

Memorandum

299 Madison Avenue Morristown, NJ 07960 www.jacobs.com

Subject	February 2018 to January 2019 SWMU 1 Landfill Gas Monitoring Technical Memorandum, Former Hampshire Chemical Corp. Facility, Waterloo, New York
Attention	Former Hampshire Chemical Corp.
From	Jacobs Engineering Group Inc.
Date	August 2019
Project Number	DWWAT002

1. Introduction

This technical memorandum reports the results of landfill gas monitoring conducted at the Former Hampshire Chemical Corp. (HCC) Facility Solid Waste Management Unit 1 (SWMU 1) in Waterloo, New York (site). The landfill gas monitoring activities were performed from February 2018 to January 2019 using four shallow landfill gas monitoring wells and six groundwater monitoring wells. The site is regulated under Title 6 of the New York Code of Rules and Regulations (NYCRR) Part 373 and the Resource Conservation and Recovery Act (RCRA), with the New York State Department of Environmental Conservation as the lead agency. RCRA facility investigations (RFIs) have been performed at the facility since 1993 to evaluate the nature and extent of releases to the environment.

This investigation was conducted as a supplement to SWMU 1 corrective measures completed in November 2016. This investigation was conducted to evaluate whether methane and other common landfill gases are present at the boundary of and within the subsurface of the former landfill. The findings of this investigation will be used to evaluate the need for further methane monitoring, mitigation, and/or corrective measures at SWMU 1.

2. Background

The site is located at 228 East Main Street in Waterloo, New York, on property currently occupied by Evans Chemetics, which operates a chemical manufacturing facility. Figure 1 shows the site location relative to New York State and the Village of Waterloo. SWMU 1 is in the southwestern corner of the facility property; bounded to the east by the facility, to the south by the Seneca-Cayuga Canal (canal), to the west by East Water Street, and to the north by the Seneca-Cayuga Canal Raceway (raceway). An asphalt road accesses the facility on the western side near East Water Street and crosses over SWMU 1. Figure 2 shows the location features within and surrounding SWMU 1, including roads, the canal, the raceway, monitoring wells, and the area of concern boundary.

Sanborn fire insurance maps of the site indicate the area along the western side of SWMU 1 and near some of the historical raceways was identified as the Village of Waterloo Dump as early as October 1918. The RCRA Facility Assessment Report (A.T. Kearney 1993) indicates the former Village of Waterloo Dump was probably in operation at the western edge of the site until 1951 (O'Brien and Gere Engineers, Inc. 2003). This suggests an operation period for the dump of at least 33 years, during which the Village of Waterloo placed debris, soil, and refuse in this area.

The 1964 Sanborn map for the facility shows that the canal and raceways were filled to the western edge of the old lock, and the area is identified as the Village of Waterloo Dump (O'Brien and Gere Engineers, Inc. 2003). As indicated by facility personnel, additional material was placed over the filled former raceways in the early 1980s that was derived from soil excavated during facility construction projects, mainly the wastewater treatment plant at the site.

3. **Previous Investigations and Corrective Measures**

Test pitting conducted during previous environmental investigations at SWMU 1 have identified various municipal waste fill, including glass and plastic fragments, scrap metal, ash, ceramics, shoes, brake pads, copper wire, and vehicle tires. Construction debris, including cobbles, bricks, wood, and metal scrap, also was identified in the test pitting. Intact bottles, both empty and containing liquids, also have been identified in test pits located near the access roadway as well as down along the right-of-way near the canal (CH2M HILL Engineers, Inc. [CH2M] 2006, 2009). The results of the test pit excavations show that fill materials extend onto the canal right-of-way in the area. From that investigation, it has been estimated that approximately 2,500 cubic yards of fill material are present within the canal right-of-way (CH2M 2009).

A soil vapor investigation was conducted within the vicinity of SWMU 1 in December 2007 as part of the RFI Addendum (CH2M 2008). Soil vapor data collected at two locations, SGP-9 and SGP-10, and within the boundary of SWMU 1 were compared to historical SWMU 1 soil and groundwater data to evaluate if the reported soil vapor volatile organic compounds (VOCs) were related to site activities and a subsurface release. The constituents detected in the soil vapor samples historically were not detected in nearby monitoring wells. Based on data evaluation and a review of multiple lines of evidence, it was concluded that none of the reported VOCs in SWMU 1 soil vapor are likely to present a vapor intrusion concern; however, methane was not analyzed during the 2007 soil vapor investigation.

A survey of methane concentrations in six SWMU 1 groundwater monitoring wells was conducted in October and November 2012 (CH2M 2013). Methane was not detected at levels above 0.1 percent by volume (Vol%) during the 2012 survey.

Between September and November 2016, corrective measures were undertaken by HCC at the SWMU 1 landfill. These activities are detailed in the *SWMU 1 Corrective Measures Construction Completion Report* (CH2M 2017) and included the construction of an engineered landfill cap, decommissioning of some groundwater monitoring wells, paving, and site restoration activities.

Beginning in December 2016, elevated concentrations of methane were detected in SWMU 1 monitoring wells MW-17 and TW-01 during wellhead screening conducted as part of a long-term groundwater monitoring event depth-to-water survey. Further details regarding previous environmental and geotechnical investigations conducted at SWMU 1 are in the RFI and RFI Addendum and technical memorandums (CH2M 2006, 2008, 2009, 2012).

4. Landfill Gases

Landfill gas, if present, will be mostly comprised of methane and carbon dioxide by volume, but also can consist of smaller amounts of other gases. Three principal subsurface processes can create landfill gases, including bacterial decomposition, volatilization, and chemical reactions. Waste characteristics and composition and other environmental factors will influence the rate and volume of landfill gas produced at a landfill (Agency for Toxic Substances and Disease Registry [ATSDR] 2001). In general, the more organic material that is buried in the landfill, the more landfill gas will be produced by bacterial decomposition. Organic landfill waste will decompose by bacteria through phases as the subsurface transitions from aerobic to anaerobic conditions. Methane is only produced in the subsurface when oxygen is no longer present since methanogenic bacteria (methane producing) are generally only active under anaerobic conditions (ATSDR 2001).

In addition, the age of the buried waste material also will affect landfill gas production. Waste that has been buried more recently (less than 10 years) generally will produce more landfill gases than waste that is older (buried more than 10 years) (ATSDR 2001). Maximum gas production for organic waste materials through bacterial decomposition, volatilization, or chemical reactions is generally 5 to 7 years after the waste has been buried. Based upon documentation of when waste materials were last disposed in SWMU 1 (early 1950s according to the RCRA Facility Assessment Report [A.T. Kearney 1993]), the waste has been buried for more than 60 years. Additionally, during the 2012 survey methane sampling found concentrations of 0.1 Vol%.

5. Screening Criteria

The lower explosive limit (LEL) for methane is 5% (methane by volume in air at standard temperature and pressure). Following the requirements discussed in Title 6, NYCRR Section 360-2.17(f), the concentration of methane at the property boundary of a sanitary landfill is not to exceed the LEL. Therefore, the LEL of 5% (methane by volume) was used for the screening criteria for the survey.

6. Field Activities

Between February 2018 and January 2019, a field investigation to monitor the concentrations of landfill gases at SWMU 1 was performed. Work associated with this investigation included installing four shallow landfill gas monitoring probes, outfitting five existing groundwater monitoring wells with vapor sampling expansion plugs, and collecting measurements of headspace gases at nine locations. Figure 2 shows the locations of the four landfill gas monitoring probes and five groundwater monitoring wells associated with SWMU 1 that were included in this study. This section discusses the investigative methods used during this effort.

6.1 Landfill Gas Probe Installation

During February 2018, four landfill gas monitoring probes were installed near the perimeter of SWMU 1 to determine if landfill gases, particularly methane, may be migrating offsite. Three of these probes were located along the western boundary of SWMU 1, east of East Water Street and adjacent structures (Figure 2). One probe was located at the southeastern corner of SWMU 1.

6.1.1 Underground Utility Clearance

Dig Safely New York was notified of the forthcoming intrusive activities associated with the landfill gas probe installation at least 2 business days before commencing work. A third-party utility locating service verified the absence of underground utilities at each proposed boring location. Technicians from New York Leak Detection of Jamesville, New York, inspected proposed work areas for surficial evidence of buried facilities, followed by a survey with electromagnetic locating equipment and ground-penetrating radar on February 6, 2018. Permanent or semi-permanent means were used to mark an area free of underground obstructions before advancing each point. The utility location activities were overseen by Jacobs Engineering Group Inc. (Jacobs) field staff.

6.1.2 Soil Borings and Sampling

Drilling activities were conducted on February 7, 2018, by Parratt-Wolff, Inc. of Syracuse, New York, with oversight by a Jacobs geologist. Soil borings were advanced to 7 feet below ground surface (bgs) at four locations (GP-01, GP-02, GP-03, and GP-04) using a Geoprobe direct-push drill rig. Discrete soil samples were collected for visual-manual characterization and VOC screening with a 2.25-inch-diameter by 48-inch-long Macro-Core MC5 Soil Sampler lined with an acetate sleeve. The supervising geologist completed soil boring logs describing the soil type, apparent grain size, color, odor, plasticity, consistency, density, moisture, and any other notable characteristics. In addition to visual-manual characterization, a photoionization detector was used to measure soil VOC concentrations at approximately 1-foot intervals from each boring location. After soil sampling to 7 feet bgs by direct-push drilling, the boring was over-drilled with hollow-stem augers to 7 feet bgs, resulting in a final borehole measuring 5 inches in diameter. Boring logs are included in Attachment 1.

6.1.3 Well Construction and Surveying

Landfill gas monitoring probes were installed in each 5-inch-diameter borehole using 5 to 7 feet of 1-inchdiameter Schedule 40 polyvinyl chloride riser casing and 2 feet of 0.010-inch factory mill-slotted well screen. A #0 clean quartz sand was placed to a depth of 1 foot above the top of the screen followed by a bentonite seal, consisting of 3/8-inch coarse-grained bentonite chips, and a Portland cement grout. The surface completion of GP-01 and GP-04 included an approximately 1.5-foot-tall aboveground steel monument with a locking cover and a concrete pad. GP-02 and GP-03 were completed in 8-inchdiameter flush-mounted road boxes. Attachment 2 contains the construction reports for the landfill gas monitoring probes.

Because the boreholes were advanced without the use of drilling fluids and the wells were completed above the water table, well development was not conducted.

The landfill gas monitoring probe locations were referenced horizontally using latitude and longitude measurements collected with a Trimble GeoXH global positioning handheld computer capable of sub-foot accuracy. Coordinates for each location are included in the construction reports presented in Attachment 2.

6.1.4 Investigative-Derived Waste

Soil cuttings and other investigative-derived waste generated during the February 2018 SWMU 1 drilling activities were containerized in steel 55-gallon drums and transported to a secure onsite secondary containment area for subsequent disposal. One sample was collected from the soil cuttings for waste disposal purposes on February 8, 2018 and shipped under chain-of-custody to Eurofins Lancaster Laboratories in Lancaster, Pennsylvania, for analysis. On February 25, 2019, Veolia removed the soil cuttings for offsite disposal as nonhazardous waste.

6.1.5 Headspace Gas Sampling Expansion Plug Installation

Expansion plugs designed for extracting gas samples from the riser pipe (headspaces) were installed in the four landfill gas monitoring probes (GP-01 to GP-04) and five groundwater monitoring wells (MW-16I, MW-17, MW-18, MW-26, and TW-01) associated with SWMU 1. The EnviroDesign Products extractor plugs incorporate a normally closed male poppet valve (headspace sampling valve), which is opened when a mating female quick-connect fitting (instrument quick-connect fitting) is attached.

6.2 February 2018 to January 2019 SWMU 1 Monitoring

Eight landfill gas monitoring events were conducted at SWMU 1 between February 2018 and January 2019, including six monthly monitoring events from February to July 2018 and quarterly events in October 2018 and January 2019. Headspace field screening logs are included in Attachment 3. The following subsections describe the SWMU 1 monitoring field procedures.

6.2.1 Well Headspace Differential Pressure Measurements

The first measurement collected from the landfill gas monitoring points was the pressure differential between the atmosphere and well headspace (differential pressure). Differential pressure measurements were made using an Alnor EBT730 micromanometer attached to the instrument quick-connect fitting by a short length of low-density polyethylene (LDPE) tubing. Table 1 lists the differential pressure ranges.

6.2.2 Well Headspace Volume Determination

The headspace volume of each landfill gas monitoring point was calculated to determine the volume of gas to purge before recording screening measurements. For the shallow landfill gas monitoring probes (GP-01 to GP-04), the headspace volume was fixed and did not vary between monitoring events; however, the headspace volume of the groundwater monitoring wells fluctuated with changes in groundwater elevations. Table 2 lists the headspace volume calculations and depth-to-water

measurements for SWMU 1 groundwater monitoring wells. Figure 2 is the hydrographs of groundwater elevations at the five groundwater monitoring wells, and Table 3 summarizes the well construction information for the SWMU 1 groundwater monitoring wells.

6.2.3 Landfill Gas Measurements

Measurements of carbon monoxide (parts per million), carbon dioxide (Vol%), hydrogen sulfide (parts per million), the LEL (Vol% calibrated to methane), and methane (Vol%) were made using a Landtec GEM 2000 Plus or GEM 5000 landfill gas meter. The landfill gas meter's sample inlet port was attached to the instrument quick-connect fitting by a short length of vinyl tubing. Gas samples began flowing to the landfill gas meter when the instrument quick-connect fitting was attached to the headspace sampling valve.

During the February and March 2018 monitoring events, all monitoring locations were purged at a nominal rate of 0.25 liter per minute using the internal pump of the GEM 2000 Plus landfill gas meter. Measurements from the landfill gas meter were recorded when concentrations stabilized for approximately 1 minute. Next, the landfill gas meter was disconnected, and a MiniRAE 3000 photoionization detector was attached to the well sampling valve by a short length of LDPE tubing to measure total VOC concentrations. Finally, a VRAE or RKI 6000 was attached to the well sampling valve to measure sulfur dioxide concentrations. Table 1 and Figure 4 present the landfill gas screening results, and Tables 2 and 4 contain the headspace purge data.

