URS

URS Corporation

Letter of Transmittal

77 Goodell Street Buffalo NY 14203 Tel: 716.856.5636 Fax: 716.856.2545 www.urscorp.com

Letter of Transmittal

To:	David Chiusano				Date:	3/30/05	
	Division of Enviro	nmental Remediatior	1		Job No.:	35388	
	NYSDEC		····		Subject:	Site #8-49-002	
	625 Broadway					North Franklin St.	
	Albany, New York	12233-7020				Watkins Glen, Schulyer, NY	_
						Work Authorization # D00382	5.093
We	are sending you	X Attached U	Inder Sep	parate Cover	the follow	ing items:	
	Shop Drawings	[rawings ((Prints)		Proposal Request	Copy of Letter
	Product Data	F	roject Ma	anual		_ Change Order	See Below
	Samples	T	racings			Technical Specifications	
	COPIES	PR#				DESCRIPTION	
	2			Bimonthly Le	etter Report,	Active Venting System, O&M, F	ebruary 2005
				Sampling Ev	ent		
Thes	se are transmitted	for the following disp	osition:				
	For Your Approva	<u>X</u> F	or Reviev	w and Comme	ent	Conform As Is	
<u>x</u>	For Your Use and	Information F	or Bidding	ng Co		Conforms As Noted	
	As Requested	F	or Constr	ruction	_	Sign And Return Both Copies Executed Copy Will Be Return	
Re	emarks:						
	Copy to: File 35	388 (C-1)/R-1			Signed (Juse	
					2.334	APR - 4 2005	

3/30/2005

Sheet1

During the inspection of the souvenir store (The SHOP), store employees complained of respiratory problems, which they attribute to wood dust/debris from the southeastern adjacent Seneca Hardwoods (saw mill) operations.

Monitoring Well Repairs/Maintenance

Earlier this month, URS was contacted by the Village of Watkins Glen Department of Public Works (DPW) regarding their observation that the flush mount lid to monitoring well MW-20S was missing. However, in phone conversations with the DPW on February 11, 2004, URS learned that the DPW found MW-20S' lid and placed it on its outer casing, but could not secure it with hex bolts because the outer casing's female thread receptors were too corroded.

While on site, URS conducted the necessary repairs to MW-20S (via a dye tap wrench, new hex bolts, etc.). In addition, URS surveyed the remaining flush mount wells sampled during the October 2004 groundwater-monitoring event, and made repairs where warranted, with exception to MW-19S (southeast/upgradient well). MW-19S could not be sealed because its casing's female thread receptors were corroded away. Therefore, URS sealed MW-19S' outer casing with silicone caulk, pending a decision from the New York State Department of Environmental Conservation (see Attachment 1).

Should you have any questions or comments, please do not hesitate to contact me at 716-856-5636.

Sincerely,

URS Corporation

Charles E. Dusel, Jr. Sr. Project Manager

Attachments

CED/kjm

cc: Kevin J. McGovern, P.G., CPG -URS

During the inspection of the souvenir store (The SHOP), store employees complained of respiratory problems, which they attribute to wood dust/debris from the southeastern adjacent Seneca Hardwoods (saw mill) operations.

Monitoring Well Repairs/Maintenance

Earlier this month, URS was contacted by the Village of Watkins Glen Department of Public Works (DPW) regarding their observation that the flush mount lid to monitoring well MW-20S was missing. However, in phone conversations with the DPW on February 11, 2004, URS learned that the DPW found MW-20S' lid and placed it on its outer casing, but could not secure it with hex bolts because the outer casing's female thread receptors were too corroded.

While on site, URS conducted the necessary repairs to MW-20S (via a dye tap wrench, new hex bolts, etc.). In addition, URS surveyed the remaining flush mount wells sampled during the October 2004 groundwater-monitoring event, and made repairs where warranted, with exception to MW-19S (southeast/upgradient well). MW-19S could not be sealed because its casing's female thread receptors were corroded away. Therefore, URS sealed MW-19S' outer casing with silicone caulk, pending a decision from the New York State Department of Environmental Conservation (see Attachment 1).

Should you have any questions or comments, please do not hesitate to contact me at 716-856-5636.

Sincerely,

URS Corporation

Charles E. Dusel, Jr. Sr. Project Manager

Attachments

CED/kjm

cc: Kevin J. McGovern, P.G., CPG -URS

During the inspection of the souvenir store (The SHOP), store employees complained of respiratory problems, which they attribute to wood dust/debris from the southeastern adjacent Seneca Hardwoods (saw mill) operations.

Monitoring Well Repairs/Maintenance

Earlier this month, URS was contacted by the Village of Watkins Glen Department of Public Works (DPW) regarding their observation that the flush mount lid to monitoring well MW-20S was missing. However, in phone conversations with the DPW on February 11, 2004, URS learned that the DPW found MW-20S' lid and placed it on its outer casing, but could not secure it with hex bolts because the outer casing's female thread receptors were too corroded.

While on site, URS conducted the necessary repairs to MW-20S (via a dye tap wrench, new hex bolts, etc.). In addition, URS surveyed the remaining flush mount wells sampled during the October 2004 groundwater-monitoring event, and made repairs where warranted, with exception to MW-19S (southeast/upgradient well). MW-19S could not be sealed because its casing's female thread receptors were corroded away. Therefore, URS sealed MW-19S' outer casing with silicone caulk, pending a decision from the New York State Department of Environmental Conservation (see Attachment 1).

Should you have any questions or comments, please do not hesitate to contact me at 716-856-5636.

