

GTE Operations Support Incorporated
One Verizon Way (VC33E048B)
Basking Ridge, New Jersey 07920

Matthew Walsh
Sr. Manager, EHS
908.559-3691

June 6, 2025

Ms. Charlotte Theobald
Assistant Engineer
New York State Department of Environmental Conservation
Division of Environmental Remediation
6274 East Avon-Lima Road
Avon, NY 14414

Re: Spring 2025 Semi-Annual Groundwater Sampling Event
Site #850003 - G.T.E. Products Corporation
Former Philips Display Components Facility
Seneca Falls, New York

Dear Ms. Theobald:

Results are attached for semi-annual groundwater sampling conducted in March 2025 at the Former Philips Display Components Facility (New York State Department of Environmental Conservation Site No. 850003) located at 50 Johnston Street, Seneca Falls, New York. Trichloroethene, cis-1,2-dichloroethene, and 1,1-dichloroethane were reported in select groundwater samples at concentrations greater than New York State Department of Environmental Conservation Class GA Standards.

The next semi-annual groundwater sampling event is tentatively scheduled for September 2025.

Please contact me if you have any questions.

Sincerely,

Matthew T. Walsh
Sr. Manager – Environment, Health and Safety

Attachments

- A – March 2025 Groundwater Sampling Event Summary
- B – Figures
- C – Tables
- D – Groundwater VOC Concentration Graphs
- E – Data Validation Report

ec:

Mr. David Pratt (NYSDEC)

Ms. Julia Kenney (NYSDOH)

Mr. Andy Park (USEPA)

Mr. Charles Harewood (USEPA)

Mr. Stephen Bregande (Seneca Falls Specialties & Logistics Company, Inc.)

Mr. J. Christopher Woods (Seneca Falls Specialties & Logistics Company, Inc.)

Mr. Anthony Halling (Philips North America LLC)

Mr. Mark Flusche (Arcadis U.S., Inc.)

ATTACHMENT A

March 2025 Groundwater Sampling Event Summary

Spring 2025 Semi-Annual Groundwater Sampling

Groundwater samples are collected semiannually for analysis of volatile organic compounds (VOCs) in March and September of each year following the procedures in the document titled "Groundwater Monitoring Plan" that was submitted to the New York State Department of Environmental Conservation (NYSDEC) on December 8, 2011. The groundwater monitoring well network, depicted in Figure 1, consists of eleven overburden monitoring wells (MW-1 and MW-20 through MW-29), five bedrock wells (MW-BR-01 through MW-BR-05) and one weathered bedrock well (MW-BR-06). In March and September of each year, water levels are gauged at 17 monitoring wells and groundwater samples are collected at eight monitoring wells. Annual sampling is performed in September of each year at six monitoring wells. Sampling frequencies for each monitoring well are shown in Attachment B, Figure 1.

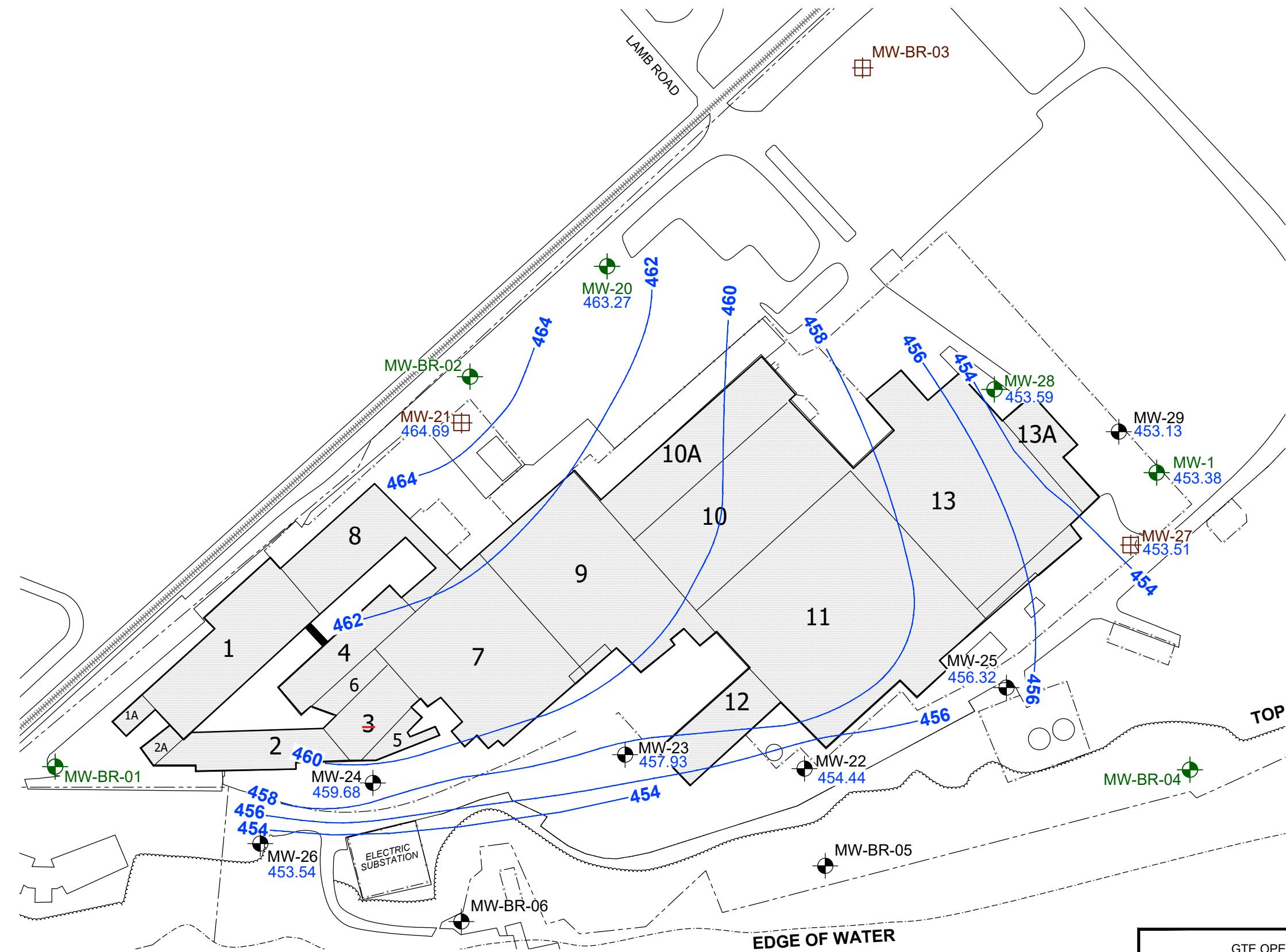
On March 19, 2025, Arcadis staff measured depths to groundwater in 17 monitoring wells and retrieved passive diffusion bags (PDBs) from eight monitoring wells where PDBs were deployed on September 12, 2024 (Attachment B Figure 1). Nine groundwater samples, including one duplicate sample, were collected for analysis of volatile organic compounds (VOCs) from PDBs retrieved from six shallow monitoring wells (MW-22 through 26 and MW-29), one weathered bedrock monitoring well (MW-BR-06), and one bedrock monitoring well (MW-BR-05).

