

GTE Operations Support Incorporated
One Verizon Way (VC34W414)
Basking Ridge, New Jersey 07920-1097

July 2, 2008

Mr. Stephen Condon
New York State Department of Environmental Conservation
Bureau of Radiation & Hazardous Site Management
Division of Solid & Hazardous Materials
625 Broadway
Albany, New York 12233-7252

Re: Former Philips Display Components Facility, Seneca Falls, New York
March 2008 Semi-Annual Groundwater Sampling Event

Dear Mr. Condon:

Attached for your review are the results of the March 2008 groundwater sampling event at the Former Philips Display Components Facility in Seneca Falls, New York (the Site). On March 25 through 27, 2008 Malcolm Pirnie, Inc. (Malcolm Pirnie) measured groundwater levels and sampled groundwater from eleven shallow monitoring wells (MW-1, MW-20 through MW-29), one weathered bedrock well (MW-BR-06) and five bedrock monitoring wells (MW-BR-01 through MW-BR-05) (Figure 1). Table 1 provides groundwater levels measured on March 25, 2007. Similar to previous sampling events, the three bedrock interface wells (MW-BI-01, MW-BI-02, and MW-BI-03) were dry and could not be sampled. These wells were abandoned on May 19 and 20, 2008 with the approval of the New York State Department of Environmental Conservation (NYSDEC).

Prior to sampling, either three volumes of water were removed from the wells or they were purged dry with a submersible pump and allowed to recover. Conductivity, pH, turbidity, dissolved oxygen, oxidation reduction potential, total dissolved solids, and temperature were measured in the purge water to evaluate the geochemical characteristics of groundwater and ensure the representativeness of the samples. The purged water was disposed of in the nearby sanitary sewer with the permission of the Village of Seneca Falls Publicly Owned Treatment Works (POTW).

In addition to the 17 groundwater samples, 4 quality assurance/quality control (QA/QC) samples (two trip blanks, a field blank, and a duplicate from MW-25) were collected. Samples were shipped to TestAmerica Laboratories, Inc. (TestAmerica) of Shelton, Connecticut and analyzed for volatile organic compounds (VOCs) using United States Environmental Protection Agency (USEPA) Method 8260B.

Concentrations of VOCs in the March 2008 samples were compared to the NYSDEC Class GA Standards and the previous sampling results. Similar to previous results, trichloroethene (TCE) and/or *cis*-1,2-dichloroethene (*cis*-1,2-DCE) were present at concentrations greater than the NYSDEC Class GA Standard of 5 µg/l in samples from monitoring wells MW-22 through MW-26¹, MW-29, and MW-BR-06 (Tables 2 and 3). In addition, 1,1-dichloroethane, methylene chloride, and vinyl chloride were present in at least one groundwater sample at concentrations greater than the NYSDEC Class GA Standards. The analytical data from this and previous sampling events show decreasing trends of VOC concentrations in MW-20, MW-22 through MW-25, and MW-29. Groundwater sampled from MW-1, MW-21, MW-27, MW-BR-01, MW-BR-02, and MW-BR-04 did not contain VOCs and groundwater sampled from MW-20, MW-28, MW-BR-03, and MW-BR-05 did not contain VOCs at concentrations greater than the NYSDEC Class GA Standards.

If you have any questions concerning this report, please do not hesitate to call me at your convenience. I can be reached at (908) 559-3691.

Sincerely,

Pam Cox /jcb

Pam Cox
Manager – Corporate Workplace Safety &
Environmental Compliance

Attachments:

Figure 1 – Monitoring Well Locations

Table 1 – Groundwater Level Measurements (March 25, 2008)

Table 2 – Groundwater Monitoring Results (March 2008) - Overburden Wells

Table 3 – Groundwater Monitoring Results (March 2008) - Bedrock Wells and Quality
Assurance/Quality Control Samples

¹ Samples from MW-23 through MW-26 were diluted in the laboratory because of concentrations greater than the standard calibration range. As a result, the reporting limits for analytes in these samples were one to three orders of magnitude greater than those of the other samples.

