,1-Trichloroethane	2.0	U	2.0	0.44	ppb v/v			12/12/23 21:48	10
Carbon tetrachloride	0.35	U	0.35	0.22	ppb v/v			12/12/23 21:48	10
Benzene	2.0	U	2.0	0.44	ppb v/v			12/12/23 21:48	10
Toluene	0.70	J	2.0	0.62	ppb v/v			12/12/23 21:48	10
Tetrachloroethene	1.6	J	2.0	0.21	ppb v/v			12/12/23 21:48	10
Chlorobenzene	2.0	U	2.0	0.44	ppb v/v			12/12/23 21:48	10
m,p-Xylene	5.0	U	5.0	0.95	ppb v/v			12/12/23 21:48	10
Xylene, o-	2.0	U	2.0	0.63	ppb v/v			12/12/23 21:48	10
Bromoform	2.0	U	2.0	1.2	ppb v/v			12/12/23 21:48	10
1,1,2,2-Tetrachloroethane	2.0	U	2.0	0.43	ppb v/v			12/12/23 21:48	10
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	2.0	U	2.0	0.54	ug/m3			12/12/23 21:48	10
1,1-Dichloroethene	1.4	U	1.4	1.0	ug/m3			12/12/23 21:48	10
Acetone									10
	210		120	38	ug/m3			12/12/23 21:48	
Methylene Chloride	210 17	U	120 17		ug/m3 ug/m3			12/12/23 21:48 12/12/23 21:48	10
Methylene Chloride trans-1,2-Dichloroethene				6.3					
•	17	U	17	6.3 0.91	ug/m3			12/12/23 21:48	10 10 10
trans-1,2-Dichloroethene	17 7.9	U	17 7.9	6.3 0.91 1.0	ug/m3 ug/m3			12/12/23 21:48 12/12/23 21:48	10 10
trans-1,2-Dichloroethene 1,1-Dichloroethane	17 7.9 8.1	U	17 7.9 8.1	6.3 0.91 1.0 0.83	ug/m3 ug/m3 ug/m3			12/12/23 21:48 12/12/23 21:48 12/12/23 21:48	10 10 10
trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene	17 7.9 8.1 120	U U	17 7.9 8.1 2.0	6.3 0.91 1.0 0.83 0.83	ug/m3 ug/m3 ug/m3 ug/m3			12/12/23 21:48 12/12/23 21:48 12/12/23 21:48 12/12/23 21:48	10 10 10 10
trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene 1,2-Dichloroethene, Total	17 7.9 8.1 120 110	U U	17 7.9 8.1 2.0 16	6.3 0.91 1.0 0.83 0.83 2.4	ug/m3 ug/m3 ug/m3 ug/m3			12/12/23 21:48 12/12/23 21:48 12/12/23 21:48 12/12/23 21:48 12/12/23 21:48	10 10 10 10 10
trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene 1,2-Dichloroethene, Total 1,1,1-Trichloroethane	17 7.9 8.1 120 110	U U U	17 7.9 8.1 2.0 16 11	6.3 0.91 1.0 0.83 0.83 2.4 1.4	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3			12/12/23 21:48 12/12/23 21:48 12/12/23 21:48 12/12/23 21:48 12/12/23 21:48 12/12/23 21:48	10 10 10 10 10
trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene 1,2-Dichloroethene, Total 1,1,1-Trichloroethane Carbon tetrachloride	17 7.9 8.1 120 110 11	U U U U	17 7.9 8.1 2.0 16 11 2.2	6.3 0.91 1.0 0.83 0.83 2.4 1.4	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3			12/12/23 21:48 12/12/23 21:48 12/12/23 21:48 12/12/23 21:48 12/12/23 21:48 12/12/23 21:48 12/12/23 21:48	10
trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene 1,2-Dichloroethene, Total 1,1,1-Trichloroethane Carbon tetrachloride Benzene	17 7.9 8.1 120 110 11 2.2 6.4	1 O	17 7.9 8.1 2.0 16 11 2.2 6.4	6.3 0.91 1.0 0.83 0.83 2.4 1.4 1.4	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3			12/12/23 21:48 12/12/23 21:48 12/12/23 21:48 12/12/23 21:48 12/12/23 21:48 12/12/23 21:48 12/12/23 21:48 12/12/23 21:48	10 10 10 10 10 10 10
trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene 1,2-Dichloroethene, Total 1,1,1-Trichloroethane Carbon tetrachloride Benzene Toluene	17 7.9 8.1 120 110 11 2.2 6.4 2.6	7 0 0	17 7.9 8.1 2.0 16 11 2.2 6.4 7.5	6.3 0.91 1.0 0.83 0.83 2.4 1.4 2.3	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3			12/12/23 21:48 12/12/23 21:48 12/12/23 21:48 12/12/23 21:48 12/12/23 21:48 12/12/23 21:48 12/12/23 21:48 12/12/23 21:48 12/12/23 21:48	10 10 10 10 10 10 10 10
trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene 1,2-Dichloroethene, Total 1,1,1-Trichloroethane Carbon tetrachloride Benzene Toluene Tetrachloroethene	17 7.9 8.1 120 110 11 2.2 6.4 2.6	7 0 0	17 7.9 8.1 2.0 16 11 2.2 6.4 7.5	6.3 0.91 1.0 0.83 0.83 2.4 1.4 2.3 1.4	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3			12/12/23 21:48 12/12/23 21:48	10 10 10 10 10 10 10 10 10
trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene 1,2-Dichloroethene, Total 1,1,1-Trichloroethane Carbon tetrachloride Benzene Toluene Tetrachloroethene Chlorobenzene	17 7.9 8.1 120 110 11 2.2 6.4 2.6 11 9.2	0 0 0 0	17 7.9 8.1 2.0 16 11 2.2 6.4 7.5 14 9.2	6.3 0.91 1.0 0.83 0.83 2.4 1.4 2.3 1.4 2.0 4.1	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3			12/12/23 21:48 12/12/23 21:48	100 100 100 100 100 100 100 100 100
trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene 1,2-Dichloroethene, Total 1,1,1-Trichloroethane Carbon tetrachloride Benzene Toluene Tetrachloroethene Chlorobenzene m,p-Xylene	17 7.9 8.1 120 110 11 2.2 6.4 2.6 11 9.2	0 0 0 0 0	17 7.9 8.1 2.0 16 11 2.2 6.4 7.5 14 9.2 22	6.3 0.91 1.0 0.83 0.83 2.4 1.4 2.3 1.4 2.0 4.1	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3			12/12/23 21:48 12/12/23 21:48	10 10 10 10 10 10

Eur	ofins	Burli	ington

Analyzed

12/13/23 18:31

Analyzed

12/13/23 18:31

RL

3.5

RL

19

MDL Unit

MDL Unit

2.5 ppb v/v

13 ug/m3

D

D

Prepared

Prepared

Method: EPA TO-15 - Volatile Organic Compounds in Ambient Air - DL

Result Qualifier

Result Qualifier

1400 D

7400 D

Analyte

Analyte

Trichloroethene

Trichloroethene

Dil Fac

Dil Fac

100

Client: ARCADIS U.S. Inc
Project/Site: Crosman Vapor

Job ID: 200-71154-1
SDG: 200-71154-1

Client Sample ID: Combined Influent-120723

Date Collected: 12/07/23 10:10 Date Received: 12/08/23 10:20

Sample Container: Summa Canister 1L

Lab Sample ID: 200-71154-3

Matrix: Air

0

9

11

13

4.0

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.78	U	0.78	0.21	ppb v/v			12/12/23 23:30	10
1,1-Dichloroethene	0.35	U	0.35	0.26	ppb v/v			12/12/23 23:30	10
Acetone	43	J	50	16	ppb v/v			12/12/23 23:30	10
Methylene Chloride	5.0	U	5.0	1.8	ppb v/v			12/12/23 23:30	10
trans-1,2-Dichloroethene	0.45	J	2.0	0.23	ppb v/v			12/12/23 23:30	10
1,1-Dichloroethane	2.0	U	2.0	0.25	ppb v/v			12/12/23 23:30	10
cis-1,2-Dichloroethene	20		0.50	0.21	ppb v/v			12/12/23 23:30	10
1,2-Dichloroethene, Total	20		4.0	0.21	ppb v/v			12/12/23 23:30	10
1,1,1-Trichloroethane	2.0	U	2.0	0.44	ppb v/v			12/12/23 23:30	10
Carbon tetrachloride	0.35	U	0.35	0.22	ppb v/v			12/12/23 23:30	10
Benzene	2.0	U	2.0	0.44	ppb v/v			12/12/23 23:30	10
Toluene	2.0	U	2.0	0.62	ppb v/v			12/12/23 23:30	10
Tetrachloroethene	1.4	J	2.0	0.21	ppb v/v			12/12/23 23:30	10
Chlorobenzene	2.0	U	2.0	0.44	ppb v/v			12/12/23 23:30	10
m,p-Xylene	5.0	U	5.0	0.95	ppb v/v			12/12/23 23:30	10
Xylene, o-	2.0	U	2.0	0.63	ppb v/v			12/12/23 23:30	10
Bromoform	2.0	U	2.0	1.2	ppb v/v			12/12/23 23:30	10
1,1,2,2-Tetrachloroethane	2.0	U	2.0	0.43	ppb v/v			12/12/23 23:30	10
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	2.0	U	2.0	0.54	ug/m3			12/12/23 23:30	10
1,1-Dichloroethene	1.4	U	1.4	1.0	ug/m3			12/12/23 23:30	10
Acetone	100	J	120	38	ug/m3			12/12/23 23:30	10
Methylene Chloride	17	U	17	6.3	ug/m3			12/12/23 23:30	10
trans-1,2-Dichloroethene	1.8	J	7.9	0.91	ug/m3			12/12/23 23:30	10
1,1-Dichloroethane	8.1	U	8.1	1.0	ug/m3			12/12/23 23:30	10
cis-1,2-Dichloroethene	80		2.0	0.83	ug/m3			12/12/23 23:30	10
1,2-Dichloroethene, Total	81		16	0.83	ug/m3			12/12/23 23:30	10
1,1,1-Trichloroethane	11	U	11	2.4	ug/m3			12/12/23 23:30	10
Carbon tetrachloride	2.2	U	2.2	1.4	ug/m3			12/12/23 23:30	10
Benzene	6.4	U	6.4	1.4	ug/m3			12/12/23 23:30	10
Toluene	7.5	U	7.5	2.3	ug/m3			12/12/23 23:30	10
Tetrachloroethene	9.8	J	14	1.4	ug/m3			12/12/23 23:30	10
Chlorobenzene	9.2	U	9.2	2.0	ug/m3			12/12/23 23:30	10
m,p-Xylene	22	U	22	4.1	ug/m3			12/12/23 23:30	10
m,p-Aylene					ug/m3			40/40/00 00 00	10
Xylene, o-	8.7	U	8.7	2.7	ug/III3			12/12/23 23:30	
`` *	8.7 21		8.7 21		ug/m3			12/12/23 23:30 12/12/23 23:30	10

Method: EPA TO-15 - Vola	itile Organic Co	mpounds in	Ambient A	ir - DL					
Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	1500	D	3.5	2.5	ppb v/v			12/13/23 19:24	99.7
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	8100	D		13	ug/m3			12/13/23 19:24	99.7

Client: ARCADIS U.S. Inc
Project/Site: Crosman Vapor

Job ID: 200-71154-1
SDG: 200-71154-1

Client Sample ID: Pre-VPGAC4-120723

Date Collected: 12/07/23 10:15 Date Received: 12/08/23 10:20

Sample Container: Summa Canister 1L

Lab Sample ID: 200-71154-4

Matrix: Air

_ _ _

6

7

9

11

1 /

16

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	1.6	U	1.6	0.42	ppb v/v			12/13/23 01:13	20
1,1-Dichloroethene	0.70	U	0.70	0.52	ppb v/v			12/13/23 01:13	20
Acetone	140		100	32	ppb v/v			12/13/23 01:13	20
Methylene Chloride	10	U	10	3.6	ppb v/v			12/13/23 01:13	20
trans-1,2-Dichloroethene	4.0	U	4.0	0.46	ppb v/v			12/13/23 01:13	20
1,1-Dichloroethane	4.0	U	4.0	0.50	ppb v/v			12/13/23 01:13	20
cis-1,2-Dichloroethene	26		1.0	0.42	ppb v/v			12/13/23 01:13	20
1,2-Dichloroethene, Total	26		8.0	0.42	ppb v/v			12/13/23 01:13	20
1,1,1-Trichloroethane	4.0	U	4.0	0.88	ppb v/v			12/13/23 01:13	20
Carbon tetrachloride	0.70	U	0.70	0.44	ppb v/v			12/13/23 01:13	20
Benzene	4.0	U	4.0	0.88	ppb v/v			12/13/23 01:13	20
Toluene	4.0	U	4.0	1.2	ppb v/v			12/13/23 01:13	20
Tetrachloroethene	4.0	U	4.0	0.42	ppb v/v			12/13/23 01:13	20
Chlorobenzene	4.0	U	4.0	0.88	ppb v/v			12/13/23 01:13	20
m,p-Xylene	10	U	10	1.9	ppb v/v			12/13/23 01:13	20
Xylene, o-	4.0	U	4.0	1.3	ppb v/v			12/13/23 01:13	20
Bromoform	4.0	U	4.0	2.4	ppb v/v			12/13/23 01:13	20
1,1,2,2-Tetrachloroethane	4.0	U	4.0	0.86	ppb v/v			12/13/23 01:13	20
1,1,2,2-Tetrachloroethane Analyte		U Qualifier	4.0 RL		ppb v/v Unit	D	Prepared	12/13/23 01:13 Analyzed	20 Dil Fac
		Qualifier		MDL	Unit	<u>D</u> .	Prepared		
Analyte	Result	Qualifier U	RL	MDL 1.1	Unit	<u>D</u> .	Prepared	Analyzed	Dil Fac
Analyte Vinyl chloride	Result 4.0	Qualifier U	RL 4.0	MDL 1.1 2.1	Unit ug/m3	<u>D</u> -	Prepared	Analyzed 12/13/23 01:13	Dil Fac
Analyte Vinyl chloride 1,1-Dichloroethene	Result 4.0 2.8	Qualifier U U	RL 4.0 2.8	MDL 1.1 2.1 76	Unit ug/m3 ug/m3	<u>D</u> .	Prepared	Analyzed 12/13/23 01:13 12/13/23 01:13	20 20
Analyte Vinyl chloride 1,1-Dichloroethene Acetone	Result 4.0 2.8 320	Qualifier U U	RL 4.0 2.8 240	MDL 1.1 2.1 76 13	Unit ug/m3 ug/m3 ug/m3	<u>D</u> .	Prepared	Analyzed 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13	20 20 20 20
Analyte Vinyl chloride 1,1-Dichloroethene Acetone Methylene Chloride	Result 4.0 2.8 320 35	Qualifier U U U U	RL 4.0 2.8 240 35	MDL 1.1 2.1 76 13 1.8	Unit ug/m3 ug/m3 ug/m3 ug/m3	<u>D</u>	Prepared	Analyzed 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13	20 20 20 20 20
Analyte Vinyl chloride 1,1-Dichloroethene Acetone Methylene Chloride trans-1,2-Dichloroethene	Result 4.0 2.8 320 35 16	Qualifier U U U U	4.0 2.8 240 35 16	MDL 1.1 2.1 76 13 1.8 2.0	Unit ug/m3 ug/m3 ug/m3 ug/m3	<u>D</u> .	Prepared	Analyzed 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13	20 20 20 20 20 20 20
Analyte Vinyl chloride 1,1-Dichloroethene Acetone Methylene Chloride trans-1,2-Dichloroethene 1,1-Dichloroethane	Result 4.0 2.8 320 35 16	Qualifier U U U U	RL 4.0 2.8 240 35 16 16	MDL 1.1 2.1 76 13 1.8 2.0 1.7	Unit ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	<u>D</u> .	Prepared	Analyzed 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13	20 20 20 20 20 20 20 20 20
Analyte Vinyl chloride 1,1-Dichloroethene Acetone Methylene Chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene	Result 4.0 2.8 320 35 16 16 100	Qualifier U U U U U	RL 4.0 2.8 240 35 16 16 4.0	MDL 1.1 2.1 76 13 1.8 2.0 1.7	Unit ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	<u>D</u>	Prepared	Analyzed 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13	20 20 20 20 20 20 20 20 20
Analyte Vinyl chloride 1,1-Dichloroethene Acetone Methylene Chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene 1,2-Dichloroethene, Total	Result 4.0 2.8 320 35 16 16 100	Qualifier U U U U U U	RL 4.0 2.8 240 35 16 16 4.0 32	MDL 1.1 2.1 76 13 1.8 2.0 1.7 1.7 4.8	Unit ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	<u>D</u> -	Prepared	Analyzed 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13	20 20 20 20 20 20 20 20 20 20
Analyte Vinyl chloride 1,1-Dichloroethene Acetone Methylene Chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene 1,2-Dichloroethene 1,1-Trichloroethane	Result 4.0 2.8 320 35 16 16 100 100 22	Qualifier U U U U U U U U	RL 4.0 2.8 240 35 16 16 4.0 32 22	MDL 1.1 2.1 76 13 1.8 2.0 1.7 1.7 4.8 2.8	Unit ug/m3	<u>D</u>	Prepared	Analyzed 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13	20 20 20 20 20 20 20 20 20 20 20
Analyte Vinyl chloride 1,1-Dichloroethene Acetone Methylene Chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene 1,2-Dichloroethene 1,1,1-Trichloroethane Carbon tetrachloride	Result 4.0 2.8 320 35 16 16 100 100 22 4.4	Qualifier U U U U U U U U U	RL 4.0 2.8 240 35 16 16 4.0 32 22 4.4	MDL 1.1 2.1 76 13 1.8 2.0 1.7 4.8 2.8 2.8	Unit ug/m3	<u>D</u>	Prepared	Analyzed 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13	20 20 20 20 20 20 20 20 20 20 20 20
Analyte Vinyl chloride 1,1-Dichloroethene Acetone Methylene Chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene 1,2-Dichloroethene 1,1-Trichloroethane Carbon tetrachloride Benzene	Result 4.0 2.8 320 35 16 100 100 22 4.4 13	Qualifier U U U U U U U U U U U U U U U U U	RL 4.0 2.8 240 35 16 16 4.0 32 22 4.4	MDL 1.1 2.1 76 13 1.8 2.0 1.7 1.7 4.8 2.8 2.8 4.7	Unit ug/m3	<u>D</u>	Prepared	Analyzed 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13	20 20 20 20 20 20 20 20 20 20 20 20
Analyte Vinyl chloride 1,1-Dichloroethene Acetone Methylene Chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene 1,2-Dichloroethene 1,1-Trichloroethane Carbon tetrachloride Benzene Toluene	Result 4.0 2.8 320 35 16 16 100 100 22 4.4 13 15	Qualifier U U U U U U U U U U U U U U U U U U U	RL 4.0 2.8 240 35 16 4.0 32 22 4.4 13	MDL 1.1 2.1 76 13 1.8 2.0 1.7 1.7 4.8 2.8 4.7 2.8	Unit ug/m3	<u>D</u>	Prepared	Analyzed 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13	20 20 20 20 20 20 20 20 20 20 20 20 20
Analyte Vinyl chloride 1,1-Dichloroethene Acetone Methylene Chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene Carbon tetrachloride Benzene Toluene Tetrachloroethene	Result 4.0 2.8 320 35 16 100 100 22 4.4 13 15 27	Qualifier U U U U U U U U U U U U U U U U U U U	RL 4.0 2.8 240 35 16 4.0 32 22 4.4 13 15 27	MDL 1.1 2.1 76 13 1.8 2.0 1.7 1.7 4.8 2.8 4.7 2.8 4.1	Unit ug/m3	<u>D</u>	Prepared	Analyzed 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13	20 20 20 20 20 20 20 20 20 20 20 20 20
Analyte Vinyl chloride 1,1-Dichloroethene Acetone Methylene Chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene 1,2-Dichloroethene 1,1-Trichloroethane Carbon tetrachloride Benzene Toluene Tetrachloroethene Chlorobenzene	Result 4.0 2.8 320 35 16 100 100 22 4.4 13 15 27 18	Qualifier U U U U U U U U U U U U U U U U U U U	RL 4.0 2.8 240 35 16 16 4.0 32 22 4.4 13 15 27 18	MDL 1.1 2.1 76 13 1.8 2.0 1.7 1.7 4.8 2.8 4.7 2.8 4.1 8.3	Unit ug/m3	<u>D</u> .	Prepared	Analyzed 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13	20 20 20 20 20 20 20 20 20 20 20 20 20 2
Analyte Vinyl chloride 1,1-Dichloroethene Acetone Methylene Chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene 1,2-Dichloroethene, Total 1,1,1-Trichloroethane Carbon tetrachloride Benzene Toluene Tetrachloroethene Chlorobenzene m,p-Xylene	Result 4.0 2.8 320 35 16 16 100 100 22 4.4 13 15 27 18 43	Qualifier U U U U U U U U U U U U U U U U U U U	RL 4.0 2.8 240 35 16 16 4.0 32 22 4.4 13 15 27 18 43	MDL 1.1 2.1 76 13 1.8 2.0 1.7 1.7 4.8 2.8 2.8 4.7 2.8 4.1 8.3 5.5	Unit ug/m3	<u>D</u> -	Prepared	Analyzed 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13 12/13/23 01:13	20 20 20 20 20 20 20 20 20 20 20 20 20 2

Method: EPA TO-15 - Vola	atile Organic Co	mpounds in	Ambient Ai	ir - DL					
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	3000	D	3.5	2.5	ppb v/v			12/13/23 02:04	101
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	16000	D	19	14	ug/m3			12/13/23 02:04	101

Client: ARCADIS U.S. Inc

Job ID: 200-71154-1

Project/Site: Crosman Vapor

SDG: 200-71154-1

Client Sample ID: Post-Dilution Eff-120723

Date Collected: 12/07/23 10:20 Date Received: 12/08/23 10:20

Sample Container: Summa Canister 1L

Lab Sample ID: 200-71154-5

Matrix: Air

5

7

9

11

13

15

17

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.78	U	0.78	0.21	ppb v/v			12/12/23 16:40	10
1,1-Dichloroethene	0.35	U	0.35	0.26	ppb v/v			12/12/23 16:40	10
Acetone	31	J	50	16	ppb v/v			12/12/23 16:40	10
Methylene Chloride	5.0	U	5.0	1.8	ppb v/v			12/12/23 16:40	10
trans-1,2-Dichloroethene	2.0	U	2.0	0.23	ppb v/v			12/12/23 16:40	10
1,1-Dichloroethane	2.0	U	2.0	0.25	ppb v/v			12/12/23 16:40	10
cis-1,2-Dichloroethene	13		0.50	0.21	ppb v/v			12/12/23 16:40	10
1,2-Dichloroethene, Total	13		4.0	0.21	ppb v/v			12/12/23 16:40	10
1,1,1-Trichloroethane	2.0	U	2.0	0.44	ppb v/v			12/12/23 16:40	10
Carbon tetrachloride	0.35	U	0.35	0.22	ppb v/v			12/12/23 16:40	10
Benzene	2.0	U	2.0	0.44	ppb v/v			12/12/23 16:40	10
Trichloroethene	100		0.35	0.25	ppb v/v			12/12/23 16:40	10
Toluene	2.0	U	2.0	0.62	ppb v/v			12/12/23 16:40	10
Tetrachloroethene	2.0	U	2.0	0.21	ppb v/v			12/12/23 16:40	10
Chlorobenzene	2.0	U	2.0	0.44	ppb v/v			12/12/23 16:40	10
m,p-Xylene	5.0	U	5.0	0.95	ppb v/v			12/12/23 16:40	10
Xylene, o-	2.0	U	2.0	0.63	ppb v/v			12/12/23 16:40	10
Bromoform	2.0	U	2.0	1.2	ppb v/v			12/12/23 16:40	10
1,1,2,2-Tetrachloroethane	2.0	U	2.0	0.43	ppb v/v			12/12/23 16:40	10
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	2.0	U	2.0	0.54	ug/m3			12/12/23 16:40	10
1,1-Dichloroethene	1.4	U	1.4	1.0	ug/m3			12/12/23 16:40	10
Acetone	73	J	120	38	ug/m3			12/12/23 16:40	10
Methylene Chloride	17	U	17	6.3	ug/m3			12/12/23 16:40	10
trans-1,2-Dichloroethene	7.9	U	7.9	0.91	ug/m3			12/12/23 16:40	10
1,1-Dichloroethane	8.1	U	8.1	1.0	ug/m3			12/12/23 16:40	10
cis-1,2-Dichloroethene	50		2.0	0.83	ug/m3			12/12/23 16:40	10
1,2-Dichloroethene, Total	52		16	0.83	ug/m3			12/12/23 16:40	10
1,1,1-Trichloroethane	11	U	11	2.4	ug/m3			12/12/23 16:40	10
Carbon tetrachloride	2.2	U	2.2	1.4	ug/m3			12/12/23 16:40	10
Benzene	6.4	U	6.4	1.4	ug/m3			12/12/23 16:40	10
Trichloroethene	560		1.9	1.3	ug/m3			12/12/23 16:40	10
Toluene	· · · · · · · · · · · · · · · · · · ·	U	7.5	2.3	ug/m3			12/12/23 16:40	10
loluerie	7.5	•	1.0						10
Tetrachloroethene	7.5 14		14		ug/m3			12/12/23 16:40	
		U		1.4	ug/m3 ug/m3			12/12/23 16:40 12/12/23 16:40	
Tetrachloroethene	14	U U	14	1.4 2.0	•				10
Tetrachloroethene Chlorobenzene	14 9.2	U U U	14 9.2	1.4 2.0 4.1	ug/m3			12/12/23 16:40	10 10
Tetrachloroethene Chlorobenzene m,p-Xylene	14 9.2 22	U U U	14 9.2 22	1.4 2.0 4.1 2.7	ug/m3 ug/m3			12/12/23 16:40 12/12/23 16:40	10 10 10 10

Client Sample ID: Post-Blower Eff-120723

Date Collected: 12/07/23 10:25 Date Received: 12/08/23 10:20

Sample Container: Summa Canister 1L

Lab Sample ID: 200-71154-6

Matrix: Air

Method: EPA TO-15 - Volatile	Organic Co	mpounds ir	n Ambient Ai	r					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.78	U	0.78	0.21	ppb v/v			12/12/23 17:31	10
1,1-Dichloroethene	0.35	U	0.35	0.26	ppb v/v			12/12/23 17:31	10

Eurofins Burlington

Client: ARCADIS U.S. Inc
Project/Site: Crosman Vapor

Job ID: 200-71154-1
SDG: 200-71154-1

Client Sample ID: Post-Blower Eff-120723

Date Collected: 12/07/23 10:25 Date Received: 12/08/23 10:20

Sample Container: Summa Canister 1L

Lab Sample ID: 200-71154-6

Matrix: Air

	4

6

7

9

11

13

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	50	U	50	16	ppb v/v			12/12/23 17:31	10
Methylene Chloride	5.0	U	5.0	1.8	ppb v/v			12/12/23 17:31	10
trans-1,2-Dichloroethene	2.0	U	2.0	0.23	ppb v/v			12/12/23 17:31	10
1,1-Dichloroethane	2.0	U	2.0	0.25	ppb v/v			12/12/23 17:31	10
cis-1,2-Dichloroethene	14		0.50	0.21	ppb v/v			12/12/23 17:31	10
1,2-Dichloroethene, Total	14		4.0	0.21	ppb v/v			12/12/23 17:31	10
1,1,1-Trichloroethane	2.0	U	2.0	0.44	ppb v/v			12/12/23 17:31	10
Carbon tetrachloride	0.35	U	0.35	0.22	ppb v/v			12/12/23 17:31	10
Benzene	2.0	U	2.0	0.44	ppb v/v			12/12/23 17:31	10
Trichloroethene	150		0.35	0.25	ppb v/v			12/12/23 17:31	10
Toluene	2.0	U	2.0	0.62	ppb v/v			12/12/23 17:31	10
Tetrachloroethene	2.0	U	2.0	0.21	ppb v/v			12/12/23 17:31	10
Chlorobenzene	2.0	U	2.0	0.44	ppb v/v			12/12/23 17:31	10
m,p-Xylene	5.0	U	5.0	0.95	ppb v/v			12/12/23 17:31	10
Xylene, o-	2.0	U	2.0	0.63	ppb v/v			12/12/23 17:31	10
Bromoform	2.0	U	2.0	1.2	ppb v/v			12/12/23 17:31	10
1,1,2,2-Tetrachloroethane	2.0	U	2.0	0.43	ppb v/v			12/12/23 17:31	10
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	2.0	U	2.0	0.54	ug/m3			12/12/23 17:31	10
1,1-Dichloroethene	1.4	U	1.4	1.0	ug/m3			12/12/23 17:31	10
Acetone	120	U	120	38	ug/m3			12/12/23 17:31	10
Methylene Chloride	17	U	17	6.3	ug/m3			12/12/23 17:31	10
trans-1,2-Dichloroethene	7.9	U	7.9	0.91	ug/m3			12/12/23 17:31	10
1,1-Dichloroethane	8.1	U	8.1	1.0	ug/m3			12/12/23 17:31	10
cis-1,2-Dichloroethene	56		2.0	0.83	ug/m3			12/12/23 17:31	10
1,2-Dichloroethene, Total	56		16	0.83	ug/m3			12/12/23 17:31	10
1,1,1-Trichloroethane	11	U	11	2.4	ug/m3			12/12/23 17:31	10
Carbon tetrachloride	2.2	U	2.2	1.4	ug/m3			12/12/23 17:31	10
Benzene	6.4	U	6.4	1.4	ug/m3			12/12/23 17:31	10
Trichloroethene	820		1.9	1.3	ug/m3			12/12/23 17:31	10
Toluene	7.5	U	7.5	2.3	ug/m3			12/12/23 17:31	10
Tetrachloroethene	14	U	14	1.4	ug/m3			12/12/23 17:31	10
Chlorobenzene	9.2	U	9.2	2.0	ug/m3			12/12/23 17:31	10
m,p-Xylene	22	U	22	4.1	ug/m3			12/12/23 17:31	10
Xylene, o-	8.7	U	8.7	2.7	ug/m3			12/12/23 17:31	10
Bromoform	21	U	21	12	ug/m3			12/12/23 17:31	10
1,1,2,2-Tetrachloroethane	14		14	3 0	ug/m3			12/12/23 17:31	10

Client: ARCADIS U.S. Inc Job ID: 200-71154-1 Project/Site: Crosman Vapor SDG: 200-71154-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air

Lab Sample ID: MB 200-198511/6

Matrix: Air

Analysis Batch: 198511

Client Sample ID: Method Blank Prep Type: Total/NA

	IVID	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.078	U	0.078	0.021	ppb v/v			12/12/23 12:05	1
1,1-Dichloroethene	0.035	U	0.035	0.026	ppb v/v			12/12/23 12:05	1
Acetone	5.0	U	5.0	1.6	ppb v/v			12/12/23 12:05	1
Methylene Chloride	0.50	U	0.50	0.18	ppb v/v			12/12/23 12:05	1
trans-1,2-Dichloroethene	0.20	U	0.20	0.023	ppb v/v			12/12/23 12:05	1
1,1-Dichloroethane	0.20	U	0.20	0.025	ppb v/v			12/12/23 12:05	1
cis-1,2-Dichloroethene	0.050	U	0.050	0.021	ppb v/v			12/12/23 12:05	1
1,2-Dichloroethene, Total	0.40	U	0.40	0.021	ppb v/v			12/12/23 12:05	1
1,1,1-Trichloroethane	0.20	U	0.20	0.044	ppb v/v			12/12/23 12:05	1
Carbon tetrachloride	0.035	U	0.035	0.022	ppb v/v			12/12/23 12:05	1
Benzene	0.20	U	0.20	0.044	ppb v/v			12/12/23 12:05	1
Trichloroethene	0.035	U	0.035	0.025	ppb v/v			12/12/23 12:05	1
Toluene	0.20	U	0.20	0.062	ppb v/v			12/12/23 12:05	1
Tetrachloroethene	0.20	U	0.20	0.021	ppb v/v			12/12/23 12:05	1
Chlorobenzene	0.20	U	0.20	0.044	ppb v/v			12/12/23 12:05	1
m,p-Xylene	0.50	U	0.50	0.095	ppb v/v			12/12/23 12:05	1
Xylene, o-	0.20	U	0.20	0.063	ppb v/v			12/12/23 12:05	1
Bromoform	0.20	U	0.20	0.12	ppb v/v			12/12/23 12:05	1
1,1,2,2-Tetrachloroethane	0.20	U	0.20	0.043	ppb v/v			12/12/23 12:05	1
	MB	MB							

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Vinyl chloride 0.20 U 0.20 0.054 ug/m3 12/12/23 12:05 1,1-Dichloroethene 0.14 U 0.14 0.10 ug/m3 12/12/23 12:05 Acetone 12 U 12 3.8 ug/m3 12/12/23 12:05 Methylene Chloride 1.7 U 1.7 0.63 ug/m3 12/12/23 12:05 trans-1.2-Dichloroethene 0.79 U 0.79 0.091 ug/m3 12/12/23 12:05 1,1-Dichloroethane 0.10 ug/m3 0.81 U 0.81 12/12/23 12:05 cis-1,2-Dichloroethene 0.20 U 0.20 0.083 ug/m3 12/12/23 12:05 1,2-Dichloroethene, Total 1.6 U 1.6 0.083 ug/m3 12/12/23 12:05 1,1,1-Trichloroethane 1.1 U 1.1 0.24 ug/m3 12/12/23 12:05 Carbon tetrachloride 0.22 U 0.22 0.14 ug/m3 12/12/23 12:05 Benzene 0.64 U 0.64 0.14 ug/m3 12/12/23 12:05 0.19 U Trichloroethene 0.19 0.13 ug/m3 12/12/23 12:05 Toluene 0.75 U 0.75 0.23 ug/m3 12/12/23 12:05 Tetrachloroethene 12/12/23 12:05 1.4 U 1.4 0.14 ug/m3 Chlorobenzene 0.92 U 0.92 0.20 ug/m3 12/12/23 12:05 m,p-Xylene 2.2 U 2.2 0.41 ug/m3 12/12/23 12:05 Xylene, o-0.87 U 0.87 0.27 ug/m3 12/12/23 12:05

Lab Sample ID: LCS 200-198511/4

Matrix: Air

Bromoform

Analysis Batch: 198511

1,1,2,2-Tetrachloroethane

Client Sample ID: Lab Control Sample Prep Type: Total/NA

12/12/23 12:05

12/12/23 12:05

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Vinyl chloride	10.0	11.4		ppb v/v		114	61 - 135	
1,1-Dichloroethene	10.0	8.31		ppb v/v		83	68 - 120	
Acetone	10.0	9.44		ppb v/v		94	54 - 154	

2.1

1.4

1.2 ug/m3

0.30 ug/m3

2.1 U

1.4 U

Eurofins Burlington

Page 14 of 37

Client: ARCADIS U.S. Inc Job ID: 200-71154-1 Project/Site: Crosman Vapor SDG: 200-71154-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: LCS 200-198511/4

Matrix: Air

Analysis Batch: 198511

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 196511	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methylene Chloride	10.0	9.49		ppb v/v		95	59 - 137	
trans-1,2-Dichloroethene	10.0	9.53		ppb v/v		95	69 - 137	
1,1-Dichloroethane	10.0	9.22		ppb v/v		92	66 - 130	
cis-1,2-Dichloroethene	10.0	9.11		ppb v/v		91	72 - 121	
1,1,1-Trichloroethane	10.0	9.29		ppb v/v		93	72 - 127	
Carbon tetrachloride	10.0	9.31		ppb v/v		93	71 - 133	
Benzene	10.0	9.21		ppb v/v		92	73 - 119	
Trichloroethene	10.0	9.22		ppb v/v		92	73 - 122	
Toluene	10.0	9.40		ppb v/v		94	75 - 122	
Tetrachloroethene	10.0	8.40		ppb v/v		84	70 - 125	
Chlorobenzene	10.0	9.02		ppb v/v		90	76 - 119	
m,p-Xylene	20.0	19.7		ppb v/v		98	76 - 121	
Xylene, o-	10.0	9.97		ppb v/v		100	73 - 123	
Bromoform	10.0	10.2		ppb v/v		102	53 - 149	
1,1,2,2-Tetrachloroethane	10.0	9.56		ppb v/v		96	74 - 126	
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Vinyl chloride		29.2		ug/m3		114	61 - 135	
1,1-Dichloroethene	40	32.9		ug/m3		83	68 - 120	
Acetone	24	22.4		ug/m3		94	54 - 154	
Methylene Chloride	35	33.0		ug/m3		95	59 - 137	
trans-1,2-Dichloroethene	40	37.8		ug/m3		95	69 - 137	
1,1-Dichloroethane	40	37.3		ug/m3		92	66 - 130	
cis-1,2-Dichloroethene	40	36.1		ug/m3		91	72 - 121	
1,1,1-Trichloroethane	55	50.7		ug/m3		93	72 - 127	
Carbon tetrachloride	63	58.6		ug/m3		93	71 - 133	
Benzene	32	29.4		ug/m3		92	73 - 119	
Trichloroethene	54	49.6		ug/m3		92	73 - 122	
Toluene	38	35.4		ug/m3		94	75 - 122	
Tetrachloroethene	68	57.0		ug/m3		84	70 - 125	
Chlorobenzene	46	41.5		ug/m3		90	76 - 119	
m,p-Xylene	87	85.5		ug/m3		98	76 - 121	
Xylene, o-	43	43.3		ug/m3		100	73 - 123	
Bromoform	100	105		ug/m3		102	53 - 149	
1,1,2,2-Tetrachloroethane	69	65.7		ug/m3		96	74 - 126	

Lab Sample ID: MB 200-198592/7

Matrix: Air

Analysis Batch: 198592

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.078	U	0.078	0.021	ppb v/v			12/13/23 16:41	1
1,1-Dichloroethene	0.035	U	0.035	0.026	ppb v/v			12/13/23 16:41	1
Acetone	5.0	U	5.0	1.6	ppb v/v			12/13/23 16:41	1
Methylene Chloride	0.50	U	0.50	0.18	ppb v/v			12/13/23 16:41	1
trans-1,2-Dichloroethene	0.20	U	0.20	0.023	ppb v/v			12/13/23 16:41	1
1,1-Dichloroethane	0.20	U	0.20	0.025	ppb v/v			12/13/23 16:41	1
cis-1,2-Dichloroethene	0.050	U	0.050	0.021	ppb v/v			12/13/23 16:41	1
1,2-Dichloroethene, Total	0.40	U	0.40	0.021	ppb v/v			12/13/23 16:41	1

Eurofins Burlington

Page 15 of 37

12/18/2023

Client: ARCADIS U.S. Inc Job ID: 200-71154-1 Project/Site: Crosman Vapor SDG: 200-71154-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: MB 200-198592/7

Matrix: Air

Analysis Batch: 198592

Client Sample ID: Method Blank

Prep Type: Total/NA

•	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.20	U	0.20	0.044	ppb v/v			12/13/23 16:41	1
Carbon tetrachloride	0.035	U	0.035	0.022	ppb v/v			12/13/23 16:41	1
Benzene	0.20	U	0.20	0.044	ppb v/v			12/13/23 16:41	1
Trichloroethene	0.035	U	0.035	0.025	ppb v/v			12/13/23 16:41	1
Toluene	0.20	U	0.20	0.062	ppb v/v			12/13/23 16:41	1
Tetrachloroethene	0.20	U	0.20	0.021	ppb v/v			12/13/23 16:41	1
Chlorobenzene	0.20	U	0.20	0.044	ppb v/v			12/13/23 16:41	1
m,p-Xylene	0.50	U	0.50	0.095	ppb v/v			12/13/23 16:41	1
Xylene, o-	0.20	U	0.20	0.063	ppb v/v			12/13/23 16:41	1
Bromoform	0.20	U	0.20	0.12	ppb v/v			12/13/23 16:41	1
1,1,2,2-Tetrachloroethane	0.20	U	0.20	0.043	ppb v/v			12/13/23 16:41	1

Aylene, o-	0.20	U	0.20	0.063	ppb v/v			12/13/23 16:41	1
Bromoform	0.20	U	0.20	0.12	ppb v/v			12/13/23 16:41	1
1,1,2,2-Tetrachloroethane	0.20	U	0.20	0.043	ppb v/v			12/13/23 16:41	1
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.20	U	0.20	0.054	ug/m3			12/13/23 16:41	1
1,1-Dichloroethene	0.14	U	0.14	0.10	ug/m3			12/13/23 16:41	1
Acetone	12	U	12	3.8	ug/m3			12/13/23 16:41	1
Methylene Chloride	1.7	U	1.7	0.63	ug/m3			12/13/23 16:41	1
trans-1,2-Dichloroethene	0.79	U	0.79	0.091	ug/m3			12/13/23 16:41	1
1,1-Dichloroethane	0.81	U	0.81	0.10	ug/m3			12/13/23 16:41	1
cis-1,2-Dichloroethene	0.20	U	0.20	0.083	ug/m3			12/13/23 16:41	1
1,2-Dichloroethene, Total	1.6	U	1.6	0.083	ug/m3			12/13/23 16:41	1
1,1,1-Trichloroethane	1.1	U	1.1	0.24	ug/m3			12/13/23 16:41	1
Carbon tetrachloride	0.22	U	0.22	0.14	ug/m3			12/13/23 16:41	1
Benzene	0.64	U	0.64	0.14	ug/m3			12/13/23 16:41	1
Trichloroethene	0.19	U	0.19	0.13	ug/m3			12/13/23 16:41	1
Toluene	0.75	U	0.75	0.23	ug/m3			12/13/23 16:41	1
Tetrachloroethene	1.4	U	1.4	0.14	ug/m3			12/13/23 16:41	1
Chlorobenzene	0.92	U	0.92	0.20	ug/m3			12/13/23 16:41	1
m,p-Xylene	2.2	U	2.2	0.41	ug/m3			12/13/23 16:41	1
Xylene, o-	0.87	U	0.87	0.27	ug/m3			12/13/23 16:41	1
Bromoform	2.1	U	2.1	1.2	ug/m3			12/13/23 16:41	1
1,1,2,2-Tetrachloroethane	1.4	U	1.4	0.30	ug/m3			12/13/23 16:41	1

