

GROUNDWATER MONITORING REPORT JULY THROUGH DECEMBER 2019

National Grid Former Albion MGP Site Albion, New York

Prepared for:

National Grid

300 Erie Blvd West Syracuse, New York 13202

Prepared by:

Wood Environment & Infrastructure Solutions, Inc.

180 Grand Avenue, Suite 1100 Oakland, California 94612

March 2020

Project No. 0078000050.03.2B

Wood Environment & Infrastructure Solutions, Inc. 180 Grand Avenue, Suite 1100 Oakland, California 94612-3066

> T: (510) 663-4100 F: (510) 663-4141

www.woodplc.com

March 9, 2020

Project 0078000050.03.02B

Mr. Michael Squire Assistant Engineer New York State Department of Environmental Conservation 625 Broadway Albany, NY 12233

Subject: Groundwater Monitoring Report—July Through December 2019

National Grid Former Albion MGP Site

Albion, New York Case #837012

Dear Mr. Squire:

Wood Environment & Infrastructure Solutions, Inc., is submitting the subject report on behalf of our client, National Grid. This report presents the results of monitoring activities conducted during the period from July through December 2019.

Please contact either of the undersigned if you have any questions or require additional information.

Sincerely,

Wood Environment & Infrastructure Solutions, Inc.

Alex Rosenthal

Qualified Environmental

Professional/Senior Hydrogeologist

Direct Tel.: (510) 663-4152

E-mail: alex.rosenthal@woodplc.com

Douglas Bablitch

Qualified Environmental

Professional/Principal Engineer

Direct Tel.: (510) 663-4159

E-mail: douglas.bablitch@woodplc.com

buglos C. Bablitch

ar/db/mr

 $\label{local-safe} $$ \colone{200} $$ \colone{2019q4 gwmr} 01_text \colone{2019} 4q19 gwmr \cvrltr.docx $$ \colone{2019q4 gwmr} $$ \colone{2019q4 gw$

Enclosure

Mr. Michael Squire New York State Department of Environmental Conservation March 9, 2020 Page 2

cc: Brian Stearns - National Grid Steve Stucker - National Grid Devin Shay – Groundwater & Environmental Services, Inc.

TABLE OF CONTENTS

			Page
1.0	INTRO 1.1	DUCTIONBACKGROUND	
2.0		TORING WELL INSTALLATION, DEVELOPMENT, AND DECOMMISSIONING	
3.0		NDWATER MONITORING	
5.0	3.1	WATER LEVEL MEASUREMENTS	
	3.2	GROUNDWATER SAMPLING AND ANALYSIS	
	3.3	Investigation Derived Waste	5
4.0	RESUL	TS	5
	4.1	OCCURRENCE AND MOVEMENT OF GROUNDWATER	
	4.2	GROUNDWATER ANALYTICAL RESULTS	5
5.0	DATA	QUALITY REVIEW	6
6.0	SITE IN	SPECTION	7
7.0	PLANN	NED ACTIVITIES	7
8.0	REFERI	ENCES	8
		TABLES	
Table '	1	Groundwater Monitoring Program	
Table 2		Groundwater Elevations, November 2019	
Table 3		Groundwater Analytical Results – Volatile Organic Compounds, November Groundwater Analytical Results – Polycyclic Aromatic Hydrocarbons, Nover 2019	
Table 5	5	Groundwater Analytical Results – Total Cyanide, November 2019	
Table 6	5	Precision Data Summary	
		FIGURES	
Figure	1	Site Location Map	
Figure		Site Plan	
Figure Figure		Potentiometric Surface Map, November 2019 Groundwater Analytical Results, November 2019	
-		-	

APPENDICES

Appendix A Well Installation, Development, and Decommissioning Report

Appendix B Groundwater Sampling Records
Appendix C Analytical Laboratory Reports
Appendix D Soil Cap Inspection Form

GROUNDWATER MONITORING REPORT JULY THROUGH DECEMBER 2019

National Grid Former Albion MGP Site Albion, New York

1.0 INTRODUCTION

This report summarizes groundwater monitoring and sampling activities performed by Wood Environment & Infrastructure Solutions, Inc. ("Wood"), on behalf of National Grid Corporation ("National Grid"), during the period from July through December 2019 ("reporting period") at the Former Albion Manufactured Gas Plant (MGP), Site Identification Number 837012, in Albion, New York (the site; Figure 1). Groundwater monitoring and sampling activities were performed in accordance with the *Monitoring and Sampling Plan* (Wood, 2018), as summarized in Table 1. Additional groundwater monitoring well installation, development, and decommissioning activities were performed during the reporting period, as outlined in the *Monitoring and Sampling Plan*.

Activities performed at the site during the reporting period include the following:

- Installation of one new groundwater monitoring well (MW-9R);
- Decommissioning of three groundwater monitoring wells (MW-2, MW-3, and MW-4);
- Redevelopment of the remaining site wells;
- Collection of depth to groundwater measurements and routine groundwater monitoring samples;
- Collection of additional groundwater samples for analysis of emerging contaminants; and
- And inspection of the site Engineering Control (i.e. soil cap) and Institutional Controls (i.e. land use).

Groundwater well installation, development, and decommissioning activities are described in Section 2 and Appendix A. Depth to groundwater measurement and sampling procedures are described in Section 3, and groundwater monitoring results are provided in Section 4. A quality assurance/quality control (QA/QC) assessment of the groundwater data is provided in Section 5. Results of the inspection of the site Engineering Control and Institutional Controls

are described in Section 6. Project activities planned for the next monitoring period are outlined in Section 7.

1.1 BACKGROUND

The site consists of two adjoining parcels totaling approximately 0.5 acres formerly occupied by a single MGP that is bounded by the New York State Erie Barge Canal to the north, East Bank Street and a commercial property to the south, Ingersoll Street to the east, and a park and commercial property to the west (Figure 2). The western parcel (0.3 acres) is currently owned by National Grid, which maintains an active electrical substation on the property; previous environmental investigations did not identify environmental conditions requiring remediation. The eastern parcel (0.2 acres), currently owned by New York State Electric and Gas Corporation (NYSEG), has been remediated to commercial use and is currently vacant and undeveloped.

Niagara Mohawk Power Corporation (doing business as National Grid) entered into an Order of Consent in November 2003 with the NYSDEC to remediate soil and groundwater at the site, which have been impacted by historical MGP operations. The contaminants of concern (COCs) identified at the site, as listed in the Record of Decision (NYSDEC, 2010a) are: benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX); polycyclic aromatic hydrocarbons (PAHs) acenaphthene, benzo(a)pyrene, benzo(b)fluoranthene, benzo[k]fluoranthene, chrysene, fluorene, and indeno(1,2,3-cd)pyrene; and cyanide. In 2012, Engineering Controls were constructed at the eastern parcel including remedial excavation of the upper two feet of impacted surficial soil and construction of a soil cap system consisting of 18 inches of clean soil underlain by a demarcation layer to delineate clean soil from historical fill.

In addition to Engineering Controls, Institutional Controls including a site-wide Site Management Plan (SMP) and Environmental Easement are part of the site remedy to control exposure to remaining contamination and to maintain protection of public health and the environment. The *Monitoring and Sampling Plan* will ultimately be incorporated with the site wide SMP, which is currently under development, to conduct post-remediation monitoring to assess the performance and effectiveness of the remedy.

2.0 MONITORING WELL INSTALLATION, DEVELOPMENT, AND DECOMMISSIONING

In accordance with the *Monitoring and Sampling Plan*, groundwater monitoring well installation, development, and decommissioning activities were performed at the site during the reporting period. Wood contracted with Nothnagle Drilling, Inc., of Scottsville, New York, a New York Registered Driller, to perform all well installation, development, and decommissioning activities. These activities are described in detail in Appendix A and summarized below:

- On October 8, 2019, one groundwater monitoring well (MW-11) was installed at the
 site. During well construction the annular materials of the well suddenly dropped,
 exposing the well screen to bentonite-cement grout, and the well location was
 subsequently abandoned by removing the well casing and backfilling the borehole
 with bentonite-cement grout. It is likely that during drilling the borehole
 intercepted an underground void, potentially related to historical site infrastructure,
 which led to instability of the annular materials and ultimately to the loss of the
 well.
- On October 8, 2019, a private utility contractor retained by Wood used geophysical tools to attempt to locate MW-9, a monitoring well previously installed in Ingersoll Street that was likely paved over during redevelopment activities. MW-9 could not be located and is presumed to have been damaged or destroyed.
- On October 9, 2019, three existing groundwater monitoring wells (MW-2, MW-3, and MW-4) were decommissioned in accordance with NYSDEC guidelines (NYSDEC, 2009) by removing the well casing and screen and backfilling the borehole with bentonite-cement grout using a tremie pipe.
- On October 8 and 9, 2019, the five remaining groundwater monitoring wells were redeveloped using bailing, surging, and pumping techniques to ensure strong hydraulic communication between each well and the surrounding formation.
- On November 18, 2019, well MW-9R was installed at the site. This well is located approximately downgradient of well MW-5, and the location was approved by NYSDEC (M. Squire of NYSDEC, personal communication, October 16, 2019). The well was developed on November 19, 2019, approximately 24 hours after completion of well installation activities.

Groundwater monitoring well MW-9R was installed northwest of the former MW-9 location, and approximately downgradient of the unsuccessful MW-11 installation. The location of MW-9R meets the intent of NYSDEC's request for installation of a new monitoring well hydraulically downgradient of well MW-5 (NYSDEC, 2018b).

3.0 GROUNDWATER MONITORING

This section describes groundwater monitoring activities performed by Wood during the reporting period. The groundwater monitoring program, including wells and their monitoring and sampling frequencies, is summarized in Table 1. Figure 2 shows the locations of groundwater monitoring wells at the site. Appendix B includes the logs on which field data were recorded. During the groundwater sampling event additional samples were collected from select site wells for analysis of emerging contaminants (1,4-dioxane and per- and polyfluoroalkyl substances), as requested by NYSDEC (NYSDEC, 2018a). The results of the emerging contaminant samples are presented in the *Emerging Contaminant Sampling Report* (Wood, 2020).

3.1 WATER LEVEL MEASUREMENTS

Depth to water measurements at site monitoring wells were measured on November 19 and 20, 2019, prior to sampling of the wells (Table 2). Depth to groundwater was measured with an electronic water level sounder, and measurements were recorded to the nearest 0.01 foot. The sounder was decontaminated with an anionic detergent/distilled water mixture, followed by a distilled water rinse, followed by a rinse using laboratory provided deionized water between uses at each well.

3.2 GROUNDWATER SAMPLING AND ANALYSIS

In accordance with *Monitoring and Sampling Plan*, groundwater samples were collected on November 18 and 19, 2019. Monitoring wells were purged using low-flow sampling techniques prior to sampling using a peristaltic pump. Water quality parameters, including temperature, pH, specific conductance, oxidation-reduction potential, and dissolved oxygen were measured periodically during purging and were recorded on the sampling records. Samples were collected when parameter measurements changed less than 10 percent between three sequential measurements. Sampling records are provided in Appendix B.

Groundwater samples were collected into laboratory-provided sample containers immediately following purging. The sample containers were immediately labeled with the project number, well number, date, time, and analyses requested, stored in an ice-cooled chest, and shipped to the analytical laboratory under Wood chain-of-custody procedures.

Eurofins TestAmerica Laboratories, Inc., of Amherst, New York, analyzed the samples for benzene, toluene, ethylbenzene, and xylenes using United States Environmental Protection Agency (U.S. EPA) Method 8260B and the U.S. EPA 16-PAH list of polycyclic aromatic hydrocarbons (PAHs) using U.S. EPA Method 8270D. The samples were analyzed for total cyanide by Eurofins TestAmerica of North Canton, Ohio, using Standard Method SM4500-CN-C/E. Both laboratories are accredited under the National Environmental Laboratory Accreditation Program.

3.3 Investigation Derived Waste

Groundwater purged from the monitoring wells was stored in Department of Transportationapproved 55-gallon steel drums pending waste profiling. Following laboratory analysis and profiling, the investigation derived waste was disposed of at an off-site, permitted facility in accordance with state and federal regulations.

4.0 RESULTS

This section presents the results from the groundwater monitoring activities, including groundwater elevation measurement and analytical testing.

4.1 OCCURRENCE AND MOVEMENT OF GROUNDWATER

Measurements from the monitoring wells were used to evaluate the occurrence and movement of groundwater at the site.

On November 19 and 20, 2019, measured groundwater elevations in monitoring wells ranged from 5.46 (MW-6) to 12.92 feet (MW-10R). Depth to water measurements and water level elevations are summarized in Table 2. All elevations referenced are relative to the North American Vertical Datum 1988.

Figure 3 presents the potentiometric surface map for the water levels measured in the monitoring wells in November 2019. The potentiometric surface map indicates that groundwater flow is generally toward the southeast across the site. The horizontal gradient was approximately 0.024 foot per foot (ft/ft) in November 2019.

4.2 GROUNDWATER ANALYTICAL RESULTS

Groundwater samples were collected from six monitoring wells for BTEX, PAH, and total cyanide analysis on November 19 and 20, 2019. Groundwater evaluation criteria are the

Ambient Water Quality Standards and Guidance Values (Technical & Operational Guidance Series 1.1.1, Division of Water 1998). Groundwater results are compared to the Standard Values (or Guidance Values, where Standard Values are not available) for groundwater as a drinking water source. Copies of laboratory reports are included in Appendix C. Analytical results and evaluation criteria for BTEX, PAHs, and total cyanide are presented in Table 3, Table 4, and Table 5, respectively, and on Figure 4. Compounds that were detected at concentrations exceeding their respective evaluation criteria are summarized below:

- Benzene (MW-5 and MW-8R)
- Ethylbenzene (MW-5)
- Xylenes (MW-5 and MW-8R)
- Acenaphthene (MW-5 and MW-8R)
- Naphthalene (MW-5, MW-8R, and MW-9R)
- Total cyanide (MW-8R)

5.0 DATA QUALITY REVIEW

Analytical data (Appendix C) were reviewed by the laboratory and by Wood. Consistent with the DER-10 Section 2.2 (NYSDEC, 2010b), this report meets the submittal requirements for a Category A data deliverable. The data quality review included accuracy and precision assessments for the samples collected in November 2019. Consistent with the Quality Assurance Project Plan included in the *Monitoring and Sampling Plan*, the data quality review was performed in accordance with the procedures specified in the U.S. EPA National Functional Guidelines for Superfund Inorganic Methods Data Review (U.S. EPA, 2017a) and the U.S. EPA National Functional Guidelines for Superfund Organic Methods Data Review (U.S. EPA, 2017b). Results of the data validation and precision assessment indicate the following:

• Analytical accuracy was evaluated by reviewing laboratory control sample/laboratory control sample duplicate (LCS/LCSD) recoveries and matrix spike/matrix spike duplicate (MS/MSD) recoveries (recoveries of spiked compounds expressed as a percentage of the true concentrations). Surrogate recoveries, holding times, and field and laboratory blank results for samples collected in November 2019 were also used to assess accuracy. No QC issues requiring data qualifiers were identified for the laboratory and field QC samples, except for the recovery of one surrogate in sample MW-9R which was detected outside of control limits leading to a "J+" qualification on associated parameters for this sample. Results for several analytes in multiple samples were qualified "J," indicating that the analyte was positively detected in the sample, but that the reported result is

- approximate because it was detected at a concentration below the reporting limit but above the method detection limit.
- Data precision was evaluated by comparing analytical results from duplicate pairs and evaluating the calculated RPDs between primary and blind field duplicate samples. The calculated RPD for the blind field duplicate sample collected from MW-5 were within acceptable limits (i.e. less than the project acceptance criterion of 30% for organics and 20% for inorganics). A summary of the data precision evaluation is included on Table 6.

Based upon the data quality review, the November 2019 results are considered valid and usable. The data are acceptable and can be used for decision-making purposes. Data completeness (the number of successful analyses relative to the number of requested analyses) was 100 percent for samples collected in November 2019.

6.0 SITE INSPECTION

During the semiannual groundwater sampling event, Wood field personnel performed a visual assessment of the soil cap in order to evaluate changes due to erosion, land use, construction, or other factors that may indicate a physical change in the soil cap. Observations were recorded on a "Soil Cap Inspection Form" (Appendix D).

The visual inspections did not indicate any damage to the physical integrity of the soil cap or the need for any repairs or maintenance.

7.0 PLANNED ACTIVITIES

The following activities are planned for the monitoring period of January to June 2020:

- The first 2020 semiannual groundwater monitoring event, which will include collection of depth to groundwater measurements and groundwater samples in accordance with the NYSDEC-approved groundwater monitoring program, will be performed.
- The first 2020 semiannual groundwater monitoring report will be submitted to the NYSDEC following the completion of groundwater monitoring and evaluation activities.

8.0 REFERENCES

- Division of Water 1998. Technical and Operational Guidance Series (TOGS) 1.1.1. June. Available at https://www.dec.ny.gov/docs/water_pdf/togs111.pdf
- New York State Department of Environmental Conservation (NYSDEC), 2009. CP-43: Groundwater Monitoring Well Decommissioning Policy. November 3. Available at https://www.dec.ny.gov/docs/remediation_hudson_pdf/cp43mwdecomm.pdf
- NYSDEC, 2010a. Record of Decision. NM-Albion MGP State Superfund Project, Albion, Orleans County Site No.:837013. March.
- NYSDEC, 2010b. DER-10: Technical Guidance for Site Investigation and Remediation. May 3. Available at https://www.dec.ny.gov/docs/remediation_hudson_pdf/der10.pdf
- NYSDEC, 2018a. Request for Sampling of Emerging Contaminants, National Grid Upstate MGP Sites. May 30.
- NYSDEC, 2018b. Recommendations for Groundwater Monitoring Program, NYSDEC Site No. 837012, Albion MGP, Albion, New York. August 30.
- U.S. Environmental Protection Agency, 2017a. National Functional Guidelines for Superfund Inorganic Methods Data Review: OLEM 9355.0-135, EPA 540-R-2017-001, January.
- U.S. Environmental Protection Agency, 2017b. National Functional Guidelines for Superfund Organic Methods Data Review: OLEM 9355.0-134, EPA 540-R-2017-002, January.
- Wood Environment & Infrastructure Solutions, Inc. ("Wood"), 2018. Monitoring and Sampling Plan, National Grid Former Albion MGP Site, Albion, New York, December 21.
- Wood, 2020. Emerging Contaminants Sampling Report, National Grid Former Albion MGP Site, Albion, New York, February 14.

wood.

TABLES

GROUNDWATER MONITORING PROGRAM

Former Albion MGP Site Albion, New York

Well ID	Water Level Monitoring Schedule	Water Quality Monitoring Schedule	Laboratory Analysis
MW-1			
MW-5		Semiannual	
MW-6	Semiannual		BTEX by U.S. EPA 8260B, PAHs by U.S. EPA
MW-8R	Sermannual	Semiamuai	8270D, Total Cyanide by SM4500-CN-C/E
MW-9R			
MW-10R			

Abbreviations

BTEX = benzene, toluene, ethylbenzene, xylenes

PAHs = polycyclic aromatic hydrocarbons

U.S. EPA = United States Environmental Protection Agency

GROUNDWATER ELEVATIONS NOVEMBER 2019

Former Albion MGP Site Albion, New York

Well ID	Well Location	Date Measured	Measuring Point Elevation (NAVD 88)	Depth Below Measuring Point (feet)	Groundwater Elevation (NAVD 88)
MW-1	Up-gradient	11/19/2019	515.04	7.91	507.13
MW-5	On-site	11/19/2019	513.14	7.92	505.22
MW-6	On-site	11/20/2019	510.74	5.46	505.28
MW-8R	On-site	11/20/2019	515.53	11.84	503.69
MW-9R	Down-gradient	11/20/2019	514.70	12.89	501.81
MW-10R	Down-gradient	11/19/2019	515.81	12.92	502.89

Notes

 Wells were surveyed by Costich Engineering, Land Surveying & Landscape Architecture D.P.C. (Costich Engineering), a New York-licensed land surveyor in June, 2018. Monitoring well MW-9R was surveyed on November 11, 2019 by Costich Engineering. Water elevations are relative to the North American Vertical Datum 1988 (NAVD 88).

Abbreviations

NAVD 88 = North American Vertical Datum of 1988

GROUNDWATER ANALYTICAL RESULTS - VOLATILE ORGANIC COMPOUNDS ^{1,2} NOVEMBER 2019

Former Albion MGP Site Albion, New York

Results in micrograms per liter (µg/L)

Well ID	Sample ID	Sample Date	Benzene	Toluene	Ethylbenzene	m-Xylene & p-Xylene	o-Xylene	Xylenes, Total	Total BTEX
MW-1	MW-1-111919	11/19/2019	< 1.0 ³	<1.0	<1.0	<2.0	<1.0	<2.0	<2.0
MW-5	MW-5-111919/DUP	11/19/2019	23/23	4.0/4.1	13/12	9.1/8.6	12/11	21/20	61/59
MW-6	MW-6-112019	11/20/2019	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<2.0
MW-8R	MW-8R-112019	11/20/2019	49	2.6	3.7	12	5.7	18	73
MW-9R	MW-9R-112019	11/20/2019	<1.0	0.57 J	<1.0	<2.0	<1.0	<2.0	<2.0
MW-10R	MW-10-111919	11/19/2019	14	<1.0	<1.0	<2.0	<1.0	<2.0	14
Ambien	Ambient Water Quality Standards and Guidance Values ⁴				5	5	5	5	

Notes

- 1. Only detected compounds are presented. Detections are shown in **bold.** Highlighted cells indicate the concentration exceeds the respective screening criteria.
- 2. Samples analyzed for VOCs in accordance with U.S. EPA Methods 8260B by Eurofins TestAmerica of Buffalo, New York.
- 3. "<" indicates constituent was not detected at a concentration equal to or greater than the laboratory reporting limit shown.
- 4. Division of Water 1998. Technical and Operational Guidance Series 1.1.1. June. Groundwater Standard Values for groundwater as a drinking source are shown where available; Guidance Values are shown where no Standard Value is available. Available at https://www.dec.ny.gov/docs/water_pdf/togs111.pdf

Abbreviations

-- = not applicable

μg/L = micrograms per liter

BTEX = benzene, toluene, ethylbenzene, and xylenes

DUP = field duplicate sample

U.S. EPA = United States Environmental Protection Agency

J = the analyte detected at a level less than the reporting limit and greater than or equal to the method detection limit.

