

FINAL REMEDIAL INVESTIGATION REPORT

Site:

Crystal Cleaners (Site No. 851022) 343 West Pulteney Street City of Corning, New York 14830

Prepared for:

NYSDEC 625 Broadway Albany, New York 12233

Prepared by:

AECOM 300 Broadacres Drive Bloomfield, New Jersey 07003

January 2011

AECOM Project No. 60134118

Table of Contents

1	INTRODUCTION	1
	 1.1 Report Organization	2 3 4 4 4
2		
	 2.1 Membrane Interface Probe	5 7 8 9 9 10 11 11 11 12 12 12
3		
	 3.1 Groundwater Sample Data March 2009	14 14 14 16
4	ANALYTICAL DATA AND USABILITY	
	 4.1 Direct Push Soil Sampling and Groundwater Sampling March 2009 4.2 Soil Sampling June 2009 4.3 Groundwater Sampling December 2009 4.4 Indoor Air Sampling 2009 4.5 Indoor Air Sampling 2010 	18 18 19
5	GEOLOGY/HYDROGEOLOGY	
	 5.1 Regional Geology 5.2 Site Geology 5.3 Regional Hydrogeology 	20

5.4	Site Hydrogeology	.21
6 C0	ONTAMINATION – NATURE AND EXTENT	21
6.1 6.2 6.3 6.4	Nature of Contamination Extent of Contamination (Contaminant Distribution) Volume of PCE Contaminated Groundwater Uncertainties in Nature and Extent of Contaminant Distribution	. 22 . 23
7 C(ONTAMINANT FATE AND TRANSPORT	
7.4	Potential Routes of Contaminant Transport Soil Vapor Intrusion Groundwater Flow Contaminant Transport 4.1 Adsorption 4.2 Dispersion 4.3 Dilution	25 25 26 26 26
7.5	Contaminant-Specific Transport Velocity	. 28
7.6 7.0	Contaminant Fate 6.1 Abiotic Transformation	
7.0	6.2 Biotransformation	.29
	5.3 Biodegradation at the Site	
	JALITATIVE HUMAN HEALTH RISK ASSESSMENT	
8.1 8.2	Exposure Assessment	
8.3	Hazard Identification and Comparison to Criteria.	
	3.1 Groundwater	.33
	3.2 Soil	
8.3	3.3 Soil Vapor	. 34
9 CC	DNCLUSIONS	. 34
9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8	Remedial Investigation Site Geology Site Hydrogeology Nature of Contaminants Detected Extent of Contamination Contaminant Transport Contaminant Fate Human Health Risk Assessment	35 36 36 36 36 37 37
10	REFERENCES	. 37

FIGURES

Figure 1-1	Site Location Map
Figure 1-2	Site Layout
Figure 1-3	Groundwater Sampling PCE Results 2005 and 2007
Figure 1-4	USGS Quadrangle - Corning
Figure 2-1	MIP Locations
Figure 2-2	MIP Results
Figure 2-3	Groundwater Sampling Locations March 2009
Figure 2-4	Soil Sample Locations March 2009
Figure 2-5	Soil Sample Locations June 2009
-	-

- Figure 2-6 Soil Classification by Direct Push Sampling
- Figure 2-7 Monitoring Well Locations
- Figure 3-1 Groundwater Sampling Results March 2009
- Figure 3-2 Soil Sample Results March 2009
- Figure 3-3 Soil Sample Results June 2009
- Figure 3-4 Groundwater Sampling Results PCE and Dechlorination Compounds December 2009
- Figure 5-1 Corning Aquifer
- Figure 5-2 Regional Geologic Sections
- Figure 5-3 Regional Groundwater Flow Direction
- Figure 5-4 Groundwater Elevations October 2009
- Figure 6-1 Groundwater PCE Contours

TABLES

- Table 2-1Hydropunch Sampling Depths (ft bgs)
- Table 2-2Monitoring Well Information
- Table 2-3Indoor Air Samples Collected in 2009 and 2010
- Table 3-1VOCs in Groundwater March 2009
- Table 3-2VOCs in Soil Samples March 2009
- Table 3-3SVOCs in Soil Samples March 2009
- Table 3-4Pesticides in Soil Samples March 2009
- Table 3-5PCBs in Soil Samples March 2009
- Table 3-6Metals in Soil Samples March 2009
- Table 3-7VOCs in Soil Samples June 2009
- Table 3-8VOCs in Groundwater December 2009
- Table 3-9Metals in Groundwater December 2009
- Table 3-10Wet Chemistry Groundwater December 2009
- Table 3-11VOCs in Indoor Air Samples 2009
- Table 3-12 VOCs in Outdoor Air Samples 2009
- Table 3-13VOCs in Sub-Slab Vapor Samples 2009
- Table 3-14Indoor Air 2009 Comparison to NYSDOH Matrices
- Table 3-15VOCs in Indoor Air Samples 2010
- Table 3-16VOCs in Outdoor Air Samples 2010
- Table 3-17VOCs in Sub-Slab Vapor Samples 2010
- Table 3-18Indoor Air 2010 Comparison to NYSDOH Matrices
- Table 7-1
 Chemical-Specific Values Used in Fate and Transport Calculations
- Table 7-2Groundwater Flow and Contaminant Migration
- Table 7-3Degradation Processes
- Table 8-1
 Groundwater Concentration Summary Statistics
- Table 8-2Soil Concentration Summary Statistics
- Table 8-3
 Indoor Air Concentration Summary Statistics
- Table 8-4
 Outdoor Air Concentration Summary Statistics

APPENDICES

- Appendix A Photo Log
- Appendix B MIP Investigation
- Appendix C Field Forms
- Appendix D Land Survey Results
- Appendix E Lab Data and DUSRs on CD

1 INTRODUCTION

The scope of work is to conduct a remedial investigation and feasibility study at Crystal Cleaners, City of Corning, Steuben County (NYSDEC registry numbers 851022). The site location is shown on Figure 1-1, and the site layout is shown on Figure 1-2.

NYSDEC and AECOM developed a scope of work in November 2008. These plans formed the basis of the initial phase of the remedial investigation (indoor air sampling, membrane interface probe [MIP], Hydropunch groundwater sampling, and subsurface soil sampling). Additional soil sampling locations were identified by NYSDEC on Crystal Cleaner property, which were collected in June 2009. Permanent well locations and screening depths were proposed in May 2009. The permanent well locations were finalized in July 2009 based on NYSDEC review and installed in October 2009. Direct push sampling locations to provide soil classification in the subsurface proposed by AECOM were implemented in August 2009.

The scope of work is divided into four principal tasks:

- 1.1 File Review and Site Visit
- 1.2 Project Budget (Schedule 2.11) and Project Schedule
- 2.1 Membrane Interface Probe, Soil and Groundwater Sampling Activities
- 2.2 Soil Vapor Intrusion Sampling of Residences
- 3 Remedial Investigation (RI) Report
- 4.1 Feasibility Study
- 4.2 Public Participation

This Task 3 RI report presents the findings of the Task 2.1 and Task 2.2 field investigation plus additional field activities not included in the November 2008 scope of work.

The Task 4.1 Feasibility Study and Task 4.2 Public Participation will be conducted after the RI is completed and submitted to NYSDEC.

1.1 Report Organization

This RI Report consists of ten sections with associated tables, figures and appendices. This introduction chapter (Section 1.0 - Introduction) presents the organization of the report, background information (such as the location and description of Crystal Cleaners, site history, and previous investigations), and the physical characteristics of surrounding area (overviews of local topography, land use, geology, and hydrogeology).

The remainder of the report is structured as follows:

- Section 2.0 Remedial Investigation: summarizes the scope of work implemented during the field investigations and associated activities.
- Section 3.0 Laboratory Analytical Results: presents the field and analytical results of the field investigation.

- Section 4.0 Analytical Data and Usability: presents a data usability assessment of the laboratory analytical data.
- Section 5.0 Geology/Hydrogeology: describes the regional and site geology and hydrogeology.
- Section 6.0 Contamination Nature and Extent: presents an analysis of the nature and extent of contamination at the Crystal Cleaners site.
- Section 7.0 Contaminant Fate and Transport: presents an analysis of the contaminant fate and transport at the Crystal Cleaners site.
- Section 8.0 Qualitative Human Health Risk Assessment: presents a qualitative human health risk assessment for the Crystal Cleaners site.
- Section 9.0 Conclusions: presents conclusions for the RI Report.
- Section 10.0 References: presents a bibliography of documents referenced in the text of the report.

1.2 Site/Study Area Background Information

The former Crystal Cleaners is located at 343 West Pulteney Street, in the City of Corning, Steuben County, New York (Figure 1-1). The site is approximately 0.58 acres including a retail building and a large parking lot. The current site building was constructed in 1970 and included a mini-mart, a service station, a dry cleaning business and a laundromat. It is a one story building with a basement located only underneath the former dry cleaner (Figure 1-2).

The property lot was purchased from Corning Inc., in December 1969. The property has contained a gas station since at least 1974, when four 4000 gallon gasoline tanks were installed at the site. An additional 1000 gallon kerosene tank was installed in 1984. The gasoline tanks were removed in 1992 and replaced with two 8000 gallon gasoline tanks. These tanks were reportedly removed in 2008. The 1000 gallon kerosene tank was abandoned in place and a new 1000 gallon kerosene tank was installed.

The date of the first dry cleaner is not known, but Corning One Hour Martinizing at 343 West Pulteney appeared in the 1981 Corning City Guide. The 1989 Corning City Guide lists the property as One Hour Tecni Clean. The manager of the dry cleaner, who was interviewed by MACTEC in 2006 as part of the site characterization, took over lease of the property in 1994 and changed the name to Crystal Cleaner. He stated the original operation was a wet to dry system. (It is assumed that the manager is referring to a transfer system which consists of two machines:

a washer and a dryer. Clothing is transferred from the washer to the dryer resulting in a source of PCE emissions.) This was converted to a dry to dry system (materials are cleaned and dried in the same machine) in the mid 1980s. He updated the equipment and added spill protection in the mid-1990. It is assumed that Crystal Cleaners has always been serviced by public water and sewer because according to the City of Corning Department of Public Works, the water main along West Pulteney Street was installed in 1907 and the sewer line was installed around 1908.

1.2.1 Land Use

The site is located in a mixed commercial and residential area near the western boundary of the City of Corning, New York. The site consists of a single story building with parking spaces in the front. The building is oriented east-west and is separated into three sections. All sections are currently vacant, but previously were occupied by a mini mart/gas station, a dry cleaners and a laundromat.

Adjacent properties include residences to the north, northeast, and northwest, a bank to the east across Cutler Avenue, a liquor store to the southeast across West Pulteney Street, a retail business to the southwest across West Pulteney Street, and a used car lot to the west across Townsend Avenue.

1.2.2 Prior Investigations Conducted at the Site

Chlorinated solvents were first detected in the City of Corning's water supply wells # 1 and # 2 in the early 1980s (Figure 1-1). These wells are located approximately 950 feet (ft) and 1300 ft southeast of Crystal Cleaners, respectively, along the banks of Chemung River. Well SW-1 is screened from approximately 50 to 70 ft below ground surface (bgs). Well SW-2 is screened from approximately 43 to 63 ft bgs. PCE was detected at low concentrations in both wells. Concentrations typically range from non-detect to 14 micrograms per liter (μ g/L), with slightly higher concentrations detected in SW-2 than SW-1 (MACTEC, 2007).

In preparation for selling the property, the owner of the plaza that includes Crystal Cleaner hired Teeter Environmental Services, Inc. to conduct a Phase II Site assessment in 2005, primarily for the purpose of determining the condition of the underground fuel tanks for the gas station (Teeter, 2005). The investigation included the completion of six soil borings (BS-1 to BS-6) to approximately 16 ft bgs and collection of groundwater grab samples. The investigation found concentrations above the NYS groundwater criteria for PCE at two borings on the site (7 μ g/L and 43.1 μ g/L) as shown on Figure 1-3. Naphthalene, toluene, and m,p-xylenes were also detected at concentrations above the applicable regulatory standards.

During the Final Site Characterization conducted by MACTEC Engineering and Consulting, PC (MACTEC) in March 2007, MACTEC collected 35 groundwater, four soil, and three soil vapor samples from the areas around the site. PCE was detected at concentrations above the New York State (NYS) Class GA groundwater standards in groundwater samples collected on site and downgradient. PCE concentrations in groundwater are shown on Figure 1-3. PCE detections in groundwater from borings on the Crystal Cleaners site ranged from 0.88 μ g/L to 610 μ g/L. Subslab vapor samples taken adjacent to the dry cleaner indicate that TCE and PCE are present at

elevated levels. Shallow contaminated groundwater is migrating off site under a densely populated residential neighborhood and is present in a downgradient public supply well above NYS Class GWA groundwater standards. An air stripper is currently in place on the public supply wells to remove VOCs from drinking water to meet drinking water standards.

1.3 Topography

The site is located in the Cohocton/Chemung River Valley, which runs east-west. The site property is located at 940 ft above mean sea level (amsl), sloping slightly to the south. A section of the USGS Quadrangle for Corning is shown in Figure 1-4. The surrounding area slopes slightly to the south, before reaching the Chemung River, located 900 ft south of the site. The Chemung River is located at an elevation of approximately 930 ft amsl, just south of the dike. The topography to the northeast of the site is relatively flat for approximately 0.7 miles, and then rises to a ridge at 1600 ft amsl approximately 1.5 miles from the site.

1.4 Surface Water Hydrology

The site is not located in an area mapped as either a 100 year or 500 year flood zone (EDR, 2006). Surface drainage from the site generally follows the topography, flowing toward the municipal storm drains located on West Pulteney Street. These storm drains flow to a treatment plant located approximately 2.4 miles east of the site (MACTEC, 2007). The treatment plant discharges to the Chemung River downstream of the site.

1.5 Groundwater Hydrology

The Chemung River is a local groundwater discharge area. Groundwater at the site was encountered at approximately 10 to 12 ft bgs, and is interpreted to flow south towards the Chemung River. Potentiometric contours for the greater Corning area prepared by the United States Geological Survey (USGS) indicate that groundwater at the site flows to the southeast (USGS, 1982).

1.6 Local and Site Geology and Hydrogeology

The site is located in Cohocton/Chemung River Valley, which runs east-west. Overburden soils at the site consisted primarily of fluvial silts, sands and gravel. Surficial geology is mapped as oxidized, non calcareous, fine sand to gravel (Muller, 1986). Teeter described site soils as varying horizontally and vertically generally consisting of brown and reddish brown gravelly silt with varying amounts of sand, sandy gravel with little silt and clayey silt with some sand and gravel. Based on regional geologic mapping (Rickard and Fisher, 1970), bedrock consists of shale and siltstones associated with the Upper Devonian West Falls Group; specifically, the Gardeau formation, consisting of shale and siltstone; and/or Toricks Glen shale (Rickard and Fisher, 1970).

2 **REMEDIAL INVESTIGATION**

A remedial investigation was conducted to determine the sources of contamination within the site and its threat to human health and the environment. The scope and execution of the RI is discussed below.

2.1 Membrane Interface Probe

Prior to conducting any intrusive site work, AECOM utilized the services of Advanced Geological Services, Inc. (AGS) for geophysical survey and utility clearance for the 15 proposed membrane interface probe (MIP) boring locations. AGS utilized a combination of ground penetrating radar (GPR) and electro-magnetic (EM) geophysical methods to locate buried utility lines and structures at the proposed boring locations. Several underground utility markings (possibly gas or sewer lines) were identified at some of the proposed boring locations and the borings were relocated to maintain a minimum of 3-ft clearance from the utilities. The final locations of these boring were marked out with spray paint. A photo log of field investigation activities is included in Appendix A. Figure 2-1 shows the sampling locations for the MIP borings.

AECOM, Zebra, and NYSDEC personnel mobilized to the site on January 5, 2009. A total of 15 MIP soil probes were installed between January 5, 2009 and January 8, 2009 to depths ranging from 18 ft below ground surface (bgs) to 63 ft bgs, but in some areas extending deeper into the subsurface to track the plume. The MIP was advanced to collect remote sensing data indicating the possible presence of chlorinated solvents in the soils or groundwater based on the response of the electron capture detector. The boring was continued until either, the response reduced to baseline conditions or to refusal of the probe. A summary log and graphs of individual probe point data is included in the attached summary report (Appendix B).

A solid model of the MIP results is shown on Figure 2-2. Elevated MIP readings were found at MIP-2, MIP-3, and MIP-6. The plume is located approximately 15 ft bgs to 40 ft bgs. This information was used to select the vertical location of groundwater and soil samples collected using direct push sampling in March 2009.

2.2 Direct Push Soil Sampling and Groundwater Sampling March 2009

Prior to the March 2009 field work, AECOM utilized the services of AGS for geophysical survey and utility clearance for the 14 direct push boring locations. AGS utilized a combination of GPR and EM geophysical methods to locate buried utility lines and structures at the proposed boring locations. Several underground utility markings (possibly gas or sewer lines) were identified at some of the proposed boring locations and the borings were relocated to maintain a minimum of 3-ft clearance from the utilities. The final locations of these boring were marked out with spray paint.

Aztech Technologies Incorporated (Aztech) mobilized to the site on March 16, 2009 to conduct the direct push drilling, Hydropunch groundwater collection, and soil sampling. Direct push borings were advanced at 14 locations shown on Figure 2-3. Continuous macrocore samples

were collected from borings HP-11 and HP-13 for soil classification. The soil samples were screened for VOCs using a portable photoionization detector (PID). Boring logs are provided for all locations in Appendix C. The borings were advanced to approximately 55 ft bgs or refusal. At least three sample intervals were targeted for groundwater sampling at each boring: a shallow sample above the depth of the solvent plume (between 15 and 25 ft bgs), an intermediate sample within the solvent plume (between 30 and 40 ft bgs) and a deep sample below the solvent plume (between 50 and 55 ft bgs). Due to refusal from the presence of bedrock and poor recovery from the presence of clay at depths within the boring, not all targeted depths were sampled. The rig was moved within a 10-ft radius of the initial boring and the location was reattempted when refusal was encountered at relatively shallow depths (e.g., 23 ft bgs). The Hydropunch sample was moved up 5 ft and sampling attempted when poor recovery was encountered. At four sampling depths, HP-1 (55-56 ft bgs), HP-2 (55-56 ft bgs), HP-5 (40-41 ft bgs) and HP-7 (40-41 ft bgs), the Hydropunch samples contained high levels of solids and were analyzed as soil.

Twenty-seven (27) Hydropunch groundwater samples were collected from intervals ranging from 15 ft bgs to 55 ft bgs and two duplicate samples (HP-2-B-DUP and HP-14-A-DUP) were collected by AECOM. At least one groundwater sample was collected from each Hydropunch location shown in Figure 2-3 except for HP-5 where there was insufficient groundwater to collect a sample due to clogging of the screen. Table 2-1 provides a summary of the Hydropunch groundwater sampling depths.

Sampling was conducted on March 16, 2009 through March 19, 2009. The Hydropunch device was advanced to the targeted depth and retracted to expose the stainless steel screened interval. Groundwater was purged from the Hydropunch device with the goal of obtaining clear water prior to sampling. Groundwater samples from the four Hydropunch locations were collected using a pump fitted with Teflon-lined poly tubing. A water level indicator was used to measure the static water level.

Groundwater samples were collected from the two Corning supply wells (SW-1 and SW-2) located to the southeast and downgradient from the Crystal Cleaners site on March 19, 2009. The groundwater samples were collected directly into the sample containers (40 mL vials). The taps were flushed briefly to remove stagnant water. The sample containers were filled slowly to minimize volatilization. Samples were collected upstream of the volatiles treatment system.

Groundwater samples were collected in pre-preserved (HCl) bottles provided by the laboratory, cooled to 4°C after collection, and shipped to Chemtech, a NYSDOH Environmental Laboratory Approval Program (ELAP #11376) laboratory in Mountainside, New Jersey for VOC analysis (EPA Method SW846 8260).

Soil sample locations are shown on Figure 2-4. AECOM collected four direct push groundwater samples with low moisture content which were analyzed as soil samples from the following Hydropunch locations HP-1 (55-56 ft bgs), HP-2 (55-56 ft bgs), HP-5 (40-41 ft bgs) and HP-7 (40-41 ft bgs). A single soil sample was collected from each of the six locations (SS-1 through SS-6). The sample was collected at 20 ft bgs at SS-1; 15 ft bgs at SS-2, SS-3, SS-5, and SS-6; and at 10 ft bgs at SS-4. These soil samples were collected to determine whether there is a source

on the Crystal Cleaners site. Locations SS-1, SS-3 and SS-6 showed the highest responses during the MIP investigation. Locations SS-1, SS-5 and SS-6 where collected in the vicinity of the kerosene tank and trenches along that side of the building to determine whether these site features are a source of contamination. SS-2 was collected to determine the horizontal extent of contamination. SS-4 was collected to determine background levels.

The soil samples were collected in unpreserved jars provided by the laboratory. The samples were kept cooled at 4°C and sent to AECOM's subcontract laboratory (Chemtech; Mountainside, NJ). Samples were analyzed for VOCs (EPA Method SW846 8260), SVOCs (EPA Method SW846 8270), pesticides (EPA Method SW846 8081), PCBs (EPA Method SW846 8082) and metals (EPA Method SW846 6010, 7470/7471).

YEC, Inc. (YEC) conducted a land survey of the Hydropunch (HP) locations on December 14, 2009. The coordinates are provided in Appendix D.

2.3 Soil Sampling June 2009

Soil samples were collected from within the Crystal Cleaners facility on June 22, 2009 at the direction of NYSDEC. AECOM, Aztech, and NYSDEC were present. Aztech drilled through the concrete slab. Sample locations are shown on Figure 2-5. Samples were collected with a hand auger at a depth of 4-5 ft bgs. A tank-like structure was previously identified during the utility clearance activities outside of the building in the rear of the property. During the sampling inside, this was found to be the ceiling over stairs (a vault), not a tank. A PID reading was collected from the boring at each sampling location.

The soil samples were collected in unpreserved jars provided by the laboratory. The samples were kept cooled at 4°C and sent to AECOM's subcontract laboratory (Chemtech; Mountainside, NJ). Samples were analyzed for VOCs (EPA Method SW846 8260).

2.4 Direct Push Soil Classification August 2009

AECOM, Aztech, and NYSDEC mobilized to the site on August 13, 2009 to identify the depth of the clay later at up to five locations. The boring locations are shown on Figure 2-6. Soil samples were collected in macrocores using a direct push rig. The Unified Soil Classification System (USCS) was used to describe the soil. Boring logs are provided in Appendix C. Clay was encountered at 27 ft bgs at boring GEO-1. Refusal was hit at 47 ft bgs within the clay layer. A gravel/clay mixture was identified at 20 ft bgs at GEO-2 with predominantly clay at 22 ft bgs. Glacial till found was found at GEO-2 from 22 ft bgs to 30 ft bgs. Refusal was hit at 30 ft bgs within the clay layer. There was poor recovery from boring GEO-3. Extreme resistance was encountered from 20 ft bgs to 30 ft bgs indicating the presence of clay.

2.5 Well Installation and Groundwater Sampling

2.5.1 Rationale for Monitoring Well Locations

Six monitoring well locations were installed by AECOM as shown on Figure 2-7. MW-2 is located near the Crystal Cleaners site in the right-of-way. The 20-30 ft bgs screening interval corresponds to the depth where the highest contaminant concentration (HP-1) measured during groundwater sampling in March 2009 was observed. MW-1 is located upgradient from the Crystal Cleaners site, and is screened at the same interval as MW-2. Wells MW-3 and MW-5 are located downgradient of the site along the interpreted groundwater flow direction according to MACTEC (2007). The screened intervals are deeper than MW-2 for MW-3 (25-35 ft bgs) and MW-5 (45-55) assuming the plume will sink as it moves downgradient. The screened interval at MW-5 overlaps the shallow end of the screening interval for the nearby Corning supply wells (SW-1 - 50-70 ft bgs and SW-2 43-63 ft bgs). MW-4 and MW-6 are located downgradient and to the southeast of the Crystal Cleaners site. The screened intervals for MW-4 (25-35 ft bgs) and MW-6 (45-55 ft bgs) correspond to the intervals for MW-3 and MW-5, respectively. Monitoring well information is summarized on Table 2-2.

2.5.2 Monitoring Well Installation

AECOM and the drilling subcontractor (Land, Air Water Environmental Services, Inc. [LAWES]) installed the six permanent monitoring wells on October 26, 2009 through October 29, 2009 at the direction of NYSDEC. AGS conducted a geophysical survey and utility clearance at each boring location on October 26, 2009. The borings were advanced using 4.25 inch hollow stem augers (HSAs). The HSAs were advanced to the target depth for well installation. No split spoon samples were collected. The monitoring wells were installed as single-cased monitoring wells. The monitoring wells were constructed of 2-inch schedule 80 PVC pipe with a 5-ft 0.010 slot screen. The filter pack material (No. 1 sand) was placed a minimum of 2 ft above the top of the screen using a tremie pipe. A bentonite seal (bentonite chips) was placed in the annular space to a minimum depth of 2 ft above the sand pack. The remaining borehole was grouted using cement-bentonite grout. A flush-mounted protective casing was installed and the wellhead for each riser was labeled distinctly and fitted with a sealing cap. Soil cuttings were collected in 55-gallon drums.

After the grout was allowed to set for at least eight hours, each new monitoring well was developed to achieve a hydraulic connection between the formation and the well screen. The wells were developed using a surge and pump method. A Waterra pump with poly tubing was used for development at each well. The well was purged until the water ran clear. No parameters were measured during development. The purge water did not have any visible contamination and was collected in 55-gallon drums.

YEC conducted a land survey of the permanent monitoring wells on December 14, 2009. The coordinates are provided in Appendix D.

2.5.3 Groundwater Sampling

Groundwater sampling activities were conducted on December 3 and December 4, 2009 by AECOM and YEC. Prior to sample collection, AECOM measured the groundwater elevation at the six wells. The groundwater samples were collected using the low-flow sampling method. Water quality parameters (pH, dissolved oxygen [DO], specific conductivity, temperature, and turbidity) were measured using a flow-through cell. A water level indicator was used to measure depth during sampling. The wells were purged at a rate of approximately 300 mL/min. A QED MP10 controller was used with the QED Sample Pro bladder pump. Water samples were collected after stabilization of the water quality parameters. Purging was considered complete when the indicator parameters stabilized over three consecutive readings. Stabilization parameters are:

- pH: ± 0.1
- conductivity: $\pm 3\%$
- DO: $\pm 10 \text{ mV}$
- ORP: ±10% and
- Turbidity: less than 50 NTU.

During sample collection, the flow through cell was disconnected and the sample tubing discharge was transferred directly into the laboratory-supplied sample containers. The dedicated Teflon lined tubing was placed back into the well after sampling for future use. The non-dedicated sampling equipment was decontaminated prior to collecting each sample. Groundwater sampling logs are provided in Appendix C.

2.5.4 Analysis of Groundwater Samples

Water samples were collected in pre-preserved bottles provided by the laboratory, cooled to 4°C after collection, and shipped to the subcontract laboratory (Chemtech; Mountainside, NJ) for analysis. Groundwater samples from the six monitoring wells were analyzed for VOCs (EPA SW846 Method 8260), metals (whole water and field filtered; EPA Method 200.7), ferrous iron (HACH 8146), biochemical oxygen demand (BOD; Standard Methods [SM] 5210B), chemical oxygen demand (COD; SM 5220), alkalinity (SM 2320B), ammonia (SM 4500-NH3), nitrate, chloride, and sulfate (EPA 300.0), phosphorous (EPA 365.3), sulfide (EPA 9034), total organic carbon (SM 5310B), and methane, ethane, and ethene (PM01C/AM20GAx)..

2.6 Soil Vapor Intrusion Sampling 2009

The goal of the soil vapor intrusion sampling was to determine whether actions were needed to address exposures to site-related contaminants, which may move from contaminated groundwater into the indoor air of an overlying structure through a process referred to as soil vapor intrusion. The results obtained from this soil vapor intrusion study were used to identify the structures within the area that required no further action, reduction of exposure, continued monitoring, or mitigation.

2.6.1 Pre-Sampling Building Survey

Pre-sampling building surveys were performed on February 24 and 25, 2009, March 3, 2009, and March 24, 25, and 26, 2009, in accordance with the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York (SVI Guidance) (NYSDOH, 2006). A total of 14 residential and three commercial properties were surveyed during these events. The focus of the pre-sampling building survey was to select sampling locations, identify chemical usage, and to identify and minimize conditions that may interfere with the proposed testing. The survey evaluated the type of structure, floor layout, air flows and physical conditions. Based on the findings of this survey, AECOM selected the sampling locations. Information obtained during the pre-sampling building survey, including information on sources of potential indoor air contamination, was documented on the NYSDOH Indoor Air Quality Questionnaire and Building Inventory Form for each structure.

A product inventory was also conducted during the pre-sampling building survey to identify chemicals and products that may bias sampling results. In addition, the presence and description of odors and portable vapor monitoring equipment readings (e.g., photoionization detector [PID]) were recorded. In addition to readings within the buildings, PID readings were taken outdoors to establish typical, background, or ambient values. Background (outdoor) readings were typically about 0.0 ppm but ranged as high as 5.0 ppm (e.g., shortly after a truck passed the location where the reading was taken).

Residents were provided with a list of activities to avoid 24 hours prior to and during sampling. The list is provided in Appendix C.

2.6.2 Sampling Locations

Based on the observations made during the pre-sampling building survey, AECOM identified locations for the collection of the sub-slab vapor, indoor air, and outdoor air samples. Indoor air sampling locations were selected primarily in areas routinely occupied by the residents and/or employees, while sub-slab vapor sampling locations were selected to provide coverage of the presumed lateral extent of the soil vapor plume. Sub-slab vapor sampling locations were also selected based on the condition of the basement floor and presence of crawl spaces. Basement indoor air samples were collected for properties that had unfinished basements, sump, and drains with exposed soil. A summary of air samples collected in each structure is provided in Table 2-3.

The majority of the structures were sampled March 3, 2009 to March 4, 2009 (H01 to H05, H08 to H14 and H16). Structures H06, H07, H15, and H17 were sampled March 26, 2009 to March 27, 2009 because access was not available earlier in March 2009. At the direction of NYSDEC and NYSDOH, AECOM collected basement indoor air samples March 26 and 27, 2009 from Structures H09 and H10. Structures H01, H02, H03, H04, and H05 were resampled in February 2010 at the request of NYSDEC/NYSDOH to collect sub-slab vapor samples. A sub-slab vapor sample was not collected initially from structures H02 and H05 due to the presence of a drain and exposed soil.

2.6.3 Sub-Slab Vapor Sample Collection

AECOM personnel installed the temporary probes. A powered drill was utilized to make a 1inch diameter hole through concrete slab. The drill bit was advanced approximately 6 inches into the sub-slab material at each location to create an open cavity. A teflon-lined polyethylene tube was then inserted into the hole. The annulus around the tube was sealed with a non-volatile putty to the top of the cement slab.

After installation of the probe, the tubing was connected to a SKC pump, and up to one liter (approximately three times the volume of air in the tubing and probe) of sub-slab vapor was purged at a rate less than 200 mL/min]). Once purging was completed, the sampling tube was connected to a 6-liter, stainless steel, certified clean Summa canister equipped with a pre-set regulator designed to sample for a 24-hour period. A log was completed for each sampling location (Appendix C). The log included sample identification, sampling media identification, date and time of sample collection, identity of sampling technicians, sampling methods and devices, and vacuum of canisters before and after samples were collected. After setup was complete, samples were drawn concurrently with indoor and outdoor air samples at each property. At the completion of the sampling, all holes were patched to restore the pre-sampling condition.

2.6.4 Indoor Air Sample Collection

For the indoor air sampling program, indoor air samples were collected by placing the Summa canister in the breathing zone (4 to 6 ft above the ground). The flow regulator was connected to a 6-liter, stainless steel, certified clean Summa canister equipped with a pre-set regulator designed to sample for 24 hours. A log was completed for each sampling location; the logs are included in Appendix C.

2.6.5 Outdoor Air Sample Collection

For the outdoor air sampling program, the locations of the samples were selected such that they were removed from outdoor operations that are known to generate VOCs (e.g., loading dock, parking lot). Indoor air samples were collected by placing the Summa canister in the breathing zone (4 to 6 ft above ground). The flow regulator was connected to a 6-liter, stainless steel, certified clean Summa canister equipped with a pre-set regulator designed to sample for a 24-hour period. A log was completed for the outdoor air sampling location; the logs are included in Appendix C.

2.6.6 Analytical Methodology

The Summa canisters were retrieved at the completion of the 24-hour sample time. Test America Laboratories of South Burlington, Vermont, an NYSDOH ELAP certified laboratory, analyzed the samples for VOCs using EPA Method TO-15. The quantitation limit was less than 1 μ g/m³ for all compounds in all media (sub-slab vapor, indoor air and outdoor air samples) in undiluted samples (i.e., samples with a dilution factor [DF] of 1.0); the quantitation limit for TCE was less than 0.25 μ g/m³ (typically 0.12 μ g/m³) to meet the evaluation criteria in the Soil

Vapor/Indoor Air Matrix 1 (NYSDOH, 2006). The Summa canisters were certified clean (batch certification) by the laboratory. The laboratory report and methodology comply with the NYSDEC/NYSDOH requirements.

Site-specific quality control (QC) included submission of three trip blanks (labeled Trip Blank, each associated with the shipment of a single sample type) and field duplicates (co-located samples). In addition, the laboratory performed batch QC as required by the method. Third party data review was performed and documented in a Data Usability Summary Report (Appendix E, see discussion of results in Section 4).

2.7 Soil Vapor Intrusion 2010

Structures H01 through H05 were resampled from February 13, 2010 to February 14, 2010 at NYSDEC's direction. The number of each type of indoor air sample is listed on Table 2-3 by structure. The sampling method and analytical methodology for 2010 are the same as described in Section 2.6. The samples were collected from the same locations as 2009. Sub-slab vapor samples were collected in structures H02 through H05 in 2010, but not in 2009. The sub-slab vapor samples were located away from the foundation walls and cracks in the slab to the extent possible. Sample logs were completed for the air samples and are included in Appendix C. Information obtained during the pre-sampling building survey, including information on sources of potential indoor air contamination, was documented on the NYSDOH Indoor Air Quality Questionnaire and Building Inventory Form for each structure.

2.8 Utility Clearance

The driller contacted DIGSAFE and a geophysical survey was conducted prior to the start of drilling for the MIP investigation, direct push groundwater sampling and soil collection, and permanent monitoring well installation. AGS conducted a geophysical survey and utility clearance at each boring location.

2.9 Decontamination

All sampling tools were decontaminated with a laboratory grade detergent (e.g., Alconox) and a hot water pressure washer between probe holes. All poly tubing and acetate liners were discarded after use. Decontamination water was disposed on site. Wash buckets and potable water were available on site for personnel decontamination.

2.10 IDW Disposal

Investigation derived wastes generated from installation and sampling of the permanent monitoring wells were temporarily stored at the Crystal Cleaners site in 55 gallon drums. AECOM collected composite samples from the drums on October 29, 2009 for VOCs, PCBs and RCRA metals analysis. The data are provided in Appendix D. Environmental Waste Minimization, Inc. (EWMI) labeled and transferred the drums to a disposal facility as nonhazardous waste on December 4, 2009.

2.11 Probe Hole Closure

All probe holes were backfilled with bentonite, indigenous soil and/or clean sand.

3 LABORATORY ANALYTICAL RESULTS

This section summarizes the laboratory analytical results and provides a comparison to the applicable NYS environmental criteria or guideline values.

3.1 Groundwater Sample Data March 2009

Groundwater samples were collected from 13 direct push borings and the two supply wells located southeast of the Crystal Cleaners site for VOCs analysis utilizing US EPA SW-846 Method 8260. The groundwater data are compared to the NY Class GA Groundwater Criteria and presented in Table 3-1. The analytical results for compounds with one or more exceedances of the NYS Class GA Groundwater criteria are summarized in Figure 3-1. Only PCE and incomplete dechlorination compounds TCE, cis-1,2-dichloroethene (DCE), and vinyl chloride are at levels exceeding the NYS Class GA Groundwater Criteria. PCE concentrations exceeded the NYS Class GA criterion of 5 μ g/L at the two sampling locations near the Crystal Cleaners site:

- HP-1 at 16 ft bgs $75 \,\mu g/L$
- HP-1 at 25 ft bgs $210 \mu g/L$
- HP-3 at 31 ft bgs $430 \,\mu g/L$
- HP-3 at 40 ft bgs $84 \,\mu g/L$

PCE concentrations exceeded the NYS Class GA criterion of 5 μ g/L at boring HP-2 (9.8 μ g/L and 14 μ g/L in the duplicate sample) located southwest of the Crystal Cleaners site.

PCE and incomplete reductive dechlorination compounds (TCE, DCE and vinyl chloride) exceeded NYS Class GA Groundwater criteria at borings HP-6, HP-7, HP-8, HP-9 and HP-11 which are located directly southeast of the Crystal Cleaners. PCE levels exceeded the criterion of 5 μ g/L at HP-6, HP-7, HP-8, and HP-9 with concentrations up to 91 μ g/L. TCE levels exceeded the criterion of 5 μ g/L at HP-6 with concentrations up to 34 μ g/L. DCE levels exceeded the criterion of 5 μ g/L at HP-6 and HP-8 with concentrations up to 120 μ g/L. Vinyl chloride levels exceeded the criterion of 2 μ g/L at HP-6 (30 ft bgs) with a concentration of 4.5 μ g/L.

There are no exceedances of the NYS Class GA Groundwater criteria at HP-4 and HP-10 located to the southwest and directly south of the Crystal Cleaners site, respectively; or at borings HP-12, HP-13, and HP-14, and supply well SW-1 located southeast of the site. The sample collected from SW-2 southeast of the site, which is the sampling location farthest from the site, exceeds the NYS Class GA Groundwater criterion of 5 μ g/L for PCE at 15 μ g/L.

3.2 Soil Sampling March 2009

Nine soil samples (plus a field duplicate) were collected from four of the Hydropunch boring locations and six additional direct push boring locations. The samples were submitted for laboratory analysis of VOCs, SVOCs, pesticides, PCBs, and metals. The soil analytical results are compared to the NYS Part 375 Unrestricted Use Soil Cleanup Objective (SCO) (6 NYCRR Part 375-6.8(a)) and presented in Table 3-2 through Table 3-6.

VOC detections are summarized in Figure 3-2. Petroleum related compounds exceeded NYS Part 375 Unrestricted Use SCOs in sample SS-1 (20-21 ft bgs):

- Xylene exceeded the NYS Part 375 Unrestricted Use SCO for xylene (mixed) of 260 μg/kg at 165,000 μg/kg;
- Ethylbenzene exceeded the NYS Part 375 Unrestricted Use SCO of 1,000 μ g/kg at 25,000 μ g/kg; and
- Toluene exceeded the NYS Part 375 Unrestricted Use SCO of 700 μ g/kg at 1,500 μ g/kg.

Toluene was detected at SS-6 located on the Crystal Cleaners site near SS-1. These concentrations may result from the previous use of the site as a gasoline service station.

PCE was detected at low levels (1.5 μ g/kg to 860 μ g/kg) in all samples except HP-2 (55-56 ft bgs) which was nondetect. Acetone was detected in all soil samples except SS-1 and SS-3 at levels ranging from 14 μ g/kg to 190 μ g/kg. Four samples (HP-1-C [55-56 ft bgs], HP-2-C [55-56 ft bgs], and HP-5-A [40-41 ft bgs], and HP-7-C [40-41 ft bgs]) had acetone concentrations exceeding the NYS Part 375 Unrestricted Use SCO of 50 μ g/kg.

No SVOC detections exceed the NYS Part 375 Unrestricted Residential Use SCO. No pesticides or PCBs were detected in the soil samples. One detection of lead exceeded the NYS Part 375 Unrestricted Use SCO of 63 mg/kg at 74.2 mg/kg (SS-2).

3.3 Soil Sampling June 2009

Soil samples (plus a field duplicate) were collected from five locations at 4 to 5 ft bgs at the Crystal Cleaners facility. The samples were submitted for VOC analysis. The soil analytical results are compared to the NYS Part 375 Unrestricted Use SCOs and presented in Table 3-7. VOC detections are summarized in Figure 3-3. One detection of acetone exceeded the NYS Part 375 Unrestricted Use SCO of $50 \mu g / kg$ at $98 \mu g / kg$ in SOIL-1 (4-5 ft bgs). PCE was detected at low levels ($10 \mu g / kg$ to $330 \mu g / kg$) in all samples. Styrene was detected at one location (SOIL-2, $16 \mu g / kg$). No other VOCs were detected.

3.4 Well Installation and Groundwater Sampling December 2009

Groundwater samples were collected from six permanent well locations for analysis of VOCs, metals and wet chemistry. The groundwater data are compared to the NY Class GA Groundwater

Criteria and presented in Table 3-8 through Table 3-10. The analytical results for PCE and dechlorination compounds are summarized in Figure 3-4.

- PCE levels exceeded the NYS Class GA Groundwater criterion of 5 µg/L at MW-2 (340 µg/L) adjacent to the Crystal Cleaners site and MW-3 (34 µg/L [32 µg/L for the sample duplicate]) south of Crystal Cleaners. PCE was not detected in the other monitoring well samples.
- TCE concentrations exceeded the NYS Class Groundwater GA criterion of 5 μ g /L at the MW-2 (6.2 μ g/L). TCE was detected below the NYS Class GA criterion at MW-3 (0.83 μ g/L) and MW-6 (0.57 μ g/L).
- cis-1,2-DCE was detected below the NYS Class Groundwater GA criterion of 5 μ g/L at MW-2 (2.3 μ g/L) and MW-3 (1.7 μ g/L).
- Vinyl chloride was detected below the NYS Class Groundwater GA criterion of 2 μ g/L at MW-2 (1.6 μ g/L).

Metals analyses were conducted on filtered and unfiltered samples from each of the six wells (Table 3-9). Three metals have levels exceeding the NYS Class GA Groundwater criteria:

- Iron levels exceed the NYS Class GA Groundwater criterion of 300 μ g/L in the MW-3 unfiltered sample (6,560 μ g/L [7,053 μ g/L sample duplicate]) and filtered sample (2,260 μ g/L); MW-5 unfiltered sample (6,550 μ g/L) and filtered sample (418 μ g/L); and MW-6 unfiltered sample (11,800 μ g/L). Iron was detected below the NYS Class GA Groundwater criterion in samples from MW-1 and MW-2 (67.9 μ g/L [filtered MW-2] to 153 μ g/L [unfiltered MW-1]). Iron was not detected in samples from MW-4 and the filtered sample from MW-6.
- Manganese levels exceed the NYS Class GA Groundwater criterion of 300 μg/L in the MW-3 unfiltered sample (532 μg/L [567 μg/L sample duplicate]); MW-5 unfiltered sample (697 μg/L) and filtered sample (554 μg/L); and MW-6 unfiltered sample (859 μg/L) and filtered sample (521 μg/L). Manganese was detected below the NYS Class GA Groundwater criterion in the remaining samples (6.33 μg/L [filtered MW-1] to 290 μg/L [filtered MW-3]).
- Sodium levels exceed the NYS Class GA Groundwater criterion of 20,000 µg/L in all samples at concentrations ranging from 40,000 µg/L (filtered MW-1) to 227,050 µg/L (unfiltered MW-3 sample duplicate).

Of the wet chemistry parameters (Table 3-10), sulfide exceeds the NYSDEC Class GA Groundwater criterion of 0.05 mg/L with all samples having a concentration of 2.4 mg/L; and alkalinity exceeds the NYSDEC Class GA Groundwater criterion of 250 mg/L for MW-6 (280 mg/L).

3.5 Air Sampling 2009

A total of 46 air samples and three duplicate samples were collected from 17 structures in 2009. The air samples include sub-slab vapor samples, indoor air samples, and outdoor air samples. All air samples were analyzed for VOCs by USEPA method TO-15. The analytical results are presented in Table 3-11 through Table 3-13. Detected VOCs included chlorinated aliphatics (e.g., 1,2-dichloroethane and PCE), and petroleum-related compounds (e.g., m/p-xylene).

- PCE was detected in seven structures. Detections ranged from 0.39 μ g/m³ to 60 μ g/m³. PCE was detected in four of the six sub-slab vapor samples.
- TCE was detected in two structures (H04 first floor 7 μg/m³ and basement 4.6 μg/m³; and H16 first floor 0.54 μg/m³). TCE was detected in two of the six sub-slab vapor samples (H01 1.3 μg/m³ and H10 0.91 μg/m³).
- Carbon tetrachloride was detected in all structures with detections ranging from 0.28 μ g/m³ to 0.82 μ g/m³. Carbon tetrachloride was not detected in any of the sub-slab vapor samples.
- 1,1,1-Trichloroethane was detected in three structures. Detections ranged from 0.31 μ g/m³ to 3.6 μ g/m³. 1,1,1-Trichloroethane was not detected in any of the sub-slab vapor samples.

The concentrations of TCE and PCE in the sub-slab vapor and indoor air samples with the applicable matrix from NYSDOH (2006) are listed in Table 3-14.

3.6 Air Sampling 2010

A total of 14 air samples and one duplicate sample were collected from five structures (H01 through H05) in 2010. The air samples include sub-slab vapor samples, indoor air samples, and outdoor air samples. All air samples were analyzed for VOCs by USEPA method TO-15. The analytical results are presented in Table 3-15 through Table 3-17. Detected VOCs included chlorinated aliphatics (e.g., 1,2-dichloroethane and PCE), and petroleum-related compounds (e.g., m/p-xylene).

- PCE was detected in seven of the eight indoor air samples. Detections ranged from 0.31 μ g/m³ to 6.2 μ g/m³. PCE was detected in all sub-slab vapor samples at 4.7 μ g/m³ to 1,100 μ g/m³.
- TCE was detected in H04 (first floor 0.91 μ g/m³ and basement 0.46 μ g/m³). TCE was detected in three of the sub-slab vapor samples.
- Carbon tetrachloride was detected in all structures. Carbon tetrachloride was not detected in the sub-slab vapor samples.

PCE was not detected in the outdoor air samples.

The concentrations of TCE and PCE in the sub-slab vapor and indoor air samples with the applicable matrix from NYSDOH (2006) are listed in Table 3-18.

4 ANALYTICAL DATA AND USABILITY

All the groundwater, soil, and air data generated for this RI/FS were validated by an independent subcontractor, Environmental Data Services, Inc. (EDS) of Williamsburg, VA. The laboratory data packages and the data usability summary reports (DUSRs) are provided in Appendix E on CD. The tabulated data used in this report include any qualifiers applied during validation.

Data were generated and validated for five events:

- Direct Push Soil Sampling and Groundwater Sampling March 2009
- Soil Sampling June 2009
- Groundwater Sampling December 2009
- Indoor Air Sampling 2009
- Indoor Air Sampling 2010

A summary of the data quality review of each event is provided below.

4.1 Direct Push Soil Sampling and Groundwater Sampling March 2009

Groundwater data from samples collected in March 2009 were reported by Chemtech as three sample delivery groups (SDGs), A1935, A1938 and A1898, with one DUSR for each SDG. A total of 60 analyses were validated, included three trip blanks, three field blanks, three MS/MSD pairs, three field duplicates, 39 environmental samples, four dilutions and two reanalyses. Ten of the samples were soil samples. Data quality was generally acceptable.

A1938: The SDG consists of six water samples analyzed for VOCs only. There were no rejections of data. Overall, the data are acceptable for the intended purposes. Data were not qualified.

A1935: The SDG consists of two soil samples and 17 water samples analyzed for VOCs only. There were no rejections of the data. Overall, the data are acceptable for the intended purposes. Several compounds were qualified as estimated in several samples due to high continuing calibration percent difference (%D) values. The PCE result for sample HP-6-B was qualified due to a high concentration. The sample was diluted and reanalyzed. The dilution result for PCE should be used for reporting.

A1898: The SDG consists of seven soil samples and 16 water samples analyzed for VOCs, SVOCs, pesticides, PCBs, and TAL metals. There were no rejections of the data. Overall the data are acceptable for the intended purposes. Data were qualified for the following deficiencies:

- All positive VOC results were qualified as estimated in one sample due to a high surrogate recovery.
- Four VOC compounds were qualified as estimated in one sample due to low MS/MSD recoveries (acetone, 4-methyl-2-pentanone, trans-1,3-dichloropropene, and 2-hexanone).

- Two VOC compounds were qualified as estimated in one reanalysis due to low laboratory control sample (LCS) recoveries (HP-1-CRE bromomethane and 1,2-dichlorobenzene).
- Several compounds were qualified as estimated in six samples, two dilution analyses, and two reanalyses due to high continuing calibration %D values.
- Several VOC compounds were qualified as estimated in two samples due to low internal standard recoveries.
- One SVOC compound was qualified as estimated in eight samples due to low LCS recoveries.
- One or two SVOC compounds were qualified as estimated in eight samples due to high continuing calibration %D values.
- One metal (zinc) was qualified as estimated in all soil samples due to low MS/MSD recoveries.

4.2 Soil Sampling June 2009

Soil data from samples collected in June 2009 were reported by Chemtech in one SDG, A3266. A total of 10 analyses were validated, including one trip blank, one field blank, one MS/MSD pair, one field duplicate, and five environmental samples. Data quality was generally acceptable.

A3266: There were minor rejections of the data. Acetone was rejected in five samples due to a low initial calibration relative response factor (RRF) value. Overall, the remaining data are acceptable for the intended purposes as qualified for the following deficiencies:

- Acetone was qualified as estimated in one sample due to a low initial calibration RRF value.
- PCE was qualified as estimated in the MS/MSD sample due to a high MSD recovery.

4.3 Groundwater Sampling December 2009

Groundwater data from samples collected in December 2009 from the permanent monitoring wells were reported by Chemtech as two SDGs, A5389 and A5424, with one DUSR for each SDG. Analyses were reported for VOCs, metals, and wet chemistry parameters. Data validation was conducted on 12 analyses, consisting of six environmental samples, one field duplicate, one dilution, one field blank and one trip blank.. Data quality was generally acceptable.

A5389: There were no rejections of the data. Overall the data are acceptable for the intended purposes. Data were qualified for the following deficiencies:

- Data for two VOC compounds (PCE and bromoform) were qualified as estimated in two samples due to high continuing calibration %D values.
- Lead was qualified as not detected in all samples due to method blank contamination.
- Iron was qualified as estimated in all samples due to low MS/MSD recoveries.
- Three wet chemistry parameters (nitrate, nitrate+nitrite, and sulfide) were qualified as estimated in three samples due to missed holding times.

• Total organic carbon (TOC) data were qualified as estimated in all samples due to a high MS/MSD relative percent difference (RPD) values.

A5424: There were no rejections of the data. Overall the data are acceptable for the intended purposes. Data were qualified for the following deficiencies:

- Two compounds (PCE and bromoform) were qualified as estimated in two samples due to high continuing calibration %D values.
- Two metals compounds (aluminum and iron) were qualified as not detected in several samples due to method blank contamination.
- Zinc was qualified as not detected in five samples due to field blank contamination.
- Three wet chemistry compounds (nitrate, nitrate+nitrite, and sulfide) were qualified as estimated in three samples due to missed holding times.

4.4 Indoor Air Sampling 2009

Indoor air data from samples collected in 2009 were reported by TestAmerica as three sample delivery groups (SDGs), NY130550, NY130506 and NY130944, with one DUSR for each SDG. A total of 52 analyses were validated, included two trip blanks, three field duplicates, 46 environmental samples, and one dilution. Data quality was generally acceptable.

NY130550: The SDG consists of 16 air samples. There were no rejections of the data. Overall the data are acceptable for the intended purposes. There were no qualifications of the data.

NY130506: The SDG consists of 21 air samples. There were no rejections of the data. Overall the data are acceptable for the intended purposes. Data were qualified for the following deficiencies:

- One or two compounds were qualified as estimated in 17 samples due to high and low LCS recoveries.
- One compound was qualified as non-detect in 15 samples due to method blank contamination.

NY130944: The SDG consists of 15 air samples (including one dilution analysis). There were no rejections of the data. Overall the data are acceptable for the intended purposes. There were no qualifications of the data.

4.5 Indoor Air Sampling 2010

Indoor air data from samples collected in February 2010 were reported by TestAmerica in SDG NY136001. A total of 17 analyses were validated, including 14 environmental samples, one field duplicate, and two dilutions. Data quality was generally acceptable.

NY136001: There were no rejections of data. Precision for the field duplicate pair (H02-SS-20100213 and its duplicate H52-SS-20100213) was good (RPDs for the 12 detected compounds

ranted from 0 to 7 percent). Overall, the data are acceptable for the intended purposes. Data were qualified for the following deficiencies:

- 4-Ethyltoluene was qualified as estimated in one sample due to a high LCS recovery.
- 1,2-Dichlorotetrafluoroethane was qualified as estimated in five samples due to a high continuing calibration %D.

5 GEOLOGY/HYDROGEOLOGY

5.1 Regional Geology

The Corning aquifer is a valley-fill glacial aquifer. The extent of the aquifer is shown on Figure 5-1. The aquifer has an area of approximately 28 square miles located in 0.5 mile to 1 mile wide valleys. The aquifer overlies four deeply incised bedrock valleys located at the intersection of the Chemung River, Canisteo, Tioga, and Cohocton Rivers.

Two geologic sections are shown in Figure 5-2. The bedrock valleys are partially filled with sand and gravel intermixed with fine grained glacial-lake deposits. Outwash and alluvial sand and gravel cover the valley floors as a result of redeposition by the streams. Features of the land surface include terraces, eskers, and alluvial fans. The following layers are present:

- The bedrock is flat-lying shale, limestone, siltstone, and sandstone. The valleys were formed by preglacial drainage which was enhanced by glacial scour.
- Glacial till deposits overlay the valley walls. Some of the till was eroded and formed alluvial fans.
- Ice-contact and outwash deposits consisting of alluvial sand.
- Glacial lake deposits consisting of clay, silt and fine sand.

5.2 Site Geology

Soil borings were advanced in the vicinity of the Crystal Cleaners site. Three borings were advanced for the purpose of characterizing soils in the area using a direct push rig (Figure 2-6). The soil is generally coarser material (gravel and sand) overlying a thick clay later at a varying elevation. A summary of the soil observations is as follows:

- GEO-1: The soil consisted of gravel with trace amounts of fine sand and silt to 27 ft bgs; light gray clay was observed from 27 ft bgs to 46.5 ft bgs (908 ft amsl to 888.5 ft bgs). The rig could not advance beyond 46.5 ft bgs.
- GEO-2: The soil consisted of gravel with trace amounts of medium to fine sand to approximately 20 ft bgs; light gray clay with some gravel and trace amounts of silt was observed from 20 ft bgs to 30 ft bgs (921 ft amsl to 902 ft bgs). The rig could not advance beyond 30 ft bgs. The clay layer appears to be glacial till.
- GEO-3: The soil consisted of gravel with trace amounts of medium and silt to approximately 10 ft bgs, followed by a layer of medium sand with trace amounts of coarse and fine sand to approximately 20 ft bgs; light gray clay was observed from 20 ft

bgs to 30 ft bgs (913 ft amsl to 903 ft bgs). The boring was not advanced further because the rig required repair.

These findings are consistent with the soil characterization from previous investigations and USGS (1995) for the Corning aquifer.

5.3 Regional Hydrogeology

The saturated thickness of the aquifer typically ranges between 20 ft and 60 ft. In the vicinity of the site, the saturated zone is 60 ft or thicker. The groundwater surface is typically at the level of the stream traversing the area. Groundwater is found near ground level in some locations. Aquifer recharge consists of precipitation and inflow from the adjacent bedrock and by downvalley movement of water through the aquifer, stream leakage.

Groundwater flow for the aquifer is shown on Figure 5-3. The direction of groundwater flow is generally downvalley toward the principal streams. Groundwater provides base flow to the streams. In areas with losing tributary streams, groundwater flow is away from the tributary into the aquifer. Near the Crystal Cleaners site, groundwater flow is toward the southeast.

Production for wells ranges from 50 to about 1,000 gallons per minute (gpm). The two public wells (SW-1 and SW-2) near the site produce 700 gpm. Yield in the vicinity of the site is expected to be high (greater than 1,000 gpm corresponding to the thick saturated layer in this portion of the aquifer (60 ft or greater). According to USGS (1995), production from the Corning aquifer was approximately 16 million gallons per day (mgd) of which 7 mgd (44 percent) was produced by the public water supply for the city of Corning, 8.3 mgd (51 percent) was produced for industrial or power uses, and 0.8 mgd (5 percent) was produced by domestic or commercial wells.

5.4 Site Hydrogeology

Groundwater level measurements were recorded on December 2 and December 3, 2010 from the monitoring wells installed in October 2009; groundwater was encountered at 12 ft bgs to 20 ft bgs (920 ft amsl to 912 ft amsl). Groundwater elevation contours and monitoring well locations are shown on Figure 5-4. The groundwater elevation measurements were interpolated using inverse distance weighting. Groundwater flow is towards the southeast, consistent with those reported previously (USGS, 1995) and shown on Figure 5-3.

6 CONTAMINATION – NATURE AND EXTENT

6.1 Nature of Contamination

Historical data collected at the site and from nearby public wells since the 1980s have identified chlorinated VOCs as the contaminants in groundwater at the Crystal Cleaners site and immediate vicinity. Data collected during this RI are consistent with previous data with regard to the nature of contamination found. As shown on Tables 3-1 and 3-8, the VOCs detected at concentrations exceeding the NYS Class GA groundwater criteria are the chlorinated aliphatics PCE, TCE,

DCE, and vinyl chloride. Since dry cleaners typically use PCE-based solvents, PCE is considered a source contaminant. TCE and DCE are considered "daughter" compounds resulting from the degradation or dechlorination of PCE.

PCE was detected in 14 Hydropunch groundwater samples at concentrations above the NYS Class GA criterion at concentrations ranging from 9.8 μ g/L to 430 μ g/L. TCE was detected in three Hydropunch groundwater samples at concentrations above the NYS Class GA criterion at concentrations ranging from 5.7 μ g/L to 34 μ g/L. DCE was detected in five Hydropunch groundwater samples at concentrations above the NYS Class GA criterion at levels ranging from 5 μ g/L to 120 μ g/L. Vinyl chloride was detected in one Hydropunch groundwater sample at a concentration above the NYS Class GA criterion, 4.5 μ g/L.

PCE was detected in three of the six monitoring wells at concentrations ranging from 32 μ g/L to 340 μ g/L (see Table 3-8). TCE was detected in one well at 6.2 μ g/L (MW-2S). No other VOCs were detected in samples from the monitoring wells at concentrations exceeding the NYS Class GA groundwater criteria. The data from the 2010 groundwater sampling event and the 2008 Hydropunch sampling event are also consistent with data from previous investigations (see Section 1.2.2).

Iron, manganese, sodium, and sulfide concentrations (Tables 3-9 and 3-10) exceeded the NYS Class GA groundwater criteria in groundwater samples. The groundwater is a calcium magnesium bicarbonate type (USGS, 1995). Dissolved solids concentrations ranged from 146 to 282 mg/L with an average of 212 mg/L in five samples collected by USGS. Excessive iron and manganese concentrations contribute to the hardness of the water. Sulfide concentrations from samples collected from the six monitoring wells were constant at 2.4 mg/L in all samples. Iron sulfides are typical in shales where are present in the bedrock. Sodium concentrations in the five USGS groundwater samples ranged up to 30,000 μ g/L which exceeds the NYS Class GA criterion of 20,000 μ g/L. Sodium concentrations in samples from the Crystal Cleaners monitoring wells range from 40,000 μ g/L to 227,050 μ g/L. The sodium levels may be due to diffusion from glacial brines either above or beneath the aquifer. Therefore, the elevated levels of iron, manganese, sulfide, and sodium, which exceed the NYS Class GA groundwater criteria but are considered background for this aquifer, are not assessed further in this document.

6.2 Extent of Contamination (Contaminant Distribution)

This section discusses the distribution of contamination at Crystal Cleaners and vicinity. While the major discussion of contaminant migration (transport) is in the following sections of this report, the discussion of contaminant distribution in this chapter assumes that groundwater flow is generally to the southeast.

