REMEDIAL INVESTIGATION / FEASIBILITY STUDY REPORT LOOHNS CORNING SITE SITE # 851028

WORK ASSIGNMENT NO. D004434-35

Prepared for:

New York State Department of Environmental Conservation Albany, New York

Prepared by:
MACTEC Engineering and Consulting, P.C.
Portland, Maine

MACTEC: 3612102148

FEBRUARY 2012

REMEDIAL INVESTIGATION / FEASIBILITY STUDY REPORT LOOHNS CORNING SITE SITE #851028

WORK ASSIGNMENT NO. D004434-35

Prepared for:

New York State Department of Environmental Conservation Albany, New York

Prepared by:
MACTEC Environment and Infrastructure, Inc.
Portland, Maine

MACTEC: 3612102148

FEBRUARY 2012

Submitted by:

Approved by:

Eric Sandin Project Manager

TABLE OF CONTENTS

LIST	OF FIG	URES		ii				
LIST	OF TAI	BLES		iv				
GLO	SSARY	OF ACR	ONYMS AND ABBREVIATIONS					
1.0	INTE	RODUCT	TON	1-1				
1.0	1.1 REPORT ORGANIZATION							
	1.2							
	1.3		BACKGROUND					
	1.0	1.3.1	Site Description					
		1.3.2	•					
		1.3.3	•					
2.0	SCOPE OF WORK							
	2.1		IRM INVESTIGATION					
	2.2	SOIL	REMOVAL IRM	2-3				
	2.3		`IRM SAMPLING					
3.0	SITE BACKGROUND AND PHYSICAL SETTING							
	3.1	TOPC	OGRAPHY	3-1				
	3.2	CLIM	[ATE	3-1				
	3.3	GEOL	LOGY	3-1				
	3.4		FACE WATER HYDROLOGY					
	3.5	GROU	UNDWATER HYDROLOGY	3-2				
4.0	NATURE AND EXTENT OF CONTAMINATION							
	4.1	SITE	SOILS	4-1				
	4.2	GROU	UNDWATER	4-2				
	4.3	SOIL	VAPOR AND INDOOR AIR	4-3				
5.0	CON	TAMINA	ANT FATE AND TRANSPORT	5-1				
	5.1	CONC	CEPTUAL SITE MODEL	5-1				
	5.2	CONT	TAMINANT MIGRATION	5-1				
6.0	QUA	LITATIV	VE EXPOSURE ASSESSMENT	6-1				
	6.1	PUBL	LIC HEALTH EVALUATION	6-1				
		6.1.1	Soil	6-2				
		6.1.2	Groundwater	6-2				
		6.1.3	Soil Vapor Intrusion	6-3				
7.0	SUMMARY AND CONCLUSIONS							
	7.1		MARY					
	7.2	CONC	CLUSIONS	7-2				

TABLE OF CONTENTS (CONTINUED)

8.0	DEVELOPMENT OF REMEDIAL ACTION OBJECTIVES, GENERAL					
	RESPO	ONSE A	CTIONS, AND CONTAMINATION REQUIRING REMEDIATION	8-1		
	8.1	REME	DIAL ACTION OBJECTIVES FOR SUBSURFACE SOIL	8-1		
	8.2	REME	DIAL ACTION OBJECTIVES FOR GROUNDWATER	8-2		
	8.3	IDENT	TIFICATION OF GENERAL RESPONSE ACTIONS AND EXTENT			
		OF CO	NTAMINATION REQUIRING REMEDIAL ACTION	8-2		
		8.3.1	General Response Actions for Soil	8-3		
		8.3.2	General Response Actions for Groundwater			
	8.4	CONT	AMINATION REQUIRING REMEDIAL ACTION	8-3		
9.0	IDENTIFICATION AND SCREENING OF TECHNOLOGIES					
	9.1	TECH	NOLOGY IDENTIFICATION	9-1		
	9.2	TECHI	NOLOGY SCREENING	9-1		
10.0	DEVELOPMENT AND SCREENING OF ALTERNATIVES10					
	10.1	DEVE	LOPMENT OF REMEDIAL ALTERNATIVES FOR THE SITE	10-1		
		10.1.1	Alternative 1: No Further Action	10-1		
		10.1.2	Alternative 2: No Further Action (Continued Operation of Modified			
			Soil Vapor Extraction System and Land Use Restrictions)	10-1		
		10.1.3	Alternative 3: Restoration to Pre-Disposal Conditions	10-2		
	10.2	SCREE	ENING OF ALTERNATIVES	10-3		
11.0	DETAILED ANALYSIS OF ALTERNATIVES					
	11.1	COST	ANALYSIS PROCEDURES	11-3		
	11.2	GENE!	RAL ASSUMPTIONS	11-4		
	11.3		RNATIVE 1: NO ACTION			
			Detailed Evaluation of Alternative 1			
	11.4		RNATIVE 2: MODIFIED SVE WITH LAND USE RESTRICTIONS			
			Detailed Evaluation of Alternative 2			
	11.5	ALTE	RNATIVE 3: RETURN TO PREDISPOSAL CONDITIONS	11-8		
		11.5.1	Detailed Evaluation of Alternative 3	11-10		
12.0	COMP	PARATI	VE ANALYSIS OF ALTERNATIVES	12-1		
13.0	REFEI	RENCES		13-1		
FIGUF	RES					
TABL						
	ES NDICES					
		NDIX A	Select Previous Investigation Information			
	APPE	NDIX B	Site Photographs			
	APPE	NDIX C	Field Data Records			
	APPE	NDIX D	Site Survey			
		NDIX E	Data Usability Summary Report			
	APPE	NDIX F	Detailed Cost Estimate and Calculations			