Sincerely,

URS Corporation

Charles E. Dusel, Jr. Sr. Project Manager

Attachments

CED/kjm

cc: Kevin J. McGovern, P.G., CPG -URS

BI-MONTHLY LETTER REPORT ACTIVE VENTING SYSTEM OPERATION AND MAINTENANCE FEBRUARY 2005 SAMPLING EVENT NORTH FRANKLIN STREET SITE SITE #8-49-002 VILLAGE OF WATKINS GLEN, NEW YORK

Prepared For:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF ENVIRONMENTAL REMEDIATION WORK ASSIGNMENT D003825-09.3

FINAL

Prepared By:

URS CORPORATION 77 GOODELL STREET BUFFALO, NEW YORK 14203 Mr. David J. Chiusano, Project Manager New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway 12th Floor Albany, New York 12233-7013

RE: NYSDEC Standby Contract

Active Venting System Operation and Maintenance # D003825-09.3
February 2005 Sampling Event
North Franklin Street Site, Site No. 8-49-002
Summary of Operation and Maintenance Activities: Bi-Monthly Letter Report

Summary of Operation and Maintenance Activities. Di-Monthly Letter Report

Dear Mr. Chiusano:

URS Corporation (URS) has completed the fifth of six visits to the above-referenced system to conduct bi-monthly operation and maintenance (O&M). This work was performed in accordance with the New York State Department of Environmental Conservation (NYSDEC) Project Management Work Plan (PMWP)/Budget Estimate (NYSDEC, July 2003).

The O&M consisted of performing system checks to ensure that the system is operating properly and to collect representative samples of the indoor air and the system's soil gas exhaust. The O&M activities were conducted by URS personnel on February 15, 2005. Documentation of the O&M activities is provided in the Daily Construction Report, included in Attachment 1.

Inspection

URS's inspection of the system revealed that it was working properly, expulsing soil gas at a rate of 910 feet per minute. The velocity of the exhaust was measured by inserting the probe of an air velocity meter (TSI Velocicheck Model 8340) into a sampling port located on the side of the exhaust stack. The site's landlord was not present during this O&M event. It should be noted that the site building has not been occupied since before the June 2004 O&M event. However, during this O&M event, a new tenant (Past & Presents) was preparing to take up residence. The presence of paints, cleaners and solvents were noted in the back room of the site building (indoor air sampling location). Inspection details are also included in Attachment 1. A photo log is included in Attachment 2.

Bi-Monthly Air Sampling

As part of the O&M, URS collected two (2) air samples from the following locations:

- One (1) 4-hour indoor air sample was collected in the back room of the site building (INDOOR-0205), adjacent to the above-mentioned paints, cleaners, and solvents; and,
- One (1) soil gas grab sample was collected from the venting system's exhaust stack (SOILGAS-0205).

These samples were collected using SUMMA canisters, in accordance with the protocols outlined in Section 7.1.1 of the United States Environmental Protection Agency's (USEPA's) "SUMMA Canister Sampling" procedures (SOP#: 1704, 7/27/1995). Sampling logs are provided in Attachment 3. Once collected, these samples and corresponding chain of custody (see Attachment 3) were sent to Severn Trent Laboratories (STL) in Knoxville, Tennessee (a New York State Department of Health [NYSDOH] approved laboratory) for volatile organic compound (VOC) analysis via USEPA Method TO-15. The table below summarizes the analytical data. A copy of the laboratory report is included in Attachment 4.

		Samp	le I.D.	OSHA	NYSDOH
Compound	Units	INDOOR-0205	SOILGAS-0205	Permissible Exposure Level ⁽¹⁾	Indoor Air Criteria
Acetone	ug/m³	20 (estimated)	3.0 (estimated)	2,400,000	None Available
Benzene	ug/m³	1.5	Not Detected	31,946.83	None Available
Chloroform	ug/m³	Not Detected	1.2 (estimated)	240,000	None Available
Chloromethane	ug/m³	1.2 (estimated)	Not Detected	206,503.07	None Available
cis-1,2- Dichloroethene	cis-1,2- ug/m ³ Not Detected		5.9	Not Available	None Available
Ethylbenzene	ug/m³	15	Not Detected	435,000	None Available
Methylene Chloride			0.60 (estimated)	86,850.72	None Available
Styrene	ug/m³	0.84 (estimated)	Not Detected	425,930.47	None Available
Tetrachloroethene	ug/m³	1.7 (estimated)	130	678,323.11	100 ⁽²⁾
Toluene	Toluene ug/m ³ 8.2		0.79 (estimated)	0.79 (estimated) 753,619.63	
Trichloroethene ug/m³ Not Detected		6.1	537,423.31	5 ⁽³⁾	
o-Xylene	ug/m³	19	Not Detected	435,000	None Available
m&p-Xylene	ug/m³	55	1.4	435,000	None Available
2-Butanone (MEK) ug/m³ 2.5 (estimated)		Not Detected	590,000	None Available	

^{1 -} Sources: 29 CFR 1910.1000 and 29 CFR 1910.1052

^{2 -} Source: Fact Sheet Tetrachloroethene (PERC) Indoor Outdoor Air, NYSDOH (May 2003)

^{3 -} Source: NYSDOH letter from N. Kim to D. Desnoyers, Division of Environmental Remediation, NYSDEC (October 31, 2003)

As shown in the table above, the concentration of VOCs detected in the indoor air sample complies with applicable OSHA criteria, with the estimated concentration of tetrachloroethene detected (1.7 ug/m³) well below the NYSDOH indoor air criteria (100 ug/m³).

It should be noted that the concentration of xylenes and toluene detected in the indoor air sample have increased since the December O&M event. These increases are most likely the result of the above-mentioned paints and solvents staged adjacent to the indoor air sampling location. The remainder of the compounds detected had concentrations at or near their corresponding reporting limits.

Should you have any questions or comments, please do not hesitate to contact me at 716-856-5636.