Mr. Stephen Condon

July 2, 2008

Page 3 of 3

cc:

Ms. Denise Radtke
NYS Dept of Environmental Conservation
625 Broadway
Albany, New York 12233-7252

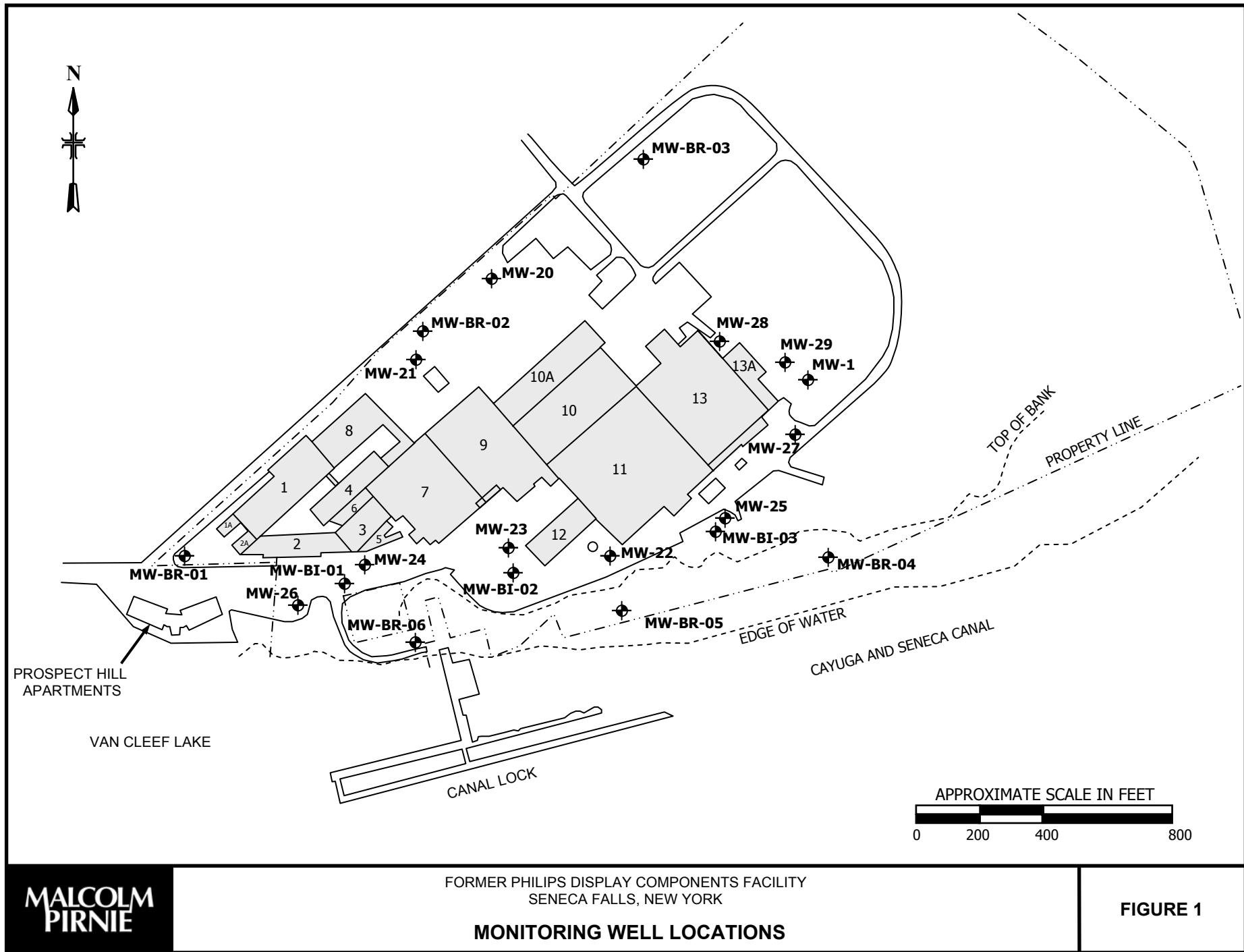
Mr. Steven Malsan
NYS Dept of Environmental Conservation
625 Broadway
Albany, New York 12233-7252

Ms. Melissa A. Menetti
New York State Department of Health
547 River Street
Troy, NY 12180

Mr. Ray Larkin
Environmental Consultant
9 Hawthorne Court
North Kingstown, RI 02852-4646

Ms. Patricia Jones
Seneca County Industrial Development Agency
1 DiPronio Drive
Waterloo, NY 13165-1681

Mr. Daniel Lang
Malcolm Pirnie, Inc.
43 British American Boulevard
Latham, NY 12110


