

**Department of
Environmental
Conservation**

KATHY HOCHUL

Governor

AMANDA LEFTON

Commissioner

January 22, 2026

Matthew Walsh
Manager, Health & Safety
GTE Operations Support Incorporated
1 Verizon Way, VC33E039
Basking Ridge, New Jersey 07920-1097

Re: September 2025 Groundwater Sampling Report
G.T.E. Products Corporation Site
Site No.: 850003
Town of Seneca Falls, Seneca (C)

Dear Mr. Walsh:

The New York State Department of Environmental Conservation (Department) in conjunction with New York State Department of Health (NYSDOH) have completed a review of the September 2025 Groundwater Sampling Report (Report) dated November 17, 2025 for the G.T.E. Products Corporation site (Site) located at 50 Johnston Street, Town of Seneca Falls, Seneca County. Based on the Department review of the Report and the Groundwater Monitoring Plan (Work Plan) dated December 8, 2011, the Department has the following comments as presented below.

1. All future groundwater sampling reports submitted to the Department will include groundwater sampling logs.
2. The Department is requesting the submittal of groundwater summary tables. While the graphs provide concentration information, some of the scales for the certain groundwater monitoring wells make it very difficult to ascertain what the groundwater trends are at the Site. In looking at MW-24 the range on the Y-axis for concentration is in 5,000 ppb increments. At a minimum going forward the Department would like at least the last 5 years of groundwater sampling data placed in summary tables particularly those groundwater monitoring wells that consistently exceed groundwater standard for the contaminants of concern.
3. As per 6NYCRR Part 375-1.6(a)(4) the Department is requesting at least seven (7) days advance notice of any fieldwork activities that is conducted under a Department approved work plan such that Department oversight can be provided. Electronic notification is acceptable.

NYSDEC seeks to resolve outstanding differences in a mutually agreeable manner which addresses the requirements of the RCRA Corrective Action Order on Consent, Part 375, and all applicable laws, regulations, and guidance. If you or your technical team have any questions or concerns regarding this request, please contact me via email at charlotte.theobald@dec.ny.gov or at 585-226-5354.

If your legal team have any questions or concerns regarding this request, please feel free to contact Michael Murphy via e-mail at Michael.Murphy1@dec.ny.gov or at 518-402-8564.

Sincerely,

Charlotte B. Theobald
Assistant Engineer

ec:

Mark Flusche (Arcadis)
Christopher Davern (Arcadis)
Michael Higgins (Arcadis)
Suzie Bower (Arcadis)
Stephen Bregande (Seneca Falls Specialties & Logistics)
J. Christopher Woods (Seneca Falls Specialties & Logistics)
Anthony Halling (Philips North America, LLC)
Charles Harewood (USEPA)
Justin Demining (NYSDOH)
Julia Kenney (NYSDOH)
David Pratt (NYSDEC)

GTE Operations Support Incorporated
One Verizon Way (VC33E048B)
Basking Ridge, New Jersey 07920

Matthew Walsh
Sr. Manager, EHS
908.559-3691

November 17, 2025

Ms. Charlotte Theobald
Assistant Engineer
New York State Department of Environmental Conservation
Division of Environmental Remediation
6274 East Avon-Lima Road
Avon, NY 14414

Re: Fall 2025 Semi-Annual Groundwater Sampling Event
Site #850003 - G.T.E. Products Corporation
Former Philips Display Components Facility
Seneca Falls, New York

Dear Ms. Theobald:

Results are attached for semi-annual groundwater sampling conducted in September 2025 at the Former Philips Display Components Facility (New York State Department of Environmental Conservation Site No. 850003) located at 50 Johnston Street, Seneca Falls, New York. Trichloroethene, cis-1,2-dichloroethene, 1,1-dichloroethane, and vinyl chloride were reported in select groundwater samples at concentrations greater than New York State Department of Environmental Conservation Class GA Standards.

The next semi-annual groundwater sampling event is tentatively scheduled for March 2026.

Please contact me if you have any questions.

Sincerely,

Matthew T. Walsh
Sr. Manager – Environment, Health and Safety

Attachments

- A – September 2025 Groundwater Sampling Event Summary
- B – Figures
- C – Tables
- D – Groundwater VOC Concentration Graphs
- E – Data Validation Report

Ms. Charlotte Theobald

November 17, 2025

Page 2

ec:

Mr. David Pratt (NYSDEC)

Ms. Julia Kenney (NYSDOH)

Mr. Andy Park (USEPA)

Mr. Charles Harewood (USEPA)

Mr. Stephen Bregande (Seneca Falls Specialties & Logistics Company, Inc.)

Mr. J. Christopher Woods (Seneca Falls Specialties & Logistics Company, Inc.)

Mr. Anthony Halling (Philips North America LLC)

Mr. Mark Flusche (Arcadis U.S., Inc.)

ATTACHMENT A

September 2025 Groundwater Sampling Event Summary

Fall 2025 Semi-Annual Groundwater Sampling

Groundwater samples are collected semiannually for analysis of volatile organic compounds (VOCs) in March and September of each year following the procedures in the document titled "Groundwater Monitoring Plan" that was submitted to the New York State Department of Environmental Conservation (NYSDEC) on December 8, 2011. The groundwater monitoring well network, depicted in Figure 1, consists of eleven overburden monitoring wells (MW-1 and MW-20 through MW-29), five bedrock wells (MW-BR-01 through MW-BR-05) and one weathered bedrock well (MW-BR-06). In March and September of each year, water levels are gauged at 17 monitoring wells and groundwater samples are collected at eight monitoring wells. Annual sampling is performed in September of each year at six monitoring wells. Sampling frequencies for each monitoring well are shown in Attachment B, Figure 1.

On September 10 and September 11, 2025, Arcadis staff measured depths to groundwater in 17 monitoring wells and retrieved passive diffusion bags (PDBs) from 14 monitoring wells where PDBs were deployed on March 19, 2025 (Attachment B Figure 1). Fifteen groundwater samples, including one duplicate sample, were collected for analysis of volatile organic compounds (VOCs) from PDBs retrieved from nine shallow monitoring wells (MW-1, MW-20, MW-22 through 26, MW-28, and MW-29), one weathered bedrock monitoring well (MW-BR-06), and four bedrock monitoring wells (MW-BR-01, MW-BR-02, MW-BR-04, and MW-BR-05).

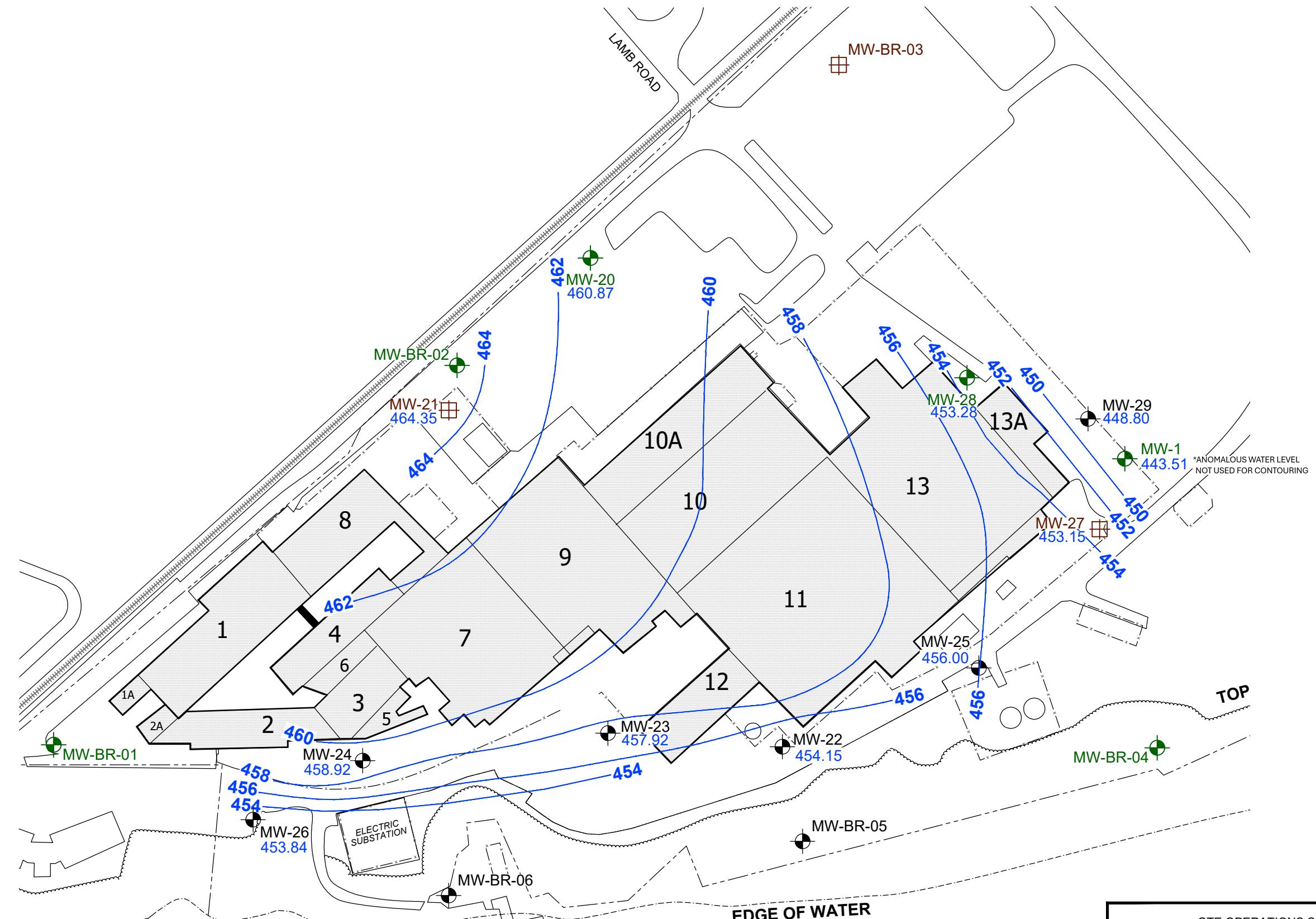
The samples were shipped overnight with a trip blank to Eurofins Environment Testing Northeast, LLC (formerly TestAmerica Laboratories, Inc.), of Buffalo, New York. The samples were analyzed for VOCs using United States Environmental Protection Agency Method 8260C. A table summarizing the analytical results is in Attachment C and graphs of groundwater VOC analytical results are in Attachment D. Data Validation Services, Inc., of North Creek, New York, performed third-party data validation. Sample results are usable as reported (Attachment E).