LIST OF FIGURES

Figure

- 1.1 Site Location
- 2.1 Site Map RI Sampling Locations
- 4.1 PCE Results in Soil
- 4.2 Soil IRM Excavation Documentation Samples
- 4.3 PCE in Groundwater RI Samples

LIST OF TABLES

Table

4.1	RI Soil Results - VOCs
4.2	RI Soil Results - Metals, PCBs, Pesticides and SVOCs
4.3	RI Groundwater Results - VOCs
4.4	Post IRM Groundwater Results - VOCs, Metals, PCBs, Pesticide and SVOCs
4.5	Post IRM Vapor Results
5.1	Conceptual Site Model
9.1	Identification and Screening of Potential Remedial Technologies and Process Options
10.1	Screening of Remedial Alternatives
11.1	Applicable Location- and Action-Specific Standards, Criteria, and Guidance
11.2	Cost Summary for Alternative 4
11.3	Cost Summary for Alternative 5
12.1	Summary of Estimated Remedial Alternative Costs
12.2	Comparative Analysis of Remedial Alternatives

GLOSSARY OF ACRONYMS AND ABBREVIATIONS

bgs below ground surface

cis-1,2-DCE cis-1,2-Dichloroethene

DUSR data usability summary report

°F degrees Fahrenheit
FS Feasibility Study

IRM Interim Remedial Measure

MACTEC Engineering and Consulting, P.C.

mg/kg milligram(s) per kilogram

msl mean sea level

NYCRR New York Codes, Rules and Regulations

NYS New York State

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health

O&M operation and maintenance

PCBs polychlorinated biphenyls

PCE tetrachloroethene

PID photoionization detector

PW present worth

QHHEA Qualitative Human Health Exposure Assessment

RAOs remedial action objectives

GLOSSARY OF ACRONYMS AND ABBREVIATIONS (CONTINUED)

RA remedial alternatives

Report Remedial Investigation/Feasibility Study Report

RI Remedial Investigation

SC site characterization

SCGs standards, criteria and guidance values

Site Loohns Corning site
SVE soil vapor extraction
SVI soil vapor intrusion

SVOC semi-volatile organic compound

TCA 1,1,1-trichloroethane

TCE trichloroethene

μg/Kg microgram(s) per kilogram

μg/L microgram(s) per liter

 $\mu g/M^3$ microgram(s) per cubic meter

USEPA United States Environmental Protection Agency

VOC Volatile Organic Compound

WA Work Assignment

1.0 INTRODUCTION

This Remedial Investigation/Feasibility Study (RI/FS) report (Report) has been prepared by MACTEC Engineering and Consulting, P.C., (MACTEC) in response to Work Assignment (WA) No. D004434-35 from the New York State Department of Environmental Conservation (NYSDEC) for the Loohns Corning site (Site) in the Town of Corning, New York (Figure 1.1). The Site is a former dry cleaner with a documented release of dry-cleaning solvents into onsite media. The Site is currently listed as a Class 2 Inactive Hazardous Waste Site; Site No. 8-51-028, in the Registry of Hazardous Waste Sites in New York State (NYS). This Report has been prepared in accordance with the NYSDEC requirements in WA No. D004434-35, dated February 19, 2010; with the July 2005 Superfund Standby Contract between MACTEC and the NYSDEC; and with DER-10/Technical Guidance for the Completion of Site Investigation and Remediation (NYSDEC, 2010).

The RI/FS for the Site has been conducted in accordance with the WA, as well as with applicable portions of the following documents:

- NYSDEC Final DER-10 "Technical Guidance for Site Investigation and Remediation" (NYSDEC, 2010);
- 6 New York Codes, Rules and Regulations (NYCRR) Part 375 "Environmental Remediation Programs"; and
- United States Environmental Protection Agency (USEPA) "Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA" (USEPA, 1988).

Based on historic soil, groundwater, and sub-slab vapor/indoor air contamination, the Site poses a potential significant threat to public health and the environment as defined in 6 NYCRR 375 (NYS, 2006). Existing historical site data was not sufficient to fully characterize the Site and therefore the RI was performed. This Report presents the technical scope of work for the RI field activities and a summary of the data collected; also presented is the FS which develops remedial objectives and evaluates potential remedial alternatives (RAs) from an engineering, environmental, public health, and economic perspective, with a recommended preferred alternative.

