

GROUNDWATER MONITORING REPORT JANUARY THROUGH JUNE 2021

National Grid Former Albion MGP Site Albion, New York

Prepared for:

National Grid

300 Erie Blvd West Syracuse, New York 13202

Prepared by:

Wood Environment & Infrastructure Solutions, Inc.

180 Grand Avenue, Suite 1100 Oakland, California 94612

June 2021

Project No. 0078000050.04.****

Wood Environment & Infrastructure Solutions, Inc. 180 Grand Avenue, Suite 1100 Oakland, California 94612-3066

LISA

T: (510) 663-4100 F: (510) 663-4141

www.woodplc.com

June 15, 2021

Project 0078000050.04.****

Mr. Michael Squire Assistant Engineer New York State Department of Environmental Conservation 625 Broadway Albany, NY 12233

Subject: Groundwater Monitoring Report—January Through June 2021

National Grid Former Albion MGP Site

Albion, New York Case #837012

Dear Mr. Squire:

Wood Environment & Infrastructure Solutions, Inc. is submitting the subject report on behalf of our client, National Grid. This report presents the results of monitoring activities conducted during the period from January through June 2021.

Please contact either of the undersigned if you have any questions or require additional information.

Sincerely,

Wood Environment & Infrastructure Solutions, Inc.

Alex Rosenthal

Qualified Environmental

Professional/Senior Hydrogeologist

Direct Tel.: (510) 663-4152

E-mail: <u>alex.rosenthal@woodplc.com</u>

Douglas Bablitch

Qualified Environmental

Professional/Principal Engineer

Direct Tel.: (510) 663-4159

E-mail: douglas.bablitch@woodplc.com

buglos C. Bablitch

ar/db/mr

 $https://woodplc.sharepoint.com/teams/bayareadocusafe/national\ grid\ company\ plc/20210615_1sa21_gwmr/01_text/1q2021\ gwmr_cvrltr.docx$

Enclosure

Mr. Michael Squire New York State Department of Environmental Conservation June 15, 2021 Page 2

cc: Brian Stearns - National Grid Steve Stucker - National Grid Devin Shay - Groundwater & Environmental Services, Inc.

i

TABLE OF CONTENTS

			Page
1.0	INTRO	DUCTION	1
	1.1	BACKGROUND	1
2.0		NDWATER MONITORING	
	2.1	WATER LEVEL MEASUREMENTS	
	2.2	GROUNDWATER SAMPLING AND ANALYSIS	
3.0	RESUL	TS	4
5.0	3.1	OCCURRENCE AND MOVEMENT OF GROUNDWATER	
	3.2	GROUNDWATER ANALYTICAL RESULTS	4
4.0	DATA	QUALITY REVIEW	5
5.0	SITE IN	ISPECTION	6
6.0	PLANN	IED ACTIVITIES	6
7.0	REFERE	ENCES	6
		TABLES	
Table 1		Groundwater Monitoring Program	
Table 2		Groundwater Elevations, April 2021	
Table 3		Groundwater Analytical Results – Volatile Organic Compounds, April 2021 Groundwater Analytical Results – Polycyclic Aromatic Hydrocarbons, April 2	2021
Table 5		Groundwater Analytical Results – Polycyclic Alomatic Trydrocarbons, April 2 Groundwater Analytical Results – Total Cyanide, April 2021	2021
Table 6		Precision Data Summary, April 2021	
		FIGURES	
Figure		Site Vicinity Map	
Figure		Site Layout	
Figure Figure		Potentiometric Surface Map, April 2021 Groundwater Analytical Results, April 2021	

APPENDICES

Appendix A Groundwater Sampling Records
Appendix B Analytical Laboratory Report
Appendix C Soil Cap Inspection Form

GROUNDWATER MONITORING REPORT JANUARY THROUGH JUNE 2021

National Grid Former Albion MGP Site Albion, New York

1.0 INTRODUCTION

This report summarizes groundwater monitoring and sampling activities performed by Wood Environment & Infrastructure Solutions, Inc. ("Wood"), on behalf of National Grid Corporation ("National Grid"), during the period from January through June 2021 ("reporting period") at the Former Albion Manufactured Gas Plant (MGP), Site Identification Number 837012, in Albion, New York (the site; Figure 1). Groundwater monitoring and sampling activities were performed in accordance with the *Monitoring and Sampling Plan* (Wood, 2018), as summarized in Table 1.

Activities performed at the site during the reporting period include the following:

- Collection of depth to groundwater measurements and groundwater samples; and
- Inspection of the site Engineering Control (i.e. soil cap) and Institutional Controls (i.e. land use).

Depth to groundwater measurement and sampling procedures are described in Section 2, and groundwater monitoring results are provided in Section 3. A quality assurance/quality control (QA/QC) assessment of the groundwater data is provided in Section 4. Results of the inspection of the site Engineering Control and Institutional Controls are described in Section 5. Project activities planned for the next monitoring period are outlined in Section 6.

1.1 BACKGROUND

The site consists of two adjoining parcels totaling approximately 0.5 acres formerly occupied by a single MGP that is bounded by the New York State Erie Barge Canal to the north, East Bank Street and a commercial property to the south, Ingersoll Street to the east, and a park and commercial property to the west (Figure 2). The western parcel (0.3 acres) is currently owned by National Grid, which maintains an active electrical substation on the property; previous environmental investigations did not identify environmental conditions requiring remediation. The eastern parcel (0.2 acres), which is currently owned by New York State Electric

and Gas Corporation (NYSEG), has been remediated to commercial use and is currently vacant and undeveloped.

Niagara Mohawk Power Corporation (doing business as National Grid) entered an Order of Consent in November 2003 with the NYSDEC to remediate soil and groundwater at the site, which have been impacted by historical MGP operations. The contaminants of concern (COCs) identified at the site, as listed in the Record of Decision (NYSDEC, 2010a) are: benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX); polycyclic aromatic hydrocarbons (PAHs) acenaphthene, benzo(a)pyrene, benzo(b)fluoranthene, benzo[k]fluoranthene, chrysene, fluorene, and indeno(1,2,3-cd)pyrene; and cyanide. In 2012, Engineering Controls were constructed at the eastern parcel including remedial excavation of the upper two feet of impacted surficial soil and construction of a soil cap system consisting of 18 inches of clean soil underlain by a demarcation layer to delineate clean soil from historical fill.

In addition to Engineering Controls, Institutional Controls including a site-wide Site Management Plan (SMP) and Environmental Easement are part of the site remedy to control exposure to remaining contamination and to maintain protection of public health and the environment. The *Monitoring and Sampling Plan* will ultimately be incorporated with the site wide SMP, which is currently under development, to conduct post-remediation monitoring to assess the performance and effectiveness of the remedy.

2.0 GROUNDWATER MONITORING

This section describes groundwater monitoring activities performed by Wood during the reporting period. The groundwater monitoring program including wells and their monitoring and sampling frequencies is summarized in Table 1. Figure 2 shows the locations of groundwater monitoring wells at the site. Appendix A includes the logs on which field data were recorded.

2.1 WATER LEVEL MEASUREMENTS

Depth to water measurements at site monitoring wells were measured on April 12, 2021, prior to sampling of the wells (Table 2). Depth to groundwater was measured with an electronic water level sounder from a surveyed reference point marked on the top of each well casing and measurements were recorded to the nearest 0.01 foot. The Erie Canal, which boarders the Site to the north, is drained during the winter and had not been refilled by the April 2021

sampling event. The depth to the base of the canal was measured from a dedicated, non-surveyed point selected and recorded by field personnel. The sounder was decontaminated between measurement locations by rinsing with an anionic detergent/distilled water mixture, followed by a distilled water rinse.

2.2 GROUNDWATER SAMPLING AND ANALYSIS

Groundwater samples were collected on April 12 and 13, 2021 in accordance with *Monitoring and Sampling Plan*. Monitoring wells were purged using low-flow sampling techniques prior to sampling using a peristaltic pump. Water quality parameters, including temperature, pH, specific conductance, oxidation-reduction potential, and dissolved oxygen were measured periodically during purging and were recorded on the sampling records. Samples were collected when parameter measurements changed less than 10 percent between three sequential measurements. Sampling records are provided in Appendix A.

Groundwater samples were collected into laboratory-provided sample containers immediately following purging. The sample containers were immediately labeled with the project number, well number, date, time, and analyses requested, stored in an ice cooled chest, and shipped to the analytical laboratory under Wood chain-of-custody procedures.

One blind field duplicate, one trip blank, and one equipment blank were collected for quality control purposes. These quality control samples were stored and delivered to the lab with the primary samples and were analyzed for the same parameters.

Eurofins TestAmerica Laboratories, Inc., of Amherst, New York, analyzed the samples for BTEX using United States Environmental Protection Agency (U.S. EPA) Method 8260B and the U.S. EPA 16-PAH list of polycyclic aromatic hydrocarbons (PAHs) using U.S. EPA Method 8270D. The samples were analyzed for total cyanide by Eurofins TestAmerica of North Canton, Ohio, using Standard Method SM4500-CN-C/E. Both laboratories are accredited under the National Environmental Laboratory Accreditation Program.

2.3 INVESTIGATION DERIVED WASTE

Groundwater purged from the monitoring wells was stored in a Department of Transportationapproved 55-gallon steel drum pending waste profiling. Following laboratory analysis and profiling, the investigation derived waste was disposed of at an off-site, permitted facility in accordance with state and federal regulations.

3.0 RESULTS

This section presents the results from the groundwater monitoring activities, including groundwater elevation measurement and analytical testing.

3.1 OCCURRENCE AND MOVEMENT OF GROUNDWATER

Measurements from the monitoring wells were used to evaluate the occurrence and movement of groundwater at the site.

On April 12, 2021, measured groundwater elevations in monitoring wells ranged from 505.55 (MW-9R) to 505.28 feet (MW-1). Depth to water measurements and water level elevations are summarized in Table 2. All elevations referenced are relative to the North American Vertical Datum 1988.

Figure 3 presents the potentiometric surface map for the water levels measured in the monitoring wells in April 2021. The potentiometric surface map indicates that groundwater flow is generally toward the southeast across the site. The horizontal gradient was approximately 0.024 foot per foot (ft/ft) in April 2021.

The Erie Canal was drained and a depth to the bank of the canal beneath the measuring point on April 12, 2021 was 13.60 feet. This is the first event during which the Erie Canal has been observed to be drained of water. The depth to water in the canal will be measured during future events at the same location.

3.2 GROUNDWATER ANALYTICAL RESULTS

Groundwater samples were collected from six monitoring wells for BTEX, PAH, and total cyanide analysis on April 12 and 13, 2021. Groundwater evaluation criteria are the Ambient Water Quality Standards and Guidance Values (Technical & Operational Guidance Series 1.1.1, Division of Water 1998). Groundwater results are compared to the Standard Values (or Guidance Values, where Standard Values are not available) for groundwater as a drinking water source. Copies of laboratory reports are included in Appendix B. Analytical results and evaluation criteria for BTEX, PAHs, and total cyanide are presented in Table 3, Table 4, and Table 5, respectively, and on Figure 4. Compounds that were detected at concentrations exceeding their respective evaluation criteria are summarized below:

Benzene (MW-5, MW-8R, MW-10R)

- Ethylbenzene (MW-5 and MW-8R)
- Xylenes (MW-5 and MW-8R)
- Acenaphthene (MW-8R)
- Naphthalene (MW-5 and MW-8R)
- Toluene (MW-8R)

Groundwater results from April 2021 are generally consistent with those from the most recent sampling event (September 2021) except for BTEX compounds in well MW-8R, which were detected at concentrations less than half of those observed in samples collected during the September 2020 sampling event. The BTEX concentrations observed in the MW-8R sample collected in September 2020 were several orders of magnitude greater than those from the previous monitoring event (November 2019). While the concentrations of BTEX compounds in MW-8R have shown significant variability during recent monitoring events, they are within the range of historical concentrations at this well (AMEC Geomatrix, Inc., 2010).

4.0 DATA QUALITY REVIEW

Analytical data (Appendix B) were reviewed by the laboratory and by Wood. Consistent with the DER-10 Section 2.2 (NYSDEC, 2010b), this report meets the submittal requirements for a Category A data deliverable. The data quality review included accuracy and precision assessments for the samples collected in April 2021. Consistent with the Quality Assurance Project Plan included in the Monitoring and Sampling Plan, the data quality review was performed in accordance with the procedures specified in the U.S. EPA National Functional Guidelines for Superfund Inorganic Methods Data Review (U.S. EPA, 2017a) and the U.S. EPA National Functional Guidelines for Superfund Organic Methods Data Review (U.S. EPA, 2017b). Results of the data validation and precision assessment indicate the following:

• Analytical accuracy was evaluated by reviewing laboratory control sample/laboratory control sample duplicate (LCS/LCSD) recoveries and matrix spike/matrix spike duplicate (MS/MSD) recoveries (recoveries of spiked compounds expressed as a percentage of the true concentrations). Surrogate recoveries, holding times, and field and laboratory blank results for samples collected in April 2021 were also used to assess accuracy. No QC issues requiring data qualifiers were identified for the laboratory and field QC samples. Results for several analytes in multiple samples were qualified "J," indicating that the analyte was positively detected in the sample, but that the reported result is approximate because it was

detected at a concentration below the reporting limit but above the method detection limit.

 Data precision was evaluated by comparing analytical results from duplicate pairs and evaluating the calculated RPDs between primary and blind field duplicate samples. The calculated RPD for the blind field duplicate sample collected from MW-5 were within the project acceptance criterion of 30% for organics and 20% for inorganics. A summary of the data precision evaluation is included on Table 6.

Based upon the data quality review, the April 2021 results are considered valid and usable. The data are acceptable and can be used for decision-making purposes. Data completeness (the number of successful analyses relative to the number of requested analyses) was 100 percent for samples collected in April 2021.

5.0 SITE INSPECTION

During the semiannual groundwater sampling event, Wood field personnel performed a visual assessment of the soil cap in order to evaluate changes due to erosion, land use, construction, or other factors that may indicate a physical change in the soil cap. Observations were recorded on a "Soil Cap Inspection Form" (Appendix C).

The visual inspections did not indicate any damage to the physical integrity of the soil cap. the need for any repairs or maintenance, or changes to the land use.

6.0 PLANNED ACTIVITIES

The following activities are planned for the monitoring period of July to December 2021:

- The second 2021 semiannual groundwater monitoring event, which will include collection of depth to groundwater measurements and groundwater samples in accordance with the NYSDEC-approved groundwater monitoring program, will be performed.
- The second 2021 semiannual groundwater monitoring report will be submitted to the NYSDEC following the completion of groundwater monitoring and evaluation activities.

7.0 REFERENCES

AMEC Geomatrix, Inc., 2010. Feasibility Study Report, Albion Former Manufactured Gas Plant Site, Site No: 8-37-012, Orleans County, Albion, New York. February.

Division of Water, 1998. Technical and Operational Guidance Series (TOGS) 1.1.1. June. Available at https://www.dec.ny.gov/docs/water-pdf/togs111.pdf

- New York State Department of Environmental Conservation (NYSDEC), 2010a. Record of Decision. NM-Albion MGP State Superfund Project, Albion, Orleans County Site No.:837013. March.
- NYSDEC, 2010b. DER-10: Technical Guidance for Site Investigation and Remediation. May 3. Available at https://www.dec.ny.gov/docs/remediation-hudson-pdf/der10.pdf
- United States Environmental Protection Agency (U.S. EPA), 2017a. National Functional Guidelines for Superfund Inorganic Methods Data Review: OLEM 9355.0-135, EPA 540-R-2017-001, January.
- U.S. Environmental Protection Agency, 2017b. National Functional Guidelines for Superfund Organic Methods Data Review: OLEM 9355.0-134, EPA 540-R-2017-002, January.
- Wood Environment & Infrastructure Solutions, Inc., 2018. Monitoring and Sampling Plan, National Grid Former Albion MGP Site, Albion, New York, December 21.

wood.

TABLES

GROUNDWATER MONITORING PROGRAM

Former Albion MGP Site Albion, New York

Well ID	Water Level Monitoring Schedule	Water Quality Monitoring Schedule	Laboratory Analysis
MW-1			
MW-5			
MW-6	Comiannual	Semiannual	BTEX by U.S. EPA 8260B, PAHs by U.S. EPA
MW-8R	Semiannual	Semialifical	8270D, Total Cyanide by SM4500-CN-C/E
MW-9R			
MW-10R			

Abbreviations

BTEX = benzene, toluene, ethylbenzene, xylenes

PAHs = polycyclic aromatic hydrocarbons

U.S. EPA = United States Environmental Protection Agency

GROUNDWATER ELEVATIONS APRIL 2021

Former Albion MGP Site Albion, New York

Well ID	Well Location	Date Measured	Measuring Point Elevation (NAVD 88)	Depth Below Measuring Point (feet)	Groundwater Elevation (NAVD 88)
		11/19/2019	515.04	7.91	507.13
MW-1	Up-gradient	9/22/2020	515.04	6.74	508.30
		4/12/2021	515.04	9.76	505.28
		11/19/2019	513.14	7.92	505.22
MW-5	On-site	9/22/2020	513.14	7.55	505.59
		4/12/2021	513.14	9.22	503.92
		11/20/2019	510.74	5.46	505.28
MW-6	On-site	9/22/2020	510.74	6.39	504.35
		4/12/2021	510.74	5.94	504.8
		11/20/2019	515.53	11.84	503.69
MW-8R	On-site	9/22/2020	515.53	11.67	503.86
		4/12/2021	515.53	12.73	502.8
		11/20/2019	514.70	12.89	501.81
MW-9R	Down-gradient	9/22/2020	514.70	13.93	500.77
		4/12/2021	514.70	13.15	501.55
		11/19/2019	515.81	12.92	502.89
MW-10R	Down-gradient	9/22/2020	515.81	12.75	503.06
		4/12/2021	515.81	13.94	501.87

Note

 Wells were surveyed by Costich Engineering, Land Surveying & Landscape Architecture D.P.C. (Costich Engineering), a New York-licensed land surveyor in June 2018. Monitoring well MW-9R was surveyed on November 11, 2019 by Costich Engineering. Water elevations are relative to the North American Vertical Datum 1988 (NAVD 88).