Table 1 summarizes depths to water and groundwater elevations measured on September 10 and September 11, 2025 (Attachment C). Groundwater potentiometric surface contours for September 2025 (Attachment B, Figure 2) show groundwater flow through the overburden is toward the south and east. The groundwater flow direction and hydraulic gradient have been relatively consistent over time.

Table 2 summarizes analytical results for the September 2025 groundwater samples and the corresponding quality assurance/quality control samples (Attachment C). VOC concentrations in the September 2025 samples were compared to the NYSDEC Class GA Standards.

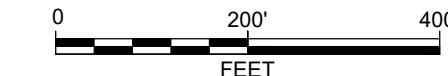
- Trichloroethene was reported at concentrations greater than the NYSDEC Class GA Standard of 5 micrograms per liter ($\mu\text{g}/\text{L}$) in samples from monitoring wells MW-22 (5.1 $\mu\text{g}/\text{L}$), MW-23 (22 $\mu\text{g}/\text{L}$), MW-25 (5.7 $\mu\text{g}/\text{L}$), MW-26 (84 $\mu\text{g}/\text{L}$), MW-28 (12 $\mu\text{g}/\text{L}$), MW-BR-06 (5.8 $\mu\text{g}/\text{L}$), and in the duplicate sample from monitoring well MW-25 (5.4 $\mu\text{g}/\text{L}$).
- 1,1-dichloroethane was reported at a concentration greater than the NYSDEC Class GA Standard of 5 $\mu\text{g}/\text{L}$ in the parent sample from monitoring well MW-25 (9.7 $\mu\text{g}/\text{L}$) and in the duplicate sample from monitoring well MW-25 (9.2 $\mu\text{g}/\text{L}$).
- *cis*-1,2-Dichloroethene was reported at concentrations greater than the NYSDEC Class GA Standard of 5 $\mu\text{g}/\text{L}$ in samples from monitoring wells MW-22 (13 $\mu\text{g}/\text{L}$), MW-23 (190 $\mu\text{g}/\text{L}$), MW-24 (20,000 $\mu\text{g}/\text{L}$), MW-25 (110 $\mu\text{g}/\text{L}$), MW-26 (110 $\mu\text{g}/\text{L}$), MW-29 (94 $\mu\text{g}/\text{L}$), and in the duplicate sample from monitoring well MW-25 (120 $\mu\text{g}/\text{L}$).

- Vinyl chloride was reported at a concentration greater than the NYSDEC Class GA Standard of 2 µg/L in the sample from monitoring well MW-24 (1,000 µg/L).


On September 10 and September 11, 2025, after groundwater samples were collected, new PDBs were deployed in the eight monitoring wells scheduled for groundwater sampling in March 2026. The PDBs were installed in the middle of the well screen, consistent with previous sampling procedures.

ATTACHMENT B

Figures


LEGEND

MW-22	SEMI-ANNUAL MONITORING WELL	PROPERTY BOUNDARY	RAILROAD
MW-BR-02	ANNUAL MONITORING WELL	EDGE OF WATER	CHAIN-LINK FENCE
MW-21	MONITORING WELL IN WHICH WATER LEVELS ONLY ARE MEASURED	TOP OF BANK	453.84 GROUNDWATER ELEVATION

454 GROUNDWATER CONTOUR

GTE OPERATIONS SUPPORT INC.,
FORMER PHILIPS DISPLAY COMPONENTS FACILITY
SENECA FALLS, NEW YORK

OVERBURDEN GROUNDWATER
POTENTIOMETRIC SURFACE MAP
SEPTEMBER 10 AND SEPTEMBER 11, 2025

ATTACHMENT C

Tables

Table 1
Depth to Water Measurements
Former Philips Display Components Facility
Seneca Falls, New York

Well Number	Datum Elevation	Depth to Water (feet)	Water Level Elevation (feet AMSL)
MW-1	460.83	17.32	443.51
MW-20	463.42	2.55	460.87
MW-21	467.39	3.04	464.35
MW-22	460.77	6.62	454.15
MW-23	460.59	2.67	457.92
MW-24	462.76	3.84	458.92
MW-25	460.74	4.74	456.00
MW-26	458.80	4.96	453.84
MW-27	460.45	7.30	453.15
MW-28	461.26	7.98	453.28
MW-29	459.89	11.09	448.80
MW-BR-01	462.64	34.96	427.68
MW-BR-02	467.87	30.52	437.35
MW-BR-03	457.06	9.88	447.18
MW-BR-04	396.39	--	Artesian
MW-BR-05	401.34	19.15	382.19
MW-BR-06	436.30	37.65	398.65

Notes:

AMSL - Above mean sea level

-- - Not Measured

Depth to water measurements were recorded on 9/10/2025

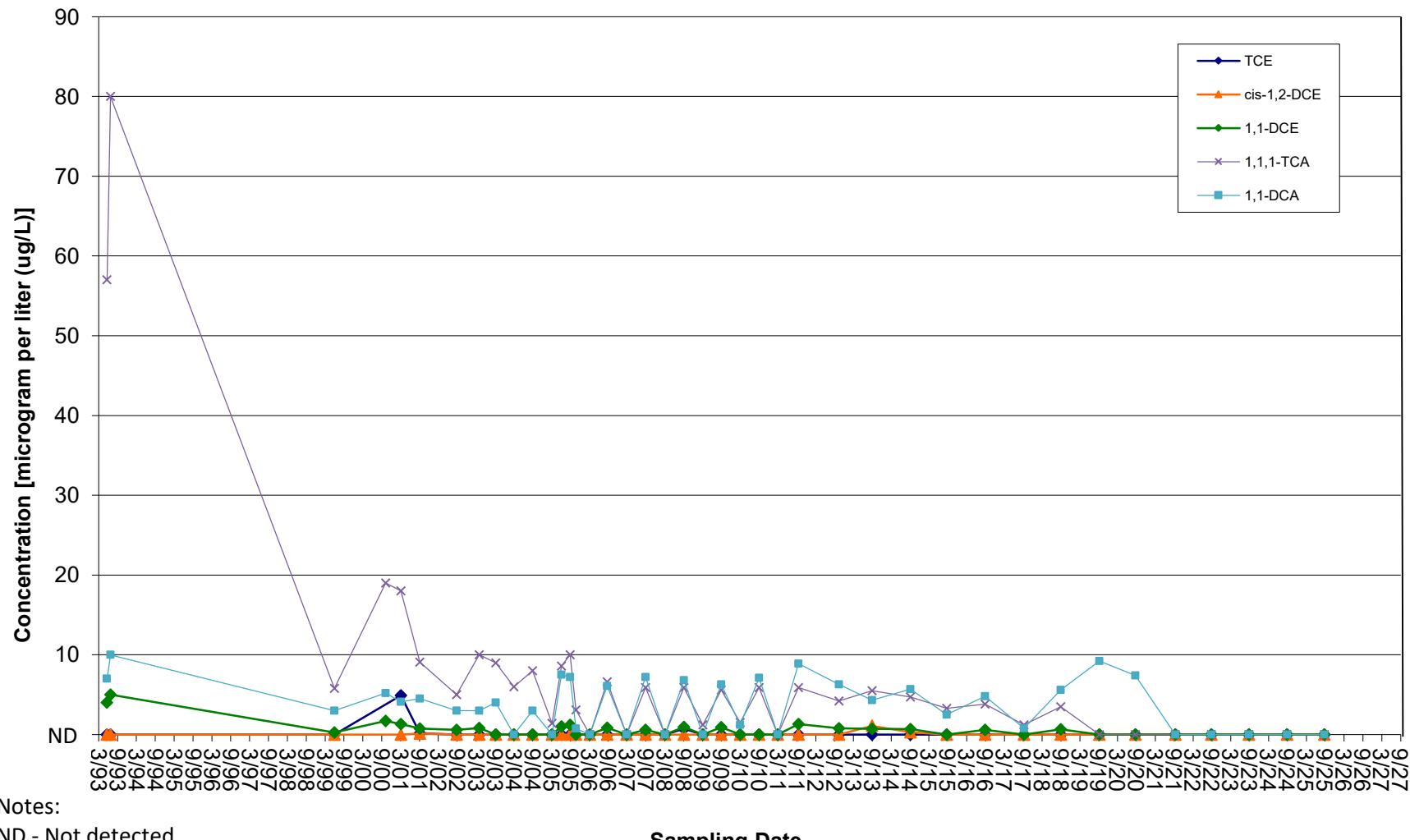
Table 2
Groundwater Analytical Results (September 2025)
Former Philips Display Components Facility
Seneca Falls, New York