VOCs = volatile organic compounds

GROUNDWATER ANALYTICAL RESULTS - POLYCYCLIC AROMATIC HYDROCARBONS ^{1,2} NOVEMBER 2019

Former Albion MGP Site Albion, New York

Results in micrograms per liter (µg/L)

Well ID	Sample ID	Sample Date	Acenaphthene	Acenaphthylene	Anthracene	Benzo[a]anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo[g,h,i]perylene	Chrysene	Dibenz[a,h]anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Phenanthrene	Pyrene	Naphthalene
MW-1	MW-1-111919	11/19/2019	< 5.0 ³	< 5.0	<5.0	<5.0	< 5.0	< 5.0	<5.0	<5.0	< 5.0	< 5.0	<5.0	< 5.0	<5.0	<5.0	<5.0	< 5.0
MW-5	MW-5-111919/DUP	11/19/2019	34/38	33/36	6.2/6.4 J	<5.0/<25	<5.0/<25	<5.0/<25	<5.0/<25	<5.0/<25	<5.0/<25	<5.0/<25	5.6/5.4 J	45/46	<5.0/<25	23/23 J	3.1 J/3.5 J	24/25
MW-6	MW-6-112019	11/20/2019	< 5.0	<5.0	<5.0	<5.0	<5.0	< 5.0	<5.0	<5.0	< 5.0	< 5.0	<5.0	<5.0	<5.0	< 5.0	<5.0	< 5.0
MW-8R	MW-8R-112019	11/20/2019	57	21 J	<25	<25	<25	<25	<25	<25	<25	<25	4.2 J	34	<25	33	2.1 J	900
MW-9R	MW-9R-112019	11/20/2019	6.1 J+	0.38 J+	0.65 J+	<5.0	< 5.0	<5.0	<5.0	<5.0	< 5.0	< 5.0	<5.0	3.0 J+	<5.0	2.8 J+	<5.0	50
MW-10R	MW-10-111919	11/19/2019	0.86 J	< 5.0	<5.0	<5.0	< 5.0	< 5.0	< 5.0	<5.0	< 5.0	< 5.0	<5.0	< 5.0	<5.0	< 5.0	<5.0	0.99 J
Ambient V	Vater Quality Standards and	I Guidance Values ⁴	20		50	0.002	0.002	0.002	0.002		0.002		50	50	0.002	50	50	10

Notes

- 1. Only detected compounds are presented. Detections are shown in **bold**. Highlighted cells indicate the concentration exceeds the respective screening criteria.
- 2. Samples analyzed for PAHs in accordance with U.S. EPA Method 8270D by Eurofins TestAmerica of Buffalo, New York.
- 3. "<" indicates constituent was not detected at a concentration equal to or greater than the laboratory reporting limit shown.
- 4. Division of Water 1998. Technical and Operational Guidance Series 1.1.1. June. Groundwater Standard Values for groundwater as a drinking source are shown where available; Guidance Values are shown where no Standard Value is available. Available at https://www.dec.ny.gov/docs/water_pdf/togs111.pdf

Abbreviations

-- = not applicable

μg/L = micrograms per liter

DUP = field duplicate sample

U.S. EPA = United States Environmental Protection Agency

J = the analyte detected at a concentration less than the reporting limit and greater than or equal to the method detection limit.

J+ = the analyte is estimated high

PAH = polycyclic aromatic hydrocarbons

GROUNDWATER ANALYTICAL RESULTS - TOTAL CYANIDE ^{1,2} NOVEMBER 2019

Former Albion MGP Site Albion, New York

Results in milligrams per liter (mg/L)

Well ID	Sample ID	Sample Date	Cyanide, Total
MW-1	MW-1-111919	11/19/2019	0.098
MW-5	MW-5-111919/DUP	11/19/2019	0.16/0.16
MW-6	MW-6-112019	11/20/2019	0.041
MW-8R	MW-8R-112019	11/20/2019	0.21
MW-9R	MW-9R-112019	11/20/2019	0.054
MW-10R	MW-10-111919	11/19/2019	0.01
Ambie	ent Water Quality Standar	ds and Guidance Values ³	0.2

Notes

- Only detected compounds are presented. Detections are shown in **bold**.
 Highlighted cells indicate the concentration exceeds the respective screening criteria.
- 2. Samples analyzed Total Cyanide in accordance with Standard Method 4500-CN-C/E by Eurofins TestAmerica of North Canton, Ohio.
- 3. Division of Water 1998. Technical and Operational Guidance Series 1.1.1. June. Groundwater Standard Value for groundwater as a drinking source is shown. Available at https://www.dec.ny.gov/docs/water_pdf/togs111.pdf

Abbreviations

DUP = field duplicate mg/L = milligrams per liter

PRECISION DATA SUMMARY

Former Albion MGP Site Albion, New York

Results reported in (ug/L)

				Primary	Sample	Duplicate	Sample		Absolute
Primary	Duplicate	Collection		Reporting	Sample	Reporting	Sample		Difference
Sample ID	Sample ID	Date	Compound ¹	Limit	Result	Limit	Result	RPD ²	Between
			Benzene	1.0	23	1.0	23	0.0	NA
			Toluene	1.0	4.0	1.0	4.1	2.5	NA
			Ethylbenzene	1.0	13	1.0	12	8.0	NA
			m-Xylene & p-Xylene	2.0	9.1	2.0	8.6	5.6	NA
			o-Xylene	1.0	12	1.0	11	8.7	NA
			Xylenes, Total	2.0	21	2.0	20	4.9	NA
			Total BTEX	2.0	61	2.0	59	3.3	NA
MW-5-111919	MW-50-111919	11/19/2019	Acenaphthene	5.0	34	25	38	NA	4.0
10100 3 111313	10100 30 111313	11/13/2013	Acenaphthylene	5.0	33	25	36	NA	3.0
			Anthracene	5.0	6.2	25	6.4	NA	0.20
			Fluoranthene	5.0	5.6	25	5.4	NA	0.20
			Fluorene	5.0	45	25	46	NA	1.0
			Naphthalene	5.0	24	25	25	NA	1.0
			Phenanthrene	5.0	23	25	23	NA	0.0
			Pyrene	5.0	3.1	25	3.5	NA	0.40
			Cyanide, Total	0.010	0.16	0.010	0.16	0.0	NA

Notes

1. Only compounds detected in at least one of the primary or duplicate samples are shown.

2. Relative Percent Difference (RPD) is calculated by: $RPD\% = \left| \frac{2(S_1 - S_2)}{S_1 + S_2} \right| \times 100$

where S1 = primary sample concentration and S2 = duplicate sample concentration.

Duplicate results are acceptable when the RPD between the results is less than 30% for organics or 20% for inorganics.

- 3. RPD is not applicable when one or both sample results are less than two times the reporting limit (RL) for **organics** or less than 5 times the RL for the **inorganics**. When the RPD is not applicable, duplicate results are acceptable when:
 - both results are positive: the absolute difference between the results is less than the RL
 - one ND and one positive result: the absolute difference between the positive results and the reporting limit of the ND is

wood.

FIGURES

7800s\7800\7800050\task 03.02A\20_0120_4019awmr\ fig_04.mxd

APPENDIX A

Well Installation, Development, and Decommissioning Report

APPENDIX A

MONITORING WELL INSTALLATION, DEVELOPMENT AND DECOMMISSIONING REPORT

Former Albion MGP Site Albion, New York

TABLE OF CONTENTS

			Page
A1.0	INTRO	DDUCTION	1
A2.0	FIELD A2.1 A2.3	METHODOLOGY	123344
	A2.5 A2.6	Investigation Derived Waste	
A3.0	REFER	ENCES	5
		TABLES	
Table .	A-1	Well Construction Details	
		FIGURES	
Figure Figure		Site Location Map Site Layout	
		ATTACHMENTS	
Attach	iment A iment A iment A	N-2 Well Development Records	

APPENDIX A

MONITORING WELL INSTALLATION, DEVELOPMENT AND DECOMMISSIONING REPORT

Former Albion MGP Site Albion, New York

A1.0 INTRODUCTION

Wood Environment & Infrastructure Solutions, Inc. ("Wood") has prepared this *Monitoring Well Installation, Development and Decommissioning Report* on behalf of National Grid Corporation ("National Grid") for the Former Albion MGP Site, located in Albion, New York (the "site," Figure A-1). This report documents the installation of one groundwater monitoring well (MW-9R), the decommissioning of three groundwater monitoring wells (MW-2, MW-3, and MW-4), and redevelopment of additional site monitoring wells. All work was performed in general accordance with the methods outlined in the groundwater *Monitoring and Sampling Plan* (Wood, 2019).

A2.0 FIELD METHODOLOGY

The following sections summarize the pre-field activities, hollow-stem auger drilling, well installation, well decommissioning, and well development methodologies. Well construction details for wells installed and decommissioned are presented in Table A-1, and well locations are shown on Figure A-2.

A2.1 PRE-FIELD ACTIVITIES

Before initiating the fieldwork, Wood performed the following activities:

- Obtained street opening permits to work in the public right-of-way from the Village of Albion ("Village") Department of Public Works;
- Updated the existing site-specific health and safety plan;
- Marked the proposed boring locations and notified Dig Safely New York of the upcoming work;
- Contracted a private utility locator to assess the proposed drilling locations for subsurface features;

- Contracted with Nothnagle Drilling, Inc., of Scottsville, New York, a New York Registered Driller, to perform all drilling, well installation, well development, and well decommissioning activities; and
- Notified the New York State Department of Environmental Conservation (NYSDEC) of the work schedule.

A2.2 Geophysical Locating

As described in the *Monitoring and Sampling Plan*, groundwater monitoring well MW-9 was installed within the public right of way along Ingersoll Street, and was likely paved over during the reconstruction of the Ingersoll Street Lift Bridge. In an effort to locate this well, a private utility contractor retained by Wood used geophysical tools including ground penetrating radar, passive electromagnetic survey equipment, and a metal detector to attempt to locate the well. Unfortunately, the well could not be located, and is presumed to have been damaged or destroyed during road redevelopment activities.

A2.3 GROUNDWATER MONITORING WELLS

Groundwater well installation activities took place during two mobilizations (October 8 and 9, 2019 and November 18 and 19, 2019). A total of two on-site borings were advanced for installation of monitoring wells. During the first mobilization the borehole advanced for the installation of the proposed new well, MW-11, likely encountered a void space at depth. During well construction the annular materials of the well suddenly dropped, exposing the well screen to bentonite-cement grout. MW-11 was subsequently decommissioned by removing the well casing and backfilling the borehole with bentonite-cement grout. Due to the presence of underground utilities in the area and an existing tree, a replacement well could not be installed in the immediate vicinity of the MW-11 location.

Wood and National Grid notified the NYSDEC of the loss of MW-11 during an October 16, 2019 phone call. It was agreed that a monitoring well would be installed further downgradient of the proposed MW-11 location and MW-5, near the location of former monitoring well MW-9, which meets the intent of NYSDEC's request for installation of a new monitoring well hydraulically downgradient of well MW-5 (NYSDEC, 2018). The new well, MW-9R, is located within the western unpaved margin of the Ingersoll Street right-of-way (Figure A-2) and was installed and developed on November 18 and 19, 2019, as described in the following subsections.

A2.3.1 Drilling Procedures

Prior to drilling, the boring locations were cleared by advancing to a depth of 5 feet below ground surface (bgs) using a post-hole digger to check for the presence of subsurface utilities or obstructions. After the absence of buried utilities was confirmed, a GeoProbe 7822 DT drill rig equipped with 7-inch diameter hollow-stem augers and a 7-inch diameter tricone bit was used to advance to total depths of approximately 17.5 and 18.5 feet below ground surface (bgs) at the MW-9R and MW-11 locations, respectively.

The borings were logged continuously using a 2-foot-long split-spoon sampler. All downhole drilling and sampling equipment was decontaminated using a three-bucket rinse washing system prior to first use, and the split-spoon sampler was decontaminated using the same method between each sampling run.

Recovered soil cores were field screened using a MiniRAE 2000 photoionization detector calibrated with 100 parts per million by volume isobutylene gas. The core was then observed for general characteristics and was described by a Wood field geologist using for guidance the visual-manual procedures of the ASTM International Standard D2488, which is based on the Unified Soil Classification System. Boring logs that include geologic descriptions and sampling information are included in Attachment A-1.

A2.3.2 Monitoring Well Installation

Monitoring well MW-9R was installed and constructed on November 18, 2019 to a total depth of approximately 17.5 bgs. The well was constructed with 2-inch diameter Schedule 40 PVC casing and 10 feet of Schedule 40 slotted PVC (0.010-inch slot) well screen, with a screen interval of approximately 7.5 to 17.5 feet bgs. Centralizers were attached at above and below the screen in order to maintain the position in the center of the borehole. A size #00 sand filter pack was placed so that it extended from the bottom of the boring to approximately 1.5 feet above the screened interval. A 2.75-foot medium bentonite chip seal was placed above the filter pack sand and allowed to hydrate in place for at least 30 minutes. The remaining annular space was sealed using a mix of neat Portland cement and 3-5 percent bentonite gel (bentonite-cement grout). Annular materials were placed into the borehole through the augers as they were retracted to prevent bridging or borehole collapse. Well construction details are included on the boring log in Attachment A-1.

A2.3.3 Surface Completion

The ground surface at MW-9R was completed using a 12-inch diameter, flush-mounted, traffic-rated well boxes set into concrete. A locking, watertight plug was placed in the top of the well casing.

A2.3.4 Well Development

Well development activities were performed during two mobilizations. During the first mobilization (October 8 and 9, 2019) existing site monitoring wells MW-1, MW-5, MW-6, MW-8R, and MW-10R were developed to ensure that hydraulic communication between the wells and surrounding formation was sufficient to produce representative water level and analytical data. On November 19, 2019, during the second mobilization, monitoring well MW-9R was developed approximately 24 hours after well installation was completed.

All wells were developed using surging, bailing, and pumping techniques. Water quality parameters including pH, temperature, and specific electrical conductance were monitored and recorded during development using a multi-parameter water quality meter until each parameter stabilized to within 10 percent change in three consecutive measurements (made several minutes apart) or until relatively stable. At well MW-9R, the rate of recharge was insufficient to continuously remove water from the well, and well development activities were discontinued after the well was pumped dry and little to no recharge was observed. The rate of removal and volume of water removed were also monitored and recorded on the well development records included in Attachment A-2.

A2.4 GROUNDWATER MONITORING WELL DECOMMISSIONING

On October 8, 2019, groundwater monitoring wells MW-2, MW-3, and MW-4 were decommissioned in accordance with NYSDEC guidelines (NYSDEC, 2009). The surface completion at each well location was removed, and during this process the casing of each well was removed from the borehole intact. After the well casing was removed, each borehole was backfilled with bentonite-cement grout through a tremie pipe placed at 15 feet bgs. Following completion of well decommissioning activities, Well Decommissioning Reports for MW-2, MW-3 and MW-4 were submitted to the NYSDEC by Wood.

A2.5 Investigation Derived Waste

Soil cuttings, decontamination water, and well development water generated during field activities were placed into Department of Transportation-approved 55-gallon steel drums pending waste profiling. Following laboratory analysis and profiling, the investigation derived waste was disposed of at off-site, permitted facilities in accordance with state and federal regulations.

A2.6 SURVEYING

Following completion of well installation activities, Costich Engineering, Land Surveying & Landscape Architecture D.P.C., a New York-licensed surveyor of Rochester, New York, determined the coordinate location and vertical elevation (top of casing elevation) for MW-9R referenced to a recognized survey marker. The top of casing elevation (north face) and ground surface elevation was surveyed to 0.01-foot accuracy, and the longitude and latitude was surveyed. Horizontal coordinates for each monitoring well referenced the North American Datum of 1983 (NAD 83); elevations of each top of casing referenced the North American Vertical Datum of 1988 (NAVD88). Survey data is included in Attachment A-3.

A3.0 REFERENCES

- NYSDEC, 2009. CP-43: Groundwater Monitoring Well Decommissioning Policy. November 3. Available at https://www.dec.ny.gov/docs/remediation_hudson_pdf/cp43mwdecomm.pdf
- NYSDEC, 2018. Recommendations for Groundwater Monitoring Program, NYSDEC Site No. 837012, Albion MGP, Albion, New York. August 30.
- Wood Environmental & Infrastructure Solutions, Inc., 2018. Monitoring and Sampling Plan, National Grid Former Albion MGP Site, Albion, New York, No 83712. December 21.

wood.

TABLE

TABLE A-1

WELL CONSTRUCTION DETAILS

National Grid Former Albion MGP Site Albion, New York

				Well	Coordinates			ation 'D 88)	Top of	Bottom of
Well ID	Well Location	Date Installed	Date Decommissioned	Diameter (inches)	Latitude	Longitude	Top of Casing	Ground Surface	Screen (ft bgs)	Screen (ft bgs)
Well Install	ed in November	2019								
MW-9R	Down-gradient	11/18/2019		2	N043° 14' 53.07"	W078° 11' 25.94"	514.70	514.80	7.5	17.5
Wells Decon	nmissioned in O	ctober 2019								
MW-2	Up-gradient	6/25/1996	10/9/2019	2	N043° 14' 53.52"	W078° 11' 29.01"	516.42	Unknown	5.9	15.9
MW-3	Up-gradient	6/26/1996	10/9/2019	2	N043° 14' 54.28"	W078° 11' 27.78"	516.26	Unknown	8.2	18.2
MW-4	On-site	Unknown	10/9/2019	2	N043° 14' 53.11"	W078° 11' 27.95"	Unknown	513.52	Unknown	

Notes

1. All wells except MW-9R were surveyed by Costich Engineering, Land Surveying & Landscape Architecture D.P.C. (Costich Engineering), a New York-licensed land surveyor in June, 2018. Monitoring well MW-9R was surveyed on November 19, 2019 by Costich Engineering.

Abbreviations

-- = not applicable

ft bgs = feet below ground surface

NAVD 88 = North American Vertical Datum of 1988

wood.

FIGURES

ATTACHMENT A-1

Boring Logs

DRILLING CONTRACTOR: DRILLING METHOD: DRILLING METHOD: DRILLING METHOD: DRILLING METHOD: DRILLING METHOD: DRILLING METHOD: DRIDLING EQUIPMENT: DROP: DROP: DESCRIPTION NAME (USCS): color, most, 15 by wt., pleat, desainly, structure, Coround Surface Elevation and Datum: Notes: 1 -	PROJE			RME	R ALBIO	N MGP	SITE	Lo	g of Boring	g N	lo. Exp	lanation	
DRILLING METHOD: DRILLING BOUPMENT: SAMPLING METHOD: HAMMER WEIGHT: DROP: DESCRIPTION RESPONSIBLE PROFESSIONAL: REG. NO. REMARKS REG. NO. REMARKS	BORIN							TOP OF	CASING ELEVAT	ION /	AND DATU	M:	
DRILLING EQUIPMENT: DRIVING EQUIPMENT: DROP: RESPONSIBLE PROFESSIONAL: REG. NO. PAMMER WEIGHT: DROP: DESCRIPTION NAME (USCS): cook, midst. wby Wt., place density, structure, cementation, react, wHCl, geo. inter. Ground Surface Elevation and Deturn: Notes: 1. Soil described using visual-manual procedures of American Society of Teating and Materials (ASTM) Standard D 2488 for guidance; a Standard based on the Unified Soil Classification System. 2. Soil color described according to Munsell Color Chart. 3. Dashed lines separating soil strata represent interred boundaries between sampled intervals that may be abrupt or gradual transitions. 4. Soild lines represent approximate boundaries observed within sample intervals. 5. OVM = organic vapor meter, reading in volumetric parts per million (ppm). Interval of no recovery. Interval of no recovery.	DRILLI	NG CC	NTF	RACT	OR:			DATE ST	TARTED:		DATE FINISHED:		
BRILING EQUIPMENT: SAMPLING METHOD: DROP: DROP: RESPONSIBLE PROFESSIONAL: REG. NO. REMARKS	DRILLI	NG ME	ETHO	DD:					` '			URING POINT:	
HAMMER WEIGHT: DROP: RESPONSIBLE PROFESSIONAL: REG. NO. REMARKS REMARK	DRILLI	NG EC	UIP	MEN ⁻	T:				ΓΟ WATER (ft.)	F	FIRST	COMPL.	
DRUP DESCRIPTION NAME (USCS); color, moist, % by wt., past, dansity, structure, carentalistin, read, wHCl, geo. inter.	SAMPL	ING M	IETH	IOD:				LOGGE	D BY:				
Notes: 1	HAMM	ER WE	EIGH	IT:			DROP:	RESPON	ISIBLE PROFESS	SIONA	AL:	REG. NO.	
Notes: 1. Soil described using visual-manual procedures of American Society of Testing and Materials (ASTM) Standard D 2488 for guidance; a Standard based on the Unified Soil Classification System. 2. Soil color described according to Munsell Color Chart. 3. Dashed lines separating soil strata represent inferred boundaries between sampled intervals that may be abrupt or gradual transitions. 4. Soild lines represent approximate boundaries observed within sample intervals. 5. OVM = organic vapor meter, reading in volumetric parts per million (ppm). Interval of recovered soil collected with a continuous core sampler. Interval of no recovery.	EPTH (feet)				OVM ADING ppm)		NAME (USCS): color, moist, % by wt., plast. dens	ity, structu	re,		R	EMARKS	
1. Soil described using visual-manual procedures of American Society of Testing and Materials (ASTM) Standard D 2/488 for guidance; a Standard based on the Unified Soil Classification System. 2. Soil color described according to Munsell Color Chart. 3. Dashed lines separating soil strata represent inferred boundaries between sampled intervals that may be abrupt or gradual transitions. 4. Soild lines represent approximate boundaries observed within sample intervals. 5. OVM = organic vapor meter, reading in volumetric parts per million (ppm). 7. Interval of recovered soil collected with a continuous core sampler. Interval of no recovery.		Sar	Sal	의 교	A E	Grou	nd Surface Elevation and Datum:			_			
14	2 3 3 4 5 6 7 8 10 11					1. 2. 3. 4. 5.	Soil described using visual-manual procedures Society of Testing and Materials (ASTM) Stand guidance; a Standard based on the Unified Soil System. Soil color described according to Munsell Color Dashed lines separating soil strata represent in between sampled intervals that may be abrupt transitions. Solid lines represent approximate boundaries of sample intervals. OVM = organic vapor meter, reading in volume (ppm).	lard D 248 Classifica Chart. Chart. ferred boutor gradual bserved wateric parts pa	ation undaries vithin per million				
15 OAKBOREV (REV. 2/2019)	13-									-			
OAKBOREV (REV. 2/2019)	_									- - -			
	10	\ <i>\\</i> /~ -	4						Project No. 00790	10005	50	OAKBOREV (REV. 2/2019) Page 1 of 1	