Abbreviation

NAVD 88 = North American Vertical Datum of 1988

TABLE 3

GROUNDWATER ANALYTICAL RESULTS - VOLATILE ORGANIC COMPOUNDS ^{1,2} APRIL 2021

Former Albion MGP Site Albion, New York

Results in micrograms per liter (µg/L)

Well ID	Sample ID	Sample Date	Benzene	Toluene	Ethylbenzene	m-Xylene & p-Xylene	o-Xylene	Xylenes, Total	Total BTEX
	MW-1-111919	11/19/2019	<1.0 ³	<1.0	<1.0	<2.0	<1.0	<2.0	<2.0
MW-1	MW-1-20200922	9/22/2020	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<2.0
	MW-1-041221	4/12/2021	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<2.0
	MW-5-111919/DUP	11/19/2019	23 / 23	4.0 / 4.1	13 / 12	9.1 / 8.6	12 /11	21 / 20	61 / 59
MW-5	MW-5-20200922/DUP	9/22/2020	42 / 42	4.2 / 4.5	8.7 / 9.4	3.4 / 3.4	5.3 / 5.7	8.7 / 9.1	64 / 65
	MW-5-041221/DUP	4/12/2021	28 / 28	3.2 / 2.8	11 / 10	6.4 / 5.6	8.4 / 8.1	15 / 14	57 / 55
	MW-6-112019	11/20/2019	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<2.0
MW-6	MW-6-20200923	9/23/2020	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<2.0
	MW-6-041221	4/12/2021	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<2.0
	MW-8R-112019	11/20/2019	49	2.6	3.7	12	5.7	18	73
MW-8R	MW-8R-20200923	9/23/2020	4,900	160	380	1,600	520	2,100	7,600
	MW-8R-041321	4/13/2021	2,000	45 J	130	470	180	650	2,800
	MW-9R-112019	11/20/2019	<1.0	0.57 J	<1.0	<2.0	<1.0	<2.0	<2.0
MW-9R	MW-9R-20200923	9/23/2020	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<2.0
	MW-9R-041321	4/13/2021	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<2.0
	MW-10-111919	11/19/2019	14	<1.0	<1.0	<2.0	<1.0	<2.0	14
MW-10R	MW-10R-20200922	9/22/2020	24	<1.0	<1.0	0.95 J	<1.0	0.95 J	25
	MW-10R-041221	4/12/2021	23	<1.0	<1.0	<2.0	<1.0	<2.0	23
Ambie	ent Water Quality Standard	s and Guidance Values ⁴	1	5	5	5	5	5	

GROUNDWATER ANALYTICAL RESULTS - VOLATILE ORGANIC COMPOUNDS ^{1,2} APRIL 2021

Former Albion MGP Site Albion, New York

Notes

- 1. Only detected compounds are presented. Detections are shown in bold. Highlighted cells indicate the concentration exceeds the respective screening criteria.
- 2. Samples analyzed for VOCs in accordance with U.S. EPA Methods 8260B or 8260C (2021) by Eurofins TestAmerica of Buffalo, New York.
- 3. "<" indicates constituent was not detected at a concentration equal to or greater than the laboratory reporting limit shown.
- 4. Division of Water 1998. Technical and Operational Guidance Series 1.1.1. June. Groundwater Standard Values for groundwater as a drinking source are shown where available; Guidance Values are shown where no Standard Value is available. Available at: https://www.dec.ny.gov/docs/water_pdf/togs111.pdf

<u>Abbreviations</u>

-- = not applicable

BTEX = benzene, toluene, ethylbenzene, and xylenes

DUP = field duplicate sample

J = the analyte detected at a level less than the reporting limit and greater than or equal to the method detection limit.

μg/L = micrograms per liter

U.S. EPA = United States Environmental Protection Agency

VOCs = volatile organic compounds

TABLE 4

GROUNDWATER ANALYTICAL RESULTS - POLYCYCLIC AROMATIC HYDROCARBONS ^{1,2} APRIL 2021

Former Albion MGP Site Albion, New York

Results in micrograms per liter (µg/L)

								micrograms	1 1 3									
Well ID	Sample ID	Sample Date	Acenaphthene	Acenaphthylene	Anthracene	Benzo[a]anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo[g,h,i]perylene	Chrysene	Dibenz[a,h]anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Phenanthrene	Pyrene	Naphthalene
	MW-1-111919	11/19/2019	<5.0 ³	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0	<5.0	<5.0	<5.0	<5.0	<5.0
MW-1	MW-1-20200922	9/22/2020	24 J	20 J	5.8 J	<25	<25	<25	<25	<25	<25	<25	6.4 J	26	<25	32	4.2 J	14 J
	MW-1-041221	4/12/2021	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0	<5.0	<5.0	< 5.0	<5.0	<5.0
	MW-5-111919/DUP	11/19/2019	34 / 38	33 / 36	6.2 / 6.4 J	<5.0 / <25	<5.0 / <25	<5.0 / <25	<5.0 / <25	<5.0 / <25	<5.0 / <25	<5.0 / <25	5.6 / 5.4 J	45 / 46	<5.0 / <25	23 / 23 J	3.1 J / 3.5 J	24 / 25
MW-5	MW-5-20200922/DUP	9/22/2020	22 J / 22 J	19 J / 19 J	6.0 J / 6.0 J	<25 /<25	<25 /<25	<25 /<25	<25 /<25	<25 /<25	<25 /<25	<25 /<25	6.2 J / 6.2 J	24 J / 24 J	<25 /<25	29 J+ / 29 J+	4.0 J / 4.0 J	13 J / 13 J
	MW-5-041221/DUP	4/12/2021	16 J / 14 J	21 J / 17 J	3.7 J / 2.8 J	<25 /<25	<25 /<25	<25 /<25	<25 /<25	<25 /<25	<25 /<25	<25 /<25	3.9 J / 3.5 J	20 J / 17 J	<25 / <25	12 J / 6.7 J	2.2 J / 2.2 J	41 / 31
	MW-6-112019	11/20/2019	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0	<5.0	<5.0	<5.0	<5.0	<5.0
MW-6	MW-6-20200923	9/23/2020	<5.0	< 5.0	<5.0	<5.0	<5.0	<5.0	< 5.0	< 5.0	< 5.0	<5.0	< 5.0	<5.0	< 5.0	<5.0	<5.0	<5.0
	MW-6-041221	4/12/2021	<5.0	< 5.0	<5.0	<5.0	<5.0	<5.0	< 5.0	<5.0	<5.0	<5.0	< 5.0	<5.0	<5.0	<5.0	<5.0	<5.0
	MW-8R-112019	11/20/2019	57	21 J	<25	<25	<25	<25	<25	<25	<25	<25	4.2 J	34	<25	33	2.1 J	900
MW-8R	MW-8R-20200923	9/23/2020	95 J	8.1 J	7.6 J	<100	<100	<100	<100	<100	<100	<100	<100	41 J	<100	<100 U	<100	2,300
	MW-8R-041321	4/13/2021	65 J	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	< 500	<500	<500	860
	MW-9R-112019	11/20/2019	6.1 J+	0.38 J+	0.65 J+	<5.0	<5.0	<5.0	<5.0	< 5.0	<5.0	<5.0	< 5.0	3.0 J+	< 5.0	2.8 J+	<5.0	50
MW-9R	MW-9R-20200923	9/23/2020	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
	MW-9R-041321	4/13/2021	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
	MW-10-111919	11/19/2019	0.86 J	< 5.0	<5.0	<5.0	<5.0	<5.0	< 5.0	< 5.0	<5.0	<5.0	< 5.0	<5.0	< 5.0	< 5.0	<5.0	0.99 J
MW-10R	MW-10R-20200922	9/22/2020	1.0 J+	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0	< 5.0	<5.0	<5.0 U	<5.0	3.5 J+
	MW-10R-041221	4/12/2021	0.73 J	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0	<5.0	< 5.0	<5.0	<5.0	3.4 J
Ambient \	Vater Quality Standards a	nd Guidance Values ⁴	20		50	0.002	0.002	0.002	0.002		0.002		50	50	0.002	50	50	10

GROUNDWATER ANALYTICAL RESULTS - POLYCYCLIC AROMATIC HYDROCARBONS ^{1,2} APRIL 2021

Former Albion MGP Site Albion, New York

Notes

- 1. Only detected compounds are presented. Detections are shown in **bold**. Highlighted cells indicate the concentration exceeds the respective screening criteria.
- 2. Samples analyzed for PAHs in accordance with U.S. EPA Method 8270D by Eurofins TestAmerica of Buffalo, New York.
- 3. "<" indicates constituent was not detected at a concentration equal to or greater than the laboratory reporting limit shown.
- 4. Division of Water 1998. Technical and Operational Guidance Series 1.1.1. June. Groundwater Standard Values for groundwater as a drinking source are shown where available; Guidance Values are shown where no Standard Value is available.

 Available at https://www.dec.ny.gov/docs/water_pdf/togs111.pdf

Abbreviations

-- = not applicable

DUP = field duplicate sample

J = the analyte detected at a concentration less than the reporting limit and greater than or equal to the method detection limit

J+ = the reported concentration may be estimated high

 μ g/L = micrograms per liter

PAH = polycyclic aromatic hydrocarbons

U = The analyte was detected at a concentration below the reporting limit, but due to a detection of the compound in the associated laboratory method blank the detection is not considered valid

U.S. EPA = United States Environmental Protection Agency

GROUNDWATER ANALYTICAL RESULTS - TOTAL CYANIDE ^{1,2} APRIL 2021

Former Albion MGP Site Albion, New York

Results in milligrams per liter (mg/L)

Well ID	Sample ID	Sample Date	Cyanide, Total
	MW-1-111919	11/19/2019	0.098
MW-1	MW-1-20200922	9/22/2020	0.11
	MW-1-041221	4/12/2021	0.10
	MW-5-111919/DUP	11/19/2019	0.16 / 0.16
MW-5	MW-5-20200922/DUP	9/22/2020	0.21 / 0.22
	MW-5-041221/DUP	4/12/2021	0.18 / 0.17
	MW-6-112019	11/20/2019	0.041
MW-6	MW-6-20200923	9/23/2020	0.068
	MW-6-041221	4/12/2021	0.013
	MW-8R-112019	11/20/2019	0.21
MW-8R	MW-8R-20200923	9/23/2020	0.15
	MW-8R-041321	4/13/2021	0.17
	MW-9R-112019	11/20/2019	0.054
MW-9R	MW-9R-20200923	9/23/2020	0.080
	MW-9R-041321	4/13/2021	0.096
	MW-10-111919	11/19/2019	0.010
MW-10R	MW-10R-20200922	9/22/2020	0.030
	MW-10R-041221	4/12/2021	0.024
Ambie	ent Water Quality Standard	ds and Guidance Values ³	0.2

Notes

- Only detected compounds are presented. Detections are shown in **bold**.
 Highlighted cells indicate the concentration exceeds the respective screening criteria.
- 2. Samples analyzed Total Cyanide in accordance with Standard Method 4500-CN-C/E by Eurofins TestAmerica of North Canton, Ohio.
- 3. Division of Water 1998. Technical and Operational Guidance Series 1.1.1. June. Groundwater Standard Value for groundwater as a drinking source is shown. Available at https://www.dec.ny.gov/docs/water_pdf/togs111.pdf

Abbreviations

DUP = field duplicate mg/L = milligrams per liter

PRECISION DATA SUMMARY APRIL 2021

Former Albion MGP Site Albion, New York

Results reported in (ug/L)

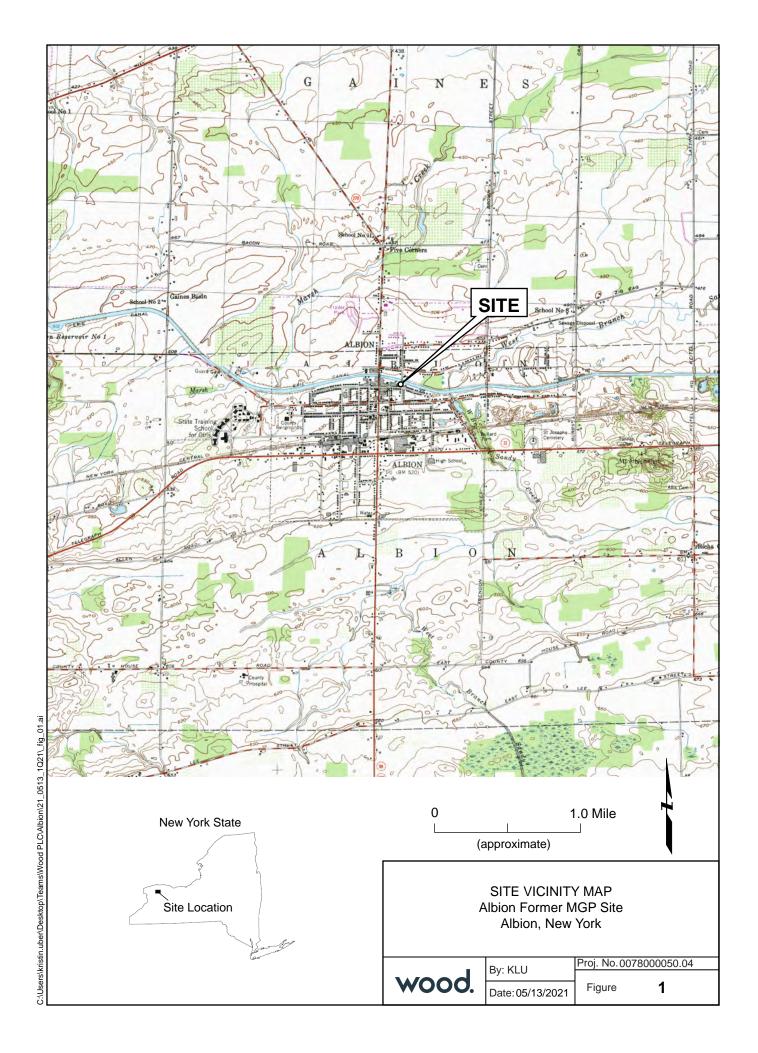
				Primary	Sample	Duplicate	Sample		Absolute
Primary	Duplicate	Collection		Reporting	Sample	Reporting	Sample		Difference
Sample ID	Sample ID	Date	Compound ¹	Limit	Result	Limit	Result	RPD ²	Between
		4/12/2021	Benzene	1.0	28	1.0	28	0.0	NA
		4/12/2021	Toluene	1.0	3.2	1.0	2.8	13.3	NA
		4/12/2021	Ethylbenzene	1.0	11	1.0	10	9.5	NA
		4/12/2021	m & p-Xylene	2.0	6.4	2.0	5.6	13.3	NA
		4/12/2021	o-Xylene	1.0	8.4	1.0	8.1	3.6	NA
		4/12/2021	Total Xylenes	2.0	15	2.0	14	6.9	NA
		4/12/2021	BTEX	2.0	57	2.0	55	3.6	NA
MW-5-	MW-50-	4/12/2021	Acenaphthene	25	16 J	25	14 J	NA	2.0
041221	041221	4/12/2021	Acenaphthylene	25	21 J	25	17 J	NA	4.0
		4/12/2021	Anthracene	25	3.7 J	25	2.8 J	NA	0.90
		4/12/2021	Fluoranthene	25	3.9 J	25	3.5 J	NA	0.40
		4/12/2021	Fluorene	25	20 J	25	17 J	NA	3.0
		4/12/2021	Naphthalene	25	41	25	31	NA	10
		4/12/2021	Phenanthrene	25	12 J	25	6.7 J	NA	5.3
		4/12/2021	Pyrene	25	2.2 J	25	2.2 J	NA	0.00
		4/12/2021	Total Cyanide	0.010	0.18	0.010	0.17	5.7	NA

Notes

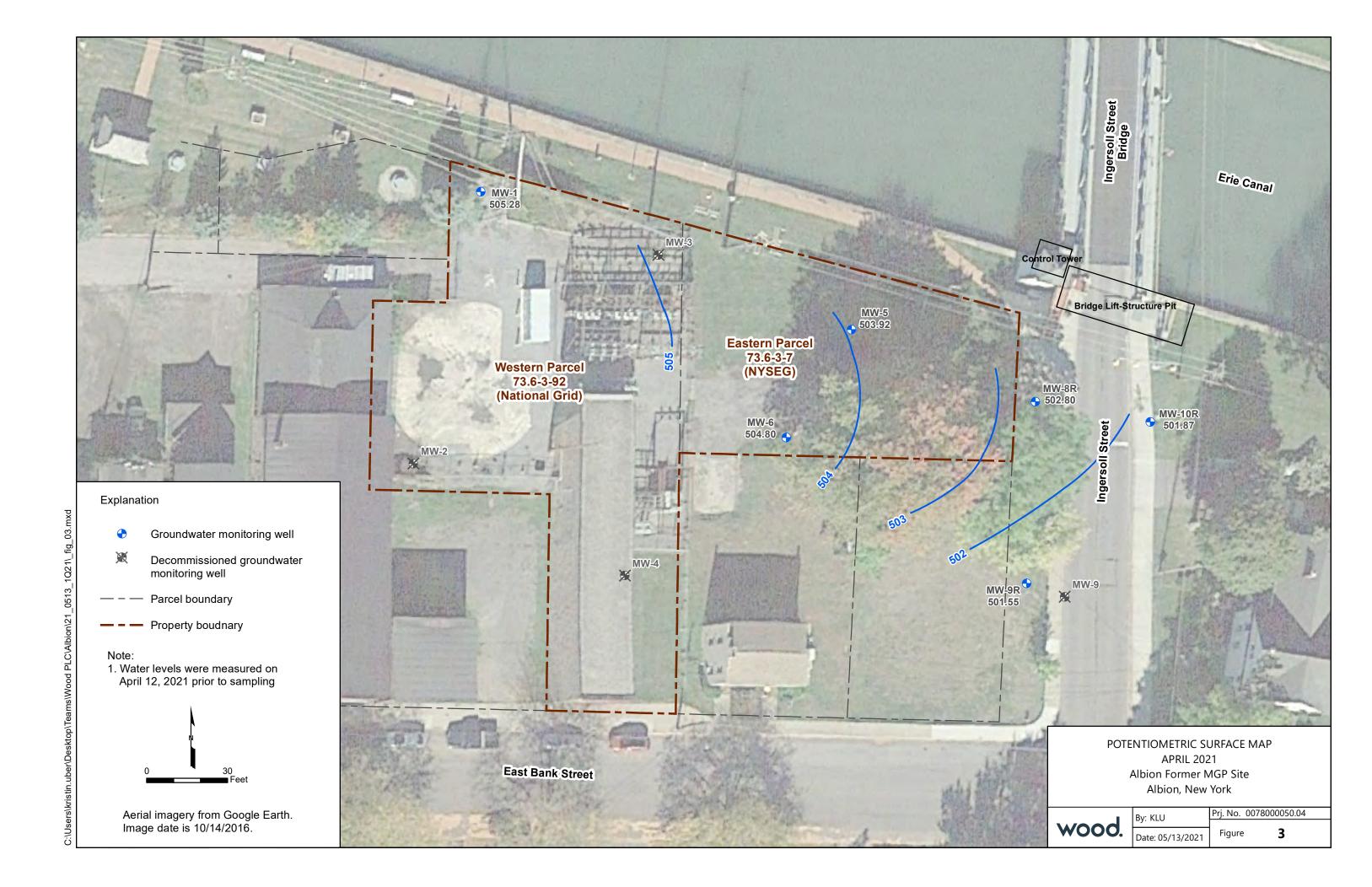
1. Only compounds detected in at least one of the primary or duplicate samples are shown.