To decrease the purge times at groundwater monitoring wells, a trial was conducted in April 2018 to establish the viability of purging at least one headspace volume at a higher rate using an SKC Universal Air Sampling Pump. Table 4 lists the data collected during the April 2018 trial. It was found that the groundwater monitoring wells could be purged at a rate of 0.5 to 1.0 liter per minute using a standalone air sampling pump without drawing excessive vacuum or affecting final/stable gas concentrations. During subsequent monitoring events, the landfill gas probes (GP-01 to GP-04) were purged using the landfill gas meter's internal pump, and the groundwater monitoring wells (MW-16I, MW-17, MW-18, MW-26, and TW-01) were purged using air sampling pumps (Table 2).

Deviations from the landfill gas measurements procedures include:

- MW-26 was not monitored during February 2018 because it was buried beneath a snowbank.
- GP-03 was not monitored during March and May 2018 because water in the probe was drawn into the pump.
- GP-03 was not monitored during January 2019 because it was buried beneath a snowbank.

All instruments were calibrated daily according to the manufacturer's instructions, with calibration information recorded on data sheets.

7. Results and Discussion

Screening of landfill gas concentrations was conducted at nine monitoring points associated with SWMU 1 on eight occasions between February 2018 and January 2019. Table 1 summarizes the screening data. Except for GP-03, methane was detected in headspace samples from the SWMU 1 monitoring locations (Table 1, Figures 4 and 5) at concentrations up to 11.9 Vol% (TW-01). Methane was detected at the following concentrations during the reporting period:

- At GP-01, GP-02, MW-16I, and MW-26, methane was detected at concentrations above the GEM's detection limit (0.1 Vol%) and below 1 Vol%.
- At GP-04 and MW-18, methane was detected at concentrations between 1 and 5 Vol%.
- At MW-17 and TW-01, the screening limit for methane of 5 Vol% (100% of the LEL for methane) was exceeded during several monitoring events (Figure 6).
- At GP-03, methane was not detected during the reporting period.

Carbon dioxide and oxygen measurements are plotted on Figures 7 and 8, respectively. In general, methane concentrations appear to correlate positively with carbon dioxide concentrations and have an inverse relationship to oxygen concentrations.

Table 1 lists the concentrations of total VOCs, carbon monoxide, hydrogen sulfide, and sulfur dioxide. These gases were not detected at significant levels from the SWMU 1 landfill gas monitoring locations during the reporting period.

Groundwater elevations observed at the SWMU 1 monitoring wells (MW-16I, MW-17, MW-18, MW-26, and TW-01) are plotted along with methane concentrations and well screen intervals on Figure 9. There is no apparent relationship between changes in groundwater elevations and methane concentrations during the reporting period. Except for MW-16I, the observed groundwater elevations were generally within the screened intervals of the monitoring wells such that a portion of the perforated casing was unsaturated and exposed to formation gases. However, it should be noted that both MW-17 and TW-01 have the longest screened interval (10 feet) with the most consistently unwetted surface area of the landfill gas monitoring points (Figure 9), and they have the highest observed methane concentrations.

Figure 10 shows methane concentrations at SWMU 1 plotted against daily minimum and maximum air temperatures. Air temperature data were collected at the Geneva Research Farm weather station (Global Historical Climatology Network station ID USC00303184) (National Oceanic and Atmospheric Administration 2019) approximately 9 miles west of the site in Geneva, New York. A positive correlation between ambient air temperature and methane concentrations may exist for GP-04 and MW-17. The effects of air temperature on methane concentrations, if any, are less apparent for other locations.

8. Conclusions

The following conclusions are based on the results of this investigation:

- The presence of methane in SWMU 1 groundwater monitoring wells was not identified before December 2016. Methane may be accumulating beneath the SWMU 1 landfill cap completed in November 2016.
- The concentrations of methane at shallow landfill gas monitoring probes (GP-01, GP-03, and GP-04) along the western boundary of SWMU 1 are well below the LEL or below instrument detection limits.
- Concentrations of methane above 1 Vol% were detected at monitoring locations in the southwestern quadrant of SWMU 1 (GP-04, MW-17, MW-18, and TW-01).
- The nearest potential methane receptors along the western site boundary are occupied structures located west of East Water Street. Based on data collected to date, there is no risk to offsite receptors west of SWMU 1, given that methane concentrations do not exceed screening levels (the LEL for methane) along the western landfill boundary.
- Methane was detected at concentrations above the LEL in the headspaces of two SWMU 1 groundwater monitoring wells (MW-17 and TW-01) in the south-central area of SWMU 1.
- No identified potential methane receptors are along the southern landfill boundary. Features present south of SWMU 1 include the canal and unoccupied land owned by HCC. Based on data collected to date, there is no risk to offsite receptors south of SWMU 1.

9. Recommendations

The following recommended action will be conducted during 2019:

 Two additional landfill gas monitoring events will be conducted at SMWU 1 during the summer and fall of 2019 to evaluate methane concentrations using the same techniques and monitoring locations described in this reporting period.

10. References

Agency for Toxic Substances and Disease Registry (ATSDR). 2001. *Landfill Gas Primer: An Overview for Environmental Health Professionals*. Department of Health and Human Services. Division of Health Assessment and Consultation. November.

A.T. Kearney. 1993. RCRA Facility Assessment Report, Hampshire Chemical Corporation (formerly W.R. Grace), Waterloo, New York. May.

CH2M HILL Engineers, Inc. (CH2M). 2006. RCRA Facility Investigation Report, Evans Chemetics Facility, Waterloo, New York. May.

CH2M HILL Engineers, Inc. (CH2M). 2008. *RCRA Facility Investigation Report Addendum, Former Hampshire Chemical Corp., Waterloo, New York.* November, revised February 2010.

CH2M HILL Engineers, Inc. (CH2M). 2009. *Final Technical Memorandum Work Plan – Visual Subsurface Investigation at the Former Village of Waterloo Dump Site (SWMU 1) Former Hampshire Chemical Corp Facility, Waterloo New York.* December.

CH2M HILL Engineers, Inc. (CH2M). 2012. 2011 SWMU 1 Investigation Report, Former Hampshire Chemical Corp. Facility, Waterloo, New York. April.

CH2M HILL Engineers, Inc. (CH2M). 2013. SWMU 1 Methane Survey, Former Hampshire Chemical Corp. Facility, Waterloo, New York. July.

CH2M HILL Engineers, Inc. (CH2M). 2017. SWMU 1 Corrective Measures Construction Completion Report, Former Hampshire Chemical Corp., Waterloo, New York. July.

National Oceanic and Atmospheric Administration. 2019. Global Historical Climatology Network, Station USC00303184. https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/stations/GHCND:USC00303184/detail.

O'Brien & Gere Engineers, Inc. 2003. Sampling Visit Report, RCRA Facility Assessment, Hampshire Chemical Corporation Facility, Waterloo, New York. September.

Tables

Table 1. Screening Measurements for SWMU 1 Landfill Gas Monitoring LocationsFebruary 2018 to January 2019 SWMU 1 Landfill Gas Monitoring ReportFormer Hampshire Chemical Corp. Facility, Waterloo, New York

Monitoring Date	Location	Differential Pressure Range	VOC (ppm)	Methane (%vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulfide (ppm)	Carbon Dioxide (%)	Oxygen (%)	Sulfur Dioxide (ppm)
	GP-01	0.01		0.1	2	5	0	6.5	19	
	GP-02	0.01		0.0	0	3	0	0.1	17.5	
	GP-03	0.01		0.0	0	0	0	2.0	20	
	GP-04	-0.02		0.4	5	0	0	7.4	6.6	
2/8/2018	MW-16I	0.01		0	2	0	0	0.0	20.8	
	MW-17	0.01		2.3	48	0	0	11.7	0.2	
	MW-18	0.01		0.0	0	0	0	1.0	19.6	
	MW-26									
	TW-01	0.01		6.0	>100	0	0	7.8	7.8	
	GP-01	0.00625 - 0.023	0.3	0.0	0	0	0	8.3	6.4	0
	GP-02	0.00492 - 0.01472	0.5	0.0	0	5	0	2.6	13.4	0
	GP-03 ^a	0.0154 - 0.0615								
	GP-04	0.00419 - 0.0134	0.2	0.9	18	0	0	9.3	0.9	0
3/22/2018	MW-16I	0.057 - 0.0898	0.1	0.0	0	0	0	0.1	21.5	0
	MW-17	0.045 - 0.0839	0.0	3.4	68	0	0	9.5	2.2	0
	MW-18	0.00541 - 0.0213	0.2	0.4	9	2	0	6.8	1.2	0
	MW-26	0.00267 - 0.01205	0.2	0.0	0	0	0	2.7	17.2	0
	TW-01	0.00325 - 0.02286	0.0	6.7	>100	0	0	7.1	6.3	0
	GP-01	0.00342 - 0.01367	0.4	0.1	2	0	0	9.3	1.9	
	GP-02	0.00044 - 0.00233	0.2	0.0	0	0	0	2.3	16.5	
	GP-03 ^a									
	GP-04	0.00985 - 0.01754	0.2	1.3	27	0	0	9.4	0.0	
4/12/2018	MW-16I	0.0157 - 0.0243	0.2	0.1	2	0	0	0.5	20.4	
	MW-17	0.001255 - 0.0045	0.0	4.1	83	0	0	10.1	0.0	
	MW-18	0.0155 - 0.0312	0.0	3.1	62	0	0	7.1	0.0	
	MW-26	0.00154 - 0.0031	0.3	0.0	0	0	0	3.3	16.1	
	TW-01	-0.00033 - 0.00018	0.1	0.1	2	0	0	0.3	20.6	
	GP-01	0.002 - 0.003	0.0	0.0	0	0	0	11.4	1.8	0
	GP-02	0.001 - 0.12	0.2	0.0	0	0	0	3.8	9.6	0
	GP-03	0.0184 - 0.0249	0.0	0.0	0	23	0	0.0	20.9	0
	GP-04	0.0069 - 0.0077	0.1	1.2	24	0	0	10.4	0.3	0
5/18/2018	MW-16I	-0.6950.66	0.0	0.0	0	0	0	0.0	20.9	0
	MW-17	-0.0120.008	0.0	4.8	96	0	0	9.0	0.3	0
	MW-18	0.00259 - 0.0144	0.0	1.3	26	0	0	6.2	6.2	0
	MW-26	0.0044 - 0.021	0.0	0.0	0	0	0	5.9	8.0	0
	TW-01	0.004 - 0.011	0.0	0.3	7	0	0	0.5	19.7	0
	GP-01	-0.0240.006	0.0	0.0	0	0	0	14.4	1.8	0
	GP-02	-0.01020.0062	0.0	0.0	0	0	0	7.2	0.6	0
	GP-03	-0.00430.0012	0.0	0.0	0	0	0	0.0	7.1	0
	GP-04	0.0033 - 0.0092	0.0	1.3	25	0	0	12.4	0	0
6/28/2018	MW-16I	0.0073 - 0.021	0.0	0.0	0	0	0	0.1	20.2	0
	MW-17	0.0083 - 0.0104	0.0	5.7	>100	0	0	10.2	0	0
	MW-18	0.005 - 0.0068	0.1	0.3	6	0	0	12.6	0.4	0
	MW-26	0.0091 - 0.0123	0.0	0.0	0	0	0	9.8	5.3	0
	TW-01	0.0126 - 0.041	0.0	8.0	>100	0	0	9.3	3.2	0

Table 1. Screening Measurements for SWMU 1 Landfill Gas Monitoring LocationsFebruary 2018 to January 2019 SWMU 1 Landfill Gas Monitoring Report

Former Hampshire Chemical Corp. Facility, Waterloo, New York

Monitoring Date	Location	Differential Pressure Range	VOC (ppm)	Methane (%vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulfide (ppm)	Carbon Dioxide (%)	Oxygen (%)	Sulfur Dioxide (ppm)
	GP-01	0.00582 - 0.021	0.2	0.2	4	0	0	17.1	1.4	0
	GP-02	-0.00271 - 0.0009	2.5	0.0	1	0	0	9.4	1	0
	GP-03	-0.00017 - 0.00095	0.0	0.0	0	0	0	12.4	10.6	0
	GP-04	-0.02270.0101	0.0	2.2	44	0	0	14.0	1.3	0
7/31/2018	MW-16I	0.0338 - 0.0634	0.0	0.0	0	0	0	0.0	21	0
	MW-17	0.00342 - 0.038	0.0	7.3	>100	1	0	12.0	0.8	0
	MW-18	-0.00678 - 0.00309	0.0	1.0	20	0	0	10.7	1.4	0
	MW-26	-0.00182 - 0.0005	0.0	0.0	0	0	0	12.8	1.7	0
	TW-01	-0.00115 - 0.00592	0.0	0	0	0	0	0.1	20.7	0
	GP-01	-0.006120.0006	0.2	0.0	1	2	0	14.0	1.7	0.2
	GP-02	0.00098 - 0.00762	0.0	0.0	0	0	0	7.6	3.6	0
	GP-03	-0.003280.00175	0.0	0.0	0	0	0	8.9	14.5	0
	GP-04	0.00172 - 0.00607	0.0	2.2	32	0	0	11.5	1.6	0.2
10/19/2018	MW-16I	0.0761 - 0.0808	0.0	0.0	0	0	0	0.1	21.3	0
	MW-17	-0.00046 - 0.00445	0.0	8.4	>100	0	0	13.2	0.7	0
	MW-18	-0.00432 - 0.012	0.0	2.2	27	0	0	9.6	1.5	0
	MW-26	-0.0037 - 0.00144	0.0	0.0	0	0	0	9.1	10.7	0
	TW-01	-0.0009 - 0.00798	0.0	8.6	>100	0	0	11.0	3.9	0.1
	GP-01	-0.00362 - 0.00032	0.1	0.1	3	0	0	0.0	18.6	0
	GP-02	-0.00762 - 0.00261	0.0	0.1	2	0	0	3.1	18	0
	GP-03 ^b									
	GP-04	-0.0111 - 0.00867	0.0	0.1	3	0	0	8.7	4	0
1/16/2019	MW-16I	-0.1570.121	0.0	0.2	4	0	0	0.5	21.4	0
	MW-17	0.0163 - 0.0318	0.0	5.0	>100	0	0	12.2	0.4	0
	MW-18	-0.01550.00732	0.1	1.7	34	0	0	5.5	0	0
	MW-26	-0.00162 - 0.0806	0.0	0.1	2	0	0	2.7	20.2	0
	TW-01	-0.06310.0091	0.0	11.9	>100	0	0	11.6	2.8	0

Notes

5

a) Landfill gas probe GP-03 was flooded.

b) Landfill gas probe GP-03 could not be located below snow bank.