Lab Sample ID: LCS 200-198592/4

Matrix: Air

Analysis Batch: 198592

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Vinyl chloride	10.0	12.7		ppb v/v		127	61 - 135
1,1-Dichloroethene	10.0	9.94		ppb v/v		99	68 - 120
Acetone	10.0	10.9		ppb v/v		109	54 - 154
Methylene Chloride	10.0	11.3		ppb v/v		113	59 - 137
trans-1,2-Dichloroethene	10.0	10.9		ppb v/v		109	69 - 137
1,1-Dichloroethane	10.0	10.5		ppb v/v		105	66 - 130
cis-1,2-Dichloroethene	10.0	10.2		ppb v/v		102	72 - 121
1,1,1-Trichloroethane	10.0	9.19		ppb v/v		92	72 - 127
Carbon tetrachloride	10.0	8.84		ppb v/v		88	71 - 133
Benzene	10.0	10.4		ppb v/v		104	73 - 119
Trichloroethene	10.0	9.62		ppb v/v		96	73 - 122

Eurofins Burlington

Page 16 of 37

Client: ARCADIS U.S. Inc
Project/Site: Crosman Vapor

Job ID: 200-71154-1
SDG: 200-71154-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: LCS 200-198592/4

Matrix: Air

Analysis Batch: 198592

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Toluene	10.0	9.82		ppb v/v		98	75 - 122	
Tetrachloroethene	10.0	8.29		ppb v/v		83	70 - 125	
Chlorobenzene	10.0	9.65		ppb v/v		97	76 - 119	
m,p-Xylene	20.0	20.0		ppb v/v		100	76 - 121	
Xylene, o-	10.0	9.89		ppb v/v		99	73 - 123	
Bromoform	10.0	9.36		ppb v/v		94	53 - 149	
1,1,2,2-Tetrachloroethane	10.0	10.7		ppb v/v		107	74 - 126	
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Vinyl chloride		32.6		ug/m3		127	61 - 135	
1,1-Dichloroethene	40	39.4		ug/m3		99	68 - 120	
Acetone	24	25.9		ug/m3		109	54 - 154	
Methylene Chloride	35	39.4		ug/m3		113	59 - 137	
trans-1,2-Dichloroethene	40	43.2		ug/m3		109	69 - 137	
1,1-Dichloroethane	40	42.6		ug/m3		105	66 - 130	
cis-1,2-Dichloroethene	40	40.4		ug/m3		102	72 - 121	
1,1,1-Trichloroethane	55	50.2		ug/m3		92	72 - 127	
Carbon tetrachloride	63	55.6		ug/m3		88	71 - 133	
Benzene	32	33.3		ug/m3		104	73 - 119	
Trichloroethene	54	51.7		ug/m3		96	73 - 122	
Toluene	38	37.0		ug/m3		98	75 - 122	
Tetrachloroethene	68	56.2		ug/m3		83	70 - 125	
Chlorobenzene	46	44.4		ug/m3		97	76 - 119	
m,p-Xylene	87	86.8		ug/m3		100	76 - 121	
Xylene, o-	43	43.0		ug/m3		99	73 - 123	
Bromoform	100	96.8		ug/m3		94	53 - 149	
1,1,2,2-Tetrachloroethane	69	73.1		ug/m3		107	74 - 126	

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

4

6

9

10

12

14

13

QC Association Summary

Client: ARCADIS U.S. Inc
Project/Site: Crosman Vapor

Job ID: 200-71154-1
SDG: 200-71154-1

Air - GC/MS VOA

Analysis Batch: 198511

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
200-71154-1	SDS-1-120723	Total/NA	Air	TO-15	
200-71154-2	SDS-2-120723	Total/NA	Air	TO-15	
200-71154-3	Combined Influent-120723	Total/NA	Air	TO-15	
200-71154-4	Pre-VPGAC4-120723	Total/NA	Air	TO-15	
200-71154-4 - DL	Pre-VPGAC4-120723	Total/NA	Air	TO-15	
200-71154-5	Post-Dilution Eff-120723	Total/NA	Air	TO-15	
200-71154-6	Post-Blower Eff-120723	Total/NA	Air	TO-15	
MB 200-198511/6	Method Blank	Total/NA	Air	TO-15	
LCS 200-198511/4	Lab Control Sample	Total/NA	Air	TO-15	

Analysis Batch: 198592

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
200-71154-1 - DL	SDS-1-120723	Total/NA	Air	TO-15	
200-71154-2 - DL	SDS-2-120723	Total/NA	Air	TO-15	
200-71154-3 - DL	Combined Influent-120723	Total/NA	Air	TO-15	
MB 200-198592/7	Method Blank	Total/NA	Air	TO-15	
LCS 200-198592/4	Lab Control Sample	Total/NA	Air	TO-15	

6

8

9

10

12

13

15

16

Job ID: 200-71154-1

SDG: 200-71154-1

Client Sample ID: SDS-1-120723

Date Collected: 12/07/23 10:00 Date Received: 12/08/23 10:20

Client: ARCADIS U.S. Inc

Project/Site: Crosman Vapor

Lab Sample ID: 200-71154-1

Matrix: Air

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	TO-15		10.2	198511	TPB	EET BUR	12/12/23 18:23
Total/NA	Analysis	TO-15	DL	99.8	198592	K1P	EET BUR	12/13/23 17:35

Client Sample ID: SDS-2-120723

Date Collected: 12/07/23 10:05 Date Received: 12/08/23 10:20

Lab Sample ID: 200-71154-2

Matrix: Air

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	TO-15		10	198511	TPB	EET BUR	12/12/23 21:48
Total/NA	Analysis	TO-15	DL	100	198592	K1P	EET BUR	12/13/23 18:31

Client Sample ID: Combined Influent-120723

Date Collected: 12/07/23 10:10

Lab Sample ID: 200-71154-3

Matrix: Air

Date Received: 12/08/23 10:20

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	TO-15		10	198511	TPB	EET BUR	12/12/23 23:30
Total/NA	Analysis	TO-15	DL	99.7	198592	K1P	EET BUR	12/13/23 19:24

Client Sample ID: Pre-VPGAC4-120723

Date Collected: 12/07/23 10:15

Lab Sample ID: 200-71154-4

Matrix: Air

Date Received: 12/08/23 10:20

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	TO-15		20	198511	TPB	EET BUR	12/13/23 01:13
Total/NA	Analysis	TO-15	DL	101	198511	TPB	EET BUR	12/13/23 02:04

Client Sample ID: Post-Dilution Eff-120723

Date Collected: 12/07/23 10:20 Date Received: 12/08/23 10:20

Lab Sample ID: 200-71154-5

Matrix: Air

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run **Factor Number Analyst** or Analyzed Total/NA Analysis TO-15 198511 TPB EET BUR 12/12/23 16:40 10

Client Sample ID: Post-Blower Eff-120723

Date Collected: 12/07/23 10:25 Date Received: 12/08/23 10:20

Lab Sample ID: 200-71154-6

Matrix: Air

Batch **Batch** Dilution Batch **Prepared Prep Type** Туре Method Run Factor Number Analyst Lab or Analyzed Total/NA Analysis TO-15 10 198511 TPB EET BUR 12/12/23 17:31

Laboratory References:

EET BUR = Eurofins Burlington, 530 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

Eurofins Burlington

Page 19 of 37

Accreditation/Certification Summary

Client: ARCADIS U.S. Inc Job ID: 200-71154-1 Project/Site: Crosman Vapor SDG: 200-71154-1

Laboratory: Eurofins Burlington

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	am	Identification Number	Expiration Date
New York	NELAI	Р	10391	03-31-24
The following analyte	es are included in this repo	rt, but the laboratory is	not certified by the governing author	ity. This list may inc
9 ,	es are included in this repo does not offer certification	•	not certified by the governing author	ity. This list may inc
for which the agency	does not offer certification	i.	, ,	ity. This list may inc
9 ,	•	•	not certified by the governing author Analyte 1,2-Dichloroethene, Total	

Method Summary

Client: ARCADIS U.S. Inc Project/Site: Crosman Vapor Job ID: 200-71154-1

SDG: 200-71154-1

Method	Method Description	Protocol	Laboratory
TO-15	Volatile Organic Compounds in Ambient Air	EPA	EET BUR

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

EET BUR = Eurofins Burlington, 530 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

Sample Summary

Client: ARCADIS U.S. Inc Project/Site: Crosman Vapor Job ID: 200-71154-1 SDG: 200-71154-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID	
200-71154-1	SDS-1-120723	Air	12/07/23 10:00	12/08/23 10:20	Air Canister (1-Liter) #6815	
200-71154-2	SDS-2-120723	Air	12/07/23 10:05	12/08/23 10:20	Air Canister (1-Liter) #6796	
200-71154-3	Combined Influent-120723	Air	12/07/23 10:10	12/08/23 10:20	Air Canister (1-Liter) #6812	
200-71154-4	Pre-VPGAC4-120723	Air	12/07/23 10:15	12/08/23 10:20	Air Canister (1-Liter) #6814	
200-71154-5	Post-Dilution Eff-120723	Air	12/07/23 10:20	12/08/23 10:20	Air Canister (1-Liter) #6803	
200-71154-6	Post-Blower Eff-120723	Air	12/07/23 10:25	12/08/23 10:20	Air Canister (1-Liter) #6801	

Λ

8

10

11

13

14

16

Post-Sampling Air Canister Pressure Check Record

Login #	Date	Time	Lab BP	La	ab Ten	np	Pressure	Analyst
(w/ Location Code)		(Military)	("Hg)		(°C)		Gauge ID	
200-71154	12/08/23	13:57	29.6	22			G33	JR
Sampling Information and Return Equipment Check					Yes	Νo	Commo	ents
(1) Is a Field Test Data Sheet (FTDS) or similar sampling documentation present?				Yes				
(2) Is the flow controller ID used for each canister recorded?				Yes				
(3) MA MCP & NJ DKQP: Check return flow rate for flow controllers					Νo			
(4) Is visible sign of damage	e to canister and/or fl	ow controller (FC) pre	esent?			Νo		
If damage observed, list eq	uipment IDs and desc	cribe condition:						_

Lab ID	Canister ID	Pressure ¹	Anomaly ²	FC	FC Check ⁴	FC Return	Can Cert	
		("Hg)	(Y/N)	ID^3	Reference	(Y/N)	Batch ID	Comments
200-71154-A-1	6815	-6.7	N	6577	N/A	Y	6813-57886	
200-71154-A-2	6796	-6.9	N	6577	N/A	Υ	6813-57886	
200-71154-A-3	6812	-6.9	N	6577	N/A	Υ	6813-57886	
200-71154-A-4	6814	-7.0	N	6577	N/A	Υ	6813-57886	
200-71154-A-5	6803	-7.1	N	6577	N/A	Y	6813-57886	
200-71154-A-6	6801	-6.4	N	6577	N/A	Y	6813-57886	

¹ Criteria: Return Pressure should be between -1 and -10 ("Hg) with the exception of grab samples or those using 100 or 200mL/minute flow controllers. These samples must be returned at no lower than -10"Hg, but have no specific criteria otherwise.

² If return pressure is not within criteria, initiate Non-Conformance Memo.

³ Record the ID of the FC used for sampling if information is provided, otherwise leave blank.

⁴ Record the Flow Controller Set Flow Rate Logbook ID and Page number in which the original FC Check was recorded

Other (Please specify in notes section)

Other (Please specify in notes section)

200-71154 Chain of Custody

TestAmerica Analytical Testing Corp. assumes no liability with respect to the collection and shipment of these samples

Samples Collected By: Bailey Kudla-Williams

Canister Samples Chain of Custody Record

Eurofins TestAmerica Burlington

30 Community Drive

of 1 COC

Soil Gas or Sub-slab Vapor

Landfill Gas

niA fineidmA

Indoor Air

Sample Type

9461-G MTSA

(Standard)

EPA 25C

EPA 3C

A41-OT

Canister ID 6815 96/9 6812 6814 6803 6801

Flow Controller

Vacuum in Field, 'Hg

Canister Vacuum in Field, "Hg (Start)

(Stop)

Time Stop

Time Start

Sample Date(s)

Sample Identification

-5.5

9 <u>ڄ</u> -59

1000

φ φ

1005

12/7/2023 12/7/2023

SDS-2-120723

SDS-1-120723

12/7/2023 12/7/2023 12/7/2023

Combined Influent-120723

Post-Blower Eff-120723

1010

Canister

Analysis Turnaround Time Standard (Specify): 10-Day

Rush (Specify)

Email: Aaron.Richardson@arcadis.com

Address: 100 Chestnut Street Suite 1020

Client Contact Information

Company: Arcadis

City/State/Zip: Rochester, NY 14604

Phone: 585-662-4057

Project Name: Crosman Corporation

Site/Location: East Bloomfield, NY

PO#: 30005202.12

Site Contact: Bailey Kudla-Williams Tel: 805-501-8053

Project Manager: Aaron Richardson

fax 802-660-1919

phone 802-660-1990

South Burlington, VT 05403-6809

Phone: 585-662-4024

× ×

 \times \times \times × \times ×

×

-5.5

-29.5 -29.5 -29.5

1015

φ ι'n

1020

1025

12/7/2023

×

×

×

Pressure (inches of Hg)

Temperature (Fahrenheit)

Ambient 35F 35F

> 65F 65F

Start Stop

Interior

Ambient

Interior

Start Stop

Condition:

Opened by:

Shipper Name:

Received by: Received-6y

1500 D

[8/23

S

F-14-80

څ

Samples Received

889

Date/Time:
12-7-33
Date/Time:

Samples Relinquished by:

Bailey Kudla-Williams Samples Shipped by:

Date/Time:

Site Specific Analyte List of 16 VOCs

Special Instructions/QC Requirements & Comments:

ORIGIN ID:ONHA (805) 501-8053

ARCADIS 100 CHESTNUT ST STE 1020

OCHESTNUT ST STE 1020

SHIP DATE: 07DEC23 ACTWGT: 8.35 LB CAD: 6992065/SSF02460 DIMS: 16x10x10 IN

BILL THIRD PARTY

TO

EUROFINS 30 COMMUNITY DR STE 11

SOUTH BURLINGTON VT 05403

(802) 660-1990 INU: PO:

REF:

Fed Ex Ex press

1 of 2 TRK# 7876 5068 0164 ## MASTER ## FRI - 08 DEC 5:00P STANDARD OVERNIGHT

XE BTVA

05403 vr-us BTV

ORIGIN ID:ONHA (805) 501-8053
ARCADIS
100 CHESTNUT ST STE 1020
ROCHESTER, NY 14604
UNITED STATES US

SHIP DATE: 07DEC29 ACTWGT: 10.95 LB CAD: 6992065/SSF02460 DIMS: 16×10×10 IN

BILL THIRD PARTY

EUROFINS 30 COMMUNITY DR STE 11

SOUTH BURLINGTON VT 05403

2 of 2 MPS# 7876 5068 0175 Mstr# 7876 5068 0164 FRI - 08 DEC 5:00P STANDARD OVERNIGHT

0201

XE BTVA

05403 vt-us BTV

FedEx Express

Login Sample Receipt Checklist

 Client: ARCADIS U.S. Inc
 Job Number: 200-71154-1

 SDG Number: 200-71154-1
 SDG Number: 200-71154-1

Login Number: 71154 List Source: Eurofins Burlington

List Number: 1

Creator: Reynolds, Jamie K

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples</td>	N/A	Lab does not accept radioactive samples
The cooler's custody seal, if present, is intact.	True	2138078, 2138079
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	Thermal preservation not required.
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	N/A	Thermal preservation not required.
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	N/A	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	

True

N/A

3

4

5

7

9

11

13

15

10

117

Samples do not require splitting or compositing.

Residual Chlorine Checked.

16 17

TestAmerica Burlington

ت اص ال Bym ID: FAI023:12 Byvision Date: 12/18/2018

Ì	Svetem ID	May DE#	# Cyclos	Clear	Cleaning Start Nate(Time	Canisi Date/Time	ter Cleaning &	Canister Cleaning & Pre-Shipment Leak Test	t Leak Test	ist Technician	Can Size	ize	Certi	Certification Type:	.ad	
	Oven 1/2	# 12 YEAR	10	11/19/2023	023	1517	22	22		SML	1 liter	1 20		batch		
ľ		Initial	Final		Final			nitial Read					Final Reading			
Port	Can ID	(psia)	(psia)	Diff. ³	(THg)	Gauge:	, Date:	Time:	Tech:	Temp:	Gauge:	Date;	Time:	Tech:	Temp:	
-	6814	80,	80'	\$	262	H	11/27/123	2001	100	0.22	G26	11/12/13	27400	1	12,U	
2	6810		، صحر	, B		G26			£,		G26					
3	6820		50 !	Q	an yanan i	G26					G26					
4	6815		, OS	\Q'_		G26	_}	7	_)	-}	9Z9					
5	6813	1.08	80"	Ø		G26	111/2/123	9260	1	22.0	G26					
9	6429	. <i>QS</i>	801	Þ		G26	111 (27/23	0446	の	122.0	G26					
7	6796		108	4		G26	-				929	-			· t op/open	
80	6811		. 09	9		G26				-	G26					
6	6803		, O8	\mathcal{A}		G26					G26					
10	6812		, OS	4		G26	***************************************				G26			***************************************		
11	6801		، 08	, Ø		G26				The same of the sa	G26			, Amaga galikan (ili		
12	6850		r 08	9	\	G26		1	7		626			Y	7	
	ence = rinai	Pressure - Ir	om Pressul	re. Acceptal	nce Criteria	a: (1) The differ	euce must be	less man or equ	Jai to + 0.25ps	Unreferoce = Final Pressure - Initial Pressure - Acceptance Cifferia: (1) The difference must be less than 0 equal to + 0.20ps). (2) Pressure reduings must be at least 24 mous apart.	readings inus	ા છે થા લિક્સ	4 اااالالا 44 ا	Jate:		
	Indume frame was not met, the PM must authorize shipment of canister Clean Canister	not met, the	PM must a	autnorize sn	Ipment or (nent or canister Clean Canister Certification	cation Analys	PM Authorization o	ation of Releas	Analysis & Authorization of Release to Inventory				Date.		68 Lo
Pest N	Test Method: ☐TO15 Routine ☐ TO15 LL	015 Routine	1 TO15 LI						Invent	ory Level			Secondary Review	y Review		313 Catio
 27	Can ID	Date		Sequence	_	Analyst	yst	•	2	2 3	4	Limited	Review Date	/ Date	Reviewe	on: A
of	6813	2/18/11	\ \{	985ts		1871	C			XXXXXX			11/31/	133	77	dir-S
37		4 I		2												6-A- lorage Caniste (2023 1
							The second secon						į			5
															0-1816	
			-												00/1	
Invent	Inventory Level 1: Individual Canister Certification (TO15LL 0.01).	Individual C	anister Certi	ification (TO	15LL 0.01).			Comments:							41r- 	-oc: 70 #5 Air-
Invent	Inventory Level 2: Individual or Batch Certification (TO15 0.04 ppbv).	Individual or	r Batch Certi	ification (TO:	15 0.04 ppt	ov).							,		St	83
Invent	Inventory Level 3: Individual or Batch Certification (TO15 0.2 ppbv).	Individual or	r Batch Certi	ification (TO:	15 0.2 ppbv	÷									ora 	86
Invent	Inventory Level Limited: Canisters may only be used for certain projects.	mited: Cani	sters may or	ıly be used fι	or certain p	rojects.									ag 	L
dno 2/	ம் Dup Tees/Vac gauges (enter IDs if included):	uges (enter	IDs if incluo	ded):												

Pre-Shipment Clean Canister Certification Report

Lab Name: Eurofins Burlington	Job No.: <u>200-70836-1</u>
SDG No.:	
Client Sample ID: 6813	Lab Sample ID: 200-70836-5
Matrix: Air	Lab File ID: 57886-06.D
Analysis Method: TO-15	Date Collected: 11/19/2023 00:00
Sample wt/vol: 200(mL)	Date Analyzed: 11/20/2023 11:30
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32 (mm)
Purge Volume:	Heated Purge: (Y/N) pH:
% Moisture: % Solids:	Level: (low/med) Low
Analysis Batch No.: 197699	Units: ppb v/v

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
115-07-1	Propylene	5.0	U	5.0	5.0
75-71-8	Dichlorodifluoromethane	0.50	U	0.50	0.50
75-45-6	Freon 22	0.50	U	0.50	0.50
76-14-2	1,2-Dichlorotetrafluoroethane	0.20	U	0.20	0.20
74-87-3	Chloromethane	0.50	U	0.50	0.50
106-97-8	n-Butane	0.50	U	0.50	0.50
75-01-4	Vinyl chloride	0.20	U	0.20	0.20
106-99-0	1,3-Butadiene	0.20	U	0.20	0.20
74-83-9	Bromomethane	0.20	U	0.20	0.20
75-00-3	Chloroethane	0.50	U	0.50	0.50
593-60-2	Bromoethene(Vinyl Bromide)	0.20	U	0.20	0.20
75-69-4	Trichlorofluoromethane	0.20	U	0.20	0.20
64-17-5	Ethanol	5.0	U	5.0	5.0
76-13-1	Freon TF	0.20	U	0.20	0.20
75-35-4	1,1-Dichloroethene	0.20	U	0.20	0.20
67-64-1	Acetone	5.0	U	5.0	5.0
67-63-0	Isopropyl alcohol	5.0	U	5.0	5.0
75-15-0	Carbon disulfide	0.50	U	0.50	0.50
107-05-1	3-Chloropropene	0.50	U	0.50	0.50
75-09-2	Methylene Chloride	0.50	U	0.50	0.50
75-65-0	tert-Butyl alcohol	5.0	U	5.0	5.0
1634-04-4	Methyl tert-butyl ether	0.20	U	0.20	0.20
156-60-5	trans-1,2-Dichloroethene	0.20	U	0.20	0.20
110-54-3	n-Hexane	0.50	U	0.50	0.50
75-34-3	1,1-Dichloroethane	0.20	U	0.20	0.20
108-05-4	Vinyl acetate	5.0	U	5.0	5.0
141-78-6	Ethyl acetate	5.0	U	5.0	5.0
78-93-3	Methyl Ethyl Ketone	0.50	U	0.50	0.50
156-59-2	cis-1,2-Dichloroethene	0.20	U	0.20	0.20
540-59-0	1,2-Dichloroethene, Total	0.40	U	0.40	0.40
67-66-3	Chloroform	0.20	U	0.20	0.20
109-99-9	Tetrahydrofuran	5.0	U	5.0	5.0
71-55-6	1,1,1-Trichloroethane	0.20	U	0.20	0.20
110-82-7	Cyclohexane	0.20	U	0.20	0.20

Lab Name: Eurofins Burlington	Job No.: 200-70836-1
SDG No.:	
Client Sample ID: 6813	Lab Sample ID: 200-70836-5
Matrix: Air	 Lab File ID: 57886-06.D
Analysis Method: TO-15	Date Collected: 11/19/2023 00:00
Sample wt/vol: 200(mL)	Date Analyzed: 11/20/2023 11:30
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32 (mm)
Purge Volume:	Heated Purge: (Y/N) pH:
% Moisture: % Solids:	Level: (low/med) Low
Analysis Batch No.: 197699	Units: ppb v/v

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
56-23-5	Carbon tetrachloride	0.20	U	0.20	0.20
540-84-1	2,2,4-Trimethylpentane	0.20	U	0.20	0.20
71-43-2	Benzene	0.20	U	0.20	0.20
107-06-2	1,2-Dichloroethane	0.20	U	0.20	0.20
142-82-5	n-Heptane	0.20	U	0.20	0.20
79-01-6	Trichloroethene	0.20	U	0.20	0.20
80-62-6	Methyl methacrylate	0.50	U	0.50	0.50
78-87-5	1,2-Dichloropropane	0.20	U	0.20	0.20
123-91-1	1,4-Dioxane	5.0	U	5.0	5.0
75-27-4	Bromodichloromethane	0.20	U	0.20	0.20
10061-01-5	cis-1,3-Dichloropropene	0.20	U	0.20	0.20
108-10-1	methyl isobutyl ketone	0.50	U	0.50	0.50
108-88-3	Toluene	0.20	U	0.20	0.20
10061-02-6	trans-1,3-Dichloropropene	0.20	U	0.20	0.2
79-00-5	1,1,2-Trichloroethane	0.20	U	0.20	0.2
127-18-4	Tetrachloroethene	0.20	U	0.20	0.20
591-78-6	Methyl Butyl Ketone (2-Hexanone)	0.50	U	0.50	0.50
124-48-1	Dibromochloromethane	0.20	U	0.20	0.2
106-93-4	1,2-Dibromoethane	0.20	U	0.20	0.2
108-90-7	Chlorobenzene	0.20	U	0.20	0.20
100-41-4	Ethylbenzene	0.20	U	0.20	0.20
179601-23-1	m,p-Xylene	0.50	U	0.50	0.50
95-47-6	Xylene, o-	0.20	U	0.20	0.20
1330-20-7	Xylene (total)	0.70	U	0.70	0.70
100-42-5	Styrene	0.20	U	0.20	0.20
75-25-2	Bromoform	0.20	U	0.20	0.20
98-82-8	Cumene	0.20	U	0.20	0.2
79-34-5	1,1,2,2-Tetrachloroethane	0.20	U	0.20	0.2
103-65-1	n-Propylbenzene	0.20	U	0.20	0.2
622-96-8	4-Ethyltoluene	0.20	U	0.20	0.2
108-67-8	1,3,5-Trimethylbenzene	0.20	U	0.20	0.2
95-49-8	2-Chlorotoluene	0.20	U	0.20	0.2
98-06-6	tert-Butylbenzene	0.20	U	0.20	0.2
95-63-6	1,2,4-Trimethylbenzene	0.20	U	0.20	0.2

Lab Name: Eurofins Burlington	Job No.: 200-70836-1					
SDG No.:						
Client Sample ID: 6813	Lab Sample ID: 200-70836-5					
Matrix: Air	Lab File ID: 57886-06.D					
Analysis Method: TO-15	Date Collected: 11/19/2023 00:00					
Sample wt/vol: 200(mL)	Date Analyzed: 11/20/2023 11:30					
Soil Aliquot Vol:	Dilution Factor: 1					
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32 (mm)					
Purge Volume:	Heated Purge: (Y/N) pH:					
% Moisture: % Solids:	Level: (low/med) Low					
Analysis Batch No.: 197699	Units: ppb v/v					

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
135-98-8	sec-Butylbenzene	0.20	U	0.20	0.20
99-87-6	4-Isopropyltoluene	0.20	U	0.20	0.20
541-73-1	1,3-Dichlorobenzene	0.20	U	0.20	0.20
106-46-7	1,4-Dichlorobenzene	0.20	U	0.20	0.20
100-44-7	Benzyl chloride	0.20	U	0.20	0.20
104-51-8	n-Butylbenzene	0.20	U	0.20	0.20
95-50-1	1,2-Dichlorobenzene	0.20	U	0.20	0.20
120-82-1	1,2,4-Trichlorobenzene	0.50	U	0.50	0.50
87-68-3	Hexachlorobutadiene	0.20	U	0.20	0.20
91-20-3	Naphthalene	0.50	U	0.50	0.50

Eurofins Burlington
Target Compound Quantitation Report

Data File: \\chromfs\Burlington\ChromData\CHX.i\20231119-57886.b\57886-06.D

Lims ID: 200-70836-A-5

Client ID: 6813 Sample Type: Client

Inject. Date: 20-Nov-2023 11:30:30 ALS Bottle#: 5 Worklist Smp#: 6

Purge Vol: 200.000 mL Dil. Factor: 1.0000

Sample Info: 200-0057886-006

Misc. Info.: 70836-5

Operator ID: wrd Instrument ID: CHX.i

Limit Group: AI_TO15_ICAL

Last Update:21-Nov-2023 07:57:45Calib Date:07-Nov-2023 01:16:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Burlington\ChromData\CHX.i\20231106-57686.b\57686-13.D

Column 1: RTX-624 (0.32 mm) Det: MS SCAN

Process Host: CTX1620

First Level Reviewer: bunmaa		Da	ate:		21-Nov-2023 07:57:45			
Comment	RT	Adj RT	DIt RT		D	OnCol Amt		
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ppb v/v	Flags
1 Propene	41		4.323				ND	
3 Dichlorodifluoromethane	85		4.425				ND	
4 Chlorodifluoromethane	51		4.423				ND	
5 1,2-Dichloro-1,1,2,2-tetrafluoro			4.789				ND	
6 Chloromethane	50		4.912				ND	
7 Vinyl chloride	62		5.228				ND	
8 Butane	43		5.228				ND	
9 Butadiene	54		5.340				ND	
10 Bromomethane	94		6.051				ND	
12 Chloroethane	64		6.319				ND	
14 Vinyl bromide	106		6.741				ND ND	
15 Trichlorofluoromethane	100		6.897				ND	
17 Ethanol	45	7.378	7.378	0.053	91	1192	0.2727	М
20 1,1-Dichloroethene	96	7.376	7.376 7.961	0.055	91		0.2727 ND	IVI
			7.991				ND ND	
21 1,1,2-Trichloro-1,2,2-trifluoroe	43		7.999 8.074				ND ND	
22 Acetone 24 Carbon disulfide	43 76						ND ND	MU
		0.470	8.362	0.074	0.4			IVIU
23 Isopropyl alcohol	45 41	8.469	8.480	0.074	94	1588	0.1054	
27 3-Chloro-1-propene	41		8.662				ND	
28 Methylene Chloride	49		8.892				ND	
29 2-Methyl-2-propanol	59		9.170				ND	
32 trans-1,2-Dichloroethene	61		9.384				ND	
31 Methyl tert-butyl ether	73		9.411				ND	_
S 33 1,2-Dichloroethene, Total	61		9.665				ND	7
34 Hexane	57		9.882				ND	
36 1,1-Dichloroethane	63		10.155				ND	
35 Vinyl acetate	43		10.165				ND	
37 2-Butanone (MEK)	72		11.144				ND	
38 cis-1,2-Dichloroethene	96		11.150				ND	
39 Ethyl acetate	88		11.219				ND	
* 40 Chlorobromomethane	128	11.556	11.556	0.000	82	60229	10.0	

2

3

4

O

0

9

4 4

12

4 /

16

Report Date: 21-Nov-2023 07:57:45

Chrom Revision: 2.3 18-Oct-2023 21:16:54

Data File: \\chromfs\Burlington\ChromData\CHX.i\\20231119-57886.b\\57886-06.D

Data File: \\cniomis\Buil	ingloi				/-5/60	0.0.0		
Compound	Sig	RT (min.)	Adj RT (min.)	DIt RT (min.)	Q	Response	OnCol Amt ppb v/v	Flags
Сотпроили	Jig	(111111.)	(111111.)	(111111.)	Ų	Response	hhn M	i lays
41 Tetrahydrofuran	42		11.615				ND	
42 Chloroform	83		11.733				ND	
43 1,1,1-Trichloroethane	97		12.032				ND	
44 Cyclohexane	84		12.161				ND	
45 Carbon tetrachloride	117		12.305				ND	
46 Benzene	78		12.653				ND	
47 1,2-Dichloroethane	62		12.739				ND	
48 Isooctane	57		12.862				ND	
49 n-Heptane	43		13.166				ND	
* 50 1,4-Difluorobenzene	114	13.386	13.391	-0.005	93	305216	10.0	
52 Trichloroethene	95		13.819				ND	
55 1,2-Dichloropropane	63		14.279				ND	
56 Methyl methacrylate	69		14.376				ND	
57 1,4-Dioxane	88		14.434				ND	
58 Dibromomethane	174		14.440				ND	
59 Dichlorobromomethane	83		14.750				ND	
60 cis-1,3-Dichloropropene	75		15.547				ND	
62 4-Methyl-2-pentanone (MIBK)	43		15.841				ND	
63 Toluene	92		16.178				ND	
67 trans-1,3-Dichloropropene	75		16.601				ND	
68 1,1,2-Trichloroethane	83		16.975				ND	
69 Tetrachloroethene	166		17.163				ND	
70 2-Hexanone	43		17.436				ND	
71 Chlorodibromomethane	129		17.708				ND	
72 Ethylene Dibromide	107	10.050	17.949	0.000	0.4		ND	
* 73 Chlorobenzene-d5	117	18.853	18.853	0.000	84	265967	10.0	
74 Chlorobenzene	112		18.912				ND	7
75 Ethylbenzene	91 104		19.099				ND	7
76 m-Xylene & p-Xylene S 78 Xylenes, Total	106 106		19.361 19.600				ND ND	7
79 o-Xylene	106		20.132				ND	,
80 Styrene	104		20.132				ND	
81 Bromoform	173		20.109				ND	
82 Isopropylbenzene	105		20.817				ND	
83 1,1,2,2-Tetrachloroethane	83		21.346				ND	
85 N-Propylbenzene	91		21.528				ND	
86 2-Chlorotoluene	91		21.678				ND	
87 4-Ethyltoluene	105		21.726				ND	
88 1,3,5-Trimethylbenzene	105		21.817				ND	
91 tert-Butylbenzene	119		22.298				ND	
92 1,2,4-Trimethylbenzene	105		22.384				ND	
93 sec-Butylbenzene	105		22.619				ND	
94 1,3-Dichlorobenzene	146		22.791				ND	
95 4-Isopropyltoluene	119		22.828				ND	
96 1,4-Dichlorobenzene	146		22.935				ND	
97 Benzyl chloride	91		23.085				ND	
98 n-Butylbenzene	91		23.384				ND	
99 1,2-Dichlorobenzene	146		23.427				ND	
102 1,2,4-Trichlorobenzene	180		25.861				ND	
103 Hexachlorobutadiene	225		26.102				ND	
104 Naphthalene	128		26.343				ND	
	•						_	

2

3

6

0

10

12

4 4

16

Report Date: 21-Nov-2023 07:57:45 Chrom Revision: 2.3 18-Oct-2023 21:16:54

QC Flag Legend Processing Flags

7 - Failed Limit of Detection

Review Flags

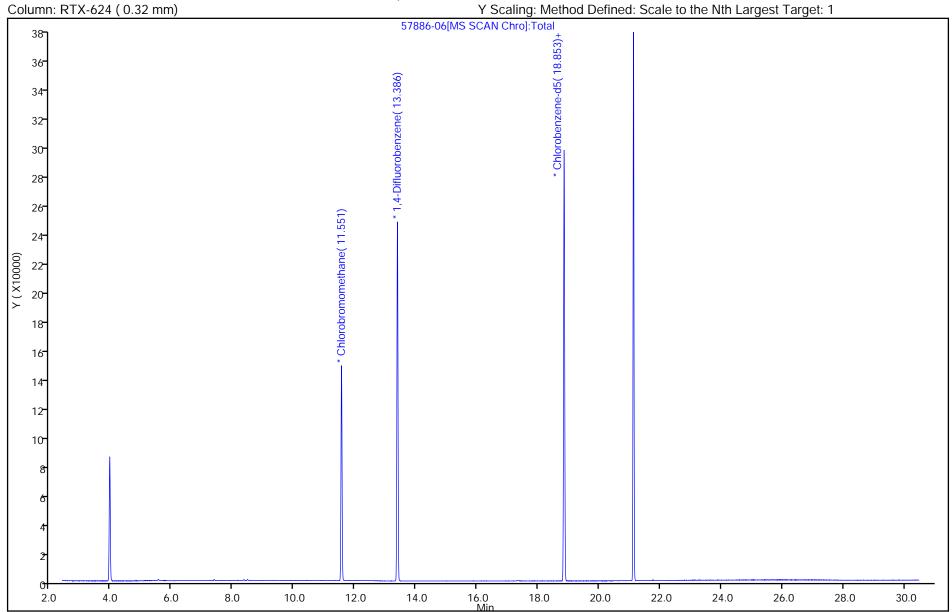
M - Manually Integrated

U - Marked Undetected

Reagents:

ATTO15XISs_00003 Amount Added: 20.00 Units: mL Run Reagent

Report Date: 21-Nov-2023 07:57:45 Chrom Revision: 2.3 18-Oct-2023 21:16:54


Data File:

Injection Date: 20-Nov-2023 11:30:30 Instrument ID: CHX.i Operator ID: wrd Lims ID: 200-70836-5 Worklist Smp#: 200-70836-A-5 Lab Sample ID: 6

6813 Client ID:

Purge Vol: 200.000 mL Dil. Factor: 1.0000 ALS Bottle#: 5

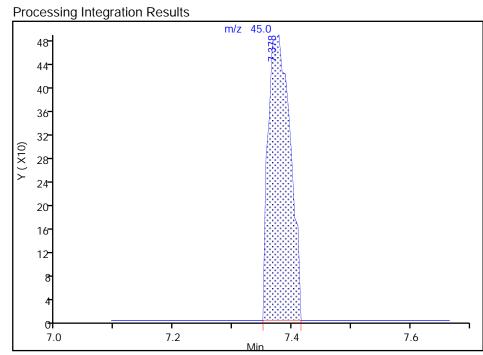
Method: TO15_MasterMethod_X.m Limit Group: AI_TO15_ICAL

Page 34 of 37 12/18/2023

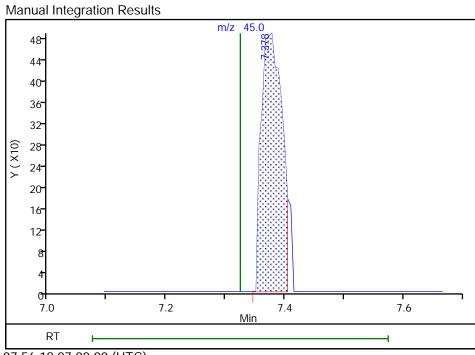
Eurofins Burlington

Data File: \\chromfs\Burlington\ChromData\CHX.i\20231119-57886.b\57886-06.D

Client ID: 6813


Operator ID: wrd ALS Bottle#: 5 Worklist Smp#: 6

Purge Vol:200.000 mLDil. Factor:1.0000Method:TO15_MasterMethod_X.mLimit Group:AI_TO15_ICALColumn:RTX-624 (0.32 mm)DetectorMS SCAN


17 Ethanol, CAS: 64-17-5

Signal: 1

RT: 7.38
Area: 1244
Amount: 0.284600
Amount Units: ppb v/v

RT: 7.38
Area: 1192
Amount: 0.272704
Amount Units: ppb v/v

Reviewer: bunmaa, 21-Nov-2023 07:56:18 07:00:00 (UTC)

Audit Action: Manually Integrated Audit Reason: Assign Peak

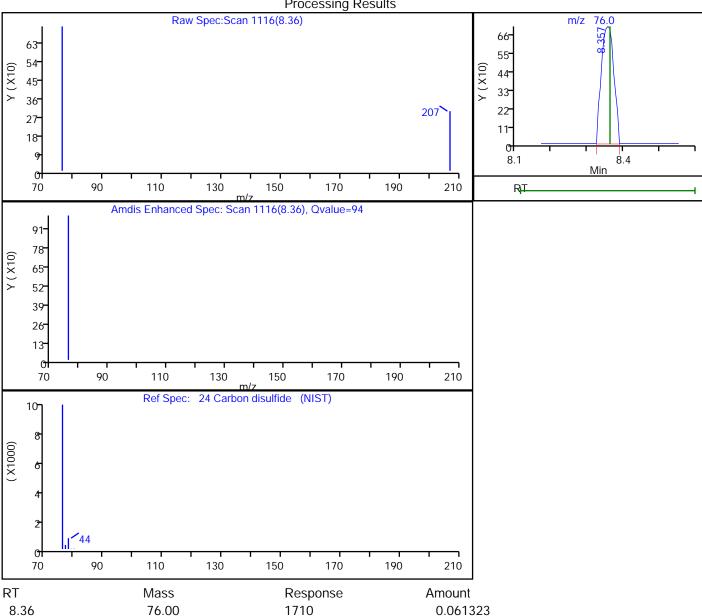
Chrom Revision: 2.3 18-Oct-2023 21:16:54 **User Disabled Compound Report**

200-70836-5

Lab Sample ID:

Eurofins Burlington

Data File: \\chromfs\Burlington\ChromData\CHX.i\20231119-57886.b\57886-06.D Injection Date: 20-Nov-2023 11:30:30 Instrument ID: CHX.i


Lims ID: 200-70836-A-5 Client ID: 6813

ALS Bottle#: Operator ID: wrd 5 Worklist Smp#: 6

Purge Vol: 200.000 mL Dil. Factor: 1.0000 Method: TO15_MasterMethod_X.m Limit Group: AI_TO15_ICAL Column: RTX-624 (0.32 mm) Detector MS SCAN

24 Carbon disulfide, CAS: 75-15-0

Processing Results

Reviewer: bunmaa, 21-Nov-2023 07:56:38 07:00:00 (UTC)

Audit Action: Marked Compound Undetected Audit Reason: Invalid Compound ID

Summa Canister Dilution Worksheet

Client: ARCADIS U.S. Inc
Project/Site: Crosman Vapor

SDG No.: 200-71154-1

	Canister Volume	Preadjusted Pressure	Preadjusted Pressure	Preadjusted Volume	Adjusted Pressure	Adjusted Pressure	Adjusted Volume	Initial Volume	Dilution	Final Dilution	Pressure Gauge		
Lab Sample ID	(L)	("Hg)	(atm)	(L)	(psig)	(atm)	(L)	(mL)	Factor	Factor	ID	Date	Analyst Initals
200-71154-1	1	-2.0	0.93	0.93	41.4	3.82	3.82		4.09	4.09	G30	12/12/23 10:28	TPB
200-71154-1	1	0	1.00	1.00	42.7	3.90	3.90		3.90	15.97	G30	12/13/23 14:50	TPB
200-71154-2	1	-8.0	0.73	0.73	43.0	3.93	3.93		5.36		G30	12/13/23 14:51	ТРВ
200-71154-2	1	0	1.00	1.00	41.6	3.83	3.83		3.83	20.52	G30	12/13/23 14:51	TPB
200-71154-3	1	-6.7	0.78	0.78	39.8	3.71	3.71		4.78		G30	12/13/23 14:51	TPB
200-71154-3	1	0	1.00	1.00	43.6	3.97	3.97		3.97	18.95	G30	12/13/23 14:51	TPB
200-71154-4	1	-8.3	0.72	0.72	40.3	3.74	3.74		5.18	5.18	G30	12/12/23 10:28	TPB
200-71154-4	1	0	1.00	1.00	22.7	2.54	2.54		2.54	13.17	G30	12/12/23 10:28	TPB

Formulae:

 $\begin{array}{ll} \mbox{Preadjusted Volume (L)} & = ((\mbox{Preadjusted Pressure ("Hg)} + 29.92 \mbox{ "Hg)} * \mbox{Vol L}) / 29.92 \mbox{ "Hg} \\ \mbox{Adjusted Volume (L)} & = ((\mbox{ Adjusted Pressure (psig)} + 14.7 \mbox{ psig}) * \mbox{Vol L}) / \mbox{ 14.7 psig} \\ \end{array}$

Dilution Factor = Adjusted Volume (L) / Preadjusted Volume (L)

Where:

29.92 "Hg = Standard atmospheric pressure in inches of Mercury ("Hg)

14.7 psig = Standard atmospheric pressure in pounds per square inch gauge (psig)

12

14

15

ANALYTICAL REPORT

PREPARED FOR

Attn: Christopher Davern Arcadis U.S., Inc. 201 Fuller Road Suite 201 Albany, New York 12203 Generated 5/17/2024 8:42:07 AM

JOB DESCRIPTION

Crosman Vapor 200-73398-1

JOB NUMBER

200-73398-1

Eurofins Burlington 530 Community Drive Suite 11 South Burlington VT 05403

Eurofins Burlington

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins TestAmerica Project Manager.