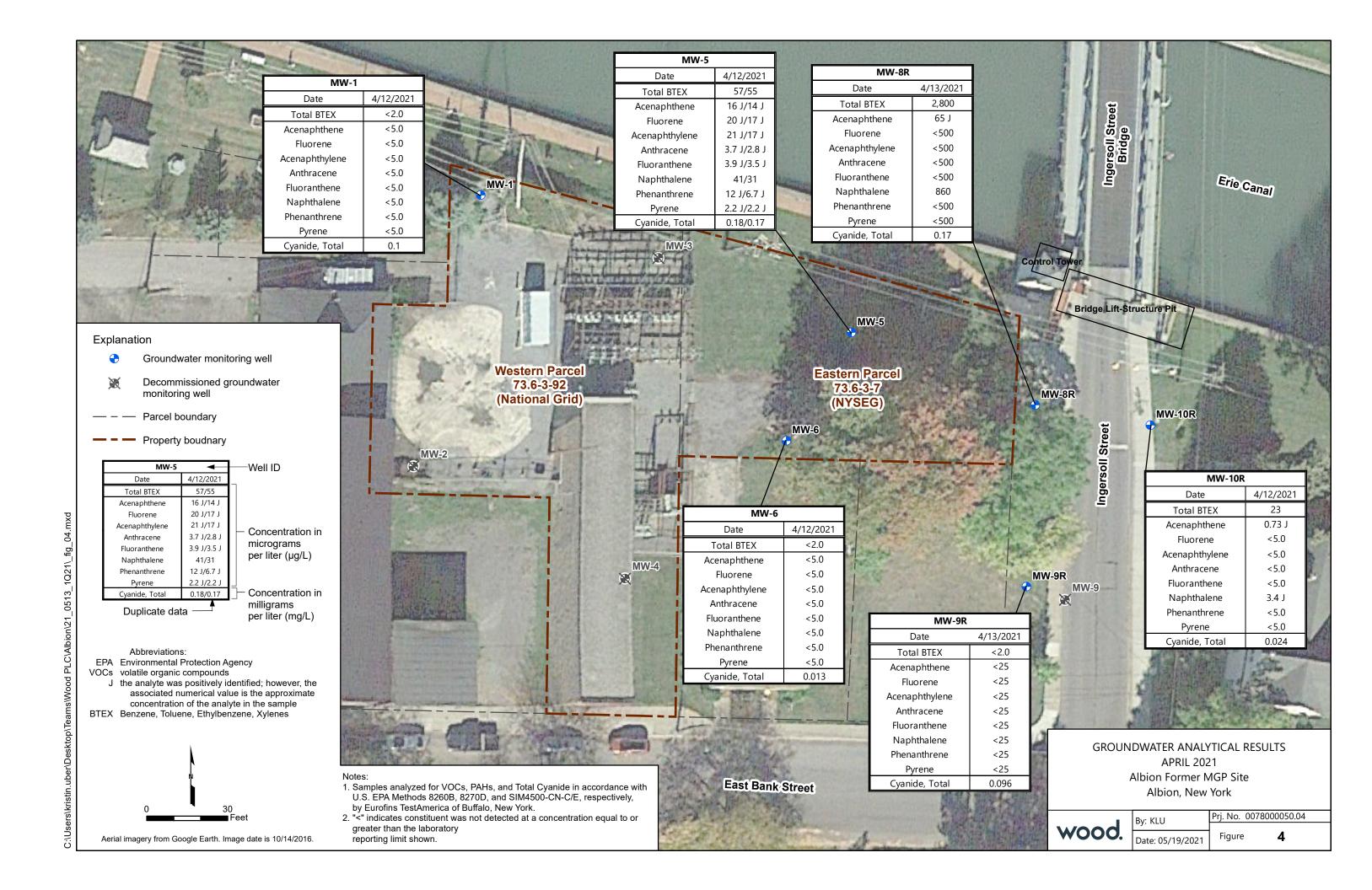
$$RPD\% = \left| \frac{2(S_1 - S_2)}{S_1 + S_2} \right| \times 100$$

2. Relative Percent Difference (RPD) is calculated by:


where S1 = primary sample concentration and S2 = duplicate sample concentration.

Duplicate results are acceptable when the RPD between the results is less than 30% for **organics** or 20% for **inorganics**.


- 3. RPD is not applicable when one or both sample results are less than two times the reporting limit (RL) for **organics** or less than 5 \ times the RL for the **inorganics**. When the RPD is not applicable, duplicate results are acceptable when:
 - both results are positive: the absolute difference between the results is less than the RL.
 - **one non-detection (ND) and one positive result:** the absolute difference between the positive results and the reporting limit of the ND is less than the RL of the ND.



FIGURES

APPENDIX A

Groundwater Sampling Records

	Wo	od			Project Name National Grid –		Site No.	837012, Albio	n, New York		
	MONITOR SAMPLE COL	ING			Project/Task 007800		1	npled By:	1 7 7	nte: 1113721	
Well Num	nber/ID: N	IW-9R		Sampl	e ID: MW-9F	R-04137	21	Duplicate ID: N/A			
Method o	of Purging: L	ow-Flo	w	Metho	d of Sampling	Low-Flo	w	Intake Dept	h: 12 bg	s due to law	
					Field Eq	uipment					
Equipment Model Serial #/Rental ID Date Received/Serviced Date Calibrate						e Calibrated					
Multi-Prob	e	Her!be	a v-	-52	Vofyan	mu	1/9/2	21	4/13	121	
Turbidimet	ter				7						
				Ca	sing Purge Vol	ume Calcul	ations		Д.		
A. Depth to	Water = 12	95 _{ft.}	D. Wa	ater Column (I	B-A) = <u>4,18</u>	ft.	Depth to	Water After Sa	mpling = 15	,20 ft.	
B. Well Tota	al Depth = <u>17</u>	13_ft.	E. 1 V	Vell Volume (0	C ² x 0.0408 x D) =	:0.68 gal.	Actual Vo	gal/ml,			
C. Well Diar	meter = Z	in.	F. 3 V	Vell Volumes ((3 x E) = 2.00	gal.	(If applica	ble, see pumping	system volume o	alculation below)	
Pump and	Flow Cell Volu	ıme	Vp	= N/A	ml		Pumpin	g System Vo	lume Calcu	lation	
Tubing Ins	side Diameter		D	= N/A	in.		Pu	mping System	Volume (Vs)	
Tubing Ler	ngth		L	= N/A	in.		$V_S = V_F$	$+ \pi * D^2 / 4$	* L * 16.39 r	ml/in ³	
Conversion	from Inches ³	to ml	1 in ³	= 16.39	ml	Vs =	() + (3.1415 * _	2/4)	* () * 16.39	
	Purging Data			Water Qu	ality Parameter	s (within ran	ge for 3 c	onsecutive re	adings if low	v-flow sampling)	
Time (24 hr)	Purge Volume	Flow R	1	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks	
	Li gai Li iiii	U 1111/1	A77 A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	tabilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	<10 NTU	pru	
905	Initial	100		10.00	1,50	3.19	7.63	-92	0.0	12.95	
910	500			9.80	1.61	3,10	7.48		0.0	13.20	
915	1000			9,76	1.60	3,37	7.2.6	- 39	0.0	13,32	
920	1500		(9.92	2.21	2.40	7.24	-17	0.0	13-30 13.52	
925	2000			7.82	2.60	2.09	7.22		0.0	13.66	
930	2500		1	1.86	2.69	1.85	7,29	-7	0.0	13,81	
935	3000			7.84	2.64	1.72	7.33	0	6.0	13.95	
940	3500		, (9.86	2.52	1.40	736	-3	0.0	14.06	
945					2.41	1.11	7.34	0	0.0	14.18	
Remarks:	TOC PID =	VA									

(1) Based on EPA low-flow sampling guidelines ASTM D 6771-02, and research validated Best Practices (see SAP for details).

Signature: Checked By:

Purge pumping system volume before recording parameters on dedicated pumps only.

		1011111		continued fr			no rono.		
	Purging Data			Water Quality	Parameters (\	within ran	ge for 3 cons	ecutive read	lings)
Time (24 hr)	Purge Volume	Flow Rate	Temp (°C)	Specific Conductance (μS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks
2.00.00	- gar - IIII		Stabilization(1):	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	<10 NTU	
950	4500	100	9.88	2.24	0.98	7,33	***	6.0	14.40
155	5000	1	9.95	2.37	0.89	7.32	05	0.0	14.49
000	5500		9.93	2.46	0.90	7.32	7	0.0	14.58
005	6000		9,92	2.59	0.94	7.31	10	0.0	14.71
010	6500		9.91	2.57	0.88	7.31	11	0.0	1480
015	7000		9.93	2.55	0.89	7.34	12	0.0	14.95
020		1		red mu		4132	1		
025			/						

(1) Based on EPA low-flow sampling guidelines, ASTM D 6771-02, and research validated Best Practices (see SAP for details).

	wo	od.		Project Name National Grid –		P Site No.	837012, Albior	n, New York		
_	MONITOR	ING WE	To facility to the second seco	Project/Task 0078000		San	npled By:	Dat 4	te: 1/12/2/	
Well Num	L /2D.	W-6	Sampl	e ID: MW-6-	04122	1	Duplicate ID	N/A		
Method o	f Purging: Lo	ow-Flow	Metho	thod of Sampling: Low-Flow Intake Depth: 13.5' bgs						
				Field Eq	uipment					
Equi	pment	Мо	odel	Serial #/Rent	tal ID		ate /Serviced	Date	Calibrated	
Multi-Probe		Heriba	0-52	VOFyami					121	
Turbidimet	ter									
A Donth to	Water = 5	6 + D		asing Purge Volume Calculations $(B-A) = \frac{9.54}{1000} \text{ ft.} \qquad \text{Depth to Water After Sampling} = \frac{6.25}{1000} \text{ ft.}$						
	I Depth = 15.			C ² x 0.0408 x D) =					3750 gal/m2	
	meter = 2			3 x E) = 2.34			ble, see pumping s			
And the Property of	The second second	10.13		ml	gai.				7 17 17 17 17 17 17 17 17 17 17 17 17 17	
	Flow Cell Volu	ıme V _P	= N/A = N/A							
	ide Diameter			in.						
Tubing Ler		L	= N/A	in.					* () * 16.39	
Conversion	from Inches ³	100000000000000000000000000000000000000		ml						
Time (24 hr)	Purging Data Purge Volume	Flow Rate	Temp (°C)	Specific Conductance (μS/cm)	Dissolved Oxygen (mg/L)	1	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks	
(24111)	□ gal Ø ml	□ ml/min	Stabilization(1):	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	<10 NTU	Dra	
1655	Initial	125	11.17	0.479	5.99	7.02	152	329	5.86	
1700	625	1	10.69	0.649	1.87	6.82	7	300	6.25	
1705	1250		10,58	0.688	104	6.90		266	6.25	
1710	1875		10,53	0.704	0.73	6,95		270	6.25	
1715	2500		10,42	0.709	0.62			135	6.25	
1720	3125		10.36	0.712	0.59	6.98		33,1	6.25	
1725	3750	V	10.32	0.717	0.66	6.98	148	6.0	6.25	

Sampled MW-6-04/221

UIA Sample clear, and less Remarks: TOC PID = /U/A Purge pumping system volume before recording parameters on dedicated pumps only. (1) Based on EPA low-flow sampling guidelines, ASTM D 6771-02, and research validated Best Practices (see SAP for details). **Checked By:**

Signature:

wood.

Project Name: National Grid – Former MGP Site No. 837012, Albion, New York

	ONITOR			Project/Task 007800	#: 0050.03	Sai	npled By:	Da 4	te: ///2/2/	
Well Num	iber/ID:	IW-10R	.OG Sampl	le ID: MW-10	0R- <i>04</i> /7	15.5	Duplicate ID		1-1	
Method o	f Puraina:	ow-Flow	Metho	od of Sampling			Intake Dept	h: 16' bgs	.	
		1000		Field Ed	uipment					
Equi	pment	M	lodel	Soviel #/Pontal ID			ate I/Serviced	Date	Calibrated	
Multi-Prob	e	Horiba	U-5Z	VOFY9mmw 4/0				4/12	2/21	
Turbidime	ter	- I - A - A - A - A - A - A - A - A - A	6a							
			Ca	sing Purge Vo	lume Calc	ulations				
A. Depth to	Water = <u>13.</u>	74 ft. D.	Water Column (B-A) = 4.82	_ ft.	Depth to	Water After Sa	mpling = <u>J4</u>	75 ft.	
	al Depth = 18.	the state of the s	1 Well Volume (C ² x 0.0408 x D) =	= 0.79 gal.	Actual V	olume Purged (f	rom below) =	gal/ml.	
	meter =2			$(3 \times E) = 2.30$			able, see pumping s	system volume ca	alculation below)	
Pump and	Flow Cell Volu	ıme V _p	= N/A	ml		Pumpir	ng System Vo	lume Calcul	ation	
Tubing Ins	side Diameter	D	= N/A	in.		Pi	ımping System	Volume (Vs)		
Tubing Ler	ngth	L	= N/A	in.		Vs = V	p+π*D ² /4	* L * 16.39 m	nl/in ³	
Conversion	n from Inches³	to ml 1 i	$n^3 = 16.39$	ml	Vs	= () + (3.1415 * _	2/4)	* () * 16.39	
	Purging Data		Water Qu	ality Parameter	rs (within ra	ange for 3	consecutive re	adings if low	-flow sampling)	
Time (24 hr)	Purge Volume	Flow Rate	Temp (°C)	Specific Conductance (μS/cm)	Dissolve Oxygen (mg/L)	рн	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks	
	□ gal 🗹 ml	✓ ml/min	Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	L ± 0.2	± 20 mV	<10 NTU	DTW	
1530	Initial	150	11.15	1.50	2.21	7.02	2 10	30.3	13,94	
1535	750	130	11,30	2.96	3,00	6.65	51	21.1	14.30	
1540	1400	130	11.57	3,17	2.33	6.61	6 73	17,7	1415	
1545	2050	150	11.67	3.32	1.87	6.6	7 84	15.5	14,09	
1550	2800	130	11.67	4,29	3.88	6.7	3 100	15.8	14,20	
1555	3450		11.59	4.73	8.17	6177	7 116	13,8	14,35	
1600	4100		11.59	5.10	3,26	6.78		12.7	14,49	
1605	4750		11.57	5.36	3,30	6.80	128	12.2	14.60	
1610	5400	A	11,58	5.80	1,48	6.80	0 131	11.7	14.71	
Remarks	TOC PID =	NIA								
Purge pun	nping system vo	lume before	recording parame	eters on dedicated	d pumps only	•				
(1) Based o	on EPA low-flow	sampling gu	idelines, ASTM D	6771-02, and res	earch validat	ed Best Pra	ctices (see SAP f	or details).		
Signature	e: Ole	1	an	- 4	Checked	By:				

Purging/Sampling Date: 4/12/ Well Number/ID: MW - IOR ADDITIONAL FIELD PARAMETER COLLECTION LOG for MICRO-PURGE SAMPLING (continued from frontside) **Purging Data** Water Quality Parameters (within range for 3 consecutive readings) Oxidation Specific Dissolved Turbidity Temp pH Reduction Conductance Purge Flow Rate Oxygen **Potential** (NTU) (°C) Time (µS/cm) (mg/L) Remarks □ gpm Volume (mV) (24 hr) ☑ ml/min DIW ± 0.2 mg/L Stabilization(1): ± 0.2 ± 20 mV <10 NTU ± 3% 6,80 136 6050 6,80 7350 10,2 6.81 8000 9.7 135 8650 137 9,0 9,0 9300 135 640 0.62 mW-108-041221 Sample was clear and has oder. Remarks: (1) Based on EPA low-flow sampling guidelines, ASTM D 6771-02, and research validated Best Practices (see SAP for details).

	wo	od			Project Name National Grid –		MGP S	ite No.	837012, Albior	n, New York		
	ONITOR			5-70°	Project/Task			Sam	mpled By: Date: 4/12/2			
Well Num	ber/ID: M	W-1		Sampl	ple ID: MW-1- 04/22)				Duplicate ID	N/A		
Method o	f Purging: Lo	ow-Flo	ow	Metho	thod of Sampling: Low-Flow 13' bgs							
					Field Eq	uipmen	t					
Equi	pment		Mod	del	Serial #/Rent	al ID	Red	Da ceived	te /Serviced	Date	Calibrated	
Multi-Probe	e	Hen	ha	0-52	Vofy9inml	N		9/2		4/17/	21	
Turbidimet	er		TOTTO CONTRACTOR OF THE PARTY O		arteritation de la constantina de la c							
		J.C.		Ca	sing Purge Vol	ume Ca						
A. Depth to	Water = q_{i}	76_ft.	D. W	ater Column (E	(3-A) = (0.34)	ft.	C	Depth to	Water After Sar	mpling = <u>///</u>	<u>15</u> ft.	
B. Well Tota	al Depth = 20	10 ft.	E. 1	Well Volume (C	$C^2 \times 0.0408 \times D$) = $\sqrt{69}$ gal. Actual Volume Purged (from below) = $\sqrt{9}$					5000 gal∕mi)		
C. Well Diameter = 2 in. F. 3 Well Volum					$3 \times E) = 5.00$	gal.	(If applicat	ole, see pumping s	ystem volume ca	lculation below)	
Pump and Flow Cell Volume $V_p = N/A$					ml		P	umpin	g System Vo	lume Calcul	ation	
Tubing Ins	ide Diameter		D	= N/A	in.			Pui	mping System	Volume (Vs)		
Tubing Ler	ngth		L	= N/A							ıl/in³	
Conversion	from Inches ³	to ml	1 in ³	= 16.39	mlVs = () + (3.1415 * ² / 4) * (* () * 16.39		
	Purging Data	1		Water Qu	ality Parameters	s (within	range	e for 3 c		adings if low	-flow sampling)	
Time (24 hr)	Purge Volume	Flow I	n	Temp (°C)	Specific Conductance (µS/cm)	Dissol Oxyg (mg/	en	pН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks	
(=)	□ gal 🗖 ml	≠ ml/		Stabilization ⁽¹⁾ :	± 3%	± 0.2 m	ıg/L	± 0.2	± 20 mV	<10 NTU	DTW	
1310	Initial	100)	16.83	0.640	2,8	4	5.80	309	7.7	9.76	
1315	500			15.84	0.662	2.2	0	6.07	309	6,9	10.51	
1320	1000			15,30	0.682	2,0		6,20	311	14.7	10,57	
1325					0.684	2.4	0	6.35	315	19,0	10.70	
1330	2000			14.52	0.688	1.93	5	640		18.4	10.76	
1335	2500			14.22	0,693	1.78		6.46		14.1	10,86	
1340	3000			13.97	0.704	1.54		6.50		11.0	10.93	
1345	3500		·	12.54	0.736	1.51		6.54	316	10.4	10.97	
1350				12.28	0.743	1,40		6.58	315	8.5	10.99	
Remarks	TOC PID =	NIF	7									

Purge pumping system volume before recording parameters on dedicated pumps only.