"--" - not measured or not applicable

%vol - percent by volume

LEL - lower explosive limit

VOC - volatile organic compound

ppm - parts per million

bold and shaded results are greater than or equal to 5% methane by volume (100% of the lower explosive limit).

 Table 2. Purging Data for SWMU 1 Landfill Gas Measurements

 February 2018 to January 2019 SWMU 1 Landfill Gas Monitoring Report

 Former Hampshire Chemical Corp. Facility, Waterloo, New York

		Well Screen	Casing	Headspace Length/Depth to Water ^a (foot)	Headspace Volume	Purge Time	Purge Rate	Volume Purged		
Monitoring	Location	Interval (feet bgo)	Diameter		0.170	(initiates)	(IIIE/IIIII) D		Purge	Notoo
Date	GP-01	(leer bys)	(Inches)	83	1.4	7.0	250	1.8	wethou	NOLES
	GP-02	1		7.0	1.2	6.0	250	1.5		
	GP-03	5 -7	1	7.0	1.2	5.0	250	1.3		
	GP-04	1		8.3	1.4	7.0	250	1.8		
2/8/2018	MW-16I	30.5 - 35.5		26.89	17.7	20.0	250	5.0	GEM 2000+	Purged until readings stabilized
	MW-17	15.6 - 25.6		22.95	15.1	33.0	250	8.3		Purged until readings stabilized
	MW-18	6.1 - 12.1	2	12.23	8.1	10.0	250	2.5		Purged until readings stabilized
	MW-26	4.2 - 14.2				10.0	250	2.5		Purged until readings stabilized
	TW-01	9.4 - 19.9		17.45	11.5	20.0	250	5.0		Purged until readings stabilized
	GP-01			8.3	1.4	5.2	250	1.3		
	GP-02	1		7.0	1.2	4.7	250	1.2		
	GP-03	5 -7	1	7.0	1.2					water purged from gas probe
	GP-04	1		8.3	1.4	5.2	250	1.3		
3/22/2018	MW-16I	30.5 - 35.5		26.31	17.4	20.0	250	5.0	GEM 2000+	Purged until readings stabilized
	MW-17	15.6 - 25.6		22.66	15.0	33.3	250	8.3		Purged until readings stabilized
	MW-18	6.1 - 12.1	2	8.30	5.5	10.0	250	2.5		Purged until readings stabilized
	MW-26	4.2 - 14.2		8.30	5.5	10.0	250	2.5		Purged until readings stabilized
	TW-01	9.4 - 19.9		17.96	11.9	20.0	250	5.0		Purged until readings stabilized
	GP-01			8.3	1.4	8.0	250	2.0		
	GP-02	1		7.0	1.2	8.0	250	2.0		
	GP-03	5 -7	1	7.0	1.2				GEM 2000+	water purged from gas probe
	GP-04	t		8.3	1.4	8.0	250	2.0		
4/12/2018	MW-16I	30.5 - 35.5		24.95	16.5		1	1		
	MW-17	15.6 - 25.6		22.35	14.8					
	MW-18	6.1 - 12.1	2	12.05	8.0		See Table 4		air sampling	
	MW-26	4.2 - 14.2		11.64	7.7				pump	
	TW-01	9.4 - 19.9		17.71	11.7					
	GP-01			8.3	1.4	2.2	550	1.2		
	GP-02	1		7.0	1.2	2.5	600	1.5		
	GP-03	5-/	1	7.0	1.2	2.0	600	1.2		
	GP-04	İ		8.3	1.4	2.7	600	1.6		
5/18/2018	MW-16I	30.5 - 35.5		25.72	17.0	28.3	600	17.0	air sampling	
	MW-17	15.6 - 25.6	1	22.25	14.7	25.0	600	15.0	pump	
	MW-18	6.1 - 12.1	2	12.23	8.1	16.0	600	9.6		
	MW-26	4.2 - 14.2		11.55	7.6	12.7	600	7.6		
	TW-01	9.4 - 19.9	1	17.76	11.7	19.5	600	11.7		
	GP-01			8.3	1.4	4.0	500	2.0		
	GP-02	57	1	7.0	1.2	3.0	500	1.5		
	GP-03		'	7.0	1.2	3.0	500	1.5		
	GP-04			8.3	1.4	4.0	500	2.0	- in	
6/28/2018	MW-16I	30.5 - 35.5		26.55	17.5	18.0	1000	18.0	air sampling	
	MW-17	15.6 - 25.6		22.75	15.0	16.0	1000	16.0	FF	
	MW-18	6.1 - 12.1	2	12.35	8.2	9.0	1000	9.0		
	MW-26	4.2 - 14.2		12.11	8.0	9.0	1000	9.0		
	TW-01	9.4 - 19.9		18.20	12.0	13.0	1000	13.0		
	GP-01			8.3	1.4	4.0	600	2.4		
	GP-02	5-7	1	7.0	1.2	4.0	600	2.4	GEM 5000	
	GP-03		'	7.0	1.2	4.0	600	2.4		
	GP-04			8.3	1.4	3.0	600	1.8		
7/31/2018	MW-16I	30.5 - 35.5		25.84	17.1	17.0	500	8.5		high-vacuum pump fault at about 25 minutes
	MW-17	15.6 - 25.6		22.26	14.7	34.0	600	20.4	oir commin -	
	MW-18	6.1 - 12.1	- 12.1 2	12.30	8.1	24.0	500	12.0	air sampling pump	
	MW-26	4.2 - 14.2		11.63		15.0	600	9.0		
	TW-01	9.4 - 19.9		17.73	11.7	34.0	500	17.0		

 Table 2. Purging Data for SWMU 1 Landfill Gas Measurements

 February 2018 to January 2019 SWMU 1 Landfill Gas Monitoring Report

 Former Hampshire Chemical Corp. Facility, Waterloo, New York

Monitoring		Well Screen Interval	Casing Diameter	Headspace Length/Depth to Water ^a (feet)	Headspace Volume (liters)	Purge Time (minutes)	Purge Rate (mL/min)	Volume Purged (liters)	Purge	
Date	Location	(feet bgs)	(inches)	D	0.17D	T	R	TR	Method	Notes
	GP-01]		8.3	1.4	10.0	600	6.0		
	GP-02	57	1	7.0	1.2	10.0	600	6.0	GEM 5000	
	GP-03	J -/		7.0	1.2	10.0	600	6.0	GEM 5000	
	GP-04	I		8.3	1.4	12.0	600	7.2		
10/19/2018	MW-16I	30.5 - 35.5		26.90	17.8	25.0	500	12.5		high-vacuum pump fault at about 25 minutes
	MW-17	15.6 - 25.6	1	22.94	15.1	38.0	500	19.0	1	
	MW-18	6.1 - 12.1	2	12.40	8.2	20.0	500	10.0	air sampling	
	MW-26	4.2 - 14.2		12.67	8.4	15.0	500	7.5	Paulo	
	TW-01	9.4 - 19.9		17.99	11.9	25.0	500	12.5		
	GP-01			8.3	1.4	10.0	250	2.5		
	GP-02		1	7.0	1.2	15.0	250	3.8	CEM 2000+	
	GP-03	5-7		7.0	1.2				GEM 2000+	well buried under snow bank
	GP-04	I		8.3	1.4	10.0	250	2.5		
1/16/2019	MW-16I	30.5 - 35.5		26.55	17.5	20.0	500	10.0		high-vacuum pump fault at about 20 minutes
	MW-17	15.6 - 25.6		22.73	15.0	25.0	500	12.5]	
	MW-18	6.1 - 12.1	2	12.29	8.1	20.0	500	10.0	air sampling	
	MW-26	4.2 - 14.2	1	12.20	8.1	18.0	500	9.0		
	TW-01	9.4 - 19.9		17.91	11.8	21.0	500	10.5		

Notes "--" - not measured or not applicable bgs = below ground surface mL/min = milliliters per minute a) For monitoring well locations, the headspace length measurement is the unwetted well volume (i.e., the depth to water from the top of casing). For landfill gas probe locations, the headspace length measurement is equal to the total well length.

Table 3. SWMU 1 Monitoring Well Construction Data

February 2018 to January 2019 SWMU 1 Landfill Gas Monitoring Report Former Hampshire Chemical Corp. Facility, Waterloo, New York

Location	Well Diameter (inches)	Well Material	Ground Elevation (feet amsl)	Top of Casing Elevation (feet amsl)	Total Well Depth (feet bgs)	Screen Slot (inches)	Scree (fe	en Inter et bgs)	·val)	Scree (fee	n Int et am	erval Isl)
MW-16I	2	Schedule 40 PVC	454.27	455.99	35.53	0.01	30.5	-	35.5	423.7	-	418.7
MW-17	2	Schedule 40 PVC	449.92	452.13	14.50	0.01	15.3	-	25.3	434.6	-	424.6
MW-18	2	Schedule 40 PVC	440.04	442.07	12.32	0.01	6.3	-	12.3	433.7	-	427.7
MW-26	2	Schedule 40 PVC	439.29	441.76	16.00	0.01	7.5	-	17.5	431.8	-	421.8
TW-01	2	Schedule 40 PVC	447.33	449.01	17.50	0.01	10.3	-	20.8	437.0	-	426.5

Notes

amsl = above mean sea level

bgs = below ground surface

PVC = polyvinyl chloride

Table 4. Comparison of Purging Rate and Duration on Screening Measurements at SMWU 1 Landfill Gas Screening LocationsFebruary 2018 to January 2019 SWMU 1 Landfill Gas Monitoring Report

Former Hampshire Chemical Corp. Facility, Waterloo, New York

	Data	Approx. Purge Rate	Cummalative Purge Time	Approx. Cummalative Purge Volume	VOC	Methane	LEL Methane	Carbon Monoxide	Hydrogen Sulfide	Carbon Dioxide	Oxygen	Sulfur Dioxide	Berreike
Location	Date	(L/min)	(minutes)	(itters)	(ppm)	(% VOI.)	(%)	(ppm)	(ppm)	(%)	(%)	(ppm)	Remarks
GP-01	4/12/2018	0.0	0	0	0.3	0.0	0	0	0	1.1	8.8	-	Initial reading
	4/12/2018	0.3	8	2	0.4	0.1	2	0	0	9.3	1.9	-	
GP-02	4/12/2018	0.0	0	0	0.3	0.0	0	0	0	2.3	16.9	-	Initial reading
01 02	4/12/2018	0.3	8	2	0.2	0.0	0	0	0	2.3	16.5	-	
	4/12/2018	0.0	0	0	0.2	1.3	27	0	0	9.0	2.3	-	Initial reading
GF-04	4/12/2018	0.3	8	2	0.2	1.3	27	0	0	9.4	0.0	-	
MW 161	4/12/2018	0.0	0	0	0.3	0.5	10	0	0	1.7	17.9	-	Initial reading
10100-101	4/12/2018	0.5	40	20	0.2	0.1	2	0	0	0.5	20.4	-	Pump faulted at 1 and 2 L/min
M/M/ 17	4/12/2018	0.0	0	0	0.0	2.5	46	0	0	5.3	11.2	-	Initial reading
10100-17	4/12/2018	0.5	35	17.5	0.0	4.1	83	0	0	10.1	0.0	-	Pump faulted at 1 and 2 L/min
	4/12/2018	0.0	0	0	0.0	2.0	40	0	0	6.2	0.3	-	Initial reading
MW-18	4/12/2018	0.5	20	10	0.0	2.7	55	0	0	6.7	0.0	-	
	4/12/2018	2.0	30	20	0.0	3.1	62	0	0	7.1	0.0	-	Purged at 2L/min for 10 minutes
MM/ 26	4/12/2018	0.0	0	0	0.3	0.0	0	0	0	3.0	17.1	-	Initial reading
10100-20	4/12/2018	0.5	0	0	0.3	0.0	0	0	0	3.3	16.1	-	
	4/12/2018	0.0	0	0	0.0	1.6	33	0	0	5.5	11.7	-	Initial reading
TW-01	4/12/2018	0.5	30	15	0.1	0.1	2	0	0	0.4	20.4	-	
	4/12/2018	2.0	40	20	0.1	0.1	2	0	0	0.3	20.6	-	Purged at 2L/min for 10 minutes

<u>Notes</u>

%vol - percent by volume

L/min - liters per minute

LEL - lower explosive limit

ppm - parts per million

VOC - volatile organic compound

Figures

Feet

Figure 3. Groundwater Elevations at SMWU 1 Monitoring Wells Former Hampshire Chemical Corp. Facility, Waterloo, NY

「水水」							
				C		The second second	
	- 1	00.00					
(70)		GP-02 2/8/2018	0.0	-	2/8/2018	 	
	No.	3/22/2018	0.0		3/22/2018	0.0	124
i.		4/12/2018	0.0		4/12/2018	0.0	-
)	33	5/18/2018	0.0		5/18/2018	0.0	
	20105	6/28/2018	0.0		6/28/2018	0.0	
	1.54	7/31/2018	0.0		7/31/2018	0.0	
	Cast	10/19/2018	0.0		10/19/2018	0.0	
2		1/16/2019	0.1		1/16/2019	0.1	

Figure 4. Methane Screening Results, SWMU 1 Former Hampshire Chemical Corp. Facility, Waterloo, NY