A contaminant distribution map was developed for PCE in the shallow wells (Figure 6-1). The PCE concentration contours were developed using ESRI Spatial Analyst interpolation by inverse distance weighting and are presented essentially as the output from the program. The maximum PCE concentration at each location was used to develop the contours. The 5 μ g/L limit is shown on Figure 6-1, representing the horizontal extent of the groundwater plume exceeding the NYS Class GA groundwater criterion for PCE.

The extent of the PCE groundwater plume is approximated considering the PCE groundwater concentrations from the Hydropunch and monitoring well sampling, the direction of groundwater flow, and the site location. The extent of the line is extrapolated beyond public well SW-2. The highest concentrations of PCE (up to 430 μ g/L) are centered at the Crystal Cleaners site. The plume is moving to the southeast in the direction of groundwater flow. PCE concentrations decrease moving downgradient towards the residential property bounded by West Pulteney Street, Goff Street, West William Street, and Dunbar Street where maximum PCE detections at each sample location ranged from 5.2 μ g/L and 91 μ g/L. It is assumed that the plume extends to the southeast, decreasing in concentration below the NYS Class GA groundwater criterion of 5 μ g/L, beyond public well SW-2.

TCE, DCE, and vinyl chloride were detected in the residential area to the southeast of the site at concentrations above the NYS Class GA groundwater criteria within the larger PCE groundwater plume. TCE was detected in all three depths sampled at one location (HP-6) at concentrations ranging from 5.7 μ g/L to 34 μ g/L. cis-1,2-DCE was detected at three locations (HP-8 [15 ft bgs], HP-9 [15 and 30 ft bgs], and HP-11 [15 and 35 ft bgs]) at concentrations ranging from 4.4 μ g/L to 12 μ g/L. Vinyl chloride was detected in one sample at one location (HP-6 [30 ft bgs]) at a concentration of 4.5 μ g/L.

6.3 Volume of PCE Contaminated Groundwater

The volume between the groundwater surface and the depth of PCE contamination was estimated. The horizontal extent is limited to the 5 μ g/L contour shown on Figure 6-1. The depth of contamination (where concentrations exceed the NYS Class GA groundwater criterion of 5 μ g/L for PCE) within groundwater plume is roughly estimated at 40 ft from the Hydropunch groundwater and monitoring well sample results. The depth to water is approximately 15 ft. The thickness of the contaminated groundwater plume is estimated as the difference between the depth of contamination and the depth to water, 25 ft.

The volume of groundwater within the contaminated plume was estimated at 33 million gallons (MG) as follows:

 $Vp = Area (acres) \times (DOC - DTW) (ft) \times n_e \times 43,560 \text{ ft}^2/\text{acre } \times 7.48 \text{ gallons/ft}^3 \times 0.000001 \text{ MG/gal}$

where:

Va = volume of the aquifer within the contaminated plume

- Area = area within the approximate 5 μ g/L contour for PCE (16 acres)
- DOC = depth of PCE contamination (approximately 40 ft bgs)

DTW = depth to water (approximately 15 ft bgs)

 n_e = effective porosity (0.25; lower range for gravel and in the upper range for sand [Argonne National Laboratory, 1993])

6.4 Uncertainties in Nature and Extent of Contaminant Distribution

The identity of the contaminants is well-established, with data collected from the permanent monitoring wells generally confirming findings from the Hydropunch sampling in terms of compounds detected (PCE and TCE), and the spatial distribution of the contamination.

The vertical extent of contamination is bounded at most sampling locations. The depth of contamination for HP-2, HP-6, MW-3 are not defined but are expected to be similar to neighboring sampling locations where a groundwater sample was collected at depth with a PCE concentration below 5 μ g/L. The depth of contamination is also not defined at public well SW-2 which is screened between 43 ft bgs and 63 ft bgs. According to USGS (1995), the depth of permeable sand and gravel deposits is approximately 60 ft, indicating the depth of contamination is approaching the depth of the permeable layer as the plume moves farther to the southeast.

The estimated volume of PCE contaminated groundwater is a rough estimate because the vertical extent of contamination is not know precisely, the horizontal boundary is approximated, but may extend beyond the estimated boundary to the north and west from another source.

7 CONTAMINANT FATE AND TRANSPORT

Fate and transport properties are important for understanding the behavior of the chemicals of concern at the site. As discussed in Chapter 3, the most significant contaminant at the site (i.e., detected at the greatest frequency, the highest concentrations, and often exceeding groundwater criteria) is PCE. Degradation products (TCE, DCE, and vinyl chloride) are detected infrequently. This section focuses on the subsurface fate and the mobility of PCE. An understanding of the fate and transport of PCE is necessary to evaluate future potential exposure risks and to evaluate remedial technologies at the FS stage. Physical properties of PCE, TCE, DCE, and vinyl chloride are summarized on Table 7-1.

7.1 **Potential Routes of Contaminant Transport**

Contaminant transport pathways provide the mechanisms for contamination to travel from its area of deposition and to potentially leave the site. Potential contaminant transport pathways include:

- Soil vapor intrusion
- Groundwater flow off site
- Discharge of contaminated groundwater to downgradient surface water bodies
- Vertical infiltration of free phase chemicals into the unconfined and/or semi-confined aquifer(s)
- Rainwater flow through contaminated soils with subsequent flushing and dissolution into the deeper vadose zone and aquifer matrix

Of these potential mechanisms, soil vapor intrusion and groundwater flow, and movement of contaminants with groundwater, are the most significant routes of migration for chlorinated

contaminants. Soil vapor intrusion is a process by which volatile chemicals migrate from a subsurface source into structures. Groundwater flow may discharge to the Chemung River downgradient from the site, since groundwater provides base flow for the streams in this area (USGS, 1995).

Vertical infiltration of free-phase chemicals (non-aqueous phase) is not relevant as no non-aqueous phase liquid (NAPL) has been observed at the site, and observed contaminant concentrations do not suggest the potential presence of NAPL.

Rainwater flow through contaminated soils (contaminant leaching) may have been a transport mechanism of historical significance. However, most of the site is paved, and contamination in the deep groundwater is related to migration and dispersion of contaminants in the dissolved phase.

7.2 Soil Vapor Intrusion

Soil vapor can enter structures through gaps or cracks in the slabs or basement walls and through openings around sump pumps or where pipes and electrical wires go through the foundation. The soil vapor is primarily drawn into the buildings due to the difference in pressure between interior and exterior pressures. Soil vapor, which is the air found in the pore space in the soil, may be contaminated by VOCs that have evaporated from groundwater or soil, NAPL or other subsurface sources. Soil vapor entering a structure may degrade the indoor air quality. Soil vapor migration is affected by environmental and building factors. Environmental factors include the soil conditions (e.g., wet or dry, fine- or coarse-grained), the level of VOC contamination, proximity to the source area, groundwater conditions, the presence of confining layers, underground conduits (e.g., utility lines), atmospheric conditions, and biodegradation processes. Building factors include the level of pollution in the outdoor air, VOCs found in attached garages, off-gassing of building materials, furnishings, and dry cleaned clothing, household products, indoor emissions from combustible heating systems and industrial processes, and occupant activities (e.g., use of glues or paints).

Migration of soil vapor from source areas is possible considering site environmental factors. The soil in the vicinity of the site is generally dry coarser material with layers of silt and clay which would allow for migration of soil vapor from the site. Higher levels of VOCs were detected near the dry cleaner and to the southeast. No groundwater conditions were identified that would curtail migration of contaminated soil vapor (e.g., the presence of a cleaner upper layer of groundwater). Underground utilities are present in the area which may serve as preferential pathways for vapor migration. The potential for soil vapor migration was evaluated for each structure through completion of the NYSDOH questionnaires and air sampling as described in Sections 2 and 3 of this report.

7.3 Groundwater Flow

Groundwater surface elevation data collected in December 2009 and contours are presented in Figure 5-4, and summarized on Table 2-2. As illustrated in this figure, the groundwater flow direction is towards the southeast. This result is consistent with the literature (e.g., USGS, 1964).

25

The following modified Darcy equation provides an estimate of the local groundwater seepage velocity, using the hydraulic gradient information with the average hydraulic conductivity:

$$V_s = Ki/n_e$$

Where:

 V_s -- groundwater seepage velocity (ft/day), K-- hydraulic conductivity (ft/day),

i -- hydraulic gradient (ft/ft), and

n_e -- effective porosity.

The hydraulic gradient was estimated from the location and depth to water at monitoring wells MW-1 through MW-6. The Corning Aquifer is an unconsolidated sand and gravel, valley-fill aquifer with intergranular porosity under unconfined or water-table conditions. Hydraulic conductivity is generally high for valley-fill aquifers but varies depending on the sorting of aquifer materials and the amount of fine-grained material present (USGS, 2009). The hydraulic conductivity selected is the midpoint estimates for coarse grained ice-contact deposits (USGS, 1995) because of the coarse texture of the soils identified in the field. This estimate is likely to result in conservatively high estimates of groundwater flow because some finer grained deposits were identified in the field and may be present at depths greater than those observed in the field. Effective porosity was estimated at 0.25 which is in the lower range for gravel and in the upper range for sand (Argonne National Laboratory, 1993). Bulk density applied is for gravel with sand from SIMetric (2007). Groundwater flow is 4.53 ft/day using the above equation.

7.4 Contaminant Transport

The process by which a solute (dissolved phase contaminant) is transported by the bulk movement of groundwater flow is referred to as advection (Driscoll, 1986). The average linear velocity of groundwater through a porous aquifer is determined by the hydraulic conductivity, effective porosity of the aquifer formation, and hydraulic gradient (Freeze and Cherry, 1979). The velocity of a contaminant in the groundwater can be decreased if there is precipitation/dissolution or partitioning of the contaminant into other media (e.g., adsorption). These physio-chemical processes are discussed below.

7.4.1 Adsorption

One of the most important geochemical processes affecting the rate of migration of chemicals dissolved in groundwater is adsorption to and desorption from the soil matrix. If the organic chemical is strongly adsorbed to the solid matrix (i.e., the aquifer material), the chemical is relatively immobile and will not be leached or transported from the source. If the organic chemical is weakly adsorbed, the chemical can be transported large distances from the source, contaminating large quantities of groundwater. The degree of adsorption also affects other transformation reactions such as volatilization, hydrolysis, and biodegradation since these reactions require the chemical to be in the dissolved phase.

The distribution of chemicals between water and the adjoining solid matrix is often described by the soil/water distribution coefficient, K_d . For dissolved chemicals at environmental concentrations, the distribution coefficient is usually defined as the ratio of concentrations in the solid and water phase (Freeze and Cherry, 1979). K_d has been shown to be proportional to the fraction of natural organic carbon (f_{oc}) in the solid matrix, the solubility of the chemical in the aqueous phase and the n-octanol/water or octanol/carbon partition coefficient (K_{ow} or K_{oc} , respectively). Retardation factors, described below, and K_d values are site specific.

A convenient way to express chemical mobility is by use of the retardation factor (Rd), which is a function of the average velocity of the retarded constituent, velocity of the groundwater, soil bulk density, and total porosity. If $K_d = 0$, the chemical species of concern is not affected by physio-chemical reactions and migrates at the same velocity as the water based on convectivedispersive mechanisms. If $K_d > 0$, the chemical species will be retarded. More accurately, the retardation factor is the average linear velocity of the groundwater divided by the velocity of the contaminant chemical at the point when the chemical concentration is one-half the concentration of the chemical at its source. When K_d equals zero (no adsorption), R equals one (i.e., the chemical and water move at the same velocity). If Rd equals 10, the contaminant chemicals move at 1/10 the velocity of the groundwater.

Adsorption of chlorinated aliphatics at the Crystal Cleaners site may be an important process influencing the transport of contaminants in groundwater. The importance of adsorption depends significantly upon the characteristics of the aquifer matrix material, which acts as the adsorbing medium. In particular, adsorption of hydrophobic organic compounds has been shown to be a function of the amount of natural organic carbon in the aquifer matrix. PCE and daughter compounds have a $K_d > 0$ and, therefore, will be adsorbed/retarded to a degree. The calculated retardation factors are based on literature default values for some aquifer characteristics for which site-specific data are not available.

7.4.2 Dispersion

The study of dispersion at a site is important to determine the concentration of a contaminant and the time it will take to reach a specific location (e.g., a drinking water well). In other words, dispersion of a contaminant affects the velocity and spatial distribution of a contaminant. Although the above discussion implies one-dimensional dispersion, in actuality, dispersion is three dimensional (i.e., longitudinal, transverse, and vertical). The longitudinal and transverse dispersion coefficient are affected primarily by aquifer heterogeneity, whereas, the vertical dispersion is also affected by the density of the contaminant. Because chlorinated aliphatics as a group are denser than water, they have a tendency to migrate vertically faster than many other contaminants (e.g., gasoline-related hydrocarbons such as benzene and toluene).

7.4.3 Dilution

Dilution is an effect of dispersion. When contaminants come in contact with uncontaminated groundwater, mixing occurs, resulting in a decrease in contaminant concentration. Rainwater

precipitation can also cause dilution of contaminant concentrations. However, the majority of the study area is paved which limits the influence of dilution on the contaminant concentrations.

7.5 Contaminant-Specific Transport Velocity

As noted above, contaminant-specific migration in the groundwater is affected (reduced) by adsorption, expressed as the retardation factor. The retardation factor, Rd, is calculated as:

$$\mathbf{Rd} = \mathbf{1} + K_{oc} * f_{oc} \rho_{b} / \mathbf{n}_{e}$$

where:

 $\begin{aligned} Rd &= retardation \ factor \\ K_{oc} &= organic \ carbon \ partition \ coefficient \\ f_{oc} &= fraction \ of \ organic \ carbon \\ \rho_b &= dry \ bulk \ density \ of \ aquifer \ matrix \\ n_e &- effective \ porosity \end{aligned}$

The fraction of organic carbon is taken from the total organic carbon measured for a soil sample collected during installation of MW-4S (60-62 ft bgs; Table 3-5). The K_{oc} values were obtained from <u>www.state.nj.us/dep/srp/vaporintrusion.htm</u>. There is some variation in literature values for these parameters. The default fraction organic carbon (f_{oc}) value of 0.2% from USEPA Soil Screening Levels, Equation 10 (USEPA, 1996) was selected. Bulk density applied is for gravel with sand (SIMetric, 2007).

The contaminant transport rate V_{pt} is determined by dividing the groundwater seepage velocity V_s by the retardation factor Rd:

 $V_{pt} = V_s / Rd$

The distance (D) that a contaminant travels in a given time (t) is calculated using the following equation:

$\mathbf{D} = V_{pt} * t$

Using the equations above, the transport rate and distance for the principle contaminants were calculated and are shown on Table 7-2. The estimated seepage velocities are calculated as 488 ft/yr for PCE, 465 ft/yr for TCE, 256 ft/yr for DCE, and 1,280 ft/yr for vinyl chloride. Using these estimates, the PCE-contaminated groundwater from the source would reach public well SW-2 in three years from the time of the release. PCE-contaminated groundwater would reach the Chemung River, approximately 2,100 ft southeast of the site, in four years. These seepage velocities are for the coarse-grained material identified during the investigation. The presence of clay and till layers within the matrix can significantly reduce the hydraulic conductivity and net seepage velocity of the contamination.

7.6 Contaminant Fate

The fate of organic chemicals in the subsurface environment is affected by a variety of physiochemical and biological processes. Abiotic transformations are typically not significant factors in contaminant fate. Biodegradation is the one process which may have reduced PCE concentrations because breakdown products were detected in groundwater samples near the site.

7.6.1 Abiotic Transformation

Examples of abiotic degradation pathways include hydrolysis, dehydrochlorination, and abiotic reductive dechlorination. Abiotic reductive dechlorination and dehydrochlorination of PCE can occur in the presence iron minerals. Hydrolysis is the reaction of a compound with water resulting in the fragmentation of the molecule into two parts. These are chemical degradation reactions not typically associated with biological activity. PCE, TCE, DCE, and vinyl chloride are susceptible to abiotic transformation processes. In practice, it may not be possible to distinguish between the abiotic and biotic reactions at the field scale. Under natural conditions, abiotic reactions may be slow relative to biological degradation processes.

7.6.2 Biotransformation

Degradation or transformation of organic chemicals in the subsurface environment can occur through the action of microorganisms that may be attached to the soil or contained in the void space. Active microbial populations are found in most typical subsurface conditions. Even in low numbers, subsurface microbes possess adequate metabolic activity to reduce the levels of organic compounds migrating through the subsurface soil profiles.

Biodegradation of chlorinated organic chemicals ultimately produces microbial cells, water, carbon dioxide, and chloride ion (i.e., complete "mineralization"). The enzymes produced by the microorganisms are essentially responsible for the degradation of the organic chemicals. Whether or not a chemical is transformed depends on the microbial population present and the types of enzymes they express.

Biodegradation of Chlorinated Ethenes

There are many potential reactions that can degrade chlorinated ethenes (e.g., PCE) in the subsurface, under both aerobic and anaerobic conditions. Not all contaminants are amenable to degradation by each of these processes.

Potential Degradation Processes for Contaminants

Biodegradation occurs when indigenous microorganisms consume organic compounds to obtain energy for reproduction and growth. Microorganisms obtain this energy by facilitating the transfer of electrons from an electron donor (organic substrate) to an electron acceptor (typically native inorganics). Common electron donors at contaminated sites can be natural organic carbon or fuel hydrocarbons. Electron acceptors commonly found in groundwater include oxygen, nitrate, manganese, ferric iron, sulfate, and carbon dioxide. Under certain conditions, contaminants may be used as an electron donor, as in the aerobic oxidation of vinyl chloride. Under anaerobic conditions, contaminants may be used as an electron acceptor, as in the reductive dechlorination of TCE.

The aerobic biodegradation of contaminants consume oxygen and produces inorganic carbon in well-established ratios. Estimating the oxygen supply rate and correlating it with increases in inorganic carbon can yield a quantitative estimate of the rate of contaminants biodegradation, if the changes in inorganic carbon concentration can be measured properly.

The biodegradation of organic contaminants under denitrifying or sulfate-reducing conditions consumes nitrate or sulfate and produces inorganic carbon and alkalinity. Estimating the supply rates of sulfate or nitrate and correlating them with changes in inorganic carbon concentration and alkalinity can provide evidence for these anaerobic biodegradation reactions.

PCE and TCE are not susceptible to aerobic degradation processes (Table 7-3), with the exception of the aerobic cometabolism of TCE which requires the presence of a primary substrate such as toluene or methane, substances which were not detected at the site. Therefore, anaerobic degradation pathways are of interest for the chloroethenes. DCE can be degraded by all the processes listed in Table 7-3. In general, anaerobic reductive dechlorination occurs by sequential removal of a chloride ion. For example, the chlorinated ethenes are transformed sequentially from PCE to TCE to the DCE isomers (cis- or trans-) to vinyl chloride to ethene.

The degree to which this biological transformation proceeds depends on three factors:

- 1. The presence of dechlorinating microorganisms
- 2. The presence of suitable electron donors
- 3. The presence of competing electron acceptors

7.6.3 Biodegradation at the Site

Samples were collected from the monitoring wells to assess whether or not biological transformation is occurring at the site. MW-1 is upgradient from the site. MW-2 is located at the site within the highest PCE concentrations within the groundwater plume. MW-3 is located downgradient within the PCE groundwater plume. The remaining wells are located downgradient at the outer edge of the plume with no PCE detections. A description of the analytical results with respect to the potential for biological transformation is provided below:

• Alkalinity – Higher alkalinity values may indicate microbial growth. The alkalinity concentrations are 190 mg/L (MW-2) and 250 mg/L (MW-3) from wells located within the PCE plume. Alkalinity concentrations outside of the plume range from 150 mg/L to 280 mg/L.

- Nitrate A decrease in nitrate may indicate nitrate is serving as an electron acceptor under slightly reducing conditions. For this site, the nitrate concentrations within the PCE plume are higher (3.17 mg/L and 3.38 mg/L) than background (0.1 U to 1.64 mg/L) with the exception of MW-4 which has a nitrate concentration of 9.24 mg/L.
- Dissolved manganese An increase in dissolved manganese may indicate anaerobic biodegradation is occurring with Fe (III) serving as an electron acceptor. The dissolved manganese concentrations within the PCE plume (16,400 μ g/L and 19,000 μ g/L) are within the range of the background measurements (14,300 μ g/L to 27,600 μ g/L).
- Dissolved iron An increase in dissolved iron may indicate anaerobic biodegradation is occurring. The dissolved iron concentration at MW-3 of 2,260 µg/L is high relative to background (57.9 µg/L to 418 µg/L).
- Sulfate A decrease in sulfate concentrations relative to background may indicate anaerobic biodegradation is occurring. The sulfate concentrations within the PCE plume (26 mg/L and 28 mg/L) are within the range of the background measurements (26 mg/L to 47 mg/L).
- Methane An increase in methane relative to background may indicate reducing conditions or microbial byproduct using carbon dioxide as an electron acceptor. The methane concentrations within the PCE plume (0.0033 mg/L and 0.019 mg/L) are within the range of the background measurements (0.00048 mg/L to 0.021 mg/L).
- Dissolved Oxygen (DO), oxidation-reduction potential (ORP), and pH were measured in the field during groundwater sampling. The levels are not considered usable for this assessment because the measurements were collected through use of a bladder pump and a flow cell, so the field-measured values may not be indicative of static conditions in the aquifer. The typical pH for the region is approximately 7 (USGS, 1995) and falls within the optimum range for biodegradation.

Based on this data, biological transformation activity does not appear to be significant at this time. This finding is consistent with the VOC concentrations detected in the monitoring wells which shown infrequent detections of the daughter products TCE and DCE, and at low concentrations, relative to the PCE concentrations.

8 QUALITATIVE HUMAN HEALTH RISK ASSESSMENT

A qualitative baseline risk assessment was completed based on the information presented in the preceding sections of this RI report. Generally, the human health evaluation involves an exposure assessment, an evaluation of site occurrence, hazard identification and comparison to New York State and USEPA criteria.

This section discusses the exposure assessment, an evaluation of site occurrence, and a comparison to State and USEPA criteria related to potential impacts to human health. It should be noted that

several conservative assumptions were used in completing this assessment; and, thus, the risks identified are expected to be "worst-case" scenarios.

8.1 Exposure Assessment

This exposure assessment discusses potential migration routes by which chemicals in the environment may be able to reach human receptors. This discussion is based on current and hypothetical future site conditions and the extrapolation of site conditions to off-site areas.

Currently, the site is used for commercial purposes. Residential property is located north, south and east of the site and commercial property is located west of the site. For the purposes of this evaluation, it is assumed that the general use of the area will remain unchanged.

The hypothetical future conditions for the site and surrounding areas include development and/or intrusive site work in areas near the site; the possibility for the facilities to be abandoned and left unattended; on-site workers; and use of the groundwater as a potable water source.

A complete exposure pathway must exist for a population to be impacted by the chemicals at the site. A complete exposure pathway consists of five components:

- 1. a source and mechanism of chemical release;
- 2. a transport medium;
- 3. a point of potential human contact with the contaminated medium;
- 4. an exposure route at the contact point; and
- 5. a receptor population.

The extent of contamination was discussed in previous sections (6 and 7) of this RI. This section focuses primarily on identifying points of human contact with contaminated media.

The potential exposure pathways identified for the former Crystal Cleaners site are discussed below.

Exposure to groundwater, if used as a drinking water supply, includes ingestion, dermal contact and inhalation of vapors. Public water supply wells are located downgradient, about a quarter mile away from the site and have been impacted by VOCs. An air stripper is currently in place on the public supply wells to remove VOCs from the water and the likelihood of exposure is low. Currently, exposure to contaminated water is not expected as water distributed to the public is tested regularly to confirm that it meets NYS drinking water standards.

As shown in Figure 5-4, it appears that groundwater flows in a south-easterly direction, towards the river. Potential human exposure may occur at the point of groundwater contact. The likelihood of exposure to groundwater due to construction activities is considered to be low since the groundwater is generally encountered at 10 to 12 ft bgs. Potential human exposures include ingestion, dermal contact, and inhalation of vapors. Ingestion of groundwater (as drinking water), dermal contact and vapor inhalation scenarios are potential future exposure scenarios.

Potential human exposures to subsurface soils include ingestion, dermal contact, and inhalation under the future development scenarios with excavation.

Potential inhalation exposure from PCE volatilization from subsurface soils and groundwater near the site source areas may occur under current conditions and under the future development scenarios with excavation (e.g., migration of vapors into buildings, basements, foundations, utilities, and outdoor areas).

8.2 Evaluation of Site Occurrence

Tables 8-1 to 8-4 present the range of concentrations for the chemicals detected in groundwater, subsurface soil, indoor air and outdoor air respectively. The summary includes the frequency of detection, the frequency of criterion exceedance, the number of samples analyzed, the maximum concentration detected, and the location where the maximum value was reported. For purposes of this qualitative and conservative assessment, the exposure point concentration was set as the maximum reported value, and this value was compared to New York and USEPA risk-based criteria.

The contaminant concentrations reported for the site were used for potential off-site exposure points (i.e., potable water concentrations). This is a conservative approach as off-site concentrations may be lower due to dispersion, retardation, and other attenuating mechanisms.

Validated data from the 2009 and 2010 sampling events, as summarized in the tables in Section 3 and provided in full in the tables in Appendix E, were used for this assessment. A summary of the detected analytes and criteria exceedances is provided in Tables 8-1 to 8-4.

8.3 Hazard Identification and Comparison to Criteria

The potential hazards due to human exposures were reviewed based on chemical-specific criteria. Both State and Federal criteria were examined.

8.3.1 Groundwater

Human health risks associated with exposure to groundwater were examined by considering use of the groundwater as a drinking water source.

The SCGs used for human health risks associated with use groundwater at the site as a drinking water source includes the following:

- NYSDEC Class GA Groundwater Quality Criteria, 6NYCRR Part 701-703, as summarized in TOGS 1.1.1, June 1998, with updates through June, 2004.
- New York State Drinking Water Standards (10 NYCRR 5-1.52; Tables 1-14)
- USEPA Maximum Contaminant Levels (MCLs), 40 CFR 141 (last revised June 2008).

As shown on Table 8-1, groundwater concentrations of four VOCs (cis-1,2-DCE, PCE, TCE and VC) exceeded risk-based criteria. PCE was the most significant VOC detection (maximum 430 μ g/L), compared to the criterion of 5 μ g/L. PCE was detected in 17 of 35 samples and exceeded the criterion in 16 of the samples.

As shown on Table 8-1, metals concentrations (iron and manganese) also exceeded risk-based criteria. These metals are naturally occurring and are not known to be site related.

8.3.2 Soil

Human health risks associated with exposure to subsurface soil were based on the potential for exposure due to future excavation at the site. The concentrations were screened against the NYSDEC Part 375-6.8(b) SCO values (May 2010). As shown on Table 8-2, subsurface soils contained one VOC (xylene) that exceeded risk-based criteria. The exceedance of this contaminant only occurred in one sample (SS-1). Detected concentrations of SVOCs and metals did not exceed the criteria.

8.3.3 Soil Vapor

Human health risks associated with exposure to soil vapors were examined by considering the inhalation of vapors. Concentrations of VOCs in air were evaluated using the air guidelines provided in the NYSDOH guidance document titled "Guidance for Evaluating Soil Vapor Intrusion in the State of New York," dated October 2006.

9 CONCLUSIONS

Under contract to NYSDEC, AECOM performed a RI/FS at the Crystal Cleaner(s) site in Corning, NY with field work conducted in 2009 and 2010. The results of that investigation and its conclusions are provided below.

9.1 Remedial Investigation

A remedial investigation was conducted to determine the sources of contamination within the site and its threat to human health or the environment. The scope and execution of the RI is discussed below. The work to date consisted of six field efforts:

- Membrane interface probe investigation
- Direct push soil sampling and groundwater sampling
- Soil sampling at the Crystal Cleaners facility
- Direct push sampling for soil classification
- Groundwater monitoring well installation and sampling
- Soil Vapor Intrusion Investigation

In January 2009, MIP borings were advanced in the immediate vicinity of the Crystal Cleaners facility to collect remote sensing data indicating the possible presence of chlorinated solvents in the soils or groundwater based on the response of the ECD. No samples were collected for laboratory analysis during the initial phase of the investigation.

In March 2009, Hydropunch groundwater and soil samples were collected using direct push drilling. Groundwater and soil samples were shipped to Chemtech in Mountainside, New Jersey for VOC analysis (EPA Method SW846 8260). The Hydropunch data were used as a screening tool to determine the appropriate screened interval for permanent monitoring well installation.

Soil samples were collected from within the Crystal Cleaners facility on June 22, 2009. Samples were collected with a hand auger at a depth of 4-5 ft bgs beneath the concrete slab. The soil samples were shipped to Chemtech in Mountainside, New Jersey for VOC analysis (EPA Method SW846 8260).

Direct push borings were advanced at three locations to determine soil classification in the vicinity of the site and PCE groundwater plume. Soil samples were collected in macrocores using a direct push rig. The Unified Soil Classification System (USCS) was used to describe the soil. No soil samples were collected for laboratory analysis.

Six monitoring wells were installed in October 2009. Groundwater samples collected from the monitoring wells in December 2009 were analyzed by Hampton-Clarke Veritech for VOCs (EPA SW846 Method 8260), metals (whole water and field filtered; EPA Method 200.7), ferrous iron (HACH 8146), biochemical oxygen demand (BOD; Standard Methods [SM] 5210B), chemical oxygen demand (COD; SM 5220), alkalinity (SM 2320B), ammonia (SM 4500-NH3), nitrate, chloride, and sulfate (EPA 300.0), phosphorous (EPA 365.3), sulfide (EPA 9034), total organic carbon (SM 5310B), and methane, ethane, and ethene (PM01C/AM20GAx). The groundwater data from the permanent wells were validated by an independent subcontractor, Environmental Data Services, Inc. (EDS) of Williamsburg, VA. The laboratory data packages and the DUSRs are provided in Appendix E on CD. The analytical data were generally acceptable and appropriate for their intended use. Minor exceptions are detailed in the DUSRs and did not affect the usability of the data for the principal site contaminants (chlorinated aliphatics).

Soil Vapor Intrusion sampling was conducted at 17 structures in 2009. The air samples include sub-slab vapor samples, indoor air samples, and outdoor air samples. In 2010, 5 of these structures were resampled. All air samples were analyzed for VOCs by USEPA method TO-15.

9.2 Site Geology

The Corning aquifer is a valley-fill glacial aquifer. The aquifer overlies four deeply incised bedrock valleys located at the intersection of the Chemung River, Canisteo, Tioga, and Cohocton Rivers. The bedrock valleys are partially filled with sand and gravel intermixed with fine grained glacial-lake deposits. Outwash and alluvial sand and gravel cover the valley floors as a result of redeposition by the streams. Soil was classified as predominantly gravel and sand. A layer of thick clay layer was identified within the area sampled during the investigation.

9.3 Site Hydrogeology

The saturated thickness of the aquifer typically ranges between 20 ft and 60 ft. In the vicinity of the site, the saturated zone is 60 ft or thicker. The groundwater surface is typically at the level of the stream traversing the area. Groundwater is found near ground level in some locations. Aquifer recharge consists of precipitation and inflow from the adjacent bedrock and by downvalley movement of water through the aquifer, stream leakage. The direction of groundwater flow is generally downvalley toward the principal streams. Groundwater provides base flow to the streams. In areas with losing tributary streams, groundwater flow is away from the tributary into the aquifer. Near the Crystal Cleaners site, groundwater flow is toward the southeast. The two public wells, each producing up to 700 gpm, is located southeast of the site.

9.4 Nature of Contaminants Detected

The principle contaminants detected were chlorinated aliphatics. Principle chlorinated aliphatics include PCE and infrequent detection of the degradation products TCE, cis-1,2-DCE, and vinyl chloride. The identity of the contaminants is well-established, with data collected from the permanent monitoring wells confirming findings from the MIP investigation and Hydropunch sampling in terms of compounds detected (PCE, TCE and DCE), and the spatial distribution of the contamination.

9.5 Extent of Contamination

The PCE groundwater plume is centered at the Crystal Cleaners site. The plume extends downgradient towards the southeast toward the two public wells. The plume concentrations are expected to drop below the NYS Class GA groundwater criteria to the southeast of SW-2.

Elevated levels of iron, manganese, sulfide, and sodium, which exceed the NYS Class GA groundwater criteria but are considered background for this aquifer, are not assessed further in this document

9.6 Contaminant Transport

Groundwater flow is generally to the southeast. The process by which a solute (dissolved phase contaminant) is transported by the bulk movement of groundwater flow is referred to as advection. The average linear velocity of groundwater through a porous aquifer is determined by the hydraulic conductivity, effective porosity of the aquifer formation, and hydraulic gradient.

Adsorption of chlorinated aliphatics at the site may be an important process influencing the movement of contaminants in groundwater. The importance of adsorption depends significantly upon the characteristics of the aquifer matrix material, which acts as the adsorbing medium. In particular, adsorption of hydrophobic organic compounds has been shown to be a function of the amount of natural organic carbon in the aquifer matrix. PCE has a $K_d > 0$ and, therefore, will be adsorbed/retarded to a degree.

The estimated seepage velocities are calculated as 488 ft/yr for PCE, 465 ft/yr for TCE, 256 ft/yr for DCE, and 1,280 ft/yr for vinyl chloride. Using these estimates, the PCE-contaminated groundwater from Crystal Cleaners would reach public well SW-2 in three years from the time of the release. PCE contaminated groundwater would reach the Chemung River, which is approximately 2,100 ft southeast of the site in four years. These seepage velocities are for the coarse-grained material identified during the investigation. The presence of clay and till layers within the matrix can significantly reduce the hydraulic conductivity and net seepage velocity of the contamination.

9.7 Contaminant Fate

The fate of organic chemicals in the subsurface environment is affected by a variety of physiochemical and biological processes. Abiotic transformations such as hydrolysis, oxidation, and volatization are not significant factors in contaminant fate. Biological transformation activity does not appear to be significant at this time. This finding is consistent with the VOC concentrations detected in the monitoring wells which shown infrequent detections of the daughter products TCE and DCE, and at low concentrations, relative to the PCE concentrations.

9.8 Human Health Risk Assessment

A qualitative human health risk assessment was completed for the site. Generally, the human health evaluation involves an exposure assessment, an evaluation of site occurrence, hazard identification and comparison to USEPA and New York State criteria. Exposure scenarios were identified and evaluated based on analytical laboratory results of groundwater, subsurface soil and ambient air samples collected. A summary of the results of the risk assessment is presented below.

The potential for exposure to contaminants in the groundwater at the site is minimal under current conditions due to treatment of the water. However, risks would exceed generally acceptable ranges associated with ingestion of untreated groundwater due to high concentrations of PCE and other contaminants.

The potential for exposure to the contaminants in the subsurface soils are minimal since receptors are not currently exposed to subsurface soils (i.e., the pathway is incomplete) and contact is unlikely. Additionally, the concentrations in the soil are generally below the screening levels.

There is a potential for exposure to soil vapor inside of buildings. Due to the high concentrations of PCE, TCE, and other contaminants detected, exposure to on-site soil vapors could pose a significant risk. The risk is also exhibited by the comparison of the concentrations to the NYSDOH air guidelines in Section 3.

10 **REFERENCES**

Argonne National Laboratory, 1993. Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil. By C. Yu, C. Loureiro, J.-J. Cheng, L.G. Jones, Y.Y. Wang, Y.P. Chia, and E. Faillace. Environmental Assessment and Information Sciences Division. April.

Environmental Data Resources (EDR), Inc., 2006. EDR Site Report for Crystal Cleaners, 343 West Pulteney Street, Corning, NY 14830. February 28, 2006.

New York Department of Environmental Conservation (NYSDEC), 2010. DER-10, Technical Guidance for Site Investigation and Remediation. May.

NYSDEC, 2007. Final Site Characterization Report, Region 8 Dry Cleaning Site, Crystal Cleaners Site. MACTEC Engineering and Consulting, Portland, ME.

New York State Department of Health (NYSDOH), 2006. Guidance for Evaluating Soil Vapor Intrusion in the State of New York. Center for Environmental Health, Bureau of Environmental Exposure Investigation (BEEI). Final. October.

NYSDOH, 2007. Letter from Gary Litwin, Director NYSDOH BEEI, to Dale Desnoyers, Director, NYSDEC Division of Environmental Remediation. Re: Addition of three new volatile chemicals to existing soil vapor/indoor air decision matrices. June 25.

SIMetric 2007. Density of Materials. <u>http://www.simetric.co.uk/si_materials.htm</u>

Teeter Environmental Services, Inc. (Teeter), 2005. Phase II Environmental Site Assessment, Sugar Creek and Crystal Cleaners.

U.S. Environmental Protection Agency (USEPA). 1996. Soil Screening Guidance: User's Guide. EPA/540/R-96/018. July.

USEPA. 2002. Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Draft Subsurface Vapor Intrusion Guidance). Office of Solid Waste and Emergency Response, Washington, DC. USEPA530-F-02-052

U.S. Geological Survey (USGS), 1982. Geohydrology of the valley-fill aquifer in the Corning area, Steuben County, New York. Prepared by Miller, T. S.; Belli, J. L.; Allen, R. V. http://pubs.er.usgs.gov/publication/ofr8285

USGS, 1995. Ground Water Atlas of the United States, Connecticut, Maine, Massachusetts, New Hampshire, New York, Rhode Island, Vermont, HA 730-M. by Perry G. Olcott

USGS, 2009. Aquifer Basics Unconsolidated and semiconsolidated sand and gravel aquifers. Accessed at <u>http://water.usgs.gov/ogw/aquiferbasics/uncon.html</u>. Last modified April, 29, 2007.

100 200

0

400

Feet

Project No: 106774 Figure No: 1-1 July 27, 2010

Crystal Cleaners Site Site No. 8-51-022 Corning, NY

15

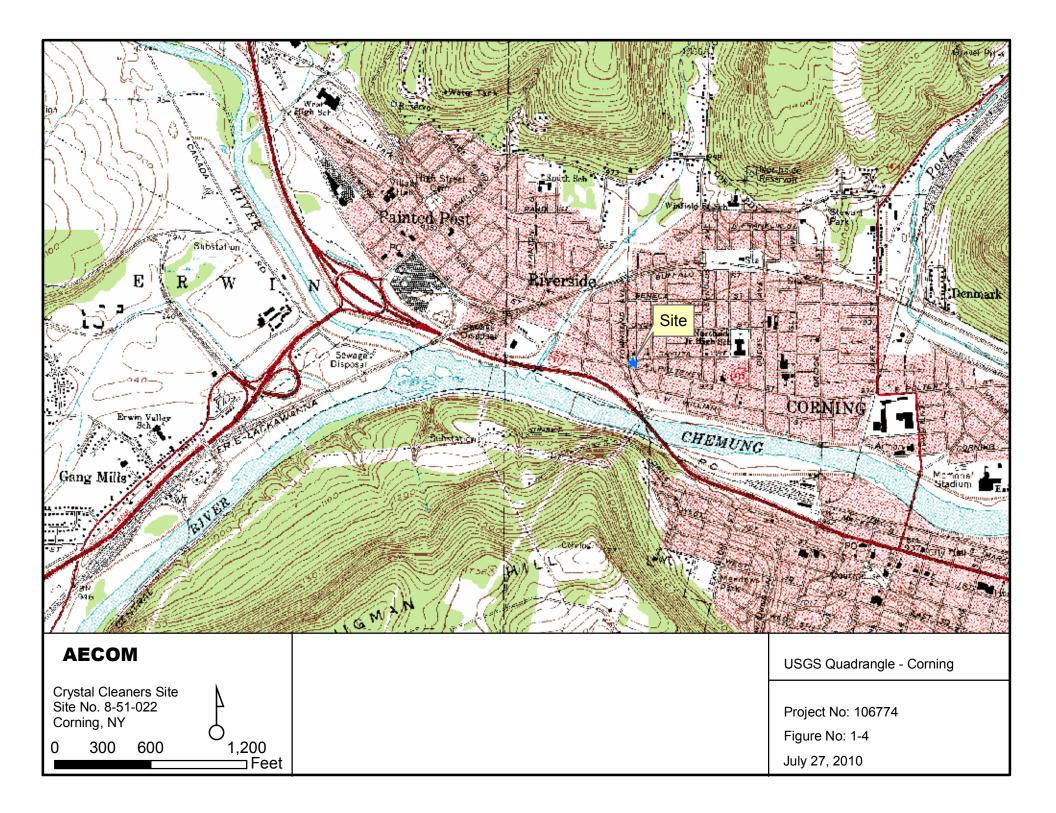
30

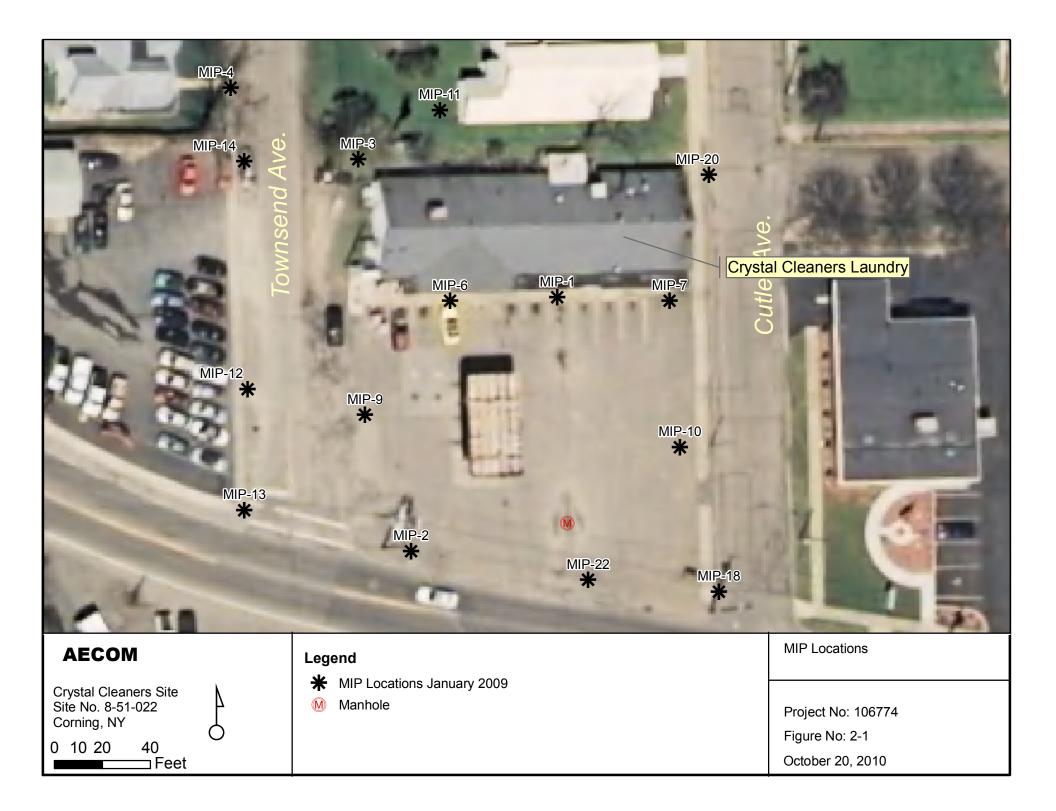
0

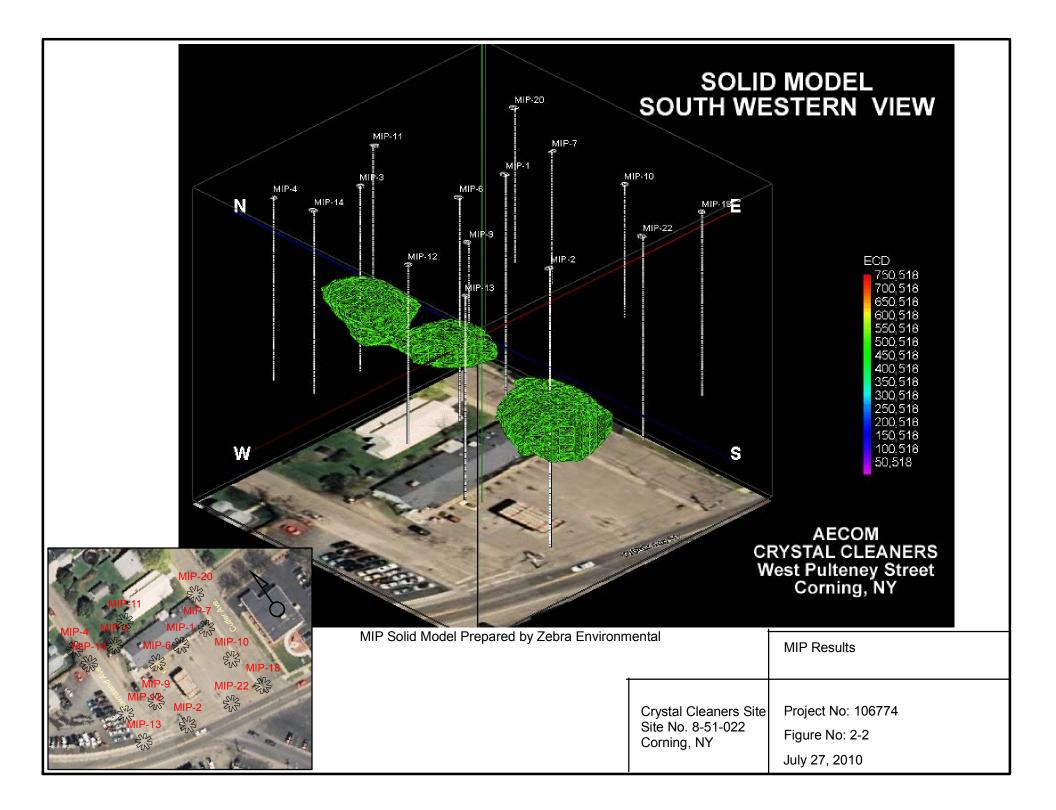
Feet 60 Project No: 106774

Figure No: 1-2

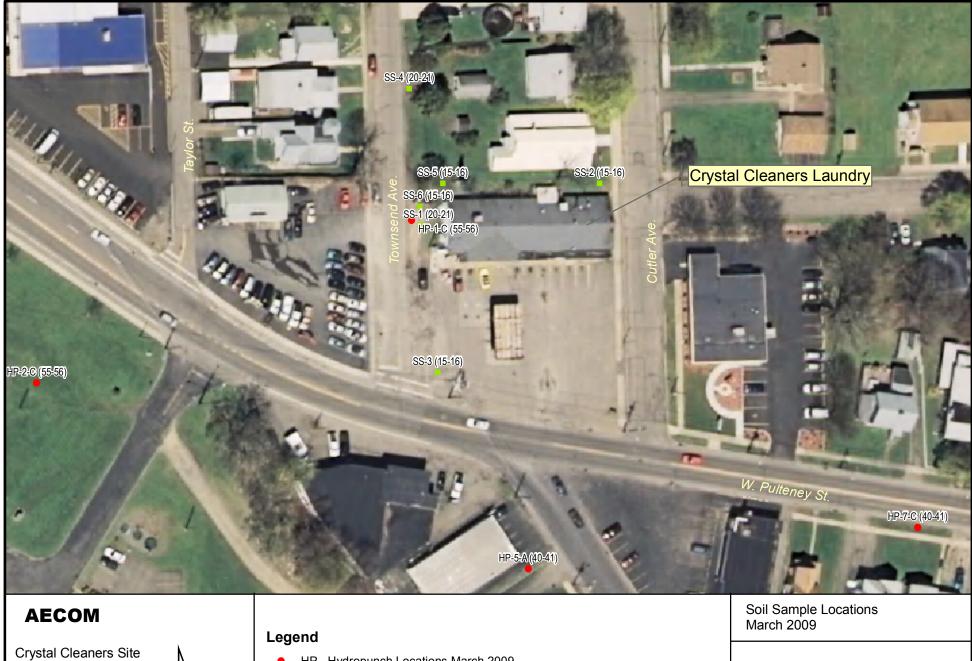
October 20, 2010




July 27, 2010


J - Estimated Value

⊐Feet


D - Value after Dilution

Site No. 8-51-022 Corning, NY 75 150 37.5

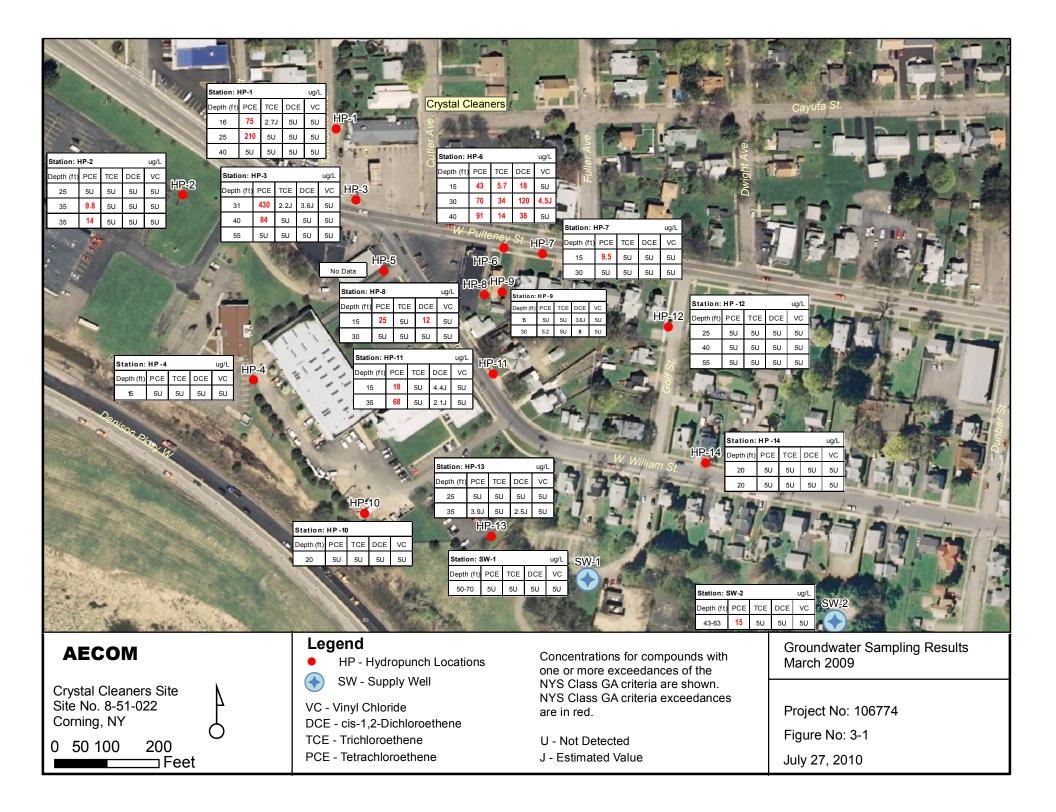
⊐Feet

0

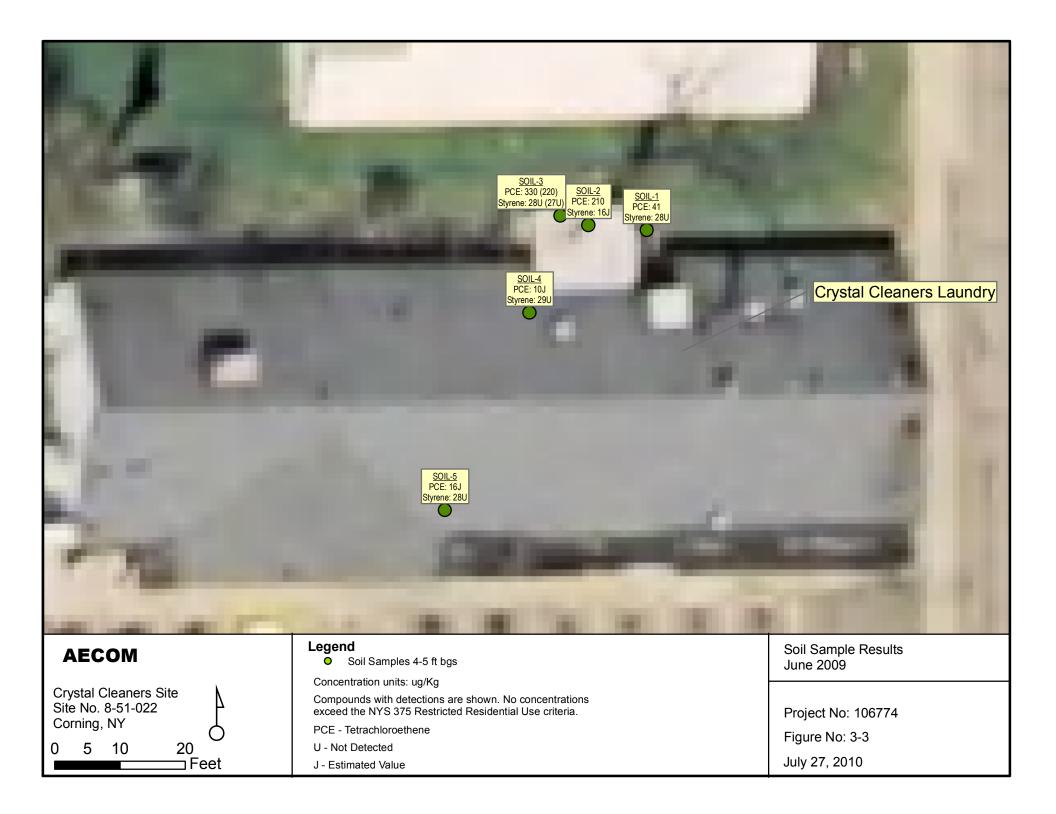
- HP Hydropunch Locations March 2009
- SS Surface Soil Samples March 2009

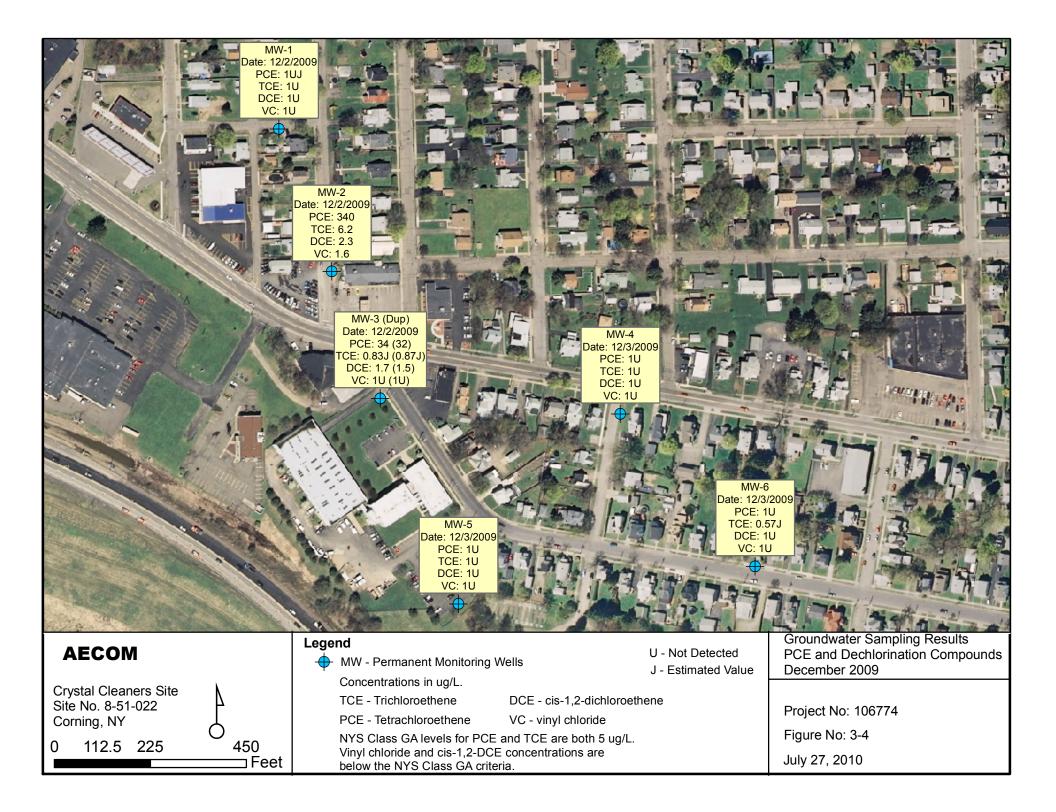
(Sample Depth ft bgs)