Sincerely,

URS Corporation

Charles E. Dusel, Jr. Sr. Project Manager

Attachments

CED/kjm

cc:

Kevin J. McGovern, P.G., CPG -URS

ATTACHMENT 1 DAILY CONSTRUCTION REPORT

URS

CORPORATION, INC

DATE 2/15/US

77 Goodell S	Street DATE	2/15/05							
Buffalo, Nev (716) 856-56	v York 14203 36			DAY	SM	Û	W TH	F	S
DAILY	CONSTRUCT	ION REF	PORT	WEATHER	Bright Sun	Clear	Overcast	Rain	Snow
TROSECT.	N. FLANICLIN			TEMP	To 32	32-50	50-70	70-85	85 and up
OWNER:	MS COL								
CONTRACT No		-		WIND	(Still)	Moder	High		Report No.
URS JOB No		27C		LUMBITY		-	}		
URS PROJECT	MANAGER: KAUCIE	rusce		HUMIDITY	Dry	Moder	/	Hum	nid
AVERAGE FIEL	D FORCE								
N	arne of Contractor	Non-manual	Manual			Re	marks		
VISITORS				<u> </u>					
Time	Representing	Repres	enting		. ,	Re	marks		
EQUIPMENT AT	THE SITE	51 VERRICH	lick 8340	2. 6/04/22	Tooms				
				<i>/ / ******</i>	70000	****			
·									
CONSTRUCTIO							·		
09.50	ZN FARAKELLA	MICT W/ TI		- ((CAPCY)	Tours	ام. روا	CC CSVI	ic 1	acias is
	2 TO FAMILY STA	1/12/2010	10705	E DICTEN					
07:45	- FERISHED TOO	idire- 2	N. Fanch	un Ba	1.2	Ssin	no (13	20 %	1. FRANKLIN
	NOW TOWN'S		V. FALANIL	W. CRA		A6:64	-s/. A		wait.
			11-4 NOC-	CANS	1500000	Fo	(Cour)	en inc	
10:15	SIC SYST			24/4.10)					
10:13	FINISHER SA	spirition Ga	S Extraus	-					
19:50-	MG W/ Car	a a wa	TRING GE	CON Driv	Mu	L 2.25	eties is	0 136	resours
138.	FINISH YOW	MAINGHAN		TO SEAL	MW-13	נא בפ	Isn. w		- Commercial
13:50-		e sparing,	Bucard	CLEANS	ρ				
14195-	KTM OFF-SIR								
								 	
			 				SHEE	T	DF

X - designates info on backside of page

BY KEVIN-	<i>J</i> .	AL Gosson	_TITLE_	GrangesT
REVIEWED BY:			_PROJE	CT MANAGER

ATTACHMENT 2

PHOTO LOG

PHOTOGRAPHIC LOG

Client Name:

New York State Department of Environmental Conservation

Site Location:

20 N. Franklin St., Watkins Glen, New York

Project No.

11173258.61000

Photo No.

Date: 2-15-05

Direction Photo Taken:

Southeast

Site Building (20 N. Franklin St.), with new tenant (Past & Presents).

Photo No.

Date:

2-15-05

Direction Photo Taken:

Southwest

Description:

Back room of site building (indoor air sampling location). Paints and other assorted solvents designated for remodeling present.

PHOTOGRAPHIC LOG

New York State Department of **Environmental Conservation**

Site Location:

20 N. Franklin St., Watkins Glen, New York

Project No.

11173258.61000

Photo No. 3

Date: 2-15-05

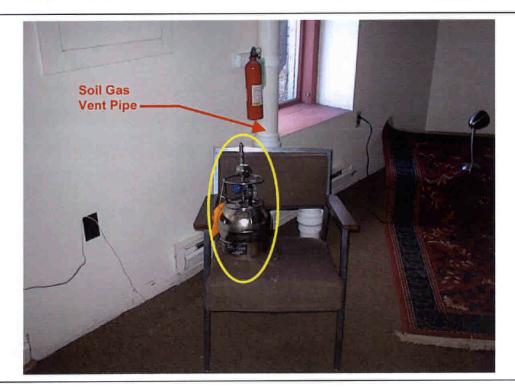
Direction Photo Taken:

Southeast

Back room of site building (indoor air sampling location). Paints and other assorted solvents designated for remodeling present.

Photo No.

Date:


2-15-05

Direction Photo Taken:

Northeast

Description:

Back room of site building, with ambient air sample "INDOOR-0205" being collected. Pipe to soil gas venting system in background.

ATTACHMENT 3

CHAIN OF CUSTODY/ SAMPLING DATA SHEET

CHAIN OF CUSTOBY	Z	F C	UST(RECORD		-	<u> </u>	TESTS		7	UR	U.		
PROJECT NO.	53.00 €	ü	<u>s</u>	SITE NAME MISTRE IN FLOW	Fray 1/2.1x S.		57-02 5001 22				2/2 BAJ	KNOKUTELE	ا الم		
SAMPLERS (PRINT/SIGNATURE)	RINT/SIGNATURE)	TURE)					ル BOTTL	E TYPE AN	SOTTLE TYPE AND PRESERVATIVE		COOLER	ot	\ \		1 1
		For Ex		782.20 AIRBILL NO:	5.884.9.52.0	NO.# OF					REMARKS	34X1 §	IING (IN FEET)	(IN FEET)	(S # 'ON LO'
LOCATION	DATE	TIME	COMP/ GRAB	SAMPLE ID	MATRIX							SAMPLE	BEGINN DEPTH		FIELD I MISREIM
2 20000	50/5172	3.0	amo	Myon onos	AA	/	×				570 1.5	Ž			
Quisteir	115/65	27.01	Grad?	50.20-2005	2,5	/	х								
								:							
,															
MATRIX CODES	1	AA - AMBIENT AIR SE - SEDIMENT SH - HAZARDOUS SOLID WASTE		SL - SLUDGE WP - DRINKING WATER WW - WASTE WATER	WG - GROUND WATER SO - SOIL DC - DRILL CUTTINGS	D WATER UTTINGS	WL - LE GS - SC WC - D	WL - LEACHATE GS - SOIL GAS WC - DRILLING WATER		WO - OCEAN WATER WS - SURFACE WATER WQ - WATER FIELD QC	LH - HAZARDOUS LIQUID WASTE LF - FLOATING/FREE PRODUCT ON GW TABLE	S LIQUID W. REE PRODL	ASTE JCT ON G	W TABLE	w
SAMPLE TYPE CODES		TB# . TRIP BLANK SD# . MATRIX SPIKE DUPLICATE		RB# - RINSE BLANK FR# - FIELD REPLICATE	N# - NORMAI MS# - MATRI	ENVIRONI X SPIKE	N# - NORMAL ENVIRONMENTAL SAMPLE MS# - MATRIX SPIKE		ential number (fro	OM 1 TO 9) TO	(st - SEQUENTIAL NUMBER (FROM 1 TO 9) TO ACCOMMODATE MULTIPLE SAMPLES IN A SINGLE DAY)	IPLE SAMPL	ES IN A S	SINGLE D	OAY)
RELINOUISHED BY (SIGNATURE)	D BY (si	GNATURE)	DATE	TIME	RECEIVED BY (SIGNATURE)	IATURE)		DATE TI	TIME SPECIA	SPECIAL INSTRUCTIONS	ICTIONS SEAS	Sino Mar	* Ino 66	.ce 70	
Jan John Comment			1/15/05	16.00					¥	100 A 200	The same of the sa	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			
RELINQUISHED BY (SIGNATURE)	ED BY (SI	GNATURE)	DATE	TIME	RECEIVED FOR LAB BY (SIGNATURE)	BY (SIG	SNATURE)	DATE TI	TIME	Let a Contraction	4			1	}
									2	1 3		Mark 21	Asper Accoust	12 N	
Distribution: O	riqinal acc	companies :	shipment, c	Distribution: Original accompanies shipment, copy to coordinator field files	id files					# # # # # # # # # # # # # # # # # # #	5000	ξ.	1/201	4	
			,						322	(7.47 SSE 5676	:36				