PROJE			RMER on, N		ON MGP SITE	Log of Well No. MW-9R
BORIN					de: 43.248075; Longitude: -78.190539	TOP OF CASING ELEVATION AND DATUM: 514.70 (NAVD88)
DRILL	ING C	ON	TRAC	TOR: I	Nothnagle Drilling	DATE STARTED: DATE FINISHED: 11/18/19 11/19/19
DRILL	ING M	1ETH	HOD:	Hollov	TOTAL DEPTH (ft.): SCREEN INTERVAL (ft.) 7-17'	
DRILL	ING E	QUI	PMEN	IT: Ge	eoprobe 7822 DT	DEPTH TO FIRST COMPL. CASING: WATER: 12.0 12.89 2" Schedule 40 PVC
SAMP	LING	MET	HOD:	Split-s	poon drive sampler [24" x 2.5"]	LOGGED BY: J. Reeder
HAMM			•	40 lbs	DROP: 130"	RESPONSIBLE PROFESSIONAL: REG. NO A. Rosenthal 9387
DEPTH (feet)	Sample No.	Sample N	Blows/ Foot	OVM Reading	DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density, str cementation, react. w/HCl, geo. inter.	
0 - 1 - 2 - 3 - 3 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5			14 14 58 90 15 34 36 64 32		Ground Surface Elevation and Datum: 514.80 (NAVD88 SANDY LEAN CLAY with GRAVEL (CL): dark brow (10YR 3/3), moist, 50% low plasticity fines, 30% finedium sand, 20% fine gravel, soft POORLY-GRADED GRAVEL with SAND (GP): black (10YR 2/1), moist, 75% fine gravel includes aspholo 0.2" x 1.0" CLAYEY GRAVEL with SAND (GC): reddish brown (2.5YR 4/3), moist, 60% fine to coarse gravel, 25% plasticity fines, 15% fine to coarse sand white, ashy material in soil POORLY-GRADED GRAVEL with CLAY and SANI (GP-GC): black (10YR 2/1), moist, 60% fine to coarse sand, 30% fine to coarse sand, 10% low plasticity white ashy material in soil SANDY LEAN CLAY with GRAVEL (CL): reddish brown (2.5YR 4/3), 45% low plasticity fines, 30% fine to coarse sand, 25% fine gravel, firm CLAYEY GRAVEL with SAND (GC): reddish brown (2.5YR 4/3), moist, 55% fine to coarse gravel, 30% to coarse sand, 15% low plasticity fines 2" cobble POORLY-GRADED SAND (SP): reddish brown (2.4/3), wet, 95% fine to medium sand, 5% low plastic fines trace gravel 3" cobble	Traffic Rated Well Box Expanding well cap Traffic Rated Well Box Expanding well cap Concrete Traffic Rated Well Box Expanding well cap Traffic Rated Well Box Expanding well cap Concrete Traffic Rated Well Box Expanding well cap Traffic
14 ⁻			46	0	POORLY-GRADED GRAVEL with CLAY and SANI (GP-GC): reddish brown (2.5YR 4/3), moist, 50%	fine
15 ⁻					gravel, 40% fine to coarse sand, 10% low plasticity	fines OAKWELLV (REV. 2/
	Wo					Project No. 0078000050 Page 1 of 2

PROJECT: FORMER ALBION MGP SITE Log of Well No. MW-9R (cont'd) Albion, NY SAMPLES OVM Reading WELL CONSTRUCTION Sample Blows/ Foot **DESCRIPTION** NAME (USCS): color, moist, % by wt., plast. density, structure, cementation, react. w/HCl, geo. inter. DETAILS AND/OR DRILLING REMARKS 15 POORLY-GRADED GRAVEL with CLAY and SAND 7" diameter borehole (GP-GC): Continued. 2" diameter Schedule 40 \wet PVC casing with 0.010" 126 16 2" cobble slotted screen #00 filter pack sand 17 **BEDROCK** 2" diameter Schedule 40 PVC end cap Bottom of boring at 17.5 feet bgs Native slough 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 OAKWELLV (REV. 2/2019) Project No. 0078000050 Page 2 of 2 Wood

PROJE			RME		ON MGP SITE	Log of B	oring No.	MW-11		
BORIN	G LOC	CAT	ION:	Not Surv	eyed	TOP OF CASING ELEV Not Surveyed	ATION AND DA	TUM:		
DRILLI	NG C	ТИС	RAC	TOR: Noth	nnagle Drilling	DATE STARTED: 10/8/19	DATE FIN 10/8/19	NISHED:		
DRILLI	NG MI	ETH	IOD:	Hollov	<i>y</i> -stem auger	TOTAL DEPTH (ft.): MEASURING POINT: 18.5 Not Surveyed				
DRILLI	NG EC	QUIF	PMEN	NT: CME I	_C-55	DEPTH TO WATER (ft.)	FIRST	COMPL.		
SAMPL	ING N	ΛΕΤ	HOD	: Split-spc	on drive sampler [24" x 2.5"]	LOGGED BY: J. Reeder	1.1.5			
HAMM	ER WI	EIGI	HT:	140 lbs	DROP: 30"	RESPONSIBLE PROFE A. Rosenthal	ESSIONAL:	REG. NO. 9387		
DEPTH (feet)	Sample No.		Blows/ G/Foot	OVM READING (ppm)	DESCRIPTION NAME (USCS): color, moist, % by wt., plast. dens cementation, react. w/HCl, geo. inter. Ground Surface Elevation and Datum: Not Su	ity, structure,	F	REMARKS		
1-					CLAYEY SAND with GRAVEL (SC): dark reddis 2.5/2), moist, 50% fine to coarse sand, 30% fine 20% low plasticity fines, firm, roots in tailings		_			
2 -				14.9	⊢ Concrete		_ _ _			
3-				43.8 21.3 0	Fabric barrier black (5Y 2.5/1), 50% fine to coarse sand, 40% gravel, 10% fines	fine to coarse	_			
4-				75.8	white, fine-grained, ash-like material					
5-			22	0	CLAYEY SAND (SC): reddish brown (5R 4/4), m coarse sand, 15% low plasticity fines, 5% fine gra	avel, soft				
6-			20	0	yellowish red (5YR 5/6), 80% fine to medium sal plasticity fines, firm	nd, 20% low				
7-			9	0						
8-		X	21	·	CLAYEY GRAVEL with SAND (GC): reddish bro					
9-			16	0	wet gravel, dark staining		_			
10-		X	50		──── wood material					
11-			31	0.5	POORLY-GRADED GRAVEL with CLAY and SA olive gray (5YR 5/2), moist, 75% fine to coarse g coarse sand, 10% fines, odor and sheen					
12- -			28	0.5	black asphaltic sand CLAYEY SAND (SC): reddish brown (5YR 4/4),		_			
13- -			17	0.6	coarse sand, 20% low plasticity fines, 10% fine gwood material POORLY-GRADED GRAVEL with SAND (GP):					
14 <i>-</i>		\bigvee	55		wet, 75% fine to coarse gravel, 20% fine to coars		_			
15-		/_\				,		OAKBOREV (REV. 2/2019)		
	Woo	d				Project No. 00	78000050	Page 1 of 2		

PROJECT: FORMER ALBION MGP SITE

PROJE			ion,		ON MGP SITE	Log of Boring No). N	IW-11 (cont'd)
DEPTH (feet)	Sample No.	Sample	Blows/ (5) Foot	OVM READING (ppm)	DESCR NAME (USCS): color, moist, % cementation, react.	bv wt., plast, density, structure.		REMARKS
		П	87		POORLY-GRADED GRAVEL with	SAND (GP): Continued.		
16-	-	V	100					
17-			26		red (2.5YR 4/6), 80% fine to coars sand, trace gravel	se gravel, 20% fine to coarse	_	
18-	_		50				_	
_					Bottom of boring at 18.5 feet bgs			
19- -					Monitoring well MW-11 was install 7.5-17.5 feet bgs. During well cons	struction the annular materials	_	
20-					suddenly dropped, exposing the w grout. The well was decommission	ed by removing the well casing	_	
21-	-				and screen and backfilling the bori surface using a tremie pipe.	ng from total depth to ground		
_	_						_	
22 – –							_	
23-	_						_	
24-	-						_	
_							_	
25 – _								
26-	_						_	
- 27-								
-							_	
28-	-							
29-								
_								
30-								
31-	-							
32-								
_								
33-	1				I.			OAKBOREV (REV. 2/2019)

Wood Project No. 0078000050 Page 2 of 2

OAKBOREV (REV. 2/2019)

ATTACHMENT A-2

Well Development Records

			Proj			#/Decription	on:	Well Number:	v.co.d
MONITO	DRING V	VELL	Foru	MGP S	ite c	30780000	50.03.02A	MW-1	wood.
DEVELO	PMENT	LOG	Pren	pared By:	Dur	ging Start I	Date:	Purging End Date	.19
needed to cle parameters st Development	ean screen, fil tabilize prior is complete.	ter pac to purg 6) Reco	k and w ing 10 rd the a	vell of fines 3) F well volumes, c actual total dept	ourge while mo levelopment is th of the well w ampling is per	onitoring was complete. with a tag line formed by r	ter quality pa 4b) If parame c. 7) Following	bing the well 2) Us rameters. See stabi ters do not stabilize	e surge block and bailer as lization criteria below. 4a) If e, purge 10 well volumes. 5) quipment is decontaminated
Equip	mant	1	NA.	odel		quipment	1		5
Multi-Probe	ment	1 1			1	Rental ID		eceived/Serviced	Date Calibrated
		(-1	ar. be	3~	(415	7	10/4	119	10/4/17
Turbidimeter									
	1- E-S	1		T	lume Calculation			£	
A. Depth to Wa				E. Sedim	ent Column (B-C	<u> </u>	_ ft.	I. Development PSI =	= PSI (2,3-ft per 1 PSI)
B. Well TD (con	struction log)	14	_ft.	F. Water	Column (B – A)	TO		J. Well_TD after deve	lopment (tagged) =ft.
C. Well TD befo	ore dev.(tagged) =	ft.	G. Well V	olume (D² x 0.0	408 x F) =	gal.	K. Actual Vol. Purged	d (from below)gal.
D. Well-Diamet	er = _2in			H. 10 We	ll Volumes (10 x	(G) =	_ gal.		
	Purging Data					W	ater Quality P	arameters	
Time (24 hr)	Purge Volume 🗷 gal	8	Rate gpm	Temp (°C)	Specific Conductance (μS/cm)		Turbidity ⁽ (NTU)		Observations
AQUE	□ ml	-		Stabilization:	± 3%	± 0.2	±10% or <10	NTU B. Les	
0845		1		13.92	830	8. co	>1000		
0855	3			14.62	824	792	7/200		
0900				1461	852	7 85	71000		pumping
0905	10	5	15	14 83	867	7.75	>1000	cry@!	agel, recharging
9912	20	var.	ible	14.72	921	7.75	71000	beg clea	ring plumping Hentl
0920				15.09	896	7.60	>1000		
0925				15.06	888	767	947		
0930				14.93	8 94	772	615		
0935				14.45	899	7.75	939		
Remarks:									

Checked By:

Signature:

(1) Turbidity is to be observed, but not used as stabilization criteria.

MW-1 Purging/Sampling Date: \0/4 Well Number: ADDITIONAL FIELD PARAMETER COLLECTION LOG for MONITORING WELL DEVELOPMENT (continued from front side) **Water Quality Parameters Purging Data** Specific **Purge Volume** Flow Rate Turbidity(1) Temp Conductance Time pH □ gal □ gpm (NTU) Observations (°C) (µS/cm) (24 hr) □ ml ☐ ml/min Stabilization: ± 0.2 ±10% or <10 NTU ± 3% Variable 15.25 905 1/3 drum 7.57 0943 310 902 420 758 15 56 0947 354 7.59 901 15.58 0950 7.54 267 906 15.75 0955 906 215 7.53 1000 15.83 7.50 213 906 1008 6.04 904 7.52 15.91 253 1011 7.48 904 248 1020 08 1/2 dry 910 150 7.46 1025 * water heat of as son gets more: tensor, motor Remarks:

Remarks: * water heat up as son gets more intensor, motor
sitting in son.

(1) Turbidity is to be observed, but not used as stabilization criteria.

MONITORING WELL	Forme
DEVELOPMENT LOG	Prepar

ou
re
~

Job #/Decription:	
0078000050	

Well Number:

MW-5

wood.

Purging Start Date: Purging End Date:

10 / \$4 / 2016 | 10 / \$4 / 2016 |

03.024

Development Protocol: 1) Record a depth to water before purging, bailing, surging or swabbing the well 2) Use surge block and bailer as needed to clean screen, filter pack and well of fines 3) Purge while monitoring water quality parameters. See stabilization criteria below. 4a) If parameters stabilize prior to purging 10 well volumes, development is complete. 4b) If parameters do not stabilize, purge 10 well volumes. 5) Development is complete. 6) Record the actual total depth of the well with a tag line. 7) Following development all equipment is decontaminated with liquinox and DI water, or hot pressure washer and sampling is performed by normal methods after a minimum of 24 hours.

with liquinox	and DI water,	or hot pressur	e washer and s	ampling is perfe	ormed by n	ormal metho	ods after a n	ninimum	of 24 hours.	
				Field Equ	ipment				30.	
Equip	ment	M	odel	Serial #/F	Rental ID	Date R	eceived/Se	rviced	Date Calibrated	
Multi-Probe		Horiba		14159		10/8/	10/8/19		10/8/2019	
Turbidimeter								1		
			Purge Vo	lume Calculation	ns & Final N	leasurements				
A. Depth to Wa	ter =	_ ft.	E. Sedim	ent Column (B-C)	_ft.	I. Developn	ment PSI =	PSI (2.3 ft per 1 PSI)		
B. Well TD (con	struction log)	ft.	F. Water	Column-(B - A) =	f(J. Well TD 3	after devel	opment (tagged) =ft.	
C. Well TD befo	re dev.(tagged	l) =ft.	G. Well V	olume (D ² x 0.040	08 x F) =	gal.	K. Actual V	ol. Purged	(from below)gal.	
D. Well Diamete	er =ir	1.	H. 10 We	ell Volumes (10 x o	G) =	_ gal.				
	Purging Data				W	ater Quality P	arameters			
Time (24 hr)	Purge Time Volume		Temp (°C)	Specific Conductance (μS/cm)	рН	Turbidity (NTU)	(1)		Observations	
(= / / // /	□ ml	☐ ml/min	Stabilization:	± 3%	± 0.2	±10% or <10				
1315	2	5	14.68	(090	744	71000	ol a	ailing	y word roundry@2.5	
1330		V	14.67	1070	7.44	7/200	4	-		
1335		variable	14.65	1080	7.41	71000	d'a	10 ~	Sgal, begins	
1340			15.02	1070	7.47	7/000			•	
1350			15.15	1020	7.50	7/000				
1356			15.22	1000	749	71000	-			
1400			15,23	979	7 48	504				
1406			15.51	977	7 48	330				
141		1	15.63	985	747	660				
Remarks:										
(1) Turbidity is to	be observed	byt not used as	stabilization crite	ria.						
Signature:	Lun K	Luce	en	Checked By:						
	1	1								

Purging/	Sampling Date	e: 10	191	19		Well Nu	mber: M	W-5		
		1					LECTION LOG to			
	Purging Data					w	ater Quality Param	eters		
Time (24 hr)	Purge Volume		v Rate gpm nl/min	Temp (°C)	Specific Conductance (μS/cm)	рН	Turbidity ⁽¹⁾ (NTU)	Observations		
1416	10		able	Stabilization:	±3%	± 0.2	±10% or <10 NTU			
1424				15.84	975	-	272			
1430				16.01	970		245			
1475				15.74	960	7.47				
1440					967		316			
1447	15		V	15.60			250	would wive into shade before last read of (Temp drop)		
<u> </u>										
							/			
		- manus ainte								
			/							
		/	/							
	/									
					4					
/										
/					-					
Remarks:										
⁽¹⁾ Turbidity i	s to be observed, I	out not	used as	stabilization crite	ria.					

MONITO	ORING W	/ELL	Form	ect: us Albinul	MGP Site		Decriptio	on: 0.03.02A	Well Number:			wood.
DEVELO	PMENT	LOG	122	ared By: < Recolet	-	Purging Start Date:				ging End Date		
needed to cle parameters s Development	ean screen, filt tabilize prior t t is complete.	ter pack to purgi 6) Recor	and wing 10 or different	ell of fines 3) F well volumes, c	Purge whil developme th of the w	e monito ent is cor vell with a	oring wat mplete. 4 a tag line.	er quality parame b) If parame 7) Following	rame ters o	ters. See stabi lo not stabilize lopment all ec	lization cri e, purge 10 juipment is	ock and bailer as teria below. 4a) If well volumes. 5) decontaminated irs.
		T.			Fie	ld Equip	ment					
Equip	ment			odel .		al #/Rer	ntal ID			ed/Serviced	-	e Calibrated
Multi-Probe		rib	~	14159			10/8	120	.17	10/8/	2019	
Turbidimeter	9											
				Purge Vo	olume Calc	ulations &	& Final M	easurements				
A. Depth to Wa	ater =	_ ft.		E. Sedim	ent Column	n (B-C) = _		ft.	I. De	velopment PSI :	PSI_	(2.3-ft-per 1-PSI)
B. Well TD (cor	struction log) _		ft.	F. Water	Column (B	(A) = _	ft.	J. W	J. Well TD <u>after</u> development (tagged) =ft.			
C. Well TD befo	ore dev.(tagged) =	_ft.	G. Well	Volume (D²	× 0.0408	x F) =	gal.	K. Ad	ctual Vol. Purge	d (from belo	w)gal.
D. Well Diamet	er =in			H. 10 We	ell Volumes	(10 x G) =		_ gal.				
	Purging Data						Wa	ater Quality P	aram	eters		
Time (24 hr)	Purge Volume 🕾 gal		Rate gpm I/min	Temp (°C)	Speci Conduct (μS/c	tance	рН	Turbidity (NTU)	Observations			ons
	□ ml		7111111	Stabilization:	± 3%		± 0.2	±10% or <10	_	9 1		N. 4
1325	1	7		14,75	74	5 7	51	>loce		Beil o, rea		10
1345	5	J		14.71	764	3 -	751	71000		Beg p.		
1352		Variat	h	14.87	77	5	7.49	71000		drye 7	-8301	
358				15.03	7-9	0 -	7.45	>1000		Big 5	alceri-	1 UP
1403				15.08	79	6	7 45	687			-	
1408	1/3 dru			15.14	790	D	749	504				
1414	43don			15.34	79	2	7.42	295				
1419				15.46	774	-	742	161				
1425			V	15.43	799		745	309				
Remarks:												
						-						

Checked By:

Signature:

(1) Turbidity is to be observed, but not used as stabilization criteria.

Purging/	/Sampling Date	e: 10/4/10	٩		Well Nu	mber: Mu	N-6
						LLECTION LOG fo	
	Purging Data				V	ater Quality Paramet	ters
Time (24 hr)	Purge Volume	Flow Rate gpm ml/min	Temp (°C)	Specific Conductance (μS/cm)	pH	Turbidity ⁽¹⁾ (NTU)	Observations
			Stabilization:	± 3%	± 0.2	±10% or <10 NTU	
1432	1/2 drum	variable	15.50	799	7.42	87.0	
					1		
					ļ		
			-				
- Innonninosioni							
/							
Remarks:							
(1) Turbidity	is to be observed.	but not used as	stabilization crite	ria.			

