

The Dow Chemical Company 633 Washington Avenue 1803 Building Midland, MI 48674 USA

November 17, 2021

Ms. Gail Dieter

New York State Department of Environmental Conservation Division of Environmental Remediation Bureau E, Section B 625 Broadway, 12th Floor Albany, NY 12233-7017

Subject: 2020 and 2021 SWMU 1 Landfill Gas Monitoring Technical Memorandum, Former Hampshire Chemical

Corp. Facility, Waterloo, New York

Dear Ms. Dieter:

Hampshire Chemical Corp. (HCC) is pleased to submit one hard copy and one electronic copy of the SWMU 1 Landfill Gas Monitoring Tech Memo, Former Hampshire Chemical Corp. Facility, Waterloo, New York. The Tech Memo was prepared to report on gas monitoring performed at SWMU 1 in accordance with an emailed Workplan dated January 12, 2018. The purpose of this investigation was to evaluate whether methane and other common landfill gases are present at the boundary of, and within the subsurface of the former landfill.

The Resource Conservation and Recovery Act (RCRA) facility investigation (RFI) and corrective measures activities were conducted pursuant to a Second Amended Order on Consent executed between Hampshire Chemical Corp. (HCC) and the NYSDEC under Index Number 8-20000218-3281, August 12, 2011.

If you have any questions about this Landfill Gas Monitoring Report, please contact me at 519-939-7595, or Brian Carling at 610-384-0747.

Sincerely,

Robert Stuetzle

Sr. Remediation Specialist

Copy To: Ms. Gail Dieter, NYSDEC Central Office (Disc and Hard Copy)

Mr. Matthew Gillette, NYSDEC Region 8 (Disc)

Mr. David Pratt, NYSDEC Region 8 (Disc)

Mr. David Breyette, Evans Chemetics LP (Disc)

Jacobs Project File

Memorandum

4123 Mt. Kemble Avenue Morristown, NJ 07960 www.jacobs.com

Subject 2020 and 2021 SWMU 1 Landfill Gas Monitoring Technical Memorandum, Former Hampshire Chemical

Corp. Facility, Waterloo, New York

Attention Former Hampshire Chemical Corp.

From Jacobs Engineering Group Inc.

Date November 2021

Project Number WAT011DW

1. Introduction

This technical memorandum (TM) reports the results of landfill gas monitoring conducted at the Former Hampshire Chemical Corp. (HCC) Facility Solid Waste Management Unit 1 (SWMU 1) in Waterloo, New York (site). Two additional rounds of landfill gas monitoring activities were performed in September 2020 and May 2021 using up to four shallow landfill gas monitoring wells and six groundwater monitoring wells per the New York State Department of Environmental Conservation (NYSDEC) request in the approval letter for the *Technical Memorandum – February 2018 to January 2019 SWUM1 Landfill Gas Monitoring* dated October 4, 2019. One additional round of confirmatory landfill gas monitoring was performed in August 2021 due to apparent instrument malfunction that occurred in May 2021.

This investigation was conducted as a supplement to SWMU 1 corrective measures completed in November 2016. This investigation was conducted to evaluate whether methane and other common landfill gases are present at the boundary of and within the subsurface of the former landfill. The findings of this investigation will be used to evaluate the need for further methane monitoring, mitigation, and/or corrective measures at SWMU 1.

The site is regulated under Title 6 of the New York Code of Rules and Regulations (NYCRR) Part 373 and the Resource Conservation and Recovery Act (RCRA), with NYSDEC as the lead agency. RCRA facility investigations (RFIs) have been performed at the facility since 1993 to evaluate the nature and extent of releases to the environment.

2. Background

The site is located at 228 East Main Street in Waterloo, New York, on property currently occupied by Evans Chemetics, which operates a chemical manufacturing facility. Figure 1 shows the site location relative to New York State and the Village of Waterloo. SWMU 1 is in the southwestern corner of the facility property; bounded to the east by the facility, to the south by the Seneca—Cayuga Canal (canal), to the west by East Water Street, and to the north by the Seneca—Cayuga Canal Raceway (raceway). An asphalt road accesses the facility on the western side near East Water Street and crosses over SWMU 1. Figure 2 shows the location features within and surrounding SWMU 1, including roads, the canal, the raceway, monitoring wells, and the area of concern boundary.

Sanborn fire insurance maps of the site indicate the area along the western side of SWMU 1 and near some of the historical raceways was identified as the Village of Waterloo Dump as early as October 1918. The RCRA Facility

Assessment Report (A.T. Kearney 1993) indicates the former Village of Waterloo Dump was probably in operation at the western edge of the site until 1951 (O'Brien and Gere Engineers, Inc. 2003). This suggests an operating period for the dump of at least 33 years, during which the Village of Waterloo placed debris, soil, and refuse in this area.

The 1964 Sanborn map for the facility shows that the canal and raceways were filled to the western edge of the old lock, and the area is identified as the Village of Waterloo Dump (O'Brien and Gere Engineers, Inc. 2003). As indicated by facility personnel, additional material was placed over the filled former raceways in the early 1980s that was derived from soil excavated during facility construction projects, mainly the wastewater treatment plant at the site.

3. Previous Investigations and Corrective Measures

Test pitting conducted during previous environmental investigations at SWMU 1 have identified various municipal waste fill, including glass and plastic fragments, scrap metal, ash, ceramics, shoes, brake pads, copper wire, and vehicle tires. Construction debris, including cobbles, bricks, wood, and metal scrap, also was identified in the test pitting. Intact bottles, both empty and containing liquids, also have been identified in test pits located near the access roadway as well as down along the right-of-way near the canal (CH2M HILL Engineers, Inc. [CH2M] 2006, 2009). The results of the test pit excavations show that fill materials extend onto the canal right-of-way in the area. From that investigation, it has been estimated that approximately 2,500 cubic yards of fill material are present within the canal right-of-way (CH2M 2009).

A soil vapor investigation was conducted within the vicinity of SWMU 1 in December 2007 as part of the RFI Addendum (CH2M 2008). Soil vapor data collected at two locations, SGP-9 and SGP-10, and within the boundary of SWMU 1, were compared to historical SWMU 1 soil and groundwater data to evaluate if the reported soil vapor volatile organic compounds (VOCs) were related to site activities and a subsurface release. The constituents detected in the soil vapor samples historically were not detected in nearby monitoring wells. Based on data evaluation and a review of multiple lines of evidence, it was concluded that none of the reported VOCs in SWMU 1 soil vapor is likely to present a vapor intrusion concern; however, methane was not analyzed during the 2007 soil vapor investigation.

A survey of methane concentrations in six SWMU 1 groundwater monitoring wells was conducted in October and November 2012 (CH2M 2013). Methane was not detected at levels above 0.1 percent by volume (Vol%) during the 2012 survey.

Between September and November 2016, corrective measures were undertaken by HCC at SWMU 1. These activities are detailed in the SWMU 1 Corrective Measures Construction Completion Report (CH2M 2017) and included the construction of an engineered landfill cap, decommissioning of some groundwater monitoring wells, paving, and site restoration activities.

Beginning in December 2016, elevated concentrations of methane were detected in SWMU 1 monitoring wells MW-17 and TW-01 during wellhead screening conducted as part of a long-term groundwater monitoring event depth-to-water survey. NYSDEC was notified and four shallow landfill gas monitoring probes were installed in February 2018 (Jacobs 2019). Between February 2018 and August 2021, 13 landfill gas monitoring events have been conducted at SWMU 1 gas probes (GP-01 to GP-04) and groundwater monitoring wells (MW-16I, MW-17, MW-18, MW-26, and TW-01) (Jacobs 2019 and 2020).

Further details regarding previous environmental and geotechnical investigations conducted at SWMU 1 are in the RFI and RFI Addendum and TMs (CH2M 2006, 2008, 2009, 2012).

4. Landfill Gases

Landfill gas, if present, will be mostly comprised of methane and carbon dioxide by volume, but also can consist of smaller amounts of other gases. Three principal subsurface processes can create landfill gases, including bacterial decomposition, volatilization, and chemical reactions. Waste characteristics and composition and other environmental factors will influence the rate and volume of landfill gas (Agency for Toxic Substances and Disease Registry [ATSDR] 2001). In general, the more organic material that is buried in a covered SWMU, the more landfill gas will be produced by bacterial decomposition. Organic landfill waste will decompose by bacteria through phases as the subsurface transitions from aerobic to anaerobic conditions. Methane is only produced in the subsurface when oxygen is no longer present since methanogenic bacteria (methane producing) are generally only active under anaerobic conditions (ATSDR 2001).

In addition, the age of the buried waste material also will affect landfill gas production. Waste that has been buried more recently (less than 10 years) generally will produce more landfill gases than waste that is older (buried more than 10 years) (ATSDR 2001). Maximum gas production for organic waste materials through bacterial decomposition, volatilization, or chemical reactions is generally 5 to 7 years after the waste has been buried. Based upon documentation of when waste materials were last disposed in SWMU 1 (early 1950s according to the RCRA Facility Assessment Report [A.T. Kearney 1993]), the waste has been buried for more than 60 years. Additionally, during the 2012 survey, methane sampling found concentrations of 0.1 Vol%.

5. Screening Criteria

The lower explosive limit (LEL) for methane is 5 percent (methane by volume in air at standard temperature and pressure). Following the requirements discussed in Title 6, NYCRR Section 360-2.17(f), the concentration of methane at the property boundary of a sanitary landfill is not to exceed the LEL. Therefore, the LEL of 5 percent (methane by volume) was used for the screening criteria for the survey.

6. Field Activities

During September 2020, and May and August 2021, the concentrations of landfill gases were monitored at up to four landfill gas monitoring probes and five groundwater monitoring wells associated with SWMU 1 (Figure 2), with deviations due to field conditions noted in the following subsections. Headspace field screening logs are included in Attachment 1. This section discusses the investigative methods used during this effort.

6.1.1 Well Headspace Differential Pressure Measurements

The first measurement collected from the landfill gas monitoring wells was the pressure differential between the atmosphere and well headspace (differential pressure). Differential pressure measurements were made using an Alnor EBT730 or Infiltec DM1 micromanometer attached to the instrument quick-connect fitting by a short length of low-density polyethylene (LDPE) tubing. Table 1 lists the differential pressure ranges.