VOCs	CAS #	NYS Class GA Standard	MW-1	MW-20	MW-22	MW-23	MW-24	MW-25	MW-25 Dup	MW-26	MW-28	MW-29	MW-BR-01	MW-BR-02	MW-BR-04	MW-BR-05	MW-BR-06	TRIP BLANK
1,1,1-Trichloroethane	71-55-6	5	5 U	5 U	5 U	5 U	200 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
1,1,2,2-Tetrachloroethane	79-34-5	5	5 U	5 U	5 U	5 U	200 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
1,1,2-Trichloroethane	79-00-5	1	5 U	5 U	5 U	5 U	200 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
1,1-Dichloroethane	75-34-3	5	5 U	5 U	5 U	5 U	200 U	9.7	9.2	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
1,1-Dichloroethene	75-35-4	5	5 U	5 U	5 U	5 U	200 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
1,2-Dichloroethane	107-06-2	0.6	5 U	5 U	5 U	5 U	200 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
1,2-Dichloropropane	78-87-5	1	5 U	5 U	5 U	5 U	200 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
Methyl N-Butyl Ketone (2-Hexanone)	591-78-6	50	10 U	10 U	10 U	10 U	400 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	
Acetone	67-64-1	50	10 U	10 U	10 U	10 U	400 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	
Benzene	71-43-2	1	5 U	5 U	5 U	5 U	200 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
Bromodichloromethane	75-27-4	50	5 U	5 U	5 U	5 U	200 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
Bromoform	75-25-2	50	5 U	5 U	5 U	5 U	200 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
Bromomethane	74-83-9	5	5 U	5 U	5 U	5 U	200 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
Carbon Disulfide	75-15-0	60	5 U	5 U	5 U	5 U	200 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
Carbon Tetrachloride	56-23-5	5	5 U	5 U	5 U	5 U	200 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
Chlorobenzene	108-90-7	5	5 U	5 U	5 U	5 U	200 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
Chloroethane	75-00-3	5	5 U	5 U	5 U	5 U	200 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
Chloroform	67-66-3	7	5 U	5 U	5 U	5 U	200 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
Chloromethane	74-87-3	5	5 U	5 U	5 U	5 U	200 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
cis-1,2-Dichloroethene	156-59-2	5	5 U	5 U	13	190	20000	110	120	110	5 U	94	5 U	5 U	5 U	5 U	5 U	5 U
cis-1,3-Dichloropropene	10061-01-5	0.4	5 U	5 U	5 U	5 U	200 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
Chlorodibromomethane	124-48-1	50	5 U	5 U	5 U	5 U	200 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
CFC-12	75-71-8	5	5 U	5 U	5 U	5 U	200 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
Ethylbenzene	100-41-4	5	5 U	5 U	5 U	5 U	200 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
2-Butanone (MEK)	78-93-3	50	10 U	10 U	10 U	10 U	400 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	
4-Methyl-2-Pentanone	108-10-1	5	10 U	10 U	10 U	10 U	400 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	
Dichloromethane	75-09-2	5	5 U	5 U	5 U	5 U	200 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
Styrene (Monomer)	100-42-5	5	5 U	5 U	5 U	5 U	200 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
Tetrachloroethene	127-18-4	5	5 U	5 U	5 U	5 U	200 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
Toluene	108-88-3	5	5 U	5 U	5 U	5 U	200 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
trans-1,2-Dichloroethene	156-60-5	5	5 U	5 U	5 U	5 U	200 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
trans-1,3-Dichloropropene	10061-02-6	0.4	5 U	5 U	5 U	5 U	200 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
Trichloroethene	79-01-6	5	5 U	5 U	5.1	22	200 U	5.7	5.4	84	12	5 U	5 U	5 U	5 U	5.8	5 U	5 U
CFC-11	75-69-4	5	5 U	5 U	5 U	5 U	200 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
Vinyl chloride	75-01-4	2	5 U	5 U	5 U	5 U	1000	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
Total Xylenes	1330-20-7	5	5 U	5 U	5 U	5 U	5 U	200 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
Total Xylenes	1330-20-7	5	5 U	5 U	5 U	5 U	5 U	200 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	

NOTES:

Bolded results were greater than the NYSDEC Class GA Standards

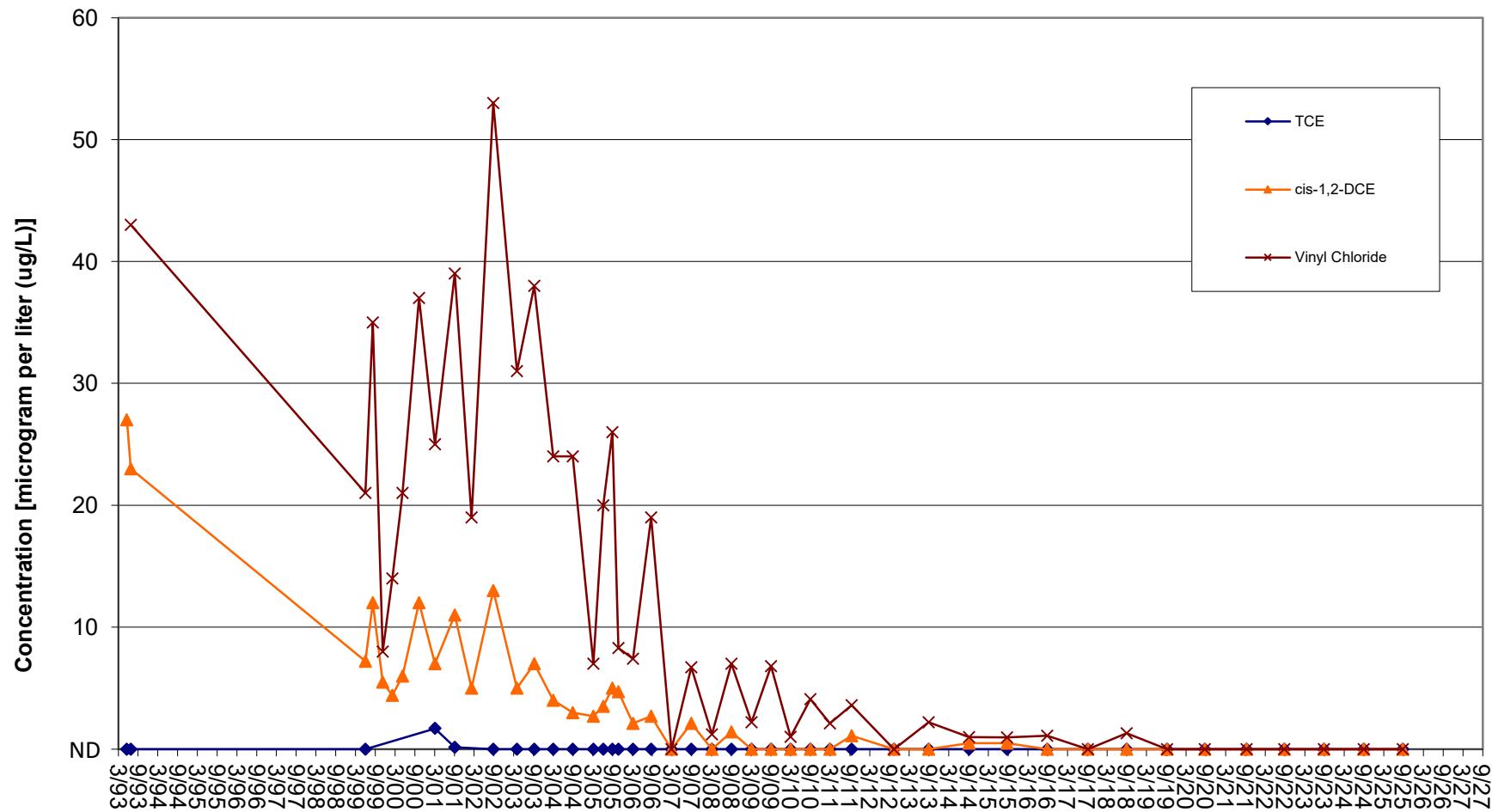
All values are shown in units of micrograms per liter (ug/L).


U = Not detected. Reporting limit shown.

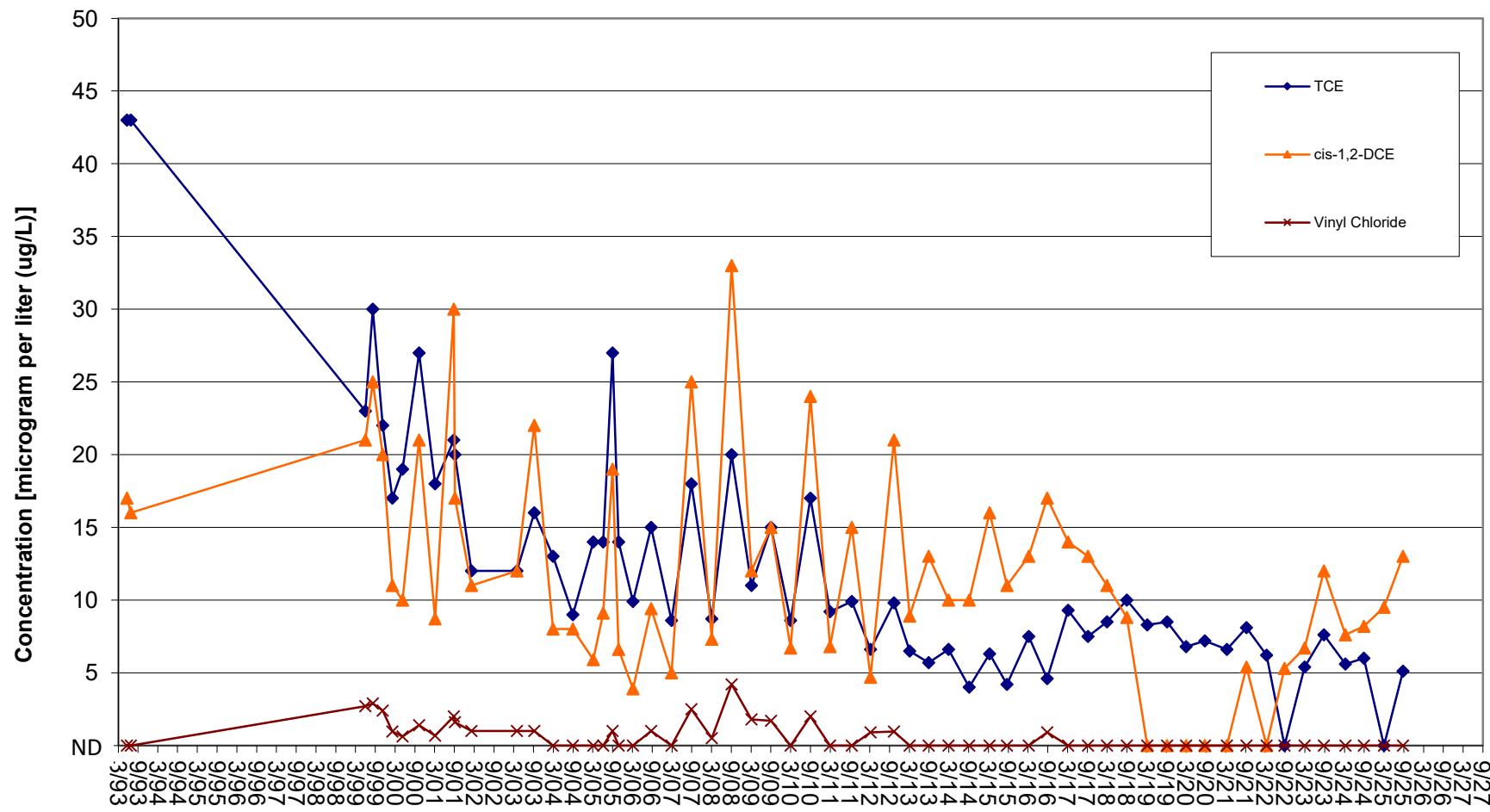
ATTACHMENT D

Groundwater VOC Concentration Graphs

MW-1


Notes:

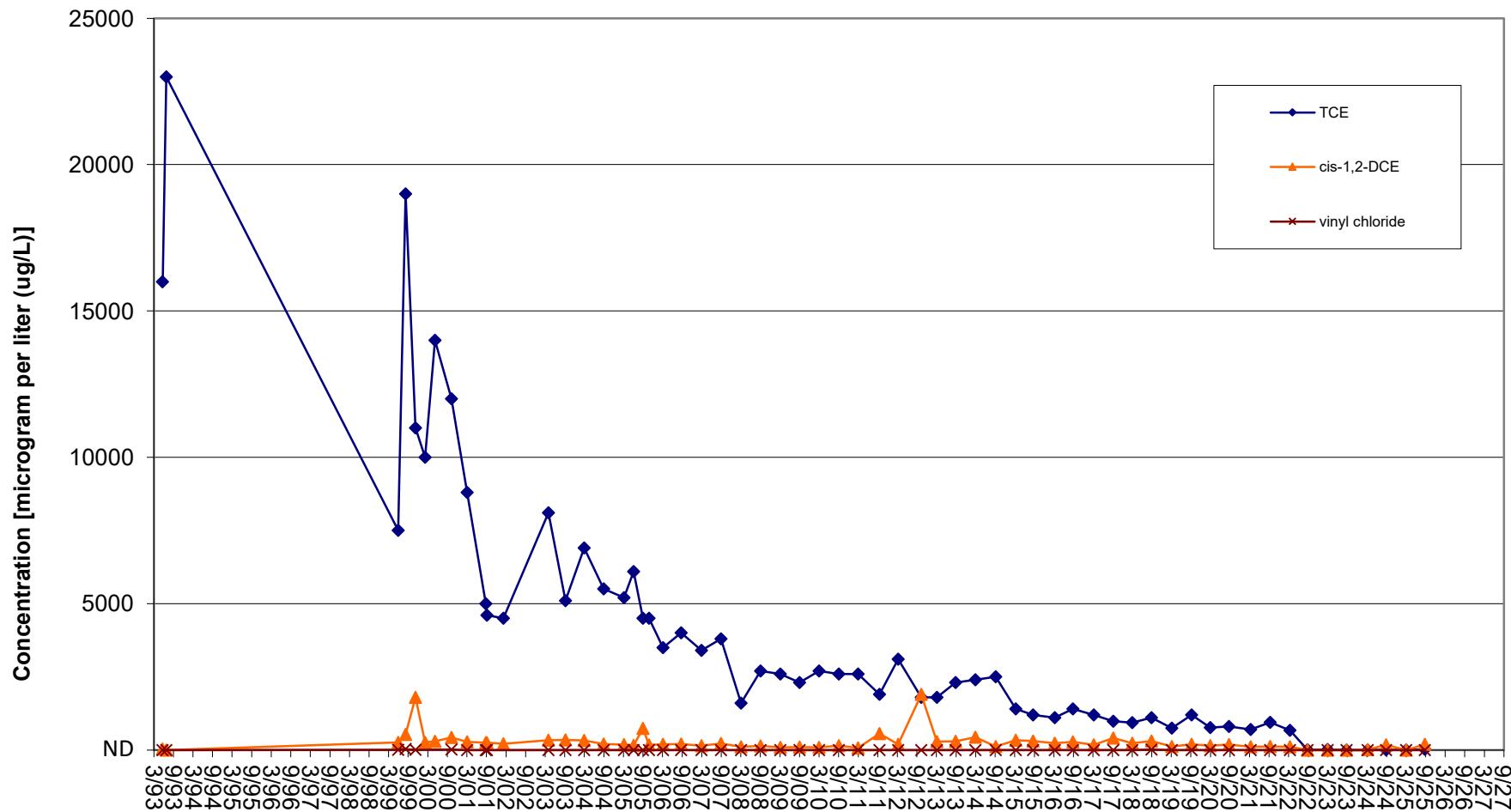
ND - Not detected.


Reporting limit is 5 ug/L.

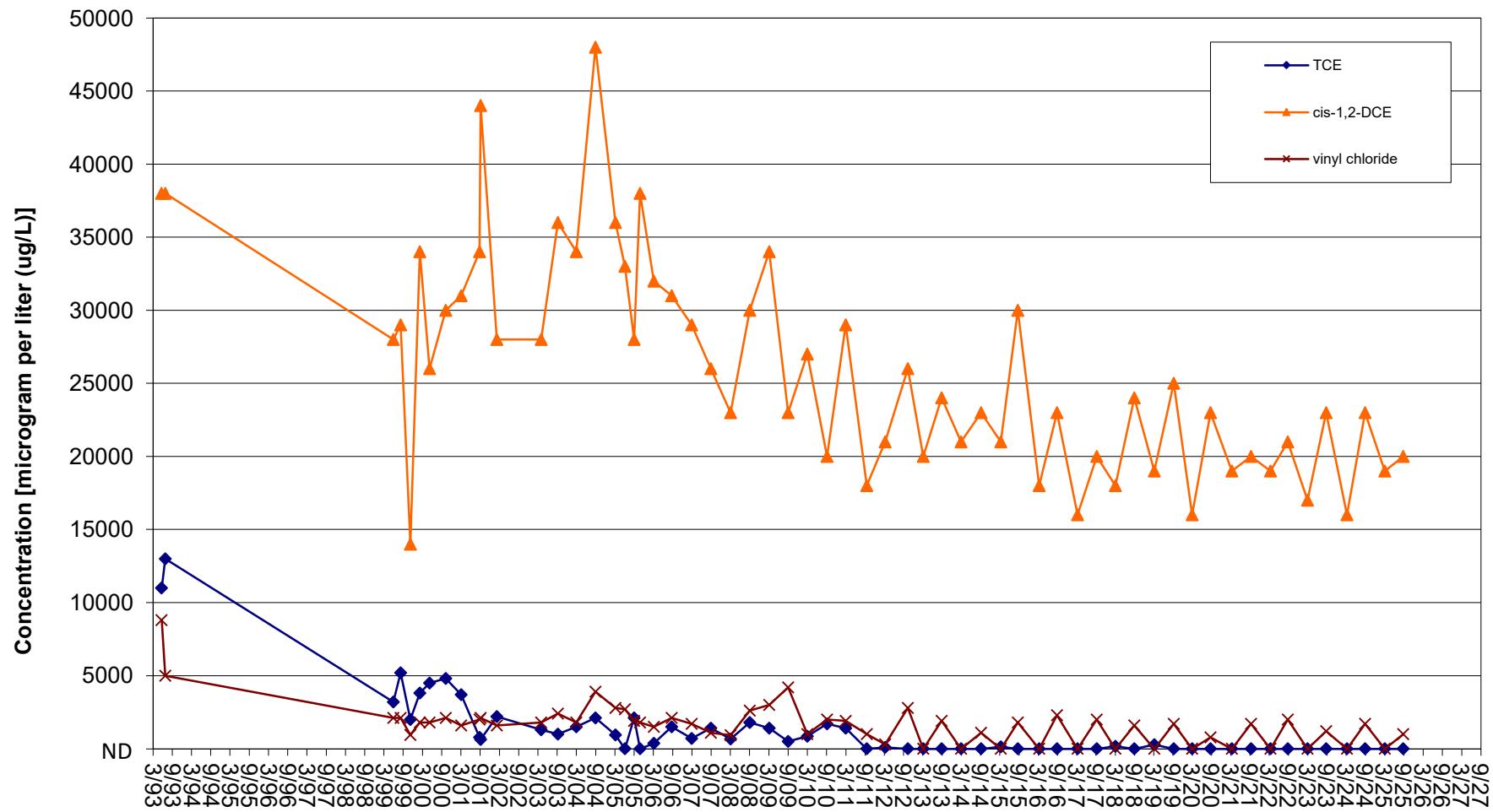
Results less than the reporting limit are estimated.