The samples were shipped overnight with a trip blank to Eurofins Environment Testing Northeast, LLC (formerly TestAmerica Laboratories, Inc.), of Buffalo, New York. The samples were analyzed for VOCs using United States Environmental Protection Agency Method 8260C. A table summarizing the analytical results is in Attachment C and graphs of groundwater VOC analytical results are in Attachment D. Data Validation Services, Inc., of North Creek, New York, performed third-party data validation. Sample results are usable as reported (Attachment E).

Table 1 summarizes depths to water and groundwater elevations measured on March 19, 2025 (Attachment C). Groundwater potentiometric surface contours for March 2025 (Attachment B, Figure 2) show groundwater flow through the overburden is toward the south and east. The groundwater flow direction and hydraulic gradient have been relatively consistent over time.

Table 2 summarizes analytical results for the March 2025 groundwater samples and the corresponding quality assurance/quality control samples (Attachment C). VOC concentrations in the March 2025 samples were compared to the NYSDEC Class GA Standards.

- Trichloroethene was reported at concentrations greater than the NYSDEC Class GA Standard of 5 micrograms per liter ($\mu\text{g}/\text{L}$) in samples from monitoring wells MW-26 (39 $\mu\text{g}/\text{L}$) and MW-BR-06 (5.4 $\mu\text{g}/\text{L}$).
- 1,1-dichloroethane was reported at a concentration greater than the NYSDEC Class GA Standard of 5 $\mu\text{g}/\text{L}$ in the duplicate sample from monitoring well MW-25 (6.1 $\mu\text{g}/\text{L}$).
- *cis*-1,2-Dichloroethene was reported at concentrations greater than the NYSDEC Class GA Standard of 5 $\mu\text{g}/\text{L}$ in samples from monitoring wells MW-22 (9.5 $\mu\text{g}/\text{L}$), MW-24 (19,000 $\mu\text{g}/\text{L}$), MW-25 (77 $\mu\text{g}/\text{L}$), MW-26 (66 $\mu\text{g}/\text{L}$), MW-29 (79 $\mu\text{g}/\text{L}$), and in the duplicate sample from monitoring well MW-25 (88 $\mu\text{g}/\text{L}$).


On March 19, 2025, after groundwater samples were collected, new PDBs were deployed in the 14 monitoring wells scheduled for groundwater sampling in September 2025. The PDBs were installed in the middle of the well screen, consistent with previous sampling procedures.

ATTACHMENT B

Figures

LEGEND

- MW-22 SEMI-ANNUAL MONITORING WELL
- MW-BR-02 ANNUAL MONITORING WELL
- MW-21 MONITORING WELL IN WHICH WATER LEVELS ONLY ARE MEASURED