6.1.2 Well Headspace Volume Determination

The headspace volume of each landfill gas monitoring point was calculated to determine the volume of gas to purge before recording screening measurements. For the shallow landfill gas monitoring probes (GP-01 to GP-04), the headspace volume was fixed and did not vary between monitoring events; however, the headspace volume of the groundwater monitoring wells fluctuated with changes in groundwater elevations. Table 2 lists the headspace volume calculations and depth-to-water measurements for SWMU 1 groundwater monitoring wells. Figure 3 presents hydrographs of groundwater elevations at the five groundwater monitoring wells, and Table 3 summarizes the well construction information for the SWMU 1 groundwater monitoring wells.

6.1.3 Landfill Gas Measurements

Measurements of carbon monoxide (parts per million [ppm]), carbon dioxide (Vol%), hydrogen sulfide (ppm), the LEL (Vol% calibrated to methane), and methane (Vol%) were made using a Landtec GEM 2000 Plus or GEM 5000 landfill gas meter. The landfill gas meter's sample inlet port was attached to the instrument quick-connect fitting by a short length of vinyl tubing. Gas samples began flowing to the landfill gas meter when the instrument quick-connect fitting was attached to the headspace sampling valve.

In general, the landfill gas probes (GP-01 to GP-04) were purged using the landfill gas meter's internal pump at a rate of approximately 0.5 liter per minute (LPM), and the groundwater monitoring wells (MW-16I, MW-17, MW-18, MW-26, and TW-01) were purged using stand-alone air sampling pumps at a rate of 0.5 to 1.0 LPM (Table 2). Initial measurements from the landfill gas meter were recorded when concentrations stabilized for approximately 1 minute. Next, the landfill gas meter was disconnected, and a MiniRAE 3000 photoionization detector was attached to the well sampling valve by a short length of LDPE tubing to measure total VOC concentrations. Finally, a MultiRAE was attached to the well sampling valve to measure sulfur dioxide concentrations. Table 1 presents the initial landfill gas screening results.

Final measurements of landfill gas concentrations were recorded after approximately one volume of headspace gas was purged from the monitoring locations. Measurements were collected using the same instruments and methods as described above. The final gas concentrations are shown in Table 1. Table 2 contains the headspace purge data.

All instruments were calibrated daily according to the manufacturer's instructions, with calibration information recorded on data sheets.

The following deviations from the landfill gas measurement procedures occurred during the reporting period:

- At GP-03 on May 27, 2021, the landfill gas meter reported a hydrogen sulfide concentration above the instrument's detection limit of 500 ppm. Hydrogen sulfide concentrations above 1 ppm have not been recorded at any landfill gas monitoring locations during the 13 monitoring events since February 2018; therefore, the extremely high concentration was immediately suspect. Condensation and large water droplets were noted in the sample tubing connected to the landfill gas monitoring probe. In addition, the water level in the probe (approximately 5 feet below ground surface) was found to be above the probe's screen interval (5 to 7 feet below ground surface).
- A recalibration of the landfill gas meter for all parameters was attempted following the anomalous measurement; however, recalibration of the hydrogen sulfide sensor failed because the detected concentration for the calibration gas was greater than five times (55 ppm) the actual concentration of hydrogen sulfide (10 ppm). Given these conditions, it is suspected that the high moisture level in GP-03 fouled the hydrogen sulfide sensor. The hydrogen sulfide data for the other locations is not suspect because GP-03 was the last location monitored. A confirmatory landfill gas monitoring event was performed in August 2021; hydrogen sulfide was not detected at GP-03 or any other monitoring locations (Table 1).
- On August 3, 2021, GP-01 and GP-04 could not be accessed because wasp nests were present inside the
 aboveground well monuments. The well monuments will be sealed during the winter of 2021/2022 when
 there is no wasp activity.

7. Results and Discussion

Screening of landfill gas concentrations was conducted at up to nine monitoring points associated with SWMU 1 in September 2020, and May and August 2021. Table 1 summarizes the screening data. Methane was detected in headspace samples from eight SWMU 1 monitoring locations (GP-02, GP-03, GP-04, MW-16I, MW-17, MW-18, MW-26, and TW-01) at concentrations up to 4.2 Vol% (MW-17) (Table 1, Figures 4 and 5). The following summarizes methane measurements for the reporting period:

- The screening limit for methane of 5 Vol% (100% of the LEL for methane) was not exceeded at any location during the 2020 and 2021 monitoring events (Table 1).
- The highest concentrations of methane during the reporting period were detected at MW-17. In September 2020 and August 2021, methane was detected at concentrations of 4.2 Vol% (85% of the LEL for methane) and 3.7 Vol% (75% of the LEL for methane), respectively.
- At GP-02, GP-03, GP-04, MW-16I, MW-26, and TW-01, methane was detected at concentrations above the landfill gas meter's detection limit (0.1 Vol%) but less than or equal to 1 Vol%.
- Methane was not detected during the reporting period at GP-01.

Carbon dioxide and oxygen measurements are plotted on Figures 7 and 8, respectively. In general, methane concentrations appear to correlate positively with carbon dioxide concentrations and have an inverse relationship to oxygen concentrations.

Table 1 lists the concentrations of total VOCs, carbon monoxide, and hydrogen sulfide. These gases were not detected at significant levels from the SWMU 1 landfill gas monitoring locations during the reporting period.

Groundwater elevations observed at the SWMU 1 monitoring wells (MW-16I, MW-17, MW-18, MW-26, and TW-01) are plotted along with methane concentrations and well screen intervals on Figure 9. There is no apparent relationship between changes in groundwater elevations and methane concentrations during the reporting period. Except for MW-16I, the observed groundwater elevations were generally within the screened intervals of the monitoring wells, such that a portion of the perforated casing was unsaturated and exposed to formation gases.

Figure 10 shows methane concentrations at SWMU 1 plotted against daily minimum and maximum ambient air temperatures. Ambient air temperature data were collected at the Geneva Research Farm weather station (Global Historical Climatology Network station ID USC00303184) (National Oceanic and Atmospheric Administration 2021) approximately 9 miles west of the site in Geneva, New York. A positive correlation between ambient air temperature and methane concentrations may exist for GP-04 and MW-17. The effects of air temperature on methane concentrations, if any, are less apparent for other locations.

Historically, monitoring wells with the highest observed concentrations of methane (MW-17, TW-01, and to a lesser extent MW-18) are located within the central area of SWMU 1 with known landfill waste. Geologic cross sections show that buried waste horizons intercept the screened intervals of monitoring wells TW-01 and MW-18. Although anthropogenic material is not documented in the MW-17 boring log, but it is surrounded by several borings where waste is described. Therefore, it is probable that MW-17 is either surrounded by or is actually screened in landfill waste.

8. Conclusions

The following conclusions are based on the results of the historical, September 2020, and May and August 2021 monitoring events:

- The presence of methane in SWMU 1 groundwater monitoring wells was not identified before December 2016 so the presence may indicate methane is accumulating beneath the SWMU 1 landfill cap.
- The concentrations of methane at shallow landfill gas monitoring probes (GP-01, GP-02, and GP-03) along the eastern and western boundary of SWMU 1 are below the LEL or below instrument detection limits during the reporting period (Figure 4 and Table 1). Prior detections of methane in these monitoring points were rare and when present ranged from 0.1 to 0.2 percent (Figure 4). Methane at GP-04 (positioned in a potential preferential flow area) has ranged from 0.1 to 2.7 percent but has consistently remained below 5 percent LEL screening criteria.

- Concentrations of methane above 1 Vol% were detected at monitoring locations in the southwestern area of SWMU 1 historically (MW-17, MW-18, and TW-01); no locations exceeded the 5 percent LEL screening criteria in the last three rounds of monitoring.
- Wells MW-16I and MW-26 rarely detect methane and when they do it has ranged from 0.1 to 0.2 percent.
- The highest concentrations of methane appear to be constrained to monitoring wells located in the central area of SWMU 1 where landfill waste material is greatest (Figure 4).
- The nearest potential methane receptors along the western site boundary are occupied structures located west of East Water Street. Based on data collected to date, there appears to be low risk to offsite receptors west of SWMU 1, given that methane concentrations do not exceed screening levels (the 5 percent LEL for methane) along the western landfill boundary.
- No identified potential methane receptors are along the southern landfill boundary. Features present south of SWMU 1 include the canal and unoccupied land owned by HCC. Based on data collected to date, there appears to be low risk to offsite receptors south of SWMU 1.

9. Recommendations

Methane along the western boundary of SWMU 1 is well below the 5 percent LEL screening criteria, (suggesting low risk to occupied offsite buildings), concentrations of methane are stable or declining, and methane generation is expected to decrease with time as is typical for landfills. Based on historical observations and those for 2020 and 2021, no additional monitoring is proposed.

10. References

Agency for Toxic Substances and Disease Registry (ATSDR). 2001. *Landfill Gas Primer: An Overview for Environmental Health Professionals*. Department of Health and Human Services. Division of Health Assessment and Consultation. November.

A.T. Kearney. 1993. RCRA Facility Assessment Report, Hampshire Chemical Corporation (formerly W.R. Grace), Waterloo, New York. May.

CH2M HILL Engineers, Inc. (CH2M). 2006. RCRA Facility Investigation Report, Evans Chemetics Facility, Waterloo, New York. May.

CH2M HILL Engineers, Inc. (CH2M). 2008. *RCRA Facility Investigation Report Addendum, Former Hampshire Chemical Corp., Waterloo, New York*. November, revised February 2010.

CH2M HILL Engineers, Inc. (CH2M). 2009. Final Technical Memorandum Work Plan – Visual Subsurface Investigation at the Former Village of Waterloo Dump Site (SWMU 1) Former Hampshire Chemical Corp Facility, Waterloo New York. December.

CH2M HILL Engineers, Inc. (CH2M). 2012. 2011 SWMU 1 Investigation Report, Former Hampshire Chemical Corp. Facility, Waterloo, New York. April.

CH2M HILL Engineers, Inc. (CH2M). 2013. SWMU 1 Methane Survey, Former Hampshire Chemical Corp. Facility, Waterloo, New York. July.

CH2M HILL Engineers, Inc. (CH2M). 2017. SWMU 1 Corrective Measures Construction Completion Report, Former Hampshire Chemical Corp., Waterloo, New York. July.

Jacobs Engineering Group Inc. (Jacobs). 2019. February 2018 to January 2019 SWMU 1 Landfill Gas Monitoring Technical Memorandum, Former Hampshire Chemical Corp. Facility, Waterloo, New York. August.

Jacobs Engineering Group Inc. (Jacobs). 2020. August and November 2019 SWMU 1 Landfill Gas Monitoring Technical Memorandum, Former Hampshire Chemical Corp. Facility, Waterloo, New York. February.