1.1 REPORT ORGANIZATION

Section 1.0:

The RI/FS includes Sections 1.0 to 12.0, and associated appendices. The RI portion of the report consists of Sections 1.0 to 7.0, outlined below.

Discusses the purpose of the RI, Site history, and previous investigations.

Section 2.0: Presents the specific scope of work for the RI.

Section 3.0: Summarizes the physical characteristics of the Site and surrounding area. This includes results of physical characteristics as determined during the RI field program.

Section 4.0: Presents results of the analytical data and discusses the nature and extent of contamination.

Section 5.0: Discusses the fate and transport of the Site contaminants.

Section 6.0: Presents the qualitative human health exposure assessment (QHHEA).

Section 7.0: Presents the Summary and Conclusions, including a discussion of remedial action

The FS portion of the Report consists of Sections 8.0 to 12.0, outlined below.

objectives (RAOs).

Section 8.0:	Discusses the development of RAOs, the general response actions, and the contamination requiring remediation.	
Section 9.0:	Discusses the identification and screening of applicable remedial technologies.	
Section 10.0:	Discusses the development and screening of alternatives.	
Section 11.0:	Presents a detailed analysis of each of the RAs. The detailed analysis is intended to provide decision-makers with the relevant information with which to aid in selection of a site remedy.	
Section 12.0:	Presents a comparative analysis of the alternatives. This section evaluates the relative performance of each alternative using the same criteria by which the detailed analysis of each alternative was conducted. The purpose of the comparative analysis is to	

identify the advantages and disadvantages of each alternative relative to one another

Field data sheets and supporting information are included in the appendices attached to this report.

This Report is supplemented by the following attached documents:

to aid in selecting a remedy for the Site.

- Appendix A Previous Investigation Information
- Appendix B Site Photographs
- Appendix C Field Data Records

MACTEC Engineering and Consulting, P.C., Project No. 3612102148

- Appendix D Survey Data
- Appendix E Data Usability Summary Reports (DUSRs)
- Appendix F Detailed Cost Estimate and Calculations

1.2 PURPOSE OF REPORT

Previous studies identified tetrachloroethene (PCE) in surficial and shallow unpaved soils behind (north of) the former dry cleaner. Prior soil vapor and indoor air sampling identified PCE in soil vapor beneath the floor of the former dry cleaner.

The objectives of the RI are to determine the nature and extent of PCE contamination associated with the Site. The investigation assessed potential threats to human health and the environment from the Site by delineating the residual soil contamination in the source area and the extent of potential groundwater and soil vapor contamination. The FS develops remedial objectives and evaluates potential RAs from an engineering, environmental, public health, and economic perspective.

1.3 SITE BACKGROUND

1.3.1 Site Description

The Site is located at 37 East Pulteney Street in a mixed residential/commercial neighborhood, in the City of Corning, Steuben County, New York (Figure 1.1). The Site property consists of 0.5 acres including a retail building covering much of the rear (north) half of the lot and a paved large parking area covering the front (south) portion of the lot. According to the City of Corning Assessor's office, the Site building was constructed in 1971. The building is one story with a slab-on-grade foundation. The building is currently configured for four tenants, and recent businesses include: a tanning salon in the building's west end, a former delicatessen and a tattoo parlor in the center, and a financial services office on the east end. The former delicatessen, which ceased operations late in 2011, occupied the former dry cleaner's space.

Residential property is located north of the Site, a restaurant is located to the east, and commercial property is located west of the Site. Commercial property is also located south of the Site across East Pulteney Street.

1.3.2 Site History

In 2005 the NYSDEC asked MACTEC to perform an initial site characterization study at 37 East Pulteney Street based on available information which indicated the presence of solvents in Site media (see the prior investigations summarized in the following section below). MACTEC performed a site walk over, reviewed available city records, and completed an electronic database records search. In 1968, according to the Sanborn Fire Insurance Map a building was located on the site property in the approximate location of the current Site parking lot. The 1961, 1965 and 1970 Mannings City Directory list the property as a residence (35 East Pulteney Street). Property use before this time is unknown. According to discussions with the City of Corning tax assessor, the one story cement block building currently located on the property was constructed in 1971.

No dry cleaner is listed at the location in the Corning City Directory of 1970, which is consistent with the information that the building was reportedly constructed in 1971. Although it is not known if a dry cleaner was one of the original tenants in 1971, Gilliam's One Hour Cleaners was listed at the location in the 1975 city directory. The 1981 and 1989 directories reviewed listed Loohns Cleaners Launderers, Inc. at the location. The date the dry cleaner ceased operation is not known. The former dry cleaner space was most recently leased and used as a delicatessen. As of December 2011, there is no active tenant in this space.

The Site is served by public water and sewer which were installed along Pulteney Street in the early 1900s (Panton, 2005); it is therefore assumed that the Site building has always been serviced by public water and sewer.

1.3.3 Previous Field Investigations

Various environmental studies were conducted between 1997 and 2006 by the current and previous site owners. These are described below based on the available records.