— — — — — PROPERTY BOUNDARY
— - - - - EDGE OF WATER
~~~~~ TOP OF BANK

----- RAILROAD  
— x — x — CHAIN-LINK FENCE  
459.68 GROUNDWATER ELEVATION  
454 — GROUNDWATER CONTOUR

GTE OPERATIONS SUPPORT INC.,  
FORMER PHILIPS DISPLAY COMPONENTS FACILITY  
SENECA FALLS, NEW YORK

# OVERBURDEN GROUNDWATER POTENTIOMETRIC SURFACE MAP MARCH 19, 2025

0 200' 400'  
FEET

## ATTACHMENT C

### Tables



**Table 1**  
**Depth to Water Measurements**  
**Former Philips Display Components Facility**  
**Seneca Falls, New York**

| Well Number | Datum Elevation | Depth to Water (feet) | Water Level Elevation (feet AMSL) |
|-------------|-----------------|-----------------------|-----------------------------------|
| MW-1        | 460.83          | 7.45                  | 453.38                            |
| MW-20       | 463.42          | 0.15                  | 463.27                            |
| MW-21       | 467.39          | 2.70                  | 464.69                            |
| MW-22       | 460.77          | 6.33                  | 454.44                            |
| MW-23       | 460.59          | 2.66                  | 457.93                            |
| MW-24       | 462.76          | 3.08                  | 459.68                            |
| MW-25       | 460.74          | 4.42                  | 456.32                            |
| MW-26       | 458.80          | 5.26                  | 453.54                            |
| MW-27       | 460.45          | 6.94                  | 453.51                            |
| MW-28       | 461.26          | 7.67                  | 453.59                            |
| MW-29       | 459.89          | 6.77                  | 453.12                            |
| MW-BR-01    | 462.64          | 34.76                 | 427.88                            |
| MW-BR-02    | 467.87          | 29.77                 | 438.10                            |
| MW-BR-03    | 457.06          | 9.22                  | 447.84                            |
| MW-BR-04    | 396.39          | --                    | Artesian                          |
| MW-BR-05    | 401.34          | 21.20                 | 380.14                            |
| MW-BR-06    | 436.30          | 39.40                 | 396.90                            |

Notes:

AMSL - Above mean sea level

-- - Not Measured

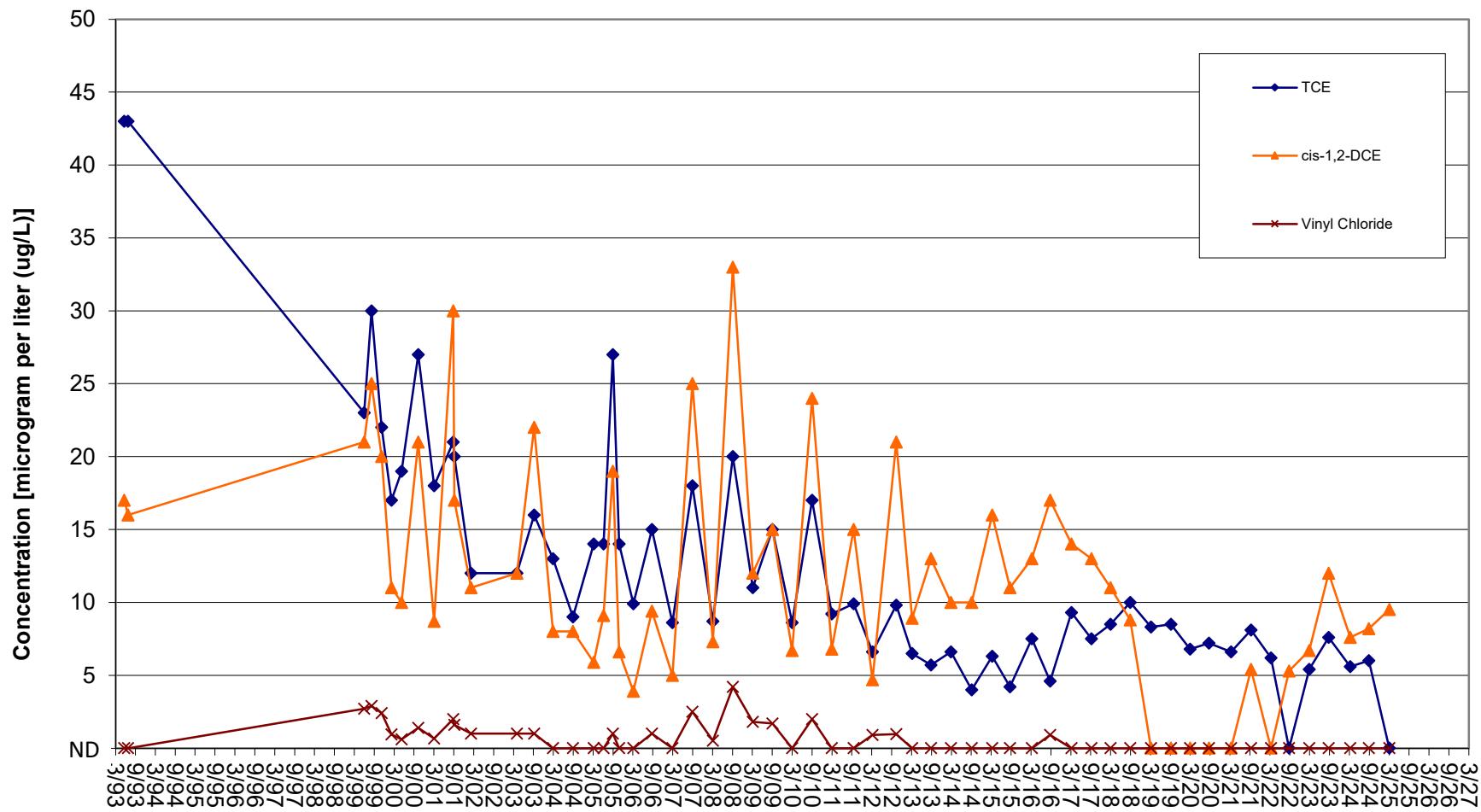
Depth to water measurements were recorded on 3/19/2025

Table 2  
 Groundwater Analytical Results (March 2025)  
 Former Philips Display Components Facility  
 Seneca Falls, New York

| VOCs                               | CAS #      | NYS Class GA Standard | MW-22      | MW-23 | MW-24        | MW-25     | MW-25 Dup  | MW-26     | MW-29     | MW-BR-05 | MW-BR-06   | TRIP BLANK |
|------------------------------------|------------|-----------------------|------------|-------|--------------|-----------|------------|-----------|-----------|----------|------------|------------|