MW-20

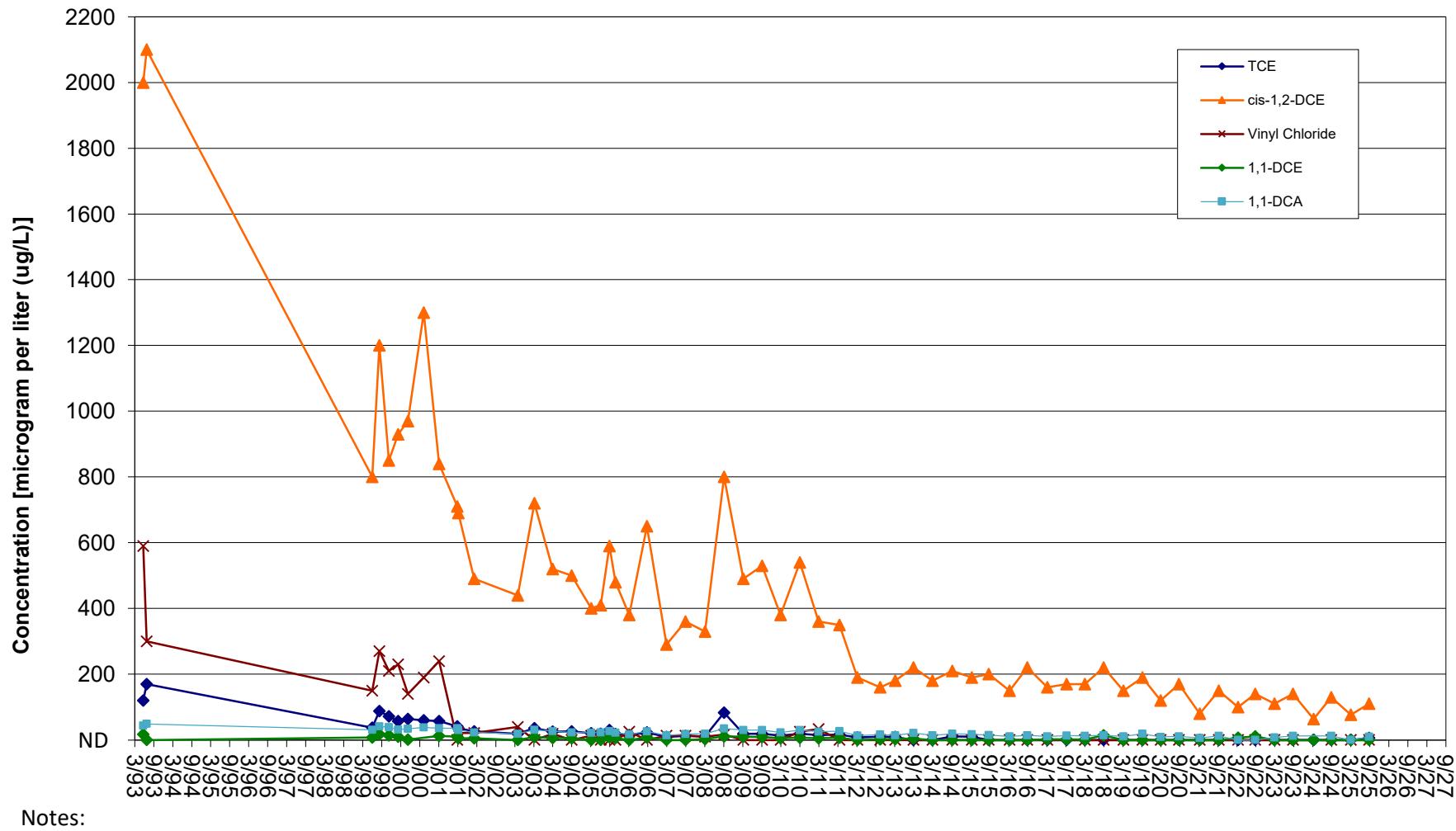
MW-22

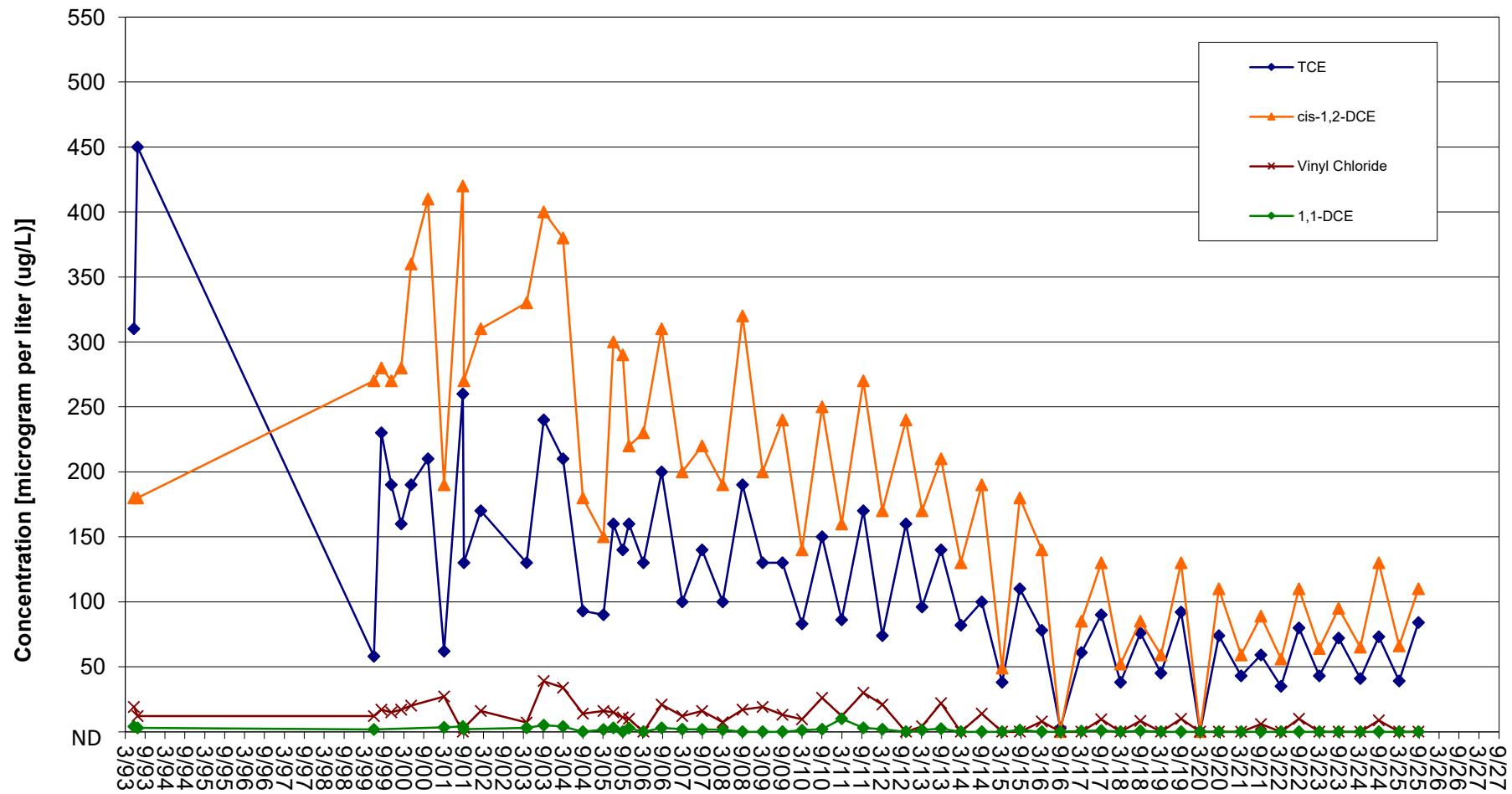

Notes:

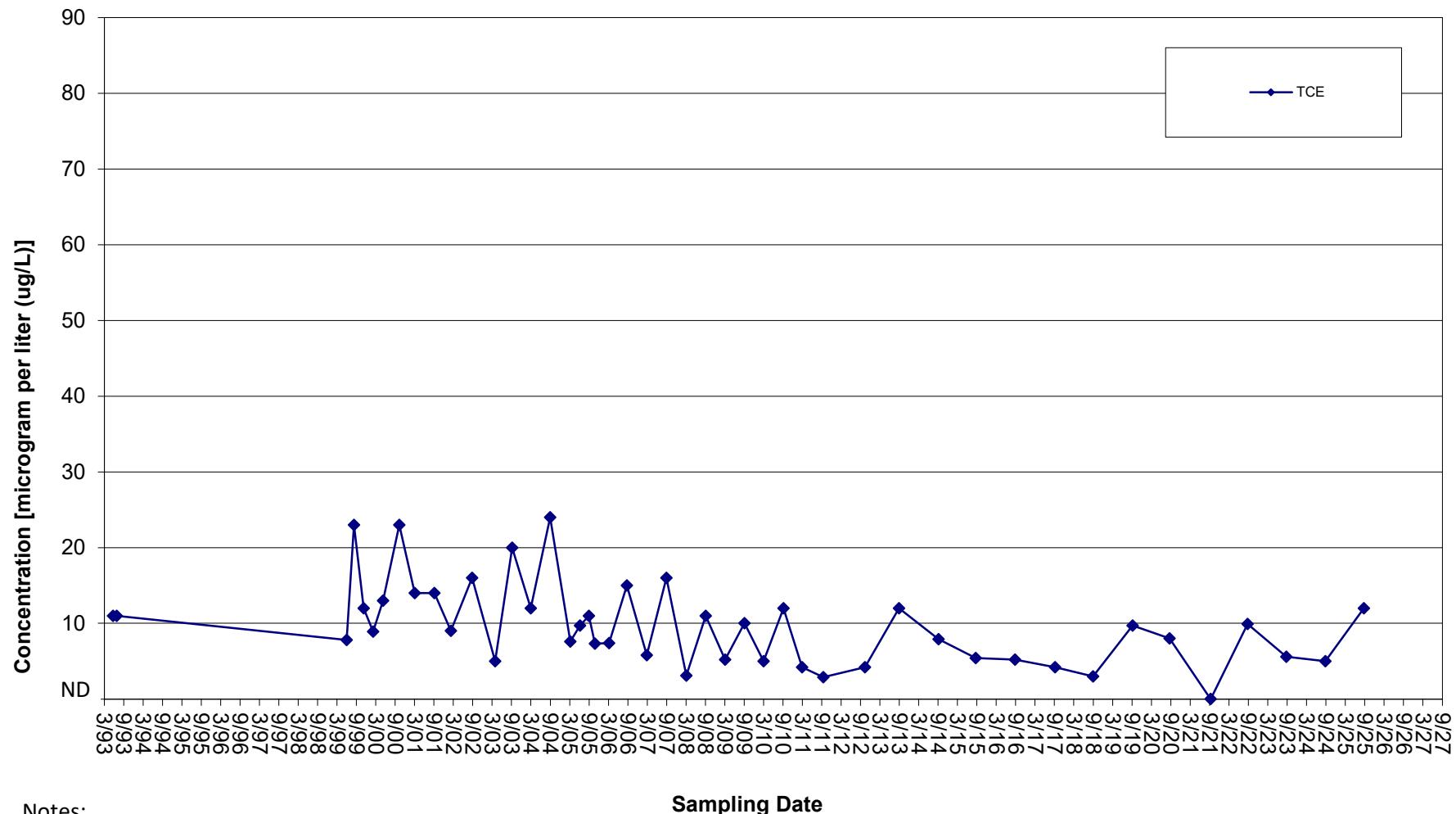
ND - Not detected.


Reporting limit is 5 ug/L.

Results less than the reporting limit are estimated.