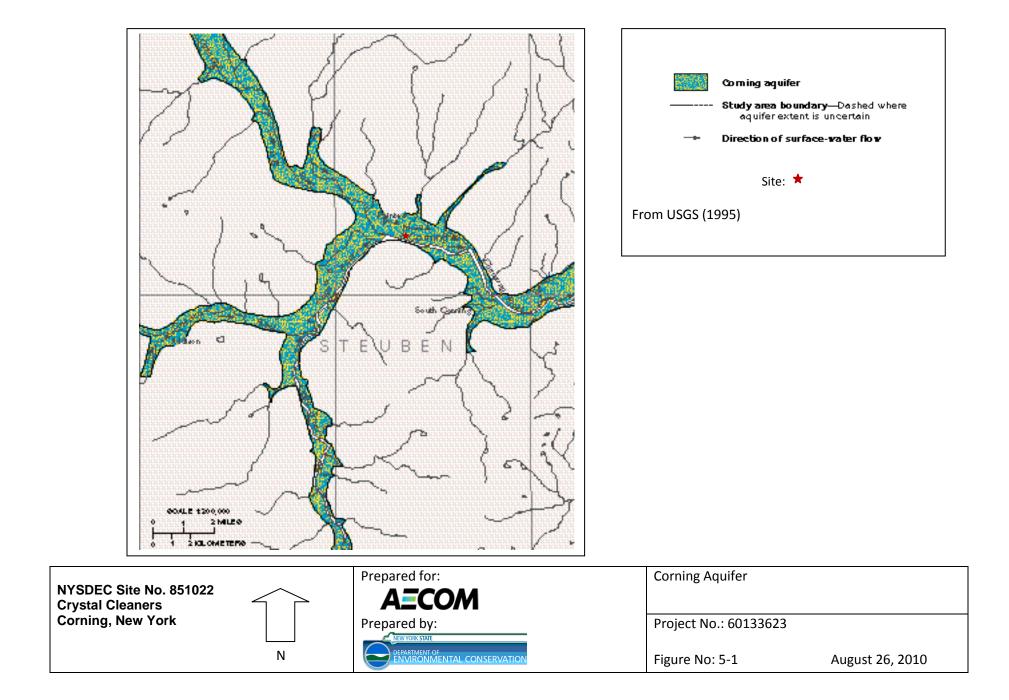
Project No: 106774

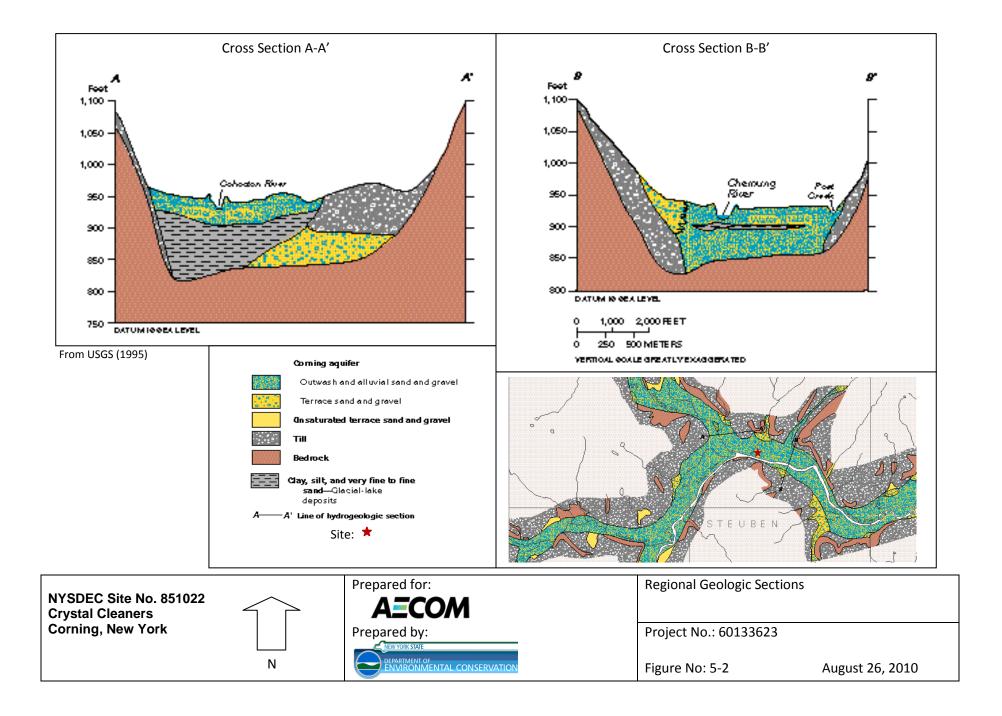

Figure No: 2-4

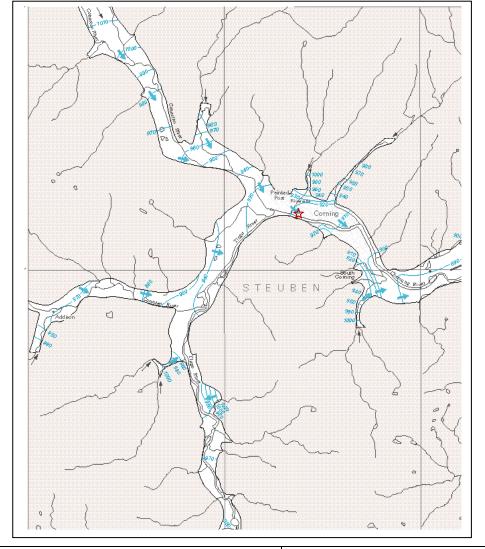
July 27, 2010

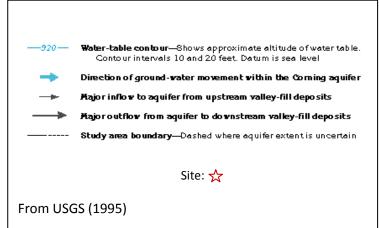


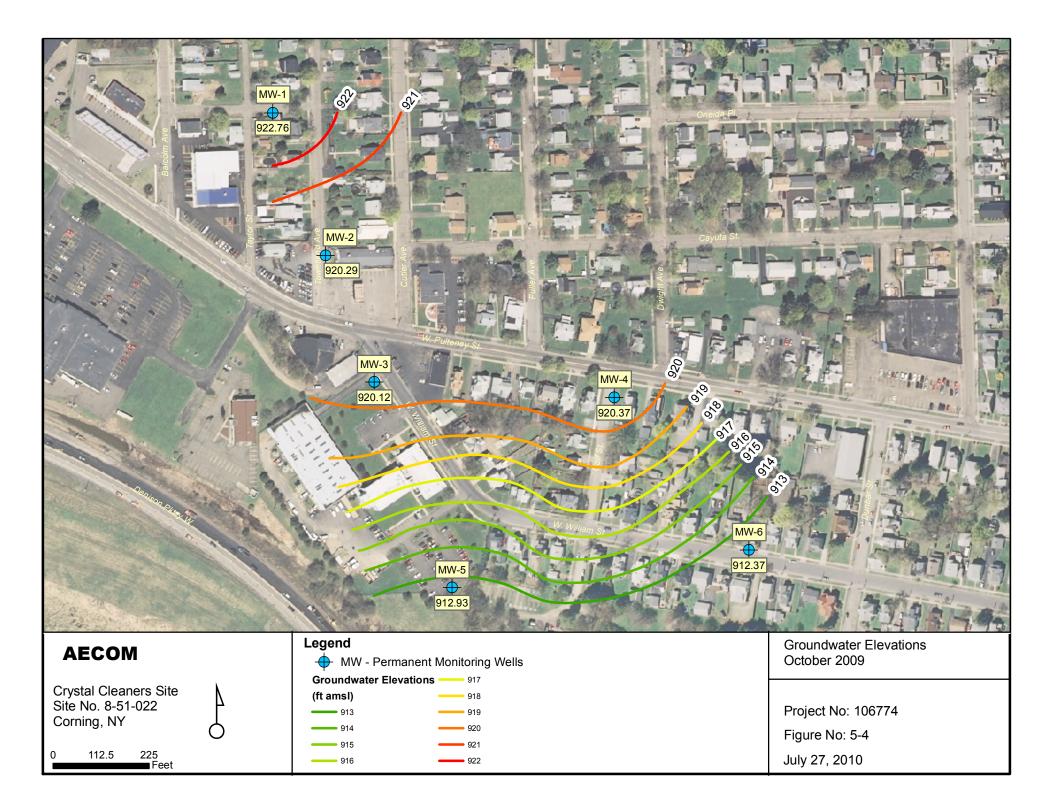


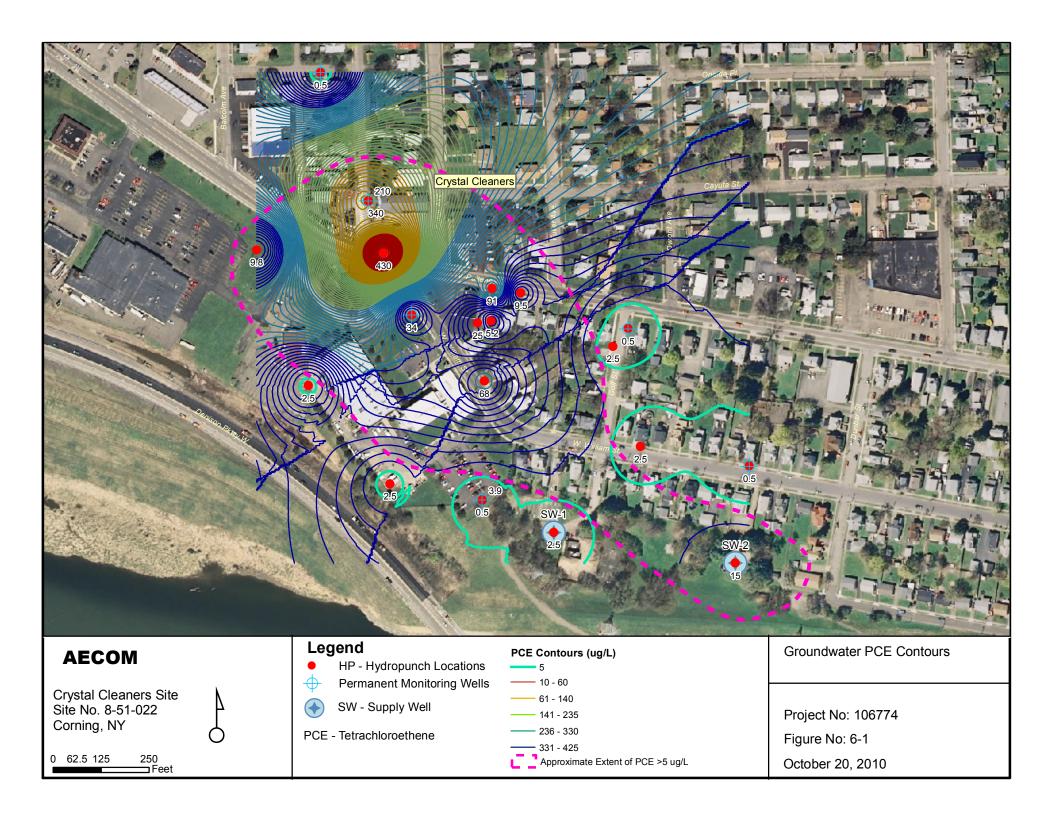





T A T Stat Pep PCI	th (ft) 55-56 150 itone 190J SS-1 20-21 860 ne 25,000 ohex ane 140,000 1500 p) 140,000 25,000 p) 140,000 25,000	Crystal Cleaners Laundry Crystal Cleaners Laundry M Pures Station HP-7 Depth (ft) 40-41 PCE 34J Acetone 150J
AECOM	Legend	ected Soil Sample Results
Crystal Cleaners Site Site No. 8-51-022 Corning, NY	 Surface Soil Samples March 2009 Hydropunch Locations March 2009 TCE - Trichloroethene PCE - Tetrachloroethene Concentrations in ug/kg. All VOC detections are shown. "SS-" samples were analyzed for SVOCs, PCBs and metals pesticides. No PCBs or p 	Project No: 106774
0 37.5 75 150	were detected. No exceedances in SVOCs and Metals. Values in red exceed the NY 375 Residential Restricted Use criteria.	July 27, 2010







NYSDEC Site No. 851022 Crystal Cleaners Corning, New York		Prepared for:	Regional Groundwater Flow Direction		
		Prepared by:	Project No.: 60133623		
	N		Figure No: 5-3	August 26, 2010	

Table 2-1 Hydropunch Sampling Depths (ft bgs)

Boring	AA	А	В	С
HP-1	16	25	40	55 (note 1)
HP-2		25	35 (Dup)	55 (note 1)
HP-3		31	40	55
HP-4		15	Refusal at 2	23 ft bgs
HP-5			40 (note 1)	55 (note 2)
HP-6		15	30	40
HP-7		15	30	40 (notes 1 & 3)
HP-8		15	30	
HP-9		15	30	
HP-10		20	Refusal at 2	23 ft bgs
HP-11		15	35	
HP-12		25	40	55
HP-13		25	35	42 (note 2)
HP-14		20 (Dup)	Refusal at 2	26 ft bgs

Notes:

1. This sample was analyzed as a soil sampled due to low moisture content.

2. Insufficient recovery – no sample was collected.

3. No recovery at lower depths.

Table 2-2 Monitoring Well Information

Well ID	Well Depth (ft bgs)	Screen Interval Depth (ft bgs)	Screen Interval Elevation (ft amsl)	Elevation of Bottom Cap (ft amsl)	Depth to Water 12/09	Groundwater Elevation 12/09
MW-1	30	20-30	918.07-908.07	908.07	15.31	922.76
MW-2	30	20-30	914.48-904.48	904.48	14.19	920.29
MW-3	35	25-35	906.72-896.72	896.72	11.60	920.12
MW-4	35	25-35	907.62-897.62	897.62	12.25	920.37
MW-5	55	45-55	887.55-877.55	877.55	19.62	912.93
MW-6	55	45-55	887.85-877.85	877.85	20.48	912.37

Table 2-3Indoor Air Samples Collected in 2009 and 2010

			2009		2010			
Structure	Residence/		nber of Samp		Number of Samples			
	Commercial	Indoor	Sub-Slab	Outdoor	Indoor	Sub-Slab	Outdoor	
H01	Residence	1	1	0	1	1	0	
H02	Residence	2 (dup)	0	1	1	1 (dup)	1	
H03	Residence	2	0	1	2	1	0	
H04	Residence	2	0	0	2	1	0	
H05	Residence	2	0	0	2	1	0	
H06	Commercial	2	0	1	0	0	0	
H07	Residence	2 (dup)	0	0	0	0	0	
H08	Commercial	1	1	1	0	0	0	
H09	Residence	2	1	2	0	0	0	
H10	Residence	2 (dup)	1	0	0	0	0	
H11	Residence	2	0	0	0	0	0	
H12	Residence	2	0	0	0	0	0	
H13	Residence	3	0	0	0	0	0	
H14	Residence	2	0	0	0	0	0	
H15	Residence	2	0	0	0	0	0	
H16	Commercial - Abandoned	2	0	0	0	0	0	
H17	Commercial	2	2	1	0	0	0	

Sample ID	NYSDEC Class	HP-1-AA	n Groundwater M HP-1-A	HP-1-B	HP-2-A	HP-2-B	HP-2-B-DUP
Sampling Date	GA	3/16/2009	3/16/2009	3/16/2009	3/19/2009	3/19/2009	3/19/2009
Sample Depth (ft)	Groundwater	16	25	40	25	35	35
Sample Type	Criteria	Env. Sample	Env. Sample	Env. Sample	Env. Sample	Env. Sample	Sample Dup.
Units	µg/L	µg/L	μg/L	µg/L	μg/L	μg/L	μg/L
Dichlorodifluoromethane	5	5 U	5 U	5 U	5 U	5 U	5 U
Chloromethane	5	5 U	5 U	5 U	5 U	5 U	5 U
Vinyl Chloride	2	5 U	5 U	5 U	5 U	5 U	5 U
Bromomethane	5	5 U	5 U	5 U	5 U	5 U	5 U
Chloroethane	5	5 U	5 U	5 U	5 U	5 U	5 U
Trichlorofluoromethane	5	5 U	5 U	5 U	5 U	5 U	5 U
1,1,2-Trichlorotrifluoroethane	5	5 U	5 U	5 U	5 U	5 U	5 U
1,1-Dichloroethene	5	5 U	5 U	5 U	5 U	5 U	5 U
Acetone	50	25 U	25 U	25 U	25 U	25 U	25 U
Carbon Disulfide	60	5 U	5 U	5 U	5 U	5 U	5 U
Methyl tert-butyl Ether	10	5 U	5 U	5 U	5 U	5 U	5 U
Methyl Acetate	NA	5 U	5 U	5 U	5 U	5 U	5 U
Methylene Chloride	5	5 U	5 U	5 U	5 U	5 U	5 U
trans-1,2-Dichloroethene	5	5 U	5 U	5 U	5 U	5 U	5 U
1,1-Dichloroethane	5	5 U	5 U	5 U	5 U	5 U	5 U
Cyclohexane	NA	5 U	5 U	5 U	5 U	5 U	5 U
2-Butanone	50	25 U	25 U	25 U	25 U	25 U	25 U
Carbon Tetrachloride	5	5 U	5 U	5 U	5 U	5 U	5 U
cis-1,2-Dichloroethene	5	5 U	5 U	5 U	5 U	5 U	5 U
Chloroform	7	5 U	5 U	5 U	5 U	5 U	5 U
1,1,1-Trichloroethane	5	5 U	5 U	5 U	5 U	5 U	5 U
Methylcyclohexane	NA	4.3 J	2.3 J	5 U	5 U	5 U	5 U
Benzene	1	5 U	5 U	5 U	5 U	5 U	5 U
1,2-Dichloroethane	0.6	5 U	5 U	5 U	5 U	5 U	5 U
Trichloroethene (TCE)	5	2.7 J	5 U	5 U	5 U	5 U	5 U
1,2-Dichloropropane	1	5 U	5 U	5 U	5 U	5 U	5 U
Bromodichloromethane	50	5 U	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-Pentanone	NA	25 U	25 U	25 U	25 U	25 U	25 U
Toluene	5	5 U	1.2 J	5 U	5 U	5 U	5 U
t-1,3-Dichloropropene	0.4	5 U	5 U	5 U	5 U	5 U	5 U
cis-1,3-Dichloropropene	0.4	5 U	5 U	5 U	5 U	5 U	5 U
1,1,2-Trichloroethane	1	5 U	5 U	5 U	5 U	5 U	5 U
2-Hexanone	50	25 U	25 U	25 U	25 U	25 UJ	25 U
Dibromochloromethane	50	5 U	5 U	5 U	5 U	5 U	5 U
1,2-Dibromoethane	NA	5 U	5 U	5 U	5 U	5 U	5 U
Tetrachloroethene (PCE)	5	75	210	5 U	5 U	9.8	14

Table 3-1VOCs in Groundwater March 2009

Sample ID	NYSDEC Class	HP-1-AA	HP-1-A	HP-1-B	HP-2-A	HP-2-B	HP-2-B-DUP	
Sampling Date	GA	3/16/2009	3/16/2009	3/16/2009	3/19/2009	3/19/2009	3/19/2009	
Sample Depth (ft)	Groundwater	16	25	40	25	35	35	
Sample Type	Criteria	Env. Sample	Sample Dup.					
Chlorobenzene	5	5 U	5 U	5 U	5 U	5 U	5 U	
Ethyl Benzene	5	5 U	5 U	5 U	5 U	5 U	5 U	
m/p-Xylenes	5	10 U						
o-Xylene	5	5 U	5 U	5 U	5 U	5 U	5 U	
Styrene	5	5 U	5 U	5 U	5 U	5 U	5 U	
Bromoform	50	5 U	5 U	5 U	5 U	5 UJ	5 U	
Isopropylbenzene	5	5 U	5 U	5 U	5 U	5 U	5 U	
1,1,2,2-Tetrachloroethane	5	5 U	5 U	5 U	5 U	5 U	5 U	
1,3-Dichlorobenzene	3	5 U	5 U	5 U	5 U	5 U	5 U	
1,4-Dichlorobenzene	3	5 U	5 U	5 U	5 U	5 U	5 U	
1,2-Dichlorobenzene	3	5 U	5 U	5 U	5 U	5 U	5 U	
1,2-Dibromo-3-Chloropropane	0.04	5 U	5 U	5 U	5 U	5 U	5 U	
1,2,4-Trichlorobenzene	5	5 U	5 U	5 U	5 U	5 U	5 U	

Table 3-1VOCs in Groundwater March 2009

Notes:

Bold - Exceeds Criteria

U - Not detected

J - Estimated value

D - Value after dilution

SW - Supply well

HP - Hydropunch

Sample ID	NYSDEC Class	HP-3-A	n Groundwater M HP-3-B	HP-3-C	HP-4-A	HP-6-A	HP-6-B
Sampling Date	GA	3/16/2009	3/16/2009	3/16/2009	3/18/2009	3/18/2009	3/18/2009
Sample Depth (ft)	Groundwater	31	40	55	15	15	30
Sample Type	Criteria	Env. Sample	Env. Sample	Env. Sample	Env. Sample	Env. Sample	Env. Sample
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
Dichlorodifluoromethane	5	5 U	5 U	5 U	5 U	5 U	5 U
Chloromethane	5	5 U	5 U	5 U	5 U	5 U	5 U
Vinyl Chloride	2	5 U	5 U	5 U	5 U	5 U	4.5 J
Bromomethane	5	5 U	5 U	5 U	5 U	5 U	5 U
Chloroethane	5	5 U	5 U	5 U	5 U	5 U	5 U
Trichlorofluoromethane	5	5 U	5 U	5 U	5 U	5 U	5 U
1,1,2-Trichlorotrifluoroethane	5	5 U	5 U	5 U	5 U	5 U	5 U
1,1-Dichloroethene	5	5 U	5 U	5 U	5 U	5 U	5 U
Acetone	50	25 U	25 U	25 UJ	25 U	25 U	25 U
Carbon Disulfide	60	5 U	5 U	5 U	5 U	5 U	5 U
Methyl tert-butyl Ether	10	5 U	5 U	5 U	5 U	5 U	5 U
Methyl Acetate	NA	5 U	5 U	5 U	5 U	5 U	5 U
Methylene Chloride	5	5 U	5 U	5 U	5 U	5 U	5 U
trans-1,2-Dichloroethene	5	5 U	5 U	5 U	5 U	5 U	5 U
1,1-Dichloroethane	5	5 U	5 U	5 U	5 U	5 U	5 U
Cyclohexane	NA	5 U	5 U	5 U	5 U	5 U	5 U
2-Butanone	50	25 U	25 U	25 U	25 U	25 U	25 U
Carbon Tetrachloride	5	5 U	5 U	5 U	5 U	5 U	5 U
cis-1,2-Dichloroethene	5	3.6 J	5 U	5 U	5 U	18	120
Chloroform	7	5 U	5 U	5 U	5 U	5 U	5 U
1,1,1-Trichloroethane	5	5 U	5 U	5 U	5 U	5 U	5 U
Methylcyclohexane	NA	5 U	5 U	5 U	5 U	5 U	5 U
Benzene	1	5 U	5 U	5 U	5 U	5 U	5 U
1,2-Dichloroethane	0.6	5 U	5 U	5 U	5 U	5 U	5 U
Trichloroethene (TCE)	5	2.2 J	5 U	5 U	5 U	5.7	34
1,2-Dichloropropane	1	5 U	5 U	5 U	5 U	5 U	5 U
Bromodichloromethane	50	5 U	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-Pentanone	NA	25 U	25 U	25 UJ	25 U	25 U	25 U
Toluene	5	5 U	5 U	5 U	5 U	5 U	5 U
t-1,3-Dichloropropene	0.4	5 U	5 U	5 U	5 U	5 U	5 U
cis-1,3-Dichloropropene	0.4	5 U	5 U	5 U	5 U	5 U	5 U
1,1,2-Trichloroethane	1	5 U	5 U	5 U	5 U	5 U	5 U
2-Hexanone	50	25 U	25 U	25 UJ	25 UJ	25 UJ	25 UJ
Dibromochloromethane	50	5 U	5 U	5 U	5 U	5 U	5 U
1,2-Dibromoethane	NA	5 U	5 U	5 U	5 U	5 U	5 U
Tetrachloroethene (PCE)	5	430	84	5 U	5 U	43	70

Table 3-1VOCs in Groundwater March 2009

Sample ID	NYSDEC Class	HP-3-A	HP-3-B	HP-3-C	HP-4-A	HP-6-A	HP-6-B	
Sampling Date	GA	3/16/2009	3/16/2009	3/16/2009	3/18/2009	3/18/2009	3/18/2009	
Sample Depth (ft)	Groundwater	31	40	55	15	15	30	
Sample Type	Criteria	Env. Sample						
Chlorobenzene	5	5 U	5 U	5 U	5 U	5 U	5 U	
Ethyl Benzene	5	5 U	5 U	5 U	5 U	5 U	5 U	
m/p-Xylenes	5	10 U						
o-Xylene	5	5 U	5 U	5 U	5 U	5 U	5 U	
Styrene	5	5 U	5 U	5 U	5 U	5 U	5 U	
Bromoform	50	5 U	5 U	5 UJ	5 UJ	5 UJ	5 UJ	
Isopropylbenzene	5	5 U	5 U	5 U	5 U	5 U	5 U	
1,1,2,2-Tetrachloroethane	5	5 U	5 U	5 U	5 U	5 U	5 U	
1,3-Dichlorobenzene	3	5 U	5 U	5 U	5 U	5 U	5 U	
1,4-Dichlorobenzene	3	5 U	5 U	5 U	5 U	5 U	5 U	
1,2-Dichlorobenzene	3	5 U	5 U	5 U	5 U	5 U	5 U	
1,2-Dibromo-3-Chloropropane	0.04	5 U	5 U	5 U	5 U	5 U	5 U	
1,2,4-Trichlorobenzene	5	5 U	5 U	5 U	5 U	5 U	5 U	

Table 3-1VOCs in Groundwater March 2009

Notes:

Bold - Exceeds Criteria

U - Not detected

J - Estimated value

D - Value after dilution

SW - Supply well

HP - Hydropunch

Sample ID	NYSDEC Class	HP-6-C	n Groundwater M HP-7-A	HP-7-B	HP-8-A	HP-8-B	HP-9-A
Sampling Date	GA	3/18/2009	3/18/2009	3/18/2009	3/18/2009	3/18/2009	3/18/2009
Sample Depth (ft)	Groundwater	40	15	30	15	30	15
Sample Type	Criteria	Env. Sample	Env. Sample	Env. Sample	Env. Sample	Env. Sample	Env. Sample
Units	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
Dichlorodifluoromethane	5	5 U	5 U	5 U	5 U	5 U	5 U
Chloromethane	5	5 U	5 U	5 U	5 U	5 U	5 U
Vinyl Chloride	2	5 U	5 U	5 U	5 U	5 U	5 U
Bromomethane	5	5 U	5 U	5 U	5 U	5 U	5 U
Chloroethane	5	5 U	5 U	5 U	5 U	5 U	5 U
Trichlorofluoromethane	5	5 U	5 U	5 U	5 U	5 U	5 U
1,1,2-Trichlorotrifluoroethane	5	5 U	5 U	5 U	5 U	5 U	5 U
1,1-Dichloroethene	5	5 U	5 U	5 U	5 U	5 U	5 U
Acetone	50	25 U	25 U	25 U	25 U	25 U	25 U
Carbon Disulfide	60	5 U	5 U	5 U	5 U	5 U	5 U
Methyl tert-butyl Ether	10	5 U	5 U	5 U	5 U	5 U	5 U
Methyl Acetate	NA	5 U	5 U	5 U	5 U	5 U	5 U
Methylene Chloride	5	5 U	5 U	5 U	5 U	5 U	5 U
trans-1,2-Dichloroethene	5	5 U	5 U	5 U	5 U	5 U	5 U
1,1-Dichloroethane	5	5 U	5 U	5 U	5 U	5 U	5 U
Cyclohexane	NA	5 U	5 U	5 U	5 U	5 U	5 U
2-Butanone	50	25 U	25 U	25 U	25 U	25 U	25 U
Carbon Tetrachloride	5	5 U	5 U	5 U	5 U	5 U	5 U
cis-1,2-Dichloroethene	5	38	5 U	5 U	12	5 U	3.6 J
Chloroform	7	5 U	5 U	5 U	5 U	5 U	5 U
1,1,1-Trichloroethane	5	5 U	5 U	5 U	5 U	5 U	5 U
Methylcyclohexane	NA	5 U	5 U	5 U	5 U	5 U	5 U
Benzene	1	5 U	5 U	5 U	5 U	5 U	5 U
1,2-Dichloroethane	0.6	5 U	5 U	5 U	5 U	5 U	5 U
Trichloroethene (TCE)	5	14	5 U	5 U	5 U	5 U	5 U
1,2-Dichloropropane	1	5 U	5 U	5 U	5 U	5 U	5 U
Bromodichloromethane	50	5 U	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-Pentanone	NA	25 U	25 U	25 U	25 U	25 U	25 U
Toluene	5	5 U	5 U	5 U	5 U	5 U	5 U
t-1,3-Dichloropropene	0.4	5 U	5 U	5 U	5 U	5 U	5 U
cis-1,3-Dichloropropene	0.4	5 U	5 U	5 U	5 U	5 U	5 U
1,1,2-Trichloroethane	1	5 U	5 U	5 U	5 U	5 U	5 U
2-Hexanone	50	25 UJ	25 U	25 UJ	25 UJ	25 UJ	25 UJ
Dibromochloromethane	50	5 U	5 U	5 U	5 U	5 U	5 U
1,2-Dibromoethane	NA	5 U	5 U	5 U	5 U	5 U	5 U
Tetrachloroethene (PCE)	5	91	9.5	5 U	25	5 U	5 U

Table 3-1VOCs in Groundwater March 2009

Sample ID	NYSDEC Class	HP-6-C	HP-7-A	HP-7-B	HP-8-A	HP-8-B	HP-9-A			
Sampling Date	GA	3/18/2009	3/18/2009	3/18/2009	3/18/2009	3/18/2009	3/18/2009			
Sample Depth (ft)	Groundwater	40	15	30	15	30	15			
Sample Type	Criteria	Env. Sample								
Chlorobenzene	5	5 U	5 U	5 U	5 U	5 U	5 U			
Ethyl Benzene	5	5 U	5 U	5 U	5 U	5 U	5 U			
m/p-Xylenes	5	10 U								
o-Xylene	5	5 U	5 U	5 U	5 U	5 U	5 U			
Styrene	5	5 U	5 U	5 U	5 U	5 U	5 U			
Bromoform	50	5 UJ	5 U	5 UJ	5 UJ	5 UJ	5 UJ			
Isopropylbenzene	5	5 U	5 U	5 U	5 U	5 U	5 U			
1,1,2,2-Tetrachloroethane	5	5 U	5 U	5 U	5 U	5 U	5 U			
1,3-Dichlorobenzene	3	5 U	5 U	5 U	5 U	5 U	5 U			
1,4-Dichlorobenzene	3	5 U	5 U	5 U	5 U	5 U	5 U			
1,2-Dichlorobenzene	3	5 U	5 U	5 U	5 U	5 U	5 U			
1,2-Dibromo-3-Chloropropane	0.04	5 U	5 U	5 U	5 U	5 U	5 U			
1,2,4-Trichlorobenzene	5	5 U	5 U	5 U	5 U	5 U	5 U			

Table 3-1VOCs in Groundwater March 2009

Notes:

Bold - Exceeds Criteria

U - Not detected

J - Estimated value

D - Value after dilution

SW - Supply well

HP - Hydropunch

Sample ID	NYSDEC Class	HP-9-B	n Groundwater M HP-10-A	HP-11-A	HP-11-B	HP-12-A	HP-12-B
Sampling Date	GA	3/18/2009	3/18/2009	3/16/2009	3/16/2009	3/19/2009	3/19/2009
Sample Depth (ft)	Groundwater	30	20	15	35	25	40
Sample Type	Criteria	Env. Sample	Env. Sample	Env. Sample	Env. Sample	Env. Sample	Env. Sample
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
Dichlorodifluoromethane	5	5 U	5 U	5 U	5 U	5 U	5 U
Chloromethane	5	5 U	5 U	5 U	5 U	5 U	5 U
Vinyl Chloride	2	5 U	5 U	5 U	5 U	5 U	5 U
Bromomethane	5	5 U	5 U	5 U	5 U	5 U	5 U
Chloroethane	5	5 U	5 U	5 U	5 U	5 U	5 U
Trichlorofluoromethane	5	5 U	5 U	5 U	5 U	5 U	5 U
1,1,2-Trichlorotrifluoroethane	5	5 U	5 U	5 U	5 U	5 U	5 U
1,1-Dichloroethene	5	5 U	5 U	5 U	5 U	5 U	5 U
Acetone	50	25 U	25 U	25 UJ	25 U	25 U	25 U
Carbon Disulfide	60	5 U	5 U	5 U	5 U	5 U	5 U
Methyl tert-butyl Ether	10	5 U	5 U	5 U	5 U	5 U	5 U
Methyl Acetate	NA	5 U	5 U	5 UJ	5 U	5 U	5 U
Methylene Chloride	5	5 U	5 U	5 U	5 U	5 U	5 U
trans-1,2-Dichloroethene	5	5 U	5 U	5 U	5 U	5 U	5 U
1,1-Dichloroethane	5	5 U	5 U	5 U	5 U	5 U	5 U
Cyclohexane	NA	5 U	5 U	5 U	5 U	5 U	5 U
2-Butanone	50	25 U	25 U	25 U	25 U	25 U	25 U
Carbon Tetrachloride	5	5 U	5 U	5 U	5 U	5 U	5 U
cis-1,2-Dichloroethene	5	5	5 U	4.4 J	2.1 J	5 U	5 U
Chloroform	7	5 U	5 U	5 U	5 U	5 U	5 U
1,1,1-Trichloroethane	5	5 U	5 U	5 U	5 U	5 U	5 U
Methylcyclohexane	NA	5 U	5 U	5 U	5 U	5 U	5 U
Benzene	1	5 U	5 U	5 U	5 U	5 U	5 U
1,2-Dichloroethane	0.6	5 U	5 U	5 U	5 U	5 U	5 U
Trichloroethene (TCE)	5	5 U	5 U	5 U	5 U	5 U	5 U
1,2-Dichloropropane	1	5 U	5 U	5 U	5 U	5 U	5 U
Bromodichloromethane	50	5 U	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-Pentanone	NA	25 U	25 U	25 U	25 U	25 U	25 U
Toluene	5	5 U	5 U	5 U	5 U	5 U	5 U
t-1,3-Dichloropropene	0.4	5 U	5 U	5 U	5 U	5 U	5 U
cis-1,3-Dichloropropene	0.4	5 U	5 U	5 U	5 U	5 U	5 U
1,1,2-Trichloroethane	1	5 U	5 U	5 U	5 U	5 U	5 U
2-Hexanone	50	25 UJ	25 UJ	25 U	25 U	25 UJ	25 UJ
Dibromochloromethane	50	5 U	5 U	5 U	5 U	5 U	5 U
1,2-Dibromoethane	NA	5 U	5 U	5 U	5 U	5 U	5 U
Tetrachloroethene (PCE)	5	5.2	5 U	18	68	5 U	5 U

Table 3-1 VOCs in Groundwater March 2009

Sample ID	NYSDEC Class	HP-9-B	HP-10-A	HP-11-A	HP-11-B	HP-12-A	HP-12-B				
Sampling Date	GA	3/18/2009	3/18/2009	3/16/2009	3/16/2009	3/19/2009	3/19/2009				
Sample Depth (ft)	Groundwater	30	20	15	35	25	40				
Sample Type	Criteria	Env. Sample									
Chlorobenzene	5	5 U	5 U	5 U	5 U	5 U	5 U				
Ethyl Benzene	5	5 U	5 U	5 U	5 U	5 U	5 U				
m/p-Xylenes	5	10 U									
o-Xylene	5	5 U	5 U	5 U	5 U	5 U	5 U				
Styrene	5	5 U	5 U	5 U	5 U	5 U	5 U				
Bromoform	50	5 UJ	5 UJ	5 UJ	5 U	5 UJ	5 UJ				
Isopropylbenzene	5	5 U	5 U	5 U	5 U	5 U	5 U				
1,1,2,2-Tetrachloroethane	5	5 U	5 U	5 U	5 U	5 U	5 U				
1,3-Dichlorobenzene	3	5 U	5 U	5 U	5 U	5 U	5 U				
1,4-Dichlorobenzene	3	5 U	5 U	5 U	5 U	5 U	5 U				
1,2-Dichlorobenzene	3	5 U	5 U	5 U	5 U	5 U	5 U				
1,2-Dibromo-3-Chloropropane	0.04	5 U	5 U	5 UJ	5 U	5 U	5 U				
1,2,4-Trichlorobenzene	5	5 U	5 U	5 U	5 U	5 U	5 U				

Table 3-1VOCs in Groundwater March 2009

Bold - Exceeds Criteria

U - Not detected

J - Estimated value

D - Value after dilution

SW - Supply well

HP - Hydropunch

Sample ID	NYSDEC Class	HP-12-C	HP-13-A	HP-13-B	HP-14-A	HP-14-A-DUP
Sampling Date	GA	3/19/2009	3/17/2009	3/17/2009	3/17/2009	3/17/2009
Sample Depth (ft)	Groundwater	55	25	35	20	20
Sample Type	Criteria	Env. Sample	Env. Sample	Env. Sample	Env. Sample	Sample Dup.
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
Dichlorodifluoromethane	5	5 U	5 U	5 U	5 U	5 U
Chloromethane	5	5 U	5 U	5 U	5 U	5 U
Vinyl Chloride	2	5 U	5 U	5 U	5 U	5 U
Bromomethane	5	5 U	5 U	5 U	5 U	5 U
Chloroethane	5	5 U	5 U	5 U	5 U	5 U
Trichlorofluoromethane	5	5 U	5 U	5 U	5 U	5 U
1,1,2-Trichlorotrifluoroethane	5	5 U	5 U	5 U	5 U	5 U
1,1-Dichloroethene	5	5 U	5 U	5 U	5 U	5 U
Acetone	50	25 UJ				
Carbon Disulfide	60	5 U	5 U	5 U	5 U	5 U
Methyl tert-butyl Ether	10	5 U	5 U	5 U	5 U	5 U
Methyl Acetate	NA	5 UJ				
Methylene Chloride	5	5 U	5 U	5 U	5 U	5 U
trans-1,2-Dichloroethene	5	5 U	5 U	5 U	5 U	5 U
1,1-Dichloroethane	5	5 U	5 U	5 U	5 U	5 U
Cyclohexane	NA	5 U	5 U	5 U	5 U	5 U
2-Butanone	50	25 U				
Carbon Tetrachloride	5	5 U	5 U	5 U	5 U	5 U
cis-1,2-Dichloroethene	5	5 U	5 U	2.5 J	5 U	5 U
Chloroform	7	5 U	5 U	5 U	5 U	5 U
1,1,1-Trichloroethane	5	5 U	5 U	5 U	5 U	5 U
Methylcyclohexane	NA	5 U	5 U	5 U	5 U	5 U
Benzene	1	5 U	5 U	5 U	5 U	5 U
1,2-Dichloroethane	0.6	5 U	5 U	5 U	5 U	5 U
Trichloroethene (TCE)	5	5 U	5 U	5 U	5 U	5 U
1,2-Dichloropropane	1	5 U	5 U	5 U	5 U	5 U
Bromodichloromethane	50	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-Pentanone	NA	25 UJ	25 U	25 U	25 U	25 U
Toluene	5	5 U	5 U	5 U	5 U	5 U
t-1,3-Dichloropropene	0.4	5 U	5 U	5 U	5 U	5 U
cis-1,3-Dichloropropene	0.4	5 U	5 U	5 U	5 U	5 U
1,1,2-Trichloroethane	1	5 U	5 U	5 U	5 U	5 U
2-Hexanone	50	25 UJ	25 U	25 U	25 U	25 U
Dibromochloromethane	50	5 U	5 U	5 U	5 U	5 U
1,2-Dibromoethane	NA	5 U	5 U	5 U	5 U	5 U
Tetrachloroethene (PCE)	5	5 U	5 U	3.9 J	5 U	5 U

Table 3-1 VOCs in Groundwater March 2009

				0		
Sample ID	NYSDEC Class	HP-12-C	HP-13-A	HP-13-B	HP-14-A	HP-14-A-DUP
Sampling Date	GA	3/19/2009	3/17/2009	3/17/2009	3/17/2009	3/17/2009
Sample Depth (ft)	Groundwater	55	25	35	20	20
Sample Type	Criteria	Env. Sample	Env. Sample	Env. Sample	Env. Sample	Sample Dup.
Chlorobenzene	5	5 U	5 U	5 U	5 U	5 U
Ethyl Benzene	5	5 U	5 U	5 U	5 U	5 U
m/p-Xylenes	5	10 U				
o-Xylene	5	5 U	5 U	5 U	5 U	5 U
Styrene	5	5 U	5 U	5 U	5 U	5 U
Bromoform	50	5 UJ				
Isopropylbenzene	5	5 U	5 U	5 U	5 U	5 U
1,1,2,2-Tetrachloroethane	5	5 U	5 U	5 U	5 U	5 U
1,3-Dichlorobenzene	3	5 U	5 U	5 U	5 U	5 U
1,4-Dichlorobenzene	3	5 U	5 U	5 U	5 U	5 U
1,2-Dichlorobenzene	3	5 U	5 U	5 U	5 U	5 U
1,2-Dibromo-3-Chloropropane	0.04	5 U	5 UJ	5 UJ	5 UJ	5 UJ
1,2,4-Trichlorobenzene	5	5 U	5 U	5 U	5 U	5 U

Table 3-1VOCs in Groundwater March 2009

Bold - Exceeds Criteria

U - Not detected

J - Estimated value

D - Value after dilution

SW - Supply well

HP - Hydropunch

Sample ID	NYSDEC Class	SW-1	SW-2
Sampling Date	GA	3/19/2009	3/19/2009
Sample Depth (ft)	Groundwater	50-70	43-63
Sample Type	Criteria	Env. Sample	Env. Sample
Units	µg/L	µg/L	µg/L
Dichlorodifluoromethane	5	5 U	5 U
Chloromethane	5	5 U	5 U
Vinyl Chloride	2	5 U	5 U
Bromomethane	5	5 U	5 U
Chloroethane	5	5 U	5 U
Trichlorofluoromethane	5	5 U	5 U
1,1,2-Trichlorotrifluoroethane	5	5 U	5 U
1,1-Dichloroethene	5	5 U	5 U
Acetone	50	25 U	25 U
Carbon Disulfide	60	5 U	5 U
Methyl tert-butyl Ether	10	5 U	5 U
Methyl Acetate	NA	5 U	5 U
Methylene Chloride	5	5 U	5 U
trans-1,2-Dichloroethene	5	5 U	5 U
1,1-Dichloroethane	5	5 U	5 U
Cyclohexane	NA	5 U	5 U
2-Butanone	50	25 U	25 U
Carbon Tetrachloride	5	5 U	5 U
cis-1,2-Dichloroethene	5	5 U	5 U
Chloroform	7	5 U	5 U
1,1,1-Trichloroethane	5	5 U	5 U
Methylcyclohexane	NA	5 U	5 U
Benzene	1	5 U	5 U
1,2-Dichloroethane	0.6	5 U	5 U
Trichloroethene (TCE)	5	5 U	5 U
1,2-Dichloropropane	1	5 U	5 U
Bromodichloromethane	50	5 U	5 U
4-Methyl-2-Pentanone	NA	25 U	25 U
Toluene	5	5 U	5 U
t-1,3-Dichloropropene	0.4	5 U	5 U
cis-1,3-Dichloropropene	0.4	5 U	5 U
1,1,2-Trichloroethane	1	5 U	5 U
2-Hexanone	50	25 U	25 U
Dibromochloromethane	50	5 U	5 U
1,2-Dibromoethane	NA	5 U	5 U
Tetrachloroethene (PCE)	5	5 U	15

Table 3-1 VOCs in Groundwater March 2009

Sample ID	NYSDEC Class	SW-1	SW-2	
Sampling Date	GA	3/19/2009	3/19/2009	
Sample Depth (ft)	Groundwater	50-70	43-63	
Sample Type	Criteria	Env. Sample	Env. Sample	
Chlorobenzene	5	5 U	5 U	
Ethyl Benzene	5	5 U	5 U	
m/p-Xylenes	5	10 U	10 U	
o-Xylene	5	5 U	5 U	
Styrene	5	5 U	5 U	
Bromoform	50	5 U	5 U	
Isopropylbenzene	5	5 U	5 U	
1,1,2,2-Tetrachloroethane	5	5 U	5 U	
1,3-Dichlorobenzene	3	5 U	5 U	
1,4-Dichlorobenzene	3	5 U	5 U	
1,2-Dichlorobenzene	3	5 U	5 U	
1,2-Dibromo-3-Chloropropane	0.04	5 U	5 U	
1,2,4-Trichlorobenzene	5	5 U	5 U	

Table 3-1 VOCs in Groundwater March 2009

Bold - Exceeds Criteria

U - Not detected

J - Estimated value

D - Value after dilution

SW - Supply well

HP - Hydropunch

Sample ID	NYS Unrestricted	SS-1	SS-2	SS-3	SS-5	SS-5-DUP
Sampling Date	Use Soil Cleanup	3/17/2009	3/17/2009	3/17/2009	3/17/2009	3/17/2009
Sample Type	Objectives	Env. Sample	Env. Sample	Env. Sample	Env. Sample	Sample Dup.
Sample Depth (ft)	-	20-21	15-16	15-16	15-16	15-16
Units	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg
1,1,1-Trichloroethane	680	830 U	5.8 U	6.2 U	6 U	5.8 U
1,1,2,2-Tetrachloroethane	NA	830 U	5.8 U	6.2 U	6 U	5.8 U
1,1,2-Trichloroethane	NA	830 U	5.8 U	6.2 U	6 U	5.8 U
1,1,2-Trichlorotrifluoroethane	NA	830 U	5.8 U	6.2 U	6 U	5.8 U
1,1-Dichloroethane	270	830 U	5.8 U	6.2 U	6 U	5.8 U
1,1-Dichloroethene	330	830 U	5.8 U	6.2 U	6 U	5.8 U
1,2,4-Trichlorobenzene	NA	830 U	5.8 U	6.2 U	6 U	5.8 U
1,2-Dibromo-3-Chloropropane	NA	830 U	5.8 U	6.2 U	6 U	5.8 U
1,2-Dibromoethane	NA	830 U	5.8 U	6.2 U	6 U	5.8 U
1,2-Dichlorobenzene	1100	830 U	5.8 U	6.2 U	6 U	5.8 U
1,2-Dichloroethane	20	830 U	5.8 U	6.2 U	6 U	5.8 U
1,2-Dichloropropane	NA	830 U	5.8 U	6.2 U	6 U	5.8 U
1,3-Dichlorobenzene	2400	830 U	5.8 U	6.2 U	6 U	5.8 U
1,4-Dichlorobenzene	1800	830 U	5.8 U	6.2 U	6 U	5.8 U
2-Butanone	120	4200 U	29 U	31 U	30 U	29 U
2-Hexanone	NA	4200 U	29 U	31 UJ	30 U	29 U
4-Methyl-2-Pentanone	NA	4200 U	29 U	31 UJ	30 U	29 U
Acetone	50	4200 U	14 J	31 UJ	15 J	29 U
Benzene	60	830 U	5.8 U	6.2 U	6 U	5.8 U
Bromodichloromethane	NA	830 U	5.8 U	6.2 U	6 U	5.8 U
Bromoform	NA	830 U	5.8 U	6.2 U	6 U	5.8 U
Bromomethane	NA	830 U	5.8 U	6.2 U	6 U	5.8 U
Carbon Disulfide	NA	830 U	5.8 U	6.2 U	6 U	5.8 U
Carbon Tetrachloride	760	830 U	5.8 U	6.2 U	6 U	5.8 U
Chlorobenzene	1100	830 U	5.8 U	6.2 U	6 U	5.8 U
Chloroethane	NA	830 U	5.8 U	6.2 U	6 U	5.8 U
Chloroform	370	830 U	5.8 U	6.2 U	6 U	5.8 U
Chloromethane	NA	830 U	5.8 U	6.2 U	6 U	5.8 U
cis-1,2-Dichloroethene	250	830 U	5.8 U	6.2 U	6 U	5.8 U
cis-1,3-Dichloropropene	NA	830 U	5.8 U	6.2 U	6 U	5.8 U
Cyclohexane	NA	25000	5.8 U	6.2 U	6 U	5.8 U

Sample ID	NYS Unrestricted	SS-1	SS-2	SS-3	SS-5	SS-5-DUP
Sampling Date	Use Soil Cleanup	3/17/2009	3/17/2009	3/17/2009	3/17/2009	3/17/2009
Sample Type	Objectives	Env. Sample	Env. Sample	Env. Sample	Env. Sample	Sample Dup.
Sample Depth (ft)		20-21	15-16	15-16	15-16	15-16
Units	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg
Dibromochloromethane	NA	830 U	5.8 U	6.2 U	6 U	5.8 U
Dichlorodifluoromethane	NA	830 U	5.8 U	6.2 U	6 U	5.8 U
Ethyl Benzene	1000	25000	5.8 U	6.2 U	6 U	5.8 U
Isopropylbenzene	NA	6200	5.8 U	6.2 U	6 U	5.8 U
m/p-Xylenes	260	140000	12 U	12 U	12 U	12 U
Methyl Acetate	NA	830 U	5.8 U	6.2 U	6 U	5.8 U
Methyl tert-butyl Ether	930	830 U	5.8 U	6.2 U	6 U	5.8 U
Methylcyclohexane	NA	140000	5.8 U	6.2 U	6 U	5.8 U
Methylene Chloride	50	830 U	5.8 U	6.2 U	6 U	5.8 U
o-Xylene	260	25000	5.8 U	6.2 U	6 U	5.8 U
Styrene	NA	830 U	5.8 U	6.2 U	6 U	5.8 U
t-1,3-Dichloropropene	NA	830 U	5.8 U	6.2 UJ	6 U	5.8 U
Tetrachloroethene (PCE)	1300	860	2 J	1.5 J	8	4.7 J
Toluene	700	1500	5.8 U	2.5 J	6 U	5.8 U
trans-1,2-Dichloroethene	190	830 U	5.8 U	6.2 U	6 U	5.8 U
Trichloroethene (TCE)	470	830 U	5.8 U	6.2 U	6 U	5.8 U
Trichlorofluoromethane	NA	830 U	5.8 U	6.2 U	6 U	5.8 U
Vinyl Chloride	20	830 U	5.8 U	6.2 U	6 U	5.8 U

Notes:

All units in microgram per kilogram (µg/Kg)

NA - Not available

U - Not detected

J - Estimated value

1. NYS Soil Cleanup Objective for xylene (mixed).

Sample ID	NYS Unrestricted	SS-6	HP-1-C	HP-2-C	HP-5-A	HP-7-C
Sampling Date	Use Soil Cleanup	3/17/2009	3/16/2009	3/19/2009	3/18/2009	3/18/2009
Sample Type	Objectives	Env. Sample	Env. Sample	Env. Sample	Env. Sample	Env. Sample
Sample Depth (ft)		15-16	55-56	55-56	40-41	40-41
Units	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg
1,1,1-Trichloroethane	680	5.7 U	39 U		46 U	42 U
1,1,2,2-Tetrachloroethane	NA	5.7 U	39 UJ		46 U	42 U
1,1,2-Trichloroethane	NA	5.7 U	39 U	35 U	46 U	42 U
1,1,2-Trichlorotrifluoroethane	NA	5.7 U	39 U	35 U	46 U	42 U
1,1-Dichloroethane	270	5.7 U	39 U	35 U	46 U	42 U
1,1-Dichloroethene	330	5.7 U	39 U	35 U	46 U	42 U
1,2,4-Trichlorobenzene	NA	5.7 U	39 UJ	35 U	46 U	42 U
1,2-Dibromo-3-Chloropropane	NA	5.7 U	39 UJ		46 U	42 U
1,2-Dibromoethane	NA	5.7 U	39 U	35 U	46 U	42 U
1,2-Dichlorobenzene	1100	5.7 U	39 UJ		46 U	42 U
1,2-Dichloroethane	20	5.7 U	39 U		46 U	42 U
1,2-Dichloropropane	NA	5.7 U	39 U	35 U	46 U	42 U
1,3-Dichlorobenzene	2400	5.7 U	39 UJ		46 U	42 U
1,4-Dichlorobenzene	1800	5.7 U	39 UJ		46 U	42 U
2-Butanone	120	28 U	200 U		230 U	210 U
2-Hexanone	NA	28 U	200 U		230 U	210 U
4-Methyl-2-Pentanone	NA	28 U	200 U		230 U	210 U
Acetone	50	19 J	190 J		170 J	150 J
Benzene	60	5.7 U	39 U	35 U	46 U	42 U
Bromodichloromethane	NA	5.7 U	39 U	35 U	46 U	42 U
Bromoform	NA	5.7 U	39 UJ	35 U	46 U	42 U
Bromomethane	NA	5.7 U	39 UJ	35 U	46 U	42 U
Carbon Disulfide	NA	5.7 U	39 U	35 U	46 U	42 U
Carbon Tetrachloride	760	5.7 U	39 U	35 U	46 U	42 U
Chlorobenzene	1100	5.7 U	39 U	35 U	46 U	42 U
Chloroethane	NA	5.7 U	39 U	35 U	46 U	42 U
Chloroform	370	5.7 U	39 U	35 U	46 U	42 U
Chloromethane	NA	5.7 U	39 U	35 U	46 U	42 U
cis-1,2-Dichloroethene	250	5.7 U	39 U		46 U	42 U
cis-1,3-Dichloropropene	NA	5.7 U	39 U		46 U	42 U
Cyclohexane	NA	5.7 U	39 U	35 U	46 U	42 U

Sample ID	NYS Unrestricted	SS-6	HP-1-C	HP-2-C	HP-5-A	HP-7-C
Sampling Date	Use Soil Cleanup	3/17/2009	3/16/2009	3/19/2009	3/18/2009	3/18/2009
Sample Type	Objectives	Env. Sample				
Sample Depth (ft)		15-16	55-56	55-56	40-41	40-41
Units	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg
Dibromochloromethane	NA	5.7 U	39 U	35 U	46 U	42 U
Dichlorodifluoromethane	NA	5.7 U	39 U	35 U	46 U	42 U
Ethyl Benzene	1000	5.7 U	39 U	35 U	46 U	42 U
Isopropylbenzene	NA	5.7 U	39 UJ	35 U	46 U	42 U
m/p-Xylenes	260	11 U	78 U	69 U	92 U	84 U
Methyl Acetate	NA	5.7 U	39 UJ	35 U	46 U	42 U
Methyl tert-butyl Ether	930	5.7 U	39 U	35 U	46 U	42 U
Methylcyclohexane	NA	5.7 U	39 U	35 U	46 U	42 U
Methylene Chloride	50	5.7 U	39 U	35 U	46 U	42 U
o-Xylene	260	5.7 U	39 U	35 U	46 U	42 U
Styrene	NA	5.7 U	39 U	35 U	46 U	42 U
t-1,3-Dichloropropene	NA	5.7 U	39 U	35 U	46 U	42 U
Tetrachloroethene (PCE)	1300	2.7 J	150	35 U	160	34 J
Toluene	700	4.5 J	39 U	35 U	46 U	42 U
trans-1,2-Dichloroethene	190	5.7 U	39 U	35 U	46 U	42 U
Trichloroethene (TCE)	470	5.3 J	39 U	35 U	46 U	42 U
Trichlorofluoromethane	NA	5.7 U	39 U	35 U	46 U	42 U
Vinyl Chloride	20	5.7 U	39 U	35 U	46 U	42 U

Notes:

All units in microgram per kilogram (µg/Kg)

NA - Not available

U - Not detected

J - Estimated value

1. NYS Soil Cleanup Objective for xylene (mixed).

Table 3-3SVOCs in Soil Samples March 2009

Sample ID	NYS Unrestricted	SS-1	SS-2	SS-3	SS-4	SS-5	SS-5-DUP	SS-6
Sampling Date	Use Soil Cleanup	3/17/2009	3/17/2009	3/17/2009	3/17/2009	3/17/2009	3/17/2009	3/17/2009
Sample Type	Objectives	Env. Sample	Sample Dup.	Env. Sample				
Sample Depth (ft bgs)		20-21	15-16	15-16	10-11	15-16	15-16	15-16
Units	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg
1,1-Biphenyl	NA	440 U	380 U	410 U	350 U	400 U	380 U	370 U
2,2-oxybis(1-Chloropropane)	NA	440 U	380 U	410 U	350 U	400 U	380 U	370 U
2,4,5-Trichlorophenol	NA	440 U	380 U	410 U	350 U	400 U	380 U	370 U
2,4,6-Trichlorophenol	NA	440 U	380 U	410 U	350 U	400 U	380 U	370 U
2,4-Dichlorophenol	NA	440 U	380 U	410 U	350 U	400 U	380 U	370 U
2,4-Dimethylphenol	NA	440 U	380 U	410 U	350 U	400 U	380 U	370 U
2,4-Dinitrophenol	NA	440 UJ	380 UJ	410 UJ	350 UJ	400 UJ	380 UJ	370 UJ
2,4-Dinitrotoluene	NA	440 U	380 U	410 U	350 U	400 U	380 U	370 U
2,6-Dinitrotoluene	NA	440 U	380 U	410 U	350 U	400 U	380 U	370 U
2-Chloronaphthalene	NA	440 U	380 U	410 U	350 U	400 U	380 U	370 U
2-Chlorophenol	NA	440 U	380 U	410 U	350 U	400 U	380 U	370 U
2-Methylnaphthalene	NA	1500	380 U	410 U	350 U	400 U	380 U	370 U
2-Methylphenol	NA	440 U	380 U	410 U	350 U	400 U	380 U	370 U
2-Nitroaniline	NA	440 U	380 U	410 U	350 U	400 U	380 U	370 U
2-Nitrophenol	NA	440 U	380 U	410 U	350 U	400 U	380 U	370 U
3,3-Dichlorobenzidine	NA	440 U	380 U	410 U	350 U	400 U	380 U	370 U
3+4-Methylphenols	NA	440 U	380 U	410 U	350 U	400 U	380 U	370 U
3-Nitroaniline	NA	440 U	380 U	410 U	350 U	400 U	380 U	370 U
4,6-Dinitro-2-methylphenol	NA	440 UJ	380 UJ	410 UJ	350 UJ	400 UJ	380 UJ	370 UJ
4-Bromophenyl-phenylether	NA	440 U	380 U	410 U	350 U	400 U	380 U	370 U
4-Chloro-3-methylphenol	NA	440 U	380 U	410 U	350 U	400 U	380 U	370 U
4-Chloroaniline	NA	440 U	380 U	410 U	350 U	400 U	380 U	370 U
4-Chlorophenyl-phenylether	NA	440 U	380 U	410 U	350 U	400 U	380 U	370 U
4-Nitroaniline	NA	440 U	380 U	410 U	350 U	400 U	380 U	370 U
4-Nitrophenol	NA	440 U	380 U	410 U	350 U	400 U	380 U	370 U
Acenaphthene	20000	440 U	380 U	410 U	350 U	400 U	380 U	370 U
Acenaphthylene	100000	440 U	380 U	410 U	350 U	400 U	380 U	370 U
Acetophenone	NA	440 U	380 U	410 U	350 U	400 U	380 U	370 U
Anthracene	100000	440 U	380 U	410 U	350 U	400 U	380 U	370 U
Atrazine	NA	440 U	380 U	410 U	350 U	400 U	380 U	370 U
Benzaldehyde	NA	440 U	380 U	410 U	350 U	400 U	380 U	370 U
Benzo(a)anthracene	1000	440 U	380 U	410 U	350 U	400 U	380 U	370 U

Table 3-3SVOCs in Soil Samples March 2009

Sample ID	NYS Unrestricted	SS-1	SS-2	SS-3	SS-4	SS-5	SS-5-DUP	SS-6
Sampling Date	Use Soil Cleanup	3/17/2009	3/17/2009	3/17/2009	3/17/2009	3/17/2009	3/17/2009	3/17/2009
Sample Type	Objectives	Env. Sample	Sample Dup.	Env. Sample				
Sample Depth (ft bgs)		20-21	15-16	15-16	10-11	15-16	15-16	15-16
Units	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg
Benzo(a)pyrene	1000	440 U	380 U	410 U	350 U	400 U	380 U	370 U
Benzo(b)fluoranthene	1000	440 U	380 U	410 U	350 U	400 U	380 U	370 U
Benzo(g,h,i)perylene	100000	440 U	380 U	410 U	350 U	400 U	380 U	370 U
Benzo(k)fluoranthene	800	440 U	380 U	410 U	350 U	400 U	380 U	370 U
bis(2-Chloroethoxy)methane	NA	440 U	380 U	410 U	350 U	400 U	380 U	370 U
bis(2-Chloroethyl)ether	NA	440 U	380 U	410 U	350 U	400 U	380 U	370 U
bis(2-Ethylhexyl)phthalate	NA	440 U	380 U	410 U	350 U	400 U	380 U	370 U
Butylbenzylphthalate	NA	440 U	380 U	410 U	350 U	400 U	380 U	370 U
Caprolactam	NA	440 U	380 U	410 U	350 U	400 U	380 U	370 U
Carbazole	NA	440 U	380 U	410 U	350 U	400 U	380 U	370 U
Chrysene	1000	440 U	380 U	43 J	350 U	400 U	380 U	370 U
Dibenz(a,h)anthracene	330	440 U	380 U	410 U	350 U	400 U	380 U	370 U
Dibenzofuran	NA	440 U	380 U	410 U	350 U	400 U	380 U	370 U
Diethylphthalate	NA	440 U	380 U	410 U	350 U	400 U	380 U	370 U
Dimethylphthalate	NA	440 U	380 U	410 U	350 U	400 U	380 U	370 U
Di-n-butylphthalate	NA	440 U	380 U	410 U	350 U	400 U	380 U	370 U
Di-n-octyl phthalate	NA	440 U	380 U	410 U	350 U	400 U	380 U	370 U
Fluoranthene	100000	440 U	380 U	150 J	350 U	400 U	380 U	370 U
Fluorene	30000	440 U	380 U	410 U	350 U	400 U	380 U	370 U
Hexachlorobenzene	NA	440 U	380 U	410 U	350 U	400 U	380 U	370 U
Hexachlorobutadiene	NA	440 U	380 U	410 U	350 U	400 U	380 U	370 U
Hexachlorocyclopentadiene	NA	440 UJ	380 UJ	410 UJ	350 UJ	400 UJ	380 UJ	370 UJ
Hexachloroethane	NA	440 U	380 U	410 U	350 U	400 U	380 U	370 U
Indeno(1,2,3-cd)pyrene	500	440 U	380 U	410 U	350 U	400 U	380 U	370 U
Isophorone	NA	440 U	380 U	410 U	350 U	400 U	380 U	370 U
Naphthalene	12000	1100	380 U	410 U	350 U	400 U	380 U	370 U
Nitrobenzene	NA	440 U	380 U	410 U	350 U	400 U	380 U	370 U
N-Nitroso-di-n-propylamine	NA	440 U	380 U	410 U	350 U	400 U	380 U	370 U
N-Nitrosodiphenylamine	NA	440 U	380 U	410 U	350 U	400 U	380 U	370 U
Pentachlorophenol	800	440 U	380 U	410 U	350 U	400 U	380 U	370 U
Phenanthrene	100000	440 U	380 U	61 J	350 U	400 U	380 U	370 U
Phenol	330	440 U	380 U	410 U	350 U	400 U	380 U	370 U

Table 3-3SVOCs in Soil Samples March 2009

Sample ID	NYS Unrestricted	SS-1	SS-2	SS-3	SS-4	SS-5	SS-5-DUP	SS-6
Sampling Date	Use Soil Cleanup	3/17/2009	3/17/2009	3/17/2009	3/17/2009	3/17/2009	3/17/2009	3/17/2009
Sample Type	Objectives	Env. Sample	Sample Dup.	Env. Sample				
Sample Depth (ft bgs)		20-21	15-16	15-16	10-11	15-16	15-16	15-16
Units	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg
Pyrene	100000	440 U	380 U	120 J	350 U	400 U	380 U	370 U

All units in microgram per kilogram (µg/Kg)

Bold - Exceeds Criteria

NA - Not available

U - Not detected

Table 3-4Pesticides in Soil Samples March 2009

Sample ID	NYS Unrestricted	SS-1	SS-2	SS-3	SS-4	SS-5	SS-5-DUP	SS-6
Sampling Date	Use Soil Cleanup	3/17/2009	3/17/2009	3/17/2009	3/17/2009	3/17/2009	3/17/2009	3/17/2009
Sample Type	Objectives	Env. Sample	Sample Dup.	Env. Sample				
Sample Depth (ft bgs)		20-21	15-16	15-16	10-11	15-16	15-16	15-16
Units	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg
alpha-BHC	20	2.3 U	1.9 U	2.1 U	1.8 U	2 U	2 U	1.9 U
beta-BHC	36	2.3 U	1.9 U	2.1 U	1.8 U	2 U	2 U	1.9 U
delta-BHC	40	2.3 U	1.9 U	2.1 U	1.8 U	2 U		1.9 U
gamma-BHC	NA	2.3 U	1.9 U	2.1 U	1.8 U	2 U		
Heptachlor	42	2.3 U	1.9 U	2.1 U	1.8 U	2 U		1.9 U
Aldrin	5	2.3 U	1.9 U	2.1 U	1.8 U	2 U	2 U	1.9 U
Heptachlor epoxide	NA	2.3 U	1.9 U	2.1 U	1.8 U	2 U	2 U	1.9 U
Endosulfan I	2400	2.3 U	1.9 U	2.1 U	1.8 U	2 U		
Dieldrin	5	2.3 U	1.9 U	2.1 U	1.8 U	2 U	2 U	1.9 U
4,4-DDE	3.3	2.3 U	1.9 U	2.1 U	1.8 U	2 U	2 U	1.9 U
Endrin	14	2.3 U	1.9 U	2.1 U	1.8 U	2 U		1.9 U
Endosulfan II	2400	2.3 U	1.9 U	2.1 U	1.8 U	2 U		1.9 U
4,4-DDD	3.3	2.3 U	1.9 U	2.1 U	1.8 U	2 U		1.9 U
Endosulfan Sulfate	2400	2.3 U	1.9 U	2.1 U	1.8 U	2 U		1.9 U
4,4-DDT	3.3	2.3 U	1.9 U	2.1 U	1.8 U	2 U	2 U	1.9 U
Methoxychlor	NA	2.3 U	1.9 U	2.1 U	1.8 U	2 U	2 U	1.9 U
Endrin ketone	NA	2.3 U	1.9 U	2.1 U	1.8 U	2 U	2 U	1.9 U
Endrin aldehyde	NA	2.3 U	1.9 U	2.1 U	1.8 U	2 U	2 U	1.9 U
alpha-Chlordane	94	2.3 U	1.9 U	2.1 U	1.8 U	2 U		1.9 U
gamma-Chlordane	NA	2.3 U	1.9 U	2.1 U	1.8 U	2 U		1.9 U
Toxaphene	NA	23 U	19 U	21 U	18 U	20 U	20 U	19 U

All units in microgram per kilogram (µg/Kg)

NA - Not available

U - Not detected

Table 3-5 PCBs in Soil Samples March 2009

Sample ID	NYS Unrestricted	SS-1	SS-2	SS-3	SS-4	SS-5	SS-5-DUP	SS-6
Sampling Date	Use Soil Cleanup	3/17/2009	3/17/2009	3/17/2009	3/17/2009	3/17/2009	3/17/2009	3/17/2009
Sample Type	Objectives	Env. Sample	Sample Dup.	Env. Sample				
Sample Depth (ft bgs)		20-21	15-16	15-16	10-11	15-16	15-16	15-16
Units	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg
Aroclor-1016	0.1	23 U	19 U	21 U	18 U	20 U	20 U	19 U
Aroclor-1221	0.1	23 U	19 U	21 U	18 U	20 U	20 U	19 U
Aroclor-1232	0.1	23 U	19 U	21 U	18 U	20 U	20 U	19 U
Aroclor-1242	0.1	23 U	19 U	21 U	18 U	20 U	20 U	19 U
Aroclor-1248	0.1	23 U	19 U	21 U	18 U	20 U	20 U	19 U
Aroclor-1254	0.1	23 U	19 U	21 U	18 U	20 U	20 U	19 U
Aroclor-1260	0.1	23 U	19 U	21 U	18 U	20 U	20 U	19 U

All units in microgram per kilogram (µg/Kg)

Bold - Exceeds Criteria

The NYS Unrestricted Use criteria are for Total PCB.