2) SWMU - solid waste management unit

Gas Monitoring Points Former Hampshire Chemical Corp. Facility, Waterloo, NY

JACOBS-

3) Measurements greater than 100% of the LEL plotted as 100%

Former Hampshire Chemical Corp. Facility, Waterloo, NY

JACOBS

Figure 7. Carbon Dioxide Concentrations at SMWU 1 Landfill Gas Monitoring Points

JACOBS

Former Hampshire Chemical Corp. Facility, Waterloo, NY

1) SWMU - solid waste management unit

Figure 8. Oxygen Concentrations at SMWU 1 Landfill Gas Monitoring Points

JACOBS

Former Hampshire Chemical Corp. Facility, Waterloo, NY

<u>Notes</u> 1) LEL - lower explosive limit

2) SWMU - solid waste management unit3) Air temperature data was collected at the Geneva Research Farm weather station (Global Historical Climatology Network station ID USC00303184)

Figure 10. Methane Concentrations and Daily Temperatures at SMWU 1 Landfill Gas Monitoring Points Former Hampshire Chemical Corp. Facility, Waterloo, NY

Attachment 1 Soil Boring Logs

[2.4			Site: Boring ID G7 D -	σÌ	Sheet of
- 1				TF:		SOIL BORING LOG		
1		Sta	irt Date	& Time:	21	7/18 OCOO CH2M Logger: TMLOR	- SALSIBURG	
		E	nd Date	& Time:	2/-	7/18 Drilling Contractor: PARA1	T WORFF	
- H	W	ater Lev	el, Date	& Time:		Drilling Method: しそしりに	082 2/4 IO	HOLLOW STRA
	BGS	t) t	ver) hes)	Q (r	សូង	Soil Description	Cor	nments
	Feet	Inte (f	Reco (incl	Soil (pp	S S	or consistency, soil structure, mineralogy	tests, breathin	asing, drilling & fluid loss, ng zone PID (ppm)
\mathcal{O}					FILL	0 3,1' DATUR BROWN SILT + FIHE & RATIEL, May	MOGAL CA	P ARCUITD
	1 -	0	2	-5	SH	(FROZEN) LITTLE AND SAND, FUL, THE MITH	1.5' 34;	5
	1	-	5.0		in			
	2.	И		-0			7.0 IH 61	ETI BEFEHRE
	1						TO 4 UN	5 1.9 1917
	5-			- 8		7152	NO 1 HEIL	14115
					FILL	J.I - JIL LIGHT SKOWH FINK. TRONT		· · · · · · · · · · · · · · · · · · ·
	9-			- 27	SW	SMAD + CRAVEL, LOUSE, OF 9, SUDIEUTD		
	6	4	2.8		in	prine aprilia		
) -	-		-	010	512-7.0 DARK BROWN SILT. MUST ACT	5	
	10-	7		_	511	- Scile GEAVIL + F-M SHHD FED.T		
						6.6-7.0'		
	7.							
	(6013 7.0 363	-	
	-			-				
							17 (200 al 10 10 A 10 A 20	
				-				
	825			22				
	-			-	ł			
						·		
	- 1			-				
								······
	-			-				1
	-			-				
						· · · · · · · · · · · · · · · · · · ·	_	
	-			-				
	-			-	1			
				ľ				······································
	_			_				
	-]-				
						· · · · · · · · · · · · · · · · · · ·	-	
	_			-		,		
				ļ				
	-			-				
	_			_				
	-			-			-	
							-	
	-			-				
								CH2N1 Taylor Salsburg
							-	

	6	h	2	М:	1	Site: FORMER HAMPSHIRE Boring 10 GP - 0	2
						SOIL BORING LOG	
		Sta	art Dat	e & Time	21	7/18 CH2M Logger: T/M Lor	- SMLSISMIL
		L (stor Lov	nd Dat	e & Time	-21	7/18 Drilling Contractor: 1199477	F. Walt
ŀ	S I						Commonte
	89	f) f	over	l la (g	12 8	USCS soil name USCS group symbol color moisture content relative density	Remarks denth of casing drilling & fluid loss
	Feet	(The	Recc (inc	(pr	158	or consistency, soil structure, mineralogy	tests, breathing zone PID (opm)
\hat{U}	_			1	†	D-1.5 ENESAIN I WANT BRAND LINK	
Ĭ	1		_	10	GU	HOLE (ED. 75.V)	
	1 -	$ \mathcal{O} $	3,6		1,000	15-7 D SUL FLATERALS BRIDE	
	2	<u> </u>			1	E-M CAND (11-T ARCANIS	
	2-	1		-0	1	TWITTY STERN I. TTLE GRAVEL	
	1			o	1	rivist	
1	2						
	И				1		
	- -			-0			
	<	14	1.8	13			· · · · · · · · · · · · · · · · · · ·
) -						
- 1	10-	-					
	ų	/					
	7			-0	0		
	1				1		
	-			-	1		
				1	1		
	- 22			2	1		
				1			
	12	2		-	1		
				1	1		
	-			-			
	-			-			
	-			-			
	-			-		- · · · · · · · · · · · · · · · · · · ·	
							-
	_			-		그는 그는 그는 그는 것이 아무렇게 도는 아무렇게 하는 것이 가지 않는 것이 많이 많이 많다.	
	-			-		· · · · · · · · · · · · · · · · · · ·	
	_						
	_			-			
	-			_			
	_			-			
	-			-			
	-			-			
	-			-			
	-			-			×
							Cia DA4 Taxlor Sylvhure
		L			I.,		CHIZINI TAYIOF SAISDOFE

	(h	21	11.		Site: FUZTIER	HAHISHIRE	Boring ID GP-03	3	Sheet <u>1</u> of <u>1</u>
	_			.				SOIL BORING LOG	600 0 2 11	(
		Sta	art Date	& Time: & Time:	21	7/18	CH2 Drilling (Im Logger: Thyle 1	- SALSISALC	~
	W	ater Lev	el, Date	& Time:	(11.8	Drillin	g Method: Gree 312	0.39 HSA	
	S	le l	ss) er	9 @	5		Soil Description		Co	mments
	Feet B	Interv (ft)	Recov (inche	Soil P (ppn	Cod Cod	USCS soil name, USC or	CS group symbol, color, moisture r consistency, soil structure, min	e content, relative density, seralogy	Remarks, depth of c tests, breathi	asing, drilling & fluid loss, ng zone PID (ppm)
0)				Fill	$\hat{O} = \overline{Z}, \overline{Y}$	BROWN SAIND,	SILT, FILLE		
	1 -	$\dot{\mathcal{O}}$	3.6	- 0			- CICANINC J; F	4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1		
	2.	4		- 10	FILL	2.4-2.0	GIZEY GIRAVEC	- MAGJEAR I	IANCINC	
	3-			-0	SC	2.10- 6.0 FINE SHI	CLAMEY SA	LITY, FIRIT.		
	4.	L				TOIST		/		
	5_	4	26	-0	↓		(-12+DES TC			
	1	-	63			10.0-70	Rito un SAT104	1 CLAM GIVE		
		7		- 202 1 (10)	CL	-5A1+D, -1	PLASTIC, FIRIT,	TIO ST		
	/-			<u> </u>		n-R-R	7-B45		· · · · · · · · · · · · · · · · · · ·	
	-			-		1301	7.0 .0012			
				-						
	-			-		·		······		
	·			ŀ						
	·			-						
	.			-						
	· ·			-						
				-						
				-						
		ļ								
				-						
	-			-) elder/10	··········			
				-						
				_						
	1									
				-						
		-		-						
	1									CH2M Taylor Salsburg
	1	1	1	1	1				L	

	C	h	21	n:		Site: OLTER HATTPSHIRE Boring ID G-P-OL	1 Sheet 1 of 1
-	_					SOIL BORING LOG	11-12 1
- 1		Sta	art Date	& Time:	217	CH2M Logger: TTY COR	SHISBARC
	14.	El Inter Levi	nd Date	& Time:	217	Drilling Contractor: Proceeding	WELFF
- 1	VV	ater Lev	el, Uate	& Time:			BE C/9 10 17514
- 1	8 G	t Sal	ver hes]	G (m	ខ ៖	Soil Description	Comments
	eet	(f	eco incl	lio da	12 3	USCS soil name, USCS group symbol, color, moisture content, relative density,	Remarks, depth of casing, drilling & fluid los
\mathcal{O}	ш,	_	~~	•••		or consistency, soil structure, mineralogy	tests, breatning zone PID (ppm)
		15			C.	SITTED SILT F GRAVEL, ORGATICS,	FIMTO MULER 0-5
- 1	1 -	2	MA	-	pu	BRICK ANTOMENTS	FABRIC CAP FOUND
		2					MOUTD 2FT B65
- 1	1 -			- 1	1		
	5						
	3-			-		3-3.6 FILL, SATTO, SILT, CRANEL	
		2	1		6.	3.4-4.2 UT BROWN FINE SAND	
- 1	4	1	14	_	Inc	4.2-5.12 DATEX BROWN SILT, MUST. ART	
		1	÷				
	5					5.0.5.5 GREY GRAVEL, LOUSE, DRY	
) –	S 1		-		55-7.0 REDDISH BROWN FINE SATD + GIZNEL	
	1.	6	23			MED-NEWSE DEW	
- 1	Q-			-			
- 1	1	1					
	()			-		RAR Day R/C	
					- 2	1)017 1.0 000	
	-	1		r (
						and the second of the second	
- 1	3						
	7			-			
	6		- 0				
		ş ,					
	37			-			
	-			-			
- 7			13	1			
			1	-			
			- ×	1			
	-			-			
- 5							
	32	(I		-			
			1 S -				
	62			-			
	2			-			
	10						
	22			<u>_</u>			
	8			2			
	8			2			
						den her folkenen etter som den som att staten att som etter som att som att som etter som etter som etter som e	
				ĺ			
				ĺ.			
				-			CH2N: Taylor Salsh

Attachment 2 Well Completion Reports

Attachment 3 Wellhead Screening Logs

0.509 L/m

.

2.024

VIZ	////:		Former Ho	ampshire Ch	nemical Col	rp. Facility, V	Naterloo, N	lew York	Date:8								
-	Well I	Data		Purge	e Time Calcu	lations	Pre-Purg	ge Values				Purge and	Stabilized M	leasurement	s i		
/ell Number	Well Screen (ft bgs)	Dia- meter (inches)	Total Depth (feet BTOC)	Head- space Length (feet) h _{ft}	Head- space Volume (liters) V _{headspace}	Min. Purge Time (minutes) T _{purge}	Static Casing Pressure	Diff. Pressure (in. WC)	Measurement	CH ₄ (% vol.)	LEL CH4 (%)	CO (ppm)	H₂S (ppm)	CO₂ (%)	O ₂ (%)	VOC (ppm)	SO ₂ (ppm)
GP-01	5-7	. 1	7.00	\$33	1.3	5.2	+ 0,00	13	Max:	0	0	0	0	8.2	6.4	6.4 -	
			+1.30	3			+0.02	30	Stable:	0	0	0	0	8,3	6.4	0.3	0
GP-02	5-7	1	7.00	7	1.2	47	10.004	92-	Max:	200	20			184	3 .		
										ø	Ø	\$5	Ø	2.6	13.4	Ø.5	¢
CD C									Max:	wa	ter						-
GP-05	5-7	1	7.00	· ·	1.2	4.1	+0.00	340)	Stable:						1		
CD 04		1		7-	1,3	5.2	+0.0	1576	Max:	1013	2226	0	0	6-3912	2011		-
01-04	5-7	1	+1.6	8.6	att 2	A. /	+6.03	ST	Stable:	0.9	18	0	0	9.3	0.9	0.2	ø
			To et al	1.1.1.1.1.				Formul	as								13.5
	V _{headspace}	= X liters = T	$\mathrm{tr}_{\mathrm{well}}^{2}\mathrm{h}_{\mathrm{ft}}$ = (10	000L/m ³)(3.1	.42)(0.0133n	n) ² (<i>h</i> _{ft})(0.304	18m/ft)				T _{purge} =	X minutes =	• (V _{headspace} * :	1000ml/L) / (250ml/min)		
								Additional	Notes								
GP-	03 h	050 ba 3.42	rb on	<u>родре</u>	+ vah	re bret	ken.A	ic not	- celle	ect in	opanec	1 Siff	press	ine .	Depth	40	
						10	-				-			-			
						ê.									1		
		1.4										Y.					
		9. 1. 1.				1						- And the					
Staff:	C. Lett	ich ,		Meter Infor	mation:									1			

5,48m 17,2 SWMU 1 Landfill Gas Monitoring, March 2018

Former Hampshire Chemical Corp. Facility, Waterloo, New York

Date: 3/22/18

ch2	m:		SWMU 1 L Former Ha	andfill Gas mpshire Ch	Monitorin emical Cor	g, March 20 p. Facility, V	Vaterloo, N	lew York					Date:	3/	22/18	-	
	Well D	ata	1	Purge	Time Calcu	ations	Pre-Pur	ge Values				Purge and	Stabilized M	leasurement	S		
Well Number	Well Screen (ft bgs)	Dia- meter (inches)	Depth to Water (feet BTOC)	Head- space Length (feet) he	Head- space Volume (liters)	Min. Purge Time (minutes)	Static Casing Pressure	Diff. Pressure (in. WC)	Measurement	CH₄ (% vol.)	LEL CH4 (%)	CO (ppm)	H₂S (ppm)	CO ₂ (%)	O ₂ (%)	VOC (ppm) 🛩	SO ₂ (ppm)
MW-16I	30.5 - 35.5	2	26.31	2781	18.4	73.6	to.0	898 70	Max: Stable:	0.2	1	0	0	0	21.3	0.1	- 0
MW-17	15.6 - 25.6	2	22.66 + 1.95		÷		+0.0	839 15 0	Max: Stable:	3.4	68	0	0	9.5	1200	0	D
MW-18	$\frac{12.24}{11.9} + 0.0213 - \frac{12.24}{1.9} + 0.0213 - \frac{12.24}{10.00541} + 0.0213 - \frac{12.24}{10.00541} + 0.00541 + 0.0051 + 0.0051 + 0.0051 + 0.0051 + 0.0051 + 0.0051 + 0.0051 + 0.0051 + 0.0051 + 0$																
MW-26	$\frac{11.96}{1000} + \frac{11.96}{1000} + 11$																
TW-01	9.4 -19.9	2	17.96 +1.65				+0.00	325 2286	Max: Stable:	6.7	>100	0	0	7.1	6.3	0	0
						1.		Reference &	Formulas								
10	V _{headspace}	= X liters =	$\pi r_{well}^2 h_{ft} = (10)$	000L/m ³)(3.1	42)(0.02625	$m)^{2}(h_{ft})(0.30)$	048m/ft)				T _{purge} =	= X minutes	= (V _{headspace} *	1000ml/L) /	(250ml/min)	
								Additiona	l Notes							-	
<u>lysta</u> M	Installed pressure caps shortly before pressure measurements Purge times MW16T = 20 min(446) MW-18 = 10min (stable) TW-01=20min (stable) MW-17 = 2000sees, MW-26 = 10 mins (ctoble)																
	-							Page 2	of 2.	1	*					1	

ch2m:

SWMU 1 Landfill Gas Monitoring, March 2018

Former Hampshire Chemical Corp. Facility, Waterloo, New York

April 12 Thursday, March 22, 2018

Project # 698563.01.VP

Probe li	nformation 3	Purge Vol.	Field P	ressure Data	a	4 Field Purge Da	ata	Notes
Screen Interval (ft bgs)	D = Probe Length	Volume (liters)	Diff. P (incl	ressure n WC)	T = Purge Time	R = Purge Rate	Actual Volume Purged (liters)	
5-7	(feet) 8.30	= 0.17 * D	340.00	67 71-40000	(minutes)	(ml/min)	= T * R	1
	and have	. 6	Gas Concentration	Field Measureme	ents	200	7.10	Tale & and the second
CH4 (% vol.)	HG LEL C44 (%)	co (ppm)	VOC (ppm)	SO ₂ (ppm)	H₂S (ppm)	co2 (%)	₩3 02 (%)	
	0	0	0.3)	0	7.7	8.8	John Providence
D. l	2	0	0.4	-	0	9.3	1.9	The state of the state of the

line.	1 Probe In	formation	2 Purge Vol.	B Field Pre	essure Data		Field Purge Da	ata	Notes
	Screen Interval (ft bgs)	D = Probe Length	Volume (liters)	Diff. Pre (inch	essure WC)	T = Purge Time	R = Purge Rate	Actual Volume Purged (liters)	
1	(feet) 5 - 7 7.00	(feet)	= 0.17 * D	=+0,002	33	(minutes)	(ml/min)	= T * R	and from property and
GP-02	5 - 7	7.00	1.2	+0.0004	14	for and		10000	and the second of the
01 02		5 Gas Concentration Field Measure			ield Measureme	ments			
	CH ₄ (% vol.)	LEL CH E. (%)	CO (ppm)	VOC (ppm)	SO ₂ (ppm)	H₂S (ppm)	CO ₂ (%)	O ₂ (%)	Turner while starting
		\$0	0	0.3	1	O	2.3	16.9	
a strengt		0	0	0.2	-	0	2.3	16.5	

ch2m:

1840.

SWMU 1 Landfill Gas Monitoring, March 2018 Former Hampshire Chemical Corp. Facility, Waterloo, New York

Thursday, March 22, 2018 Project # 698563.01.VP

1.2

1 P	Probe Information	2 P	Purge Vol.	3 Field Pr	essure Data		4 Field Purge Da	ata Los T	Notes	
Screen Int (ft bgs	D = terval s) Probe Le	ngth	Volume (liters)	Diff. Pr (inch	essure WC)	T = Purge Time	<i>R =</i> Purge Rate	Actual Volume Purged (liters)	Drew monter	
and a	(feet) = (0.17 * D	0.0 12		(minutes)	(ml/min)	= T * R		
5 - 7	7.00	0	1.2	- 1000 T-L-		14.7	r creation			
and the states		5.61	5 Ga	Gas Concentration Field Measurem		ents				
CH₄ (% vol.	LEL CI (%)	14	CO (ppm)	VOC (ppm)	SO₂ (ppm)	H₂S (ppm)	CO ₂ (%)	O ₂ (%)	All and	
Initial	1373	7 34	49			0.201	(and the second	5:5	for all a second	
table	10	- 37						Gree No	and the second second second	

	1 Probe In	formation	2 Purge Vol.	3 Field Pre	essure Data	0	Field Purge Da	ata	Notes
	Screen Interval (ft bgs)	D = Probe Length (feet)	Volume (liters) = 0.17 * D	Diff. Pre (inch = +0.017	essure WC)	T = Purge Time (minutes)	R = Purge Rate (ml/min)	Actual Volume Purged (liters) = T * R	
GP-04	5 - 7	8.60	1.5	s +0.00985		8	250	2	Per and the second
GP-04		199 V.	6	Gas Concentration F	ield Measureme	ents			
	CH4 (% vol.)	LEL CH ₄ (%)	CO (ppm)	VOC (ppm)	SO ₂ (ppm)	H₂S (ppm)	CO ₂ (%)	O ₂ (%)	the second se
1.	E'l Intial	27	0	0.2	~	Q	9.0	2.3	for the second of
James -	Stable Stable	27	0		(0	9.4	0.0	F

	Probe In	formation	2 Purge Vol.	B Field Pre	essure Data		Field Purge Da	ata	Notes
	Screen Interval (ft bgs)	D = Depth to Water	Volume (liters)	Diff. Pre (inch)	essure WC)	<i>T =</i> Purge Time	<i>R =</i> Purge Rate	Actual Volume Purged (liters)	· Farted at 21/min
à		(feet BTOC)	= 0.66 * D	=+0.020	73	(minutes)	(ml/min)	= T * R	· Failted @ (L/min
161	30.5 - 35.5	24.95	16.5	3+0.01	57	40.	-500	20	Can't sustain hicker
101	CH ₄ LEL CH ₄		. 6	Gas Concentration F	ield Measureme	nts			Alow. Screen subme
	СН ₄ (% vol.)	LEL CH ₄ (%)	CO (ppm)	VOC (ppm)	SO ₂ (ppm)	H₂S (ppm)	CO2 (%)	O ₂ (%)	The at the strangt high
	Initial OS	10	0	0.3	-	O	1.7	17.9	for a second and and
-		2	0	O.R	-	0	0.5	20,4	11- 23 74
	Probe Inf	ormation	2 Purge Vol.	3 Field Pres	ssure Data	3	Field Purge Da	ata S	Notes
Ti	Screen Interval (ft bgs)	D =	Volume (liters)	Diff. Pre (inch \	essure WC)	T = Purge Time	R = Purge Rate	Actual Volume Purged (liters)	Faulted at 24/min
	2.00	(feet BTOC)	= 0.66 * D	± 0,004.	50	(minutes)	(ml/min)	= T * R	Failed offer 10 min
17	15.6 - 25.6	22.35	14.8	· 0.00 =	71255	296	500	>	1. 18 10 1
-	10 ¹⁰	deposito	9	Gas Concentration Fi	ield Measuremer	nts		P.C.X.	Start of
	CH4 (% vol.)	LEL CH ₄ (%)	CO (ppm)	VOC (ppm)	SO ₂ (ppm)	H₂S (ppm)	CO2 (%)	O ₂ (%)	Set to String
_	25	Alia	in a	00	-	0	52	117	

and the second states	1.01	2'5.	9	1	5.0	0	0		and the second
and the second	1.51	30	0	1	5.0	0	0		Du
+SLEET dung	(%) ² 0	(%) ² OO	(wdd) S ^z H	(wdd) ^z OS	(bbw) AOC	(bbw) CO	(%) רבר כאל	CH₄ (% vol.)	
supple of the long o			str	əmərussəM bləi	ia nottentneonoo sea	• G	and a lot	1.2.5 Au	
wind classes have	202	005	250	59	5100.0+2	L'L	+9"11	4.2 - 14.2	92-WM
from all test	Я * Т =	(uiɯ/iɯ)	(รอาทนเพ)	. 01	E.00'0,=	<i>a</i> * 99.0 =	(feet BTOC)	-	11
Pin not attempt high	Actual Volume Purged (liters)	R = Purge Rate	T= Purge Time	NC) sznię	Diff. Pre	Volume (liters)	Depth to Depth to Water	Screen Interval (ft bgs)	211
sətoN	e:	red 9g1u9 bl9i3	Ð	eteO eta	Eield Pre	Purge Vol.	ormation	T Probe Inf	26
	0.0	12	Q	j	0	5	29	1.5	78
and shit - and a shit	0.0	1.9	0	l	·Q	0	55	L-Z stable	4144
And the second	50	2.9	0		0	0	05	0°C Initial	
Hauted at 2 Chair	(%) ^z o	(%) ²Oጋ	(wdd) S ^z H	(wdd) ^z OS	(wdd) AOC	(bbw) CO	(%) רבר כאל	(% ^ol;) CH [¢]	
Failted after NUmi	1		uts	ield Measureme	A nottentneonoO see) G	and the second	R. C. I	
and and have		oas	02	SEI	0.0+2	0%	50.51	1.21 - 1.3	81-WM
and the second second	я * T =	(nim/lm)	(sətunim)	218	:0°0+=	<i>a</i> * 99.0 =	(feet BTOC)		1
101 (Uarin - sustering	Actual Volume Purged (liters)	R = Purge Rate	T= Purge Time	MC) sssnie	Diff. Pre / honi)	Volume (liters)	Depth to Depth to	Screen Interval (tî bgs)	
Notes	ej	Field Purge Da		eted sinse	B Field Pre	Purge Vol.	ormation	Tope Inf	1.18

Former Hampshire Chemical Corp. Facility, Waterloo, New York SWMU 1 Landfill Gas Monitoring, March 2018

Thursday, March 22, 2018

ch2m:

SWMU 1 Landfill Gas Monitoring, March 2018

April 12 Thursday, March 22, 2018 Project # 698563.01.VP

Former Hampshire Chemical Corp. Facility, Waterloo, New York

11 2	1 Well Inf	formation	2 Purge Vol.	S Field Pr	essure Data	1	4 Field Purge Da	ata	Notes
1	Screen Interval (ft bgs)	D = Depth to	Volume (liters)	Diff. Pr (inch	essure WC)	T = Purge Time	<i>R =</i> Purge Rate	Actual Volume Purged (liters)	Purged at 21/min
		Water (feet BTOC)	= 0.66 * D	= +== -0.1	00033	(minutes)	(ml/min)	= T * R	
TH. 01	9.4 - 19.9	17.71	1107	\$ 0.000	18	30	500	1	
100-01	- 1	Sa Carina	9	Gas Concentration I	Field Measureme	ents			a start a
	CH ₄ (% vol.)	LEL CH ₄ (%)	CO (ppm)	VOC (ppm)	SO₂ (ppm)	H ₂ S (ppm)	CO2 (%)	O ₂ (%)	
	1.6	33	0	0		0	5.5	11.7	
	Stable	2	0	0.1	-	0	0.4	20.4	
2	1 0.1	2	Ö	Ocl	-	0	0.3	20.6)

Former Hampshire Chemical Corp. Facility, Waterloo, New York

Friday, May 18, 2018 Project # 698563.01.MN

	1 Field Pre	essure Data	2 Probe in	formation	3 Purge Vol.		Field Purge Da	ata	Notes
	Diff. Pro (inch	essure WC)	Screen Interval (ft bgs)	D = Probe Length	Volume (liters)	T = Purge Time	R = Purge Rate	Actual Volume Purged (liters)	DIFF PRESS HIT "-" A
GP-01	= 0,00%	0.063		(feet)	= 0.17 * D	(minutes)	(mi/min)	= T * R	FEW TITES, SEENS STADU
	ع ٥,٥٥	7 V	5 - 7	8.30	1.4	2,2	600	Y /	NEAR ZERO
			5 Gas	Concentration F	ield Measureme				
	VOC (ppm)	CH₄ {% vol.)	LEL CH₄ (%)	CO (ppm)	H ₂ S (ppm)	CO ₂ (%)	O ₂ (%)	SO _z (ppm)	
	THE O.O	0	Ø	0	0	11.6	1,9	0	
	Stable	0	0	0	0	[1.4	1.8	0	

		1 Field Pres	ssure Data	2 Probe In	formation	Purge Vol.	(Field Purge Da	ta	Notes
		Diff. Pre (inch V	ssure VC)	Screen Interval	D =	Volume (liters)	T = Purge Time	R = Purge Bate	Actual Volume Purged (liters)	
	Ξ	0,12	-0	(11 555)	(feet)	= 0.17 * D	(minutes)	(ml/min)	=T*R	
	9	0,00	7 (5 - 7	7.00	1.2	2.5	600	Ч	
GP-02				G Gas	Concentration F					
		VOC (ppm)	СН ₄ (% vol.)	LEL CH ₄ (%)	CO (ppm)	H₂S (ppm)	CO _z (%)	0 ₂ (%)	SO₂ (ppm)	
	Initial	0.2	Ø	0	0	0	30	9.8	0	
	Stable	0.2	0	0	Ċ	U	3.8	9,0	0	

2

-

. - •

SWMU 1 Landfill Gas Monitoring, May 2018

Former Hampshire Chemical Corp. Facility, Waterloo, New York

	1 Field Pre	ssure Data	2 Probe In	formation	3 Purge Vol.	(Field Purge Da	ta	Notes	
	Diff. Pre (inch \	255ure WC) 1 + 1 - 69	Screen Interval (ft bgs)	D = Probe Length (feet)	Volume (liters)	T = Purge Time (minutes)	R = Purge Rate (ml/min)	Actual Volume Purged (liters)		
	± 0,00	199 184	5 - 7	7.00	= 0.17 * D	(inmutes)	(000	= T * R		
GP-03	³ 0,0184		G Gas	Concentration F	ield Measureme	nts			HIGH CARBOTI MONOXID	É
	VOC (ppm)	CH ₄ (% vol.)	LEL CH ₄ (%)	CO (ppm)	H ₂ S (ppm)	CO ₂ (%)	O _z (%)	SO _z (ppm)		
	D D	0	0	20	0	0	21,3	ð		
	Stable C · G	Ö	0	23	0	0	20.9	\bigcirc		