			Projec	t:		Job #	/Decription	on:	Wel	ll Number:		wood.
OTINON	RING W	/ELL	Ferme	· Albian	MGPSik	00	078000050	03.02A		MW-8	<u></u>	W000.
DEVELOP	MENT	LOG		red By:	_		ing Start D			ging End Date		
			Joel	a Reedle	(10	1 97/20	16	10	1 \$ 9,20	5	
eeded to clea arameters sta evelopment i	in screen, filt bilize prior t s complete. (ter pack to purgii 6) Recor	and we ng 10 w d the act	ll of fines 3) P ell volumes, d tual total dept	urge whil evelopme h of the w ampling is	e monent is of the monent is of the monent in the monent is of the monent in the monent is of the monent in the monent is of	nitoring wa complete. 4 h a tag line ormed by n	ter quality policy lb) If parame . 7) Following	arame eters o g deve	ters. See stabi do not stabilize	lization cri e, purge 10 quipment is	ock and bailer as teria below. 4a) If well volumes. 5) decontaminated rs.
			-31/			-	ipment	1				515V -119
Equipn	nent		Mod	del			lental ID					Calibrated
1ulti-Probe		Harib	ron		1415	٦		10/4/	201	1	10/8/	2019
urbidimeter												
				Purge Vo	lume Calc	ulation	ns & Final M	leasurements	1			
Depth to Wat	er =	_ft.		E. Sedime	ent Columr	n (B-C)	F	ft.	I. De	evelopment PSI :	=PSI	(2.3 ft per 1 PSI)
Well TD (cons	truction log) _		ft.	F. Water	Column (B	– A) =	ft		J. W	ell TD <u>after</u> deve	elopment (ta	gged) =ft.
. Well TD <u>befor</u>	e dev.(tagged)=	_ft.	G. Well V	′olume (D²	x 0.040	08 x F) =	gal.	K. Ad	ctual Vol. Purge	d (from belo	w)gal.
. Well Diamete	r =in			H. 10 We	ll Volumes	(10 x 0	G) =	_ gal.				
	urging Data				-		w	ater Quality I	Param	eters		
Time (24 hr)	Purge Volume gal	Flow	pm	Temp (°C)	Speci Conduct (µS/cr	tance	рН	Turbidity (NTU)	r ⁽¹⁾		Observati	ons
	□ml	□ ml	/min	Stabilization:	± 3%		± 0.2	±10% or <10	NTU	Jackasky	w.Fur	b. 242
1445	2	5		14.20	260	0	7-17	700		notcha	1	9
502	23	1	/	13.91	230	0	7.41	360	lace	Begin po	reig	
1505	10	-Ze	J.Pm	1369	2020	2	7,41	71000	2	dry@10	gal, pu	unping iteriate
1510		Varia	ble	13.72	190	0	746	>1000	<u> </u>			,
1515				13.82	167	0	7.45	71000	7			
1520				13.72	152	0	7.49	7 1000		were tu	ming wo	ne clear
1525				13.61	141	B	7.51	950				
1530	, l			13.51	134	- C	751	620				
1535		1	/	13.60	129	0	7.51	417				
emarks:												
										1445		
Harana and Harana and												
- v+												1
Turbidity is to	be observed,	but not u	ised as st	abilization crite	ria.							
ignature:	1	1/			Checked	-						

ruigiiig/	Sampling Date				Well Nu		
						LLECTION LOG f tinued from fro	
	Purging Data				W	ater Quality Param	eters
Time (24 hr)	Purge Volume	Flow Rate	Temp (°C)	Specific Conductance (μS/cm)	рН	Turbidity ⁽¹⁾ (NTU)	Observations
	D.10		Stabilization:	± 3%	± 0.2	±10% or <10 NTU	
1540		variable	13.70	1290	7.52	625	
4545							pump : saves
5 50	1/3 drum		1422	1330	7.51	>1000	continued purplishes
1615	1/3 alum	J	13.60	1270	754	630	
1000							
					//		
	/					-	
			·				
/	1						
/							
2							
Remarks:							
(1) Turbidity	is to be observed, b	out not used as s	tabilization crite	ria.			

MONITO	RING W	/ELL	Proje	er Albian MGP 5		#/Decription #000050	on: 0 03.02A	Well Number:		wood.
DEVELO			D	red By:	Purg	ing Start D		Purging End Dat		
needed to cle parameters st Development	an screen, filt abilize prior t is complete. (ter pack to purgi 6) Recor	and wo	ell of fines 3) I vell volumes, o ctual total dep	Purge while mor development is of th of the well wit	nitoring wat complete. 4 th a tag line	ter quality parame (b) If parame (c) Tollowing	bing the well 2) Us trameters. See stab ters do not stabiliz development all e ds after a minimun	se surge b ilization cr e, purge 1 quipment i	iteria below. 4a) If 0 well volumes. 5) is decontaminated
					Field Equ					
Equip Multi-Probe	ment	Hon		odel	Serial #/F	Rental ID		LOI9	10/8/	te Calibrated
Turbidimeter										
Turbiumeter				Purge V	olume Calculation	ns & Final N	leasurements			
A. Depth to Wa	ter = 14.1	t.			nent Column (B-C)			I. Development PSI	=PSI	(2.3 ft per 1 PSI)
B. Well TD (con	struction log) _	19	ft.	F. Water	Column (B - A) =	fl	•	J. Well TD <u>after</u> dev	elopment (t	agged) =ft.
C. Well TD befo	ore dev.(tagged	1=19	_ft.	G. Welt	Volume (D ² x 0.04)	08 x F) =	gal.	K. Actual Vol. Purge	ed (from bel	ow)gal.
D. Well Diamet	er = <u>2 '</u> in	ı.		H. 10 W	ell Volumes (10 x	G) =	_ gal.			
	Purging Data					w	ater Quality F	Parameters		
Time (24 hr)	Purge Volume 🖾-gal		Rate	Temp (°C)	Specific Conductance	рН	Turbidity (NTU)	(1)	Observa	tions
- Carrier	□ml	-	ıl/min	Stabilization:	± 3%	± 0.2	±10% or <10			
0845	2	~5	ce	13.66	6.15	7.21	71000		4	the pump
0900	~4	v 50	2	1363	5.55	7.08	7/00		1	
0930	~6	1		14.57	4.39	7.13	7/00		teas in	
0945	- 7	~2	.00	14.22	4.92	719	640	pumpsu	1 rector	ge (recombinio
1000				14.55	4.90	7.02	194			
1010				14.47	4.94	714	140			
1020				14.60	4.91	7.04	529			
1030	v10			14.94	4.74	7.11	158			
1040		3	V	14.87	4 80	709	116			
Remarks:										
- William Control									, , , , , , , , , , , , , , , , , , , ,	

				William Control						
(1) Turbidity is t	a be observed	but not	used as	stabilization crit	eria.					
Signature:	10	udl	7		Checked By:					
•	70-10	we								

			Project:	sian NCD	C:t-		/Decription		:	Wel	l Number:		wood.
MONITO	RING W	/ELL ˈ	ormer An	oion MGP	Site	00700	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<i>J</i> 27		Μ	1W-9R		WOO .
DEVELO I	PMENT I	-00	Prepared	=		Purgi	ng Start D	ate	:	Pur	ging End Date	:	
			TackR	recolu		11 /	19/	19	<u> </u>	1)	19/19	9	
needed to cle parameters st	an screen, filt abilize prior to is complete. 6	er pack ar o purging i) Record t	nd well of 10 well v he actual	fines 3) P olumes, d total dept	urge whil evelopme h of the w	e mon ent is c rell with	itoring wa complete. 4 n a tag line	ter 1b) . 7)	quality pa If parame Following	rame ters c	ters. See stabil Io not stabilize Iopment all eq	ization crit , purge 10 uipment is	pock and bailer as teria below. 4a) If well volumes. 5) decontaminated rs.
Fairing			Madal		I		ipment	-]	D-4- D-		- d (C d d	Data	Calibrated
Equip	nent	-/-	Model				ental ID		i i	1	ed/Serviced		e Calibrated
Multi-Probe Turbidimeter		Y5生	PaPlus		- VA E. (1 7916 2908	<u> </u>		11 1	3	19	11/19	
		<u> </u>		Purge Vo	lume Calc	ulation	s & Final M	leas	urements	•			
A. Depth to Wat	er = 12.70	_ ft.		E. Sedime	ent Columr	า (B-C) :	=	_ ft.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	l. De	velopment PSI =	: PSI (2.3 ft per 1 PSI)
B. Well TD (cons	truction log) _	7_ft.		F. Water	Column (B	- A) = .	ft	: .		J. W	ell TD <u>after</u> deve	lopment (ta	gged) =ft.
C. Well TD <u>befo</u>	re dev.(tagged)	= <u>16.87</u> f	t.	G. Well V	'olume (D²	x 0.040	8 x F) =		gal.	K. A	tual Vol. Purgeo	l (from belo	w)gal.
D. Well Diamete	er = <u> </u>			H. 10 We	ll Volumes	(10 x G	s) =	g	al.				
	Purging Data	Y					W		r Quality P		eters		
Time (24 hr)	Purge Volume ⊠ gal	Flow Ra □ gpm □ ml/m	n Jin	Гетр (°C)	Speci Conduct (µS/ci	tance	рН		Turbidity			Observation	ons
	□·ml		Sta	bilization:	± 39		± 0.2		0% or <10	NTU ·	0 . 1 .		
085°		bailes	14	. 0	6506		6.76		96.5	·····	Bailing		
0853	<u> </u>	••••••••••	14	r, \	6334	5	6.77	١	87.1		. 1	mmana canana an a	
0857	2		10	r, 2	493	6	6.93	١	80.3		11		
0907	2.5	lond	14	i . lp	547,	٢	7.13	١	75.0		Begin 1	Prome p.	~ 9 wer dry (
0925	3		16	r. 6	596	0	7.14		164.7		recharge	vi Huniy	to what.
	and paint a grant and a grant of the Co. Co. Co. Co. A.	ant-market and the property of the Sand	hannes (1823). Des 1994 har 1993 har 1994	***************************************					***************************************	•••••••••••••••••••••••••••••••••••••••	No rechar	3 a/510	well day (to what. ge whichere
				······································					***************************************				
ч агання противня при					·	***************************************				••••••			
Remarks:	,												
ижи личч ил ич иличиинения	шатаментана		(*************************************			***************************************		***************************************					7
««полницияння пончавначина причествите						20		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***************************************	***************************************	(1.1) 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		
(C)-1910			in the same of the	,				· <i>p</i> ,··············	I				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
(1) Turbidity is to	be observed, b	out not use	d as stabili:	zation crite	ria.								

Checked By:

Signature

ATTACHMENT A-3

Survey Data

December 03, 2019

Alex A. Rosenthal, PG Wood, PLC 180 Grand Ave Suite 1100 Oakland, California 94612

RE: Bank Street Monitoring Well Location Albion, NY

I certify that the latitude of 43°-14'-53.07" and the longitude of 78°-11'-25.94" of newly installed monitoring well are accurate to within ± 0.20 feet horizontally; and that the top of well head elevation of 514.7 AMSL is accurate to within ± 0.5 feet vertically. Ground elevation at monitoring well is 514.8' The horizontal datum (coordinates) are in terms of the North American Datum of 1983 (NAD 83) and are expressed as degrees, minutes and seconds, to the nearest hundredth of a second. The vertical datum (heights) are in terms of the North American Vertical Datum of 1988 (NAVD 88).

Charles J. Costich, III, L.S.

License No. 050428 Costich Engineering

APPENDIX B

Groundwater Sampling Records

	NITORI				ļ		ct Name:				Date:	anni da anni d	wood.	
SAMPLE		LEC	TIO	N LO		0780	ct/Task #: 00050.03.0		Sampled I	JR.		11 / 19 /	19	
Well Numb	l,	٧W	- 1			1	nple ID: ∭(J-1-	111919		ı	Duplicate ID:	434	NA
Method of I	ourging:	100	\sim 4	[lew		Met	thod of Sa	mpling	low flow)	I	Intake Depth:	131	
						·		Field	Equipment					
Equipme	ent			Model			Ser	ial #/Re	ntal ID	Date R	ece	ived/Serviced	Date	Calibrated
Multi-Probe	١	Y5I	· Pr	o Oli	, '1		17A10	2909		u/t	8	119	11/19/	19
Turbidimete	r										•			:
						,	Casin	g Purge '	Volume Calcul	ations	· p			
A. Depth to W	/ater =	7.9	<u> </u>	ft.		D. V	Vater Colum	nn (B-A) =	= ft.		De	epth to Water After S	Sampling =	ft.
B. Well TD (c	onstruction	n log)		f	t.	E. 1	Well Volum	ne (C² x 0	.0408 x D) =	gal.	Ac	ctual Volume Purge	d (from below)	= gal/ml.
C. Well Diam	eter =		in.	м ананала		F. 3	Well Volum	ies (3 x E) =	_gal.	(If a	applicable, see pumpi	ng system volum	e calculation below)
Pump and F	low Cell	Volu	me	Vp	=		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ml		Pump	ing	System Volume	Calculation	.,,
Tubing Insid		ter		D	=	<u> </u>		ln.				ping System Volu		
Tubing Leng		3003 t		L 1 in ³		= In. = ml				***************************************		+ π * D ² / 4 * L * 1) + (3.1415 *) * 16.39
	sion from Inches ³ to ml													
Time (24 hr)	Purge Volum	e		gpm		emp °C)	Spe Condi	ecific uctance 5/cm)	Dissolved Oxygen (mg/L)	рН		Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks
(= 1,	_ mi		, ⊄ m	I/min	Stab	ilizatio	n¹ ±	3%	± 0.2 mg/L	± 0.2	2	± 20 mV	±10% or <10 NTU	
1436	CZ	5	19	0	13.	4	105	3	1.50	7.8	١ ا	94.6		
1440	1811118	1			14.	4	11 2	-4	0.52	7.6	58	95.0	1,44411,7444111111111111111111111111111	
1445	RMA	My		-	14	. 2	০ %	O	0.54	7.5	3	105.6		
1450	1.0	y			(4	. 2	110	8	G.69	7.4	- <u></u>	116.7		
1455	Anna	W		<i>f</i>	ر4	2	117	<u> </u>	0.63	7.3	6	127.3		
1500	1,25		+	6	14	.]	11 4	٠٩	0.59	7-	33	140.2		
												6.1		
Remarks:							· · · · · · · · · · · · · · · · · · ·					<u> </u>		
	50	YWW.	/ر	Mı	√)· '	· - \	11919	(i-	2 150€				overbennen man voetsteldeld in his	
									1		7 To			
		**********************		siss									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
¹ Based on E	PATOW-flo	w sar	mplina	guidelir	nes.	``	***************************************				***************************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Signature:	V ,	1,/-	, 1	/_	(ス			Checked	Ву:				
	- (/	<u> </u>	- 1/2		<u> </u>								-	

	IITORING				t Name: Former			MW - 5		wood.				
		CTION LO		007800	t/Task #: 0050.03.02A	Sampled	JR	Date:	119					
Well Number	er/ID: M∪	J-5		Sam	ple ID: MW-5_1\\	919 & MW-5	(1111)	Duplicate ID:	111919					
Method of F	Puraina:	Flow			ow + low			Intake Depth:	14.51					
· · · · · · · · · · · · · · · · · · ·	1000	110.0				Equipment		<u> </u>						
Equipme	ent	Mode	el		Serial #/Re	ntal ID	Date R	eceived/Serviced	Date	Calibrated				
Multi-Probe	Y3:	I Pro PI	U 5		17A102	108	11/1	4/19	11/19	119				
Turbidimeter	r								,					
					Casing Purge	Volume Calcu	ations							
A. Depth to W	/ater = <u>- 1 − 1 1</u>	<u>L</u> ft.		D. Wa	ater Column (B-A) =	= ft.		Depth to Water After	Sampling = <u>4</u>	<u>. らち</u> ft.				
B. Well TD (co	onstruction log	9)	_ ft.	E. 1 V	Vell Volume (C2 x 0	0.0408 x D) = _	gal.	Actual Volume Purge	ed (from below)	= gal/ml.				
C. Well Diame	eter =	in.		F. 3 V	Vell Volumes (3 x E	E) =	= gal. (If applicable, see pumping system volume calculation below)							
Pump and F			=		ml		Pumping System Volume Calculation							
Tubing Insid		D	=		In.			umping System Volubry $V_P + \pi * D^2 / 4 * L *$						
Tubing Leng Conversion			13· =		in.			,) * 16.39					
	Purging Data			Wa		$V_S = (\underline{}) + (3.1415 * \underline{}^2 / 4) * (\underline{}) * 16.39$ Exarameters (within range for 3 consecutive readings if low-flow sampling)								
Time (24 hr)	Purge Volume ⊱gal	Flow Rate		emp °C)	Specific Conductance (μS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks				
(= /)	□ ml	,⊡ 'ml/min	Stab	ilization	1 ± 3%	± 0.2 mg/L	± 0.2		±10% or <10 NTU					
1255	•	160	13.	9	1457	2.21								
1300			14.	0	1417	2.56	7.40	3 ~20.0		ampas s lewaspes				
1305	0.5		13.	6	1381	1.86	7.2	9 -34.9						
1318			13.		1375	1.06	7.2			THE CONTRACT OF THE CONTRACT O				
1315			14.		1371	6.98	7.2	5 - 78.6						
1320	\ . 0		13.	4	1339	0.96	7.2	3 -82.5						
1326	1.25	V	13.	9	1 339	0.42	7.2	3 -89.7						
									* .					
Remarks:														
לכ	17'5.	creun -	set.	<u>a</u> '	145	41/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/								
50	implid	@133	Ο,	Du	plicate s	emple	MW-5	0-111919 0	: New ear	frem				
		·s well				-								
¹ Based on El	PA low-flow s	ampling guide	lines.											
Signature:	Signature: Checked By:													

MOM	NITORIN	G WE	LL		Projec	t Name: F	ormer	Albion MGP	Site				wood	
SAMPLE				G	Projec 007800	t/Task #: 00050.03.0	2A	Sampled I	oy: Zeedu	/	Date: ハ / 2.0 /	19	******	
Well Number	er/ID: M	W- C	2		Sam	iple ID: Mん	1-6-	112019			Ouplicate ID:			
Method of I	Purging:	ow f	low	•••••••••••••••••••••••••••••••••••••••	Meti	hod of Sa				l	ntake Depth:	13.5	1	
	£815		***************************************				Field	Equipment						
Equipme	ent		Model			Seri	ial #/Re	ental ID	Date R	ecei	ived/Serviced	Date	Calibrated	
Multi-Probe	Y 5	7 P	6	>		17 A I	0290	3 4	(1/1)	5 /	19	11/19	119	
Turbidimete	r													
					.,	Casing	g Purge	Volume Calcula	ations	,				
A. Depth to W	Vater = <u>5.4</u>	<u>+6</u> f	t .	***************************************	D. W	ater Colum	n (B-A)	= ft.	***************************************	De	pth to Water After S	er Sampling = <u>5.55</u> ft.		
B. Well TD (c	onstruction l	og)	f	t.	E. 1	Well Volum	e (C² x (0.0408 x D) =	gal.	Act	tual Volume Purgeo	d (from below) = gal/ml.		
C. Well Diam	eter =	in.			F. 3 \	Well Volum	es (3 x l	Ξ) =	_ gal.	(If a	applicable, see pumpir	ng system volume	e calculation below)	
Pump and F			V _p	-	ml Pumping System Volume Calcu						,			
Tubing Insid			D	=			In.	······································	Pumping System Volume (Vs) $V_S = V_P + \pi * D^2 / 4 * L * 16.39 \text{ ml/in}^3$					
Tubing Leng Conversion		e3 to ml	L 1 in ³	=			ln. ml			•••••	+ π * D² / 4 * L * 1 + (3.1415 *		\ * 46 20	
	Purging Dat		1 111		Water Quality Paramete									
Time (24 hr)	Purge Volume Ø gal	Flow □ g	jpm		emp °C)	Specific Conductance (μS/cm)		Dissolved Oxygen (mg/L)	рН		Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks	
	□ml	ااا اعر	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Stab	ilization	± 3%		± 0.2 mg/L	± 0.2	2	± 20 mV	±10% or <10 NTU		
0.645	0	19	C	13	Ц.	(101)		1.82	7,	77	- 163.7			
0650				1 7	5, 3	100	1	(.13	7.7	-3	167.2			
0655				13),4	990	}	1.14	7.54		168.0			
0700				13	5.5	100	5	0.66	7.4	-4	1683		,	
0705	·			13) . Lf	10	١١٠ .	0.63	7.	39	168.9			
0710				13	٠4	10	11	0.45	7.	16	169.6			
0715	1.5	13.5 1018 6.35							7.3	2	170.6			
													·	
Remarks:			•											
	X	M5/	M 55	75						*************				
	ζ.	se uno	led	(g)	_]	715		and the state of t						
	нини ланнальна в в в в в в в в в в в в в в в в в в в									ш	-H-(-11)3-10 (11)1111-1111-11-11-11-11-11-11-11-11-11-	497(())10))11		
¹ Based on E	PA-low-flow	sampling	guidelin	es.										
Signature:	J.,		al	^ ^				Checked	Ву:					
	1/	1/2	- 00		_						·			

Modified 11/14/2019

Page___of___

MON	JITOR	ING	WELL		Project	t Name: F	ormer	Albion MGP	Site			•	wood.
			TION LO			t/Task #: 0050.03.0		Sampled Dack	by: Zeecl	.√	Date:	19	WOOO.
Well Number	er/ID:	A (.:	99	1		nla ID.		-112			Ouplicate ID:		:,
Method of F	ourging:	10	w flow)	Meth	nod of Sa	mpling:	10m +1	.nw		ntake Depth:	16'	· .
	· ·		, ,					Equipment		!_	,		
Equipme	nt		Model			Seri	al #/Rei	ntal ID	Date F	Rece	ived/Serviced	Date	Calibrated
Multi-Probe		YSI	Dro Ave	1		17A1	02909	\$	Ιι,	115	/ 19	1/19/1	9
Turbidimete	r	***************************************											
						Casing	Purge \	Volume Calcul	ations				
A. Depth to W	/ater = <u> </u>	1.8	ţ ft.		D. Wa	ater Colum	n (B-A) =	= ft.		De	pth to Water After	Sampling = $\frac{\sqrt{2}}{2}$	<u>-,55</u> ft.
B. Well TD (co	onstructio	n log)	f	ft.	E. 1 V	Well Volum	e (C² x 0	.0408 x D) =	gal.	Act	tual Volume Purge	d (from below)	= gal/ml.
C. Well Diame	eter =		ln.		F. 3 V	Vell Volum	es (3 x E) =	gal.	(If a	applicable, see pumpi	ng system volum	e calculation below)
Pump and F		•••••		=		,	······································	Pumping System Volume Calculation					
Tubing Insid		ter	D					Pumping System Volume (Vs)					
Tubing Leng	***************************************	L 3 .	L to rel dip3	=				$V_S = V_P + \pi * D^2 / 4 * L * 16.39 \text{ ml/in}^3$ $V_S = () + (3.1415 * ^2 / 4) * ()$					
Conversion	Purging	r.	to ml 1 in³		ml			-					
Time (24 hr)	Purge Volum ⊠ga	e 1e	Flow Rate		emp °C)	mp Specific		Dissolved Oxygen (mg/L)	pH		Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks
	□ml		Ø/ml/min	Stabi	lization	1 ±	3%	± 0.2 mg/L	_ ± 0.2		± 20 mV	±10% or <10 NTU	
0840	0		190	5.	7	5	-,4?	4.88	7.5	0	196.4		
0845				12	.7	35	76	1.40	7.2	7	-48.6		
0850	(A)			12	, 8	35	54	1.06	7,	8	-74.3		
0855				12	<u></u> 9	346	7.	1.06	7.1	4	-83.4		
0900	1.0	Ø	ν	12	٦.	331	7	0.86	7.1	4	-89.0		
					,,,,,,,								
	м инасальнасцияция		·									***************************************	
Remarks:					·		,						
remarks.													
	Sa	mp	Jed (<u>~</u> (340¢	<u> </u>						uninin matuudumikteesselesseestaldasse	
MODIFICATION OF THE STREET													
										······			
	PANow-flo	ow sai	mpling guidelin	nes.	-			<u> </u>	_				
Signature:	Y		full	<u>``\</u>	_			Checked	By:				
	¥												