Summa Canister Sampling Field Data Sheet

Site: NYSDEC - 20 N. Franklin Site, Watkins Glen, NY

Samplers: Kevin J. McGovern

Date: 2/15/05

Date.	2/13/03					
Sample #	INDOOR-02	205	SOILGAS-0205			
Location	Indoors		Gas Exhaust			
Summa Canister ID (Lab ID, if provided)	2967		93104			
Additional Tubing Added	YES - How	much	NO/ YES - How much 2'14-20 hory	NO/ YES - How much	NO/ YES - How much	NO/ YES - How much
Purge Time (Start)	NO		09.50			
Purge Time (Stop)	1		\$ 10.10			
Total Purge Time (min) [recommended time is 20 min for 1L canister]			20 14 /2			
Pressure Gauge - before sampling	1		NA			
Sample Time (Start)	0950		10/13			
Sample Time (Stop)	13.50		10:15			
Total Sample Time (min)	240		2			
Pressure Gauge - after sampling	ACM		MX			
Canister Pressure Went To Ambient Pressure?	YES (N	0	YES / NO	YES / NO	YES / NO	YES / NO
General Comments:	& Since	. 4	THEOLDE A	n AFTER	4-Hours	

ATTACHMENT 4 LABORATORY REPORT

m = 2 81 6 50

Client Sample ID: INDOOR-0205

GC/MS Volatiles

Lot-Sample # H5B160106 - 001

Work Order # G4HGE1AC

Matrix.....: AIR

454 6 8 18 mm

2/15/05 2/18/05 Date Received..: 2/16/05 Analysis Date... 2/18/05

 Date Sampled...:
 2/15/6

 Prep Date......:
 2/18/6

 Prep Batch #....:
 50533

 Dilution Factor.:
 1.85

 5053200

Method...... TO-14

PARAMETER .	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESUL	TS (ug/m3)	REPORTING LIMIT (ug/m3)
trans-1,3-Dichloropropene	ND	0.37	ND		1.7
Acetone	8.3	9.2	20	J	22
Ethylbenzens	3.4	0.37	15		1.6
2-Нехалопе	ND	0.92	ND		3.8
Methylene chloride	0.20	0.92	0.70	J	3.2
Benzene	0.4 6	0.37	1.5	_	1.2
Styrene	0.20	0.37	0.84	J	1.6
1,1,2,2-Tetrachloroethane	ND	0.37	ND		2.5
Tetrachloroethene	0.25	0.37	1.7	J	2.5
Toluene	2.2	0.37	8.2		1.4
1,1,1-Trichloroethane	ND	0.37	ND		2.0
1,1,2-Trichloroethane	ND	0.37	ND		2.0
Trichloroethene	ND	· 0.37	ND		2.0
Vinyl chloride	ND	0.37	ND		0.95
o-Xylene	4.3	0.37	19		1.6
m-Xylene & p-Xylene	13	0.37	55		1.6
Bromodichloromethane	ND	0.37	ND		2.5
2-Butanone (MEK)	0.83	0.92	2,5	J	2.7
4-Methyl-2-pentanone (MIBK)	ND	0.92	ND		3.8
Bromoform	ND	0.37	ND		3.8
Bromomethane	ND	Q.37	ND		1.4
Carbon disulfide	ND	0.37	ND		1.2
Carbon tetrachloride	ND	0.37	ND		2.3
Chlorobenzene	ND	0.37	ND		1.7
Dibromochloromethane	ND	0.37	ND		3.2
Chloroethane	ND	0.37	ND		0.98
Chloroform	ND	0.37	ND		1.8
Chloromethane	0.56	0.92	1.2	J	1.9
1.1-Dichloroethane	ND	0.37	ND		1.5
1,2-Dichloroethane	ND	0.37	ND		1.5
1,1-Dichloroethene	ND	0.37	ND		1.5
cis-1,2-Dichloroethene	ND	0.37	ND		1.5
trans-1,2-Dichloroethene	ND	0.37	ND		1.5
1,2-Dichloropropane	ND	0.37	ND		1.7
cis-1,3-Dichloropropene	ND	0.37	ND		1.7

Client Sample ID: INDOOR-0205

GC/MS Volatiles

Lot-Sample # H5B160106 - 001	Work Order # G4HGE1AC	Matrix: AIR
SURROGATE	PERCENT RECOVERY	LABORATORY CONTROL LIMITS (%)
1,2-Dichloroethane-d4	109	70 - 130
Toluene-d8	104	70 - 130
4-Bromofluorobenzene	117	70 - 130

Qualifiers

4146 6 60

J Estimated result. Result is less than RL.