		1 Field Pres	ssure Data	2 Probe In	formation	3 Purge Vol.	Field Purge Data			Notes
		Diff. Pre (inch V	ssure VC)	Screen Interval (ft bgs)	D = Probe Length	Volume (liters)	T = Purge Time	R = Purge Rate	Actual Volume Purged (liters)	-
	IH	0,007	7		(feet)	= 0.17 * D	(minutes)	(ml/min)	≕ T * R	
GP-04	9	0,00	le 9	5 - 7	8.60	1.5	2.7	600	Ч	
0.04				G Gas	Concentration F	ield Measuremer	nts			
		VOC (ppm)	CH₄ (% vol.)	LEL CH₄ (%)	CO (ppm)	H ₂ S (ppm)	CO ₂ (%)	02 (%)	SO₂ (ppm)	
	initial	0.0	1.2	25	Ð	0	10.2	0,5	0	
	Stable	01	1.2	24	0	0	10.4	0.3	0	

3

7

SWMU 1 Landfill Gas Monitoring, May 2018

Former Hampshire Chemical Corp. Facility, Waterloo, New York

	1 Field Pro	essure Data	2 Probe In	formation	BPurge Vol.		Field Purge Da	ta	Notes
	Diff. Pr (inch	essure WC)	Screen Interval (ft bgs)	D = Depth to	Volume (liters)	T = Purge Time	<i>R =</i> Purge Rate	Actual Volume Purged (liters)	
	I 0:01	0:0144		Water (ft BTOC)	= 0.66 * D	(minutes)	(ml/min)	= T * R	
	ª 6.007	259	6.1 12.1	12.23	8.07	16	500	8.5	
MW-18			G as	Concentration F	ield Measureme	nts			
	VOC (ppm)	CH₄ (% vol.)	LEL CH₄ (%)	CO (ppm)	H₂S (ppm)	CO ₂ (%)	0 ₂ (%)	SO _z (ppm)	
		1.5	34	7	l	5.4	3,4	0	
	U, D	1.3	26	Ø	0	6.2	6.2	0	

		1 Field Pres	sure Data	2 Probe Int	formation	BPurge Vol.	G	Field Purge Da	ta	Notes
		Diff. Pres	ssure VC)	Screen Interval	D =	Volume (liters)	T =	R =	Actual Volume Purged (liters)	
	± 0,0210 ≥ 0.0044		0	(ft bgs) (ft bgs) (ft BTOC)		= 0.66 * D	Purge Time (minutes)	Purge Rate (ml/min)	= T * R	
			4.2 - 14.2	11.55	7.6	127	(000	15		
MW-26			· ··· ·	5 Gas	Concentration F	ield Measuremer				
		VOC (ppm)	CH₄ (% vol.)	LEL CH ₄ (%)	CO (ppm)	H ₂ S (ppm)	CO₂ (%)	O ₂ (%)	SO _z (ppm)	
			D	0	Ü	0	4.9	10,3	0	
	Stable	0:0	0	0	0	Ö	5.9	8.0	0	

Former Hampshire Chemical Corp. Facility, Waterloo, New York

		Field Pre	ssure Data	2 Probe In	formation	3 Purge Vol.		Field Purge Da	ta	Notes
	Η	Diff. Pre (inch)	NC) O,695	Screen Interval (ft bgs)	D == Depth to Water (ft BTOC)	Volume (liters) = 0.66 * D	T = Purge Time (minutes)	R = Purge Rate (m!/min)	Actual Volume Purged (liters) = T * R	
MW-16I	- -	-0,660		30.5 - 35.5	25.72 16.98		.98 283 600			
101				G Gas	Concentration F	ield Measuremer	nts		- PURGE MATE SLOWED	
		VOC (ppm)	CH₄ (% vol.)	LEL CH ₄ (%)	CO (ppm)	H₂S (ppm)	CO ₂ (%)	0 ₂ (%)	SO₂ (ppm)	10 YOO AFTER APPER
	Initial	0	0	0	0	0	1.0	19.4	ð	- Sorte MCUUT IN TUBITLE
	Stabie			Ø	Ο	0	Ð	20,9	Ø	WHENT DISCOTTOTECT SKE

		Field Pre	ssure Data	2 Probe In	formation	3Purge Vol.		Field Purge Da	ta	Notes
		Diff. Pressure (inch WC)		D = Screen Interval (ft hcs) Depth to		Volume (liters)	<i>T</i> =	R =	Actual Volume Purged (liters)	
	± -0,008		(ft bgs)	Water (ft BTOC)	= 0.66 * D	Purge Time (minutes)	Purge Rate (ml/min)	- T * R		
MW-17	° -0.012		15.6 - 25.6	22.25	14,68	K	600	15		
				Gas Concentration Field Measurements						
		VOC (ppm)	CH 4 (% vol.)	LEL CH₄ (%)	CO (ppm)	H₂S (ppm)	CO_z (%)	0 ₂ (%)	SO ₂ (ppm)	
	Initial	6.0	5.0	OVER	1	0	9.2	0.6	0	*** *******
	Si P U U State		96	0	0	9:0	0.3	0		

Former Hampshire Chemical Corp. Facility, Waterloo, New York

	1 Field Pre	ssure Data	2 Probe In:	formation	3 Purge Vol.	4	Field Purge Da	ta	Notes
	Diff. Pre (inch)	essure WC)	Screen Interval	D = Depth to	Volume (liters)	T =	R =	Actual Volume Purged (liters)	
	± 0,0	i l	(it bgs)	Water (ft BTOC)	= 0.66 * D	(minutes)	(ml/min)	= T * R	
	٩ <i>٥,०</i> 0	04	9.4 - 19.9	17.76	11.72	19.5	600	14	
TW-01			G Gas						
	VOC (ppm)	CH₄ (% vol.)	LEL CH4 (%)	CO (ppm)	H₂S (ppm)	CO2 (%)	0 ₂ (%)	SO _z (ppm)	
		0.2	4	0	0	0,2	19,3	Ð	
	2,0 0,0		7	0	0	0.5	19.7	0	

SWMU 1 Landfill Gas Monitoring, May 2018

Former Hampshire Chemical Corp. Facility, Waterloo, New York

Project # 698563.01.MN

	1 Field Pres	ssure Data	2 Probe In	formation	3 Purge Vol.		Field Purge Da	ta	Notes
	Diff. Pre (inch V	ssure WC)	Screen Interval	D =	Volume (liters)	. <i>T</i> =	<i>R</i> =	Actual Volume Purged (liters)	
	-0.000	62	(ft bgs)	Probe Length (feet)	= 0.17 * D	Purge Time (minutes)	Purge Rate (mi/min)	= T * R	
00.04	· · · · · · ·	50	5 - 7	8.30	1.4	4	DIS	2.0	
GP-01	=0.07	24	5 Gas	Concentration F	ield Measuremer				
	VOC (ppm)	CH₄ (% vol.)	LEL CH ₄ (%)	CO (ppm)	H ₂ S (ppm)	CO ₂ (%)	O2 (%)	SO₂ (ppm)	
		0.0	0	0	0	13.6	2.9	O	
	Q-Q Stable	0.0	0	0	0	14.4	1.8	D	

	3

	1 Field Pre	ssure Data	2 Probe In	formation	3 Purge Vol.	4	Field Purge Da	ta	Notes
	Diff. Pressure (inch WC) = -0.0062 -0.0102		Screen Interval (ft bgs)	D == Probe Length	Volume (liters)	T = Purge Time	<i>R =</i> Purge Rate	Actual Volume Purged (liters)	PID OF OIGMPH MET, 0.0 ON 11.7 EV PID
				(feet)	= 0.17 * D	(minutes) (ml/min)		= T' * R	
CD 03			~0.0102 5-7 7.00				0,5	1.5	
GP-02			G as	Concentration F	ield Measuremen				
	VOC (ppm)	CH₄ (% vol.)	LEL CH ₄ (%)	CO (ppm)	H₂S (ppm)	CO₂ (%)	O ₂ (%)	SO _z (ppm)	
	or O' O' C		6.0	0	0	7.4	10,5	0	
			010	Ø	0	7,2	0.6	Õ	

Former Hampshire Chemical Corp. Facility, Waterloo, New York

6/28/2018

Project # 698563.01.MN

	Field Pre	ssure Data	2 Probe In	formation	3 Purge Vol.		Field Purge Da	ta	Notes
	Diff. Pre (inch \	ssure NC)	D = Screen Interval (ft bgs) Probe Le		Volume (liters)	T = Purge Time	R = Purge Rate	Actual Volume Purged (liters)	
	= - 0,00l	2		(feet)	= 0.17 * D	(minutes)	(mi/min)	= T * R	
GP-03	· -0,00	243	5 - 7	7.00	1.2	M	0.5	1,5	
			S Gas	Concentration F	ield Measuremen	nts			
	VOC (ppm)	CH ₄ (% vol.)	LEL CH₄ (%)	CO (ppm)	H₂S (ppm)	CO ₂ (%)	O ₂ (%)	SO₂ (ppm)	
	O O	0.0	0	0.0	0	∂	7.1	٥	
		0-0	0	11.6	\mathcal{O}	0	7.1	0	

	, i	1 Field Pre	ssure Data	2 Probe In	formation	BPurge Vol.		Field Purge Da	ta	Notes
		Diff. Pre	ssure		D =	Volume	T =	<i>R</i> =	Actual Volume	* 4 ×
		(inch \	NC)	Screen Interval (ft bgs)	Probe Length	(liters)	Purge Time	Purge Rate	(liters)	
	± 0.0092			(feet)	= 0.17 * D	(minutes)	(ml/min)	= T * R		
GP-04	٩	0.00	33	5 - 7	8.60	1.5	Ч	0.5	20	
01-04			:	G Gas	Concentration F	ield Measuremer				
		voc	CH ₄	LEL CH4	со	H ₂ S	CO ₂	02	SO2	
		(ppm)	(% vol.)	(%)	(ppm)	(ppm)	(%)	(%)	(ppm)	
	Initia[0.0	0,1	- 1	0	O	4,0	3,8	0	
	Stable	O.D	1.3	25	0	0	12.4	0.0	D	

JACOBS[°]

SWMU 1 Landfill Gas Monitoring, May 2018

Former Hampshire Chemical Corp. Facility, Waterloo, New York

Project # 698563.01.MN

		1 Field Pres	ssure Data	2 Probe Int	formation	3 Purge Vol.	4	Field Purge Da	ta	Notes
		Diff. Pre (inch V	ssure VC)	Screen Interval (ft bgs)	D = Depth to	Volume (liters)	7 = Purge Time	R = Purge Rate	Actual Volume Purged (liters)	
	Ħ	0.021	0	(10 #86)	Water (ft BTOC)	= 0.66 * D	(minutes)	(mi/min)	= T * R	
	9	0,00	73	30.5 - 35.5	26.55	17.5	18	1,0	18	
MW-16I				G Gas	Concentration F	ield Measuremer	nts			
		VOC (ppm)	CH₄ (% vol.)	LEL CH ₄ (%)	CO (ppm)	H _z S (ppm)	CO₂ (%)	O ₂ (%)	SO₂ (ppm)	
	initial	0.0	0.0	0.0	0	0	0.5	20,1	0	
	Stable	0.0	0.0	0.0	0	0	0.1	20,2	0	

	Field Pres	ssure Data	2 Probe Inf	formation	Ourge Vol.	4	Field Purge Dat	ta	Notes			
	Diff. Pre	ssure NC)	Screen Interval	D =	Volume (liters)	T =	R =	Actual Volume Purged				
	±0.010	14	(ft bgs)	Depth to Water (ft BTOC)	= 0.66 * D	Purge Time (minutes)	Purge Rate (ml/min)	(nters) = T * R				
	9 0.00 9	33~	15.6 - 25.6	22.75	15.0	16	1.0	16.				
MW-17			5 Gas	Concentration F	ield Measuremer							
	VOC (ppm)	CH4 (% vol.)	LEL CH4 (%)	CO (ppm)	H₂S (ppm)	CO ₂ (%)	O ₂ (%)	SO ₂ (ppm)				
	Dil Mar	6.1	over	0	0	10.10	2,0	0				
1		5.7	ovie	0	д	10,2	0	D				

Former Hampshire Chemical Corp. Facility, Waterloo, New York

Project # 698563.01.MN

	Field Pre	essure Data	2 Probe In	formation	3 Purge Vol.		Field Purge Da	ta	Notes
	Diff. Pre (inch	essure WC)	Screen Interval	D = Depth to	Volume (liters)	T =	<i>R</i> =	Actual Volume Purged	
	± 0,00	rleg	(ft bgs)	Water (ft BTOC)	Purge Time (minutes) = 0.66 * D		Purge Rate (ml/min)	= T * R	
MW-18	° 0,0(050	6.1 - 12.1	12.35	8.15	9	1.0	9	
			S Gas						
	VOC (ppm)	CH₄ (% vol.)	LEL CH4 (%)	CO (ppm)	H₂S (ppm)	CO₂ (%)	O ₂ (%)	SO _z (ppm)	
			0.0	0	Ø	1.6	17.2	D	
	Stable	0.3	6	0	0	12,6	0.4	Ø	

		1 Field Pre	ssure Data	2 Probe In	formation	BPurge Vol.		Field Purge Da	ita	Notes
		Diff. Pre	ssure		D =	Volume	T =	<i>R</i> =	Actual Volume	P-KI D. Z DAT VOL BUT
		(inch)	WC)	Screen Interval (ft bgs)	Depth to Water	(liters)	Purge Time Purge Ra		(liters)	ILTEN PID 0.0 DOM
n an	= 0,0123			(ft BTOC)	= 0.66 * D	(minutes)	(ml/min)	= T * R		
MW-26	9	0:009	1	4.2 - 14.2	12.1)	7,99	9	1.0	9	
				S Gas						
		voc	CH₄	LEL CH ₄	со	H₂S	CO2	0 ₂	SO2	
		(ppm)	(% vol.)	(%)	(ppm)	(ppm)	(%)	(%)	(ppm)	
	Initial	0.0	0-0	0	0	0	7.0	8.6	D	
	Stable	0.0	0.0	O	0	0	9,8	5.3	D	

ς.

