Report

Remedial Investigation Niagara Mohawk Albion Former MGP Site

November 2003

REMEDIAL INVESTIGATION NIAGARA MOHAWK ALBION FORMER MGP SITE

Prepared for

NIAGARA MOHAWK A National Grid Company

Prepared by

STEARNS & WHELER, LLC Environmental Engineers and Scientists 430 East Genesee Street Syracuse, NY 13202

November 2003

Project No 10046

TABLE OF CONTENTS

	Page
SECTION 1 – INTRODUCTION	1
1.1 Project Background	1 1 2 3
SECTION 2 – SITE BACKGROUND	5
2.1 Site History	5 5
SECTION 3 – SUMMARY OF PREVIOUS INVESTIGATIONS	8
SECTION 4 – PSA PROGRAM SUMMARY	9
4.1 Phase I PSA (1999)	9 10
SECTION 5 – 2003 RI FIELD METHODS	13
5.1 Soil Borings5.2 Surface Soils – Southern Site Boundary	13 14
SECTION 6 – RI RESULTS	15
 6.1 Former Holder Foundation 6.2 Purifier Waste/Cyanide 6.3 Cinder/Ash-Like Material (CLM/ALM) 6.4 Surface Soils – Southern Site Boundary 6.5 RI Results Summary 	15 15 16 17 17
SECTION 7 – HUMAN HEALTH EXPOSURE ASSESSMENT	19
 7.1 Site Characterization 7.2 Overview of Exposure Pathways 7.3 Potential Site Specific Exposure Pathways 7.4 Selection of Constituents of Potential Concern (COPC). 7.5 Summary 	19 20 22 23 25
SECTION 8 – CONCLUSIONS	27
SECTION 9 – RECOMMENDATIONS	29
REFERENCES	

LIST OF APPENDICES

Appendix

- A PSA Results
- B 2003 RI Soil Boring Logs
- C 2003 RI Laboratory Reports

LIST OF TABLES

Table No.

- 1 Groundwater Field Measurements
- 2 PAHs in Soils, April 2003 RI
- 3 Total Cyanide in Soils, April 2003 RI
- 4 Human Health Exposure Screening for Surface Soils, VOCs
- 5 Human Health Exposure Screening for Surface Soils, SVOCs
- 6 Human Health Exposure Screening for Subsurface Soils, VOCs
- 7 Human Health Exposure Screening for Surface Soils, SVOCs
- 8 Human Health Exposure Screening for Groundwater, VOCs
- 9 Human Health Exposure Screening for Groundwater, SVOCs

LIST OF FIGURES

Figure No.

- 1 Site Location
- 2 Site Plan
- 3 Groundwater Contour Map, August 2001
- 4 Sample Location Map
- 5 Soil Sample Results Total VOCs, Total PAHs, Total Cyanide
- 6 Soil Sample Results, Organic Compounds above NYSDEC TAGM
- 7 Groundwater Results
- 8 CLM/ALM Occurrence

L10046 ii

REMEDIAL INVESTIGATION ALBION FORMER MGP SITE NIAGARA MOHAWK POWER CORPORTATION ALBION, ORLEANS COUNTY, NEW YORK

SECTION 1 – INTRODUCTION

1.1 PROJECT BACKGROUND

This report presents the findings of a Remedial Investigation (RI) conducted at the Niagara Mohawk (NM) former manufactured gas plant (MGP) site located in Albion, Orleans County, New York. The RI program includes the Preliminary Site Assessment (PSA) program Phases I and II that were completed in 1999 and 2001, respectively, to delineate MGP-related impacts in surface soil, subsurface soil, and groundwater, plus recent fieldwork completed in April 2003. The 1999 and 2001 PSAs and the 2003 RI field work were completed in accordance with New York State Department of Environmental Conservation (NYSDEC)-approved work plans (Stearns & Wheler -- 1999, 2001, 2002a).

1.2 SITE DESCRIPTION

The former MGP site is located in the village of Albion, Orleans County, New York (Figure 1). The study site ("site") is approximately 0.2 acres and is bordered by the New York State Barge Canal and adjacent brick walkway (north), Ingersoll Street (east), residential properties (south), and a NM substation (west) (Figure 2). The study site is one of two adjoining parcels formerly occupied by a single MGP. New York State Electric & Gas (NYSEG) is the actual owner of the study site. NM currently owns the approximately 0.3-acre parcel adjoining the study area to the west. Portions of the former MGP operations were located on both of the parcels. The retorts, gas purifying operations, and two (2) gasholders were located on the study (NYSEG-owned) property. Several other structures associated with the former gas manufacturing operations were located on the adjoining NM property, including a coal storage warehouse, transformer station office building, gasholder, and two (2) 5,000-gallon gas/oil aboveground storage tanks (ASTs).

1.3 RI OBJECTIVES

The goal of the RI was to provide site data to enable the selection of an appropriate remediation strategy through a feasibility study (FS) process. As noted previously, the RI included multiple phases of field investigation, including PSA Phase I (1999) and Phase II (2001), plus a recent phase of field work in 2003. This report presents the findings of the most recent RI phase completed at the site in 2003, and integrates them with previous PSA findings (Stearns & Wheler -- 2000, 2002b) to produce a comprehensive RI dataset.

The PSA program provided an initial site characterization (Phase I) and further definition of the nature and extent of impacts (Phase II). The specific objectives for the each PSA phase were set forth by the respective NYSDEC-approved Work Plans (Stearns & Wheler, 1999 & 2001), and were aimed at providing necessary information to select a remedial approach. The principal objectives of the 2003 investigation were to:

- 1. Investigate subsurface soils below an at-grade holder foundation located on the NM-owned parcel (west of the PSA area).
- 2. Investigate possible cyanide impact in connection with purifier waste identified previously in subsurface soil samples around the western holder.
- 3. Further delineate a black cinder/ash-like material (CLM/ALM) that was identified in soil samples in previous investigations.
- 4. Conduct surface soil sampling along the southern edge of the study area to determine whether occupants of adjoining properties are exposed to potentially impacted soils.
- 5. Complete a qualitative human health exposure assessment to determine whether human receptors are potentially exposed to site-related constituents.
- 6. Provide a basis for subsequent completion of a focused feasibility study (FS) that evaluates potential site remedies in a manner that considers their ability to reduce human health risks.

- 2 - L10046.11

1.4 REPORT ORGANIZATION This report provides a summary of RI program, including the PSA program, as well as prior site investigations. Subsequent sections of this report are as follows: Section 2 – Site Background. This section summarizes the site's history and hydrogeology. Section 3 - Summary of Previous Investigations. This section summarizes preliminary investigations conducted prior to the PSA/RI program. Section 4 – PSA Program Summary. This section summarizes the objectives, methods, and findings of the two (2) PSA phases completed at the study site. Full details relating to the PSA program are presented in the following reports: > Stearns & Wheler, 2000, Preliminary Site Assessment/Interim Remedial Measures (PSA/IRM) Study, Niagara Mohawk, Albion, New York. Steams & Wheler, LLC, Cazenovia, New York, June. > Stearns & Wheler, 2002, Phase II Site Investigation, Albion Former MGP, Niagara Mohawk Power Corporation, Albion, New York. Stearns & Wheler, LLC, Cazenovia, New York, January. Section 5 - 2003 RI Field Methods. This section describes the field sampling methods for the recent 2003 RI. Section 6 - RI Results. Visual observations and analytical results are summarized. Section 7 – Human Health Exposure Assessment. The exposure setting, including the physical environment and potentially exposed human populations, are described. Potential exposure pathways and contaminant transport scenarios are summarized. Section 8 - Conclusions. Conclusions are based on the combined findings of the PSA/RI program.

Section 9 - Recommendations. Recommendations based on the findings of the PSA/RI are

- 3 -

provided.

Specific information that was presented in previous PSA/IRM reports is referenced as appropriate throughout the report, and attached as Appendix A. A full list of appendices is presented below.

Appendix A – Phase I and II PSA/IRM Results. Figures, tables, boring logs, hydraulic conductivity data, representative site photographs, and laboratory analytical results that were presented in the Phase I and II PSA/IRM Reports are included.

Appendix B – 2003 RI Soil Boring Logs.

Appendix C – 2003 RI Laboratory Reports.

- 4 - L10046.11

2.1	SITE HISTORY
Env	lowing is a chronology of historic subject property ownership and events (Avironmental Services, 1991). Based on ownership information, it is apparent that the sed for the generation of gas and/or electric power dating back to the mid-19 th century.
1.	Pre-1858. James K. Lake and John E. McGraw (NM, 1993).
2.	1858-1902. The site was part of a manufactured gas plant owned and operated by the Albion Gas Light Company.
3.	1902-1909. Albion Power Company.
4.	1909-1916. A.L. Swett Electric Light and Power Company.
5.	1916-1928. Western New York Utilities Company, Inc. (WNYU). Consolidates with Genesee Light and Power Company (GLP) in 1923. GLP consolidates with Niagara, Lockport, and Ontario Power Corporation in 1928 (NM predecessor) (NM, 1993).
6.	1928-1930. Lockport Light, Heat and Power Company (NYSEG predecessor). Open of the MGP ceased in 1928 when a pipeline connected Albion to out-of-town gas plan
7.	1930-Present. NYSEG. By 1941, most of the structures were demolished.
2.2	SITE HYDROGEOLOGY
is a	Site Surficial Geology . The upper 5-feet of soils across the site consist of san aining glass, brick, and a black cinder/ash-like material (similar to coal ash). Below a glacial till sequence (approximately 10-feet thick) that rests on bedrock. The underock is a weathered red sandstone of the Grimsby formation.

- 5 -

L10046.11

monitoring wells during the phase I and II PSA program, groundwater moves generally towards the east-southeast (Figure 3). Prior investigations performed on the adjoining NM property suggested that groundwater flows in this direction when the water levels in the canal are relatively high. It has been suggested that the flow direction reverses so that groundwater flows north when the canal water is relatively low (canal is drained from late fall through spring). (Malcolm Pirnie, 1998). No such change in groundwater flow direction was observed during the PSA/RI program.

C. Hydraulic Conductivity (Slug) Test Results. Slug tests in monitoring wells MW-5 and MW-6 at the study site were completed to provide an estimate of hydraulic conductivity. Based on the slug tests, the hydraulic conductivity is estimated to be between 0.59 and 3.3 feet per day (ft/d). From the conductivity results, the groundwater seepage velocity was estimated based on the Darcy equation:

```
V = KI/\eta
```

where:

V = seepage velocity

K = hydraulic conductivity (distance/time)

I = hydraulic gradient (dimensionless)

 $\eta = \text{effective porosity (dimensionless)}$

Assuming an effective soil porosity of 0.2 (20 percent) and based on a slope (gradient) of the water table of approximately 0.027 across the site, seepage velocities of 4.55 x 10-1 ft/d (MW-5) and 7.99 x 10-2 ft/d (MW-6) were calculated. Well MW-6 was screened near the bedrock interface, as evidenced by the weathered sandstone that was encountered in the MW-6 borehole at approximately 13 feet below grade (see Appendix A-1 boring logs). Slug test data (Appendix A-1) for MW-6 may therefore be more representative of the upper weathered bedrock that occurs below the till.

Overall, the above seepage velocity estimates are comparable to those reported by Malcolm Pirnie (1998), which estimated a velocity of 0.72 ft/d. The estimate of 0.455 ft/d is in excellent agreement, while 0.0799 ft/d is within one order of magnitude. Hydraulic conductivity test data are included in Appendix A for reference.

- 6 -

لــا

 \Box

	6 feet, below t				uence. Accord
ippermost wate	r bearing unit is	ine mi sequ	ence that ove	mes bearock.	

- 7 - L10046.11

SECTION 3 – SUMMARY OF PREVIOUS INVESTIGATIONS

In September 1991, Atlantic Environmental Services, Inc. conducted an investigation at the former Albion MGP site as part of a Site Screening and Priority Setting (SSPS) System developed by the Electric Power Research Institute. The investigation included the sampling of Barge Canal surface water, canal sediments, and site surface soils. No site-related contaminants were found in any of the canal water samples, and only the upstream canal sediment sample contained polycyclic aromatic hydrocarbons (PAHs). These findings indicate that the MGP site has not affected the canal. However, site surface soil samples contained elevated concentrations of PAHs and various metals and cyanide, which suggested that they might be affected by the former MGP.

In June 1997, Malcolm Pirnie, Inc. conducted an initial PSA on the site and the NM-owned property adjoining the site (0.3-acre parcel to the west). In July 1998, NYSDEC approved the Malcolm Pirnie PSA/IRM report. Following the approval of the PSA/IRM report, the NYSDEC proposed additional investigation of the NYSEG-owned subject site. Communication between NM and NYSEG resulted in a tentative agreement under which NM took the lead initiating a PSA at the 0.2-acre NYSEG-owned site.

-8- L10046.11

SEC	TION 4 – PSA PROGRAM SUMMARY
4.1	PHASE I PSA (1999)
grou	Phase I PSA was completed at the site in December 1999 to determine whether soil and adwater at the site had been impacted by MGP residuals. Specifically, the objectives of the E I PSA were to collect sufficient environmental data to evaluate:
	1. The nature and presence of hazardous substances, including MGP by-products, at the site.
	2. Whether such substances constitute a significant threat to human health or the environment.
	3. Whether additional site remedial investigation is necessary.
	4. Whether one or more IRMs may be appropriate due to the nature and extent of MGP residues, if present, or other contaminants identified at the site.
	5. Whether other responsible parties may exist.
samp surface monite ground ground g organ piphe and g	chase I PSA activities were completed in December 1999. The investigation included soil be collection from eight (8) subsurface soil borings (SB-1 through SB-8) and five (5) are soil locations (SS-1R, -2, -3, -4, and CB-1), the installation of two (2) groundwater oring wells (MW-5 and MW-6), hydraulic conductivity testing (MW-5 and MW-6), and dwater sampling from the site monitoring well network (MW-1 through MW-6). All soil roundwater samples were analyzed for volatile organic compounds (VOCs), semivolatile ic compounds (SVOCs), target analyte list (TAL) metals, pesticides, and polychlorinated thyls (PCBs). Soil boring logs and summary tables of laboratory analytical results of soil roundwater samples are included in Appendix A for reference. Sample locations from the I PSA/IRM are shown on Figure 4.
The P	hase I PSA Report (Stearns & Wheler, June 2000) included the following conclusions:

- Laboratory analytical data indicated VOCs and SVOCs were present in subsurface soil samples collected from areas within and around the remnants of the former western gasholder (SB-1, -2, and -7, see Figures 5 and 6 of this report).
- Analytical data for soil boring samples collected in areas in proximity of the eastern gasholder did not indicate the presence of MGP residuals (SB-3, -4 and -8).
- Surface soil samples were found to contain elevated levels of PAHs compared to New York State soil cleanup criteria (TAGM 4046), and to a lesser extent metals. No significant VOC impacts were identified in the surface soils.
- Cyanide was detected in seven of thirteen soil samples analyzed, at various depth intervals (surface to 14-feet, see Figure 5). Detected concentrations ranged from 0.6 mg/Kg to 12 mg/Kg. However, six of the seven samples contained fairly low levels (e.g. less than 5 mg/Kg) of total cyanide.
- There was no evidence of a significant dissolved groundwater plume. MGP-related impacts in groundwater were identified in the sample collected from MW-5 (downgradient of western holder), only. Total metals concentrations in groundwater samples are likely elevated in part from turbid groundwater conditions at the time of sampling. However, the widespread presence of iron, manganese, and sodium may reflect ambient conditions.

Following the review of the PSA report by NYSDEC, it was determined that additional field characterization would be needed to develop an effective site management strategy. This prompted some additional investigation to be completed as Phase II.

4.2 PHASE II PSA (2001)

The Phase II PSA/IRM was completed in April and July 2001 to further define the nature and extent of VOCs and PAHs in site soils. Specifically, the objectives of the Phase II PSA/IRM were to:

1. Verify the locations of the eastern and western gasholder foundation walls to provide information to support a removal IRM.

- 10 - L10046.11

 \Box

2. Further delineate potential surface and subsurface soil impacts (VOCs and PAHs) outside of the gasholders. 3. Establish bedrock groundwater quality downgradient of the western gasholder. 4. Assess the potential for natural attenuation in groundwater to mitigate site-related impacts. 5. Support recommendations for implementing IRM(s). The Phase II PSA/IRM activities, completed in April and July 2001, expanded the investigation and included the drilling of seven (7) additional soil borings (SB-9 through SB-15), the excavation of seven (7) test pits (TP-1 through TP-7), the installation of a bedrock monitoring well (MW-7), hydraulic conductivity testing (MW-7), and collection and laboratory analysis of soil and groundwater samples. Soil samples collected from boring locations were analyzed for VOCs and PAHs. Groundwater samples were collected and analyzed for VOCs, PAHs, iron, manganese, nitrate, and carbon dioxide. Soil boring logs and summary tables of laboratory analytical results of soil and groundwater samples are included in Appendix A for reference. Results of soil boring sample analyses are also included in tabular form with the results of soil samples collected during the 2003 RI. Sample locations from the Phase II PSA/IRM are included on Figure 4. The Phase II PSA Report (Stearns & Wheler, January 2002) presented the following conclusions: Location of Former Gasholder Structures. The excavation of test pits at the site revealed evidence of the former holder structures at the former MGP site. The western holder was easier to identify, as its wall structure was more visible. The walls of the western holder were verified at approximately 2.5-feet below ground surface. The eastern holder was evidently demolished or collapsed, as evidenced by a more scattered debris pattern in that area. Test pit locations are shown on Figure 4. MGP-related Impacts - Soils. Concentrations of VOCs and PAHs above NYSDEC Technical and Administrative Guidance Memorandum (TAGM) recommended soil cleanup objectives were identified in soil borings advanced around the exteriors of each

- 11 - L10046.11

holder (Figure 6). VOCs were generally detected at lower concentrations than PAHs, but mono-aromatic compounds such as BTEX were detected above TAGM recommended cleanup objectives. The soil samples collected from borings SB-10 and SB-11, around the western holder from 8-12-feet deep, had the highest concentrations of total PAHs. For the eastern holder, VOCs and PAHs in soils from 0-2-feet were generally higher than those for deeper soil samples.

- MGP-related Impacts Groundwater. Consistent with previous analytical results from the Phase I PSA/IRM, MGP-related impacts in groundwater were identified in the sample collected from MW-5 (downgradient of western holder), only. The groundwater sample collected from MW-5 exceeded NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) Class GA water quality standards for BTEX (benzene, toluene, ethylbenzene, and xylenes) compounds (see Figure 7). Inorganic indicator parameters, together with the very limited groundwater impact, indicate that residual MGP impacts are effectively attenuated in groundwater.
- Interim Remedial Measures. No imminent impacts to human health or the environment were identified requiring interim remedial measures (IRM). The Phase II PSA Report concluded that the removal of subsurface MGP-related structures and associated impacted soils in proximity to the gasholders is expected to remove the majority of the potential source material that remains on site.

Following the completion of the Phase II PSA Report, the NYSDEC determined that site characterization was effectively complete. However, further site investigation was requested (NYSDEC letters dated February 28, 2002 and July 31, 2002) to enable the selection of a remediation strategy by the FS process.

NYSDEC requested additional investigation of a former holder platform to the west of the study area, further investigation of potential purifier waste on the premises, and further delineation and chemical characterization of a cinder/ash-like material that was identified in site soils during the PSA phases. NYSDEC requested that the further investigation be completed as a Remedial Investigation (RI), and to integrate the previous findings of the PSA program into the RI program to fully characterize the site for remedy selection.

- 12 - L10046.11

SECTION 5 – 2003 RI FIELD METHODS

5.1 SOIL BORINGS

From April 7-9, 2003, thirteen (13) soil borings (SB-16 through SB-28) were completed at the site, and two (2) borings (SB-29 and SB-30) were advanced west of the site in the former holder foundation area (Figure 4). Soil borings were completed by using 4 ½-inch hollow stem augers, then advancing 2-inch diameter split-spoon sampling devices into subsurface soils via the direct push method. Soils were collected continuously in each boring to provide samples for analysis and/or to examine for visible or olfactory impacts. Soil samples were field screened for organic vapors using a photoionization detector (PID). Boring logs are included in Appendix B of this RI report. Reasons for advancing soil borings in specific areas are described below.

A. FORMER HOLDER FOUNDATION

Two (2) soil borings (SB-29 and SB-30) were advanced through the at-grade holder foundation located west of the site. The objective of these borings was to investigate potential subsurface impact below the foundation. One soil sample from each boring was analyzed for PAHs (USEPA Method 8270).

B. PURIFIER WASTE

Four (4) soil borings (SB-16, -17, -18, and -28) were advanced near previous soil boring locations around the western holder on the site. The objective of the additional borings was to investigate the possible extent of cyanide impact that might be associated with suspected purifier waste. Purifier waste was suspected based on visual observation of wood chips in subsurface soils during the Phase II PSA. Based on PID readings and/or the presence of wood chips, one soil sample was collected from each boring and analyzed for total cyanide. One proposed soil boring location (north of eastern gasholder) was eliminated because of its proximity to aboveground utility lines associated with the adjacent NM substation.

C. CINDER ASH MATERIAL

Six (6) soil borings (SB-19 through SB-23, and SB-25) were advanced at various locations across the site to investigate a black cinder/ash-like material (CLM/ALM) that was identified in

- 13 - L10046.11

shallow soils (0-6-feet bgs) in a number of soil borings from the PSA program. The source of the CLM/ALM is not known. It may be associated with former MGP operation, but it also could be derived from the use of coal by other historic operations in the area, or potentially from the use of backfill that contained coal ash over the course of the area's historic development.

The objective of the six soil borings was to further delineate the CLM/ALM. One soil sample from each soil boring was analyzed for PAHs (USEPA Method 8270).

5.2 - SURFACE SOILS - SOUTHERN SITE BOUNDARY

To supplement the CLM/ALM investigation, three (3) shallow soil borings (SB-24, -26, and -27) were advanced to a depth of 2 feet along the southern site boundary. The purpose of these shallow soil samples was to determine whether occupants of adjoining properties could be potentially exposed to CLM/ALM in shallow soils. Two soil samples were collected from each boring (0-2-inches and 1.5-2-feet bgs) and analyzed for PAHs (USEPA Method 8270).

- 14 - L10046.11

 \Box

SECTION 6 -RI RESULTS

Summary tables of laboratory analytical results of soil boring samples are presented in Table 2 (PAHs), and Table 3 (cyanide). The 2003 RI laboratory analytical reports are included in Appendix C.

6.1 FORMER HOLDER FOUNDATION

Soil borings SB-29 and SB-30 were both advanced to refusal (13.3 and 12.3-feet, respectively) beneath the at-grade holder foundation on NM property west of the site. No direct field evidence of MGP-related impacts by visual, odor, or PID screening, was identified in either of the soil borings. Trace amounts of black CLM/ALM was found at shallow depths (2-4-feet) with other fill material (brick) in each of the borings.

Total PAH concentrations detected in the soil samples collected from SB-29 and SB-30 were 45.81 mg/Kg and 534.9 mg/Kg, respectively. The sample from SB-29 contained six PAHs above TAGM cleanup objectives, and the sample from SB-30 contained nine PAHs above TAGM recommended cleanup objectives. Total PAH concentrations of soil samples collected as part of the RI and PSA program are shown on Figure 5, and the compounds that exceeded NYS TAGM recommended cleanup objectives are summarized on Figure 6.

6.2 PURIFIER WASTE/CYANIDE

The impacts with respect to purifier waste are assessed by reviewing the levels of detected cyanide. Cyanide was detected in each of the soil samples analyzed from borings SB-16, -17, -18, and -28. Concentrations ranged from < 1 mg/Kg (SB-17) to 32.7 mg/Kg (SB-16). Wood chips were identified in the sample collected from SB-17 (8-10-feet), only, and PID readings were minimal. Total cyanide concentrations in soil samples analyzed as part of the RI and PSA program are shown on Figure 5. Fourteen of seventeen samples contained less than 5 mg/Kg, and the average detected concentration of these fourteen samples is only 1.8 mg/Kg. Although there is no recommended cleanup objective specific to cyanide, the detected levels appear to be fairly low.

- 15 - L10046.11

6.3 CINDER/ASH-LIKE MATERIAL (CLM/ALM)

Black CLM/ALM was identified at a total of 19 of 30 soil borings drilled during the PSA/RI program, based on a review of soil boring logs. Figure 8 shows the boring locations at which the CLM/ALM was visually identified. As noted previously, the CLM/ALM was not identified in any boring deeper than 6 feet below ground surface, and it appears to extend to the site borders and beyond. The occurrence of the ash is associated with general fill material, and not focused around any specific site area or areas.

PAH compounds are common in coal and coal derivatives, including coal ash and cinders, as evidenced by PAHs detected in the soil samples that were found to contain ash. The samples that contained visible ash had low PID readings. In addition, these samples lacked odors and visible evidence of non-aqueous phase impacts (NAPL, staining, or sheen). It is therefore concluded that the ash-related PAHs detected in shallow soil samples are distinct from those detected in deeper soil samples within and adjacent to the former holders. The range of total PAH concentrations in the soil/fill samples containing CLM/ALM was from 5.87 mg/Kg (SB-27, from 1.5 to 2 feet deep) to 8,623 mg/Kg(SB-19, from 0 to 2 feet deep), with an average concentration of 1,081 mg/Kg. The PAH concentrations in the nineteen other soil samples that, according to soil boring logs, did not contain visible CLM/ALM, ranged from 0.171 mg/Kg to 2,421 mg/Kg, with an average total PAH concentration of 175 mg/Kg.

The analytical data indicate that PAH concentrations are higher in fill samples that contained ash than those that did not. Although coal ash is possibly related to MGP operations, it is also possible that it is a component of common fill material used in the area, and may have been derived from non-MGP operations at other locations. Coal ash is not uncommon in historic fill material found in developed areas where the burning of coal and the use of backfill that contained coal ash were common practices.

Ash at the site could not be fully delineated. It extended to the site boundaries and beyond, in the upper few feet of soils, which suggests that it could be locally very common.

Each of the soil borings drilled in April 2003 along the southern property boundary (SB-19 through SB-25) encountered the CLM/ALM in the upper two to three feet. The material appears to be a mixture of coal fragments and partially combusted, granular ash-like material. It is

- 16 - L10046.11

	commonly associated with brick and glass fragments, crushed stone, and miscellaneous fill materials. The total PAH concentrations in the five soil samples analyzed in April 2003 that contained CLM/ALM range from 8.95 mg/Kg (SB-22) to 8,623 mg/Kg (SB-19) (Figure 5). PAH compounds exceeded TAGM recommended cleanup objectives in each of the collected soil samples.
	6.4 SURFACE SOILS – SOUTHERN SITE BOUNDARY
	The black CLM/ALM was identified at each of the three surface soil samples along the southern perimeter of the study site. The total PAH concentrations in the three soil samples analyzed from borings SB-24, SB-26, and SB-27 (0-2-inches) were 149.59 mg/Kg, 225.08 mg/Kg, and 5.87 mg/Kg, respectively. The total PAH concentrations from the same borings, only from 1.5-2-feet, were 529.6 mg/Kg, 150.32 mg/Kg, and 6,646 mg/Kg, respectively (Figure 5). PAH compounds exceeded TAGM recommended 0cleanup objectives from both depth intervals in each of the collected soil samples.
:	As noted above, the CLM/ALM could not be fully delineated, and the samples collected from the southern property boundary suggest that ash, perhaps as a locally ubiquitous component of area fill, may extend beyond the MGP boundaries.
(5.5 RI RESULTS SUMMARY
	The following is an interpretive summary of the RI, which integrates the findings of the 2003 site investigation with the PSA program.
A	A. SURFACE SOILS
r	Surface soil samples at the site were found to contain PAHs above NYSDEC TAGM ecommended soil cleanup objectives. Concentrations of PAHs in surface soils (0-2-feet) are highest in areas near the former holder locations (Figure 5). VOCs in surface soils are below TAGM recommended cleanup objectives. Although cyanide was detected in eleven of seventeen

soil samples from the site, it was present in fairly low amounts - above 5 mg/Kg in only three of eleven samples in which it was detected - and there were six samples in which cyanide was not

detected.

B. SUBSURFACE SOILS

Concentrations of VOCs and PAHs above NYSDEC TAGM soil cleanup objectives were identified in soil borings advanced around the exteriors of each holder. VOCs were generally detected at lower concentrations than PAHs, but were also present above TAGM recommended cleanup objectives, specifically BTEX. Concentrations of PAHs in subsurface soils (5-16-feet) are highest in areas near the former holder locations (Figure 5).

 \Box

C. CLM/ALM

Coal ash and cinder-like material (CLM/ALM) and associated fill were visually identified in shallow soils (less than 6 feet deep) across the majority of the site area. This material was commonly encountered in borings throughout the site, and was found to extend up to and possibly beyond the southern property boundary. The widespread occurrence the ash/cinder-like material prevented its full delineation.

The ash and cinder-like material is apparently not a source of groundwater impact, since groundwater impacts are discernable only at a single well location (MW-5), whereas the ash/cinder material is widespread.

D. GROUNDWATER

During both RI groundwater sampling events (Phase I and II PSAs), MGP-related impacts in groundwater were only identified in the sample collected from monitoring well MW-5 (downgradient from western holder). The groundwater sample from MW-5 for both PSA sample events exceeded Class GA water quality standards for BTEX (benzene, toluene, ethylbenzene, and xylenes) compounds and naphthalene. Total metals concentrations detected in groundwater samples during the Phase I PSA were likely elevated in part from turbid groundwater conditions at the time of sampling.

- 18 - L10046.11

SECTION 7 - HUMAN HEALTH EXPOSURE ASSESSMENT
A qualitative exposure assessment was completed for the site, in accordance with the New York State Department of Health (NYSDOH) guidance on qualitative exposure assessments, as
described in Appendix 3B of NYSDEC's Draft TAGM DER-10. The assessment consisted of the following steps:
the following steps.
1. Characterizing the exposure setting, including the physical environment and potentially exposed human populations;
2. Identifying exposure pathways;
3. Evaluating contaminant fate and transport.
7.1 - SITE CHARACTERIZATION
Site characteristics were reviewed, including the results of sampling data for soil and groundwater, to evaluate the physical conditions of the contaminant sources near the site, which
may pose a potential health risk to the community.
The land use and environmental setting of a site, to a large extent, control the degree of exposure of humans to site conditions and thus also greatly influence the amount of potential risk to
human health posed by site conditions. Land use determines the likelihood that potential receptors could contact impacted media (air, sediment, water, and soil). Isolated sites and those
with minimal access provide less potential exposure to humans, and thus pose less of a potential risk to human health than sites easily accessed by large numbers of people.
The Albion MGP site is located on a rectangular plot of approximately 0.2 acres, and is
surrounded by a combination of residential and commercial properties. It is flat lying, and bounded on the north by New York State Barge Canal, on the south by residential properties, on

the east by Ingersoll Street, and on the west by a NM substation. A brick walkway along the canal just north of the site is used as a recreational walking path. Access to the site is not

physically restricted by fencing or other form of barricade at this time.

7.2 - OVERVIEW OF EXPOSURE PATHWAYS

Both current and future potential exposure pathways to humans were considered, based on the physical layout of the site and surrounding areas. An exposure pathway describes the means by which an individual may be exposed to contaminants originating from a site. An exposure pathway has five elements:

- 1. a contaminant source;
- 2. contaminant release and transport mechanisms;
- 3. a point of exposure;
- 4. a route of exposure;
- 5. a receptor population.

A. CONTAMINANT SOURCE

For this site, residual MGP material in on site soils is a potential contaminant source. In contrast, groundwater impacts have been determined to be minor, and therefore groundwater is not considered to be a potential contaminant exposure source. The principal on-site constituents related to MGP operations include VOCs and SVOCs (primarily PAHs) in surface and subsurface soils. In addition, shallow off site soils north, west, and east of the site were found to contain PAHs that may possibly be associated with the MGP. Because the detected PAHs are common ambient contaminants in developed and urban areas, it could not be confirmed whether these PAHs were related to the MGP or were from other locally ubiquitous sources. Surface soil samples were also collected along the southern property boundary, but not off site to the south on the adjacent residential property.

B. CONTAMINANT TRANSPORT

Overall, the degree of active contaminant transport appears to be minimal. Contaminant transport in groundwater is minimal, based on the analytical data from the PSA/RI program. Groundwater analytical data indicate that dissolved phase VOCs (benzene, toluene,

- 20 -

L10046.11

portion	enzene, xylenes and naphthalene) are limited to a specific site area in the north-central of the site, primarily in samples from a single monitoring well, and the data indicate that water impacts do not substantially extend beyond this area.
covered a fairly	ort of airborne site soils in the form of "dust" is relatively insignificant because the site is d primarily by gravel and grass, it is covered for months at a time by snow, and otherwise uniform distribution of precipitation over the course of the year minimizes the occurrence nded dry periods over which dust could form.
C.	EXPOSURE POINT AND ROUTE
medium or conta ground Howeversoils is	posure point is a location where actual or potential human contact with a contaminated in may occur. The route of exposure is the manner in which a contaminant actually enters acts the body (i.e., ingestion, inhalation, dermal absorption). Gravel and grass that cover surface across the site and surrounding areas minimize direct contact with site soils er, dermal adsorption (i.e. direct contact with skin) and accidental ingestion of surface possible in cases where the gravel and or grass is penetrated by shallow digging, and at the only potentially complete exposure route under current site conditions.
existing municip impact does no	current conditions, there are no water supply wells in proximity to the site, so there is not gexposure route in connection with groundwater consumption. The area is serviced by a bal supply, which reduces the possibility of future exposure. The extent of groundwater has been defined to be limited to a small area in the north-central portion of the site, and of appear to be migrating beyond the defined limits, which effectively eliminates the ity that a future off site supply well would encounter site related impacts.
installed	exposure to groundwater would require the unlikely scenario that a supply well was don-site near the affected area. Another potential future exposure scenario is via direct with on-site contaminated subsurface soil and groundwater by construction/utility.
D. 3	RECEPTOR POPULATION
	eptor population is the people who are or may be exposed to contaminants at a point of e. Based on current site conditions, on-site trespassers who manage to penetrate the

-21 - L10046.11

gravel/grass cover are potential current receptors. Although possible, this is considered an unlikely scenario. Off site, adjacent residents south of the site may come into contact with shallow off-site soils via gardening and landscaping. Although, there are no data for surface soils on residential property south of the site, relatively elevated PAH concentrations in the surficial soil on site extend at least up to the southern site property boundary. However, no flower or vegetable gardens were observed on these adjacent off-site properties. Recreational users of the walking trail along the canal could potentially come into contact with surface soils if they were to stray off the brick covered path and cross onto the site. However, light recreational use of this type is unlikely to penetrate grass cover in a manner that would create a significant exposure opportunity.

Under future scenarios, adult construction and utility workers are potential receptors to siterelated contaminants in soil and groundwater.

An exposure pathway is complete when all five elements of an exposure pathway are documented; a potential exposure pathway exists when any one or more of the five elements comprising an exposure pathway is not documented (i.e. it cannot be confirmed or refuted). An exposure pathway may be eliminated from further evaluation when any one of the five elements comprising an exposure pathway has not existed in the past, does not exist in the present, and will never exist in the future.

There are currently no complete exposure pathways in connection with the site, but there are some potentially complete paths. Potential exposure pathways for each of the sampled environmental media are evaluated in further detail below.

7.3 - POTENTIAL SITE SPECIFIC EXPOSURE PATHWAYS

A. SURFACE SOILS

Under existing site conditions, a potentially complete, albeit very unlikely, exposure path exists for on-site surface soils. The receptor population is children and adult trespassers who dig through the gravel and grass cover and come into contact with the underlying surface soil. As noted, these routes of exposure, by direct dermal contact with the surface soil and accidental ingestion of soil, are restricted by gravel and grass that covers the site.

- 22 - L10046.11

The potential for inhalation of contaminants was dismissed because it is negligible compared to direct contact and ingestion. First, the principal contaminants are generally not volatile enough to form a vapor phase, and more volatile constituents that were analyzed for (Phase I PSA) were not present in surface soils. Second, the site has a gravel/grass ground cover that reduces wind-borne dust formation. Finally, the site is covered for months at a time with snow, and otherwise there is a fairly even annual distribution of rainfall such that extended dry periods are infrequent. This combination of factors minimizes dust formation and consequently inhalation is believed to be relatively insignificant compared to dermal contact or ingestion.
B. SUBSURFACE SOILS
There are no currently existing exposure routes, on- or off-site, to subsurface soils. Future potential exposures can occur if on-site soils are excavated. This future scenario would affect an adult receptor population of utility and construction workers on-site.
C. GROUNDWATER
There are currently no complete on-site or off-site exposure routes to groundwater, because there are currently no supply wells in the affected area, and the extent of groundwater impact is minimal, as evidenced by impact being detected in only a single site well. Future potential exposure is also highly improbable for these same reasons. In addition, it is doubtful that the shallow silt/clay aquifer could sustain a yield for domestic or commercial water use.
Direct contact with contaminated groundwater and accidental ingestion is an incomplete exposure path under current conditions, but could occur in the future in connection with on site construction work. The receptor population in this case would be adult utility and construction workers.
7.4 - SELECTION OF CONSTITUENTS OF POTENTIAL CONCERN (COPC)
Tables 4 through 8 present the evaluation of constituents of potential concern (COPCs) for each of the above current and future scenarios.
Screening concentrations for surface soil and subsurface soils were based on the maximum detected concentration and average concentration for each constituent. The maximum

concentration is a highly conservative screening concentration, whereas the average value represents a more representative and likely constituent concentration to which receptors might be exposed. For calculating the averages, non-detects were assigned values equal to one half the limit of detection.

The screening concentrations for soil were compared to USEPA health based cleanup objectives specified under TAGM 4046. The health-based objectives under TAGM are derived from the USEPA Health Effects Assessment Summary Tables (HEAST). It is noted that these cleanup objectives are based on the long-term chronic exposure, and accordingly are only relevant in cases where a long-term residential exposure scenario applies. In reality, the potentially exposed populations at the site would come into contact with site contaminants for relatively brief durations as opposed to the long-term exposure scenarios upon which the TAGM objectives are based. The results of the exposure assessment are therefore considered to be overly conservative, overstating the actual risk.

A contaminant was retained as a COPC if its average or maximum concentration exceeded the TAGM cleanup objectives.

For groundwater, the screening concentrations were compared to NYSDEC groundwater quality standards. Each of these criteria is based on groundwater being used as a drinking water supply.

A. CURRENT SCENARIOS

Site Surface Soil. Contaminants of potential concern (COPCs) for surface soils were determined based on the analytical data for eleven surface soil samples that were collected and analyzed for VOCs, and twenty-two surface soil samples that were collected and analyzed for PAHs. All VOCs were below TAGM 4046 health-based criteria, so none are considered to be COPCs (Table 4). Only three PAHs (benzo(a)anthracene, benzo(b)pyrene, and dibenzo(a,h)anthracene) were detected in on-site surface soil above TAGM 4046 health-based criteria. Accordingly, these three PAHs are designated as COPCs (Table 5).

B. FUTURE LAND USE SCENARIOS

Site Subsurface Soils. Data for eighteen subsurface soil samples that were collected and analyzed for VOCs were used to identify COPCs for future construction/utility workers (Table

- 24 -

L10046.11

Ninetee	VOCs were detected in on-site subsurface soils above TAGM 4046 health-based criteria en subsurface soil samples analyzed for PAHs indicated twelve PAH compounds are a based on a comparison with TAGM health-based criteria (Table 7).
to dete come i (naphth	Site Groundwater. Groundwater analytical data for two rounds of sampling were used remine the COPCs for groundwater, for future construction/utility workers who might not contact with groundwater (Tables 8 and 9). Four VOCs (BTEX) and one PAF talene) were identified as COPCs, based on a comparison of maximum detected trations to NYS Class GA groundwater quality standards.
7.5 -	SUMMARY
based o	tative human health exposure assessment was completed at the Albion former MGP site on data collected during the PSA/RI program. COPCs were identified on site in surface bourface soil, and groundwater.
A.	EXPOSURE PATHWAYS
direct c	existing site conditions, on-site trespassers could be potentially exposed to surface soil by ontact and accidental ingestion. This type of exposure would occur only to the degree type were to come into contact with the soils through the gravel/grass cover.
	existing conditions, people in off-site areas are not directly exposed to site related inants in subsurface soil and groundwater.
subsurfa the prin believed	future scenarios, there is potential exposure via direct contact and accidental ingestion of accessoil and groundwater on-site by construction and utility workers. Adult workers are acipal receptor under the future scenario. The actual risk to workers in this case is to be minimal because the health-based cleanup objectives are based on chronic e over a much longer term that a worker would be subject to.
В. (CONTAMINANTS OF POTENTIAL CONCERN (COPCs)
	incipal site-related contaminants are SVOCs, specifically PAHs. Under current ons, site analytical data indicate three PAHs are COPCs in surface soil.

Under future scenarios, there are twelve and incidental ingestion of PAHs in subst with and incidental ingestion of groundway	urface soils, and fiv		
,			
		,	

- 26 - L10046.11

 \sqcup

SECTION 8 - CONCLUSIONS

A Remedial Investigation (RI) was completed at the former MGP site in Albion, New York. The RI included two phases of a Preliminary Site Assessment (PSA) program, plus an additional phase of RI in 2003, to provide site data so that an appropriate remediation strategy could be selected through a feasibility study (FS) process. The key findings of the PSA/RI program are presented below.

- 1. The excavation of test pits at the site has revealed evidence of the former gasholder structures. Two gasholder structures were identified on site. Only the wall structure of the western holder was identified as intact. The eastern holder was evidently demolished or collapsed, as evidenced by a more scattered debris pattern in that area. An at grade foundation to a third gas holder was identified to the west on a property owned by NM.
- 2. Site soils contain MGP residuals that consist primarily of polycyclic aromatic hydrocarbons (PAHs), and to a lesser extent, volatile organic compounds (VOCs). Most of the residual MGP material is within and in close proximity to two former holders on the site, as evidenced by elevated PAHs in the holder areas. Total PAH concentrations in soil samples across the site are generally less than 500 mg/Kg in all but a few isolated cases. There is a limited area of impact, greater than 10-feet deep and adjacent to the western holder, in which two samples contained more than 500 mg/Kg total PAHs. There are two limited areas of shallow soil impact (less than 2-feet deep) near the eastern holder and southern perimeter of the property, in which six samples contained more than 500 mg/Kg total PAHs.
- 3. Impacts with respect to total cyanide are fairly minor, with only three of seventeen analyzed soil samples containing more than 5 mg/Kg total cyanide.
- 4. Based on a review of soil boring logs, black cinder-like material and ash-like material (CLM/ALM) was identified in mixtures of soil and fill from 19 of 30 soil borings drilled during the PSA/RI program. No CLM/ALM was observed below six feet deep. PAH compounds were detected in soil samples that contained ash, but these samples generally had low PID readings and aside from the visible ash there was little or no evidence of impact based on field observation (i.e. no visible stains, sheens, or odors). Accordingly, the samples containing ash are differentiated from deeper soil samples associated with the

L10046.11

former holders that also contained PAHs. Ash at the site could not be fully delineated, as it extended to the site boundaries and apparently beyond the site in some areas, which suggests that it is locally very common and may be derived from sources other than the MGP.

- 5. MGP-related impacts in groundwater were identified in the groundwater sample collected from MW-5 (downgradient of western holder), only. No organic compounds were detected in the bedrock monitoring well. Based on detection of parameters in only one site well, it is concluded that groundwater impacts at the site are minimal.
- 6. Under current land use conditions, people who traverse the site are potentially exposed to PAHs in surface soils, but the exposure risk is reduced by the presence of gravel or grass cover across the area. Under current site conditions there is no complete exposure path in connection with subsurface soils or groundwater. Future exposure could potentially occur in connection with construction that exposes on-site workers to impacted subsurface soil and groundwater. However the actual risk is believed to be minimal because the health-based cleanup objectives are based on chronic exposure over a much longer term that a worker would be subject to.

SECTION 9 - RECOMMENDATIONS
The RI data has determined that subsurface soils within and adjacent to the former holders are affected primarily by PAHs, which are believed to be associated with residual contents of the holders. Analytical data also indicates that cinder-like material/ash-like material (CLM/ALM) in the upper 6 feet of soil is an additional source of PAHs. Total PAH levels across the site are generally less than 500 ppm except for a few specific areas.
Groundwater impacts are minimal and consequently there is no significant migration path for site-related contaminants. Exposure risk is limited to those who come into direct contact with site soils.
It is recommended that additional surface soil samples be collected from 0 to 2 feet on property south of the site, to further determine the extent of PAH impacts in connection with the CLM/ALM, and to further assess the potential for exposure to the CLM/ALM.

REFERENCES ASTM, 1995. Standard Practice for Design and Installation of Groundwater Monitoring Wells in Aquifers. American Society of Testing and Materials D5092-90. ASTM, 1999. Standard Test Method for Penetration Test and Split Barrel Sampling of Soils. American Society of Testing and Materials D1586-99. ASTM, 2000. Standard Practice for Description and Identification of Soils (Visual-Manual Procedure). American Society of Testing and Materials D2488-00. Gas Research Institute, 1995. Management of Manufactured Gas Sites, Volume 1: Wastes and Chemicals of Interest. Remediation Technologies, Inc. (ReTec), Concord, Massachusetts, August. NMPC, 1996. Generic Quality Assurance Project Plan for Site Investigations. Niagara Mohawk Power Corporation, Syracuse, New York, June. NMPC, 1996. Generic Field Sampling Plan for Site Investigations. Niagara Mohawk Power Corporation, Syracuse, New York, June. Stearns & Wheler, 1999, Preliminary Site Assessment/Interim Remedial Measures (PSA/IRM) Work Plan, Niagara Mohawk, Albion, New York. Stearns & Wheler, LLC, Cazenovia, New York, October. Stearns & Wheler, 2000, Preliminary Site Assessment/Interim Remedial Measures (PSA/IRM) Study, Niagara Mohawk, Albion, New York. Stearns & Wheler, LLC, Cazenovia, New York, June. Stearns & Wheler, 2001, Phase II Site Investigation Work Plan, Niagara Mohawk, Albion, New York. Stearns & Wheler, LLC, Cazenovia, New York, April. Stearns & Wheler, 2002a. Remedial Investigation Work Plan, Niagara Mohawk, Albion, New York. Stearns & Wheler, LLC, Cazenovia, New York, September. Stearns & Wheler, 2002. Phase II Site Investigation, Albion Former MGP, Niagara Mohawk, Albion, New York. Stearns & Wheler, LLC, Cazenovia, New York, January. USEPA, 1988. U.S. Production of Manufactured Gases: Assessment of Past Disposal Practices. US Environmental Protection Agency, Office of Research and Development, Land Pollution Control Division, Hazardous Waste Engineering Research Laboratory, Cincinnati, Ohio, EPA/600/2-88/012, February. USEPA, 1989. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part A). US Environmental Protection Agency, EPA 540/1-89/002, December.

TABLES

Table 1. Groundwater Field Measurements. Remedial Investigation - Albion Former MGP Site.

Monitoring Well I.D.	Reference Elevation (ft.)	DTW (ft.)	Water Elevation (ft.)	TDW (ft.)	Purge Volume (gal.)	Temp. (C)	Cond. (ms/cm)	рН	Turbidity (NTU)	DO (ppm)	Salinity %
MW-1	515.97	6.57	509.40	19.86	6.4	15.3	0.77	7.42	801	6.07	0.02
MW-2	516.42	8.90	507.52	17.73	4.2	16.0	0.87	7.39	127	5.49	0.02
MW-3	516.26	7.44	508.82	19.14	5.6	16.5	0.729	7.36	894	3.56	0.03
MW-4	516.90	10.84	506.06	19.67	4.2	16.1	0.584	7.51	843	4.56	0.02
MW-5	514.06	8.24	505.82	16.27	3.9	16.0	0.95	7.59	-	5.77	0.04
MW-6	511.63	5.92	505.71	15.11	4.4	15.1	0.711	7.33	809	4.50	0.03
MW-7	515.16	6.40	508.76	29.38	11.0	18.8	0.702	7.79	79	4.61	0.03

Field measurements were recorded with a Horiba U-10 water quality meter.

DTW - Depth to water.

TDW - Total depth of well.

Groundwater field measurements were recorded during the Phase II PSA/IRM (August 2001).

Table 2. Polycyclic Aromatic Hydrocarbons (PAHs) in Soils (April 2003). Remedial Investigation - Albion Former MGP Site.

	T4014	SB-19	SB-20	SB-21	SB-22	SB-23	SB-24A	SB-24B	SB-25	SB-26A	SB-26B	SB-27A	SB-27B	SB-29	SB-30
Compounds (mg/Kg)	TAGM	(0-2')	(0-2')	(0-2')	(0-2')	(2-4')	(0-2")	(18-24")	(0-2')	(0-2")	(18-24")	(0-2")	(18-24")	(2-4')	(2-3')
Naphthalene	13	100 J *	3.2 J	3.2 J	U	2.1 J	0.8 J	2.3 J	0.65 J	2.3 J	1.2 J	Ū	60 J *	3.9	6.2 J
2-Methylnaphthalene	36.4	90 J *	2.2 J	2.8 J	U	1.4 J	0.58 J	1.5 J	0.29 J	1.9 J	079 J	U	27 J	1.3 J	3.9 J
Acenaphthylene	41	210 J *	5 J	3.7 J	U	3 J	1.3 J	3 J	1.2 J	1.9 J	1.5 J	U	100 J *	0.39 J	7.7 J
Acenaphthene	50	63 J *	1.1 J	1.9 J	U	1.6 J	1 J	1.5 J	0.3 J	0.79 J	0.71 J	U	19 J	1 J	13 J
Fluorene	50	210 J *	3.7 J	1.3 J	U	25 J	0.51 J	1.5 J	0.31 J	0.79 J	0.42 J	U	90 J *	1.6 J	2.8 J
Phenanthrene	50	1200 *	30	22	0.37 J	22	6.2	20	6	9.2	5.4	0.54 J	720 *	3.3	17
Anthracene	50	400 *	13	7.7 J	0.23 J	9.9 J	2.7 J	883	1.1 J	4.3	2.4 J	0.18 J	280 *	1.3 J	11 J
Fluoranthene	50	1500 *	48	49	1.2 J	38	14	50	8.1	20	13	1 J	1000 *	4.5	58 *
Pyrene	50	1200 *	43	48	0.96 J	30	12	52 *	5.6	23	15	0.8 J	990 *	4.8	72 *
Benzo(a)anthracene	0.224	720 *	40 *	47 *	1.1 J *	44 *	13 *	60 *	4.3 *	20 *	13 *	0.6 J *	650 *	3.9 *	61 *
Chrysene	0.4	600 *	35 *	46 *	1.1 J *	39 *	13 *	55 *	5 *	19 *	13 *	061 J *	590 *	4.1 *	56 *
Benzo(b)fluoranthene	1.1	440 *	32 *	59 *	0.84 J	51 *	16 *	58 *	6.4 *	23 *	16 *	0 56 J	390 *	4.2 *	37 *
Benzo(k)fluoranthene	1.1	590 *	25 *	54 *	1.5 *	64 *	24 *	53 *	7 *	20 *	12 *	0.66 J	520 *	3.5 *	59 *
Benzo(a)pyrene	0 061	590 *	34 *	75 *	1.1 J *	64 *	22 *	68 *	6.9 *	25 *	17 *	0.55 J *	510 *	4 *	60 * :
Indeno(1,2,3-cd)pyrene	3.2	300 J *	13 *	60 *	0.29 J	21 *	9.8 *	44 *	2.5	23 *	17 *	0.2 J	300 *	1.8	35 *
Dibenzo(a,h)anthracene	0.014	130 J *	5.9 J *	21 *	U	9.5 J *	3.7 J *	15 J *	0.93 J *	8.2 *	69 *	υ	110 J *	0.62 J *	15 J *
Benzo(g,h,i)perylene	50	280 J *	10	56*	0.26 J	17	9	36	2.3	23	15	0.17 J	290 *	1.6 J	32
TOTAL PAHS		8623	344.1	557.6	8.95	420	149.59	529.6	58.88	225.08	150.32	5.87	6646	45.81	534.9

^{* -} Indicates that the compound exceeded the TAGM cleanup objective.

Soil cleanup objectives taken from the NYSDEC Technical and Administrative Guidance Memorandum #4046 (January 1994).

U - Indicates that the compound was not present above detection limits.

J - Indicates that the value reported is an estimate.

Table 3. Total Cyanide in Soils (April 2003).

Remedial Investigation - Albion Former MGP Site.

Boring Location	Cyanide (mg/Kg)
SB-16 (2-4')	32.7
SB-17 (8-10')	0.507
SB-18 (10-12')	4.2
SB-28 (2-4')	10.9

Table 4. Human Health Exposure Screening for Surface Soils. Volatile Organic Compounds (VOCs) - Dec 99, Jul 01, and Apr 03 Data. Remedial Investigation - Albion Former MGP Site.

		-				Reta	ined?
	Min	Max	Ave	USEPA Hea	alth Based ¹	Average	Maximum
Compounds (mg/Kg)				Carc.	Tox.	Exposure	Exposure
Methylene Chloride	υ	0.02	0.0098	93	5000	N	N
Acetone	U	0.057	0.0211	NA	8000	N	N
Carbon Disulfide	U	0.0005	0.0041	NA	8000	N	N
Vinyl Acetate	U	0.011	0.0069	NA	NA	N	N
Trichloroethene	U	0.002	0.0021	64	NA	N	N
Benzene	U	0.007	0.0035	24	NA	N	N
Tetrachloroethene	U	0.0009	0.0027	14	800	N	N
Toluene	U	0.005	0.0022	NA	20000	N	N
Ethylbenzene	υ	0.0003	0.0037	NA	8000	N	N
Styrene	U	U	0.0043	NA	NA	N	Ν
Xylene (total)	U	0.002	0.0034	NA NA	20000	N	N

¹ Soil cleanup objectives taken from the NYSDEC Technical and Administrative Guidance Memorandum #4046 (January 1994).

U - Indicates that the compound was not present above detection limits. Assigned a value equal to one half the detection limit.

B - Indicates the compound was found in the blank and sample.

NA - Indicates no established screening value.

N- Indicates compound is not considered a contaminant of potential concern

Table 5. Human Health Exposure Screening for Surface Soils. Semivolatile Organic Compounds (SVOCs) - Dec 99, Jul 01, and Apr 03 Data. Remedial Investigation - Albion Former MGP Site.

				USEPA He	ealth Based 1	Re	tained?
Compounds (mg/Kg)	Min	Max	Ave			Average	Maximum
compounds (mg/rtg)				Carc.	Tox.	Exposure	Exposure
Naphthalene	U	100	8.537	NA	300	N	N
2-Methylnaphthalene	U	90	6.454	NA	NA	N	N
Acenaphthylene	υ	210	16.650	NA	NA	N	N
Acenaphthene	υ	63	4.655	NA	5000	N	N
Fluorene	U	210	14.856	NA	3000	N	N
Phenanthrene	U	1200	98.600	NA	NA	N	N
Anthracene	0.05	400	35.628	NA	20000	N	N
Fluoranthene	0.23	1500	137.830	NA	3000	N	N
Pyrene	0.22	1200	121.885	NA	2000	N	N
Benzo(a)anthracene	0.11	720	81.783	0.224	NA	Y	Υ
Chrysene	0.14	600	71.824	NA	NA	N	N
Benzo(b)fluoranthene	0.12	440	56.850	NA	NA	N	N
Benzo(k)fluoranthene	0.13	590	65.684	NA	NA	N	N
Benzo(a)pyrene	0.12	590	72.391	0.0609	NA	Y	Υ
Indeno(1,2,3-cd)pyrene	0.083	300	42.591	NA	NA	N	N
Dibenzo(a,h)anthracene	U	130	16.659	0.0143	NA	Y	Y
Benzo(g,h,i)perylene	0.11	290	39.594	NA	NA	N	N

¹ Soil cleanup objectives taken from the NYSDEC Technical and Administrative Guidance Memorandum #4046 (January 1994).

U - Indicates that the compound was not present above detection limits. Assigned a value equal to one half the detection limit.

B - Indicates the compound was found in the blank and sample.

NA - Indicates no established screening value.

N- Indicates compound is not considered a contaminant of potential concern

Y- Indicates compound is considered a contaminant of potential concern

Table 6. Human Health Exposure Screening for Subsurface Soils. Volatile Organic Compounds (VOCs) - Dec 99, Jul 01, and Apr 03 Data. Remedial Investigation - Albion Former MGP Site.

						Reta	ined?
Compounds (mg/Kg)	Min	Max	Ave	USEPA Hea	alth Based ¹	Average	Maximum
(g., 13)				Carc.	Tox.	Exposure	Exposure
Methylene Chloride		25	2.226	93	5000	N	N
Acetone	U	22	2.076	NA	8000	N	N
Carbon Disulfide	U	0.11	3.236	NA	8000	N	N
1,1-Dichloroethene	U	0.34	3.097			N	N
2-Butanone	U	0.009	3.282	NA	4000	N	N
Trichloroethene	U	0.39	3.064			N	N
Benzene	U	14	1.339	24	NA	N	N
Toluene	U	51	4.301	NA	20000	N	N
Chlorobenzene	U	0.5	3.106			N	N
Ethylbenzene	U	18	1.737	NA	8000	N	N
Styrene	υ	1.1	2.348	NA	NA	N	N
Xylene (total)	U	260	22.110	NA	200000	N	_N

¹ Soil cleanup objectives taken from the NYSDEC Technical and Administrative Guidance Memorandum #4046 (January 1994).

U - Indicates that the compound was not present above detection limits. Assigned a value equal to one half the detection limit.

B - Indicates the compound was found in the blank and sample.

NA - Indicates no established screening value.

N- Indicates compound is not considered a contaminant of potential concern

Y- Indicates compound is considered a contaminant of potential concern

Table 7. Human Health Exposure Screening for Subsurface Soils. Semivolatile Organic Compounds (SVOCs) - Dec 99, Jul 01, and Apr 03 Data. Remedial Investigation - Albion Former MGP Site.

				USE	PA	Retai	ined?
Compounds (mg/Kg)	Min	Max	Ave	Healt E	Based 1	Average	Maximum
				Carc.	Tox.	Exposure	Exposure
Phenol	Ų	4.1	0.827	NA	50000	N	N
4-Methylphenol	U	0.14	0.245	NA	4000	N	N
2,4-Dimetheylphenol	υ	0.71	0.373	NA	NA	N	N
Naphthalene	U	910	74.958	NA	300	Y	Y
2-Methylnaphthalene	U	130	12.622	NA	NA	Y	Y
Acenaphthylene	0.002	63	6.589	NA	NA	Y	Υ
Acenaphthene	U	20	2.538	NA	5000	N	N
Dibenzofuran	U	0.31	0.163		1	N	N
Fluorene	U	99	10.922	NA	3000	N	N
Phenanthrene	U	320	34.927	NA	NA	Y	Y
Anthracene	U	97	10.818	NA	20000	N	N
Carbazole	U	0.44	0.322			N	N
Fluoranthene	U	240	31.866	NA	3000	N	N
Pyrene	U	140	22.278	NA	2000	N	N
Benzo(a)anthracene	0.026	88	16.616	0.224	NA	Y	Y
Chrysene	0.021	79	14.883	NA	NA	Y	Y
Benzo(b)fluoranthene	0.013	51	11.327	NA	NA	Y	Y
Benzo(k)fluoranthene	0.009	68	14.351	NA	NA	Y	Y
Benzo(a)pyrene	0.013	64	14.975	0.0609	NA	Y	Y
Indeno(1,2,3-cd)pyrene	0.01	35	6.892	NA	NA	Y	Y
Dibenzo(a,h)anthracene	0.009	15	2.727	0.0143	NA	Y	Y
Benzo(g,h,i)perylene	0.009	32	6.220	NA	NA.	Y	Υ

¹ Soil cleanup objectives taken from the NYSDEC Technical and Administrative Guidance Memorandum #4046 (January 1994).

U - Indicates that the compound was not present above detection limits. Assigned a value equal to one half the detection limit.

B - Indicates the compound was found in the blank and sample.

NA - Indicates no established screening value.

N- Indicates compound is not considered a contaminant of potential concern

Y- Indicates compound is considered a contaminant of potential concern

Table 8. Human Health Exposure Screening for Groundwater. Volatile Organic Compounds (VOCs) - Dec 99 and Jul 01. Remedial Investigation - Albion Former MGP Site.

	T			
Compounds (ug/L)	Minimum	Maximum	TOGS	D-4-:10
Acetone	Detection U	Detection 4	50(G)	Retained?
Benzene	U	230	1	Y
Bromodichloromethane	U	U 230	50(G)	N
Bromoform	U	U	50(G) 50(G)	N
Bromomethane	U	0.4	5	N
2-Butanone	Ū	7	J	N
Carbon Disulfide	Ü	Ú		N
Carbon Tetrachloride	υ	U	5	N
Chlorobenzene	U	U	5	N
Chloroethane	U	U	5	N
Chloroform	U	O O	7	N
Chloromethane	U	U	,	N
Dibromochloromethane	U	U	50(G)	N
1,1-Dichloroethane	Ü	Ü	5	N
1,2-Dichloroethane	Ü	Ŭ	0.6	N
1,1-Dichloroethene	Ü	Ü	5	N
cis-1,2-Dichloroethene	Ü	Ü	5	N
trans-1,2-Dichloroethene	Ü	Ü	5	N N
1,2-Dichloropropane	Ü	Ü	1	N
cis-1,3-Dichloropropene	U	Ū	0.4	N
trans-1,3-Dichloropropene	Ū	Ū	0.4	N
Ethylbenzene	U	17	5	Υ
2-Hexanone	U	U	50(G)	N
Methylene Chloride	U	U	5 ′	Ν
4-Methyl-2-Pentanone	U	υİ		Ν
Styrene	υİ	U	5	Ν
1,1,2,2,-Tetrachloroethane	υ	υ	5	N
Tetrachloroethene	υ	U	5	N
Toluene	υ	42	5	Y
1,1,1-Trichloroethane	U	2	5	Ν
1,1,2-Trichloroethane	υ	U	1	Ν
Trichloroethene	U	U	5	N
Vinyl Chloride	U	U	2	N
O-Xylene	U	22	5	Υ
M+P-Xylene	U	72	5	Y

Bold values indicate that the compound exceeded a Class GA water quality standard.

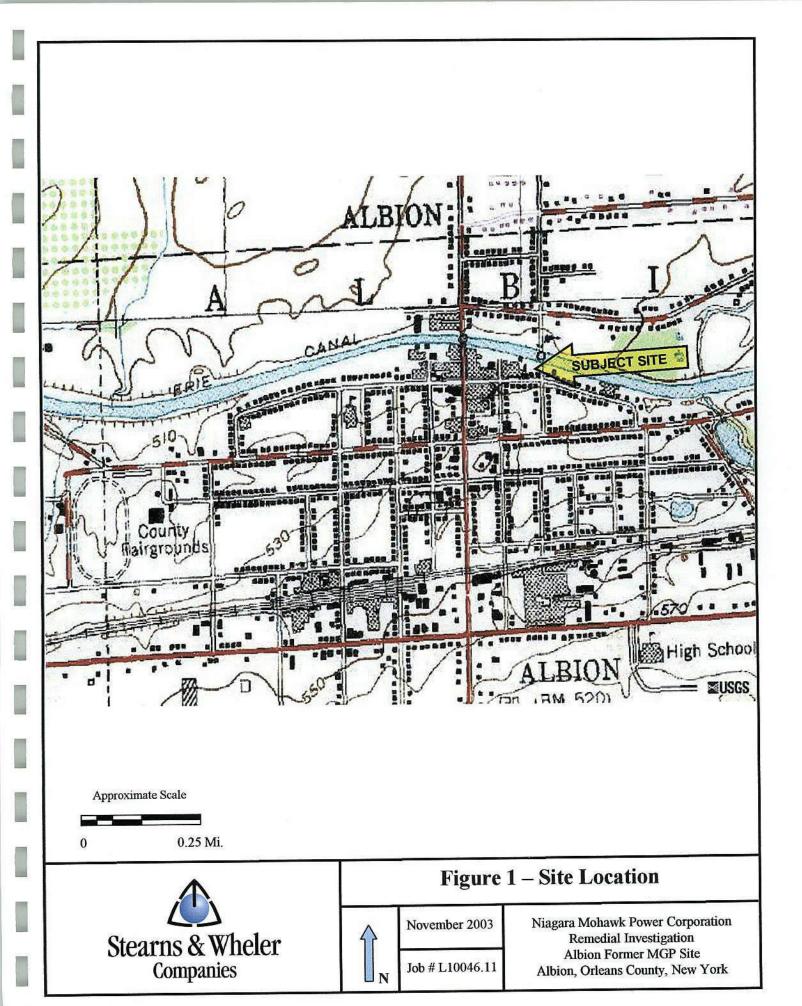
Water quality standards and guidance values taken from the NYSDEC Division of Water Technical and Operational Guidance Series (June 1998).

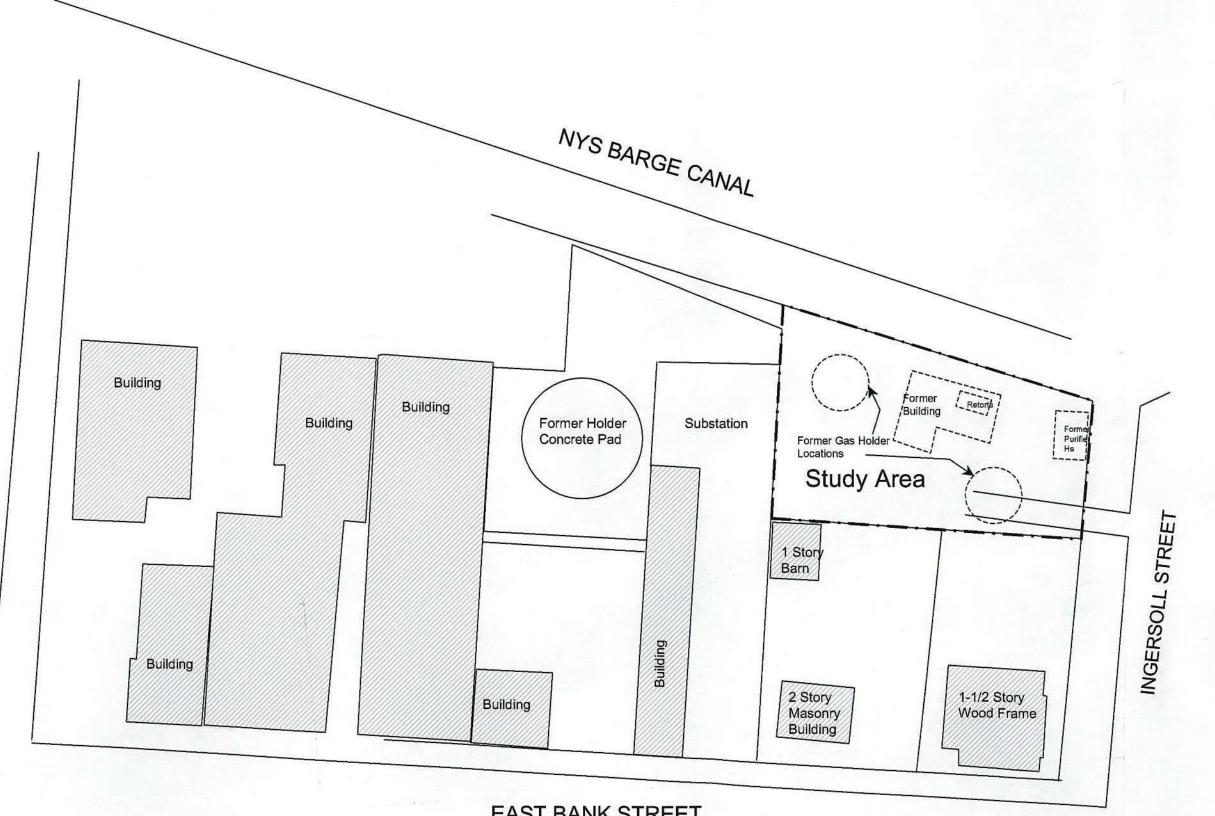
⁽G) Signifies a NYSDEC guidance value where a standard has not been established.

U - Indicates that the compound was not present above detection limits.

Table 9. Human Health Exposure Screening for Groundwater	. Semivolatile Organic Compounds (SVOCs) -
Dec 99 and Jul 01. Remedial Investigation - Albion Former M	GP Site.

Compounds (ug/L)	Minimum Detection	Maximum Detection	TOGS	Retained?
Acenaphthene	U	19	20(G)	N N
Acenaphthylene	Ū	29		l N
Anthracene	Ιυ	2	50(G)	N
Benzo(a)anthracene	U	U	0.002(G)	N
Benzo(a)pyrene	Ü	Ü	ND	N
Benzo(b)fluoranthene	U	U	0.002(G)	N
Benzo(g,h,i)perylene	U	U	,	N
Benzo(k)fluoranthene	υ	U	0.002(G)	N
indeno(1,2,3-cd)pyrene	υ	υ	0.002(G)	N
Chrysene	U .	U	0.002(G)	N
Dibenzo(a,h)anthracene	U	U	, ,	N
Fluoranthene	U	1	50(G)	N
Fluorene	·U	18	50(G)	N
Naphthalene	U	55	10(G)	Y
Phenanthrene	U	6	50(G)	N
Pyrene	U	0.6	50(G)	N

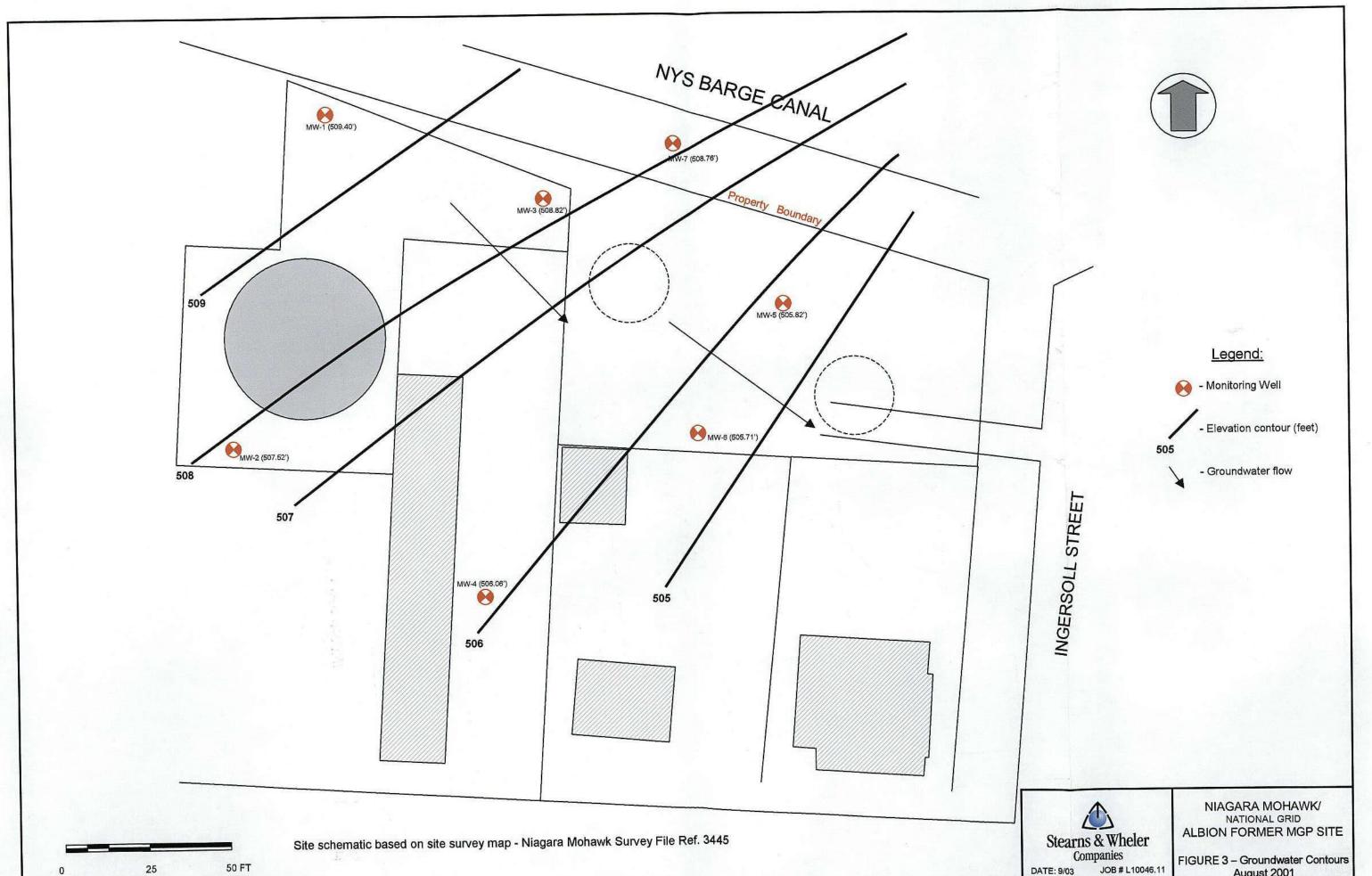

Bold values indicate that the compound exceeded a Class GA water quality standard.

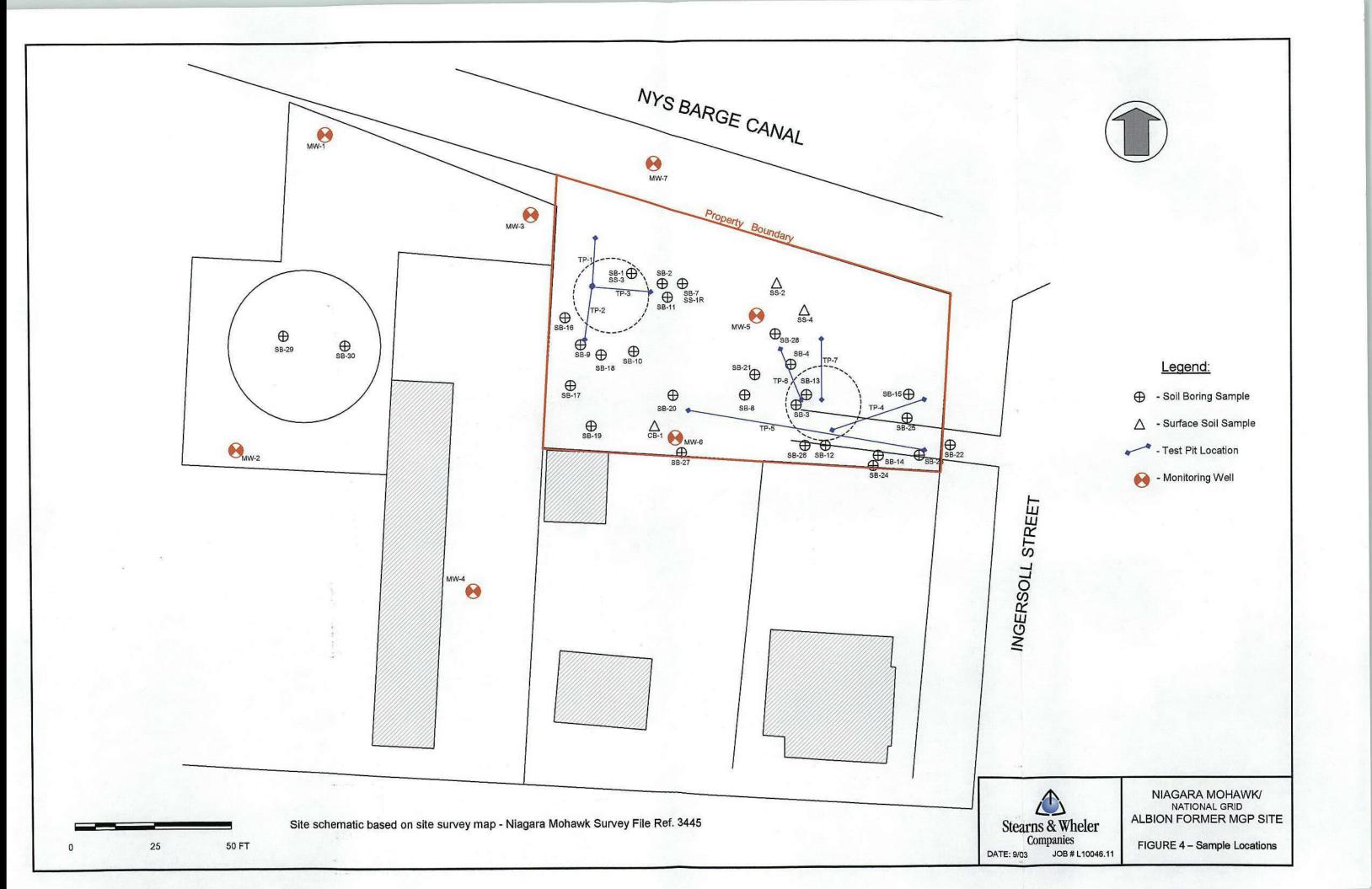

⁽G) Signifies a NYSDEC guidance value where a standard has not been established.

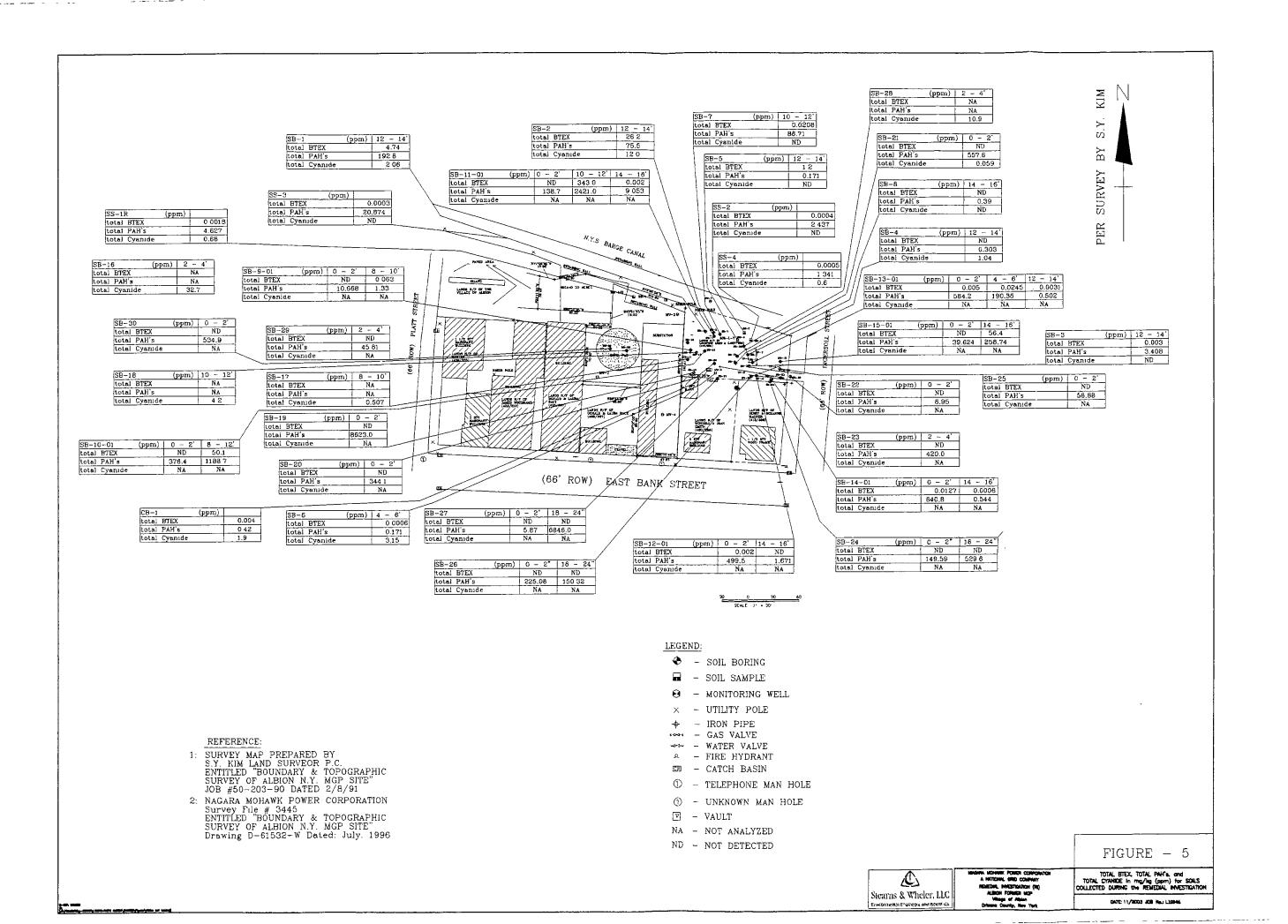
U - Indicates that the compound was not present above detection limits.

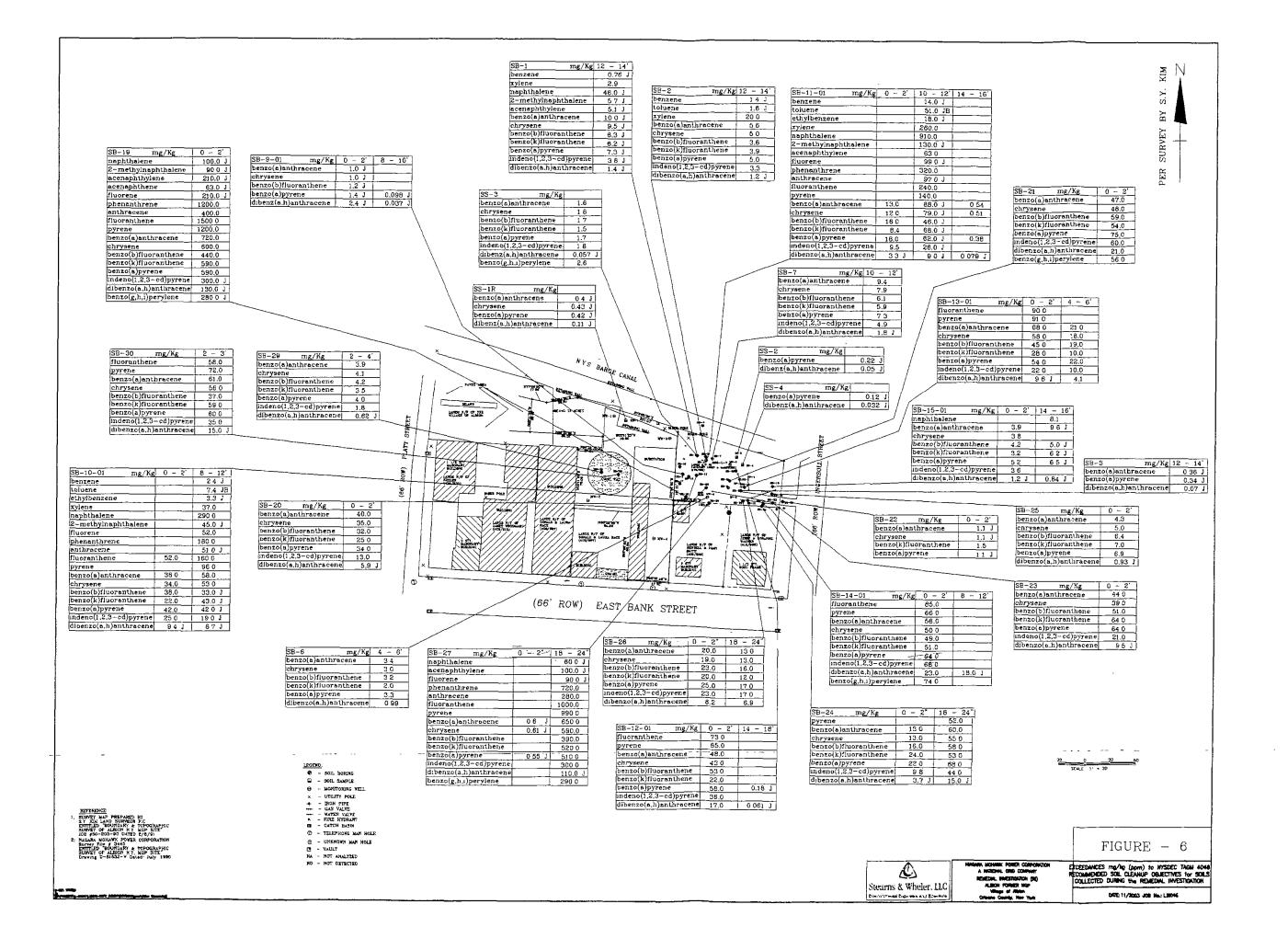
Water quality standards and guidance values taken from the NYSDEC Division of Water Technical and Operational Guidance Series (June 1998).

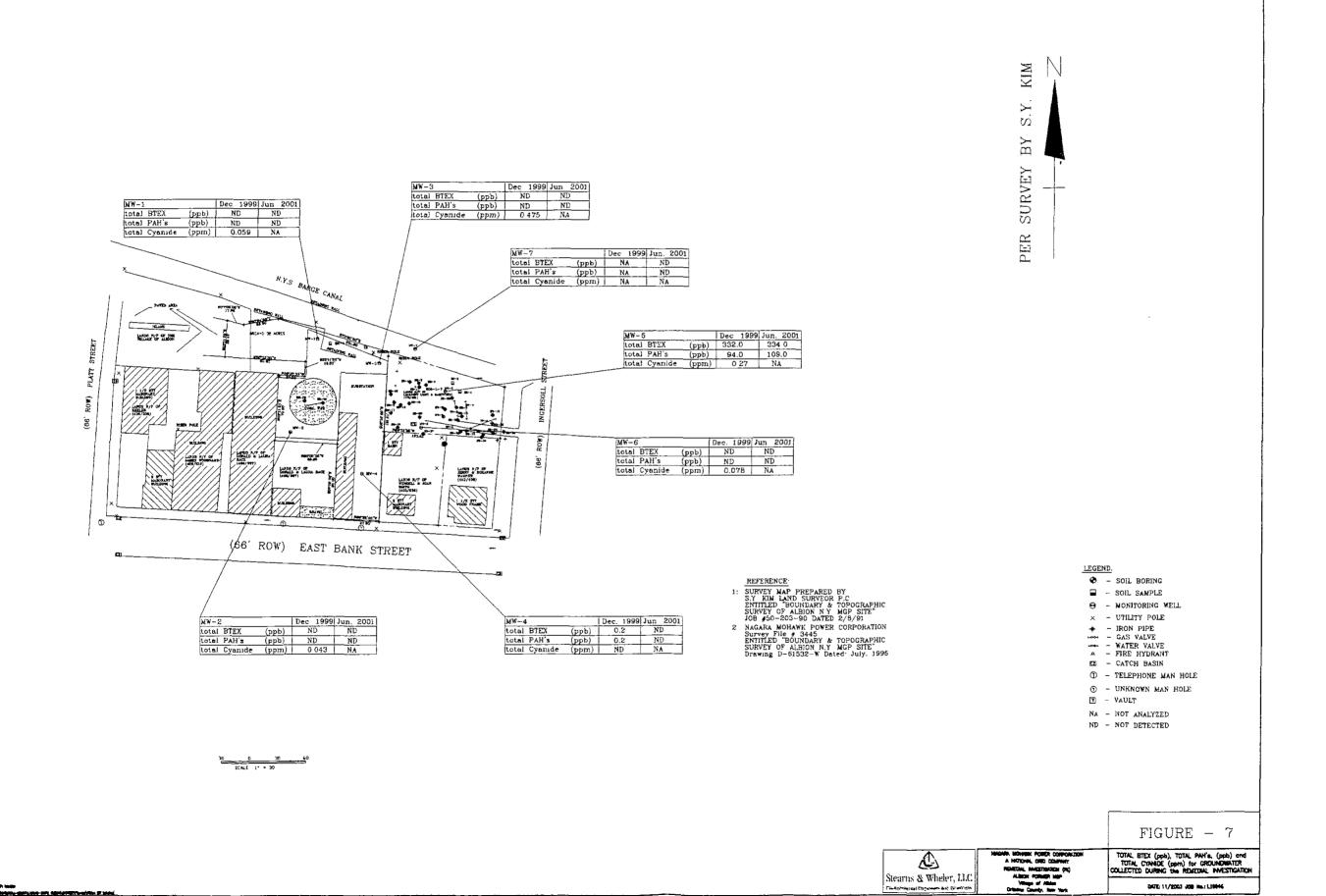
FIGURES

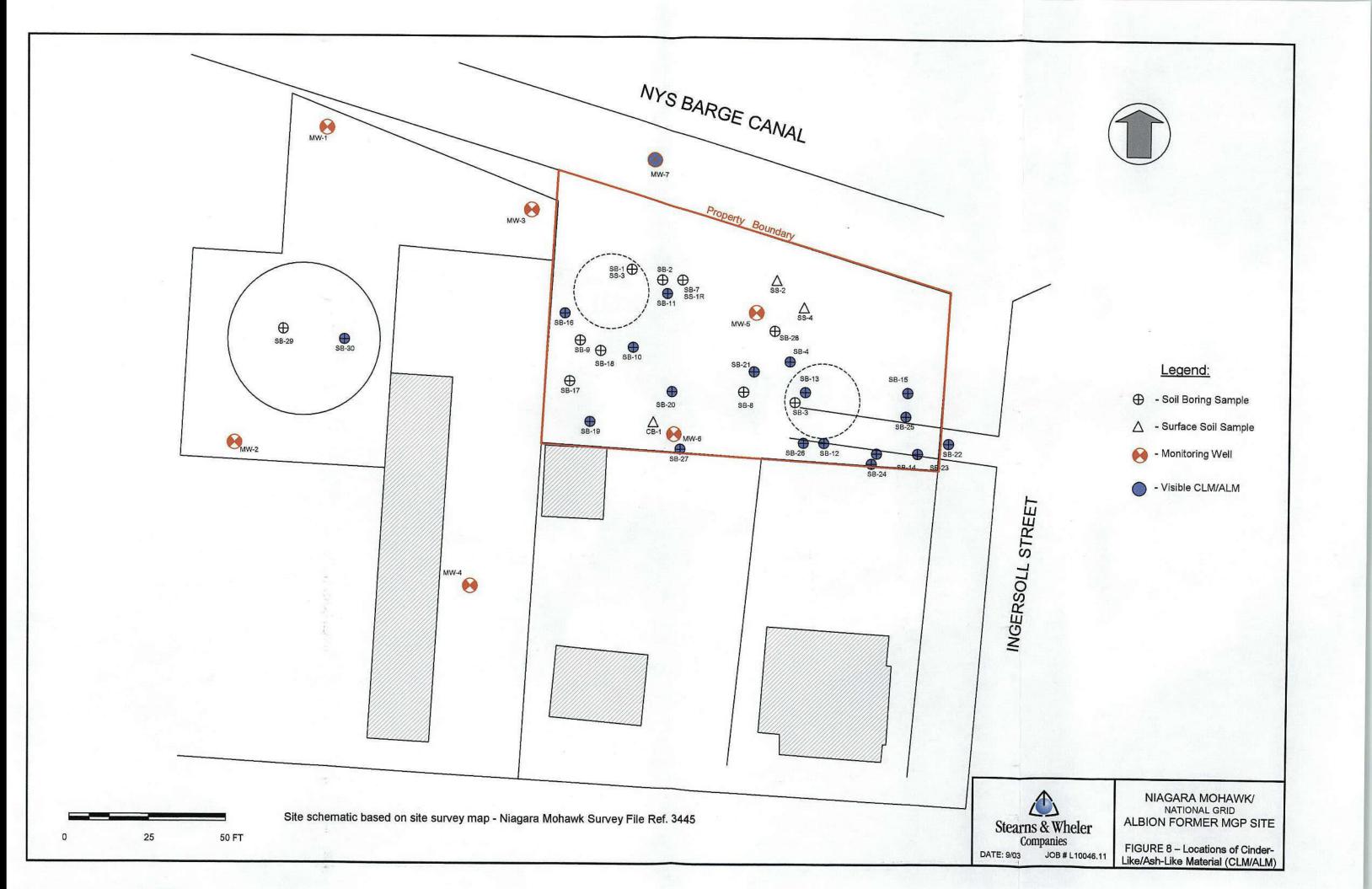


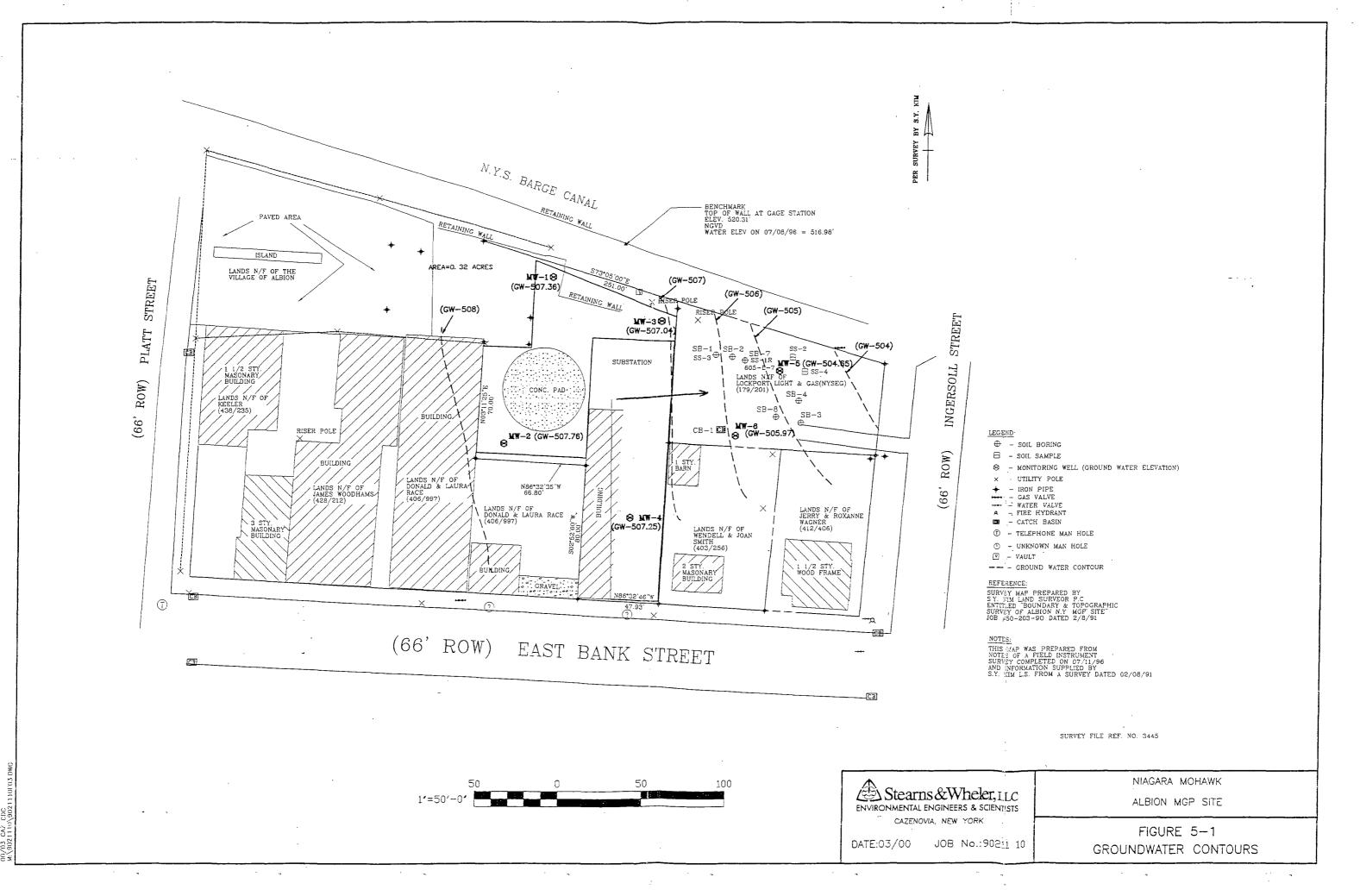



EAST BANK STREET




NIAGARA MOHAWK/ NATIONAL GRID ALBION FORMER MGP SITE




APPENDICES

APPENDIX A

Phase I and II PSA/IRM Results

APPENDIX A-1

PHASE I PSA 2000

.

X-REF NAMES?

TABLE 5-1 NMPC Albion Groundwater Elevation Data Stearns & Wheler

Well	Ground	Reference	Reference	Depth to	Water	Total	Screen	Hydra	aulic	Seepage
I.D	Elevation	Point	Elev	Water	Elevevation	Depth	Elevation	n Conductivity		Velocity
1	(ft)		(ft)	(ft)	(ft)	(ft)	(ft.)	(ft/min.)	(ft/day)	(ft/day)
MW-1	513.60	Top of PVC	515.97	8.61	507.36	18.10	495.50	NA	NA	NA
MW-2	514.10	Top of PVC	516.42	8.66	507.76	15.90	498.20	NA	NA	NA
MW-3	514.00	Top of PVC	516.26	9.22	507.04	18.20	495.80	NA	NA	NA
MW-4	514.60	Top of PVC	516.90	9.65	507.25	17.80	496.80	NA	NA	NA
MW-5	514.30	Top of PVC	514.06	9.41	504.65	16.50	497.80	2.340E-03	3.37	4.55E-01
MW-6	512.17	Top of PVC	511.63	5.66	505.97	15.40	496.77	4.110E-04	0.59	7.99E-02

Water levels recorded on Dec. 16, 1999

Seepage velocity estimate based on hydraulic gradient = 0.27 and porosity = 0.2

TABLE 5.2 (a)

Soil Boring Analytical Results Volatile Organic Compounds (VOCs) NMPC Albion-PSA/IRM Stearns & Wheler, LLC

	**NYSDEC Soil	″″′′SB-1	SB-2	SB-3	SB-4	SB-5	SB-6	SB-7	SB-8
Analyte	Cleanup Objective	DE LOCKETT	The same of		基础系统	(MW-5)	(MW-6)		
(ppb)	(ppb)	12-14'	12.14	12-14	12-14	12-14	4-6'	10-12	
Chloromethane	. NA	U	11	<u> </u>	CONT. O. A.	YEARIFELT'S. 18	(10.5 H 1.4 - 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$\$\$\$\$\U\$1.20\$\\	14-16
Bromomethane	NA '		11	· · · · ii				J	l
Vinyl Chloride	200		· · · · ii				<u>-</u>	JU	
Chloroethane	1900	<u>U</u>		UJ		U	U	<u>U</u>	(
Methylene Chloride	100	<u></u>	- · · · · · · · · · · · · · · · ii			UJ	<u>U</u>	U	J∪
Acetone	200	· · · · · · · · · · · · · · · · ·	•	l		<u>U</u>	<u>-</u>	U	
Carbon Disulfide	2700	110 J		0,9 J			<u>-</u>	<u>U</u>	
1,1-Dichloroethene	400	U	340			U	U	<u> U</u>	
1,1-Dichloroethane	100	Ü	i	H	<u></u>		U	<u> U</u>	
1,2-Dichloroethene (total)	300		· · ii					ļ <u>U</u>	
Chloroform	300		<u> </u>	<u>-</u>	-	U	U	U	
,2-Dichloroethane	100		<u>-</u>	- U		<u>-</u>	<u>U</u>	<u>U</u>	
2-Butanone	300		l · · · <u>-</u> ii	1		U	<u>U</u>	<u> </u>	
1,1,1-Trichloroethane	800		· · · · · · · · · · · · · · · · ·	1		<u>U</u>	<u>U</u>	<u>U</u>	
Carbon Tetrachloride	600	Ū				U	U	JU	L (
Bromodichloromethane	NA	U				U			U
1,2-Dichloropropane	NA	U		J				1	
cis-1,3-Dichloropropene	NA NA	U		<u> </u>			U	.1	(
Trichloroethene	700	69 J	390 J	2 J		0.6 J	<u> </u>	l] U
Dibromochloromethane	NA	U		<u> </u>	<u>-</u>		0.7 J	0.6 J	
1,1,2-Trichloroethane	NA	Ū.		···			U	!————— <u> </u>	
Benzene	60	760 * J	1400 · J	1			<u>U</u>	I	· · · · · · · · · · · · · · · · · · ·
rans-1,3-Dichloropropene	NA	J		l		0.7 J	U	·	
Bromoform	NA .	Ü	Ü	1 1	<u>-</u>	<u>U</u>		<u>U</u>	
-Methyl-2-Pentanone	1000	Ü	ŭ	Ü	·· · · · · · · · ii		\		
2-Hexanone	NA	U	· Ü	l	<u> </u>	<u> </u>	-	J <u>U</u>	
Tetrachloroethene	1400	U		1	-	U		<u>U</u>	
1,1,2,2-Tetrachloroethane	600	บ	ŭ	ŭi			\	J	(
Toluene	1500	560 J	1600 • J	انًا ا	i		0.6	T V	
hlorobenzene	1700 5500	Ü	500 J	- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -			U.0 J	<u>8</u>	!
thylbenzene		520 J	3200 J	1]	iil	0.2 J	-	<u>-</u>	
Біутене	NA	U	Ū	Ü	ii	9.2		0.8	
(ylene (total)	1200	2900 *	20000 *	1 1 1	··· :	ن. از ö.3	·	- /	
* "Determination of Soil Cleanup Ob		4919	27430	5.9	0		1.3	8 J 21.4	L [†]

aste Remediation; Div. of Technical and Administrative Guidance Memorandum HWR-92-4046, rev. Jan. 24, 1994" (TAGM 4046). * Value exceeds NYSDEC soil cleanup objective.

ב.ם בם בם בם כם
NA= Not Available.

U= Not detected. The associated number indicates approximate sample concentration necessary to be detected.

B= Not detected substantially above the level reported on laboratory or field blanks.

R= Unusable result. Analyte may or may not be present in the sample.

NO CODE= Confirmed identification.

J= Analyte present. Reported Value may not be accurate or precise.

UJ= Not detected. Quantitation limit may be inaccurate or imprecise.

TABLE 5.2 (b) Soil Boring Analytical Results Semivolatile Organic Compounds (SVOCs) NMPC Albion-PSA/IRM Stearns & Wheler, LLC

Erstan ben States, Miller	Transvener course	10 - 20 pt 1 3/26	Monte C D 141 188	SB-3	TELESCO DO ANTO	SB-5	**** SB-67**	Charles on the same	der montes
WELL ARTHUR	A COL GO DE SELECTION DE SE	30-1		3B-3	357	The factor of the same of the	Parkers and record a more wife and	State Control of the	
Analyte	Cleanup Objective					(MW-5) .			
(bbp)	(ppb) - : - =		12-14'	111111111111111111111111111111111111111	12-14	12-14'			14-16'
Phenol	30	UJ		J U				U	
bis(2-Chloroethyl)ether	NA 800	ÜJ		U U	U				
2-Chlorophenol	NA NA	กา			Ü		U		
1,3-Dichlorobenzene 1,4-Dichlorobenzene	NA NA	03		U U		U	U		!
1,2-Dichlorobenzene	NA NA	UJ UJ		u u	U	U U	U	U	
2-Methylphenol	100	UJ		U U	U	U	U		
2,2'-oxybis(1-Chloropropane)	NA NA	27		U U	U	U	1 0		
4-Methylphenol	900	UJ	140 *	J ŭ	Ü	Ü	56 J	- u	
N-Nitroso-di-n-propylamine	NA NA	UJ		U. U	U	- U	J J		
Hexachioroethane	NA	ÜĴ		U U	Ü	1	Ŭ	- ŭ	-
Nitrobenzene	200	ບນ	*	u ü	υ	Ū	T U		
Isophorone	4400	UJ		U U	U	U	Ü	Ü	i
2-Nitrophenol	330	UJ		u U	U	U	U	U	1
2,4-Dimethylphenol	NA NA	บป	71	JI U	U	U	U	υ	L
bis(2-Chloroethoxy)methane	NA	UJ		Ū U	U	U	Ú	U	
2,4-Dichlorophenol	400	UJ		U U	U	U	U	U	Ü
1,2,4-Trichlorobenzene	NA	ບມ		ŭ u	U	U	Ü	U	
Naphthalene	13000	46000 J	5000	13 J	8 J	6 J	170 J	490 J .	Ų
4-Chloroaniline	220	UJ		U U	U	U	U	U	Ü
Hexachlorobutadiene	NA NA	ບນ		ט נ	U	U	U	Ŭ	Ü
4-Chloro-3-methylphenol	240	บา		U U	U	U	U	U	U
2-Methylnaphthalene	4400	5700 J	590 J	U	U	U	250 J	130 J	U
Hexachlorocyclopentadiene	NA NA	וט	U.		W.	UJ	ŲJ	UJ	Ü
2,4,6-Trichtorophenol	NA 100	บม	U	U	U	U	U	U	U
2,4,5-Trichlorophenol	100	UJ UJ	U	U	U	U	U	U	U
2-Chloronaphthalene	NA 430	nn n	U U	U	U	Ü	U	U	U
2-Nitroaniline	2000	03	Ü	U	υ U	U	Ų	U	U
Dimethylphthalate	41000	5100 J	1700	46 J	U	12 J	U	U OCCO	U
Acenaphthylene 2,6-Dinitrotoluene	1000	3100 7	1700 U	46 J	U	12 J U	440 J	2600	9 J
3-Nitroaniline	500	UJ	-	U	υ	U	Ü	U	U U
Acenaphthene	50000	1800 J	81D J	12 J	75 J	Ü	160 J	210 J	Ü
2,4-Dinitrophenal	200	UJ	R	12 3 R	73 3 R	R	160 3	210 J	<u>U</u> R
4-Nitrophenol	100	UJ	Ü	1	ù l	Ü	UJ 0	UJ	- Ū
Dibenzofuran	6200	6400 · UJ	2200	28 J	Ŭ	Ü	310 J	260 J	Ü
2,4-Dinitrotoluene	NA NA	UJ	U	U		Ü	- U	200 5	-
Diethylphthalate	7100	UJ	Ü	Ü	Ū l	<u> </u>	Ü	Ü	<u>_</u>
4-Chlorophenyl-phenylether	NA .	ÜJ	U	Ü	Ū	U		Ü	Ü
Fluorene	50000	8900 J	3100	37 J	110 J	10 J	460 J	480 J	- Ū
4-Nitroaniline	NA I	υJ	U	U	U	ΰ	Ü	U	Ü
1,6-Dinitro-2-methylphenol	NA	UJ	R	R	R	R	Ü	Ū	R
N-Nitrosodiphenylamine (1)	NA	UJ	υ	U	U	U	υ	Ū	U
-Bromophenyl-phenylether	NA	UJ	U	U	U	U	U	U	Ü
lexachlorobenzene	410	ŊJ	U	Ü	U	U	U	Ü	U
entachlorophenol	1000	ÜJ	U	U	U	U	U	U	U
henanthrene	50000	28000 J	10000	U	U	U	2500	5400	U
Anthracene	50000	9100 J	3700	100 J	19 J	19 J	1200	2600	18 J
Carbazole	NA	3800 J	1500 J	10 J	U	U	330 J	440 J	Ü
Di-n-butylphthalate	8100	ÜÜ	U	υ	U	U	U	U	Ú
luoranthene	50000	22000 J	9900	600	U	U	3500	13000	U
yrene	50000	18000 J	9600	570	U	U	3600	13000	U
Butylbenzylphthalate	50000	IJ	U	U	U	Ü	42 J	U	U
,3'-Dichlorobenzidine	NA .	ÚJ.	U	U	Ü	U	U	U	U
Benzo(a)anthracene	220	10000 · J	5600 *	360 ° J	26 J	26 J	3400 *	9400 *	57 J
Chrysene	400 50000	9500 · J	5000 °	340 J	21 J	24 J U	3000 *	7900 *	52 J
is(2-Ethylhexyl)phthalate		UJ UJ		1300	U		U	U	U
0i-n-octylphthalate	50000 1100	6300 - J	3600 °	240 J		17 J	3300 t	U .	U
Benzo(b)fluoranthene	1100	6200 · J	3900 -	310 J	13 J		3200 * 2000 *	6100 * 5900 *	37 J
Benzo(k)fluoranthene	1100	7300 · J	5000	340 · J	13 J	16 J 20 J	3300 *	7300 *	44 J 46 J
ndeno(1,2,3-cd)pyrene	3200	3800 · J	3300 *	180 J	13 0	10 J	2700	4900 •	23 J
libenz(a,h)anthracene	10	1400 ° J	1200 * J	70 ° J	 -	U	990 *	1800 ° J	9 J
	50000	3700 J	3500	190 J	9 J	11 J	2900	5500	
lenznia h i}nerviene									4-7 J
lenzo(g,h,i)perylene otal SVOCs		203000	74200	4746	303	171	34536	87410	319

[&]quot;Determination of Soil Cleanup Objectives and Cleanup Levels, NYSDEC, Div. of Haz, Waste Remediation; Div. of TechniValue exceeds NYSDEC soil cleanup objective.

U= Not detected. The associated number indicates approximate sample concentration necessary to be detected.

B= Not detected substantially above the level reported on laboratory or field blanks.

R= Unusable result. Analyte may or may not be present in the sample.

NO CODE— Confirmed identification.

J= Analyte present. Reported Value may not be accurate or precise.

UJ= Not detected. Quantitation limit may be inaccurate or imprecise.

NA= Not Available.

TABLE 5.2 (c) Soil Boring Analytical Results Inorganics/Metals NMPC Albion-PSA/IRM Stearns & Wheler, LLC

	#NYSDEC Soil	SB ₂	1580	, SB-	2	SB-3 '	5 0	(; 'SB-4'	<i>35 \ 14</i>	SB-5		zel zak o bisek	as series	3500000 - F-540	www.zaol	oda vicini Poza i Sa Sas	m.744 d2 d2 Z
Analyte	Cleanup Objective		MA					927		DESCRIPTION AND LOSS		SB-6		. SB-7		, SB⊧8	
(ppm)	(ppm)	12-1	4	12-1	41	12-14		12-14		(MW-5)	*14E 7522	, (MW-6)					
Aluminum	NA NA	7210	1	10100	1	7610						4-6'	羅然	(.√10-12		. 14-16'	
Antimony	NA	1.3	UJ	I	UJ		U.I	7740	J	9370	ال	8380	J	7440	UJ	10600	J
Arsenic	7.5	5.7	.1	3.9	03	23	ا,د	1.3	ΩĴ	1.4	UJ	1.5	UJ	2.2	UJ	1.2	UJ
Barium	300	63.4	J.	81.1	1	64.2	ار	1.7	J	2.4	J	5.4	J	2.4	J	1.5	J
Beryllium	0,16	0.19 *	.1	0.37 *	1	0 4.2	J	53	J	34.7	J	77.4	J	53.2	J	34	ال
Cadmium	1	0.18	UJ	1	UJ		UJ	0.21 *	J	0.41 *	J	0.31 *	J	0.21 *	J	0.46 *	J
Calcium	NA	58400		65800	03	49700	- 1	0.18	UJ	0.16	UJ	0.22	UJ	0.21	J	0.18	UJ
Chromium	10	12.1 *	J	14.6 *	, i	16.2 *	J	40100	J	25300	J	7360	J	39400	J	25200	ال
Cobalt	20	4.5	J.	6.4	,	6.9	1	13 * 7.3	ų,	15 9 *	J	13.5 *	J	11.6 *	J	17.3 *	J
Copper	25	19.3	J	36.1 *	ĭ	15	١,	7.3 7.6	J	10	J	5.4	J	5	J	9.8	J
Iron	2000	22100 *	J.	17400 *	ĭ	17200 *	1	7.6 17000 *	J	13.8	J	9.4	J	10	J	4.1	J
Lead	NA	376.	J	47.4	ĭ	68	1	3.6	J	23000 *	J	14200 *	J	12800 *	J	24700 *	J
Magnesium	NA NA	23100	J	10400	Ĭ	10600	J	9300	J	2.4	J	20.4	J	17	J	2.4	j
Manganese	NA	921.	J	480.	ı i	535	J	555	J	7200	J	2940	J	9180	J	7840	J
Mercury	0.1	0.15 *	J	0.89 *	ĭ	0.24 *	3	0.62 *	J	434	J	278	J	415	J	432	J
Nickel	13	11.2	J	15.0 *	أز	16 *	3	15.8 *	J	0.013	ار	1.4	J	0.68 *	J	0.34 *	J)
Potassium	NA	824.	J	2310	Ĭ	1440	J	1420	J	23.7 *	J	11.2	J	10.5	J	23.6 *	J
Selenium	2	0.92	UJ	1.1	υĴ	0.91	J		J	1460	J	1140	J	1660	J	2040	J
Silver	NA	0.18	ÜJ	0.22	UJ		JJ	1.4 0.18	J.	1.1	J	1.1	UJ	1	บป	1.3	J
Sodium	NA	211.	UJ	504.	1	_	71	194	UJ	0.16	กา	0.22	เกา	0.21	ΠΊ	0.18	UJ
Thallium	NA	1.8	ÜJ	2.2	บป			1.8	nn Nn	132	UJ	188	UJ	274	UJ	140	UJ
Vanadium	150	13.3	J	18.9	. J	18.5	الد	18.8	UJ.	1.6	UJ	2.2	UJ	2.1	IJ	1.8	UJ
Zinc	20	45.0 *	J	50.0 *		38.6 *	٦	39 *	J	18.3	J	19.6	J١	15.3	J	21.2	J)
Cyanide	NA	2.06		12			<u></u>		J	47.4 *		40 *	J	39.9 *	J	45.8 *	J
TOC	NA	18200		10900		4200	-	1.04 4140		1700	U	3.15			U		U
** "Determination of Soil C	leanup Objectives and Cleanu			C Div +411		1 5	<u> </u>	4140	J	1700	J	23200	J	6590	J	2060	

^{** &}quot;Determination of Soil Cleanup Objectives and Cleanup Levels, NYSDEC, Div. of Haz. Waste Remediation; Div. of Technical and Administrative Guidance Memorandum HWR-92-4046, rev. Jan. 24, 1994" (TAGM 4046).

* Value exceeds NYSDEC soil cleanup objective.

U= Not detected. The associated number indicates approximate sample concentration necessary to be detected.

B= Not detected substantially above the level reported on laboratory or field blanks.

R= Unusable result. Analyte may or may not be present in the sample.

NO CODE= Confirmed identification.

J= Analyte present. Reported Value may not be accurate or precise.

UJ= Not detected. Quantitation limit may be inaccurate or imprecise.

NA= Not Available.

SB= Site Background

TABLE 5.2 (d) Soil Boring Analytical Results Pesticide Organics & PCBs NMPC Albion-PSA/IRM Stearns & Wheler, LLC

a Pari kabu nabu	**NYSDEC Soil	SB-1	SB-2	5 M	SB-3	SB-4	SB-5	SB-6	SB-7	PEAR OF TOWN
Analyte	Cleanup Objective						(MW-5)		:30-/	SB-8
(ppb);	(ppb)	12-14'	12-14		12-14'	12 ² 14'	12-14	. (MW-6)		
alpha-BHC	110	UJ	1.2	1 22 28	U	***************************************		4-6'	10-12	14-16
beta-BHC	200	UJ		řl	<u>U</u>	<u>U</u>	<u>U</u> _	UJ	UJ	U
delta-BHC	300	UJ	4.2	<u></u>	0.37 J	<u></u>	UU	UJ	UJ	
gamma-BHC (Lindane)	60	UJ	<u></u>	iĭ	U U	U U	0.31 J	UJ	UJ	0.51 J
Heptachlor	100	UJ		ĭ.	U U	<u>-</u>	<u>U</u>	UJ	UJ	U
Aldrin	41	<u> </u>				UU	U	UJ	UJ	U
Heptachlor Epoxide	20	ÜĴ		¥	<u>U</u>	U	U	UJ	UJ	U
Endosulfan I	900	UJ		∺I	U	U	U	ŪĴ	UJ	U
Dieldrin	44	UJ:		¥}	U	<u>U</u>	U	UJ	UJ	U
4,4'-DDE	2100		2.6	ا <u>ٿ</u>	<u>U</u> .		U U	UJ	UJ	Ü
Endrin	100	UJ		!]	<u>U</u>	U	U	UJ	UJ	
Endosulfan II	900		3		U	U	U	UJ	ÜĴ	
4,4'-DDD	2900			¥	U	U	U	UJ	UJ	
Endosulfan Sulfate	1000			<u> </u>	<u>U</u>	U	J	UJ	UJ.	
4,4'-DDT	2100	··· ··· · · · · · · · · · · · · · · ·		<u> </u>	U	Ü	C	UJ		
Methoxychlor	2100		6.6	ᆀ	<u>U</u>	Ū.	U	UJ	UJ	
Endrin Ketone			· [<u>ا</u> ا∟	U	U	U	UJ	UJ	6.7 J
Endrin Aldehyde	- <u>NA</u>	<u>UJ</u>		<u> </u>	U		U	UJ	ÜJ	
alpha-Chlordane		UJ		<u>U</u>	U	U	U	- UJ	- UJ	
gamma-Chlordane	NA NA	<u>U</u> J		<u> </u>	UU	U	U	UJ	UJ	
Toxaphene	NA	UJ	2.5	J	υ	Ū	U		UJ	
TOXAPHETE	I NA	UJ	(ال	U	U	U	UJ		<u>U</u>
1010										<u>-</u>
Aroclor-1016	ŅA ,	UJ	l	J	Ü	U	Ü			
Aroclor-1221	NA	UJ	Ϊ	j ·	Ū	···	U	UJ	<u>U</u> J	U
Aroclor-1232	NA.	ÜĴ	Ţ	ij ´	U		<u> </u>	· UJ	UJ	U
Aroclor-1242	NA	Üj	i i	٠. از	Ü	··		UJ		U
Aroclor-1248	NA	Ü	(: ان	· ii	Ü	U	UJ		U
Aroclor-1254	NA	ŪJ	1	ارَ	···-		<u>U</u>	UJ	UJ	U
Aroclor-1260	NA NA	ÜJ		5l			· U	UJ	UJ	U
Total Aroclor	1000			╬╼		U	U	UJ	ŪJ	U

^{* &}quot;Determination of Soil Cleanup Objectives and Cleanup Levels, NYSDEC, Div. of Haz Waste Remediation; Div of Technical and Administrative Guidance Memorandum HWR-92-4046, rev. Jan. 24, 1994" (TAGM 4045).