U - Not detected

Table 3-6Metals in Soil Samples March 2009

Sample ID	NYS Unrestricted	SS-1	SS-2	SS-3	SS-4	SS-5	SS-5-DUP	SS-6
Sampling Date	Use Soil Cleanup	3/17/2009	3/17/2009	3/17/2009	3/17/2009	3/17/2009	3/17/2009	3/17/2009
Sample Type	Objectives	Env. Sample	Sample Dup.	Env. Sample				
Sample Depth (ft bgs)		20-21	15-16	15-16	10-11	15-16	15-16	15-16
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Aluminum	NA	6250	6470	11700	4640	6240	5450	6520
Antimony	NA	2.23 U	1.89 U		1.78 U	1.98 U	1.93 U	1.88 U
Arsenic	13	4.03	6.3	7.2	3.04	3.77	9.61	4.7
Barium	350	61.4	57.5	62.9	17.2	61.6	51.4	45.9
Beryllium	7.2	0.34	0.39	0.59	0.21 U	0.35	0.33	0.32
Cadmium	2.5	0.69	0.94	0.95	0.66	0.95	0.73	0.8
Calcium	NA	3440	1930	4920	35000	23100	15600	11300
Chromium	30	8.07	9.79	14	6.37	8.07	7.3	9.3
Cobalt	NA	5.49	6.02	9.48	3.97	5.99	5.02	5.49
Copper	50	38.1	29	22.7	23.4	26.7	23.5	26.5
Iron	NA	18300	22200	24200	11500	16900	15500	16000
Lead	63	16.1	74.2	13.8	5.76	9.09	8.16	11.2
Magnesium	NA	2980	2410	3460	7130	6470	5900	4430
Manganese	1600	451	870	537	314	816	661	359
Mercury	0.18	0.019	0.059	0.033	0.011 U	0.014	0.012 U	0.012
Nickel	30	16.3	18.2	22.4	11.9	15.9	14.2	15.2
Potassium	NA	618	509	690	399	733	523	551
Selenium	3.9	2.15	2.54	2.81	1.23	1.75	1.62	2.09
Silver	2	0.45 U	0.38 U	0.41 U	0.36 U	0.4 U	0.39 U	0.38 U
Sodium	NA	152	130	321	172	151	124	202
Thallium	NA	1.78 U	1.52 U	1.65 U	1.42 U	1.58 U	1.54 U	1.51 U
Vanadium	NA	10.8	13.4	18.6	8.4	15	11	11.6
Zinc	109	78.8 J	79.3	62.8 J	50.7	84.3 J	79 J	71.8 J

Notes:

All units in milligram per kilogram (mg/kg)

Bold - Exceeds Criteria

NA - Not available

U - Not detected

Table 3-7
VOCs in Soil Samples June 2009

Sample ID	NYS Unrestricted	SOIL-1	SOIL-2	SOIL-3	SOIL-3-DUP	SOIL-4	SOIL-5
Sampling Date	Use Soil Cleanup	6/22/2009	6/22/2009	6/22/2009	6/22/2009	6/22/2009	6/22/2009
Sample Depth (ft)	Objectives	4-5	4-5	4-5	4-5	4-5	4-5
Units		µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg
1,1,1-Trichloroethane	680	28 U	28 U	28 U	27 U	29 U	28 U
1,1,2,2-Tetrachloroethane	NA	28 U	28 U	28 U	27 U	29 U	28 U
1,1,2-Trichloroethane	NA	28 U	28 U	28 U	27 U	29 U	28 U
1,1,2-Trichlorotrifluoroethane	NA	28 U	28 U	28 U	27 U	29 U	28 U
1,1-Dichloroethane	270	28 U	28 U	28 U	27 U	29 U	28 U
1,1-Dichloroethene	330	28 U	28 U	28 U	27 U	29 U	28 U
1,2,4-Trichlorobenzene	NA	28 U	28 U	28 U	27 U	29 U	28 U
1,2-Dibromo-3-Chloropropane	NA	28 U	28 U	28 U	27 U	29 U	28 U
1,2-Dibromoethane	NA	28 U	28 U	28 U	27 U	29 U	28 U
1,2-Dichlorobenzene	1100	28 U	28 U	28 U	27 U	29 U	28 U
1,2-Dichloroethane	20	28 U	28 U	28 U	27 U	29 U	28 U
1,2-Dichloropropane	NA	28 U	28 U	28 U	27 U	29 U	28 U
1,3-Dichlorobenzene	2400	28 U	28 U	28 U	27 U	29 U	28 U
1,4-Dichlorobenzene	1800	28 U	28 U	28 U	27 U	29 U	28 U
2-Butanone	NA	140 U	140 U	140 U	140 U	150 U	140 U
2-Hexanone	NA	140 U	140 U	140 U	140 U	150 U	140 U
4-Methyl-2-Pentanone	NA	140 U	140 U	140 U	140 U	150 U	140 U
Acetone	50	98 J	R	R	R	R	R
Benzene	60	28 U	28 U	28 U	27 U	29 U	28 U
Bromodichloromethane	NA	28 U	28 U	28 U	27 U	29 U	28 U
Bromoform	NA	28 U	28 U	28 U	27 U	29 U	28 U
Bromomethane	NA	28 U	28 U	28 U	27 U	29 U	28 U
Carbon Disulfide	NA	28 U	28 U	28 U	27 U	29 U	28 U
Carbon Tetrachloride	760	28 U	28 U	28 U	27 U	29 U	28 U
Chlorobenzene	1100	28 U	28 U	28 U	27 U	29 U	28 U
Chloroethane	NA	28 U	28 U	28 U	27 U	29 U	28 U
Chloroform	370	28 U	28 U	28 U	27 U	29 U	28 U
Chloromethane	NA	28 U	28 U	28 U	27 U	29 U	28 U
cis-1,2-Dichloroethene	NA	28 U	28 U	28 U	27 U	29 U	28 U
cis-1,3-Dichloropropene	NA	28 U	28 U	28 U	27 U	29 U	28 U
Cyclohexane	NA	28 U	28 U	28 U	27 U	29 U	28 U
Dibromochloromethane	NA	28 U	28 U	28 U	27 U	29 U	28 U
Dichlorodifluoromethane	NA	28 U	28 U	28 U	27 U	29 U	28 U

Sample ID	NYS Unrestricted	SOIL-1	SOIL-2	SOIL-3	SOIL-3-DUP	SOIL-4	SOIL-5
Sampling Date	Use Soil Cleanup	6/22/2009	6/22/2009	6/22/2009	6/22/2009	6/22/2009	6/22/2009
Sample Depth (ft)	Objectives	4-5	4-5	4-5	4-5	4-5	4-5
Units		µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg
Ethyl Benzene	1000	28 U	28 U	28 U	27 U	29 U	28 U
Isopropylbenzene	NA	28 U	28 U	28 U	27 U	29 U	28 U
m/p-Xylenes	260	56 U	56 U	55 U	55 U	58 U	57 U
Methyl Acetate	NA	28 U	28 U	28 U	27 U	29 U	28 U
Methyl tert-butyl Ether	930	28 U	28 U	28 U	27 U	29 U	28 U
Methylcyclohexane	NA	28 U	28 U	28 U	27 U	29 U	28 U
Methylene Chloride	50	28 U	28 U	28 U	27 U	29 U	28 U
o-Xylene	260	28 U	28 U	28 U	27 U	29 U	28 U
Styrene	NA	28 U	16 J	28 U	27 U	29 U	28 U
t-1,3-Dichloropropene	NA	28 U	28 U	28 U	27 U	29 U	28 U
Tetrachloroethene (PCE)	1300	41	210	330	220	10 J	16 J
Toluene	700	28 U	28 U	28 U	27 U	29 U	28 U
trans-1,2-Dichloroethene	330	28 U	28 U	28 U	27 U	29 U	28 U
Trichloroethene (TCE)	470	28 U	28 U	28 U	27 U	29 U	28 U
Trichlorofluoromethane	NA	28 U	28 U	28 U	27 U	29 U	28 U
Vinyl Chloride	20	28 U	28 U	28 U	27 U	29 U	28 U
Total Concentration.		139	226	330	220	10	16
Total TICs		7.4					

Table 3-7VOCs in Soil Samples June 2009

All units in microgram per kilogram (µg/kg)

Bold - Exceeds Criteria

NA - Not available

U - Not detected

J - Estimated value

R - Rejected value due to the serious defeciencies

Table 3-8VOCs in Groundwater December 2009

Sample ID	NYSDEC	MW-1	MW-2	MW-3	MW-3DUP	MW-4	MW-5	MW-6
Sampling Date	Class GA	12/2/2009	12/2/2009	12/2/2009	12/2/2009	12/3/2009	12/3/2009	12/3/2009
Sample Type	Groundwater	Env. Sample	Env. Sample	Env. Sample	Sample Dup.	Env. Sample	Env. Sample	Env. Sample
Units	Criteria	µg/L						
1,1,1-Trichloroethane	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichlorotrifluoroethane	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2,4-Trichlorobenzene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dibromo-3-Chloropropane	0.04	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dibromoethane	0.0006	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichlorobenzene	3	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	0.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloropropane	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,3-Dichlorobenzene	3	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,4-Dichlorobenzene	3	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Butanone	50	5 U	5 U	5 U	5 U	5 U	5 U	5 U
2-Hexanone	50	5 U	5 U	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-Pentanone	NA	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Acetone	50	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Benzene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromodichloromethane	50	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromoform	50	1 UJ	1 UJ	1 U	1 U	1 U	1 U	1 U
Bromomethane	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon Disulfide	NA	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon Tetrachloride	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chlorobenzene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroethane	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	7	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloromethane	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	5	1 U	2.3	1.7	1.5	1 U	1 U	1 U
cis-1,3-Dichloropropene	0.4	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Cyclohexane	NA	1 U	1.3	1 U	1 U	1 U	1 U	1 U
Dibromochloromethane	50	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Dichlorodifluoromethane	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U

Table 3-8 VOCs in Groundwater December 2009

Sample ID	NYSDEC	MW-1	MW-2	MW-3	MW-3DUP	MW-4	MW-5	MW-6
Sampling Date	Class GA	12/2/2009	12/2/2009	12/2/2009	12/2/2009	12/3/2009	12/3/2009	12/3/2009
Sample Type	Groundwater	Env. Sample	Env. Sample	Env. Sample	Sample Dup.	Env. Sample	Env. Sample	Env. Sample
Units	Criteria	µg/L						
Ethyl Benzene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Isopropylbenzene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
m/p-Xylenes	NA	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Methyl Acetate	NA	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl tert-butyl Ether	NA	1 U	1 U	1 U	1 U	1 U	0.82 J	1 U
Methylcyclohexane	NA	1 U	1.1	1 U	1 U	1 U	1 U	1 U
Methylene Chloride	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
o-Xylene	NA	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Styrene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
t-1,3-Dichloropropene	0.4	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Tetrachloroethene (PCE)	5	1 UJ	340	34	32	1 U	1 U	1 U
Toluene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
trans-1,2-Dichloroethene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Trichloroethene (TCE)	5	1 U	6.2	0.83 J	0.87 J	1 U	1 U	0.57 J
Trichlorofluoromethane	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Vinyl Chloride	2	1 U	1.6	1 U	1 U	1 U	1 U	1 U

All units in micrograms per liter (μ g/L) **Bold** - Exceeds Criteria

NA - Not available

U - Not detected

Table 3-9Metals in Groundwater December 2009

Sample ID	NYSDEC	MW-1	MW-1	MW-2	MW-2	MW-3	MW-3DUP	MW-3
Sampling Date	Class GA	12/2/2009	12/2/2009	12/2/2009	12/2/2009	12/2/2009	12/2/2009	12/2/2009
Matrix	Groundwater	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Unfiltered	Filtered
Sample Type	Criteria	Env. Sample	Sample Dup.	Env. Sample				
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
Aluminum	NA	97.1	67.2	53.2	34 J	5010	5171	2010
Antimony	3	25 U	25 U	25 U				
Arsenic	25	10 U	10 U	10 U				
Barium	1000	192	184	201	201	291	304	252
Beryllium	3	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Cadmium	5	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Calcium	NA	70800	68000	78200	78300	104000	107970	99700
Chromium	50	5 U	5 U	5 U	5 U	4.59 J	5.15	2.8 J
Cobalt	NA	15 U	15 U	15 U				
Copper	250	10 U	10 U	10 U	10 U	9.57 J	11.2	3.87 J
Iron	300	153 J	90.8 J	72.3 J	67.9 J	6560 J	7053 J	2260 J
Lead	25	6 U	6.96 U	6 U	6.27 U	16.7 U	18.7 U	10.9 U
Magnesium	35000	15000	14300	16300	16400	20900	21677	19000
Manganese	300	8.49 J	6.33 J	201	170	532	567	290
Mercury	0.7	0.2 U	0.2 U	0.2 U				
Nickel	100	20 U	20 U	20 U	20 U	6 J	6.45 J	20 U
Potassium	NA	1990	1990	2620	2630	5670	5832	4880
Selenium	10	10 U	10 U	10 U				
Silver	50	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Sodium	20000	41200	40000	70000	70500	219000	227050	220000
Thallium	0.5	20 U	20 U	20 U				
Vanadium	NA	20 U	20 U	20 U	20 U	8.67 J	8.79 J	20 U
Zinc	2000	6.03 J	11.8 J	10.2 J	10.5 J	36.9	41.7	22.3

Notes:

All units in micrograms per liter (µg/L)

Bold - Exceeds Criteria

NA - Not available

U - Not detected

Table 3-9Metals in Groundwater December 2009

Sample ID	NYSDEC	MW-4	MW-4	MW-5	MW-5	MW-6	MW-6
Sampling Date	Class GA	12/3/2009	12/3/2009	12/3/2009	12/3/2009	12/3/2009	12/3/2009
Matrix	Groundwater	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered
Sample Type	Criteria	Env. Sample					
Units	µg/L						
Aluminum	NA	123 U	50 U	3340	112 U	6700	139 U
Antimony	3	25 U					
Arsenic	25	10 U					
Barium	1000	279	281	427	362	447	349
Beryllium	3	3 U	3 U	3 U	3 U	3 U	3 U
Cadmium	5	3 U	3 U	3 U	3 U	3 U	3 U
Calcium	NA	93500	94900	108000	96400	109000	96500
Chromium	50	5 U	5 U	4.51 J	5 U	10.8	5 U
Cobalt	NA	15 U					
Copper	250	10 U	10 U	5.5 J	10 U	13.5	10 U
Iron	300	211 U	57.9 U	6550	418	11800	246 U
Lead	25	3.32 J	3.08 J	6.4	3.27 J	14.9	2.77 J
Magnesium	35000	19600	19900	31900	27600	29800	25300
Manganese	300	175	175	697	554	859	521
Mercury	0.7	0.2 U					
Nickel	100	20 U	20 U	5.18 J	20 U	13.2 J	20 U
Potassium	NA	3540	3500	3570	2390	5330	3230
Selenium	10	10 U					
Silver	50	5 U	5 U	5 U	5 U	5 U	5 U
Sodium	20000	154000	158000	44600	41300	71000	69000
Thallium	0.5	20 U					
Vanadium	NA	20 U	20 U	5.78 J	20 U	10.8 J	20 U
Zinc	2000	198	20 U	25.8 U	20 U	54 U	20 U

Notes:

All units in micrograms per liter (μ g/L)

Bold - Exceeds Criteria

NA - Not available

U - Not detected

	Table 3-10	
Wet Chemistr	y Groundwater December 2009	

Sample ID	NYSDEC Class	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6
Sampling Date	GA Groundwater	12/2/2009	12/2/2009	12/2/2009	12/3/2009	12/3/2009	12/3/2009
Sample Type	Criteria	Env. Sample					
Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Dissolved Ferrous Iron	NA	0.1 U	0.2	0.2	0.1 U	0.1 U	0.1 U
ТОС	NA	0.719 J	0.858 J	3.95 J	0.781	1.51	1.12
Sulfide	0.05	2.4 J					
TKN	NA	1.12	1.66	0.955	0.824	0.639	0.826
Total Phosphorus	NA	0.01 U	0.01 U	0.18	0.01 U	0.1	0.22
Nitrate+Nitrite	10	1.6 J	3.2 J	3.4 J	0.15 UJ	0.15 UJ	0.15 UJ
Ferrous Iron	NA	0.1 U					
COD	NA	5 U	5 U	5.47	5 U	5 U	5 U
BOD5	NA	2 U	2 U	2 U	2 U	2 U	2 U
Chloride	NA	110	160	460	320	160	450
Nitrate	10	1.64 J	3.17 J	3.38 J	9.24 J	0.1 UJ	0.932 J
Sulfate	250	26	26	28	30	47	30
Ammonia as N	2	0.2 U	0.2 U	0.2 U	0.076	0.043	0.066
Alkalinity	250	150	190	250	200	250	280
Ethane	NA	0.000028	0.00019	0.00089	0.0005	0.0023	0.0076
Ethene	NA	0.00003	0.00032	0.00013	0.00019	0.00063	0.00077
Methane	NA	0.00048	0.019	0.0033	0.002	0.0095	0.021

All units in milligram per liter (mg/L)

Bold - Exceeds Criteria

NA - Not available

U - Not detected

Structure	H01		H02		H02		H02 (Du	p)	H03		H03		H04		H04	
Turne of Commun	First floo	or	First floo	or	Baseme	nt	Baseme	nt	First floo	r	Baseme	ent	First flo	or	Baseme	nt
Type of Sample	indoor a	air	indoor a	air	indoor a	ir	indoor a	ir	indoor ai	r	indoor a	air	indoor a	air	indoor a	air
Sampling Date	3/5/200	9	3/5/200	9	3/5/200	9	3/5/200	9	3/5/2009)	3/5/200)9	3/5/200)9	3/5/200	9
Units	µg/m³		µg/m³		µg/m³		µg/m³		µg/m³		µg/m³	;	µg/m³	3	µg/m³	
1,1,1-Trichloroethane	0.22	U	0.31		0.22	U	0.22	U	0.34	U	0.65	U	0.22	U	1.1	U
1,1,2,2-Tetrachloroethane	0.27	U	0.27	U	0.27	U	0.27	U	0.43	U	0.82	U	0.27	U	1.4	U
1,1,2-Trichloroethane	0.22	U	0.22	U	0.22	U	0.22	U	0.34	U	0.65	U	0.22	U	1.1	U
1,1-Dichloroethane	0.16	U	0.16	U	0.16	U	0.16	U	0.25	U	0.49	U	0.16	U	0.81	U
1,1-Dichloroethene	0.16	U	0.16	U	0.16	U	0.16	U	0.25	U	0.48	U	0.16	U	0.79	U
1,2-Dibromoethane	0.31	U	0.31	U	0.31	U	0.31	U	0.48	U	0.92	U	0.31	U	1.5	U
1,2-Dichloro-1,1,2,2-tetrafluoroethane (CFC 114)	0.28	U	0.28	U	0.28	U	0.28	U	0.43	U	0.84	U	0.28	U	1.4	U
1,2-Dichloroethane	0.32	U	0.45		0.32	U	0.32	U	0.49	U	1	U	0.32	U	1.6	J
1,2-Dichloroethene (total)	0.16	U	0.16	U	0.16	U	0.16	U	0.25	U	0.48	U	0.16	U	0.79	U
1,2-Dichloropropane	0.37	U	0.37	U	0.37	U	0.37	U	0.55	U	1.2	U	0.37	U	1.8	U
1,3,5-Trimethylbenzene	0.39	U	0.39	U	0.39	U	0.39	U	0.59	U	1.2	U	0.54		2	U
1,3-Butadiene	0.18	U	0.18	U	0.18	U	0.18	U	0.27	U	0.55	U	0.18	U	0.88	U
2,2,4-Trimethylpentane (Isooctane)	0.24		0.36		0.38		0.56		1.8		2.8		0.23		0.93	U
3-Chloro-1-propene (Allyl Chloride)	0.25	U	0.25	U	0.25	U	0.25	U	0.38	U	0.78	U	0.25	U	1.3	U
4-Ethyltoluene	0.34		0.35		0.29		0.43		0.59		0.84		0.98		0.98	U
Benzene	1.1		0.96		0.89		1.2		1.1		1.5		1		1.2	
Bromodichloromethane	0.27	U	0.27	U	0.27	U	0.27	U	0.42	U	0.8	U	0.27	U	1.3	U
Bromoethene	0.35	U	0.35	U	0.35	U	0.35	U	0.52	U	1.1	U	0.35	U	1.7	U
Bromoform	0.41	U	0.41	U	0.41	U	0.41	U	0.64	U	1.2	U	0.41	U	2.1	U
Bromomethane	0.31	U	0.31	U	0.31	U	0.31	U	0.47	U	0.97	U	0.31	U	1.6	U
Carbon Tetrachloride	0.56		0.53		0.52		0.75		0.62		0.82		0.69		1.3	U
Chloroethane	0.21	U	0.21	U	0.21	U	0.21	U	0.32	U	0.66	U	0.21	U	1.1	U
Chloroform	0.2	U	0.2	U	0.2	U	0.2	U	0.3	U	0.59	U	0.22		0.98	U
cis-1,2-Dichloroethene	0.16	U	0.16	U	0.16	U	0.16	U	0.25	U	0.48	U	0.16	U	0.79	U
cis-1,3-Dichloropropene	0.18	U	0.18	U	0.18	U	0.18	U	0.28	U	0.54	U	0.18	U	0.91	U
Cyclohexane	0.14	U	0.19		0.21		0.28		0.55		0.72		0.69		1.7	
Dibromochloromethane	0.34	U	0.34	U	0.34	U	0.34	U	0.53	U	1	U	0.34	U	1.7	U
Dichlorodifluoromethane (CFC 12)	3.1	J	3.2	J	3.8	J	4.4	J	2.9		3.6		4	J	5.9	J
Ethylbenzene	0.31		0.52		0.35		0.43		0.52		1.1		0.96		1.1	
m,p-Xylenes	0.91		1.3		0.96		1.3		1.8		2.9		4		2.1	
Methyl tert-Butyl Ether	0.14	U	0.14	U	0.14	U	0.14	U	0.22	U	0.43	U	0.14	U	0.72	U
Methylene Chloride	2.8	Ū	2.8	Ū	2.8	Ū	2.8	Ū	28		59	-	2.8	Ū	14	Ū

Structure	H01		H02		H02		H02 (Du	Jb)	H03		H03		H04		H04	
Type of Sample	First flo		First flo indoor		Basem indoor		Baseme indoor		First floc indoor a		Baseme indoor a		First flo indoor a		Baseme indoor a	
Sampling Date	3/5/20	09	3/5/20	09	3/5/20	09	3/5/200)9	3/5/200)	3/5/200	9	3/5/200)9	3/5/200	09
Units	µg/m	3	µg/m	3	µg/m	3	µg/m [;]	3	µg/m³		µg/m³		µg/m³	3	µg/m ³	3
n-Heptane	0.23	U	1.2	U	0.3	U	0.37	U	1.4		1.2		1.2	U	2.9	
n-Hexane	0.39		0.46		0.56		0.81		1.4		1.8		1.3		1.4	U
o-Xylene	0.38		0.43		0.38		0.52		0.61		1.3		1.2		0.87	U
Tetrachloroethene (PCE)	0.27	U	0.88		2.2		3.2		2		5.4		0.62		1.4	U
Toluene	2.1		2.8		2.1		2.7		5.3		9.8		4.1		45	
trans-1,2-Dichloroethene	0.16	U	0.16	U	0.16	U	0.16	U	0.25	U	0.48	U	0.16	U	0.79	U
trans-1,3-Dichloropropene	0.18	U	0.18	U	0.18	U	0.18	U	0.28	U	0.54	U	0.18	U	0.91	U
Trichloroethene (TCE)	0.21	U	0.21	U	0.21	U	0.21	U	0.33	U	0.64	U	7		4.6	
Trichlorofluoromethane	1.3		3.1		4.8		6.7		1.8		1.9		1.7		2.1	
Vinyl Chloride	0.2	U	0.2	U	0.2	U	0.2	U	0.31	U	0.64	U	0.2	U	1	U
Xylene (total)	1.3		1.7		1.3		1.8		2.3		4.1		5.2		2.1	

Notes:

U - Not detected

Structure	H05		H05		H06		H06		H07		H07		H07 (Du	p)	H08	
	First flo	or	Baseme	nt	First floo	r	Basemen	t	First floo	r	Baseme	nt	Baseme	nt	First flo	or
Type of Sample	indoor a	air	indoor a	ir	indoor a	ir	indoor air		indoor a	ir	indoor a	ir	indoor a	ir	indoor a	air
Sampling Date	3/5/200)9	3/5/2009	9	3/27/200	9	3/27/2009)	3/27/200	9	3/27/200)9	3/27/200)9	3/5/200)9
Units	µg/m³		µg/m³		µg/m³		µg/m³		µg/m³		µg/m³		µg/m³		µg/m³	3
1,1,1-Trichloroethane	0.22	U	0.22	U	0.22	U	0.22	U	0.22	U	0.22	U	0.22	U	0.22	U
1,1,2,2-Tetrachloroethane	0.27	U	0.27	U	0.27	U	0.27	U	0.27	U	0.27	U	0.27	U	0.27	U
1,1,2-Trichloroethane	0.22	U	0.22	U	0.22	U	0.22	U	0.22	U	0.22	U	0.22	U	0.22	U
1,1-Dichloroethane	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U
1,1-Dichloroethene	0.16	U	0.16	U	0.16	U		U	0.16	U	0.16	U	0.16	U	0.16	U
1,2-Dibromoethane	0.31	U	0.31	U	0.31	U	0.31	U	0.31	U	0.31	U	0.31	U	0.31	U
1,2-Dichloro-1,1,2,2-tetrafluoroethane (CFC 114)	0.28	U	0.28	U	0.28	U	0.28	U	0.28	U	0.28	U	0.28	U	0.28	U
1,2-Dichloroethane	0.32	U	0.32	U	0.32	U		U	0.32	U	0.32	U	0.32	U	0.32	U
1,2-Dichloroethene (total)	0.16	U	0.16	U	0.16	U		U	0.16	U	0.16	U	0.16	U	0.16	U
1,2-Dichloropropane	0.37	U	0.37	U	0.37	U	0.37	U	0.37	U	0.51		0.37	U	0.37	U
1,3,5-Trimethylbenzene	0.39	U	0.39	U	0.39	U	0.39	U	0.39	U	0.39	U	0.39	U	0.39	U
1,3-Butadiene	0.33		0.18	U	0.18	U	0.18	U	0.18	U	0.18	U	0.55		0.18	U
2,2,4-Trimethylpentane (Isooctane)	0.24		0.21		0.23		0.34		0.75		0.56		0.43		0.34	
3-Chloro-1-propene (Allyl Chloride)	0.25	U	0.25	U	0.25	U	0.25	U	0.25	U	0.25	U	0.25	U	0.25	U
4-Ethyltoluene	0.25		0.26		0.2	U	0.2	U	0.64		0.2	U	0.25		0.27	
Benzene	1.9		1.3		0.64		0.7		1.7		1.3		1.2		0.7	
Bromodichloromethane	0.27	U	0.27	U	0.27	U	0.27	U	0.27	U	0.27	U	0.27	U	0.27	U
Bromoethene	0.35	U	0.35	U	0.35	U	0.35	U	0.35	U	0.35	U	0.35	U	0.35	U
Bromoform	0.41	U	0.41	U	0.41	U	0.41	U	0.41	U	0.41	U	0.41	U	0.41	U
Bromomethane	0.31	U	0.31	U	0.31	U	0.31	U	0.31	U	0.31	U	0.31	U	0.31	U
Carbon Tetrachloride	0.61		0.75		0.42		0.51		0.56		0.63		0.61		0.63	
Chloroethane	0.21	U	0.21	U	0.21	U	0.21	U	0.21	U	0.21	U	0.21	U	0.21	U
Chloroform	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	1.3	
cis-1,2-Dichloroethene	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U
cis-1,3-Dichloropropene	0.18	U	0.18	U	0.18	U	0.18	U	0.18	U	0.18	U	0.18	U	0.18	U
Cyclohexane	1.4		0.83		0.18		1.2		0.34		0.89		0.65		0.33	
Dibromochloromethane	0.34	U	0.34	U	0.34	U	0.34	U	0.34	U	0.34	U	0.34	U	0.34	U
Dichlorodifluoromethane (CFC 12)	3.5	J	3.6	J	3		3.2		3.3		1.1		3.6		7.4	J
Ethylbenzene	0.42		0.32		0.18		0.17	U	0.91		0.56		0.56		0.52	
m,p-Xylenes	0.87		0.74		0.43			U	3		1		1.5		1.3	
Methyl tert-Butyl Ether	0.14	U	0.14	U	0.14	U		U	0.14	U	0.14	U	0.14	U	0.14	U
Methylene Chloride	2.8	U	2.8	U	2.8	U		U	3		2.8	U	2.8	U	2.8	U

Structure	H05		H05		H06		H06		H07		H07		H07 (Du	Jb)	H08	
Type of Sample	First flo indoor		Baseme indoor		First flo indoor a		Baseme indoor a		First floo indoor a		Baseme indoor a		Baseme indoor a		First flo indoor	
Sampling Date	3/5/20	09	3/5/20	09	3/27/20	09	3/27/20	09	3/27/20)9	3/27/20	09	3/27/20	09	3/5/20	09
Units	μg/m	3	µg/m	3	µg/m³	6	µg/m³		µg/m³		µg/m³	;	µg/m³	3	µg/m	3
n-Heptane	1.2	U	0.74	U	0.45		0.32		0.57		0.78		0.82		0.98	U
n-Hexane	3		1.7		0.6		0.85		1.6		1.8		1.5		0.49	
o-Xylene	0.29		0.28		0.2		0.17	U	0.96		0.29		0.43		0.42	
Tetrachloroethene (PCE)	1		6		3.2		5.4		0.41		0.27	U	0.27	U	2.8	
Toluene	2.4		1.7		1.1		1.7		8.3		7.2		6.8		2.6	
trans-1,2-Dichloroethene	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U
trans-1,3-Dichloropropene	0.18	U	0.18	U	0.18	U	0.18	U	0.18	U	0.18	U	0.18	U	0.18	U
Trichloroethene (TCE)	0.21	U	0.21	U	0.21	U	0.21	U	0.21	U	0.21	U	0.21	U	0.21	U
Trichlorofluoromethane	2.8		1.7		1.2		1.5		2.1		2.4		2.2		1.8	
Vinyl Chloride	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U
Xylene (total)	1.1		1		0.61		0.17	U	3.9		1.3		1.9		1.7	

Notes:

U - Not detected

Structure	H09		H09		H10		H10		H10 (Du	p)	H11		H11		H12	
Tana at Osmala	First flo	or	Baseme	nt	First floo	or	Baseme	nt	Baseme	nt	First floo	or	Baseme	ent	First flo	or
Type of Sample	indoor	air	indoor A	١r	indoor a	ir	indoor A	ir	indoor a	ir	indoor a	air	indoor a	air	indoor	air
Sampling Date	3/5/200)9	3/27/200)9	3/5/200	9	3/27/200)9	3/27/200)9	3/5/200)9	3/5/200)9	3/5/20	09
Units	µg/m [;]	3	µg/m³		µg/m³		µg/m³		µg/m³		µg/m³	5	µg/m³	3	µg/m	3
1,1,1-Trichloroethane	0.22	U	0.22	U	0.22	U	0.22	U	0.22	U	0.55	U	0.22	U	0.51	
1,1,2,2-Tetrachloroethane	0.27	U	0.27	U	0.27	U	0.27	U	0.27	U	0.69	U	0.27	U	0.27	U
1,1,2-Trichloroethane	0.22	U	0.22	U	0.22	U	0.22	U	0.22	U	0.55	U	0.22	U	0.22	U
1,1-Dichloroethane	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U	0.4	U	0.16	U	0.16	U
1,1-Dichloroethene	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U	0.4	U	0.16	U	0.16	U
1,2-Dibromoethane	0.31	U	0.31	U	0.31	U	0.31	U	0.31	U	0.77	U	0.31	U	0.31	U
1,2-Dichloro-1,1,2,2-tetrafluoroethane (CFC 114)	0.28	U	0.28	U	0.28	U	0.28	U	0.28	U	0.7	U	0.28	U	0.28	U
1,2-Dichloroethane	0.32	U	0.32	U	0.32	U	0.32	U	0.32	U	0.81	U	0.32	U	0.32	U
1,2-Dichloroethene (total)	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U	0.4	U	0.16	U	0.16	U
1,2-Dichloropropane	0.37	U	0.37	U	0.37	U	0.37	U	0.37	U	0.92	U	0.37	U	0.37	U
1,3,5-Trimethylbenzene	0.39	U	0.39	U	0.39	U	0.39	U	0.39	U	0.98	U	0.39	U	0.39	U
1,3-Butadiene	1.7		0.91		0.18	U	0.18	U	0.18	U	0.44	U	0.18	U	0.18	U
2,2,4-Trimethylpentane (Isooctane)	0.23		0.33		0.39		0.65		0.47		0.47	U	0.32		0.28	
3-Chloro-1-propene (Allyl Chloride)	0.25	U	0.25	U	0.25	U	0.25	U	0.25	U	0.63	U	0.25	U	0.25	U
4-Ethyltoluene	0.54		0.2	U	0.59		0.34		0.24		0.49	U	0.2	U	0.27	
Benzene	2		1.6		0.99		1.2		0.86		0.93		0.86		0.96	
Bromodichloromethane	0.27	U	0.27	U	0.27	U	0.27	U	0.27	U	0.67	U	0.27	U	0.27	U
Bromoethene	0.35	U	0.35	U	0.35	U	0.35	U	0.35	U	0.87	U	0.35	U	0.35	U
Bromoform	0.41	U	0.41	U	0.41	U	0.41	U	0.41	U	1	U	0.41	U	0.41	U
Bromomethane	0.31	U	0.31	U	0.31	U	0.31	U	0.31	U	0.78	U	0.31	U	0.31	U
Carbon Tetrachloride	0.58		0.61		0.69		0.61		0.63		0.82		0.44		0.28	
Chloroethane	0.21	U	0.21	U	0.21	U	0.21	U	0.21	U	0.53	U	0.21	U	0.21	U
Chloroform	0.2	U	0.2	U	0.39		0.2	U	0.2	U	0.49	U	0.2	U	0.2	U
cis-1,2-Dichloroethene	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U	0.4	U	0.16	U	0.16	U
cis-1,3-Dichloropropene	0.18	U	0.18	U	0.18	U	0.18	U	0.18	U	0.45	U	0.18	U	0.18	U
Cyclohexane	0.14	U	0.2		0.19		0.27		0.38		0.34	U	0.76		0.22	
Dibromochloromethane	0.34	U	0.34	U	0.34	U	0.34	U	0.34	U	0.85	U	0.34	U	0.34	U
Dichlorodifluoromethane (CFC 12)	3.5	J	3.3		3.9	J	3.4		3.1		35		10		3.3	
Ethylbenzene	0.74		0.43		0.43		0.74		0.52		0.61		0.52		0.38	
m,p-Xylenes	1.9		1.3		1.3		2.6		1.7		1.8		1.7		0.74	
Methyl tert-Butyl Ether	0.14	U	0.14	U	0.14	U	0.14	U	0.14	U	0.36	U	0.14	U	0.14	U
Methylene Chloride	2.8	U	2.8	U	2.8	U	2.8	U	2.8	U	6.9	U	2.8	U	2.8	U

Structure	H09)	H09		H10		H10		H10 (Du	p)	H11		H11		H12	
Type of Sample	First flo indoor		Baseme		First flo indoor a		Baseme indoor A		Baseme indoor a		First floo indoor a		Baseme indoor a		First flo indoor a	
Sampling Date	3/5/20	09	3/27/20	09	3/5/200)9	3/27/20	09	3/27/200)9	3/5/200	9	3/5/200)9	3/5/200)9
Units	µg/m	³	µg/m [:]	3	µg/m [:]	;	µg/m³		µg/m³		µg/m³		µg/m³	3	µg/m ³	3
n-Heptane	0.25	U	0.34		0.45	U	0.86		0.57		0.61		0.49		0.33	
n-Hexane	0.53		0.78		0.7		1.6		1.1		0.7		0.81		0.7	
o-Xylene	0.52		0.43		0.52		0.96		0.65		0.43	U	0.39		0.31	
Tetrachloroethene (PCE)	0.27	U	0.27	U	0.27	U	0.27	U	0.27	U	0.68	U	0.5		0.27	U
Toluene	4.9		3		9		3.8		2.8		3.6		6.8		2.1	
trans-1,2-Dichloroethene	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U	0.4	U	0.16	U	0.16	U
trans-1,3-Dichloropropene	0.18	U	0.18	U	0.18	U	0.18	U	0.18	U	0.45	U	0.18	U	0.18	U
Trichloroethene (TCE)	0.21	U	0.21	U	0.21	U	0.21	U	0.21	U	0.54	U	0.21	U	0.21	U
Trichlorofluoromethane	1.4		1.8		1.8		1.8		1.7		1.5		2.1		1.9	
Vinyl Chloride	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.51	U	0.2	U	0.2	U
Xylene (total)	2.3		1.7		1.8		3.4		2.3		1.7		2		1	

Notes:

U - Not detected

Structure	H12		H13 A		H13 B		H13		H14		H14		H15		H15	
	Basemer	nt	First floo	r	First floo	r	Baseme	nt	First flo	or	Baseme	ent	First flo	or	Basem	ent
Type of Sample	indoor ai	ir	indoor ai	ir	indoor a	ir	indoor a	ir	indoor a	air	indoor a	air	indoor	air	indoor	air
Sampling Date	3/5/2009)	3/5/2009	9	3/5/200	9	3/5/200	9	3/5/200)9	3/5/200)9	3/27/20	09	3/27/20	009
Units	µg/m³		µg/m³		µg/m³		µg/m³		µg/m³	;	µg/m [:]	3	µg/m [:]	3	µg/m	3
1,1,1-Trichloroethane	0.38		0.22	U	0.22	U	0.22	U	1.4	U	0.55	U	0.22	U	0.22	U
1,1,2,2-Tetrachloroethane	0.27	U	0.27	U	0.27	U	0.27	U	1.7	U	0.69	U	0.27	U	0.27	U
1,1,2-Trichloroethane	0.22	U	0.22	U	0.22	U	0.22	U	1.4	U	0.55	U	0.22	U	0.22	U
1,1-Dichloroethane	0.16	U	0.16	U	0.16	U	0.16	U	1	U	0.4	U	0.16	U	0.16	U
1,1-Dichloroethene	0.16	U	0.16	U	0.16	U	0.16	U	0.99	U	0.4	U		U	0.16	U
1,2-Dibromoethane	0.31	U	0.31	U	0.31	U	0.31	U	1.9	U	0.77	U		U	0.31	U
1,2-Dichloro-1,1,2,2-tetrafluoroethane (CFC 114)	0.28	U	0.28	U	0.28	U	0.28	U	1.7	U	0.7	U	0.28	U	0.28	U
1,2-Dichloroethane	0.32	U	0.32	U	0.32	U	0.32	U	5.3		1.9		0.69		0.32	U
1,2-Dichloroethene (total)	0.16	U	0.16	U	0.16	U	0.16	U	0.99	U	0.4	U	0.16	U	0.16	U
1,2-Dichloropropane	0.37	U	0.37	U	0.37	U	0.37	U	2.3	U	0.92	U	0.37	U	0.37	U
1,3,5-Trimethylbenzene	0.39	U	0.39	U	0.39	U	0.39	U	2.5	U	0.98	U	0.39	U	0.39	U
1,3-Butadiene	0.18	U	0.18	U	0.18	U	0.18	U	1.1	U	0.44	U	2.7		0.35	
2,2,4-Trimethylpentane (Isooctane)	0.28		0.43		0.39		0.51		1.2	U	0.47	U	0.47		0.39	
3-Chloro-1-propene (Allyl Chloride)	0.25	U	0.25	U	0.25	U	0.25	U	1.6	U	0.63	U	0.25	U	0.25	U
4-Ethyltoluene	0.31		0.32		0.29		0.26		1.2	U	0.49	U	0.2	U	0.2	U
Benzene	0.86		0.96		1		1.1		1.4		1		32		4.2	
Bromodichloromethane	0.27	U	0.27	U	0.27	U	0.27	U	1.7	U	0.67	U	0.27	U	0.27	U
Bromoethene	0.35	U	0.35	U	0.35	U	0.35	U	2.2	U	0.87	U	0.35	U	0.35	U
Bromoform	0.41	U	0.41	U	0.41	U	0.41	U	2.6	U	1	U	0.41	U	0.41	U
Bromomethane	0.31	U	0.31	U	0.31	U	0.31	U	1.9	U	0.78	U	0.31	U	0.31	U
Carbon Tetrachloride	0.69		0.63		0.69		0.69		1.6	U	0.69		0.63		0.6	
Chloroethane	0.21	U	0.21	U	0.21	U	0.21	U	1.3	U	0.53	U	0.21	U	0.21	U
Chloroform	0.2	U	0.2	U	0.2	U	0.2	U	1.2	U	0.49	U	0.28		0.2	U
cis-1,2-Dichloroethene	0.16	U	0.16	U	0.16	U	0.16	U	0.99	U	0.4	U	0.16	U	0.16	U
cis-1,3-Dichloropropene	0.18	U	0.18	U	0.18	U	0.18	U	1.1	U	0.45	U	0.18	U	0.18	U
Cyclohexane	0.17		0.3		0.2		0.22		0.86	U	0.34	U	0.93		1.1	
Dibromochloromethane	0.34	U	0.34	U	0.34	U	0.34	U	2.1	U	0.85	U	0.34	U	0.34	U
Dichlorodifluoromethane (CFC 12)	3.4		3.1		3.4		2.3		120	J	41	J	2.5		3.4	
Ethylbenzene	0.38		0.29		0.43		0.39		1.1	U	0.56		0.52		0.41	
m,p-Xylenes	1		0.96		1.2		1.1		2.2	U	1.3		0.87		1.1	
Methyl tert-Butyl Ether	0.14	U	0.14	U	0.14	U	0.14	U	0.9	Ū	0.36	U	0.14	U	0.14	U
Methylene Chloride	2.8	Ū	2.8	Ū	2.8	Ū	2.8	Ū	17	Ū	6.9	Ū	2.8	Ū	2.8	Ū

Structure	H12		H13 A	A	H13 E	3	H13		H14		H14		H15		H15	
Type of Sample	Baseme indoor		First flo		First flo indoor a		Baseme indoor a		First flo indoor a		Baseme indoor a		First flo indoor a		Baseme indoor a	
Sampling Date	3/5/20)9	3/5/200	09	3/5/200)9	3/5/200)9	3/5/200	9	3/5/200)9	3/27/20	09	3/27/20	09
Units	µg/m	3	µg/m [;]			3	µg/m³	3	µg/m³		µg/m³		µg/m³	;	µg/m ³	3
n-Heptane	0.39		0.49		0.35		0.49		1.7	U	0.9	U	0.98		0.53	
n-Hexane	0.67		0.92		0.67		0.81		1.8	U	0.74		1.9		1.2	
o-Xylene	0.43		0.43		0.37		0.43		1.1	U	0.43		0.32		0.39	
Tetrachloroethene (PCE)	0.39		0.27	U	0.27	U	0.27	U	1.7	U	1.9		0.4		1	
Toluene	2.1		2.8		3.4		2.1		60		2.6		3.8		2.6	
trans-1,2-Dichloroethene	0.16	U	0.16	U	0.16	U	0.16	U	0.99	U	0.4	U	0.16	U	0.16	U
trans-1,3-Dichloropropene	0.18	U	0.18	U	0.18	U	0.18	U	1.1	U	0.45	U	0.18	U	0.18	U
Trichloroethene (TCE)	0.21	U	0.21	U	0.21	U	0.21	U	1.3	U	0.54	U	0.21	U	0.21	U
Trichlorofluoromethane	2		1.8		2.1		1.6		36		13		2		3.1	
Vinyl Chloride	0.2	U	0.2	U	0.2	U	0.2	U	1.3	U	0.51	U	0.2	U	0.2	U
Xylene (total)	1.4		1.3		1.5		1.5		1.1	U	1.8		1.1		1.4	

Notes:

U - Not detected

Table 3-11
VOCs in Indoor Air Samples 2009

Structure	H16		H16		H17 (1)	H17 (2	2)
Type of Sample	First flo indoor a		Baseme indoor a		Indoor A	١r	Indoor /	۹ir
Sampling Date	3/5/200)9	3/5/200)9	3/27/20	09	3/27/20	09
Units	µg/m³	3	µg/m³	3	µg/m³		µg/m³	3
1,1,1-Trichloroethane	0.22	U	0.82	U	1.9		3.6	
1,1,2,2-Tetrachloroethane	0.27	U	1	U	0.27	U	0.27	U
1,1,2-Trichloroethane	0.22	U	0.82	U	0.22	U	0.22	U
1,1-Dichloroethane	0.16	U	0.61	U	0.16	U	0.16	U
1,1-Dichloroethene	0.16	U	0.59	U	0.16	U	0.16	U
1,2-Dibromoethane	0.31	U	1.2	U	0.31	U	0.31	U
1,2-Dichloro-1,1,2,2-tetrafluoroethane (CFC 114)	0.28	U	1	U	0.28	U	0.28	U
1,2-Dichloroethane	0.32	U	1.2	U	0.32	U	0.32	U
1,2-Dichloroethene (total)	0.16	U	0.59	U	0.16	U	0.16	U
1,2-Dichloropropane	0.37	U	1.4	U	0.37	U	0.37	U
1,3,5-Trimethylbenzene	0.39	U	1.5	U	0.39	U	0.39	U
1,3-Butadiene	0.27		0.66	U	0.18	U	0.18	U
2,2,4-Trimethylpentane (Isooctane)	0.3		0.7	U	0.46		0.47	
3-Chloro-1-propene (Allyl Chloride)	0.25	U	0.94	U	0.25	U	0.25	U
4-Ethyltoluene	0.32		0.74	U	0.2	U	0.29	
Benzene	1		1.1		0.99		1.1	
Bromodichloromethane	0.27	U	1	U	0.27	U	0.27	U
Bromoethene	0.35	U	1.3	U	0.35	U	0.35	U
Bromoform	0.41	U	1.6	U	0.41	U	0.41	U
Bromomethane	0.31	U	1.2	U	0.31	U	0.31	U
Carbon Tetrachloride	0.63		0.94	U	0.6		0.63	
Chloroethane	0.21	U	0.79	U	0.21	U	0.21	U
Chloroform	0.2	U	0.73	U	0.2	U	0.2	U
cis-1,2-Dichloroethene	0.16	U	0.59	U	0.16	U	0.16	U
cis-1,3-Dichloropropene	0.18	U	0.68	U	0.18	U	0.18	U
Cyclohexane	0.14	U	0.52	U	0.15		0.33	
Dibromochloromethane	0.34	U	1.3	U	0.34	U	0.34	U
Dichlorodifluoromethane (CFC 12)	3.7	J	4.1	J	5.4		10	
Ethylbenzene	0.2		0.65	U	0.34		0.48	
m,p-Xylenes	0.83		1.3	U	1		1.3	
Methyl tert-Butyl Ether	0.14	U	0.54	U	0.14	U	0.14	U
Methylene Chloride	2.8	U	10	U	2.8	U	2.8	U

Table 3-11
VOCs in Indoor Air Samples 2009

Structure	H16		H16		H17 (1)	H17 (2	2)
Type of Sample	First flo indoor a		Baseme indoor a	-	Indoor A	۹ir	Indoor /	Air
Sampling Date	3/5/200)9	3/5/200)9	3/27/20	09	3/27/20	09
Units	µg/m³	;	µg/m [:]	3	µg/m³	3	µg/m [;]	3
n-Heptane	0.18	U	0.61	U	0.49		0.66	
n-Hexane	0.46		1.1	U	0.74		0.67	
o-Xylene	0.3		0.65	U	0.42		0.48	
Tetrachloroethene (PCE)	28	J	60		0.42		0.75	
Toluene	1.5		2.7		2.3		3.2	
trans-1,2-Dichloroethene	0.16	U	0.59	U	0.16	U	0.16	U
trans-1,3-Dichloropropene	0.18	U	0.68	U	0.18	U	0.18	U
Trichloroethene (TCE)	0.54		0.81	U	0.21	U	0.21	U
Trichlorofluoromethane	1.5		1.8		10		13	
Vinyl Chloride	0.2	U	0.77	U	0.2	U	0.2	U
Xylene (total)	1.1		0.65	U	1.4		1.8	

U - Not detected

Structure	H02		H03		H06		H08		H09		H09		H17	
Sampling Date	3/5/2009		3/5/2009		3/27/2009		3/5/200)9	3/5/2009		3/5/2009		3/27/2009	
Units	µg/m³		µg/m³		µg/m³		µg/m³		µg/m³		µg/m³		µg/m³	
1,1,1-Trichloroethane	0.22	U	0.22	U	0.22	U	0.22	U	0.22	U	0.22	U	0.22	U
1,1,2,2-Tetrachloroethane	0.27	U	0.27	U	0.27	U	0.27	U	0.27	U	0.27	U	0.27	U
1,1,2-Trichloroethane	0.22	U	0.22	U	0.22	U	0.22	U	0.22	U	0.22	U	0.22	U
1,1-Dichloroethane	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U
1,1-Dichloroethene	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U
1,2-Dibromoethane	0.31	U	0.31	U	0.31	U	0.31	U	0.31	U	0.31	U	0.31	U
1,2-Dichloro-1,1,2,2-tetrafluoroethane (CFC 114)	0.28	U	0.28	U	0.28	U	0.28	U	0.28	U	0.28	U	0.28	U
1,2-Dichloroethane	0.32	U	0.32	U	0.32	U	0.32	U	0.32	U	0.32	U	0.32	U
1,2-Dichloroethene (total)	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U
1,2-Dichloropropane	0.37	U	0.37	U	0.37	U	0.37	U	0.37	U	0.37	U	0.37	U
1,3,5-Trimethylbenzene	0.39	U	0.39	U	0.39	U	0.39	U	0.39	U	0.39	U	0.39	U
1,3-Butadiene	0.19		0.18	U	0.18	U	0.22		0.18	U	0.18	U	0.18	U
2,2,4-Trimethylpentane (Isooctane)	0.26		0.3		0.33		0.36		0.24		0.33		0.36	
3-Chloro-1-propene (Allyl Chloride)	0.25	U	0.25	U	0.25	U	0.25	U	0.25	U	0.25	U	0.25	U
4-Ethyltoluene	0.2	U	0.24		0.2	U	0.29		0.2	U	0.36		0.2	U
Benzene	1.1		0.73		0.77		1.2		0.8		1.1		0.83	
Bromodichloromethane	0.27	U	0.27	U	0.27	U	0.27	U	0.27	U	0.27	U	0.27	U
Bromoethene	0.35	U	0.35	U	0.35	U	0.35	U	0.35	U	0.35	U	0.35	U
Bromoform	0.41	U	0.41	U	0.41	U	0.41	U	0.41	U	0.41	U	0.41	U
Bromomethane	0.31	U	0.31	U	0.31	U	0.31	U	0.31	U	0.31	U	0.31	U
Carbon Tetrachloride	0.75		0.55		0.47		0.52		0.35		0.69		0.48	
Chloroethane	0.21	U	0.21	U	0.21	U	0.21	U	0.21	U	0.21	U	0.21	U
Chloroform	E	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U
cis-1,2-Dichloroethene	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U
cis-1,3-Dichloropropene	0.18	U	0.18	U	0.18	U	0.18	U	0.18	U	0.18	U	0.18	U
Cyclohexane	0.14	U	0.41		0.21		0.14	U	0.14	U	0.19		0.14	U
Dibromochloromethane	0.34	U	0.34	U	0.34	U	0.34	U	0.34	U	0.34	U	0.34	U
Dichlorodifluoromethane (CFC 12)	3.6	J	3.1		3		3.7	J	3		3		3.1	-
Ethylbenzene	0.35		0.43		0.38		0.29		0.23		0.43		0.2	-
m,p-Xylenes	0.78		0.87		1.7		1		0.74		1.1		0.61	
Methyl tert-Butyl Ether	0.14	U	0.14	U	0.14	U	0.14	U	0.14	U	0.14	U	0.14	U
Methylene Chloride	2.8	U	2.8	U	2.8	U	2.8	U	2.8	U	2.8	U	2.8	U

Structure	H02		H03		H06		H08		H09		H09		H17	
Sampling Date	3/5/200	3/5/2009		3/5/2009		3/27/2009		3/5/2009		3/5/2009		09	3/27/200	
Units	µg/m	µg/m³		µg/m³		µg/m³		µg/m³		µg/m³		µg/m³		
n-Heptane	0.27	U	0.39		0.23		0.25	U	0.33		0.32		0.24	
n-Hexane	0.39		0.88				0.46		0.53		0.6		0.53	
o-Xylene	0.2		0.25		0.74		0.38		0.31		0.35		0.26	
Tetrachloroethene (PCE)	0.27	U	0.27	U	0.27	U	0.27	U	0.27	U	0.27	U	0.27	U
Toluene	1.7		6.4		1.4		1.7		1.6		2.4		1.2	
trans-1,2-Dichloroethene	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U
trans-1,3-Dichloropropene	0.18	U	0.18	U	0.18	U	0.18	U	0.18	U	0.18	U	0.18	U
Trichloroethene (TCE)	0.21	U	0.21	U	0.21	U	0.21	U	0.21	U	0.21	U	0.21	U
Trichlorofluoromethane	1.7		1.6		1.3		1.6		1.5		1.6		1.7	
Vinyl Chloride	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U
Xylene (total)	1		1.1		2.4		1.4		1		1.3		0.87	

Notes:

U - Not detected

Table 3-13 VOCs in Sub-Slab Vapor Samples 2009

Structure	H01		H08		H09		H10		H17 (1)		H17 (2)	
Sampling Date	3/5/200	09	3/5/200)9	3/5/2009		3/5/2009		3/27/2009		3/27/2009	
Units	µg/m³		µg/m³		µg/m³		µg/m³		µg/m³		µg/m³	
1,1,1-Trichloroethane	7.6		10		5.9		0.59		1.9		4.5	
1,1,2,2-Tetrachloroethane	17		22		23		3.9		69		61	
1,1,2-Trichloroethane	0.87	U	0.87	U	0.87	U	0.87	U	1.1	U	2.2	U
1,1-Dichloroethane	0.65	U	0.65	U	0.65	U	0.65	U	0.81	U	1.6	U
1,1-Dichloroethene	0.63	U	0.63	U	0.63	U	0.63	U	0.79	U	1.6	U
1,2-Dibromoethane	1.2	U	1.2	U	1.2	U	1.2	U	1.5	U	3.1	U
1,2-Dichloro-1,1,2,2-tetrafluoroethane (CFC 114)	1.1	U	1.1	U	1.1	U	1.1	U	1.4	U	2.8	U
1,2-Dichloroethane	0.65	U	0.65	U	0.65	U	0.65	U	0.81	U	1.6	U
1,2-Dichloroethene (total)	1.2		0.63	U	0.63	U	0.63	U	0.79	U	1.6	U
1,2-Dichloropropane	0.74	U	0.74	U	0.74	U	0.74	U	0.92	U	1.8	U
1,3,5-Trimethylbenzene	2.3		2.1		4.1		0.79	U	54		36	
1,3-Butadiene	0.88	U	0.88	U	0.88	U	0.88	U	1.1	U	2.2	U
2,2,4-Trimethylpentane (Isooctane)	2		2.1		1.8		0.51	U	1.2		2.4	
3-Chloro-1-propene (Allyl Chloride)	1.3	U	1.3	U	1.3	U	1.3	U	1.6	U	3.1	U
4-Ethyltoluene	0.84		0.79	U	1.5		0.79	U	33		24	
Benzene	1.2		0.63	U	0.63	U	0.63	U	0.79	U	1.6	U
Bromodichloromethane	1.1	U	1.1	U	1.1	U	1.1	U	1.3	U	2.7	U
Bromoethene	0.7	U	0.7	U	0.7	U	0.7	U	0.87	U	1.7	U
Bromoform	1.1	U	1.1	U	1.1	U	1.1	U	1.4	U	2.7	U
Bromomethane	0.62	U	0.62	U	0.62	U	0.62	U	0.78	U	1.6	U
Carbon Tetrachloride	4.7		2.8		0.75	U	3.7		0.93	U	1.9	U
Chloroethane	1.1	U	1.1	U	1.1	U	1.1	U	1.3	U	2.6	U
Chloroform	0.87	U	0.87	U	0.87	U	0.87	U	1.1	U	2.2	U
cis-1,2-Dichloroethene	0.78	U	0.78	U	0.78	U	0.78	U	0.98	U	2	U
cis-1,3-Dichloropropene	0.73	U	0.73	U	0.73	U	0.73	U	0.91	U	1.8	U
Cyclohexane	1	U	1	U	1	U	1	U	1.3	U	2.5	U
Dibromochloromethane	1.4	U	1.4	U	1.4	U	1.4	U	1.7	U	3.4	U
Dichlorodifluoromethane (CFC 12)	2.8		20		3		2.9		3.6		330	
Ethylbenzene	2.3		2.8		2.6		0.69	U	11		11	
m,p-Xylenes	12		16		17		2.9		43		40	
Methyl tert-Butyl Ether	1.4	U	1.4	U	1.4	U	1.4	U	1.8	U	3.6	U
Methylene Chloride	1.4	U	1.4	U	1.4	U	1.4	U	1.7	U	3.5	U
n-Heptane	5.7		9.8		7.4		0.66	U	6.1		11	
n-Hexane	4.9		11		8.1		1.4	U	6		13	
o-Xylene	4.1		5.6		5.6		0.87		25		20	

Table 3-13
VOCs in Sub-Slab Vapor Samples 2009

Structure		H01		H08		H09		H10		H17 (1)		H17 (2)	
Sampling Date	3	3/5/2009		3/5/2009		3/5/2009		3/5/2009		3/27/2009		3/27/2009	
Units	ł	µg/m³		µg/m³		µg/m³		µg/m³		µg/m³		µg/m³	
Tetrachloroethene (PCE)	-	5.6		1.6		4.4		4.4		1.4	U	2.7	U
Toluene		12		12		9.4		2.5		11		13	
trans-1,2-Dichloroethene		0.63	U	0.63	U	0.63	U	0.63	U	0.79	U	1.6	U
trans-1,3-Dichloropropene		0.73	U	0.73	U	0.73	U	0.73	U	0.91	U	1.8	U
Trichloroethene (TCE)		1.3		0.86	U	0.86	U	0.91		1.1	U	2.1	U
Trichlorofluoromethane		2.2		1.9		1.9		2.2		7.3		11	
Vinyl Chloride		0.41	U	0.41	U	0.41	U	0.41	U	0.51	U	1	U
Xylene (total)		1.7	U	1.7	U	1.7	U	1.7	U	2.1	U	4.1	U

U - Not detected

Table 3-14Indoor Air 2009 Comparison to NYSDOH Matrices

Structure	Parameter				Sub-Slab µg/m3		r Air 13	Matrix ^{1,2}		
H01	PCE	0.27	U			5.6				Matrix 2
	TCE	0.21	U			1.3				Matrix 1
H02	PCE	0.88		2.2				0.27	U	Matrix 2
	TCE	0.21	U	0.21	U			0.21	U	Matrix 1
	PCE			3.2						Matrix 2
	TCE			0.21	U					Matrix 1
H03	PCE	2		5.4				0.27	U	Matrix 2
	TCE	0.33	U	0.64	U			0.21	U	Matrix 1
H04	PCE	0.62		1.4	U					Matrix 2
	TCE	7		4.6						Matrix 1
H05	PCE	1		6						Matrix 2
	TCE	0.21	U	0.21	U					Matrix 1
H06	PCE	3.2		5.4				0.27	U	Matrix 2
	TCE	0.21	U	0.21	U			0.21	U	Matrix 1
H07	PCE	0.41		0.27	U					Matrix 2
	TCE	0.21	U	0.21	U					Matrix 1
H07	PCE			0.27	U					Matrix 2
	TCE			0.21	U					Matrix 1
H08	PCE	2.8				1.6		0.27	U	Matrix 2
	TCE	0.21	U			0.86	U	0.21	U	Matrix 1
H09	PCE	0.27	U	0.27	U	4.4		0.27	U	Matrix 2
	TCE	0.21	U	0.21	U	0.86	U	0.21	U	Matrix 1
H10	PCE	0.27	U	0.27	U	4.4				Matrix 2
	TCE	0.21	U	0.21	U	0.91				Matrix 1
H10	PCE			0.27	U					Matrix 2
	TCE			0.21	U					Matrix 1
H11	PCE	0.68	U	0.5						Matrix 2
	TCE	0.54	U	0.21	U					Matrix 1
H12	PCE	0.27	U	0.39						Matrix 2
	TCE	0.21	U	0.21	U					Matrix 1

Structure	Parameter	First Flo Indoor A µg/m3	Air	Basem Indoor µg/m	Air	Sub-S µg/r		Outdoor µg/m		Matrix ^{1,2}
H13	PCE	0.27	U	0.27	U					Matrix 2
	TCE	0.21	U	0.21	U					Matrix 1
H13	PCE	0.27	U							Matrix 2
	TCE	0.21	U							Matrix 1
H14	PCE	1.7	U	1.9						Matrix 2
	TCE	1.3	U	0.54	U					Matrix 1
H15	PCE	0.4	U							Matrix 2
	TCE	0.21	U							Matrix 1
H16	PCE	28	J	60						Matrix 2
	TCE	0.54		0.81	U					Matrix 1
H17	PCE	0.42				1.4	U			Matrix 2
	TCE	0.21	U			1.1	U			Matrix 1
H17	PCE	0.75				2.7	U	0.27	U	Matrix 2
	TCE	0.21	U			2.1	U	0.21	U	Matrix 1

Table 3-14 Indoor Air 2009 Comparison to NYSDOH Matrices

1. Soil/Vapor Matrix as shown in NYSDOH (2006); recommended action and numbering taken from corresponding matrix.

2. For structures without Sub-Slab sample results, it is assumed the sub-slab TCE concentration is less than 5 μ g/m3 and the PCE concentration is less than 100 μ g/m3.