| 1,1,1-Trichloroethane              | 71-55-6    | 5                     | 5 U        | 50 U  | 200 U        | 5 U       | 5 U        | 5 U       | 5 U       | 5 U      | 5 U        | 5 U        |
| 1,1,2,2-Tetrachloroethane          | 79-34-5    | 5                     | 5 U        | 50 U  | 200 U        | 5 U       | 5 U        | 5 U       | 5 U       | 5 U      | 5 U        | 5 U        |
| 1,1,2-Trichloroethane              | 79-00-5    | 1                     | 5 U        | 50 U  | 200 U        | 5 U       | 5 U        | 5 U       | 5 U       | 5 U      | 5 U        | 5 U        |
| 1,1-Dichloroethane                 | 75-34-3    | 5                     | 5 U        | 50 U  | 200 U        | 5 U       | <b>6.1</b> | 5 U       | 5 U       | 5 U      | 5 U        | 5 U        |
| 1,1-Dichloroethene                 | 75-35-4    | 5                     | 5 U        | 50 U  | 200 U        | 5 U       | 5 U        | 5 U       | 5 U       | 5 U      | 5 U        | 5 U        |
| 1,2-Dichloroethane                 | 107-06-2   | 0.6                   | 5 U        | 50 U  | 200 U        | 5 U       | 5 U        | 5 U       | 5 U       | 5 U      | 5 U        | 5 U        |
| 1,2-Dichloropropane                | 78-87-5    | 1                     | 5 U        | 50 U  | 200 U        | 5 U       | 5 U        | 5 U       | 5 U       | 5 U      | 5 U        | 5 U        |
| Methyl N-Butyl Ketone (2-Hexanone) | 591-78-6   | 50                    | 10 U       | 100 U | 400 U        | 10 U      | 10 U       | 10 U      | 10 U      | 10 U     | 10 U       | 10 U       |
| Acetone                            | 67-64-1    | 50                    | 10 U       | 100 U | 400 U        | 10 U      | 10 U       | 10 U      | 10 U      | 10 U     | 10 U       | 10 U       |
| Benzene                            | 71-43-2    | 1                     | 5 U        | 50 U  | 200 U        | 5 U       | 5 U        | 5 U       | 5 U       | 5 U      | 5 U        | 5 U        |
| Bromodichloromethane               | 75-27-4    | 50                    | 5 U        | 50 U  | 200 U        | 5 U       | 5 U        | 5 U       | 5 U       | 5 U      | 5 U        | 5 U        |
| Bromoform                          | 75-25-2    | 50                    | 5 U        | 50 U  | 200 U        | 5 U       | 5 U        | 5 U       | 5 U       | 5 U      | 5 U        | 5 U        |
| Bromomethane                       | 74-83-9    | 5                     | 5 U        | 50 U  | 200 U        | 5 U       | 5 U        | 5 U       | 5 U       | 5 U      | 5 U        | 5 U        |
| Carbon Disulfide                   | 75-15-0    | 60                    | 5 U        | 50 U  | 200 U        | 5 U       | 5 U        | 5 U       | 5 U       | 5 U      | 5 U        | 5 U        |
| Carbon Tetrachloride               | 56-23-5    | 5                     | 5 U        | 50 U  | 200 U        | 5 U       | 5 U        | 5 U       | 5 U       | 5 U      | 5 U        | 5 U        |