Page___of___

MOI	NITOF	RING	s WI	ELL		Projec	t Name: I	ormer	Albion MGP	Site				wood		
SAMPLE	E COL	LE	CTIC	ON LO	G [Projec 007800	t/Task #: 0050.03.0	12A	Sampled	by: Keed	res	Date:	' 19	WOOO.		
Well Numb	er/ID: (✓	۱W-	-9R	,		Sam	ple ID:	W-9	R_1120	919		uplicate ID:	,			
Method of	Purging	g: (ac	، ن	Flau	J	Meth	od of Sa	mpling	·low Flo	w	Ir	ntake Depth:				
						•		Field	Equipment	•						
Equipme	ent			Model			Ser	ial #/Re	ental ID	Date R	ecei	ved/Serviced	Date	Calibrated		
Multi-Probe		Y5	I !	Pro PI	√ 5		17A	102	908	11/	8/	(19	11/19	119		
Turbidimete	r			ž							,		1			
***************************************							Casing	g Purge '	Volume Calcul	ations						
A. Depth to W	/ater = _	12.	89	_ ft.	M1111111111111111111111111111111111111	D. Wa	ater Colum	n (B-A) =	= ft.		Dep	oth to Water After	Sampling =\\\	<u>፡ ሣ_</u> ft.		
B. Well TD (c	onstructi	on log)		ft.	E. 1 V	Vell Volum	e (C² x 0).0408 x D) =	gal.	Actı	ual Volume Purge	d (from below)	= gal/ml.		
C. Well Diam	eter =		in.			F. 3 V	Vell Volum	es (3 x E	E) =	gal.	(If a	pplicable, see pumpi	ng system volume	e calculation below)		
Pump and F	•••••		ıme	V _p	=			ml		Pumping System Volume Calculation						
Tubing Insid	••••••	eter		D	_	ļ		In.				ing System Volu		***************************************		
Tubing Leng		. 2		L	=			In.				16.39 ml/in ³				
Conversion				1 in ³	=			ml	«			+ (3.1415 *				
	Purging	Data	 			VVa				ange for 3	cons	secutive readings Oxidation	s if low-flow sa	mpling)		
Time (24 hr)	Purç Volui ⊠g	me al		w Rate gpm nl/min		emp °C)	Condu	Specific Conductance (μS/cm) Dissolved Oxygen (mg/L)				Reduction Potential (mV)	Turbidity (NTU)	Remarks		
	□ n	11			Stabi	lization¹	±;	3%	± 0.2 mg/L	± 0.2	2	± 20 mV	±10% or <10 NTU			
0930	0		l°	},0	12	. 8	7-3	39	9.02	7.4	-2	57.7				
0935					13	. 8	59	29	9.13	7.29	6	67.9				
0940	»:»«««««««««««««««««««««««»»»				13	. 6	69	87	8.52	7.1	٩	83.9				
0945					13.	5	80-	74-	791	7.14	•	43.2				
0950					\3	. 6	849	7 7	7.57	マ.バ	۲_	99.7				
0955	1.25)	Ç	'	13.	6	86	86	7.53	7.1	0	105.5				
	-													······································		
Remarks:																
Remarks.			·····	hh aa aa										***************************************		
	Sampled @ 0955															
	5	ام	\ad	a.	00	155	!									
d (him and an an and an and an and an and an an and an	JO	wk	3 W \			1 1 1	•••••••••••••••••••••••••••••••••••••••		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		***************************************					
¹ Based on E,	E Ow f	lowes	modice	a quidolin									······································	•••••••••••••••••••••••••••••••••••••••		
7	1 / /	Vy Sa	A						Charles	Dv.						
Signature Checked B								υy.				B				
	1/															

Modified 11/14/2019

Page___of___

MON	NITOF	RING	WEI	LL	ļ				Albion MGP			wood			
SAMPLE		LEC	CTION	N LO	G	008700	t/Task #: 0050.03.0	2A		V eod			19		
Well Numb	er/ID:	MW	1-10			Sam	ple ID:	NW.	-10-11	1919		Duplicate ID:		Ť	
Method of	Purging	g: /	ow-	Flow	,	Meth	od of Sa	mpling	low flow	J		Intake Depth:	世- 1	6	
			·	1000					Equipment					·	
Equipme	ent		P	Model			Seri	ial #/Re	ental ID	Date R	ece	eived/Serviced	Date	Calibrated	
Multi-Probe		Y5I	- 81	o P1	v 5		17A	102	708	(1)	18	/19	11/19	119	
Turbidimete	r														
		,				,	Casing	g Purge	Volume Calcula	ations					
A. Depth to V	/ater = _	12 5	l L ft			D. Wa	ater, Colum	n (B-A) :	= ft.		De	epth to Water After S	Sampling = \\\	<u>, 78</u> ft.	
B. Well TD (c	onstructi	on log)	f	t.	E. 1 V	Vell Volum	e (C² x (0.0408 x D) =	gal.	Ac	ctual Volume Purged	d (from below)	= gal/ml.	
C. Well Diam	eter =		in.		. *	F. 3 V	Veil Volum	es (3 x E	E) =	_ gal.	(If	applicable, see pumpir	ng system volume	e calculation below)	
Pump and F		***************************************	ıme	Vp	=			ml .		Pumping System Volume Calculation Pumping System Volume (Vs)					
Tubing Insid		eter		D L	=			ln. In.		Ve=		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Conversion		ches ³	to ml	1 in ³	=			In. $V_S = V_P + \pi * D^2 / 4 * L * 16.39 r$ In. $V_S = () + (3.1415 * ^2 / 4)$) * 16.39	
	Purging) Data				Wa	ater Qualit	y Paran	neters (within ra	ange for 3	if low-flow sa	mpling)			
Time (24 hr)	Purç Volui ☑ g	me	Flow ∣ □ gı	pm		emp °C)	Condu	cific ictance /cm)	Dissolved Oxygen (mg/L)	рН		Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks	
	∵□ m	nl	,⊠ ml	/111811	Stab	lization ¹	±	3%	± 0.2 mg/L	± 0.2	2	± 20 mV	±10% or <10 NTU		
1600	0		ふし	00	14	.0	479	+2_	1,57	7.0	5	154.2			
1605					14	. 1	41	73	1.72	6.9	٩	147.2			
1610					13	. 6	444	φ.	1.81	6.89)	148.2			
1615				,	14	· . 6	45-	74	1.74	6.84	<u> </u>	146.9			
1620	экашынна өккацолим.				14	. 6	489	2	1.67	6.83	3	147.8			
16/25	s ,				13	.8	521	7	1.52	6.8	1	148.5		\ \	
1630	2.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1		·····		13.	7	537	16	1.45	6.8	1	148.9			
1635	2.	.0 13.5 5414							1.32	6.8	2_	148.6			
Remarks:													*		
	(Sam	pled	(4) 1/	36	-								
· · · · · · · · · · · · · · · · · · ·															
and the state of t	***************************************		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa				***************************************		
¹∄Based on E	PA low-f	low sa	mpling o	guidelir	es.										
Signature:	4	~ (V-V	0					Checked By:						

Modified 11/14/2019

Page___of__

APPENDIX C

Analytical Laboratory Reports

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-163165-1

Client Project/Site: Albion, NY Groundwater Project

For:

Wood E&I Solutions Inc 180 Grand Avenue Suite 1100 Oakland, California 94612

Attn: Mr. Alex Rosenthal

Joseph V. giacomagger

Authorized for release by: 12/3/2019 9:43:05 AM

Joe Giacomazza, Project Management Assistant II joe.giacomazza@testamericainc.com

Designee for

Brian Fischer, Manager of Project Management (716)504-9835

brian.fischer@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

3

4

5

7

8

11

12

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
Surrogate Summary	14
QC Sample Results	15
QC Association Summary	20
Lab Chronicle	22
Certification Summary	24
Method Summary	25
Sample Summary	26
Chain of Custody	27
Receint Checklists	31

6

8

10

11

13

Definitions/Glossary

Client: Wood E&I Solutions Inc

Project/Site: Albion, NY Groundwater Project

Job ID: 480-163165-1

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC/MS Semi VOA

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

X Surrogate is outside control limits

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)
LOD Limit of Detection (DoD/DOE)
LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

Eurofins TestAmerica, Buffalo

2

3

4

Ę

6

9

10

12

4 4

Case Narrative

Client: Wood E&I Solutions Inc

Project/Site: Albion, NY Groundwater Project

Job ID: 480-163165-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-163165-1

Comments

No additional comments.

Receipt

The samples were received on 11/21/2019 9:30 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 4 coolers at receipt time were 1.9° C, 2.2° C, 2.4° C and 3.2° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC/MS Semi VOA

Method 8270D: Surrogate recovery for the following sample was outside the upper control limit: MW-9R-112019 (480-163165-5). This sample did not contain any target analytes; therefore, re-extraction and/or re-analysis was not performed.

Method 8270D: The following sample was diluted due to the nature of the sample matrix: MW-8R-112019 (480-163165-4). Elevated reporting limits (RLs) are provided.

Method 8270D: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-8R-112019 (480-163165-4). Elevated reporting limits (RLs) are provided.

Method 8270D: The following sample required a dilution due to the abundance of target analytes: MW-8R-112019 (480-163165-4). Because of this dilution, the surrogate spike concentration in the sample was reduced to a level where the recovery calculation does not provide useful information.

Method 8270D: The following sample was diluted due to the nature of the sample matrix: MW-50-111919 (480-163165-7). Elevated reporting limits (RLs) are provided.

Method 8270D: Three surrogates are used for this analysis. The laboratory's SOP allows one of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following sample contained an allowable number of surrogate compounds outside limits: MW-9R-112019 (480-163165-5). These results have been reported and qualified.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Job ID: 480-163165-1

3

1

6

0

<u>۾</u>

9

1 4

12

Client: Wood E&I Solutions Inc

Project/Site: Albion, NY Groundwater Project

Job ID: 480-163165-1

Client Sample ID: MW-1-111919 Lab Sample ID: 480-163165-1

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Cvanide Total	0.098	0.010	0.0060 mg/l	1 4500 CN F-2011	Total/NA

Client Sample ID: MW-5-111919

Lab Sample ID: 480-163165-2

Analyte	Result Qualifie	er RL	MDL	Unit	Dil Fac D	Method	Prep Type
Benzene	23	1.0	0.41	ug/L		8260C	Total/NA
Toluene	4.0	1.0	0.51	ug/L	1	8260C	Total/NA
Ethylbenzene	13	1.0	0.74	ug/L	1	8260C	Total/NA
m-Xylene & p-Xylene	9.1	2.0	0.66	ug/L	1	8260C	Total/NA
o-Xylene	12	1.0	0.76	ug/L	1	8260C	Total/NA
Xylenes, Total	21	2.0	0.66	ug/L	1	8260C	Total/NA
Total BTEX	61	2.0	1.0	ug/L	1	8260C	Total/NA
Acenaphthene	34	5.0	0.41	ug/L	1	8270D	Total/NA
Acenaphthylene	33	5.0	0.38	ug/L	1	8270D	Total/NA
Anthracene	6.2	5.0	0.28	ug/L	1	8270D	Total/NA
Fluoranthene	5.6	5.0	0.40	ug/L	1	8270D	Total/NA
Fluorene	45	5.0	0.36	ug/L	1	8270D	Total/NA
Naphthalene	24	5.0	0.76	ug/L	1	8270D	Total/NA
Phenanthrene	23	5.0	0.44	ug/L	1	8270D	Total/NA
Pyrene	3.1 J	5.0	0.34	ug/L	1	8270D	Total/NA
Cyanide, Total	0.16	0.010	0.0060	mg/L	1	4500 CN E-2011	Total/NA

Client Sample ID: MW-6-112019

Lab Sample ID: 480-163165-3

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Cyanide, Total	0.041	0.010	0.0060 mg/L	1 4500 CN E-2011	Total/NA

Client Sample ID: MW-8R-112019

Lab Sample ID: 480-163165-4

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	49	1.0	0.41	ug/L	1	_	8260C	Total/NA
Toluene	2.6	1.0	0.51	ug/L	1		8260C	Total/NA
Ethylbenzene	3.7	1.0	0.74	ug/L	1		8260C	Total/NA
m-Xylene & p-Xylene	12	2.0	0.66	ug/L	1		8260C	Total/NA
o-Xylene	5.7	1.0	0.76	ug/L	1		8260C	Total/NA
Xylenes, Total	18	2.0	0.66	ug/L	1		8260C	Total/NA
Total BTEX	73	2.0	1.0	ug/L	1		8260C	Total/NA
Acenaphthene	57	25	2.1	ug/L	5		8270D	Total/NA
Acenaphthylene	21 J	25	1.9	ug/L	5		8270D	Total/NA
Fluoranthene	4.2 J	25	2.0	ug/L	5		8270D	Total/NA
Fluorene	34	25	1.8	ug/L	5		8270D	Total/NA
Phenanthrene	33	25	2.2	ug/L	5		8270D	Total/NA
Pyrene	2.1 J	25	1.7	ug/L	5		8270D	Total/NA
Naphthalene - DL	900	100	15	ug/L	20		8270D	Total/NA
Cyanide, Total	0.21	0.010	0.0060	mg/L	1		4500 CN E-2011	Total/NA

Client Sample ID: MW-9R-112019

Lab Sample ID: 480-163165-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Toluene	0.57		1.0	0.51	ug/L		_	8260C	Total/NA
Acenaphthene	6.1		5.0	0.41	ug/L	1		8270D	Total/NA
Acenaphthylene	0.38	J	5.0	0.38	ug/L	1		8270D	Total/NA
Anthracene	0.65		5.0	0.28	ua/L	1		8270D	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Buffalo

12/3/2019

Page 5 of 31

9

3

4

5

7

9

12

. .

Detection Summary

Client: Wood E&I Solutions Inc

Project/Site: Albion, NY Groundwater Project

Lab Sample ID: 480-163165-5

Lab Sample ID: 480-163165-6

Lab Sample ID: 480-163165-7

Lab Sample ID: 480-163165-8

Job ID: 480-163165-1

Client Sample ID: MW-9R-112019 (Continued)

Analyte	Result Qua	alifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Fluorene	3.0 J	5.0	0.36	ug/L		_	8270D	Total/NA
Naphthalene	50	5.0	0.76	ug/L	1		8270D	Total/NA
Phenanthrene	2.8 J	5.0	0.44	ug/L	1		8270D	Total/NA
Cyanide, Total	0.054	0.010	0.0060	mg/L	1		4500 CN E-2011	Total/NA

Client Sample ID: MW-10-111919

Analyte	Result Q	ualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	14		1.0	0.41	ug/L		_	8260C	Total/NA
Total BTEX	14		2.0	1.0	ug/L	1		8260C	Total/NA
Acenaphthene	0.86 J		5.0	0.41	ug/L	1		8270D	Total/NA
Naphthalene	0.99 J		5.0	0.76	ug/L	1		8270D	Total/NA
Cyanide, Total	0.010		0.010	0.0060	mg/L	1		4500 CN E-2011	Total/NA

Client Sample ID: MW-50-111919

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	23		1.0	0.41	ug/L	1	_	8260C	Total/NA
Toluene	4.1		1.0	0.51	ug/L	1		8260C	Total/NA
Ethylbenzene	12		1.0	0.74	ug/L	1		8260C	Total/NA
m-Xylene & p-Xylene	8.6		2.0	0.66	ug/L	1		8260C	Total/NA
o-Xylene	11		1.0	0.76	ug/L	1		8260C	Total/NA
Xylenes, Total	20		2.0	0.66	ug/L	1		8260C	Total/NA
Total BTEX	59		2.0	1.0	ug/L	1		8260C	Total/NA
Acenaphthene	38		25	2.1	ug/L	5		8270D	Total/NA
Acenaphthylene	36		25	1.9	ug/L	5		8270D	Total/NA
Anthracene	6.4	J	25	1.4	ug/L	5		8270D	Total/NA
Fluoranthene	5.4	J	25	2.0	ug/L	5		8270D	Total/NA
Fluorene	46		25	1.8	ug/L	5		8270D	Total/NA
Naphthalene	25		25	3.8	ug/L	5		8270D	Total/NA
Phenanthrene	23	J	25	2.2	ug/L	5		8270D	Total/NA
Pyrene	3.5	J	25	1.7	ug/L	5		8270D	Total/NA
Cyanide, Total	0.16		0.010	0.0060	mg/L	1		4500 CN E-2011	Total/NA

Client Sample ID: TRIP BLANK

No Detections.

This Detection Summary does not include radiochemical test results.

Client Sample ID: MW-1-111919

Date Collected: 11/19/19 15:00

Date Received: 11/21/19 09:30

Client: Wood E&I Solutions Inc

Lab Sample ID: 480-163165-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	0.41	ug/L			11/25/19 16:28	1
Toluene	ND		1.0	0.51	ug/L			11/25/19 16:28	1
Ethylbenzene	ND		1.0	0.74	ug/L			11/25/19 16:28	1
m-Xylene & p-Xylene	ND		2.0	0.66	ug/L			11/25/19 16:28	1
o-Xylene	ND		1.0	0.76	ug/L			11/25/19 16:28	1
Xylenes, Total	ND		2.0	0.66	ug/L			11/25/19 16:28	1
Total BTEX	ND		2.0	1.0	ug/L			11/25/19 16:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	95	·	80 - 120			-		11/25/19 16:28	1
1,2-Dichloroethane-d4 (Surr)	102		77 - 120					11/25/19 16:28	1
4-Bromofluorobenzene (Surr)	105		73 - 120					11/25/19 16:28	1
Dibromofluoromethane (Surr)	108		75 - 123					11/25/19 16:28	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		5.0	0.41	ug/L		11/25/19 15:25	11/28/19 00:41	1
Acenaphthylene	ND		5.0	0.38	ug/L		11/25/19 15:25	11/28/19 00:41	1
Anthracene	ND		5.0	0.28	ug/L		11/25/19 15:25	11/28/19 00:41	1
Benzo[a]anthracene	ND		5.0	0.36	ug/L		11/25/19 15:25	11/28/19 00:41	1
Benzo[a]pyrene	ND		5.0	0.47	ug/L		11/25/19 15:25	11/28/19 00:41	1
Benzo[b]fluoranthene	ND		5.0	0.34	ug/L		11/25/19 15:25	11/28/19 00:41	1
Benzo[g,h,i]perylene	ND		5.0	0.35	ug/L		11/25/19 15:25	11/28/19 00:41	1
Benzo[k]fluoranthene	ND		5.0	0.73	ug/L		11/25/19 15:25	11/28/19 00:41	1
Chrysene	ND		5.0	0.33	ug/L		11/25/19 15:25	11/28/19 00:41	1
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		11/25/19 15:25	11/28/19 00:41	1
Fluoranthene	ND		5.0	0.40	ug/L		11/25/19 15:25	11/28/19 00:41	1
Fluorene	ND		5.0	0.36	ug/L		11/25/19 15:25	11/28/19 00:41	1
Indeno[1,2,3-cd]pyrene	ND		5.0	0.47	ug/L		11/25/19 15:25	11/28/19 00:41	1
Naphthalene	ND		5.0	0.76	ug/L		11/25/19 15:25	11/28/19 00:41	1
Phenanthrene	ND		5.0	0.44	ug/L		11/25/19 15:25	11/28/19 00:41	1
Pyrene	ND		5.0	0.34	ug/L		11/25/19 15:25	11/28/19 00:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	107		48 - 120				11/25/19 15:25	11/28/19 00:41	1
Nitrobenzene-d5 (Surr)	94		46 - 120				11/25/19 15:25	11/28/19 00:41	1
p-Terphenyl-d14 (Surr)	105		60 - 148				11/25/19 15:25	11/28/19 00:41	1

General Chemistry Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
p-Terphenyl-d14 (Surr)	105	60 - 148			11/25/19 15:25	11/28/19 00:41	1
Nitrobenzene-d5 (Surr)	94	46 - 120			11/25/19 15:25	11/28/19 00:41	1
2-Fluorobiphenyl	107	48 - 120		-	11/25/19 15:25	11/28/19 00:41	1

Analyte RLMDL Unit Prepared Analyzed 0.010 <u>11/26/19 18:53</u> <u>11/26/19 19:33</u> **Cyanide, Total** 0.098 0.0060 mg/L

Client Sample ID: MW-5-111919 Lab Sample ID: 480-163165-2 Date Collected: 11/19/19 13:30 **Matrix: Water** Date Received: 11/21/19 09:30