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

The 'Reporting Limit' in ug/m3 is calculated using the following equation: (Reporting Limit(before rounding) * Dilution Factor) * (Molecular Weight/24.45)

Client Sample ID: SOILGAS-0205

GC/MS Volatiles

Lot-Sample # H5B160106 - 002

Work Order # G4HGF1AC

Matrix....: AIR

Date Sampled...:

many in our

2/15/05

Date Received..: 2/16/05 Analysis Date... 2/18/05

Prep Date.....:

2/18/05

Prep Batch #....:

5053200

Dilution Factor.:

1.35

Method..... TO-14

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESUL ¹	rs (ug/m3)	REPORTING LIMIT (ug/m3)
trans-1,3-Dichloropropene	ND	0.27	ND		1.2
Acetone	1.3	6.8	3.0	J	16
Ethylbenzene	ND	0.27	ND		1.2
2-Hexanone	ND	0.68	ND		2.8
Methylene chloride	0,17	0.68	0.60	J	2.3
Benzene	ND	0.27	ND		0-86
Styrene	ND	0.27	ND		1.2
1,1,2,2-Tetrachloroethane	ND	0.27	ND		1.9
Tetrachloroethene	20	0.27	130		1.8
Toluone	0.21	0.27	0.79	J	1.0
l, l, l-Trichloroethane	ND	0.27	ND		1.5
1,1,2-Trichloroethane	ND	0.27	ND		1.5
Trichloroethene	1.1	0.27	6.1		1.5
Vinyl chloride	ND	0.27	ND		0.69
o-Xylene	ND	0.27	ND		1.2
m-Xylene & p-Xylene	0.31	0.27	1.4		1.2
Bromodichloromethane	ND	0.27	ND		1.8
2-Butanone (MEK)	ND	0.68	ND		2.0
4-Methyl-2-pentanone (MIBK)	ND	0.68	ND		2.8
Bromoform	ND	0.27	ND		2.8
Bromomethane	ND	0.27	ND		1.0
Carbon disulfide	ND	0,27	ND		0.84
Carbon tetrachloride	ND	0.27	ND		1.7
Chlorobenzene	ND	0.27	ND		1.2
Dibromochloromethane	ND	0.27	ND		2.3
Chlorocthane	ND	0.27	ND		0.71
Chloroform	0.24	0.27	1.2	J	1.3
Chloromethane	ND	0.68	ND		1.4
1,1-Dichlorocthane	ND	0.27	ND		1.1
1,2-Dichloroethane	ND	0.27	ND		1.1
1,1-Dichloroethene	ND	0.27	ND		1.1
cis-1,2-Dichloroethene	1.5	0.27	5.9		1.1
trans-1,2-Dichloroethene	מא	0.27	ND		1.1
1,2-Dichloropropano	ND	0.27	ND		1.2
cis-1,3-Dichloropropene	ND	0.27	ND		1.2

Client Sample ID: SOILGAS-0205

GC/MS Volatiles

Lot-Sample # H5B160106 - 002	Work Order# G4HGF1AC	Matrix AIR
SURROGATE	PERCENT RECOVERY	LABORATORY CONTROL LIMITS (%)
1,2-Dichloroethane-d4	112	70 - 130
Toluene-d8	101	70 - 130
4-Bromofluorobenzene	112	70 - 130

Qualifiers

Was Aller

J Estimated result. Result is less than RL.

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

The 'Reporting Limit' in ug/m3 is calculated using the following equation: (Reporting Limit(before rounding) * Dilution Factor) * (Molecular Weight/24.45)

TO-14 Conv Rev. 5

7/14/2004

BI-MONTHLY LETTER REPORT ACTIVE VENTING SYSTEM OPERATION AND MAINTENANCE FEBRUARY 2005 SAMPLING EVENT NORTH FRANKLIN STREET SITE SITE #8-49-002 VILLAGE OF WATKINS GLEN, NEW YORK

Prepared For:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF ENVIRONMENTAL REMEDIATION WORK ASSIGNMENT D003825-09.3

FINAL

Prepared By:

URS CORPORATION 77 GOODELL STREET BUFFALO, NEW YORK 14203 Mr. David J. Chiusano, Project Manager New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway 12th Floor Albany, New York 12233-7013

RE: NYSDEC Standby Contract

Active Venting System Operation and Maintenance # D003825-09.3
February 2005 Sampling Event
North Franklin Street Site, Site No. 8-49-002
Summary of Operation and Maintenance Activities: Bi-Monthly Letter Report

Dear Mr. Chiusano:

URS Corporation (URS) has completed the fifth of six visits to the above-referenced system to conduct bi-monthly operation and maintenance (O&M). This work was performed in accordance with the New York State Department of Environmental Conservation (NYSDEC) Project Management Work Plan (PMWP)/Budget Estimate (NYSDEC, July 2003).

The O&M consisted of performing system checks to ensure that the system is operating properly and to collect representative samples of the indoor air and the system's soil gas exhaust. The O&M activities were conducted by URS personnel on February 15, 2005. Documentation of the O&M activities is provided in the Daily Construction Report, included in Attachment 1.

Inspection

URS's inspection of the system revealed that it was working properly, expulsing soil gas at a rate of 910 feet per minute. The velocity of the exhaust was measured by inserting the probe of an air velocity meter (TSI Velocicheck Model 8340) into a sampling port located on the side of the exhaust stack. The site's landlord was not present during this O&M event. It should be noted that the site building has not been occupied since before the June 2004 O&M event. However, during this O&M event, a new tenant (Past & Presents) was preparing to take up residence. The presence of paints, cleaners and solvents were noted in the back room of the site building (indoor air sampling location). Inspection details are also included in Attachment 1. A photo log is included in Attachment 2.

Bi-Monthly Air Sampling

As part of the O&M, URS collected two (2) air samples from the following locations:

- One (1) 4-hour indoor air sample was collected in the back room of the site building (INDOOR-0205), adjacent to the above-mentioned paints, cleaners, and solvents; and,
- One (1) soil gas grab sample was collected from the venting system's exhaust stack (SOILGAS-0205).

