

The Dow Chemical Company
P.O. Box 8361
South Charleston, WV 25303-8361
USA

June 5, 2018

Ms. Gail Dieter
New York State Department of Environmental Conservation
Division of Environmental Remediation
Bureau E, Section B
625 Broadway, 12th Floor

Subject:

2016 and 2017 Groundwater Monitoring Results and MNA Performance Evaluation

Report Former Hampshire Chemical Corp. Facility Waterloo, New York

Site No. 850001A

Dear Ms. Dieter:

Hampshire Chemical Corp. (HCC) is pleased to submit one hard copy and one electronic copy of the 2016 and 2017 Groundwater Monitoring Results and MNA Performance Evaluation Report Former Hampshire Chemical Corp. Facility Waterloo, New York Site No. 850001A.

The Resource Conservation and Recovery Act (RCRA) facility investigation (RFI) and corrective measures activities were conducted pursuant to a Second Amended Order on Consent executed between Hampshire Chemical Corp. (HCC) and the NYSDEC under Index Number 8-20000218-3281, August 12, 2011.

Please contact me at 304-747-7788 or Brian Carling at 610-384-0747 should you have any questions or require any additional information.

Sincerely,

Jerome E. Cibrik, P.G.

E. C=

Remediation Leader

Copies:

Mr. Matthew Gillette, NYSDEC Region 8 (CD)

Mr. Scott Foti, NYSDEC Region 8 (CD) Mr. Mark Sergott – NYSDOH (CD)

Mr. Steve Brusso, Evans Chemetics (Hard copy and CD)

CH2M Project File (Hard copy and CD)

2016 and 2017 Groundwater Monitoring Results and MNA Performance Evaluation Report

Former Hampshire Chemical Corp. Facility Waterloo, New York
Site No. 850001A

Prepared for

Hampshire Chemical Corp.

June 2018

CH2M HILL Engineers, Inc. 430 E. Genesee Street, Suite 203 Syracuse, New York 13202

Contents

Section	on		Page
Acro	nyms an	nd Abbreviations	vii
1	Intro	duction	1-1
	1.1	Site Setting and Background	1-1
	1.2	Site Activities Performed	
	1.3	Report Organization	1-2
2	Grou	ındwater Monitoring Activities	2-1
	2.1	Groundwater Flow Evaluation	2-1
	2.2	Groundwater Sampling	2-1
	2.3	Waste Management	2-2
	2.4	Data Quality Review	2-3
3	Grou	ındwater Sampling Results	3-1
	3.1	Groundwater Flow Evaluation	3-1
	3.2	Groundwater Sampling Results	3-1
		3.2.1 Groundwater Results – SWMU 1	3-2
		3.2.2 Groundwater Results – AOC B	3-2
		3.2.3 Groundwater Results – AOC D	3-3
		3.2.4 Groundwater Results – Supplemental Monitoring Wells	
	3.3	Quality Assurance/Quality Control Samples	
	3.4	Data Quality Review Summary	3-3
4	Moni	itored Natural Attenuation at the Site	4-1
	4.1	AOC B MNA Sampling Summary	4-1
	4.2	AOC D MNA Sampling Summary	4-2
5	Moni	itored Natural Attenuation Results for Years Two and Three	5-1
	5.1	AOC B Monitoring Results	5-1
		5.1.1 AOC B Hydraulic Monitoring Results	5-1
		5.1.2 AOC B Groundwater Analytical Results	
	5.2	AOC D MNA Evaluation	5-4
		5.2.1 AOC D Hydraulic Monitoring Results	
		5.2.2 AOC D Groundwater Results	5-4
6	Conc	lusions	6-1
	6.1	AOC B	6-1
	6.2	AOC D	6-1
7	Refer	rences	7-1
Appe	ndixes		
Α	Analy	ytical Data Packages and EQuIS Reports (on CD)	
В		indwater Sampling Field Data Sheets	
С		ratory NYSDOH ELAP Certifications (on CD)	
D		Quality Evaluation	

Section Page

Tables

2-1	Summary	of G	Groundwater	Samples	Collected

- 3-1 Groundwater Elevation Measurements
- 3-2 LTMWP Groundwater Sampling Locations, Sampling Frequency, and Corresponding Analytical Results Tables
- 3-3a Groundwater Sampling Results for SWMU 1 Volatile Organic Compounds, December 2016
- 3-3b Groundwater Sampling Results for SWMU 1 Semivolatile Organic Compounds, December 2016
- 3-3c Groundwater Sampling Results for SWMU 1 Metals, December 2016
- 3-4a Groundwater Sampling Results for AOC B Volatile Organic Compounds, December 2016
- 3-4b Groundwater Sampling Results for AOC B Metals, December 2016
- 3-4c Groundwater Sampling Results for AOC B General Chemistry, December 2016
- 3-5a Groundwater Sampling Results for AOC D Metals, December 2016
- 3-5b Groundwater Sampling Results for AOC D General Chemistry, December 2016
- 3-6a Groundwater Sampling Results for Supplemental Wells Volatile Organic Compounds, December 2016
- 3-6b Groundwater Sampling Results for Supplemental Wells Semivolatile Organic Compounds, December 2016
- 3-6c Groundwater Sampling Results for Supplemental Wells Metals, December 2016
- 3-7a Groundwater Sampling Results for SWMU 1 Volatile Organic Compounds, August 2017
- 3-7b Groundwater Sampling Results for SWMU 1 Semivolatile Organic Compounds, August 2017
- 3-7c Groundwater Sampling Results for SWMU 1 Metals, August 2017
- 3-8a Groundwater Sampling Results for AOC B Volatile Organic Compounds, August 2017
- 3-8b Groundwater Sampling Results for AOC B Metals, August 2017
- 3-8c Groundwater Sampling Results for AOC B General Chemistry, August 2017
- 3-9a Groundwater Sampling Results for AOC D Metals, August 2017
- 3-9b Groundwater Sampling Results for AOC D General Chemistry, August 2017
- 3-10a Groundwater Sampling Results for Supplemental Wells Volatile Organic Compounds, August 2017
- 3-10b Groundwater Sampling Results for Supplemental Wells Semivolatile Organic Compounds, August 2017
- 3-10c Groundwater Sampling Results for Supplemental Wells Metals, August 2017
- 3-11 Summary of QA/QC Water Sample Results
- 5-1 Criteria and Threshold Concentrations for Identifying Redox Processes in Groundwater
- 5-2 Summary of Groundwater Quality Parameters
- 5-3 Summary of Redox Results at AOC B for 2016 and 2017
- 5-4 Summary of Redox Results at AOC D for 2016 and 2017

Figures

- 1-1 Facility Location Map
- 1-2 Site Layout Map
- 3-1 Groundwater Elevation Contour Map, December 2016
- 3-2 Groundwater Elevation Contour Map, August 2017
- 3-3 Groundwater Analytical Exceedances at SWMU 1
- 3-4 Groundwater Analytical Exceedances at AOC B
- 3-5 Groundwater Analytical Exceedances at AOC D
- 3-6 Groundwater Analytical Exceedances at Supplemental Wells
- 5-1 AOCs B and D Groundwater Elevation Contour Map, December 2016

IV PR0301181349SYR

Section Page

5-2	AOCs B and D Groundwater Elevation Contour Map, August 2017
5-3	MIBK Concentrations Along Transect Parallel to Canal: November 2014 to August 2017
5-4	Time Series Graph Showing MIBK Concentrations at MW-02
5-5	Chromium Concentrations Along Transect Parallel to Canal: November 2014 to August 2017
5-6	Time Series Graph Showing Chromium Concentrations at MW-02
5-7	Major Ions in Groundwater at AOC B for December 2016 and August 2017 Sampling Events
5-8	Eh - pH Diagram for Chromium - Iron - Sulfide - Oxygen System at AOC B
5-9	Arsenic Concentrations with Time at MW-11S and MW-21, AOC D
5-10	Arsenic Concentrations Along Transect Parallel to Canal
5-11	pH Along Transect Parallel to Canal
5-12	Major Ions at AOC D from December 2016 and August 2017 Sampling Events
5-13	Eh - pH Diagram of Arsenic - Iron - Sulfide - Oxygen System at AOC D

PR0301181349SYR V

Acronyms and Abbreviations

μg/L micrograms per liter

AOC area of concern
As III trivalent arsenite

As V pentavalent arsenate

AWQS Ambient Water Quality Standard

bgs below ground surface canal Cayuga-Seneca Canal

CH2M HILL Engineers, Inc.

COC constituent of concern
Cr(OH)₃ chromium(III) hydroxide

Cr III trivalent chromium
Cr VI hexavalent chromium

DER Division of Environmental Remediation

DO dissolved oxygen
Eh redox potential

ELAP Environmental Laboratory Accreditation Program

EPA U.S. Environmental Protection Agency

ft/day feet per day ft/ft feet per foot

GWMP Groundwater Monitoring Work Plan

HAO hydrous aluminum oxideHCC Hampshire Chemical Corp.

HFO hydrous ferric oxide

ID identification

IDW investigation-derived waste

LTMWP Long-term Monitoring Work Plan

MDL method detection limit

mg/L milligrams per liter

MIBK methyl isobutyl ketone (4-methyl-2-pentanone)

Microbac Laboratories, Inc.

MNA monitored natural attenuation

MS matrix spike

MSD matrix spike duplicate

PR0301181349SYR VII

MW monitoring well

NaHS sodium hydrosulfide NaOH sodium hydroxide

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health

OBWZ overburden water-bearing zone
ORP oxidation-reduction potential

OSWER Office of Solid Waste Emergency Response

PAH polycyclic aromatic hydrocarbon

PZ piezometer

QA quality assurance

QAPP Quality Assurance Project Plan

QC quality control

RCRA Resource Conservation and Recovery Act

RFI Resource Conservation and Recovery Act facility investigation

site former Hampshire Chemical Corp. facility (now known as the Evans Chemetics

Facility) in Waterloo, New York

SU standard unit

SVOC semivolatile organic compound
SWMU solid waste management unit

TAL target analyte list

TOGS Class GA Technical Operation Guidance Series New York State Ambient Water Quality

Standards and Guidance Values - Class GA

USDOT U.S. Department of Transportation

USGS U.S. Geological Survey

VOC volatile organic compound

VIII PR0301181349SYR

Introduction

This report presents the results of the sitewide groundwater monitoring activities conducted during December 2016 and August 2017 (reporting period) at the former Hampshire Chemical Corp. (HCC) facility in Waterloo, New York (site). Additionally, this report summarizes the findings from the second and third years (Years Two and Three) of a monitored natural attenuation (MNA) study for Areas of Concern (AOCs) B and D at the site. The report discusses how natural hydrologic, biological, mineralogical, and geochemical conditions prevalent in the shallow subsurface reduces concentrations for constituents of concern (COCs), and attenuating COC migration in groundwater.

The site is regulated under Title 6 of the New York Code of Rules and Regulations Part 373 and the Resource Conservation and Recovery Act (RCRA) with the New York State Department of Environmental Conservation (NYSDEC) as the lead agency. RCRA facility investigations (RFIs) have been performed at the site since 1993 to evaluate the nature and extent of releases to the environment. Pursuant to the Administrative Order on Consent executed between HCC and NYSDEC (NYSDEC, 2011), sitewide groundwater monitoring was proposed in the Groundwater Monitoring Work Plan (GWMP; CH2M HILL Engineers, Inc. [CH2M], 2008a), to support evaluating the most appropriate long-term strategy for remediating groundwater. NYSDEC approved the GWMP for the monitoring period running from 2009 through 2013. HCC subsequently submitted a revised Site Groundwater Long-term Monitoring Work Plan (LTMWP; CH2M, 2013a, 2013b, 2013d, 2014a) to continue groundwater monitoring, which was approved in early 2016 (NYSDEC, 2016). NYSDEC selected MNA as an appropriate interim corrective measure for AOCs B and D in their correspondence dated April 21, 2015 and June 29, 2015 (NYSDEC, 2015a, 2015b).

Development of this report and applying MNA at the site follow the procedures outlined in the U.S. Environmental Protection Agency's (EPA) Office of Solid Waste Emergency Response (OSWER) Directive 9200.4-17P and several supporting reports (EPA 2006, 2007). Field data were collected following NYSDEC Division of Environmental Remediation (DER)-10/Technical Guidance for Site Investigation and Remediation (NYSDEC, 2010).

1.1 Site Setting and Background

The site is located at 228 East Main Street in the village of Waterloo, Seneca County, New York. Figure 1-1 is a map of the site location (all figures and tables are located at the end of this report). The facility is bordered to the north by East Main Street, to the east by Gorham Street, to the west by East Water Street, and to the south by the Cayuga-Seneca Canal (canal). The site is located within the watershed of the Seneca River. The site comprises several interconnected buildings that house offices, a quality control (QC) laboratory, a chemical treatment plant, and manufacturing, maintenance, and shipping/receiving operations. The site also includes outside drum storage areas and several tank farms. The RFI Report (CH2M, 2006) and RFI Report Addendum (CH2M, 2008b) present additional information regarding site setting, history, and manufacturing processes. The site plan is presented on Figure 1-2.

The site lies on an alluvial plain, which consists of silts and clays with lenses of sand and gravel overlying glacial till comprised of hard to very hard silt and clay. Historical fill material overlies the native alluvium and till deposits. Bedrock occurs at depths ranging from approximately 15 to 35 feet below ground surface (bgs). The bedrock surface generally increases with depth from west to east. Overburden groundwater flow follows the topography of the land from north to south toward the canal.

Thirty-one groundwater monitoring wells are included as part of the LTMWP implementation. Groundwater elevation measurements and samples were previously collected from the Building 4 Pit Sump, which was approved for decommissioning by NYSDEC and then abandoned on December 15-16,

PR0301181349SYR 1-1

2014, as described in a technical memorandum submitted to NYSDEC on January 25, 2015 (CH2M, 2015a). Groundwater elevation measurements from two stilling wells (SG-01 and SG-02) were used prior to 2012 to record water elevations in the Cayuga-Seneca Canal Raceway and Canal, respectively. SG-01 was destroyed in fall 2011 during facility activities, and SG-02 was removed for AOC A remedial activities. Sixteen groundwater monitoring wells were decommissioned as part of the LTMWP during November 2015 and September 2016 (CH2M, 2017b).

1.2 Site Activities Performed

The following activities were completed during this reporting period:

- Collected depth-to-water measurements from 27 site groundwater monitoring wells on December 12, 2016.
- Conducted groundwater sampling of 28 site groundwater monitoring wells for laboratory analysis from December 6 to 13, 2016.
- Construction of an engineered landfill cap at Solid Waste Management Unit (SWMU) 1, completed in March 2017. The results of these activities have been reported separately (CH2M, 2017a).
- Performed subslab soil vapor port installation and soil gas sampling. The results of these activities have been reported separately (CH2M, 2017b).
- Collected depth—to-water measurements from 26 site groundwater monitoring wells on August 21, 2017.
- Conducted groundwater sampling of 21 site groundwater monitoring wells for laboratory analysis from August 22 to 25, 2017.

1.3 Report Organization

This groundwater monitoring and MNA report contains the following sections:

- Section 1, Introduction
- Section 2, Groundwater Monitoring Activities
- Section 3, Groundwater Sampling Results
- Section 4, Monitored Natural Attenuation at the Site
- Section 5, Monitored Natural Attenuation Results for Years Two and Three
- Section 6, Conclusions
- Section 7, References

Supporting tables, figures, and appendixes are included at the end of this report.

Groundwater Monitoring Activities

This section provides summaries of the groundwater elevation measurements, sampling activities, and activities conducted as part of the data quality review.

2.1 Groundwater Flow Evaluation

On December 12, 2016, and August 21, 2017, depth-to-water measurements were collected from safely accessible site groundwater monitoring wells to evaluate groundwater flow direction and hydraulic gradients near the site. Measurements were collected in accordance with the LTMWP (CH2M, 2014a) using an electronic water level meter with 0.01-foot graduations, which was decontaminated between wells. Depth-to-water measurements were not collected at monitoring wells with high concentrations of hydrogen sulfide and/or methane in and near Building 4 (December 2016: MW-03, MW-33, MW-34, and PZ-01; and August 2017: MW-03, MW-33, MW-34, PZ-01, and PZ-03). The depth-to-water measurements and calculated groundwater elevations are presented and discussed in Section 3.1. A groundwater flow evaluation specific to AOCs B and D with respect to MNA is presented in Section 5.1.

2.2 Groundwater Sampling

During December 2016 and August 2017, groundwater samples were collected from 27 and 21 monitoring wells, respectively, associated with the site in accordance with the U.S. Environmental Protection Agency (EPA) Region 2 *Groundwater Sampling Procedure—Low Stress (Low Flow) Purging and Sampling* (sampling procedures) (EPA, 1998). All sampling activities were conducted in accordance with the project's Quality Assurance Project Plan (QAPP; CH2M, 2009a). The groundwater sampling locations for both monitoring events are shown on Figure 1-2. A detailed summary of information for each groundwater sample is presented in Table 2-1. The analytical results for the groundwater samples are included in Appendix A and discussed in Section 3.2.

A variable-speed peristaltic pump equipped with dedicated Teflon-lined polyethylene tubing was used to purge groundwater from the monitoring wells. Water quality parameters were measured during purging using a Horiba U-52 water quality meter with an inline flow-through cell; the water quality parameters recorded were pH (as standard units), temperature (as degrees Celsius), dissolved oxygen (DO; as milligrams per liter [mg/L]), oxidation-reduction potential (ORP; as millivolts), and specific conductance (as milliSiemens per centimeter). Turbidity measurements were collected in the field using a standalone LaMotte turbidity meter. To avoid cross-contamination, new tubing was used at each sampling location and disposed of after a single use. Field measurements were recorded on groundwater sampling forms, which are included in Appendix B.

In general, groundwater was removed from each well until the water quality parameters stabilized to within criteria established in the sampling procedures. There was insufficient recharge at MW-18 (December 2016 and August 2017), MW-19 (August 2017), and PZ-06 (December 2016 and August 2017) to allow water quality parameters to stabilize. In these cases, the wells were purged dry and groundwater samples were collected within 24 hours. Groundwater samples were containerized in separate clean, laboratory-prepared containers; placed in ice-filled insulated coolers; and transported to a laboratory for analysis under chain-of-custody. Additional sample volume was collected at each monitoring well to measure ferrous iron concentrations using a Hach 8290 field measurement kit and Accuvac ferrous iron reagent ampules. The groundwater samples were analyzed for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), polycyclic aromatic hydrocarbons (PAHs), metals, and/or parameters for MNA (Table 2-1).

PR0301181349SYR 2-1

Groundwater samples were not collected at monitoring wells with high concentrations of hydrogen sulfide and/or methane in and near Building 4 (December 2016: MW-03, MW-33, MW-34, and PZ-01; and August 2017: MW-03, MW-33, MW-34, PZ-01, and PZ-03).

Additional groundwater samples were collected and analyzed for quality assurance (QA)/QC purposes. QA/QC samples collected during the reporting period included:

- 4 field duplicates, 3 matrix spike (MS)/matrix spike duplicates (MSDs), 2 field blanks, and 3 trip blanks during the December 2016 sampling event
- 4 field duplicates, 4 matrix spike (MS)/matrix spike duplicates (MSDs), 3 field blanks, and 3 trip blanks during the August 2017 sampling event

The field duplicate and MS/MSD samples were collected from monitoring well sampling locations using methodologies described previously and analyzed for parameters listed in Table 2-1. Field blanks were collected in separate AOCs. Field blanks were collected by pouring laboratory-provided deionized water into laboratory-provided sampling containers at a sampling location in that AOC. Field blanks were submitted to the laboratory for the same parameters sampled at the AOC. A trip blank for VOC analysis was included in the sample cooler that accompanied the empty (pre-sample) and filled (post-sample) VOC bottleware to confirm that the samples had not been exposed to VOCs from environmental conditions during sampling or transit to the laboratory. The trip blank remained unopened until received at the laboratory with the samples.

The groundwater and QA/QC water samples were submitted under chain-of-custody to Microbac Laboratories, Inc. of Marietta, Ohio (Microbac) (New York State Laboratory Identification [ID] No. 10861). Microbac is an approved laboratory under the New York State Environmental Laboratory Accreditation Program (ELAP). A copy of the New York State Department of Health (NYSDOH) ELAP certification for Microbac is included in Appendix C.

Microbac performed the following analyses as specified in the LTMWP and QAPP (CH2M 2014a, 2009a):

- VOCs via EPA SW-846 via Method 8260C
- PAHs via EPA Method SW-8270D SIM
- SVOCs by EPA Method 8270C
- Target analyte list (TAL) metals via EPA Methods SW6010C/SW6020A/SW7470A

Groundwater samples were analyzed for total metals and dissolved metals. Dissolved metals samples were collected after the other sample bottles were filled using a 0.45-micron filter. In addition, samples from AOCs B and D were collected to assess groundwater for potential MNA via the following analyses performed by Microbac:

- Alkalinity via EPA Method E310.2
- Nitrate by EPA Method E353.2
- Total phosphorus via EPA Method E365.4
- Chloride and sulfate via EPA Method E300.0
- Total organic carbon via EPA Method SM5310C
- Orthophosphate via EPA Method SM4500P-E
- Total dissolved solids via EPA Method SM2540C
- Total sulfide via EPA Method SM4500
- Total Kjeldahl nitrogen via EPA Method 351.2

2.3 Waste Management

Investigation-derived waste (IDW) from the 2016 and 2017 field activities was containerized and stored onsite for offsite disposal. Liquid wastes from monitoring well purging and equipment decontamination

were containerized in U.S. Department of Transportation (USDOT)-approved 55-gallon drums on wooden pallets in a secondary containment area. Solid wastes from field activities (e.g., personal protective equipment and sample tubing) were containerized in USDOT-approved 55-gallon drums. The IDW was removed for offsite disposal by Veolia on October 10, 2017.

2.4 Data Quality Review

Microbac performed laboratory analysis of the water samples and provided electronic reports of the results to CH2M. A CH2M chemist reviewed the results and data packages to evaluate the quality and usability of the analytical data. Based on the results of the data quality review, laboratory qualifiers were added to summary tables where appropriate, and the data reported by the laboratory were found to be suitable for its intended purpose. Data quality review technical memoranda are provided in Appendix D and discussed in detail in Section 3.4.

PR0301181349SYR 2-3

Groundwater Sampling Results

This section presents the results of the water level monitoring and groundwater sampling field activities described in Section 2.

3.1 Groundwater Flow Evaluation

Table 3-1 summarizes the results of the groundwater elevation monitoring events during the reporting period. Figures 3-1 and 3-2 present the potentiometric surface map (contour map) for overburden groundwater for the December 2016 and August 2017 monitoring events, respectively. As inferred from the contour maps, groundwater flow was generally south toward the canal, which is consistent with historical conditions observed at the site. The horizontal hydraulic gradients calculated for selected well pairs were approximately as follows:

- 0.03 feet per foot (ft/ft) for the MW-10/09R well pair in December 2016
- 0.02 ft/ft for the MW-10/09R well pair in August 2017
- 0.05 ft/ft for the MW-06/18 well pair in December 2016
- 0.05 ft/ft for the MW-06/18 well pair in August 2017

In previous reports, vertical hydraulic gradients were calculated for the MW-05S/05I and MW-11S/11I well pairs. However, MW-05S and MW-11I were abandoned during November 2015.

A groundwater flow evaluation specific to AOCs B and D with respect to MNA is presented in Section 5.1.

3.2 Groundwater Sampling Results

Table 3-2 presents the monitoring wells, sampling frequency, and categories included in the LTMWP (CH2M, 2014a). Tables 3-3 through 3-11 provide VOCs, SVOCs, metals, and MNA parameters results for the reporting period. Analytical reports received from the laboratory are included in Appendix A. Additionally, an electronic copy of the analytical data in the format required for the NYSDEC EQuIS database is included in Appendix A. The analytical data tables for this report are grouped by SWMU, AOC, or site-specific areas, as shown in the table.

The following sections present a summary of the groundwater sampling results for each well grouping onsite. The analytical data obtained during this reporting period are discussed in conjunction with historical results from the following reports:

- RCRA Facility Investigation Report, Former Hampshire Chemical Corp., Waterloo, New York (CH2M, 2006)
- RCRA Facility Investigation Report Addendum, Former Hampshire Chemical Corp., Waterloo, New York (CH2M, 2008b; revised February 2010)
- Groundwater Monitoring Results Report October 2008, April 2009 and October 2009 Sampling Events, Former Hampshire Chemical Corp Facility, Waterloo, New York (CH2M, 2009b)
- Groundwater Monitoring Results Report, April 2010 and November 2010 Monitoring Events. Former Hampshire Chemical Corp. Facility, Waterloo, New York (CH2M, 2011)
- Additional Investigation Results Report, Former Hampshire Chemical Corp. Facility, Waterloo, NY (CH2M, 2012a) based on the Additional Groundwater Investigation Work Plan, Former Hampshire Chemical Corp. Facility, Waterloo, New York (CH2M, 2010)

PR0301181349SYR 3-1

- Groundwater Monitoring Results Report, April 2011 and November 2011 Monitoring Events. Former Hampshire Chemical Corp. Facility, Waterloo, New York (CH2M, 2012b)
- Groundwater Monitoring Results Report, April and October 2012 Monitoring Events, Former Hampshire Chemical Corp. Facility, Waterloo, New York (CH2M, 2013c)
- Groundwater Monitoring Results Report, April and October 2013 Monitoring Events. Former Hampshire Chemical Corp. Facility, Waterloo, New York (CH2M, 2014b)
- Groundwater Monitoring Results, November 2014 Monitoring Event, Former Hampshire Chemical Corp. Facility, Waterloo, New York, Site No. 850001A (CH2M, 2015b)
- Monitored Natural Attenuation Performance Evaluation Report, Year One, Former Hampshire Chemical Corp. Facility, Waterloo, New York, Site No. 850001A (CH2M, 2017b)
- Evaluation of Subslab Hydrogen Sulfide and Methane Concentrations (CH2M, 2017c)

Concentrations of analytes except methyl isobutyl ketone (MIBK) were compared to the Technical Operation Guidance Series New York State Ambient Water Quality Standards and Guidance Values Class GA (TOGS Class GA) Standards (NYSDEC, 1998). There is no TOGS Class GA Standard for MIBK. Per NYSDEC (2005), the NYSDOH guidance value for MIBK is based on the maximum contaminant level for unspecified organic contaminants Part 5 Sanitary Code for Public Water System and is 50 micrograms per liter (μ g/L) (NYSDOH, 2011). Figures 3-3 through 3-6 summarize the groundwater analytical exceedances per SWMU, AOC, and other site groupings.

3.2.1 Groundwater Results – SWMU 1

Five monitoring wells (MW-16I, MW-17, MW-18, MW-26, and TW-01) are associated with SWMU 1. Tables 3-3 and 3-7 summarize the analytical results for groundwater samples collected from SWMU 1 during December 2016 and August 2017, respectively. Figure 3-3 summarizes the constituent concentrations exceeding the TOGS Class GA standards for the reporting period.

The following analytes were detected at concentrations exceeding the TOGS Class GA standards in groundwater samples from SWMU 1 wells during the reporting period:

- Three SVOCs (benzo[a]anthracene, benzo[b]fluoranthene, and chrysene) at MW-18 in December 2016
- Total iron, total magnesium, total manganese, total potassium, total sodium, dissolved iron and/or dissolved manganese at one or more wells

3.2.2 Groundwater Results – AOC B

Five monitoring wells (MW-01, MW-02, MW-03, MW-33, and MW-34) and five piezometers (PZ-01, PZ-03, PZ-04, PZ-06, and PZ-07/PZ-07R) are associated with AOC B. Tables 3-4 and 3-8 summarize the analytical results for groundwater samples collected from AOC B during December 2016 and August 2017, respectively. Figure 3-4 summarizes concentrations of constituents exceeding the TOGS Class GA standards. Section 4.1 evaluates the AOC B groundwater results with respect to MNA performance.

The analytes associated with the following constituent classes were detected at concentrations exceeding the TOGS Class GA standards in groundwater samples from AOC B wells during the reporting period:

- VOCs at PZ-03 (1,2-dichloroethane) and PZ-04 (chloroform) in December 2016
- Total arsenic, total iron, total magnesium, total manganese, total sodium, and/or dissolved iron at one or more wells

 General chemistry parameters (chloride, sulfate, and/or sulfide) at all wells, except PZ-06 in December 2016

3.2.3 Groundwater Results – AOC D

Nine monitoring wells (MW-11S, MW-21, MW-24, MW-29, MW-30, MW-31, MW-35, MW-36, and MW-37) are associated with AOC D. Tables 3-5 and 3-9 summarize the analytical results for groundwater samples collected from AOC D during December 2016 and August 2017, respectively. Figure 3-5 shows constituent concentrations exceeding the TOGS Class GA standards for the reporting period. Section 4.2 evaluates the AOC D groundwater results with respect to MNA performance.

Analytes associated with the following constituent classes were detected at concentrations exceeding the TOGS Class GA standards in groundwater samples from AOC D wells during the reporting period:

- Total arsenic, total iron, total magnesium, total manganese, total sodium, dissolved arsenic, dissolved iron, and/or dissolved manganese at one or more wells
- General chemistry parameters (chloride, sulfate, and/or sulfide) at all wells, except MW-36 in December 2016 and August 2017

3.2.4 Groundwater Results – Supplemental Monitoring Wells

Seven monitoring wells (MW-05I, MW-06, MW-07, MW-09R, MW-19, and MW-20) are located outside the boundaries for site AOCs, and are classified as supplemental wells in the LTMWP. Tables 3-6 and 3-10 summarize the analytical results for groundwater samples collected from the supplemental wells during December 2016 and August 2017. Figure 3-6 summarizes constituent concentrations exceeding the TOGS Class GA standards for the reporting period.

The following analytes were detected at concentrations exceeding the TOGS Class GA standards in groundwater samples from supplemental wells during the reporting period:

- Two VOCs (cis-1,2-dicholorethene and trans-1,2-dicholorethene) at MW-19 in December 2016 and August 2017
- Total iron, total magnesium, total manganese, total sodium, dissolved iron, and/or dissolved manganese at one or more wells, except MW-20 in December 2016 and August 2017

3.3 Quality Assurance/Quality Control Samples

Table 2-1 presents the sample IDs and sample delivery groups for the QA/QC samples. Table 3-11 presents the analytical results of the equipment blanks and trip blanks for the reporting period. Acetone and chloroform were detected above the laboratory detection limits in some trip and field blanks; the results for these analytes were qualified as described in Appendix D.

3.4 Data Quality Review Summary

Appendix D contains a detailed data quality evaluation for groundwater samples collected during the December 2016 and August 2017 sampling events. The following conclusions are presented in the data quality evaluation:

- Precision was generally acceptable with the exception of a few analytes which were qualified as estimated detected results in several samples.
- Accuracy was generally acceptable with a few compounds being qualified as estimated detected and non-detected results. During 2016, bromomethane, chloromethane, and carbon disulfide were rejected for project use in a few samples due to calibration issues.

PR0301181349SYR 3-3

- Representativeness of the data was generally acceptable and verified through the sample's collection, storage, and preservation procedures and the verification of holding-time compliance. During 2016, several samples were received with a pH above criteria for multiple analyses, resulting in the data being qualified as estimated. In 2017, the samples received with a pH above the criteria were adjusted by the laboratory and data were not qualified. In 2017, few SVOC samples were reextracted out of hold time, resulting in the data being qualified as estimated non-detected results.
- Results obtained are comparable to industry standards in that the collection and analytical techniques followed approved, documented procedures.
- The data can be used for decision making, with the exception of the rejected data, taking into consideration the validation flags applied.

Monitored Natural Attenuation at the Site

In this report, MNA refers to the reliance on natural attenuation processes to achieve site-specific remediation objectives within a reasonable timeframe as compared with active remedial methods. Natural attenuation includes a variety of physical, chemical, or biological processes that work without human intervention to reduce the mass, toxicity, mobility, and volume of constituent concentrations in groundwater.

Performance monitoring to evaluate the effectiveness of a remedy and protect human health and the environment forms a critical element of most response actions. For the first year of monitoring, sampling was conducted quarterly at AOCs B and D and involved sampling six monitoring wells during each event. Year One sampling at AOC B extended from November 2014 to November 2015. Similarly, sampling was conducted at AOC D in November 2014, followed by a gap of one year, and then sampling at a quarterly frequency starting in November 2015, extending to September 2016. The Year One results are described in the *Monitored Natural Attenuation Performance Evaluation Report, Year One, Former Hampshire Chemical Corp. Facility, Waterloo, New York, Site No. 850001A* (CH2M, 2017b). Sampling for Years Two and Three at both AOCs was conducted in December 2016 and August 2017. Although the sampling was conducted on a less regular frequency at AOC D than AOC B, going forward, HCC will collect groundwater samples annually at AOCs B and D, at the same time.

For the remainder of the performance period, HCC will sample the monitoring wells according to Table 3-2. In addition to annual sampling, four other monitoring wells at AOC B are scheduled for sampling every 5 years.

The following sections describe monitoring wells, sampling frequency, and analytes specific to AOCs B and D.

4.1 AOC B MNA Sampling Summary

Sampling during Years Two and Three at AOC B was conducted as follows:

- Annual groundwater samples were collected at MW-01, MW-02, PZ-03, PZ-04, PZ-06, and PZ-07R in December 2016.
- Annual samples were not collected at MW-03 and MW-33 in December 2016 due to high concentrations of methane and/or hydrogen sulfide in the monitoring well headspaces (CH2M, 2017c).
- Annual groundwater samples were collected at MW-02, PZ-04, and PZ-06 in August 2017.
- Annual samples were not collected at MW-02, MW-03, MW-33, and PZ-03 in August 2017 due to high concentration of methane and/or hydrogen sulfide in the monitoring well headspaces (CH2M, 2017c).

During each event, samples were analyzed for TAL metals, VOCs, cations, anions, nutrients, and general water quality constituents (Table 2-1). In addition to laboratory analytes, field parameters were measured while purging the monitoring wells, including temperature, pH, DO, specific conductance, ORP, ferrous iron, sulfide, and/or sulfate. Together, the field and laboratory analyses were used to evaluate MNA effectiveness at AOC B.

The main COCs in groundwater at AOC B are MIBK, acetone, and chromium. Elevated concentrations of the three COCs appear in the same monitoring wells, forming groundwater plumes extending from beneath Building 4 to wells adjacent to the canal, which forms the southern edge of the site. Total

PR0301181349SYR 4-1

arsenic was detected at a concertation above the NYSDEC AWQS at PZ-03 in December 2016. However, arsenic is not considered a COC at AOC B because it displays limited distribution, and no continuity between adjoining monitoring wells in comparison to the other COCs.

4.2 AOC D MNA Sampling Summary

Sampling during Years Two and Three at AOC D was conducted as follows:

- In December 2016, groundwater samples were collected at MW-11S, MW-21, MW-23, MW-30, MW-31, MW-35, MW-36, and MW-37.
- Annual groundwater samples were collected at MW-11S, MW-21, MW-30, MW-31, MW-35, and MW-36 in August 2016.

During each event, samples were analyzed for TAL metals, cations, anions, nutrients, and general water quality constituents (Table 1-1). Field parameters also were measured while purging the monitoring wells, including temperature, pH, DO, specific conductance, ORP, ferrous iron, sulfide, and/or sulfate. Samples collected during December 2016 overlap with end of the first year of sampling at AOC D, which extended between November 2015 and September 2016. Together, the field and laboratory analyses were used to evaluate MNA effectiveness at AOC D.

At AOC D, arsenic in groundwater is the only COC. Spills of caustic sodium hydroxide (NaOH) and sodium hydrosulfide (NaHS) in Building 3 have infiltrated to groundwater and increased pH from approximately 6.5 standard units (SU) to 12 SU. The alkaline groundwater pH alters the surface charge on common, metal oxide mineral surfaces like hydrous ferric oxide (HFO) and hydrous aluminum oxide (HAO) from positive to negative. As a result, negatively charged oxyanions, like arsenic, previously adsorbed to these surfaces are repelled, desorbing from the surfaces, and increasing arsenic concentrations in groundwater. Accordingly, laboratory analytes and field chemistry measurements were tailored to evaluate arsenic concentrations with time, constituents that influence its mobility, along with characterizing geochemical conditions beneath AOC D that influence arsenic persistence and migration.

Monitored Natural Attenuation Results for Years Two and Three

This section describes the results of synoptic surveys and groundwater sampling from Years Two and Three of the MNA performance monitoring at AOCs B and D. The sampling events from the Year One studies differed between the AOCs. Quarterly groundwater samples were collected between November 2014 and November 2015 at AOC B. By comparison, at AOC D, a round of samples was collected, in November 2014 followed by a gap spanning a year, with sampling resuming in November 2015 and ending in September 2016. For Years Two and Three, sampling events were conducted at AOCs B and D in December 2016 and August 2017. These data were incorporated into the MNA study and compared to the Year One baseline for synoptic elevations, COC concentrations, and geochemical conditions (CH2M, 2017b). To standardize sampling frequency moving forward, HCC will conduct annual sampling events at roughly the same time at AOCs B and D.

5.1 AOC B Monitoring Results

Data from the annual synoptic surveys and groundwater sampling were evaluated as part of the Years Two and Three of the MNA study. The synoptic surveys were conducted to characterize groundwater flow directions, gradients, and velocities across AOC B in December 2016 and August 2017. The surveys also documented the range in seasonal groundwater elevations in the overburden water-bearing zone (OBWZ) observed at AOC B over the period.

Groundwater sampling data were evaluated to examine COC concentrations (MIBK and chromium), distribution, and temporal trends. As a product of MIBK degradation, acetone concentrations were also assessed. Concentrations with time were assessed at individual monitoring wells and as part of contiguous COC plumes. Analytical data also were examined to characterize geochemical conditions in the OBWZ at AOC B, including major ion chemistry, redox potential (Eh), ionic strength, nutrients, and abundance of trace metals. These factors, individually or in combination, can influence the attenuation of COCs at AOC B.

5.1.1 AOC B Hydraulic Monitoring Results

From December 2016 to August 2017, groundwater flowed toward the canal (Figures 5-1 and 5-2) at gradients ranging from 0.02 to 0.03 ft/ft. During previous water level surveys, the flowable cement mass used in abandoning BLDG4-PIT-SSP has influenced the potentiometric surface by backing groundwater up behind the structure, elevating the gradient downgradient of BLDG4-PIT-SSP and deflecting flowlines around the mass. However, this geometry could not be verified during the study period because several wells in AOC B were not gauged due to the presence of hydrogen sulfide and methane; therefore, limited groundwater elevation data were available for potentiometric contouring. Using the average hydraulic conductivity of 4 feet per day (ft/day) determined from aquifer testing conducted at the former BLDG4-PIT-SSP (CH2M, 2013a), the hydraulic gradients from the synoptic surveys, and a porosity of 0.35 for silty sands (Walton, 1989), groundwater velocities across the area during 2016 and 2017 varied from 0.17 to 0.27 ft/day.

PR0301181349SYR 5-1

5.1.2 AOC B Groundwater Analytical Results

5.1.2.1 MIBK

Data from the Year One study (November 2014 to November 2015) showed measurable declines in MIBK concentrations, particularly in downgradient monitoring wells like MW-02 and PZ-04. The absence of groundwater samples collected from MW-03, MW-33, or MW-34 during the Years Two and Three studies made evaluating temporal trends at these locations, and the spatial dimensions and geometry of the MIBK plume difficult. However, samples collected at MW-02, PZ-04, PZ-06 and PZ-07 (December 2016, only) facilitated characterizing the downgradient edge of the MIBK plume along the canal.

MIBK at monitoring wells situated along a transect extending from PZ-07 to PZ-04 displayed a continued, progressive decline in concentrations (Figure 5-3). Although a sample was not collected at PZ-07 in August 2017, MIBK concentrations at the remaining three wells fell below laboratory method detection limits (MDLs) for the first time since initiating the MNA study. These Years Two and Three data extend the trend observed during the Year One study where MIBK concentrations declined, while the leading edge of the plume appeared to recede upgradient, away from the canal. A time series graph at MW-02 (Figure 5-4), shows MIBK concentrations declining from 500 μ g/L to less than MDL over the MNA study. Acetone, a degradation product of MIBK, exceeded MIBK concentrations in MW-02 in December 2016, but fell below MDLs in August 2017.

5.1.2.2 Chromium

The absence of groundwater samples from MW-03, MW-33, and MW-34 negated assessing the concentrations near the source area, or dimensions of the chromium plume over Years Two and Three. Chromium in monitoring wells located along the Canal was detected in MW-02, PZ-04, PZ-06, and PZ-07 (December 2016), but concentrations stayed below 10 μ g/L (Figure 5-5). Except for chromium at PZ-06, concentrations have progressively declined since November 2014. Chromium concentrations at MW-02 have declined to less than 200 μ g/L since June 2015 (Figure 5-6).

5.1.2.3 Geochemical Conditions

Geochemical conditions remained stable over Years Two and Three, resembling conditions described during Year One and sampling events preceding the MNA study. Groundwater displayed a circumneutral to mildly alkaline pH ranging from 6.91 SU to 8.01 SU (PZ-06), respectively. Similar to the ionic chemistry from Year One, groundwater samples displayed a sodium to mixed cation—mixed anion bicarbonate chemistry. The anionic chemistry varied more than cations. PZ-03, MW-01 and PZ-07R exhibited a chloride anionic chemistry, while MW-02 displayed a sulfate chemistry (Figure 5-7).

Redox conditions influence the ionic character of chromium in groundwater along with other factors that affect its migration (complexation, adsorption, and precipitation). Hexavalent chromium (Cr VI), the more toxic of the two chromium ions that occur in natural waters, exhibits greater stability under oxic conditions (Palmer et al., 1994), transitioning to trivalent chromium (Cr III) under reducing conditions. Cr III precipitates as a relatively insoluble hydroxide (Cr[OH]₃). Accordingly, only Cr VI occurs as a dissolved ion or oxyanion in natural waters. Speciation analysis of a sample from MW-03 in 2012 showed that chromium concentrations were entirely composed of Cr VI.

PHREEPLOT (Kinniburgh and Cooper, 2011), a computer program combining the thermodynamic equilibrium model PHREEQC (Parkhurst, 1996) with a powerful plotting algorithm, was employed to characterize the chromium-oxygen-sulfide-iron system (Figure 5-8). The chemistry (pH, cations, anions, iron, silica, nutrients) from MW-02 was used as input to PHREEPLOT. In addition to considering the phases of chromium, sulfide, and iron in this system, PHREEPLOT characterizes the stability of HFO surfaces, a common adsorptive surface in shallow groundwater systems. HFO surfaces display a considerable surface charge, and depending on pH can adsorb large amounts (Dzomback and Morel,

1990) of cationic (cadmium, manganese, cobalt, nickel, lead, and zinc) and anionic metals (chromium, arsenic, uranium, molybdenum, and selenium).

The pH and ORP measurements collected during the MNA study were plotted on phase diagrams of the chromium and iron system (Figure 5-8). ORP was converted to the standard hydrogen electrode (Eh) by adding 0.2 volts to the field measurement (Hem, 1986). On the chromium diagram, points plotted in the $Cr(OH_2)^{1+}$ and $Cr(OH)_3$ fields, suggesting equilibrium with trivalent chromium. None of the points plotted in the $Cr(OH_2)^{1-}$ or CrO_4^{1-} or CrO_4^{1-}). HFO surfaces occurred in equilibrium with only the small CrO_4^{1-} field, an oxyanion of $Cr(OH_2)^{1-}$ field, an oxyanion of $Cr(OH_2)^{1-}$

Chromium's lack of equilibrium with HFO minimizes the potential its adsorption and favors elevated chromium concentrations in groundwater. Yet, elevated concentrations of chromium in groundwater conflicts with the equilibrium conditions favoring Cr III. The relationship suggests disequilibrium in the shallow groundwater system, and consequently, that ORP does not provide a reliable indicator to the speciation of chromium in groundwater beneath AOC B.

In the absence of strong reductants, kinetically, the reduction of Cr VI to Cr III occurs relatively slowly in groundwater (Stanin, 2004); however, common reductants like ferrous iron at concentrations exceeding 5 mg/L can speed the Cr VI to Cr III reduction reaction. But, dissolved iron concentrations rarely exceeded 1 mg/L in groundwater samples from AOC B, with most exhibiting concentrations less than 0.5 mg/L.

A computer program developed by U.S. Geological Survey (USGS; Jurgens et al., 2009) characterizes the primary redox category and process (Table 5-1) by evaluating concentrations of redox constituents (DO, nitrate, iron, manganese, sulfate, and sulfide). These constituents were measured as field and laboratory analytical parameters during the December 2016 and August 2017 sampling events. The program offers an alternative to ORP measured in the field. ORP measurements often are affected by the disequilibrium of the system, reducing their usefulness as an indicator of redox.

Running the program produced a mixed oxic-anoxic chemistry with ferric iron, and sulfate reduction constituting the primary redox processes (Table 5-3). The screens of monitoring wells and piezometers measuring 10 feet or longer, spanning shallow systems can often span several redox zones. Thus, elevated concentrations of DO associated with oxidizing conditions can appear in the same sample that exhibits elevated concentrations of iron, manganese, or sulfide, indicative of reducing conditions.

The mostly reducing conditions in groundwater below AOC B favor the progressive (if not rapid) reduction of Cr VI to Cr III. Conversely, reducing conditions are not documented to attenuate MIBK or acetone in groundwater.

In addition to serving as an indicator of redox conditions (nitrate and ammonia), nutrients like orthophosphate can influence the mobility of chromium in groundwater. Orthophosphate effectively competes with oxyanions like chromium and arsenic as they adsorb on HFO and HAO surfaces (competitive adsorption) common in groundwater environments. Orthophosphate can strip other oxyanions from adsorptive surfaces (Manning and Goldberg, 1996), increasing their concentration in groundwater.

Orthophosphate concentrations in groundwater samples from AOC B mostly fell below laboratory MDLs. Samples from MW-02 and PZ-06 exhibited concentrations exceeding the MDL, yet at low concentrations around 0.1 mg/L. Thus, orthophosphate should not inhibit the adsorption of chromium at AOC B.

5.1.2.4 Summary of MNA Effectiveness at AOC B

In summary, geochemical conditions in groundwater showed mixed implications for attenuating the migration of MIBK and chromium. Oxic concentrations of DO, where present support biodegrading MIBK and acetone by aerobic bacteria. Yet, the consumption of DO creates reducing conditions that can slow MIBK attenuation.

PR0301181349SYR 5-3

Redox conditions, including mixed oxic to anoxic conditions with DO, iron-, and sulfate- reduction as important processes, favor a system that reduces Cr VI to Cr III. Yet, the low concentrations of reductants like ferrous iron and manganous manganese slow the kinetics of the reaction. Under equilibrium conditions, adsorption by HFO should not influence chromium migration.

Despite mixed geochemical conditions, MIBK and chromium concentrations have declined over the relatively short time period covered by the Year One, Year Two, and Year Three MNA studies. Concentrations of MIBK and chromium have declined below method detection limits in monitoring wells located adjacent to the canal.

5.2 AOC D MNA Evaluation

Monitoring results for Years Two and Three of the MNA study focused on evaluating data from the synoptic survey and groundwater sampling. The synoptic surveys were conducted to determine the groundwater flow direction, gradients, and velocities across AOC D in December 2016 and August 2017.

5.2.1 AOC D Hydraulic Monitoring Results

From November 2014 to September 2016, groundwater flowed toward the canal (Figures 5-1 and 5-2) at gradients ranging from 0.03 to 0.05 ft/ft. Unlike the mounding at AOC B, equipotentials appeared relatively straight trending subparallel to the orientation of the canal. Applying the average hydraulic conductivity of 6 ft/day determined from slug tests conducted at AOC D (CH2M, 2014), the hydraulic gradients from the synoptic surveys, and a porosity of 0.35 for silty sands (Walton, 1989), groundwater velocities across the area during 2016 and 2017 varied from 0.17 to 0.27 ft/day.

5.2.2 AOC D Groundwater Results

5.2.2.1 Arsenic

Arsenic displayed fluctuating concentrations during the Years Two and Three MNA sampling (December 2016 and August 2017). At MW-21, the monitoring well historically exhibiting the greatest amounts of arsenic, concentrations declined to less than 4,000 μ g/L (Figure 5-9). Similarly, at MW-11S, the second most affected monitoring well, arsenic concentrations fell below 1,000 μ g/L. Plotted on a transect trending parallel to the canal, arsenic concentrations varied by location (Figure 5-10). MW-21 exhibited the lowest concentrations for the study period in August 2017 but, the pattern at MW-21 was not duplicated at the MW-11S and MW-31 where, with arsenic fell between minimum and maximum concentrations for the MNA Year One, and Years Two and Three study period. Arsenic concentrations at monitoring wells other than MW-11S and MW-21 remained roughly the same for the Years Two and Three periods, compared to Year One.

Spills of caustic products including NaOH and NaHS increased the pH of groundwater from circumneutral pH (6.5 to 7.5 SU) to over 11. At the elevated pH, the charge on adsorptive HFO surfaces changes from positive to negative, repelling negatively charged oxyanions like arsenic (desorption), thus increasing the arsenic concentration in groundwater.

During the Years Two and Three sampling events, pH measurements from December 2016 revealed values near their historic minima, but rebounded slightly in August 2017 (Figure 5-11). Moreover, over the MNA study, the lowest pH appeared during the first sampling event of the study conducted in November 2014. However, in evaluating data prior to Year One, pH values have not exceeded 11 at MW-21 since June 2016, and 10 at MW-11S since 2009. Thus, data from Years Two and Three reinforces a fluctuating, yet declining profile for pH at AOC D.

5.2.2.2 Geochemical Conditions at AOC D

Like AOC B, geochemical conditions remained stable over the study period and resembled conditions described by sampling events evaluated during the Year One study. Groundwater displayed a strongly sodium to mixed cation (MW-35 and MW-36) – bicarbonate-mixed anion-chloride and even sulfate (MW-23 only) chemistry (Figure 5-12). The chemistry of groundwater samples remained roughly equivalent between December 2016 and August 2017, and compared favorably with samples from during the Year One study. The strongly sodic chemistry likely reflects the influence of released NaOH and NaHS on the groundwater chemistry at AOC D.

Redox conditions at AOC D were evaluated the computer program developed by USGS. Redox conditions strongly influence the ionic character of arsenic in groundwater; however, unlike other oxyanions, both ions of arsenic (As III-arsenite and As V-arsenate) remain soluble under normal (pH 6 to8 SU; Eh -100 to +300 millivolts) physiochemical conditions in groundwater (Hem, 1986), rather than the reduced ion (As III) precipitating as an insoluble oxide, hydroxide, or sulfide. Arsenic-bearing minerals can precipitate under conditions more severe than normally encountered in natural groundwater environment, like those prevalent in a zero valent-iron environment. The redox program developed by USGS (Jurgens et al., 2009) produced mostly mixed oxic-anoxic redox conditions (Table 5-4) with nitrate, ferric iron, and sulfate reduction describe the prevailing redox processes.

In addition to the redox program, PHREEPLOT was employed to assess arsenic equilibria. The chemistry (pH, cations, anions, iron, silica, and nutrients) from MW-21 was used as input to PHREEPLOT. In addition to arsenic, iron and sulfide were considered as dissolved and mineral phases in this system. Although As III and As V do not readily precipitate under groundwater conditions, adsorption to HFO attenuates arsenic migration in groundwater. Databases available in PHREEQC contain many equations and thermodynamic data for simulating the adsorption of As III and As V to HFO surfaces.

The pH and ORP measurement of samples were plotted on phase diagrams that evaluate arsenic speciation, the stability of HFO, common adsorbent surfaces in groundwater, iron, and the potential for oxyanions of arsenic to adsorb to HFO. Iron was plotted separately to check that HFO corresponds to a mineral phase in the iron and arsenic systems. Figure 5-13 shows that the area of the Fe(OH) $_3$ (a) field (~HFO) on the iron diagram coincides with the range of the HFO field on the diagram of the arsenic-sulfide-water system.

At pH less than 8.5 SU, the As V fields like NaAsO₄-2 appear in equilibrium with HFO surfaces. The diagram conveys the mechanism for arsenic mobilization at AOC D with elevated arsenic concentrations in groundwater appearing at pH greater than 8.5 SU. The phase diagram suggests As V is not in equilibrium with HFO at a pH greater than 8.5 SU and thus may desorb from these surfaces. Also, the higher sodium concentrations in groundwater at AOC D have affected arsenic speciation at more alkaline pH values. oints from MW-11S, MW-21, and single samples from other monitoring wells (MW-30, MW-31, and MW-35) plot in the NaAsO₄²⁻ field, suggesting arsenic in these samples is dominated by As V, and that NaAsO4²⁻ may comprise the dominating arsenic oxyanion.

5.2.2.3 MNA and Arsenic at AOC D

The results of the MNA Year Two study, including equilibrium plots of arsenic and iron, correspond with the findings from an arsenic adsorption study conducted in 2012 (CH2M, 2013d). Samples tested during the adsorption study exhibited measurable capacity to adsorb arsenic, ranging from 0.07 to 1.77 milligrams of arsenic per gram of soil. Modeling showed that even the minimum capacity could more than sufficiently adsorb all arsenic presently found in groundwater and reduce concentrations to less than the TOGS Class GA standard. Moreover, arsenic adsorption capacity correlated well with the sample's (correlation coefficient – 0.78) iron content, replicating the relationship between oxyanions of As and HFO seen on the phase diagrams.

PR0301181349SYR 5-5

Findings during the MNA Year Two study regarding arsenic concentrations, pH and arsenic plume strength and size showed stable conditions. Yet, since 2005, arsenic concentrations and pH have shown measurable declines. In the absence of further NaOH and NaHS spills that elevate groundwater pH, ambient groundwater flow through the area should return the pH to less than 7.0 SU, improving the adsorption capacity of soils, while attenuating arsenic concentrations in groundwater.

Conclusions

The following conclusions were developed from the MNA Years Two and Three studies at AOCs B and D.

6.1 AOCB

- Although personnel could not collect groundwater samples in monitoring wells situated in Building 4, MIBK exhibited declines in concentrations over the Year Two and Three MNA study periods in monitoring wells located adjacent to the canal.
- Dow will employ the measures necessary to collect groundwater samples from monitoring wells situated around Building 4 (MW-2, MW-3, MW-33, MW-34, PZ-01, and PZ-03) during the Year Four MNA study period.
- The reducing redox conditions favor the reduction of Cr VI to Cr III, a relatively insoluble precipitate.
- Chromium concentrations declined below 10 µg/L in monitoring wells situated adjacent to the canal for the December 2016 and August 2017 sampling events. The declining trend in wells located adjacent to the canal suggest the chromium plume is receding upgradient, behaving like a shrinking plume.

6.2 AOC D

- Arsenic displayed fluctuating concentrations during the Years Two and Three MNA study.
- Despite recent fluctuations, arsenic concentrations have decreased nearly an order of magnitude at MW-11S since 2005.
- The pH in groundwater at AOC D fluctuated over the study period; however, the pH at MW-21 and MW-11S appeared to have permanently settled below 11 and 10, respectively, compared to historical maxima approaching 12.0.
- The geochemical conditions in groundwater at AOC D appeared mixed, when considering the
 attenuation of arsenic. Although declining since 2005, the pH remains alkaline at the most
 contaminated monitoring wells.
- Managing the groundwater pH by preventing spills of NaOH and NaHS will allow its return to ambient levels, improving the adsorption capacity of saturated soils.
- The oxic redox conditions in groundwater favors the stability of HFO surfaces for re-adsorbing arsenic as pH declines.
- The results of the MNA Years Two and Three study correspond with the findings from an arsenic
 adsorption study conducted in 2012 (CH2M, 2013d) that indicated soils beneath AOC D possess
 sufficient capacity to adsorb arsenic, and reduce concentrations in groundwater to less than the NYS
 TOGS Class GA standard.

PR0301181349SYR 6-1

References

CH2M HILL Engineers, Inc. (CH2M). 2006. RCRA Facility Investigation Report, Former Hampshire Chemical Corp., Waterloo, New York.

CH2M HILL Engineers, Inc. (CH2M). 2008a. *Groundwater Monitoring Work Plan, Former Hampshire Chemical Corp. Facility, Waterloo, New York*. October.

CH2M HILL Engineers, Inc. (CH2M). 2008b. *RCRA Facility Investigation Report Addendum, Former Hampshire Chemical Corp.*, Waterloo, New York. September; revised February 2010.

CH2M HILL Engineers, Inc. (CH2M). 2009a. *Quality Assurance Project Plan, Former Hampshire Chemical Corp. Facility, Waterloo, New York*. September; revised June 2010.

CH2M HILL Engineers, Inc. (CH2M). 2009b. *Groundwater Monitoring Results Report – October 2008, April 2009, and October 2009 Sampling Events, Former Hampshire Chemical Corp Facility, Waterloo, New York*. March.

CH2M HILL Engineers, Inc. (CH2M). 2010. Additional Groundwater Investigation Work Plan, Former Hampshire Chemical Corp. Facility, Waterloo, New York. September.

CH2M HILL Engineers, Inc. (CH2M). 2011. *Groundwater Monitoring Results Report, April 2010 and November 2010 Monitoring Events. Former Hampshire Chemical Corp. Facility, Waterloo, New York.* May.

CH2M HILL Engineers, Inc. (CH2M). 2012a. *Additional Investigation Results Report, Former Hampshire Chemical Corp. Facility, Waterloo, New York*. December.

CH2M HILL Engineers, Inc. (CH2M). 2012b. *Groundwater Monitoring Results Report, April 2011 and November 2011 Monitoring Events. Former Hampshire Chemical Corp. Facility, Waterloo, New York.* December.

CH2M HILL Engineers, Inc. (CH2M). 2013a. AOC B Interim Corrective Measures Work Plan, Former Hampshire Chemical Corp. Facility, Waterloo, New York. June; revised December 2014.

CH2M HILL Engineers, Inc. (CH2M). 2013b. AOC C/Gorham Street Interim Corrective Measures Work Plan, Former Hampshire Chemical Corp. Facility, Waterloo, New York. February.

CH2M HILL Engineers, Inc. (CH2M). 2013c. *Groundwater Monitoring Results Report, April and October 2012 Monitoring Events, Former Hampshire Chemical Corp. Facility, Waterloo, New York*. July.

CH2M HILL Engineers, Inc. (CH2M). 2013d. *AOC D Interim Corrective Measures Work Plan, Former Hampshire Chemical Corp. Facility, Waterloo, New York*. July.

CH2M HILL Engineers, Inc. (CH2M). 2014a. Site Groundwater Long Term Monitoring Work Plan. Former Hampshire Chemical Corp. Facility, Waterloo, New York. June 12.