National Oceanic and Atmospheric Administration. 2021. Global Historical Climatology Network, Station USC00303184. https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/stations/GHCND:USC00303184/detail.

O'Brien & Gere Engineers, Inc. 2003. Sampling Visit Report, RCRA Facility Assessment, Hampshire Chemical Corporation Facility, Waterloo, New York. September.

Tables

Table 1. Screening Measurements for SWMU 1 Landfill Gas Monitoring Locations

2020 and 2021 SWMU 1 Landfill Gas Monitoring Report

Former Hampshire Chemical Corp. Facility, Waterloo, New York

Date	Location	Differential Pressure Range	VOC (ppm)	Methane (%vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulfide (ppm)	Carbon Dioxide (%)	Oxygen (%)
	GP-01	0.004 - 0.015	0.0	0.0	0	0	0	16.1	2.9
	GP-02	-0.007 - 0.009	0.1	0.2	6	0	0	8.7	0.0
	GP-03	-0.1410.223	0.0	0.0	0	0.0	0	15.3	7.5
	GP-04	-0.025 - 0.015	0.1	1.0	20	0	0	13.4	0.0
9/18/2020	MW-16I	-0.008 - 0.209	0.0	0.1	2	0	0	0.3	20.9
	MW-17	-0.015 - 0.210	0.2	4.2	85	0	0	12.0	1.0
	MW-18	-0.0120.009	0.0	0.0	0	0	0	10.9	6.1
	MW-26	-0.005 - 0.109	0.0	0.1	3	0	0	12.8	6.0
	TW-01	-0.201 - 0.001	0.0	0.1	2	0	0	0.6	20.2
	GP-01	-0.0080.005	0.1	0.0	0	1	1	10.8	3.5
	GP-02	-0.0080.006	0.1	0.0	0	0	0	3.7	13.4
	GP-03	1.438 - 1.563	0.0	0.3	6	1	see note a	8.9	5.0
	GP-04	-0.0190.012	0.3	0.0	0	0	0	9.6	0.4
5/27/2021	MW-16I	0.032 - 0.040	0.1	0.0	0	0	0	0.1	20.0
	MW-17	-0.0110.010	0.0	0.0	0	0	0	0.0	20.3
	MW-18	-0.0100.009	0.0	0.0	0	0	0	0.0	20.4
	MW-26	-0.0110.005	0.0	0.0	0	0	0	0.0	20.5
	TW-01	-0.0080.006	0.1	0.0	0	0	0	0.0	20.6
	GP-01				NM^b				
	GP-02	0.001 - 0.003	0.0	0.0	0	0	0	9.0	0.2
	GP-03	-0.001 - 0.000	0.0	0.0	1.0°	0	0	17.1	8.0
	GP-04				NM^b				
8/3/2021	MW-16I	0.230 - 0.237	0.2	0.1	2	0	0	0.0	19.5
	MW-17	-0.0060.003	0.1	3.7	75	0	0	11.0	0.4
	MW-18	0.008 - 0.010	0.0	0.3	7	0	0	13.1	0.2
	MW-26	-0.0080.004	0.0	0.0	0	0	0	12.1	1.9
	TW-01	-0.0040.002	0.0	0.0	0	0	0	0.1	20.8

^a Hydrogen sulfide reading was over range (>500 ppm). Suspected sensor fault due to high humidity and water drawn into sample tubing. See report text.

Notes:

> = greater than

% = percent

%vol = percent by volume

LEL = lower explosive limit

NM = not measured

ppm = parts per million

VOC = volatile organic compound

^b Unable to access location due to wasps nesting in the well monument.

^c Anomalous LEL measurement where methane percent by volume measurement was zero.

Table 2. Purging Data for SWMU 1 Landfill Gas Measurements August and November 2019 SWMU 1 Landfill Gas Monitoring Report Former Hampshire Chemical Corp. Facility, Waterloo, New York

Date	Location	Well Screen Interval (feet bgs)	Casing Diameter (inches)	Headspace/ Depth to Water ^a (feet)	Headspace Volume (liters)	Purge Time (minutes)	Purge Rate (mL/min)	Volume Purged (liters)	Purge Method	Notes
				D	0.17D	Т	R	TR		
	GP-01			8.3	1.4	3.0	500	1.5	GEM	
	GP-02	5 -7	1	7.0	1.2	5.0	500	2.5	GEM	
	GP-03		·	7.0	1.2	5.0	500	2.5	GEM	
	GP-04			8.3	1.4	3.0	500	1.5	GEM	
9/18/2020	MW-16I	30.5 - 35.5		26.20	17.3	18.0	1000	18.0	SKC	Pump stopped due to high vacuum after 18 minutes
	MW-17	15.6 - 25.6		22.62	14.9	15.0	1000	15.0	SKC	
	MW-18	6.1 - 12.1	2	12.69	8.4	9.0	1000	9.0	SKC	
	MW-26	4.2 - 14.2		12.42	8.2	9.0	1000	9.0	SKC	
	TW-01	9.4 - 19.9		17.80	11.7	12.0	1000	12.0	SKC	
	GP-01			8.3	1.4	5.0	500	2.5	SKC	
	GP-02	5 -7	1	7.0	1.2	7.0	500	3.5	GEM	
	GP-03	3-7	'	7.0	1.2	6.0	500	3.0	GEM	
	GP-04	1		8.3	1.4	5.0	500	2.5	SKC	
5/27/2021	MW-16I	30.5 - 35.5		26.63	17.6	25.0	500	12.5	SKC	Pump stopped due to high vacuum after 25 minutes
	MW-17	15.6 - 25.6		22.79	15.0	30.0	500	15.0	SKC	
	MW-18	6.1 - 12.1	2	12.47	8.2	15.0	500	7.5	SKC	
	MW-26	4.2 - 14.2		12.39	8.2	16.0	500	8.0	SKC	
	TW-01	9.4 - 19.9		12.92	8.5	18.0	500	9.0	SKC	
	GP-01			8.3	1.4	note b	500		SKC	
	GP-02	5 -7	1	7.0	1.2	5.0	500	2.5	GEM	
	GP-03	3-7	'	7.0	1.2	4.0	500	2.0	GEM	
	GP-04			8.3	1.4	note b	500		SKC	
8/3/2021	MW-16I	30.5 - 35.5		23.46	15.5	34.0	500	17.0	SKC	
	MW-17	15.6 - 25.6		20.75	13.7	28.0	500	14.0	SKC	
	MW-18	6.1 - 12.1	2	11.86	7.8	16.0	500	8.0	SKC	
	MW-26	4.2 - 14.2		9.77	6.4	13.0	500	6.5	SKC	
	TW-01	9.4 - 19.9		16.23	10.7	20.0	500	10.0	SKC	

^a Unable to access location due to wasps nesting in the well monument.

For landfill gas probe locations, the headspace length measurement is equal to the total well length.
"--" = not measured or not applicable

bgs = below ground surface

ft bgs = feet below ground level GEM = GEM2000+ or GEM5000 landfill gas monitoring instrument

mL/min = milliliters per minute SKC = SKC air sampling pump or equivalent

^b For monitoring well locations, the headspace length measurement is the unwetted well volume (i.e., the depth to water from the top of casing). Notes:

Table 3. SWMU 1 Monitoring Well Construction Data

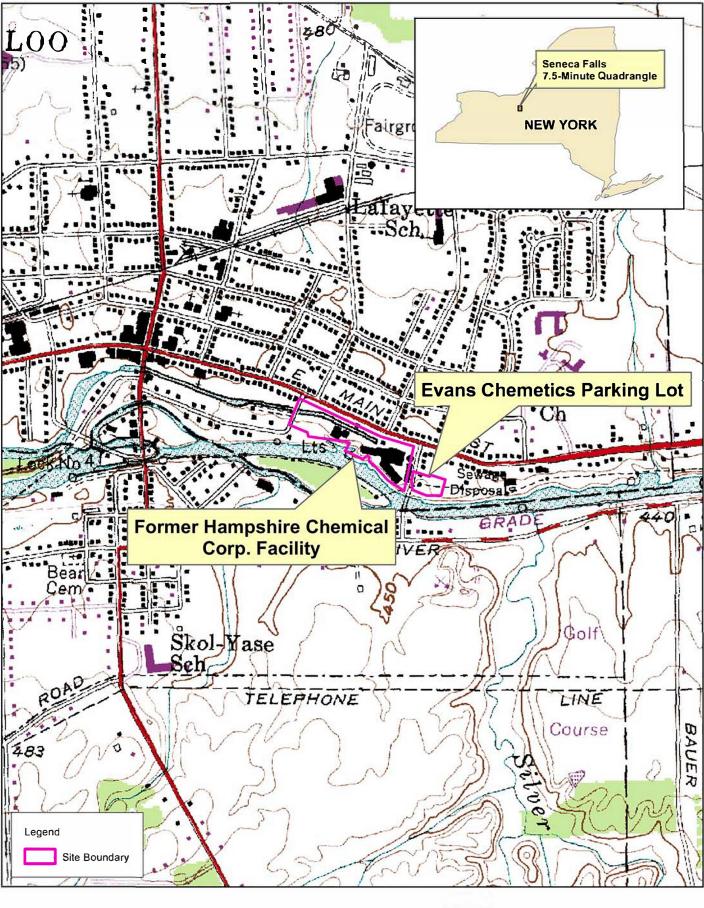
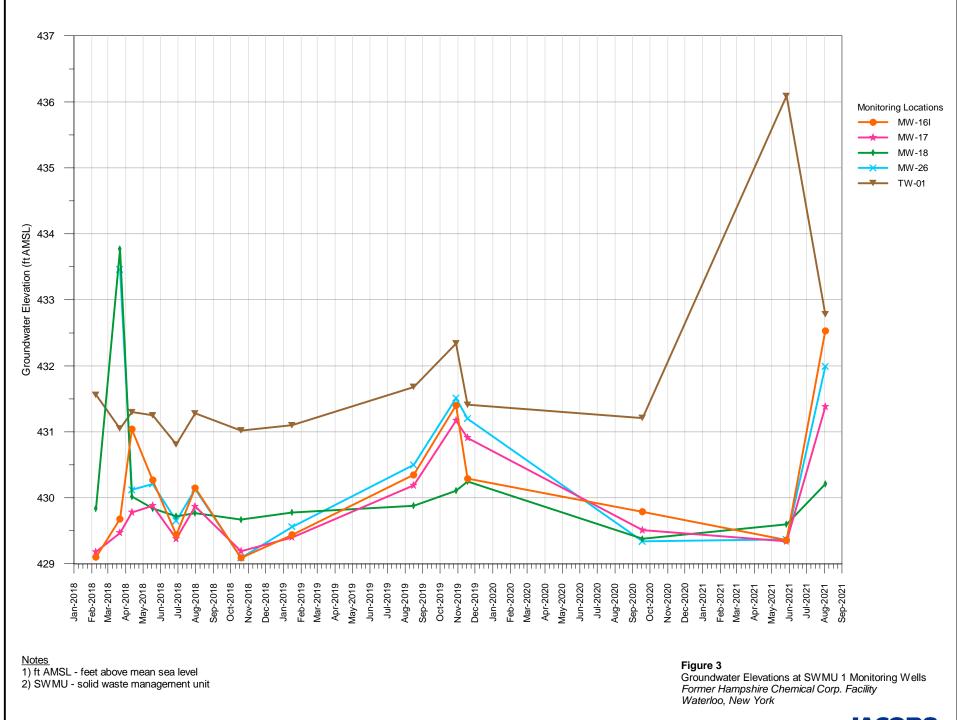
August and November 2019 SWMU 1 Landfill Gas Monitoring Report Former Hampshire Chemical Corp. Facility, Waterloo, New York