* Value exceeds NYSDEC soil cleanup objective.

U= Not detected. The associated number indicates approximate sample concentration necessary to be detected.

B= Not detected substantially above the level reported on laboratory or field blanks.

R= Unusable result. Analyte may or may not be present in the sample.

NO CODE= Confirmed identification.

J= Analyte present. Reported Value may not be accurate or precise.

UJ= Not detected. Quantitation limit may be inaccurate or imprecise.

NA= Not Available

SB= Site Background.

TABLE 5.3 (a) **Groundwater Analytical Results** Volatile Organic Compounds (VOCs) NMPC Albion-PSA/IRM Stearns & Wheler, LLC

Analyte (ppb)		**Class GA	MW.1	MW-2	: MW-3	MW-4	MW-5 .	MW-6
Analyte		Standard		16.70677				
(ppb)		(pph).						
Chloromethane		NA	U	U	U	U	Water Card March 1	70:1071-1075-10
Bromomethane		5	Ū	-	<u>U</u> -	0.4 J		
Vinyl Chloride		ż	Ü	<u>-</u>	U	- 0.4 0	U	
Chloroethane		5	Ū	<u>U</u>	Ü	-	<u> </u>	
Methylene Chloride	~ .	5	-	-	U	U U	<u>U</u> .	<u> </u>
Acetone	•	50	Ūj	ŭj	UJ	-	<u> </u>	
Carbon Disulfide		NA	ŪJ		·	-		
1,1-Dichloroethene		5	Ū	<u>_</u>	U	-	U.	
1,1-Dichloroethane		5	Ü	<u>-</u>	<u>ö</u>	-	<u>U</u>	
1,2-Dichloroethene (total)	•	NA	<u> </u>	<u>-</u>	Ū.	<u>0</u>	U	
Chloroform		7	Ū	i	บ			
1,2-Dichloroethane		0.6	i i	l 🎳	-	<u>U</u>	···	
2-Butanone		NA .		- ··· ::- : : : : : : : : : : : : : :	· U	<u>U</u>	<u>.</u>	
1,1,1-Trichloroethane		5	' ' "Ď	i i	: <u>U</u>	<u>0</u>	/!	
Carbon Tetrachloride		5	<u>U</u>	- -	U		J	2
Bromodichloromethane		50		-	<u>U</u>	U	<u>u</u>	
1,2-Dichloropropane		1	l"	-	-	<u>_</u>	<u>U</u>	
cis-1,3-Dichloropropene		0.4	Ū	-	·		U	
Trichloroethene	•	5	<u>-</u>	"	U	<u> </u>	<u>U</u> .	
Dibromochloromethane		50				<u> </u>	J <u>U</u>	
1,1,2-Trichloroethane		1	-		U	U	ļ <u>u</u>	
Benzene		1	-	<u>U</u> .	U	U	U	
rans-1,3-Dichloropropene		0.4	₀		<u>U</u>	<u> </u>	210 *	
Bromoform	-	50				Ū	ĮU.	
4-Methyl-2-Pentanone		NA NA	<u>U</u>	U	U	U	<u> </u>	
2-Hexanone		50			<u>U</u>	U		i
Tetrachloroethene		5	U	<u>U</u> .	<u>U</u> _	<u> </u>	J	
1,1,2,2-Tetrachloroethane		5	' · · · · · · · · · · · · · · · · · · ·		<u> </u>	Ü	U	
l'oluene		· · · · · · · · · · · · · · · · · ·			<u>U</u>	U	<u></u> <u></u> <u>U</u>	
Chlorobenzene		. 5	 0 .	U	<u>U</u>	U	42 *	
thylbenzene		5		U	U	U	U	
Styrene		5		V	<u>.</u>	Ū	8 • 1	
(ylene (total)		. 2	<u>-</u>	U	U	U	Ü	
otal VOCs			U	U	U	0.2 J	72 •	
*NYSDEC Div. Of Water Te			0	0	0	0.6	343	2

iv. Of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, rev. June 1998."

NO CODE= Confirmed identification

NA= Not Available.

^{*} Value exceeds NYSDEC Ambient Water Quality Standards.

U= Not detected The associated number indicates approximate sample concentration necessary to be detected.

B= Not detected substantially above the level reported on laboratory or field blanks.

R= Unusable result Analyte may or may not be present in the sample.

J= Analyte present. Reported Value may not be accurate or precise.

UJ= Not detected. Quantitation limit may be inaccurate or imprecise.

TABLE 5.3 (b)

Groundwater Analytical Results

Semivolatile Organic Compounds (SVOCs)

NMPC Albion-PSA/IRM Stearns & Wheler, LLC

Analyte (ppb):	**Class GA	MW-1	MW-2	MW-3	MW-4		MW-6
Δnalyte	Standard			A		19-18-18-18-18-18-18-18-18-18-18-18-18-18-	
	V-EA						
(ppp) Phenol					\$6.00 C 2.3 (A.2)		
bis(2-Chloroethyl)ether	NA NA	U	U	U	U	5 * J	
2-Chlorophenol	NA NA	Ü	U	U	U	U	i i
1,3-Dichlorobenzene	3	U	U	Ü	U	U	l l
1,4-Dichlorobenzene	3	Ü	Ü	- u	Ü	U	1
1,2-Dichlorobenzene	3	Ū	Ŭ-	- U	1 0	U	
2-Methylphenol	NA NA	Ü	Ü	Ū	Ū	2 J	
2,2'-oxybis(1-Chloropropane)	NA NA	U	U	Ū	T U	- u	i i
4-Methylphenol	NA	U	Ü	Ū	U	0.7 J	l T
N-Nitroso-di-n-propylamine	NA	U	U	U	U	U	Ü
Hexachloroethane	5	Ü	Ü	U	U	U	U
Nitrobenzene	0.4	U	Ü	U	U	۲	υ
Isophorone	50	Ü	U	Ü	U	U	~U
2-Nitrophenol	NA NA	U	U	U	U	U	U
2,4-Dimethylphenol	50	υ	U	U	U	20	Ü
bis(2-Chloroethoxy)methane	NA	U	U	U	U	Ü	U
2,4-Dichlorophenol	5	Ú	U	U	U	U	U
1,2,4-Trichlorobenzene	5	U	U	U	U	U	U
Naphthalene	10	U	U	U	U	18 *	U
4-Chloroaniline	5	U	U	U	U	U	U
Hexachlorobutadiene	0.5	U	U	U	U	U	U
4-Chloro-3-methylphenol	NA NA	U	U	U	U	U	U
2-Methylnaphthalene	NA NA	U	U	U	0.5 J	0.4 J	U
Hexachlorocyclopentadiene	5 NA	R U	R U	R	R	R	R
2,4,6-Trichlorophenol 2,4,5-Trichlorophenol	NA NA		- U	U	U	U	U
2-Chloronaphthalene	10	<u>U</u>	U	Ü	U	U	U
2-Nitroaniline	5	U	U	U	Ü	- U	U
Dimethylphthalate	50	U	U	U	U	U	U
Acenaphthylene	NA NA	u i	u l	- U	u	29	<u>U</u>
2.6-Dinitrotoluene	5	-	U	 ū	- i l		- U
3-Nitroaniline	5	ŭ	Ü	Ü	υ	U	Ü
Acenaphthene	20	U	U	Ü	Ü	19	Ü
2,4-Dinitrophenol	10	UJ	UJ	UJI	UJ	UJ	UJ
1-Nitrophenol	NA	UJ	Ü	U	U	U	UJ
Dibenzofuran	NA	U	U	U	U	20	U
2,4-Dinitrotoluene	5	U	U	U	U	U	U
Diethylphthalate	50	U	U	U	U	U	Ü
-Chlorophenyl-phenylether	NA	U	U	U	U	U	U
luorene	50	U	U	Ū	U	18	U
l-Nitroaniline	5	U	U	U	U	U	U
1,6-Dinitro-2-methylphenol	NA NA	U	UJ	UJ	UJ	UJ	U
N-Nitrosodiphenylamine (1)	50	U	U	U	U	U	U
-Bromophenyl-phenylether	NA NA	U	U	U	U		U
lexachiorobenzene	0.04	U	U	U	U	<u> </u>	U
Pentachlorophenol	1 50	U	U	U	U	U	<u> </u>
Phenanthrene	50	U	- U	U	U	6 J	U
Anthracene		U	· U	U	U		U
Carpazole Di-n-butylphthalate	NA NA	U	U	 	U	25 U	- U
luoranthene	50		- U	U		1 J	<u> </u>
Pyrene	50	U	U	" "		0.6 J	U
Butylbenzylphthalate	50	- U		-	U	- 0.0 J	<u>-</u>
.3'-Dichlorobenzidine	5	Ü	-	Ü	U	- U	- U
Senzo(a)anthracene	0.002	- i	Ü	Ü	Ŭ	ŭ	ŭ
hrysene	0.002	U	Ü	U	U	Ū	U
is(2-Ethylhexyl)phthalate	NA	Ū	U	U	U	Ü	Ü
Pi-n-octylphthalate	NA	U	U	U	U	U	U
lenzo(b)fluoranthene	0.002	U	U	U	U	U	U
enzo(k)fluoranthene	0.002	Ü	U	U	- U	U	U
enzo(a)pyrene	NA	U	U	Ú	U	U	Ū
ideno(1,2,3-cd)pyrene	0.002	U	U	U	U	U	U
ibenz(a,h)anthracene	NA	U	Ü	Ü	U	Û	U
		U	U -	- U	Ü	U	U
enzo(g,h,i)perylene	NA		<u>U</u>		0 1	<u> </u>	

NYSDEC Div. Of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, rev. June 1998."

[▼] Value exceeds NYSDEC Ambient Water Quality Standards.

U= Not detected. The associated number indicates approximate sample concentration necessary to be detected.

 $[\]beta$ = Not detected substantially above the level reported on laboratory or field blanks.

R= Unusable result. Analyte may or may not be present in the sample.

NO CODE= Confirmed identification.

TABLE 5.3 (c) Groundwater Analytical Results Inorganics/Metals NMPC Albion-PSA/IRM Stearns & Wheler, LLC

Λnaluto:	**Class GA	MW-1		MW ₇ 2		MW-3		MW-4		. MW-5			
Analyte (ppb)	Standard (ppb)												
Aluminum	NA	6890	R	4500	R	695	R	1630	R	10300	246 W	0740	<u> </u>
Antimony	3		Ū		Ü		- i`			10300	- R	2710	K
Arsenic	25		υİ		ŭ	4	B			5	<u></u>		<u>u</u>
Barium	1000	304	j	128	<u></u> J	58.7	_ <u>J</u> _	69.7		<u>5</u> 171	<u>В</u>	5.7	В
Beryllium	3		- īi		- - <u>-</u>		- Ŭ	05.7			_ <u>J</u>	88.8	_J
Cadmium	5		ן ע		<u> </u>		Ü	/	- U		<u>U</u>		U
Calcium	NA	135000		110000	· <u>-</u>	89200		58500		- 440000	U		_U
Chromium	50	7		5 8	B	03200	U			149000		98000	
Cobalt	NA	10,5	- <u>F</u>		<u>B</u>		- 6 -	2.2	_B	13.3		4.3	В
Copper	200	23.5	<u></u>	96	<u>-</u>		- U		U	10.4	_ <u>B</u> _		U
Iron	300	10500 *		7790 *	=	1340 *			_ <u>U</u> _	24.1	В		U
Lead	25	5.7		4.2		1340	- Ū	2950 *		19400 *		4200 *	
Magnesium	35000	28400		13900		47400		4.4]		U		U
Manganese	300	6980 *	}	905 *		17400		15900		66200 *		27000	
Mercury	0.7					1190 *		263		931 *		607 *	
Nickel	100	27.2		11,8			U		<u>U</u> .		U		Ū
Potassium	NA NA	8690	=		B		_U_	5.7	В	24.9	В	7.6	В
Selenium	10	8.5		5370		2770	В	6750		13800		18600	
Silver	50		- UJ	10.4 *	J	5	R	5	R	7.2	J	5	R
Sodium	20000	94000 *	. 23			2	UJ		_UJ		UJ		U.
Thallium	0.5	10.0 *	골	5220	J	14100		26800 *	J	38700 *	J	19600	J
Vanadium		the the observation of the trap	품[10 *	R	10 *	R	10 *	R	10 *	R	10 *	R
Zinc	2000	10.5 55.7	В	7.6	В	2	J.	2.5	В	16.2	В	3.5	В
Fot. Cyanide (ppm)				30,7			U	21.2	1	62.5		20.2	``Ū
TOC (ppm)	0.2	0.059		0.043		0.475 *			U	0.27 *		0.078	
^* NYSDEC Div. Of Wate	NA NA	5.85		7.3		4.7		6.2		18,3		6.09	

DEC Div. Of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, rev. June 1998."

Stearns and Wheler, LLC. 90211.10

^{*} Value exceeds NYSDEC Ambient Water Quality Standards.

U= Not detected. The associated number indicates approximate sample concentration necessary to be detected.

B= Not detected substantially above the level reported on laboratory or field blanks.

R= Unusable result. Analyte may or may not be present in the sample.

NO CODE= Confirmed identification.

J= Analyte present. Reported Value may not be accurate or precise.

UJ= Not detected. Quantitation limit may be inaccurate or imprecise.

NA= Not Available.

TABLE 5.3(d) Groundwater Analytical Results Pesticide Organics & PCBs NMPC Albion-PSA/IRM Stearns & Wheler, LLC

्रास्त्र व स्ट्रिक्ट्राइट्ट्र	24401==== 0.40	"". A	67-87 (197 2 - 19 75 27 (1976 27	Power 2 Total Land Section Control	Company of the compan	T V	
	**Class GA		MW-2	MW-3	MW-4,	MW-5	MW₂6
Analyte	Standard						
(ppb)	(ppb)						
alpha-BHC	NA	U	U	Ü	U	U.I	U
beta-BHC	NA	Ū	Ü	U	<u>-</u>	lūj	u
delta-BHC	NA	Ü	Ū	U		0,0088 J	-
gamma-BHC (Lindane)	NA	Ü	Ū	U	l	UJ	<u> </u>
Heptachlor	0.04	Ű	Ū	U	<u> </u>	UJ	U
Aldrin	NA	Ū	U	Ū		UJ	U
Heptachlor Epoxide	0.03	Ü	Ū	Ū	<u> </u>	UJ	U
Endosulfan I	NA	Ū	U	U	U	- UJ	<u>U</u>
Dieldrin	0.004	U	U	U	<u> </u>	UJ UJ	U
4,4'-DDE	NA	Ū	U	- -	<u>-</u>	UJ	
Endrin	ÑA	Ū	U	l Ü	J U	UJ	U
Endosulfan II	NA	U	Ü	<u>-</u> -	-		U
4,4'-DDD	NA	Ū	Ū	l	-		Ü
Endosulfan Sulfate	NA	Ū	Ū	-	-	UJ UJ	U.
4,4'-DDT	NA NA	Ū	U	-	<u>\u00e4</u> .		<u>U</u>
Methoxychlor	35	Ū	U	i	<u>0</u>		U
Endrin Ketone	5	U	U	J J	U	UJ	<u>U</u>
Endrin Aldehyde	5	Ī	U	U U	-	UJ	U
alpha-Chlordane	NA	Ū	U	l — ŭ	-		<u>U</u>
gamma Chlordane	NA	Ü	Ü	Ü	-	UJ	<u>U</u>
Toxaphene	0.06	· · · · · · · · · · · · · · · · · ·	<u>.</u>	<u>-</u>	-	UJ	<u>U</u>
					1 <u>-</u>	1 03	U
Aroclor-1016	NA	l U	11	T T	I		
Aroclor-1221	NA	ŭ	11	<u> </u>		UJ	<u> </u>
Aroclor-1232	NA NA	ĺ ŭ	11	· ·	U	<u>U</u> J	U
Aroclor-1242	NA	l		<u>U</u>		<u>UJ</u>	<u>U</u>
Aroclor-1248	NA NA	l] <u>-</u>	: <u>\</u>	UJ	U
Aroclor-1254	NA	l			· · · · · · · · · · · · · · · · · ·	UJ	U
Aroclor-1260	NA .	l ' ü	· · · · · ii		· \ - \ - \ - \ - \ - \ - \ - \ - \ -	UJ	U
** NYSDEC Div. Of Wate		Operational Guidan	Ino Sorino (TOCS)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LU	U)	U

^{**}NYSDEC Div. Of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, rev. June 1998."

^{*} Value exceeds NYSDEC Ambient Water Quality Standards.

U= Not detected. The associated number indicates approximate sample concentration necessary to be detected.

B= Not detected substantially above the level reported on laboratory or field blanks.

R= Unusable result. Analyte may or may not be present in the sample.

NO CODE= Confirmed identification.

J= Analyte present. Reported Value may not be accurate or precise.

UJ= Not detected. Quantitation limit may be inaccurate or imprecise.

NA= Not Available.

TABLE 5.4(a) Surface Soil Sample Analytical Results Volatile Organic Compounds (VOCs) NMPC Albion-PSA/IRM Stearns & Wheler, LLC

	***NYSDEC Soil	SS-1R	SS-2'	. SS-3 : □	1 SS-4	CB-1
Analyte	Cleanup Objective					
(ppb)	Cléanup Objective (ppb)					
Chloromethane	NA NA	Ü	U	11	11	LI
Bromomethane	NA	Ū	1) <u>ö</u>	U	<u>u</u>
Vinyl Chloride	200	Ü			<u>U</u>	
Chloroethane	1900	้ เป็	نْنَ ******* نَنْ	r gğ		ü
Methylene Chloride	100	Ū	<u>-</u>	 - 	<u> </u>	-
Acetone	200	-	<u> </u>		<u>U</u>	lü
Carbon Disulfide	2700	l	J		-	J
1,1-Dichloroethene	400	-	-			
1,1-Dichloroethane	100	1] <u>-</u>	 	-	<u> </u>
1,2-Dichloroethene (total)	300	l ·	l	<u>U</u>	<u>U</u>	<u>U</u>
Chloroform	300	l · ·	<u>u</u>	-	U	
1,2-Dichloroethane	100	<u> </u>			<u>U</u>	ļ
2-Butanone	300	-	<u>-</u>	0	<u>U</u>	U
1,1,1-Trichloroethane	800	l:	<u>ü</u>	<u>0</u>	- - - - - <u>-</u>	<u> </u>
Carbon Tetrachloride	600	-			<u>U</u>	<u>U</u>
Bromodichloromethane	NA	} - -	i	·		U
1,2-Dichloropropane	NA .	····	-		<u>U</u>	<u>U</u>
cis-1,3-Dichloropropene	NA	<u>.</u>		<u>U</u>		<u>U</u>
Trichloroethene	700	2]	2 1	0.4		\ <u>U</u>
Dibromochloromethane	NA	<u>-</u> <u>-</u>	 - -	-	2 J	44
1,1,2-Trichloroethane	NA NA	- ·			U	<u> </u>
Benzene	60	0.3			<u>U</u>	U
trans-1,3-Dichloropropene	NA	·	·· ··· · · · · · · · · · · · · · · · ·	U	Ü	3
Bromoform	NA	·	• • • • • • • • • • • • • • • • • • •		<u> </u>	ļ
4-Methyl-2-Pentanone	1000	J U	X	<u>U</u>	Ū	U
2-Hexanone	NA	<u>i</u>	<u> </u>	<u>U</u>	U	UU
Tetrachloroethene	1400	0.9 J	0.7		U	<u>U</u>
1,1,2,2-Tetrachloroethane	600			U	0.8 J	12
Toluene	1500	0.7	0.4	0.3	U	U
Chlorobenzene	1700				0.5 J	<u>U</u>
Ethylbenzene	5500	0.3 J		<u>U</u>	<u>U</u>	U
Styrene	NA	J 1	J		<u>.</u>	U
(vlene (total)	1200	0.5	· · · · · · · · · · · · · · · · · · ·		· U	
Total VOCs		4.7	3.1	0.7	3.3	20

^{*}Determination of Soil Cleanup Objectives and Cleanup Levels, NYSDEC, Div. of Haz. Waste Remediation; Div. of Technical and Administrative

Stearns and Wheler, LLC.

Guidance Memorandum HWR-92-4046, rev. Jan. 24, 1994" (TAGM 4046).

^{*} Value exceeds NYSDEC soil cleanup objective.

U= Not detected. The associated number indicates approximate sample concentration necessary to be detected.

B= Not detected substantially above the level reported on laboratory or field blanks.

R= Unusable result Analyte may or may not be present in the sample.

NO CODE= Confirmed Identification.

J= Analyte present. Reported Value may not be accurate or precise.

UJ= Not detected. Quantitation limit may be inaccurate or imprecise

NA= Not Available.

TABLE 5.4(b)

Surface Soil Sample Analytical Results Semivolatile Organic Compounds (SVOCs)

NMPC Albion-PSA/IRM Stearns & Wheler, LLC

FT TO THE PARTY OF	Intercept and the second secon		20 20 20 20 20 20 20 20 20 20 20 20 20 2	\$17.5.5 A.W.		
	**NYSDEC Soil.	- SS-1R	. SS-2	SS-3	_SS-4	CB:1
Analyte	Cleanup Objective (pph)					
(ppb) =	(ppb)					
Phenol	30	U	U			1
bis(2-Chloroethyl)ether	NA NA	Ŭ	i ü			1
2-Chlorophenol	800	i ü	Ü			
1.3-Dichlorobenzene	NA	U	U			
1,4-Dichlorobenzene	NA NA	U	l ü		U	1
1,2-Dichlorobenzene	NA NA	U	U			ļ
<u> </u>	100	U	U	U		<u>\</u>
2-Methylphenol					U	L
2,2'-oxybis(1-Chloropropane)	NA NA	U	U	U	U	U
4-Methylphenol	900	Ü	U	Ü	U	
N-Nitroso-di-n-propylamine	NA NA	U	U	U	U	Ţ
Hexachloroethane	NA NA	U	U	U	U	·
Nitrobenzene	200	U	U	U	U	L
Isophorone	4400	U	U	U	U	- ٠ . ا-
2-Nitrophenol	330	U	U	U	U	U
2,4-Dimethylphenol	NA	Ų	U	U	U	U
bis(2-Chloroethoxy)methane	NA	U	U	U	บ	U
2,4-Dichlorophenol	400	U	U	U	U	Ü
1,2,4-Trichlorobenzene	NA	U	U	U	U	U
Naphthalene	13000	36 J	10 J	56 J	Ú	Ú
4-Chloroaniline	220	U	J	U	U	Ú
Hexachlorobutadiene	NA	Ü	U	U	U	U
4-Chloro-3-methylphenol	240	Ü	U	U	U	Ū.
2-Methylnaphthalene	4400	14 J	U	33 J	Ū	420 J
Hexachlorocyclopentadiene	NA	UJ	UJ		UJ	U.
2,4,6-Trichlorophenol	NA NA	U	U	U	U	U.
2,4,5-Trichlorophenol	100	U	U	Ū	Ü	U.
2-Chloronaphthalene	NA I	U	U	U	ŭ	Ū.
2-Nitroaniline	430	Ü	<u>.</u>	Ü	Ü	
Dimethylphthalate	2000	Ü	U	<u> </u>	Ü	U.
Acenaphthylene	41000	78 J	21 J	230 J	20 J	
2,6-Dinitrotoluene	1000	78 3		230 3	20 3	U.
	500	Ü	U	U	U	
3-Nitroaniline					U	U
Acenaphthene	50000	14 J		49 J		U
2,4-Dinitrophenol	200	R	R	U	R	U.
4-Nitrophenol	100	U	U	UJ.	U	Ú.
Dibenzofuran	6200	19 J	U	52 J	U	UJ
2,4-Dinitrotoluene	NA NA	U	U	U	U	UJ
Diethylphthalate	7100	9 J	U	U	U	UJ
1-Chlorophenyl-phenylether	NA NA	U	U	U	U	UJ
luorene	50000	33 J	14 J	56 J	U	UJ
1-Nitroaniline	NA	U	U	U	U	UJ
1,6-Dinitro-2-methylphenol	NA NA	R	R	U	R	UJ
N-Nitrosodiphenylamine (1)	NA	U	U	U	U	ŲJ
I-Bromophenyl-phenylether	NA	U	U	U	U	UJ
lexachlorobenzene	410	U	U	U	U	UJ
Pentachlorophenol	1000	U	130 J	U	U	UJ
Phenanthrene	50000	U	U	1200	U	ÜJ
Anthracene	50000	92 J	50 J	280 J	26 J	UJ
Carbazole	NA NA	38 J	27 J	220 J	13 J	บัง
Di-n-butylphthalate	8100	U	U	U	U	UJ
luoranthene	50000	700	430	2900	230 J	UJ
Pyrene	50000	770	400	2800	220 J	ŲJ
Butylbenzylphthalate	50000	12 J	U	Ü	U	UJ
,3'-Dichlorobenzidine	NA	U	U	U	U	UJ
Benzo(a)anthracene	220	400 * J	220 J	1600 *	110 J	UJ
Chrysene	400	430 * J	240 J	1800 *	140 J	UJ
is(2-Ethylhexyl)phthalate	50000	Ü	U	790 U	U	ÛĴ
i-n-octylphthalate	50000	Ü	Ü	75 U	U	UJ
Senzo(b)fluoranthene	1100	430 J	240 J	1700 +	120 J	<u></u>
	1100	360 J	190 J	1500 *	130 J	n)
lenzo(k)fluoranthene	60	420 * J	220 · J	1700	120 * J	UJ
lenzo(a)pyrene			150 J	1800	83 J	UJ
ndeno(1,2,3-cd)pyrene	3200	340 J				
ibenz(a,h)anthracene	10	110 * J	50 * J	570 * J	32 * J	UJ
enzo(g,h,i)perylene	50000	400 J	190 J	2600	110 J	UJ
otal SVOCs	· · · · · · · · · · · · · · · · · · ·	4705	2594	22011	1354	420

Total SVOCs
"Determination of Soil Cleanup Objectives and Cleanup Levels, NYSDEC, Div. of Haz. Waste Remediation; Div. of Technical and Administrative Guidance Memorandum

HWR-92-4046, rev. Jan. 24, 1994* (TAGM 4046).
* Value exceeds NYSDEC soil cleanup objective.

 $[\]label{eq:concentration} \textbf{U=Not detected.} \ \ \textit{The associated number indicates approximate sample concentration necessary to be detected.}$

B= Not detected substantially above the level reported on laboratory or field blanks.

R= Unusable result. Analyte may or may not be present in the sample.

NO CODE= Confirmed identification.

J= Analyte present. Reported Value may not be accurate or precise.

UJ= Not detected. Quantitation limit may be inaccurate or imprecise.

NA= Not Available.

TABLE 5.4 (c) Surface Soil Sample Analytical Results Inorganics/Metals NMPC Albion-PSA/IRM Stearns & Wheler, LLC

3. W	**NYSDEC Sŏil	SS-1R		SS-2	455	## SS-3	3,139	SS-4	146 v.4	& CB-1	1500
Analyte (ppm)	Cleanup Objective (ppm)									71	
Aluminum	NA	8600	J.	9000	1332776	2060	J	8000	<u> </u>	1000	
Antimony	NA	18	ָּנָט	1.3	<u></u>	1.1	υj	1.3	<u> 1</u>	4860	<u>J</u>
Arsenic	7.5	3	J	3,1		4	J	3.7		1.7	<u>Ų</u>
Barium	300	60.3	<u>.</u> J	52		20	j	47.4	$-\frac{J}{J}$	6.2	. .
Beryllium	0.16	0.3 *	<u></u>	0.27 *		0.16	UJ	0.23 *	<u>J</u>	64.8	J
Sadmium	1	0.18	ÜÜ	0.18	-01	0.56	J	0.23	- n n	0.24 *	<u>U,</u>
Calcium	NA	30000	<u>J</u>	9360		155000	j	5930	J	1 20100	
Chromium	10	12.7 *	J	12.5 *	— <u> </u>	7.4		13.7 *	 -	89400	
Cobalt	20	5.7	ا ت. ا	5,6		7.7		5.5	_ 	11.2 *	
Copper	25	17 8	j	16.3		31.8 *	J	15.1		4.5	<u>J</u> .
ron	2000	14800 *	. j	14400 *		9240	- 1	14700 *	<u>J</u>		- -
ead	NA ·	61.1	Ĵ	30.9	i	82.7	1	31		14900 *	<u>J</u> .
Magnesium	NA	9370		4160		45100	· · · ·	3360		177	- -
Manganese	NA	480	Ji	492		335	. :	510		52600	<u>J</u>
Mercury	0 1	20.2 *	j	0.052	<u>-</u>	0.0032	 UÜ	0.0071	J	542	
Vicket	13	12.7		11.9		5.8	<u>U</u>	11.6		6.6 *	_ <u>J</u> _
otassium	NA	1340	j	1210	<u>-</u>	743	J	851	J	11.5	<u>-</u> -
Selenium	2	0.97	j	1.3	<u>-</u> i	0.78	 LÚ	1.1	<u>J</u>	973	_
Silver	NA	0.18	ÜĴ	0,18		0.16	ÜJ	0.18	7	1.6	<u>J</u>
Sodium	NA	225	ÜJ	124	UJ	265	03	114	_ <u>UJ</u>	0 24	<u> </u>
fhallium	NA	1.8	ŪĴ	1.8	-03	1.6	:: ::::::::::::::::::::::::::::::::	1.8	UJ	292	U.
/anadium	150	18	J.	18		6.3	J	17.3		2.4	Ū,
Zinc	20	915 *	J	72.3 *	<u>-</u>	80.6 *	1	57.3 *	<u>J</u>	10 8	J
Cyanide	NA	0.68			u				<u>.</u>	166 *	
roc i	NA NA	24400	" j	18200	- - -	36400	U .j	0.6 14700	J	110000	

tion of Soil Cleanup Objectives and Cleanup Levels, NYSDEC, Div. of Haz. Waste Remediation; Div. of

Technical and Administrative Guidance Memorandum HWR-92-4046, rev. Jan. 24, 1994" (TAGM 4046).

Stearns and Wheler, LLC. 90211.10

^{*} Value exceeds NYSDEC soil cleanup objective.

U= Not detected. The associated number indicates approximate sample concentration necessary to be detected.

B= Not detected substantially above the level reported on laboratory or field blanks.

R= Unusable result. Analyte may or may not be present in the sample.

NO CODE= Confirmed identification.

J≈ Analyte present. Reported Value may not be accurate or precise.

UJ= Not delected. Quantitation limit may be inaccurate or imprecise.

NA= Not Available.

SB= Site Background.

TABLE 5.4(d) Surface Soil Sample Analytical Results Pesticide Organics & PCBs NMPC Albion-PSA/IRM Stearns & Wheler, LLC

Analyte	**NYSDEC Soil Cleanup Objective	SS-1R	SS-2	SS-3	SS-4	CB-1
(ppb)	» Cleanup Objective (ppb)					
alpha-BHC	110	UJ	U	UJ	UJ	U.
beta-BHC	200	ŪJ	l	UJ	UJ	U.
delta-BHC	300	UJ	1.9 J	UJ	0.68 J	U.
gamma-BHC (Lindane)	60	UJ	U	- UJ	UJ	U.
Heptachlor	100	UJ	U	UJ	UJ	J
Aldrin	41	UJ	U	UJ	UJ	U.
l leptachlor Epoxide	20	UJ	U	UJ	UJ	U.
Endosulfan I	900	UJ	Ü	UJ	UJ	U.
Dieldrin	44	UJ	Ū	UJ		4.1 U.
4,4'-DDE	2100	UJ	16 J	l	2.2	20 U.
Endrin	100	UJ	2.0 J	UJ	0.5 J	20 U.
Endosulfan II	900	UJ	1.2 J	UJ		U.
4,4'-DDD	2900	UJ	1.6 J		UJ	U.
Endosulfan Sulfate	1000	UJ	U		UJ	U.
4,4'-DDT	2100	UJ	11.0 J	Ü	2.3	
Methoxychlor	***	ŪJ	U		2.3 3	11.1 U. 36 U.
Endrin Ketone	NA NA	ÜĴ	Ū		U J	
Endrin Aldehyde	NA	UJ	-	UJ	UJ	Ū.
alpha-Chlordane	NA	ÜJ	-		U J	<u>U</u>
gamma-Chlordane	NA	ÜJ	-	UJ	UJ	U,
Toxaphene	NA NA	UJ	-		UJ	U.
Aroclor-1016	NA	Ü	Ū	UJ	UJ	
Aroclor-1221	NA	์ บิง	-	UJ		U.
Aroclor-1232	NA	UJ	<u>-</u>		<u> </u>	U.
Aroclar-1242	ÑA	زن ` ا	<u>.</u>	UJ		<u>U</u>
Aroclar-1248	NA		-	UJ		Ū. U.
Aroclor-1254	NA		-		THE RESIDENCE AND ADDRESS OF THE PARTY OF TH	
Aroclor-1260	NĀ	<u>n</u> ı	18	UJ	UJ	U
Total Aroclor	1000		<u> -</u>	- 03	1 01	U.

[&]quot;Determination of Soil Cleanup Objectives and Cleanup Levels, NYSDEC, Div. of Haz. Waste Remediation; Div. of Technical and Administrative Guidance Memorandum HWR-92-4046, rev. Jan. 24, 1994" (TAGM 4046).

^{*} Value exceeds NYSDEC soil cleanup objective.

U= Not detected. The associated number indicates approximate sample concentration necessary to be detected.

U= Not detected substantially above the level reported on laboratory or field blanks.

R= Unusable result. Analyte may or may not be present in the sample.

NO CODE= Confirmed identification.

J= Analyte present. Reported Value may not be accurate or precise.

UJ= Not detected. Quantitation limit may be inaccurate or imprecise.

NA≈ Not Available.

SB= Site Background.

	.,							
Bori	ng/Well ID	:	<u>SB-1</u>					
		:			1-			
Proj	ect Name:		NIMO Al	bion				Groundwater Observations
Job.			90211.10	1400				Time:
Bori	ng Location	:	1	-				Casing Depth:
Start	Date & Ti	me:	11/30/99	- 7:30				Boring Depth: 16.7
Finis	h Date & T	ime:	11/30/99	- 11:10				Depth to Water:
Drilli	ing Co.:	** **	ParrattWo	lff				Below Surface:
Drille	er:		Ron Bush	and Jef	f			Below Meas. Point:
	Inspector:		DSS					Surface Elevation:
Drilli	ng Method	:	Hollow St					Measuring Point Elevation:
Weat	her:		Cold Ligh	t Flurrie	ės		·	Groundwater Elevation:
							•	
Depth (A)	Blow Counts	чо (РРМ)	Sample Log	Recovery (inches)	NAPL,	ithology	Sample Log NAPL Key:	Key: Sent for Lab Analysis NAPL Observed Depth to Groundwater Hida O O O O O O O O O O O O O O O O O O O
	9	<u> </u>	S	<u> </u>				Sample Description
1	8,9					3333		
2	8,6	1.5		6			Rocks some	fines dark stain and petroleum odor
3	6,5					********		SILT some clay, little rock fragments 3
4	6,5	4		12			petroleum oc	The state of the s
5	2,1						•	5
6	1,1	4.2		12				6
7	12,13							7
8	18,24	1.3		2			wet Same as	Above (SAA)
.9	8,12		v					9
10	31,16	2.3		3				int seen on liquid, strong odor 10
11	12,15							ock frags. Sheen, strong odor
12	50/.4	98		15			turning to rec	brown SILT some fine/coarse sand 12
13						3333		13
14		120		18		. <. <. <. <. <		nd fine/coarse sand, brick and rock frags
15	20,32		-				some odor	15
16	30,39	25		0.5			Refusal (appe	ears to be bedrock) @16.7'
17	41.50/2	5		1 1		and entretelected		17
18				 			•	18
19								19
20								20
21				-				21 22
22						i		23
24								24
25								25
26								26
27								27
28						1		28
29	i					-		29
30						1		30

Page 12 a sept 1

٦

<u>.</u>

_	····												
Bori	ng/Well ID):	SB-2							-			
													
Proj	ect Name:		NIMO A	bion			Groundwa	ater Observations				. ,	
Job.	No.		90211.10	.1400			Time:				_		
Bori	ng Location	1:	İ				Casing Dep	th:					
	Date & Ti		12/1/99 -	9:30			Boring Dep						
Finis	h Date & T	ime:	12/1/99 -	11:20			Depth to W		,·				
Drill	ing Co.:		ParrattWo	olff				Surface:					•
Drill	er:		Ron Bush	and Je	ff		Below	Meas. Point:					
S&N	Inspector	:[DSS				Surface Ele	vation:			512.6	5'	
Drilli	ing Method	:	Hollow S	tem Au	ger		Measuring	Point Elevation:					_
Weat	her:		Cold and	clear				Groundwater Elevation:					
Depth (ft)	Blow Counts	(Mad) Old	Sample Log	Recovery (inches)	NAPI,	Lithology	Sample Log Key: NAPL Key:	Sent for Lab Analysis NAPL Observed Depth to Groundwater		Depth (ft)	Well Diagram		
<u> </u>	<u> </u>	=	Sa	<u>~</u>	ž	<u> </u>				ا ۾		ļ	
		ļ		-		 	Sample	Description		1 .	~	<u> </u>	
1	7,12	1-2-		 	ļ				,		,	i	-
2	19,8	0.2	1	6			lack stained SILT some sa	nd little clay, strong	odor	2			
3	1,2	ļ	ļ	<u> </u>						3		-	
4	1,4	0.8		3			lack stained SILT some sa	nd little clay		4			
5	6,2	<u> </u>		1_	<u> </u>					5			
6	2,1	2		6		7 7 7 7 7	lack stained SILT some sa	nd little clay, strong	odor	6		İ	
7	3,3		ļ							7			
8	3,3	7	<u></u>	0		13333	ILL rock fragments	•		8	v		
9	5,6	12		<u> </u>		{:::::::::::::::::::::::::::::::::::::		and the second		9	<u>-</u>		
10	5,6	12		6			vet dark FILL some sand li	ttle siit, strong odor					
11	48,50/.4	75					I CHT CAND AFE	T 1		11			
13	1.1	75		6			lack SILT, SAND and FIL			12			
14	0,1	8		2			nturated SILT and clay som	ne sand trace peoble	s ,:,	14		1	
15	3,6	0		1			slight odor nturated soft black SILT an	d aa-d aa-a alaa ta		15			
16	9,36	25		24			fragments to dense dry SII			16			
17	100/.2	3.5		0.5			magnicina to delise di y SII	Li and saile some C		17		1	
18	1007.2	ا د.ر		1 0.5			efusal red soft fine grained	cand stone or shale		18			
19							erasar rea sort time distined	sand stone of shale		19		1	
20										20		(
21													
22				 						21			
23										23			
24										24			
25						·				25			
26						ļ				26			
27						İ			ļ	27			
28						1				28			
29						ļ				29			
30						- 1			ĺ	30			
JU		{			Ī	1		_	1	30 j			

П

. .

الم

Bori	ng/Well II	D:	SB - 3											٠
										154.54.75	-			
Proj	ect Name:		NIMO A	lbion		•		7	Groundy	vater Observations				
Job.	No.		90211.10	.1400				1	Time:	2000	T	-		
Star	t Date & T	ime:	12/2/99 -	10:15				1	Casing De	pth:	· ·			*****
Finis	h Date &	Time:	12/2/99 -	10:25					Boring De				16.7	
Drill	ing Co.:		ParrattWo						Depth to V		 			
Drill			Ron Bush	and Je	ff			1		Surface:				
S&W	Inspector	:	DSS					١.		Meas. Point:	<u> </u>			
	hoe Type:							1	Surface El					
	ing Method		Hollow St	tem Au	ger			1		Point Elevation:				
	her:		Cold Scat					١.		ter Elevation:			,	
TT CA	ncı.		Cold Scal	icred 1 i	unics			ł	Groundwa	ter Enevation.	<u> </u>			
	1		1	1 		`				11,21,41,41,41,41,41,41,41,41,41,41,41,41,41				
æ	unts	M)	l.og	Recovery (inches)		y.	Sample L NAPL Key		2007	Sent for Lab Analysi NAPL Observed	•	1	ıgraın	
Depth (ft)	Blow Counts	PID (PPM)	Sample Log	ecover	NAPI,	Lithologý			'	Depth to Groundwate		Depth (ft)	Well Diagram	
. 📖 🗀	. ш		- <u>~</u>	/ ··· ··	-	1	1.		Sample	Description		+=-	2	
1	18,12	+	 			रिस्ट्रस			Sampa	Description		1	 	
2	11,17	10	 	6	 	 {{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{	FILL bloo	اد من	ndare cond o	nd silt some rock fra	ar.	2		
3	4,4	10	 	+	├	- 123333	TILL DIAC	K CII	nucis sand a	id Sift Sollie fock if a	<u> </u>	3		
		0	 	6	}			NID.						
4	6,5	10		-	<u> </u>		ibrown SA	עט	some pebble	s and sitt		4		
5	4,7	 	<u> </u>	 	<u> </u>	- KANANA						5	,	
6	9,11	0		4	<u> </u>		orown SA	עא	to red/brown	SAND and silt		-6		
7	9,12	 	<u> </u>	ļ	<u> </u>							7		
8	12,12	0	<u> </u>	18			moist dens	e rd	l/brn SILT ar	nd clay some sand, p	ebbles	8		
9	9,10								· · · · · · · · · · · · · · · · · · ·	**		9.		
10	11.16	0		8			moist red/t	orov	vn SILT and	clay some sand	•••	10		-
11	14,27										54 J. 15	-11		
12	33.31	0	· .				wet dense	ptor	wn SSILT so	me clay and pebbles	1	12		
13	21,31	<u> </u>								·		13		
14	34,37	0		20			moist dens	e rd.	l/brn SILT ar	d sand some clay &	pebbles	14		
15	27,31											15		
16	28,35	0					moist dens	e rd.	l/brn SILT ar	d sand some clay &	pebbles	16]
17	37,60/.2	0		- 1								17		
18			-			1	Refusal @	16.7	7'		Ì	18	Ì	
19]					Ì	19	1	
20						1					Ì	20		.
21				 		1					Ì	21	İ	l
22						1 1					Ì	22		
23						1					İ	23	į	Į
24						j					ļ	24	1	
25											ľ	25		ļ
26						1 1						26		
27												27		
28				 		1						28		- 1
29						ł [29		-
30												30		
JU				. 1		1 1					1	201		1

7.69

Borin	g/Well ID:	 :	SB-4				· ·						
										•			
	ct Name:		NIMO All						water Observations				
Job. i		:	90211.10.					Time:					
	Date & Tir		12/2/99 - 1			· ·		Casing D					
	n Date & T	ime:	12/2/99 - 9			-		Boring D			·	17.2	
	ng Co.:		ParrattWo					Depth to					
Drille			Ron Bush	and Jes	ff ·				v Surface:				
	Inspector:		DSS		,		<u> </u>		v Meas. Point:	•	•		
	ioe Type:					·			levation: - · · · ·	<u>-</u>			
	ng Method:	: ·	Hollow St						g Point Elevation:	<u> </u>	+		
Weat	her:		Cold Scatt		urries				ater Elevation:				
		,							and the second of the second				
	ruts	5	go	Recovery (inches)			Sample Log K NAPL Key:	Key;	Sent for Lab Analysis NAPL Observed			gram	
Depth (ft)	Blow Counts	РІБ (РРМ)	Sample Log	Secovery	NAPI,	Lithology		<u> </u>	Depth to Groundwater		Depth (ft)	Well Diagram	
-				<u> </u>		7	•	Samp	e Description		Ī ·	 	*
- i	3,6		-								1	 	-
2	8,6	0		6			red/ brown SII	LT and sand	to black SILT and sa	ind	2		
3	3,5			 					and sand, trace rock fi		3		
4	5,4	0		4					le odor some wood		4		
5	7,12						• '	,,		*	5		-
6	7,7	0		3			moist red/brov	vn SILT an	d sand some black sta	ining	6		-
7	7,12								ILT and sand, 2" wo	-	7		1
8	15,17	0		6			* 1 * **	ng odor			8		Ì
9	14,18		***					•	-		9		
10	20,25	0		12			moist red/brov	vn SILT an	d sand slight odor		10		
11	17,28		٠						· ·		11		
12	36,40	0		12			red/brown SILT	Γ and sand so	me grey mottling, sligh	t odor	12		
13	36,39						•	*		53, 577	13		
14	41,44	0	,	8			wet red/brown	SILT and s	and, gry/brn/orange r	nottling	.14		}
15	38,47										15		
16	41,44	0		6			wet red/brown	SILT and s	and		16		
17	25,45						wet red/brown	SILT and s	and Refusal @ red sa	ndstone	17		
1'8	50/.2	0		4			·····		20		18		-
19										-	19		
20											20		
21						j					21		
22			•			İ					22		
23											23		
24				Ī							24	Ì	-
25	j									İ	25		•
26						-					26		
27						- 1					27		
28						1					28		
29										ĺ	29	1	
30										ĺ	30	I	

 \Box

 \Box

 \Box

	-									<u></u>						
Bori	ng/Well II):	MW-5/SI	3-5												
-								١.								., .
Proi	ect Name:		NIMO AI	bion				7	Ground	water Obser	vations .	.:				7
Job.			90211.10.				· · · · · · · · · · · · · · · · · · ·		Time:							
<u> </u>	ng Location	1:						1	Casing D					17.0		
	Date & Ti		12/1/99 -	12:30				1	Boring D					. 17.4		 -
	h Date & T		12/1/99 - 3			·		1		Water:						
	ing Co.:		ParrattWo		<u> </u>			1		w Surface:				9.65		
Drille		-	Ron Bush		er e		· ·	1		w Meas. Poi	·			9.41		
	Inspector	. 	DSS	dila sei				ł		Elevation:				514.3		
	ng Method		Hollow St		TAT		· ·	1		g Point Elev				514.0		
Weat			Cold and o		301	-:		1		ater Elevati				504.6		
weat	ner:		Cold and C	near				1	Glounan	atel Elevati	011.					
	· · ·	1		,							or type the great to		1	1	· · · · ·	
ft)	Blow Counts	PID (PPM)	Sample Log	ry (inches)		gy	Sample Lo NAPL Key		(ey: ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	Sent for La NAPL Ob Depth to Gro	served		(E)	Well Diagram		
Depth (ft)	3	Ε	ple	Recovery	ž	Cithology			÷	2 op to 0.1			Jepth (ft)			
- G	30,	ΙŠ	Sarr] sec	NAPL.] <u>\fig</u>			170	en *			Sel .	§ 8	1	
									Samp	le Descriptio	n					
1	0 - 1	 -				******	vegetation	ı re			@ 1' - concre	te	1		Flu	sh Moun
2	6,7	0	1	10					o, augered t		© 1		2		-	Concrete
3	7,8	 	<u> </u>	10			.1		•	-	slightly stair	ed	3	1		001101010
4	8,4	0		.6			1		y be cinder:		, a., g., ., , , , a., .		4			- Grout
5	3,3	 -	 -:	1 .0				mu.	y be ciliaer.				5	1.1.		0.00.
6	2,3	0		4			brown SII	Та	nd cand tra	ce rock frags	some cinders		6		1	
7	2,2		· · ·	4 -	-		Olowii SiL	, i a	ing sand tra	cc rock mags			7			
8	7,7	0		3			hroun CII	та	nd cond tro	oo rook frags	some cinders		8			
		0	-	١ - ١							to red dense		9	v	, I	Bentonite
9	7,7	0.7					t .			-	to ten netise		10	=	1	Semonne
10	12,15	0.2		24				SIL	and clay	strong odor			-		ŀ	
11	7,9			24			1 20			T d ala-, a			12			
12	12,14	0		.24			damp rd/br	row	n dense 511	T and clay s	trong odor		13			- Cand
13	15,23						, , , , ,		1 077	70 . 1 .1			14			- Sand
14	36,40	0		.24		[damp rd/br	row	n aense 511	T and clay s	uong odor		-			Camaa
15	13,19						1 1/2		J 011	T I -1			15			Screen
16	21,27	. 0		24	-					T and clay s			16		j	•
17	20,22						moist red S	SAN	ND and silt	trace pebbles			17		ļ. <u>~</u>	
18	100/.4	0		14									18			•
19							Refusal at	17.4	4'				10			-
20]							20			
21													21		1	i
22			<u> </u>			[22		1	
23													23			
24	`												24			
25													25			
26													26			
27			<u>.</u>									• •	27		-	
28													28			
29]								29			
30													30			

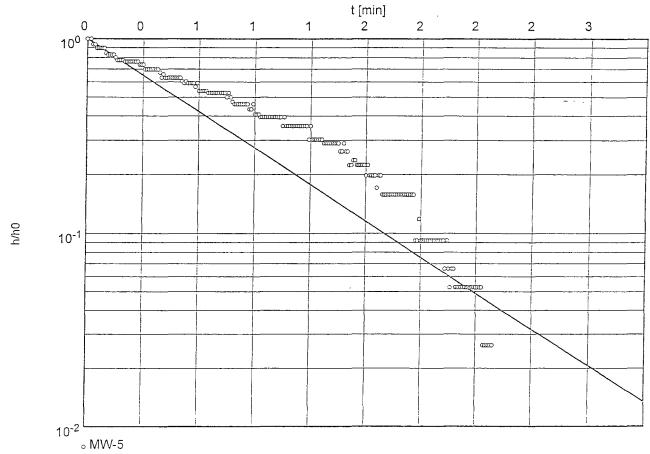
_ :			Yan Clar					
Bori	ng/Well ID	; 	MW-6/SE	3-6				
Proi	ect Name:		NIMO AII	bion		 : -	Groundwater Observations	
	No.		90211:10.				Time:	
	ng Location	:	1				Casing Depth: 16'	
	Date & Tin		11/29/99 -	12:30			Boring Depth: 16.2'	
	h Date & T		11/29/99 -			·	Depth to Water:	
-	ing Co.:		ParrattWo	lff			Below Surface: 6.20'	
Drille			Ron Bush	and Jei	ff		Below Meas. Point: 5.66'	
S&W	Inspector:	T	DSS.				Surface Elevation: 512.17'	
	ing Method		Hollow St	em Aug	ger `		Measuring Point Elevation: 511.63'	
Weat			Cold Scatt				Groundwater Elevation: 505.97'	
•								
Depth (ft)	3low Counts	PID (PPM)	Sample Log	Recovery (inches)	NAPI,	Lithology	Sample Log Key: NAPL Key: Sent for Lab Analysis NAPL Observed Depth to Groundwater (i) Hild-O	
-		-		1	1		Sample Description	
1 .	6,6	0 -	-				brown SAND and silt " 1	Flush Mount
2	6,7	0		15		1	black SAND & silt trace of coal cinders 2	Concrete
3	4,4	0						
4	6,12	0		4			red brown, dense SILT some sand 4	Grout
5	5,8	0					4" black dense SILT some sand	••
6	13,36	0.5		18			4" black dense SILT some sand 5 red brown dense SILT some sand 6 7	
7	18,22	0					7	
8	24,28	- 0	. `	18			damp red brown SILT some sand, some pebbles 8	Bentonite
9	8,16	: 0			<u></u> .		9	·
10	19,25	0	,	18		10000000000000000000000000000000000000	moist red brown SILT, some sand, some pebbles 10	
11	10,21	0					moist red brown SILT some sand, some clay	Sand
12	48,50/.1	0		22			to dry, red, dense SILT	
13	80/.4	0		4				 i
14		0				3333	red weathered SANDSTONE 14	Screen
15	50/.1	0					15	
16	7010	0					Refusal (Bedrock) @ 16.2 feet 16	
17	50/2	0		1			17	
18					<u> </u>		18	•
19 20							19	
							20	
21							$\begin{bmatrix} 21 \\ 22 \end{bmatrix}$	
23					!		22 23	
24							24	}
25				- +			25	
26							25	
27			i	-+		[20	1
28							28	
29						ĺ	29	.
30							30	

 \Box

 \Box

 \Box

نــنـ


Project Name: NIMO Albican Job. No. 90211.10.1400 Start Date & Time: IT3099-11:15 Start Date & Time: IT3099-3:15 Depth to Mater: Depth to Water: Depth t	Bori	ng/Well ID	;	SB-7						
Solution Solution										
Solution Solution										
Roring Location: Start Date & Time: 11/30/99 - 11:15	Proj	ect Name:		NIMO Al	bion				Groundwater Observations	
Start Date & Time:	Job.	No.		90211.10.	1400				1 1 1	
Start Date & Time:	Bori	ng Location	1:						Casing Depth:	
Pinish Date & Time: 11/30/99 - 3.15 ParrattWolff ParrattWolff ParrattWolff ParrattWolff Politics Ron Bush and Jeff S&W Inspector: DSS Drilling Method: Hollow Stem Auger Weather: Cold Scattered Flurries	Start	Date & Ti	me:	11/30/99 -	11:15					
Drilling Co.:	Finis	h Date & T	ime:							
Driller: Ron Bush and Jeff SaW Inspector: DSS	Drilli	ing Co.:		ParrattWo	lff					
Saw Hollow Stem Auger Cold Scattered Flurries Surface Elevation: Measuring Point Elevation: Measuring Point Elevation: Groundwater E						f	•			
Drilling Method: Hollow Stem Auger Measuring Point Elevation: Groundwater Elevation:				DSS				.		
Cold Scattered Flurries Groundwater Elevation: Sample Log Key: Sent for Lab Analysis NAPL Observed Purple of Groundwater Purple of Groundw					em Aus	ger				
Sample Log Key: Sent for Lab Analysis NAPL Observed Sent for Lab Analysis NaPl Observed Sent for Lab Analysis NAPL Observed Sent for Lab Analysis NAPL Observed Sent for Lab Analysis NaPl Observed Sent for Lab Analysis NAPL Observed Sent for Lab Analysis NaPl Observed Sent for Lab Analysis NaPl Observed Sent for Lab Analysis NaPl Observed Sent for Lab Analysis NaPl Observed Sent for Lab Analysis NaPl Observed Sent for Lab Analysis NaPl Observed Sent for Lab Analysis NaPl Observed Sent for Lab Analysis NaPl Observed Sent for Lab Analysis NaPl Observed Sent for Lab						~				
Sample Description	77 211			Cold State			•			
Sample Description	Jepth (ft)	Slow Counts	ПО (РРМ)	ample Log	Recovery (inches)	VAPL	Lithology			-
1		<u> </u>		, ,,			 			
Moist dark brown SAND and Silt 2 3 3 4 4 0 0 12	1			 	 		11111111			
3			0		12			Moist dark b	prown SAND and Silt	
4 0 12 Moist dark brown red SILT some clay trace sand 4 5 0 14 Moist dark red brown SILT some clay trace sand 5 6 0 14 slight odor 7 7 7 7 8 9.8 24 SAA with odor 8 9 115/2 25 10 Red rock fragments trace fines 9 10 10 11 60/.5 100 6.5 Red rock fragments some brown sand 11 12 13 14 12 13 13 25 SILT, SAND and pebbles 15 16 16 16 17 17 2.5 Red sand stone refusal @17.2° 17 18 0 1 18 19 1 20 21 20 21 22 23 24 24 24 25 25 1 26 26 27 28 29 29			 		1					
Moist dark red brown SILT some clay trace sand 5			0		12			Moist dark b		
6 0 14 Slight odor 6 7 3 9.8 24 SAA with odor 8 9 115/.2 25 Red rock fragments trace fines 9 10 10 10 10 10 11 60/.5 100 6.5 Red rock fragments some brown sand 11 12 13 14 14 14 15 25 25 15 16 16 16 16 16 16 17 2.5 Red sand stone refusal @17.2' 17 18 0 1 18 19 20 21 20 21 21 22 23 24 24 25 3 24 25 26 27 28 29 29			<u>-</u> -		1.2					
7 8 9.8 24 SAA with odor 8 9 115/2 25 Red rock fragments trace fines 9 ▼ 10 6.5 Red rock fragments some brown sand 11 11 60/.5 100 6.5 Red rock fragments some brown sand 11 12 3 24 13 14 14 14 14 14 15 15 25 15 16 16 16 16 16 16 17 2.5 Red sand stone refusal @17.2° 17 18 19 20 20 21 22 23 23 23 23 23 24 24 24 25 26 25 26 26 27 28 28 29 </td <td></td> <td></td> <td><u>n</u></td> <td></td> <td>14</td> <td></td> <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td>			<u>n</u>		14				· · · · · · · · · · · · · · · · · · ·	
8 9.8 24 SAA with odor 8 9 115/.2 25 10 11 12 12 13 13 12 13 13 14 13 14 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 16 16 16 16 16 17 17 18 16 17 17 18 18 19 19 20 20 21 22 22 23 23 23 24 24 24 24 24 24 24 25 25 25 25 25 25 25			-	 	1-1-			Stight odol		
9 115/.2 25 Red rock fragments trace fines 9 ▼ 10 10 Red rock fragments some brown sand 11 11 60/.5 12 12 13 24 13 14 15 25 SILT, SAND and pebbles 15 16 16 16 16 17 2.5 Red sand stone refusal @17.2' 17 18 0 1 19 20 20 20 21 22 23 23 23 23 24 24 24 25 26 26 27 28 29			0.8		24		[-]-]-]-	S & A with od	· — 1	
10		115/2			1-27					
11 60/.5 100 6.5 Red rock fragments some brown sand 11 12 13 24 13 14 14 14 14 15 25 25 SILT, SAND and pebbles 15 16 16 16 17 2.5 Red sand stone refusal @17.2° 17 18 0 1 18 19 20 20 21 21 22 23 23 23 24 24 24 25 26 25 26 27 27 28 29 29		1131.2	2.5		 		15555	red rock ma	10 =	- 1
12		60/5	100		6.5			Red rock frag	<u> </u>	
13		007.5	100		0.5			Ted fock frag	9	
14 15 25 SILT, SAND and pebbles 15 16 16 16 16 17 2.5 Red sand stone refusal @17.2° 17 18 0 1 18 19 20 20 21 21 21 22 23 23 24 25 25 26 27 28 29 29					24				·	- }
SILT, SAND and pebbles 15 16 16 17 17 18 0 1 19 19 20 21 22 23 23 24 25 26 27 28 29 29 29 29 29 29 29	 -				-					i
16 In the state of the stat			25					CINAS TIIS		
Red sand stone refusal @17.2' 17 18 0 1 19 19 20 21 22 23 23 24 25 26 27 28 29 29 29 29 29 29 29					-			51E1, 51111E		-
18 0 1 19 19 20 20 21 21 22 22 23 24 25 25 26 26 27 27 28 29			7.5		i			Red sand stor	ne refusal @17.2	ı
19 20 21 21 22 23 24 25 26 27 28 29								Trod sand sto.		
20 21 22 23 24 25 26 27 28 29										-
21 22 23 24 25 26 27 28 29									\	
22 23 24 25 26 27 28 29		-			1					
23 24 25 26 27 28 29									——————————————————————————————————————	
24 25 25 25 26 27 28 29	+	-	-							
25 26 27 28 29										1
26 27 28 29							1		├	
27 28 29 29							}			-
28 29 29				_ 			-			
29			-]			-
30 30									30	

Bori	ng/Well ID	':	SB-8				. :
Proj	ect Name:		NIMO AI	lbion			Groundwater Observations
Job.			90211.10	.1400			Time:
Borii	ng Location	1:					Casing Depth:
	Date & Ti		12/2/99 -	7:15			Boring Depth: 16'
	h Date & T		12/2/99 -				Depth to Water:
Drilli	ng Co.:		ParrattWo				Below Surface:
Drille			Ron Bush		ff	.,,	Below Meas. Point:
	Inspector		DSS				Surface Elevation:
	ng Method		Hollow St	tem Au	ger		Measuring Point Elevation:
Weat			Cold and				Groundwater Elevation:
· Cat	ner.		TCOIG MIG	Overeas			Groundwater Elevation.
Depth (ft)	Blow Counts	но (РРМ)	Sample Log	Recovery (inches)	NAPI,	ithology	Sample Log Key: Sent for Lab Analysis NAPL Key: NAPL Observed Depth to Groundwater (1) (1) (2) (2) (3) (4) (3) (4
<u> </u>		<u>a</u>	S	<u> </u>	Z	<u> </u>	· • · · · · · · · · · · · · · · · · · ·
	45.00			-	<u> </u>	10000	Sample Description
1	45,28	<u> </u>		<u> </u>	ļ	133333	FILL and brown sand and silt little concrete frag to
2	24,15	0		6			black SILT some sand little cinders 2
3	7,8			1	<u></u>		3
4	8,7	0	<u> </u>	3			black SAND and silt little cinders
5	7.8			<u> </u>			5
6	12,15	0	ļ	6			1" cinders, 5" red/brown SILT and clay
7	18,23			1			black cinders and black SILT and sand to red/brown ▼ 7
3	17,14	0		8			SILT and sand some clay trace pebbles 8
9	19,22						. 9
10	18,23	0					red/brown SILT and sand some clay trace pebbles 10
11	22,26			1			
12	31,37	0		12			moist red/brown SILT and sand some clay trace pebbles 12
13	36,47						. 13
14	48,56	0		_ 12			damp red/brown SILT and sand some clay trace pebbles 14
15	36,42						15
16	57,76	0		12			wet red/brown SILT and sand some clay trace pebbles 16
17							17
18							18
19							19
20				-		1	20
21				<u> </u>		1	21
22						ļ	<u>. 22</u>
23						ĺ	23
24						1	24
25	-						25
26						1	26
27							, 27
28						ĺ	28
29							29
0		ì	1			- 1	30

لــا

 \Box

STEARNS & WHELER, LLC	slug/bail test analysis	Date:	Date: 17.12.1999 Page 1					
1 Remington Park Drive Cazenovia, NY 13035	BOUWER-RICE's method	Proje	Project: Albion Evaluated by: DSS					
ph.(315) 655-8161		Evalu						
Slug Test No. 1	Test condu	Test conducted on: 12/16/99						
MW-5								
								
		711						
	t [min]							
0 0 1	1 1 2 2	2 2	2	3				
100								
		<u> </u>						

Hydraulic conductivity [ft/min]: 2.34 x 10⁻³

1 Remingto	on Park Drive	slug/bail test analys BOUWER-RICE's n	nethod	Project: All	Z. 1999 Page Z	
Cazenovia, N' ph.(315) 655-8						
				Evaluated	by: DSS 	_
Slug Test N	lo. 1		Test conduct	ed on: 12/16/99	<u> </u>	
MW-5			MW-5			~
	level: 91.19 ft below dat					
Pur	nping test duration	Water level	Dra	awdown		
	[min]	[ft]		[ft]		
1	0.00	91.95		0.76		
3	0.02	91.95		0.76		
4	0.03	91.90 91.90		0.71 0.71	<u> </u>	
5	0.05	91.87	-	0.71		
6	0.06	91.87		0.68		
7	0.07	91.87	-	0.68		
8	0.08	91.87	-	0.68		
9	0.09	91.87		0.68		
10	0.10	91.83		0.64		
11	0.11	91.82		0.63		
12	0.12	91.82		0.63	· · · · · · · · · · · · · · · · · · ·	
13	0.13	91.82		0.63	1000	
14	0.14	91.82		0.63		
15	0.15	91.80		0.61		
16	0.16	91.78		0.59		
17 18	0.17	91.78		0.59	7	
19	0.18	91.78		0.59		
20	0.19	91.78 91.77		0.59		
21	0.21	91.77		0.58 0.58		
22	0.22	91.77		0.58		
23	0.23	91.77		0.58		
24	0.24	91.77	 	0.58		
25	0.25	91.77		0.58		
26	0.26	91.77		0.58		
27	0.27	91.77		0.58		
28	0.28	91.75		0.56		
29	0.29	91.75		0.56		
30	0.30	91.75		0.56		
31 32	0.31	91.72		0.53		
33	0.32 0.33	91.72		0.53		
34	0.33	91.72 91.72	1	0.53		
35	0.35	91.72	 	0.53		
36	0.36	91.72	<u> </u>	0.53	-	
37	0.37	91.72	<u> </u>	0.53		
38	0.38	91.72		0.53		
39	0.39	91.70	1	0.51		
0	0.40	91.67	<u> </u>	0.48		
11	0.41	91.69		0.50	· - · - · · · · · · · · · · · · · · · ·	
12	0.42	91.67	:	0.48		
3	0.43	91.67		0.48		
4	0.44	91.67		0.48		
5	0.45	91.67	i I	0.48		
6	0.46	91.67		0.48	,	
7	0.47	91.67	-	0.48		
8	0.48	91.67		0.48	· · · · · · · · · · · · · · · · · · ·	
9	0.49	91.67		0.48		
0	0.50	91.67				

	igton Park Drive	BOUWER-RICE's	method	Project: Alb	oion
Cazenovia ph.(315) 6	a, NY 13035 55-8161			ļ	
			T! : :	Evaluated I	uy. USS
Slug Tes	5t INO. I .			red on: 12/16/99	~
MW-5			MVV-5		
Static wa	ater level: 91.19 ft below dat	um			
F	oumping test duration	Water level	Dra	awdown	
	[min]	[ft]		[ft]	
51	0.51	91.65		0.46	
52	0.52	91.64		0.45	
53	0.53	91.65		0.46	
54	0.54	91.64		0.45	
55	0.55	91.64		0.45	· · · · · · · · · · · · · · · · · · ·
56	0.56	91.64		0.45	
57	0.57	91.64		0.45	
58	0.58	91.62		0.43	
59	0.59	91.64		0.45	
60	0.60	91.60		0.41	
61	0.61	91.60		0.41	
62	0.62	91.60		0.41	
63	0.63	91.60		0.41	
64	0.64	91.60		0.41	
65	0.65	91.59		0.40	
66	0.66	91.59		0.40	
67	0.67	91.59		0.40	
68	0.68	91.59		0.40	
69	0.69	91.59		0.40	
70	0.70	91.59		0.40	
71	0.71	91.59		0.40	
72	0.72	91.59		0.40	
73	0.73	91.59		0.40	
74	0.74	91.59		0.40	
75	0.75	91.57		0.38	
76	0.76	91.59		0.40	
77.	0.77	91.57		0.38	
78	0.78	91.55		0.36	
79	0.79	91.54		0.35	
80	0.80	91.54		0.35	
81 82	0.81 0.82	91.54 91.54		0.35 0.35	
83	0.83	91.54	+	0.35	
84	0.84	91.54	1	0.35	
85	0.85	91.54		0.35	
36	0.86	91.54	-	0.35	
87	0.87	91.52		0.33	
88	0.88	91.52	+	0.33	
89	0.89	91.54	-	0.35	
90	0.90	91.50	+	0.31	
91	0.91	91.50	:	0.31	
92	0.92	91.50		0.31	
93	0.93	91.49		0.30	
94	0.94	91.49		0.30	
95	0.95	91.49	- 	0.30	
96	0.96	91.49	 	0.30	
7	0.97	91.49		0.30	
8	. 0.98	91.49	1	0.30	<u> </u>
9	0.99	91.49		0.30	, <u>, , , , , , , , , , , , , , , , , , </u>
9	0.99	91.49		0.30	

Ĵ

STEARNS & WHELER, LLC 1 Remington Park Drive Cazenovia, NY 13035 ph.(315) 655-8161

slug/bail test analysis BOUWER-RICE's method

Date: 17.12.1999 Page 4	
Project: Albion	لا
Evaluated by: DSS	

Slug Test No. 1	Test conducted on: 12/16/99	1
MW-5	MW-5	
	l de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	

	Pumping test duration	Water level	Drawdown		
	[min]	[ft]	[ft]		
01	1.01	91.49	0.30	······································	
02	1.02	91.49	0.30		
03	1.03	91.49	0.30		
04	1.04	91.49	0.30		
05	1.05	91.46	0.27		
06	1.06	91.49	0.30	- · . ·	
07	1.07	91.46	0.27		
1 80	1.08	91.46	0.27		
9	1.09	91.46	0.27		
10	1.10	91.46	0.27		
11	1.11	91.46	0.27		
12	1.12	91.46	0.27	· · · · · · · · · · · · · · · · · · ·	
13	1.13	91.46	0.27		
14	1.14	91.46	0.27		
15	1.15	91.46	0.27		-
16	1.16	91.46	0.27		
7	1.17	91.46	0.27		
8	1.18	91.46	0.27		
9	1.19	91.42	0.23	•	
20	1.20	91.46	0.27		
21	1.21	91.42	0.23		
22	1.22	91.42	0.23		
3	1.23	91.42	0.23		
4	1,24	91.42	0.23		
5	1.25	91.42	0.23		
6	1.26	91.42	0.23	· · · · · · · · · · · · · · · · · · ·	
7	1.27	91.41	0.22		
8	1.28	91.41	0.22		
9	1.29	91.41	0.22		
0	1.30	91.41	0.22		
1	1.31	91.41	0.22		
2	1.32	91.41	0.22		
3	1.33	91.41	0.22		
4	1.34	91.41	0.22		
5	1.35	91.41	0.22		
6	1.36	91.39	0.20 :		
7	1.37	91.39	0.20		
8	1.38	91.41	0.22		
9	1.39	91.39	0.20	·	
0	1.40	91.39	0.20		
1	1.41	91.36	0.17		
2	1.42	91.36	0.17		
3	1.43	91.37	0.18		
4	1.44	91.37	0.18		
5	1.45	91.36	0.17		
3	1.46	91.36	0.17		
7	1.47	91.36	0.17		
3	1.48	91.36	0.17		
3	1.49	91.36	0.17		

STEARNS & WHELER, LLC		slug/bail test analysis	Date: 17.12.1999 Page 8
Cazenovia, I		BOUWER-RICE's method	Project: Albion
ph.(315) 655	5-8161		Evaluated by: DSS
Slug Test	No. 1	Test	conducted on: 12/16/99
MW-5		MW-5	5
	er level: 91.19 ft below datu	ım	
Pi	umping test duration	Water level	Drawdown
	[min]	(#1	FE1.
151	[min] 1.51	[ft] 91.36	[ft] 0.17
152	1.52	91.34	0.15
153	1.53	91.34	0.15
154	1.54	91.34	0.15
155	1.55	91.34	0.15
156	1.56	91.32	0.13
157	1.57	91.34	0.15
158	1.58	91.34	0.15
159	1.59	91.31	0.12
160	1.60	91.31	0.12
161	1.61	91.31	0.12
162	1.62	91.31	0.12
163	1.63	91.31	0.12
164	1.64	91.31	0.12
165	1.65	91.31	0.12
166	1.66	91.31	0.12
167	1.67	91.31	0.12
168	1.68	91.31	0.12
169	1.69	91.31	0.12
170	1.70	91.31	0.12
171	1.71	91.31	0.12
172	1.72	91.31	0.12
173	1.73	91.31	0.12
74	1.74	91.31	0.12
75	1.75	91.31	0.12
76	1.76	91.31	0.12
77	1.77	91.26	0.07
178	1.78	91.26	0.07
179	1.79	91.28	0.09
80	1.80	91.26	0.07
81	1.81	91.26	0.07
82	1.82	91.26	0.07
83	1.83	91.26	0.07
84	1.84	91.26	0.07
85	1.85	91.26	0.07
86	1.86	91.26	0.07
87	1.87	91.26	0.07
88	1.88	91.26	0.07
89	1.89	91.26	0.07
90	1.90	91.26	0.07
91	1.91	91.26	0.07
92	1.92	91.26	0.07
93	1.93	91.24	0.05
94	1.94	91.26	0.07
95	1.95	91.24	0.05
96	1.96	91.23	0.04
97	1.97	91.24	0.05
98	1.98	91.24	0.05
99	1.99	91.23	0.04
00	2.00	91 23	0.04

STEARNS & WHELER, LLC Date: 17.12.1999 Page 6 slug/bail test analysis 1 Remington Park Drive BOUWER-RICE's method Project: Albion Cazenovia, NY 13035 ph.(315) 655-8161 Evaluated by: DSS Slug Test No. 1 Test conducted on: 12/16/99 MW-5 MW-5 Static water level: 91.19 ft below datum Pumping test duration Water level Drawdown [min] [ft] [ft] 201 2.01 91.23 0.04 202 2.02 91.23 0.04 203 2.03 91.23 0.04 204 2.04 91.23 0.04 205 2.05 91.23 0.04 206 2.06 91.23 0.04 207 2.07 91.23 0.04 208 2.08 91.23 0.04 209 2.09 91.23 0.04 210 2.10 91.23 0.04 211 2.11 91.23 0.04 212 2.12 91.23 0.04 213 2.13 91.23 0.04 214 2.14 91.21 0.02 215 2.15 91.21 0.02 216 2.16 91.21 0.02 217 2.17 91.21 0.02 218 2.18 91.21 0.02 219 2.19 91.21 0.02 220 2.20 91.19 0.00

	on Park Drive	BOUWER-RIG	JE's method	Project: Albion	
Cazenovia, NY :13035 ph.(315) 655-8161			Evaluated by: [DSS	
Slug Test	st No. 2 Test conducted on: 12/16/99			··.	
MW-6					
			t [min]		
	0 1 1	2 2	3 3	4 4	5
1	100				
		mumo			
		Samuro Samuro			
		gmo			
		· · · · · · · · · · · · · · · · · · ·	Calle	,	
				agan	
h/h0					
				000	
				anna	
					0 000000
1	0-1				
•	。Albion MW-6				
	Hydraulic conductivi	ty [ft/min]: 4.11 _, x 10 ⁻¹	4		
		-		•	
•					
					-

STEARNS & WHELER, LLC slug/bail test analysis Date: 17.12.1999 Page 2 1 Remington Park Drive BOUWER-RICE's method Project: Albion Cazenovia, NY 13035 ph.(315) 655-8161 Evaluated by: DSS Slug Test No. 2 Test conducted on: 12/16/99 Albion MW-6 MW-6 Static water level: 11.25 ft below datum Pumping test duration Water level Drawdown [ft] [ft] [min] 0.00 10.14 1 -1.11 2 0.08 10.14 -1.11 3 0.10 10.17 -1.08 10.17 4 0.12 -1.08 5 0.14 10.17 -1.08 6 0.15 10.20 -1.05 10.20 7 0.17-1.05 8 0.19 10.20 -1.05 9 0.21 10.20 -1.05 0.23 10 10.20 -1.05 11 0.25 10.27 -0.98 12 0.27 10.27 -0.98 13 0.29 10.27 -0.98 14 0.31 10.27 -0.98 15 0.33 10.27 -0.98 0.35 16 10.27 -0.98 17 0.37 10.27 -0.98 18 0.39 10.27 -0.98 19 0.41 10.27 -0.98 20 0.42 10.27 -0.98 21 10.30 0.44 -0.95 22 0.46 10.30 -0.95 23 0.48 10.30 -0.95 24 0.50 10.33 -0.92 25 0.52 10.33 -0.92 26 0.54 10.33 -0.92 27 0.56 10.33 -0.92 28 0.58 10.33 -0.92 29 0.60 10.33 -0.92 30 0.62 10.36 -0.89 31 0.64 10.36 -0.89 32 0.66 10.36 -0.89 33 0.68 10.36 -0.89 34 0.69 10.36 -0.89 35 0.71 10.36 -0.89 36 0.73 10.36 -0.89 37 0.75 10.36 -0.89 38 0.77 10.36 -0.89 39 0.79 10.40 -0.85 40 0.81 10.40 -0.85 41 0.83 10.40 -0.85 42 0.85 10.43 -0.82 43 0.8710.43 -0.82 44 0.89 10.43 -0.82 45 0.91 10.43 -0.82 46 0.93 10.46 -0.79 47 0.95 10.46 -0.79 48 0.96 10.46 -0.79 49 0.98 10.46 -0.79

10.46

-0.79

50

1.00.

STEARNS & WHELER, LLC 1 Remington Park Drive		slug/bail test analy BOUWER-RICE's		Date: 17.12,1999 Page 3	
Cazenovia, N		BOUVER-RICES	meurou	Project: Albion	
ph.(315) 655-8				Evaluated by: DSS	·
Slug Test N	lo. 2		Test conduc	ted on: 12/16/99	
MW-6			Albion MW-6	5	
	, · · · · · · · · · · ·		,		
Static water	level: 11.25 ft below da	tum			
Pur	nping test duration	Water level	Dr	awdown	
	[min]	[ft]		[ft]	
51	1.02	10.46		-0.79	
52	1.04	10.46		-0.79	
53	1.06	10.46	- 	-0.79	
54	1.08	10.46		-0.79	
55	1.10	10.46	-	-0.79	
56	1.12	10.46		0.70	
57	1.14	10.46		-0.79	
58	1.16	10.46		-0.79	
59		10.46		-0.79	
ľ	1.18			!	
60	1.20	10.50		-0.75	
61	1.22	10.50		-0.75	
62	1.23	10.53		-0.72	
63	1.25	10.53		-0.72	
64	1.27	10.53		-0.72	
65	1.29	10.53		-0.72	
66	1.31	10.53		-0.72	
67	1.33	10.53		-0.72	
68	1.35	10.53		-0.72	
69	1.37	10.53		-0.72	
70	1.39	10.53		-0.72	
71	1.41	10.56		-0.69	
72	1.43	10.53		-0.72	
73	1.45	10.56		-0.69	
74	1.47	10.56		-0.69	_
75	1.49	10.56		-0.69	
76	1.50	10.56		-0.69	•
77	1.52	10.56		-0.69	
78	1.54	10.56		-0.69	
79	1.56	10.56		-0.69	
80	1.58	10.56		-0.69	
81	1.60	10.56		-0.69	
82	1.62	10.56		-0.69	
83	1.64	10.56		-0.69	
84	1.66	10.56		-0.69	
85	1.68	10.59		-0.66	
86	1.70	10.63	1	-0.62	~
87	1.72	10.63	1	-0.62	
88	1.74	10.63		-0.62	
89	1.76	10.63	- 	-0.62	
l l	1.77	10.63		-0.62	
90	1	10.63	<u> </u>	-0.62	
91	1.79		1	-0.62	
92	1.81	10.63		-0.59	
93	1.83	10.66	<u>!</u>	•	
94	1.85	10.66		-0.59	
95	1.87	10.66		-0.59	
96	1.89	10.66	· · · · · · · · · · · · · · · · · · ·	-0.59	
97	1.91	10.66		-0.59	
98	1.93	10.69		-0.56	
99	1.95	10.69	1	-0.56 ·	
00	1.97	10.66		-0.59	

123 2.41 10.73 -0.52 124 2.43 10.73 -0.52 125 2.45 10.76 -0.49 126 2.47 10.76 -0.49 127 2.49 10.76 -0.49 128 2.51 10.76 -0.49 129 2.53 10.76 -0.49 130 2.55 10.76 -0.49 131 2.57 10.76 -0.49 132 2.58 10.79 -0.46 133 2.60 10.79 -0.46 134 2.62 10.79 -0.46 135 2.64 10.79 -0.46 137 2.68 10.79 -0.46 138 2.70 10.79 -0.46 139 2.72 10.79 -0.46 140 2.74 10.79 -0.46 141 2.76 10.79 -0.46 142 2.78 10.79 -0.46	STE	ARNS & WHELER, LLC	slug/bail test analy		Date: 17.12.1999 Page 4	1 f
Stug Test No. 2		-	BOUWER-RICE's	method	Project: Albion	
Static water level: 11.25 ft below datum					Evaluated by: DSS	
Static water level; 11.25 ft below gatum	Slug 7	Fest No. 2		Test conducted	st conducted on: 12/16/99	
Static water level: 11.25 ft below datum	MW-6			Albion MW-6		
Pumping test duration						 ' :
Pumping test duration	Static	water level: 11.25 ft below datur	<u> </u>			
Initial Init	Static			Draw	down	
101		rumping test duration	vvater level	Diaw	down	<u>.</u>
102				[1		H
103	1	· · · · · · · · · · · · · · · · · · ·			<u> </u>	
104	1	š			4	
105	i	1				
107		1				
108	106	2.08	10.69		-0.56	
109		ı			i	
110	1				<u> </u>	
111					1	
112	1	i			1	
114 2.24 10.69 -0.56 115 2.26 10.69 -0.56 117 2.30 10.69 -0.58 117 2.30 10.69 -0.56 118 2.31 10.69 -0.56 119 2.33 10.73 -0.52 120 2.35 10.69 -0.56 121 2.37 10.73 -0.52 122 2.39 10.73 -0.52 123 2.41 10.73 -0.52 124 2.43 10.73 -0.52 125 2.45 10.73 -0.52 126 2.47 10.76 -0.49 127 2.49 10.76 -0.49 128 2.51 10.76 -0.49 129 2.53 10.76 -0.49 130 2.55 10.78 -0.49 131 2.57 10.76 -0.49 132 2.58 10.79 -0.46					- I	 i
115	113		10.69		-0.56	
116		l l			į.	
117 2.30 10.69 -0.56 118 2.31 10.69 -0.56 119 2.33 10.73 -0.52 120 2.35 10.69 -0.56 121 2.37 10.73 -0.52 121 2.37 10.73 -0.52 123 2.41 10.73 -0.52 124 2.43 10.73 -0.52 125 2.45 10.73 -0.52 126 2.47 10.76 -0.49 127 2.49 10.76 -0.49 128 2.51 10.76 -0.49 129 2.53 10.76 -0.49 130 2.55 10.76 -0.49 131 2.57 10.76 -0.49 131 2.57 10.76 -0.49 132 2.58 10.79 -0.46 133 2.60 10.79 -0.46 134 2.62 10.79 -0.46	I				1	
1118 2.31 10.69 -0.56 119 2.33 10.73 -0.52 120 2.35 10.69 -0.56 121 2.37 10.73 -0.52 122 2.39 10.73 -0.52 123 2.41 10.73 -0.52 124 2.48 10.73 -0.52 125 2.45 10.73 -0.52 126 2.47 10.76 -0.49 127 2.49 10.76 -0.49 128 2.51 10.76 -0.49 129 2.53 10.76 -0.49 130 2.25 10.76 -0.49 131 2.67 10.76 -0.49 132 2.58 10.79 -0.46 133 2.60 10.79 -0.46 134 2.62 10.79 -0.46 135 2.64 10.79 -0.46 136 2.65 10.79 -0.46	l l			 	ļ	
119		1				
121 2.37 10.73 -0.52 122 2.39 10.73 -0.52 123 2.41 10.73 -0.52 124 2.43 10.73 -0.52 125 2.45 10.73 -0.52 126 2.47 10.76 -0.49 127 2.49 10.76 -0.49 128 2.51 10.76 -0.49 129 2.53 10.76 -0.49 130 2.55 10.76 -0.49 131 2.57 10.76 -0.49 132 2.58 10.79 -0.46 133 2.60 10.79 -0.46 134 2.62 10.79 -0.46 135 2.64 10.79 -0.46 137 2.68 10.79 -0.46 138 2.70 10.79 -0.46 140 2.74 10.79 -0.46 141 2.76 10.79 -0.46	- 7	1				
122 2.39 10.73 -0.52 123 2.41 10.73 -0.52 124 2.43 10.73 -0.52 125 2.45 10.73 -0.52 126 2.47 10.76 -0.49 127 2.49 10.76 -0.49 128 2.51 10.76 -0.49 129 2.53 10.76 -0.49 130 2.55 10.76 -0.49 131 2.57 10.76 -0.49 131 2.57 10.76 -0.49 133 2.60 10.79 -0.46 133 2.60 10.79 -0.46 134 2.62 10.79 -0.46 135 2.64 10.79 -0.46 137 2.68 10.79 -0.46 138 2.70 10.79 -0.46 140 2.74 10.79 -0.46 141 2.76 10.79 -0.46	r				3	
123 2.41 10.73 -0.52 124 2.43 10.73 -0.52 125 2.45 10.73 -0.52 126 2.47 10.76 -0.49 127 2.49 10.76 -0.49 128 2.51 10.76 -0.49 129 2.53 10.76 -0.49 130 2.55 10.76 -0.49 131 2.57 10.76 -0.49 132 2.58 10.79 -0.46 133 2.60 10.79 -0.46 134 2.62 10.79 -0.46 135 2.64 10.79 -0.46 135 2.64 10.79 -0.46 137 2.68 10.79 -0.46 138 2.70 10.79 -0.46 140 2.74 10.79 -0.46 141 2.76 10.79 -0.46 141 2.78 10.79 -0.46	i				1	
124 2.43 10.73 -0.52 125 2.45 10.73 -0.52 126 2.47 10.76 -0.49 127 2.49 10.76 -0.49 128 2.51 10.76 -0.49 129 2.53 10.76 -0.49 130 2.55 10.76 -0.49 131 2.57 10.76 -0.49 133 2.58 10.79 -0.46 133 2.60 10.79 -0.46 134 2.62 10.79 -0.46 135 2.64 10.79 -0.46 136 2.66 10.79 -0.46 138 2.70 10.79 -0.46 139 2.72 10.79 -0.46 140 2.74 10.79 -0.46 141 2.76 10.79 -0.46 142 2.78 10.79 -0.46 143 2.80 10.79 -0.46						
125 2.45 10.73 -0.52 126 2.47 10.76 -0.49 127 2.49 10.76 -0.49 128 2.51 10.76 -0.49 129 2.53 10.76 -0.49 130 2.55 10.76 -0.49 131 2.57 10.76 -0.49 132 2.58 10.79 -0.46 133 2.60 10.79 -0.46 134 2.62 10.79 -0.46 135 2.64 10.79 -0.46 136 2.66 10.79 -0.46 137 2.68 10.79 -0.46 138 2.70 10.79 -0.46 139 2.72 10.79 -0.46 140 2.74 10.79 -0.46 141 2.76 10.79 -0.46 143 2.80 10.79 -0.46 143 2.80 10.79 -0.46		j			l l	
126 2.47 10.76 -0.49 127 2.49 10.76 -0.49 128 2.51 10.76 -0.49 129 2.53 10.76 -0.49 130 2.55 10.76 -0.49 131 2.57 10.76 -0.49 132 2.58 10.79 -0.46 133 2.60 10.79 -0.46 134 2.62 10.79 -0.46 135 2.64 10.79 -0.46 136 2.66 10.79 -0.46 137 2.68 10.79 -0.46 139 2.72 10.79 -0.46 140 2.74 10.79 -0.46 141 2.76 10.79 -0.46 142 2.78 10.79 -0.46 143 2.80 10.79 -0.46 144 2.82 10.79 -0.46 144 2.82 10.79 -0.46		1				<u></u> '
128 2.51 10.76 -0.49 129 2.53 10.76 -0.49 130 2.55 10.76 -0.49 131 2.57 10.76 -0.49 132 2.58 10.79 -0.46 133 2.60 10.79 -0.46 134 2.62 10.79 -0.46 135 2.64 10.79 -0.46 136 2.66 10.79 -0.46 137 2.68 10.79 -0.46 138 2.70 10.79 -0.46 139 2.72 10.79 -0.46 140 2.74 10.79 -0.46 141 2.76 10.79 -0.46 142 2.78 10.79 -0.46 143 2.80 10.79 -0.46 144 2.82 10.79 -0.46 144 2.82 10.79 -0.46 144 2.82 10.79 -0.46		1			-0.49	
129 2.53 10.76 -0.49 130 2.55 10.76 -0.49 131 2.57 10.76 -0.49 132 2.58 10.79 -0.46 133 2.60 10.79 -0.46 134 2.62 10.79 -0.46 135 2.64 10.79 -0.46 136 2.66 10.79 -0.46 137 2.68 10.79 -0.46 138 2.70 10.79 -0.46 139 2.72 10.79 -0.46 140 2.74 10.79 -0.46 141 2.76 10.79 -0.46 142 2.78 10.79 -0.46 143 2.80 10.79 -0.46 144 2.82 10.79 -0.46 144 2.82 10.79 -0.46 145 2.84 10.79 -0.46 146 2.85 10.79 -0.46	,	i			!	
130 2.55 10.76 -0.49 131 2.57 10.76 -0.49 132 2.58 10.79 -0.46 133 2.60 10.79 -0.46 134 2.62 10.79 -0.46 135 2.64 10.79 -0.46 136 2.66 10.79 -0.46 137 2.68 10.79 -0.46 138 2.70 10.79 -0.46 139 2.72 10.79 -0.46 140 2.74 10.79 -0.46 141 2.76 10.79 -0.46 142 2.78 10.79 -0.46 143 2.80 10.79 -0.46 143 2.80 10.79 -0.46 144 2.82 10.79 -0.46 144 2.82 10.79 -0.46 145 2.84 10.79 -0.46 146 2.85 10.79 -0.46	1			<u> </u>)	
131 2.57 10.76 -0.49 132 2.58 10.79 -0.46 133 2.60 10.79 -0.46 134 2.62 10.79 -0.46 135 2.64 10.79 -0.46 136 2.66 10.79 -0.46 137 2.68 10.79 -0.46 138 2.70 10.79 -0.46 139 2.72 10.79 -0.46 140 2.74 10.79 -0.46 141 2.76 10.79 -0.46 142 2.78 10.79 -0.46 143 2.80 10.79 -0.46 144 2.82 10.79 -0.46 144 2.82 10.79 -0.46 145 2.84 10.79 -0.46 145 2.84 10.79 -0.46 146 2.85 10.79 -0.46 147 2.87 10.79 -0.46	- 1					
132 2.58 10.79 -0.46 133 2.60 10.79 -0.46 134 2.62 10.79 -0.46 135 2.64 10.79 -0.46 136 2.66 10.79 -0.46 137 2.68 10.79 -0.46 138 2.70 10.79 -0.46 139 2.72 10.79 -0.46 140 2.74 10.79 -0.46 141 2.76 10.79 -0.46 142 2.78 10.79 -0.46 143 2.80 10.79 -0.46 144 2.82 10.79 -0.46 144 2.82 10.79 -0.46 145 2.84 10.79 -0.46 147 2.87 10.79 -0.46 148 2.89 10.79 -0.46 149 2.91 10.79 -0.46 149 2.91 10.79 -0.46	1				f f	<u> </u>
134 2.62 10.79 -0.46 135 2.64 10.79 -0.46 136 2.66 10.79 -0.46 137 2.68 10.79 -0.46 138 2.70 10.79 -0.46 139 2.72 10.79 -0.46 140 2.74 10.79 -0.46 141 2.76 10.79 -0.46 142 2.78 10.79 -0.46 143 2.80 10.79 -0.46 144 2.82 10.79 -0.46 145 2.84 10.79 -0.46 146 2.85 10.79 -0.46 147 2.87 10.79 -0.46 148 2.89 10.79 -0.46 149 2.91 10.79 -0.46 149 2.91 10.79 -0.46		2.58	10.79	 	-0.46	
135 2.64 10.79 -0.46 136 2.66 10.79 -0.46 137 2.68 10.79 -0.46 138 2.70 10.79 -0.46 139 2.72 10.79 -0.46 140 2.74 10.79 -0.46 141 2.76 10.79 -0.46 142 2.78 10.79 -0.46 143 2.80 10.79 -0.46 144 2.82 10.79 -0.46 145 2.84 10.79 -0.46 146 2.85 10.79 -0.46 147 2.87 10.79 -0.46 148 2.89 10.79 -0.46 149 2.91 10.79 -0.46 149 2.91 10.79 -0.46	1	1			i	
136 2.66 10.79 -0.46 137 2.68 10.79 -0.46 138 2.70 10.79 -0.46 139 2.72 10.79 -0.46 140 2.74 10.79 -0.46 141 2.76 10.79 -0.46 142 2.78 10.79 -0.46 143 2.80 10.79 -0.46 144 2.82 10.79 -0.46 144 2.82 10.79 -0.46 145 2.84 10.79 -0.46 146 2.85 10.79 -0.46 147 2.87 10.79 -0.46 148 2.89 10.79 -0.46 149 2.91 10.79 -0.46 149 2.91 10.79 -0.46	i	+			i e	!_
137 2.68 10.79 -0.46 138 2.70 10.79 -0.46 139 2.72 10.79 -0.46 140 2.74 10.79 -0.46 141 2.76 10.79 -0.46 142 2.78 10.79 -0.46 143 2.80 10.79 -0.46 144 2.82 10.79 -0.46 145 2.84 10.79 -0.46 146 2.85 10.79 -0.46 147 2.87 10.79 -0.46 148 2.89 10.79 -0.46 149 2.91 10.79 -0.46 150 2.92 10.79 -0.46		•				
138 2.70 10.79 -0.46 139 2.72 10.79 -0.46 140 2.74 10.79 -0.46 141 2.76 10.79 -0.46 142 2.78 10.79 -0.46 143 2.80 10.79 -0.46 144 2.82 10.79 -0.46 145 2.84 10.79 -0.46 146 2.85 10.79 -0.46 147 2.87 10.79 -0.46 148 2.89 10.79 -0.46 149 2.91 10.79 -0.46 150 2.92 10.79 -0.46	- 1	,			1	<u>-</u> -
140 2.74 10.79 -0.46 141 2.76 10.79 -0.46 142 2.78 10.79 -0.46 143 2.80 10.79 -0.46 144 2.82 10.79 -0.46 145 2.84 10.79 -0.46 146 2.85 10.79 -0.46 147 2.87 10.79 -0.46 148 2.89 10.79 -0.46 149 2.91 10.79 -0.46 150 2.93 10.79 -0.46	1	,				
141 2.76 10.79 -0.46 142 2.78 10.79 -0.46 143 2.80 10.79 -0.46 144 2.82 10.79 -0.46 145 2.84 10.79 -0.46 146 2.85 10.79 -0.46 147 2.87 10.79 -0.46 148 2.89 10.79 -0.46 149 2.91 10.79 -0.46 150 2.93 10.79 -0.46	1	i			!	·
142 2.78 10.79 -0.46 143 2.80 10.79 -0.46 144 2.82 10.79 -0.46 145 2.84 10.79 -0.46 146 2.85 10.79 -0.46 147 2.87 10.79 -0.46 148 2.89 10.79 -0.46 149 2.91 10.79 -0.46 150 2.93 10.79 -0.46	I .					
143 2.80 10.79 -0.46 144 2.82 10.79 -0.46 145 2.84 10.79 -0.46 146 2.85 10.79 -0.46 147 2.87 10.79 -0.46 148 2.89 10.79 -0.46 149 2.91 10.79 -0.46 150 2.93 10.79 -0.46	;	į,		 		
144 2.82 10.79 -0.46 145 2.84 10.79 -0.46 146 2.85 10.79 -0.46 147 2.87 10.79 -0.46 148 2.89 10.79 -0.46 149 2.91 10.79 -0.46 150 2.93 10.79 -0.46	,				1	<u>-</u>
145 2.84 10.79 -0.46 146 2.85 10.79 -0.46 147 2.87 10.79 -0.46 148 2.89 10.79 -0.46 149 2.91 10.79 -0.46 150 3.03 10.93 -0.43	i	,		 	•	
147 2.87 10.79 -0.46 148 2.89 10.79 -0.46 149 2.91 10.79 -0.46 150 3.03 10.93 -0.42	145	2.84	10.79		-0.46	
148 2.89 10.79 -0.46 149 2.91 10.79 -0.46 150 3.93 10.93	- 1	,				
149 2.91 10.79 -0.46 -	ſ	· ·			\$	
150				 		
	1	1		- ,		

1 Reminate	S & WHELER, LLC on Park Drive	slug/bail test analysi BOUWER-RICE's m		Date: 17.12.1999 Page 5	
Cazenovia, NY 13035		200112111102311	.50,104	Project: Albion	
ph.(315) 655-				Evaluated by: DSS	
Slug Test N	No. 2		Test conducte	d on: 12/16/99	
MW-6	-		Albion MW-6		
					
Static wate	r level: 11.25 ft below da	tum			
Pu	mping test duration	Water level	Drav	wdown	
151	[min] 2.95	[ft] 10.82		[ft] -0.43	
151	2.95	10.82	-	-0.43	
153	2.99	10.82		-0.43	
154	3.01	10.79		-0.46	
155	3.03	10.79	1	-0.46	
156	3.05	10.79		-0.43	
157	3.07	10.82		-0.43	
157	3.09	10.82		-0.43	
159	3.09	10.82	+	-0.43	
160	3.13	10.82	+	-0.43	
161	3.13	10.86	+	-0.39	
162	3.16	10.86		-0.39	
163	3.18	10.86		-0.39	
164	3.20	10.86	-	-0.39	
165	3.22	10.86	-	-0.39	
166	3.24	10.86		-0.39	
167	3.26	10.89		-0.36	
168	3.28	10.86		-0.39	
169	3.30	10.86	+-	-0.39	
170	3.32	10.89		-0.36	
171	3.34	10.89		-0.36	
172	3.36	10.89	-	-0.36	
173	3.38	10.89		-0.36	
174	3.40	10.89		-0.36	
175	3.41	10.89	1	-0.36	
176	3.43	10.89	 	-0.36	
177	3.45	10.89		-0.36	
178	3.47	10.89		-0.36	
179	3.49	10.89		-0.36	
180	3.51	10.89		-0.36	
181	3.53	10.89		-0.36	
182	3.55	10.89		-0.36	
183	3.57	10.89		-0.36	
184	3.59	10.89		-0.36	
185	3.61	10.89		-0.36	
186	3.63	10.92		-0.33	
187	3.65	10.89		-0.36	
188	3.67	10.89		-0.36	
189	3.68	10.92		-0.33	
190	3.70	10.92		-0.33	
191	3.72	10.92		-0.33	
192	3.74	10.92		-0.33	
193	3.76	10.92		-0.33	
194	3.78	10.92		-0.33	
195	3.80	10.92		-0.33	
196	3.82	10.92		-0.33	
197	3.84	10.92		-0.33	
198	3.86	10.92		-0.33	
199	3.88	10.92		-0.33	

	RNS & WHELER, LLC slug/bail test analysis		Date: 17.12.19	99 Page 6	
	gton Park Drive , NY 13035	BOUWER-RICE's	method	Project: Albion	
ph.(315) 65				Evaluated by: I	DSS
Slug Tes	t No. 2		Test conducte		
 MW-6			Albion MW-6	/\\/-6	
			7 (15101) 1010 1010		
	ter level: 11.25 ft below datu	um			
F	Pumping test duration	Water level	Dra	wdown	
	[min]	[4]		I#1	
201	[min] 3.92	[ft] 10.92		-0.33	
202	3.94	10.92		-0.33	
203	3.95	10.92		-0.33	
204	3.97	10.96		-0.29	
205	3.99	10.92		-0.33	
206	4.01	10.96		-0.29	-
207	4.03	10.96		-0.29	
208	4.05	10.96		-0.29	
209	4.07	10.99		-0.26	
210	4.09	10.99		-0.26	
211	4.11	10.99		-0.26	
212	4.13	10.99		-0.26	
213	4.15 4.17	10.99 10.99		-0.26 -0.26	
214	4.17	10.99		-0.26	
216	4.21	10.99		-0.26	
217	4.22	10.99		-0.26	
218	4.24	10.99		-0.26	
219	4.26	10.99		-0.26	
220	4.28	10.99		-0.26	
221	4.30	10.99		-0.26	
222	4.32	10.99		-0.26	•
223	4.34	10.99		-0.26	
224	4.36	10.99		-0.26	-
225	4.38	10.99		-0.26	
226 227	4.40	10.99		-0.26	
228	4.42 4.44	10.99 10.99		-0.26 -0.26	
229	4.46	10.99		-0.26	
230	4.48	10.99		-0.26	
231	4.49	11.02	- 	-0.23	
232	4.51	10.99		-0.26	
233	4.53	10.99		-0.26	
234	4.55	11.02		-0.23	
235	4.57	11.02		-0.23	
236	4.59	11.02		-0.23	
237	4.61	11.02		-0.23	
238	4.63	11.02		-0.23	
239	4.65	11.02	1	-0.23	
240	4.67 4.69	11.02		-0.23	<u>., –</u>
242	4.59	11.02 11.02	1	0.23	
243	4.73	11.02		-0.23 -0.23	
244	4.75	11.02		-0.23	
		11.02		0.20	
1			1	-	
			·		
				j	

Analytical Assurance Associates, Inc.

600 Rock Raymond Road Downingtown, PA 19335 Phone: 610 - 269 - 9989 Fax: 610 - 269 - 9989

DATA USABILITY STEARNS & WHELER ALBION SITE

ANALYZED BY SEVERN TRENT LABORATORIES, INC. CASE No.: 7099-3090A/ SDG No.: A3090

DATA USABILITY REPORTED BY:

Analytical Assurance Associates (A3) 600 Rock Raymond Road Downingtown, PA 19335

SITE NAME: ALBION LABORATORY No.: 7099-3090A

SDG No.: A3090

DISCUSSION

Fifteen (15) soil samples, including two sets of field duplicate samples collected on 11-29, 30-99 & 12-01,02-99. Severn Trent Laboratories located in Monroe Connecticut received all samples in good condition on 12-01,03-99. Based on the chain-of-custody records, the following analyses were performed for this batch of samples.

CHENT	LABORATORY	PARAMETERS					
ID	ID	VOA	SVOA	Pest/PCB	Metals	Inorganic*	
		Analysis Date	Anal/Extraction	Anal/Extraction	Analysis date	Analysis	
SB-7	993090A-02	12-08-99	12-5/12-28-99	12-01/12-09-99	12-30-99	12-13-99	
MW-6	993090A-03	12-08-99	12-5/12-28-99	12-01/12-09-99	12-30-99	12-13-99	
SB-1	993090A-04	12-07-99	12-5/12-29-99	12-01/12-09-99	12-30-99	12-13-99	
SB-2	993090A-05	12-09-99	12-5/12-23-99	12-03/12-16-99	12-30-99	12-15-99	
SS-1R	993090A-06	12-09-99	12-5/12-23-99	12-03/12-16-99	12-30-99	12-13-99	
SS-2	993090A-07	12-09-99	12-5/12-23-99	12-03/12-16-99	12-30-99	12-13-99	
SS-3	993090A-08	12-09-99	12-5/12-28-99	12-03/12-16-99	12-30-99	12-13-99	
SS-4	993090A-09	12-09-99	12-5/12-23-99	12-03/12-10-99	12-30-99	12-13-99	
MW-5	993090A-10	12-09-99	12-5/12-23-99	12-03/12-10-99	12-30-99	12-13-99	
SB-8	993090A-11	12-09-99	12-5/12-23-99	12-08/12-17-99	12-30-99	12-15-99	
SB-4	993090A-12	12-09-99	12-5/12-23-99	12-03/12-10-99	12-30-99	12-13-99	
SB-3	993090A-13	12-09-99	12-5/12-23-99	12-03/12-10-99	12-30-99	12-13-99	
DUP-1	993090A-14	12-09-99	12-5/12-28-99	12-03/12-10-99	12-30-99	12-15-99	
CB-1	993090A-15	12-09-99	12-5/12-29-99	12-03/12-17-99	12-30-99	12-15-99	
DUP-2	993090A-16	12-10-99	12-5/12-29-99	12-03/12-17-99	12-30-99	12-15-99	

^{*} The analysis date is tabulated for cyanide analysis only. The analysis dates for TOCs are: 12-13,27,29-99

The sample analysis was reviewed based on the Region II functional Guidelines and the Data Usability criteria established in NYSDEC Division of Environmental Remediation based on the following parameters. If you have any question or comments please call Zohreh Hamid at (610) 269-9989.

- Holding time
- Calibration analysis
- Blank Analysis
- Matrix Spike/Spike Duplicate (MS/MSD)
- Laboratory Control Sample Results
- Laboratory/Field Duplicate
- Instrument Performance
- Surrogate/Internal Standard Recovery (Organic only)
- Compound Identification/Quantitation

ORGANIC ANALYSES

General/Holding Time

The extraction & analyses of all parameters were tabulated on the aforementioned table. The holding times analysis met the method requirements for all samples with the exception of following:

Pesticide/PCB

All samples were initially extracted/analyzed within the holding times. Samples were reextracted/reanalyzed due to the surrogate outliers. The comparison of the data demonstrated that the possible matrix interference exist. Therefore, the original sample data were reported and should be used by the data user.

Calibration

Volatile

The %RSDs, %Ds and response factors in all initial and continuing calibrations were within the control limits with the exception of %D for chloroethane in continuing calibration analyzed on 12-09-99 @ 11:34. This compound was not detected in the corresponding samples (SS-1R, SS-2, SS-3, MW-5, SB-8, SB-4, SB-3, DUP-1, SS-4 & CB-1). The non-detected values were qualified "UJ" on form Is.

Semivolatile

All %RSDs were within the Region II data validation control limits. The following %Ds and response factors were above control limits.

Compound Name	CC 12-23-99	CC 12-28-99	CC 12-29-99
Hexachlorocyclopentadiene 2,4-Dinitrophenol 4,6-Dinitro-2-methylphenol	46.1 83.1* 72.7*	45.2	63.2
4-Nitrophenol		25.9	33.3
Associated Samples:	SB-2 SS-1R SS-2 SS-4 MW-5 SB-8 SB-4 SB-3	SB-7 MW-6 SS-3 DUP-1 SB-2 MS SB-2 MSD	SB-I CB-1 DUP-2

Data Usability for Albion Lab ID 7099-3090A

* The response factor was below the control limit of 0.05 established in Region II Guidelines. This compound was not detected in the corresponding samples. The non-detected values were contractually rejected.

The positive results and non-detected values for the compounds with %D outliers were qualified estimated.

Pesticide/PCB

The % RSDs for all compounds were within the control limits. The %Ds for 4,4'-DDT (47.5%) & methoxychlor (35%) in INDA analyzed on 12-21-99 @ 15:29 and decachlorobiphenyl (27.5%) in INDB analyzed on 12-21-99 @ 16:06 were above 25% control limits. The data were not impacted since these standards were analyzed at the end of the sequence.

Blank Analysis

Volatile

The laboratory blanks analyzed at low concentration had acetone and 2-butanone at maximum levels of (8 ug/kg) and (3 ug/kg) respectively. Also, medium level blank analysis had methylenechloride (260 ug/kg), acetone (1400 ug/kg), 2-butanone (520 ug/kg) and toluene (37 ug/kg) at levels below 2 X CRQLs. The reported sample data were qualified "U" and should be considered as the laboratory artifacts. Also, siloxane, unknowns and butylated hydroxytoluene were reported as TIC. The reported sample results for these compounds were rejected in the samples. Trip blank and/or field equipment blanks were not analyzed with this batch of sample.

Semivolatile

The laboratory blank had phenanthrene (10 ug/kg), di-n-butylphthalate (15 ug/kg), fluoranthene (6 ug/kg), pyrene (10 ug/kg), di-n-octylphthalate (5 ug/kg), bis (2-ethylhexyl)phthalate (42 ug/kg) and several PAH at levels below the CRQLs. The corresponding sample results were elevated to the CRQLs and qualified "U".

Pesticide/PCB

The laboratory preparation blank extracted on 12-03-99 had methoxychlor (0.94 ug/kg). The reported sample results were elevated to the corresponding CRQLs and qualified "U" due to the laboratory artifact.

Matrix Spike/ Spike Duplicate Analysis

Volatile

Matrix spike/spike duplicate analysis was performed on samples SB-2 for low level analysis. The recoveries for all five spiking compounds were below the QC limits in MS

& MSD samples. However, the RPDs were within the control limits. The data were not qualified based on the recovery outliers since these recoveries were above 10% for all compounds. A MS/MSD analysis was not provided for medium level of analysis.

Semivolatile

The recoveries for all spike compounds were within the control limits with the exception of pyrene (20/20%) in MS/MSD samples. The data were not qualified based on these outlier since the recoveries were above 10%.

Pesticide/PCB

The spike analysis was performed on samples SB-2 & SS-4. The matrix spike recoveries could not be evaluated due to the possible matrix interference.

Laboratory Control Sample

The blank spike and laboratory check standards were analyzed for all fractions. The recoveries were within the control limits with the exception of the following.

Volatile

The blank spike and QC check standard were analyzed for medium level analysis. The recoveries in blank spike were within the control limits. However, up to seventeen compounds had recoveries outside the control limits established by laboratory in the QC check standard. These recoveries were above 50% with the exception of vinyl acetate (4%). This compound was not reported as a target compound. Therefore, the data were not impacted.

Instrument Performance

The analysis for all parameter performed within the analysis holding times established in the corresponding methods.

Surrogate Analysis

All organic samples were spiked with the surrogate compounds identified in the corresponding Methods. The recoveries were within the control limits with the exception of the following:

Pesticide/PCB

The recoveries for surrogate compounds analyzed on both columns were outside the control limits in all samples with the exception of samples MW-5, SB-4, SB-3. The recoveries were below 10% in samples SB-7, MW-6, SB-1, SS-4, DUP-1, SS-1R, SS-3, CB-1, and DUP-2. These samples with the exception of sample SB-7 were reextracted/reanalyzed. Similar recoveries were obtained. The reported sample data were considered biased low and were qualified estimated on forms I.

Internal Standard Analysis

All volatile and semivolatile samples and the corresponding QC samples were spiked with internal standards prior to the sample analysis. The recoveries and retention times were within the control limits with the exception of the following:

Volatile

The recoveries of all three internal standards were below the lower control limits established by the laboratory in sample CB-1. This sample was reanalyzed within the holding time. The recoveries of 1,4-difluorobenzene and chlorobenzene were below the control limits in the re-analysis sample. The comparison of these two samples gave a good reproducibility. The re-analysis sample was reported and should be used by the data user due to the fewer outliers. The reported positive results and non-detected values were qualified estimated.

Duplicate Analysis

Samples SB-3 and CB-1 were duplicate of samples DUP-1 and DUP-2 respectively. The RPDs for the compounds above CRQLs were within the data validation limit of 100%.

Compound Quantitation/Identification

Volatile

All low level sample analysis was performed at one fold dilutions. Due to the high concentration of target compounds, the following samples were analyzed at the medium level with an additional dilution. The reported results were considered acceptable

Sample ID	Dilution Factor
SB-1	1
SB-2	5

Semivolatile

The following samples were initially analyzed at higher dilutions.

Sample ID	Dilution Factor
SB-7	5
MW-6	2
SB-1	20
SB-2	4
SB-2 MS	4
SB-2MSD	4
SS-3	2
CB-1	10
DUP-2	4

Data Usability for Albion Lab ID 7099-3090A Page 6

The reported sample data for samples SB-1 and CB-1 that were analyzed at dilution above five folds were qualified estimated.

Pesticide/PCB

The chromatogram for all samples demonstrated an interference and column/detector saturation problem. The reported positive results and non-detected values have been qualified estimated due to the surrogate outliers in these samples. Additional qualifier codes was not applied.

Data Package Completeness

Volatile

The spectra for three TICs in blank VBLKKZ were missing. The data quality was not impacted. However, these documents must be submitted by the laboratory.

Semivolatile

The form I TIC (Page 977) for sample SB-4 was missing. This form was found in data summary section. Therefore, the data were not impacted.

INORGANIC ANALYSES

All samples were analyzed for the TAL metals, cyanide and Total Organic Carbons within the holding time.

Calibration Analysis

All recoveries in initial and continuing calibrations were within the control limits with the exception of Tl (115.8%) in initial calibration analysis. The positive results were qualified estimated.

Contract Required Detection Limits

The CRDL recoveries for Pb (154/122%), Se (54.6%), Ag (77.3%) and Tl (21.5/73.1%) were outside the data validation control limits of 80-120%. The positive results up to 3XCRDL for Pb, and positive results & non-detected values for Se, Ag and Tl were qualified estimated.

Blank Analysis

The preparation blank had the following contamination at levels below the CRDLs. The reported sample results up to the action levels (5X the blank level) were qualified "U" and should be considered as laboratory artifacts.

Analyte	Blank Level mg/kg	Action Level mg/kg
Sb	2.5	12.5
Cu	0.24	1.2
Fe	18,9	94.5
K	60.1	300.1
Na	413.8	206.9
Zn	3.0	15

ICP Interference Check Sample

The recoveries for all analytes in initial ICS samples and Sb, Cu & Tl in final ICS sample were outside the control limits. The laboratory case narrative did not indicate this problem. The reported sample results and non-detected values for all analytes were considered estimated and qualified J & UJ.

MATRIX SPIKE/DUPLICATE ANALYSES

Due to the matrix interference and/or the laboratory analysis problems, the matrix spike recoveries for Sb (46.3%), and Cu (53.9%) in metal analysis and TOC (59.7%) in inorganic analysis were outside the requirement limits of 75-125%. The positive results and non-detected values for these analytes were qualified estimated. The post digestion spike sample analysis was performed for antimony and copper. The recoveries were within the control limits that indicated the possible matrix effect.

DUPLICATE ANALYSIS

The RPDs in laboratory duplicate analysis were within the control limits with the exception of Pb (31.6%). The results for lead were not impacted since the RPDs were within the data validation control limits.

Two sets of field duplicate samples SB-3/DUP-1 & CB-1/DUP-2 were analyzed for this batch. The RPDs for both sets of field duplicate samples were within the data validation control limit of 100%.

LABORATORY CONTROL SAMPLE

The recovery for LCS sample was within the control limits. Also, the recoveries for the inorganic parameters were within the control limits of 80-120%.

SERIAL DILUTION ANALYSIS

The %Ds for all metals were within the control limits.

DATA PACKAGE COMPLETENESS

Data package completeness was satisfactory. However, the data for TOC was not flagged with "N" as required by the Method.

SUMMARY

The data package assembly was satisfactory. All metals were analyzed by ICP, with the exception of mercury. The major problem with the exception of initial ICS analysis was not encountered in the sample analysis. The minor issues (contamination, recovery outliers in CRDL and matrix spike sample and RPD outlier in laboratory duplicate analyses) have been discussed. The reported sample data were qualified for all analytes due to the recovery outliers in ICS sample.

DATA USABILITY SUMMARY ALBION

CASE ID No.: 7099-3090A

CHENT ID	PARAMETERS						
	VOA	SVOA	Pest/PCB	Metals	Inorganic		
SB-7	\mathbf{A}^1	A^2, J^4	J ⁶	J ⁸⁻¹²	A, J^{13}		
MW-6	A^1	A^2, J^4	J ₆	J ⁸⁻¹²	$A J^{13}$		
SB-1	\mathbf{A}^1	$A^2, J^{4,5}$	J^6	J ⁸⁻¹²	A, J ¹³		
SB-2	A^1	R, A^2, J^3	A, J^7	J ⁸⁻¹²	A, J^{13}		
SS-1R	A^1, J^1	R, A^2, J^3	J_6	$J^{8-\overline{12}}$	A, J^{13}		
SS-2	A^1, J^1	R, A^2, J^3	A, J^7	$J^{8-\overline{12}}$	A, J^{13}		
SS-3	A^1, J^1	A^2, J^4	J_6	J ⁸⁻¹²	A, J^{13}		
SS-4	A^1, J^1	R, A^2, J^3	J^6	J ⁸⁻¹²	A, J ¹³		
MW-5	A^1, J^1	R, A^2, J^3	A, J^7	J ⁸⁻¹²	A, J^{13}		
SB-8	A^1, J^1	R, A^2, J^3	A, J^7	J ⁸⁻¹²	A, J^{13}		
SB-4	A^1, J^1	R, A^2, J^3	A^3, J^7	J ⁸⁻¹²	A, J ¹³		
SB-3	A^1, J^1	R, A^2, J^3	A, J^7	J ⁸⁻¹²	A, J^{13}		
DUP-1	A^1, J^1	A^2, J^4	J^6	J. ⁸⁻¹²	A, J^{13}		
CB-1	$A^1, J^{1,2}$	$A^2, J^{4,5}$	J^6	J ⁸⁻¹²	A, J^{13}		
DUP-2	\mathbf{A}^1	A^2, J^4	J ⁶	J ⁸⁻¹²	A, J^{13}		

- A= Accept the sample results as reported.
- A¹ = The results for compounds detected in the corresponding laboratory blank (acetone, 2-butanone,methylenechloride and toluene) at the comparable levels were qualified "U" and should be considered as non-detected values.
- A^2 = The sample results below the CRQLs for phenanthrene, di-n-butylphthalate, fluoranthene, pyrene, bis(2-ethylhexyl) phthalate and di-n-octylphthalatephenol, (method blank contamination) were elevated to the CRQLs and qualified "U".
- A^3 = The result for methoxychlor were qualified "U" due to the laboratory blank contamination.
- A⁴⁼ The reported sample results up to action levels for Sb and Na were qualified "U".
- J¹= The reported data for chloroethane was qualified estimated since the %D in continuing calibration was above 25%.
- \tilde{J}^2 The reported data were qualified estimated due to internal standard outlier.