These samples were collected using SUMMA canisters, in accordance with the protocols outlined in Section 7.1.1 of the United States Environmental Protection Agency's (USEPA's) "SUMMA Canister Sampling" procedures (SOP#: 1704, 7/27/1995). Sampling logs are provided in Attachment 3. Once collected, these samples and corresponding chain of custody (see Attachment 3) were sent to Severn Trent Laboratories (STL) in Knoxville, Tennessee (a New York State Department of Health [NYSDOH] approved laboratory) for volatile organic compound (VOC) analysis via USEPA Method TO-15. The table below summarizes the analytical data. A copy of the laboratory report is included in Attachment 4.

		Samp	le I.D.	OSHA	NYSDOH
Compound	Units	INDOOR-0205	SOILGAS-0205	Permissible Exposure Level ⁽¹⁾	Indoor Air Criteria
Acetone	ug/m³	20 (estimated)	3.0 (estimated)	2,400,000	None Available
Benzene	ug/m³	1.5	Not Detected	31,946.83	None Available
Chloroform	ug/m³	Not Detected	1.2 (estimated)	240,000	None Available
Chloromethane	ug/m³	1.2 (estimated)	Not Detected	206,503.07	None Available
cis-1,2- Dichloroethene	ug/m³ Not Detected		5.9	Not Available	None Available
Ethylbenzene	ug/m³	15	Not Detected	435,000	None Available
Methylene Chloride	ug/m ³ 0.70 (estimated)		0.60 (estimated)	86,850.72	None Available
Styrene	ug/m³	0.84 (estimated)	Not Detected	425,930.47	None Available
Tetrachloroethene	ug/m³	1.7 (estimated)	130	678,323.11	100 ⁽²⁾
Toluene	Toluene ug/m³ 8.2		0.79 (estimated)	753,619.63	None Available
Trichloroethene ug/m³ Not Detected		6.1	537,423.31	5 ⁽³⁾	
o-Xylene	ug/m³	19	Not Detected	435,000	None Available
m&p-Xylene	ug/m³	55	1.4	435,000	None Available
2-Butanone (MEK)	ug/m³	2.5 (estimated)	Not Detected	590,000	None Available

^{1 -} Sources: 29 CFR 1910.1000 and 29 CFR 1910.1052

^{2 -} Source: Fact Sheet Tetrachloroethene (PERC) Indoor Outdoor Air, NYSDOH (May 2003)

^{3 -} Source: NYSDOH letter from N. Kim to D. Desnoyers, Division of Environmental Remediation, NYSDEC (October 31, 2003)

As shown in the table above, the concentration of VOCs detected in the indoor air sample complies with applicable OSHA criteria, with the estimated concentration of tetrachloroethene detected (1.7 ug/m³) well below the NYSDOH indoor air criteria (100 ug/m³).

It should be noted that the concentration of xylenes and toluene detected in the indoor air sample have increased since the December O&M event. These increases are most likely the result of the above-mentioned paints and solvents staged adjacent to the indoor air sampling location. The remainder of the compounds detected had concentrations at or near their corresponding reporting limits.

Should you have any questions or comments, please do not hesitate to contact me at 716-856-5636.

Sincerely,

URS Corporation

Charles E. Dusel, Jr. Sr. Project Manager

Attachments

CED/kjm

cc:

Kevin J. McGovern, P.G., CPG -URS

ATTACHMENT 1 DAILY CONSTRUCTION REPORT

CORPORATION, INC

Sliches

77 Goodell S	Street DATE	2/15/05	······							
	v York 14203			DAY	S M	(T)	W TH	F	S	
(716) 856-56	36					\cup				
	CONSTRUCT	ION REF	PORT	WEATHER	Bright Sun	u J	Overcast	Rain	Snow	
PROJECT:	N. FANILIN			TEMP	To 32	32-50	50-70	70-85	85 and up	
CONTRACT No				WIND	Still	Moder	High	L	Report No.	
CONTRACTOR	11173218.610	TC								
URS PROJECT	MANAGER: CHUCK	usce		HUMIDITY	Dry	Moder		Hum	nid	
AVERAGE FIEL	D FORCE									
N	lame of Contractor	Non-manual	Manual			Ri	emarks			
VISITORS				1						
Time	Representing	Repres	enting	Remarks						
EQUIPMENT AT	THE SITE	SI WESSICH	We 8341	2. HAND	Ton					
				7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7					
CONCERNICATIO	ALL A GENERALIES									
CONSTRUCTIO		AUG UNT	M MISCAL	(11 0.00-)	Tours	30 Z	Course		Acia Cos	
47,40	Z N Fagniken			or Storen	/ Journ	,,,,	SE (25)//	14.	AKLAS OF	
C):45			N Francis			_	raches	<u> بر ۱۰</u>	1. Franklin	
	Now Towards		V. FRAIL	CNNS		A6.64		en ine	MINT -	
	SUC SYSTE		12- (9)	2 4/4.N)	عاد بموجاد ز	- /3	CALL		 	
10:15			S ExHAUN	7						
A	ME W/ Main				- 100	1 > 4 7				
13.03	FINISH MW	MAINERAN		TO SKAL	MWN	22. 20	Su. w	D.R.	resource	
13:50-		SAMPINE		CLEIDING			7 216.00	, , , , , , , , , , , , , , , , , , , 		
14195-	KTM OFF-SIE									
<u> </u>	· · · · · · · · · · · · · · · · · · ·									
										
					· · · · · · · · · · · · · · · · · · ·		SHEE	T /	OF 7	
_	•						OTTEC	·	-· <u></u>	

X - designates info on backside of page

BY KENIN J. MCGONGON TITLE GROWERS T REVIEWED BY:____ PROJECT MANAGER

ATTACHMENT 2 PHOTO LOG

PHOTOGRAPHIC LOG

Client Name:

New York State Department of Environmental Conservation

Site Location:

20 N. Franklin St., Watkins Glen, New York

Project No.

11173258.61000

Photo No.

Date: 2-15-05

Direction Photo Taken:

Southeast

Site Building (20 N. Franklin St.), with new tenant (Past & Presents).

Photo No.