| Chlorobenzene                      | 108-90-7   | 5                     | 5 U        | 50 U  | 200 U        | 5 U       | 5 U        | 5 U       | 5 U       | 5 U      | 5 U        | 5 U        |
| Chloroethane                       | 75-00-3    | 5                     | 5 U        | 50 U  | 200 U        | 5 U       | 5 U        | 5 U       | 5 U       | 5 U      | 5 U        | 5 U        |
| Chloroform                         | 67-66-3    | 7                     | 5 U        | 50 U  | 200 U        | 5 U       | 5 U        | 5 U       | 5 U       | 5 U      | 5 U        | 5 U        |
| Chloromethane                      | 74-87-3    | 5                     | 5 U        | 50 U  | 200 U        | 5 U       | 5 U        | 5 U       | 5 U       | 5 U      | 5 U        | 5 U        |
| cis-1,2-Dichloroethene             | 156-59-2   | 5                     | <b>9.5</b> | 50 U  | <b>19000</b> | <b>77</b> | <b>88</b>  | <b>66</b> | <b>79</b> | 5 U      | 5 U        | 5 U        |
| cis-1,3-Dichloropropene            | 10061-01-5 | 0.4                   | 5 U        | 50 U  | 200 U        | 5 U       | 5 U        | 5 U       | 5 U       | 5 U      | 5 U        | 5 U        |
| Chlorodibromomethane               | 124-48-1   | 50                    | 5 U        | 50 U  | 200 U        | 5 U       | 5 U        | 5 U       | 5 U       | 5 U      | 5 U        | 5 U        |
| CFC-12                             | 75-71-8    | 5                     | 5 U        | 50 U  | 200 U        | 5 U       | 5 U        | 5 U       | 5 U       | 5 U      | 5 U        | 5 U        |
| Ethylbenzene                       | 100-41-4   | 5                     | 5 U        | 50 U  | 200 U        | 5 U       | 5 U        | 5 U       | 5 U       | 5 U      | 5 U        | 5 U        |
| 2-Butanone (MEK)                   | 78-93-3    | 50                    | 10 U       | 100 U | 400 U        | 10 U      | 10 U       | 10 U      | 10 U      | 10 U     | 10 U       | 10 U       |
| 4-Methyl-2-Pentanone               | 108-10-1   | 5                     | 10 U       | 100 U | 400 U        | 10 U      | 10 U       | 10 U      | 10 U      | 10 U     | 10 U       | 10 U       |
| Dichloromethane                    | 75-09-2    | 5                     | 5 U        | 50 U  | 200 U        | 5 U       | 5 U        | 5 U       | 5 U       | 5 U      | 5 U        | 5 U        |
| Styrene (Monomer)                  | 100-42-5   | 5                     | 5 U        | 50 U  | 200 U        | 5 U       | 5 U        | 5 U       | 5 U       | 5 U      | 5 U        | 5 U        |
| Tetrachloroethene                  | 127-18-4   | 5                     | 5 U        | 50 U  | 200 U        | 5 U       | 5 U        | 5 U       | 5 U       | 5 U      | 5 U        | 5 U        |
| Toluene                            | 108-88-3   | 5                     | 5 U        | 50 U  | 200 U        | 5 U       | 5 U        | 5 U       | 5 U       | 5 U      | 5 U        | 5 U        |