Table Cont.

- J³ Estimated the positive results "J" & non-detected values "UJ" since the %Ds for hexachlorocyclopentadiene 25% in continuing calibrations.
- J⁴= Estimated the positive results "J" & non-detected values "UJ" since the %Ds for 4-nitrophenol and hexachlorocyclopentadiene were above 25% in continuing calibrations.
- J⁵= Estimated the positive results "J" & non-detected values "UJ" since the dilution factor was above 5 fold dilution.
- J⁶= Estimated the positive results "J" & non-detected values "UJ" due to the surrogate recovery outlier and possible interference. The reported data were considered biased low.
- J^{7} = The positive results were qualified estimated since the %D for the results reported on two different columns was above 25%.
- J⁸= Due to the ICS outliers all results and non-detected values were qualified estimated.
- J⁹ Estimate the positive results for Tl since the recovery was above 110% in initial calibrations.
- J¹⁰ The positive results for Pb up to 3x CRDLs were qualified estimated since the CRDL recovery was above 120%.
- J¹¹ The positive results for Tl, Ag & Se up to 3x CRDLs and non-detected values were qualified estimated since the CRDL recovery was below 80%.
- J¹² Estimate the reported data for Sb and Cu since the recoveries were below 75% in matrix spike sample.
- J¹³= Estimate the positive results and non-detected values for TOC since the spike recovery was below 75%.
- R= Reject the non-detected values for 2,4-dinitrophenol and 4,6-dinitro-2-methylphenol since the response factors in continuing calibration were below 0.05 control limit.

Appendixes

- 1. Appendix A- Glossary of Data Qualifier
- 2. Appendix B- Laboratory Form I, & Applied Qualifier Codes

Appendix A Glossary of Data Qualifier

GLOSSARY OF DATA QUALIFIERS

CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS.

 [Substantially is equivalent to a result less than 10 times the blank level for common contaminants (methylene chioride, acetone and 2- butanone in the VOA analyses, and common phthalates in the BNA analyses, along with tentatively identified compounds) or less than 5 times the blank level for other target compounds.]
- R = UNUSABLE RESULT. THE PRESENCE OR ABSENCE OF THIS ANALYTE CANNOT BE VERIFIED. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- N = NEGATED COMPOUND. THERE IS PRESUMPTIVE EVIDENCE TO MAKE A TENTATIVE IDENTIFICCATION.

CODES RELATING TO QUATITATION

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE WAS POSITIVELY IDENTIFIED. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- UJ = ANALYTE WAS NOT DETECTED. THE REPORTED QUATITATION LIMIT IS QUALIFIED ESTIMATED.

OTHER CODES

Q = NO ANALYTICAL RESULT.

Appendix B
Laboratory Reported Results
&
Applied Qualifier Codes

1A

NYSDEC SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

				SB-7
Lab	Name:	STL/CT	Contract:	<u> </u>

Matrix: (soil/water) SOIL Lab Sample ID: 993090A-02

Sample wt/vol: 5 (q/mL)G Lab File ID: >K8060

Level: (low/med) LOW Date Received: 12/01/99

% Moisture: not dec. 10 Date Analyzed: 12/08/99

GC Column: 007-624 ID: 0.53 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg)UG/KG 11 U 74 - 87 - 3Chloromethane Bromomethane 11 Ū 74-83-9 75-01-4 Vinyl Chloride 11 U Chloroethane Ū 11 75-00-3

Methylene Chloride 11 -5-75-09-2 30 7- 67-64-1 Acetone ' 11 TT 75-15-0 Carbon Disulfide 11 Ū 75-35-4 1,1-Dichloroethene 1,1-Dichloroethane Ū 75-34-3 11 1,2-Dichloroethene (total) Ū 540-59-0 67-66-3 Chloroform Ū 1,2-Dichloroethane 107-06-2 112 JB 2-Butanone 78-93-3 1,1,1-Trichloroethane ŢŢ 71-55-6 11 Ū 56-23-5 Carbon Tetrachloride 11 Ū 75-27-4 11 Bromodichloromethane 1,2-Dichloropropane U 78-87-5 cis-1,3-Dichloropropene 10061-01-5 79-01-6 Trichloroethene Dibromochloromethane 124-48-1 1,1,2-Trichloroethane 11 79-00-5 71-43-2 Benzene trans-1,3-Dichloropropene 10061-02-6 75-25-2 Bromoform IJ 4-Methyl-2-Pentanone 108-10-1

U

Ū

Ū

ŢΪ

Ū

(8)

11

7.87

Τĺ

2-Hexanone

Toluene

Styrene

Ethylbenzene

Tetrachloroethene

Chlorobenzene

Xylene (total)

1,1,2,2-Tetrachloroethane

591-78-6

127-18-4

79-34-5

108-88-3

108-90-7

100-41-4

100-42-5

1330-20-7

1E

NYSDEC SAMPLE NO

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

TENTATIVELY	IDENTIFIED	COMPOUNDS	ļ
			QB_7

			SB-/
Lab Name:	STL/CT	Contract:	<u></u>

Lab Code: IEACT Case No.: 3090A SAS No.: ____ SDG No.: A3090

Matrix: (soil/water)SOIL Lab Sample ID: 993090A-02

Sample wt/vol: 5 (g/mL)G Lab File ID: >K8060

Level: (low/med) LOW Date Received: 12/01/99

% Moisture: not dec. 10 Date Analyzed: 12/08/99

GC Column: 007-624 ID: 0.53 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Number TICs Found: 3

THANKS I TIES TO				
ÇAS NUMBER	COMPOUND NAME	RT	EST. CONC.	- · · Q ·
01.128-37-0	BUTYLATED HYDROXYTOLUENE	22.40	49	JN
02.556-67-2	CYCLOTETRASILOXANE, OCTAMETH	20.59	10	JN
03.	UNKNOWN SILOXANE	22.62	- 9	JN JN
04.				
05.				
06.		<u> </u>		
07.		·	-	
08.		<u> </u>	<u> </u>	
09. 10.		 		
11.		<u> </u>		
12.		 -		
13.		 		
14.				
15.				<u> </u>
16.	,			
17.		 	 	
18.		-		
19.				
20.				
21.				
22.			`	
23.		ļ. <u> </u>		
24.				
25.		<u> </u>		
26.		ļ ·		
27.				
28.			ļ	
29. 30.		<u></u>		
30.	<u> </u>	<u> </u>	l	

NYSDEC SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Nam	e:	STL	CT/
---------	----	-----	-----

Contract: _____

Matrix: (soil/water) SOIL

Lab Sample ID: 993090A-02

Sample wt/vol:

5 (g/mL)G

Lab File ID: >K8060

Level: (low/med) LOW

Date Received: 12/01/99

% Moisture: not dec. 10

Date Analyzed: 12/08/99

GC Column: 007-624 ID: 0.53 (mm)

Dilution Factor: 1.0

- Soil Extract Volume: ____(uL)

Soil Aliquot Volume: ____(uL)

Number TICs Found: 3

CONCENTRATION UNITS: (ug/L or ug/Kg)UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST.	CONC.	Q	D
01.128-37-0	BUTYLATED HYDROXYTOLUENE	22.40		49	JN	R
02.556-67-2	CYCLOTETRASILOXANE, OCTAMETH	20.59		10	JM	1
03.	UNKNOWN SILOXANE	22.62		9	ستلد	R
04.						` `
05.						
06.						
07.						
08.						
09.						
10.						
11.						
12.						
13.		<u> </u>				
14.						
15.			ļ <u>-</u>			
16.						
17.			-			
19.			<u> </u>			
20.						
21.						
22.						
23.						
24.			 			
25.						
26.						
27.						
28.						
29.						
30.			{			

NYSDEC SAMPLE NO. 1A

VOLATILE	ORGANICS	ANALYSIS	DATA	SHEET
----------	----------	----------	------	-------

			MW-6
Lab Name:	STL/CT	Contract:	

Lab Code: IEACT Case No.: 3090A SAS No.: ____ SDG No.: A3090

Matrix: (soil/water)SOIL Lab Sample ID: 993090A-03

Sample wt/vol: (g/mL)G. Lab File ID: >K8065

Level: (low/med) LOW Date Received: 12/01/99

% Moisture: not dec. 12 Date Analyzed: 12/08/99

GC Column: 007-624 ID: 0.53 (mm) Dilution Factor: 1.0

Soil Aliquot Volume: ____(uL) -Soil Extract Volume: ____(uL)

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

	GL 3		
74-87-3	Chloromethane	11	U
74-83-9	Bromomethane	11	U
75-01-4	Vinyl Chloride	11	U
75-00-3	Chloroethane	11	Ū
75-09-2	Methylene Chloride	11 (2)	J
67-64-1	Acetone	21	·B
75-15-0	Carbon Disulfide	11	Ū
75-35-4	1,1-Dichloroethene	11	Ū
75-34-3	1,1-Dichloroethane	11	Ū
540-59-0	1,2-Dichloroethene (total)	11	U
67-66-3	Chloroform	11	Ū
107-06-2	1,2-Dichloroethane	11	Ü
78-93-3	2-Butanone	113	JB
71-55-6	1,1,1-Trichloroethane	11	Ū
56-23-5	Carbon Tetrachloride	11	Ū
75-27-4	Bromodichloromethane	11	Ū
78-87-5	1,2-Dichloropropane	11	Ū
10061-01-5	cis-1,3-Dichloropropene	11	Ū
79-01-6	Trichloroethene	.7	/Ĵ)
124-48-1	Dibromochloromethane	11	T T
79-00-5	1,1,2-Trichloroethane	11	U
71-43-2	Benzene	11	Ū
10061-02-6	trans-1,3-Dichloropropene	11	Ū
75-25-2	Bromoform	11	Ū
108-10-1	4-Methyl-2-Pentanone	11	U
591-78-6	2-Hexanone	11	Ū
127-18-4	Tetrachloroethene	11	Ū
79-34-5	1,1,2,2-Tetrachloroethane	11	Ū
108-88-3	Toluene	.6	- 757
108-90-7	Chlorobenzene	11	- G
100-41-4	Ethylbenzene	11	- ŭ
100-42-5	Styrene	11	- ŭ
1330-20-7	Xylene (total)	11	Ū

AL
THE CHARLES OF THE TO

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name:	STL/CT		Contract:	
Lab Code:	IEACT	Case No.: 3090A	SAS No.:	SDG No.: A3090
Matrix: (s	soil/water)SOIL	Lab Samp	le ID: 993090A-03

Sample wt/vol: 5 (g/mL)G Lab File ID: >K8065

Level: (low/med) LOW Date Received: 12/01/99

% Moisture: not dec. 12 Date Analyzed: 12/08/99

GC Column: 007-624 ID: 0.53 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg)UG/KG Q

74-87-3	Chloromethane	1:1	U
74-83-9	Bromomethane	11	Ū
75-01-4	Vinvl Chloride	11	Ū
75-01-4	Chloroethane		Ū
75-00-3	Methylene Chloride	11 (2)	J
67-64-1	Acetone	21	. B
75-15-0	Carbon Disulfide	11	Ū
75-35-4	1,1-Dichloroethene	11	Ū
75-34-3	1,1-Dichloroethane		- Ū
540-59-0	1,2-Dichloroethene (total)		- Ŭ -
67-66-3	Chloroform		Ŭ
107-06-2	1,2-Dichloroethane	11	<u></u>
	· · · · · · · · · · · · · · · · · · ·	113	JB
78-93-3	2-Butanone		U U
71-55-6	1,1,1-Trichloroethane		-
56-23-5	Carbon Tetrachloride		- U
75-27-4	Bromodichloromethane		 U
78-87-5	1,2-Dichloropropane		<u>U</u>
10061-01-5	cis-1,3-Dichloropropene	.7	
79-01-6	Trichloroethene		- (0,
124-48-1	Dibromochloromethane	11	 U
79-00-5	1,1,2-Trichloroethane	111	- U
71-43-2	Benzene	<u>-+ </u>	 U
10061-02-6	trans-1,3-Dichloropropene		
75-25-2	Bromolorm	11	 U
108-10-1	4-Methyl-2-Pentanone		<u>Ŭ</u>-
591-78-6	2-Hexanone	11	 U
127-18-4	Tetrachioroethene .	11	 U
79-34-5	1,1,2,2-Tetrachloroethane	11	
108-88-3	Toluene	.6	/J /
103-90-7	Chloropenzene		
100-41-4	Ethylbenzene	11	Ū
100-42-5	Styrene	11	Ū
1330-20-7	Xvlene (total)	11	Ū

NYSDEC SAMPLE NO.

NYSDEC SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

TENTATIVELY	IDENTIFIED	COMPOUNDS

				MW-6
Lab	Name:	STL/CT	Contract:	

Matrix: (soil/water) SOIL Lab Sample ID: 993090A-03

Lab File ID: >K8065 Sample wt/vol: 5 (g/mL)G

Date Received: 12/01/99 Level: (low/med) LOW

% Moisture: not dec. 12 Date Analyzed: 12/08/99

GC Column: 007-624 ID: 0.53 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg)UG/KG Number TICs Found: 1

CAS NUMBER	COMPOUND NAME	RT	EST.	CONC.	Q	0
01.	UNKNOWN SILOXANE	22.55		31	استي.	R
02.						
03.						
04.						
05.						
06.						
07.					<u> </u>	
08.					<u> </u>	
09.			**		<u> </u>	
10.			 			
11.			<u> </u>		<u> </u>	
12.			-			
13.				· · · · · · · · · · · · · · · · · · ·	 	
14.					 	
15.			-			
16. 17.						
18.			<u> </u>			
19		- 	 		 	
19. 20.		 	<u> </u>			
21.		<u> </u>	<u> </u>		i	
22.			 			
23.		 	<u> </u>			
24.		+				
25.						
26.						
27.						
28.						
28. 29.						
30						

1A NYSDEC SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: STL/CT Contract: ______

Matrix: (soil/water) SOIL Lab Sample ID: 993090A-04

Sample wt/vol: 4 (g/mL)G Lab File ID: >06792

Level: (low/med) MED Date Received: 12/01/99

% Moisture: not dec. 16 Date Analyzed: 12/07/99

GC Column: 007-624 ID: 0.53 (mm) Dilution Factor: 1.0

CAS NO.

COMPOUND

Soil Extract Volume: 10000 (uL) Soil Aliquot Volume: 100 (uL)

CONCENTRATION UNITS: (ug/L or ug/Kg)UG/KG

		01 49/119/00/110				
\						
74-87-3	Chloromethane	1400	U			
74-83-9	Bromomethane	1400	Ū			
75-01-4	Vinyl Chloride	1400	U			
75-00-3	Chloroethane	1400	Ū			
75-09-2	Methylene Chloride	1400 130	J			
67-64-1	Acetone	2200				
75-15-0	Carbon Disulfide	110	<u>D</u>			
75-35-4	1,1-Dichloroethene	1400	Ü			
75-34-3	1,1-Dichloroethane	1400	Ū			
540-59-0	1,2-Dichloroethene (total)	1400	Ū			
67-66 - 3	Chloroform	1400	Ū			
107-06-2	1,2-Dichloroethane	1400	Ű			
78-93-3	2-Butanone	1800	B			
71-55-6	1,1,1-Trichloroethane	1400	Ū			
56-23-5	Carbon Tetrachloride	1400	Ū			
75-27-4	Bromodichloromethane	1400	Ū			
78-87-5	1,2-Dichloropropane	1400	Ū			
10061-01-5	cis-1,3-Dichloropropene	1400	 0			
79-01-6	Trichloroethene	69	Ĵ			
124-48-1	Dibromochloromethane	1400	Ŭ (
79-00-5	1,1,2-Trichloroethane	1400	Ū (
71-43-2	Benzene	760	(J)			
10061-02-6	trans-1,3-Dichloropropene	1400	Ŭ			
75-25-2	Bromoform	1400	Ū			
108-10-1	4-Methyl-2-Pentanone	1400	Ū			
591-78-6	2-Hexanone	1400	Ū			
127-18-4	Tetrachloroethene	1400	Ū			
79-34-5	1,1,2,2-Tetrachloroethane	1400	ŭ			
108-88-3	Toluene	560	15)			
108-90-7	Chlorobenzene	1400	- 6			
100-41-4	Ethylbenzene	520	<u>3</u>			
100-42-5	Styrene	1400	-18 -1 1			
1330-20-7	Xvlene (total)	2900	- -			

Q

1E

NYSDEC SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

TENTATIVELY IDENTIFIED COMPOUNDS

					SB-1
Lab	Name:	STL	/CT	Contract:	

Lab Code: IEACT Case No.: 3090A SAS No.: ____ SDG No.: A3090

Lab Sample ID: 993090A-04 Matrix: (soil/water)SOIL

Sample wt/vol: (g/mL)G Lab File ID: >06792

Level: (low/med) MED Date Received: 12/01/99

Date Analyzed: 12/07/99 % Moisture: not dec. 16

GC Column: 007-624 ID: 0.53 (mm) Dilution Factor: 1.0

Soil Aliquot Volume: 100 (uL) Soil Extract Volume: 10000 (uL)

CONCENTRATION UNITS: (ug/L or ug/Kg)UG/KG Number TICs Found: 6

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01.	UNKNOWN C3 ALKYLBENZENE UNKNOWN ALKANE	21.38	2500 1500	. J
02.	UNKNOWN C3 ALKYLBENZENE	20.71	1200	J
04.	UNKNOWN	23.03	1100	J
05.	UNKNOWN C3 ALKYLBENZENE	20.55	830	J
06.	UNKNOWN ALKANE	20.41	820	J
07.		,		
08.				
10.				
11.				
12.				
13.				
14.		ļ		
15. 16.				
17.				
18.				
19.				
20.				
21.				i
22. 23.				
24.				
25.			-	
26.				
27.				
28.				
29.				
30.			<u> </u>	

1A NYSDEC SAMPLE NO.

Lab Name: STL/CT Contract: ______ SB-2

Matrix: (soil/water) SOIL Lab Sample ID: 993090A-05

Sample wt/vol: 4 (g/mL)G Lab File ID: >06858

Level: (low/med) MED Date Received: 12/03/99

% Moisture: not dec. 13 Date Analyzed: 12/09/99

GC Column: 007-624 ID: 0.53 (mm) Dilution Factor: 1.0

Soil Extract Volume: 10000 (uL) Soil Aliquot Volume: 20 (uL)

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

r				ī
74-87-3	Chloromethane	6900	Ū	
74-83-9	Bromomethane	6900	Ū	
75-01-4	Vinyl Chloride	6900	Ū	
75-00-3	Chloroethane	6900	Ū	1
75-09-2	Methylene Chloride	6900 500	JB	10
67-64-1	Acetone	6900 2400	JB	ار
75-15-0	Carbon Disulfide	6900	Ū	1
75-35-4	1,1-Dichloroethene	340	(Ĵ)	İ
75-34-3	1,1-Dichloroethane	6900	Ū	j
540-59-0	1,2-Dichloroethene (total)	6900	Ū	l
67-66-3	Chloroform	6900	Ū	
107-06-2	1,2-Dichloroethane	6900	Ū.	
78-93-3	2-Butanone	6400 3300	JB-	i
71-55-6	1,1,1-Trichloroethane	6900	Ū	1
56-23-5	Carbon Tetrachloride	6900	Ū	
75-27-4	Bromodichloromethane	6900	Ū	ł
78-87-5	1,2-Dichloropropane	6900	Ū	
10061-01-5	cis-1,3-Dichloropropene	6900	Ų	
79-01-6	Trichloroethene	390	(J)	1
124-48-1	Dibromochloromethane	6900	Ū	
79-00-5	1,1,2-Trichloroethane	6900	Ŭ	ĺ
71-43-2	Benzene	1400	(Ĵ)	
10061-02-6	trans-1,3-Dichloropropene	6900	Ū	l
75-25-2	Bromoform	6900	Ū	l
108-10-1	4-Methyl-2-Pentanone	6900	Ū	
591-78-6	2-Hexanone	6900	Ū	ĺ
127-18-4	Tetrachloroethene	6900	Ū	ĺ
79-34-5	1,1,2,2-Tetrachloroethane	6900	ų l	
108-88-3	Toluene	1600	(Ĵ)	ĺ
108-90-7	Chlorobenzene	500		
100-41-4	Ethylbenzene	3200		ĺ
100-42-5	Styrene	6900	ŭ	ĺ
1330-20-7	Xvlene (total)	20000	1)	,

1E

NYSDEC SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

TENTATIVELY IDENTIFIED COMPOUNDS			
	ע. זיםעדיי בייואיםיי	TDENTTETED	COMPOUNDS

	SB-2
Contract:	

Lab	Name:	STL/CT				Contract:			
Lab	Code:	IEACT	Case	No.:	3090A	SAS No.:	SDG N	To.: A30	90

Lab Sample ID: 993090A-05 Matrix: (soil/water) SOIL

Lab File ID: >06858 Sample wt/vol: $4 \qquad (g/mL)G$

Date Received: 12/03/99 Level: (low/med) MED

Date Analyzed: 12/09/99 % Moisture: not dec. 13

Dilution Factor: 1.0 GC Column: 007-624 ID: 0.53 (mm)

Soil Extract Volume: 10000 (uL) Soil Aliquot Volume: 20 (uL)

> CONCENTRATION UNITS: (ug/L or ug/Kg)UG/KG

Number TICs Found: 11

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q.
01.	UNKNOWN C3 ALKYLBENZENE	21.35	16000	J
02.	UNKNOWN ALKANE	22.42	12000	J
03.	UNKNOWN ALKANE	20.36	10000	J
04.	UNKNOWN C3 ALKYLBENZENE	20.66	8000	J
05.	UNKNOWN C9H8 ISOMER	23.00	7700	J
06.	UNKNOWN C3 ALKYLBENZENE	20.52	6500	J
07.	UNKNOWN ISOMER OF METHYL NAP	29.69	6400	J
08.	UNKNOWN ISOMER OF METHYL NAP	30.35	5100	J
09.	UNKNOWN C9H10 ISOMER	22.55	4700	. J
10.	UNKNOWN C3 ALKYLBENZENE	22.12	4000	J
11.	UNKNOWN ALKANE	20.88	3700	J
12.				
13.				
14.				
15.				
16.			·	
17.				
18.				
19.				
20.				
21.				
22.	· · · · · · · · · · · · · · · · · · ·	· ·		
23.				
24.				
25.	· ·	<u>. </u>		
26.				
27.	·			
28.		•		
29.				
30				

1A NYSDEC SAMPLE NO.

VOLATILE ORGANICS ANAL	YSIS	DATA	SHEET
------------------------	------	------	-------

				SS-1R
Lab	Name:	STL/CT	Contract:	

Matrix: (soil/water)SOIL Lab Sample ID: 993090A-06

Sample wt/vol: 5 (g/mL)G Lab File ID: >K8086

Level: (low/med) LOW Date Received: 12/03/99

% Moisture: not dec. 26 Date Analyzed: 12/09/99

GC Column: 007-624 ID: 0.53 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CAS NO. COMPOUND CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/KG Q

[7	l
74-87-3	Chloromethane	14	U	
74-83-9	Bromomethane	14	U	ĺ
75-01-4	Vinyl Chloride	14	Ū	
75-00-3	Chloroethane	14	. #	U
75-09-2	Methylene Chloride	195	J	U
67-64-1	Acetone	29	B- 1	U
75-15-0	Carbon Disulfide	14	U	İ
75-35-4	1,1-Dichloroethene	14	Ū	l
75-34-3	1,1-Dichloroethane	14	Ū	i
540-59-0	1,2-Dichloroethene (total)	14	Ū	l
67-66-3	Chloroform	14	Ū	ı
107-06-2	1,2-Dichloroethane	14	Ū	
78-93-3	2-Butanone	144	!!	U
71-55-6	1,1,1-Trichloroethane	14	Ū	
56-23-5	Carbon Tetrachloride	14	Ū	
75-27-4	Bromodichloromethane	14	Ū.Ū	
78-87-5	1,2-Dichloropropane	14	Ū	
10061-01-5	cis-1,3-Dichloropropene	14	Ŭ.	
79-01-6	Trichloroethene	2	(J)	
124-48-1	Dibromochloromethane	14	Ū	
79-00-5	1,1,2-Trichloroethane	14	Ŭ.	
71-43-2	Benzene	.3	(J)	
10061-02-6	trans-1,3-Dichloropropene	14	U	
75-25-2	Bromoform	14	Ū	
108-10-1	4-Methyl-2-Pentanone	14	Ū	
591-78-6	2-Hexanone	14	Ū	
127-18-4	Tetrachloroethene	.9	(J)	
79-34-5	1,1,2,2-Tetrachloroethane	14	Ţ	
108-88-3	Toluene	.7	J	
108-90-7	Chlorobenzene	14	Ţ	
100-41-4	Ethylbenzene	. 3	5	
100-42-5	Styrene	14	Ţ	
1330-20-7	Xylene (total)	.5	(Ĵ)	

VOLATILE ORGANICS ANALYSIS DATA SHEET

TENTATIVELY IDENTIFIED COMPOUNDS

	SS-1R	
Contract:	L	

Lab Code:	TEACT	Case No.:	3090A	SAS No.:	SDG No.: A3090

Lab Sample ID: 993090A-06 Matrix: (soil/water)SOIL

Lab File ID: >K8086 Sample wt/vol: 5 (g/mL)G

Date Received: 12/03/99 Level: (low/med) LOW

% Moisture: not dec. 26 Date Analyzed: 12/09/99

GC Column: 007-624 ID: 0.53 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg)UG/KG

Number TICs Found: 2

Lab Name: STL/CT

CAS NUMBER	COMPOUND NAME	RT	EST.	CONC.	, Q
01.128-37-0	BUTYLATED HYDROXYTOLUENE	22.38		59	FN
02.	UNKNOWN SILOXANE	22.59		8	J
03.		,		_	
05.					
06.					
07. 08.				_	
09.					
10.					
11. 12.			-		
13.					
14.					
15. 16.			<u> </u>		
17.					
18.					
19.	-:-				
21.				_	
22.					
23. 24.			<u> </u>		
25.					
26.					
27.					
28.					
30.					

1A NYSDEC SAMPLE NO. VOLATILE ORGANICS ANALYSIS DATA SHEET _______

			SS-2	1
Lab Name:	STL/CT	Contract:		

Matrix: (soil/water) SOIL Lab Sample ID: 993090A-07

Sample wt/vol: 5 (q/mL)G Lab File ID: >K8087

Level: (low/med) LOW Date Received: 12/03/99

% Moisture: not dec. 19 Date Analyzed: 12/09/99

GC Column: 007-624 ID: 0.53 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg)UG/KG

			7	ı
74-87-3	Chloromethane	12	U	
74-83-9	Bromomethane	12	U	i
75-01-4	Vinyl Chloride	12	Ū	
75-00-3	Chloroethane	12	¥-	O_{j}
75-09-2	Methylene Chloride	125		U
67-64-1	Acetone	37	B	U
75-15-0	Carbon Disulfide	12	Ū	
75-35-4	1,1-Dichloroethene	12	U	
75-34-3	1,1-Dichloroethane	12	Ū	
540-59-0	1,2-Dichloroethene (total)	12.	U	
67-66-3	Chloroform	12	Ū	
107-06-2	1,2-Dichloroethane	12	Ū I	
78-93-3	2-Butanone	12 5	7	U
71-55-6	1,1,1-Trichloroethane	12	Ū	
56-23-5	Carbon Tetrachloride	12	Ū	
75-27-4	Bromodichloromethane	12	Ū	
78-87-5	1,2-Dichloropropane	12	Ū	
10061-01-5	cis-1,3-Dichloropropene	12	Ţ,	
79-01-6	Trichloroethene	2	<u> </u>	
124-48-1	Dibromochloromethane	12	- U	
79-00-5	1,1,2-Trichloroethane	. 12	Ū	
71-43-2	Benzene	12	Ū	
10061-02-6	trans-1,3-Dichloropropene	12	Ū	
75-25-2	Bromoform	-12	Ū	
108-10-1	4-Methyl-2-Pentanone	12	Ū	
591-78-6	2-Hexanone	12	Ų	
127-18-4	Tetrachloroethene	.7	7,3)	
79-34-5	1,1,2,2-Tetrachloroethane	12	Ú	
108-88-3	Toluene	.4	15)	
108-90-7	Chlorobenzene	12	Ú	
100-41-4	Ethylbenzene	12	U	
100-42-5	Styrene	12	U	
1330-20-7	Xvlene (total)	12	Ū	

NYSDEC SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

THATTH ORGANI	\sim	111111111111		
TENTATIVELY	IDE	NTIFIED	COMPOU	NDS

	SS-2
Contract:	

Lab	Code: II	EACT (Case	No.:	3090A	SAS No.:	: SDG	No.:	A3090

Lab Sample ID: 993090A-07 Matrix: (soil/water)SOIL

Lab File ID: >K8087 Sample wt/vol: 5 (g/mL)G

Date Received: 12/03/99 Level: (low/med) LOW

Date Analyzed: 12/09/99 % Moisture: not dec. 19

GC Column: 007-624 ID: 0.53 (mm) Dilution Factor: 1.0

Soil Aliquot Volume: ____(uL) Soil Extract Volume: ____(uL)

> CONCENTRATION UNITS: (ug/L or ug/Kg)UG/KG

Number TICs Found: 2

Lab Name: STL/CT

			·	
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01.	UNKNOWN SILOXANE	22.57	31	3
02.128-37-0	BUTYLATED HYDROXYTOLUENE	22.42	10	JW-
03.		. "		
04.		···.		
05.			·	
06.				
07.				
08.				,
09.	·			
10.			·	
11.				
12.				
13.			·	
14.			·	
15.			·	·
16.				
17.		-		
18.				
19.				
20.				
21.				
22.				
23.		·		
24.				
25.				
26.				· · · · · · · · · · · · · · · · · · ·
27.			•	
28.	·			
29.				
30.	-			

1A NYSDEC SAMPLE NO. VOLATILE ORGANICS ANALYSIS DATA SHEET

				SS-3
Lab Name	e: STL/	'CT	Contract:	

Matrix: (soil/water)SOIL Lab Sample ID: 993090A-08

Sample wt/vol: 5 (g/mL)G Lab File ID: >K8088

Level: (low/med) LOW Date Received: 12/03/99

% Moisture: not dec. 7 Date Analyzed: 12/09/99

GC Column: 007-624 ID: 0.53 (mm) Dilution Factor: 1.0

CAS NO.

COMPOUND

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg)UG/KG

		γ -		· · · · · · · · · · · · · · · · · · ·	_1
74-87-3	Chloromethane	<i>-</i>	11.	U	
74-83-9	Bromomethane		11	Ū	1
75-01-4	Vinyl Chloride		11	Ū	-
75-00-3	Chloroethane		11	<u> स्</u>	- i
75-09-2	Methylene Chloride		11 4	J	$\exists I$
67-64-1	Acetone		14	B	╢;
75-15-0	Carbon Disulfide		11	Ū	
75-35-4	1,1-Dichloroethene		11	· Ū	
75-34-3	1,1-Dichloroethane		11	Ū	1
540-59-0	1,2-Dichloroethene (total)		11	Ū	\dashv
67-66-3	Chloroform		11	Ū	\dashv
107-06-2	1,2-Dichloroethane		11	Ū	1
78-93-3	2-Butanone		1/ 3	J	\dashv
71-55-6	1,1,1-Trichloroethane		11	Ū	1
56-23-5	Carbon Tetrachloride		11	Ŭ	1
75-27-4	Bromodichloromethane		11	Ū	1
78-87-5	1,2-Dichloropropane		11	Ū	1
10061-01-5	cis-1,3-Dichloropropene		11		1
79-01-6	Trichloroethene		.4	<u>ц</u> :J)	1
124-48-1	Dibromochloromethane	~-	11	Ú	1
79-00-5	1,1,2-Trichloroethane		11	Ū	1
71-43-2	Benzene		11	Ū	1
10061-02-6	trans-1,3-Dichloropropene	-	11	Ū	11.
75-25-2	Bromoform		11	Ū	1
108-10-1	4-Methyl-2-Pentanone		11	Ū	1
591-78-6	2-Hexanone		11	Ū	1
127-18-4	Tetrachloroethene		11	Ū	1
79-34-5	1,1,2,2-Tetrachloroethane		11	Ų	1
108-88-3	Toluene		.3	- 	1
108-90-7	Chlorobenzene		11-	- 0	1
100-41-4	Ethylbenzene		11 1	- Ū	il
100-42-5	Styrene		11	Ū	1
1330-20-7	Xviene (total)		77		ii

1E

NYSDEC SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

TENTATIVELY IDENTIFIED COMPOUNDS

SS-3

Lab Name:	STL/	CT
-----------	------	----

Contract: _____

Lab Code: IEACT Case No.: 3090A SAS No.: ____ SDG No.: A3090

Matrix: (soil/water)SOIL

Sample wt/vol: 5 (g/mL)G

Lab File ID: >K8088

Lab Sample ID: 993090A-08

Level: (low/med) LOW

Date Received: 12/03/99

% Moisture: not dec. 7

Date Analyzed: 12/09/99

GC Column: 007-624 ID: 0.53 (mm)

Dilution Factor: 1.0

Soil Extract Volume: ____(uL)

Soil Aliquot Volume: ____(uL)

Number TICs Found: 2

CONCENTRATION UNITS: (ug/L or ug/Kg)UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST.	CONC.	Q	
01.	UNKNOWN SILOXANE	22.55		12	J	R
02.	UNKNOWN SILOXANE	24.56		6	J	(-
03.						
04.			 			
05.						
06.						
08.						
09.						
10.						
11.						
12.						
13.						
14.						
15.						
16.			!			
17.			<u> </u>			
18.						
19.						
21.						
22.						
23.						
24.						
25.						
26.						
27.						
28.						
29.						
30.			L			

NYSDEC SAMPLE NO. 1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

	SS-4
ntract.	

Lab File ID: >K8097

Lab Name: STL/CT

Matrix: (soil/water)SOIL Lab Sample ID: 993090A-09

Sample wt/vol: 5 (g/mL)G

Level: (low/med) LOW Date Received: 12/03/99

% Moisture: not dec. 21 Date Analyzed: 12/09/99

GC Column: 007-624 ID: 0.53 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL) _

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg)UG/KG

			777
74-87-3	Chloromethane	13	U
74-83-9	Bromomethane	13	Ŭ
75-01-4	Vinyl Chloride	13	Ū
75-00-3	Chloroethane	13	U.
75-09-2	Methylene Chloride	13	U
67-64-1	Acetone	13.6	JB
75-15-0	Carbon Disulfide	13	Ū
75-35-4	1,1-Dichloroethene	13	Ū
75-34-3	1,1-Dichloroethane	13	Ū
540-59-0	1,2-Dichloroethene (total)	13	Ū
67-66-3	Chloroform-	13	Ū
107-06-2	1,2-Dichloroethane	13	Ü
78-93-3	2-Butanone	13	Ū
71-55-6	1,1,1-Trichloroethane	13	U
56-23-5	Carbon Tetrachloride	13	Ū
75-27-4	Bromodichloromethane	13	Ū
78-87-5	1,2-Dichloropropane	13	Ū
10061-01-5	cis-1,3-Dichloropropene	13	U
79-01-6	Trichloroethene	2	J
124-48-1	Dibromochloromethane	13	Ū
79-00-5	1,1,2-Trichloroethane	13	Ū
71-43-2	Benzene	13	Ū
10061-02-6	trans-1,3-Dichloropropene	13	Ū
75-25-2	Bromoform	13	U
108-10-1	4-Methyl-2-Pentanone	13	Ū
591-78-6	2-Hexanone	13	Ų
127-18-4	Tetrachloroethene	.8	(3)
79-34-5	1,1,2,2-Tetrachloroethane	13	Ú
108-88-3	Toluene	.5	Ĵ
108-90-7	Chlorobenzene	13	- ŭ
100-41-4	Ethylbenzene	13	Ū
100-42-5	Styrene	13	Ū
1330-20-7	Xvlene (total)	13	Ū

1E

NYSDEC SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

	SS-4	
Contract:		

Lab	Name:	STL/CT			
Lab	Code:	IEACT	Case No.: 3090A	SAS No.:	SDG No.: A3090

Matrix: (soil/water) SOIL Lab Sample ID: 993090A-09

Sample wt/vol: 5 (q/mL)GLab File ID: >K8097

Level: (low/med) LOW Date Received: 12/03/99

% Moisture: not dec. 21 Date Analyzed: 12/09/99

GC Column: 007-624 ID: 0.53 (mm) Dilution Factor: 1.0

Soil Aliquot Volume: ____(uL) Soil Extract Volume: ____(uL)

> CONCENTRATION UNITS: (ug/L or ug/Kg)UG/KG

Number TICs Found: 3

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01.	UNKNOWN SILOXANE	22.61	21	3
02.	UNKNOWN	25.28	14	J
03.	UNKNOWN SILOXANE	24.63	10	J
04.				
05.				
06.				-
07.				
08.				
09.				
10.				
11.				
12.				
13.				
14.				
15.				
16.				
17.				
18.				
19.				
20.				
21.				
22.				
23.				
24.				
25.				
26.	<u> </u>			
27.				
28.				
29. 30.				

1A NYSDEC SAMPLE NO

VOLATILE ORGANICS ANALYSIS DATA SHEET

	MW-5	
Contract.	f	

Lab Name: STL/CT

Matrix: (soil/water) SOIL Lab Sample ID: 993090A-10

Sample wt/vol: 5 (g/mL)G Lab File ID: >K8090

Level: (low/med) LOW Date Received: 12/03/99

% Moisture: not dec. 5 Date Analyzed: 12/09/99

GC Column: 007-624 ID: 0.53 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL) L

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q

				77
74-87-3	Chloromethane	10	U	
74-83-9	Bromomethane	10	l ŭ	1
75-01-4	Vinyl Chloride	10	T U	II.,
75-00-3	Chloroethane	10	F	Įυ
75-09-2	Methylene Chloride	105	7	10
67-64-1	Acetone	61	B	\
75-15-0	Carbon Disulfide	10	Ū	1
75-35-4	1,1-Dichloroethene	10	Ū	
75-34-3	1,1-Dichloroethane	10	Ū	
540-59-0	1,2-Dichloroethene (total)	10	Ū	
67-66-3	Chloroform	10	Ū	1
107-06-2	1,2-Dichloroethane	10	Ū	
78-93-3	2-Butanone	108) (
71-55-6	1,1,1-Trichloroethane	10	Ū	11
56-23-5	Carbon Tetrachloride	10	Ū	1
75-27-4	Bromodichloromethane	10	Ū	1
78-87-5	1,2-Dichloropropane	10	Ū	
10061-01-5	cis-1,3-Dichloropropene	10	ū	ı)
79-01-6	Tricaloroethene	.6	(Ū)	
124-48-1	Dibromochloromethane	10	Ü	
79-00-5	1,1,2-Trichloroethane	10	IJ,	
71-43-2	Benzene	. 7	J	l
10061-02-6	trans-1,3-Dichloropropene	10	Ũ	1.
75-25-2	Bromoform	10	Ū	
108-10-1	4-Methyl-2-Pentanone	10	Ū	
591-78-6	2-Hexanone	10	Ū	1
127-18-4	Tetrachloroethene	10	Ū	
79-34-5	1,1,2,2-Tetrachloroethane	10	Ü	İ
108-88-3	Toluene	10 3	- (li
108-90-7	Chlorobenzene	10	- 19 /	
100-41-4	Ethylbenzene	.2	Ť	
100-42-5	Styrene	10	U	
1330-20-7	Xvlene (total)	.3	ij,	

NYSDEC SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

TENTATIVELY IDENTIFIED COMPOUNDS

	MW-5
Contract:	

			*	
T.ah	Code: TEACT	Case No · 3090A	SAS No.:	SDG No · A3090

Lab Sample ID: 993090A-10 Matrix: (soil/water)SOIL

Sample wt/vol: 5 (g/mL)GLab File ID: >K8090

Date Received: 12/03/99 Level: (low/med) LOW

Date Analyzed: 12/09/99 % Moisture: not dec. 5

Dilution Factor: 1.0 GC Column: 007-624 ID: 0.53 (mm)

Soil Aliquot Volume: ____(uL) Soil Extract Volume: ____(uL)

> CONCENTRATION UNITS: (ug/L or ug/Kg)UG/KG

Number TICs Found: 2

Lab Name: STL/CT

			·,	——————————————————————————————————————
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01.	UNKNOWN SILOXANE	22.59	31	F
02.556-67-2	CYCLOTETRASILOXANE, OCTAMETH	20.52	7	JN
03.				
04.		ļ		ļI
05.		-		
06.			 	<u> </u>
07. 08.				
09.				
10.				
11.				
12.				
13.				
14.				
15.				
16.				
17.				
18.		,		
19.				
20.				
21.				
22	,			
23. 24.				
24. 25.				
26.				
27.				
28.				
29.				
30.				
J U -				

1A NYSDEC SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

Contract:

Lab File ID: >K8091

Int Code IIIACM Come No 2000A CAC No CAC No CAC NO

Lab Name: STL/CT

Sample wt/vol: 5 (g/mL)G

Lab Code: IEACT Case No.: 3090A SAS No.: ____ SDG No.: A3090

Matrix: (soil/water) SOIL Lab Sample ID: 993090A-11

Level: (low/med) LOW Date Received: 12/03/99

% Moisture: not dec. 10 Date Analyzed: 12/09/99

GC Column: 007-624 ID: 0.53 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CAS NO. COMPOUND CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/KG Q

				77
74-87-3	Chloromethane	11	U	
74-83-9	Bromomethane	11	Ū	1
75-01-4	Vinyl Chloride	11	Ū	╢,
75-00-3	Chloroethane	11	T T	IJί
75-09-2	Methylene Chloride	11 4	F	110
67-64-1	Acetone	22	B	i
75-15-0	Carbon Disulfide	11	-	1
75-35-4	1,1-Dichloroethene		Ū	1
75-34-3	1,1-Dichloroethane	11	Ū.	1
540-59-0	1,2-Dichloroethene (total)	11	Ū	1
67-66-3	Chloroform	11	U	1
107-06-2	1,2-Dichloroethane	11	Ū	1
78-93-3	2-Butanone	11-5	F	/
71-55-6	1,1,1-Trichloroethane	11	Ū	11
56-23-5	Carbon Tetrachloride	11	Ū	1
75-27-4	Bromodichloromethane	11	Ū	1
78-87-5	1,2-Dichloropropane	11	Ū	1
10061-01-5	cis-1,3-Dichloropropene	11	Ū	
79-01-6	Trichloroethene	11	Ū	
124-48-1	Dibromochloromethane	11	Ū	
79-00-5	1,1,2-Trichloroethane	1.1	Ü	il
71-43-2	Benzene	11	U ·	Il
10061-02-6	trans-1,3-Dichloropropene	11	Ū	
75-25-2	Bromoform	11	Ū	H
108-10-1	4-Methyl-2-Pentanone	11	Ū	1
591-78-6	2-Hexanone	11	Ū	1
127-18-4	Tetrachloroethene	11	Ū	
79-34-5	1,1,2,2-Tetrachloroethane	11	Ū	
108-88-3	Toluene	11	Ū	
108-90-7	Chlorobenzene	 	Ū	
100-41-4	Ethylbenzene		Ū	
100-42-5	Styrene		Ū	1
1330-20-7	Xvlene (total)	11	Ū	

NYSDEC SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

• • • • • • • • • • • • • • • • • • • •	0100111.1		*****		
TENTAT	'IVELY	IDI	ENTIFIED	COMPO	INDS

				SB-8
Lab	Name:	STL/CT	Contract:	

Lab Code: IEACT Case No.: 3090A SAS No.: ____ SDG No.: A3090

Matrix: (soil/water)SOIL Lab Sample ID: 993090A-11

Sample wt/vol: 5 (g/mL)GLab File ID: >K8091

Level: (low/med) LOW Date Received: 12/03/99

% Moisture: not dec. 10 Date Analyzed: 12/09/99

GC Column: 007-624 ID: 0.53 (mm) Dilution Factor: 1.0

Soil Aliquot Volume: ____(uL) Soil Extract Volume: ____(uL)

Number TICs Found: 1

CONCENTRATION UNITS: (ug/L or ug/Kg)UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01.	UNKNOWN SILOXANE	22.57	15	J
02.			-	
03.				
04.				
05.			-	
06.	`			
07.				
08.				
09.			`	
10.			,	
11.				
12.		× -		
13.				
14.				
15.				
16.				
17.				
18.			, .	
19.				
20.	•			
21.				
22.				
23.		1		
24.				
25				
26			-	
27.				
28.		<u> </u>		
29.				

1A NYSDEC SAMPLE NO. VOLATILE ORGANICS ANALYSIS DATA SHEET

CONCENTRATION UNITS:

Lab File ID: >K8092

			SB-4
Lab Name:	STL/CT	Contract:	

Matrix: (soil/water)SOIL Lab Sample ID: 993090A-12

Level: (low/med) LOW Date Received: 12/03/99

% Moisture: not dec. 17 Date Analyzed: 12/09/99

GC Column: 007-624 ID: 0.53 (mm) Dilution Factor: 1.0

Sample wt/vol: 5 (g/mL)G

10061-02-6 trans-1,3-Dichloropropene

4-Methyl-2-Pentanone

1,1,2,2-Tetrachloroethane

Tetrachloroethene

Bromoform

2-Hexanone

Chlorobenzene

Xviene (total)

Ethylbenzene

Toluene

Styrene

75-25-2

108-10-1 591-78-6 127-18-4

79-34-5

108-88-3

108-90-,7

100-41-4

100-42-5

1330-20-7

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CAS NO. COMPOUND (ug/L or ug/Kg)UG/KG Q 74-87-3 Chloromethane U 74-83-9 Bromomethane 12 Ū Vinyl Chloride 75-01-4 UI 75-00-3 Chloroethane 75-09-2 Ũ Methylene Chloride 124 67-64-1 Acetone U 42 75-15-0 Carbon Disulfide IJ 75-35-4 1,1-Dichloroethene 12 75-34-3 1,1-Dichloroethane 12 Ū 540-59-0 1,2-Dichloroethene (total) 12 67-66-3 Chloroform 12 107-06-2 1,2-Dichloroethane 12 ΤŢ U 78-93-3 2-Butanone 17-5 71-55-6 1,1,1-Trichloroethane 12 IJ 56-23-5 Carbon Tetrachloride 12 Ū 75-27-4 Bromodichloromethane 12 Ū 78-87-5 1,2-Dichloropropane 12 10061-01-5 cis-1,3-Dichloropropene 79-01-6 Trichloroethene 124-48-1 Dibromochloromethane 1,1,2-Trichloroethane 79-00-5 71-43-2 Benzene

TI

Tī

IJ

U

TJ

12

12

12

12

12

12

1E

NYSDEC SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

TENTATIVELY	IDENTIFIED	COMPOUNDS	SB-4
	Contract:		

Lab Name: STL/CT

Case No.: 3090A SAS No.: ____ SDG No.: A3090

Matrix: (soil/water) SOIL

Lab Sample ID: 993090A-12

Lab File ID: >K8092

Sample wt/vol:

Lab Code: IEACT

(g/mL)G

Date Received: 12/03/99

Level: (low/med) LOW % Moisture: not dec. 17

Date Analyzed: 12/09/99

GC Column: 007-624 ID: 0.53 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL)

Soil Aliquot Volume: ____(uL)

Number TICs Found: 1

CONCENTRATION UNITS: (ug/L or ug/Kg)UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01.	UNKNOWN SILOXANE	22.55	37	3
02.				
03.				
04.				
05.				
06.			·	
07.				
08.				
09.				
10.			-	
11.				
13.				
14.				
15.				
16.				
17.				
18.				
19.				
20.	·			
21.				
22.			-	
23.				<u> </u>
24.				
25.				
26.				
27.				
28.				
29.				
30.				

1A NYSDEC SAMPLE NO VOLATILE ORGANICS ANALYSIS DATA SHEET

Soil Aliquot Volume ____(uL)

Lab Name STL/CT		Contract	SB-3
Lab Name Sil/Ci		ContractL	
Lab Code IEACT	Case No 3090A	SAS No SDG No	A3090
Matrıx (soıl/water)SOIL	Lab Sample ID	993090A-13
Sample wt/vol	$5 \qquad (g/mL)G$	Lab File ID	>K8093
Level (low/med)	LOW	Date Received	12/03/99
Moisture not dec	13	Date Analyzed	12/09/99
GC Column 007-624	ID 0 53 (mm)	Dilution Facto	or 1 0

		CONCENTRATION UNITS
CAS NO	COMPOUND	(ug/L or ug/Kg)UG/KG Q

Soil Extract Volume ____(uL)

74-87-3	Chloromethane	11	U
74-83-9	Bromomethane	11	Ū
75-01-4	Vinyl Chloride	11	Ū
75-00-3	Chloroethane	11	U
75-09-2	Methylene Chloride	113	F
67-64-1	Acetone	12	B
75-15-0	Carbon Disulfide	9	Û
75-35-4	1,1-Dichloroethene	11	Ū
75-34-3	1,1-Dichloroethane	11	Ū
540-59-0	1,2-Dichloroethene (total)	11	Ū
67-66-3	Chloroform	11	Ū
107-06-2	1,2-Dichloroethane	11	Ū
78-93-3	2-Butanone	11	U
71-55-6	1,1,1-Trichloroethane	11	U
56-23-5	Carbon Tetrachloride	11	U
75-27-4	Bromodichloromethane	11	Ū
78-87-5	1,2-Dichloropropane	11	ਹ
10061-01-5	cis-1,3-Dichloropropene	11	Ų
79-01-6	Trichloroethene	2	Ĵ
124-48-1	Dibromochloromethane	11	Ū
79-00-5	1,1,2-Trichloroethane	11	Ū
71-43-2	Benzene	1	Û
10061-02-6	trans-1,3-Dichloropropene	11	Ū
75-25-2	Bromoform	11	Ū
108-10-1	4-Methyl-2-Pentanone	11	Ū
591-78-6	2-Hexanone	11	Ū
127-18-4	Tetrachloroethene	11	Ū
79-34-5	1,1,2,2-Tetrachloroethane	11	Ų
108-88-3	Toluene	117	₽-
108-90-7	Chlorobenzene	11	Ū
100-41-4	Ethylbenzene	1	Ø
100-42-5	Styrene	11	Ū
1330-20-7	Xvlene (total)	1	(1)

1E

NYSDEC SAMPLE NO

VOLATILE ORGANICS ANALYSIS DATA SHEET

TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name STL/CT		Contract	SB-3
,			
Lab Code IEACT	Case No 3090A	SAS NO SDG No	A3090
Matrix (soil/water)SOIL	Lab Sample ID	993090A-13
Sample wt/vol	$5 \qquad (g/mL)G$	Lab File ID	>K8093
Level (low/med)	LOW	Date Received	12/03/99
% Moisture not dec	13	Date Analyzed	12/09/99
GC Column 007-624	ID 0 53 (mm)	Dilution Facto	or 1 0
Soil Extract Volume	(uL)	Soil Aliquot V	Volume(uL)

Number TICs Found 2

CONCENTRATION UNITS (ug/L or ug/Kg)UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST	CONC	Q	
01	UNKNOWN	22 56		17	J	
02	UNKNOWN SILOXANE	24 58		7	J	R
03						
04						
05			1			
06						ļ
07						
08]
0.9						
10			 		<u> </u>	
11			-			
12						
13						
_4						
15			 		i	Ì
16 17			1	·	 	
18			<u> </u>			
19			ļ		[}
20						
21						
22						
23						
24		İ				
25						
26						
27						
28						
29						
30						

1A NYSDEC SAMPLE NO VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name STL/CT		Contract	
Lab Code IEACT	Case No 3090A	SAS No SDG No	A3090
Matrix (soil/water) SOIL	Lab Sample ID	993090A-14
Sample wt/vol	5 (g/mL)G	Lab File ID	>K8094
Level (low/med)	LOW	Date Received	12/03/99
% Moisture not dec	15	Date Analyzed	12/09/99
GC Column 007-624	ID 0 53 (mm)	Dilution Facto	r 10
Soil Extract Volume	(uL)	Soil Aliquot V	olume(uL)

CONCENTRATION UNITS

(ug/L or ug/Kg)UG/KG Q

r			 1]	í
74-87-3	Chloromethane	12	U	
74-83-9	Bromomethane	12	Ū	i
75-01-4	Vinyl Chloride	12	Ū	١.,
75-00-3	Chloroethane	12	F.	U
75-09-2	Methylene Chloride	12-3	F	V
67-64-1	Acetone	40	B	U
75-15-0	Carbon Disulfide	12	Ū	
75-35-4	1,1-Dichloroethene	12	Ū	
75-34-3	1,1-Dichloroethane	12	Ū	
540-59-0	1,2-Dichloroethene (total)	12	Ū	
67-66-3	Chloroform	12	Ū	
107-06-2	1,2-Dichloroethane	12	Ū	
78-93-3	2-Butanone	128	J	U
71-55-6	1,1,1-Trichloroethane	12	Ū	
56-23-5	Carbon Tetrachloride	12	Ū	
75-27-4	Bromodichloromethane	12	Ū	
78-87-5	1,2-Dichloropropane	12	Ū	
10061-01-5	cis-1,3-Dichloropropene	12	Ū Ū,	
79-01-6	Trichloroethene	9	,Ū,	
124-48-1	Dibromochloromethane	12	Ū	
79-00-5	1,1,2-Trichloroethane	12	Ū	
71-43-2	Benzene	3	(Ĵ)	
10061-02-6	trans-1,3-Dichloropropene	12	Ū	
75-25-2	Bromoform	12	Ū	
108-10-1	4-Methyl-2-Pentanone	12	Ŭ _	
591-78-6	2-Hexanone	12	Ü	
127-18-4	Tetrachloroethene	12	Ū	
79-34-5	1,1,2,2-Tetrachloroethane	12	Ū	
108-88-3	Toluene	12	Ū	
108-90-7	Chlorobenzene	12	Ū	
100-41-4	Ethylbenzene	3	(Ĵ;	
100-42-5	Styrene	12	Û	
1330-20-7	Xviene (total)	3	Δı	

1E

NYSDEC SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

TENTATIVELY	IDENTIFIED	COMPOUNDS	
			DUP-1
	~		ſ

			DUP-1
Lab Name	: STL/CT	Contract:	

Lab Code: IEACT Case No.: 3090A SAS No.: ____ SDG No.: A3090

Matrix: (soil/water) SOIL Lab Sample ID: 993090A-14

Sample wt/vol: 5 (g/mL)GLab File ID: >K8094

Level: (low/med) LOW Date Received: 12/03/99

% Moisture: not dec. 15 Date Analyzed: 12/09/99

GC Column: 007-624 ID: 0.53 (mm) Dilution Factor: 1.0

Number TICs Found: 1

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

> CONCENTRATION UNITS: (ug/L or ug/Kg)UG/KG

CAS NUMBER	COMPOUND NAME	RT .	EST.	CONC.	Q
01.	UNKNOWN SILOXANE	22.57		. 33	8
02.					
03.					
04.					
05.				·	
06.			1		<u>.</u>
07.			ļ		
08.					
09.					
10.			ļ		
11.	<u> </u>				
12.			ļ		
13.			ļ <u>.</u>		
14. 15.			 		
16.					
17.			 		
18.			-		
19.			-		
20.			 		
21.					
22.					
23.			İ		
24.					
25.					
26.					
27.			-		
28.					
29.					
30					

1A					NYSDEC	SAMPLE	NO
	VOLATILE	ORGANICS	ANALYSIS	DATA	SHEET		

Lab Name STI	L/CT		Contract			_
Lab Code IEA	ACT Case	No 3090A	SAS No	SDG No	A3090	r
Matrix (soil	/water)SOIL			Lab Sample ID	993090A-15	ļ
Sample wt/vol	. 5	(g/mL)G		Lab File ID	>K8098	İ
Level (low	/med) LOW			Date Received	12/03/99	١
% Moisture n	ot dec 34			Date Analyzed	12/09/99	ļ
GC Column 00	7-624 ID	0 53 (mm)		Dilution Facto	or 1 0	
Soil Extract	Volume	(uL)		Soil Aliquot V	olume(uL)	

CAS NO COMPOUND COMPO

			=======================================	
74-87-3	Chloromethane	15	U	
74-83-9	Bromomethane	15	- ŭ -1	Í
$\frac{75-01-4}{75-01-4}$	Vinyl Chloride	15		ĺ
75-00-3	Chloroethane	15	-	UJ
75-09-2	Methylene Chloride	15	- U	ر
67-64-1	Acetone	15	$-\ddot{\mathbf{u}}$	
75-15-0	Carbon Disulfide	15		
75-35-4		15		
75-33-4	1,1-Dichloroethene	15	TJ	
l	1,1-Dichloroethane	15		
540-59-0	1,2-Dichloroethene (total)			
67-66-3	Chloroform	15	U	
107-06-2	1,2-Dichloroethane	15	Ŭ	
78-93-3	2-Butanone	15	U	
71-55-6	1,1,1-Trichloroethane	15	Ŭ	
56-23-5	Carbon Tetrachloride	15	U	
75-27-4	Bromodichloromethane	15	U	
78-87-5	1,2-Dichloropropane	15	U	
10061-01-5	cis-1,3-Dichloropropene	15	Ū	
79-01-6	Trichloroethene	4	Ĵ'	
124-48-1	Dibromochloromethane	15	Ū	
79-00-5	1,1,2-Trichloroethane	15	Ũ	
71-43-2	Benzene	15	Ū	
10061-02-6	trans-1,3-Dichloropropene	15	U	
75-25 - 2	Bromoform	15	Ū	
108-10-1	4-Methyl-2-Pentanone	15	U	
591-78-6	2-Hexanone	15	Ū	
127-18-4	Tetrachloroethene	12	(J)	
79-34-5	1,1,2,2-Tetrachloroethane	15	A	
108-88-3	Toluene	15-8	Sales III	0
108-90-7	Chlorobenzene	15	Ū	
100-41-4	Ethylbenzene	15	Ū	
100-42-5	Styrene	15	Ū	
1330-20-7	Xviene (total)	15	U I	

See The reanofses

NYSDEC SAMPLE NO.

1E VOLATILE ORGANICS ANALYSIS DATA SHEET

	Lab Name: STL/CT		Contract:	CB-1
		Case No.: 3090A	SAS No.: SDG N	Jo.: A3090
	Matrix: (soil/water	·)SOIL	Lab Sample ID	993090A-15
	Sample wt/vol:	5 (g/mL)G	Lab File ID:	>K8098
<u> </u>	Level: (low/med)	LOW	Date Received	: 12/03/99
ነ ነ	% Moisture: not dec		Date Analyzed	: 12/09/99
П	GC Column: 007-624	ID: 0.53 (mm) Dilution Fact	or: 1.0
	Soil Extract Volume	:(uL)	Soil Aliquot	Volume:(uL)

Number TICs Found: 2

CONCENTRATION UNITS: (ug/L or ug/Kg)UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CO	NC. Q
01.	UNKNOWN SILOXANE	24.61		17 J
02.	UNKNOWN SILOXANE	22.59		16 J
03.				
04.				
05.				
06.				
07.			ļ	
08. 09.			 	
10.				
11.				
12.			-	
13.				·
14.			-	
15.				
16.				
17.		-		
18.				
19.				
20.			<u> </u>	
21. 22.				
23.				
24.				
25.			<u> </u>	
26.				
27.				
28.				
29.			1	

See The rean ysis

1A NYSDEC SAMPLE NO VOLATILE ORGANICS ANALYSIS DATA SHEET CB-1RE Contract Lab Name STL/CT ____ SDG No A3090 Lab Code IEACT Case No 3090A SAS No Matrix (soil/water)SOIL Lab Sample ID 993090A-15RE Sample wt/vol 5 (g/mL)GLab File ID >K8112 Level (low/med) LOW Date Received 12/03/99 Date Analyzed 12/10/99 % Moisture not dec 34

Dilution Factor 1 0

Soil Aliquot Volume ____(uL)

CAS NO COMPOUND CONCENTRATION UNITS (ug/L or ug/Kg)UG/KG Q

74-87-3 Chloromethane 15 U
74-83-9 Bromomethane 15 U

ID 0 53 (mm)

GC Column 007-624

Soil Extract Volume ____(uL)

74-87-3	Chloromethane	15	U U
74-83-9	Bromomethane	15	U
75-01-4	Vinyl Chloride	15	Ū
75-00-3	Chloroethane	15	Ū
75-09-2	Methylene Chloride	15	U
67-64-1	Acetone	31	D J
75-15-0	Carbon Disulfide	15	U
75-35-4	1,1-Dichloroethene	15	Ū
75-34-3	1,1-Dichloroethane	15	Ū (
540-59-0	1,2-Dichloroethene (total)	15	Ū
67-66-3	Chloroform	15	Ū
107-06-2	1,2-Dichloroethane	15	Ū J
78-93-3	2-Butanone	13	JB V
71-55-6	1,1,1-Trichloroethane	1.5	U
56-23-5	Carbon Tetrachloride	15	Ū
75-27-4	Bromodichloromethane	15	Ū
78-87-5	1,2-Dichloropropane	15	U
10061-01-5	cis-1,3-Dichloropropene	15	
79-01-6	Trichloroethene	4	(J) 3
124-48-1	Dibromochloromethane	15	
79-00-5	1,1,2-Trichloroethane	15	<u> </u>
71-43-2	Benzene	3	
10061-02-6	trans-1,3-Dichloropropene	15	Ü
75-25-2	Bromoform	15	Ŭ
108-10-1	4-Methyl-2-Pentanone	15	Ū
591-78-6	2-Hexanone	15	U Z
127-18-4	Tetrachloroethene	12	1 L M 11
79-34-5	1,1,2,2-Tetrachloroethane	15	
108-88-3	Toluene	15 3	O) V
108-90-7	Chlorobenzene	15	Ū
100-41-4	Ethylbenzene	15	U
100-42-5	Styrene	15	T ,
1330-20-7	Xylene (total)	1	

NYSDEC SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

TENTATIVELY	IDENTIFIED	COMPOUNDS

Lab	Name:	STL/CT				Contract:		CB	-1RE	
Lab	Code:	IEACT	Case	No.:	3090A	SAS No.:	SD0	G No.:	A3090	

Matrix: (soil/water) SOIL Lab Sample ID: 993090A-15RE

Sample wt/vol: 5 (g/mL)G Lab File ID: >K8112

Date Received: 12/03/99 Level: (low/med) LOW

Date Analyzed: 12/10/99 % Moisture: not dec. 34

GC Column: 007-624 ID: 0.53 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

> CONCENTRATION UNITS: (ug/L or ug/Kg)UG/KG

Number TICs Found: 1

Tanaci iica io.				
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01.128-37-0	BUTYLATED HYDROXYTOLUENE	23.20	180	JN
02.				
03.	7-			
04.				
05.			<u> </u>	ļi
06.				-
07.				
08.		•		
09.				
10.				
11.				
12.				
10.				
14.				
15.				
16. 17.				
18.				
19.				
20.				
21.				1
22.				
23.		1		
24.				
25.				
26.				
27.				
28.				
29.				
30.				

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name STL/CT			Contract		DUP-2	
Lab Name 511/CI			Concract		· · · · · · · · · · · · · · · · · · ·	
Lab Code IEACT	Case N	o 3090A	SAS No	SDG No	A3090	
Matrix (soil/wate	r)SOIL			Lab Sample ID	993090A-16	1
Sample wt/vol	5	(g/mL)G		Lab File ID	>K8113	
Level (low/med)	LOW			Date Received	12/03/99	
% Moisture not de	c 35			Date Analyzed	12/10/99	
GC Column 007-624	ID 0	53 (mm)		Dilution Facto	or 1 0	
Soil Extract Volume	e	(uL)		Soil Aliquot V	olume(uI	(د

CONCENTRATION UNITS
CAS NO COMPOUND (ug/L or ug/Kg)UG/KG Q

	<u></u>		T 1
74-87-3	Chloromethane	15	U
74-83-9	Bromomethane	15	Ŭ
75-01-4	Vinyl Chloride	15	U
75-00-3	Chloroethane	15	U
75-09-2	Methylene Chloride	15	Ū
67-64-1	Acetone	52	B
75-15-0	Carbon Disulfide	15	Ū
75-35-4	1,1-Dichloroethene	15	Ū
75-34-3	1,1-Dichloroethane	15	Ū
540-59-0	1,2-Dichloroethene (total)	15	U
67-66-3	Chloroform	15	Ū
107-06-2	1,2-Dichloroethane	15	Ū
78-93-3	2-Butanone	16	B
71-55-6	1,1,1-Trichloroethane	15	Ū
56-23-5	Carbon Tetrachloride	15	Ū
75-27-4	Bromodichloromethane	15	Ū
78-87-5	1,2-Dichloropropane	15	Ū
10061-01-5	cis-1,3-Dichloropropene	15	Ū
79-01-6	Trichloroethene	4	(J)
124-48-1	Dibromochloromethane	15	Ŭ
79-00-5	1,1,2-Trichloroethane	15	Ū Ū
71-43-2	Benzene	8	
10061-02-6	trans-1,3-Dichloropropene	15	U
75-25-2	Bromoform	15	Ŭ
108-10-1	4-Methyl-2-Pentanone	15	Ū
591-78-6	2-Hexanone	15	Ū
127-18-4	Tetrachloroethene	12	(J)
79-34-5	1,1,2,2-Tetrachloroethane	15	Ū
108-88-3	Toluene	15 1	4
108-90-7	Chlorobenzene	15	U
100-41-4	Ethylbenzene	15	U
100-42-5	Styrene	15	U
1330-20-7	Xylene (total)	15	Ū

NYSDEC SAMPLE NO.

Lab File ID: >K8113

1E VOLATILE ORGANICS ANALYSIS DATA SHEET

TENTATIVELY	IDENTIFIED	COMPOUNDS

Lab Name	: STL/CT		Contract:	DUP-2
Lab Code:	: IEACT	Case No.: 3090A	SAS No.:	SDG No.: A3090

Matrix: (soil/water)SOIL Lab Sample ID: 993090A-16

Sample wt/vol:

Level: (low/med) LOW Date Received: 12/03/99

% Moisture: not dec. 35 Date Analyzed: 12/10/99

GC Column: 007-624 ID: 0.53 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: Number TICs Found: 2 (ug/L or ug/Kg)UG/KG

(g/mL)G

5

CAS NUMBER	COMPOUND NAME	RT	EST.	CONC.	Q	
01.	UNKNOWN	22.92		30	Ju	
02.128-37-0	BUTYLATED HYDROXYTOLUENE	23.25	 	25	-JIN	R
04.			-			
05.			 			
06.						
07.						
08. 09.			ļ		·	
10.			 			
11.						
12.						
13.						
14.			ļ			
15. 16.			ļ			
17.			<u> </u>			
18.			 			
19.						
20.						
21.			 			[
22.			 			
24.			 			
25.						1
26.						
27.						
28.			 			
29.			-			

1B EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: STL/CT Contract: ______ SB-7

Matrix: (soil/water)SOIL Lab Sample ID: 993090A-02

Sample wt/vol: 30 (g/mL)G Lab File ID: >R5565

Level: (low/med) LOW Date Received: 12/01/99

% Moisture: 13 decanted: (Y/N)N Date Extracted:12/05/99

Concentrated Extract Volume: 500 (uL) Date Analyzed: 12/28/99

Injection Volume: 2.0 (uL) Dilution Factor: 5.0

GPC Cleanup: (Y/N)Y pH:10.6

			ENTRATION UNITS:		
CAS NO.	COMPOUND (ug	/L or ug/Kg)	UG/KG	Q	
108-95-2	Phenol		1900	IJ	
111-44-4	bis(2-Chloroethyl)ether		1900	Ū	
95-57-8	2-Chlorophenol		1900	U	
541-73-1	1,3-Dichlorobenzene		1900	- Ü	\dashv
106-46-7	1,4-Dichlorobenzene		1900	Ū	
95-50-1	1,2-Dichlorobenzene		1900	- IJ	
95-48-7	2-Methylphenol		1900	Ū	
108-60-1	2,2'-oxybis(1-Chloropropane)		1900	Ū	$-\parallel$
106-44-5	4-Methylphenol		1900	Ū	
621-64-7	N-Nitroso-di-n-propylamine		1900	Ü	
67-72-1	Hexachloroethane		1900	Ū	$\neg \exists$
98-95-3	Nitrobenzene		1900	Ū	
78-59-1	Isophorone		1900	Ū	
88-75-5	2-Nitrophenol		1900	Ū	
105-67-9	2,4-Dimethylphenol		1900	U	
111-91-1	bis (2-Chloroethoxy) methane		1900	U	
120-83-2	2,4-Dichlorophenol		1900	Ū	
120-82-1	1,2,4-Trichlorobenzene		1900	Ü	
91-20-3	Naphthalene		. 490	J	
106-47-8	4-Chloroaniline		1900	U	
87-68-3	Hexachlorobutadiene		1900	U	
59-50-7	4-Chloro-3-methylphenol		1900	Ü	
91-57-6	2-Methylnaphthalene	·	130	J	4
77-47-4	Hexachlorocyclopentadiene		1900	Ū	_
88-06-2	2,4,6-Trichlorophenol		1900	U	
95-95-4	2,4;5-Trichlorophenol		4800	U	
91-58-7	2-Chloronaphthalene		1900	U	
88-74-4	2-Nitroaniline		4800	Ū	
131-11-3	Dimethylphthalate		1900	Ū	
208-96-8	Acenaphthylene		2600		
606-20-2	2,6-Dinitrotoluene		1900	Ū	
99-09-2	3-Nitroaniline		4800	Ū	
83-32-9	Acenaphthene	ļ	210	J	- 1

	1C				EPA	SAMPLE	NO
SEMIVOLATILE	ORGANICS	ANALYSIS	DATA	SHEET			_

Lab Name STL/CT Contract	SB-7
Lab Code IEACT Case No 3090A SAS No	SDG No A3090
Matrix (soil/water)SOIL	Lab Sample ID 993090A-02
Sample wt/vol 30 (g/mL)G	Lab File ID >R5565
Level. (low/med) LOW	Date Received 12/01/99
% Moisture 13 decanted (Y/N)N	Date Extracted 12/05/99
Concentrated Extract Volume 500 (uL)	Date Analyzed 12/28/99
Injection Volume 2 0 (uL)	Dilution Factor 5 0
GPC Cleanup (Y/N)Y pH 10 6	

CAS NO	COMPOUND	CONCENTRATION UNITS (ug/L or ug/Kg)UG/KG	Q	
51-28-5	2,4-Dinitrophenol	4800	U	
100-02-7	4-Nitrophenol	4800	Ū	J.
132-64-9	Dibenzofuran	260	J	-
121-14-2	2,4-Dinitrotoluene	1900	Ū	
84-66-2	Diethylphthalate	1900	Ū	
7005-72-3	4-Chlorophenyl-phenylethe	er 1900	Ū	
86-73-7	Fluorene	480	J	
100-01-6	4-Nitroaniline	4800	Ū	
534-52-1	4,6-Dinitro-2-methylpheno	ol 4800	Ū	
86-30-6		1) 1900	Ū	
101-55-3	4-Bromophenyl-phenylether	r 1900	Ū	
118-74-1	Hexachlorobenzene	1900	Ū	
87-86-5	Pentachlorophenol	4800	Ū	
85-01-8	Phenanthrene	5400	-B	
120-12-7	Anthracene	2600		
86-74-8	Carbazole	440	J	
84-74-2	Di-n-butylphthalate	1900	Ū	
206-44-0	Fluoranthene	13000	B	
129-00-0	Pyrene	13000	В	
85-68-7	Butylbenzylphthalate	1900	Ū	
91-94-1	3,3'-Dichlorobenzidine	1900	U	
56-55-3	Benzo(a)anthracene	9400		
218-01-9	Chrysene	7900		
117-81-7	bis(2-Ethylhexyl)phthalat			レ
117-84-0	Di-n-octylphthalate	1900	Ū	
205-99-2	Benzo(b)fluoranthene	6100		
207-08-9	Benzo(k)fluoranthene	5900		
50-32-8	Benzo(a)pyrene	7300		
193-39-5	Indeno(1,2,3-cd)pyrene	4900		
53-70-3	Dibenz(a,h)anthracene	1800	J	
191-24-2	Benzo(q,h,i)perylene	5500		

(1) - Cannot be separated from Diphenylamine

1F

EPA SAMPLE NO.

SB-7

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Contract:

TENTATIVELY IDENTIFIED COMPOUNDS

Matrix: (soil/water)SOIL Lab Sample ID: 993090A-02

Sample wt/vol: 30 (g/mL)G Lab File ID: >R5565

Level: (low/med) LOW Date Received: 12/01/99

% Moisture: 13 decanted: (Y/N)N Date Extracted:12/05/99

Concentrated Extract Volume: 500 (uL) Date Analyzed: 12/28/99

Injection Volume: 2.0 (uL) Dilution Factor: 5.0

GPC Cleanup: (Y/N)Y pH:10.6

Lab Name: STL/CT

Number TICs Found: 30 (ug/L or ug/Kg)UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01.	UNKNOWN C17H12 PAH	23.26	5700	J
02.	UNKNOWN C20H12 PAH	27.58	5000	J
03.	UNKNOWN C15H10 ISOMER	20.90	4400	J
04.	UNKNOWN C17H12 PAH	23.48	3400	Ĵ
05.	UNKNOWN C20H12 PAH	27.81	3300	J
06.	UNKNOWN C19H14 PAH	25.83	3200	J
07.	UNKNOWN DIBENZOPYRENE ISOMER	32.29	2800	J
08.	UNKNOWN C17H12 PAH	23.39	2700	J
09.	UNKNOWN C22H12 PAH	30.30	2600	J
10.	UNKNOWN METHYL-PYRENE	23.03	2600	J
11.	UNKNOWN C20H12 PAH	27.27	2600	J
12.	UNKNOWN	29.17	2300	J
13.	UNKNOWN C22H14 PAH	29.73	2200	J
14.	UNKNOWN C18H12 PAH	24.59	2200	J
15.	UNKNOWN C17H12 PAH	23.72	2200	J
16.	UNKNOWN C22H14 PAH	29.81	2200	J
17.	UNKNOWN C21H14 PAH	28.02	2200	J
18.	UNKNOWN	21.99	2200	J ·
19.	UNKNOWN C17H100 ISOMER	24.73	2100	J
20.	UNKNOWN C15H12 PAH	20.71	2100	J
21.	UNKNOWN DIBENZOPYRENE ISOMER	32.46	2100	Ĵ
22.	UNKNOWN C17H100 ISOMER	24.32	2000	Ĵ
23.	UNKNOWN C16H10 PAH	22.31	1800	J
24.	UNKNOWN	21.88	1800	Ű
25.	UNKNOWN METHYL-PYRENE ISOMER	23.67	1800	J
26.	UNKNOWN C18H12 PAH	25.27	1800	Ĵ
27.	UNKNOWN C15H12 PAH	20.79	1800	J
28.	UNKNOWN C15H12 PAH	20.65	1600	J
29.	UNKNOWN DIBENZOPYRENE ISOMER	32.59	1600	Ĵ
30.	UNKNOWN	28.09	1600	J

1B EPA SAMPLE NO. SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

MW-6 Lab Name: STL/CT Contract: ____

Lab Code: IEACT Case No.: 3090A SAS No.: _____ SDG No.: A3090

Matrix: (soil/water) SOIL Lab Sample ID: 993090A-03

Sample wt/vol: 30 (g/mL)GLab File ID: >R5569

Level: (low/med) LOW Date Received: 12/01/99

% Moisture: 13 decanted: (Y/N)N Date Extracted:12/05/99

Concentrated Extract Volume: 500 (uL) Date Analyzed: 12/28/99

Dilution Factor: 2.0 Injection Volume: 2.0 (uL)

GPC Cleanup: (Y/N)Y pH:8.4

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg)UG/KG

108-95-2	Phenol	28	J -
111-44-4	bis(2-Chloroethyl)ether	760	Ū
95-57-8	2-Chlorophenol	760	Ū
541-73-1	1,3-Dichlorobenzene	760	Ū
106-46-7	1,4-Dichlorobenzene	760	Ū
95-50-1	1,2-Dichlorobenzene	760	Ū
95-48-7	2-Methylphenol	760	Ū
108-60-1	2,2'-oxybis(1-Chloropropane)	760	Ū
106-44-5	4-Methylphenol	56	J
621-64-7	N-Nitroso-di-n-propylamine	760	U
67-72-1	Hexachloroethane	760	Ū
98-95-3	Nitrobenzene	760	Ū
78-59-1	Isophorone	760	U
88-75-5	2-Nitrophenol	760	Ū
105-67-9	2,4-Dimethylphenol	760	Ū
111-91-1	bis(2-Chloroethoxy) methane	760	Ū
120-83-2	2,4-Dichlorophenol	760	U
120-82-1	1,2,4-Trichlorobenzene	760	Ū
91-20-3	Naphthalene	170	J
106-47-8	4-Chloroaniline	760	Ū
87-68-3	Hexachlorobutadiene	760	U
59-50-7	4-Chloro-3-methylphenol	760	Ū
91-57-6	2-Methylnaphthalene	250	Ĵ
77-47-4	Hexachlorocyclopentadiene	760	U -
88-06-2	2,4,6-Trichlorophenol	760	Ū
95-95-4	2,4,5-Trichlorophenol	1900	Ū
91-58-7	2-Chloronaphthalene	760	Ū
88-74-4	2-Nitroaniline	1900	U
131-11-3	Dimethylphthalate	760	Ū
208-96-8	Acenaphthylene	440	J
606-20-2	2,6-Dinitrotoluene	760	Ū
99-09-2	3-Nitroaniline	1900	U
83-32-9	Acenaphthene	160	J

1C

EPA SAMPLE NO.

			MW - 6
Lab Name:	STL/CT	Contract:	
	,	0011010100	

Lab Code: IEACT Case No.: 3090A SAS No.: ____ SDG No.: A3090

Matrix: (soil/water) SOIL Lab Sample ID: 993090A-03

Sample wt/vol: 30 (g/mL)G Lab File ID: >R5569

Level: (low/med) LOW Date Received: 12/01/99

% Moisture: 13 decanted: (Y/N)N Date Extracted:12/05/99

Concentrated Extract Volume: 500 (uL) Date Analyzed: 12/28/99

Injection Volume: 2.0 (uL) Dilution Factor: 2.0

GPC Cleanup: (Y/N)Y pH:8.4

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg)UG/KG	Q
51-28-5	2,4-Dinitrophenol	1900	U
100-02-7	4-Nitrophenol	1900	0 1
132-64-9	Dibenzofuran	31.0	J
121-14-2	2,4-Dinitrotoluene	. 760	U
84-66-2	Diethylphthalate	760	Ū
7005-72-3	4-Chlorophenyl-phenylether	760	Ū
86-73-7	Fluorene	. 460	J
100-01-6	4-Nitroaniline	1900	Ū
534-52-1	4,6-Dinitro-2-methylphenol	1900	Ü
86-30-6	N-Nitrosodiphenylamine (1)	760	U .
101-55-3	4-Bromophenyl-phenylether	. 760	Ū
118-74-1	Hexachlorobenzene	760	Ū
87-86-5	Pentachlorophenol	1900	Ū
85-01-8	Phenanthrene	2500	B
120-12-7	Anthracene	1200	
86-74-8	Carbazole	, 330	J.
84-74-2	Di-n-butylphthalate	1/20 22	JB U
206-44-0	Fluoranthene	3500	·B
129-00-0	Pyrene	3600	B
85-68-7	Butvlbenzvlphthalate	4.2	J

(1) - Cannot be separated from Diphenylamine

Benzo(q,h,i)perylene

3,3'-Dichlorobenzidine

bis(2-Ethylhexyl)phthalate

Benzo(a)anthracene

Di-n-octylphthalate

Benzo(b) fluoranthene

Benzo(k) fluoranthene

Indeno (1,2,3-cd) pyrene Dibenz (a,h) anthracene

Benzo(a)pyrene

Chrysene

91-94-1

56-55-3

218-01-9

117-81-7

117-84-0

205-99-2

207-08-9 50-32-8

193-39-5

53-70-3

191-24-2

JB U

JB-11

760

3400

3000

3-8-0

3200

2000

3300

2700

990

2900

49

120

760

1F

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

TENTATIVELY IDENTIFIED COMPOUNDS

MW-6

Lab Name: STL/CT

Contract: _

Lab Code: IEACT Case No.: 3090A SAS No.: ____ SDG No.: A3090

Matrix: (soil/water) SOIL

Lab Sample ID: 993090A-03

Sample wt/vol: 30. (g/mL)G

Lab File ID: >R5569

Level: (low/med) LOW

Date Received: 12/01/99

decanted: (Y/N)N

Date Extracted:12/05/99

% Moisture: 13

Concentrated Extract Volume: 500 (uL) Date Analyzed: 12/28/99

Injection Volume: 2.0 (uL)

Dilution Factor: 2.0

GPC Cleanup: (Y/N)Y

pH:8.4

Number TICs Found: 30

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01	UNKNOWN C20H12 PAH	27.59	2500	J
02.	UNKNOWN C17H12 PAH	23.27	2000	J
03.	UNKNOWN C19H14 PAH	26.12	1800	J
04.	UNKNOWN C20H12 PAH	27.83	1600	J
05.	UNKNOWN C15H10 PAH	20.90	1200	J
06.	UNKNOWN METHYL PYRENE	23.48	1200	J
07.	UNKNOWN C21H14 PAH	28.03	1200	J
08.	UNKNOWN C19H14 PAH	25.92	1100	J
09.	UNKNOWN C17H100 ISOMER	24.33	1100	J
10.	UNKNOWN C22H14 PAH	29.75	1100	J
11.	UNKNOWN C22H14 PAH	29.83	1100	J
12.	UNKNOWN C17H100 ISOMER	24.74	950	J
13.	UNKNOWN	23.03	930	J
14.	UNKNOWN C22H14 PAH	29.19	900	J
15.	UNKNOWN C16H11N ISOMER	25.51	900	J
16.	UNKNOWN BENZO[B] NAPHTHO THIO	24.53	880	J
17.	UNKNOWN C20H12 PAH	27.28	870	Ĵ
18.	UNKNOWN C21H14 PAH	28.39	810	J
19.	UNKNOWN DIBENZOPYRENE	32.31	800	J
20.	UNKNOWN C15H12 PAH	20.71	800	J
21.	UNKNOWN 11H-BENZO[A]CARBAZOL	25.41	790	J
22.	UNKNOWN C17H12 PAH	23.73	780	J
23.	UNKNOWN C19H14 PAH	25.75	740	J
24.	UNKNOWN C21H14 PAH	27.93	730	J
25.	UNKNOWN NETHYL-PHENANTHRENE	20.79	730	J
26.	UNKNOWN C20H12O ISOMER C	27.44	710	J
27.	UNKNOWN	30.73	710	Ĵ
28.	UNKNOWN C22H12 PAH	30.33	700	J
29.	UNKNOWN C20H14 PAH	26.82	700	J
30.	UNKNOWN	28.44	700	J

1B

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: STL/CT Contract: _____ SB-1

Matrix: (soil/water) SOIL Lab Sample ID: 993090A-04

Sample wt/vol: 30 (g/mL)G Lab File ID: >R5583

Level: (low/med) LOW Date Received: 12/01/99

% Moisture: 19 decanted: (Y/N)N Date Extracted:12/05/99

Concentrated Extract Volume: 500 (uL) Date Analyzed: 12/29/99

Injection Volume: 2.0 (uL) Dilution Factor: 20.0

GPC Cleanup: (Y/N)Y pH:9.5

CAS NO.	CONCENTRATION UNITS: COMPOUND (ug/L or ug/Kg)UG/KG		Q	
7.00 05 0	Db 1	0100		1 117
108-95-2	Phenol	8100	U	1173
111-44-4 95-57-8	bis(2-Chloroethyl)ether 2-Chlorophenol	8100 8100	Ū	-
541-73-1	1,3-Dichlorobenzene	8100	U	-
106-46-7	1,4-Dichlorobenzene	8100	T U	-
95-50-1	1,2-Dichlorobenzene	8100	$\frac{1}{U}$	
95-48-7	2-Methylphenol		T U	-
108-60-1	2,2'-oxybis(1-Chloropropane)	8100 8100	U	-
106-44-5		8100	U	-
621-64-7	4-Methylphenol		Ū	-
67-72-1	N-Nitroso-di-n-propylamine Hexachloroethane	8100	Ü	-
98-95-3	Nitrobenzene	8100 8100	Ū	-
78-59-1		8100	Ū	-
88-75-5	Isophorone 2-Nitrophenol	8100	U	-
105-67-9		8100	Ü	-
111-91-1	2,4-Dimethylphenol bis(2-Chloroethoxy)methane	8100	U	-
120-83-2	2,4-Dichlorophenol	8100	U	-
120-83-2	1,2,4-Trichlorobenzene	8100	11 -	+ $/$
91-20-3	Naphthalene	46000	 	-17
106-47-8	4-Chloroaniline	8100	Ū	17
87-68-3	Hexachlorobutadiene	8100	U	103
59-50-7	4-Chloro-3-methylphenol	8100	!	133
91-57-6	2-Methylnaphthalene	5700	J J	103
77-47-4	Hexachlorocyclopentadiene	8100	U	1 4
88-06-2	2,4,6-Trichlorophenol	8100	Ü	$\parallel 1 - 1 \parallel$
95-95-4	2,4,5-Trichlorophenol	20000	Ū	-
91-58-7	2-Chloronaphthalene	8100	Ū	1 !
88-74-4	2-Nitroaniline	20000	Ū	11)
131-11-3	Dimethylphthalate	8100	Ū	1 1
208-96-8	Acenaphthylene	5100	J	7
606-20-2	2,6-Dinitrotoluene	8100	Ū	163
99-09-2	3-Nitroaniline	20000	Ū	#J.≾
83-32-9	Acenaphthene	1800	J_][3

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

			SB-1
Lab Name:	STL/CT	Contract:	

Matrix: (soil/water)SOIL Lab Sample ID: 993090A-04

Sample wt/vol: 30 (g/mL)G Lab File ID: >R5583

Level: (low/med) LOW Date Received: 12/01/99

% Moisture: 19 decanted: (Y/N)N Date Extracted:12/05/99

Concentrated Extract Volume: 500 (uL) Date Analyzed: 12/29/99

Injection Volume: 2.0 (uL) Dilution Factor: 20.0

GPC Cleanup: (Y/N)Y pH:9.5

CAS NO.	COMPOUND	CONCENTRATIO		. Q	_
		, , ,	- ,		10
51-28-5	2,4-Dinitrophenol		20000	U	li i
100-02-7-	4-Nitrophenol		20000	¥	
132-64-9	Dibenzofuran		6400	J ·	11
121-14-2	2,4-Dinitrotoluene	*.	8100	· .U	
84-66-2	Diethylphthalate		8100	Ū	
7005-72-3	4-Chlorophenyl-phenylether		8100	U	1
86-73-7	Fluorene		8900		ا ا
100-01-6	4-Nitroaniline		20000	Ū	ڏڻ 🏻
534-52-1	4,6-Dinitro-2-methylphenol	-	20000	Ū	
86-30-6	N-Nitrosodiphenylamine (1)		8100	Ü	
101-55-3	4-Bromophenyl-phenylether		· 8100	Ū	
118-74-1	Hexachlorobenzene		8100	Ū	
87-86-5	Pentachlorophenol		20000	Ū	1
85-01-8	Phenanthrene		28000	B	3
120-12-7	Anthracene		9100		13.
86-74-8	Carbazole		3800	J	13
84-74-2	Di-n-butylphthalate		8100	Ū	V)
206-44-0	Fluoranthene	*	22000	-B	3
129-00-0	Pyrene		18000	B	13
85-68-7	Butylbenzylphthalate		8100	Ü	U-)
91-94-1	3,3'-Dichlorobenzidine		8100	Ū	U3
56-55-3	Benzo(a)anthracene		10000		13
218-01-9	Chrysene	; r	9500		٠-ر
117-81-7	bis(2-Ethylhexyl)phthalate		2000 600	JB U	03
117-84-0	Di-n-octylphthalate		20000160	. JB v	U3
205-99-2	Benzo(b)fluoranthene		- 6300	J	1.7
207-08-9	Benzo(k)fluoranthene		6200	J	1
50-32-8	Benzo(a)pyrene		7300	J	
193-39-5	Indeno(1,2,3-cd)pyrene		3800	J	
53-70-3	Dibenz(a,h)anthracene		1400	J	
191-24-2	Benzo(g,h,i)perylene		3700	· J ·	11

1F

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: STL/CT

Contract:

SB-1

Lab Code: IEACT

Case No.: 3090A SAS No.: ____ SDG No.: A3090

Matrix: (soil/water)SOIL

Lab Sample ID: 993090A-04

Sample wt/vol:

30

(q/mL)G

Lab File ID: >R5583

Level: (low/med) LOW

Date Received: 12/01/99

decanted: (Y/N)N

Date Extracted:12/05/99

% Moisture: 19

Concentrated Extract Volume: 500 (uL)

Date Analyzed: 12/29/99

Injection Volume: 2.0 (uL)

Dilution Factor: 20.0

GPC Cleanup: (Y/N)Y

pH:9.5

Number TICs Found: 30

<u></u>				 1
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01.	UNKNOWN C15H10 PAH	20.89	8200	J
02.	UNKNOWN METHYL-ANTHRACENE	20.70	6700	J
03.	UNKNOWN C20H12 PAH	27.56	5200	J
04.	UNKNOWN C17H12 PAH	23.25	5000	J
05.	UNKNOWN	21.88	4900	J
06.90-12-0	NAPHTHALENE, 1-METHYL-	14.47	4600	JN
07.	UNKNOWN C15H12 PAH	20.63	4400	J
08.	UNKNOWN	19.93	4300	J
09.	UNKNOWN C17H12 PAH	23.38	4200	J
10.	UNKNOWN C9H8 ISOMER	10.30	4000	J
11.	UNKNOWN METHYL-PYRENE ISOMER	23.47	4000	Ĵ
12.	UNKNOWN C15H12 PAH	20.78	3900	J
13.	UNKNOWN DIMETHYL-NAPHTHALENE	15.79	3600	Ũ
14.	UNKNOWN C19H14 PAH	25.81	3500	Ĵ
15.	UNKNOWN C13H10O ISOMER	18.15	3200	J
16.612-94-2	NAPHTHALENE, 2-PHENYL-	21.25	3000	JN
17.	UNKNOWN DIMETHYL-NAPHTHALENE	15.60	2900	J
18.	UNKNOWN C16H10 PAH	22.30	2700	Ĵ
19.	UNKNOWN C13H100 ISOMER	18.02	2700	J
20.	UNKNOWN C17H12 PAH	23.02	2700	J
21.	UNKNOWN C20H12 PAH	27.78	. 2700	J
22.	UNKNOWN C17H100 ISOMER	24.31	2600	J
23.	UNKNOWN DIBENZOPYRENE ISOMER	32.24	2600	J
24.	UNKNOWN METHYL-FLUORENE ISOM	18.80	2600	J
25.132-65-0	DIBENZOTHIOPHENE	19.39	2600	JN
26.	UNKNOWN C9H12 ISOMER	9.32	2600	J
27.	UNKNOWN C18H12 PAH	24.58	2500	J
28.	UNKNOWN C17H12 PAH	23.71	2500	J
29	UNKNOWN	20.18	- 2500	J
30.	UNKNOWN	19.54	2500	J

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

			SB-2
Lab Name:	STL/CT	Contract:	

Matrix: (soil/water) SOIL Lab Sample ID: 993090A-05

Sample wt/vol: 30 (g/mL)G Lab File ID: >R5533

Level: (low/med) LOW Date Received: 12/03/99

% Moisture: 15 decanted: (Y/N)N Date Extracted:12/05/99

Concentrated Extract Volume: 500 (uL) Date Analyzed: 12/23/99

Injection Volume: 2.0 (uL) Dilution Factor: 4.0

GPC Cleanup: (Y/N)Y pH:9.0

		CONCENTRATION UNITS:
CAS NO.	COMPOUND	(ug/L or ug/Kg)UG/KG Q

108-95-2	Phenol	71	J
111-44-4	bis(2-Chloroethyl)ether	1600	- ŭ
95-57-8	2-Chlorophenol	1600	Ū
541-73-1	1,3-Dichlorobenzene	1600	- ŭ - l
106-46-7	1,4-Dichlorobenzene	1600	Ū
95-50-1	1,2-Dichlorobenzene	1600	Ū
95-48-7	2-Methylphenol	1600	Ū
108-60-1	2,2'-oxybis(1-Chloropropane)	1600	Ū
106-44-5	4-Methylphenol	140	J
621-64-7	N-Nitroso-di-n-propylamine	1600	Ū
67-72-1	Hexachloroethane	1600	U
98-95-3	Nitrobenzene	1600	U
78-59-1	Isophorone	1600	U
88-75-5	2-Nitrophenol	1600	Ū
105-67-9	2,4-Dimethylphenol	71	J
111-91-1	bis(2-Chloroethoxy)methane	1600	Ū
120-83-2	2,4-Dichlorophenol	1600	Ū
120-82-1	1,2,4-Trichlorobenzene	1600	Ū
91-20-3	Naphthalene	5000	
106-47-8	4-Chloroaniline	1600	U_
87-68-3	Hexachlorobutadiene	1600	Ū
59-50-7	4-Chloro-3-methylphenol	1600	Ū
91-57-6	2-Methylnaphthalene	590	J
77-47-4	Hexachlorocyclopentadiene	1600	IJ
88-06-2	2,4,6-Trichlorophenol	1600	Ū
95-95-4	2,4,5-Trichlorophenol	3900	U
91-58-7	2-Chloronaphthalene	1600	Ü
88-74-4	2-Nitroaniline	3900	U
131-11-3	Dimethylphthalate	1600	U
208-96-8	Acenaphthylene	1700	
606-20-2	2,6-Dinitrotoluene	1600	U
99-09-2	3-Nitroaniline	3900	U
83-32-9	Acenaphthene	810	Ĵ

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

				SB-2
Lab N	Name:	STL/CT	Contract:	

Lab Code: IEACT Case No.: 3090A SAS No.: ____ SDG No.: A3090

Matrix: (soil/water) SOIL Lab Sample ID: 993090A-05

Sample wt/vol: 30 (g/mL)G Lab File ID: >R5533

Level: (low/med) LOW Date Received: 12/03/99

% Moisture: 15 decanted: (Y/N)N Date Extracted:12/05/99

Concentrated Extract Volume: 500 (uL) Date Analyzed: 12/23/99

Injection Volume: 2.0 (uL) Dilution Factor: 4.0

GPC Cleanup: (Y/N)Y pH:9.0

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg)UG/KG	Q	, _
				RF
51-28-5	2,4-Dinitrophenol	3900	.Ł	$ V_2 $
100-02-7	4-Nitrophenol	3900	Ŭ .	<u> </u>
132-64-9	Dibenzofuran	2200		4
121-14-2	2,4-Dinitrotoluene	1600	U	4
84-66-2	Diethylphthalate	1600	U	1
7005-72-3	4-Chlorophenyl-phenylether		Ū	1
86-73-7	Fluorene	3100	-	<u> </u>
100-01-6	4-Nitroaniline	3900	U	082
534-52-1	4,6-Dinitro-2-methylphenol		¥	NA
86-30-6	N-Nitrosodiphenylamine (1)	1600	U] ' '
101-55-3	4-Bromophenyl-phenylether	1600	Ü	
118-74-1	Hexachlorobenzene	1600	U]]
87-86-5	Pentachlorophenol	3900	U	
85-01-8	Phenanthrene.	10000	-B]
120-12-7	Anthracene	3700]
86-74-8	Carbazole	1500	. J]]
84-74-2	Di-n-butylphthalate	1600	Ü	
206-44-0	Fluoranthene	9900]]
129-00-0	Pyrene	9600	B]
85-68-7	Butylbenzylphthalate	1600	Ü	
91-94-1	3,3'-Dichlorobenzidine	1600	Ü	
56-55-3	Benzo(a) anthracene	. 5600		
218-01-9	Chrysene	5000]] .
117-81-7	bis(2-Ethylhexyl)phthalate		JB	\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
117-84-0	Di-n-octylphthalate	1600	U	
205-99-2	Benzo(b)fluoranthene	3600		
207-08-9	Benzo(k)fluoranthene	3900]]
50-32-8	Benzo(a) pyrene	5000]
193-39-5	Indeno(1,2,3-cd)pyrene	3300		
53-70-3	Dibenz(a,h)anthracene	. 1200	J	
191-24-2	Benzo(q,h,i)perylene	3500		<u>]]</u>

1F

EPA SAMPLE NO. SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

TENTATIVELY IDENTIFIED COMPOUNDS

			SB-2
Lab Name:	STL/CT	Contract:	

Lab Code: IEACT Case No.: 3090A SAS No.: ____ SDG No.: A3090

Lab Sample ID: 993090A-05 Matrix: (soil/water) SOIL

Sample wt/vol: 30 (g/mL)GLab File ID: >R5533

Level: (low/med) Date Received: 12/03/99 LOW

Date Extracted: 12/05/99 % Moisture: 15 decanted: (Y/N)N

Concentrated Extract Volume: 500 (uL) Date Analyzed: 12/23/99

Dilution Factor: 4.0 Injection Volume: 2.0 (uL)

GPC Cleanup: (Y/N)Y pH:9.0

Number TICs Found: 30 (ug/L or ug/Kg)UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01.	UNKNOWN	20.93	3300	J
02.	UNKNOWN C20H12 PAH	27.61	3100	J
03.	UNKNOWN DIBENZOPYRENE ISOMER	32.34	2300	J
04.	UNKNOWN C17H12 PAH	23.30	2100	Ĵ
05.	UNKNOWN METEHYL-ANTHRACENE	20.73	1900	Ĵ
06.	UNKNOWN C17H12 PAH	23.41	1700	Ĵ
07.	UNKNOWN C19H14 PAH	25.86	1700	J
08.	UNKNOWN DIBENZOPYRENE ISOMER	32.53	1600	J
09.	UNKNOWN METHYL-PHENANTHRENE	20.81	1600	Ĵ
10.	UNKNOWN METHYL-ANTHRACENE	20.67	1600	J
11.	UNKNOWN C18H12 PAH	24.62	1500	J
12.	UNKNOWN C21H14 PAH	28.06	1500	J
13.	UNKNOWN C22H14 PAH	29.76	1500	J
14.	UNKNOWN C22H14 PAH	29.84	1500	J
15.	UNKNOWN C20H12 PAH	27.84	1400	J
16.	UNKNOWN DIBENZOPYRENE ISOMER	32.65	1400	J
17.	UNKNOWN C22H12 PAH	30.34	1400	J
18.90-12-0	NAPHTHALENE, 1-METHYL-	14.49	1400	JN
19.	UNKNOWN C17H12 PAH	23.50	1400	. J
20.	UNKNOWN DIMETHYL-NAPHTHALENE	15.81	1300	J
21.	UNKNOWN C20H12 PAH	27.30	1200	J
22.	UNKNOWN C17H12 PAH	23.05	1200	J
23.612-94-2	NAPHTHALENE, 2-PHENYL-	21.28	1100	JN
24.	UNKNOWN C18H12 PAH	25.29	1000	J
25.	UNKNOWN C17H12 PAH	23.75	1000	J
26.	UNKNOWN C13H10O ISOMER	18.19	1000	J
27.	UNKNOWN	21.91	1000	J
28.	UNKNOWN BENZO CARBAZOLE	25.54	990	J
29.	UNKNOWN C13H10O ISOMER	18.04	980	J
30.	UNKNOWN	26.54	950	J

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

SS-1R

Contract: _____

Lab Code: IEACT Case No.: 3090A SAS No.: _____ SDG No.: A3090

Lab Sample ID: 993090A-06 Matrix: (soil/water)SOIL

Lab File ID: >R5532 Sample wt/vol: 30 (g/mL)G

Date Received: 12/03/99 Level: (low/med) LOW

Date Extracted:12/05/99 % Moisture: 31 decanted: (Y/N)N

Concentrated Extract Volume: 500 (uL) Date Analyzed: 12/23/99

Dilution Factor: 1.0 Injection Volume: 2.0 (uL)

GPC Cleanup: (Y/N)Y pH:7.7

Lao Name: STL/CT

CONCENTRATION UNITS: CAS NO. COMPOUND (uq/L or uq/Kq)UG/KG

				7
108-95-2	Phenol	480	U	
111-44-4	bis(2-Chloroethyl)ether	480	U	11
95-57-8	2-Chlorophenol	480	Ū	11
541-73-1	1,3-Dichlorobenzene	480	U	11
106-46-7	1,4-Dichlorobenzene	480	Ū	11
95-50-1	1,2-Dichlorobenzene	480	Ū	11
95-48-7	2-Methylphenol	480	Ū	11
108-60-1	2,2'-oxybis(1-Chloropropane)	480	Ū	11
106-44-5	4-Methylphenol	480	U	
621-64-7	N-Nitroso-di-n-propylamine	480	Ū	
67-72-1	Hexachloroethane	480	Ū	ll .
98-95-3	Nitrobenzene	480	Ū	[]
78-59-1	Isophorone	480	U	[]
88-75-5	2-Nitrophenol	480	Ū	1
105-67-9	2,4-Dimethylphenol	480	U	([
111-91-1	bis(2-Chloroethoxy)methane	480	Ū	1
120-83-2	2,4-Dichlorophenol	480	Ū	ll .
120-82-1	1,2,4-Trichlorobenzene	480	Ū	l i
91-20-3	Naphthalene	36	J	ıl .
106-47-8	4-Chloroaniline	480	U	
87-68-3	Hexachlorobutadiene	480	Ŭ	
59-50-7	4-Chloro-3-methylphenol	480	Ū	il
91-57-6	2-Methylnaphthalene	14	J	1 , 1
77-47-4	Hexachlorocyclopentadiene	480	IJ	0
88-06-2	2,4,6-Trichlorophenol	480	Ū	i
95-95-4	2,4,5-Trichlorophenol	1200	U	ı.
91-58-7	2-Chloronaphthalene	480	Ū	ı İ
88-74-4	2-Nitroaniline	1200	Ū	
131-11-3	Dimethylphthalate	480	Ŭ	1
208-96-8	Acenaphthylene	78	Ĵ	
606-20-2	2,6-Dinitrotoluene	480	Ü	1
99-09-2	3-Nitroaniline	1200	Ū	
83-32-9	Acenaphthene	14	J	

EPA SAMPLE NO.

10

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

				SS-1R
Lab	Name:	STL/CT	Contract:	

Matrix: (soil/water) SOIL Lab Sample ID: 993090A-06

Sample wt/vol: 30 (g/mL)G Lab File ID: >R5532

Level: (low/med) LOW Date Received: 12/03/99

% Moisture: 31 decanted: (Y/N)N Date Extracted:12/05/99

Concentrated Extract Volume: 500 (uL) Date Analyzed: 12/23/99

Injection Volume: 2.0 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N)Y pH:7.7

		CONCENTRATION UNITS:
CAS NO.	COMPOUND	(ug/L or ug/Kg)UG/KG Q

				7
51-28-5	2,4-Dinitrophenol	1200	y	Q
100-02-7	4-Nitrophenol	1200	Ū	╢'` <u>`</u>
132-64-9	Dibenzofuran	19	J	7
121-14-2	2,4-Dinitrotoluene	480	Ū	7
84-66-2	Diethylphthalate	9	J	7
7005-72-3	4-Chlorophenyl-phenylether	480	Ū	7
86-73-7	Fluorene	33	J	71
100-01-6	4-Nitroaniline	1200	Ū	7 0
534-52-1	4,6-Dinitro-2-methylphenol	1200	IJ	
86-30-6	N-Nitrosodiphenylamine (1)	480	Ū	
101-55-3	4-Bromophenyl-phenylether	480	Ū	7
118-74-1	Hexachlorobenzene	480	Ū	71
87-86-5	Pentachlorophenol	1200	Ū	7
85-01-8	Phenanthrene	45.300	JB	7 0
120-12-7	Anthracene	92	J	7]
86-74-8	Carbazole	38	J	7
84-74-2	Di-n-butylphthalate	6/3: 3I	JB] (L)
206-44-0	Fluoranthene	700	B]
129-00-0	Pyrene	770	B-]
85-68-7	Butylbenzylphthalate	12	J]
91-94-1	3,3'-Dichlorobenzidine	480	Ū]
56-55-3	Benzo(a)anthracene	400	J	_]]
218-01-9	Chrysene	430	J	╢ .
117-81-7	bis(2-Ethylhexyl)phthalate	4 8/2 3 50	JB	
117-84-0	Di-n-octylphthalate	130 10	JB	
205-99-2	Benzo(b) fluoranthene	430	J	_]
207-08-9	Benzo(k)fluoranthene	360	J	_
50-32-8	Benzo(a)pyrene	420	J	_
193-39-5	Indeno(1,2,3-cd)pyrene	340	J	
53-70-3	Dibenz(a,h)anthracene	110	J	
191-24-2	Benzo(q,h,i)perylene	400	J	إل

1F

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

TENTATIVELY IDENTIFIED COMPOUNDS

SS-1R

Lab Name: STL/CT

Contract: _

Lab Code: IEACT Case No.: 3090A SAS No.: ____ SDG No.: A3090

Matrix: (soil/water)SOIL

Lab File ID: >R5532

Lab Sample ID: 993090A-06

Level: (low/med) LOW

Sample wt/vol: 30 (g/mL)G

Date Received: 12/03/99

% Moisture: 31

decanted: (Y/N)N

Date Extracted:12/05/99

Concentrated Extract Volume: 500 (uL) Date Analyzed: 12/23/99

Injection Volume: 2.0 (uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N)Y

pH:7.7

Number TICs Found: 30

		1	T	
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01.58-61-3	STIGMAST-4-EN-3-ONE	31.19	2300	JN : -
02.83-47-6	.GAMMASITOSTEROL	30.13	2200	JN
03.	UNKNOWN	30.13	1400	J
04.83-48-7	STIGMASTEROL	29.72	1100	JN
05.	UNKNOWN ACID	20.72	760	J
06.	UNKNOWN	26.76	710	J
07.	UNKNOWN	29.37	620	J
08.	UNKNOWN	9.19	620	JB
09.	UNKNOWN	32.65	600	J
10.	UNKNOWN C20H12 PAH	27.60	5.70	J
11.	UNKNOWN	28.24	560	J
12.	UNKNOWN	30.49	560	J
13.	UNKNOWN	31.54	550	J
14.	UNKNOWN	29.52	550	J
15.	UNKNOWN	30.95	550	J
16.	UNKNOWN	30.53	530	J
17.	UNKNOWN C22H12 PAH	30.31	460	J
18.	UNKNOWN	30.61	460	J
19.	UNKNOWN	31.02	450	J
20.57-88-5	CHOLESTEROL	28.85	420	JN
21.	UNKNOWN	30.22	410	J
22.	UNKNOWN	29.89	400	J
23.	UNKNOWN	30.40	380	J
24.	UNKNOWN	30.79	380	J
25.	UNKNOWN C22H14 PAH	29.83	380	J
26.	UNKNOWN	27.90	340	J
27.	UNKNOWN	29.14	340	J
28.	UNKNOWN DIBENZOPYRENE ISOMER	32.50	330	J
29.	UNKNOWN ACID	22.19	320	J
30.	UNKNOWN C17H12 PAH	23.26	310	-

1B

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: STL/CT Contract: ______ SS-2

Matrix: (soil/water)SOIL Lab Sample ID: 993090A-07

Sample wt/vol: 30 (g/mL)G Lab File ID: >R5530

Level: (low/med) LOW Date Received: 12/03/99

% Moisture: 18 decanted: (Y/N)N Date Extracted:12/05/99

Concentrated Extract Volume: 500 (uL) Date Analyzed: 12/23/99

Injection Volume: 2.0 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N)Y pH:7.8

CONCENTRATION UNITS:
CAS NO. COMPOUND (ug/L or ug/Kg)UG/KG Q

108-95-2	Phenol		400	U	
111-44-4	bis(2-Chloroethyl)ether		: 400	Ū	1
95-57-8	2-Chlorophenol		400	Ū.	1
541-73-1	1,3-Dichlorobenzene		400	Ü	11.
106-46-7	1,4-Dichlorobenzene		400	U :	1
95-50-1	1,2-Dichlorobenzene		400	Ū.	1
95-48-7	2-Methylphenol	111	400	Ū	1
108-60-1	2,2'-oxybis(1-Chloropropane)	******	400	U .	1
106-44-5	4-Methylphenol		400	Ū	1
621-64-7	N-Nitroso-di-n-propylamine		400	Ū	1
67-72-1	Hexachloroethane		400	Ū.	1
98-95-3	Nitrobenzene	.,	400	U	1
78-59-1	Isophorone		400	Ū.	1
88-75-5	2-Nitrophenol		400	Ū.	1
105-67-9	2,4-Dimethylphenol		400	Ū	1
111-91-1	bis (2-Chloroethoxy) methane			Ü.	1
120-83-2	2,4-Dichlorophenol		400	Ū.	
120-82-1	1,2,4-Trichlorobenzene		400	Ū	1
91-20-3	Naphthalene		. 10	Ĵ	
106-47-8	4-Chloroaniline		. 400	Ū	
87-68-3	Hexachlorobutadiene		4 0.0	Ū	
59-50-7	4-Chloro-3-methylphenol		400	U	.
91-57-6	2-Methylnaphthalene		400	U .	
77-47-4	Hexachlorocyclopentadiene	-	400	IJ	Ū
88-06-2	2,4,6-Trichlorophenol		400	Ū	İ
95-95-4	2,4,5-Trichlorophenol		1000	Ū	
91-58-7	2-Chloronaphthalene		400	Ū.	ll .
88-74-4	2-Nitroaniline		1.0.00	Ū.	il
131-11-3	Dimethylphthalate	2	400	Ū ·	1
208-96-8	Acenaphthylene			Ĵ	d
606-20-2	2,6-Dinitrotoluene		400.	Ū .	d
99-09-2	3-Nitroaniline		1000	Ū	1
83-32-9	Acenaphthene		12	J	ı

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

$rac{r}{r}$	OWITETIL	INO.

Lab	Name:	STL/CT		Contract:	SS-2	- -
Lab	Code:	IEACT	Case No.: 3090A	SAS No.:	SDG No.: A3090	٢

Matrix: (soil/water) SOIL Lab Sample ID: 993090A-07

Sample wt/vol: Lab File ID: 30 (g/mL)G >R5530

Level: (low/med) LOW Date Received: 12/03/99

% Moisture: 18 decanted: (Y/N)N Date Extracted: 12/05/99

Concentrated Extract Volume: 500 (uL) Date Analyzed: 12/23/99

Injection Volume: 2.0 Dilution Factor: 1.0 (uL)

pH:7.8

GPC Cleanup: (Y/N)Y

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg)UG/KG

51-28-5	2,4-Dinitrophenol	1000	IJ	
100-02-7	4-Nitrophenol	1000	Ū	7
132-64-9	Dibenzofuran	400	Ū	7
121-14-2	2,4-Dinitrotoluene	400	Ū	7
84-66-2	Diethylphthalate	- 400	Ū	7
7005-72-3	4-Chlorophenyl-phenylether	400	Ū	7
86-73-7	Fluorene	14	J	
100-01-6	4-Nitroaniline	1000	Ū	7
534-52-1	4,6-Dinitro-2-methylphenol	1000	IJ	7
86-30-6	N-Nitrosodiphenylamine (1)	400	Ū.	7
101-55-3	4-Bromophenyl-phenylether	400	U	7
118-74-1	Hexachlorobenzene	400	Ū	\exists
87-86-5	Pentachlorophenol	130	J	\exists
85-01-8	Phenanthrene	400 180	JB	\parallel
120-12-7	Anthracene	50	J	\exists
86-74-8	Carbazole	27	J	$\exists \mathbb{I}$
84-74-2	Di-n-butylphthalate	400 18	JB	- .
206-44-0	Fluoranthene	- 430	.B	\exists
129-00-0	Pyrene	400	B	\exists
85-68-7	Butylbenzylphthalate	400	Ū	\exists
91-94-1	3,3'-Dichlorobenzidine	400	Ŭ	\prod
56-55-3	Benzo(a)anthracene	220	J	
218-01-9	Chrysene	240	J	
117-81-7	bis(2-Ethylhexyl)phthalate	400 260	J,B	
117-84-0	Di-n-octylphthalate	400 12	øВ	
205-99-2	Benzo(b)fluoranthene	240	J	71.
207-08-9	Benzo(k)fluoranthene	190	J	
50-32-8	Benzo(a)pyrene	220	J	$\exists I$
193-39-5	Indeno(1,2,3-cd)pyrene	150	J	7
53-70-3	Dibenz(a,h)anthracene	50	J	7
191-24-2	Benzo(q,h,i)perylene	190	J	7

(1-) - Cannot be separated from Diphenylamine

FORM I SV-2

1F

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

TENTATIVELY IDENTIFIED COMPOUNDS

ntract:			
	1 to 20 =	act.	