U = Not Detected

Table 3-15 VOCs in Indoor Air Samples 2010

Structure	H01	H02	H03	H03	H04	H04
Type of Samples	Indoor Air	Indoor Air	First Floor	Basement	First Floor	Basement
Date	2/14/2010	2/14/2010	2/14/2010	2/14/2010	2/14/2010	2/14/2010
Units	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³
1,1,1-Trichloroethane	0.22 U	0.22 U	0.24	0.22 U	0.22 U	0.22 U
1,1,2,2-Tetrachloroethane	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U
1,1,2-Trichloroethane	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U
1,1-Dichloroethane	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U
1,1-Dichloroethene	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U
1,2-Dibromoethane	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U
1,2-Dichloroethane	0.32 U	0.32 U	0.32	0.32 U	0.32 U	0.32 U
1,2-Dichloroethene (total)	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U
1,2-Dichloropropane	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U
1,2-Dichlorotetrafluoroethane	0.28 UJ	0.28 UJ	0.48 J	0.28 UJ	0.28 U	0.28 U
1,3,5-Trimethylbenzene	0.39 U	0.39 U	0.39 U	0.39 U	2.0	0.88
1,3-Butadiene	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U
2,2,4-Trimethylpentane	0.36	0.30	0.37	0.19 U	0.19 U	0.19 U
3-Chloropropene	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
4-Ethyltoluene	0.22 J	0.20 U	0.20 U	0.20 U	1.3	0.79
Benzene	0.86	0.89	1.8	0.70	0.89	0.77
Bromodichloromethane	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U
Bromoethene	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U
Bromoform	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U
Bromomethane	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U
Carbon Tetrachloride	0.48	0.57	1.6	0.43	0.51	0.48
Chloroethane	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U
Chloroform	0.20 U	0.20 U	0.29	0.20 U	2.0	0.68
cis-1,2-Dichloroethene	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U
cis-1,3-Dichloropropene	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U
Cyclohexane	0.76	0.86	0.27	0.32	0.62	0.55
Dibromochloromethane	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U
Dichlorodifluoromethane	2.4	2.7	6.9	2.3	2.8	2.6
Ethylbenzene	0.37	0.40	0.30	0.24	3.4	3.0
Methyl tert-Butyl Ether	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U
Methylene Chloride	2.8 U	2.8 U	42	80	2.8 U	2.8 U

Table 3-15 VOCs in Indoor Air Samples 2010

Structure	H01	H02	H03	H03	H04	H04
Type of Samples	Indoor Air	Indoor Air	First Floor	Basement	First Floor	Basement
Date	2/14/2010	2/14/2010	2/14/2010	2/14/2010	2/14/2010	2/14/2010
Units	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³
n-Heptane	0.66	0.41	1.4	0.61	1.5	1.3
n-Hexane	0.63	1.0	1.1	1.1	1.4	1.1
Tetrachloroethene (PCE)	0.27 U	2.0	1.8	3.6	0.36	0.31
Toluene	4.5	3.5	2.3	1.3	4.5	3.5
trans-1,2-Dichloroethene	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U
trans-1,3-Dichloropropene	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U
Trichloroethene (TCE)	0.21 U	0.21 U	0.21 U	0.21 U	0.91	0.46
Trichlorofluoromethane	1.4	5.2	4.4	1.2	1.6	1.3
Vinyl Chloride	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Xylene (m,p)	1.0	1.1	0.96	0.83	12	9.6
Xylene (o)	0.37	0.37	0.30	0.24	4.1	3.0
Xylene (total)	1.4	1.5	1.3	1.1	16	13

All units in micrograms per cubic meter (µg/m³)

U - Not detected

J - Estimated value

Structure	H05	H05
Type of Samples	First Floor	Basement
Date	2/14/2010	2/14/2010
Units	µg/m³	µg/m³
1,1,1-Trichloroethane	0.22 U	0.22 U
1,1,2,2-Tetrachloroethane	0.27 U	0.27 U
1,1,2-Trichloroethane	0.22 U	0.22 U
1,1-Dichloroethane	0.16 U	0.16 U
1,1-Dichloroethene	0.16 U	0.16 U
1,2-Dibromoethane	0.31 U	0.31 U
1,2-Dichloroethane	0.40	0.32 U
1,2-Dichloroethene (total)	0.16 U	0.16 U
1,2-Dichloropropane	0.37 U	0.37 U
1,2-Dichlorotetrafluoroethane	0.28 U	0.28 U
1,3,5-Trimethylbenzene	0.39 U	0.39 U
1,3-Butadiene	0.88	0.18 U
2,2,4-Trimethylpentane	0.19 U	0.19 U
3-Chloropropene	0.25 U	0.25 U
4-Ethyltoluene	0.20 U	0.23
Benzene	1.1	0.51
Bromodichloromethane	0.27 U	0.27 U
Bromoethene	0.35 U	0.35 U
Bromoform	0.41 U	0.41 U
Bromomethane	0.31 U	0.31 U
Carbon Tetrachloride	0.36	0.53
Chloroethane	0.21 U	0.21 U
Chloroform	0.20 U	0.20 U
cis-1,2-Dichloroethene	0.16 U	0.16 U
cis-1,3-Dichloropropene	0.18 U	0.18 U
Cyclohexane	0.14 U	0.14 U
Dibromochloromethane	0.34 U	0.34 U
Dichlorodifluoromethane	2.2	2.3
Ethylbenzene	0.37	0.25
Methyl tert-Butyl Ether	0.14 U	0.14 U
Methylene Chloride	2.8 U	2.8 U

Table 3-15 VOCs in Indoor Air Samples 2010

Structure	H05	H05
Type of Samples	First Floor	Basement
Date	2/14/2010	2/14/2010
Units	µg/m³	µg/m³
n-Heptane	0.32	0.20
n-Hexane	0.42	0.35
Tetrachloroethene (PCE)	0.81	6.2
Toluene	2.4	1.0
trans-1,2-Dichloroethene	0.16 U	0.16 U
trans-1,3-Dichloropropene	0.18 U	0.18 U
Trichloroethene (TCE)	0.21 U	0.21 U
Trichlorofluoromethane	2.4	1.2
Vinyl Chloride	0.20 U	0.20 U
Xylene (m,p)	1.1	0.87
Xylene (o)	0.33	0.32
Xylene (total)	1.4	1.2

Table 3-15 VOCs in Indoor Air Samples 2010

All units in micrograms per cubi

U - Not detected

J - Estimated value

Table 3-16 VOCs in Outdoor Air Samples 2010

Structure	H02			
Date	2/14/	2010		
Units	μg/m ³ 0.22 U			
1,1,1-Trichloroethane				
1,1,2,2-Tetrachloroethane	0.27	U		
1,1,2-Trichloroethane	0.22	U		
1,1-Dichloroethane	0.16	U		
1,1-Dichloroethene	0.16	U		
1,2-Dibromoethane	0.31	U		
1,2-Dichloroethane	0.32	U		
1,2-Dichloroethene (total)	0.16	U		
1,2-Dichloropropane	0.37	U		
1,2-Dichlorotetrafluoroethane	0.28	UJ		
1,3,5-Trimethylbenzene	0.39	U		
1,3-Butadiene	0.18	U		
2,2,4-Trimethylpentane	0.19	U		
3-Chloropropene	0.25	U		
4-Ethyltoluene	0.20	U		
Benzene	0.54			
Bromodichloromethane	0.27	U		
Bromoethene	0.35	U		
Bromoform	0.41	U		
Bromomethane	0.31	U		
Carbon Tetrachloride	0.45			
Chloroethane	0.21	U		
Chloroform	0.20	U		
cis-1,2-Dichloroethene	0.16	U		
cis-1,3-Dichloropropene	0.18	U		
Cyclohexane	0.14	U		
Dibromochloromethane	0.34	U		
Dichlorodifluoromethane	2.1			
Ethylbenzene	0.17	U		
Methyl tert-Butyl Ether	0.14	U		
Methylene Chloride	2.8	U		

Table 3-16VOCs in Outdoor Air Samples 2010

Structure	H02
Date	2/14/2010
Units	µg/m³
n-Heptane	0.16 U
n-Hexane	0.28 U
Tetrachloroethene (PCE)	0.27 U
Toluene	0.57
trans-1,2-Dichloroethene	0.16 U
trans-1,3-Dichloropropene	0.18 U
Trichloroethene (TCE)	0.21 U
Trichlorofluoromethane	1.1
Vinyl Chloride	0.20 U
Xylene (m,p)	0.35
Xylene (o)	0.17 U
Xylene (total)	0.35

Notes:

All units in micrograms per cubic meter (µg/m³)

U - Not detected

J - Estimated value

Table 3-17
VOCs in Sub-Slab Vapor Samples 2010

Structure	H01	H02	H02 (Dup)	H03	H04	H05
Sample Date	2/14/2010	2/14/2010	2/14/2010	2/14/2010	2/14/2010	2/14/2010
Units	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³
1,1,1-Trichloroethane	1.1 U	2.2 U	2.2 U	1.5	1.1 U	6.0 U
1,1,2,2-Tetrachloroethane	1.4 U	2.7 U	2.7 U	1.4 U	1.4 U	7.6 U
1,1,2-Trichloroethane	1.1 U	2.2 U	2.2 U	1.1 U	1.1 U	6.0 U
1,1-Dichloroethane	0.81 U	1.6 U	1.6 U	0.81 U	0.81 U	4.5 U
1,1-Dichloroethene	0.79 U	1.6 U	1.6 U	0.79 U	0.79 U	4.4 U
1,2-Dibromoethane	1.5 U	3.1 U	3.1 U	1.5 U	1.5 U	8.5 U
1,2-Dichloroethane	1.2	1.6 U	1.6 U	1.4	0.81 U	4.5 U
1,2-Dichloroethene (total)	0.79 U	1.6 U	1.6 U	0.79 U	0.79 U	56
1,2-Dichloropropane	0.92 U	1.8 U	1.8 U	0.92 U	0.92 U	5.1 U
1,2-Dichlorotetrafluoroethane	1.4 U	2.8 U	2.8 U	1.4 U	1.4 U	7.7 U
1,3,5-Trimethylbenzene	1.2	4.8	4.6	0.98 U	1.4	5.4 U
1,3-Butadiene	1.1 U	2.2 U	2.2 U	1.1 U	1.1 U	6.0 U
2,2,4-Trimethylpentane	0.93 U	1.9 U	1.9 U	0.93 U	0.93 U	5.1 U
3-Chloropropene	1.6 U	3.1 U	3.1 U	1.6 U	1.6 U	8.5 U
4-Ethyltoluene	0.98 U	2.4	2.2	0.98 U	0.98 U	5.4 U
Benzene	1.7	6.1	6.4	0.99	3.2	3.5 U
Bromodichloromethane	1.3 U	2.7 U	2.7 U	1.3 U	1.3 U	7.4 U
Bromoethene	0.87 U	1.7 U	1.7 U	0.87 U	0.87 U	4.8 U
Bromoform	2.1 U	4.1 U	4.1 U	2.1 U	2.1 U	11 U
Bromomethane	0.78 U	1.6 U	1.6 U	0.78 U	0.78 U	4.3 U
Carbon Tetrachloride	1.3 U	2.5 U	2.5 U	1.3 U	1.3 U	6.9 U
Chloroethane	1.3 U	2.6 U	2.6 U	1.3 U	1.3 U	7.1 U
Chloroform	16	2.0 U	2.0 U	3.0	1.7	5.4 U
cis-1,2-Dichloroethene	0.79 U	1.6 U	1.6 U	0.79 U	0.79 U	56
cis-1,3-Dichloropropene	0.91 U	1.8 U	1.8 U	0.91 U	0.91 U	5.0 U
Cyclohexane	6.5	210	220	2.7	6.2	7.6
Dibromochloromethane	1.7 U	3.4 U	3.4 U	1.7 U	1.7 U	9.4 U
Dichlorodifluoromethane	2.6	4.9 U	4.9 U	23	2.5 U	13 U
Ethylbenzene	2.4	11	10	3.0	3.6	4.8 U
Methyl tert-Butyl Ether	1.8 U	3.6 U	3.6 U	1.8 U	1.8 U	9.7 U
Methylene Chloride	3.8	3.5 U	3.5 U	20	1.7 U	9.4 U
n-Heptane	15	86	86	6.1	9.8	20
n-Hexane	15	88	88	6.0	12	19

Table 3-17
VOCs in Sub-Slab Vapor Samples 2010

Structure	H01	H02	H02 (Dup)	H03	H04	H05
Sample Date	2/14/2010	2/14/2010	2/14/2010	2/14/2010	2/14/2010	2/14/2010
Units	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³
Tetrachloroethene (PCE)	4.7	48	47	260	10	1100
Toluene	12	23	22	11	14	12
trans-1,2-Dichloroethene	0.79 U	1.6 U	1.6 U	0.79 U	0.79 U	4.4 U
trans-1,3-Dichloropropene	0.91 U	1.8 U	1.8 U	0.91 U	0.91 U	5.0 U
Trichloroethene (TCE)	1.2	2.1 U	2.1 U	1.2	1.1 U	45
Trichlorofluoromethane	1.3	2.2 U	2.2 U	1.5	1.2	6.2 U
Vinyl Chloride	0.51 U	1.0 U	1.0 U	0.51 U	0.51 U	2.8 U
Xylene (m,p)	9.6	40	39	8.3	13	14
Xylene (o)	4.0	18	17	3.9	4.8	4.8 U
Xylene (total)	14	61	56	13	19	14

All units in micrograms per cubic meter (µg/m³)

U - Not detected

J - Estimated value

Dup - Field Duplicate

Table 3-18
Indoor Air 2010 Comparison to NYSDOH Matrices

Structure	Parameter	Indoor Air µg/m3	Sub-Slab µg/m3	Outdoor Air µg/m3	Matrix ¹
H01					
	PCE	0.27 U	4.7		2
	TCE	0.21 U	1.2		1
H02					
	PCE	2	48	0.27 U	2
	TCE	0.21 U	2.1 U	0.21 U	1
H02 (dup)					
	PCE		47		2
	TCE		2.1 U		1
H03		Basement			
	PCE	3.6	260		2
	TCE	0.21 U	1.2		1
H03		First floor			
	PCE	1.8			2
	TCE	0.21 U			1
H04		Basement			
	PCE	0.31	10		2
	TCE	0.46	1.1 U		1
H04		First floor			
-	PCE	0.36			2
	TCE	0.91			1
H05		Basement			
	PCE	6.2	1100		2
	TCE	0.21 U	45		1
H05		First floor			
	PCE	0.81			2
	TCE	0.21 U			1

1. Soil/Vapor Matrix as shown in NYSDOH (2006); recommended action and numbering taker

U = Not Detected

 Table 7-1

 Chemical-Specific Values Used in Fate and Transport Calculations

CAS		Org. Car. partition coefficient K _{oc}	Log K _{oc}	Diffusivity in air D _a	Diffusivity in water D _w	Pure component water sol S	Henry's Law Constant H'	Normal boiling point (bp) T _B	Density (Specific Gravity) ρ
No.	Chemical	(cm ³ /g)	(unitless)	(cm^2/s)	(cm ² /s)	(mg/L)	(unitless)	(°C)	(g/cm^3)
156592	1,2-Dichloroethene (cis)	3.55E+01	1.55E+00	7.36E-02	1.13E-05	3.50E+03	1.67E-01	60.5	1.284
127184	Tetrachloroethene (PCE)	1.55E+02	2.19E+00	7.20E-02	8.20E-06	2.00E+02	7.53E-01	121.3	1.624
79016	Trichloroethene (TCE)	1.66E+02	2.22E+00	7.90E-02	9.10E-06	1.47E+03	4.21E-01	87.2	1.466
75014	Vinyl chloride	1.86E+01	1.27E+00	1.06E-01	1.23E-05	8.80E+03	1.10E+00	-13.9	0.908

Table adapted from NJDEP (2007; Table G-2)

NOTES

^dCalculated using USEPA (2001b)

^eFrom Hazardous Substances Databank (2004)

Table 7-2 Groundwater Flow and Contaminant Migration

	Horizontal	Hydraulic	Effective	GW Flow	Partition	Carbon	Density	Retardation	Contaminar	nt Transport	Distance ¹	Time ²
Contaminant	Gradient (ft/ft)	Cond. (ft/day)	Porosity	(ft/day)	K _{oc}	f _{oc}	P _b (g/cc)	Rd	ft/day	ft/year	(ft)	(yrs)
PCE	0.0065	175	0.25	4.53	155	0.002	1.922	3.38	1.34	488.2	1280	3
TCE	0.0065	175	0.25	4.53	166	0.002	1.922	3.55	1.27	465.0	1280	3
cis-1,2-DCE	0.0065	175	0.25	4.53	355	0.002	1.922	6.46	0.70	255.8	1280	5
VC	0.0065	175	0.25	4.53	18.6	0.002	1.922	1.29	3.52	1284.5	1280	1

1. Distance (in ft) between the Crystal Cleaners building and public well SW-2.

2. Estimated time required for the contaminant to reach public well SW-2.

3. Koc values were obtained from www.state.nj.us/dep/srp/vaporintrusion.htm; see Table 7-1.

Table 7-3 Degradation Processes

	Compound							
Degradation Process	PCE	TCE	DCE	VC				
Aerobic Oxidation	Ν	Ν	Р	Y				
Aerobic Co-metabolism	Ν	Y	Y	Y				
Anaerobic Oxidation	Ν	Ν	Р	Y				
Anaerobic Reductive Dechlorination	Y	Y	Y	Y				
Co-metabolic Anaerobic Reduction	Y	Y	Y	Y				

PCE = tetrachloroethene, TCE = trichloroethene, DCE = 1,2-dichloroethene, VC = vinyl chloride

N = Not documented in the literature.

Y = Documented in the literature.

P = Potential for reaction to occur but not well documented in the literature.

Adapted from ITRC, 1999

Table 8-1 Groundwater Concentration Summary Statistics

							NYSDEC Class	EPA RSL			
				Minimum	Maximum	Maximum	GA	Screening			Number of
		Detection	Detection	Detected	Detected	Detected	Groundwater	Toxicity		Used for	Exceed-
Parameter	CAS	Frequency	Limit Range	Value	Value	Sample	Criteria	Values	EPA MCL	Screening	ances
VOCs (ug/L)							•				
cis-1,2-Dichloroethene	156-59-2	12 / 35	1 - 5	1.6	120	HP-6-B	5	37	70	GA	4
Cyclohexane	110-82-7	1 / 35	1 - 5	1.3	1.3	MW-2	NL	1300	NL	RSL	0
Methyl tert-butyl Ether	1634-04-4	1 / 35	1 - 5	0.82	0.82	MW-5	NL	12	NL	RSL	0
Methylcyclohexane	108-87-2	3 / 35	1 - 5	1.1	4.3	HP-1-AA	NL	NL	NL	NL	
Tetrachloroethene (PCE)	127-18-4	17 / 35	1 - 5	3.9	430	HP-3-A	5	0.11	5	RSL	17
Toluene	108-88-3	1 / 35	1 - 5	1.2	1.2	HP-1-A	5	230	1000	GA	0
Trichloroethene (TCE)	79-01-6	8 / 35	1 - 5	0.57	34	HP-6-B	5	2	5	RSL	6
Vinyl Chloride	75-01-4	2 / 35	1 - 5	1.6	4.5	HP-6-B	2	0.016	2	RSL	2
Inorganics (ug/L)											
Aluminum	7429-90-5	5/6	50 - 50	53.2	6700	MW-6	NL	3700	NL	RSL	2
Barium	7440-39-3	6/6	50 - 50	192	447	MW-6	1000	730	2000	RSL	0
Calcium	7440-70-2	6/6	1000 - 1000	70800	109000	MW-6	NL	NL	NL	NL	
Chromium	7440-47-3	3/6	5 - 5	4.51	10.8	MW-6	50	NL	100	GA	0
Copper	7440-50-8	3/6	10 - 10	5.5	13.5	MW-6	250	150	1300	RSL	0
Iron	7439-89-6	5/6	50 - 50	72.3	11800	MW-6	300	2600	NL	GA	3
Lead	7439-92-1	3/6	6 - 6	3.32	14.9	MW-6	25	NL	15	MCL	0
Magnesium	7439-95-4	6/6	1000 - 1000	15000	31900	MW-5	35000	NL	NL	GA	0
Manganese	7439-96-5	6/6	10 - 10	8.49	859	MW-6	300	88	NL	RSL	5
Nickel	7440-02-0	3/6	20 - 20	5.18	13.2	MW-6	100	73	NL	RSL	0
Potassium	7440-09-7	6/6	1000 - 1000	1990	5751.45	MW-3	NL	NL	NL	NL	
Sodium	7440-23-5	6/6	1000 - 1000	41200	223025	MW-3	20000	NL	NL	GA	6
Vanadium	7440-62-2	3/6	20 - 20	5.78	10.8	MW-6	NL	0.26	NL	RSL	3
Zinc	7440-66-6	4/6	20 - 20	6.03	198	MW-4	2000	1100	NL	RSL	0

Table 8-1 Groundwater Concentration Summary Statistics

							NYSDEC Class	EPA RSL			
				Minimum	Maximum	Maximum	GA	Screening			Number of
		Detection	Detection	Detected	Detected	Detected	Groundwater	Toxicity		Used for	Exceed-
Parameter	CAS	Frequency	Limit Range	Value	Value	Sample	Criteria	Values	EPA MCL	Screening	ances
Inorganics-Filtered (ug/L)											
Aluminum	7429-90-5	3/6	50 - 50	34	2010	MW-3F	NL	3700	NL	RSL	0
Barium	7440-39-3	6/6	50 - 50	184	362	MW-5F	1000	730	2000	RSL	0
Calcium	7440-70-2	6/6	1000 - 1000	68000	99700	MW-3F	NL	NL	NL	NL	
Chromium	7440-47-3	1/6	5 - 5	2.8	2.8	MW-3F	50	NL	100	GA	0
Copper	7440-50-8	1/6	10 - 10	3.87	3.87	MW-3F	250	150	1300	RSL	0
Iron	7439-89-6	4/6	50 - 50	67.9	2260	MW-3F	300	2600	NL	GA	2
Lead	7439-92-1	3/6	6 - 6	2.77	3.27	MW-5F	25	NL	15	MCL	0
Magnesium	7439-95-4	6/6	1000 - 1000	14300	27600	MW-5F	35000	NL	NL	GA	0
Manganese	7439-96-5	6/6	10 - 10	6.33	554	MW-5F	300	88	NL	RSL	5
Potassium	7440-09-7	6/6	1000 - 1000	1990	4880	MW-3F	NL	NL	NL	NL	
Sodium	7440-23-5	6/6	1000 - 1000	40000	220000	MW-3F	20000	NL	NL	GA	6
Zinc	7440-66-6	3/6	20 - 20	10.5	22.3	MW-3F	2000	1100	NL	RSL	0

1. Background values are Eastern USA background values from New York State TAGM 4046, Table 4.

2. Screening toxicity values are the EPA Regional Screening Level (RSL) Resident Tap (May 2010).

3. RSLs correspond to 1E-6 of a hazard quotient of 0.1 or MCL, whichever is lower.

Table 8-2 Soil Concentration Summary Statistics

							EPA RSL		
			Minimum	Maximum	Maximum		Screening		
	Detection	Detection Limit	Detected	Detected	Detected	Background	Toxicity	Used for	Number of
Parameters	Frequency	Range	Value	Value	Sample	Levels	Values	Screening	Exceedances
VOCs (ug/kg)					-	•			
Acetone	8 / 14	28 - 4200	14	190	HP-1-C	NL	6100000	RSL	0
Cyclohexane	1 / 14	5.7 - 830	25000	25000	SS-1	NL	700000	RSL	0
Ethyl Benzene	1 / 14	5.7 - 830	25000	25000	SS-1	NL	5400	RSL	1
Isopropylbenzene	1 / 14	5.7 - 830	6200	6200	SS-1	NL	210000	RSL	0
Methylcyclohexane	1 / 14	5.7 - 830	140000	140000	SS-1	NL	NL	NL	
Styrene	1 / 14	5.7 - 830	16	16	SOIL-2	NL	630000	RSL	0
Tetrachloroethene (PCE)	13 / 14	5.7 - 830	1.5	860	SS-1	NL	550	RSL	1
Toluene	3 / 14	5.7 - 830	2.5	1500	SS-1	NL	500000	RSL	0
Trichloroethene (TCE)	1 / 14	5.7 - 830	5.3	5.3	SS-6	NL	2800	RSL	0
Xylene (m,p)	1 / 14	11 - 1700	140000	140000	SS-1	NL	63000	RSL	0
Xylene (o)	1 / 14	5.7 - 830	25000	25000	SS-1	NL	380000	RSL	0
SVOCs (ug/kg)						•			
2-Methylnaphthalene	1/6	350 - 440	1500	1500	SS-1	NL	31000	RSL	0
Chrysene	1/6	350 - 440	43	43	SS-3	NL	15000	RSL	0
Fluoranthene	1/6	350 - 440	150	150	SS-3	NL	230000	RSL	0
Naphthalene	1/6	350 - 440	1100	1100	SS-1	NL	3600	RSL	0
Phenanthrene	1/6	350 - 440	61	61	SS-3	NL	NL	NL	0
Pyrene	1/6	350 - 440	120	120	SS-3	NL	170000	RSL	0
Inorganics (mg/kg)						•			
Aluminum	6/6	3.56 - 4.46	4640	11700	SS-3	33000	7700	BKG	0
Arsenic	6/6	0.71 - 0.89	3.04	7.2	SS-3	3-12	0.39	BKG	0
Barium	6/6	3.56 - 4.46	17.2	62.9	SS-3	15-600	1500	RSL	0
Beryllium	5/6	0.21 - 0.27	0.32	0.59	SS-3	0-1.75	16	RSL	0
Cadmium	6/6	0.21 - 0.27	0.66	0.95	SS-3	0.1-1	7	RSL	0
Calcium	6/6	71.2 - 89.2	1930	35000	SS-4	130 - 35,000	NL	BKG	0
Chromium	6/6	0.36 - 0.45	6.37	14	SS-3	1.5 - 40	NL	BKG	0
Cobalt	6/6	1.07 - 1.34	3.97	9.48	SS-3	2.5 - 60	2.3	BKG	0
Copper	6/6	0.71 - 0.89	22.7	38.1	SS-1	18264	310	BKG	0
Iron	6/6	3.56 - 4.46	11500	24200	SS-3	2,000 - 550,000	5500	BKG	0
Lead	6/6	0.43 - 0.54	5.76	74.2	SS-2	4-61	40	BKG	1
Magnesium	6/6	71.2 - 89.2	2410	7130	SS-4	100 - 5,000	NL	BKG	2
Manganese	6/6	0.71 - 0.89	314	870	SS-2	50 - 5,000	NL	BKG	0
Mercury	5/6	0.01 - 0.013	0.012	0.059	SS-2	0.001 - 0.2	0.56	RSL	0
Nickel	6/6	1.42 - 1.78	11.9	22.4	SS-3	0.5 -25	150	RSL	0
Potassium	6/6	71.2 - 89.2	399	690	SS-3	8,500 - 43,000	NL	BKG	0

Table 8-2 Soil Concentration Summary Statistics

							EPA RSL		
			Minimum	Maximum	Maximum		Screening		
	Detection	Detection Limit	Detected	Detected	Detected	Background	Toxicity	Used for	Number of
Parameters	Frequency	Range	Value	Value	Sample	Levels	Values	Screening	Exceedances
Selenium	6/6	0.71 - 0.89	1.23	2.81	SS-3	0.1 - 3.9	39	RSL	0
Sodium	6/6	71.2 - 89.2	130	321	SS-3	6,000 - 8,000	NL	BKG	0
Vanadium	6/6	1.42 - 1.78	8.4	18.6	SS-3	1-300	0.55	BKG	0
Zinc	6/6	1.42 - 1.78	50.7	81.65	SS-5	18507	2300	BKG	0

Notes:

1. Background values are Eastern USA background values from New York State TAGM 4046, Table 4.

2. Screening toxicity values are the EPA Regional Screening Level (RSL) Resident Soil (May 2010).

3. RSLs correspond to 1E-6 or a hazard quotient of 0.1, whichever is lower.

4. PCBs and pesticides were analyzed in some samples but not detected.

Table 8-3 Indoor Air Concentration Summary Statistics

							EPA RSL		
			Minimum	Maximum		NYSDOH Indoor	Screening		
	Detection	Detection	Detected	Detected	Maximum Detected	Background	Toxicity	Used for	Number of
Parameter	Frequency	Limit Range	Value	Value	Sample	75th Percentile	Values	Screening	Exceedances
VOCs (ug/m3)				•					-
1,1,1-Trichloroethane	6 / 41	0.22 - 1.4	0.24	3.6	330-WWS-IA2	1.1	520	RSL	0
CFC 114	1 / 41	0.28 - 1.7	0.48	0.48	H03-IAF-20100213	<0.25	NL	BKG	1
1,2-Dichloroethane	6 / 41	0.32 - 2	0.32	5.3	IA-FF-260WW	<0.25	0.094	RSL	6
1,2-Dichloropropane	1 / 41	0.37 - 2.3	0.44	0.44	IA-B-126CA	<0.25	0.24	RSL	1
1,3,5-Trimethylbenzene	3 / 41	0.39 - 2.5	0.54	2	H04-IAF-20100213	1.7	NL	BKG	1
1,3-Butadiene	7 / 41	0.18 - 1.1	0.27	2.7	266 WWS-FF-IA	NL	0.081	BKG	7
2,2,4-Trimethylpentane	31 / 41	0.19 - 1.2	0.21	2.8	IA-B-8TA	2.1	NL	BKG	1
4-Ethyltoluene	24 / 41	0.2 - 1.2	0.22	1.3	H04-IAF-20100213	NL	NL	NL	
Benzene	41 / 41	0.13 - 0.8	0.51	32	266 WWS-FF-IA	5.9	0.31	BKG	1
Carbon Tetrachloride	38 / 41	0.25 - 1.6	0.28	1.6	H03-IAF-20100213	0.59	0.41	BKG	23
Chloroform	7 / 41	0.2 - 1.2	0.22	2	H04-IAF-20100213	0.54	0.11	BKG	3
Cyclohexane	32 / 41	0.14 - 0.9	0.15	1.7	IA-B-61GS	2.6	630	RSL	0
Dichlorodifluoromethane	41 / 41	0.2 - 1.2	2.2	120	IA-FF-260WW	4.1	21	RSL	3
Ethylbenzene	38 / 41	0.17 - 1.1	0.18	3.4	H04-IAF-20100213	2.8	0.97	BKG	2
Methylene Chloride	5 / 41	2.8 - 17	3	80	H03-IAB-20100213	6.6	5.2	BKG	4
n-Heptane	28 / 41	0.16 - 1	0.2	2.9	IA-B-61GS	7.6	NL	BKG	0
n-Hexane	38 / 41	0.28 - 1.8	0.35	3	IA-FF-292WW	6	73	RSL	0
Tetrachloroethene (PCE)	27 / 41	0.27 - 1.7	0.31	60	IA-B-CC	1.1	0.41	BKG	14
Toluene	41 / 41	0.15 - 0.9	1	60	IA-FF-260WW	24.8	520	RSL	0
Trichloroethene (TCE)	5 / 41	0.21 - 1.3	0.46	7	IA-FF-61GS	<0.25	1.2	RSL	2
Trichlorofluoromethane	41 / 41	0.22 - 1.4	1.2	36	IA-FF-260WW	5.4	73	RSL	0
Xylene (m,p)	38 / 41	0.35 - 2.2	0.43	12	H04-IAF-20100213	4.6	10	RSL	1
Xylene (o)	36 / 41	0.17 - 1.1	0.2	4.1	H04-IAF-20100213	3.1	73	RSL	0
Xylene (total)	38 / 41	0.17 - 1.1	0.61	16	H04-IAF-20100213	NL	10	RSL	2

Notes:

1. Background values are from NYSDOH 2003 study of volatile organic chemicals in air of fuel oil heated homes.

2. Screening toxicity values are the EPA Regional Screening Level (RSL) Resident Air (May 2010).

3. RSLs correspond to 1E-6 or a hazard quotient of 0.1, whichever is lower.

Table 8-4Outdoor Air Concentration Summary Statistics

						NYSDOH	EPA RSL		
			Minimum	Maximum		Outdoor	Screening		
	Detection	Detection	Detected	Detected	Maximum Detected	Background	Toxicity	Used for	Number of
Parameter	Frequency	Limit Range	Value	Value	Sample	75th Percentile	Values	Screening	Exceedances
VOCs (ug/m3)									
1,3-Butadiene	2 / 8	0.18 - 0.2	0.19	0.22	AMB-5-20090305	NL	0.081	RSL	2
2,2,4-Trimethylpentane	7 / 8	0.19 - 0.2	0.24	0.36	AMB-1-20090327	0.3	NL	BKG	4
4-Ethyltoluene	3 / 8	0.2 - 0.2	0.24	0.36	AMB-3-20090305	NL	NL	NL	
Benzene	8 / 8	0.13 - 0.1	0.54	1.2	AMB-5-20090305	2.2	0.31	BKG	0
Carbon Tetrachloride	8 / 8	0.25 - 0.3	0.35	0.75	AMB-4-20090305	0.6	0.41	BKG	2
Cyclohexane	3 / 8	0.14 - 0.1	0.19	0.41	AMB-1-20090305	0.4	630	RSL	0
Dichlorodifluoromethane	8 / 8	0.2 - 0.2	2.1	3.7	AMB-5-20090305	4.2	21	RSL	0
Ethylbenzene	7 / 8	0.17 - 0.2	0.2	0.43	AMB-1-20090305	0.5	0.97	RSL	0
n-Heptane	5/8	0.16 - 0.2	0.23	0.39	AMB-1-20090305	1.9	NL	BKG	0
n-Hexane	7 / 8	0.28 - 0.3	0.39	0.88	AMB-1-20090305	1	73	RSL	0
Toluene	8 / 8	0.15 - 0.2	0.57	6.4	AMB-1-20090305	2.4	520	RSL	0
Trichlorofluoromethane	8 / 8	0.22 - 0.2	1.1	1.7	AMB-1-20090327	2.2	73	RSL	0
Xylene (m,p)	8 / 8	0.35 - 0.4	0.35	1.7	AMB-2-20090327	0.5	10	RSL	0
Xylene (o)	7 / 8	0.17 - 0.2	0.2	0.74	AMB-2-20090327	0.7	73	RSL	0
Xylene (total)	8 / 8	0.17 - 0.2	0.35	2.4	AMB-2-20090327	NL	10	RSL	0

1. Background values are from NYSDOH 2003 study of volatile organic chemicals in air of fuel oil heated homes.

2. Screening toxicity values are the EPA Regional Screening Level (RSL) Resident Air (May 2010).

3. RSLs correspond to 1E-6 or a hazard quotient of 0.1, whichever is lower.

Appendix A Photolog

Hydropunch Sampling 2009

Macrocore from HP-11, depth 15ft – 20ft

Macrocore from HP-13, depth 20ft – 25ft

Crystal Cleaners Soil Sampling 2009

Clay Classification 2009

Geoprobe drill rig

Macrocore from location Geo-1, depth 45+

Macrocore from location Geo-2, depth 5ft – 10ft

Macrocore from location Geo-3, depth 0ft – 5ft

Monitoring well installation 2009

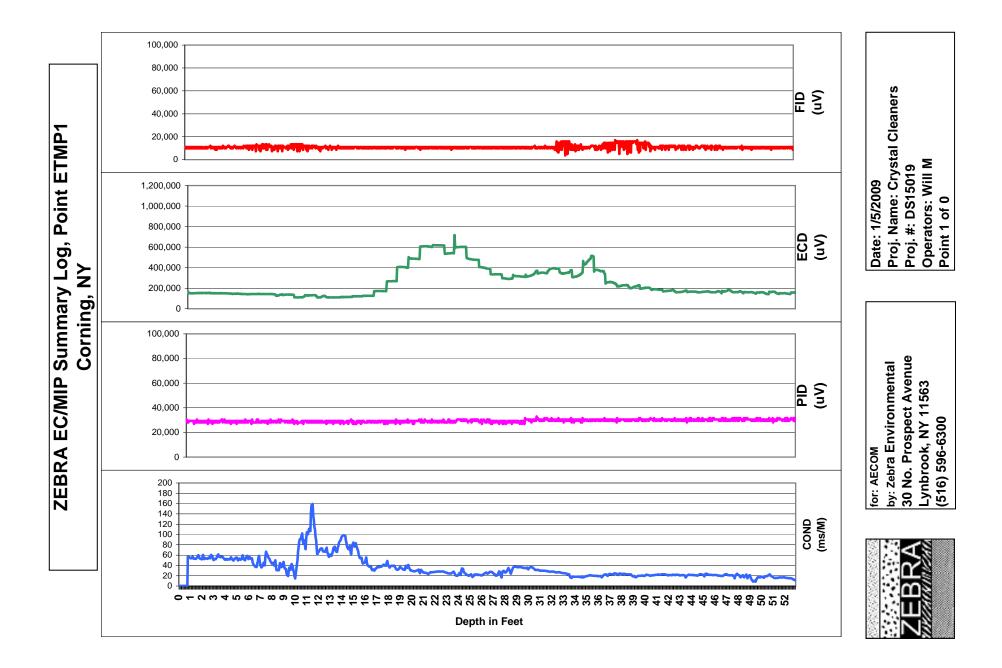
Monitoring well installation (Hollowstamp Augur), GPR Survey

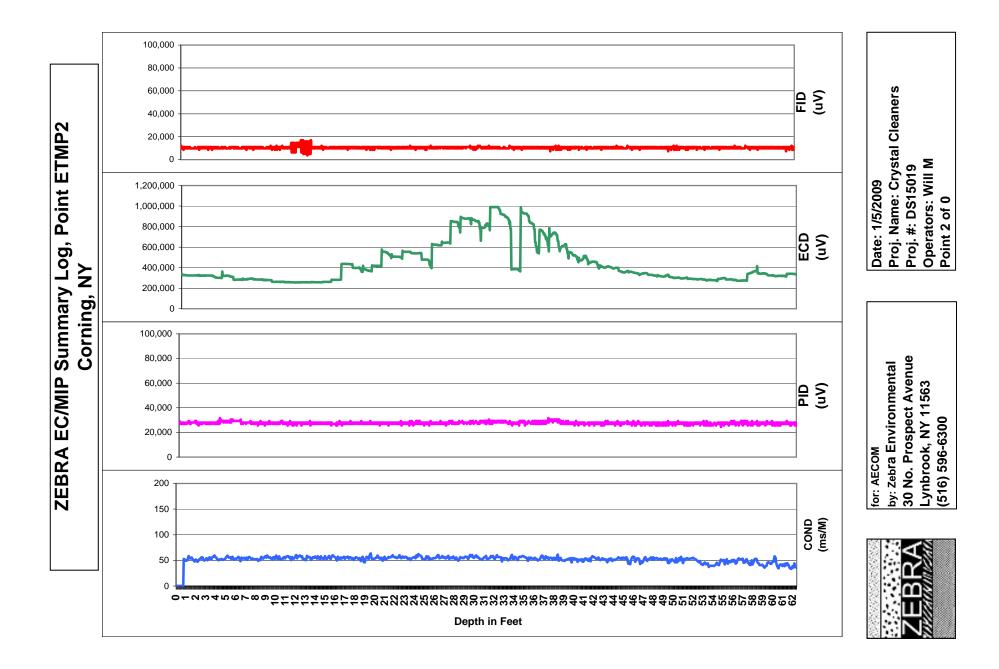
Monitoring well installation

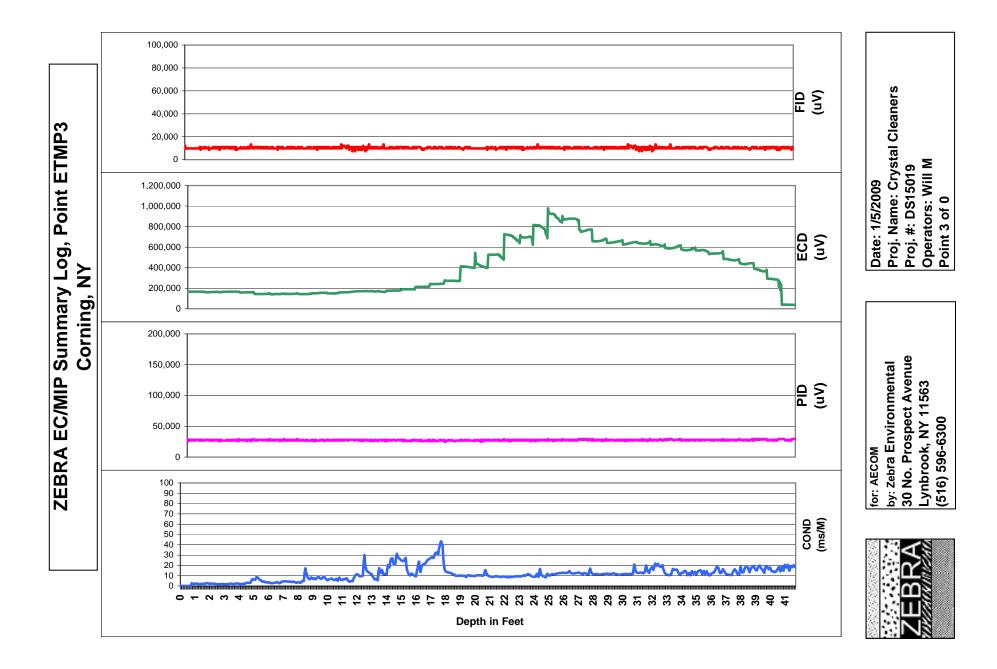
Monitoring Well - 4

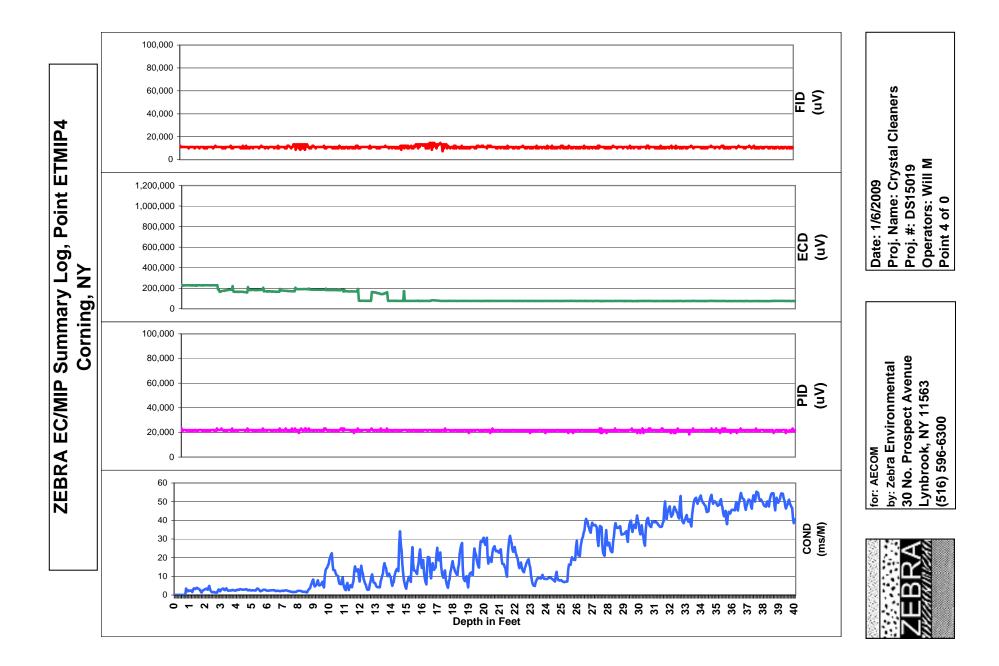
Appendix B MIP Investigation

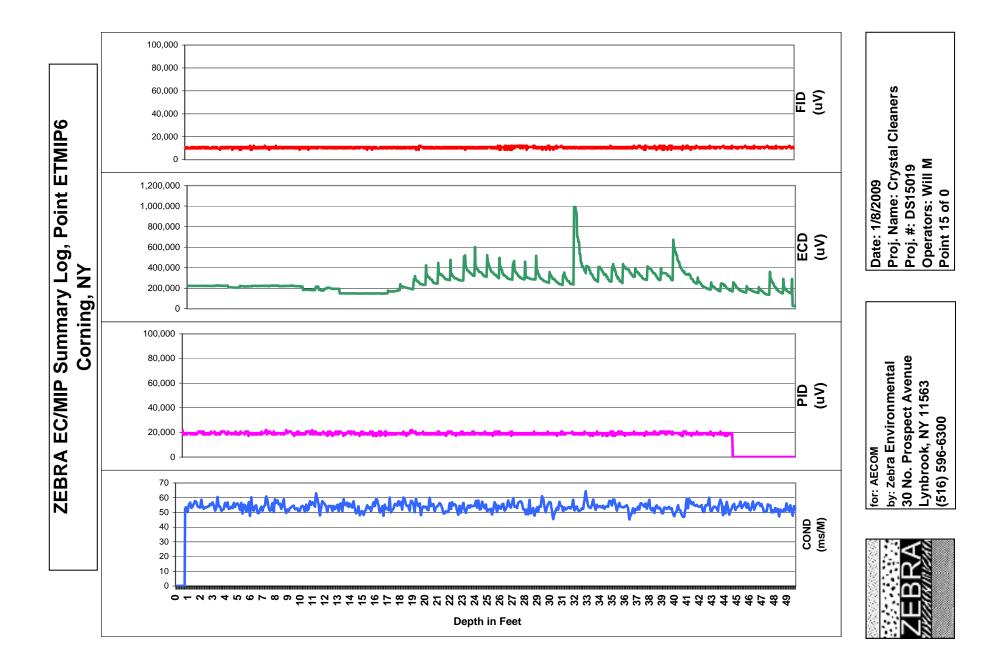
ZEBRA MIP Field Book

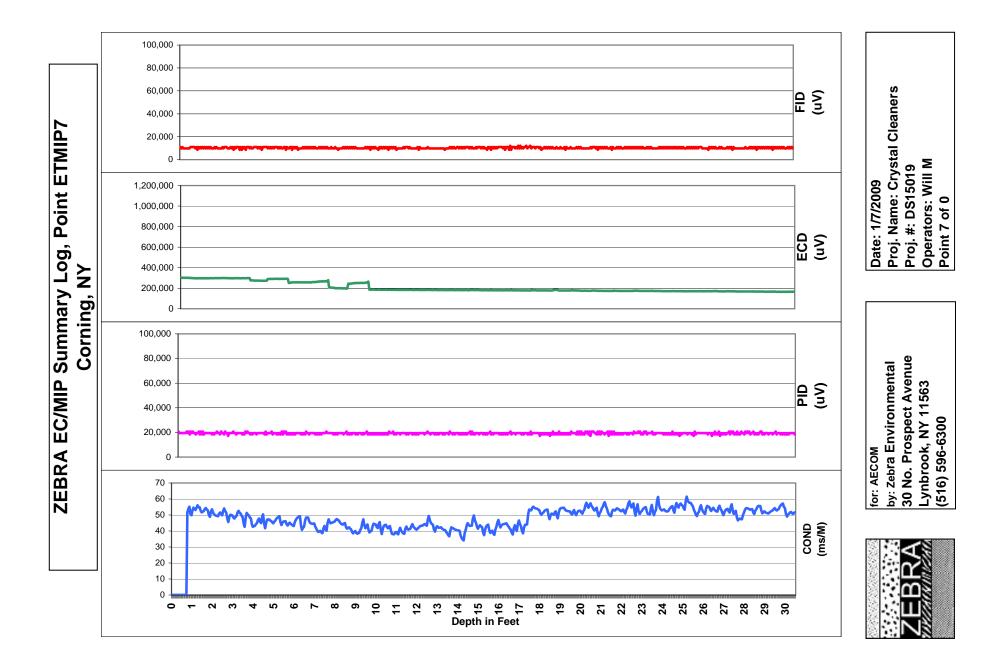

AECOM	CORNING, NY							
Number of Days MIP	4		1				2	
Weather			Sunny				nny	
DEPTH for DAY			158			10	69	
DATE		1/5/2009	1/5/2009	1/5/2009	1/6/2009	1/6/2009	1/6/2009	1/6/2009
DS15019								
Number of locations	15	ETMP1	ETMP2	ETMP3	ETMIP4	ETMIP12	ETMIP13	ETMIP14
MIP Unit		gator						
	0							
Probe #733	613	53	63	42	41	41	46	41
Probe #H734	0							
	0							
Total Depth	613							
Response Test			Good	Good				Good
PID MAX		32967	31746		23199			
ECD MAX		719170	991453	978022	233211	418803	649573	770452
ECD MAX FID MAX							649573	
ECD MAX FID MAX Water		719170 17094	991453 17094	978022 13431	233211 14652	418803 26862	649573 13431	770452 12210
ECD MAX FID MAX Water PID Lamp Percentage		719170 17094 50	991453 17094 50	978022 13431 50	233211 14652 50	418803 26862 50	649573 13431 50	770452 12210 50
ECD MAX FID MAX Water		719170 17094 50 40	991453 17094 50 40	978022 13431 50 40	233211 14652 50 40	418803 26862 50 40	649573 13431 50 40	770452 12210 50 40
ECD MAX FID MAX Water PID Lamp Percentage		719170 17094 50	991453 17094 50	978022 13431 50	233211 14652 50	418803 26862 50	649573 13431 50	770452 12210 50
ECD MAX FID MAX Water PID Lamp Percentage		719170 17094 50 40	991453 17094 50 40	978022 13431 50 40	233211 14652 50 40	418803 26862 50 40	649573 13431 50 40	770452 12210 50 40
ECD MAX FID MAX Water PID Lamp Percentage		719170 17094 50 40	991453 17094 50 40	978022 13431 50 40	233211 14652 50 40	418803 26862 50 40	649573 13431 50 40	770452 12210 50 40
ECD MAX FID MAX Water PID Lamp Percentage		719170 17094 50 40	991453 17094 50 40	978022 13431 50 40	233211 14652 50 40	418803 26862 50 40	649573 13431 50 40	770452 12210 50 40
ECD MAX FID MAX Water PID Lamp Percentage		719170 17094 50 40	991453 17094 50 40	978022 13431 50 40	233211 14652 50 40	418803 26862 50 40	649573 13431 50 40	770452 12210 50 40
ECD MAX FID MAX Water PID Lamp Percentage		719170 17094 50 40	991453 17094 50 40	978022 13431 50 40	233211 14652 50 40	418803 26862 50 40	649573 13431 50 40	770452 12210 50 40
ECD MAX FID MAX Water PID Lamp Percentage		719170 17094 50 40	991453 17094 50 40	978022 13431 50 40	233211 14652 50 40	418803 26862 50 40	649573 13431 50 40	770452 12210 50 40
ECD MAX FID MAX Water PID Lamp Percentage		719170 17094 50 40	991453 17094 50 40	978022 13431 50 40	233211 14652 50 40	418803 26862 50 40	649573 13431 50 40	770452 12210 50 40
ECD MAX FID MAX Water PID Lamp Percentage		719170 17094 50 40	991453 17094 50 40	978022 13431 50 40	233211 14652 50 40	418803 26862 50 40	649573 13431 50 40	770452 12210 50 40
ECD MAX FID MAX Water PID Lamp Percentage		719170 17094 50 40	991453 17094 50 40	978022 13431 50 40	233211 14652 50 40	418803 26862 50 40	649573 13431 50 40	770452 12210 50 40
ECD MAX FID MAX Water PID Lamp Percentage		719170 17094 50 40	991453 17094 50 40	978022 13431 50 40	233211 14652 50 40	418803 26862 50 40	649573 13431 50 40	770452 12210 50 40
ECD MAX FID MAX Water PID Lamp Percentage		719170 17094 50 40	991453 17094 50 40	978022 13431 50 40	233211 14652 50 40	418803 26862 50 40	649573 13431 50 40	770452 12210 50 40