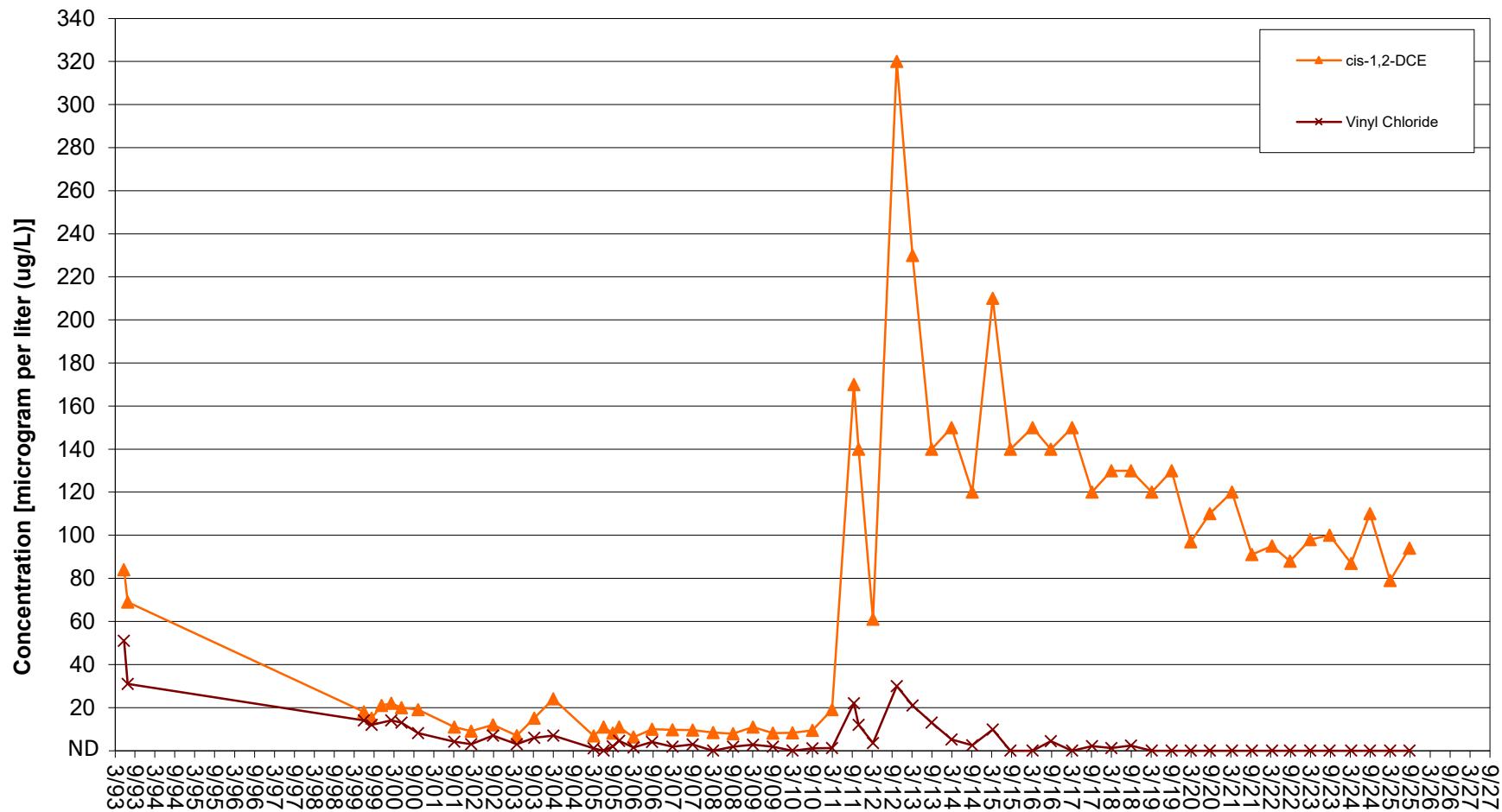

MW-23


MW-24


MW-25

MW-26

MW-28

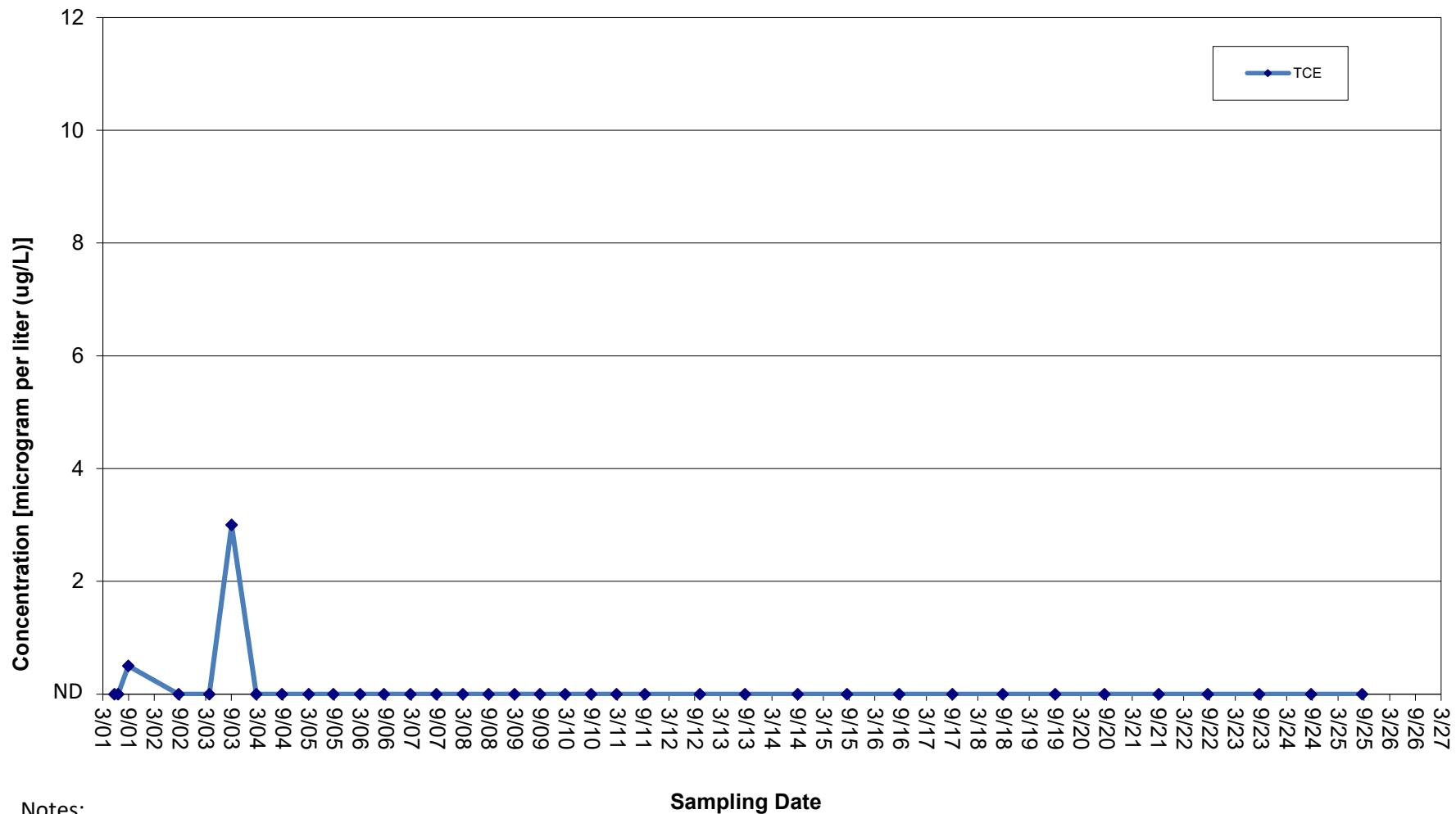

Notes:

ND - Not detected.

Reporting limit is 5 µg/L.

Results less than the reporting limit are estimated.

MW-29

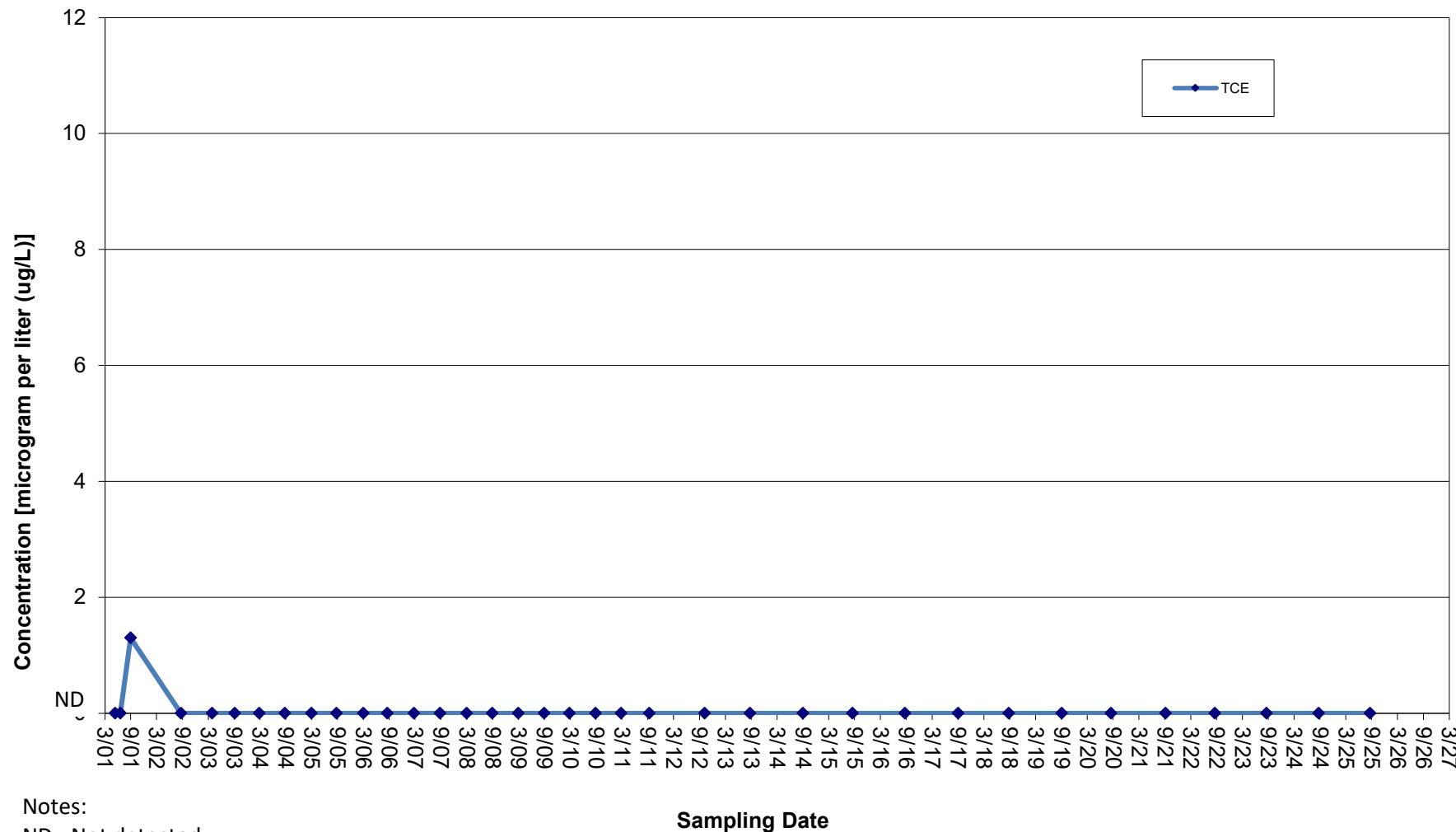

Notes:

ND - Not detected.