Lab Name: STL/CT

Co

SS-2

Matrix: (soil/water)SOIL

Lab File ID: >R5530

Sample wt/vol: 30 (g/mL)G

Level: (low/med) LOW

Date Received: 12/03/99

Lab Sample ID: 993090A-07

% Moisture: 18 decanted: (Y/N)N

Date Extracted:12/05/99

Concentrated Extract Volume: 500 (uL)

Date Analyzed: 12/23/99

Injection Volume: 2.0 (uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N)Y pH:7.8

Number TICs Found: 30

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01.83-47-6	.GAMMASITOSTEROL	30.10	650	JN
02.	UNKNOWN	9.19	540	JB
03.	UNKNOWN	26.76	530	J
04.57-10-3	N-HEXADECANOIC ACID	20.71	520	JN
05.	UNKNOWN C20H12 PAH	27.60	490	J
06.58-61-3	STIGMAST-4-EN-3-ONE	31.17	430	JN
07.	UNKNOWN C29H48O ISOMER	29.71	320	Ĵ
08.	UNKNOWN	20.58	320	J
09.	UNKNOWN	30.69	280	J
10.112-79-8	9-OCTADECENOIC ACID, (E)-	22.19	280	JN
11.	UNKNOWN	31.57	250	J
12.	UNKNOWN	29.37	250	J
13.	UNKNOWN	20.65	240	J
14.	UNKNOWN C22H12 PAH	30.30	240	J
15.57-88-5	CHOLESTEROL	28.84	230	JN
16.	UNKNOWN	28.24	210	J
17.	UNKNOWN	31.00	190	, J
18.	UNKNOWN	31.77	190	J
19.474-62-4	CAMPESTEROL	29.52	190	JN
20.	UNKNOWN	30.78	180	Ĵ
21.	UNKNOWN C24H14 PAH	32.62	180	J
22.	UNKNOWN	31.07	170	Ĵ
23.	UNKNOWN ACID	19.53	170	Ĵ
24.	UNKNOWN	30.60	170	J
25.	UNKNOWN	23.86	170	J
26.	UNKNOWN	25.93	160	J
27.	UNKNOWN	8.82	160	J
28.	UNKNOWN C22H14 PAH	29.82	150	J
29.	UNKNOWN	30.21	140	J
30.	UNKNOWN C24H14 PAH	32.30	130	J

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

				SS-3
Lab	Name:	STL/CT	Contract:	

Matrix: (soil/water) SOIL Lab Sample ID: 993090A-08

Sample wt/vol: 30 (g/mL)G Lab File ID: >R5568

Level: (low/med) LOW Date Received: 12/03/99

% Moisture: 10 decanted: (Y/N)N Date Extracted:12/05/99

Concentrated Extract Volume: 500 (uL) Date Analyzed: 12/28/99

Injection Volume: 2.0 (uL) Dilution Factor: 2.0

GPC Cleanup: (Y/N)Y pH:8.1

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg)UG/KG Q

[
108-95-2	Phenol	730	Ū
111-44-4	bis(2-Chloroethyl)ether	730	Ū
95-57-8	2-Chlorophenol	730	Ū
541-73-1	1,3-Dichlorobenzene	730	Ū
106-46-7	1,4-Dichlorobenzene	730	U
95-50-1	1,2-Dichlorobenzene	730	Ū
95-48-7	2-Methylphenol	730	Ú
108-60-1	2,2'-oxybis(1-Chloropropane)	730	Ū
106-44-5	4-Methylphenol	730	Ü
621-64-7	N-Nitroso-di-n-propylamine	730	U
67-72-1	Hexachloroethane	730	Ū
98-95-3	Nitrobenzene	730	Ū
78-59-1	Isophorone	730	Ū
88-75-5	2-Nitrophenol	730	Ū
105-67-9	2,4-Dimethylphenol	730	U
111-91-1	bis (2-Chloroethoxy) methane	730	Ū
120-83-2	2,4-Dichlorophenol	730	Ū
120-82-1	1,2,4-Trichlorobenzene	730	Ũ
91-20-3	Naphthalene	56	J
106-47-8	4-Chloroaniline	730	Ū
87-68-3	Hexachlorobutadiene	730	Ū
59-50-7	4-Chloro-3-methylphenol	730	U
91-57-6	2-Methylnaphthalene	33	Ĵ
77-47-4	Hexachlorocyclopentadiene	730	<u> </u>
88-06-2	2,4,6-Trichlorophenol	730	Ū
95-95-4	2,4,5-Trichlorophenol	1800	U
91-58-7	2-Chloronaphthalene	730	Ū
88-74-4	2-Nitroaniline	1800	Ū
131-11-3	Dimethylphthalate	730	Ū
208-96-8	Acenaphthylene	230	J
606-20-2	2,6-Dinitrotoluene	730	U
99-09-2	3-Nitroaniline	1800	U
83-32-9	Acenaphthene	49	J

Ci

1C

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

			SS-3
Lab Name:	STL/CT	Contract:	

Lab Code: IEACT Case No.: 3090A SAS No.: _____ SDG No.: A3090

Matrix: (soil/water) SOIL Lab Sample ID: 993090A-08

Sample wt/vol: 30 (g/mL)G Lab File ID: >R5568

Level: (low/med) LOW Date Received: 12/03/99

% Moisture: 10 decanted: (Y/N)N Date Extracted:12/05/99

Concentrated Extract Volume: 500 (uL) Date Analyzed: 12/28/99

Injection Volume: 2.0 (uL) Dilution Factor: 2.0

GPC Cleanup: (Y/N)Y pH:8.1

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

]
51-28-5	2,4-Dinitrophenol	1800	U	i i
100-02-7	4-Nitrophenol	1800	<i>U</i> .	v^\
132-64-9	Dibenzofuran	52	J	
121-14-2	2,4-Dinitrotoluene	730	Ū	
84-66-2	Diethylphthalate	730	Ū	1
70.05 - 72 - 3	4-Chlorophenyl-phenylether	730	U	
86-73-7	Fluorene	56	J	
100-01-6	4-Nitroaniline	1800	· U	
534-52-1	4,6-Dinitro-2-methylphenol	1800	U	
86-30-6	N-Nitrosodiphenylamine (1)	730	Ū	
101-55-3	4-Bromophenyl-phenylether	730	U	
118-74-1	Hexachlorobenzene	7.30	U	
87-86-5	Pentachlorophenol	1800	U	
85-01-8	Phenanthrene	1200	B	
120-12-7	Anthracene	280	J	j
86-74-8	Carbazole	220	J .	
84-74-2	Di-n-butylphthalate	730 29	₽B	V
206-44-0	Fluoranthene	29.00	B	(Real Vales
129-00-0	Pyrene	2800	₽	[5]
85-68-7	Butylbenzylphthalate	730	Ū	
91-94-1	3,3'-Dichlorobenzidine	730	Ū	
56-55-3	Benzo(a)anthracene	1600		
218-01-9	Chrysene .	1800		
117-81-7	bis(2-Ethylhexyl)phthalate	790	<u> </u>	0
117-84-0	Di-n-octylphthalate	73. 75	JB .	U
205-99-2	Benzo(b)fluoranthene	1700		
207-08-9	Benzo(k)fluoranthene	1500		
50-32-8	Benzo(a) pyrene	1700		
193-39-5	Indeno(1,2,3-cd)pyrene	1800		
53-70-3	Dibenz(a,h)anthracene	570	J	
191-24-2	Benzo(q, h, 1) perylene	2600.		l

1F

EPA SAMPLE NO

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

TENTATIVELY IDENTIFIED COMPOUNDS

Lap Name: STL/CT

Contract:

SS-3

Lab Code: IEACT Case No.: 3090A SAS No.: ____ SDG No.: A3090

Matrix: (soil/water) SOIL

Lab Sample ID: 993090A-08

Sample wt/vol:

30

(g/mL)G

Lab File ID:

>R5568

Level: (low/med) LOW

Date Received: 12/03/99

% Moisture: 10 decanted: (Y/N)N

Date Extracted:12/05/99

Concentrated Extract Volume: 500 (uL)

Date Analyzed: 12/28/99

Injection Volume: 2.0 (uL)

Dilution Factor: 2.0

GPC Cleanup: (Y/N)Y

pH:8.1

Number TICs Found: 30

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	· Q
01.	UNKNOWN C20H12 PAH	27.58	1700	J
02.	UNKNOWN C22H12 PAH	29.38	1300	J
03.	UNKNOWN DIBENZOPYRENE ISOMER	32.29	960	J
04.	UNKNOWN C22H14 PAH	29:72	910	J
05.	UNKNOWN C22H14 ISOMER	29.80	860	J
06	UNKNOWN C22H12 PAH	30.30	810	J
07.	UNKNOWN C17H12 PAH	23.26	780	J
08.	UNKNOWN C20H12 PAH	27.80	700	J
09.	UNKNOWN	9.15	560	J.B
10.	UNKNOWN	28.84.	560	J
11.	UNKNOWN DIBENZOPYRENE ISOMER	32.46	550	J ·
12.	UNKNOWN C22H14 PAH	29.31	530	J
13.	UNKNOWN	29:88	520	J
14.	UNKNOWN C18H12 PAH	25.26	500	J
15.	UNKNOWN	29.06	500	J
16.	UNKNOWN DIBENZOPYRENE ISOMER	32.59	460	J
17.	UNKNOWN C15H10 PAH	2089	450	J
18.	UNKNOWN-C18H12 PAH	24.60	450	Ĵ
19	UNKNOWN BENZO[B] NAPHTHOTHIOP	24.53	440	J
20.	UNKNOWN C19H14 PAH	25.84	440	J
21.	UNKNOWN	29.20	. 440	J
22.	UNKNOWN BENZO PYRENE	27.27	440	J
23.	UNKNOWN DIBENZ ACRIDINE ISOM	29.12	430	·J
24.	UNKNOWN	27.42	420	J
25.	UNKNOWN C17H100 ISOMER	24.31	420	J
26.	UNKNOWN	28.89	390	J
27.	UNKNOWN	31.27	370	J
28.	UNKNOWN C17H12 PAH	23:03	360	J
29.	UNKNOWN	30.18	: 360	J
30.	UNKNOWN	26.11	. 360	J

1B

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

			SS-4
Lab Name:	STL/CT	Contract:	

Lab Code: IEACT Case No.: 3090A SAS No.: ____ SDG No.: A3090

Matrix: (soil/water) SOIL Lab Sample ID: 993090A-09

Sample wt/vol: 30 (g/mL)G Lab File ID: >R5529

Level: (low/med) LOW Date Received: 12/03/99

% Moisture: 20 decanted: (Y/N)N Date Extracted:12/05/99

Concentrated Extract Volume: 500 (uL) Date Analyzed: 12/23/99

Injection Volume: 2.0 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N)Y pH:7.8

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

108-95-2	Phenol	410	U
111-44-4	bis(2-Chloroethyl)ether	410	Ū
95-57-8	2-Chlorophenol	410	Ū
541-73-1	1,3-Dichlorobenzene	410	Ū
106-46-7	1,4-Dichlorobenzene	410	Ū
95-50-1	1,2-Dichlorobenzene	410	Ū
95-48-7	2-Methylphenol	410	Ū
108-60-1	2,2'-oxybis(1-Chloropropane)	410	U
106-44-5	4-Methylphenol	410	Ū
621-64-7	N-Nitroso-di-n-propylamine	410	U
67-72-1	Hexachloroethane	410	Ū
98-95-3	Nitrobenzene	410	Ū
78-59-1	Isophorone	410	Ū
88-75-5	2-Nitrophenol	410	Ū
105-67-9	2,4-Dimethylphenol	410	Ū
111-91-1	bis (2-Chloroethoxy) methane	410	Ū
120-83-2	2,4-Dichlorophenol	410	Ū
120-82-1	1,2,4-Trichlorobenzene	410	Ū
91-20-3	Naphthalene	410	Ū
106-47-8	4-Chloroaniline	410	U
87-68-3	Hexachlorobutadiene	410	U
59-50-7	4-Chloro-3-methylphenol	410	U
91-57-6	2-Methylnaphthalene	410	Ū
77-47-4	Hexachlorocyclopentadiene	410	£-
88-06-2	2,4,6-Trichlorophenol	410	Ū
95-95-4	2,4,5-Trichlorophenol	1000	Ū
91-58-7	2-Chloronaphthalene	410	U
88-74-4	2-Nitroaniline	1000	Ū
131-11-3	Dimethylphthalate	410	Ū
208-96-8	Acenaphthylene	20	J
606-20-2	2,6-Dinitrotoluene	410	Ū
99-09-2	3-Nitroaniline	1000	Ū
83-32-9	Acenaphthene	1 410	U

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

					SS-4	1
Lab	Name:	STL	/CT	Contract:		

Lab Code: IEACT Case No.: 3090A SAS No.: ____ SDG No.: A3090

Matrix: (soil/water)SOIL Lab Sample ID: 993090A-09

Sample wt/vol: 30 (g/mL)GLab File ID: >R5529

Level: (low/med) LOW Date Received: 12/03/99

% Moisture: 20 decanted: (Y/N)N Date Extracted:12/05/99

Concentrated Extract Volume: 500 (uL) Date Analyzed: 12/23/99

Injection Volume: 2.0 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N)Y pH:7.8

CAS NO.	COMPOUND	ND · · ·		CONCENTRATION (ug/L or ug/k	Q	
	2,4-Dinitrophenol				1000	
100-02-7	4-Nitrophenol				1000	ΤT

51-28-5	2,4-Dinitrophenol	1000	J.
100-02-7	4-Nitrophenol	1000	U
132-64-9	Dibenzofuran	410	Ū
121-14-2	2,4-Dinitrotoluene	410	U
84-66-2 .	Diethylphthalate	410	U··
7005-72-3	4-Chlorophenyl-phenylether	-410-	Ū
86-73-7.	Fluorene	410	Ū ·
100-01-6	4-Nitroaniline	1000	U
534-52-1	4,6-Dinitro-2-methylphenol	1000	J.
86-30-6	N-Nitrosodiphenylamine (1)	410	· U
101-55-3	4-Bromophenyl-phenylether	410	. Ū
118-74-1	Hexachlorobenzene	410	Ū
87-86-5	Pentachlorophenol	1000	U
85-01-8	Phenanthrene	410 110 -	JB
120-12-7	Anthracene	26	Ĵ
86-74-8	Carbazole	. 13	Ĵ
84-74-2	Di-n-butylphthalate	41: 23:	JB-
206-44-0	Fluoranthene	230	JB
129-00-0	Pyrene	220	JB
85-68-7	Butylbenzylphthalate	410	U
91-94-1	3,3'-Dichlorobenzidine	410	Ū
5655-3	Benzo(a)anthracene	110	J
218-01-9	Chrysene	140	J
117-81-7	bis(2-Ethylhexyl)phthalate	4/6 140	JB (
117-84-0	Di-n-octylphthalate	1410 16	JB (
205-99-2	Benzo(b)fluoranthene	120	J
207-08-9	Benzo(k)fluoranthene	. 130	Ĵ
50-32-8.	Benzo(a)pyrene	120	J
193-39-5	Indeno(1,2,3-cd)pyrene	. 83	J
53-70-3	Dibenz(a,h)anthracene	32	J
191-24-2-	Benzo(q,h,i)pervlene	. 110	. J

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

TENTATIVELY IDENTIFIED COMPOUNDS

SS-4

Lab Name: STL/CT

Contract: _

Lab Code: IEACT Case No.: 3090A SAS No.: ____ SDG No.: A3090

Lab Sample ID: 993090A-09

Matrix: (soil/water) SOIL

Sample wt/vol:

30

(g/mL)G

Lab File ID:

>R5529

Level: (low/med) LOW

Date Received: 12/03/99

% Moisture: 20

decanted: (Y/N)N

Date Extracted: 12/05/99

Concentrated Extract Volume: 500 (uL) Date Analyzed: 12/23/99

Injection Volume: 2.0 (uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N)Y

pH:7.8

Number TICs Found: 30

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01.	UNKNOWN	26:76	620	J
02.83-47-6	.GAMMASITOSTEROL	30.10	520	JN
03.	UNKNOWN	9.19	510	JB
04.57-10-3	N-HEXADECANOIC ACID	20.70	410	JN
05.	UNKNOWN C20H12 PAH	27.60	270	J
06.	UNKNOWN	28.84	270	J
07.83-48-7	STIGMASTEROL	29.71	260	JN
08.	UNKNOWN	20.58	250	Ĵ
09.	UNKNOWN	25.93	230	J
10.	UNKNOWN	22.19	230	J
11.58-61-3	STIGMAST-4-EN-3-ONE	31.16	220	JN
12.	UNKNOWN	28.24	200	J
13.	UNKNOWN	27.89	180	J
14.	UNKNOWN	30.69	170	J
15.	UNKNOWN ACID	20.64	170	J
16.	UNKNOWN ·	24.65	150	J
17.	UNKNOWN	29.13	150	J
18.	UNKNOWN	29.38	150	J
19.	UNKNOWN	31.58	140	J
20.	ÜNKNOWN	32.60	140	J
21.	UNKNOWN ACID	22.29	140	J
22.	UNKNOWN	8.82	120	J
23.	UNKNOWN ACID	19.53	120	J
24.	ÜNKNOWN	12.59	120	J
25.	UNKNOWN	30.31	120	J
26.	UNKNOWN	29.44	110	Ĵ
27.	UNKNOWN	28.99	100	J
28.	UNKNOWN	-30.99	94	J
29.	UNKNOWN	21.07	94	J
30.	ÜNKNOMN	30.51	93	J

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

			MW-5
Lab Name:	STL/CT	Contract:	

Matrix: (soil/water) SOIL Lab Sample ID: 993090A-10

Sample wt/vol: 30 (g/mL)G Lab File ID: >R5526

Level: (low/med) LOW Date Received: 12/03/99

% Moisture: 10 decanted: (Y/N)N Date Extracted:12/05/99

Concentrated Extract Volume: 500 (uL) Date Analyzed: 12/23/99

Injection Volume: 2.0 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N)Y pH:8.3

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg)UG/KG (

			
108-95-2	Phenol	370	U
111-44-4	bis(2-Chloroethyl)ether	370	U
95-57-8	2-Chlorophenol	370	Ū
541-73-1	1,3-Dichlorobenzene	370	Ū
106-46-7	1,4-Dichlorobenzene	370	Ū
95-50-1	1,2-Dichlorobenzene	370	Ū
95-48-7	2-Methylphenol	370	Ū
108-60-1	2,2'-oxybis(1-Chloropropane)	370	Ū
106-44-5	4-Methylphenol	370	Ū
621-64-7	N-Nitroso-di-n-propylamine	370	Ū
67-72-1	Hexachloroethane	370	Ū
98-95-3	Nitrobenzene	370	Ū
78-59-1	Isophorone	370	Ū
88-75-5	2-Nitrophenol	370	Ū
105-67-9	2,4-Dimethylphenol	370	Ū
111-91-1	bis(2-Chloroethoxy) methane	370	Ū
120-83-2	2,4-Dichlorophenol	370	Ū
120-82-1	1,2,4-Trichlorobenzene	370	Ū
91-20-3	Naphthalene	6	J
106-47-8	4-Chloroaniline	370	Ú
87-68-3	Hexachlorobutadiene	370	U
59-50 - 7	4-Chloro-3-methylphenol	370	U
91-57-6	2-Methylnaphthalene	370	U
77-47-4	Hexachlorocyclopentadiene	370	¥
88-06-2	2,4,6-Trichlorophenol	370	Ū
95-95-4	2,4,5-Trichlorophenol	920	Ŭ
91-58-7	2-Chloronaphthalene	370	Ū
88-74-4	2-Nitroaniline	920	Ū
131-11-3	Dimethylphthalate	370	Ü
208-96-8	Acenaphthylene	12	Ĵ
606-20-2	2,6-Dinitrotoluene	370	Ü
99-09-2	3-Nitroaniline	920	Ū
83-32-9	Acenaphthene	370	Ū

10

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

				MW-5
Lab	Name:	STL/CT	Contract:	

Matrix: (soil/water) SOIL Lab Sample ID: 993090A-10

Sample wt/vol: 30 (g/mL)G Lab File ID: >R5526

Level: (low/med) LOW Date Received: 12/03/99

% Moisture: 10 decanted: (Y/N)N Date Extracted:12/05/99

Concentrated Extract Volume: 500 (uL) Date Analyzed: 12/23/99

Injection Volume: 2.0 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N)Y pH:8.3

CAS NO.	AS NO. COMPOUND CONCENTRATION (ug/L or ug)			
51-28-5	2,4-Dinitrophenol		920	せ

				7 _
51-28-5	2,4-Dinitrophenol	920	T-	
100-02-7	4-Nitrophenol	920	Ū	11 1 2
132-64-9	Dibenzofuran	370	Ū	11
121-14-2	2,4-Dinitrotoluene	370	Ū	11
84-66-2	Diethylphthalate	370	Ū	1
7005-72-3	4-Chlorophenyl-phenylether	370	Ū	11
86-73-7	Fluorene	10	J	11
100-01-6	4-Nitroaniline	920	Ū	
534-52-1	4,6-Dinitro-2-methylphenol	920	Ŧ	18
86-30-6	N-Nitrosodiphenylamine (1)	370	Ū]] } _;_
101-55-3	4-Bromophenyl-phenylether	370	Ū	
118-74-1	Hexachlorobenzene	370	Ū	11
87-86-5	Pentachlorophenol	920	U	11
85-01-8	Phenanthrene	370 67	J₿] U
120-12-7	Anthracene	19	J	
86-74-8	Carbazole	370	Ū	1
84-74-2	Di-n-butylphthalate	7-0 15-	J₽	L'_
206-44-0	Fluoranthene	376 57	JB-	<i>U</i> ,
129-00-0	Pyrene	370 54	JB-	U
85-68-7	Butylbenzylphthalate	370	Ū]
91-94-1	3,3'-Dichlorobenzidine	370	Ū	
56-55-3	Benzo(a) anthracene	26	J]
218-01-9	Chrysene	24	J	1
117-81-7	bis(2-Ethylhexyl)phthalate	37L 80	JB-	
117-84-0	Di-n-octylphthalate	37. 8	JB _	U
205-99-2	Benzo(b) fluoranthene	17	J	I
207-08-9	Benzo(k)fluoranthene	16	J	
50-32-8	Benzo(a)pyrene	20	J	1
193-39-5	Indeno(1,2,3-cd)pyrene	10	J	Ι.
53-70-3	Dibenz(a,h)anthracene	370	Ū	
191-24-2	Benzo(q,h,i)perylene	11	J	<u>.</u>]

1F EPA SAMPLE NO. SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab File ID:

>R5526

TENTATIVELY IDENTIFIED COMPOUNDS

			MW-5
Name:	STL/CT	Contract:	

Matrix: (soil/water) SOIL Lab Sample ID: 993090A-10

Level: (low/med) LOW Date Received: 12/03/99

% Moisture: 10 decanted: (Y/N)N Date Extracted:12/05/99

Concentrated Extract Volume: 500 (uL) Date Analyzed: 12/23/99

Injection Volume: 2.0 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N)YрН:8.3

Sample wt/vol: 30 (g/mL)G

Lab

Number TICs Found: 1 (ug/L or ug/Kg)UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01.	UNKNOWN	9.19	490	JB
02.				
03.		-		
04.				
05.				
06.				
07. 08.				
09.				
10.			 	
11.				
12.				
13.				·····
14.				
15.				
16.				
17.				
18.				
19. 20.				
20.				
21.				
22.				
23.				
24. 25.				
<u>26.</u>				
27.				
28.				
29.				
30.				

1B

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

			SB-8
Lab Name:	STL/CT	Contract:	

Matrix: (soil/water) SOIL Lab Sample ID: 993090A-11

Sample wt/vol: 30 (g/mL)G Lab File ID: >R5527

Level: (low/med) LOW Date Received: 12/03/99

% Moisture: 15 decanted: (Y/N)N Date Extracted:12/05/99

Concentrated Extract Volume: 500 (uL) Date Analyzed: 12/23/99

Injection Volume: 2.0 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N)Y pH:8.2

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG (

			~
108-95-2	Phenol	390	U
111-44-4	bis(2-Chloroethyl)ether	390	U
95-57-8	2-Chlorophenol	390	Ū
541-73-1	1,3-Dichlorobenzene	390	Ū
106-46-7	1,4-Dichlorobenzene	390	Ū.
95-50-1	1,2-Dichlorobenzene	390	Ū
95-48-7	2-Methylphenol	390	Ū
108-60-1	2,2'-oxybis(1-Chloropropane)	390	U
106-44-5	4-Methylphenol	390	U
621-64-7	N-Nitroso-di-n-propylamine	390	U
67-72-1	Hexachloroethane	390	Ū
98-95-3	Nitrobenzene	390	U
78-59-1	Isophorone	390	U
88-75-5	2-Nitrophenol	390	U
105-67-9	2,4-Dimethylphenol	390	Ū
111-91-1	bis(2-Chloroethoxy) methane	390	Ü
120-83-2	2,4-Dichlorophenol	390	Ŭ
120-82-1	1,2,4-Trichlorobenzene	390	Ū
91-20-3	Naphthalene	390	Ü
106-47-8	4-Chloroaniline	390	Ū
87-68-3	Hexachlorobutadiene	390	Ū
59-50-7	4-Chloro-3-methylphenol	390	U
91-57-6	2-Methylnaphthalene	390	Ū
77-47-4	Hexachlorocyclopentadiene	390	U
88-06-2	2,4,6-Trichlorophenol	390	Ū
95-95-4	2,4,5-Trichlorophenol	980	U
91-58-7	2-Chloronaphthalene	390	Ū
88-74-4	2-Nitroaniline	980	Ū
131-11-3	Dimethylphthalate	390	Ū
208-96-8	Acenaphthylene	9	J
606-20-2	2,6-Dinitrotoluene	390	U
99-09-2	3-Nitroaniline	980	Ŭ
83-32-9	Acenaphthene	390	ŢĴ

10

EPA SAMPLE NO.

, Q.-.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

			SB-8
Lab Name	e: STL/CT	Contract:	

Lab Code: IEACT Case No.: 3090A SAS No.: ____ SDG No.: A3090

Matrix: (soil/water) SCIL Lab Sample ID: 993090A-11

Sample wt/vol: 30 (g/mL)G Lab File ID: >R5527

Level: (low/med) LOW Date Received: 12/03/99

% Moisture: 15 decanted: (Y/N)N Date Extracted:12/05/99

Concentrated Extract Volume: 500 (uL) Date Analyzed: 12/23/99

Injection Volume: 2.0 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N)Y pH:8.2

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

			,	1	\lnot
51-28-5	2,4-Dinitrophenol		980	J. J.	100
100-02-7	4-Nitrophenol		980	Ū ·	TI -
132-64-9	Dibenzofuran		390	. U .	7(
121-14-2	2,4-Dinitrotoluene		. 390	U	7
84-66-2	Diethylphthalate		390	Ū.	71
7005-72-3	4-Chlorophenyl-phenylether		390	Ū	7
86-73-7	Fluorene		390	U	1
100-01-6	4-Nitroaniline		98.0	U	آ.
534-52-1	4,6-Dinitro-2-methylphenol		- 980	U	143
86-30-6	N-Nitrosodiphenylamine (1)		390	U	7
101-55-3	4-Bromophenyl-phenylether		-390	Ū	7)
118-74-1	Hexachlorobenzene		390.	· U	7] .
87-86-5	Pentachlorophenol		980	U -	1
85-01-8	Phenanthrene		34, 38	JB	ال [[
120-12-7	Anthracene		18	. J]
86-74-8	Carbazole		390	Ū.]
84-74-2	Di-n-butylphthalate		3.5 1-5 -	JB-]]-0
206-44-0	Fluoranthene .		-96 يود ج	JB-] (
129-00-0	Pyrene		j : 9-9		J
85-68-7	Butylbenzylphthalate		390	U	<u></u> ∦ .
91-94-1	3,3'-Dichlorobenzidine		390	Ū	∄
56-55-3	Benzo(a)anthracene		57	J	1
218-01-9	Chrysene		52	J .]
117-81-7	pis(2-Ethylhexyl)phthalate		7% 3.8.0	JB	
117-84-0	Di-n-octylphthalate			JB-	
205-99-2	Benzo(b)fluoranthene		. 37	. J .	
207-08-9	Benzo(k)fluoranthene		44	J	1
50-32-8	Benzo(a) pyrene		46	J.	1
193-39-5	Indeno(1,2,3-cd)pyrene		23	J	1
53-70-3	Dibenz(a,h)anthracene		9	J]
191-24-2	Benzo(q,h,i)perylene	.]	. 24	J	JI

1F EPA SAMPLE NO. SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab File ID: >R5527

TENTATIVELY IDENTIFIED COMPOUNDS

					SB-8	
Lab	Name:	STL/C	CT CT	Contract:		

Lab Code: IEACT Case No.: 3090A SAS No.: ____ SDG No.: A3090

Matrix: (soil/water)SOIL Lab Sample ID: 993090A-11

Level: (low/med) LOW Date Received: 12/03/99

% Moisture: 15 decanted: (Y/N)N Date Extracted:12/05/99

Concentrated Extract Volume: 500 (uL) Date Analyzed: 12/23/99

Injection Volume: 2.0 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N)Y pH:8.2

Sample wt/vol:

30

Number TICs Found: 3 (ug/L or ug/Kg) UG/KG

(g/mL)G

<u></u>				
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01	UNKNOWN	9.18	580	JB′
02.	UNKNOWN	. 9.58	90	J
03.	UNKNOWN	12.59	88	J
04.			· · · · · · · · · · · · · · · · · · ·	
05.				
06.				
07:			1.	
08.				
09.				
10.				
11.		7		i
12.	·			
13.				
14.				
15.		-		
16.				
17.				
18.				· 1
19.				
20.	·			
21.				
22.				
23.				
24.				
25	**			
26.				
27.				
28				
29.			. "' :	
30.		 	"	

CONCENTRATION UNITS:

(ug/I or ug/Kg) UG/KG

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: STL/CT Contract: SB-4

Lab Code: IEACT Case No.: 3090A SAS No.: ____ SDG No.: A3090

Matrix: (soil/water) SOIL Lab Sample ID: 993090A-12

Sample wt/vol: 30 (g/mL)G Lab File ID: >R5528

Level: (low/med) LOW Date Received: 12/03/99

% Moisture: 18 decanted: (Y/N)N Date Extracted:12/05/99

Concentrated Extract Volume: 500 (uL) Date Analyzed: 12/23/99

Injection Volume: 2.0 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N)Y pH:8.1

CAS NO. COMPOUND

CAS NO. COMPOUND (ug/L of ug/.		i ug/kg/UG/kG	<u>Q</u>
108-95-2	Phenol	400	U
111-44-4	bis(2-Chloroethyl)ether	400	Ū
95-57-8	2-Chlorophenol	400	Ū
541-73-1	1,3-Dichlorobenzene	400	Ū
106-46-7	1,4-Dichlorobenzene	400	Ū
95-50-1	1,2-Dichlorobenzene	400	U
95-48-7	2-Methylphenol	400	Ū
108-60-1	2,2'-oxybis(1-Chloropropane)	400	Ū
106-44-5	4-Methylphenol	400	Ū
621-64-7	N-Nitroso-di-n-propylamine	400	Ū
67-72-1	Hexachloroethane	400	Ū
98-95-3	Nitrobenzene	400	Ū
78-59-1	Isophorone	400	Ū
88-75-5	2-Nitrophenol	400	U
105-67-9	2,4-Dimethylphenol	400	Ū
111-91-1	bis(2-Chloroethoxy)methane	400	U
120-83-2	2,4-Dichlorophenol	400	U
120-82-1	1,2,4-Trichlorobenzene	400	Ū
91-20-3	Naphthalene	8	J
106-47-8	4-Chloroaniline	400	U
87-68-3	Hexachlorobutadiene	400	Ū
59-50-7	4-Chloro-3-methylphenol	400	Ū
91-57-6	2-Methylnaphthalene	400	Ū
77-47-4	Hexachlorocyclopentadiene	400	F L
88-06-2	2,4,6-Trichlorophenol	400	U
95-95-4	2,4,5-Trichlorophenol	1000	U
91-58-7	2-Chloronaphthalene	400	Ū
88-74-4	2-Nitroaniline	1000	U
131-11-3	Dimethylphthalate	400	U
208-96-8	Acenaphthylene	400 ;	Ū
606-20-2	2,6-Dinitrotoluene	400	Ū
99-09-2	3-Nitroaniline	1000	U
83-32-9	Acenaphthene	75	J

EPA SAMPLE NO. SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

			SB-4
Lab Name:	STL/CT	Contract:	

Lab Code: IEACT Case No.: 3090A SAS No.: _____ SDG No.: A3090

Matrix: (soil/water) SOIL Lab Sample ID: 993090A-12

Sample wt/vol: 30 (g/mL)GLab File ID: >R5528

Level: (low/med) LOW Date Received: 12/03/99

% Moisture: 18 decanted: (Y/N)N Date Extracted:12/05/99

Concentrated Extract Volume: 500 (uL) Date Analyzed: 12/23/99

Dilution Factor: 1.0 Injection Volume: 2.0 (uL)

GPC Cleanup: (Y/N)Y pH:8.1

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG. Q

			1	T
51-28-5	2,4-Dinitrophenol	1000	J.	超
100-02-7	4-Nitrophenol	1000	Ū	- *
132-64-9	Dibenzofuran	400	Ū	1
121-14-2	2,4-Dinitrotoluene	400	Ū	71
84-66-2	Diethylphthalate	400	Ū	1
7005-72-3	4-Chlorophenyl-phenylether	400	Ū	
86-73-7	Fluorene	110	J	7
100-01-6	4-Nitroaniline	1000	Ū	_ [
534-52-1	4,6-Dinitro-2-methylphenol	1000	U	₩
86-30-6	N-Nitrosodiphenylamine (1)	400	Ū	7
101-55-3	4-Bromophenyl-phenylether	400	Ū	7
118-74-1	Hexachlorobenzene	400	Ū	7
87-86-5	Pentachlorophenol	1000	Ŭ	71
85-01-8	Phenanthrene	74 3t	JB	
120-12-7	Anthracene	19	J	7
86-74-8	Carbazole	400	Ū	
84-74-2	Di-n-butylphthalate	44 45	J₿	1 0
206-44-0	Fluoranthene	400 2 30	J B	$\exists c = 0$
129-00-0	Pyrene	40 170	JB-	
85-68-7	Butylbenzylphthalate	400	Ū	
91-94-1	3,3'-Dichlorobenzidine	400	U]
56-55-3	Benzo(a)anthracene	26	J	
218-01-9	Chrysene	21	J	
117-81-7	bis(2-Ethylhexyl)phthalate	4102 3 90	J B	
117-84-0	Di-n-octylphthalate	4=, 35	JB-] ('
205-99-2	Benzo(b)fluoranthene	13	J	╝
207-08-9	Benzo(k)fluoranthene	9	J	
50-32 - 8	Benzo(a)pyrene	13	J	_ [
193-39-5	Indeno(1,2,3-cd)pyrene	400	Ũ	_ [
53-70-3	Dibenz(a,h)anthracene	400	Ü	
191-24-2	Benzo(q,n,i)perylene	9	Ĵ	

1F

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

TENTATIVELY	TDEXMTETED	COMPOINT
TENIATIAEFI	T	COMPOUNDS

Lab Name: STL/CT Contract: SB-4

SAS No.: _____ SDG No.: A3090

Matrix: (soil/water) SOIL

Lab Sample ID: 993090A-12

Sample wt/vol: 30

(g/mL)G

Lab File ID: >R5528

Level: (low/med) LOW

Date Received: 12/03/99

% Moisture: 18

decanted: (Y/N)N

Date Extracted: 12/05/99

Concentrated Extract Volume: 500 (uL) Date Analyzed: 12/23/99

Injection Volume: 2.0 (uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N)Y

pH:8.1

Number TICs Found: 20

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01.	UNKNOWN	9.18	600	JB-
02.	UNKNOWN	29.02	220	J
03.	UNKNOWN	29.13	210	J
04.	UNKNOWN	28.75	200	J
05.	UNKNOWN	28.64	190	J
06.	UNKNOWN	29.21	170	J
07.	UNKNOWN	28.86	170	<u>J</u>
08.	UNKNOWN	28.11	160	J
09.	UNKNOWN	28.38	150	J
10.	UNKNOWN	28.59	150	- J-
11.	UNKNOWN	28.94	140	J
12.	UNKNOWN	29.44	120	
13.	UNKNOWN	28.40	120	J
14.	UNKNOWN	27.51	110	J
15.	UNKNOWN	29.19	100	J
16.	UNKNOWN	20.92	100	J
17.	UNKNOWN	12.59	100	J
18.	UNKNOWN	27,84	91	J
19.	UNKNOWN	27.87	90	Ĵ
20.	UNKNOWN	9.58	87	J
21.				
22.				
23.				
24.				
25.				
26.				
27.				
28.				
29.				
30.				

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

			SB-3
Lab Name	: STL/CT	Contract:	

Matrix: (soil/water) SOIL Lab Sample ID: 993090A-13

Sample wt/vol: 30 (g/mL)G Lab File ID: >R5531

Level: (low/med) LOW Date Received: 12/03/99

% Moisture: 12 decanted: (Y/N)N Date Extracted:12/05/99

Concentrated Extract Volume: 500 (uL) Date Analyzed: 12/23/99

Injection Volume: 2.0 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N)Y pH:8.1

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/KG Q

108-95-2	Phenol	380	U
111-44-4	bis(2-Chloroethyl)ether	380	Ū
95-57-8	2-Chlorophenol	380	Ū
541-73-1	1,3-Dichlorobenzene	380	Ū
106-46-7	1,4-Dichlorobenzene	380	Ū
95-50-1	1,2-Dichlorobenzene	380	Ū
95-48-7	2-Methylphenol	380	U
108-60-1	2,2'-oxybis(1-Chloropropane)	380	Ū ,
106-44-5	4-Methylphenol	380	U
621-64-7	N-Nitroso-di-n-propylamine	380	U
67-72-1	Hexachloroethane	380	U
98-95-3	Nitrobenzene	380	U
78-59-1	Isophorone	380	U
88-75-5	2-Nitrophenol	380	U
105-67-9	2,4-Dimethylphenol	380	Ū
111-91-1	bis(2-Chloroethoxy)methane	380	U
120-83-2	2,4-Dichlorophenol	380	U
120-82-1	1,2,4-Trichlorobenzene	380	Ū
91-20-3	Naphthalene	13	J
106-47-8	4-Chloroaniline	380	U
87-68-3	Hexachlorobutadiene	380	U
59-50-7	4-Chloro-3-methylphenol	380	U
91-57-6	2-Methylnaphthalene	380	U
77-47-4	Hexachlorocyclopentadiene	380	¥
88-06-2	2,4,6-Trichlorophenol	380	U
95-95-4	2,4,5-Trichlorophenol	940	Ū
91-58-7	2-Chloronaphthalene	380	Ū
88-74-4	2-Nitroaniline	940	U
131-11-3	Dimethylphthalate	380	U
208-96-8	Acenaphthylene	46	J
606-20-2	2,6-Dinitrotoluene	380	U
99-09-2	3-Nitroaniline	940	U
83-32-9	Acenaphthene	12	J _

1 C

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: STL/CT Contract: ______ SB-3

Matrix: (soil/water) SOIL Lab Sample ID: 993090A-13

Sample wt/vol: 30 (g/mL)G Lab File ID: >R5531

Level: (low/med) LOW Date Received: 12/03/99

% Moisture: 12 decanted: (Y/N)N Date Extracted:12/05/99

Concentrated Extract Volume: 500 (uL) Date Analyzed: 12/23/99

Injection Volume: 2.0 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N)Y pH:8.1

GAG NO	CONCENTRATION UNITS:			
CAS NO.	COMPOUND	(ug/L or ug/Kg)UG/KG	Q	
] nt
51-28-5	2,4-Dinitrophenol	94	0 0	RI
100-02-7	4-Nitrophenol	94] '`
132-64-9	Dibenzofuran	. 2	8 J	7
121-14-2	2,4-Dinitrotoluene	38		
84-66-2	Diethylphthalate	38		
7005-72-3	4-Chlorophenyl-phenylether]
86-73-7	Fluorene	. 3	1	
100-01-6	4-Nitroaniline	94] .o
534-52-1	4,6-Dinitro-2-methylphenol	94		
86-30-6	N-Nitrosodiphenylamine (1)	38		
101-55-3	4-Bromophenyl-phenylether	38		
118-74-1	Hexachlorobenzene	38]
87-86-5	Pentachlorophenol	94]
85-01-8	Phenanthrene	38, 19	0 JB	
120-12-7	Anthracene	- 10][
86-74-8	Carbazole	1][
84-74-2	Di-n-butylphthalate] [
206-44-0	Fluoranthene	60		? real
129-00-0	Pyrene	57		1 V. L.
85-68-7	Butylbenzylphthalate	38]]
91-94-1	3,3'-Dichlorobenzidine	38]
56-55-3	Benzo(a)anthracene	36][
218-01-9	Chrysene	. 34		3.32.
117-81-7	bis(2-Ethylhexyl)phthalate	130		1
117-84-0	Di-n-octylphthalate		6 JB	U
205-99-2	Benzo(b)fluoranthene	24		
207-08-9	Benzo(k)fluoranthene	31]
50-32-8	Benzo(a)pyrene	34]
193-39-5	Indeno(1,2,3-cd)pyrene	18		
53-70-3	Dibenz(a,h)anthracene	7	1	<u>.</u>
191-24-2	Benzo(g,h,i)perylene	19	0 J	<u> </u>

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: STL/CT Contract: SB-3

Lab Code: IEACT Case No.: 3090A SAS No.: ____ SDG No.: A3090

Matrix: (soil/water) SOIL

Sample wt/vol: 30

(g/mL)G

Lab File ID: >R5531

Level: (low/med) LOW

Date Received: 12/03/99

Date Extracted:12/05/99

Lab Sample ID: 993090A-13

% Moisture: 12 decanted: (Y/N)N

Concentrated Extract Volume: 500 (uL)

Date Analyzed: 12/23/99

Injection Volume: 2.0 (uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N)Y

pH:8.1

Number TICs Found: 18

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01.	UNKNOWN	9.19	520	JB^
02.	UNKNOWN C20H12 PAH	27.59	360	J
03.	UNKNOWN	8.81	250	J
04.	UNKNOWN C17H12 PAH	23.29	200	J
05.	UNKNOWN C15H10 PAH	20.92	150	J
06.	UNKNOWN C22H14 PAH	29.81	140	J
07.	UNKNOWN C24H14 PAH	32.29	140	J
08.	UNKNOWN-C20H12 PAH	27.28	120	J
09.	UNKNOWN C24H14 PAH	32.59	100	J
10.	UNKNOWN	28.04	98	J
11.	UNKNOWN	12.59	91	J
12.	UNKNOWN DIBENZOPYRENE ISOMER	32.46	81	J
13.	UNKNOWN C22H14 PAH	29.74	81	J
14.	UNKNOWN C20H12 PAH	27.82	81	J
15.	UNKNOWN METHYL-ANTHRACENE	20.73	81	J
16.	UNKNOWN	26.52	80	J
17.	UNKNOWN C17H12 PAH	23.50	79	J
18.	UNKNOWN C16H10 PAH	22.32	. 77	J
19.				
20.				
21.				
22.				
23.				
24.				
25.				
26.				
27.				
28.				
29.				
30.				

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: STL/CT Contract: _______DUP-1

Matrix: (soil/water) SOIL Lab Sample ID: 993090A-14

Sample wt/vol: 30 (g/mL)G Lab File ID: >R5570

Level: (low/med) LOW Date Received: 12/03/99

% Moisture: 13 decanted: (Y/N)N Date Extracted:12/05/99

Concentrated Extract Volume: 500 (uL) Date Analyzed: 12/28/99

Injection Volume: 2.0 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N)Y pH:7.9

		CONCENTRATION UNITS:
CAS NO.	COMPOUND	(ug/L or ug/Kg)UG/KG Q

108-95-2	Phenol	380	U
111-44-4	bis(2-Chloroethyl)ether	380	Ū
95-57-8	2-Chlorophenol	380	<u>Ŭ</u>
541-73-1	1,3-Dichlorobenzene	380	Ū
106-46-7	1,4-Dichlorobenzene	380	Ü
95-50-1	1,2-Dichlorobenzene	380	U
95-48-7	2-Methylphenol	380	Ū
108-60-1	2,2'-oxybis(1-Chloropropane)	380	Ū
106-44-5	4-Methylphenol	380	Ū
621-64-7	N-Nitroso-di-n-propylamine	380	Ū
67-72-1	Hexachloroethane	380	Ŭ
98-95-3	Nitrobenzene	380	Ū
78-59-1	Isophorone	380	Ū
88-75-5	2-Nitrophenol	380	Ū
105-67-9	2,4-Dimethylphenol	380	Ū
111-91-1	bis(2-Chloroethoxy)methane	380	Ū
120-83-2	2,4-Dichlorophenol	380	Ū
120-82-1	1,2,4-Trichlorobenzene	380	Ū
91-20-3	Naphthalene	14	J
106-47-8	4-Chloroaniline	380	Ũ
87-68-3	Hexachlorobutadiene	380	Ū
59-50-7	4-Chloro-3-methylphenol	` 380	U
91-57-6	2-Methylnaphthalene	380	U
77-47-4	Hexachlorocyclopentadiene	380	J.
88-06-2	2,4,6-Trichlorophenol	380	U
95-95-4	2,4,5-Trichlorophenol	950	U
91-58-7	2-Chloronaphthalene	380	U
88-74-4	2-Nitroaniline	950	U
131-11-3	Dimethylphthalate	380	Ū
208-96-8	Acenaphthylene	53	J
606-20-2	2,6-Dinitrotoluene	380	U
99-09-2	3-Nitroaniline	950	U
83-32-9	Acenaphthene	20	J

1C

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: STL/CT Contract: ______

Matrix: (soil/water) SOIL Lab Sample ID: 993090A-14

Sample wt/vol: 30 (g/mL)G Lab File ID: >R5570

Level: (low/med) LOW Date Received: 12/03/99

% Moisture: 13 decanted: (Y/N)N Date Extracted:12/05/99

Concentrated Extract Volume: 500 (uL) Date Analyzed: 12/28/99

Injection Volume: 2.0 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N)Y pH:7.9

CAS NO. COMPOUND CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/KG Q

[- 	
51-28-5	2,4-Dinitrophenol	950	υ
100-02-7	4-Nitrophenol	950	. U
132-64-9	Dibenzofuran	. 56	J
121-14-2	2,4-Dinitrotoluene	380	Ū
84-66-2	Diethylphthalate	380	Ū
7005-72-3	4-Chlorophenyl-phenylether	380	Ŭ
86-73-7	Fluorene	58	J
100-01-6	4-Nitroaniline	950	Ū
534-52-1	4,6-Dinitro-2-methylphenol	950	Ū
86-30-6	N-Nitrosodiphenylamine (1)	380	<u>Ū</u> .
101-55-3	4-Bromophenyl-phenylether	380	Ū
118-74-1	Hexachlorobenzene	380	Ū
87-86-5	Pentachlorophenol	950	Ū
85-01-8	Phenanthrene	582 2 30	JB
120-12-7	Anthracene	110	J
86-74-8	Carbazole .	15	J .
84-74-2	Di-n-butylphthalate	350 13	JB-
206-44-0	Fluoranthene	580	В-
129-00-0	Pyrene	560	B· ~
85-68-7	Butylbenzylphthalate	380	Ū
91-94-1	3,3'-Dichlorobenzidine	380	U
56-55-3	Benzo(a) anthracene	350	J
218-01-9	Chrysene	300	J
117-81-7	bis(2-Ethylhexyl)phthalate	1100	B /
117-84-0	Di-n-octylphthalate	380	Ū
205-99-2	Benzo(b)fluoranthene	290	J
207-08-9	Benzo(k)fluoranthene	240	. J
50-32-8	Benzo(a)pyrene	. 300.	J
1.93-39-5	Indeno(1,2,3-cd)pyrene	190	J
53-70-3	Dibenz(a,h)anthracene	71	. J
191-24-2	Benzo(g,h,i)perylene	230	J

(1) - Cannot be separated from Diphenylamine

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

TENTATIVELY IDENTIFIED COMPOUNDS

DUP-1 Contract:

Lab Name: STL/CT

Lab Code: IEACT

Case No.: 3090A SAS No.: _____ SDG No.: A3090

Matrix: (soil/water) SOIL

Lab Sample ID: 993090A-14

Sample wt/vol: 30

(g/mL)G

Lab File ID: >R5570

Level: (low/med) LOW

Date Received: 12/03/99

% Moisture: 13 decanted: (Y/N)N

Date Extracted:12/05/99

Concentrated Extract Volume: 500 (uL)

Date Analyzed: 12/28/99

Injection Volume: 2.0 (uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N)Y

pH:7.9

Number TICs Found: 19

	· · · · · · · · · · · · · · · · · · ·			
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01.	UNKNOWN	9.16	490	J
02.	UNKNOWN C20H12 PAH	27.58	340	J
03.	UNKNOWN C17H12 PAH	23.26	250	J
04.	UNKNOWN DIBENZOPYRENE ISOMER	32.25	160	J
05.	UNKNOWN C15H10 PAH	20.90	150	J i
06.	UNKNOWN	8.79	130	J
07.	UNKNOWN C22H14 PAH	29.79	130	J
08.	UNKNOWN DIBENZOPYRENE ISOMER	32.56	120	J
09.	UNKNOWN	25.70	110	J
10.	UNKNOWN	12.57	100	J
11.	UNKNOWN DIBENZOPYRENE ISOMER	32.43	100	J
12.	UNKNOWN C20H12 PAH	27.26	91	J
13.	UNKNOWN C21H14 PAH	28.01	91	J
14.	UNKNOWN METHYL-ANTHRACENE	20.70	86	J
15.	UNKNOWN C20H12 PAH	27.79	86	J
16.	UNKNOWN C22H12 PAH	30.27	84	J
17.	UNKNOWN METHYL-PYRENE ISOMER	23.47	80	J
18.	UNKNOWN C16H10 PAH	22.31	79	J
19.	UNKNOWN C15H12 PAH	20.78	78	J
20.				
21.				
22.				
23.				
24.				
25.				
26.				
27.			:	
28.				
29.				
30.				
	the control of the co			

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

				CB-1
Lab	Name:	STL/CT	Contract:	<u> </u>

1B

Matrix: (soil/water)SOIL Lab Sample ID: 993090A-15

Sample wt/vol: 30 (g/mL)G Lab File ID: >R5584

Level: (low/med) LOW Date Received: 12/03/99

% Moisture: 32 decanted: (Y/N)N Date Extracted:12/05/99

Concentrated Extract Volume: 500 (uL) Date Analyzed: 12/29/99

Injection Volume: 2.0 (uL) Dilution Factor: 10.0

GPC Cleanup: (Y/N)Y pH:7.5

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

			
108-95-2	Phenol	4800	U
111-44-4	bis(2-Chloroethyl)ether	4800	Ū
95-57-8	2-Chlorophenol	4800	Ū
541-73-1	1,3-Dichlorobenzene	4800	Ū
106-46-7	1,4-Dichlorobenzene	4800	U
95-50-1	1,2-Dichlorobenzene	4800	Ū
95-48-7	2-Methylphenol	4800	Ū
108-60-1	2,2'-oxybis(1-Chloropropane)	4800	Ū
06-44-5	4-Methylphenol	4800	Ū
21-64-7	N-Nitroso-di-n-propylamine	4800	Ū
57-72-1	Hexachloroethane	4800	U
18-95 - 3	Nitrobenzene	4800	Ū
78-59-1	Isophorone	4800	Ū
8-75-5	2-Nitrophenol	4800	Ū
05-67-9	2,4-Dimethylphenol	4800	Ū
11-91-1	bis(2-Chloroethoxy)methane	4800	U
20-83-2	2,4-Dichlorophenol	4800	Ū
20-82-1	1,2,4-Trichlorobenzene	4800	Ü
1-20-3	Naphthalene	610	Ĵ
06-47-8	4-Chloroaniline	4800	U
7-68-3	Hexachlorobutadiene	4800	Ū
9-50 - 7	4-Chloro-3-methylphenol	4800	Ū
1-57-6	2-Methylnaphthalene	420	J
7-47-4	Hexachlorocyclopentadiene	4800	U .
8-06-2	2,4,6-Trichlorophenol	4800	U
5-95-4	2,4,5-Trichlorophenol	12000	Ū
1-58-7	2-Chloronaphthalene	4800	Ü
8-74-4	2-Nitroaniline	12000	Ū
31-11-3	Dimethylphthalate	4800	Ū
08-96-8	Acenaphthylene	2400	Ĵ
06-20-2	2,6-Dinitrotoluene	4800	U
9-09-2	3-Nitroaniline	12000	U
3-32-9	Acenaphthene	480	J

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

			CB-1
Lab Name:	STL/CT	Contract:	

Lab Code: IEACT Case No.: 3090A SAS No.: _____ SDG No.: A3090

Matrix: (soil/water) SOIL Lab Sample ID: 993090A-15

Sample wt/vol: 30 (g/mL)G Lab File ID: >R5584

Level: (low/med) LOW Date Received: 12/03/99

% Moisture: 32 decanted: (Y/N)N Date Extracted:12/05/99

Concentrated Extract Volume: 500 (uL) Date Analyzed: 12/29/99

Injection Volume: 2.0 (uL) Dilution Factor: 10.0

GPC Cleanup: (Y/N)Y pH:7.5

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q

51-28-5	2,4-Dinitrophenol	12000	. n
100-02-7	4-Nitrophenol	12000	.8
132-64-9	Dibenzofuran	990	J
121-14-2	2,4-Dinitrotoluene	4800	Ū
84-66-2	Diethylphthalate	4800	Ū
7005-72-3	4-Chlorophenyl-phenylether	4800	Ū
86-73-7	Fluorene	1400	J
100-01-6	4-Nitroaniline	12000	Ū
534-52-1	4,6-Dinitro-2-methylphenol	12000	Ŭ .
86-30-6	N-Nitrosodiphenylamine (1)	4800	U
101-55-3	4-Bromophenyl-phenylether	4800	. U
118-74-1	Hexachlorobenzene	4800	Ū
87-86-5	Pentachlorophenol	120,00	U .
85-01-8	Phenanthrene	12000	В "
120-12-7	Anthracene	3800.	J
86-74-8	Carbazole	960	J
84-74-2	Di-n-butylphthalate	4800	U .
206-44-0	Fluoranthene	17000	В
129-00-0	Pyrene	16000	В
85-68-7	Butylbenzylphthalate	480.0.	U
91-94-1	3,3'-Dichlorobenzidine	4800	Ü
56-55-3	Benzo(a)anthracene	10000	
218-01-9	Chrysene	930,0	
117-81-7	bis(2-Ethylhexyl)phthalate	920	JB
117-84-0	Di-n-octylphthalate	4800	U
205-99-2	Benzo(b)fluoranthene	7000	
207-08-9	Benzo(k)fluoranthene	8600	
50-32-8	Benzo(a)pyrene	9100	
193-39-5	Indeno(1,2,3-cd)pyrene	7700	
53-70-3	Dibenz(a,h)anthracene	2600	J
191-24-2	Benzo(q,h,i)perylene	7900	

1F

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

TENTATIVELY IDENTIFIED COMPOUNDS

CB-1

Lab Name: STL/CT

Contract:

Lab Code: IEACT Case No.: 3090A SAS No.: ____ SDG No.: A3090

Matrix: (soil/water) SOIL

Lab Sample ID: 993090A-15

Sample wt/vol: 30 (g/mL)G

Lab File ID: >R5584

Level: (low/med) LOW

decanted: (Y/N)N

Date Received: 12/03/99

% Moisture: 32

Date Extracted: 12/05/99

Injection Volume: 2.0 (uL)

Concentrated Extract Volume: 500 (uL) Date Analyzed: 12/29/99

Dilution Factor: 10.0

GPC Cleanup: (Y/N)Y

pH:7.5

Number TICs Found: 30

(ug/L or ug/Kg)UG/KG

		· · · · · · · · · · · · · · · · · · ·		
CAS NUMBER	COMPOUND NAME	RT ::	EST. CONC.	Q
01.	UNKNOWN C20H12 PAH	27.57	7100	J
02.	UNKNOWN C22H14 PAH	29.71	5100	J
03.	UNKNOWN DIBENZOPYRENE ISOMER	32.28	5100	J
04.	UNKNOWN C17H12 PAH	23.26	4400	J
05.	UNKNOWN C22H12 PAH	30.29	4000	J
06.	UNKNOWN C22H14 PAH	29.79	3700	J
07.	UNKNOWN C22H12 PAH	29.38	3600	J
08.	UNKNOWN	20.88	3600	J
09.	UNKNOWN DIBENZOPYRENE ISOMER	32.44	3600	J
10.	UNKNOWN C20H12 PAH	27.80	3600	J
11	UNKNOWN C24H14 PAH	32.58	3400	J
12.	UNKNOWN	29.87	2900	J
13.	UNKNOWN METHYL-ANTHRACENE	20.70	2800	Ĵ
14.	UNKNOWN	24.59	2600	J
15.	UNKNOWN METHYL-PYRENE C	23.46	2300	J
16.	UNKNOWN	30.85	2300	J
17.	UNKNOWN	30.17	2200	Ĵ
18.	UNKNOWN C20H12 PAH	27.27	2200	J.
19.	UNKNOWN C22H14 PAH	29.30	2100	J
20.	UNKNOWN C17H100 ISOMER	24.72	2100	J
21.	UNKNOWN	30.61	2100	Ĵ
22.	UNKNOWN METHYL-PHENANTHRENE	20.64	2000	J
23.	UNKNOWN METHYL-PYRENE	23.01	2000	J
24.	UNKNOWN	25.26	2000	J
25.	UNKNOWN	30.68	2000	J
26.	UNKNOWN BENZO[B]NAPHTHOTHIOP	24.52	1900	Ĵ
27.	UNKNOWN C17H100 ISOMER	24.30	1800	J
28.	UNKNOWN C18H10 PAH .	24.63	1800	J
29.	UNKNOWN C19H14 PAH	25.82	1800	J
30.	UNKNOWN	21.98	1700	J

1B

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

				DUP-2
Lab Nar	me: STL	/CT	Contract:	

Matrix: (soil/water) SOIL Lab Sample ID: 993090A-16

Sample wt/vol: 30 (g/mL)G Lab File ID: >R5572

Level: (low/med) LOW Date Received: 12/03/99

% Moisture: 26 decanted: (Y/N)N Date Extracted: 12/05/99

Concentrated Extract Volume: 500 (uL) Date Analyzed: 12/29/99

Injection Volume: 2.0 (uL) Dilution Factor: 4.0

GPC Cleanup: (Y/N)Y pH:7.7

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg)UG/KG Q

				71
108-95-2	Phenol	88	J	
111-44-4	bis(2-Chloroethyl)ether	1800	U	1
95-57-8	2-Chlorophenol	1800	U	1
541-73-1	1,3-Dichlorobenzene	1800	Ū	1
106-46-7	1,4-Dichlorobenzene	1800	Ū	1
95-50-1	1,2-Dichlorobenzene	1800	U	1
95-48-7	2-Methylphenol	1800	Ū	11
108-60-1	2,2'-oxybis(1-Chloropropane)	1800	Ū	1
106-44-5	4-Methylphenol	140	J	1
621-64-7	N-Nitroso-di-n-propylamine	1800	U	1
67-72-1	Hexachloroethane	1800	Ü	1
98-95-3	Nitrobenzene	1800	Ū	11
78-59-1	Isophorone	1800	U	11
88-75-5	2-Nitrophenol	1800	Ū	1
105-67-9	2,4-Dimethylphenol	1800	U	
111-91-1	bis (2-Chloroethoxy) methane	1800	Ū	1
120-83-2	2,4-Dichlorophenol	1800	Ū]]
120-82-1	1,2,4-Trichlorobenzene	1800	Ū	
91-20-3	Naphthalene	600	Ĵ	
106-47-8	4-Chloroaniline	1800	Ū	
87-68-3	Hexachlorobutadiene	1800	U	
59-50-7	4-Chloro-3-methylphenol	1800	U]
91-57-6	2-Methylnaphthalene	350	J	
77-47-4	Hexachlorocyclopentadiene	1800	-U -	0
88-06-2	2,4,6-Trichlorophenol	1800	Ū	
95-95-4	2,4,5-Trichlorophenol	4500	Ü	
91-58-7	2-Chloronaphthalene	1800	Ū	
88-74-4	2-Nitroaniline	4500	Ū	
131-11-3	Dimethylphthalate	1800	Ū	
208-96-8	Acenaphthylene	2100		
606-20-2	2,6-Dinitrotoluene	1800	Ū	i
99-09-2	3-Nitroaniline	4500	U	
83-32-9	Acenaphthene	360	J _	1

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

DUP-2 Lab Name: STL/CT Contract: ____

Lab Code: IEACT Case No.: 3090A SAS No.: ____ SDG No.: A3090

Matrix: (soil/water)SOIL Lab Sample ID: 993090A-16

Lab File ID: >R5572 Sample wt/vol: 30 (g/mL)G

Level: (low/med) LOW Date Received: 12/03/99

% Moisture: 26 decanted: (Y/N)N Date Extracted:12/05/99

Concentrated Extract Volume: 500 (uL) Date Analyzed: 12/29/99

Dilution Factor: 4.0 Injection Volume: 2.0 (uL)

GPC Cleanup: (Y/N)Y pH:7.7

CONCENTRATION UNITS: (ug/L or ug/Kg)UG/KG CAS NO. COMPOUND

51-28-5	2,4-Dinitrophenol	4500	U
100-02-7	4-Nitrophenol	4500	U
132-64-9	Dibenzofuran	670	J
121-14-2	2,4-Dinitrotoluene	1800	Ü
84-66-2	Diethylphthalate	1800	Ū
7005-72-3	4-Chlorophenyl-phenylether	1800	Ü
86-73-7	Fluorene	890	J
100-01-6	4-Nitroaniline	4500	Ū
534-52-1	4,6-Dinitro-2-methylphenol	4500	Ū
86-30-6	N-Nitrosodiphenylamine (1)	1800	Ū
101-55-3	4-Bromophenyl-phenylether	1800	Ū
118-74-1	Hexachlorobenzene	1800	Ü
87-86-5	Pentachlorophenol	4500	Ū
85-01-8	Phenanthrene	9200	B
120-12-7	Anthracene	3000	
86-74-8	Carbazole	930	J
84-74-2	Di-n-butylphthalate	/ / / 43	Œ.
206-44-0	Fluoranthene	14000	B -/
129-00-0	Pyrene	13000	·B /
85-68-7	Butylbenzylphthalate	1800	U
91-94-1	3,3'-Dichlorobenzidine	1800	Ū
56-55-3	Benzo(a)anthracene	8300	
218-01-9	Chrysene	8100	
117-81-7	bis(2-Ethylhexyl)phthalate	ريرو (1 300	JB-
117-84-0	Di-n-octylphthalate	1800	U
205-99-2	Benzo(b)fluoranthene	8100	
207-08-9	Benzo(k)fluoranthene	4800	
50-32-8	Benzo(a) pyrene	8000	
193-39-5	Indeno(1,2,3-cd)pyrene	7:200	
53-70-3	Dibenz(a,h)anthracene	2400	
191-24-2	Benzo(q,h,1)perylene	7600	

(1) - Cannot be separated from Diphenylamine

EPA SAMPLE NO.

EPA SAMPLE NO. └

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

TENTATIVELY IDENTIFIED COMPOUNDS

Contract: ____

DUP-2

Lab Name: STL/CT

Matrix: (soil/water) SOIL

Lab Sample ID: 993090A-16

Sample wt/vol: 30 (g/mL)G

Lab File ID: >R5572

Level: (low/med) LOW

Date Received: 12/03/99

% Moisture: 26 decanted: (Y/N)N

Concentrated Extract Volume: 500 (uL)

Date Extracted:12/05/99 Date Analyzed: 12/29/99

Injection Volume: 2.0 (uL)

Dilution Factor: 4.0

GPC Cleanup: (Y/N)Y pH:7.7

Number TICs Found: 30

(ug/L or ug/Kg)UG/KG

[·	
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01.	UNKNOWN C20H12 PAH C	27.60	5700	J
02.	UNKNOWN ACID	20.70	3000	J
03.	UNKNOWN	20.90	2600	J
04.	UNKNOWN C20H12 PAH	27.83	2400	J
05.	UNKNOWN C22H14 PAH	29.75	2100	. J
06.	UNKNOWN C22H14 PAH	29.83	1900	J
07.57-88-5	CHOLESTEROL	28.83	1900	JN
08.	UNKNOWN DIBENZOPYRENE ISOMER	32.31	1900	J
09.	UNKNOWN METHYL-PHENANTHRENE	20.65	1900	J
10.58-61-3	STIGMAST-4-EN-3-ONE	31.15	1900	JN
11.	UNKNOWN C20H12 PAH	27.29	1800	J
12.	UNKNOWN C22H12 PAH	29.41	1700	J
13.	UNKNOWN C21H14 PAH	28.03	1600	J
14.	UNKNOWN C22H12 PAH	30.33	1500	J
15.	UNKNOWN C22H14 PAH	29.34	1500	J
16.	UNKNOWN DIBENZOPYRENE ISOMER	32.48	1400	J
17.	UNKNOWN C16H10 PAH	22.31	1400	J
18.	UNKNOWN DIBENZOPYRENE ISOMER	32.62	1400	J
19.	UNKNOWN	27.44	1300	J
20.	UNKNOWN	31.54	1300	J
21.	UNKNOWN	21.99	1200	J
22.	UNKNOWN .	30.91	1200	J
23.	UNKNOWN C15H12 PAH	20.79	1200	J
24.	UNKNOWN	29.08	1200	J
25.	UNKNOWN .	29.13	1200	J
26.	UNKNOWN	30.47	1100	J
27.	UNKNOWN BENZO FLUORENE	23.27	1100	J
28.	ÜNKNOWN	26.47	1000	J
29.	UNKNOWN	27.93	930	J
30.	UNKNOWN	20.57	910	Ĵ

CPA_	SAMPLE	140.
SB-	7	

てっト	NT-m-	STL-CT	Contract:	
LaD	Name:	2171-61	COMETACE:	

Lab Code: <u>IEACT</u> Case No.: <u>3090A</u> SAS No.: ____ SDG No.: <u>A3090</u>

Matrix: (soil/water): SOIL Lab Sample ID: 993090A-02

Sample wt/vol: 30.6 (g/ml) G Lab File ID: C1055CLP166

% Moisture: 13 decanted: (Y/N)N Date Received: 12/01/99

Extraction: (SepF/Cont/Sonc) SONC Date Extracted: 12/01/99

Concentrated Extract Volume: 5000 (uL) Date Analyzed: 12/09/99

Injection Volume: 1.0 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N)Y pH: 10.6 Sulfur Cleanup: (Y/N)N

CAS NO. COMPOUND CONCENTRATION UNITS: Q (ug/L or ug/Kq) UG/KG

319-85-7 beta-BHC 1.9 U 319-86-8 delta-BHC 1.9 U 58-89-9 gamma-BHC (Lindane) 1.9 U 58-89-9 gamma-BHC (Lindane) 1.9 U 58-89-9 delta-BHC 1.9 U 58-89-9 delta-BHC 1.9 U 58-89-9 delta-BHC 1.9 U 58-89-98-8 Endosulfan 1.9 U 59-98-8 Endosulfan 1.9 U 59-98-8 Endosulfan 1.9 U 50-57-1 Dieldrin 3.7 U 572-55-9 4,4'-DDE 3.7 U 572-55-9 4,4'-DDE 3.7 U 572-56-9 Endosulfan 11 3.7 U 572-54-8 4,4'-DDD 3.7 U 572-54-8 4,4'-DDD 3.7 U 572-54-8 4,4'-DDT 3.7 U 572-54-8 4,4'-DDT 3.7 U 572-54-3-5 Methoxychlor 19. U 572-54-3-5 Methoxychlor 19. U 572-54-3-5 Methoxychlor 19. U 572-54-3-4 Endrin Aldehyde 3.7 U 572-54-3-4 Endrin Aldehyde 3.7 U 572-54-3-4 Endrin Aldehyde 3.7 U 572-54-3-5 Gamma-Chlordane 1.9 U 572-54-3-5 Gamma-Chlordane 1.9 U 572-54-3-5 Gamma-Chlordane 1.9 U 572-54-3-5 Gamma-Chlordane 1.9 U 572-54-3-5 Gamma-Chlordane 1.9 U 572-54-3-5 Gamma-Chlordane 1.9 U 572-54-3-5 Gamma-Chlordane 1.9 U 572-54-3-5 Gamma-Chlordane 1.9 U 572-54-3-5 Gamma-Chlordane 1.9 U 572-54-3-5 Gamma-Chlordane 1.9 U 572-54-3-5 Gamma-Chlordane 1.9 U 572-54-3-5 Gamma-Chlordane 1.9 U 572-54-3-5 Gamma-Chlordane 1.9 U 572-54-3-5 Gamma-Chlordane 1.9 U 572-54-3-5 Gamma-Chlordane 1.9 U 1.04-28-2 Aroclor-1232 37. U 1.04-28-2 Aroclor-1242 37. U 1.04-28-2 Aroclor-1248 37. U 1.097-69-1 Aroclor-1248 37. U 1.097-69-1 Aroclor-1254 37. U 1.097-69-1 Aroclor-1254 37. U 1.097-69-1 Aroclor-1254 37. U 1.097-69-1 Aroclor-1254 37. U 1.097-69-1 Aroclor-1254 37. U 1.097-69-1 Aroclor-1254 37. U 1.097-69-1 Aroclor-1254 37. U 1.097-69-1 Aroclor-1254 37. U 1.097-69-1 Aroclor-1254 37. U 1.097-69-1 Aroclor-1254 37. U 1.097-69-1 Aroclor-1254 37. U 1.097-69-1				
1.9 U 1.9 U 1.9	319-84-6	alpha-BHC	1.9	Ū
1.9 U 1.9	319-85-7	beta-BHC	1.9	U
Temperature Temperature	319-86-8	delta-BHC		U
1.9 U 1.9	58-89-9	gamma-BHC (Lindane)	1.9	U
1.9 U 1.9	76-44-8	Heptachlor		Ū
1.9 U 1.9 U 1.9	309-00-2	Aldrin		Ū
Dieldrin 3.7 U 72-55-9 4,4'-DDE 3.7 U 72-20-8 Endrin 3.7 U 72-20-8 Endrin 3.7 U 72-54-8 4,4'-DDD 3.7 U 72-54-8 4,4'-DDD 3.7 U 72-54-8 4,4'-DDD 3.7 U 72-43-5 Methoxychlor 19. U 72-43-5 Methoxychlor 19. U 7421-93-4 Endrin Aldehyde 3.7 U 7421-93-4 Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Al	1024-57-3	Heptachlor Epoxide		U
72-55-9 4,4'-DDE 3.7 U 72-20-8 Endrin 3.7 U 33213-65-9 Endosulfan II 3.7 U 72-54-8 4,4'-DDD 3.7 U 1031-07-8 Endosulfan Sulfate 3.7 U 50-29-3 4,4'-DDT 3.7 U 72-43-5 Methoxychlor 19. U 53494-70-5 Endrin Ketone 3.7 U 7421-93-4 Endrin Aldehyde 3.7 U 5103-71-9 alpha-Chlordane 1.9 U 5001-35-2 Toxaphene 190 U 2674-11-2 Aroclor-1016 37. U 1104-28-2 Aroclor-1221 76. U 1141-16-5 Aroclor-1232 37. U 3469-21-9 Aroclor-1242 37. U 1097-69-1 Aroclor-1254 37. U	959-98-8	Endosulian I		U
T2-20-8	60-57-1			1 - 1
3.7 U 1.0	72-55-9	4,4'-DDE	3.7	Ū
72-54-8 4,4'-DDD 3.7 U 1031-07-8 Endosulfan Sulfate 3.7 U 50-29-3 4,4'-DDT 3.7 U 72-43-5 Methoxychlor 19. U 53494-70-5 Endrin Ketone 3.7 U 7421-93-4 Endrin Aldehyde 3.7 U 5103-71-9 alpha-Chlordane 1.9 U 3001-35-2 Toxaphene 190 U 2674-11-2 Aroclor-1016 37. U 1104-28-2 Aroclor-1221 76. U 1141-16-5 Aroclor-1232 37. U 33469-21-9 Aroclor-1242 37. U 1097-69-1 Aroclor-1254 37. U	72-20-8	Endrin		Ū
1031-07-8	33213-65-9	Endosulfan II		Ū
3.7 U 3.7 U 3.7 U 3.3494-70-5 Endrin Ketone 3.7 U 3.7 U 3.7 U 3.494-70-5 Endrin Ketone 3.7 U 3	72-54-8	4,4'-DDD	3.7	Ū
72-43-5 Methoxychlor 19. U 53494-70-5 Endrin Ketone 3.7 U 7421-93-4 Endrin Aldehyde 3.7 U 5103-71-9 alpha-Chlordane 1.9 U 8001-35-2 Toxaphene 190 U 2674-11-2 Aroclor-1016 37. U 1104-28-2 Aroclor-1221 76. U 1141-16-5 Aroclor-1232 37. U 53469-21-9 Aroclor-1242 37. U 1097-69-1 Aroclor-1254 37. U	1031-07-8	Endosulfan Sulfate		Ū
33494-70-5 Endrin Ketone 3.7 U 7421-93-4 Endrin Aldehyde 3.7 U 5103-71-9 alpha-Chlordane 1.9 U 8001-35-2 Toxaphene 190 U 2674-11-2 Aroclor-1016 37. U 1104-28-2 Aroclor-1221 76. U 1141-16-5 Aroclor-1232 37. U 53469-21-9 Aroclor-1242 37. U 1097-69-1 Aroclor-1254 37. U	50-29-3	4,4'-DDT	3.7	U
7421-93-4 Endrin Aldehyde 3.7 U 5103-71-9 alpha-Chlordane 1.9 U 5103-74-2 gamma-Chlordane 1.9 U 8001-35-2 Toxaphene 190 U 12674-11-2 Aroclor-1016 37. U 1104-28-2 Aroclor-1221 76. U 1141-16-5 Aroclor-1232 37. U 53469-21-9 Aroclor-1242 37. U 1097-69-1 Aroclor-1254 37. U	72-43-5	Methoxychlor		U
5103-71-9 alpha-Chlordane 1.9 U 5103-74-2 gamma-Chlordane 1.9 U 8001-35-2 Toxaphene 190 U 2674-11-2 Aroclor-1016 37. U 1104-28-2 Aroclor-1221 76. U 1141-16-5 Aroclor-1232 37. U 53469-21-9 Aroclor-1242 37. U 1097-69-1 Aroclor-1254 37. U	53494-70-5			Ü
5103-74-2 gamma-Chlordane 1.9 U 8001-35-2 Toxaphene 190 U 2674-11-2 Aroclor-1016 37. U 1104-28-2 Aroclor-1221 76. U 1141-16-5 Aroclor-1232 37. U 53469-21-9 Aroclor-1242 37. U 1097-69-1 Aroclor-1254 37. U	7421-93-4			! !
3001-35-2 Toxaphene 190 U 2674-11-2 Aroclor-1016 37. U 1104-28-2 Aroclor-1221 76. U 1141-16-5 Aroclor-1232 37. U 33469-21-9 Aroclor-1242 37. U 2672-29-6 Aroclor-1248 37. U 1097-69-1 Aroclor-1254 37. U	5103-71-9			I
2674-11-2 Aroclor-1016 37. U 1104-28-2 Aroclor-1221 76. U 1141-16-5 Aroclor-1232 37. U 33469-21-9 Aroclor-1242 37. U 2672-29-6 Aroclor-1248 37. U 1097-69-1 Aroclor-1254 37. U	5103-74-2			
1104-28-2 Aroclor-1221 76. U 1141-16-5 Aroclor-1232 37. U 33469-21-9 Aroclor-1242 37. U 2672-29-6 Aroclor-1248 37. U 1097-69-1 Aroclor-1254 37. U	8001-35-2			
1141-16-5 Aroclor-1232 37. U 53469-21-9 Aroclor-1242 37. U 2672-29-6 Aroclor-1248 37. U 1097-69-1 Aroclor-1254 37. U	12674-11-2	Aroclor-1016		
3469-21-9 Aroclor-1242 37. U 2672-29-6 Aroclor-1248 37. U 1097-69-1 Aroclor-1254 37. U	11104-28-2			<u> </u>
2672-29-6 Aroclor-1248 37. U 1097-69-1 Aroclor-1254 37. U	11141-16-5			
1097-69-1 Aroclor-1254 37. U	53469-21-9			
1057 05 1 1110111	12672-29-6		1	
1000 02 F Arog or 1260	11097-69-1			
1096-82-3 AIGCIOI-1200 37. 10 1	11096-82-5	Aroclor-1260	37.	Ŭ -

EPA	SAMPLE	NO.
MW-	-6	<u> </u>

Lab Name: <u>STL-CT</u> Con	tract:
Lab Code: <u>IEACT</u> Case No.: <u>3090A</u> SAS No	.: SDG No.: <u>A3090</u>
Matrix: (soil/water): SOIL	Lab Sample ID: <u>993090A-03</u>
Sample wt/vol: 30.1 (g/ml) G	Lab File ID: C1055CLP167
% Moisture: 13 decanted: $(Y/N)N$	Date Received: 12/01/99
Extraction: (SepF/Cont/Sonc) <u>SONC</u>	Date Extracted: 12/01/99
Concentrated Extract Volume: 5000 (uL)	Date Analyzed: 12/09/99
Injection Volume: 1.0 (uL)	Dilution Factor: 1.0
GPC Cleanup: $(Y/N)\underline{Y}$ pH:8.4	Sulfur Cleanup: (Y/N)N
CAS NO. COMPOUND	CONCENTRATION UNITS: Q

CAS NO.	COMPOUND	(ug/L or ug/Kg) <u>UG/KG</u>
319-84-6	alpha-BHC	1.9 U
319-85-7	beta-BHC	1.9 U
319-86-8	delta-BHC	1.9 U
58-89-9	gamma-BHC (Lindane)	1.9 U
76-44-8	Heptachlor	1.9 U
309-00-2	Aldrin	1.9 Ü
1024-57-3	Heptachlor Epoxide	1.9 Ü
959-98-8	Endosulfan I	1.9 U
60-57-1	Dieldrin	3.8 U
72-55-9	4,4'-DDE	3.8 U
72-20-8	Endrin	3.8 Ü
33213-65-9	1	3.8 U
72-54-8	4,4'-DDD	3.8 U
1031-07-8	Endosulfan Sulfate	3.8 U
50-29-3	4,4'-DDT	3.8 U
72-43-5	Methoxychlor	19. U
53494-70-5	Endrin Ketone	3.8 U
7421-93-4	Endrin Aldehyde	3.8 U
5103-71-9	alpha-Chlordane	1.9 U
5103-74-2	gamma-Chlordane	1.9 U
8001-35-2	Toxaphene	190 U
12674-11-2	Aroclor-1016	38. U
11104-28-2	Aroclor-1221	77. Ü
11141-16-5	Aroclor-1232	38. Ü
53469-21-9	Aroclor-1242	38. U
12672-29-6	Aroclor-1248	38. U
11097-69-1	Aroclor-1254	38. U
11096-82-5	Aroclor-1260	38. U

FORM I PEST

EPA	SAMPLE	NO.
MW-	-6RE	

		
	Lab Name: STL-CT Contr	cact:
	Lab Code: <u>IEACT</u> Case No.: <u>3090A</u> SAS No.:	SDG No.: <u>A3090</u>
٦.	Matrix: (soil/water):SOIL	Lab Sample ID: 993090A-03RE
];	Sample wt/vol: 30.3 (g/ml) G	Lab File ID: C5042CLP070
7.	% Moisture: 13 decanted: (Y/N)N	Date Received: <u>12/01/99</u>
. لــ	Extraction: (SepF/Cont/Sonc) <u>SONC</u>	Date Extracted: 12/13/99
<u> </u>	Concentrated Extract Volume: 5000 (uL)	Date Analyzed: 12/17/99
- ; -,	Injection Volume: 1.0 (uL)	Dilution Factor: 1.0
ا ا	GPC Cleanup: $(Y/N)\underline{Y}$ pH:8.4	Sulfur Cleanup: (Y/N)N_
}.		CONCENTRATION UNITS: Q (ug/L or ug/Kg) <u>UG/KG</u>
7	319-84-6 alpha-BHC	1.9 U
F	319-85-7 beta-BHC	. 1.9 U

319-84-6	alpha-BHC		1.9	Ü
319-85-7	beta-BHC	-	1.9	Ū
319-86-8	delta-BHC		1.9	U
58-89-9	gamma-BHC (Lindane)		1.9	Ū
76-44-8	Heptachlor		1.9	U
309-00-2	Aldrin		1.9	U
1024-57-3	Heptachlor Epoxide		1.9	Ū
959-98-8	Endosulfan I		1.9	Ŭ
60-57-1	Dieldrin		3.8	Ū
72-55-9	4,4'-DDE		3.8	U
72-20-8	Endrin		3.8	U
33213-65-9	Endosulfan II		3.8	Ū
72-54-8	4,4'-DDD		3.8	U
1031-07-8	Endosulfan Sulfate		3.8	U
50-29-3	4,4'-DDT		3.8	U
72-43-5	Methoxychlor		19.	U
53494-70-5	Endrin Ketone		3.8	U
7421-93-4	Endrin Aldehyde		3.8	Ŭ
5103-71-9	alpha-Chlordane		1.9	U
5103-74-2	gamma-Chlordane	4.5	1.9	U
8001-35-2	Toxaphene		190	Ū
12674-11-2	Aroclor-1016		38.	U
11104-28-2	Aroclor-1221		76.	U
11141-16-5	Aroclor-1232		38.	U
53469-21-9	Aroclor-1242		38.	U
12672-29-6	Aroclor-1248		38.	U
11097-69-1	Aroclor-1254		38.	U
11096-82-5	Aroclor-1260		38.	U

FORM I PEST

OLM03.0

See The intral Ramply remiter

PA	SAMPLE	NO.
SB-	-1	L

Lab Name: <u>STL-CT</u> Cont	ract:
Lab Code: <u>IEACT</u> Case No.: <u>3090A</u> SAS No.	: SDG No.: <u>A3090</u>
Matrix: (soil/water):SOIL	Lab Sample ID: 993090A-04
Sample wt/vol: 30.7 (g/ml) G	Lab File ID: C1055CLP168
% Moisture: 19 decanted: (Y/N)N	Date Received: <u>12/01/99</u>
Extraction: (SepF/Cont/Sonc) <u>SONC</u>	Date Extracted: 12/01/99
Concentrated Extract Volume: 5000 (uL)	Date Analyzed: 12/09/99
Injection Volume: 1.0 (uL)	Dilution Factor: 1.0
GPC Cleanup: $(Y/N)\underline{Y}$ pH: 9.5	Sulfur Cleanup: $(Y/N)N$
CAS NO. COMPOUND	CONCENTRATION UNITS: Q

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

319-84-6	alpha-BHC	2.0	U
319-85-7	beta-BHC	2.0	U
319-86-8	delta-BHC	2.0	Ū
58-89-9	gamma-BHC (Lindane)	2.0	U
76-44-8	Heptachlor	2.0	Ū
309-00-2	Aldrin	2.0	U
1024-57-3	Heptachlor Epoxide	2.0	U
959-98-8	Endosulfan I	2.0	Ū
60-57-1	Dieldrin	4.0	Ū
72-55-9	4,4'-DDE	4.0	Ū
72-20-8	Endrin	4.0	Ū
33213-65-9	Endosulfan II	4.0	U
72-54-8	4,4'-DDD	4.0	Ū
1031-07-8	Endosulian Suliate	4.0	U
50-29-3	4,4'-DDT	4.0	U
72-43-5	Methoxychlor	20.	Ū
53494-70-5	Endrin Ketone	4.0	Ū
7421-93-4	Endrin Aldehyde	4.0	U
5103-71-9	alpha-Chlordane	2.0	U
5103-74-2	gamma-Chlordane	2.0	U
8001-35-2	Toxaphene	200	U
12674-11-2	Aroclor-1016	40.	Ū
11104-28-2	Aroclor-1221	81.	Ū
11141-16-5	Aroclor-1232	40.	Ū
53469-21-9	Aroclor-1242	40.	Ū
12672-29-6	Aroclor-1248	40.	U.
11097-69-1	Aroclor-1254	40.	U
11096-82-5	Aroclor-1260	40.	U .

FORM I PEST

E	PA	SAMPLE	NO.
	SB-	-1RE	

	Lab Name: <u>S</u>	TL-CT	Contract:	
١.	Lab Code: <u>Il</u>	EACT Case No.: 3090A SAS	S No.: SDG No.: A3090	
\neg	Matrix: (so:	il/water): <u>SOIL</u>	Lab Sample ID: <u>993090A-04RE</u>	
ا ِ ا	Sample wt/vo	ol: <u>30.8</u> (g/ml) <u>G</u>	Lab File ID: C5042CLP071	
	% Moisture:	<u>19</u> decanted: (Y/N) <u>N</u>	Date Received: <u>12/01/99</u>	
<u>.</u> لــا	Extraction:	(SepF/Cont/Sonc) <u>SONC</u>	Date Extracted: 12/13/99	
	Concentrated	Extract Volume: 5000 (ul	Date Analyzed: <u>12/17/99</u>	
; 	Injection Vo	olume: <u>1.0</u> (uL)	Dilution Factor: 1.0	
	GPC Cleanup:	(Y/N) <u>Y</u> pH: <u>9.5</u>	Sulfur Cleanup: $(Y/N)N$	
	CAS NO.	COMPOUND	CONCENTRATION UNITS: Q (ug/L or ug/Kg) <u>UG/KG</u>	
	319-84-6	alpha-BHC	2.0 U	
	319-85-7	beta-BHC	2.0 U	
∐,'	319-86-8	delta-BHC	2.0 Ū	
	58-89-9	gamma-BHC (Lindane)	2.0 U	
(T)	76-44-8	Heptachlor	2.0 U	
	309-00-2	Aldrin	2.0 U	
ر ا	1024-57-3		2.0 U	
	959-98-8	Endosulfan I	2.0 U 4.0 U	
	60-57-1	Dieldrin 4,4'-DDE	4.0 U	
ا إليا	72-55-9 72-20-8	Endrin	4.0 U	
	33213-65-9		4.0 U	
<u> </u>	72-54-8	4,4'-DDD	4.0 U	
	1031-07-8	Endosulfan Sulfate	4.0 U	
·بِت ا	50-29-3	4,4'-DDT	0.47 JP T	
\Box	72-43-5	Methoxychlor	20. U	
	53494-70-5		4.0 U	
	7421-93-4	Endrin Aldehyde	4.0 U	
	5103-71-9	alpha-Chlordane	2.0 U	
\cap $ $	5103-74-2	gamma-Chlordane	2.0 U	
	8001-35-2	Toxaphene	200 U	
ן יְ	12674 11 2	7rocler 1016	40	

THE THE IN THE PEST

Aroclor-1016 Aroclor-1221

Aroclor-1242

11141-16-5 Arocior-1232

12672-29-6 | Aroclor-1248

11097-69-1 | Aroclor-1254

11096-82-5 Aroclor-1260

12674-11-2

11104-28-2

53469-21-9

OLM03.0

Ū

Ū

Ū

Ū

Ū

Ū

40.

80.

40.

40.

40.

40.

40.

EPA	SAMPLE	NO.
SB-	- 2	L,

Lab Name: <u>STL-CT</u>	Contract:
Lab Code: <u>IEACT</u> Case No.: <u>3090A</u> SAS	No.: SDG No.: A3090
Matrix: (soil/water): SOIL	Lab Sample ID: 993090A-05
Sample wt/vol: 30.7 (g/ml) G	Lab File ID: C5042CLP034
% Moisture: 15 decanted: $(Y/N)N$	Date Received: <u>12/03/99</u>
Extraction: (SepF/Cont/Sonc) <u>SONC</u>	Date Extracted: 12/03/99
Concentrated Extract Volume: 5000 (uL	Date Analyzed: <u>12/16/99</u>
Injection Volume: 1.0 (uL)	Dilution Factor: 5.0
GPC Cleanup: $(Y/N)\underline{Y}$ pH: 9	Sulfur Cleanup: $(Y/N)N$
CAS NO. COMPOUND	CONCENTRATION UNITS: Q (ug/L or ug/Kg) <u>UG/KG</u>

319-84-6	alpha-BHC	1.2	JP
319-85-7	beta-BHC	9.8	U
319-86-8	delta-BHC	4.2	JP
58-89-9	gamma-BHC (Lindane)	.9 : 8	U
76-44-8	Heptachlor	9.8	
309-00-2	Aldrin	9.8	U
1024-57-3	Heptachlor Epoxide	9.8	U
959-98-8	Endosulfan I	9.8	U
60-57-1	Dieldrin	2.6	JP
72-55-9	4,4'-DDE	19	U
72-20-8	Endrin	3.0	JP
33213-65-9	Endosulfan II	19.	U
72-54-8	4,4'-DDD	19.	U
1031-07-8	Endosulfan Sulfate	19.	U
50-29-3	4,4'-DDT	6.6	JP
72-43-5	Methoxychlor	98.	U
53494-70-5	Endrin Ketone	19.	U
7421-93-4	Endrin Aldehyde	19.	Ū
5103-71-9	alpha-Chlordane	9.8	U
5103-74-2	gamma-Chlordane	2.5	JP
8001-35-2	Toxaphene	980	U
12674-11-2	Aroclor-1016	190	U
11104-28-2	Aroclor-1221	380	<u></u>
11141-16-5	Aroclor-1232	190	Ū
53469-21-9	Aroclor-1242	190	Ū
12672-29-6	Aroclor-1248	190	Ū
11097-69-1	Aroclor-1254	190	T T
11096-82-5	Aroclor-1260	190	Ŭ

EPA	SAMPLE	NO.
SB-	-2RE	

7	Lab Name: STL-CT Contr	ract:
٦,	Lab Code: <u>IEACT</u> Case No.: <u>3090A</u> SAS No.:	SDG No.: <u>A3090</u>
	Matrix: (soil/water):SOIL	Lab Sample ID: 993090A-05RE
ز ا	Sample wt/vol: 30.5 (g/ml) G	Lab File ID: C5042CLP123
	% Moisture: 15 decanted: (Y/N)N	Date Received: <u>12/03/99</u>
	Extraction: (SepF/Cont/Sonc) SONC	Date Extracted: 12/13/99
	Concentrated Extract Volume: 5000 (uL)	Date Analyzed: 12/21/99
· ¬	Injection Volume: 1.0 (uL)	Dilution Factor: 5.0
	GPC Cleanup: $(Y/N)\underline{Y}$ pH: 9	Sulfur Cleanup: $(Y/N)N$
	CAS NO. COMPOUND	CONCENTRATION UNITS: Q (ug/L or ug/Kg) <u>UG/KG</u>

1				
	319-84-6	alpha-BHC	1.2	JP
	319-85-7	beta-BHC	9:8	Ū
ı	319-86-8	delta-BHC	9.8	U :
	58-89-9	gamma-BHC (Lindane)	9.8	Ū
	76-44-8	Heptachlor	9.8	U
- [309-00-2	Aldrin	9.8	Ŭ
1	1024-57-3	Heptachlor Epoxide	3.0	JР
Ì	959-98-8	Endosulfan I	9.8	U
	60-57-1	Dieldrin	2.7	JP ·
	72-55-9	4,4'-DDE	19.	Į Ū
	72-20-8	Endrin	4.8	JP
	33213-65-9	Endosulfan II	19.	U
	72-54-8	4,4'-DDD	19.	U
	1031-07-8	Endosulfan Sulfate	19.~	U
	50-29-3	4,4'-DDT	2.8	JP ·
	72-43 - 5	Methoxychlor	98.:	U
	53494-70-5	Endrin Ketone	19.	U
	7421-93-4	Endrin Aldehyde	19.	Ū
	5103-71-9	alpha-Chlordane	9.8	Ü
	5103-74-2	gamma-Chlordane	0.70	JP
I	8001-35-2	Toxaphene	980 "	U
1	12674-11-2	Aroclor-1016	190	U
	11104-28-2	Aroclor-1221	390 .	U
	11141-16-5	Aroclor-1232	190	.U
1	53469-21-9	Aroclor-1242	190	U
	12672-29-6	Aroclor-1248	190	U
1	11097-69-1	Aroclor-1254	190	Ū
	11096-82-5	Aroclor-1260	190	U
1~			· · · · · · · · · · · · · · · · · · ·	

See The Organ Sample dal FORM I PEST

EPA	SAMPLE	NOL
SS-	-1R	 L

Lab Name: <u>STL-CT</u> Cont	cract:
Lab Code: <u>IEACT</u> Case No.: <u>3090A</u> SAS No.	: SDG No.: <u>A3090</u>
Matrix: (soil/water):SOIL	Lab Sample ID: <u>993090A-06</u>
Sample wt/vol: 30.7 (g/ml) G	Lab File ID: C5042CLP043
% Moisture: 31 decanted: $(Y/N)N$	Date Received: <u>12/03/99</u>
Extraction: (SepF/Cont/Sonc) SONC	Date Extracted: 12/03/99
Concentrated Extract Volume: 5000 (uL)	Date Analyzed: 12/16/99
Injection Volume: 1.0 (uL)	Dilution Factor: 1.0
GPC Cleanup: $(Y/N)Y$ pH:7.7	Sulfur Cleanup: (Y/N)N_

CONCENTRATION UNITS: Q

CAS NO.

COMPOUND

CAD NO.	COMPOUND	(ug/L or ug/Kg) <u>UG/KG</u>	
319-84-6	alpha-BHC	2.4 U	٦
319-85-7	beta-BHC	2.4 U	
319-86-8	delta-BHC	2.4 U	7
58-89-9	gamma-BHC (Lindane)		$\exists I$
76-44-8	Heptachlor	- 2.4 U	7
309-00-2	Aldrin	2.4 U	7
1024-57-3	Heptachlor Epoxide	2.4 U	7
959-98-8	Endosulfan I	2.4 U	
60-57-1	Dieldrin	4.7 U	7
72-55-9	4,4'-DDE		$\exists \mathbb{I}$
72-20-8	Endrin	-4.7 U	$\exists l$
33213-65-9			
72-54-8	4,4'-DDD	4.7 U	7
1031-07-8	Endosulfan Sulfate	4.7 U	7
50-29-3	4,4'-DDT	4.7 [U	
72-43-5	Methoxychlor	·24.····· U	\mathbb{I}
53494-70-5	Endrin Ketone	4.7 U	
7421-93-4	Endrin Aldehyde	-4.7 Ŭ	7
5103-71-9	alpha-Chlordane	2.4 U	_}{
5103-74-2	gamma-Chlordane	2.4 U	
8001-35-2	Toxaphene	24.0 · U	
12674-11-2	Aroclor-1016	47. Ü	
11104-28-2	Aroclor-1221	95. Ū][
11141-16-5	Aroclor-1232	47. U]
53469-21-9	Aroclor-1242	47. Ü	
12672-29-6	Aroclor-1248	47. U	
11097-69-1	Aroclor-1254	47. U	7
11096-82-5	Aroclor-1260	47. Ŭ][

FORM I PEST

EPA	SAMPLE	NO.
SS-	-1RRE	

	·	
	Lab Name: STL-CT Cont	ract:
	Lab Code: <u>IEACT</u> Case No.: <u>3090A</u> SAS No.	: SDG No.: <u>A3090</u>
٦	Matrix: (soil/water):SOIL	Lab Sample ID: 993090A-06RE
	Sample wt/vol: 30.9 (g/ml) G	Lab File ID: C5042CLP073
j	% Moisture: 31 decanted: (Y/N)N	Date Received: <u>12/03/99</u>
	Extraction: (SepF/Cont/Sonc) <u>SONC</u>	Date Extracted: 12/13/99
	Concentrated Extract Volume: 5000 (uL)	Date Analyzed: 12/17/99
لِــ	Injection Volume: 1.0 (uL)	Dilution Factor: 1.0
	GPC Cleanup: $(Y/N)\underline{Y}$ pH: $\underline{7.7}$	Sulfur Cleanup: (Y/N)N_
	CAS NO. COMPOUND	CONCENTRATION UNITS: Q (ug/L or ug/Kg) <u>UG/KG</u>

319-84-6	alpha-BHC	2.4	U
319-85-7	beta-BHC	2.4	Ŭ "
319-86-8	delta-BHC	0.30	J
58-89-9	gamma-BHC (Lindane)	2.4	U
76-44-8	Heptachlor	2.4	U
309-00-2	Aldrin	2.4	Ū
1024-57-3	Heptachlor Epoxide	2.4	U
959-98-8	Endosulfan I	2.4	Ū
60-57-1	Dieldrin	4.6	Ŭ
72-55-9	4,4'-DDE	0.94	J
72-20-8	Endrin	4.6	Ü
33213-65-9	Endosulfan II	4.6	Ü
72-54-8	4,4'-DDD	4.6	Ū
1031-07-8	Endosulfan Sulfate	4.6	Ū
50-29-3	4,4'-DDT	0.67	J
72-43-5	Methoxychlor	24.	U
53494-70-5	Endrin Ketone	4.6	U
7421-93-4	Endrin Aldehyde	4.6	U
5103-71-9	alpha-Chlordane	2.4	U
5103-74-2	gamma-Chlordane	2.4	U
8001-35-2	Toxaphene	240	Ŭ
12674-11-2	Aroclor-1016	46.	U
11104-28-2	Aroclor-1221	94.	U
11141-16-5	Aroclor-1232	46.	U
53469-21-9	Aroclor-1242	46.	U
12672-29-6	Aroclor-1248	46.	Ū
11097-69-1	Aroclor-1254	46.	U
11096-82-5	Aroclor-1260	46.	U

See The initial Deiter

FORM I PEST

EPA	SAMPLE	NO.	
SS-	- 2		

Lab Name: <u>STL-CT</u>	Contract:
Lab Code: <u>IEACT</u> Case No.: <u>3090A</u> SAS	No.: SDG No.: <u>A3090</u>
Matrix: (soil/water): SOIL	Lab Sample ID: <u>993090A-07</u>
Sample wt/vol: 30.1 (g/ml) G	Lab File ID: C5042CLP044
% Moisture: <u>18</u> decanted: (Y/N) <u>N</u>	Date Received: <u>12/03/99</u>
Extraction: (SepF/Cont/Sonc) SONC	Date Extracted: 12/03/99
Concentrated Extract Volume: 5000 (uL) Date Analyzed: <u>12/16/99</u>
Injection Volume: 1.0 (uL)	Dilution Factor: 1.0
GPC Cleanup: $(Y/N)Y$ pH:7.8	Sulfur Cleanup: $(Y/N)N$
CAS NO COMPOIND	CONCENTERTON INTER.

CAS NO. COMPOUND CONCENTRATION UNITS: Q (ug/L or ug/Kg) <u>UG/KG</u>

319-84-6	alpha-BHC	2.1	U
319-85-7	beta-BHC	2.1	U
319-86-8	delta-BHC	1.9	JP
58-89-9	gamma-BHC (Lindane)	2.1	Ū
76-44-8	Heptachlor	2.1	U
309-00-2	Aldrin	2.1	Ū
1024-57-3	Heptachlor Epoxide	2.1	Ū
959-98-8	Endosulfan I	2.1	Ū
60-57-1	Dieldrin	4.0	Ū
72-55-9	4,4'-DDE	16.	₽
72-20-8	Endrin	2.0	JP
33213-65-9	Endosulfan II	1.2	JP
72-54-8	4,4'-DDD	1.6	JP
1031-07-8	Endosulfan Sulfate	4.0	Ū
50-29-3	4,4'-DDT	11.	.P
72-43-5	Methoxychlor	21.	U
53494-70-5	Endrin Ketone	4.0	U
7421-93-4	Endrin Aldehyde	4.0	Ū,
5103-71-9	alpha-Chlordane	2.1	U
5103-74-2	gamma-Chlordane	2.1	U
8001-35-2	Toxaphene	210	Ū
12674-11-2	Aroclor-1016	40.	Ū
11104-28-2	Aroclor-1221	81.	Ū
11141-16-5	Aroclor-1232	40.	U
53469-21-9	Aroclor-1242	40.	U
12672-29-6	Aroclor-1248	40.	Ū
11097-69-1	Aroclor-1254	40.	U
11096-82-5	Aroclor-1260	18.	JP

FORM I PEST

EPA	SAMPLE	NO.
SS-	-3	

1,			
	Lab Name: STL-CT	Contract:	
<u>]</u> .	Lab Code: <u>IEACT</u> Case No.: <u>3090A</u> SA	AS No.: SDG No.: <u>A3090</u>	
7:	Matrix: (soil/water):SOIL	Lab Sample ID: <u>993090A-08</u>	
]	Sample wt/vol: 30.9 (g/ml) G	Lab File ID: C5042CLP046	
ij	% Moisture: 10 decanted: (Y/N)N	Date Received: 12/03/99	
ا	Extraction: (SepF/Cont/Sonc) <u>SONC</u>	Date Extracted: 12/03/99	
7	Concentrated Extract Volume: 5000 (1	uL) Date Analyzed: <u>12/16/99</u>	
_}′	Injection Volume: <u>1.0</u> (uL)	Dilution Factor: 1.0	
	GPC Cleanup: $(Y/N)Y$ pH:8	Sulfur Cleanup: (Y/N)N_	
	CAS NO. COMPOUND	CONCENTRATION UNITS: Q (ug/L or ug/Kg) <u>UG/KG</u>	4
	319-84-6 alpha-BHC 319-85-7 beta-BHC 319-86-8 delta-BHC	1.8 U 1.8 U 1.8 U	()
\neg	58-89-9 gamma-BHC (Lindane) 76-44-8 Heptachlor	1.8 U 1.8 U	
	309-00-2 Aldrin 1024-57-3 Heptachlor Epoxide	1.8 U 1.8 U	
	959-98-8 Endosulfan I	1.8 U	

1 313-04-0	alpita bitc	1.0	10
319-85-7	beta-BHC	1.8	Ū,
319-86-8	delta-BHC	1.8	Ū
58-89-9	gamma-BHC (Lindane)	1.8	U .
76-44-8	Heptachlor	18	U
309-00-2	Aldrin	1.8	U.
1024-57-3	Heptachlor Epoxide	1.8	Ü
959-98-8	Endosulfan I	1.8	U
60-57-1	Dieldrin	3.6	U. U
72-55-9	4,4'-DDE	3.6	Ū
72-20-8	Endrin	3.6	Ū
33213-65-9	Endosulfan II	3.6	·U
72-54-8	4,4'-DDD	3.6	U
1031-07-8	Endosulfan Sulfate	3.6	U
50-29-3	4,4'-DDT	3.6	U .
72-43-5	Methoxychlor	18	Ŭ
53494-70-5	Endrin Ketone	3.6	U
7421-93-4	Endrin Aldehyde	3.6	U
5103-71-9	alpha-Chlordane	1.8	Ū
5103-74-2	gamma-Chlordane	1.8	U
8001-35-2	Toxaphene	180	Ū
12674-11-2	Aroclor-1016	36.	Ŭ
11104-28-2	Aroclor-1221	72.	Ū
11141-16-5	Aroclor-1232	36.	Ŭ
53469-21-9	Aroclor-1242	36.	U ·
12672-29-6	Aroclor-1248	36.	-U
11097-69-1	Aroclor-1254	36.	U
11096-82-5	Aroclor-1260	36.	Ŭ "

FORM I PEST

EPA	SAMPLE	NO
		· · · · · ·
SS-	-3RE	<u> </u>

Lab Name: SIL-CI Contr	act:
Lab Code: <u>IEACT</u> Case No.: <u>3090A</u> SAS No.:	SDG No.: <u>A3090</u>
Matrix: (soil/water):SOIL	Lab Sample ID: 993090A-08RE
Sample wt/vol: 30.8 (g/ml) G	Lab File ID: C5042CLP074
% Moisture: 10 decanted: (Y/N)N	Date Received: 12/03/99
Extraction: (SepF/Cont/Sonc) <u>SONC</u>	Date Extracted: 12/13/99
Concentrated Extract Volume: 5000 (uL)	Date Analyzed: 12/17/99
Injection Volume: 1.0 (uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N)Y pH:8	Sulfur Cleanup: $(Y/N)N$

CONCENTRATION UNITS:

CAD NO.	·	(ug/L or ug/Kg) <u>UG/KG</u>
	<u> </u>	(45) 4 4 4 4 5 4 5 4 6 6 6 6 6 6 6 6 6 6 6 6
319-84-6	alpha-BHC .	1.8 U
319-85-7	beta-BHC	1.8 U
319-86-8	delta-BHC	1.8 U
58-89-9	gamma-BHC (Lindane)	1.8 U
76-44-8	Heptachlor	1.8 U
309-00-2	Aldrin	1.8 U
1024-57-3	Heptachlor Epoxide	1.8 U
959-98-8	Endosulfan I	1.8 U
60-57-1	Dieldrin	3.6 U
72 - 559	4,4'-DDE.	. 3.6 U
72-20-8	Endrin	3.6 U
33213-65-9	Endosulfan II	3.6 U
72-54-8	4., 4'-DDD	3.6 U
1031-07-8	Endosulfan Sulfate	3.6 U
50-29-3	4,41DDT	3.6 U
72-43-5	Methoxychlor	18. U
53494-70-5		3.6 Ü
7421-93-4	Endrin Aldehyde	3.6 Ū
5103-71-9	alpha-Chlordane	1.8 U
5103-74-2	gamma-Chlordane	1.8 U
8001-35-2	Toxaphene .	- 180 U
12674-11-2	Aroclor-1016	36. U
11104-28-2	Aroclor-1221	72. U
11141-16-5	Aroclor-1232	36. U.
53469-21-9.	Aroclor-1242	36. U
12672-29-6	Aroclor-1248	36. U
11097-69-1	Aroclor-1254	36. U
11096-82-5	Aroclor-1260	36. U

See The City nel Samy (Data FORM I PEST

CAS NO.

COMPOUND

EPA	SAMPLE	NO.
SS-	- 4	

Lab Name: <u>STL-CT</u>	Contract:
Lab Code: <u>IEACT</u> Case No.: <u>30</u>	90A SAS No.: SDG No.: <u>A3090</u>
Matrix: (soil/water):SOIL	Lab Sample ID: <u>993090A-09</u>
Sample wt/vol: 30.7 (g/ml) G	Lab File ID: C1055CLP183
% Moisture: 20 decanted: ((Y/N) N Date Received: 12/03/99
Extraction: (SepF/Cont/Sonc)	SONC Date Extracted: 12/03/99
Concentrated Extract Volume: 50	00 (uL) Date Analyzed: <u>12/10/99</u>
Injection Volume: 1.0 (uL)	Dilution Factor: 1.0
GPC Cleanup: $(Y/N)\underline{Y}$ pH:	7.8 Sulfur Cleanup: (Y/N)N
CAS NO. COMPOUND	CONCENTRATION UNITS: Q (ug/L or ug/Kg) <u>UG/KG</u>
319-84-6 alpha-BHC 319-85-7 beta-BHC 319-86-8 delta-BHC 58-89-9 gamma-BHC (Lindane T6-44-8 Heptachlor 309-00-2 Aldrin 1024-57-3 Heptachlor Epoxide T7-25-9 4,4'-DDE T2-20-8 Endosulfan I 72-55-9 4,4'-DDE T2-20-8 Endrin 33213-65-9 Endosulfan II 72-54-8 4,4'-DDD 1031-07-8 Endosulfan Sulfate T7-43-5 Methoxychlor 53494-70-5 Endrin Ketone 7421-93-4 Endrin Aldehyde 5103-71-9 alpha-Chlordane 5103-74-2 gamma-Chlordane 5103-74-2 gamma-Chlordane 5103-74-2 gamma-Chlordane 5103-74-2 gamma-Chlordane 5103-74-2 gamma-Chlordane 5103-74-2 gamma-Chlordane 5103-74-2 gamma-Chlordane 5103-74-2 gamma-Chlordane 5103-74-2 gamma-Chlordane 5103-74-2 gamma-Chlordane 5103-74-2 gamma-Chlordane 5103-74-2 gamma-Chlordane 5103-74-2 gamma-Chlordane 5103-74-2 gamma-Chlordane 5103-74-2 gamma-Chlordane 5103-74-2 gamma-Chlordane 5103-74-2 gamma-Chlordane 5103-74-2 gamma-Chlordane 5103-74-2 gamma-Chlordane 5103-74-2 Gamma-Chlordane 5103-74-2 5103-7	2.1 U 2.1 U 0.68 JP 0.68 JP 2.1 U 2.1 U 2.1 U 2.1 U 2.1 U 2.1 U 2.1 U 2.1 U 4.0 U 4.0 U 4.0 U 4.0 U 2.3 JP 21. U 4.0 U 4.0 U 2.1 U 4.0 U 4.0 U 2.1 U
8001-35-2 Toxaphene	2.1 U 210 U 40. U
11104-28-2 Aroclor-1221 11141-16-5 Aroclor-1232 53469-21-9 Aroclor-1242	82. U 40. U 40. U
12672-29-6 Aroclor-1248 11097-69-1 Aroclor-1254 11096-82-5 Aroclor-1260	40. U 40. U 40. U
	Lab Code: IEACT Case No.: 30 Matrix: (soil/water): SOIL Sample wt/vol: 30.7 (g/ml) G % Moisture: 20 decanted: 6 Extraction: (SepF/Cont/Sonc) Concentrated Extract Volume: 50 Injection Volume: 1.0 (uL) GPC Cleanup: (Y/N)Y pH: CAS NO. COMPOUND 319-84-6 alpha-BHC 319-85-7 beta-BHC 319-86-8 delta-BHC 319-86-8 delta-BHC 319-86-8 delta-BHC 319-86-8 delta-BHC 319-86-8 delta-BHC 319-86-8 delta-BHC 319-86-8 delta-BHC 319-86-8 delta-BHC 319-86-8 delta-BHC 319-86-8 delta-BHC 319-86-8 delta-BHC 319-86-8 delta-BHC 319-86-8 delta-BHC 11024-8-9 Alderin 319-86-8

FORM I PEST

OLM03.0

EPA SAMPLE NO.

SS-4RE

Lab Sample ID: 993090A-09RE

Date Received: <u>12/03/99</u>

ab Name	: STL-CI	Contract:	
---------	----------	-----------	--

Lab Code: <u>IEACT</u> Case No.: <u>3090A</u> SAS No.: _____ SDG No.: <u>A3090</u>

Matrix: (soil/water):SOIL

Sample wt/vol: 30.9 (q/ml) G Lab File ID: C5042CLP076

% Moisture: 20 decanted: (Y/N)N

Extraction: (SepF/Cont/Sonc) SONC Date Extracted: 12/13/99

Concentrated Extract Volume: 5000 (uL) Date Analyzed: 12/17/99

Injection Volume: 1.0 (uL) Dilution Factor: 1.0

GPC Cleanup: $(Y/N)\underline{Y}$ pH: 7.8 Sulfur Cleanup: $(Y/N)\underline{N}$

CAS NO. COMPOUND CONCENTRATION UNITS: Q (uq/L or uq/Kq) UG/KG

		(49, 12 of 49, 119, <u>567, 116</u>	
319-84-6	alpha-BHC	2.1 U	
319-85-7	beta-BHC	2.1 U	
319-86-8	delta-BHC	2.1 U	
58-89-9	gamma-BHC (Lindane)	2.1 U	
76-44-8	Heptachlor	2.1 U	
309-00-2	Aldrin	2.1 U	
1024-57-3	Heptachlor Epoxide	2.1 U	
959-98-8	Endosulfan I	2.1 U	
60-57-1	Dieldrin	4.0 U	
72-55-9	4,4'-DDE	4.0 U	
72-20-8	Endrin	4.0 U	
33213-65-9	Endosulfan II	. 4.0 U	
72-54-8	4,4'-DDD	4.0 U	
1031-07-8	Endosulfan Sulfate	4.0 U	
50-29-3	4,4'-DDT	4.0 Ü	
72-43-5	Methoxychlor	21. U	
53494-70-5	Endrin Ketone	4.0 U	
7421-93-4	Endrin Aldehyde	4.0 Ü	
5103-71-9	alpha-Chlordane	2.1 U	
5103-74-2	gamma-Chlordane	2.1 U	
8001-35-2	Toxaphene	210 U	
12674-11-2	Aroclor-1016	40. Ü	
11104-28-2	Aroclor-1221	81. U	
11141-16-5	Aroclor-1232	40. U	
53469-21-9	Aroclor-1242	40. U	
12672-29-6	Aroclor-1248	40. U	
11097-69-1	Aroclor-1254	40. U	
11096-82-5	Aroclor-1260	40. U	

See The Crynd Sarih Puta

FORM I PEST

EPA	SAMPLE	NO.
MTAT -	- 5	

			-	
-ŋ ·	Lab Name: S	TL-CT	Contract:	
,	Lab Code: <u>I</u>	EACT Case No.: 3090A SA	S No.: SDG No.: <u>A3090</u>	
¬ `	Matrix: (so	il/water): <u>SOIL</u>	Lab Sample ID: <u>993090A-10</u>	_
	Sample wt/v	ol: <u>30.1</u> (g/ml) <u>G</u>	Lab File ID: C1055CLP184	
	% Moisture:	10 decanted: (Y/N)N	Date Received: <u>12/03/99</u>	
: اـــــ	Extraction:	(SepF/Cont/Sonc) <u>SONC</u>	Date Extracted: 12/03/99	
	Concentrate	d Extract Volume: 5000 (ul	L) Date Analyzed: <u>12/10/99</u>	
.	Injection V	olume: <u>1.0</u> (uL)	Dilution Factor: 1.0	
]:	GPC Cleanup	: (Y/N) <u>Y</u> pH: <u>8.3</u>	Sulfur Cleanup: (Y/N)N_	
	CAS NO.	COMPOUND	CONCENTRATION UNITS: Q (ug/L or ug/Kg) <u>UG/KG</u>	
	319-84-6	alpha-BHC	1.9 U	
	319-85-7	beta-BHC	1.9 U	
	210 00 0			,
	319-86-8	delta-BHC	0.31 JP	1
	58-89-9	gamma-BHC (Lindane)	1.9 U	1
- ;	58-89-9 76-44-8	gamma-BHC (Lindane) Heptachlor	1.9 U · 1.9 U	J
]	58-89-9 76-44-8 309-00-2	gamma-BHC (Lindane) Heptachlor Aldrin	1.9 U 1.9 U 1.9 U	5
,	58-89-9 76-44-8 309-00-2 1024-57-3	gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor Epoxide	1.9 U 1.9 U 1.9 U 1.9 U	5
	58-89-9 76-44-8 309-00-2 1024-57-3 959-98-8	gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor Epoxide Endosulfan I	1.9 U 1.9 U 1.9 U 1.9 U 1.9 U	1
	58-89-9 76-44-8 309-00-2 1024-57-3 959-98-8 60-57-1	gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor Epoxide Endosulfan I Dieldrin	1.9 U 1.9 U 1.9 U 1.9 U 1.9 U 1.9 U 3.6 U	3
	58-89-9 76-44-8 309-00-2 1024-57-3 959-98-8 60-57-1 72-55-9	gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor Epoxide Endosulfan I Dieldrin 4,4'-DDE	1.9 U 1.9 U 1.9 U 1.9 U 1.9 U 1.9 U 3.6 U	5
	58-89-9 76-44-8 309-00-2 1024-57-3 959-98-8 60-57-1 72-55-9 72-20-8	gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor Epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin	1.9 U 1.9 U 1.9 U 1.9 U 1.9 U 3.6 U 3.6 U 3.6 U	5
	58-89-9 76-44-8 309-00-2 1024-57-3 959-98-8 60-57-1 72-55-9 72-20-8 33213-65-9	gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor Epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II	1.9 U 1.9 U 1.9 U 1.9 U 1.9 U 3.6 U 3.6 U 3.6 U 3.6 U	5
	58-89-9 76-44-8 309-00-2 1024-57-3 959-98-8 60-57-1 72-55-9 72-20-8 33213-65-9 72-54-8	gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor Epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD	1.9 U 1.9 U 1.9 U 1.9 U 1.9 U 3.6 U 3.6 U 3.6 U 3.6 U 3.6 U	5
	58-89-9 76-44-8 309-00-2 1024-57-3 959-98-8 60-57-1 72-55-9 72-20-8 33213-65-9 72-54-8 1031-07-8	gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor Epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II	1.9 U 1.9 U 1.9 U 1.9 U 1.9 U 3.6 U 3.6 U 3.6 U 3.6 U 3.6 U	1

53494-70-5 Endrin Ketone 7421-93-4 Endrin Aldehyde

5103-71-9 alpha-Chlordane 5103-74-2 gamma-Chlordane

12674-11-2 Aroclor-1016

11104-28-2 | Aroclor-1221

11141-16-5 Aroclor-1232

53469-21-9 | Aroclor-1242

12672-29-6 Aroclor-1248

11097-69-1 | Aroclor-1254

11096-82-5 Aroclor-1260

8001-35-2

Toxaphene

3.6

3.6

1.9

190

36.

74.

36. 36.

36.

36.

36.

Ū

U

U

Ū

Ū

U

Ū

Ū

Ū

U

EPA	SAMPLE	NO
GD.		1
SB-	- 8	

Lab Name: <u>STL-CT</u> C	ontract:
Lab Code: <u>IEACT</u> Case No.: <u>3090A</u> SAS	No.: SDG No.: <u>A3090</u>
Matrix: (soil/water):SOIL	Lab Sample ID: 993090A-11
Sample wt/vol: 30.9 (g/ml) G	Lab File ID: C5042CLP064
% Moisture: 15 decanted: (Y/N)N	Date Received: 12/03/99
Extraction: (SepF/Cont/Sonc) SONC	Date Extracted: 12/08/99
Concentrated Extract Volume: 5000 (uL)	Date Analyzed: 12/17/99
Injection Volume: 1.0 (uL)	Dilution Factor: 1.0
GPC Cleanup: $(Y/N)Y$ pH:8.2	Sulfur Cleanup: $(Y/N)N$
CAS NO. COMPOUND	CONCENTRATION UNITS: Q (ug/L or ug/Kg) <u>UG/KG</u>
319-84-6 alpha-BHC	1.9 U
319-85-7 beta-BHC 319-86-8 delta-BHC	1.9 U 0.51 FP 1
315 66 6 defed bile	0.31 81

3 la DIIG	1 0	1 7 7
		Ū
		U
		JP
		U
	1.9	Ū
	1.9	Ū
		U
		Ū
		Ū
4,4'-DDE		Ū
Endrin		U
Endosulfan II	3.8	Ū
4,4'-DDD	3.8	Ū
Endosulian Sulfate	3.8	Ū
		Ū
		JP
	3.8	Ū
Endrin Aldehyde	3.8	Ū
	1.9	Ū
gamma-Chlordane	1.9	U
Toxaphene	190	Ū
Aroclor-1016	38.	Ū
Aroclor-1221	76.	Ū
		Ū
Aroclor-1242		U
	38.	Ū
Aroclor-1254	38.	Ū
Aroclor-1260	38.	U
	Endrin Endosulfan II 4,4'-DDD Endosulfan Sulfate 4,4'-DDT Methoxychlor Endrin Ketone Endrin Aldehyde alpha-Chlordane gamma-Chlordane Toxaphene Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1248 Aroclor-1254	beta-BHC 1.9 delta-BHC 0.51 gamma-BHC (Lindane) 1.9 Heptachlor 1.9 Aldrin 1.9 Endosulfan I 1.9 Dieldrin 3.8 4,4'-DDE 3.8 Endosulfan II 3.8 4,4'-DDD 3.8 Endosulfan Sulfate 3.8 4,4'-DDT 3.8 Methoxychlor 6.7 Endrin Ketone 3.8 Endrin Aldehyde 3.8 alpha-Chlordane 1.9 gamma-Chlordane 1.9 foxaphene 190 Aroclor-1221 76. Aroclor-1232 38. Aroclor-1242 38. Aroclor-1248 38. Aroclor-1254 38.