Sear-Brown Phase II – **March 1997.** A Phase II Site Assessment was conducted by Sear-Brown Group for Fleet Financial Group (Sear-Brown, 1997a). This investigation included soil sampling north of the building in the vicinity of the rear door of the former dry cleaners and installation of two

monitoring wells. MW-1 is located approximately 8 feet north of the back door and MW-2 is located approximately 5 feet south of the front door of the former dry cleaners. Both wells were installed with 10-foot long well screens set from 10 to 20 feet below ground surface (bgs). The water table is typically measured at 15 feet bgs in these wells. PCE was reported in soil from beneath the slab at 0.154 and 0.223 milligram per kilogram (mg/kg) and in soil samples from north of the building at concentrations ranging from 0.028 to 311 mg/kg, exceeding the 1994 Technical Administration Guidance Memorandum 4046 soil cleanup objective of 1.4 mg/kg. Groundwater sample results were 84.5 micrograms per liter (ug/L) in MW-1 and 18.7 ug/L in MW-2 exceeding the Class GA groundwater standard of 5 ug/L. Excerpts from the Sear-Brown 1997 report showing sample locations and analytical results for soil and groundwater samples are provided in Appendix A. Results of this investigation suggested that a source of contamination existed north of the building, and that PCE was being transported via the groundwater to the south and beneath the building.

Sear-Brown Recommendations for Additional Level II Environmental Site Assessment – March 1997. Based on the Sear-Brown Phase II Investigation, Sear-Brown presented a letter report to Fleet National Bank (Sear-Brown, 1997b). The letter identified Site environmental concerns, and recommended additional investigation at the Site to provide additional data to support evaluation and development of remedial objectives. Recommendations for additional soil borings, installation of groundwater monitoring wells, and collection of passive soil gas samples were presented.

Stantec Consulting Services – November 2005. In November 2005, Stantec Consulting Services collected groundwater samples from MW-1 and MW-2 for the new property owner (Cadle's East Pulteney Street Plaza, Inc.) (Stantec, 2005). PCE, reported at a concentration of 41.3 μg/L in MW-1, was the only contaminant detected during the sampling round. A figure from the report indicating the approximate well locations and a summary of detected VOCs is provided in Appendix A.

Teeter Environmental Services, Inc. - May 2006. Teeter Environmental Services performed a Phase II Site Assessment for the new property owner (Ms. Angela Hickey) in April 2006 (Teeter, 2006). Field work included a one day Geoprobe® effort and the collection of soil and groundwater samples. Due to the size of the Geoprobe® rig and the limited access space to the rear of the Site building, no soil samples were collected in the vicinity of the rear door of the former dry cleaners, the location of the reported historic soil exceedances. No photoionization detector (PID) readings were noted over the soil samples, and no volatile organic compound (VOCs) were detected in the single soil sample

analyzed. PCE was detected in two of the eight groundwater samples collected. PCE was reported in MW-1 at a concentration of 29.8 μ g/L and in a groundwater sample from B-8, located approximately 40 feet southeast of MW-2, at a concentration of 8.8 μ g/L. PCE was the sole VOC reported in the groundwater samples. A figure from the report indicating the boring locations and PCE results is provided in Appendix A.

MACTEC Site Characterization Investigation – 2006. At NYSDEC's request, MACTEC performed a Site Characterization (SC) at the Site in 2006 and presented results of additional subsurface investigation activities in a SC report submitted to the NYSDEC in March 2007 (MACTEC, 2007). The purpose of the SC was to provide information to be used by the NYSDEC to reclassify the site into one of four hazardous waste site classifications (the previous reports submitted by Sear-Brown and Stantec, Inc. had not been provided to the NYSDEC prior to the SC investigation). Re-classification required determining if VOC contamination was present in Site media and if it may be migrating offsite. An additional objective was to determine whether the VOCs detected in the City supply wells originated from the Site. The Scope of Work for this investigation included field work performed in two rounds of exploration activities including the sampling and analysis of soils, groundwater, soil vapor, ambient air, and indoor air samples. Additionally, a land survey of the Site and surrounding area was conducted to create a base map and to locate relevant site features including the four new microwells and two existing wells used to determine the groundwater flow direction.

Results of the SC investigation show PCE concentrations in soils ranging from non-detect to 7.3 mg/kg, exceeding the 2006 Soil Cleanup Objective of 1.3 mg/kg. PCE was detected in 10 of the 21 groundwater samples collected, at concentrations that ranged from 2.1 J μ g/L (GW-2) to 37 J μ g/L (MW-1). Concentrations in two groundwater samples (MW-1 and GW-8A (5.1 J μ g/L)) exceeded the NYS Class GA groundwater standard for PCE of 5 μ g/L.

A sub-slab soil vapor sample collected from beneath the onsite building detected PCE at 32,842 micrograms per cubic meter (μ g/M³) and the indoor air analytical result was 35.8 μ g/M³. Although the indoor air was below the New York State Department of Health (NYSDOH) regulatory guidance value for PCE (100 μ g/M³), the NYSDOH recommends mitigation based on the soil vapor intrusion matrix for PCE (Matrix 2), considering both soil vapor and indoor air concentrations (NYSDOH, 2006).