. Date:

2 2-15-05

Direction Photo Taken:

Southwest

Description:

Back room of site building (indoor air sampling location). Paints and other assorted solvents designated for remodeling present.

PHOTOGRAPHIC LOG

Client Name:

New York State Department of Environmental Conservation

Site Location:

20 N. Franklin St., Watkins Glen, New York

Project No.

11173258.61000

Photo No.

Date: 2-15-05

Direction Photo Taken:

Southeast

Back room of site building (indoor air sampling location). Paints and other assorted solvents designated for remodeling present.

Photo No.

Date: 2-15-05

Direction Photo Taken:

Northeast

Description:

Back room of site building, with ambient air sample "INDOOR-0205" being collected. Pipe to soil gas venting system in background.

ATTACHMENT 3

CHAIN OF CUSTODY/ SAMPLING DATA SHEET

Y I	CHAIN OF CHETORY	7 17	101						TESTS			E	3	
5			2	-	2	ב	5°/		-		J	5	ß	
PROJECT NO.	0. 8. 53.00 c	ð	S	SITE NAME	F. 41.3/1. 100 S	Ċ,	1-01 201 7		<u>.</u>		LABS72		KNOKUTCLE	
SAMPLERS (PRINT/SIGNATURE)	(PRINT/SIGN/	ATURE)					w1 22				COOLER	, of		
15,000	160	Account 1				-	BOTTLE	LE TYPE	AND PR	AND PRESERVATIVE	PAGE	o		
DELIVERY SERVICE:	ERVICE:	×3 &		792.2 AIRBILL NO.:	5.332.852.0	NO'# OF	my "5 Cappidh				REMARKS		NG	N FEET)
LOCATION	DATE	TIME	COMP/ GRAB	SAMPLE ID	MA		5 73					SAMPLE	BEGINNI	DEPTH (I
2.000	50/5172	05.77	Grap	INDOR DOS		1	×				191 015	٤		
Juzzer	2/15/05	10.45	(JAK)	50,000 5-021	2.05 G.	1 5	ж							
MATRIX CODES	AA - AMBI SE - SEDI SH - HAZ	AA - AMBIENT AIR SE - SEDIMENT SH - HAZARDOUS SOLID WASTE		SL - SLUDGE WP - DRINKING WATER WW - WASTE WATER		WG - GROUND WATER SO - SOIL DC - DRILL CUTTINGS		WL - LEACHATE GS - SOIL GAS WC - DRILLING WATER		WO - OCEAN WATER WS - SURFACE WATER WQ - WATER FIELD OC	LH - HAZARDOUS LIQUID WASTE LF - FLOATING/FREE PRODUCT ON GW TABLE	US LIQUID V	VASTE UCT ON G	W TABLE
SAMPLE TYPE CODES		TB# - TRIP BLANK SD# - MATRIX SPIKE DUPLICATE		RB# - RINSE BLANK FR# - FIELD REPLICATE		DRMAL ENVIRO	N# - NORMAL ENVIRONMENTAL SAMPLE MS# - MATRIX SPIKE		QUENTIAL N	JMBER (FROM 1 TO 9)	(# · SEQUENTIAL NUMBER (FROM 1 TO 9) TO ACCOMMODATE MULTIPLE SAMPLES IN A SINGLE DAY)	LTIPLE SAMP	LES IN A S	SINGLE DAY
RELINQUISHED BY (SIGNATURE)	HED BY (SI	GNATURE)	DATE	TIME	RECEIVED BY	(SIGNATURE)		DATE	TIME	SPECIAL INST	SPECIAL INSTRUCTIONS JEND AMERICA	Mar-	+ 15.00 CG	. 66 76
RELINQUISHED	1	BY (SIGNATURE)	DATE	70.07/	RECEIVED FOR LAB BY (SIGNATURE)	LAB BY (SIGNATURE)	DATE	TIME	ATIV. ANN. MA	ATINIANN Mane Known Per	المارية		
										77 Gween	3	state of	Agam Account	범
Distribution:	Original acc	companies	shipment, o	Distribution: Original accompanies shipment, copy to coordinator field files	or field files					(7,524)22) (7,528,517)	1636	₹.	an long	M.

Summa Canister Sampling Field Data Sheet

Site: NYSDEC - 20 N. Franklin Site, Watkins Glen, NY

Samplers: Kevin J. McGovern

Date: 2/15/05

Sample #	INDOOR-0205	SOILGAS-0205			
Location	Indoors	Gas Exhaust			
Summa Canister ID (Lab ID, if provided)	2967	93104			
Additional Tubing Added	YES - How much	NO/ YES - How much 2'14-20 hu:	NO/ YES - How much	NO/ YES - How much	NO/ YES - How much
Purge Time (Start)	NO	09.50			
Purge Time (Stop)	1	\$ 10.13			
Total Purge Time (min) [recommended time is 20 min for 1L canister]		20 M/N			
Pressure Gauge - before sampling	1	NA			
Sample Time (Start)	0950	19/13			
Sample Time (Stop)	13.50	10:15			
Total Sample Time (min)	240	2			
Pressure Gauge - after sampling	N/M	MA			
Canister Pressure Went To Ambient Pressure?	YES (NO)	YES / NO	YES / NO	YES / NO	YES / NO
General Comments:	& From 1	Juan No A	n AFTEN	4-Hours	

ATTACHMENT 4 LABORATORY REPORT

Client Sample ID: INDOOR-0205

GC/MS Volatiles

Lot-Sample # H5B160106 - 001

Work Order # G4HGE1AC

Matrix....:

AIR

Date Sampled...: Prep Date....:

2/15/05

ND

ND

Date Received ..: 2/16/05

Analysis Date... 2/18/05

Prep Batch #....: Dilution Factor.:

1,2-Dichloropropane

cis-1,3-Dichloropropene

2/18/05 5053200

1.85

Method...... TO-14

RESULTS REPORTING REPORTING **PARAMETER** RESULTS (ug/m3) (ppb(y/y))LIMIT (ppb(v/v)) LIMIT (ug/m3) trans-1,3-Dichloropropene ND 0.37 ND 1.7 20 Acetone 8.3 9.2 J 22 Ethylbenzene 3.4 0.37 15 1.6 2-Hexanone ND 0.92 ND 3.8 Methylene chloride 0.20 0.92 0.70 J 3.2 0.37 1.2 Benzene **B.46** 1.5 Styrene 0.37 0.84 0.20 1_6 1,1,2,2-Tetrachloroethane ND 0.37 ND 2.5 Tetrachloroethene 0.25 2.5 0.37 1.7 Toluene 2.2 0.37 8,2 14 ND 2.0 1,1,1-Trichloroethanc ND 0.37 2.0 1,1,2-Trichloroethane ND 0.37 ND Trichloroethene ND 0.37 ND 2.0 ND 0.37 ND 0.95 Vinyl chloride 0.37 19 1.6 43 o-Xylene m-Xylene & p-Xylcne 13 0.37 55 1.6 2.5 ND 0.37 ND Bromodichloromethane 2.7 0.92 2.5 J 2-Butanone (MEK) 0.83 0.92 ND 3.8 4-Methyl-2-pentanone (MIBK) ND ND 3.8 ND 0.37 Bromoform ND 1.4 Bromomethane ND 0.37 Carbon disulfide ND 0.37 ND 1.2 Carbon tetrachloride ND 0.37 ND 2.3 Chlorobenzene ND 0.37 ND 1.7 Dibromochloromethane ND 0.37 ND 3.2 0.98 Chloroethane ND 0.37 ND Chlorofonn ND 0.37 ND 1.8 Chloromethane 0.56 0.92 1.2 J 1.9 1.1-Dichloroethane ND 0.37 ND 1.5 1.2-Dichloroethanc ND 0.37 ND 1.5 1.1-Dichloroethene ND 0.37 ND 1.5 cis-1,2-Dichloroethene ND 0.37 ND 1.5 trans-1,2-Dichloroethene ND 0.37 ND 1.5

0.37

0.37

ND

ND

1.7

1.7

Client Sample ID: INDOOR-0205

GC/MS Volatiles

Lot-Sample # H5B160106 - 001	Work Order # G4HGE1AC	Matrix: AIR
SURROGATE	PERCENT RECOVERY	LABORATORY CONTROL LIMITS (%)
1,2-Dichloroethane-d4	109	70 - 130
Toluene-d8	104	70 - 130
4-Bromofluorobenzene	117	70 - 130

Qualifiers

w 🦠 🥏

J Estimated result. Result is less than RL.

The 'Reporting Limit' in ug/m3 is calculated using the following equation: (Reporting Limit(before rounding) * Dilution Factor) * (Molecular Weight/24.45)

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

Client Sample ID: SOILGAS-0205

GC/MS Volatiles

Lot-Sample # H5B160106 - 002

Work Order # G4HGF1AC

Matrix....: AIR

Date Sampled...: Prep Date.....

·* ** **

2/15/05

Date Received ..: 2/16/05

Prep Batch #....: Dilution Factor.:

2/18/05

Analysis Date... 2/18/05

5053200

1.35

Method.....: TO-14

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESUL	TS (ug/m3)	REPORTING LIMIT (ug/m3)
trans-1,3-Dichloropropene	ND	0.27	ND		1.2
Acetone	1.3	6.8	3.0	J	16
Ethylbenzene	ND	0.27	ND		1.2
2-Hexanone	ND	0.68	ND		2.8
Methylene chloride	0,17	0.68	0.60	J	2.3
Benzene	ND	0.27	ND		0.86
Styrene	ND	0.27	ND		1.2
1,1,2,2-Tetrachloroethane	ND	0.27	ND		1.9
Tetrachloroethene	20	0.27	130		1.8
Toluone	0.21	0.27	0.79	J	1.0
l, l, l-Trichloroethane	ND	0.27	ND		1.5
1,1,2-Trichloroethane	ND	0.27	ND		1.5
Trichloroethene	1.1	0.27	6.1		1.5
Vinyl chloride	ND	0.27	ND		0.69
o-Xyl e ne	ND	0.27	ND		1.2
m-Xylene & p-Xylene	0.31	0.27	1.4		1.2
Bromodichloromethane	ND	0.27	ND		1.8
2-Butanone (MEK)	ND	0.68	ND		2.0
4-Methyl-2-pentanone (MIBK)	ND	0.68	ND		2.8
Bromoform	ND	0.27	ND		2.8
Bromomethane	ND	0.27	ND		1.0
Carbon disulfide	ND	0,27	ND		0.84
Carbon tetrachloride	ND	0.27	ND		1.7
Chlorobenzene	ND	0.27	ND		1.2
Dibromochloromethane	ND	0.27	ND		2.3
Chlorocthane	ND	0.27	ND		0.71
Chloroform	0.24	0.27	1.2	J	1.3
Chloromethane	ND	0.68	ND		1.4
l, l-Dichloroethane	ND	0.27	ND		1.1
1,2-Dichloroethane	ND	0.27	ND		1.1
1,1-Dichloroethene	ND	0.27	ND		1.1
cis-1,2-Dichloroethene	1.5	0.27	5.9		1.1
rans-1,2-Dichloroethene	ND	0.27	ND		1.1
1,2-Dichloropropane	ND	0.27	ND		1.2
cis-1,3-Dichloropropene	ND	0.27	ND		1. 2

Client Sample ID: SOILGAS-0205

GC/MS Volatiles

Lot-Sample # H5B160106 - 002	Work Order # G4HGF1AC	Matrix AIR
SURROGATE	PERCENT RECOVERY	Laboratory Control Limits (%)
1,2-Dichloroethane-d4 Toluene-d8	112 101	70 - 130
4-Bromofluorobenzene	112	70 - 130 70 - 130

Qualifiers

in the series

J Estimated result. Result is less than RL.

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding) (Molecular Weight/24.45)

The 'Reporting Limit' in ug/m3 is calculated using the following equation: (Reporting Limit(before rounding) * Dilution Factor) * (Molecular Weight/24,45)