FORM I PEST

EPA	SAMPLE	NO.
SB-	- 4	

1				SB-4	
~·	Lab Name: S	IL-CT	Contract:		
	Lab Code: <u>I</u> I	EACT Case No.: 3090A S	SAS No.: SDG No.:	<u>A3090</u>	
7	Matrix: (so:	il/water): <u>SOIL</u>	Lab Sample ID: 9	93090A-12	
<u>.</u>	Sample wt/vo	ol: <u>30.7 (g/ml)</u> <u>G</u>	Lab File ID: <u>C10</u>	55CLP185	
7	% Moisture:	18 decanted: (Y/N)N	Date Received: <u>1</u>	.2/03/99	
_]	Extraction:	(SepF/Cont/Sonc) <u>SONC</u>	Date Extracted:	12/03/99	
7	Concentrated	l Extract Volume:5000 (uL) Date Analyzed: 1	2/10/99	
<u></u> ,	Injection Vo	olume: <u>1.0</u> (uL)	Dilution Factor:	1.0	
7	GPC Cleanup:	(Y/N) <u>Y</u> pH: <u>8.1</u>	Sulfur Cleanup:	(Y/N) <u>N</u>	
	CAS NO.	COMPOUND	CONCENTRATION UNI (ug/L or ug/Kg) <u>U</u>		
	319-84-6	alpha-BHC	2	.0 U	7
7	319-85-7	beta-BHC	2		1
	319-86-8	delta-BHC		1]
	58-89-9	gamma-BHC (Lindane)	1	.0 Ü	
\neg	76-44-8	Heptachlor		.0 U	_
	309-00-2	Aldrin		.0 U	4
J	1024-57-3	Heptachlor Epoxide	2		4
	959-98-8	Endosulfan I	- 2	.0 U	4
7	60-57-1	Dieldrin		.9 U	4
		4,4'-DDE		.9 U	
	72-20-8	Endrin		.9 U	4
_		Endosulfan II			-
	72-54-8	4,4'-DDD			4
_]	1031-07-8			.9 U	-11
	50-29-3	4,4'-DDT			W U
	72-43-5	Methoxychlor	7.7 2	.9 U	Hay V
	53494-70-5	Endrin Ketone		.9 U	- .
	7421-93-4 5103-71-9	Endrin Aldehyde		.9 U	╢.
	!	alpha-Chlordane gamma-Chlordane		.0 U	1
7	5103-74-2 8001-35-2	Toxaphene	200	U	1
		Aroclor-1016	39.	- 	1
- ,	12674-11-2	Aroclor-1016 Aroclor-1221	80.	U	1
	11141-16-5	Aroclor-1221 Aroclor-1232	39.	U	1
	53469-21-9		39.	<u> </u>	11
ل	12672-29-6	Aroclor-1242 Aroclor-1248	39.		1
	11097-69-1	Aroclor-1254	39.	U	1
		111 UULUL 141 U I	,		

11096-82-5 | Aroclor-1260

EPA	SAMPLE	NO.
SB-		

Lab Name: STL-CT Contr	act:
Lab Code: <u>IEACT</u> Case No.: <u>3090A</u> SAS No.:	SDG No.: <u>A3090</u>
Matrix: (soil/water): <u>SOIL</u>	Lab Sample ID: 993090A-13
Sample wt/vol: 30.1 (g/ml) G	Lab File ID: C1055CLP186
% Moisture: 12 decanted: (Y/N)N	Date Received: <u>12/03/99</u>
Extraction: (SepF/Cont/Sonc) SONC	Date Extracted: 12/03/99
Concentrated Extract Volume: 5000 (uL)	Date Analyzed: <u>12/10/99</u>
Injection Volume: <u>1.0</u> (uL)	Dilution Factor: 1.0
GPC Cleanup: $(Y/N)\underline{Y}$ pH:8.1	Sulfur Cleanup: $(Y/N)N$

CAS NO.	COMPOUND	•	CONCENTRATION UNITS: Q (ug/L or ug/Kq) UG/KG
			(ug/L or ug/Kg) <u>UG/KG</u>
319-84-6	- alpha-BHC -		1.9 U

	and the second s	(ug/L or ug/kg) <u>UG/kG</u>
319-84-6 -	alpha-BHC	1.9 U
319-85-7	beta-BHC	1.9- U
319-86-8	delta-BHC	0.37 JP
58-89-9	gamma-BHC (Lindane)	1.9 U
76-44-8	Heptachlor	1.9 U
309-00-2	Alarin	1.9 U
1024-57-3	Heptachlor Epoxide	1.9 U
959-98-8	Endosulfan I	1.9 U
60-57-1	Dieldrin	3.7 U-
72-55-9	4,4'-DDE	3.7 U
72-20-8	Endrin	3.7 U
33213-65-9	Endosulian II	3.7 U
72-54-8	-4,4'-DDD	· 3.7 -U
1031-07-8	Endosulfan Sulfate	3.7 U
50-29-3	4,4'-DDT	3.7 U
72-43-5	Methoxychlor	19. U
53494-70-5	Endrin Ketone	-3.7 U
7421-93-4	Endrin Aldehyde	3.7 U
5103-71-9	alpha-Chlordane	1.9 U
5103-74-2	gamma-Chlordane	1.9 U
8001-35-2	Toxaphene	190 U
12674-11-2	Aroclor-1016	37. Ŭ
11104-28-2	Aroclor-1221	·76. U
11141-16-5	Aroclor-1232	37. Ŭ
53469-21-9	Aroclor-1242	- 37. U
12672-29-6	Aroclor-1248	37. U
11097-69-1	Aroclor-1254	37. U
11096-82-5	Aroclor-1260	37. U

EPA	SAMPLE	NO.
DUE	P-1	

	I EDITCIDE ONGANICS ANAL	IISIS DAIA SHEEI	DUP-1
_ Lab Name: <u>ST</u>	TL-CT Con	tract:	
Lab Code: <u>IE</u>	ACT Case No.: 3090A SAS No	.: SDG No.: A3	090
Matrix: (soi	l/water): <u>SOIL</u>	Lab Sample ID: 993	090A-14
Sample wt/vo	ol: 30.7 (g/ml) G	Lab File ID: C1055	CLP187
% Moisture:	13 decanted: (Y/N)N	Date Received: 12/	03/99
Extraction:	(SepF/Cont/Sonc) <u>SONC</u>	Date Extracted: 12	<u>/03/99</u>
Concentrated	Extract Volume: 5000 (uL)	Date Analyzed: <u>12/</u>	10/99
Injection Vo	lume: 1.0 (uL)	Dilution Factor: 1	.0
GPC Cleanup:	(Y/N) <u>Y</u> pH: <u>7.9</u>	Sulfur Cleanup: (Y	/N) <u>N</u>
CAS NO.	COMPOUND	CONCENTRATION UNITS (ug/L or ug/Kg) <u>UG/</u>	~
319-84-6 319-85-7	alpha-BHC beta-BHC	1.9	
319-86-8	delta-BHC	0.14	1 JP
	gamma-BHC (Lindane)	1.9	
1 1	Heptachlor Aldrin	1.9	
1024-57-3	Heptachlor Epoxide	1.9	
959-98-8	Endosulfan I	1.9	
7 60-57-1	Dieldrin	3.7	U V
72-55-9	4,4'-DDE	0.65	5 JP
72-20-8	Endrin	3.7	
21 1	Endosulfan II	3.7	
72-54-8	4 , 4 ' - DDD	3.7	 0
1031-07-8	Endosulfan Sulfate	3.7	U J'
50-29-3	4,4'-DDT	0.49) J)
72-43-5	Methoxychlor	19.	0 21
53494-70-5	Endrin Ketone	3.7	Ū i)
7421-93-4	Endrin Aldehyde	3.7	Ū
5103-71-9	alpha-Chlordane	1.9	Ū
5103-74-2	gamma-Chlordane	1.9	U
8001-35-2	Toxaphene	. 190	Ü
	Aroclor-1016	37.	U
_ !!	Aroclor-1221	75.	Ū
1 11	Aroclor-1232	37.	Ū
	Aroclor-1242	37.	U
	Aroclor-1248	37.	Ū.
	Aroclor-1254	37	U
11096-82-5	Arcclor-1260	37.	U

EPA	SAMPLE	NO.
וות ו	P-1RE	
	. 444	

Lab Name: STL-CT Co	ontract:
Lab Code: <u>IEACT</u> Case No.: <u>3090A</u> SAS N	No.: SDG No.: <u>A3090</u>
Matrix: (soil/water):SOIL	Lab Sample ID: <u>993090A-14RE</u>
Sample wt/vol: 30.6 (g/ml) G	Lab File ID: C5042CLP077
% Moisture: 13 decanted: (Y/N)N	Date Received: <u>12/03/99</u>
Extraction: (SepF/Cont/Sonc) SONC	Date Extracted: 12/13/99
Concentrated Extract Volume: 5000 (uL)	Date Analyzed: 12/17/99
Injection Volume: 1.0 (uL)	Dilution Factor: 1.0
GPC Cleanup: $(Y/N)Y$ pH:7.9	Sulfur Cleanup: $(Y/N)N$
CAS NO. COMPOUND	CONCENTRATION UNITS: Q (ug/L or ug/Kg) <u>UG/KG</u>

		A CONTRACTOR OF THE PROPERTY O
319-84-6.	alpha-BHC	1.9 U
319-85-7	beta-BHC	1.9 U
319-86-8	delta-BHC	1.9 U
58-89-9	gamma-BHC (Lindane)	1.9 U
76-44-8	Heptachlor	1.9 U
309-00-2	Aldrin	1.9 U
1024-57-3	Heptachlor Epoxide	1.9 U
959-98-8	Endosulfan I	1.9 U
60-57-1	Dieldrin	:3.7 U
72-55-9	4,4'-DDE	3.7 U
72-20-8	Endrin	3.7 U
33213-65-9.	Endosulfan II	3.7 U
72-54-8.	4,4'-DDD	37 U
1031-07-8	Endosulfan Sulfate	3.7. U
50-29-3	4,4'-DDT	3.7 U
72-43-5	Methoxychlor	19. U
53494-70-5	Endrin Ketone .	
7421-93-4	Endrin Aldehyde	3.7 U
5103-71-9	alpha-Chlordane	1.9 Ü
5103-74-2.	gamma-Chlordane	1.9 U
8001-35-2	Toxaphene	190 U
12674-11-2	Aroclor-1016	37. U
11104-28-2	Aroclor-1221	76 U
11141-16-5	Aroclor-1232	37. · U
53469-21-9	Aroclor-1242	3.7 U
12672-29-6	Aroclor-1248	37. U
11097-69-1	Aroclor-1254	37. U
11096-82-5	Aroclor-1260	37. U

Sez Tre Organi

FORM I PĖST

EPA	SAMPLE	NO.
CB-	-1	

∟.			CD-1	
<u></u> ;	Lab Name: STL-CT Contr	act:		
	Lab Code: <u>IEACT</u> Case No.: <u>3090A</u> SAS No.:	SDG No.: A3	090	
\Box	Matrix: (soil/water):SOIL	Lab Sample ID: 993	090A-15	_
	Sample wt/vol: 30.7 (g/ml) G	Lab File ID: C5042	CLP060	
	% Moisture: 32 decanted: (Y/N)N	Date Received: 12/	03/99	
	Extraction: (SepF/Cont/Sonc) SONC	Date Extracted: 12	/03/99	
	Concentrated Extract Volume: 5000 (uL)	Date Analyzed: 12/	17/99	
ليا	Injection Volume: 1.0 (uL)	Dilution Factor: 1	.0	
	GPC Cleanup: $(Y/N)\underline{Y}$ pH: 7.6	Sulfur Cleanup: (Y	/N) <u>N</u>	
		CONCENTRATION UNITS (ug/L or ug/Kg) <u>UG/I</u>		
	319-84-6 alpha-BHC	2.4	TU T	<u>U</u> 5
	319-85-7 beta-BHC	2.4	T U	
	319-86-8 delta-BHC	2.4	TJ	
	58-89-9 gamma-BHC (Lindane)	2.4	Ū	
	76-44-8 Heptachlor	2.4	Ū	
	309-00-2 Aldrin	2.4		
لبا	1024-57-3 Heptachlor Epoxide	. 2.4		
	959-98-8 Endosulfan I	2.4	Ü .	
	60-57-1 Dieldrin	4.7	Ū	
	72-55-9 4,4'-DDE 72-20-8 Endrin	4:7	Ü	ļ
	72-20-8	4.7	U	
$\overline{}$	72-54-8 4,4'-DDD	4.7	· U	
	1031-07-8 Endosulfan Sulfate	4.7	 U 	
	50-29-3 4,4'-DDT	4.7		ĺ
	72-43-5 Methoxychlor	24.		!
\cap	53494-70-5 Endrin Ketone	4.7		Í
	7421-93-4 Endrin Aldehyde	4.7	U	
ا لب	5103-71-9 alpha-Chlordane	2.4		
$_{-}$	5103-71-3 alpha-chiordane 5103-74-2 gamma-Chlordane	2.4		
	8001-35-2 Toxaphene	240	 U 	į
	12674-11-2 Aroclor-1016	47.	 U 	j
	11104-28-2 Aroclor-1221	96.	 U 	i
$_{\Box}$	11141-16-5 Aroclor-1232	47.	 U 	
		±/.	- ; - 	

53469-21-9 Aroclor-1242 12672-29-6 Aroclor-1248 11097-69-1 Aroclor-1254 11096-82-5 Aroclor-1260

Ū

U Ū

47.

47.

47.

EPA	SAMPLE	NO.	٦
CB-	-1RE	-	

Lab	Name:	STL-CT	Contract:

Lab Code: IEACT Case No.: 3090A SAS No.: SDG No.: A3090

Matrix: (soil/water): SOIL Lab Sample ID: 993090A-15RE

Sample wt/vol: 30.6 (g/ml) G Lab File ID: <u>C5042CLP121</u>

% Moisture: 32 decanted: (Y/N)N Date Received: 12/03/99

Extraction: (SepF/Cont/Sonc) SONC Date Extracted: 12/13/99

Concentrated Extract Volume: 5000 (uL) Date Analyzed: 12/21/99

Injection Volume: 1.0 (uL) Dilution Factor: 5.0

GPC Cleanup: $(Y/N)\underline{Y}$ pH: 7.6 Sulfur Cleanup: $(Y/N)\underline{N}$

CAS NO. COMPOUND CONCENTRATION UNITS: Q (ug/L or ug/Kg) <u>UG/KG</u>

319-84-6 alpha-BHC 319-85-7 beta-BHC	12: U 12. U
	12. [U]
319-86-8 delta-BHC	12. U
58-89-9 gamma-BHC (Lindane)	12. U
76-44-8 Heptachlor	12. U
309-00-2 Aldrin	12. U
1024-57-3 Heptachlor Epoxide	12. U
959-98-8 Endosulfan I	12. U
60-57-1 Dieldrin	4.1 JP
72-55-9 4,4'-DDE	20. JP
72-20-8 Endrin	24. U
33213-65-9 Endosulfan II	24. U
72-54-8 4,4'-DDD	24. U
1031-07-8 Endosulfan Sulfate	24. U
50-29-3 4;4'-DDT	11. JP
72-43-5 Methoxychlor	36: JP
53494-70-5 Endrin Ketone	24. U
7421-93-4 Endrin Aldehyde	24. U
5103-71-9 alpha-Chlordane	12. U
5103-74-2 gamma-Chlordane	12. U
8001-35-2 Toxaphene	1200 U
12674-11-2 Aroclor-1016	240 U
11104-28-2 Aroclor-1221	480 U
11141-16-5 Aroclor-1232	240 U
53469-21-9 Aroclor-1242	240 U
12672-29-6 Aroclor-1248	240 U
11097-69-1 Aroclor-1254	240 U
11096-82-5 Aroclor-1260	240 U

S. T. 00-1

FORM I PEST

EPA	SAMPLE	NO.
DUE	·-2	

-	Lab Name: STL-CT Contr	act:
	Lab Code: <u>IEACT</u> Case No.: <u>3090A</u> SAS No.:	SDG No.: <u>A3090</u>
٦:	Matrix: (soil/water): SOIL	Lab Sample ID: <u>993090A-16</u>
	Sample wt/vol: 30.2 (g/ml) G	Lab File ID: C5042CLP061
7	% Moisture: <u>26</u> decanted: (Y/N) <u>N</u>	Date Received: <u>12/03/99</u>
الــا	Extraction: (SepF/Cont/Sonc) <u>SONC</u>	Date Extracted: 12/03/99
7	Concentrated Extract Volume: 5000 (uL)	Date Analyzed: <u>12/17/99</u>
	Injection Volume: 1.0 (uL)	Dilution Factor: 1.0
	GPC Cleanup: $(Y/N)Y$ pH:7.6	Sulfur Cleanup: (Y/N)N_
j		CONCENTRATION UNITS: Q (ug/L or ug/Kg) UG/KG

319-84-6 alpha-BHC 2.3 U 319-85-7 beta-BHC 2.3 U 319-86-8 delta-BHC 2.3 U 58-89-9 gamma-BHC. (Lindane) 2.3 U 76-44-8 Heptachlor 2.3 U 309-00-2 Aldrin 2.3 U 1024-57-3 Heptachlor Epoxide 2.3 U 1024-57-3 Heptachlor Epoxide 2.3 U 1024-57-3 Heptachlor Epoxide 2.3 U 1024-57-3 Heptachlor Epoxide 2.3 U 1024-57-3 Heptachlor Epoxide 2.3 U 1024-57-3 Heptachlor Epoxide 2.3 U 1024-57-3 Heptachlor Epoxide 2.3 U 1024-57-3 Heptachlor Epoxide 2.3 U 1024-57-3 Heptachlor Epoxide 2.3 U 1024-57-3 Heptachlor Epoxide 4.4 U 102-55-9 4.4 U 102-55-9 4.4 U 102-55-9 4.4 U 102-55-9 4.4 U 102-55-9 4.4 U 102-55-9 Endosulfan II 4.4 U 102-54-8 4.4 U 102-54-8 4.4 U 102-54-8 4.4 U 102-54-8 4.4 U 102-54-3 Heptachlor Epoxidate 4.4 U 102-54-3 Heptachlor Epoxidate 4.4 U 102-54-3 Heptachlor Epoxidate 4.4 U 102-54-3 Heptachlor Epoxidate 2.3 U 102-54-3 Heptachlor Epoxidate 2.3 U 102-54-1 Endrin Aldehyde 4.4 U 102-54-1 Endrin Aldehyde 2.3 U 102-54-1 Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin A			
319-86-8 delta-BHC 2.3 U 58-89-9 gamma-BHC (Lindane) 2.3 U 76-44-8 Heptachlor 2.3 U 1024-57-3 Heptachlor Epoxide 2.3 U 1024-57-3 Heptachlor Epoxide 2.3 U 1024-57-1 Dieldrin 2.3 U 1024-57-1 Dieldrin 2.3 U 1025-59-9 4.4 U 1025-59-9 4.4 U 1025-59-9 4.4 U 1025-59-9 4.4 U 1025-59-9 4.4 U 1025-59-9 Endosulfan II 4.4 U 1025-59-9 Endosulfan II 4.4 U 1025-59-8 4.4 U 1025-59-8 4.4 U 1025-59-9 4.			
58-89-9 gamma-BHC (Lindane) 2.3 U 76-44-8 Heptachlor 2.3 U 309-00-2 Aldrin 2.3 U 1024-57-3 Heptachlor Epoxide 2.3 U 959-98-8 Endosulfan I 2.3 U 60-57-1 Dieldrin 4.4 U 72-55-9 4,4'-DDE 4.4 U 72-20-8 Endrin 4.4 U 33213-65-9 Endosulfan II 4.4 U 72-54-8 4,4'-DDD 4.4 U 1031-07-8 Endosulfan Sulfate 4.4 U 50-29-3 4,4'-DDT 4.4 U 72-43-5 Methoxychlor 23 U 53494-70-5 Endrin Ketone 4.4 U 7421-93-4 Endrin Aldehyde 4.4 U 5103-71-9 alpha-Chlordane 2.3 U 5103-74-2 gamma-Chlordane 2.3 U 8001-35-2 Toxaphene 230	319-85-7	beta-BHC	2.3 Ū
76-44-8 Heptachlor 2.3 U 309-00-2 Aldrin 2.3 U 1024-57-3 Heptachlor Epoxide 2.3 U 959-98-8 Endosulfan I 2.3 U 60-57-1 Dieldrin 4.4 U 72-55-9 4,4'-DDE 4.4 U 72-20-8 Endrin 4.4 U 33213-65-9 Endosulfan II 4.4 U 72-54-8 4,4'-DDD 4.4 U 1031-07-8 Endosulfan Sulfate 4.4 U 50-29-3 4,4'-DDT 4.4 U 72-43-5 Methoxychlor 23 U 53494-70-5 Endrin Ketone 4.4 U 7421-93-4 Endrin Aldehyde 4.4 U 5103-71-9 alpha-Chlordane 2.3 U 5103-74-2 gamma-Chlordane 2.3 U 8001-35-2 Toxaphene 230 U 12674-11-2 Aroclor-1221 90 U 1141-16-5 Aroclor-1232 44 U			
309-00-2 Aldrin 2.3 U			
1024-57-3 Heptachlor Epoxide 2.3 U 959-98-8 Endosulfan I 2.3 U 60-57-1 Dieldrin 4.4 U 72-55-9 4,4'-DDE 4.4 U 72-20-8 Endrin 4.4 U 33213-65-9 Endosulfan II 4.4 U 72-54-8 4,4'-DDD 4.4 U 1031-07-8 Endosulfan Sulfate 4.4 U 50-29-3 4,4'-DDT 4.4 U 72-43-5 Methoxychlor 23 U 53494-70-5 Endrin Ketone 4.4 U 7421-93-4 Endrin Aldehyde 4.4 U 5103-74-2 gamma-Chlordane 2.3 U 8001-35-2 Toxaphene 2.3 U 12674-11-2 Aroclor-1016 44 U 11141-16-5 Aroclor-1221 90 U 1141-16-5 Aroclor-1232 44 U 12672-29-6 Aroclor-1248 44 U 11097-69-1 Aroclor-1254 44 U			
959-98-8 Endosulfan I 2.3 U 60-57-1 Dieldrin 4.4 U 72-55-9 4,4'-DDE 4.4 U 72-20-8 Endrin 4.4 U 33213-65-9 Endosulfan II 4.4 U 72-54-8 4,4'-DDD 4.4 U 1031-07-8 Endosulfan Sulfate 4.4 U 50-29-3 4,4'-DDT 4.4 U 72-43-5 Methoxychlor 23 U 53494-70-5 Endrin Ketone 4.4 U 7421-93-4 Endrin Aldehyde 4.4 U 5103-74-2 gamma-Chlordane 2.3 U 8001-35-2 Toxaphene 23 U 8001-35-2 Toxaphene 230 U 11104-28-2 Aroclor-1016 44 U 11141-16-5 Aroclor-1232 44 U 12672-29-6 Aroclor-1242 44 U 12672-29-6 Aroclor-1248 44 U 11097-69-1 Aroclor-1254 44 U <td>309-00-2</td> <td>1</td> <td></td>	309-00-2	1	
60-57-1 Dieldrin 4.4 U 72-55-9 4,4'-DDE 4.4 U 72-20-8 Endrin 4.4 U 33213-65-9 Endosulfan II 4.4 U 72-54-8 4,4'-DDD 4.4 U 1031-07-8 Endosulfan Sulfate 4.4 U 50-29-3 4,4'-DDT 4.4 U 72-43-5 Methoxychlor 23 U 53494-70-5 Endrin Ketone 4.4 U 7421-93-4 Endrin Aldehyde 4.4 U 5103-71-9 alpha-Chlordane 2.3 U 8001-35-2 Toxaphene 23 U 8001-35-2 Toxaphene 230 U 1104-28-2 Aroclor-1016 44 U 1141-16-5 Aroclor-1232 44 U 153469-21-9 Aroclor-1242 44 U 12672-29-6 Aroclor-1248 44 U 11097-69-1 Aroclor-1254 44 U			<u> </u>
72-55-9 4,4'-DDE 4.4 U 72-20-8 Endrin 4.4 U 33213-65-9 Endosulfan II 4.4 U 72-54-8 4,4'-DDD 4.4 U 1031-07-8 Endosulfan Sulfate 4.4 U 50-29-3 4,4'-DDT 4.4 U 72-43-5 Methoxychlor 23. U 53494-70-5 Endrin Ketone 4.4 U 7421-93-4 Endrin Aldehyde 4.4 U 5103-71-9 alpha-Chlordane 2.3 U 8001-35-2 Toxaphene 23.0 U 12674-11-2 Aroclor-1016 44. U 1104-28-2 Aroclor-1221 90. U 11141-16-5 Aroclor-1232 44. U 53469-21-9 Aroclor-1242 44. U 12672-29-6 Aroclor-1248 44. U 11097-69-1 Aroclor-1254 44. U			
72-20-8 Endrin 4.4 U 33213-65-9 Endosulfan II 4.4 U 72-54-8 4,4'-DDD 4.4 U 1031-07-8 Endosulfan Sulfate 4.4 U 50-29-3 4,4'-DDT 4.4 U 72-43-5 Methoxychlor 23 U 53494-70-5 Endrin Ketone 4.4 U 7421-93-4 Endrin Aldehyde 4.4 U 5103-71-9 alpha-Chlordane 2.3 U 503-74-2 gamma-Chlordane 2.3 U 8001-35-2 Toxaphene 230 U 12674-11-2 Aroclor-1016 44 U 11104-28-2 Aroclor-1221 90 U 11141-16-5 Aroclor-1232 44 U 53469-21-9 Aroclor-1242 44 U 12672-29-6 Aroclor-1248 44 U 11097-69-1 Aroclor-1254 44 U	11	1	
33213-65-9 Endosulfan II 4.4 U 72-54-8 4,4'-DDD 4.4 U 1031-07-8 Endosulfan Sulfate 4.4 U 50-29-3 4,4'-DDT 4.4 U 72-43-5 Methoxychlor 23. U 53494-70-5 Endrin Ketone 4.4 U 7421-93-4 Endrin Aldehyde 4.4 U 5103-71-9 alpha-Chlordane 2.3 U 5103-74-2 gamma-Chlordane 2.3 U 8001-35-2 Toxaphene 230 U 12674-11-2 Aroclor-1016 44. U 1104-28-2 Aroclor-1221 90. U 1141-16-5 Aroclor-1232 44. U 53469-21-9 Aroclor-1242 44. U 12672-29-6 Aroclor-1248 44. U 11097-69-1 Aroclor-1254 44. U	72-55-9		I I
72-54-8 4,4'-DDD 4.4 U 1031-07-8 Endosulfan Sulfate 4.4 U 50-29-3 4,4'-DDT 4.4 U 72-43-5 Methoxychlor 23. U 53494-70-5 Endrin Ketone 4.4 U 7421-93-4 Endrin Aldehyde 4.4 U 5103-71-9 alpha-Chlordane 2.3 U 5103-74-2 gamma-Chlordane 2.3 U 8001-35-2 Toxaphene 230 U 12674-11-2 Aroclor-1016 44. U 11104-28-2 Aroclor-1221 90. U 11141-16-5 Aroclor-1232 44. U 53469-21-9 Aroclor-1242 44. U 12672-29-6 Aroclor-1248 44. U 11097-69-1 Aroclor-1254 44. U		Endrin	
1031-07-8 Endosulian Sulfate 4.4 U 50-29-3 4,4'-DDT 4.4 U 72-43-5 Methoxychlor 23. U 53494-70-5 Endrin Ketone 4.4 U 7421-93-4 Endrin Aldehyde 4.4 U 5103-71-9 alpha-Chlordane 2.3 U 5103-74-2 gamma-Chlordane 2.3 U 8001-35-2 Toxaphene 230 U 12674-11-2 Aroclor-1016 44. U 11104-28-2 Aroclor-1221 90. U 11141-16-5 Aroclor-1232 44. U 53469-21-9 Aroclor-1242 44. U 12672-29-6 Aroclor-1248 44. U 11097-69-1 Aroclor-1254 44. U	33213-65-9	Endosulfaņ II	4.4. U
50-29-3 4,4'-DDT 4.4 U 72-43-5 Methoxychlor 23. U 53494-70-5 Endrin Ketone 4.4 U 7421-93-4 Endrin Aldehyde -4.4 U 5103-71-9 alpha-Chlordane 2.3 U 5103-74-2 gamma-Chlordane 2.3 U 8001-35-2 Toxaphene 230 U 12674-11-2 Aroclor-1016 44. U 1104-28-2 Aroclor-1221 90. U 11141-16-5 Aroclor-1232 44. U 53469-21-9 Aroclor-1242 44. U 12672-29-6 Aroclor-1248 44. U 11097-69-1 Aroclor-1254 44. U	72-54-8		· · · · · · · · · · · · · · · · · · ·
72-43-5 Methoxychlor 23. U 53494-70-5 Endrin Ketone 4.4 U 7421-93-4 Endrin Aldehyde -4.4 U 5103-71-9 alpha-Chlordane 2.3 U 8001-35-2 Toxaphene 230 U 12674-11-2 Aroclor-1016 44. U 1104-28-2 Aroclor-1221 90. U 1141-16-5 Aroclor-1232 44. U 53469-21-9 Aroclor-1242 44. U 12672-29-6 Aroclor-1248 44. U 11097-69-1 Aroclor-1254 44. U	N		
53494-70-5 Endrin Ketone 4.4 U 7421-93-4 Endrin Aldehyde -4.4 U 5103-71-9 alpha-Chlordane 2.3 U 8001-35-2 gamma-Chlordane 230 U 8001-35-2 Toxaphene 230 U 12674-11-2 Aroclor-1016 44. U 11104-28-2 Aroclor-1221 90. U 11141-16-5 Aroclor-1232 44. U 53469-21-9 Aroclor-1242 44. U 12672-29-6 Aroclor-1248 44. U 11097-69-1 Aroclor-1254 44. U	50-29-3	4,4'-DDT	11
7421-93-4 Endrin Aldehyde .4.4 U 5103-71-9 alpha-Chlordane 2.3 U 5103-74-2 gamma-Chlordane 2.3 U 8001-35-2 Toxaphene 230 U 12674-11-2 Aroclor-1016 44 U 11104-28-2 Aroclor-1221 90 U 1141-16-5 Aroclor-1232 44 U 53469-21-9 Aroclor-1242 44 U 12672-29-6 Aroclor-1248 44 U 11097-69-1 Aroclor-1254 44 U			
5103-71-9 alpha-Chlordane 2.3 U 5103-74-2 gamma-Chlordane 2.3 U 8001-35-2 Toxaphene 230 U 12674-11-2 Aroclor-1016 44 U 11104-28-2 Aroclor-1221 90 U 11141-16-5 Aroclor-1232 44 U 53469-21-9 Aroclor-1242 44 U 12672-29-6 Aroclor-1248 44 U 11097-69-1 Aroclor-1254 44 U	53494-70-5		
5103-74-2 gamma-Chlordane 2.3 U 8001-35-2 Toxaphene 230 U 12674-11-2 Aroclor-1016 44 U 11104-28-2 Aroclor-1221 90 U 11141-16-5 Aroclor-1232 44 U 53469-21-9 Aroclor-1242 44 U 12672-29-6 Aroclor-1248 44 U 11097-69-1 Aroclor-1254 44 U			4.4 U
8001-35-2 Toxaphene 230 U 12674-11-2 Aroclor-1016 44 U 11104-28-2 Aroclor-1221 90 U 11141-16-5 Aroclor-1232 44 U 53469-21-9 Aroclor-1242 44 U 12672-29-6 Aroclor-1248 44 U 11097-69-1 Aroclor-1254 44 U	5103-71-9		
12674-11-2 Aroclor-1016 44. U 11104-28-2 Aroclor-1221 90. U 11141-16-5 Aroclor-1232 44. U 53469-21-9 Aroclor-1242 44. U 12672-29-6 Aroclor-1248 44. U 11097-69-1 Aroclor-1254 44. U	9		
11104-28-2 Aroclor-1221 90. U 11141-16-5 Aroclor-1232 44. U 53469-21-9 Aroclor-1242 44. U 12672-29-6 Aroclor-1248 44. U 11097-69-1 Aroclor-1254 44. U			
11141-16-5 Aroclor-1232 44. U 53469-21-9 Aroclor-1242 44. U 12672-29-6 Aroclor-1248 44. U 11097-69-1 Aroclor-1254 44. U			
53469-21-9 Aroclor-1242 44. U 12672-29-6 Aroclor-1248 44. U 11097-69-1 Aroclor-1254 44. U			
12672-29-6 Aroclor-1248 44. U 11097-69-1 Aroclor-1254 44. U	,		
11097-69-1 Aroclor-1254 44. U			44. U
11037.03 111111111111111111111111111111111111			
11096-82-5 Aroclor-1260 44. U	1		
	11096-82-5	Aroclor-1260	44. U

EPA	SAMPLE	NO.
DUE		

Lab	Name:	STL-CT	Contract:	

Lab Code: <u>IEACT</u> Case No.: <u>3090A</u> SAS No.: _____ SDG No.: <u>A3090</u>

Matrix: (soil/water):SOIL Lab Sample ID: 993090A-16RE

Sample wt/vol: 30.2 (g/ml) G Lab File ID: C5042CLP125

% Moisture: 26 decanted: (Y/N)N Date Received: 12/03/99

Extraction: (SepF/Cont/Sonc) SONC Date Extracted: 12/13/99

Concentrated Extract Volume: 5000 (uL) Date Analyzed: 12/21/99

Injection Volume: 1.0 (uL) Dilution Factor: 5.0

GPC Cleanup: $(Y/N)\underline{Y}$ pH: 7.6 Sulfur Cleanup: $(Y/N)\underline{N}$

CAS NO. COMPOUND CONCENTRATION UNITS: Q (ug/L or ug/Kg) <u>UG/KG</u>

319-84-6 alpha-BHC	U
319-85-7 beta-BHC 11.	Ū
319-86-8 delta-BHC 11.	Ū
58-89-9 gamma-BHC (Lindane) 11.	U
76-44-8 Heptachlor 11.	U
309-00-2 Aldrin 11.	Ū
1024-57-3 Heptachlor Epoxide 11.	Ü
959-98-8 Endosulfan I 11.	U
60-57-1 Dieldrin 22.	Ū
72-55-9 4,4'-DDE 22.	Ū
72-20-8 Endrin 22.	Ū.
33213-65-9 Endosulfan II 22.	Ū
72-54-8 4,4'-DDD 22.	Ū
1031-07-8 Endosulfan Sulfate 22.	Ū
50-29-3 4,4'-DDT 16.	JP -
72-43-5 Methoxychlor	Ū
53494-70-5 Endrin Ketone 22.	Ū
7421-93-4 Endrin Aldehyde 22.	U
5103-71-9 alpha-Chlordane 11.	Ū
5103-74-2 gamma-Chlordane 11.	Ŭ ·
8001-35-2 Toxaphene 1100	Ū
12674-11-2 Aroclor-1016 220	U
11104-28-2 Aroclor-1221 450	Ū
11141-16-5 Aroclor-1232 220	U
53469-21-9 Aroclor-1242 220	Ū
12672-29-6 Aroclor-1248 220	U
11097-69-1 Aroclor-1254 220	Ū
11096-82-5 Aroclor-1260 220	Ū

See The Orgin-/

FORM I PEST

<u>)</u> -1		INORGANIC A	1 ANALYSES DATA S	HEET		EPA	SAMPL	E NO.
] :						SB-	- 7	
Lab Name: <u>ST</u>	<u>rl</u>		Contract: _				·	
Lab Code: SI	<u>CL</u> Case	No.: 3090A	SAS No.:		_	SDG 1	No.: <u>A</u>	3090
Matrix (soil	/water): <u>SOI</u>	<u>.</u>	Lab	Samp]	le ID:	9930	90A-02	2_
Level (low/m	ned): <u>LOW</u>		Date	Rece	eived:	12/0)1/99	
% Solids:	88.2	2						
; };	Concentration	ı Units (ug/	L or mg/kg dry	weig	nt):	Mg/Kg	ī	
}	CAS No.	Analyte	Concentration	C	Q	M	-·	,
j _e	7429-90-5		7440			P P P P P P	15	Blank Co
	7440-36-0		2.2	3	N	1 2 2	₹¶_	
•	7440-38-2 7440-39-3		2.4			1-1	1.3	
		Barium	0.21	U		+ 5		
•	7440-41-7	Beryllium	0.21	U		P	13	
	7440-43-9	Cadmium Calcium	39400	0			ť	
:	7440-47-3	Chromium	11.6	-		+	4	
	7440-48-4	Cobalt	5.0	B	···· · · ··· ·	P		
	7440-50-8	Copper	10.	1.0	N	P		
	7439-89-6	Iron	12800	-		P		
	7439-92-1	Lead	17.0	-	*	P		
	7439-95-4	Magnesium	9180	-		P		
	7439-96-5	Manganese	415.	 -	· · · · · · ·	P		
	7439-97-6	Mercury	0.68	-				
	7440-02-0	Nickel	10.5			D		
	7440-09-7	Potassium	1660	+-+		十	√.	
	7782-49-2		1.0	U		 	13	
	7440-22-4		0.21	U	· · ·	 	ر در الله	10 3001
	7440-23-5	Sodium	274.	B		P	∮ J −−> 521	IK Com
	7440-28-0	Thallium	2.1	101		_ P ~	3 3	
	7440-62-2	Vanadium	15.3		***	P :	J	
	7440-66-6	Zinc	39.9			P	(
	57-12-5	Cyanide				NR		
			- 6 000000					
Color Before:	BR	_	y Before: <u>OPAQU</u>		Texti			_
Color After:	YELLOW	_ Clarity	y After: <u>CLEAR</u>	_	Artif	Eacts	:	
Comments:								
								
								

1 INORGANIC ANALYSES DATA SHEET

עכונינו	SAMPLE	$\lambda T \cap$
P,PA	SAMPLIE	INC

Lab Name: STL		Contract:	MW - 6	٠,
Lab Code: STL	Case No.: <u>3090A</u>	SAS No.:	SDG No.: <u>A3090</u>	ر. د
<pre>Matrix (soil/water):</pre>	SOIL	Lab Sample ID:	993090A-03	
Level (low/med):	LOW	Date Received:	12/01/99	Г
% Solids:	89.2			Ĺ

Concentration Units (ug/L or mg/kg dry weight): Mg/Kg____

		1	T -		
CAS No.	Analyte	Concentration	C	Q.	М
				_	
7429-90-5	Aluminum	8380			PJ
7440-36-0	Antimony	1.5	Ū	N	PU) PJ
7440-38-2	Arsenic	_ 5.4			Pi
7440-39-3	Barium	77.4			PK
7440-41-7	Beryllium	0.31	В		P (
7440-43-9	Cadmium	0.22	Ū		P ()
7440-70-2	Calcium	7360			P 3
7440-47-3	Chromium	13.5			P
7.440-48-4	Cobalt	5.4	ш		. P
7440-50-8	Copper	9.4		N	P
7439-89-6	Iron	14200	-	-	P
7439-92-1	Lead	20.4		*	P
7439-95-4	Magnesium	2940			P
7439-96-5	Manganese	278.			P
7439-97-6	Mercury	1.4			CV
7440-02-0	Nickel	11.2			P
7440-09-7	Potassium	1140			P V
7782-49-2	Selenium	1.1	Ū		PUS
7440-22-4	Silver	0.22	U.	-	IPい。
7440-23-5	Sodium	188.	В		P V)
7440-28-0	Thallium	2.2	U		P v1
7440-62-2	Vanadium	19.6	_		P 5
7440-66-6	Zinc	40.0			PI
57-12-5	Cyanide			• 1	NR
L					

Color	Before:	BR	Clarity	Before:	OPAQUE	Texture:	
Color	After:	YELLOW	Clarity	After:	CLEAR	Artifacts:	
Commer	nts:						
	<u>-</u>					· · · · · · · · · · · · · · · · · · ·	
							

INORGANIC ANALYSES DATA SHEET

	0 3 1 TO T TO	370
EPA	SAMPLE	NO

Lab Name: STL Contract: SB Lab Code: STL Case No.: 3090A SAS No.: SDG No.: SDG	
Lab Code: STL Case No.: 3090A SAS No.: SDG No.: SDG No.: SDG No.: SDG No.: SDG No.: Lab Sample ID: 99300 Date Received: 12/00 Solids: 84.6	
Matrix (soil/water): SOIL Lab Sample ID: 9930 Level (low/med): LOW Date Received: 12/0 % Solids: 84.6	
Level (low/med): LOW Date Received: 12/0 % Solids: 84.6	090A-04
% Solids: <u>84.6</u>	55 511 51
	01/99
Concentration Units (ug/L or mg/kg dry weight): Mg/Kg	
concentration ourts (ug/n or mg/kg dry wergit): mg/kg	~
	1
CAS No. Analyte Concentration C Q M	
7429-90-5 Aluminum 7210 P 7440-36-0 Antimony 1.3 U N P 7440-38-2 Arsenic 5.7 P 7440-39-3 Barium 63.4 P 7440-41-7 Beryllium 0.19 B P 7440-43-9 Cadmium 0.18 U P	丁
7440-36-0 Antimony 1.3 U N P	U)
7440-38-2 Arsenic 5.7 P	7
7440-39-3 Barium 63.4 P	7
7440-41-7 Beryllium 0.19 B P	3
7440-43-9 Cadmium 0.18 U P	(ن _
7440-70-2 Calcium 58400 P	Ţ
7440-47-3 Chromium 12.1 P	1
7440-48-4 Cobalt 4.5 B P	
7440-50-8 Copper 19.3 N P	1
7439-89-6 Iron 22100 P	
7439-92-1 Lead 376. * P	
7439-95-4 Magnesium 23100 P	
7439-96-5 Manganese 921. P	
7439-97-6 Mercury 0.15 CV	
7440-02-0 Nickel 11.2 P 7440-09-7 Potassium 824. B P 7782-49-2 Selenium 0.92 U P	
7440-09-7 Potassium 824. B P	4
7782-49-2 Selenium 0.92 U P	-'5
7440-22-4 Silver 0.18 U P	VJ - BIK
7440-23-5 Sodium 211. B P	$V \rightarrow V$
7440-28-0 Thallium 1.3 U P	υS
7440-62-2 Vanadium 13.3 P 7440-66-6 Zinc 45.0 P	3
7440-66-6 Zinc 45.0 P	7
57-12-5 Cyanide NR	
olor Before: <u>BR</u> Clarity Before: <u>OPAQUE</u> Texture:	
olor After: YELLOW Clarity After: CLEAR Artifacts	:
omments:	

1 INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

Lab Name: STL		Contract:	SB-2	٢
Lab Code: STL	Case No.: <u>3090A</u>	SAS No.:	SDG No.: <u>A3090</u>	L
Matrix (soil/water):	SOIL	Lab Sample ID:	993090A-05	
Level (low/med):	LOW	Date Received:	12/03/99	۲
% Solids:	85.7			! L
				~

Concentration Units (ug/L or mg/kg dry weight): Mg/Kg

	T	T	T	T		J
CAS No.	Analyte	Concentration	C	Q	М	
7429-90-5	Aluminum	10100	1		P	3
7440-36-0	Antimony	1.5	U	N	P P P	ΰ
7440-38-2	Arsenic	3.9			P	3
7440-39-3	Barium	81.1			P	Ţ
7440-41-7	Beryllium	0.37	В			3
7440-43-9	Cadmium	0.22	. U			1س
7440-70-2	Calcium	65800			P	3
7440-47-3	Chromium	14.6	ļ		P P P P P P P P P P P P P P P P P P P	į
7440-48-4	Cobalt	6.4	В		P	
7440-50-8	Copper	36.1		N	P	
7439-89-6	Iron	17400			P	}
7439-92-1	Lead	47.4		*	P	
7439-95-4	Magnesium	10400			P	
7439-96-5	Manganese	480.			P	
7439-97-6	Mercury	0.89			CV	
7440-02-0	Nickel	15.0			P	-
7440-09-7	Potassium	2310			P	1
7782-49-2	Selenium	1.1	U			V.
7440-22-4	Silver	0.22	U		1 -1	U)
7440-23-5	Sodium	504.	В		P	7
7440-28-0	Thallium	2.2	Ū		1 -1	U.
7440-62-2	Vanadium	18.9			P	3
7440-66-6	Zinc	50.0			Р	ユ
57-12-5	Cyanide				NR	

Color	Before:	BR	Clarity	Before:	OPAQUE	Texture:	
Color	After:	YELLOW	Clarity	After:	CLEAR	Artifacts:	
Commer	nts:						
_							

		INORGANIC A	I ANALYSES DATA S	HEET	ar .	EPA SAI	MPLE NO
						SS-1R	
Lab Name: <u>STL</u>			Contract: _			L	
Lab Code: <u>STL</u>	Case	No.: 3090A	SAS No.: _			SDG No.:	<u>A3090</u>
Matrix (soil/	water): <u>SOI</u>	<u> </u>	Lab	Sample	e ID:	993090A	4-06
Level (low/me	d): <u>LOW</u>		Date	Recei	ived:	12/03/9	9
% Solids:	<u>75.</u> 5	7					
C	oncentration	u Units (ug/	'L or mg/kg dry	weigh	ıt): I	Mg/Kg	-
	CAS No.	Analyte	Concentration	C	· Q	М	
	7429-90-5		8600	 - - - - - - - - - -		P 3 V P 3 V	1 -> BK
	7440-36-0	Antimony	1.8	В	N	Pro	J -> 30K
	7440-38-2		-3.0			P	
	7440-39-3		60.3			P	
	7440-41-7		0.30	В		P	
	7440-43-9		0.18	Ū		<u> 되</u> 강	
	7440-70-2		30000	<u> </u>		1 21 2	
	7440-47-3	Chromium	12.7	 _ _ _ _ _ _ _ _ _ _	 	P	
	7440-48-4		5.7	В	·· NT		
	7440-50-8		17.8		N	P	
	7439-89-6		14800	-	*	P	
	7439-92-1 7439-95-4	Lead Magnesium	9370		<u> </u>	P	
	7439-96-5		480.		- 121	P	
	7439-97-6		20.2			CV	
	7440-02-0		12.7			P	
	7440-02-0		1340			P	
	7782-49-2	Selenium	0.97		7 1 1 T	T D 🖟	
	7440-22-4		0.18	Ū	,		0
	7440-23-5		225.	B		 	- BIKC
	7440-28-0	Thallium	1.8	Ū		PU	
	7440-62-2		18.0			P 3	
4	7440-66-6	Zinc	91.5		•	PI	
	57-12-5	Cyanide				NR	
				L			
olor Before:	BR	_ Clarity	y Before: <u>OPAQU</u>	<u>E</u> :	Гехtи	re:	
olor After:	YELLOW	_ Clarity	y After: <u>CLEAR</u>	_	Artif	acts: _	
omments:							
<u></u>							
			- -				
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				 ,

1

EPA SAMPLE NO.

Lab Name: STL
Lab Code: STL
Matrix (soil/water): SOIL Lab Sample ID: 993090A-07 Level (low/med): LOW Date Received: 12/03/99 * Solids: 80.6 Concentration Units (ug/L or mg/kg dry weight): Mg/Kg CAS No. Analyte Concentration C Q M 7429-90-5 Aluminum 9000 - P J 7440-36-0 Antimony 1.3 U N P J 7440-38-2 Arsenic 3.1 - P J 7440-38-2 Arsenic 3.1 - P J 7440-41-7 Beryllium 0.27 B P J 7440-41-7 Beryllium 0.27 B P J 7440-70-2 Calcium 9360 P J 7440-70-2 Calcium 9360 P J 7440-47-3 Chromium 12.5 P J 7440-48-4 Cobalt 5.6 B P D 7440-48-4 Cobalt 5.6 B P D 7440-50-8 Copper 16.3 N P D 7439-95-1 Lead 30.9 P D 7439-95-1 Lead 30.9 P D 7439-95-1 Lead 30.9 P D 7439-95-6 Marganese 492. P D 7439-97-6 Mercury 0.052 CV 7440-02-0 Nickel 11.9 P D 7440-02-0 Nickel 11.9 P D 7782-49-2 Selenium 1.3 P D
Level (low/med): LOW Date Received: 12/03/99 % Solids: 80.6 Cas No. Analyte Concentration C Q M
Concentration Units (ug/L or mg/kg dry weight): Mg/Kg CAS No. Analyte Concentration C Q M 7429-90-5 Aluminum 9000 P 7440-36-0 Antimony 1.3 U N P 7440-38-2 Arsenic 3.1 P 7440-39-3 Barium 52.0 P 7440-41-7 Beryllium 0.27 B P 7440-41-7 Beryllium 0.18 U P 7440-70-2 Calcium 9360 P 7440-47-3 Chromium 12.5 P 7440-47-3 Chromium 12.5 P 7440-48-4 Cobalt 5.6 B P 7440-48-4 Cobalt 5.6 B P 7439-89-6 Iron 14400 P 7439-95-4 Magnesium 4160 P 7439-95-4 Magnesium 4160 P 7439-97-6 Mercury 0.052 CV 7440-02-0 Nickel 11.9 P 7440-09-7 Potassium 1210 P 7782-49-2 Selenium 1.3 P
Concentration Units (ug/L or mg/kg dry weight): Mg/Kg CAS No. Analyte Concentration C Q M 7429-90-5 Aluminum 9000 F 7440-36-0 Antimony 1.3 U N P J 7440-38-2 Arsenic 3.1 P J 7440-41-7 Beryllium 52.0 P J 7440-41-7 Beryllium 0.27 B P J 7440-47-9 Cadmium 9360 P J 7440-47-3 Chromium 12.5 P J 7440-47-3 Chromium 12.5 P J 7440-48-4 Cobalt 5.6 B P J 7440-48-4 Cobalt 5.6 B P J 7439-89-6 Iron 14400 P J 7439-95-4 Magnesium 4160 P J 7439-95-4 Magnesium 4160 P J 7439-97-6 Mercury 0.052 CV 7440-09-7 Potassium 1210 P J 7782-49-2 Selenium 1.3 P J
CAS No. Analyte Concentration C Q M 7429-90-5 Aluminum 9000 P 7440-36-0 Antimony 1.3 U N P 7440-38-2 Arsenic 3.1 P 7440-41-7 Beryllium 52.0 P 7440-41-7 Beryllium 0.27 B P 7440-43-9 Cadmium 0.18 U P 7440-47-3 Chromium 12.5 P 7440-47-3 Chromium 12.5 P 7440-48-4 Cobalt 5.6 B P 7439-89-6 Iron 14400 P 7439-92-1 Lead 30.9 * P 7439-95-4 Magnesium 4160 P 7439-95-6 Mercury 0.052 CV 7440-02-0 Nickel 1.9 P 7440-09-7 Potassium 1210 P 7782-49-2 Selenium 1.3 P
7440-36-0 Antimony 1.3 U N P J 7440-38-2 Arsenic 3.1 P J 7440-39-3 Barium 52.0 P J 7440-41-7 Beryllium 0.27 B P J 7440-43-9 Cadmium 0.18 U P J 7440-47-3 Chromium 9360 P J 7440-47-3 Chromium 12.5 P J 7440-48-4 Cobalt 5.6 B P J 7440-50-8 Copper 16.3 N P J 7439-89-6 Iron 14400 P J 7439-92-1 Lead 30.9 * P J 7439-95-4 Magnesium 4160 P J 7439-97-6 Mercury 0.052 P J 7440-02-0 Nickel 11.9 P J 7440-09-7 Potassium 1210 P J 7482-49-2 Selenium 1.3 P J J 7782-49-2 Selenium 1.3 P J J 7782-49-2 Selenium 1.3 P J J 7782-49-2 Selenium 1.3 P J J J 7782-49-2 Selenium 1.3 P J J J 7782-49-2 Selenium 1.3 P J J J 7782-49-2 Selenium 1.3 P J J J 7782-49-2 Selenium 1.3 P J J 7782-49-2 Selenium 1.3 P J J J 7782-49-2 Selenium 1.3 P J J 7782-49-2 Selenium 1.3 P J J 7782-49-2 Selenium 1.3 P J J 7782-49-2 Selenium 1.3 P J J 7782-49-2 Selenium 1.3 P J J 7782-49-2 Selenium 1.3 P J J 7782-49-2 Selenium 1.3 P J J 7782-49-2 Selenium 1.3 P J J 7782-49-2 Selenium 1.3 P J J 7782-49-2 Selenium 1.3 P J J 7782-49-2 Selenium 1.3 P J J 7782-49-2 Selenium 1.3 P J J 7782-49-2 Selenium 1.3 P J J 7782-49-2 Selenium 1.3 P J J 7782-49-2 Selenium 1.3 P J J 7782-49-2 Selenium 1.3 P J 7782-
7440-43-9 Cadmium 0.18 0 PV 7440-70-2 Calcium 9360 -P 7 7440-47-3 Chromium 12.5 P 7440-48-4 Cobalt 5.6 B P 7439-89-6 Iron 14400 P 7439-92-1 Lead 30.9 * P 7439-95-4 Magnesium 4160 P 7439-96-5 Manganese 492. P 7440-02-0 Nickel 11.9 P 7440-09-7 Potassium 1210 P 7782-49-2 Selenium 1.3 P
7440-43-9 Cadmium 0.18 0 PV 7440-70-2 Calcium 9360 -P 7 7440-47-3 Chromium 12.5 P 7440-48-4 Cobalt 5.6 B P 7439-89-6 Iron 14400 P 7439-92-1 Lead 30.9 * P 7439-95-4 Magnesium 4160 P 7439-96-5 Manganese 492. P 7440-02-0 Nickel 11.9 P 7440-09-7 Potassium 1210 P 7782-49-2 Selenium 1.3 P
7440-43-9 Cadmium 0.18 0 PV 7440-70-2 Calcium 9360 -P 7 7440-47-3 Chromium 12.5 P 7440-48-4 Cobalt 5.6 B P 7439-89-6 Iron 14400 P 7439-92-1 Lead 30.9 * P 7439-95-4 Magnesium 4160 P 7439-96-5 Manganese 492. P 7440-02-0 Nickel 11.9 P 7440-09-7 Potassium 1210 P 7782-49-2 Selenium 1.3 P
7440-43-9 Cadmium 0.18 0 PV 7440-70-2 Calcium 9360 -P 7 7440-47-3 Chromium 12.5 P 7440-48-4 Cobalt 5.6 B P 7439-89-6 Iron 16.3 N P 7439-92-1 Lead 30.9 * P 7439-95-4 Magnesium 4160 P 7439-96-5 Manganese 492. P 7440-02-0 Nickel 11.9 P 7440-09-7 Potassium 1210 P 7782-49-2 Selenium 1.3 P
7440-70-2 Calcium 9360 -P 7 7440-47-3 Chromium 12.5 P 7440-48-4 Cobalt 5.6 B P 7440-50-8 Copper 16.3 N N P 7439-89-6 Iron 14400 P P 7439-92-1 Lead 30.9 ** P P 7439-95-4 Magnesium 4160 P P 7439-96-5 Manganese 492. P P 7440-02-0 Nickel 11.9 P P 7440-09-7 Potassium 1210 P P 7782-49-2 Selenium 1.3 P
7440-47-3 Chromium 12.5 P 7440-48-4 Cobalt 5.6 B P 7440-50-8 Copper 16.3 N P 7439-89-6 Iron 14400 P 7439-92-1 Lead 30.9 * P 7439-95-4 Magnesium 4160 P 7439-96-5 Manganese 492. P 7439-97-6 Mercury 0.052 CV 7440-02-0 Nickel 11.9 P 7440-09-7 Potassium 1210 P 7782-49-2 Selenium 1.3 P
7440-50-8 Copper 16.3 N P 7439-89-6 Iron 14400 P 7439-92-1 Lead 30.9 * P 7439-95-4 Magnesium 4160 P 7439-96-5 Manganese 492. P 7439-97-6 Mercury 0.052 CV 7440-02-0 Nickel 11.9 P 7440-09-7 Potassium 1210 P 7782-49-2 Selenium 1.3 P
7440-50-8 Copper 16.3 N P 7439-89-6 Iron 14400 P 7439-92-1 Lead 30.9 * P 7439-95-4 Magnesium 4160 P 7439-96-5 Manganese 492. P 7439-97-6 Mercury 0.052 CV 7440-02-0 Nickel 11.9 P 7440-09-7 Potassium 1210 P 7782-49-2 Selenium 1.3 P
7439-89-6 Iron 14400 P 7439-92-1 Lead 30.9 * P 7439-95-4 Magnesium 4160 P 7439-96-5 Manganese 492. P 7439-97-6 Mercury 0.052 CV 7440-02-0 Nickel 11.9 P 7440-09-7 Potassium 1210 P 7782-49-2 Selenium 1.3 P
7439-92-1 Lead 30.9 * P 7439-95-4 Magnesium 4160 P 7439-96-5 Manganese 492. P 7439-97-6 Mercury 0.052 CV 7440-02-0 Nickel 11.9 P 7440-09-7 Potassium 1210 P 7782-49-2 Selenium 1.3 P
7439-95-4 Magnesium 4160 P 7439-96-5 Manganese 492. P 7439-97-6 Mercury 0.052 CV 7440-02-0 Nickel 11.9 P 7440-09-7 Potassium 1210 P 7782-49-2 Selenium 1.3 P
7439-96-5 Manganese 492. P 7439-97-6 Mercury 0.052 CV 7440-02-0 Nickel 11.9 P 7440-09-7 Potassium 1210 P 7782-49-2 Selenium 1.3 P
7439-97-6 Mercury 0.052 CV 7440-02-0 Nickel 11.9 P 7440-09-7 Potassium 1210 P 7782-49-2 Selenium 1.3 P
7440-02-0 Nickel 11.9 P 7440-09-7 Potassium 1210 P 7782-49-2 Selenium 1.3 P
7440-09-7 Potassium 1210 P 7782-49-2 Selenium 1.3 P
7782-49-2 Selenium 1.3 . P
7440-22-4 Silver 0.18 U P) (11. C
7440-22-4 Silver 0.18 U P 1 (1840-23-5 Sodium 124. B PUT (1840-23-5 Sodium
7440-28-0 Thallium 1.8.U - P 01
7440-62-2 Vanadium 18.0 P J 7440-66-6 Zinc 72.3 P J
7440-66-6 Zinc
57-12-5 Cyanide NR
Color Before: BR Clarity Before: OPAQUE Texture:
Color After: YELLOW Clarity After: CLEAR Artifacts:
Comments:

EPA SAMPLE NO

		INORGANIC A	ANALYSES DATA S	HEE'	T		177 146
]]Lab Name: <u>ST</u>	Contract	Contract:					
Lab Name. <u>51</u>			Concract: _				
Lab Code: <u>ST</u>	<u>L</u> Case	No.: 3090A	SAS No.: _		 .	SDG No.: A	<u> 3090</u>
Matrix (soil	/water): <u>SOI</u>	<u>i.</u>	Lab :	Samp	ple ID:	993090A-0	8
Level (low/m	ed): LOW		Date	Red	ceived:	12/03/99	
}% Solids:	97.5	7					
] . (Concentration	Units (ug/	L or mg/kg dry Concentration	T		Mg/Kg	
ل	7429-90-5	Δluminum	2060	-		P 3	
, —	7440-36-0		1.1		N		
	7440-38-2	Arsenic	4.0	1	1	+ = = = = = = = = = = = = = = = = = = =	
_	7440-39-3	Barium	20:0	В		P	
	7440-41-7	Beryllium	0.16			P	
٦	7440-43-9		0.56		, '	PJ	
		Calcium	155000	•	mes v	P	
	7440-47-3	Chromium	7.4		•	P	
¬	7440-48-4	Cobalt	2.0	В		P	
	7440-50-8	Copper	31.8		И	- P	
ل	7439-89-6	Iron	9240			P	
		Lead	82.7		* *	P	
7		Magnesium	45100			P	
		Manganese	335.	TT		CV	
J	7439-97-6	Mercury Nickel	0.0032	·B		CV 1	
	7440-09-7	Potassium	743.	В	7	P	
	7782-49-2	Selenium	0.78	ਹ		P 07	
	7440-22-4	Silver	0.16	Ū		同場	
	7440-23-5	Sodium	265.	В		Pus	
7	7440-28-0	Thallium	1.6	U		*P <i>U</i> 3	
	7440-62-2	Vanadium	6.3	В		P 3	
-	7440-66-6	Zinc	80.6			P	
٦	57-12-5	Cyanide	4) 45		5.4 1696	NR	
-Color Before:	BR	_ Clarity	Before: OPAQUI	E	Textu	ire:	
-Color After:	YELLOW	_ Clarity	After: <u>CLEAR</u>		Artif	acts:	
		•					• •
		•	,				
							
		-				 	

1 INORGANIC ANALYSES DATA SHEET

EPA	SAMPLE	NO
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	

Lab Name: STL		Contract:	55-4
Lab Code: STL	Case No.: <u>3090A</u>	SAS No.:	SDG No.: <u>A3090</u>
Matrix (soil/water):	SOIL	Lab Sample ID:	993090A-09
Level (low/med):	LOW	Date Received:	12/03/99
% Solids:	80.3		

Concentration Units (ug/L or mg/kg dry weight): Mg/Kg

				,	
CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	8000		1 .	• P J
7440-36-0	Antimony	1.3	Ū	N	ز u P
7440-38-2	Arsenic	- 3.7			PJ
7440-39-3	Barium	47.4	1	· · · · · · · · ·	P 5
7440-41-7	Beryllium	0.23	В	75 V	P)
7440-43-9	Cadmium	0.18	U		PUS
7440-70-2	Calcium	. 5930			PIS
7440-47-3	Chromium	13.7			P
7440-48-4	Cobalt	5.5	В		. P
7440-50-8	Copper	15.1		N	- P
7439-89-6	Iron	14700			P P
7439-92-1	Lead	31.0		*	P
7439-95-4	Magnesium				<u>P</u>
7439-96-5	Manganese	510.			P
7439-97-6	Mercury	0.0071	В		CV
7440-02-0	Nickel	11.6			P
.7440-09-7.	Potassium	851.	В		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7782-49-2	Selenium	1.1			P V
744022-4.	Silver	0.18	Ū.	·	P 6
7440-23-5	Sodium -		В.		Pv)
7440-28-0	Thallium	1.8	U		PUS
7440-62-2	Vanadium	17.3		-	P
7440-66-6	Zinc.	57.3			- P.J
57-12-5	Cyanide				NR
<u></u>					

Color Befo	ore: BR	C:	larity D	Before:	OPAQUE	Texture:	
Color Afte	er: <u>YELLOW</u>	c	larity A	After:	CLEAR	Artifacts:	
Comments:							
				. <u>.</u>	·		

FORM I - IN

ILM03.0

1 INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

, 		INORGANIC :	analyses data s	HEET	Γ			
Lab Name: <u>STI</u>	L		Contract: _			MW	-5	
		No.: 3090A	SAS No.: _			SDG 1	No.: 1	A3090
Matrix (soil/			·		ole ID:			
Level (low/me	d): LOW		Date	Rec	eived:	12/	03/99	
% Solids:	•							
C	oncentration	u Units (ug/	L or mg/kg dry	wei	ght): I	Mg/Kg	J	
<u>.</u> -	CAS No.	Analyte	Concentration	C	Q	М		
	7429-90-5		9370			P	<u>.</u> <u> </u>	2016
		Antimony	.1.4	В	N	P-	111	BIK Co
	7440-38-2		2.4				ð	
	7440-39-3	Barium	34.7			P P P		
	7440-41-7	Beryllium	0.41	B		P	₩	
	7440-43-9	Cadmium	0.16	U		P	ر د	
	7440-70-2	1	25300			E.	,	
	7440-47-3 7440-48-4		15.9			P		
	7440-48-4	I——	10. 13.8		N	P		
	7439-89-6		23000					
	7439-92-1	Iron Lead	2.3000	 	*	P P	1	
	7439-95-4		7200			1-51		
	7439-96-5		434.			P		
	7439-97-6		0.013	 		CV		
	7440-02-0		23.7	-		P		
		Potassium	1460			1		
	7782-49-2		1.1			P P	,	
	7440-22-4		0.16	U			. 3	2
	7440-23-5		132.	B		P P	75	Pik Craz
	7440-28-0		1.6	Ū		 	/ }	
	7440-62-2	Vanadium	18.3	-		P	<u> </u>	
	7440-66-6		47.4	i i		T P	1	
	57-12-5	Cyanide				NR		
ļ	•							
Color Before:	BR ·	_ Clarity	y Before: <u>OPAQU</u>	E	Textu	re:		
Color After:	YELLOW	_ Clarity	y After: <u>CLEAR</u>	_	Artif	acts	:	<u>. </u>
Tomments:					 			
- 								
_1								

1

EPA SAMPLE NO.

		INORGANIC A	ANALYSES DATA S	HEE	T		
Lab Name: <u>STL</u>			Contract: _			SI	B-8
Lab Code: STL	Case	No.: <u>3090A</u>	SAS No.: _		_	SDG	No.: <u>A3090</u>
Matrix (soil/v	water): <u>SOII</u>	- <u>-</u>	Lab	Samı	ple ID:	993	3090A-11
Level (low/med): <u>LOW</u>			Date	Red	ceived:	12/	<u>/03/99</u>
% Solids:	90.2	2					
Cc		u Units (ug/	L or mg/kg dry Concentration		<u> </u>	Mg/K	7
	7429-90-5 7440-36-0 7440-38-2	Antimony	10600 1.2 1.5	UB		P	
	7440-39-3 7440-41-7 7440-43-9	Barium Beryllium	34.0 0.46 0.18	B B		P	1 1 1 1
	7440-70-2 7440-47-3	Calcium Chromium	25200 17.3			P	1
	7440-48-4 7440-50-8 7439-89-6	Copper	9.8 4.1 24700	В	N	P P	
	7439-92-1 7439-95-4	Lead Magnesium	2.4 7840		*	P P P	
	7439-96-5 7439-97-6 7440-02-0	Manganese Mercury	432. 0.34 23.6			CV	
 	7440-09-7	Potassium Selenium	23.6	-		P P	
	7440-22-4 7440-23-5	Silver Sodium	0.18 140.	Ū B		P P	V J
	7440-62-2		1.8	U		P)]
	57-12-5	Zinc Cyanide	45.8			NR)

Color B	Before:	BR	Clarity	Before:	OPAQUE	Texture:	
Color A	fter:	YELLOW	Clarity	After:	CLEAR	Artifacts:	
Comment	S:	· ·					

1 INORGANIC ANALYSES DATA SHEET

E D Z	SAMPLE	NO
LPA	SHMETE	INO.

•		INORGANIC A	ANALYSES DATA S	HEET	
Lab Name: <u>ST</u>	!T		Contract: _		SB-4
nan Name: 51	<u>.</u> .		Concrace: _		<u> </u>
Lab Code: <u>ST</u>	<u>L</u> Case	No.: 3090A	SAS No.: _		SDG No.: <u>A309</u>
Matrix (soil	/water): <u>SOI</u>	<u>L</u>	Lab	Sample ID:	: 993090A-12
Level (low/m	ed): <u>LOW</u>		Date	Received:	: 12/03/99
% Solids:	84.	5_			
1	Concentration	n Units (ug/	L or mg/kg dry	weight):	Mg/Kg
	CAS No.	Analyte	Concentration	C Q	М
	7429-90-5	Aluminum	7740	+	PJ
		Antimony	1.3		P J P J
	7440-38-2		1.7		1 P 7
	7440-39-3		53.0		P
		Beryllium	0.21		TPj
	7440-43-9	Cadmium	0.18	U	P 03
	7440-70-2		40100		P 1
	-7440-47-3		13.0		- P
	7440-48-4		7.3		P
	. 7440-50-8-	Copper	7.6		- P
•	7439-89-6-		17000.		P
	7439-92-1		3.6	192 * 1	<u> </u>
		Magnesium	9300	· · · · · · · · · · · · · · · · · · ·	P .
	7439-96-5		555.		P
	7439-97-6		0.62		CV
	7440-02-0	Nickel	15.8		P
		Potassium	1420		P
	7782-49-2	Selenium	1.4		<u> </u>
	7440-22-4	Silver	0.18		P J J
	7440-23-5		194.	В	<u> </u>
	7440-28-0		1.8	· U · · ·	P
	7440-62-2		18.8		P J
	7440-66-6	Zinc	39.0		<u> </u>
	5.7-12-5	Cyanide	·		NR
,					
Color Before:	BR	_ Clarit	y Before: <u>OPAQU</u>	<u>JE</u> Text	ure:
Color After:	YELLOW	_ Clarit	y After: <u>CLEA</u> F	<u>Arti</u>	facts:
Comments:					
					10 11
				-	
				•	· · · · · · · · · · · · · · · · · · ·
•					
			=		

		INORGANIC A	1 ANALYSES DATA S.	HEET	EPA SAMPLE NO.
					SB-3
ab Name: <u>ST</u>	L		Contract: _		
ab Code: <u>ST</u>	<u>L</u> Case	No.: 3090A	SAS No.:		SDG No.: <u>A3090</u>
atrix (soil	/water):	1	Lab S	Sample ID:	993090A-13
evel (low/m	ed): <u>LOW</u>		Date	Received:	12/03/99
Solids:	<u>88.7</u>	·			
	a	** ' /	7		/
1	Concentration	Units (ug/	L or mg/kg dry	weight):	Mg/Kg
ps 15 .	CAS No.	Analyte	Concentration	C Q	М
	7429-90-5		7610	1.	P J OJ BIK C
	7440-36-0	Antimony	-1.6	BN	I P 1 DIK C
	7440-38-2	Arsenic	- 2.3		P
	7440-39-3		64.2 0.22		P
	7440-41-7	Beryllium	0.22		PY
	7440-43-9		- 0.17	U	PvJ
	7440-70-2		49700		P 3
	7440-47-3		16.2		P
	7440-48-4		6.9	B	P
	7440-50-8	Copper	15.0		P
	7439-89-6 7439-92-1	11011	17200 6.8	*	P
	7439-92-1	Magnesium	10600		<u>P</u>
		Manganese	535.		P
	7439-97-6		0.24		CV
	7440-02-0		160.		P
	7440-09-7		1440		+ =
	7782-49-2	-Selenium	0.91		P
	7440-22-4-			-U	<u> </u>
	7440-23-5-		211.	В	アンナーがはいか
	7440-28-0		1.7	U	1 . N 1/2
	7440-62-2		18.5	-	• P 3
	7440-66-6		38.6		P
	57-12-5	Cyanide			NR
olor Before:	BR	_ Clarity	Before: OPAQUI	<u>E</u> Textu	ıre:
olor After:	YELLOW	_ Clarity	After: <u>CLEAR</u>	_ Artif	acts:
omments:					
		·			

]		INORGANIC A	1 ANALYSES DATA S	HEET		EPA SAMPLE NO
						DUP-1
Lab Name: <u>STL</u>			Contract: _			
Lab Code: STL	Case	No.: 3090A	SAS No.:		_	SDG No.: <u>A3090</u>
Matrix (soil/w	water): <u>SOII</u>	<u></u>	Lab S	Samp.	Le ID:	993090A-14
Level (low/med	i): <u>LOW</u>		Date	Ŗece	eived:	12/03/99
% Solids:	<u>87.5</u>	5				
Co	oncentration	Units (ug/	L or mg/kg dry	weig	ŋht):	Mg/Kg
}.	CAS No.	Analyte	Concentration	C	Q	M
	7429-90-5	Aluminum	7220	+-+		十月 3
-	7440-36-0	Antimony	1.1		N	Plui
	7440-38-2	Arsenic	2.5			PI
ا	7440-39-3		68.4			PJ
		Beryllium	0.20	<u>B</u>		P
7	7440-43-9		0.16	U		PU
	7440-70-2		58700	 	 	I P
-d 	7440-47-3		14.4	B		P
7	7440-48-4 7440-50-8		15.8		N	P
· }	7439-89-6		16300	 	IV	P
	7439-92-1		6.8		*	
	7439-95-4		21600			P
7	7439-96-5		559.		. -	P
	7439-97-6	Mercury	0.21	1		TCV
	7440-02-0		14.5			P P P
٦	7440-09-7		1330			P
	7782-49-2		0.89	1	*	
	7440-22-4		0.16			P 1/ 3
	7440-23-5.	Sodium	247.	В		
]	7440-28-0 7440-62-2	Thallium	1.6 17.5	0		
_} _}	7440-66-6		41.1	 		
	57-12-5	Cyanide		 		NR
	3.22	c) dill'uc			-	
- Color Before: <u>I</u>	BR	_ Clarity	y Before: <u>OPAQU</u>	E	Textu	ire:
Color After: 3	YELLOW	_ Clarity	y After: <u>CLEAR</u>	_	Artif	facts:
Comments:						
						
<u> </u>			` <u> </u>			

1 INORGANIC ANALYSES DATA SHEET

EPA SA	MPLE	NO.

Lab Name: <u>ST</u> I			Contract:			CB-1
						SDG No.: <u>A3090</u>
Matrix (soil/	'water): <u>\$01</u>	<u>.</u>	Lab	Samp	le ID:	993090A-15
Level (low/me	d): LOW		Date	Rec	eived:	12/03/99
						<u> </u>
% Solids:	<u>65.5</u>	5				
C	oncentration	Units (ug/	L or mg/kg dry	weig	ght): 1	Mg/Kg
				T		
water to the state of the state	CAS No.	Analyte	Concentration	C	Q	M
	7429-90-5	Λlıminım	4860	1-1	 -	1 3
	7440-36-0		1.7		N	P V
		Arsenic	6.2			
	7440-39-3	Barium	64.8			P J P J
		Beryllium	0.24		 	
	7440-43-9		1.0			
	7440-70-2	Calcium	89400	+ - +	···	1 5 7
	7440-47-3	Chromium	11.2	 		P
	7440-48-4	Cobalt	4.5	B		P
	7440-50-8	Copper	42.0	 - 	N	P
	7439-89-6		14900	 		+====
	7439-92-1		177.	1	*	P
		Magnesium	52600	 		
	7439-96-5	Manganese	542.,			P
		Mercury	6.6			CV
	7440-02-0	Nickel	11.5			P
	7440-09-7	Potassium	973.	В		P
	7782-49-2	Selenium	1.6			P
	7440-22-4	Silver	0.24	Ū		PU
	7440-23-5	Sodium	292.	В		D ; ; \
	7440-28-0	Thallium	2.4	Ū		PJ PJ
	7440-62-2		10.8	В		P 2
	7440-66-6	Zinc	166.			P 3
	57-12-5	Cyanide				NR
						