PCE, trichloroethene (TCE) and 1,1,1-trichloroethane (1,1,1-TCA) were detected in the Geoprobe soil vapor samples collected outside of the building footprint. However, there are no guidance values for soil vapor.

Selected figures from the report indicating investigation locations and results are provided in Appendix A.

The SC report listed the following findings:

- 1) Groundwater flow is generally to the south towards the river and not towards the City of Corning drinking water supply wells 1 and 2 contaminated with PCE.
- 2) Onsite groundwater is contaminated above the NYS GA classification; however, analytical results do not indicate that PCE contamination is migrating off-site in groundwater at concentrations above the NYS standards.
- 3) Although only trace concentrations of PCE, TCE, and 1,1,1-TCA were detected in soil vapor samples collected from Geoprobe borings around the Site property (each less than 80 μg/M³), sub-slab soil vapor results for PCE of 32,842 ED μg/m³ indicate a need for mitigation based on Matrix 2 from the New York State Department of Health, Guidance for Evaluating Soil Vapor Intrusion in the State of New York, Final, October 2006.
- 4) PCE was detected in soil in directly north of the former dry cleaners at a concentration of 7,300 micrograms per kilogram (μg/Kg), compared to a Soil Cleanup Objective of 1,300 μg/Kg. It is likely that contaminants were disposed in this area.

2.0 SCOPE OF WORK

Based on the findings from the SC completed by MACTEC in 2007 and other prior environmental investigations, the NYSDEC reclassified the Site as a Class 2 Inactive hazardous waste site (Site No. 851028), and in 2010 directed MACTEC to perform a RI/FS.

The RI investigation was conducted based on the presence of chlorinated VOCs, specifically PCE, in Site media. PCE is a listed hazardous waste under Title 6 NYCRR Part 371 (NYS, 1999a). Based on SC and historical data, PCE is present in groundwater, soil, soil vapor (sub-slab and exterior soils), and indoor air at the Site. As a result of reported concentrations of PCE in soil, groundwater, sub-slab soil vapor, and indoor air samples, NYSDEC recommended further action. Although concentrations and locations of PCE detected in groundwater indicate a release at the Site, results do not indicate that PCE contamination is migrating off-site in groundwater at concentrations above the NYS GA standard.

During the RI, the NYSDEC identified a soil removal interim remedial measure (IRM) as a priority. The NYSDEC determined that removing accessible contaminated soil would be an appropriate remedial action to mitigate residual soil contamination and potentially reduce levels of PCE in sub-slab vapor beneath the Site structure.

In June 2010, MACTEC conducted a sampling investigation to further evaluate the area of impacted soils and provide supporting data needed to design a soil removal IRM (MACTEC, 2011). The 2010 field investigation included sampling and analysis at 14 soil boring locations, four surface soil locations, and three downgradient groundwater sample locations. A site map showing RI sampling locations is shown on Figure 2.1. Photographs taken during the RI investigation are located in Appendix B. Field Data Records including, boring logs and groundwater low flow sheets are included as Appendix C.

In December 2010, removal of accessible impacted soil from the apparent release area to the rear of the former dry cleaners was completed. MACTEC collected post removal samples from the excavation consistent with <u>DER-10</u>, <u>Technical Guidance for Site Investigation and Remediation</u> (NYSDEC, 2010) to document the levels of contamination remaining in Site soils at the limits of the

MACTEC Engineering and Consulting, P.C.., Project No. 3612102148

soil remediation. As part of the soil IRM, MACTEC installed a soil vapor extraction well within the backfilled excavation that could be used for further source area contaminant reduction, if needed.

In June 2011, MACTEC collected groundwater samples from the two permanent monitoring wells and collected soil vapor samples from the exterior extraction well and from a sub-slab location within the former dry cleaner space. This sampling indicated reduced levels of impact to Site groundwater but persistent elevated levels of PCE in sub-slab vapor. Based on the results, the NYSDEC identified a soil vapor extraction (SVE) interim remedial measure (IRM) as a priority. The NYSDEC determined that installing a modified SVE system would be an appropriate remedial action to reduce residual source area impact in shallow soil beneath the building slab and to mitigate potential human exposure to potential soil vapor impact.

In January 2012, MACTEC installed a modified soil vapor extraction system within the former dry cleaner. The system includes a single extraction point located in the rear hallway with a radon-type fan used to extract sub-slab vapor and vent above the structure roof. The system is currently operating.

Sampling activities accomplished during the RI are discussed in more detail in the following sections.

2.1 PRE-IRM INVESTIGATION

To establish current conditions and better define the areal and vertical extent of PCE impact, MACTEC completed a soil sampling program along the north side of the former dry cleaners where prior sampling indicated the presence of PCE in shallow soils. Field work was completed during the week of June 8, 2010.