Authorization

Elizabeth a Nye

Generated 5/17/2024 8:42:07 AM

Authorized for release by Elizabeth Nye, Project Manager I Elizabeth.Nye@et.eurofinsus.com (802)923-1029

16

14

16

Client: Arcadis U.S., Inc. Project/Site: Crosman Vapor Laboratory Job ID: 200-73398-1 SDG: 200-73398-1

Table of Contents	
Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	8
QC Sample Results	14
QC Association Summary	20
Lab Chronicle	21
Certification Summary	22
Method Summary	23
Sample Summary	24
Chain of Custody	25
Receipt Checklists	27
Clean Canister Certification	28
Pre-Ship Certification	28
Clean Canister Data	30
Air Canister Dilution	46

Definitions/Glossary

Client: Arcadis U.S., Inc. Job ID: 200-73398-1 Project/Site: Crosman Vapor SDG: 200-73398-1

Qualifiers

Qualifier

Air - GC/MS VOA

Qualifier Description D Sample results are obtained from a dilution; the surrogate or matrix spike recoveries reported are calculated from diluted samples.

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. J

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor

Detection Limit (DoD/DOE) DL

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) EDL LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

Method Detection Limit MDL ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

Practical Quantitation Limit PQL

PRES Presumptive **Quality Control** QC

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) **TEF TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

3

5/17/2024

Case Narrative

Client: Arcadis U.S., Inc. Project: Crosman Vapor

Job ID: 200-73398-1 Eurofins Burlington

CASE NARRATIVE

Client: Arcadis U.S., Inc.

Project: Crosman Vapor

Report Number: 200-73398-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 05/04/2024; the samples arrived in good condition.

VOLATILE ORGANIC COMPOUNDS

Samples SDS-1-05032024, SDS-2-05032024, COMBINED INFLUENT-05032024, PRE-VPGAC4-05032024, POST-DILUTION EFF-05032024 and POST-BLOWER EFF-05032024 were analyzed for Volatile Organic Compounds in accordance with EPA Method TO-15. The samples were analyzed on 05/08/2024, 05/09/2024 and 05/13/2024.

Samples SDS-1-05032024[200X], SDS-1-05032024[40X], SDS-2-05032024[100X], SDS-2-05032024[20X], COMBINED INFLUENT-05032024[100X], PRE-VPGAC4-05032024[10X], PRE-VPGAC4-05032024[

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

5

Job ID: 200-73398-1

6

8

10

13

4 5

40

Client: Arcadis U.S., Inc.

Job ID: 200-73398-1
Project/Site: Crosman Vapor

SDG: 200-73398-1

Analyte Tetrachloroethene	Result 0.89	Qualifier	RL 8.0	MDL 0.84	Unit ppb v/v	Dil Fac 40	<u>D</u>	Method TO-15	Prep Type Total/NA
Trichloroethene - DL	1800	D	7.0	5.0	ppb v/v	200		TO-15	Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Tetrachloroethene	6.0	J	54	5.7	ug/m3	40	_	TO-15	Total/NA
Trichloroethene - DL	9800	D	38	27	ug/m3	200		TO-15	Total/NA

Client Sample ID: SDS-2-05032024

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	14		1.0	0.42	ppb v/v	20	_	TO-15	Total/NA
1,2-Dichloroethene, Total	14		8.0	0.42	ppb v/v	20		TO-15	Total/NA
Tetrachloroethene	1.0	J	4.0	0.42	ppb v/v	20		TO-15	Total/NA
Trichloroethene - DL	900	D	3.5	2.5	ppb v/v	100		TO-15	Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	56		4.0	1.7	ug/m3	20	_	TO-15	Total/NA
1,2-Dichloroethene, Total	56		32	1.7	ug/m3	20		TO-15	Total/NA
Tetrachloroethene	6.9	J	27	2.8	ug/m3	20		TO-15	Total/NA
Trichloroethene - DL	4800	D	19	13	ug/m3	100		TO-15	Total/NA

Client Sample ID: COMBINED INFLUENT-05032024

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene			1.0	0.42	ppb v/v	20	_	TO-15	Total/NA
1,2-Dichloroethene, Total	11		8.0	0.42	ppb v/v	20		TO-15	Total/NA
Tetrachloroethene	1.0	J	4.0	0.42	ppb v/v	20		TO-15	Total/NA
Trichloroethene - DL	960	D	3.5	2.5	ppb v/v	100		TO-15	Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	44		4.0	1.7	ug/m3	20	_	TO-15	Total/NA
1,2-Dichloroethene, Total	44		32	1.7	ug/m3	20		TO-15	Total/NA
	7.0	1	27	28	ug/m3	20		TO-15	Total/NA
Tetrachloroethene	7.0	J	21		3,				

Client Sample ID: PRE-VPGAC4-05032024

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
trans-1,2-Dichloroethene	0.46	J	2.0	0.23	ppb v/v	10	_	TO-15	Total/NA
cis-1,2-Dichloroethene	22		0.50	0.21	ppb v/v	10		TO-15	Total/NA
1,2-Dichloroethene, Total	22		4.0	0.21	ppb v/v	10		TO-15	Total/NA
Trichloroethene - DL	420	D	0.53	0.38	ppb v/v	15		TO-15	Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
trans-1,2-Dichloroethene	1.8	J	7.9	0.91	ug/m3	10	_	TO-15	Total/NA
cis-1,2-Dichloroethene	89		2.0	0.83	ug/m3	10		TO-15	Total/NA
1,2-Dichloroethene, Total	89		16	0.83	ug/m3	10		TO-15	Total/NA
Trichloroethene - DL	2300	D	2.8	2.0	ug/m3	15		TO-15	Total/NA

Client Sample ID: POST-DILUTION EFF-05032024

- Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	10	0.50	0.21	ppb v/v	10	_	TO-15	Total/NA
1,2-Dichloroethene, Total	10	4.0	0.21	ppb v/v	10		TO-15	Total/NA
Trichloroethene	320	0.35	0.25	ppb v/v	10		TO-15	Total/NA
Toluene	1.3 J	2.0	0.62	ppb v/v	10		TO-15	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Burlington

5/17/2024

Page 6 of 46

2

3

Lab Sample ID: 200-73398-1

Lab Sample ID: 200-73398-2

Lab Sample ID: 200-73398-3

Lab Sample ID: 200-73398-4

Lab Sample ID: 200-73398-5

5

0

R

9

11

12

14

15

Detection Summary

Client: Arcadis U.S., Inc. Job ID: 200-73398-1 Project/Site: Crosman Vapor SDG: 200-73398-1

RL

2.0

16

1.9

7.5

2.3 ug/m3

Client Sample ID: POST-DILUTION EFF-05032024 (Continued)

Result Qualifier

41

40

4.7 J

1700

nued) Lab Sample ID: 200-73398-								
MDL	Unit	Dil Fac [) Method	Prep Type				
0.83	ug/m3	10	TO-15	Total/NA				
0.83	ug/m3	10	TO-15	Total/NA				
1.3	ug/m3	10	TO-15	Total/NA				

TO-15

10

Client Sample ID: POST-BLOWER EFF-05032024

Analyte

Toluene

cis-1,2-Dichloroethene

Trichloroethene

1,2-Dichloroethene, Total

Lab S	a	mple ID:	200-73398-6
Dil Fac	D	Method	Prep Type
10	_	TO-15	Total/NA
	_		

Total/NA

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
cis-1,2-Dichloroethene	4.1		0.50	0.21	ppb v/v		TO-15	Total/NA
1,2-Dichloroethene, Total	4.1		4.0	0.21	ppb v/v	10	TO-15	Total/NA
Trichloroethene	140		0.35	0.25	ppb v/v	10	TO-15	Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
cis-1,2-Dichloroethene	16		2.0	0.83	ug/m3	10	TO-15	Total/NA
1,2-Dichloroethene, Total	16		16	0.83	ug/m3	10	TO-15	Total/NA
Trichloroethene	740		1.9	1.3	ug/m3	10	TO-15	Total/NA

Client: Arcadis U.S., Inc.

Project/Site: Crosman Vapor

Job ID: 200-73398-1

SDG: 200-73398-1

Client Sample ID: SDS-1-05032024

Date Collected: 05/03/24 10:20 Date Received: 05/04/24 09:45

Sample Container: Summa Canister 1L

Lab Sample ID: 200-73398-1

Matrix: Air

5

7

10

12

LC

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	3.1	U	3.1	0.84	ppb v/v			05/08/24 22:36	40
1,1-Dichloroethene	1.4	U	1.4	1.0	ppb v/v			05/08/24 22:36	40
Acetone	200	U	200	64	ppb v/v			05/08/24 22:36	40
Methylene Chloride	20	U	20	7.2	ppb v/v			05/08/24 22:36	40
trans-1,2-Dichloroethene	8.0	U	8.0	0.92	ppb v/v			05/08/24 22:36	40
1,1-Dichloroethane	8.0	U	8.0	1.0	ppb v/v			05/08/24 22:36	40
cis-1,2-Dichloroethene	2.0	U	2.0	0.84	ppb v/v			05/08/24 22:36	40
1,2-Dichloroethene, Total	16	U	16	0.84	ppb v/v			05/08/24 22:36	40
1,1,1-Trichloroethane	8.0	U	8.0	1.8	ppb v/v			05/08/24 22:36	40
Carbon tetrachloride	1.4	U	1.4	0.88	ppb v/v			05/08/24 22:36	40
Benzene	8.0	U	8.0	1.8	ppb v/v			05/08/24 22:36	40
Toluene	8.0	U	8.0	2.5	ppb v/v			05/08/24 22:36	40
Tetrachloroethene	0.89	J	8.0	0.84	ppb v/v			05/08/24 22:36	40
Chlorobenzene	8.0	U	8.0	1.8	ppb v/v			05/08/24 22:36	40
m,p-Xylene	20	U	20	3.8	ppb v/v			05/08/24 22:36	40
Xylene, o-	8.0	U	8.0	2.5	ppb v/v			05/08/24 22:36	40
Bromoform	8.0	U	8.0	4.8	ppb v/v			05/08/24 22:36	40
1,1,2,2-Tetrachloroethane	8.0	U	8.0	1.7	ppb v/v			05/08/24 22:36	40
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	8.0	U	8.0	2.1	ug/m3			05/08/24 22:36	40
1,1-Dichloroethene	5.6	U	5.6	4.1	ug/m3			05/08/24 22:36	40
Acetone	480	U	480	150	ug/m3			05/08/24 22:36	40
Methylene Chloride	69	U	69	25	ug/m3			05/08/24 22:36	40
trans-1,2-Dichloroethene	32	U	32	3.6	ug/m3			05/08/24 22:36	40
1,1-Dichloroethane	32	U	32	4.0	ug/m3			05/08/24 22:36	40
cis-1,2-Dichloroethene	7.9	U	7.9	3.3	ug/m3			05/08/24 22:36	40
1,2-Dichloroethene, Total	63	U	63	3.3	ug/m3			05/08/24 22:36	40
1,1,1-Trichloroethane	44	U	44	9.6	ug/m3			05/08/24 22:36	40
Carbon tetrachloride	8.8	U	8.8	5.5	ug/m3			05/08/24 22:36	40
Benzene	26	U	26	5.6	ug/m3			05/08/24 22:36	40
Toluene	30	U	30	9.3	ug/m3			05/08/24 22:36	40
					ug/m3			05/08/24 22:36	40
Tetrachloroethene	6.0	J	54	5.7	ug/III0			00/00/2 : 22:00	
Tetrachloroethene Chlorobenzene	6.0 37		54 37		ug/m3			05/08/24 22:36	40
		U		8.1	-				40 40
Chlorobenzene	37	U U	37	8.1 17	ug/m3			05/08/24 22:36	
Chlorobenzene m,p-Xylene	37 87	U U	37 87	8.1 17 11	ug/m3 ug/m3			05/08/24 22:36 05/08/24 22:36	40

Method: EPA TO-15 - Vol	atile Organic Co	mpounds in	Ambient A	ir - DL					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	1800	D	7.0	5.0	ppb v/v			05/08/24 23:32	200
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	9800	D	38	27	ug/m3			05/08/24 23:32	200

Client: Arcadis U.S., Inc. Job ID: 200-73398-1 Project/Site: Crosman Vapor SDG: 200-73398-1

Client Sample ID: SDS-2-05032024

Date Collected: 05/03/24 10:25 Date Received: 05/04/24 09:45

Sample Container: Summa Canister 1L

Lab Sample ID: 200-73398-2

Matrix: Air

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	1.6	U	1.6	0.42	ppb v/v			05/09/24 00:27	20
1,1-Dichloroethene	0.70	U	0.70	0.52	ppb v/v			05/09/24 00:27	20
Acetone	100	U	100	32	ppb v/v			05/09/24 00:27	20
Methylene Chloride	10	U	10	3.6	ppb v/v			05/09/24 00:27	20
trans-1,2-Dichloroethene	4.0	U	4.0	0.46	ppb v/v			05/09/24 00:27	20
1,1-Dichloroethane	4.0	U	4.0	0.50	ppb v/v			05/09/24 00:27	20
cis-1,2-Dichloroethene	14		1.0	0.42	ppb v/v			05/09/24 00:27	20
1,2-Dichloroethene, Total	14		8.0	0.42	ppb v/v			05/09/24 00:27	20
1,1,1-Trichloroethane	4.0	U	4.0	0.88	ppb v/v			05/09/24 00:27	20
Carbon tetrachloride	0.70	U	0.70	0.44	ppb v/v			05/09/24 00:27	20
Benzene	4.0	U	4.0	0.88	ppb v/v			05/09/24 00:27	20
Toluene	4.0	U	4.0	1.2	ppb v/v			05/09/24 00:27	20
Tetrachloroethene	1.0	J	4.0	0.42	ppb v/v			05/09/24 00:27	20
Chlorobenzene	4.0	U	4.0	0.88	ppb v/v			05/09/24 00:27	20
m,p-Xylene	10	U	10	1.9	ppb v/v			05/09/24 00:27	20
Xylene, o-	4.0	U	4.0	1.3	ppb v/v			05/09/24 00:27	20
Bromoform	4.0	U	4.0	2.4	ppb v/v			05/09/24 00:27	20
1,1,2,2-Tetrachloroethane	4.0	U	4.0	0.86	ppb v/v			05/09/24 00:27	20
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

m,p-Xylene	10	U	10	1.9	ppb v/v			05/09/24 00:27	20
Xylene, o-	4.0	U	4.0	1.3	ppb v/v			05/09/24 00:27	20
Bromoform	4.0	U	4.0	2.4	ppb v/v			05/09/24 00:27	20
1,1,2,2-Tetrachloroethane	4.0	U	4.0	0.86	ppb v/v			05/09/24 00:27	20
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	4.0	U	4.0	1.1	ug/m3			05/09/24 00:27	20
1,1-Dichloroethene	2.8	U	2.8	2.1	ug/m3			05/09/24 00:27	20
Acetone	240	U	240	76	ug/m3			05/09/24 00:27	20
Methylene Chloride	35	U	35	13	ug/m3			05/09/24 00:27	20
trans-1,2-Dichloroethene	16	U	16	1.8	ug/m3			05/09/24 00:27	20
1,1-Dichloroethane	16	U	16	2.0	ug/m3			05/09/24 00:27	20
cis-1,2-Dichloroethene	56		4.0	1.7	ug/m3			05/09/24 00:27	20
1,2-Dichloroethene, Total	56		32	1.7	ug/m3			05/09/24 00:27	20
1,1,1-Trichloroethane	22	U	22	4.8	ug/m3			05/09/24 00:27	20
Carbon tetrachloride	4.4	U	4.4	2.8	ug/m3			05/09/24 00:27	20
Benzene	13	U	13	2.8	ug/m3			05/09/24 00:27	20
Toluene	15	U	15	4.7	ug/m3			05/09/24 00:27	20
Tetrachloroethene	6.9	J	27	2.8	ug/m3			05/09/24 00:27	20
Chlorobenzene	18	U	18	4.1	ug/m3			05/09/24 00:27	20
m,p-Xylene	43	U	43	8.3	ug/m3			05/09/24 00:27	20
Xylene, o-	17	U	17	5.5	ug/m3			05/09/24 00:27	20
Bromoform	41	U	41	25	ug/m3			05/09/24 00:27	20
1,1,2,2-Tetrachloroethane	27	U	27	5.9	ug/m3			05/09/24 00:27	20

Method: EPA TO-15 - Volatile	Organic Compound	s in Ambient Air - DL

motilod. El A 10-10 - Vol	utilic Organic Col	iipouilus iii	Ambient Ai						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	900	D	3.5	2.5	ppb v/v			05/09/24 01:23	100
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	4800	D	19	13	ug/m3			05/09/24 01:23	100

Client: Arcadis U.S., Inc. Job ID: 200-73398-1 Project/Site: Crosman Vapor SDG: 200-73398-1

Client Sample ID: COMBINED INFLUENT-05032024

Date Collected: 05/03/24 10:30 Date Received: 05/04/24 09:45

Sample Container: Summa Canister 1L

Lab Sample ID: 200-73398-3

Matrix: Air

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	1.6	U	1.6	0.42	ppb v/v			05/09/24 04:11	20
1,1-Dichloroethene	0.70	U	0.70	0.52	ppb v/v			05/09/24 04:11	20
Acetone	100	U	100	32	ppb v/v			05/09/24 04:11	20
Methylene Chloride	10	U	10	3.6	ppb v/v			05/09/24 04:11	20
trans-1,2-Dichloroethene	4.0	U	4.0	0.46	ppb v/v			05/09/24 04:11	20
1,1-Dichloroethane	4.0	U	4.0	0.50	ppb v/v			05/09/24 04:11	20
cis-1,2-Dichloroethene	11		1.0	0.42	ppb v/v			05/09/24 04:11	20
1,2-Dichloroethene, Total	11		8.0	0.42	ppb v/v			05/09/24 04:11	20
1,1,1-Trichloroethane	4.0	U	4.0	0.88	ppb v/v			05/09/24 04:11	20
Carbon tetrachloride	0.70	U	0.70	0.44	ppb v/v			05/09/24 04:11	20
Benzene	4.0	U	4.0	0.88	ppb v/v			05/09/24 04:11	20
Toluene	4.0	U	4.0	1.2	ppb v/v			05/09/24 04:11	20
Tetrachloroethene	1.0	J	4.0	0.42	ppb v/v			05/09/24 04:11	20
Chlorobenzene	4.0	U	4.0	0.88	ppb v/v			05/09/24 04:11	20
m,p-Xylene	10	U	10	1.9	ppb v/v			05/09/24 04:11	20
Xylene, o-	4.0	U	4.0	1.3	ppb v/v			05/09/24 04:11	20
Bromoform	4.0	U	4.0	2.4	ppb v/v			05/09/24 04:11	20
1,1,2,2-Tetrachloroethane	4.0	U	4.0	0.86	ppb v/v			05/09/24 04:11	20
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	4.0	U	4.0	1.1	ug/m3			05/09/24 04:11	20
1,1-Dichloroethene	2.8	U	2.8	2.1	ug/m3			05/09/24 04:11	20
Acetone	240	U	240	76	ug/m3			05/09/24 04:11	20
Methylene Chloride	35	U	35	13	ug/m3			05/09/24 04:11	20
trans-1,2-Dichloroethene	16	U	16	1.8	ug/m3			05/09/24 04:11	20
1,1-Dichloroethane	16	U	16	2.0	ug/m3			05/09/24 04:11	20
cis-1,2-Dichloroethene	44		4.0	1.7	ug/m3			05/09/24 04:11	20
1,2-Dichloroethene, Total	44		32	1.7	ug/m3			05/09/24 04:11	20
1,1,1-Trichloroethane	22	U	22	4.8	ug/m3			05/09/24 04:11	20
Carbon tetrachloride	4.4	U	4.4	2.8	ug/m3			05/09/24 04:11	20
Benzene	13	U	13	2.8	ug/m3			05/09/24 04:11	20
Toluene	15	U	15	4.7	ug/m3			05/09/24 04:11	20
Tetrachloroethene	7.0	J	27	2.8	ug/m3			05/09/24 04:11	20
Chlorobenzene	18	U	18		ug/m3			05/09/24 04:11	20
m,p-Xylene	43	U	43	8.3	ug/m3			05/09/24 04:11	20
···, - · · y · -··-									
Xylene, o-	17	U	17	5.5	ug/m3			05/09/24 04:11	20
	17 41		17 41		ug/m3 ug/m3			05/09/24 04:11 05/09/24 04:11	20 20

Method: EPA TO-15 - Vol	atile Organic Co	mpounds in	Ambient A	ir - DL					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	960	D	3.5	2.5	ppb v/v			05/09/24 05:07	100
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	5200	D	19	13	ug/m3			05/09/24 05:07	100

Client: Arcadis U.S., Inc.

Project/Site: Crosman Vapor

Job ID: 200-73398-1

SDG: 200-73398-1

Client Sample ID: PRE-VPGAC4-05032024

Date Collected: 05/03/24 10:35 Date Received: 05/04/24 09:45

Sample Container: Summa Canister 1L

Lab Sample ID: 200-73398-4

Matrix: Air

5

7

9

11

12

. . 4 E

16

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.78	U	0.78	0.21	ppb v/v			05/13/24 13:42	10
1,1-Dichloroethene	0.35	U	0.35	0.26	ppb v/v			05/13/24 13:42	10
Acetone	50	U	50	16	ppb v/v			05/13/24 13:42	10
Methylene Chloride	5.0	U	5.0	1.8	ppb v/v			05/13/24 13:42	10
trans-1,2-Dichloroethene	0.46	J	2.0	0.23	ppb v/v			05/13/24 13:42	10
1,1-Dichloroethane	2.0	U	2.0	0.25	ppb v/v			05/13/24 13:42	10
cis-1,2-Dichloroethene	22		0.50	0.21	ppb v/v			05/13/24 13:42	10
1,2-Dichloroethene, Total	22		4.0	0.21	ppb v/v			05/13/24 13:42	10
1,1,1-Trichloroethane	2.0	U	2.0	0.44	ppb v/v			05/13/24 13:42	10
Carbon tetrachloride	0.35	U	0.35	0.22	ppb v/v			05/13/24 13:42	10
Benzene	2.0	U	2.0	0.44	ppb v/v			05/13/24 13:42	10
Toluene	2.0	U	2.0	0.62	ppb v/v			05/13/24 13:42	10
Tetrachloroethene	2.0	U	2.0	0.21	ppb v/v			05/13/24 13:42	10
Chlorobenzene	2.0	U	2.0	0.44	ppb v/v			05/13/24 13:42	10
m,p-Xylene	5.0	U	5.0	0.95	ppb v/v			05/13/24 13:42	10
Xylene, o-	2.0	U	2.0	0.63	ppb v/v			05/13/24 13:42	10
Bromoform	2.0	U	2.0	1.2	ppb v/v			05/13/24 13:42	10
1,1,2,2-Tetrachloroethane	2.0	U	2.0	0.43	ppb v/v			05/13/24 13:42	10
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	2.0	U	2.0	0.54	ug/m3		-	05/13/24 13:42	10
1,1-Dichloroethene	1.4	U	1.4	1.0	ug/m3			05/13/24 13:42	10
Acetone	120	U	120	38	ug/m3			05/13/24 13:42	10
Methylene Chloride	17	U	17	6.3	ug/m3			05/13/24 13:42	10
trans-1,2-Dichloroethene	1.8	J	7.9	0.91	ug/m3			05/13/24 13:42	10
1,1-Dichloroethane	8.1	U	8.1	1.0	ug/m3			05/13/24 13:42	10
cis-1,2-Dichloroethene	89		2.0	0.83	ug/m3			05/13/24 13:42	10
1,2-Dichloroethene, Total	89		16	0.83	ug/m3			05/13/24 13:42	10
1,1,1-Trichloroethane	11	U	11	2.4	ug/m3			05/13/24 13:42	10
Carbon tetrachloride	2 2	U	2.2	1.4	ug/m3			05/13/24 13:42	10
	2.2								10
Benzene	6.4		6.4	1.4	ug/m3			05/13/24 13:42	10
Benzene Toluene		U			ug/m3 ug/m3			05/13/24 13:42 05/13/24 13:42	10
Toluene	6.4	U U	6.4	2.3	-				
Toluene	6.4 7.5	U U U	6.4 7.5	2.3 1.4	ug/m3			05/13/24 13:42	10
Toluene Tetrachloroethene	6.4 7.5 14	U U U	6.4 7.5 14	2.3 1.4 2.0	ug/m3 ug/m3			05/13/24 13:42 05/13/24 13:42	10 10
Toluene Tetrachloroethene Chlorobenzene	6.4 7.5 14 9.2	U U U U	6.4 7.5 14 9.2	2.3 1.4 2.0 4.1	ug/m3 ug/m3 ug/m3			05/13/24 13:42 05/13/24 13:42 05/13/24 13:42	10 10 10
Toluene Tetrachloroethene Chlorobenzene m,p-Xylene	6.4 7.5 14 9.2 22	U U U U U	6.4 7.5 14 9.2 22	2.3 1.4 2.0 4.1 2.7	ug/m3 ug/m3 ug/m3 ug/m3			05/13/24 13:42 05/13/24 13:42 05/13/24 13:42 05/13/24 13:42	10 10 10 10

Method: EPA TO-15 - Vol	atile Organic Co	mpounds in	Ambient A	ir - DL					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	420	D	0.53	0.38	ppb v/v			05/09/24 18:47	15
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	2300	D	2.8	2.0	ug/m3			05/09/24 18:47	15

Job ID: 200-73398-1 SDG: 200-73398-1

Client Sample ID: POST-DILUTION EFF-05032024 Lab Sample ID: 200-73398-5

Date Collected: 05/03/24 10:40 Date Received: 05/04/24 09:45

Sample Container: Summa Canister 1L

Client: Arcadis U.S., Inc.

Project/Site: Crosman Vapor

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.78	U	0.78	0.21	ppb v/v			05/09/24 20:34	10
1,1-Dichloroethene	0.35	U	0.35	0.26	ppb v/v			05/09/24 20:34	10
Acetone	50	U	50	16	ppb v/v			05/09/24 20:34	10
Methylene Chloride	5.0	U	5.0	1.8	ppb v/v			05/09/24 20:34	10
trans-1,2-Dichloroethene	2.0	U	2.0	0.23	ppb v/v			05/09/24 20:34	10
1,1-Dichloroethane	2.0	U	2.0	0.25	ppb v/v			05/09/24 20:34	10
cis-1,2-Dichloroethene	10		0.50	0.21	ppb v/v			05/09/24 20:34	10
1,2-Dichloroethene, Total	10		4.0	0.21	ppb v/v			05/09/24 20:34	10
1,1,1-Trichloroethane	2.0	U	2.0	0.44	ppb v/v			05/09/24 20:34	10
Carbon tetrachloride	0.35	U	0.35	0.22	ppb v/v			05/09/24 20:34	10
Benzene	2.0	U	2.0	0.44	ppb v/v			05/09/24 20:34	10
Trichloroethene	320		0.35	0.25	ppb v/v			05/09/24 20:34	10
Toluene	1.3	J	2.0	0.62	ppb v/v			05/09/24 20:34	10
Tetrachloroethene	2.0	U	2.0	0.21	ppb v/v			05/09/24 20:34	10
Chlorobenzene	2.0	U	2.0	0.44	ppb v/v			05/09/24 20:34	10
m,p-Xylene	5.0	U	5.0	0.95	ppb v/v			05/09/24 20:34	10
Xylene, o-	2.0	U	2.0	0.63	ppb v/v			05/09/24 20:34	10
Bromoform	2.0	U	2.0	1.2	ppb v/v			05/09/24 20:34	10
1,1,2,2-Tetrachloroethane	2.0	U	2.0	0.43	ppb v/v			05/09/24 20:34	10
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	2.0	U	2.0	0.54	ug/m3			05/09/24 20:34	10
1,1-Dichloroethene	1.4	U	1.4	1.0	ug/m3			05/09/24 20:34	10
Acetone	120	U	120	38	ug/m3			05/09/24 20:34	10
Methylene Chloride	17	U	17	6.3	ug/m3			05/09/24 20:34	10
trans-1,2-Dichloroethene	7.9	U	7.9	0.91	ug/m3			05/09/24 20:34	10
1,1-Dichloroethane	8.1	U	8.1	1.0	ug/m3			05/09/24 20:34	10
cis-1,2-Dichloroethene	41		2.0	0.83	ug/m3			05/09/24 20:34	10
1,2-Dichloroethene, Total	40		16	0.83	ug/m3			05/09/24 20:34	10
1,1,1-Trichloroethane	11	U	11	2.4	ug/m3			05/09/24 20:34	10
Carbon tetrachloride	2.2	U	2.2	1.4	ug/m3			05/09/24 20:34	10
Benzene	6.4	U	6.4	1.4	ug/m3			05/09/24 20:34	10
Trichloroethene	1700		1.9	1.3	ug/m3			05/09/24 20:34	10
Toluene	4.7		7.5		ug/m3			05/09/24 20:34	10
Tetrachloroethene	14		14		ug/m3			05/09/24 20:34	10
Chlorobenzene	9.2	U	9.2		ug/m3			05/09/24 20:34	10
m,p-Xylene	22		22		ug/m3			05/09/24 20:34	10
••					ug/m3				10
Xylene, o-	8.7	U	8.7	2.7	uy/III3			05/09/24 20:34	10
Xylene, o- Bromoform	8.7 21		8. <i>7</i> 21		ug/m3			05/09/24 20:34	10

Date Collected: 05/03/24 10:45 Date Received: 05/04/24 09:45

Sample Container: Summa Canister 1L

Client Sample ID: POST-BLOWER EFF-05032024 Lab Sample ID: 200-73398-6 Matrix: Air

Method: EPA TO-15 - Volatile C	rganic Coi	mpounds i	n Ambient Air						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.78	U	0.78	0.21	ppb v/v			05/09/24 21:26	10
1,1-Dichloroethene	0.35	U	0.35	0.26	ppb v/v			05/09/24 21:26	10

Page 12 of 46

Matrix: Air

Eurofins Burlington

Client: Arcadis U.S., Inc. Job ID: 200-73398-1 Project/Site: Crosman Vapor SDG: 200-73398-1

Client Sample ID: POST-BLOWER EFF-05032024

Date Collected: 05/03/24 10:45 Date Received: 05/04/24 09:45

Sample Container: Summa Canister 1L

Lab Sample ID: 200-73398-6

Matrix: Air

6

Method: EPA TO-15 - Volatile Analyte	Result	Qualifier	RL	•	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	50	U	50	16	ppb v/v			05/09/24 21:26	10
Methylene Chloride	5.0	U	5.0	1.8	ppb v/v			05/09/24 21:26	10
trans-1,2-Dichloroethene	2.0	U	2.0	0.23	ppb v/v			05/09/24 21:26	10
1,1-Dichloroethane	2.0	U	2.0	0.25	ppb v/v			05/09/24 21:26	10
cis-1,2-Dichloroethene	4.1		0.50	0.21	ppb v/v			05/09/24 21:26	10
1,2-Dichloroethene, Total	4.1		4.0	0.21	ppb v/v			05/09/24 21:26	10
1,1,1-Trichloroethane	2.0	U	2.0	0.44	ppb v/v			05/09/24 21:26	10
Carbon tetrachloride	0.35	U	0.35	0.22	ppb v/v			05/09/24 21:26	10
Benzene	2.0	U	2.0	0.44	ppb v/v			05/09/24 21:26	10
Trichloroethene	140		0.35	0.25	ppb v/v			05/09/24 21:26	10
Toluene	2.0	U	2.0	0.62	ppb v/v			05/09/24 21:26	10
Tetrachloroethene	2.0	U	2.0	0.21	ppb v/v			05/09/24 21:26	10
Chlorobenzene	2.0	U	2.0	0.44	ppb v/v			05/09/24 21:26	10
m,p-Xylene	5.0	U	5.0	0.95	ppb v/v			05/09/24 21:26	10
Xylene, o-	2.0	U	2.0	0.63	ppb v/v			05/09/24 21:26	10
Bromoform	2.0	U	2.0	1.2	ppb v/v			05/09/24 21:26	10
1,1,2,2-Tetrachloroethane	2.0	U	2.0	0.43	ppb v/v			05/09/24 21:26	10
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	2.0	U	2.0	0.54	ug/m3			05/09/24 21:26	10
1,1-Dichloroethene	1.4	U	1.4	1.0	ug/m3			05/09/24 21:26	10
Acetone	120	U	120	38	ug/m3			05/09/24 21:26	10
Methylene Chloride	17	U	17	6.3	ug/m3			05/09/24 21:26	10
trans-1,2-Dichloroethene	7.9	U	7.9	0.91	ug/m3			05/09/24 21:26	10
1,1-Dichloroethane	8.1	U	8.1	1.0	ug/m3			05/09/24 21:26	10
cis-1,2-Dichloroethene	16		2.0	0.83	ug/m3			05/09/24 21:26	10
1,2-Dichloroethene, Total	16		16	0.83	ug/m3			05/09/24 21:26	10
1,1,1-Trichloroethane	11	U	11	2.4	ug/m3			05/09/24 21:26	10
Carbon tetrachloride	2.2	U	2.2	1.4	ug/m3			05/09/24 21:26	10
Benzene	6.4	U	6.4	1.4	ug/m3			05/09/24 21:26	10
Trichloroethene	740		1.9	1.3	ug/m3			05/09/24 21:26	10
Toluene	7.5	U	7.5	2.3	ug/m3			05/09/24 21:26	10
Tetrachloroethene	14	U	14	1.4	ug/m3			05/09/24 21:26	10
Chlorobenzene	9.2	U	9.2		ug/m3			05/09/24 21:26	10
m,p-Xylene	22	U	22		ug/m3			05/09/24 21:26	10
Xylene, o-	8.7	U	8.7		ug/m3			05/09/24 21:26	10
Bromoform	21	U	21		ug/m3			05/09/24 21:26	10
1,1,2,2-Tetrachloroethane		U	14		ug/m3			05/09/24 21:26	10

Client: Arcadis U.S., Inc. Job ID: 200-73398-1 Project/Site: Crosman Vapor SDG: 200-73398-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air

Lab Sample ID: MB 200-203886/5

Matrix: Air

Analysis Batch: 203886

Client Sample ID: Method Blank **Prep Type: Total/NA**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.078	U	0.078	0.021	ppb v/v			05/08/24 11:07	1
1,1-Dichloroethene	0.035	U	0.035	0.026	ppb v/v			05/08/24 11:07	1
Acetone	5.0	U	5.0	1.6	ppb v/v			05/08/24 11:07	1
Methylene Chloride	0.50	U	0.50	0.18	ppb v/v			05/08/24 11:07	1
trans-1,2-Dichloroethene	0.20	U	0.20	0.023	ppb v/v			05/08/24 11:07	1
1,1-Dichloroethane	0.20	U	0.20	0.025	ppb v/v			05/08/24 11:07	1
cis-1,2-Dichloroethene	0.050	U	0.050	0.021	ppb v/v			05/08/24 11:07	1
1,2-Dichloroethene, Total	0.40	U	0.40	0.021	ppb v/v			05/08/24 11:07	1
1,1,1-Trichloroethane	0.20	U	0.20	0.044	ppb v/v			05/08/24 11:07	1
Carbon tetrachloride	0.035	U	0.035	0.022	ppb v/v			05/08/24 11:07	1
Benzene	0.20	U	0.20	0.044	ppb v/v			05/08/24 11:07	1
Trichloroethene	0.035	U	0.035	0.025	ppb v/v			05/08/24 11:07	1
Toluene	0.20	U	0.20	0.062	ppb v/v			05/08/24 11:07	1
Tetrachloroethene	0.20	U	0.20	0.021	ppb v/v			05/08/24 11:07	1
Chlorobenzene	0.20	U	0.20	0.044	ppb v/v			05/08/24 11:07	1
m,p-Xylene	0.50	U	0.50	0.095	ppb v/v			05/08/24 11:07	1
Xylene, o-	0.20	U	0.20	0.063	ppb v/v			05/08/24 11:07	1
Bromoform	0.20	U	0.20	0.12	ppb v/v			05/08/24 11:07	1
1,1,2,2-Tetrachloroethane	0.20	U	0.20	0.043	ppb v/v			05/08/24 11:07	1

1, 1,2,2-1611401101061114116	0.20	U	0.20	0.043	ppb v/v			03/00/24 11.07	
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.20	U	0.20	0.054	ug/m3			05/08/24 11:07	1
1,1-Dichloroethene	0.14	U	0.14	0.10	ug/m3			05/08/24 11:07	1
Acetone	12	U	12	3.8	ug/m3			05/08/24 11:07	1
Methylene Chloride	1.7	U	1.7	0.63	ug/m3			05/08/24 11:07	1
trans-1,2-Dichloroethene	0.79	U	0.79	0.091	ug/m3			05/08/24 11:07	1
1,1-Dichloroethane	0.81	U	0.81	0.10	ug/m3			05/08/24 11:07	1
cis-1,2-Dichloroethene	0.20	U	0.20	0.083	ug/m3			05/08/24 11:07	1
1,2-Dichloroethene, Total	1.6	U	1.6	0.083	ug/m3			05/08/24 11:07	1
1,1,1-Trichloroethane	1.1	U	1.1	0.24	ug/m3			05/08/24 11:07	1
Carbon tetrachloride	0.22	U	0.22	0.14	ug/m3			05/08/24 11:07	1
Benzene	0.64	U	0.64	0.14	ug/m3			05/08/24 11:07	1
Trichloroethene	0.19	U	0.19	0.13	ug/m3			05/08/24 11:07	1
Toluene	0.75	U	0.75	0.23	ug/m3			05/08/24 11:07	1
Tetrachloroethene	1.4	U	1.4	0.14	ug/m3			05/08/24 11:07	1
Chlorobenzene	0.92	U	0.92	0.20	ug/m3			05/08/24 11:07	1
m,p-Xylene	2.2	U	2.2	0.41	ug/m3			05/08/24 11:07	1
Xylene, o-	0.87	U	0.87	0.27	ug/m3			05/08/24 11:07	1
Bromoform	2.1	U	2.1	1.2	ug/m3			05/08/24 11:07	1
1,1,2,2-Tetrachloroethane	1.4	U	1.4	0.30	ug/m3			05/08/24 11:07	1

Lab Sample ID: LCS 200-203886/3

Matrix: Air

Analysis Batch: 203886

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Vinyl chloride	10.0	13.4		ppb v/v		134	61 - 135	
1,1-Dichloroethene	10.0	8.68		ppb v/v		87	68 - 120	
Acetone	10.0	11.3		ppb v/v		113	54 - 154	

Page 14 of 46

Client: Arcadis U.S., Inc. Job ID: 200-73398-1 Project/Site: Crosman Vapor SDG: 200-73398-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: LCS 200-203886/3

Matrix: Air

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 203886 Spike LCS LCS %Rec

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methylene Chloride	10.0	11.6		ppb v/v		116	59 - 137	
trans-1,2-Dichloroethene	10.0	10.2		ppb v/v		102	69 - 137	
1,1-Dichloroethane	10.0	10.1		ppb v/v		101	66 - 130	
cis-1,2-Dichloroethene	10.0	8.51		ppb v/v		85	72 - 121	
1,1,1-Trichloroethane	10.0	9.45		ppb v/v		94	72 - 127	
Carbon tetrachloride	10.0	9.55		ppb v/v		95	71 - 133	
Benzene	10.0	9.66		ppb v/v		97	73 - 119	
Trichloroethene	10.0	9.31		ppb v/v		93	73 - 122	
Toluene	10.0	9.46		ppb v/v		95	75 - 122	
Tetrachloroethene	10.0	8.94		ppb v/v		89	70 - 125	
Chlorobenzene	10.0	9.74		ppb v/v		97	76 - 119	
m,p-Xylene	20.0	19.9		ppb v/v		100	76 - 121	
Xylene, o-	10.0	9.55		ppb v/v		96	73 - 123	
Bromoform	10.0	9.48		ppb v/v		95	53 - 149	
1,1,2,2-Tetrachloroethane	10.0	10.6		ppb v/v		106	74 - 126	
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Vinyl chloride		34.3		ug/m3		134	61 - 135	
1,1-Dichloroethene	40	34.4		ug/m3		87	68 - 120	
Acetone	24	26.9		ug/m3		113	54 - 154	
Methylene Chloride	35	40.3		ug/m3		116	59 - 137	
trans-1,2-Dichloroethene	40	40.5		ug/m3		102	69 - 137	
1,1-Dichloroethane	40	40.7		ug/m3		101	66 - 130	
cis-1,2-Dichloroethene	40	33.7		ug/m3		85	72 - 121	
1,1,1-Trichloroethane	55	51.5		ug/m3		94	72 - 127	
Carbon tetrachloride	63	60.1		ug/m3		95	71 - 133	
Benzene	32	30.9		ug/m3		97	73 - 119	
Trichloroethene	54	50.1		ug/m3		93	73 - 122	
Toluene	38	35.6		ug/m3		95	75 - 122	
Tetrachloroethene	68	60.6		ug/m3		89	70 - 125	
Chlorobenzene	46	44.8		ug/m3		97	76 - 119	
m,p-Xylene	87	86.6		ug/m3		100	76 - 121	
Xylene, o-		44.5		ug/m3		96	73 - 123	
	43	41.5		ug/III3		30	10-120	
Bromoform	43 100	41.5 98.0		ug/m3		95	53 - 149	