(1) Based on EPA low-flow sampling guidelines, ASTM D 6771-02, and research validated Best Practices (see SAP for details).

Signature: Checked By:

ADDITIONAL FIELD PARAMETER COLLECTION LOG for MICRO-PURGE SAMPLING (continued from frontside)										
Purging Data Water Quality Parameters (within range for 3 consecutive readings)										
Time (24 hr)	Purge Volume □ gal ☑ ml	Flow Rate	Temp (°C)	Specific Conductance (μS/cm)	Dissolved Oxygen (mg/L) ± 0.2 mg/L	pH ± 0.2	Oxidation Reduction Potential (mV) ± 20 mV	Turbidity (NTU)	Remarks	
		□ ml/min	Stabilization ⁽¹⁾ :							
355	4500	100	12.21	0.750	1,28	6.60	314	7.7	11.05	
100	5000		12.09	0758	1.20	6.61	311	6.8	11.06	
105		V	Sample	ed mu	-1-04	1221				
110										
1.0										
								 		
								1		
		0								
emarks		Sando	1 Mus-	-04122	1 @ 14	05				
		savijike.	10 -1-	1-04122 present,	Samole	11-0-	_			
		' /	10 oser	present,	, Jengie	Utai				

wood.

Project Name: National Grid – Former MGP Site No. 837012, Albion, New York

7.0	MONITOR			Project/Task 007800	#: 00050.03	San	pled By:	7.7	ite: 117/7/	
Well Num	ber/ID: N	1W-5	Samp	le ID: MW-5-	-041221		Duplicate ID	• MW-50	0-04/22/	
Method o	f Purging: L	ow-Flow	Metho	od of Sampling	Low-Flo	ow :	Intake Dept	h: 14.5' b	gs	
				Field Ed	quipment					
Equi	pment		Model	Serial #/Ren	Serial #/Rental ID Receiv			Date	Date Calibrated	
Multi-Probe	e	Haribe	a U-52	VOFX Pimm	W 4/9/21 4/12/2				121	
Turbidimet	er									
			Ca	sing Purge Vo	lume Calcu	lations				
	Water = 9		. Water Column (в-а) = <u>7,04</u>	_ ft.		Water After Sa			
	I Depth = <u>//o</u> ·			C ² x 0.0408 x D) =		Actual Vo	lume Purged (f	rom below) =	3600 gal/mp	
C. Well Dian	neter =	in. F.	. 3 Well Volumes	$(3 \times E) = 3.43$	gal.	(If applicat	ole, see pumping s	system volume ca	alculation below)	
Pump and	Flow Cell Volu	ume V	= N/A	ml		Pumping	g System Vo	lume Calcul	ation	
Tubing Ins	ide Diameter	D	= N/A	A in. Pumping System Volume (Vs)						
Tubing Len	igth	L	= N/A	Vs = $V_P + \pi * D^2 / 4 * L * 16.39 \text{ ml/in}^3$						
Conversion	from Inches ³	to ml 1	$in^3 = 16.39$	ml	Vs =	= (:) + (3.1415 * _	²/4) ³	* () * 16.39	
	Purging Data	1	Water Qu	ality Parameter	s (within rar	nge for 3 c	onsecutive re	adings if low	-flow sampling)	
Time (24 hr)	Purge Volume	Flow Rate	(°C)	Specific Conductance (μS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks	
Q [*]	L gui L iiii	2 ,	Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	<10 NTU	Drw	
1425	Initial	120	13.10	0.973	2.63	6.99	207	27.0	9.22	
1430	600		11.01	0.999	2.10	6.82	11	24.1	10.00	
1435	1200		10.72	1.05	1.69	6.75	-23	230	10.31	
1440	1800		10.74	1.04	1.32	6.79	-58	15.2	10.45	
1445	2400		10.76	1.04	1,56	6.93	-70	12.1	10.56	
1450	3000		10.74	104	1.66	6.86	-75	11.5	10.70	
1455	3600	V	10.85	1.03	1.75	6.88	-83	8.3	10.79	
1500	5	ampled	MW-5.	-041221						
1505		Sample	mw-50	0-04122						
Remarks:	TOC PID =	NH								
			0	der prese	of San	nple	dear			
Purge pum	ping system vol	ume before		eters on dedicated		/				
(1) Based or	EPA low-flow	sampling gu	idelines, ASTM D	6771-02, and rese	earch validated	d Best Practi	ices (see SAP fo	or details).		
Signature	: 1/	//	Man		Checked B	y:				

wood.

MONITORING WELL SAMPLE COLLECTION LOG

Project Name:

National Grid - Former MGP Site No. 837012, Albion, New York

Project/Task #:	
0078000050.0)3

Sampled By:

Date: 4/13/21

SAPIFEE COLLECTION LOG			A STATE OF THE STA
Well Number/ID: MW-8R	Sample ID: MW-8R- 04/321	Duplicate ID: N	/A
Method of Purging: Low-Flow	Method of Sampling: Low-Flow	Intake Depth:	6' bgs
	Field Equipment		

		Serial #/Rental ID Date Received/Serviced Date Calibrated VOXY9mmw 4/9/21 4/13/21				
Equipment	Model	Serial #/Rental ID		Date Calibrated		
Multi-Probe	Herba USZ	VOFX 9mmw	4/9/21	4/13/21		
Turbidimeter						

			Casing	Purge Vo	lume Calcu	lations			
A. Depth to Water = $12-63$ ft.	D. Water Column (B-A) = 7.98 ft.					Depth to Water After Sampling = 13.59 ft.			
B. Well Total Depth = 70.7 ft.	E. 1 \	Vell	Volume (C ² x 0.	.0408 x D) =	= <u>1,30</u> gal.	Actual Volume Purged (from below) = 15000 gal/mb			
C. Well Diameter =in.	F. 3 Well Volumes $(3 \times E) = 3.91$ gal.					(If applicable, see pumping system volume calculation below)			
Pump and Flow Cell Volume	Vp	=	N/A	ml		Pumping System Volume Calculation			
Tubing Inside Diameter	D	=	N/A	in.		Pumping System Volume (Vs)			
Tubing Length	L	=	N/A	in.		$V_S = V_P + \pi * D^2 / 4 * L * 16.39 \text{ ml/in}^3$			
Conversion from Inches ³ to ml	1 in ³	=	16.39	ml	3-91 Vs =	= () + (3.1415 * ² /4) * () * 16.39			

	Purging Data		Water Qua	Water Quality Parameters (within range for 3 consecutive readings if low-flow sampling)									
Time (24 hr)	Purge Volume	Flow Rate	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks				
	□ gal □ ml	□ ml/min	Stabilization(1):	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	<10 NTU	Dia				
700	Initial	150	10.27	2.83	1.52	626	2	2.6	1263				
705	750	f	10,25	2.84	1.35	6.50	-41	1.1	12.90				
710	1500		10.33	2.83	1.14	6.56	-58	0.5	12.90				
715	2250		10.33	2.81	0,91	6.60	-70	0.1	13.02				
720	3000		10.35	2.78	0.78	6.64	-79	0.0	(3.1)				
725	3750		10:35	2.74	0.71	6.68	-85	0.0	13.18				
730	4500		10.37	2.71	0.71	6.82	-89	0.0	13.25				
735	5250		10.38	2.64	0.71	6.76	-93	0.0	13.33				
740	6000	V	10.38	2.58	0.65	6.78	- 97	0.0	13,39				

Remarks: TOC PID = MA

Purge pumping system volume before recording parameters on dedicated pumps only.

(1) Based on EPA low-flow sampling-guidelines, ASTM_D 6771-02, and research validated Best Practices (see SAP for details).

Signature: Checked By:

Purging/Sampling Date: 4/13/21 Well Number/ID: MW-8R ADDITIONAL FIELD PARAMETER COLLECTION LOG for MICRO-PURGE SAMPLING (continued from frontside) Water Quality Parameters (within range for 3 consecutive readings) **Purging Data** Oxidation Specific Dissolved Reduction Turbidity Temp pH Conductance Oxygen Purge Flow Rate (NTU) (°C) **Potential** Time Remarks (µS/cm) Volume □ gpm (mg/L) (mV) (24 hr) ☐ gal 🗹 ml / ml/min ± 0.2 mg/L ± 0.2 ± 20 mV <10 NTU Stabilization(1): ±3% 6.80 150 10.36 2.48 0.63 0.0 6750 -102 10.40 2.40 0.62 6.82 0.0 13.45 -105 7500 6,87 13.45 2.25 0.63 -111 0.0 8250 10,43 13.45 6.90 - 116 2.16 0.60 800 9000 10.45 0.0 13.45 6.93 1049 2.08 -120 0.0 805 6.96 -124 13.45 2.01 810 10.53 0.0 0,59 13.45 0.0 250 6.98 0.58 -128 815 10.50 1.96 13.45 1.88 -132 0.0 820 10.52 7.02 -140 10.52 1.83 0.58 7.13 0.0 13.45 825 7.26-149 0.0 13.45 10.54 0.58 830 13500 7.27 -151 13.45 0.0 10.55 835 13.45 10.53 0.58 7.28 -153 0.0 840 15000 MW-8R-041321 Sampled 845

Remarks:	Sav	mole	cheur.	has	oder	9
		7				

(1) Based on EPA low-flow sampling guidelines, ASTM D 6771-02, and research validated Best Practices (see SAP for details).

DAILY FIELD RECORD

Page 1 of Z.

Project and Task Number: 0078000050				Date	The state of the s	1		
		ational Gold		Wea	ather: Stead	4 rain.	50°F5	
Location:	Alli	on, NY	- 7/4-7-7-7-	Field	ather: Stead d Activity: Gu	conduation	er samp	Ing
Recorded I	By: Am	elia Lyans					,	
PERSONN	EL:	Name			Company		Time In	Time Out
Ame	tra	Lyans		Woo	d		1200	1745
	_							
PERSONA	L SAFET	Y CHECKLIST						
	Steel-t	coed Boots		Hard Hat		Tyve	ek Coveralls	
	Rubbe	r Gloves		Safety Goggles		1/2-	-Face Respira	itor
DRUM I.D. DESCRIPTION OF		TION OF C	ONTENTS AND	QUANTITY		LOCATION		
TIN	1E			DESCRIPTION C	F WORK PER	FORMED		
12 ma	h~	Alvans and	site me				al crid	
Telly	7-1	A.Lyans and	Cel M	eetne and	1 review	HASP	See F	reld
		Sheet Par	details					
1215pm		locate well						
,			TW	DTB				
			94 AL			A DI	v meter	
		the state of the s	7922	16,26			ned wit	
			73	20.71			x and	
		100	94	18.76			hetuee	n
		mw-9R B.		17.13		each	woll.	
		MW-1 9.7		20.10	1 1- 11) /	0	
				ly drames	. depth	to bank	Tuden (an col He
		abutment i	5 15,6		19		-55	

APPENDIX B

Analytical Laboratory Report

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-183241-1

Client Project/Site: Albion, NY Groundwater Project

For:

Wood E&I Solutions Inc 180 Grand Avenue Suite 1100 Oakland, California 94612

Attn: Mr. Alex Rosenthal

The

Authorized for release by: 4/23/2021 5:54:04 PM Rebecca Jones, Project Management Assistant I Rebecca.Jones@Eurofinset.com

Designee for

Brian Fischer, Manager of Project Management (716)504-9835

Brian.Fischer@Eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
Surrogate Summary	15
QC Sample Results	16
QC Association Summary	21
Lab Chronicle	23
Certification Summary	26
Method Summary	27
Sample Summary	28
Chain of Custody	29
Receipt Checklists	32

4

£

8

9

11

13

14

Definitions/Glossary

Client: Wood E&I Solutions Inc Job ID: 480-183241-1

Project/Site: Albion, NY Groundwater Project

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description**

MS and/or MSD recovery exceeds control limits.

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC/MS Semi VOA

Qualifier	Qualifier Description
-----------	-----------------------

LCS and/or LCSD is outside acceptance limits, high biased.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Listed under the "D" column to designate that the result is reported on a dry weight basis

General Chemistry

¤

Qualifier	Qualifier Description

MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not

	аррисаме.
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

DFR Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

Detection Limit (DoD/DOE) DL

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) Minimum Detectable Concentration (Radiochemistry) MDC

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

Not Calculated NC

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present PQL **Practical Quantitation Limit**

PRES Presumptive QC **Quality Control**

Relative Error Ratio (Radiochemistry) RFR

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points **RPD**

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) TFO

TNTC Too Numerous To Count

Eurofins TestAmerica, Buffalo

4/23/2021

Page 3 of 32

Case Narrative

Client: Wood E&I Solutions Inc

Project/Site: Albion, NY Groundwater Project

Job ID: 480-183241-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-183241-1

Comments

No additional comments.

Receipt

The samples were received on 4/13/2021 12:00 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.8° C.

GC/MS VOA

Method 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-8R-041321 (480-183241-4), (480-183241-E-4 MS) and (480-183241-E-4 MSD). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method 8270D: The following samples were diluted due to color, appearance, and viscosity: MW-5-041221 (480-183241-2), MW-9R-041321 (480-183241-5) and MW-50-041221 (480-183241-7). Elevated reporting limits (RL) are provided.

Method 8270D: The following sample was diluted due to the nature of the sample matrix: MW-8R-041321 (480-183241-4). Elevated reporting limits (RLs) are provided.

Method 8270D: The laboratory control sample duplicate (LCSD) for preparation batch 480-576385 and analytical batch 480-576615 recovered outside control limits for the following analytes: Benzo[a]pyrene. These analytes were biased high in the LCSD and were not detected in the associated samples; therefore, the data have been reported.

Method 8270D: The following sample required a dilution due to the nature of the sample matrix: MW-8R-041321 (480-183241-4). Because of this dilution, the surrogate spike concentration in the sample was reduced to a level where the recovery calculation does not provide useful information.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 480-576385.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Job ID: 480-183241-1

Project/Site: Albion, NY Groundwater Project

Client Sample ID: MW-1-041221 Lab Sample ID: 480-183241-1

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Cvanide, Total	0.10	0.010	0.0060 mg/L	1 4500 CN E-2011	Total/NA

Client Sample ID: MW-5-041221 Lab Sample ID: 480-183241-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Benzene	28		1.0	0.41	ug/L	1	8260C	Total/NA
Toluene	3.2		1.0	0.51	ug/L	1	8260C	Total/NA
Ethylbenzene	11		1.0	0.74	ug/L	1	8260C	Total/NA
m-Xylene & p-Xylene	6.4		2.0	0.66	ug/L	1	8260C	Total/NA
o-Xylene	8.4		1.0	0.76	ug/L	1	8260C	Total/NA
Xylenes, Total	15		2.0	0.66	ug/L	1	8260C	Total/NA
Total BTEX	57		2.0	1.0	ug/L	1	8260C	Total/NA
Acenaphthene	16	J	25	2.1	ug/L	5	8270D	Total/NA
Acenaphthylene	21	J	25	1.9	ug/L	5	8270D	Total/NA
Anthracene	3.7	J	25	1.4	ug/L	5	8270D	Total/NA
Fluoranthene	3.9	J	25	2.0	ug/L	5	8270D	Total/NA
Fluorene	20	J	25	1.8	ug/L	5	8270D	Total/NA
Naphthalene	41		25	3.8	ug/L	5	8270D	Total/NA
Phenanthrene	12	J	25	2.2	ug/L	5	8270D	Total/NA
Pyrene	2.2	J	25	1.7	ug/L	5	8270D	Total/NA
Cyanide, Total	0.18		0.010	0.0060	mg/L	1	4500 CN E-	2011 Total/NA

Client Sample ID: MW-6-041221

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Cvanide, Total	0.013		0.010	0.0060	ma/L	1	4500 CN E-2011	Total/NA

Client Sample ID: MW-8R-041321 Lab Sample ID: 480-183241-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	2000	F1	50	21	ug/L	50	_	8260C	Total/NA
Toluene	45	J	50	26	ug/L	50		8260C	Total/NA
Ethylbenzene	130		50	37	ug/L	50		8260C	Total/NA
m-Xylene & p-Xylene	470		100	33	ug/L	50		8260C	Total/NA
o-Xylene	180		50	38	ug/L	50		8260C	Total/NA
Xylenes, Total	650		100	33	ug/L	50		8260C	Total/NA
Total BTEX	2800		100	50	ug/L	50		8260C	Total/NA
Acenaphthene	65	J	500	41	ug/L	100		8270D	Total/NA
Naphthalene	860		500	76	ug/L	100		8270D	Total/NA
Cyanide, Total	0.17		0.010	0.0060	mg/L	1		4500 CN E-2011	Total/NA

Client Sample ID: MW-9R-041321

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type	
Cyanide, Total	0.096		0.010	0.0060	mg/L	1	_	4500 CN E-2011	Total/NA	_

Client Sample ID: MW-10R-041221

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	23		1.0	0.41	ug/L	1	_	8260C	Total/NA
Total BTEX	23		2.0	1.0	ug/L	1		8260C	Total/NA
Acenaphthene	0.73	J	5.0	0.41	ug/L	1		8270D	Total/NA
Naphthalene	3.4	J	5.0	0.76	ug/L	1		8270D	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Buffalo

Job ID: 480-183241-1

Lab Sample ID: 480-183241-3

Lab Sample ID: 480-183241-5

Lab Sample ID: 480-183241-6

Detection Summary

Client: Wood E&I Solutions Inc

Project/Site: Albion, NY Groundwater Project

Client Sample ID: MW-10R-041221 (Continued) Lab Sample ID: 480-183241-6

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Cvanide, Total	0.024	0.010	0.0060 mg/L	1 4500 CN E-2011	Total/NA

Client Sample ID: MW-50-041221

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	28		1.0	0.41	ug/L	1	_	8260C	Total/NA
Toluene	2.8		1.0	0.51	ug/L	1		8260C	Total/NA
Ethylbenzene	10		1.0	0.74	ug/L	1		8260C	Total/NA
m-Xylene & p-Xylene	5.6		2.0	0.66	ug/L	1		8260C	Total/NA
o-Xylene	8.1		1.0	0.76	ug/L	1		8260C	Total/NA
Xylenes, Total	14		2.0	0.66	ug/L	1		8260C	Total/NA
Total BTEX	55		2.0	1.0	ug/L	1		8260C	Total/NA
Acenaphthene	14	J	25	2.1	ug/L	5		8270D	Total/NA
Acenaphthylene	17	J	25	1.9	ug/L	5		8270D	Total/NA
Anthracene	2.8	J	25	1.4	ug/L	5		8270D	Total/NA
Fluoranthene	3.5	J	25	2.0	ug/L	5		8270D	Total/NA
Fluorene	17	J	25	1.8	ug/L	5		8270D	Total/NA
Naphthalene	31		25	3.8	ug/L	5		8270D	Total/NA
Phenanthrene	6.7	J	25	22	ug/L	5		8270D	Total/NA

Client Sample ID: EB-1-041321 Lab Sample ID: 480-183241-8

0.010

25

1.7 ug/L

0.0060 mg/L

2.2 J

0.17

No Detections.