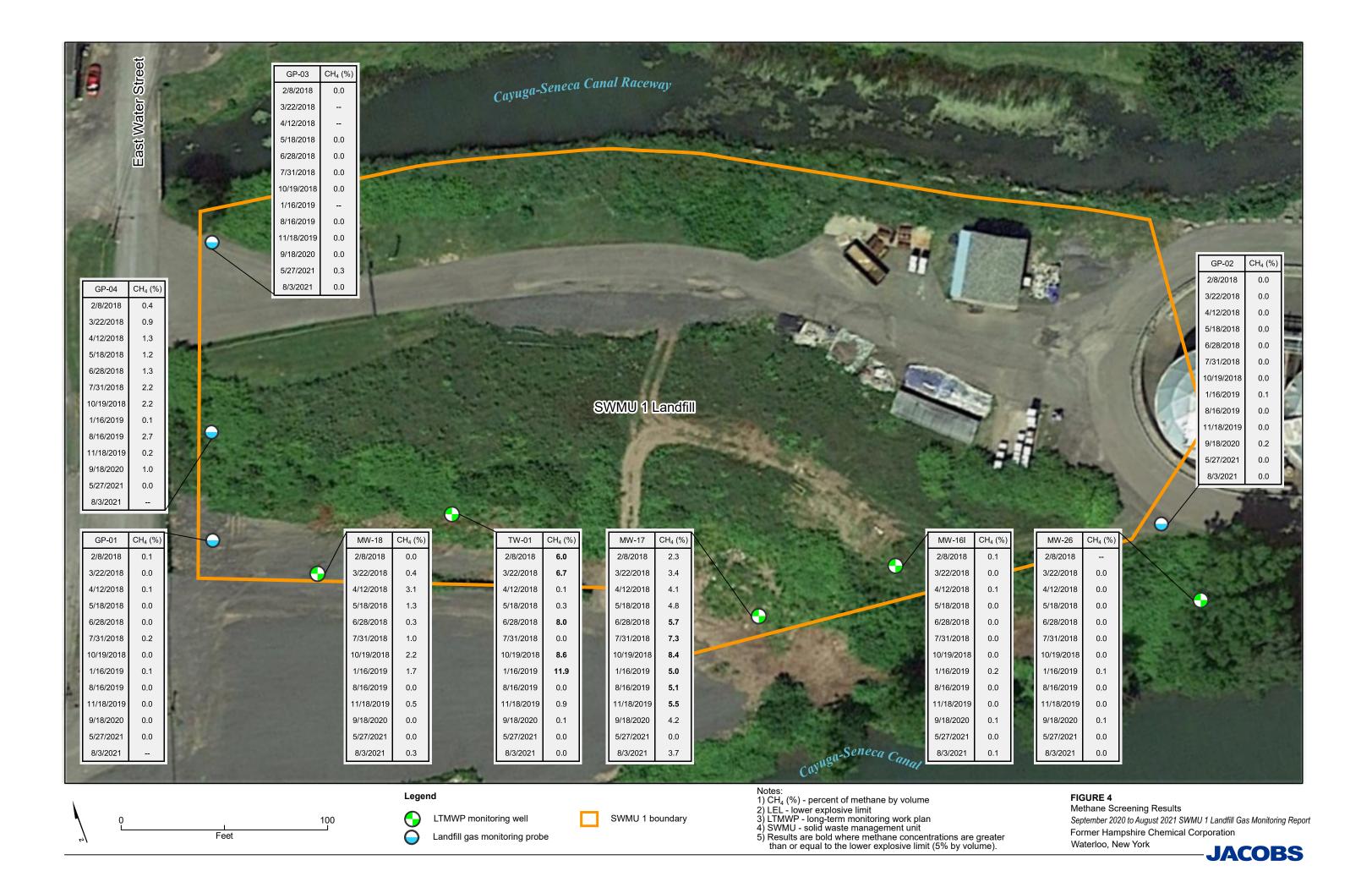
Location	Well Diameter (inches)	Well Material	Ground Elevation (feet amsl)	Top of Casing Elevation (feet amsl)	Total Well Depth (feet bgs)	Screen Slot (inches)	Screen Interval (feet bgs)	Screen Interval (feet amsl)
MW-16I	2	Schedule 40 PVC	454.27	455.99	35.53	0.01	30.5 - 35.5	423.7 - 418.7
MW-17	2	Schedule 40 PVC	449.92	452.13	14.50	0.01	15.3 - 25.3	434.6 - 424.6
MW-18	2	Schedule 40 PVC	440.04	442.07	12.32	0.01	6.3 - 12.3	433.7 - 427.7
MW-26	2	Schedule 40 PVC	439.29	441.76	16.00	0.01	7.5 - 17.5	431.8 - 421.8
TW-01	2	Schedule 40 PVC	447.33	449.01	17.50	0.01	10.3 - 20.8	437.0 - 426.5

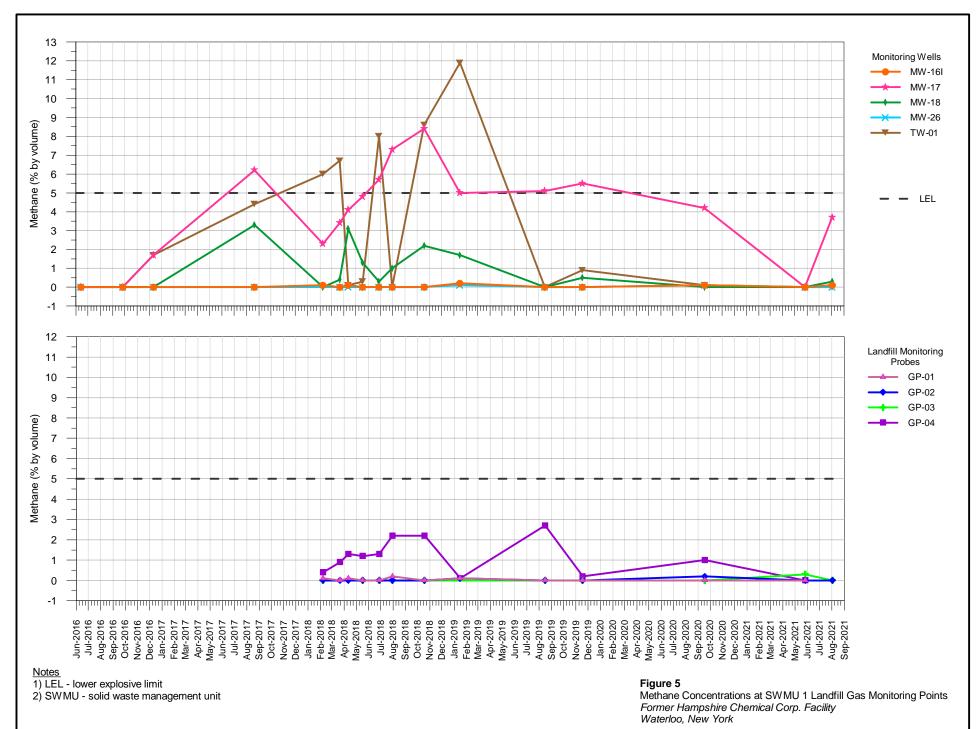
Notes:

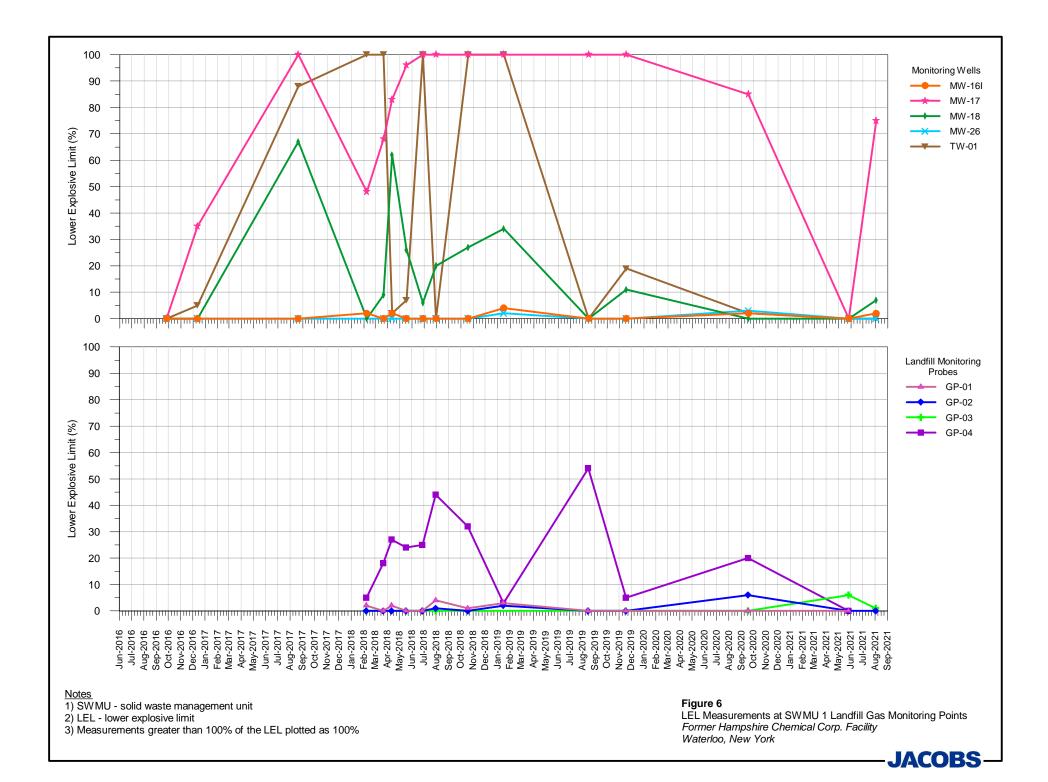
amsl = above mean sea level bgs = below ground surface PVC = polyvinyl chloride