CH2M HILL Engineers, Inc. (CH2M). 2014b. *Groundwater Monitoring Results Report, April and October* 2013 Monitoring Events. Former Hampshire Chemical Corp. Facility, Waterloo, New York. August.

CH2M HILL Engineers, Inc. (CH2M). 2015a. *Pit and Production Well Decommissioning Summary AOC at the Former Hampshire Chemical Facility, Waterloo, New York, Site No. 850001A*. January 25. Technical Memorandum.

PR0301181349SYR 7-1

CH2M HILL Engineers, Inc. (CH2M). 2015b. *Groundwater Monitoring Results, November 2014 Monitoring Event, Former Hampshire Chemical Corp. Facility, Waterloo, New York, Site No. 850001A*. December.

CH2M HILL Engineers, Inc. (CH2M). 2017a. SWMU 1 Corrective Measures Construction Completion Report, Former Hampshire Chemical Corp., Waterloo, New York. July.

CH2M HILL Engineers, Inc. (CH2M). 2017b. Monitored Natural Attenuation Performance Evaluation Report, Year One, Former Hampshire Chemical Corp. Facility, Waterloo, New York, Site No. 850001A. November.

CH2M HILL Engineers, Inc. (CH2M). 2017c. Evaluation of Subslab Hydrogen Sulfide and Methane Concentrations at the Former Hampshire Chemical Corp. Facility, Waterloo, New York. July. Technical Memorandum.

Dzombak, D.A. and F.M. Morel. 1990. *Surface Complexation Modeling: Hydrous Ferric Oxide*. Wiley-Interscience, New York.

Hem, J.D. 1986. *Study and Interpretation of the Chemical Characteristics of Natural Water*. U.S. Geological Survey Water-Supply Paper 2254, Denver, Colorado.

Jurgens, B.C., P.B. McMahon, F.H. Chapelle, and S.M. Eberts. 2009. *An Excel® Workbook for Identifying Redox Processes in Ground Water*. U.S. Geological Survey Open-File Report 2009–1004, Reston, Virginia.

Kinniburgh, D. and D.M. Cooper. 2011. *PhreePlot, Creating graphical output with PHREEQC*. Center for Ecology and Hydrology, Gwynedd, United Kingdom.

Manning, B.A. and S. Goldberg. 1996. "Modeling Competitive Arsenate Adsorption on Kaolinite, Montmorillonite, and Illite, Clay and Clay Minerals." In *GeoScienceWorld*, Vol 5. McLean, Virginia.

New York State Department of Environmental Conservation (NYSDEC). 1998. *Technical and Operational Guidance Series (TOGS), Ambient Water Quality Standards and Guidance Values and Ground Water Effluent Limitations*. June 1998; modified January 1999; modified April 2000; modified June 2004.

New York State Department of Environmental Conservation (NYSDEC). 2005. Letter from NYSDEC Re: Hampshire Chemical Corporation, Evans Chemetics Facility, Waterloo, New York, RCRA Facility Investigation (RFI) Report. January 11.

New York State Department of Environmental Conservation (NYSDEC). 2010. *Division of Environmental Remediation*)-10/Technical Guidance for Site Investigation and Remediation. May.

New York State Department of Environmental Conservation (NYSDEC). 2011. Second Amended Order on Consent between Hampshire Chemical Corp. and NYSDEC (Index Number CO 8-20000218-3281). August 12.

New York State Department of Environmental Conservation (NYSDEC). 2015a. *HCC's Response to NYSDEC's Comments on AOC B ICM Work Plan December 8, 2014. HCC's Final Submittal AOC B Errata for ICM Work Plan February 23, 2015. HCC's Revised AOC B Interim Corrective Measures Work Plan – Former Hampshire Chemical Corp. Facility, Waterloo, New York, Site No. 850001A – December 2014.* April 21.

New York State Department of Environmental Conservation (NYSDEC). 2015b. AOC D Interim Corrective Measures Work Plan – Former Hampshire Chemical Facility, Waterloo, New York, Site No. 850001A – July 17, 2013, Technical Memorandum – Review of Remedial Alternatives Presented in the Interim Corrective Measures Work Plan for AOC D – Former Hampshire Chemical Facility, Waterloo, New York, Site No. 850001A – February 9, 2015. June 29.

New York State Department of Environmental Conservation (NYSDEC). 2016. Letter from NYSDEC Re: Former Hampshire Chemical Corporation Facility, Waterloo, New York, Site No. 850001A – Groundwater Monitoring Results Report, November 2014 Monitoring Event – December 2015. January 11.

New York State Department of Health (NYSDOH). 2011. *Drinking Water Protection Program, Part 5, Subpart 5-1 Public Water Systems – Tables (Revised)*. November. https://www.health.ny.gov/regulations/nycrr/title_10/part_5/appendix_5d.htm.

Palmer, C.D. and R.W. Puls. 1994. *Natural Attenuation of Hexavalent Chromium in Groundwater and Soils*. U.S. Environmental Protection Agency, EPA/540/5-94/505, Ada, Oklahoma.

Parkhurst, D.L. 1996. *Users Guide to PHREEQC – A Computer Program for Speciation, Reaction-Path, Advective-Transport, Inverse Geochemical Calculations*. U.S. Geological Survey Water Resources Investigation Report 95-4227, Lakewood, Colorado.

Stanin, F.T. 2004. *Transport and Fate of Cr(VI) in the Environment in Chemical Processes in Soils, Book 8*. CRC Press LLC, New York, New York.

U.S. Environmental Protection Agency (EPA). 1998. *Groundwater Sampling Procedure—Low Stress (Low Flow) Purging and Sampling*. March.

U.S. Environmental Protection Agency (EPA). 2006. *The Drinking Water Standards and Health Advisories, EPA 822-R-06-013*. Office of Water, Washington, D.C.

U.S. Environmental Protection Agency (EPA). 2007. *Monitored Natural Attenuation of Inorganic Contaminants in Groundwater: Assessment of Non-Radionuclides Including Arsenic, Cadmium, Chromium, Copper, Lead, Nickel, Nitrate, Perchlorate, and Selenium*. Editors: Ford, R.G., Wilkin, R.T., and Puls, R.W. National Risk Management Laboratory, Cincinnati, Ohio.

Walton, W.C. 1989. *Analytical Groundwater Modeling: Flow and Contaminant Migration*. Lewis Publishers: Chelsea, Michigan.

PR0301181349SYR 7-3

Tables

Table 1-1. List of Analytes Analyzed during November 2014, April 2015, June 2015, September 2015, November 2015, April 2016, June 2016, and September 2016 Sampling Events for AOCs B and D

AOC B	AOC D						
Metals							
Total Chromium	Total Arsenic						
Dissolved Chromium	Dissolved Arsenic						
Volatile Org	ganic Compounds						
1,1,1-Dichloroethane							
1,2-Dichloropopane							
Carbon Tetrachloride							
Chloroform	None						
cis-1,2-Dichloroethene	None						
Methylene Chloride							
МІВК							
Vinyl Chloride							
MNA I	Parameters ^a						
Calcium	Alkalinity						
Magnesium	Total Phosphorous						
Potassium	Total Organic Carbon						
Sodium	Ammonia						
Iron (total and dissolved)	Total Kjedahl Nitrogen						
Manganese (total and dissolved)	Ortho-Phosphate						
Aluminum (total and dissolved)	Total Dissolved Solids						
Chloride	Total Sulfide						
Sulfate	Silica						
Nitrate	Sulfide						
Nitrite as N							
Field	Chemistry ^a						
	рН						
Specific	conductivity						
Disso	lved oxygen						
Ter	nperature						
	ORP						
т	urbidity						
Fer	rous iron						

AOC = area of concern

MIBK = methyl isobutyl ketone

MNA = monitored natural attenuation

ORP = oxidation-reduction potential

 $^{^{\}rm a}$ MNA and Field Chemistry parameters are the same for AOCs B and D.

Table 2-1
Summary of Groundwater Samples Collected
2016 and 2017 Groundwater Monitoring Results and Monitored Natural Attenuation Performance Evaluation Report
Former Hampshire Chemical Corp. Facility, Waterloo, New York

Sampling Location	Sample Identification	Laboratory Analysis	Sample Delivery Group	Sample Type	Sampling Method	Pump Placement Depth (ft. from TIC)	Sample Date	Sample Time
MW-01	MW01-120616	VOCs, Metals ¹ , MNA	L16120352	N	Peristaltic	9.5	12/06/2016	14:38
MW-02	MW02-120616	VOCs, Metals ¹ , MNA	L16120352	N	Peristaltic	9.5	12/06/2016	11:10
MW-02	MW02-120616-MS	VOCs, Metals ¹	L16120352	MS	Peristaltic	9.5	12/06/2016	11:10
MW-02	MW02-120616-MSD	VOCs, Metals ¹	L16120352	SD	Peristaltic	9.5	12/06/2016	11:10
MW-02	MW02-082217	VOCs, Metals ¹ , MNA	L17081212	N	Peristaltic	9.5	08/22/2017	12:23
MW-02	MW02-082217-MS	VOCs, Metals ¹	L17081212	MS	Peristaltic	9.5	08/22/2017	12:23
MW-02	MW02-082217-MSD	VOCs, Metals ¹	L17081212	SD	Peristaltic	9.5	08/22/2017	12:23
MW-05I	MW05I-120716	VOCs, Metals ¹ , SVOCs	L16120425	N	Peristaltic	27.5	12/07/2016	09:30
MW-05I	DUP-GW-120716-1	VOCs, Metals ¹ , SVOCs	L16120425	FD	Peristaltic	27.5	12/07/2016	12:30
MW-05I	MW05I-082417	VOCs, Metals ¹ , SVOCs	L17081366	N	Peristaltic	27.5	08/24/2017	15:40
MW-06	MW06-120716	VOCs, Metals ¹ , SVOCs	L16120425	N	Peristaltic	9	12/07/2016	13:55
MW-06	MW06-082517	VOCs, Metals ¹ , SVOCs	L17081498	N	Peristaltic	9	08/25/2017	13:54
MW-06	MW06-082517-MS	SVOCs	L17081498	MS	Peristaltic	9	08/25/2017	13:54
MW-06	MW06-082517-MSD	SVOCs	L17081498	SD	Peristaltic	9	08/25/2017	13:54
MW-07	MW07-120716	VOCs, Metals ¹ , SVOCs	L16120425	N	Peristaltic	8.5	12/07/2016	09:45
MW-07	MW07-120716MS	SVOCs	L16120425	MS	Peristaltic	8.5	12/07/2016	09:45
MW-07	MW07-120716SD	SVOCs	L16120425	SD	Peristaltic	8.5	12/07/2016	09:45
MW-07	MW07-082517	VOCs, Metals ¹ , SVOCs	L17081498	N	Peristaltic	8.5	08/25/2017	10:34
MW-09R	MW09R-120616	VOCs, Metals ¹ , SVOCs	L16120352	N	Peristaltic	12	12/06/2016	14:00
MW-09R	MW09R-082317	VOCs, Metals ¹ , SVOCs	L17081305	N	Peristaltic	12	08/23/2017	14:40
MW-09R	DUP-GW-082317-2	VOCs, Metals ¹ , SVOCs	L17081305	FD	Peristaltic	12	08/23/2017	09:30
MW-10	MW10-120716	VOCs, Metals ¹ , SVOCs	L16120425	N	Peristaltic	12	12/07/2016	11:20
MW-10	MW10-082517	VOCs, Metals ¹ , SVOCs	L17081498	N	Peristaltic	12	08/25/2017	10:20
MW-11S	MW11S-120716	Metals ¹ , MNA	L16120425	N	Peristaltic	10	12/07/2016	10:18
MW-11S	DUP-GW-120716-2	Metals ¹	L16120425	FD	Peristaltic	10	12/07/2016	12:31
MW-11S	MW11S-082317	Metals ¹ , MNA	L17081305	N	Peristaltic	10	08/23/2017	13:55
MW-16I	MW16I-120616	VOCs, Metals ¹ , SVOCs	L16120352	N	Peristaltic	29	12/06/2016	13:15
MW-16I MW-16I	MW16I-120616-MS MW16I-120616-MSD	VOCs, SVOCs VOCs, SVOCs	L16120352 L16120352	MS SD	Peristaltic	29 29	12/06/2016 12/06/2016	13:15 13:15
MW-16I	MW16I-082417		L16120352 L17081366	N N	Peristaltic Peristaltic	29	08/24/2017	13:15
MW-17	MW17-120616	VOCs, Metals ¹ , SVOCs	L17081366 L16120352	N N	Peristaltic	13.5	12/06/2016	11:10
MW-17	DUP-GW-120616	VOCs, Metals ¹ , SVOCs	L16120352	FD	Peristaltic	13.5	12/06/2016	12:30
MW-17	MW17-082417	VOCs, Metals ¹ , SVOCs	L17081366	N N	Peristaltic	13.5	08/24/2017	10:22
MW-17	DUP-GW-082417	VOCs, Metals ¹ , SVOCs VOCs, Metals ¹ , SVOCs	L17081366	FD	Peristaltic	13.5	08/24/2017	09:00
MW-18	MW18-120616	VOCs, Metals ¹ , SVOCs	L16120425	N N	Peristaltic	12	12/07/2016	15:40
MW-18	MW18-082417	VOCs, Metals ¹ , SVOCs	L17081366	N	Peristaltic	12	08/24/2017	11:50
MW-19	MW19-121316	VOCs, Metals ¹ , SVOCs	L16120782	N	Peristaltic	15.5	12/13/2016	10:25
MW-19	MW19-082317	VOCs, Metals ¹ , SVOCs	L17081305	N	Peristaltic	15.5	08/23/2017	15:35
MW-20	MW20-120716	VOCs, Metals ¹ , SVOCs	L16120425	N	Peristaltic	13.5	12/07/2016	11:25
MW-20	MW20-082517	VOCs, Metals ¹ , SVOCs	L17081498	N	Peristaltic	13.5	08/25/2017	14:10
MW-21	MW21-120816	Metals ¹ , MNA	L16120521	N	Peristaltic	10.0	12/08/2016	14:50
MW-21	MW21-082217	Metals ¹ , MNA	L17081212	N	Peristaltic	10	08/22/2017	12:35
MW-23	MW23-120616	Metals ¹ , MNA	L16120352	N	Peristaltic	8	12/06/2016	10:57
MW-23	MW23-120616-MS	Metals ¹	L16120352	MS	Peristaltic	8	12/06/2016	10:57
MW-23	MW23-120616-MSD	Metals ¹	L16120352	SD	Peristaltic	8	12/06/2016	10:57
MW-24	MW24-120816	Metals ¹ , MNA	L16120521	N	Peristaltic	12.5	12/08/2016	10:25
MW-26	MW26-120616	VOCs, Metals ¹ , SVOCs	L16120352	N	Peristaltic	14.5	12/06/2016	14:45
MW-26	MW26-082417	VOCs, Metals ¹ , SVOCs	L17081366	N	Peristaltic	14.5	08/24/2017	10:55
MW-26	MW26-082417MS	VOCs, SVOCs	L17081366	MS	Peristaltic	14.5	08/24/2017	10:55
MW-26	MW26-082417MSD	VOCs, SVOCs	L17081366	SD	Peristaltic	14.5	08/24/2017	10:55
MW-30	MW30-120716	Metals ¹ , MNA	L16120425	N	Peristaltic	10	12/07/2016	14:06
MW-30	MW30-082317	Metals ¹ , MNA	L17081305	N	Peristaltic	10	08/23/2017	12:40
MW-31	MW31-120816	Metals ¹ , MNA	L16120521	N	Peristaltic	12	12/08/2016	11:45
MW-31	MW31-082317	Metals ¹ , MNA	L17081305	N	Peristaltic	12	08/23/2017	10:35
MW-35	MW35-120816	Metals ¹ , MNA	L16120521	N	Peristaltic	9	12/08/2016	14:45
MW-35	MW35-082217	Metals ¹ , MNA	L17081212	N	Peristaltic	9	08/22/2017	15:28

MW-35	MW35-082217-MS	Metals ¹	L17081212	MS	Peristaltic	9	08/22/2017	15:28
MW-35	MW35-082217-MSD	Metals ¹	L17081212	SD	Peristaltic	9	08/22/2017	15:28
MW-36	MW36-120816	Metals ¹ , MNA	L16120521	N	Peristaltic	9	12/08/2016	11:20
MW-36	MW36-082217	Metals ¹ , MNA	L17081212	N	Peristaltic	9	08/22/2017	15:50
MW-36	DUP-GW-082217	Metals ¹	L17081212	FD	Peristaltic	9	08/22/2017	09:00
MW-37	MW37-120816	Metals ¹ , MNA	L16120521	N	Peristaltic	9	12/08/2016	09:55
PZ-03	PZ03-120716	VOCs, Metals ¹ , MNA	L16120425	N	Peristaltic	8	12/07/2016	15:10
PZ-04	PZ04-121316	VOCs, Metals ¹ , MNA	L16120782	N	Peristaltic	8	12/13/2016	13:55
PZ-04	DUP-GW-121316	VOCs, Metals ¹	L16120782	FD	Peristaltic	8	12/13/2016	12:30
PZ-04	PZ04-082317	VOCs, Metals ¹ , MNA	L17081305	N	Peristaltic	8	08/23/2017	10:58
PZ-04	DUP-GW-082317-1	VOCs, Metals ¹	L17081305	FD	Peristaltic	8	08/23/2017	09:00
PZ-06	PZ06-120616	VOCs, Metals ¹ , MNA	L16120425	N	Peristaltic	8	12/07/2016	15:00
PZ-06	PZ06-082317	VOCs, Metals ¹ , MNA	L17081305	N	Peristaltic	8	08/23/2017	09:42
PZ-07R	PZ07R-121316	VOCs, Metals ¹ , MNA	L16120782	N	Peristaltic	8.5	12/13/2016	15:25
TW-01	TW01-121316	VOCs, Metals ¹ , SVOCs	L16120782	N	Peristaltic	18	12/13/2016	12:05
TW-01	TW01-082417	VOCs, Metals ¹ , SVOCs	L17081366	N	Peristaltic	18	08/24/2017	14:12
FB	FB-120716	VOCs	L16120425	FB	N/A	N/A	12/07/2016	15:01
FB	FB-121316-1	VOCs	L16120782	FB	N/A	N/A	12/13/2016	14:45
FB	FB-121316-2	VOCs	L16120782	FB	N/A	N/A	12/13/2016	14:50
FB	FB-082217	VOCs	L17081212	FB	N/A	N/A	08/22/2017	12:40
FB	FB-082317	VOCs	L17081305	FB	N/A	N/A	08/23/2017	15:00
FB	FB-082417	VOCs	L17081366	FB	N/A	N/A	08/24/2017	14:00
FB	FB-082517	VOCs	L17081498	FB	N/A	N/A	08/25/2017	12:40
TB	TB-120616	VOCs	L16120352	TB	N/A	N/A	12/06/2016	08:00
TB	TB-120716	VOCs	L16120425	TB	N/A	N/A	12/07/2016	08:00
TB	TB-121316	VOCs	L16120782	TB	N/A	N/A	12/13/2016	08:00
TB	TB-082217	VOCs	L17081212	TB	N/A	N/A	08/22/2017	08:00
TB	TB-082317	VOCs	L17081305	TB	N/A	N/A	08/23/2017	08:00
TB	TB-082417	VOCs	L17081366	TB	N/A	N/A	08/24/2017	08:00
TB	TB-082517	VOCs	L17081498	TB	N/A	N/A	08/25/2017	08:00

MNA - Natural Attenuation Parameters, and includes sulfates, nitrates, methane, carbon dioxide, alkalinity, phosphorus, and total organic carbon

VOC - Volatile Organic Compounds

SVOC - Semivolatile Organic Compounds

TOC - Total Organic Carbon

TDS - Total Dissolved Solids

TIC - Top of Inner Casing

TB - Trip Blank

FB - Field Blank

FD - Field Duplicate Sample

N - Normal Environmental Sample

MS - Matrix Spike

SD - Matrix Spike Duplicate

N/A - Not Applicable

^{1.} All normal environmental samples were analyzed for total and dissolved metals

TABLE 3-1
Groundwater Elevation Measurements
Groundwater Monitoring Results, December 2016 and August 2017 Monitoring Events
Former Hampshire Chemical Corp. Facility, Waterloo, New York

Well Number	Date	Ground Elevation (ft amsl)	Inner Casing Elevation (ft amsl)	Depth to Water (ft from TIC)	Groundwater Elevation (ft amsl)
MW-01	12/12/16	434.03	433.80	4.25	429.55
MW-01	8/21/17	434.03	433.80	4.55	429.25
MW-02	12/12/16	433.33	432.93	3.36	429.57
MW-02	8/21/17	433.33	432.93	3.80	429.13
MW-03 ^a	12/12/16	434.44	434.02	NM	NA
MW-03 ^a	8/21/17	434.44	434.02	NM	NA
MW-05I	12/12/16	445.24	444.79	12.95	431.84
MW-05I	8/21/17	445.24	444.79	11.15	433.64
MW-06	12/12/16	446.57	446.21	3.60	442.61
MW-06	8/21/17	446.57	446.21	3.35	442.86
MW-07	12/12/16	437.88	437.37	4.75	432.62
MW-07	8/21/17	437.88	437.37	5.12	432.25
MW-09R	12/12/16	434.84	434.40	5.37	429.03
MW-09R	8/21/17	434.84	434.40	5.33	429.07
MW-10	12/12/16	445.34	445.06	3.28	441.78
MW-10	8/21/17	445.34	445.06	6.35	438.71
MW-11S	12/12/16	433.52	432.95	1.25	431.70
MW-11S	8/21/17	433.52	432.95	1.20	431.75
MW-16I	12/12/16	454.27	455.99	27.04	428.95
MW-16I	8/21/17	454.27	455.99	24.69	431.30
MW-17	12/12/16	449.92	452.13	23.00	429.13
MW-17	8/21/17	449.92	452.13	21.38	430.75
MW-18	12/12/16	440.04	442.07	12.50	429.57
MW-18	8/21/17	440.04	442.07	12.23	429.84
MW-19	12/12/16	445.64	445.25	10.38	434.87
MW-19	8/21/17	445.64	445.25	14.33	430.92
MW-20	12/12/16	448.76	448.53	3.93	444.60
MW-20	8/21/17	448.76	448.53	8.40	440.13
MW-21	12/12/16	433.46	433.10	4.05	429.05
MW-21	8/21/17	433.46	433.10	3.82	429.28
MW-23	12/12/16	432.67	432.35	3.02	429.33
MW-23	8/21/17	432.67	432.35	3.14	429.21
MW-24	12/12/16	433.98	433.75	4.41	429.34
MW-24	8/21/17	433.98	433.75	4.65	429.10
MW-25 ^b	12/12/16	441.47	441.14	NM	NA
MW-25 ^b	8/21/17	441.47	441.14	NM	NA
MW-26	12/12/16	439.29	441.76	12.90	428.86
MW-26	8/21/17	439.29	441.76	10.71	431.05
MW-30	12/12/16	433.38	433.02	4.45	428.57
MW-30	8/21/17	433.38	433.02	4.54	428.48
MW-31	12/12/16	433.13	432.65	5.30	427.35
MW-31	8/21/17	433.13	432.65	3.62	429.03
MW-33 ^a	12/12/16	434.29	433.87	NM	NA
MW-33 ^a	8/21/17	434.29	433.87	NM	NA
MW-34 ^a	12/12/16	434.36	433.79	NM	NA
MW-34 ^a	8/21/17	434.36	433.79	NM	NA
MW-35	12/12/16	433.60	433.43	1.50	431.93
MW-35	8/21/17	433.60	433.43	1.55	431.88

TABLE 3-1 Groundwater Elevation Measurements

Groundwater Monitoring Results, December 2016 and August 2017 Monitoring Events Former Hampshire Chemical Corp. Facility, Waterloo, New York

Well Number	Date	Ground Elevation (ft amsl)	Inner Casing Elevation (ft amsl)	Depth to Water (ft from TIC)	Groundwater Elevation (ft amsl)
MW-36	12/12/16	433.26	432.80	1.00	431.80
MW-36	8/21/17	433.26	432.80	0.81	431.99
MW-37	12/12/16	433.32	433.02	1.43	431.59
MW-37	8/21/17	433.32	433.02	0.98	432.04
PZ-01 ^a	12/12/16	434.49	434.25	NM	NA
PZ-01 ^a	8/21/17	434.49	434.25	NM	NA
PZ-03	12/12/16	434.41	434.06	2.95	431.11
PZ-03 ^a	8/21/17	434.41	434.06	NM	NA
PZ-04	12/12/16	432.73	432.14	2.81	429.33
PZ-04	8/21/17	432.73	432.14	3.09	429.05
PZ-06	12/12/16	433.06	432.77	3.35	429.42
PZ-06	8/21/17	433.06	432.77	3.31	429.46
PZ-07R	12/12/16	433.07	432.57	4.01	428.56
PZ-07R	8/21/17	433.07	432.57	3.93	428.64
TW-01	12/12/16	447.33	449.01	18.18	430.83
TW-01	8/21/17	447.33	449.01	17.10	431.91

Notes:

- 1. Water level measurements were collected on November 16, 2014, with the exception of MW-03 and MW-33 which were collected on November 17, 2015.
- 2. Water level measurements were not collected from MW-15, MW-25, and MW-28 because these locations were not accessible.
- 3. All wells were surveyed to the New York Central state plane coordinate system (NAD 1983).

amsl - above mean sea level bgs - below ground surface

ft - feet

NA - not available NM - not measured TIC - top of inner casing

^a Water level measurements were not collected due to wellhead hydrogen sulfide and/or methane.

^b Water level measurements were not collected because the well could not be located.

Table 3-2
LTMWP Groundwater Sampling Locations, Sampling Frequency, and Corresponding Analytical Results Tables
2016 and 2017 Groundwater Monitoring Results and Monitored Natural Attenuation Performance Evaluation Report
Former Hampshire Chemical Corp. Facility, Waterloo, New York

	/IU 1 ing Wells	AO Monitori				Supplemental Monitoring Wells	
Annual Sampling	MW-16I MW-17 MW-18 MW-26	Annual Sampling	MW-02 MW-03 MW-33 PZ-03 PZ-04 PZ-06	Annual Sampling	MW-11S MW-21 MW-30 MW-31 MW-35 MW-36	Annual Sampling	MW-051 MW-06 MW-07 MW-09R MW-10
	TW-01	Sampling Every 5 Years	MW-01 MW-34 PZ-01 PZ-07R	Sampling Every 5 Years	MW-23 MW-24 MW-37		MW-19 MW-20
Results in Tabl	Results in Tables 3-3 and 3-7 Results in		es 3-4 and 3-8	Tables 3-5 and 3-9		Tables 3-6 and 3-10	

Table 3-3a

Groundwater Sampling Results for SWMU 1 — Volatile Organic Compounds, December 2016

2016 and 2017 Groundwater Monitoring Results and Monitored Natural Attenuation Performance Evaluation Report Former Hampshire Chemical Corp. Facility, Waterloo, New York

Location			MW-16I	MV	V-17	MW-18	MW-26	TW-01
Sample ID			MW16I-120616	MW17-120616	DUP-GW-120616	MW18-120616	MW26-120616	TW01-121316
Sample Date			12/6/2016	12/6/2016	12/6/2016	12/7/2016	12/6/2016	12/13/2016
Analyte	CAS#	TOGS 1.1.1 GA*						
VOA (ug/l)								
1,1,1-Trichloroethane	71-55-6	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	79-34-5	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1		2 U	2 U	2 U	2 U	2 U	2 U
1,1,2-Trichloroethane	79-00-5	1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane	75-34-3	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethene	75-35-4	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,3-Trichlorobenzene	87-61-6		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,4-Trichlorobenzene	120-82-1	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dibromo-3-chloropropane	96-12-8		1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dibromoethane	106-93-4		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichlorobenzene	95-50-1	3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethane	107-06-2	0.6	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethene, cis-	156-59-2	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethene, trans-	156-60-5	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloropropane	78-87-5	1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,3-Dichlorobenzene	541-73-1	3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,3-Dichloropropene, cis-	10061-01-5	0.4	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,3-Dichloropropene, trans-	10061-02-6	0.4	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,4-Dichlorobenzene	106-46-7	3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
2-Butanone	78-93-3	50	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
2-Hexanone	591-78-6	50	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
4-Methyl-2-pentanone (MIBK)	108-10-1	50 **	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
Acetone	67-64-1	50	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
Benzene	71-43-2	1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromochloromethane	74-97-5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromodichloromethane	75-27-4	50	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromoform	75-25-2	50	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromomethane	74-83-9	5	0.5 R	0.5 R	0.5 U	0.5 UJ	0.5 UJ	0.5 UJ
Carbon Disulfide	75-15-0	60	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 R
Carbon Tetrachloride	56-23-5	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	108-90-7	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroethane	75-00-3	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroform	67-66-3	7	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloromethane	74-87-3	5	0.5 UJ	0.5 UJ	0.5 U	0.5 UJ	0.5 UJ	0.5 R
Cyclohexane	110-82-7	==	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ	1 U
Dibromochloromethane	124-48-1	50	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dichlorodifluoromethane	75-71-8		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene	100-41-4	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Isopropylbenzene	98-82-8		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

Table 3-3a
Groundwater Sampling Results for SWMU 1 — Volatile Organic Compounds, December 2016
2016 and 2017 Groundwater Monitoring Results and Monitored Natural Attenuation Performance Evaluation Report

Location			MW-16I	MV	V-17	MW-18	MW-26	TW-01
Sample ID			MW16I-120616	MW17-120616	DUP-GW-120616	MW18-120616	MW26-120616	TW01-121316
Sample Date			12/6/2016	12/6/2016	12/6/2016	12/7/2016	12/6/2016	12/13/2016
Analyte	CAS#	TOGS 1.1.1 GA*						
Methyl Acetate	79-20-9		1 U	1 U	1 U	1 U	1 U	1 U
Methylcyclohexane	108-87-2		1 UJ	1 U	1 U	1 U	1 U	1 U
Methylene Chloride	75-09-2	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Styrene	100-42-5	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
tert-Butyl Methyl Ether	1634-04-4		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Tetrachloroethene	127-18-4	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Toluene	108-88-3	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethene	79-01-6	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichlorofluoromethane	75-69-4		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Vinyl Chloride	75-01-4	2	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ
Xylene, m,p-	108-38-3/1		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Xylene, o-	95-47-6		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

Former Hampshire Chemical Corp. Facility, Waterloo, New York

SWMU = solid waste management unit

^{* -} Technical & Operational Guidance Series (TOGS) 1.1.1, New York State Ambient Water Quality Standards and Guidance Values, and Ground Water Effluent Limitations (Class GA). June 1998; modified January 1999; modified April 2000; modified June 2004.

^{** -} There is no TOGS Class GA Standard for MIBK. Per the NYSDEC (2005), the New York State Department of Health (NYSDOH) guidance value for MIBK

^{-- =} Not available

R = The analyte result was rejected due to quality control issues.

U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

UJ = The analyte was below the reported sample quantitation limit. However, the reported value is approximate.

Table 3-3b

Groundwater Sampling Results for SWMU 1 — Semivolatile Organic Compounds, December 2016

2016 and 2017 Groundwater Monitoring Results and Monitored Natural Attenuation Performance Evaluation Report

Location			MW-16I	MV	V-17	MW-18	MW-26	TW-01
Sample ID			MW16I-120616	MW17-120616	DUP-GW-120616	MW18-120616	MW26-120616	TW01-121316
Sample Date			12/6/2016	12/6/2016	12/6/2016	12/7/2016	12/6/2016	12/13/2016
Analyte	CAS#	TOGS 1.1.1 GA*						
SVOA (ug/l)								
2-Methylnaphthalene	91-57-6		0.0272 U	0.0255 U	0.0255 U	0.0301 UJ	0.026 U	0.025 U
Acenaphthene	83-32-9	20	0.0272 U	0.0255 U	0.0255 U	0.0301 UJ	0.026 U	0.025 U
Acenaphthylene	208-96-8		0.0272 U	0.0255 U	0.0255 U	0.0301 UJ	0.026 U	0.025 U
Anthracene	120-12-7	50	0.0272 U	0.0255 U	0.0255 U	0.0301 UJ	0.026 U	0.025 U
Benzo(a)anthracene	56-55-3	0.002	0.0272 U	0.0255 U	0.0255 U	0.0358 J	0.026 U	0.025 U
Benzo(a)pyrene	50-32-8	0.002	0.0272 U	0.0255 U	0.0255 U	0.0301 UJ	0.026 U	0.025 U
Benzo(b)fluoranthene	205-99-2	0.002	0.0272 U	0.0255 U	0.0255 U	0.0575 J	0.026 U	0.025 U
Benzo(g,h,i)perylene	191-24-2		0.0272 U	0.0255 U	0.0255 U	0.0301 UJ	0.026 U	0.025 U
Benzo(k)fluoranthene	207-08-9	0.002	0.0272 U	0.0255 U	0.0255 U	0.0301 UJ	0.026 U	0.025 U
Chrysene	218-01-9	0.002	0.0272 U	0.0255 U	0.0255 U	0.0369 J	0.026 U	0.025 U
Dibenzo (a,h) Anthracene	53-70-3		0.0272 U	0.0255 U	0.0255 U	0.0301 UJ	0.026 U	0.025 U
Fluoranthene	206-44-0	50	0.0272 U	0.0255 U	0.0255 U	0.074 J	0.026 U	0.025 U
Fluorene	86-73-7	50	0.0272 U	0.0255 U	0.0255 U	0.0301 UJ	0.026 U	0.025 U
Indeno (1,2,3-c,d) Pyrene	193-39-5	0.002	0.0272 U	0.0255 U	0.0255 U	0.0301 UJ	0.026 U	0.025 U
Naphthalene	91-20-3	10	0.0272 U	0.0255 U	0.0255 U	0.0301 UJ	0.026 U	0.025 U
Phenanthrene	85-01-8	50	0.0272 U	0.0255 U	0.0255 U	0.075 J	0.026 U	0.025 U
Pyrene	129-00-0	50	0.0272 U	0.0255 U	0.0255 U	0.0801 J	0.026 U	0.025 U

Bold indicates the analyte was detected

Shading indicates the result exceeded screening criteria

Former Hampshire Chemical Corp. Facility, Waterloo, New York

- -- = Not available
- J = The analyte was positively identified; the associated numerical value is the approximate concentration. SWMU = solid waste management unit
- U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- UJ = The analyte was below the reported sample quantitation limit. However, the reported value is approximate. ug/l = micrograms per liter

^{* -} Technical & Operational Guidance Series (TOGS) 1.1.1, New York State Ambient Water Quality Standards and Guidance Values, and Ground Water Effluent Limitations (Class GA). June 1998; modified January 1999; modified April 2000; modified June 2004.

Table 3-3c
Groundwater Sampling Results for SWMU 1 — Metals, December 2016

2016 and 2017 Groundwater Monitoring Results and Monitored Natural Attenuation Performance Evaluation Report Former Hampshire Chemical Corp. Facility, Waterloo, New York

Location			MW-16I	MV	V-17	MW-18	MW-26	TW-01
Sample ID			MW16I-120616	MW17-120616	DUP-GW-120616	MW18-120616	MW26-120616	TW01-121316
Sample Date			12/6/2016	12/6/2016	12/6/2016	12/7/2016	12/6/2016	12/13/2016
Analyte	CAS#	TOGS 1.1.1 GA*						
Metals (ug/l)								
Aluminum	7429-90-5		100 U	100 U	100 U	5,040	100 U	100 U
Arsenic	7440-38-2	25	1.4	4.03	3.57	5.87	1.45	2.9
Calcium	7440-70-2		118,000	177,000	179,000 J	151,000	81,400	175,000
Iron	7439-89-6	300	6,860	2,560	2,120	21,900	1,490	27,200
Magnesium	7439-95-4	35,000	22,300	34,000	34,500	25,100	16,100	39,100
Manganese	7439-96-5	300	227	548	556	1,140	152	210
Potassium	7440-09-7		6,010	8,560	8,560	11,000	4,310	11,400
Sodium	7440-23-5	20,000	75,700	73,500	74,000	172,000	68,800	102,000
Metals, Dissolved (ug/l) **								
Aluminum, Dissolved	7429-90-5_D		100 U	100 U	219	100 U	100 U	100 U
Arsenic, Dissolved	7440-38-2_D	25	1.5	5.2	3.85	0.724 J	1.81	2.74
Iron, Dissolved	7439-89-6_D	300	6,260	2,330	2,750	5,030	1,500	25,700
Manganese, Dissolved	7439-96-5_D	300	219	566	551	1,240	143	200

Notes:

Bold indicates the analyte was detected

Shading indicates the result exceeded screening criteria

- -- = Not available
- J = The analyte was positively identified; the associated numerical value is the approximate concentration. SWMU = solid waste management unit
- U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit. ug/l = micrograms per liter

^{* -} Technical & Operational Guidance Series (TOGS) 1.1.1, New York State Ambient Water Quality Standards and Guidance Values, and Ground Water Effluent Limitations (Class GA). June 1998; modified January 1999; modified April 2000; modified June 2004.

^{** -} The TOGS Class GA Standards for total metals were used as screening criteria for dissolved metals

Table 3-4a
Groundwater Sampling Results for AOC B — Volatile Organic Compounds, December 2016
2016 and 2017 Groundwater Monitoring Results and Monitored Natural Attenuation Performance Evaluation Report Former Hampshire Chemical Corp. Facility, Waterloo, New York

Location			MW-01	MW-02	PZ-03	PZ	<u>′</u> -04	PZ-06	PZ-07R
Sample ID		ľ	MW01-120616	MW02-120616	PZ03-120716	PZ04-121316	DUP-GW-121316	PZ06-120616	PZ07R-121316
Sample Date		ľ	12/6/2016	12/6/2016	12/7/2016	12/13/2016	12/13/2016	12/7/2016	12/13/2016
Analyte	CAS#	TOGS 1.1.1 GA*							
VOA (ug/l)									
1,1,1-Trichloroethane	71-55-6	5	0.5 U	0.5 U	0.5 U				
1,1,2,2-Tetrachloroethane	79-34-5	5	0.5 U	0.5 U	0.5 U				
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1		2 U	2 UJ	2 U	2 U	2 U	2 U	2 U
1,1,2-Trichloroethane	79-00-5	1	0.5 U	0.5 U	0.5 U				
1,1-Dichloroethane	75-34-3	5	0.5 U	0.5 U	0.5 U				
1,1-Dichloroethene	75-35-4	5	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,3-Trichlorobenzene	87-61-6		0.5 U	0.5 U	0.5 U				
1,2,4-Trichlorobenzene	120-82-1	5	0.5 U	0.5 U	0.5 U				
1,2-Dibromo-3-chloropropane	96-12-8		1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dibromoethane	106-93-4		0.5 U	0.5 U	0.5 U				
1,2-Dichlorobenzene	95-50-1	3	0.5 U	0.5 U	0.5 U				
1,2-Dichloroethane	107-06-2	0.6	0.5 U	0.5 U	0.94 J	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethene, cis-	156-59-2	5	0.5 U	0.5 U	0.5 U				
1,2-Dichloroethene, trans-	156-60-5	5	0.5 U	0.5 U	0.5 U				
1,2-Dichloropropane	78-87-5	1	0.5 U	0.5 U	0.5 U				
1,3-Dichlorobenzene	541-73-1	3	0.5 U	0.5 U	0.5 U				
1,3-Dichloropropene, cis-	10061-01-5	0.4	0.5 U	0.5 U	0.5 U				
1,3-Dichloropropene, trans-	10061-02-6	0.4	0.5 U	0.5 U	0.5 U				
1,4-Dichlorobenzene	106-46-7	3	0.5 U	0.5 U	0.5 U				
2-Butanone	78-93-3	50	2.5 U	2.5 U	2.5 U				
2-Hexanone	591-78-6	50	2.5 U	2.5 U	2.5 U				
4-Methyl-2-pentanone (MIBK)	108-10-1	50 **	2.5 U	2.5 U	2.5 U				
Acetone	67-64-1	50	2.58 J	2.97 J	2.5 U	2.5 U	2.5 U	6.31 U	2.5 U
Benzene	71-43-2	1	0.5 U	0.5 U	0.5 U				
Bromochloromethane	74-97-5		0.5 U	0.5 U	0.5 U				
Bromodichloromethane	75-27-4	50	0.5 U	0.5 U	0.5 U				
Bromoform	75-25-2	50	0.5 U	0.5 U	0.5 U				
Bromomethane	74-83-9	5	0.5 UJ	0.5 UJ	0.5 UJ				
Carbon Disulfide	75-15-0	60	0.5 U	1.99	0.5 U	21 J	7.45 J	0.5 U	0.5 R
Carbon Tetrachloride	56-23-5	5	0.5 U	0.5 U	0.5 U				
Chlorobenzene	108-90-7	5	0.5 U	0.5 U	0.5 U				
Chloroethane	75-00-3	5	0.5 U	0.5 U	0.5 U				
Chloroform	67-66-3	7	1.32	0.5 U	0.5 U	9.8	9.71	0.5 U	0.5 U
Chloromethane	74-87-3	5	0.5 UJ	0.5 UJ	0.5 UJ	0.5 R	0.5 R	0.5 UJ	0.5 R
Cyclohexane	110-82-7		1 UJ	1 UJ	1 UJ	1 U	1 U	1 UJ	1 U
Dibromochloromethane	124-48-1	50	0.5 U	0.5 U	0.5 U				
Dichlorodifluoromethane	75-71-8		0.5 U	0.5 U	0.5 U				
Ethylbenzene	100-41-4	5	0.5 U	0.5 U	0.5 U				
Isopropylbenzene	98-82-8		0.5 U	0.5 U	0.5 U				
Methyl Acetate	79-20-9		1 U	1 UJ	1 U	1 U	1 U	1 U	1 U
Methylcyclohexane	108-87-2		1 U	1 UJ	1 U	1 U	1 U	1 U	1 U
Methylene Chloride	75-09-2	5	0.5 U	0.5 U	0.5 U	2.39 J	2.14 J	0.5 U	0.5 U
Styrene	100-42-5	5	0.5 U	0.5 U	0.5 U				
tert-Butyl Methyl Ether	1634-04-4		0.5 U	0.5 U	0.5 U				
Tetrachloroethene	127-18-4	5	0.5 U	0.5 U	0.5 U				
Toluene	108-88-3	5	0.5 U	0.5 U	0.5 U				
Trichloroethene	79-01-6	5	0.5 U	0.5 U	0.5 U				
Trichlorofluoromethane	75-69-4		0.5 U	0.5 U	0.5 U				
Vinyl Chloride	75-09-4	2	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 UJ	0.5 U	0.5 UJ
Xylene, m,p-	108-38-3/1		0.5 U	0.5 U	0.5 U	0.93 J	0.871 J	0.5 U	0.5 U
Xylene, o-	95-47-6		0.5 U	0.5 U	0.5 U				
Aylone, U	3J-41-U	- -	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0

- * Technical & Operational Guidance Series (TOGS) 1.1.1, New York State Ambient Water Quality Standards and Guidance Values, and Ground Water Effluent Limitations (Class GA). June 1998; modified January 1999; modified April 2000; modified June 2004.
- ** There is no TOGS Class GA Standard for MIBK. Per the NYSDEC (2005), the New York State Department of Health (NYSDOH) guidance value for MIBK

Bold indicates the analyte was detected

Shading indicates the result exceeded screening criteria

-- = Not available

AOC = area of concern

- J = The analyte was positively identified; the associated numerical value is the approximate concentration.
- R = The analyte result was rejected due to quality control issues.
- U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- UJ = The analyte was below the reported sample quantitation limit. However, the reported value is approximate. ug/l = micrograms per liter

Table 3-4b Groundwater Sampling Results for AOC B — Metals, December 2016

2016 and 2017 Groundwater Monitoring Results and Monitored Natural Attenuation Performance Evaluation Report Former Hampshire Chemical Corp. Facility, Waterloo, New York

Location			MW-01	MW-02	PZ-03	PZ	<u>Z</u> -04	PZ-06	PZ-07R
Sample ID			MW01-120616	MW02-120616	PZ03-120716	PZ04-121316	DUP-GW-121316	PZ06-120616	PZ07R-121316
Sample Date			12/6/2016	12/6/2016	12/7/2016	12/13/2016	12/13/2016	12/7/2016	12/13/2016
Analyte	CAS#	TOGS 1.1.1 GA*							
Metals (ug/l)									
Aluminum	7429-90-5		100 U	100 U	100 U	100 U	113 J	326	100 U
Arsenic	7440-38-2	25	7.11	0.736 J	28.9	1.76	2.07	7.06	7.58
Calcium	7440-70-2		98,600	117,000	185,000	83,800	84,800	18,000	179,000
Chromium	7440-47-3	50	2.35	2.52	1.82 J	7.02	7.08	4.7	1.76 J
Iron	7439-89-6	300	2,550	781	1,350	167	269	520	16,000
Magnesium	7439-95-4	35,000	12,000	13,100	87,200	16,400	16,700	5,030	50,200
Manganese	7439-96-5	300	155	91.9	304	14	18.3	14.2	270
Potassium	7440-09-7		4,790	4,610	8,820	18,800	19,000	5,540	13,800
Silica	7631-86-9		10,900	14,900	23,400	66,900		13,100	15,100
Silicon	7440-21-3		5,070	6,950	10,900	31,300		6,140	7,070
Sodium	7440-23-5	20,000	244,000	153,000	3,100,000	1,360,000	1,340,000	428,000	445,000
Metals, Dissolved (ug/l) **									
Aluminum, Dissolved	7429-90-5_D		100 U	100 U	100 U				
Arsenic, Dissolved	7440-38-2_D	25	5.94	0.597 J	24.4	1.58	1.61	3.51	6.18
Chromium, Dissolved	7440-47-3_D	50	2.34	2.46	1.82 J	5.76	5.15	2.32	1.38 J
Iron, Dissolved	7439-89-6_D	300	2,270	701	3,430	50 U	50 U	50 U	12,800
Manganese, Dissolved	7439-96-5_D	300	156	91.9	260	13.9	10.5	5 U	216

Notes:

Shading indicates the result exceeded screening criteria

- - = Not analyzed

-- = Not available

AOC = area of concern

J = The analyte was positively identified; the associated numerical value is the approximate concentration.

U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

^{* -} Technical & Operational Guidance Series (TOGS) 1.1.1, New York State Ambient Water Quality Standards and Guidance Values, and Ground Water Effluent Limitations (Class GA). June 1998; modified January 1999; modified April 2000; modified June 2004.

^{** -} The TOGS Class GA Standards for total metals were used as screening criteria for dissolved metals Bold indicates the analyte was detected

Table 3-4c Groundwater Sampling Results for AOC B — General Chemistry, December 2016

2016 and 2017 Groundwater Monitoring Results and Monitored Natural Attenuation Performance Evaluation Report Former Hampshire Chemical Corp. Facility, Waterloo, New York

Location			MW-01	MW-02	PZ-03	PZ	Z-04	PZ-06	PZ-07R
Sample ID			MW01-120616	MW02-120616	PZ03-120716	PZ04-121316	DUP-GW-121316	PZ06-120616	PZ07R-121316
Sample Date			12/6/2016	12/6/2016	12/7/2016	12/13/2016	12/13/2016	12/7/2016	12/13/2016
Analyte	CAS#	TOGS 1.1.1 GA*							
Wet Chemistry (ug/l)									
Alkalinity	ALK		186,000	214,000	405,000	1,740,000		563,000	427,000 J
Ammonia	7664-41-7		595	1,030	821	7,370		208	5,780
Chloride	16887-00-6	250,000	427,000	110,000	1,310,000	425,000		66,200	653,000
Nitrate	14797-55-8		908	6,100	2,220	2,100		720	325
Nitrate-Nitrite	NO2NO3		908	6,100	2,220	2,100		735	325
Nitrogen, Total Kjeldahl	7727-37-9		585	1,140	696	5,600		405	4,880
Orthophosphate	14265-44-2		25 U	98.9	25 U	10,000 U		135	25 U
Phosphorus, Total	7723-14-0		127 J	100 U	157 J	542 J		100 U	301 J
Sulfate	14808-79-8	250,000	82,300	313,000	352,000	955,000		47,800	367,000
Sulfide	18496-25-8	50	571 J	3,440	941 J	500 U		500 U	1,250
Total Dissolved Solids	TDS		1,010,000	872,000	3,060,000	1,700,000		1,110,000	960,000
Total Organic Carbon	TOC		8,210	6,020	7,590	22,000		2,930	8,240

Notes:

Bold indicates the analyte was detected

Shading indicates the result exceeded screening criteria

- - = Not analyzed
- -- = Not available

AOC = area of concern

- J = The analyte was positively identified; the associated numerical value is the approximate concentration.
- U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit. ug/l = micrograms per liter

^{* -} Technical & Operational Guidance Series (TOGS) 1.1.1, New York State Ambient Water Quality Standards and Guidance Values, and Ground Water Effluent Limitations (Class GA). June 1998; modified January 1999; modified April 2000; modified June 2004.

Table 3-5a

Groundwater Sampling Results for AOC D — **Metals, December 2016**

2016 and 2017 Groundwater Monitoring Results and Monitored Natural Attenuation Performance Evaluation Report Former Hampshire Chemical Corp. Facility, Waterloo, New York

Location			MW	'-11S	MW-21	MW-23	MW-24	MW-30	MW-31	MW-35	MW-36	MW-37
Sample ID			MW11S-120716	DUP-GW-120716-2	MW21-120816	MW23-120616	MW24-120816	MW30-120716	MW31-120816	MW35-120816	MW36-120816	MW37-120816
Sample Date			12/7/2016	12/7/2016	12/8/2016	12/6/2016	12/8/2016	12/7/2016	12/8/2016	12/8/2016	12/8/2016	12/8/2016
Analyte	CAS#	TOGS 1.1.1 GA*										
Metals (ug/l)												
Aluminum	7429-90-5		100 U	100 U	1,050 J	100 U	307	252	1,000 U	100 U	100 U	100 U
Arsenic	7440-38-2	25	1,130	1,120	4,100	37.3	9.48	31.4	32.9	8.96	169	2.19
Calcium	7440-70-2		3,400	3,240	2,710 J	169,000	164,000	49,500	3,470 J	155,000	97,200	216,000
Iron	7439-89-6	300	68.7 J	73.6 J	663 J	200	11,100	475	1,950	1,030	4,110	141
Magnesium	7439-95-4	35,000	3,730	3,810	2,500 U	22,900	96,500	20,500	3,060 J	94,000	74,000	88,800
Manganese	7439-96-5	300	10.1	8 J	50 U	78.1	302	26 J	50 U	174	36.4	362
Potassium	7440-09-7		2,030	1,950	5,000 U	11,400	7,020	7,360	11,800	4,310	5,340	3,900
Silica	7631-86-9		10,200		16,700 J	41,600	24,300	21,900	24,300	18,400	20,400	16,300
Silicon	7440-21-3		4,750		7,790 J	19,500	11,300	10,200	11,400	8,580	9,540	7,610
Sodium	7440-23-5	20,000	683,000	748,000	6,900,000	909,000	514,000	860,000	2,410,000	164,000	174,000	714,000
Metals, Dissolved (ug/l)	**											
Aluminum, Dissolved	7429-90-5_D		100 U	100 U	1,070 J	100 U	100 U	100 U	1,000 U	100 U	100 U	100 U
Arsenic, Dissolved	7440-38-2_D	25	1,110	1,110	3,940	35.1	8.94	2.84	29.8	8.39	162	1.98
Iron, Dissolved	7439-89-6_D	300	50 U	50 U	541 J	75.4 J	8,420	343	1,800	846	3,810	133
Manganese, Dissolved	7439-96-5_D	300	10.5	5 U	50 U	80.5	185	44.8 J	50 U	172	35.7	365

Notes

Bold indicates the analyte was detected

Shading indicates the result exceeded screening criteria

- - = Not analyzed
- -- = Not available

AOC = area of concern

J = The analyte was positively identified; the associated numerical value is the approximate concentration.

U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

^{* -} Technical & Operational Guidance Series (TOGS) 1.1.1, New York State Ambient Water Quality Standards and Guidance Values, and Ground Water Effluent Limitations (Class GA). June 1998; modified January 1999; modified April 2000; modified June 2004.

^{** -} The TOGS Class GA Standards for total metals were used as screening criteria for dissolved metals

Table 3-5b

Groundwater Sampling Results for AOC D — General Chemistry, December 2016

2016 and 2017 Groundwater Monitoring Results and Monitored Natural Attenuation Performance Evaluation Report Former Hampshire Chemical Corp. Facility, Waterloo, New York

Location			MW	′-11S	MW-21	MW-23	MW-24	MW-30	MW-31	MW-35	MW-36	MW-37
Sample ID			MW11S-120716	DUP-GW-120716-2	MW21-120816	MW23-120616	MW24-120816	MW30-120716	MW31-120816	MW35-120816	MW36-120816	MW37-120816
Sample Date			12/7/2016	12/7/2016	12/8/2016	12/6/2016	12/8/2016	12/7/2016	12/8/2016	12/8/2016	12/8/2016	12/8/2016
Analyte	CAS#	TOGS 1.1.1 GA*										
Wet Chemistry (ug/l)												
Alkalinity	ALK		431,000		13,300,000	738,000	809,000	563,000	4,510,000	322,000	398,000	266,000
Ammonia	7664-41-7		323		11,900	3,320	759	473	4,100	82.2 J	216	50 U
Chloride	16887-00-6	250,000	676,000		308,000	289,000	281,000	176,000	608,000	453,000	215,000	1,220,000
Nitrate	14797-55-8		732		13,900	3,080	2,220	16,800	16,200	804	844	696
Nitrate-Nitrite	NO2NO3		732		14,300	3,080	2,220	16,800	16,800	804	844	696
Nitrogen, Total Kjeldahl	7727-37-9		230		23,000	3,680	922	448	7,770	100 U	222	100 U
Orthophosphate	14265-44-2		400		23,000	638	25 U	279	9,070 J	45.4 J	27.9 J	51.7
Phosphorus, Total	7723-14-0		215		14,500	701	101 J	185 J	4,910	100 U	100 U	100 U
Sulfate	14808-79-8	250,000	261,000		1,040,000	1,240,000	975,000	232,000	380,000	166,000	233,000	836,000
Sulfide	18496-25-8	50	681 J		37,200	8,860	500 U	1,740	35,100	500 U	500 U	500 U
Total Dissolved Solids	TDS		1,870,000		16,000,000	3,110,000	2,470,000	1,670,000	3,550,000	1,330,000	1,040,000	3,300,000
Total Organic Carbon	TOC		3,420		729,000	132,000	10,000	7,410	255,000	1,530	2,970	2,020

Notes:

Bold indicates the analyte was detected

Shading indicates the result exceeded screening criteria

- - = Not analyzed
- -- = Not available

AOC = area of concern

J = The analyte was positively identified; the associated numerical value is the approximate concentration.

U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit. ug/l = micrograms per liter

^{* -} Technical & Operational Guidance Series (TOGS) 1.1.1, New York State Ambient Water Quality Standards and Guidance Values, and Ground Water Effluent Limitations (Class GA). June 1998; modified January 1999; modified April 2000; modified June 2004.