| trans-1,2-Dichloroethene           | 156-60-5   | 5                     | 5 U        | 50 U  | 200 U        | 5 U       | 5 U        | 5 U       | 5 U       | 5 U      | 5 U        | 5 U        |
| trans-1,3-Dichloropropene          | 10061-02-6 | 0.4                   | 5 U        | 50 U  | 200 U        | 5 U       | 5 U        | 5 U       | 5 U       | 5 U      | 5 U        | 5 U        |
| Trichloroethene                    | 79-01-6    | 5                     | 5 U        | 50 U  | 200 U        | 5 U       | 5 U        | <b>39</b> | 5 U       | 5 U      | <b>5.4</b> | 5 U        |
| CFC-11                             | 75-69-4    | 5                     | 5 U        | 50 U  | 200 U        | 5 U       | 5 U        | 5 U       | 5 U       | 5 U      | 5 U        | 5 U        |
| Vinyl chloride                     | 75-01-4    | 2                     | 5 U        | 50 U  | 200 U        | 5 U       | 5 U        | 5 U       | 5 U       | 5 U      | 5 U        | 5 U        |
| Total Xylenes                      | 1330-20-7  | 5                     | 5 U        | 50 U  | 200 U        | 5 U       | 5 U        | 5 U       | 5 U       | 5 U      | 5 U        | 5 U        |
| Total Xylenes                      | 1330-20-7  | 5                     | 5 U        | 50 U  | 200 U        | 5 U       | 5 U        | 5 U       | 5 U       | 5 U      | 5 U        | 5 U        |

NOTES:

Bolded results were greater than the NYSDEC Class GA Standards  
 All values are shown in units of micrograms per liter (ug/L).


U = Not detected. Reporting limit shown.

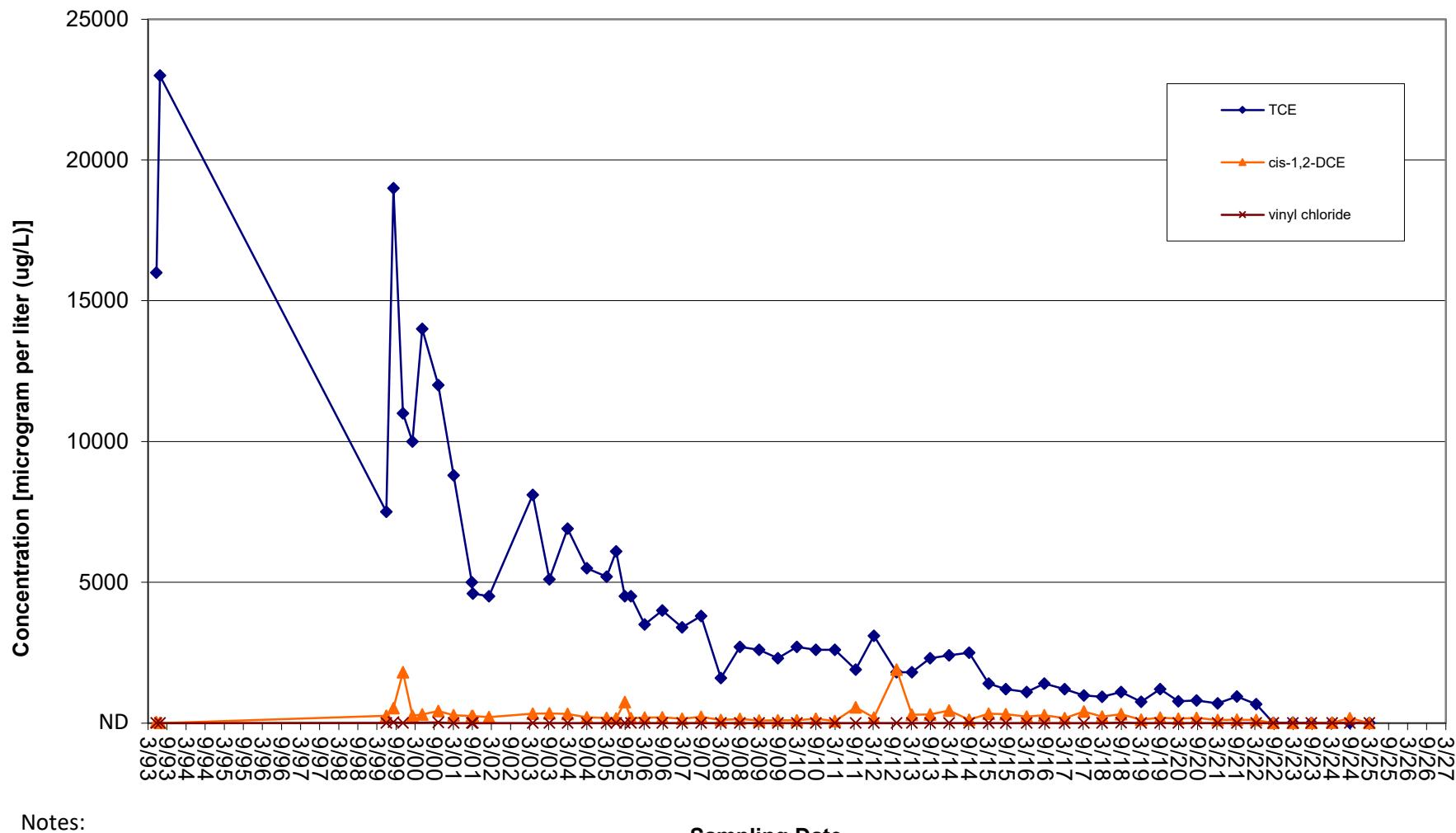
# ATTACHMENT D

## Groundwater VOC Concentration Graphs

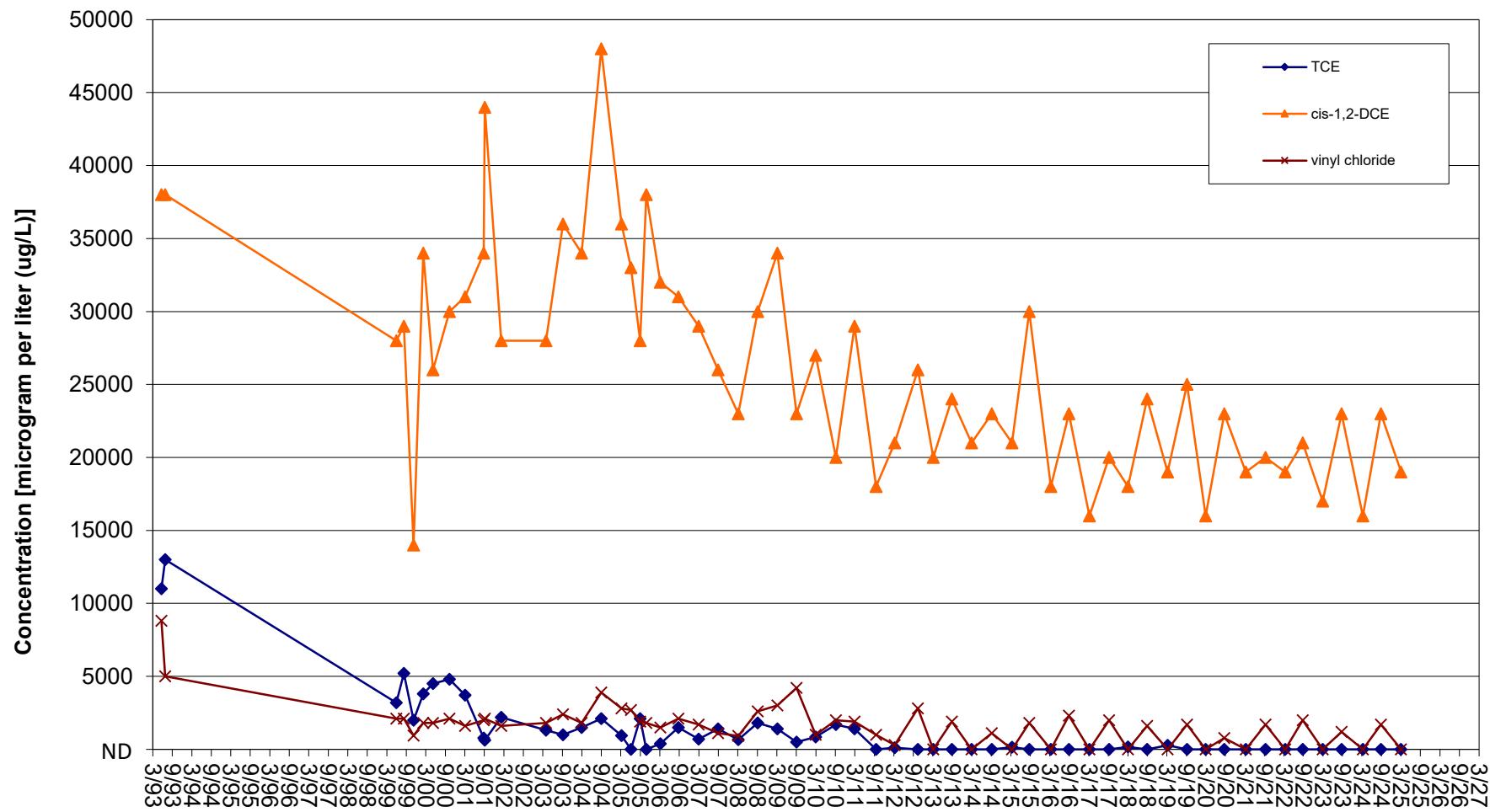


## MW-22




Notes:

ND - Not detected.


Reporting limit is 5 ug/L.

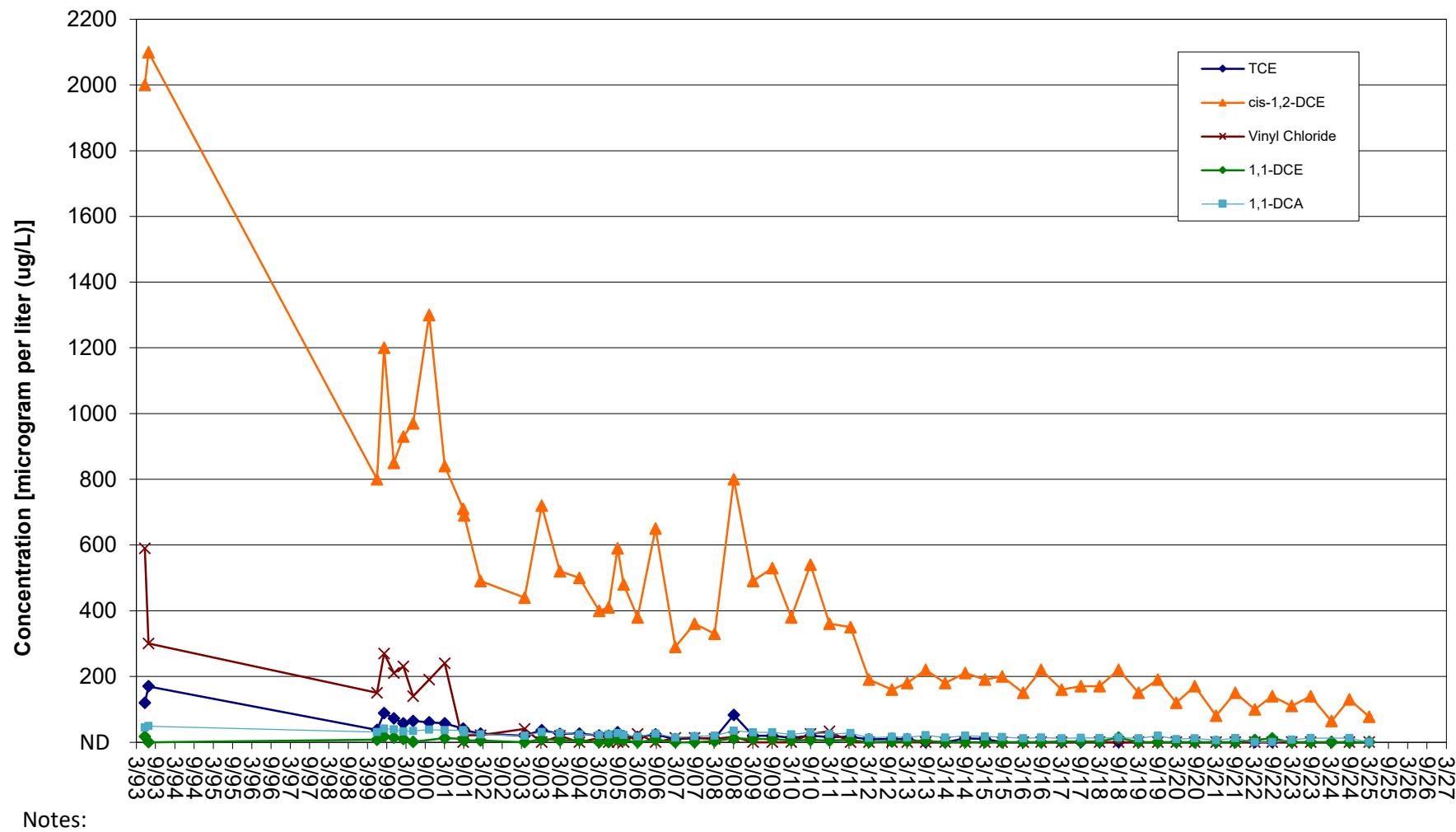
Results less than the reporting limit are estimated.

## MW-23



## MW-24




Notes:

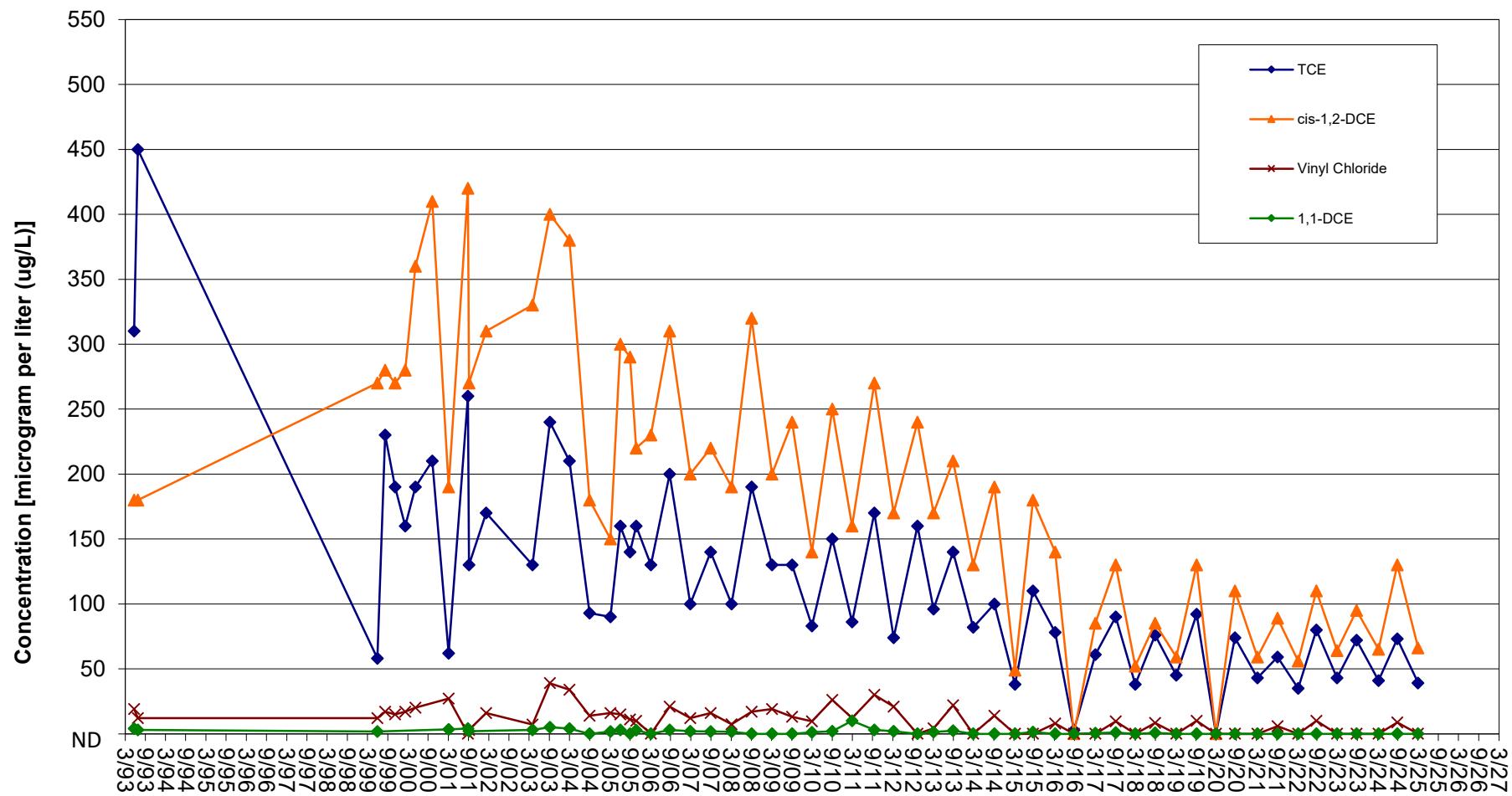
ND - Not detected.

Reporting limit is 5 ug/L.

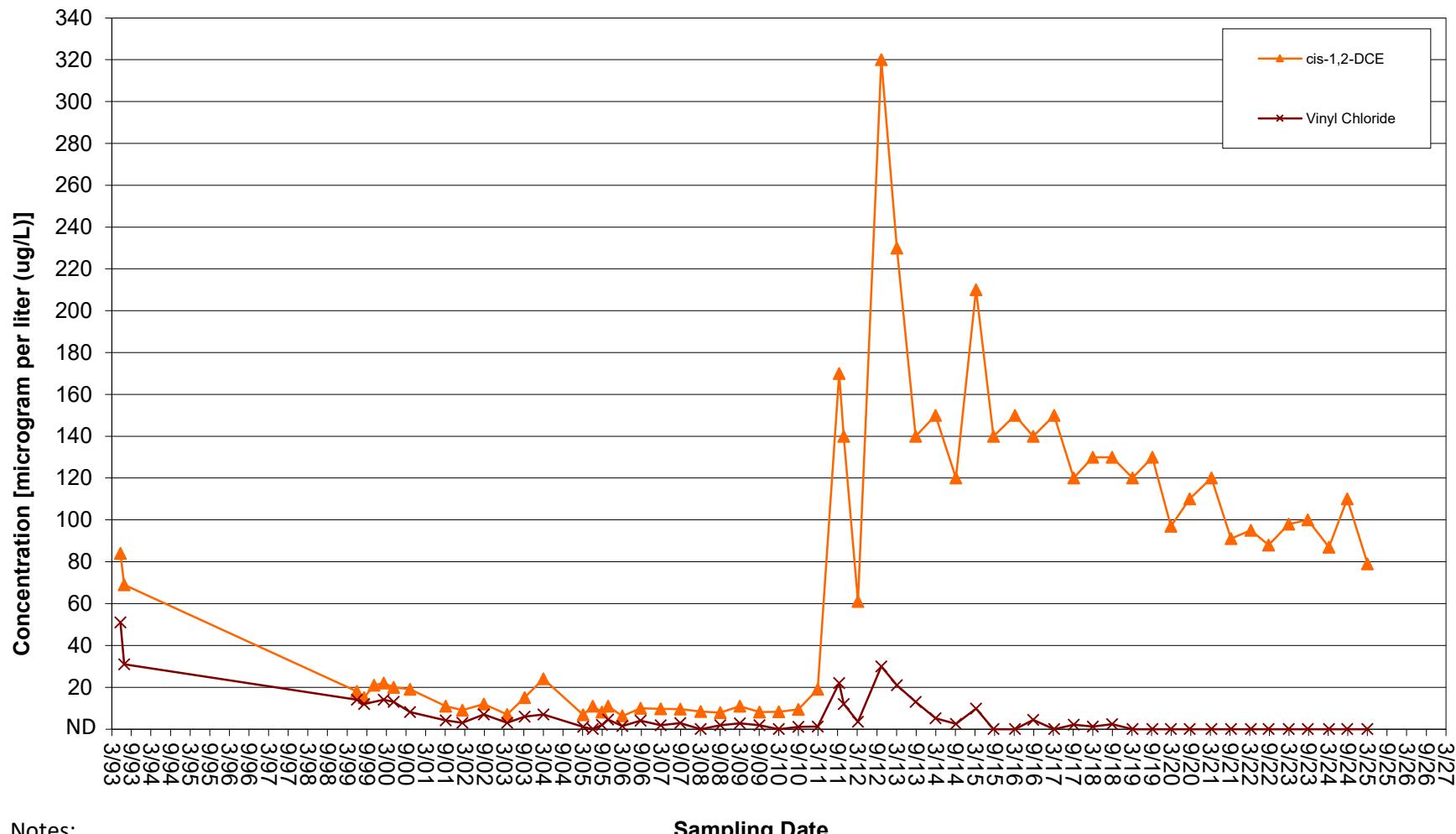
Results less than the reporting limit are estimated.

## MW-25




Notes:

ND - Not detected.


Reporting limit is 5 ug/L.

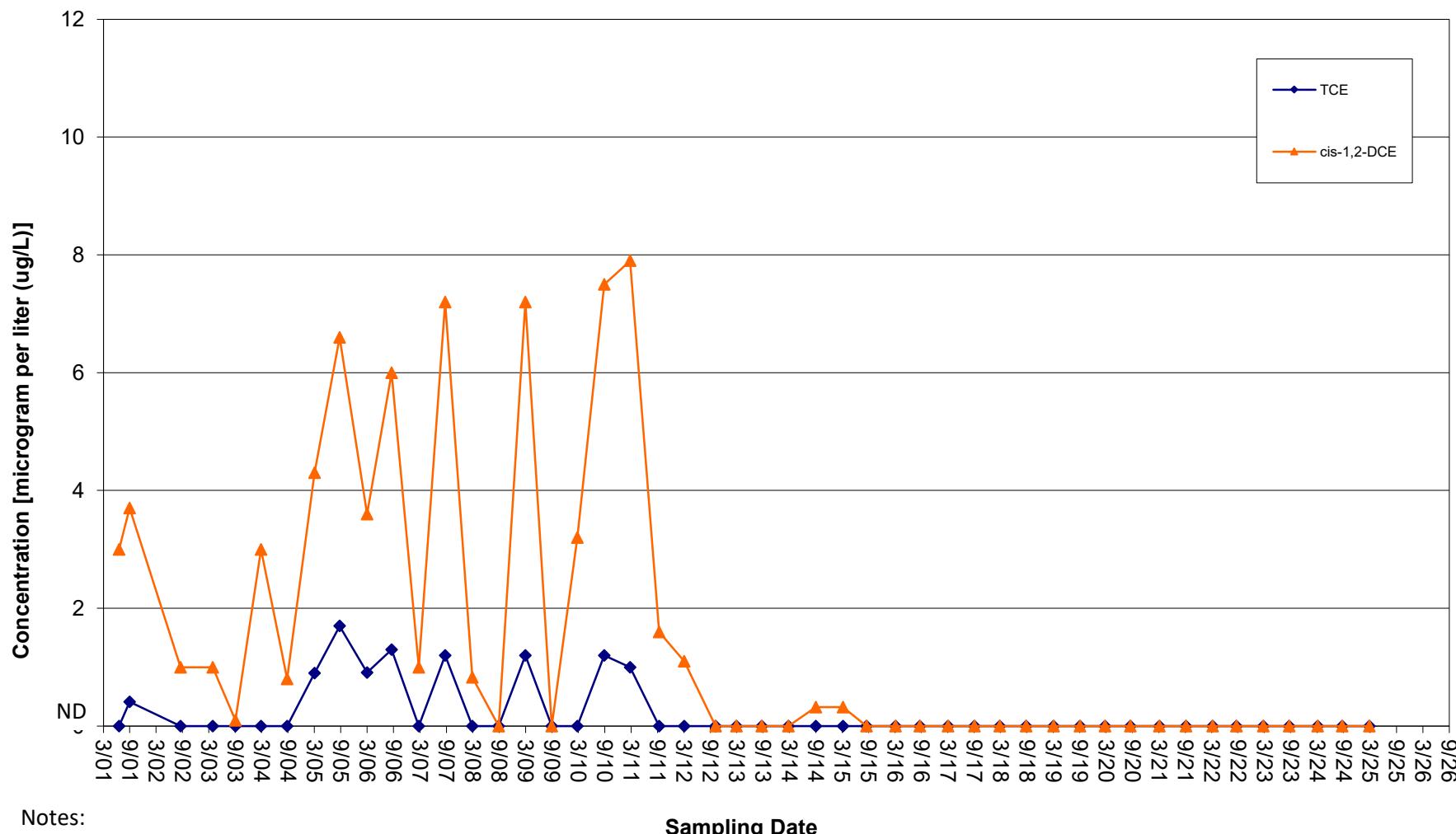
Results less than the reporting limit are estimated.

## MW-26



## MW-29




Notes:

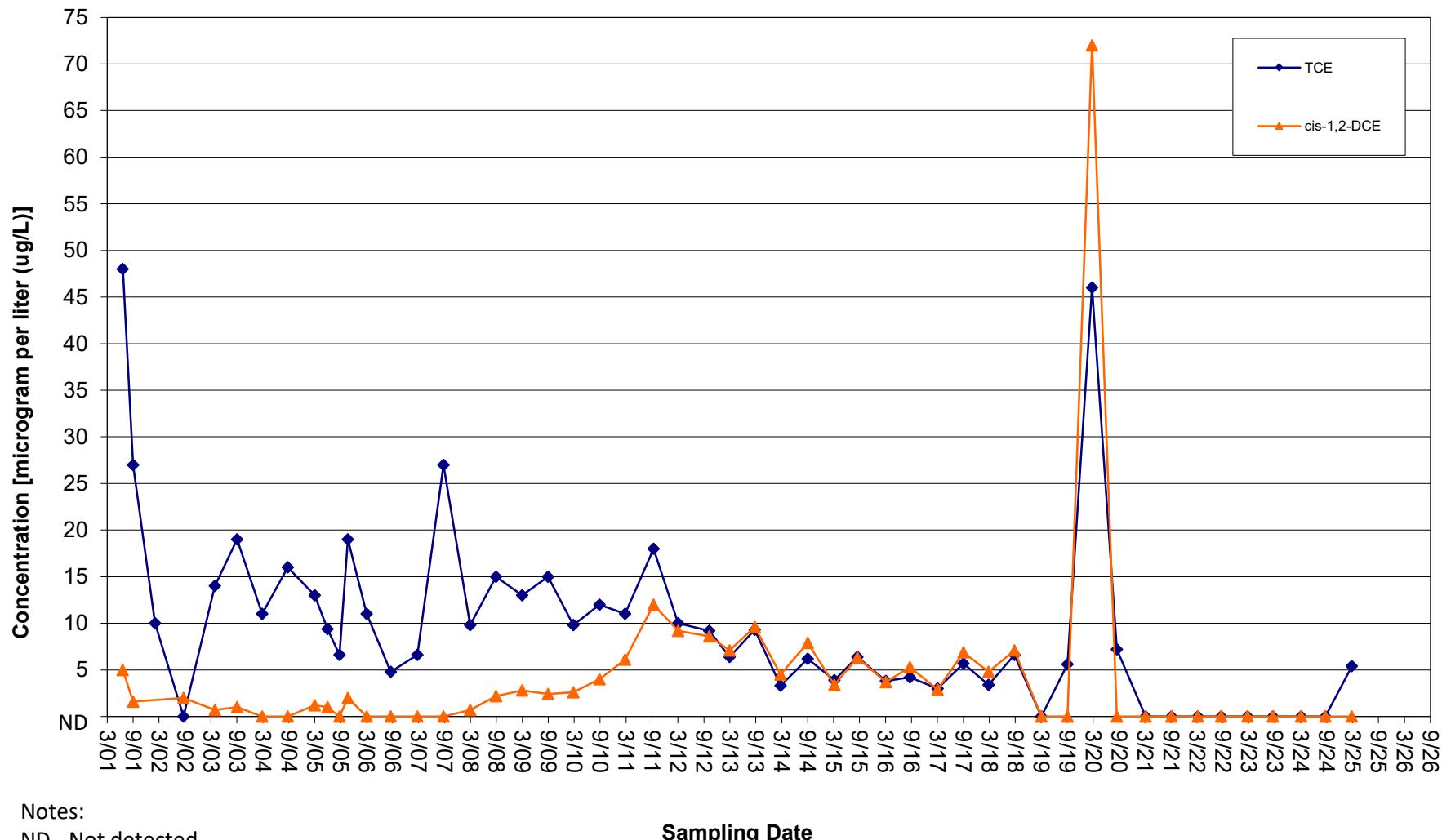
ND - Not detected.

Reporting limit is 5 ug/L.

Results less than the reporting limit are estimated.

## MW-BR-05




Notes:

ND - Not detected.

Reporting limit is 5 ug/L.

Results less than the reporting limit are estimated.

## MW-BR-06



Notes:

ND - Not detected.

Reporting limit is 5 ug/L.

Results less than the reporting limit are estimated.

# ATTACHMENT E

## Data Validation Report



# Data Validation Services

120 Cobble Creek Road P. O. Box 208  
North Creek, NY 12853  
Phone (518) 251-4429  
[harry@frontiernet.net](mailto:harry@frontiernet.net)

May 8, 2025

Mark Flusche  
Arcadis of New York  
855 Route 146 Suite 210  
Clifton Park, NY 12065

RE: Validation of the Former Philips Display Components Facility--Seneca Falls Site Data  