Lab Sample ID: MB 200-203937/5

Matrix: Air

Analysis Batch: 203937

Client Sample ID: Method Blank

Prep Type: Total/NA

	IAID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.078	U	0.078	0.021	ppb v/v			05/09/24 10:36	1
1,1-Dichloroethene	0.035	U	0.035	0.026	ppb v/v			05/09/24 10:36	1
Acetone	5.0	U	5.0	1.6	ppb v/v			05/09/24 10:36	1
Methylene Chloride	0.50	U	0.50	0.18	ppb v/v			05/09/24 10:36	1
trans-1,2-Dichloroethene	0.20	U	0.20	0.023	ppb v/v			05/09/24 10:36	1
1,1-Dichloroethane	0.20	U	0.20	0.025	ppb v/v			05/09/24 10:36	1
cis-1,2-Dichloroethene	0.050	U	0.050	0.021	ppb v/v			05/09/24 10:36	1
1,2-Dichloroethene, Total	0.40	U	0.40	0.021	ppb v/v			05/09/24 10:36	1
The second secon									

Page 15 of 46

Client: Arcadis U.S., Inc. Job ID: 200-73398-1 Project/Site: Crosman Vapor SDG: 200-73398-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: MB 200-203937/5

Matrix: Air

Analysis Batch: 203937

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	IVIB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.20	U	0.20	0.044	ppb v/v			05/09/24 10:36	1
Carbon tetrachloride	0.035	U	0.035	0.022	ppb v/v			05/09/24 10:36	1
Benzene	0.20	U	0.20	0.044	ppb v/v			05/09/24 10:36	1
Trichloroethene	0.035	U	0.035	0.025	ppb v/v			05/09/24 10:36	1
Toluene	0.20	U	0.20	0.062	ppb v/v			05/09/24 10:36	1
Tetrachloroethene	0.20	U	0.20	0.021	ppb v/v			05/09/24 10:36	1
Chlorobenzene	0.20	U	0.20	0.044	ppb v/v			05/09/24 10:36	1
m,p-Xylene	0.50	U	0.50	0.095	ppb v/v			05/09/24 10:36	1
Xylene, o-	0.20	U	0.20	0.063	ppb v/v			05/09/24 10:36	1
Bromoform	0.20	U	0.20	0.12	ppb v/v			05/09/24 10:36	1
1,1,2,2-Tetrachloroethane	0.20	U	0.20	0.043	ppb v/v			05/09/24 10:36	1

Bromoform	0.20	U	0.20	0.12	ppb v/v			05/09/24 10:36	1
1,1,2,2-Tetrachloroethane	0.20	U	0.20	0.043	ppb v/v			05/09/24 10:36	1
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.20	U	0.20	0.054	ug/m3			05/09/24 10:36	1
1,1-Dichloroethene	0.14	U	0.14	0.10	ug/m3			05/09/24 10:36	1
Acetone	12	U	12	3.8	ug/m3			05/09/24 10:36	1
Methylene Chloride	1.7	U	1.7	0.63	ug/m3			05/09/24 10:36	1
trans-1,2-Dichloroethene	0.79	U	0.79	0.091	ug/m3			05/09/24 10:36	1
1,1-Dichloroethane	0.81	U	0.81	0.10	ug/m3			05/09/24 10:36	1
cis-1,2-Dichloroethene	0.20	U	0.20	0.083	ug/m3			05/09/24 10:36	1
1,2-Dichloroethene, Total	1.6	U	1.6	0.083	ug/m3			05/09/24 10:36	1
1,1,1-Trichloroethane	1.1	U	1.1	0.24	ug/m3			05/09/24 10:36	1
Carbon tetrachloride	0.22	U	0.22	0.14	ug/m3			05/09/24 10:36	1
Benzene	0.64	U	0.64	0.14	ug/m3			05/09/24 10:36	1
Trichloroethene	0.19	U	0.19	0.13	ug/m3			05/09/24 10:36	1
Toluene	0.75	U	0.75	0.23	ug/m3			05/09/24 10:36	1
Tetrachloroethene	1.4	U	1.4	0.14	ug/m3			05/09/24 10:36	1
Chlorobenzene	0.92	U	0.92	0.20	ug/m3			05/09/24 10:36	1
m,p-Xylene	2.2	U	2.2	0.41	ug/m3			05/09/24 10:36	1
Xylene, o-	0.87	U	0.87	0.27	ug/m3			05/09/24 10:36	1
Bromoform	2.1	U	2.1	1.2	ug/m3			05/09/24 10:36	1
1,1,2,2-Tetrachloroethane	1.4	U	1.4	0.30	ug/m3			05/09/24 10:36	1
_					-				

Lab Sample ID: LCS 200-203937/3

Matrix: Air

Analysis Batch: 203937

Client Sample ID: Lab Control Sample Prep Type: Total/NA

•	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Vinyl chloride	10.0	10.6		ppb v/v		106	61 - 135
1,1-Dichloroethene	10.0	10.0		ppb v/v		100	68 - 120
Acetone	10.0	10.7		ppb v/v		107	54 - 154
Methylene Chloride	10.0	10.7		ppb v/v		107	59 - 137
trans-1,2-Dichloroethene	10.0	10.7		ppb v/v		107	69 - 137
1,1-Dichloroethane	10.0	10.5		ppb v/v		105	66 - 130
cis-1,2-Dichloroethene	10.0	10.2		ppb v/v		102	72 - 121
1,1,1-Trichloroethane	10.0	9.50		ppb v/v		95	72 - 127
Carbon tetrachloride	10.0	9.80		ppb v/v		98	71 - 133
Benzene	10.0	9.99		ppb v/v		100	73 - 119
Trichloroethene	10.0	9.61		ppb v/v		96	73 - 122

Page 16 of 46

Client: Arcadis U.S., Inc. Job ID: 200-73398-1 SDG: 200-73398-1 Project/Site: Crosman Vapor

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: LCS 200-203937/3

Matrix: Air

Analysis Batch: 203937

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits Toluene 10.0 10.2 102 75 - 122 ppb v/v ppb v/v Tetrachloroethene 10.0 9.59 96 70 - 125 100 76 - 119 Chlorobenzene 10.0 10.0 ppb v/v m,p-Xylene 20.0 20.3 ppb v/v 102 76 - 121 10.0 10.1 101 73 - 123 Xylene, oppb v/v Bromoform 10.0 9.96 ppb v/v 100 53 - 149 1,1,2,2-Tetrachloroethane 10.0 10.3 ppb v/v 103 74 - 126 LCS LCS Spike %Rec Result Qualifier Limits Analyte Added Unit D %Rec Vinyl chloride 26 27.1 106 61 - 135 ug/m3 1,1-Dichloroethene 40 39.7 100 68 - 120 ug/m3 Acetone 24 25.4 107 ug/m3 54 - 154 Methylene Chloride 35 37.1 ug/m3 107 59 - 137 trans-1,2-Dichloroethene 40 107 42.4 ug/m3 69 - 137 1.1-Dichloroethane 40 42.5 ug/m3 105 66 - 130 cis-1,2-Dichloroethene 40 40.3 102 72 - 121 ug/m3 55 1,1,1-Trichloroethane 51.8 ug/m3 95 72 - 127 Carbon tetrachloride 63 61.6 ug/m3 98 71 - 133 32 100 73 - 119 Benzene 31.9 ug/m3 Trichloroethene 54 51.7 ug/m3 96 73 - 122 38 Toluene 38.3 ug/m3 102 75 - 122 Tetrachloroethene 68 65.0 ug/m3 96 70 - 125 ug/m3 76 - 119 Chlorobenzene 46 46.2 100 m,p-Xylene 87 88.3 ug/m3 102 76 - 121 43 43.6 101 73 - 123 Xylene, oug/m3 Bromoform 100 103 ug/m3 100 53 - 149 1,1,2,2-Tetrachloroethane 69 70.8 ug/m3 103 74 - 126

Lab Sample ID: MB 200-204037/5

Matrix: Air

Analysis Batch: 204037

Client Sample ID: Method Blank

Prep Type: Total/NA

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.078	U	0.078	0.021	ppb v/v			05/13/24 10:38	1
1,1-Dichloroethene	0.035	U	0.035	0.026	ppb v/v			05/13/24 10:38	1
Acetone	5.0	U	5.0	1.6	ppb v/v			05/13/24 10:38	1
Methylene Chloride	0.50	U	0.50	0.18	ppb v/v			05/13/24 10:38	1
trans-1,2-Dichloroethene	0.20	U	0.20	0.023	ppb v/v			05/13/24 10:38	1
1,1-Dichloroethane	0.20	U	0.20	0.025	ppb v/v			05/13/24 10:38	1
cis-1,2-Dichloroethene	0.050	U	0.050	0.021	ppb v/v			05/13/24 10:38	1
1,2-Dichloroethene, Total	0.40	U	0.40	0.021	ppb v/v			05/13/24 10:38	1
1,1,1-Trichloroethane	0.20	U	0.20	0.044	ppb v/v			05/13/24 10:38	1
Carbon tetrachloride	0.035	U	0.035	0.022	ppb v/v			05/13/24 10:38	1
Benzene	0.20	U	0.20	0.044	ppb v/v			05/13/24 10:38	1
Trichloroethene	0.035	U	0.035	0.025	ppb v/v			05/13/24 10:38	1
Toluene	0.20	U	0.20	0.062	ppb v/v			05/13/24 10:38	1
Tetrachloroethene	0.20	U	0.20	0.021	ppb v/v			05/13/24 10:38	1
Chlorobenzene	0.20	U	0.20	0.044	ppb v/v			05/13/24 10:38	1
m,p-Xylene	0.50	U	0.50	0.095	ppb v/v			05/13/24 10:38	1

Eurofins Burlington

Page 17 of 46

Client: Arcadis U.S., Inc. Job ID: 200-73398-1 Project/Site: Crosman Vapor SDG: 200-73398-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

1.4 U

Lab Sample ID: MB 200-204037/5

Matrix: Air

Analysis Batch: 204037

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylene, o-	0.20	U	0.20	0.063	ppb v/v			05/13/24 10:38	1
Bromoform	0.20	U	0.20	0.12	ppb v/v			05/13/24 10:38	1
1,1,2,2-Tetrachloroethane	0.20	U	0.20	0.043	ppb v/v			05/13/24 10:38	1
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.20	U	0.20	0.054	ug/m3			05/13/24 10:38	1
1,1-Dichloroethene	0.14	U	0.14	0.10	ug/m3			05/13/24 10:38	1
Acetone	12	U	12	3.8	ug/m3			05/13/24 10:38	1
Methylene Chloride	1.7	U	1.7	0.63	ug/m3			05/13/24 10:38	1
trans-1,2-Dichloroethene	0.79	U	0.79	0.091	ug/m3			05/13/24 10:38	1
1,1-Dichloroethane	0.81	U	0.81	0.10	ug/m3			05/13/24 10:38	1
cis-1,2-Dichloroethene	0.20	U	0.20	0.083	ug/m3			05/13/24 10:38	1
1,2-Dichloroethene, Total	1.6	U	1.6	0.083	ug/m3			05/13/24 10:38	1
1,1,1-Trichloroethane	1.1	U	1.1	0.24	ug/m3			05/13/24 10:38	1
Carbon tetrachloride	0.22	U	0.22	0.14	ug/m3			05/13/24 10:38	1
Benzene	0.64	U	0.64	0.14	ug/m3			05/13/24 10:38	1
Trichloroethene	0.19	U	0.19	0.13	ug/m3			05/13/24 10:38	1
Toluene	0.75	U	0.75	0.23	ug/m3			05/13/24 10:38	1
Tetrachloroethene	1.4	U	1.4	0.14	ug/m3			05/13/24 10:38	1
Chlorobenzene	0.92	U	0.92	0.20	ug/m3			05/13/24 10:38	1
m,p-Xylene	2.2	U	2.2	0.41	ug/m3			05/13/24 10:38	1
Xylene, o-	0.87	U	0.87	0.27	ug/m3			05/13/24 10:38	1
Bromoform	2.1	U	2.1	1.2	ug/m3			05/13/24 10:38	1

1.4

0.30 ug/m3

Lab Sample ID: LCS 200-204037/4

Matrix: Air

Analysis Batch: 204037

1,1,2,2-Tetrachloroethane

Client Sample II	D: Lab Control Sample
	Prep Type: Total/NA

05/13/24 10:38

	LCS	LCS				%Rec
Added	Result	Qualifier	Unit	D	%Rec	Limits
10.0	10.7		ppb v/v		107	61 - 135
10.0	9.74		ppb v/v		97	68 - 120
10.0	10.6		ppb v/v		106	54 - 154
10.0	10.4		ppb v/v		104	59 - 137
10.0	10.6		ppb v/v		106	69 - 137
10.0	10.3		ppb v/v		103	66 - 130
10.0	10.0		ppb v/v		100	72 - 121
10.0	9.43		ppb v/v		94	72 - 127
10.0	9.82		ppb v/v		98	71 - 133
10.0	9.96		ppb v/v		100	73 - 119
10.0	9.58		ppb v/v		96	73 - 122
10.0	10.2		ppb v/v		102	75 - 122
10.0	9.50		ppb v/v		95	70 - 125
10.0	10.1		ppb v/v		101	76 - 119
20.0	20.5		ppb v/v		102	76 - 121
10.0	10.2		ppb v/v		102	73 - 123
10.0	11.7		ppb v/v		117	53 - 149
10.0	10.6		ppb v/v		106	74 - 126
	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Added Result 10.0 10.7 10.0 9.74 10.0 10.6 10.0 10.4 10.0 10.3 10.0 10.0 10.0 9.43 10.0 9.82 10.0 9.58 10.0 10.2 10.0 9.50 10.0 10.1 20.0 20.5 10.0 10.2 10.0 10.2 10.0 10.2 10.0 10.2 10.0 10.2 10.0 10.2 10.0 10.2	Added Result Qualifier 10.0 10.7 10.0 9.74 10.0 10.6 10.0 10.4 10.0 10.6 10.0 10.3 10.0 10.0 10.0 9.43 10.0 9.82 10.0 9.58 10.0 10.2 10.0 9.50 10.0 10.1 20.0 20.5 10.0 10.2 10.0 11.7	Added Result Qualifier Unit 10.0 10.7 ppb v/v 10.0 9.74 ppb v/v 10.0 10.6 ppb v/v 10.0 10.4 ppb v/v 10.0 10.6 ppb v/v 10.0 10.3 ppb v/v 10.0 10.0 ppb v/v 10.0 9.43 ppb v/v 10.0 9.82 ppb v/v 10.0 9.96 ppb v/v 10.0 9.58 ppb v/v 10.0 9.50 ppb v/v 10.0 10.1 ppb v/v 20.0 20.5 ppb v/v 10.0 10.2 ppb v/v 10.0 10.2 ppb v/v	Added Result Qualifier Unit D 10.0 10.7 ppb v/v ppb v/v 10.0 9.74 ppb v/v 10.0 10.6 ppb v/v 10.0 10.4 ppb v/v 10.0 10.6 ppb v/v 10.0 10.3 ppb v/v 10.0 9.43 ppb v/v 10.0 9.82 ppb v/v 10.0 9.96 ppb v/v 10.0 9.58 ppb v/v 10.0 10.2 ppb v/v 10.0 9.50 ppb v/v 10.0 10.1 ppb v/v 20.0 20.5 ppb v/v 10.0 10.2 ppb v/v 10.0 10.2 ppb v/v	Added Result Qualifier Unit D %Rec 10.0 10.7 ppb v/v 107 10.0 9.74 ppb v/v 97 10.0 10.6 ppb v/v 106 10.0 10.4 ppb v/v 104 10.0 10.6 ppb v/v 106 10.0 10.3 ppb v/v 103 10.0 10.0 ppb v/v 100 10.0 9.43 ppb v/v 94 10.0 9.82 ppb v/v 98 10.0 9.96 ppb v/v 100 10.0 9.58 ppb v/v 96 10.0 10.2 ppb v/v 102 10.0 10.1 ppb v/v 101 20.0 20.5 ppb v/v 102 10.0 10.2 ppb v/v 102 10.0 10.1 ppb v/v 102 10.0 10.2 ppb v/v 102 10.0

Page 18 of 46

Client: Arcadis U.S., Inc. Job ID: 200-73398-1 Project/Site: Crosman Vapor SDG: 200-73398-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Vinyl chloride		27.3		ug/m3		107	61 - 135	
1,1-Dichloroethene	40	38.6		ug/m3		97	68 - 120	
Acetone	24	25.1		ug/m3		106	54 - 154	
Methylene Chloride	35	36.3		ug/m3		104	59 - 137	
trans-1,2-Dichloroethene	40	42.2		ug/m3		106	69 - 137	
1,1-Dichloroethane	40	41.7		ug/m3		103	66 - 130	
cis-1,2-Dichloroethene	40	39.7		ug/m3		100	72 - 121	
1,1,1-Trichloroethane	55	51.4		ug/m3		94	72 - 127	
Carbon tetrachloride	63	61.7		ug/m3		98	71 - 133	
Benzene	32	31.8		ug/m3		100	73 - 119	
Trichloroethene	54	51.5		ug/m3		96	73 - 122	
Toluene	38	38.3		ug/m3		102	75 - 122	
Tetrachloroethene	68	64.5		ug/m3		95	70 - 125	
Chlorobenzene	46	46.5		ug/m3		101	76 - 119	
m,p-Xylene	87	88.9		ug/m3		102	76 - 121	
Xylene, o-	43	44.1		ug/m3		102	73 - 123	
Bromoform	100	121		ug/m3		117	53 - 149	
1,1,2,2-Tetrachloroethane	69	72.9		ug/m3		106	74 - 126	

QC Association Summary

Client: Arcadis U.S., Inc. Job ID: 200-73398-1 Project/Site: Crosman Vapor SDG: 200-73398-1

Air - GC/MS VOA

Analysis Batch: 203886

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
200-73398-1	SDS-1-05032024	Total/NA	Air	TO-15	
200-73398-1 - DL	SDS-1-05032024	Total/NA	Air	TO-15	
200-73398-2	SDS-2-05032024	Total/NA	Air	TO-15	
200-73398-2 - DL	SDS-2-05032024	Total/NA	Air	TO-15	
200-73398-3	COMBINED INFLUENT-05032024	Total/NA	Air	TO-15	
200-73398-3 - DL	COMBINED INFLUENT-05032024	Total/NA	Air	TO-15	
MB 200-203886/5	Method Blank	Total/NA	Air	TO-15	
LCS 200-203886/3	Lab Control Sample	Total/NA	Air	TO-15	

Analysis Batch: 203937

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
200-73398-4 - DL	PRE-VPGAC4-05032024	Total/NA	Air	TO-15	
200-73398-5	POST-DILUTION EFF-05032024	Total/NA	Air	TO-15	
200-73398-6	POST-BLOWER EFF-05032024	Total/NA	Air	TO-15	
MB 200-203937/5	Method Blank	Total/NA	Air	TO-15	
LCS 200-203937/3	Lab Control Sample	Total/NA	Air	TO-15	

Analysis Batch: 204037

Lab Sample ID 200-73398-4	Client Sample ID PRE-VPGAC4-05032024	Prep Type Total/NA	Matrix Air	Method TO-15	Prep Batch
MB 200-204037/5	Method Blank	Total/NA	Air	TO-15	
LCS 200-204037/4	Lab Control Sample	Total/NA	Air	TO-15	

5/17/2024

Client: Arcadis U.S., Inc. Job ID: 200-73398-1 Project/Site: Crosman Vapor SDG: 200-73398-1

Client Sample ID: SDS-1-05032024

Lab Sample ID: 200-73398-1 Date Collected: 05/03/24 10:20 Date Received: 05/04/24 09:45

Matrix: Air

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	TO-15		40	203886	K1P	EET BUR	05/08/24 22:36
Total/NA	Analysis	TO-15	DL	200	203886	K1P	EET BUR	05/08/24 23:32

Client Sample ID: SDS-2-05032024

Lab Sample ID: 200-73398-2 Date Collected: 05/03/24 10:25

Matrix: Air

Date Received: 05/04/24 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	TO-15		20	203886	K1P	EET BUR	05/09/24 00:27
Total/NA	Analysis	TO-15	DL	100	203886	K1P	EET BUR	05/09/24 01:23

Client Sample ID: COMBINED INFLUENT-05032024

Lab Sample ID: 200-73398-3

Date Collected: 05/03/24 10:30 Matrix: Air

Date Received: 05/04/24 09:45

		Batch	Batch		Dilution	Batch			Prepared
1	Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
=	Total/NA	Analysis	TO-15		20	203886	K1P	EET BUR	05/09/24 04:11
-	Total/NA	Analysis	TO-15	DL	100	203886	K1P	EET BUR	05/09/24 05:07

Client Sample ID: PRE-VPGAC4-05032024

Lab Sample ID: 200-73398-4

Date Collected: 05/03/24 10:35 Matrix: Air

Date Received: 05/04/24 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	TO-15	DL	15	203937	K1P	EET BUR	05/09/24 18:47
Total/NA	Analysis	TO-15		10	204037	K1P	EET BUR	05/13/24 13:42

Client Sample ID: POST-DILUTION EFF-05032024 Lab Sample ID: 200-73398-5

Date Collected: 05/03/24 10:40

Date Received: 05/04/24 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	TO-15		10	203937	K1P	EET BUR	05/09/24 20:34

Client Sample ID: POST-BLOWER EFF-05032024 Lab Sample ID: 200-73398-6

Date Collected: 05/03/24 10:45 Matrix: Air

Date Received: 05/04/24 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	TO-15		10	203937	K1P	EET BUR	05/09/24 21:26

Laboratory References:

EET BUR = Eurofins Burlington, 530 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

Eurofins Burlington

Page 21 of 46

Accreditation/Certification Summary

Client: Arcadis U.S., Inc. Job ID: 200-73398-1 Project/Site: Crosman Vapor SDG: 200-73398-1

Laboratory: Eurofins Burlington

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority New York	Progra NELAF		Identification Number 10391	Expiration Date 03-31-25
The following analyte	•	•	not certified by the governing author	ity. This list may includ
for which the agency	does not offer certification	l.		
for which the agency Analysis Method	does not offer certification Prep Method	Matrix	Analyte	

Method Summary

Client: Arcadis U.S., Inc. Project/Site: Crosman Vapor Job ID: 200-73398-1

SDG: 200-73398-1

Method	Method Description	Protocol	Laboratory
TO-15	Volatile Organic Compounds in Ambient Air	EPA	EET BUR

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

EET BUR = Eurofins Burlington, 530 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

Sample Summary

Client: Arcadis U.S., Inc. Project/Site: Crosman Vapor Job ID: 200-73398-1

SDG: 200-73398-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
200-73398-1	SDS-1-05032024	Air	05/03/24 10:20	05/04/24 09:45	Air Canister (1-Liter) #6946
200-73398-2	SDS-2-05032024	Air	05/03/24 10:25	05/04/24 09:45	Air Canister (1-Liter) #3583
200-73398-3	COMBINED INFLUENT-05032024	Air	05/03/24 10:30	05/04/24 09:45	Air Canister (1-Liter) #4656
200-73398-4	PRE-VPGAC4-05032024	Air	05/03/24 10:35	05/04/24 09:45	Air Canister (1-Liter) #4648
200-73398-5	POST-DILUTION EFF-05032024	Air	05/03/24 10:40	05/04/24 09:45	Air Canister (1-Liter) #8516
200-73398-6	POST-BLOWER EFF-05032024	Air	05/03/24 10:45	05/04/24 09:45	Air Canister (1-Liter) #34000915

Other (Please specify in notes section)

Ofher (Please specify in notes section)

ပ္ပ

of 1

TestAmerica Analytical Testing Corp assumes no liability with respect to the collection and shipment of these samples

Samples Collected By: Bailey Kudla-Williams

Canister Samples Chain of Custody Record

Eurofins TestAmerica Burlington

30 Community Drive

Surte 11

Soil Gas or Sub-slab Vapor

Landfill Gas

Ambient Air

Indoor Air

Sample Type

9461-G MTSA EPA 25C

TO-15 (Standard)

EPA 3C

Apr-OT

Canister ID

Flow Controller

Vacuum in Field, 'Hg

Canister Vacuum in Field, "Hg (Start)

(Stop) 9

Time Stop 10,00

Sample Date(s) | Time Start

Sample Identification

SDS-1-05032024 SDS-2-05032024 Combined Influent-05032024

Post-Dilution Eff-05032024 Post-Blower Eff-05032024

Pre-VPGAC4-05032024

5/3/2024 5/3/2024 5/3/2024 5/3/2024 5/3/2024 5/3/2024

- 28 - 29

Canister

Analysis Turnaround Time

Email: Aaron.Richardson@arcadis.com

Address: 100 Chestnut Street Suite 1020

Client Contact Information

Company: Arcadis

City/State/Zip: Rochester, NY 14604 Phone: 585-662-4057

Project Name: Crosman Corporation

Site/Location: East Bloomfield, NY

PO #: 30005202.12

Site Contact: Bailey Kudla-Williams Tel: 805-501-8053

Project Manager: Aaron Richardson

fax 802-660-1919

South Burlington, VT 05403-6809

phone 802-660-1990

Phone: 585-662-4024

Standard (Specify): 10-Day

Rush (Specify)

× × × × ×

3583 4656 8494

16.5

1025 1030

9,

-29 129

1035

 \times

0946

× \times × × × ×

Condition:

Opened by:

Shipper Name:

Pap Ose Only

Received by: Received by:

13

52:19 Was 1/22

Samples Received by

1200

74

Date/Time:

Samples Relinquished by:

Relinquished by:

Bailey Kudla-Williams Samples Shipped by:

Date/Time: Date/Time

Pressure (inches of Hg)

200-73398 Chain of Custody

Temperature (Fahrenheit)

00

65F 65F

Stop Start

Interior

Ambient

65

Special Instructions/QC Requirements & Comments: Site Specific Analyte List of 16 VOCs

34000915

4

-28,5

10 45

۹ 9

-29

0401

8516

Ambient

Interior

Start Stop

. 16

Login Sample Receipt Checklist

 Client: Arcadis U.S., Inc.
 Job Number: 200-73398-1

 SDG Number: 200-73398-1

Login Number: 73398 List Source: Eurofins Burlington

List Number: 1

Creator: Khudaier, Zahraa

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	2392920, 921
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	Thermal preservation not required.
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	N/A	Thermal preservation not required.
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	N/A	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	

True

N/A

3

4

_

_

9

11

13

-

16

Samples do not require splitting or compositing.

Residual Chlorine Checked.

15

200-72871-A-11 3400803 Location: Air-Storage Bottle: Summa Canister 1L Sampled: 3/31/2024 12:00 AM

200-1865487

72871 #11 A Air-Storag

Loc: 200

U	System ID Max DF# # Cycles Cleaning Start Date/T Oven 3/4 10 32 3/31/2024 1/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3	# Cycles Cleaning St 3/31/2024	# Cycles 3/ 32 3/	3/	ning Sta	E 7	E 2	System Sta	Canister Cleaning & Pre-Shipment Leak Test ime System Start Temp(s): Technician 223 24 SML Initial Bording Initial Bording	Leak Test Tech	est Technician SML	Can Size 1 liter		o :	Certification Type: batch	/be:
G26 L/(L4/by 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	rinal (psia) Diff.³	rinal (psia) Diff.³	Diff. ³	Diff. ³	ĒĖ	Final ("Hg)	Gauge:	İ	Initial Reading Time:		Temp:	Gauge:	Fir Date:	nal Reading Time:	- 1	Temp:
G26	ć	3 -03 @	5	0	306	N I	G26			j	ر د	G26	hd/57/17		-	,
G26	6878 - O 3 (C) - C) 6912	00	00	98			626			_		626				
G26	1.4	Tr .	Tr .				GZ6 GZ6					G26 G26				
G26	4648 -03 Ø			0		1	G26					G26		di cognitico nas		-
G26	8516 -03			$\mathcal{A}_{A}}}}}}}}}}$			G26				3 0100	929	Profession garage.			
G26 G26 G26 G26 G26 G26 G26 G26 A	693003 2	0° 20-	-02 °0	Q			G26					G26		·		
readings must be at least 24 hours apart. Date: Secondary Review A Limited Review Date H/3/2H TPB	6849	502 8	10%	2		\dashv	G26					9Z9		· · · · · · · · · · · · · · · · · · ·		•
readings must be at least 24 hours apart. Date: Secondary Review Limited Review Date Review H/3/24 TPB	702	702	7	2			G26					G26				
readings must be at least 24 hours apart. Date: Secondary Review 4 Limited Review Date H13/24 TPB	34002403 / -03 / 0	7 -03	~			_	G26	7		1		G26	-			
readings must be at least 24 hours apart. Date: Secondary Review 4 Limited Review Date Review H/3/2 H TPB	34000803 -05 -03 0	-050-	-03 0				G26	(32)	00/5/	V	21.0	G26				***************************************
readings must be at least 24 hours apart. Date: Secondary Review Limited Review Date $H3/2H$	Batch Certification: The reading is taken on the "batch" canister and this ve	on: The reading is taken on the "batch" can ster and this ve	ig is taken on the "batch" canister and this va	on the "batch" canister and this va	canister and this va	this va	ozo Ilue is us	sed as the initia	pressure for a	all canisters ir	the batch.	925	<u></u> ₩	7		
Secondary Review 4 Limited Review Date 4/3/24	frame was not met, the PM must authorize shipment of caniste	not met, the PM must authorize shipment of caniste	PM must authorize shipment of caniste	st authorize shipment of caniste	pment of caniste	niste			PM Authoriza	tion	i. (z) i iessuie		סו חכ שו וכשא	8 8 100 11 11 11 11	part. Date:	
Secondary Review 4 Limited Review Date 4/3/24	Clean Canister	Clean Canister	Clean Canister	Clean Canister	Clean Canister	nister	Certific	ation Analysis	& Authorization	on of Releas	e to Inventory	Section Section 2	A Company of the Company			
Comments:	est Method: (24Q15 Routine 🗆 TO15 LL	+Q15 Routine ☐ T015 LL	e □ T015 LL	5 LL 22						Invento	ory Level			Seconda	ry Review	
XXXX	LI 7 10 L	Date C	7		1	1	Analy	st		7	က	4	Limited	Revie	w Date	Review
		50	50	5		+	 				XXXXX	THE STATE OF THE S		3m	4.1	640
Comments:																
Comments:										To receive the second						***************************************
Comments:				Advisor Control of the Control of th												
Comments:																
Comments:																
Comments:																
Comments:			The state of the s													
Comments:																
	nventory Level 1: Individual Canister Certification (TO15LL 0.01).	: Individual Canister Certification (TO15LL 0.01).	anister Certification (TO15LL 0.01).	ertification (TO15LL 0.01).	5LL 0.01).				Comments:							
	Inventory Level 2: Individual or Batch Certification (TO15 0.04 ppbv).	: Individual or Batch Certification (TO15 0.04 ppbv).	r Batch Certification (TO15 0.04 ppbv).	ertification (TO15 0.04 ppbv).	5 0.04 ppbv).	٠.		•								
	inventory Level 3: Individual or Batch Certification (TO15 0.2 ppbv).	: Individual or Batch Certification (TO15 0.2 ppbv).	r Batch Certification (TO15 0.2 ppbv).	ertification (TO15 0.2 ppbv).	5 0.2 ppbv).			·					!			

TestAmerica Burlington

Dup Tees/Vac gauges (enter IDs if included):

LV Sorm ID: FAI023:12 Revision Date: 12/18/2018

Loc: 200 72878

TestAmerica Burlington

Date:

Difference = Final Pressure - Initial Pressure . Acceptance Criteria: (1) The difference must be less than or equal to + 0.25psi. (2) Pressure readings must be at least 24 hours apart.

1210/2X

3

PM Authorization

Batch Certification: The reading is taken on the "batch" canister and this value is used as the initial pressure for all canisters in the batch

o ,

34001033

12

6386

34000993

9 7

C

If time frame was not met, the PM must authorize shipment of canister

Test Method: ☐TO15 Routine ☐ TO15 LL /タ な/ゝ

Date

34001033

Can ID

474

980

415124

Sequence

2

Temp:

Tech:

Time:

Date:

Gauge: **G26** G26 **G26 G26 G26** G26 **G26 G26** G26 G26 **G26 G26**

Temp:

Tech: S

Initial Reading Time:

6001

h2/2//5 Date:

Gauge: **G26** G26 **G26 G26 G26** G26 G26 **G26** G26 **G26** G26 **G26**

Final ("Hg)

Diff.³

Final (psia) 300

20 Initial¹ (psia)

Can ID 6788 6462 6487

Port

103

N က

5

0

c c7

34000915 34000906

> ß ဖ

4

5945 3688 3583 6383

C

 \mathcal{O} 0 0

œ თ

7

1/20/21/2

Final Reading

Certification Type:

Can Size 1 liter

Technician SML

System Start Temp(s):

Cleaning Start Date/Time

Cycles

Max DF#

System ID

Oven 1/2

23

1027

4/1/2024

Pre-Shipment Clean Canister Certification Report

batch

200-72878-A-12 34001033 Location: Air-Storage Bottle: Summa Canister 1L Sampled: 4/1/2024 12:00 AM

Air-Storag 200-1865647 Revie B Secondary Review Review Date 12 7 Limited Clean Canister Certification Analysis & Authorization of Release to Inventory XXXXX Inventory Level Comments: Analyst nventory Level 1: Individual Canister Certification (TO15LL 0.01). N

Inventory Level 2: Individual or Batch Certification (TO15 0.04 ppbv). nventory Level 3: Individual or Batch Certification (TO15 0.2 ppbv). Inventory Level Limited: Canisters may only be used for certain projects.

ط Dup Tees/Vac gauges (enter IDs if included):

7. Gorn ID: FAI023:12 Revision Date: 12/18/2018

FORM I AIR - GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Burlington	Job No.: 200-72871-1
SDG No.:	
Client Sample ID: 34000803	Lab Sample ID: 200-72871-11
Matrix: Air	Lab File ID: 59762_005.D
Analysis Method: TO-15	Date Collected: 03/31/2024 00:00
Sample wt/vol: 200(mL)	Date Analyzed: 04/02/2024 10:46
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32(mm)
Purge Volume:	Heated Purge: (Y/N) pH:
% Moisture: % Solids:	Level: (low/med) Low
Analysis Batch No.: 202555	Units: ppb v/v

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
115-07-1	Propylene	5.0	U	5.0	5.0
75-71-8	Dichlorodifluoromethane	0.50	U	0.50	0.50
75-45-6	Freon 22	0.50	U	0.50	0.50
76-14-2	1,2-Dichlorotetrafluoroethane	0.20	U	0.20	0.20
74-87-3	Chloromethane	0.50	U	0.50	0.50
106-97-8	n-Butane	0.50	U	0.50	0.50
75-01-4	Vinyl chloride	0.20	U	0.20	0.20
106-99-0	1,3-Butadiene	0.20	U	0.20	0.20
74-83-9	Bromomethane	0.20	U	0.20	0.20
75-00-3	Chloroethane	0.50	U	0.50	0.50
593-60-2	Bromoethene (Vinyl Bromide)	0.20	U	0.20	0.20
75-69-4	Trichlorofluoromethane	0.20	U	0.20	0.20
64-17-5	Ethanol	5.0	U	5.0	5.0
76-13-1	Freon TF	0.20	U	0.20	0.2
75-35-4	1,1-Dichloroethene	0.20	U	0.20	0.2
67-64-1	Acetone	5.0	U	5.0	5.0
67-63-0	Isopropyl alcohol	5.0	U	5.0	5.0
75-15-0	Carbon disulfide	0.50	U	0.50	0.5
107-05-1	3-Chloropropene	0.50	U	0.50	0.5
75-09-2	Methylene Chloride	0.50	U	0.50	0.5
75-65-0	tert-Butyl alcohol	5.0	U	5.0	5.0
1634-04-4	Methyl tert-butyl ether	0.20	U	0.20	0.20
156-60-5	trans-1,2-Dichloroethene	0.20	U	0.20	0.20
110-54-3	n-Hexane	0.50	U	0.50	0.5
75-34-3	1,1-Dichloroethane	0.20	U	0.20	0.20
108-05-4	Vinyl acetate	5.0	U	5.0	5.0
141-78-6	Ethyl acetate	5.0	U	5.0	5.0
78-93-3	Methyl Ethyl Ketone	0.50	U	0.50	0.5
156-59-2	cis-1,2-Dichloroethene	0.20	U	0.20	0.2
540-59-0	1,2-Dichloroethene, Total	0.40	U	0.40	0.4
67-66-3	Chloroform	0.20	U	0.20	0.2
109-99-9	Tetrahydrofuran	5.0	U	5.0	5.
71-55-6	1,1,1-Trichloroethane	0.20	U	0.20	0.2
110-82-7	Cyclohexane	0.20	U	0.20	0.2

FORM I AIR - GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Burlington	Job No.: 200-72871-1
SDG No.:	
Client Sample ID: 34000803	Lab Sample ID: 200-72871-11
Matrix: Air	Lab File ID: 59762_005.D
Analysis Method: TO-15	Date Collected: 03/31/2024 00:00
Sample wt/vol: 200(mL)	Date Analyzed: 04/02/2024 10:46
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32 (mm)
Purge Volume:	Heated Purge: (Y/N) pH:
% Moisture: % Solids:	Level: (low/med) Low
Analysis Batch No.: 202555	Units: ppb v/v

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
56-23-5	Carbon tetrachloride	0.20	U	0.20	0.20
540-84-1	2,2,4-Trimethylpentane	0.20	U	0.20	0.20
71-43-2	Benzene	0.20	U	0.20	0.20
107-06-2	1,2-Dichloroethane	0.20	U	0.20	0.20
142-82-5	n-Heptane	0.20	U	0.20	0.20
79-01-6	Trichloroethene	0.20	U	0.20	0.20
80-62-6	Methyl methacrylate	0.50	U	0.50	0.50
78-87-5	1,2-Dichloropropane	0.20	U	0.20	0.20
123-91-1	1,4-Dioxane	5.0	U	5.0	5.0
75-27-4	Bromodichloromethane	0.20	U	0.20	0.20
10061-01-5	cis-1,3-Dichloropropene	0.20	U	0.20	0.20
108-10-1	methyl isobutyl ketone	0.50	U	0.50	0.50
108-88-3	Toluene	0.20	U	0.20	0.20
10061-02-6	trans-1,3-Dichloropropene	0.20	U	0.20	0.20
79-00-5	1,1,2-Trichloroethane	0.20	U	0.20	0.20
127-18-4	Tetrachloroethene	0.20	U	0.20	0.20
591-78-6	Methyl Butyl Ketone (2-Hexanone)	0.50	U	0.50	0.50
124-48-1	Dibromochloromethane	0.20	U	0.20	0.20
106-93-4	1,2-Dibromoethane	0.20	U	0.20	0.20
108-90-7	Chlorobenzene	0.20	U	0.20	0.20
100-41-4	Ethylbenzene	0.20	U	0.20	0.20
179601-23-1	m,p-Xylene	0.50	U	0.50	0.50
95-47-6	Xylene, o-	0.20	U	0.20	0.20
1330-20-7	Xylene (total)	0.70	U	0.70	0.70
100-42-5	Styrene	0.20	U	0.20	0.20
75-25-2	Bromoform	0.20	U	0.20	0.20
98-82-8	Cumene	0.20	U	0.20	0.20
79-34-5	1,1,2,2-Tetrachloroethane	0.20	U	0.20	0.20
103-65-1	n-Propylbenzene	0.20	U	0.20	0.20
622-96-8	4-Ethyltoluene	0.20	U	0.20	0.20
108-67-8	1,3,5-Trimethylbenzene	0.20	U	0.20	0.20
95-49-8	2-Chlorotoluene	0.20	U	0.20	0.20
98-06-6	tert-Butylbenzene	0.20	U	0.20	0.20
95-63-6	1,2,4-Trimethylbenzene	0.20	IJ	0.20	0.20

 Lab Name: Eurofins Burlington
 Job No.: 200-72871-1

 SDG No.:
 Client Sample ID: 34000803
 Lab Sample ID: 200-72871-11

 Matrix: Air
 Lab File ID: 59762_005.D

 Analysis Method: TO-15
 Date Collected: 03/31/2024 00:00

 Sample wt/vol: 200(mL)
 Date Analyzed: 04/02/2024 10:46

 Soil Aliquot Vol:
 Dilution Factor: 1

 Soil Extract Vol.:
 GC Column: RTX-624 ID: 0.32 (mm)

 Purge Volume:
 Heated Purge: (Y/N)
 pH:

% Moisture: % Solids: Level: (low/med) Low

Analysis Batch No.: 202555 Units: ppb v/v

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
135-98-8	sec-Butylbenzene	0.20	Ū	0.20	0.20
99-87-6	4-Isopropyltoluene	0.20	U	0.20	0.20
541-73-1	1,3-Dichlorobenzene	0.20	U	0.20	0.20
106-46-7	1,4-Dichlorobenzene	0.20	U	0.20	0.20
100-44-7	Benzyl chloride	0.20	U	0.20	0.20
104-51-8	n-Butylbenzene	0.20	U	0.20	0.20
95-50-1	1,2-Dichlorobenzene	0.20	U	0.20	0.20
120-82-1	1,2,4-Trichlorobenzene	0.50	U	0.50	0.50
87-68-3	Hexachlorobutadiene	0.20	U	0.20	0.20
91-20-3	Naphthalene	0.50	U	0.50	0.50

Eurofins Burlington

Target Compound Quantitation Report

Data File:

Lims ID: 200-72871-A-11 Client ID: 34000803

Sample Type: Client

Inject. Date: 02-Apr-2024 10:46:08 ALS Bottle#: Worklist Smp#: 0 5

Purge Vol: 200.000 mL Dil. Factor: 1.0000

200-0059762-005 Sample Info:

Misc. Info.: 72871-11

Operator ID: wrd Instrument ID: CHAN.i

Method: \\chromfs\Burlington\ChromData\CHAN.i\20240402-59762.b\TO15_TO3_Master_Method_AN.m

AI TO15_ICAL Limit Group:

Last Update: 03-Apr-2024 11:28:49 Calib Date: 15-Feb-2024 23:57:24 Integrator: RTE ID Type: **Deconvolution ID** Quant By: Quant Method: Internal Standard **Initial Calibration** \\chromfs\Burlington\ChromData\CHAN.i\20240215-59096.b\59096_013.D Last ICal File:

Column 1: RTX-624 (0.32 mm) Det: MS SCAN

CTX1659 Process Host:

First Level Reviewer: YWL8			Da	ate:		03-Apr-202	4 11:32:04	
		RT	Adj RT	Dlt RT			OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ppb v/v	Flags
								_
1 Propene	41		4.385				ND	7
2 Dichlorodifluoromethane	85		4.487				ND	
3 Chlorodifluoromethane	51		4.535				ND	
4 1,2-Dichloro-1,1,2,2-tetrafluoro			4.856				ND	_
5 Chloromethane	50		4.974				ND	7
6 Vinyl chloride	62		5.273				ND	
7 Butane	43		5.273				ND	7
8 Butadiene	54		5.391				ND	
9 Bromomethane	94		6.113				ND	
10 Chloroethane	64		6.386				ND	
13 Vinyl bromide	106		6.814				ND	
14 Trichlorofluoromethane	101		6.975				ND	
16 Ethanol	45		7.365				ND	
20 1,1-Dichloroethene	96		8.039				ND	
21 1,1,2-Trichloro-1,2,2-trifluoroe	101		8.077				ND	
22 Acetone	43		8.119				ND	
23 Isopropyl alcohol	45		8.419				ND	7
24 Carbon disulfide	76		8.440				ND	
26 3-Chloro-1-propene	41		8.735				ND	
27 Methylene Chloride	49		8.965				ND	7
28 2-Methyl-2-propanol	59		9.179				ND	
30 trans-1,2-Dichloroethene	61		9.462				ND	
31 Methyl tert-butyl ether	73		9.468				ND	
32 Hexane	57		9.970				ND	
S 35 1,2-Dichloroethene, Total	61		10.200				ND	7
33 1,1-Dichloroethane	63		10.233				ND	
34 Vinyl acetate	43		10.243				ND	
36 2-Butanone (MEK)	72		11.206				ND	
37 cis-1,2-Dichloroethene	96		11.233				ND	
38 Ethyl acetate	88		11.286				ND	
* 39 Chlorobromomethane	128	11.645	11.640	0.005	92	129246	10.0	

Report Date: 03-Apr-2024 11:32:04

Chrom Revision: 2.3 23-Feb-2024 16:51:14

Data File: \\chromfs\Burlington\ChromData\CHAN.i\20240402-59762.b\59762_005.D

Data File: \\Chiomis\But	lington				1	702.0(37702_		
Compound	Sig	RT (min.)	Adj RT (min.)	DIt RT (min.)	Q	Response	OnCol Amt ppb v/v	Flags
Jonipoulu	Jig	(171111.)	(11111.)	(11111.)	<u> </u>	тоэронзо	Pho M	i luga
40 Tetrahydrofuran	42		11.682				ND	
41 Chloroform	83		11.821				ND	
42 1,1,1-Trichloroethane	97		12.126				ND	
43 Cyclohexane	84		12.260				ND	
44 Carbon tetrachloride	117		12.399				ND	
45 Benzene	78		12.752				ND	7
46 1,2-Dichloroethane	62		12.827				ND	
47 Isooctane	57		12.966				ND	
48 n-Heptane	43		13.271				ND	7
* 49 1,4-Difluorobenzene	114	13.485	13.485	0.000	98	683998	10.0	
51 Trichloroethene	95		13.919				ND	
53 1,2-Dichloropropane	63		14.373				ND	
54 Methyl methacrylate	69		14.459				ND	
55 1,4-Dioxane	88		14.496				ND	
57 Dibromomethane	174		14.534				ND	
58 Dichlorobromomethane	83		14.844				ND	
59 cis-1,3-Dichloropropene	75		15.647				ND	
61 4-Methyl-2-pentanone (MIBK)	43		15.903				ND	
62 Toluene	92		16.283				ND	
66 trans-1,3-Dichloropropene	75		16.695				ND	
67 1,1,2-Trichloroethane	83		17.075				ND	
68 Tetrachloroethene	166		17.268				ND	
69 2-Hexanone	43		17.481				ND	
70 Chlorodibromomethane	129		17.808				ND	
71 Ethylene Dibromide	107	40.050	18.049	0.000	0.5		ND	
* 73 Chlorobenzene-d5	117	18.958	18.958	0.000	95	591264	10.0	
74 Chlorobenzene	112		19.017				ND	
75 Ethylbenzene	91		19.209				ND	
76 m-Xylene & p-Xylene	106		19.472				ND	7
S 80 Xylenes, Total	106		20.100				ND	7
78 o-Xylene	106 104		20.237				ND ND	
79 Styrene 81 Bromoform	173		20.274 20.611				ND ND	
82 Isopropylbenzene	1/3		20.611				ND ND	
83 1,1,2,2-Tetrachloroethane	83		20.916				ND ND	7
85 N-Propylbenzene	91		21.430				ND ND	,
86 2-Chlorotoluene	91 91		21.022				ND	
87 4-Ethyltoluene	105		21.767				ND	
88 1,3,5-Trimethylbenzene	105		21.906				ND	
91 tert-Butylbenzene	119		21.900				ND	
92 1,2,4-Trimethylbenzene	105		22.362				ND	
93 sec-Butylbenzene	105		22.703				ND	
94 1,3-Dichlorobenzene	146		22.703				ND	
95 4-Isopropyltoluene	119		22.917				ND	
96 1,4-Dichlorobenzene	146		23.019				ND	
97 Benzyl chloride	91		23.168				ND	
98 n-Butylbenzene	91		23.473				ND	
99 1,2-Dichlorobenzene	146		23.473				ND	
102 1,2,4-Trichlorobenzene	180		25.977				ND	
103 Hexachlorobutadiene	225		26.223				ND	
104 Naphthalene	128		26.464				ND	7
10 i rapididiono	120		20.707					,

Report Date: 03-Apr-2024 11:32:04 Chrom Revision: 2.3 23-Feb-2024 16:51:14

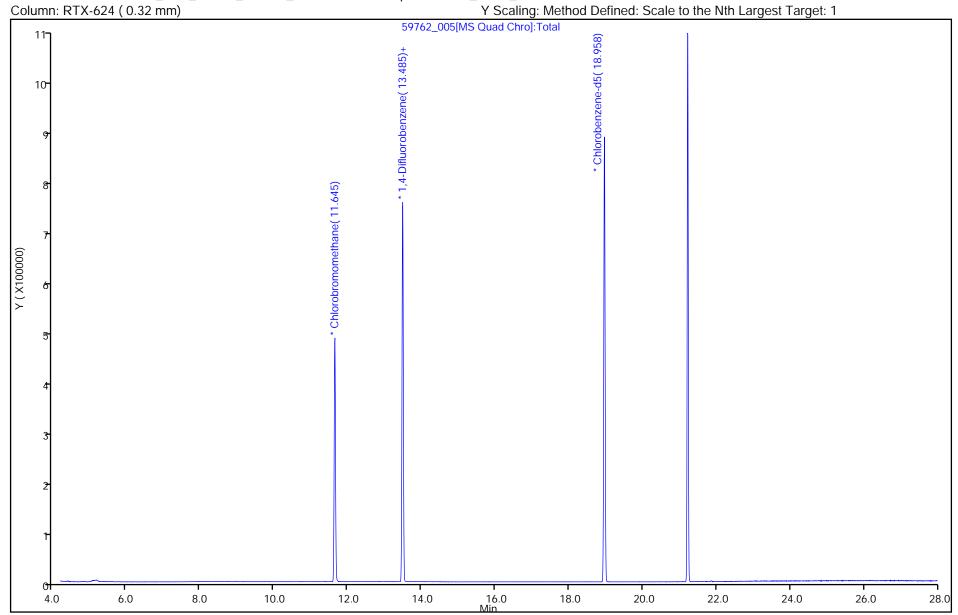
QC Flag Legend Processing Flags

7 - Failed Limit of Detection

Reagents:

ATTO15CISs_00012 Amount Added: 20.00 Units: mL Run Reagent

Report Date: 03-Apr-2024 11:32:04 Chrom Revision: 2.3 23-Feb-2024 16:51:14


 $\label{lem:condition} Eurofins Burlington $$ \Chromfs\Burlington\ChromData\CHAN.i\20240402-59762.b\59762_005.D $$$ Data File:

Injection Date: 02-Apr-2024 10:46:08 Instrument ID: CHAN.i Operator ID: wrd Lims ID: Worklist Smp#: 200-72871-A-11 Lab Sample ID: 200-72871-11 5

Client ID: 34000803

Purge Vol: 200.000 mL Dil. Factor: 1.0000 ALS Bottle#: 0

Method: TO15_TO3_Master_Method_AN Limit Group: AI_TO15_ICAL

Page 36 of 46

5/17/2024

FORM I AIR - GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Burlington	Job No.: 200-72878-1
SDG No.:	
Client Sample ID: 34001033	Lab Sample ID: 200-72878-12
Matrix: Air	Lab File ID: 59801_007.D
Analysis Method: <u>TO-15</u>	Date Collected: 04/01/2024 00:00
Sample wt/vol: 200(mL)	Date Analyzed: 04/04/2024 12:58
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32(mm)
Purge Volume:	Heated Purge: (Y/N) pH:
% Moisture: % Solids:	Level: (low/med) Low
Analysis Batch No.: 202670	Units: ppb v/v

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
115-07-1	Propylene	5.0	U	5.0	5.0
75-71-8	Dichlorodifluoromethane	0.50	U	0.50	0.50
75-45-6	Freon 22	0.50	U	0.50	0.50
76-14-2	1,2-Dichlorotetrafluoroethane	0.20	U	0.20	0.20
74-87-3	Chloromethane	0.50	U	0.50	0.50
106-97-8	n-Butane	0.50	U	0.50	0.50
75-01-4	Vinyl chloride	0.20	U	0.20	0.20
106-99-0	1,3-Butadiene	0.20	U	0.20	0.20
74-83-9	Bromomethane	0.20	U	0.20	0.20
75-00-3	Chloroethane	0.50	U	0.50	0.50
593-60-2	Bromoethene (Vinyl Bromide)	0.20	U	0.20	0.20
75-69-4	Trichlorofluoromethane	0.20	U	0.20	0.20
64-17-5	Ethanol	5.0	U	5.0	5.0
76-13-1	Freon TF	0.20	U	0.20	0.2
75-35-4	1,1-Dichloroethene	0.20	U	0.20	0.2
67-64-1	Acetone	5.0	U	5.0	5.0
67-63-0	Isopropyl alcohol	5.0	U	5.0	5.0
75-15-0	Carbon disulfide	0.50	U	0.50	0.5
107-05-1	3-Chloropropene	0.50	U	0.50	0.5
75-09-2	Methylene Chloride	0.50	U	0.50	0.5
75-65-0	tert-Butyl alcohol	5.0	U	5.0	5.0
1634-04-4	Methyl tert-butyl ether	0.20	U	0.20	0.20
156-60-5	trans-1,2-Dichloroethene	0.20	U	0.20	0.2
110-54-3	n-Hexane	0.50	U	0.50	0.5
75-34-3	1,1-Dichloroethane	0.20	U	0.20	0.20
108-05-4	Vinyl acetate	5.0	U	5.0	5.0
141-78-6	Ethyl acetate	5.0	U	5.0	5.0
78-93-3	Methyl Ethyl Ketone	0.50	U	0.50	0.5
156-59-2	cis-1,2-Dichloroethene	0.20	U	0.20	0.2
540-59-0	1,2-Dichloroethene, Total	0.40	U	0.40	0.4
67-66-3	Chloroform	0.20	U	0.20	0.2
109-99-9	Tetrahydrofuran	5.0	U	5.0	5.
71-55-6	1,1,1-Trichloroethane	0.20	U	0.20	0.2
110-82-7	Cyclohexane	0.20	U	0.20	0.2

FORM I AIR - GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Burlington	Job No.: 200-72878-1
SDG No.:	
Client Sample ID: 34001033	Lab Sample ID: 200-72878-12
Matrix: Air	Lab File ID: 59801_007.D
Analysis Method: TO-15	Date Collected: 04/01/2024 00:00
Sample wt/vol: 200(mL)	Date Analyzed: 04/04/2024 12:58
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32 (mm)
Purge Volume:	Heated Purge: (Y/N) pH:
% Moisture: % Solids:	Level: (low/med) Low
Analysis Batch No.: 202670	Units: ppb v/v

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
56-23-5	Carbon tetrachloride	0.20	U	0.20	0.20
540-84-1	2,2,4-Trimethylpentane	0.20	U	0.20	0.20
71-43-2	Benzene	0.20	U	0.20	0.20
107-06-2	1,2-Dichloroethane	0.20	U	0.20	0.20
142-82-5	n-Heptane	0.20	U	0.20	0.20
79-01-6	Trichloroethene	0.20	U	0.20	0.20
80-62-6	Methyl methacrylate	0.50	U	0.50	0.50
78-87-5	1,2-Dichloropropane	0.20	U	0.20	0.20
123-91-1	1,4-Dioxane	5.0	U	5.0	5.0
75-27-4	Bromodichloromethane	0.20	U	0.20	0.20
10061-01-5	cis-1,3-Dichloropropene	0.20	U	0.20	0.20
108-10-1	methyl isobutyl ketone	0.50	U	0.50	0.50
108-88-3	Toluene	0.20	U	0.20	0.20
10061-02-6	trans-1,3-Dichloropropene	0.20	U	0.20	0.2
79-00-5	1,1,2-Trichloroethane	0.20	U	0.20	0.2
127-18-4	Tetrachloroethene	0.20	U	0.20	0.20
591-78-6	Methyl Butyl Ketone (2-Hexanone)	0.50	U	0.50	0.50
124-48-1	Dibromochloromethane	0.20	U	0.20	0.2
106-93-4	1,2-Dibromoethane	0.20	U	0.20	0.2
108-90-7	Chlorobenzene	0.20	U	0.20	0.20
100-41-4	Ethylbenzene	0.20	U	0.20	0.20
179601-23-1	m,p-Xylene	0.50	U	0.50	0.50
95-47-6	Xylene, o-	0.20	U	0.20	0.20
1330-20-7	Xylene (total)	0.70	U	0.70	0.70
100-42-5	Styrene	0.20	U	0.20	0.20
75-25-2	Bromoform	0.20	U	0.20	0.2
98-82-8	Cumene	0.20	U	0.20	0.2
79-34-5	1,1,2,2-Tetrachloroethane	0.20	U	0.20	0.2
103-65-1	n-Propylbenzene	0.20	U	0.20	0.2
622-96-8	4-Ethyltoluene	0.20	U	0.20	0.2
108-67-8	1,3,5-Trimethylbenzene	0.20	U	0.20	0.2
95-49-8	2-Chlorotoluene	0.20	U	0.20	0.2
98-06-6	tert-Butylbenzene	0.20	U	0.20	0.2
95-63-6	1,2,4-Trimethylbenzene	0.20	U	0.20	0.2

3

L

6

8

10

12

15

10

Lab Name: Eurofins Burlington	Job No.: 200-72878-1					
SDG No.:						
Client Sample ID: 34001033	Lab Sample ID: 200-72878-12					
Matrix: Air	Lab File ID: 59801_007.D					
Analysis Method: TO-15	Date Collected: 04/01/2024 00:00					
Sample wt/vol: 200(mL)	Date Analyzed: 04/04/2024 12:58					
Soil Aliquot Vol:	Dilution Factor: 1					
Soil Extract Vol.:	GC Column: <u>RTX-624</u> ID: <u>0.32(mm)</u>					
Purge Volume:	Heated Purge: (Y/N) pH:					
% Moisture: % Solids:	Level: (low/med) Low					
Analysis Batch No.: 202670	Units: ppb v/v					

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
135-98-8	sec-Butylbenzene	0.20	U	0.20	0.20
99-87-6	4-Isopropyltoluene	0.20	U	0.20	0.20
541-73-1	1,3-Dichlorobenzene	0.20	U	0.20	0.20
106-46-7	1,4-Dichlorobenzene	0.20	U	0.20	0.20
100-44-7	Benzyl chloride	0.20	U	0.20	0.20
104-51-8	n-Butylbenzene	0.20	U	0.20	0.20
95-50-1	1,2-Dichlorobenzene	0.20	U	0.20	0.20
120-82-1	1,2,4-Trichlorobenzene	0.50	U	0.50	0.50
87-68-3	Hexachlorobutadiene	0.20	U	0.20	0.20
91-20-3	Naphthalene	0.50	U	0.50	0.50

Eurofins Burlington Target Compound Quantitation Report

\chromfs\Burlington\ChromData\CHAN.i\20240404-59801.b\59801_007.D Data File:

Lims ID: 200-72878-A-12 Client ID: 34001033 Sample Type: Client

Inject. Date: 04-Apr-2024 12:58:29

ALS Bottle#: Worklist Smp#: 7 0

Purge Vol: 200.000 mL Dil. Factor: 1.0000

200-0059801-007 Sample Info:

Misc. Info.: 72878-12

Operator ID: wrd Instrument ID: CHAN.i

Method: \\chromfs\Burlington\ChromData\CHAN.i\20240404-59801.b\TO15_TO3_Master_Method_AN.m

AI TO15 ICAL Limit Group:

Last Update: 05-Apr-2024 08:11:16 Calib Date: 15-Feb-2024 23:57:24 Integrator: RTE ID Type: **Deconvolution ID** Internal Standard Quant By: Quant Method: **Initial Calibration** \\chromfs\Burlington\ChromData\CHAN.i\20240215-59096.b\59096_013.D Last ICal File:

Column 1: RTX-624 (0.32 mm) Det: MS SCAN

Process Host: CTX1650

First Level Reviewer: F7XK			Date: 05-Apr-2024 08:11:16							
		RT ,	Adj RT	Dlt RT)	OnCol Amt				
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ppb v/v	Flags		
1 Propene	41		4.385				ND	7		
2 Dichlorodifluoromethane	85		4.487				ND	,		
3 Chlorodifluoromethane	51		4.535				ND			
4 1,2-Dichloro-1,1,2,2-tetrafluoro			4.856				ND			
5 Chloromethane	50		4.974				ND			
6 Vinyl chloride	62		5.273				ND			
7 Butane	43		5.273				ND	7		
8 Butadiene	54		5.273				ND	,		
9 Bromomethane	94		6.113				ND ND			
10 Chloroethane	94 64		6.391				ND ND			
	106		6.809				ND ND			
13 Vinyl bromide 14 Trichlorofluoromethane	100		6.969				ND ND			
16 Ethanol	45		7.365				ND ND			
	45 96		8.039				ND ND			
20 1,1-Dichloroethene							ND ND			
21 1,1,2-Trichloro-1,2,2-trifluoroe			8.077				ND ND			
22 Acetone	43		8.119							
23 Isopropyl alcohol	45 77		8.414				ND	7		
24 Carbon disulfide	76		8.440				ND	7		
26 3-Chloro-1-propene	41	0.074	8.735	0.001	70		ND	71.4		
27 Methylene Chloride	49	8.964	8.964	-0.001	79	704	0.0232	7M		
28 2-Methyl-2-propanol	59		9.179				ND			
30 trans-1,2-Dichloroethene	61		9.462				ND			
31 Methyl tert-butyl ether	73		9.467				ND			
32 Hexane	57		9.970				ND			
S 35 1,2-Dichloroethene, Total	61		10.200				ND	7		
33 1,1-Dichloroethane	63		10.232				ND			
34 Vinyl acetate	43		10.238				ND			
36 2-Butanone (MEK)	72		11.206				ND			
37 cis-1,2-Dichloroethene	96		11.233				ND			
38 Ethyl acetate	88		11.281				ND			
* 39 Chlorobromomethane	128	11.645	11.645	0.000	93	110234	10.0			

Chrom Revision: 2.3 23-Feb-2024 16:51:14

Data File: \\chromfs\Burlington\ChromData\CHAN.i\20240404-59801.b\59801_007.D

Data File: \\chiomis\bui	IIIIgioi				04-370	001.0039001_		
Compound	Sig	RT (min.)	Adj RT (min.)	DIt RT (min.)	Q	Response	OnCol Amt ppb v/v	Flags
40 Totrohydrofuron	42		11 477				ND	_
40 Tetrahydrofuran	42		11.677				ND	
41 Chloroform	83 97		11.821 12.126				ND	
42 1,1,1-Trichloroethane							ND	
43 Cyclohexane	84 117		12.260				ND ND	
44 Carbon tetrachloride 45 Benzene	78		12.399 12.752				ND	
46 1,2-Dichloroethane	62		12.732				ND	
47 Isooctane	57		12.027				ND	
48 n-Heptane	43		13.271				ND	
* 49 1,4-Difluorobenzene	114	13.485	13.485	0.000	98	577373	10.0	
51 Trichloroethene	95	13.403	13.403	0.000	70		ND	
53 1,2-Dichloropropane	63		14.373				ND	
54 Methyl methacrylate	69		14.459				ND	
55 1,4-Dioxane	88		14.496				ND	
57 Dibromomethane	174		14.534				ND	
58 Dichlorobromomethane	83		14.334				ND	
59 cis-1,3-Dichloropropene	75		15.641				ND	
61 4-Methyl-2-pentanone (MIBK)			15.903				ND	
62 Toluene	92		16.283				ND	
66 trans-1,3-Dichloropropene	75		16.695				ND	
67 1,1,2-Trichloroethane	83		17.069				ND	
68 Tetrachloroethene	166		17.067				ND	
69 2-Hexanone	43		17.207				ND	
70 Chlorodibromomethane	129		17.401				ND	
71 Ethylene Dibromide	107		18.048				ND	
* 73 Chlorobenzene-d5	117	18.958	18.958	0.000	95	495156	10.0	
74 Chlorobenzene	112	10.730	19.017	0.000	73		ND	
75 Ethylbenzene	91		19.204				ND	MU
76 m-Xylene & p-Xylene	106		19.472				ND	IVIO
S 80 Xylenes, Total	106		20.100				ND	7
78 o-Xylene	106		20.242				ND	,
79 Styrene	104		20.274				ND	
81 Bromoform	173		20.611				ND	
82 Isopropylbenzene	105		20.916				ND	
83 1,1,2,2-Tetrachloroethane	83		21.430				ND	7
85 N-Propylbenzene	91		21.622				ND	,
86 2-Chlorotoluene	91		21.767				ND	
87 4-Ethyltoluene	105		21.815				ND	
88 1,3,5-Trimethylbenzene	105		21.906				ND	
91 tert-Butylbenzene	119		22.387				ND	
92 1,2,4-Trimethylbenzene	105		22.473				ND	
93 sec-Butylbenzene	105		22.708				ND	
94 1,3-Dichlorobenzene	146		22.879				ND	
95 4-Isopropyltoluene	119		22.917				ND	
96 1,4-Dichlorobenzene	146		23.018				ND	
97 Benzyl chloride	91		23.016				ND	
=	91 91		23.168				ND ND	
98 n-Butylbenzene 99 1,2-Dichlorobenzene	91 146		23.479				ND ND	
102 1,2,4-Trichlorobenzene	180		25.982				ND ND	
103 Hexachlorobutadiene	225 128		26.228				ND ND	
104 Naphthalene	120		26.469				טאו	

Report Date: 05-Apr-2024 08:11:16 Chrom Revision: 2.3 23-Feb-2024 16:51:14

QC Flag Legend Processing Flags

7 - Failed Limit of Detection

Review Flags

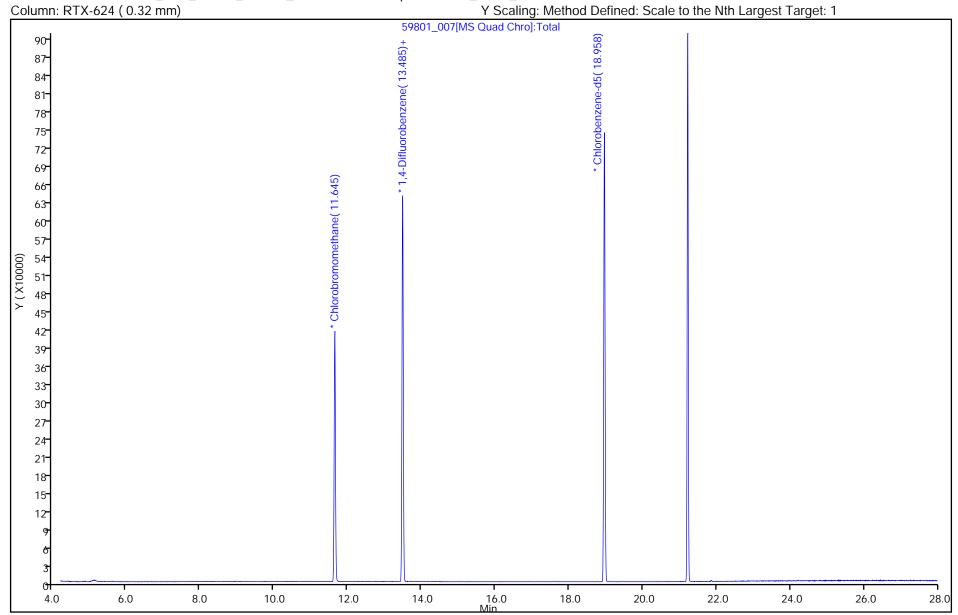
M - Manually Integrated

U - Marked Undetected

Reagents:

ATTO15CISs_00012 Amount Added: 20.00 Units: mL Run Reagent

Report Date: 05-Apr-2024 08:11:16 Chrom Revision: 2.3 23-Feb-2024 16:51:14


Eurofins Burlington \\chromfs\Burlington\ChromData\CHAN.i\20240404-59801.b\59801_007.D Data File:

Injection Date: 04-Apr-2024 12:58:29 Instrument ID: CHAN.i Operator ID: wrd Lims ID: Worklist Smp#: 200-72878-A-12 Lab Sample ID: 200-72878-12 7

34001033 Client ID:

Purge Vol: 200.000 mL Dil. Factor: 1.0000 ALS Bottle#: 0

Method: TO15_TO3_Master_Method_AN Limit Group: AI_TO15_ICAL

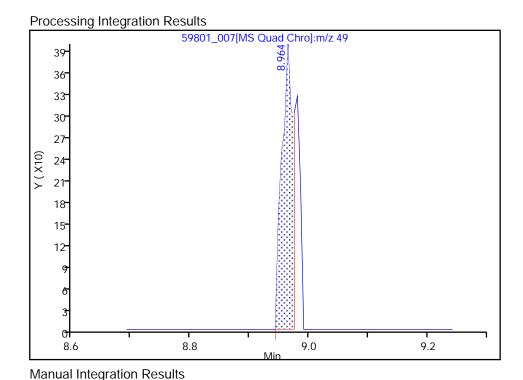
Page 43 of 46 5/17/2024

Eurofins Burlington

Data File: \chromfs\Burlington\ChromData\CHAN.i\20240404-59801.b\59801_007.D

Client ID: 34001033

Operator ID: wrd ALS Bottle#: 0 Worklist Smp#: 7


Purge Vol:200.000 mLDil. Factor:1.0000Method:TO15_TO3_Master_Method_ANLimit Group:AI_TO15_ICALColumn:RTX-624 (0.32 mm)DetectorMS SCAN

27 Methylene Chloride, CAS: 75-09-2

Signal: 1

RT: 8.96 Area: 537 Amount: 0.01

Amount: 0.017720 Amount Units: ppb v/v

59801_007[MS Quad Chro]:m/z 49

9.0

Min

9.2

RT: 8.96 Area: 704 Amount: 0.023230

Amount Units: ppb v/v

Reviewer: F7XK, 05-Apr-2024 08:09:55 07:00:00 (UTC)

Audit Action: Manually Integrated Audit Reason: Assign Peak

RT

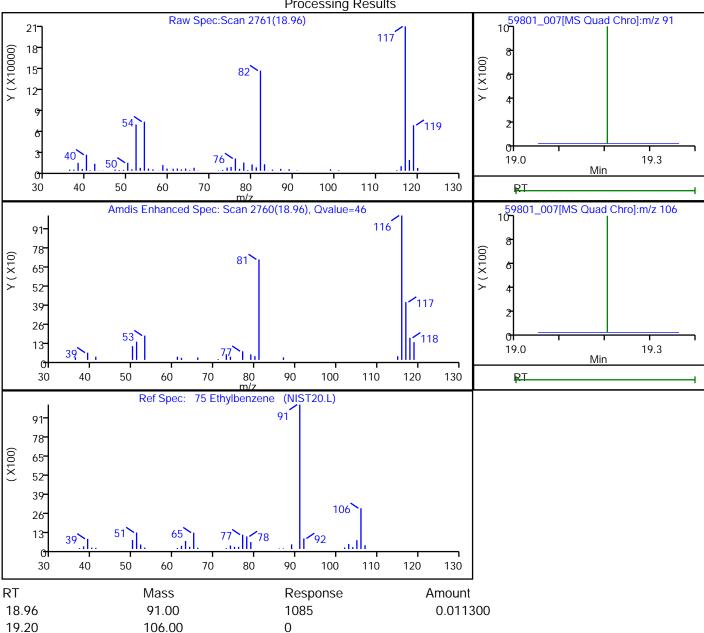
8.6

8.8

Eurofins Burlington

Data File: \\chromfs\Burlington\ChromData\CHAN.i\20240404-59801.b\59801_007.D

Injection Date: 04-Apr-2024 12:58:29 Instrument ID: CHAN.i Lims ID: 200-72878-A-12 Lab Sample ID: 200-72878-12


34001033 Client ID:

ALS Bottle#: Operator ID: wrd 0 Worklist Smp#: 7

Purge Vol: 200.000 mL Dil. Factor: 1.0000 Method: TO15_TO3_Master_Method_AN Limit Group: AI_TO15_ICAL Column: RTX-624 (0.32 mm) Detector MS SCAN

75 Ethylbenzene, CAS: 100-41-4

Processing Results

Reviewer: F7XK, 05-Apr-2024 08:10:48 07:00:00 (UTC)

Audit Action: Marked Compound Undetected Audit Reason: Invalid Compound ID

Summa Canister Dilution Worksheet

Client: Arcadis U.S., Inc.

Project/Site: Crosman Vapor

SDG No.: 200-73398-1

Lab Sample ID 200-73398-1 200-73398-1	Canister Volume (L) 1	Preadjusted Pressure ("Hg) -8.4	Preadjusted Pressure (atm) 0.72 1.00	Preadjusted Volume (L) 0.72 1.00	Adjusted Pressure (psig) 41.8 44.8	Adjusted Pressure (atm) 3.84 4.05	Adjusted Volume (L) 3.84 4.05	Initial Volume (mL)	Dilution Factor 5.34 4.05	Final Dilution Factor 5.34 21.63	ID g20	Date 05/08/24 12:19 05/08/24 12:19	Analyst Initals VTP VTP
200-73398-2 200-73398-2	1	0	1.00 1.00	1.00 1.00	38.3 22.7	3.61 2.54	3.61 2.54		3.61 2.54	3.61 9.17	· ·	05/08/24 12:32 05/08/24 12:32	
200-73398-3 200-73398-3	1	0	1.00	1.00 1.00	45.8 23.1	4.12 2.57	4.12 2.57		4.12 2.57	4.12 10.58	· ·		VTP VTP
200-73398-4	1	-8.3	0.72	0.72	49.7	4.38	4.38		6.06	6.06	g20	05/09/24 14:02	VTP

Formulae:

Preadjusted Volume (L) = ((Preadjusted Pressure ("Hg) + 29.92 "Hg) * Vol L) / 29.92 "Hg Adjusted Volume (L) = ((Adjusted Pressure (psig) + 14.7 psig) * Vol L) / 14.7 psig
Dilution Factor = Adjusted Volume (L) / Preadjusted Volume (L)

Where:

29.92 "Hg = Standard atmospheric pressure in inches of Mercury ("Hg)

14.7 psig = Standard atmospheric pressure in pounds per square inch gauge (psig)

Appendix F

Groundwater Monitoring Logs and Laboratory Reports

Groundwater Parameter Log (Fall)

Crosman Site

East Bloomfield, NY

Sampling Personnel: BKW & KCF

Event: Fall 2023

		Passive D	iffussion Bag	Samplers				Samp	ling Parameter	s				
Date	Sample ID	Deployment Date	Deployment Depth (ft bgs)	PDB Size (diameter x length)	Sample Time	DTW (ft BTIC)	Temp (°C)	Dissolved Oxygen (mg/L)	Specific Conductivity (mS/cm	pH (SU)	ORP (mV)	Turbidity (NTU)	# of Bottles	Notes
10/13/2013	PW-1	NA	NA	NA	950	16.70	10.3	7.24	1.741	6.98	234.7	1.57	3	
10/13/2013	MW-4	4/7/2023	30.6	1.7" x 24"	900	18.60	9.8	3.03	0.015	4.77	205.4	0.48	3	
10/13/2013	MW-5	4/7/2023	45.6	1.7" x 24"	905	17.70	9.1	3.78	0.008	4.81	160.7	0.16	3	
10/13/2013	MW-13	4/7/2023	63.5	1.7" x 24"	1010	33.33	11.4	5.06	0.101	5.92	201.9	0.00	3	
10/13/2013	MW-14	4/7/2023	85.0	1.7" x 24"	920	57.98	9.1	7.09	0.007	4.67	254.4	0.09	3	
10/13/2013	MW-15	4/7/2023	26.0	1.7" x 24"	845	15.50	9.2	3.78	0.062	5.65	128.1	1.53	3	

Notes:

Samples submitted for VOC analysis via Method 8260 (3 - 40 mL vials/sample)

bgs - below ground surface

BTIC - below top of inner casing

Service Request No:R2309475

Mr. Aaron Richardson ARCADIS 100 Chestnut St., Suite 100 Rochester, NY 14604

Laboratory Results for: Crosman

Dear Mr.Richardson,

Enclosed are the results of the sample(s) submitted to our laboratory October 13, 2023 For your reference, these analyses have been assigned our service request number **R2309475**.

All testing was performed according to our laboratory's quality assurance program and met the requirements of the TNI standards except as noted in the case narrative report. Any testing not included in the lab's accreditation is identified on a Non-Certified Analytes report. All results are intended to be considered in their entirety. ALS Environmental is not responsible for use of less than the complete report. Results apply only to the individual samples submitted to the lab for analysis, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s), and represented by Laboratory Control Sample control limits. Any events, such as QC failures or Holding Time exceedances, which may add to the uncertainty are explained in the report narrative or are flagged with qualifiers. The flags are explained in the Report Qualifiers and Definitions page of this report.

Please contact me if you have any questions. My extension is 7472. You may also contact me via email at Janice.Jaeger@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Janice Jaeger Project Manager

Jamanksox

Narrative Documents

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York) Service Request: R2309475

Project: Crosman Date Received: 10/13/2023

Sample Matrix: Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Seven water samples were received for analysis at ALS Environmental on 10/13/2023. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Sampling was performed by ALS personnel in accordance with ALS Field Sampling SOPs or by client specifications.

Volatiles by GC/MS:

Method 8260C, 10/20/2023: The lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.

\circ	7 /			
Approved by		Date _	10/24/2023	

Clamanestras C

SAMPLE DETECTION SUMMARY

This form includes only detections above the reporting levels. For a full listing of sample results, continue to the Sample Results section of this Report.

CLIENT ID: MW-5	Lab ID: R2309475-003							
Analyte	Results	Flag	MDL	MRL	Units	Method		
cis-1,2-Dichloroethene	20			5.0	ug/L	8260C		
CLIENT ID: MW-14		Lab	ID: R2309	475-004				
Analyte	Results	Flag	MDL	MRL	Units	Method		
Trichloroethene	9.9			5.0	ug/L	8260C		
CLIENT ID: PW-1		Lab	ID: R2309	9475-005				
Analyte	Results	Flag	MDL	MRL	Units	Method		
Trichloroethene	55			5.0	ug/L	8260C		
CLIENT ID: MW-13		Lab	ID: R2309	475-006				
Analyte	Results	Flag	MDL	MRL	Units	Method		
Trichloroethene	130			5.0	ug/L	8260C		

Sample Receipt Information

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com ARCADIS U.S., Inc. (formerly ARCADIS of New York) Service Request:R2309475

Project: Crosman/3005202

Client:

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	<u>DATE</u>	<u>TIME</u>
R2309475-001	MW-15	10/13/2023	0845
R2309475-002	MW-4	10/13/2023	0900
R2309475-003	MW-5	10/13/2023	0905
R2309475-004	MW-14	10/13/2023	0920
R2309475-005	PW-1	10/13/2023	0950
R2309475-006	MW-13	10/13/2023	1010
R2309475-007	Trip Blank	10/13/2023	

Λ
(ALS)

٨		Chain of Custo	ody / Analyt	ical Reques	st Fo	rm						7	61	63)	[SR#:			
(ALS) 1	L565 Jefferson Road, Buildii		• • •	•			35 2	88 5	380	• al	sglo	bal.e	com			⊢	Page	1		of
		ALL SHADED AREAS	MUST BE COM				ative										Ť			
Company:	Report To:	Project Name:	NT / SAMPLER		ļ		1										\dashv	+	-	0. None
Contact:	ircadi 9	Project Number:	man		4			•TCLP	TCLP	1				Filter	İ				1	1. HCI
Aan	on Richardson	300	202]			24•	i ●	CLP			,	-Lab		ļ				2. HNO3
Email: Poron . (lichardson @ areadiscom	ALS Quote #:			GW			4•5	625	• TCLP		ہ	elov	ر د						3. H2SO4
Phone: 585 ·	- 202-4393	Sampler's Signature:	an Fl		sw	ners		•62		608		• TCLP	Select Below	- Field / In-Lab Filter						4. NAOH
	cheatnut st	Email CC:			S	Containers		8260•624•524	- 8270	•	80	51	Sele							5. Zn Acet.
suite	1020	Email CC:			L NA	S		- 1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	808	• 608	- 8151	Ē	Dissolved	ŀ					6. MeOH
Rochest	ter, MY 14604	State Samples Collected (Circle or Write):	(Y) MA, PA, CT	Other:	1	Number of	č	GC/MS VOA	GC/MS SVOA	Pesticides - 8081	PCBs - 8082	Herbicides	, Total	ğ	- 1					7. NaHSO4
Lab ID		lection Informati	on:		Matrix	μ	MS/MSD?	WS.	NS	tici	32 - {	bici	Metals,	Metals,	ļ					8. Other
(ALS)	Sample ID:		Date	Time	ξ	Ž	MS	GC,	GC,	Pes	PCE	Her	Σ	Σ						Notes:
	MW-15		10/13/23	0845	GN	3	7	X							ĺ					
	MW-4		10/13/23	0900	GW	3	7	×												
	MW-5	·	10/13/23		GW	3	h	X												
	MW-14		10/13/23		GW	3	N	X							İ					
	PW-1		10/13/23		GW	3	N	X												1
	MW-13	··· · · · · · · · · · · · · · · · · ·	10/13/23	_	GU	3	N	×								1				1
	np Blank				$\overline{}$	 	+	×						1						
	pier is				1	Ť	,-										十	\top		
<u> </u>				<u></u>												_	\dashv	╅	+	1
		-	,		 	l <u>.</u>	 									\dashv	\dashv	-	+	+
Special Instruction	ons / Comments:	۰.	<u> </u>	Turnarour	nd Re	L auire	men	l Its	R	epor	t Rec	uire	ment	s	<u> </u>	ls: RCI	RA Repp	13•TAL	23•TCU	P+Other (List)
		j	P	Rush (Sure					<u> </u>				ults/Q			75. 1.0.		25-17-0	250.00	
		#* 2	,	*Subject to Avai *Please Check w	-		,			-	·		•				\ Repo тнм • (TCL • B	ITEX • TCLP •
ļ		A ^r	•	X Standard	,			1	Valida	_		B - Da		ľ					me as	Report To)
				Date Required:	,,_,		, .	,	\vdash		•	N,			PO #:			,		
,		t_{λ}							EDD 1		_		•		Comp	any:				
	Relinquished By: Recei	. 1	nquished By:	Received B	lv:		Relin	navish	ed By:	7,5-1		Receiv	ed By:		Conta	ct:				
Signature	Iw FA	12			,,		******	.4		,				-	Email:					
Printed Name	, (A)	Diw									\vdash				Phd	R2	230	947	' 5	5
Company	Arcadis Al	, –						_					·		Adç	Crosm	ten			21211 (1144 1111 1111 1111 1111 1111 111
 		3 17/10		Page 7 of 3	39						\vdash				\dashv					
	b Copy; Yellow - Return to originator	VIVM		1 480 / 01 2		<u> </u>					Ļ									© 2012 by ALS Grou

	Δ	
	196	
(A	Ļ	S)

Cooler Receipt and Preservation Check

R2309475	5

Project/Client AY Cooler received on 6 2 Were Custody seals Custody papers prop Did all bottles arrive Circle: Ver Ice Di Temperature Readings	on outside of cool perly completed (in good condition	ink, signe		_ -	t Number_ COURIER	: ALS	UPS FED	·		
1 Were Custody seals 2 Custody papers prop 3 Did all bottles arrive 4 Circle: Wee Ice Di	on outside of cool perly completed (in good condition	ler? ink, signe			COURIER	: ALS	LIPS FFD	_		
2 Custody papers prop 3 Did all bottles arrive 4 Circle: Wex Ice Di	perly completed (in good condition	ink, signe	- 20	(Car 100)			OIO ILD	EX VELO	CITY CLIENT	\supset
3 Did all bottles arrive 4 Circle: Wet Ice Di	in good condition		- 00	Y (V)	5a Perc	hlorate	samples have r	equired hea	dspace? Y	N NA
3 Did all bottles arrive 4 Circle: Vec Ice Di	in good condition		ed)''	(Ŷ) N	L		ds, Alk,or Sulf	-	- 1	N NA
4 Circle: Wee Ice D		- (mior or	1	.⊁R\ -			e bottles origin			UDIE
	I Tee Gerpath	e nroc	ent?	<u>⊼\</u>						LIENT
. Temperature Readings					/ 3011	VOA IE	ccived as:	Bulk En	core 5035set	NA2
	Date: 0/1/	<u>5/23</u>	Time	1350	<u>n</u> D	: IR#12	IR#L®	From:	Temp Blank	Sample Bo
Observed Temp (°C)	18									
Within 0-6°C?	(V) N		Y	N	Y N	Y	N Y	N	YN	Y N
If <0°C, were samples fro	ozen? Y N		Y	N	Y N	Y	N Y	N	YN	YN
If out of Temperature	e, note packing/i	ce condi	tion:		Ice me	ted P	Poorly Packed (described b	elow) Sam	e Day Rule
&Client Approval to	Run Samples:		Star	nding Appr	oval Clien		at drop-off (•	,
		-0-					<u> </u>			
All samples held in store		MU	<u> </u>	by (<u>KD)) </u>	_ on V/13	13 at 1	256			
5035 samples placed in a	storage location:		{	by	on	at _	within	48 hours of	sampling? Y	N
		<u> </u>								
Çooler Breakdown/Pre	comunica Charlet	*. D-4-	1	Allha	3 T:	092	7 Δ	r: 182		
9. Were all bottle	servation Check	. Date	. —	<u>טןטיןט</u>	3Time:			·		
10. Did all bottle	e labeis complete labeis and tags ag	(i.e. anal	iysis,	preservano	m, etc.j?	7	ES NO			
11. Were correct of	containers used fo	ree with	custo	ory papers?		> −	NO NO			•
	als acceptable (no				10	~	ES NO			
	ed metals filtered i	in the fie	142 143	nor rearms):		ÆS NO (1 ÆS NO (1	**		
	Cassettes / Tubes			with MC V	/N Cani		_	MAN Dec	د// د د د د ا	`
pH Lot of test				Lot Rece		Exp		edlar® Bag		
paper	Rougein	Yes	No	LUI KCCC	Ivcu	Exp	Adjusted	Vol. Added	Lot Added	Final
≥12	NaOH	+				 	Aujusteu	Added		pН
≤2	HNO ₃	++				1		<u> </u>	 	
	1 14101	1	- 1			1 1				
≤2	H ₂ SO ₄	+					<u> </u>	1	† · · · · · · · · · · · · · · · · · · ·	
<2 <4										
<4 5-9	H ₂ SO ₄			No=Notif	y for 3day					
<4	H ₂ SO ₄ NaHSO ₄				y for 3day ct PM to add					
<4 5-9	H ₂ SO ₄ NaHSO ₄ For 608pest			If +, contac Na ₂ S ₂ O ₃ (6	ct PM to add 525, 608,					
5-9 Residual	H ₂ SO ₄ NaHSO ₄ For 608pest For CN,			If +, contac Na ₂ S ₂ O ₃ (6	ct PM to add					
<4 5-9 Residual Chlorine	H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625,			If +, contac Na ₂ S ₂ O ₃ (6	ct PM to add 525, 608,					
<4 5-9 Residual Chlorine	H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522			If +, contac Na ₂ S ₂ O ₃ (6	ct PM to add 525, 608,		**VOAs and 160	54 Not to be te	sted before analysis.	
<4 5-9 Residual Chlorine	H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃		- **	If +, contact Na ₂ S ₂ O ₃ (6 CN), ascor	ct PM to add 525, 608, bic (phenol).	02/26	Otherwise, all bo	tties of all san	sted before analysis.	preservatives
<4 5-9 Residual Chlorine (-)	H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl	**		If +, contac Na ₂ S ₂ O ₃ (6	ct PM to add 525, 608, bic (phenol).	09/26	**VOAs and 160 Otherwise, all be are checked (not	tties of all san	aples with chemical p	preservatives
<4 5-9 Residual Chlorine (-)	H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate	**		If +, contact Na ₂ S ₂ O ₃ (6 CN), ascor	ct PM to add 525, 608, bic (phenol).	09/26	Otherwise, all bo	tties of all san	aples with chemical p	prescryatives
Chlorine (-) Bottle lot numbers:	H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl	 Axfi		If +, contact Na ₂ S ₂ O ₃ (6 CN), ascor	et PM to add 525, 608, bic (phenol).	(D)	Otherwise, all bo	tties of all san	aples with chemical patives).	rescrvatives
<4 5-9 Residual Chlorine (-)	H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl	 Axfi		If +, contact Na ₂ S ₂ O ₃ (6 CN), ascor	et PM to add 525, 608, bic (phenol).	(3) la6	Otherwise, all bo	tties of all san	aples with chemical p	rescrvatives
Chlorine (-) Bottle lot numbers:	H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl	 Axfi		If +, contact Na ₂ S ₂ O ₃ (6 CN), ascor	et PM to add 525, 608, bic (phenol).	09/26	Otherwise, all bo	tties of all san	aples with chemical patives).	prescrvatives
Chlorine (-) Bottle lot numbers:	H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl	 Axfi		If +, contact Na ₂ S ₂ O ₃ (6 CN), ascor	et PM to add 525, 608, bic (phenol).	09/26	Otherwise, all bo	tties of all san	aples with chemical patives).	prescrvatives

HPROD	BULK
HTR	FLDT
SUB	HGFB
ALS	LL3541

Labels secondary reviewed by: PC Secondary Review: ____

*significant air bubbles: VOA > 5-6 mm : WC > 1 in. diameter

P:\INTRANET:QAQC\Forms Controlled\Cooler Receipt r20.doc

01/23/2023

Miscellaneous Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

REPORT QUALIFIERS AND DEFINITIONS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits. Under the "Notes" column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- H Analysis was performed out of hold time for tests that have an "immediate" hold time criteria.
- # Spike was diluted out.

- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (≥100% Difference between two GC columns).
- X See Case Narrative for discussion.
- MRL Method Reporting Limit. Also known as:
- LOQ Limit of Quantitation (LOQ)

 The lowest concentration at which the method analyte may be reliably quantified under the method conditions.
- MDL Method Detection Limit. A statistical value derived from a study designed to provide the lowest concentration that will be detected 99% of the time. Values between the MDL and MRL are estimated (see J qualifier).
- LOD Limit of Detection. A value at or above the MDL which has been verified to be detectable.
- ND Non-Detect. Analyte was not detected at the concentration listed. Same as U qualifier.

Rochester Lab ID # for State Accreditations1

NELAP	States
Florida	ID # E87674
New Ha	mpshire ID # 2941
New Yo	rk ID # 10145
Pennsyl	vania ID# 68-786
Virginia	#460167

Non-NELAP States
Connecticut ID #PH0556
Delaware Approved
Maine ID #NY01587
North Carolina #36701
North Carolina #676
Rhode Island LAO00333

¹ Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the case narrative. Since not all analyte/method/matrix combinations are offered for state/NELAC accreditation, this report may contain results which are not accredited. For a specific list of accredited analytes, contact the laboratory. To verify NH accredited analytes, go to https://www4.des.state.nh.us/CertifiedLabs/Certified-Method.aspx.

ALS Laboratory Group

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but

greater than or equal to the MDL.

Analyst Summary report

Service Request: R2309475

Date Collected: 10/13/23

Date Received: 10/13/23

Analyzed By

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York)

Project: Crosman/3005202

Sample Name: MW-15

Lab Code: R2309475-001

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C FNAEGLER

Sample Name: MW-4 Date Collected: 10/13/23

Lab Code: R2309475-002 **Date Received:** 10/13/23

Sample Matrix: Water

Analysis Method

Analysis Method Extracted/Digested By Analyzed By

8260C FNAEGLER

Sample Name: MW-5 Date Collected: 10/13/23

Lab Code: R2309475-003 **Date Received:** 10/13/23

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C FNAEGLER

Sample Name: MW-14 Date Collected: 10/13/23

Lab Code: R2309475-004 Date Received: 10/13/23
Sample Matrix: Water

8260C FNAEGLER

Extracted/Digested By

Sample Name: PW-1 Date Collected: 10/13/23

Lab Code: R2309475-005 Date Received: 10/13/23
Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By
8260C FNAEGLER

Printed 10/24/2023 3:36:35 PM Superset Reference:23-0000678512 rev 00

Analyst Summary report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York)

Project: Crosman/3005202

Sample Name: MW-13 Date Collected: 10/13/23

Lab Code: R2309475-006 **Date Received:** 10/13/23

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C FNAEGLER

Sample Name: Trip Blank Date Collected: 10/13/23

Lab Code: R2309475-007 **Date Received:** 10/13/23

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C FNAEGLER

Service Request: R2309475

INORGANIC PREPARATION METHODS

The preparation methods associated with this report are found in these tables unless discussed in the case narrative.

Water/Liquid Matrix

Analytical Method	Preparation Method
200.7	200.2
200.8	200.2
6010C	3005A/3010A
6020A	ILM05.3
9034 Sulfide Acid Soluble	9030B
SM 4500-CN-E Residual Cyanide	SM 4500-CN-G
SM 4500-CN-E WAD Cyanide	SM 4500-CN-I

Solid/Soil/Non-Aqueous Matrix

Analytical Method	Preparation Method
6010C	3050B
6020A	3050B
6010C TCLP (1311)	3005A/3010A
extract	
6010 SPLP (1312) extract	3005A/3010A
7199	3060A
300.0 Anions/ 350.1/	DI extraction
353.2/ SM 2320B/ SM	
5210B/ 9056A Anions	
For analytical methods not listed, method is the same as the analytic reference.	

Sample Results

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York)

Project: Crosman/3005202 **Date Collected:** 10/13/23 08:45

Sample Matrix: Water Date Received: 10/13/23 13:40

 Sample Name:
 MW-15
 Units: ug/L

 Lab Code:
 R2309475-001
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	ND U	10	1	10/20/23 15:22	
Benzene	ND U	5.0	1	10/20/23 15:22	
Bromodichloromethane	ND U	5.0	1	10/20/23 15:22	
Bromoform	ND U	5.0	1	10/20/23 15:22	
Bromomethane	ND U	5.0	1	10/20/23 15:22	
2-Butanone (MEK)	ND U	10	1	10/20/23 15:22	
Carbon Disulfide	ND U	10	1	10/20/23 15:22	
Carbon Tetrachloride	ND U	5.0	1	10/20/23 15:22	
Chlorobenzene	ND U	5.0	1	10/20/23 15:22	
Chloroethane	ND U	5.0	1	10/20/23 15:22	
Chloroform	ND U	5.0	1	10/20/23 15:22	
Chloromethane	ND U	5.0	1	10/20/23 15:22	
Dibromochloromethane	ND U	5.0	1	10/20/23 15:22	
1,1-Dichloroethane	ND U	5.0	1	10/20/23 15:22	
1,2-Dichloroethane	ND U	5.0	1	10/20/23 15:22	
1,1-Dichloroethene	ND U	5.0	1	10/20/23 15:22	
cis-1,2-Dichloroethene	ND U	5.0	1	10/20/23 15:22	
trans-1,2-Dichloroethene	ND U	5.0	1	10/20/23 15:22	
1,2-Dichloropropane	ND U	5.0	1	10/20/23 15:22	
cis-1,3-Dichloropropene	ND U	5.0	1	10/20/23 15:22	
trans-1,3-Dichloropropene	ND U	5.0	1	10/20/23 15:22	
Ethylbenzene	ND U	5.0	1	10/20/23 15:22	
2-Hexanone	ND U	10	1	10/20/23 15:22	
Methylene Chloride	ND U	5.0	1	10/20/23 15:22	
4-Methyl-2-pentanone (MIBK)	ND U	10	1	10/20/23 15:22	
Styrene	ND U	5.0	1	10/20/23 15:22	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	10/20/23 15:22	
Tetrachloroethene	ND U	5.0	1	10/20/23 15:22	
Toluene	ND U	5.0	1	10/20/23 15:22	
1,1,1-Trichloroethane	ND U	5.0	1	10/20/23 15:22	
1,1,2-Trichloroethane	ND U	5.0	1	10/20/23 15:22	
Trichloroethene	ND U	5.0	1	10/20/23 15:22	
Vinyl Chloride	ND U	5.0	1	10/20/23 15:22	
o-Xylene	ND U	5.0	1	10/20/23 15:22	
m,p-Xylenes	ND U	5.0	1	10/20/23 15:22	

Service Request: R2309475

Analytical Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York) Service Request: R2309475

Project: Crosman/3005202 **Date Collected:** 10/13/23 08:45

Sample Matrix: Water Date Received: 10/13/23 13:40

 Sample Name:
 MW-15
 Units: ug/L

 Lab Code:
 R2309475-001
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	101	85 - 122	10/20/23 15:22	
Toluene-d8	98	87 - 121	10/20/23 15:22	
Dibromofluoromethane	98	80 - 116	10/20/23 15:22	

Analytical Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York)

Project: Crosman/3005202 **Date Collected:** 10/13/23 09:00

Sample Matrix: Water Date Received: 10/13/23 13:40

 Sample Name:
 MW-4
 Units: ug/L

 Lab Code:
 R2309475-002
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	ND U	10	1	10/20/23 14:13	
Benzene	ND U	5.0	1	10/20/23 14:13	
Bromodichloromethane	ND U	5.0	1	10/20/23 14:13	
Bromoform	ND U	5.0	1	10/20/23 14:13	
Bromomethane	ND U	5.0	1	10/20/23 14:13	
2-Butanone (MEK)	ND U	10	1	10/20/23 14:13	
Carbon Disulfide	ND U	10	1	10/20/23 14:13	
Carbon Tetrachloride	ND U	5.0	1	10/20/23 14:13	
Chlorobenzene	ND U	5.0	1	10/20/23 14:13	
Chloroethane	ND U	5.0	1	10/20/23 14:13	
Chloroform	ND U	5.0	1	10/20/23 14:13	
Chloromethane	ND U	5.0	1	10/20/23 14:13	
Dibromochloromethane	ND U	5.0	1	10/20/23 14:13	
1,1-Dichloroethane	ND U	5.0	1	10/20/23 14:13	
1,2-Dichloroethane	ND U	5.0	1	10/20/23 14:13	
1,1-Dichloroethene	ND U	5.0	1	10/20/23 14:13	
cis-1,2-Dichloroethene	ND U	5.0	1	10/20/23 14:13	
trans-1,2-Dichloroethene	ND U	5.0	1	10/20/23 14:13	
1,2-Dichloropropane	ND U	5.0	1	10/20/23 14:13	
cis-1,3-Dichloropropene	ND U	5.0	1	10/20/23 14:13	
trans-1,3-Dichloropropene	ND U	5.0	1	10/20/23 14:13	
Ethylbenzene	ND U	5.0	1	10/20/23 14:13	
2-Hexanone	ND U	10	1	10/20/23 14:13	
Methylene Chloride	ND U	5.0	1	10/20/23 14:13	
4-Methyl-2-pentanone (MIBK)	ND U	10	1	10/20/23 14:13	
Styrene	ND U	5.0	1	10/20/23 14:13	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	10/20/23 14:13	
Tetrachloroethene	ND U	5.0	1	10/20/23 14:13	
Toluene	ND U	5.0	1	10/20/23 14:13	
1,1,1-Trichloroethane	ND U	5.0	1	10/20/23 14:13	
1,1,2-Trichloroethane	ND U	5.0	1	10/20/23 14:13	
Trichloroethene	ND U	5.0	1	10/20/23 14:13	
Vinyl Chloride	ND U	5.0	1	10/20/23 14:13	
o-Xylene	ND U	5.0	1	10/20/23 14:13	
m,p-Xylenes	ND U	5.0	1	10/20/23 14:13	

Service Request: R2309475

Analytical Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York) Service Request: R2309475

Project: Crosman/3005202 **Date Collected:** 10/13/23 09:00

Sample Matrix: Water Date Received: 10/13/23 13:40

Sample Name: MW-4 Units: ug/L

Lab Code: R2309475-002 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	103	85 - 122	10/20/23 14:13	
Toluene-d8	100	87 - 121	10/20/23 14:13	
Dibromofluoromethane	98	80 - 116	10/20/23 14:13	

Analytical Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York)

Project: Crosman/3005202 **Date Collected:** 10/13/23 09:05

Sample Matrix: Water Date Received: 10/13/23 13:40

Sample Name: MW-5 Units: ug/L

Lab Code: R2309475-003 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	ND U	10	1	10/20/23 14:36	
Benzene	ND U	5.0	1	10/20/23 14:36	
Bromodichloromethane	ND U	5.0	1	10/20/23 14:36	
Bromoform	ND U	5.0	1	10/20/23 14:36	
Bromomethane	ND U	5.0	1	10/20/23 14:36	
2-Butanone (MEK)	ND U	10	1	10/20/23 14:36	
Carbon Disulfide	ND U	10	1	10/20/23 14:36	
Carbon Tetrachloride	ND U	5.0	1	10/20/23 14:36	
Chlorobenzene	ND U	5.0	1	10/20/23 14:36	
Chloroethane	ND U	5.0	1	10/20/23 14:36	
Chloroform	ND U	5.0	1	10/20/23 14:36	
Chloromethane	ND U	5.0	1	10/20/23 14:36	
Dibromochloromethane	ND U	5.0	1	10/20/23 14:36	
1,1-Dichloroethane	ND U	5.0	1	10/20/23 14:36	
1,2-Dichloroethane	ND U	5.0	1	10/20/23 14:36	
1,1-Dichloroethene	ND U	5.0	1	10/20/23 14:36	
cis-1,2-Dichloroethene	20	5.0	1	10/20/23 14:36	
trans-1,2-Dichloroethene	ND U	5.0	1	10/20/23 14:36	
1,2-Dichloropropane	ND U	5.0	1	10/20/23 14:36	
cis-1,3-Dichloropropene	ND U	5.0	1	10/20/23 14:36	
trans-1,3-Dichloropropene	ND U	5.0	1	10/20/23 14:36	
Ethylbenzene	ND U	5.0	1	10/20/23 14:36	
2-Hexanone	ND U	10	1	10/20/23 14:36	
Methylene Chloride	ND U	5.0	1	10/20/23 14:36	
4-Methyl-2-pentanone (MIBK)	ND U	10	1	10/20/23 14:36	
Styrene	ND U	5.0	1	10/20/23 14:36	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	10/20/23 14:36	
Tetrachloroethene	ND U	5.0	1	10/20/23 14:36	
Toluene	ND U	5.0	1	10/20/23 14:36	
1,1,1-Trichloroethane	ND U	5.0	1	10/20/23 14:36	
1,1,2-Trichloroethane	ND U	5.0	1	10/20/23 14:36	
Trichloroethene	ND U	5.0	1	10/20/23 14:36	
Vinyl Chloride	ND U	5.0	1	10/20/23 14:36	
o-Xylene	ND U	5.0	1	10/20/23 14:36	
m,p-Xylenes	ND U	5.0	1_	10/20/23 14:36	

Service Request: R2309475

Analytical Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York) Service Request: R2309475

Project: Crosman/3005202 **Date Collected:** 10/13/23 09:05

Sample Matrix: Water Date Received: 10/13/23 13:40

Sample Name: MW-5 Units: ug/L

Lab Code: R2309475-003 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	106	85 - 122	10/20/23 14:36	
Toluene-d8	101	87 - 121	10/20/23 14:36	
Dibromofluoromethane	99	80 - 116	10/20/23 14:36	

Analytical Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York)

Project: Crosman/3005202 **Date Collected:** 10/13/23 09:20

Sample Matrix: Water Date Received: 10/13/23 13:40

 Sample Name:
 MW-14
 Units: ug/L

 Lab Code:
 R2309475-004
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	ND U	10	1	10/20/23 14:59	
Benzene	ND U	5.0	1	10/20/23 14:59	
Bromodichloromethane	ND U	5.0	1	10/20/23 14:59	
Bromoform	ND U	5.0	1	10/20/23 14:59	
Bromomethane	ND U	5.0	1	10/20/23 14:59	
2-Butanone (MEK)	ND U	10	1	10/20/23 14:59	
Carbon Disulfide	ND U	10	1	10/20/23 14:59	
Carbon Tetrachloride	ND U	5.0	1	10/20/23 14:59	
Chlorobenzene	ND U	5.0	1	10/20/23 14:59	
Chloroethane	ND U	5.0	1	10/20/23 14:59	
Chloroform	ND U	5.0	1	10/20/23 14:59	
Chloromethane	ND U	5.0	1	10/20/23 14:59	
Dibromochloromethane	ND U	5.0	1	10/20/23 14:59	
1,1-Dichloroethane	ND U	5.0	1	10/20/23 14:59	
1,2-Dichloroethane	ND U	5.0	1	10/20/23 14:59	
1,1-Dichloroethene	ND U	5.0	1	10/20/23 14:59	
cis-1,2-Dichloroethene	ND U	5.0	1	10/20/23 14:59	
trans-1,2-Dichloroethene	ND U	5.0	1	10/20/23 14:59	
1,2-Dichloropropane	ND U	5.0	1	10/20/23 14:59	
cis-1,3-Dichloropropene	ND U	5.0	1	10/20/23 14:59	
trans-1,3-Dichloropropene	ND U	5.0	1	10/20/23 14:59	
Ethylbenzene	ND U	5.0	1	10/20/23 14:59	
2-Hexanone	ND U	10	1	10/20/23 14:59	
Methylene Chloride	ND U	5.0	1	10/20/23 14:59	
4-Methyl-2-pentanone (MIBK)	ND U	10	1	10/20/23 14:59	
Styrene	ND U	5.0	1	10/20/23 14:59	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	10/20/23 14:59	
Tetrachloroethene	ND U	5.0	1	10/20/23 14:59	
Toluene	ND U	5.0	1	10/20/23 14:59	
1,1,1-Trichloroethane	ND U	5.0	1	10/20/23 14:59	
1,1,2-Trichloroethane	ND U	5.0	1	10/20/23 14:59	
Trichloroethene	9.9	5.0	1	10/20/23 14:59	
Vinyl Chloride	ND U	5.0	1	10/20/23 14:59	
o-Xylene	ND U	5.0	1	10/20/23 14:59	
m,p-Xylenes	ND U	5.0	1_	10/20/23 14:59	

Service Request: R2309475

Analytical Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York) Service Request: R2309475

Project: Crosman/3005202 **Date Collected:** 10/13/23 09:20

Sample Matrix: Water Date Received: 10/13/23 13:40

Sample Name: MW-14 Units: ug/L

Lab Code: R2309475-004 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	104	85 - 122	10/20/23 14:59	
Toluene-d8	102	87 - 121	10/20/23 14:59	
Dibromofluoromethane	103	80 - 116	10/20/23 14:59	

Analytical Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York)

Service Request: R2309475 **Date Collected:** 10/13/23 09:50 **Project:** Crosman/3005202

Sample Matrix: Water **Date Received:** 10/13/23 13:40

PW-1 **Sample Name:** Units: ug/L

Lab Code: R2309475-005 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	ND U	10	1	10/20/23 13:28	
Benzene	ND U	5.0	1	10/20/23 13:28	
Bromodichloromethane	ND U	5.0	1	10/20/23 13:28	
Bromoform	ND U	5.0	1	10/20/23 13:28	
Bromomethane	ND U	5.0	1	10/20/23 13:28	
2-Butanone (MEK)	ND U	10	1	10/20/23 13:28	
Carbon Disulfide	ND U	10	1	10/20/23 13:28	
Carbon Tetrachloride	ND U	5.0	1	10/20/23 13:28	
Chlorobenzene	ND U	5.0	1	10/20/23 13:28	
Chloroethane	ND U	5.0	1	10/20/23 13:28	
Chloroform	ND U	5.0	1	10/20/23 13:28	
Chloromethane	ND U	5.0	1	10/20/23 13:28	
Dibromochloromethane	ND U	5.0	1	10/20/23 13:28	
1,1-Dichloroethane	ND U	5.0	1	10/20/23 13:28	
1,2-Dichloroethane	ND U	5.0	1	10/20/23 13:28	
1,1-Dichloroethene	ND U	5.0	1	10/20/23 13:28	
cis-1,2-Dichloroethene	ND U	5.0	1	10/20/23 13:28	
trans-1,2-Dichloroethene	ND U	5.0	1	10/20/23 13:28	
1,2-Dichloropropane	ND U	5.0	1	10/20/23 13:28	
cis-1,3-Dichloropropene	ND U	5.0	1	10/20/23 13:28	
trans-1,3-Dichloropropene	ND U	5.0	1	10/20/23 13:28	
Ethylbenzene	ND U	5.0	1	10/20/23 13:28	
2-Hexanone	ND U	10	1	10/20/23 13:28	
Methylene Chloride	ND U	5.0	1	10/20/23 13:28	
4-Methyl-2-pentanone (MIBK)	ND U	10	1	10/20/23 13:28	
Styrene	ND U	5.0	1	10/20/23 13:28	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	10/20/23 13:28	
Tetrachloroethene	ND U	5.0	1	10/20/23 13:28	
Toluene	ND U	5.0	1	10/20/23 13:28	
1,1,1-Trichloroethane	ND U	5.0	1	10/20/23 13:28	
1,1,2-Trichloroethane	ND U	5.0	1	10/20/23 13:28	
Trichloroethene	55	5.0	1	10/20/23 13:28	
Vinyl Chloride	ND U	5.0	1	10/20/23 13:28	
o-Xylene	ND U	5.0	1	10/20/23 13:28	
m,p-Xylenes	ND U	5.0	1	10/20/23 13:28	

Analytical Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York) Service Request: R2309475

Project: Crosman/3005202 **Date Collected:** 10/13/23 09:50

Sample Matrix: Water Date Received: 10/13/23 13:40

Sample Name: PW-1 Units: ug/L

Lab Code: R2309475-005 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	101	85 - 122	10/20/23 13:28	
Toluene-d8	98	87 - 121	10/20/23 13:28	
Dibromofluoromethane	97	80 - 116	10/20/23 13:28	

Analytical Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York)

Project: Crosman/3005202 **Date Collected:** 10/13/23 10:10

Sample Matrix: Water Date Received: 10/13/23 13:40

 Sample Name:
 MW-13
 Units: ug/L

 Lab Code:
 R2309475-006
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	ND U	10	1	10/20/23 13:50	
Benzene	ND U	5.0	1	10/20/23 13:50	
Bromodichloromethane	ND U	5.0	1	10/20/23 13:50	
Bromoform	ND U	5.0	1	10/20/23 13:50	
Bromomethane	ND U	5.0	1	10/20/23 13:50	
2-Butanone (MEK)	ND U	10	1	10/20/23 13:50	
Carbon Disulfide	ND U	10	1	10/20/23 13:50	
Carbon Tetrachloride	ND U	5.0	1	10/20/23 13:50	
Chlorobenzene	ND U	5.0	1	10/20/23 13:50	
Chloroethane	ND U	5.0	1	10/20/23 13:50	
Chloroform	ND U	5.0	1	10/20/23 13:50	
Chloromethane	ND U	5.0	1	10/20/23 13:50	
Dibromochloromethane	ND U	5.0	1	10/20/23 13:50	
1,1-Dichloroethane	ND U	5.0	1	10/20/23 13:50	
1,2-Dichloroethane	ND U	5.0	1	10/20/23 13:50	
1,1-Dichloroethene	ND U	5.0	1	10/20/23 13:50	
cis-1,2-Dichloroethene	ND U	5.0	1	10/20/23 13:50	
trans-1,2-Dichloroethene	ND U	5.0	1	10/20/23 13:50	
1,2-Dichloropropane	ND U	5.0	1	10/20/23 13:50	
cis-1,3-Dichloropropene	ND U	5.0	1	10/20/23 13:50	
trans-1,3-Dichloropropene	ND U	5.0	1	10/20/23 13:50	
Ethylbenzene	ND U	5.0	1	10/20/23 13:50	
2-Hexanone	ND U	10	1	10/20/23 13:50	
Methylene Chloride	ND U	5.0	1	10/20/23 13:50	
4-Methyl-2-pentanone (MIBK)	ND U	10	1	10/20/23 13:50	
Styrene	ND U	5.0	1	10/20/23 13:50	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	10/20/23 13:50	
Tetrachloroethene	ND U	5.0	1	10/20/23 13:50	
Toluene	ND U	5.0	1	10/20/23 13:50	
1,1,1-Trichloroethane	ND U	5.0	1	10/20/23 13:50	
1,1,2-Trichloroethane	ND U	5.0	1	10/20/23 13:50	
Trichloroethene	130	5.0	1	10/20/23 13:50	
Vinyl Chloride	ND U	5.0	1	10/20/23 13:50	
o-Xylene	ND U	5.0	1	10/20/23 13:50	
m,p-Xylenes	ND U	5.0	1	10/20/23 13:50	

Service Request: R2309475

Analytical Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York) Service Request: R2309475

Project: Crosman/3005202 **Date Collected:** 10/13/23 10:10

Sample Matrix: Water Date Received: 10/13/23 13:40

 Sample Name:
 MW-13
 Units: ug/L

 Lab Code:
 R2309475-006
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	104	85 - 122	10/20/23 13:50	
Toluene-d8	98	87 - 121	10/20/23 13:50	
Dibromofluoromethane	96	80 - 116	10/20/23 13:50	

Analytical Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York)

Service Request: R2309475 **Date Collected:** 10/13/23 **Project:** Crosman/3005202

Sample Matrix: Water **Date Received:** 10/13/23 13:40

Sample Name: Trip Blank Units: ug/L Lab Code: R2309475-007 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	ND U	10	1	10/20/23 13:05	
Benzene	ND U	5.0	1	10/20/23 13:05	
Bromodichloromethane	ND U	5.0	1	10/20/23 13:05	
Bromoform	ND U	5.0	1	10/20/23 13:05	
Bromomethane	ND U	5.0	1	10/20/23 13:05	
2-Butanone (MEK)	ND U	10	1	10/20/23 13:05	
Carbon Disulfide	ND U	10	1	10/20/23 13:05	
Carbon Tetrachloride	ND U	5.0	1	10/20/23 13:05	
Chlorobenzene	ND U	5.0	1	10/20/23 13:05	
Chloroethane	ND U	5.0	1	10/20/23 13:05	
Chloroform	ND U	5.0	1	10/20/23 13:05	
Chloromethane	ND U	5.0	1	10/20/23 13:05	
Dibromochloromethane	ND U	5.0	1	10/20/23 13:05	
1,1-Dichloroethane	ND U	5.0	1	10/20/23 13:05	
1,2-Dichloroethane	ND U	5.0	1	10/20/23 13:05	
1,1-Dichloroethene	ND U	5.0	1	10/20/23 13:05	
cis-1,2-Dichloroethene	ND U	5.0	1	10/20/23 13:05	
trans-1,2-Dichloroethene	ND U	5.0	1	10/20/23 13:05	
1,2-Dichloropropane	ND U	5.0	1	10/20/23 13:05	
cis-1,3-Dichloropropene	ND U	5.0	1	10/20/23 13:05	
trans-1,3-Dichloropropene	ND U	5.0	1	10/20/23 13:05	
Ethylbenzene	ND U	5.0	1	10/20/23 13:05	
2-Hexanone	ND U	10	1	10/20/23 13:05	
Methylene Chloride	ND U	5.0	1	10/20/23 13:05	
4-Methyl-2-pentanone (MIBK)	ND U	10	1	10/20/23 13:05	
Styrene	ND U	5.0	1	10/20/23 13:05	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	10/20/23 13:05	
Tetrachloroethene	ND U	5.0	1	10/20/23 13:05	
Toluene	ND U	5.0	1	10/20/23 13:05	
1,1,1-Trichloroethane	ND U	5.0	1	10/20/23 13:05	
1,1,2-Trichloroethane	ND U	5.0	1	10/20/23 13:05	
Trichloroethene	ND U	5.0	1	10/20/23 13:05	
Vinyl Chloride	ND U	5.0	1	10/20/23 13:05	
o-Xylene	ND U	5.0	1	10/20/23 13:05	
m,p-Xylenes	ND U	5.0	1	10/20/23 13:05	

Analytical Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York)

Project: Crosman/3005202

Date Collected: 10/13/23

Date Received: 10/13/23 13:40

Sample Matrix: Water

Service Request: R2309475

Sample Name: Trip Blank Units: ug/L Lab Code: R2309475-007 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	99	85 - 122	10/20/23 13:05	
Toluene-d8	98	87 - 121	10/20/23 13:05	
Dibromofluoromethane	95	80 - 116	10/20/23 13:05	

QC Summary Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

QA/QC Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York) Service Request: R2309475

Project: Crosman/3005202

Sample Matrix: Water

SURROGATE RECOVERY SUMMARY Volatile Organic Compounds by GC/MS

Analysis Method: 8260C

Extraction Method: EPA 5030C

		4-Bromofluorobenzene	Dibromofluoromethane	Toluene-d8
Sample Name	Lab Code	85 - 122	80 - 116	87 - 121
MW-15	R2309475-001	101	98	98
MW-4	R2309475-002	103	98	100
MW-5	R2309475-003	106	99	101
MW-14	R2309475-004	104	103	102
PW-1	R2309475-005	101	97	98
MW-13	R2309475-006	104	96	98
Trip Blank	R2309475-007	99	95	98
Lab Control Sample	RQ2313739-03	97	91	94
Method Blank	RQ2313739-04	99	96	96
PW-1 MS	RQ2313739-05	100	96	97
PW-1 DMS	RQ2313739-06	97	93	96

QA/QC Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York)

Project: Crosman/3005202 **Sample Matrix:** Water

Date Collected: 10/13/23 **Date Received:** 10/13/23 Date Analyzed: 10/20/23

R2309475

Date Extracted: NA

Service Request:

Duplicate Matrix Spike Summary Volatile Organic Compounds by GC/MS

Sample Name: PW-1

R2309475-005

Units: ug/L **Basis:** NA

Lab Code:

Analysis Method: 8260C **Prep Method:** EPA 5030C

> **Matrix Spike Duplicate Matrix Spike** RQ2313739-05 RQ2313739-06

	Sample		Spike	a. =		Spike	a	% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Acetone	ND U	31.4	50.0	63	31.9	50.0	64	35-183	2	30
Benzene	ND U	49.4	50.0	99	49.4	50.0	99	76-129	<1	30
Bromodichloromethane	ND U	45.7	50.0	91	48.2	50.0	96	78-133	5	30
Bromoform	ND U	50.2	50.0	100	51.9	50.0	104	58-133	3	30
Bromomethane	ND U	32.2	50.0	64	30.7	50.0	61	10-184	5	30
2-Butanone (MEK)	ND U	32.6	50.0	65	34.3	50.0	69	61-137	5	30
Carbon Disulfide	ND U	42.8	50.0	86	44.4	50.0	89	59-140	4	30
Carbon Tetrachloride	ND U	44.4	50.0	89	50.5	50.0	101	65-135	13	30
Chlorobenzene	ND U	49.2	50.0	98	49.6	50.0	99	76-125	<1	30
Chloroethane	ND U	31.8	50.0	64	33.3	50.0	67	48-146	5	30
Chloroform	ND U	48.1	50.0	96	48.0	50.0	96	75-130	<1	30
Chloromethane	ND U	44.6	50.0	89	43.1	50.0	86	55-160	3	30
Dibromochloromethane	ND U	47.8	50.0	96	49.5	50.0	99	72-128	4	30
1,1-Dichloroethane	ND U	49.1	50.0	98	49.9	50.0	100	74-132	2	30
1,2-Dichloroethane	ND U	42.8	50.0	86	42.5	50.0	85	68-130	<1	30
1,1-Dichloroethene	ND U	48.8	50.0	98	48.8	50.0	98	71-118	<1	30
cis-1,2-Dichloroethene	ND U	49.2	50.0	98	49.9	50.0	100	77-127	1	30
trans-1,2-Dichloroethene	ND U	50.4	50.0	101	52.2	50.0	104	73-118	3	30
1,2-Dichloropropane	ND U	44.9	50.0	90	45.7	50.0	91	79-124	2	30
cis-1,3-Dichloropropene	ND U	45.9	50.0	92	48.2	50.0	96	52-134	5	30
trans-1,3-Dichloropropene	ND U	43.3	50.0	87	46.9	50.0	94	71-133	8	30
Ethylbenzene	ND U	50.9	50.0	102	51.5	50.0	103	72-134	1	30
2-Hexanone	ND U	37.0	50.0	74	39.0	50.0	78	56-132	5	30
Methylene Chloride	ND U	48.8	50.0	98	48.5	50.0	97	73-122	<1	30
4-Methyl-2-pentanone (MIBK)	ND U	39.2	50.0	78	40.8	50.0	82	60-141	4	30
Styrene	ND U	50.0	50.0	100	50.1	50.0	100	74-136	<1	30
1,1,2,2-Tetrachloroethane	ND U	49.6	50.0	99	47.2	50.0	94	72-122	5	30
Tetrachloroethene	ND U	52.6	50.0	105	51.9	50.0	104	72-125	1	30
Toluene	ND U	50.0	50.0	100	49.5	50.0	99	79-119	1	30
1,1,1-Trichloroethane	ND U	45.5	50.0	91	48.4	50.0	97	74-127	6	30
1,1,2-Trichloroethane	ND U	46.8	50.0	94	46.1	50.0	92	82-121	1	30
Trichloroethene	55	102	50.0	93	101	50.0	92	74-122	<1	30
Vinyl Chloride	ND U	37.2	50.0	74	35.8	50.0	72 *	74-159	4	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

QA/QC Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York) **Service Request:**

R2309475

Project: Crosman/3005202 **Date Collected:**

10/13/23

Water

Date Received:

10/13/23

Date Analyzed:

10/20/23

Date Extracted:

NA

Duplicate Matrix Spike Summary Volatile Organic Compounds by GC/MS

Sample Name:

PW-1

ug/L

Lab Code:

R2309475-005

Units: Basis:

NA

Analysis Method: Prep Method:

Sample Matrix:

8260C

EPA 5030C

Matrix Spike

Duplicate Matrix Spike

RQ2313739-05

RQ2313739-06

	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
o-Xylene	ND U	49.0	50.0	98	50.0	50.0	100	79-123	2	30
m,p-Xylenes	ND U	105	100	105	106	100	106	80-126	<1	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Analytical Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York) Service Request: R2309475

Project:Crosman/3005202Date Collected:NASample Matrix:WaterDate Received:NA

Sample Name:Method BlankUnits: ug/LLab Code:RQ2313739-04Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	ND U	10	1	10/20/23 11:57	
Benzene	ND U	5.0	1	10/20/23 11:57	
Bromodichloromethane	ND U	5.0	1	10/20/23 11:57	
Bromoform	ND U	5.0	1	10/20/23 11:57	
Bromomethane	ND U	5.0	1	10/20/23 11:57	
2-Butanone (MEK)	ND U	10	1	10/20/23 11:57	
Carbon Disulfide	ND U	10	1	10/20/23 11:57	
Carbon Tetrachloride	ND U	5.0	1	10/20/23 11:57	
Chlorobenzene	ND U	5.0	1	10/20/23 11:57	
Chloroethane	ND U	5.0	1	10/20/23 11:57	
Chloroform	ND U	5.0	1	10/20/23 11:57	
Chloromethane	ND U	5.0	1	10/20/23 11:57	
Dibromochloromethane	ND U	5.0	1	10/20/23 11:57	
1,1-Dichloroethane	ND U	5.0	1	10/20/23 11:57	
1,2-Dichloroethane	ND U	5.0	1	10/20/23 11:57	
1,1-Dichloroethene	ND U	5.0	1	10/20/23 11:57	
cis-1,2-Dichloroethene	ND U	5.0	1	10/20/23 11:57	
trans-1,2-Dichloroethene	ND U	5.0	1	10/20/23 11:57	
1,2-Dichloropropane	ND U	5.0	1	10/20/23 11:57	
cis-1,3-Dichloropropene	ND U	5.0	1	10/20/23 11:57	
trans-1,3-Dichloropropene	ND U	5.0	1	10/20/23 11:57	
Ethylbenzene	ND U	5.0	1	10/20/23 11:57	
2-Hexanone	ND U	10	1	10/20/23 11:57	
Methylene Chloride	ND U	5.0	1	10/20/23 11:57	
4-Methyl-2-pentanone (MIBK)	ND U	10	1	10/20/23 11:57	
Styrene	ND U	5.0	1	10/20/23 11:57	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	10/20/23 11:57	
Tetrachloroethene	ND U	5.0	1	10/20/23 11:57	
Toluene	ND U	5.0	1	10/20/23 11:57	
1,1,1-Trichloroethane	ND U	5.0	1	10/20/23 11:57	
1,1,2-Trichloroethane	ND U	5.0	1	10/20/23 11:57	
Trichloroethene	ND U	5.0	1	10/20/23 11:57	
Vinyl Chloride	ND U	5.0	1	10/20/23 11:57	
o-Xylene	ND U	5.0	1	10/20/23 11:57	
m,p-Xylenes	ND U	5.0	1_	10/20/23 11:57	

Analytical Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York) Service Request: R2309475

Project:Crosman/3005202Date Collected:NASample Matrix:WaterDate Received:NA

Sample Name:Method BlankUnits: ug/LLab Code:RQ2313739-04Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	99	85 - 122	10/20/23 11:57	
Toluene-d8	96	87 - 121	10/20/23 11:57	
Dibromofluoromethane	96	80 - 116	10/20/23 11:57	

QA/QC Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York)

Project: Crosman/3005202

Sample Matrix: Water

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Service Request: R2309475

Date Analyzed: 10/20/23

Lab Control Sample

RQ2313739-03

Acetone 8260C 12.0 Benzene 8260C 19.0	5 20.0	60 98	40-161
Benzene 8260C 19.3		98	
	7 20.0	, 0	79-119
Bromodichloromethane 8260C 18.	20.0	94	81-123
Bromoform 8260C 21.	20.0	105	65-146
Bromomethane 8260C 17.5	20.0	90	42-166
2-Butanone (MEK) 8260C 12.5	20.0	65	61-137
Carbon Disulfide 8260C 17.8	3 20.0	89	66-128
Carbon Tetrachloride 8260C 19.3	3 20.0	99	70-127
Chlorobenzene 8260C 19.	7 20.0	99	80-121
Chloroethane 8260C 13.3	20.0	66	62-131
Chloroform 8260C 19.0	20.0	95	79-120
Chloromethane 8260C 17.	5 20.0	88	72-179
Dibromochloromethane 8260C 19.	20.0	96	72-128
1,1-Dichloroethane 8260C 19.	20.0	96	80-124
1,2-Dichloroethane 8260C 17.4	20.0	87	71-127
1,1-Dichloroethene 8260C 18.	7 20.0	93	69-142
cis-1,2-Dichloroethene 8260C 18.3	3 20.0	94	80-121
trans-1,2-Dichloroethene 8260C 19.3	5 20.0	98	73-118
1,2-Dichloropropane 8260C 18.3	5 20.0	92	80-119
cis-1,3-Dichloropropene 8260C 20.3	3 20.0	102	77-122
trans-1,3-Dichloropropene 8260C 20.4	4 20.0	102	71-133
Ethylbenzene 8260C 20.0	20.0	100	76-120
2-Hexanone 8260C 14.	20.0	70	63-124
Methylene Chloride 8260C 19.0	20.0	95	73-122
4-Methyl-2-pentanone (MIBK) 8260C 16.4	20.0	82	66-124
Styrene 8260C 20.3	2 20.0	101	80-124
1,1,2,2-Tetrachloroethane 8260C 18.4	20.0	92	78-126
Tetrachloroethene 8260C 20.:	5 20.0	103	72-125
Toluene 8260C 20.3	20.0	101	79-119
1,1,1-Trichloroethane 8260C 18.	7 20.0	94	75-125
1,1,2-Trichloroethane 8260C 18.9	20.0	94	82-121
Trichloroethene 8260C 18.5	20.0	95	74-122
Vinyl Chloride 8260C 14.	7 20.0	74	74-159
Printed 10/24/2023 3:36:38 PM		Superset Reference:23-0	000678512 rev 00

QA/QC Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York)

Project: Crosman/3005202 Date Analyzed: 10/20/23

Sample Matrix: Water

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

> Units:ug/L Basis:NA

Service Request: R2309475

Lab Control Sample

RQ2313739-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
o-Xylene	8260C	19.3	20.0	97	79-123
m,p-Xylenes	8260C	43.0	40.0	107	80-126

Groundwater Parameter Log (Spring)

Crosman Site

East Bloomfield, NY_

Sampling Personnel: BKW/AJS

Event: Spring 2024

		Passive Diffussion Bag Samplers				Sampling Parameters								
Date	Sample ID	Deployment Date	Deployment Depth (ft bgs)	PDB Size (diameter x length)	Sample Time	DTW (ft BTIC)	Temp (°C)	Dissolved Oxygen (mg/L)	Specific Conductivity (mS/cm	pH (SU)	ORP (mV)	Turbidity (NTU)	# of Bottles	Notes
4/18/2024	PW-1	NA	NA	NA	1225	12.65	11.9	6.68	1.648	6.84	235.7	0.00	3	
4/18/2024	MW-3A	4/7/2023	70.5	1.7" x 24"	1125	47.53	12.3	8.06	0.010	4.50	265.3	0.00	3	
4/18/2024	MW-4	10/13/2023	30.6	1.7" x 24"	1020	15.48	12.4	4.80	0.005	4.95	222.0	0.00	3	
4/18/2024	MW-5	10/13/2023	45.6	1.7" x 24"	1030	15.00	10.8	3.24	0.005	4.79	227.7	0.00	3	
4/18/2024	MW-13	10/13/2023	63.5	1.7" x 24"	1105	31.68	12.0	5.87	0.008	4.68	250.3	0.00	3	
4/18/2024	MW-14	10/13/2023	85.0	1.7" x 24"	1040	56.57	10.6	4.43	0.004	4.90	225.3	0.87	3	
4/18/2024	MW-15	10/13/2023	30.0	1.7" x 24"	1000	11.46	11.9	5.69	0.005	5.64	185.1	0.00	3	
4/18/2024	MW-17	4/7/2023	30.9	1.7" x 24"	1115	51.60	14.2	4.41	0.006	4.81	245.2	0.00	3	
4/18/2024	MW-18	4/7/2023	68.1	1.7" x 24"	0925	34.88	12.0	5.12	0.012	7.82	104.9	4.22	3	
4/18/2024	MW-19	4/7/2023	32.5	1.7" x 24"	0945	17.52	11.1	7.21	0.007	6.12	169.2	0.00	3	
4/18/2024	MW-20	4/7/2023	57.0	1.7" x 24"	1200	54.25	13.6	9.83	0.007	4.79	263.8	0.00	3	

Notes:

Samples submitted for VOC analysis via Method 8260 (3 - 40 mL vials/sample)

bgs - below ground surface

BTIC - below top of inner casing

Service Request No:R2403211

Mr. Aaron Richardson ARCADIS 100 Chestnut St., Suite 100 Rochester, NY 14604

Laboratory Results for: Crosman

Dear Mr.Richardson,

Enclosed are the results of the sample(s) submitted to our laboratory April 18, 2024 For your reference, these analyses have been assigned our service request number **R2403211**.