Table 3-6a
Groundwater Sampling Results for Supplemental Wells — Volatile Organic Compounds, December 2016
2016 and 2017 Groundwater Monitoring Results and Monitored Natural Attenuation Performance Evaluation Report
Former Hampshire Chemical Corp. Facility, Waterloo, New York

							NUL 005		NN4 40	NUL 00
Location				V-05I	MW-06	MW-07	MW-09R	MW-10	MW-19	MW-20
Sample ID			MW05I-120716	DUP-GW-120716-1	MW06-120716	MW07-120716	MW09R-120616	MW10-120716	MW19-121316	MW20-120716
Sample Date			12/7/2016	12/7/2016	12/7/2016	12/7/2016	12/6/2016	12/7/2016	12/13/2016	12/7/2016
Analyte	CAS#	TOGS 1.1.1 GA*								
VOA (ug/l)										
1,1,1-Trichloroethane	71-55-6	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	79-34-5	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
1,1,2-Trichloroethane	79-00-5	1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane	75-34-3	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethene	75-35-4	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,3-Trichlorobenzene	87-61-6		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,4-Trichlorobenzene	120-82-1	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dibromo-3-chloropropane	96-12-8		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dibromoethane	106-93-4		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichlorobenzene	95-50-1	3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethane	107-06-2	0.6	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethene, cis-	156-59-2	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	6.71	0.5 U
1,2-Dichloroethene, trans-	156-60-5	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	9.41	0.5 U
1,2-Dichloropropane	78-87-5	1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,3-Dichlorobenzene	541-73-1	3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,3-Dichloropropene, cis-	10061-01-5	0.4	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,3-Dichloropropene, trans-	10061-02-6	0.4	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,4-Dichlorobenzene	106-46-7	3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
2-Butanone	78-93-3	50	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
2-Hexanone	591-78-6	50	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
4-Methyl-2-pentanone (MIBK)	108-10-1	50 **	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
Acetone	67-64-1	50	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
Benzene	71-43-2	1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromochloromethane	74-97-5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromodichloromethane	75-27-4	50	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromoform	75-25-2	50	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromomethane	74-83-9	5	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ
Carbon Disulfide	75-15-0	60	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 R	0.5 U
Carbon Tetrachloride	56-23-5	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	108-90-7	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroethane	75-00-3	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroform	67-66-3	7	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloromethane	74-87-3	5	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 R	0.5 UJ
Cyclohexane	110-82-7		1 UJ	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ	1 U	1 UJ
Dibromochloromethane	124-48-1	50	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dichlorodifluoromethane	75-71-8		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	30.5	0.5 U
Ethylbenzene	100-41-4	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Isopropylbenzene	98-82-8		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl Acetate	79-20-9		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methylcyclohexane	108-87-2		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methylene Chloride	75-09-2	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Styrene	100-42-5	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
tert-Butyl Methyl Ether	1634-04-4		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Tetrachloroethene	127-18-4	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Toluene	108-88-3	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethene	79-01-6	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichlorofluoromethane	75-69-4		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.629 J 0.5 U	0.5 U
	75-69-4 75-01-4	2	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U
Vilona m.n.										
Xylene, m,p-	108-38-3/1		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Xylene, o-	95-47-6		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

1 of 2

Table 3-6a

Groundwater Sampling Results for Supplemental Wells — Volatile Organic Compounds, December 2016

2016 and 2017 Groundwater Monitoring Results and Monitored Natural Attenuation Performance Evaluation Report Former Hampshire Chemical Corp. Facility, Waterloo, New York

Notes:

- * Technical & Operational Guidance Series (TOGS) 1.1.1, New York State Ambient Water Quality Standards and Guidance Values, and Ground Water Effluent Limitations (Class GA). June 1998; modified January 1999; modified April 2000; modified June 2004.
- ** There is no TOGS Class GA Standard for MIBK. Per the NYSDEC (2005), the New York State Department of Health (NYSDOH) guidance value for MIBK

Bold indicates the analyte was detected

Shading indicates the result exceeded screening criteria

- -- = Not available
- J = The analyte was positively identified; the associated numerical value is the approximate concentration.
- R = The analyte result was rejected due to quality control issues.
- U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- UJ = The analyte was below the reported sample quantitation limit. However, the reported value is approximate.
- ug/l = micrograms per liter

Table 3-6b
Groundwater Sampling Results for Supplemental Wells — Semivolatile Organic Compounds, December 2016
2016 and 2017 Groundwater Monitoring Results and Monitored Natural Attenuation Performance Evaluation Report
Former Hampshire Chemical Corp. Facility, Waterloo, New York

					1414.00	1414 07	MW 00D	1.014.40	100/10	1444.00
Location				V-05I	MW-06	MW-07	MW-09R	MW-10	MW-19	MW-20
Sample ID			MW05I-120716	DUP-GW-120716-1	MW06-120716	MW07-120716	MW09R-120616	MW10-120716	MW19-121316	MW20-120716
Sample Date			12/7/2016	12/7/2016	12/7/2016	12/7/2016	12/6/2016	12/7/2016	12/13/2016	12/7/2016
Analyte	CAS#	TOGS 1.1.1 GA*								
SVOA (ug/l)										
1,1'-Biphenyl	92-52-4		3.42 U	2.69 U	2.66 U	2.5 U	2.78 U	2.75 U	2.81 U	2.81 U
1,3,5-Trinitrobenzene	99-35-4		3.42 U	2.69 U	2.66 U	2.5 U	2.78 U	2.75 U	2.81 U	2.81 U
1,3-Dinitrobenzene	99-65-0		3.42 U	2.69 U	2.66 U	2.5 U	2.78 U	2.75 U	2.81 U	2.81 U
1,4-Dioxane	123-91-1		6.85 UJ	5.38 UJ	5.32 UJ	5 UJ	5.56 U	5.49 UJ	5.62 UJ	5.62 UJ
2,4,5-Trichlorophenol	95-95-4		3.42 U	2.69 U	2.66 U	2.5 U	2.78 U	2.75 U	2.81 U	2.81 U
2,4,6-Trichlorophenol	88-06-2		3.42 U	2.69 U	2.66 U	2.5 U	2.78 U	2.75 U	2.81 U	2.81 U
2,4-Dichlorophenol	120-83-2	5	3.42 U	2.69 U	2.66 U	2.5 U	2.78 U	2.75 U	2.81 U	2.81 U
2,4-Dimethylphenol	105-67-9	50	3.42 U	2.69 U	2.66 U	2.5 U	2.78 U	2.75 U	2.81 U	2.81 U
2,4-Dinitrophenol	51-28-5	1	17.1 U	13.4 U	13.3 U	12.5 U	13.9 U	13.7 U	14 U	14 U
2,4-Dinitrotoluene	121-14-2	5	3.42 U	2.69 U	2.66 U	2.5 U	2.78 U	2.75 U	2.81 U	2.81 U
2,6-Dinitrotoluene	606-20-2	5	3.42 U	2.69 U	2.66 U	2.5 U	2.78 U	2.75 U	2.81 U	2.81 U
2-Chloronaphthalene	91-58-7	10	3.42 U	2.69 U	2.66 U	2.5 U	2.78 U	2.75 U	2.81 U	2.81 U
2-Chlorophenol	95-57-8		3.42 U	2.69 U	2.66 U	2.5 U	2.78 U	2.75 U	2.81 U	2.81 U
2-Methylnaphthalene	91-57-6		0.0272 U	0.0258 U	0.0272 U	0.0269 U	0.269 U	0.0255 U	0.0258 U	0.0272 U
2-Methylphenol	95-48-7		3.42 U	2.69 U	2.66 U	2.5 U	2.78 U	2.75 U	2.81 U	2.81 U
2-Nitroaniline	88-74-4	5	17.1 U	13.4 U	13.3 U	12.5 U	13.9 U	13.7 U	14 U	14 U
2-Nitrophenol	88-75-5		3.42 U	2.69 U	2.66 U	2.5 U	2.78 U	2.75 U	2.81 U	2.81 U
3,3'-Dichlorobenzidine	91-94-1	5	3.42 U	2.69 U	2.66 U	2.5 U	2.78 U	2.75 U	2.81 U	2.81 U
3-,4-Methylphenol	1319-77-3		3.42 U	2.69 U	2.66 U	2.5 U	2.78 U	2.75 U	2.81 U	2.81 U
3-Nitroaniline	99-09-2	5	17.1 U	13.4 U	13.3 U	12.5 U	13.9 U	13.7 U	14 U	14 U
4-Bromophenyl Phenyl Ether	101-55-3		3.42 U	2.69 U	2.66 U	2.5 U	2.78 U	2.75 U	2.81 U	2.81 U
4-Chloroaniline	106-47-8	5	3.42 U	2.69 U	2.66 U	2.5 U	2.78 U	2.75 U	2.81 U	2.81 U
4-Nitrophenol	100-02-7		17.1 U	13.4 U	13.3 U	12.5 U	13.9 U	13.7 U	14 U	14 U
Acenaphthene	83-32-9	20	0.0272 U	0.0258 U	0.0272 U	0.0269 U	0.269 U	0.0255 U	0.0362 J	0.0272 U
Acenaphthylene	208-96-8 120-12-7	 50	0.0272 U 0.0272 U	0.0258 U	0.0272 U 0.0272 U	0.0269 U 0.0269 U	0.269 U 0.269 U	0.0255 U 0.0255 U	0.0258 U 0.0258 U	0.0272 U 0.0272 U
Anthracene Benzo(a)anthracene	56-55-3	0.002	0.0272 U	0.0258 U 0.0258 U	0.0272 U	0.0269 U	0.269 U	0.0255 U	0.0258 U	0.0272 U
Benzo(a)pyrene	50-32-8	0.002	0.0272 U	0.0258 U	0.0272 U	0.0269 U	0.269 U	0.0255 U	0.0258 U	0.0272 U
Benzo(a)pyrene Benzo(b)fluoranthene	205-99-2	0.002	0.0272 U	0.0258 U	0.0272 U	0.0269 U	0.269 U	0.0255 U	0.0258 U	0.0272 U
Benzo(g,h,i)perylene	191-24-2	0.002	0.0272 U	0.0258 U	0.0272 U	0.0269 U	0.269 U	0.0255 U	0.0258 U	0.0272 U
Benzo(k)fluoranthene	207-08-9	0.002	0.0272 U	0.0258 U	0.0272 U	0.0269 U	0.269 U	0.0255 U	0.0258 U	0.0272 U
Benzoic Acid	65-85-0	0.002	13.7 U	10.8 U	10.6 U	10 U	11.1 U	11 U	11.2 UJ	11.2 U
Benzyl Alcohol	100-51-6		3.42 U	2.69 U	2.66 U	2.5 U	2.78 U	2.75 U	2.81 U	2.81 U
Bis (2-chloroethoxy) Methane	111-91-1	5	3.42 U	2.69 U	2.66 U	2.5 U	2.78 U	2.75 U	2.81 U	2.81 U
Bis (2-chloroethyl) Ether	111-44-4	1	3.42 U	2.69 U	2.66 U	2.5 U	2.78 U	2.75 U	2.81 U	2.81 U
Bis (2-ethylhexyl) Phthalate	117-81-7	5	3.42 U	2.69 U	2.66 U	2.5 U	2.78 U	2.75 U	2.81 U	2.81 U
Butyl Benzyl Phthalate	85-68-7	50	3.42 U	2.69 U	2.66 U	2.5 U	2.78 U	2.75 U	2.81 U	2.81 U
Carbazole	86-74-8		3.42 U	2.69 U	2.66 U	2.5 U	2.78 U	2.75 U	2.81 U	2.81 U
Chrysene	218-01-9	0.002	0.0272 U	0.0258 U	0.0272 U	0.0269 U	0.269 U	0.0255 U	0.0258 U	0.0272 U
Dibenzo (a,h) Anthracene	53-70-3		0.0272 U	0.0258 U	0.0272 U	0.0269 U	0.269 U	0.0255 U	0.0258 U	0.0272 U
Dibenzofuran	132-64-9		3.42 U	2.69 U	2.66 U	2.5 U	2.78 U	2.75 U	2.81 U	2.81 U
Diethylphthalate	84-66-2	50	3.42 U	2.69 U	2.66 U	2.5 U	2.78 U	2.75 U	2.81 U	2.81 U
Dimethylphthalate	131-11-3	50	3.42 U	2.69 U	2.66 U	2.5 U	2.78 U	2.75 U	2.81 U	2.81 U
Di-n-butylphthalate	84-74-2	50	3.42 U	2.69 U	2.66 U	2.5 U	2.78 U	2.75 U	2.81 U	2.81 U
Di-n-octylphthalate	117-84-0	50	3.42 U	2.69 U	2.66 U	2.5 U	2.78 U	2.75 U	2.81 U	2.81 U
Fluoranthene	206-44-0	50	0.0272 U	0.0258 U	0.0272 U	0.0269 U	0.269 U	0.0255 U	0.283	0.0272 U
Fluorene	86-73-7	50	0.0272 U	0.0258 U	0.0272 U	0.0269 U	0.269 U	0.0255 U	0.0258 U	0.0272 U
Hexachlorobenzene	118-74-1	0.04	3.42 U	2.69 U	2.66 U	2.5 U	2.78 U	2.75 U	2.81 U	2.81 U
Hexachlorobutadiene	87-68-3	0.5	3.42 U	2.69 U	2.66 U	2.5 U	2.78 U	2.75 U	2.81 U	2.81 U
Hexachlorocyclopentadiene	77-47-4	5	3.42 U	2.69 U	2.66 U	2.5 U	2.78 U	2.75 U	2.81 U	2.81 U
Hexachloroethane	67-72-1	5	3.42 U	2.69 U	2.66 U	2.5 U	2.78 U	2.75 U	2.81 U	2.81 U
Indeno (1,2,3-c,d) Pyrene	193-39-5	0.002	0.0272 U	0.0258 U	0.0272 U	0.0269 U	0.269 U	0.0255 U	0.0258 U	0.0272 U
Isophorone	78-59-1	50	3.42 U	2.69 U	2.66 U	2.5 U	2.78 U	2.75 U	2.81 U	2.81 U
Naphthalene	91-20-3	10	0.0272 U	0.0258 U	0.0272 U	0.0269 U	0.269 U	0.0255 U	0.0258 U	0.0272 U
Nitrobenzene	98-95-3	0.4	3.42 U	2.69 U	2.66 U	2.5 U	2.78 U	2.75 U	2.81 U	2.81 U

1 of 2

Table 3-6b

Groundwater Sampling Results for Supplemental Wells — Semivolatile Organic Compounds, December 2016

2016 and 2017 Groundwater Monitoring Results and Monitored Natural Attenuation Performance Evaluation Report Former Hampshire Chemical Corp. Facility, Waterloo, New York

Location	ocation		MV	V-05I	MW-06	MW-07	MW-09R	MW-10	MW-19	MW-20
Sample ID			MW05I-120716	DUP-GW-120716-1	MW06-120716	MW07-120716	MW09R-120616	MW10-120716	MW19-121316	MW20-120716
Sample Date			12/7/2016	12/7/2016	12/7/2016	12/7/2016	12/6/2016	12/7/2016	12/13/2016	12/7/2016
Analyte	CAS#	TOGS 1.1.1 GA*								
n-Nitrosodiphenylamine	86-30-6	50	3.42 U	2.69 U	2.66 U	2.5 U	2.78 U	2.75 U	2.81 U	2.81 U
Pentachlorophenol	87-86-5	1	17.1 U	13.4 U	13.3 U	12.5 U	13.9 U	13.7 U	14 U	14 U
Phenanthrene	85-01-8	50	0.0272 U	0.0258 U	0.0272 U	0.0269 U	0.269 U	0.0255 U	0.0258 U	0.0272 U
Phenol	108-95-2	1	3.42 U	2.69 U	2.66 U	2.5 U	2.78 U	2.75 U	2.81 U	2.81 U
Pyrene	129-00-0	50	0.0272 U	0.0258 U	0.0272 U	0.0269 U	0.269 U	0.0255 U	0.211	0.0272 U

Notes:

* - Technical & Operational Guidance Series (TOGS) 1.1.1, New York State Ambient Water Quality Standards and Guidance Values, and Ground Water Effluent Limitations (Class GA). June 1998; modified January 1999; modified April 2000; modified June 2004.

Bold indicates the analyte was detected

- -- = Not available
- J = The analyte was positively identified; the associated numerical value is the approximate concentration.
- U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- UJ = The analyte was below the reported sample quantitation limit. However, the reported value is approximate.
- ug/l = micrograms per liter

Table 3-6c

Groundwater Sampling Results for Supplemental Wells — Metals, December 2016

2016 and 2017 Groundwater Monitoring Results and Monitored Natural Attenuation Performance Evaluation Report Former Hampshire Chemical Corp. Facility, Waterloo, New York

Location Sample ID Sample Date Analyte	CAS#	TOGS 1.1.1 GA*	MV MW05I-120716 12/7/2016	V-05I DUP-GW-120716-1 12/7/2016	MW-06 MW06-120716 12/7/2016	MW-07 MW07-120716 12/7/2016	MW-09R MW09R-120616 12/6/2016	MW-10 MW10-120716 12/7/2016	MW-19 MW19-121316 12/13/2016	MW-20 MW20-120716 12/7/2016
Metals (ug/l)										
Aluminum	7429-90-5		100 U	100 U	100 U	308	100 U	252	100 U	100 U
Arsenic	7440-38-2	25	1.08	0.936 J	0.694 J	4.54 J	6.88 J	14.1	7.36	0.5 U
Calcium	7440-70-2		77,500	77,500	124,000	61,600	319,000	45,100	141,000	109,000
Iron	7439-89-6	300	208	176	50 U	236	7,020	245	2,540	50 U
Magnesium	7439-95-4	35,000	19,200	20,100	19,100	8,460	96,400	4,550	42,900	17,200
Manganese	7439-96-5	300	85.1	82.4	7.5 J	5.45 J	735	5 U	872	5 U
Potassium	7440-09-7		4,110	4,080	1,720	3,080	10,900	1,020	1,020	5,690
Sodium	7440-23-5	20,000	71,700	72,100	31,200	260,000	732,000	110,000	108,000	16,800
Metals, Dissolved (ug/l) **										
Aluminum, Dissolved	7429-90-5_D		100 U	100 U	100 U	100 U	100 U	100 U	100 U	100 U
Arsenic, Dissolved	7440-38-2_D	25	0.991 J	1.2	0.752 J	5.84 J	5.36	11.4	7.89	0.513 J
Iron, Dissolved	7439-89-6_D	300	177	170	50 U	50 U	6,640	50 U	2,470	50 U
Manganese, Dissolved	7439-96-5_D	300	84.1	82.6	5 U	5 U	700	5 U	820	6.25 J

Bold indicates the analyte was detected

Shading indicates the result exceeded screening criteria

- -- = Not available
- J = The analyte was positively identified; the associated numerical value is the approximate concentration.
- U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

^{* -} Technical & Operational Guidance Series (TOGS) 1.1.1, New York State Ambient Water Quality Standards and Guidance Values, and Ground Water Effluent Limitations (Class GA). June 1998; modified January 1999; modified April 2000; modified June 2004.

^{** -} The TOGS Class GA Standards for total metals were used as screening criteria for dissolved metals

Table 3-7a
Groundwater Sampling Results for SWMU 1 — Volatile Organic Compounds, August 2017
2016 and 2017 Groundwater Monitoring Results and Monitored Natural Attenuation Performance Evaluation Report
Former Hampshire Chemical Corp. Facility, Waterloo, New York

Location			MW-16I	MV	V-17	MW-18	MW-26	TW-01
Sample ID			MW16I-082417	MW17-082417	DUP-GW-082417	MW18-082417	MW26-082417	TW01-082417
Sample Date			08/24/2017	08/24/2017	08/24/2017	08/24/2017	08/24/2017	08/24/2017
Analyte	CAS#	TOGS 1.1.1 GA*						
VOA (ug/l)								
1,1,1-Trichloroethane	71-55-6	5	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,1,2,2-Tetrachloroethane	79-34-5	5	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1		2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
1,1,2-Trichloroethane	79-00-5	1	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,1-Dichloroethane	75-34-3	5	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,1-Dichloroethene	75-35-4	5	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,2,3-Trichlorobenzene	87-61-6		0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,2,4-Trichlorobenzene	120-82-1	5	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,2-Dibromo-3-chloropropane	96-12-8		1.00 UJ	1.00 UJ	1.00 UJ	1.00 UJ	1.00 U	1.00 UJ
1,2-Dibromoethane	106-93-4		0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,2-Dichlorobenzene	95-50-1	3	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,2-Dichloroethane	107-06-2	0.6	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,2-Dichloroethene, cis-	156-59-2	5	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,2-Dichloroethene, trans-	156-60-5	5	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,2-Dichloropropane	78-87-5	1	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,3-Dichlorobenzene	541-73-1	3	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,3-Dichloropropene, cis-	10061-01-5	0.4	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,3-Dichloropropene, trans-	10061-02-6	0.4	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,4-Dichlorobenzene	106-46-7	3	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
2-Butanone	78-93-3	50	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U
2-Hexanone	591-78-6	50	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U
4-Methyl-2-pentanone (MIBK)	108-10-1	50	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U
Acetone	67-64-1	50	3.23 U	2.50 U	2.50 U	3.16 U	2.50 U	3.89 U
Benzene	71-43-2	1	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Bromochloromethane	74-97-5		0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Bromodichloromethane	75-27-4	50	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Bromoform	75-25-2	50	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Bromomethane	74-83-9	5	0.500 U	0.500 U	0.500 U	0.500 U	0.500 UJ	0.500 U
Carbon Disulfide	75-15-0	60	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Carbon Tetrachloride	56-23-5	5	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Chlorobenzene	108-90-7	5	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Chloroethane	75-00-3	5	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Chloroform	67-66-3	7	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Chloromethane	74-87-3	5	0.500 U	0.573 J	0.500 U	0.500 U	0.500 U	0.500 U
Cyclohexane	110-82-7		1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Dibromochloromethane	124-48-1	50	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U

Table 3-7a
Groundwater Sampling Results for SWMU 1 — Volatile Organic Compounds, August 2017
2016 and 2017 Groundwater Monitoring Results and Monitored Natural Attenuation Performance Evaluation Report
Former Hampshire Chemical Corp. Facility, Waterloo, New York

Location			MW-16I	MV	V-17	MW-18	MW-26	TW-01
Sample ID			MW16I-082417	MW17-082417	DUP-GW-082417	MW18-082417	MW26-082417	TW01-082417
Sample Date			08/24/2017	08/24/2017	08/24/2017	08/24/2017	08/24/2017	08/24/2017
Analyte	CAS#	TOGS 1.1.1 GA*						
Dichlorodifluoromethane	75-71-8		0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Epichlorohydrin	106-89-8	5	0 UN	0 UN	0 UN	0 UN	0 UN	0 UN
Ethylbenzene	100-41-4	5	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Isopropylbenzene	98-82-8		0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Methyl Acetate	79-20-9		1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Methylcyclohexane	108-87-2		1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Methylene Chloride	75-09-2	5	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Styrene	100-42-5	5	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
tert-Butyl Methyl Ether	1634-04-4		0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Tetrachloroethene	127-18-4	5	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Toluene	108-88-3	5	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Trichloroethene	79-01-6	5	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Trichlorofluoromethane	75-69-4		0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Vinyl Chloride	75-01-4	2	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Xylene, m,p-	179601-23-1		0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Xylene, o-	95-47-6		0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U

SWMU = solid waste management unit

U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

UJ = The analyte was below the reported sample quantitation limit. However, the reported value is approximate. ug/l = micrograms per liter

^{* -} Technical & Operational Guidance Series (TOGS) 1.1.1, New York State Ambient Water Quality Standards and Guidance Values, and Ground Water Effluent Limitations (Class GA). June 1998; modified January 1999; modified April 2000; modified June 2004.

^{** -} There is no TOGS Class GA Standard for MIBK. Per the NYSDEC (2005), the New York State Department of Health (NYSDOH) guidance value for MIBK

^{-- =} Not available

J = The analyte was positively identified; the associated numerical value is the approximate concentration.

Table 3-7b

Groundwater Sampling Results for SWMU 1 — Semivolatile Organic Compounds, August 2017

2016 and 2017 Groundwater Monitoring Results and Monitored Natural Attenuation Performance Evaluation Report Former Hampshire Chemical Corp. Facility, Waterloo, New York

Location			MW-16I	MV	V-17	MW-18	MW-26	TW-01
Sample ID			MW16I-082417	MW17-082417	DUP-GW-082417	MW18-082417	MW26-082417	TW01-082417
Sample Date			08/24/2017	08/24/2017	08/24/2017	08/24/2017	08/24/2017	08/24/2017
Analyte	CAS#	TOGS 1.1.1 GA*						
VOA (ug/l)								
2-Methylnaphthalene	91-57-6		0.0250 U	0.0287 U	0.0269 U	0.0260 U	0.0250 U	0.0272 UJ
Acenaphthene	83-32-9	20	0.0250 U	0.0287 U	0.0269 U	0.0260 U	0.0250 U	0.0272 UJ
Acenaphthylene	208-96-8		0.0250 U	0.0287 U	0.0269 U	0.0260 U	0.0250 U	0.0272 UJ
Anthracene	120-12-7	50	0.0250 U	0.0287 U	0.0269 U	0.0260 U	0.0250 U	0.0272 UJ
Benzo(a)anthracene	56-55-3	0.002	0.0250 U	0.0287 U	0.0269 U	0.0260 U	0.0250 U	0.0272 UJ
Benzo(a)pyrene	50-32-8	0.002	0.0250 U	0.0287 U	0.0269 U	0.0260 U	0.0250 U	0.0272 UJ
Benzo(b)fluoranthene	205-99-2	0.002	0.0250 U	0.0287 U	0.0269 U	0.0260 U	0.0250 U	0.0272 UJ
Benzo(g,h,i)perylene	191-24-2		0.0250 U	0.0287 U	0.0269 U	0.0260 U	0.0250 U	0.0272 UJ
Benzo(k)fluoranthene	207-08-9	0.002	0.0250 U	0.0287 U	0.0269 U	0.0260 U	0.0250 U	0.0272 UJ
Chrysene	218-01-9	0.002	0.0250 U	0.0287 U	0.0269 U	0.0260 U	0.0250 U	0.0272 UJ
Dibenzo (a,h) Anthracene	53-70-3		0.0250 U	0.0287 U	0.0269 U	0.0260 U	0.0250 U	0.0272 UJ
Fluoranthene	206-44-0	50	0.0250 U	0.0287 U	0.0269 U	0.0260 U	0.0250 U	0.0272 UJ
Fluorene	86-73-7	50	0.0250 U	0.0287 U	0.0269 U	0.0260 U	0.0250 U	0.0272 UJ
Indeno (1,2,3-c,d) Pyrene	193-39-5	0.002	0.0250 U	0.0287 U	0.0269 U	0.0260 U	0.0250 U	0.0272 UJ
Naphthalene	91-20-3	10	0.0250 U	0.0287 U	0.0269 U	0.0335 J	0.0269 J	0.0272 UJ
Phenanthrene	85-01-8	50	0.0250 U	0.0287 U	0.0269 U	0.0260 U	0.0250 U	0.0272 UJ
Pyrene	129-00-0	50	0.0250 U	0.0287 U	0.0269 U	0.0260 U	0.0250 U	0.0272 UJ

* - Technical & Operational Guidance Series (TOGS) 1.1.1, New York State Ambient Water Quality Standards and Guidance Values, and Ground Water Effluent Limitations (Class GA). June 1998; modified January 1999; modified April 2000; modified June 2004.

Bold indicates the analyte was detected

Shading indicates the result exceeded screening criteria

- -- = Not available
- J = The analyte was positively identified; the associated numerical value is the approximate concentration.

SWMU = solid waste management unit

- U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- UJ = The analyte was below the reported sample quantitation limit. However, the reported value is approximate.

Table 3-7c Groundwater Sampling Results for SWMU 1 — Metals, August 2017 2016 and 2017 Groundwater Monitoring Results and Monitored Natural Attenuation Performance Evaluation Report Former Hampshire Chemical Corp. Facility, Waterloo, New York

Location			MW-16I	MV	V-17	MW-18	MW-26	TW-01
Sample ID			MW16I-082417	MW17-082417	DUP-GW-082417	MW18-082417	MW26-082417	TW01-082417
Sample Date			08/24/2017	08/24/2017	08/24/2017	08/24/2017	08/24/2017	08/24/2017
Analyte	CAS#	TOGS 1.1.1 GA*						
Metals (ug/l)								
Aluminum	7429-90-5		100 U	100 U	100 U	182 J	100 U	100 U
Arsenic	7440-38-2	25	1.39	9.50	9.00	3.96	0.938 J	3.33
Calcium	7440-70-2		106,000	146,000	147,000	141,000	67,100	168,000
Iron	7439-89-6	300	8,150	3,330	3,300	22,000	509	48,900
Magnesium	7439-95-4	35,000	18,700	28,300	28,300	21,100	13,200	38,600
Manganese	7439-96-5	300	338	624	630	911	381	374
Potassium	7440-09-7		4,820	7,940	7,970	9,020	3,540	10,800
Sodium	7440-23-5	20,000	71,300	91,000	91,000	145,000	69,900	92,200
Metals, Dissolved (ug/l) **								
Aluminum, Dissolved	7429-90-5		100 U	100 U	100 U	100 U	100 U	100 U
Arsenic, Dissolved	7440-38-2	25	1.54	9.07	8.67	4.03	1.01	3.07
Iron, Dissolved	7439-89-6	300	9,110	3,260	3,280	21,500	465	48,600
Manganese, Dissolved	7439-96-5	300	356	620	629	920	376	376

Bold indicates the analyte was detected

Shading indicates the result exceeded screening criteria

- -- = Not available
- J = The analyte was positively identified; the associated numerical value is the approximate concentration.

SWMU = solid waste management unit

U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit. ug/l = micrograms per liter

^{* -} Technical & Operational Guidance Series (TOGS) 1.1.1, New York State Ambient Water Quality Standards and Guidance Values, and Ground Water Effluent Limitations (Class GA). June 1998; modified January 1999; modified April 2000; modified June 2004.

^{** -} The TOGS Class GA Standards for total metals were used as screening criteria for dissolved metals

Table 3-8a
Groundwater Sampling Results for AOC B — Volatile Organic Compounds, August 2017
2016 and 2017 Groundwater Monitoring Results and Monitored Natural Attenuation Performance Evaluation Report
Former Hampshire Chemical Corp. Facility, Waterloo, New York

Location			MW-02	l F	PZ-04	PZ-06
Sample ID			MW02-082217	PZ04-082317	DUP-GW-082317-1	PZ06-082317
Sample Date			08/22/2017	08/23/2017	08/23/2017	08/23/2017
Analyte	CAS#	TOGS 1.1.1 GA*	00, 12, 20	00/20/2011	00,20,2011	00/20/2011
VOA (ug/l)	0.10					
1,1,1-Trichloroethane	71-55-6	5	0.500 U	0.500 U	0.500 U	0.500 U
1,1,2,2-Tetrachloroethane	79-34-5	5	0.500 U	0.500 U	0.500 U	0.500 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1		2.00 U	2.00 U	2.00 U	2.00 U
1,1,2-Trichloroethane	79-00-5	1	0.500 U	0.500 U	0.500 U	0.500 U
1,1-Dichloroethane	75-34-3	5	0.500 U	0.500 U	0.500 U	0.500 U
1,1-Dichloroethene	75-35-4	5	0.500 U	0.500 U	0.500 UJ	0.500 U
1,2,3-Trichlorobenzene	87-61-6		0.500 U	0.500 U	0.500 U	0.500 U
1,2,4-Trichlorobenzene	120-82-1	5	0.500 U	0.500 U	0.500 U	0.500 U
1,2-Dibromo-3-chloropropane	96-12-8		1.00 UJ	1.00 UJ	1.00 UJ	1.00 UJ
1,2-Dibromoethane	106-93-4		0.500 U	0.500 U	0.500 U	0.500 U
1,2-Dichlorobenzene	95-50-1	3	0.500 U	0.500 U	0.500 U	0.500 U
1,2-Dichloroethane	107-06-2	0.6	0.500 U	0.500 U	0.500 U	0.500 U
1,2-Dichloroethene, cis-	156-59-2	5	0.500 U	0.500 U	0.500 U	0.500 U
1,2-Dichloroethene, trans-	156-60-5	5	0.500 U	0.500 U	0.500 U	0.500 U
1,2-Dichloropropane	78-87-5	1	0.500 U	0.500 U	0.500 U	0.500 U
1,3-Dichlorobenzene	541-73-1	3	0.500 U	0.500 U	0.500 U	0.500 U
1,3-Dichloropropene, cis-	10061-01-5	0.4	0.500 U	0.500 U	0.500 U	0.500 U
1,3-Dichloropropene, trans-	10061-02-6	0.4	0.500 U	0.500 U	0.500 U	0.500 U
1,4-Dichlorobenzene	106-46-7	3	0.500 U	0.500 U	0.500 U	0.500 U
2-Butanone	78-93-3	50	2.50 U	2.50 U	2.50 U	2.50 U
2-Hexanone	591-78-6	50	2.50 U	2.50 U	2.50 UJ	2.50 U
4-Methyl-2-pentanone (MIBK)	108-10-1	50 **	2.50 U	2.50 U	2.50 U	2.50 U
Acetone	67-64-1	50	3.23 U	2.73 U	3.72 U	14.1 U
Benzene	71-43-2	1	0.500 U	0.500 U	0.500 U	0.500 U
Bromochloromethane	74-97-5		0.500 U	0.500 U	0.500 U	0.500 U
Bromodichloromethane	75-27-4	50	0.500 U	0.500 U	0.500 U	0.500 U
Bromoform	75-25-2	50	0.500 U	0.500 U	0.500 U	0.500 U
Bromomethane	74-83-9	5	0.500 U	0.500 U	0.500 UJ	0.500 U
Carbon Disulfide	75-15-0	60	18.9 J	7.07 J	14.3 J	0.500 U
Carbon Tetrachloride	56-23-5	5	0.500 U	0.500 U	0.500 U	0.500 U
Chlorobenzene	108-90-7	5	0.500 U	0.500 U	0.500 UJ	0.500 U
Chloroethane	75-00-3	5	0.500 U	0.500 U	0.500 U	0.500 U
Chloroform	67-66-3	7	1.07 U	1.16 U	1.31 U	0.500 U
Chloromethane	74-87-3	5	0.500 U	0.500 U	0.500 U	0.613 J
Cyclohexane	110-82-7		1.00 U	1.00 U	1.00 U	1.00 U
Dibromochloromethane	124-48-1	50	0.500 U	0.500 U	0.500 U	0.500 U
Dichlorodifluoromethane	75-71-8		0.500 U	0.500 U	0.500 U	0.500 U
Epichlorohydrin	106-89-8	5	0 UN	0 UN	0 UN	0 UN
Ethylbenzene	100-41-4	5	0.500 U	0.500 U	1.03	0.500 U
Isopropylbenzene	98-82-8		0.500 U	0.500 U	0.500 U	0.500 U
Methyl Acetate	79-20-9		1.00 U	1.00 U	1.00 U	1.00 U
Methylcyclohexane	108-87-2		1.00 U	1.00 U	1.00 U	1.00 U
Methylene Chloride	75-09-2	5	0.896 J	0.500 U	0.500 U	0.500 U
Styrene	100-42-5	5	0.500 U	0.500 U	0.500 U	0.500 U
tert-Butyl Methyl Ether	1634-04-4		0.500 U	0.500 U	0.500 U	0.500 U
Tetrachloroethene	127-18-4	5	0.500 U	0.500 U	0.500 U	0.500 U
Toluene	108-88-3	5	0.500 U	0.500 U	0.500 U	0.500 U
Trichloroethene	79-01-6	5	0.500 U	0.500 U	0.500 U	0.500 U
Trichlorofluoromethane	75-69-4		0.500 U	0.500 U	0.500 U	0.500 U
Vinyl Chloride	75-01-4	2	0.500 U	0.500 U	0.500 U	0.500 U
Xylene, m,p-	179601-23-1		0.500 U	0.965 J	0.869 J	0.500 U
Xylene, o-	95-47-6		0.500 U	0.500 U	0.500 U	0.500 U

Table 3-8a

Groundwater Sampling Results for AOC B — Volatile Organic Compounds, August 2017

2016 and 2017 Groundwater Monitoring Results and Monitored Natural Attenuation Performance Evaluation Report Former Hampshire Chemical Corp. Facility, Waterloo, New York Notes:

* - Technical & Operational Guidance Series (TOGS) 1.1.1, New York State Ambient Water Quality Standards and Guidance Values, and Ground Water Effluent Limitations (Class GA). June 1998; modified January 1999; modified April 2000; modified June 2004.

** - There is no TOGS Class GA Standard for MIBK. Per the NYSDEC (2005), the New York State Department of Health (NYSDOH) guidance value for MIBK

Bold indicates the analyte was detected

Shading indicates the result exceeded screening criteria

-- = Not available

AOC = area of concern

J = The analyte was positively identified; the associated numerical value is the approximate concentration.

U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

UJ = The analyte was below the reported sample quantitation limit. However, the reported value is approximate.

UN = The analyte is a Tentatively Identified Compound, and was not detected above the reported sample quantitation limit.

Table 3-8b

Groundwater Sampling Results for AOC B — Metals, August 2017

2016 and 2017 Groundwater Manifesting Boulds and Manifest Advancation Barfagrages 5

Location			MW-02	F	PZ-04	PZ-06
Sample ID			MW02-082217	PZ04-082317	DUP-GW-082317-1	PZ06-082317
Sample Date			08/22/2017	08/23/2017	08/23/2017	08/23/2017
Analyte	CAS#	TOGS 1.1.1 GA*				
Metals (ug/l)						
Aluminum	7429-90-5		100 U	120 J	100 U	1,890
Arsenic	7440-38-2	25	1.17	1.02	0.972 J	8.20
Calcium	7440-70-2		198,000	73,800	68,700	35,600
Chromium	7440-47-3	50	4.32	7.94	8.72	4.86
Iron	7439-89-6	300	423	92.9 U	71.3 U	2,210
Magnesium	7439-95-4	35,000	22,500	14,800	14,700	6,710
Manganese	7439-96-5	300	58.8	16.0	10.2	81.1
Potassium	7440-09-7		7,960	15,100	15,700	4,820
Silica	7631-86-9		31,200	69,200		18,200
Silicon	7440-21-3		14,600	32,300		8,480
Sodium	7440-23-5	20,000	422,000	1,110,000	1,130,000	172,000
Metals, Dissolved (ug/l) **						
Aluminum, Dissolved	7429-90-5		100 U	100 U	100 U	100 U
Arsenic, Dissolved	7440-38-2	25	1.09	0.718 J	0.730 J	3.87
Chromium, Dissolved	7440-47-3	50	3.85	6.68	6.49	1.14 J
Iron, Dissolved	7439-89-6	300	70.0 J	50.0 U	50.0 U	50.0 U
Manganese, Dissolved	7439-96-5	300	63.8	8.86 J	9.15 J	20.5

Notes:

Bold indicates the analyte was detected

Shading indicates the result exceeded screening criteria

- - = Not analyzed
- -- = Not available

AOC = area of concern

- J = The analyte was positively identified; the associated numerical value is the approximate concentration.
- U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

^{* -} Technical & Operational Guidance Series (TOGS) 1.1.1, New York State Ambient Water Quality Standards and Guidance Values, and Ground Water Effluent Limitations (Class GA). June 1998; modified January 1999; modified April 2000; modified June 2004.

^{** -} The TOGS Class GA Standards for total metals were used as screening criteria for dissolved metals

Table 3-8c

Groundwater Sampling Results for AOC B — General Chemistry, August 2017

2016 and 2017 Groundwater Monitoring Results and Monitored Natural Attenuation Performance Evaluation Report

Former Hampshire Chemical Corp. Facility, Waterloo, New York

Location			MW-02	F	PZ-04	PZ-06
Sample ID			MW02-082217	PZ04-082317	DUP-GW-082317-1	PZ06-082317
Sample Date			08/22/2017	08/23/2017	08/23/2017	08/23/2017
Analyte	CAS#	TOGS 1.1.1 GA*				
Wet Chemistry (ug/l)						
Alkalinity			482,000	1,270,000		362,000
Ammonia	7664-41-7		2,810	5,870		978
Chloride	16887-00-6	250,000	144,000	364,000		91,900
Nitrate	14797-55-8		1,250 U	625 U		270
Nitrate-Nitrite			1,250 U	625 U		300
Nitrogen, Total Kjeldahl	7727-37-9		2,410	2,850		390
Orthophosphate	14265-44-2		310	1,250 U		43.9 J
Phosphorus, Total	7723-14-0		182 J	296		195 J
Sulfate	14808-79-8	250,000	651,000	983,000		65,900
Sulfide	18496-25-8	50	7,540	169,000		7,430
Total Dissolved Solids			1,780,000	3,400,000		792,000
Total Organic Carbon			13,800 J	22,900		8,520

Notes:

Bold indicates the analyte was detected

Shading indicates the result exceeded screening criteria

- - = Not analyzed
- -- = Not available

AOC = area of concern

- J = The analyte was positively identified; the associated numerical value is the approximate concentration.
- U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

^{* -} Technical & Operational Guidance Series (TOGS) 1.1.1, New York State Ambient Water Quality Standards and Guidance Values, and Ground Water Effluent Limitations (Class GA). June 1998; modified January 1999; modified April 2000; modified June 2004.

Table 3-9a

Groundwater Sampling Results for AOC D — Metals, August 2017

2016 and 2017 Groundwater Manitoring Results and Manitored Natural Attenuation Performance Eva

Location			MW-11S	MW-21	MW-30	MW-31	MW-35	MV	V-36
Sample ID			MW11S-082317	MW21-082217	MW30-082317	MW31-082317	MW35-082217	MW36-082217	DUP-GW-082217
Sample Date			08/23/2017	08/22/2017	08/23/2017	08/23/2017	08/22/2017	08/22/2017	08/22/2017
Analyte	CAS#	TOGS 1.1.1 GA*							
Metals (ug/l)									
Aluminum	7429-90-5		100 U	1,250	100 U	854	118 J	100 U	100 U
Arsenic	7440-38-2	25	974	3,710	2.96	21.2 J	8.42	245	244
Calcium	7440-70-2		6,350	16,800	72,900	3,630	165,000	111,000	107,000
Iron	7439-89-6	300	115 U	394	581	1,340	1,440	4,710	4,490
Magnesium	7439-95-4	35,000	9,210	2,700	16,100	4,340	83,300	78,800	75,700
Manganese	7439-96-5	300	21.0	36.5	58.5	14.8 J	178	24.0	22.0
Potassium	7440-09-7		2,640	7,990	10,500	11,700	4,840	4,880	4,540
Silica	7631-86-9		12,800	16,700	20,500	20,100	18,700	23,800	
Silicon	7440-21-3		5,990	7,820	9,600	9,400	8,750	11,100	
Sodium	7440-23-5	20,000	675,000	6,490,000	495,000	2,260,000	163,000	118,000	114,000
Metals, Dissolved (ug/l	**								
Aluminum, Dissolved	7429-90-5		100 U	1,200	100 U	845	100 U	100 U	100 U
Arsenic, Dissolved	7440-38-2	25	935	3,560	2.03	24.4 J	6.74	234	226
Iron, Dissolved	7439-89-6	300	50.0 U	332	484	1,270	946	4,340	4,530
Manganese, Dissolved	7439-96-5	300	19.9	10.0 U	60.5	10.0 U	174	24.1	22.5

Notes:

** - The TOGS Class GA Standards for total metals were used as screening criteria for dissolved metals

Bold indicates the analyte was detected

Shading indicates the result exceeded screening criteria

- - = Not analyzed
- -- = Not available

AOC = area of concern

- J = The analyte was positively identified; the associated numerical value is the approximate concentration.
- U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

^{* -} Technical & Operational Guidance Series (TOGS) 1.1.1, New York State Ambient Water Quality Standards and Guidance Values, and Ground Water Effluent Limitations (Class GA). June 1998; modified January 1999; modified April 2000; modified June 2004.

Table 3-9b
Groundwater Sampling Results for AOC D — General Chemistry, August 2017

Location			MW-11S	MW-21	MW-30	MW-31	MW-35	MV	V-36
Sample ID			MW11S-082317	MW21-082217	MW30-082317	MW31-082317	MW35-082217	MW36-082217	DUP-GW-082217
Sample Date			08/23/2017	08/22/2017	08/23/2017	08/23/2017	08/22/2017	08/22/2017	08/22/2017
Analyte	CAS#	TOGS 1.1.1 GA*							
Wet Chemistry (ug/l)									
Alkalinity			367,000	14,400,000	617,000	4,630,000	343,000	376,000	
Ammonia	7664-41-7		478	16,100	797	7,450	308	369	
Chloride	16887-00-6	250,000	724,000	380,000	343,000	780,000	452,000	249,000	
Nitrate	14797-55-8		100 U	2,500 U	2,500 U	2,500 U	260	164 J	
Nitrate-Nitrite			100 U	2,500 U	2,500 U	2,500 U	260	164 J	
Nitrogen, Total Kjeldahl	7727-37-9		100 U	34,100	100 U	11,700	198 J	434	
Orthophosphate	14265-44-2		249	18,700	185	6,840	25.0 U	25.0 U	
Phosphorus, Total	7723-14-0		100 U	18,300	139 J	6,780	100 U	100 U	
Sulfate	14808-79-8	250,000	201,000	813,000	340,000	362,000	168,000	171,000	
Sulfide	18496-25-8	50	755 J	28,400	1,550	14,600	500 U	500 U	
Total Dissolved Solids			1,780,000	1,690,000	1,650,000	6,300,000	1,280,000	1,050,000	
Total Organic Carbon			3,030	653,000 J	7,510	277,000	4,030 J	4,470 J	

Notes:

Bold indicates the analyte was detected

Shading indicates the result exceeded screening criteria

- - = Not analyzed
- -- = Not available

AOC = area of concern

- J = The analyte was positively identified; the associated numerical value is the approximate concentration.
- U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

^{* -} Technical & Operational Guidance Series (TOGS) 1.1.1, New York State Ambient Water Quality Standards and Guidance Values, and Ground Water Effluent Limitations (Class GA). June 1998; modified January 1999; modified April 2000; modified June 2004.

Table 3-10a
Groundwater Sampling Results for Supplemental Wells — Volatile Organic Compounds, August 2017
2016 and 2017 Groundwater Monitoring Results and Monitored Natural Attenuation Performance Evaluation Report
Former Hampshire Chemical Corp. Facility, Waterloo, New York

Location			MW-05I	MW-06	MW-07	MA	V-09R	MW-10	MW-19	MW-20
Sample ID			MW05I-082417	MW06-082517	MW07-082517	MW09R-082317	DUP-GW-082317-2	MW10-082517	MW19-082317	MW20-082517
Sample Date			08/24/2017	08/25/2017	08/25/2017	08/23/2017	08/23/2017	08/25/2017	08/23/2017	08/25/2017
Analyte	CAS#	TOGS 1.1.1 GA*	00/24/2017	00/23/2017	06/25/2017	00/23/2017	00/23/2017	00/23/2017	06/23/2017	06/25/2017
	OAO!!	1000 IIII 0A								
VOA (ug/l)	74.55.0		0.500.11	0.500.11	0.500.11	0.500.11	0.500.11	0.50011	0.500.11	0.500.11
1,1,1-Trichloroethane	71-55-6	5	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,1,2,2-Tetrachloroethane	79-34-5	5	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1		2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
1,1,2-Trichloroethane	79-00-5	1	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,1-Dichloroethane	75-34-3	5	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,1-Dichloroethene	75-35-4	5	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,2,3-Trichlorobenzene	87-61-6		0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,2,4-Trichlorobenzene	120-82-1	5	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,2-Dibromo-3-chloropropane	96-12-8		1.00 U	1.00 U	1.00 U	1.00 UJ	1.00 UJ	1.00 U	1.00 UJ	1.00 U
1,2-Dibromoethane	106-93-4		0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,2-Dichlorobenzene	95-50-1	3	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,2-Dichloroethane	107-06-2	0.6	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,2-Dichloroethene, cis-	156-59-2	5	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	5.94	0.500 U
1,2-Dichloroethene, trans-	156-60-5	5	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	7.70	0.500 U
1,2-Dichloropropane	78-87-5	1	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,3-Dichlorobenzene	541-73-1	3	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,3-Dichloropropene, cis-	10061-01-5	0.4	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,3-Dichloropropene, trans-	10061-02-6	0.4	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,4-Dichlorobenzene	106-46-7	3	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
2-Butanone	78-93-3	50	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U
2-Hexanone	591-78-6	50	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U
4-Methyl-2-pentanone (MIBK)	108-10-1	50	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U
Acetone	67-64-1	50	2.85 U	2.52 U	3.20 U	2.58 U	2.50 U	3.66 U	2.80 U	7.78 U
Benzene	71-43-2	1	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Bromochloromethane	74-97-5		0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Bromodichloromethane	75-27-4	50	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Bromoform	75-25-2	50	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Bromomethane	74-83-9	5	0.500 UJ	0.500 UJ	0.500 UJ	0.500 U	0.500 U	0.500 UJ	0.500 U	0.500 UJ
Carbon Disulfide	75-15-0	60	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Carbon Tetrachloride	56-23-5	5	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Chlorobenzene	108-90-7	5	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Chloroethane	75-00-3	5	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Chloroform	67-66-3	7	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Chloromethane	74-87-3	5	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Cyclohexane	110-82-7		1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Dibromochloromethane	124-48-1	50	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Dichlorodifluoromethane	75-71-8		0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	21.4	0.500 U
Epichlorohydrin	106-89-8	5	0 UN	0 UN	0 UN	0 UN	0 UN	0 UN	0 UN	0 UN
Ethylbenzene	100-41-4	5	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Isopropylbenzene	98-82-8		0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Methyl Acetate	79-20-9		1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Methylcyclohexane	108-87-2		1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Methylene Chloride	75-09-2	5	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Styrene	100-42-5	5	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
tert-Butyl Methyl Ether	1634-04-4		0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Tetrachloroethene	127-18-4	5	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Toluene	108-88-3	5	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Trichloroethene	79-01-6	5	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Trichlorofluoromethane	75-69-4		0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Vinyl Chloride	75-01-4	2	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Xylene, m,p-	179601-23-1		0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Xylene, o-	95-47-6		0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
- · y · = · · · 2) · 2	55 11 0		5.550 6	0.000	5.550 6	3.550 0	5.550 6	5.555 6	3.550 0	5.500 6

Table 3-10a

Groundwater Sampling Results for Supplemental Wells — Volatile Organic Compounds, August 2017

2016 and 2017 Groundwater Monitoring Results and Monitored Natural Attenuation Performance Evaluation Report Former Hampshire Chemical Corp. Facility, Waterloo, New York

Notes:

- * Technical & Operational Guidance Series (TOGS) 1.1.1, New York State Ambient Water Quality Standards and Guidance Values, and Ground Water Effluent Limitations (Class GA). June 1998; modified January 1999; modified April 2000; modified June 2004.
- ** There is no TOGS Class GA Standard for MIBK. Per the NYSDEC (2005), the New York State Department of Health (NYSDOH) guidance value for MIBK

Bold indicates the analyte was detected

Shading indicates the result exceeded screening criteria

- -- = Not available
- J = The analyte was positively identified; the associated numerical value is the approximate concentration.
- U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- UJ = The analyte was below the reported sample quantitation limit. However, the reported value is approximate.
- UN = The analyte is a Tentatively Identified Compound, and was not detected above the reported sample quantitation limit. ug/l = micrograms per liter

Table 3-10b

Groundwater Sampling Results for Supplemental Wells — Semivolatile Organic Compounds, August 2017

2016 and 2017 Groundwater Monitoring Results and Monitored Natural Attenuation Performance Evaluation Report
Former Hampshire Chemical Corp. Facility, Waterloo, New York

Location			MW-05I	MW-06	MW-07	MW	'-09R	MW-10	MW-19	MW-20
Sample ID			MW05I-082417	MW06-082517	MW07-082517		DUP-GW-082317-2	MW10-082517	MW19-082317	MW20-082517
Sample Date			08/24/2017	08/25/2017	08/25/2017	08/23/2017	08/23/2017	08/25/2017	08/23/2017	08/25/2017
Analyte	CAS#	TOGS 1.1.1 GA*	00/2 1/2011	00/20/2011	00/20/2011	00/20/2011	00/20/2011	00/20/2011	00/20/2011	00/20/2011
SVOA (ug/l)							ı			
1,1'-Biphenyl	92-52-4		2.50 U	2.66 UJ	2.84 UJ	2.75 U	2.78 U	2.50 UJ	2.50 U	2.63 UJ
1,3,5-Trinitrobenzene	99-35-4		2.50 U	2.63 U	2.66 U	2.75 U	2.78 U	2.50 U	2.50 U	2.53 U
1,3-Dinitrobenzene	99-65-0		2.50 U	2.63 U	2.66 U	2.75 U	2.78 U	2.50 U	2.50 U	2.53 U
1,4-Dioxane	123-91-1		5.00 UJ	5.26 UJ	5.32 UJ	5.49 UJ	5.56 UJ	5.00 UJ	5.00 UJ	5.05 UJ
2,4,5-Trichlorophenol	95-95-4		2.50 U	2.63 U	2.66 U	2.75 U	2.78 U	2.50 U	2.50 U	2.53 U
2,4,6-Trichlorophenol	88-06-2		2.50 U	2.63 U	2.66 U	2.75 U	2.78 U	2.50 U	2.50 U	2.53 U
2,4-Dichlorophenol	120-83-2	5	2.50 U	2.63 U	2.66 U	2.75 U	2.78 U	2.50 U	2.50 U	2.53 U
2,4-Dimethylphenol	105-67-9	50	2.50 U	2.63 U	2.66 U	2.75 U	2.78 U	2.50 U	2.50 U	2.53 U
2,4-Dinitrophenol	51-28-5	1	12.5 U	13.2 U	13.3 U	13.7 U	13.9 U	12.5 U	12.5 U	12.6 U
2,4-Dinitrophenol	121-14-2	5	2.50 U	2.63 U	2.66 U	2.75 U	2.78 U	2.50 U	2.50 U	2.53 U
	606-20-2	5	2.50 U	2.63 U		2.75 U			2.50 U	2.53 U
2,6-Dinitrotoluene		10			2.66 U		2.78 U	2.50 U		
2-Chloronaphthalene	91-58-7		2.50 U	2.63 U	2.66 U	2.75 U	2.78 U	2.50 U	2.50 U	2.53 U
2-Chlorophenol	95-57-8		2.50 U	2.63 U	2.66 U	2.75 U	2.78 U	2.50 U	2.50 U	2.53 U
2-Methylnaphthalene	91-57-6		0.0250 U	0.0260 U	0.0255 U	0.0287 U	0.0263 U	0.0266 U	0.0250 U	0.0250 U
2-Methylphenol	95-48-7		2.50 U	2.63 U	2.66 U	2.75 U	2.78 U	2.50 U	2.50 U	2.53 U
2-Nitroaniline	88-74-4	5	12.5 U	13.2 U	13.3 U	13.7 U	13.9 U	12.5 U	12.5 U	12.6 U
2-Nitrophenol	88-75-5		2.50 U	2.63 U	2.66 U	2.75 U	2.78 U	2.50 U	2.50 U	2.53 U
3,3'-Dichlorobenzidine	91-94-1	5	2.50 U	2.63 U	2.66 U	2.75 U	2.78 U	2.50 U	2.50 U	2.53 U
3-,4-Methylphenol	65794-96-9		2.50 U	2.63 U	2.66 U	2.75 U	2.78 U	2.50 U	2.50 U	2.53 U
3-Nitroaniline	99-09-2	5	12.5 U	13.2 U	13.3 U	13.7 U	13.9 U	12.5 U	12.5 U	12.6 U
4-Bromophenyl Phenyl Ether	101-55-3		2.50 U	2.63 U	2.66 U	2.75 U	2.78 U	2.50 U	2.50 U	2.53 U
4-Chloroaniline	106-47-8	5	2.50 U	2.63 U	2.66 U	2.75 U	2.78 U	2.50 U	2.50 U	2.53 U
4-Nitrophenol	100-02-7		12.5 U	13.2 U	13.3 U	13.7 U	13.9 U	12.5 U	12.5 U	12.6 U
Acenaphthene	83-32-9	20	0.0250 U	0.0260 U	0.0255 U	0.0287 U	0.0263 U	0.0266 U	0.0250 U	0.0250 U
Acenaphthylene	208-96-8		0.0250 U	0.0260 U	0.0255 U	0.0287 U	0.0263 U	0.0266 U	0.0250 U	0.0250 U
Anthracene	120-12-7	50	0.0250 U	0.0260 U	0.0255 U	0.0287 U	0.0263 U	0.0266 U	0.0250 U	0.0250 U
Benzo(a)anthracene	56-55-3	0.002	0.0250 U	0.0260 U	0.0255 U	0.0287 U	0.0263 U	0.0266 U	0.0250 U	0.0250 U
Benzo(a)pyrene	50-32-8	0.002	0.0250 U	0.0260 U	0.0255 U	0.0287 U	0.0263 U	0.0266 U	0.0250 U	0.0250 U
Benzo(b)fluoranthene	205-99-2	0.002	0.0250 U	0.0260 U	0.0255 U	0.0287 U	0.0263 U	0.0266 U	0.0250 U	0.0250 U
Benzo(g,h,i)perylene	191-24-2		0.0250 U	0.0260 U	0.0255 U	0.0287 U	0.0263 U	0.0266 U	0.0250 U	0.0250 U
Benzo(k)fluoranthene	207-08-9	0.002	0.0250 U	0.0260 U	0.0255 U	0.0287 U	0.0263 U	0.0266 U	0.0250 U	0.0250 U
Benzoic Acid	65-85-0		10.0 UJ	10.5 UJ	10.6 UJ	11.0 UJ	11.1 UJ	10.0 UJ	10.0 UJ	10.1 UJ
Benzyl Alcohol	100-51-6		2.50 U	2.63 U	2.66 U	2.75 U	2.78 U	2.50 U	2.50 U	2.53 U
Bis (2-chloroethoxy) Methane	111-91-1	5	2.50 U	2.63 U	2.66 U	2.75 U	2.78 U	2.50 U	2.50 U	2.53 U
Bis (2-chloroethyl) Ether	111-44-4	1	2.50 U	2.63 U	2.66 U	2.75 U	2.78 U	2.50 U	2.50 U	2.53 U
Bis (2-ethylhexyl) Phthalate	117-81-7	5	2.50 U	2.63 U	2.66 U	2.75 U	2.78 U	2.50 U	2.50 U	2.53 U
Butyl Benzyl Phthalate	85-68-7	50	2.50 U	2.63 U	2.66 U	2.75 U	2.78 U	2.50 U	2.50 U	2.53 U
Carbazole	86-74-8		2.50 U	2.63 U	2.66 U	2.75 U	2.78 U	2.50 U	2.50 U	2.53 U
Chrysene	218-01-9	0.002	0.0250 U	0.0260 U	0.0255 U	0.0287 U	0.0263 U	0.0266 U	0.0250 U	0.0250 U
Dibenzo (a,h) Anthracene	53-70-3		0.0250 U	0.0260 U	0.0255 U	0.0287 U	0.0263 U	0.0266 U	0.0250 U	0.0250 U
Dibenzofuran	132-64-9		2.50 U	2.63 U	2.66 U	2.75 U	2.78 U	2.50 U	2.50 U	2.53 U
Diethylphthalate	84-66-2	50	2.50 U	2.63 U	2.66 U	2.75 U	2.78 U	2.50 U	2.50 U	2.53 U
Dimethylphthalate	131-11-3	50	2.50 U	2.63 U	2.66 U	2.75 U	2.78 U	2.50 U	2.50 U	2.53 U
Di-n-butylphthalate	84-74-2	50	2.50 U	2.63 U	2.66 U	2.75 U	2.78 U	2.50 U	2.50 U	2.53 U
Di-n-octylphthalate	117-84-0	50	2.50 U	2.63 U	2.66 U	2.75 U	2.78 U	2.50 U	2.50 U	2.53 U
Fluoranthene	206-44-0	50	0.0250 U	0.0260 U	0.0255 U	0.0287 U	0.0263 U	0.0266 U	0.118	0.0250 U
Fluorene	86-73-7	50	0.0250 U	0.0260 U	0.0255 U	0.0287 U	0.0263 U	0.0266 U	0.118 0.0250 U	0.0250 U
Hexachlorobenzene	118-74-1	0.04	2.50 U	2.63 U	2.66 U	2.75 U	2.78 U	2.50 U	2.50 U	2.53 U
Hexachlorobutadiene	87-68-3	0.5	2.50 U	2.63 U	2.66 U	2.75 U	2.78 U	2.50 U	2.50 U	2.53 U
Hexachlorocyclopentadiene	77-47-4	5	2.50 U	2.63 U	2.66 U	2.75 U	2.78 U	2.50 U	2.50 U	2.53 U
Hexachloroethane	67-72-1 193-39-5	5 0.002	2.50 U 0.0250 U	2.63 U 0.0260 U	2.66 U 0.0255 U	2.75 U 0.0287 U	2.78 U 0.0263 U	2.50 U 0.0266 U	2.50 U 0.0250 U	2.53 U 0.0250 U

Table 3-10b
Groundwater Sampling Results for Supplemental Wells — Semivolatile Organic Compounds, August 2017

Isophorone	78-59-1	50	2.50 U	2.63 U	2.66 U	2.75 U	2.78 U	2.50 U	2.50 U	2.53 U
Naphthalene	91-20-3	10	0.0256 J	0.0260 U	0.0414 J	0.0406 J	0.0317 J	0.0266 U	0.0381 J	0.0342 J
Nitrobenzene	98-95-3	0.4	2.50 U	2.63 U	2.66 U	2.75 U	2.78 U	2.50 U	2.50 U	2.53 U
n-Nitrosodiphenylamine	86-30-6	50	2.50 U	2.63 U	2.66 U	2.75 U	2.78 U	2.50 U	2.50 U	2.53 U
Pentachlorophenol	87-86-5	1	12.5 U	13.2 U	13.3 U	13.7 U	13.9 U	12.5 U	12.5 U	12.6 U
Phenanthrene	85-01-8	50	0.0250 U	0.0260 U	0.0255 U	0.0287 U	0.0263 U	0.0266 U	0.0250 U	0.0250 U
Phenol	108-95-2	1	2.50 U	2.63 U	2.66 U	2.75 U	2.78 U	2.50 U	2.50 U	2.53 U
Pyrene	129-00-0	50	0.0250 U	0.0260 U	0.0255 U	0.0287 U	0.0263 U	0.0266 U	0.0866	0.0250 U

Notes:

* - Technical & Operational Guidance Series (TOGS) 1.1.1, New York State Ambient Water Quality Standards and Guidance Values, and Ground Water Effluent Limitations (Class GA). June 1998; modified January 1999; modified April 2000; modified June 2004.