Cyanide, Total

Pyrene

Client Sample ID: TRIP BLANK Lab Sample ID: 480-183241-9

No Detections.

This Detection Summary does not include radiochemical test results.

Page 6 of 32

Job ID: 480-183241-1

Lab Sample ID: 480-183241-7

8270D

4500 CN E-2011

5

Total/NA

Total/NA

Job ID: 480-183241-1

Client: Wood E&I Solutions Inc Project/Site: Albion, NY Groundwater Project

Client Sample ID: MW-1-041221

Date Collected: 04/12/21 14:05 Date Received: 04/13/21 12:00 Lab Sample ID: 480-183241-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	MD		1.0	0.41	ug/L			04/15/21 14:40	1
Toluene	ND		1.0	0.51	ug/L			04/15/21 14:40	1
Ethylbenzene	ND		1.0	0.74	ug/L			04/15/21 14:40	1
m-Xylene & p-Xylene	ND		2.0	0.66	ug/L			04/15/21 14:40	1
o-Xylene	ND		1.0	0.76	ug/L			04/15/21 14:40	1
Xylenes, Total	ND		2.0	0.66	ug/L			04/15/21 14:40	1
Total BTEX	ND		2.0	1.0	ug/L			04/15/21 14:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		80 - 120			-		04/15/21 14:40	1
1,2-Dichloroethane-d4 (Surr)	93		77 - 120					04/15/21 14:40	1
4-Bromofluorobenzene (Surr)	95		73 - 120					04/15/21 14:40	1
Dibromofluoromethane (Surr)	95		75 ₋ 123					04/15/21 14:40	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		5.0	0.41	ug/L		04/15/21 07:17	04/16/21 18:02	1
Acenaphthylene	ND		5.0	0.38	ug/L		04/15/21 07:17	04/16/21 18:02	1
Anthracene	ND		5.0	0.28	ug/L		04/15/21 07:17	04/16/21 18:02	1
Benzo[a]anthracene	ND		5.0	0.36	ug/L		04/15/21 07:17	04/16/21 18:02	1
Benzo[a]pyrene	ND	*+	5.0	0.47	ug/L		04/15/21 07:17	04/16/21 18:02	1
Benzo[b]fluoranthene	ND		5.0	0.34	ug/L		04/15/21 07:17	04/16/21 18:02	1
Benzo[g,h,i]perylene	ND		5.0	0.35	ug/L		04/15/21 07:17	04/16/21 18:02	1
Benzo[k]fluoranthene	ND		5.0	0.73	ug/L		04/15/21 07:17	04/16/21 18:02	1
Chrysene	ND		5.0	0.33	ug/L		04/15/21 07:17	04/16/21 18:02	1
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		04/15/21 07:17	04/16/21 18:02	1
Fluoranthene	ND		5.0	0.40	ug/L		04/15/21 07:17	04/16/21 18:02	1
Fluorene	ND		5.0	0.36	ug/L		04/15/21 07:17	04/16/21 18:02	1
Indeno[1,2,3-cd]pyrene	ND		5.0	0.47	ug/L		04/15/21 07:17	04/16/21 18:02	1
Naphthalene	ND		5.0	0.76	ug/L		04/15/21 07:17	04/16/21 18:02	1
Phenanthrene	ND		5.0	0.44	ug/L		04/15/21 07:17	04/16/21 18:02	1
Pyrene	ND		5.0	0.34	ug/L		04/15/21 07:17	04/16/21 18:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	105		48 - 120				04/15/21 07:17	04/16/21 18:02	1
Nitrobenzene-d5 (Surr)	96		46 - 120				04/15/21 07:17	04/16/21 18:02	1
- , , , , , , , , , , , , , , , , , , ,							0.445/04.05.45	0.4/4.0/0.4.40.00	

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	105	48 - 120	04/15/21 07:17	04/16/21 18:02	1
Nitrobenzene-d5 (Surr)	96	46 - 120	04/15/21 07:17	04/16/21 18:02	1
p-Terphenyl-d14 (Surr)	76	60 - 148	04/15/21 07:17	04/16/21 18:02	1
General Chemistry					

	Analyte	Result C	Qualifier RL	MDL	Unit	ь	Dronorod	Analyzad	Dil Eco
	Analyte	- Result C	audiller KL				Prepared	Analyzed	Dil Fac
l	Cyanide, Total	0.10	0.010	0.0060	mg/L		04/20/21 17:18	04/20/21 18:32	1

Client Sample ID: MW-5-041221 Lab Sample ID: 480-183241-2 Date Collected: 04/12/21 15:00 **Matrix: Water**

Date Received: 04/13/21 12:00

Method: 8260C - Volatile Organic Compounds by GC/MS									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	28		1.0	0.41	ug/L			04/15/21 15:01	1
Toluene	3.2		1.0	0.51	ug/L			04/15/21 15:01	1
Ethylbenzene	11		1.0	0.74	ug/L			04/15/21 15:01	1

Eurofins TestAmerica, Buffalo

Page 7 of 32 4/23/2021

Client Sample Results

Client: Wood E&I Solutions Inc

Date Received: 04/13/21 12:00

Project/Site: Albion, NY Groundwater Project

Lab Sample ID: 480-183241-2 Client Sample ID: MW-5-041221

Date Collected: 04/12/21 15:00

Matrix: Water Date Received: 04/13/21 12:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
m-Xylene & p-Xylene	6.4		2.0	0.66	ug/L			04/15/21 15:01	1
o-Xylene	8.4		1.0	0.76	ug/L			04/15/21 15:01	1
Xylenes, Total	15		2.0	0.66	ug/L			04/15/21 15:01	1
Total BTEX	57		2.0	1.0	ug/L			04/15/21 15:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	107		80 - 120			-		04/15/21 15:01	1
1,2-Dichloroethane-d4 (Surr)	94		77 - 120					04/15/21 15:01	1
4-Bromofluorobenzene (Surr)	111		73 - 120					04/15/21 15:01	1
Dibromofluoromethane (Surr)	96		75 - 123					04/15/21 15:01	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	16	J	25	2.1	ug/L		04/15/21 07:17	04/16/21 18:30	5
Acenaphthylene	21	J	25	1.9	ug/L		04/15/21 07:17	04/16/21 18:30	5
Anthracene	3.7	J	25	1.4	ug/L		04/15/21 07:17	04/16/21 18:30	5
Benzo[a]anthracene	ND		25	1.8	ug/L		04/15/21 07:17	04/16/21 18:30	5
Benzo[a]pyrene	ND	*+	25	2.4	ug/L		04/15/21 07:17	04/16/21 18:30	5
Benzo[b]fluoranthene	ND		25	1.7	ug/L		04/15/21 07:17	04/16/21 18:30	5
Benzo[g,h,i]perylene	ND		25	1.8	ug/L		04/15/21 07:17	04/16/21 18:30	5
Benzo[k]fluoranthene	ND		25	3.7	ug/L		04/15/21 07:17	04/16/21 18:30	5
Chrysene	ND		25	1.7	ug/L		04/15/21 07:17	04/16/21 18:30	5
Dibenz(a,h)anthracene	ND		25	2.1	ug/L		04/15/21 07:17	04/16/21 18:30	5
Fluoranthene	3.9	J	25	2.0	ug/L		04/15/21 07:17	04/16/21 18:30	5
Fluorene	20	J	25	1.8	ug/L		04/15/21 07:17	04/16/21 18:30	5
Indeno[1,2,3-cd]pyrene	ND		25	2.4	ug/L		04/15/21 07:17	04/16/21 18:30	5
Naphthalene	41		25	3.8	ug/L		04/15/21 07:17	04/16/21 18:30	5
Phenanthrene	12	J	25	2.2	ug/L		04/15/21 07:17	04/16/21 18:30	5
Pyrene	2.2	J	25	1.7	ug/L		04/15/21 07:17	04/16/21 18:30	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	97		48 - 120				04/15/21 07:17	04/16/21 18:30	5
Nitrobenzene-d5 (Surr)	80		46 - 120				04/15/21 07:17	04/16/21 18:30	5
p-Terphenyl-d14 (Surr)	73		60 - 148				04/15/21 07:17	04/16/21 18:30	5
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cvanide, Total	0.18		0.010	0.0060	mg/L		04/20/21 17:18	04/20/21 18:34	1

Cyanide, Total	0.18	0.010	0.0060 mg/L	04/20/21 17:18
Client Sample ID: MW-6-041	221			Lab Sample ID: 480-183241-3
Date Collected: 04/12/21 17:30				Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	0.41	ug/L			04/15/21 15:24	1
Toluene	ND		1.0	0.51	ug/L			04/15/21 15:24	1
Ethylbenzene	ND		1.0	0.74	ug/L			04/15/21 15:24	1
m-Xylene & p-Xylene	ND		2.0	0.66	ug/L			04/15/21 15:24	1
o-Xylene	ND		1.0	0.76	ug/L			04/15/21 15:24	1
Xylenes, Total	ND		2.0	0.66	ug/L			04/15/21 15:24	1

Eurofins TestAmerica, Buffalo

Job ID: 480-183241-1

Page 8 of 32 4/23/2021

Project/Site: Albion, NY Groundwater Project

Client Sample ID: MW-6-041221

Lab Sample ID: 480-183241-3

Date Collected: 04/12/21 17:30 Matrix: Water Date Received: 04/13/21 12:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	ND		2.0	1.0	ug/L			04/15/21 15:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	102		80 - 120			-		04/15/21 15:24	1
1,2-Dichloroethane-d4 (Surr)	96		77 - 120					04/15/21 15:24	1
4-Bromofluorobenzene (Surr)	100		73 - 120					04/15/21 15:24	1
Dibromofluoromethane (Surr)	99		75 - 123					04/15/21 15:24	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		5.0	0.41	ug/L		04/15/21 07:17	04/16/21 18:58	1
Acenaphthylene	ND		5.0	0.38	ug/L		04/15/21 07:17	04/16/21 18:58	1
Anthracene	ND		5.0	0.28	ug/L		04/15/21 07:17	04/16/21 18:58	1
Benzo[a]anthracene	ND		5.0	0.36	ug/L		04/15/21 07:17	04/16/21 18:58	1
Benzo[a]pyrene	ND	*+	5.0	0.47	ug/L		04/15/21 07:17	04/16/21 18:58	1
Benzo[b]fluoranthene	ND		5.0	0.34	ug/L		04/15/21 07:17	04/16/21 18:58	1
Benzo[g,h,i]perylene	ND		5.0	0.35	ug/L		04/15/21 07:17	04/16/21 18:58	1
Benzo[k]fluoranthene	ND		5.0	0.73	ug/L		04/15/21 07:17	04/16/21 18:58	1
Chrysene	ND		5.0	0.33	ug/L		04/15/21 07:17	04/16/21 18:58	1
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		04/15/21 07:17	04/16/21 18:58	1
Fluoranthene	ND		5.0	0.40	ug/L		04/15/21 07:17	04/16/21 18:58	1
Fluorene	ND		5.0	0.36	ug/L		04/15/21 07:17	04/16/21 18:58	1
Indeno[1,2,3-cd]pyrene	ND		5.0	0.47	ug/L		04/15/21 07:17	04/16/21 18:58	1
Naphthalene	ND		5.0	0.76	ug/L		04/15/21 07:17	04/16/21 18:58	1
Phenanthrene	ND		5.0	0.44	ug/L		04/15/21 07:17	04/16/21 18:58	1
Pyrene	ND		5.0	0.34	ug/L		04/15/21 07:17	04/16/21 18:58	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	106		48 - 120	 04/15/21 07:17	04/16/21 18:58	1
Nitrobenzene-d5 (Surr)	97		46 - 120	04/15/21 07:17	04/16/21 18:58	1
p-Terphenyl-d14 (Surr)	79		60 - 148	04/15/21 07:17	04/16/21 18:58	1
_						

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.013		0.010	0.0060	mg/L		04/20/21 17:18	04/20/21 18:39	1

Client Sample ID: MW-8R-041321 Lab Sample ID: 480-183241-4 Date Collected: 04/13/21 08:45

Date Received: 04/13/21 12:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	2000	F1	50	21	ug/L			04/15/21 15:46	50
Toluene	45	J	50	26	ug/L			04/15/21 15:46	50
Ethylbenzene	130		50	37	ug/L			04/15/21 15:46	50
m-Xylene & p-Xylene	470		100	33	ug/L			04/15/21 15:46	50
o-Xylene	180		50	38	ug/L			04/15/21 15:46	50
Xylenes, Total	650		100	33	ug/L			04/15/21 15:46	50
Total BTEX	2800		100	50	ug/L			04/15/21 15:46	50

Eurofins TestAmerica, Buffalo

Page 9 of 32

Job ID: 480-183241-1

Matrix: Water

Client: Wood E&I Solutions Inc Job ID: 480-183241-1

Project/Site: Albion, NY Groundwater Project

Client Sample ID: MW-8R-041321

Date Collected: 04/13/21 08:45 Date Received: 04/13/21 12:00 Lab Sample ID: 480-183241-4

Matrix: Water

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	106		80 - 120		04/15/21 15:46	50
1,2-Dichloroethane-d4 (Surr)	97		77 - 120		04/15/21 15:46	50
4-Bromofluorobenzene (Surr)	111		73 - 120		04/15/21 15:46	50
Dibromofluoromethane (Surr)	99		75 - 123		04/15/21 15:46	50

-	33		70-720					0 11 10/21 10:10	0.
Method: 8270D - Semivolati Analyte	•	nds (GC/MS	S)	MDI	Unit	D	Prepared	Analyzed	Dil Fa
Acenaphthene			500	41	ug/L		04/15/21 07:17	04/16/21 19:26	100
Acenaphthylene Acenaphthylene	ND.	J	500	38	ug/L		04/15/21 07:17	04/16/21 19:26	100
Anthracene	ND ND		500		ug/L		04/15/21 07:17	04/16/21 19:26	100
	ND						04/15/21 07:17	04/16/21 19:26	100
Benzo[a]anthracene		*.	500		ug/L				
Benzo[a]pyrene	ND	^+	500		- 5		04/15/21 07:17	04/16/21 19:26	100
Benzo[b]fluoranthene	ND		500		ug/L		04/15/21 07:17	04/16/21 19:26	100
Benzo[g,h,i]perylene	ND		500		ug/L		04/15/21 07:17	04/16/21 19:26	100
Benzo[k]fluoranthene	ND		500	73	ug/L		04/15/21 07:17	04/16/21 19:26	100
Chrysene	ND		500	33	ug/L		04/15/21 07:17	04/16/21 19:26	100
Dibenz(a,h)anthracene	ND		500	42	ug/L		04/15/21 07:17	04/16/21 19:26	100
Fluoranthene	ND		500	40	ug/L		04/15/21 07:17	04/16/21 19:26	100
Fluorene	ND		500	36	ug/L		04/15/21 07:17	04/16/21 19:26	100
Indeno[1,2,3-cd]pyrene	ND		500	47	ug/L		04/15/21 07:17	04/16/21 19:26	100
Naphthalene	860		500	76	ug/L		04/15/21 07:17	04/16/21 19:26	100
Phenanthrene	ND		500	44	ug/L		04/15/21 07:17	04/16/21 19:26	100
Pyrene	ND		500	34	ug/L		04/15/21 07:17	04/16/21 19:26	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	77		48 - 120				04/15/21 07:17	04/16/21 19:26	100
Nitrobenzene-d5 (Surr)	88		46 - 120				04/15/21 07:17	04/16/21 19:26	100
p-Terphenyl-d14 (Surr)	83		60 - 148				04/15/21 07:17	04/16/21 19:26	100
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.17		0.010	0.0060	mg/L		04/22/21 18:06	04/22/21 19:01	1

Client Sample ID: MW-9R-041321

Date Collected: 04/13/21 10:20

Lab Sample ID: 480-183241-5

Matrix: Water

Date Received: 04/13/21 12:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	MD		1.0	0.41	ug/L			04/15/21 16:07	1
Toluene	ND		1.0	0.51	ug/L			04/15/21 16:07	1
Ethylbenzene	ND		1.0	0.74	ug/L			04/15/21 16:07	1
m-Xylene & p-Xylene	ND		2.0	0.66	ug/L			04/15/21 16:07	1
o-Xylene	ND		1.0	0.76	ug/L			04/15/21 16:07	1
Xylenes, Total	ND		2.0	0.66	ug/L			04/15/21 16:07	1
Total BTEX	ND		2.0	1.0	ug/L			04/15/21 16:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	103		80 - 120			_		04/15/21 16:07	1
1,2-Dichloroethane-d4 (Surr)	98		77 - 120					04/15/21 16:07	1
4-Bromofluorobenzene (Surr)	103		73 - 120					04/15/21 16:07	1

Eurofins TestAmerica, Buffalo

Page 10 of 32

9

3

5

7

9

11

12

14

15

100

4/23/2021

Client: Wood E&I Solutions Inc Job ID: 480-183241-1

Project/Site: Albion, NY Groundwater Project

Client Sample ID: MW-9R-041321

Lab Sample ID: 480-183241-5 Date Collected: 04/13/21 10:20

Matrix: Water

Date Received: 04/13/21 12:00

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	99	75 - 123		04/15/21 16:07	1