Method: 8260C - Volatile Organic Compounds by GC/MS										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Benzene	23		1.0	0.41	ug/L			11/25/19 16:52	1	
Toluene	4.0		1.0	0.51	ug/L			11/25/19 16:52	1	
Ethylbenzene	13		1.0	0.74	ug/L			11/25/19 16:52	1	

Eurofins TestAmerica, Buffalo

Page 7 of 31 12/3/2019

Job ID: 480-163165-1

Client: Wood E&I Solutions Inc Project/Site: Albion, NY Groundwater Project

Client Sample ID: MW-5-111919

Date Collected: 11/19/19 13:30 Date Received: 11/21/19 09:30

Lab Sample ID: 480-163165-2

Matrix: Water

Method: 8260C - Volatile O	rganic Compo	unds by G	C/MS (Conti	nued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
m-Xylene & p-Xylene	9.1		2.0	0.66	ug/L			11/25/19 16:52	1
o-Xylene	12		1.0	0.76	ug/L			11/25/19 16:52	1
Xylenes, Total	21		2.0	0.66	ug/L			11/25/19 16:52	1
Total BTEX	61		2.0	1.0	ug/L			11/25/19 16:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	91		80 - 120					11/25/19 16:52	1
1,2-Dichloroethane-d4 (Surr)	99		77 - 120					11/25/19 16:52	1
4-Bromofluorobenzene (Surr)	100		73 - 120					11/25/19 16:52	1
Dibromofluoromethane (Surr)	104		75 - 123					11/25/19 16:52	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	34		5.0	0.41	ug/L		11/25/19 15:25	11/28/19 01:10	1
Acenaphthylene	33		5.0	0.38	ug/L		11/25/19 15:25	11/28/19 01:10	1
Anthracene	6.2		5.0	0.28	ug/L		11/25/19 15:25	11/28/19 01:10	1
Benzo[a]anthracene	ND		5.0	0.36	ug/L		11/25/19 15:25	11/28/19 01:10	1
Benzo[a]pyrene	ND		5.0	0.47	ug/L		11/25/19 15:25	11/28/19 01:10	1
Benzo[b]fluoranthene	ND		5.0	0.34	ug/L		11/25/19 15:25	11/28/19 01:10	1
Benzo[g,h,i]perylene	ND		5.0	0.35	ug/L		11/25/19 15:25	11/28/19 01:10	1
Benzo[k]fluoranthene	ND		5.0	0.73	ug/L		11/25/19 15:25	11/28/19 01:10	1
Chrysene	ND		5.0	0.33	ug/L		11/25/19 15:25	11/28/19 01:10	1
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		11/25/19 15:25	11/28/19 01:10	1
Fluoranthene	5.6		5.0	0.40	ug/L		11/25/19 15:25	11/28/19 01:10	1
Fluorene	45		5.0	0.36	ug/L		11/25/19 15:25	11/28/19 01:10	1
Indeno[1,2,3-cd]pyrene	ND		5.0	0.47	ug/L		11/25/19 15:25	11/28/19 01:10	1
Naphthalene	24		5.0	0.76	ug/L		11/25/19 15:25	11/28/19 01:10	1
Phenanthrene	23		5.0	0.44	ug/L		11/25/19 15:25	11/28/19 01:10	1
Pyrene	3.1	J	5.0	0.34	ug/L		11/25/19 15:25	11/28/19 01:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	101		48 - 120				11/25/19 15:25	11/28/19 01:10	1
Nitrobenzene-d5 (Surr)	101		46 - 120				11/25/19 15:25	11/28/19 01:10	1
p-Terphenyl-d14 (Surr)	88		60 - 148				11/25/19 15:25	11/28/19 01:10	1
General Chemistry									
A see also sta	D 14	O I'C	ъ.	ME	1114		Duamanad	A a l a al	D11 E

Analyte	Result Qualifier	RL	MDL C	Unit	ט	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.16	0.010	0.0060 n	mg/L		11/26/19 18:53	11/26/19 19:38	1
Client Sample ID: MW-6-11	2019				l a	h Sample	ID: 480-163	165_3

Client Sample ID: MW-6-112019 Date Collected: 11/20/19 07:15 **Matrix: Water** Date Received: 11/21/19 09:30

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND ND	1.0	0.41	ug/L			11/26/19 03:48	1
Toluene	ND	1.0	0.51	ug/L			11/26/19 03:48	1
Ethylbenzene	ND	1.0	0.74	ug/L			11/26/19 03:48	1
m-Xylene & p-Xylene	ND	2.0	0.66	ug/L			11/26/19 03:48	1
o-Xylene	ND	1.0	0.76	ug/L			11/26/19 03:48	1
Xylenes, Total	ND	2.0	0.66	ug/L			11/26/19 03:48	1

Eurofins TestAmerica, Buffalo

Page 8 of 31

12/3/2019

Client: Wood E&I Solutions Inc Job ID: 480-163165-1

Project/Site: Albion, NY Groundwater Project

Client Sample ID: MW-6-112019

Lab Sample ID: 480-163165-3 Date Collected: 11/20/19 07:15

Matrix: Water Date Received: 11/21/19 09:30

Method: 8260C - Volatile O	rganic Compo	unds by G	C/MS (Contin	nued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	ND		2.0	1.0	ug/L			11/26/19 03:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	108		80 - 120					11/26/19 03:48	1
1,2-Dichloroethane-d4 (Surr)	105		77 - 120					11/26/19 03:48	1
4-Bromofluorobenzene (Surr)	90		73 - 120					11/26/19 03:48	1
Dibromofluoromethane (Surr)	99		75 123					11/26/19 03:48	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		5.0	0.41	ug/L		11/25/19 15:25	11/28/19 01:39	1
Acenaphthylene	ND		5.0	0.38	ug/L		11/25/19 15:25	11/28/19 01:39	1
Anthracene	ND		5.0	0.28	ug/L		11/25/19 15:25	11/28/19 01:39	1
Benzo[a]anthracene	ND		5.0	0.36	ug/L		11/25/19 15:25	11/28/19 01:39	1
Benzo[a]pyrene	ND		5.0	0.47	ug/L		11/25/19 15:25	11/28/19 01:39	1
Benzo[b]fluoranthene	ND		5.0	0.34	ug/L		11/25/19 15:25	11/28/19 01:39	1
Benzo[g,h,i]perylene	ND		5.0	0.35	ug/L		11/25/19 15:25	11/28/19 01:39	1
Benzo[k]fluoranthene	ND		5.0	0.73	ug/L		11/25/19 15:25	11/28/19 01:39	1
Chrysene	ND		5.0	0.33	ug/L		11/25/19 15:25	11/28/19 01:39	1
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		11/25/19 15:25	11/28/19 01:39	1
Fluoranthene	ND		5.0	0.40	ug/L		11/25/19 15:25	11/28/19 01:39	1
Fluorene	ND		5.0	0.36	ug/L		11/25/19 15:25	11/28/19 01:39	1
Indeno[1,2,3-cd]pyrene	ND		5.0	0.47	ug/L		11/25/19 15:25	11/28/19 01:39	1
Naphthalene	ND		5.0	0.76	ug/L		11/25/19 15:25	11/28/19 01:39	1
Phenanthrene	ND		5.0	0.44	ug/L		11/25/19 15:25	11/28/19 01:39	1
Pyrene	ND		5.0	0.34	ug/L		11/25/19 15:25	11/28/19 01:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	96		48 - 120				11/25/19 15:25	11/28/19 01:39	1
Nitrobenzene dE (Surr)	90		46 120				11/25/10 15:25	11/29/10 01:20	1

Surrogate	%Recovery Qu	ualitier Limits	Prepared	Anaiyzea	DII Fac
2-Fluorobiphenyl	96	48 - 120	11/25/19 15:25	11/28/19 01:39	1
Nitrobenzene-d5 (Surr)	80	46 - 120	11/25/19 15:25	11/28/19 01:39	1
p-Terphenyl-d14 (Surr)	94	60 - 148	11/25/19 15:25	11/28/19 01:39	1
General Chemistry					

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.041		0.010	0.0060	mg/L		11/27/19 10:39	11/27/19 16:30	1

Client Sample ID: MW-8R-112019 Lab Sample ID: 480-163165-4 Date Collected: 11/20/19 09:00 **Matrix: Water** Date Received: 11/21/19 09:30

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	49	1.0	0.41	ug/L			11/25/19 17:16	1
Toluene	2.6	1.0	0.51	ug/L			11/25/19 17:16	1
Ethylbenzene	3.7	1.0	0.74	ug/L			11/25/19 17:16	1
m-Xylene & p-Xylene	12	2.0	0.66	ug/L			11/25/19 17:16	1
o-Xylene	5.7	1.0	0.76	ug/L			11/25/19 17:16	1
Xylenes, Total	18	2.0	0.66	ug/L			11/25/19 17:16	1
Total BTEX	73	2.0	1.0	ug/L			11/25/19 17:16	1

Eurofins TestAmerica, Buffalo

Job ID: 480-163165-1

Client: Wood E&I Solutions Inc Project/Site: Albion, NY Groundwater Project

Client Sample ID: MW-8R-112019

Date Collected: 11/20/19 09:00 Date Received: 11/21/19 09:30 Lab Sample ID: 480-163165-4

Matrix: Water

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	88	80 - 120		11/25/19 17:16	1
1,2-Dichloroethane-d4 (Surr)	96	77 - 120		11/25/19 17:16	1
4-Bromofluorobenzene (Surr)	92	73 - 120		11/25/19 17:16	1
Dibromofluoromethane (Surr)	93	75 ₋ 123		11/25/19 17:16	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	57		25	2.1	ug/L		11/25/19 15:25	11/28/19 02:07	5
Acenaphthylene	21	J	25	1.9	ug/L		11/25/19 15:25	11/28/19 02:07	5
Anthracene	ND		25	1.4	ug/L		11/25/19 15:25	11/28/19 02:07	5
Benzo[a]anthracene	ND		25	1.8	ug/L		11/25/19 15:25	11/28/19 02:07	5
Benzo[a]pyrene	ND		25	2.4	ug/L		11/25/19 15:25	11/28/19 02:07	5
Benzo[b]fluoranthene	ND		25	1.7	ug/L		11/25/19 15:25	11/28/19 02:07	5
Benzo[g,h,i]perylene	ND		25	1.8	ug/L		11/25/19 15:25	11/28/19 02:07	5
Benzo[k]fluoranthene	ND		25	3.7	ug/L		11/25/19 15:25	11/28/19 02:07	5
Chrysene	ND		25	1.7	ug/L		11/25/19 15:25	11/28/19 02:07	5
Dibenz(a,h)anthracene	ND		25	2.1	ug/L		11/25/19 15:25	11/28/19 02:07	5
Fluoranthene	4.2	J	25	2.0	ug/L		11/25/19 15:25	11/28/19 02:07	5
Fluorene	34		25	1.8	ug/L		11/25/19 15:25	11/28/19 02:07	5
Indeno[1,2,3-cd]pyrene	ND		25	2.4	ug/L		11/25/19 15:25	11/28/19 02:07	5
Phenanthrene	33		25	2.2	ug/L		11/25/19 15:25	11/28/19 02:07	5
Pyrene	2.1	J	25	1.7	ug/L		11/25/19 15:25	11/28/19 02:07	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	97		48 - 120	11/25/19 15:25	11/28/19 02:07	5
Nitrobenzene-d5 (Surr)	61		46 - 120	11/25/19 15:25	11/28/19 02:07	5
p-Terphenyl-d14 (Surr)	79		60 - 148	11/25/19 15:25	11/28/19 02:07	5

Method: 8270D - Semivolat Analyte Naphthalene		mpounds Qualifier	(GC/MS) - DL RL 100	MDL	Unit ug/L	<u>D</u>	Prepared 11/25/19 15:25	Analyzed 11/29/19 16:18	Dil Fac
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	101		48 - 120				11/25/19 15:25	11/29/19 16:18	20
Nitrobenzene-d5 (Surr)	67		46 - 120				11/25/19 15:25	11/29/19 16:18	20
p-Terphenyl-d14 (Surr)	76		60 - 148				11/25/19 15:25	11/29/19 16:18	20

General Chemistry							
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.21	0.010	0.0060 mg/L		11/26/19 18:53	11/26/19 19:40	1

Lab Sample ID: 480-163165-5 Client Sample ID: MW-9R-112019 Date Collected: 11/20/19 09:55 **Matrix: Water**

Date Received: 11/21/19 09:30

Method: 8260C - Volatile (Organic Compounds by GC/	MS				
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Benzene	ND —	1.0	0.41 ug/L		11/25/19 17:40	1
Toluene	0.57 J	1.0	0.51 ug/L		11/25/19 17:40	1
Ethylbenzene	ND	1.0	0.74 ug/L		11/25/19 17:40	1
m-Xylene & p-Xylene	ND	2.0	0.66 ug/L		11/25/19 17:40	1
o-Xylene	ND	1.0	0.76 ug/L		11/25/19 17:40	1

Eurofins TestAmerica, Buffalo

Page 10 of 31

Job ID: 480-163165-1

Client: Wood E&I Solutions Inc Project/Site: Albion, NY Groundwater Project

Client Sample ID: MW-9R-112019

Date Collected: 11/20/19 09:55 Date Received: 11/21/19 09:30

Dibromofluoromethane (Surr)

Lab Sample ID: 480-163165-5

11/25/19 17:40

Matrix: Water

Method: 8260C - Volatile O	rganic Compour	nds by G	C/MS (Contir	nued)					
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	ND ND		2.0	0.66	ug/L			11/25/19 17:40	1
Total BTEX	ND		2.0	1.0	ug/L			11/25/19 17:40	1
Surrogate	%Recovery G	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	90		80 - 120			-		11/25/19 17:40	1
1,2-Dichloroethane-d4 (Surr)	97		77 - 120					11/25/19 17:40	1
4-Bromofluorobenzene (Surr)	94		73 - 120					11/25/19 17:40	1

75 - 123

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	6.1		5.0	0.41	ug/L		11/25/19 15:25	11/28/19 02:36	1
Acenaphthylene	0.38	J	5.0	0.38	ug/L		11/25/19 15:25	11/28/19 02:36	1
Anthracene	0.65	J	5.0	0.28	ug/L		11/25/19 15:25	11/28/19 02:36	1
Benzo[a]anthracene	ND		5.0	0.36	ug/L		11/25/19 15:25	11/28/19 02:36	1
Benzo[a]pyrene	ND		5.0	0.47	ug/L		11/25/19 15:25	11/28/19 02:36	1
Benzo[b]fluoranthene	ND		5.0	0.34	ug/L		11/25/19 15:25	11/28/19 02:36	1
Benzo[g,h,i]perylene	ND		5.0	0.35	ug/L		11/25/19 15:25	11/28/19 02:36	1
Benzo[k]fluoranthene	ND		5.0	0.73	ug/L		11/25/19 15:25	11/28/19 02:36	1
Chrysene	ND		5.0	0.33	ug/L		11/25/19 15:25	11/28/19 02:36	1
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		11/25/19 15:25	11/28/19 02:36	1
Fluoranthene	ND		5.0	0.40	ug/L		11/25/19 15:25	11/28/19 02:36	1
Fluorene	3.0	J	5.0	0.36	ug/L		11/25/19 15:25	11/28/19 02:36	1
Indeno[1,2,3-cd]pyrene	ND		5.0	0.47	ug/L		11/25/19 15:25	11/28/19 02:36	1
Naphthalene	50		5.0	0.76	ug/L		11/25/19 15:25	11/28/19 02:36	1
Phenanthrene	2.8	J	5.0	0.44	ug/L		11/25/19 15:25	11/28/19 02:36	1
Pyrene	ND		5.0	0.34	ug/L		11/25/19 15:25	11/28/19 02:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	130	X	48 - 120				11/25/19 15:25	11/28/19 02:36	1
Nitrobenzene-d5 (Surr)	88		46 - 120				11/25/19 15:25	11/28/19 02:36	1
p-Terphenyl-d14 (Surr)	92		60 - 148				11/25/19 15:25	11/28/19 02:36	1

	General Chemistry Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Į	Cyanide, Total	0.054	0.010	0.0060 mg/L		11/26/19 18:53	11/26/19 19:42	1

Client Sample ID: MW-10-111919 Lab Sample ID: 480-163165-6

Date Collected: 11/19/19 16:35

Date Received: 11/21/19 09:30

Method: 8260C - Volatile C	Organic Compounds by GC/	MS					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzene	14	1.0	0.41 ug/L			11/25/19 18:04	1
Toluene	ND	1.0	0.51 ug/L			11/25/19 18:04	1
Ethylbenzene	ND	1.0	0.74 ug/L			11/25/19 18:04	1
m-Xylene & p-Xylene	ND	2.0	0.66 ug/L			11/25/19 18:04	1
o-Xylene	ND	1.0	0.76 ug/L			11/25/19 18:04	1
Xylenes, Total	ND	2.0	0.66 ug/L			11/25/19 18:04	1
Total BTEX	14	2.0	1.0 ug/L			11/25/19 18:04	1

Eurofins TestAmerica, Buffalo

Page 11 of 31

12/3/2019

Project/Site: Albion, NY Groundwater Project

Client Sample ID: MW-10-111919

Date Collected: 11/19/19 16:35 Date Received: 11/21/19 09:30

Lab Sample ID: 480-163165-6

Matrix: Water

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	92	80 - 120		11/25/19 18:04	1
1,2-Dichloroethane-d4 (Surr)	99	77 - 120		11/25/19 18:04	1
4-Bromofluorobenzene (Surr)	103	73 - 120		11/25/19 18:04	1
Dibromofluoromethane (Surr)	104	75 - 123		11/25/19 18:04	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.86	J	5.0	0.41	ug/L		11/25/19 15:25	11/29/19 16:47	1
Acenaphthylene	ND		5.0	0.38	ug/L		11/25/19 15:25	11/29/19 16:47	1
Anthracene	ND		5.0	0.28	ug/L		11/25/19 15:25	11/29/19 16:47	1
Benzo[a]anthracene	ND		5.0	0.36	ug/L		11/25/19 15:25	11/29/19 16:47	1
Benzo[a]pyrene	ND		5.0	0.47	ug/L		11/25/19 15:25	11/29/19 16:47	1
Benzo[b]fluoranthene	ND		5.0	0.34	ug/L		11/25/19 15:25	11/29/19 16:47	1
Benzo[g,h,i]perylene	ND		5.0	0.35	ug/L		11/25/19 15:25	11/29/19 16:47	1
Benzo[k]fluoranthene	ND		5.0	0.73	ug/L		11/25/19 15:25	11/29/19 16:47	1
Chrysene	ND		5.0	0.33	ug/L		11/25/19 15:25	11/29/19 16:47	1
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		11/25/19 15:25	11/29/19 16:47	1
Fluoranthene	ND		5.0	0.40	ug/L		11/25/19 15:25	11/29/19 16:47	1
Fluorene	ND		5.0	0.36	ug/L		11/25/19 15:25	11/29/19 16:47	1
Indeno[1,2,3-cd]pyrene	ND		5.0	0.47	ug/L		11/25/19 15:25	11/29/19 16:47	1
Naphthalene	0.99	J	5.0	0.76	ug/L		11/25/19 15:25	11/29/19 16:47	1
Phenanthrene	ND		5.0	0.44	ug/L		11/25/19 15:25	11/29/19 16:47	1
Pyrene	ND		5.0	0.34	ug/L		11/25/19 15:25	11/29/19 16:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	100		48 - 120				11/25/19 15:25	11/29/19 16:47	1
Nitrobenzene-d5 (Surr)	81		46 - 120				11/25/19 15:25	11/29/19 16:47	1

-										
General Chemistry										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Cyanida Total	0.010		0.010	0.0060	ma/l		11/26/10 18:53	11/26/10 10:44		

60 - 148

Client Sample ID: MW-50-111919 Lab Sample ID: 480-163165-7

77

Date Collected: 11/19/19 13:40

Date Received: 11/21/19 09:30

p-Terphenyl-d14 (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	23		1.0	0.41	ug/L			11/25/19 18:29	1
Toluene	4.1		1.0	0.51	ug/L			11/25/19 18:29	1
Ethylbenzene	12		1.0	0.74	ug/L			11/25/19 18:29	1
m-Xylene & p-Xylene	8.6		2.0	0.66	ug/L			11/25/19 18:29	1
o-Xylene	11		1.0	0.76	ug/L			11/25/19 18:29	1
Xylenes, Total	20		2.0	0.66	ug/L			11/25/19 18:29	1
Total BTEX	59		2.0	1.0	ug/L			11/25/19 18:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	89		80 - 120			-		11/25/19 18:29	1
1,2-Dichloroethane-d4 (Surr)	99		77 - 120					11/25/19 18:29	1
4-Bromofluorobenzene (Surr)	95		73 - 120					11/25/19 18:29	1