G-1 D-5		G3 '.	D 6 07307	_	_	
Color Before:	DK	_ Clarity	Before: OPAQU	<u>ਜ</u>	Textu	re:
Color After:	YELLOW	_ Clarity	After: <u>CLEAR</u>	_	Artif	acts:
Comments:						•
	<u> </u>			····		
	· · · · · · · · · · · · · · · · · · ·					

	~~~~~	
EPA	SAMPLE	NO

		INORGANIC A	ANALŸSES DATA S	HEET	HIII .OIHII HA
J ] Lab Name: STI	1		Contract: _		DUP-2
					SDG No.: <u>A3090</u>
Hab Code. bil	<u> </u>	NO <u>3070A</u>	DAD NO	<del></del>	3DG NO <u>A3090</u>
Matrix (soil/	water): <u>SOII</u>	<u>-</u>	Lab	Sample I	D: <u>993090A-16</u>
Level (low/me	d): <u>LOW</u>		Date	Receive	ed: <u>12/03/99</u>
% Solids:	<u>65.5</u>	<u>.</u>			
ų.					
7			,		,
j. C	oncentration	u Units (ug/	L or mg/kg dry	weight)	: Mg/Kg
].	CAS No.	Analyte	Concentration	C Q	М
1	7429-90-5	Aluminum	5370	+	PJ
	7440-36-0		1.7		
	7440-38-2	Arsenic	3.7		PT
	7440-39-3	Barium	62.8		Pj
	7440-41-7	Beryllium	0.24	Ū·	Pu
	7440-43-9		0.61		P 3
	7440-70-2	Calcium	53100		P
	7440-47-3	Chromium	14.2		P
	7440-48-4	Cobalt	3.9		P
	7440-50-8	Copper	36.4	N	, -, ,
	7439-89-6	Iron	11300		
•	7439-92-1		172.	*	<u>Ф</u> <u>р</u> р
1		Magnesium	26800		
	7439-96-5	Manganese	445. 6.8		<u> </u>
j	7439-97-6 7440-02-0	Mercury	11.0	<del> </del>	
	7440-02-0	Nickel Potassium	997.	В	P ( ) P (')
	7782-49-2		1.2	1 0	<del> </del>
		Silver	0.24	<del>l ŭ</del>	
	7440-23-5	Sodium	223.	B	P 1: \
1	7440-28-0		2.4		Por Company
	7440-62-2	Vanadium	12.6		P () P () P () P () NR
1	7440-66-6	Zinc	159.		P 1
	57-12-5	Cyanide			NR
ر ـرolor Before:	BR	Clarity	y Before: <u>OPAQU</u>	<u>Œ</u> Tex	kture:
 Jolor After:		_			cifacts:
	1111011				
Tomments:					
				<u> </u>	

		1		
WET	CHEM	ANALYSIS	DATA	SHEET

Lab Name: STL	·	Contract:		
Lab Code: STL	Case No.: <u>3090A</u>	SAS No.:		SDG No.: <u>A3090</u>
<pre>Matrix (soil/water):</pre>	SOIL	La	b Sample ID:	993090A-02
% Solids:	9.0	Da	te Received.	12/01/99

CAS No.	Analyte	Concentration	C	Units	Q	М
57-12-5	Cyanide, Total	0.580	Ū	mg/Kg	/	L
	TOC	6590		mg/Kg	Λ	D
·						<del></del>
<u> </u>						
	·					
			$\dashv$			
			$\dashv$			
					1	Ì

Comments:	

		1		
WET	CHEM	ANALYSIS	DATA	SHEET

M	W	_	5

			I _A IM - 0
Lab Name: STL		Contract:	-
_ Lab Code: STL	Case No.: 3090A	SAS No.:	SDG No.: <u>A3090</u>
Matrix (soil/water	): <u>SOIL</u>	Lab Sample ID	: 993090A-03
% Solids:	89.9	Date Received	: 12/01/99

	CAS No.	Analyte	Concentration	C	Units	Q	M	
-	57-12-5	Cyanide, Total	3.15		mg/Kg		L	ĺ
-	max - 1 /2/ -	TÓC	23200	-	mg/Kg	·N	D	
ŀ								-
,								
ı		-						
1								
1	- /							
ľ								
1								
r					21	- "		
r								
r			,					
r								
r			<i>,.</i>					
T						-		
r								
r								
Γ						-		
r								
T								
					•			
	•							
Γ	·							
Г			. [			- 1	1	

] Comment	s:				
<b>1</b> —				 	
·				-	

	_	_		ĺ

Lab Name: STL	· .	Contract:	-
Lab Code: <u>STL</u>	Case No.: <u>3090A</u>	SAS No.:	SDG No.: <u>A3090</u>
<pre>Matrix (soil/water):</pre>	SOIL	Lab Sample ID:	993090A-04
% Solids:	83.6	Date Received:	12/01/99
% Solids:	83.6	Date Received:	12/01/99

CAS No.	Analyte	Concentration	С	Units	Q	М	
	Cvanide. Total	2.06	•	mg/Kg		L	-
	Cyanide, Total TOC	18200		mg/Kg	./	D	
				J, J			~
							i
					-		
			-				
							!
·							
· · · · · · · · · · · · · · · · · · ·				•			
· · · · · · · · · · · · · · · · · · ·							
		<del>                                     </del>					
	-						
					-+		

ments:						
	 	-				 
-			_			
	 			-		 

		WET CHEM AN.	1 ALYSI	S DATA SHEET		SAMPLE N	10.		
Tab Nam	no - CTI		Con	t vo at .		SB-2			
—LaD Na∏	me: STL		COII	tract:					
∏Lab Cod	le: <u>STL</u>	Case No.: <u>3090A</u>	SAS	No.:		SDG No.:	<u>A3</u>	090	
∐ Matrix	(soil/water)	): <u>SOIL</u>		Lab Sample	·ID	: <u>993090A</u>	<u>- 05</u>	•	
∏% Solid	ls:	84.7		Date Recei	ved	: 12/03/9	<u>9</u>		
	CAS No.	Analyte		Concentration	C	Units	Q	М	l
	57-12-5	Cyanide, Total		12.0		mg/Kg		L	
		TÔC		10900	-	mg/Kg	N	D	J
∐		*	•						
	when h		<del></del>					$\dashv$	
$\Box$						/			
	,							•	
		·					·		
			<del></del>		-				
1					į				

ments:	~~~+ <i>~</i> -				
	nents:	:			
			· ·		

SAMPLE	NO

Lab Name: <u>STL</u>	· · · · · · · · · · · · · · · · · · ·	Contract:	
Lab Code: STL	Case No.: 3090A	SAS No.:	SDG No.: <u>A3090</u>
Matrix (soil/water):	SOIL	Lab Sample ID:	993090A-06
% Solids:	73.2	Date Received:	12/03/99

				<del></del>			
CAS No.	Analyte	Concentration	С	Units	Q	М	
57-12-5		0.680	Ū:	mg/Kg		L	
	TOC	24400		mg/Kg		D	
							1
	*** * *						
-	. 1001		-				
				·			
			ca 4	- ,			
				-			
<u> </u>		,			i		
				<u>-</u>			
	-						
				-			
··							
		<u>                                                                                                                                                                                                                                                                                                                                                                                                                                     -                       -             -   -   -     -     -   -     -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -  </u>		•			
				-			
	,		-				
			_ :				

Comments:				
	 · · · · · · · · · · · · · · · · · · ·	 		
		 	<u> </u>	<del></del>

].		WET CHEM A	1 NALYSIS DATA SHEET		SAMPLE 1	10.		
]					SS-2			
			Contract:		_			
Lab Co	de: STL	Case No.: <u>3090A</u>	SAS No.:	***	SDG No.:	<u>A3</u>	3090	)
Matrix	(soil/water)	: SOIL	Lab Sample	: ID	993090A	<u>1 – 0 7</u>	<u>7</u>	
}% Solid	ds:	81.2	Date Recei	ved	1: 12/03/9	9		
] .	CAS No.	Analyte	Concentration	С	Units	Q	М	
]	57-12-5	Cyanide, Total TOC	0.590	Ū	mg/Kg mg/Kg		L D	3
]								
j								
]						,		
]								 
]								
	-							
}								
]	-					-		
٦ .								
] Comment:	s:							
		•						
¬								

SAMPLE NO.

99	_ 3
2	ر

Lab Name:	STL		Contract:	
Lab Codè:	STL	Case No.: 3090A	SAS No.:	SDG No.: <u>A3090</u>
Matrix (so	oil/water):	SOIL	Lab Sample ID	993090 <u>A-08</u>

% Solids: 90.9

Date Received: <u>12/03/99</u>

		·				
CAS No.	Analyte	Concentration	С	Units	Q	М
57-12-5	Cyanide, Total	20.0	Ū	mg/Kg	ļ	L
	TOC	36400		mg/Kg	N	D
	-	· · · · · · · · · · · · · · · · · · ·				
· · · · · · · · · · · · · · · · · · ·						
**						
· · ·						
	·					
			_			
······································				-		
		-				
	-					
		·				

Comments:					
		 		<del></del>	<del></del>
• • •	·	 		 	
		 	<del></del>	 	

		WET CHEM AN	1 MALYSIS DATA SHEET		SAMPLE N	0.	
		·			SS-4		
ab Nar	me: STL		Contract:				
ab Cod	de: <u>STL</u>	Case No.: <u>3090A</u>	SAS No.:		SDG No.:	<u>A3</u>	09(
atrix	(soil/water)	: SOIL	Lab Sample	e ID	: <u>993090A</u>	- 09	 <del>-</del>
Solid	ls:	79.3	Date Rece	ved	: 12/03/9	<u>9</u>	
						-	
	CAS No.	Analyte	Concentration	C	Units	Q	М
	57-12-5	Cyanide, Total	0.600	U	mg/Kg		L
		TÔC	14700		mg/Kg	N	D
		·					
			·	-			
	, H-+ WA					-	
	*						
	<u> </u>				-		
1							
						-	
	- 15					-	
Ì							
}							
	J						
	·			į.	į		

	MW-5	
1		

Lab Name: STL	Contract:
Lab Code: STL Case No.: 3090A	SAS No.: SDG No.: <u>A3090</u>
Matrix (soil/water): SOIL	Lab Sample ID: 993090A-10
% Solids: 88 6	Date Received: 12/03/99

CAS No.	Analyte	Concentration	С	Units	Q	М	
57-12-5	Cyanide, Total	0:540	U	mg/Kg	,	L	1
	Cyanide, Total TOC	1700		mg/Kg	- /w	. D	17
		·					
		,-					ĺ
				- 1			ĺ
				<u> </u>			
						· -	
			-				
,	<del></del>						
						$\dashv$	
				- :			
	·		-	•			
-		·		-			
,							
				·			
•			İ	1	.		

Comm	ents:			
		 	 ` .	
	· ·	 		<del></del> .

		WET CHEM A	1 ANALYSIS	DATA SHEET		SAMPLE N	10.		
	am.					SB-8			
Lab Cod Matrix		•			ID	: 993090A	-11		<u>)                                    </u>
							. <del></del>		
	CAS No.	Analyte		Concentration	С	Units	Q	М	
	57-12-5	Cyanide, Total TOC		0.520 2060	Ū	mg/Kg mg/Kg		L D	)
				-	•				
						,			
					-		-+		

ommeni	te.				
Juneti	LD.				
				-	

		1		,
$\mathtt{WET}$	CHEM	ANALYSIS	DATA	SHEET

SAMPLE NO.

SB-4
------

Lab	Name:	STL		Contract:	
Lab	Code:	STL	Case No.: 3090A	SAS No.:	SDG No.: <u>A3090</u>

Matrix (soil/water): SOIL Lab Sample ID: 993090A-12

% Solids: Date Received: 12/03/99

CAS No.	Analyte	Concentration	C	Units	Q	M
57-12-5	Cyanide, Total TOC	1.04		mg/Kg		L
		1110	-		N	
					-	
			•			
					· .	
	1 .					
			_			
		·				

omments:			

SAMPLE	NO.
--------	-----

<u> </u>		WEI CHEM AN	ALIST	S DATA SHEET					
				•		SB-3			
Lab Nar	me: <u>STL</u>		Con	tract:		_			
Lab Coo	de: STL	Case No.: 3090A	SAS	No.:		SDG No.	: <u>A</u>	<u>3090</u>	)
∐ Matrix	(soil/water)	: SOIL		Lab Sample	e II	): <u>993090</u> 2	<u>A-13</u>	3_	
Solid	ls:	<u>89.9</u>		Date Recei	.ved	d: <u>12/03/</u>	<del>3</del> 9		
i i						.m. 1			
	CAS No.	Analyte	4	Concentration	С	Units	Q	М	
	57-12-5	Cyanide, Total		0.550	- U			L	
		TOC		4200		mg/Kg	1 1/2	D	
-							<del> </del>		
						-			
					- /		-		
						-			
							<del> </del>	ļļ	
H			<del></del> .		-		-	$\vdash$	
٠,									
<b>-</b>									
				-					
<i>;</i>									
						<del></del>			
ب ا	L			·					

Comme	nts:						
_ ر		<u> </u>				 	
<u> </u>				· · · · · · · · · · · · · · · · · · ·		 <del></del>	
			·		<u></u>	 	

		1		
WET	CHEM	ANALYSIS	DATA	SHEET

SAMPLE NO.

DUP-	1
------	---

Lab Name: STL		Contract:	-
Lab Code: STL	Case No.: 3090A	SAS No.:	SDG No.: <u>A3090</u>
Markada /	, , , , , , , , , , , , , , , , , , , ,	* 1 C 1 TD	

Matrix (soil/water): <u>SOIL</u>

Lab Sample ID: <u>993090A-14</u>

% Solids:	88.2	Date Received: <u>12/03/99</u>

CAS No.	Analyte	Concentration	С	Units	Q	M	
57-12-5	Cyanide, Total	0.550	U	mg/Kg		L	
- ,	TOC	1650		mg/Kg		D	] -
,							•
ta estado							-
	~						
- 		· · · · · · · · · · · · · · · · · · ·	·		·		
		<del></del>	-				ĺ
	· ·						
	· .		_				

Comments:		

	WET CHEM AN	1 ALYSIS DATA SHEET	Ţ	SAMPLE	NO.	_
**	, , , , , , , , , , , , , , , , , , ,			CB-1		
ab Name: STL		Contract:		_		
b Code: STL	Case No.: 3090A					
trix (soil/water)	: SOIL	Lab Samp	le II	D: <u>993</u> 090	<u>A-15</u>	
Solids:	<u>65.7</u>	Date Rec	eived	l: <u>12/03/</u>	<u>99</u>	
					·	
CAS No.	Analyte	Concentrati	on C	Units	Q	М
57-12-5	Cyanide, Total TOC	1.9		mg/Ko		L D
<u> </u>						
-						
				•		
nments:						
						_
						_

		1	*	
WET	CHEM	ANALYSIS	DATA	SHEET

SAMPLE NO.

DUP-2

***			
Lab Name: STL		Contract:	
Lab Code: STL	Case No.: 3090A	SAS No.:	SDG No.: <u>A3090</u>
Matrix (soil/water):	SOIL	Lab Sample ID:	993090A-16
% Solids:	70.4	Date Received:	12/03/99

CAS No.		Concentration	С	Units	Q	М	
57-12-5	Cyanide, Total TOC	1.68 108000		mg/Kg mg/Kg		L	7
				_		-	

Comments:			
<del></del>	·	<del></del>	 
			 * *



### Analytical Assurance Associates, Inc.

600 Rock Raymond Road Downingtown, PA 19335 Phone: 610 - 269 - 9989 Fax. 610 - 269 - 9989

# DATA USABILITY STEARNS & WHELER ALBION SITE

ANALYZED BY SEVERN TRENT LABORATORIES, INC. CASE No.: 7099-3331A/ SDG No.: A3331

#### DATA USABILITY REPORTED BY:

Analytical Assurance Associates (A3) 600 Rock Raymond Road Downingtown, PA 19335

#### SITE NAME: ALBION LABORATORY No.: 7099-3331A SDG No.: A3331

#### **DISCUSSION**

Eight (8) water samples, including one trip blank and one set of field duplicate samples were collected on 12-16-99. Severn Trent Laboratories located in Monroe Connecticut received all samples in good condition on 12-17-99. Based on the chain-of-custody records, the following analyses were performed for this batch of samples.

CHENT ID	LABORATORY ID	PARAMETERS				
	3.5	VOA Analysis Date	SVOA Anal/Extraction	Pest/PCB Anal/Extraction	Metals Analysis date	Inorganic* Analysis
MW-1	993331A-01	12-18-99	12-22/01-11-00	12-17/12-20-99	01-10-00	12-129-99
Trip Blk	993331A-02	12-18-99	NA	NA	NA	NA
MW-3	993331A-03	12-18-99	12-22/01-10-00	12-17/12-20-99	01-10-00	12-28-99
MW-2	993331A-04	12-18-99	12-22/01-10-00	12-17/12-20-99	01-10-00	12-28-99
MW-4	993331A-05	12-19-99	12-22/01-10-00	12-17/12-20-99	01-10-00	12-28-99
MW-5	993331A-06	12-19-99	12-22/01-10-00	12-17/12-20-99	01-10-00	12-28-99
MW-6	993331A-07	12-18-99	12-22/01-11-00	12-17/12-20-99	01-10-00	12-28-99
DUP	993331A-08	12-18-99	12-22/01-11-00	12-17/12-20-99	01-10-00	12-28-99

NA Not Analyzed

The sample analysis was reviewed based on the Region II functional Guidelines and the Data Usability criteria established in NYSDEC Division of Environmental Remediation based on the following parameters. If you have any question or comments please call Zohreh Hamid at (610) 269-9989.

- Holding time
- Calibration analysis
- Blank Analysis
- Matrix Spike/Spike Duplicate (MS/MSD)
- Laboratory Control Sample Results
- Laboratory/Field Duplicate
- Instrument Performance
- Surrogate/Internal Standard Recovery (Organic only)
- Compound Identification/Quantitation

^{*} The analyses dates for Oxidation Reduction Potential and TOC are 12-31-99 & 01-03-00 respectively.

#### **ORGANIC ANALYSES**

#### General/Holding Time

The extraction & analyses of all parameters were tabulated on the aforementioned table. The holding times met the method requirements for all analyses.

#### Calibration

#### Volatile

The %RSDs, %Ds and response factors in all initial and continuing calibrations were within the control limits with the exception of %Ds for acetone (30.2) and carbon disulfide (29.0%) in continuing calibration analyzed on 12-18-99 @ 09.56. The positive results for acetone were qualified "U" due to the blank contamination. These results and the non-detected vales were also qualified estimated in the corresponding samples (Trip Blk, MW-1, MW-2, MW-3, MW-6 & DUP).

#### Semivolatile

All %RSDs were within the Region II data validation control limits. The following %Ds and response factors were above control limits.

Compound Name	CC	CC
	01-10-00	01-11-00
Hexachlorocyclopentadiene	76.9*	64.2*
2,4-Dinitrophenol	45.0	45.4
4,6-Dinitro-2-methylphenol	28.2	
4-Nitrophenol		39.2
Associated Sample:	MW-3	MW-1
•	MW-2	MW-6
	MW-4	DUP
	MW-5	MS/MSD
	Blk	MSB .

^{*} The response factor was below the control limit of 0.05 established in Region II Guidelines. This compound was not detected in the corresponding samples. The non-detected values were contractually rejected.

The positive results and non-detected values for the compounds with %D outliers were qualified estimated.

#### Pesticide/PCB

The % RSD and %Ds were within the control limits.

#### **Blank Analysis**

#### Volatile

The laboratory blank analyzed on 12-18-99 had acetone (2 ug/l), 2-butanon (2 ug/l) and the trip blank had methylene chloride (0.9 ug/l) & acetone (9.0 ug/l) at levels below the CRQLs. Also, butylated hydroxytoluene was reported as TIC in the trip blank. The reported sample results below the CRQLs were elevated to the CRQL and qualified "U" due to the laboratory artifact. Butylated hydroxytoluene was not detected in the samples. Therefore, the data were not impacted.

#### Semivolatile

The laboratory blank had diethylphthalate (0.2 ug/l), di-n-butylphthalate (0.5 ug/l), di-n-octylphthalate (0.1 ug/l), bis (2-ethylhexyl) phthalate (0.3 ug/l) and fifteen unknown compounds/siloxane at levels below the CRQLs. The corresponding sample results were elevated to the CRQLs and qualified "U" for the target compounds.

#### Pesticide/PCB

The laboratory preparation blank was free of target compounds.

#### Matrix Spike/ Spike Duplicate Analysis

#### Volatile

These QC samples were analyzed on sample MW-1. The recoveries and RPDs were within the control limits.

#### Semivolatile

The recoveries for 4-nitrophenol (101/101%) and pentachlorophenol (110/114%) in MS/MSD were above control limits of 80% and 103% respectively. These compounds were not reported in the samples. Therefore, the data were not impacted.

#### Pesticide/PCB

The recoveries were within the control limits with the exception of alpha-BHC (54%) in matrix spike sample. Also, the RPDs for gamma-BHC (17%), heptachlor (23%) and endrin (25%) were above control limits of 15%, 20% & 21% respectively. The reported sample result for endrin in sample MW-5 was qualified estimated.

#### **Laboratory Control Sample**

The blank spike and check standard recoveries were within the control limits in all fractions with the exception of carbon disulfide (195%) and bromoform (50%) in QC check sample analyzed for volatile fraction. The data were not impacted since these compounds were not detected in the samples and the recoveries above 10%.

#### **Instrument Performance**

The sample analyses for all parameters were performed within the analysis holding times established in the corresponding methods.

#### Surrogate Analysis

All organic samples were spiked with the surrogate compounds identified in the corresponding methods. The recoveries were within the control limits.

#### **Internal Standard Analysis**

All volatile and semivolatile samples and the corresponding QC samples were spiked with internal standards prior to the sample analysis. The recoveries and retention times were within the control limits.

#### **Duplicate Analysis**

A field duplicate analysis was performed on sample MW-6 /DUP. Target compounds were not detected in these samples at levels above CRQLs.

#### Compound Quantitation/Identification

#### Volatile

All samples were analyzed at one-fold dilution with the exception of sample MW-5 in volatile fraction. This sample was initially analyzed at 2-fold dilution due to the high level of benzene. The reported data are considered reliable. The results for siloxane derivatives were rejected and should not be considered as TICs in the samples

#### Pesticide/PCB

The reported sample data for sample MW-5 was qualified estimated due to the elevated base line in sample chromatogram.

#### **Data Package Completeness**

Data package completeness was satisfactory.

#### **INORGANIC ANALYSES**

All samples were analyzed for the TAL metals, cyanide, TOC and Oxidation Reduction Potential within the holding time.

#### **Calibration Analysis**

All recoveries in initial and continuing calibrations were within the control limits.

#### **Contract Required Detection Limits**

The CRDL recoveries for Se (128.1/126.1%), Ag (77.7/79%), Tl (75.6/51.2%) in both CRDLs and Pb (139%) in initial CRDL were outside the data validation control limits of 80-120%. The positive results up to 3XCRDL for Se and Pb and positive results up to 3X CRDL and non-detected values for Ag & Tl were qualified estimated.

#### **Blank Analysis**

The preparation blank had the following contamination at levels below the CRDLs. The reported sample results up to the action levels (5X the blank level) were qualified "U" and should be considered as laboratory artifacts.

Analyte	Blank Level ug/l	Action Level ug/l
Al	23.9	119.5
Zn	3.2	16

Sample results for Al were above the action levels. The results for Zn in samples MW-3, MW-6 & DUP were qualified "U"

#### **ICP Interference Check Sample**

The recoveries for Sb (122.5/122.3) exceeded the upper control limits. This analyte was not detected in the samples. Therefore, the data were not impacted.

#### MATRIX SPIKE/DUPLICATE ANALYSES

The matrix spike was analyzed on sample MW-1 for this batch. The recoveries were within the control limits with the exception of Al (392.6%), Se (5.2%) and Tl (20%). The post digestion sample analysis was performed for these three analyses. The recoveries of

(114.2%), (74.5%) & (-9.4%) were reported for Al, Se & Tl respectively. The reported positive results for Al were rejected (Biased High). However, the positive results for Se and Tl were qualified estimated and the non-detected values were rejected due to the extremely low spike recoveries. The reported results were considered biased low and the possibility of false negative exist for these two metals.

#### **DUPLICATE ANALYSIS**

The RPDs in laboratory duplicate analysis were within the control limits in metal and inorganic analyses. A field duplicate was analyzed for this batch. RPDs for all results detected at levels above CRDLs were within the control limits of 50% in metal, cyanide and TOC analyses. Field duplicate sample was not analyzed for Oxidation Reduction Potential.

#### LABORATORY CONTROL SAMPLE

The recoveries for LCS sample were within the control limits. Also, the recoveries for LCS analyzed in inorganic parameters were within the control limits of 80-120%.

#### SERIAL DILUTION ANALYSIS

The %Ds for all metals were within the control limits established in Region II except Ba (47.5%) and Na (60.6%). The positive sample results above CRDLs were qualified estimated.

#### **DATA PACKAGE COMPLETENESS**

Data package completeness was satisfactory. However, the pH of cyanide sample was not included in this data package.

#### **SUMMARY**

The data package assembly was satisfactory. The cooler temperature 6 °C was within the control limits. All metals were analyzed by ICP, with the exception of mercury. The major problems with the exception of extremely low spike recovery for Se and Tl, and high recovery for Al were not encountered in the sample analysis. The minor issues (contamination, recovery outliers in CRDL ,ICS and serial dilution analyses) have been discussed. The reported sample data were reported with the applied qualifier codes.

Appendix A Glossary of Data Qualifier

#### GLOSSARY OF DATA QUALIFIERS

#### CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS.

  [Substantially is equivalent to a result less than 10 times the blank level for common contaminants (methylene chloride, acetone and 2- butanone in the VOA analyses, and common phthalates in the BNA analyses, along with tentatively identified compounds) or less than 5 times the blank level for other target compounds.]
- R = UNUSABLE RESULT. THE PRESENCE OR ABSENCE OF THIS ANALYTE CANNOT BE VERIFIED. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- N = NEGATED COMPOUND. THERE IS PRESUMPTIVE EVIDENCE TO MAKE A TENTATIVE IDENTIFICCATION.

#### **CODES RELATING TO QUATITATION**

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE WAS POSITIVELY IDENTIFIED. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- UJ = ANALYTE WAS NOT DETECTED. THE REPORTED QUATITATION LIMIT IS QUALIFIED ESTIMATED.

#### OTHER CODES

O = NO ANALYTICAL RESULT.

## DATA USABILITY SUMMARY ALBION

CASE ID No.: 7099-3331A

CHENT ID	PARAMETERS					
	VOA	SVOA	Pest/PCB	Metals	Inorganic	
MW-1	$A, J^1$	$R^1, A^2, J^2$	A	R ^{2,3,} J ^{7,8,9}	A	
MW-3	$A, J^1$	$R^1, A^2, J^3$	A	$A^3, R^{2,3}, J^{7,8,9}$	A	
MW-2	$A, J^1$	$R^1, A^2, J^3$	A	R ^{2,3,} J ^{7,8,9}	A	
MW-4	A	$R^1, A^2, J^3$	A	$R^{2,3}, J^{7,8,9}$	A	
MW-5	A	$R^1, A^2, J^3$	A,J ^{4,5,6}	$R^{2,3}, J^{7,8,9}$	A	
MW-6	$A^1, J^1$	$R^1, A^2, J^2$	A	$A^{3}, R^{2,3}, J^{7,8,9}$	A	
DUP	$A, J^1$	$R^1, A^2, J^2$	A	$A^{3}, R^{2,3}, J^{7,8,9}$	A	
Trip Blk	$A^1$ , $J^1$	NA	NA	NA	NA	

- A= Accept the sample results as reported.
- A¹= Sample result for acetone was elevated to the CRQL and qualified "U".
- A²= The sample results below the CRQLs for diethylphthalate, di-n-butylphthalate, bis(2-ethylhexyl) phthalate and di-n-octylphthalatephenol, (method blank contamination) were elevated to the CRQLs and qualified "U".
- $A^{3}$  The reported sample results up to action levels for Zn was qualified "U".
- J¹= The reported data for acetone and carbon disulfide were qualified estimated since the %D in continuing calibration was above 25%.
- J²= Estimated the non-detected values "UJ" since the %Ds for 2,4-dinitrophenol and 4-nitrophenol were above 25% in continuing calibration.
- J³= Estimated the non-detected values "UJ" since the %Ds for 2,4-dinitrophenol and 4,6-dinitro-2-methylphenol were above 25% in continuing calibration.
- $J^4$  = The positive results were qualified estimated since the %D for the results reported on two different columns was above 25%.
- $J^5$  = The reported data were qualified estimated since the base line was elevated in sample chromatogram.
- J⁶= The result for endrin was qualified estimated since the RPD exceeded in MS/MSD analysis.
- $J^7$ = The positive results up to 3xCRDL for Se and Pb were qualified estimated since the CRDL recovery was above 120%.

Table Cont.

- J⁸= The positive results up to 3xCRDL and non-detected values for Ag & Tl were qualified estimated since the CRDL recovery was below 80%.
- J⁹= The positive results for Ba and Na were qualified estimated since the %Ds were above 10% in serial dilution analysis.
- R¹= Reject the non-detected values for Hexachlorocyclopentadiene since the response factors were below the 0.05 control limit in all continuing calibration.
- $R^2$ = Reject the positive results for Al since the spike recovery exceeded 150%.
- R³= Reject the non-detected values and qualified "J" the positive results for Se and Tl since the spike recoveries were below 30%.

- 1. Appendix A- Glossary of Data Qualifier
- 2. Appendix B- Laboratory Form I, & Applied Qualifier Codes
- 3. Appendix C Resubmission (Not applicable)

Appendix B
Laboratory Reported Results
&
Applied Qualifier Codes

CLIENT ID

#### VOLATILE ORGANICS ANALYSIS DATA SHEET

			TRIP	BLANK
Lab Name:	STL/CT	Contract:		

Matrix: (soil/water) WATER Lab Sample ID: 993331A-02

Lab Code: IEACT Case No.: 3331A SAS No.: _____ SDG No.: A3331

Sample wt/vol: 5 (g/mL)ML Lab File ID: >M7156

Level: (low/med) LOW Date Received: 12/17/99

% Moisture: not dec. _____ Date Analyzed: 12/18/99

GC Column: 007-624 ID: 0.53 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg)UG/L	0
CAS NO.	COMPOUND	(ug/L or ug/kg/ug/L.	Q

74-87-3	Chloromethane	10	U
74-83-9	Bromomethane	10	Ū
75-01-4	Vinyl Chloride	10	U
75-00-3	Chloroethane	10	Ū
75-09-2	Methylene Chloride	.9	J
67-64-1	Acetone	10 -9	JB-
75-15-0	Carbon Disulfide	10	U
75-35-4	1,1-Dichloroethene	10	Ū
75-34-3	1,1-Dichloroethane	10	Ū
540-59-0	1,2-Dichloroethene (total)	10	Ū
67-66-3	Chloroform	10	Ū
107-06-2	1,2-Dichloroethane	10	U
78-93-3	2-Butanone	10	Ū
71-55-6	1,1,1-Trichloroethane	10	Ū
56-23-5	Carbon Tetrachloride	10	Ū
75-27-4	Bromodichloromethane	10	Ū
78-87-5	1,2-Dichloropropane	10	Ū
10061-01-5	cis-1,3-Dichloropropene	10	Ü
79-01-6	Trichloroethene	10	U
124-48-1	Dibromochloromethane	10	Ū
79-00-5	1,1,2-Trichloroethane	10	Ū
71-43-2	Benzene	10	Ū
10061-02-6	trans-1,3-Dichloropropene	1.3	Ū
75-25-2	Bromoform	10	Ū
108-10-1	4-Methyl-2-Pentanone	10	Ū
591-78-6	2-Hexanone	10	U
127-18-4	Tetrachloroethene	10	Ū
79-34-5	1,1,2,2-Tetrachloroethane	10	U
108-88-3	Toluene	10	Ū
108-90-7	Chlorobenzene	10	Ū
100-41-4	Ethylbenzene	10	Ū.
100-42-5	Styrene	10	U
1330-20-7	Xvlene (total)	10	U

UJ US

### 1E

CLIENT ID

## VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

TRT		LANK
118	$\vdash$ $\bowtie$	LANK

Lab Name: STL/CT	Contract:
Lab Code: IEACT Case No.: 3331A	SAS No.: SDG No.: A3331
Matrix: (soil/water)WATER	Lab Sample ID: 993331A-02
Sample wt/vol: 5 (g/mL)ML	Lab File ID: >M7156
Level: (low/med) LOW	Date Received: 12/17/99
% Moisture: not dec	Date Analyzed: 12/18/99
GC Column: 007-624 ID: 0.53 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)

Number TICs Found: 1

CONCENTRATION UNITS: (ug/L or ug/Kg)UG/L

Number 11Cs For	ma: i (ug/li (	or ug/kg/	06/1	
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01.128-37-0	BUTYLATED HYDROXYTOLUENE	22.89	6	JN
02.				
03.				
04		ļ.		
05.				
06.				
08.		-		
09.		<del> </del>		-
10.		-		
11.				
12.				
13.				
14.				
15.				
16.				
17.				
18. 19.				
20.		-		
21.				
22.				
23.				
24.				
25.				
26.				
27.				
28.				
29.			· · · · · · · · · · · · · · · · · · ·	
30.	· · · · · · · · · · · · · · · · · · ·			

### 1A

CLIENT ID

VOLATILE ORGANICS ANALYSIS DATA SHEET

	MW-1	
Contract:		

CONCENTRATION UNITS:

Lab Name: STL/CT

automobile militaria di adi seria di antigo di manda di A

1330-20-7

Xvlere (total)

Matrix: (soil/water) WATER Lab Sample ID: 993331A-01

Sample wt/vol: 5 (g/mL)ML Lab File ID: >M7158

Level: (low/med) LOW Date Received: 12/17/99

% Moisture: not dec. _____ Date Analyzed: 12/18/99

GC Column: 007-624 ID: 0.53 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

(uq/L or uq/Kq)UG/L CAS NO. COMPOUND 0 10 -74 - 87 - 3Chloromethane 74-83-9 Bromomethane 75-01-4 Vinyl Chloride 10 10 75-00-3 Chloroethane 75-09-2 10 Methylene Chloride U3 67-64-1 Acetone υ<u>ქ</u> Carbon Disulfide 75-15-0 1,1-Dichloroethene 75-35-4 1,1-Dichloroethane 10 75-34-3 1,2-Dichloroethene (total) 10 540-59-0 Chloroform 10 67-66-3 1,2-Dichloroethane 10 Ū 107-06-2 10 2-Butanone 78-93-3 Ū 1,1,1-Trichloroethane 10 71-55-6 Ū Carbon Tetrachloride 10 56-23-5 75-27-4 10 Bromodichloromethane Ū 10 78-87-5 1,2-Dichloropropane 10 10061-01-5 cis-1,3-Dichloropropene 10 79-01-6 Trichloroethene 124-48-1 Dibromochloromethane 10 1,1,2-Trichloroethane 79-00-5 10 10 71-43-2 Benzene 10061-02-6 75-25-2 trans-1,3-Dichloropropene 10 10 ĪΪ Bromoform 4-Methyl-2-Pentanone 10 108-10-1 10 | 2-Hexanone 591-78-6 ŢŢ 127-18-4 Tetrachloroethene 10 1,1,2,2-Tetrachloroethane 10 TT 79-34-5 10 Ū 108-88-3 Toluene 10 108-90-7 Chlorobenzene 100-41-4 Ethylbenzene 100-42-5 Styrene

8260

1E VOLATILE ORGANICS ANALYSIS DATA SHEET

TENTATIVELY	IDENTIFIED	COMPOUNDS	
			MW-1
	Contract:		

Lah Code ·	TEACT	Case No ·	$3331\Delta$	SAS No.	SDG No ·	<b>A3331</b>

Matrix: (soil/water)WATER Lab Sample ID: 993331A-01

Sample wt/vol: 5 (g/mL)ML Lab File ID: >M7158

Level: (low/med) LOW Date Received: 12/17/99

% Moisture: not dec. _____ Date Analyzed: 12/18/99

GC Column: 007-624 ID: 0.53 (mm) Dilution Factor: 1.0

Soil Aliquot Volume: ____(uL) Soil Extract Volume: ____(uL)

Number TICs Found: 3

Lab Name: STL/CT

CONCENTRATION UNITS: (ug/L or ug/Kg)UG/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	.Q
01.556-67-2	CYCLOTETRASILOXANE, OCTAMETH	19.31	18	JAY
02.541-05-9	CYCLOTRISILOXANE, HEXAMETHYL	14.96	11	JN J
03.	UNKNOWN SILOXANE	21.63	9	
04.	<del></del>			
05. 06.	<del> </del>	<del> </del>	<u> </u>	
07.			<del> </del>	
08.		<del> </del>	<del> </del>	
09.				
10.		<u> </u>		
11.				
12.				
13.				
14.				
15.				
16.		ļ		
17. 18.		ļ		
19.		ļ		
20.				
21.		<del>                                     </del>		
22.				
23.				
24.				
25.				. `
26.				+
27.				
28.				
29.				
30.		-	ļ.	- 11

CLIENT ID

GC Column: 007-624 ID: 0.53 (mm)

Styrene

Xvlene (total)

100-42-5

1330-20-7

MTAT . O

Dilution Factor: 1.0

### VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: STL/CT		Contract:	
Lab Code: IEACT	Case No.: 3331A	SAS No.: SDG No	o.: A3331
Matrix: (soil/water	) WATER	Lab Sample ID:	993331A-04
Sample wt/vol:	5 (g/mL)ML	Lab File ID:	>M7164
Level: (low/med)	LOW	Date Received:	12/17/99
% Moisture: not dec		Date Analyzed:	12/18/99
		*	

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg)UG/L	Q
74-87-3	Chloromethane	1.0	U .
74-83-9	Bromomethane	10	Ū
75-01-4	Vinyl Chloride	. 10	Ū
75-00-3	Chloroethane	10	U
75-09-2	Methylene Chloride	10	U
67-64-1	Acetone	10	U-
75-15-0	Carbon Disulfide	10	U
75-35-4	1,1-Dichloroethene	10	U
75-34-3	1,1-Dichloroethane	-10	Ü
540-59-0	1,2-Dichloroethene (total	) 10	U
67-66-3	Chloroform	1.0	TT

67-66-3 107-06-2 10 1,2-Dichloroethane ΤŢ 78-93-3 2-Butanone 10 Ū 1,1,1-Trichloroethane 71-55-6 10 Ū Carbon Tetrachloride 56-23-5 75-27-4 Ū 10 Bromodichloromethane -10 Ū 78-87-5 10 1,2-Dichloropropane 10 Ū. 10061-01-5 cis-1,3-Dichloropropene 79-01-6 Ū 10 Trichloroethene 10 Ū 124-48-1 Dibromochloromethane 1,1,2-Trichloroethane 10 Ū 79-00-5 71-43-2 10 Ū Benzene Ű-10061-02-6 10 trans-1,3-Dichloropropene 10 Ū 75-25-2 Bromoform Ū 10 108-10-1 4-Methyl-2-Pentanone 10 U 591-78-6 2-Hexanone Ū 10 127-18-4 Tetrachloroethene 1,1,2,2-Tetrachloroethane Ū 10 79-34-5 Toluene 10 Ū 108-88-3 108-90-7 Chlorobenzene 10 Ū Ū 100-41-4 10 | Etnylpenzene

Ū

Ũ

10

10 |

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

CLIENT	ID
--------	----

			345.7
Lab Name: STL/CT		Contract:	MW - 2
Lab Code: IEACT	Case No.: 3331A	SAS No.: SDG N	o.: A3331
Matrix: (soil/water	) WATER	Lab Sample ID	: 993331A-04
Sample wt/vol:	5 (g/mL)ML	Lab File ID:	>M7164
Level: (low/med)	LOW	Date Received	: 12/17/99
% Moisture: not dec	•	Date Analyzed	: 12/18/99
GC Column: 007-624	ID: 0.53 (mm)	Dilution Facto	or: 1.0
Soil Extract Volume:	:(uL)	Soil Aliquot V	/olume:(uL)

Number TICs Found: 3

CONCENTRATION UNITS: (ug/L or ug/Kg)UG/L

CAS NUMBER COMPOUND NAME RT EST. CONC. Q  01.556-67-2 CYCLOTETRASILOXANE, OCTAMETH 19.32 24 FW  02. UNKNOWN SILOXANE 21.65 13 J-  03.541-05-9 CYCLOTRISILOXANE, HEXAMETHYL 14.98 7 JN  05. 06. 07. 08. 09. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26.				·	
O2	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
03.541-05-9   CYCLOTRISILOXANE, HEXAMETHYL		CYCLOTETRASILOXANE, OCTAMETH		24	JN
04	02.	UNKNOWN SILOXANE		13	J.
05.       06.         07.       08.         09.          10.          11.          12.          13.          14.          15.          16.          17.          18.          19.          20.          21.          22.          23.          24.          25.		CYCLOTRISILOXANE, HEXAMETHYL	14.98	7	JN
06.       07.         08.       09.         10.       11.         12.       13.         14.       15.         16.       17.         18.       19.         20.       21.         22.       23.         24.       25.         26.       26.	04.	•			
07.         08.         09.         10.         11.         12.         13.         14.         15.         16.         17.         18.         19.         20.         21.         22.         23.         24.         25.         26.	05.				
08.       09.         10.          11.          12.          13.          14.          15.          16.          17.          18.          19.          20.          21.          23.          24.          25.		·	1		
09.       10.         11.          12.          13.          14.          15.          16.          17.          18.          19.          20.          21.          22.          23.          24.          25.          26.			·	-	
10.       11.         12.          13.          14.          15.          16.          17.          18.          19.          20.          21.          22.          23.          24.          25.          26.					
11.         12.         13.         14.         15.         16.         17.         18.         19.         20.         21.         22.         23.         24.         25.         26.					
12.         13.         14.         15.         16.         17.         18.         19.         20.         21.         22.         23.         24.         25.         26.					-
13.       14.         15.       16.         17.       18.         19.       20.         21.       22.         23.       24.         25.       26.	11				•
14.         15.         16.         17.         18.         19.         20.         21.         22.         23.         24.         25.         26.					
15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25.					
16.         17.         18.         19.         20.         21.         22.         23.         24.         25.         26.					
17.         18.         19.         20.         21.         22.         23.         24.         25.         26.		-			
18.         19.         20.         21.         22.         23.         24.         25.         26.	16.				
19. 20. 21. 22. 23. 24. 25. 26.	17.				
20.         21.         22.         23.         24.         25.         26.	18.				
21.         22.         23.         24.         25.         26.	19.				
22.       23.       24.       25.       26.	20.				
23. 24. 25. 26.				-	
24.       25.       26.					
25. 26.		·		· ·	
26.	24.				
				•	
27.					
28.					·
29.	29.	,			
30.	30.				

Soil Extract Volume: ____(uL)

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

	į ·
Lab Name: STL/CT	Contract:MW-3
Lab Code: IEACT	SAS No.: SDG No.: A3331
Matrix: (soil/water)WATER	Lab Sample ID: 993331A-03
Sample wt/vol: 5 (g/mL)ML	Lab File ID: >M7163
Level: (low/med) LOW	Date Received: 12/17/99
% Moisture: not dec	Date Analyzed: 12/18/99
GC Column: 007-624 ID: 0.53 (mm)	Dilution Factor: 1.0

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg)UG/L Q

74-87-3	Chloromethane	10	Ū.
74-83-9	Bromomethane	10	U
75-01-4	Vinyl Chloride	10	U
75-00-3	Chloroethane	10	Ū
75-09-2	Methylene Chloride	10	Ū
67-64-1	Acetone	10	
75-15-0	Carbon Disulfide	10	JJ
75-35-4	1,1-Dichloroethene	- 10	Ū
75-34-3	1,1-Dichloroethane	10	Ū
540-59-0	1,2-Dichloroethene (total)	10	Ū
67-66-3	Chloroform	10	Ū
107-06-2	1,2-Dichloroethane	10	Ū
78-93-3	2-Butanone	10	U
71-55-6	1,1,1-Trichloroethane	10	Ū
56-23-5	Carbon Tetrachloride	10	Ū
75-27-4	Bromodichloromethane	10	Ū
78-87-5	1,2-Dichloropropane	10	Ū
10061-01-5	cis-1,3-Dichloropropene	10	Ū
79-01-6	Trichloroethene	10	Ū
124-48-1	Dibromochloromethane	10	Ū
79-00-5	1,1,2-Trichloroethane	10	U
71-43-2	Benzene -	10	U
10061-02-6	trans-1,3-Dichloropropene	10	Ŭ
75-25-2	Bromoform	10	U
108-10-1	4-Methyl-2-Pentanone	10	Ū
591-78-6	2-Hexanone	10	Ū
127-18-4	Tetrachloroethene	10	Ū
79-34-5	1,1,2,2-Tetrachloroethane	10	Ū
108-88-3	Toluene	. 10	Ŭ
108-90-7	Chlorobenzene	10	Ũ
100-41-4	Ethylbenzene	1.0	Ū
100-42-5	Styrene	10	Ū
1330-20-7	Xviene (rotal)	10	ŢŢ

CLIENT ID

Soil Aliquot Volume: ____(uL)

#### 1E

### VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

]	,	
MW-3		

CLIENT ID

Lab Name: STL/C	Lab	Name:	STL/	'CT
-----------------	-----	-------	------	-----

Contract: ____

Lab Code: IEACT

Case No.: 3331A SAS No.: ____ SDG No.: A3331

Matrix: (soil/water) WATER

Lab Sample ID: 993331A-03

Sample wt/vol: 5 (g/mL)ML

Lab File ID: >M7163

Level: (low/med) LOW

Date Received: 12/17/99

% Moisture: not dec. _____

Date Analyzed: 12/18/99

GC Column: 007-624 ID: 0.53 (mm)

Dilution Factor: 1.0

Soil Extract Volume: ____(uL)

Soil Aliquot Volume: ____(uL)

Number TICs Found: 2

CONCENTRATION UNITS: (ug/L or ug/Kg)UG/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC	2. Q
01.556-67-2	CYCLOTETRASILOXANE, OCTAMETH	19.32	1.5	5 JAY (
02.	UNKNOWN SILOXANE	21.65	9	) <u>J</u>
03.				
04.	n.	. "		
05.	`			
06.				
07.			•	
08.				
10.		<u> </u>		
11.			,	
12.			- 1-	
13.				<del>-  </del>
14.		<u>.</u>		
14. 15.				
16.				<del></del>
17.	*			<del>                                     </del>
18.				
19.				
20.				
21.	ì			· ·
22.				
23.				
24.				
25.				
26.	-			
27.				
28.				
29.				
30.				1 1

Soil Aliquot Volume: ____(uL)

### VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: STL/CT		Contract:
Lab Code: IEACT	Case No.: 3331A	SAS No.: SDG No.: A3331
Matrix: (soil/water)	WATER	Lab Sample ID: 993331A-05
Sample wt/vol:	5 (g/mL)ML	Lab File ID: >K8270
Level: (low/med) I	LOW	Date Received: 12/17/99
% Moisture: not dec.		Date Analyzed: 12/19/99
GC Column: 007-624	ID: 0.53 (mm)	Dilution Factor: 1.0

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg)UG/L

Soil Extract Volume: ____(uL)

-			
74-87-3	Chloromethane	10	<b>J</b>
74-83-9	Bromomethane	. 4	(J)
75-01-4	Vinyl Chloride	10	Ù
75-00-3	Chloroethane	10	Ū
75-09-2	Methylene Chloride	10	Ū
67-64-1	Acetone	10	Ū
75-15-0	Carbon Disulfide	10	U
75-35-4	1,1-Dichloroethene	10	· Ū
75-34-3	1,1-Dichloroethane	10	Ū
540-59-0	1,2-Dichloroethene (total)	10	Ū
67-66-3	Chloroform	10	Ū
107-06-2	1,2-Dichloroethane	10	Ū
78-93 <b>-</b> 3	2-Butanone	10	Ū
71-55-6	1,1,1-Trichloroethane	10	Ū
56-23-5	Carbon Tetrachloride	10	Ū
75-27-4	Bromodichloromethane	10	Ū
78-87-5	1,2-Dichloropropane	10	Ū
10061-01-5	cis-1,3-Dichloropropene	10	Ū
79-01-6	Trichloroethene	10	Ū
124-48-1	Dibromochloromethane	10	Ū
79-00-5	1,1,2-Trichloroethane	10	Ū
71-43-2	Benzene	10	Ū
10061-02-6	trans-1,3-Dichloropropene	10	Ū
75-25-2	Bromoform	10	Ū
108-10-1	4-Methyl-2-Pentanone	10	Ū
591-78-6	2-Hexanone	10	Ū
127-18-4	Tetrachloroethene	10	Ū
79-34-5	1,1,2,2-Tetrachloroethane	10	Ū
108-88-3	Toluene	10	Ū
108-90-7	Chlorobenzene	10	Ū
100-41-4	Ethylbenzene	10	Ū
100-42-5	Styrene	10	U,
1330-20-7	Xvlene (total)	.2	J

#### 1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

CL	T	EN	Т	Τ	T

T.ah	Mama.	STL/CT	Contract:	
Lab	ranc.	5111/01	contract.	<del></del>

Matrix: (soil/water) WATER Lab Sa

Lab Sample ID: 993331A-05

MW - 4

Sample wt/vol: 5 (q/mL)ML

Lab File ID: >K8270

Level: (low/med) LOW

Date Received: 12/17/99

% Moisture: not dec. _____

Date Analyzed: 12/19/99

GC Column: 007-624 ID: 0.53 (mm)

Dilution Factor: 1.0

Soil Extract Volume: ____(uL)

Soil Aliquot Volume: ____(uL)

Number TICs Found: 0

CONCENTRATION UNITS: (ug/L or ug/Kg)UG/L

Number fres found.					
.CAS NUMBER	COMPOUND NAME		RT	EST. CONC.	Q
01.					
02.					
03.					
04.					
05.			•		
06.			-		
07.		-		-	
08.		-			
09.					
10.			-		
11.			,	·	
12.					
13.					
14.					
15.					···
16.					
17.					
18.					
19.					
21.					
22.					·
23.					
24.	<u> </u>				
25.			· ·		
26.					
27.					
28.					
20.					
29. 30.					
30		Ì	1	ļ.	

### 1A

CLIENT ID

VOLATILE ORGANICS ANALYSIS DATA SHEET

		•	MW-5
Lab Name: STL/CT		Contract:	
Lab Code: IEACT	Case No.: 3331A	SAS No.: SDG N	Jo.: A3331
Matrix: (soil/water	) WATER	Lab Sample II	993331A-06
Sample wt/vol:	5 (g/mL)ML	Lab File ID:	>K8273
Level: (low/med)	LOW	Date Received	: 12/17/99
% Moisture: not dec	·	Date Analyzed	: 12/19/99
GC Column: 007-624	ID: 0.53 (mm)	Dilution Fact	or: 2.0
Soil Extract Volume:	:(uL)	Soil Aliquot	Volume: (uL)

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg)UG/L Q

	<u> </u>		
74-87-3	Chloromethane	20	ן ט
74-83-9	Bromomethane	20	Ū
75-01-4	Vinyl Chloride	. 20	Ū
75-00-3	Chloroethane	. 20	Ū
75-09-2	Methylene Chloride	20	Ū,
67-64-1	Acetone	4	J
75-15-0	Carbon Disulfide	20	U
75-35-4	1,1-Dichloroethene	20	Ū
75-34-3	1,1-Dichloroethane	20	U
540-59-0	1,2-Dichloroethene (total)	20 -	Ū
67-66-3	Chloroform	20	Ū
107-06-2	1,2-Dichloroethane	20	Ū
78-93-3	2-Butanone	7	J΄
71-55-6	1,1,1-Trichloroethane	20	Ū
56-23-5	Carbon Tetrachloride	20	· .U
75-27-4	Bromodichloromethane	20	Ū
78-87-5	1,2-Dichloropropane	20	Ū
10061-01-5	cis-1,3-Dichloropropene	20	Ū
79-01-6 .	Trichloroethene	20	U
124-48-1	Dibromochloromethane	20	Ū
79-00-5	1,1,2-Trichloroethane	20	U,
71-43-2.	Benzene	210	
10061-02-6	trans-1,3-Dichloropropene	20	Ū
75-25-2	Bromoform	20-	Ū
108-10-1	4-Methyl-2-Pentanone	20	Ū
591-78-6	2-Hexanone	20	Ū
127-18-4	Tetrachloroethene	20	Ū
79-34-5	1,1,2,2-Tetrachloroethane	20	Ū
108-88-3	Toluene	42	
108-90-7	Chlorobenzene	20	Ū
100-41-4	Ethylbenzene	8	J/
100-42-5	Styrene	20	Ŭ
1330-20-7	Xylene (total)	72	,

### 1E

# VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Ì	MW-5		

CLIENT ID

Lab Name: STL/CT		Contract:
Lab Code: IEACT	Case No.: 3331A	SAS No.: SDG No.: A3331
Matrix: (soil/water	) WATER	Lab Sample ID: 993331A-06
Sample wt/vol:	$5 \qquad (g/mL) ML$	Lab File ID: >K8273
Level: (low/med)	LOW	Date Received: 12/17/99
% Moisture: not dec	•	Date Analyzed: 12/19/99
GC Column: 007-624	ID: 0.53 (mm)	Dilution Factor: 2.0

Soil Extract Volume: ____(uL)

Soil Aliquot Volume: ____(uL)

Number TICs Found: 13

CONCENTRATION UNITS: (ug/L or ug/Kg)UG/L

			<del></del>	
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01.	UNKNOWN C9H8 ISOMER	22.27	160	J
02.	UNKNOWN C9H10 ISOMER	22.01	120	J
03.	UNKNOWN C9H8O ISOMER	23.05	64	J
04.	UNKNOWN "	21.60	. 46	J
05.	UNKNOWN C8H6S ISOMER	24.51	. 38	J
06.	UNKNOWN C10H10 ISOMER	23.74	33	J
07.	UNKNOWN C9H8O ISOMER	22.93	32	J
08.	UNKNOWN C3 ALKYLBENZENE	21.77	18	J
09.	UNKNOWN C3 ALKYLBENZENE	21.29	18	Ĵ
10.	UNKNOWN C10H10 ISOMER	23.60	17	J
11.	UNKNOWN C10H12 ISOMER	23.53	14	J
12.	UNKNOWN	24.24	14	J
13.	UNKNOWN C3 ALKYLBENZENE	20.84	11	J
14.				
15.				
16.				
17.				
18.				
19.				
20.				
21.				
22.				
23.			•	1
24.				
25.				
26.				
27.				
28.	-			
29.				
30.				

### 1A

CLIENT ID

VOLATILE ORGANICS ANALYSIS DATA SHEET

				MW-6	
lab	Name:	STL/CT	Contract:		

Lab Code: IEACT Case No.: 3331A SAS No.: ____ SDG No.: A3331

Matrix: (soil/water)WATER Lab Sample ID: 993331A-07

Sample wt/vol: 5 (g/mL)ML Lab File ID: >M7167

Level: (low/med) LOW Date Received: 12/17/99

% Moisture: not dec. ____ Date Analyzed: 12/18/99

GC Column: 007-624 ID: 0.53 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg)UG/L

e egenggespelent for the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state

74-87-3 10 Chloromethane 74-83-9 10 Bromomethane 75-01-4 Vinyl Chloride 75-00-3 Chloroethane 10 75-09-2 Methylene Chloride 10 2 10 67-64-1 Acetone 75-15-0 Carbon Disulfide 1,1-Dichloroethene 75-35-4 1,1-Dichloroethane 10 Ū 75-34-3 10 Ū 1,2-Dichloroethene (total) 540-59-0 10 Chloroform 67-66-3 10 107-06-2 1,2-Dichloroethane 78-93-3 2-Butanone 10 71-55-6 1,1,1-Trichloroethane 56-23-5 Carbon Tetrachloride 10 75-27-4 10 Bromodichloromethane 78-87**-**5 10 1,2-Dichloropropane 10061-01-5 cis-1,3-Dichloropropene 10 79-01-6 10 Trichloroethene Dibromochloromethane 124-48-1 79-00-5 1,1,2-Trichloroethane 10 71-43-2 Benzene 10061-02-6 trans-1,3-Dichloropropene 10 10 75-25-2 Bromoform TJ 108-10-1 4-Metnyl-2-Pentanone 10 591-78-6 2-Hexanone 127-18-4 Tetrachloroethene 10 1,1,2,2-Tetrachloroethane 79-34-5 10 108-88-3 Toluene 10 108-90-7 Chlorobenzene 10 Ũ 100-41-4 | Etnyloenzene 10 TT 100-42-5 Styrene | Xviene (total)

*زن* زن

## 1E

CLIENT ID

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

	COLLECTION	!	
		MW-6	
Contract:			

Lab Name: STL/CT		Contract:
Lab Code: IEACT	Case No.: 3331A	SAS No.: SDG No.: A3331
Matrix: (soil/water	) WATER	Lab Sample ID: 993331A-07
Sample wt/vol:	$5 \qquad (g/mL)ML$	Lab File ID: >M7167
Level: (low/med)	LOW	Date Received: 12/17/99
% Moisture: not dec	·	Date Analyzed: 12/18/99
GC Column: 007-624	TD: 0.53 (mm)	Dilution Factor: 1 0

Soil Extract Volume: ____(uL)

Soil Aliquot Volume: ____(uL)

Number TICs Found: 0

CONCENTRATION UNITS: (ug/L or ug/Kg)UG/L

ramber fres found.	(45	/H OI dg/kg	, 00, H	
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01.				
02.		-		
03.				
04.				
05.			-	
06.			1	
07.				
08.				
09.				
10.				
11.				,==.
12.				
13.				
14.				*
15.				
16.				
17.				
18.				
19.		-		
20.				
21.				
22.				
23.				
24.				
25.		· .		
26.				
27.				
28.				
29.				
30.				

CLIENT ID

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: STL/CT Co	ontract:
Lab Code: IEACT Case No.: 3331A	
Matrix: (soil/water)WATER	Lab Sample ID: 993331A-08
Sample wt/vol: 5 (g/mL)ML	Lab File ID: >M7168
Level: (low/med) LOW	Date Received: 12/17/99
% Moisture: not dec	Date Analyzed: 12/18/99
GC Column: 007-624 ID: 0.53 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg)UG/L Q

74-87-3	Chloromethane	10	U
74-83-9	Bromomethane	10	Ū
75-01-4	Vinyl Chloride	10	Ū
75-00-3	Chloroethane	10	Ū
75-09-2	-Methylene Chloride	10	U
67-64-1	Acetone	10	ij.
75-15-0	Carbon Disulfide	10	IJ
75-35-4	1,1-Dichloroethene	10	U
75-34-3	1,1-Dichloroethane	10	Ū
540-59-0	1,2-Dichloroethene (total)	10	Ū
67-66-3	Chloroform	10	Ū
107-06-2	1,2-Dichloroethane	1.0	Ū
78-93-3	2-Butanone	10	Ū
71-55-6	1,1,1-Trichloroethane	2	Ĵ
56-23-5	Carbon Tetrachloride	10	Ū
75-27-4	Bromodichloromethane	10	U
78-87-5	1,2-Dichloropropane	10	Ū
10061-01-5	cis-1,3-Dichloropropene	10	U
79-01-6	Trichloroethene	10	Ū
124-48-1	Dibromochloromethane	10	Ū
79-00-5	1,1,2-Trichloroethane	10	Ū
71-43-2	Benzene	10	Ū
10061-02-6	trans-1,3-Dichloropropene	10	U
75-25-2	Bromoform	10	Ū
108-10-1	4-Methyl-2-Pentanone	10	Ū
591-78-6	2-Hexanone	10	Ū
127-18-4	Tetrachloroethene	10	Ū
79-34-5	1,1,2,2-Tetrachloroethane	10	Ū
108-88-3	Toluene	10	Ū
L08-90-7	Chlorobenzene	10	Ū
L00-41-4.	Ethylbenzene	10	Ū
L00-42-5	Styrene	10	Ū
1330-20-7	Xvlene (total)	10	Ū

### 1E

# VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

$\neg \tau$	ידינאים ד.	TT
LL	TEINT	1.1.

Lab Name: STL/CT	Contract:
Lab Code: IEACT Case No.: 3331A	SAS No.: SDG No.: A3331
Matrix: (soil/water)WATER	Lab Sample ID: 993331A-08
Sample wt/vol: 5 (g/mL)ML	Lab File ID: >M7168
Level: (low/med) LOW	Date Received: 12/17/99
% Moisture: not dec	Date Analyzed: 12/18/99
GC Column: 007-624 ID: 0.53 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)

Number TICs Found: 0

the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

CONCENTRATION UNITS: (ug/L or ug/Kg)UG/L

Number Tics Found	1: 0 	(ug/L or ug/kg)UG/L
CAS NUMBER	COMPOUND NAME	RT EST. CONC. Q
01.		
02.		
03.		
04.		
05. 06.		
07.		
08.		
09.		
10.		
11.		
12.		
14.		
15.		
16.		
17.		
18.		
19.		· · · · · · · · · · · · · · · · · · ·
21.		
22.		
23.		
24.		
25.		
26.		
27.		
28.		· ·
30.		
JU		

L

1B EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: STL/CT	Contract	: MW-1
Lab Code: IEACT Ca	ase No.: 3331A SAS No.	: SDG No.: A3331
Matrix: (soil/water)WA	ATER	Lab Sample ID: 993331A-01
Sample wt/vol: 95	50 (g/mL)ML	Lab File ID: >R5798
Level: (low/med) LC	W	Date Received: 12/17/99
% Moisture: o	decanted: (Y/N)	Date Extracted:12/22/99
Concentrated Extract V	olume: 1000 (uL)	Date Analyzed: 01/11/00
Injection Volume: 2.	0 (uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N)N	pH:	

CAS NO. COMPOUND CONCENTRATION UNITS:

(ug/L or ug/Kg)UG/L Q

108-95-2	Phenol	10	IJ
111-44-4	bis(2-Chloroethyl)ether	10	<u>U</u>
95-57-8	2-Chlorophenol	10	<del>- U</del>
541-73-1	1,3-Dichlorobenzene	10	Ū
106-46-7	1,4-Dichlorobenzene	10	Ū
95-50-1	1,2-Dichlorobenzene	10	Ū
95-48-7	2-Methylphenol	10	Ū.
108-60-1	2,2'-oxybis(1-Chloropropane)	10	U
106-44-5	4-Methylphenol	10	Ū
621-64-7	N-Nitroso-di-n-propylamine	10	Ū
67-72-1	Hexachloroethane	10	Ū
98-95-3	Nitrobenzene	10	Ū
78-59-1.	Isophorone	10	U
88-75-5	2-Nitrophenol	10	U.
105-67-9 .	2,4-Dimethylphenol	10	Ū
111-91-1	bis (2-Chloroethoxy) methane	. 10	Ū
120-83-2	2,4-Dichlorophenol	10	Ū
120-82-1	1,2,4-Trichlorobenzene	10	Ŭ
91-20-3	Naphthalene	10	Ū
106-47-8	4-Chloroaniline	10	U
87-68-3	Hexachlorobutadiene	10	Ū
59-50-7	4-Chloro-3-methylphenol	10	· U
91-57-6	2-Methylnaphthalene	10	Ū
77-47-4	Hexachlorocyclopentadiene	. 10	IJ
88-06-2	2,4,6-Trichlorophenol	1.0	Ŭ ·
95-95-4	2,4,5-Trichlorophenol	26	. U
91-58-7	2-Chloronaphthalene	10	Ŭ ·
88-74-4	2-Nitroaniline	26	U
131-11-3	Dimethylphthalate	10	·U
208-96-8	Acenaphthylene	10	Ü
606-20-2	2,6-Dinitrotoluene	10	U
99-09-2	3-Nitroaniline	26	Ū
83-32-9	Acenaphthene	10	Ū

### 1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: STL/CT		Contract:	MW-1
Lab Code: IEACT	Case No.: 3331A	SAS No.: SDG No	o.: A3331
Matrix: (soil/water)	WATER	Lab Sample ID	: 993331A-01
Sample wt/vol:	950 (g/mL)ML	Lab File ID:	>R5798
Level: (low/med)	LOW	Date Received	: 12/17/99
% Moisture:	decanted: (Y/N)_	Date Extracted	1:12/22/99
Concentrated Extract	Volume: 1000 (	uL) Date Analyzed:	01/11/00

Injection Volume: 2.0 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N)N pH:____

CAS NO.	COMPOUND	CONCENTRATIC (ug/L or ug/		Q	
F1 20 F	2.4. Pinitus 3.				] บป
51-28-5 100-02-7	2,4-Dinitrophenol	<del></del>	26	F.	
132-64-9	4-Nitrophenol Dibenzofuran	· ·	26	II	103
121-14-2	2,4-Dinitrotoluene	- "	10	U	]
84-66-2	Diethylphthalate		10	U	
7005-72-3	4-Chlorophenyl-phenylether		10	U	]]
86-73-7	Fluorene	·	10		
100-01-6	4-Nitroaniline		10 26	U	
534-52-1	4,6-Dinitro-2-methylphenol		26	U	
86-30-6	N-Nitrosodiphenylamine (1)	-	10	U	ŀ
101-55-3	4-Bromophenyl-phenylether		10	Ü	1
118-74-1	Hexachlorobenzene		: 10	U	
87-86-5	Pentachlorophenol		26	Ü	
85-01-8	Phenanthrene		10	<u>U</u>	
120-12-7	Anthracene	n =-	10	Ū	
86-74-8	Carbazole		10	Ü	
84-74-2	Di-n-butylphthalate		10 3	JB-	lo
206-44-0	Fluoranthene		10	ii ii	~
129-00-0	Pyrene		10	Ū	
85-68-7	Butylbenzylphthalate		10	τi	}
91-94-1	3,3'-Dichlorobenzidine		10	Ū	<u> </u>
56-55-3	Benzo(a) anthracene		10	Ū	
218-01-9	Chrysene	-	10	Ū	
117-81-7	bis(2-Ethylhexyl)phthalate		iv _a_	JB	U
117-84-0	Di-n-octylphthalate		10	U	-
205-99-2-	Benzo(b)fluoranthene		10	Ū	
207-08-9	Benzo(k)fluoranthene		10	Ū	
50-32-8	Benzo(a)pyrene		10	Ū	
193-39-5	Indeno(1,2,3-cd)pyrene		10	Ū	
53-70-3	Dibenz(a,h)anthracene		10	Ū	
191-24-2	Benzo(q,n,i)perylene		10	Ū	

### (1) - Cannot be separated from Diphenylamine

EPA SAMPLE NO.

1F

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

TENTATIVELY	IDENTIFIED	COMPOUNDS

			MW-1
Lab Name:	STL/CT	Contract:	

Matrix: (soil/water)WATER Lab Sample ID: 993331A-01

Sample wt/vol: 950 (g/mL)ML. Lab File ID: >R5798

Level: (low/med) LOW Date Received: 12/17/99

% Moisture: _____ decanted: (Y/N)___ Date Extracted:12/22/99

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 01/11/00

Injection Volume: 2.0 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N)N pH:____

Number TICs Found: 2

(ug/L or ug/Kg)UG/L

CAS NUMBER	COMPOUND NAME	RT	EST.	CONC.	Q	
01.	UNKNOWN	23.65		2	JB	R
02.	UNKNOWN	25.03	<del> </del>	2	J	ľ
03.			1			1
04.						1
05.						
06.						
07.						l
08.						
09.						1
10.						
11.						İ
12.						į
13.						
14.		-				ļ
15.						
16.						
17.						
18.						
19.						
20.						
21.						
22.						
23.						
24.						
25.						
26.						
27.						
28.						
29.						
30.						

1B

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

] :	Lab Name: STL/CT	Contract:	MW-2
	Lab Code: IEACT Case No.: 3331A	SAS No.: SDG	No.: A3331
J	Matrix: (soil/water)WATER	Lab Sample I	D: 993331A-04
}	Sample wt/vol: 920 (g/mL)ML	Lab File ID:	>R5779
<b>-</b> ;	Level: (low/med) LOW	Date Receive	d: 12/17/99
] :	% Moisture: decanted: (Y/N)_	Date Extract	ed:12/22/99
, J.	Concentrated Extract Volume: 1000	uL) Date Analyze	d: 01/10/00
}; 	Injection Volume: 2.0 (uL)	Dilution Fac	tor: 1.0
٦:	GPC Cleanup: (Y/N)N pH:		
1.1			

CAS NO.	•	CONCENTRATION UNITS:	Q
700 05 2	Dhanal		
108-95-2	Phenol	11	U
95-57-8	bis(2-Chloroethyl)ether 2-Chlorophenol	11	U
541-73-1	1,3-Dichlorobenzene	11	U
106-46-7	1,4-Dichlorobenzene	11	U
95-50-1	1,2-Dichlorobenzene	11	<del>U</del>
95-48-7	2-Methylphenol	11	<del>- 0</del>
108-60-1		11	
	2,2'-oxybis(1-Chloropropane		Ŭ .
106-44-5	4-Methylphenol	11	U
621-64-7	N-Nitroso-di-n-propylamine	11	Ü
67-72-1	Hexachloroethane	11	U
98-95-3	Nitrobenzene	11	Ū
78-59-1	Isophorone	11	Ü
88-75-5	2-Nitrophenol	11	Ü
105-67-9	2,4-Dimethylphenol	11	Ū
111-91-1	bis(2-Chloroethoxy)methane	11	Ū
120-83-2	2,4-Dichlorophenol	11	Ū
120-82-1	1,2,4-Trichlorobenzene	11	Ū
91-20-3	Naphthalene	11	Ū
106-47-8	4-Chloroaniline	11	Ū
87-68-3	Hexachlorobutadiene	1.1	Ū
59-50-7	4-Chloro-3-methylphenol	11	U
91-57-6	2-Methylnaphthalene	11	U
77-47-4	Hexachlorocyclopentadiene	. 11	0-12
88-06-2	2,4,6-Trichlorophenol	11	U
95-95-4	2,4,5-Trichlorophenol	27	U
91-58-7	2-Chloronaphthalene	11	Ū
88-74-4	2-Nitroaniline	27	Ū
131-11-3	Dimethylphthalate	11	Ū
208-96-8	Acenaphthylene	11	Ū
506-20-2	2,6-Dinitrotoluene	11	0
99-09-2	3-Nitroaniline	27	Ū
83-32-9	Acenaphthene	11	Ū

1C EPA SAMPLE NO.

SEMIVOLATILE ORGANICS AND	ALYSIS DATA SHE	Ε
---------------------------	-----------------	---

			MW-2
Lab Name:	STL/CT	Contract:	

Lab Code: IEACT Case No.: 3331A SAS No.: ____ SDG No.: A3331

Matrix: (soil/water) WATER Lab Sample ID: 993331A-04

Sample wt/vol: 920 (g/mL)ML Lab File ID: >R5779

Level: (low/med) LOW Date Received: 12/17/99

% Moisture: ____ decanted: (Y/N) ___ Date Extracted:12/22/99

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 01/10/00

Injection Volume: 2.0 (uL) Dilution Factor: 1.0

Directon retainer 2.0 (ab)

pH:____

GPC Cleanup: (Y/N)N

		CONCENTRATION UNITS:
CAS NO.	COMPOUND	$(ug/L \ or \ ug/Kg)UG/L$ Q

				÷1
51-28-5	2,4-Dinitrophenol	. 27	-FJ	105
100-02-7	4-Nitrophenol	27	Ü	∥ ້າ
132-64-9	Dibenzofuran	11	Ū	
121-14-2	2,4-Dinitrotoluene	11	Ū	
84-66-2	Diethylphthalate	11-4	JB	U 9
7005-72-3	4-Chlorophenyl-phenylether	11	U	117
86-73-7	Fluorene	11	Ū	łl
100-01-6	4-Nitroaniline	27	Ü	1
534-52-1	4,6-Dinitro-2-methylphenol	27.	<u>U</u>	V3
86-30-6	N-Nitrosodiphenylamine (1)	11	Ū	ر ۱
101-55-3	4-Bromophenyl-phenylether	11	Ū	11
118-74-1	Hexachlorobenzene	11	Ū	fl
87-86-5	Pentachlorophenol	27	Ū	
85-01-8	Phenanthrene	11	Ū	H
120-12-7	Anthracene	11	Ü	
86-74-8	Carbazole	11	Ū	ll.
84-74-2	Di-n-butylphthalate	11.6	JB	レ
206-44-0	Fluoranthene	11	Ū	[]
129-00-0	Pyrene	11	Ū	1
85-68-7	Butylbenzylphthalate	11	U	il
91-94-1	3,3'-Dichlorobenzidine	11	Ü	
56-55-3	Benzo(a)anthracene	11	Ū	i.
218-01-9	Chrysene	11	Ū	
117-81-7	bis(2-Ethylhexyl)phthalate	11.4	JB	U
117-84-0	Di-n-octylphthalate	11-08	JB-	V
205-99-2	Benzo(b)fluoranthene	11	Ū	
207-08-9	Benzo(k)fluoranthene	11	Ū	
50-32-8	Benzo(a)pyrene	11	Ū	
193-39-5	Indeno(1,2,3-cd)pyrene	11	Ū	ŀ
53-70-3	Dibenz(a,h)anthracene	11	Ū	1
191-24-2	Benzo(q,h,i)perylene	11	U	

(1) - Cannot be separated from Diphenylamine

1F

EPA SAMPLE NO.

MW - 2

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

TENTATIVELY	TDENTIFIED	COMPOUNDS

TENTATIVELY IDENTIFIED COMPOUND
---------------------------------

Lab	Name:	STL/CT	Contract:

Lab Code: IEACT Case No.: 3331A SAS No.: ____ SDG No.: A3331

Matrix: (soil/water)WATER Lab Sample ID: 993331A-04

Sample wt/vol: 920 (g/mL)ML Lab File ID: >R5779

Level: (low/med) LOW Date Received: 12/17/99

% Moisture: _____ decanted: (Y/N)___ Date Extracted:12/22/99

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 01/10/00

Injection Volume: 2.0 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N)N pH:____

Number TICs Found: 2

(ug/L or ug/Kg)UG/L

CAS NUMBER	COMPOUND NAME	RT	EST. CON	IC. Q	
01.	UNKNOWN	29.41		3 J	
02.	UNKNOWN	26.59		2 JB	R
03.					][ ' '
04.				-	]
05.					
06.					
07.					]
08.					1
09.					
10.					Į l
11.					
12.					
13.					
14.					
15.					
16.					1
17.					
18.					
19.			ļ	1	
20.					
21.					
22.					
23.					
24.					
25.					
26.					
27.					1
28.					
29.					
3.0			i		1

1B EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: STL/CT	Contract:
Lab Code: IEACT Case No.: 3331A	A SAS No.: SDG No.: A3331
Matrix: (soil/water)WATER	Lab Sample ID: 993331A-03
Sample wt/vol: 950 (g/mL)MI	Lab File ID: >R5778
Level: (low/med) LOW	Date Received: 12/17/99
% Moisture: decanted: (Y/N	Date Extracted:12/22/99
Concentrated Extract Volume: 1000	(uL) Date Analyzed: 01/10/00

Injection Volume: 2.0 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N)N pH:____

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg)UG/L Q

	· · · · · · · · · · · · · · · · · · ·		
		7.0	
108-95-2	Phenol	10	U
111-44-4	bis(2-Chloroethyl)ether	10	·U
95-57-8	2-Chlorophenol	10	U
541-73-1	1,3-Dichlorobenzene	10	U
106-46-7	1,4-Dichlorobenzene	. 10	Ü
95-50-1	1,2-Dichlorobenzene	10	U
95-48-7	2-Methylphenol	- 10	Ü
108-60-1	2,2'-oxybis(1-Chloropropane)	10	U
106-44-5	4-Methylphenol	10	Ü
621-64-7	N-Nitroso-di-n-propylamine	10	Ŭ
67-72-1	Hexachloroethane	10	U
98-95-3	Nitrobenzene	10	Ŭ
78-59-1	Isophorone	10	Ū
88-75-5	2-Nitrophenol	1.0	U
105-67-9	2,4-Dimethylphenol	10	U
111-91-1	bis(2-Chloroethoxy)methane	10	Ū
120-83-2	2,4-Dichlorophenol	10	Ū
120-82-1	1,2,4-Trichlorobenzene	10	Ū
91-20-3	Naphthalene	10	U
106-47-8	4-Chloroaniline	10	U
87-68-3	Hexachlorobutadiene	10	Ū
59-50-7	4-Chloro-3-methylphenol	- 10	U
91-57-6	2-Methylnaphthalene	10	Ū
77-47-4	Hexachlorocyclopentadiene	10	· U
88-06-2	2,4,6-Trichlorophenol	. 10	U
95-95-4	2,4,5-Trichlorophenol	. 26	Ū
91-58-7	2-Chloronaphthalene	10	Ü
88-74-4	2-Nitroaniline	26	Ū
131-11-3	Dimethylphthalate	10	Ū
208-96-8	Acenaphthylene	10	Ū
606-20-2	2,6-Dinitrotoluene	10	Ū
99-09-2	3-Nitroaniline	26	U
83-32-9	Acenaphthene	10	Ŭ

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

				MW - 3	
Lab	Name:	STL/CT	Contract:	<u> </u>	

Matrix: (soil/water)WATER Lab Sample ID: 993331A-03

Sample wt/vol: 950 (g/mL)MLLab File ID: >R5778

Level: (low/med) LOW Date Received: 12/17/99

% Moisture: ____ decanted: (Y/N)___ Date Extracted:12/22/99

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 01/10/00

Injection Volume: 2.0 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N)N

____:Hq

		CONCENTRATION UNITS:
CAS NO.	COMPOUND	(ug/L or ug/Kg)UG/L Q

			_	
51-28-5	2,4-Dinitrophenol	26	JJ-	101
100-02-7	4-Nitrophenol	26	Ū	
132-64-9	Dibenzofuran	10	Ū	{
121-14-2	2,4-Dinitrotoluene	10	Ū	<del> </del>
84-66-2	Diethylphthalate	10	Ū	
7005-72-3	4-Chlorophenyl-phenylether	10	Ū	
86-73-7	Fluorene	10	Ū	
100-01-6	4-Nitroaniline	26	<del>- Ŭ</del>	
534-52-1	4,6-Dinitro-2-methylphenol	26	<del>V</del>	103
86-30-6	N-Nitrosodiphenylamine (1)	10	Ū	
101-55-3	4-Bromophenyl-phenylether	10	Ū	
118-74-1	Hexachlorobenzene	10	Ū	İ
87-86-5	Pentachlorophenol	26	Ū	
85-01-8	Phenanthrene	10	Ū	]
120-12-7	Anthracene	10	Ū	j
86-74-8	Carbazole	10	Ū	
84-74-2	Di-n-butylphthalate	10.5	JB	U
206-44-0	Fluoranthene	10	Ū	
129-00-0	Pyrene	10	Ū	1
85-68-7	Butylbenzylphthalate	10	Ū	
91-94-1	3,3'-Dichlorobenzidine	10	Ū	
56-55-3	Benzo(a)anthracene	10	Ū	ļ
218-01-9	Chrysene	10	Ū	
117-81-7	bis(2-Ethylhexyl)phthalate	10:5	JB-	V.
117-84-0	Di-n-octylphthalate	10 2	JB-	U
205-99-2	Benzo(b)fluoranthene	10	Ū	
207-08-9	Benzo(k)fluoranthene	10	Ū	
50-32-8	Benzo(a)pyrene	10	U	
193-39-5	Indeno(1,2,3-cd)pyrene	10	Ū	
53-70-3	Dibenz(a,h)anthracene	10	Ü	
191-24-2	Benzo(q,h,i)perylene	10	Ū	

(1) - Cannot be separated from Diphenylamine

1F

EPA SAMPLE NO.

MW-3

Lab File ID: >R5778

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab	Name:	STL/CT	Contract:	 L

Matrix: (soil/water)WATER Lab Sample ID: 993331A-03

Level: (low/med) LOW Date Received: 12/17/99

% Moisture: ____ decanted: (Y/N)__ Date Extracted:12/22/99 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 01/10/00

Injection Volume: 2.0 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N)NpH:_____

Sample wt/vol: 950 (g/mL)ML

Number TICs Found: 7

(ug/L or ug/Kg)UG/L

CAS NUMBER	COMPOUND NAME	RT	EST.	CONC.	Q	
01.	UNKNOWN	23.68		6	JB	1
02.	UNKNOWN	26.58	<u> </u>	4	JB-	R
03.	UNKNOWN	25.01		3	J	"`
04.	UNKNOWN	25.39	<del> </del>	3	J	11
05.	UNKNOWN	29.36	·	3	J	11
06.	UNKNOWN	28.00		2	J	
07.	UNKNOWN	25.06	<u> </u>	2	J	1
08.						il .
09.						ıl
10.						ı
11.						il .
12.						ı
13.			<u> </u>			ı
14.						
15.						1
16.						d
17.						ıl
18.						ıl
19.						
20.		T	į			
21.						
22.						1
23.						
24.						
25.						
26.						
27.						
28.						
29.						
30.						

EPA SAMPLE NO.

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEE

			MW-4
Lab Name:	STL/CT	Contract:	

Lab Code: IEACT Case No.: 3331A SAS No.: ____ SDG No.: A3331

Matrix: (soil/water) WATER Lab Sample ID: 993331A-05

Sample wt/vol: 950 (g/mL)ML Lab File ID: >R5780

Level: (low/med) LOW Date Received: 12/17/99

% Moisture: _____ decanted: (Y/N)____ Date Extracted:12/22/99

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 01/10/00

Injection Volume: 2.0 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N)N pH:____

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)UG/L	Q

108-95-2	Phenol		10	· U
111-44-4	bis(2-Chloroethyl)ether		10	<del>U</del>
95-57-8	2-Chlorophenol		10	<del>U</del>
541-73-1	1,3-Dichlorobenzene	7	10	Ū
106-46-7	1,4-Dichlorobenzene		10	Ū
95-50-1	1,2-Dichlorobenzene		10	<u>י</u>
95-48-7	2-Methylphenol		10	Ū
108-60-1	2,2'-oxybis(1-Chloropropane)	F.: 1	10	Ū
106-44-5	4-Methylphenol		10	Ū
621-64-7	N-Nitroso-di-n-propylamine		10	Ū
67-72-1	Hexachloroethane		10	Ū
98-95-3	Nitrobenzene		10	Ū
78-59-1	Isophorone		10	Ū
88-75-5	2-Nitrophenol		10	Ū
105-67-9	2,4-Dimethylphenol		.10	U
111-91-1	bis(2-Chloroethoxy)methane		10	Ü
120-83-2	2,4-Dichlorophenol		. 10	Ū
120-82-1	1,2,4-Trichlorobenzene		10	Ū
91-20-3	Naphthalene		. 10	U
106-47-8	4-Chloroaniline		10	U
87-68-3	Hexachlorobuțadiene		. 10	Ū
59-50-7	4-Chloro-3-methylphenol		10	U
91-57-6	2-Methylnaphthalene		. 5	· /J)
77-47-4	Hexachlorocyclopentadiene		10	U j
88-06-2	2,4,6-Trichlorophenol		10	Ū
95-95-4	2,4,5-Trichlorophenol		26	Ū
91-58-7	2-Chloronaphthalene		10	Ū
88-74-4	2-Nitroaniline		26	Ū
131-11-3	Dimethylphthalate		10	Ū
208-96-8	Acenaphthylene		10	U
606-20-2	2,6-Dinitrotoluene		10 [	Ū
99-09-2	3-Nitroaniline		26	U
83-32-9	Acenaphthene	i	10	Ū

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET EPA SAMPLE NO.

			MW - 4
Lab Name	: STL/CT	Contract:	

Matrix: (soil/water) WATER Lab Sample ID: 993331A-05

Sample wt/vol: 950 (g/mL)ML Lab File ID: >R5780

Level: (low/med) LOW Date Received: 12/17/99

% Moisture: _____ decanted: (Y/N)___ Date Extracted:12/22/99

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 01/10/00

Injection Volume: 2.0 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N)N pH:____

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg)UG/L

				<del></del>	
51-28-5	2,4-Dinitrophenol		26	H	10
100-02-7	4-Nitrophenol		26	Ū	1
132-64-9	Dibenzofuran		10	Ŭ	1
121-14-2	2,4-Dinitrotoluene		- 10	Ū	1
84-66-2	Diethylphthalate		10.2	JB-	7 0
7005-72-3	4-Chlorophenyl-phenylether	-	10	Ū	1
86-73-7	Fluorene		. 10	U	7
100-01-6	4-Nitroaniline		26	Ū	7
534-52-1	4,6-Dinitro-2-methylphenol		26	Ū	<b>ゴ</b> し.
86-30-6	N-Nitrosodiphenylamine (1)		10	Ü	
101-55-3	4-Bromophenyl-phenylether		10	U	7
118-74-1	Hexachlorobenzene		10	Ū	1
87-86-5	Pentachlorophenol		26	Ū	7
85-01-8	Phenanthrene		10	Ū	7
120-12-7	Anthracene		10	U	7
86-74-8	Carbazole		10	Ū	1
84-74-2	Di-n-butylphthalate		10 -5-	JB-	<b>∄</b>
206-44-0	Fluoranthene	-	10	U	1
129-00-0	Pyrene		10	Ū	1
85-68-7	Butylbenzylphthalate		10	Ü	7
91-94-1	3,3'-Dichlorobenzidine		10	Ū	1
56-55-3	Benzo(a) anthracene		. 10	Ú	7]
218-01-9	Chrysene		10	Ū	7
117-81-7	bis(2-Ethylhexyl)phthalate		10 -6	JB	ひ
117-84-0	Di-n-octylphthalate		10-09	JB-	1 0
205-99-2	Benzo(b)fluoranthene		10	Ū	1
207-08-9	Benzo(k)fluoranthene		10	Ū	1
50-32-8	Benzo(a) pyrene		10	Ū	1
193-39-5	Indeno(1,2,3-cd)pyrene		10	Ū	1
53-70 <b>-</b> 3	Dibenz(a,h)anthracene		10	Ü	1
191-24-2	Benzo(a,n,1)perylene		10	Ū	il

(1) - Cannot be separated from Diphenylamine

1F

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

TENTATIVELY	TOENTIFIED	COMPOUNTS
	TUTINITIE TOD	CONTROUNDS

			MW-4
Lab Name:	: STL/CT	Contract:	

Matrix: (soil/water) WATER Lab Sample ID: 993331A-05

Sample wt/vol: 950 (g/mL)ML Lab File ID: >R5780

Level: (low/med) LOW Date Received: 12/17/99

% Moisture: ____ decanted: (Y/N)___ Date Extracted:12/22/99

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 01/10/00

Injection Volume: 2.0 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N)N pH:____

Number TICs Found: 22 (ug/L or ug/Kg)UG/L

			1	
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01.	UNKNOWN	9.23	12	J
02.	UNKNOWN C4 ALKYL BENZENE	9.86	8	J
03.	UNKNOWN	10.12	6	J
04.	UNKNOWN C4 ALKYL BENZENE	9.74	6	J
05.	UNKNOWN C3 ALKYL BENZENE	8.23	5	J
06.	UNKNOWN	11.48	5	J
07.	UNKNOWN C4 ALKYL BENZENE	10.34	5	J
08.	UNKNOWN C4 ALKYL BENZENE	10.86	4	J
09.	UNKNOWN C4 ALKYL BENZENE	10.03	4	J
10.	UNKNOWN C4 ALKYL BENZENE	9.93	3	J
11.	UNKNOWN	11.28	3	J
12.769-94-0	PHENOL, 2,4-BIS(1-PHENYLETHY	24.32	3	JN
13.	UNKNOWN C11H14 ISOMER	12.19	3	J
14.	UNKNOWN	8.04	3	J
15.	UNKNOWN C4 ALKYL BENZENE	10.46	3	J
16.	UNKNOWN C4 ALKYL BENZENE	9.81	2	J
17.	UNKNOWN C4 ALKYL BENZENE	10.72	.2	J
18.	UNKNOWN C4 ALKYL BENZENE	10.20	2	J
19.	UNKNOWN	27.68	2	J
20.	UNKNOWN C11H14 ISOMER	12.14	2	J
21.85-60-9	PHENOL, 4,4'-BUTYLIDENEBIS[2	25.54	2	JN
22.	UNKNOWN	27.59	2	Ĵ
23.				
24.				
25.				
26.				
27.				
28.				
29.				
30.				

EPA SAMPLE NO.

Dilution Factor: 1.0

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: STL/CT		Contract:	MW-5
Lab Code: IEACT	Case No.: 3331A	SAS No.: SDG N	o.: A3331
<pre>Matrix: (soil/water)</pre>	WATER	Lab Sample ID	: 993331A-06
Sample wt/vol:	950 (g/mL)ML	Lab File ID:	>R5781
Level: (low/med)	LOW	Date Received	: 12/17/99
% Moisture:	decanted: (Y/N)_	Date Extracted	d:12/22/99
Concentrated Extract	Volume: 1000 (	uL) Date Analyzed	: 01/10/00

GPC Cleanup: (Y/N)N pH:____

Injection Volume: 2.0 (uL)

		CONCENTRATION UNITS:
CAS NO.	COMPOUND	(ug/L or ug/Kg)UG/L Q

	· · · · · · · · · · · · · · · · · · ·	, <u>, , , , , , , , , , , , , , , , , , </u>	~
-			
108-95-2	Phenol	, 5	J
111-44-4	bis(2-Chloroethyl)ether	- 10	U
95-57-8	2-Chlorophenol	- 10	- Ü
541-73-1	1,3-Dichlorobenzene	10	Ü
106-46-7	1,4-Dichlorobenzene	10	Ū
95-50-1	1,2-Dichlorobenzene	10	Ū
95-48-7	2-Methylphenol	. 2	. J
108-60-1	2,2'-oxybis(1-Chloropropane)	10	U
106-44-5	4-Methylphenol	. 7	J
621-64-7	N-Nitroso-di-n-propylamine	10	Ū
67-72-1	Hexachloroethane	10	Ū
98-95-3	Nitrobenzene	10	Ŭ ·
78-59-1	Isophorone	10	Ū
88-75-5	2-Nitrophenol	10	Ü
105-67-9	2,4-Dimethylphenol	20	
111-91-1	bis(2-Chloroethoxy)methane	10	Ū
120-83-2	2,4-Dichlorophenol	10	Ū
120-82-1	1,2,4-Trichlorobenzene	10	U
91-20-3	Naphthalene	18	
106-47-8	4-Chloroaniline	10	Ū
87-68-3	Hexachlorobutadiene	10	Ū
59-50-7	4-Chloro-3-methylphenol	10	Ū
91-57-6	2-Methylnaphthalene	4	J
77-47-4	Hexachlorocyclopentadiene	10	J
88-06-2	2,4,6-Trichlorophenol	10	U
95-95-4	[2,4,5-Trichlorophenol	26	Ū
91-58-7	2-Chloronaphthalene	10	U
88-74-4	2-Nitroaniline	26	U
131-11-3	Dimethylphthalate	10	Ū
208-96-8	Acenaphthylene	29	
606-20-2	2,6-Dinitrotoluene	10	Ū
99-09-2	3-Nitroaniline	26	Ū
83-32-9	Acenaphthene	19	

## 1C EPA SAMPLE NO. EMIVOLATILE ORGANICS ANALYSIS DATA SHEET

•	SEMIVOLATILE ORGANICS	ANALYSIS DATA SHEET
Lab Name: STL/CT	Cont	MW-5
Lab Code: IEACT	Case No.: 3331A SAS	S No.: SDG No.: A3331
Matrix: (soil/water	) WATER	Lab Sample ID: 993331A-06
Sample wt/vol:	950 (g/mL)ML	Lab File ID: >R5781
Level: (low/med)	LOW	Date Received: 12/17/99
% Moisture:	decanted: (Y/N)	Date Extracted:12/22/99
Concentrated Extrac	t Volume: 1000 (uL)	Date Analyzed: 01/10/00
Injection Volume:	2.0 (uL)	Dilution Factor: 1.0

CONCENTRATION UNITS:

(ug/L or ug/Kg)UG/L Q

рН:____

51-28-5	2,4-Dinitrophenol		26	H-	103
100-02-7	4-Nitrophenol	<del> </del>	26	11	-
132-64-9	Dibenzofuran	<del> </del>	20		
121-14-2	2,4-Dinitrotoluene		10	Ū	-
84-66-2	Diethylphthalate		10	II	╢
7005-72-3	4-Chlorophenyl-phenylether		10	Ū	-{
86-73-7	Fluorene		18		1
100-01-6	4-Nitroaniline		26	Ū	
534-52-1	4,6-Dinitro-2-methylphenol		26	<del>J.</del>	01
86-30-6	N-Nitrosodiphenylamine (1)		10	Ū	
101-55-3	4-Bromophenyl-phenylether	<del> </del>	10	Ū	1
118-74-1	Hexachlorobenzene		10	<del>- Ŭ</del>	1
87-86-5	Pentachlorophenol		26	<del></del> <del></del>	1
85-01-8	Phenanthrene		6	Ĵ	
120-12-7	Anthracene		2	Ĵ	1
86-74-8	Carbazole		25	<del> </del>	
84-74-2	Di-n-butylphthalate		101	JB	U
206-44-0	Fluoranthene		1	J	
129-00-0	Pyrene		. 6	J	1
85-68-7	Butylbenzylphthalate		10	U	
91-94-1	3,3'-Dichlorobenzidine	-	10	Ū	
56-55-3	Benzo(a) anthracene		10	U	1
218-01-9	Chrysene		10	Ū	,
117-81-7	bis(2-Ethylhexyl)phthalate		0 7	J <del>B</del> -	$\cup$
117-84-0	Di-n-octylphthalate		10 2	JB	U
205-99-2	Benzo(b)fluoranthene	-	10	Ū	
207-08-9	Benzo(k)fluoranthene		10	Ū	
50-32-8	Benzo(a)pyrene		10	Ū	
193-39-5	Indeno(1,2,3-cd)pyrene		10	Ū	
53-70-3	Dibenz(a,h)anthracene		10	Ū	
191-24-2	Benzo(g,h,i)perylene		10	U	

(1) - Cannot be separated from Diphenylamine

GPC Cleanup: (Y/N)N

· 1F

EPA SAMPLE NO.

# SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

				MW - 5
Lab	Name:	STL/CT	Contract:	

Lab Code: IEACT Case No.: 3331A SAS No.: ____ SDG No.: A3331

Matrix: (soil/water)WATER Lab Sample ID: 993331A-06

Sample wt/vol: 950 (g/mL)ML Lab File ID: >R5781

Level: (low/med) LOW Date Received: 12/17/99

% Moisture: _____ decanted: (Y/N)___ Date Extracted:12/22/99

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 01/10/00

Injection Volume: 2.0 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N)N pH:____

Number TICs Found: 30 (ug/L or ug/Kg)UG/L

		<del></del>	T	
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01.	UNKNOWN C9H10 ISOMER	9.53	120	J
02.	UNKNOWN C9H8 ISOMER	9.70	82	J
03.	UNKNOWN C10H9NO ISOMER	19.13	62	J
04.	UNKNOWN C10H10O2 ISOMER	16.75	58	J
05.90-12-0	NAPHTHALENE, 1-METHYL-	13.88	44	JN
06.	UNKNOWN C9H8O ISOMER	12.46	33	J
07.	UNKNOWN C9H7NO ISOMER	18.32	30	Ĵ
08.	UNKNOWN C9H80 ISOMER	10.70	29	J
09.	UNKNOWN BENZO THIOPHENE	12.21	28	J
10.271-89-6	BENZOFURAN	8.81	27	JN
11.	UNKNOWN TRIMETHYL PHENOL	12.68	23	J
12.	UNKNOWN C10H9NO ISOMER	19.42	22	J
13.	UNKNOWN C9H10O2 ISOMER	15.14	22	J
14.	UNKNOWN DIMETHYL PHENOL	11.64	22	J
15.	UNKNOWN TRIMETHYL PHENOL	12.25	22	J
16.	UNKNOWN C10H10 ISOMER	11.56	21	Ĵ
17.	UNKNOWN C9H12O ISOMER	12.98	19	Ĵ
18.	UNKNOWN	17.58	18	J_
19.	UNKNOWN TRIMETHYL PHENOL	13.13	17	J
20.	UNKNOWN	17.38	17	J_
21.	UNKNOWN C12H10 PAH	14.70	16	J
22.	UNKNOWN TRIMETHYL BENZENE	9.27	16	J
23.	UNKNOWN TRIMETHYL PHENOL	13.19	15	J
24.	UNKNOWN	11.47	13	J
25.	UNKNOWN C11H100 ISOMER	17.29	12	J
26.	UNKNOWN C13H10O ISOMER	20.25	12	Ĵ
27.	UNKNOWN C12H8O2 ISOMER	19.66	12	J
28.	UNKNOWN HYDROXYBIPHENYL	18.23	11	J
29.	UNKNOWN	19.32	11	J
30.	UNKNOWN C10H80 ISOMER	16.28	11	J

1B EPA SAMPLE NO.

SEMIVOLATILE	OPGANICS	ANALYSTS	מדמת	SHEET
PEMIACHUITE	OKGANICS	MMHTTOTO	DATH	لإششتون

,				MW-6
Lab Name: STL/CT		Contract	:	
Lab Code: IEACT	Case No.: 3331A	SAS No.	: SDG N	o.: A3331
Matrix: (soil/water	) WATER		Lab Sample ID	: 993331A-07
Sample wt/vol:	890 (g/mL)ML		Lab File ID:	>R5801
Level: (low/med)	LOW		Date Received	: 12/17/99
% Moisture:	decanted: (Y/N)_		Date Extracted	d:12/22/99
Concentrated Extract	Volume: 1000	(uL)	Date Analyzed	: 01/11/00
Injection Volume:	2.0 (uL)		Dilution Facto	or: 1.0
GPC Cleanup: (Y/N)	.Hq N			

		CONCENTRATION UNITS:
CAS NO.	COMPOUND	(ug/L  or  ug/Kg)UG/L Q

F			
108-95-2	Phenol	11	U
111-44-4	bis(2-Chloroethyl)ether	11	Ū
95-57-8	2-Chlorophenol	11	Ū
541-73-1	1,3-Dichlorobenzene	11	Ū
106-46-7	1,4-Dichlorobenzene	11	Ū
95-50-1	1,2-Dichlorobenzene	11	Ū
95-48-7	2-Methylphenol	11	Ū
108-60-1	2,2'-oxybis(1-Chloropropane)	11	Ū
106-44-5	4-Methylphenol	11	Ū
621-64-7	N-Nitroso-di-n-propylamine	11	U
67-72-1	Hexachloroethane	11	Ū
98-95-3	Nitrobenzene	11	Ū
78-59-1	Isophorone	11	Ū
88-75-5	2-Nitrophenol	11	Ū
105-67-9	2,4-Dimethylphenol	11	Ū
111-91-1	bis(2-Chloroethoxy)methane	11	Ū
120-83-2	2,4-Dichlorophenol	11	Ū
120-82-1	1,2,4-Trichlorobenzene	11	U
91-20-3	Naphthalene	11	Ū
106-47-8	4-Chloroaniline	11	U
87-68-3	Hexachlorobutadiene	11	Ū
59-50-7	4-Chloro-3-methylphenol	11	Ū
91-57-6	2-Methylnaphthalene	11	Ū
77-47-4	Hexachlorocyclopentadiene	11	U (
88-06-2	2,4,6-Trichlorophenol	11	Ū
95-95-4	2,4,5-Trichlorophenol	28	Ü
91-58-7	2-Chioronaphthalene	11	Ū
88-74-4	2-Nitroaniline	28	Ü
131-11-3	Dimethylphthalate	11	Ū
208-96-8	Acenaphthylene	11	U
606-20-2	2,6-Dinitrotoluene	11	Ū
99-09-2	3-Nitroaniline	28	Ŭ
83-32-9	Acenaphthene	11	U

Lab File ID: >R5801

			MW-6
Lab Name:	STL/CT	Contract:	 

Lab Code: IEACT Case No.: 3331A SAS No.: ____ SDG No.: A3331

Lab Sample ID: 993331A-07 Matrix: (soil/water)WATER

Level: (low/med) LOW Date Received: 12/17/99

(g/mL)ML

Sample wt/vol: 890

% Moisture: _____ decanted: (Y/N)____ Date Extracted: 12/22/99

Concentrated Extract Volume: 1000 (uL) , Date Analyzed: 01/11/00

Injection Volume: 2.0 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N)N pH:____

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg)UG/L Q

				]
51-28-5	2,4-Dinitrophenol	. 28	IJ	UJ
100-02-7	4-Nitrophenol	28	- IJ-	103
132-64-9	Dibenzofuran	11	Ū	دی
121-14-2	2,4-Dinitrotoluene	11	Ū	11
84-66-2	Diethylphthalate	11.3	JB-	U-
7005-72-3	4-Chlorophenyl-phenylether	11	Ū	
86-73-7	Fluorene	11	Ū	
100-01-6	4-Nitroaniline	28	Ū	
534-52-1	4,6-Dinitro-2-methylphenol	28	Ū	,
86-30-6	N-Nitrosodiphenylamine (1)	11	Ū	
101-55-3	4-Bromophenyl-phenylether	11	Ū	
118-74-1	Hexachlorobenzene	11	Ū	1
87-86-5	Pentachlorophenol	28	Ū	}
85-01-8	Phenanthrene	11	Ū	
120-12-7	Anthracene	11	Ū	1
86-74-8	Carbazole	11	Ū	
84-74-2	Di-n-butylphthalate	11 -2	JB	$\cup$
206-44-0	Fluoranthene	11	Ū	l
129-00-0	Pyrene	11	Ū	)
85-68-7	Butylbenzylphthalate	11	Ū	1
91-94-1	3,3'-Dichlorobenzidine	11	Ū	
56-55-3	Benzo(a)anthracene	11	Ū	}
218-01-9	Chrysene	11	U	١,
117-81-7	bis(2-Ethylhexyl)phthalate	:1 2	₹3	U
117-84-0	Di-n-octylphthalate	11 2	JB	0
205-99-2	Benzo(b)fluoranthene	11	Ū	
207-08-9	Benzo(k)fluoranthene	11	Ū	
50-32-8	Benzo(a)pyrene	11	Ū	
193-39-5	Indeno(1,2,3-cd)pyrene	11	Ū	
53-70-3	Dibenz(a,h)anthracene	11	Ū	
191-24-2	Benzo(q,h,i)perylene	11	Ū	

(1) - Cannot be separated from Diphenylamine

EPA SAMPLE NO.

1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEE<u>T</u>

			MW-6
Lab Name:	STL/CT	Contract:	

Matrix: (soil/water)WATER Lab Sample ID: 993331A-07

Sample wt/vol: 890 (g/mL)ML Lab File ID: >R5801

Level: (low/med) LOW Date Received: 12/17/99

% Moisture: _____ decanted: (Y/N)___ Date Extracted:12/22/99

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 01/11/00

Injection Volume: 2.0 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N)N pH:____

Number TICs Found: 4 (ug/L or ug/Kg)UG/L

CAS NUMBER	COMPOUND NAME	RT	EST.	CONC.	Q
01.	UNKNOWN	23.63		10	JB-
02.912-24-9 03.	ATRAZINE UNKNOWN	18.47 21.68		6 5	JN J
03.	UNKNOWN	24.97		3	J
05.	ONICIONI	21.37			
06.					
07.					
08.					
09.					
10.					
11.					
12.					
13.					
14.					
15.					
16.					
17.					
18.	-		<del></del>		
19.				<u>-</u>	
21.	·				
22.			<del></del>		
23.					
24.			· · · · · ·		
25.					
26.					
27.					
28.					
29.					
30.				İ	

1.B EPA SAMPLE NO.

SEMIVOLATILE	ORGANICS	ANALYSIS	DATA	SHEET
--------------	----------	----------	------	-------

Lab Name: STL/CT		Contract:
Lab Code: IEACT	Case No.: 3331A	SAS No.: SDG No.: A3331
Matrix: (soil/water	c) WATER	Lab Sample ID: 993331A-08
Sample wt/vol:	910 (g/mL)ML	Lab File ID: >R5802
Level: (low/med)	LOW	Date Received: 12/17/99
% Moisture:	decanted: (Y/N)	Date Extracted:12/22/99

Injection Volume: 2.0 (uL) Dilution Factor: 1.0

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 01/11/00

GPC Cleanup: (Y/N)N pH:____

CAS NO.	COMPOUND	CONCENTRATION UNIT		Q .	<b>-</b>
108-95-2	Phenol		7.7	ŢŢ	
111-44-4	bis(2-Chloroethyl)ether		11	<del>U</del>	-
95-57-8	2-Chlorophenol		11	Ü	1
541-73-1	1,3-Dichlorobenzene		11	<del>U</del>	{
106-46-7	1,4-Dichlorobenzene		<del>- ††</del> +	Ū	1
95-50-1	1,2-Dichlorobenzene		11	Ū	1
95-48-7	2-Methylphenol		11	· Ū	1
108-60-1	2,2'-oxybis(1-Chloropropar	ie)	11	Ū	1
106-44-5	4-Methylphenol		11	Ū	1
621-64-7	N-Nitroso-di-n-propylamine		11	Ū	il
67-72-1	Hexachloroethane		11	Ū	
98-95-3	Nitrobenzene	·-	11	Ū	
78-59-1	Isophorone		11	Ū	
88-75-5	2-Nitrophenol		11	Ū.	
105-67-9	2,4-Dimethylphenol		11	Ū	
111-91-1	bis(2-Chloroethoxy) methane		11	Ū	
120-83-2	2,4-Dichlorophenol		11	Ū	
120-82-1	1,2,4-Trichlorobenzene		11	· U	
91-20-3	Naphthalene		11	Ū	
106-47-8	4-Chloroaniline		11	Ū	
87-68-3	Hexachlorobutadiene		11	Ū	
59-50-7	4-Chloro-3-methylphenol		11	U	ŀ
91-57-6	2-Methylnaphthalene		11	Ŭ.	10
77-47-4	Hexachlorocyclopentadiene		11	J.	R
88-06-2	2,4,6-Trichlorophenol	<u> </u>	11	Ü	
95-95-4	2,4,5-Trichlorophenol		27	Ŭ	
91-58-7	2-Chloronaphthalene		11	Ū ·	
88-74-4	2-Nitroaniline		27	Ü	
131-11-3	Dimethylphthalate		11	U	
208-96-8	Acenaphthylene		11	Ū	
606-20-2	2,6-Dinitrotoluene		11	Ū	}
99-09-2	3-Nitroaniline		2.7	U	
83-32-9	Acenaphthene		11 1	Ü	j

EPA SAMPLE NO. 1.C

SEMIVOLATILE	ORGANICS	ANALYSIS	DATA	SHEET

				DUP
Lab	Name:	STL/CT	Contract:	

Lab Sample ID: 993331A-08 Matrix: (soil/water) WATER

Lab File ID: >R5802 Sample wt/vol: 910 (g/mL)ML

Level: (low/med) LOW Date Received: 12/17/99

Date Extracted:12/22/99 % Moisture: ____ decanted: (Y/N)___

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 01/11/00

Injection Volume: 2.0 (uL) Dilution Factor: 1.0

pH:____

GPC Cleanup: (Y/N)N

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg)UG/L

		<del></del>	
51-28-5	2,4-Dinitrophenol	27 .	U
100-02-7	4-Nitrophenol	27	II i
132-64-9	Dibenzofuran	11	Ū
121-14-2	2,4-Dinitrotoluene	11	. U
84-66-2	Diethylphthalate	. 11	Ū
7005-72-3	4-Chlorophenyl-phenylether	. 11	Ū
86-73-7	Fluorene	11	Ū
100-01-6	4-Nitroaniline	27	Ū
534-52-1	4,6-Dinitro-2-methylphenol	27	Ü
86-30-6	N-Nitrosodiphenylamine (1)	. 11	Ū
101-55-3	4-Bromophenyl-phenylether	11	Ū
118-74-1	Hexachlorobenzene	11	·Ü
87-86-5	Pentachlorophenol	27	Ū
85-01-8	Phenanthrene .	. 11	Ū
120-12-7	Anthracene	. 11	Ü
86-74-8	Carbazole	. 11	Ū
84-74-2	Di-n-butylphthalate	i1 .6	JB i
206-44-0	Fluoranthene	11	Ū
129-00-0	Pyrene	11	U
85-68-7	Butylbenzylphthalate	11	Ū
91-94-1	3,3'-Dichlorobenzidine	•	U
56-55-3	Benzo(a)anthracene	.11	Ū
218-01-9	Chrysene	11	Ū
117-81-7	bis(2-Ethylhexyl)phthalate	il &	JB U
117-84-0	Di-n-octylphthalate	- 11.	U ,
205-99-2	Benzo(b)fluoranthene	11	U
207-08-9	Benzo(k) fluoranthene	11	Ū
50-32-8	Benzo(a)pyrene	. 11	U
193-39-5	Indeno(1,2,3-cd)pyrene	11	Ū.
53-70-3	Dibenz(a,h)anthracene	11	Ū
191-24-2	Benzo(q,h,1)perylene	11	Ū

(1) - Cannot be separated from Diphenylamine

EPA SAMPLE NO.

1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEE<u>T</u>

TENTATIVELY	IDENTIFIED	COMPOUNDS
-------------	------------	-----------

						שטע
Lab	Name:	STI.	, Cuh	(	Contract:	

Matrix: (soil/water)WATER Lab Sample ID: 993331A-08

Sample wt/vol: 910 (g/mL)ML Lab File ID: >R5802

Level: (low/med) LOW Date Received: 12/17/99

% Moisture: _____ decanted: (Y/N)___ Date Extracted:12/22/99

Date Analyzed: 01/11/00 Concentrated Extract Volume: 1000 (uL)

Injection Volume: 2.0 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N)N pH:____

Number TICs Found: 6 (ug/L or ug/Kg)UG/L

			1		
CAS NUMBER	COMPOUND NAME	RT	EST.	CONC.	Q
01.	UNKNOWN	23.64		7	JB
02.912-24-9	ATRAZINE	18.47	1	6	JN
03.	UNKNOWN	26.55		3	JB
04.	UNKNOWN	21.68		3	J
05.	UNKNOWN	24.96		3	J_
06.	UNKNOWN	25.02		3	J
07.					
08.					
09.					
10.					
11.			ļ		
12.					
13.					
14.		<u> </u>			
15.					
16.					
17.					
18.		ļ · · · · · · · · · · · · · · · · · · ·	ļ		
19.		<del> </del>			
20.	,	ļ			
21.					
22.					
23.					
24.					
25.		ļ			
26.					
27.		-			
28.					
29.		ļ			
30.		<u> </u>			

EPA	SAMPLE	NO.
MW-	- 7	

٠, ــــا					MW-1	
	Lab Name: ST	TL-CT	_ Contr	ract:		
	Lab Code: <u>II</u>	EACT Case No.: 3331A	SAS No.:	SDG No.: <u>A</u>	<u>3331</u>	
	Matrix: (so	il/water): <u>WATER</u>		Lab Sample ID: 99	3331A-01	_
. ·	Sample wt/vo	ol: <u>1000</u> (g/ml) <u>ML</u>		Lab File ID: C504	2CLP103	
:	% Moisture:	decanted: (Y/N)		Date Received: 12	/17/99	
<u> </u>	Extraction:	(SepF/Cont/Sonc) SEP	<u>F</u>	Date Extracted: 1	2/17/99	
<u>.</u>	Concentrated	Extract Volume: 10000	(uL)	Date Analyzed: 12	/20/99	
; 	Injection Vo	olume: <u>1.0</u> (uL)		Dilution Factor: 3	1.0	
	GPC Cleanup:	(Y/N) <u>N</u> pH:		Sulfur Cleanup: (	Y/N) <u>N</u>	
	CAS NO.	COMPOUND		CONCENTRATION UNITS (ug/L or ug/Kg) <u>UG/</u>		
$\neg$	319-84-6	alpha-BHC		0.05		
	319-85-7	beta-BHC delta-BHC		0.05		
÷	319-86-8 58-89-9	gamma-BHC (Lindane)		0.05		
7	76-44-8	Heptachlor		0.05		
1	309-00-2	Aldrin		0.05	50 U	
7	1024-57-3	Heptachlor Epoxide		0.05	50 U -	

319-84-6	alpha-BHC	0.050 U
319-85-7	beta-BHC	· 0.050 U
319-86-8	delta-BHC	0.050 U
58-89-9	gamma-BHC (Lindane)	0.050 U
76-44-8	Heptachlor	0.050 U
309-00-2	Aldrin	0.050 U
1024-57-3	Heptachlor Epoxide	0.050 Ü -
959-98-8	Endosulfan I	0.050 U
60-57-1	Dieldrin	0.10 U
72-55-9	4,4'-DDE	0.10 U
72-20-8	Endrin	0.10 U
33213-65-9	Endosulfan II	0:10 U
72-54-8	4,4'-DDD	0.10 U
1031-07-8	Endosulfan Sulfate	0.10 U
50-29-3	4,4'-DDT	0.10 U
72-43-5	Methoxychlor	0.50 U
53494-70-5	Endrin Ketone	0.10 U
7421-93-4	Endrin Aldehyde	0.10 U
	alpha-Chlordane	0.050 U
5103-74-2	gamma-Chlordane	0.050 U
	Toxaphene	5.0 Ü
	Aroclor-1016	1.0 Ū
	Aroclor-1221	2.0 U
	Aroclor-1232	1.0 U
	Aroclor-1242	1.0 U
	Aroclor-1248	1.0 U
11097-69-1	Aroclor-1254	1.0 U
11096-82-5	Aroclor-1260	1.0 U

EPA	SAMPLE	NO.
MW-	· 3	

Lab Name: STL-CT Cont	ract:
Lab Code: <u>IEACT</u> Case No.: <u>3331A</u> SAS No.	: SDG No.: <u>A3331</u>
Matrix: (soil/water): WATER	Lab Sample ID: 993331A-03
Sample wt/vol: 1000 (g/ml) ML	Lab File ID: C5042CLP106
% Moisture: decanted: (Y/N)	Date Received: <u>12/17/99</u>
Extraction: (SepF/Cont/Sonc) <u>SEPF</u>	Date Extracted: 12/17/99
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: 12/20/99
Injection Volume: 1.0 (uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH:	Sulfur Cleanup: $(Y/N)N$
CAS NO. COMPOUND	CONCENTRATION UNITS: Q (ug/L or ug/Kg) <u>UG/L</u>

319-84-6   alpha-BHC				
319-86-8   delta-BHC   0.050   U   58-89-9   gamma-BHC (Lindane)   0.050   U   76-44-8   Heptachlor   0.050   U   1024-57-3   Heptachlor Epoxide   0.050   U   959-98-8   Endosulfan I   0.050   U   1025-57-1   Dieldrin   0.10   U   1025-57-1   Dieldrin   0.10   U   1025-57-1   Dieldrin   0.10   U   1025-57-1   Dieldrin   0.10   U   1025-57-1   Dieldrin   0.10   U   1025-57-1   Dieldrin   0.10   U   1025-57-1   Dieldrin   0.10   U   1025-57-1   Dieldrin   0.10   U   1025-57-1   Dieldrin   0.10   U   1025-57-1   Dieldrin   0.10   U   1025-57-1   Dieldrin   0.10   U   1025-57-1   Dieldrin   0.10   U   1025-57-1   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin	319-84-6	alpha-BHC	0.050 U	$\neg$
58-89-9         gamma-BHC (Lindane)         0.050 U           76-44-8         Heptachlor         0.050 U           309-00-2         Aldrin         0.050 U           959-98-8         Heptachlor Epoxide         0.050 U           959-98-8         Endosulfan I         0.050 U           60-57-1         Dieldrin         0.10 U           72-55-9         4,4'-DDE         0.10 U           72-20-8         Endrin         0.10 U           33213-65-9         Endosulfan II         0.10 U           72-54-8         4,4'-DDD         0.10 U           1031-07-8         Endosulfan Sulfate         0.10 U           50-29-3         4,4'-DDT         0.10 U           72-43-5         Methoxychlor         0.50 U           53494-70-5         Endrin Ketone         0.10 U           7421-93-4         Endrin Ketone         0.10 U           5103-71-9         alpha-Chlordane         0.050 U           5103-74-2         gamma-Chlordane         0.050 U           8001-35-2         Toxaphene         5.0 U           12674-11-2         Aroclor-1232         1.0 U           1141-16-5         Aroclor-1232         1.0 U           53469-21-9         Aroclor-1242	319-85-7	beta-BHC	0.050 U	
76-44-8       Heptachlor       0.050       U         309-00-2       Aldrin       0.050       U         1024-57-3       Heptachlor Epoxide       0.050       U         959-98-8       Endosulfan I       0.050       U         60-57-1       Dieldrin       0.10       U         72-55-9       4,4'-DDE       0.10       U         72-20-8       Endrin       0.10       U         33213-65-9       Endosulfan II       0.10       U         72-54-8       4,4'-DDD       0.10       U         1031-07-8       Endosulfan Sulfate       0.10       U         50-29-3       4,4'-DDT       0.10       U         72-43-5       Methoxychlor       0.50       U         53494-70-5       Endrin Ketone       0.10       U         7421-93-4       Endrin Aldehyde       0.10       U         5103-74-2       gamma-Chlordane       0.050       U         8001-35-2       Toxaphene       5.0       U         12674-11-2       Aroclor-1221       2.0       U         1104-28-2       Aroclor-1221       2.0       U         11141-16-5       Aroclor-1242       1.0       U <td>319-86-8</td> <td>delta-BHC</td> <td>0.050 U</td> <td></td>	319-86-8	delta-BHC	0.050 U	
309-00-2   Aldrin	58-89-9	gamma-BHC (Lindane)	0.050 U	
1024-57-3       Heptachlor Epoxide       0.050       U         959-98-8       Endosulfan I       0.050       U         60-57-1       Dieldrin       0.10       U         72-55-9       4,4'-DDE       0.10       U         72-20-8       Endrin       0.10       U         33213-65-9       Endosulfan II       0.10       U         72-54-8       4,4'-DDD       0.10       U         1031-07-8       Endosulfan Sulfate       0.10       U         50-29-3       4,4'-DDT       0.10       U         72-43-5       Methoxychlor       0.50       U         53494-70-5       Endrin Ketone       0.10       U         7421-93-4       Endrin Aldehyde       0.10       U         5103-71-9       alpha-Chlordane       0.050       U         8001-35-2       Toxaphene       5.0       U         12674-11-2       Aroclor-1016       1.0       U         1104-28-2       Aroclor-1221       2.0       U         1141-16-5       Aroclor-1232       1.0       U         12672-29-6       Aroclor-1248       1.0       U         12672-29-6       Aroclor-1254       1.0	76-44-8	Heptachlor	0.050 U	$\exists l$
959-98-8       Endosulfan I       0.050 U         60-57-1       Dieldrin       0.10 U         72-55-9       4,4'-DDE       0.10 U         72-20-8       Endrin       0.10 U         33213-65-9       Endosulfan II       0.10 U         72-54-8       4,4'-DDD       0.10 U         1031-07-8       Endosulfan Sulfate       0.10 U         50-29-3       4,4'-DDT       0.10 U         72-43-5       Methoxychlor       0.50 U         53494-70-5       Endrin Ketone       0.10 U         7421-93-4       Endrin Aldehyde       0.10 U         5103-74-2       gamma-Chlordane       0.050 U         8001-35-2       Toxaphene       5.0 U         12674-11-2       Aroclor-1016       1.0 U         11141-16-5       Aroclor-1232       1.0 U         12469-21-9       Aroclor-1242       1.0 U         12672-29-6       Aroclor-1248       1.0 U         11097-69-1       Aroclor-1254       1.0 U		1 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		$\exists \mathbb{I}$
60-57-1       Dieldrin       0.10       U         72-55-9       4,4'-DDE       0.10       U         72-20-8       Endrin       0.10       U         33213-65-9       Endosulfan II       0.10       U         72-54-8       4,4'-DDD       0.10       U         1031-07-8       Endosulfan Sulfate       0.10       U         50-29-3       4,4'-DDT       0.10       U         72-43-5       Methoxychlor       0.50       U         53494-70-5       Endrin Ketone       0.10       U         7421-93-4       Endrin Aldehyde       0.10       U         5103-74-2       gamma-Chlordane       0.050       U         8001-35-2       Toxaphene       5.0       U         12674-11-2       Aroclor-1212       2.0       U         11141-16-5       Aroclor-1232       1.0       U         53469-21-9       Aroclor-1242       1.0       U         12672-29-6       Aroclor-1254       1.0       U		Heptachlor Epoxide	0.050 U	
72-55-9       4,4'-DDE       0.10 U         72-20-8       Endrin       0.10 U         33213-65-9       Endosulfan II       0.10 U         72-54-8       4,4'-DDD       0.10 U         1031-07-8       Endosulfan Sulfate       0.10 U         50-29-3       4,4'-DDT       0.10 U         72-43-5       Methoxychlor       0.50 U         53494-70-5       Endrin Ketone       0.10 U         7421-93-4       Endrin Aldehyde       0.10 U         5103-71-9       alpha-Chlordane       0.050 U         5103-74-2       gamma-Chlordane       0.050 U         8001-35-2       Toxaphene       5.0 U         12674-11-2       Aroclor-1016       1.0 U         1104-28-2       Aroclor-1221       2.0 U         1141-16-5       Aroclor-1232       1.0 U         53469-21-9       Aroclor-1242       1.0 U         12672-29-6       Aroclor-1248       1.0 U         11097-69-1       Aroclor-1254       1.0 U		Endosulfan I	0.050 U	$\neg$
72-20-8       Endrin       0.10       U         33213-65-9       Endosulfan II       0.10       U         72-54-8       4,4'-DDD       0.10       U         1031-07-8       Endosulfan Sulfate       0.10       U         50-29-3       4,4'-DDT       0.10       U         72-43-5       Methoxychlor       0.50       U         53494-70-5       Endrin Ketone       0.10       U         7421-93-4       Endrin Aldehyde       0.10       U         5103-71-9       alpha-Chlordane       0.050       U         5103-74-2       gamma-Chlordane       0.050       U         8001-35-2       Toxaphene       5.0       U         12674-11-2       Aroclor-1016       1.0       U         1104-28-2       Aroclor-1221       2.0       U         1141-16-5       Aroclor-1232       1.0       U         53469-21-9       Aroclor-1242       1.0       U         12672-29-6       Aroclor-1254       1.0       U         11097-69-1       Aroclor-1254       1.0       U		, <del>-</del>	0.10 U	ᅦ
33213-65-9   Endosulfan II	72-55-9	4,4'-DDE	0.10 U	ᅰ
72-54-8       4,4'-DDD       0.10 U         1031-07-8       Endosulfan Sulfate       0.10 U         50-29-3       4,4'-DDT       0.10 U         72-43-5       Methoxychlor       0.50 U         53494-70-5       Endrin Ketone       0.10 U         7421-93-4       Endrin Aldehyde       0.10 U         5103-71-9       alpha-Chlordane       0.050 U         8001-35-2       Toxaphene       5.0 U         12674-11-2       Aroclor-1016       1.0 U         11104-28-2       Aroclor-1221       2.0 U         1141-16-5       Aroclor-1232       1.0 U         53469-21-9       Aroclor-1242       1.0 U         12672-29-6       Aroclor-1248       1.0 U         11097-69-1       Aroclor-1254       1.0 U		Endrin	0.10 U	
1031-07-8       Endosulfan Sulfate       0.10       U         50-29-3       4,4'-DDT       0.10       U         72-43-5       Methoxychlor       0.50       U         53494-70-5       Endrin Ketone       0.10       U         7421-93-4       Endrin Aldehyde       0.10       U         5103-71-9       alpha-Chlordane       0.050       U         8001-35-2       gamma-Chlordane       0.050       U         8001-35-2       Toxaphene       5.0       U         12674-11-2       Aroclor-1016       1.0       U         1104-28-2       Aroclor-1221       2.0       U         1141-16-5       Aroclor-1232       1.0       U         53469-21-9       Aroclor-1242       1.0       U         12672-29-6       Aroclor-1248       1.0       U         11097-69-1       Aroclor-1254       1.0       U		, <del></del>	0.10 U	$\exists$