Mr. James Reidy
U.S. Environmental Protection Agency
290 Broadway
New York, NY 10007-1866

Mr. Sam Ezekwo
U.S. Environmental Protection Agency,
Region 2
Division of Environmental Planning and
Protection
CRA Program Branch, New York Section
290 Broadway, 22nd Floor
New York, NY 10007-1866

Ms. Jean Agostinelli
GTE Operations Support Incorporated
One Verizon Way, VC34W453
Basking Ridge, New Jersey 07920-1097

Mr. Michael Hanna
H.P. Neun
75 North Main Street
Fairport, NY 14450

Ms. Marzi Sharfaei
Malcolm Pirnie, Inc.
1515 E. Woodfield Road, Suite 360
Schaumburg, IL 60173

Table 1
Groundwater Level Measurements (March 25, 2008)
Former Philips Display Components Facility
Seneca Falls, New York

Well Number	Datum Elevation	Depth to Water (feet)	Water Level Elevation (feet AMSL)
MW-1	460.83	7.28	453.55
MW-20	463.42	0.90	462.52
MW-21	467.39	0.86	466.53
MW-22	460.77	5.85	454.92
MW-23	460.59	2.29	458.30
MW-24	462.76	3.37	459.39
MW-25	460.74	3.87	456.87
MW-26	458.80	4.70	454.10
MW-27	460.45	6.51	453.94
MW-28	461.26	6.72	454.54
MW-29	459.89	6.61	453.28
MW-BR-01	462.64	34.40	428.24
MW-BR-02	467.87	29.67	438.20
MW-BR-03	457.06	63.35	393.71
MW-BR-04	396.39	Artesian	Artesian
MW-BR-05	401.34	19.62	381.72
MW-BR-06	436.30	35.88	400.42
MW-BI-01	460.76	Dry	Dry
MW-BI-02	460.61	Dry	Dry
MW-BI-03	458.42	Dry	Dry

Note:

AMSL - Above mean sea level

N/A - Not applicable

Table 2
 Groundwater Monitoring Results (March 2008)
 Overburden Wells
 Former Philips Display Components Facility
 Seneca Falls, New York