Dibromotiuorometnane (Surr)			75 - 123					04/15/21 16:07	
Method: 8270D - Semivolatile	Organic Compou	nds (GC/MS	3)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		25	2.1	ug/L		04/15/21 07:17	04/16/21 19:54	5
Acenaphthylene	ND		25	1.9	ug/L		04/15/21 07:17	04/16/21 19:54	5
Anthracene	ND		25	1.4	ug/L		04/15/21 07:17	04/16/21 19:54	5
Benzo[a]anthracene	ND		25	1.8	ug/L		04/15/21 07:17	04/16/21 19:54	5
Benzo[a]pyrene	ND	*+	25	2.4	ug/L		04/15/21 07:17	04/16/21 19:54	5
Benzo[b]fluoranthene	ND		25	1.7	ug/L		04/15/21 07:17	04/16/21 19:54	5
Benzo[g,h,i]perylene	ND		25	1.8	ug/L		04/15/21 07:17	04/16/21 19:54	5
Benzo[k]fluoranthene	ND		25	3.7	ug/L		04/15/21 07:17	04/16/21 19:54	5
Chrysene	ND		25	1.7	ug/L		04/15/21 07:17	04/16/21 19:54	5
Dibenz(a,h)anthracene	ND		25	2.1	ug/L		04/15/21 07:17	04/16/21 19:54	5
Fluoranthene	ND		25	2.0	ug/L		04/15/21 07:17	04/16/21 19:54	5
Fluorene	ND		25	1.8	ug/L		04/15/21 07:17	04/16/21 19:54	5
Indeno[1,2,3-cd]pyrene	ND		25	2.4	ug/L		04/15/21 07:17	04/16/21 19:54	5
Naphthalene	ND		25	3.8	ug/L		04/15/21 07:17	04/16/21 19:54	5
Phenanthrene	ND		25	2.2	ug/L		04/15/21 07:17	04/16/21 19:54	5
Pyrene	ND		25	1.7	ug/L		04/15/21 07:17	04/16/21 19:54	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	103		48 - 120				04/15/21 07:17	04/16/21 19:54	5
Nitrobenzene-d5 (Surr)	89		46 - 120				04/15/21 07:17	04/16/21 19:54	5
p-Terphenyl-d14 (Surr)	84		60 - 148				04/15/21 07:17	04/16/21 19:54	5
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.096		0.010	0.0060	mg/L		04/20/21 17:18	04/20/21 18:44	1

Client Sample ID: MW-10R-041221

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Lab Sample ID: 480-183241-6 Date Collected: 04/12/21 16:45 **Matrix: Water** Date Received: 04/13/21 12:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	23		1.0	0.41	ug/L			04/15/21 16:30	1
Toluene	ND		1.0	0.51	ug/L			04/15/21 16:30	1
Ethylbenzene	ND		1.0	0.74	ug/L			04/15/21 16:30	1
m-Xylene & p-Xylene	ND		2.0	0.66	ug/L			04/15/21 16:30	1
o-Xylene	ND		1.0	0.76	ug/L			04/15/21 16:30	1
Xylenes, Total	ND		2.0	0.66	ug/L			04/15/21 16:30	1
Total BTEX	23		2.0	1.0	ug/L			04/15/21 16:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	104		80 - 120			-		04/15/21 16:30	1
1,2-Dichloroethane-d4 (Surr)	100		77 - 120					04/15/21 16:30	1

Eurofins TestAmerica, Buffalo

04/15/21 16:30

04/15/21 16:30

73 - 120

75 - 123

107

Project/Site: Albion, NY Groundwater Project

Client Sample ID: MW-10R-041221

Lab Sample ID: 480-183241-6 Date Collected: 04/12/21 16:45 Matrix: Water Date Received: 04/13/21 12:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.73	J	5.0	0.41	ug/L		04/15/21 07:17	04/16/21 20:22	1
Acenaphthylene	ND		5.0	0.38	ug/L		04/15/21 07:17	04/16/21 20:22	1
Anthracene	ND		5.0	0.28	ug/L		04/15/21 07:17	04/16/21 20:22	1
Benzo[a]anthracene	ND		5.0	0.36	ug/L		04/15/21 07:17	04/16/21 20:22	1
Benzo[a]pyrene	ND	*+	5.0	0.47	ug/L		04/15/21 07:17	04/16/21 20:22	1
Benzo[b]fluoranthene	ND		5.0	0.34	ug/L		04/15/21 07:17	04/16/21 20:22	1
Benzo[g,h,i]perylene	ND		5.0	0.35	ug/L		04/15/21 07:17	04/16/21 20:22	1
Benzo[k]fluoranthene	ND		5.0	0.73	ug/L		04/15/21 07:17	04/16/21 20:22	1
Chrysene	ND		5.0	0.33	ug/L		04/15/21 07:17	04/16/21 20:22	1
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		04/15/21 07:17	04/16/21 20:22	1
Fluoranthene	ND		5.0	0.40	ug/L		04/15/21 07:17	04/16/21 20:22	1
Fluorene	ND		5.0	0.36	ug/L		04/15/21 07:17	04/16/21 20:22	1
Indeno[1,2,3-cd]pyrene	ND		5.0	0.47	ug/L		04/15/21 07:17	04/16/21 20:22	1
Naphthalene	3.4	J	5.0	0.76	ug/L		04/15/21 07:17	04/16/21 20:22	1
Phenanthrene	ND		5.0	0.44	ug/L		04/15/21 07:17	04/16/21 20:22	1
Pyrene	ND		5.0	0.34	ug/L		04/15/21 07:17	04/16/21 20:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	100		48 - 120				04/15/21 07:17	04/16/21 20:22	1
Nitrobenzene-d5 (Surr)	88		46 - 120				04/15/21 07:17	04/16/21 20:22	1
p-Terphenyl-d14 (Surr)	77		60 - 148				04/15/21 07:17	04/16/21 20:22	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

04/22/21 18:06 Cyanide, Total 0.024 0.010 0.0060 mg/L 04/22/21 19:08 Client Sample ID: MW-50-041221 Lab Sample ID: 480-183241-7

Date Collected: 04/12/21 15:05 Date Received: 04/13/21 12:00

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	28		1.0	0.41	ug/L			04/15/21 16:52	1
Toluene	2.8		1.0	0.51	ug/L			04/15/21 16:52	1
Ethylbenzene	10		1.0	0.74	ug/L			04/15/21 16:52	1
m-Xylene & p-Xylene	5.6		2.0	0.66	ug/L			04/15/21 16:52	1
o-Xylene	8.1		1.0	0.76	ug/L			04/15/21 16:52	1
Xylenes, Total	14		2.0	0.66	ug/L			04/15/21 16:52	1
Total BTEX	55		2.0	1.0	ug/L			04/15/21 16:52	1

Surrogate	%Recovery Qualifi	ier Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100	80 - 120		04/15/21 16:52	1
1,2-Dichloroethane-d4 (Surr)	97	77 - 120		04/15/21 16:52	1
4-Bromofluorobenzene (Surr)	100	73 - 120		04/15/21 16:52	1
Dibromofluoromethane (Surr)	99	75 123		04/15/21 16:52	1

Method: 8270D - Semivolatil	e Organic Compou	nds (GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	14	J	25	2.1	ug/L		04/15/21 07:17	04/16/21 20:51	5
Acenaphthylene	17	J	25	1.9	ug/L		04/15/21 07:17	04/16/21 20:51	5
Anthracene	2.8	J	25	1.4	ug/L		04/15/21 07:17	04/16/21 20:51	5

Eurofins TestAmerica, Buffalo

Page 12 of 32

Job ID: 480-183241-1

Matrix: Water

Client: Wood E&I Solutions Inc Job ID: 480-183241-1

Project/Site: Albion, NY Groundwater Project

Client Sample ID: MW-50-041221

Lab Sample ID: 480-183241-7 Date Collected: 04/12/21 15:05 Matrix: Water

Date Received: 04/13/21 12:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	ND		25	1.8	ug/L		04/15/21 07:17	04/16/21 20:51	5
Benzo[a]pyrene	ND	*+	25	2.4	ug/L		04/15/21 07:17	04/16/21 20:51	5
Benzo[b]fluoranthene	ND		25	1.7	ug/L		04/15/21 07:17	04/16/21 20:51	5
Benzo[g,h,i]perylene	ND		25	1.8	ug/L		04/15/21 07:17	04/16/21 20:51	5
Benzo[k]fluoranthene	ND		25	3.7	ug/L		04/15/21 07:17	04/16/21 20:51	5
Chrysene	ND		25	1.7	ug/L		04/15/21 07:17	04/16/21 20:51	5
Dibenz(a,h)anthracene	ND		25	2.1	ug/L		04/15/21 07:17	04/16/21 20:51	5
Fluoranthene	3.5	J	25	2.0	ug/L		04/15/21 07:17	04/16/21 20:51	5
Fluorene	17	J	25	1.8	ug/L		04/15/21 07:17	04/16/21 20:51	5
Indeno[1,2,3-cd]pyrene	ND		25	2.4	ug/L		04/15/21 07:17	04/16/21 20:51	5
Naphthalene	31		25	3.8	ug/L		04/15/21 07:17	04/16/21 20:51	5
Phenanthrene	6.7	J	25	2.2	ug/L		04/15/21 07:17	04/16/21 20:51	5
Pyrene	2.2	J	25	1.7	ug/L		04/15/21 07:17	04/16/21 20:51	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	97		48 - 120				04/15/21 07:17	04/16/21 20:51	5
Nitrobenzene-d5 (Surr)	89		46 - 120				04/15/21 07:17	04/16/21 20:51	5
p-Terphenyl-d14 (Surr)	74		60 - 148				04/15/21 07:17	04/16/21 20:51	5
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.17		0.010	0.0060	mg/L		04/20/21 17:18	04/20/21 18:46	1

Client Sample ID: EB-1-041321 Lab Sample ID: 480-183241-8

Date Collected: 04/13/21 10:40 Date Received: 04/13/21 12:00

Benzo[b]fluoranthene

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND ND		1.0	0.41	ug/L			04/15/21 17:14	1
Toluene	ND		1.0	0.51	ug/L			04/15/21 17:14	1
Ethylbenzene	ND		1.0	0.74	ug/L			04/15/21 17:14	1
m-Xylene & p-Xylene	ND		2.0	0.66	ug/L			04/15/21 17:14	1
o-Xylene	ND		1.0	0.76	ug/L			04/15/21 17:14	1
Xylenes, Total	ND		2.0	0.66	ug/L			04/15/21 17:14	1
Total BTEX	ND		2.0	1.0	ug/L			04/15/21 17:14	1
Surrogate	%Recovery 0	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Q	Qualifier Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100	80 - 120		04/15/21 17:14	1
1,2-Dichloroethane-d4 (Surr)	94	77 - 120		04/15/21 17:14	1
4-Bromofluorobenzene (Surr)	99	73 - 120		04/15/21 17:14	1
Dibromofluoromethane (Surr)	96	75 - 123		04/15/21 17:14	1

Method: 8270D - Semivolatil	e Organic Compou	nds (GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		5.0	0.41	ug/L		04/15/21 07:17	04/16/21 21:19	1
Acenaphthylene	ND		5.0	0.38	ug/L		04/15/21 07:17	04/16/21 21:19	1
Anthracene	ND		5.0	0.28	ug/L		04/15/21 07:17	04/16/21 21:19	1
Benzo[a]anthracene	ND		5.0	0.36	ug/L		04/15/21 07:17	04/16/21 21:19	1
Benzolalnyrene	ND	*+	5.0	0.47	ua/l		04/15/21 07:17	04/16/21 21:19	1

ND

Eurofins TestAmerica, Buffalo

04/16/21 21:19

04/15/21 07:17

Page 13 of 32

5.0

0.34 ug/L

Matrix: Water

4/23/2021

Client Sample Results

Client: Wood E&I Solutions Inc

Project/Site: Albion, NY Groundwater Project

Client Sample ID: EB-1-041321

Date Collected: 04/13/21 10:40 Date Received: 04/13/21 12:00 Lab Sample ID: 480-183241-8

Matrix: Water

Job ID: 480-183241-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[g,h,i]perylene	ND		5.0	0.35	ug/L		04/15/21 07:17	04/16/21 21:19	1
Benzo[k]fluoranthene	ND		5.0	0.73	ug/L		04/15/21 07:17	04/16/21 21:19	1
Chrysene	ND		5.0	0.33	ug/L		04/15/21 07:17	04/16/21 21:19	1
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		04/15/21 07:17	04/16/21 21:19	1
Fluoranthene	ND		5.0	0.40	ug/L		04/15/21 07:17	04/16/21 21:19	1
Fluorene	ND		5.0	0.36	ug/L		04/15/21 07:17	04/16/21 21:19	1
Indeno[1,2,3-cd]pyrene	ND		5.0	0.47	ug/L		04/15/21 07:17	04/16/21 21:19	1
Naphthalene	ND		5.0	0.76	ug/L		04/15/21 07:17	04/16/21 21:19	1
Phenanthrene	ND		5.0	0.44	ug/L		04/15/21 07:17	04/16/21 21:19	1
Pyrene	ND		5.0	0.34	ug/L		04/15/21 07:17	04/16/21 21:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	107		48 - 120				04/15/21 07:17	04/16/21 21:19	1
Nitrobenzene-d5 (Surr)	101		46 - 120				04/15/21 07:17	04/16/21 21:19	1
p-Terphenyl-d14 (Surr)	109		60 - 148				04/15/21 07:17	04/16/21 21:19	1

RL

0.010

MDL Unit

0.0060 mg/L

Result Qualifier

ND

Client Sample ID: TRIP BLANK

Date Collected: 04/13/21 07:00

Analyte

Cyanide, Total

Date Received: 04/13/21 12:00

Lab Sample ID: 480-183241-9

Analyzed

04/22/21 19:10

Prepared

04/22/21 18:06

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	0.41	ug/L			04/15/21 17:36	1
Toluene	ND		1.0	0.51	ug/L			04/15/21 17:36	1
Ethylbenzene	ND		1.0	0.74	ug/L			04/15/21 17:36	1
m-Xylene & p-Xylene	ND		2.0	0.66	ug/L			04/15/21 17:36	1
o-Xylene	ND		1.0	0.76	ug/L			04/15/21 17:36	1
Xylenes, Total	ND		2.0	0.66	ug/L			04/15/21 17:36	1
Total BTEX	ND		2.0	1.0	ug/L			04/15/21 17:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
T. (0.40.)						-			

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		80 - 120		04/15/21 17:36	1
1,2-Dichloroethane-d4 (Surr)	96		77 - 120		04/15/21 17:36	1
4-Bromofluorobenzene (Surr)	99		73 - 120		04/15/21 17:36	1
Dibromofluoromethane (Surr)	96		75 - 123		04/15/21 17:36	1

Eurofins TestAmerica, Buffalo

2

3

5

10

11

13

14

Project/Site: Albion, NY Groundwater Project

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

				Percent Sui	rogate Recov
		TOL	DCA	BFB	DBFM
Lab Sample ID	Client Sample ID	(80-120)	(77-120)	(73-120)	(75-123)
480-183241-1	MW-1-041221	98	93	95	95
480-183241-2	MW-5-041221	107	94	111	96
480-183241-3	MW-6-041221	102	96	100	99
480-183241-4	MW-8R-041321	106	97	111	99
480-183241-4 MS	MW-8R-041321	108	95	113	100
480-183241-4 MSD	MW-8R-041321	105	97	102	105
480-183241-5	MW-9R-041321	103	98	103	99
480-183241-6	MW-10R-041221	104	100	107	102
480-183241-7	MW-50-041221	100	97	100	99
480-183241-8	EB-1-041321	100	94	99	96
480-183241-9	TRIP BLANK	99	96	99	96
LCS 480-576397/5	Lab Control Sample	104	92	103	98
MB 480-576397/7	Method Blank	100	96	98	97

Surrogate Legend

TOL = Toluene-d8 (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

				Percent Surrog	gate Recovery (Acceptance Limits
		FBP	NBZ	TPHd14	
ab Sample ID	Client Sample ID	(48-120)	(46-120)	(60-148)	
180-183241-1	MW-1-041221	105	96	76	
80-183241-2	MW-5-041221	97	80	73	
80-183241-3	MW-6-041221	106	97	79	
180-183241-4	MW-8R-041321	77	88	83	
180-183241-5	MW-9R-041321	103	89	84	
80-183241-6	MW-10R-041221	100	88	77	
80-183241-7	MW-50-041221	97	89	74	
180-183241-8	EB-1-041321	107	101	109	
CS 480-576385/2-A	Lab Control Sample	102	98	106	
CSD 480-576385/3-A	Lab Control Sample Dup	104	101	108	
1B 480-576385/1-A	Method Blank	103	92	105	

Surrogate Legend

FBP = 2-Fluorobiphenyl

NBZ = Nitrobenzene-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

Job ID: 480-183241-1

4

6

8

10

12

15

Eurofins TestAmerica, Buffalo

Job ID: 480-183241-1

Client: Wood E&I Solutions Inc Project/Site: Albion, NY Groundwater Project

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-576397/7

Matrix: Water

Analysis Batch: 576397

Client Sample	ID: Method Blank
P	rep Type: Total/NA

	MB MB					
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Benzene	ND ND	1.0	0.41 ug/L	-	04/15/21 14:16	1
Toluene	ND	1.0	0.51 ug/L	-	04/15/21 14:16	1
Ethylbenzene	ND	1.0	0.74 ug/L	-	04/15/21 14:16	1
m-Xylene & p-Xylene	ND	2.0	0.66 ug/L	•	04/15/21 14:16	1
o-Xylene	ND	1.0	0.76 ug/L	-	04/15/21 14:16	1
Xylenes, Total	ND	2.0	0.66 ug/L	•	04/15/21 14:16	1
Total BTEX	ND	2.0	1.0 ug/L	· · · · · · · · · · · · · · · · · · ·	04/15/21 14:16	1

MB MB

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		80 - 120	_		04/15/21 14:16	1
1,2-Dichloroethane-d4 (Surr)	96		77 - 120			04/15/21 14:16	1
4-Bromofluorobenzene (Surr)	98		73 - 120			04/15/21 14:16	1
Dibromofluoromethane (Surr)	97		75 - 123			04/15/21 14:16	1

Lab Sample ID: LCS 480-576397/5 Client Sample ID: Lab Control Sample **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 576397

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	25.0	22.2		ug/L		89	71 - 124	
Toluene	25.0	23.0		ug/L		92	80 - 122	
Ethylbenzene	25.0	23.1		ug/L		93	77 - 123	
m-Xylene & p-Xylene	25.0	23.9		ug/L		95	76 - 122	
o-Xylene	25.0	24.4		ug/L		98	76 - 122	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	104		80 - 120
1,2-Dichloroethane-d4 (Surr)	92		77 - 120
4-Bromofluorobenzene (Surr)	103		73 - 120
Dibromofluoromethane (Surr)	98		75 ₋ 123

Lab Sample ID: 480-183241-4 MS Client Sample ID: MW-8R-041321 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 576397