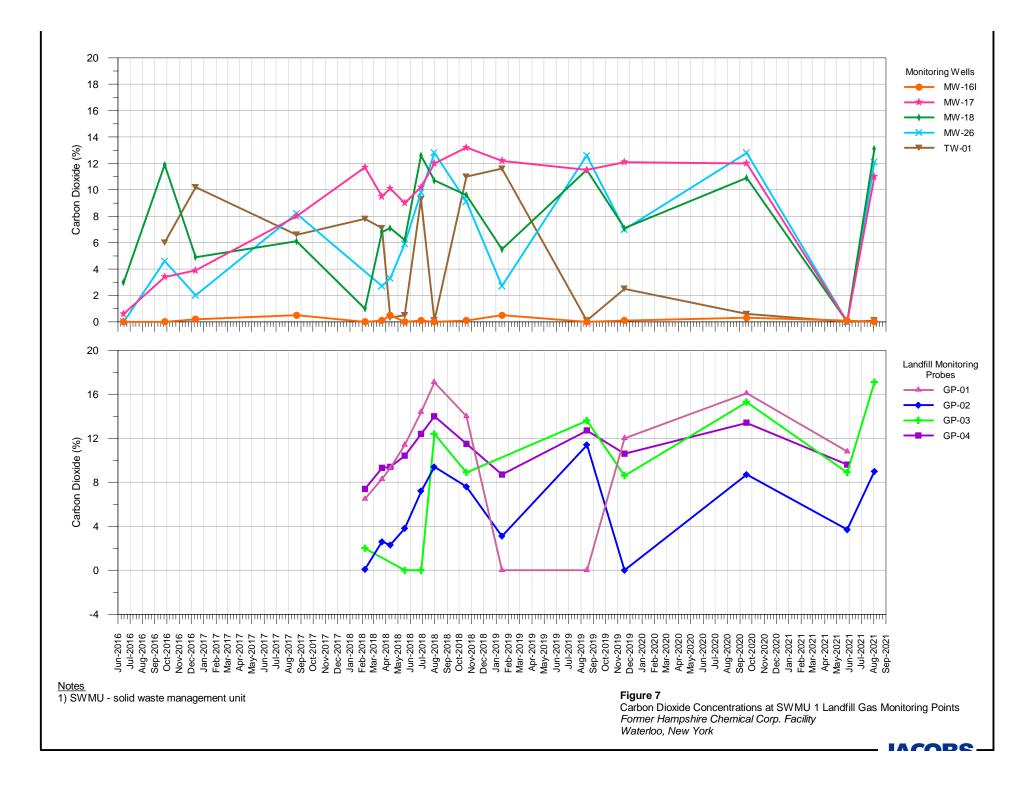
Figures

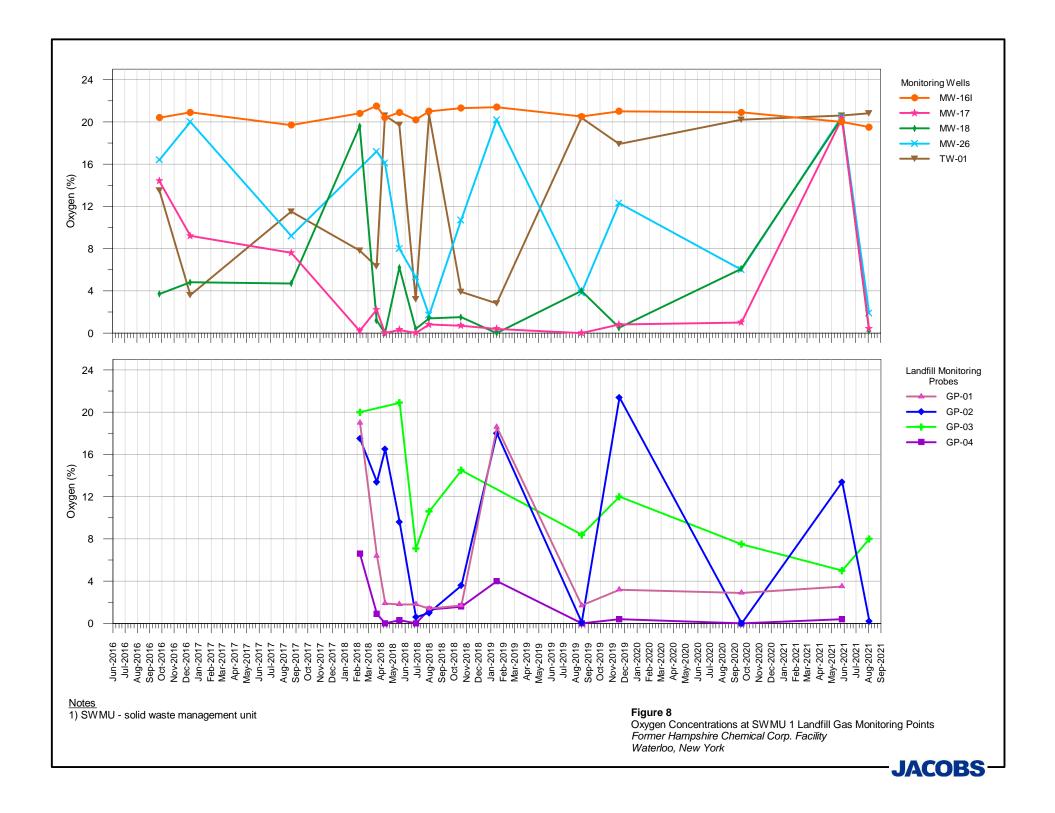



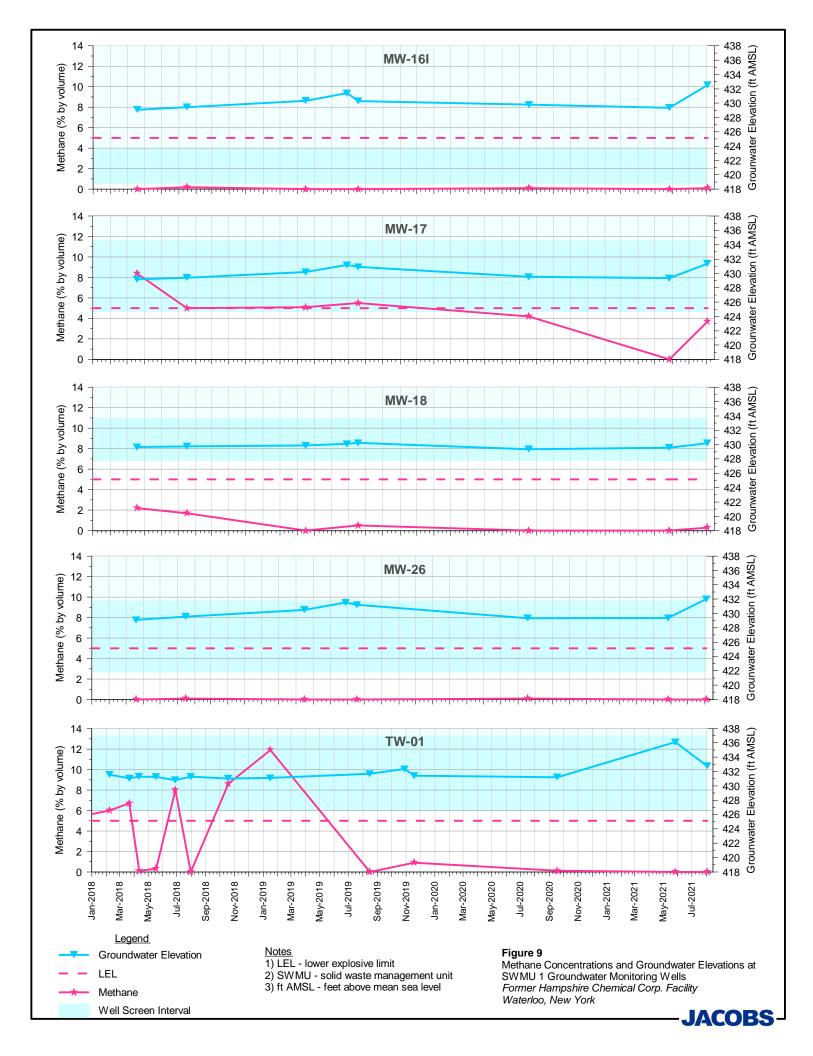


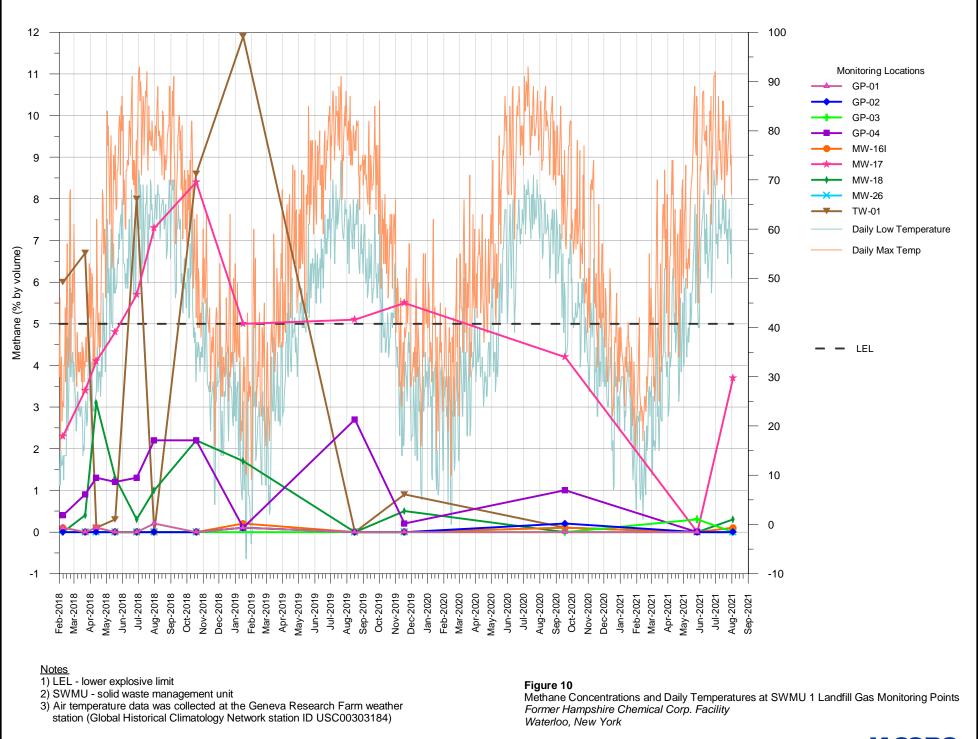

Figure 1. Site Location Former Hampshire Chemical Corp. Facility, Waterloo, NY











Attachment 1 Wellhead Screening Logs

SWMU 1 Landfill Gas Monitoring, August/September 2020 Former Hampshire Chemical Corp. Facility, Waterloo, New York