Package-Groundwater  
Eurofins TAL-Buffalo SDG Nos. 480-228041-1 and 480-228441-1

Dear Mr. Flusche:

Review has been completed for the data package generated by Eurofins TestAmerica Laboratories that pertains to samples collected 03/19/25 and 04/03/25 at Seneca Falls, NY. Nine aqueous samples (including a resampled location), a field duplicate, and a trip blank were analyzed for volatiles by USEPA SW846 method 8260C.

Data validation was performed with guidance from the USEPA Region II validation SOP HW-6, the USEPA CLP National Functional Guidelines for Organic Data Review, and the specific requirements of the analytical methodologies. The data packages were reviewed for the following items:

- \* Data Completeness
- \* Case Narrative
- \* Custody Documentation
- \* Holding Times
- \* Surrogate Standard Recoveries
- \* Matrix Spike Evaluations
- \* Blind Field Duplicate Correlations
- \* Blank Contamination
- \* Laboratory Control Samples (LCSs)
- \* Calibration Standard Responses
- \* Internal Standard Responses
- \* Method Compliance
- \* Sample Results Verification

Those items showing deficiencies are discussed in the following sections of this report. All others were found to be acceptable as outlined in the above-mentioned validation procedures, and as applicable for the methodology. Unless noted specifically in the following text, reported results of validated sample analytes are substantiated by the raw data, and generated in compliance with project requirements.

**In summary**, samples were processed in compliance with stated protocols. Sample results are usable as reported.

Sample identifications and the laboratory case narratives are attached to this text, and should be reviewed in conjunction with this report. Also included with this report are the laboratory EDDs.

### **VOA Analyses by EPA 8260D**

Results for analytes initially reported with the “E” flag are derived from the dilution analyses of the samples, thus reflecting responses within the linear range of the instrument.

Matrix spikes (MSs) of MW-24 show recoveries and correlations that are within validation guidelines.

The blind field duplicate correlations of MW-25 are within validation guidelines.

Surrogate and internal standard responses are within required ranges, and holding times were met. Blanks show no contamination. Calibration standard responses and LCS recoveries are within validation guidelines.

MW-24 was processed only at initial dilution due to high concentrations of target analytes. Reporting limits for undetected analytes in that samples are therefore proportionally elevated.

Please do not hesitate to contact me if questions or comments arise during your review of this report.

Very truly yours,



Judy Harry

Att:    Sample Identifications  
          Laboratory Case Narratives  
          Laboratory EDDs

# **Sample Identification Summary**

# Sample Summary

Client: Arcadis U.S., Inc.  
Project/Site: GTEOSI - Seneca Falls