VOCs	NYS Class GA Standard	MW-1	MW-20	MW-21	MW-22	MW-23	MW-24	MW-25	Duplicate of MW-25	MW-26	MW-27	MW-28	MW-29	
1,1,1-Trichloroethane	5	5.0 U	5.0 U	5.0 U	5.0 U	50 U	1000 U	10 U	20 U	5.0 U	5.0 U	5.0 U	5.0 U	
1,1,2,2-Tetrachloroethane	5	5.0 U	5.0 U	5.0 U	5.0 U	50 U	1000 U	10 U	20 U	5.0 U	5.0 U	5.0 U	5.0 U	
1,1,2-Trichloroethane	1	5.0 U	5.0 U	5.0 U	5.0 U	50 U	1000 U	10 U	20 U	5.0 U	5.0 U	5.0 U	5.0 U	
1,1-Dichloroethane	5	5.0 U	5.0 U	5.0 U	5.0 U	50 U	1000 U	19	19 J	5.0 U	5.0 U	5.0 U	5.0 U	
1,1-Dichloroethene	5	5.0 U	5.0 U	5.0 U	5.0 U	50 U	1000 U	3.0 J	3.1 J	1.5 J	5.0 U	5.0 U	5.0 U	
1,2-Dichloroethane	0.6	5.0 U	5.0 U	5.0 U	5.0 U	50 U	1000 U *	10 U	20 U	5.0 U	5.0 U	5.0 U	5.0 U	
1,2-Dichloropropane	1	5.0 U	5.0 U	5.0 U	5.0 U	50 U	1000 U	10 U	20 U	5.0 U	5.0 U	5.0 U	5.0 U	
2-Butanone (MEK)	50	10 U	10 U	10 U	10 U	100 U	2000 U	20 U	40 U	10 U	10 U	10 U	10 U	
2-Hexanone	50	10 U	10 U	10 U	10 U	100 U	2000 U	20 U	40 U	10 U	10 U	10 U	10 U	
4-Methyl-2-pentanone (MIBK)	5	10 U	10 U	10 U	10 U	100 U	2000 U	20 U	40 U	10 U	10 U	10 U	10 U	
Acetone	50	10 U	10 U	10 U	10 U	100 U	2000 U	20 U	40 U	10 U	10 U	10 U	10 U	
Benzene	1	5.0 U	5.0 U	5.0 U	5.0 U	50 U	1000 U	10 U	20 U	5.0 U	5.0 U	5.0 U	5.0 U	
Bromodichloromethane	50	5.0 U	5.0 U	5.0 U	5.0 U	50 U	1000 U	10 U	20 U	5.0 U	5.0 U	5.0 U	5.0 U	
Bromoform	50	5.0 U	5.0 U	5.0 U	5.0 U	50 U	1000 U *	10 U	20 U	5.0 U	5.0 U	5.0 U	5.0 U	
Bromomethane	5	5.0 U	5.0 U	5.0 U	5.0 U	50 U	1000 U	10 U	20 U	5.0 U	5.0 U	5.0 U	5.0 U	
Carbon disulfide	60	5.0 U	5.0 U	5.0 U	5.0 U	50 U	1000 U	10 U	20 U	5.0 U	5.0 U	5.0 U	5.0 U	
Carbon tetrachloride	5	5.0 U	5.0 U	5.0 U	5.0 U	50 U	1000 U	10 U	20 U	5.0 U	5.0 U	5.0 U	5.0 U	
Chlorobenzene	5	5.0 U	5.0 U	5.0 U	5.0 U	50 U	1000 U	10 U	20 U	5.0 U	5.0 U	5.0 U	5.0 U	
Chloroethane	5	5.0 U	5.0 U	5.0 U	5.0 U	50 U	1000 U	10 U	20 U	5.0 U	5.0 U	5.0 U	5.0 U	
Chloroform	7	5.0 U	5.0 U	5.0 U	5.0 U	50 U	1000 U	10 U	20 U	5.0 U	5.0 U	5.0 U	5.0 U	
Chloromethane	5	5.0 U	5.0 U	5.0 U	5.0 U	50 U	1000 U	10 U	20 U	5.0 U	5.0 U	5.0 U	5.0 U	
cis-1,2-Dichloroethene	5	5.0 U	5.0 U	5.0 U	7.3	110	23000	330	350	190	5.0 U	5.0 U	8.4	
cis-1,3-Dichloropropene	0.4	5.0 U	5.0 U	5.0 U	5.0 U	50 U	1000 U	10 U	20 U	5.0 U	5.0 U	5.0 U	5.0 U	
Dibromochloromethane	50	5.0 U	5.0 U	5.0 U	5.0 U	50 U	1000 U	10 U	20 U	5.0 U	5.0 U	5.0 U	5.0 U	
Dichlorodifluoromethane	5	5.0 U *	5.0 U *	5.0 U *	5.0 U *	50 U	1000 U	10 U *	20 U	5.0 U *	5.0 U *	5.0 U *	5.0 U *	
Ethylbenzene	5	5.0 U	5.0 U	5.0 U	5.0 U	50 U	1000 U	10 U	20 U	5.0 U	5.0 U	5.0 U	5.0 U	
Methylene Chloride	5	5.0 U	5.0 U	5.0 U	5.0 U	5.7 JB	66 JB	10 U	1.5 J	5.0 U	5.0 U	5.0 U	5.0 U	
Styrene	5	5.0 U	5.0 U	5.0 U	5.0 U	50 U	1000 U	10 U	20 U	5.0 U	5.0 U	5.0 U	5.0 U	
Tetrachloroethene	5	5.0 U	5.0 U	5.0 U	5.0 U	50 U	1000 U	10 U	20 U	5.0 U	5.0 U	5.0 U	5.0 U	
Toluene	5	5.0 U	5.0 U	5.0 U	5.0 U	50 U	1000 U	10 U	20 U	5.0 U	5.0 U	5.0 U	5.0 U	
trans-1,2-Dichloroethene	5	5.0 U	5.0 U	5.0 U	5.0 U	50 U	1000 U	10 U	2.6 J	0.99 J	5.0 U	5.0 U	5.0 U	
trans-1,3-Dichloropropene	0.4	5.0 U	5.0 U	5.0 U	5.0 U	50 U	1000 U	10 U	20 U	5.0 U	5.0 U	5.0 U	5.0 U	
Trichloroethene	5	5.0 U	5.0 U	5.0 U	5.0 U	8.7	1600	670 J	11	12 J	100	5.0 U	3.1 J	5.0 U
Trichlorofluoromethane	5	5.0 U	5.0 U	5.0 U	5.0 U	50 U	1000 U *	10 U	20 U	5.0 U	5.0 U	5.0 U	5.0 U	
Vinyl acetate	5	5.0 U	5.0 U	5.0 U	5.0 U	50 U	1000 U	10 U	20 U	5.0 U	5.0 U	5.0 U	5.0 U	
Vinyl chloride	2	5.0 U	1.2 JM	5.0 U	0.51 JM	50 U	920 J	10 U M	20 U	7.2	5.0 U	5.0 U	5.0 U	
Xylenes, Total	5	5.0 U	5.0 U	5.0 U	5.0 U	50 U	1000 U	10 U	20 U	5.0 U	5.0 U	5.0 U	5.0 U	