Bold indicates the analyte was detected

- -- = Not available
- J = The analyte was positively identified; the associated numerical value is the approximate concentration.
- U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- UJ = The analyte was below the reported sample quantitation limit. However, the reported value is approximate.
- ug/l = micrograms per liter

Table 3-10c

Groundwater Sampling Results for Supplemental Wells — Metals, August 2017

2016 and 2017 Groundwater Monitoring Results and Monitored Natural Attenuation Performance Evaluation Report Former Hampshire Chemical Corp. Facility, Waterloo, New York

Location			MW-05I	MW-06	MW-07	MV	V-09R	MW-10	MW-19	MW-20
Sample ID			MW05I-082417	MW06-082517	MW07-082517	MW09R-082317	DUP-GW-082317-2	MW10-082517	MW19-082317	MW20-082517
Sample Date			08/24/2017	08/25/2017	08/25/2017	08/23/2017	08/23/2017	08/25/2017	08/23/2017	08/25/2017
Analyte	CAS#	TOGS 1.1.1 GA*								
Metals (ug/l)										
Aluminum	7429-90-5		100 U	100 U	145 J	100 U	100 U	100 U	100 U	100 U
Arsenic	7440-38-2	25	0.657 J	0.929 J	2.38	6.89	6.70	4.68	4.45 J	0.821 J
Calcium	7440-70-2		69,100	114,000	96,700	270,000	280,000	82,400	128,000	111,000
Iron	7439-89-6	300	63.5 J	50.0 U	152	4,100	4,320	276 J	2,400	78.9 J
Magnesium	7439-95-4	35,000	19,400	25,800	14,700	94,200	97,300	20,100	42,100	30,100
Manganese	7439-96-5	300	54.3	65.8	254 J	577	598	221	631	32.8 J
Potassium	7440-09-7		3,390	1,770	4,280	9,220	9,550	2,410	1,480	3,690
Sodium	7440-23-5	20,000	70,900	43,600	262,000	624,000	647,000	172,000	102,000	22,900
Metals, Dissolved (ug/l) **										
Aluminum, Dissolved	7429-90-5		100 U	217	100 U	100 U	100 U	100 U	100 U	100 U
Arsenic, Dissolved	7440-38-2	25	0.658 J	0.985 J	1.91	3.65	3.95	4.55	11.0 J	0.672 J
Iron, Dissolved	7439-89-6	300	56.7 J	50.0 U	50.0 U	3,410	3,590	1,850 J	696	75.0 J
Manganese, Dissolved	7439-96-5	300	55.9	25.8	296 J	489	502	129	433	125 J

Notes:

Shading indicates the result exceeded screening criteria

-- = Not available

J = The analyte was positively identified; the associated numerical value is the approximate concentration.

U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

^{* -} Technical & Operational Guidance Series (TOGS) 1.1.1, New York State Ambient Water Quality Standards and Guidance Values, and Ground Water Effluent Limitations (Class GA). June 1998; modified January 1999; modified April 2000; modified June 2004.

^{** -} The TOGS Class GA Standards for total metals were used as screening criteria for dissolved metals **Bold indicates the analyte was detected**

Table 3-11
Summary of QA/QC Water Sample Results

Sample ID		FB-120716	FB-121316-1	FB-121316-2	FB-082217	FB-082317	FB-082417	FB-082517	TB-120616	TB-120716	TB-121316	TB-082217	TB-082317	TB-082417	TB-082517
Sample Date	İ	12/7/2016	12/13/2016	12/13/2016	08/22/2017	08/23/2017	08/24/2017	08/25/2017	12/6/2016	12/7/2016	12/13/2016	08/22/2017	08/23/2017	08/24/2017	08/25/2017
Analyte	CAS#														
VOA (ug/l)															
1,1,1-Trichloroethane	71-55-6	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,1,2,2-Tetrachloroethane	79-34-5	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
1,1,2-Trichloroethane	79-00-5	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,1-Dichloroethane	75-34-3	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,1-Dichloroethene	75-35-4	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,2,3-Trichlorobenzene	87-61-6	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,2,4-Trichlorobenzene	120-82-1	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,2-Dibromo-3-chloropropane	96-12-8	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,2-Dibromoethane	106-93-4	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,2-Dichlorobenzene	95-50-1	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,2-Dichloroethane	107-06-2	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,2-Dichloroethene, cis-	156-59-2	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,2-Dichloroethene, trans-	156-60-5	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,2-Dichloropropane	78-87-5	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,3-Dichlorobenzene	541-73-1	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,3-Dichloropropene, cis-	10061-01-5	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,3-Dichloropropene, trans-	10061-02-6	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
1,4-Dichlorobenzene	106-46-7	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
2-Butanone	78-93-3	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U
2-Hexanone	591-78-6	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U
4-Methyl-2-pentanone (MIBK)	108-10-1	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U
Acetone	67-64-1	3.58 J	2.50 U	2.50 U	2.50 U	2.87 J	4.40 J	2.81 J	2.50 U	2.50 U	2.50 U	4.91 J	3.65 J	5.69 J	4.91 J
Benzene	71-43-2	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Bromochloromethane	74-97-5	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Bromodichloromethane	75-27-4	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Bromoform	75-25-2	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Bromomethane	74-83-9	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Carbon Disulfide	75-15-0	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Carbon Tetrachloride	56-23-5	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Chlorobenzene	108-90-7	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Chloroethane	75-00-3	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Chloroform	67-66-3	1.21	1.10	1.04	4.82	4.39	3.60	2.58	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Chloromethane	74-87-3	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Cyclohexane	110-82-7	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Dibromochloromethane	124-48-1	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Dichlorodifluoromethane	75-71-8	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Epichlorohydrin	106-89-8	0.500.11	0.500.11	0.500.11	0.000 UN	0.000 UN	0.000 UN	0.000 UN	0.500.11	0.500.11	0.500.11	0.000 UN	0.000 UN	0.000 UN	0.000 UN
Ethylbenzene	100-41-4	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Isopropylbenzene	98-82-8	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Methyl Acetate	79-20-9	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Methylcyclohexane	108-87-2	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Methylene Chloride	75-09-2	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Styrene	100-42-5	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
tert-Butyl Methyl Ether	1634-04-4	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Tetrachloroethene	127-18-4	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Toluene	108-88-3	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Trichloroethene	79-01-6	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Trichlorofluoromethane	75-69-4	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Vinyl Chloride	75-01-4	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Xylene, m,p-	108-38-3/1	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Xylene, o-	95-47-6	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U

Notes:

Bold indicates the analyte was detected

-- = Not available

J = The analyte was positively identified; the associated numerical value is the approximate concentration.

U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

UN = The analyte is a Tentatively Identified Compound, and was not detected above the reported sample quantitation limit.

Table 5-1
Criteria and Threshold Concentrations for Identifying Redox Processes in Groundwater.
2016 and 2017 Groundwater Monitoring Results and Monitored Natural Attenuation Performance Evaluation Report

				Criteria for	inferring proce	ss from water-	quality data	
Redox category	Redox process	Electron acceptor (reduction) half-reaction	Dissolved Oxygen (mg/L)	Nitrate, as Nitrogen (mg/L)	Manganese (mg/L)	Iron (mg/L)	Sulfate (mg/L)	Iron/sulfide (mass ratio)
Oxic	O2	$O_2 + 4H^{\dagger} + 4e^{-} \rightarrow 2H_2O$	≥0.5	_	<0.05	<0.1	ı	
Suboxic	Suboxic	Low O2; additional data needed to define redox process	<0.5	<0.5	<0.05	<0.1	-	
Anoxic	NO₃	$2NO_{3}$ - + 12H+ + 10e- → $N2(g)$ + 6 H2O; NO_{3} - + 10H+ + 8e- → $NH4$ + + 3H2O	<0.5	≥0.5	<0.05	<0.1	-	
Anoxic	Mn(IV)	$MnO_{2(s)} + 4H^+ + 2e^- \rightarrow Mn^{2+} + 2H_2O$	<0.5	<0.5	≥0.05	<0.1	_	
Anoxic	Fe(III)/SO ₄	Fe(III) and (or) SO ₄ 2- reactions as described in individual element half reactions	<0.5	<0.5	-	≥0.1	≥0.5	no data
Anoxic	Fe(III)	Fe(OH) _{3(s)} + H ⁺ + e ⁻ \rightarrow Fe ²⁺ + H ₂ O; FeOOH _(s) + 3H ⁺ + e ⁻ \rightarrow Fe ²⁺ + 2H ₂ O	<0.5	<0.5	-	≥0.1	≥0.5	>10
Mixed(anoxic)	Fe(III)-SO ₄	Fe(III) and SO $_4$ 2- reactions as described in individual element half reactions	<0.5	<0.5	ı	≥0.1	≥0.5	≥0.3, ≤10
Anoxic	SO ₄	SO ₄ 2- + 9H+ + 8e- → HS- + 4H2O	<0.5	<0.5		≥0.1	≥0.5	<0.3
Anoxic	CH₄gen	$CO_2(g) + 8H + + 8e \rightarrow CH_4(g) + 2H2O$	<0.5	<0.5	_	≥0.1	<0.5	

Notes

Table was modified from McMahon and Chapelle, 2008

Abbreviations:

mg/L, milligram per liter

—, criteria do not apply because the species concentration is not affected by the redox process

Former Hampshire Chemical Corp. Facility, Waterloo, New York

≤, less than or equal to

≥, greater than or equal to

<, less than

>, greater than

Redox process:

 ${\rm CH_4gen},$ methanogenesis ${\rm O2},$ oxygen reduction ${\rm NO_3},$ nitrate reduction ${\rm Mn(IV)},$ manganese reduction

Fe(III), iron reduction SO₄, sulfate reduction

Chemical species:

 $CH_4(g)$, methane gas. $CO_2(g)$, carbon dioxide gas

 $\label{eq:FeOH3} Fe(OH)3(s), iron \ hydroxide \ with \ iron \ in \ 3+ \ oxidation \ state \\ FeOOH(s), iron \ oxyhydroxide \ with \ iron \ in \ 3+ \ oxidation \ state \\$

O2, dissolved oxygen NO₃-, dissolved nitrate

 $\mbox{MnO2}(\mbox{s}),$ manganese oxide with manganese in 4+ oxidation state

SO₄2-, dissolved sulfate

Table 5-2 Summary of Groundwater Quality Parameters

2016 and 2017 Groundwater Monitoring Results and Monitored Natural Attenuation Performance Evaluation Report Former Hampshire Chemical Corp. Facility, Waterloo, New York

Sampling Location	Date	pH (std units)	Conductivity (mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp (Celsius)	ORP (mV)	Ferrous Iron (mg/L)	Remarks
MW-01	12/6/2016	7.06	1.80	6.21	3.4	12.62	-168	1.71	
MW-02	12/6/2016	6.91	1.32	0.65	7.1	13.54	-322	0.00	
MW-23	12/6/2016	8.14	4.51	0.52	7.5	14.67	-330	0.36	
PZ-06	12/6/2016	8.01	2.28	42.7	6.6	13.10	-248		well went dry
MW-11S	12/7/2016	8.83	3.67	2.32	2.2	16.65	-196	0.00	
MW-30	12/7/2016	6.97	1.81	3.78	3.6	16.37	-302	0.49	
PZ-03	12/7/2016	6.95	5.50	0.2	4.8	18.21	-240	1.24	
MW-21	12/8/2016	9.78	20.00	0.01	7.2	16.70	-442	0.10	
MW-24	12/8/2016	6.22	3.00	12.9	3.2	16.00	-114	0.21	
MW-31	12/8/2016	9.33	9.27	0.32	10.9	16.23	-405	0.40	
MW-35	12/8/2016	6.97	2.32	5.21	3.9	18.59	-48	0.85	
MW-36	12/8/2016	7.12	1.83	3.4	4.3	18.05	-119	>3.30	
MW-37	12/8/2016	6.99	5.42	0.58	4.6	18.82	-47	0.08	
PZ-04	12/13/2016	7.26	5.91	1.91	4.3	12.59	-371	0.00	
PZ-07R	12/13/2016	6.77	3.64	1.71	4.5	9.98	-288	3.30	
MW-21	8/22/2017	10.42	23.00		0.0	21.33	-535	0.08	
MW-22	8/22/2017	7.54	2.58	6.21	0.7	23.10	-401	0.14	
MW-35	8/22/2017	7.1	2.41	6.29	1.0	19.69	-100	0.38	
MW-36	8/22/2017	7.53	1.71	1.76	0.0	20.13	-241	>3.30	
PZ-06	8/22/2017	6.99	1.29	21.2	6.5	22.55	-136	1.18	well went dry
MW-11S	8/23/2017	9.18	3.30	1.32	0.0	20.18	-309	0.00	
MW-30	8/23/2017	7.35	2.78	0.27	0.0	18.56	-395	0.49	
MW-31	8/23/2017	9.68	9.29		0.0	19.66	-492	0.01	
PZ-04	8/23/2017	7.15	5.32	3.92	0.8	19.74	-427	0.00	

Notes:

1. The data above were recorded after groundwater quality parameters stabilized, immediately before the groundwater sample was collected.

mg/L - milligrams per liter

mS/cm - millisiemens per centimeter

mV - millivolts

NTU - nephelometric turbidity unit

std units - standard units

Table 5-3
Summary of Redox Results at AOC B for 2016 and 2017
2016 and 2017 Groundwater Monitoring Results and Monitored Natural Attenuation Performance Evaluation Report
Former Hampshire Chemical Corp. Facility, Waterloo, New York

	Variable:	Dissolved Oxygen	Nitrate	Manganese	Ferrous Iron	Sulfate	Sulfide	Redox Assignment			
Sample ID	Units:	(mg/L)	(mg/L)	(μg/L)	(μg/L)	(mg/L)	(mg/L)				
	Threshold:	0.5	0.5	50	100	0.5	none	Number of Params	General Redox Category	Redox Process	Fe ⁺² /S Ratio
MW-01 12-06-2016		3.4	0.91	155	2550	82.3	0.06	6	Mixed(oxic-anoxic)	O ₂ -Fe(III)	42.50
MW-02 12-06-2016		7.1	6.1	92	781	313	0.05	6	Mixed(oxic-anoxic)	O ₂ -Fe(III)	15.62
PZ-04 12-13-2016		7.3	2.1	14	269	955	0.03	6	Mixed(oxic-anoxic)	O ₂ -Fe(III)-SO ₄	8.97
PZ-06 12-07-2016		6.6	0.72	14.2	520	47.8	0.01	6	Mixed(oxic-anoxic)	O ₂ -Fe(III)	52.00
PZ-07 12-13-2016		4.5	0.33	270	16000	367	0.005	6	Mixed(oxic-anoxic)	O ₂ -Fe(III)	3200.00
MW-02 08-22-2017		0.17	0.6	58.8	423	651	7.5	6	Mixed(anoxic)	NO ₃ -SO ₄	0.06
PZ-04 08-23-2017		0.76	6.3	16	46	983	169	6	Oxic	O ₂	
PZ-06 08-23-2017		6.5	0.27	81.1	2210	65.9	7.4	6	Mixed(oxic-anoxic)	O ₂ -SO ₄	0.30

Abbreviations

mg/L, milligram per liter μg/L, miocrograms per liter

Redox process

O₂, oxygen reduction NO₃, nitrate reduction

Mn(IV), manganese reduction

Fe(III), iron reduction SO₄, sulfate reduction

Table 5-4
Summary of Redox Results at AOC D for 2016 and 2017
2016 and 2017 Groundwater Monitoring Results and Monitored Natural Attenuation Performance Evaluation Report
Former Hampshire Chemical Corp. Facility, Waterloo, New York

	Variable:	Dissolved Oxygen	Nitrate	Manganese	Ferrous Iron	Sulfate	Sulfide	Redox Assignment				
Sample ID	Units:	(mg/L)	(mg/L)	(μg/L)	(μg/L)	(mg/L)	(mg/L)					
	Threshold:	0.5	0.5	50	100	0.5	none	Number of Params	I Redox Process I			
MW-11S 12-07-2016		2.2	0.73	10.1	68.7	261	0.68	6	Oxic	O ₂		
MW-21 12-08-2016		7.2	13.9	0.21	663	1020	37.2	6	Mixed(oxic-anoxic)	O ₂ -SO ₄	0.02	
MW-23 12-06-2016		7.5	3.08	78.1	200	1240	8.86	6	Mixed(oxic-anoxic)	O ₂ -SO ₄	0.02	
MW-24 12-08-2016		3.1	2.22	302	11100	975	0.25	6	Mixed(oxic-anoxic)	O ₂ -Fe(III)	44.40	
MW-30 12-07-2016		10.2	16.8	26	475	232	1.7	6	Mixed(oxic-anoxic)	O ₂ -SO ₄	0.28	
MW-31 12-08-2016		3.9	16.2	0.25	0.25	195	35.1	6	Oxic	O ₂		
MW-35 12-08-2016		4.3	0.8	174	1030	166	0.25	6	Mixed(oxic-anoxic)	O ₂ -Fe(III)-SO ₄	4.12	
MW-36 12-08-2016		4.5	0.84	36	4110	233	0.25	6	Mixed(oxic-anoxic)	O ₂ -Fe(III)	16.44	
MW-37 12-08-2016		0.01	0.69	362	141	836	0.25	6	Mixed(oxic-anoxic)	O ₂ -Fe(III)-SO ₄	0.56	
MW-11S 08-23-2017		0.01	0.5	21	55	201	0.8	6	Anoxic	NO₃		
MW-21 08-22-2017		0.01	1.25	36.5	394	813	28.4	6	Mixed(anoxic)	NO3-SO4	0.01	
MW-30 08-23-2017		0.01	1.25	58	581	340	1.5	6	Mixed(anoxic)	NO₃-Fe(III)-SO₄	0.39	
MW-31 08-23-2017		0.01	1.25	14.8	1340	362	14.6	6	Mixed(anoxic)	NO ₃ -SO ₄	0.09	
MW-35 08-22-2017		0.99	0.26	178	1440	165	0.25	6	Mixed(oxic-anoxic)	O ₂ -Fe(III)-SO ₄	5.76	
MW-36 08-22-2017		0.01	0.16	24	4710	171	0.25	6	Anoxic	Fe(III)	18.84	

Abbreviations

mg/L, milligram per liter μg/L, miocrograms per liter Redox process

O₂, oxygen reduction NO₃, nitrate reduction

Mn(IV), manganese reduction

Fe(III), iron reduction SO₄, sulfate reduction

Figures

Site Layout Map
2016 and 2017 Groundwater Monitoring Results and
Year 2 Monitoring Natural Attenuation Performance Evaluation Report
Former Hampshire Chemical Corp. Facility
Waterloo, New York

Groundwater Elevation Contour Map, December 2016
2016 and 2017 Groundwater Monitoring Results and
Year 2 Monitoring Natural Attenuation Performance Evaluation Report
Former Hampshire Chemical Corp. Facility
Waterloo, New York

Groundwater Elevation Contour Map, August 2017
2016 and 2017 Groundwater Monitoring Results and
Year 2 Monitoring Natural Attenuation Performance Evaluation Report
Former Hampshire Chemical Corp. Facility
Waterloo, New York

0 100 200

Groundwater Analytical Exceedances at SWMU 1
2016 and 2017 Groundwater Monitoring Results and
Year 2 Monitoring Natural Attenuation Performance Evaluation Report
Former Hampshire Chemical Corp. Facility
Waterloo, New York

Groundwater Analytical Exceedances at AOC B
2016 and 2017 Groundwater Monitoring Results and
Year 2 Monitoring Natural Attenuation Performance Evaluation Report
Former Hampshire Chemical Corp. Facility
Waterloo, New York

0 100 200 Feet Groundwater Analytical Exceedances at AOC D
2016 and 2017 Groundwater Monitoring Results and
Year 2 Monitoring Natural Attenuation Performance Evaluation Report
Former Hampshire Chemical Corp. Facility
Waterloo, New York

Groundwater Analytical Exceedances at Supplemental Wells
2016 and 2017 Groundwater Monitoring Results and
Year 2 Monitoring Natural Attenuation Performance Evaluation Report
Former Hampshire Chemical Corp. Facility
Waterloo, New York

AOCs B and D Groundwater Elevation Contour Map, December 2016
2016 and 2017 Groundwater Monitoring Results and
Year 2 Monitoring Natural Attenuation Performance Evaluation Report
Former Hampshire Chemical Corp. Facility
Waterloo, New York

Waterloo, New York

AOCs B and D Groundwater Elevation Contour Map, December 2016
2016 and 2017 Groundwater Monitoring Results and
Year 2 Monitoring Natural Attenuation Performance Evaluation Report
Former Hampshire Chemical Corp. Facility
Waterloo, New York

Ch2

**Ch2

**The Third T

AOCs B and D Groundwater Elevation Contour Map, August 2017

2016 and 2017 Groundwater Monitoring Results and

Year 2 Monitoring Natural Attenuation Performance Evaluation Report

Former Hampshire Chemical Corp. Facility

Waterloo, New York

Waterloo, New York

AOCs B and D Groundwater Elevation Contour Map, August 2017

2016 and 2017 Groundwater Monitoring Results and

Year 2 Monitoring Natural Attenuation Performance Evaluation Report

Former Hampshire Chemical Corp. Facility

Waterloo, New York

Ch2/Mac

Figure 5-3

MIBK Concentrations Along Transect Parallel to Canal:
November 2014 to August 2017
Monitored Natural Attenuation Performance Evaluation Report, Years Two and Three Former Hampshire Chemical Corp. Facility
Waterloo, New York

Figure 5-4
Time Series Graph Showing MIBK Concentrations at MW-02
Monitored Natural Attenuation Performance Evaluation Report, Years Two and Three Former Hampshire Chemical Corp. Facility
Waterloo, New York

Figure 5-5
Chromium Concentrations Along Transect Parallel to Canal:
November 2014 to August 2017
Monitored Natural Attenuation Performance Evaluation Report, Years Two and Three Former Hampshire Chemical Corp. Facility
Waterloo, New York

Figure 5-6
Time Series Graph Showing Chromium Concentrations at MW-02
Monitored Natural Attenuation Performance Evaluation Report, Years Two and Three
Former Hampshire Chemical Corp. Facility
Waterloo, New York

Notes:

- Circles shown in center field represent total dissolved solids concentrations as indexed by log scale provided above.
- 2. The chemistry for rain appears as reference for groundwater in a surficial water bearing zone.
- 3. MW-01 was not sampled in August 2017.

Figure 5-7
Major Ions in Groundwater at AOC B for
December 2016 and August 2017 Sampling Events
Monitored Natural Attenuation Performance Evaluation Report, Years Two and Three
Former Hampshire Chemical Corp. Facility
Waterloo, New York

Figure 5-8
Eh - pH Diagram for Chromium - Iron - Sulfide - Oxygen System at AOC B
Monitored Natural Attenuation Performance Evaluation Report, Years Two and Three
Former Hampshire Chemical Corp. Facility
Waterloo, New York

♥ PZ-06

+ PZ-07

Figure 5-9
Arsenic Concentrations with Time at MW-11S and MW-21, AOC D
Monitored Natural Attenuation Performance Evaluation Report, Years Two and Three
Former Hampshire Chemical Corp. Facility
Waterloo, New York

Figure 5-10
Arsenic Concentrations Along Transect Parallel to Canal
Monitored Natural Attenuation Performance Evaluation Report, Years Two and Three
Former Hampshire Chemical Corp. Facility
Waterloo, New York

Figure 5-11
pH Along Transect Parallel to Canal
Monitored Natural Attenuation Performance Evaluation Report, Years Two and Three
Former Hampshire Chemical Corp. Facility
Waterloo, New York

Notes:

- Circles in center field represent relative total dissolved solids concentrations as indexed by log scale above.
- 2. The chemistry for Rain (Hem, 1985) appears as reference for groundwater in a surficial water bearing zone.

Figure 5-12
Major Ions at AOC D from December 2016 and August 2017 Sampling Events
Monitored Natural Attenuation Performance Evaluation Report, Years Two and Three
Former Hampshire Chemical Corp. Facility
Waterloo, New York

Figure 5-13
Eh - pH Diagram of Arsenic - Iron - Sulfide - Oxygen System at AOC D
Monitored Natural Attenuation Performance Evaluation Report, Years Two and Three
Former Hampshire Chemical Corp. Facility
Waterloo, New York

Appendix A Analytical Data Packages and EQuIS Reports (on CD)

Appendix B Groundwater Sampling Field Data Sheets

(Jh21	n:	For							/, Project #671207 ARTER 2016			
WELL: MW - 30 SCREEN INTERVAL (ft BTOC): 4-14 START DATE: 12/7/16													
WELL: /	7W - Si	0	WELL DIAM	ETER (INCHE				FIELD CREW	1				
EQUIPMEN	T: Peristaltic	pump with o	ne-time-use	0.25" x 0.170	" Teflon-lined	d high-density	polyethylene	tubing					
METER MAI	KE & MODEL	: Horiba U-5	with flow-tl	hrough cell			METER CALI	BRATION DAT	TE: 12/	17/14			
DTW BEFOR	RE PURGING	(ft BTOC): L	1.37				DEPTH TO B	OTTOM (ft B		Soft / Hard			
R	EFERENCE:	1" well ≈ 0	.16 liter/ft or	0.041 gal/ft	2-inch w	ell ≈ 0.617 li	ter/ft or 0.16	3 gal/ft 1	gallon = 3.78				
WATER COL	.UMN (FT):			WELL VOLUI	ME (LITERS):				3 WELL VOLU	JMES (LITERS):			
				FIELD PA	RAMETERS O	OLLECTED D	URING LOW-	FLOW PURGI	NG				
TIME	WATER	FLOW	TOTAL	TEMP.	pH	ORP	CONDUC-	DO	LaMOTTE				
4 minute readings	(ft BTOC)	RATE (ml/min)	VOLUME (Liters)	(°C)	(std. units)	(mV)	TIVITY	(mg/L)	TURBIDITY	REMARKS (color, odor, sheen, sediment, etc.)			
Stability:	< 0.3 ft	300 – 500	NA NA	NA	± 0.1	± 10 mV	(mS/cm) ± 3 %	± 10 %	(NTU) ± 10 %	(color, odor, sheen, sediment, etc.)			
1334	4.45	300		1203	7.83	-280	4.33	4193	396	Initial state. 15 Bloom			
1338	4.48	250	1.0	14.46	7.60	-317	6.27	5,75	20.7	Initial state. LT BROWN CHARLUST UP			
1342	4.0	250	20	15,24	7. 49	314	3.01	645	17.4	- 4110WIA 01			
	344 4,52 250 3.0 15,80 7.38 -311 2.76 6.21 11.3 LT BROWN												
			_	14.08	7.05		1.89		3,91				
1359	4.51	250	50	16.19	4.99	-300	1.84	4.05	3,09				
1358 4.51 250 6.0 14.28 4.97 -301 1.82 4.02 3.60													
1402 4.51 20 7.0 14.37 4.97 -3.02 1.81 3.57 3.78													
1406		Car	ECT !	SATTRE	_					The state of the s			
									w.				
							12 14	到	10.				
					X 100	11.114			1464				
							est.	10					
							- 10	10	Town I				
				V. 10			- 9	,	1000	Week,			
					- 17								
<u> </u>						·							
						Ť							
						To the state of th							
N. S.				41	-	_	- 1			Final state.			
NOTES:													
<u> </u>		tecum	ARD I	unce	BURG	DAR	K BRO	with Con	OF				
├──		C +	. ^	2 4 12	1 7.								
	-	10'	-> O.	.49 r	14/2								
FIELD ANALYSIS AND LABORATORY CANADING INFORMATION													
FIELD ANALYSES AND LABORATORY SAMPLING INFORMATION FERROUS IRON FIELD KIT CONCENTRATION (mg/L): N/A SULFIDE FIELD KIT CONCENTRATION (mg/L): N/A													
	PRIMARY SAMPLE DI: YW30 -120714 PRIMARY SAMPLE DATE & TIME: 121716 1406												
					AL metals,	MNA	1 MINIMA 3A	INFEL DATE	a riivit. (C	1/110 1700			
QA/QC SAM	-				- 12 metuis,	_ ''''^	OA/OC SAM	PLE DATE & 1	IME				
		ETERS (check	:): Volat	tiles, TAI	metals,	MNA	SAMPLER'S			lu franç			

C	h21	n.	For							, Project #671207 ARTER 2016
			SCREEN INT	ERVAL (ft BTC				START DATE		
WELL:	1W-1	1>	WELL DIAM	ETER (INCHES	5): Z			FIELD CREW		
EQUIPMEN	T: Peristaltic	pump with o	ne-time-use (0.25" x 0.170	" Teflon-lined	d high-density	polyethylene	tubing		
METER MAI	KE & MODEL	: Horiba U-52	with flow-th	rough cell			METER CALI	BRATION DAT	E: 12/	17/16
DTW BEFOR	RE PURGING	(ft BTOC):	,30				DEPTH TO B	ОТТОМ (ft ВТ	oc): \~	Soft / Hard
	EFERENCE:	1" well ≈ 0	.16 liter/ft or	0.041 gal/ft		ell ≈ 0.617 lit	ter/ft or 0.16	3 gal/ft 1	gallon = 3.785	liters 1 liter = 0.264 gallons
WATER COL	.UMN (FT):			WELL VOLU			Mari .			JMES (LITERS):
	I			FIELD PA	RAMETERS C		URING LOW-	FLOW PURGI		
TIME 4 minute	WATER LEVEL	FLOW RATE	TOTAL VOLUME	TEMP.	pН	ORP	CONDUC-	DO	LaMOTTE TURBIDITY	REMARKS
readings	(ft BTOC)	(ml/min)	(Liters)	(°C)	(std. units)	(mV)	(mS/cm)	(mg/L)	(NTU)	(color, odor, sheen, sediment, etc.)
Stability:	< 0.3 ft	300 – 500	NA	NA NA	± 0.1	± 10 mV	±3%	± 10 %	± 10 %	Initial state. / 1 c A-M
942	1.95	300		18104	883	-180	3.70	4.04	13,2	Initial state. UEAR
946	2,60	300	0.75	17,51	8181	-172	3.45	3,72	8,30	
950	3.45	250	1.5	17.25	8.50	-167	3.62	264	3.81	Cign
954	4.10	200	1.75	1693	8.78	-156	3.56	730	2,03	
458	4,40	150	2.0	14.78	8,77	-163	3.65	230	2,50	
1002	4.60	150	2.5	16.64	8177	-171	3,74	2.24	3.04	
1006	470	150	3.0	16.59	8.78	-186	3,74	2.21	2.68	
1010	4.78	150	3,<	16.61	8:51	-191	3.72	2.19	2.51	
1014	4.82	150	4.0	1665	8:83	-196	3.67	2.16	2.32	
1018		-	SMTR		0,0)	710	7.07	- 10	C170	
1012	COL	act	511/14	7-						
					-					
	(The settlement		remaine.		STATE LINE			2800		Final state.
(12)		3 College		••				_		
NOTES:										
				Cot-	- A	1.1.				
				PE	70	119/2				
	· · · · · · · · · · · · · · · · · · ·									
				FIELD AN	ALYSES AND	LABORATOR	Y SAMPLING	INFORMATIO	ON	
FERROUS IR	ON FIELD KIT	CONCENTRA	ATION (mg/L):					NTRATION (m	ng/L): N/A
PRIMARY SA	AMPLE ID:	MW115-	-12071	16			PRIMARY SA	MPLE DATE 8	TIME: 12/	7/14 10:18
				latiles, T		_ MNA				
QA/QC SAN				0716-			-	PLE DATE & T	IME: 12/	7/16 12:31
QA/QC SAN	IPLE PARAMI	ETERS (check): Volat	iles, TAL	metals,	MNA	SAMPLER'S S	SIGNATURE:	rylle	· Sur

Former Hampshire Chemical Corp., 228 E. Main St., Waterloo, NY, Project #671207 LOW-FLOW GROUNDWATER SAMPLING LOG, FOURTH QUARTER 2016 SCREEN INTERVAL (ft BTOC): Vel raised START DATE: 12/6/16														
//			SCREEN INT	TERVAL (ft BT	roc): Well				E: 12/6/					
WELL.	MW-17		WELL DIAM	METER (INCHE	:S): 2"			FIELD CREW						
EQUIPMEN	T: Peristaltic	pump with o	ne-time-use	0.25" x 0.170	0" Teflon-linea	d high-densit;	y polyethylen	e tubing		411.				
METER MA	KE & MODEL:	: Horiba U-5:	2 with flow-t	hrough cell			METER CAL	IBRATION DAT	TE:					
DTW BEFOR	RE PURGING (22.8				DEPTH TO E	3OTTOM (ft B	лос): ~2	25.80 ¥ _7.Soft / _7.Hard				
	REFERENCE:	1" well ≈ 0	0.16 liter/ft o	or 0.041 gal/ft		vell≈ 0.617 lin	ter/ft or 0.16	i3 gal/ft 1	1 gallon = 3.78	85 liters 1 liter = 0.264 gallons				
WATER COL	LUMN (FT):	2.94			JME (LITERS):	1.01				UMES (LITERS): 5,4				
L			•	FIELD PA	ARAMETERS C	COLLECTED D			ING					
TIME 4 minute	WATER	FLOW	TOTAL	TEMP.	pH	ORP	CONDUC-	DO	LaMOTTE					
4 minute readings	(ft BTOC)	RATE (ml/min)	VOLUME (Liters)	(°C)	(std. units)	1	(mS/cm)	(mg/L)	TURBIDITY (NTU)	(color, odor, sheen, sediment, etc.)				
Stability:	< 0.3 ft	300 – 500	NA	NA	± 0.1	± 10 mV	± 3 %	± 10 %	± 10 %	(color, odor, street, seemen, see,				
1044	23.20	3000	P -	- 12.19 6.55 65 1.44 6.99 109 Initial state.										
	23.35		1-8		6.63	37	1.47	6.91	OR	Topage In the Control				
	0011		3.3	12.46	1 1	24	1.42	5.96	37					
	23.66		4.2	7.2 12.56 6.59 1 1.41 5.84 60.3										
1101	23.78		5.1		6.59	-17	1.41	5.78						
1105			6.3	12.54		-21	141	5.73						
1108		V	7.2		6.58	-22	1,41	5,74	8,51					
110	2,			1000	W132	-		700	012					
	<u> </u>													
					 				-					
					 		<u>. </u>	 						
	 				M	2/01	1 6							
	 	\vdash	 	\vdash	0				-					
\vdash	\longrightarrow	$\vdash \vdash \vdash$				\vdash	 	+						
	++							 	 					
<u> </u>	\longrightarrow	$\overline{}$	$\overline{}$				 '		-					
							<u></u> '		<u> </u>					
	1	└		-		!	<u> </u>	<u> </u>	<u> </u>	200				
	igwdown						<u> </u>							
							<u> </u>							
Sea	1109	K		-			-	-		Final state.				
NOTES:	* Dif	Freult	to go	auge F	DTB L	receive	tape	Stick	cine te	o inner PVC esting				
Tubin	ng has	ngs in		casing	when	insu	4 .	94 m	57, 15	1,20'				
(A) B	Etween	1044	7-1050	0 1057	flow.	Worke	d fubi.	ng clos	ser to	well bottom				
<u> </u>				TITLD AN	TO VOTE AND	CONTOR	TO COMPANY							
FIELD ANALYSES AND LABORATORY SAMPLING INFORMATION FERROUS IRON FIELD KIT CONCENTRATION (mg/L): N/A SULFIDE FIELD KIT CONCENTRATION (mg/L): N/A														
PRIMARY SA		MWH-	10 (1	1/	<u> </u>					- / //-				
	AMPLE PARAN		12061 eck): V Vol	latiles, V T	FAI metals	MNA /	PRIIVIART JA	MPLE DATE &	A HIME: 12	2/6/16 1110				
		2-61		0.41.1	I		CA/OC SAM	IDI F DATE & T	FIME: 1-2	1.111. 1110				
	A/QC SAMPLE ID: D.D-GW-120616-1 QA/QC SAMPLE DATE & TIME: 12/6/16 1110 A/QC SAMPLE PARAMETERS (check): Volatiles, TAL metals, MNA DAL BAMPLER'S SIGNATURE:													

Former Hampshire Chemical Corp., 228 E. Main St., Waterloo, NY, Project #671207 LOW-FLOW GROUNDWATER SAMPLING LOG, FOURTH QUARTER 2016													
WELL: ACLUL OC SCREEN INTERVAL (ft BTOC): START DATE: 12/6/16													
WELL:	MW-	26	WELL DIAM	ETER (INCHE	.s): 2	• /		FIELD CREW		Lettich			
EQUIPMEN	T: Peristaltic	pump with o	ne-time-use	0.25" x 0.170	0" Teflon-lined	d high-densit	y polyethylena	e tubing					
METER MAI	KE & MODEL	: Horiba U-52	2 with flow-t	hrough cell			METER CALI	IBRATION DAT	TE: (2/	6/16			
DTW BEFOR	RE PURGING		12.75				DEPTH TO B	SOTTOM (ft B		.62Soft /Hard			
	REFERENCE:	1" well ≈ 0).16 liter/ft or	r 0.041 gal/ft			ter/ft or 0.163	3 gal/ft 1	gallon = 3.78	5 liters 1 liter = 0.264 gallons			
WATER COL	LUMN (FT):	4.81	<u>!</u>		ME (LITERS):	711.0				JMES (LITERS): 9,5			
				FIELD PA	ARAMETERS C	COLLECTED D	Т	FLOW PURGI	NG				
TIME 4 minute	WATER LEVEL	FLOW RATE	TOTAL VOLUME	TEMP.	рН	ORP	CONDUC-	DO	LaMOTTE TURBIDITY	REMARKS			
readings	(ft BTOC)	(ml/min)	(Liters)	(°C)	(std. units)	(mV)	(mS/cm)	(mg/L)	(NTU)	(color, odor, sheen, sediment, etc.)			
Stability:	< 0.3 ft	300 – 500	NA	NA	± 0.1	± 10 mV	±3%	± 10 %	± 10 %				
1415	12.78	300		13.04	1	-63	0.882	6.95	23.3	Initial state. Light brown			
1418	12.79		1.4	14.79	6.90	-72	0.856	5.81	10.24				
1421	12.79	<u> </u>	2.3	15.13	6.92	-76	0.856	5.48	4.88				
1423			3.2										
1426			4.1	15.47	6.93	-113	0.858	5.42	1.11				
1429			5.0	15.44	6.93	-122		5.40	0.93				
1432			5.9	15.38	6.93		0.857						
1435			6.4	15.42	6.91	-138	0.858		0.36				
1438			7.3 15.61 6.93 -142 0.856 5.26 0.37										
1441		1	8.2	15.59			n.857	5.20					
-1		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0,2	17.3	6,1-	1101	1.00	٠,٠==	0,5,				
			\vdash		 			 					
	 	1000	\vdash	 	\vdash	2/6/16	 	$\vdash \vdash \vdash$					
	\vdash	 			-	310		\vdash					
\vdash	 	\vdash			(0)		\vdash						
 	\vdash			/		 	<u> </u>	igwdot					
<u> </u>	igwdown			لــــا									
	See	1441		_			-			Final state.			
NOTES:									f.	WW.			
W = 1 = 1													
									•				
	FIELD ANALYSES AND LABORATORY SAMPLING INFORMATION												
	ERROUS IRON FIELD KIT CONCENTRATION (mg/L): N/A SULFIDE FIELD KIT CONCENTRATION (mg/L): N/A												
PRIMARY SA			6-12					MPLE DATE &	RTIME: 12	2/6/16 1445			
	RIMARY SAMPLE PARAMETERS (check):												
QA/QC SAM			one					PLE DATE & T	IME:	lone			
QA/QC SAM	PLE PARAME	£TERS (check)): Volat	iles, TAL	L metals, I	MNA	SAMPLER'S S	JGNATURE:	11/2	11 1/4/			

C	21	11 :	For							/, Project #671207 ARTER 2016	,		
NA/ELL:	SCREEN INTERVAL (ft BTOC): START DATE: 12/6/16												
WELL:	MW-10	άŢ	WELL DIAM	ETER (INCHE	5): 2 '	//		FIELD CREW		Hich			
EQUIPMEN1	T: Peristaltic	pump with o	ne-time-use	0.25" x 0.170	" Teflon-lined	d high-density	polyethylene	tubing		(// / / /	_		
METER MAK	KE & MODEL	: Horiba U-52	with flow-t	hrough cell			METER CALI	BRATION DAT	E: 12	16/16			
DTW BEFOR	E PURGING	(ft BTOC):	26.8	7	•	•	DEPTH TO B	OTTOM (ft B1	oc): 3	6.55	Soft / Hard		
R	EFERENCE:	1" well ≈ 0		r 0.041 gal/ft	2-inch w	ell ≈ 0.617 lit	er/ft or 0.16	3 gal/ft 1	gallon = 3.78!		64 gallons		
WATER COL	UMN (FT):			WELL VOLUE	ME (LITERS):				3 WELL VOLU	JMES (LITERS):			
				FIELD PA	RAMETERS C	OLLECTED D	URING LOW-	FLOW PURGI	NG				
TIME	WATER	FLOW	TOTAL	ТЕМР.	pН	ORP	CONDUC-	DO	LaMOTTE	REM/	ADVE		
4 minute readings	(ft BTOC)	RATE (ml/min)	VOLUME (Liters)	(°C)	(std. units)	(mV)	(mS/cm)	(mg/L)	TURBIDITY (NTU)	(color, odor, shee			
Stability:	< 0.3 ft	300 – 500	NA	NA	± 0.1	± 10 mV	±3%	± 10 %	± 10 %				
1246	26.95	300	.500										
1249	1		14	14 9.26 6.94 -96 1.47 7.99 19.6									
1252			2,3										
1255			3.2	10.31	6.93	-120	1.32	7.03	4.68				
1258			4.1	10.31	6.92	-125	1.30	6.84	3.17				
1301			5.0	10.52	6.92	-134	1.26	6.61	3,07		222		
1305			6.5	10.62		-139	1.25	6.51	0.42				
1308	V	V	7,4	10.67	6.91	-144	1.23	6.36	0.45				
,,,,			.,	10.0	3,11		1000	/	0. 17				
											·		
			16		,								
			>	12/0	116					<u> </u>			
	7-												
	1.0	21	1.	Carlo Cara	22					Final state.			
	ee l-	20% r	rasir	<u> </u>				_					
NOTES:													
								<u>_</u>					
													
	FIELD ANALYSES AND LABORATORY SAMPLING INFORMATION												
FERROUS IRON FIELD KIT CONCENTRATION (mg/L): 1/2 SULFIDE FIELD KIT CONCENTRATION (mg/L): N/A													
PRIMARY SAMPLE ID: $MW16I-120616$ PRIMARY SAMPLE DATE & TIME: $12/6/16$ 1315													
	PRIMARY SAMPLE PARAMETERS (check): Volatiles, V TAL metals, MNA PAH												
						>		PLE DATE & T	IME: 12	2/6/16 1	315		
QA/QC SAM	DA/QC SAMPLE ID: $MW16I-120616-M5/M50$ QA/QC SAMPLE DATE & TIME: $12/6/16$ 1315 DA/QC SAMPLE PARAMETERS (check): V volatiles, TAL metals, MNA V PAHAMPLER'S SIGNATURE: M												

	·lece	0.0	For	mer Hami	shire Che	mical Corp	., 228 E. N	1ain St., Wa	aterloo, NY	, Project #671207
	121	W:								ARTER 2016
WELL	1, -	7	SCREEN INT	ERVAL (ft BT	OC):			START DATE	12-1	0-1(0
	16-2	2	WELL DIAM	ETER (INCHE	5):			FIELD CREW	γ.	D
EQUIPMENT	Γ: Peristaltic	pump with o	ne-time-use	0.25" x 0.170	" Teflon-lined	l high-density	polyethylen	e tubing		
METER MAI	KE & MODEL	: Horiba U-5	2 with flow-t	hrough cell			METER CALI	BRATION DAT	E: 12-1	0-16
DTW BEFOR	E PURGING		2,94			<u> </u>		OTTOM (ft B1		Soft / Hai
	EFERENCE:	1" well ≈ 0	.16 liter/ft o	r 0.041 gal/ft		ell 9 0.617 lit	er/ft or 0.16		gallon = 3.785	
WATER COL	.UMN (FT):			WELL VOLUI						JMES (LITERS):
7045		5,04,		FIELD PA	RAMETERS C	OLLECTED D		FLOW PURGI	1.11	<u> </u>
TIME 4 minute	WATER LEVEL	FLOW RATE	TOTAL VOLUME	TEMP.	pH	ORP	CONDUC- TIVITY	DO	LaMOTTE TURBIDITY	REMARKS
readings	(ft BTOC)	(ml/min)	(Liters)	(°C)	(std. units)	(mV)	(mS/cm)	(mg/L)	(NTU)	(color, odor, sheen, sediment, etc.)
Stability:	< 0.3 ft	300 – 500	NA	NA	± 0.1	± 10 mV	± 3 %	± 10 %	± 10 %	Initial state.
		B RESID								
100°G	3	36%	0	16.69	8.65	-143	14.9	9.57	2.53	brownish color
1012	3.03			16.67	9.27	- 138	15.9	8.7	2.71	
1016	3.03	35Ø	2	110.01	9.16	229	9.82	2.39	310	
1020	3.05		3.8	14.75	850	-216	511	3.49	224	
1024	3 02	350	5.5	14.67	8 20	-231	480	4011	1.56	
	3.06	- 4	• 7			-253	4109	7.09	161-	
1038	-	254	0 =	14.66	(X)	~~~	1,0	4.64	1,50	
1132	3.00	35Ø	8.5	14.66	8,20	$-\alpha + 1$	4.66	5.16	1.07	
1036	3.06		10	14.61	8.30	291	4,60	5.84	0.92	
1040	3.06	35Ø	11.5	14,62	8.19	-306	4.64	6.46	1,61	
1044	3.07		13	14.61	8.17	-314	4.61	6.97	0.65	
1048	3,08	350	14.5	14.67	8114	-322	4,58	7,39	1,53	173. 1000.0
1052	3.09)_/	10	14.67	8,14.		4.51	7.49		
1000	7.0 1		1 <i>\P</i>	7.07	0.01	5 70	-11/1	7140		
			'							
310000C	(Sales		3000030	50 1 <u>2-</u> 14/		2			4/150/000	Final state.
NOTES:	Vacar	>	No	10010		200				
.50.123.	1 colsis		No	VRAF	- Ro	adin	C.C.			
			11/1	0/2/16	- 19	LALVIII	1			
	FIGURE									4. 1.334
										V2 10 W W W
				FIELD AN	IALYSES AND	LABORATOR	Y SAMPLING	INFORMATION	ON	
		CONCENTR			36		SULFIDE FIE	LD KIT CONCE	NTRATION (m	
		MWQ3				,	PRIMARY SA	MPLE DATE 8	RTIME:	057 12-6-06
					AL metals, X		Visit	-100	3534	-6 10 /
		W23-						HIVE SHATE & T	IME: JC	57 12-6-16
QA/QC SAN	IPLE PARAM	t I ERS (check	(): Vola	tiles, <u>X</u> TAI	. metals,	MNA	SAMPLER'S	SIGNATURE:	Tyls	
15/MS	5D									\bigcirc

	<u> </u>	11 :	For							', Project #671207 ARTER 2016
	4 .		SCREEN INT	ERVAL (ft BT				START DATE	1.00	2-10
WELL:	MW-	09R	WELL DIAM	ETER (INCHE	s): 011			FIELD CREW		
						d hiah-densit	v polyethylene	tubina		· · · ·
	KE & MODEL							BRATION DA	TE: ∤ ⊃	-10-10
	RE PURGING		5.3					OTTOM (ft B		Soft / Hard
	REFERENCE:			0.041 gal/ft	(2-inch w	ell ≈ 0,617 li	ter/ft or 0.16		gallon = 3.78	
	LUMN (FT):			WELL VOLU						JMES (LITERS):
				FIELD PA	RAMETERS C	OLLECTED D	URING LOW-	FLOW PURGI	NG	
TIME 4 minute	WATER LEVEL	FLOW RATE	TOTAL	TEMP.	pH (std. units)	ORP (mV)	CONDUC- TIVITY	DO (mg/L)	LaMOTTE TURBIDITY	REMARKS
readings Stability:	(ft BTOC) < 0.3 ft	(ml/min) 300 – 500	(Liters) NA	NA	± 0.1	± 10 mV	(mS/cm) ± 3 %	± 10 %	(NTU) ± 10 %	(color, odor, sheen, sediment, etc.)
1318	5.82	450	0	14.38	7.57	-164	6.03	5.32	3.37	Initial state.
1233	1,00	300	2		1,05	157		2.45	1.52	01000
1326	6.00	300	4	14.30	6.75	-159	(p.10	3.04	3,10	Clear
1330	6.20	300	4.5	14.38	672	-1100	6,06	2.87	2.41	
1224	10,310	200	55	11.32	6.69	-163	6.20	2.46	721	
1338	7 55	300	7	110,30	6.U	-166	4,40	2.13	1 25	OH = 6.60
1300	0115	ilas	Q	70.00	10.69	-170	6.54	0.00	1.08	PH = 4.0 0
1374	D ()	160	9	16.33	(O.W)	170	2 1	2.09	1.00	
1.796	7.62	160		15.90	10.00	1111	(0.10)	2.09	1.00	al / 70
1.350	7/20	160	0	15.87		-173	6.58	2.22	0.73	pH=6,79
1354	8.00	160	10.5	15.81	6.69	-175	6.59	2.12	1,43	
1400	Sar	MPU								
		\								
				-						
\vdash	<u> </u>									
11121)	81.7	8/ 1	'12						1 611	
11120	0.01	160	15	Description of the last				an an an an a	1,54	Final state.
130	10110	1 00			-					mai state.
NOTES:	HE CU	<u>15 pric</u>	I Pe	radin	95	V	<u> </u>	= ()	***	
		· · ·				42	$\mathcal{I} = 0$	<i>D</i>		
-					-			-		
				FIELD AN	ALYSES AND	LABORATOR	RY SAMPLING	INFORMATI	ON	
FERROUS IF	RON FIELD KIT	CONCENTR.	ATION (mg/L	1: 3,30	5 * F/U	Shina	SULFIDE FIEL	D KIT CONCE	NTRATION (m	ng/L): N/A
PRIMARY S	AMPLE ID:	MWO9	R-15	10016		mit	PRIMARY SA	MPLE DATE 8	TIME: /c	2-6-16 1400
PRIMARY S	AMPLE PARA	METERS (che	eck): 💢 Vo	latiles, 💢 T	AL metals,	MNA				
QA/QC SAN							QA/QC SAM	PLE DATE & 1	IME:	
QA/QC SAN	IPLE PARAM	ETERS (check	x): Volat	iles, TAI	metals,	MNA	SAMPLER'S S	IGNATURE:		

C	2121 PZ - 0	11 :	For							/, Project #671207 ARTER 2016
wen. (200	,	SCREEN INT	ERVAL (ft BT	oc): 3,4	5-8:5		START DATE	: 12/4	114
MELL:	5-0	G	WELL DIAM	ETER (INCHE				FIELD CREW	: 12/4 : 13	•
			ne-time-use	0.25" x 0.170	" Teflon-lined	d high-density	polyethylene	tubing	' '	
METER MAK	KE & MODEL	: Horiba U-52	with flow-ti	hrough cell			METER CALI	BRATION DAT	ΓE:	
DTW BEFOR	RE PURGING	(ft BTOC):	3,49				DEPTH TO B	OTTOM (ft B	FOC):	Soft / Hard
				0.041 gal/ft	2-inch w	ell ≈ 0.617 lit	er/ft or 0.16	3 gal/ft 1	gallon = 3.78	
WATER COL	.UMN (FT):			WELL VOLUI	ME (LITERS):				3 WELL VOLU	JMES (LITERS):
				FIELD PA	RAMETERS C	OLLECTED D	URING LOW-	FLOW PURGI	NG	
TIME	WATER	FLOW	TOTAL	TEMP.	pН	ORP	CONDUC-	DO	LaMOTTE	
4 minute	LEVEL	RATE	VOLUME	(°C)	(std. units)	(mV)	TIVITY	(mg/L)	TURBIDITY	REMARKS
readings Stability:	(ft BTOC) < 0.3 ft	(ml/min) 300 – 500	(Liters) NA	NA	± 0.1	± 10 mV	(mS/cm) ± 3 %	± 10 %	(NTU) ± 10 %	(color, odor, sheen, sediment, etc.)
1345	5,80	100		11.90	Company Laboratory	-225			52.4	Initial state. CLS 217
			1	13,10	8101	-248	2,28	6.58	42,7	Initial state. CLGAZ CLGAC
1349	7.31	100	1	15.10	1010	48	2,00	6 5.0	-(211	CCGTK
1 23 5		DRY								
77 (2)										
		:								
	<u> </u>									
<u> </u>										
<u> </u>										
				-						
	-									
 	-									
				-	-	-	_			Final state.
NOTES:	11/197	34	UD	1Kg 3	BD Pi	AT4 NG	بئىس ج	YT DR	y AT	1352 AFRZ 7
	1711-15					Pupa				-
				FIELD AN	IALYSES AND	LABORATOR	Y SAMPLING	INFORMATI	ON	
FERROUS IR	ON FIELD KI	T CONCENTR	ATION (mg/l	.):			SULFIDE FIEL	LD KIT CONCE	NTRATION (n	ng/L): N/A
PRIMARY SA	AMPLE ID:	1206	120611	P			PRIMARY SA	MPLE DATE 8	& TIME: 12	16/16 1500
					TAL metals, _	MNA				
QA/QC SAN	1PLE ID:						QA/QC SAM	PLE DATE & 1	ГІМЕ:	
QA/QC SAN	1PLE PARAM	ETERS (check	(): Vola	tiles, TA	L metals,	MNA	SAMPLER'S	SIGNATURE:	1724/0	frey

C

Former Hampshire Chemical Corp., 228 E. Main St., Waterloo, NY, Project #671207 LOW-FLOW GROUNDWATER SAMPLING LOG, FOURTH QUARTER 2016													
	SCREEN INTERVAL (ft BTOC): 7 - 11 - START DATE: 17 //- 11/-												
WELL:	WELL: MW-07 WELL DIAMETER (INCHES): 2 FIELD CREW: 13												
			ne-time-use (D.25" x 0.170	" Teflon-linea	 I high-density	polyethylene	tubing					
METER MAI	KE & MODEL	: Horiba U-52	with flow-th	rouah cell			METER CALI	BRATION DAT	E: \2 /	6116			
		(ft BTOC):					DEPTH TO B	OTTOM (ft B1		Soft / Hard			
	REFERENCE:			0.041 gal/ft	2-inch w	ell ≈ 0.617 li	ter/ft or 0.16		gallon = 3.785	— · — ·			
WATER COL	UMN (FT):			WELL VOLUI	ME (LITERS):				3 WELL VOLL	JMES (LITERS):			
				FIELD PA	RAMETERS C	OLLECTED D	URING LOW-	FLOW PURGI	NG				
TIME	WATER	FLOW	TOTAL	TEMP.	pН	ORP	CONDUC-	100	LaMOTTE				
4 minute readings	(ft BTOC)	RATE (ml/min)	VOLUME (Liters)	(°C)	(std. units)	(mV)	(mS/cm)	(mg/L)	TURBIDITY (NTU)	REMARKS (color, odor, sheen, sediment, etc.)			
Stability:	< 0.3 ft	300 – 500	NA NA	NA	± 0.1	± 10 mV	± 3 %	± 10 %	± 10 %	(color, odor, sheeri, seamlent, etc.)			
1030	3,45	300		15,00	6.30	-125	1.23	5.96		Initial state.			
1034	3,50	700											
1034	1038 3.50 300 3.5 13.61 6.88 -263 1.21 18.18 1.91												
1046	3,50	300	6,0	13.60	4	-292	1,26	15.84	0.41	GRAYISH COLOR			
1650	3,50	300	7,0	13.58	6.92	- 298	1.27	15.27	0.44	SUGIHT HZS STIELL			
1054	3.50	300	8.5	13.53	6.92	-305	1.28	14,55	0 80				
1058	3,50	300	100	13,56	6.91	-310	1,24	7,25	0.52				
1102	3,50	300	1110	13.55	Lial	-316e	1.31	7,14	0.74				
1106	3,50	300	125	13.54	6.91	-322	1.32	7.11	0.65				
1110	Cou	ECT	5/117	PLa									
										Final state.			
NOTES:	·····			· · · · · · · · · · · · · · · · · · ·						·			
				Fe+-	> 0,0	114/1							
FIELD ANALYSES AND LABORATORY SAMPLING INFORMATION													
FERROUS IRON FIELD KIT CONCENTRATION (mg/L): SULFIDE FIELD KIT CONCENTRATION (mg/L): N/A													
PRIMARY SAMPLE ID: MUUZ - 120616 PRIMARY SAMPLE DATE & TIME: 12/4/16 11:10													
PRIMARY SAMPLE PARAMETERS (check): Yolatiles, YTAL metals, MNA QA/QC SAMPLE ID: T いして 120011-115D QA/QC SAMPLE DATE & TIME: 12/4/14 11:10													
QA/QC SAN	TPLE PARAM	ETERS (check	i):Volat	iies, TAI	. metals,	IVINA	SAMPLER'S	SIGNATURE:	Valle	- frag			