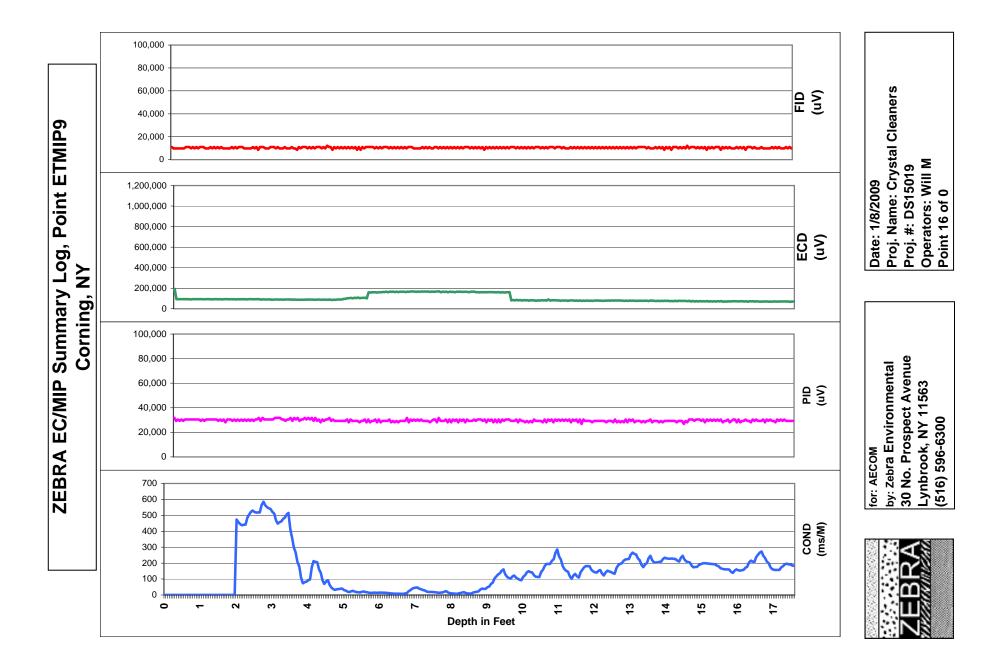

ZEBRA Envronmental MIP Field Data

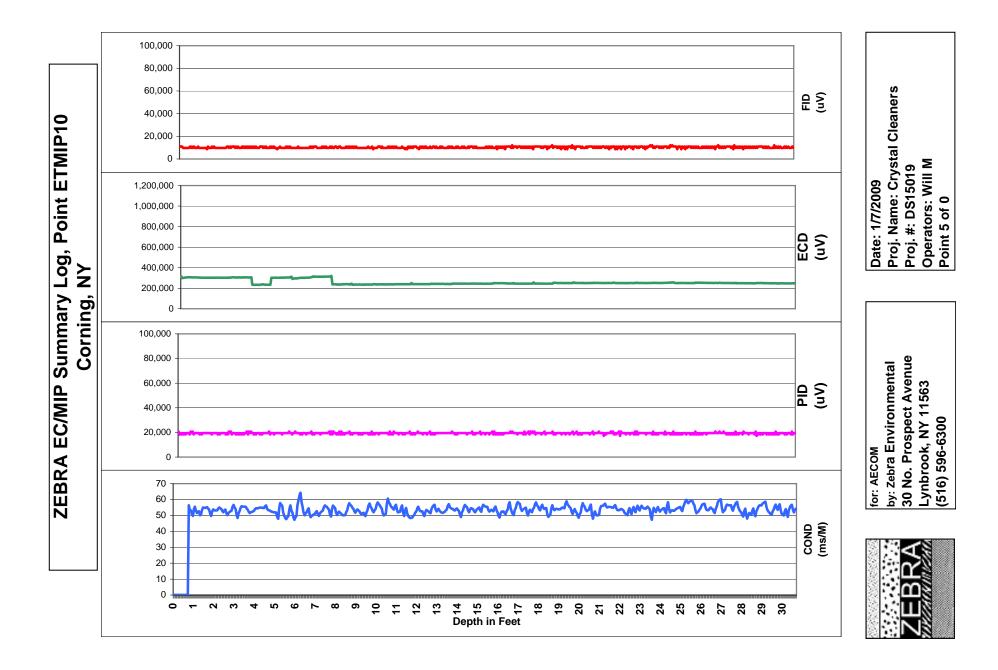

ZEBRA MIP Field Book

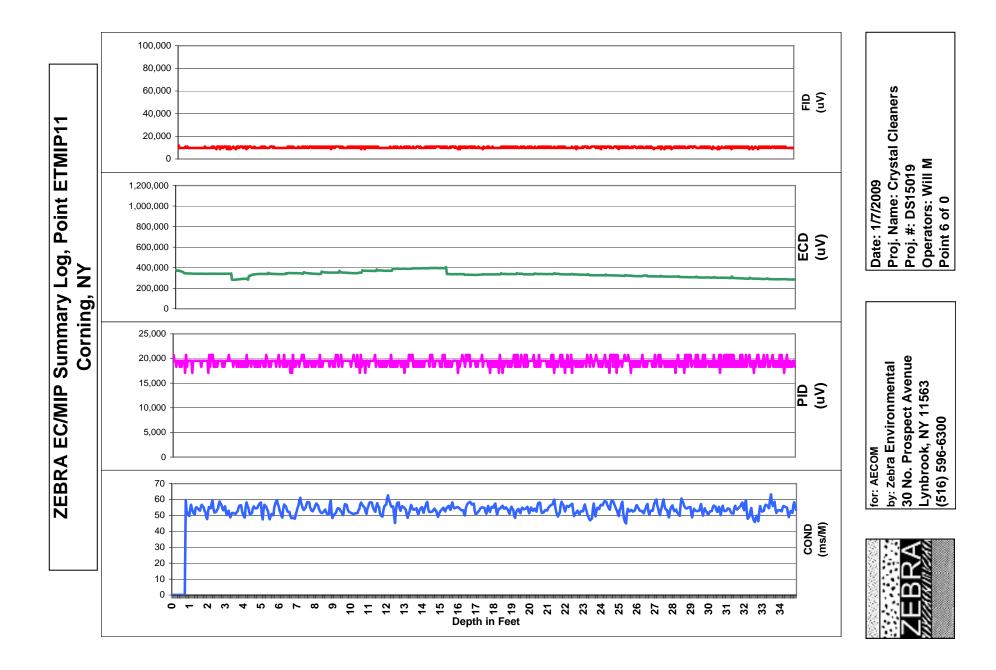

AECOM	CORNING, NY								
Number of Days MIP	4			3	3			4	
Weather		lcy Rain						lcy	
DEPTH for DAY		218						68	
DATE		1/7/2009	1/7/2009	1/7/2009	1/7/2009	1/7/2009	1/7/2009	1/8/2009	1/8/2009
DS15019									
Number of locations	15	ETMIP10	ETMIP11	ETMIP7	ETMIP18	ETMIP20	ETMIP22	ETMIP6	ETMIP9
MIP Unit		gator	gator						
	0								
Probe #733	613	30	35	31	41	35	46	50	18
Probe #H734	0								
	0								
Total Depth	613								
Response Test			Good						Good
PID MAX		20757			23199		25641	21978	31746
ECD MAX		321123	406593					991453	192918
FID MAX		12210	12210	12210	14652	13431	17094	12210	12210
Water									
PID Lamp Percentage		50						= 0	
									50
Mass Flow		40	40	40	40	40	40	40	40
Mass Flow								40 Location Notes	40 Location Notes
		40	40	40	40	40	40	40	40 Location Notes Probe Thermocouple
Mass Flow		40	40	40	40	40	40	40 Location Notes	40 Location Notes
Mass Flow		40	40	40	40	40	40	40 Location Notes	40 Location Notes Probe Thermocouple
Mass Flow		40	40	40	40	40	40	40 Location Notes	40 Location Notes Probe Thermocouple
Mass Flow		40	40	40	40	40	40	40 Location Notes	40 Location Notes Probe Thermocouple
Mass Flow		40	40	40	40	40	40	40 Location Notes	40 Location Notes Probe Thermocouple
Mass Flow		40	40	40	40	40	40	40 Location Notes	40 Location Notes Probe Thermocouple
Mass Flow		40	40	40	40	40	40	40 Location Notes	40 Location Notes Probe Thermocouple
Mass Flow		40	40	40	40	40	40	40 Location Notes	40 Location Notes Probe Thermocouple
Mass Flow		40	40	40	40	40	40	40 Location Notes	40 Location Notes Probe Thermocouple
Mass Flow		40	40	40	40	40	40	40 Location Notes	40 Location Notes Probe Thermocouple

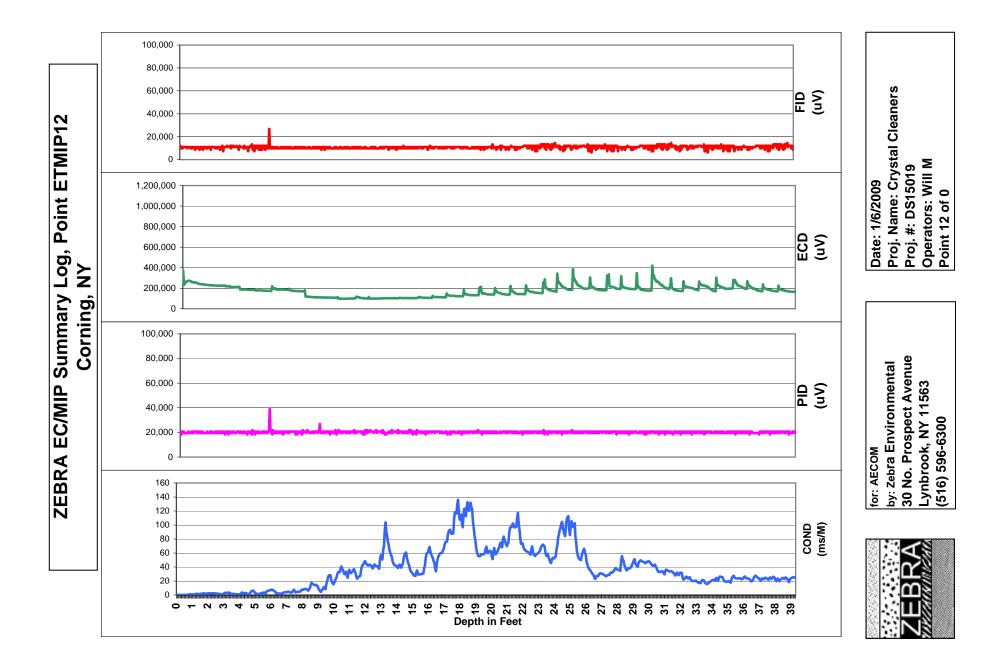

ZEBRA Envronmental MIP Field Data

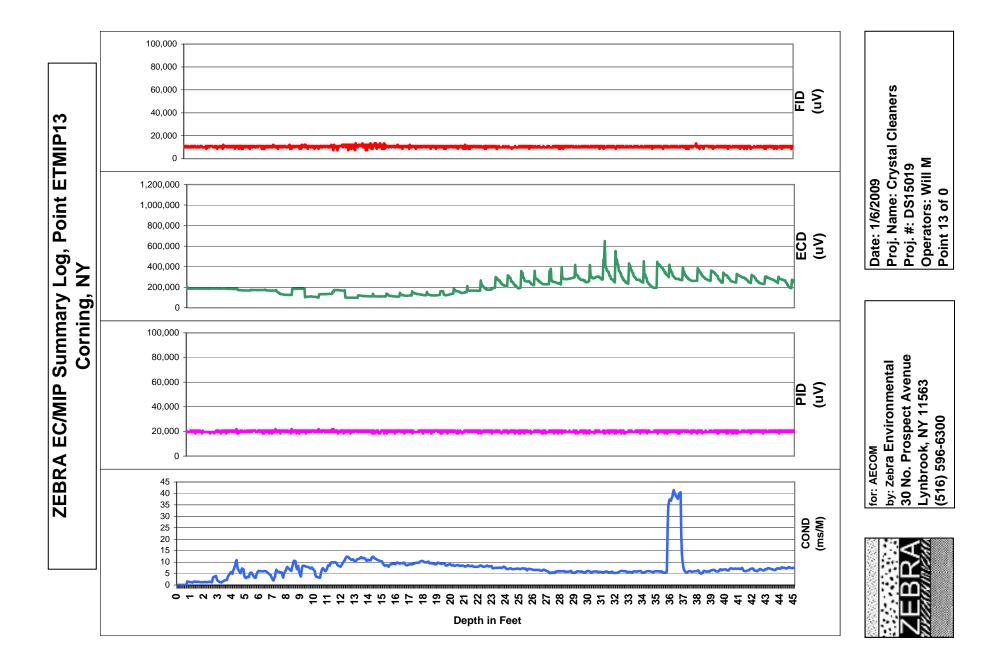


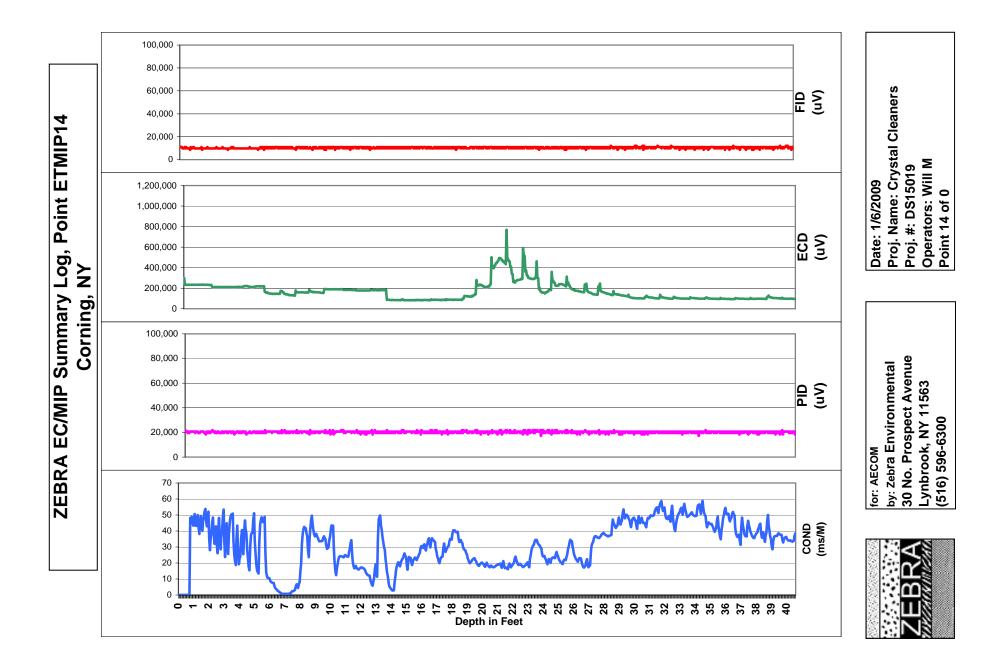


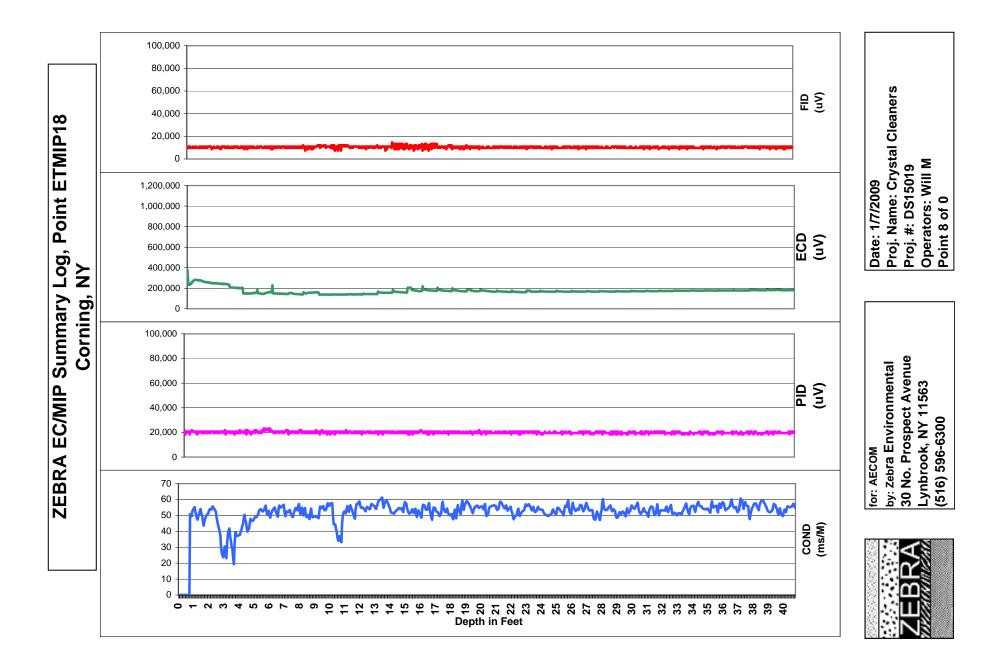


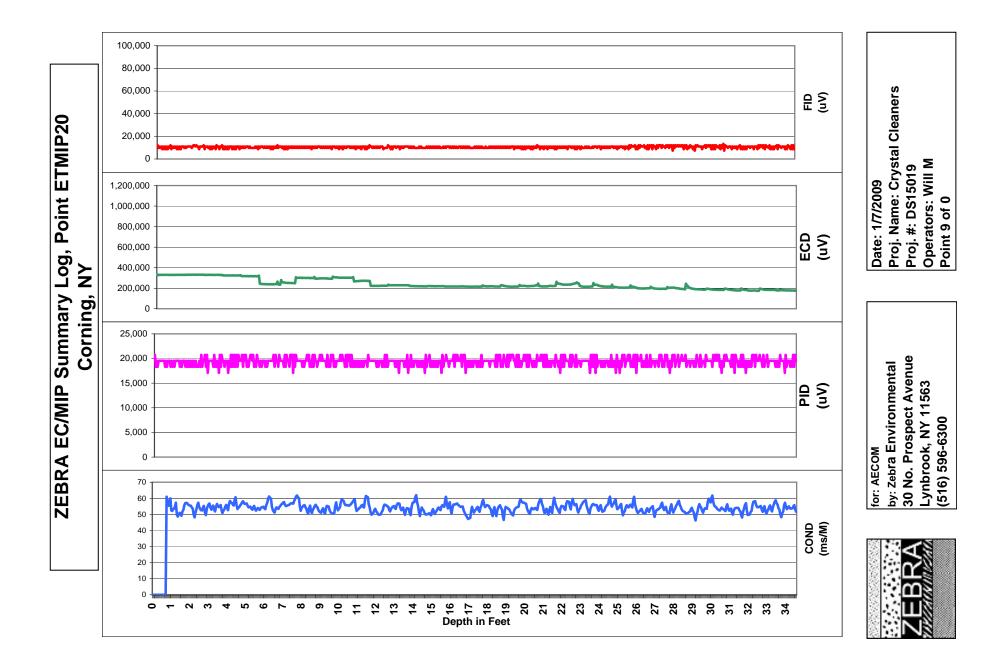


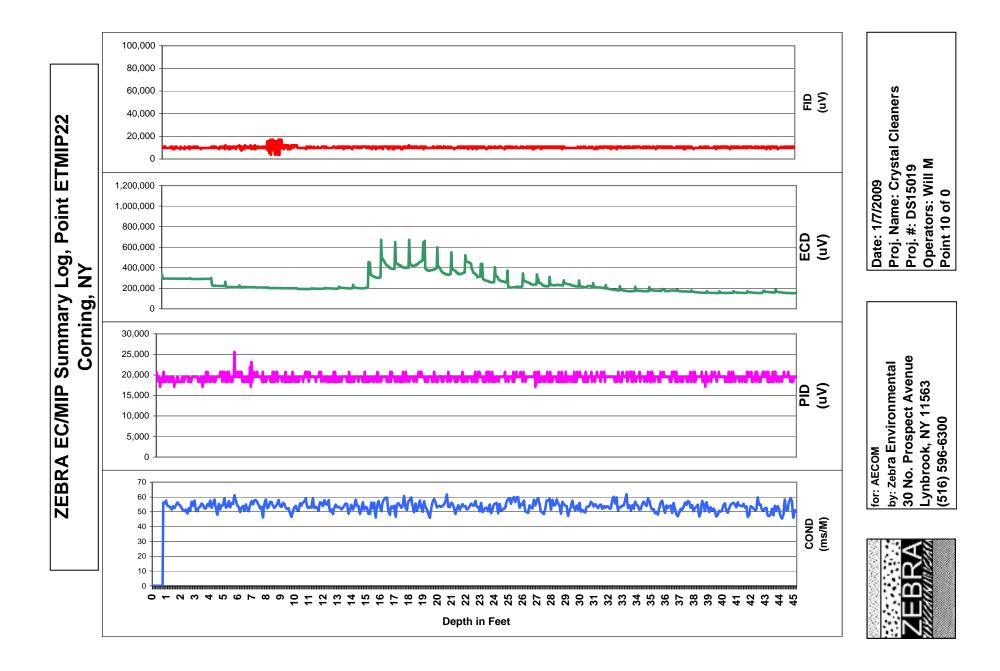












Appendix C Field Forms

ROJECT: Contractor: PAGE 1 OF 2 PAGE 1 OF 2 CATION: CONTRACTOR: AZTECH DATE DATE DATE ET REP: Vpul Melra WATER LEVELS DESIGNATION OF DERILERG: Gue Probe ET REP: Vpul Melra ET REP: Vpul Melra WATER LEVELS DESIGNATION OF DERINOR DEPTH OF BOREHOLE: Image: Page 2000 DATE TIME VELS DESIGNATION OF DEVELOPE 0F EQUIPMENT: Image: Page 2000 Image: Page 2000 Depth Number Reservence ELEVANDN: DEPTH OF BOREHOLE: Image: Page 2000 Sample HNI Image: Page 2000 Image: Page 2000 Image: Page 2000 Sample Reservence ELEVANDN: DEPTH OF BOREHOLE: Image: Page 2000 Image: Page 2000 Sample Reservence ELEVANDN: Image: Page 2000 1 Sample Reservence ELEVANDN: Image: Page 2000	A	CO	Μ		BORI	NG LOG		Borir	ng No.:	HP-1
ROJECT No.: 100774 CONTRACTOR: AZTECH DATE: 0310209 CATION: Comp. WY DESIGNATION OF PRILL RIG: Go Probe ET REP: Vipul Melria DATE TIME DEFTH SECONDATION OF PRILL RIG: Go Probe Image: Comparison of Property of Bornelocie DATE TIME DEFTH SECONDATION OF PRILL RIG: Go Probe Image: Comparison of Property of BorneloLE: Image: Comparison of Property of Pr										
DCATION: Coming, NY DRILLERS NAME: ET REP: Vipul Meira WATER LEVELS DESENTION OF PORLIENC: ET REP: Vipul Meira DATE TIME DEPTH SIZE AND TYPE OF EOUPMENT: DISPOSITION OF BOREHOLE: ABORATORY ANALYSES: Interview Thickness OF OVERBURDEN: DISPOSITION OF BOREHOLE: ABORATORY ANALYSES: Interview Thickness OF OVERBURDEN: DISPOSITION OF BOREHOLE: ABORATORY ANALYSES: Interview Thickness OF OVERBURDEN: DISPOSITION OF BOREHOLE: ABORATORY ANALYSES: Interview Thickness OF OVERBURDEN: DISPOSITION OF BOREHOLE: ABORATORY ANALYSES: Interview Thickness OF OVERBURDEN: DISPOSITION OF BOREHOLE: ABORATORY OF OVERBURDEN: DISPOSITION OF BOREHOLE: ABORATORY ANALYSES: Interview Thickness OF OVERBURDEN: DISPOSITION OF BOREHOLE: ABORATORY OF OVERBURDEN: DISPOSITION OF BOREHOLE: ABORATORY ANALYSES: Interview Thickness OF OVERBURDEN: Interview Thickness OF OVERBURDEN: DISPOSITION OF BOREHOLE: 3 Interview Thickness OF OVERBURDEN: Interview Thickness OF OVERBURDEN: Interview Thickness OF OVERBURDEN: Interview Thickness OF OVERBURDEN: 4 Interview Thickness OF OVERBURDEN: Interview Thickness OF OVERBURDEN: <td< td=""><td></td><td></td><td></td><td></td><td>CONTRA</td><td>CTOR: AZTECH</td><td></td><td></td><td></td><td></td></td<>					CONTRA	CTOR: AZTECH				
WATER LEVELS DESIGNATION OF DRILL RIG: Gao Probe Image: Constraint of the state of the stat										à
DATE TIME DEFTH SIZE AND TYPE OF EQUIPMENT: DEPTH OF BOREHOLE: III REFERENCE ELEVATION: DISPOSITION OF BOREHOLE: IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				DESIGNAT						
Image: Constraint of the system of										
Image: Constraint of the second constraint of th	DATE		DLI III							
ABORATORY ANALYSE: Image: state of the state of th										
Image: Sample HNu HNu <				THICKINES		RBORDEN.	DISFUSITIO	NOF BOREHOLE.		
Depti- (ft) Number A Time Rec. (feet) Readings SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES 1 A Time (feet) (ppm) Image: Constraint of the second se			LISES.	LINI	1					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Danth		Dee							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						SAMPLE DESCR	RIPTION, REIVIARA	S, AND STRATUM	CHANGES	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(ft)	& Time	(feet)	(ppm)						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 🕂									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 🗌									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	J 🗌									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4			-						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	J 🗌									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 -									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	'									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 Ш									
11 <	~									
11 11 11 11 11 11 12 12 11 11 11 13 11 11 11 11										
11 11 11 11 11 11 12 12 11 11 11 13 11 11 11 11										
12	10				1					
12										
12										
12	11 📖									
	••									
	12									
	13									
14										
14										
	14 🕂			<u> </u>						

A	CO	Μ		BORI	NG LOG		Boring No.:	HP-1
	T: Crystal C	leaners						
TROOLO								
PROJEC	T No.: 1067	74					PAGE 2 OF	2
	Sample		HNu					
Depth	Number	Rec.	Readings		SAMPLE DESCRIPTIC	ON, REMARKS, AND ST	RATUM CHANGE	S
(ft)	& Time	(feet)	(ppm)					
14								
15								
16 -								
				Sample	e HP-1			
17 -								
18								
10								
19								
20								
20								
21 -								
22 —								
23								
24								
24								
25								
26 -	 							
27								
28	1							

A	CO	Μ		BORI	NG LOG		Boring No.:	HP-3
PROJEC [®]	T: Crystal C	leaners					PAGE 1 OF 1	
PROJEC [®]	T No.: 1067	74		CONTRA	CTOR: AZTECH		DATE: 03/16/2009	
LOCATIC	DN: Corning	, NY		DRILLER	S NAME:		ET REP.: Vipul Meh	ra
	ATER LEV		DESIGNAT	ON OF D	RILL RIG: Geo Probe			
DATE	TIME	DEPTH			EQUIPMENT:			
			REFERENC			DEPTH OF BOREH		
			THICKNES			DISPOSITION OF I		
	TORY ANA		THICKNES		ROORDEN.		DOREHOLE.	
LABORA		LIGES.	HNu					
Danth	Sample	Dee						
Depth	Number	Rec.	Readings		SAMPLE DESCRIP	TION, REMARKS, AND	D STRATUM CHANGES	
(ft)	& Time	(feet)	(ppm)					
5								
10								
15								
20								
25								
30								
35				Sample	collected HP-2-C	at 9.25 HP-2-B a	t 10:05, HP-2-B-Du	o at
							HP-2-A-MSD at 10:3	
40				No reco		<u>1 2 / 10 10.20, 1</u>		
45 —								
50								
55								
60								
65								
70								
								HP logs.XLS

PROJECT: Crystal Cleanes PAGE 1 1 DOATE DOATE DATE: SV182009 ET REP: Vipul Metra UCATION: Coming, NY DRULLERS NAME: ET REP: Vipul Metra I MATER LEVELS DESIGNATION OF DRULING: Goo Probe I I I DATE THME VEFUS DESIGNATION OF DRULERS: Goo Probe I I I LIDORATION: ADALYSES: I I REFERENCE ELEVATION DEPTH OF BOREHOLE: I I LIDORATION: ADALYSES: I <tdi< td=""> <tdi< td=""> I <td< th=""><th></th><th>CO</th><th></th><th></th><th>BORI</th><th>NG LOG</th><th></th><th>Boring No.:</th><th>HP-3</th></td<></tdi<></tdi<>		CO			BORI	NG LOG		Boring No.:	HP-3
DICATION: Corning, NY DRILLERS NAME: ET REP: Vipul Metra WATER LEVELS DEEPTH SIZE AND TYPE OF EOUPMENT:	PROJEC	T: Crystal C	leaners					PAGE 1 OF 1	
WATER LEVELS DESIGNATION OF ORLL RIG: Geo Prote Image: Constraint of the second secon	PROJEC	T No.: 1067	74		CONTRA	CTOR: AZTECH		DATE: 03/16/2009	
WATER LEVELS DESIGNATION OF ORLL RIG: Geo Prote Image: Constraint of the second secon	LOCATIO	DN: Corning	, NY		DRILLER	S NAME:		ET REP.: Vipul Met	nra
DATE TIME DEPTH SIZE AND TYPE OF EQUIPMENT: DEPTH OF BOREHOLE: LABORATORY ANALYSES: THICKNESS OF OVERBURDEN: DISPOSITION OF BOREHOLE: H LABORATORY ANALYSES: HNu H H H Depth Number Rec. Readings SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES H 0 Image: Sample information of the solution of th				DESIGNAT	ION OF D	RILL RIG: Geo Probe			
REFERENCE DEPTH OF BOREHOLE: Image: constraint of the second sec	DATE	TIME	DEPTH						
III THICKNESS OF OVERBURDEN: DISPOSITION OF BOREHOLE: LABORATORY NALVSES HNu Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2" Image: Colspan="2">Image: Colspan="2" Image: Colspa="2" Image: Colspan="2" Image: Colspan="2"							DEPTH OF BO	REHOLE:	
LABORATORY ANALYSE: HNu Image: Constraint of the second s									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		ΤΟΡΥ ΑΝΑ		THORALEO		REGREEN.	Biol Comon	or borterioee.	
Depth Number Rec. Readings SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES 10 δ Time (feet) (ppm) <td< td=""><td></td><td></td><td>LIGLO.</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			LIGLO.						
(h) 8 Time (feet) (ppm) Image: state sta	Dopth		Bee						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						SAMFLE DESCR	IF HON, KEIWARRO,	AND STRATOM CHANGES	,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(11)	& rime	(Teel)	(ppm)					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25								
35 - 35 - 35 - 35 - 35 - 35 - 35 - 35 -									
35 - 35 - 35 - 35 - 35 - 35 - 35 - 35 -	30								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
Sample HP-3 Image: Constraint of the second sec	45								
Sample HP-3 Image: Constraint of the second sec									
Sample HP-3 Image: Constraint of the second sec	50								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50				Sample	HP-3			
60					Campic				
	55								
	60								
	┝──┼┝								
70	65								
70									
	70								
									HP logs.XLS

	CO			BORI	NG LOG			Boring No.:	HP-4
PROJEC	T: Crystal C	leaners					P		2
PROJEC	T No.: 1067	74		CONTRA	CTOR: AZTECH		D	ATE: 03/17/2009	
LOCATIC	DN: Corning	, NY		DRILLER	S NAME:		E	T REP.: Vipul Me	hra
	ATER LEV		DESIGNAT	ION OF D	RILL RIG: Geo Probe			•	
DATE	TIME	DEPTH			EQUIPMENT:				
			REFERENC			DEPTH OF	BOREHOLE:		
			THICKNES				ON OF BORE		
	TORY ANA	I YSES						IIOLL.	
	Sample		HNu						
Depth	Number	Rec.	Readings			RIPTION, REMARK			s
(ft)	& Time	(feet)	(ppm)						5
(11)	o nine	(ieel)	(ppiii)						
1									
•									
┠───┼┝━									
2									
3 -									
4									
4									
5									
6									
-									
-									
7									
8			1						
	1	-							
9									
Ŭ Ŭ									
┟──┼┝╸									
10									
10	ĺ		Î.	1					 †
11									
┟──┼┝─		<u> </u>							
12									
┝──┼┝									
13									
									F
14									
			1	1					HP logs.XLS

A	ECO	Μ		BORI	NG LOG		Boring No.:	HP-4
	T: Crystal C	leaners						
TROJEC	T. Orystar C	leaners						
PROJEC	T No.: 1067	74					PAGE 2 OF	2
	Sample		HNu					
Depth	Number	Rec.	Readings		SAMPLE DESCRIPTIC	ON, REMARKS, AND ST	RATUM CHANGE	S
(ft)	& Time	(feet)	(ppm)					
14 -								
15								
				Sample	collected, HP-4-A at	15:50		
16 —								
17 -								
18 -								
19 -								
20								
21 —								
22 -								
23 -								
				Refusa				
24								
24								
25								
26 —								
╞──┼┾╸								
27 -								
28								

PROJECT: Character PAGE 1 DOATE DOATE DATE DEPTH OF DOREHOLE: DATE DATE DATE DATE DEPTH OF BOREHOLE: DATE DATE DATE DEPTH OF BOREHOLE: DATE		CO			BORI	NG LOG		Boring No.:	HP-5
DCATION Corning, N DRILLERS NAME: ET REP. Vipul Metria WATER LEVELS DESIGNATION OF DRILLERS NAME: DATE NAME DATE TIME DEPTH SIZE AND TYPE OF EQUIPMENT: DISPOSITION OF BOREHOLE: DATE DATE DATE NUMBER RAME SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES DATE DATE DATE DATE DATE DATE DATE DATE									1
WATER LEVELS DESIGNATION OF DRILL RIG: Gao Probe Image: Comparison of the compari					CONTRA	CTOR: AZTECH		DATE: 03/16/2009	
DATE TIME DEPTH SIZE AND TYPE OF EQUIPMENT: Depth Fill LABORATORY ANALYSES THICKNESS OF OVERBURDEN: DISPOSITION OF BOREHOLE: Image: Constraint of the constrain								ET REP.: Vipul Me	hra
REFERENCE DEPTH OF BOREHOLE: Image: Control of a con	W	ATER LEV	ELS	DESIGNAT	ION OF D	RILL RIG: Geo Probe			
Image: Instruct of the second seco	DATE	TIME	DEPTH						
LABORATORY ANALYSE: HNu Analyse:									
Semple HNu Number Rec. Readings SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES 0 4 Time (red) (pm) 1 1 1 5 1 1 1 1 1 1 1 10 1 1 1 1 1 1 1 10 1 1 1 1 1 1 1 1 10 1				THICKNES	S OF OVE	RBURDEN:	DISPOSITION	N OF BOREHOLE:	
Depth Number Rec. Readings SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES (i) & Time (feet) (ppri)	LABORA		LYSES:						
(i) 4 Time (feet) (ppm)									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						SAMPLE DESCRI	PTION, REMARKS	S, AND STRATUM CHANGE	S
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(ft)	& Time	(feet)	(ppm)					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25 -								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	35								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
45	40				Sample				
50					Sample		D, TIF -J-A		
55 Image: Constraint of the second secon	45								
55 Image: Constraint of the second secon									
60 Refusal, no sample recovery	50								
60 Refusal, no sample recovery									
60	55				Refusa	, no sample recov	ery		
						· · ·			
	60								
	65								
70	00								
	70								
	10								

PROJECT: PAGE 1 0F 1 DATE DATE DATE DATE DATE DATE DATE DATE DATE ET REP: VpuI Mehra UDCATION: Coming, NY DRILERS NAME: ET REP: VpuI Mehra ET REP: VpuI Mehra ET REP: VpuI Mehra UDATE TME DEPTH OF BOREHOLE: DEPTH OF BOREHOL	A	CO	Μ		BORI	NG LOG		Boring No.:	HP-6
LOCATION Coming NY DRILLERS NAME: ET REP: Vipul Metra WATE LEVELS DESIGNATION OF POILL RIG GOR Probe	PROJEC	T: Crystal C	leaners						
WATER LEVELS DESIGNATION OF DRILL RIG: Geo Probe Image: Comparison of the second methods of the s					CONTRA	CTOR: AZTECH		DATE: 03/18/2009	
WATER LEVELS DESIGNATION OF DRILL RIG: Geo Probe Image: Comparison of the second methods of the s	LOCATIC	DN: Corning	, NY		DRILLER	S NAME:		ET REP.: Vipul Mehr	а
Netropy Deprive of poceeduce: Deprive of poceeduce: Disposition of boreHoule: Disposition of boreHoule: <td></td> <td></td> <td></td> <td>DESIGNAT</td> <td>ION OF D</td> <td>RILL RIG: Geo Probe</td> <td></td> <td></td> <td></td>				DESIGNAT	ION OF D	RILL RIG: Geo Probe			
NEFFRENCE DEPTH OF BOREHOLE: Image: constraint of the second sec	DATE	TIME	DEPTH	SIZE AND 1	YPE OF E	QUIPMENT:			
LABORATORY ANALYSE: HNu Depin Number Readings SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES (t) & Time (teet) (pm) Image: Comparison of the comparison of th							DEPTH OF BOREHO	DLE:	
Semple DepthHNu NumberRec. ReadingsReadingsSAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES0 (10) (10) (10) (10) (10) (10) (10) 5 (10) (10) (10) (10) (10) (10) (10) 10 (10) (10) (10) (10) (10) (10) (10) 10 (10) (10) (10) (10) (10) (10) (10) 10 (10) (10) (10) (10) (10) (10) (10) 10 (10) (10) (10) (10) (10) (10) (10) 10 (10) (10) (10) (10) (10) (10) (10) 10 (10) (10) (10) (10) (10) (10) (10) 10 (10) (10) (10) (10) (10) (10) (10) 10 (10) (10) (10) (10) (10) (10) (10) 10 (10) (10) (10) (10) (10) (10) (10) 20 (10) (10) (10) (10) (10) (10) (10) (10) 21 (10) (10) (10) (10) (10) (10) (10) (10) 25 (10) (10) (10) (10) (10) (10) (10) (10) 26 (10) (10) (10) (10) (10) </td <td></td> <td></td> <td></td> <td>THICKNES</td> <td>S OF OVE</td> <td>RBURDEN:</td> <td>DISPOSITION OF BO</td> <td>OREHOLE:</td> <td></td>				THICKNES	S OF OVE	RBURDEN:	DISPOSITION OF BO	OREHOLE:	
Depth Number Rec. Readings SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES (i) & Time (feet) (pm)	LABORA	TORY ANA	LYSES:						
(i) & Time (fee) (ppm)		Sample		HNu					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Depth	Number	Rec.	Readings		SAMPLE DESCRIF	TION, REMARKS, AND	STRATUM CHANGES	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(ft)	& Time	(feet)	(ppm)					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	_								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									†
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	15								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					Sample	collected HP-6-A	at 9:35		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					• ampie				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	05								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	25								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
35 - 35 - 35 - 35 - 35 - 35 - 35 - 35 -	30								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					Sample	collected HP-6-B	at 9:05		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
45 + 45 + 45 + 45 + 45 + 45 + 45 + 45 +	35 -								
45 + 45 + 45 + 45 + 45 + 45 + 45 + 45 +									
45 + 45 + 45 + 45 + 45 + 45 + 45 + 45 +									
45 + 45 + 45 + 45 + 45 + 45 + 45 + 45 +	40								
45 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	-10				Sample	collected HP-6-C	at 8.50		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					Campic				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	╞──┤┝╸								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
60 Image: Morecovery	50			1	1				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
	55								
					No reco	overy			
		1				-			
	60								
	╞──┼┝╸								=
	65								
70									
70	╞──┤┝╸								
	/0								

A	CO	Μ		BORI	NG LOG		Boring No.:	HP-7
	T: Crystal C							1
	T No.: 1067			CONTRA	CTOR: AZTECH		DATE: 03/18/2009	
LOCATIC	DN: Corning	, NY		DRILLER	S NAME:		ET REP.: Vipul Me	hra
	ATER LEV		DESIGNAT	ION OF D	RILL RIG: Geo Probe			
DATE	TIME	DEPTH	SIZE AND 1	YPE OF I	EQUIPMENT:			
			REFERENC			DEPTH OF BOREHO	LE:	
					RBURDEN:	DISPOSITION OF BC		
LABORA	TORY ANA	LYSES:			-		-	
	Sample		HNu					
Depth	Number	Rec.	Readings		SAMPLE DESCRIPT	ION, REMARKS, AND S	STRATUM CHANGES	S
(ft)	& Time	(feet)	(ppm)			- , -, -		-
()		()	(PP)					
5								
		-						
10								
15								
20								
20								
25 —								
30								
35								
35								
40								
				Sample	e collected HP-7-C a	t 11:15, HP-7-B at	11:25, HP-7-B-M	S at
				44.00				
45				11:30,	HP-7-B-MSD at 11:	50		
50								
50				1				
			ļ					
55								
				No reco	overy			
					-			
60								
65								
			<u> </u>					
70			ļ					
-								
			I	I				HP logs.XLS

PROJECT: Crystal Cleanes PAGE 1 PAGE 1 DOATE DOATE DOATE DOATE DOATE DOATE DOATE ET REP: Ypul Metha MATER LEVELS DESIGNATION OF DRUERRS NAME: ET REP: Ypul Metha Image: State Sta		CO			BORI	NG LOG		Boring No.:	HP-8
LICATION: Coring, NY DRILLERS NAME: ET REP:: Vpul Mehra WATER LEVELS DEPTH SIZE AND TYPE OF EOUPNENT: Image: Control of BOREHOLE:								PAGE 1 OF	1
WATER LEVELS DESIGNATION OF DRILL RIG: Geo Probe Image: Comparison of the compari									
DATE TIME DEPTH SIZE AND TYPE OF EQUIPMENT: Depth DEPTH OF BOREHOLE: I.BORATORY ANALYSES: IIII Semple HNU DISPOSITION OF BOREHOLE: IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII								ET REP.: Vipul Me	hra
REFERENCE DEPTH OF BOREHOLE: Image: Control of BoreHole: Image: Contro of BoreHole: Image: Control of BoreHole	W	ATER LEV	ELS	DESIGNAT	ION OF D	RILL RIG: Geo Probe			
LABORATORY NALVYSES HIKKNESS OF OVERBURDEN: DISPOSITION OF BOREHOLE: HIKKNESS OF OVERBURDEN: LABORATORY NALVYSES HNu Acc. Readings SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES Ompinion Rec. Readings SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES Acc. 5 Image: Sample (ree) 10 Image: Sample (ree) Image:	DATE	TIME	DEPTH	SIZE AND 1	YPE OF E	EQUIPMENT:			
LABORATORY ANALYSES HNu Hou Hou Depth Number Rec. Readings SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES (ft) & Time (reet) (pm) Image: Constraint of the strain of t				REFERENC	E ELEVA	TION:	DEPTH OF BO	DREHOLE:	
I Sample HNu SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES 0 4.Time (feed) SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES 5				THICKNES	S OF OVE	RBURDEN:	DISPOSITION	OF BOREHOLE:	
Degh Number Rec. Readings SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES (h) & Time (feet) (ppn)	LABORA	TORY ANA	LYSES:						
(f) 8 Time (feet) (ppm)		Sample		HNu					
(f) 8 Time (feet) (ppm)	Depth	Number	Rec.	Readings		SAMPLE DESCR	IPTION, REMARKS	, AND STRATUM CHANGE	S
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(ft)	& Time	(feet)	(ppm)					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15 —								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	25								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30				Sample	collected, HP-8-	B at 15:20, HP-8	3-A at 15:30	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40								
55 Image: Constraint of the second secon	45 -								
55 Image: Constraint of the second secon	50								
60 No recovery Image: Constraint of the second									
60	55				No roc	NARY			
					NU TEC	JV CI Y			
	60								
70	65								
	70								

PROJECT: Constractors PAGE 1 DATE ET REP: Vipul Metra WATER LEVELS DESIGNATION OF DOR PROPE DEPTH OF BOREHOLE: Image: Constraint of the		CO			BORI	NG LOG		Boring No.:	HP-9
LICATION Coming NY DRILLERS NAME: ET REP: Vipul Metra WATE LEVELS DEPTH Size AND TYPE OF EQUIPMENT:									
WATER LEVELS DESIGNATION OF DRILL RIG: Gen Probe Image: Constraint of the second seco									
DATE TIME DEPTH SIZE AND TYPE OF EQUIPMENT: DEPTH OF BOREHOLE: LABORATORY ANALYSES: Image: Constraint of the constraint								ET REP.: Vipul Me	hra
Image: Sample collected, HP-9-B at 14:15, HP-9-A at 14:30 Image: Sample collected, HP-9-B at 14:15, HP-9-A at 14:30 10 Image: Sample collected, HP-9-B at 14:15, HP-9-A at 14:30 Image: Sample collected, HP-9-B at 14:15, HP-9-A at 14:30 10 Image: Sample collected, HP-9-B at 14:15, HP-9-A at 14:30 Image: Sample collected, HP-9-B at 14:15, HP-9-A at 14:30 10 Image: Sample collected, HP-9-B at 14:15, HP-9-A at 14:30 Image: Sample collected, HP-9-B at 14:15, HP-9-A at 14:30 10 Image: Sample collected, HP-9-B at 14:15, HP-9-A at 14:30 Image: Sample collected, HP-9-B at 14:15, HP-9-A at 14:30 10 Image: Sample collected, HP-9-B at 14:15, HP-9-A at 14:30 Image: Sample collected, HP-9-B at 14:15, HP-9-A at 14:30 10 Image: Sample collected, HP-9-B at 14:15, HP-9-A at 14:30 Image: Sample collected, HP-9-B at 14:15, HP-9-A at 14:30 10 Image: Sample collected, HP-9-B at 14:15, HP-9-A at 14:30 Image: Sample collected, HP-9-B at 14:15, HP-9-A at 14:30 10 Image: Sample collected, HP-9-B at 14:15, HP-9-A at 14:30 Image: Sample collected, HP-9-B at 14:15, HP-9-A at 14:30 10 Image: Sample collected, HP-9-B at 14:15, HP-9-A at 14:30 Image: Sample collected, HP-9-B at 14:15, HP-9-A at 14:30 10 Image: Sample collected, HP-9-B at 14:15, HP-9-A at 14:30 Image: Sample collected, HP-9-B at 14:15, HP-9-A at 14:30<	W	ATER LEV	ELS	DESIGNAT	ION OF D	RILL RIG: Geo Probe			
LABORATORY NALVYSES HIKKNESS OF OVERBURDEN: DISPOSITION OF BOREHOLE: LABORATORY NALVYSES HNu	DATE	TIME	DEPTH	SIZE AND 1	TYPE OF E	EQUIPMENT:			
LABORATORY ANALYSE: HNu HNu Sample Readings SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES Image: Control of the second se				REFERENC	E ELEVA	TION:	DEPTH OF BO	DREHOLE:	
Semple bepth Sample (reed) % Time HNu (reed) (pm) SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES 5 1 1 1 1 1 1 5 1 1 1 1 1 1 1 10 1 1 1 1 1 1 1 1 10 1 1 1 1 1 1 1 1 1 10 1				THICKNES	S OF OVE	RBURDEN:	DISPOSITION	OF BOREHOLE:	
Depth Number Rec. Readings SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES 10 4.10 1	LABORA	TORY ANA	LYSES:						
(i) 4 Time (feet) (ppm) Image: state sta		Sample		HNu					
(i) 4 Time (feet) (ppm) Image: state sta	Depth		Rec.	Readings		SAMPLE DESCR	IPTION, REMARKS	, AND STRATUM CHANGES	S
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		& Time	(feet)						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	25								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30				Sample	collected. HP-9-	B at 14:15. HP-9	9-A at 14:30	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	35								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	40								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					Mud				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	45								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
Image: Second	50								
Image: Second	55								
	55				No reco	overy, mud			
	60								
70	65								
	70								

	CO			BORI	NG LOG		Boring No.:	HP-10
PROJEC	T: Crystal C	leaners					PAGE 1 OF	2
PROJEC	T No.: 1067	74		CONTRA	CTOR: AZTECH		DATE: 03/17/2009	
LOCATIO	DN: Corning	, NY		DRILLER	S NAME:		ET REP.: Vipul Me	hra
	ATER LEV		DESIGNAT	ION OF D	RILL RIG: Geo Probe			
DATE	TIME	DEPTH			EQUIPMENT:			
			REFERENC			DEPTH OF B		
			THICKNES				OF BOREHOLE:	
	TORY ANA	I YSES						
LINDON	Sample	LIGEO.	HNu					
Depth	Number	Rec.	Readings			IDTION REMARKS	, AND STRATUM CHANGES	s
(ft)	& Time	(feet)	(ppm)					<u></u>
(11)	& Time	(ieel)	(ppiii)					
1								
┠───┼┝╸								
2			1	1				
	· · · · · · · · · · · · · · · · · · ·	-	<u> </u>					
3 -	-							
4								
4								
5								
6								
0								
7								
8								
Ŭ								
9	1							 †
10								
╞──┼┝╸			1					
11								
┝───┼┝╸								
12								
	1							
13 -								
┟──┼┝╸								
14				1				 +
						•	· · · ·	HP loas.XLS

A	CO	Μ		BORING L	OG		Boring No.:	HP-10
PROJEC	T: Crystal C	leaners						
	T No.: 1067	71					PAGE 2 OF	2
TROJEC	Sample	74	HNu				TAGE 2 OF	2
Depth	Number	Rec.	Readings	SA	MPLE DESCRIPTI	ON, REMARKS, A	ND STRATUM CHANGES	S
(ft)	& Time	(feet)	(ppm)					
14								
15								
16								
17								
18								
19								
20								
				Sample colle	cted, HP-10-A	at 16:10		
21								
22 -								
23 -				Refusal at 23) 5 '			
24				Refusal at 23	5.5			
24								
25 —								
26								
27 —								
~ 1								
28 —								

A	CO	Μ		BORI	NG LOG		Boring No.:	HP-11
PROJEC	T: Crystal C	leaners					PAGE 1 OF	1
PROJEC	T No.: 1067	74		CONTRA	CTOR: AZTECH		DATE: 03/16/2009	
LOCATIC	DN: Corning	, NY		DRILLER	S NAME:		ET REP.: Vipul Me	hra
	ATER LEV		DESIGNAT	ION OF D	RILL RIG: Geo Probe			
DATE	TIME	DEPTH	SIZE AND 1	TYPE OF E	QUIPMENT:			
			REFERENC	E ELEVA	TION:	DEPTH OF E	BOREHOLE:	
			THICKNES	S OF OVE	RBURDEN:	DISPOSITIO	N OF BOREHOLE:	
LABORA	TORY ANA	LYSES:						
	Sample		HNu					
Depth	Number	Rec.	Readings		SAMPLE DESCR	IPTION, REMARK	S, AND STRATUM CHANGE	S
(ft)	& Time	(feet)	(ppm)					
_								
5								
10								
15								
				Sample	collected, HP-11	-A at 16:30		
				• • • • • • • • •				
20								
20								
0.5								
25								
30								
35								
				Sample	collected, HP-11	-B at 16.08		
				Campic				
40								
40								
45				_ .				
				Refusa	, no recovery			
50								
	1							
55								
60								
0-								
65			1					
70								
						I.		HP logs.XLS

A	CO	Μ		BORI	NG LOG		Boring No.:	HP-12
	T: Crystal C							1
	T No.: 1067				CTOR: AZTECH		DATE: 03/18/2009	
	N: Corning			DRILLER			ET REP.: Vipul Me	hra
	ATER LEV				RILL RIG: Geo Probe			
DATE	TIME	DEPTH			EQUIPMENT:			
			REFERENC			DEPTH OF E		
			THICKNES	S OF OVE	RBURDEN:	DISPOSITIO	N OF BOREHOLE:	
LABORA	TORY ANA	LYSES:						
	Sample		HNu					
Depth	Number	Rec.	Readings		SAMPLE DESCR	PTION, REMARK	S, AND STRATUM CHANGES	6
(ft)	& Time	(feet)	(ppm)					
5								
3								
10				1				
15 —								
20								
25								
23				Somple	adlastad UD 12	A at 9.25		
				Sample	e collected, HP-12	-A al 0.55		
30								
35								
40								
				Sample	e collected, HP-12	-B at 8:25		
				• ampie		2 0.1 0.20		
45								
								T
50				1				
			L					
55								
				Sample	e collected, HP-12	-C at 8:10		
60								
-								
65								
00		-						
70	L	L	1					
				l				

A	CO	Μ		BORI	NG LOG			Boring No.:	HP-11
PROJEC	T: Crystal C	leaners							3
	T No.: 1067			CONTRA	CTOR: AZTECH			DATE: 03/19/2009	
	N: Corning			DRILLER				ET REP.: Vipul Me	
	ATER LEV		DESIGNAT		RILL RIG: Geo Probe				
DATE	TIME	DEPTH			QUIPMENT:				
			REFERENC			DEPTH OF E	BOREHOL	E:	
			THICKNES			DISPOSITIO			
LABORA	TORY ANA	LYSES:		1					
	Sample		HNu						
Depth	Number	Rec.	Readings		SAMPLE DESCR	IPTION. REMARK	S. AND ST	RATUM CHANGE	S
(ft)	& Time	(feet)	(ppm)						-
(11)		()	(PP-0)						
				Fill, Stones, Coarse gravel with little cla			ayey san	d	
			0.0						
1 -			0.0						
		<u></u>	1						
2									
-									
			0.0						
3				1					
4									
5			0.0						
J									
6				_					
				Stones	with coarse grave	el			
			0.0						
7			0.0						
8									
Ŭ									
				1					
			0.0						
9									
10									
				only 6"	of recovery				
			~ ~		-				
11			0.0						
· ·									
12									
12			1						
				L					
			0.0						
13			0.0	-					
—— H				1					
14									
· -]									
			1						HP logs.XL

A	CO/	Ν		BORI	NG LOG		Boring No.:	HP-11
		loonoro						
PROJEC	CT: Crystal C	leaners						
PROJEC	T No.: 1067	74					PAGE 2 OF 3	
	Sample		HNu					
Depth	Number	Rec.	Readings		SAMPLE DESC	RIPTION, REMARKS, AN	D STRATUM CHANGES	
(ft)	& Time	(feet)	(ppm)					
14								
			0.0					
15			0.0					
16				Caaraa				
				Coarse	gravel with stor	ies		
17								
			0.0					
18								
			0.0					
19								
20								
				Stones,	medium fine bi	rown sand		
			0.0					
21			0.0					
00								
22								
23			0.0					
24								
25			0.0					
25				Stones	gravel mediun	n fine sand + last 3" (clav	
				,	<u></u> ,			
26								
27	1		0.0					
	-		0.0					
28								
20								

A		Μ		DIRE		G LOG	Boring No.:		HP-11
	T: Crystal C	loonoro							
FROJEC	T. Crystar C	iedi iei s							
PROJEC	T No.: 1067	74					PAGE 3 OF	3	
	Sample		HNu						
Depth	Number & Time	Rec. (feet)	Readings	SAMPLE	DESCRIPTION, REMARK	S, AND STRATUM CHA	NGES		
(ft)	& Time	(Teel)	(ppm)						
28									
				Refusa	I - Bed rock - fragmer	nts of shale			
29				T CTU34					
20									
30									
31									
32									
33									
33									
34									
35									
36									
30									
37									
38									
39									
39									
40									
-									
41									
42	1								
				l					

	CO			BORI	NG LOG		Boring No.:	HP-13
PROJEC	T: Crystal C	leaners						1
PROJEC	T No.: 1067	74		CONTRA	CTOR: AZTECH		DATE: 03/17/2009	
LOCATIC	ON: Corning	, NY		DRILLER	S NAME:		ET REP.: Vipul Me	hra
W	ATER LEV	ELS	DESIGNAT	ION OF D	RILL RIG: Geo Probe			
DATE	TIME	DEPTH			EQUIPMENT:			
			REFERENC			DEPTH OF BC	REHOLE:	
			THICKNES				OF BOREHOLE:	
	TORY ANA		THORALD		REGREEN.	Bior Corrien	OF DOREHOLE.	
LADONA	Sample	LIGLO.	HNu	l l				
Donth	Number	Dee						
Depth		Rec.	Readings		SAMPLE DESCR	PTION, REMARKS	AND STRATUM CHANGES	5
(ft)	& Time	(feet)	(ppm)					
5								
10								
10								
15								
20								
25				Sample	collected, HP-13	-A at 9.15		
				Campic		A dl 5.15		
20								
30								
35								
00				Sample	collected, HP-13	-B at 8:53		
				•	,			
40								
				Refusa	at 42', no recove	ry no sample o	ollected	
45				Refuse	1 42, 110 100000			
50								
55								
60								
65								
70								
70								
			l					HP logs.XLS

A	CO	Μ		BORI	NG LOG			Boring No.:	HP-13
PROJEC	T: Crystal C	leaners							2
	T No.: 1067			CONTRA	CTOR: AZTECH			DATE: 03/19/2009	
LOCATIC	ON: Corning	, NY		DRILLER	S NAME:			ET REP.: Vipul Me	hra
	ATER LEV				RILL RIG: Geo Probe				
DATE	TIME	DEPTH			EQUIPMENT:				
			REFERENC				BOREHOL		
			THICKNES	S OF OVE	RBURDEN:	DISPOSITI	ON OF BOF	REHOLE:	
LABORA	TORY ANA	LYSES:							
	Sample		HNu						
Depth	Number	Rec.	Readings		SAMPLE DESCR	IPTION, REMAR	KS, AND ST	RATUM CHANGE	S
(ft)	& Time	(feet)	(ppm)						
				Backfill	, Stones, medium	sand			
			0.0						
1			0.0						
2			<u> </u>						
<u> </u>									Π
3			0.0						
J 🗌									
4									
4									
_			0.0						
5									
6				Clayey	silt, medium fine	sand			
0				some s	tones				
			0.0						
7			0.0						
8									
			0.0						
9			0.0						
10									
10				1					
11			0.0	Medium	n fine sand, small	stones, low r	ecovery		
· · []									
12									
13			0.0						
14									
14									
			1						HP logs.XLS

A		Ν		BORI	NG LOG		Boring No.:	HP-13
	T: Crystal Cl	leaners						
PROJEC	CT No.: 10677	74					PAGE 2 OF 2	
	Sample	Des	HNu					
Depth (ft)	Number & Time	Rec. (feet)	Readings (ppm)		SAMPLE DESCI	RIPTION, REMARKS, AI	ND STRATUM CHANGES	
(11)	a rinio	(1001)	(ppiii)					
14								
45			0.0					
15								
16				Grey/B	rown medium fin	e sand, some stone	es la	
47								
17			0.0					
			0.0					
18								
			0.0					
19								
20								
				Stone,	gravel, some be	drock (shale) mater	ial, coarse gravel and	
			0.0	medium	n sand			
21								
22								
			0.0					
23			0.0					
24								
			0.0					
25			0.0					
26				Medium	n fine sand, som	e clay, stones		
			0.0					
	1 1							
27	┟──┤					、		
	┥ ┃			Refusa	- Bedrock (shal	e)		
28								
20								

	CO			BORI	NG LOG		Boring No.:	HP-14
PROJEC	T: Crystal C	leaners					PAGE 1 OF	2
PROJEC	T No.: 1067	74		CONTRA	CTOR: AZTECH		DATE: 03/17/2009)
LOCATIC	DN: Corning	, NY		DRILLER	S NAME:		ET REP.: Vipul Me	ehra
	ATER LEV		DESIGNAT	ION OF D	RILL RIG: Geo Probe			
DATE	TIME	DEPTH			EQUIPMENT:			
			REFERENC			DEPTH OF E		
			THICKNES				N OF BOREHOLE:	
	TORY ANA	LYSES:						
E/ (BOIL) (Sample	21020.	HNu					
Depth	Number	Rec.	Readings				S, AND STRATUM CHANGE	S
(ft)	& Time	(feet)	(ppm)					
(11)	o nine	(ieel)	(ppiii)					<u> </u>
1								
┠──┼┝		l						┟────┤┝
2								
3								└──────┝╋
Ŭ								
4								
5			-					
6								
0								
								_
7								
8								
Ŭ								
								
9	1							
[
10								<u>├</u> ───── │
┟──┼┝╸			-					
11								
11	1							
								ļ <u> </u>
12								<u>├</u> ─────
┝──┼┝─	1		1					
13								
┝──┼┝╸								
14								├
			1		1			HP loas.XLS

A	CO	Μ		BORI	NG LOG		Boring No.:	HP-14
	T. On otol C	Noonoro						
PROJEC	T: Crystal C	Jeaners						
PROJEC	T No.: 1067	774					PAGE 2 OF	2
	Sample		HNu					
Depth	Number	Rec.	Readings		SAMPLE DESCRIPTI	ON, REMARKS, AND ST	RATUM CHANGE	S
(ft)	& Time	(feet)	(ppm)					
4.4								
14 —								
15 -								
16								
16 —								
17 -								
10								
18 -								
19 -								
20				Sample	e collected, HP-14-A	at 12:30, HP-14-A-D) Dup 12:35	
					,			
21 -								
22								
23 -								
24								
25 —								
26 -								
				Refusa	l, no recovery			
					-			
27 —								
╞								
28								

A	CO/	Μ		BORI	NG LOG		Boring	No.:	SS-1
	T: Crystal C						PAGE 1 C		
	T No.: 1067			CONTRA	CTOR: AZTECH		DATE: 03/1		
	DN: Corning			DRILLER			ET REP.: V		
	ATER LEV		DESIGNAT		RILL RIG: Geo Probe				
DATE	TIME				QUIPMENT:				
			REFERENC			DEPTH OF E			
			THICKNES				N OF BOREHOLE:		
	TORY ANA		THORACEO		NDONDEN.		IT OF BOREHOLE.		
	Sample	LIGEO.	HNu						
Depth	Number	Rec.	Readings				S, AND STRATUM CH		
(ft)	& Time	(feet)	(ppm)						
(11)	a nine	(ieel)	(ppiii)						
			0.0						
_									
5				1					
			0.0						
LH.			0.0						
10									
10									
			0.0						
			0.0						
15									
			0.0						
20									
				Sample	collection SS-1 a	at 13:45			
25				1					
		-							
30									
30				1					
			ļ						
┝┿┥									
40									
40									
									11