Reporting limit is 5 ug/L.

Results less than the reporting limit are estimated.

MW-BR-01

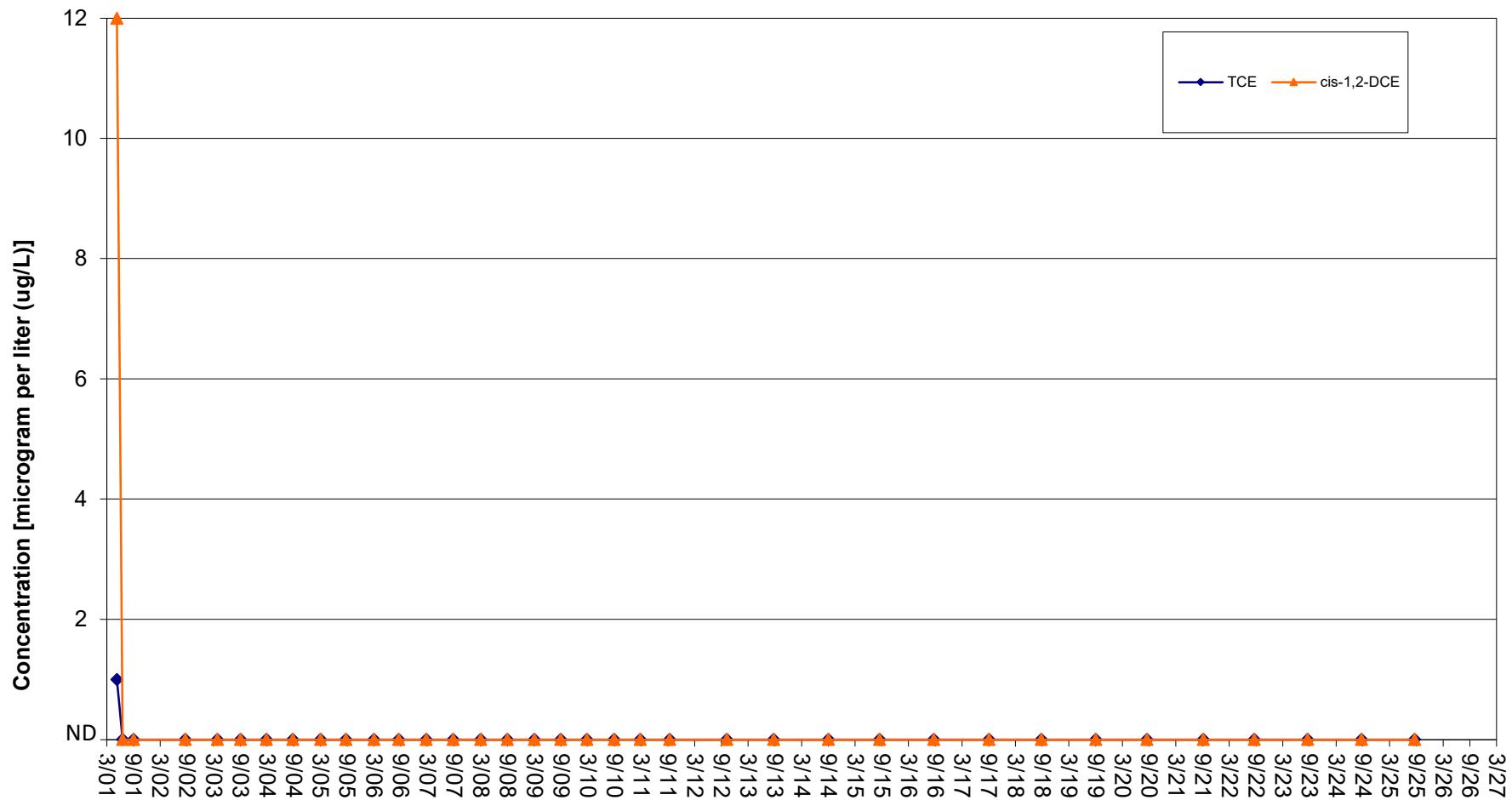

Notes:

ND - Not detected.

Reporting limit is 5 ug/L.

Results less than the reporting limit are estimated.

MW-BR-02

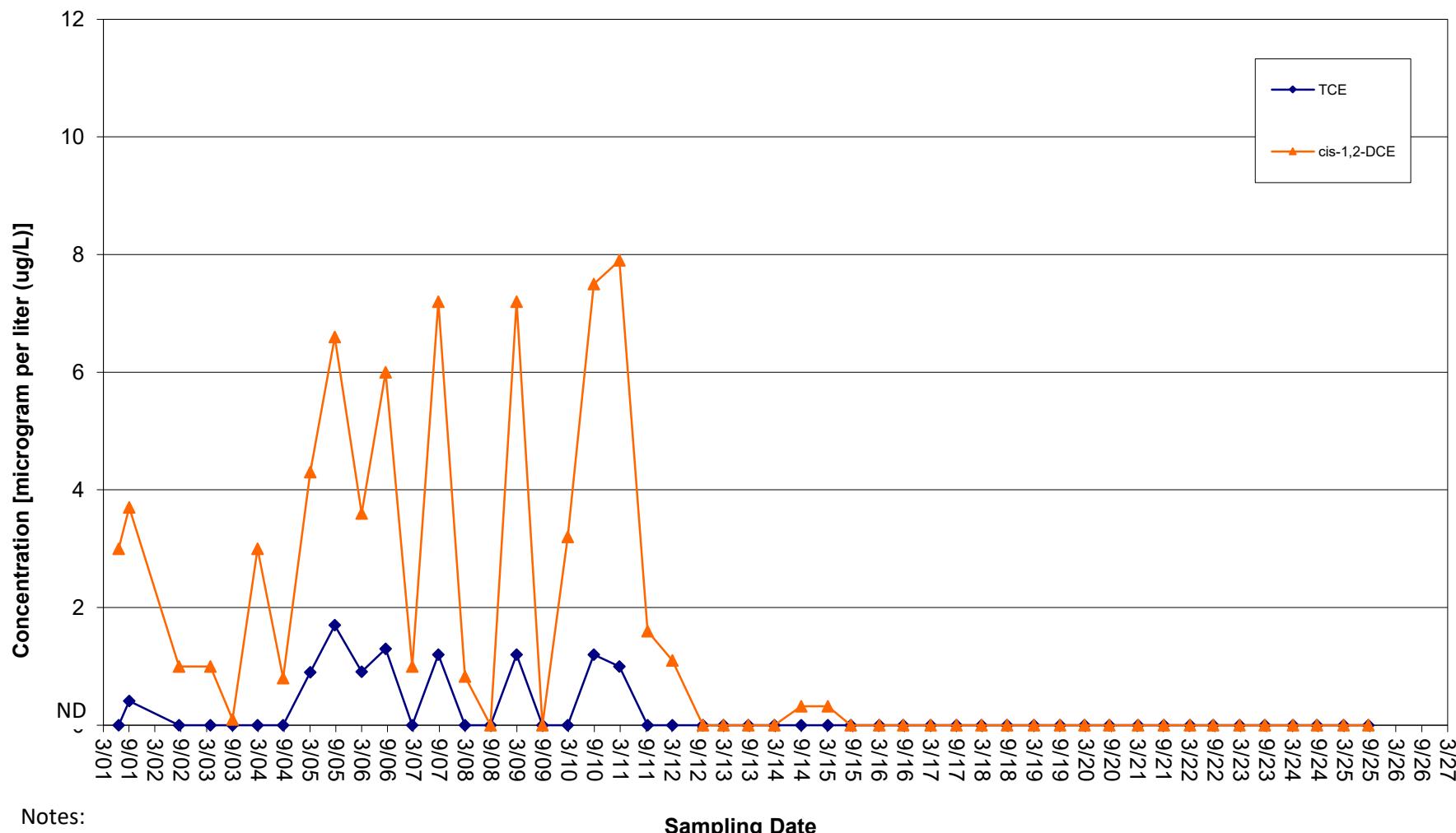

Notes:

ND - Not detected.

Reporting limit is 5 ug/L.

Results less than the reporting limit are estimated.