C	\h21	11:	For			•	-		-	', Project #671207 ARTER 2016			
SCREEN INTERVAL (ft BTOC): 3-16 START DATE: 12/6/16													
WELL:	1W-0	5		ETER (INCHES	-			FIELD CREW:	121	ASBURCA			
EQUIPMENT	T: Peristaltic	pump with o	ne-time-use i	0.25" x 0.170		l high-density	polyethylene	tubing					
		: Horiba U-52	15					BRATION DAT	「E: 1フ./	(le/1 Lo			
DTW BEFOR	RE PURGING	(ft BTOC):	1.35				DEPTH TO B	OTTOM (ft B1					
	EFERENCE:			0.041 gal/ft	2-inch w	ell ≈ 0.617 lit	er/ft or 0.16		gallon = 3.78				
WATER COL	.UMN (FT):			WELL VOLUM	ME (LITERS):				3 WELL VOLU	JMES (LITERS):			
				FIELD PA	RAMETERS C	OLLECTED D	URING LOW-	FLOW PURGI	NG				
TIME	WATER	FLOW	TOTAL	TEMP.	рH	ORP	CONDUC-	DO	LaMOTTE				
4 minute readings	(ft BTOC)	RATE (ml/min)	VOLUME (Liters)	(°C)	(std. units)	(mV)	TIVITY (mS/cm)	(mg/L)	TURBIDITY (NTU)	REMARKS (color, odor, sheen, sediment, etc.)			
Stability:	< 0.3 ft	300 - 500	(Liters) NA	NA	± 0.1	± 10 mV	± 3 %	± 10 %	± 10 %	(color, odor, sheeri, sediment, etc.,			
1409	4.71	300	_	11.76	8,10	-159	1.86	4.99		Initial state. Brown			
1413	4.95	300	20	12,84			1.82	3,45	31,4	13/00/4			
1417	5.01	275		12.89	7,13	-163	1.81	3,50	18.9	UT BROWIN			
1421													
1425													
1429	5.18	275	6.0	1262		-167	1.79	3.38		CLETTE			
1433	5,20	275	7.0	12,62	7.06	-168	1.80	3.35	Ce121				
1438	COLU	ECT S	ATTPLE	-									
1440													
					1								
										Final state.			
NOTES:													
				ーピーラ	1,-	71 r	14/L						
<u> </u>				S									
FIELD ANALYSES AND LABORATORY SAMPLING INFORMATION													
	FERROUS IRON FIELD KIT CONCENTRATION (mg/L): SULFIDE FIELD KIT CONCENTRATION (mg/L): N/A PRIMARY SAMPLE ID: TWO 1 - \$25616 PRIMARY SAMPLE DATE & TIME: [438 12/6/16												
					-41 - 1		PRIMARY SA	MPLE DATE 8	KIIME: {U	138 12/6/16			
PRIMARY SAMPLE PARAMETERS (check): Volatiles, TAL metals, MNA QA/QC SAMPLE ID: QA/QC SAMPLE DATE & TIME:													
		-						PLE DATE & 1		0			
QA/QC SAN	1PLE PARAM	ETERS (check	(): Vola:	tiles, TAI	. metals,	MNA	SAMPLER'S	SIGNATURE:	rylu	fend			

C	Former Hampshire Chemical Corp., 228 E. Main St., Waterloo, NY, Project #671207 LOW-FLOW GROUNDWATER SAMPLING LOG, FOURTH QUARTER 2016 WELL: P2-Ø9 SCREEN INTERVAL (ft BTOC): WELL DIAMETER (INCHES): START DATE: FIELD CREW: FIELD CREW											
	<u> </u>		SCREEN INT	ERVAL (ft BTO				START DATE		6-16		
WELL: Y	12- Ø	4	WELL DIAM	ETER (INCHES	5): 111			FIELD CREW				
			ne-time-use (0.25" x 0.170	" Teflon-lined	l high-density	polyethylene	tubing	<u> </u>			
		: Horiba U-52						BRATION DA	TE: 10.1	0-10		
	RE PURGING		2.5					OTTOM (ft B		Soft / Hard		
				0.041 gal/ft	2-inch w	ell ≈ 0.617 lit			gallon = 3.785			
WATER COL				WELL VOLUM				9 -7		JMES (LITERS):		
						OLLECTED D	URING LOW-	FLOW PURGI	NG			
TIME	WATER	FLOW	TOTAL	TEMP.	рН	ORP	CONDUC-	DO	LaMOTTE			
4 minute	LEVEL	RATE	VOLUME	(°C)	(std. units)	(mV)	TIVITY	(mg/L)	TURBIDITY	REMARKS		
readings Stability:	(ft BTOC) < 0.3 ft	(ml/min) 300 – 500	(Liters) NA	NA	± 0.1	± 10 mV	(mS/cm) ± 3 %	± 10 %	(NTU) ± 10 %	(color, odor, sheen, sediment, etc.)		
	V 0.5 IL	300 - 300	INA Sec			9450	691		2 10 /8	Initial state.		
1134												
	Sight brown color											
	1									J		
										;		
		 										
		-										
			<u> </u>									
		ļ										
	1	 										
										Final state.		
										i mai state.		
NOTES:	No H	Sor	V OC	15 11	ne	ad Sp	XICL					
					· ·	1			0.			
<u> </u>	125 is	$\Delta \rho u$	Cip D	UCKR-	F~1.	2011M	7	Sam	phila	nated		
		1				17			<u> </u>			
					IALYSES AND	LABORATOR	RY SAMPLING	INFORMATI	ON			
FERROUS IR	RON FIELD KI	T CONCENTR	ATION (mg/l	_):			SULFIDE FIE	LD KIT CONCE	ENTRATION (n	ng/L): N/A		
PRIMARY SA	AMPLE ID:						PRIMARY SA	MPLE DATE	& TIME:			
PRIMARY SA	AMPLE PARA	METERS (ch	eck): <i>Vo</i>	latiles, 1	AL metals, _	MNA						
QA/QC SAN	APLE ID:						QA/QC SAM	IPLE DATE &	TIME:			
QA/QC SAN	IPLE PARAM	ETERS (chec	k): <i>Vola</i>	tiles, TAI	metals,	MNA	SAMPLER'S	SIGNATURE:				

	ī.									
	ch2n	N:	For							, Project #671207 ARTER 2016
WELL	4.A. I I	_	SCREEN INT	ERVAL (ft BT	DC):			START DATE	12/-	1/6
WELL:	MW-1	0	WELL DIAM	ETER (INCHE	s): 2"			FIELD CREW:	Ċ.,	Litlich
EQUIPMEN	IT: Peristaltic	pump with o	ne-time-use	0.25" x 0.170	" Teflon-lined	l high-densit	y polyethylene	tubing		
METER MA	KE & MODEL	: Horiba U-5	with flow-ti	hrough cell			METER CALI	BRATION DAT	E: (2	17/16
DTW BEFO	RE PURGING	(ft BTOC):	1.50)			DEPTH TO B	OTTOM (ft BT	oc): 12.	.65Soft / Hard
	REFERENCE:	1" well ≈ 0	.16 liter/ft o	0.041 gal/ft	2-inch we	ell ≈ 0.617 li	ter/ft or 0.16	3 gal/ft 1	gallon = 3.785	5 liters 1 liter = 0.264 gallons
WATER CO	LUMN (FT):			WELL VOLUI	ME (LITERS):				3 WELL VOLU	JMES (LITERS):
				FIELD PA	RAMETERS C	OLLECTED D	URING LOW-	FLOW PURGI	NG	
TIME 4 minute	WATER LEVEL	FLOW RATE	TOTAL VOLUME	темр.	pН	ORP	CONDUC-	DO	LaMOTTE TURBIDITY	REMARKS
readings	(ft BTOC)	(ml/min)	(Liters)	(°C)	(std. units)	(mV)	(mS/cm)	(mg/L)	(NTU)	(color, odor, sheen, sediment, etc.)
Stability:	< 0.3 ft	300 500	NA	NA	± 0.1	± 10 mV	± 3 %	± 10 %	± 10 %	
11228	1.99	300	0.5	10,71	7.34	74	0.826	14.26	11,7	Initial state.
1101	2.13		1.4	10.15	7,30	76	0.818	14.24	8.90	
1104	-		2.3	9.87	7.28	68	0,817	4.39	7.35	
1107	234		3.2	9,70	7,29	76	0.809	449	6.54	
1110	239		4.1	9,19	7.34	72	0.818	14.57	5(5)	
1113	2.42		5.0	9.05	735	74	0.810	1443	714	
1116	2.49		5.9	8,90	7,34	77		14.36	120	
1116	60-(1		သည်	8,70	11.54	(/	0,805	14,50	6.39	
<u> </u>										
<u> </u>										
<u> </u>										ENHOLD TO THE PROPERTY OF THE
						-				
	1									7 2
										Final state
Soci	1116				*		·			Final state.
NOTES:										
										
									_	
				FIELD AN	ALYSES AND	LABORATO	RY SAMPLING	INFORMATIO	ON	····
FERROUS II	RON FIELD KIT	CONCENTR	ATION (mg/L						NTRATION (m	ng/L): N/A
PRIMARY S			- 120						TIME: iZ	
	AMPLE PARA	METERS (che	eck): Vo.	latiles,	AL metals,	_MNA 👱				/ / (0) (0.0)
QA/QC SAI			lone					PLE DATE & T	IME:	
QA/QC SAI	MPLE PARAMI			iles, TAL	metals,	MNA	SAMPLER'S S	IGNATURE:		

SCREEN NTERVAL (IR STOC) STATA TATE 2/7/66		121	11 :	For							Y, Project #671207 VARTER 2016
VIELL DIAMETER PROCESS: Pick Pi	14/5/1	0-7	-7	SCREEN INT							1.0
METER MAKE & MODEL Horitor U-52 with flow-through cell OTW BEFORE PURGING IN \$100C 3, CH RREFERENCE: 1' well = 0.041 gal/R: 2-inch well = 0.617 litter/for 0.042 gal/R: 2-inch well = 0.617 litter	WELL:	12-	05	WELL DIAM	ETER (INCHE	S): 1 /	,		FIELD CREW	: (.)	Lotticle
DEPTH TO BOTTOM (R BTOC) 3, C4	EQUIPMEN'	T: Peristaltic	pump with o	ne-time-use	0.25" x 0.170	" Teflon-lined	d high-density	polyethylene	e tubing		
DOWNERGE PURGING (R STOC) 3, C.4 REFERES: 3 well * 0.16 light for 0.041 pu/ft 2-linch well * 0.617 liter/ft or 0.163 ga/ft 1 gallon * 3.765 liters 1 liter = 0.264 gallons WATER COLUMN (FT): 7, C.7 WELL VOLUME (UTERS): 4, C.9 SURL VOLUMES (UTERS): 1 4, C.6 FIELD PARAMETERS COLLECTED DURING LOW-FLOW PURGING TIME (R STOC): (m/l/mis) (Liters): 7, C.7 (regarding): (ft GTOC): (m	METER MAI	KE & MODEL	: Horiba U-5	with flow-ti	hrough cell			METER CALI	BRATION DA	TE: 12	17/16
WATER COLUMN (FT): 19 WELL VOLUME (LITERS): 4.9 3 WELL VOLUMES (LITERS): 14.6	DTW BEFOR	RE PURGING	(ft BTOC):	3.04	_			DEPTH TO B	OTTOM (ft B	гос): (О.	The state of the s
FIELD PARAMETERS COLLECTED DURING LOW-FLOW PURGING TIME LEVEL TOTAL TEMP CONDUCT (ms/cm) (The state of the s		THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAME			The same of the sa	ter/ft or 0.16	3 gal/ft 1	gallon = 3.78	
TIME WATER FLOW RATE PH PH PH PH PH PH PH P	WATER COL	.UMN (FT):	7.91								JMES (LITERS): 14.6
## A Subject of the content of the c					FIELD PA	RAMETERS C	OLLECTED D	-	FLOW PURGI		•
readings 16 BTOC							i		DO		REMARKS
H30 3,9 300 0,5 4,6 6,6 -177 248 7,03 2,83 initial spire, aborally also 3,39 1,4 17.11 6,73 -242 18,5 5,32 2,35 1436 3,44 2,3 17,40 6,78 -247 4,3 5,4 2,17 1437 3,47 3,2 17,48 6,80 -249 12,8 5,13 1,37 1,448 3,49 5,0 17,67 6,87 -247 8,53 5,00 0,71 1,448 3,49 400 5,0 17,67 6,87 -247 8,53 5,00 0,71 1,456 3,37 300 10 17,91 6,92 -244 6,32 4,86 0,39 1,50 2,351 11.8 15,15 6,94 -240 5,70 4,80 0,19 1,50 3,50 7,75 1,80				(Liters)	(°C)	(std. units)	(mV)	ı	(mg/L)		
1436 1451	Stability:	- A	1		NA .	± 0.1		± 3 %	± 10 %	DESCRIPTION OF THE PARTY OF THE	
436 3.44 2.3 17.40 6.78 -247 4.73 5.14 2.17 436 3.47 3.2 17.48 6.80 -249 12.8 5.13 1.37 448 3.49 3.0 17.78 6.89 -246 7.49 4.94 0.57 448 3.49 4.00 5.9 17.78 6.89 -246 7.49 4.94 0.57 459 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 459	1430	201	300	0,5	14,61	6,61		24.8	7,03	2,83	Clean Sulfur dor
17.48 6.80 -249 12.8 5.13 1.37 14.5 3.49 5.0 17.69 6.87 -247 8.53 5.60 0.71 14.5 3.49 4.00 5.9 17.78 6.89 -246 7.49 4.94 0.57 14.5 4.83 3.49 4.00 5.9 17.78 6.89 -246 7.49 4.94 0.57 14.5 4.83 7.40 7.41 6.94 -240 5.74 4.83 0.94 15.0 2.3.5 11.8 15.15 6.94 -240 5.75 4.80 0.19 15.0 3.50 16.21 6.95 -240 5.75 4.80 0.19 15.0 3.50 16.21 6.95 -240 5.55 4.75 0.20 15.0 3.50 16.21 6.95 -240 5.55 4.75 0.20 15.0 3.50 17.60 18.11 18.15 18.1	1433	3.39		1.4	17.11	6.73	-242	18.5	5,32		
14.5 3.49 5.0 17.67 6.87 -247 8.53 5.60 0.71 14.6 3.49 4.00 5.9 17.78 6.89 -246 7.49 4.94 0.57 14.5 4.5 6.8 7.91 6.92 -244 6.32 4.86 0.39 14.5	1436	3,44		2.3	17,40	6.78	-247	4.3	5.H	2.17	
ALS 3.49 5.0 17.67 6.87 -247 8.53 5.60 0.71 ALS 3.49 400 5.9 17.78 6.89 -246 7.49 4.94 0.57 ALS 4 6.8 6.8 6.9 -246 7.49 4.94 0.57 ALS 5 6.8 6.9 -246 7.49 4.94 0.57 ALS 6 6.8 6.9 6.9 6.9 6.9 6.9 6.9 ALS 6 6.8 6.9 6.9 6.9 6.9 6.9 ALS 6 6.9 6.9 6.9 6.9 6.9 ALS 6 6.9 6.9 6.9 6.9 6.9 ALS 6 6.9 6.9 6.9 6.9 ALS 6 6.9 6.9 6.9 6.9 ALS 6 6.9 6.9 6.9 ALS 6 6.9 6.9 6.9 ALS 6 6.9 6.9 6.9 ALS 7 6.9 ALS	1439	3.47	\/ \/	3.2	17.48	6.80	-249	12,8	5.13	137	
H448 3.49 400 5.9 17.78 6.89 -246 7.49 4.94 0.57 1454	1445	3.49		5.0	17.69		-247				
156 3.37 300 0	448	_	400								
1456 3.37 300 104 179 6.92 -244 6.32 4.86 0.39 4.59 -	1454				11.70				(-[-	0657	
109 13.1 6.94 -240 5.74 4.83 0.94 150 23.5		227	200		1761	192	211	627	101	0 30	
150 2 3.51		3,57	300			4 4			4		
FIELD ANALYSES AND LABORATORY SAMPLING INFORMATION FIELD ANALYSES AND LABORATORY SAMPLING INFORMATION SERROUS IRON FIELD KIT CONCENTRATION (mg/L): N/A PRIMARY SAMPLE ID: 18 23 - 12 07 1 6 PRIMARY SAMPLE DATE & TIME: V2/7/6 15/D PRIMARY SAMPLE DATE & TIME: V2/7/6 15/D PRIMARY SAMPLE DATE & TIME: V2/7/6 15/D PAGE QA/QC SAMPLE DATE & TIME: V2/7/6 15/D		2-1									
FIELD ANALYSES AND LABORATORY SAMPLING INFORMATION FERROUS IRON FIELD KIT CONCENTRATION (mg/L): 1.24 SULFIDE FIELD KIT CONCENTRATION (mg/L): 1.24 SULFIDE FIELD KIT CONCENTRATION (mg/L): N/A PRIMARY SAMPLE ID: NP 7203-120716 PRIMARY SAMPLE DATE & TIME: V2/7/16 15/10 PRIMARY SAMPLE PARAMETERS (check): Volatiles, TAL metals, MNA DA/QC SAMPLE ID: Norv. OA/QC SAMPLE DATE & TIME:				11.8					,		
FIELD ANALYSES AND LABORATORY SAMPLING INFORMATION FERROUS IRON FIELD KIT CONCENTRATION (mg/L): N/A PRIMARY SAMPLE ID: NP 7203-120716 PRIMARY SAMPLE PARAMETERS (check): Volatiles, TAL metals, MNA DA/QC SAMPLE ID: Note: QA/QC SAMPLE DATE & TIME:	1505	3.50			18:21	695	-240	5,50	4.75	0-20	
FIELD ANALYSES AND LABORATORY SAMPLING INFORMATION FERROUS IRON FIELD KIT CONCENTRATION (mg/L): N/A PRIMARY SAMPLE ID: NP 7203-120716 PRIMARY SAMPLE PARAMETERS (check): Volatiles, TAL metals, MNA DA/QC SAMPLE ID: Note: QA/QC SAMPLE DATE & TIME:											
FIELD ANALYSES AND LABORATORY SAMPLING INFORMATION FERROUS IRON FIELD KIT CONCENTRATION (mg/L): N/A PRIMARY SAMPLE ID: NP 7203-120716 PRIMARY SAMPLE PARAMETERS (check): Volatiles, TAL metals, MNA DA/QC SAMPLE ID: Note: QA/QC SAMPLE DATE & TIME:											
FIELD ANALYSES AND LABORATORY SAMPLING INFORMATION FERROUS IRON FIELD KIT CONCENTRATION (mg/L): N/A PRIMARY SAMPLE ID: NP 7203-120716 PRIMARY SAMPLE PARAMETERS (check): Volatiles, TAL metals, MNA DA/QC SAMPLE ID: Note: QA/QC SAMPLE DATE & TIME:			'								
FIELD ANALYSES AND LABORATORY SAMPLING INFORMATION FERROUS IRON FIELD KIT CONCENTRATION (mg/L): N/A PRIMARY SAMPLE ID: NP 7203-120716 PRIMARY SAMPLE PARAMETERS (check): Volatiles, TAL metals, MNA DA/QC SAMPLE ID: Note: QA/QC SAMPLE DATE & TIME:											
FIELD ANALYSES AND LABORATORY SAMPLING INFORMATION FERROUS IRON FIELD KIT CONCENTRATION (mg/L): N/A PRIMARY SAMPLE ID: NP 7203-120716 PRIMARY SAMPLE PARAMETERS (check): Volatiles, TAL metals, MNA DA/QC SAMPLE ID: Note: QA/QC SAMPLE DATE & TIME:				(Co)	/12/7/1	6					
FIELD ANALYSES AND LABORATORY SAMPLING INFORMATION FERROUS IRON FIELD KIT CONCENTRATION (mg/L): 1.24 SULFIDE FIELD KIT CONCENTRATION (mg/L): N/A PRIMARY SAMPLE ID: 10 P203-12071 b PRIMARY SAMPLE DATE & TIME: V2/7/16 15/10 PRIMARY SAMPLE PARAMETERS (check): Volatiles, VTAL metals, VMNA DA/QC SAMPLE ID: Nore QA/QC SAMPLE DATE & TIME:										_	
FIELD ANALYSES AND LABORATORY SAMPLING INFORMATION FERROUS IRON FIELD KIT CONCENTRATION (mg/L): 1.24 SULFIDE FIELD KIT CONCENTRATION (mg/L): N/A PRIMARY SAMPLE ID: 10 P203-12071 b PRIMARY SAMPLE DATE & TIME: V2/7/16 15/10 PRIMARY SAMPLE PARAMETERS (check): Volatiles, VTAL metals, VMNA DA/QC SAMPLE ID: Nore QA/QC SAMPLE DATE & TIME:											
FIELD ANALYSES AND LABORATORY SAMPLING INFORMATION FERROUS IRON FIELD KIT CONCENTRATION (mg/L): 1.24 SULFIDE FIELD KIT CONCENTRATION (mg/L): N/A PRIMARY SAMPLE ID: 10 P203-12071 b PRIMARY SAMPLE DATE & TIME: V2/7/16 15/10 PRIMARY SAMPLE PARAMETERS (check): Volatiles, VTAL metals, VMNA DA/QC SAMPLE ID: Nore QA/QC SAMPLE DATE & TIME:					-						
FIELD ANALYSES AND LABORATORY SAMPLING INFORMATION FERROUS IRON FIELD KIT CONCENTRATION (mg/L): 1.24 SULFIDE FIELD KIT CONCENTRATION (mg/L): N/A PRIMARY SAMPLE ID: 10 P203-12071 b PRIMARY SAMPLE DATE & TIME: V2/7/16 15/10 PRIMARY SAMPLE PARAMETERS (check): Volatiles, VTAL metals, VMNA DA/QC SAMPLE ID: Nore QA/QC SAMPLE DATE & TIME:											
FIELD ANALYSES AND LABORATORY SAMPLING INFORMATION FERROUS IRON FIELD KIT CONCENTRATION (mg/L): 1.24 SULFIDE FIELD KIT CONCENTRATION (mg/L): N/A PRIMARY SAMPLE ID: 10 P203-12071 b PRIMARY SAMPLE DATE & TIME: V2/7/16 15/10 PRIMARY SAMPLE PARAMETERS (check): Volatiles, VTAL metals, VMNA DA/QC SAMPLE ID: Nore QA/QC SAMPLE DATE & TIME:	250 kH/sect			Hall Haralle							C'L
FIELD ANALYSES AND LABORATORY SAMPLING INFORMATION FERROUS IRON FIELD KIT CONCENTRATION (mg/L): \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				14 14 14	-	-	_	-	-		Final State.
PRIMARY SAMPLE ID: VOICENTRATION (mg/L): \.24 SULFIDE FIELD KIT CONCENTRATION (mg/L): N/A PRIMARY SAMPLE DATE & TIME: \V2/7/16 \ \I5/O PRIMARY SAMPLE PARAMETERS (check): \V Volatiles, \V TAL metals, \V MNA DA/QC SAMPLE ID: \V OICE QA/QC SAMPLE DATE & TIME:	NOTES:	FE	our r	orte i	norte	sed 1	zetwe	en			
PRIMARY SAMPLE ID: VOICENTRATION (mg/L): \.24 SULFIDE FIELD KIT CONCENTRATION (mg/L): N/A PRIMARY SAMPLE DATE & TIME: \V2/7/16 \ \I5/0 PRIMARY SAMPLE PARAMETERS (check): \V Volatiles, \V TAL metals, \V MNA DA/QC SAMPLE ID: \V OICE QA/QC SAMPLE DATE & TIME:										<u> </u>	
PRIMARY SAMPLE ID: VOICENTRATION (mg/L): \.24 SULFIDE FIELD KIT CONCENTRATION (mg/L): N/A PRIMARY SAMPLE DATE & TIME: \V2/7/16 \ \I5/0 PRIMARY SAMPLE PARAMETERS (check): \V Volatiles, \V TAL metals, \V MNA DA/QC SAMPLE ID: \V OICE QA/QC SAMPLE DATE & TIME:			-								
PRIMARY SAMPLE ID: VOICENTRATION (mg/L): \.24 SULFIDE FIELD KIT CONCENTRATION (mg/L): N/A PRIMARY SAMPLE DATE & TIME: \V2/7/16 \ \I5/0 PRIMARY SAMPLE PARAMETERS (check): \V Volatiles, \V TAL metals, \V MNA DA/QC SAMPLE ID: \V OICE QA/QC SAMPLE DATE & TIME:											
PRIMARY SAMPLE ID: VOICENTRATION (mg/L): \.24 SULFIDE FIELD KIT CONCENTRATION (mg/L): N/A PRIMARY SAMPLE DATE & TIME: \V2/7/16 \ \I5/0 PRIMARY SAMPLE PARAMETERS (check): \V Volatiles, \V TAL metals, \V MNA DA/QC SAMPLE ID: \V OICE QA/QC SAMPLE DATE & TIME:					FIELD AN	ALYSES AND	LABORATOR	Y SAMPLING	INFORMATIC)N	-
PRIMARY SAMPLE ID: 10 P203-120716 PRIMARY SAMPLE DATE & TIME: V2/7/16 1510 PRIMARY SAMPLE PARAMETERS (check): Volatiles, V TAL metals, V MNA QA/QC SAMPLE ID: Voice QA/QC SAMPLE DATE & TIME:	FERROUS IRC	ON FIELD KIT	CONCENTRA	TION (mg/L)	- 4	4	·				g/L): N/A
PRIMARY SAMPLE PARAMETERS (check): Volatiles, V TAL metals, V MNA DA/QC SAMPLE ID: Vojve. QA/QC SAMPLE DATE & TIME:	PRIMARY SA	MPLE ID:	10 P	203-	1207	16					1 1/4
A location of the second of th	PRIMARY SA	MPLE PARAN		k): Vol	atiles, 🛂 T	AL metals, 🔽	MNA				17/10.17.2
DA/QC SAMPLE PARAMETERS (check):	QA/QC SAMI	PLE ID:	None					QA/QC SAMP	LE DATE & TI	ME:	
JA/QC SAMPLE PARAMETERS (check): Volatiles, TAL metals, MNA SAMPLER'S SIGNATURE:	QA/QC SAMI	PLE PARAME	TERS (check)	: Volati	les, TAL	metals, N	MNA	SAMPLER'S SI	GNATURE:	Mi.	Altra

	2 /	n.	For							, Project #671207 ARTER 2016
WELL:			SCREEN INT	ERVAL (ft BT				START DATE	12/	6/16
AAETT:	MW.	-18	WELL DIAM	ETER (INCHE	5): 2'	1		FIELD CREW	Ch	Hich
EQUIPMEN	T: Peristaltic	pump with o	ne-time-use	0.25" x 0.170	" Teflon-lined	l high-density	polyethylene	tubing		
METER MA	KE & MODEL	: Horiba U-5.	2 with flow-ti	hrough cell			METER CALI	BRATION DA	re: 12	2/6/16
DTW BEFO	RE PURGING		12.4	5			DEPTH TO B	OTTOM (ft B		
	REFERENCE:	6.).16 liter/ft o				ter/ft or 0.16	3 gal/ft 1	gallon = 3.785	
WATER CO	LUMN (FT):	0.1		WELL VOLUI		0.5				JMES (LITERS): 1.67
<u> </u>	T	F1.01/		FIELD PA	RAMETERS C	OLLECTED D		FLOW PURGI		
TIME 4 minute	WATER LEVEL	FLOW RATE	TOTAL VOLUME	TEMP.	рН	ORP	CONDUC- TIVITY	DO	LaMOTTE TURBIDITY	REMARKS
readings	(ft BTOC)	(ml/min)	(Liters)	(°C)	(std. units)	(mV)	(mS/cm)	(mg/L)	(NTU)	(color, odor, sheen, sediment, etc.)
Stability:	< 0.3 ft	300 – 500	NA	NA	± 0.1	± 10 mV	± 3,%	± 10 %	± 10 %	I-tat-Lehna
1009	12.45	-400	300	16.42	6.15	39	1.53	5.67	OL	Initial state.
1010	Well	wen:	dry	after	- ~	500 m	l			/
1540	12.43	Pur	ald'	750	ml L	or Vo	C #	metal.	San	oole
	1									
							 			
<u> </u>	-									
	ļ									
							* .			
							**			
<u> </u>	 		 							
<u> </u>	 									
	-									
			ļ							
<u> </u>	 									
							Secular des	.e		Final state.
				, .				-		
NOTES: (/EM2	000+	heads	once,	CH4 12	LEL	20%			
12/6				tofa	14 015	solved	metal.	5 0/11/	10	1) 0 :
12/7	/16-	Coller.	It I al	1:1/101	10/ 50	mple	tor i	MH (21.2	L) @ 1200
				FIFT	IAIVEEE AND	LABORATO	OV CARADIAN	INICODEAAT	ON	
EEDBOUE '	DON EIELD PE	CONCENT	ATION /		IALYSES AND	LABUKATOF				ng/L): N/A
	AMPLE ID:	CONCENT	ATION (mg/L	.j:				MPLE DATE	ENTRATION (n	
PRIMARY S	AMPLE ID: AMPLE PARA	METERS (ch	ack). 1/a	latiles	TAI matals	MNA	PRIIVIART SA	NVIFLE DATE	a INVIE.	2/6/16 1540
QA/QC SAN		IVIETERS (CD		naunes,	AL MEIUIS, _	IVIIVA	OA/OC SAM	IPLE DATE & "	TIME:	
-	MPLE PARAM	FTERS (chec	k): Vola	tiles. TA	l metals	MNA	SAMPLER'S			
and ac sall	AIL PE L'AUVIN	ricks (clied	void	cs, /A		OFFICE STATES	SMINITELN 3	JIGHA FORE.		

	4 -		For	mer Hamr	shire Cha	mical Corn	228 E M	lain St M/s	terico NV	, Project #671207
C	21	11 :	FOI							ARTER 2016
MELL: A	A	·/-T	SCREEN INT	ERVAL (ft BT0	OC):			START DATE	12/7	/16
WELL.	1w-c))) 	WELL DIAM	ETER (INCHES	5): 2"			FIELD CREW:	C. 6	ettich
EQUIPMENT	Γ: Peristaltic	pump with o	ne-time-use	0.25" x 0.170	" Teflon-linea	l high-density	polyethylene	tubing		
METER MAK	E & MODEL	: Horiba U-52	with flow-ti	hrough cell		••	METER CALI	BRATION DAT	E: 12	17/16
DTW BEFOR	E PURGING	(ft BTOC):	12.39				DEPTH TO B	OTTOM (ft BT	oc): 2	9.50Soft /Hard
R	EFERENCE:	1" well ≈ 0	.16 liter/ft o	r 0.041 gal/ft	2-inch w	ell ≈ 0.617 li	ter/ft or 0.16	3 gal/ft 1	gallon = 3.785	liters 1 liter = 0.264 gallons
WATER COL	UMN (FT):			WELL VOLU	ME (LITERS):				3 WELL VOLU	JMES (LITERS):
				FIELD PA	RAMETERS C	OLLECTED D	URING LOW-	FLOW PURGI	NG	
TIME	WATER	FLOW	TOTAL	TEMP.	pН	ORP	CONDUC-	DO	LaMOTTE	DENAADVC
4 minute readings	(ft BTOC)	RATE (ml/min)	VOLUME (Liters)	(°C)	(std. units)	(mV)	(mS/cm)	(mg/L)	TURBIDITY (NTU)	REMARKS (color, odor, sheen, sediment, etc.)
Stability:	< 0.3 ft	300 – 500	NA NA	NA	± 0.1	± 10 mV	± 3 %	± 10 %	± 10 %	, , , , , , , , , , , , , , , , , , , ,
0905	12.39	300	500	17.08	6.36	66	0.864	8,33	12.6	Initial state.
0908	12,53		1.4	14.77	6.88	-2	0.879	7.79	4.35	
0911	12.54		2.3	1432	6.96	-12	0.881	6.68	3.41	
0914			3.2	4.03	6.98	-15	0.885	6,25	1.04	
0917			4.1	13.47	6.97	-18	0.888	6A3	0.73	3/20
0920			5.0	13.74	6.97	-21	1,892	6.26	0.38	
0925			6.5	1356	694	-25	0.80	6.18	0,30	
0928	V	√	7,4	13,42	6.93		0.89		0.10	
					,					

					(10)		_			
										.1 1959
										3000
500	928		1 2 2 000			_		-		Final state.
NOTES:					MACHINE TO A					
										2.54
										100
										24 - 27 11 1
				FIELD AN	ALYSES AND	LABORATOR	RY SAMPLING	INFORMATIO	ON	
FERROUS IR	ON FIELD KIT	CONCENTR	ATION (mg/l): NA			SULFIDE FIEI	D KIT CONCE	NTRATION (m	ng/L): N/A
PRIMARY SA			T-12	0716			/-	MPLE DATE 8	TIME: 12	17/16 0930
PRIMARY SA				latiles, <u>1</u>	AL metals,	_ MNA 🗾	PAH_	SVOC		
QA/QC SAM	IPLE ID:	ALGI	ie Du	-6W	12071E	;-1		PLE DATE & T	IME: 12/	7/16 1230
QA/QC SAM	IPLE PARAMI	ETERS (check	:):Vola	tiles,TAL	. metals,	MNA	SAMPLER'S	SIGNATURE:	lar	the

PAH, SVOC

	C	112 1	M:	For							/, Project #671207 ARTER 2016			
				SCREEN INT	ERVAL (ft BT		-14	N SAIVIE LII	START DATE		7- 0			
	WELL:	MW-C	(e		ETER (INCHE				FIELD CREW	12/-	1 1 4			
	FOIRIPMEN	T. Peristaltic	numn with o	<u> </u>		PX		v polyethylene		· /C.	Doup			
- 1	Miles		: Horiba U-5			region-line	i iligii-delisit)		BRATION DA	re. 15				
428		E PURGING		2 05					OTTOM (ft B		25Soft / Hard			
		EFERENCE:		.16 liter/ft o	o.041 gal/ft	2-inch w	ell ≈ 0.617 li	ter/ft or 0.16		gallon = 3.78				
	WATER COL				WELL VOLUM				5 65711		JMES (LITERS):			
					FIELD PA	RAMETERS C	OLLECTED D	URING LOW-	FLOW PURGI	NG				
	TIME	WATER	FLOW	TOTAL	TEMP.	рH	ORP	CONDUC4,	DO	LaMOTTE				
9	4 minute readings	(ft BTOC)	RATE (ml/min)	VOLUME (Liters)	(°C)	(std. units)	(mV)	(mS/cm)	(mg/L)	TURBIDITY (NTU)	REMARKS (color, odor, sheen, sediment, etc.)			
	Stability:	< 0.3 ft	300 – 500	NA NA	NA	± 0.1	± 10 mV	± 3 %	± 10 %	± 10 %	(color, ador, sneen, sealment, etc.)			
	1316	3,32	200	Ø	11.85	7.03	198	0.904	9.11	1.02	Initial state.			
	1320	3.53	200	0,5	12.31	10.95	205	0.847	8.77	191				
	1324	3.77	200	1	12.33	1,94	207	0.835	8.181	0.88				
	1328)	3.97	200	1.5	12 24	6.93	209	0.835	8.47	第1.到				
1332	1237	4.110	200	\mathfrak{I}	1218	6.93	210	0.831	9.51	1,22				
ישעעו	1336	4,40	200	3.5	12.17	6.93	210	0.826	8.49	1,46				
	1340	4.56	200	4,5	12 10	(0.93	211	0.826	8 26	1.88				
	1344	4.60	200	(0	12.08	6.93	213	0.829	8.15	2.37				
	1348	4,83	200	6.0	12.12	6.91	214	080	8.13	2.37				
طئم	1355	Sux	nnio	9 10		0.11	N 1		0.7.0	-110 1				
, A	1	()001	11/10											
	i			-					_	•				
						-								

	1415	4.05								2.47	Final state.			
	NOTES: (Well C	ORCO	1 in	CINT	h111.	duc) L	4177				
	`			1/1										
	jΛ	40 r	read S	Paco	100	ed no	1							
	(1/2)	2010001	far a	in hill	11/05		/				-			
	Url	elik (V	101 C	וו אין וו			LABORATOR	Y SAMPLING	INFORMATIO	ON .				
	FERROUS IR	ON FIELD KIT	CONCENTRA	ATION (mg/L					· · · · · · · · · · · · · · · · · · ·		ng/L): N/A			
	PRIMARY SA	MPLE ID:	MWE	2-120										
	PRIMARY SA	MPLE PARA	METERS (che			AL metals,	MNA							
		Checked for air bubbles / FIELD ANALYSES AND LABORATORY SAMPLING INFORMATION RROUS IRON FIELD KIT CONCENTRATION (mg/L): N/A												
Į.	QA/QC SAM	PLE PARAME	ETERS (check): Volat	iies, TAL	metals,	MNA	SAMPLER'S S	IGNATURE:	nyl				

	12 1	11 :	For							, Project #671207 ARTER 2016
	MW-		SCREEN INT	ERVAL (ft BT	201 7	- 13		START DATE		7-16
WELL:	MW-	07		ETER (INCHE		,		FIELD CREW	V .	Doug
EQUIPMEN	T: Peristaltic	pump with o	ne-time-use	0.25" x 0.170	" Teflon-lined		polyethylene	tubing		
METER MAI	KE & MODEL:	: Horiba U-52	with flow-ti	hrough cell			METER CALI	BRATION DAT	re: 12	-7-K
DTW BEFOR	RE PURGING	(ft BTOC):	4.0	\	4.00		DEPTH TO B	OTTOM (ft B1	roc): / =	
F	REFERENCE:	1" well ≈ 0	.16 liter/ft or	0.041 gal/ft		ell = 0.617 lit	ter/ft or 0.16	3 gal/ft 1	gallon = 3.785	- 100
WATER COL	UMN (FT):			WELL VOLU	ME (LITERS):				3 WELL VOLU	IMES (LITERS):
				FIELD PA	RAMETERS C	OLLECTED D	URING LOW-	FLOW PURGI	NG	
TIME	WATER	FLOW	TOTAL	TEMP.	рН	ORP	CONDUC-	DO	LaMOTTE	REMARKS
4 minute readings	(ft BTOC)	RATE (ml/min)	VOLUME (Liters)	(°C)	(std. units)	(mV)	TIVITY (mS/cm)	(mg/L)	TURBIDITY (NTU)	(color, odor, sheen, sediment, etc.)
Stability:	< 0.3 ft	300 - 500	NA	NA	± 0.1	± 10 mV	±3%	± 10 %	± 10 %	
1914	4.40		Ø	15.86	550	217	1.42	9.99	4,25	Initial state.
1919	4.67	250	Q	14.5%	6.03	191	1.41	8.09	3.87	Clear
6922	470	250	$\hat{\gamma}$	14.01	6.15	205	1,41	7.54	6910	
0926	4.90	250	3	1271	1. 191	214	1,43	7.47	8.09	
10/20	4.90	250	//	12 110	1 20	221	1.40	777	9 711	
6924		200	4,8	13,47	(p.aU		1117	1120	9.98	
<u> </u>	494	07.	1	10.11	6.2	224	1,43	11.10	0.00	
0938	5.00	200	9	13,51	6:24	275	1,39	(0,10	8.93	
0942	5.05	250	7	13.50	6,20	224	1139	6.49	8.60	
0945	Sa	mpl	Q.							
-										
-		-				-				
ļ										
	1	250					1			
11172	5,25	20	8						8.21	Final state.
NOTES:	-	0018-00	y :s	<u>L</u>	<u> </u>	two c	VICI		Uid	
NOTES:	Well	cusin	4121	moler	1 -)	19 P	WIT			
										<u> </u>
MA	hear a	2/1/0	1000	inas	<u> </u>					
140	indi		· Coll	1						
				FIELD AN	NALYSES AND	LABORATO	RY SAMPLING	INFORMATI	ON	
FERROUS IF	RON FIELD KI	T CONCENTR	ATION (mg/l	L): N/	Ά		SULFIDE FIE	LD KIT CONCE	NTRATION (n	ng/L): N/A
PRIMARY S	AMPLE ID:	Mwa	7 - 120				PRIMARY SA	MPLE DATE	& TIME:	945 1217116
PRIMARY S	AMPLE PARA			-	TAL metals, _	MNA				, , , , , , , , , , , , , , , , , , ,
QA/QC SAN	APLE ID: M	W07-	120710	0-MS/	MSD		QA/QC SAN	IPLE DATE &	TIME: 09	145 12/7/16
QA/QC SAN	IPLE PARAM	IETERS (checl	k): 🎉 Vola	tiles, 💢 TA	L metals,	MNA	SAMPLER'S	SIGNATURE:	Musi	(1)
									1-1	

	<u> </u>	M:	For							', Project #671207 ARTER 2016
	.A	,	SCREEN INT	ERVAL (ft BT		-161		START DATE		-10
WELL:	71W-2	0	WELL DIAM	ETER (INCHE	s):)11		FIELD CREW	(K. D	000
EQUIPMEN	T: Peristaltic	pump with o	ne-time-use (0.25" x 0.170	" Teflon-lined	high-densit)	polyethylene	e tubing		
METER MA	KE & MODEL	: Horiba U-5	with flow-th	rough cell			METER CALI	BRATION DAT	TE: 12-	7-10
DTW BEFOR	RE PURGING	(ft BTOC): -	5.14	= 4.	79_		DEPTH TO B	OTTOM (ft B	TOC):	/ (0' Soft / Hard
E E	REFERENCE:	1" well ≈ 0	.16 liter/ft or			eli'= 0.617 li	ter/ft or 0.16	3 gal/ft 1	gallon = 3.78	5 liters 1 liter = 0.264 gallons
WATER COL	LUMN (FT):			WELL VOLUI	ME (EITERS):		4		3 WELL VOLU	JMES (LITERS):
				FIELD PA	RAMETERS C	OLLECTED D	URING LOW-	FLOW PURGI	NG	
TIME 4 minute readings	WATER LEVEL (ft BTOC)	FLOW RATE (ml/min)	TOTAL VOLUME (Liters)	TEMP. (°C)	pH (std. units)	ORP (mV)	CONDUC- TIVITY (mS/cm)	DO (mg/L)	LaMOTTE TURBIDITY (NTU)	REMARKS (color, ador, sheen, sediment, etc.)
Stability:	< 0.3 ft	300 - 500	NA	NA NA	± 0.1	± 10 mV	±3%	± 10 %	±10%	Initial state.
1047	5.45	250	Ø	11.04	6.36	209	0.754	11.22	7,69	initial state.
1051	5,50	150	1	12.14	6.73	201	6.713	8.88	5,04	
1054	5.64	150	1.8	12.17	6.74	205	0.709	8.64	4.81	
1058	5.82	150	2,5	12.11	6.75	20%	0.707	8,24	3:46	
11112	(0.1)3	150	3	12.06	10.77	211	0.707	8,24	2.81	
1106	(025	1,00	ŭ	11.99	ie.78	214	6.707	2 79	2.67	
1.		150				· ·	1411111	0,0	1	
1110	6.51		4,5	12.00	6.78	214	0.707		2.01	
1114	6.80	150	5.3	12.04	6.78	218	0.707	7.82	3.72	
1118	7.09	150	(0	12.01	6.14	219	0.709	7,81	2.78	
				i			L			
11125	Sor	MA	0							
11101-	~ .	1								
	1									
\vdash							-			
<u> </u>						1				
	2									
							 			
24 (1)	C	.7.	_		Applications	and the land	Incarete		O EEL	Final state.
1146	801		+		-	<u>- 10</u>	-	- 1	2.59	i mei state.
NOTES:	Non	eads	xill	rea	ding	>				
W	`h1	1		445 171	hi i	1		7 =		11.1 1/00 1- 10: 10
*	neck	l()	tor i	CUIC I	UUND	(C)	n D)() -)	rea	lly that high
						LABORATO	RY SAMPLING	INFORMATI	ON	
	RON FIELD KIT			, ,	/				NTRATION (n	
PRIMARY S			-1207				PRIMARY SA	MPLE DATE 8	& TIME: 2	17/16 1125
	AMPLE PARA	METERS (che	eck): Vo	latiles, T	TAL metals, _	_ MNA				
QA/QC SAN		\sim	//					IPLE DATE & 1	TIME: 12/	THE
QA/QC SAN	MPLE PARAM	ETERS (check	k): Volat	tiles, TA	L metals,	MNA	SAMPLER'S	SIGNATURE:	MIL	
									1	

	121	11:	For			•				', Project #671207 ARTER 2016
		0 1 1	SCREEN INT	ERVAL (ft BTC				START DATE:		
WELL:	Yw-	24	WELL DIAM	ETER (INCHES	5): 7_		,	FIELD CREW:		+CL
EQUIPMEN	T: Peristaltic	pump with o	ne-time-use	0.25" x 0.170	" Teflon-lined	l high-density	polyethylene	tubing		
METER MAI	KE & MODEL	: Horiba U-52	with flow-ti	hrough cell			METER CALI	BRATION DAT	E: 12/	8116
DTW BEFOR	RE PURGING	(ft BTOC): 🐣	1 7	4.40			DEPTH TO B	ОТТОМ (ft ВТ		Soft / Hard
R	EFERENCE:	1" well ≈ 0	.16 liter/ft o	0.041 gai/ft		ell ≈ 0.617 lit	er/ft or 0.16	gal/ft 1	gallon = 3.785	5 liters 1 liter = 0.264 gallons
WATER COL	.UMN (FT):			WELL VOLUM						JMES (LITERS):
<u> </u>	l	I		FIELD PA	RAMETERS C	OLLECTED D	URING LOW-	FLOW PURGI		
TIME 4 minute	WATER LEVEL	FLOW RATE	TOTAL VOLUME	TEMP.	рН	ORP	CONDUC-	DO	LaMOTTE TURBIDITY	REMARKS
readings	(ft BTOC)	(ml/min)	(Liters)	(°C)	(std. units)	(mV)	(mS/cm)	(mg/L)	(NTU)	(color, odor, sheen, sediment, etc.)
Stability:	< 0.3 ft	300 - 500	NA	NA	±0.1	± 10 mV	±3%	± 10 %	± 10 %	Initial state.
939	4.57	250		16.91	6.34	-63	4.63	3.55	6.9)	ceque
943	6.00	300	1.5	17.25	6.45	-93	4.45	2,91	2,95	Cliff
947	6.25	225	2	16.51	6.51	-100	2,98	2.67	2.38	
951	6.42	240	3.0	15.99	4.40	-103	1.89	7.40	211	
955	6.40	240	4.0	15.48	4.20	-105	1.30	2.55	1.92	,
959	6:70	230	4.75	15,39	4.20	-109	1,45	2.86	8,32	
1003	4.80	225	5.5	15:37	6.18	-124	1.62	2.77	9.04	
1007	6.95	225	4.25	15.61	6.19	-123	1.75	2.90	11,3\$	
1011	7.05	225	7.0	15.45	6.20	-128	2.03	2.84	12.9	
1014	7,20	225		15:79	6.24		2.63		15.7	1
	7.40		8.0		† .	-126		3.05		
1019	ļ	220	9.0	15,40	6.24	<u> </u>	7.80	3.09	12,9	
1023	7.45	220	10.0	10.00	6.22	-114	3.00	3,20		
1025		Cour	<u>C-</u> 9	SMIRE	-					
							9			
2000					90(1)(3)	18 1		V =		Final state.
NOTES	A STATE OF									
NOTES:			LEL	1H H	EATT LOW					
				F+	EAD GAZ	71 .Ti	11-	;		
						-1 1/3	, -	,		
				FIELD AN	IALYSES AND	LABORATOR	RY SAMPLING	INFORMATI	ON	
FERROUS IF	ON FIELD KI	T CONCENTR	ATION (mg/l	.):			SULFIDE FIEL	D KIT CONCE	NTRATION (n	
		TW24-					PRIMARY SA	MPLE DATE 8	RTIME: 17	18/16 1025
		METERS (che	eck): Va	latiles, 1	TAL metals, _	MNA				
QA/QC SAN		CTEDS (about	A. 1/-/-	tiles Ta	l motal-	A48/A		PLE DATE & T		
QA/QC SAN	ITLE PAKAM	EIEKS (CNEC)	vola	ures, IAI	L metals,	IVIIVA	SAMPLER'S	SIGNATURE:	54/	u Joy

	ch2/	n.	For	-		-				7, Project #671207 ARTER 2016	
		. —	SCREEN INTI	ERVAL (ft BT		1-14		START DATE	10	8-16	
WELL:	MW-	3+1		ETER (INCHES				FIELD CREW	1,	Doug	\neg
			ne-time-use (0.25" x 0.170			polyethylene	tubing	~ .		\neg
METER MA	KE & MODEL	: Horiba U-52	with flow-th	rough cell			METER CALI	BRATION DAT	re: /·	2-8-16	
DTW BEFO	RE PURGING	(ft BTOC):	1. U	5			DEPTH TO B	OTTOM (ft B	roc): /	400 Soft/	_ Hard
	REFERENCE:		.16 liter/ft or	0.041 gal/ft	2-inch w	ell ≈ 0.617 li	ter/ft or 0.16	3 gal/ft 1	gallon = 3.78	5 liters 1 liter = 0.264 gallons	
WATER CO	LUMN (FT):	125	5	WELL VOLUI	ME (LITERS):				3 WELL VOLU	JMES (LITERS):	
				FIELD PA	RAMETERS C	OLLECTED D	URING LOW-	FLOW PURGI	NG		
TIME	WATER	FLOW	TOTAL	TEMP.	pН	ORP	CONDUC-	DO	LaMOTTE		
4 minute readings	(ft BTOC)	RATE (ml/min)	VOLUME (Liters)	(°C)	(std. units)	(mV)	(mS/cm)	(mg/L)	TURBIDITY (NTU)	REMARKS (color, odor, sheen, sediment, e	etc)
Stability:	< 0.3 ft	300 – 500	NA NA	NA	± 0.1	± 10 mV	±3%	± 10 %	± 10 %	(color, odor, sheeri, sediment, e	,
0914	2.05	150	R	17.87	6.21	47	5.41	7.80	17	Initial state.	
Ca18	2.38	150	0.5	18.05	6 87	-54	5.48	5.63	6.93	Cloudy	
∞	221			-	100	1 1	5.48	5.07	2.09	Clas)	\dashv
1700v	W.31	150	1.0	18.20	((7	-61			1 111	Clear	\dashv
0924	2.39	150	3	18.31	69+	12	5:48	4.92	1.19		
0930	2.58	150	2.8	18,39	6.98	-63	5,48	4.14	0.19		
0934	2.75	150	-43.5	18.47	6.98	-63	5.48	4.62	0.63		
1938	3.10	100	4	18.52	6.99	-101	5,48	4.54	().67		
7942	3 34	100	5	18.61	6.99	-59	5.47	4,43	199		
1911L	3.46	100	5.5	18.75	6.99	-51	5.44	11 20	277	4,39 -> DO	\dashv
0 190						-47		11 =7	$\alpha = 0$	101700	\dashv
0950	3.68	100	6	18.82	6.99	-714	5.42	4.57	0.58		\dashv
		2.0									\dashv
Sar	Mrs.	09	55								
\	\downarrow										
											$ egthinspace{1.5em} otag$
	 										$\neg \forall$
						<u> </u>	-				
	-										
	-						Į				$\overline{}$
L											
1012	4.22	100	8	G0-98	-/	_	_	-	0.74	Final state.	
NOTES:	8 h	ad St	race	reac	lina						
		· • • • • • • • • • • • • • • • • • • •			-						
					J						
						LABORATO	RY SAMPLING				
	RON FIELD KI				<u>,08</u>				ENTRATION (r		
	AMPLE ID:		7-120			7	PRIMARY SA	MPLE DATE	& TIME:	0955 12-8-1	
	AMPLE PARA	METERS (che	eck): <i>Vo</i>	latiles, X, 1	AL metals, _	X MNA				1.1.4	
QA/QC SAI								PLE DATE & 1	72		
QA/QC SAI	MPLE PARAM	ETERS (theck	(): Volat	tiles, TA	L metals,	MNA	SAMPLER'S	SIGNATURE:	Ky	10/	

	21	11 :	For							, Project #6/120/ ARTER 2016	
			SCREEN INT	ERVAL (ft BT			5-145			3-16	ĺ
WELL:	MW-	-36	WELL DIAM	ETER (INCHE				FIELD CREW	41	000	
EQUIPMEN	T: Peristaltic	pump with o	ne-time-use	0.25" x 0.170	" Teflon-lined	d high-density	polyethylene	e tubing			
METER MA	KE & MODEL	: Horiba U-52	with flow-ti	hrough cell			METER CALI	BRATION DA	ΓΕ: / <i>ဩ.</i>	-8-16	
DTW BEFOR	RE PURGING	(ft BTOC):	2.15	1			DEPTH TO B	OTTOM (ft B	гос): ј	1.5Soft/Hard	
	REFERENCE:			r 0.041 gal/ft		ell ≈ 0.617 li	ter/ft or 0.16	3 gal/ft 1	gallon = 3.785		
WATER COL	LUMN (FT):	12.	36	WELL VOLUI						JMES (LITERS):	
	T	T		FIELD PA	RAMETERS (OLLECTED D	URING LOW-	FLOW PURGI		0.5	
TIME 4 minute	WATER LEVEL	FLOW RATE	TOTAL VOLUME	TEMP.	pH	ORP	CONDUC-	DO	LaMOTTE TURBIDITY	REMARKS	
readings	(ft BTOC)	(ml/min)	(Liters)	(°C)	(std. units)	(mV)	(mS/cm)	(mg/L)	(NTU)	(color, odor, sheen, sediment, etc.)	
Stability:	< 0.3 ft	300 - 500	NA OX	NA NA	± 0.1	± 10 mV	±3%	± 10 %	± 10 %	Initial state.	
1038	12	275	0	1857	7.21	-112	2.16	7,59	7.1	(UL 20)	2,1
1042	5.51	200	1.5	18.08	7,18	-167	a .va	4.85	4.62	Clear	
1046	2.40	200	1.8	18.06	7,15	-163	1.97	4.60	2.27		
1050	2.45	200	3	18.06	7.13	-157	1.94	4.46	1.97		
1054	2.51	200	4	18.05	7.11	-147	1.89	4.32	1.75		
1058	2.58	200	5	18.04	7.11	-145	1.86	4,27	2.22		
1102	2.61	200	6	1804	7.11	-137	1.84	4.24	3.46		
1106	2.73	200		18.05	7.12	-125	1.84		3,71		
11 11	2.82	200		18.05	7.12	-120	1.83	4.27	<u> </u>		
1114	2.89		9	18.05		-119			3.4		
1117	a.07	200	1	10703	7.12	1-119	1.83	4,28	אד נייב		
1120	0.0	2001	_	-				-			
11 20	Sa	mp'	2_		- /						
\vdash	<u> </u>					<u> </u>	<u> </u>				
\vdash											
					¥						
					`						!
							1				-6
1130	2.51	200	9,5	10-1-0	1-	1			199	Final state.	ı
NOTES:				reac	Jun ox				1. / /		ı
140123.	<i>y</i> , , , 0	acy	acc	1 000	31119						ı
WL	har	1. to	ceac	1 00	SUNDO	2 A	ashli	ant			ı
			,		1		(ı
											ı
							RY SAMPLING				ı
					(f'lus	hinglimi			NTRATION (m		ı
PRIMARY SA		MW3					PRIMARY SA	MPLE DATE 8	& TIME:	120 12-08-16	ı
		METERS (che	eck): <i>Vo</i>	olatiles, <u>X</u> 1	AL metals, 💆	MNA	04/00000	IDLE DATE 2	TINAT: 1	///	ı
QA/QC SAN		IV/A-	ı). Val-	tiles, TAI	metals	MNA		IPLE DATE & T	IIME: //		ı
CONTICE SAIN	LE FARAIVI	e rena (crieci	., voia	ca, IAI	e.cuis,	IAIIAU	SAIVIFLER 3	JIGHATURE:	11/1/1		

	21	11:	For			-				, Project #671207 ARTER 2016
	0.14		SCREEN INT	ERVAL (ft BT	oc):	1-14	· _ .	START DATE	: / -	2-8-16
WELL:	MW.	35	WELL DIAM	ETER (INCHE	s): 21			FIELD CREW		Down
EQUIPMEN	T: Peristaltic	pump with o	ne-time-use (0.25" x 0.170	" Teflon-lined	d high-density	polyethylene	tubing		300
METER MA	KE & MODEL	: Horiba U-52	2 with flow-tl	rough cell			METER CALI	BRATION DAT	ΓΕ: / 6	2-8-16
DTW BEFOR	RE PURGING	(ft BTOC):	1.66				DEPTH TO B	OTTOM (ft B		
	REFERENCE:	1" well ≈ 0		0.041 gal/ft	2-inch w	ell ≈ 0.617 lit	er/ft or 0.16	3 gal/ft 1	gallon = 3.785	6 liters 1 liter = 0.264 gallons
WATER CO	LUMN (FT):			WELL VOLUI	ME (LITERS):				3 WELL VOLU	IMES (LITERS):
				FIELD PA	RAMETERS C	OLLECTED D	URING LOW-	FLOW PURGI	NG	
TIME	WATER	FLOW	TOTAL	TEMP.	рН	ORP	CONDUC-	DO	LaMOTTE	DEAGABLE
4 minute readings	(ft BTOC)	RATE (ml/min)	VOLUME (Liters)	(°C)	(std. units)	(mV)	(mS/cm)	(mg/L)	TURBIDITY (NTU)	REMARKS (color, odor, sheen, sediment, etc.)
Stability:	< 0.3 ft	300 – 500	NA	NA	± 0.1	± 10 mV	±3%	± 10 %	± 10 %	
1400	2.30	200	Ø	19.32	692	2-48	2.20	9.04	34	Initial state.
1404	2.71	200	i	18.81	6.96	-102	_	5.36	114	brownish color
1408	2.95	200	()	18.76	6.97	-110	2.28	4.80	36.4	Cloudu
1412	3 19	200	3	18.76	1	-110	2,29		20.0	C100000
1416	3.35	200	4	18.68			230	4,39	22.1	
 	3.47		5			-81		4.20		01 15 0
1420	1_	200		18.66	6.95		2.30		10.87	Clear
1424	3.60	200	(0	18.67	1	-64	5.38	4.11	7.93	
1428	3.70	200	7	18.65		-53	<i>a.</i> 28	4.05	6.64	
1432	3.79	200	8	18.65	6.97	-48	2.29	3,99	6.66	
1436	3.89	200	9	18.54		-47	2.30	3.96	5.73	
1440	3.92	200	10	18.59	6.97	-48	2.32	3.91	5,21	`
										The same of the sa
1445	Sa	mal	0							
\		1.		_						
						_				
\vdash										
	\			$\overline{}$						
<u> </u>										
					,				\ <u></u>	
	\									
1455	3.60	200	1)	-	7	-	-	-	5,07	Final state.
NOTES:	Clau	1 COM	niny	UD 1	nu	Octer				
	()	<u> </u>	<u> </u>						
<u> </u>										
└	no i	nedd	Spa	e r	padir	701				
<u> </u>						J				
SERBOLIS II	2011 5151 5 1/1	T CONCENTE	ATION! / //			LABORATOR				// N. A. / A
PRIMARY S	RON FIELD KI			<u> </u>	<u> 25 </u>			MPLE DATE (NTRATION (m	T
	AMPLE PARA			108 10 Jatiles, X 1	O 『AL metals, ∡	MNA	TOMINIO	INTERPRETATION	A 1117/L.	1445 /2-8-16
QA/QC SAN		Λ / /	Δ.			ter control	QA/QC SAM	PLE DATE & 1	TIME: /	V// 1
	MPLE PARAM	ETERS (check	c): _ Vola	tiles, TA	L metals,	MNA	SAMPLER'S		W.	Van De la Constitución de la Con
,		, ,				_				XXX