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	2000	F1	1250	2820	F1	ug/L		68	71 - 124
Toluene	45	J	1250	1200		ug/L		93	80 - 122
Ethylbenzene	130		1250	1300		ug/L		93	77 - 123
m-Xylene & p-Xylene	470		1250	1620		ug/L		92	76 - 122
o-Xylene	180		1250	1380		ug/L		96	76 ₋ 122

MS MS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	108		80 - 120
1,2-Dichloroethane-d4 (Surr)	95		77 - 120
4-Bromofluorobenzene (Surr)	113		73 - 120
Dibromofluoromethane (Surr)	100		75 - 123

Eurofins TestAmerica, Buffalo

Page 16 of 32

Spike

Added

1250

1250

1250

1250

1250

MSD MSD

3100

1310

1420

1770

1590

Result Qualifier

Job ID: 480-183241-1

ug/L

ug/L

Project/Site: Albion, NY Groundwater Project

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Sample Sample

2000 F1

45 J

130

470

180

Result Qualifier

Lab Sample ID: 480-183241-4 MSD

Matrix: Water

Analyte

Benzene

Toluene

o-Xylene

Ethylbenzene

m-Xylene & p-Xylene

Analysis Batch: 576397

Client: Wood E&I Solutions Inc

			Prep T	ype: To	tal/NA
			%Rec.		RPD
Unit	D	%Rec	Limits	RPD	Limit
ug/L		90	71 - 124	9	13
ug/L		101	80 - 122	9	15
ug/L		103	77 - 123	9	15

76 - 122

76 - 122

104

113

Client Sample ID: MW-8R-041321

MSD MSD Surrogate %Recovery Qualifier Limits 80 - 120 Toluene-d8 (Surr) 105 1,2-Dichloroethane-d4 (Surr) 97 77 - 120 102 73 - 120 4-Bromofluorobenzene (Surr) 75 - 123 Dibromofluoromethane (Surr) 105

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-576385/1-A

Matrix: Water

Analysis Batch: 576615

Client Sample ID: Method Blank

Prep Type: Total/NA

9

14

Prep Batch: 576385

-	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		5.0	0.41	ug/L		04/15/21 07:17	04/16/21 13:20	1
Acenaphthylene	ND		5.0	0.38	ug/L		04/15/21 07:17	04/16/21 13:20	1
Anthracene	ND		5.0	0.28	ug/L		04/15/21 07:17	04/16/21 13:20	1
Benzo[a]anthracene	ND		5.0	0.36	ug/L		04/15/21 07:17	04/16/21 13:20	1
Benzo[a]pyrene	ND		5.0	0.47	ug/L		04/15/21 07:17	04/16/21 13:20	1
Benzo[b]fluoranthene	ND		5.0	0.34	ug/L		04/15/21 07:17	04/16/21 13:20	1
Benzo[g,h,i]perylene	ND		5.0	0.35	ug/L		04/15/21 07:17	04/16/21 13:20	1
Benzo[k]fluoranthene	ND		5.0	0.73	ug/L		04/15/21 07:17	04/16/21 13:20	1
Chrysene	ND		5.0	0.33	ug/L		04/15/21 07:17	04/16/21 13:20	1
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		04/15/21 07:17	04/16/21 13:20	1
Fluoranthene	ND		5.0	0.40	ug/L		04/15/21 07:17	04/16/21 13:20	1
Fluorene	ND		5.0	0.36	ug/L		04/15/21 07:17	04/16/21 13:20	1
Indeno[1,2,3-cd]pyrene	ND		5.0	0.47	ug/L		04/15/21 07:17	04/16/21 13:20	1
Naphthalene	ND		5.0	0.76	ug/L		04/15/21 07:17	04/16/21 13:20	1
Phenanthrene	ND		5.0	0.44	ug/L		04/15/21 07:17	04/16/21 13:20	1
Pyrene	ND		5.0	0.34	ug/L		04/15/21 07:17	04/16/21 13:20	1

	MB MB					
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac	
2-Fluorobiphenyl	103	48 - 120	04/15/21 07:17	04/16/21 13:20	1	
Nitrobenzene-d5 (Surr)	92	46 - 120	04/15/21 07:17	04/16/21 13:20	1	
p-Terphenyl-d14 (Surr)	105	60 - 148	04/15/21 07:17	04/16/21 13:20	1	

Lab Sample ID: LCS 480-576385/2-A

Matrix: Water

Analysis Batch: 576615

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 576385

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acenaphthene	32.0	32.6		ug/L		102	60 - 120	
Acenaphthylene	32.0	33.4		ug/L		104	63 - 120	

Eurofins TestAmerica, Buffalo

Page 17 of 32

16

16

4/23/2021

Project/Site: Albion, NY Groundwater Project

Job ID: 480-183241-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-576385/2-A

Matrix: Water

Analysis Batch: 576615

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 576385

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Anthracene	32.0	33.1		ug/L		103	67 _ 120	
Benzo[a]anthracene	32.0	35.4		ug/L		110	70 - 121	
Benzo[a]pyrene	32.0	38.8		ug/L		121	60 _ 123	
Benzo[b]fluoranthene	32.0	35.9		ug/L		112	66 - 126	
Benzo[g,h,i]perylene	32.0	37.5		ug/L		117	66 _ 150	
Benzo[k]fluoranthene	32.0	34.9		ug/L		109	65 _ 124	
Chrysene	32.0	35.4		ug/L		111	69 - 120	
Dibenz(a,h)anthracene	32.0	36.5		ug/L		114	65 _ 135	
Fluoranthene	32.0	35.1		ug/L		110	69 _ 126	
Fluorene	32.0	33.6		ug/L		105	66 - 120	
Indeno[1,2,3-cd]pyrene	32.0	37.1		ug/L		116	69 - 146	
Naphthalene	32.0	29.0		ug/L		91	57 - 120	
Phenanthrene	32.0	34.5		ug/L		108	68 - 120	
Pyrene	32.0	35.7		ug/L		111	70 - 125	

LCS LCS

Sı	urrogate	%Recovery	Qualifier	Limits
2-	Fluorobiphenyl	102		48 - 120
Ni	itrobenzene-d5 (Surr)	98		46 - 120
p-	Terphenyl-d14 (Surr)	106		60 - 148

Lab Sample ID: LCSD 480-576385/3-A

Matrix: Water

Pyrene

Analysis Batch: 576615

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 576385 RPD %Rec.

Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit Acenaphthene 32.0 33.3 ug/L 104 60 - 120 2 24 Acenaphthylene 32.0 34.4 ug/L 108 63 - 120 3 18 32.0 36.1 67 _ 120 Anthracene ug/L 113 15 Benzo[a]anthracene 32.0 36.3 ug/L 113 70 - 121 3 15 Benzo[a]pyrene 32.0 40.3 *+ ug/L 126 60 - 123 15 32.0 36.2 15 Benzo[b]fluoranthene ug/L 113 66 - 126 Benzo[g,h,i]perylene 32.0 38.2 119 66 - 150 15 ug/L 35.3 Benzo[k]fluoranthene 32.0 ug/L 110 65 - 124 22 Chrysene 32.0 35.6 ug/L 111 69 - 120 15 32.0 65 _ 135 15 Dibenz(a,h)anthracene 37.1 ug/L 116 Fluoranthene 32.0 35.9 ug/L 112 69 - 126 15 Fluorene 32.0 34.0 ug/L 106 66 - 120 15 Indeno[1,2,3-cd]pyrene 32.0 37.2 ug/L 116 69 - 146 0 15 Naphthalene 32.0 30.5 ug/L 95 57 - 120 5 29 Phenanthrene 32.0 35.4 ug/L 111 68 - 120 3 15

32.0

Spike

LCSD LCSD

37.1

ug/L

116

70 - 125

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
2-Fluorobiphenyl	104	48 - 120
Nitrobenzene-d5 (Surr)	101	46 - 120
p-Terphenvl-d14 (Surr)	108	60 ₋ 148

Eurofins TestAmerica, Buffalo

1-1

Client: Wood E&I Solutions Inc

Project/Site: Albion, NY Groundwater Project

Job ID: 480-183241-1

Method: 4500 CN E-2011 - Cyanide, Total: Colorimetric Method

Lab Sample ID: MB 240-482011/1-A

Matrix: Water

Analysis Batch: 482023

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 482011

MB MB

 Analyte
 Result Cyanide, Total
 Qualifier
 RL
 MDL Unit
 D D Prepared
 Analyzed Analyzed
 Dil Factor

 0.010
 0.0010
 0.0060
 mg/L
 04/20/21 17:18
 04/20/21 18:03
 1

Lab Sample ID: LCS 240-482011/2-A

Matrix: Water

Analysis Batch: 482023

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 482011

Spike LCS LCS %Rec.
Analyte Added Result Qualifier Unit D %Rec Limits

 Cyanide, Total
 Added Result Qualifier
 Unit of the control of the cont

Lab Sample ID: 480-183241-2 MS

Client Sample ID: MW-5-041221

Matrix: Water

Prep Type: Total/NA

Analysis Batch: 482023 Prep Batch: 482011
Sample Sample Spike MS MS %Rec.

 Analyte
 Result
 Qualifier
 Added
 Result
 Qualifier
 Unit
 D
 %Rec.

 Cyanide, Total
 0.18
 0.0400
 0.219
 4
 mg/L
 104
 22 - 135

Lab Sample ID: 480-183241-2 MSD Client Sample ID: MW-5-041221

Matrix: Water Prep Type: Total/NA

Analysis Batch: 482023 **Prep Batch: 482011** MSD MSD Spike %Rec. RPD Sample Sample Added Limit Analyte Result Qualifier Result Qualifier Unit %Rec Limits RPD

AnalyteResult
Cyanide, TotalQualifierAddedResult
0.0400QualifierUnitD%RecLimitsRPDLimTotal0.180.04000.1974mg/L5022 - 135104

Lab Sample ID: MRL 240-482023/10

Matrix: Water

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Analysis Batch: 482023

Cyanide, Total

 Spike
 MRL
 MRL
 %Rec.

 Analyte
 Added
 Result
 Qualifier
 Unit
 D
 %Rec.
 Limits

 Cyanide, Total
 0.0100
 0.0116
 mg/L
 116
 70 - 130

Lab Sample ID: MB 240-482411/1-A Client Sample ID: Method Blank

Matrix: Water Prep Type: Total/NA

Analysis Batch: 482429 Prep Batch: 482411

MB MB

MDL Dil Fac Analyte Result Qualifier RL Unit D Prepared Analyzed Cyanide, Total ND 0.010 0.0060 mg/L 04/22/21 18:06 04/22/21 18:55

Cyanide, Total ND 0.010 0.0060 mg/L 04/22/21 18:06 04/22/21 18:55 1

Lab Sample ID: LCS 240-482411/2-A Client Sample ID: Lab Control Sample

Matrix: Water Prep Type: Total/NA
Analysis Batch: 482429 Prep Batch: 482411

LCS LCS Spike %Rec. Added Result Qualifier Analyte Unit D %Rec Limits Cyanide, Total 0.238 0.209 mg/L 88 85 - 115

Lab Sample ID: 480-183241-4 MS Client Sample ID: MW-8R-041321

Matrix: Water Prep Type: Total/NA
Analysis Batch: 482429 Prep Batch: 482411

Analysis Batch: 482429

Sample Sample Spike MS MS S %Rec.

Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits

0.213

mg/L

0.0400

0.17

Eurofins TestAmerica, Buffalo

22 - 135

QC Sample Results

Client: Wood E&I Solutions Inc Job ID: 480-183241-1

Project/Site: Albion, NY Groundwater Project

Method: 4500 CN E-2011 - Cyanide, Total: Colorimetric Method

Lab Sample ID: 480-183241-4 MSD Client Sample ID: MW-8R-041321 **Matrix: Water** Prep Type: Total/NA Analysis Batch: 482429 Prep Batch: 482411

Sample Sample Spike MSD MSD RPD Result Qualifier Added Result Qualifier RPD Limit Analyte Unit %Rec Limits Cyanide, Total 0.17 0.0400 0.199 4 mg/L 72 22 - 135 40

Lab Sample ID: MRL 240-482429/10 **Client Sample ID: Lab Control Sample**

Matrix: Water Prep Type: Total/NA Analysis Batch: 482429

Spike MRL MRL %Rec. Added Result Qualifier Limits Analyte Unit D %Rec

Cyanide, Total 0.0100 0.0112 mg/L 112 70 - 130

Project/Site: Albion, NY Groundwater Project

GC/MS VOA

Analysis Batch: 576397

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-183241-1	MW-1-041221	Total/NA	Water	8260C	Frep Batch
480-183241-2	MW-5-041221	Total/NA	Water	8260C	
480-183241-3	MW-6-041221	Total/NA	Water	8260C	
480-183241-4	MW-8R-041321	Total/NA	Water	8260C	
480-183241-5	MW-9R-041321	Total/NA	Water	8260C	
480-183241-6	MW-10R-041221	Total/NA	Water	8260C	
480-183241-7	MW-50-041221	Total/NA	Water	8260C	
480-183241-8	EB-1-041321	Total/NA	Water	8260C	
480-183241-9	TRIP BLANK	Total/NA	Water	8260C	
MB 480-576397/7	Method Blank	Total/NA	Water	8260C	
LCS 480-576397/5	Lab Control Sample	Total/NA	Water	8260C	
480-183241-4 MS	MW-8R-041321	Total/NA	Water	8260C	
480-183241-4 MSD	MW-8R-041321	Total/NA	Water	8260C	

GC/MS Semi VOA

Prep Batch: 576385

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-183241-1	MW-1-041221	Total/NA	Water	3510C	 -
480-183241-2	MW-5-041221	Total/NA	Water	3510C	
480-183241-3	MW-6-041221	Total/NA	Water	3510C	
480-183241-4	MW-8R-041321	Total/NA	Water	3510C	
480-183241-5	MW-9R-041321	Total/NA	Water	3510C	
480-183241-6	MW-10R-041221	Total/NA	Water	3510C	
480-183241-7	MW-50-041221	Total/NA	Water	3510C	
480-183241-8	EB-1-041321	Total/NA	Water	3510C	
MB 480-576385/1-A	Method Blank	Total/NA	Water	3510C	
LCS 480-576385/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 480-576385/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Analysis Batch: 576615

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-183241-1	MW-1-041221	Total/NA	Water	8270D	576385
480-183241-2	MW-5-041221	Total/NA	Water	8270D	576385
480-183241-3	MW-6-041221	Total/NA	Water	8270D	576385
480-183241-4	MW-8R-041321	Total/NA	Water	8270D	576385
480-183241-5	MW-9R-041321	Total/NA	Water	8270D	576385
480-183241-6	MW-10R-041221	Total/NA	Water	8270D	576385
480-183241-7	MW-50-041221	Total/NA	Water	8270D	576385
480-183241-8	EB-1-041321	Total/NA	Water	8270D	576385
MB 480-576385/1-A	Method Blank	Total/NA	Water	8270D	576385
LCS 480-576385/2-A	Lab Control Sample	Total/NA	Water	8270D	576385
LCSD 480-576385/3-A	Lab Control Sample Dup	Total/NA	Water	8270D	576385

General Chemistry

Prep Batch: 482011

[011 10 1 10				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-183241-1	MW-1-041221	Total/NA	Water	Distill/CN	
480-183241-2	MW-5-041221	Total/NA	Water	Distill/CN	
480-183241-3	MW-6-041221	Total/NA	Water	Distill/CN	
480-183241-5	MW-9R-041321	Total/NA	Water	Distill/CN	

Eurofins TestAmerica, Buffalo

Job ID: 480-183241-1

4

6

R

9

11

12

14

QC Association Summary

Client: Wood E&I Solutions Inc

Job ID: 480-183241-1 Project/Site: Albion, NY Groundwater Project

General Chemistry (Continued)

Prep Batch: 482011 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-183241-7	MW-50-041221	Total/NA	Water	Distill/CN	
MB 240-482011/1-A	Method Blank	Total/NA	Water	Distill/CN	
LCS 240-482011/2-A	Lab Control Sample	Total/NA	Water	Distill/CN	
480-183241-2 MS	MW-5-041221	Total/NA	Water	Distill/CN	
480-183241-2 MSD	MW-5-041221	Total/NA	Water	Distill/CN	

Analysis Batch: 482023

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-183241-1	MW-1-041221	Total/NA	Water	4500 CN E-2011	482011
480-183241-2	MW-5-041221	Total/NA	Water	4500 CN E-2011	482011
480-183241-3	MW-6-041221	Total/NA	Water	4500 CN E-2011	482011
480-183241-5	MW-9R-041321	Total/NA	Water	4500 CN E-2011	482011
480-183241-7	MW-50-041221	Total/NA	Water	4500 CN E-2011	482011
MB 240-482011/1-A	Method Blank	Total/NA	Water	4500 CN E-2011	482011
LCS 240-482011/2-A	Lab Control Sample	Total/NA	Water	4500 CN E-2011	482011
MRL 240-482023/10	Lab Control Sample	Total/NA	Water	4500 CN E-2011	
480-183241-2 MS	MW-5-041221	Total/NA	Water	4500 CN E-2011	482011
480-183241-2 MSD	MW-5-041221	Total/NA	Water	4500 CN E-2011	482011

Prep Batch: 482411

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-183241-4	MW-8R-041321	Total/NA	Water	Distill/CN	
480-183241-6	MW-10R-041221	Total/NA	Water	Distill/CN	
480-183241-8	EB-1-041321	Total/NA	Water	Distill/CN	
MB 240-482411/1-A	Method Blank	Total/NA	Water	Distill/CN	
LCS 240-482411/2-A	Lab Control Sample	Total/NA	Water	Distill/CN	
480-183241-4 MS	MW-8R-041321	Total/NA	Water	Distill/CN	
480-183241-4 MSD	MW-8R-041321	Total/NA	Water	Distill/CN	

Analysis Batch: 482429

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-183241-4	MW-8R-041321	Total/NA	Water	4500 CN E-2011	482411
480-183241-6	MW-10R-041221	Total/NA	Water	4500 CN E-2011	482411
480-183241-8	EB-1-041321	Total/NA	Water	4500 CN E-2011	482411
MB 240-482411/1-A	Method Blank	Total/NA	Water	4500 CN E-2011	482411
LCS 240-482411/2-A	Lab Control Sample	Total/NA	Water	4500 CN E-2011	482411
MRL 240-482429/10	Lab Control Sample	Total/NA	Water	4500 CN E-2011	
480-183241-4 MS	MW-8R-041321	Total/NA	Water	4500 CN E-2011	482411
480-183241-4 MSD	MW-8R-041321	Total/NA	Water	4500 CN E-2011	482411