The field investigation included:

- eleven direct-push soil borings (PDI-01 to PDI-09, PDI-12, PDI-13),
- three hand borings with shallow soil samples (PDI-10, PDI-11 and PDI-14),
- one surface soil location (SS-1)
- three offsite soil samples (BKSS-01, BKSS-02 and BKSS-03)
- installation of 3 groundwater monitoring wells

Soil borings were completed to depths of between 16 and 22 feet bgs. Samples were retrieved continuously via 4-foot long sampling liners and each soil interval was logged and examined. Hand sampling was accomplished at three locations (PDI-10, PDI-11 and PDI-14) due to the presence of overhead utilities. A total of 26 soil samples, plus quality assurance/quality control samples were collected from PDI-01 through PDI-14. Sample locations were selected based on PID response and to provide spatial coverage to assess the levels of PCE in soils laterally and vertically in the area of impact. Samples were analyzed for VOCs.

One surface soil sample was collected to characterize surficial soil for contaminants other than VOCs. SS-1 was collected from soil near the elbow of the natural gas feeder line that enters the rear of the building. This sample was analyzed for semi-volatile organic compounds (SVOCs), pesticides, polychlorinated biphenyls (PCBs) and inorganics (metals).

Three surface soil samples were obtained at locations apart from the area impacted by dry cleaning solvent (Figure 2.1). Sample BKSS-01 is located south of the Site from the grass strip bordering East Pulteney Street and within the town right-of-way. BKSS-02 was collected from an unpaved vacant lot to the northwest of the former dry cleaner space. BKSS-03 was collected from the grass strip along the south side of Ontario Street north of the Site. These samples were analyzed for SVOCs, pesticides, PCBs, and metals.

Three direct push borings (GW-13 through GW-15) were installed were drilled in front of the structure and to the southeast of MW-1 to refine information related to groundwater flow and potential contamination migrating offsite (Figure 2.1). Grab samples from the water table (19 feet bgs) were obtained from each of the three borings. These samples, along with prior groundwater samples from MW-2 provided a transect positioned cross-gradient to groundwater flow direction.

A survey of the contaminated soil area was completed by James Evans, a licensed surveyor, on November 30, 2010 (Appendix D).

2.2 SOIL REMOVAL IRM

The June 2010 soil sampling and analysis results confirmed that the dry cleaning solvent PCE was the principal Site-related contaminant of concern, and that it was present locally at levels above soil

criteria. In December 2010, impacted soils from a release area to the rear of the former dry cleaners were excavated to an approximate depth of six feet below grade and disposed off-site at a NYSDEC-approved landfill.

A total of seven confirmation samples (EX-01 to EX-07) from within the excavated area were collected by MACTEC in December 2010 and analyzed for VOCs. Samples EX-01 through EX-05 were collected from the bottom of the excavation. Samples EX-06 and EX-07 were collected from the north sidewall, approximately 4-feet below original grade.

A survey of the excavation was conducted by James Evans, a licensed surveyor, on December 9, 2010. A survey of the area showing the ground surface after backfilling the excavation was conducted on December 17, 2010. Surveys of conditions prior to the excavation, the extent of the excavation and restored conditions are provided in Appendix D.

2.3 POST IRM SAMPLING

In June 2011 groundwater samples from each of the onsite monitoring wells, a sub-slab soil vapor sample from inside the former drycleaner, and a vapor sample from the extraction well located in the IRM excavation area were collected to evaluate the potential need for additional remedial action (Figure 2.1).

3.0 SITE BACKGROUND AND PHYSICAL SETTING

This section describes the Site topography, climate, surface water and groundwater hydrology, and geology.

3.1 TOPOGRAPHY

The Site is located in the Chemung River Valley, which is oriented east-west. The Site property is located at 935 feet above mean sea level (msl), sloping slightly to the south. The surrounding area slopes slightly down to the south, before reaching the dike at the edge of the Chemung River, located 1,000 feet from the Site. The Chemung River is located at an elevation of approximately 920 feet above msl, just south of the dike. The topography to the north of the site is relatively flat for approximately 0.7 miles, and then rises to a ridge at 1,700 feet above msl approximately 1.75 miles from the Site.

3.2 CLIMATE

The climate of the area is characterized by moderately warm summers and cold winters. Mean monthly temperatures range from 23 degrees Fahrenheit (°F) in January to 68°F in July. Average annual precipitation is 32 inches. Average annual snowfall is 37 inches (NCDC, 2004).

3.3 GEOLOGY

Shallow overburden soils at the Site consist primarily of alluvial silts, sands and gravels. Surficial geology is mapped as oxidized, non calcareous, fine sand to gravel (Muller et al., 1986). Overburden thickness is estimated to be 60 feet based on published data on the saturated thickness of the Corning Aquifer in the vicinity of the Site (USGS, 1982). Based on regional geologic mapping (Rickard and Fisher, 1970) bedrock is expected to consist of shale and siltstones associated with the Upper Devonian West Falls Group; specifically, the Gardeau Formation, consisting of shale and siltstone; and/or Roricks Glen shale (Rickard and Fisher, 1970). Bedrock was not penetrated or characterized as part of MACTEC's RI investigation.