50-29-3       4,4'-DDT       0.10 U         72-43-5       Methoxychlor       0.50 U         53494-70-5       Endrin Ketone       0.10 U         7421-93-4       Endrin Aldehyde       0.10 U         5103-71-9       alpha-Chlordane       0.050 U         5103-74-2       gamma-Chlordane       0.050 U         8001-35-2       Toxaphene       5.0 U         12674-11-2       Aroclor-1016       1.0 U         1104-28-2       Aroclor-1221       2.0 U         1141-16-5       Aroclor-1232       1.0 U         53469-21-9       Aroclor-1242       1.0 U         12672-29-6       Aroclor-1248       1.0 U         11097-69-1       Aroclor-1254       1.0 U	72-54-8		0.10 U	7
72-43-5       Methoxychlor       0.50       U         53494-70-5       Endrin Ketone       0.10       U         7421-93-4       Endrin Aldehyde       0.10       U         5103-71-9       alpha-Chlordane       0.050       U         8001-35-2       gamma-Chlordane       0.050       U         8001-35-2       Toxaphene       5.0       U         12674-11-2       Aroclor-1016       1.0       U         11104-28-2       Aroclor-1221       2.0       U         1141-16-5       Aroclor-1232       1.0       U         53469-21-9       Aroclor-1242       1.0       U         12672-29-6       Aroclor-1248       1.0       U         11097-69-1       Aroclor-1254       1.0       U		L		
53494-70-5       Endrin Ketone       0.10       U         7421-93-4       Endrin Aldehyde       0.10       U         5103-71-9       alpha-Chlordane       0.050       U         5103-74-2       gamma-Chlordane       0.050       U         8001-35-2       Toxaphene       5.0       U         12674-11-2       Aroclor-1016       1.0       U         11104-28-2       Aroclor-1221       2.0       U         1141-16-5       Aroclor-1232       1.0       U         53469-21-9       Aroclor-1242       1.0       U         12672-29-6       Aroclor-1248       1.0       U         11097-69-1       Aroclor-1254       1.0       U				
7421-93-4       Endrin Aldehyde       0.10       U         5103-71-9       alpha-Chlordane       0.050       U         5103-74-2       gamma-Chlordane       0.050       U         8001-35-2       Toxaphene       5.0       U         12674-11-2       Aroclor-1016       1.0       U         11104-28-2       Aroclor-1221       2.0       U         1141-16-5       Aroclor-1232       1.0       U         53469-21-9       Aroclor-1242       1.0       U         12672-29-6       Aroclor-1248       1.0       U         11097-69-1       Aroclor-1254       1.0       U			0.50 U	$\neg$
5103-71-9       alpha-Chlordane       0.050       U         5103-74-2       gamma-Chlordane       0.050       U         8001-35-2       Toxaphene       5.0       U         12674-11-2       Aroclor-1016       1.0       U         11104-28-2       Aroclor-1221       2.0       U         1141-16-5       Aroclor-1232       1.0       U         53469-21-9       Aroclor-1242       1.0       U         12672-29-6       Aroclor-1248       1.0       U         11097-69-1       Aroclor-1254       1.0       U				$\square$
5103-74-2       gamma-Chlordane       0.050       U         8001-35-2       Toxaphene       5.0       U         12674-11-2       Aroclor-1016       1.0       U         11104-28-2       Aroclor-1221       2.0       U         11141-16-5       Aroclor-1232       1.0       U         53469-21-9       Aroclor-1242       1.0       U         12672-29-6       Aroclor-1248       1.0       U         11097-69-1       Aroclor-1254       1.0       U				
8001-35-2       Toxaphene       5.0       U         12674-11-2       Aroclor-1016       1.0       U         11104-28-2       Aroclor-1221       2.0       U         11141-16-5       Aroclor-1232       1.0       U         53469-21-9       Aroclor-1242       1.0       U         12672-29-6       Aroclor-1248       1.0       U         11097-69-1       Aroclor-1254       1.0       U		·		$\exists$
12674-11-2       Aroclor-1016       1.0       U         11104-28-2       Aroclor-1221       2.0       U         11141-16-5       Aroclor-1232       1.0       U         53469-21-9       Aroclor-1242       1.0       U         12672-29-6       Aroclor-1248       1.0       U         11097-69-1       Aroclor-1254       1.0       U		<del></del>		$\neg$
11104-28-2       Aroclor-1221       2.0       U         11141-16-5       Aroclor-1232       1.0       U         53469-21-9       Aroclor-1242       1.0       U         12672-29-6       Aroclor-1248       1.0       U         11097-69-1       Aroclor-1254       1.0       U	1	- ·	5.0 U	$\exists$
11141-16-5       Aroclor-1232       1.0       U         53469-21-9       Aroclor-1242       1.0       U         12672-29-6       Aroclor-1248       1.0       U         11097-69-1       Aroclor-1254       1.0       U				$\exists$
53469-21-9       Aroclor-1242       1.0       U         12672-29-6       Aroclor-1248       1.0       U         11097-69-1       Aroclor-1254       1.0       U				$\exists$
12672-29-6 Aroclor-1248 1.0 U 11097-69-1 Aroclor-1254 1.0 U			1.0 U	$\exists$
11097-69-1 Aroclor-1254 1.0 U			1.0 U	
		Aroclor-1248	1.0 U	$\exists$
11096-82-5   Aroclor-1260 1.0 U.		Aroclor-1254	1.0 U	$\exists$
	11096-82-5	Aroclor-1260	1.0 U	

EPA	SAMPLE	NO.
MW-	- 2	

	Lab Name: STL-CT Cont	ract:
	Lab Code: <u>IEACT</u> Case No.: <u>3331A</u> SAS No.	: SDG No.: <u>A3331</u>
	Matrix: (soil/water): WATER	Lab Sample ID: 993331A-04
 -	Sample wt/vol: 1000 (g/ml) ML	Lab File ID: C5042CLP107
	% Moisture: decanted: (Y/N)	Date Received: <u>12/17/99</u>
, 7	Extraction: (SepF/Cont/Sonc) <u>SEPF</u>	Date Extracted: 12/17/99
}	Concentrated Extract Volume: 10000 (uL)	Date Analyzed: 12/20/99
7	Injection Volume: 1.0 (uL)	Dilution Factor: 1.0
	GPC Cleanup: (Y/N)N pH:	Sulfur Cleanup: $(Y/N)N$
	CAS NO. COMPOUND	CONCENTRATION UNITS: Q (ug/L or ug/Kg) <u>UG/L</u>
7	319-84-6   alpha-BHC	0.050 U

319-84-6	alpha-BHC	0.050 U
319-85-7	beta-BHC	0.050 U
319-86-8	delta-BHC	0.050 U
58-89-9	gamma-BHC (Lindane)	0.050 U
76-44-8	Heptachlor	0.050 U
309-00-2	Aldrin	0.050   Ŭ
1024-57-3	Heptachlor Epoxide	0.050 U
959-98-8	Endosulfan I	0.050 U
60-57-1	Dieldrin	0.10 U
72-55-9	4,4'-DDE	0.10 Ü
72-20-8	Endrin	0.10 U
33213-65-9	Endosulfan II	0.10 U
72-54-8	4,4'-DDD	0.10 Ü
1031-07-8	Endosulfan Sulfate	0.10 U
50-29-3	4,4'-DDT	0.10 Ü
72-43-5	Methoxychlor	0.50 Ü
53494-70-5	Endrin Ketone	0.10 U
7421-93-4	Endrin Aldehyde	0.10 U
5103-71-9	alpha-Chlordane	0.050 U
5103-74-2	gamma-Chlordane	0.050 U
8001-35-2	Toxaphene	`5.0 U
12674-11-2	Aroclor-1016	1.0 U
11104-28-2	Aroclor-1221	2.0 U
11141-16-5	Aroclor-1232	1.0 U
53469-21-9	Aroclor-1242	1.0 U
12672-29-6	Aroclor-1248	1.0 Ü
11097-69-1	Aroclor-1254	1.0 U
11096-82-5	Aroclor-1260	1.0 U

EPA	SAMPLE	NO.	
MW-	- <u>-</u>		L

Lab Name: STL-CT Co	ntract:
Lab Code: <u>IEACT</u> Case No.: <u>3331A</u> SAS N	o.: SDG No.: <u>A3331</u>
Matrix: (soil/water): WATER	Lab Sample ID: 993331A-05
Sample wt/vol: 1000 (g/ml) ML	Lab File ID: C5042CLP108
% Moisture: decanted: (Y/N)	Date Received: <u>12/17/99</u>
Extraction: (SepF/Cont/Sonc) <u>SEPF</u>	Date Extracted: 12/17/99
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: <u>12/20/99</u>
Injection Volume: 1.0 (uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH:	Sulfur Cleanup: $(Y/N)N$
CAS NO. COMPOUND	CONCENTRATION UNITS: O

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q

		(dg/ ii or dg/ iig/ <u>oo/ ii</u>
319-84-6	alpha-BHC	0.050 U
319-85-7	beta-BHC	0.050 U
319-86-8	delta-BHC	0.050 U
58-89-9	gamma-BHC (Lindane)	0.050 U
76-44-8	Heptachlor	0.050 U
309-00-2	Aldrin	0.050 U
1024-57-3	Heptachlor Epoxide	0.050 U
959-98-8	Endosulfan I	0.050 U
60-57-1	Dieldrin	0.10 U
72-55-9	4,4'-DDE	0.10 U
72-20-8	Endrin	0.10 U
33213-65-9	Endosulfan II	0.10 U
72-54-8	4,4'-DDD	0.10 U
1031-07-8	Endosulfan Sulfate	0.10 U
50-29-3	4,4'-DDT	0.10 Ü
72-43-5	Methoxychlor	0.50 U
53494-70-5	Endrin Ketone	0.10 U
7421-93-4	Endrin Aldehyde	0.10 U
5103-71-9	alpha-Chlordane	0.050 U
5103-74-2	gamma-Chlordane	0.050 U
8001-35-2	Toxaphene	5.0 U
12674-11-2	Aroclor-1016	1.0 U
11104-28-2	Aroclor-1221	2.0 U
11141-16-5	Aroclor-1232	1.0 U
53469-21-9	Aroclor-1242	1.0 U
12672-29-6	Aroclor-1248	1.0 U
11097-69-1	Aroclor-1254	1.0 U
11096-82-5	Aroclor-1260	1.0 U

EPA	SAMPLE	NO.
MW-	- 5	

]		PESTICIDE ORGANICA	S ANALY:	SIS DATA SHEET	MW - 5
}	Lab Name: S'	IL-CT	Contr	ract:	
į		EACT Case No.: <u>3331A</u>		,	331
	Matrix: (so	il/water): <u>WATER</u>		Lab Sample ID: 993	331A-06
	Sample wt/vo	ol: <u>1000</u> (g/ml) <u>ML</u>		Lab File ID: C5042	CLP109
	% Moisture:	decanted: (Y/N)	<del>-</del>	Date Received: 12/	17/99
i	Extraction:	(SepF/Cont/Sonc) <u>SEPF</u>		Date Extracted: 12	/17/99
	Concentrated	Extract Volume: 10000 (	(uL)	Date Analyzed: 12/	20/99
	Injection Vo	olume: <u>1.0</u> (uL)		Dilution Factor: 1	.0
	GPC Cleanup:	(Y/N) <u>N</u> pH:		Sulfur Cleanup: (Y,	/n) <u>n</u>
	CAS NO.	COMPOUND		CONCENTRATION UNITS (ug/L or ug/Kg) <u>UG/I</u>	
	319-84-6	alpha-BHC		0.050	) U U U
	319-85-7	beta-BHC		0.050	CO U
	319-86-8	delta-BHC		0.0088	
	58-89-9	gamma-BHC (Lindane)		0.050	
	76-44-8	Heptachlor	, .	0.050	
	309-00-2	Aldrin		0.050	
	1024-57-3	Heptachlor Epoxide		0.050	
	959-98-8	Endosulfan I		0.10	
	60-57-1	Dieldrin		0.10	
	72-55-9	4,4!-DDE		0.020	
	72-20-8	Endrin Endosulfan II		0.020	
	33213-65-9 72-54-8	4,4'-DDD		0.10	1 11 .
	1031-07-8	Endosulfan Sulfate		0.10	
J		4,4'-DDT		0.10	
	72-43-5	Methoxychlor		0.50	
	53494-70-5	Endrin Ketone		0.10	<del></del>
	7421-93-4	Endrin Aldehyde		- 0.10	
1	5103-71-9	alpha-Chlordane		0.050	
	5103-74-2	gamma-Chlordane		0.050	
	8001-35-2	Toxaphene		5.0	Ū
	12674-11-2	Aroclor-1016	-	1.0	Ū
	11104-28-2	Aroclor-1221		2.0	Ū
	11141-16-5	Aroclor-1232		- 1.0	U
	53469-21-9	Aroclor-1242		1.0	U
	12672-29-6	Aroclor-1248		1.0	Ū
	11097-69-1	Aroclor-1254		1.0	U
- 1		1000		1 0	TT

EPA	SAMPLE	NO.
MW-	-6	

Lab Name: STL-CT	ontract:
Lab Code: <u>IEACT</u> Case No.: <u>3331A</u> SAS	No.: SDG No.: <u>A3331</u>
Matrix: (soil/water): WATER	Lab Sample ID: <u>993331A-07</u>
Sample wt/vol: 1000 (g/ml) ML	Lab File ID: C5042CLP110
% Moisture: decanted: (Y/N)	Date Received: <u>12/17/99</u>
Extraction: (SepF/Cont/Sonc) <u>SEPF</u>	Date Extracted: 12/17/99
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: 12/20/99
Injection Volume: 1.0 (uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N)N pH:	Sulfur Cleanup: $(Y/N)N$
CAS NO. COMPOUND	CONCENTRATION UNITS: Q

<u> </u>		(dg/H O1 dg/Ng/ <u>00/H</u>
319-84-6	alpha-BHC	0.050 U
319-85-7	beta-BHC	0.050 U
319-86-8	delta-BHC	0.050 U
58-89-9	gamma-BHC (Lindane)	0.050 U
76-44-8	Heptachlor	0.050 U
309-00-2	Aldrin	0.050 U
1024-57-3	Heptachlor Epoxide	0.050 U
959-98-8	Endosulfan I	0.050 U
60-57-1	Dieldrin	0.10 U
72-55-9	4,4'-DDE	0.10 U
72-20-8	Endrin	0.10 U
33213-65-9	Endosulfan II	-0.10 U
72-54-8	4,4'-DDD	0.10 U
1031-07-8	Endosulfan Sulfate	0.10 U
50-29-3	4,4.4-DDT	0.10 U
72-43-5	Methoxychlor	0.50 U
53494-70-5	Endrin Ketone	0.10 U
7421-93-4	Endrin Aldehyde	0.10 U
5103-71-9	alpha-Chlordane	0.050 U
5103-74-2	gamma-Chlordane	0.050 U
8001-35-2	Toxaphene	5.0 U
12674-11-2	Aroclor-1016	1.0 Ŭ
11104-28-2	Aroclor-1221	2.0 U
11141-16-5	Aroclor-1232	1.0 U
53469-21-9	Aroclor-1242	1.0 U
12672-29-6	Aroclor-1248	1.0 U
11097-69-1	Aroclor-1254	1.0 U
11096-82-5	Aroclor-1260	1.0 U

EPA	SAMPLE	NO.
DUE	)	

	Lab Name: STL-CT Contr	cact:
_	Lab Code: <u>IEACT</u> Case No.: <u>3331A</u> SAS No.:	SDG No.: <u>A3331</u>
_]; ;	Matrix: (soil/water): WATER	Lab Sample ID: 993331A-08
	Sample wt/vol: 1000 (g/ml) ML	Lab File ID: C5042CLP111
	% Moisture: decanted: (Y/N)	Date Received: <u>12/17/99</u>
· ·	Extraction: (SepF/Cont/Sonc) <u>SEPF</u>	Date Extracted: 12/17/99
<u>J</u> .	Concentrated Extract Volume: 10000 (uL)	Date Analyzed: 12/20/99
7	Injection Volume: 1.0 (uL)	Dilution Factor: 1.0
	GPC Cleanup: (Y/N)N pH:	Sulfur Cleanup: (Y/N)N_
		CONCENTRATION UNITS: Q (ug/L or ug/Kg) <u>UG/L</u>

	050 U
319-85-7   beta-BHC 0.	050 U
	050 U
959-98-8 Endosulfan I 0.	050 U
00 3. 1	.10   U
	.10   U
	.10 U
1) 55215 65 7 11106 6 0 1 2 1 1	:10 U
72-54-8	.10 U
1031 07 8   211408412411 8412408	.10   U
	.10 U
72 13 3	.50 U
33131 70 3   11101211 1000110	.10 U
7121 55 1 21101211 1120011700	.10 U
3103 / 2 3   112500	050   U
5105 / 1 2   5 amma	050 U
	.0 U
120/1 22 0 1 12 0	.0 U
	.0 U
111111111111111111111111111111111111111	.0 U
00100 21 0 11200101 2012	.0 U
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.0 U
11077 07 1 122 00 10 10 10 10 10 10 10 10 10 10 10 10	.0 U
11096-82-5 Aroclor-1260 1	.0 U

#### 1 INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

					_		
Lab Name: <u>STI</u>			Contract: _			MW-1	
Lab Code: <u>STI</u>	Case	No.: <u>3331A</u>	SAS No.: _			SDG No.: A333	1
Matrix (soil/	water): WAT	ER	Lab	Samr	ole ID:	993331A-01	
· .							
Level (low/me	ed): <u>LOW</u>		Date	Rec	eived:	12/17/99	
% Solids:	0.0						
	CAS No.	u Units (ug/	L or mg/kg dry Concentration	<del></del>	ght): 1	UG/L -··-	
				1			
	7429-90-5		6890		. N	T C	
	7440-36-0		9.0			P	
	7440-38-2	Arsenic	4.0	U			
	7440-39-3	Barium	304.	77		1 3	
	7440-41-7	Beryllium	1.0				
	7440-43-9	Cadmium	1.0	Ū		1. P	
	7440-70-2	Calcium	135000	1		<u>                                     </u>	
	7440-47-3	Chromium	7.0			P P P	
	7440-48-4		10.5	В		<u> </u>	
-	7440-50-8	Copper	23.5	В	·	1 1	
	7439-89-6	Iron	10500		·	1 . M	
	7439-92-1 7439-95-4	Lead	5.7			P CV	
	7439-96-5		28400			<del>                                     </del>	
	7439-96-3		6980			CV	
	7440-02-0	Mercury	0.10.	U .B		1 CV	
	7440-02-0	Nickel Potassium	8690	( A		P	
	7782-49-2	Selenium	8.5		N	<u>P</u>	
	7440-22-4	Silver	2.0	U	14		
	7440-23-5	Sodium	94000			PR	
	7440-28-0		10.0	ਹਿ	N	+ = = 1	
	7440-62-2	Vanadium	10.5	B			
	7440-66-6	Zinc	55.7	-		P	
	57-12-5	Cyanide	:			NR	
			<del></del>				
Color Before:	BROWN	_ Clarity	/ Before: <u>CLEAR</u>	<del></del>	Textu	re:	
		_					
Color After:	<u> </u>	_ Clarity	/ After: <u>CLEAR</u>		Artii	acts:	
Comments:							

#### 1 INORGANIC ANALYSES DATA SHEET

עמב	C	ΔΜ	IPT.	F.	MO
110	13.	$\sim$ 1.		11.1	TAC)

		INORGANIC A	ANALYSES DATA SH	HEET	<u></u>
Lab Name: <u>ST</u>	r.		Contract:		MW-3
_] Lab Code: <u>ST</u> I	<u> </u>	No.: <u>3331A</u>	SAS No.:		SDG No.: <u>A3331</u>
Matrix (soil,	/water): WATE	<u>er</u>	Lab S	ample ID:	993331A-03
Level (low/me	ed): LOW		Date	Received:	12/17/99
-					
% Solids:	0.0	<del></del>			
7					•
]	-		L or mg/kg dry Concentration		UG/L -··-
;	CAS NO.	Allatyte	Concentration		
1	7429-90-5	Aluminum	695.	- N ·	I P R
	7440-36-0	Antimony	9.0	Ü	P
1:	7440-38-2		4.0	B	P
_		Barium	58.7	B ····	P J
		Beryllium	1.0	U	
]`	7440-43-9 7440-70-2	Caldillum	1.0 89200		<u>P</u>
	7440-47-3		2.0	U	P
]	7440-48-4		2.0	Ü	<del>   </del>
ļ,	7440-50-8		2.0	Ū	P P P P
١.	7439-89-6		1340		P
	7439-92-1	Lead	3.0	Ū .	P
	7439-95-4		17400		P
<u>}</u>	7439-96-5	Manganese	1190		P
:	7439-97-6	Mercury	0.10		CV
]	7440-02-0		3.0	Ū.	P P V3
		Potassium		B U N	
<u>.</u> ;	7782-49-2 7440-22-4		1	U	P V3
<i>'</i> 1	7440-23-5	Sodium		<u> </u>	
	7440-28-0	Thallium		UN	PR
<u>J</u>	7440-62-2	Vanadium		Ū	P 3
•	7440-66-6	Zinc	9.5	В	
	5712-5	Cyanide			NR
					1
1			•		
Color Before:	COLORLESS	_ Clarit	y Before: <u>CLEAR</u>	_ Texti	ıre:
Color After:	COLORLESS	_ Clarit	y After: <u>CLEAR</u>	_ Artií	facts:
Comments:		•			
7	-				-
	<del></del>			-	-

#### 1 INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

Lab Name: <u>STL</u>			Contract: _		MW-2
Lab Code: <u>STL</u>	Case	No.: <u>3331A</u>	SAS No.: _		SDG No.: <u>A3331</u>
Matrix (soil/	water): WAT	<u>ER</u>	Lab	Sample ID:	993331A-04
Level (low/me	d): LOW		Date	Received:	12/17/99
% Solids:					
% SOTIUS:	0.0	<del></del>			
Co	CAS No.  7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-70-2 7440-47-3 7440-48-4 7440-50-8 7439-92-1 7439-95-4 7439-96-5 7439-97-6 7440-02-0 7440-09-7 7782-49-2 7440-23-5 7440-28-0	Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Tron Lead Magnesium Manganese Mercury	Concentration  4500 9.0 4.0 128. 1.0 110000 5.8 4.2 9.6 7790 4.2 13900 905. 0.10 11.8 5370 10.4 2.0 5220 10.0 7.6 30.7	C Q  N  U  B  U  B  U  U  B  U  N  U  U  U  N  U  U  U  N  U  U  N  U  U	M R PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
Color Before:	BROWN	Clarity	Before: <u>CLEAR</u>	Textu	re:
Color After:	P	_ Clarity	After: CLEAR	_ Artif	acts:
Comments:					
	· · · · · · · · · · · · · · · · · · ·				

#### 1 INORGANIC ANALYSES DATA SHEET

EPA	SAMPLE	NO

Lab Name: STL Lab Code: STL					MW-4
Lab Code: STL			Contract:		1111
Matriz (goil/	Case	No.: <u>3331A</u>	SAS No.:	<del></del>	SDG No.: <u>A33</u>
Maclix (SULI)	water): WATI	<u>ER</u>	Lab	Sample ID:	993331A-05
Level (low/med	d): LOW		Dat	e Received:	12/17/99
% Solids:	0.0				
% SOLIUS:	0.0				
	•				
C	oncentration	. Units (ua/	L or mg/kg dr	v weight).	IIG/I
	,		1 01 119/119 01	,	00/11 11/1
		_			
+ 1	CAS No.	Analyte	Concentration	n C Q	M
	7429-90-5	Aluminum	1630	. N C	<del></del>
	7440-36-0	Antimony	9.0		P R P T
	7440-38-2		4.0		<del>-   -  </del>
	7440-39-3	Barium	69.		<del>                                      </del>
	7440-41-7		1.0		
	7440-43-9		1.0		P
	7440-70-2	Calcium	58500		P
	7440-47-3	Chromium	2.2		P
	7440-48-4	Cobalt	2.0		P
	7440-50-8	Copper	2.0		P
	7439-89-6	Iron	2950		+
	7439-92-1	7 2 2 3	4.4		
	7439-95-4	Magnesium	15900		<del>                                     </del>
	7439-96-5	Manganese	263		P
	7439-97-6		.0.10		CV
		Mercury Nickel	5.7		P
	7440-02-0		6750		TP a
		Potassium	5.0		FR
	7782-49-2	Selenium	2.0		PVS
	7440-22-4	Silver	26800		
	7440-23-5	Sodium			PIR
	7440-28-0	Thallium	10.0		
•	7440-62-2	Vanadium	2.5		P
•	7440-66-6	Zinc	. 41.4		NR NR
	57-12-5.	Cyanide	· · · · · · · · · · · · · · · · · · ·		11/10
l					<del>-1</del>
Color Before:	BROWN	_ Clarity	y Before: <u>CLEA</u>	R Text	ire:
Color After:	P	_ Clarity	After: <u>CLEA</u>	<u>R</u> Artii	facts:
Comments:					
			·		
<u></u>					

#### 1 INORGANIC ANALYSES DATA SHEET

H D Y	SAMPLE	NO
	DETITED	INO.

•					
••					MW-5
Lab Name: STL			Contract: _		-
Lab Code: <u>STL</u>	Case	No.: <u>3331A</u>	SAS No.: _		SDG No.: <u>A3331</u>
Matrix (soil/	water): WATE	<u>IR</u> .	Lab S	Sample ID:	993331A-06
Level (low/me	WO.I · (F		Date	Peceived.	12/17/99
Tever (TOW) IIIC	<u> 1011</u>		Date	Received.	12/11/33
% Solids:	0.0	<u> </u>			
Co	· ·		L or mg/kg dry		$\overline{}$
	CAS No.	Analyte	Concentration	C Q	М
	7429-90-5	Aluminum	10300	: N	T P R
	7440-36-0		9.0		P
	7440-38-2	Arsenic	5.0	В	P
	7440-39-3	Barium	171.	В	TP 7
	7440-41-7	Beryllium	1.0		i P
	7440-43-9	Cadmium	- 1.0	U	P
	7440-70-2	Calcium	149000		P
	7440-47-3	Chromium	13.3		P P
	7440-48-4	Cobalt	10.4	В	] P
	7440-50-8	Copper	24.1	В	P
	7439-89-6	Iron	19400	1111	P P P P
	7439-92-1	Lead	3.0	U	<u>  P</u>
•	7439-95-4	Magnesium	66200		I P
	7439-96-5	Manganese	931:	77	1 P
	7439-97-6		0.10	U ···	CV
	7440-02-0		24.9 13800	В	1 P
	7440-09-7 7782-49-2	Potassium   Selenium	7.2	N	1 1
	7440-22-4	Silver	2.0	U · · · ·	1-5
	7440-23-5	Sodium	38700	U	1-503
	7440-28-0	Thallium	10.0	UN	<del>                                     </del>
	7440-62-2	Vanadium	16.2	В	P P J P J P P P P P P P P P P P P P P P
	7440-66-6		62.5		一百
	57-12-5	Cyanide	- A		NR
Color Before:	BROWN	Clarity	/ Before: <u>CLEAR</u>	_ Textu	ıre:
Color After:	P	_ Clarity	After: <u>CLEAR</u>	_ Artif	acts:
Comments:					
				· ·	

# 1

EPA SAMPLE NO.

٠			INORGANIC A	ANALYSES DATA SI	HEET	
٦	•					
	Lab Name: <u>STL</u>			Contract:		MW - 6
	Hab Name: <u>Bill</u>	·				
7	Lab Code: <u>STL</u>	Case	No.: <u>3331A</u>	SAS No.:		SDG No.: <u>A3331</u>
	Matrix (soil/	water): WATE	<u>er</u>	Lab S	Sample ID:	993331A-07
7	T orrol /lorr/mo.	TOW		Dato	Podoirod.	12/17/99
	Level (low/me			Date	Received:	<u>12/11/99</u>
,	% Solids:	0.0	_			
7						
	, ,					
_	Co	oncentration	Units (ug/	L or mg/kg dry	weight):	UG/L
	:					
j		CAS No.	Analyte	Concentration	C Q	M
1	r	7429-90-5	Aluminum	2710	N	
	,	7440-36-0		9.0	U	P
]	•	7440-38-2		5.7		P P P
	1	7440-39-3		88.8	В	P
1			Beryllium	1.0	Ū	P
1	_	7440-43-9		1.0	Ū	P
١.		7440-70-2		98000	1.0	P
•		7440-47-3		4.3	В	. P
]		7440-48-4		2.0	U	<u>P</u>
		7440-50-8		2.0	Ū	P
1		7439-89-6		4200		P
, 1			Lead	3.0	U	· p
1			Magnesium	27000		P P
] :		7439-96-5		607.		P
,		7439-97-6		0.10	U	CV
1		7440-02-0		7.6	В	P
١,			Potassium	18600		PR
؛ ا		7782-49-2		5.0	UN	可尽
		7440-22-4		2.0	U	I P v 1
1		7440-23-5	Sodium	19600		PIR
-		7440-28-0		10.0	UN	PIR
: L		7440-62-2	Vanadium	3.5	В	PU
		7440-66-6	Zinc	19.4	В	
]		57-12-5	Cyanide	-		NR
1						
1						
1	Color Before:	BROWN	Clarit	y Before: <u>CLEAR</u>	_ Text	ire:
1	Color After:	P	_ Clarit	y After: <u>CLEAR</u>	_ Arti	facts:
),	Comments:					
];						
1		·		<u> </u>		
h	-		<u></u>			

# 1

EPA SAMPLE NO.

	INORGANIC .	ANALYSES DATA S	HEET	
Lab Name: <u>STL</u>		Contract: _		DUP
Lab Code: STL Ca	se No · 33317	- OM PAP		SDG No.: <u>A3331</u>
		DAD NO	<del></del>	3DG NO.: A3331
Matrix (soil/water): W.	ATER	Lab	Sample ID	: 993331A-08
Level (low/med): $\underline{L}$	<u>WC</u>	Date	Received	: 12/17/99
% Solids: 0	. 0			
CAS No.	Analyte	Concentration	C Q	М
7440-50- 7439-89- 7439-92-	3 Barium 7 Beryllium 9 Cadmium 2 Calcium 3 Chromium 4 Cobalt 8 Copper 6 Iron 1 Lead	4.0 85.1 1.0 1.0 94200 3.4 2.4 2.7 4550 3.0	B B B	PP R PP PP PP PP PP PP PP PP PP PP PP PP PP
7439-95- 7439-96- 7439-97- 7440-02- 7440-09- 7782-49- 7440-22- 7440-23- 7440-28-	5 Manganese 6 Mercury 0 Nickel 7 Potassium 2 Selenium 4 Silver 5 Sodium 0 Thallium	26100 578. 0.10 5.6 17700 5.0 2.0 19000 10.0	U N	中
7440-62- 7440-66- 57-12-5		2.0	B	P U NR
Color Before: BROWN	Clarity	y Before: <u>CLEAR</u>	_ Textı	ıre:
Color After: P	Clarity	y After: <u>CLEAR</u>	_ Arti:	facts:
Comments:				<del></del>

	WET CHEM ANALYS	TO DATA SHEET	MW-1	
b Name <u>STL</u>		ontract		
b Code · STL	Case No 3331A SA	S No	SDG No	A333
trıx (soıl/water	) <u>WATER</u> -	Lab Sample I	D <u>993331A-</u>	01
Solids.	0,	Date Receive	d· <u>12/17/99</u>	
_				
-			-	
-				
CAS No.	Analyte	Concentration C	Units	M C
57-12-5	Cyanide, Total Redox Potential	0-0590	mg/L mV	L
	TOC	5 85	mg/L	D
and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s			A Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Comp	
			1 × 6 ×	
				Į

		WET CHEM	1 1			SAMPLE N	10 - 2
	2 1/22	WET CHEM	ANALYSIS	DATA SHEET			<u> </u>
		~- <u>-</u> _			-		~-
Tab Mas	me CITI	wa.	~ ~ .	-			<u> </u>
Tan Nai		-	. Cont	ract			
Lab -Coc	de <u>STL</u>	Case No . <u>3331A</u>	SAS	No • -	+ Spendown	SDG No	<u>A3331</u>
		WATER	=	Lab_Sample	e JID.	<u>993331A</u>	03
~% Solid	ds	0		Date Rece	Lved	12/17/9	9
	-			-			
_ <del>ज</del> ्ञ -  							
n							
THE REAL PROPERTY.	CAS No.	Analyte	- The second second	Concentration	£ d	Inits.	QM
	57-12-5	Cyanide, Total Redox Potential		0 475		mg/L	
		Redox Potential TOC		311		m∨	P
		100		4 70		mg/L	D
~							
	Annahite the second of the second of			AND THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPER	*****	A THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE	
					-		
					-		
-							
The second			14 About about a - 12 11 1				
-							
					_		
	<del></del>						

 <del></del>		
	-	
	· · · · · · · · · · · · · · · · · · ·	

Comments

	e na promise de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la co	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	- <u>"</u> - " - " - " - " - " - " - " - " - " -		SAMPLE N		
		WET CHEM ANAI	1 LYSIS DATA SHEET	. ~.	SAMPLE N	U	-
	. 5	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-		MW-2		-
Liab Nan	me STL		Contract			<del></del>	
						- 	
ab Coc	ie <u>STL                                    </u>	Case No 3331A	SAS NO	www.maruki W	SDG_No	<u> A333</u>	
latrix	(soil/water)	WATER	Lab Sample	e ID	<u>993331A</u>	<u>-04</u>	-
_% Solic	ls·	0 - 3 -	Date Recei	.ved	12/17/9	9	-
						_	
<u> </u>					-		
~_ ~_	- ATO	Amalust o	Concentration		Units	O M	7
	CAS NO.	Analyte		李雪斯	My to the State of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of	Q M	
	57-12-5	Cyanide, Total Redox Potential	0 0430		mg/L	L	]
17		Redox Potential	313 7 30		mV mar/T	P	_
		TOC	/ 30	-	mg/L		-
							-
							7
			-				]
							4
n -							-
		Anti-the commence and the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of	A COMPANY OF THE PROPERTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF TH	-	A CONTRACTOR OF CHAPTER		1
<u> </u>							]
} }							-
				-			1
$\cap$							
							_
							4
							-
							1
ì							]
							4
							1
į							
Varrant	<b>-</b>						
]omments	5						
<u> </u>							

	EM ANALÝSIS DATA SHEET
	MW-4
Lab Name STL	Contract
	31A SAS No SDG No A3331
Matrix (soil/water) WATER	Lab Sample ID <u>993331A-05</u>
% Solids - 0	Date Received 12/17/99
CAS No - Analy	rte. Concentration C. Units. Q M
57-12-5 Cyanide, Tota Redox Potenti	al 0 0100 U mg/L L al 310 mV P
TOC	6 20 mg/L D

				<del> </del>	<u> </u>		<u> </u>
		-				<u> </u>	
_				1			
	214 ACA 3 7						
		The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon		-	Market Comments	†	
				$\vdash$	<del> </del>	<del> </del>	$\vdash$
				<del> </del>		-	├
				<del> </del>			<b></b>
				ļ.—			ļ
				<u> </u>			
							Ĺ
							$\Gamma$
				1			
		- 15					
te 1		The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s		<del> </del>	F - N-	<del>                                     </del>	
					F - \\-		
ŀ		<del></del>					
}							
Į			1				

Comm	ents	;											
				 	 	 	 			 	<del></del>	 	
-			 	 	 	 	 			 			 
-				 	 	 	 	-	 	 		 	-

ab Name STL	-		-			
٠٠,	Cago No. 2221A	Contract _		- CDC No	- ر خـ ع خـ ۲۸۵	(75 <u>7</u> 73) 2221
	Case No 3331A			SDG No		_
latrıx (soıl/water				D <u>-993331A</u> <del>1 12/17/</del> 9		-
* SOLIGS*-	0	Date	Received	1 12/11/9	<u>'9</u>	
CAS No.	Analyte	Concent	ation C	Units	Q	M
57-12-5			270	mg/L		L
	Redox Potential		314	mV		P
	TOC		18 3	mg/L	_	D
	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon		00 - 144 min chan   100 - 114			
			3,4			
]						
1						
Disk. High			- 10			
7						
J Comments						

Paratte Con Lines. In Street	a a sussilla unun Taban an		and the second second	32. a F. F	***			
	aria ay m	<u> </u>						
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	. بلد في دري تشو .	WE'	T CHEM AND	1 ĀLYSĪS DAT	A SHEËT	SAMPLE	NO	
# \ Z				-	. — z			
Lab Name	STL			Contract	wee.			
		Case No	3331A			SDG_No	~	331
-		WATER				ID - <u>993331</u>	-	
Solids		0				red 12/17/		
s Solias.	-	0	~ ~	Da	ate Receiv	red <u>12/17/</u>	799	J ™ _ 53
-								
	-					3 -	-	
						_		
-								
CI CI	NO =	A	nalvte	Conge	ntration.	C. Unate		м
C	ĺ	A		CORGE	Ī			М
C	ĺ	Cyanide,	Total	Conge	0 0780	mg/	L l	L
C	ĺ	Cyanide, Redox Pot	Total	Conee	0 0780	mg/	L.	L P
C	ĺ	Cyanide,	Total	AND CORE	0 0780	mg/	L.	L
C	ĺ	Cyanide, Redox Pot	Total	Conce	0 0780	mg/	L.	L P
C	ĺ	Cyanide, Redox Pot	Total	in Gonge	0 0780	mg/	L.	L P
C	ĺ	Cyanide, Redox Pot	Total	GORGE	0 0780	mg/	L.	L P
C	ĺ	Cyanide, Redox Pot	Total	Cone	0 0780	mg/	L.	L P
C	ĺ	Cyanide, Redox Pot	Total	Conse	0 0780	mg/	L.	L P
C	ĺ	Cyanide, Redox Pot	Total	GONG	0 0780	mg/	L.	L P
C	57-12-5	Cyanide, Redox Pot	Total	Cones	0 0780	mg/	L.	L P
C	57-12-5	Cyanide, Redox Pot	Total	Conse	0 0780	mg/	L.	L P
C	57-12-5	Cyanide, Redox Pot	Total	Gone	0 0780	mg/	L.	L P
C	57-12-5	Cyanide, Redox Pot	Total	Cones	0 0780	mg/	L.	L P
C	57-12-5	Cyanide, Redox Pot	Total	Conce	0 0780	mg/	L.	L P
C	57-12-5	Cyanide, Redox Pot	Total	Conse	0 0780	mg/	L.	L P
C	57-12-5	Cyanide, Redox Pot	Total	Conse	0 0780	mg/	L.	L P
C	57-12-5	Cyanide, Redox Pot	Total	Cones	0 0780	mg/	L.	L P
	57-12-5	Cyanide, Redox Pot	Total		0 0780 311 6 09	mg/ mmg/	L.	L P
	57-12-5	Cyanide, Redox Pot	Total		0 0780	mg/	L.	L P
	57-12-5	Cyanide, Redox Pot	Total		0 0780 311 6 09	mg/ mmg/	L.	L P
C	57-12-5	Cyanide, Redox Pot	Total		0 0780 311 6 09	mg/ mmg/	L.	L P

	_* ~ ~	· ·			DUP	-	
ab Name. STL	÷		Contract				<del>-</del>
Lab Code STL		<u>3331A</u> S	AS No _	·	-		331
latrix (soil/water)	WATER		Lab		ID <u>993331</u>		
Solids	<u>0 -                                   </u>		[^] Date	Receiv	red <u>12717/9</u>	<u>9</u>	-
					-	-	
CAS No	· ····································	alyte	Goncenta	20 5 1 0 11 5	<b>C</b> allinate	Q	M
57-12-5	Cyanide, T TOC	otal	0	0960	mg/L		L
	TOC	· · · · · · · · · · · · · · · · · · ·		4 51	mg/L		D
	T I I I I I I I I I I I I I I I I I I I	and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th	Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Compan	- Lastr Carro			
				6-St			
							-
Comments							



# Analytical Assurance Associates, Inc.

600 Rock Raymond Road Downingtown PA 19335 Phone 610 - 269 - 9989 Fax 610 269 - 9989

# DATA USABILITY STEARNS & WHELER ALBION SITE

ANALYZED BY SEVERN TRENT LABORATORIES, INC. CASE No.: 7099-3091A/ SDG No.: A3091

#### DATA USABILITY REPORTED BY:

Analytical Assurance Associates (A3) 600 Rock Raymond Road Downingtown, PA 19335

# SITE NAME: ALBION LABORATORY No.: 7099-3091A SDG No.: A3091

#### **DISCUSSION**

Two (2) water samples, including one trip blank were collected on 12-02-99 Severn Trent Laboratories located in Monroe Connecticut received all samples in good condition on 12-03-99 Based on the chain-of-custody records, the following analyses were performed for this batch of samples

CHENT	LABORATORY ID	PARAMETERS PARAMETERS				
		VOA Analysis Date	SVOA Anal/Extraction	Pest/PCB Anal/Extraction	Metals Analysis date	Inorganic* Analysis
DW-1	993091A-01	12-07-99	12-04/12-23-99	12-03/12-07-99	12-28-99	12-13-99
Trıp Blk	993091A-02	12-06-99	NA	NA	NA	NA

Na= Not Analyzed

The sample analysis was reviewed based on the Region II functional Guidelines and the Data Usability criteria established in NYSDEC Division of Environmental Remediation based on the following parameters  $\,$  If you have any question or comments please call Zohreh Hamid at (610) 269-9989

- Holding time
- Calibration analysis
- Blank Analysis
- Matrix Spike/Spike Duplicate (MS/MSD)
- Laboratory Control Sample Results
- Laboratory/Field Duplicate
- Instrument Performance
- Surrogate/Internal Standard Recovery (Organic only)
- Compound Identification/Quantitation

#### **Blank Analysis**

#### Volatile

The laboratory blanks and trip blank were free of target compounds with the exception of the blank analyzed on 12-6-99 Acetone (13 ug/l) was reported in this blank at a level below 2X CRQL This compound was not detected in the corresponding sample

#### Semivolatile

The laboratory blank had diethylphthalate (0 3 ug/l), di-n-butylphthalate (1 ug/l), di-n-octylphthalate (2ug/l), bis (2-ethylhexyl)phthalate (0 7 ug/l) and four unknown compounds at levels below the CRQLs The corresponding sample results were elevated to the CRQLs and qualified "U"

#### Pesticide/PCB

The laboratory preparation blank was free of target compounds

# Matrix Spike/ Spike Duplicate Analysis

These QC samples were not analyzed for this batch. One set of MS/MSD and one blank spike was reported for volatile fraction from an alternate batch. The recoveries were within the control limits.

#### **Laboratory Control Sample**

The blank spike for semivolatile was performed for all target compounds. All recoveries were within the control limits with the exception of 2,4-dimethylphenol and 2,4-dimitrophenol. The sample data were not impacted by this outlier since these compounds were not detected in the sample.

#### **Instrument Performance**

The analysis for all parameter performed within the analysis holding times established in the corresponding methods

#### Surrogate Analysis

All organic samples were spiked with the surrogate compounds identified in the corresponding Methods. The recoveries were within the control limits

## **INORGANIC ANALYSES**

All samples were analyzed for the TAL metals within the holding time

#### **Calibration Analysis**

All recoveries in initial and continuing calibrations were within the control limits with the exception of Tl (110 4%) in initial calibration analysis. The data was not qualified since the deviation was marginal

#### **Contract Required Detection Limits**

The CRDL recoveries for all analytes with the exception Sb, As, and Cd were outside the data validation control limits of 80-120% Also, the initial CRDLs for Pb (122 1%) and Tl (51 3%) were outside the control limits The positive results up to 3XCRDL & non-detected values were qualified estimated

#### Blank Analysis

The preparation blank had the following contamination at levels below the CRDLs The reported sample results up to the action levels (5X the blank level) were qualified "U" and should be considered as laboratory artifacts

Analyte	Blank Level mg/kg	Action Level mg/kg
Al	51 6	258
Sb	9 5	47.5
Ca	30 1	150 5
Zn	5 9	29 5

#### ICP Interference Check Sample

The recoveries for all analytes were within the control limits with the exception of Sb (125 3/124%), and Cu (120 7%) & Tl (132 1%) in initial ICS samples The reported data were qualified estimated

#### MATRIX SPIKE/DUPLICATE ANALYSES

The matrix spike was not analyzed for this sample Spike sample "MW3S" from an alternate batch was included. The recoveries were within the control limits

# DATA USABILITY SUMMARY ALBION CASE ID No. 7099-3091A

CHENT ID	PARAMETERS						
	VOA	SVOA	Pest/PCB	Metals	Inorganic		
DW-1	A	$R, A^1, J^2$	A,J ³	$A^2, J^{45}$	A		
Trip Blk	$A J^1$	NA	NA	NA	NA		

- A= Accept the sample results as reported
- $A^1 = \quad \mbox{The sample results below the CRQLs for di-n-butylphthalate, bis(2-ethylhexyl) phthalate and di-n-octylphthalatephenol, (method blank contamination) were elevated to the CRQLs and qualified "U"$
- A²⁼ The reported sample results up to action levels for Al was qualified "U"
- J¹= The reported data for chloromethane and carbon disulfide were qualified estimated since the %D in continuing calibration was above 25%
- J²= Estimated the non-detected values "UJ" since the %Ds hexachlorocyclopentadiene was above 25% in continuing calibrations
- J³= The positive results were qualified estimated since the %D for the results reported on two different columns was above 25%
- J⁴ The positive results for all analytes (with the exception Sb, As & Cd) up to 3x CRDLs and non-detected values were qualified estimated since the CRDL recovery was below 80%
- J⁵ The reported positive results for Sb, Cu and Tl were qualified estimated due to the ICS outlier
- R= reject the non-detected values for 2,4-dimitrophenol and 4,6-dimitro-2-methylphenol since the response factors were below the 0.05 control limit

# Appendixes

- 1 Appendix A- Glossary of Data Qualifier
- 2. Appendix B- Laboratory Form I, & Applied Qualifier Codes

Appendix A Glossary of Data Qualifier

#### **CODES RELATED TO IDENTIFICATION**

(confidence concerning presence or absence of compounds)

U= Not detected The associated number indicates approximate sample concentration necessary to be detected

NO CODE= Confirmed identification

- B= Not detected substantially above the level reported on laboratory or field blanks
- R= Unusable result. Analyte may or may not be present in the sample.
- N= Tentative identification. Consider present. Special methods may be needed to confirm its presence or absence in future sampling efforts.

#### CODES RELATED TO QUANTITITION

(can be used for both positive results and sample quantitation limits):

- J= Analyte present. Reported value may not be accurate or precise.
- K= Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- L= Analyte present. Reported value may be biased low Actual value is expected to be higher.
- UJ= Not detected. Quantitation limit may be inaccurate or imprecise.
- UL= Not detected Quantitation limit is probably higher

#### **OTHER CODES**

NJ= Qualitative identification questionable due to poor resolution. Presumably present at approximate quantity

Q= No analytical result.

VOLATILE	ORGANICS	ANALYSIS	DATA	SHEET
----------	----------	----------	------	-------

Lab Name STL/CT		Contract	1	DW-1
Lab Code IEACT	Case No 3091A	SAS No	SDG No	A3091
Matrix (soil/water	) WATER		Lab Sample ID	993091A-01
Sample wt/vol	$5 \qquad (g/mL)ML$		Lab File ID	>M6940
Level (low/med)	LOW		Date Received	12/03/99
% Moisture not dec			Date Analyzed	12/07/99
GC Column 007-624	ID 0 53 (mm)		Dilution Facto	r 10
Soil Extract Volume	(uL)		Soil Aliquot V	olume(uL)

		CONCENTRATION UNITS.	
CAS NO	COMPOUND	(ug/L or ug/Kg)UG/L	Q

			i i
74-87-3	Chloromethane	10	υ
74-83-9	Bromomethane	10	Ū
75-01-4	Vinyl Chloride	10	Ū
75-00-3	Chloroethane	10	U
75-09-2	Methylene Chloride	10	Ū
67-64-1	Acetone	10	Ū
75-15-0	Carbon Disulfide	10	Ū
75-35-4	1,1-Dichlorsethene	10	Ū
75-34-3	1,1-Dichloroethane	10	Ū
540-59-0	1,2-Dichloroethene (total)	10	<b>か</b>
67-66-3	Chloroform	8	/J/
107-06-2	1,2-Dichloroethane	10	Ū
78-93-3	2-Butanone	10	Ū
71-55-6	1,1,1-Trichloroethane	10	Ū
56-23-5	Carbon Tetrachloride	10	U
75-27-4	Bromodichloromethane	6	/ J
78-87-5	1,2-Dichloropropane	10	Ü
10061-01-5	cis-1,3-Dichloropropene	10	Ų
79-01-6	Trichloroethene	1	Ŕ
124-48-1	Dibromochloromethane	3	٠̈J
79-00-5	1,1,2-Trichloroethane	10	Ü
71-43-2	Benzene	10	Ū
10061-02-6	trans-1,3-Dichloropropene	10	Ŭ
75-25-2	Bromoform	10	Ū
108-10-1	4-Methyl-2-Pentanone	10	U
591-78-6	2-Hexanone	10	Ū
127-18-4	Tetrachloroethene	10	U
79-34-5	1,1,2,2-Tetrachloroethane	10	U
108-88-3	Toluene	8	J
108-9C-7	Chlorobenzene	10	U
100-41-4	Ethylbenzene	2	,J
100-42-5	Styrene	10	Ŭ
1330-20-7	Xylene (total)	1	J

	VOLATILE ORGANI	1A CS ANALYS	NYSDEC SAMPLE NO
Lab Name STL/CT		Contract	TB 120299
Lab Code IEACT	Case No 3091A	SAS No	SDG No A3091
Matrıx (soıl/water	) WATER		Lab Sample ID 993091A-02
Sample wt/vol	5 (g/mL)ML		Lab File ID >L8430
Level (low/med)	LOW		Date Received 12/03/99
% Moisture not dec	<del></del>		Date Analyzed 12/06/99
GC Column 007-624	ID 0 53 (mm)		Dilution Factor 1 0
Soil Extract Volume	(uL)		Soil Aliquot Volume(uL)

T4-87-3   Chloromethane	CAS NO		CONCENTRATION UNITS (ug/L or ug/Kg)UG/L		Q	_
T4-83-9	F4 05 3					1
75-01-4						رن
75-00-3						]
T5-09-2   Methylene Chloride		_l				
10						
75-15-0						
75-35-4						,
75-34-3		<b>1</b>				( )
10						~
10				10		
107-06-2				10		
78-93-3       2-Butanone       10       U         71-55-6       1,1,1-Trichloroethane       10       U         56-23-5       Carbon Tetrachloride       10       U         75-27-4       Bromodichloromethane       10       U         78-87-5       1,2-Dichloropropane       10       U         10061-01-5       cis-1,3-Dichloropropene       10       U         79-01-6       Trichloroethene       10       U         124-48-1       Dibromochloromethane       10       U         79-00-5       1,1,2-Trichloroethane       10       U         71-43-2       Benzene       10       U         10061-02-6       trans-1,3-Dichloropropene       10       U         75-25-2       Bromoform       10       U         108-10-1       4-Methyl-2-Pentanone       10       U         591-78-6       2-Hexanone       10       U         127-18-4       Tetrachloroethene       10       U         79-34-5       1,1,2,2-Tetrachloroethane       10       U         108-88-3       Toluene       10       U         108-90-7       Chlorobenzene       10       U         100-41-4       Eth				10	Ū	ļ
71-55-6       1,1,1-Trichloroethane       10       U         56-23-5       Carbon Tetrachloride       10       U         75-27-4       Bromodichloromethane       10       U         78-87-5       1,2-Dichloropropane       10       U         10061-01-5       cis-1,3-Dichloropropene       10       U         79-01-6       Trichloroethene       10       U         124-48-1       Dibromochloromethane       10       U         79-00-5       1,1,2-Trichloroethane       10       U         71-43-2       Benzene       10       U         10061-02-6       trans-1,3-Dichloropropene       10       U         75-25-2       Bromoform       10       U         108-10-1       4-Methyl-2-Pentanone       10       U         591-78-6       2-Hexanone       10       U         127-13-4       Tetrachloroethene       10       U         79-34-5       1,1,2,2-Tetrachloroethane       10       U         108-88-3       Toluene       10       U         108-90-7       Chlorobenzene       10       U         100-41-4       Ethylbenzene       10       U		1,2-Dichloroethane		10	Ū	İ
56-23-5       Carbon Tetrachloride       10       U         75-27-4       Bromodichloromethane       10       U         78-87-5       1,2-Dichloropropane       10       U         10061-01-5       cis-1,3-Dichloropropene       10       U         79-01-6       Trichloroethene       10       U         124-48-1       Dibromochloromethane       10       U         79-00-5       1,1,2-Trichloroethane       10       U         71-43-2       Benzene       10       U         10061-02-6       trans-1,3-Dichloropropene       10       U         75-25-2       Bromoform       10       U         108-10-1       4-Methyl-2-Pentanone       10       U         591-78-6       2-Hexanone       10       U         127-13-4       Tetrachloroethene       10       U         79-34-5       1,1,2,2-Tetrachloroethane       10       U         108-88-3       Toluene       10       U         108-90-7       Chlorobenzene       10       U         100-41-4       Ethylbenzene       10       U         100-42-5       Styrene       10       U		2-Butanone		10	Ū	ł
75-27-4       Bromodichloromethane       10       U         78-87-5       1,2-Dichloropropane       10       U         10061-01-5       cis-1,3-Dichloropropene       10       U         79-01-6       Trichloroethene       10       U         124-48-1       Dibromochloromethane       10       U         79-00-5       1,1,2-Trichloroethane       10       U         71-43-2       Benzene       10       U         10061-02-6       trans-1,3-Dichloropropene       10       U         75-25-2       Bromoform       10       U         108-10-1       4-Methyl-2-Pentanone       10       U         591-78-6       2-Hexanone       10       U         127-13-4       Tetrachloroethene       10       U         79-34-5       1,1,2,2-Tetrachloroethane       10       U         108-88-3       Toluene       10       U         108-90-7       Chlorobenzene       10       U         100-41-4       Ethylbenzene       10       U         100-42-5       Styrene       10       U				10	Ū	
78-87-5       1,2-Dichloropropane       10       U         10061-01-5       cis-1,3-Dichloropropene       10       U         79-01-6       Trichloroethene       10       U         124-48-1       Dibromochloromethane       10       U         79-00-5       1,1,2-Trichloroethane       10       U         71-43-2       Benzene       10       U         10061-02-6       trans-1,3-Dichloropropene       10       U         75-25-2       Bromoform       10       U         108-10-1       4-Methyl-2-Pentanone       10       U         591-78-6       2-Hexanone       10       U         127-18-4       Tetrachloroethene       10       U         79-34-5       1,1,2,2-Tetrachloroethane       10       U         108-88-3       Toluene       10       U         108-90-7       Chlorobenzene       10       U         100-41-4       Ethylbenzene       10       U         100-42-5       Styrene       10       U				10	U	
78-87-5       1,2-Dichloropropane       10       U         10061-01-5       cis-1,3-Dichloropropene       10       U         79-01-6       Trichloroethene       10       U         124-48-1       Dibromochloromethane       10       U         79-00-5       1,1,2-Trichloroethane       10       U         71-43-2       Benzene       10       U         1061-02-6       trans-1,3-Dichloropropene       10       U         75-25-2       Bromoform       10       U         108-10-1       4-Methyl-2-Pentanone       10       U         591-78-6       2-Hexanone       10       U         127-18-4       Tetrachloroethene       10       U         79-34-5       1,1,2,2-Tetrachloroethane       10       U         108-88-3       Toluene       10       U         108-90-7       Chlorobenzene       10       U         100-41-4       Ethylbenzene       10       U         100-42-5       Styrene       10       U				10	Ū	
10061-01-5       cis-1,3-Dichloropropene       10       U         79-01-6       Trichloroethene       10       U         124-48-1       Dibromochloromethane       10       U         79-00-5       1,1,2-Trichloroethane       10       U         71-43-2       Benzene       10       U         10061-02-6       trans-1,3-Dichloropropene       10       U         75-25-2       Bromoform       10       U         108-10-1       4-Methyl-2-Pentanone       10       U         591-78-6       2-Hexanone       10       U         127-18-4       Tetrachloroethene       10       U         79-34-5       1,1,2,2-Tetrachloroethane       10       U         108-88-3       Toluene       10       U         108-90-7       Chlorobenzene       10       U         100-41-4       Ethylbenzene       10       U         100-42-5       Styrene       10       U		1,2-Dichloropropane		10	Ū	
79-01-6       Trichloroethene       10       U         124-48-1       Dibromochloromethane       10       U         79-00-5       1,1,2-Trichloroethane       10       U         71-43-2       Benzene       10       U         10061-02-6       trans-1,3-Dichloropropene       10       U         75-25-2       Bromoform       10       U         108-10-1       4-Methyl-2-Pentanone       10       U         591-78-6       2-Hexanone       10       U         127-18-4       Tetrachloroethene       10       U         79-34-5       1,1,2,2-Tetrachloroethane       10       U         108-88-3       Toluene       10       U         108-90-7       Chlorobenzene       10       U         100-41-4       Ethylbenzene       10       U         100-42-5       Styrene       10       U		cis-1,3-Dichloropropene		10	Ū	
124-48-1       Dibromochloromethane       10       U         79-00-5       1,1,2-Trichloroethane       10       U         71-43-2       Benzene       10       U         10061-02-6       trans-1,3-Dichloropropene       10       U         75-25-2       Bromoform       10       U         108-10-1       4-Methyl-2-Pentanone       10       U         591-78-6       2-Hexanone       10       U         127-18-4       Tetrachloroethene       10       U         79-34-5       1,1,2,2-Tetrachloroethane       10       U         108-88-3       Toluene       10       U         108-90-7       Chlorobenzene       10       U         100-41-4       Ethylbenzene       10       U         100-42-5       Styrene       10       U		Trichloroethene		10	U	
79-00-5       1,1,2-Trichloroethane       10       U         71-43-2       Benzene       10       U         10061-02-6       trans-1,3-Dichloropropene       10       U         75-25-2       Bromoform       10       U         108-10-1       4-Methyl-2-Pentanone       10       U         591-78-6       2-Hexanone       10       U         127-18-4       Tetrachloroethene       10       U         79-34-5       1,1,2,2-Tetrachloroethane       10       U         108-88-3       Toluene       10       U         108-90-7       Chlorobenzene       10       U         100-41-4       Ethylbenzene       10       U         100-42-5       Styrene       10       U	124-48-1	Dibromochloromethane				
71-43-2       Benzene       10       U         10061-02-6       trans-1,3-Dichloropropene       10       U         75-25-2       Bromoform       10       U         108-10-1       4-Methyl-2-Pentanone       10       U         591-78-6       2-Hexanone       10       U         127-18-4       Tetrachloroethene       10       U         79-34-5       1,1,2,2-Tetrachloroethane       10       U         108-88-3       Toluene       10       U         108-90-7       Chlorobenzene       10       U         100-41-4       Ethylbenzene       10       U         100-42-5       Styrene       10       U	79-00-5	1,1,2-Trichloroethane		10	11	
10061-02-6       trans-1,3-Dichloropropene       10       U         75-25-2       Bromoform       10       U         108-10-1       4-Methyl-2-Pentanone       10       U         591-78-6       2-Hexanone       10       U         127-18-4       Tetrachloroethene       10       U         79-34-5       1,1,2,2-Tetrachloroethane       10       U         108-88-3       Toluene       10       U         108-90-7       Chlorobenzene       10       U         100-41-4       Ethylbenzene       10       U         100-42-5       Styrene       10       U	71-43-2	Benzene			11	
75-25-2       Bromoform       10       U         108-10-1       4-Methyl-2-Pentanone       10       U         591-78-6       2-Hexanone       10       U         127-18-4       Tetrachloroethene       10       U         79-34-5       1,1,2,2-Tetrachloroethane       10       U         108-88-3       Toluene       10       U         108-90-7       Chlorobenzene       10       U         100-41-4       Ethylbenzene       10       U         100-42-5       Styrene       10       U	10061-02-6	trans-1,3-Dichloropropene				
108-10-1       4-Methyl-2-Pentanone       10       U         591-78-6       2-Hexanone       10       U         127-18-4       Tetrachloroethene       10       U         79-34-5       1,1,2,2-Tetrachloroethane       10       U         108-88-3       Toluene       10       U         108-90-7       Chlorobenzene       10       U         100-41-4       Ethylbenzene       10       U         100-42-5       Styrene       10       U	75-25-2				11	
591-78-6       2-Hexanone       10       U         127-18-4       Tetrachloroethene       10       U         79-34-5       1,1,2,2-Tetrachloroethane       10       U         108-88-3       Toluene       10       U         108-90-7       Chlorobenzene       10       U         100-41-4       Ethylbenzene       10       U         100-42-5       Styrene       10       U	108-10-1	4-Methyl-2-Pentanone				
127-18-4       Tetrachloroethene       10       U         79-34-5       1,1,2,2-Tetrachloroethane       10       U         108-88-3       Toluene       10       U         108-90-7       Chlorobenzene       10       U         100-41-4       Ethylbenzene       10       U         100-42-5       Styrene       10       U	591-78-6	2-Hexanone				
79-34-5       1,1,2,2-Tetrachloroethane       10       U         108-88-3       Toluene       10       U         108-90-7       Chlorobenzene       10       U         100-41-4       Ethylbenzene       10       U         100-42-5       Styrene       10       U	127-18-4					
108-88-3       Toluene       10       U         108-90-7       Chlorobenzene       10       U         100-41-4       Ethylbenzene       10       U         100-42-5       Styrene       10       U						
108-90-7       Chlorobenzene       10       U         100-41-4       Ethylbenzene       10       U         100-42-5       Styrene       10       U						
100-41-4         Ethylbenzene         10         U           100-42-5         Styrene         10         U						
100-42-5 Styrene 10 U						
					- 11	
	1330-20-7	Xvlene (total)		10		

FORM I-CLP-VOA

10/95

SEMIVOLATILE	ORGANICS	ANALYSIS	DATA	SHEET
				]
				ľI

Lab Name STL/CT			Contract		DW-1
Lap Code IEACT	Case No	3091A		SDG No	A3091
Matrix (soil/wate				Lab Sample ID	
Sample wt/vol	810 (9	ŗ/mL) ML		Lab File ID	>R5522
Level (low/med)	LOW			Date Received	12/03/99
% Moisture	decanted	(Y/N)		Date Extracted	12/04/99
Concentrated Extra	act Volume	1000	(uL)	Date Analyzed	12/23/99
Injection Volume	2 0 (uL)			Dilution Factor	r 10
GPC Cleanup (Y)	'N) N	рн			

CAS NO	COMPOUND	CONCENTRATION UNITS (ug/L or ug/Kg)UG/L	Q

100 05 2	Dhana I	10	rт	
108-95-2	Phenol	12	U U	
111-44-4	bis(2-Chloroethyl)ether	12	<u> </u>	-[]
95-57-8	2-Chlorophenol	12	Ū	-
541-73-1	1,3-Dichlorobenzene	12		-
106-46-7	1,4-Dichlorobenzene	12	U	-[]
95-50-1	1,2-Dichlorobenzene	12	U	
95-48-7	2-Methylphenol	12	U	4
108-60-1	2,2'-oxybis(1-Chloropropane)	12	Ü	1
106-44-5	4-Methylphenol	12	Ū	ļļ .
621-64-7	N-Nitroso-di-n-propylamine	12	U	
67-72-1	Hexachloroethane	12	U	]
98-95-3	Nitrobenzene	12	Ū	1
78-59-1	Isophorone	12	U	
88-75-5	2-Nitrophenol	12	Ū	
105-67-9	2,4-Dimethylphenol	12	U	
111-91-1	bis(2-Chloroethoxy)methane	12	U	
120-83-2	2,4-Dichlorophenol	12	Ū	][
120-82-1	1,2,4-Trichlorobenzene	12	<del>-                                    </del>	
91-20-3	Naphthalene	2		]
106-47-8	4-Chloroaniline	12	Ū	
87-68-3	Hexachlorobutadiene	12	Ū	
59-50-7	4-Chloro-3-methylphenol	12	U	
91-57-6	2-Methylnaphthalene	12	U	1
77-47-4	Hexachlorocyclopentadiene	12	U ==	<b>]</b> ;
88-06-2	2,4,6-Trichlorophenol	12	U	
95-95-4	2,4,5-Trichlorophenol	31	Ū	
91-58-7	2-Chloronaphthalene	12	Ū	
88-74-4	2-Nitroaniline	31	Ū	
131-11-3	Dimethylphthalate	12	Ü	1
208-96-8	Acenaphthylene	12	Ū	
606-20-2	2,6-Dinitrotoluene	12	U	
99-09-2	3-Nitroaniline	31	Ū	
83-32-9	Acenaphthene	1.2	U	

# 1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

TENTATIVELY	IDENTIFIED	COMPOUNDS

DW-	-1		

EPA SAMPLE NO _

Lab Name STL/CT		Contract		
Lab Code IEACT	Case No 3091A	SAS No	SDG No	A3091
Matrix (soil/water)	) WATER		Lab Sample ID	993091A-01
Sample wt/vol	810 (g/mL)ML		Lab File ID	>R5522
Level (low/med)	LOW		Date Received	12/03/99
% Moisture	decanted (Y/N)		Date Extracted	12/04/99
Concentrated Extract	Volume 1000	(uL)	Date Analyzed	12/23/99
Injection Volume	2 0 (uL)		Dilution Factor	1 0
CDC Cleanum (V/N)	N pu			

Number TICs Found 10

(ug/L or ug/Kg)UG/L

CAS NUMBER	COMPOUND NAME	RT	EST CONC	Q
CAD NORBER	COMPOUND NAME	1/1	EDI CONC	<u> </u>
01	UNKNOWN	23 87	89	J
02	UNKNOWN	25 27	23	J
03	UNKNOWN	13 92	11	J
04	UNKNOWN	30 26	9	J
05	UNKNOWN	22 51	7	J
06	UNKNOWN	10 71	6	J
07 70-55-3	BENZENESULFONAMIDE, 4-METHYL	18 37	5	JN
08	UNKNOWN	24 00	4	J
09	UNKNOWN	22 39	4	J
10	UNKNOWN ACID	20 70	2	J
11				
12				
13				
14				
15				
16				
17 18				
19				
20				
21			-	
22				
23				
24				
25				——
26		<u> </u>	<del>                                     </del>	
27			-	
28				
29				
30		<del></del>		

EPA	SAMPLE	NO
DW-	-1	

$\Box$	Lab Name <u>S</u>	ract			
	Lab Code <u>II</u>	EACT Case No 3091A SA	AS No	SDG No A30	91
	Matrix (so	ll/water) <u>WATER</u>		Lab Sample ID <u>9930</u>	91A-01
	Sample wt/vo	ol <u>1000</u> (g/ml) <u>ML</u>		Lab File ID <u>C1055C</u>	LP150
	% Moisture	decanted (Y/N)		Date Received 12/0	3/99
	Extraction	(SepF/Cont/Sonc) <u>SEPF</u>		Date Extracted 12/	03/99
	Concentrated	l Extract Volume 10000 (u	ıL)	Date Analyzed 12/0	7/99
	Injection Vo	olume $10$ (uL)		Dilution Factor 1	<u>0-</u>
	GPC Cleanup	(Y/N) <u>N</u> pH		Sulfur Cleanup (Y/	N) <u>N</u>
	CAS NO	COMPOUND		CONCENTRATION UNITS (ug/L or ug/Kg) <u>UG/L</u>	
$\Box$	319-84-6	alpha-BHC		0 050	
	319-85-7	beta-BHC		0 050 0 0054	
	319-86-8	delta-BHC		0 0054	1
	58-89-9	gamma-BHC (Lindane)		0 050	_11
	76-44-8 309-00-2	Heptachlor Aldrin		0 025	
	1024-57-3	Heptachlor Epoxide		0 050	
	959-98-8	Endosulfan I		0 050	<del>  U</del>
	60-57-1	Dieldrin		0 10	1
	72-55-9	4,4'-DDE		0 10	1 11
)	72-20-8	Endrin		0 10	U
		Endosulfan II		0 10	T T
	72-54-8	4,4'-DDD		0 10	Ū
	1031-07-8	Endosulfan Sulfate		0 10	Ū
,	50-29-3	4,4'-DDT		0 10	Ū
$\Box$		Methoxychlor		0 50	U
i H		Endrin Ketone	+	0 10	Ū
7	7421-93-4	Endrin Aldehyde		0 10	Ū
رے	5103-71-9	alpha-Chlordane		0 0023	JP 7
' } [	5103-74-2	gamma-Chlordane		0 050	U
니	8001-35-2	Toxaphene		5 0	U
	12674-11-2	Arocior-1016		1 0	Ū
	11104-28-2	Aroclor-1221		2 0	Ū
, } ]	11141-16-5	Aroclor-1232		1 0	L,
7	53469-21-9	Aroclor-1242		0 82	J,
	12672-29-6	Aroclor-1248		1 0	U
' ) [	11097-69-1	Aroclor-1254		0 13	JP \
l	11006 02-5	Aroclor-1260		1 0	

FORM I PEST

OLM03 0

#### U S EPA - CLP

		INOF	RGANIC AN	1 ALYSES DATA	A SHEET	EPA SAMPLE NO
Lab Name	STL			Contract		DW-1
Lab Code	STL	Case No	<u>3091A</u>	SAS No		SDG No - <u>A3091</u>
	<b>7</b> /			_		

Matrix (soil/water) <u>WATER</u>

Lab Sample ID <u>993091A-01</u>

Level (low/med) LOW

Date Received 12/03/99

% Solids

0_0_

Concentration Units (ug/L or mg/kg dry weight) UG/L

			T		Γ	1
CAS No	Analyte	Concentration	C	Q	M	4
7429-90-5	Aluminum	256	-		P	(
7440-36-0	Antimony	6 0	Ū		P	-
7440-38-2	Arsenic	5 5	B	-	P	1
7440-39-3	Barium	19 0	B		P	3
	·	1 0	1 - 6		P	t
7440-41-7	Beryllium		U			
7440-43-9	Cadmium		<u> </u>		P	
7440-70-2	Calcium	360000	TT		P	
7440-47-3	Chromium	2 0	U		P	1 3
7440-48-4	Cobalt	2 0	U		P	J .
7440-50-8	Copper	2 5	В		P P	7
7439-89-6	Iron	5030			P	
7439-92-1	Lead	3 0	U		P	٠ ١
7439-95-4	Magnesium	38300			P P	
7439-96-5	Manganese	140				3
7439-97-6	Mercury	0 10	Ū		CV	ر 'ن
7440-02-0	Nickel	3 0	Ū		P	- }
7440-09-7	Potassium	15600			P	. 1
7782-49-2	Selenium	5 0	Ū		P	زر
7440-22-4	Silver	1 0	U		P	\
7440-23-5	Sodium	42700			P P	
7440-28-0	Thallium	10 0	Ū		P	15
7440-62-2	Vanadium	2 0	Ū		P	ر -
7440-66-6	Zinc	51 9			P	7
57-12-5	Cyanide		1		NR	

Color Before	<u>CL</u>	Clarity Before	CLEAR	Texture	
Color After	CL	Clarity After	CLEAR	Artıfacts	
Comments					

FORM I - IN

ILM03 0

WET CHEM ANALYSIS DATA SHEET					DW-1	DW-1		
		SAS :		_				
orry watery	0						Ė	
CAS No	Analyte		Concentration	n C	- Units	Q	M	
57-12-5	Cyanide, Total		0 0100	Ū	mg/L		L	
	STL soll/water) CAS No	STL Case No 3091A  SOIL/water) WATER  O	STL Case No 3091A SAS 1 SOIL/water) WATER  O  CAS No Analyte	STL Case No 3091A SAS No SOIL/water) WATER Lab Sampl  O Date Rece  CAS No Analyte Concentration	STL Case No 3091A SAS No Lab Sample II  O Date Received  CAS No Analyte Concentration C	STL Case No 3091A SAS No SDG No SOIL/water) WATER Lab Sample ID 993091A  Date Received 12/03/9  CAS No Analyte Concentration C Units	STL Case No 3091A SAS No SDG No A3 Soll/water) WATER Lab Sample ID 993091A-01  O Date Received 12/03/99  CAS No Analyte Concentration C Units Q	

FORM I - WC

APPENDIX A-2

PHASE II PSA 2002

Table 1 Soil Boring Results - Western Holder Niagara Mohawk Power Corporation Albion Former MGP July 2001

#### VOLATILE ORGANIC COMPOUNDS (ug/kg)

žbriuogmo) ž	- TÀGM	\$SB 9A-01	ີ Ş̂B 9B 01	SB 10A 01	SB 10B 01	\$B 11A 01°	SB 11B 01.	SB 11C 01
Compounds	`Guidance	(0,2)	(8 10 ) ~ ~	< (0 2 ) /*	(8 12)* **	· (0 2)*	(10 12)	(14 16)
Chloromethane		U	U	U	U	U	U	L
Bromomethane		U	U	U	U	U	U	L
Vinyl Chloride	200	U	U	U	U	U	U	L
Chloroethane	1900	U	U	U	U	U	U	U
Metnylene Chloride	100	18 B	10 B	7 B	3700 JB	7 B	25000 JB	14 B
Acetone	200	57	17	26	3300 J	9 J	22000 J	36 B
Carbon Disulfide	2700	U	U	U	Ü	U	U	1 J
Vinyl Acetate		U	U	U	U	U	U	U
1 1 Dichloroethene	400	U	U	U	U	U	υ	U
1 1 Dichloroethane	200	U	U	U	U	U	U	U
cis 1 2 Dichloroethene	· [	U	υ	U	U	U	U	U
trans-1 2 Dichloroethene	300	U	U	Ú	U	U	υ	U
Chloroform	300	U	U	U	U	U	υ	U
1 2 Dichloroethane	100	U	U	Ü	U	U	U	U
2 Butanone	300	U	U	U	U	U	U	9 JE
1 1 1-Trichloroethane	800	C	U	U	U	U	U	U
Carbon Tetrachlonde	600	_U	U	U	Ŭ	U	U	U
Bromodichloromethane		U	U	U	U	U	U	U
1 2 Dichloropropane		U	U	υ	U	U	U	U
cis 1 3 Dichloropropene		U	U	U	U	U	U	U
Trichloroethene	700	U	U	U	U	U	U_	U
Dibromochloromethane	N/A	U	U	U	U	U	U	U
1 1 2-Trichloroethane		U	U	U	U	U	U	U
Benzene	60	U	17	U	2400 J	U	14000 J	U
trans 1 3 Dichloropropene		U	U	υ	U	U	U	<u>U</u>
Bromoform		U	U	U	U	U	U	U
4 Methyl 2 Pentanone	1000	U	U	U	U	U	Ú	U
2-Hexanone	1	U	U	U	U	U	U	U
Tetrachloroethene	1400	U	U	U	U	U	U	U
Toluene	1500	U	17	U	7400 JB	U	51000 JB	2 JB
1 1 2 2 Tetrachloroethane	600	U	U	U	Ü	U	U	U
Chlorobenzene	1700	Ü	υ	U	U	U	U	U
thylbenzene	5500	U	2 J	U	3300 J	U	18000 J	Ü
Styrene		U	U	U	580 J	U	Ü	U
(ylene (total)	1200	U	27	U	37000	U	260000	U
OTAL VOCs	<del>                                     </del>	75	90	33	57680	16	390000	62

#### SEMI-VOLATILE ORGANIC COMPOUNDS (ug/kg)

Compounds /»	TAGM	SB 9A	01	ŞB 9B	· ~ \$7 .	SB 10A	01.	, ,,,,,	01.	SB*11A		SB 11B	5 45	,ŠB, 110	
Compounds	Guidance;	» (0,2)	'¥	(8 10	)	» (0 2)		(8 12)	yn i de meistanis	** (0 2 )	89.34	³ 🛬 (10 12	) [*]	3(14 1€ 2.2	5) ****
Naphthalene	13000	120	J	280	Ĵ	3300	J	290000		1700	J	910000		770	
2-Methylnaphthalene	36400	68	J	49	J	1100	J	45000	J	590	J	130000	J_	290	J
Acenaphthylene	41000	270	J	29	J	7300	J	32000	J	3300	J	63000	J	310	J
Acenaphthene	50000		U.		U	1200	J	10000	J	510	J	20000	J	84	J
Fluorene	50000		C	14	J	2100	J	52000		1100	J	99000	J	460	
Phenanthrene	50000	450	Ĵ	48	J	25000		180000		9000		320000		1800	
Anthracene	50000	250	J	20	J	10000		51000	J	4000		97000	J	630	
Fluoranthene	50000	1200	J	98	J	52000		160000		18000		240000		1200	
Pyrene	50000	910	J	100	J	45000		96000		15000		140000	J	960	
Benzo(a)anthracene	224	1000	J	84	J	38000		58000		13000		88000	J	540	
Chrysene	400	1000	J	86	J	34000		53000		12000		79000	J	510	
Benzo(b)fluoranthene	1100	1200	Ĵ	87	J	38000		33000	J	16000		46000	J	270	J
Benzo(k)fluoranthene	1100	1100	J	80	J	22000		43000	J	8400		68000	J	330	J
Benzo(a)pyrene	61	1400	J	98	J	42000		42000	J	16000		62000	J	380	
Indeno(1 2 3 cd)pyrene	3200	730	J	100	J	25000		19000	J	9500		26000	J	230	J
Dibenzo(a h)anthracene	14	240	J	37	j	9400	J	6700	J	3300	J	9000	J	79	J
Benzo(g h ı)perylene	50000	730	J	120	j	21000		18000	J	7300		24000	J	210	J
TOTAL SVOCs		10668		1330	i	376400	Ī	1188700	_ [	138700		2421000		9053	

Boid values indicate a concentration in exceedence of the NYSDEC standard

- J Indicates that the compound was analyzed for and determined to be present in the sample. The concentration listed is an estimated value
- U indicates that the compound was analyzed for but not detected
- B Indicates the analyte was found in blanks as well as the sample

Table 2
Soil Boring Results Eastern Holder
Niagara Mohawk Power Corporation
Albion Former MGP
July 2001

#### VOLATILE ORGANIC COMPOUNDS (ug/kg)

				5,51								
Compounds	TAGM	SB 12	à 01	.ŠB 12B 01.	SB 13A 01	SB 13B 0	SB 13C 01	'SB 14A-0	1. SB 14B 01	SB 15A 01	SB 15B 01	, Durolicate
Compounds	Guidance	, "(0 <u>.</u> 2		(14 16)	~ (0 2)	3 (4-6)	SB-13C 01	(0 2)	1, SB 14B 01,	(0,2)	(14'16)	(14 16)
Chloromethane	1	<del></del>	Ü	U	U	L					U	U
Bromomethane			U	U	U		U	1	, <del> </del>	U	Ū	U
Vinyl Chloride	200		U	Ū	U	U	U	1	U	U	U	Ü
Chioroethane	1900	<u> </u>	U	U	U	1	Ü	1	ı u	U	U	Ü
Methylene Chloride	100	8	В	8 B	8 B	14 B	26 B	20 B	14 B	14 B	3400 JB	18 B
Acetone	200	29		9 J	13	7 J	33	23	17	13	4000 J	44
Carbon Disulfide	2700		U	U	U	U	U	05 J	U	U	U	U
Vinyl Acetate			Ų	U	U	U	U	11	U	U	U	Ū
1 1 Dichloroethene	400		U	U	U	υ	U	Ü	υ	U	Ü	U
1 1 Dichloroethane	200		U	U	U	U	U	U	U	U	U	Ü
cis 1.2 Dichloroethene			U	Ŭ	U	Ü	U	U	U	U	U	U
trans 1.2 Dichloroethene	300		U	U	U	U	U	U	U	U	Ù	Ü
Chlorotorm	300		U	U	Ú	U	U	U	U	Ū Ū	U	U
1 2 Dichloroethane	100		U	U	U	U	U	U	U	U	U	U
2 Butanone	300		U	U	Ū	U	U	U	U	U	Ü	υ
1 1 1 Trichloroethane	800		U	Ù	U	U	U	U	U	U	U	U
Carbon Tetrachloride	600		U	U	U	U	Ü	U	U	U	U	U
Bromodichloromethane			Ū	U	U	Ú	Ü	Ū	U	U	U	Ü
1 2 Dichloropropane			U	Ü	U	U	U	U	U	U	U	U
cis 1 3 Dichloropropene			U	Ü	Ū	U	Ü	U	U	U	U	Ü
Trichloroethene	700		U	Ũ	U	U	U	09 J	U	U	U	U
Dibromochioromethane	N/A		U	Ü	U	U	U	U	U	U	U	U
1 1 2 Trichloroethane			U	U	U	U	U	U	U	U	U	U
Benzene	60	2	J	U	1 J	06 J	03 J	7	U	U	3100 J	2 J
trans 1 3 Dichloropropene			Ų	U	U	U	U	U	U	U	υ	U
Bromoform			U	U	U	U	U	U	U	U	U	U
4-Methyl 2 Pentanone	1000		U	U	U	U	U	U	U	U	U	U
2 Hexanone	ĺ		U	U	U	U	U	U	U	U	U	U
Tetrachloroethene	1400		U	U	U	U	U	υ	U	U	U	υ
Toluene	1500		U	U	2 J	09 J	2 J	5 J	06 J	U	9400 JB	1 J
1 1 2 2 Tetrachloroethane	600		U	U	Ű	U	U	U	Ü	U	υ	U
Chlorobenzene	1700		U	U	U	U	Ü	U	U	U	U	U
Ethylbenzene	5500		U	Ü	U	7	U	U	U	U	2900 J	U
Styrene			U	U	U	υ	υ	U	U	U	1100 J	U
Kylene (total)	1200		U	Ü	2 J	16	08 J	07 J	U	υ	41000	U
FOTAL VOCs		39		17	26	45 5	62 1	68 ı	316	27	64900	65

#### SEMI-VOLATILE ORGANIC COMPOUNDS (ug/kg)

Compounds	TAGM Guidance		472	SB 12E	3 01.	SB 13A	** 32	SB 138			2.018	SB 14A		SB 141	25.4	(02)		SB 15E	ž ž	Duplic (14,16	
Napnthalene	13000	1800	j	10	J	3900	J	3100	J	Î	U	2000	J	10	J	120	J	81000		17	
2 Methylnaphthalene	36400	1100	J		U	4000	J	3400	J		U	1100	J		U		υ	22000			-U
Acenaphthylene	41000	5500	J	15	J	16000		2500	Ĵ	10	J	5100	j	11	J	660	J	5800	J	13	J
Aceraphthene	50000	2000	J		U	2100	J	580	J		U	1500	J		U	1	U	2100	J		U
Fluorene	50000	3100	J		U	8600	J	1000	J		U	2100	J		U	64	j	13000	J		U
Phenanthrene	50000	33000		75	J	47000		9400		23	J	32000		37	J	1400	J	41000	$\neg$	60	_j
Anthracene	50000	12000		40	J	25000		4700		14	J	11000	J	16	Ĵ	780	J	13000	J	24	J
Fluoranthene	50000	73000	ļ	210	7	90000		28000		72	J	85000		68	J	4500		26000		140	J
Pyrene	50000	65000		190	J	91000		27000		74	J	66000		64	J	4000		15000		140	J
Benzo(a)anthracene	224	48000		150	J	68000		21000		55	J	56000		50	J	3900		9600	J	100	J
Chrysene	400	43000	Ţ	140	J	56000		18000		45	J	50000		46	J	3800		6600	J	99	J
Benzo(b)fluoranthene	1100	53000		110	J	45000		19000		36	j	49000		40	J	4200		5000	J	100	3
Benzo(k)fluoranthene	1100	22000		150	J	28000		10000		37	J	51000		42	J	3200		6200	J	97	J
Benzo(a)pyrene	61	58000		180	J	54000		22000		48	J	64000		53	J	5200		6500	J	140	j
Indeno(1 2 3 cd)pyrene	3200	36000		160	J	22000		10000		38	J	68000		45	J	3600		2500	J	150	J
Dibenzo(a h)anthracene	14	17000	$\neg \neg$	61	J	9600	J	4100		14	j	23000		18	J	1200	J	840	J	45	J
Benzo(g h ı)perylene	50000	26000		180	J	14000	J	6600		36	J	74000		44	J	3000		2600	J	180	J
TOTAL SVOCs		499500		1671		584200		190380		502		640800		544		39624		258740	$\dashv$	1305	

Bold values indicate a concentration in exceedence of the NYSDEC standard

Interval shown indicates at what depth the sample was taken from

J Indicates that the compound was analyzed for and determined to be present in the sample. The concentration listed is an estimated value U Indicates that the compound was analyzed for but not detected.

B Indicates the analyte was found in blanks as well as the sample

Duplicate taken from SB 12B 01

S andards taken from the NYSDEC Technical and Administrative Guidance Memorandum #4046

#### Table 3 Groundwater Results - VOCs Niagara Mohawk Power Corporation Albion Former MGP August 2001

#### **VOLATILE ORGANIC COMPOUNDS**

Compounds (ug/L)	TOGS Standard	MW-1	MW-2- *	MW-3-#	MW-4	MW_5	MW 6	_M_W-7	Duplicate
Acetone	50(G)	U	U	U	U	U	U	U	U
Benzene	1	U	U	U	U	230	U	U	U
Bromodichloromethane	50(G)	U	U	U	Ų	Ü	U	U	U
Bromoform	50(G)	U	U	U	U	U	U	U	U
Bromomethane	5	Ü	U	Ų	U	U	U	U	U
2-Butanone		U	U	Ü	U	U	U	U	U
Carbon Disulfide		U	U	U	Ü	U	U	U	U
Carbon Tetrachloride	5	U	Ü	U	U	U	U	U	U
Chlorobenzene	5	Ū	U	U	U	U	U	U	U
Chloroethane	5	Ū	U	U	U	U	U	U	U
Chloroform	7	U	U	Ü	U	U	U	U	U
Chloromethane		U	U	U	υ	U	U	U	U
Dibromochloromethane	50(G)	U	U	U	U	U	U	U	U
1 1-Dichloroethane	5	U	U	U	U	U	U	U	U
1 2-Dichloroethane	06	U	U	U	U	Ü	U	C	U
1 1-Dichloroethene	5	U	U	U	U	U	U	U	U
cis-1 2-Dichloroethene	5	U	U	Ü	U	U	Ŭ	U	U
trans 1 2-Dichloroethene	5	Ú	U	U	U	U	U	U	U
1 2-Dichloropropane	1	U	U	U	U	U	U	Ū	U
cis-1 3-Dichloropropene	04	U	U	U	U	U	U	U	Ü
trans-1 3-Dichloropropene	0 4	U	Ū	Ū	U	U	U	U	U
Ethylbenzene	5	U	U	U	U	17	U	U	U
2-Hexanone	50(G)	U	U	U	U	U	U	U	U
Methylene Chloride	5	U	U	U	U	U	U	U	U
4-Methyl-2-Pentanone		U	U	U	U	U	U	U	U
Styrene	5	U	U	U	U	Ų	U	U	U
1 1 2 2 -Tetrachloroethane	5	U	Ū	U	U	U	U	U	Ú
Tetrachloroethene	5	U	U	U	U	U	U	U	U
Toluene	5	U	U	U	U	24	U	U	U
1 1 1-Trichloroethane	5	U	U	U	Ú	U	U	U	U
1 1 2-Trichloroethane	1	Ü	U	U	U	U	U	U	U
Trichloroethene	5	U	U	U	U	U	U	U	U
Vinyl Chloride	2	U	U	U	U	U	U	U	U
O-Xylene		U	Ü	U	Ú	22	U	Ü	U
M+P-Xylene		U	Ü	U	U	31	U	U	U
TOTAL VOCs		ND	ND	ND	ND	324	ND	ND	ND

Boid values indicate a concentration in exceedence of the NYSDEC standard

(G) Signifies a NYSDEC guidance value where a s andard has not been established

U - Indicates that the compound was analyzed for but not detected

Duplicate taken from MW 1

ND Not Detected

Standards taken from the NYSDEC Division of Water Technical and Operational Guidance Series (TOGS)

## Table 4 Groundwater Results - SVOCs Niagara Mohawk Power Corporation Albion Former MGP August 2001

#### SEMIVOLATILE ORGANIC COMPOUNDS

Compounds (ug/L)	TOGS Standard	MW:1	MW*2	MW-3	MW 4		MW-6	MW-7	Duplicate
Acenaphthene	20(G)	U	U	U	U	14	U	U	U
Acenaphthylene		U	U	Ú	U	22	Ú	U	Ü
Anthracene	50(G)	Û	U	U	U	U	U	U	U
Benzo(a)anthracene	0 002(G)	U	U	U	U	Ü	U	U	U
Benzo(a)pyrene	ND	Ü	U	U	U	U	U	U	Ú
Benzo(b)fluoranthene	0 002(G)	U	U	U	U	U	U	U	Ü
Benzo(g h ı)perylene		U	U	U	U .	U	U	Ū	Ū
Benzo(k)fluoranthene	0 002(G)	U	U	U	U	U	U	U	U
Indeno(1 2 3 cd)pyrene	0 002(G)	U	U	U	U	U	U	U	Ü
Chrysene	0 002(G)	U	U	Ű	U	U	U	U	U
Dibenzo(a h)anthracene		U	U	U	U	U	U	U	U
Fluoranthene	50(G)	U	U	U	U	U	U	U	U
Fluorene	50(G)	U	U	U	U	18	U	U	U
Naphthalene	10(G)	U	U	U	Ú	55	U	U	U
Phenanthrene	50(G)	U	U	U	U	U	U	U	U
Pyrene	50(G)	U	U	U	U	U	U	U	U
TOTAL SVOCs		ND	ND	ND	ND	109	ND	ND	ND

(G) Signifies a NYSDEC guidance value where a standard has not been established

Bold values indicate a concentration in exceedence of the NYSDEC standard or guidance value

U indicates that the compound was analyzed for but not detected

Duplicate taken from MW 1

ND Not Detected

Standards taken from the NYSDEC Division of Water Technical and Operational Guidance Series (TOGS)

## Table 5 Groundwater Results - Inorganic Chemistry Niagara Mohawk Power Corporation Albion Former MGP August 2001

Analyté (mg/L)	MW-1	MW-2	~	, MÎW≛4 * * *	MW-5		MW-7
Iron	41 8	75	4 94	7 98	310	3 65	168
Manganese	7 75	11	1 16	0 35	6 57	0 606	0 312
Nitrate	7 89	32 7	5 54	1 85	Ú	U	U
Carbon dioxide	24 1	41 1	15 6	18 6	41 7	40 2	9 93

U Indicates that the compound was analyzed for but not detected

Standards taken from the NYSDEC Division of Water Technical and Operational Guidanc Senes (TOGS)

# Table 6 Field-Measured Data - Groundwater Niagara Mohawk Power Corporation Albion Former MGP August 27, 2001

Sampling Location*	DTW (ft)	TDW (ft.)	Temp (C)	Cond (ms/cm)	pH	Turbidity.	DO (ppm)	Salinity %	Ēh* (m\)
MW-1	6 57	19 86	15 3	0 77	7 42	801	6 07	0 02	151
MW-2	8 90	17 73	16 0	0 87	7 39	127	5 49	0 02	154
MW-3	7 44	19 14	16 5	0 729	7 36	894	3 56	0 03	249
MW-4	10 84	19 67	16 1	0 584	7 51	843	4 56	0 02	59
MW-5	8 24	16 27	16 0	0 95	7 59	OR	5 77	0 04	-50
MW-6	5 92	15 11	15 1	0 711	7 33	809	4 50	0 03	50
MW-7	6 40	29 38	18 8	0 702	7 79	79	4 61	0 03	-40

OR - Over Range (> 999 NTU)

^{*} Eh measurements were recorded on August 2 2001





Environmental Engineers and Scientists

Niagara Mohawk Power Corporation Albion Former MGP Phase II Site Investigation Albion, New York

Depth of Boring Drilling Contractor Drill Rig Type Driller

Drilling Method Hammer Wt /Drop Sampling Method Logged By

Surveyed By

164 Parratt Wolff Mobile B 56 Jim Hammond

Hollow Stem Augers 140 lb /30 Split Spoon 1 3/8 ID

MSS NMPC

#### LOG OF BORING SB-9-01

(Page 1 of 1)

Date Started

Time

Date Completed Time

Boring Location

4 15 PM 7/17/01 5 45 PM

7/17/01

overcast 70F SW of western gasholder

		lob No L	10046		Boring Lo	cation SW of v	vestern ga	sholder
Depth in Feet	Blow Count	PID (ppm)	Recovery (inches)	DESCRIPTION		REMARKS	Depth In Feet	Analytical Samples
0			l				0	
1	5 8 5 6	15 5	10	(FILL) dry, brown dense silt with small pebbles and fine gravel trace brid fragments present	ck		2-	SB 9A
2-	6 4 3 3	48	10				4-	
6-	1 1 1	61	15	moist brown dense silt mixed with little f/m sand and coarse grave	rel		6-	
8	2 5 7 10 7	57	15				8-	
10-	12 15 51	102 7	24	slightly moist brown dense silt with trace pebbles and little fine gravel 2' black/green like pebbles mixed with fine silt		slight odor detected	10	SB 9B
12-	30 50/4	68 1	15	brown silt with many pebbles and trace wood pieces		difficult drilling @ 11 augered through boulder @ 12	12	
14-11	21 21 47	35 5	22	slightly moist, brown silt mixed with some fine sand and gravel, grade to 8" fine red/brown sand with trace cobbles			14-	
16	45 35 50 50/4	24 9	20	moist red/brown fine sand with many pebbles grade to ~4 dense brittle sand with sandstone fragments		Refusal @ 16 4	16-	
18				END OF BORING AT 16 4 FEET			18	
20-							20	

SB 9A (0 2 feet) and SB 9B (8 10 feet) were collected and analyzed for VOCs and PAHs

LOG OF BORING SB-9-01



Environmental Engineers and Scientists

Niagara Mohawk Power Corporation Albion Former MGP Phase II Site Investigation Albion New York Depth of Boring Drilling Contractor Drill Rig Type

Driller Drilling Method Hammer Wt /Drop

Sampling Method Logged By Surveyed By 15 7

Parratt Wolff Mobile B 56

Jim Hammond Hollow Stem Augers

140 lb /30 Split Spoon 1 3/8 lD

MSS NMPC

#### LOG OF BORING SB-10-01

(Page 1 of 1)

Date Started Time 7/18/01 8 35 AM

Date Completed Time 7/18/01 9 40 AM

Weather

clear/sunny 75F

(Page 1 of 1)

	,	Job No I	10046	10	Boring Location SE of	western gasholder
Depth in Feet	Blow Count	PID (ppm)	Recovery (inches)	DESCRIPTION	REMARKS	teet https://www.html.
0-	9 10 6 4	7 2	17	(FILL) dry brown dense silt with small pebbles and coarse gravel trace brick fragments and black cinder like material (CLM) present		0   SB 10A
4 - 1	3 4 8 9 1 1 2	12 9	5	slightly moist, brown dense silt with fine gravel, black CLM and brick fragments	slight odor detected	2-1111111111111111111111111111111111111
6 	2 2 3 6	168	14	wet, brown dense silt with trace pebbles and little fine sand and gravel brick fragments present		6
10-	6 3 3 5	74 2	18	6 wet black/gray silt w/ many pebbles and fine gravel grade to 12 black silt with coarse gravel	2" strong odor detected sheen present	10-3 SB 10B
111111	5 50/4	71 3	12	gray silt with coarse gravel and brick fragments		
12	23 25 27 50	143 0	22	14 moist black/gray silt with gravel and many pebbles grade to 8 brown/red sand w/ weathered sandstone pieces	strong odor with sheen	12-
14	41 44 53 50/4	70 3	18	13" gray silt with gravel (backfill) grade to 5' red weathered fine sand with brittle sandstone fragments	Refusal @ 15 7	14-
18 18				END OF BORING AT 15 7 FEET		18
20- Notes SB 10A (	0 2 feet)	and SB 1	0B (8 12	feet) were collected and analyzed for VOCs and PAHs	LOG OF BORING	



En ironmental Engineers and Scientists

Niagara Mohawk Power Corporation Albion Former MGP Phase II Site Investigation Albion New York

Depth of Boring **Drilling Contractor** Drill Rig Type Driller Drilling Method Hammer Wt /Drop Sampling Method

Logged By

Surveyed By

15 9 Parratt Wolff Mobile B 56 Jim Hammond Hollow Stem Augers

Split Spoon 1 3/8 ID MSS NMPC

140 lb /30

#### LOG OF BORING SB-11-01

(Page 1 of 1)

Date Started Time Date Completed 7/18/01 10 15 AM 7/18/01

Time Weather 11 25 AM clear/sunny 75F

		Job No L	10046	0	Boring Location	NE of western ga	sholder
Depth In Feet	Blow Count	PID (ppm)	Recovery (inches)	DESCRIPTION	REMAF	Depth In Feet	Analytical Samples
0 11111111	14 14 7 6	16 5	18	brown silt mixed with coarse gravel and black CLM		0-	SB 11A
2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	6 4 4 3	28 0	15	Shahati, was ant dance suit with blook Ol M and break process		2-	
4	2 1 13 5	95	7	slightly moist dense silt with black CLM and brick pieces		4-	
8	9 3 6 1	187	9	wet coarse gravel with many pebbles and little brick fragments		8-	
10	3 8 7 9	32 6	8	black moist silt with many pebbles	odor present	10	
TITLE T	9 25 50/4	621 0	10	black silt w/ trace fine gravel and fine wooden shavings/organics	detected ven strong odor a sheen preser	nd =	SB 11B
12	40 33 40	411 0	24	17' black silty matrix with many pebbles and some organics grade to 7 dense gray silt with little fine sand	trace NAPL a with odor/she		
14   1   1   1   1   1   1   1   1   1	50 35 34 40	25 9	24	brown silt mixed with fine sand grade to 5 red weathered sand with many pebbles and sandstone fragments	Refusal @ 15	14	SB 11C
16	_48			END OF BORING AT 15 9 FEET	1.1010001 9 10	16	: 
18-						18	
20						20	

SB 11A (0.2 feet) SB 11B (10.12 feet) and SB 11C (14.16 feet) were collected and analyzed for VOCs and PAHs

LOG OF BORING SB-11-01



Environmental Engineers and Scientists

Niagara Mohawk Power Corporation Albion Former MGP Phase II Site Investigation Albion New York

Depth of Boring Drilling Contractor Drill Rig Type Driller

Drilling Method Hammer Wt /Drop Sampling Method Logged By Surveyed By

160

Parratt Wolff Mobile B 56 Jım Hammond

Hollow Stem Augers 140 lb /30 Split Spoon 1 3/8 ID

MSS NMPC

#### LOG OF BORING SB-12-01

(Page 1 of 1)

Date Started

Time

7/18/01 1 30 PM 7/18/01

Date Completed Time

2 20 PM

Weather

clear/sunny 75F

Boring Location

SW of eastern gasholder

		lob No l	L10046	10	Boring Locat	ion SW of	eastern ga	sholder
Depth in Feet	Blow Count	PID (ppm)	Recovery (inches)	DESCRIPTION		REMARKS	Depth In Feet	Analytical
0 +	6						0-	
2	8 6 5	70	20	dry loose brown/black silt w/ many pebbles and black CLM			2-	SB 1.
2   TITTITITITITITITITITITITITITITITITITI	3 6 6 7	64	16				4-	
חיוןיייי	7 7 8 10	33	10	brown dense silt with pebbles and trace CLM			6	
6-11111111	12 12 7 7	25	14				6-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
10	3 3 3	23	18	slightly moist brown dense silt w/ trace brown fine sand silty clay tip of spoon	at		10	
	7 8 12 13	50	20	moist red/brown dense silt w/ little clay, trace pebbles			12	
12-	13 13 18 18	28	20				111111	
14-7	38 19 20 55	23	22	16 moist silt mixed w/ sand grade to 6" red m/c sand w/ sandsto fragments	one		14-	SB 1.
16-		L		END OF BORING AT 16 FEET			16-	
							=	
18-							18-	
3								
ļ								
20-						<u> </u>	20-	
Notes SB 12A (0	) 2 feet)	and SB 1	2B (10 1	2 feet) were collected and analyzed for VOCs and PAHs	LOG O	F BORING	SB-1	2-01
							(Page 1	of 1)



Environmental Engineers and Scientists

Niagara Mohawk Power Corporation Albion Former MGP Phase II Site Investigation
Albion New York

Depth of Boring **Drilling Contractor** Drill Rig Type Driller Drilling Method Hammer Wt /Drop Sampling Method Logged By

160 Parratt Wolff Mobile B 56 Jim Hammond Hollow Stem Augers 140 lb /30 Split Spoon 1 3/8 ID

MSS

#### LOG OF BORING SB-13-01

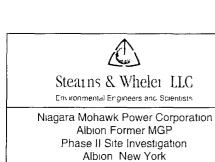
(Page 1 of 1)

Date Started

7/18/01 1 45 PM

Time Date Completed

7/18/01


Time

3 30 PM clear/sunny 75F

	Phas	se II Site Albion I	Investig	gation k	Logged By Surveyed By	MSS NMPC	Weather	c	lear/sunny 75F	l l _ l
		lob No 1	10046 1	10		<del></del>	Boring L	ocation N	IW of eastern ga	Isholder
Depth in Feet	Blow Count	PID (ppm)	Recovery (inches)		DES	CRIPTION		REMARK	Feet	Analytical Samples
0-1	9			(FILL)					0-	
	16	4 8	18	dry brown loos	se silt w/ trace fine ( ace brick fragments	gravel and black CLM ma	any			SB 13A
7	21 10			possios and in	aco shok maginishi	•				
2-]	5								2-	
=	8	4 9	9						=	
=	8									
4극	6 2								4-	
4	1	286 0	16	11" brown fino	cilt w/ little clay an	d pebbles grade to 5 mo	net fine	strong odor		SB 13B
3	2	2000	16	black silt w/ me	oist wood chips	d pennies grade to 5 mo	not fine	Strong coor	=	02 102
6-	2 9								6-	
6-	6	İ								
Ξ	6	154	8	moist dense si	It w/ little clay trace	e wood pieces				
8 =	9								8-	
}	5 6									
=	7	75 8	18						=	
10-	8			moist brown si	It w/ trace pebbles	grade to fine brown/red s	silt		10-	
	8 8			mixed with f/m	sand					
=	8	127	22							
12	14			brown/red silt i	mixed with increasi	ng sand trace sandstone	pieces		12	
3	15 14						•			
=	16	10 4	22							SB 13C
14-	25								14-	
=	25 30									
극	14	57	22	wet red sand w	// many sandstone	fragments			_	
16	14								16	
, , =				END OF BORI	NG AT 16 FEET				"=	
4										
18									18	
									10-	
킄									=	
, <del>1</del>									20	
20-						<del></del>		<del></del>		<u> </u>
tes							}			

SB 13A (0 2 feet) SB 13B (4 6 feet) and SB 13C (12 14 feet) were collected and analyzed for VOCs and PAHs

LOG OF BORING SB-13-01



SB 14A (0.2 feet) and SB 14B (14.16 feet) were collected and analyzed for VOCs and PAHs

Depth of Boring **Drilling Contractor** Drill Rig Type Driller Drilling Method

Surveyed By

160 Parratt Wolff Mobile B 56 Jim Hammond Hollow Stem Augers Hammer Wt /Drop 140 lb /30 Split Spoon 1 3/8 ID Sampling Method MSS Logged By

NMPC

LOG OF BORING SB-14-01

LOG OF BORING SB-14-01

(Page 1 of 1)

Date Started Time

7/18/01 3 50 PM 7/18/01

Date Completed Time

4 38 PM clear/sunny 75F

(Page 1 of 1)

Weather

ļ			1 10046		Surveyed by	NWPC	Boring Loc	cation	SE of ea	istern gas	holder
		ON dol	L10046 ⁻	10							
Depth in Feet	Blow Count	PID (ppm)	Recovery (inches)		DESCF	RIPTION		REMA	RKS	Depth In Feet	Analytical Samples
0-	6	T	Т	(FILL)						0-	
	14 9 10	42	14	dry brown/black brick pieces	silt w/ little black CL	M many pebbles with tra	ce			1111111	SB 14A
2-1	12 9 8	19	14							2	
4-1	8 5 10 8	24	5	black dense silt	w/ black CLM and tra	ace pebbles				4	
6	9 8 6 7 8	12	18	8" moist brown of clay and trace p	dense silt grade to 1 ebbles	0 red/brown dense silt w	/ little			8 <del> </del>	
1	5 5 7 9	09	16							10	
10	5 8 7 12	09	16	red/brown dense	e silt w/ less clay trad	ce t/m sand				10-1	
1	9 24 28 23	02	12		o one wy tooo dray the					111111	
14	18 21 50/4	3 5	22	wet red/brown s	and w/ little silt mixed	d with sandstone fragmen	its			14-	SB 14B
16-			LJ	END OF BORIN	IG AT 16 FEET					16	
										4	
]										=	
18-										18-	
										=	
=										=	
20-										20	
Notes											



Environmental Engineers and Scientists

Niagara Mohawk Power Corporation Albion Former MGP Phase II Site Investigation Albion, New York

Depth of Boring
Drilling Contractor
Drill Rig Type
Driller
Drilling Method
Hammer Wt /Drop
Sampling Method
Logged By
Surveyed By

22 0
Parratt Wolff
Mobile B 56
Jim Hammond
Hollow Stem Augers
140 lb /30

Split Spoon 1 3/8 ID MSS NMPC

#### LOG OF BORING SB-15-01

(Page 1 of 1)

Date Started

7/19/01 7 00 AM

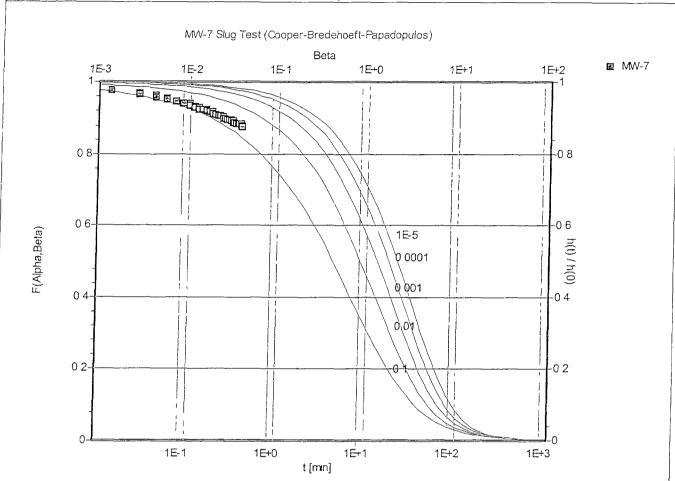
Time Date Completed

7/19/01

Time

8 20 AM clear/sunny 75F

Weather


	J	ob No L	10046 1	10	Boring Location	NE of east	ern gasl	holder
Depth In Feet	Blow Count	PID (ppm)	Recovery (inches)	DESCRIPTION	REN	MARKS	Depth In Feet	Analytical Samples
0 2 4 4 10 12 14 16	3 9 7 6 5 8 5 6 10 5 2 1 2 2 3 5 3 4 3 4 4 7 8 9 26 22 19 32 6 14 6 21 8 8 27 30	43 86 66 46 25 88 14000	18 8 18 0 15 20 7 22	(FILL) dry loose silty topsoil w/ organics w/ fine gravel and trace brick fragments  brown silt w/ coarse gravel and large brick pieces black CLM and white m/c sandy material present  moist brown silt w/ trace pebbles and little clay  moist silt w/ fine gravel and sand  moist brown/black fine silt w/ trace pebbles and little f/m sand  brown/red fine dense silt mixed w/ fine sand and weathered sandstone fragments	d No Reco	overy	0   2   4   10   12   14   16   16   16   17   16   17   16   17   17	SB 15A
20	30 28 15 18 16 20 50/4	58 9	20	wet red silt mixed w/ sand and trace pebbles sandstone pieces frequent red/brown sand mixed w/ weathered sandstone fragments END OF BORING AT 22 FEET			22 24 26 30 30 -	
Notes SB 15A (0 2 feet) and SB 15B (14 16 feet) were collected and analyzed for VOCs and PAHs  LOG OF BORING SB-15-01								



#### STEARNS & WHELER, LLC

430 East Genesee Street, Suite 401 Syracuse, New York 13032 Phone (315) 422-4949

Slug Test Analysis Report					
Project Albion Phase II Remedial Investigation					
No	L10046 10				
Client Niagara Mohaxk Power Corporation					



Test name

MW-7 Slug Test

Analysis method Cooper-Bredehoeft-Papadopulos

Analysis results	Transmissivity Storativity	2 87E+0 [cm²/s] 1 00E-4	Conductivity	1 89E-2 [cm/s]
Test parameters	Test well	MW-7	Aquifer thickness	5 [ft]
	Screen radius	0 125 [ft]	Alpha	0 0001
	Screen length	5 [ft]		
	Casing radius	1 5 [ft]		
	r(c)	1 5 [ft]		

Comments

Evaluated by DSS

Date £2/3/01

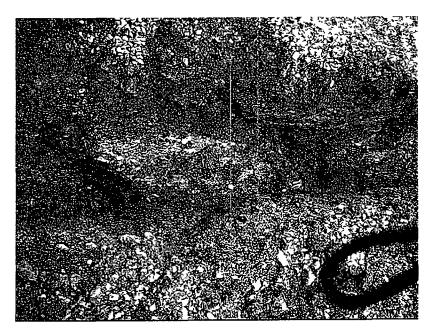



Photo #1

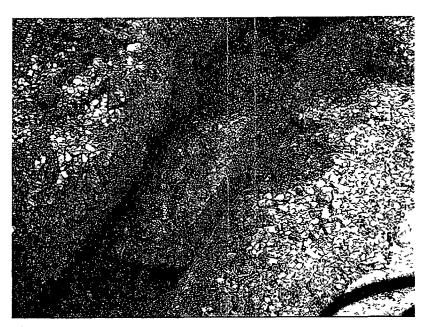



Photo #2

Photographs of test pits TP-1 and TP-2 show evidence of western holder wall, consisting of concrete in a suspected radial pattern



Niagara Mohawk Power Corporation Site Investigation Albion Former MGP

Aprıl 2001

Job No L10046

Representative Site Photographs



Photo #1



Photo #2



Photo #3

Test pits TP-4 and TP-5 revealed large, broken concrete pieces believed to be holder wall material. The eastern holder may have been demolished at some point during plant activities.



Niagara Mohawk Power Corporation Site Investigation Albion Former MGP

Aprıl 2001

Job No L10046

Representative Site Photographs



August 09, 2001

STL Connecticut

128 Long Hill Cross Road Shelion CT 06484

Tel 203 929 8140 Fax 203 929 8142 www.stl.inc.com

Dear Mr Ours

Mr Dan Ours

S&W REDEVELOPMENT, LLC

Cazenovia, NY 13035

One Remington Park Drive

Please find enclosed the analytical results of 20 sample(s) received at our laboratory on July 23, 2001 This report contains sections addressing the following information at a minimum

sample summary analytical methodology state certifications

definition of data qualifiers and terminology analytical results chain-of-custody

STL Report #7001-1891A	Purchase Order #90211 10
Project ID ALBION	

Copies of this analytical report and supporting data are maintained in our files for a minimum of five years unless special arrangements have been made. Unless specifically indicated, all analytical testing was performed at this laboratory location and no portion of the testing was subcontracted

We appreciate your selection of our services and welcome any questions or suggestions you may have relative to this report Please contact your customer service representative at (203) 929-8140 for any additional information you for utilizing our services, we hope you will consider us for your future analytical needs

I have reviewed and approved the enclosed data for final release

Jeffrey C

Very truly yours

Laboratory Manager

JCC

This report contains pages

#### TABLE SV-1.2 7001-1891A S&W REDEVELOPMENT, LLC PAH'S

All values are ug/Kg dry weight basis.

		<del></del>		T -	
Client Sample I	D	SB-10B-01 MSD 011891A-04	SB-11A-01	SB-11B-01	Quant.
Lab Sample I D.		MSD	011891A-05	011891A-06	Limits
Method Blank I D		SBLKOQ	SBLKOQ	SBLKOQ	with no
Quant Factor		156	11.2	528	Dilution
Naphthalene 2-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracer Chrysene Benzo(b) fluoranth Benzo(k) fluoranth Benzo(a) pyrene Indeno(1,2,3-cd)p Dibenzo(a,h) anthr	ne nene nene pyrene	300000 40000J 25000J 11000JX 42000J 160000 45000J 120000 98000X 54000 48600J 33000J 32000J 38000J 24000J 8800J	1700J 590J 3300J 510J 1100J 9000 4000 18000 15000 12000 16000 8400 16000 9500 3300J	910000 130000J 63000J 20000J 99000J 320000 97000J 240000 140000J 88000J 79000J 46000J 68000J 62000J 26000J	330 330 330 330 330 330 330 330 330 330
Benzo(g,h,1)peryl		25000J	7300	24000J	330
Benzo(g,n,1)peryl	. 5115	230000	7500	240000	330
Date Received Date Extracted Date Analyzed		07/23/01 07/30/01 08/02/01	07/23/01 07/30/01 08/02/01	07/23/01 07/30/01 08/03/01	

See Appendix for qualifier definitions

Note Compound detection limit = quantitation limit x quantitation factor

Quant. Factor = a numerical value which takes into account any

variation in sample weight/volume, % moisture and

sample dilution

Soil

#### TABLE SV-1 3 7001-1891A S&W REDEVELOPMENT, LLC PAH'S

All values are ug/Kg dry weight basis

Client Sample I D.	SB-11C-01	SB-12A-01	SB-12B-01	ļ.
Lab Sample I.D Metnod Blank I D Quant. Factor	011891A-07 SBLKOQ 1.12	011891A-08 SBLKOQ 26.9	011891A-09 SBLKOQ 1.20	Quant. Limits with no Dilution
Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Indeno(1,2,3-cd) pyrene Dibenzo(a,h) anthracene Benzo(g,h,1) perylene	770 290J 310J 84J 460 1800 63C 1200 960 540 510 270J 330J 380 230J 79J 210J	1800J 1100J 5500J 2000J 3100J 33000 12000 73000 65000 48000 43000 53000 22000 58000 36000 17000 26000	10J U 15J U 75J 40J 190J 150J 140J 110J 180J 160J 180J	330 330 330 330 330 330 330 330 330 330
Date Received Date Extracted Date Analyzed	07/23/01 07/30/01 07/31/01	07/23/01 07/30/01 08/02/01	07/23/01 07/30/01 07/31/01	

See Appendix for qualifier definitions

Note Compound detection limit = quantitation limit x quantitation factor

Quant. Factor = a numerical value which takes into account any

variation in sample weight/volume, % moisture and

sample dilution

Soıl

#### TABLE SV-1 4 7001-1891A S&W REDEVELOPMENT, LLC PAH'S

The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon

All values are ug/Kg dry weight basis.

7					
~	Client Sample I.D.	SB-13A-01	SB-13B-01	SB-13C-01	
7	Lab Sample I.D Method Blank I.D.	011891A-10 SBLKOQ	011891A-11 SBLKOQ	011891A-12 SBLKOQ	Quant. Limits with no
	Quant Factor	45 7	12 2	1.19	Dilution
٦	Naphthalene 2-Methylnaphthalene Acenaphthylene	3900J 4000J 16000	3100J 3400J 2500J	у у 10л	330 330 330
7	Fluorene	2100J 8600J	580J 1000J	U U	330 330
۲	Phenanthrene Anthracene	47000 25000	9400 4700	23J 14J	330 330
٦	Fluoranthene Pyrene	90000 91000	28000 27000	72J 74J	330 330
ال	Benzo(a)anthracene Chrysene	68000 56000	21000 18000	55J 45J	330 330
٦	Benzo(b) fluoranthene	45000	19000	36J	330
4	Benzo(k) fluoranthene Benzo(a) pyrene	28000 54000	10000 22000	37J 48J	330 330
7	Indeno (1, 2, 3-cd) pyrene Dibenzo (a, h) anthracene	22000 9600J	10000	38J 14J	330 330
	Benzo(g,h,ı)perylene	14000J	6600	36J	330
	Date Received Date Extracted Date Analyzed	07/23/01 07/30/01 08/02/01	07/23/01 07/30/01 08/02/01	07/23/01 07/30/01 07/31/01	
- 1		,		I .	1

See Appendix for qualifier definitions

Note: Compound detection limit = quantitation limit x quantitation factor

Quant. Factor = a numerical value which takes into account any

variation in sample weight/volume, % moisture and

sample dilution

· · ·

Soil

*= ~ Z*LC

#### TABLE SV-1 5 7001-1891A S&W REDEVELOPMENT, LLC PAH'S

All values are ug/Kg dry weight basis

Client Sample I D	SB-14A-01	SB-14B-01	SB-15A-01	
Ish Cample I D	011891A-13	011891A-14	011891A-15	Quant Limits
Lab Sample I D	1	1	1	
Method Blank I.D.	SBLKOQ	SBLKOQ	SBLKOQ	with no
Quant Factor	45 4	1 14	5 96	Dilution
  Naphthalene	2000J	10J	120J	330
2-Methylnaphthalene	11005	U	υ	330
Acenaphthylene	5100J	11J	660J	330
Acenaphthene	1500J	<u> </u>	τι	330
Fluorene	2100J	Ū	64J	330
Phenanthrene	32000	37J	1400J	330
Anthracene	11000J	16J	780J	330
Fluoranthene	85000	68J	4500	330
Pyrene	66000	64J	4000	330
Benzo (a) anthracene	56000	50J	3900	330
Chrysene	50000	46J	3800	330
Benzo (b) fluoranthene	49000	40J	4200	330
Benzo(k) fluoranthene	51000	42J	3200	330
Benzo(a)pyrene	64000	53J	5200	330
Indeno(1,2,3-cd)pyrene	68000	45J	3600	330
Dibenzo(a, h) anthracene	23000	18J	1200J	330
Benzo(g,h,1)perylene	74000	44J	3000	330
7	05/02/23	67 /02 /03	07/02/07	
Date Received	07/23/01	07/23/01	07/23/01	
Date Extracted	07/30/01	07/30/01	07/30/01	
Date Analyzed	08/01/01	07/31/01	08/02/01	

See Appendix for qualifier definitions

Note Compound detection limit = quantitation limit x quantitation factor

Quant. Factor = a numerical value which takes into account any

variation in sample weight/volume, % moisture and

sample dilution.

r

ر ، ــا

۲

Soil

#### TABLE SV-1.6 7001-1891A S&W REDEVELOPMENT, LLC PAH'S

All values are ug/Kg dry weight basis

				· · · · · · · · · · · · · · · · · · ·	
~7					
۱		an 150 01	DIDI TOM		
	Client Sample I.D	SB-15B-01	DUPLICATE		
-					Quant
	Lab Sample I.D.	011891A-16	011891A-17		Limits
لہا	Method Blank I.D.	SBLKOQ	SBLKOQ	İ	with no
	Quant. Factor	44 6	1 18		Dilution
<u>1</u>				-	
	Naphthalene	81000	17J		330
<b>∟</b> ∤	2-Methylnaphthalene	22000	Ū .		330
	Acenaphthylene	5800J	13J		330
$\Box$	Acenaphthene	2100J	Ŭ		330
	Fluorene	13000J	U		330
<u></u>	Phenanthrene	41000	60J		330
i	Anthracene	13000J	24J		330
	Fluoranthene	26000	140J		330
	Pyrene	15000	140J		330
-,-	Benzo (a) anthracene	9600J	100J		330
	Chrysene	6600J	99Ј		330
' }	Benzo (b) fluoranthene	5000J	100J		330
	Benzo(k) fluoranthene	6200J	97J		330
1	Benzo (a) pyrene	6500J	140J		330
	Indeno(1,2,3-cd)pyrene	2500J	150J		330
	Dibenzo(a, h) anthracene	840J	45J		330
,	Dibenzo (a, ii) ancintacene	2600J	180J		330
_ [	Benzo(g,h,1)perylene	20000	1000		330
-	Data Bagairad	07/23/01	07/23/01		
1	Date Received	07/23/01	07/30/01		
-	Date Extracted		07/30/01		
	Date Analyzed	08/01/01	01/31/01		
'		<u> </u>		<u></u>	

See Appendix for qualifier definitions

Note: Compound detection limit = quantitation limit x quantitation factor

Quant. Factor = a numerical value which takes into account any

variation in sample weight/volume, % moisture and

sample dilution



STL Connecticut

#### ORGANICS APPENDIX

- U Indicates that the compound was analyzed for but not detected
- J-Indicates that the compound was analyzed for and determined to be present in the sample. The mass spectrum of the compound meets the identification criteria of the method. The concentration listed is an estimated value, which is less than the specified minimum detection limit but is greater than zero.
- B-This flag is used when the analyte is found in the blanks as well as the sample. It indicates possible sample contamination and warns the data user to use caution when applying the results of this analyte
- N Indicates that the compound was analyzed for but not requested as an analyte Value will not be listed on tabular result sheet
- S Estimated due to surrogate outliers
- X Matrix spike compound
- (1) Cannot be separated
- (2) Decomposes to azobenzene Measured and calibrated as azobenzene
- A This flag indicates that a TIC is a suspected aldol condensation product
- E Indicates that it exceeds calibration curve range
- D This flag identifies all compounds identified in an analysis at a secondary dilution factor
- C Confirmed by GC/MS
- T Compound present in TCLP blank
- P This flag is used for a pesticide/aroclor target analyte when there is a greater than 25 percent difference for detected concentrations between the two GC columns (see Form X)