(Jh21	M:	For							', Project #6 ARTER 201		3
	۸۱.	\bigcirc	SCREEN INT	ERVAL (ft BTC			_	START DATE		116		П
WELL:	MW-	21	WELL DIAM	ETER (INCHES	5): 2			FIELD CREW:	TS-	+CL		ヿ
EQUIPMEN	T: Peristaltic	pump with o	ne-time-use	0.25" x 0.170	" Teflon-lined	high-density	polyethylen	e tubing	•			П
METER MA	KE & MODEL	: Horiba U-52	with flow-ti	rough cell			METER CALI	BRATION DAT	E: 12/	19110		
DTW BEFOR	RE PURGING	(ft BTOC):	3.90)			DEPTH TO B	OTTOM (ft BT	OC):		Soft / H	ard
	REFERENCE:	1" well ≈ 0	.16 liter/ft o	0.041 gal/ft	2-inch w	ell ≈ 0.617 li	ter/ft or 0.16	-	gallon = 3.78!		ter = 0.264 gallons	
WATER COI	LUMN (FT):			WELL VOLUM						JMES (LITERS)		_
				FIELD PA	RAMETERS (OLLECTED D	r .	FLOW PURGI		1	10	_
TIME 4 minute	WATER LEVEL	FLOW RATE	TOTAL VOLUME	ТЕМР.	pН	ORP	CONDUC-	DO	LaMOTTE TURBIDITY		REMARKS	
readings	(ft BTOC)	(ml/min)	(Liters)	(°C)	(std. units)	(mV)	(mS/cm)	(mg/L)	(NTU)	(color, od	or, sheen, sediment, etc.)
Stability:	< 0.3 ft	300 – 500	NA	NA	± 0.1	± 10 mV	±3%	± 10 %	± 10 %	Initial state		
1417		300		12.50	9.96	-373	24.4	7,18	0.06	Initial state.	BROWH	
1421	5.10	300	1.25	14.57	9.95	-417	23,8	9,45	0.01	Locks	BROWN LIKE LOCA	C54.
1425	5,29	300	30	16.86	9.86	-436	21.6	838				
1429	5,50	280	4.0	16.70	9.80	~132	21.0	8.01		:		
1433	5.69	280	4175	16.41	9.75	-434	20.2	7.83				
1437	6.08	280	6.0	16.49	9.75	-437	201)	7.52				コ
1441	6.35	780	7.0	14.53	9.76	-434	20.0	7,40				┪
1	6.75	280	810	16.67	9.79	-440	20.0	7.50				一
1445												\dashv
1449	7.05	780	9,0	1670	9,78	-442	20.0	7,24				\dashv
1450	SA	The	6									4
												_
												Ш
1												ヿ
												┨
	-	-										\dashv
		-										\dashv
		ļ										4
												_
				Wh						Final state.		
NOTES:			•			•						\Box
				1 Fe/Fe								
		-	, .	fe-	0:1	MalL	*					
						٠ .						_
												\dashv
						LABORATO		INFORMATI		45		4
	RON FIELD KI				<u>. </u>			LD KIT CONCE				\dashv
	AMPLE ID:	<u> </u>			[A] mat-1-	8.481.4	PRIMARY SA	AMPLE DATE 8	X HME: 12	18/16	1450	\dashv
		AMETERS (ch	еск): <i>Va</i>	olatiles,	AL metals, _	IVINA	OA/OC SAN	IDIE DATE 9 3	IME:			-
QA/QC SAN		IETERS (char	v). Vola	tiles, TA	l metale	MNA	- 6	IPLE DATE & 1 SIGNATURE:	HVIE.			ᅴ
UN UL SAI	VIFLE PARAIV	ir i ruo (cuec	., vola	es, IA	. metuis,	INITAM	PUMIL FEU 2	SIGNATURE:				

	Former Hampshire Chemical Corp., 228 E. Main St., Waterloo, NY, Project #671207												
	ch21	11:	FOI				rp., 228 E. Main St., Waterioo, NY, Project #671207						
WELL	Abo	21	SCREEN INT	ERVAL (ft BT	oc): 7-	-17	START DATE: 12/8/14						
WELL.	MW-	31	WELL DIAM	ETER (INCHE	s): Z		FIELD CREW: 13 +CL						
EQUIPMEN	IT: Peristaltic	pump with o	ne-time-use (0.25" x 0.170	" Teflon-lined	d high-density	polyethylene	e tubing					
METER MA	KE & MODEL	: Horiba U-5	with flow-th	rough cell			METER CALI	BRATION DA	TE: 12/	18/16			
	RE PURGING		5.75					OTTOM (ft B		Soft / Hard			
	REFERENCE:	1" well ≈ 0	.16 liter/ft or	0.041 gal/ft		ell ≈ 0.617 lit	liter/ft or 0.163 gal/ft 1 gallon = 3.785 liters 1 liter = 0.264 gallons 3 WELL VOLUMES (LITERS):						
WATER CO	LUMN (FT):			WELL VOLUE		COLLECTED D	DURING LOW-FLOW PURGING						
TIME	WATER	FLOW	TOTAL	FIELD PA	IKAIVIETEKS C	OLLECTED D	CONDUC-	FLOW PORGI	LaMOTTE				
4 minute	LEVEL	RATE	VOLUME	TEMP.	pH	ORP	TIVITY	DO (ma/l)	TURBIDITY	REMARKS			
readings	(ft BTOC)	(ml/min)	(Liters)										
Stability:	< 0.3 ft	300 – 500	NA	NA NA ±0.1 ±10 mV ±3% ±10% ±10%									
1115	6.50	300		10,04	9,14	-326	10.5	14.89	0,27				
1119	7.30	200	1.00	11.91	9.27	-361	9.89	12,70	021	BROWIY			
1123	8.63	200	1.5	14,00	9.28	-572	9.62	10,97	0.32	LOUKS LIKE COLA COLA			
1127	8.57	200	2.5	14.62	9,29	-379	9.53	12.35	Below 1				
1131	9.50	200	3,0	14.82	9.30	-384	9.45	13,76					
1134	9.42	200	4,0	16.12	9,31	-398	9.31	11.22	_				
1140	10.38	700	510	16.17	9.33	-403	9,34	11.30					
1144	10,80	700	6.0	16.23	9,33	-405	9.27	1024					
1145													
, , ,	 												
	+												
		<u> </u>											
	 				-								
	1												
-													
		 	 			 		 					
	 	-		_	 	 		 					
		1	 		-	-				Final state.			
	20	1							l				
NOTES:		112	- BUBB	vi 11	-1 161	ubp 1	113						
					e -> 0	U M	//						
<u> </u>			-	1.6	<i>y</i> - <i>y</i> - <i>y</i>	111111111111111111111111111111111111111	(-						
				FIELD A	NALYSES AND	LABORATOR	RY SAMPLING	INFORMATI	ON				
FERROUS I	RON FIELD KI	T CONCENTE	ATION (mg/l	_):		SULFIDE FIELD KIT CONCENTRATION (mg/L): N/A							
PRIMARY S	SAMPLE ID:	Mw 31-	120816			PRIMARY SA	AMPLE DATE	& TIME: 12	18116 11845				
PRIMARY S	SAMPLE PARA	METERS (ch	eck): <i>Vo</i>	latiles,	TAL metals, _	MNA							
QA/QC SA	MPLE ID:						QA/QC SAMPLE DATE & TIME:						
QA/QC SA	MPLE PARAN	IETERS (chec	k): Vola	tiles, TA	L metals,	SAMPLER'S SIGNATURE:							

	Former Hampshire Chemical Corp., 228 E. Main St., Waterloo, NY, Project #671207 LOW-FLOW GROUNDWATER SAMPLING LOG, FOURTH QUARTER 2016											
			SCREEN INT	ERVAL (ft BT		25-17.		START DATE		13/16		
WELL:	TW-0	21	WELL DIAM	ETER (INCHES	- 71			FIELD CREW	6.6	Hich, T. Solsburg		
EQUIPMEN	T: Peristaltic	pump with o	ne-time-use	0.25" x 0.170	" Teflon-lined	d high-density	polyethylene	e tubing	,,,,			
METER MA	KE & MODEL	: Horiba U-52	with flow-tl	hrough cell			METER CALI	BRATION DAT	TE: 12/1	3/16		
DTW BEFOR	RE PURGING	(ft BTOC):	18,2	3			DEPTH TO B	OTTOM (ft B		2,40Soft /Hard		
	REFERENCE:			0.041 gal/ft	2-inch w	ell ≈ 0.617 li	ter/ft or 0.16	3 gal/ft 1	gallon = 3.78!	5 liters 1 liter = 0.264 gallons		
WATER CO	LUMN (FT):			WELL VOLUI	ME (LITERS):				3 WELL VOLU	JMES (LITERS):		
				FIELD PA	RAMETERS C	OLLECTED D	URING LOW-	FLOW PURGI	NG			
TIME	WATER	FLOW	TOTAL	TEMP.	рН	ORP	CONDUC- TIVITY	DO	LaMOTTE TURBIDITY	DESASDUE		
4 minute readings	(ft BTOC)	RATE (ml/min)	VOLUME (Liters)	REMARKS (color, odor, sheen, sediment, etc.)								
Stability:	< 0.3 ft	300 – 500	(Liters) (MT) (mS/cm) (NTU) (color, odor, sheen, sediment) NA NA ± 0.1 ± 10 mV ± 3 % ± 10 % ± 10 %									
1140	18:30	300	/	8.67	6.85	-90	1.89	6.73	26,4	Initial state.		
1144	18:33	300	3	10.60	6.93	-121	1.78	4,82	13.3			
1147	18.33	300	1.9	10.86	7.01	-135	1.76	4,64	9.85			
1150	1836	1	2.8	11,18	7.04	-43	1.75	4.50	6.25			
1153												
1156			4.6	11.35	7.07	-151	1.74	434	2,17			
1159		/	515	11.34	7.09	-155	1.74	4,30	2,48			
101	₩	\ <u>\</u>	313	[11.2.1	(40)	199	1,1-1	1120	2110			
	<u> </u>		4									
	<u> </u>							1				
	 							<u> </u>				
	1											
					()			1				
	1			10				-				
	1											
				_								
										do		
See	1159				-	-	-			Final state.		
NOTES:	Uziun	Loca	ed in	tilatio	DIM .		dia .	A CHARLES				
	7/25	, , , , , ,										
					_							
							RY SAMPLING	SINFORMATI	ON			
FERROUS II	FERROUS IRON FIELD KIT CONCENTRATION (mg/L): TWO -121316 SULFIDE FIELD KIT CONCENTRATION (mg/L): N/A											
PRIMARY S				7			-	AMPLE DATE	& TIME: 12	1/13/16 1205		
PRIMARY S	AMPLE PARA	METERS (ch	eck): Vo	olatiles,	TAL metals, _	MNA 🍱	- 1	1		0 180 Table 1		
QA/QC SAN	MPLE ID:							IPLE DATE &	TIME:	77.		
QA/QC SAN	MPLE PARAM	ETERS (checi	k): Vola	tiles, TA	L metals,	MNA	SAMPLER'S	SIGNATURE:	1110	- /////		

C	21	M:	For							/, Project #671207 ARTER 2016		
144511	_		SCREEN INT	INTERVAL (ft BTOC): START DATE: 12/13/16								
WELL:	PZ-Ø	78	WELL DIAM	ETER (INCHE	s): 2 "	,		FIELD CREW	: C. Le	Hich, T. Salsburg		
			ne-time-use	0.25" x 0.170	" Teflon-line	d high-density	polyethylen	e tubing		, , , , , , , , , , , , , , , , , , , ,		
METER MAI	KE & MODEL	: Horiba U-52	with flow-t	hrough cell			METER CAL	IBRATION DA	TE: 12/	13/16		
DTW BEFOR	RE PURGING	(ft BTOC):	4.06)			DEPTH TO B	OTTOM (ft B	TOC): 10,	Soft / Hard		
	REFERENCE:	1	.16 liter/ft o	r 0.041 gal/ft		ell ≈ 0.617 li	ter/ft or 0.16	3 gal/ft 1	gallon = 3.78			
WATER COL	UMN (FT):	6.44			ME (LITERS):	9				JMES (LITERS): 12		
				FIELD PA	RAMETERS (OLLECTED D		FLOW PURG				
TIME 4 minute	WATER LEVEL	FLOW	TOTAL VOLUME	ТЕМР.	pН	ORP	CONDUC-	DO	LaMOTTE TURBIDITY	REMARKS		
readings	(ft BTOC)	(ml/min)	(Liters)	(°C)	(std. units)	(mV)	(mS/cm)	(mg/L)	(NTU)	(color, odor, sheen, sediment, etc.)		
Stability:	< 0.3 ft	300 – 500	NA	NA	± 0.1	± 10 mV	±3%	± 10 %	± 10 %			
1452	5.41	300	0,5	7.95	6.95	-185	4.45	8.53	OR	linitial state. dk grey w/ suspended solid		
455	5.41		1.4	9.77	6.80	-203	4.31	5.51	13.2	It grey less suspended		
1458	5.40		2.3	987	6.78	-213	4.25	5.17	12,3	sulfir odor		
1501	ı		3.2	9.95	677	-223	4,23	4,91	9,28			
1504			41	10.04	6.75	-237	4.16	4.79	7.99			
	\vdash		5.0	1		-252		1				
507					6.76			4.67	6.38	v. H. grey, minor suggested		
1510			5.9	10.03	6.76	-260	3.95	4.64	5.04			
1513			6.8	10.01	6.76	-276	3.73	4,58	3.66			
1516	<u> </u>		7.7	9.95	6.76	-281	3,69	4,57	2.92			
1519	V	J	8.6	9.98	6:77	-288	3.64	4.51	1.71			
	<u> </u>				<u>a</u>							
					(0)							
	YIC. AT	-	Shall and		-			MAZE XI	A MEANY	Final state.		
NOTES .	10:10	^ -	/	14 1					2.11			
NOTES:	Ising	force	dire	Hikefi	on							
				FIELD AN	NALYSES AND	LABORATOR	Y SAMPLING	INFORMATI	ON			
FERROUS IR	ON FIELD KI	T CONCENTR	ATION (mg/l	: 3.3	Ö		SULFIDE FIE	LD KIT CONCI	ENTRATION (n	ng/L): N/A		
PRIMARY SA		P207		21311	6		PRIMARY SA	MPLE DATE	& TIME: 12	103/16 1525		
PRIMARY SA	AMPLE PARA	METERS (che	eck): Vo	latiles, 💋	TAL metals, _	MNA						
QA/QC SAN	IPLE ID:	None					QA/QC SAN	IPLE DATE &	TIME:			
QA/QC SAM	IPLE PARAM	ETERS (check	:): Vola	tiles, TAI	L metals,	MNA	SAMPLER'S	SIGNATURE:	Ma	ltx		

C	Jh21	11 :	For							ARTER 2016			
			SCREEN INT	ERVAL (ft BTC				START DATE	,	3/16			
WELL:	72-0	04		ETER (INCHES				FIELD CREW	C 12	Irch, T. Salsburg			
EQUIPMEN [*]	T: Peristaltic	pump with o	<u> </u>		" Teflon-lined	high-density	polyethylen		U. 100	The said of			
METER MAI	KE & MODEL	: Horiba U-52	2 with flow-ti	hrough cell			METER CALI	BRATION DA	TE: 12	13/16			
DTW BEFOR	RE PURGING	(ft BTOC):	2,60	7			DEPTH TO B	OTTOM (ft B	TOC): 10	Soft / Hard :			
R	REFERENCE:	1" well ≈ 0		r 0.041 gal/ft	2-inch w	ell ≈ 0.617 lit	ter/ft or 0.16	3 gal/ft 1	gallon = 3.78!				
WATER COL	LUMN (FT):			WELL VOLUE	ME (LITERS):				3 WELL VOLU	JMES (LITERS):			
				FIELD PA	RAMETERS C	OLLECTED D	URING LOW-	FLOW PURG	NG				
TIME	WATER	FLOW	TOTAL	темр.	рН	ORP	CONDUC-	DO	LaMOTTE	25044216			
4 minute readings	(ft BTOC)	(ml/min)	VOLUME (Liters)	(°C)	(std. units)	(mV)	TIVITY (mS/cm)	(mg/L)	(NTU)	REMARKS (color, odor, sheen, sediment, etc.)			
Stability:	< 0.3 ft 300 – 500 NA NA ±0.1 ±10 mV ±3 % ±10 % ±10 %												
1333	2.85	300	Initial ctate is 4										
1336	3,00	1	14	11.80	7.26	-270	621	4.74	7.27	71100175 7 57 139 50113			
1339	1		2,3	12.14	7.26	-371	116-1	4.52	3,92				
1240	3.05					-272	6.05	1					
1344	3.08	 	3.2	12,39	7.26	-373	3,76	442	246				
1545	3.09		4.1	1246	7.26	-372	5.93	4,33	2,14				
1348	3.09	1	5.0	12.59	7.26	-371	591	4,25	1.91				
						/							
						<u> </u>	-	<u> </u>					
						 		<u> </u>					
	ļ			A									
				COX									
				\mathcal{S}	ľ								
	<u> </u>			1									
	<u> </u>		/					 	 				
	-	-	/				-		 				
		/	1				ļ		ļ				
	· '	1				-				Final state.			
NOTES:	114111	· 6	ed 100.	Hilati	h -d			ī					
	97776	- FOR O	E CA . L.	(7/9/7)	() F								
	411			80-	> 0.	0 Ma1	 L_						
						137							
				FIELD A	NALYSES AND	LABORATO	RY SAMPLIN	G INFORMAT	ION				
FERROUS IF	RON FIELD KI	T CONCENTE	RATION (mg/	L): (0.0		SULFIDE FIE	LD KIT CONC	ENTRATION (r	ng/L): N/A			
PRIMARY S	AMPLE ID:	Pzo	4-12	1316			PRIMARY S	AMPLE DATE	& TIME:	12/13/16 1355			
PRIMARY S	AMPLE PARA				TAL metals, 💄	MNA							
QA/QC SAN	MPLE ID: T	70P-G	1W-12	1316			QA/QC SAN	/PLE DATE &	TIME: 12	30 12/13/16			
QA/QC SAN				tiles,TA	L metals,	MNA	SAMPLER'S	SIGNATURE:					

C	21	11:	For							7, Project #671207 ARTER 2016	
			SCREEN INT	LOW-FLOW GROUNDWATER SAMPLING LOG, FOURTH QUARTER 2016 EEN INTERVAL (ft BTOC): START DATE: 12/13/16							
WELL:	MW-	19	WELL DIAM	ETER (INCHES	5): 2"			FIELD CREW		lich T. Solchurs	
EQUIPMENT	T: Peristaltic	pump with o	ne-time-use	0.25" x 0.170	" Teflon-linea		polyethylen	e tubing		10-11-1-11-11-11-11-11-11-11-11-11-11-11	
METER MAI	KE & MODEL	: Horiba U-52	with flow-ti	hrough cell			METER CALI	BRATION DAT	TE: 12/	13/16	
DTW BEFOR	RE PURGING	(ft BTOC):	8.95				DEPTH TO B	OTTOM (ft B1	roc): 18	Soft / Hard	
		1" well ≈ 0	.16 liter/ft o	0.041 gal/ft		ell = 0.617 lit	er/ft or 0.16	3 gal/ft 1	gallon = 3.785		
WATER COL	.UMN (FT):	9		WELL VOLU		5.6			_	JMES (LITERS): 6.7	
		T		FIELD PA	RAMETERS C	OLLECTED DI		FLOW PURGI			
TIME 4 minute	WATER	FLOW RATE	TOTAL VOLUME	TEMP.	рН	ORP	CONDUC- TIVITY	DO	LaMOTTE TURBIDITY	REMARKS	
readings	(ft BTOC)	(ft BTOC) (ml/min) (Liters) (*C) (std. units) (mV) (mS/cm) (mg/L) (NTU) (color, odor, she									
Stability:	< 0.3 ft	300 – 500	NA	NA	± 0.1	± 10 mV	±3%	± 10 %	± 10 %	Initial state.	
0942	C	200	500ml	1275	5,36	103	1.68	6.13	OR	Stepped to drange vo	
0453	9.15	300	_	12.51	6.65	-52	1.61	5,23	OR	cloudy gray brown	
0956	9.24	1	_	12.59	6.69	-53	1.61	4.84	976	sulfer ovor	
1003	9.45		1.5	13.74	6.70	-54	1.61	430	168	Stopped de to no How	
1007	9.70		2.0	4.45	6.70	-72	1,60	3,90	70,2	,	
1010	10.03		2.9	14.67	6.71	-80	1.59	3.70	35-1		
1013	10.33		3.8	14.80	672	-86	1.59	3.62	6,82		
1016	10,53	17	47	1486	672	-90	1,58	360	(61		
1019	10.85		56	1491	677	-100	1.59	3,54	9.31		
r -	-		15	4.96	6.73	-120	1.59	3.53	026		
1022	11.30	 	71		6.13			3.72	-11		
1025		$\overline{}$	7.4	15.01	6-1-	-126	1.60		5.14		
1028	11.60	•	83	15.02	6.14	-130	1.60	364	5.62		
	ļ										
				_				<u> </u>			
			-		Ĺ			<u> </u>			
			((10)							
	102	C/			-	_				Final state.	
NOTES:	1100	Page 1	رص نام	1tilatio	the second secon						
10123.	USIZIG	FORE	Z VO	<u>, </u>							
									_		
					4	LABORATOR		INFORMATI			
	ON FIELD KI			. , , , ,	74				NTRATION (n		
PRIMARY SA		4 1111	9-12	latiles, 1	TAI motels	MNA V	_	AMPLE DATE		2/13/16 1025	
QA/QC SAM			eck): V	nutnes, 🔻	AL ITIETAIS,	_ IVIIVA		IPLE DATE & 1	-		
\vdash	IPLE ID:	CTERS (check	(); Vala	tiles. TA	L metals,	MNA		SIGNATURE:		Me	
		, 5,,,,,,,				-			11011	1100	

C	21	M;	For							, Project #671207 ARTER 2016			
			SCREEN INTE	RVAL (ft BT	OC):			START DATE	: i2/	12/16			
WELL:	P2-	0	WELL DIAME	TER (INCHE	S):		start date: 12/12/16 FIELD CREW: C. Lettich, T. Salsburg						
EQUIPMEN [*]			ne-time-use 0	0.25" x 0.170)" Teflon-lined	high-density	density polyethylene tubing						
METER MAI	KE & MODEL	: Horiba U-5	2 with flow-th	rough cell			METER CALI	BRATION DA	TE:				
DTW BEFOR	RE PURGING	(ft BTOC):					DEPTH TO B	OTTOM (ft B	TOC):	Soft / Hard			
R	EFERENCE:	1" well ≈ 0	.16 liter/ft or	0.041 gal/ft	2-inch we	ell ≈ 0.617 li	ter/ft or 0.16	3 gal/ft 1	gallon = 3.78	5 liters 1 liter = 0.264 gallons			
WATER COL	UMN (FT):			WELL VOLU	ME (LITERS):				3 WELL VOLU	JMES (LITERS):			
				FIELD PA	RAMETERS C	OLLECTED D	URING LOW-	FLOW PURG	ING				
TIME 4 minute readings	WATER LEVEL (ft BTOC)	FLOW RATE (ml/min)	TOTAL VOLUME (Liters)	TEMP. (°C)	pH (std. units)	ORP (mV)	CONDUC- TIVITY (mS/cm)	DO (mg/L)	LaMOTTE TURBIDITY (NTU)	REMARKS (color, odor, sheen, sediment, etc.)			
Stability:	< 0.3 ft	300 - 500	NA	NA	± 0.1	± 10 mV	±3%	± 10 %	± 10 %	Initial state.			
										initial state.			
		DID	HOT	- St	TRE								
		 											
		 							_				
		 					-		-				
	-	-											
 							<u> </u>		1				
 													
<u> </u>									-				
		25.85			4					Final state.			
NOTES:	When	chec	Kina	sonour	hear	Ispai	e for	NI	CHI %	vd 65.9%			
\mathcal{H}	555	8 con	n on	S' d	inkin	g. W	afer	enter	ed 10	wer FEM intole			
WI	sile	head	Spa Col	rea	dings	din	bing.	Did	not q	ot nex vapor			
rec	nding	S. DI	J not	Con	tine	per	DN-			V			
				FIELD A	NALYSES AND	LABORATO	RY SAMPLING	INFORMAT	ION				
FERROUS IF	RON FIELD KI	T CONCENTE	ATION (mg/L):			SULFIDE FIE	LD KIT CONC	ENTRATION (r	ng/L): N/A			
PRIMARY S							PRIMARY SA	MPLE DATE	& TIME:				
		AMETERS (ch	eck): <i>Voi</i>	latiles,	TAL metals,	_ MNA		_		·			
QA/QC SAN		<u>-</u>					QA/QC SAM	IPLE DATE &	TIME:				
		IETERS (chec	k): Volat	iles, TA	L metals,	MNA	SAMPLER'S	SIGNATURE:	111	111			

	orp., 228 E. Main St., Waterloo, NY, Project #671207 ATER SAMPLING LOG, FOURTH QUARTER 2016						
SCREEN INTERVAL (ft BTOC): START DATE: 12/12/16	START DATE: 12/12/16 FIELD CREW: C. Lettich, T. Schstang						
WELL: MW-03 Former Hampshire Chemical Corp., 228 E. Main St., Waterloo, NY, Project #67 LOW-FLOW GROUNDWATER SAMPLING LOG, FOURTH QUARTER 2016 SCREEN INTERVAL (ft BTOC): START DATE: 12/12/16 WELL DIAMETER (INCHES): FIELD CREW: C. Lettich, T.	Selshina						
EQUIPMENT: Peristaltic pump with one-time-use 0.25" x 0.170" Teflon-lined high-density polyethylene tubing							
METER MAKE & MODEL: Horiba U-52 with flow-through cell METER CALIBRATION DATE:							
DTW BEFORE PURGING (ft BTOC): DEPTH TO BOTTOM (ft BTOC):	Soft / Hard						
REFERENCE: 1" well ≈ 0.16 liter/ft or 0.041 gal/ft 2-inch well ≈ 0.617 liter/ft or 0.163 gal/ft 1 gallon = 3.785 liters 1 lite	er = 0.264 gallons						
WATER COLUMN (FT): WELL VOLUME (LITERS): 3 WELL VOLUMES (LITERS):							
FIELD PARAMETERS COLLECTED DURING LOW-FLOW PURGING							
TIME WATER FLOW TOTAL TEMP. PH ORP CONDUC- DO LaMOTTE							
4 minute LEVEL RATE VOLUME (°C) (std. units) (mV) TIVITY (mg/L) TURBIDITY	REMARKS						
readings (ft BTOC) (ml/min) (Liters) (mS/cm) (NTU) (color, odo	or, sheen, sediment, etc.)						
Stability: < 0.3 ft 300 – 500 NA NA ±0.1 ±10 mV ±3 % ±10 % ±10 % Initial state.							
The second secon							
Did not sample							
Final state.							
OTES:							
Did not sample because of high CHz, LEL, H2S at M	7W-53, MW-						
and PZ-01 per DN	·						
FIELD ANALYSES AND LABORATORY SAMPLING INFORMATION							
ERROUS IRON FIELD KIT CONCENTRATION (mg/L): SULFIDE FIELD KIT CONCENTRATION (mg/L): N/A							
RIMARY SAMPLE ID: PRIMARY SAMPLE DATE & TIME:							
RIMARY SAMPLE PARAMETERS (check): Volatiles, TAL metals, MNA							
DA/QC SAMPLE ID: QA/QC SAMPLE DATE & TIME:	· <u>·</u>						
DA/QC SAMPLE PARAMETERS (check): Volatiles, TAL metals, MNA SAMPLER'S SIGNATURE:	9						

C	MW -	M:	Foi						-	Y, Project #671207 J ARTER 2016		
M/PII.			SCREEN INT	ERVAL (ft BT	-							
WELL: /	MW-	34	WELL DIAM	ETER (INCHE	S):			FIELD CREW	c. bet	Z/16 lich, T. Selsburg		
			ne-time-use	0.25" x 0.170	" Teflon-lined	d high-density	ity polyethylene tubing					
METER MAI	KE & MODEL	.: Horiba U-5	2 with flow-t	hrough cell			METER CALI	BRATION DA	TE:			
DTW BEFOR	RE PURGING	(ft BTOC):					DEPTH TO B	OTTOM (ft B	TOC):	Soft / Hard		
R	REFERENCE:	1" well ≈ 0	.16 liter/ft o	r 0.041 gal/ft	2-inch w	ell ≈ 0.617 lit	er/ft or 0.16	3 gal/ft 1	gallon = 3.78	5 liters 1 liter = 0.264 gallons		
WATER COL	LUMN (FT):			WELL VOLU	ME (LITERS):				3 WELL VOL	UMES (LITERS):		
				FIELD PA	RAMETERS C	OLLECTED D	URING LOW-	FLOW PURG	ING			
TIME	WATER	FLOW	TOTAL	TEMP.	pH	ORP	CONDUC-	DO	LaMOTTE			
4 minute readings	(ft BTOC)	(ml/min)	VOLUME (Liters)	(°C)	(std. units)	(mV)	YTIVITY	(mg/L)	TURBIDITY	REMARKS		
Stability:	< 0.3 ft	300 – 500	NA NA	NA NA	± 0.1	± 10 mV	(mS/cm) ± 3 %	± 10 %	(NTU) ± 10 %	(color, odor, sheen, sediment, etc.)		
		-	Initial state.									
	-											
		-										
						,						
		1	10	not	501	mol	9					
			<i>'</i>			1						
			-		-							
-												
	 		-	-								
				:								
	-	 										
		ļ										
										Final state.		
NOTES:	whon	check	sod F	pende	nero	Marca	- 13	20/ /	4, 53	XY:m/ H < 27000		
CAM	1 /20	th <	4.11/	1100 1	in	Dielo	of so	10	7	8% vol, H25 370pp.		
<u> </u>		· / _	7-7-7 C	110110	0000	D/(0 / //	1 30	MITTE	JAV			
					· · · · · · · · · · · · · · · · · · ·							
				FIFI D AN	ALYSES AND	LABORATOR	Y SAMPLING	INFORMATI	ON			
FRROUS IR	ON FIELD KI	T CONCENTR	ATION (mg/l						NTRATION (n	ng/L): N/A		
PRIMARY SA		. CONTRACTOR	(mg/t				PRIMARY SA			ARI AL MA		
		METERS Int.	ock): 1/-	latilar 1	「AL metals,	AANA	F NIIVIAKT 3A	WIFLE DATE	x I IIVIE:			
QA/QC SAM		MAIL 1 EU3 (CUE			AL HIELUIS,	_ IVIIVA	04/005444	DIE DATE C	FIRAE.			
		ETERC / 1 ·					QA/QC SAM					
JA/UC SAM	IPLE PARAM	ETEKS (check	(): Vola	tiies, TAi	L metals,	MNA	SAMPLER'S S	IGNATURE:	////	1 1/1		

C	2121 NW-3	11:	For	•			p., 228 E. Main St., Waterloo, NY, Project #671207 ER SAMPLING LOG, FOURTH QUARTER 2016						
	<i></i> -		SCREEN INT	ERVAL (ft BT			START DATE: 12/12/16						
WELL:	nw-3	55	WELL DIAM	ETER (INCHE	S):		FIELD CREW: C. Lettirh, T. Seldburg						
			ne-time-use (0.25" x 0.170	" Teflon-lined	l high-density	lensity polyethylene tubing						
METER MAI	KE & MODEL	: Horiba U-52	with flow-tl	hrough cell			METER CALI	BRATION DA	TE:		\neg		
DTW BEFOR	RE PURGING	(ft BTOC):					DEPTH TO B	OTTOM (ft B	TOC):	Soft / _	Hard		
R	REFERENCE:	1" well ≈ 0	.16 liter/ft or	0.041 gal/ft	2-inch w	ell ≈ 0.617 lit	ter/ft or 0.163	3 gal/ft 1	gallon = 3.785	5 liters 1 liter = 0.264 gallons			
WATER COL	.UMN (FT):			WELL VOLUI	ME (LITERS):				3 WELL VOLU	IMES (LITERS):			
				FIELD PA	RAMETERS C	OLLECTED D	URING LOW-	FLOW PURG	ING				
TIME	WATER	FLOW	TOTAL	TEMP.	pН	ORP	CONDUC-	DO	LaMOTTE				
4 minute readings	(ft BTOC)	RATE (ml/min)	VOLUME (Liters)	(°C)	(std. units)	(mV)	(mS/cm)	(mg/L)	(NTU)	REMARKS (color, odor, sheen, sediment,	. etc.)		
Stability:	< 0.3 ft	300 – 500	NA NA	NA	± 0.1	± 10 mV	± 3 %	± 10 %	± 10 %	(,			
										Initial state.			
	-				1	,		_/					
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		 \	1	+		// i/					
				\perp		<u> </u>		<i>F</i> +//		<u> </u>			
	1-	' '				'		17.					
				F 25	ĺ				'				
	<u> </u>												
											-		
	-								-				
											——		
	}												
											$\neg \neg$		
	-										\dashv		
											-		
	<u> </u>									Final state.			
NOTES:	Fixn	d C	Ha 7	13%	10 (a)	nd H	25 >	475	opm	in well head	sec		
H-5	was	Cont	ارارار		climb			CHA	H	s maxil sons			
Disc	onno	rted	VACC	- Olu	- /	gaod	well.	venti	lated	area Contac	ted		
DN	an c	1 40	Id no	of to	Cons	line	,		4				
				FIELD AN	IALYSES AND	LABORATOR	Y SAMPLING	INFORMAT	ION				
FERROUS IR	ON FIELD KIT	CONCENTR	ATION (mg/L	.):			SULFIDE FIEL	D KIT CONC	ENTRATION (m	ng/L): N/A	$\neg \neg$		
PRIMARY SA	AMPLE ID:						PRIMARY SA	MPLE DATE	& TIME:		$\neg \neg$		
PRIMARY SA	AMPLE PARA	METERS (che	eck): <i>Vo</i>	latiles, 1	TAL metals,	_ MNA					$\neg \neg$		
QA/QC SAN	IPLE ID:						QA/QC SAM	PLE DATE &	TIME:		$\neg \neg$		
QA/QC SAN	IPLE PARAM	ETERS (check	k): Vola	tiles, TA	L metals,	MNA	SAMPLER'S S	SIGNATURE:	Ma	1/1/2			
										17			

	121	11 :	Forme	•						roject #691615.01.SA L LTM EVENT				
			SCREEN INT	ERVAL (ft BTC				START DATE		3/17				
WELL:	4W-	31	WELL DIAM	ETER (INCHES	5): Z ¹¹	•		FIELD CREW:		tapleton				
EQUIPMEN [*]	T: Peristaltic	pump with o	ne-tim e-use	0.25" x 0.170	" Teflon-lined	l high-density	polyethylene	tubing						
METER MAI	KE & MODEL:	: Horiba U-52	with flow-ti	rough cell			METER CALI	BRATION DAT	re: 8/a	23/17				
DTW BEFOR	RE PURGING	(ft BTOC):	3.59'				DEPTH TO B	оттом (ft вт		. 80′Soft / ★ Hard				
	REFERENCE:			0.041 gal/ft	2-inch w	ell ≈ 0.617 lit	er/ft or 0.16	3 gal/ft 1	gallon = 3.78					
WATER COL	.UMN (FT):	12.21	U)	WELL VOLU	ME (LITERS):	7.53	L		3 WELL VOLU	JMES (LITERS): 72.60 L				
				FIELD PA	RAMETERS C	OLLECTED D	URING LOW-	FLOW PURGI	NG					
TIME	WATER	FLOW	TOTAL	ТЕМР.	рH	ORP	CONDUC-	DO	LaMOTTE					
4 minute readings	(ft BTOC)	RATE (ml/min)	VOLUME (Liters)	(°C)	(std. units)	(mV)	(mS/cm)	(mg/L)	TURBIDITY (NTU)	REMARKS (color, odor, sheen, sediment, etc.)				
Stability:	< 0.3 ft	300 – 500	NA NA	NA NA ±0.1 ±10 mV ±3% ±10% ±10%										
1000	5.08	250	-	- 19.43 9.38 -427 8.80 3.36 -0.35 Initial state. Dark Brown										
1004	6.19	200	0.5	19.33	9.05	-460	9.67	0,00	-0.36	Very Dark Brown				
1008	6.84	200	0.7	19.56	9.59	-477	9:19	0.00	~0.23	very dark Brown				
1012	7.95	200	0.9	19.73	9.61	-483	9.23	0.00	NW	Very dark Brown				
1016	9.05	200	1.0	19.82	9.64	-489	9.20	0.00	Niu	very dork brown				
1020	9.55	200	1.2	19.82	9.66	-492		0.00	NW	very dark brown				
1024	10.39	200	1.5	19.66	9.68	-492	9.29	0,00	NW	Very dark brown				
										·				
1035 Collect Sample														
Section 4	STEEL STEEL		12-11-14			PARTIE				Final state.				
10756								200						
NOTES:	* (urbidi	- Y 40.0	ا م صا	1oc no	st Easin	، حات ر	usck	2. 00 - W	14/50				
	<i>\P</i> − (water	1 10.1.	RM O	lork b	muls.	- 10 C	J G I I	revery	when				
		1)W =	- 201	wasking		300771	<u> </u>							
		~ VVV ~	1	J										
				FIELD AN	IALYSES AND	LABORATOR	Y SAMPLING	INFORMATION	ON	-				
PRIMARY SA	AMPLE ID:	MW31	- 082	317			PRIMARY SA	MPLE DATE 8	k TIME:	8/23/17 1035				
PRIMARY SA	AMPLE PARA	METERS (che	ck): <i>VC</i>	Cs,TAL	metals, 🗹 N	ΛΝΑ, SV	OCs, PAH	s						
QA/QC SAM	IPLE ID:	NIA					QA/QC SAM	PLE DATE & T	IME:	v/A				
QA/QC SAM	IPLE PARAMI	ETERS (check): voc	, TAL me	etals, MN	IA, SVOC	s, PAHs	^	JA					
FERROUS IR	ON FIELD KIT	CONCENTRA	ATION (mg/L): () • 0	1 Mg	14	SAMPLER'S S	SIGNATURE:	(a de	Ale Mas				

	121	11 :	Former Hampshire Chemical Corp., 228 E. Main St., Waterloo, NY, Project #691615.01.SA LOW-FLOW GROUNDWATER SAMPLING LOG, 2017 ANNUAL LTM EVENT									
MELL	MW-	.1 ~	SCREEN INT	ERVAL (ft BT	oc): 4 -	.14		START DATE	8/2	3/17	-	
WELL:	9W-	115	WELL DIAM	ETER (INCHES				FIELD CREW		TAPCE TO	20/	
EQUIPMEN	T: Peristaltic	pump with o	ne-time-use	0.25" x 0.170	" Teflon-lined	d high-density	polyethylene	e tubing				
METER MA	KE & MODEL	: Horiba U-52	with flow-t	hrough cell			METER CALI	BRATION DAT	E: & S	3/17		
DTW BEFOR	RE PURGING		1.75					OTTOM (ft B1		.40'	Soft / X Hard	
	REFERENCE:						ter/ft or 0.16		gallon = 3.78		0.264 gallons	
WATER COL	LUMN (FT):	12.15	, '	WELL VOLUI		7.50				JMES (LITERS): 2	2.49 L	
710.45]a===	5,014		FIELD PA	RAMETERS C	OLLECTED D		FLOW PURGI		Γ		
TIME 4 minute	WATER LEVEL	FLOW RATE	TOTAL VOLUME	TEMP.	pH	ORP	CONDUC- TIVITY	DO	LaMOTTE TURBIDITY	RE	MARKS	
readings	(ft BTOC)	(ml/min)	(Liters)	(Liters) (*C) (std. units) (mV) (mS/cm) (mg/L) (NTU) (color, odor, sheen, sec								
Stability:	< 0.3 ft	300 – 500	NA	NA 7. a.d	± 0.1	± 10 mV	±3%	± 10 %	± 10 %	Initial state.		
1322	2.71			21,68	9.42	-309	3.74	2.01				
1326	3.54	250	0.5	20,47	9.47	-323	3.69	0.00	1.22	Clear, r	none	
1330	4.05	250	0.7	20.47	9.47	-323	3.69	0.00	1.85	clear,	none	
1334	4.55	250	1.0	20.47	747	-323	3.69	0.00	1.06	le	1.(
1338	4.94	250	1.4	20.41	9.10	-310	3.29	0.00	0.79	17	71	
1342	5.09	250	1.5	20.34	9.12	-308	3.28	0.00	1.19	11	()	
1346	5.44	250	1.8	20.33	9.17	-309	3.29	0.00	1.88	ĸ	()	
1350	5.70	250	2.1	20.18	9,18	-309	3.30	0.00	1.32	/t	()	
											(0)	
1355	Cal	lect	Sami	1.0							×	
1377	(81	1401	3 400	10								
											-	
\vdash												
\vdash										Final state.		
NOTES:	t. ITA	15 6	Dear	11 10						1		
NOTES:	14/6:	LE SCE	1711	4-1								
	WEU		- 18/-									
					ALYSES AND	LABORATOR	Y SAMPLING	INFORMATION				
PRIMARY SA			- 087			/		MPLE DATE &	k TIME:	8 23 17	13 <i>55</i>	
			eck): <i>VC</i>	Cs, <u>V</u> TAL	metals, <u>V</u> N	MNA, SVO	OCs, PAH:			1.0		
QA/QC SAN		V A	1			14 0100		PLE DATE & T	IME: N	<i>IA</i>		
	ON FIELD KIT			;, TAL me .):			SAMPLED'S	N/A		1	4	
LEVYOU? IK	ON PIELD KII	CONCENTR	MINON (mg/L	., U.C	00 Mg	16	SAMPLER'S	DIGINATURE:	10.1	4/ 1/13		

SCREEN INTERVAL (ft BTOC): 4-14 WELL DIAMETER (INCHES): 2 1 METER MAKE & MODEL: Horiba U-52 with flow-through cell DTW BEFORE PURGING (ft BTOC): 4.38' REFERENCE: 1" well = 0.16 liter/ft or 0.041 gal/ft 2-inch well = 0.617 liter/ft or 0.163 gal/ft 1 gallon = 3.785 liters

ormer Hampshire Chemical Corp.,	228 E. Main St.,	Waterloo, NY,	Project #691615.0	1.S/
LOW FLOW CROHNDWATE	D CAMPLING LO	C 2017 ANNU	IAL LTRA EVENIT	

START DATE: 23

FIELD CREW:

EQUIPMENT: Peristaltic pump with one-time-use 0.25" x 0.170" Teflon-lined high-density polyethylene tubing

METER CALIBRATION DATE:

DEPTH TO BOTTOM (ft BTOC):

13.00

Soft / X Hard

1 liter = 0.264 gallons

WATER COLUMN (FT):

PRIMARY SAMPLE ID:

QA/QC SAMPLE ID:

PRIMARY SAMPLE PARAMETERS (check): -

MW30-08Z

WELL VOLUME (LITERS):

3 WELL VOLUMES (LITERS):

	LUIVIN (F1):			WELL VOLUE	(,.					IME2 (FILEK2):	
	_			FIELD PA	RAMETERS C	OLLECTED D	URING LOW-	FLOW PURGI	NG	-	
TIME 4 minute readings	WATER LEVEL (ft BTOC)	FLOW RATE (ml/min)	TOTAL VOLUME	-	pH (std. units)	ORP (mV)	CONDUC- TIVITY (mS/cm)	DO (mg/L)	LaMOTTE TURBIDITY (NTU)	!	EMARKS heen, sediment, etc.)
Stability:	< 0.3 ft	300 - 500	_NA	NA -	± 0.1	± 10 mV	±3%	± 10 %	± 10 %	Internal	. 7
1143	4.53	350		22.11	7.87	- 357	5.81	11.49	0.65	Initial state.	ellow/amber
147	4.50	300	0.5	20.23	7.78	-391	3.95	5.11	0.55	Amber	tint
1151	4.51	300	0,8	20.24	7.60	-380	3.04	4.40	0.63	Amber	fint, oder
1155	4.51	250	1.)	20.19	7.51	-377	2.83	3.70	0.34	Amber	tint, odor
1159	4.51	250	1.4	20.09	7.47	-378	2.82	3.26	0.31	(lear	odor
1 2. 03	4.51	300	1.6	20.09	7.44	-378	2.77	2.93	0.30	Clear	, odor
1207	4.51	300	2.0	20.17	7.42	-379	2.76	Z 49	0.47	10	11
1211	4.51	300	2.3	20.04	7.40	-381	2.73	2.08	0.58	11	1.1
1216	4.51	300	2.6	20.12	7.37	-384	2.73	1.83	0.40	10	1)
1220	4.52	300	2.9	20.64	7.37	-386	2.73	i.50	0.36	10	¥ (
1224	4.52	300	3.2	20.05	7.36	-388	2.74	1.07	0.50	(i	13
1228	4.52	300	3.5	18.59	7.37	-393	2.86	0.00	0.27	C)	11
232	4.52	300	3.6	18.56	7.35	-394	2.78	0,,00	0.33	(i	11
1236	4.52	300	3,9	18,56	7.36	-395	2.78	000	0.27	4	
1240		SATTPL	a								
						ļ					
										Final state.	
OTES: Pump intake @ 10' bas											

FIELD ANALYSES AND LABOR	RATORY SAMPLING INFORMATION					
317	PRIMARY SAMPLE DATE & TIME:	81	23	117	1240	
OCs,TAL metals,MNA, _	SVOCs, PAHs					
	QA/QC SAMPLE DATE & TIME:	NI	1			

NA QA/QC SAMPLE PARAMETERS (check): ____ TAL metals, ___ MNA, ___ SVOCs, ___ PAHs FERROUS IRON FIELD KIT CONCENTRATION (mg/L): 0.49

14

SAMPLER'S SIGNATURE:

	Former Hampshire Chemical Corp., 228 E. Main St., Waterloo, NY, Project #691615.01.SA LOW-FLOW GROUNDWATER SAMPLING LOG, 2017 ANNUAL LTM EVENT													
			SCREEN INT	ERVAL (ft BTC		1 11		START DATE	. 3	-				
WELL:	MW-31	6	WELL DIAM	ETER (INCHES				FIELD CREW		tapleton				
EQUIPMEN	T: Peristaltic	pump with o	ne-time-use (0.25" x 0.170	" Teflon-lined	high-density	polyethylene	tubing						
METER MA	KE & MODEL	: Horiba U-52	with flow-th	rough cell		is.	METER CALI	BRATION DAT	E: 81	22/17				
DTW BEFOR	RE PURGING ((ft BTOC):	0.991				DEPTH TO B	OTTOM (ft B	oc): 12	70Soft / X_ Hard				
F	REFERENCE:	1" well ≈ 0	.16 liter/ft or	0.041 gal/ft	2-inch w		er/ft or 0.16	3 gal/ft 1	gallon = 3.785	5 liters 1 liter = 0.264 gallons				
WATER COI	.UMN (FT):	11.7	1	WELL VOLUM	ИЕ (LITERS):	7.22	<u>L</u>		3 WELL VOLU	IMES (LITERS): 21.68 L				
				FIELD PA	RAMETERS C	OLLECTED D	URING LOW-	FLOW PURGI	NG					
TIME 4 minute	WATER LEVEL	FLOW RATE	TOTAL VOLUME	ТЕМР.	pН	ORP	CONDUC-	DO	LaMOTTE TURBIDITY	REMARKS				
readings	(ft BTOC)	(ml/min)	(Liters)	(°C)	(std. units)	(mV)	(mS/cm)	(mg/L)	(NTU)	(color, odor, sheen, sediment, etc.)				
Stability:	< 0.3 ft	300 – 500	NA	NΑ	± 0.1	± 10 mV	±3%	± 10 %	± 10 %					
1512	1.99	250		21.31	8.96	-345	1.97	3 .03		Initial state. (1ear				
1516	2.42	250	0.3	20.24	7.98	-275	1.77	0.00	3.27	(lear				
1520	2.74	250	0.6	20.21	7.76	-259	1.70	0,00	2.09	C160r				
1524	2.95	250	1.0	20.24	7.70	-254	1.69	0.00	1.94	(lear				
1528	3.10	250	1,3	20.26	7.65	-251	1.69	0,00	2.01	Clear				
1532	3.25	250	1.6	20.22	7.6Z	-248	1.69	0.00	2.16	Clear				
1536	3.35	250	2.0	26.19	7.59	-246	1.70	0.00	1.65	Clear				
1540	3.43	250	2.3	20.17	7.55	-243	1.70	0.00	1.89	Clear				
1544	3.50	250	2 6	20.13	7.53	-241	1.71	0.00	1.76	clear				
1550	Colle	c+ s	ample											
	-	, .	11.		181									
										Final state.				
										i mai state.				
NOTES:	Pui	ام م	acement	(a) 11	1095									
				FIELD AN	ALYSES AND	LABORATOR	Y SAMPLING	INFORMATI	ON					
PRIMARY SA	RIMARY SAMPLE ID: MW 36 - 082217 / PRIMARY SAMPLE DATE & TIME: 8 22 17 1550													
PRIMARY SA	RIMARY SAMPLE PARAMETERS (check): VOCs, TAL metals, MNA, SVOCs, PAHs													
QA/QC SAN		Dup -	Gw -	08771	1			PLE DATE & T	TME: 8/2	2/17 0900				
					o Me			CONTRACT		1 17 A				

C	Former Hampshire Chemical Corp., 228 E. Main St., Waterloo, NY, Project #691615.01.SA LOW-FLOW GROUNDWATER SAMPLING LOG, 2017 ANNUAL LTM EVENT													
		_	SCREEN INT	ERVAL (ft BTC		-14		START DATE		2117				
WELL: 7	1W-3	5		ETER (INCHES				FIELD CREW:		MSBMC				
EQUIPMEN1	: Peristaltic	oump with o				high-density	polyethylene	tubing	, ,					
METER MAK	KE & MODEL:	Horiba U-52	with flow-th	rough cell	-		METER CALIE	RATION DAT	E: \$/1	22/17				
DTW BEFOR	E PURGING (ft BTOC):	1.51				DEPTH TO BO	OTTOM (ft BI		Soft / =Hard				
R	EFERENCE:	1" well ≈ 0		0.041 gal/ft	2-inch w	ell ≈ 0.617 lit	er/ft or 0.163	gal/ft 1	gallon = 3.785	6 liters 1 liter = 0.264 gallons				
WATER COL	UMN (FT):			WELL VOLUM	ИЕ (LITERS):				3 WELL VOLU	IMES (LITERS):				
		_		FIELD PA	RAMETERS C	OLLECTED D	JRING LOW-	LOW PURGI	NG					
TIME	WATER	FLOW	TOTAL	TEMP.	pН	ORP	CONDUC-	DO	LaMOTTE					
4 minute readings	(ft BTOC)	RATE (ml/min)	VOLUME (Liters)	(°C)	(std. units)	(mV)	TIVITY (mS/cm)	(mg/L)	TURBIDITY (NTU)	REMARKS (color, odor, sheen, sediment, etc.)				
Stability:	< 0.3 ft	300 – 500	NA NA	NA	± 0.1	± 10 mV	± 3 %	± 10 %	± 10 %					
1500	2112	200	_	24,27	8,75	-126	2.34	7.60	22,1	Initial state. CLEAR CLEAR CLEAR				
1504	2.68	250	1	21,54	7.26	-104	236	150	5.34	CLEAR				
1508	3.01	225	1.75	20.82	7.15	-104	2,38	1.27	4.92	CLEAR				
1512	3,40	250	3.0	20,17	7.08	-103	242	1.08	5,22					
1516	3,51	225	3.75	14.69	7.07	-102	2:44	1.04	3.89					
1520	3:60	225	4.75	19.69	7.08	-100	2.42	1.02	4.91					
1524	1	225	5.75	19.69	7.10	-100	2.41	0.99	6.29					
1528 CERGECT SATIRCE														
	i													
										Final state.				
NOTES:														
										-				
				.										
				FIELD AN	IALYSES AND	LABORATOR	Y SAMPLING	INFORMATI	ON					
PRIMARY SA	RIMARY SAMPLE ID: MW36-082217 PRIMARY SAMPLE DATE & TIME: 8/22/17 15:28													
					metals, <u>V</u> f	MNA, SV(OCs, PAH	5						
QA/QC SAN	A/QC SAMPLE ID: $MW35-682217-175/1750$ QA/QC SAMPLE DATE & TIME: $8/22/17$ 1528 A/QC SAMPLE PARAMETERS (check):VOCs,YTAL metals,MNA,SVOCs,PAHS													
QA/QC SAN	1PLE PARAM	ETERS (check	k): VOC	s,TAL m	etals, MN	IA, SVOC	s, PAHs			,				
FERROUS IR	ON FIELD KIT	CONCENTR	ATION (mg/l	.): B	38		SAMPLER'S S	IGNATURE:	,74/	1-				

	21	11 :	Forme	•				•		oject #691615.01.SA L LTM EVENT	
			SCREEN INT	ERVAL (ft BTC				START DATE			
WELL:	Mw	21	WELL DIAM	ETER (INCHES	<u>_</u>			FIELD CREW	A.57	APLETOIY	\neg
			ne-time-use	0.25" x 0.170		l high-density	polyethylene	tubing			
METER MAI	KE & MODEL:	: Horiba U-52	with flow-to	hrough cell			METER CALI	BRATION DAT	TE: 8/2	2/17	
DTW BEFOR	RE PURGING ((ft BTOC):	3.90		-		DEPTH TO B	OTTOM (ft B1		45'	lard
R	REFERENCE:	1" well ≈ 0	.16 liter/ft o	0.041 gai/ft	2-inch w	ell ≈ 0.617 lit	ter/ft or 0.16	3 gal/ft 1	gallon = 3.78!	5 liters 1 liter = 0.264 gallons	
WATER COL	UMN (FT):	9.55		WELL VOLUM	ИЕ (LITERS):	5,89	L		3 WELL VOLU	IMES (LITERS): 17.67 L	
				FIELD PA	RAMETERS C	OLLECTED D	URING LOW-	FLOW PURGI	NG		
TIME	WATER	FLOW RATE	TOTAL VOLUME	TEMP.	рН	ORP	CONDUC- TIVITY	DO	LaMOTTE TURBIDITY	REMARKS	
4 minute readings	(ft BTOC)	(ml/min)	(Liters)	(°C)	(std. units)	(mV)	(mS/cm)	(mg/L)	(NTU)	(color, odor, sheen, sediment, etc	.)
Stability:	< 0.3 ft	300 – 500	NA	NA	± 0.1	± 10 mV	±3%	± 10 %	± 10 %		_
1147	4.65	_		21.84	10.22	-438	24.1	0.46	_	Initial state. Brown / Yellow	
1154	4.69	100	0.5	21.50	10.36	-508	25.2	0.00	~ 0.50	Deris BRN	
1159	4.91	175	0.6	21027	10.37	-519	25.4	0.00	-0.58	very derk bown, od	9
1204	5,30	250	0.9	20.81	10.37	-526	24.4	0.00	-0.52	ii II	
1208	5.61	250	1.1	20.72	10.37	-528	23.4	0.66	-0.55	11	
1212	5.90	200	1.4	21.25	10.37	-529	23.0	0.00	NW	11 /1	
1216	6.14	200	1.7	21.66	10.39	-531	23.0	0.00	NW	11	
1220	6.39	200	1.9	21.56	10.40	- 532	23.0	0.00	NW	/1 11	
1224	6.64	200	2.1	21.48	10.42	- 534	Z3.0	0.00	NW	11 //	
1228	6.85	200	2.3	21.33	10.42	-535	23.0	0.00	NW	11	
1235	Colle	+ 50	mple								\neg
, , ,	CHIC		1710								
	 										
	 									Anti-transition in the second	\dashv
	-						-				-
<u> </u>	-										-
											_
<u> </u>			<u> </u>								_
										Final state.	
NOTES:	11	TAICE	10								
	W	eu.	SCREET	1 4-1	4		-				
<u> </u>	T	N.		1							-
\vdash	iorbid	ity m	pter 1	10t W	crking	proper	4				
				FIELD AN	IALYSES AND	LABORATO	RY SAMPLING	INFORMATI	ON		
PRIMARY S	AMPLE ID:	MW	121-1	2822	17		PRIMARY SA	MPLE DATE &	& TIME:	8/22/17 1235	
PRIMARY S	AMPLE PARA			OCs,TAL		MNA, SV	OCs, PAH	's			
QA/QC SAN		IIA						IPLE DATE & 1	гіме:		
				s, TAL m				NIA			
FERROUS IF	RON FIELD KI	CONCENTR	ATION (mg/	L): 4114	0.0	B nali	SAMPLER'S	SIGNATURE:	(0,-0)	N Stallans	

	h2 N	N.	Forme	Hampshir	e Chemica	ol Corp., 22	8 E. Main	St., Water	loo, NY, Pro	oject #691615.01.SA . LTM EVENT		
			SCREEN INTE					START DATE:		-117		
WELL:	1W-	20	WELL DIAME			<u> </u>		FIELD CREW:		ALSBURG		
QUIPMENT	: Peristaltic p	oump with o	ne-time-use (0.25" x 0.170'	' Teflon-lined	high-density	polyethylene	tubing				
			with flow-th				METER CALIB		E: 8/22	2117		
	E PURGING (3,75	_			DEPTH TO BO			90 _Soft / Nard		
	EFERENCE:		.16 liter/ft or		2-inch we	ll ≈ 0.617 lit	er/ft or 0.163		gallon = 3.785			
WATER COL				WELL VOLUN	ИЕ (LITERS):				3 WELL VOLU	MES (LITERS):		
				FIELD PA	RAMETERS C	OLLECTED DU	JRING LOW-F	LOW PURGI	NG			
TIME 4 minute	WATER LEVEL	FLOW RATE	TOTAL VOLUME	TEMP. (°C)	pH (std. units)	ORP (mV)	CONDUC- TIVITY (mS/cm)	DO (mg/L)	LaMOTTE TURBIDITY (NTU)	REMARKS (color, odor, sheen, sediment, etc.)		
readings Stability:	(ft BTOC) < 0.3 ft	(ml/min) 300 – 500	(Liters) NA	NA	± 0.1	± 10 mV	±3%	± 10 %	± 10 %			
1147	3,78			23.80	7,67	-261	9.74	1,49	30.7	Initial state.		
1151	3,79	250	i	21.58	6.36	-310	10.1	0.90	23.6	SLIGHT HIS ODOR		
1155	3.80	300	2	21.56	7.12	-373	6.54	0.79	10.5	(LEAR		
1159	5.80	300	3	21.92	7.560	-398	4,20	0.77	9.24			
1203	3.80	300	4	22.37	7.64	-402	3.00	0.75	8.78	acape		
1207	3.80	300	5	22.69	7.50	-396	2.68	0.74	4.46			
1211	3.80	300	10	2778	7.53	-398	2,62	0,72	5,88			
1215 3.80 300 7 23.10 7.54 -401 7.58 0.71 4.21 CLEAR												
1219	3 80		8									
1223 SAMPLE												
1600	 	5/1/1/	 	 								
	 	 										