3.4 SURFACE WATER HYDROLOGY

The Site is relatively flat with a paved parking lot in the front (south) of the building. The rear of the building, where contaminated soil was encountered, is unpaved. Surface drainage from the site flows toward the municipal storm drains located on East Pulteney Street. These storm drains flow to a treatment plant located approximately 2.2 miles south east of the site. The treatment plant discharges to the Chemung River downstream of the site (Panton, 2005). The site is not located within the 100 or 500 year flood zones (EDR, 2006).

3.5 GROUNDWATER HYDROLOGY

The Site and the nearby Chemung River overlie the Corning Aquifer, a contiguous valley-fill aquifer that extends along the river valley upstream and downstream of Corning, NY. Groundwater at the Site is approximately 15 feet bgs, and is interpreted to flow south to southeast towards the river (USGS, 1982).

4.0 NATURE AND EXTENT OF CONTAMINATION

This section presents the results of the RI. The subsections below describe results of laboratory analysis for soil, groundwater, and vapor collected during the RI field work. To determine whether the laboratory data met the project specific criteria for data quality and data use, DUSRs (Appendix E) were prepared in accordance with the "Guidance for the Development of Data Usability Reports" (NYSDEC, 2002). The data presented in this report meets the data quality objectives.

Analytical results were compared to the following standards, criteria, and guidance values (SCGs):

- Water Quality Regulations Surface Water and Groundwater Classifications and Standards (NYS, 1999b), New York Codes, Rules, and Regulations, Title 6, Part 700-705.
- Soil SCGs are based on the Department's Cleanup Objectives included in 6 NYCRR Subpart 375-6 - Remedial Program Soil Cleanup Objectives for Unrestricted and Restricted Uses (NYS, 2006).
- Concentrations of VOCs in air were evaluated using the air guidelines provided in the NYSDOH guidance document titled "Guidance for Evaluating Soil Vapor Intrusion in the State of New York," (the NYSDOH Guidance) dated October 2006 (NYSDOH, 2006).

4.1 SITE SOILS

Soil boring and surface soil samples were collected at the Loohn's facility to characterize soil in the vicinity of the apparent release, delineate the extent of contaminated soils, and to design a remedial action for removal of contaminated soils. Soil samples were submitted to a laboratory for analysis of VOCs, SVOCs, pesticides, PCBs, and metals.

Remedial Investigation

PCE was reported at all of the 15 soil sample locations, at concentrations ranging from 0.0011 mg/Kg (SS-01 at 1 ft bgs) to 63 mg/Kg (PDI-9 at 1 ft bgs). PCE was reported above the soil criteria of 1.3 mg/Kg in samples PDI-8 (49 mg/Kg), PDI-9 (63 mg/Kg), and PDI-14 (8 mg/Kg) at depths between 0 and 3 ft bgs. Figure 4.1 shows the PCE levels in Site soils as well as in prior exploration samples that contributed to an understanding of the extent of impact behind the former dry cleaners.

Several PCE breakdown products were also detected in soil, including TCE and cis-1,2-dichloroethene at concentrations below their respective soil criteria. Concentrations of metals and SVOCs reported in

soils from the area of contamination (samples from PDI-6, PDI-11 and SS-01) were consistent with concentrations reported in the three off-site background soil samples, and no onsite results exceeded criteria. PCBs were not detected in any onsite or offsite background soil sample. Three pesticides (4,4-dichlorodiphenyldichloroethane, 4,4-dichlorodiphenyldichloroethylene, and 4,4-dichlorodiphenyltrichloroethane) were reported in one or more of the onsite samples at concentrations above criteria. However, pesticides were also detected in one of the three offsite background samples. RI analytical soil results are presented on Tables 4.1 and 4.2.

IRM Confirmation Sampling

PCE was detected in all seven confirmation samples collected from the IRM excavation ranging from 0.015 to 6.3 mg/Kg (EX-07) (Figure 4.2). Of the seven confirmation samples, only sidewall sample EX-07 had a PCE concentration that exceeded the soil cleanup criteria of 1.3 mg/Kg. Sample EX-07 is located at the northern limit of the Site property and is immediately adjacent to an off-site building structure. Further excavation could not be completed in this area. Sample EX-06 also had detections of TCE (0.0031 J mg/Kg) and cis-1,2-dichloroethene (cis-1,2-DCE) (0.0026 J mg/Kg), both of which were below soil cleanup criteria.

4.2 GROUNDWATER

Pre-RI sampling investigations identified PCE above the criteria of 5 μ g/L in groundwater from monitoring well MW-1, (in the area where PCE was present in shallow soils that were removed during the excavation IRM) and from MW-2, (located downgradient from MW-1 and in front (south) of the former dry cleaner). In 2006, PCE was reported at 37 J μ g/L at MW-1 and 5.1 J μ g/L in downgradient well MW-2.