#### STATE CERTIFICATIONS

In some instances it may be necessary for environmental data to be reported to a regulatory authority with reference to a certified laboratory. For your convenience, the laboratory identification numbers for the STL-Connecticut laboratory are provided in the following table. Many states certify laboratories for specific parameters or tests within a category (i.e. method 325.2 for wastewater). The information in the following table indicates the lab is certified in a general category of testing such as drinking water or wastewater analysis. The laboratory should be contacted directly if parameter-specific certification information is required.

STL-Connecticut
Certification Summary (as of February 2001)

State ²	Responsible Agency	Centification	Lab Number
Соппестісит	Department of Health Services	Drinking Water, Wastewater	PH-0497
Maine	Department of Health and Environmental Services	Drinking Water, Wastewater/Solid, Hazardous Waste	CT023
Massachusetts	Department of Environmental Protection	Potable/Non-Potable Water	CT023
New Hampshire	New Hampshire Department of Environmental Services		2528
New Jersey	Department of Environmental Protection	Drinking Water Wastewater	46410
New York	Department of Health	CLP, Drinking Water, Wastewater, Solid/ Hazardous Waste NELAC	10602
North Carolina	Division of Environmental Management	Wastewater	388
Rhode Island	Department of Health	Cnemistry Non- Potable Water and Wastewater	A43
Utah	Department of Health	RCRA	2032614458
Washington	Department of Ecology	Wastewater/Hazardous Waste	C231
Wisconsin	Department of Natural Resources	Wastewater	998355710

#### 7001-1891A S&W REDEVELOPMENT, LLC SAMPLE SUMMARY

CLIENT ID	LAB ID	MATRIX	DATE COLLECTED	DATI RECE
SB-9A-01	011891A-01	SOIL	07/17/01	07/23
SB-9B-01	011891A-02	SOIL	07/17/01	07/24,
SB-10A-01	011891A-03	SOIL	07/18/01	07/27-
SB-10B-01	011891A-04	SOIL	07/18/01	07/25%
SB-10B-01	011891A-04MS	SOIL	07/18/01	07/2
SB-10B-01	011891A-04MSB	SOIL	07/18/01	07/23/
SB-10B-01	011891A-04MSD	SOIL	07/18/01	07/2
SB-11A-01	011891A-05	SOIL	07/18/01	07/23/
SB-11B-01	011891A-06	SOIL	07/18/01	07/25
SB-11C-01	011891A-07	SOIL	07/18/01	07/23/
SB-12A-01	011891A-08	SOIL	07/18/01	07/23
SB-12B-01	011891A-09	SOIL	07/18/01	07/23/1
SB-13A-01	011891A-10	SOIL	07/18/01	07/23
SB-13B-01	011891A-11	SOIL	07/18/01	07/23/1
SB-13C-01	011891A-12	SOIL	07/18/01	07/23人
SB-14A-01	011891A-13	SOIL	07/18/01	07/23/7
SB-14B-01	011891A-14	SOIL	07/18/01	07/23/d
SB-15A-01	011891A-15	SOIL	07/19/01	07/23/
SB-15B-01	011891A-16	SOIL	07/19/01	07/23/0
DUPLICATE	011891A-17	SOIL	07/18/01	07/23/

#### STL CT ANALYTICAL SUMMARY

_Page:1

-Client ID. DUPLICATE, SB-10A-01, SB-10B-01, SB-11A-01, SB-11B-01, SB-11C-01, SB-12A-01, SB-12B-01, SB-13A-01, SB-13B-01, SB-13C-01, SB-14A-01, SB-14B-01, SB-15A-01, SB-15B-01, SB-9A-01, SB-9B-01

Job Number: 7001-1891A

Date: 8/10/101

ty Matrix	Analysıs	Description	
T			-
1 None 1 SOIL 19 SOIL 1 SOIL 19 SOIL	DISK BN-N8270C-PAH BN-N8270C-PAH VOA-N8260B-TCL VOA-N8260B-TCL	Diskette Prep PAH's PAH's TCL Volatile Organic TCL Volatile Organic	
<u></u>			
<i>y</i>			
			ĺ
}			l
			1
ryand 1			
F			l
1 -			
1-			
<i>(</i> 7			



Effective 9/24/01

#### CAS LIST OF QUALIFIERS

- U Indicates compound was analyzed for but was not detected. The sample quantitation limit must be corrected for dilution and for percent moisture.
- J Indicates an estimated value. For further explanation see case narrative / cover letter
- B Trus flag is used when the analyte is found in the associated brank as well as in the sample
- E This flag identifies compounds whose concentrations exceed the calibration range
- A This flag indicates that a TIC is a suspected aldol-condensation product
- N Spiked sample recovery not within control limits
   (Fing the entire batch Inorganic analysis only)
- Inorganic Duplicate analysis not within control rmits. Fiag the entire batch Inorganic analysis only
- * Organics QC data outside limits
- D Spike diluted out
- S Reported value determined by Method of Standard Additions (MSA)
- X As specified in the case narrative

#### CAS/Rochester Lab ID = for State Certifications

NELAP Accredited

New York ID # 10145

Connecticut ID # PH0556

Massachusetts ID # M-NY032

American Industrial Hygiene Assoc ID # 100314

Navy Facilities Engineering Service Center Approved

Delaware Accredited New Jersey ID # 73004 Rhode Island ID # 158 New Hampshire ID # 294100 A/B West Virginia ID # 252 Florida ID # Pending



### RESULTS OF CARBON DIOXIDE ANALYSIS PAGE 1 OF 1

Client- Stearns & Wheler/S & W Redevelopment

Chent Project ID: Ni-Mo Albion, NY PAI Project ID: P2102006

Test Code RSK 175
Instrument ID HP5890A/TCD=10
Analyst Regan Lau
Matrix Liquid

Date Sampled 8/27/01
Date Received 8/30 01
Date Analyzed 9/5/01
Volume(s) Analyzed 0 10 ml

	7417	D	Carpon Daorade		
Chent Sample ID	PAI Sample ID	DF	Result	μg/L Reporting Limit	
MW1	P2102006-00.	1 00	24,100	1 000	
Vrv2	P2102006-002	1 00	41,100	1 000	
MW3	P2102006-003	1 00	15 600	1,000	
MW4	P21020\06-004	1 00	18 606	1,000	
MW5	P2102006-005	1 00	41,760	1 000	
MW5	P2102006-005DUF	1.00	40,200	, 000	
MW.0	P21(2006-006	1 00	27 100	1,000	
MW7	P2102006-007	1.00	9 930	1,000	
DUP	P2102006-008	100	24 100	1 000	
Methoa Control Sample	Pu10905-MB	1 00	ND	1 000	

The Method Control Sample is laboratory water carried through the entire analytical process Grygon & Carbon Dioxide free wate, cannot be acmeved due to the nature of the matrix ND = Compound was analyzed for but not detected above the laboratory reporting limit

Venifico B	יע		Date	·	
		-			Page No
~~	-	~ —	TetaencoA-C4C-mo14	Tofa_Z+	12-9 <u>Z</u> -das

Date Sampled: 08/27/01

Reported 09/26/01

Sample Matrix WATER

Stearns & Wheler, LLC
Project Peference NIAGARA MOHAWY-ALPION NY-GROUNDWATERS
Client Sample ID 'MW1

Date Received: 08/29/01	Submission #: 32108354						
MATALE	FQL	RESULT	UNITS	DATE ANALYZED	ANALYTICAL DILUTION		
METALS IRON MANGANESE	0 100 0 0100	<b>41</b> 8 7.75	MG/L MG/L	09/04/01 09/04/01	1 00 1 00	٢	
WEF CHEMISTRY NITRATE NITROGEN	0 0500	7 89	MG/L	08/29/01	"NA	r	

Order #: 489046

-28992380 +-026654 F-655 +2895580 +-026654 F-655

Reported 09/26,01

The Steams & Wheler LLC

Project Reference NIAGARA MOHAWK-ALBION NY-GROUNDWATERS

Client Sample ID .MW2

Date Sampled 08/27/01 Date Received 08/29/01		Crder # 489047 Sample Subrission # R2108354		Sample Mata	e Matrix: WATER		
_ ATTIVIE	ъбг	RESULT	UNITS	DATE ANALYZED	ANALYTICAL DILUTION		
METALS - IRON MANGANESE	0 _0e	75 C 11 C	MG'L MG/L	09/C4/01 05/C4/01			
WET CHEMISTRY WITHATE NITROGEN	0 0500	32 7	M@/L	08/29/01	NA		

Reported- 09/26/01

Stearms & Wheler, LLC
- Project Reference NIAGARA MOMANK-ALBION, NY-GROUNDWATERS
Client Sample ID 1883

Date Sampled .08/27/01 Date Received.08/29/01		Order #: 469048 Submission #: R2108354		Sample Matrix WATER			
AVALYTE	PQL	RESULT	UNIIS	DATE FNALYZED	ANALYTICAL DILUTION		
METALS IRON MANCANESE	0 100 0 0100	4 9 <b>4</b> 1 16	MG/L MG/L	09/04/01 09/04/01	1.00		
WET CHEMISTRY NITRATE NITROGEN	<b>( 05</b> 00	5 <b>5</b> 4	MG/L	08/29/01	$F$ $\mathbf{M}$		

T-654 P 006,028 F-653

0853582-

Tetron=252-moi4

₩dZ7 Z1 18-97

26 b-52-01

Date Sampled : 08/27/01

Reported 09/25/01

Sample Matrix: WATER

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

Stearns & wheler, LLC
Project Reference:NIAGARA MCEAKK-ALBION, NY-GPOUNDWATERS
L Client Sample ID :M#4

	Date Received: 08/29/01	Submis	sion #: R2108354			
-	ANALYTE	PQL	RESULT	UNITS	DATE ANALYZED	ANALYTICAL DILUTION
	METALS					
1	IRON	G 100	7 98	MG/L	09/04/01	1 00
	A.AIIGANESE	0 0100	C 350	$\mathtt{MG/L}$	09/04/01	1 00
	WET CHEMISTRY					
ـــا	MITPATE NITROGEN	0 0500	1 85	MG/L	08/29/01	4n

Order #: 489049

Reported 09/25/01

Stearms & Wheler, LLC Project Reference NiAGARA MOHAWK-Albion, NY-GROUNDWATERS Client Sample ID MV5

Date Sampled 08	8/27/01 8/29/01	Order #: 489050 Sample Ma Submission #: R2108354		Sample Mat	trik. Waller		
ANALYTE		PQL	PESULT	UNITS	DATE ANALYZED	ANALYTICAL DILUTION	<del></del>
METALS IRON MANGANESE		0 0100	310 6 57	MG/L MG/L	09/04/01 09/04/01	10 0	
WET CHEMISTRY NITRATE NITROGEN	77.	0 0500	0 500 ¥	MG/L	08/29,01	NA	

E88-4 E22\800 A te8-T

Reported 09/26/01

Stearns & Wheler, LLC
Project Reference: NIAGARA MOHAWK-ALBION, NY-GROUNDWATERS
, Claent Sample ID : MW6

Date Sampled 08/27/01 Date Received, 08/29/01		Order #89051 Supmission # R2108054		Sample Matrix WATER		
	PQL	RESULT	UNITS	DATE ANALYZED	PNALYTICAL DILUTION	
METALS IPON MANGANESE	0 100 0 0100	3 65 0 606	MG/L MG/L	09/04/01 09/04/01	1 00 1 00	
WET CHEMISTRY  NITRATE NITROGEN	0 0500	o 50 <b>0 U</b>	MG/L	08/29/01	NA	

T-654 P 009/323 F 653-T

0853887-

Terestande Stommer of Tr In-62-que

Reported. 09/26/01

Stearns & Wheler, LLC Project Reference NIAGARA MOHAWK-ALBION, NY-GFOUNDWATERS Claent Sample ID . MW7

Date Sampled 08/27/01 Date Peceived 08/29/01	O Submis	rder #. 489052 sion # R2106354		Sample Mat:	rlm: WATER	
ANALYTE	ΤQτ	PESULT	UNITS	DATE ANALYZED	ANALYTICAL DILUTION	====
METALS TION MANGANESE	0 100 0 0100	16 8 0 312	MG/L MG/L	09/04/01 09/04/01		!
WET CHEMISTRY NITRATS NITROGEN	0 0500	0 500 U	MG/L	08/29/01	ĬĹΨ	

Reported 09/26/01

Stearns & Wheler, LLC
Project Reference NIAGARH MORAWK-ALBION, NY-GROUNDWATERS
— Client Sample ID : DUP

Date Sampled: 08/27/01 Date Received: 08/29/01		rder #: 489053 sion #: R2108354		Sample Mat:	cix Water	
- ALTIALE	PQL	PESULT	UNITS	DATE ANPLY CED	ANALYTICAL DILUTION	
METALS  — IPON  MANGANESE	0 100 0 0100	40 2 9 41	MG/L MG/L	09/04/01 09/04/01		
WET CHEMISTRY - NITRATE NITROGEN	0 0500	8 O _*	MG, L	08/29/01	NA	

#### EXTRACTABLE ORGANICS

METHOD 8270C Reported 09/26/01

Stearns & Wheler, LLC

Project Reference NIAGARA MOHAWK-ALBION, NY-GROUNDWATERS

Date Sampled: 08/27/ -Date Received 08/29/			Sample Matrix Analytical Run	
ANALYTE		FÇL	RESULT	UNITS
DATE EXTRACTED DATE ANALYZED ANALYTICAL DILUTION	08/31/01 09/21/01 0 94			
ACENAPHTHENE ACENAPHTHYLENE ANTHRACENE BENZO(A) ANTHRACENE BENZO(A) PYRENE BENZO(B) FLUCRANTHENE BENZO(G, H, T) PERYLENE BENZO(K) FLUCRANTHENE INDENO(1, 2, 3 - CD) PYRENE CFRYSENE DIBENZO(A, H) ANTHRACENE FLUCRANTHENE FLUCRENE NAPHTHALENE PHENANTHRENE PYRENE		10 10 10 10 10 10 10 10 10 10 10	50000000000000000000000000000000000000	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L
SURROGATE RECOVERIES	QC LIM.	TTS		
TERPHENYL-d14   NITROBENZENE-d5   2-FLUOROBIPHENYL	(30 - 1	L35 왕) 116 왕) 107 왕)	75 72 66	ු අර අර

ATTENDED TO THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE

EXTRACTABLE ORGANICS METHOD 8270C

Reported- 09/26/01

Stearns & Wheler, LLC

Project Reference. NIAGARA MOHAWK-ALBICN, NY-GROUNDWATERS

Date Sampled: 08/27/01 15 50 Order Date Received: 08/29/01 Submission		Sample Matrix Analytical Run	
ANALYTE	PQL	RESULT	UNITS
DATE EXTRACTED 08/31/01  DATE ANALYZED 09/21/01  ANALYTICAL DILUTION 1 09  ACENAPHTHENE	10	11 U	UG/I
ACENAPHTHYLENE ANTHRACENE BENZO(A)ANTHRACENE	10 10 10	11 U 11 U 11 U	UG/L UG/L
BENZO (A) PYRENE BENZO (B) FLUORANTHENE BENZO (G, H, I) FERYLENE BENZO (K) FLUORANTHENE	10 10 10 10	11 U 11 U 11 U 11 U	UG/L UG/L UG/L
JIMDENO (1,2,3-CD) PYRÉNE —CHRYSENE DIBENZO (A, H) ANTHRACENE	10 10 10	11 U 11 U 11 U	UG/L UG/L UG/L
JFLUORANTHENE FLUORENE NA PHTHALENE JPHENANTHRENE	10 13 10 10	11 U 11 U 11 U 11 U	NG/L NG/L NG/L
FIRENE	limits	11 U	UG/L
TERPHENYL-d14 (15 NITRCBENZENE-d5 (30	- 135 %) - 116 %; - 107 %)	74 73 69	ථා අං ල්ල

EXTRACTABLE ORGANICS
METHOD 8270C
Reported. 09/26/01

Stearns & Wheler, LLC

Project Reference: NIAGARA MOHAWK-ALBION NY-GROUNDWATERS

Date Sampled · 08/27/01 1	.6 05 <b>Order #:</b> 489048	Sample Matrix:	WATER
Date Received · 08/29/01	Submission #: R2108354	Analytical Run	69300
ANALYTE	PQL	RESULI	UNITS
	31/01 21/01 0.95		
ACENAPHTHENE	10	9 3 U	UG/L
ACENAPHTHYLENE	10	9 5 U	UG/L
ANTHRACENE	10	9 5 U	UG/L
BENZO (A) ANTHRACENE BENZO (A) PYRENE BENZO (E) FLUCRANTHENE	10	9 5 U	UG/L
	10	9 5 U	UG/L
	10	9 5 U	UG/L
BENZO(G,H,I)PERYLENE	10	9.5 U	UG/L
BENZO(K)FLUORANTHEME	10	9.5 U	UG/L
INDENO(1,2,3-CD'PYPENE	10	9.5 U	UG/L
CHRYSENE DIBENZO(A H)ANTHRACENE FLUORANTHENE	10 10 10	9 5 V 9 5 V 9 5 V 9.5 V	UG/L UG/L UG/L
FLUORENE NAPHTHALENE PHENANTHRENE PYPENE	10 10 10 10	9.5 U 9.5 U 9.5 U	UG/L UG/L UG/L
SURROGATE RECOVERIES	QC LIMITS	2,72 =	· <b>, -</b> -
TERPHENYL-d14	(15 - 135 %)	76	סאָט סאָט פּאָף
NITROBENZENE-d5	(30 - 116 %;	70	
2-FLUOROBIPHENYL	(38 - 107 %)	68	

EXTRACTABLE ORGANICS METHOD 8270C Reported. 09/26/01

Stearns & Wheler, LLC

Project Reference NIAGARA MOHAWK-ALBION, NY-GROUNDWATERS Client Sample ID - MW4

Date Sampled · 08/27/0 Date Received 08/29/0	1 15.35 Order #. 1 Submission #.	489049 R2108354	Sample Matrix Analytical Run	
ANALYTE		PQL	RESULT	UNITS
DATE EXTRACTED DATE ANALYZED: ANALYTICAL DILUTION.	08/31/01 09/21/01 0 94			
ACENAPHTHENE ACENAPHTHYLENE ANTHRACENE BENZO (A) ANTHRACENE BENZO (A) PYRENE BENZO (B) FLUORANTHENE BENZO (G, H, I) PERYLENE BENZO (K) FLUORANTHENE INDENO (1, 2, 3 - CD) PYRENE CHRYSENE DIBENZO (A H) ANTHRACENE FLUORANTHENE FLUORENE NAPHTHALENE PHENANTHRENE PYRENE		10 10 10 10 10 10 10 10 10 10 10 10	**************************************	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L
SURROGATE RECOVERIES	QC LIMI	TS	·	·
TERPHENYL-d14 NITROBENZENE-d5 2-FLUOROBIPHENYL	(15 - 1 (30 - 1 (38 - 1		76 67 66	מצי הקנה שים

#### EXTRACTABLE ORGANICS

METHOD 8270C

Reported: 09/26/01

Stearns & Wheler LLC

Project Reference: NIAGARA MOHAWY-ALBION, MY-GROUNDWATERS

Date Sampled: 08/27/01 15:20 Order #: 489050 Sample Matrix: WATER  Date Received: 08/29/01 Submission #: R2108354 Analytical Run 59300				
ANALYTE	PQL	RESULT	UNITS	
DATE EXTRACTED 08/31/ DATE ANALYZED 09:21/ ANALYTICAL DILUTION		5		_
ACENAPHTHENE ACENAPHTHYLENE ANTHRACENE BENZO (A) ANTHRACENE BENZO (A) PYRENE BENZO (G) FLUORANTHENE BENZO (G, H, I) PERYLENE BENZO (K) FLUCRANTHENE INDENO (1, 2, 3-CD) PYRENE CHRYSENE DIBENZO (A, H) ANTHRACENE FLUORANTHENE FLUORENE	10 10 10 10 10 10 10 10 10	14 22 11 U 11 U 11 U 11 U 11 U 11 U 11 U 1	NG\T NG\T NG\T NG\T NG\T NG\T	
NAPHTHALENE PHENANTHRENE PYRENE	10 10 10	55 11 U 11 U	UG/L UG/L	
SURROGATE RECOVERIES	QC LIMITS			
TERPHENYL-d14   WITROBENZENE-d5   2-FLUOROBIPHENYL	(15 - 135 %) (30 - 116 %) (38 - 107 %)	76 69 65	ero atr up	

#### EXTRACTABLE ORGANICS

METHOD 8270C

Reported: 09/26/01

Stearns & Wneler, LLC

Project Reference: NIAGARA MOHAWK-ALBION, NY-GROUNDWATERS

Date Sampled: 08/27/01 15 Date Received: 08/29/01 Sui		Sample Matrix: Analytical Run	
ANALYTE	PQL	R <b>ESU</b> LT	UNITS
DATE EXTRACTED . 08/31, LATE ANALYZED : 09/21, ANALYTICAL DILUTION			
ACENAPHTHENE ACENAPHTHYLENE ANTHRACENE BENZO (A) ANTHRACENE BENZO (A) PYRENE BENZO (B) FLUORANTHENE FENZO (C, H, I) PERYLENE FENZO (K) FLUORANTHENE INDENO (1, 2, 3 - CD) PYRENE CHRYSENE DIBENZO (A, H) ANTHRACENE FLUORANTHENE FLUORENE NAPHTHALENE PHENANTHRENE PURENE	10 10 10 10 10 10 10 10 10 10	######################################	TG/L TG/L TG/L TG/L TG/L TG/L TG/L TG/L
_ SURROGATE RECOVERIES	QC LIMITS		,
TERPHENYL-d14 NIIROBENZENE-d5 '2-FLUOROBIPHENYL	(15 - 135 %) (30 - 116 %) (38 - 107 %)	71 69 66	على حاد مخن

EXTRACTABLE ORGANICS
METHOD 8270C
Reported 09/25/01

Stearns & Wheler, LLC

Project Reference: NIAGARA MOHAWK-ALBION, NY-GROUNDWATERS

Date Sampled: 08/27/01 15 05 Date Received: 08/29/01 Submi	Order #: 489052 ssion #: R2108354	Sample Matrix: Analytical Run	WATER 69300
	PQL	RESULT	UNITS
DATE EXTRACTED : 08/51/01 DATE ANALYZED : 09/21/01 ANALYTICAL DILUTION: 1			
ACENAPHTHENE ACENAPHTHYLENE	10 10	10 U 10 U	UG/L UG/L
Alithracene Benzo (a) anthracene Benzo (a) pyrene	10 10 10	10 U 10 U 10 U	UG/L UG/L UG/L
BENZO (B) FLUCRANTHENE BENZO (G, H, I) PERYLENE BENZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K) BUNZO (K	10	10 U	UG/L UG/L
BENZO(K) FLUORANTHENE 'INDENO(1,2,3-CD) PYRENE CHRYSENE	10 10 10	10 U 10 U 10 U	UG/L UG/L UG/L
DIBENZO (A H) ANTHRACENE FLUORANTHENE FLUORENE	10 10 10	10 U 10 U 10 U	UG/L UG/L
NAPHTHALENE PRENANTHRENE	10 10 10	10 U 10 U	UG/L UG/L
PIRENE SURROGATE RECOVERIES	OC LIMITS	<u>1</u> 0 ប	UG/L
TERPHENYL-d14	(15 - 135 %)	79	હ
NITROBENZENE-d5 2-fluorobiphenyl	(30 - 116 %) (38 - 107 %)	56 63	% %

EXTRACTABLE ORGANICS METHOD 8270C Reported 09/26/01

Stearns & Wheler, LLC

Project Reference: NIAGRRA MCHAWK-ALBION, NY-GROUNDWATERS

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

Client Sample ID : DUP

Date Sampled: 08/27/01 Date Received: 08/29/01 S			mple Matrix: alytical Run	
ANALYTE		PQL	PESULT	UNITS
DATE EXTRACTED . 08/3  — DATE ANALYZED . 09/2  ANALYTICAL DILUTION	1/01 1/01 0 96			
ACENAPHTHENE ACENAPHTHYLENE ACENAPHTHYLENE BENZO(A) ANTHRACENE BENZO(A) PYRENE BENZO(B) FLUORANTHENE BENZO(G, H, I) PERYLENE BENZO(K) FLUORANTHENE INDENO(1, 2, 3 - CD) PYRENE CHRYSENE DIBENZO(A, H) ANTHRACENE FLUORANTHENE FI UORENE NAFHTHALENE PLRENE		10 10 10 10 10 10 10 10 10 10		UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L
SURROGATE PECOVERIES	QC LIMITS			
TERPHENYL-d14 NITROBENZENE-d5 2-FLUOROBIPHENYL	(15 - 135 5 (30 - 116 5 (38 - 107 5		116 39 84	ථව එව එව

VOLATILE ORGANICS METHOD 8260B TCL Reported 09/26/01

Stearns & Wheler, LLC

Project Reference: NIAGARA MOHAWK-ALBION, NY-GROUNDWATERS

Date Sampled: 08/27/01 15 10 Order #: 489045 Sample Matrix: WATER Date Received: 08/29/01 Submission #: R2108354 Analytical Run 68751			
ANALYTE	PÇL	RESULT	UNITS
DATE ANALYZED 0°/06/01			
ANALYTICAL DILUTION 1.00			
ACETONE	20	20 U	UG/L
rc lione Benzene	5 0	5.0 U	ŪĠ/L
BROMODICHLOROMETHANE	5 0	5.0 U	UG/L
BPOMOFORM	5 0	5 0 J	UG/L
BROMOMETHANE	5 0	5 O Ū	UG/L
PETANONE (MEK)	10	10 U	UG/L
CARBON DISULFIDE	ī¢	10 U	UG/L
CARBON TETRACHLORIDE	5 0	5 0 U	UG/L
CHLOROBENZENE	5 O	5 O U	UG/L
IFLOROETHANE	5 0	5 Q J	UG/L
IHLORÓFORM	5 0	5 0 U	UG/L
CHLOROMETHANE	5 0	5 0 U	UG/L
DIBROMOCHLOROMETHANE	5 0	5 0 U 5 0 U	UG/L
.,1-DICHLOROETHANE	5 0	5 0 U	UG/L
.,2-DICHLOROETHANE	5 0	5 0 U	UG/L
,1-DICHLOPOETHENE	5 0	5 0 Y	UG/L
IS-1,2-DICHLOROETHENE	5 Ó	5 0 U	UG/L
RANS-1,2-DICHLOROETHENE	5 0	50 U	UG/L
,2-DICHLCROPROPANE	5 0	5 0 ប៊	UG/L
IS-1,3-DICHLOROPENE	5 0	5.0 ប	UG/L
RANS-1,3-DICHLOROPROPENE	5 0	5 O U	UG/L
THYLBENZENE	5 0	5 Q U	UG/L
-HEXANONE	10	10 U	UG/L
FTHYLENE CHLORIDE	5 0	5 C U	UG/L
-METHYL-2-PENTANONE (MIBK)	1.0	10 U	UG/L
TYRENE	5 0	5 0 U	UG/L
,1.2,2-TETRACHLORCETHANE	5 0	5 O U	UG/L
ETRACHLOROETHENE	5.0	5.0 U	UG/L
OLUENE	5 0	5 0 U	UG/L
1,1-TRICHLOROETHANE	5 0	5 0 U	UG/L
1,2-TRICHLOROETHANE	5.0	5 <b>0</b> U	UG/L
RICHLOROETHENE	5 0	5.0 U	
INYL CHLORIDE	5 0	5 0 U	UG/L
-XYLENE	ā 0	5 0 Ŭ	UG/L
-P-XYLENE	€.0	5.0 U	UG/L
SURROGATE RECOVERIES QC	LIMITS -		
	- 111 %)	98	ge C
DLUENE-D8 (87 IBROMOFLUOROMETHAME (86	- 10호 움) - 117 움)	95 97	के के

VOLATILE ORGANICS METHOD 8260B TCL Reported 09/26/01

Stearns & Wheler, LLC

Project Reference: NIAGARA MOHAWK-ALBION, NY-FROUNDWATERS Client Sample ID . MW2

Date Sampled - 09/27/01 15:50 <b>0:</b> Date <b>Received:</b> 08/29/01 Submiss	der #: 489047	Sample Matrix: Analytical Run	
ANALYTE	PÇL	RESULT	UNITS
DATE ANALYZED - 09/05/01			
ANALYTICAL DILUTION - 1 00			
ACETONE	20	20 U	UG/L
BENZENE	5 0	5 0 U	UG/L
BPOMODICHLOROMETHANE	5 0	5 0 U	UG/L
BROMOFORM	5 <b>ö</b>	5 C *T	UG/L
BROMOMETHANE	5 0	5 0 U	UG/L
2-BUTANONE (MEK)	10	1C U	UG/L
CARBON DISULFIDE	10	10 U	UG/L
CARBON TETRACHLORIDE	5 0	5 0 J	UG/L
CHLOROBENZENE	5 °C	5 0 U	UG/L
Chloroethane	5 0	5 0 <del>U</del>	UG/L
CHLOROFORM	5 0	5 0 U	UG/L
CHLOROMETHANE	5.0	5 Q U	UG/L
TEROMOCHLOROMETHANE	5.0	ร์ จ์ บ	ŪĠ/L
1 -DICHLOROFTHANE	5.0	5 0 Ū	UG/L
2-DICHLOROETHANE	5 O	5 0 Ū	JG/L
,1-DICHLOROETHENE	5 0	5 0 Ū	UG/L
CIS-1,2-DICHLOROETHENE	5 0	5 0 U	UG/L
PANS-1,2-DICHLOROETHENE	5.0	5 0 U	UG/L
.,2-DICHLOROPROPANE	5,0	5 0 Ū	UG/L
IS-1,3-DICHLOROPROPENE	5 ° °	5 0 Ü	UG/L
TANS-1,3-DICHLOROPROFENE	5.0	5 ¢ Ü	UG/L
THYLEENZENE	5 Q	<u> </u>	UG/L
-HEXANONE	10	10 U	UG/L
ETHYLENE CHLORIDE	5 0	5 0 U	UG/L
-METHYL-2-PENTANONE (MIBK)	10	10 U	UG/L
CYRENE	5.0	១ ប៉ែ ប៉	UG/L
,1,2,2-TETRACHLOROETHANE	<b>5</b> 0	5.0 Ū	UG/L
STRACHLOROETHENE	5.0	5 0 U	UG/L
OLUENE	5 0	5 0 U	ΰĠ/Ĺ
,1,1-TRICHLOROETHANE	5 0	ב כ ב	UG/L
, I, I TRICITORONINAME	5.0	รีว์ บี	UG/L
,1,2-TRICHLOPOETHANE	5.0	5.0 T	UG/L
RICHLOROETHENE	5 0	5.0 U	UG/L
INYL CHLORIDÉ	5 0	5 0 U	UG/L
-xylene -p-xylene	5 0	5 0 U	UG/L
-E-VINCKE	J	<i>5 5 5</i>	0 <b></b> ,
SURROGATE RECOVERIES Q	C LIMIIS		
-BROMOFLUCROBENZEME (8'	7 - 111 왕)	131	c) _O
DLUENE-D8 (8		94	85
IBROMOFLUOROMETHANE (8)		97	ĝ _i
· · · · · · · · · · · · · · · · · ·			

VOLATILE ORGANICS METHOD 8250B TCL Reported. 09/26/01

Tetan-Za-mara moda st [0-az-qaz

Stearns & Wheler, LLC
Project Reference: NIAGARA MOHAWK-ALBION, NY-CROUNDWATERS

Client Sample ID : NTW3

1-664 P 022/728 F-653

Date Sampled . 08/27/01 16.05 Order Date Received: 08/29/01 Submission	#: 489048 #: R2108354	Sample Matrix: Analytical Run	WATER 68751
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED 09/06/01			
INALYTICAL DILUTION- 1 00			
CETONE	20	29 U	UG/L
ENZENE	5 0	5 O U	UG/L
RON.ODICHLOROMETHANE	5 0	5 0 U	UG/L
ROMOFORM	5 0	5 0 U	ΩG\̈́T
POMOMETHANE	5 0	5 0 U	UG/L
-BUTANONE (MEK)	20	10 U	UG/L
ARBON DISULFIDE	20	10 U	UG/L
ARBON TETRACHLORIDE	5 0	5 ( U	UG/L
I LOROBENZENE	5.0	5 0 U	ng/r
HILOROETHANE	5.0	5 0 U	UG/L
HLOROFORM	<b>5</b> 0	5 0 U	UG/L
HLOROMETHANE	5.0	5 0 U	UG/L
TEROMOCHLOROMETHANE	5 0	5 0 U	UG/L
1-DICHLOROETHANE	_ 5 0	5 0 U	UG/L
, 2-DICHLOROETHANE	5 0	5 0 U	UG/L
1-DICHLOROETHENE	5 0	5 0 Ü	UG/L
IS-1, 2-DICHLOROETHENE	5.0	5 0 U	UG/L
RANS-1,2-DICHLOROETHENE	5.0	5 0 U	UG/L
, 2-DICHLOROPROPANE	5.0	5 0 U	UG/L
IS-1,3-DICHLOROPROPENE	5 C	5 0 U	UG/L
RANS-1,3-DICHLOROPROPENE	5 0	5 0 U	ug/L
PHYLBENZENE	5_0	5 0 J	UG/L
-HEXANONE	10	10 J	UG/L
ETHYLENE CHLORIDE	5 0	5 0 U	UG/L
-METHYL-2-PENTANONE (MIPK)	_10	10 U	UG/I
TYRENZ	5.0	5 0 U	UG/L
1,2,2-TETRACHLOROETHANE	<b>5</b> 0	5 0 U 5 0 U	UG/L UG/L
ETRACHLOROETHENE	5 0 5 0	5 0 U	UG/L
DLUENE	5 0		UG/L
1,1-TRICHLOROETHANE	5 0	5 0 U	
1,2-TRICHLOROETHANE	5 0	5 0 IJ	UG/L
CHLOROETEENE	5 0	5 0 U 5.0 U	UG/L
NYL CHLORIDE	5.0	5.0 U 5.0 U	UG/L
XYLENE	5 0 5 0	5.0 C 5 0 U	UG/L
P-XYLENE	טט	⊃ V U	מ /פט
URROGATE RECOVERIES QC L	IMITS		
BROMOPLUOROBENJENE (87	- <u>l</u> ll %)	100	ŧ
	- 108 %)	95	ş
	- 117 %)	99	Į.

0889881-

VOLATILE ORGANICS METHOD 8260B TCL Reported 09/26/01

Stearns & Wheler, LLC

Project Reference: NIAGARA MOHAWK-ALBION, NY-GROUNDWATERS

CITETIC DAMPER TD : WAE			
Date Sampled: 08/27/01 15:39 Date Received: 08/29/01 Subm	5 Order #: 489049 mission #: R2108354	Sample Matrix: Analytical Run	
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED 09/06/0 ANALYTICAL DILUTION	01		_
BENZENE BPOMODICHLOROMETHANE BROMOFORM BROMOMETHANE 2-BUTANONE (MEK) CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROFORM CHLOROMETHANE DIBROMOCHLOROMETHANE 1 1-DICHLOROETHANE 1 1-DICHLOROETHANE 1 1-DICHLOROETHENE CIS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE ETHYLBENZENE 2-HEXANONE METHYLENE CHLORIDE 4-METHYL-2-PENTANONE (MIBK) STYRENE 1,1,2,2-TETRACHLOROETHANE TETRACHLOROETHENE 1,1,1-TRICHLOROETHANE TETRACHLOROETHENE 1,1,1-TRICHLOROETHANE TRICHLOROETHENE 1,1,2-TRICHLOROETHANE TRICHLOROETHENE VINYL CHLORIDE O-XYLENE M-P-XYLENE	00000000000000000000000000000000000000		UG/LL LL LL LL LL LL LL LL LL LL LL LL LL
SURROGATE RECOVERIES	QC LIMITS		
4-BROMOFLUOROBENZENE TOLUENE-D8 DIBROMOFLUOROMETHANE	(87 - 111 %) (87 - 108 %) (86 - 117 %)	01 01 03 03 03 15	के के के

VOLATILE ORGANICS METHOD 8260B TCL Reported: 09/26/01

Stearns & Wheler, LLC

Project Reference: NIAGARA MOHAWK-ALBION, NY-GPOUNDWATERS

Date <b>Sampled :</b> 08/27/01 15 20 Ord Date <b>Received:</b> 08/29/01 Submissi	ler #: 489050 .on #- R2108354	Sample Matrix: Analytical Run	WATER 68751
ANALYTE	PÇL	RESULI	UNITS
DATE ANALYZED 09/07/01 ANALYTICAL DILUTION 2 CO			
ACETONE	20	40 U	UG/L
BENZENE	- 50	230	UG/L
PROMODICHLOROMETHANE	5 O	10 U	UG/L
BROMOFORM	5 0	10 U	UG/L
PROMOMETHANE	5 0	10 U	UG/L
2-BUTANONE (MEK)	10	20 U	TG/L
TARBON DISULFIDE	1.0	20 U	UG/L
CARBON TETRACHLORIDE	5 0	10 U	UG/L
CHLOROBENZENE	5 0	10 U	UG/L
CHLOROETHANE	5 Q	10 Ľ	UG/L
THLOROFORM	5 0	lo U	UG/L
CHLOROMETHANE	5 0	lo U	UG/L
LIBROMOCHLOROMETHANE	5 0	lo T	UG/L
,1-DICHLOROETHANE	5 D	1) U	JG/L
2-DICHLOPOETHANE	5 C	16 U	UG/L
1-DICHLOROETHENE	5 0	ט כב	UG/L
CIS-1,2-DICHLOROETHENE	5 (	10 U	UG/L
RANS-1,2-DICHLOROETHENE	5 C	10 U	UG/L
,2-DICHLOROPROPANE		10 U	UG/L
IS-1,3-DICHLOROPROPENE	5 0 5 0	10 Ū	UG/L
RANS-1, 3-DICHLOROPROPERE	5 0	โด บี	UG/L
THYLBENZENE	5 C	17	UG/L
-HEXANONE	10	20 T	ŬG/L
-HEXANONE ETHYLENE CHLORIDE	5 0	10 U	UG/L
-METHYL-2-PENTANONE (MIEK)	10	20 J	UG/L
TYRENE	5.0	10 U	UG/L
,1,2,2-TETRACHLOROETHANE	5.0	10 Ū	UG/L
ETRACHLOROETHENE	5 0	10 J	UG/L
OLUENE	5 0	24	UG/L
,1,1-TRICHLOROETHANE	5 0	10 U	UG,'L
,1,2-TRICHLOROETHANE	5 0	10 J	UG/L
, 1, 2-1RICHDOROSIAME RICHLOROSTHENS	5 0	10 J	UG/L
NYL CHLORIDE	5 0	10 J	UG/L
	5 C	22	UG/L
-XYLENE	5 0	31	UG/L
-F-XYLENE			, , <u></u>
SUPROGATE RECOVERIES QC	LIMITS		
-SROMOFLUOROBENZENE (87		100	g. S
DLUENE-D8 (87		53	g.
JEROMOFLUOROMETHANE (85	- ll7 %)	100	<del>}</del>

VOLATILE ORGANICS METHOD 8260B TCL Reported: 09/26/01

Stearns & Wheler, LLC

Project Reference: NIAGARA MOHAWK-ALBION, NY-GROUNDWATERS

V ST THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPE

Date Sampled: 08/27/01 15 15 Date Received: 08/29/01 Submi	Order #: 489051 .ssion #: R2108354	Sample Matrix: Analytical Run	
ANALYTE	PÇI	RESULI	UNITS
DATE ANALYZED 09/06/01 ANALYTICAL DILUTION: 1	00		
ACETONE	20	20 U	UG/L
BENZENE	5 0	5 O Ŭ	UG/Ľ
BROMODICHLOROMETHANE	5 0	5 Q U	UG/L
BROMOFORM	5 0	5 0 U	UG/L
EROMOMETHANE	5 0	5 C U	UG/L
2-BUTANONE (MEK)	10	10 U	UG/L
CARBON DISULFIDE	10	10 U	UG/L
CARBON TETRACHLORIDE	5 0	5 0 U	UG/L
CHLORCBENZENE	5 0	รี ว บิ	ŭĠ/L
CHLORCETHANE	5 0	5 0 Ü	UG/L
THLOROFORM	5 0	5 0 T	
CHLORCMETHANE	5 0	5 0 Ü	
DIBROMCCHLOROMETHANE	5 0	5 0 T	
L,1-DICHLOROETHANE	5 0	5 0 U	UG/L
L, 2-DICHLOROETHANE	5 0	5 0 U	UG/L
L,1-DICHLOROETHENE	5 0	5 0 U	UG/L
CIS-1,2-DICHLOROETHENE	5 0	5 0 U	UG/L
IRANS-1 2-DICHLOROETHENE	5 0	5 0 U	ng/r
.,2-DICHLOROPROPANE	5.0	5 0 U	UG/L
CIS-1,3-DICHLOROPROPENE	5 0	5 0 U	JG/L
·	5 Q	5 0 U	UG/L
CRANS-1,3-DICHLOROPROFENE		5 0 <b>U</b>	•
THYLBENZENE			UG/L UG/L
-HEXANONE	10	10 U	•
ETHYLENE CHLORIDE	5 0	5 0 U	UG/L
-METHYL-2-PENTANCNE (MIEK)	_10	10 U	UG/L
TYRENE	5 0	5 0 U	UG/L
,1,2,2-TETRACHLOROETH; YE	5 0	5.0 Ü	ng/r
ETRACHLOROETHENE	5 0	5 0 U	ng/T
OLUENE	5 0	5 0 U	UG/L
,1,1-TRICHLORGETHANE	5 0	5 0 U	UG/L
,1,2-TRICHLOROETHANE	5 0	5 0 U	UG/L
richloroethene	5.0	5 0 U	UG/L
INYL CHLORIDE	5 0	5 O Ŭ	UG/L
-XATENE	5 0	5 0 U	UG/L
+D-XATENE	5.0	5.0 U	UG/L
SURROGATE RECOVERIES	QC LIMITS		
	(87 - 111 %)	103	<del>9</del> 6
	(87 - 108 %)	95	\$
BROMOFLUCROMETHANE	86 - 117 %	99	Ş.

## VOLATILE ORGANICS METHOD 8260B TCL Reported 09/26/01

Stearns & Wheler, LLC

Project Reference: NIAGARA MCHANK-ALBICN, MI-GROUNDWATERS

Date Sampled: 08/27/01 15:2 Date Received: 08/29/01 Subs	Order # 489050 mission # R2108354	Sample Matrix: Analytical Run	
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED 09/08/08/08/08/08/08/08/08/08/08/08/08/08/	01 00		
ACETONE BENZENE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE 2-BUTANONE (MEK) CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROFORM CHLOROMETHANE DIBROMOCHLOROMETHANE	00000000000000000000000000000000000000	00000000000000000000000000000000000000	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L
1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,1-DICHLOROETHENE CIS-1,2-DICHLOROETHENE IRANS-1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE IRANS-1,3-DICHLOROPROPEIE ETHYLBENZENE 2-HEXANONE 45THYLENE CHLORIDE	0000000000 555555555555555555555555555	5.000000000 5.00000000 5.0000000 5.0700 100 5.000	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L
4-METHYL-2-PENTANCNE MIBK) STYRENE 1,1,2,2-TETPACHLOROETHANE FETRACHLOROETHENE FOLUENE 1,1,1-TRICHLOROETHANE 1,1 2-TRICHLORCETHANE FRICHLOROETHENE FRICHLOROETHENE FRICHLOROETHENE FRICHLOROETHENE FRICHLOROETHENE FRICHLOROETHENE FRICHLOROETHENE FRICHLOROETHENE FRICHLOROETHENE FRICHLOROETHENE FRICHLOROETHENE FRICHLOROETHENE FRICHLOROETHENE	10 10 00 00 00 00 00 00 00 00 00 00 00 0	10 UU UU UU UU UU UU UU UU UU UU UU UU UU	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L
SURROGATE RECOVERIES	QC LIMITS		
-BROMOFLUCROBENZENE COLUENE-D8 DIBROMOFLUCROMETHANE	(87 - 121 %) (87 - 108 %) (86 - 117 %)	102 94 99	ape ape ape

VOLATILE ORGANICS
METHOD 82608 TCL
Reported 03/26/01

Stearns & Wheler, ILC

Project Reference: NIAGARA MCHAWK-ALBION, NY-GROUNDWATERS

Date Sampled: 08/27/01 15 05 Order Date Received- 08/29/01 Submission		Sample Matrix: Analytical Run	
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 09/07/01 ANALYTICAL DILUTION 1 00			
HAMILICAN DILOTION 1 00	•		
ACETONE	20	20 U	UG/L
ÉENZENE	5 0	១១២	UG/L
EROMODICHLOROMETHANE	5 0	5 0 U	UG/L
EROMOFORM	5.0	5 0 U	UG/L
PROMOMETHANE	5.0	5 0 U	UG/L
2-BUTANONE (MEK)	10	10 U	UG/L
CARBON DISULFIDE	10	10 U	UG/L
TARBON TETRACHLORIDE	5 O	5 D U	UG/L
IHLOROBENZENE	5 0	5.C U	UG/L
THLOROFIHANE	5 0	5 0 U	UG/L
HLOROFORM	5 0	5 0 U	UG/L
HLOROMETHANE	5 0	5 0 U	UG/L
IBROMOCHLOROMETHANE	5 0	5 0 U	UG/L
., 1-DICHLOROETHANE	5 0	5 C U	UG/L
, 2-DICHLOROETHANE	5 0	5 0 U	UG/L
,1-DICHLOROETHENE	5 0	5 0 U	UG/L
IS-1,2-DICHLOROETHENE	5.0	5 0 <b>U</b>	UG/L
RANS-1,2-DICHLOROETHENE ,2-DICHLOROPROPANE	5 0 5 C	5 0 U 5 0 U	UG/L UG/L
IS-1,3-DICHLOROPROFENE	5 O	5 0 U	UG/L
PANS-1,3-DICHLOROPROPENE	5 O	5 0 U	UG/L
THYLBENZENE	5 0	5 0 U	UG/L
-HEXANONE	10	10 Ü	uc/L
ETHYLENE CHLORIDE	5 0	5 0 tr	UG/L
-METHYL-2-PENTANONE (MIEK)	10	10 U	UG/L
TYRENE	5 0	5 0 U	UG/L
,1,2,2-TETRACHLOROETHANE	5 0	5 0 U	UG/L
ETRACHLOROETHENE	5 0	5 0 U	UG/L
CLUENE	5 O	5 0 U	UG/L
1,1-TRICHLOROETHANE	<b>5</b> 9	5 0 U	UG/L
,1,2-TRICHLOROETHANE	5 Q	5 0 U	ug/L
RICHLORGETHENE	50	5.0 U	UG/L
INYL CHLORIDE	5 0	5 0 U	UG/L
-XYLENE	5 0	5.0 U	UG/L
-P-XYLENE	5 0	5 O U	ΰĠ/L
SURROGATE RECOVERIES QC LIM	ITS		
BROMOFLUCROBENZENE (87 -		101	Ş
LUENE-DS (87 -	168 %) 117 %)	95 98	<del>Cļ</del>
BROMOFLUOROMETHANE 186 -			ঠি

VOLATILE ORGANICS METHOD 8260B TCL Reported 09/26'01

Stearns & Wheler, LLC

Project Reference: NIAGARA MOHAWK-ALBION, NY-GROUNDWATERS

Client Sample II : DUP

Date Sampled: 05/27/01 Ore Pate Received: 05/29/01 Submiss:	ier #: 489050 ion #: R2108354	Sample Matrix: Analytical Run	
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED 09/07,01			
ANALYTICAL DILUTION 1 00			
PCETONE	20	20 U	UG/L
FENZENE	5.0	5.0 Ū	UG/L
EROMODICHLOROMETHANE	5.C	5.3 Ū	UG/L
BROMOFCRM	5 0	5.C Ū	UG/L
BROMOMETHANE	ž 0	5 0 U	UG/L
2-BUTANONE (MEK)	10	10 U	UG/L
CARBON DISULFIDE	10	10 U	UG/L
CARBON TETRACHLORIDE	5 0	5 0 U	UG/L
CHLORCBENZENE	5.C	ร.0 ปี	UG/L
CHLORCETHANE	5 0	5.0 U	UG/L
CHLOROFORM	5 🧓	5 0 U	ŪG/L
CHLOROMETHANE	<b>5</b> 0	5 0 U	UG,'L
LIBROMOCHLOROMETHANE	5 0	5 0 T	UG/L
1,1-DICHLOROETHANE	5.0	5 0 U	UG/L
1 2-DICHLORCETHANE	5 0	5 C U	UG/L
1,1-DICHLOROETHENE	5.0	5 0 T	UG/L
CIS-1, 2-DICHLCROETHENE	5 0	5 O Ü	UG/L
FRAMS-1,2-DICHLCROETHENE	5 C	5 0 U	UG/L
1 2-DICHLOROPROPANE	5 5 5	5 0 J	UG/L
IIS-1,3-DICHLOROPROPENE	5.0	5 0 Ū	UG/L
TRANS-1,3-LICHLOROPROPENE	5.0	5 0 17	JG/L
THYLBENZENE	5.0	= ៤ ប	UG/L
- HEXANONE	10	10 J	UG/L
ETHYLENE CHLORIDE	5 0	ร ัง บ	UG/L
-METHYL-2-PENTANONE (MIBK)	10	10 Ū	UG/L
TYRENE	5 0	5 0 T	UG/L
1,2,2-TETRACHLORCETHANE	5 0	5 ¢ Ŭ	UG/L
ETRACHLOROETHENE	5 0	5 0 บั	UG/L
OLUENE	5 0	5 0 T	UG/L
,1,1-TRICHLOROETHANE	5.0	5 O V	UG/L
,1,2-TRICHLOROETHANE	5 0	5.0 Ū	UG/L
RICHLOROETHENE	5 0	5 0 U	UG/L
INYL CHLORIDE	5 0	5 0 Ū	UG/L
XYLENE	- · 5 0	รี 0 บี	UG/I
+P-XYLENE	5 0	5 0 U	UG/L
SURROGATE RECOVERIES QC	LIMITS -		
-BROMOFLUORCBENZENE (87	- 111 %)	107	द्यक
OLUENE-D8 (87		101	્ર પુર
IBROMOFLUOROMETHANE (56	<del>-</del>	99	- <del>2</del>

## 7001-1891A S&W REDEVELOPMENT

## Case Narrative

**Sample Receipt** – The samples were received at 14°C The client was notified and the laboratory was instructed to proceed with the analyses

**Volatile Organics** — Volatile organics were determined by purge and trap GC/MS using guidance provided in Method 5030B/5035A/8260B — The instrumentation used was a Tekmar Model 2000/2016/3000 Concentrator/Archon 4552 autosampler interfaced with a Hewlett Packard Model 5970A/5971A/5972A GC/MS/DS

Sample Calculation

Sample ID –SB-11C-01 Compound –Acetone

$$(133468)(250)$$
 = 35 9 = 36 UG/KG (224372)(1 741)(2 67)(89)

Sample SB-11C-01 was analyzed at a 1 2 culution due to a high TIC peak

The following samples were analyzed as medium level soils due to high target compound concentrations

SB-10B-01	1 10
SB-15B-01	1 10
SB-11B-01	1 400

The spike compound percent recoveries for chloroethane were below criteria in the FMS/FMSD samples and recoveries for methylene chloride, toluene, ethylbenzene and xylene (total) were also out in the FMSD sample. The percent RPD values for methylene chloride, acetone, benzene, toluene, ethylbenzene and xylene(total) were also out in the FMS/FMSD samples. The spike compound percent recoveries for chloroethane and 2-hexanone were below criteria in the FMSB sample.

**Semi-Volatile Organics** - Semi-volatile organic samples were extracted and analyzed by capillary GC/MS according to NYSDEC '95 Protocols using guidance provided in Methods 3550C/8270C The instrumentation used was a Hewlett-Packard Gas Chromatograph interfaced with a Mass Selective Detector

Samples SBLKOQFMS and SB-15A-01 had one surrogate out of recovery criteria, but within laboratory sample acceptance criteria. Sample SB-9A-01 had two surrogates out of recovery criteria, but within laboratory acceptance criteria.

E 1255 = 1

The spike recovery for the compound, 4-nitrophenol was above recovery limits for SB-10B-01MSB

Samples SB-9A-01, SB-10A-01, SB-10B-01, SB-10B-01MSD, SB-12A-01, SB-13B-01, SB-14A-01, SB-15A-01 and SB-15B-01 would not concentrate to a final volume of 1 ml, and so were brought to a final volume of 5 mls Samples SB-11B-01 and SB-13A-01 would not concentrate to a final volume of 1 ml and so were brought to a final volume of 10 mls

Samples SB-11A-01 and SB-13B-01 were analyzed at a 1 2 dilution sample SB-13A-01 was analyzed at a 1 4 dilution, samples SB-10A-01 and SB-12A-01 were analyzed at a 1 5 dilution, samples SB-14A-01 and SB-15B-01 were analyzed at a 1 8 dilution, samples SB-10B-01, SB-10B-01MS and SB-10B-01MSD were analyzed at a 1 25 dilution and sample SB-11B-01 was analyzed at a 1 40 dilution, all due to the presence of high levels of target compounds

Sample Calculation

Sample ID – DUPLICATE Compound - naphthalene

 $\frac{14111(40)1000}{692043(0\ 966)2(30\ 5)0\ 83} = 16\ 67 = 17\ \text{ug/kg}$ 

## TABLE VO-1.0 7001-1891A S&W REDEVELOPMENT, LLC TCL VOLATILE ORGANICS

F - 6 75 75 7 75

All values are ug/Kg dry weight basis.

	Client Sample I.D Lab Sample I D	Method Blank VBLKO8	SB-11C-01 011891A-07	Quant. Limits
اب	Method Blank I D Quant. Factor	VBLKO8	VBLKO8 2 10	with no Dilution
<b>-</b>	Chloromethane	ט	U	10
نــ	Bromomethane	Ū	υ	10
	Vinyl Chloride Chloroethane	U U	U U	10 10
	Methylene Chloride	2J	14B	5 0
	Acetone Carbon Disulfide	6J .9J	36B 1JB	10 5 0
~	Vinyl Acetate	U	U	10
	1,1-Dichloroethene 1,1-Dichloroethane	U	U U	5 0 5.0
_	cis-1,2-Dichloroethene trans-1,2-Dichloroethene	U U	U U	5 0 5.0
	Cnloroform	ט	Ū	5 0
- 1	1.2-Dichloroethane	U 4J	О 9 ЈВ	5.0
$\neg  $	2-Butanone 1,1,1-Trichloroethane	U U	U U	5.0
_	Carbon Tetrachloride	υ	U	5 0
	Bromodichloromethane 1,2-Dichloropropane	ប ប	ប	5.0 5.0
	cis-1,3-Dichloropropene	υ	U	5.0
	Trichloroethene	U U	ប	5.0
	Dibromochloromethane 1,1,2-Trichloroethane	Ū	ט	5.0
	Benzene	บ บ	ָּט ט	5.0
	trans-1,3-Dichloropropene Bromoform	<u>ט</u>	ū	5.0
	4-Methyl-2-Pentanone	ū	ū	10
	2-Hexanone Tetrachloroethene	U U	ָ ט	5.0
·	Toluene	.2J	2JB	5.0
_  _	1,1,2,2-Tetracnloroethane Chlorobenzene	U U	U U	5 0 5 0
	Ethylbenzene	Ū	ΰ	5 0
$\neg  $	Styrene	U U	ָּט ט	5 0 5 0
_ <u> </u> =	Xylene (total)	<u> </u>		 
	Date Received	N/A	07/23/01 N/A	
	Date Extracted Date Analyzed	07/30/01	07/30/01	
	-			

See Appendix for qualifier definitions

Note. Compound detection limit = quantitation limit x quantitation factor
Quant. Factor = a numerical value which takes into account any
variation in sample weight/volume, % moisture and
sample dilution.

Soıl

# TABLE VO-1.1 7001-1891A S&W REDEVELOPMENT, LLC TCL VOLATILE ORGANICS

- m- - - -

All values are ug/Kg dry weight basis

Client Sample I D  Lab Sample I.D  Method Blank I D.  Quant. Factor	Method Blank VBLKKR VBLKKR 1.00	SB-9A-01 011891A-01 VBLKKR 1.10	SB-9B-01 011891A-02 VBLKKR 1 20	Quant Limits with no Dilution
Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide Vinyl Acetate 1,1-Dichloroethene 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Bromodichloromethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane Benzene trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene Toluene 1,1,2,2-Tetrachloroethane Chlorobenzene Ethylbenzene Styrene Xylene (total)	מ מ מ מ מ מ מ מ מ מ מ מ מ מ מ מ מ מ מ	ממטטמטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטט	00000000000000000000000000000000000000	10000000000000000000000000000000000000
Date Received Date Extracted Date Analyzed	N/A 07/27/01	07/23/01 N/A 07/27/01	07/23/01 N/A 07/27/01	

See Appendix for qualifier definitions

Note Compound detection limit = quantitation limit x quantitation factor

Quant. Factor = a numerical value which takes into account any

variation in sample weight/volume, % moisture and

sample dilution.

]

ليا

Soil

## TABLE VO-1.2 7001-1891A S&W REDEVELOPMENT, LLC TCL VOLATILE ORGANICS

All values are ug/Kg dry weight basis.

7-					
	Client Sample I.D.	SB-10A-01	SB-11A-01	SB-12A-01	Quant.
٦	Lab Sample I.D Method Blank I.D.	011891A-03	011891A-05 VBLKKR	011891A-08 VBLKKR	
لِـ	Quant Factor	VBLKKR 1.12	1.11	1 09	Dilution
٦	Chloromethane	σ	υ	ט	10
J	Bromomethane   Vinyl Chloride	U U	U U	ט	10 10
٦	Chloroethane	U	υ	U	10
لہ	Methylene Chloride	7B 26	7B 9J	8B 29	5 0
	Carpon Disulfide	์ บ	U	U	5 0
7	Vinyl Acetate	U	<u>U</u>	<u></u> ד	10
J	1,1-Dichloroethene 1,1-Dichloroethane	ָ ט	บ บ	U U	5 0 5.0
٦	cis-1,2-Dichloroethene	Ū	Ū	Ū	5 0
L	trans-1,2-Dichloroethene Chloroform	Ū	U U	U U	5.0 5.0
J	1,2-Dichloroethane	ע	υ	Ū	5.0
7	2-Butanone	ָט	Ŭ	Ū	10
J	1,1,1-Trichloroethane Carbon Tetrachloride	ָ ָ ט	ប ប	U U	5.0 5.0
	Bromodichloromethane	U	ט	ע	5.0
7	1,2-Dichloropropane cis-1,3-Dichloropropene	ָ ט	ប ប	ប ប	5.0 5.0
١	Trichloroethene	Ū	บี	U	50
,	Dibromochloromethane	ū	U T	U T	5.0
	1,1,2-Trichloroethane Benzene	u u	ប ប	Մ 2J	5.0 5.0
1	trans-1,3-Dichloropropene	Ū	ע	υ	5.0
١	Bromoform 4-Methyl-2-Pentanone	U U	U U	ប ប	5.0 10
ار	2-Hexanone	U	ע	บ	10
	Tetrachloroethene	Ū	Ū	Ū	5.0
1]	Toluene 1,1,2,2-Tetrachloroethane	ប	ָ ע	ប ប	5.0 5.0
1	Chlorobenzene	Ū	υ	υ	5.0
1	Ethylbenzene Styrene	ט ט	ע	ប ប	5.0
Ĺ	Xylene (total)	Ü	Ü	Ŭ	5 0
T	Date Received	07/23/01	07/23/01	07/23/01	
	Date Extracted	N/A	N/A	N/A	
-	Date Analyzed	07/27/01	07/27/01	07/27/01	
1		F			

See Appendix for qualifier definitions

Note Compound detection limit = quantitation limit x quantitation factor Quant. Factor = a numerical value which takes into account any variation in sample weight/volume, % moisture and sample dilution

TABLE VO-1.3 7001-1891A S&W REDEVELOPMENT, LLC TCL VOLATILE ORGANICS Soil

All values are ug/Kg dry weight basis

		_		<u>L</u>
Client Sample I D  Lab Sample I.D  Method Blank I.D.  Quant Factor	SB-12B-01 011891A-09 VBLKKR 1 12	SB-13A-01 011891A-10 VBLKKR 1.33	SB-13B-01 011891A-11 VBLKKR 1 28	Quant Limits with no Dilution
Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide Vinyl Acetate 1,1-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene trans-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Bromodichloromethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane Benzene trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene Toluene 1,1,2,2-Tetrachloroethane Chlorobenzene Ethylbenzene Styrene Xylene (total)	ח ממממממממממממממממממממממממממממממממממממ	000083100000000000000000000000000000000	0000445 145 17000000000000000000000000000000000000	10 10 10 10 10 10 10 10 10 10 10 10 10 1
Date Received Date Extracted Date Analyzed	07/23/01 N/A 07/27/01	07/23/01 N/A 07/27/01	07/23/01 N/A 07/27/01	 

See Appendix for qualifier definitions

Note Compound detection limit = quantitation limit x quantitation factor Quant. Factor = a numerical value which takes into account any variation in sample weight/volume, % moisture and sample dilution.

Soil

# TABLE VO-1.4 7001-1891A S&W REDEVELOPMENT, LLC TCL VOLATILE ORGANICS

All values are ug/Kg dry weight basis.

			· · · · · · · · · · · · · · · · · · ·	
Client Sample I D.	SB-13C-01	SB-14A-01	SB-14B-01	Quant.
Lab Sample I.D. Method Blank I.D	011891A-12 VBLKKR	011891A-13 VBLKKR	011891A-14 VBLKKR	Limits with no
Quant. Factor	1 19	1 14	1.23	Dilution
Chloromethane	U	ש	<u>U</u>	10
Bromomethane Vinyl Chloride	U U	U U	ט ט	10 10
Chloroethane Methylene Chloride	U 26B	Ŭ 20B	U 14B	10 5.0
Acetone	33	23	17	10
Carbon Disulfide Vinyl Acetate	ָּט ט	.5J ປັ	U U	5 0 10
1,1-Dichloroethene	ប ប	บ บ	บ บ	5.0 5.0
cis-1,2-Dichloroethene	Ū Ū	U U	U U	5.0 5.0
trans-1,2-Dichloroethene Chloroform	υ	ט	Ū	5.0
1,2-Dichloroethane 2-Butanone	ប ប	U U	บ บ	5.0 10
1,1,1-Trichloroethane	Ū	U U	ប	5.0
Carbon Tetrachloride Bromodichloromethane	U U	ט	<b>U</b>	5.0
- 1,2-Dichloropropane cis-1,3-Dichloropropene	ប	U U	ប ប	5.0 5.0
Trichloroethene	ָ ט	.9J	Ū U	5.0
Dibromochloromethane 1,1,2-Trichloroethane	U	U U	υ	5 0 5 0 5.0
Benzene trans-1,3-Dichloropropene	.3J U	7 U	υ υ	5.0
Bromoform	ט	ָ ט	U U	5.0
4-Methyl-2-Pentanone 2-Hexanone	U U	υ	υ	10
Tetrachloroethene Toluene	บ 2J	บ 5J	U .6J	5 0 5.0
1,1,2,2-Tetrachloroethane	ָ ָ ע	<b>ט</b>	U U	5 0 5 0
_,Chlorobenzene    Ethylbenzene	ן ט	U	υ	5.0
- Styrene Xylene (total)	U .8J	บ 7ม	ט ט	5 0 5 0
Date Received	07/23/01	07/23/01	07/23/01	
Date Extracted	N/A 07/27/01	N/A 07/27/01	N/A 07/27/01	
Date Analyzed	01/21/01	01/21/01		

See Appendix for qualifier definitions

Note Compound detection limit = quantitation limit x quantitation factor Quant. Factor = a numerical value which takes into account any variation in sample weight/volume, % moisture and sample dilution.

Soil

## TABLE VO-1 5 7001-1891A S&W REDEVELOPMENT, LLC TCL VOLATILE ORGANICS

All values are ug/Kg dry weight basis.

Client Sample I D  Lab Sample I.D.  Method Blank I.D.  Quant. Factor	SB-15A-01 011891A-15 VBLKKR 1 09	DUPLICATE 011891A-17 VBLKKR 1.14	Quant Limits with no Dilution
Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide Vinyl Acetate 1,1-Dichloroethene 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene trans-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Bromodichloromethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane Benzene trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene Toluene 1,1,2,2-Tetrachloroethane Chlorobenzene Ethylbenzene Styrene Xylene (total)	000043 113 11100000000000000000000000000	00008 184 19000000000000000000000000000000000000	10 10 10 10 10 10 10 10 10 10 10 10 10 1
Date Received Date Extracted Date Analyzed	07/23/01 N/A 07/27/01	07/23/01 N/A 07/27/01	

See Appendix for qualifier definitions

Note: Compound detection limit = quantitation limit x quantitation factor

Quant. Factor = a numerical value which takes into account any

variation in sample weight/volume, % moisture and

sample dilution

. . L

TABLE VO-1.6 7001-1891A S&W REDEVELOPMENT, LLC TCL VOLATILE ORGANICS

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

Soil Medium

## All values are ug/Kg dry weight basis

		<del>- ,</del>			
	Client Sample I.D  Lab Sample I D  Method Blank I D  Quant. Factor	Method Blank VBLKTD VBLKTD 1.00	SB-10B-01 011891A-04 VBLKTD 12.9	SB-10B-01 FMS 011891A-04 FMS VBLKTD 12 9	Quant. Limits with no Dilution
	Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide Vinyl Acetate 1,1-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene trans-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Bromodichloromethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane 8-nzene trans-1,3-Dichloropropene Trichloroethene Chloromochloromethane 1,1,2-Trichloroethane Senzene trans-1,3-Dichloropropene Tetrachloroethene Coluene 1,2,2-Tetrachloroethane Chlorobenzene Cthylbenzene Ctyrene Cylene (total)	00000000000000000000000000000000000000	UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	44000X 32000X 46000X 21000X 66000BX 41000X 53000X 57000X 67000X 67000X 67000X 68000X 68000X 63000X 63000X 63000X 63000X 62000X 63000X 62000X 63000X 62000X 63000X 62000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X 63000X	1000 1000 1000 1000 1000 1000 1000 100
$_{ert }^{ert }\mathbf{ abla }\Gamma ^{ert }$	Pate Received Pate Extracted Pate Analyzed	N/A 07/30/01	07/23/01 N/A 07/30/01	07/23/01 N/A 07/30/01	

~~.

See Appendix for qualifier definitions

Note Compound detection limit = quantitation limit x quantitation factor

Quant. Factor = a numerical value which takes into account any variation in sample weight/volume, % moisture and sample dilution

Soil Medium-

## TABLE VO-1.7 7001-1891A S&W REDEVELOPMENT, LLC TCL VOLATILE ORGANICS

All values are ug/Kg dry weight basis

		J. J			
	Client Sample I.D  Lab Sample I.D  Method Blank I.D  Quant. Factor  Chloromethane  Bromomethane  Vinyl Chloride  Chloroethane  Methylene Chloride  Acetone  Carbon Disulfide  Vinyl Acetate  1,1-Dichloroethane  1,1-Dichloroethane  cis-1,2-Dichloroethene  trans-1,2-Dichloroethene  trans-1,2-Dichloroethene  Chloroform  1,2-Dichloroethane  2-Butanone  1,1,1-Trichloroethane  2-Butanone  1,1,1-Trichloroethane  1,2-Dichloropropane  cis-1,3-Dichloropropene  Trichloroethene  Dibromochloromethane	SB-10B-01 FMSD 011891A-04 FMSD VBLKTD 1 29 4500X 3000X 4500X 2100X 6000BX 4900X 4900X 5600X 6500X 6500X 6500X 6500X 6300 6400X 6400X 6400X 6400X 6400X 6400X 6500X	SB-11B-01 011891A-06 VBLKTD 71.6  U U U U 25000JB 22000J U U U U U U U U U U U U U U U U U U	SB-15B-01 011891A-16 VBLKTD 11.8  U U U U U U U U U U U U U U U U U U	Quant Limits with no Dilution  1000 1000 1000 1000 1000 1000 1000 1
	Carbon Disulfide	4900X	Ū	U	1000
	1,1-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene	5600X 6500X 6300	บ บ บ	บ บ บ	1000 1000 1000
	Chloroform 1,2-Dichloroethane	6600X 6800X	U U	ט ט	1000 1000
	1,1,1-Trichloroethane Carbon Tetrachloride	6300X 6400X	ប ប	U U	1000 r 1000
	cis-1,3-Dichloropropene Trichloroethene	6400X 5800X	ប ប	<u>ប</u>	1000
]	l,1,2-Trichloroethane Benzene	5900X 6200X	U 14000J	บ 3100J	1000
I	trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone	6300X 6400X 6000X	บ บ บ	บ บ บ	1000 1000 1000
7	2-Hexanone Tetrachloroethene Toluene	6300X 6000X 6700BX	บ บ 51000JB	บ บ 9400JB	1000 1000 1000
E	1,1,2,2-Tetrachloroethane Chlorobenzene Ethylbenzene	6500X 5900X 6400X	บ บ 18000J	U U 2900J	1000   r 1000
	Styrene Kylene (total)	6400X 24000X	260000	1100J 41000	1000
I	Pate Received Pate Extracted Pate Analyzed	07/23/01 N/A 07/30/01	07/23/01 N/A 07/30/01	07/23/01 N/A 07/30/01	
-	The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa	67,50,01	0./30/01	0,,50,01	1.

See Appendix for qualifier definitions

Note: Compound detection limit = quantitation limit x quantitation factor
Quant Factor = a numerical value which takes into account any
variation in sample weight/volume, % moisture and
sample dilution

1

<u>ر</u>،

Soil

#### TABLE SV-1 0 7001-1891A S&W REDEVELOPMENT, LLC PAH'S

All values are ug/Kg dry weight basis.

<del></del>	<del></del>		·   · · · · · · · · · · · · · · · · · ·	T
7				
	Method			
Client Sample I.D.	Blank	SB-9A-01	SB-9B-01	
٦ (				Quant
Lab Sample I.D.	SBLKOQ	011891A-01	011891A-02	Limits
Method Blank I.D.	SBLKOQ	SBLKOQ	SBLKOQ	with no
Quant. Factor	1.00	5.11	1.17	Dilution
٦				
Naphthalene	Ŭ	120J	280J	330
2-Methylnaphthalene	U	68J	49J	330
Acenaphthylene	U	270J	29J	330
Acenaphthene	U	U	U	330
Fluorene	U	U	14J	330
Phenanthrene	ਧ	450J	48J	330
Anthracene	υ	250J	20J	330
Fluoranthene	U	1200J	98J	330
Pyrene	U	910J	100J	330
Benzo(a)anthracene	Ū	1000J	84ป	330
Chrysene	Ŭ	1000J	86J	330
Benzo(b) fluoranthene	ប ប ប	1200J	87J	330
Benzo(k) fluoranthene	υ	1100J	80J	330
Benzo(a)pyrene	σ	1400J	98J	330
Indeno(1,2,3-cd)pyrene	υ	730J	100Ј	330
Dibenzo(a,h)anthracene	Ū	240J	37J	330
Benzo(g,h,1)perylene	<u> </u>	730J	120J	330
7 7 7		07/02/03	07/22/01	
Date Received	07/30/01	07/23/01	07/23/01	
Date Extracted	07/30/01	07/30/01	07/30/01	
Date Analyzed	07/31/01	08/02/01	07/31/01	
م السمار المساور المساور المساور المساور المساور المساور المساور المساور المساور المساور المساور المساور المساور	<u>l</u>	<u> </u>		

See Appendix for qualifier definitions
Note: Compound detection limit = quantitation limit x quantitation factor
Quant. Factor = a numerical value which takes into account any
variation in sample weight/volume, % moisture and
sample dilution.

Soil

## TABLE SV-1.1 7001-1891A S&W REDEVELOPMENT, LLC PAH'S

All values are ug/Kg dry weight basis

		<u> </u>		<del>,</del>
Client Sample I D.  Lab Sample I.D  Method Blank I D.  Quant. Factor	SB-10A-01 011891A-03 SBLKOQ 28.7	SB-10B-01 011891A-04 SBLKOQ 158.	SB-10B-01 MS 011891A-04MS SBLKOQ 157.	Quant. Limits with no Dilution
Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Indeno(1,2,3-cd) pyrene Dibenzo(a,h) anthracene Benzo(g,h,1) perylene	3300J 1100J 7300J 1200J 2100J 25000 10000 52000 45000 38000 34000 38000 22000 42000 25000 9400J 21000	290000 45000J 32000J 10000J 52000 180000 51000J 160000 58000 53000 33000J 43000J 42000J 19000J 6700J 18000J	240000 36000J 22000J 9500JX 36000J 130000 37000J 100000 76000X 41000J 37000J 20000J 30000J 18000J 18000J	330 330 330 330 330 330 330 330 330 330
Date Received Date Extracted Date Analyzed	07/23/01 07/30/01 08/02/01	07/23/01 07/30/01 08/01/01	07/23/01 07/30/01 08/02/01	

See Appendix for qualifier definitions

Note Compound detection limit = quantitation limit x quantitation factor

Quant. Factor = a numerical value which takes into account any

variation in sample weight/volume, % moisture and

sample dilution

APPENDIX B

RI Soil Boring Logs



## Stearns & Wheler, LLC

Environmental Engineers and Scientists

Niagara Mohawk Power Corporation Albion Former MGP Remedial Investigation Albion New York

Depth of Boring Drilling Contractor Drill Rig Type Driller

**Drilling Method** Hammer Weight/Drop Sampling Method Logged By Surveyed By

140 Parratt Wolff, Inc Mobile B 56 Combo Rig Ian Grassie Hollow Stem Augers

140 lb /30 Split Spoon 1 3/8 I D

MSS NMPC

## LOG OF BORING SB-16

(Page 1 of 1)

Date Started

4/7/03 12 50 PM

Time Date Completed

4/7/03

Time

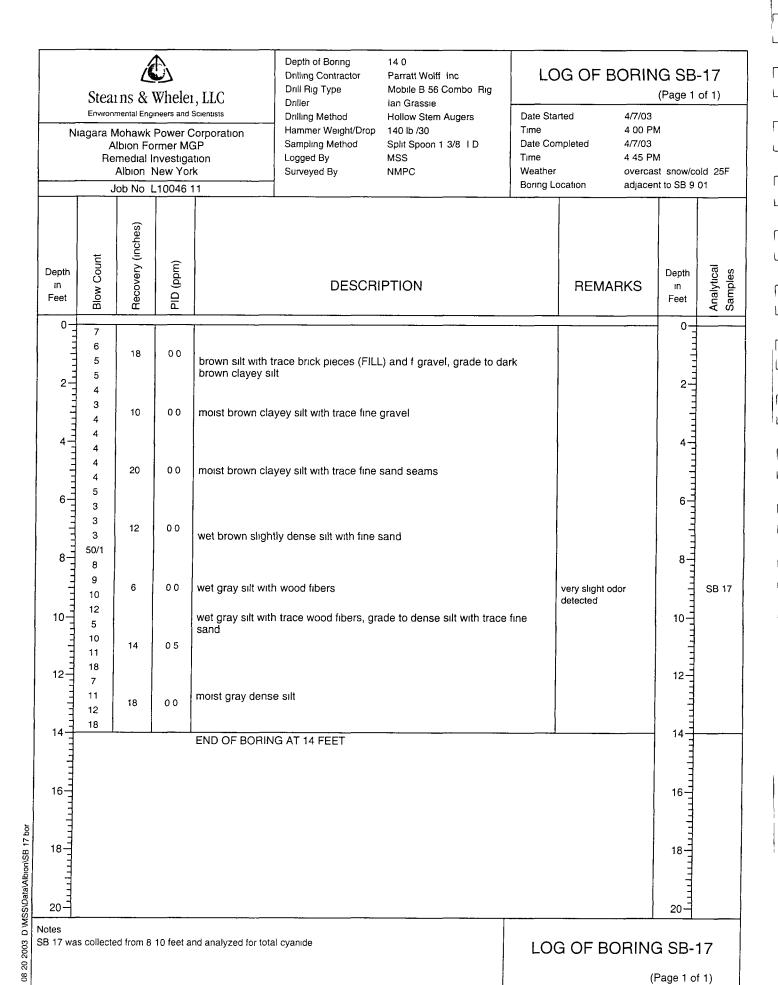
3 30 PM

Weather

overcast snow/cold 25F

oring Location	adjacent to western hol

LOG OF BORING SB-16


(Page 1 of 1)

	J	ob No L	10046 1	1	Boring Location	adjacent to west	ern holder
Depth in Feet	Blow Count	Recovery (inches)	PID (ppm)	DESCRIPTION	REMA	Depth in Feet	Analytical Samples
0-		1	1			0-	<del> </del>
2		12	00	moist gray silt and fine sand with f-c gravel		2-	
4-		9	00	black ash/CLM, grade to brown silt and fine sand with trace coa gravel	arse	4-	SB 16
6-		10	00	silt with coarse gravel	Geoprobe malfuncting switch to h weight/drop	g will ammer	
8-	17 50/1	0		No recovery	Hard mater		
1	50/4	5	00	fine silt with broken concrete pieces and coarse gravel			
10-1	50/1	0		No recovery		10	
12-	50/2	0		No recovery		12	
14				END OF BORING AT 14 FEET	·,·	14-	
1						16-	,
16-						16-	
18						18-	
20-						20-	
Notes							ļ

Soil boring is believed to be located close to holder wall perhaps in the wall itself or surrounding

concrete pad and fill material Soil recoveries are poor with evidence of concrete pieces

SB 16 was collected from 2 4 feet and analyzed for total cyanide





## Stearns & Wheler LLC

Envi onmental Engineers and Scientists

Niagara Mohawk Power Corporation Albion Former MGP Remedial Investigation Albion New York

08 20 2003

Depth of Boring Drilling Contractor Drill Rig Type Driller

Drilling Method Hammer Weight/Drop Sampling Method Logged By Surveyed By 14 0 Parratt Wolff Inc

Mobile B 56 Combo Rig lan Grassie Hollow Stem Augers

140 lb /30 Split Spoon 1 3/8 I D MSS NMPC

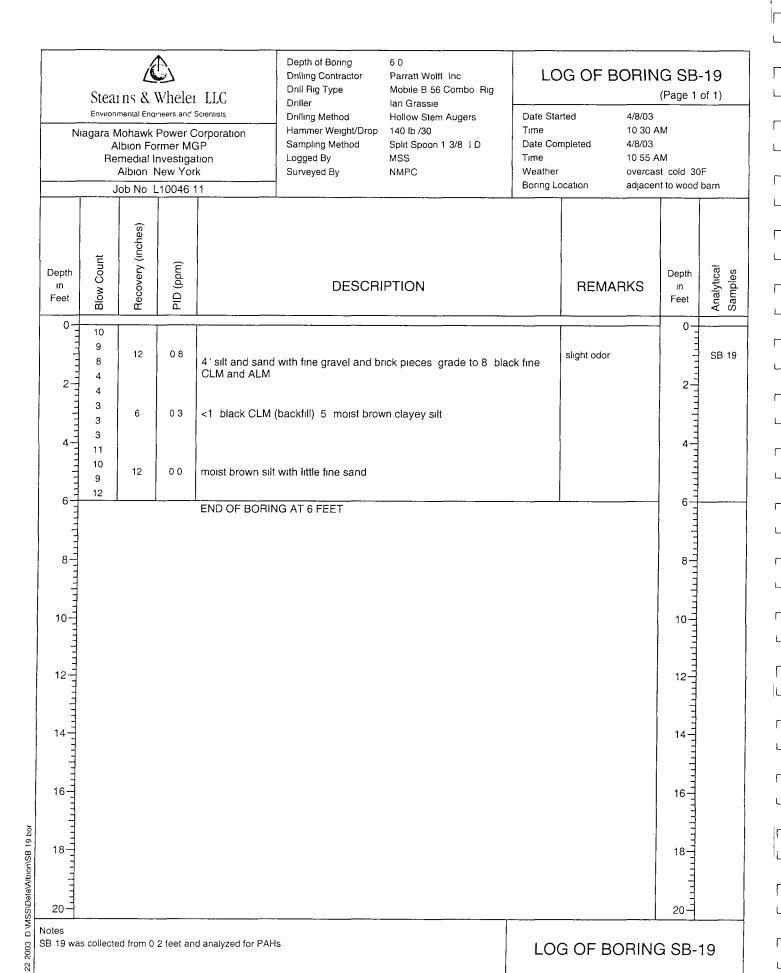
## LOG OF BORING SB-18

(Page 1 of 1)

(Page 1 of 1)

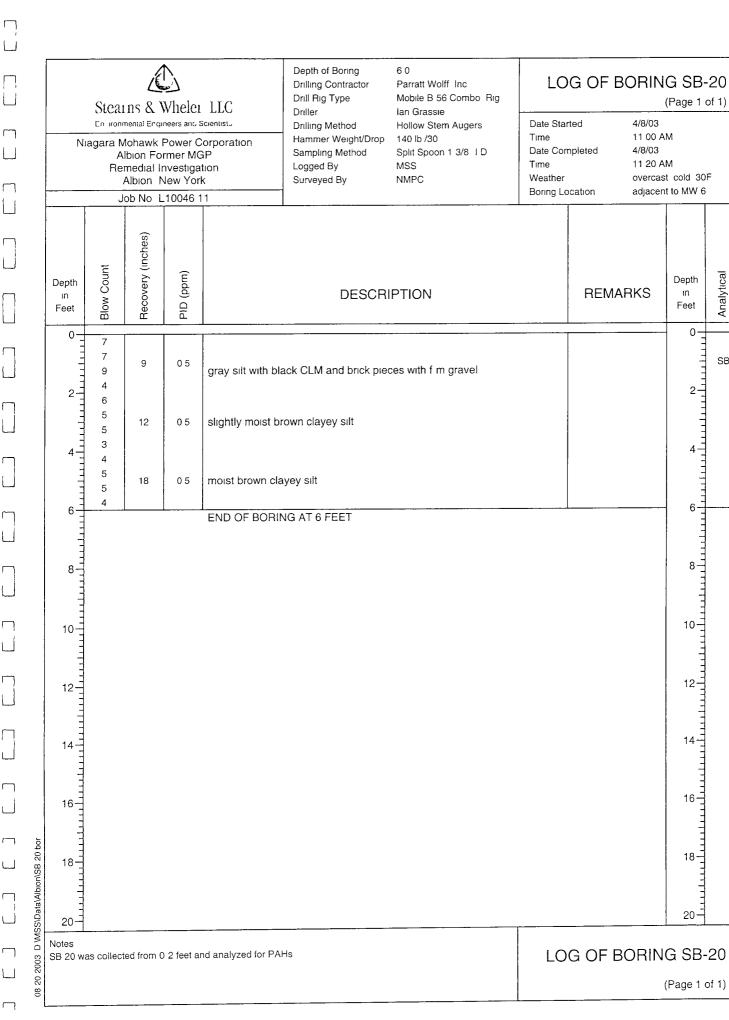
Date Started Time

Time Date Completed


Time

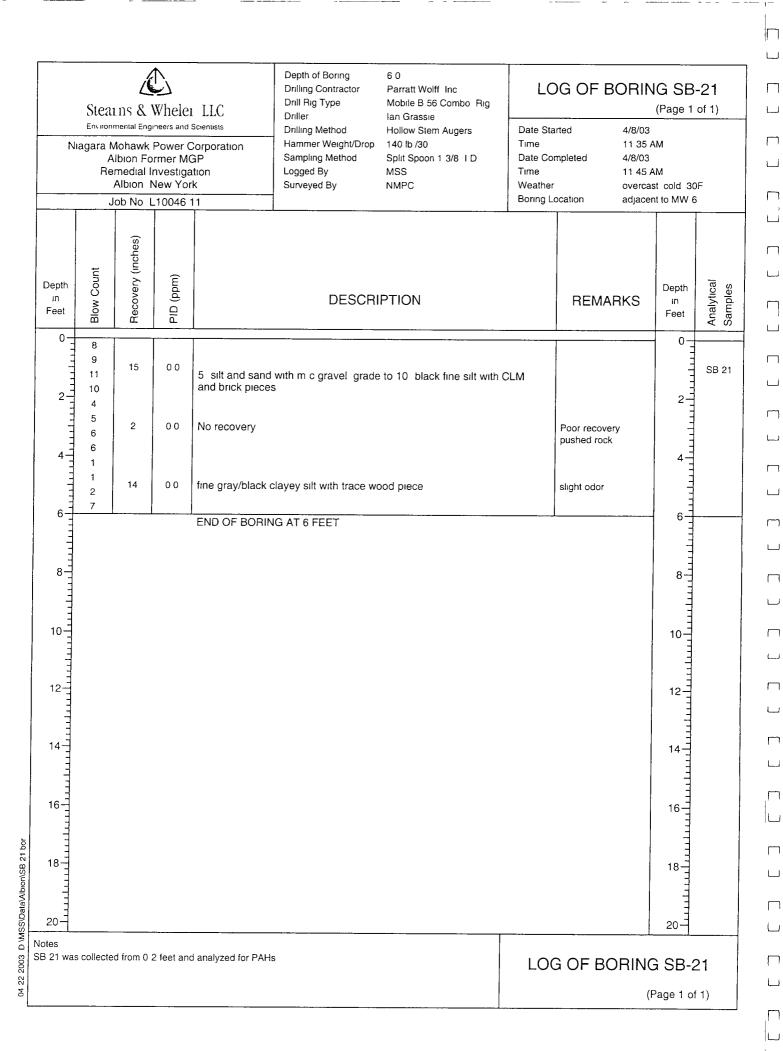
7 50 AM 4/8/03 10 20 AM

4/8/03


Weather overcast cold 30F Boring Location adjacent to SB 9 01

		Job No L	_10046		Surveyed By NIMPC	Boring Lo		nt to SB 9	
Depth in Feet	Blow Count	Recovery (inches)	PID (ppm)		DESCRIPTION		REMARKS	Depth in Feet	Analytical Samples
0-		1		1				0	
111111	19 50/0	6	00	brown fine sand	and silt with coarse gravel			111111	
2	34 50/4	11	0.0	fine brown sand	and silt with trace m c gravel			2-	
4-	29 50/2	8	0 1	moist brown silt	with sand and f-m gravel			4-	
6	50/3	6	01	wet fine brown s	sand with silt and some coarse gravel			6-1	
8 - 10 - 10 -	50/3	1	00	moist m-c sand	with silt and m-c gravel		Difficult drilling (6 10 ) hard material encountered destroyed 4 drill cutting bits	8 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	
111111	50/3	4	29	gray/green like	silt with m c gravel		very slight odor detected	11111	SB 18
12	40 31 30 32	20	00	moist silt and sa sand	and grade to slightly dense brown silt	with trace fine		12	
16   18   120				END OF BORIN	IG AT 14 FEET			16 18 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
	s collect	ted from 1	0 12 feet	and analyzed for to	otal cyanide	LO	G OF BORIN	G SB-	18




(Page 1 of 1)

8



Analytical Samples

SB 20





## Stearns & Wheler, LLC

Environmental Engineers and Scientists

Niagara Mohawk Power Corporation Albion Former MGP Remedial Investigation Albion New York

D \MSS\Data\Albion\SB 22 bor

04 22 2003

SB 22 was collected from 0 2 feet and analyzed for PAHs

Depth of Boring **Drilling Contractor** Drill Rig Type Driller

Drilling Method Hammer Weight/Drop Sampling Method Logged By Surveyed By

60 Parratt Wolff Inc

Mobile B 56 Combo Rig Ian Grassie Hollow Stem Augers

140 lb /30 Split Spoon 1 3/8 I D

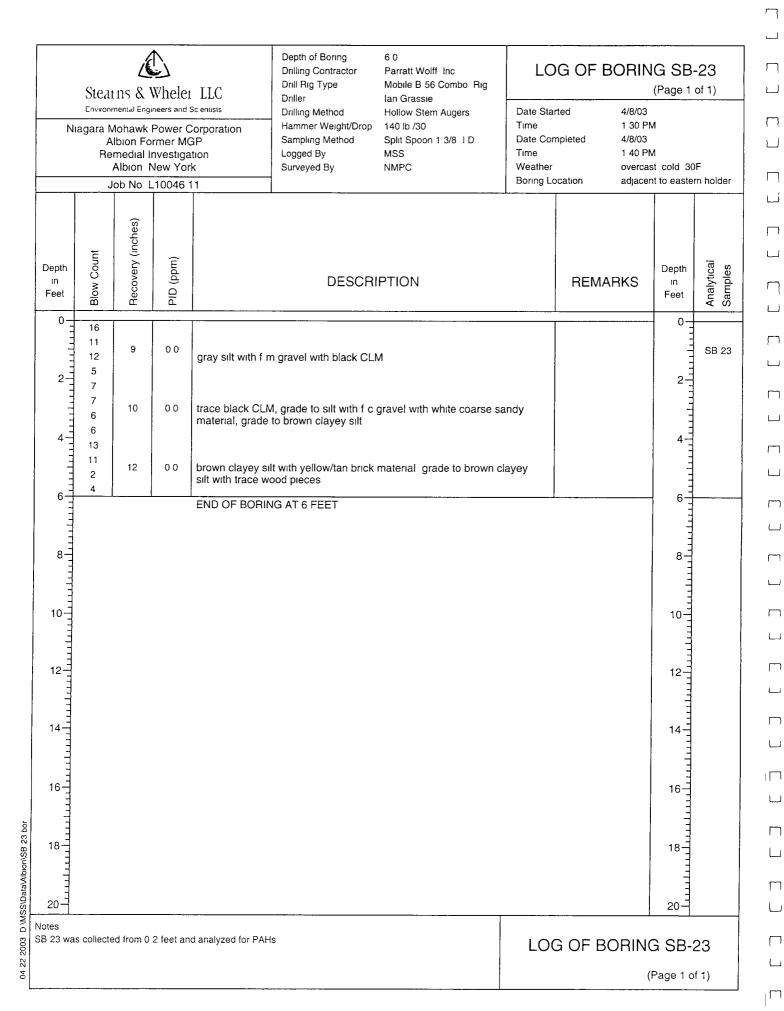
MSS NMPC

#### LOG OF BORING SB-22

LOG OF BORING SB-22

(Page 1 of 1)

(Page 1 of 1)


Date Started Time

4/8/03 1 00 PM Date Completed 4/8/03

Time Weather

1 25 PM overcast cold 30F

		lob No L	10046 1		, ,		Boring Location	adjacer	t to easter	n holder
Depth In Feet	Blow Count	Recovery (inches)	PID (ppm)		DESCRIF	PTION	RI	EMARKS	Depth in Feet	Analytical Samples
0	16 16 9 8	8	00	gray silt with f-n with fine gravel	n gravel, grade to 3" bla	ck CLM grade to brown s	silt		0-	SB 22
4	5 5 7 6	11	00	brown slightly d	ense silt with fine grave	I with trace CLM at 3 5			4-	
6	6 2 2 3	13	00			plack CLM and brick piece	es at		6	
8-				END OF BORIN	IG AT 6 FEET				8-	
10-									10	
12									12	
14-3									14-	
16									16	
									18	
18									20	
20 – Notes										





## Stearns & Wheler, LLC

Environmental Engineers and Scientists

Niagara Mohawk Power Corporation Albion Former MGP Remedial Investigation Albion New York

SB 24A (0 2 inches) and SB 24B (18 24 inches) were collected and analyzed for PAHs

Depth of Boring **Drilling Contractor** Drill Rig Type

Driller Drilling Method Hammer Weight/Drop Sampling Method

Logged By Surveyed By 20

Parratt Wolff Inc Mobile B 56 Combo Rig lan Grassie

Hollow Stem Augers 140 lb /30 Split Spoon 1 3/8 | D

MSS NMPC

## LOG OF BORING SB-24

(Page 1 of 1)

Date Started Time

4/8/03 1 55 PM

Date Completed

4/8/03

Time

2 00 PM

Weather

overcast cold 30F

LOG OF BORING SB-24

(Page 1 of 1)

		lob No. I			Surveyed by 144411 C	Boring Location	southern ed	ge of property
<del></del>		lob No L	10046 1	1 1		13		J - ,
Depth In Feet	Blow Count	Recovery (inches)	PID (ppm)		DESCRIPTION	REN	//ARKS	Analytical Samples
0-			1	· · · · · · · · · · · · · · · · · · ·				0
111111	4 6 5 4	22	0.0	gray/black silt w grade to gray sl	with f-m gravel with trace brick pieces and b lightly dense silt	olack CLM		SB 24A/E
2 -		1	1	END OF BORIN	NG AT 2 FEET			2=
]								Ė
]							1	Ē
4-								4-
=								1
=								3
6-								6-3
1 =								3
1								=
8-								8-=
ǰ								~ <u> </u>
크							1	4
								<u>,                                    </u>
10-								10-]
=								4
= =								<u>,</u> , =
12-								12-
3								3
=======================================								🖠
14-								14-]
]								4
=								3
16								16
,, =								]
=								4
18								18-
1								1
7								1
20								20=
							1	
Notes								



#### Stearns & Wheler LLC

Environmental Engineers and Scientists

Niagara Mohawk Power Corporation Albion Former MGP Remedial Investigation Albion New York

Depth of Boring Drilling Contractor Drill Rig Type Driller

Drilling Method Hammer Weight/Drop Sampling Method Logged By Surveyed By

60 Parratt Wolff Inc Mobile B 56 Combo Rig

lan Grassie Hollow Stem Augers 140 lb /30

Split Spoon 1 3/8 | D

MSS NMPC

# LOG OF BORING SB-25

(Page 1 of 1)

Date Started

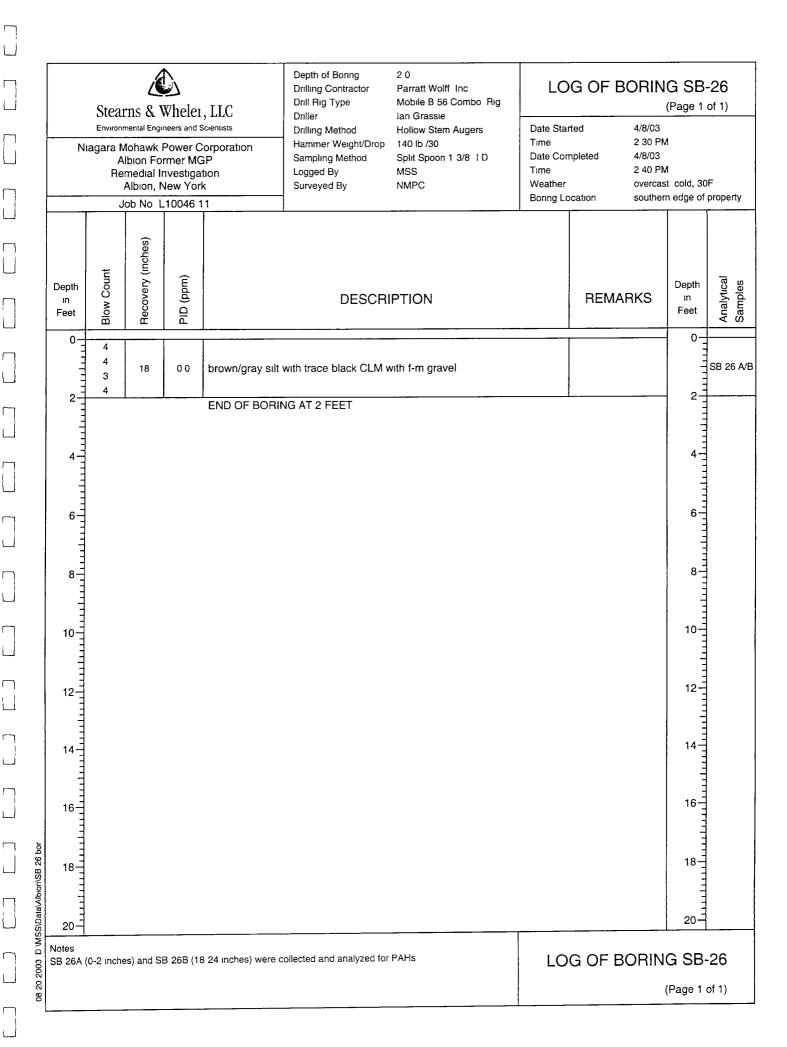
4/8/03 2 10 PM Time

Date Completed

4/8/03

Time Weather 2 25 PM

overcast cold 30F


	Job No L10046 11				Surveyed by	NIVIPC		Boring Location		t to easte	
			70040		1				,		
Depth In Feet	Blow Count	Recovery (inches)	PID (ppm)		DES	SCRIPTION		REM	ARKS	Depth In Feet	Analytical Samples
0-	10 10 9 7	7	00	4' gray silt with fragments and	trace coarse gra m-c gravel	vel grade to 3 black (	CLM with bri	ck		0	SB 25
2-	7 4 8	6	00	gray silt with tra	ice CLM and brick	k fragments				2-	
4-1	11 21 19 11	8	00	gray silt with bri	ck pieces and fin	n gravel				4-11-11-1	
8 9 1	4			END OF BORIN	IG AT 6 FEET					6	<del>,     </del> .
بتطيعه										8711111	
10									:	10 17	
12-1										12	
14										14	
16										16-	
18										18-1	
20-										20-	

04 22 2003 D \MSS\Data\Albion\SB 25 bor

SB 25 was collected from 0 2 feet and analyzed for PAHs

LOG OF BORING SB-25

(Page 1 of 1)



E:	Depth of Boring Stearns & Wheler, LLC Environmental Engineers and Scientists  Niagara Mohawk Power Corporation Albion Former MGP Remedial Investigation Albion, New York  Depth of Boring Drilling Contractor Drill Rig Type Mobile B 56 Combo Rig Driller Ian Grassie Drilling Method Hollow Stem Augers Hammer Weight/Drop 140 lb /30 Sampling Method Split Spoon 1 3/8 i D Date Started 4/8/03 Time 2 55 F Sampling Method Split Spoon 1 3/8 i D Date Completed 4/8/03 Time 3 10 F Surveyed By NMPC Weather South								of 1) =
		L10046	11	1		Boring Location	southern	edge of p	property
	Blow Count Recovery (inches)	PID (ppm)		DESCRI	PTION	REMA	IRKS	Depth in Feet	Analytical Samples
	7 6 5 7	00	10" brown silt v	wif m gravel and trace	brick pieces, grade to 9" b	lack		0	SB 27 A
4 4 6 8 10 12 14 16 18 18 18 20								10 12 14 16 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	
lotes									

Ш

ш

نا

 $\Box$ 

 $\Box$ 

 $\sqcap$ 

ز_ا



## Stearns & Wheler LLC

Environmental Engineers and Scientists

Niagara Mohawk Power Corporation Albion Former MGP Remedial Investigation Albion, New York

20 2003 D \MSS\Data\Albion\SB 28 bor

Depth of Boring Drilling Contractor Drill Rig Type Driller

Drilling Method Hammer Weight/Drop Sampling Method Logged By Surveyed By

140 Parratt Wolff Inc

Mobile B 56 Combo Rig lan Grassie Hollow Stem Augers

140 lb /30 Split Spoon 1 3/8 I D

MSS NMPC

## LOG OF BORING SB-28

(Page 1 of 1)

Date Started Time

4/8/03 3 20 PM

Date Completed

4/8/03

Tıme

4 30 PM

Weather Borir

overcast cold 30F

(Page 1 of 1)

ng Location	southwest of MW 5
•	

		Job No 1	10046		Surveyed By	NIVIPC	Boring Loca		hwest of MW	
Depth in Feet	Blow Count	Recovery (inches)	PID (ppm)		DESCR	IPTION		REMARKS	Depth In Feet	Analytica/ Samples
0-1111	1 1 2	16	00	brown silt with o	organics				0-	
2	5 21 20 19 17	14	00	slightly moist br	own silt with coarse gi	ravel and little brick piece	s FILL		2-	SB 28
6	50/4	12	0.0	moist wet browi	n silt and sand with tra	ce coarse gravel			6	
8 111111	5 7 6 7	19	00	silt and sand wi	th trace f m gravel				8-	
10	10 11 9 17	20	00	moist brown silt	with trace f gravel				10	
יוודויוו	11 10 19 29	20	00	fine slightly den					14	
16 18 18 18 20				END OF BORIN	G AT 14 FEET				16	
Notes	as collect	ed from 2	4 feet an	d analyzed for total	cyanide		LOG	OF BORI	NG SB-	28



## Stearns & Wheler, LLC

Environmental Engineers and Scientists

Niagara Mohawk Power Corporation Albion Former MGP Remedial Investigation Albion New York

08 20 2003 D \MSS\Data\Albion\SB 29 bor

Depth of Boring **Drilling Contractor** Drill Rig Type Driller Drilling Method Hammer Weight/Drop Sampling Method Logged By

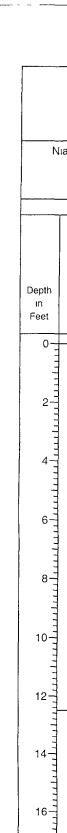
133 Parratt Wolff Inc Mobile B 56 Combo Rig lan Grassie Hollow Stem Augers 140 lb /30

Split Spoon 1 3/8 I D MSS NIMEC

#### LOG OF BORING SB-29

(Page 1 of 1)

Date Started Time


4/9/03 7 50 AM

Date Completed Time

4/9/03 8 25 AM

(Page 1 of 1)

			New Yor	Surveyed By NMPC		vi st flurries 30F holder platform
Depth In Feet	Blow Count	Recovery (inches)	PID (ppm)	DESCRIPTION	REMARKS	Analytical
0-11-11-11-11-11-11-11-11-11-11-11-11-11				~1 5 concrete		0
4-1	4 3 2 2 3	8	00	brown silt and sand with f gravel grade to brown silt with trace black CLM with brick pieces (FILL)		SB 29
6 11	3 3 2 2	6	00	moist gray clayey silt		6-1
8 9	2 2 2 10	6	00	gray clayey silt with trace coarse gravel		81
10   11	8 9 6 18	24	00	slightly moist dense clayey silt		10-1
12	21 40 50/4 21 40	24	00	gray clayey silt with some fine sand dense sand and silt with trace f gravel		12-
14 14 14 14 14 14 14 14 14 14 14 14 14 1	50/3	18	00	END OF BORING AT 13 3 FEET	Refusal @ 13 3	14-
16						16
18   1111111111111111111111111111111111						18-1
20 – Notes SB 29 wa	s collect	ed from 2	4 feet an	d analyzed for PAHs	LOG OF BORING	²⁰ - G SB-29



D \MSS\Data\Albion\SB 30 bor

20 2003

SB 30 was collected from 1 3 feet and analyzed for PAHs



## Steams & Wheler LLC

Environmental Engineers and Scientists

Niagara Mohawk Power Corporation Albion Former MGP Remedial Investigation Albion New York

Job No L10046 11

Depth of Boring Drilling Contractor Drill Rig Type Driller Drilling Method

Hammer Weight/Drop Sampling Method Logged By Surveyed By

123

Parratt Wolff Inc Mobile B 56 Combo Rig lan Grassie Hollow Stem Augers

140 lb /30 Split Spoon 1 3/8 | D

MSS NMPC

# LOG OF BORING SB-30

(Page 1 of 1)

Date Started

Time

8 35 AM 4/9/03

LOG OF BORING SB-30

(Page 1 of 1)

4/9/03

Date Completed Time

9 20 AM

Weather

Boring Location

overcast flurries 30F former holder platform

		ו סעו מסנ	_10046		 		
Depth In Feet	Blow Count	Recovery (inches)	PID (ppm)	DESCRIPTION	REMARKS	Depth in Feet	Analytical Samples
0-						0	
2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 3 2 2 3 3 3 3	8	00	aray silt with trace black CLM grade to brown silt slightyl moist gray silt with some f c gravel		2 4	SB 30
6 8	2 2 2 2 10	6	00	moist silt and sand with f c gravel		8	
10	8 9 6 18 21	24	00	moist clayey silt with trace coarse gravel		10	
7	40	24	00				
12	50/4 40 50/3	18	0 0	dense silt with trace fine sand and gravel	 Refusal @ 123	12-	
14 16 18 18 120 1				END OF BORING AT 12 3 FEET		14-11-11-11-11-11-11-11-11-11-11-11-11-1	
Notes							

# APPENDIX C

**RI Laboratory Analytical Results** 

Job Number 203415

Date 04/28/2003

CUSTOMER S&W REDEVELOPMENT of North America, LLC

PROJECT NIMO-ALBION

ATTN Dan Ours

Customer Sample ID SB-29 Date Sampled 04/09/

04/09/2003

Time Sampled Sample Matrix

08 35 Soil

Laboratory Sample ID 203415 5 Date Received 04/11/2003

Time Received 09 25

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MDL	RL	DILUTION	UNITS	ВАТСН	DT	DATE/TIME	TEC
ASTM D-2216  8270c	% Solids, Solid % Moisture, Solid Semivolatile Organics	72 9 27 1		0 10 0 10	0 10 0 10	1 1	% %	16084 16084		04/16/03 0000 04/16/03 0000	ksi
8270c	Naphthalene, Solid* 2-Methylnaphthalene, Solid* Acenaphthylene, Solid* Acenaphthene, Solid* Fluorene, Solid* Phenanthrene, Solid* Phenanthrene, Solid* Fluoranthene, Solid* Fluoranthene, Solid* Enzo(a)anthracene, Solid* Chrysene, Solid* Benzo(b)fluoranthene, Solid* Benzo(b)fluoranthene, Solid* Benzo(a)pyrene, Solid* Indeno(1,2,3-cd)pyrene, Solid* Dibenzo(a,h)anthracene, Solid* Benzo(ghi)perylene, Solid*	3900 1300 390 1000 1600 3300 1300 4500 4800 3900 4100 4200 3500 4000 1800 620 1600	T H H	170 150 60 81 110 130 65 120 100 81 92 210 210 87 97 97	1800 1800 1800 1800 1800 1800 1800 1800	1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524		04/21/03 2118 04/21/03 2118 04/21/03 2118 04/21/03 2118 04/21/03 2118 04/21/03 2118 04/21/03 2118 04/21/03 2118 04/21/03 2118 04/21/03 2118 04/21/03 2118 04/21/03 2118 04/21/03 2118 04/21/03 2118 04/21/03 2118 04/21/03 2118 04/21/03 2118	qw   qw   qw   qw   qw   qw   qw   qw

Page 6

^{*} In Description = Dry Wgt

Job Number 203415

Date 04/28/2003

CUSTOMER S&W REDEVELOPMENT of North America, LLC

PROJECT NIMO ALBION

ATTN Dan Ours

Customer Sample ID SB-30

Date Sampled

04/09/2003

Time Sampled Sample Matrix 09 30 Soil

Laboratory Sample ID 203415-6 Date Received

Time Received

04/11/2003 09 25

TEST METHOD PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MDL	RL	DILUTION	UNITS	ВАТСН	DT	DATE/TIME	TECH
ASTM D 2216  / Solids, Solid / Moisture, Solid  Semivolatile Organics Naphthalene, Solid* 2-Methylnaphthalene, Solid* Acenaphthylene, Solid* Fluorene, Solid* Phenanthrene, Solid* Phenanthrene, Solid* Fluoranthene, Solid* Fluoranthene, Solid* Pyrene, Solid* Benzo(a)anthracene, Solid* Benzo(b)fluoranthene, Solid* Benzo(b)fluoranthene, Solid* Benzo(a)pyrene, Solid* Benzo(a)pyrene, Solid* Dibenzo(a,h)anthracene, Solid* Benzo(ghi)perylene, Solid*	82 3 17 7 6200 3900 7700 1300 2800 17000 11000 58000 72000 61000 56000 37000 59000 60000 35000 15000 32000	L L L L L L L L L L L L L L L L L L L	0 10 0 10 1500 1300 510 700 930 1100 560 1000 880 700 790 1800 1800 740 840 840 790	0 10 0 10 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	y // // // // // // // // // // // // //	16084 16084 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524		04/16/03 0000 04/16/03 0000 04/16/03 0000 04/19/03 0139 04/19/03 0139 04/19/03 0139 04/19/03 0139 04/19/03 0139 04/19/03 0139 04/19/03 0139 04/19/03 0139 04/19/03 0139 04/19/03 0139 04/19/03 0139 04/19/03 0139 04/19/03 0139	ksw ksw dddda ddddddddddddddddddddddddddddddd

^{*} In Description = Dry Wgt

Job Number 203415

Date 04/28/2003

CUSTOMER S&W REDEVELOPMENT of North America, LLC

PROJECT NIMO-ALBION

ATTN Dan Ours

Customer Sample ID SB-19 Date Sampled 04/08/

04/08/2003

Time Sampled Sample Matrix

Soil

11 05

Laboratory Sample ID 203415 7 Date Received 04/11/200

04/11/2003

Time Received

09 25

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MDL	RL	DILUTION	UNITS	ВАТСН	DT	DATE/TIME	TECH
ASTM D 2216  8270c	% Solids, Solid % Moisture, Solid Semivolatile Organics Naphthalene, Solid* 2 Methylinaphthalene, Solid* Acenaphthylene, Solid* Acenaphthene, Solid* Fluorene, Solid* Phenanthrene, Solid* Fluoranthene, Solid* Fluoranthene, Solid* Benzo(a)anthracene, Solid* Benzo(b)fluoranthene, Solid* Benzo(b)fluoranthene, Solid* Benzo(k)fluoranthene, Solid* Benzo(a)pyrene, Solid* Indeno(1,2,3-cd)pyrene, Solid* Dibenzo(a,h)anthracene, Solid* Benzo(ghi)perylene, Solid*	85 2 14 8 100000 90000 210000 63000 210000 1200000 400000 1200000 720000 600000 440000 590000 590000 300000 130000 280000	J J J J M	30000 26000 10000 14000 14000 22000 11000 21000 18000 14000 35000 36000 15000 17000 17000 16000	310000 310000 310000 310000 310000 310000 310000 310000 310000 310000 310000 310000 310000 310000 310000 310000	200 0000 200 0000 200 0000 200 0000 200 0000 200 0000 200 0000 200 0000 200 0000 200 0000 200 0000 200 0000 200 0000 200 0000 200 0000 200 0000 200 0000	y y y ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	16084 16084 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524		04/16/03 0000 04/16/03 0000 04/16/03 0000 04/23/03 1229 04/23/03 1229 04/23/03 1229 04/23/03 1229 04/23/03 1229 04/23/03 1229 04/23/03 1229 04/23/03 1229 04/23/03 1229 04/23/03 1229 04/23/03 1229 04/23/03 1229 04/23/03 1229 04/23/03 1229 04/23/03 1229 04/23/03 1229 04/23/03 1229 04/23/03 1229 04/23/03 1229	ksw ksw Jdw Jdw Jdw Jdw Jdw Jdw Jdw Jdw Jdw Jd

^{*} In Description = Dry Wgt

Page 8

Job Number 203415

Date 04/28/2003

CUSTOMER S&W REDEVELOPMENT of North America, LLC

PROJECT NIMO-ALBION

ATTN Dan Ours

Customer Sample ID SB-20

Date Sampled Time Sampled 04/08/2003

Time Sampled
Sample Matrix

11 25 Soil Laboratory Sample ID 203415 8
Date Received 04/11/2003

Time Received 09 25

ASTM D-2216  A Solids, Solid  A Solids, Solid  A Moisture, Solid  Barroc  Semivolatile Organics  Naphthalene, Solid*  Acenaphthylene, Solid*  Acenaphthylene, Solid*  Acenaphthylene, Solid*  Tiluo  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Alenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  Acenaphthee, Solid*  A	TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MDL	RL	DILUTION	UNITS	ВАТСН	DT	DATE/TIME	TECH
	ASTM D-2216	% Solids, Solid % Moisture, Solid Semivolatile Organics Naphthalene, Solid* 2-Methylnaphthalene, Solid* Acenaphthylene, Solid* Acenaphthene, Solid* Fluorene, Solid* Phenanthrene, Solid* Phenanthrene, Solid* Fluoranthene, Solid* Fluoranthene, Solid* Benzo(a)anthracene, Solid* Benzo(b)fluoranthene, Solid* Benzo(k)fluoranthene, Solid* Benzo(a)pyrene, Solid* Indeno(1,2,3-cd)pyrene, Solid* Dibenzo(a,h)anthracene, Solid*	91 0 9 0 3200 2200 5000 1100 3700 30000 13000 48000 43000 40000 35000 32000 25000 34000 13000 5900	J M M M	0 10 0 10 690 610 240 330 430 520 260 480 410 330 370 820 850 350 390	7200 7200 7200 7200 7200 7200 7200 7200	5 00000 5 00000 5 00000 5 00000 5 00000 5 00000 5 00000 5 00000 5 00000 5 00000 5 00000 5 00000 5 00000 5 00000 5 00000	% // ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	16084 16084 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524		04/16/03 0000 04/16/03 0000 04/16/03 0000 04/16/03 2306 04/21/03 2306 04/21/03 2306 04/21/03 2306 04/21/03 2306 04/21/03 2306 04/21/03 2306 04/21/03 2306 04/21/03 2306 04/21/03 2306 04/21/03 2306 04/21/03 2306 04/21/03 2306 04/21/03 2306 04/21/03 2306	0 ksw 0 ksw 6 jdw 6 jdw 6 jdw 6 jdw 6 jdw 6 jdw 6 jdw 6 jdw 6 jdw 6 jdw 6 jdw 6 jdw 6 jdw 6 jdw 6 jdw 6 jdw

^{*} In Description = Dry Wgt

LABORATORY TEST RESULTS Job Number 203415

Date 04/28/2003

CUSTOMER S&W REDEVELOPMENT of North America, LLC

PROJECT NIMO-ALBION

ATTN Dan Ours

Customer Sample ID SB-21 Date Sampled 04/08/2003

Time Sampled

Sample Matrix

11 55 Soil

Laboratory Sample ID 203415 9

Date Received

04/11/2003

Time Received

09 25

2-Methylnaphthalene, Solid* Acenaphthylene, Solid* Acenaphthene, Solid* Acenaphthene, Solid* Fluorene, Solid* Phenanthrene, Solid* Anthracene, Solid* Fluoranthene, Solid* Anthracene, Solid* Fluoranthene, Solid* Anthracene, Solid* Fluoranthene, Solid* Fluoranthene, Solid* Anthracene, Solid* Fluoranthene, Solid* Anthracene, Solid* Fluoranthene, Solid* Anthracene, Solid* Anthracene, Solid* Anthracene, Solid* Anthracene, Solid* Anthracene, Solid* Anthracene, Solid* Anthracene, Solid* Anthracene, Solid* Anthracene, Solid* Anthracene, Solid* Anthracene, Solid* Anthracene, Solid* Anthracene, Solid* Anthracene, Solid* Anthracene, Solid* Anthracene, Solid* Anthracene, Solid* Anthracene, Solid* Anthracene, Solid* Anthracene, Solid* Anthracene, Solid* Anthracene, Solid* Anthracene, Solid* Anthracene, Solid* Anthracene, Solid* Anthracene, Solid* Anthracene, Solid* Anthracene, Solid* Anthracene, Solid* Anthracene, Solid* Anthracene, Solid* Anthracene, Solid* Anthracene, Solid* Anthracene, Solid* Anthracene, Solid* Anthracene, Solid* Anthracene, Solid* Anthracene, Solid* Anthracene, Solid* Anthracene, Solid* Anthracene, Solid*	1		1				_		 	 $\neg$				
Benzo(a)anthracene, Solid* Chrysene, Solid* Benzo(b)fluoranthene, Solid* Benzo(k)fluoranthene, Solid* Benzo(k)fluoranthene, Solid* Benzo(a)pyrene, Solid* Indeno(1,2,3-cd)pyrene, Solid* Dibenzo(a,h)anthracene, Solid*  Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Benzo(a) Be	10 00000 10 00000 10 00000 10 00000 10 00000 10 00000 10 00000 10 00000 10 00000 10 00000 10 00000 10 00000 10 00000 10 00000 10 00000 10 00000 10 00000	16000 1 16000 1 16000 1 16000 1 16000 1 16000 1 16000 1 16000 1 16000 1 16000 1 16000 1 16000 1 16000 1	10 0000 10 0000 10 0000 10 0000 10 0000 10 0000 10 0000 10 0000 10 0000 10 0000 10 0000 10 0000 10 0000	10 00000 10 00000 10 00000 10 00000 10 00000 10 00000 10 00000 10 00000 10 00000 10 00000 10 00000 10 00000 10 00000 10 00000 10 00000	10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0	10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000	10	0 10  16000 16000 16000 16000 16000 16000 16000 16000 16000 16000 16000 16000 16000	0 10 1500 1300 530 720 960 1200 580 1100 910 720 820 1800 1900 770 870 870	J	17 9 00 00 00 00 00 00 00 00 00 00 00 00 00	3200 2800 3700 1900 1300 22000 7700 49000 48000 47000 46000 59000 54000 75000 60000 21000	Moisture, Solid  mivolatile Organics phthalene, Solid* Methylnaphthalene, Solid* enaphthylene, Solid* enaphthene, Solid* uorene, Solid* thracene, Solid* uoranthene, Solid* uoranthene, Solid* rene, Solid* nzo(a)anthracene, Solid* rysene, Solid* nzo(b)fluoranthene, Solid* nzo(k)fluoranthene, Solid* nzo(a)pyrene, Solid* deno(1,2,3-cd)pyrene, Solid* deno(1,2,3-cd)pyrene, Solid* deno(a,b)anthracene, Solid*	

^{*} In Description = Dry Wgt

Job Number 203415

Date 04/28/2003

CUSTOMER S&W REDEVELOPMENT of North America, LLC

Soil

PROJECT NIMO-ALBION

ATTN Dan Ours

Customer Sample ID SB-24B Date Sampled 04/07/2003 Time Sampled 14 00 Sample Matrix

Laboratory Sample ID 203415-14 Date Received 04/11/2003 Time Received 09 25

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FL	AGS	MDL	RL	DILUTION	UNITS	ВАТСН	DT	DATE/TIME	TECH
ASTM D-2216  8270c  2)	% Solids, Solid % Moisture, Solid Semivolatile Organics Naphthalene, Solid* 2-Methylnaphthalene, Solid* Acenaphthylene, Solid* Acenaphthene, Solid* Fluorene, Solid* Phenanthrene, Solid* Fluoranthene, Solid* Fluoranthene, Solid* Benzo(a)anthracene, Solid* Benzo(b)fluoranthene, Solid* Benzo(b)fluoranthene, Solid* Benzo(a)pyrene, Solid* Indeno(1,2,3-cd)pyrene, Solid* Benzo(ghi)perylene, Solid* Benzo(ghi)perylene, Solid*	82 5 17 5 2300 1500 3000 1500 20000 8800 50000 52000 60000 55000 58000 53000 68000 44000 15000 36000	J	M H	0 10 0 10 1500 1300 520 710 950 1100 570 1000 900 710 810 1800 1900 760 860 860 810	0 10 0 10 16000 16000 16000 16000 16000 16000 16000 16000 16000 16000 16000 16000 16000 16000	1 10 00000 10 00000 10 00000 10 00000 10 00000 10 00000 10 00000 10 00000 10 00000 10 00000 10 00000 10 00000 10 00000 10 00000 10 00000 10 00000 10 00000	% // // // // // // // // // // // // //	16084 16084 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524		04/16/03 0000 04/16/03 0000 04/16/03 0000 04/19/03 0602 04/19/03 0602 04/19/03 0602 04/19/03 0602 04/19/03 0602 04/19/03 0602 04/19/03 0602 04/19/03 0602 04/19/03 0602 04/19/03 0602 04/19/03 0602 04/19/03 0602 04/19/03 0602 04/19/03 0602 04/19/03 0602 04/19/03 0602	A SA SA SA SA SA SA SA SA SA SA SA SA SA

^{*} In Description = Dry Wgt

Job Number 203415

Date 04/28/2003

CUSTOMER S&W REDEVELOPMENT of North America, LLC

PROJECT NIMO-ALBION

ATTN Dan Ours

Customer Sample ID SB-22

Date Sampled

04/08/2003

Time Sampled

13 25

Sample Matrix Soil Laboratory Sample ID 203415-10

Date Received

04/11/2003 09 25

Time Received

Moisture, Solid	TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MDL	RL	DILUTION	UNITS	ВАТСН	DT	DATE/TIME	TEC
Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Selection   Solid   Sele	ASTM D-2216  B270c  B270c	% Solids, Solid / Moisture, Solid  Semivolatile Organics Naphthalene, Solid* 2-Methylnaphthalene, Solid* Acenaphthylene, Solid* Acenaphthene, Solid* Fluorene, Solid* Phenanthrene, Solid* Phenanthrene, Solid* Fluoranthene, Solid* Pyrene, Solid* Benzo(a)anthracene, Solid* Benzo(b)fluoranthene, Solid* Benzo(b)fluoranthene, Solid* Benzo(a)pyrene, Solid* Indeno(1,2,3-cd)pyrene, Solid* Dibenzo(a,h)anthracene, Solid*	95 9 4 1	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0 10 0 10 130 120 45 62 82 99 49 91 78 62 70 160 160 66 74	0 10 0 10 1400 1400 1400 1400 1400 1400	1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000	// % ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	16084 16084 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524		04/16/03 0000 04/16/03 0000 04/16/03 0000 04/16/03 1349 04/23/03 1349 04/23/03 1349 04/23/03 1349 04/23/03 1349 04/23/03 1349 04/23/03 1349 04/23/03 1349 04/23/03 1349 04/23/03 1349 04/23/03 1349 04/23/03 1349 04/23/03 1349 04/23/03 1349 04/23/03 1349 04/23/03 1349 04/23/03 1349 04/23/03 1349	ksw ksw ksw ldw ldw ldw ldw ldw ldw ldw ldw ldw ld

^{*} In Description = Dry Wgt

Job Number 203415

Date 04/28/2003

CUSTOMER S&W REDEVELOPMENT of North America, LLC

PROJECT NIMO-ALBION

ATTN Dan Ours

Customer Sample 1D SB-23
Date Sampled 04/08/2003
Time Sampled 13 50
Sample Matrix Soil

Laboratory Sample ID 203415-11
Date Received 04/11/2003
Time Received 09 25

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	QFLA	GS MDL	RL	DILUTION	UNITS	BATCH	DT	DATE/TIME	TECH
ASTM D 2216  8270c	% Solids, Solid / Moisture, Solid  Semivolatile Organics Naphthalene, Solid* 2-Methylinaphthalene, Solid* Acenaphthylene, Solid* Acenaphthene, Solid* Fluorene, Solid* Phenanthrene, Solid* Anthracene, Solid* Fluoranthene, Solid* Fluoranthene, Solid* Benzo(a)anthracene, Solid* Benzo(b)fluoranthene, Solid* Benzo(b)fluoranthene, Solid* Benzo(b)fluoranthene, Solid* Benzo(a)pyrene, Solid* Indeno(1,2,3-cd)pyrene, Solid* Dibenzo(a,h)anthracene, Solid* Benzo(ghi)perylene, Solid*	80 9 19 1 2100 1400 3000 1600 2500 22000 9900 38000 30000 44000 39000 51000 64000 21000 9500 17000	W M M	0 10 0 10 1600 1400 530 730 970 1200 580 1100 920 730 820 1800 1900 780 870 870	0 10 0 10 16000 16000 16000 16000 16000 16000 16000 16000 16000 16000 16000 16000 16000 16000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	y % ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	16084 16084 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524		04/16/03 0000 04/16/03 0000 04/16/03 0000 04/23/03 1416 04/23/03 1416 04/23/03 1416 04/23/03 1416 04/23/03 1416 04/23/03 1416 04/23/03 1416 04/23/03 1416 04/23/03 1416 04/23/03 1416 04/23/03 1416 04/23/03 1416 04/23/03 1416 04/23/03 1416 04/23/03 1416	ksw ksw Jdw Jdw Jdw Jdw Jdw Jdw Jdw Jdw Jdw Jd

LABORATORY TEST RESULTS Job Number 203415 Date 04/28/2003 CUSTOMER S&W REDEVELOPMENT of North America, LLC PROJECT NIMO-ALBION ATTN Dan Ours Customer Sample ID SB-25 Laboratory Sample ID 203415-12 Date Sampled 04/08/2003 Date Received 04/11/2003 Time Sampled 14 30 Time Received 09 25 Sample Matrix Soil TEST METHOD PARAMETER/TEST DESCRIPTION SAMPLE RESULT QFLAGS MDL RL DILUTION UNITS BATCH DT ACTM D 2214

ASTM D-2216					Į.		1				_		
	% Solids, Solid	87 0			0 10	0 10	1	%	16084		04/16/03	0000	lkou
	6 Moisture, Solid	13 0			0 10	0 10	i	, , %	16084		04/16/03		
© 82700 © 82700							'	,,,	10004		04) 10) 03	0000	KSW
<b>(二)</b> 8270c	Semivolatile Organics	ļ					] .					j	,
	Naphthalene, Solid*	650	J		140	1500	1 00000	ug/Kg	16524		04/23/03	1442	Lidu I
J>	2-Methylnaphthalene, Solid*	290	J		130	1500	1 00000	ug/Kg	16524		04/23/03		
(L)	Acenaphthylene, Solid*	1200	J	}	50	1500	1 00000	ug/Kg	16524		04/23/03		
Ġí.	Acenaphthene, Solid*	300	J		68	1500	1 00000	ug/Kg	16524		04/23/03		
γ.	Fluorene, Solid*	310	J		90	1500	1 00000	ug/Kg	16524		04/23/03	1442	jdw
	Phenanthrene, Solid* Anthracene, Solid*	6000			110	1500	1 00000	ug/Kg	16524		04/23/03	1442	Jdw
	Fluoranthene, Solid*	1100	J		54	1500	1 00000	ug/Kg	16524		04/23/03		
,	Pyrene, Solid*	8100 5600			99	1500	1 00000	ug/Kg	16524		04/23/03		
1	Benzo(a)anthracene, Solid*	4300			86	1500	1 00000	ug/Kg	16524		04/23/03		
	Chrysene, Solid*	5000			68 77	1500	1 00000	ug/Kg	16524		04/23/03		
	Benzo(b)fluoranthene, Solid*	6400		M	170	1500	1 00000	ug/Kg	16524		04/23/03	1442	Jdw
1	Benzo(k)fluoranthene, Solid*	7000		I М М	180	1500	1 00000	ug/Kg	16524		04/23/03		
	Benzo(a)pyrene, Solid*	6900		l li	72	1500	1 00000	ug/Kg	16524		04/23/03		
	Indeno(1,2,3-cd)pyrene, Solid*	2500	1	111	81	1500 1500	1 00000	ug/Kg	16524		04/23/03	1442	ldM
	Dibenzo(a,h)anthracene, Solid*	930		м	81	1500	1 00000	ug/Kg	16524	1	04/23/03	1442	JOM
	Benzo(ghi)perylene, Solid*	2300	ľ		77	1500	1 00000	ug/Kg	16524		04/23/03	1442	ldM
					''	1500	1 00000	ug/Kg	16524		04/23/03	1442	ldM
			H				Ì		1			l	
												}	i l
													,
							1		1			Ì	, (
													i l
										1			1
L													( )

DATE/TIME

TECH

Page 13

כדו כון כדו כון כדו כון כדו כון כון כון כון כון כון כון כון כון

^{*} In Description = Dry Wgt

Job Number 203415

Date 04/28/2003

CUSTOMER S&W REDEVELOPMENT of North America, LLC

Soil

PROJECT NIMO-ALBION

ATTN Dan Ours

Customer Sample ID SB-24A
Date Sampled 04/07/2003
Time Sampled 14 00

Sample Matrix

Laboratory Sample ID 203415 13 Date Received 04/11/2003

Time Received 09 2

04/11/200

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FL	LAGS	MDL	RL	DILUTION	UNITS	BATCH	DT	DATE/TIME TE	ECH
ASTM D 2216  82700	/ Solids, Solid  / Moisture, Solid  Semivolatile Organics Naphthalene, Solid* 2-Methylnaphthalene, Solid* Acenaphthene, Solid* Acenaphthene, Solid* Fluorene, Solid* Phenanthrene, Solid* Anthracene, Solid* Fluoranthene, Solid* Fluoranthene, Solid* Benzo(a)anthracene, Solid* Benzo(b)fluoranthene, Solid* Benzo(b)fluoranthene, Solid* Benzo(b)fluoranthene, Solid* Indeno(1,2,3-cd)pyrene, Solid* Dibenzo(a,h)anthracene, Solid* Benzo(ghi)perylene, Solid* Benzo(ghi)perylene, Solid*	85 3 14 7 800 580 1300 1000 510 6200 2700 14000 12000 13000 16000 24000 22000 9800 3700 9000	J	M M M	0 10 0 10 570 500 200 270 360 430 220 390 340 270 300 680 700 290 320 320 300	0 10 0 10 5900 5900 5900 5900 5900 5900 5900 59	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	%  ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	16084 16084 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524		04/16/03 0000 ks 04/16/03 0000 ks 04/16/03 0000 ks 04/23/03 1509 jo 04/23/03 1509 jo 04/23/03 1509 jo 04/23/03 1509 jo 04/23/03 1509 jo 04/23/03 1509 jo 04/23/03 1509 jo 04/23/03 1509 jo 04/23/03 1509 jo 04/23/03 1509 jo 04/23/03 1509 jo 04/23/03 1509 jo 04/23/03 1509 jo 04/23/03 1509 jo 04/23/03 1509 jo 04/23/03 1509 jo 04/23/03 1509 jo 04/23/03 1509 jo 04/23/03 1509 jo 04/23/03 1509 jo 04/23/03 1509 jo	S dddddddddddddddddddddddddddddddddddd

^{*} In Description = Dry Wgt

Job Number 203415 Date 04/28/2003 CUSTOMER S&W REDEVELOPMENT of North America, LLC PROJECT NIMO ALBION ATTN Dan Ours Customer Sample ID SB-26A Laboratory Sample ID 203415-15 Date Sampled 04/07/2003 Date Received 04/11/2003 Time Sampled 14 40 Time Received 09 25 Sample Matrix Soil TEST METHOD PARAMETER/TEST DESCRIPTION SAMPLE RESULT QFLAGS MDI RL DILUTION UNITS BATCH DT DATE/TIME TECH ASTM D 2216 % Solids, Solid 88 9 0 10 0 10 16084 04/16/03 0000 ksw / Moisture, Solid 11 1 0 10 0 10 % 04/16/03 0000 ksw 16084 8270C Semivolatile Organics Naphthalene, Solid* 2300 560 5800 4 00000 ug/Kg 16524 04/25/03 1742 Idw 2-Methylnaphthalene, Solid* 1900 J 490 5800 4 00000 ug/Kg 16524 04/25/03 1742 jdw Acenaphthylene, Solid* 1900 190 5800 4 00000 ug/Kg 16524 04/25/03 1742 Jdw Acenaphthene, Solid* 790 260 5800 4 00000 ug/Kg 16524 04/25/03 1742 Jdw Fluorene, Solid* 790 350 5800 4 00000 04/25/03 1742 idw ug/Kg 16524 Phenanthrene, Solid* 9200 420 5800 4 00000 ug/Kg 16524 04/25/03 1742 jdw Anthracene, Solid* 4000 210 5800 4 00000 ug/Kg 16524 04/25/03 1742 idw Fluoranthene, Solid* 20000 390 5800 4 00000 ug/Kg 16524 04/25/03 1742 jdw Pyrene, Solid* 23000 340 5800 4 00000 ug/Kg 16524 04/25/03 1742 Idw Benzo(a)anthracene, Solid* 20000 260 5800 4 00000 ug/Kg 16524 04/25/03 1742 jdw Chrysene, Solid* 19000 300 5800 4 00000 ug/Kg 16524 04/25/03 1742 Idw Benzo(b)fluoranthene, Solid* 23000 670 5800 4 00000 ug/Kg 16524 04/25/03 1742 jdw Benzo(k)fluoranthene, Solid* 20000 690 5800 4 00000 ug/Kg 16524 04/25/03 1742 jdw Benzo(a)pyrene, Solid* 25000 280 5800 4 00000 ug/Kg 16524 04/25/03 1742 jdw Indeno(1,2,3-cd)pyrene, Solid* 23000 320 5800 4 00000 ug/Kg 04/25/03 1742 idw 16524 Dibenzo(a,h)anthracene, Solid* 8200 320 5800 4 00000 ug/Kg 16524 04/25/03 1742 idw Benzo(ghi)perylene, Solid* 23000 300 5800 4 00000 ug/Kg 16524 04/25/03 1742 jdw

Page 16

* In Description = Dry Wgt

LABORATORY TEST

RESULTS

Job Number 203415

Date 04/28/2003

CUSTOMER S&W REDEVELOPMENT of North America, LLC

PROJECT NIMO-ALBION

ATTN Dan Ours

Customer Sample ID SB-26B Date Sampled 04/07/2003 Time Sampled

14 40

Laboratory Sample ID 203415 16 Date Received 04/11/2003 Time Received 09 25

Sample Matrix Soil

ASTM D-2216  A Solids, Solid  Mosture, Solid  Semivolatile Organics Naphthalene, Solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a solid*  To a so	TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLA	GS	MDL	RL	DILUTION	UNITS	BATCH	DT	DATE/TIME	TECH
	ASTM D-2216	% Solids, Solid % Moisture, Solid Semivolatile Organics Naphthalene, Solid* 2-Methylnaphthalene, Solid* Acenaphthylene, Solid* Acenaphthene, Solid* Fluorene, Solid* Phenanthrene, Solid* Fluoranthene, Solid* Fluoranthene, Solid* Fluoranthene, Solid* Benzo(a)anthracene, Solid* Benzo(b)fluoranthene, Solid* Benzo(b)fluoranthene, Solid* Benzo(a)pyrene, Solid* Indeno(1,2,3-cd)pyrene, Solid* Dibenzo(a,h)anthracene, Solid*	88 9 11 1  1200 790 1500 710 420 5400 2400 13000 15000 13000 13000 14000 12000 17000 17000 6900	M ( C		0 10 0 10 280 250 98 130 180 210 110 200 170 130 150 340 350 140 160	0 10 0 10 2900 2900 2900 2900 2900 2900 2900 29	1 1 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2 00000 2	% % % ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	16084 16084 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524 16524		04/16/03 0000 04/16/03 0000 04/16/03 0000 04/25/03 1809 04/25/03 1809 04/25/03 1809 04/25/03 1809 04/25/03 1809 04/25/03 1809 04/25/03 1809 04/25/03 1809 04/25/03 1809 04/25/03 1809 04/25/03 1809 04/25/03 1809 04/25/03 1809 04/25/03 1809	ksw ksw ksw ldw ldw ldw ldw ldw ldw ldw ldw ldw ld

^{*} In Description = Dry Wgt

LABORATORY TEST RESULTS Job Number 203415 Date 04/28/2003 CUSTOMER S&W REDEVELOPMENT of North America, LLC PROJECT NIMO-ALBION ATTN Dan Ours Customer Sample ID SB-27A Laboratory Sample ID 203415-17 Date Sampled 04/07/2003 Date Received 04/11/2003 Time Sampled 15 10 Time Received 09 25 Sample Matrix Soil TEST METHOD PARAMETER/TEST DESCRIPTION SAMPLE RESULT QFLAGS MDL DILUTION RL UNITS BATCH DATE/TIME TECH ASTM D-2216 % Solids, Solid 88 3 0 10 0 10 % 16084 04/16/03 0000 ksw & Moisture, Solid 11 7 0 10 0 10 6 16084 04/16/03 0000 ksw 8270C Semivolatile Organics Naphthalene, Solid* 140 1500 1 00000 ug/Kg 16524 04/23/03 1627 Jdw 2-Methylnaphthalene, Solid* ND 120 1500 1 00000 ug/Kg 16524 04/23/03 1627 Idw Acenaphthylene, Solid* ND 49 1500 1 00000 ug/Kg 16524 04/23/03 1627 Jdw Acenaphthene, Solid* ND lυ 66 1500 1 00000 ug/Kg 16524 04/23/03 1627 Jdw Fluorene, Solid* ND 88 1500 1 00000 ug/Kg 16524 04/23/03 1627 Jdw Phenanthrene, Solid* 540 110 1500 1 00000 ug/Kg 16524 04/23/03 1627 jdw Anthracene, Solid* 180 53 1500 1 00000 04/23/03 1627 jdw ug/Kg 16524 Fluoranthene, Solid* 1000 97 1500 1 00000 ug/Kg 16524 04/23/03 1627 Jdw Pyrene, Solid* 800 84 1500 1 00000 ug/Kg 16524 04/23/03 1627 Idw Benzo(a)anthracene, Solid* 600 66 1500 1 00000 ug/Kg 16524 04/23/03 1627 Jdw Chrysene, Solid* 610 М 75 1500 1 00000 ug/Kg 16524 04/23/03 1627 Idw Benzo(b)fluoranthene, Solid* 560 IJ 170 1500 1 00000 ug/Kg 16524 04/23/03 1627 Jdw Benzo(k)fluoranthene, Solid* 660 170 1500 1 00000 ug/Kg 16524 04/23/03 1627 Jdw Benzo(a)pyrene, Solid* 550 71 1500 1 00000 ug/Kg 16524 04/23/03 1627 Jdw Indeno(1,2,3-cd)pyrene, Solid* 200 79 1500 1 00000 ug/Kg 16524 04/23/03 1627 Jdw Dibenzo(a,h)anthracene, Solid* ND 79 1500 1 00000 ug/Kg 16524 04/23/03 1627 Idw Benzo(ghi)perylene, Solid* 170 М 75 1500 1 00000 ug/Kg 16524 04/23/03 1627 Jdw

^{*} In Description = Dry Wgt

Job Number 203415

Date 04/28/2003

CUSTOMER S&W REDEVELOPMENT of North America, LLC

PROJECT NIMO-ALBION

ATTN Dan Ours

Customer Sample ID SB-27B
Date Sampled 04/07/2003
Time Sampled 15 10
Sample Matrix Soil

Laboratory Sample ID 203415-18
Date Received 04/11/2003
Time Received 09 25

TEST METHOD PARAMETER/TEST DESCRIPTION SAMPLE RESULT QFLAGS MDL RL DILUTION UNITS BATCH DT DATE/TIME TECH: ASTM D-2216 % Solids, Solid 80 9 0 10 0 10 16084 04/16/03 0000 ksw % Moisture, Solid 19 1 0 10 0 10 6 16084 04/16/03 0000 ksw 8270C Semivolatile Organics Naphthalene, Solid* 60000 16000 160000 100 0000 ug/Kg 16524 04/25/03 1835 Idw 2-Methylnaphthalene, Solid* 27000 14000 160000 100 0000 ug/Kg 16524 04/25/03 1835 idw Acenaphthylene, Solid* 100000 5300 160000 100 0000 ug/Kg 16524 04/25/03 1835 Jdw Acenaphthene, Solid* 19000 7300 160000 100 0000 ug/Kg 16524 04/25/03 1835 Idw Fluorene, Solid* 90000 9700 160000 100 0000 04/25/03 1835 Jdw ug/Kg 16524 Phenanthrene, Solid* 720000 12000 160000 100 0000 ug/Kg 16524 04/25/03 1835 Idw Anthracene, Solid* 280000 5800 160000 100 0000 ug/Kg 16524 04/25/03 1835 Jdw Fluoranthene, Solid* 1000000 11000 160000 100 0000 ug/Kg 16524 04/25/03 1835 Idw Pyrene, Solid* 990000 9200 160000 100 0000 ug/Kg 16524 04/25/03 1835 rdw Benzo(a)anthracene, Solid* 650000 7300 160000 100 0000 ug/Kg 16524 04/25/03 1835 Idw Chrysene, Solid* 590000 8200 160000 100 0000 ug/Kg 16524 04/25/03 1835 Idw Benzo(b)fluoranthene, Solid* 390000 18000 160000 100 0000 ug/Kg 16524 04/25/03 1835 jdw Benzo(k)fluoranthene, Solid* 520000 19000 160000 100 0000 ug/Kg 16524 04/25/03 1835 Idw Benzo(a)pyrene, Solid* 510000 7800 160000 100 0000 ug/Kg 16524 04/25/03 1835 Idw Indeno(1,2,3 cd)pyrene, Solid* 300000 8700 160000 100 0000 ug/Kg 16524 04/25/03 1835 Idw Dibenzo(a,h)anthracene, Solid* 110000 8700 160000 100 0000 ug/Kg 16524 04/25/03 1835 Jdw Benzo(ghi)perylene, Solid* 290000 8200 160000 100 0000 ug/Kg 16524 04/25/03 1835 Jdw

^{*} In Description = Dry Wgt

Date 04/21/2003

CUSTOMER: S&W REDEVELOPMENT of North America, LLC

Job Number 203415

PROJECT: NIMO-ALBION

ATTN: Dan Ours

Customer Sample ID SB-16
Date Sampled 04/07/2003
Time Sampled 15 35
Sample Matrix Soil

Laboratory Sample ID 203415-1 Date Received 04/11/2003 Time Received 09 25

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q	FLAGS	MDL	ŘL	DILUTION	UNITS	BATCH	DT	DATE/TIME	TECH
ASTM D-2216	% Solids, Solid % Moisture, Solid	83 3 16 7			0 10 0 10	0 10 0 10	1	% %	16084 16084		04/16/03 000 04/16/03 000	)0 ksw )0 ksw
( ) ( ) 9012 ( )	Cyanide (Colorimetric) Cyanide, Total, Solid*	32700			324	3000	5 0	ug/Kg	16227		04/17/03 155	51 dtn
(C)												
						1				1		

^{*} In Description = Dry Wgt

LABORATORY TEST RESULTS Job Number 203415 Date 04/21/2003

CUSTOMER S&W REDEVELOPMENT of North America, LLC PROJECT: NIMO-ALBION ATTN. Dan Ours

Customer Sample ID SB-17 Date Sampled 04/07/2003 Time Sampled 16 50 Sample Matrix

Soil

Laboratory Sample ID 203415-2 Date Received 04/11/2003 Time Received 09 25

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MDL	RL	DILUTION	UNITS	BATCH	DT	DATE/TIME	TEC
ASTM D-2216  0 9012  0 -12	% Solids, Solid % Moisture, Solid Cyanide (Colorimetric) Cyanide, Total, Solid*	80 9 19 1 507	В	0 10 0 10 67 4	0 10 0 10	1 1 1	% % ug/Kg	16084 16084 16227		04/16/03 0000 04/16/03 0000 04/17/03 1546	ksw ksw

LABORATORY TEST RESULTS Job Number 203415 Date 04/21/2003 CUSTOMER: S&W REDEVELOPMENT of North America, LLC PROJECT: NIMO-ALBION ATTN. Dan Ours Customer Sample ID SB-18 Laboratory Sample ID 203415-3 Date Sampled 04/08/2003 Date Received 04/11/2003 10 20 Time Received 09 25 Time Sampled Sample Matrix Soil SAMPLE RESULT Q FLAGS MDL PARAMETER/TEST DESCRIPTION RL DILUTION TEST METHOD UNITS BATCH DT DATE/TIME TECH ASTM D-2216 82 6 % Solids, Solid 0 10 0 10 % 16084 04/16/03 0000 ksw 17 4 0 10 % Moisture, Solid 0 10 % 16084 04/16/03 0000 ksw 9012 Cyanide (Colorimetric) Cyanide, Total, Solid* 4200 63 5 588 1 0 ug/Kg 16227 04/17/03 1547 dtn

Page 4

^{*} In Description = Dry Wgt

LABORATORY TEST RESULTS

Job Number 203415

Date 04/21/2003

CUSTOMER. S&W REDEVELOPMENT of North America, LLC

PROJECT NIMO-ALBION

ATTN. Dan Ours

Customer Sample 1D SB-28
Date Sampled 04/08/2003
Time Sampled 16 30
Sample Matrix Soil

Laboratory Sample ID 203415-4
Date Received 04/11/2003
Time Received 09 25

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MDL	RL	DILUTION	UNITS	BATCH	DT	DATE/TIME	TE
ASTM D-2216	% Solids, Solid % Moisture, Solid	85 2 14 8		0 10 0 10	0 10 0 10	1	% %	16084 16084		04/16/03 0000 04/16/03 0000	) ks
9012	Cyanide (Colorimetric) Cyanide, Total, Solid*	10900		61 5	570	1 0	ug/Kg	16227		04/17/03 1548	dt.
(T) 1 1											