JACOBS	
---------------	--

6/28/2018

					Former Hamp	shire Chemical	Corp. Facility, 1	Waterloo, New	York	Project # 698563.01.MN	·
		Field Pre	essure Data	2 Probe In	formation	3 Purge Vol.		4 Field Purge Da	ita	г. 	Notes
		Diff. Pro (inch	essure WC)	Screen Interval	D =	Volume (liters)	/ T =	R =	Actual Volume Purged		
	Ŧ	0,0	110	(ft bgs)	Water (ft BTOC)	= 0.66 * D	Purge Time (minutes)	Purge Rate (ml/min)	(liters) = T * R		
TW-01	s 0.0126			9.4 - 19.9	18,20	12.0	13	liD	13		
	L_			G as	Concentration F						
		VOC (ppm)	CH₄ (% vol.)	LEL CH ₄ (%)	CO (ppm)	H₂S (ppm)	CO2 (%)	O ₂ (%)	SO₂ (ppm)		
	E 0,1 0.4		9	0	0	0.7	18.5	0			
	Stable	0,0	8.0	OVER	O	0	9,3	3,2	ð		

<u>.</u>

· · ,

Former Hampshire Chemical Corp. Facility, Waterloo, New York

	1 Field Pro	essure Data	Probe Info	ormation	Purge Vol.		BField Purge Da	ata	Notes
	Diff. Pr (inch	essure WC)	Screen Interval (ft bgs)	D = Probe Length	Volume (liters)	T =	R =	Actual Volume Purged (liters)	
GP-01	= t0.005	82		(feet)	= 0.17 * D	(minutes)	(ml/min)	= T * R	
01-01	s +0.02	.10	5 - 7	8.30	1.4	4	600	2.4	
			Gas C						
	VOC (ppm)	CH₄ (% vol.)	LEL CH ₄ (%)	CO (ppm)	H ₂ S (ppm)	CO ₂ (%)	O ₂ (%)	SO ₂ (ppm)	
0	0.5	0.1	Z	1	0	16.8	16.6	0	State State State State
9	2.0 Stable	0.2	4	0	0	17.(1.4	0	

		Field Pre	essure Data	Probe Info	ormation	Purge Vol.		BField Purge Da	ata	Notes
69-03	Η	Diff. Pr (inch	essure WC)	Screen Interval (ft bgs)	D = Probe Length (feet)	Volume (liters) = 0.17 * <i>D</i>	T = Purge Time (minutes)	R = Purge Rate (ml/min)	Actual Volume Purged (liters) = T * R	Trace water at 6.93' bloc
Streez	Ы	- 0. 00	0017	5 - 7	7.00	1.2	4	600	2.4	
				Gas (Concentration Fie	d Measurement	s			
		VOC (ppm)	CH₄ (% vol.)	LEL CH₄ (%)	CO (ppm)	H₂S (ppm)	CO ₂ (%)	O ₂ (%)	SO₂ (ppm)	
0	Initial	0	0	0	0	l	12,0	10.7	0	
0	Stable	0	0	0	0	0	12.4	10-6	0	

Page lof 5

Former Hampshire Chemical Corp. Facility, Waterloo, New York

Date: 7/31/2018 Project #: 698563.01.MN 10

	Field Pre	essure Data	Probe Info	ormation	Purge Vol.		Field Purge Da	ata	Notes
	Diff. Pro (inch	essure WC)	Screen Interval	D =	Volume (liters)	T =	R =	Actual Volume Purged (liters)	
GP-02	± +0,000	090	(11 0gs)	(feet)	= 0.17 * D	(minutes)	(ml/min)	= T * R	
201-03	° -0.002	152	5 - 7	7.00	1.2	4	600	2,4	
			Gas C	Concentration Fiel	d Measurement	s			
	VOC (ppm)	CH ₄ (% vol.)	LEL CH ₄ (%)	CO (ppm)	H₂S (ppm)	CO ₂ (%)	O ₂ (%)	SO ₂ (ppm)	
0	i 3	0	(0	0	91	12	0	
0	2,5	ð	i	0	0	9.4	1.0	0	

	Field Pr	ressure Data	Probe Info	ormation	Purge Vol.		BField Purge Da	ata	Notes
	Diff. Pr (inch	ressure h WC)	Screen Interval (ft bgs)	D = Probe Length (feet)	Volume (liters) = 0.17 * <i>D</i>	T = Purge Time (minutes)	R = Purge Rate (ml/min)	Actual Volume Purged (liters) = T * R	
GP-04	³ - 0, 0	227	5 - 7	8.60	1.5	3	600	1.8	
			Gas C	Concentration Fiel	d Measurement	s			
	VOC (ppm)	CH₄ (% vol.)	LEL CH ₄ (%)	CO (ppm)	H₂S (ppm)	CO ₂ (%)	02 (%)	SO ₂ (ppm)	
0		2.1	42	0	0	12.8	2.8	0	
0	Stable Q	2.2	44	0	0	14.0	1.3	0	

Former Hampshire Chemical Corp. Facility, Waterloo, New York

	L	Field Pr	ressure Data	BProbe In	formation	Purge Vol.		5 Field Purge Da	ita	Notes
MW-16I	Hi	Diff. Pr (inch + 0, 06	ressure WC) 34	Screen Interval (ft bgs)	D = Depth to Water (ft BTOC)	Volume (liters) = 0.66 * <i>D</i>	T = Purge Time (minutes)	R = Purge Rate (ml/min)	Actual Volume Purged (liters) = T * R	Flow fault at 25 mins. Possibly because screen
MW-16I	Po	+ 0,03	338	30.5 - 35.5	25.84	17	25	500	12,5	Speniorgec.
				Gas C	Concentration Fie	eld Measurement	s			
		VOC (ppm)	CH₄ (% vol.)	LEL CH4 (%)	CO (ppm)	H ₂ S (ppm)	CO ₂ (%)	O ₂ (%)	SO₂ (ppm)	
0	Initial	0	0	0	0	0	0.3	20.5	0	
6	Stable	D	0	0	0	0	0.0	21.0	0	

		1 Field Pre	essure Data	3 Probe In	formation	4 Purge Vol.		5 Field Purge Da	ita	Notes
NAVA/ 17	Diff. Pressure (inch WC) ± + 0,03€0			Screen Interval (ft bgs)	D = Depth to Water (ft BTOC)	Volume (liters) = 0.66 * <i>D</i>	T = Purge Time (minutes)	R = Purge Rate (ml/min)	Actual Volume Purged (liters) = T * R	
10100-17	9	+0.00	0342	15.6 - 25.6	22,26	14.70	34	600	20	
				Gas C	Concentration Fie	ld Measurement	s			
		VOC (ppm)	CH₄ (% vol.)	LEL CH ₄ (%)	CO (ppm)	H₂S (ppm)	CO₂ (%)	O ₂ (%)	SO ₂ (ppm)	
0	Initial	0	5.9	7100	- 1	Ø	10.5	2.0	0	
6	Stable	0	7,3	>100	l	0	12,0	0.8	0	

Page 3 of 5

Former Hampshire Chemical Corp. Facility, Waterloo, New York

	Field	Pressure Data	B Probe In	formation	Purge Vol.		Field Purge Da	ita	Notes
	Diff. (in: ≖ Ω Ω	Pressure ch WC)	Screen Interval (ft bgs)	D = Depth to Water (ft BTOC)	Volume (liters) = 0.66 * <i>D</i>	T = Purge Time (minutes)	R = Purge Rate (ml/min)	Actual Volume Purged (liters) = T * R	
MW-18	3-0.00	0678	6.1 - 12.1	12,30	8-1	24	500	12	
			Gas C	oncentration Fi	eld Measurement	s			
	VOC (ppm)	CH₄ (% vol.)	LEL CH₄ (%)	CO (ppm)	H₂S (ppm)	CO ₂ (%)	O ₂ (%)	SO ₂ (ppm)	
0	O nitial	0.6	11	0	1	87	28	0	
6	Stable	1.0	20	0	0	10.7	1.4	0	

	1 Field Pr	essure Data	B Probe Int	formation	Purge Vol.		5 Field Purge Da	ita	Notes
	Diff. Pr (inch	ressure WC)	Screen Interval (ft bgs)	D = Depth to Water	Volume (liters)	T = Purge Time	R = Purge Rate	Actual Volume Purged (liters)	
MW-26	= + 0,000	50		(ft BTOC)	= 0.66 * D	(minutes)	(ml/min)	= T * R	
10100-20	° - 0.00	182	4.2 - 14.2	11,63	7.7	15	600	9	
4			Gas C	oncentration Fi	eld Measurement	S			
	VOC (ppm)	CH₄ (% vol.)	LEL CH ₄ (%)	CO (ppm)	H₂S (ppm)	CO ₂ (%)	O ₂ (%)	SO₂ (ppm)	
0		0	0	0	0	(0,Z	5.6	0	
6	Stable O	0	0	0	0	12.8	1.7	0	

Page 4 of 5

Former Hampshire Chemical Corp. Facility, Waterloo, New York

	1 Field Pr	essure Data	B Probe In	formation	Purge Vol.		Field Purge Da	ata	Notes
	Diff. Pr (inch	essure WC)	Screen Interval	D = Screen Interval (ft bgs)		T =	R =	Actual Volume Purged (liters)	
TW-01	± +0,00	592	(10~80)	Water (ft BTOC)	= 0.66 * D	(minutes)	(ml/min)	= T * R	
100-01	⁹ - 0, 0	0115	9.4 - 19.9	17.73	11.7	34	500	17	
2.13			Gas C	Concentration Fi	eld Measurement	S			
	VOC (ppm)	CH ₄ (% vol.)	LEL CH ₄ (%)	CO (ppm)	H ₂ S (ppm)	CO2 (%)	O _z (%)	SO₂ (ppm)	
0	D.3	0.2	5	0	(2.9	16.4	0	
6	CO	0	0	0	0	0.1	20.7	0	

Page 5 of 5

Former Hampshire Chemical Corp. Facility, Waterloo, New York

	Field Pr	ressure Data	Probe Info	ormation	Purge Vol.		Field Purge D	ata	Notes
	Diff. Pi (inch	ressure WC)	Screen Interval (ft bgs)	D = Probe Length	Volume (liters)	7 = Purge Time	R =	Actual Volume Purged (liters)	GLOBAL for arent:
GP-01	[≖] -0.00	>060		(feet)	= 0.17 * D	(minutes)	(ml/min)	= T * R	Mary CO, H2S, CO2, 02
	9 -0.00	0612	5 - 7	8.30	1.4	10	600	6.0	VOC with Minikas SO an
			Gas C	Concentration Fiel	d Measurement	s			LEL with VRGP. See calibre
	VOC (ppm)	CH ₄ (% vol.)	LEL CH₄ (%)	CO (ppm)	H₂S (ppm)	CO ₂ (%)	0 ₂ (%)	SO ₂	Sueets for this date.
0		0.0		0	0	107	17	02	Monitoring performed by
0	C. 2	0.0	1	0	0	13.3	4.5	0.2	C. Leffich Ma Colo

	Field F	Pressure Data	Probe Information		Purge Vol. 3 Field Purge Data				Notes
GP-02	Diff. (inc	Pressure h WC) 762	Screen Interval (ft bgs)	D = Volu (lite Probe Length (feet) = 0.17	Volume (liters) = 0.17 * <i>D</i>	T = Purge Time (minutes)	R = Purge Rate (ml/min)	Actual Volume Purged (liters) = T * R	
GF-02	⁹ + 0.00	098	5 - 7	7.00	1.2	10	600	6.0	
			Gas C	Concentration Fiel	d Measurement	ts			
	VOC (ppm)	СН ₄ (% vol.)	LEL CH ₄ (%)	CO (ppm)	H₂S (ppm)	CO ₂ (%)	O ₂ (%)	SO ₂ (ppm)	
0		O	0	0	0	7.5	5.3	0	
0	0.0	0	0	0	0	7.6	3.6	0	

Former Hampshire Chemical Corp. Facility, Waterloo, New York

	Field Pr	essure Data	Probe Info	ormation	Purge Vol.		3 Field Purge Da	əta	Notes
	Diff. Pr (inch	r <mark>essure</mark> WC)	Screen Interval (ft bgs)	D = Probe Length	Volume (liters)	T = Purge Time	R =	Actual Volume Purged (liters)	
GP-03	± -0.00	175		(feet)	= 0.17 * D	(minutes)	(ml/min)	= T * R	
	° -0.00	328	5 - 7	7.00	1.2	10	600	6.0	
			Gas C	Concentration Fiel	d Measurement	s			
_	VOC (ppm)	CH₄ (% vol.)	LEL CH ₄ (%)	CO (ppm)	H₂S (ppm)	CO ₂ (%)	O ₂ (%)	SO ₂ (ppm)	
0	0,0	0.0	0	0	0	9.4	14.1	0.60.2	
0	O.O	0.0	0	0	0	8.9	14.5	0.20	0

		1 Field Pre	ssure Data	Probe Info	ormation	Purge Vol.		Field Purge Da	ata	Notes
		Diff. Pre (inch \	essure WC)	Screen Interval (ft bgs)	D = Probe Length	Volume (liters)	T = Purge Time	R =	Actual Volume Purged (liters)	
GP-04		0.000	607		(feet)	= 0.17 * D	(minutes)	(ml/min)	= T * R	
	9	+0.00	0172	5 - 7	8.60	1.5	12	600	7.2	
				Gas C	Concentration Fiel	d Measurement	s			
		VOC (ppm)	CH ₄ (% vol.)	LEL CH ₄ (%)	CO (ppm)	H₂S (ppm)	CO ₂ (%)	O2 (%)	SO ₂ (ppm)	
0	Initial	7.0	2.6	39	0	0	10.5	3.6	0.2	
0	Stable	0,0	2.2	32	0	0	11.5	1.6	0.2	