MW-BR-04

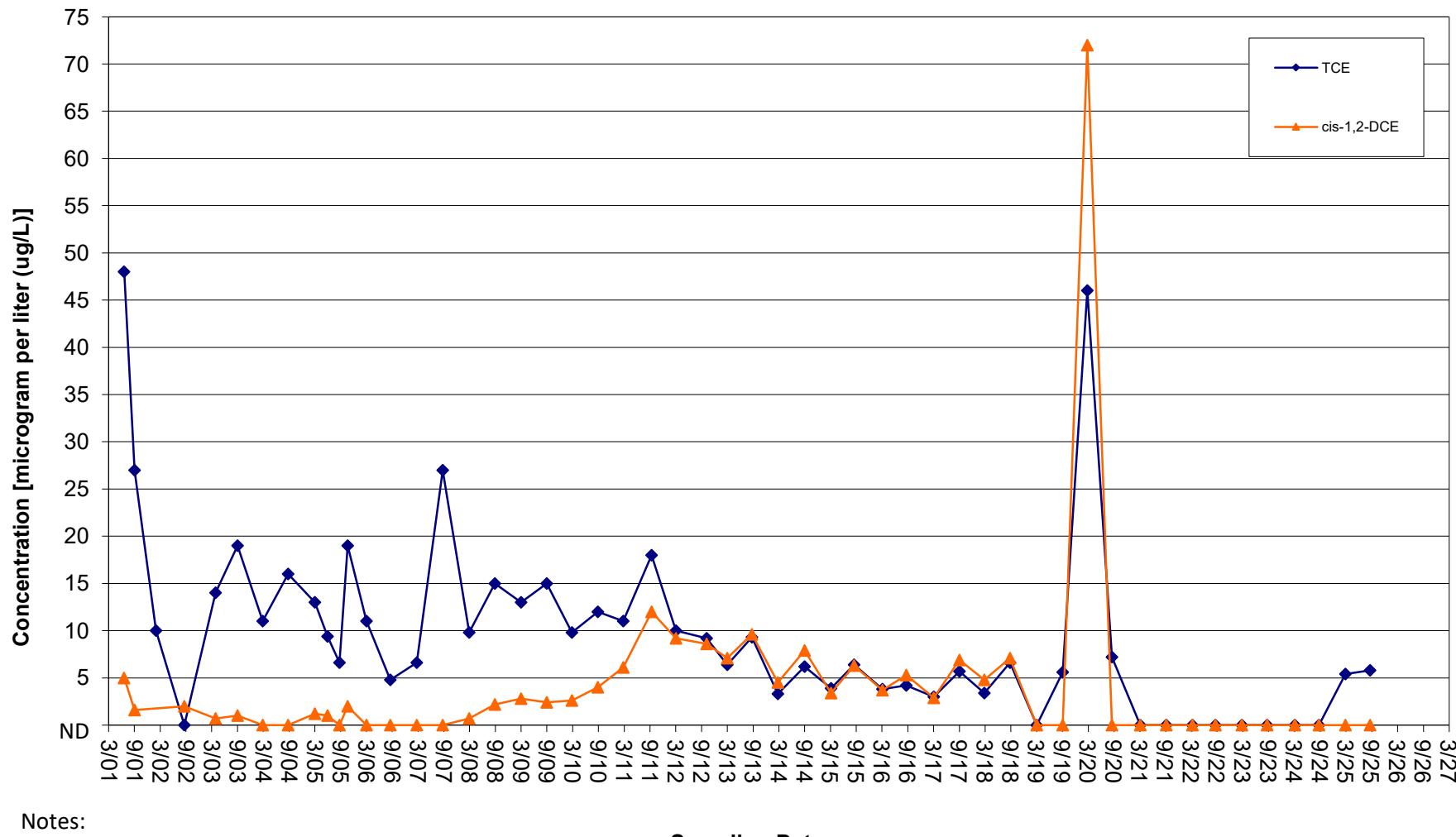

Notes:

ND - Not detected.

Reporting limit is 5 $\mu\text{g/L}$.

Results less than the reporting limit are estimated.

MW-BR-05


Notes:

ND - Not detected.

Reporting limit is 5 ug/L.

Results less than the reporting limit are estimated.

MW-BR-06

Notes:

ND - Not detected.

Reporting limit is 5 ug/L.

Results less than the reporting limit are estimated.

ATTACHMENT E

Data Validation Report

Data Validation Services

**120 Cobble Creek Road P. O. Box 208
North Creek, NY 12853
Phone (518) 251-4429
harry@frontiernet.net**

October 13, 2025

Mark Flusche
Arcadis of New York
855 Route 146 Suite 210
Clifton Park, NY 12065

RE: Validation of the Former Philips Display Components Facility--Seneca Falls Site Data
Package-Groundwater
Eurofins TAL-Buffalo SDG No. 480-232557-1

Dear Mr. Flusche:

Review has been completed for the data package generated by Eurofins TestAmerica Laboratories that pertains to samples collected 09/10/25 at Seneca Falls, NY. Fourteen aqueous samples, a field duplicate, and a trip blank were analyzed for volatiles by USEPA SW846 method 8260C.

Data validation was performed with guidance from the USEPA Region II validation SOP HW-6, the USEPA CLP National Functional Guidelines for Organic Data Review, and the specific requirements of the analytical methodologies. The data packages were reviewed for the following items:

- * Data Completeness
- * Case Narrative
- * Custody Documentation
- * Holding Times
- * Surrogate Standard Recoveries
- * Matrix Spike Evaluations
- * Blind Field Duplicate Correlations
- * Blank Contamination
- * Laboratory Control Samples (LCSs)
- * Calibration Standard Responses
- * Internal Standard Responses
- * Method Compliance
- * Sample Results Verification

Those items showing deficiencies are discussed in the following sections of this report. All others were found to be acceptable as outlined in the above-mentioned validation procedures, and as applicable for the methodology. Unless noted specifically in the following text, reported results of validated sample analytes are substantiated by the raw data, and generated in compliance with project requirements.

In summary, samples were processed in compliance with stated protocols. Sample results are usable as reported.

Sample identifications and the laboratory case narrative are attached to this text, and should be reviewed in conjunction with this report. Also included with this report is the laboratory EDD.

VOA Analyses by EPA 8260D

Results for analytes initially reported with the “E” flag are derived from the dilution analyses of the samples, thus reflecting responses within the linear range of the instrument.

Matrix spikes (MSSs) of MW-24 show recoveries and correlations that are within validation guidelines.

The blind field duplicate correlations of MW-25 are within validation guidelines.

Surrogate and internal standard responses are within required ranges, and holding times were met. Blanks show no contamination. Calibration standard responses and LCS recoveries are within validation guidelines.

MW-24 was processed only at initial dilution due to high concentrations of target analytes. Reporting limits for undetected analytes in that samples are therefore proportionally elevated.

Please do not hesitate to contact me if questions or comments arise during your review of this report.

Very truly yours,

Judy Harry

Att: Sample Identifications
 Laboratory Case Narrative
 Laboratory EDD

Sample Identification Summary

Sample Summary

Job ID: 480-232557-1

Client: Arcadis U.S., Inc.

Project/Site: GTEOSI - Seneca Falls

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Sample Origin
480-232557-1	MW-1	Water	09/10/25 10:50	09/12/25 10:00	New York
480-232557-2	MW-20	Water	09/10/25 10:20	09/12/25 10:00	New York
480-232557-3	MW-22	Water	09/10/25 11:10	09/12/25 10:00	New York
480-232557-4	MW-23	Water	09/10/25 08:20	09/12/25 10:00	New York
480-232557-5	MW-24	Water	09/10/25 08:35	09/12/25 10:00	New York
480-232557-6	MW-25	Water	09/10/25 11:05	09/12/25 10:00	New York
480-232557-7	MW-26	Water	09/10/25 09:30	09/12/25 10:00	New York
480-232557-8	MW-28	Water	09/10/25 10:30	09/12/25 10:00	New York
480-232557-9	MW-29	Water	09/10/25 10:40	09/12/25 10:00	New York
480-232557-10	MW-BR-01	Water	09/10/25 09:50	09/12/25 10:00	New York
480-232557-11	MW-BR-02	Water	09/10/25 10:05	09/12/25 10:00	New York
480-232557-12	MW-BR-04	Water	09/11/25 09:45	09/12/25 10:00	New York
480-232557-13	MW-BR-05	Water	09/11/25 11:00	09/12/25 10:00	New York
480-232557-14	MW-BR-06	Water	09/10/25 09:10	09/12/25 10:00	New York
480-232557-15	DUP-091025	Water	09/10/25 00:00	09/12/25 10:00	New York
480-232557-16	TRIP BLANK	Water	09/10/25 00:00	09/12/25 10:00	New York

Eurofins Buffalo

Page 5 of 488

09/18/2025

Laboratory Case Narrative

**Job Narrative
480-232557-1**

The analytical test results presented in this report meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page, unless otherwise noted. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable. Regulated compliance samples (e.g. SDWA, NPDES) must comply with associated agency requirements/permits.

- Matrix-specific batch QC (e.g., MS, MSD, SD) may not be reported when insufficient sample volume is available or when site-specific QC samples are not submitted. In such cases, a Laboratory Control Sample Duplicate (LCSD) may be analyzed to provide precision data for the batch.
- For samples analyzed using surrogate and/or isotope dilution analytes, any recoveries falling outside of established acceptance criteria are re-prepared and/or re-analyzed to confirm results, unless the deviation is due to sample dilution or otherwise explained in the case narrative.

Receipt

The samples were received on 9/12/2025 10:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.3°C.

GC/MS VOA

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-756911 recovered above the upper control limit for Trichlorofluoromethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are: MW-1 (480-232557-1), MW-20 (480-232557-2), MW-22 (480-232557-3), MW-23 (480-232557-4), MW-24 (480-232557-5), MW-25 (480-232557-6), MW-26 (480-232557-7), MW-28 (480-232557-8), MW-29 (480-232557-9), MW-BR-01 (480-232557-10), MW-BR-02 (480-232557-11), MW-BR-04 (480-232557-12), MW-BR-05 (480-232557-13), MW-BR-06 (480-232557-14), DUP-091025 (480-232557-15) and TRIP BLANK (480-232557-16).

Method 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-23 (480-232557-4), MW-24 (480-232557-5), MW-24 (480-232557-5[MS]) and MW-24 (480-232557-5[MSD]). Elevated reporting limits (RLs) are provided.

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-757003 recovered above the upper control limit for Carbon tetrachloride and Trichlorofluoromethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are: MW-23 (480-232557-4), MW-25 (480-232557-6), MW-26 (480-232557-7) and DUP-091025 (480-232557-15).

Method 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-25 (480-232557-6), MW-26 (480-232557-7) and DUP-091025 (480-232557-15). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.