Date: 9/18/70
Project#: WAT006Dw

Stable	(S)				GP-02			0					GP-01		
	0	VOC (ppm)		2 000	# to.	Diff. I	1 Field	Stab		(ppm)		hoo. 0+ 5	¥ +0,015	Diff.	G Held
0.2	0.2	CH ₄ (% vol.)		015-000	0.00g	Diff. Pressure (inch WC)	Field Pressure Data	0.0	0.0	CH ₄ (% vol.)		ho	15	Diff. Pressure (inch WC)	Field Pressure Data
2	5	LEL CH ₄ (%)	Gas	5-7		Screen Interval	Probe Inf	0	0	LEL CH ₄	Gas	5-7		Screen Interval	Probe Ir
0	0	CO (ppm)	Gas Concentration Field Measurements	7.00	(feet)	D =	Probe Information	0	3,70	(ppm)	Gas Concentration Field Measurements	8.30	(feet)	D =	Probe Information
0	0	H ₂ S (ppm)	ld Measuremen	1.2	= 0.17 * D	Volume (liters)	Purge Vol.	0	C	H ₂ S (ppm)	eld Measureme	1.4	= 0.17 * D	Volume (liters)	Purge Vol.
10	8.8	CO ₂ (%)	ts .	500	(minutes)	T = Purge Time		16.1	15.8	CO ₂ (%)	nts	3	(minutes)	T= Purge Time	
0,0	0.0	O ₂ (%)		Sao	(ml/min)	R=	3 Field Purge Data	2.9	3.0	O ₂ (%)		500	(ml/min)	R=	3 Field Purge Data
l		SO ₂		2.5	=T * R	Actual Volume Purged (liters)	ata	0	1	SO ₂ (ppm)		3/18	" T * R	Actual Volume Purged (liters)	Data
						Section 1	Notes					- C. (194) - 1	F C C S S S	All transcent	Notes

SWMU 1 Landfill Gas Monitoring, August/September 2020 Former Hampshire Chemical Corp. Facility, Waterloo, New York

Date:
Project #: WAT006Dw

Stable	l Initial			Lo	GP-04 H								وى GP-03	i or	
0.1	0.1	VOC (ppm)		- 0.025	210,01	Diff. P	1 Field P	O, O	10	VOC (ppm)		9 -0.141			G Field
1.0	(,3	CH ₄ (% vol.)		25	7	Diff. Pressure (inch WC)	Field Pressure Data	0	0	CH ₄ (% vol.)		141	-0.223	Diff. Pressure (inch WC)	Field Pressure Data
20	26	(%)	Gas (5-7		Screen Interval	Probe Information	0	0	LEL CH ₄	Gas	5-7		Screen Interval	Probe In
0	0	CO (ppm)	Gas Concentration Field Measurements	8.60	(feet)	D =	ormation	0	0	CO (ppm)	Gas Concentration Field Measurements	7.00	(feet)	D =	Probe Information
0	0	H ₂ S (ppm)	d Measurement	1.5	= 0.17 * D	Volume (liters)	Purge Vol.	0	0.0	H ₂ S (ppm)	eld Measuremen	1.2	= 0.17*D	Volume (liters)	Purge Vol.
13,4	13.0	CO ₂ (%)	s	3	(minutes)	T =		15.3	15.3	CO ₂ (%)	its	Z	(minutes)	T =	
0.0	0.3	°0,		500	(ml/min)	R =	3 Field Purge Data	7.5	5.5	O ₂ (%)		500	(ml/min)	R=	3 Field Purge Data
1	1	SO ₂	Standard Co.	3	=T*R	Actual Volume Purged (liters)	ata	-	1	SO ₂ (ppm)		2.5	= T * R	Actual Volume Purged (liters)	Data
0.00	4 2 0	District Control of the Control of t		STATE OF STREET			Notes	0 0 0 0	0 0						Notes

SWMU 1 Landfill Gas Monitoring, August/September 2020 Former Hampshire Chemical Corp. Facility, Waterloo, New York

Date: 9/18/70
Project #: WAT006Dw

Stable	0			-	MW-17				6					MW-16I		
0,2	Initial 0,2	VOC (ppm)		9 -0,015	10,210 E	Diff. P	1 Field P		Stab O		VOC (ppm)		800.00	# + 0, 20a	Diff.	G Held
2,2	3,5	CH ₄ (% vol.)		2	10	Diff. Pressure (inch WC)	Field Pressure Data		0:1	0.1	CH ₄ (% vol.)		08	۵	Diff. Pressure (inch WC)	Field Pressure Data
28	70	LEL CH ₄	Gas C	15.6 - 25.6		Screen Interval	3 Probe Information		2	3	LEL CH ₄	Gas	30.5 - 35.5		Screen Interval	3 Probe I
0	0	CO (ppm)	Gas Concentration Field Measurements	22.62	(ft BTOC)	D= Depth to	formation		0	0	(ppm)	Gas Concentration Field Measurements	26.20	(ft BTOC)	Depth to	3) Probe Information
0	0	H ₂ S (ppm)	ld Measurement	14,93	= 0.66 * D	Volume (liters)	4 Purge Vol.		0	C	H ₂ S (ppm)	eld Measuremen	17,3	= 0.66 * D	Volume (liters)	4 Purge Vol.
12.0	9.7	CO ₂ (%)	S	15	(minutes)	T= Q:18 Purge Time			0,3	0.2	CO ₂ (%)	K	18	(minutes)	7= 8:43 Purge Time	
1.0	h's	O ₂ (%)		1000	(ml/min)	R =	S Field Purge Data		20.9	19.8	O ₂ (%)		100	(ml/min)	R =	S Field Purge Data
((SO ₂ (ppm)		18	= T * R	Actual Volume Purged (liters)	ita		1	1	SO ₂ (ppm)	Market St.	18	= T * R	Actual Volume Purged (liters)	ata
							Notes	DISCOMETHE TOBITLE	THE AVEIGLE VACUUT WHEN	Africa 18 MINS, WELL			the consist of the			Notes

SWMU 1 Landfill Gas Monitoring, August/September 2020 Former Hampshire Chemical Corp. Facility, Waterloo, New York

Date: WAT006Dw

Stable	(S)			-	MW-26								MW-18		
0	ob.	VOC (ppm)		2-0,005	# +0/109	Diff. Pi (inch	1 Field P	Stab	o	VOC (ppm)		210.012	1 - 0.009	Diff. I	G Field
0.1	0.1	CH ₄ (% vol.)		21		Diff. Pressure (inch WC)	Field Pressure Data	0	0	CH ₄ (% vol.)		12	99	Diff. Pressure (inch WC)	Heid Pressure Data
n	2	LEL CH ₄	Gas (4.2 - 14.2		Screen Interval	3 Probe I	0	0	LEL CH ₄	Gas	6.1 - 12.1		Screen Interval	3 Probe
0	0	(ppm)	Gas Concentration Field Measurements	12.42	(ft BTOC)	D =	3 Probe Information	0	0	CO (ppm)	Gas Concentration Field Measurements	12.60	(ft BTOC)		3 Probe Information
0	0	H ₂ S (ppm)	ld Measurement	8.19	= 0.66 * D	Volume (liters)	4 Purge Vol.	0	0:	H ₂ S (ppm)	eld Measuremen	8.38	= 0.66 * D	Volume (liters)	A Purge Vol.
12,8	6,8	co ₂ (%)	S	q	(minutes)	T = Purge Time		10,9	7.5	CO ₂ (%)	its	q	(minutes)	T=	
(0.0	12,7	O ₂ (%)		1000	(ml/min)	R =	SField Purge Data	6:1	10.0	O ₂ (%)	SEPTIMES AND ASSESSMENT	1000	(ml/min)	R =	SField Purge Data
1	1	SO ₂ (ppm)		1	=T * R	Actual Volume Purged (liters)	ita	(1	SO ₂ (ppm)		10	= T * R	Actual Volume Purged (liters)	ata
# C	1.5	Control Specific Control Contr					Notes			(A)		The second secon			Notes

SWMU 1 Landfill Gas Monitoring, August/September 2020 Former Hampshire Chemical Corp. Facility, Waterloo, New York

Date: 9/18/70
Project #: WAT006Dw

	Field Pressure Data	essure Data	3 Probe Information	nformation	4 Purge Vol.		S Field Purge Data	ta	Notes
	Diff. Pressure	wc)	Screen Internal	D=	Volume	T=	R=	Actual Volume	
	lindi	wc)	(ft bgs)	Depth to	(liters)	Purge Time	Purge Rate	(liters)	
W-01	0,00	01		(ft BTOC)	= 0.66 * D	(minutes)	(ml/min)	= T * R	
	9 -0,201	10-	9.4 - 19.9	17,80	17,80 11.75	12	1000 12	7	
			Gas C	Gas Concentration Field Measurements	d Measurement	S			
	VOC (ppm)	CH ₄	LET CH ⁴	00	H ₂ S	CO ₂	02	SO ₂	
_	(ppin)	(% vol.)	(%)	(ppm)	(ppm)	(%)	(%)	(ppm)	
Initial	0.0	5.0	7	0	0	0.9	20	(N
Stable	Stable	0.1	2	0	0	0.6	20.2	1	