Eurofins TestAmerica, Buffalo

Page 12 of 31

Matrix: Water

11/25/19 15:25 11/29/19 16:47

Cyanide, Total

Project/Site: Albion, NY Groundwater Project

Lab Sample ID: 480-163165-7 Client Sample ID: MW-50-111919

Date Collected: 11/19/19 13:40 **Matrix: Water** Date Received: 11/21/19 09:30

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	93		75 - 123		11/25/19 18:29	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	38	-	25	2.1	ug/L		11/25/19 15:25	11/29/19 17:15	5
Acenaphthylene	36		25	1.9	ug/L		11/25/19 15:25	11/29/19 17:15	5
Anthracene	6.4	J	25	1.4	ug/L		11/25/19 15:25	11/29/19 17:15	5
Benzo[a]anthracene	ND		25	1.8	ug/L		11/25/19 15:25	11/29/19 17:15	5
Benzo[a]pyrene	ND		25	2.4	ug/L		11/25/19 15:25	11/29/19 17:15	5
Benzo[b]fluoranthene	ND		25	1.7	ug/L		11/25/19 15:25	11/29/19 17:15	5
Benzo[g,h,i]perylene	ND		25	1.8	ug/L		11/25/19 15:25	11/29/19 17:15	5
Benzo[k]fluoranthene	ND		25	3.7	ug/L		11/25/19 15:25	11/29/19 17:15	5
Chrysene	ND		25	1.7	ug/L		11/25/19 15:25	11/29/19 17:15	5
Dibenz(a,h)anthracene	ND		25	2.1	ug/L		11/25/19 15:25	11/29/19 17:15	5
Fluoranthene	5.4	J	25	2.0	ug/L		11/25/19 15:25	11/29/19 17:15	5
Fluorene	46		25	1.8	ug/L		11/25/19 15:25	11/29/19 17:15	5
Indeno[1,2,3-cd]pyrene	ND		25	2.4	ug/L		11/25/19 15:25	11/29/19 17:15	5
Naphthalene	25		25	3.8	ug/L		11/25/19 15:25	11/29/19 17:15	5
Phenanthrene	23	J	25	2.2	ug/L		11/25/19 15:25	11/29/19 17:15	5
Pyrene	3.5	J	25	1.7	ug/L		11/25/19 15:25	11/29/19 17:15	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	95		48 - 120				11/25/19 15:25	11/29/19 17:15	5
Nitrobenzene-d5 (Surr)	86		46 - 120				11/25/19 15:25	11/29/19 17:15	5
p-Terphenyl-d14 (Surr)	89		60 - 148				11/25/19 15:25	11/29/19 17:15	5
General Chemistry Analyte	Passili	Qualifier	RL	MDL	11:4	D	Prepared	Analyzed	Dil Fac

0.010 Lab Sample ID: 480-163165-8 **Client Sample ID: TRIP BLANK**

0.0060 mg/L

Date Collected: 11/20/19 00:00 **Matrix: Water** Date Received: 11/21/19 09:30

0.16

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND ND	1.0	0.41	ug/L			11/25/19 11:55	1
Toluene	ND	1.0	0.51	ug/L			11/25/19 11:55	1
Ethylbenzene	ND	1.0	0.74	ug/L			11/25/19 11:55	1
m-Xylene & p-Xylene	ND	2.0	0.66	ug/L			11/25/19 11:55	1
o-Xylene	ND	1.0	0.76	ug/L			11/25/19 11:55	1
Xylenes, Total	ND	2.0	0.66	ug/L			11/25/19 11:55	1
Total BTEX	ND	2.0	1.0	ug/L			11/25/19 11:55	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	109		80 - 120		11/25/19 11:55	1
1,2-Dichloroethane-d4 (Surr)	109		77 - 120		11/25/19 11:55	1
4-Bromofluorobenzene (Surr)	97		73 - 120		11/25/19 11:55	1
Dibromofluoromethane (Surr)	101		75 - 123		11/25/19 11:55	1

11/26/19 18:53 11/26/19 19:46

Job ID: 480-163165-1

Surrogate Summary

Client: Wood E&I Solutions Inc

Project/Site: Albion, NY Groundwater Project

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		TOL	DCA	BFB	DBFM
Lab Sample ID	Client Sample ID	(80-120)	(77-120)	(73-120)	(75-123)
480-163165-1	MW-1-111919	95	102	105	108
480-163165-2	MW-5-111919	91	99	100	104
480-163165-3	MW-6-112019	108	105	90	99
480-163165-4	MW-8R-112019	88	96	92	93
480-163165-5	MW-9R-112019	90	97	94	99
480-163165-6	MW-10-111919	92	99	103	104
480-163165-7	MW-50-111919	89	99	95	93
480-163165-8	TRIP BLANK	109	109	97	101
LCS 480-506510/5	Lab Control Sample	84	89	88	91
LCS 480-506534/5	Lab Control Sample	104	100	90	95
LCS 480-506692/5	Lab Control Sample	105	100	94	96
MB 480-506510/7	Method Blank	90	93	95	99
MB 480-506534/7	Method Blank	104	104	88	98
MB 480-506692/7	Method Blank	112	108	100	103

TOL = Toluene-d8 (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surro
		FBP	NBZ	TPHd14
Lab Sample ID	Client Sample ID	(48-120)	(46-120)	(60-148)
480-163165-1	MW-1-111919	107	94	105
480-163165-2	MW-5-111919	101	101	88
480-163165-3	MW-6-112019	96	80	94
480-163165-4	MW-8R-112019	97	61	79
480-163165-4 - DL	MW-8R-112019	101	67	76
480-163165-5	MW-9R-112019	130 X	88	92
480-163165-6	MW-10-111919	100	81	77
480-163165-7	MW-50-111919	95	86	89
LCS 480-506656/2-A	Lab Control Sample	110	90	118
MB 480-506656/1-A	Method Blank	105	91	110

Surrogate Legend

FBP = 2-Fluorobiphenyl

NBZ = Nitrobenzene-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

Job ID: 480-163165-1

Project/Site: Albion, NY Groundwater Project

Job ID: 480-163165-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-506510/7

Matrix: Water

Analyte

Benzene

Toluene

Ethylbenzene

Analysis Batch: 506510

Client Sample ID: Method Blank **Prep Type: Total/NA**

RL **MDL** Unit Prepared Analyzed Dil Fac 1.0 0.41 ug/L 11/25/19 11:52 1.0 0.51 ug/L 11/25/19 11:52 1.0 0.74 ug/L 11/25/19 11:52 1 11/25/19 11:52

2.0 0.66 ug/L m-Xylene & p-Xylene ND o-Xylene ND 1.0 0.76 ug/L 11/25/19 11:52 Xylenes, Total ND 2.0 0.66 ug/L 11/25/19 11:52 Total BTEX ND 2.0 1.0 ug/L 11/25/19 11:52

MD MD

MB MB

 $\overline{\mathsf{ND}}$

ND

ND

Result Qualifier

	IVID	IVID				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	90		80 - 120		11/25/19 11:52	1
1,2-Dichloroethane-d4 (Surr)	93		77 - 120		11/25/19 11:52	1
4-Bromofluorobenzene (Surr)	95		73 - 120		11/25/19 11:52	1
Dibromofluoromethane (Surr)	99		75 - 123		11/25/19 11:52	1

Lab Sample ID: LCS 480-506510/5

Matrix: Water

o-Xylene

Analysis Batch: 506510

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits Benzene 25.0 22.0 ug/L 88 71 - 124 Toluene 25.0 20.5 ug/L 82 80 - 12225.0 20.4 ug/L 82 77 - 123 Ethylbenzene m-Xylene & p-Xylene 25.0 21.0 ug/L 84 76 - 122

20.8

ug/L

25.0

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	84		80 - 120
1,2-Dichloroethane-d4 (Surr)	89		77 - 120
4-Bromofluorobenzene (Surr)	88		73 - 120
Dibromofluoromethane (Surr)	91		75 - 123

Lab Sample ID: MB 480-506534/7

Matrix: Water

Analysis Batch: 506534

Client Sample ID: Method Blank

76 - 122

Prep Type: Total/NA

мв мв Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Benzene ND 1.0 0.41 ug/L 11/25/19 11:00 Toluene ND 1.0 0.51 ug/L 11/25/19 11:00 0.74 ug/L Ethylbenzene ND 1.0 11/25/19 11:00 m-Xylene & p-Xylene ND 2.0 0.66 ug/L 11/25/19 11:00 o-Xylene ND 1.0 0.76 ug/L 11/25/19 11:00 Xylenes, Total ND 2.0 0.66 ug/L 11/25/19 11:00 Total BTEX ND 2.0 11/25/19 11:00 1.0 ug/L

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	104	80 - 120		11/25/19 11:00	1
1,2-Dichloroethane-d4 (Surr)	104	77 - 120		11/25/19 11:00	1

Eurofins TestAmerica, Buffalo

Page 15 of 31

Project/Site: Albion, NY Groundwater Project

Job ID: 480-163165-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-506534/7

Matrix: Water

Analysis Batch: 506534

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88		73 - 120		11/25/19 11:00	1
Dibromofluoromethane (Surr)	98		75 - 123		11/25/19 11:00	1

Lab Sample ID: LCS 480-506534/5

Matrix: Water

Analysis Batch: 506534

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	25.0	22.2		ug/L		89	71 - 124	
Toluene	25.0	23.8		ug/L		95	80 - 122	
Ethylbenzene	25.0	23.4		ug/L		94	77 - 123	
m-Xylene & p-Xylene	25.0	23.2		ug/L		93	76 - 122	
o-Xylene	25.0	22.6		ug/L		91	76 - 122	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	104		80 - 120
1,2-Dichloroethane-d4 (Surr)	100		77 - 120
4-Bromofluorobenzene (Surr)	90		73 - 120
Dibromofluoromethane (Surr)	95		75 - 123

Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 506692

Lab Sample ID: MB 480-506692/7

	MB MB							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND	1.0	0.41	ug/L			11/25/19 22:45	1
Toluene	ND	1.0	0.51	ug/L			11/25/19 22:45	1
Ethylbenzene	ND	1.0	0.74	ug/L			11/25/19 22:45	1
m-Xylene & p-Xylene	ND	2.0	0.66	ug/L			11/25/19 22:45	1
o-Xylene	ND	1.0	0.76	ug/L			11/25/19 22:45	1
Xylenes, Total	ND	2.0	0.66	ug/L			11/25/19 22:45	1
Total BTEX	ND	2.0	1.0	ug/L			11/25/19 22:45	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	112	80 - 120		11/25/19 22:45	1
1,2-Dichloroethane-d4 (Surr)	108	77 - 120		11/25/19 22:45	1
4-Bromofluorobenzene (Surr)	100	73 - 120		11/25/19 22:45	1
Dibromofluoromethane (Surr)	103	75 - 123		11/25/19 22:45	1

Lab Sample ID: LCS 480-506692/5

Matrix: Water

Analysis Batch: 506692

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	25.0	22.5		ug/L		90	71 - 124	
Toluene	25.0	23.9		ug/L		96	80 - 122	
Ethylbenzene	25.0	23.7		ug/L		95	77 - 123	
m-Xylene & p-Xylene	25.0	23.5		ug/L		94	76 - 122	

Eurofins TestAmerica, Buffalo

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Page 16 of 31

Project/Site: Albion, NY Groundwater Project

Job ID: 480-163165-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-506692/5

Matrix: Water

Analysis Batch: 506692

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

LCS LCS Spike %Rec. Added Result Qualifier Unit Analyte D %Rec o-Xylene 25.0 23.4 ug/L

Limits 76 - 122

	LUS	LUS	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	105		80 - 120
1,2-Dichloroethane-d4 (Surr)	100		77 - 120
4-Bromofluorobenzene (Surr)	94		73 - 120
Dibromofluoromethane (Surr)	96		75 - 123

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

100 100

Lab Sample ID: MB 480-506656/1-A

Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA

Analysis Batch: 507156								Prep Batch:	506656
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		5.0	0.41	ug/L		11/25/19 15:25	11/27/19 17:59	1
Acenaphthylene	ND		5.0	0.38	ug/L		11/25/19 15:25	11/27/19 17:59	1
Anthracene	ND		5.0	0.28	ug/L		11/25/19 15:25	11/27/19 17:59	1
Benzo[a]anthracene	ND		5.0	0.36	ug/L		11/25/19 15:25	11/27/19 17:59	1
Benzo[a]pyrene	ND		5.0	0.47	ug/L		11/25/19 15:25	11/27/19 17:59	1
Benzo[b]fluoranthene	ND		5.0	0.34	ug/L		11/25/19 15:25	11/27/19 17:59	1
Benzo[g,h,i]perylene	ND		5.0	0.35	ug/L		11/25/19 15:25	11/27/19 17:59	1
Benzo[k]fluoranthene	ND		5.0	0.73	ug/L		11/25/19 15:25	11/27/19 17:59	1
Chrysene	ND		5.0	0.33	ug/L		11/25/19 15:25	11/27/19 17:59	1
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		11/25/19 15:25	11/27/19 17:59	1
Fluoranthene	ND		5.0	0.40	ug/L		11/25/19 15:25	11/27/19 17:59	1
Fluorene	ND		5.0	0.36	ug/L		11/25/19 15:25	11/27/19 17:59	1
Indeno[1,2,3-cd]pyrene	ND		5.0	0.47	ug/L		11/25/19 15:25	11/27/19 17:59	1
Naphthalene	ND		5.0	0.76	ug/L		11/25/19 15:25	11/27/19 17:59	1
Phenanthrene	ND		5.0	0.44	ug/L		11/25/19 15:25	11/27/19 17:59	1
Pyrene	ND		5.0	0.34	ug/L		11/25/19 15:25	11/27/19 17:59	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 2-Fluorobiphenyl 105 48 - 120 11/25/19 15:25 11/27/19 17:59 Nitrobenzene-d5 (Surr) 91 46 - 120 11/25/19 15:25 11/27/19 17:59 p-Terphenyl-d14 (Surr) 60 - 148 11/25/19 15:25 11/27/19 17:59 110

Lab Sample ID: LCS 480-506656/2-A

Matrix: Water

Analysis Batch: 507156

Client Sample ID: Lab Control Sample Prep Type: Total/NA **Prep Batch: 506656**

,, c.c	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthene	32.0	35.6		ug/L		111	60 - 120
Acenaphthylene	32.0	33.3		ug/L		104	63 - 120
Anthracene	32.0	34.4		ug/L		108	67 - 120
Benzo[a]anthracene	32.0	34.6		ug/L		108	70 - 121
Benzo[a]pyrene	32.0	34.8		ug/L		109	60 - 123
Benzo[b]fluoranthene	32.0	35.9		ug/L		112	66 - 126

Eurofins TestAmerica, Buffalo

Page 17 of 31

12/3/2019

Project/Site: Albion, NY Groundwater Project

Job ID: 480-163165-1

100 100

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-506656/2-A **Matrix: Water**

Analysis Batch: 507156

Client Sample ID: Lab Control Sample

Prep Type: Total/NA **Prep Batch: 506656**

	Бріке	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzo[g,h,i]perylene	32.0	34.8	-	ug/L		109	66 - 150	
Benzo[k]fluoranthene	32.0	33.9		ug/L		106	65 - 124	
Chrysene	32.0	32.8		ug/L		103	69 - 120	
Dibenz(a,h)anthracene	32.0	35.3		ug/L		110	65 - 135	
Fluoranthene	32.0	35.5		ug/L		111	69 - 126	
Fluorene	32.0	36.5		ug/L		114	66 - 120	
Indeno[1,2,3-cd]pyrene	32.0	34.7		ug/L		108	69 - 146	
Naphthalene	32.0	29.7		ug/L		93	57 ₋ 120	
Phenanthrene	32.0	31.9		ug/L		100	68 - 120	
Pyrene	32.0	38.9		ug/L		122	70 - 125	

0---

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	110		48 - 120
Nitrobenzene-d5 (Surr)	90		46 - 120
p-Terphenyl-d14 (Surr)	118		60 - 148

Method: 4500 CN E-2011 - Cyanide, Total: Colorimetric Method

Lab Sample ID: MB 240-412782/1-A

Matrix: Water

Analysis Batch: 412786

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 412782

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	ND		0.010	0.0060	mg/L		11/26/19 18:53	11/26/19 19:30	1

Lab Sample ID: LCS 240-412782/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Analysis Batch: 412786 Prep Batch: 412782** Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit D %Rec Limits

Cyanide, Total 0.194 0.192 mg/L 99 85 - 115

Lab Sample ID: 480-163165-1 MS Client Sample ID: MW-1-111919 **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 412786 Prep Batch: 412782** MS MS Sample Sample Spike %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits 0.0400 0.135 22 - 135 Cyanide, Total 0.098 mg/L

Lab Sample ID: 480-163165-1 MSD Client Sample ID: MW-1-111919 **Matrix: Water** Prep Type: Total/NA Analysis Batch: 412786 Prep Batch: 412782

MSD MSD **RPD** Sample Sample **Spike** %Rec. Analyte Result Qualifier Added Result Qualifier Limits RPD Unit %Rec Limit Cyanide, Total 0.0400 86 22 - 135 0.098 0.133 mg/L

Eurofins TestAmerica, Buffalo

12/3/2019

QC Sample Results

Client: Wood E&I Solutions Inc Job ID: 480-163165-1

Project/Site: Albion, NY Groundwater Project

Method: 4500 CN E-2011 - Cyanide, Total: Colorimetric Method (Continued)

Lab Sample ID: MB 240-412916/1-A	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 412995	Prep Batch: 412916
MB MB	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	ND		0.010	0.0060	mg/L		11/27/19 10:39	11/27/19 16:27	1

Lab Sample ID: LCS 240-412916/2-A				Client	t San	iple ID	: Lab Control Sample
Matrix: Water							Prep Type: Total/NA
Analysis Batch: 412995							Prep Batch: 412916
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Cyanide, Total	0.194	0.188		mg/L		97	85 - 115

Lab Sample ID: 480-163165 Matrix: Water Analysis Batch: 412995	5-3 MS						Cli	ent San	Prep Ty	IW-6-112019 pe: Total/NA atch: 412916
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cyanide, Total	0.041		0.0400	0.0762		mg/L		89	22 - 135	

Lab Sample ID: 480-16316	5-3 MSD						Cli	ent Sar	nple ID: M	IW-6-1	12019
Matrix: Water									Prep Ty	pe: Tot	al/NA
Analysis Batch: 412995									Prep Ba	atch: 4	12916
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Cyanide, Total	0.041		0.0400	0.0787		mg/L		95	22 - 135	3	40
	Matrix: Water Analysis Batch: 412995 Analyte	Analysis Batch: 412995 Sample Analyte Result	Matrix: Water Analysis Batch: 412995 Sample Sample Analyte Result Qualifier	Matrix: Water Analysis Batch: 412995 Sample Sample Spike Analyte Result Qualifier Added	Matrix: Water Analysis Batch: 412995 Sample Sample Spike MSD Analyte Result Qualifier Added Result	Matrix: Water Analysis Batch: 412995 Sample Sample Spike MSD MSD Analyte Result Qualifier Added Result Qualifier	Matrix: Water Analysis Batch: 412995 Sample Sample Spike MSD MSD Analyte Result Qualifier Added Result Qualifier Unit	Matrix: Water Analysis Batch: 412995 Sample Sample Spike MSD MSD Analyte Result Qualifier Added Result Qualifier Unit D	Matrix: Water Analysis Batch: 412995 Sample Sample Spike MSD MSD Analyte Result Qualifier Added Result Qualifier Unit D %Rec	Matrix: Water Analysis Batch: 412995 Sample Sample Spike MSD MSD Prep Batch: Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits	Matrix: Water Analysis Batch: 412995 Sample Sample Spike MSD MSD Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD

QC Association Summary

Client: Wood E&I Solutions Inc

Project/Site: Albion, NY Groundwater Project

GC/MS VOA

Analysis Batch: 506510

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-163165-1	MW-1-111919	Total/NA	Water	8260C	
480-163165-2	MW-5-111919	Total/NA	Water	8260C	
480-163165-4	MW-8R-112019	Total/NA	Water	8260C	
480-163165-5	MW-9R-112019	Total/NA	Water	8260C	
480-163165-6	MW-10-111919	Total/NA	Water	8260C	
480-163165-7	MW-50-111919	Total/NA	Water	8260C	
MB 480-506510/7	Method Blank	Total/NA	Water	8260C	
LCS 480-506510/5	Lab Control Sample	Total/NA	Water	8260C	

Analysis Batch: 506534

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-163165-8	TRIP BLANK	Total/NA	Water	8260C	
MB 480-506534/7	Method Blank	Total/NA	Water	8260C	
LCS 480-506534/5	Lab Control Sample	Total/NA	Water	8260C	

Analysis Batch: 506692

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-163165-3	MW-6-112019	Total/NA	Water	8260C	
MB 480-506692/7	Method Blank	Total/NA	Water	8260C	
LCS 480-506692/5	Lab Control Sample	Total/NA	Water	8260C	

GC/MS Semi VOA

Prep Batch: 506656

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-163165-1	MW-1-111919	Total/NA	Water	3510C	_
480-163165-2	MW-5-111919	Total/NA	Water	3510C	
480-163165-3	MW-6-112019	Total/NA	Water	3510C	
480-163165-4 - DL	MW-8R-112019	Total/NA	Water	3510C	
480-163165-4	MW-8R-112019	Total/NA	Water	3510C	
480-163165-5	MW-9R-112019	Total/NA	Water	3510C	
480-163165-6	MW-10-111919	Total/NA	Water	3510C	
480-163165-7	MW-50-111919	Total/NA	Water	3510C	
MB 480-506656/1-A	Method Blank	Total/NA	Water	3510C	
LCS 480-506656/2-A	Lab Control Sample	Total/NA	Water	3510C	

Analysis Batch: 507156

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-163165-1	MW-1-111919	Total/NA	Water	8270D	506656
480-163165-2	MW-5-111919	Total/NA	Water	8270D	506656
480-163165-3	MW-6-112019	Total/NA	Water	8270D	506656
480-163165-4	MW-8R-112019	Total/NA	Water	8270D	506656
480-163165-5	MW-9R-112019	Total/NA	Water	8270D	506656
MB 480-506656/1-A	Method Blank	Total/NA	Water	8270D	506656
LCS 480-506656/2-A	Lab Control Sample	Total/NA	Water	8270D	506656

Analysis Batch: 507364

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-163165-4 - DL	MW-8R-112019	Total/NA	Water	8270D	506656
480-163165-6	MW-10-111919	Total/NA	Water	8270D	506656
480-163165-7	MW-50-111919	Total/NA	Water	8270D	506656