Project/Site: Albion, NY Groundwater Project

Client Sample ID: MW-1-041221

Date Collected: 04/12/21 14:05

Date Received: 04/13/21 12:00

Lab Sample ID: 480-183241-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	576397	04/15/21 14:40	CRL	TAL BUF
Total/NA	Prep	3510C			576385	04/15/21 07:17	SMP	TAL BUF
Total/NA	Analysis	8270D		1	576615	04/16/21 18:02	JMM	TAL BUF
Total/NA	Prep	Distill/CN			482011	04/20/21 17:18	AGC	TAL CAN
Total/NA	Analysis	4500 CN E-2011		1	482023	04/20/21 18:32	AGC	TAL CAN

Client Sample ID: MW-5-041221

Date Collected: 04/12/21 15:00 Date Received: 04/13/21 12:00

Lab Sample ID: 480-183241-2

Matrix: Water

	Batch Batch			Dilution	Dilution Batch			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	576397	04/15/21 15:01	CRL	TAL BUF
Total/NA	Prep	3510C			576385	04/15/21 07:17	SMP	TAL BUF
Total/NA	Analysis	8270D		5	576615	04/16/21 18:30	JMM	TAL BUF
Total/NA	Prep	Distill/CN			482011	04/20/21 17:18	AGC	TAL CAN
Total/NA	Analysis	4500 CN E-2011		1	482023	04/20/21 18:34	AGC	TAL CAN

Client Sample ID: MW-6-041221

Date Collected: 04/12/21 17:30

Date Received: 04/13/21 12:00

Lab Sample ID: 480-183241-3

Matrix: Water

Batch Dilution Batch Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260C 576397 04/15/21 15:24 CRL TAL BUF Total/NA Prep 3510C 576385 04/15/21 07:17 SMP TAL BUF Total/NA Analysis 8270D 576615 04/16/21 18:58 JMM TAL BUF Total/NA Prep Distill/CN 482011 04/20/21 17:18 AGC TAL CAN Total/NA Analysis 4500 CN E-2011 1 482023 04/20/21 18:39 AGC TAL CAN

Client Sample ID: MW-8R-041321

Date Collected: 04/13/21 08:45

Date Received: 04/13/21 12:00

Lab Sample	ID:	480-183241-4
		Matrix: Water

Lab Sample ID: 480-183241-5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C	<u> </u>	50	576397	04/15/21 15:46	CRL	TAL BUF
Total/NA	Prep	3510C			576385	04/15/21 07:17	SMP	TAL BUF
Total/NA	Analysis	8270D		100	576615	04/16/21 19:26	JMM	TAL BUF
Total/NA	Prep	Distill/CN			482411	04/22/21 18:06	AGC	TAL CAN
Total/NA	Analysis	4500 CN E-2011		1	482429	04/22/21 19:01	AGC	TAL CAN

Client Sample ID: MW-9R-041321

Date Collected: 04/13/21 10:20

Date Received: 04/13/21 12:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	576397	04/15/21 16:07	CRL	TAL BUF

Eurofins TestAmerica, Buffalo

Page 23 of 32

Matrix: Water

Client Sample ID: MW-9R-041321 Lab Sample ID: 480-183241-5 Date Collected: 04/13/21 10:20

Matrix: Water

Date Received: 04/13/21 12:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			576385	04/15/21 07:17	SMP	TAL BUF
Total/NA	Analysis	8270D		5	576615	04/16/21 19:54	JMM	TAL BUF
Total/NA	Prep	Distill/CN			482011	04/20/21 17:18	AGC	TAL CAN
Total/NA	Analysis	4500 CN E-2011		1	482023	04/20/21 18:44	AGC	TAL CAN

Client Sample ID: MW-10R-041221

Lab Sample ID: 480-183241-6

Matrix: Water

Date Collected: 04/12/21 16:45 Date Received: 04/13/21 12:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	576397	04/15/21 16:30	CRL	TAL BUF
Total/NA	Prep	3510C			576385	04/15/21 07:17	SMP	TAL BUF
Total/NA	Analysis	8270D		1	576615	04/16/21 20:22	JMM	TAL BUF
Total/NA	Prep	Distill/CN			482411	04/22/21 18:06	AGC	TAL CAN
Total/NA	Analysis	4500 CN E-2011		1	482429	04/22/21 19:08	AGC	TAL CAN

Client Sample ID: MW-50-041221 Lab Sample ID: 480-183241-7

Date Collected: 04/12/21 15:05 **Matrix: Water**

Date Received: 04/13/21 12:00

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			576397	04/15/21 16:52	CRL	TAL BUF
Total/NA	Prep	3510C			576385	04/15/21 07:17	SMP	TAL BUF
Total/NA	Analysis	8270D		5	576615	04/16/21 20:51	JMM	TAL BUF
Total/NA	Prep	Distill/CN			482011	04/20/21 17:18	AGC	TAL CAN
Total/NA	Analysis	4500 CN E-2011		1	482023	04/20/21 18:46	AGC	TAL CAN

Client Sample ID: EB-1-041321 Lab Sample ID: 480-183241-8

Date Collected: 04/13/21 10:40 Date Received: 04/13/21 12:00

Prepared Batch Batch Dilution Batch Prep Type Method Type Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260C 576397 04/15/21 17:14 CRL TAL BUF Total/NA 3510C 576385 TAL BUF Prep 04/15/21 07:17 SMP Total/NA 8270D TAL BUF Analysis 576615 04/16/21 21:19 JMM Total/NA Prep Distill/CN TAL CAN 482411 04/22/21 18:06 AGC Total/NA 4500 CN E-2011 482429 04/22/21 19:10 AGC TAL CAN Analysis 1

Client Sample ID: TRIP BLANK Lab Sample ID: 480-183241-9

Date Collected: 04/13/21 07:00

Date Received: 04/13/21 12:00

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C			576397	04/15/21 17:36	CRL	TAL BUF	_

Eurofins TestAmerica, Buffalo

Page 24 of 32

Matrix: Water

Lab Chronicle

Client: Wood E&I Solutions Inc

Project/Site: Albion, NY Groundwater Project

Job ID: 480-183241-1

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

3

J

4

5

7

Ö

10

44

14

Accreditation/Certification Summary

Client: Wood E&I Solutions Inc

Project/Site: Albion, NY Groundwater Project

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pro	ogram	Identification Number	Expiration Date
New York	NE	ELAP	10026	04-01-22
0 ,	' '	it the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes f
The following analytes the agency does not of	' '	it the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes f
0 ,	' '	it the laboratory is not certif Matrix	ied by the governing authority. This list ma Analyte	ay include analytes f

Laboratory: Eurofins TestAmerica, Canton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2927	02-23-22
Connecticut	State	PH-0590	12-31-21
Florida	NELAP	E87225	06-30-21
Georgia	State	4062	02-23-22
Illinois	NELAP	004498	07-31-21
Iowa	State	421	06-01-21
Kansas	NELAP	E-10336	04-30-21
Kentucky (UST)	State	112225	02-23-21 *
Kentucky (WW)	State	KY98016	12-31-21
Minnesota	NELAP	OH00048	12-31-21
Minnesota (Petrofund)	State	3506	08-01-21
New Jersey	NELAP	OH001	06-30-21
New York	NELAP	10975	03-31-22
Ohio VAP	State	CL0024	12-21-23
Oregon	NELAP	4062	02-23-22
Pennsylvania	NELAP	68-00340	08-31-21
Texas	NELAP	T104704517-18-10	08-31-21
USDA	US Federal Programs	P330-18-00281	09-17-21
Virginia	NELAP	010101	09-14-21
Washington	State	C971	01-12-22
West Virginia DEP	State	210	12-31-21

Job ID: 480-183241-1

2

3

4

0

9

11

13

14

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Eurofins TestAmerica, Buffalo

Method Summary

Client: Wood E&I Solutions Inc

Project/Site: Albion, NY Groundwater Project

Distillation, Cyanide

Method Description Laboratory Method Protocol 8260C Volatile Organic Compounds by GC/MS SW846 TAL BUF TAL BUF 8270D Semivolatile Organic Compounds (GC/MS) SW846 4500 CN E-2011 Cyanide, Total: Colorimetric Method SM TAL CAN 3510C Liquid-Liquid Extraction (Separatory Funnel) SW846 TAL BUF 5030C Purge and Trap SW846 TAL BUF

Protocol References:

Distill/CN

None = None

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600
TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Job ID: 480-183241-1

TAL CAN

None

- 0

O

7

8

3

4 4

12

 1Λ

Sample Summary

Client: Wood E&I Solutions Inc

Project/Site: Albion, NY Groundwater Project

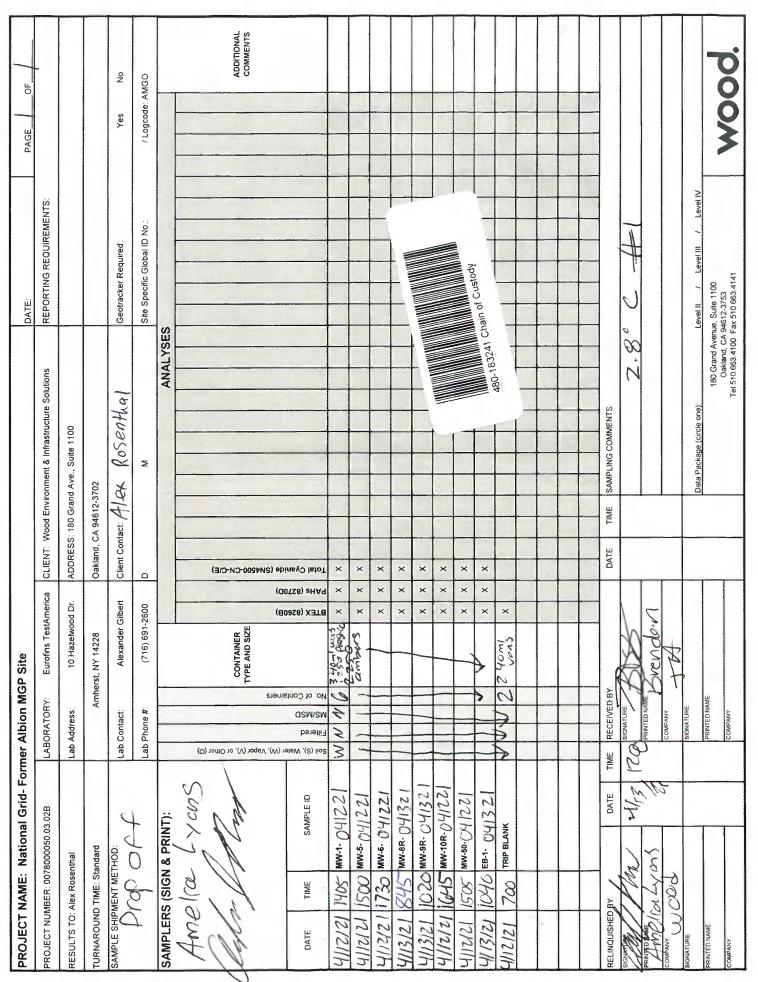
Job ID: 480-183241-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset II
480-183241-1	MW-1-041221	Water	04/12/21 14:05	04/13/21 12:00	
480-183241-2	MW-5-041221	Water	04/12/21 15:00	04/13/21 12:00	
480-183241-3	MW-6-041221	Water	04/12/21 17:30	04/13/21 12:00	
480-183241-4	MW-8R-041321	Water	04/13/21 08:45	04/13/21 12:00	
480-183241-5	MW-9R-041321	Water	04/13/21 10:20	04/13/21 12:00	
480-183241-6	MW-10R-041221	Water	04/12/21 16:45	04/13/21 12:00	
480-183241-7	MW-50-041221	Water	04/12/21 15:05	04/13/21 12:00	
480-183241-8	EB-1-041321	Water	04/13/21 10:40	04/13/21 12:00	
480-183241-9	TRIP BLANK	Water	04/13/21 07:00	04/13/21 12:00	

Λ

Ę

6


0

9

10

13

14

Page 29 of 32

4/23/2021

Environment Testing

💸 eurofins

Eurofins TestAmerica, Buffalo

Phone: 716-691-2600 Fax: 716-691-7991

Amherst, NY 14228-2298

10 Hazelwood Drive

Chain of Custody Record

N - None
O - AsNaO2
P - Na2O4S
Q - Na2SO3
R - Na2SO4
S - H2SO4
T - TSP Dodecahydrate Special Instructions/Note: Z - other (specify) U - Acetone V - MCAA W - pH 4-5 Preservation Codes: H - Ascorbic Acid Job #: 480-183241-1 COC No: 480-62791.1 A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
E - NaHSO4
F - MeOH Page: Page 1 of 1 I · Ice J · DI Water K · EDTA L · EDA G - Amchlor Total Number of containers ---Carrier Tracking No(s): State of Origin: New York **Analysis Requested** Accreditations Required (See note)
NELAP - New York E-Mail: Brian.Fischer@Eurofinset.com Lab PM: Fischer, Brian J × × × × × × × 1200 CN E/DIREIL CN Perform MS/MSD (Yes or No) Fleid Filtered Sample (Yes or No) BT=Tissue, A.=Air (Wewater, Sesolid, Oewaste/oil, Preservation Code: Matrix Water Water Water Water Water Water Water Water (C=comp, G=grab) Sample Type Eastern 15:00 Eastern 17:30 Eastern 08:45 Eastern 10:20 Eastern 16:45 Eastern 15:05 Sample Eastern Time 14:05 (AT Requested (days): Due Date Requested: 5/10/2021 Sample Date 4/12/21 4/13/21 4/12/21 4/12/21 4/13/21 4/12/21 Project #: 48021262 SSOW#: 4/13/21 4/12/21 Phone # OM Client Information (Sub Contract Lab) Sample Identification - Client ID (Lab ID) 330-497-0772(Fax) MW-10R-041221 (480-183241-6) Project Name. Albion, NY Groundwater Project MW-9R-041321 (480-183241-5) MW-8R-041321 (480-183241-4) MW-50-041221 (480-183241-7) TestAmerica Laboratories, Inc. MW-1-041221 (480-183241-1) MW-5-041221 (480-183241-2) MW-6-041221 (480-183241-3) EB-1-041321 (480-183241-8) 4101 Shuffel Street NW, 330-497-9396(Tel) Shipping/Receiving North Canton State, Zip. OH, 44720

Note. Since abovatory accreditations are subject to change, Eurofins TestAmerica places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins TestAmerica attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica Possible Hazard Identification

		<u>^</u>	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	amples are retained longer than	month)
Unconfirmed			Return To Client Disposal By Lab	ab Archive For	Months
Deliverable Requested: I, III, IV, Other (specify)	Primary Deliverable Rank: 2	S	Requ		
Empty Kit Relinquished by:	Date:	Time:		Method of Shipment:	
Relinquished by: MANNAUVV (WOTO	Date/109 (5121 1764	Company	Received by Method	Date/Time: 17-71 940	Company
Relinquished by:	Date/Time:	Company	Received by	Date/Time:	Company
Relinquished by:	Date/Time:	Company	Received by:	Date/Time:	Company
Custody Seals Intact: Custody Seal No.: △ Yes △ No			Cooler Temperature(s) °C and Other Remarks.		
					Ver: 11/01/2020

18. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES	additional next page	Samples processed by:
19. SAMPLE CONDITION		
Sample(s) were received a	after the recommended hold	ling time had expired.
Sample(s)		
Sample(s)were rec		
20. SAMPLE PRESERVATION		
Sample(s)		rther preserved in the laboratory.
Time preserved:Preservative(s) added/Lot number	r(s):	
VOA Sample Preservation - Date/Time VOAs Frozen:		

WI-NC-099

3

4

5

7

9

10

12

Job Number: 480-183241-1

Login Number: 183241 List Source: Eurofins TestAmerica, Buffalo

List Number: 1

Creator: Sabuda, Brendan D

ordior. Subdut, Bromain B				
Question	Answer	Comment		
Radioactivity either was not measured or, if measured, is at or below background	True			
The cooler's custody seal, if present, is intact.	True			
The cooler or samples do not appear to have been compromised or tampered with.	True			
Samples were received on ice.	True			
Cooler Temperature is acceptable.	True			
Cooler Temperature is recorded.	True	2.8 #1 ICE		
COC is present.	True			
COC is filled out in ink and legible.	True			
COC is filled out with all pertinent information.	True			
Is the Field Sampler's name present on COC?	True			
There are no discrepancies between the sample IDs on the containers and the COC.	True			
Samples are received within Holding Time (Excluding tests with immediate HTs)	True			
Sample containers have legible labels.	True			
Containers are not broken or leaking.	True			
Sample collection date/times are provided.	True			
Appropriate sample containers are used.	True			
Sample bottles are completely filled.	True			
Sample Preservation Verified	True			
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True			
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True			
If necessary, staff have been informed of any short hold time or quick TAT needs	True			
Multiphasic samples are not present.	True			
Samples do not require splitting or compositing.	True			
Sampling Company provided.	True			
Samples received within 48 hours of sampling.	True			
Samples requiring field filtration have been filtered in the field.	True			
Chlorine Residual checked.	True			

Eurofins TestAmerica, Buffalo

APPENDIX C

Soil Cap Inspection Form

wood.

APPENDIX D

EXAMPLE SITE INSPECTION FORM

Former MPG Site No. 837012 Albion, New York

Date:	Weather: Cloudy, 50°FS Time In: 645					
Inspection By: Amelia Lyp 5						
Others On Site: WA		Time Out:				
isual Observations – Soil Cap and Monitoring	Well Ne	twork:	Comments			
Is the Soil Cap intact?	/	110				
Any signs of significant erosion?		1				
Any signs of tree roots or vegetation damaging the cap?		/				
Any signs of intrusive work (earth disturbing activities) in the capped area?		/				
A - 11	/					
Are the groundwater monitoring wells accessible and intact?	V	1				
accessible and intact? maintenance is required to resolve any of the abvere all maintenance items resolved during this s	ite visit?	If no, w	hat items remain to be resolved?			
	ite visit?	If no, w	hat items remain to be resolved?			
f maintenance is required to resolve any of the above all maintenance items resolved during this services well network is	ite visit?	If no, w	hat items remain to be resolved?			

	YES	NO	Comments
Is the most recent Monitoring and Sampling Plan on-site?		1	record is kept with me
Is the Site Management Plan on-site?		1	record is kept with
If there is intrusive work being performed: - Is there a Health and Safety Plan on-site?			NIA
 If the surface area of construction activities is greater than 1 acre in size, is there a Stormwater Pollution Prevention Plan (SWPPP) on-site? 			NIA

If maintenance is required to resolve any of the above noted items, describe what actions taken, if any. Were all maintenance items resolved during this site visit? If no, what items remain to be resolved?

All pertnens	2 documents	are t	rought to	the
Site and	Kept with	Wood	persenel.	

Note: This form is provided as an example template only and should be modified and updated as needed to reflect current project conditions.