SWMU 1 Landfill Gas Monitoring, May 2021

Former Hampshire Chemical Corp. Facility, Waterloo, New York

Project #: W/TOILOW

4	0		tentes	61mp	GP-02			0	0		Sake	new	GP-01		
Stable	0°2	(ppm)		-0.006	10,0	Diff. P	(ii) Field Pi	Stable	Initial	voc (ppm)		3-0.008	-O.C	Diff. P	Field Pt
6	B	CH ₄ (% vol.)		90	0,000	Diff. Pressure (inch WC)	Field Pressure Data	\$.0	0.0	CH ₄ (% vol.)		30	20000	Diff. Pressure (inch WC)	Field Pressure Data
		LEL CH ₄ (%)	Gas	5-7		Screen Interval	Probe Information			LEL CH ₄	Gas	5-7		Screen Interval (ft bgs)	Probe Information
0	B	(ppm)	Gas Concentration Field Measurements	7.00	(feet)	D = Probe Length	ormation	-		co (ppm)	Gas Concentration Field Measurements	8.30	(feet)	D =	ormation
Q	_	H ₂ S (ppm)	ld Measurement	1.2	= 0.17 * D	Volume (liters)	Purge Vol.	-	-	H ₂ S (ppm)	ld Measurement	1.4	= 0.17 * D	Volume (liters)	Purge Vol.
20.4	4.4	CO ₂	is /	X	(minutes)	T = Purge Time		10,00	10.6	CO ₂ (%)	ts .	N	(minutes)	T = Purge Time	
20,4	12,3	O ₂	And the second s	500	(ml/min)	R = Purge Rate	Field Purge Data	3.8	4.0	O ₂ (%)		500	(ml/min)	R =	Field Purge Data
Z	3	SO ₂ (ppm)		25.	=T*R	Actual Volume Purged (liters)	ıta	RS	Z	SO ₂		2.5	11 T * R	Actual Volume Purged (liters)	ata
							Notes								Notes

SWMU 1 Landfill Gas Monitoring, May 2021

Former Hampshire Chemical Corp. Facility, Waterloo, New York

Project#: W#TOILDW 5/27/21

CH ₄	GP-03	© Field Pressure Data Diff. Pressure (inch wc) 1,563	essure Data essure WC)	Probe Information D Screen Interval (ft bgs) (fe	D = Probe Length (feet) 7.00	Purge Vol. Volume (liters) = 0.17 * D	T = Purge Time (minutes)	R = Purge Data R = Purge Rate (ml/min)	Actual Volume Purged (liters)
(% vol.) (%) (ppm) (ppm) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%		4	3	5-7 Gas	7.00 Concentration Fie	1.2 Id Measurement		Soo	5 4
## Probe Information Purge Vol. Purge Time Purge Rate Purge Rate Purge Screen Interval Purge Vol. Purge Time Purge Rate Purge Rate		VOC (ppm)	CH ₄ (% vol.)	(%)	CO (ppm)	H ₂ S (ppm)	(%)	0,	50 ₂ (ppm)
## Probe Information Purge Vol. Purge Data Purge Data Purge Vol. Purge Pole Purge Data Purge Da		8,	ø	0	0	ø	ν, 4	121	MN
Diff. Pressure Data Probe Information Purge Vol. T = R = Purge Actual Volume (liters) T = R = Purged (liters) Actual Volume Purge Data CO. 012. Screen Interval (inch WC) Screen Interval (ft bgs) Probe Length (liters) Purge Time (minutes) Purge Rate (ml/min) Purge Rate (ml/min) = T * R CO. 012. 5 - 7 8.60 1.5 \$ 500 2.5 VOC CH _n (% vol.) LEL CH _q (ppm) (ppm) (ppm) CO ₂ (%) (%) (ppm) O ₂ SO ₂ (%) (ppm) SO ₂ (%) (ppm) Popm) CO ₂ (%) (ppm)		ø	Ø.	6	-01	* Page	dis of o	が	
Diff. Pressure (inch WC)	11	Field Pre	essure Data	Probe Info	ormation	Purge Vol.		Field Purge D	ata
O. 012 (feet) = 0.17*D (minutes) (ml/min) O. 019 5-7 8.60 1.5 \$ 500 Gas Concentration Field Measurements VOC CH _q CO H ₂ S CO ₂ O ₂ ppm) (% vol.) (%) (ppm) (ppm) (%) (%) 2 Q. 2 Q. 8 1		Diff. Pro (inch	essure WC)	Screen Interval	D =	Volume (liters)	T = Purge Time	R = Purge Rate	Actual Volume Purged (liters)
- 0, c/9 5-7 8.60 1.5 5 500 Gas Concentration Field Measurements VOC CH _α LEL CH ₄ CO H ₂ S CO ₂ O ₂ (9pm) (9pm) (9pm) (9pm) (9pm) (9c) (9c) (9c)		1	19		(feet)	= 0.17 * D	(minutes)	(ml/min)	= T * R
Gas Concentration Field Measurements VOC CH ₄ LEL CH ₄ CO H ₂ S CO ₂ O ₂ (ppm) (ppm) (ppm) (%) (%) (%) (%)	I In	T	19	5-7	8.60	1.5	5	500	2.5
VOC CH ₄ LEL CH ₄ CO H ₂ S CO ₂ O ₂ (ppm) (% vol.) (%) (ppm) (ppm) (%) (%) (%)	H ,			Gas	Concentration Fiel	ld Measurement	8		
0.4 0.0 0 0 0 9.2 0.8		VOC (ppm)	CH ₄ (% vol.)	LEL CH ₄	co (ppm)	H ₂ S (ppm)	(%)	O ₂	SO ₂ (ppm)
		P A	0.0	B	0	a	9.2	8.0	KS

	-e8
	400
	60074
	BB 20
	Uliforni Maria III
	100000000000000000000000000000000000000
	1999
	III III
	10035
	- CONTRACTOR
	Ba 775000
	Mark 1975
	40000
8.	0.000
в.	and the second
8	45868014
	ALTERNATION.
п.	Mary Town
10	200
а.	400, 1
и.	100
ш.	200 Po.
и.	A680300.
19.	657 THE
13	BH 30
10	10.1
10	William and Street
28	ADMEN A
ы.	NIBBO
	-
-10	500000000
10	TOTAL TOTAL PORT OF THE PARTY O
88.	100 100 100
59	田 林 田
-81	SIL Albert
-10	ESSERBICK.
100	ARR
10	
- 18	A10 A10
.88	AND ARROWS
-8	GEO 405 10
-10	THE REP. LEW.
10.	WAY 20 127
- 68	VEID/ 12
- 63	1400
- 65	19
-15	
-19	
-10	
-18	

SWMU 1 Landfill Gas Monitoring, May 2021

Former Hampshire Chemical Corp. Facility, Waterloo, New York

Project #: WATONDW

9	0			7.7-AA1AI					6	0	**************************************		INT-WIN	HI	Management of the last	
Stable	Initial CA	VOC (ppm)		0.000	10.01	(inc	200	(ii) Field P	Stable	O e	(ppm)		2 -2	4	Diff. P	₩ Fieto r.
er er	1.6	CH ₆ (% vol.)		olo	110	(inch WC)		Field Pressure Data	0.0	0.1	CH ₄ (% vol.)		48 0.03230.5-35.5	520,0	Diff. Pressure (inch WC)	1
F	32	(%)	Ga	15.6 - 25.6		Screen Interval (ft bgs)		(3) Probe	B	2	LEL CH ₄	Gas	3 230.5 - 35.5	040	Screen Interval	@ Probe
B	3	CO (ppm)	s Concentration Fi	22.79	(ft BTOC)	Depth to	D=	Probe Information	a	0	CO (ppm)	Concentration Fig.	26.63	Water (ft BTOC)	Depth to	Probe Information
B.	B	H ₂ S (ppm)	Gas Concentration Field Measurements	15.04	= 0.66 * D	(liters)	Volume	APurge Vol.	0	-	H ₂ S (ppm)	Gas Concentration Field Measurements	17.6	= 0.66 * D	Volume (liters)	Purge Vol.
Ø	6.7	CO ₂ (%)	l's	30	(minutes)	Purge Time	T=		00	0.6	CO ₂	S	25	(minutes)	T=	
20.3	3,2	O ₂ (%)		500	(ml/min)	Purge Rate	R=	Field Purge Data	20.0	20.0	O ₂		500	(ml/min)	R =	SField Purge Data
MN	NA	SO ₂ (ppm)		15	= T * R	Purged (liters)	Actual Volume	ita	NA	cas	SO ₂ (ppm)	100000000000000000000000000000000000000	12.5	=T*R	Actual Volume Purged (liters)	ta
						4		Notes							coffer 25 min tos	Notes

SWMU 1 Landfill Gas Monitoring, May 2021 Former Hampshire Chemical Corp. Facility, Waterloo, New York

Date: 5/27/2021
Project #: W#To||DW

9	0	500 To 100 To 10		200 00 101	MW.26			6	0				2177770		
Stable	9	VOC (ppm)		11000	20000 -	Diff, Pressure (inch WC)	(ii) Field Pn	O	P -	VOC (ppm)		20.009	-00 do	Diff. Pressure (inch WC)	Field Pre
B	0,0	CH ₄ (% vol.)			2.00	essure WC)	Field Pressure Data	Ø	B	CH ₄ (% vol.)		200	O	ssure WC)	Field Pressure Data
⊘	ø	(%)	Gas (4.2 - 14.2		Screen Interval	Probe Information	es.	Ø	LEL CH ₄ (%)	Gas C	6.1 - 12.1		Screen interval	Probe Information
B	Ø	CO (ppm)	Concentration Fi	12,39	(ft BTOC)	Depth to	formation	Ø	Ø	(ppm)	oncentration Fle	1247	(ft BTOC)	Depth to Water	ormation
ø.	6	H ₂ S (ppm)	Gas Concentration Field Measurements	X8.2	= 0.66 * D	Volume (liters)	@ Purge Vol.	Ø	Ø	H ₂ S (ppm)	Gas Concentration Field Measurements	8.2	= 0.66 * D	Volume (liters)	Purge Vol.
6	6,3	CO ₂		16	(minutes)	T= Purge Time		0	7,7	CO ₂	S .	199	(milliotes)	T = Purge Time	
20.5	2,6	O ₂ (%)		500	(mi/min)	R =	SField Purge Data	20.4	8.3	O ₂ (%)		500	(manazyami)	R = Purge Rate	Field Purge Data
Vm3	NW	SO ₂ (ppm)		00	=T*R	Actual Volume Purged (liters)	rta	WN	82	SO ₂ (ppm)		7.5	=T*R	Actual Volume Purged (liters)	la la
							Notes								Notes

SWIMU 1 Landfill Gas Monitoring, May 2021

Former Hampshire Chemical Corp. Facility, Waterloo, New York

Project #: WATOIDW

Stable	[] Initial				Tw-01		
Stable	Initial 0,2	VOC (ppm)		\$ -0.00 %	-0.006	Diff. Pressure (inch WC)	Field Pressure Data
0	6	CH ₄ (% vol.)	And the second s	20	906	vc)	ssure Data ·
B	В	LEL CH ₄ (%)	Gas	9,4 - 19.9		Screen interval	Probe Information
Q	Ø	co (ppm)	Gas Concentration Field Measurements	12.92	(ft BTOC)	Depth to	nformation
Ø.	Ø	H ₂ S (ppm)	eld Measurement	2.8	= 0.66 * D	Volume (liters)	Purge Vol.
0.	23	CO ₂ (%)	ts .	QQ	(minutes)	T=	
20%	18.9	O ₂ (%)		500	(ml/min)	R = Purge Rate	SField Purge Data
S	AN	SO ₂ (ppm)		-9	"T*R	Actual Volume Purged (liters)	ita
							Notes
							,

After high Hos at GPOS reducted against cal gases. GP-OS was final location visited.