Job ID: 480-228041-1

| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       |
|---------------|------------------|--------|----------------|----------------|
| 480-228041-1  | MW-22            | Water  | 03/19/25 11:45 | 03/20/25 10:30 |
| 480-228041-2  | MW-23            | Water  | 03/19/25 12:30 | 03/20/25 10:30 |
| 480-228041-3  | MW-24            | Water  | 03/19/25 09:05 | 03/20/25 10:30 |
| 480-228041-4  | MW-25            | Water  | 03/19/25 11:30 | 03/20/25 10:30 |
| 480-228041-5  | MW-26            | Water  | 03/19/25 09:50 | 03/20/25 10:30 |
| 480-228041-6  | MW-29            | Water  | 03/19/25 11:00 | 03/20/25 10:30 |
| 480-228041-7  | MW-BR-05         | Water  | 03/19/25 00:00 | 03/20/25 10:30 |
| 480-228041-8  | MW-BR-06         | Water  | 03/19/25 09:30 | 03/20/25 10:30 |
| 480-228041-9  | DUP-20250319     | Water  | 03/19/25 00:00 | 03/20/25 10:30 |
| 480-228041-10 | TRIP BLANK       | Water  | 03/19/25 00:00 | 03/20/25 10:30 |

## Sample Summary

Client: Arcadis U.S., Inc.

Project/Site: GTEOSI - Seneca Falls

Job ID: 480-228441-1

| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       |
|---------------|------------------|--------|----------------|----------------|
| 480-228441-1  | MW-23            | Water  | 04/03/25 08:51 | 04/04/25 10:40 |
| 480-228441-2  | TRIP BLANK       | Water  | 04/03/25 00:00 | 04/04/25 10:40 |

## Laboratory Case Narrative

**Job Narrative  
480-228041-1**

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

**Receipt**

The samples were received on 3/20/2025 10:30 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.7°C.

**GC/MS VOA**

Method 8260C: The following volatiles sample was diluted due to foaming at the time of purging during the original sample analysis: MW-23 (480-228041-2). Elevated reporting limits (RLs) are provided.

Method 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-24 (480-228041-3), MW-24 MS (480-228041-3[MS]) and MW-24 MSD (480-228041-3[MSD]). Elevated reporting limits (RLs) are provided.

Method 8260C: The matrix spike / matrix spike duplicate / sample duplicate (MS/MSD/DUP) precision for analytical batch 480-741346 was outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory control sample duplicate (LCS/LCSD) precision was within acceptance limits. The following associated sample is impacted: MW-24 MSD (480-228041-3[MSD])

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

**Job Narrative  
480-228441-1**

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

**Receipt**

The samples were received on 4/4/2025 10:40 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.3° C.

**GC/MS VOA**

Method 8260C: Due to the coelution Ethyl Acetate with 2-Butanone in the full spike solution, these analytes exceeded control limits in the laboratory control sample (LCS) and/or laboratory control sample duplicate (LCSD) associated with batch 480-742963 . The following sample was affected : MW-23 (480-228441-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.