PROJECT: PAGE 1 OF 1 PAGE 1 OF 1 OCATION: CONTRACTOR: AZTECH DATE DATE WATER LEVES DESIGNATION OF DENERIC RAZTECH DETECTION: Original Region of the second seco	A	CO	Μ		BORI	NG LOG			Boring No.:	SS-2
ROJECT No.: 106774 CONTRACTOR: AZTECH DATE: 03/72009 COATION: Comp. NY DEBLIERS NAME: ET REP: Vpul Mehra DATE TIME DEFTH Size AND TYPE OF COUNPART:										1
OCATION: Corring, NY DRILLERS NAME: ET REP:: Vpul Metra WATE LEVELS DESIGNATION OF DRILL RIG: Goe Probe					CONTRA	CTOR: AZTECH				
WATER LEVELS DESIGNATION OF DRILL RIG: Geo Probe Image: Comparison of the compari	LOCATIO	DN: Corning	, NY		DRILLER	S NAME:				
DATE TIME DEPTH SIZE AND TYPE OF EQUIPMENT: Depth of BOREHOLE: ABORATORY ANALYSE: THICKNESS OF OVERBURDEN: DISPOSITION OF BOREHOLE: ABORATORY ANALYSE: ABORATOR				DESIGNAT						
Image: constraint of a										
L THICKNESS OF OVERBURDEN: DISPOSITION OF BOREHOLE: ABORATORY ANALYSES: Image: Sample control of the sample co							DEPTH OF B			
ABORATORY ANALYSE: HNu Additional and a strength of the strength of t									HOLE:	
I Sample HNu Amage HNu Amage HNu Amage SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES Image	LABORA	TORY ANA	LYSES [.]				2.0. 000			
Deph Number Rec. Readings SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES (it) & Time (leeu) (pm)	E/(BOIL)		21020.	HNu						
(f) 8 Time (fee) (ppm) Image: state stat	Denth		Rec							2
Image: state								O, AND OTT		5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(11)	& Time	(ieel)	(ppiii)						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.0						
Image: state stat				0.0						
Image: state stat										
Image: state stat										
Image: state stat	_									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	э <mark> </mark>									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				L						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.0						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	┝╋			0.0						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				0.0						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					Sample	collection SS-2	at 16:00			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20									
	20									
	┝┼╴									
		1								
	25	ļ		ļ						
			-	-						-
		1								
40	30 🕂									
40										
40		1								
40	Ц									
40										
40										
40										
	40			1	1					

A	CO	Μ		BORI	NG LOG		Boring No.:	SS-3
PROJEC	T: Crystal C	leaners					PAGE 1 OF	1
PROJEC	T No.: 1067	74		CONTRA	CTOR: AZTECH		DATE: 03/17/2009	9
LOCATIC	DN: Corning	, NY		DRILLER	S NAME:		ET REP.: Vipul M	ehra
	ATER LEV		DESIGNAT	ION OF D	RILL RIG: Geo Probe		· · · · · ·	
DATE	TIME	DEPTH			QUIPMENT:			
			REFERENC			DEPTH OF B	OREHOLE:	
			THICKNES				NOF BOREHOLE:	
	TORY ANA	LYSES				2.0. 000		
E/(DOI())	Sample	21020.	PID					
Depth	Number	Rec.	Readings				, AND STRATUM CHANGE	9
(ft)	& Time	(feet)	(ppm)					
(11)	& TIME	(ieei)	(ppin)					
			0.0					
5				-				
			<u> </u>					
			0.0					
10								
10								
			0.0					
			0.0					
15 —								
				Sample	collection SS-3	at 15:45 SS-3-	MS at 15:50, SS-3-MS	Dat
				15:55				
20								
		-	-					
~								
25				1				
- - -								
	1							
30								
			1					
40				_				
	1	1	1			1		HP logs.XLS

A	CO	Μ		BORI	NG LOG			Boring No.:	SS-4
	T: Crystal C								1
	T No.: 1067			CONTRA	CTOR: AZTECH			DATE: 03/17/2009	
LOCATIC	DN: Corning	, NY		DRILLER	S NAME:			ET REP.: Vipul Me	hra
	ATER LEV		DESIGNAT		RILL RIG: Geo Probe				
DATE	TIME	DEPTH			QUIPMENT:				
			REFERENC			DEPTH OF	BOREHOLE	•	
			THICKNES				ON OF BOR		
	TORY ANA	LYSES				2.0.00	0		
E/(BOI())	Sample	21020.	PID						
Depth	Number	Rec.	Readings		SAMPLE DESCR			RATUM CHANGE	\$
(ft)	& Time	(feet)	(ppm)						
(11)	o nine	(ieel)	(ppiii)						
			0.0						
5									
2 -									
			0.0						
10									
			0.0						
15									
			-						
20									
				Sample	collected SS-4 a	t 15:25			
=	1								
25									
20									
│		-							
30									
	1								
H									 †
			L						
40									
				•		1			HP logs.XLS

PROJECT: Contractor: PAGE 1 OF 1 PAGE 1 OF 1 DROJECT: DRTE	A	CO	Μ		BORI	NG LOG			Boring No.:	SS-5
PROJECT No.: 106774 CONTRACTOR: AZTECH DATE: 034172000 COATTOR: Coming, NY DRILERS NAME: ETREP: Vpul Mehra WATER LEVELS DESIGNATION OF DRILL RIG: Geo Probe ETREP: Vpul Mehra DATE TIME DETRIE State NAME: ETREP: Vpul Mehra DATE TIME DETRIE State NAME: DESIGNATION OF DRILL RIG: Geo Probe										1
LOCATION: Corring, NY DRILLERS NAME: ET REP:: Vpul Metra WATER LEVELS DEPTH SIZE AND TYPE OF EOUPNENT:					CONTRA	CTOR: AZTECH				
WATER LEVELS DESIGNATION OF DRILL RIG: Geo Probe Image: Comparison of the compari										
DATE TIME DEPTH SUZE AND TYPE OF EQUIPMENT: Depth File LABORATORY ANALYSES THICKNESS OF OVERBURDEN: DISPOSITION OF BOREHOLE: Image: Constraint of the constrain				DESIGNAT					•	
Image: Second										
Line HoleKHESS OF OVERBURDEN: DISPOSITION OF BOREHOLE: Image: Control of Borehold (Control of Borehold (Contro)))) 20							DEPTH OF I	BORFHOLF	-	
LABORATORY ANALYSE: Image: Sample PID Image: Sample PID Depth Number Rec. Readings SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES Image: Sample Collected SS-5 at 15:10, SS-5-Dup at 15:20 Image: Sample Collected SS-5 at 15:10, SS-5-Dup at 15:20 Image: Sample Collected SS-5 at 15:10, SS-5-Dup at 15:20 Image: Sample Collected SS-5 at 15:10, SS-5-Dup at 15:20 Image: Sample Collected SS-5 at 15:10, SS-5-Dup at 15:20 Image: Sample Collected SS-5 at 15:10, SS-5-Dup at 15:20 Image: Sample Collected SS-5 at 15:10, SS-5-Dup at 15:20 Image: Sample Collected SS-5 at 15:10, SS-5-Dup at 15:20 Image: Sample Collected SS-5 at 15:10, SS-5-Dup at 15:20 Image: Sample Collected SS-5 at 15:10, SS-5-Dup at 15:20 Image: Sample Collected SS-5 at 15:10, SS-5-Dup at 15:20 Image: Sample Collected SS-5 at 15:10, SS-5-Dup at 15:20 Image: Sample Collected SS-5 at 15:10, SS-5-Dup at 15:20 Image: Sample Collected SS-5 at 15:10, SS-5-Dup at 15:20 Image: Sample Collected SS-5 at 15:10, SS-5-Dup at 15:20 Image: Sample Collected SS-5 at 15:10, SS-5-Dup at 15:20 Image: Sample Collected SS-5 at 15:10, SS-5-Dup at 15:20 Image: Sample Collected SS-5 at 15:10, SS-5-Dup at 15:20 Image: Sample Collected SS-5 at 15:10, SS-5-Dup at 15:20 Image: Sample Collected SS-5 at 15:10, SS-5-Dup at 15:20 Image: Sample Collected SS-5 at 15:10, SS-5-Dup at 15:20 Image: Sample Collected SS-5 at 15:10, SS-5-Dup at 15:20 Image: Sample Collected SS-5 at 15:10, SS-5-Dup at 15:20										
I Sample PIO Add to the second s		τοργ ΔΝΔ		THORALD		REGREEN.			LIIOLL.	
Deph Number Rec. Readings SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES (1) & Time (leeu) (gm)	LADOINA		LIGEO.	DID						
(f) 8 Time (fee) (pp) Image: state	Dopth		Bee							2
Image: state						SAIVIFLE DESCI	TIPTION, REWARK	S, AND ST		5
1 1	(11)	& Time	(Teel)	(ppm)						
1 1										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.0						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5				1					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	0.0						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10									
15	10									
15										
15				0.0						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				0.0						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	15									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15				<u> </u>					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					Sample	collected SS-5	at 15:10, SS-5-	Dup at 15	5:20	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20									
	20									
	┝╋╸		-							
	25									
Image:	-									
Image:	 -									
Image:										
Image:										
Image:				ļ						
Image:										
40	30 -									
40										
40		1								
40										
40										
40										
40										
	40				1					

A	CO	Μ		BORI	NG LOG		E	Boring No.:	SS-6
PROJEC	T: Crystal C	leaners							1
	T No.: 1067			CONTRA	CTOR: AZTECH			TE: 03/17/2009	
	DN: Corning			DRILLER	S NAME:			REP.: Vipul Mel	nra
	ATER LEV		DESIGNAT		RILL RIG: Geo Probe				
DATE	TIME				QUIPMENT:				
			REFERENC			DEPTH OF B			
			THICKNES				N OF BOREH		
	TORY ANA		THORALD		REGREEN.		NOT BOILEN	OLL.	
LADOINA	Sample	LIGLO.	PID						
Depth	Number	Rec.	Readings			RIPTION, REMARKS			,
(ft)	& Time		-		SAIVIFLE DESCR		S, AND STRA	TOMCHANGES	>
(11)	& Time	(feet)	(ppm)						
5									
 									
10									
			20.0						
15									
				Sample	collected SS-6	at 14·45			
				Campie					
20				{					
			1	1					
25				{					
			-						
30			ļ						
-									-
			1	1					
40				-					
				1					HP logs.XLS

				BURING LUG			GEO-1		
PROJEC	CT: Crystal	Cleaners, NY	CONTRAC	TOR:		PAGE 1 OF	3		
	CT No.: 10		LOCATION	I: Corning, NY		DATE:			
SURFAC	CE ELEVA	TION:	DATUM:	DRILLER:		ET REP .: Celest	Foster		
V	VATER LE	VELS		D	RILLING AND SAMPL	ING			
DATE	TIME	DEPTH		CASING	SAMPLER	CORE	TUBE		
			TYPE	Steel	split spoon				
			I.D.	6-inch	1 3/8 inch				
			WT./Fall		140 lbs.				
	Sample		PID						
Depth	Number	Rec.	Readings	SAMPLE DESCRIP	TION, REMARKS, ANI	O STRATUM CHAI	NGES		
(ft)	& Time	(feet)	(ppm)		- , - ,				
()		((PP)	30-35" crushed stone					
-	1		0	20-25" crushed stone					
1—			Ũ				-		
-				14-24" light brown fine sa	and light brown ar	avel/medium st	tone with		
2—			-	trace of light gray clay	and, light brown gr				
-	61	33"	0	trace of light gray clay					
3—	S1		0				-		
	8:06								
4—							-		
_				24-34 gravel, fine sand					
5—				_					
_				Poor recovery					
6—			0						
Ū _				Yellow orange gravel/me	dium stone, trace	of fine sand,			
7	S2	23"		trace of crushed stone			_		
/ —	8:15		0				_		
8—									
0-							-		
~ -			0						
9—							-		
-									
10—									
			0	Light brown gravel/some	clay, trace of med	lium sand			
11 —	S3	17"	-		,,,		-		
-	8:35								
12—	0.00						-		
			0						
13—	1						-		
_				Wet at 14"					
14—			+				-		
	4								
15—									
-	4		0						
16—					t		-		
_	l			Light gray gravel, trace o	r meaium sand, tra	ace of silt			
17—	.						-		
	S4	23"	0						
18—	8:45						_		
19—	ļ		0				_		
13-							-		
20-]			-		

GEO-1

PROJEC	CT: Crystal	Cleaners, NY			
PROJEC	CT No.: 106	6774		PAGE 2 OF 3	
Depth (ft)	Sample Number & Time	Rec. (feet)	PID Readings (ppm)	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES	
20 — 21 — 22 — 23 — 24 —	S5 8:52	26"	0	0-23" light gray gravel, trace of fine sand, trace of silt 23-26 light gray gravel,trace of fine sand, trace of silt	
25 — 26 — 27 — 28 — 29 — 30 —	S6 9:02	44"	0	Driller soft at 27' 0-5" soft 5-44 light gray clay	
31 — 32 — 33 — 33 — 34 —	S7 9:23	5'	0	Light gray clay, dry	- - - -
35 — 36 — 37 — 38 — 39 — 40 —	S8 9:40	5'	0	*Sample Light gray clay, dry	

GEO-1

PROJEC	CT: Crystal	Cleaners, NY			
PROJEC	CT No.: 106	6774		PAGE 3 OF 3	
Depth (ft)	Sample Number & Time	Rec. (feet)	PID Readings (ppm)	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES	
40 —					
41 —					_
42—	S9 9:53	5'	0	Light gray clay, dry	_
- 43—	5.55				_
44 —					_
- 45-					_
- 46-					_
_ 47 —	S10	48"	0	Refusal at 46.5 ft bgs, light gray clay	
48-	10:15				_
49-					_
					_
					_
51-					_
52-					_
53 — -					_
54 — -					_
55 —					_
56 —					_
57 —					_
58—					
59—					┨
60 —					_

				BORING LUG			GEO-2				
PROJEC	CT: Crystal	Cleaners, NY	CONTRAC	TOR:		PAGE 1 OF	2				
PROJEC	CT No.: 10	6774	LOCATION	I: Corning, NY		DATE:					
SURFAC	CE ELEVA	TION:	DATUM:	DRILLER:		ET REP .: Celest	Foster				
	VATER LE			C	RILLING AND SAMPL	ING					
DATE	TIME	DEPTH		CASING	SAMPLER	CORE	TUBE				
			TYPE	Steel	split spoon						
			I.D.	6-inch	1 3/8 inch						
			WT./Fall		140 lbs.						
	Sample		PID								
Depth	Number	Rec.	Readings	SAMPLE DESCRIP	TION, REMARKS, ANI	D STRATUM CHA	NGES				
(ft)	& Time	(feet)	(ppm)								
(11)	d nine	(1001)	(ppiii)								
-	1		0	0-2" top soil (fine sand/silt)							
1—	1		0								
-	1			2-10" light brown fine soil/silt							
2—			-	2-10 light brown line sol	1/5m						
-	61	16"	0	10.16" light grove grovel i	roco modium con	d 15" wat fina	-				
3—	S1	10	0	10-16" light gray gravel, t	race medium san	u, 15 wet line	sand				
-	11:32						-				
4—											
-							-				
5—											
-	4										
6—			0	Gravel, trace medium sand, fine sand, wet							
_							-				
7—	S2	10"									
-	11:40		0	Light brown gravel, trace	medium sand/fine	e sand, wet	_				
8—							_				
- -							_				
9—			0				_				
- -							_				
10—											
							_				
11 —			0				_				
	S3	11.5"		Light brown gravel, trace	medium sand/fine	e sand, wet	_				
12—	11:47										
12]						_				
13 —			0				_				
13											
- 	<u> </u>						-				
14—											
4 E]						-				
15—			0								
10]						-				
16—				Light brown gravel, trace	medium sand/fine	e sand, wet					
- 	1						-				
17—	S4	17"	0								
-	11:57		-				-				
18—											
-	1		0				-				
19—	1		Ĭ				<u> </u>				
_	1						-				
20—											
	1			l							

GEO-2

PROJECT: Crystal Cleaners, NY

PROJEC	CT No.: 106	6774		PAGE 2 OF 2	
Depth (ft)	Sample Number & Time	Rec. (feet)	PID Readings (ppm)	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES	
20-				0-21" light gray GR/CL	
21— - 22—	S5	38"	0	21-33" light gray CL/some GR/TR silt	_
23-	12:11			33-38" light gray CL, some gravel, trace of silt	_
24—					_
25—					
26— - 27—				Light gray CL, some gravel, trace of silt, glacial til, dry	_
	S6 12:35	48"	0		_
29—					_
30—				End of boring, geoprobe would not advance further	
31— - 32—					-
33—					_
34 —					_
35 — -					
36— - 37—					_
					_
- 39—					
40—					

				BORING LUG			GEO-3	
PROJEC	CT: Crystal	Cleaners, NY	CONTRAC	TOR:		PAGE 1 OF 2		
PROJEC	CT No.: 10	6774	LOCATION	I: Corning, NY		DATE:		
	CE ELEVA		DATUM:	DRILLER:		ET REP .: Celest	Foster	
	VATER LE				RILLING AND SAMPL			
DATE	TIME	DEPTH		CASING	SAMPLER	CORE	TUBE	
BATTE		DEIT	TYPE	Steel	split spoon	CONE	1002	
			I.D.	6-inch	1 3/8 inch			
				8-11011				
			WT./Fall		140 lbs.			
	Sample		PID					
Depth	Number	Rec.	Readings	SAMPLE DESCRIP	TION, REMARKS, ANI	D STRATUM CHA	NGES	
(ft)	& Time	(feet)	(ppm)					
- 1 2			0	0-3" light brown top soil,	light brown silt, fin	e sand, mediur	m sand _	
2—				3-4" blackaspalt			-	
<u> </u>	S1	14.75"	0					
3—	14:10						-	
. –	1 -			4-14.75" light brown GR/	medium sand. trad	ce of silt. trace	CS	
4—	1		1		, ,	,	-	
	1							
5—			+					
	1		0					
6—			0	GR, light brown trace CS	somo modium s	and	-	
	S2	2"		GR, light brown trace CS		anu		
7—		2	0				-	
-	14:15		0					
8—							-	
-	4							
9—	4		0				-	
_								
10—								
-	1							
11 —			0				-	
	S3	2"		GR, some medium sand	, trace CS, trace fi	ne sand		
12—	14:20						_	
12								
- 13—]		0					
13-]						•	
-	1							
14—				1			-	
-	1							
15—			0					
-	1							
16—			+				•	
-	1			GR, some medium sand	trace CS trace fi	ne sand		
17 —	S4	10.5"	0			ne saliu		
-		10.5						
18—	14:30		+					
-	4							
19—	4		0	Water measured at 19.2	o it bgs			
_	4							
20—							-	
			1					

GEO-3

PROJECT: Crystal Cleaners, NY

PROJEC	CT No.: 106	6774		PAGE 2 OF 2	
Depth (ft)	Sample Number & Time	Rec. (feet)	PID Readings (ppm)	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES	
20 —				0-21" light gray GR/CL	_
21 —	S5	38"	0	21-33" light gray CL/some GR/TR silt	_
22— - 23—	12:11			33-38" light gray CL, some gravel, trace of silt	
					_
25 —					
26 —					
27 —	S6 12:35	48"	0	Light gray CL, some gravel, trace of silt, glacial til, dry	
28— - 29—	12.00				
				End of boring, geoproper would not advance further	
- 31 —				End of boring, geoprobe would not advance further	-
32—					_
33—					_
34 — 					-
35 — - 36 —					
- 37 —					-
38 —					- -
39 —					
40 —					

				Well No. M	/W-1	
Project: Crystal Cleaners	Location: Corning, NY			Page 1	of 1	
Earth Tech Project No.: 106774	Subcontractor: LAWE	S		Water Levels		
Surface/Casing Elevation: 938.60 Ft	Driller: Kevin / Ufur			Date	Time	Depth
Top of PVC: 938.07 Ft	Well Permit No.: Earth Tech AECOM R	en · Vin	ul M	10/28/09	12:30	15.31
Datum: NGVD 1988	Date of Completion: 1	0/27/09				
	Locking protective flushmou	nt (8") with	n concrete	pad		
	Ground Surface	938.6	ft			
	Well casing	938.6	ft			
	Borehole diameter	4.25	inches			
	Riser Pipe from	0.0	ft to	20.0	ft	
	Diameter	2"	inches			
	Туре _	PVC	_			
	Cement-bentonite					
	grout from	0.0	ft to	16.0	ft	
	Riser Pipe from	0.0	ft to	20.0	ft	
	Bentonite seal from	16.0	ft to	18.0	ft	
	-					
_	Filter pack from	18.0	ft to	31.0	ft	
Water Level	Sand Size	#1				
ft bgs	Well screen from	20.0	ft to	30.0	ft	
	- Diamator	0"				
	Diameter _ Slot size	2" 0.1	inches inches			
	Туре	PVC	_			
	_					
	Borehole diameter	4.25	inches			
		1.20				
	Bottom Cap at	30.0	ft			
	- Bottom of Borehole at	31.0	ft			
Note: All measurements b	- ased on ground surface at 0.0 fee) below grade		
	(NOT TO SCALE)		- (. U		
	(

Well No. MW-2

					Well No. N	AW-2	
Project: Crystal Clear	ners	Location: Corning, NY	,		Page 1	of 1	
Earth Tech Project N	lo.: 106774	Subcontractor: LAWE	S		Water Levels		
Surface/Casing Eleva	ation: 934.79 Ft	Driller: Kevin / Ufur			Date	Time	Depth
Top of PVC: 934.48	Ft	Well Permit No.: Earth Tech AECOM R	en · Vin	ul M	10/28/09	14:30	14.19
Datum: NGVD 1988		Date of Completion: 1	0/26/09				
		Locking protective flushmou	ınt (8") with	concrete	pad		
		Ground Surface	934.79	ft			
		Well casing	934.79	_ft			
	•	Borehole diameter	4.25	inches			
		Riser Pipe from	0.0	ft to	20.0	ft	
		Diameter	2"	inches			
		Туре _	PVC	_			
		Cement-bentonite					
		grout from	0.0	ft to	14.0	ft	
		Riser Pipe from	0.0	ft to	20.0	ft	
		Fine sand (00)	14.0	ft to	16.0	ft	
		Bentonite seal from	16.0	ft to		ft	
		Filter pack from	18.0	ft to	31.0	ft	
Water _		Sand Size	#1	_			
Level t bgs							
		Well screen from	20.0	ft to	30.0	ft	
		Diameter	2"	inches			
		Slot size	0.1	inches			
		Туре	PVC	_			
	─	Borehole diameter	4.25	inches			
		-		_			
		Bottom Cap at	30.0	ft			
		Bottom of Borehole at	31.0	ft			
Note	e: All measurements bas	ed on ground surface at 0.0 fee		_) below grade	·.	
		(NOT TO SCALE)	.,	2 - (, 3		
		(

Well No. MW-3

				Well No. N	100-2	
Project: Crystal Cleaners	Location: Corning, NY	,		Page 1	of 1	
Earth Tech Project No.: 106774	Subcontractor: LAWE	S		Water Levels		
Surface/Casing Elevation: 932 Ft	Driller: Kevin / Ufur			Date	Time	Depth
Top of D)(C: 021 72 Et	Well Permit No.: Earth Tech AECOM R			10/29/09	9:30	11.60
Top of PVC: 931.72 Ft		ep vip				
Datum: NGVD 1988	Date of Completion: 1	0/28/09				
	Locking protective flushmou	ınt (8") with	n concrete	pad		
	Ground Surface	932.00	ft			
	Well casing	932.00	ft			
	Borehole diameter	4.25	inches			
	Riser Pipe from	0.0	_ft_to	25.0	ft	
	Diameter _ Type	2" PVC	inches			
	-		_			
	Cement-bentonite grout from	0.0	ft to	23.0	ft	
	Riser Pipe from	0.0	ft_to	20.0	ft	
	Bentonite seal from	21.0	_ft to	23.0	ft	
	Filter pack from	23.0	_ft to	36.0	ft	
Water ⊻	Sand Size	#1				
ft bgs	Well screen from	25.0	_ft to	35.0	ft	
	Diameter	2"	inches			
	Slot size	0.1	inches			
	Туре _	PVC	_			
	Borehole diameter	4.25	inches			
	Bottom Cap at	35.0	ft			
	Bottom of Borehole at	36.0	ft			
Note: All measurements	based on ground surface at 0.0 fee	et. (+) abov	ve grade. (-) below grade		
	(NOT TO SCALE)					

		1			Well No. I	vivv-4	
Project: Crystal Cle	eaners	Location: Corning, NY	/		Page 1	of 1	
Earth Tech Project	No.: 106774	Subcontractor: LAWE	S		Water Levels		
Surface/Casing Ele	evation: 932.98 Ft	Driller: Kevin / Ufur			Date	Time	Depth
Top of PVC: 932.6	2 Ft	Well Permit No.: Earth Tech AECOM R	Rep · Vin	ul M	10/29/09	15:00	12.25
Datum: NGVD 198	38	Date of Completion: 1	0/27/09				
		Locking protective flushmou	unt (8") with	n concrete	pad		
<u> </u>		Ground Surface	932.28	ft			
		Well casing	932.28	ft			
		Borehole diameter	4.25	inches			
		Riser Pipe from	0.0	ft to	25.0	ft	
		Diameter _ Type	2" PVC	inches			
		grout from	0.0	ft to	21.0	ft	
		Riser Pipe from	0.0	_ft to	20.0	ft	
		Bentonite seal from	21.0	_ft to	23.0	ft	
		Filter pack from	23.0	_ft to	36.0	ft	
^{Water} Level		Sand Size	#1	_			
ft bgs		Well screen from	25.0	_ft to	35.0	ft	
		Diameter	2"	inches			
		Slot size	0.1	inches			
		Туре _	PVC	_			
		Borehole diameter	4.25	inches			
		Bottom Cap at	35.0	_ft			
		Bottom of Borehole at	36.0	ft			
N	ote: All measurements bas	ed on ground surface at 0.0 fee	et. (+) abov	re grade. (-) below grade).	
		(NOT TO SCALE)					

Well No. MW-5

				Well No. N	/W-5	
Project: Crystal Cleaners	Location: Corning, NY	'		Page 1	of 1	
Earth Tech Project No.: 106774	Subcontractor: LAWE	S		Water Levels		
Surface/Casing Elevation: 933.26 Ft	Driller: Kevin / Ufur			Date	Time	Depth
Top of PVC: 932.55 Ft	Well Permit No.: Earth Tech AECOM F	Rep · Vin	ul M	10/29/09	10:30	19.62
Datum: NGVD 1988	Date of Completion: 1	0/28/09				
	Locking protective flushmou	ınt (8") with	n concrete	pad		
	Ground Surface	933.26	ft			
	Well casing	933.26	ft			
	Borehole diameter	4.25	inches			
	Riser Pipe from	0.0	_ft_to	45.0	ft	
	Diameter _ Type	2" PVC	inches			
	-					
	Cement-bentonite grout from	0.0	ft to	43.0	ft	
	Riser Pipe from	0.0	ft to		ft	
			_			
<	Bentonite seal from	41.0	_ft_to	43.0	ft	
	Filter pack from	43.0	ft to	56.0	ft	
Water	Sand Size					
Water Level ⊻	Sand Size	#1	_			
ft bgs	Well screen from	45.0	_ft to	55.0	ft	
	Diameter	2"	inches			
	Slot size	0.1	inches			
	Туре	PVC	_			
	Borehole diameter	4.25	inches			
		4.20				
	Bottom Cap at	55.0	ft			
	Bottom of Borehole at	56.0	ft			
Note: All measurements bas	sed on ground surface at 0.0 fee	ət. (+) abov	/e grade. (-) below grade		
	(NOT TO SCALE)					
	(NOT TO SCALE)					

Well No. MW-6

-				Well No. I	VI VV-6	
Project: Crystal Cleaners	Location: Corning, NY			Page 1	of 1	
Earth Tech Project No.: 106774	Subcontractor: LAWE	S		Water Levels		
Surface/Casing Elevation: 933.40 Ft	Driller: Kevin / Ufur			Date	Time	Depth
Top of PVC: 932.85 Ft	Well Permit No.: Earth Tech AECOM R	on · Min	aul M	10/29/09	11:30	20.48
		ер vip				
Datum: NGVD 1988	Date of Completion: 1	0/26/09				
	Locking protective flushmou	nt (8") with	n concrete	pad		
	Ground Surface	933.40	ft			
	Well casing	933.40	ft			
	Borehole diameter	4.25	inches			
	Riser Pipe from	0.0	ft to	45.0	ft	
	Diameter _ Type	2" PVC	inches			
	-		_			
	Cement-bentonite grout from	0.0	ft to	39.0	ft	
	Riser Pipe from	0.0	ft to	45.0	ft	
	Doptonito cool from	20.0	<i>t</i> t to	44.0	<i>t</i> +	
	Bentonite seal from	39.0	ft_to	41.0	ft	
	Fine sand (00)	41	ft_to		ft 4	
	Filter pack from	43.0	_ft to	56.0	ft	
Water Level ⊻	Sand Size _	#1	_			
ft bgs	Well screen from	45.0	ft_to	55.0	ft	
	Diameter	2"	inches			
	Slot size	0.1	inches			
	Туре	PVC	_			
	Borehole diameter	4.25	inches			
	Bottom Cap at	55.0	ft			
	_		_			
	Bottom of Borehole at _	56.0	ft			
Note: All measurements	based on ground surface at 0.0 fee	et. (+) abov	ve grade. (-) below grade) .	
	(NOT TO SCALE)					

12/18/02 WED 16:34 PAX 1 518 295 8289 LAYNE CHRISTENSEN CO 4004 * **even** 65 4 4 Pir: 90' X M Meldee - 13-4 of 18" welded . . +0'-4" Screen: 20' of 18" Everdur 0-0" Sround Level None Cone: Pump# 11/14/56 Fill GLE PHUMCShop No. 118484 Туре 24 54:10" to 5. F. Size 151784 Setting ÷ * 6:8 of 6" Stages 15 Suction BENTONIA Impellers Bronze Basket 18 SEAL Discharge 8210 Cpld. Head 705 825 wse Gravel Press. B. P. 10.5** 2§ Tubing 23 Air Line 61-6" nd Granel 14* Shafting Soulders 25 steri * New Rung Instelled #04968-2 ixed cley & Grovel CASIA Motor 212 Type Hollowshal U. S. Make 60 38'-0" Cycle 440 Volts 121 Amp. 3. Phase 1800 R. P. M. 100 H. P. 43-0" Form Vertical 982 A Frame Imer 246445 lean Sand Serial GFU Model 14"x20 8 Graver 1/4" × 18" Cook Well# stainless ; frarel silii Static Level 25' Started 8-15-42 Stee/ Production 708 WIRMAP First Test 9-12-42 Screen Pumping Level 20 7-9-43 Final " 0.110," Accepted 7-7-49 Guarantee' 700 slot 63-0" 105# Clear Depth 845 8 Press. er Plate 65 * Liner Installed - 1995, Nov. 1248 Boulder Driller: J. Q. Emerson Installer: J. O. Powell LAYNE-NEW YORK CO., INC. NEW YORK. WATER BURRLY CONTRACTORS CITY OF CORNING CORNING, N.Y. APPROVED BY MA SHAWN BY R.K.H. DRAWING NO. WELL NO. 2

12/18/02 WED 16:34 FAX 1 518 295 8289

LAYNE CHRISTENSEN CO

1003

Material Pit: 54 or 24" welded 58' of 18" welded <u>+8-0"</u> Screen: 20'of 18" Everdur 0'-0" 5 Ground Love! Fill Cone: None Top Soil 24 -Yellow Clay Pump: 71/21/56 8 Gravel -CLE RHUMCShop No. 11847A Туре 12 Serring 64-10" to S.F. Size 15"12" 18-Suction 9-8 of 6 Stages **3** oarse Gravel Basket Impellers gronze Discharge 8'10' Cpld. Head TUF 825 21 25 Tubing Press. B. P. 105" Air Line 74-6" Shafting 14 slay, mixed with gravel Motor 9 Type Hollowshaft Make 11.5 34 rlag, very little gravet Volts 440 Cycle 60 Phase Amp. 121 39 H. P. 100 R. P. M. 1800 Frame 982 A Form Vertical 46'-0" CFU Serial 247356 Model 50-0" Well Static Level 72 15 6-30-42 Started oarse Gravel Production 700 1000 & Sand First Test 8-10-42 Pumping Level 22 33 Final " 7-2-43 Accepted 7-2-43 Guarantee 700 1050 Clear Depth 78' from B.P. Press. Driller: J. O. Emerson C-steel Plate Installer: J.O. Powell 73 LAYNE-NEW YORK CO., INC. NEW YORK, N. WATER BUPPLY CONTRACTORS CITY OF CORNING CORNING, N.Y. APPROVED BY W.A.N. DRAWN BY RAH. DRAWING NO. WELL NO

1				PROJECT					PROJECT No.	SHE	EET	SHEETS
		LING FOR	RM	Crystal C	Cleaners			DATE WELL STA	106774-2.1	DATE WELL CO	1 оғ	1
343 W		teney St.,	Corning	, NY				December	2, 2009	December		
CLIENT NYSDI DRILLING								NAME OF INSPECT Vipul Mehr SIGNATURE OF I	a - AECOM, [Dan P - YEC	2	
None	COMPANY							SIGNATURE OF I	NSPECTOR			
THREE WE	ELL VOLUM	E:	7	Gallons		WELL TD:	29.9	ft	PUMP IN	TAKE DEPTH:	25 ft	
	Depth to	Purge			FIELD ME	EASUREMEN	ITS					
Time	Water (ft)	Rate (ml/min)	Temp. (ºC)	рН	Conduct. (ms/cm)	DO (mg/L)	ORP (mV)	Turbidity (ntu)	REMARKS			
9:16	15.92								Before Purg	ing		
9:30	15.95	300	11.06	7.79	740	2.76	143.6	122.1	Pump On			
9:45	15.95	300	11.66	7.54	734	2.2	132.4	29.6				
10:00		300	11.87	7.54	736	1.55	126.3	14.3				
10:15	15.95	300	11.88	7.54	733	1.47	115.5	6.7				
10:20	15.95	300	11.93	7.55	735	1.4	109	5.0				
10:30	15.95	300	11.94	7.54	735	1.39	106.8	3.7				
10:35									MW-1 collec	cted @ 10:3	5	
11:15	15.96		11.49	7.58	731	1.37	112.6	4.6				
Pump	Туре:	Bladder p	oump wit	h dedicat	ed tubing f	or samplin	g					

r				PROJECT					PROJECT No.	SHE	ET	SHEETS
WELL	SAMPI		RM	Crystal C	leaners				106774-2.1		1 оғ	1
LOCATION	l							DATE WELL STAF	RTED	DATE WELL CON		
343 W	est Pult	eney St.,	Corning	, NY				December 2		December	2, 2009	
client NYSDI	FC								a - AECOM, [Dan P - VEC		
								SIGNATURE OF I			,	
None												
THREE WE		E :	7.5	Gallons		WELL TD:	29.88	ft	PUMP IN	TAKE DEPTH:	25 ft	
	Depth		-			EASUREMEN						
	to	Purge					115					
Time	Water	Rate	Temp.	рН	Conduct.	DO	ORP	Turbidity				
40.00	(ft)	(ml/min)	(ºC)		(ms/cm)	(mg/L)	(mV)	(ntu)				
	14.54		10.00	7.07					Before Purg	ing		
	14.58	280	12.63	7.67	986	3.7	115.4	20.2	Pump On			
	14.58	280	12.87	7.49	996	2.88	115.4	3.5				
13:05		280	12.87	7.49	996	2.89	113.9	2.8				
13:15	14.58	280	12.91	7.47	998	2.88	111.5	2.0				
40.55											_	
13:25									MW-1 collect	cted @ 10:3	5	
13:50	14.55	280	12.63	7.47	992	3.01	110.9	3.4				
									-			
Pump	Type:	Bladder p	oump wit	th dedicat	ed tubing f	for samplin	g					
					2							
Analyti	cal Par	ameters:	VOCs, I	MNA, and	TAL Meta	als						

DCATION		ING FOF		Crystal C				DATE WELL STAR	TED	DATE WELL CO		
43 We		-	<u> </u>					-				
LIENT	est Pult	eney St.,	Corning,	NY				December 2		December	2, 2009	
IYSDE	EC								a - AECOM, D	Dan P - YEO	2	
	COMPANY							SIGNATURE OF IN				
lone												
IREE WE		E:	11.2	Gallons		WELL TD:	34.9	ft	pump intake depth: 30 ft			
	Depth to	Purge				ASUREMEN						
Time	Water (ft)	Rate (ml/min)	Temp. (ºC)	рН	Conduct. (ms/cm)	DO (mg/L)	ORP (mV)	Turbidity (ntu)	tu)			
	12.04								Before Purgi	ing		
	12.04	300	14.30	7.37	2184	3.52	116.8	306.7	Pump On			
	12.04	300	14.27	7.19	2173	0.77	121.9	285.6				
	12.04	300	14.34	7.17	2162	0.59	122.2	243.7				
	12.04	300	14.33	7.17	2146	0.59	118.6	205.1				
	12.04	300	14.34	7.16	2132	0.59	115.7	206.5				
		300	14.30	7.17	2111	0.59	113.2	195.3				
6:05	12.04	300	14.31	7.17	2084	0.60	110.1	167.8				
0.40										te d @ 40:4	0	
6:10									MW-3 collec			
6:20									MW-3 DUP	collected @	16:20	
6:30	12.04	300	14.30	7.17	2104.00	0.59	112.4	140				
								1				
								1				
								1				
					ı – I			1	1			

				PROJECT					PROJECT No.	SHEE	т	SHEETS
		LING FOR	RM	Crystal C	leaners				106774-2.1		1 оғ	1
LOCATION			- ·					DATE WELL STA		DATE WELL COMP		
343 W client	est Pult	eney St.,	Corning	, NY				December		December 3	3, 2009	
NYSD	EC								a - AECOM, [Dan P - YEC		
DRILLING								SIGNATURE OF I	NSPECTOR			-
None												
THREE WE	ELL VOLUM	E :	11.55	Gallons		WELL TD:	34.88	ft	PUMP INT	TAKE DEPTH:	30 ft	
	Depth				FIELD ME	EASUREMEN	ITS					
Time	to Water (ft)	Purge Rate (ml/min)	Temp. (⁰C)	рН	Conduct. (ms/cm)	DO (mg/L)	ORP (mV)	Turbidity (ntu)	REMARKS			
14:45	11.28	((-)		((()	()	Before Purg	ing		
	11.28	300							Pump On	0		
	13.05	300	12.93	7.69	1352	0.87	53.4	160.1				
	13.05	300	13.19	7.59	1421	0.61	37.6	37.1				
	13.06	300	13.23	7.57	1470	0.82	29.2	17.7				
	13.06	300	13.24	7.55	1495	1.03	27.8	8.4				
	13.06	300	13.26	7.55	1503	1.04	28.1	6.4				
16:00		300	13.28	7.55	1507	1.07	28.6	4.2				
16:10							-		MW-4 collec	ted @ 16:10		
										-		
16:30	12.55	300	13.68	7.44	1468	0.93	30.4	12.8				
	<u>,</u>											
Pump	Туре:	Bladder p	oump wi	th dedicat	ed tubing f	or samplin	g					

WELL	SAMP	LING FOF		^{ркојест} Crystal C	leaners				project №. 106774-2.1	SHEET 1	of 1
OCATION								DATE WELL STA	RTED	DATE WELL COMPLETED	
43 We	est Pult	eney St.,	Corning,	NY				December	3, 2009	December 3, 200	9
	=C								a - AECOM, E	an P - YEC	
	COMPANY							SIGNATURE OF I			
None											
HREE WE	LL VOLUM	E:	17.82	Gallons		WELL TD:	54.95	ft	PUMP INT	AKE DEPTH: 50	ft
	Depth to	Purge			FIELD ME	ASUREMEN	NTS				
Time	Water (ft)	Rate (ml/min)	Temp. (ºC)	рН	Conduct. (ms/cm)	DO (mg/L)	ORP (mV)	Turbidity (ntu)		REMARKS	
8:30	18.50	_`´							Before Purg	ing	
8:45	18.61	300							Pump On	•	
9:00	18.64	300					1			high for readings	
9:10	18.64	300	12.75	7.73	1040	1.04	-90.8	1179.0			
9:20	18.64	300	12.67	7.55	1028	0.82	-110.6	912.0			
9:30	18.64	300	12.56	7.52	1034	0.44	-124.6	870.0	1		
9:40	18.64	300	12.59	7.52	1032	0.35	-130.9	726.0	1		
9:50	18.64	300	12.64	7.52	1027	0.43	-133.5	462.0			
10:00	18.64	300	12.61	7.52	1023	0.45	-133.8	326.8			
10:10	18.64	300	12.59	7.52	1022	0.48	-133.8	181.1			
10:20	18.64	300	12.58	7.52	1021	0.49	-133.5	144.0			
10:20	18.64	300	12.58	7.52	1021	0.49	-133.4	97.0			
		500				5.10	100.7	00	1		
10:45									MW-5 collec	ted @ 10.45	
10.40											
11:00	18.60	300	12.61	7.52	1020	0.51	-129.5	80.1			
11.00	10.00	000	12.01	1.02	1020	0.01	120.0	00.1	1		
									1		
					┨		<u> </u>	<u> </u>			
					┨		<u> </u>	<u> </u>			
					╞───┤		 				
					├ -		 				

1				PROJECT					PROJECT No.	SHEE	т	SHEETS
		MPLING FORM Crystal Cleaners							106774-2.1		1 оғ	1
		<i></i>	<u> </u>					DATE WELL STARTED DATE WELL COMPLETED				
343 VV CLIENT	est Pult	eney St.,	Corning	I, NY				December 3, 2009 December 3, 2009				
	EC company							Vipul Mehra - AECOM, Dan P - YEC SIGNATURE OF INSPECTOR				
None												
THREE WE	ELL VOLUM	E :	17.07	7 Gallons Well TD: 54.7			7 ft pump intake depth: 50 ft					
	Depth to	Purge				ASUREMEN						
Time	Water (ft)	Rate (ml/min)	Temp. (ºC)	рН	Conduct. (ms/cm)	DO (mg/L)	ORP (mV)	Turbidity (ntu)	-		KS	
	19.82								Before Purg	ing		
	19.84	300							Pump On			
	19.84	300	12.49	7.52	1085	0.69	-70.3	1040.0				
	19.84	300	12.46	7.50	1083	0.52	-93.2	730.0				
	19.84	300	12.41	7.50	1084	0.43	-102.2	447.1				
	19.84	300	12.39	7.49	1082	0.37	-117.2	410.0				
	19.84	300	12.37	7.49	1082	0.35	-122.4	367.1				
	19.84	300	12.39	7.49	1082	0.36	-128.6	296.0				
13:20	19.84	300	12.31	7.49	1082	0.37	-133.1	90.0				
13:30									MW-6 collect	ted @ 13:30	1	
14:00	19.84	300		7.48	1077	0.46	-140.3	23.2				
				ļ				ļ				
				ļ								
				ļ				ļ				
												-
Pump	Туре:	Bladder p	oump wi	th dedicat	ed tubing f	or samplin	g					

Non Hazardous Manifest/Bill Of Lading

& Rapid Res		Inc.	Docume	nt # 201	0117		
14 Brick Kili Northampto Phone 484-2 Fax 484-275	n, PA 18067 275-6900		Job/Proj	ect # <u>/03</u>			
THIS SECTION	TO BE COMPLETED BY GI	ENERATOR:					
343 PUL	E/ADDRESS CRYSTAL CLEA T CN CY STEG 6, NY 14930			24 HOUR EMERGENCY F	Lisanse		
QUANTITY	SIZE/TYPE		DESCRIPTIO		APPROVAL	WEIGHT/VOLUME	
6		/			соре 0411-284 595	3600 P	
	1 660 in 1	LEGULOTES	955 /2	es van	0911-285 2WT	40008	
	550M P	PPE, DOTTKING Non Regulated				150P	
				n an Arran a			
		· · ·				· · · ·	
classified, described proper condition for	at the above named waste(s) J, packaged, marked, and label r transportation according to t	ed and are in	ENERATOR'S SIGNATURE			DATE 12-04-09	
regulations of the D						<u> </u> ,	
THIS SECTION T	O BE COMPLETED BY HA			14 BEICK K	It al f T	PHONE NO.	
COMPANY NAME			JUNEGO		A Grant - Roman A		
	MENTRE WAST		DDRESS			(484 775 _6900	
COMPANY NAME	MENTINE WAST			5			
VEHICLE I.D. NO T-/	MENTINE WAST	BOX NUMBER-IN	TURE S NAME	- Nombr	provi, la	(484 275 -6900	
VEHICLE I.D. NO	Mexime UASS STATE 39 4 t the above described waste(s transportation at the producers he waste facility. Both as listed	BOX NUMBER-IN BOX NUMBER-IN DRIVER'S SIGN B PRINT DRIVER'S	ATURE S NAME	BOX NUMBER-OUT	270-4, 1/3 1806 7	(484 275 _6700) COMMENTS DATE	
VEHICLE I.D. NO I Hereby certify that were accepted for the site for delivery to the hereupon. THIS SECTION TO FACILITY NAME	MEXTE UAST STATE 3 4 t the above described waste(s transportation at the producer) he waste facility. Both as listed O BE COMPLETED BY REC	DRIVER'S SIGN	ATURE S NAME	BOX NUMBER-OUT	ST BE FORWARDE	(484 775 _69 M) COMMENTS DATE 10-04-09 D TO EWMI AND GENERATOR). PHONE NO.	
VEHICLE I.D. NO VEHICLE I.D. NO I Hereby certify tha were accepted for t site for delivery to the hereupon. THIS SECTION TO FACILITY NAME	MEXTE UAST STATE 3 4 t the above described waste(s transportation at the producer) he waste facility. Both as listed O BE COMPLETED BY REC	Z M INIMIA BOX NUMBER-IN DRIVER'S SIGN PRINT DRIVER'S CEIVER AT DISPOSAL	ATURE S NAME FACILITY: (C	BOX NUMBER-OUT	ST BE FORWARDE	(484 775 _6900) COMMENTS DATE 10-04-09 D TO EWMI AND GENERATOR).	
VEHICLE I.D. NO VEHICLE I.D. NO I Hereby certify tha were accepted for t site for delivery to th hereupon. THIS SECTION TO FACILITY NAME COMMENTS	MEXTE UAST STATE 3 4 t the above described waste(s transportation at the producer) he waste facility. Both as listed O BE COMPLETED BY REC	Z MINIMIA BOX NUMBER-IN DRIVER'S SIGN PRINT DRIVER'S PRINT DRIVER'S CEIVER AT DISPOSAL ALL ALL ALL AUTHORIZED SI	ATURE SNAME FACILITY: (C DDRESS	BOX NUMBER-OUT BOX NUMBER-OUT Tangungungungungungungungungungungungungun	ST BE FORWARDE	(484 775 _69 M) COMMENTS DATE 10-04-09 D TO EWMI AND GENERATOR). PHONE NO.	

Tel (484) 27	75-6900	(484)) 275-697	70 Fax				24/7/365 877-460-1038 <i>www.rri-hazmat.com</i>
www.ewmi	-11110.CON	11]	DAIL	Y RE	COR	D	www.mnazma.com
roject #:	10=	3580	1		D	ate:	-17	-04-09 Day:
Customer: <u>NY</u>	J)EC	-0	YSA	1 Clea		ustome		
ob Location:	<u>(</u> @	<u>s (nina</u>] , /	J Y		ustome ustome		-
NAMES	CODE	START	O.S.	O.S. FINISH			QTY	MATERIALS / CONSUMABLES
Satt				FINISH 10:00		HUUKS	2	PPE Level - (Circle One) Mod - D D C B
D. IC R		J		5				PPE Level - (Circle One) Mod - D D C B
		0001-000	0. <i>S</i> .	0.S.		TOTAL		
UBCONTRACTOR	CODE	START	START	FINISH	FINISH	HOURS		
								· · · · · · · · · · · · · · · · · · ·
EQUIPME			QTY	 ["	E	QUIPME	 NT	QTY DISPOSAL/MANIFEST
	139		1			~~~~~		(ERC) 2011)
Pr.	ng b	art						
				{				
				ļ				
			JOB	DESCI	RIPTIO	N / REM	IARKS	
- Fixed	1eg k	- , + \ \ f1 - k		DESCI	RIPTIO			
- Fixed - Marked	legk	é fed			RIPTIO Jed		1ARKS なテ	
- Fixed - Marked	legk , lab	eled			RIPTIO Jed			
- Fixed - Marked	1eq k , lab	éled			riptio Jed			
- Fixed - Marked	1eq k , lab	é Æd			RIPTIO Jed			
- Fixed - Marked	1eq k , lab	é les			RIPTION Jed			
- Fixed - Marked	1eq k , lab	é les			RIPTIO Jed			
- Fixed - Marked	1eq k , lab	é Æs			RIPTIO			
- Fixed	1eq k , lab	é Æs			RIPTIO Jed			
- Fixed	1eq k , lab	É ÆJ			RIPTIO Jed			
- Fixed	1eq k , lab				RIPTIO			
- Fixed - Marked /	1eq k , lab				Jed		25	

. .

'.]⁴

Indoor Air Sampling

To avoid potential interferences and dilution effects, occupants should make a reasonable effort to avoid the following for 24 hours prior to and during sampling:

- Opening any windows, fireplace dampers, openings or vents;
- Operating ventilation fans unless special arrangements are made;
- Smoking in the building;
- Painting;
- Using a wood stove, fireplace or other auxiliary heating equipment (e.g., kerosene heater);
- Operating or storing automobile in an attached garage;
- Allowing containers of gasoline or oil to remain within the house or garage area, except for fuel oil tanks;
- Cleaning, waxing or polishing furniture, floors or other woodwork with petroleum- or oil-based products;
- Using air fresheners, scented candles or odor eliminators;
- Engaging in any hobbies that use materials containing volatile chemicals;
- Using cosmetics including hairspray, nail polish, nail polish removers, perfume/cologne, etc.;
- Lawn mowing, paving with asphalt, or snow blowing;
- Applying pesticides;
- Using building repair or maintenance products, such as caulk or roofing tar; and
- Bringing freshly dry-cleaned clothing or furnishings into the building.

30 - 1	101		AIR SAMPL	NG RECORD	
1	nspector				Date 3/3/09
S	ite Name	Crystal	Clearer 8.		
	hange o sys	tem volumes (a	r air, outdoor ai bout 0.1 liter to d/or description	r, vapor probe*) tal) prior to sampl)	First Floor L
		1108		ator # _ 4495	
PI	nned Samı	le Duration	24 hr		
rre	ssure Kead	lings and Times Time	81	_	:
Ö.				Pressure	Condition*
Sta		<u>1910</u>		-28 inch	0.3
In, 1	rocess#1*	0700 (31 1/00	<u> </u>	~17	
In I	rocess #2**	ŀ			·
In P	rocess #3**	f		· ·	
End	·-	17:40		- </td <td>Guid</td>	Guid
*	write "und	isturbed" or no	te any problem	s with sample set-u	<u> </u>
*	* At least o	one in process i	nspection must	be conducted	lb.
Gene	ral Notes:	Greer of	4) the CIVI- 41	room.	-
Photo	of Sample	taken?	YN)		
Heliu	m Leak Te	st? ví	N(required for	some subsurface	
	or other re				vapor points) ype of readings and
Time	······································	Ti	me of Reading	Result	
·····		<u> </u>			
· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				
		ļ.			

स्त्रिम् स्रिम् सम्प्रमा सम्प्रमा करणेः विद्यमिक ज्ञार्म् विष्टुण एन् हिन्द्र न्यत्र एन् प्रेची न्यत्य प्रियन्त

Contraction of the second s

111: 11 In

AIR SAMPLING REC

Inspector VM SC		Date 3/3/09
Site Name Crystal Cle	avers	
Sample ID and Type (indoor air, o * purge 3 system volumes (about 0 Sample Location (sketch and/or de	I litter totatt maters to an and	Sub-slab Ie
Canister # 3334	Regulator # 475	I
Planned Sample Duration 24h		
Fressure Readings and Times:	Pressure	
1905 Start 1905	-26 inch	Condition*
Start 1905 In Proces:#1: 0700 (3/9/04)	-26 in ch \$PHg -17.5	3.9
In Process #2**		<u></u>
In Process #3**		
End 17:40	-8.0	Good
*write "undisturbed" or note any ** At least one in process inspecti	problems with sample set-i	· · · ·
General Notes: Slab 6" thick	2,43	· .
Photo of Sample taken?	,	
Helium Leak Test?Y (req	uired for some subsurface	vapor points)
PID or other readings in area?	Note time, t	ype of readings and
ime Time of I	Reading Result	
	1	

· 1

AIR SAMPLING RECORD

()

(;

 $\left(\hat{\cdot} \right)$

	VM, SC			De	te 3/4/09
Site Name_	crystd	Cleaners			··· <u></u>
Sample ID a * purge 3 sy	and Type (in stem volume	door air, outdoo s (about 0.1 lite and/or descript	r total) nuton	Base robe*) . to sample	ment
Canister #	4116	Re	gulator #	4744	
Planned Sam					
Pressure Rea	dings and Ti Time		Pressi	ıre	Condition*
Start	84	0	-30	inch	
In Process#1*	· ~.				
In Process #2*	*				······································
In Process #3*	*		· · · · · · · · · · · · · · · · · · ·		······································
End	0812		-2,	<i>6</i>	croud
*write "und ** At least	listurbed" o	r note any probl ss inspection m	ents with som	nlo oct u-	
General Notes:		[9	,68,70		•
Photo of Sampl	e taken?	<u>Y</u> N	1	,	
Helium Leak To	est?	_YN(required	for some subs	urface vapor	(points)
PID or other r esults					of readings and
lime		Time of Reading	1g	Result	
					2
			<u> </u>		

.

111111

(**`**}

1

Inspector				
	VM SC		Dat	ne_3/4/0
Site Name	crystal	clearys		·····
F=*6* 0 3.131	nd Type (indoor : tem volumes (ab ion (sketch and/	air, outdoor air, vapor p out 0.1 liter total) prior or description)		ent - Duplicate
Canister #	3657	Regulator #	1652	
Planned Samp	le Duration <u>24</u>	hr		· ·
rressure Readi	ngs and Times: Time	Press	ure	Condition*
Start	0840	-30		۶·۵
In Process#1*				
In Process #2**				
in Process #3**_		······································		
Snd	08:12	- 8.0		Gene
*write "undis ** At least or	sturbed" or note	any problems with sam pection must be conduc		Geod
*write "undis ** At least or eneral Notes:	sturbed" or note ne in process ins	any problems with so-		Good
*write "undis ** At least of eneral Notes: hoto of Sample (sturbed" or note ne in process ins taken?	any problems with sam pection must be conduc N	ple set-up ted	
*write "undis ** At least of eneral Notes: hoto of Sample f elium Leak Test	sturbed" or note ne in process ins taken?Y	any problems with so-	ple set-up ted surface vapor	points)
*write "undis ** At least of eneral Notes: hoto of Sample f elium Leak Test D or other rea sults	sturbed" or note ne in process ins taken?Y ?Y N ndings in area?	any problems with sam pection must be conduc N (required for some subs	ple set-up ted surface vapor time, type o	points)
*write "undis ** At least of eneral Notes: hoto of Sample f elium Leak Test D or other rea sults	sturbed" or note ne in process ins taken?Y ?Y N ndings in area?	any problems with sam pection must be conduc N (required for some subs	ple set-up ted surface vapor	points)
*write "undis ** At least of eneral Notes: hoto of Sample f elium Leak Test D or other rea sults	sturbed" or note ne in process ins taken?Y ?Y N ndings in area?	any problems with sam pection must be conduc N (required for some subs	ple set-up ted surface vapor time, type o	points)
*write "undis ** At least of General Notes: Photo of Sample f Ielium Leak Test	sturbed" or note ne in process ins taken?Y ?Y N ndings in area?	any problems with sam pection must be conduc N (required for some subs	ple set-up ted surface vapor time, type o	points)

٠,

Inspector			
· · · · · ·	VM SC	~	Date 3/4/09
	my stal cleaners		
Sample ID an * purge 3 syst Sample Locati	d Type (indoor air, outdoor a em volumes (about 0.1 liter to ion (sketch and/or description	ir, vapor probe*)	AMB-4
Canister # 4	459 Regu	lator #_4760	
Planned Sampl	e Duration $24h\gamma$		· · · · · · · · · · · · · · · · · · ·
rressure Readù	ngs and Times: Time	Pressure	Condition*
Start	0855	-30 in ch	huc a
In Process##1*	<u> </u>		
In Process #2**_			
In Process #3**_		······································	
End	8:15	- 8	h an 1
At least on	turbed" or note any problem te in process inspection must	s with sample set-up be conducted	hood
General Notes:	aken?		
Photo of Sample t			• •
)or points)
Helium Leak Test ID or other rea esults		some subsurface vaj	or points) e of readings and
Ielium Leak Test ID or other rea esults	?Y/Nrequired for	some subsurface vaj	
Ielium Leak Test ID or other rea	?YN required for dings in area?0	some subsurface va Note time, typ	
Ielium Leak Test ID or other rea esults	?YN required for dings in area?0	some subsurface va Note time, typ	

Charles Later Ander

AIR SAMPLING RECORD

Inspector \underline{VM} , SC

()

Date 3/4/09

First Floor

<u>יייניין ויייניוע אוייאנאוייביאו אאא ואיליא אועליונאוואטיאיני ולצאר כאוונאנטי צויע עבי ויש סייאן לי זען וייינג (</u>

Site Name Crystal dearers

Sample ID and Type (indoor air, outdoor air, vapor probe*) _ * purge 3 system volumes (about 0.1 liter total) prior to sample Sample Location (sketch and/or description)

Canister #	3073	Regulator # 4733	5
Planned Sam	ble Duration $24 hV$		
Pressure Read	lings and Times: Time	Pressure	Condition
Start	0850	-30 in ch 14g.	0.1
In Process#1*	<i></i>		······································
In Process #2*	k		
In Process #3**			
End	0810	-8.0	aupd
*write "und ** At least o	isturbed" or note any p one in process inspectio	problems with sample set-up on must be conducted	Construction of the second sec
General Notes:			
Photo of Sample	taken?YN	70	
Helium Leak Te	st?YN (requ	ired for some subsurface va	por points)
PID or other results		Note time, ty	
Time	Time of R	leading Result	
·····			
	l		

H03	AIR SA		1
Inspector	VM, SC		Date 3/3/09
	rystal cleaner.	S	. ,
* purge 3 sys		door air, vapor probe*) liter total) prior to sample	Indoon Air son Finst Fluor
Canister #	4113	Regulator #3100	
Planned Samj	ple Duration 24 h	15	
	lings and Times:		
Start	Time	-30 in ch	Condition* 0 p p m Ottop
In Process #1		· · · · · · · · · · · · · · · · · · ·	<u> </u>
In Process #2*	:*		
End		-4-0	
	disturbed" or note any j one in process inspection		up Millicis 8
	:	72, 73	- Philas's Camero
General Notes:	A		(F) Je Kuri
	le taken?	78, 29 (Gasera	17827
Photo of Samp		18, 20 Crassient uired for some subsurface	17829-
Photo of Samp Helium Leak T PID or other	est? YN req	78, 24 to 35	17-854- vapor points)
General Notes: Photo of Samp Helium Leak T PID or other results Time	Cest? YN req readings in area? <u>0</u>	uired for some subsurface	vapor points) type of readings and
Photo of Samp Helium Leak T PID or other results	Cest? YN req readings in area? <u>0</u>	uired for some subsurface pp^{m} Note time,	vapor points) type of readings and
Photo of Samp Helium Leak T PID or other results	Cest? YN req readings in area? <u>0</u>	uired for some subsurface pp^{m} Note time,	vapor points) type of readings and

:

ा | जिस्त कर राज्य कर कर किल्लाकालक का संस्थित की वास का करने एक किल का निवन्द हेला का एवं हा का किल्ला हुए हा म

the second set of the states

.--.