Co(soppm) = 51 H2S(10ppm) = 55 CH4(2,5%) = 17.8 O2(18%) = 17.8

> Cal Gas #2 Co2 (35%) = 46.7 CH4 (50%) = 33.8

SWMU 1 Landfill Gas Monitoring, August 2021 Former Hampshire Chemical Corp. Facility, Waterloo, New York

Project #: WATCIIDW

4	0				GP-02			0	2				GP-01		
Stable	D.	voc (ppm)		100.001	± +0,003	Diff. Pressure (inch WC)	Field Pressure Data	Stable	Initial	VOC (ppm)		Lo	н	Diff. Pressure (inch WC)	Field Pressure Data
8,0	0.0	CH ₄ (% vol.)		1	W	essure WC)	essure Data		1	CH ₄ (% vol.)				wc)	essure Data
Ø	Ø	(%)	Gas (5-7		Screen Interval	Probe Information			(%)	Gas	5-7		Screen Interval	Probe Information
9	0	(ppm)	Gas Concentration Field Measurements	7.00	(feet)	D =	rmation			co (ppm)	Gas Concentration Field Measurements	8.30	(feet)	D =	ormation
8.	8	H ₂ S (ppm)	ld Measurement	1.2	= 0.17 * D	Volume (liters)	Purge Vol.			H ₂ S (ppm)	ld Measuremen	A	= 0.17*D	Volume (liters)	Purge Vol.
Ø.	9.6	CO ₂	S	N	(minutes)	T = Purge Time				co ₂ (%)	ts s		(minutes)	T =	
G	0.4	0,		Soo	(ml/min)	R =	3 Field Purge Data			O ₂ (%)			(ml/min)	R =	SField Purge Data
1	1	SO ₂ (ppm)		2.5	= T * R	Actual Volume Purged (liters)	ata			SO ₂ (ppm)			= T * R	Actual Volume Purged (liters)	ata
		Box full of ants		Purps stop 13:58	Purge start 18:53	SE corner	Notes				Yellow jackets	Steel augment is fell of	Unable to access wall	SW COM	Notes

SWMU 1 Landfill Gas Monitoring, August 2021
Former Hampshire Chemical Corp. Facility, Waterloo, New York

Project #: WHOLLDW

0	0				GP-04			4	0				GP-03		
Stable	Initial	voc (ppm)	And the second s	Lo	Hi	Diff. P	Field P	Stable	Q,	voc (ppm)		000	-0.001	Diff. P	Field P
	1	CH ₄ (% vol.)				Diff. Pressure (inch WC)	Field Pressure Data	0.0	000	CH ₄ (% vol.)		0.000	10	Diff. Pressure (inch WC)	Field Pressure Data
		% CF	Gas	5-7		Screen Interval	Probe Int	-	-	LEL CH ₄	Gas	5-7		Screen Interval	Probe In
		(ppm)	Gas Concentration Field Measurements	8.60	(feet)	D =	Probe Information	B	Ø	co (ppm)	Gas Concentration Field Measurements	7.00	(feet)	D =	Probe Information
		H ₂ S (ppm)	ld Measurement	1.5	= 0.17 * D	Volume (liters)	Purge Vol.	Q.	0	H ₂ S (ppm)	ld Measurement	1.2	= 0.17 * D	Volume (liters)	Purge Vol.
		co ₂ (%)	s		(minutes)	T =		17.1	17.4	CO ₂	S	4	(minutes)	T =	
		O ₂ (%)	And the control of th		(ml/min)	R = Purge Bate	3 Field Purge Data	8.0	7.5	O ₂ (%)		500	(ml/min)	R = Purge Rate	S Field Purge Data
		SO ₂ (ppm)			= T * R	Actual Volume Purged (liters)	ita	1	ı	SO ₂ (ppm)		2	=T*R	Actual Volume Purged (liters)	ata
			yarkets.	morement is fell of vellow	Unable to access well. Steel	NW corner	Notes			LEL reads 1% at 0.0%, vol	1	oats by	Runge Start 1429	Water Street	Notes

SWMU 1 Landfill Gas Monitoring, August 2021
Former Hampshire Chemical Corp. Facility, Waterloo, New York

Project #: W#To 1121

0	0			1	TO MAN			0	0			-	TIMM		.
Stable	O	voc (ppm)		Lo	0.237	Diff. P	Field Pi	Stable	initial O	VOC (ppm)		0.006	-0.003	Diff. P	Field P
ė.	Ø. Ø	CH ₄ (% vol.)		0.230	37	Diff. Pressure (inch WC)	Field Pressure Data	3.7	3.6	CH ₄ (% vol.)		6	03	Diff. Pressure (inch WC)	Field Pressure Data
10	д	LEL CH ₄	Gas	15.6 - 25.6		Screen Interval	3 Probe I	75	72	LEL CH ₄ (%)	Gas	30.5 - 35.5		Screen Interval	3 Probe
<i>B</i> _	B	co (ppm)	Gas Concentration Field Measurements	23.46	(ft BTOC)	D =	3 Probe Information	0	B	(ppm)	Gas Concentration Field Measurements	20:75	(ft BTOC)	Depth to	3) Probe Information
3	Ø	H ₂ S (ppm)	eld Measurement	15.5	= 0.66 * D	Volume (liters)	A Purge Vol.	0	Ø	H ₂ S (ppm)	eld Measuremen	13.7	= 0.66 * D	Volume (liters)	Purge Vol.
3,2	0,4	CO ₂ (%)		34	(minutes)	T = Purge Time		11.0	10.9	CO ₂ (%)	ts	28	(minutes)	T=	
19,5	19.1	O ₂ (%)		200	(ml/min)	R = Purge Rate	5 Field Purge Data	0.4	0.2	O ₂ (%)		500	(ml/min)	R =	SField Purge Data
1	(SO ₂ (ppm)	And the second s	17	=T*R	Actual Volume Purged (liters)	nta	The state of the s	1	SO ₂ (ppm)		4	=T*R	Actual Volume Purged (liters)	ata
						Purge short # 1330	Ngter							purge start 1303	Notes

SWMU 1 Landfill Gas Monitoring, August 2021
Former Hampshire Chemical Corp. Facility, Waterloo, New York

Project #: WATOUDW

0	2				MW-26			6	0				MW-18		
Stable	Q.	VOC (ppm)		800.00	-0.004	Diff. P	1 Field P	Stable O O	P.	VOC (ppm)		000	0.0	Diff. P	1 Field P
	\$0	CH ₄ (% vol.)		800	04	Diff. Pressure (inch WC)	Field Pressure Data	0.3	Q.	CH ₄ (% vol.)		8000	0.010	Diff. Pressure (inch WC)	Field Pressure Data
Ø	a	LEL CH ₄ (%)	Gas	4.2 - 14.2		Screen Interval	3 Probe I	7	2	LEL CH ₄	Gas	6.1 - 12.1		Screen Interval	3 Probe
B	Ø	co (ppm)	Concentration F	4.7	(ft BTOC)	D= Depth to	3) Probe Information	0,	0	(ppm)	Concentration F	11.86	(ft BTOC)	Depth to	8 Probe Information
9	8	H ₂ S (ppm)	Gas Concentration Field Measurements	65	= 0.66 * D	Volume (liters)	Purge Vol.	a	8	H ₂ S (ppm)	Gas Concentration Field Measurements	7.8	= 0.66 * D	Volume (liters)	@Purge Vol.
12.	10.4	CO ₂	ts	3	(minutes)	T =		13.1	12.7	CO ₂ (%)	nts .	16	(minutes)	T =	
100	5.7	02		500	(ml/min)	R =	S Field Purge Data	0.2	0,9	O ₂ (%)		500	(ml/min)	R =	Field Purge Data
í	1	SO ₂ (ppm)		53	□ T * R	Actual Volume Purged (liters)	ata	1	1	SO ₂ (ppm)		Q	=T*R	Actual Volume Purged (liters)	ata
						Punge start 1347	Notes						John Mand doing	Start purge 1244	Notes

SWMU 1 Landfilf Gas Monitoring, August 2021
Former Hampshire Chemical Corp. Facility, Waterloo, New York

Date: 8/3/21
Project #: WATO!!DW

0				TW-01		
P C	VOC (ppm)		2 -0.00	-O,00	Diff. Pr (inch	Field Pressure Data
0.0	CH ₄ (% vol.)		4	2	essure WC)	essure Data
ta	LEL CH ₄	Gas	9.4 - 19.9		Screen Interval	3 Probe Information
00	co (ppm)	Concentration Fie	16.23	(ft BTOC)	D= Depth to	nformation
Q.Q	H ₂ S (ppm)	ld Measurement	10.7	= 0.66 * D	Volume (liters)	Purge Vol.
1.2	CO ₂	S	20	(minutes)	Γ=	
2006	O ₂ (%)		500	(ml/min)	R =	S Field Purge Data
)	SO ₂ (ppm)		10	=T*R	Actual Volume Purged (liters)	a
				1118	Steent pergo 12:54	Notes
	Ø.Ø 10 00 00 1.2 £	VOC CH_4 LEL CH_4 CO H_2S CO_2 O_2 (ppm) (ppm) (%vol.) (%) (ppm) (ppm) (%) (%) (%)	VOC CH ₄ LEL CH ₄ CO H ₂ S CO ₂ O ₂ (9pm) (9% vol.) (%) (ppm) (ppm) (9pm) (%) (%) (%) (%)	9.4-19.9 6.23 0.7 2.0 500 10 10 10 10 10 10	## -0.002	Diff. Pressure (Inch WC) Screen Interval (Iters) D= Volume (Inch WC) F= R= -O_oCO2