Former Hampshire Chemical Corp. Facility, Waterloo, New York

		Field Pres	sure Data	3 Probe In	formation	Purge Vol.		5 Field Purge Da	ata	Notes
		Diff. Pres (inch V	ssure VC)	Screen Interval	D = Depth to	Volume (liters)	T =	R =	Actual Volume Purged (liters)	Pump faulted after -25
MW-16I	≖ +	0.08	08	(ft bgs)	Water (ft BTOC)	= 0.66 * D	Purge Time (minutes)	Purge Rate (ml/min)	= T * R	minutes Possibly because
	⁹ + (0.076	1	30.5 - 35.5	26.90	17.75	~25	500	12.5	high varum Spirelo Red.
				Gas C	oncentration Fie	Id Measurements	5			ing the course
	V (p	/OC opm)	CH 4 (% vol.)	LEL CH ₄ (%)	CO (ppm)	H₂S (ppm)	CO2 (%)	O ₂ (%)	SO₂ (ppm)	
0	Initial	0.0	0	0	0	0	0.9	19.7	0	
0	Stable	.0	0	0	0	0	0.1	21.3	0	

	Field P	ressure Data	3 Probe In	formation	Purge Vol. SField Purge Data				Notes
MW-17	Diff. P (incl ≖ +0,00	messure mWC) DAAS	Screen Interval (ft bgs)	D = Depth to Water (ft BTOC)	Volume (liters) = 0.66 * <i>D</i>	T = Purge Time (minutes)	R = Purge Rate (ml/min)	Actual Volume Purged (liters) = T * R	LEL over 100%.
	° -0.00	046	15.6 - 25.6	22.94	15.1	38	500	19	
			Gas C	oncentration Fie	ld Measurement	s			
	VOC (ppm)	СН ₄ (% vol.)	LEL CH ₄ (%)	CO (ppm)	H₂S (ppm)	CO ₂ (%)	O ₂ (%)	SO₂ (ppm)	
0	0.0	7.6	>100	0	0	11.8	2.2	0.0	
G	O.O	8.4	7100	0	0	13.2	0.7	0.0	

Former Hampshire Chemical Corp. Facility, Waterloo, New York

	Γ	1 Field Pr	essure Data	3 Probe In	formation	Purge Vol.		Field Purge Da	ita	Notes
		Diff. Pr (inch	ressure WC)	Screen Interval (ft bøs)	D = Depth to	Volume (liters)	T =	R =	Actual Volume Purged (liters)	
MW-18	Η	+0.0	120	(12 282)	Water (ft BTOC)	= 0.66 * D	(minutes)	(ml/min)	= T * R	
	9	-0.00	432	6.1 - 12.1	12.40	8.2	20	500	10	
			9 -	Gas C	oncentration Fi	eld Measurement	S			
		VOC (ppm)	CH₄ (% vol.)	LEL CH₄ (%)	CO (ppm)	H₂S (ppm)	CO₂ (%)	O ₂ (%)	SO ₂ (ppm)	
0	Initial	0.0	1.2	12	0	0	9.7	1.0	0	
6	Stable	0.0	2.2	27	0	0	9.6	1.5	0	

		Field Pre	ssure Data	3 Probe Inf	formation	4 Purge Vol.		Field Purge Da	ta	Notes
MW/ 26	H	Diff. Pre (inch) + 0, 00	essure WC) 144	Screen Interval (ft bgs)	D = Depth to Water (ft BTOC)	Volume (liters) = 0.66 * <i>D</i>	T = Purge Time (minutes)	R = Purge Rate (ml/min)	Actual Volume Purged (liters) = T * R	
10100-20	Lo	-0.00	0370	4.2 - 14.2	12.67	8.36	15	600	9	
			ы	Gas C	oncentration Fie	eld Measurement	s			
		VOC (ppm)	CH₄ (% vol.)	LEL CH ₄ (%)	CO (ppm)	H₂S (ppm)	CO₂ (%)	O ₂ (%)	SO₂ (ppm)	
0	Initial	0,0	0.0	0	0	0	6.2	14,0	0	
6	Stable	D.0	0.0	0	0	0	9.1	10.7	0	

Former Hampshire Chemical Corp. Facility, Waterloo, New York

	1 Field Pr	essure Data	3 Probe In	formation	• Purge Vol.		5 Field Purge Da	ata	Notes
TW/ 01	Diff. Pr (inch ± +0,00	ressure WC) 798	Screen Interval (ft bgs)	D = Depth to Water (ft BTOC)	Volume (liters) = 0.66 * <i>D</i>	T = Purge Time (minutes)	R = Purge Rate (ml/min)	Actual Volume Purged (liters) = T * R	LEL over 100
100-01	° - 0,00	09	9.4 - 19.9	17.99	11.9	25	500	12.5	
		-	Gas C	oncentration Fi	eld Measurement	s			
	VOC (ppm)	CH ₄ (% vol.)	LEL CH ₄ (%)	CO (ppm)	H₂S (ppm)	CO₂ (%)	O ₂ (%)	SO ₂ (ppm)	
0		5.0	>100	0	0	88	\$2	12	
0	OoO stable	8.6	>100	0	0	11.0	3.9	0.1	

SWMU 1 Landfill Gas Monitoring, January 2019

Former Hampshire Chemical Corp. Facility, Waterloo, New York

Date: 1/16/2019 Project #:

	1 Fie	Id Pressure Data	Probe Info	ormation	Purge Vol.		3 Field Purge Da	ata	Notes
	D	(inch WC)	Screen Interval (ft bgs)	D = Probe Length (feet)	Volume (liters)	T = Purge Time (minutes)	R = Purge Rate (ml/min)	Actual Volume Purged (liters)	
GP-01	3 = (200362	5-7	8.30	1.4	10		= 1 K	A CALLER CONTRACT
	-		Gas C		d Measurement	s			
	VOC (ppm)	CH4 (% vol.)	LEL CH₄ (%)	CO (ppm)	H₂S (ppm)	CO ₂ (%)	O2 (%)	SO ₂ (ppm)	A State States
Q		0.1	3	0	0	6.5	11.5	0	
4	stable	0.1	3	0	0	0.0	18.6	0	

£	Field Pressure Data			Probe Info	ormation	Purge Vol.		3 Field Purge D	ata	Notes
	Ŧ	Diff. Pr (inch	ressure WC) 261	Screen Interval (ft bgs)	D = Probe Length (feet)	Volume (liters) = 0.17 * <i>D</i>	T = Purge Time (minutes)	R = Purge Rate (ml/min)	Actual Volume Purged (liters) = T * R	
GP-02	P	° - 0.00762		5 - 7	7.00	1.2	15			
					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
		VOC (ppm)	CH₄ (% vol.)	LEL CH ₄ (%)	CO (ppm)	H₂S (ppm)	CO ₂ (%)	O ₂ (%)	SO ₂ (ppm)	
0	Initial	0	0.1	2	0	0	3.3	15.4	6	1.1.1
4	Stable	0	O.P	2	0	0	2.7	20.2	0	
		0	001	2	0	0	3.1	18.0	0	A Star Part

707538

SWMU 1 Landfill Gas Monitoring, January 2019

Former Hampshire Chemical Corp. Facility, Waterloo, New York

Date: 1/16/2019 Project #: 707538

	1 Field Pr	essure Data	Probe Infr	ormation	Purge Vol.	3 Field Purge Data			Notes
	Diff. Pr (inch	ressure I WC)	D = Volume (liters) Screen Interval (ft bgs) Probe Length (feet) = 0.17 * L	Volume (liters) = 0.17 * D	Volume (liters) = 0.17 * D	R = Purge Rate (ml/min)	Actual Volume Purged (liters) = T * R	buried under snow bank plowed on sile	
1	٩		5 - 7	7.00	7.00 1.2		1000		
			Gast	Concentration Fiel	id Measurement	t s			
-	VOC (ppm)	CH4 (% vol.)	LEL CH ₄ (%)	CO (ppm)	H₂S (ppm)	CO ₂ (%)	O ₂ (%)	SO ₂ (ppm)	
0	Initial	1		-8					
0	Stable	·							

	1 Fiel	d Pressure Data	Probe Info	ormation	Purge Vol.		3 Field Purge Da	ata	Notes
GP-04	Dif () ≖ ()	f. Pressure nch WC)	Screen Interval (ft bgs) D = Vo Probe Length (feet) (li		Volume (liters) = 0.17 * D	T = Purge Time (minutes)	R = Purge Rate (ml/min)	Actual Volume Purged (liters) = T * R	<u> </u>
GF-04	s - 00	00867	5 - 7	8.60	1.5				
	VOC (ppm)	CH₄ (% vol.)	LEL CH4 (%)	CO (ppm)	H ₂ S (ppm)	CO ₂ (%)	02 (%)	SO 2 (ppm)	
0		0.3	7	0	0	8.0	5.1	0	
0	Stable	0+1	3	0	0	8.7	+0.	0	6 6 9

4.0

SWMU 1 Landfill Gas Monitoring, January 2019 Former Hampshire Chemical Corp. Facility, Waterloo, New York Date: 1/16/2019 Project #: 707538

	Field Pressure Data Diff. Pressure (inch WC)		BProbe In	formation	Purge Vol. S Field Purge Data				Notes
H			D = Screen Interval (ft bgs) Depth to Water (ft BTOC)		Volume (liters) = 0.66 * <i>D</i>	T = Purge Time (minutes)	R = Purge Rate (ml/min)	Actual Volume Purged (liters) = T * R	
A A		(SP)	30.5 - 35.5 Gas (26.55 Concentration Fi	26.55 Incentration Field Measurements				5 5 M
	VOC (ppm)	CH4 (% vol.)	LEL CH ₄ (%)	CO (ppm)	H₂S (ppm)	CO ₂ (%)	O ₂ (%)	SO ₂ (ppm)	1
Initial	0	0.6	013	0	0	3,5	15.7	0	
table	0	02	4	0	0	0.5	214	0	

	1 Field Pre	essure Data	Probe Inf	formation	Purge Vol.		5 Field Purge Da	ata	Notes
I	Diff. Pro (inch	essure WC) 210,	D = Screen Interval (ft bgs) Water G 3 ((ft BTOC)	Volume (liters) = 0.66 * <i>D</i>	T = Purge Time (minutes)	R = Purge Rate (ml/min)	Actual Volume Purged (liters) = T * R		
WW-17	-0.	1570	0119.6-25.6 Gas C	22,73 oncentration Fig	eld Measurement	25 s			
	VOC (ppm)	CH4 (% vol.)	LEL CH ₄ (%)	CO (ppm)	H ₂ S (ppm)	CO2 (%)	O ₂ (%)	SO ₂ (ppm)	
6 Initial	0	5.4	7100	0	0	12.1	1.0	0	all and as
Stable	Stable	KAR	1/12 (00	0	0	12.2	0.4	9	

SWMU 1 Landfill Gas Monitoring, January 2019

Former Hampshire Chemical Corp. Facility, Waterloo, New York

Date: 1/16/2019 707538

	Field Pre	essure Data	3 Probe Int	formation	Purge Vol.		Field Purge Da	ata	Notes		
	Diff. Pro (inch	Diff. Pressure (inch WC) Screen Interval (ft bgs) Depth to Water (ft BTOC) = 0.666 # 0		Volume (liters)	T = Purge Time (minutes)	R = Purge Rate (ml/min)	Actual Volume Purged (liters)				
MW-18	3-0.01	55	6.1 - 12.1	12.29	- 0.00 * D			-1'K	C A C		
•			Gas Co	oncentration Fie	eld Measurement	S					
	VOC (ppm)	CH₄ (% vol.)	LEL CH ₄ (%)	CO (ppm)	H₂S (ppm)	CO2 (%)	O ₂ (%)	SO ₂ (ppm)	4		
0		1.6	33	0	0	5.3	1.5	0			
6	0 0 l	107	34	0	0	5.5	0.0	0			

	Field Pressure Data			BProbe Inf	formation	4 Purge Vol.	Field Purge Data Notes			Notes
MW 26	H	Diff. Pr (inch	Definition Description Screen Interval (ft bgs) Description Depth to Water (ft BTOC) Cold 6 2		T = Purge Time (minutes)	R = Purge Rate (ml/min)	Actual Volume Purged (liters) = T * R			
10100-20	р	+0.0	806	4.2 - 14.2 Gas C	12,20 oncentration Fie	ld Measurement	18			
		VOC (ppm)	CH ₄ (% vol.)	LEL CH₄ (%)	CO (ppm)	H₂S (ppm)	CO2 (%)	O ₂ (%)	SO ₂ (ppm)	
0	Initial	0.1	0.0	1	0	0	2.4	19,8	0	Same 19
6	Stable	0	001	2	0	0	2,7	20,2	0	1. 1. 1. 1. 1.

Project #:

SWMU 1 Landfill Gas Monitoring, January 2019

Former Hampshire Chemical Corp. Facility, Waterloo, New York

Date: 1/16/2019 Project #: 707538

	Field Pre	essure Data	3 Probe Inf	formation	Purge Vol.		Field Purge Da	Data Notes		
TW-01	Diff. Pro (inch	essure WC) G 1	D = Screen Interval (ft bgs) Water (ft BTOC)		Volume (liters) = 0.66 * <i>D</i>	T = Purge Time (minutes)	R = Purge Rate (ml/min)	Actual Volume Purged (liters) = T * R		
	° -0,06	31	9.4 - 19.9 Gas C	17,91 oncentration Fig	eld Measurement	21				
	VOC (ppm)	CH4 (% vol.)	LEL CH ₄ (%)	CO (ppm)	H₂S (ppm)	CO ₂ (%)	O ₂ (%)	SO ₂ (ppm)		
0	0.0	12.1	7(00	0	0	11,9	2.1	0	the state of the state of the	
6	Stable	1109	2100	0	0	@116	2.8	0	1111111	