NOTES:

Bolded results were detected or estimated.

Shaded results were greater than the NYSDEC Class GA Standards

All values are shown in units of micrograms per liter (ug/L).

U - Not detected

J - Estimated less than the reporting limit

B - Compound was detected in the blank

M - Manually integrated compound

* - Laboratory control standard or its duplicate exceeds the control limits

Table 3
 Groundwater Monitoring Results (March 2008)
 Bedrock Wells and Quality Assurance/Quality Control Samples
 Former Philips Display Components Facility
 Seneca Falls, New York

VOCs	NYS Class GA Standard	MW-BR-01	MW-BR-02	MW-BR-03	MW-BR-04	MW-BR-05	MW-BR-06**	TRIP BLANK	TRIP BLANK	FIELD BLANK
1,1,1-Trichloroethane	5	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U H	5.0 U
1,1,2,2-Tetrachloroethane	5	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U H	5.0 U
1,1,2-Trichloroethane	1	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U H	5.0 U
1,1-Dichloroethane	5	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U H	5.0 U
1,1-Dichloroethene	5	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U H	5.0 U
1,2-Dichloroethane	0.6	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U H	5.0 U
1,2-Dichloropropane	1	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U H	5.0 U
2-Butanone (MEK)	50	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U H	10 U
2-Hexanone	50	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U H	10 U
4-Methyl-2-pentanone (MIBK)	5	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U H	10 U
Acetone	50	10 U	10 U	10 U	10 U	10 U	10 U	10 U	2.2 J H B	10 U
Benzene	1	5.0 U	5.0 U	0.39 J	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U H	5.0 U
Bromodichloromethane	50	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U H	5.0 U
Bromoform	50	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U H	5.0 U
Bromomethane	5	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U H	5.0 U
Carbon disulfide	60	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	0.20 J H	5.0 U
Carbon tetrachloride	5	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U H	5.0 U
Chlorobenzene	5	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U H	5.0 U
Chloroethane	5	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U H	5.0 U
Chloroform	7	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U H	5.0 U
Chloromethane	5	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U H *	5.0 U
cis-1,2-Dichloroethene	5	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	0.83 J	0.70 J	5.0 U	5.0 U H
cis-1,3-Dichloropropene	0.4	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U H	5.0 U
Dibromochloromethane	50	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U H	5.0 U
Dichlorodifluoromethane	5	5.0 U *	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U *	5.0 U H *	5.0 U *
Ethylbenzene	5	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U H	5.0 U
Methylene Chloride	5	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	0.74 J H B *	5.0 U
Styrene	5	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U H	5.0 U
Tetrachloroethene	5	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U H	5.0 U
Toluene	5	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U H	5.0 U
trans-1,2-Dichloroethene	5	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U H	5.0 U
trans-1,3-Dichloropropene	0.4	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U H	5.0 U
Trichloroethene	5	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	9.8	5.0 U	5.0 U H
Trichlorofluoromethane	5	5.0 U	5.0 U	5.0 U	5.0 U *	5.0 U *	5.0 U *	5.0 U	5.0 U H	5.0 U
Vinyl acetate	5	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U H	5.0 U
Vinyl chloride	2	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U H	5.0 U
Xylenes, Total	5	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U H	5.0 U

NOTES:

**MW-BR-06 is screened in overburden and weathered bedrock

Bolded results were detected or estimated.

Shaded results were greater than the NYSDEC Class GA Standards

All values are shown in units of micrograms per liter (ug/L).

U - Not detected

J - Estimated less than the reporting limit

B - Compound was detected in the blank

* - Laboratory control standard or its duplicate exceeds the control limits

H - Sample was prepped or analyzed beyond the specified holding time