All testing was performed according to our laboratory's quality assurance program and met the requirements of the TNI standards except as noted in the case narrative report. Any testing not included in the lab's accreditation is identified on a Non-Certified Analytes report. All results are intended to be considered in their entirety. ALS Environmental is not responsible for use of less than the complete report. Results apply only to the individual samples submitted to the lab for analysis, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s), and represented by Laboratory Control Sample control limits. Any events, such as QC failures or Holding Time exceedances, which may add to the uncertainty are explained in the report narrative or are flagged with qualifiers. The flags are explained in the Report Qualifiers and Definitions page of this report.

Please contact me if you have any questions. My extension is 7472. You may also contact me via email at Janice.Jaeger@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Janice Jaeger Project Manager

Jamankson

Narrative Documents

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York)

Project: Crosman

ARCADIS U.S., Inc. (formerly ARCADIS of New York)

Date Received: 04/18/2024

Sample Matrix: Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Twelve water samples were received for analysis at ALS Environmental on 04/18/2024. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Volatiles by GC/MS:

Method 8260C, 04/25/2024: The lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.

`	9 4			
Approved by	\mathcal{O}	Date	04/29/2024	

Clamanestock/

SAMPLE DETECTION SUMMARY

This form includes only detections above the reporting levels. For a full listing of sample results, continue to the Sample Results section of this Report.

CLIENT ID: MW-5		Lab ID: R2403211-004								
Analyte	Results	Flag	MDL	MRL	Units	Method				
cis-1,2-Dichloroethene	22			5.0	ug/L	8260C				
CLIENT ID: MW-17		Lab	ID: R2403	3211-008						
Analyte	Results	Flag	MDL	MRL	Units	Method				
trans-1,2-Dichloroethene	17			10	ug/L	8260C				
Trichloroethene	240			10	ug/L	8260C				
CLIENT ID: PW-1		Lab	ID: R2403	211-001						
Analyte	Results	Flag	MDL	MRL	Units	Method				
Trichloroethene	28			5.0	ug/L	8260C				
CLIENT ID: MW-3A		Lab	ID: R2403	3211-002						
Analyte	Results	Flag	MDL	MRL	Units	Method				
Trichloroethene	150			5.0	ug/L	8260C				
CLIENT ID: MW-13		Lab	ID: R2403	211-005						
Analyte	Results	Flag	MDL	MRL	Units	Method				
Trichloroethene	80			5.0	ug/L	8260C				
CLIENT ID: MW-20		Lab	ID: R2403	3211-011						
Analyte	Results	Flag	MDL	MRL	Units	Method				
Trichloroethene	100			5.0	ug/L	8260C				

Sample Receipt Information

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com ARCADIS U.S., Inc. (formerly ARCADIS of New York) Service Request:R2403211

Project: Crosman/30005202

Client:

SAMPLE CROSS-REFERENCE

CLIENT SAMPLE ID	<u>DATE</u>	<u>TIME</u>
PW-1	4/18/2024	1225
MW-3A	4/18/2024	1125
MW-4	4/18/2024	1020
MW-5	4/18/2024	1030
MW-13	4/18/2024	1105
MW-14	4/18/2024	1040
MW-15	4/18/2024	1000
MW-17	4/18/2024	1115
MW-18	4/18/2024	0925
MW-19	4/18/2024	0945
MW-20	4/18/2024	1200
Trip Blank	4/18/2024	
	PW-1 MW-3A MW-4 MW-5 MW-13 MW-14 MW-15 MW-17 MW-18 MW-19 MW-20	PW-1 4/18/2024 MW-3A 4/18/2024 MW-4 4/18/2024 MW-5 4/18/2024 MW-13 4/18/2024 MW-14 4/18/2024 MW-15 4/18/2024 MW-15 4/18/2024 MW-17 4/18/2024 MW-17 4/18/2024 MW-18 4/18/2024 MW-19 4/18/2024 MW-20 4/18/2024

ALS Environmental

1565 Jefferson Rd, Bldg 300 Ste 360, Rochester, NY 146 585-288-5380 FAX 585-288-8475

1	
SR#	
PAGE 1 OF	7 1

													Azia	lysis R	equested	
Project Name: <u>Crosman</u>	Pro	oject Number: 30005202			LS				***********	19199191				<u> </u>		
Project Manager: Aaron Richa	urdson Con	mpany: Arcadis of New York, Inc.			Containers											
Company/Address: 100 Chestnu	t Street Pho	ne: <u>585-662-4</u>	1057													
City, State, Zip: Rochester, N	NY 14604 Ema	ail: <u>Aaron.Ric</u>	hardson@Arcadis.c	om ·	er of											
Sampler's Name and Signature:				i	Number	SS										
Sample I.D.	Date	Time	LAB ID	Matrix	Z	vocs									REMARKS	S
PW-1	4/18/2023	1225		GW	3	X										
MW-3A	4/18/2023	1125		GW	3	X		İ								
MW-4	4/18/2023	1020		GW	3	X										
MW-5	4/18/2023	1030		GW	3	Х										
MW-13	4/18/2023	1105	<u>-</u>	GW	3	Х										
MW-14	4/18/2023	1040		GW	3	X									-	
MW-15	4/18/2023	1000		GW	3	X										
MW-17	4/18/2023	1115		GW	3	Х										
MW-18	4/18/2023	0925		GW	3	X										,
MW-19	4/18/2023	0945		GW	3	X										
MW-20	4/18/2023	1200		GW	3	X										
TRIP BLANK		**		W	3	X										
URNAROUND REQUIREMENT			REQUIREMENTS				Com	ments	Spec	ial In	struci	tions:			<u>-</u>	
24 hr* 48 hr* 3 * RUSH TAT additional surcharg		· <u></u> .	1. Routine Report: Re (Surrogate, as requ		Metho	d Bla	nk 									
X Standard (10 BD)	, ·· · · · ·		II. Results w/ QC (Du		SD as	req)										
Requested Report Date:		-	III. Results (with QC Summaries)	and Calib	ration	1										
Invoice Information P.O. #		X														
Bill to:		IV. ASP-B Package EDD?														
EDD Type:																
RELINQUISHED BY:				1		ЛЅНЕ	D BY	Y:				İ	- 1	ECEIVED BY:	:	
Signature: Why MWW Signature: Rubi				1									S	gnature:		
Printed Name: 8. Kudla-Wi	illians	Printed Name:	Remy Rubi	n	Print	ed Na	me: _						_	Pi	rinted Name:	
Firm: Areadis	<u> </u>	Firm:	ALS										-	F	irm: $\frac{1}{1}$ \mathbf{R}_{i}^{i}	2403211 5
Date/Time: 4/18/24 134	15	Date/Time:	4/18/24 134	15	Date	Time	:							D	ate/Time Cros	man

ALS)	Cooler F

Cooler Receipt and Preservat

R2403211 5

Project/Cli	ent ArCo	adi5			Fold	er Number							
Cooler receiv	. 1	19/24	by:	RR	- ,	COURIE	R: ALS	UPS	FEDE	X VEL	OCITY CL	IENT	
1 Were Cu	istody seals of	outside of cool	er?		YN	5a Per	chlorate	sample	s have rec	puired he	adspace?	Y	N (NA)
2 Custody	papers prope	rly completed (ii	nk, sign	ied)?	Y N	5b Dio	(VOA vi	als, Alk	or Sulfid	e have si	g* bubbles?	Υ (NA (N
3 Did all b	ottles arrive in	good condition	(unbro	ken)?	N	6 W1	ere did th	e bottle	s originat	e?	ALS/ROC	CLI	ENT
4 Circle:	Wet Ice Dry	Ice Gel packs	pre	sent?	Y) N	7 Soi	l VOA re	ceived a	ıs: Bu	ılk E	ncore 503	5set (ÑÃ)
3. Temperatu	re Readings	Date: 4/18	8/24	_Time	:_134	7 1	D: IR#12	2 (IR#1	D)	From	: Temp Blan	nk (Sa	mple Bott
Observed To		14.5										T -	
Within 0-6°		Y (N		Y	N	YN	Y	N	Y	N	YN	Y	N
If <0°C, wer	e samples froz	zen? Y N		Y	N	Y N	Y	N	Y	N	YN	Y	N
5035 sample Cooler Bro	eakdown/Preso	crage location: crage location: cryation Check**	SM 	e : 4	by Riby Right Rig	on 4/ on Time	at =: 1413	4		hours o	f sampling?	Y	N —
11. V 12. V 13. V 14. A	Were correct of Were 5035 vial Were dissolved Air Samples: C	bels and tags ago ontainers used for a acceptable (no metals filtered in cassettes / Tubes	r the ter extra la n the fi Intact	sts inc abels, eld? Y/N	hicated? not leakin with MS	g)? Y/N Can	nisters Pre	YES YES YES ssurized		dlar® Ba	ngs Inflated (N/A	·)
pН	Lot of test paper	Reagent	Preser	No.	Lot Rec	ceived	Exp	Samp Adjus		·Vol. Added	Lot Add	ed .	Final
≥12	F-F	NaOH			 		 	714145		Added			pΗ
<u><2</u>		HNO ₃					 						
≤2		H ₂ SO ₄	1		1.								
<4		NaHSO4											
5-9		For 608pest			No=Not	ify for 3day							
Residual		For CN,			If +, con	tact PM to add							
Chlorine		Phenol, 625,				(625, 608,		Ì	Į				
(-)		608pest, 522			CN), asc	orbic (phenol)	.		ĺ				
		Na ₂ S ₂ O ₃					1 -				<u> </u>		
		ZnAcetate	-	-			<u> </u>	**VOA	s and 1664	Not to be	tested before an	alysis.	
		HCl	**	**	2400	1661	04/26	Otherw	ise, ali botti cked (not ju	les of all sa	unples with the	mical pre	scrvatives
Bottle lot		7723-3A7 es/ Other Comm											
⊃vhiei⊓ qi	i Discrepanci	EN OME! COMM	chis.					•					

HPROD	BULK
HTR	FLDT
SUB	HGFB
ALS	LL3541

Labels secondary reviewed by:

PC Secondary Review:

P:\INTRANET\QAQC\Forms Controlled\Cooler Receipt r20.doc

*significant air bubbles: VOA > 5-6 mm : WC >1 in. diameter

01/23/2023

Miscellaneous Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

REPORT QUALIFIERS AND DEFINITIONS

- U Analyte was analyzed for but not detected.

 The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits. Under the "Notes" column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- H Analysis was performed out of hold time for tests that have an "immediate" hold time criteria.
- # Spike was diluted out.

P:\INTRANET\QAQC\Forms Controlled\QUALIF routine rev 7.doc

- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (≥100% Difference between two GC columns).
- X See Case Narrative for discussion.
- MRL Method Reporting Limit. Also known as:
- LOQ Limit of Quantitation (LOQ)

 The lowest concentration at which the method analyte may be reliably quantified under the method conditions.
- MDL Method Detection Limit. A statistical value derived from a study designed to provide the lowest concentration that will be detected 99% of the time. Values between the MDL and MRL are estimated (see J qualifier).
- LOD Limit of Detection. A value at or above the MDL which has been verified to be detectable.
- ND Non-Detect. Analyte was not detected at the concentration listed. Same as U qualifier.

Rochester Lab ID # for State Accreditations1

NELAP	States
Florida	ID # E87674
New Ha	mpshire ID # 2941
New Yo	ork ID # 10145
Pennsyl	vania ID# 68-786
Virginia	#460167

Non-NELAP States
Connecticut ID #PH0556
Delaware Approved
Maine ID #NY01587
North Carolina #36701
North Carolina #676
Rhode Island LAO00333

¹ Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the case narrative. Since not all analyte/method/matrix combinations are offered for state/NELAC accreditation, this report may contain results which are not accredited. For a specific list of accredited analytes, contact the laboratory. To verify NH accredited analytes, go to https://www4.des.state.nh.us/CertifiedLabs/Certified-Method.aspx.

ALS Laboratory Group

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but

greater than or equal to the MDL.

Analyst Summary report

Service Request: R2403211

Date Collected: 04/18/24

Date Received: 04/18/24

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York)

Project: Crosman/30005202

Sample Name: PW-1

Lab Code: R2403211-001

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C FNAEGLER

Sample Name: MW-3A Date Collected: 04/18/24

Lab Code: R2403211-002 **Date Received:** 04/18/24

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C FNAEGLER

Sample Name: MW-4 Date Collected: 04/18/24

Lab Code: R2403211-003 **Date Received:** 04/18/24

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C FNAEGLER

Sample Name: MW-5 Date Collected: 04/18/24

Lab Code: R2403211-004 Date Received: 04/18/24 Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C FNAEGLER

Sample Name: MW-13 Date Collected: 04/18/24

Lab Code: R2403211-005 **Date Received:** 04/18/24 **Sample Matrix:** Water

Analysis Method Extracted/Digested By Analyzed By
8260C FNAEGLER

Printed 4/29/2024 9:06:09 AM Superset Reference:24-0000695108 rev 00

Analyst Summary report

Service Request: R2403211

Date Collected: 04/18/24

Date Received: 04/18/24

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York)

Project: Crosman/30005202

Sample Name: MW-14

Lab Code: R2403211-006

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C FNAEGLER

Sample Name: MW-15 Date Collected: 04/18/24

Lab Code: R2403211-007 **Date Received:** 04/18/24

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C FNAEGLER

Sample Name: MW-17 Date Collected: 04/18/24

Lab Code: R2403211-008 **Date Received:** 04/18/24

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C FNAEGLER

Sample Name: MW-18 Date Collected: 04/18/24

Lab Code: R2403211-009 Date Received: 04/18/24 Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By
8260C FNAEGLER

Sample Name: MW-19 Date Collected: 04/18/24

Lab Code: R2403211-010 **Date Received:** 04/18/24

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By
8260C FNAEGLER

Printed 4/29/2024 9:06:10 AM Superset Reference:24-0000695108 rev 00

Analyst Summary report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York)

Project: Crosman/30005202

Sample Name: MW-20 Date Collected: 04/18/24

Lab Code: R2403211-011 **Date Received:** 04/18/24

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C FNAEGLER

Sample Name: Trip Blank Date Collected: 04/18/24

Lab Code: R2403211-012 **Date Received:** 04/18/24

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C FNAEGLER

Service Request: R2403211

INORGANIC PREPARATION METHODS

The preparation methods associated with this report are found in these tables unless discussed in the case narrative.

Water/Liquid Matrix

Analytical Method	Preparation Method
200.7	200.2
200.8	200.2
6010C	3005A/3010A
6020A	ILM05.3
9034 Sulfide Acid Soluble	9030B
SM 4500-CN-E Residual Cyanide	SM 4500-CN-G
SM 4500-CN-E WAD Cyanide	SM 4500-CN-I

Solid/Soil/Non-Aqueous Matrix

Analytical Method	Preparation Method		
6010C	3050B		
6020A	3050B		
6010C TCLP (1311)	3005A/3010A		
extract			
6010 SPLP (1312) extract	3005A/3010A		
7199	3060A		
300.0 Anions/ 350.1/	DI extraction		
353.2/ SM 2320B/ SM			
5210B/ 9056A Anions			
For analytical methods not listed, the preparation method is the same as the analytical method reference.			

Sample Results

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York)

Project: Crosman/30005202 **Date Collected:** 04/18/24 12:25

Sample Matrix: Water Date Received: 04/18/24 13:45

 Sample Name:
 PW-1
 Units: ug/L

 Lab Code:
 R2403211-001
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	ND U	10	1	04/25/24 03:24	
Benzene	ND U	5.0	1	04/25/24 03:24	
Bromodichloromethane	ND U	5.0	1	04/25/24 03:24	
Bromoform	ND U	5.0	1	04/25/24 03:24	
Bromomethane	ND U	5.0	1	04/25/24 03:24	
2-Butanone (MEK)	ND U	10	1	04/25/24 03:24	
Carbon Disulfide	ND U	10	1	04/25/24 03:24	
Carbon Tetrachloride	ND U	5.0	1	04/25/24 03:24	
Chlorobenzene	ND U	5.0	1	04/25/24 03:24	
Chloroethane	ND U	5.0	1	04/25/24 03:24	
Chloroform	ND U	5.0	1	04/25/24 03:24	
Chloromethane	ND U	5.0	1	04/25/24 03:24	
Dibromochloromethane	ND U	5.0	1	04/25/24 03:24	
1,1-Dichloroethane	ND U	5.0	1	04/25/24 03:24	
1,2-Dichloroethane	ND U	5.0	1	04/25/24 03:24	
1,1-Dichloroethene	ND U	5.0	1	04/25/24 03:24	
cis-1,2-Dichloroethene	ND U	5.0	1	04/25/24 03:24	
trans-1,2-Dichloroethene	ND U	5.0	1	04/25/24 03:24	
1,2-Dichloropropane	ND U	5.0	1	04/25/24 03:24	
cis-1,3-Dichloropropene	ND U	5.0	1	04/25/24 03:24	
trans-1,3-Dichloropropene	ND U	5.0	1	04/25/24 03:24	
Ethylbenzene	ND U	5.0	1	04/25/24 03:24	
2-Hexanone	ND U	10	1	04/25/24 03:24	
Methylene Chloride	ND U	5.0	1	04/25/24 03:24	
4-Methyl-2-pentanone (MIBK)	ND U	10	1	04/25/24 03:24	
Styrene	ND U	5.0	1	04/25/24 03:24	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	04/25/24 03:24	
Tetrachloroethene	ND U	5.0	1	04/25/24 03:24	
Toluene	ND U	5.0	1	04/25/24 03:24	
1,1,1-Trichloroethane	ND U	5.0	1	04/25/24 03:24	
1,1,2-Trichloroethane	ND U	5.0	1	04/25/24 03:24	
Trichloroethene	28	5.0	1	04/25/24 03:24	
Vinyl Chloride	ND U	5.0	1	04/25/24 03:24	
o-Xylene	ND U	5.0	1	04/25/24 03:24	
m,p-Xylenes	ND U	5.0	1	04/25/24 03:24	

Service Request: R2403211

Analytical Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York) Service Request: R2403211

Project: Crosman/30005202 **Date Collected:** 04/18/24 12:25

Sample Matrix: Water Date Received: 04/18/24 13:45

Sample Name: PW-1 Units: ug/L

Lab Code: R2403211-001 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	96	85 - 122	04/25/24 03:24	
Toluene-d8	100	87 - 121	04/25/24 03:24	
Dibromofluoromethane	96	80 - 116	04/25/24 03:24	

Analytical Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York)

Project: Crosman/30005202 **Date Collected:** 04/18/24 11:25

Sample Matrix: Water Date Received: 04/18/24 13:45

 Sample Name:
 MW-3A
 Units: ug/L

 Lab Code:
 R2403211-002
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	ND U	10	1	04/25/24 03:46	_
Benzene	ND U	5.0	1	04/25/24 03:46	
Bromodichloromethane	ND U	5.0	1	04/25/24 03:46	
Bromoform	ND U	5.0	1	04/25/24 03:46	
Bromomethane	ND U	5.0	1	04/25/24 03:46	
2-Butanone (MEK)	ND U	10	1	04/25/24 03:46	
Carbon Disulfide	ND U	10	1	04/25/24 03:46	
Carbon Tetrachloride	ND U	5.0	1	04/25/24 03:46	
Chlorobenzene	ND U	5.0	1	04/25/24 03:46	
Chloroethane	ND U	5.0	1	04/25/24 03:46	
Chloroform	ND U	5.0	1	04/25/24 03:46	
Chloromethane	ND U	5.0	1	04/25/24 03:46	
Dibromochloromethane	ND U	5.0	1	04/25/24 03:46	
1,1-Dichloroethane	ND U	5.0	1	04/25/24 03:46	
1,2-Dichloroethane	ND U	5.0	1	04/25/24 03:46	
1,1-Dichloroethene	ND U	5.0	1	04/25/24 03:46	
cis-1,2-Dichloroethene	ND U	5.0	1	04/25/24 03:46	
trans-1,2-Dichloroethene	ND U	5.0	1	04/25/24 03:46	
1,2-Dichloropropane	ND U	5.0	1	04/25/24 03:46	
cis-1,3-Dichloropropene	ND U	5.0	1	04/25/24 03:46	
trans-1,3-Dichloropropene	ND U	5.0	1	04/25/24 03:46	
Ethylbenzene	ND U	5.0	1	04/25/24 03:46	
2-Hexanone	ND U	10	1	04/25/24 03:46	
Methylene Chloride	ND U	5.0	1	04/25/24 03:46	
4-Methyl-2-pentanone (MIBK)	ND U	10	1	04/25/24 03:46	
Styrene	ND U	5.0	1	04/25/24 03:46	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	04/25/24 03:46	
Tetrachloroethene	ND U	5.0	1	04/25/24 03:46	
Toluene	ND U	5.0	1	04/25/24 03:46	
1,1,1-Trichloroethane	ND U	5.0	1	04/25/24 03:46	
1,1,2-Trichloroethane	ND U	5.0	1	04/25/24 03:46	
Trichloroethene	150	5.0	1	04/25/24 03:46	
Vinyl Chloride	ND U	5.0	1	04/25/24 03:46	
o-Xylene	ND U	5.0	1	04/25/24 03:46	
m,p-Xylenes	ND U	5.0	1	04/25/24 03:46	

Service Request: R2403211

Analytical Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York) Service Request: R2403211

Project: Crosman/30005202 **Date Collected:** 04/18/24 11:25

Sample Matrix: Water Date Received: 04/18/24 13:45

 Sample Name:
 MW-3A
 Units: ug/L

 Lab Code:
 R2403211-002
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	94	85 - 122	04/25/24 03:46	
Toluene-d8	100	87 - 121	04/25/24 03:46	
Dibromofluoromethane	95	80 - 116	04/25/24 03:46	

Analytical Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York)

Date Collected: 04/18/24 10:20 **Project:** Crosman/30005202

Sample Matrix: Water **Date Received:** 04/18/24 13:45

MW-4 **Sample Name:** Units: ug/L Lab Code:

R2403211-003 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	ND U	10	1	04/25/24 04:09	
Benzene	ND U	5.0	1	04/25/24 04:09	
Bromodichloromethane	ND U	5.0	1	04/25/24 04:09	
Bromoform	ND U	5.0	1	04/25/24 04:09	
Bromomethane	ND U	5.0	1	04/25/24 04:09	
2-Butanone (MEK)	ND U	10	1	04/25/24 04:09	
Carbon Disulfide	ND U	10	1	04/25/24 04:09	
Carbon Tetrachloride	ND U	5.0	1	04/25/24 04:09	
Chlorobenzene	ND U	5.0	1	04/25/24 04:09	
Chloroethane	ND U	5.0	1	04/25/24 04:09	
Chloroform	ND U	5.0	1	04/25/24 04:09	
Chloromethane	ND U	5.0	1	04/25/24 04:09	
Dibromochloromethane	ND U	5.0	1	04/25/24 04:09	
1,1-Dichloroethane	ND U	5.0	1	04/25/24 04:09	
1,2-Dichloroethane	ND U	5.0	1	04/25/24 04:09	
1,1-Dichloroethene	ND U	5.0	1	04/25/24 04:09	
cis-1,2-Dichloroethene	ND U	5.0	1	04/25/24 04:09	
trans-1,2-Dichloroethene	ND U	5.0	1	04/25/24 04:09	
1,2-Dichloropropane	ND U	5.0	1	04/25/24 04:09	
cis-1,3-Dichloropropene	ND U	5.0	1	04/25/24 04:09	
trans-1,3-Dichloropropene	ND U	5.0	1	04/25/24 04:09	
Ethylbenzene	ND U	5.0	1	04/25/24 04:09	
2-Hexanone	ND U	10	1	04/25/24 04:09	
Methylene Chloride	ND U	5.0	1	04/25/24 04:09	
4-Methyl-2-pentanone (MIBK)	ND U	10	1	04/25/24 04:09	
Styrene	ND U	5.0	1	04/25/24 04:09	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	04/25/24 04:09	
Tetrachloroethene	ND U	5.0	1	04/25/24 04:09	
Toluene	ND U	5.0	1	04/25/24 04:09	
1,1,1-Trichloroethane	ND U	5.0	1	04/25/24 04:09	
1,1,2-Trichloroethane	ND U	5.0	1	04/25/24 04:09	
Trichloroethene	ND U	5.0	1	04/25/24 04:09	
Vinyl Chloride	ND U	5.0	1	04/25/24 04:09	
o-Xylene	ND U	5.0	1	04/25/24 04:09	
m,p-Xylenes	ND U	5.0	1	04/25/24 04:09	

Analytical Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York)

Project: Crosman/30005202 **Date Collected:** 04/18/24 10:20

Sample Matrix: Water Date Received: 04/18/24 13:45

Sample Name: MW-4 Units: ug/L

Lab Code: R2403211-003 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	94	85 - 122	04/25/24 04:09	
Toluene-d8	100	87 - 121	04/25/24 04:09	
Dibromofluoromethane	95	80 - 116	04/25/24 04:09	

Analytical Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York)

Project: Crosman/30005202 **Date Collected:** 04/18/24 10:30

Sample Matrix: Water Date Received: 04/18/24 13:45

Sample Name: MW-5 Units: ug/L

Lab Code: R2403211-004 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	ND U	10	1	04/25/24 04:31	
Benzene	ND U	5.0	1	04/25/24 04:31	
Bromodichloromethane	ND U	5.0	1	04/25/24 04:31	
Bromoform	ND U	5.0	1	04/25/24 04:31	
Bromomethane	ND U	5.0	1	04/25/24 04:31	
2-Butanone (MEK)	ND U	10	1	04/25/24 04:31	
Carbon Disulfide	ND U	10	1	04/25/24 04:31	
Carbon Tetrachloride	ND U	5.0	1	04/25/24 04:31	
Chlorobenzene	ND U	5.0	1	04/25/24 04:31	
Chloroethane	ND U	5.0	1	04/25/24 04:31	
Chloroform	ND U	5.0	1	04/25/24 04:31	
Chloromethane	ND U	5.0	1	04/25/24 04:31	
Dibromochloromethane	ND U	5.0	1	04/25/24 04:31	
1,1-Dichloroethane	ND U	5.0	1	04/25/24 04:31	
1,2-Dichloroethane	ND U	5.0	1	04/25/24 04:31	
1,1-Dichloroethene	ND U	5.0	1	04/25/24 04:31	
cis-1,2-Dichloroethene	22	5.0	1	04/25/24 04:31	
trans-1,2-Dichloroethene	ND U	5.0	1	04/25/24 04:31	
1,2-Dichloropropane	ND U	5.0	1	04/25/24 04:31	
cis-1,3-Dichloropropene	ND U	5.0	1	04/25/24 04:31	
trans-1,3-Dichloropropene	ND U	5.0	1	04/25/24 04:31	
Ethylbenzene	ND U	5.0	1	04/25/24 04:31	
2-Hexanone	ND U	10	1	04/25/24 04:31	
Methylene Chloride	ND U	5.0	1	04/25/24 04:31	
4-Methyl-2-pentanone (MIBK)	ND U	10	1	04/25/24 04:31	
Styrene	ND U	5.0	1	04/25/24 04:31	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	04/25/24 04:31	
Tetrachloroethene	ND U	5.0	1	04/25/24 04:31	
Toluene	ND U	5.0	1	04/25/24 04:31	
1,1,1-Trichloroethane	ND U	5.0	1	04/25/24 04:31	
1,1,2-Trichloroethane	ND U	5.0	1	04/25/24 04:31	
Trichloroethene	ND U	5.0	1	04/25/24 04:31	
Vinyl Chloride	ND U	5.0	1	04/25/24 04:31	
o-Xylene	ND U	5.0	1	04/25/24 04:31	
m,p-Xylenes	ND U	5.0	1	04/25/24 04:31	

Analytical Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York) Service Request: R2403211

Project: Crosman/30005202 **Date Collected:** 04/18/24 10:30

Sample Matrix: Water Date Received: 04/18/24 13:45

Sample Name: MW-5 Units: ug/L

Lab Code: R2403211-004 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	04/25/24 04:31	
Toluene-d8	100	87 - 121	04/25/24 04:31	
Dibromofluoromethane	95	80 - 116	04/25/24 04:31	

Analytical Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York)

Project: Crosman/30005202 **Date Collected:** 04/18/24 11:05

Sample Matrix: Water Date Received: 04/18/24 13:45

 Sample Name:
 MW-13
 Units: ug/L

 Lab Code:
 R2403211-005
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	ND U	10	1	04/25/24 04:53	
Benzene	ND U	5.0	1	04/25/24 04:53	
Bromodichloromethane	ND U	5.0	1	04/25/24 04:53	
Bromoform	ND U	5.0	1	04/25/24 04:53	
Bromomethane	ND U	5.0	1	04/25/24 04:53	
2-Butanone (MEK)	ND U	10	1	04/25/24 04:53	
Carbon Disulfide	ND U	10	1	04/25/24 04:53	
Carbon Tetrachloride	ND U	5.0	1	04/25/24 04:53	
Chlorobenzene	ND U	5.0	1	04/25/24 04:53	
Chloroethane	ND U	5.0	1	04/25/24 04:53	
Chloroform	ND U	5.0	1	04/25/24 04:53	
Chloromethane	ND U	5.0	1	04/25/24 04:53	
Dibromochloromethane	ND U	5.0	1	04/25/24 04:53	
1,1-Dichloroethane	ND U	5.0	1	04/25/24 04:53	
1,2-Dichloroethane	ND U	5.0	1	04/25/24 04:53	
1,1-Dichloroethene	ND U	5.0	1	04/25/24 04:53	
cis-1,2-Dichloroethene	ND U	5.0	1	04/25/24 04:53	
trans-1,2-Dichloroethene	ND U	5.0	1	04/25/24 04:53	
1,2-Dichloropropane	ND U	5.0	1	04/25/24 04:53	
cis-1,3-Dichloropropene	ND U	5.0	1	04/25/24 04:53	
trans-1,3-Dichloropropene	ND U	5.0	1	04/25/24 04:53	
Ethylbenzene	ND U	5.0	1	04/25/24 04:53	
2-Hexanone	ND U	10	1	04/25/24 04:53	
Methylene Chloride	ND U	5.0	1	04/25/24 04:53	
4-Methyl-2-pentanone (MIBK)	ND U	10	1	04/25/24 04:53	
Styrene	ND U	5.0	1	04/25/24 04:53	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	04/25/24 04:53	
Tetrachloroethene	ND U	5.0	1	04/25/24 04:53	
Toluene	ND U	5.0	1	04/25/24 04:53	
1,1,1-Trichloroethane	ND U	5.0	1	04/25/24 04:53	
1,1,2-Trichloroethane	ND U	5.0	1	04/25/24 04:53	
Trichloroethene	80	5.0	1	04/25/24 04:53	
Vinyl Chloride	ND U	5.0	1	04/25/24 04:53	
o-Xylene	ND U	5.0	1	04/25/24 04:53	
m,p-Xylenes	ND U	5.0	1	04/25/24 04:53	

Analytical Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York)

Service Request: R2403211

Project: Crosman/30005202 **Date Collected:** 04/18/24 11:05

Sample Matrix:

Water

MW-13

Date Received: 04/18/24 13:45

Sample Name: Lab Code:

R2403211-005

Units: ug/L Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method:

8260C

Prep Method:

EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	92	85 - 122	04/25/24 04:53	
Toluene-d8	98	87 - 121	04/25/24 04:53	
Dibromofluoromethane	93	80 - 116	04/25/24 04:53	

Analytical Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York)

Project: Crosman/30005202 **Date Collected:** 04/18/24 10:40

Sample Matrix: Water Date Received: 04/18/24 13:45

 Sample Name:
 MW-14
 Units: ug/L

 Lab Code:
 R2403211-006
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	ND U	10	1	04/25/24 05:16	
Benzene	ND U	5.0	1	04/25/24 05:16	
Bromodichloromethane	ND U	5.0	1	04/25/24 05:16	
Bromoform	ND U	5.0	1	04/25/24 05:16	
Bromomethane	ND U	5.0	1	04/25/24 05:16	
2-Butanone (MEK)	ND U	10	1	04/25/24 05:16	
Carbon Disulfide	ND U	10	1	04/25/24 05:16	
Carbon Tetrachloride	ND U	5.0	1	04/25/24 05:16	
Chlorobenzene	ND U	5.0	1	04/25/24 05:16	
Chloroethane	ND U	5.0	1	04/25/24 05:16	
Chloroform	ND U	5.0	1	04/25/24 05:16	
Chloromethane	ND U	5.0	1	04/25/24 05:16	
Dibromochloromethane	ND U	5.0	1	04/25/24 05:16	
1,1-Dichloroethane	ND U	5.0	1	04/25/24 05:16	
1,2-Dichloroethane	ND U	5.0	1	04/25/24 05:16	
1,1-Dichloroethene	ND U	5.0	1	04/25/24 05:16	
cis-1,2-Dichloroethene	ND U	5.0	1	04/25/24 05:16	
trans-1,2-Dichloroethene	ND U	5.0	1	04/25/24 05:16	
1,2-Dichloropropane	ND U	5.0	1	04/25/24 05:16	
cis-1,3-Dichloropropene	ND U	5.0	1	04/25/24 05:16	
trans-1,3-Dichloropropene	ND U	5.0	1	04/25/24 05:16	
Ethylbenzene	ND U	5.0	1	04/25/24 05:16	
2-Hexanone	ND U	10	1	04/25/24 05:16	
Methylene Chloride	ND U	5.0	1	04/25/24 05:16	
4-Methyl-2-pentanone (MIBK)	ND U	10	1	04/25/24 05:16	
Styrene	ND U	5.0	1	04/25/24 05:16	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	04/25/24 05:16	
Tetrachloroethene	ND U	5.0	1	04/25/24 05:16	
Toluene	ND U	5.0	1	04/25/24 05:16	
1,1,1-Trichloroethane	ND U	5.0	1	04/25/24 05:16	
1,1,2-Trichloroethane	ND U	5.0	1	04/25/24 05:16	
Trichloroethene	ND U	5.0	1	04/25/24 05:16	
Vinyl Chloride	ND U	5.0	1	04/25/24 05:16	
o-Xylene	ND U	5.0	1	04/25/24 05:16	
m,p-Xylenes	ND U	5.0	1	04/25/24 05:16	

Analytical Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York)

Date Collected: 04/18/24 10:40 **Project:** Crosman/30005202

Sample Matrix: Water **Date Received:** 04/18/24 13:45

Sample Name: MW-14 Units: ug/L Lab Code: R2403211-006

Basis: NA

Service Request: R2403211

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	94	85 - 122	04/25/24 05:16	
Toluene-d8	100	87 - 121	04/25/24 05:16	
Dibromofluoromethane	95	80 - 116	04/25/24 05:16	

Analytical Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York)

Date Collected: 04/18/24 10:00 **Project:** Crosman/30005202

Sample Matrix: Water **Date Received:** 04/18/24 13:45

Sample Name: MW-15 Units: ug/L Lab Code: R2403211-007

Basis: NA

Service Request: R2403211

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	ND U	10	1	04/25/24 05:38	
Benzene	ND U	5.0	1	04/25/24 05:38	
Bromodichloromethane	ND U	5.0	1	04/25/24 05:38	
Bromoform	ND U	5.0	1	04/25/24 05:38	
Bromomethane	ND U	5.0	1	04/25/24 05:38	
2-Butanone (MEK)	ND U	10	1	04/25/24 05:38	
Carbon Disulfide	ND U	10	1	04/25/24 05:38	
Carbon Tetrachloride	ND U	5.0	1	04/25/24 05:38	
Chlorobenzene	ND U	5.0	1	04/25/24 05:38	
Chloroethane	ND U	5.0	1	04/25/24 05:38	
Chloroform	ND U	5.0	1	04/25/24 05:38	
Chloromethane	ND U	5.0	1	04/25/24 05:38	
Dibromochloromethane	ND U	5.0	1	04/25/24 05:38	
1,1-Dichloroethane	ND U	5.0	1	04/25/24 05:38	
1,2-Dichloroethane	ND U	5.0	1	04/25/24 05:38	
1,1-Dichloroethene	ND U	5.0	1	04/25/24 05:38	
cis-1,2-Dichloroethene	ND U	5.0	1	04/25/24 05:38	
trans-1,2-Dichloroethene	ND U	5.0	1	04/25/24 05:38	
1,2-Dichloropropane	ND U	5.0	1	04/25/24 05:38	
cis-1,3-Dichloropropene	ND U	5.0	1	04/25/24 05:38	
trans-1,3-Dichloropropene	ND U	5.0	1	04/25/24 05:38	
Ethylbenzene	ND U	5.0	1	04/25/24 05:38	
2-Hexanone	ND U	10	1	04/25/24 05:38	
Methylene Chloride	ND U	5.0	1	04/25/24 05:38	
4-Methyl-2-pentanone (MIBK)	ND U	10	1	04/25/24 05:38	
Styrene	ND U	5.0	1	04/25/24 05:38	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	04/25/24 05:38	
Tetrachloroethene	ND U	5.0	1	04/25/24 05:38	
Toluene	ND U	5.0	1	04/25/24 05:38	
1,1,1-Trichloroethane	ND U	5.0	1	04/25/24 05:38	
1,1,2-Trichloroethane	ND U	5.0	1	04/25/24 05:38	
Trichloroethene	ND U	5.0	1	04/25/24 05:38	
Vinyl Chloride	ND U	5.0	1	04/25/24 05:38	
o-Xylene	ND U	5.0	1	04/25/24 05:38	
m,p-Xylenes	ND U	5.0	1	04/25/24 05:38	

Analytical Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York) Service

Service Request: R2403211

Project: Crosman/30005202

Date Collected: 04/18/24 10:00

Sample Matrix: Water

Date Received: 04/18/24 13:45

Sample Name: MW-15

Lab Code:

MW-15 Units: ug/L R2403211-007 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C

Prep Method: EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	04/25/24 05:38	
Toluene-d8	98	87 - 121	04/25/24 05:38	
Dibromofluoromethane	94	80 - 116	04/25/24 05:38	

Analytical Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York)