Job ID: 480-163165-1

QC Association Summary

Client: Wood E&I Solutions Inc

Project/Site: Albion, NY Groundwater Project

Job ID: 480-163165-1

General Chemistry

Prep Batch: 412782

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-163165-1	MW-1-111919	Total/NA	Water	Distill/CN	
480-163165-2	MW-5-111919	Total/NA	Water	Distill/CN	
480-163165-4	MW-8R-112019	Total/NA	Water	Distill/CN	
480-163165-5	MW-9R-112019	Total/NA	Water	Distill/CN	
480-163165-6	MW-10-111919	Total/NA	Water	Distill/CN	
480-163165-7	MW-50-111919	Total/NA	Water	Distill/CN	
MB 240-412782/1-A	Method Blank	Total/NA	Water	Distill/CN	
LCS 240-412782/2-A	Lab Control Sample	Total/NA	Water	Distill/CN	
480-163165-1 MS	MW-1-111919	Total/NA	Water	Distill/CN	
480-163165-1 MSD	MW-1-111919	Total/NA	Water	Distill/CN	

Analysis Batch: 412786

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-163165-1	MW-1-111919	Total/NA	Water	4500 CN E-2011	412782
480-163165-2	MW-5-111919	Total/NA	Water	4500 CN E-2011	412782
480-163165-4	MW-8R-112019	Total/NA	Water	4500 CN E-2011	412782
480-163165-5	MW-9R-112019	Total/NA	Water	4500 CN E-2011	412782
480-163165-6	MW-10-111919	Total/NA	Water	4500 CN E-2011	412782
480-163165-7	MW-50-111919	Total/NA	Water	4500 CN E-2011	412782
MB 240-412782/1-A	Method Blank	Total/NA	Water	4500 CN E-2011	412782
LCS 240-412782/2-A	Lab Control Sample	Total/NA	Water	4500 CN E-2011	412782
480-163165-1 MS	MW-1-111919	Total/NA	Water	4500 CN E-2011	412782
480-163165-1 MSD	MW-1-111919	Total/NA	Water	4500 CN E-2011	412782

Prep Batch: 412916

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Bat	tch
480-163165-3	MW-6-112019	Total/NA	Water	Distill/CN	
MB 240-412916/1-A	Method Blank	Total/NA	Water	Distill/CN	
LCS 240-412916/2-A	Lab Control Sample	Total/NA	Water	Distill/CN	
480-163165-3 MS	MW-6-112019	Total/NA	Water	Distill/CN	
480-163165-3 MSD	MW-6-112019	Total/NA	Water	Distill/CN	

Analysis Batch: 412995

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-163165-3	MW-6-112019	Total/NA	Water	4500 CN E-2011	412916
MB 240-412916/1-A	Method Blank	Total/NA	Water	4500 CN E-2011	412916
LCS 240-412916/2-A	Lab Control Sample	Total/NA	Water	4500 CN E-2011	412916
480-163165-3 MS	MW-6-112019	Total/NA	Water	4500 CN E-2011	412916
480-163165-3 MSD	MW-6-112019	Total/NA	Water	4500 CN E-2011	412916

Lab Chronicle

Client: Wood E&I Solutions Inc

Project/Site: Albion, NY Groundwater Project

Analysis

4500 CN E-2011

Client Sample ID: MW-1-111919 Lab Sample ID: 480-163165-1

Date Collected: 11/19/19 15:00 **Matrix: Water** Date Received: 11/21/19 09:30

Batch Batch Dilution Batch Prepared Method Factor Number or Analyzed Analyst **Prep Type** Type Run Lab Total/NA 8260C 506510 11/25/19 16:28 S1V TAL BUF Analysis Total/NA 3510C 506656 11/25/19 15:25 AAP TAL BUF Prep 8270D Total/NA Analysis 507156 11/28/19 00:41 PJQ TAL BUF Total/NA Prep Distill/CN 412782 11/26/19 18:53 AGC TAL CAN

Client Sample ID: MW-5-111919 Lab Sample ID: 480-163165-2

1

412786 11/26/19 19:33 AGC

Date Collected: 11/19/19 13:30 Date Received: 11/21/19 09:30

Total/NA

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			506510	11/25/19 16:52	S1V	TAL BUF
Total/NA	Prep	3510C			506656	11/25/19 15:25	AAP	TAL BUF
Total/NA	Analysis	8270D		1	507156	11/28/19 01:10	PJQ	TAL BUF
Total/NA	Prep	Distill/CN			412782	11/26/19 18:53	AGC	TAL CAN
Total/NA	Analysis	4500 CN E-2011		1	412786	11/26/19 19:38	AGC	TAL CAN

Client Sample ID: MW-6-112019

Date Collected: 11/20/19 07:15

Date Received: 11/21/19 09:30

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			506692	11/26/19 03:48	OMI	TAL BUF
Total/NA	Prep	3510C			506656	11/25/19 15:25	AAP	TAL BUF
Total/NA	Analysis	8270D		1	507156	11/28/19 01:39	PJQ	TAL BUF
Total/NA	Prep	Distill/CN			412916	11/27/19 10:39	JR	TAL CAN
Total/NA	Analysis	4500 CN E-2011		1	412995	11/27/19 16:30	JR	TAL CAN

Client Sample ID: MW-8R-112019

Date Collected: 11/20/19 09:00

Date Received: 11/21/19 09:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type Total/NA	Type Analysis	Method 8260C	Run	Factor	Number 506510	or Analyzed 11/25/19 17:16	Analyst	Lab TAL BUF
Total/NA	Prep	3510C		ı	506656	11/25/19 17:10		TAL BUF
Total/NA	Analysis	8270D		5	507156	11/28/19 02:07	PJQ	TAL BUF
Total/NA	Prep	3510C	DL		506656	11/25/19 15:25	AAP	TAL BUF
Total/NA	Analysis	8270D	DL	20	507364	11/29/19 16:18	PJQ	TAL BUF
Total/NA	Prep	Distill/CN			412782	11/26/19 18:53	AGC	TAL CAN
Total/NA	Analysis	4500 CN E-2011		1	412786	11/26/19 19:40	AGC	TAL CAN

Job ID: 480-163165-1

TAL CAN

Lab Sample ID: 480-163165-3

Lab Sample ID: 480-163165-4

10

Matrix: Water

Matrix: Water

Matrix: Water

10

Client Sample ID: MW-9R-112019

Project/Site: Albion, NY Groundwater Project

Date Collected: 11/20/19 09:55 Date Received: 11/21/19 09:30 Lab Sample ID: 480-163165-5

Matrix: Water

Matrix: Water

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	506510	11/25/19 17:40	S1V	TAL BUF
Total/NA	Prep	3510C			506656	11/25/19 15:25	AAP	TAL BUF
Total/NA	Analysis	8270D		1	507156	11/28/19 02:36	PJQ	TAL BUF
Total/NA	Prep	Distill/CN			412782	11/26/19 18:53	AGC	TAL CAN
Total/NA	Analysis	4500 CN E-2011		1	412786	11/26/19 19:42	AGC	TAL CAN

Client Sample ID: MW-10-111919 Lab Sample ID: 480-163165-6

Date Collected: 11/19/19 16:35 Date Received: 11/21/19 09:30

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			506510	11/25/19 18:04	S1V	TAL BUF
Total/NA	Prep	3510C			506656	11/25/19 15:25	AAP	TAL BUF
Total/NA	Analysis	8270D		1	507364	11/29/19 16:47	PJQ	TAL BUF
Total/NA	Prep	Distill/CN			412782	11/26/19 18:53	AGC	TAL CAN
Total/NA	Analysis	4500 CN E-2011		1	412786	11/26/19 19:44	AGC	TAL CAN

Client Sample ID: MW-50-111919 Lab Sample ID: 480-163165-7

Date Collected: 11/19/19 13:40

Date Received: 11/21/19 09:30

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			506510	11/25/19 18:29	S1V	TAL BUF
Total/NA	Prep	3510C			506656	11/25/19 15:25	AAP	TAL BUF
Total/NA	Analysis	8270D		5	507364	11/29/19 17:15	PJQ	TAL BUF
Total/NA	Prep	Distill/CN			412782	11/26/19 18:53	AGC	TAL CAN
Total/NA	Analysis	4500 CN E-2011		1	412786	11/26/19 19:46	AGC	TAL CAN

Client Sample ID: TRIP BLANK

Date Collected: 11/20/19 00:00

Lab Sample ID: 480-163165-8

Matrix: Water

Date Collected: 11/20/19 00:00 Date Received: 11/21/19 09:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			506534	11/25/19 11:55	BTP	TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600 TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Accreditation/Certification Summary

Client: Wood E&I Solutions Inc

Project/Site: Albion, NY Groundwater Project

Job ID: 480-163165-1

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority New York		rogram ELAP	Identification Number 10026	Expiration Date 03-31-20
The following analyte the agency does not do		ort, but the laboratory is r	not certified by the governing authority.	This list may include analytes for which
Analysis Method	Prep Method	Matrix	Analyte	
8260C		Water	Total BTEX	

Laboratory: Eurofins TestAmerica, Canton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2927	02-23-20
Connecticut	State	PH-0590	12-31-19
Florida	NELAP	E87225	06-30-20
Georgia	State	4062	02-23-20
Illinois	NELAP	004498	07-31-20
lowa	State	421	06-01-20
Kansas	NELAP	E-10336	04-30-20
Kentucky (UST)	State	112225	02-23-20
Kentucky (WW)	State	KY98016	12-31-19
Minnesota	NELAP	OH00048	12-31-19
Minnesota (Petrofund)	State Program	3506	07-31-21
New Jersey	NELAP	OH001	06-30-20
New York	NELAP	10975	03-31-20
Ohio VAP	State	CL0024	06-05-21
Oregon	NELAP	4062	02-23-20
Pennsylvania	NELAP	68-00340	08-31-20
Texas	NELAP	T104704517-18-10	08-31-20
USDA	US Federal Programs	P330-16-00404	12-28-19
Virginia	NELAP	010101	09-14-20
Washington	State	C971	01-12-20
West Virginia DEP	State	210	12-31-19

Method Summary

Client: Wood E&I Solutions Inc

Project/Site: Albion, NY Groundwater Project

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL BUF
4500 CN E-2011	Cyanide, Total: Colorimetric Method	SM	TAL CAN
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	TAL BUF
5030C	Purge and Trap	SW846	TAL BUF
Distill/CN	Distillation, Cyanide	None	TAL CAN

Protocol References:

None = None

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600 TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

13

Job ID: 480-163165-1

15

Sample Summary

Client: Wood E&I Solutions Inc

Project/Site: Albion, NY Groundwater Project

ab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
80-163165-1	MW-1-111919	Water	11/19/19 15:00	11/21/19 09:30	
80-163165-2	MW-5-111919	Water	11/19/19 13:30	11/21/19 09:30	
80-163165-3	MW-6-112019	Water	11/20/19 07:15	11/21/19 09:30	
80-163165-4	MW-8R-112019	Water	11/20/19 09:00	11/21/19 09:30	
80-163165-5	MW-9R-112019	Water	11/20/19 09:55	11/21/19 09:30	
80-163165-6	MW-10-111919	Water	11/19/19 16:35	11/21/19 09:30	
80-163165-7	MW-50-111919	Water	11/19/19 13:40	11/21/19 09:30	
80-163165-8	TRIP BLANK	Water	11/20/10 00:00	11/21/19 09:30	

Job ID: 480-163165-1

3

Δ

5

_

8

4.6

11

12

14

45

RESULTS TO: alex.rosenthal@woodplc.com	100111111111111111111111111111111111111	TastAmorina	CLIENT Wood Environ	CLIENT: Wood Environment & Infrastructure Colutions	PEDOBTING TAMENTS.	
SULTS TO: alex.rosenthal@woodplc.com	באסטאוסאו.	lesiAmerica	CEIEIVI, WOOD EIIVIOI	ment a milasuocidie solutions	11011	
	Lab Address:	10 Hazelwood Dr #106	ADDRESS: 180 Grand Ave., Suite 1100	4ve., Suite 1100		
TURNAROUND TIME: Standard	Amh	Amherst, NY 14228	Oakland, CA 94612-3702	12		
SAMPLE SHIPMENT METHOD:	Lab Contact: Br	Lab Contact: Bris- E. Scheng Massa (2)	Client Contact: Alex	Rosentha)	Geotrack 480-163165 Ch.	
7.82	Lab Phone #:	Lab Phone #: 7 16- 5315-431-0474	0510-663-4152	52 M 510-301-4943	Site Specific Global IL	tody
SAMPLERS (SIGN & PRINT):				ANALYSES		/
Jack Resolut	(O) or Other (O)	CONTAINER	00-CN-C/E)			ADDITIONAL
		(BO)				
DATE TIME SAMPLE ID		1x250 Plutic 1x250 Pulber 1	PAHs (8270			
11-1-MM 0051 P1/P1	5	X-	×.			
1/19/19 1330 MW-5-	9 616111					
11-6-WM 2140 104/02/	12019 6					
1/20/19 10900 MW-8R	-8R-112019 11 6					
11/20/19 0955 MW-9R-112019	112019 15					
1/19/19 1635 MW-10-111919	9 1 61611					
1/19/19 1340 MW-50-111919	>	+				
TRIP BLANK	ANK GGG	1 VOR 1	* *			
					1	
		Con				
	1					
\						
RELINQUISHED BY: D	DATE TIME RECEIVED BY:	37:	DATE TIME S	SAMPLING COMMENTS:		
CANONE CLOCK	SIGNATURE			* One VOR Come	e pre-Filled Included	ed 1- cooler
K Reader	11 20 19 (230 PRINTED NAME			as "TRIP BI	しアンドー	
OMPANY WOOD	\neg	1				
ISNA LUKE:		Wow	_	Data Package (circle one):	Level II / Level III / Level IV	
PHINTED NAME: COMPANY:	COMPANY:	1 Ko 10	11121/196936	180 Grand Avenue, Suite 1100 Oakland, CA 94612-3753 Tel 510.663.4100 Fax 510.663.4141	ue, Suite 1100 94612-3753 -ax 510,663,4141	wood.

Ver. 01/16/2019

Chain of Custody Record

Eurofins TestAmerica, Buffalo

Phone: 716-691-2600 Fax: 716-691-7991

Amherst, NY 14228-2298

10 Hazelwood Drive

Environment Testing TestAmerica

🔆 eurofins

N - None O - AsNaO2 P - Na2C045 O - Na2SO3 R - Na2S2O3 S - H2SO4 T - TSP Dodecahydrat viote: Since laborations are subject to change, TestAmerica Laboratories, Inc. places the ownership of method, analyte & accreditation compilance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory or other instructions will be provided. Any changes to accreditation status should be brought to TestAmerica laboratories, inc. attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to TestAmerica Laboratories, inc. Special Instructions/Note: Z - other (specify) U - Acetone V - MCAA W - pH 4-5 Months Company Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Preservation Codes: A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
E - NanSO4
F - MeOH
G - Amchlor
H - Ascorbic Acid 160 480-163165-1 250 480-53362.1 Page 1 of 1 I - Ice J - DI Water K - EDTA Archive For Total Number of containers --1-9K-/Jue 1 Method of Shipment Carrier Tracking No(s) Disposal By Lab State of Origin: New York Analysis Requested Cooler Temperature(s) °C and Other Remarks Special Instructions/QC Requirements: brian.fischer@testamericainc.com editations Required (See note) Return To Client NELAP - New York eceived by × 1200 CH EIDISHIL CH × × × × × × Fischer, Brian J Time Perform MS/MSD (Yes or No) Field Filtered Sample (Yes or No) Lab P.M. E-Mail: Preservation Code. (Wawater, Sayolid, Oswasteloli, Water Water Water Water Water Water Water Matrix G=grab) (C=comp, Sample Type Primary Deliverable Rank: 2 Eastern 13:30 Eastern 07:15 Eastern 13:40 Eastern 09:00 Eastern 09:55 Eastern 16:35 Sample Eastern 15:00 Time Date: TAT Requested (days): Due Date Requested: 12/5/2019 Sample Date 11/19/19 11/19/19 11/19/19 11/19/19 11/19/19 11/20/19 11/19/19 Project #: 48021262 Date/Time: Phone: WO # 505 Deliverable Requested: I, II, III, IV, Other (specify) Client Information (Sub Contract Lab) Custody Seal No. Sample Identification - Client ID (Lab ID) 330-497-9396(Tel) 330-497-0772(Fax) 10 VIO V Possible Hazard Identification Albion, NY Groundwater Project MW-8R-112019 (480-163165-4) MW-9R-112019 (480-163165-5) MW-10-111919 (480-163165-6) MW-50-111919 (480-163165-7) MW-5-111919 (480-163165-2) TestAmerica Laboratories, Inc MW-1-111919 (480-163165-1 MW-6-112019 (480-163165-3 Empty Kit Relinguished by Custody Seals Intact. 4101 Shuffel Street NW, Shipping/Receiving Inconfirmed linquished by: North Canton OH, 44720

A Yes A No

WI-NC-099

were further preserved in the laboratory.

5

6

7 8 9

VOA Sample Preservation - Date/Time VOAs Frozen:

Sample(s) _______ Preservative(s) added/Lot number(s):_____

	urofins TestAmerica C	Observed	Corrected	Coolant
Cooler Description (Circle)	(Circle)	Temp °C	Temp °C	(Circle) Wellee Blue Ice Dry Ice
TA Client Box Other	TR-10 IR-11	2.4	3.(Water None
TA Client Box Other	#310 AR-11	3-2	3-9	Wellice Blue Ice Dry Ice Water None
TA Client Box Other	IR-10 IR-11	1.5	2.3	Wet Ice Blue Ice Dry Ice Water None
TA Client Box Other	IR-10 IR-11			Wet Ice Blue Ice Dry Ice Water None
TA Client Box Other	IR-10 IR-11			Wet Ice Blue Ice Dry Ice Water None
TA Client Box Other	IR-10 IR-11			Wet Ice Blue Ice Dry Ice Water None
TA Client Box Other	IR-10 IR-11			Wet Ice Blue Ice Dry Ice Water None
TA Client Box Other	IR-10 IR-11			Wet Ice Blue Ice Dry Ic
TA Client Box Other	IR-10 IR-11			Wet Ice Blue Ice Dry Ice Water None
TA Client Box Other	IR-10 IR-11		the gatherine to the same	Wet Ice Blue Ice Dry Ice Water None Wet Ice Blue Ice Dry Ice
TA Client Box Other	IR-10 IR-11			Wet ice Blue ice Dry ice Water None Wet ice Blue ice Dry ice
TA Client Box Other	IR-10 IR-11			Water None Wet Ice Blue Ice Dry Ic
TA Client Box Other	IR-10 IR-11			Water None Wet Ice Blue Ice Dry Ic
TA Client Box Other	IR-10 IR-11			Water None Wet Ice Blue Ice Dry Ic
TA Client Box Other	IR-10 IR-11			Water None Wet Ice Blue Ice Dry Ic
TA Client Box Other	IR-10 IR-11			Water None Wet Ice Blue Ice Dry Ic
TA Client Box Other	IR-10 IR-11			Water None Wet Ice Blue Ice Dry Ic
TA Client Box Other	IR-10 IR-11			Water None Wet Ice Blue Ice Dry Ic
TA Client Box Other	IR-10 IR-11			Water None Wet Ice Blue Ice Dry Ic
TA Client Box Other	IR-10 IR-11			Water None Wet Ice Blue Ice Dry Ic
TA Client Box Other	IR-10 IR-11			Water None Wet Ice Blue Ice Dry Ic
TA Client Box Other	IR-10 IR-11			Water None Wet Ice Blue Ice Dry Ic
TA Client Box Other	IR-10 IR-11			Water None Wet Ice Blue Ice Dry Ic
TA Client Box Other	IR-10 IR-11			Water None Wet Ice Blue Ice Dry Ic
TA Client Box Other	IR-10 IR-11			Water None Wet Ice Blue Ice Dry Ic
TA Client Box Other	IR-10 IR-11			Water None Wet Ice Blue Ice Dry Ic
TA Client Box Other	IR-10 IR-11			Water None Wet Ice Blue Ice Dry Ic
TA Client Box Other	IR-10 IR-11			Water None Wet Ice Blue Ice Dry Ic
TA Client Box Other	IR-10 IR-11			Water None Wet Ice Blue Ice Dry Ic
TA Client Box Other	IR-10 IR-11			Water None Wet Ice Blue Ice Dry Ic
TA Client Box Other	IR-10 IR-11			Water None Wet Ice Blue Ice Dry Ic
TA Client Box Other	IR-10 IR-11			Water None Wet Ice Blue Ice Dry Ic
TA Client Box Other	IR-10 IR-11			Water None Wet Ice Blue Ice Dry Ic
TA Client Box Other	IR-10 IR-11			Water None

Job Number: 480-163165-1

Login Number: 163165

List Number: 1

Creator: Wallace, Cameron

List Source: Eurofins TestAmerica, Buffalo

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or ampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
f necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

APPENDIX D

Soil Cap Inspection Form

SOIL CAP INSPECTION FORM

Former Albion MPG Site No. 837012 Albion, New York

Any signs of significant erosion? Any signs of tree roots or vegetation damaging the cap? Any signs of intrusive work (earth disturbing activities) in the capped area?		YES	NO	Comments
Any signs of tree roots or vegetation damaging the cap? Any signs of intrusive work (earth disturbing activities) in the capped area?	s the Soil Cap intact?	1		
Any signs of intrusive work (earth disturbing activities) in the capped area?	Any signs of significant erosion?		/	
activities) in the capped area?	원인경이 경기 (Table 2017) 10 10 10 10 10 10 10 10 10 10 10 10 10		/	
Are the groundwater monitoring wells		\		see below
accessible and intact?	Are the groundwater monitoring wells accessible and intact?	/		

Documentation:

	YES	NO	Comments
Is the Site Management Plan on-site?	,	V	
If there is intrusive work being performed: - Is there a Health and Safety Plan onsite?	✓		
- If the surface area of construction activities is greater than 1 acre in size, is there a Stormwater Pollution Prevention Plan (SWPPP) on-site?			NA

If maintenance is required to resolve any of the above noted items, describe what actions taken, if any. Were all maintenance items resolved during this site visit? If no, what items remain to be resolved?					
•	•				
	,				
			:		