<u> </u>	 	 	+			-			 			
<u> </u>	 		 			 	 	-				
	 		 	 		-	 		 			
			-	 		-	 	-				
	 	<u> </u>	 	 	-		 	 	1			
				ļ				-	 			
		 		 		=			-	 		
		-		_	 			 	-			
<u></u>		 				-	-	 	-	Final state.		
		1 72	1						1			
NOTES:	177	MCE_	9.5	1 -								
	SCI	EEN_	3-1	•	CICA	4D (7)	T T7	RAK	6884	WHCH EXPUSED		
	<u> </u>	D 1.	THOCOL	15	PIL 7	MAKENI	,	, <u>, , , , , , , , , , , , , , , , , , </u>	0,10-1	WHEN EXPUSED		
 		U /H	חץכטווו	بركر ,	<i>JJ</i> · (_)	11661						
-				FIELD A	ANALYSES AN	ID LABORATO	ORY SAMPLIN	IG INFORMA	TION			
PRIMARY	SAMPLE ID:	11.10	2-08	2217			PRIMARY S	SAMPLE DAT		8122/17 12:23		
PRIMARY	SAMPLE PAR	RAMETERS (check): $1 \angle$	VOCs,/TA	AL metals, 🔽	MNA, S	VOCs, PA	Hs				
QA/QC SA	AMPLE ID:)	1w07	-0822	17 - MS	IMSD		QA/QC SA	MPLE DATE 8				
QA/QC SA	AMPLE PARA	METERS (ch	eck): 1/VC	CS, ATAL	metals, f	NNA, SVC	QA/QC SA OCs, PAH	<u> </u>	(/2	7117 1223		
			TRATION (mg				SAMPLER'	S SIGNATURE	: 172/	e Sey		

		21-0	N:	Forme							oject #691615.01.SA L LTM EVENT
	Arri	07 -	/	SCREEN INT		oc): 3,5			START DATE	7.1	
1	WELL:	12-0	0		ETER (INCHE		9/3		FIELD CREW		SAL SBYRG
EC	UIPMEN	T: Peristaltic	pump with o	ne-time-use	0.25" x 0.170	" Teflon-lined	l high-density	polyethylene	e tubing		
М	ETER MA	KE & MODEL	: Horiba U-52	with flow-ti	hrough cell			METER CALI	BRATION DAT	re: 8/2	22/17
DI	W BEFOR	RE PURGING	(ft BTOC):	3,45		<u>.</u> .		DEPTH TO B	OTTOM (ft B		
	F	REFERENCE:	1" well ≈ 0	.16 liter/ft o	r 0.041 gal/ft	2-inch w	ell ≈ 0.617 lit	er/ft or 0.16	3 gal/ft 1	gallon = 3.785	5 liters 1 liter = 0.264 gallons
W	ATER COL	.UMN (FT):			WELL VOLUE	ME (LITERS):				3 WELL VOLU	IMES (LITERS):
L		,			FIELD PA	RAMETERS C	OLLECTED D	URING LOW-	FLOW PURGI	NG	p. 100 p.
	TIME minute eadings	WATER LEVEL (ft BTOC)	FLOW RATE (ml/min)	TOTAL VOLUME (Liters)	TEMP. (°C)	pH (std. units)	ORP (mV)	CONDUC- TIVITY (mS/cm)	DÖ (mg/L)	LaMOTTE TURBIDITY (NTU)	REMARKS (color, odor, sheen, sediment, etc.)
	Stability:	< 0.3 ft	300 – 500	NA	NA	± 0.1	± 10 mV	±3%	± 10 %	± 10 %	
L	128	5,69	300		22,66	6.73	-160	2.10	2.49	2112	Initial state. CLEAR
U	130	6.05	200	072	22.55	6.99	-136	1,29	6.50		DURGE BUEKET
	132		DRY						-		PURCE BURET GREY PARTICISS
F											W/ H2S OPOR
1	942	3,50	(OH	TIHUE	->	SAMPLE	_ (0	LLEC	T		
	000	DRY	CDO						ĺ		
	600		UME								
	600	3,50	7,								
H	000	7,30									
\vdash											
\vdash											19-11-
L											
L											
L											
Γ											310
Г											
H											
\vdash											
\vdash											
\vdash									-		
L											P. 1
L											Final state.
N	OTES:	11477	ME	8							
L		504	EE14	3,5-	815						
-		- ALCO	w 1	LECHA	Par	OVE	ZN10117	17			
\vdash											
H					FIELD AN	IALYSES AND	LABORATOR	Y SAMPLING	INFORMATION	ON	
PR	IIMARY S	AMPLE ID:	PZOLE	- 087					MPLE DATE 8		8123117 9:42
PR	IMARY S					metals, 📈 N		OCs, PAH.	S		7,7227.1
$\overline{}$	A/QC SAN							QA/QC SAM	PLE DATE & T	IME:	
Q/	A/QC SAN	IPLE PARAM	ETERS (check	(): <i>VOC</i> :	5, TAL m	etals, MN					
FE	RROUS IF	ON FIELD KIT	CONCENTR	ATION (mg/l): [0]	8		SAMPLER'S	SIGNATURE:	ryle	Je .

	h2M	и.	Former	Hampshir	e Chemica	ol Corp., 22	8 E. Main	St., Water	loo, NY, Pro	oject #691615.01.SA _ LTM EVENT
	712/1		SCREEN INTE	RVAL (ft BTO		5-8,5		START DATE:		
1)-Z-	24	WELL DIAME	TER (INCHES	:			FIELD CREW:		ALSIBURG
EQUIPMENT:	Peristaltic p	oump with o	ne-time-use ().25" x 0.170"	Teflon-lined					
METER MAKE	E & MODEL:	Horiba U-52	with flow-th	rough cell			METER CALIB			
DTW BEFORE	PURGING (ft BTOC):	2,91	<u>'</u>			DEPTH TO BO			
RE	FERENCE:	1" well ≈ 0	.16 liter/ft or	0.041 gal/ft		ell ≈ 0.617 lit	er/ft or 0.163		gallon = 3.785	inters 1 liter = 0.264 gallons IMES (LITERS):
WATER COLU	JMN (FT):	5.6		WELL VOLUN						NVIES (LITERS).
				FIELD PAI	RAMETERS C	OLLECTED DI		LOW PURGI		
TIME 4 minute	WATER LEVEL	FLOW RATE	TOTAL VOLUME	TEMP.	pH (std. units)	ORP (mV)	CONDUC- TIVITY (mS/cm)	DO (mg/L)	LaMOTTE TURBIDITY (NTU)	REMARKS (color, odor, sheen, sediment, etc.)
readings	(ft BTOC)	(ml/min)	(Liters) NA	NA NA	± 0.1	± 10 mV	± 3 %	± 10 %	± 10 %	
Stability:	< 0.3 ft	300 - 500 250	NA _	20,21	4.01	-202	4.61	8,32	21.4	Initial state. CLEAR
1018	3, 11	250		19.84	3,22	-225	5,57	Le,13	8,92	CURATE
1026	3.17	750	2	19.84	5106	-318	5138	4.90	Le,31	
1030	3,20	2,0	3	19.78	5,85	-359	5,36	0,99	4,27	CLEAR, HZSOF
1034	3,21	250	Ш	19,77	L. 46	-399	5,30	091	530	
1038	3,21	250	5	19.74	, -	-410	5,30	0.84	5,20	
1042	3,24	750	6	19,74	7.05	-421	5,31	0.87	5.06	
1046	3,23		7	19,74	7.17	-427	5,37	078	4.61	CLEAR
1050	3,23	250	8	19,74	7,13	-426	5,31	0,76	4.69	
1054	3,23	250	9	19.74	7.15	-427	5.32	076	3,92	ļ
1058	Co	nec	+			<u> </u>				
									<u> </u>	
									ļ	
 	 	 								
		1								
 		 	\dagger	1						
	+	†	+							
-	 	1	1	T						Final state.
NOTES:	12	THES	8							
INOTES.	5	CRECH	5,5	-10.5						
				EIELD	ANALYSES AF	ND LABORAT	ORY SAMPLIF	NG INFORMA	TION	
DDIMADV	SAMPLE ID:	07 01	1- 067			TO ENDOIGN		SAMPLE DAT		8123117 1058
PRIMARY	SAMPLE ID:	RAMETERS (1- 0 82 check): 1	Vocs,T	AL metals, 🗸	MNA,	SVOCs, PA	AHs		
	AMPLE ID:	DUD-	(7(1) - 1	38231			QA/QC SA	MPLE DATE	& TIME: {	3/23/17 0900
		METERS (ch	neck): 📈 V	OCs,TAL	metals,	MNA, SV	OCs, PAH	s		, , , , , , , , , , , , , , , , , , , ,
			TRATION (m				SAMPLER	'S SIGNATUR	E: Vagl) Jan

	Jh21	44.	Forme							oject #691615.01	l.SA
			CCDEEN INT				SAMPLIN			L LTM EVENT	
WELL:		109R		ERVAL (ft BT) ETER (INCHE		-16		FIELD CREW		-3/17 Ar ca = a	·
FOLIIPMEN	T. Peristaltic	numn with o				high-density	nolvethyleni		· 1/ >/	rssirl	
	KE & MODEL				region inice	rngn density		BRATION DAT	TE: 0/2	23117	
	RE PURGING		5.10					OTTOM (ft B1		- / 1 '	Soft / 1 Hard
	REFERENCE:		<u> </u>	r 0.041 gal/ft	2-inch w	ell ≈ 0.617 lit			gallon = 3.785	5 liters 1 liter = 0.2	
WATER CO	LUMN (FT):	10.9	0	WELL VOLU	ME (LITERS):				3 WELL VOLU	IMES (LITERS):	<u>-</u>
				FIELD PA	RAMETERS C	OLLECTED D	URING LOW-	FLOW PURGI	NG		
TIME 4 minute readings	WATER LEVEL (ft BTOC)	FLOW RATE (ml/min)	TOTAL VOLUME (Liters)	TEMP. (°C)	pH (std. units)	ORP (mV)	CONDUC- TIVITY (mS/cm)	DO (mg/L)	LaMOTTE TURBIDITY (NTU)	REM. (color, odor, shee	ARKS n, sediment, etc.)
Stability:	< 0.3 ft	300 – 500	NA	NA	±0.1	± 10 mV	±3%	± 10 %	± 10 %	Initial state	
134-1	5.44	300		23,74	6.95	-127	4.82	8.62	5.92	Initial state.	EATE
1351	5152	300	1	1605	7.11	-153	5,72	1.88	3,21		
1355	5.58	300	2	16.01	7.02	-165	5,30	1.34	3.90		
1359	5.05	300	3	15 93	6.96	-178	5.10	1.16	2.90		162
1403	5,75	3:00	4	15.98	6,97	-191	5.02	1,08	3,33		
11107	5,85	300	5	16.21	6.96	-201	4,94	1.03	3,04	CLE	AR
14/1	5.97	300	6	16.37	6.97	-209	4,97	0.99	2.84	11	7,7
1415	6.10	300	フ	16,49	4.99	-220	5.02	0.94	2.60	1 1	1,
1419	6.20	300	8	16.71	7.01	-237	5.08	0.89	3, 71	1 7	1 1
1423	6,42	250	9	10,62	7.05	- 245	5,10	0.87	3.60	Y /	\ 1
1428	6.62	250	10	16.59	7.11	-256	5113	0.85	3,04	\ ₁	\ /
1432	6.79	250	17	16.50	7,20	-261	5.12	0.84	2.74	. 1	١ ١
1436	4.95	250	12	16.41	7.23	-266	5.10	0.83	2,90	` I	` (
1440		SATTPL	-2								
										Final state.	
NOTES:		l .									
				g installer							
						200			N. C.		
		194			1000						
				FIFI D AN	IALYSES AND	LABORATOR	Y SAMPI ING	INFORMATION	ON		
	A NADI E ID:			3 7 10				MADIE DATE S		0127117	

	PRIMARY SAMPLE DATE & TIME: 8/23/17 1440
PRIMARY SAMPLE ID: MWOGR-082317	3103111 19110
	SVOCS / PAHS
PRIMARY SAMPLE PARAMETERS (check): 1 VOCs,	
0A/QC SAMPLE ID: DUP-GW-082517-2	QA/QC SAMPLE DATE & TIME: 8/23/17 430
QA/QC SAMPLE PARAMETERS (check): VOCs, VTAL metals, MNA, SV	OCs, V PAHs
FERROUS IRON FIELD KIT CONCENTRATION (mg/L):	SAMPLER'S SIGNATURE:

C	Former Hampshire Chemical Corp., 228 E. Main St., Waterloo, NY, Project #691615.01.SA LOW-FLOW GROUNDWATER SAMPLING LOG, 2017 ANNUAL LTM EVENT												
	00		SCREEN INT		oc): 8 -			START DATE		3/17			
WELL:	MW-1	9		ETER (INCHES				FIELD CREW:		tapleton			
EQUIPMENT	Γ: Peristaltic μ	pump with o	ne-time-use	0.25" x 0.170	" Teflon-lined	l high-density	polyethylene	tubing		,			
METER MAK	(E & MODEL:	Horiba U-52	with flow-ti	rough cell			METER CALI	BRATION DAT	TE: 8/2	3/17			
DTW BEFOR	E PURGING (ft BTOC):	14.25				DEPTH TO B	ОТТОМ (ft ВТ	roc): 17.	00′	Soft / Hard		
				0.041 gai/ft			er/ft or 0.16	3 gal/ft 1	gallon = 3.785				
WATER COL	UMN (FT):	2.75	<i>'</i>	WELL VOLUM	ME (LITERS):	1.70	L		3 WELL VOLU	IMES (LITERS): 5	. 10 L		
				FIELD PA	RAMETERS C	OLLECTED D	URING LOW-	FLOW PURGI	NG				
TIME 4 minute	WATER LEVEL	FLOW RATE	TOTAL VOLUME	TEMP.	рН	ORP	CONDUC-	DO	LaMOTTE TURBIDITY	REMA	7BK2		
readings	(ft BTOC)	(ml/min)	(Liters)	(°C)	(std. units)	(mV)	(mS/cm)	(mg/L)	(NTU)	(color, odor, shee			
Stability:	< 0.3 ft	300 – 500	NA	NA	± 0.1	± 10 mV	±3%	± 10 %	± 10 %				
1508	14.70	150		23.10	7.26	-191	1.23	0.00	2.22		ear		
1512	14.95	250	0.4	21.37	7.09	-191	1,26	0.00	2.03	Clear,	no odor		
1516	15.25	250	0.6	20.51	7.07	-196	1.27	0.00	1.81	(1	1)		
1520	15.55	250	0.8	20.16	7.05	-Z01	1.29	0.00	1.80	10)(
1524	15.60	250	1,0	20.00	7.04	-205	1,29	0.00	1.61	i (11		
1528	15.91	250	1.3	19.72	7.03	-707	1, 30	0,00	1.59	41	"		
1535	Colle	c+ <	sampl	2 .									
,		,	1										
	Pus	eel dr	n ct	ter N	21049	+ 1	ambe	r, le	<i>†</i>				
	, ,	اه حج ک	for	1 hou		,		, (0	,				
1635		cted	remai		Valum	e (3	amber	1 48	Solved	metals)			
1000	Conc	C) OC	1 Citigi)				, - ,					
										Simple test			
										Final state.			
NOTES:	- V	(1 × z)	(1		h .				.				
	*			ne 1	eading	5 10	Well	Neac	sspace,	. let			
		air	UU +.		11 6	15.5	-1 1	0					
	P	cmp	intela	dep	th (a	15.5	5 65	2					
				FIELD AN	IALYSES AND	LABORATOR	RY SAMPLING	INFORMATI	ON				
PRIMARY SA	AMPLE ID:	MW19	- 082	317			PRIMARY SA	MPLE DATE 8	& TIME:	8/23/17	1535		
PRIMARY SA	AMPLE PARA			Cs, TAL	metals, f	ANA, SVC	OCs, <u>P</u> AH.	5					
QA/QC SAM	IPLE ID:	NIA					QA/QC SAM	PLE DATE & T	TIME:	NA			
	IPLE PARAMI					IA, SVOC		M	IA	1 11	7		
FERROUS IR	ON FIELD KIT	CONCENTR	ATION (mg/l): N/	A		SAMPLER'S	SIGNATURE:	Ch	ely Atoft			

	21	11 :	Forme	Former Hampshire Chemical Corp., 228 E. Main St., Waterloo, NY, Project #691615.01.SA LOW-FLOW GROUNDWATER SAMPLING LOG, 2017 ANNUAL LTM EVENT									
			SCREEN INT		oc): 72"		SAIVII EIIV						
WELL:	Mw -1	8	WELL DIAM	ETER (INCHES	i): 44.7	-17 1	<u> </u>	FIELD CREW	7	SAZSBURE			
EQUIPMEN	T: Peristaltic	pump with o			" Teflon-linea	•		tubing		37 (23)) 5 2			
METER MAI	KE & MODEL	: Horiba U-5	with flow-tl	rough cell			METER CALI	BRATION DAT	re: Ø/2	24117			
DTW BEFOR	RE PURGING	(ft BTOC):	12,2	0			DEPTH TO B	OTTOM (ft B		35Soft / √ Hard			
-	EFERENCE:		*	0.041 gal/ft	2-inch w	ell ≈ 0.617 lit			gallon = 3.78				
WATER COL	.UMN (FT):	1.15		WELL VOLUM	ME (LITERS):				3 WELL VOLU	JMES (LITERS):			
				FIELD PA	RAMETERS C	OLLECTED D	URING LOW-	FLOW PURGI	NG				
TIME	WATER	FLOW	TOTAL	темр.	рH	ORP	CONDUC-	DO	LaMOTTE				
4 minute readings	(ft BTOC)	RATE (ml/min)	VOLUME (Liters)	(°C)	(std. units)	(mV)	(mS/cm)	(mg/L)	(NTU)	REMARKS (color, odor, sheen, sediment, etc.)			
Stability:	< 0.3 ft	300 – 500	NA NA	NA	± 0.1	± 10 mV	± 3 %	± 10 %	± 10 %	(color, odor, sheeri, searment, etc.,			
1114	12.60	200	_	17.00	702	-237	6.39	5,27		Initial state. Brow 14			
1118	13,12	200	0,5	16.26	6.87		130	0.00	187	Initial state. Brow 17 LT Browk			
1122	13.30	200	1.25	15,93	4.83	-235	1.37	0.00	80,4				
1124		24	11.07	13112	<u> </u>		,,,,,		0011				
1101		7											
	<u> </u>												
<u> </u>													
<u> </u>													
										Final state.			
NOTES:													
									· ·				
					IALYSES AND	LABORATOR	Y SAMPLING	INFORMATI					
PRIMARY SA	AMPLE ID:	MWIS	2-083	2417				MPLE DATE	& TIME:	8124117 1150			
PRIMARY SAMPLE PARAMETERS (check): VOCs, VTAL metals, MNA, SVOCs, PAHs													
QA/QC SAM								IPLE DATE & 1	ΓΙΜΕ:				
QA/QC SAMPLE PARAMETERS (check): VOCs, TAL metals, MNA, SVOCs, PAHs FERROUS IRON FIELD KIT CONCENTRATION (mg/L): SAMPLER'S SIGNATURE:													
FERROUS IR	ON FIELD KI	T CONCENTR	ATION (mg/L	.):			SAMPLER'S	SIGNATURE:					

LOW-FLOW GROUNDWATER SAMPLING LOG, 2017 ANNUAL LTM EVENT													
			SCREEN INT	ERVAL (ft BT				START DATE:		24/17			
WELL:	Mw-	17	WELL DIAM	ETER (INCHE	5): 7_			FIELD CREW:		5197 584 6			
EQUIPMEN	T: Peristaltic	pump with o			" Teflon-lined	l high-density	polyethylene	tubing	- 1	2110 700 6			
METER MA	KE & MODEL	: Horiba U-52	with flow-tl	hrough cell			METER CALI	BRATION DAT	E: 812	4/17			
DTW BEFOR	RE PURGING	(ft BTOC):	22.1	7)			DEPTH TO B	OTTOM (ft BT	oc): 25	Soft /Hard			
	REFERENCE:			0.041 gal/ft	2-inch w	ell ≈ 0.617 lit			gallon = 3.785	-			
WATER COL	LUMN (FT):	3.40)	WELL VOLUI	ME (LITERS):				3 WELL VOLU	JMES (LITERS):			
				FIELD PA	RAMETERS C	OLLECTED DI	JRING LOW-	FLOW PURGI	NG				
TIME	WATER	FLOW	TOTAL	TEMP.	рН	ORP	CONDUC-	DO	LaMOTTE	DEMARKS			
4 minute readings	(ft BTOC)	RATE (ml/min)	(Liters)	OLUME (°C) (std. units) (mV) TIVITY (mg/L) TURBIDITY REMARKS									
Stability:	< 0.3 ft	300 – 500	NA	NA	± 0.1	± 10 mV	±3%	± 10 %	± 10 %				
958	22.3	240		14.89	6.49	-15Le	1.31	0.00	over	Initial state. BROWI +			
1902	22.4	250	\	14.53	662	-177	1.30	0,00	15.1	CLEAR			
1006	22.5	250	2	14.36	6.66	-182	1.30	0.00	12,4	CLGAR			
1010	22,55	250	3	14,22	6,69	-185	1,29	0-00	10,4	",			
1014	THE WILL WILL WILL WILL WILL WILL WILL WIL												
1018	12.59		5	14,09	6.74		1.29	0,00	8.90	LT BROWH			
	1		-	7 170 1	<i>U</i> , , ,	, , ,	1, - (<u> </u>	D T DOOR			
1022 52171925													
							;						
					ļ								
										Final state.			
NOTES:													
<u> </u>													
<u> </u>													
				FIFLD AN	IALYSES AND	LABORATOR	Y SAMPLING	INFORMATION	ON				
FIELD ANALYSES AND LABORATORY SAMPLING INFORMATION PRIMARY SAMPLE ID: 1117 - 1127 PRIMARY SAMPLE DATE & TIME: 8/24/17 1527													
PRIMARY SAMPLE ID: MWIT - 082417 PRIMARY SAMPLE DATE & TIME: 8/24/17 1022 PRIMARY SAMPLE PARAMETERS (check):													
QA/QC SAMPLE ID: DUP-GW-082417 QA/QC SAMPLE DATE & TIME: 8/24/17 0900 QA/QC SAMPLE PARAMETERS (check):/VOCs, _/TAL metals,MNA,SVOCs, _/PAHS													
QA/QC SAN	ИРLE PARAM	ETERS (check	(): \/ voc	s, TAL m	etals, Mi	IA, SVOC	s,PAHs		0 1	.,			
FERROUS IRON FIELD KIT CONCENTRATION (mg/L): SAMPLER'S SIGNATURE:													

C	Former Hampshire Chemical Corp., 228 E. Main St., Waterloo, NY, Project #691615.01.SA LOW-FLOW GROUNDWATER SAMPLING LOG, 2017 ANNUAL LTM EVENT											
			SCREEN INT	ERVAL (ft BTC		-17		START DATE		4117		
WELL: ~	TW-	01	WELL DIAM	ETER (INCHES		' /		FIELD CREW		RESBURG.		
			ne-time-use	0.25" x 0.170		l high-density	polyethylene	tubing	,	7.0		
METER MAI	KE & MODEL:	: Horiba U-5	with flow-ti	hrough cell			METER CALI	BRATION DA	TE: 8/2	4117		
DTW BEFOR	E PURGING	(ft BTOC):	17.4	0			DEPTH TO B	OTTOM (ft B		3 . 5 Soft / Hard		
R	EFERENCE:	1" well ≈ 0		0.041 gal/ft	2-inch w	ell ≈ 0.617 li	ter/ft or 0.16	3 gal/ft 1	gallon = 3.785	5 liters 1 liter = 0.264 gallons		
WATER COL	.UMN (FT):			WELL VOLU	ME (LITERS):				3 WELL VOLU	JMES (LITERS):		
		_		FIELD PA	RAMETERS C	OLLECTED D	URING LOW-	FLOW PURGI	NG			
TIME	WATER	FLOW	TOTAL	ТЕМР.	рН	ORP	CONDUC-	DO	LaMOTTE	DEALABAG		
4 minute readings	(ft BTOC)	RATE (ml/min)	VOLUME (Liters)	(°C)	(std. units)	(mV)	(mS/cm)	(mg/L)	TURBIDITY (NTU)	REMARKS (color, odor, sheen, sediment, etc.)		
Stability:	< 0.3 ft	300 – 500	NA NA	NA	± 0.1	± 10 mV	± 3 %	± 10 %	± 10 %			
1336	17.75	300	_	21.67	7.79	-73	0.758	0.07	620	Initial state. LT Blown		
1340	17.80	300	1	21.34	7,44	-95	0.747	6.00	43.8			
1344	17.82	300	2 70,73 7.00 -95 0.764 0.00 23.7 CLEAR									
1348	17.83	300	3	20,60	6.92	-96	0.770	0.00	20,4	· · · · · · · · · · · · · · · · · · ·		
1352 17.84 300 4 20,20 4.88 -98 0.778 0.00 18.24												
1400	17.86	300	le	19.37	4.78	-108	0.816	0.00	14.02			
1404												
1408	17.86 300 8 19.05 6.75 -105 0.824 0.00 10.40											
1412												
- "												
		l				- 3						
<u> </u>												
<u> </u>												
		<u>. </u>										
						<u> </u>						
<u> </u>												
										F:1		
										Final state.		
NOTES:	OCCAS	107419L	OR	P SP	KE I	0 -1	10 TI	Krl A	LETURA	15 to ~-105		

				FIELD AN	IALYSES AND	LABORATO	RY SAMPLING	INFORMATI	ION			
PRIMARY SA	AMPLE ID:	TWOI	- 082	417			PRIMARY SA	MPLE DATE	& TIME:	0/24117 1412		
PRIMARY S					metals, l	MNA, SV	OCs,PAH	5		· · · · · · · · · · · · · · · · · · ·		
QA/QC SAMPLE ID: QA/QC SAMPLE DATE & TIME:												
QA/QC SAN	IPLE PARAM	ETERS (chec	k): <i>VOC</i>	s, TAL m	etals, MI	va, svoc	Cs, PAHs					
FERROUS IR	RON FIELD KI	T CONCENT	ATION (mg/	L): NA			SAMPLER'S	SIGNATURE:	150	lenfen		

C	112 1	11 :	Forme	•					rloo, NY, Pi 17 ANNUA		L615.01.SA NT
			SCREEN INT	ERVAL (ft BTC				START DATE		4117	
WELL:	10-1	le-1	WELL DIAM	ETER (INCHES				FIELD CREW	A . s	taple to	$\overline{}$
EQUIPMEN	Γ: Peristaltic	pump with o	ne-time-use	0.25" x 0.170	" Teflon-lined	d high-density	polyethylene	tubing	•		
METER MAI	KE & MODEL	: Horiba U-52	with flow-ti	hrough cell			METER CALI	BRATION DAT	re: 8/2	24/17	
DTW BEFOR	E PURGING	(ft BTOC):	25.8	3 '		·	DEPTH TO B	OTTOM (ft B1	гос): 36	.201	Soft / 💢 Hard
	EFERENCE:	1" well ≈ 0	.16 liter/ft o	0.041 gal/ft		ell≈ 0.617 li	ter/ft or 0.16	3 gal/ft 1	gallon = 3.78		iter = 0.264 gallons
WATER COL	UMN (FT):			WELL VOLUI						JMES (LITERS)):
	T			FIELD PA	RAMETERS C	OLLECTED D	1	FLOW PURGI		I	
TIME 4 minute	WATER LEVEL	FLOW RATE	TOTAL VOLUME	TEMP.	pН	ORP	CONDUC-	DO	LaMOTTE TURBIDITY		REMARKS
readings	(ft BTOC)	(ml/min)	(Liters)	(°C)	(std. units)	(mV)	(mS/cm)	(mg/L)	(NTU)	(color, o	dor, sheen, sediment, etc.)
Stability:	< 0.3 ft	300 – 500	NA	NA NA	± 0.1	± 10 mV	±3%	± 10 %	± 10 %	Initial state.	Clear a a a a
1228	26.05	300		17.59	3.40	18	1.16	3.38		ii	Clear, none
1232	26.05		0.4	16.62	4.15	-31	1.16	1.62	0.39		
1236	26.05	300	0.7	16.45	4.96	-77	1.15	1.25	0.10		
1244	26.05	300	1.4	16.42	5.82	-124	1.14	1,00	0.31	(1	11
1248	26,05	300	1.7	16.29	6.01	-133	1.13	0.94	0.69	11	1.7
1252	25.01	300	2.0	16.33	6.16	-142	i.13	0.86	0,13	Ħ	ři.
1256	25.0	300	2.3	16.32	8.68	-139	1.12	0.89	0.26	И	11
1300	25.00	300	2.6	16.34	8.24	- 242	1.12	0.79	0.33	(ı	17
1304	25.00	300	2.8	16.38	7.73	-219	1.11	0.78	0.22	11	n
1308	25.00	300	3.1	16.36	7.38	-203	1.11	0.77	0.60	11	11
1312	25.00	300	3.5	16.42	7.23	-196	1.10	0.77	0.49	11	н
1316	25.00	300	3.7	16.41	7.09	-190	1.10	0.74	6.09	Ϊt	11
1320	25.01	300	3.9	16.46	7.05	-190	1.10	0.70	0.31	l i	ti
1324	25.0	300	4.3	16.51	7,09	-193	1,10	0.68	0.33	a	βţ
1330	Col	lect s	ampl	e							
			,								
										Final state.	
NOTES:											
			_	EIELD AA	IALVEEC AND	LABORATO	DV CARADI INC	S INFORMATI	ON		
		0		82417		LABORATO				1 1	7 1230

QA/QC SAMPLE DATE & TIME:

SAMPLER'S SIGNATURE:

SVOCs, ____ PAHs

PRIMARY SAMPLE PARAMETERS (check): 🔟 VOCs, ___ TAL metals, ___ MNA, ___ SVOCs, ___ PAHs

TAL metals, _

MNA,_

QA/QC SAMPLE ID:

QA/QC SAMPLE PARAMETERS (check): ____ VOCs, __

FERROUS IRON FIELD KIT CONCENTRATION (mg/L):

	Former Hampshire Chemical Corp., 228 E. Main St., Waterloo, NY, Project #691615.01.SA LOW-FLOW GROUNDWATER SAMPLING LOG, 2017 ANNUAL LTM EVENT										
WELL:	riw -	71.	SCREEN INT	ERVAL (ft BT	oc): 6 -	16		START DATE	: 8/2	4 17	
	1100 -	20	WELL DIAM	ETER (INCHE	s): Z "			FIELD CREW	: A. S	tapleton	
EQUIPMEN	T: Peristaltic	pump with o	ne-time-use	0.25" x 0.170	" Teflon-lined	d high-densit)	y polyethylen	e tubing			
METER MA	KE & MODEL	: Horiba U-52	with flow-t	hrough cell			METER CALI	BRATION DA	TE: 8/	24/17	
DTW BEFOR	RE PURGING	(ft BTOC):	11.80				DEPTH TO B	OTTOM (ft B	TOC): 17.	75	Soft / 🔏 Hard
R	REFERENCE:			r 0.041 gal/ft			ter/ft or 0.16	3 gal/ft 1	gallon = 3.78	5 liters 1 lite	er = 0.264 gallons
WATER COL	LUMN (FT):	5.95	<u> </u>	WELL VOLUI	ME (LITERS):	3.6	7 L		3 WELL VOLU	JMES (LITERS):	11.01 L
				FIELD PA	RAMETERS C	OLLECTED D	URING LOW-	FLOW PURG	ING		
TIME 4 minute	WATER LEVEL	FLOW RATE	TOTAL VOLUME	TEMP.	pН	ORP	CONDUC-	DO	LaMOTTE		REMARKS
readings	(ft BTOC)	(ml/min)	(Liters)	(°C)	(std. units)	(mV)	(mS/cm)	(mg/L)	(NTU)	(color, odo	r, sheen, sediment, etc.)
Stability:	< 0.3 ft	300 – 500	NA	ÑΑ	± 0.1	± 10 mV	±3%	± 10 %	± 10 %		
1000	11.80	350		21.55	4.44	33	0.903	2.16	0.61	Initial state.	(lear, none
1004	11.80	250	0.5	21.65	4.68	i 2	0.861	1.26	0.15	(lear	none
1008	11.80	250	0.9	21.65	5.04	-8	0.853	1.18	0.08	71	11
1012	11.80	250	1.1	21.68	5.45	-30	0.849	1,00	0.25	U	t/
1016	11.80	250	1.4	21.60	5.63	-42	0.849	0.84	0.11	и	11
1020	11.81	250	1.7	21.62	5.76	-52	0.847	0.84	0.21	tí	£ #
1024	11.81	250	2.0	21.64	5.91	- 59	0.846	0.86	0.16	(1	t f
1030	11,81	250	2.4	21.64	6.52	- 92	0.845		6.06	11	"
10 34	11.82	250	2.6	21,62	6.38	-87	0.846	0.81	0.12	k	"
i038	11.80	250	2.8	21.61	6.Z7	-83	0.845		0.01	2.3	Ţ,
1042	11.80	250	3.1	Z1.61	6. z 6	-84	0.845	0.71	0.12	U	11
1046	11.80	250	3.3	21.65	6.31	- 68	0.845	_	0.02	fi	11
1055	Coile	c+ <	ample								
	20110	<u> </u>	avapis								
											- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-
				_							
								l			
								ļ			
										rt - l - l - l	
										Final state.	
NOTES:											
	 .							.			
				FIELD AN	ALYSES AND	LARORATOR	V SAMDI ING	INFORMATI	ON		
PRIMARY SA	AMPLE ID:	May 71-	-042	_	ALI JEJ MIND	DIDORATOR				6/24/17	1055
	PRIMARY SAMPLE ID: MW 26 - 082417 PRIMARY SAMPLE DATE & TIME: 6/24/17 1055 PRIMARY SAMPLE PARAMETERS (check): VOCs, \(\simegation TAL metals, \) MNA, \(\simegation SVOCs, \simegation PAHs\)										
QA/QC SAMPLE ID: MW26 - 082417 - MS / MSD QA/QC SAMPLE DATE & TIME: 8/24/17 1055											
QA/QC SAMPLE PARAMETERS (check): VOCs, TAL metals, MNA, SVOCs, YPAHs											
FERROUS IRON FIELD KIT CONCENTRATION (mg/L): N/A SAMPLER'S SIGNATURE: Chody Starting											
=				-							

Former Hampshire Chemical Corp., 228 E. Main St., Waterloo, NY, Project #691615.01.SA Ch2m-LOW-FLOW GROUNDWATER SAMPLING LOG, 2017 ANNUAL LTM EVENT MW-05 I SCREEN INTERVAL (ft BTOC): START DATE: 25-30 8/24/17 211 WELL DIAMETER (INCHES): FIELD CREW: 5 tapleton EQUIPMENT: Peristaltic pump with one-time-use 0.25" x 0.170" Teflon-lined high-density polyethylene tubing METER MAKE & MODEL: Horiba U-52 with flow-through cell METER CALIBRATION DATE: 8/24/17 DTW BEFORE PURGING (ft BTOC): DEPTH TO BOTTOM (ft BTOC): 11.59 29.52 Soft / V Hard 1" well ≈ 0.16 liter/ft or 0.041 gal/ft 2-inch well ≈ 0.617 liter/ft or 0.163 gal/ft 1 gallon = 3.785 liters 1 liter = 0.264 gallons 17.93 11.06 L WATER COLUMN (FT): WELL VOLUME (LITERS): 3 WELL VOLUMES (LITERS): 33.19 FIELD PARAMETERS COLLECTED DURING LOW-FLOW PURGING WATER FLOW TOTAL CONDUC-LaMOTTE TIME TEMP. ORP DO Ηα VOLUME **TURBIDITY** 4 minute LEVEL RATE TIVITY (°C) (std. units) (mV) (mg/L) (ft BTOC) (ml/min) (Liters) (mS/cm) (NTU) (color, odor, sheen, sediment, etc.) readings ± 0.1 ± 10 mV ±3% ± 10 % ± 10 % Stability: < 0.3 ft 300 - 500 NA NA Initial state. 0.762 1.82 1442 16.62 6.91 78 Clear, none 11.85 300 12,39 14.77 1446 300 0.5 7.47 43 1.05 5.88 2.02 11.85 11.85 300 0.71 11 1/ 1450 0.8 14.38 7.79 1.05 2.23 -46 11 11 300 0.52 1454 11.85 1.1 14.28 7.99 1.66 -88 0.974 1.7 /ı 1.0 1500 11.85 300 13.11 7.97 -112 0.945 1.24 0.17 11 11.85 0.33 1504 300 2.0 13.02 7.86 -111 0.932 1.16 11 " 11 11.85 300 2.4 -107 0.11 1508 13.01 7.70 0.926 1.08 11.85 0.919 0.06 1.1 1.3 1512 300 2.7 13.01 6.54 - 51 1.16 -57 0.02 11 1.7 300 6.50 1516 3.0 1.01 11.85 13.00 0.917 17 -82 0.13 11 1520 3.3 7.02 11.85 300 12.48 0.915 0.93 1) I1-98 11.85 3.6 12.97 7.35 0.913 0.89 0.02 1524 300 11 11 4.0 1528 300 12.96 11.85 7.53 -107 0.911 0.85 0.06 4.4 0.84 } L H1532 11.85 300 12.95 7.56 -109 0.9 12 0.05

NOTES: DUMP INTER 27.5'	
, ,	
FIELD ANALYSES AND	LABORATORY SAMPLING INFORMATION
PRIMARY SAMPLE ID: MWO5I - 082417	PRIMARY SAMPLE DATE & TIME: 8 24 17 1540
PRIMARY SAMPLE PARAMETERS (check):VOCs, TAL metals, M	INA, _\SVOCs, _\PAHs
QA/QC SAMPLE ID:	QA/QC SAMPLE DATE & TIME:
QA/QC SAMPLE PARAMETERS (check): VOCs, TAL metals, MN.	A, SVOCs, PAHs N (A
FERROUS IRON FIELD KIT CONCENTRATION (mg/L):	SAMPLER'S SIGNATURE: Clabur Flagslettes
	, ,

1536

1540

300

11.85

Collec

4.6

Sample

12.43

7.58

-111

, 1

0.07

0.910 0.81

H

Final state.

Former Hampshire Chemical Corp., 228 E. Main St., Waterloo, NY, Project #691615.01.SA LOW-FLOW GROUNDWATER SAMPLING LOG, 2017 ANNUAL LTM EVENT														
NA/E/A	1		SCREEN INT	ERVAL (ft BTO	oc): 6	-16		START DATE	8/25	5/17]		
METT: L	1W-Z	_0	WELL DIAM	ETER (INCHES				FIELD CREW	- 1	tepleton		1		
EQUIPMENT	Γ: Peristaltic	pump with o	ne-time-use	0.25" x 0.170	" Teflon-lined	d high-density	polyethylene	tubing						
METER MAI	KE & MODEL:	: Horiba U-5	with flow-tl	hrough cell			METER CALI	BRATION DA	re: 8/	25/17		1		
DTW BEFOR	E PURGING ((ft BTOC):	8.69	1			DEPTH TO B	OTTOM (ft B	roc): /	5.55'	Soft /X_ Hard			
	EFERENCE:		.16 liter/ft o	· 0.041 gal/ft	2-inch w	ell ≈ 0.617 lit		3 gal/ft 1	gallon = 3.78		264 gallons]		
WATER COL	.UMN (FT): 6	. 86		WELL VOLUI		4,23				JMES (LITERS): 12	.70 L	1		
		Υ		FIELD PA	RAMETERS (COLLECTED D		FLOW PURGI				1		
TIME 4 minute	WATER LEVEL	FLOW RATE	TOTAL VOLUME	TEMP.	pН	ORP	CONDUC-	DO	LaMOTTE TURBIDITY	REM	ARKS			
readings	(ft BTOC)	(ml/min)	(Liters)	(Liters) (*C) (std. units) (mV) (mS/cm) (mg/L) (NTU) (color, odor, sheen, sediment, etc.)										
Stability:	< 0.3 ft	300 - 500	NA NA +0.1 +10.mV +3.96 +10.96 +10.96											
1259	9.20	250		16.72	7.20	-142	0.853	2.60	20.8	Initial state. Clear	, some paticl	05, no al		
1303	9.50	250	0.4	14.83	7.01	-165	0.841	0.00	15.6	very slight be	own fint	ا ا		
1307	9.89	250	0.6	15.22	6.97	-201	0.847	0.00	13.2	very sight bro	sum tiht, some p	thices -		
1311	10.17	250	1.0	15.36	6.97	-229	0.878	0.00	4.95	Clear, no	own that, some p] %		
1315	10.45	250	1.2	15.08	6.98	-241	0.886	0.00	4.84	11	j e	1		
1319	10.75	250	1.5	15.01	6.99	-243	0.884	0.00	4.41	11	j. i	1		
1323	11.10	250	1.7	14.81	6.99	- 220	0.848	0.00	3.73	"	1.1	1		
1327	11.42	250	2.0	14.705	6.98	-188	0.823		5.14	/-	/ 1			
1331	11.77	250	2.3	14.68	6.96	-165	0.814	0.00	4.62	E i	1.1	1		
1335	12.10	250	2.5	14.33	6.97	-148	0.789	0,00		(1	11	1		
1339	12.32	250	2.7	14.21	6.98	-137	0.770		11.10	11	()	1		
1343	12.65	250	3.0	14.13	7.00		0.748	0.00	9.89	(1	/ /	1		
1347	13.00	250	3.3	14.04		1	0.748	0.00	6.57	j L	11	1		
	-	250	3.5		7.03	-126	i i	0.00		11	11	1		
1351	13.20			14.16	7.01	-134	0.756		7.49		·	1		
		t about	TV G	WEIT OF	11 , 661	rechan.	for 2	o min	brigg Le	5 ampling		-		
1410	Colle	c+	Sami									1		
	Turn	ed p	ump c	FF 95	ain its	let	rechan	e (m	red pr	mp down	21/21)	1		
			,						·	,]		
												1		
										Final state.		1		
NOTES:	<u> </u>		PUMP	Intoke	13.5	1 695						1		
			1	20114114								1		
]		
												1		
												4		
		Λ			NALYSES AND	LABORATO				0/2=/1-	141.6	-		
PRIMARY SAMPLE ID: MW20 - 087517 PRIMARY SAMPLE DATE & TIME: 8/25/17 1410 PRIMARY SAMPLE PARAMETERS (check): VOCs, TAL metals, MNA, SVOCs, PAHs												-		
QA/QC SAN		AIVIETERS (Ch		JCS, IAL	metals,	IVINA,		PLE DATE &	TIME			1		
<u> </u>		ETERS (chec	k): <i>VOC</i>	s, TAL m	etals. M	NA, SVOC			1A			1		
			ATION (mg/l				SAMPLER'S			ebers of	melin	1		

C	2 /2/	11 :	Forme	-					rloo, NY, Pi 17 ANNUA	-	
	. /		SCREEN INT	ERVAL (ft BT		-14		START DATE	- 1		
WELL:	MM-	10	WELL DIAM	ETER (INCHE	-			FIELD CREW		tuple tor)
EQUIPMEN [°]	T: Peristaltic	pump with o	ne-time-use	0.25" x 0.170	" Teflon-lined	d high-density	polyethylene	tubing			
METER MAI	KE & MODEL:	: Horiba U-52	with flow-ti	hrough cell			METER CALI	BRATION DA	TE: 8/2	25 17	
DTW BEFOR	RE PURGING ((ft BTOC):	6.68				DEPTH TO B	OTTOM (ft B	roc): 12.	60'	Soft / _X Hard
R	REFERENCE:						ter/ft or 0.16	3 gal/ft 1	gallon = 3.78		iter = 0.264 gallons
WATER COL	.UMN (FT):	5.92	,	WELL VOLUI		3.65				JMES (LITERS)	: 11.00 L
	T			FIELD PA	RAMETERS C	OLLECTED D	URING LOW-	FLOW PURGI		ı	
TIME 4 minute readings	WATER LEVEL (ft BTOC)	FLOW RATE (ml/min)	TOTAL VOLUME (Liters)	TEMP. (°C)	pH (std. units)	ORP (mV)	CONDUC- TIVITY (mS/cm)	DO (mg/L)	LaMOTTE TURBIDITY (NTU)	(color, oc	REMARKS dor, sheen, sediment, etc.)
Stability:	< 0.3 ft	300 – 500	NA	NA	± 0.1	± 10 mV	±3%	± 10 %	± 10 %		
933	7.05	300		16.33	6.20	-155	2.00	0.00	6.42	Initial state.	Clear, Sight od
937	7.48	250	0.5	15.73	6.70	-156	1.36	0.00	4.76	11	1)
941	7.78	250	0.7	16.08	6.76	- 78	1.01	2,45	3,90	11	11
945	8.05	250	1.0	16.31	6.81	- 53	0.982	4.23	3.22	it	1.7
949	8.30	250	1.3	15.98	6.86	- 49	0.996	4.09	2.30] [17
953	8.69	250	1.6	15.90	6.91	- 32	1.00	4.69	2.91	- 11	13
957	8.97	250	1.9	15.91	6.94	-30	1.00	4.32	2.94	11	1.1
1001	9.20	250	2.1	15.87	6.94	-25	i.00	4.24	4.44	11	17
1005	9.60	250	2.4	15.71	6.94	- 20	0.986	3.67	5.26	f _t	11
	9,98	250	2.6	15,59	6.93	-15	0.977			11	11
1013	10.25	250	2.9	15.46	6.92	-17	0.977	4.02	3.56	- h	11
1017				15.35	6.91	-34	1.01	3.90			
7011				10.00	9.11	- ,	1.01	3.1-			
1020	Costlo	et So	10								
	COLLE	CT _>u	imple								
	 										
								<u> </u>		des eleli	
										Final state.	
NOTES:		P	ump Ir	itate o	depth	12 1 6	<u> </u>				
		-	'		1						
					000ts						
				FIELD AN	IALYSES AND	LABORATO	RY SAMPLING	INFORMATI	ON		
PRIMARY SA		MWIO	-0825	17				MPLE DATE	& TIME:	08/25/	17 1020
PRIMARY SA	AMPLE PARA	METERS (che	eck): <u>√</u> VC	OCs, TAL	metals, l	MNA, VSV	OCs, Д РАН	's		1	
DA/OC SAM							01/00011	PLE DATE &	F14.4F		

_ MNA, ___ SVOCs, ___ PAHs

NA

SAMPLER'S SIGNATURE:

(AS

QA/QC SAMPLE PARAMETERS (check): ____ *VOCs,*

FERROUS IRON FIELD KIT CONCENTRATION (mg/L):

TAL metals, _

Former Hampshire Chemical Corp., 228 E. Main St., Waterloo, NY, Project #691615.01.SA LOW-FLOW GROUNDWATER SAMPLING LOG, 2017 ANNUAL LTM EVENT													
			SCREEN INTI	ERVAL (ft BTC			START DATE: 8/25/17						
WELL:	TW-0	ce	WELL DIAM	TER (INCHES	i): Z			FIELD CREW:		ALSBYC.			
EQUIPMENT	: Peristaltic p	oump with o	ne-time-use (0.25" x 0.170	" Teflon-lined	high-density	polyethylene	tubing					
METER MAK	E & MODEL:	Horiba U-52	with flow-th	rough cell			METER CALIE	BRATION DAT	E: 8/2	5/17			
DTW BEFOR	E PURGING (ft BTOC):	5	4.5	·				OC):				
				0.041 gal/ft		ell ≈ 0.617 li	ter/ft or 0.163	3 gal/ft 1	gallon = 3.785				
WATER COL	UMN (FT):	4.5		WELL VOLUM					3 WELL VOLU	MES (LITERS):			
				FIELD PA	RAMETERS C	OLLECTED D	URING LOW-		LaMOTTE				
TIME 4 minute	WATER LEVEL	FLOW RATE	TOTAL VOLUME	TEMP.	pH	ORP	CONDUC-	DOX (2001)	TURBIDITY	REMARKS			
readings	(ft BTOC)	(ml/min)	(Liters)	(Liters) (*C) (std. units) (mV) (mS/cm) (mg/L) (NTU) (color, odor, sheen, sedimer									
Stability:	< 0.3 ft	300 – 500	NA	NA .	± 0.1	± 10 mV	±3%	± 10 %	±10%	Initial state. / == R O			
130ce	4.96	350	_	22.61	6.97	77	0.964	8.49	23.9	Initial state. LT BROWN			
1310	5,25	300	1	1 19.81 7.18 74 1.02 7.03 12.9 CUSTR									
1314	5.41	250	50 1.5 18.18 7.33 71 1.05 4.70 4.60 CLEAR										
1318	5,72	250	7,25	18,12	7.32	74	1.05	7.71	5,80				
1322	5.90	250	展了	18.07	7.29	78	1.06	4.77	8124				
1326 6.15 200 3.5 18,25 7.33 78 1.06 4.76 6.89													
1330													
1334													
133\$		200											
1342	6,89	200											
1346	7.05		65		1 7 7	80	1.02	1.80	4.82				
	7.21	200		17.83	1,00	80	11.00	(180	1,00				
1354		SAMP	12				 	-					
<u> </u>			-						 				
			-				 	-					
		ļ					-	-					
		L											
										Final state.			
NOTES:													
				CIELD A	NAIVEE AND	LABORATO	RY SAMPLIN	G INFORMAT	ION				
PRIMARYS	AMPLE ID:	W1. A1	2-00		MALT JES MINL	- CABORATO				125117 1354			
PRIMARY SAMPLE ID: /wole-082417 PRIMARY SAMPLE DATE & TIME: 8/2511/ 1359 PRIMARY SAMPLE PARAMETERS (check): wole, wole, man, svocs, pahs													
QA/QC SAMPLE ID: 17 VOLE - 382517-HS/HSD QA/QC SAMPLE DATE & TIME: 8/25/17 1354													
QA/QC SAMPLE PARAMETERS (check):													
			RATION (mg/	_				SIGNATURE:					

Former Hampshire Chemical Corp., 228 E. Main St., Waterloo, NY, Project #691615.01.SA LOW-FLOW GROUNDWATER SAMPLING LOG, 2017 ANNUAL LTM EVENT										oject #691615.01.SA LTM EVENT		
	A .		SCREEN INTE	RVAL (ft BTO	(c): 3 -	13	START DATE: 8/25/17					
WELL:	1W-	0 (WELL DIAME	TER (INCHES): N		FIELD CREW: T SAC SBACC					
EQUIPMENT	: Peristaltic p	oump with o	ne-time-use ().25" x 0.170'	' Teflon-lined		polyethylene					
			with flow-th				METER CALIB	RATION DAT		25/17		
DTW BEFOR	E PURGING (ft BTOC):	5.10				DEPTH TO BO					
R	EFERENCE:	1" well ≈ 0		0.041 gal/ft		ell ≈ 0.617 lit	er/ft or 0.163	0-1	gallon = 3.785	liters 1 liter = 0.264 gallons MES (LITERS):		
WATER COL	UMN (FT):			WELL VOLUN						INIES (EITERS).		
				FIELD PAI	RAMETERS C	OLLECTED D	URING LOW-F	LOW PURGI	LaMOTTE			
TIME	WATER LEVEL	FLOW RATE	TOTAL VOLUME	ТЕМР.	рН	ORP	CONDUC-	DO (==/1)	TURBIDITY	REMARKS		
4 minute readings	(ft BTOC)	(ml/min)	(Liters)	(°C)	(std. units)	(mV)	(mS/cm)	(mg/L)	(NTU)	(color, odor, sheen, sediment, etc.)		
Stability:	< 0.3 ft	300 – 500	NA	NA .	± 0.1	± 10 mV	± 3 %	± 10 %	± 10 %	Initial state.		
934	5.40	300		18.73	7.22	-22	3.41	8,48	_	Initial state. LT Brow 14		
938	10.01	350	1.5	13.05	6.78	23	2.31	(0.80	39.7	CiEAR		
942	6,20	300	2,5	17.64	6.79	38	161	1.24	32.4	LLEAR		
1 0 0 77 0												
950 6.00 300 4.5 18.68 5.59 122 0.740 18.5 30,2												
-	12.75	300	515	18.87	5.85	112	0.752	0.99	26,4			
954	-	300				100	0.810	0.89	20,4			
958	680		6.5	18.97	6.12	92	0,924	0.81	21.7			
1002	7.10	325	(3)									
100Ce	7.45	250	9	1870								
1010	7,65	250	9.5									
1014	7.80	250										
1010	8.1	250	11,5	18.85	7.08	55	1.64	0.75	13,20			
1022	8.40	1 - 1 -	12	18.89	7.01	59	1.76	0.71				
1028	8,60		12.5	18.86	6.97	62	1.89	0.72				
		225			6.96		1,90	0.70				
1)30			13	18.81	0.10	0 -	1110	0 110				
1034	 	A17/28		 	-	-	+		+			
	<u> </u>			 — —		 	 		 			
L				_		 	 	 	-			
							ļ	<u> </u>				
									<u> </u>			
										Final state.		
NOTES:												
10.15.												
FIELD ANALYSES AND LABORATORY SAMPLING INFORMATION												
PRIMARY SAMPLE ID: 17W07 - 08Z517 PRIMARY SAMPLE DATE & TIME: 8/25/17 1034												
	PRIMARY SAMPLE PARAMETERS (check): VOCs, ITAL metals, MNA, SVOCs, PAHs QA/QC SAMPLE DATE & TIME:											
QA/QC SA						4844 51/			K THALET			
					metals, N	11VA, SVC			··			
FERROUS	QA/QC SAMPLE PARAMETERS (check): VOCs, TAL metals, MNA, SVOCs, PAHs FERROUS IRON FIELD KIT CONCENTRATION (mg/L): SAMPLER'S SIGNATURE:											

Appendix C Laboratory NYSDOH ELAP Certifications (on CD)

Appendix D
Data Quality Evaluation

Data Quality Evaluation for 2016 Groundwater Investigation, Dow Waterloo

PREPARED BY: CH2M

DATE: February 2017

Introduction

The objective of this data quality evaluation (DQE) report is to assess the data quality of analytical results for groundwater samples collected from the Union Carbide Corporation (UCC) Dow Waterloo site in Waterloo, New York. CH2M collected samples March 15-17; June 15-16; September 27, and December 6-13, 2016. Guidance for this DQE report came from the *Quality Assurance Project Plan, RCRA Facility Investigation, Former Hampshire Chemical Corporation Facility, Waterloo, New York* (Waterloo QAPP, June 2010); the U.S. *Environmental Protection Agency (EPA) Contract Laboratory National Functional Guidelines (NFG) for Organic Data Review, August 2014;* the *USEPA Contract Laboratory NFG for Inorganic Data Review, October 2013;* and individual method requirements.

This report is intended as a general data quality assessment designed to summarize data issues.

Analytical Data

This DQE report covers 46 water samples, 7 field duplicates (FD), 3 ambient blanks (AB) and 3 trip blanks (TB). The samples were reported in 10 sample delivery groups identified in Table 1.

TABLE 1				
Sample Delivery Groups				
2016 Groundwater Investigation, Dow Waterloo				
L16030899	L16091192			
L16030969	L16120352			
L16031040	L16120425			
L16060907	L16120521			
L16060991	L16120782			

Samples were collected and delivered to Microbac Laboratory (MBLM) in Marietta, Ohio. The samples were analyzed by one or more of the methods listed in Table 2.

Table 2						
Analytical Parameters						
2016 Groundwater Investigation, Dow Waterloo						
Parameter Method						
Volatile Organic Compounds (VOC)	SW8260C					
Semivolatile Organic Compounds (SVOC)	SW8270D					
Polyaromatic Hydrocarbons (PAH)	SW8270D SIM					
Select Metals (total/dissolved)	SW6010C/SW6020A					
Chloride and Sulfate	E300.0					
Alkalinity	E310.2					
Nitrate	E353.2					
Total Phosphorus	E365.4					
Orthophosphate	SM4500 P-E					
Total Organic Carbon (TOC)	SM5310 C					
Total Dissolved Solids (TDS)	SM2540C					
Ammonia	EPA 350.1					
Total Kjeldahl Nitrogen (TKN)	EPA 351.2					
Silica	EPA 200.7					
Sulfide SM4500 F						

The sample delivery groups were assessed by reviewing the following: (1) the chain-of- custody documentation; (2) holding-time compliance; (3) initial and continuing calibration criteria; (4) method blanks and field blanks; (5) laboratory control sample/laboratory control sample duplicate (LCS/LCSD) precision and recoveries; (6) matrix spike/matrix spike duplicate (MS/MSD) precision and recoveries; (7) surrogate spike recoveries; (8) internal standard recoveries; (9) FD precision; and (10) the required quality control (QC) samples at the specified frequencies.

Data flags were assigned according to the Waterloo QAPP. Multiple flags are routinely applied to specific sample method/matrix/analyte combinations, but there will only be one final flag. A final flag is applied to the data and is the most conservative of the applied validation flags. The final flag also includes matrix and blank sample impacts.

The data flags are those listed in the Waterloo QAPP and are defined below:

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- R = The sample result was rejected due to serious deficiencies in the ability to analyze the sample and meet the QC criteria. The presence or absence of the analyte could not be verified.

- U = The analyte was analyzed for but was not detected above the reported sample quantitation limit.
- UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Findings

The overall summaries of the data validation are contained in the following sections. Qualified data are presented in Table 3.