Project: Crosman/30005202 **Date Collected:** 04/18/24 11:15

Sample Matrix: Water Date Received: 04/18/24 13:45

 Sample Name:
 MW-17
 Units: ug/L

 Lab Code:
 R2403211-008
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	ND U	20	2	04/25/24 07:07	
Benzene	ND U	10	2	04/25/24 07:07	
Bromodichloromethane	ND U	10	2	04/25/24 07:07	
Bromoform	ND U	10	2	04/25/24 07:07	
Bromomethane	ND U	10	2	04/25/24 07:07	
2-Butanone (MEK)	ND U	20	2	04/25/24 07:07	
Carbon Disulfide	ND U	20	2	04/25/24 07:07	
Carbon Tetrachloride	ND U	10	2	04/25/24 07:07	
Chlorobenzene	ND U	10	2	04/25/24 07:07	
Chloroethane	ND U	10	2	04/25/24 07:07	
Chloroform	ND U	10	2	04/25/24 07:07	
Chloromethane	ND U	10	2	04/25/24 07:07	
Dibromochloromethane	ND U	10	2	04/25/24 07:07	
1,1-Dichloroethane	ND U	10	2	04/25/24 07:07	
1,2-Dichloroethane	ND U	10	2	04/25/24 07:07	
1,1-Dichloroethene	ND U	10	2	04/25/24 07:07	
cis-1,2-Dichloroethene	ND U	10	2	04/25/24 07:07	
trans-1,2-Dichloroethene	17	10	2	04/25/24 07:07	
1,2-Dichloropropane	ND U	10	2	04/25/24 07:07	
cis-1,3-Dichloropropene	ND U	10	2	04/25/24 07:07	
trans-1,3-Dichloropropene	ND U	10	2	04/25/24 07:07	
Ethylbenzene	ND U	10	2	04/25/24 07:07	
2-Hexanone	ND U	20	2	04/25/24 07:07	
Methylene Chloride	ND U	10	2	04/25/24 07:07	
4-Methyl-2-pentanone (MIBK)	ND U	20	2	04/25/24 07:07	
Styrene	ND U	10	2	04/25/24 07:07	
1,1,2,2-Tetrachloroethane	ND U	10	2	04/25/24 07:07	
Tetrachloroethene	ND U	10	2	04/25/24 07:07	
Toluene	ND U	10	2	04/25/24 07:07	
1,1,1-Trichloroethane	ND U	10	2	04/25/24 07:07	
1,1,2-Trichloroethane	ND U	10	2	04/25/24 07:07	
Trichloroethene	240	10	2	04/25/24 07:07	
Vinyl Chloride	ND U	10	2	04/25/24 07:07	
o-Xylene	ND U	10	2	04/25/24 07:07	
m,p-Xylenes	ND U	10	2	04/25/24 07:07	

Analytical Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York)

Project: Crosman/30005202 **Date Collected:** 04/18/24 11:15

Sample Matrix: Water Date Received: 04/18/24 13:45

Sample Name: MW-17 Units: ug/L

Lab Code: R2403211-008 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	92	85 - 122	04/25/24 07:07	
Toluene-d8	97	87 - 121	04/25/24 07:07	
Dibromofluoromethane	92	80 - 116	04/25/24 07:07	

Analytical Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York)

Project: Crosman/30005202 **Date Collected:** 04/18/24 09:25

Sample Matrix: Water Date Received: 04/18/24 13:45

 Sample Name:
 MW-18
 Units: ug/L

 Lab Code:
 R2403211-009
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	ND U	10	1	04/25/24 06:00	
Benzene	ND U	5.0	1	04/25/24 06:00	
Bromodichloromethane	ND U	5.0	1	04/25/24 06:00	
Bromoform	ND U	5.0	1	04/25/24 06:00	
Bromomethane	ND U	5.0	1	04/25/24 06:00	
2-Butanone (MEK)	ND U	10	1	04/25/24 06:00	
Carbon Disulfide	ND U	10	1	04/25/24 06:00	
Carbon Tetrachloride	ND U	5.0	1	04/25/24 06:00	
Chlorobenzene	ND U	5.0	1	04/25/24 06:00	
Chloroethane	ND U	5.0	1	04/25/24 06:00	
Chloroform	ND U	5.0	1	04/25/24 06:00	
Chloromethane	ND U	5.0	1	04/25/24 06:00	
Dibromochloromethane	ND U	5.0	1	04/25/24 06:00	
1,1-Dichloroethane	ND U	5.0	1	04/25/24 06:00	
1,2-Dichloroethane	ND U	5.0	1	04/25/24 06:00	
1,1-Dichloroethene	ND U	5.0	1	04/25/24 06:00	
cis-1,2-Dichloroethene	ND U	5.0	1	04/25/24 06:00	
trans-1,2-Dichloroethene	ND U	5.0	1	04/25/24 06:00	
1,2-Dichloropropane	ND U	5.0	1	04/25/24 06:00	
cis-1,3-Dichloropropene	ND U	5.0	1	04/25/24 06:00	
trans-1,3-Dichloropropene	ND U	5.0	1	04/25/24 06:00	
Ethylbenzene	ND U	5.0	1	04/25/24 06:00	
2-Hexanone	ND U	10	1	04/25/24 06:00	
Methylene Chloride	ND U	5.0	1	04/25/24 06:00	
4-Methyl-2-pentanone (MIBK)	ND U	10	1	04/25/24 06:00	
Styrene	ND U	5.0	1	04/25/24 06:00	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	04/25/24 06:00	
Tetrachloroethene	ND U	5.0	1	04/25/24 06:00	
Toluene	ND U	5.0	1	04/25/24 06:00	
1,1,1-Trichloroethane	ND U	5.0	1	04/25/24 06:00	
1,1,2-Trichloroethane	ND U	5.0	1	04/25/24 06:00	
Trichloroethene	ND U	5.0	1	04/25/24 06:00	
Vinyl Chloride	ND U	5.0	1	04/25/24 06:00	
o-Xylene	ND U	5.0	1	04/25/24 06:00	
m,p-Xylenes	ND U	5.0	1	04/25/24 06:00	

Analytical Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York)

Service Request: R2403211

Project: Crosman/30005202

Date Collected: 04/18/24 09:25

Sample Matrix: Water **Date Received:** 04/18/24 13:45

Sample Name:

Lab Code:

Units: ug/L Basis: NA

MW-18 R2403211-009

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C

Prep Method: EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	04/25/24 06:00	
Toluene-d8	100	87 - 121	04/25/24 06:00	
Dibromofluoromethane	94	80 - 116	04/25/24 06:00	

Analytical Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York)

Project: Crosman/30005202 **Date Collected:** 04/18/24 09:45

Sample Matrix: Water Date Received: 04/18/24 13:45

 Sample Name:
 MW-19
 Units: ug/L

 Lab Code:
 R2403211-010
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	ND U	10	1	04/25/24 06:23	
Benzene	ND U	5.0	1	04/25/24 06:23	
Bromodichloromethane	ND U	5.0	1	04/25/24 06:23	
Bromoform	ND U	5.0	1	04/25/24 06:23	
Bromomethane	ND U	5.0	1	04/25/24 06:23	
2-Butanone (MEK)	ND U	10	1	04/25/24 06:23	
Carbon Disulfide	ND U	10	1	04/25/24 06:23	
Carbon Tetrachloride	ND U	5.0	1	04/25/24 06:23	
Chlorobenzene	ND U	5.0	1	04/25/24 06:23	
Chloroethane	ND U	5.0	1	04/25/24 06:23	
Chloroform	ND U	5.0	1	04/25/24 06:23	
Chloromethane	ND U	5.0	1	04/25/24 06:23	
Dibromochloromethane	ND U	5.0	1	04/25/24 06:23	
1,1-Dichloroethane	ND U	5.0	1	04/25/24 06:23	
1,2-Dichloroethane	ND U	5.0	1	04/25/24 06:23	
1,1-Dichloroethene	ND U	5.0	1	04/25/24 06:23	
cis-1,2-Dichloroethene	ND U	5.0	1	04/25/24 06:23	
trans-1,2-Dichloroethene	ND U	5.0	1	04/25/24 06:23	
1,2-Dichloropropane	ND U	5.0	1	04/25/24 06:23	
cis-1,3-Dichloropropene	ND U	5.0	1	04/25/24 06:23	
trans-1,3-Dichloropropene	ND U	5.0	1	04/25/24 06:23	
Ethylbenzene	ND U	5.0	1	04/25/24 06:23	
2-Hexanone	ND U	10	1	04/25/24 06:23	
Methylene Chloride	ND U	5.0	1	04/25/24 06:23	
4-Methyl-2-pentanone (MIBK)	ND U	10	1	04/25/24 06:23	
Styrene	ND U	5.0	1	04/25/24 06:23	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	04/25/24 06:23	
Tetrachloroethene	ND U	5.0	1	04/25/24 06:23	
Toluene	ND U	5.0	1	04/25/24 06:23	
1,1,1-Trichloroethane	ND U	5.0	1	04/25/24 06:23	
1,1,2-Trichloroethane	ND U	5.0	1	04/25/24 06:23	
Trichloroethene	ND U	5.0	1	04/25/24 06:23	
Vinyl Chloride	ND U	5.0	1	04/25/24 06:23	
o-Xylene	ND U	5.0	1	04/25/24 06:23	
m,p-Xylenes	ND U	5.0	1	04/25/24 06:23	

Analytical Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York)

Date Collected: 04/18/24 09:45 **Project:** Crosman/30005202

Sample Matrix: Water **Date Received:** 04/18/24 13:45

MW-19 **Sample Name:** Units: ug/L Lab Code:

R2403211-010 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	04/25/24 06:23	
Toluene-d8	98	87 - 121	04/25/24 06:23	
Dibromofluoromethane	93	80 - 116	04/25/24 06:23	

Analytical Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York)

Project: Crosman/30005202 **Date Collected:** 04/18/24 12:00

Sample Matrix: Water Date Received: 04/18/24 13:45

 Sample Name:
 MW-20
 Units: ug/L

 Lab Code:
 R2403211-011
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	ND U	10	1	04/25/24 06:45	_
Benzene	ND U	5.0	1	04/25/24 06:45	
Bromodichloromethane	ND U	5.0	1	04/25/24 06:45	
Bromoform	ND U	5.0	1	04/25/24 06:45	
Bromomethane	ND U	5.0	1	04/25/24 06:45	
2-Butanone (MEK)	ND U	10	1	04/25/24 06:45	
Carbon Disulfide	ND U	10	1	04/25/24 06:45	
Carbon Tetrachloride	ND U	5.0	1	04/25/24 06:45	
Chlorobenzene	ND U	5.0	1	04/25/24 06:45	
Chloroethane	ND U	5.0	1	04/25/24 06:45	
Chloroform	ND U	5.0	1	04/25/24 06:45	
Chloromethane	ND U	5.0	1	04/25/24 06:45	
Dibromochloromethane	ND U	5.0	1	04/25/24 06:45	
1,1-Dichloroethane	ND U	5.0	1	04/25/24 06:45	
1,2-Dichloroethane	ND U	5.0	1	04/25/24 06:45	
1,1-Dichloroethene	ND U	5.0	1	04/25/24 06:45	
cis-1,2-Dichloroethene	ND U	5.0	1	04/25/24 06:45	
trans-1,2-Dichloroethene	ND U	5.0	1	04/25/24 06:45	
1,2-Dichloropropane	ND U	5.0	1	04/25/24 06:45	
cis-1,3-Dichloropropene	ND U	5.0	1	04/25/24 06:45	
trans-1,3-Dichloropropene	ND U	5.0	1	04/25/24 06:45	
Ethylbenzene	ND U	5.0	1	04/25/24 06:45	
2-Hexanone	ND U	10	1	04/25/24 06:45	
Methylene Chloride	ND U	5.0	1	04/25/24 06:45	
4-Methyl-2-pentanone (MIBK)	ND U	10	1	04/25/24 06:45	
Styrene	ND U	5.0	1	04/25/24 06:45	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	04/25/24 06:45	
Tetrachloroethene	ND U	5.0	1	04/25/24 06:45	
Toluene	ND U	5.0	1	04/25/24 06:45	
1,1,1-Trichloroethane	ND U	5.0	1	04/25/24 06:45	
1,1,2-Trichloroethane	ND U	5.0	1	04/25/24 06:45	
Trichloroethene	100	5.0	1	04/25/24 06:45	
Vinyl Chloride	ND U	5.0	1	04/25/24 06:45	
o-Xylene	ND U	5.0	1	04/25/24 06:45	
m,p-Xylenes	ND U	5.0	1	04/25/24 06:45	

Analytical Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York)

Date Collected: 04/18/24 12:00 **Project:** Crosman/30005202

Sample Matrix: Water **Date Received:** 04/18/24 13:45

Sample Name: MW-20 Units: ug/L Lab Code:

R2403211-011 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	94	85 - 122	04/25/24 06:45	
Toluene-d8	100	87 - 121	04/25/24 06:45	
Dibromofluoromethane	95	80 - 116	04/25/24 06:45	

Analytical Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York)

Service Request: R2403211 **Date Collected:** 04/18/24 **Project:** Crosman/30005202

Sample Matrix: Water **Date Received:** 04/18/24 13:45

Sample Name: Trip Blank Units: ug/L Lab Code: R2403211-012 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	ND U	10	1	04/25/24 03:02	
Benzene	ND U	5.0	1	04/25/24 03:02	
Bromodichloromethane	ND U	5.0	1	04/25/24 03:02	
Bromoform	ND U	5.0	1	04/25/24 03:02	
Bromomethane	ND U	5.0	1	04/25/24 03:02	
2-Butanone (MEK)	ND U	10	1	04/25/24 03:02	
Carbon Disulfide	ND U	10	1	04/25/24 03:02	
Carbon Tetrachloride	ND U	5.0	1	04/25/24 03:02	
Chlorobenzene	ND U	5.0	1	04/25/24 03:02	
Chloroethane	ND U	5.0	1	04/25/24 03:02	
Chloroform	ND U	5.0	1	04/25/24 03:02	
Chloromethane	ND U	5.0	1	04/25/24 03:02	
Dibromochloromethane	ND U	5.0	1	04/25/24 03:02	
1,1-Dichloroethane	ND U	5.0	1	04/25/24 03:02	
1,2-Dichloroethane	ND U	5.0	1	04/25/24 03:02	
1,1-Dichloroethene	ND U	5.0	1	04/25/24 03:02	
cis-1,2-Dichloroethene	ND U	5.0	1	04/25/24 03:02	
trans-1,2-Dichloroethene	ND U	5.0	1	04/25/24 03:02	
1,2-Dichloropropane	ND U	5.0	1	04/25/24 03:02	
cis-1,3-Dichloropropene	ND U	5.0	1	04/25/24 03:02	
trans-1,3-Dichloropropene	ND U	5.0	1	04/25/24 03:02	
Ethylbenzene	ND U	5.0	1	04/25/24 03:02	
2-Hexanone	ND U	10	1	04/25/24 03:02	
Methylene Chloride	ND U	5.0	1	04/25/24 03:02	
4-Methyl-2-pentanone (MIBK)	ND U	10	1	04/25/24 03:02	
Styrene	ND U	5.0	1	04/25/24 03:02	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	04/25/24 03:02	
Tetrachloroethene	ND U	5.0	1	04/25/24 03:02	
Toluene	ND U	5.0	1	04/25/24 03:02	
1,1,1-Trichloroethane	ND U	5.0	1	04/25/24 03:02	
1,1,2-Trichloroethane	ND U	5.0	1	04/25/24 03:02	
Trichloroethene	ND U	5.0	1	04/25/24 03:02	
Vinyl Chloride	ND U	5.0	1	04/25/24 03:02	
o-Xylene	ND U	5.0	1	04/25/24 03:02	
m,p-Xylenes	ND U	5.0	1	04/25/24 03:02	

Analytical Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York)

Project: Crosman/30005202

Sample Matrix: Water

Date Collected: 04/18/24

Service Request: R2403211

Date Received: 04/18/24 13:45

 Sample Name:
 Trip Blank
 Units: ug/L

 Lab Code:
 R2403211-012
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	94	85 - 122	04/25/24 03:02	
Toluene-d8	100	87 - 121	04/25/24 03:02	
Dibromofluoromethane	96	80 - 116	04/25/24 03:02	

QC Summary Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

QA/QC Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York) Service Request: R2403211

Project: Crosman/30005202

Sample Matrix: Water

SURROGATE RECOVERY SUMMARY Volatile Organic Compounds by GC/MS

Analysis Method: 8260C

Extraction Method: EPA 5030C

		4-Bromofluorobenzene	Dibromofluoromethane	Toluene-d8
Sample Name	Lab Code	85 - 122	80 - 116	87 - 121
PW-1	R2403211-001	96	96	100
MW-3A	R2403211-002	94	95	100
MW-4	R2403211-003	94	95	100
MW-5	R2403211-004	93	95	100
MW-13	R2403211-005	92	93	98
MW-14	R2403211-006	94	95	100
MW-15	R2403211-007	93	94	98
MW-17	R2403211-008	92	92	97
MW-18	R2403211-009	93	94	100
MW-19	R2403211-010	93	93	98
MW-20	R2403211-011	94	95	100
Trip Blank	R2403211-012	94	96	100
Lab Control Sample	RQ2404339-03	100	102	102
Duplicate Lab Control Sample	RQ2404339-04	99	99	101
Method Blank	RQ2404339-05	94	95	99

Analytical Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York) Service Request: R2403211

Project:Crosman/30005202Date Collected:NASample Matrix:WaterDate Received:NA

 Sample Name:
 Method Blank
 Units: ug/L

 Lab Code:
 RQ2404339-05
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	ND U	10	1	04/25/24 00:04	_
Benzene	ND U	5.0	1	04/25/24 00:04	
Bromodichloromethane	ND U	5.0	1	04/25/24 00:04	
Bromoform	ND U	5.0	1	04/25/24 00:04	
Bromomethane	ND U	5.0	1	04/25/24 00:04	
2-Butanone (MEK)	ND U	10	1	04/25/24 00:04	
Carbon Disulfide	ND U	10	1	04/25/24 00:04	
Carbon Tetrachloride	ND U	5.0	1	04/25/24 00:04	
Chlorobenzene	ND U	5.0	1	04/25/24 00:04	
Chloroethane	ND U	5.0	1	04/25/24 00:04	
Chloroform	ND U	5.0	1	04/25/24 00:04	
Chloromethane	ND U	5.0	1	04/25/24 00:04	
Dibromochloromethane	ND U	5.0	1	04/25/24 00:04	
1,1-Dichloroethane	ND U	5.0	1	04/25/24 00:04	
1,2-Dichloroethane	ND U	5.0	1	04/25/24 00:04	
1,1-Dichloroethene	ND U	5.0	1	04/25/24 00:04	
cis-1,2-Dichloroethene	ND U	5.0	1	04/25/24 00:04	
trans-1,2-Dichloroethene	ND U	5.0	1	04/25/24 00:04	
1,2-Dichloropropane	ND U	5.0	1	04/25/24 00:04	
cis-1,3-Dichloropropene	ND U	5.0	1	04/25/24 00:04	
trans-1,3-Dichloropropene	ND U	5.0	1	04/25/24 00:04	
Ethylbenzene	ND U	5.0	1	04/25/24 00:04	
2-Hexanone	ND U	10	1	04/25/24 00:04	
Methylene Chloride	ND U	5.0	1	04/25/24 00:04	
4-Methyl-2-pentanone (MIBK)	ND U	10	1	04/25/24 00:04	
Styrene	ND U	5.0	1	04/25/24 00:04	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	04/25/24 00:04	
Tetrachloroethene	ND U	5.0	1	04/25/24 00:04	
Toluene	ND U	5.0	1	04/25/24 00:04	
1,1,1-Trichloroethane	ND U	5.0	1	04/25/24 00:04	
1,1,2-Trichloroethane	ND U	5.0	1	04/25/24 00:04	
Trichloroethene	ND U	5.0	1	04/25/24 00:04	
Vinyl Chloride	ND U	5.0	1	04/25/24 00:04	
o-Xylene	ND U	5.0	1	04/25/24 00:04	
m,p-Xylenes	ND U	5.0	1	04/25/24 00:04	

Analytical Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York) Service Request: R2403211

Project: Crosman/30005202 Date Collected: NA

Sample Matrix: Water Date Received: NA

 Sample Name:
 Method Blank
 Units: ug/L

 Lab Code:
 RQ2404339-05
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	94	85 - 122	04/25/24 00:04	
Toluene-d8	99	87 - 121	04/25/24 00:04	
Dibromofluoromethane	95	80 - 116	04/25/24 00:04	

QA/QC Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York)

Project: Crosman/30005202

Sample Matrix: Water

Duplicate Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Service Request: R2403211

Date Analyzed: 04/24/24

Lab Control Sample

Duplicate Lab Control Sample

RQ2404339-03

RQ2404339-04

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
Acetone	8260C	20.0	20.0	100	19.7	20.0	99	40-161	1	30
Benzene	8260C	21.4	20.0	107	20.7	20.0	104	79-119	3	30
Bromodichloromethane	8260C	19.6	20.0	98	18.5	20.0	93	81-123	6	30
Bromoform	8260C	17.8	20.0	89	16.9	20.0	84	65-146	5	30
Bromomethane	8260C	12.8	20.0	64	12.1	20.0	61	42-166	6	30
2-Butanone (MEK)	8260C	17.3	20.0	86	18.3	20.0	92	61-137	6	30
Carbon Disulfide	8260C	16.4	20.0	82	15.6	20.0	78	66-128	5	30
Carbon Tetrachloride	8260C	16.9	20.0	85	16.2	20.0	81	70-127	4	30
Chlorobenzene	8260C	20.6	20.0	103	19.5	20.0	98	80-121	6	30
Chloroethane	8260C	14.4	20.0	72	14.2	20.0	71	62-131	1	30
Chloroform	8260C	21.6	20.0	108	20.8	20.0	104	79-120	4	30
Chloromethane	8260C	20.5	20.0	102	19.4	20.0	97	72-179	5	30
Dibromochloromethane	8260C	18.3	20.0	92	17.4	20.0	87	72-128	5	30
1,1-Dichloroethane	8260C	21.3	20.0	107	20.6	20.0	103	80-124	3	30
1,2-Dichloroethane	8260C	21.3	20.0	107	20.7	20.0	103	71-127	3	30
1,1-Dichloroethene	8260C	19.5	20.0	98	19.0	20.0	95	69-142	3	30
cis-1,2-Dichloroethene	8260C	21.3	20.0	107	20.0	20.0	100	80-121	6	30
trans-1,2-Dichloroethene	8260C	19.9	20.0	99	18.5	20.0	92	73-118	7	30
1,2-Dichloropropane	8260C	20.8	20.0	104	19.7	20.0	99	80-119	6	30
cis-1,3-Dichloropropene	8260C	17.9	20.0	89	16.8	20.0	84	77-122	6	30
trans-1,3-Dichloropropene	8260C	15.9	20.0	80	15.1	20.0	75	71-133	6	30
Ethylbenzene	8260C	21.0	20.0	105	20.0	20.0	100	76-120	5	30
2-Hexanone	8260C	18.2	20.0	91	17.9	20.0	89	63-124	2	30
Methylene Chloride	8260C	20.6	20.0	103	19.7	20.0	98	73-122	4	30
4-Methyl-2-pentanone (MIBK)	8260C	18.2	20.0	91	17.6	20.0	88	66-124	3	30
Styrene	8260C	21.3	20.0	106	20.3	20.0	102	80-124	5	30
1,1,2,2-Tetrachloroethane	8260C	20.3	20.0	101	19.5	20.0	98	78-126	4	30
Tetrachloroethene	8260C	19.1	20.0	96	19.0	20.0	95	72-125	<1	30
Toluene	8260C	21.7	20.0	109	20.7	20.0	104	79-119	5	30
1,1,1-Trichloroethane	8260C	19.2	20.0	96	18.6	20.0	93	75-125	3	30
1,1,2-Trichloroethane	8260C	20.5	20.0	102	19.9	20.0	99	82-121	3	30
Trichloroethene	8260C	19.4	20.0	97	18.9	20.0	94	74-122	3	30
Vinyl Chloride	8260C	17.4	20.0	87	17.1	20.0	85	74-159	2	30
Printed 4/20/2024 0:06:14 AM						Ç.,,	aarsat Dafara	naa:24 00006	505100 may	20

Printed 4/29/2024 9:06:14 AM Superset Reference:24-0000695108 rev 00

QA/QC Report

Client: ARCADIS U.S., Inc. (formerly ARCADIS of New York)

Service Request: R2403211 **Project:** Crosman/30005202 **Date Analyzed:** 04/24/24

Sample Matrix: Water

> **Duplicate Lab Control Sample Summary** Volatile Organic Compounds by GC/MS

> > Units:ug/L Basis:NA

Lab Control Sample

Duplicate Lab Control Sample

RQ2404339-03

RQ2404339-04

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
o-Xylene	8260C	21.0	20.0	105	20.6	20.0	103	79-123	2	30
m,p-Xylenes	8260C	42.7	40.0	107	40.2	40.0	100	80-126	6	30

Appendix G

Discharge Monitoring Reports

June 22, 2023

Ms. Michele L. Vincent Environmental Engineer, Water Division NYS DEC, Region 8 6274 East Avon-Lima Rd. Avon, New York 14414

RE: Discharge Monitoring Report, SPDES Permit # NY-0103039, Outfall Number 001

Dear Ms. Vincent:

On behalf of Crosman Corporation, enclosed is the Discharge Monitoring Report for the month of July 2023 (6 01 23 to 6 30 23). The table below summarizes the sampling dates and the analytical results for the month. Please see the attached report for the periodic test results of TTO and Cn, if performed during the month.

Date	Time	Temp	Flow	pН	Turbidity	TCE ug/L
		(F)	GPM			
6/14/23	6:45 AM	48	37	8.06	22.6	ND<2.00
LIMITS:		90°F Daily Max	Monitor	6.0 – 9.0		10 ppb action level

NA = No Analysis

I certify that the above results were obtained by approved sampling and analytical procedures, are representative of normal discharge conditions, and comply with all permit limits.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

If you have any questions or need additional information, please contact me at (585) 657-3120.

Sincerely,

Gina D. Thomas, CHMM EHS Director

Crosman Corporation

Enclosures

August 3, 2023

Ms. Michele L. Vincent Environmental Engineer, Water Division NYS DEC, Region 8 6274 East Avon-Lima Rd. Avon, New York 14414

RE: Discharge Monitoring Report, SPDES Permit # NY-0103039, Outfall Number 001

Dear Ms. Vincent:

On behalf of Crosman Corporation, enclosed is the Discharge Monitoring Report for the month of August 2023 (7 01 23 to 7 31 23). The table below summarizes the sampling dates and the analytical results for the month. Please see the attached report for the periodic test results of TTO and Cn, if performed during the month.

Date	Time	Temp (F)	Flow GPM	pН	Turbidity	TCE ug/L
7/26/23	6:22 AM	55	12	7.91	20.7	ND<2.00
LIMITS:		90°F Daily Max	Monitor	6.0 – 9.0		10 ppb action level

NA = No Analysis

I certify that the above results were obtained by approved sampling and analytical procedures, are representative of normal discharge conditions, and comply with all permit limits.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

If you have any questions or need additional information, please contact me at (585) 657-3120.

Sincerely,

Gina D. Thomas, CHMM EHS Director

Crosman Corporation

Enclosures

August 24, 2023

Ms. Michele L. Vincent Environmental Engineer, Water Division NYS DEC, Region 8 6274 East Avon-Lima Rd. Avon, New York 14414

RE: Discharge Monitoring Report, SPDES Permit # NY-0103039, Outfall Number 001

Dear Ms. Vincent:

On behalf of Crosman Corporation, enclosed is the Discharge Monitoring Report for the month of July 2023 (6 01 23 to 6 30 23). The table below summarizes the sampling dates and the analytical results for the month. Please see the attached report for the periodic test results of TTO and Cn, if performed during the month.

Date	Time	Temp (F)	Flow GPM	pН	Turbidity	TCE ug/L
8/22/23	7:14 AM	55	204	8.11	22.6	ND<2.00
LIMITS:		90°F Daily Max	Monitor	6.0 – 9.0		10 ppb action level

NA = No Analysis

I certify that the above results were obtained by approved sampling and analytical procedures, are representative of normal discharge conditions, and comply with all permit limits.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

If you have any questions or need additional information, please contact me at (585) 657-3120.

Sincerely,

Gina D. Thomas, CHMM EHS Director

Crosman Corporation

Enclosures

September 21, 2023

Ms. Michele L. Vincent Environmental Engineer, Water Division NYS DEC, Region 8 6274 East Avon-Lima Rd. Avon, New York 14414

RE: Discharge Monitoring Report, SPDES Permit # NY-0103039, Outfall Number 001

Dear Ms. Vincent:

On behalf of Crosman Corporation, enclosed is the Discharge Monitoring Report for the month of October 2023 (9 01 23 to 9 30 23). The table below summarizes the sampling dates and the analytical results for the month. Please see the attached report for the periodic test results of TTO and Cn, if performed during the month.

Date	Time	Temp	Flow	pН	Turbidity	TCE ug/L
		(F)	GPM			
9/13/23	6:13 AM	52	17	7.91	33.3	ND<2.00
LIMITS:		90°F Daily Max	Monitor	6.0 – 9.0		10 ppb action level

NA = No Analysis

I certify that the above results were obtained by approved sampling and analytical procedures, are representative of normal discharge conditions, and comply with all permit limits.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

If you have any questions or need additional information, please contact me at (585) 657-3120.

Sincerely,

Gina D. Thomas, CHMM EHS Director

Crosman Corporation

Enclosures

October 23, 2023

Ms. Michele L. Vincent Environmental Engineer, Water Division NYS DEC, Region 8 6274 East Avon-Lima Rd. Avon, New York 14414

RE: Discharge Monitoring Report, SPDES Permit # NY-0103039, Outfall Number 001

Dear Ms. Vincent:

On behalf of Crosman Corporation, enclosed is the Discharge Monitoring Report for the month of November 2023 (10 01 23 to 10 31 23). The table below summarizes the sampling dates and the analytical results for the month. Please see the attached report for the periodic test results of TTO and Cn, if performed during the month.

Date	Time	Temp (F)	Flow GPM	pН	Turbidity	TCE ug/L
10/11/23	6:25 AM	45	12	7.85	11.5	ND<2.00
LIMITS:		90°F Daily Max	Monitor	6.0 – 9.0		10 ppb action level

NA = No Analysis

I certify that the above results were obtained by approved sampling and analytical procedures, are representative of normal discharge conditions, and comply with all permit limits.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

If you have any questions or need additional information, please contact me at (585) 657-3120.

Sincerely,

Gina D. Thomas, CHMM EHS Director

Crosman Corporation

Enclosures

November 28, 2023

Ms. Michele L. Vincent Environmental Engineer, Water Division NYS DEC, Region 8 6274 East Avon-Lima Rd. Avon, New York 14414

RE: Discharge Monitoring Report, SPDES Permit # NY-0103039, Outfall Number 001

Dear Ms. Vincent:

On behalf of Crosman Corporation, enclosed is the Discharge Monitoring Report for the month of December 2023 (11 01 23 to 11 30 23). The table below summarizes the sampling dates and the analytical results for the month. Please see the attached report for the periodic test results of TTO and Cn, if performed during the month.

Date	Time	Temp (F)	Flow GPM	pН	Turbidity	TCE ug/L
11/15/23	7:08 AM	35	9	8.03	4.38	ND<2.00
LIMITS:		90°F Daily Max	Monitor	6.0 – 9.0		10 ppb action level

NA = No Analysis

I certify that the above results were obtained by approved sampling and analytical procedures, are representative of normal discharge conditions, and comply with all permit limits.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

If you have any questions or need additional information, please contact me at (585) 657-3120.

Sincerely,

Gina D. Thomas, CHMM EHS Director

Crosman Corporation

Enclosures

December 20, 2023

Ms. Michele L. Vincent Environmental Engineer, Water Division NYS DEC, Region 8 6274 East Avon-Lima Rd. Avon, New York 14414

RE: Discharge Monitoring Report, SPDES Permit # NY-0103039, Outfall Number 001

Dear Ms. Vincent:

On behalf of Crosman Corporation, enclosed is the Discharge Monitoring Report for the month of January 2024 (12 01 23 to 12 31 23). The table below summarizes the sampling dates and the analytical results for the month. Please see the attached report for the periodic test results of TTO and Cn, if performed during the month.

Date	Time	Temp (F)	Flow GPM	pН	Turbidity	TCE ug/L
12/13/23	6:50 AM	30	9	8.09	1.64	ND<2.00
LIMITS:		90°F Daily Max	Monitor	6.0 – 9.0		10 ppb action level

NA = No Analysis

I certify that the above results were obtained by approved sampling and analytical procedures, are representative of normal discharge conditions, and comply with all permit limits.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

If you have any questions or need additional information, please contact me at (585) 657-3120.

Sincerely,

Gina D. Thomas, CHMM EHS Director

Crosman Corporation

Enclosures

CC: Mr. Todd Caffoe, P.E., NYS DEC, Region 8

January 24, 2024

Ms. Michele L. Vincent Environmental Engineer, Water Division NYS DEC, Region 8 6274 East Avon-Lima Rd. Avon, New York 14414

RE: Discharge Monitoring Report, SPDES Permit # NY-0103039, Outfall Number 001

Dear Ms. Vincent:

On behalf of Crosman Corporation, enclosed is the Discharge Monitoring Report for the month of February 2024 (1 01 24 to 1 31 24). The table below summarizes the sampling dates and the analytical results for the month. Please see the attached report for the periodic test results of TTO and Cn, if performed during the month.

Date	Time	Temp	Flow	pН	Turbidity	TCE ug/L
		(F)	GPM			
1/17/24	7:09 AM	20	12	7.95	2.40	ND<2.00
LIMITS:		90°F Daily Max	Monitor	6.0 – 9.0		10 ppb action level

NA = No Analysis

I certify that the above results were obtained by approved sampling and analytical procedures, are representative of normal discharge conditions, and comply with all permit limits.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

If you have any questions or need additional information, please contact me at (585) 657-3120.

Sincerely,

Gina D. Thomas, CHMM EHS Director

Crosman Corporation

Enclosures

CC: Mr. Jashua Ramsey NYS DEC, Region 8

February 27, 2024

Ms. Michele L. Vincent Environmental Engineer, Water Division NYS DEC, Region 8 6274 East Avon-Lima Rd. Avon, New York 14414

RE: Discharge Monitoring Report, SPDES Permit # NY-0103039, Outfall Number 001

Dear Ms. Vincent:

On behalf of Crosman Corporation, enclosed is the Discharge Monitoring Report for the month of March 2024 (2 01 24 to 2 29 24). The table below summarizes the sampling dates and the analytical results for the month. Please see the attached report for the periodic test results of TTO and Cn, if performed during the month.

Date	Time	Temp (F)	Flow GPM	pН	Turbidity	TCE ug/L
2/14/24	7:29 AM	42	12	8.03	2.62	ND<2.00
2/14/24	7.23 AW	72	12	0.00	2.02	140~2.00
LIMITS:		90°F Daily Max	Monitor	6.0 - 9.0		10 ppb action level

NA = No Analysis

I certify that the above results were obtained by approved sampling and analytical procedures, are representative of normal discharge conditions, and comply with all permit limits.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

If you have any questions or need additional information, please contact me at (585) 657-3120.

Sincerely,

Gina D. Thomas, CHMM EHS Director

Crosman Corporation

Enclosures

CC: Mr. Jashua Ramsey NYS DEC, Region 8

March 21, 2024

Ms. Michele L. Vincent Environmental Engineer, Water Division NYS DEC, Region 8 6274 East Avon-Lima Rd. Avon, New York 14414

RE: Discharge Monitoring Report, SPDES Permit # NY-0103039, Outfall Number 001

Dear Ms. Vincent:

On behalf of Crosman Corporation, enclosed is the Discharge Monitoring Report for the month of April 2024 (3 01 24 to 3 31 24). The table below summarizes the sampling dates and the analytical results for the month. Please see the attached report for the periodic test results of TTO and Cn, if performed during the month.

Date	Time	Temp	Flow	pН	Turbidity	TCE ug/L
		(F)	GPM			
3/13/24	8:16 AM	50	12	8.16	2.62	ND<2.00
LIMITS:		90°F Daily Max	Monitor	6.0 – 9.0		10 ppb action level

NA = No Analysis

I certify that the above results were obtained by approved sampling and analytical procedures, are representative of normal discharge conditions, and comply with all permit limits.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

If you have any questions or need additional information, please contact me at (585) 657-3120.

Sincerely,

Gina D. Thomas, CHMM EHS Director

Crosman Corporation

Enclosures

CC: Mr. Jashua Ramsey NYS DEC, Region 8

April 23, 2024

Ms. Michele L. Vincent Environmental Engineer, Water Division NYS DEC, Region 8 6274 East Avon-Lima Rd. Avon, New York 14414

RE: Discharge Monitoring Report, SPDES Permit # NY-0103039, Outfall Number 001

Dear Ms. Vincent:

On behalf of Crosman Corporation, enclosed is the Discharge Monitoring Report for the month of May 2024 (4 01 24 to 4 30 24). The table below summarizes the sampling dates and the analytical results for the month. Please see the attached report for the periodic test results of TTO and Cn, if performed during the month.

Date	Time	Temp	Flow	pН	Turbidity	TCE ug/L
		(F)	GPM			
4/10/24	7:02 AM	55	12	8.15	5.98	ND<2.00
LIMITS:		90°F Daily Max	Monitor	6.0 – 9.0		10 ppb action level

NA = No Analysis

I certify that the above results were obtained by approved sampling and analytical procedures, are representative of normal discharge conditions, and comply with all permit limits.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

If you have any questions or need additional information, please contact me at (585) 657-3120.

Sincerely,

Gina D. Thomas, CHMM EHS Director

Crosman Corporation

Enclosures

CC: Mr. Jashua Ramsey NYS DEC, Region 8

May 15, 2024

Ms. Michele L. Vincent Environmental Engineer, Water Division NYS DEC, Region 8 6274 East Avon-Lima Rd. Avon, New York 14414

RE: Discharge Monitoring Report, SPDES Permit # NY-0103039, Outfall Number 001

Dear Ms. Vincent:

On behalf of Crosman Corporation, enclosed is the Discharge Monitoring Report for the month of June 2024 (5 01 24 to 5 31 24). The table below summarizes the sampling dates and the analytical results for the month. Please see the attached report for the periodic test results of TTO and Cn, if performed during the month.

Date	Time	Temp (F)	Flow GPM	pН	Turbidity	TCE ug/L
5/8/24	6:55 AM	62	24	8.27	1.63	ND<2.00
LIMITS:		90°F Daily Max	Monitor	6.0 – 9.0		10 ppb action level

NA = No Analysis

I certify that the above results were obtained by approved sampling and analytical procedures, are representative of normal discharge conditions, and comply with all permit limits.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

If you have any questions or need additional information, please contact me at (585) 657-3120.

Sincerely,

Gina D. Thomas, CHMM
EHS Director
Crosman Corporation

Enclosures

CC: Mr. Jashua Ramsey NYS DEC, Region 8

Appendix H

Institutional and Engineering Controls Certification Form

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	Site Details te No. 835012		Box 1	
Sit	te Name Crosman Corp. (formerly Crosman Arms)			
Cit Co	te Address: 7629 Routes 5 & Route 20 Zip Code: 14469 ty/Town: Bloomfield bunty: Ontario te Acreage: 49.684			
Re	eporting Period: June 15, 2023 to June 15, 2024			
			YES	NO
1.	Is the information above correct?		∠	
	If NO, include handwritten above or on a separate sheet.			
2.	Has some or all of the site property been sold, subdivided, me tax map amendment during this Reporting Period?	erged, or undergone a		Ø
3.	Has there been any change of use at the site during this Repo (see 6NYCRR 375-1.11(d))?	orting Period		V
4.	Have any federal, state, and/or local permits (e.g., building, di for or at the property during this Reporting Period?	scharge) been issued		Z
	If you answered YES to questions 2 thru 4, include documentation has been previously submitted with t			
5.	Is the site currently undergoing development?			V
			Box 2	
			YES	NO
6.	Is the current site use consistent with the use(s) listed below? Commercial and Industrial		V	
7.	Are all ICs in place and functioning as designed?	Z		
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, DO NOT COMPLETE THE REST OF THIS FORM.	•	nd	
Α (Corrective Measures Work Plan must be submitted along with	this form to address th	iese iss	ues.
Sig	gnature of Owner, Remedial Party or Designated Representative	Date		

SITE NO. 835012 Box 3

Description of Institutional Controls

Parcel Owner Institutional Control

80.00-1-4.00 Crosman Corporation

Landuse Restriction

Ground Water Use Restriction

Monitoring Plan

Site Management Plan

O&M Plan

Soil Management Plan

IC/EC Plan

Groundwater use as a potable source is restricted Land use is restricted to commercial or industrial

A Site Management Plan is in place which includes a groundwater monitoring plan, an O&M plan for the SSDS, an excavation work plan, and provisions for periodic certification.

Box 4

Description of Engineering Controls

<u>Parcel</u> <u>Engineering Control</u>

80.00-1-4.00

Vapor Mitigation

Groundwater Containment

Continued Operation and monitoring of sub-slab depressurization system

Continued operation of pumping well used for non-contact cooling water within the facility

D		E
О	C)X	

	Periodic Review Report (PRR) Certification Statements		
1.	I certify by checking "YES" below that:		
	a) the Periodic Review report and all attachments were prepared under the direc reviewed by, the party making the Engineering Control certification;	tion of,	and
	 b) to the best of my knowledge and belief, the work and conclusions described in are in accordance with the requirements of the site remedial program, and general engineering practices; and the information presented is accurate and compete. 		
		YES	NO
		V	
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all c following statements are true:	of the	
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Dep	artmen	t;
	(b) nothing has occurred that would impair the ability of such Control, to protect $\mathfrak p$ the environment;	oublic h	ealth and
	(c) access to the site will continue to be provided to the Department, to evaluate remedy, including access to evaluate the continued maintenance of this Control;	the	
	(d) nothing has occurred that would constitute a violation or failure to comply with Site Management Plan for this Control; and	n the	
	(e) if a financial assurance mechanism is required by the oversight document for mechanism remains valid and sufficient for its intended purpose established in the		
		YES	NO
		V	
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.		
	A Corrective Measures Work Plan must be submitted along with this form to address th	ese iss	ues.
	Signature of Owner, Remedial Party or Designated Representative Date		

IC CERTIFICATIONS SITE NO. 835012

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

ı Aaron Richardson	at Arcadis, 100 Chestnut Street, Rochest	er, NY ,	
print name	print business address		
am certifying as (Designated Represent	tative of) Remedial Party (Owne	er or Remedial Party)	
for the Site named in the Site Details Section of this form.			
h Minh	July 5, 20)24	
Signature of Owner, Remedial Party, or Rendering Certification	Designated Representative Date		

EC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Joseph Molina III	at Arcadis, 100 Chestnut Street, Rochester, NY
print name	print business address

am certifying as a Qualified Environmental Professional for the (Designated Representative of) Remedial Party (Owner or Remedial Party)

Joseph Molina III

Signature of Qualified Environmental Professional, for the Owner or Remedial Party, Rendering Certification STEPH MOLINA OPESSIONAL

Stamp (Required for PE)

July 5, 2024

Date

Arcadis of New York, Inc. 100 Chestnut Street, Suite 1020 Rochester New York 14604 Phone: 585 385 0090

Fax: 585 546 1973 www.arcadis.com