		AIR SAMPLING RE	CORD	
Inspector	1 M , S	۲	Date	3/3/09
Site Name C	rystal	Cleaners		• •
			- Basem	ient
* purge 3 syste	m volumes (a	or air, outdoor air, vapor about 0.1 liter total) prio d/or description)		
Canister # <u>3</u> Planned Sample		<u>Regulator #</u>	3058	
Pressure Reading	ngs and Tim	es:		
	Time	Pr	essure	Condition*
Start	1020	-28	# H9	Condition*
In Process #1			2-0	
In Process #2**				
In Process #3**				
End (2	9:33		2-0	Good
**. At least o	ne in proces)Vad T	note any problems with s inspection must be con 10 m car 1 5195 a 76	ducted , Wat	danp basevert danp basevert Mihirds d (Priyal's cornam) 1785
Helium Leak Test?Y/N (required for some subsurface vapor points)				
PID or other re results	eadings in a	irea? 0-122m	Note time, type	of readings and
Time		Time of Reading	Result	
· · · · · · · · · · · · · · · · · · ·				

e e

.

TEN IN ADDRESS OF MALE

adınbalış avrası si a**ta da**dı

H04	AIR S	AMPLING RECORI)
	this Chokshir	/ /	Date <u>03100/09</u>
Site Name <u>(</u>)	ystul Cleane	s, (orming,	NY
* purge 3 syste		l liter total) prior to s	e*) <u>Indoor Als Sample</u> ample First Floor
Canister #	3322	Regulator # <u>4</u>	512
Planned Samp	le Duration <u>24h</u>	2.8	
Pressure Read	ings and Times: Time	Pressure	e Condition*
Start	/6:10	above = 30.0) Good
In Process #1			
In Process #2**	*		
In Process #3**	k	· .	
End	16:12	- 10 . 0	Good
		y problems with samp tion must be conducted	
General Notes:			
Photo of Sampl	e taken?Ŵ/N	1764-1765	,1800-1801,17-99
Helium Leak T	est?Y (re	equired for some subs	urface vapor points)
PID or other presults	readings in area? _	pph Reve_ Note	time, type of readings and
Time	Time	f Reading	Result
15:20		220	o.l ppm
[- \/			<u> </u>
	· · · · · · · · · · · · · · · · · · ·		
	·		
	,		

) Ļ

 $\langle /$

변수가 이 가지? 한 번째는 바람 가입

5

(-

Inspector	lihir C	holcshî, Brîzal	Pandy 4	Date	03108109
Site Name <u>C</u>	rystal (Cleaners, Co	usning, r	J] Baseme	ent
Sample ID and * purge 3 syste	l Type (indo em volumes (or air, outdoor air, v about 0.1 liter total) nd/or description)	vapor prob	e*) _	
Canister #	2687	Regulate	or# <u>4</u>	732	
Planned Sampl	e Duration _	el has			
Pressure Readi	ngs and Tim Time	les:	Pressure		Condition*
Start	16:13		-29.0		Geod
In Process #1			÷		·····
In Process #2**	r				<u> </u>
In Process #3**	·				·
		.0		·	Good
		note any problems ss inspection must b	_	-	
General Notes:		~			
Photo of Sample	e taken?	(NN 17 60	- 1763	5	
		_Y/N)(required for			r points)
PID or other r results	eadings in	area? <u>ppb 186</u>	2 Note	time, type	of readings and
Time		Time of Reading		Result	
15.22		15:22		01	20m
					I
	<u></u>				

		i		
	H05	AIR SAMPLI	NG RECORD	
	Inspector VM	SC		Date 3/3/09
	Site Name_CY	SC Stal cleaner		Date
	Sample ID and Ty * purge 3 system y	pe (indoor air, outdoor ai olumes (about 0.1 liter tot sketch and/or description)	F, vapor probe*)	First Floor
	Canister # 47	79 Regula		
	Manned Sample Du		itor # 9170	1
	ressure Readings :		Pressure -29 in ch	Condition*
	In Process#1*	- 12	Hg	
	In Process #2**			
	In Process #3**		-	
		67	-2.0	- land
`.	write "undisturb" ** At least one in	ed" or note any problems process inspection must b	with sample set-up	•
	General Notes: Ke	pt in Dinnig		
	Photo of Sample taker	? (YN	•	
		VN(required for s	ome subsurface ve	nor points)
	PID or other reading results	s in area? <u>0.2</u>		
40. L.		Time of Reading	Result	
-	Time	- Anic Of Acaulig	ACOULT	
•				

THE PERSON AND INCOMES IN

ninte han be seen and the base of the second s

Date <u>3/3/09</u>

AMB-3

4

VM, SC Inspector _____

1

Site Name Grystal cleaner

Sample ID and Type (indoor air, outdoor air, vapor probe*) * purge 3 system volumes (about 0.1 liter total) prior to sample Sample Location (sketch and/or description)

Start 1402 30 mch 0- In Process#1*	
Time Pressure Condition Start 1402 -30 mch 0- In Process#1*	0-3 1
Start 1402 30 mch 0- In Process##1*	0-3 1
In Process #1*	tov ch
In Process #3** In Process #3** End	Swoel 1ts)
End <u>13:39</u> -12.0 tool *write "undisturbed" or note any problems with sample set-up ** At least one in process inspection must be conducted ieneral Notes: hoto of Sample taken? <u>Y/N</u> elium Leak Test? <u>Y/N</u> (required for some subsurface vapor points)	Swoel 1ts)
Image: Send in process inspection must be conducted *write "undisturbed" or note any problems with sample set-up ** At least one in process inspection must be conducted Seneral Notes: hoto of Sample taken? Image: W/N elium Leak Test? Y/N (required for some subsurface vapor points)	Swoel 1ts)
A reast one in process inspection must be conducted Seneral Notes: hoto of Sample taken?Y/N elium Leak Test?Y/N (required for some subsurface vapor points)	
elium Leak Test?Y/N (required for some subsurface vapor points)	
D or other readings in area? <u>pp h pue</u> Note time, type of reading	aomgs and
me Time of Reading Result	

Inspector	VM, SC		Date $3/3/09$
Site Name 🤇	31ystal clean	<i>ک</i> ۷	Basement
* purge 3 syste	l Type (indoor air, outdo em volumes (about 0.1 li on (sketch and/or descri	ter total) prior to sample	
Canister # _ 4	372	Regulator #377	3
Planned Sampl	e Duration		
Pressure Readi	ngs and Times: Time	Pressure	Condition*
Start	1340	-28	oppm
In Process #1			
In Process #2**	, •••••		
In Process #3**			
End	13:45	- 2.0	pp m
*write "undi ** At least o	isturbed" or note any properties in process inspection whose of solution for the former of the second solution of the second sec	roblems with sample set- n must be conducted	սբ
General Notes:	Lole in the fl	s, 57, 58, 59	
Photo of Sample	e taken?		
Helium Leak Te	st?Y/N (requi	red for some subsurface	vapor points)
PID or other results	eadings in area? <u>0</u>	ppm Note time,	type of readings and
Time	Time of R	eading Resu	lt
······································			<u> </u>

H07	AIR SAMPLIN	G RECORD	
Inspector	M, PGP	J	Date 02126104
Site Name <u>Cr</u>	ystal Cleannes,	NY	
Sample ID and T * purge 3 system	ype (indoor air, outdoor air, volumes (about 0.1 liter tota (sketch and/or description)	Ba: Vapor probe*)	sement
		· •	
Canietor# 7	3162 1954 Regular		
s.		tor # <u>3954</u>	
Planned Sample E			
rressure Readings	and Times: Time	Pressure	Condition*
Start	15:35	-29.0	Good
In Process##1*	* €		
In Process #2**			
In Process #3**	**		
			*
End	1530	-0.0	apo d
*Write "undistu ** At least one	rbed" or note any problems in process inspection must b	with sample set-up e conducted	
General Notes:			
	e far		
Photo of Sample tak			· · · · · · · · · · · · · · · · · · ·
Helium Leak Test?			:
PID or other readi results	ngs in area? <u>Mini Re</u> i	e_ Note time, ty	pe of readings and
<u>Fime</u>	Time of Reading	Result	· · · · · ·
·			
	······································		
			- } {:
			· · · · · · · · · · · · · · · · · · ·

a, metropolitika mikilia over 188

naama daten kasada eta data batan unter mendeta serateta in eta (h. 2000).

	Crystal Clean	E I	irst Floor
purge 3 sys	nd Type (indoor air, outdoo tem volumes (about 0.1 lite tion (sketch and/or descrip	r fotal anton to commute	•.~
			.* <i>1</i>
Canister #	4565 R	eguiator # <u>420</u>	
	le Duration <u>24 hz</u>		
Pressure Read	ings and Times: Time	Pressure	Condition*
Start	15:30	-27.0	Good
In Process#1*	×2		
In Process #2**			
n Process #3**	······		··
End	15:30	-2.0	Good
*write "undi: ** At least o	sturbed" or note any prob ae in process inspection m	eme with comple set up	
eneral Notes:			
toto of Sample	taken?Ø/N		
lium Leak Tes	?Y/Krequired	for some subsurface va	por points)
D or other rea	ndings in area? <u>Mimi</u>		
ne	Time of Readi	ng Result	
	15:25	0.0	ppm
	F	1	•

H08	AIR SAM	IPLING RECORD	
Inspector	VM, SC		Date 3/4/09
Site Name	Crystal Cleaner	5	
Sample ID an * purge 3 syst	d Type (indoor air, outdo em volumes (about 0.1 lite ion (sketch and/or descrip	or air, vapor probe*)	Sub-Slab Die
Canister #		egulator #337	16
Planned Samp	le Duration 8 hv		·
Pressure Read	ngs and Times: Time	Pressure	Condition*
Start	0945	- 30 inch 119	7.9ppm
In Process##1*	A		· · · · · · · · · · · · · · · · · · ·
In Process #2** In Process #3**	15:35		6000
End	16:30		Good
General Notes: Photo of Sample	sturbed" or note any prob ne in process inspection m 5'' s w b s lab 73, 7	nust be conducted 14 1803	-up
PID or other re	adings in area? 0.3 p)	L 20	type of readings and
esults Time	Time of Read	······································	
· · · · · · · · · · · · · · · · · · ·			
······································			

j

()

and de la company de la com

Inspector	VM SC		Date 3/4/09
Site Name	Crystal cle	arev	First Floor
purge 5 sys	nd Type (indoor air, c tem volumes (about 0 tion (sketch and/or de	outdoor air, vapor probe*) 1 liter total) prior to sampl escription)	
Canister # Planned Samp	069 Ble Duration 24 トイ	Regulator # 3238	3
	ings and Times: Time	Pressure	Condition*
Start	0945	-28 19	0.2 ppm
In Process#1*	· · · · · · · · · · · · · · · · · · ·		
In Process #2**	\$ 15:35	- 8	Good
In Process #3**	· · · · · · · · · · · · · · · · · · ·	· · ·	
End	16:33	-8	Good
At least o	isturbed" or note any one in process inspect	problems with sample set- ion must be conducted	up Same ream as the SS'
General Notes:		75	SS '
Photo of Sample	taken?	1802 1801	
Helium Leak Te		uired for some subsurface	vapor points)
- OUGLEU		Note time, t	
Time	Time of	Reading Result	
	{	<u> </u>	; [

۰,

Inspector	VM.	54	

H09

}

Date 3/3/09

Site Name Crystal Clearers

First Floor

Sample ID and Type (indoor air, outdoor air, vapor probe*) * purge 3 system volumes (about 0.1 liter total) prior to sample Sample Location (sketch and/or description)

Canister # <u>44</u>	17	Regulator #3938	
Planned Sample	Duration 24h	√	
Pressure Reading	gs and Times: Time	Pressure	Condition*
Start _	1235	-28 inch 1-7 inch	o.4
In Process #1	1207	-7inch	
In Process #2**_			-
In Process #3**			
End	/	V	
		ny problems with sample se ction must be conducted と エッ・ゼー ^{ンン・} フ	t-up pom, on dair
Photo of Sample	aken?YN		
Helium Leak Tes	t?YN(r	equired for some subsurfa	ce vapor points)
PID or other rearest results	adings in area? _	Note time	e, type of readings and
Time	Time	of Reading Rea	sult

Inspector	VM,	SC
Site Name	CrystJ	Cleans S

Date 3/3/09

Sub-Slab

Sample ID and Type (indoor air, outdoor air, vapor probe*) * purge 3 system volumes (about 0.1 liter total) prior to sample Sample Location (sketch and/or description)

Canister #	162	_ Regulator #	3739	
Planned Sample	e Duration 24 h	,√		
Pressure Readi	ngs and Times: Time		sure	Condition*
Start	1233	-26	inch Hg	4.0 ppm
In Process #1	1158	-1.0		
In Process #2**				
In Process #3**				
End _			<u> </u>	
*write "undi ** At least o	isturbed" or note an one in process inspe اعلی ای میں	iy problems with s ction must be cond あ ムーゴ せいし	ample set-up ucted /<·	
General Notes:	64 -			
	taken?ŶN			
	st?Y(N)(1			
PID or other r results	eadings in area?	0.2 ppm N	ote time, type	of readings and
Time	Time	of Reading	Result	
·				·····
	•	······································		

H09	AIR	SAMPLING REC	CORD		
Inspector _	VM, PGP		Γ	Date 03/2	6109
	Cay stal Cle				<u></u>
			Duc	sement	
purge 5 sy	and Type (indoor air, o stem volumes (about (ation (sketch and/or do	1.1 liter total) prior	probe*) to sample		۰۰ ست در ۳۰ ۱۹۹
	4172		3997		
Planned Sam	ple Duration 24	hrs.			
rressure Kea	đings anđ Times: Tíme	Pres		Condition	1*
Start	11:55	- 30	n.Hg 0	Grego	k
In Process##1*					
In Process #2*	*			· · · · · · · · · · · · · · · · · · ·	
In Process #3*	*	· · · · · · · · · · · · · · · · · · ·	· ·		
End	11:28	- 4.()	600	
*write "und ** At least General Notes:	listurbed" or note any one in process inspecti e taken? ÝM	problems with sar on must be condu	nple set-up cted		
Helium Leak Te PID or other r		uired for some sub ini <u>Rece_</u> Not			and
Photo of Sample Helium Leak Te PID or other re results Time	st? Y N req eadings in area? <u>M</u>	ni <u>Rece</u> Not			and
Helium Leak Te PID or other re results	st? V(N)req eadings in area?	ni <u>Rece</u> Not	e time, type	of readings	and
Helium Leak Te PID or other re results	st? Y N req eadings in area? <u>M</u>	ni <u>Rece</u> Not	e time, type	of readings	and
Helium Leak Te PID or other re results	st? Y N req eadings in area? <u>M</u>	ni <u>Rece</u> Not	e time, type	of readings	and
Helium Leak Te PID or other re results	st? Y N req eadings in area? <u>M</u>	ni <u>Rece</u> Not	e time, type	of readings	and

.

H10	AIR	SAMPLING F	ECORD	
Inspector <u>M</u>	ihin Cheks	hi Priyat	Paindyg	Date 03103109
Site Name <u>(</u>	Mstal Clea	mens. Car	miny , NY	,
Sample ID and * purge 3 syste	l Type (indoor air,	outdoor air, vaj 0.1 liter total) p	por probe*)	Indoor Afr First Floor
Canister #	4809	Regulator	#_2758	
Planned Sampl	e Duration4	hrs		
Pressure Readi	ngs and Times:		_	
	Time		Pressure	Condition*
Start	163.5		- 30 - 0	Good
In Process #1			,	
In Process #2**				
In Process #3**				
End	16:03		-8.0	Good
	isturbed" or note a one in process insp	* *	-	up
General Notes:				
Photo of Sample	e taken?	1766	-1770,	1797, 1798
Helium Leak Te	est?YN (required for so	me subsurface	e vapor points)
PID or other r results	eadings in area?	pp b Race	_ Note time,	type of readings and
Time		of Reading	Resu	lt ppm
17:00		200	0	
		-		

effet : 1811 - 1111 -

;

 $\langle \rangle$

Inspector <u>Mil</u>	in chokest	<u>ri, Prizal</u> P. camers, Ca	emolya	Date <u>03103109</u>
Site Name 🔶	systal CI	eamers, Ca	2ning NY	
Sample ID and * purge 3 system	d Type (indoor a	ir, outdoor air, v out 0.1 liter total)	apor probe*)	
Canister #	3434	Regulato	or# <u>&&</u> &S	8
Planned Samp	le Duration	4 hrs		
Pressure Read	ings and Times: Time		Pressure	Condition*
Start	17:00	· · · · · · · · · · · · · · · · ·	-29.0	hood
In Process #1				
In Process #2**	k			
In Process #3**	¢		<u> </u>	<u> </u>
End	16:02		-2-0	Good
		te any problems aspection must b	-	-up
General Notes:				
Photo of Sampl	e taken?	N 1771	-1776,	17-96
Helium Leak Te	est?Y/	(required for s	some subsurface	e vapor points)
PID or other a results	readings in area	a? <u>ppb le</u>	o Note time,	type of readings and
Time	Ti	me of Reading	Resu	ilt (ppm)
16:67		16:47	and the second	\$ 2.8
······································				
·····				

Site Name	Inspector	VM,PGP			Date 03 / 261
Sample ID and Type (indoor air, outdoor air, vapor probe*) * purge 3 system volumes (about 0.1 liter total) prior to sample Sample Location (sketch and/or description) Canister #3460 Regulator #3744 Planned Sample Duration4 had Pressure Readings and Times: Time Pressure Condition* Start158 Cond In Process #2** In Process #3** End13: 0.66.0Aaccd *write "undisturbed" or note any problems with sample set-up ** At least one in process inspection must be conducted General Notes: Photo of Sample taken?Y/N(required for some subsurface vapor points) PID or other readings in area? <u>flim: flate</u> Note time, type of readings a Time	Site Name	CRystal	Cleaner		
Planned Sample Duration 24 has Pressure Readings and Times: Time Time Pressure Condition* Start 14:58 -30 Good In Process#1*	Sample ID at * purge 3 sys	nd Type (indoor a tem volumes (abo	ir, outdoor air, va ut 0.1 liter total)	anor proha*)	
Planned Sample Duration 24 has Pressure Readings and Times: Time Time Pressure Condition* Start 14:58 -30 Good In Process#1*	Canister #	3460	Regulator	#	
Pressure Readings and Times: Pressure Condition* Start 14:58 -30 Good In Process#1* -30 Good In Process#1*					- <u></u>
Start 14:58 -30 Good In Process#1*					
In Process#1* In Process#2** In Process#2** End		Time		Pressure	Condition*
In Process#1*	Start	14:58		-30	Good.
In Process #2** In Process #3** End 13:06 *write "undisturbed" or note any problems with sample set-up ** At least one in process inspection must be conducted General Notes: Photo of Sample taken? ŷ/N Helium Leak Test? Y/Ŋ(required for some subsurface vapor points) PID or other readings in area? Mini fac Note time, type of readings and results	In Process#1"	-2			
End 13:06 -6.0 0.000 *write "undisturbed" or note any problems with sample set-up ** At least one in process inspection must be conducted General Notes: Photo of Sample taken? /N Helium Leak Test? Y/N (required for some subsurface vapor points) PID or other readings in area? $Mini: fa eNote time, type of readings and results Time Time of Reading Result $	In Process #2**				
*write "undisturbed" or note any problems with sample set-up ** At least one in process inspection must be conducted General Notes: Photo of Sample taken?Y/N Helium Leak Test?Y/N(required for some subsurface vapor points) PID or other readings in area? Mini fac Note time, type of readings and results TimeTime of Reading Result	In Process #3**	· · · · · · · · · · · · · · · · · · ·			
*write "undisturbed" or note any problems with sample set-up ** At least one in process inspection must be conducted General Notes: Photo of Sample taken?Y/N Helium Leak Test?Y/N (required for some subsurface vapor points) PID or other readings in area? Mini fac Note time, type of readings and results	End	13:06		- 6.0	and
General Notes: Photo of Sample taken?	*write "undi	sturbed" or note	any problems wit	t sample set-m	
Photo of Sample taken?		ne in process insp	ection must be c	onducted	
Helium Leak Test?Y/N (required for some subsurface vapor points) PID or other readings in area? <u>Mini fac</u> Note time, type of readings and results <u>Time</u> Time of Reading Result	General Notes:				
PID or other readings in area? Mini fac Note time, type of readings and results Time Time of Reading Result	Photo of Sample	taken?(¥/N	1		- -
PID or other readings in area? Mini fac Note time, type of readings and results Time Time of Reading Result	Helium Leak Tes	er vale	roquined for som		
Time Time of Reading Result	PID or other re				
	Time	Time	of Reading	Result	
	10.15:00			Ausun)
					•
			·		
					·
				; <u> </u>	

Ì.,

	- Wildy / The		Date 03/26/09
Sample ID	VM, PGP <u>Chystal</u> <u>Cleane</u> and Type (indoor air, outdoor a ystem volumes (about 0.1 liter t	oir roner and at	Basement - Duplicate
Sample Loc	ation (sketch and/or descriptio	total) prior to sample on)	- 1988 - 197
		•	
Canister #	3514 3439 Regi	llator #343	9
Planned Sam	ple Duration <u>24 has</u>		
Pressure Rea	dings and Times:		
	Time	Pressure	Condition *
Start	14:58	- 28	Good
In Process#1*	-2	<u> </u>	
In Process #2*	r\$		
In Process #3*	*		
In Process #3* End	*	-5-0	Grad
End *write "und	<u>مىتىنى بەر يەسەر ئىي ئەر ئەرەر باللەن بالمارلى بەتتەر تەتتەر بالىي بالىي بالەر بىر بەتتەر بەر بەر بەتتەر ب</u>	ne with sample set w	Good
End *write "und	13:05 listurbed" or note any problem	ne with sample set w	
End *write "und ** At least General Notes:	13:05 listurbed" or note any problem one in process inspection must	ne with sample set w	
End *write "und ** At least General Notes: Photo of Sample	13:05 listurbed" or note any problem one in process inspection must	us with sample set-uj t be conducted)
End *write "und ** At least General Notes: Photo of Sample Helium Leak Te PID or other re- results	<u>13:05</u> listurbed" or note any problem one in process inspection must e taken? <u>X</u> /N	us with sample set-uj t be conducted r some subsurface va	p apor points)
End *write "und ** At least General Notes: Photo of Sample Helium Leak Te PID or other re- results Fime		us with sample set-uj t be conducted r some subsurface va <u>e</u> Note time, ty	p apor points)
End *write "und ** At least General Notes: Photo of Sample Helium Leak Te PID or other re- results	<u>13:05</u> listurbed" or note any problem one in process inspection must e taken? <u>Y/N</u> est? <u>Y/N</u> (required for eadings in area? <u>Mini Ra</u>	us with sample set-uj t be conducted r some subsurface va Note time, ty	p apor points)
End *write "und ** At least General Notes: Photo of Sample Helium Leak Te PID or other re- results Fime	<u>13:05</u> listurbed" or note any problem one in process inspection must e taken? <u>Y/N</u> est? <u>Y/N</u> (required for eadings in area? <u>Mini Ra</u> <u>Time of Reading</u>	us with sample set-uj t be conducted r some subsurface va <u>e</u> Note time, ty	p apor points)
End *write "und ** At least General Notes: Photo of Sample Helium Leak Te PID or other re- results Sime	<u>13:05</u> listurbed" or note any problem one in process inspection must e taken? <u>Y/N</u> est? <u>Y/N</u> (required for eadings in area? <u>Mini Ra</u> <u>Time of Reading</u>	us with sample set-uj t be conducted r some subsurface va <u>e</u> Note time, ty	p por points)

H11	AIR SAM	PLING RECORD	
Inspector <u>M</u>	hin Chokshi, Ri	iyal Pandya	Date 0 <u>2103109</u>
Site Name	Ry stul Cleane	<u>23, Cor</u> ning	,NY
Sample ID and * purge 3 syste		or air, vapor probe*) er total) prior to sam	Indoor Air Somple
Canister # <u>3</u>	210 R	egulator # <u>474</u>	7
Planned Samp	le Duration <u>24</u> hrs	<u></u>	
Dressure Deeds	ngs and Times:		
r ressure Keau	Time	Pressure	Condition *
Start	09:05	-30.0	Good
In Process #1		14-18	
In Process #2**	·		
In Process #3**			
End	08:30	-4.0	Good
	isturbed" or note any proone in process inspection	-	set-up
General Notes:			
Photo of Sampl	e taken?YN 13	+39,1739,17	- 86 1 785
Helium Leak Te	est?Y/Ø(requir	ed for some subsurf	ace vapor points)
			ne, type of readings and
Time	Time of Re	ading R	esult
· · · · · · · · · · · · · · · · · · ·			
	-		

(____)

 $\left(\right)$

()

÷.,

.

alter data colora.

(h

	lihiz choks				
Site Name	Crystal Cl	eaners (ouning,	~/	
" purge 5 sys	nd Type (indoor air, stem volumes (about tion (sketch and/or (0.1 liter total) prio	r probe*) 🛴 er to sample f	door Air Su Frst Floor	mple
Canister #	4428	Regulator #	4044		
Planned Sam	ple Duration <u>24</u>	hrs			
Pressure Rea	dings and Times:				-
,	Time	Pro	essure	Condition *	
Start	09:10		30.0	Good	
In Process #1		-P	30		
In Process #2*	**		-		
In Process #3*	**				
End	08:32	The second	2-0	Good	
	disturbed" or note a t one in process insp	• •		,	
General Notes	:				
Photo of Samp	ole taken?	1733,173	34, 1735,	1736,1737,	1738,1739
Helium Leak 7	ſest?Y/Ŋ	(required for some	subsurface va	ipor points)	1785
PID or other results	readings in area?	pph rae 1	Note time, ty	pe of readings and	l
Time	Time	of Reading	Result]
····					-
	·				-
					-
					_

H12	AIR SAMPLING RE	CORD
Inspector <u>Mil</u>	nin Chokshi, Paiyal Pandy	9 Date <u>03103109</u>
Site Name 🦯 🖈	rstul Cleaners, Corning	-, NY
Sample ID and * purge 3 syste Sample Locatio	Type (indoor air, outdoor air, vapor m volumes (about 0.1 liter total) pric on (sketch and/or description)	r probe*) <u>Induor Alz Samp</u> ole or to sample Basement
	2897 Regulator #_	3687
_		
Pressure Readi	ngs and Times: Time Pr	essure Condition*
Start	<u></u>	in Mg) 30.0 Condition*
In Process #1		
In Process #2**		·
In Process #3**		
End	12:51 -	8.0 Cuad
	isturbed" or note any problems with one in process inspection must be co	
General Notes:		
Photo of Sample	taken? V/N 1749,1	750 \$\$ to 1757, 1793
Helium Leak Te	est?Y/Wrequired for some	e subsurface vapor points)
PID or other r results	eadings in area? <u>ppb Roce</u>	Note time, type of readings and
Time	Time of Reading	Result
12:52	12:52	O.I ppm
·····		

 $\langle \rangle$

inder op der Statistik för in Allehick der statistik i Barkerkar höre internationer och instander och som er so

....

Í

Inspector <u>Flihi</u>	s Chokshi, Phizal	Pandy a	Date <u>03/03/09</u>	
	zstal <u>Cleaners</u>			
Sample ID and * purge 3 system	•	r air, vapor probe*) r total) prior to sample	<u>Indees Ala Sample</u> Fizst Floor	
	<u>362</u> Ro Duration <u>24 has</u>			
Pressure Readin		 Pressure	Condition*	
Start	13:10	-26.0	Good	
In Process #1				
In Process #2**_				
In Process #3**				
End	5.12:50	-2-0	Crood	
	sturbed" or note any pro ne in process inspection	-	ıp	
Photo of Sample	taken?[]/N 7	-58, 1757, 1	792	
Helium Leak Tes	st?Y(N)(require	ed for some subsurface	vapor points)	
PID or other re results	eadings in area? <u>_ppb</u>	fae Note time,	type of readings and	
Time	Time of Rea	iding Resul		
12:50	(2:)	ບO+	4 ppm (Baeligreen	el)
······································				

}

H13

; `

Inspector Mihin Chokshi, Prizal Pandy 9 Date 03/03/09 Site Name Cay stal Cleaners, Corning, NY Basement Sample ID and Type (indoor air, outdoor air, vapor probe*) * purge 3 system volumes (about 0.1 liter total) prior to sample Sample Location (sketch and/or description) Canister # 4285 Regulator # 3778 Planned Sample Duration _____4 hr.s **Pressure Readings and Times: Condition*** Time Pressure 200d 11:30 -29.0 Start In Process #1 In Process #2**_____ In Process #3** _____ 11:20 -80 and End *write "undisturbed" or note any problems with sample set-up ** At least one in process inspection must be conducted **General Notes:** Photo of Sample taken? _______ (1741, 1740, 1741, 1742, 1743, 1744 Helium Leak Test? _____Y (N) (required for some subsurface vapor points) 17, 89 PID or other readings in area? <u>Apb</u> <u>Aue</u>. Note time, type of readings and results Time of Reading Result Time

÷

Inspector <u>M</u>	ibia Choleshi, Pa	'yal Pandya	Date <u>@3/03/0</u> 9
Site Name 🤇	aystal Cleaner	s, Conning, 1	γ
Sample ID an * purge 3 syst Sample Locat	nd Type (indoor air, outdoor tem volumes (about 0.1 liter tion (sketch and/or descripti	air, vapor probe*) total) prior to sampl on)	<u>Indoor Air Sample</u> ^e first Ploor ^B
Canister #	3427 Re	gulator # <u>354</u>	16
Planned Sam	ple Duration <u>24 hrs</u>		
Pressure Read	lings and Times: Time	Pressure	Condition*
Start	11:35	-30.0	Good
In Process #1		·····	· · · · · · · · · · · · · · · · · · ·
In Process #2*	**		
In Process #3*	*		
End	1:30	-4.0	Croo d
	disturbed" or note any prol t one in process inspection n		t-up
General Notes		<u>,</u>	
Photo of Samp	ole taken?	74 5, 1740	0-6, 17-01
	Fest?Y/N(require		
PID or other results	readings in area? <u>ppb</u>	Rock Note time	e, type of readings and
Time	Time of Rea	ding Res	sult

Ċ

	•		Date 03/03/09
Site Name	systed Clear	ness, Corning	, 147
Sample ID and * purge 3 syste	•	itdoor air, vapor prob 1 liter total) prior to sa	e*) <u>Indoor Aix Sample</u> Ample First Floor
Canister #	3339	Regulator #3	976
Planned Samp	le Duration <u>24 h</u>	<u>8.5.</u>	
Pressure Read	ings and Times: Time	Pressure	e Condition*
Start	11:40	- 29-5	Good
In Process #1			
In Process #2**	ł		
In Process #3**	¢		
End	11:22	-4-0	Good
		y problems with samp tion must be conducte	
General Notes:			
Photo of Sampl	e taken?Ŷ/N	17 47,13	748,1790
Helium Leak T	est?YNT	equired for some subs	urface vapor points)
PID or other presults	readings in area? _	pp <u>b Rae</u> Note	time, type of readings and
Time	Time o	f Reading	Result

H14	A	IR SAMPLING RE	CORD	
Inspector <u>_</u>	xystat Gt	, SC	Da	ate <u>3/3/09</u>
	rystal Cle		Firs	st Floor
* purge 3 syste	l Type (indoor ai em volumes (abou on (sketch and/or	r, outdoor air, vapo ut 0.1 liter total) prio r description)	r probe*) or to sample	
:				
Canister #	5504	Regulator #	3375	
Planned Samp	le Duration <u>2</u>	4 hr		
Pressure Readi	ings and Times: Time		ressure	Condition*
Start	1555	-28	ыд.	0.3
In Process #1	······································			
In Process #2**	k 			
In Process #3**	k			
End	1505	-1.0)	Crood
** At least		e any problems with spection must be co		
		54,55		
	e taken?Y)n 34, -		
Photo of Sampl			e subsurface va	apor points)
Photo of Sampl Helium Leak Te PID or other 1	est?Y/	()N		
Photo of Sampl Helium Leak To PID or other p results	est?Y	N Orequired for som		
Photo of Sampl Helium Leak To PID or other p results	est?Y)N Drequired for som a? <u>0.3</u>	Note time, ty	
	est?Y)N Drequired for som a? <u>0.3</u>	Note time, ty	
Photo of Sampl Helium Leak To PID or other p results	est?Y)N Drequired for som a? <u>0.3</u>	Note time, ty	

 $\left(\right)$

Inspector	VM, SC		Date 3/3/09
Site Name_	crysla de	~~Y 5	Basement
" purge 5 sy	and Type (indoor air, outd stem volumes (about 0.1 li ation (sketch and/or descri	ter total) prior to comple	n. na a, na
Canister #	3009	Regulator # 4749	
Planned Sam	ple Duration 24 hv	<u>s</u> ´	
Fressure Rea	dings and Times: Time	Pressure	Condition*
Start	1545	-28 inch	0-2 pp m
In Process#1	• • • • • • • • • • • • • • • • • • •		
In Process #2*	·		
In Process #3*	:*		
End	1507	- 2-0	Groad
*write "und ** At least J General Notes: Photo of Sampl	disturbed" or note any pro- one in process inspection Damp of Soil at the bottom te taken?	blems with sample set-u must be conducted ind 3 - 3 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	por air ample talen sump
Helium Leak T	est?YN (requir	ed for some subsurface v	apor points)
PID or other presults	readings in area? 02		pe of readings and
Time	Time of Rea	ding Result	
			<u> </u>

en en sen de sen de

H15	AIR SAMP	LING RECORD	
	М, РАР		Date 03126109-
Site Name <u>C</u>	systed Cleaner	Bas	ement
* purge 3 system	Type (indoor air, outdoor m volumes (about 0.1 liter t on (sketch and/or description)	total) prior to sample	.1 9 . 4,4
Canister #	3 <u>632</u> Reg	ulator #452_6	
Planned Sample	e Duration		
rressure Readin		Pressure	Condition*
Start	16:40	-26.0	Gand
In Process##1*	41.		
In Process #2**			· ·
In Process #3**		······································	
End	15:30	- 4-0	Good
** At least or General Notes:	sturbed" or note any proble ne in process inspection mu taken?	ems with sample set-up ast be conducted	
_	······································		
	t?Y/N (required :		
PID or other rea results	adings in area? <u>Mimi</u>	Role_ Note time, ty	pe of readings and
Time	Time of Readin	ng Result	
16	16:38		ppm

	H16	AIR SAMPLING	RECORD
Sample ID and Type (indeer air, outdoor air, vapor probe*)	Inspector	VM, SC	n. 71, 1.9
Sample ID and Type (indeer air, outdoor air, vapor probe*) * purge 3 system volumes (about 0.1 liter total) prior to sample Sample Location (sketch and/or description) Canister # 3232 Regulator # 4055 Planned Sample Duration 24bd ressure Readings and Times: Time Pressure ("Mg) Condition* Start Condition* Start Condition* In Process#1* In Process#2** In Process#3** End STD Co G.co.d *write "undisturbed" or note any problems with sample set-up ** At least one in process inspection must be conducted General Notes: Spithaga Starming on the Hood. Photo of Sample taken? Note time, type of readings" and esuits Note time, type of readings" and	Site Name	mystal cleaners	, ,
Planned Sample Duration _ 24hd "ressure Readings and Times: Time Pressure ("µ_q) Condition* Start 11:09 -26.0 Oppun. In Process#1*	Sample 1D and * purge 3 system	Type (indoor air, outdoor air, van avelage ave	apor probe*) prior to sample
Pressure Readings and Times: Pressure ("Hg) Condition* Start 11:09 -26.0 0ppvM. In Process#1* -26.0 0ppvM. In Process#2** -26.0 0ppvM. In Process#3** -26.0 0ppvM. End \$\lambda : 570 -6.0 0ppvM. *write "undisturbed" or note any problems with sample set-up *** At least one in process inspection must be conducted General Notes: \$pixtly ga Starming on the floor. Photo of Sample taken? (PN) Helium Leak Test? Y(R)(required for some subsurface vapor points) PD or other readings in area? (P)			#4055
Time Pressure ("My) Condition* Start 11.09 -26.0 0 pp.M. In Process#1*	Planned Sample	Duration 24h	
In Process#1* In Process #2** In Process #3** End	Pressure Reading	s and Times: Time	Pressure ("14.") Condition*
In Process#1* In Process #2** In Process #3** End	Start _	11:09	-26.0 Doown.
In Process #3**	In Process#1"	~:	
End	In Process #2**		· · · · · · · · · · · · · · · · · · ·
*write "undisturbed" or note any problems with sample set-up ** At least one in process inspection must be conducted General Notes: Spiklaga Starming on the floor. Photo of Sample taken?YN Helium Leak Test?YN (required for some subsurface vapor points) PID or other readings in area?Note time, type of readings and esults	In Process #3**		
*write "undisturbed" or note any problems with sample set-up ** At least one in process inspection must be conducted General Notes: Spittling Stormany on the Hoor. Photo of Sample taken?YN Helium Leak Test?YN(required for some subsurface vapor points) PID or other readings in area?Note time, type of readings and esults	End	<u>K: 50</u>	-6.0 Gazel
Photo of Sample taken?YN Helium Leak Test?YN (required for some subsurface vapor points) PID or other readings in area? Note time, type of readings and results	"" At least one	irbed" or note any problems with in process inspection must be c	th sample set-up onducted
Helium Leak Test?Y(N)(required for some subsurface vapor points) PID or other readings in area? Note time, type of readings and results	General Notes: Spi	Higa starning on the	7100r.
PID or other readings in area? Note time, type of readings and results	Photo of Sample ta	ken?(Y)N	
PID or other readings in area? Note time, type of readings and results	Helium Leak Test?	Y(N)(required for son	e subsurface vapor points)
Time Time of Reading Result			
	PID or other read results		
	Courts	Time of Reading	Result
	PID or other read results Fime	Time of Reading	Result
	obuito	Time of Reading	Result

 $\left(\begin{array}{c} \\ \\ \end{array} \right)$

j

 -

Static manufactures and

er er stelen her som her som her som er som en som en som er som er som er som en som er som er som er som er s

Inspector	VM,	SC		Date 3/4/09
Site Name_	Crysta	SC 1 clears		
Large 2 sha	ACTIT AATATUGES (or air, outdoor air, (about 0.1 liter total nd/or description)	• •	First Floor
Canister #	3644	Regulate	or#474	2-
Planned Sam	ole Duration _	ey hr		- · ·
rressure Read	lings and Time Time	:8:	Pressure	Condition*
Start	1114		-30 in ut Hg	oppm
In Process##1*	· · · · · · · · · · · · · · · · · · ·	······································		
In Process #2**	ŧ			······································
In Process #3**	: 			
End	09:50		8.0	
At least (2 Baxess of	ote any problems w inspection must be	vith sample set-up conducted), Manuf. LAIDLOW
Helium Leak Te	st?Y	N required for so	me subsurface va	por points)
PID or other re results		nhhm		pe of readings and
Time	1	ime of Reading	Result	

ę)

Inspector	VM, SC		D	ate 3/4/00	1
Site Name	VM, SC Crystal	Cleaner			·····
Sample ID an	d Type (indoor	air, outdoor air, vapor	probe*)	AMB-5	
- purge 3 syst	em volumes (ab	OUt 0.1 liter total) nrian	to sample		······································
Sample Locat	ion (sketch and/	or description)			
			•		
Contrating 1	.70,		00 /		
Canister #	LIOL	Regulator #	2815		
Planned Sampl	le Duration 2	4 hr			
·	,				
rressure Readi	ngs and Times: Time			a	
			sure	Condition*	la ha
Start	10.13		oind	0.1	ppr
In Process#1*	~				-
In Process #2**					
In Process #3**			- -		
End _	09:05	- 6.	Q		
*write "undis	sturbed" or not ne in process in:	e any problems with sa spection must be condu	mple set-up acted	<u>, , , , , , , , , , , , , , , , , , , </u>	1
** At least of	• · · · · · · · · · · · · · · · · · · ·				
At least of	•	Frent	- of th	bank	
General Notes:			- of th	bank	
General Notes:	taken?Ŷ			: Ē	
General Notes: Thoto of Sample (fellum Leak Tes) D or other rea	taken?Y	N 76	bsurface vap	or points)	1
General Notes: Thoto of Sample (fellum Leak Tes) D or other reasonality	taken?Y t?Y adings in area?)N 76)(required for some su ? Not	bsurface vap te time, type	or points)	1
General Notes: Thoto of Sample 1 Ielium Leak Test	taken?Y t?Y adings in area?)N 76)(required for some su	bsurface vap	or points)	8
General Notes: Thoto of Sample (Celium Leak Tes) D or other reasonal test	taken?Y t?Y adings in area?)N 76)(required for some su ? Not	bsurface vap te time, type	or points)	
General Notes: Thoto of Sample (Ielium Leak Tes) ID or other reasonality	taken?Y t?Y adings in area?)N 76)(required for some su ? Not	bsurface vap te time, type	or points)	

,

ALL SALES AND ALL PROPERTY AND A DESCRIPTION OF A DESCRIP

and and the line

H17	AIR SAMPLING RECORD	
-		

Inspector	VH, PG	P		Date 03/25/09
Site Name _(Paystal	Cleaners	, NY	Sub-Slab
" purge 3 sys	tem volume	loor air, outdoor ai s (about 0.1 liter to and/or description	tal) prior to samp	le Furnas Room
Canister # Planned Samp		Regul	ator # <u>302</u>	3
Pressure Read	ings and Tir Time		Pressure	Condition*
Start	9:33	5	-30.0	Good
In Process#1*	12:5	б	- 26.0	Good
In Process #2**		an a		nav nya wakaziwa ini mina waka ini kata kata kata kata kata na mana kata kata kata kata kata kata kata k
In Process #3**			······································	· · · · · · · · · · · · · · · · · · ·
End	8:1	6		Good
** At least o	sturbed" or ne in proces	note any problems inspection must l	with sample set-	······································
General Notes:				
Photo of Sample	taken?	Q/N		
Helium Leak Tes	t?	Y/M required for	some subsurface	vapor points)
PID or other re- results	adings in a	urea? <u>Mînî Ra</u> e	2 Note time,	type of readings and
Time		Time of Reading	Resul	ŧ
126.30	7:30	- S. A. A	the second se	no ppm
			······································	
•				н. На страна стр

Inspector	IM, PGP		Date 0.3/26/09
Site Name	Caystal Cleaner	NY_	
Sample ID an * purge 3 syst	d Type (indoor air, outdo tem volumes (about 0.1 lit tion (sketch and/or descrij	or air, vapor probe [,] er total) prior to san	Indoor Air *) mple Fyrnas Reom
Cauister #	<u>-885</u> R	egulator # <u> </u>	35
•	le Duration	_	
Pressure Read	ings and Times:		
	Time	Pressure In-Hoj	Condition*
Start	9:40	- 30.0	Good
In Process##1*	12:57	-270	Good
In Process #2**			
In Process #3**	· · ·	······································	·
End -	4:33	-8-0	Crood
*write "undi ** At least of	sturbed" or note any prol ne in process inspection n	plenus with sample s nust be conducted	et-up
General Notes:			
Photo of Sample			
Helium Leak Tes	t?Y/N(required	d for some subsurfa	ce vapor points)
PID or other rea	adings in area?	<u>Pae</u> Note time	e, type of readings and
Time	Time of Read	ling Res	sult
·	9:30). O ppm
·····			
			
			· · ·
	, – .–		· · · · · · · · · · · · · · · · · · ·

rad a second distance discrimination and did by balance of the second distance of the second se

Inspector	VM, PGP		Dat	e 03/25109
Site Name 🤇	Paystal elea	umers, NY	Sub-S	lab
Sample ID an * purge 3 syst	d Type (indoor air, o em volumes (about 0. ion (sketch and/or de	utdoor air, vaper p 1 liter total) prior	rohe*)	
• ·	3145		3449	
Planned Samp	e Duration <u>24</u>	153		
Fressure Readi	ngs and Times:			
	Time	Press		Condition*
Start	10:05	in .03 –	7	Good
In Process##1*	***	- 28		Grad
In Process #2**				
In Process #3**	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	·	
End _	8:27	-60)	Good
*write "undi: ** At least of	sturbed" or note any ne in process inspecti	problems with san on must be conduc	ple set-up ted	
General Notes:				
Photo of Sample	taken? (V/N			
Helium Leak Test	t?Y/N)(requ	tired for some sub	surface vapor	points)
PID or other rea	adings in area? <u>Mi</u>			
Time	Time of I	Reading	Result	
·	9:		2.5	
			<u> </u>]
			<u> </u>	:
	<u> </u>		<u>l</u>	

	r <u>VM, Pap</u>	Da	ute <u>03/267</u> 09
	· Caystal Cleancas, N	YIndoo	r Air
Sample II * purge 3	D and Type (indoor air, outdoor air, vaj system volumes (about 0.1 liter total) p ocation (sketch and/or description)	nor probe*)	
Canister #	<u>2899</u> Regulator #	#_8693	
	mple Duration <u>26 hrs</u>		
Fres sure R	eadings and Times:		
	m 1	ressure	Condition*
Start	10:10 -	In Ng 30	Good
In Process		-27 -28	Good
In Process #	2**		
In Process #	3**		
End	8:19 -	6.0	Good
** At lea General Note	ndisturbed" or note any problems with st one in process inspection must be con es: ple taken?YN Test?YN (required for some	nducted	
Telium Leak		e subsurface vapo	r points)
PID or other			of readings and
	readings in area? <u>Mini Rece</u>	Note time, type	of readings and
'ID or other esults		Note time, type Result	of readings and
'ID or other esults	readings in area? <u>Mini Rece</u>	Note time, type	of readings and
ID or other esults	readings in area? <u>Mini Rece</u>	Note time, type Result	of readings and

Trip BlankAIR SAMPLING RECORD

Inspector <u>VM</u>	, PGP		Date <u>03/03/0</u> 4
Site Name <u> </u>	ystal Clea	mens	
	ype (indoor air, outdo volumes (about 0.1 lit (sketch and/or descrij		E Trip Blank
		Regulator #	
Planned Sample D	uration		
Pressure Readings	and Times: Time	Pressure	Condition*
Start			
In Process##1*	~:	······	
End			
*write "undistur ** At least one i General Notes:		blems with sample set-	
	6		
Photo of Sample tak			
Helium Leak Test? _	Y/N (require	ed for some subsurface	vapor points)
PID or other readi	ngs in area?	Note time,	type of readings and
Time	Time of Rea	ding Resul	t

The second s

1 .

AIR SAMPLING RECORD

er en en som det en er som en en en en som det er som en en en en en en er er som er som er som er som er som e

Inspector	V.H. VM	Pap	1	Date 03/27109:
Site Name	Caysta Cle	amers NY	<u></u>	
Large 2 slot	d Type (indoor air, ou em volumes (about 0. on (sketch and/or des	i hier iotali dr	ar probe*) ior to sample	Trip Blank.
	3666		·	
Planned Sampl	e Duration			
Pressure Readi	ngs and Times: Time	Pı	ressure	Condition*
Start	·			
In Process##1*	~			·
In Process #2**				
	·			
End				
*wrlte "undi: ** At least of	sturbed" or note any ne in process inspecti	problems with on must be con	sample set-up)
General Notes:				
Photo of Sample	taken?Y/	-		
Helium Leak Tes	t?Y/Q req	uired for some	subsurface va	por points)
PID or other re-	adings in area?	I	Note time, tyj	pe of readings and
Time	Time of I	Reading	Result	······································
			·····	
		······		
		· · · · · · · · · · · · · · · · · · ·		

)	Inspector	VMSC	cleaners		Date 3/3/09
	Site Name	crystal	cleaners	S	
	* purge 3 sys		air, outdoor air, oout 0.1 liter tota /or description)	vapor probe*) l) prior to sample	AMB -1
	Canister #	4016	Regula	tor# <u>3302</u>)
•	Planned Sam	ple Duration 2	.4hrs		
	Pressure Rea	dings and Times Time	:	Pressure	Condition*
	Start	1030		-28 inch	Oppm
	In Process #1	·			
	In Process #2	**			·
	In Process #3	**			·.
•	End	1015		-8	Good
			inspection must		TUMA'S &
	General Notes		710,7	1.69	(Paijal's Car Fi HE 178
	_		Y/N		- 17
	Helium Leak	[est?Y	N (required for	some subsurface	vapor points)
	PID or other results	readings in ar	ea?	Note time,	type of readings an
	Time	1	ime of Reading	Resu	lt

3 .

(_____)

Ambient Air Sample AIR SAMPLING RECORD

Inspector	\checkmark	M	56
-----------	--------------	---	----

Site Name Crystal clearers

Sample ID and Type (indoor air, outdoor air, vapor probe*) <u>AMB_2</u> * purge 3 system volumes (about 0.1 liter total) prior to sample Sample Location (sketch and/or description)

3/3/09 2 ((PKay))

Date 3

Canister # 4	58	Regulator #3295	_
Planned Samp	le Duration _ 24 br		······································
Pressure Readi	ngs and Times: Time	Pressure	Condition*
Start	1243	-28 in ch	0.1 ppm
In Process#1*	4 <u>4</u>	<i>J</i>	
In Process #2**			· · · · · · · · · · · · · · · · · · ·
In Process #3**			
End _	13:10		hingel
*write "undi: ** At least of	sturbed" or note any pr he in process inspection	oblems with sample set-up must be conducted	p
General Notes:	59.	58,57	
	iaken?ŶN i?YN (requin	ed for some subsurface v	1794 (por points)
PID or other rea		Note time, ty	
Time	Time of Rea	ading Result	

Inspector	VM, SC		Date 3/3/00
	Grystal cleane		
Sample ID a * purge 3 sy	nd Type (indoor air, outdoo stem volumes (about 0.1 lite ation (sketch and/or descrip	or air, vapor probe*)	AMB-3
·*			
Canister #	3006 R	egulator # 3490	
Planned Sam	ple Duration 24 hr.		
	dings and Times: Time	– Pressure	Condition*
Start	1402	-30 inch	0.3/2
In Process#1*	~		
In Process #2*	**		
In Process #3*	*	· · · · · ·	· · · · · · · · · · · · · · · · · · ·
End	13:39	-12.0	hour
*write "un ** At least	disturbed" or note any prob one in process inspection n	plems with sample set-up nust be conducted	0
General Notes:			· · · · · · · · · · · · · · · · · · ·
Photo of Samp	e taken?Y/N		
Helium Leak T	est?Y/N (required	d for some subsurface v	apor points)
		<u><u><u>P</u></u>Note time, ty</u>	
Time	Time of Read	ling Result	
1			

States and the second s

· · · · · · · · · · ·

1 111-112

reign og er standelska inner i nig finskriver mer mat verset el zen hen i se

.

Inspector	VM, SC		Date 3/4/09
Site Name	VM, SC Crystal Clea	mer .	Date
Sample ID an * purge 3 sys	nd Type (indoor air, outd tem volumes (about 0.1 li tion (sketch and/or descr	loor air, vapor probe*)	AMB-5
	1782 Ile Duration 24 hr		<u> </u>
	ings and Times:		
	Time	Pressure	Condition*
Start	10.13	-30 in d	0.1 PPr
In Process#1*			
In Process #2**			
In Process #3**	·		
End	09:05	6. 0	Crack
General Notes:	sturbed" or note any pro ne in process inspection	must be conducted	ip
	taken?(Y)N 76		
	t?YN (require	d for some subsurface v	apor points)
Helium Leak Tes		Note time t	ype of readings and
<i>i</i>	adings in area?	toto thing t	
<i>i</i>	adings in area?		
PID or other re results	adings in area? Time of Read		
PID or other re results			

i.

the sub-class sector

1

6553

AIR SAMPLING RECORD

Inspector	VM, PGP	Ľ	Date 03/26/0
Site Name	Nystel Cleaner	\$	
* purge 3 syste	d Type (indoor air, outdoor em volumes (about 0.1 liter ion (sketch and/or descripti	total) prior to sample	AMB-1
•			
Canister #	4133 Re	gulator # <u>3469</u>	
Planned Sampl	le Duration 24 his		
ressure Readi	ings and Times: Time	Pressure	Condition*
Start	10:57	120 - 30.0	Good
In Process##1*	12:59	- 29.0	and
n Process #2**	·		
n Process #3**			
end -	10315	- 5.0	Grood
*write "undi ** At least o	sturbed" or note any probl ne in process inspection m	lems with sample set-up ust be conducted	
eneral Notes:			
hoto of Sample	taken?Q/N		
	st?Y/N (required		
sults	eadings in area? <u>Rae</u>	Note time, typ	pe of readings and
ime	Time of Readi	ing Result	ppm
	10:50	0.0	•
	<u> </u>		······································
		l.	
		······	

AIR SAMPLING RECORD

Inspector	M, PGP		Da	te_ <u>03126/0</u>	9:
Site Name	Chystal C	leemens			
harde 2 2226	d Type (indoor air, o em volumes (about (ion (sketch and/or do	outdoor air, vapor p 1.1 liter total) prior to escription)	robe*)A o sampte	MB-2	
· .					·
Canister #	3569	Regulator #	3490		
Planned Sampl	le Duration				
rress ure Readi	ngs and Times: Time	Pressu	re	Condition*	
Start	15:35	=28	-0	Good	
In Process##1*	<u> </u>	·	·.		
In Process #2**					
In Process #3**			,		
End _		-4.0		Good	
*write "undis ** At least of	sturbed" or note any ne in process inspect	, problems with sam ion must be conduct	ple set-up ed	•	
General Notes:					
Photo of Sample	taken?				
Helium Leak Tes	t?Y/N/rea	luired for some subs	urface vapor	r points)	
PID or other rea	adings in area? <u>1</u>	1:n: Rac Note	time, type	of readings and	
Time	Time of	Reading	Result		
			0-0	ppm	
	1	· · · · · · · · · · · · · · · · · · ·			

Summa Canister Sampling Field Data Sheet

Site: Crystal Cleaners (60134118)

Samplers: Celeste Foster (AECOM), Peter Lawler (YEC)

Date: 2/13 to 2/14/2010						
Sample#	H01-IA-20100213	H01-SS-20100213	H02-IA-20100213	H02 88 20100212	H52-SS-20100213	
Structure	H01	H01	H02	H02	H02	H02
Summa Canister ID	2743	4017	3025	4786	3526	4431
Flow Controler ID	4179	2775	4491	2528	3469	4937
Additional Tubing Added	NA	Yes	NA	Yes	←−−−	NA
How much (ft)?	NA	3	NA	3	←───	NA
Purge Time (Start)	NA	1023	NA	1336	←	NA
Purge Time (Stop)	NA	1028	NA	1341	←	NA
Total Purge Time (min)	NA	5	NA	5	←	NA
Purge Volume (L)	NA	1	NA	1	←	NA
Purge PID (ppm)	NA	2	NA	2.5	←───	NA
Pressure Gauge - Before Sampling (" Hg)	-29	-30	-29	-29	-30+	-30
Sample Time (Start)	1039	1041	1345	1346	1347	1350
Sample Time (Stop)	1015	1017	1307	1310	1309	1319
Total Sample Time (min)	1416	1416	1402	1404	1402	1409
Pressure Gauge - After Sampling (" Hg)	-6	-7	-5	-8	-5	-3
Background PID (ppm)	0.9-1.2 ppm	\leftarrow	1	\leftarrow	\leftarrow	0
Sample Volume	6L	6L	6L	6L	6L	6L
Canitster Pressure Went to Ambient Pressure?	No	No	No	No	No	No

Weather 24 hours before

and during sampling 20-30 degrees F, cloudy slight wind from N

General Comments

1 canister and flow controller sent back unused

Summa Canister Sampling Field Data Sheet

Site: Crystal Cleaners (60134118)

Samplers: Celeste Foster (AECOM), Peter Lawler (YEC) Date: 2/13 to 2/14/2010 H03-SS-20100213 H03-IAB-20100213 H03-IAF-20100213 H04-SS-20100213 H04-IAB-20100213 H04-IAF-20100213 Sample# Structure H03 H03 H03 H04 H04 Summa Canister ID 3762 3927 4717 4018 4100 Flow Controler ID 4940 4939 3470 4767 4729 Additional Tubing Added NA NA NA Yes Yes How much (ft)? 3 NA NA 3 NA Purge Time (Start) 1416 NA NA 1616 NA Purge Time (Stop) 1421 NA NA 1621 NA Total Purge Time (min) 5 NA NA 5 NA Purge Volume (L) 1 NA NA 1 NA Purge PID (ppm) 1.4 NA NA 0 NA Pressure Gauge -Before Sampling (" Hg) -30 -28 -30 -29 -28 Sample Time (Start) 1448 1440 1438 1641 1640

1406

1406

-6

 \leftarrow

1405

1407

-8

6L

No

 \leftarrow

1602

1401

-7

1.5

6L

No

1601

1401

-6

6L

No

<

H04

4436

3450

NA

NA

NA

NA

NA

NA

NA

-28

1638

1559

1401

-5

6L

No

<

Sample Volume 6L 6L Canitster Pressure Went to Ambient Pressure? No No

Weather 24 hours before

and during sampling 20-30 degrees F, cloudy slight wind from N

1407

1399

-8

1

General Comments

Sample Time (Stop)

Pressure Gauge -After Sampling (" Hg)

Total Sample Time (min)

Background PID (ppm)

1 canister and flow controller sent back unused

Summa Canister Sampling Field Data Sheet Site: Crystal Cleaners (60134118)

Date: 2/13 to 2/14/2010 Sample#	H05-SS-20100213	H05-IAB-20100213	H05-IAF-20100213
Structure	H05	H05	H05
Summa Canister ID	2588	4543	4452
Flow Controler ID	4102	4723	4055
Additional Tubing Added	Yes	NA	NA
How much (ft)?	3	NA	NA
Purge Time (Start)	1711	NA	NA
Purge Time (Stop)	1716	NA	NA
Total Purge Time (min)	5	NA	NA
Purge Volume (L)	1	NA	NA
Purge PID (ppm)	1.9	NA	NA
Pressure Gauge - Before Sampling (" Hg)	-30	-29	-27
Sample Time (Start)	1733	1732	1730
Sample Time (Stop)	1648	1647	1645
Total Sample Time (min)	1395	1395	1395
Pressure Gauge - After Sampling (" Hg)	-9	-6	-5
Background PID (ppm)	1.3	\leftarrow	\leftarrow
Sample Volume	6L	6L	6L
Canitster Pressure Went to Ambient Pressure?	No	No	No
Weather 24 hours before and during sampling	20-30 degrees F clo	oudy slight wind from	N

1 canister and flow controller sent back unused

Appendix D Land Survey Results

CRYSTAL CLEANERS CORNING, NY

WELL I.D.	NORTHING	EASTING	CASING	PVC	GROUND
MW-1	785130.13	686654.67	938.60	938.07	938.60
MW-2	784795.55	686778.57	934.79	934.48	934.79
MW-3	784498.23	686892.25	932.00	931.72	932.00
MW-4	784462.34	687455.15	932.98	932.62	932.98
MW-5	784016.66	687075.01	933.26	932.55	933.26
MW-6	784104.60	687770.92	933.40	932.85	933.40
HP-1	784795.10	686780.52			934.80
HP-2	784668.04	686487.39			937.19
HP-3	784659.16	686818.91			933.12
HP-4	784314.10	686622.71			934.85
HP-5	784522.67	686871.77			931.79
HP-6	784567.29	687101.41			932.00
HP-7	784555.38	687175.97			932.11
HP-8	784477.13	687063.92			933.12
HP-9	784482.70	687098.27			933.13
HP-10	784058.56	686834.99			933.45
HP-11	784325.86	687081.38			932.34
HP-12	784415.91	687416.45			933.03
HP-13	784014.81	687077.38			933.30
HP-14	784155.43	687487.90			933.24

Appendix E Lab Data and DUSRs on CD