Holding Time and Preservation

Multiple samples were received with a pH that exceeded the criteria of pH<2 for ammonia, dissolved/total metals, nitrate, nitrate + nitrite, silica, phosphorus, TKN and/or TOC. Additional preservative was added by the laboratory; however, the pH for samples DUP-GW-031616, DUP-GW-092716, MW21-031616, MW21-061516, MW21-092716, MW31-061516 and MW31-092716 still exceeded criteria for one or more of the methods, indicating possible matrix interference. The data were qualified as estimated detected and non-detected results and flagged "J" and "UJ", respectively, in the samples.

Calibration

Initial and continuing calibration analyses were performed as required by the methods. All acceptance criteria were met with the following exceptions:

The percent differences (%D) for benzoic acid and/or 2,4-dinitrophenol were greater than criteria in a few SVOC initial calibration verifications (ICVS), indicating a possible high sample bias. The data were not qualified because the associated samples did not contain reportable levels of these analytes.

The %Ds for several analytes were less than criteria in a few VOC continuing calibration verification (CCV) standards, indicating a possible low bias. The data were qualified as estimated detected and non-detected results and flagged "J" and "UJ", respectively, in the associated samples. The %Ds for bromomethane, carbon disulfide and/or chloromethane were significantly less than criteria (>2x) in one CCV. The non-detected results were rejected for project use and flagged "R" in the associated samples.

The %D for benzoic acid was significantly greater than criteria (>50%) in one SVOC CCV, indicating a possible high bias. The analyte was qualified as an estimated non-detected result and flagged "UJ" in the associated sample.

The %D for phosphorus was greater than criteria in one CCV, indicating a possible high bias. The data were qualified as estimated detected results and flagged "J" in the associated samples.

The %D for alkalinity was greater and/or less than criteria in a few CCVs, indicating a possible high or low bias. The data were qualified as estimated detected results and flagged "J" in the associated samples.

Method Blanks

Method blanks were analyzed at the required frequency and were free of contamination with the following exceptions:

Naphthalene was detected at concentrations less than and/or greater than the reporting limit (RL) in a few SVOC method blanks. The data were not qualified because the associated samples did not contain reportable levels of naphthalene.

Ammonia was detected at a concentration less than the RL in one method blank. The data were qualified as not detected at the concentration measured and flagged "U" when the associated sample concentrations were less than five times the concentrations detected in the blank.

Field Blanks

ABs and TBs were collected, analyzed and were free of contamination with the following exceptions:

Acetone and chloroform were detected at concentrations less than and/or greater than the RL in a few ABs associated with the VOC analysis. The data were qualified as not detected at the concentration measured and flagged "U" when the sample concentrations were less than five times (10 times for acetone) the concentrations detected in the blanks.

Laboratory Control Samples

LCS/LCSDs were analyzed as required and met all accuracy and precision criteria with the following exceptions:

Cyclohexane was recovered less than the lower control limits in a few VOC LCS/LCSDs, indicating a possible low bias. The data were qualified as estimated non-detected results and flagged "UJ" in the associated samples.

The recovery for 1,4-dioxane was less than the lower control limits in a few SVOC LCS/LCSDs, indicating a possible low bias. The data were qualified as estimated non-detected results and flagged "UJ" in the associated samples. In addition, benzoic acid and/or benzo(g,h,i)perylene were recovered greater than the upper control limits in a few LCS/LCSDs, indicating a possible high bias. The data were not qualified because the associated samples did not contain reportable levels of these analytes.

Naphthalene was recovered greater than the upper control limit in a few PAH LCS/LCSDs, indicating a possible high bias. The data were not qualified because the associated samples did not contain reportable levels of naphthalene.

Phosphorus was recovered less than the lower control limit in one LCS, indicating a possible low bias. The data were qualified as estimated non-detected results and flagged "UJ" in the associated samples.

The relative percent differences (RPD) for benzoic acid was greater than criteria in one SVOC LCS/LCSD. The data were not qualified because the associated sample did not contain a reportable level of the benzoic acid.

Matrix Spike

MS/MSDs were analyzed as required and all accuracy and precision criteria were met with the following exceptions:

Several analytes were recovered less than the lower control limits in the VOC MS/MSDs for samples MW02-120616 and MW16I-120616, indicating a possible low bias. The data were qualified as estimated non-detected results and flagged "UJ" in the respective parent sample.

The recovery of 1,4-dioxane was less than criteria in the SVOC MS/MSD for sample MW07-120716, indicating a possible low bias. The analyte was qualified as an estimated non-detected result and flagged "UJ" in the parent sample.

Total magnesium was recovered less than the lower control limit in the MS/MSD for sample MW30-031516, indicating a possible low bias. The analyte was qualified as an estimated detected result and flagged "J" in the parent sample. In addition, total calcium was recovered greater than the upper control limit in the MS for sample MW30-092716, indicating a possible high bias. The analyte was qualified as an estimated detected result and flagged "J" in the parent sample.

The RPD for bromomethane exceeded criteria in the VOC MS/MSD for sample MW02-120616. The analyte was not qualified because the parent sample did not contain a reportable level of bromomethane.

Post Digestion Spikes

Post digestion spikes (PS) were analyzed as required and accuracy criteria were met with the following exceptions:

Calcium was recovered greater than the upper control limit in the PS for sample DUP-GW-120616, indicating a possible high bias. The analyte was qualified as an estimated detected result and flagged "J" in the sample.

Arsenic was recovered greater than the upper control limit in the PS for sample MW09R-120616, indicating a possible high bias. The analyte was qualified as an estimated detected result and flagged "J" in the sample.

Serial Dilutions

Serial dilutions were analyzed as required and acceptance criteria were met.

Internal Standards

Acceptance criteria were met.

Surrogates

Surrogates were added to the samples for the methods requiring their use and acceptance criteria were met with the following exception:

One surrogate was recovered less than the lower control limit in the PAH analysis for sample MW18-120616, indicating a possible low bias. The data were qualified as estimated detected and non-detected results and flagged "J" and "UJ", respectively, in the sample.

Field Duplicates

FDs were collected and analyzed at the required frequency and precision acceptance criteria were met with the following exceptions:

The RPDs for total/dissolved arsenic exceeded criteria in FD pair MW11S-061516/ DUP-GW-061516. The data were qualified as estimated and flagged "J" in the FD pair.

The RPD for carbon disulfide exceeded criteria in FD pair PZ04-121316/ DUP-GW-121316. The data were qualified as estimated and flagged "J" in the FD pair.

Laboratory Duplicates

Laboratory duplicates were analyzed as required and precision criteria were met.

Interference Check Standards

Interference check standards were analyzed as required and all accuracy criteria were met.

Sample Quantitation

There were several instances where the RPD between the total/dissolved metals concentration exceeded criteria where the dissolved concentrations were greater than the total concentrations. The data were qualified as estimated and flagged "J" in the samples.

Tentatively Identified Compounds

Tentatively identified compounds were reported in the VOC and SVOC analyses to determine the presence/absence of the following analytes in the samples: epichlorohydrin, thioglycolic acid, dithiodiglycolic acid, mercaptopropionic acid, thiodipropionic acid, and dithiodipropionic acid. The library search did not identify these analytes in the samples.

Chain of Custody

Required procedures were followed and were free of errors.

Overall Assessment

The goal of this assessment is to demonstrate that a sufficient number of representative samples were collected and the resulting analytical data can be used to support the decision making process. The following summary highlights the PARCC findings for the above-defined events:

Precision of the data was verified through the review of the field and laboratory data quality indicators that include FD, LCS/LCSD, MS/MSD, laboratory duplicate and serial dilution RPDs. Precision was generally acceptable with the exception of a few analytes which were qualified as estimated detected results in several samples due to FD RPD issues. Data users should consider the impact to any result that is qualified as estimated as it may contain a bias which could affect the decision making process.

Accuracy of the data was verified through the review of the calibration data, LCS/LCSD, MS/MSD, post digestion spike, interference check standard, internal standard and surrogate recoveries, as well as the evaluation of method/field blank data. Accuracy was generally acceptable with a few compounds being qualified as estimated detected and non-detected results due to calibration, LCS/LCSD, MS/MSD, post digestion spike and/or surrogate issues. A few metals were qualified as

estimated due to the dissolved concentration being greater than the total concentration. In addition, bromomethane, chloromethane and carbon disulfide were rejected for project use in a few samples due to calibration issues. Acetone and chloroform were detected in several ambient blanks; however, acetone was qualified as not detected in only one sample. Ammonia was qualified as not detected due to method blank contamination in one sample.

Representativeness of the data was verified through the sample's collection, storage and preservation procedures and the verification of holding-time compliance. Several samples were received with a pH above criteria for multiple analyses, resulting in the data being qualified as estimated. All data were reported from analyses within the USEPA-recommended holding time.

Comparability of the data was ensured through the use of standard USEPA analytical procedures and standard units for reporting. Results obtained are comparable to industry standards in that the collection and analytical techniques followed approved, documented procedures.

Completeness is a measure of the number of valid measurements obtained in relation to the total number of measurements planned. Completeness is expressed as the percentage of valid or usable measurements compared to planned measurements. Valid data are defined as all data that are not rejected for project use. All data were considered valid with the exception of bromomethane, chloromethane and carbon disulfide which were rejected in a few VOC samples. The completeness goal of 95 percent was met for all analyte/method combinations with the exception of the following:

- bromomethane (90 percent complete)
- carbon disulfide (86 percent complete)
- chloromethane (76 percent complete)

The data can be used for decision making with the exception of the rejected data, taking into consideration the validation flags applied.

Table 3Qualified Data
2016 Groundwater Investigation, Dow Waterloo

2016 Groundwater inv				Final		
Sample ID	Method	Analyte	Units	Result	Final Flag	Reason
DUP-GW-031616	SW6010C	Aluminum	mg/L	1.38	J	SI
DUP-GW-031616	SW6010C	Aluminum, dissolved	mg/L	1.33	J	SI
DUP-GW-031616	SW6020	Arsenic	mg/L	4.46	J	SI
DUP-GW-031616	SW6020	Arsenic, dissolved	mg/L	4.54	J	SI
DUP-GW-031616	SW6010C	Calcium	mg/L	2.94	J	SI
DUP-GW-031616	SW6010C	Iron	mg/L	0.4	UJ	SI
DUP-GW-031616	SW6010C	Iron, dissolved	mg/L	0.4	UJ	SI
DUP-GW-031616	SW6010C	Magnesium	mg/L	2	UJ	SI
DUP-GW-031616	SW6010C	Manganese	mg/L	0.04	UJ	SI
DUP-GW-031616	SW6010C	Manganese, dissolved	mg/L	0.04	UJ	SI
DUP-GW-031616	SW6010C	Potassium	mg/L	4.06	J	SI
DUP-GW-031616	SW6010C	Sodium	mg/L	7360	J	SI
DUP-GW-061516	SW6020	Arsenic	mg/L	1	J	FD>RPD
DUP-GW-061516	SW6020	Arsenic, dissolved	mg/L	0.981	J	FD>RPD
DUP-GW-092716	SW6010C	Aluminum	mg/L	1.12	J	SI
DUP-GW-092716	SW6010C	Aluminum, dissolved	mg/L	0.887	J	SI
DUP-GW-092716	SW6020	Arsenic	mg/L	3.88	J	SI
DUP-GW-092716	SW6020	Arsenic, dissolved	mg/L	3.76	J	SI
DUP-GW-092716	SW6010C	Calcium	mg/L	2.85	J	SI
DUP-GW-092716	SW6020	Chromium	mg/L	0.17	J	SI
DUP-GW-092716	SW6020	Chromium, dissolved	mg/L	0.162	J	SI
DUP-GW-092716	SW6010C	Iron	mg/L	0.551	J	SI
DUP-GW-092716	SW6010C	Iron, dissolved	mg/L	0.386	J	SI
DUP-GW-092716	SW6010C	Magnesium	mg/L	1.6	J	SI
DUP-GW-092716	SW6010C	Manganese	mg/L	0.02	UJ	SI
DUP-GW-092716	SW6010C	Manganese, dissolved	mg/L	0.02	UJ	SI
DUP-GW-092716	SW6010C	Potassium	mg/L	5.44	J	SI
DUP-GW-092716	SW6010C	Sodium	mg/L	8070	J	SI
DUP-GW-120616	SW6010C	Calcium	mg/L	179	J	PS>UCL

Table 3Qualified Data
2016 Groundwater Investigation, Dow Waterloo

2010 Groundwater inve				Final		
Sample ID	Method	Analyte	Units	Result	Final Flag	Reason
DUP-GW-120616	SW8260C	Cyclohexane	ug/L	1	UJ	LCS <lcl< td=""></lcl<>
DUP-GW-120716-1	SW8270D	1,4-Dioxane	ug/L	5.38	UJ	LCS <lcl< td=""></lcl<>
DUP-GW-120716-1	SW8260C	Bromomethane	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
DUP-GW-120716-1	SW8260C	Chloromethane	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
DUP-GW-120716-1	SW8260C	Cyclohexane	ug/L	1	UJ	LCS <lcl< td=""></lcl<>
DUP-GW-121316	SW8260C	Bromomethane	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
DUP-GW-121316	SW8260C	Carbon Disulfide	ug/L	7.45	J	CCV <lcl, fd="">RPD</lcl,>
DUP-GW-121316	SW8260C	Chloromethane	ug/L	0.5	R	CCV <lcl< td=""></lcl<>
DUP-GW-121316	SW8260C	Vinyl chloride	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
MW01-120616	SW8260C	Bromomethane	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
MW01-120616	SW8260C	Chloromethane	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
MW01-120616	SW8260C	Cyclohexane	ug/L	1	UJ	LCS <lcl< td=""></lcl<>
MW02-120616	SW8260C	1,1-Dichloroethene	ug/L	0.5	UJ	SD <lcl< td=""></lcl<>
MW02-120616	SW8260C	Bromomethane	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
MW02-120616	SW8260C	Chloromethane	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
MW02-120616	SW8260C	Cyclohexane	ug/L	1	UJ	LCS <lcl, ms<lcl,="" sd<lcl<="" td=""></lcl,>
MW02-120616	SW8260C	Methyl Acetate	ug/L	1	UJ	MS <lcl< td=""></lcl<>
MW02-120616	SW8260C	Methyl Cyclohexane	ug/L	1	UJ	MS <lcl, sd<lcl<="" td=""></lcl,>
MW02-120616	SW8260C	Trichlorotrifluoroethane	ug/L	2	UJ	SD <lcl< td=""></lcl<>
MW05I-120716	SW8270D	1,4-Dioxane	ug/L	6.85	UJ	LCS <lcl< td=""></lcl<>
MW05I-120716	SW6020	Arsenic	mg/L	0.00108	J	D_MET>T_MET
MW05I-120716	SW6020	Arsenic, dissolved	mg/L	0.000991	J	D_MET>T_MET
MW05I-120716	SW8260C	Bromomethane	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
MW05I-120716	SW8260C	Chloromethane	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
MW05I-120716	SW8260C	Cyclohexane	ug/L	1	UJ	LCS <lcl< td=""></lcl<>
MW06-120716	SW8270D	1,4-Dioxane	ug/L	5.32	UJ	LCS <lcl< td=""></lcl<>
MW06-120716	SW8260C	Bromomethane	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
MW06-120716	SW8260C	Chloromethane	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
MW06-120716	SW8260C	Cyclohexane	ug/L	1	UJ	LCS <lcl< td=""></lcl<>

Table 3Qualified Data
2016 Groundwater Investigation, Dow Waterloo

2010 Groundwater mive				Final		
Sample ID	Method	Analyte	Units	Result	Final Flag	Reason
MW07-120716	SW6020	Arsenic	mg/L	0.00454	J	D_MET>T_MET
MW07-120716	SW6020	Arsenic, dissolved	mg/L	0.00584	J	D_MET>T_MET
MW07-120716	SW8270D	1,4-Dioxane	ug/L	5	UJ	LCS <lcl, ms<lcl<="" td=""></lcl,>
MW07-120716	SW8260C	Bromomethane	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
MW07-120716	SW8260C	Chloromethane	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
MW07-120716	SW8260C	Cyclohexane	ug/L	1	UJ	LCS <lcl< td=""></lcl<>
MW09R-120616	SW6020	Arsenic	mg/L	0.00688	J	PS>UCL
MW09R-120616	SW8260C	Bromomethane	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
MW09R-120616	SW8260C	Chloromethane	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
MW09R-120616	SW8260C	Cyclohexane	ug/L	1	UJ	LCS <lcl< td=""></lcl<>
MW10-120716	SW8270D	1,4-Dioxane	ug/L	5.49	UJ	LCS <lcl< td=""></lcl<>
MW10-120716	SW8260C	Bromomethane	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
MW10-120716	SW8260C	Chloromethane	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
MW10-120716	SW8260C	Cyclohexane	ug/L	1	UJ	LCS <lcl< td=""></lcl<>
MW11S-061516	SW6020	Arsenic	mg/L	0.771	J	FD>RPD
MW11S-061516	SW6020	Arsenic, dissolved	mg/L	1.22	J	FD>RPD
MW11S-092716	E365.4	Phosphorus	mg/L	0.259	J	LCS <lcl< td=""></lcl<>
MW16I-120616	SW8260C	Bromomethane	ug/L	0.5	R	CCV <lcl< td=""></lcl<>
MW16I-120616	SW8260C	Chloromethane	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
MW16I-120616	SW8260C	Cyclohexane	ug/L	1	UJ	LCS <lcl, ms<lcl,="" sd<lcl<="" td=""></lcl,>
MW16I-120616	SW8260C	Methyl Cyclohexane	ug/L	1	UJ	MS <lcl, sd<lcl<="" td=""></lcl,>
MW17-120616	SW8260C	Bromomethane	ug/L	0.5	R	CCV <lcl< td=""></lcl<>
MW17-120616	SW8260C	Chloromethane	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
MW17-120616	SW8260C	Cyclohexane	ug/L	1	UJ	LCS <lcl< td=""></lcl<>
MW18-120616	SW8270SIM	2-Methylnaphthalene	ug/L	0.0301	UJ	Sur <lcl< td=""></lcl<>
MW18-120616	SW8270SIM	Acenaphthene	ug/L	0.0301	UJ	Sur <lcl< td=""></lcl<>
MW18-120616	SW8270SIM	Acenaphthylene	ug/L	0.0301	UJ	Sur <lcl< td=""></lcl<>
MW18-120616	SW8270SIM	Anthracene	ug/L	0.0301	UJ	Sur <lcl< td=""></lcl<>
MW18-120616	SW8270SIM	Benzo (a) anthracene	ug/L	0.0358	J	Sur <lcl< td=""></lcl<>

Table 3Qualified Data
2016 Groundwater Investigation, Dow Waterloo

				Final	_,	_
Sample ID	Method	Analyte	Units	Result	Final Flag	Reason
MW18-120616	SW8270SIM	Benzo (a) pyrene	ug/L	0.0301	UJ	Sur <lcl< td=""></lcl<>
MW18-120616	SW8270SIM	Benzo (b) fluoranthene	ug/L	0.0575	J	Sur <lcl< td=""></lcl<>
MW18-120616	SW8270SIM	Benzo (g,h,i) perylene	ug/L	0.0301	UJ	Sur <lcl< td=""></lcl<>
MW18-120616	SW8270SIM	Benzo(k)fluoranthene	ug/L	0.0301	UJ	Sur <lcl< td=""></lcl<>
MW18-120616	SW8260C	Bromomethane	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
MW18-120616	SW8260C	Chloromethane	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
MW18-120616	SW8270SIM	Chrysene	ug/L	0.0369	J	Sur <lcl< td=""></lcl<>
MW18-120616	SW8260C	Cyclohexane	ug/L	1	UJ	LCS <lcl< td=""></lcl<>
MW18-120616	SW8270SIM	Dibenzo (a,h) anthracene	ug/L	0.0301	UJ	Sur <lcl< td=""></lcl<>
MW18-120616	SW8270SIM	Fluoranthene	ug/L	0.074	J	Sur <lcl< td=""></lcl<>
MW18-120616	SW8270SIM	Fluorene	ug/L	0.0301	UJ	Sur <lcl< td=""></lcl<>
MW18-120616	SW8270SIM	Indeno (1,2,3-c,d) pyrene	ug/L	0.0301	UJ	Sur <lcl< td=""></lcl<>
MW18-120616	SW8270SIM	Naphthalene	ug/L	0.0301	UJ	Sur <lcl< td=""></lcl<>
MW18-120616	SW8270SIM	Phenanthrene	ug/L	0.075	J	Sur <lcl< td=""></lcl<>
MW18-120616	SW8270SIM	Pyrene	ug/L	0.0801	J	Sur <lcl< td=""></lcl<>
MW19-121316	SW8270D	1,4-Dioxane	ug/L	5.62	UJ	LCS <lcl, lcsd<lcl<="" td=""></lcl,>
MW19-121316	SW8270D	Benzoic acid	ug/L	11.2	UJ	CCV>UCL
MW19-121316	SW8260C	Bromomethane	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
MW19-121316	SW8260C	Carbon Disulfide	ug/L	0.5	R	CCV <lcl< td=""></lcl<>
MW19-121316	SW8260C	Chloromethane	ug/L	0.5	R	CCV <lcl< td=""></lcl<>
MW19-121316	SW8260C	Vinyl chloride	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
MW20-120716	SW8270D	1,4-Dioxane	ug/L	5.62	UJ	LCS <lcl< td=""></lcl<>
MW20-120716	SW8260C	Bromomethane	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
MW20-120716	SW8260C	Chloromethane	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
MW20-120716	SW8260C	Cyclohexane	ug/L	1	UJ	LCS <lcl< td=""></lcl<>
MW21-031616	SW6010C	Aluminum	mg/L	1.39	J	SI
MW21-031616	SW6010C	Aluminum, dissolved	mg/L	1.4	J	SI
MW21-031616	E350.1	Ammonia-N	mg/L	9.5	J	SI
MW21-031616	SW6020	Arsenic	mg/L	3.92	J	SI

Table 3Qualified Data
2016 Groundwater Investigation, Dow Waterloo

2010 Groundwater inve				Final		
Sample ID	Method	Analyte	Units	Result	Final Flag	Reason
MW21-031616	SW6020	Arsenic, dissolved	mg/L	4.38	J	SI
MW21-031616	SW6010C	Calcium	mg/L	3.23	J	SI
MW21-031616	SW6010C	Iron	mg/L	0.55	J	SI
MW21-031616	SW6010C	Iron, dissolved	mg/L	0.4	UJ	SI
MW21-031616	SW6010C	Magnesium	mg/L	2.6	J	SI
MW21-031616	SW6010C	Manganese	mg/L	0.04	UJ	SI
MW21-031616	SW6010C	Manganese, dissolved	mg/L	0.04	UJ	SI
MW21-031616	E365.4	Phosphorus	mg/L	17.2	J	SI
MW21-031616	SW6010C	Potassium	mg/L	6.12	J	SI
MW21-031616	SW6010C	Silicon	mg/L	9.24	J	SI
MW21-031616	SW6010C	Sodium	mg/L	7200	J	SI
MW21-031616	SW6010C	Soluble Silica	mg/L	19.8	J	SI
MW21-031616	E351.2	Total Kjeldahl Nitrogen	mg/L	25.4	J	SI
MW21-031616	A5310C	Total Organic Carbon	mg/L	439	J	SI
MW21-061516	E310.2	Alkalinity	mg/L	16100	J	CCV <lcl< td=""></lcl<>
MW21-061516	SW6010C	Aluminum	mg/L	1.27	J	SI
MW21-061516	SW6010C	Aluminum, dissolved	mg/L	0.799	J	SI
MW21-061516	E350.1	Ammonia-N	mg/L	7.8	J	SI
MW21-061516	SW6020	Arsenic	mg/L	4.1	J	SI
MW21-061516	SW6020	Arsenic, dissolved	mg/L	4.08	J	SI
MW21-061516	SW6010C	Calcium	mg/L	2.98	J	SI
MW21-061516	SW6010C	Iron	mg/L	0.642	J	SI
MW21-061516	SW6010C	Iron, dissolved	mg/L	0.25	UJ	SI
MW21-061516	SW6010C	Magnesium	mg/L	2.96	J	SI
MW21-061516	SW6010C	Manganese	mg/L	0.025	UJ	SI
MW21-061516	SW6010C	Manganese, dissolved	mg/L	0.025	UJ	SI
MW21-061516	E353.2	Nitrate	mg/L	8.7	J	SI
MW21-061516	E353.2	Nitrate + Nitrite-N	mg/L	8.7	J	SI
MW21-061516	E365.4	Phosphorus	mg/L	18.7	J	SI

Table 3Qualified Data
2016 Groundwater Investigation, Dow Waterloo

				Final		
Sample ID	Method	Analyte	Units	Result	Final Flag	Reason
MW21-061516	SW6010C	Potassium	mg/L	2.93	J	SI
MW21-061516	A4500F	Sulfide	mg/L	6.7	J	SI
MW21-061516	E351.2	Total Kjeldahl Nitrogen	mg/L	21.6	J	SI
MW21-061516	A5310C	Total Organic Carbon	mg/L	574	J	SI
MW21-092716	SW6010C	Aluminum	mg/L	1.09	J	SI
MW21-092716	SW6010C	Aluminum, dissolved	mg/L	1.16	J	SI
MW21-092716	E350.1	Ammonia-N	mg/L	13.7	J	SI
MW21-092716	SW6020	Arsenic	mg/L	3.91	J	SI
MW21-092716	SW6020	Arsenic, dissolved	mg/L	3.92	J	SI
MW21-092716	SW6010C	Calcium	mg/L	2.73	J	SI
MW21-092716	SW6020	Chromium	mg/L	0.179	J	SI
MW21-092716	SW6020	Chromium, dissolved	mg/L	0.173	J	SI
MW21-092716	SW6010C	Iron	mg/L	0.47	J	SI
MW21-092716	SW6010C	Iron, dissolved	mg/L	0.392	J	SI
MW21-092716	SW6010C	Magnesium	mg/L	1.84	J	SI
MW21-092716	SW6010C	Manganese	mg/L	0.02	UJ	SI
MW21-092716	SW6010C	Manganese, dissolved	mg/L	0.02	UJ	SI
MW21-092716	E353.2	Nitrate	mg/L	12.6	J	SI
MW21-092716	E353.2	Nitrate + Nitrite-N	mg/L	12.6	J	SI
MW21-092716	E365.4	Phosphorus	mg/L	17.5	J	LCS <lcl, si<="" td=""></lcl,>
MW21-092716	SW6010C	Potassium	mg/L	5.21	J	SI
MW21-092716	SW6010C	Silicon	mg/L	9.52	J	SI
MW21-092716	SW6010C	Sodium	mg/L	7580	J	SI
MW21-092716	SW6010C	Soluble Silica	mg/L	20.4	J	SI
MW21-092716	E351.2	Total Kjeldahl Nitrogen	mg/L	25.3	J	SI
MW21-092716	A5310C	Total Organic Carbon	mg/L	813	J	SI
MW26-120616	SW8260C	Bromomethane	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
MW26-120616	SW8260C	Chloromethane	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
MW26-120616	SW8260C	Cyclohexane	ug/L	1	UJ	LCS <lcl< td=""></lcl<>

Table 3Qualified Data
2016 Groundwater Investigation, Dow Waterloo

2010 Groundwater nive				Final		
Sample ID	Method	Analyte	Units	Result	Final Flag	Reason
MW30-031516	SW6010C	Magnesium	mg/L	12.7	J	MS <lcl< td=""></lcl<>
MW30-031516	SW6010C	Magnesium	mg/L	12.7	J	SD <lcl< td=""></lcl<>
MW30-092716	SW6010C	Calcium	mg/L	69.5	J	MS>UCL
MW30-092716	E365.4	Phosphorus	mg/L	0.126	J	LCS <lcl< td=""></lcl<>
MW30-120716	SW6010C	Manganese	mg/L	0.026	J	D_MET>T_MET
MW30-120716	SW6010C	Manganese, dissolved	mg/L	0.0448	J	D_MET>T_MET
MW31-031716	SW6020	Arsenic	mg/L	0.0507	J	D_MET>T_MET
MW31-031716	SW6020	Arsenic, dissolved	mg/L	0.0633	J	D_MET>T_MET
MW31-061516	SW6010C	Aluminum	mg/L	2.12	J	SI
MW31-061516	SW6010C	Aluminum, dissolved	mg/L	0.513	J	SI
MW31-061516	SW6010C	Calcium	mg/L	12.7	J	SI
MW31-061516	SW6010C	Iron	mg/L	5.78	J	SI
MW31-061516	SW6010C	Iron, dissolved	mg/L	2.13	J	SI
MW31-061516	SW6010C	Magnesium	mg/L	8.28	J	SI
MW31-061516	SW6010C	Manganese	mg/L	0.072	J	SI
MW31-061516	SW6010C	Manganese, dissolved	mg/L	0.025	UJ	SI
MW31-061516	SW6010C	Potassium	mg/L	10.4	J	SI
MW31-061516	SW6010C	Sodium	mg/L	2580	J	SI
MW31-092716	SW6010C	Aluminum	mg/L	1.14	J	SI
MW31-092716	SW6010C	Aluminum, dissolved	mg/L	0.684	J	SI
MW31-092716	E350.1	Ammonia-N	mg/L	2.3	J	SI
MW31-092716	SW6020	Arsenic	mg/L	0.0322	J	SI
MW31-092716	SW6020	Arsenic, dissolved	mg/L	0.0332	J	SI
MW31-092716	SW6010C	Calcium	mg/L	6.24	J	SI
MW31-092716	SW6020	Chromium	mg/L	0.979	J	SI
MW31-092716	SW6020	Chromium, dissolved	mg/L	0.949	J	SI
MW31-092716	SW6010C	Iron	mg/L	3.02	J	SI
MW31-092716	SW6010C	Iron, dissolved	mg/L	1.61	J	SI
MW31-092716	SW6010C	Magnesium	mg/L	4.29	J	SI

Table 3Qualified Data
2016 Groundwater Investigation, Dow Waterloo

2010 Groundwater nive				Final		
Sample ID	Method	Analyte	Units	Result	Final Flag	Reason
MW31-092716	SW6010C	Manganese	mg/L	0.0289	J	SI
MW31-092716	SW6010C	Manganese, dissolved	mg/L	0.02	UJ	SI
MW31-092716	E353.2	Nitrate	mg/L	14.4	J	SI
MW31-092716	E353.2	Nitrate + Nitrite-N	mg/L	14.4	J	SI
MW31-092716	E365.4	Phosphorus	mg/L	5.65	J	LCS <lcl, si<="" td=""></lcl,>
MW31-092716	SW6010C	Potassium	mg/L	14.5	J	SI
MW31-092716	SW6010C	Silicon	mg/L	15.4	J	SI
MW31-092716	SW6010C	Sodium	mg/L	2890	J	SI
MW31-092716	SW6010C	Soluble Silica	mg/L	33	J	SI
MW31-092716	E351.2	Total Kjeldahl Nitrogen	mg/L	8.88	J	SI
MW31-092716	A5310C	Total Organic Carbon	mg/L	239	J	SI
MW35-061516	E350.1	Ammonia-N	mg/L	0.202	U	LB <rl< td=""></rl<>
MW35-092716	E365.4	Phosphorus	mg/L	0.1	UJ	LCS <lcl< td=""></lcl<>
MW36-092716	E365.4	Phosphorus	mg/L	0.1	UJ	LCS <lcl< td=""></lcl<>
PZ03-120716	SW8260C	Bromomethane	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
PZ03-120716	SW8260C	Chloromethane	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
PZ03-120716	SW8260C	Cyclohexane	ug/L	1	UJ	LCS <lcl< td=""></lcl<>
PZ04-121316	SW8260C	Bromomethane	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
PZ04-121316	SW8260C	Carbon Disulfide	ug/L	21	J	CCV <lcl, fd="">RPD</lcl,>
PZ04-121316	SW8260C	Chloromethane	ug/L	0.5	R	CCV <lcl< td=""></lcl<>
PZ04-121316	E365.4	Phosphorus	mg/L	0.542	J	CCV>UCL
PZ04-121316	SW8260C	Vinyl chloride	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
PZ06-120616	SW8260C	Acetone	ug/L	6.31	U	AB <rl< td=""></rl<>
PZ06-120616	SW8260C	Bromomethane	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
PZ06-120616	SW8260C	Chloromethane	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
PZ06-120616	SW8260C	Cyclohexane	ug/L	1	UJ	LCS <lcl< td=""></lcl<>
PZ07R-121316	E310.2	Alkalinity	mg/L	427	J	CCV>UCL
PZ07R-121316	SW8260C	Bromomethane	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
PZ07R-121316	SW8260C	Carbon Disulfide	ug/L	0.5	R	CCV <lcl< td=""></lcl<>

Table 3Qualified Data
2016 Groundwater Investigation, Dow Waterloo

				Final		
Sample ID	Method	Analyte	Units	Result	Final Flag	Reason
PZ07R-121316	SW8260C	Chloromethane	ug/L	0.5	R	CCV <lcl< td=""></lcl<>
PZ07R-121316	E365.4	Phosphorus	mg/L	0.301	J	CCV>UCL
PZ07R-121316	SW8260C	Vinyl chloride	ug/L	0.5	C	CCV <lcl< td=""></lcl<>
TW01-121316	SW8260C	Bromomethane	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
TW01-121316	SW8260C	Carbon Disulfide	ug/L	0.5	R	CCV <lcl< td=""></lcl<>
TW01-121316	SW8260C	Chloromethane	ug/L	0.5	R	CCV <lcl< td=""></lcl<>
TW01-121316	SW8260C	Vinyl chloride	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>

Validation Reasons:

AB<RL The analyte was detected in the ambient blank at a concentration less than the reporting limit

CCV<LCL Continuing calibration verification recovery was less than criteria
CCV>UCL Continuing calibration verification recovery was greater than criteria

D_MET>T_MET Dissolved concentration greater than total concentration

FD>RPD The relative percent difference exceeded control limits in the field duplicate pair.

LB<RL The analyte was detected in the method blank at a concentration less than the reporting limit

LCS<LCL The laboratory control sample recovery was less than the lower control limit

LCSD<LCL The laboratory control sample duplicate recovery was less than the lower control limit

MS<LCL The matrix spike recovery was less than the lower control limit
MS>UCL The matrix spike recovery was greater than the upper control limit

PS>UCL The post digestion spike recovery was greater than the upper control limit SD<LCL The matrix spike duplicate recovery was less than the lower control limit The samples were received with a pH greater than or less than criteria

Sur<LCL The surrogate recovery was less than the lower control limit

Data Quality Evaluation for 2017 Groundwater Investigation, Former Hampshire Chemical Corporation Facility

PREPARED BY: CH2M

DATE: January 8, 2018

Introduction

The objective of this data quality evaluation (DQE) report is to assess the data quality of analytical results for groundwater samples collected from the Union Carbide Corporation (UCC) Dow Waterloo site in Waterloo, New York. CH2M collected samples August 22 through August 25, 2017. Guidance for this DQE report came from the *Quality Assurance Project Plan, RCRA Facility Investigation, Former Hampshire Chemical Corporation Facility, Waterloo, New York* (Waterloo QAPP, June 2010); the U.S. *Environmental Protection Agency (EPA) National Functional Guidelines (NFG) for Organic Superfund Methods Data Review, January 2017;* the *USEPA Contract Laboratory NFG for Inorganic Superfund Methods Data Review, January 2017;* and individual method requirements.

This report is intended as a general data quality assessment designed to summarize data issues.

Analytical Data

This DQE report covers 21 water samples, 4 field duplicates (FD), 4 ambient blanks (AB) and 4 trip blanks (TB). The samples were reported in four sample delivery groups identified in Table 1.

TABLE 1			
Sample Delivery Groups			
2017 Groundwater Investigati	on, Dow Waterloo		
L17081212 L17081305			
L17081366	L17081498		

Samples were collected and delivered to Microbac Laboratory (MBLM) in Marietta, Ohio. The samples were analyzed by one or more of the methods listed in Table 2.

Table 2						
Analytical Parameters						
2017 Groundwater Investigation, Dow Waterloo						
Parameter	Method					
Volatile Organic Compounds (VOC)	SW8260C					
Semivolatile Organic Compounds (SVOC)	SW8270D					
Polyaromatic Hydrocarbons (PAH)	SW8270D SIM					
Select Metals (total/dissolved)	SW6010C/SW6020A					
Chloride and Sulfate	E300.0					
Alkalinity	E310.2					
Nitrate	E353.2					
Total Phosphorus	E365.4					
Orthophosphate	SM4500 P-E					
Total Organic Carbon (TOC)	SM5310 C					
Total Dissolved Solids (TDS)	SM2540C					
Ammonia	EPA 350.1					
Total Kjeldahl Nitrogen (TKN)	EPA 351.2					
Sulfide	SM4500 F					

The sample delivery groups were assessed by reviewing the following: (1) the chain-of- custody documentation; (2) holding-time compliance; (3) initial and continuing calibration criteria; (4) method blanks and field blanks; (5) laboratory control sample/laboratory control sample duplicate (LCS/LCSD) precision and recoveries; (6) matrix spike/matrix spike duplicate (MS/MSD) precision and recoveries; (7) surrogate spike recoveries; (8) internal standard recoveries; (9) FD precision; and (10) the required quality control (QC) samples at the specified frequencies.

Data flags were assigned according to the Waterloo QAPP. Multiple flags are routinely applied to specific sample method/matrix/analyte combinations, but there will only be one final flag. A final flag is applied to the data and is the most conservative of the applied validation flags. The final flag also includes matrix and blank sample impacts.

The data flags are those listed in the Waterloo QAPP and are defined below:

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- R = The sample result was rejected due to serious deficiencies in the ability to analyze the sample and meet the QC criteria. The presence or absence of the analyte could not be verified.

- U = The analyte was analyzed for but was not detected above the reported sample quantitation limit.
- UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Findings

The overall summaries of the data validation are contained in the following sections. Qualified data are presented in Table 3.

Holding Time and Preservation

Multiple samples were received with a pH that exceeded the criteria of pH<2 for ammonia, dissolved/total metals, nitrate, nitrate + nitrite, silica, phosphorus, TKN and/or TOC. Additional preservative was added by the laboratory and all samples adjusted to the correct pH. The data was not qualified.

A few SVOC samples were re-extracted for biphenyl only, four days past the hold time criteria of 7 days, resulting the data being qualified as estimated non-detected results and flagged "UJ".

Calibration

Initial and continuing calibration analyses were performed as required by the methods. All acceptance criteria were met with the following exceptions:

The percent difference (%D) for benzoic acid was greater than criteria in a few SVOC initial calibration verification standards (ICVS), indicating a possible high bias. The data were not qualified because the associated samples did not contain reportable levels of benzoic acid.

The %Ds for a few analytes were less than criteria in several VOC continuing calibration verification (CCV) standards, indicating a possible low bias. The data were qualified as estimated non-detected results and flagged "UJ" in the associated samples.

The %D for benzoic acid was less than criteria in a few SVOC CCVs, indicating a possible low bias. The analyte was qualified as an estimated non-detected result and flagged "UJ" in the associated samples. In addition, the %D for 4-nitrophenol was greater than criteria in one CCV, indicating a possible high bias. The data were not qualified because the associated samples did not contain reportable levels of 4-nitrophenol.

The %D for TOC was greater than criteria in one CCV, indicating a possible high bias. The data were qualified as estimated detected results and flagged "J" in the associated samples.

Method Blanks

Method blanks were analyzed at the required frequency and were free of contamination with the following exceptions:

Total iron was detected at concentrations less than the reporting limit (RL) in one method blank associated with the metals analysis. The data were qualified as not detected and flagged "U" when the associated sample concentrations were less than the concentration detected in the blank.

Field Blanks

ABs and TBs were collected, analyzed and were free of contamination with the following exceptions:

Acetone and chloroform were detected at concentrations less than and/or greater than the RL in a few ABs and TBs associated with the VOC analysis. The data were qualified as not detected and flagged "U" when the sample concentrations were less than five times (10 times for acetone) the concentrations detected in the blanks.

Laboratory Control Samples

LCS/LCSDs were analyzed as required and met all accuracy and precision criteria with the following exceptions:

The recovery for 1,1-dichloroethene was less than the lower control limit in one VOC LCS, indicating a possible low bias. The analyte was qualified as an estimated non-detected result and flagged "UJ" in the associated sample.

The recovery for 1,4-dioxane was less than the lower control limits in a few SVOC LCS/LCSDs, indicating a possible low bias. The data were qualified as estimated non-detected results and flagged "UJ" in the associated samples. In addition, dimethyl phthalate and isophorone were recovered greater than the upper control limits in a few LCSDs, indicating a possible high bias. The data were not qualified because the associated samples did not contain reportable levels of these analytes.

The relative percent differences (RPD) for benzoic acid and 2,4-dinitrophenol were greater than criteria in a few SVOC LCS/LCSDs. The data were not qualified because the associated samples did not contain reportable levels of these analytes.

Matrix Spike

MS/MSDs were analyzed as required and all accuracy and precision criteria were met with the following exceptions:

Carbon disulfide was recovered greater than the upper control limit in the VOC MS for sample MW02-082217, indicating a possible high bias. The analyte was qualified as estimated and flagged "J" in the parent sample.

The recovery of 1,4-dioxane was less than criteria in the SVOC MS/MSD for sample MW06-082517, indicating a possible low bias. The analyte was qualified as an estimated non-detect and flagged "UJ" in the parent sample.

The RPD for bromomethane exceeded criteria in the VOC MS/MSD for sample MW02-082217. The analyte was not qualified because the parent sample did not contain a reportable level of bromomethane.

The RPDs for multiple analytes exceeded criteria in the SVOC MS/MSD for sample MW06-082517. The data were not qualified because the parent sample did not contain reportable levels of these analytes.

Post Digestion Spikes

Post digestion spikes (PS) were analyzed as required and accuracy criteria were met.

Serial Dilutions

Serial dilutions were analyzed as required and acceptance criteria were met.

Internal Standards

Acceptance criteria were met.

Surrogates

Surrogates were added to the samples for the methods requiring their use and acceptance criteria were met with the following exception:

One surrogate was recovered less than the lower control limit in the PAH analysis for sample TW01-082417, indicating a possible low bias. The data were qualified as estimated non-detected results and flagged "UJ" in the sample.

Field Duplicates

FDs were collected and analyzed at the required frequency and precision acceptance criteria were met with the following exception:

The RPD for carbon disulfide exceeded criteria in FD pair PZ04-082317/ DUP-GW-082317-1. The data were qualified as estimated and flagged "J" in the FD pair.

Laboratory Duplicates

Laboratory duplicates were analyzed as required and precision criteria were met.

Interference Check Standards

Interference check standards were analyzed as required and all accuracy criteria were met.

Sample Quantitation

There were several instances where the RPD between the total/dissolved metals concentration exceeded criteria where the dissolved concentrations were greater than the total concentrations. The data were qualified as estimated and flagged "J" in the samples.

Tentatively Identified Compounds

Tentatively identified compounds were reported in the VOC and SVOC analyses to determine the presence/absence of the following analytes in the samples: epichlorohydrin, thioglycolic acid, dithiodiglycolic acid, mercaptopropionic acid, thiodipropionic acid, and dithiodipropionic acid. The library search did not identify these analytes in the samples.

Chain of Custody

Required procedures were followed and were free of errors.

Overall Assessment

The goal of this assessment is to demonstrate that a sufficient number of representative samples were collected and the resulting analytical data can be used to support the decision making process. The following summary highlights the PARCC findings for the above-defined events:

Precision of the data was verified through the review of the field and laboratory data quality indicators that include FD, LCS/LCSD, MS/MSD, laboratory duplicate and serial dilution RPDs. Precision was acceptable. There were a few instances where the precision indicators exceeded criteria; however, the data were not impacted. Also, carbon disulfide was qualified as estimated in two samples due to FD RPD issues. Data users should consider the impact to any result that is qualified as estimated as it may contain a bias which could affect the decision making process.

Accuracy of the data was verified through the review of the calibration data, LCS/LCSD, MS/MSD, post digestion spike, interference check standard, internal standard and surrogate recoveries, as well as the evaluation of method/field blank data. Accuracy was acceptable; however, a few compounds were qualified as estimated detected and non-detected results due to calibration, LCS/LCSD, MS/MSD, and/or surrogate issues. A few metals were qualified as estimated due to the dissolved concentration being greater than the total concentration. A few analytes were qualified as not detected in several samples due to ambient, method or trip blank contamination.

Representativeness of the data was verified through the sample's collection, storage and preservation procedures and the verification of holding-time compliance. Several samples were received with a pH above criteria for multiple analyses; however, the samples were adjusted by the laboratory and were not qualified. A few SVOC samples were re-extracted out of hold time, resulting in the data being qualified as estimated non-detected results. All other data were reported from analyses within the USEPA-recommended holding time.

Comparability of the data was ensured through the use of standard USEPA analytical procedures and standard units for reporting. Results obtained are comparable to industry standards in that the collection and analytical techniques followed approved, documented procedures.

Completeness is a measure of the number of valid measurements obtained in relation to the total number of measurements planned. Completeness is expressed as the percentage of valid or usable measurements compared to planned measurements. Valid data are defined as all data that are not rejected for project use. All data were considered valid. The completeness goal of 95 percent was met for all analyte/method combinations.

The data can be used for decision making taking into consideration the validation flags applied.

Table 3Qualified Data
2017 Groundwater Investigation, Dow Waterloo

2017 Groundwater mive				Final		
Sample ID	Method	Analyte	Units	Result	Final Flag	Reason
DUP-GW-082317-1	SW6010C	Iron	mg/L	0.0713	U	LB <rl< td=""></rl<>
DUP-GW-082317-1	SW8260C	1,1-Dichloroethene	ug/L	0.5	UJ	LCS <lcl< td=""></lcl<>
DUP-GW-082317-1	SW8260C	1,2-Dibromo-3-chloropropane	ug/L	1	UJ	CCV <lcl< td=""></lcl<>
DUP-GW-082317-1	SW8260C	2-Hexanone	ug/L	2.5	UJ	CCV <lcl< td=""></lcl<>
DUP-GW-082317-1	SW8260C	Acetone	ug/L	3.72	U	TB <rl, ab<rl<="" td=""></rl,>
DUP-GW-082317-1	SW8260C	Bromomethane	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
DUP-GW-082317-1	SW8260C	Carbon Disulfide	ug/L	14.3	J	FD>RPD
DUP-GW-082317-1	SW8260C	Chlorobenzene	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
DUP-GW-082317-1	SW8260C	Chloroform	ug/L	1.31	U	AB>RL
DUP-GW-082317-2	SW8260C	1,2-Dibromo-3-chloropropane	ug/L	1	UJ	CCV <lcl< td=""></lcl<>
DUP-GW-082317-2	SW8270D	1,4-Dioxane	ug/L	5.56	UJ	LCS <lcl, lcsd<lcl<="" td=""></lcl,>
DUP-GW-082317-2	SW8270D	Benzoic acid	ug/L	11.1	UJ	CCV <lcl< td=""></lcl<>
DUP-GW-082417	SW8260C	1,2-Dibromo-3-chloropropane	ug/L	1	UJ	CCV <lcl< td=""></lcl<>
MW02-082217	A5310C	Total Organic Carbon	mg/L	13.8	J	CCV>UCL
MW02-082217	SW8260C	1,2-Dibromo-3-chloropropane	ug/L	1	UJ	CCV <lcl< td=""></lcl<>
MW02-082217	SW8260C	Acetone	ug/L	3.23	U	TB <rl< td=""></rl<>
MW02-082217	SW8260C	Carbon Disulfide	ug/L	18.9	J	MS>UCL
MW02-082217	SW8260C	Chloroform	ug/L	1.07	U	AB>RL
MW05I-082417	SW8260C	Acetone	ug/L	2.85	U	TB <rl, ab<rl<="" td=""></rl,>
MW05I-082417	SW8260C	Bromomethane	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
MW05I-082417	SW8270D	1,4-Dioxane	ug/L	5	UJ	LCS <lcl, lcsd<lcl<="" td=""></lcl,>
MW05I-082417	SW8270D	Benzoic acid	ug/L	10	UJ	CCV <lcl< td=""></lcl<>
MW06-082517	SW8260C	Acetone	ug/L	2.52	U	TB <rl, ab<rl<="" td=""></rl,>
MW06-082517	SW8260C	Bromomethane	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
MW06-082517	SW8270D	1,4-Dioxane	ug/L	5.26	UJ	LCS <lcl, lcsd<lcl,="" ms<lcl,="" sd<lcl<="" td=""></lcl,>
MW06-082517	SW8270D	Benzoic acid	ug/L	10.5	UJ	CCV <lcl< td=""></lcl<>
MW06-082517	SW8270D	Biphenyl	ug/L	2.66	UJ	HTp>UCL
MW07-082517	SW6010C	Manganese	mg/L	0.254	J	D_MET>T_MET
MW07-082517	SW6010C	Manganese, dissolved	mg/L	0.296	J	D_MET>T_MET

Table 3Qualified Data
2017 Groundwater Investigation, Dow Waterloo

				Final		
Sample ID	Method	Analyte	Units	Result	Final Flag	Reason
MW07-082517	SW8260C	Acetone	ug/L	3.2	U	TB <rl< td=""></rl<>
MW07-082517	SW8260C	Bromomethane	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
MW07-082517	SW8270D	1,4-Dioxane	ug/L	5.32	UJ	LCS <lcl, lcsd<lcl<="" td=""></lcl,>
MW07-082517	SW8270D	Benzoic acid	ug/L	10.6	UJ	CCV <lcl< td=""></lcl<>
MW07-082517	SW8270D	Biphenyl	ug/L	2.84	UJ	HTp>UCL
MW09R-082317	SW8260C	1,2-Dibromo-3-chloropropane	ug/L	1	UJ	CCV <lcl< td=""></lcl<>
MW09R-082317	SW8260C	Acetone	ug/L	2.58	U	TB <rl, ab<rl<="" td=""></rl,>
MW09R-082317	SW8270D	1,4-Dioxane	ug/L	5.49	UJ	LCS <lcl, lcsd<lcl<="" td=""></lcl,>
MW09R-082317	SW8270D	Benzoic acid	ug/L	11	UJ	CCV <lcl< td=""></lcl<>
MW10-082517	SW6010C	Iron	mg/L	0.276	J	D_MET>T_MET
MW10-082517	SW6010C	Iron, dissolved	mg/L	1.85	J	D_MET>T_MET
MW10-082517	SW8260C	Acetone	ug/L	3.66	U	TB <rl, ab<rl<="" td=""></rl,>
MW10-082517	SW8260C	Bromomethane	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
MW10-082517	SW8270D	1,4-Dioxane	ug/L	5	UJ	LCS <lcl, lcsd<lcl<="" td=""></lcl,>
MW10-082517	SW8270D	Benzoic acid	ug/L	10	UJ	CCV <lcl< td=""></lcl<>
MW10-082517	SW8270D	Biphenyl	ug/L	2.5	UJ	HTp>UCL
MW11S-082317	SW6010C	Iron	mg/L	0.115	U	LB <rl< td=""></rl<>
MW16I-082417	SW8260C	1,2-Dibromo-3-chloropropane	ug/L	1	UJ	CCV <lcl< td=""></lcl<>
MW16I-082417	SW8260C	Acetone	ug/L	3.23	U	TB <rl, ab<rl<="" td=""></rl,>
MW17-082417	SW8260C	1,2-Dibromo-3-chloropropane	ug/L	1	UJ	CCV <lcl< td=""></lcl<>
MW18-082417	SW8260C	1,2-Dibromo-3-chloropropane	ug/L	1	UJ	CCV <lcl< td=""></lcl<>
MW18-082417	SW8260C	Acetone	ug/L	3.16	U	TB <rl, ab<rl<="" td=""></rl,>
MW19-082317	SW6020	Arsenic	mg/L	0.00445	J	D_MET>T_MET
MW19-082317	SW6020	Arsenic, dissolved	mg/L	0.011	J	D_MET>T_MET
MW19-082317	SW8260C	1,2-Dibromo-3-chloropropane	ug/L	1	UJ	CCV <lcl< td=""></lcl<>
MW19-082317	SW8260C	Acetone	ug/L	2.8	U	TB <rl, ab<rl<="" td=""></rl,>
MW19-082317	SW8270D	1,4-Dioxane	ug/L	5	UJ	LCS <lcl, lcsd<lcl<="" td=""></lcl,>
MW19-082317	SW8270D	Benzoic acid	ug/L	10	UJ	CCV <lcl< td=""></lcl<>
MW20-082517	SW6010C	Manganese	mg/L	0.0328	J	D_MET>T_MET

Table 3Qualified Data
2017 Groundwater Investigation, Dow Waterloo

2017 Groundwater III				Final		
Sample ID	Method	Analyte	Units	Result	Final Flag	Reason
MW20-082517	SW6010C	Manganese, dissolved	mg/L	0.125	J	D_MET>T_MET
MW20-082517	SW8260C	Acetone	ug/L	7.78	U	TB <rl, ab<rl<="" td=""></rl,>
MW20-082517	SW8260C	Bromomethane	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
MW20-082517	SW8270D	1,4-Dioxane	ug/L	5.05	UJ	LCS <lcl, lcsd<lcl<="" td=""></lcl,>
MW20-082517	SW8270D	Benzoic acid	ug/L	10.1	UJ	CCV <lcl< td=""></lcl<>
MW20-082517	SW8270D	Biphenyl	ug/L	2.63	UJ	HTp>UCL
MW21-082217	A5310C	Total Organic Carbon	mg/L	653	J	CCV>UCL
MW26-082417	SW8260C	Bromomethane	ug/L	0.5	UJ	CCV <lcl< td=""></lcl<>
MW31-082317	SW6020	Arsenic	mg/L	0.0212	J	D_MET>T_MET
MW31-082317	SW6020	Arsenic, dissolved	mg/L	0.0244	J	D_MET>T_MET
MW35-082217	A5310C	Total Organic Carbon	mg/L	4.03	J	CCV>UCL
MW36-082217	A5310C	Total Organic Carbon	mg/L	4.47	J	CCV>UCL
PZ04-082317	SW6010C	Iron	mg/L	0.0929	U	LB <rl< td=""></rl<>
PZ04-082317	SW8260C	1,2-Dibromo-3-chloropropane	ug/L	1	UJ	CCV <lcl< td=""></lcl<>
PZ04-082317	SW8260C	Acetone	ug/L	2.73	U	TB <rl, ab<rl<="" td=""></rl,>
PZ04-082317	SW8260C	Carbon Disulfide	ug/L	7.07	J	FD>RPD
PZ04-082317	SW8260C	Chloroform	ug/L	1.16	U	AB>RL
PZ06-082317	SW8260C	1,2-Dibromo-3-chloropropane	ug/L	1	UJ	CCV <lcl< td=""></lcl<>
PZ06-082317	SW8260C	Acetone	ug/L	14.1	U	TB <rl, ab<rl<="" td=""></rl,>
TW01-082417	SW8260C	1,2-Dibromo-3-chloropropane	ug/L	1	UJ	CCV <lcl< td=""></lcl<>
TW01-082417	SW8260C	Acetone	ug/L	3.89	U	TB <rl, ab<rl<="" td=""></rl,>
TW01-082417	SW8270DSIM	2-Methylnaphthalene	ug/L	0.0272	UJ	Sur <lcl< td=""></lcl<>
TW01-082417	SW8270DSIM	Acenaphthene	ug/L	0.0272	UJ	Sur <lcl< td=""></lcl<>
TW01-082417	SW8270DSIM	Acenaphthylene	ug/L	0.0272	UJ	Sur <lcl< td=""></lcl<>
TW01-082417	SW8270DSIM	Anthracene	ug/L	0.0272	UJ	Sur <lcl< td=""></lcl<>
TW01-082417	SW8270DSIM	Benzo (a) anthracene	ug/L	0.0272	UJ	Sur <lcl< td=""></lcl<>
TW01-082417	SW8270DSIM	Benzo (a) pyrene	ug/L	0.0272	UJ	Sur <lcl< td=""></lcl<>
TW01-082417	SW8270DSIM	Benzo (b) fluoranthene	ug/L	0.0272	UJ	Sur <lcl< td=""></lcl<>
TW01-082417	SW8270DSIM	Benzo (g,h,i) perylene	ug/L	0.0272	UJ	Sur <lcl< td=""></lcl<>

Table 3Qualified Data
2017 Groundwater Investigation, Dow Waterloo

				Final		
Sample ID	Method	Analyte	Units	Result	Final Flag	Reason
TW01-082417	SW8270DSIM	Benzo(k)fluoranthene	ug/L	0.0272	UJ	Sur <lcl< td=""></lcl<>
TW01-082417	SW8270DSIM	Chrysene	ug/L	0.0272	UJ	Sur <lcl< td=""></lcl<>
TW01-082417	SW8270DSIM	Dibenzo (a,h) anthracene	ug/L	0.0272	UJ	Sur <lcl< td=""></lcl<>
TW01-082417	SW8270DSIM	Fluoranthene	ug/L	0.0272	UJ	Sur <lcl< td=""></lcl<>
TW01-082417	SW8270DSIM	Fluorene	ug/L	0.0272	UJ	Sur <lcl< td=""></lcl<>
TW01-082417	SW8270DSIM	Indeno (1,2,3-c,d) pyrene	ug/L	0.0272	UJ	Sur <lcl< td=""></lcl<>
TW01-082417	SW8270DSIM	Naphthalene	ug/L	0.0272	UJ	Sur <lcl< td=""></lcl<>
TW01-082417	SW8270DSIM	Phenanthrene	ug/L	0.0272	UJ	Sur <lcl< td=""></lcl<>
TW01-082417	SW8270DSIM	Pyrene	ug/L	0.0272	UJ	Sur <lcl< td=""></lcl<>

Validation Reasons:

AB<RL The analyte was detected in the ambient blank at a concentration less than the reporting limit

AB>RL The analyte was detected in the ambient blank at a concentration greater than the reporting limit

CCV<LCL Continuing calibration verification recovery was less than criteria
CCV>UCL Continuing calibration verification recovery was greater than criteria

D MET>T MET Dissolved concentration greater than total concentration

FD>RPD The relative percent difference exceeded control limits in the field duplicate pair.

HTp>UCL The preparatory hold time criteria was exceeded

LB<RL The analyte was detected in the method blank at a concentration less than the reporting limit

LCS<LCL The laboratory control sample recovery was less than the lower control limit

LCSD<LCL The laboratory control sample duplicate recovery was less than the lower control limit

MS<LCL The matrix spike recovery was less than the lower control limit

MS>UCL The matrix spike recovery was greater than the upper control limit

SD<LCL The matrix spike duplicate recovery was less than the lower control limit

Sur<LCL The surrogate recovery was less than the lower control limit

TB<RL The analyte was detected in the trip blank at a concentration less than the reporting limit