Remedial Investigation

In June, 2010, MACTEC collected groundwater grab samples from three direct push borings (GW-13, GW-14 and GW-15) positioned adjacent to MW-2 and cross-gradient to flow with the objective to provide additional lateral coverage to assure that groundwater impact was not bypassing MW-2. PCE was detected at concentrations below the criteria of 5 μ g/L in two of the three groundwater samples. PCE at GW-014 was reported at 1.2 μ g/L and at GW-015 at 1.8 μ g/L. PCE was not detected at GW-013. Relatively low levels of fuel-related compounds (e.g. benzene, ethyl benzene, toluene, xylene)

were also present in the groundwater grab samples. Groundwater results from these wells are shown on Table 4.3 and Figure 4.3.

Post IRM Groundwater Sampling

Samples were collected on June 1, 2011, from monitoring wells MW-1 and MW-2 (Table 4.4). PCE was detected in MW-1 at 1.1 ug/L and MW-2 at 4.5 ug/L (below the criteria of 5 ug/L). This shows a significant reduction in the level of PCE in MW-1 compared to the sample collected in 2006 (37 ug/L).

4.3 SOIL VAPOR AND INDOOR AIR

Post IRM Vapor Sampling

On June 1, 2011 MACTEC collected two vapor samples from the site. PCE was reported at 130,000 $\mu g/m^3$ in the sub-slab sample (SV-02) collected from the former drycleaner, and at 3,200 $\mu g/m^3$ in a sample (EW-01) collected from the vapor extraction well installed in the excavation area (Table 4.5).

5.0 CONTAMINANT FATE AND TRANSPORT

5.1 CONCEPTUAL SITE MODEL

Based on the review of the historical and RI data, a conceptual site model was developed. The conceptual model presents a description of the media affected, the source of impact, types of contamination, contaminants of potential concern, primary or secondary release mechanisms, migration pathways, and potential receptors. The conceptual model for the Site is presented in Table 5.1. Based on historic and RI data reviewed, PCE and its breakdown products are the only contaminant of concern at the Site.

Historical data indicates that chlorinated solvents, specifically PCE, migrated into the soil from improper disposal and/or storage at the Loohns Corning Site. PCE was originally discovered in Site groundwater in 1997. Further investigations indicated that PCE exists in Site soils behind the building at concentrations exceeding Part 375 SCGs for unrestricted use. PCE has migrated from the soil into shallow groundwater.

Groundwater is present at approximately 15 feet bgs and is interpreted to flow to the south towards the Chemung River. PCE has been detected at concentrations above applicable SCG in overburden groundwater.

PCE has the potential to volatilize into soil vapor and migrate into indoor air. Detected concentrations of chlorinated VOCs in sub-slab vapor and indoor air have resulted in the recommendation of installing a vapor mitigation system at the Site.

5.2 CONTAMINANT MIGRATION

The elevated groundwater concentrations of PCE detected at MW-1, located to the rear of the Loohns Corning building, are likely attributed to the improper disposal of PCE at the ground surface, or improper storage of PCE to the north of the building. Much of the contaminant mass appears to have been bound up in the soils located behind the building. Data suggest that the source area is limited to a 200 square foot area of contaminated soil. PCE can readily leach from soils with infiltration of

precipitation, as well as with simple groundwater flux through the soil and migrate to groundwater. Once dissolved in groundwater, PCE can migrate with groundwater flow. However, groundwater flows from north to south and must pass beneath the Loohns Coring building, limiting rainwater infiltration. Groundwater at and in the vicinity of the Site is located at approximately 15 feet bgs and flows primarily to the south, towards the Chemung River.

Analytical data indicates that PCE is migrating in groundwater from the residual soil source area around MW-1 southward across the Site property and ultimately towards the Chemung River. Contaminants are present in groundwater at and downgradient of the Site with contaminant concentrations diminishing from the highest detection at MW-1 located in the source area to the next highest detection at GW-8A located south of the building. The relatively small size of the source area, its proximity to the building, and the groundwater flow direction have limited migration of the contamination from the source area, resulting in lower groundwater concentrations downgradient of MW-1.

There are two primary mechanisms for migration of contaminants in the soil vapor pathway: PCE can volatilize directly from contaminated soil, and also partition from groundwater to soil gas and then migrate through the soil column. Detections of PCE in soil vapor samples collected from the Loohns Coring building sub-slab as well as in an indoor air sample indicate that PCE is migrating in the soil vapor. These sample results indicate that the soil vapor to indoor air migration pathway is complete.

6.0 QUALITATIVE EXPOSURE ASSESSMENT

6.1 PUBLIC HEALTH EVALUATION

This section provides a QHHEA for the Loohns Corning Site. The QHHEA is performed in accordance with NYSDEC Technical Guidance (NYSDEC, 2010), which indicates that the QHHEA should evaluate the populations of humans that may potentially occur at and in the vicinity of the Site, the mechanisms or exposure pathways by which those humans may be potentially exposed to contamination associated with the Site, and the significance of exposure that may occur through the potential exposure pathways. This process involves three steps:

- 1. Characterization of the exposure setting in terms of physical characteristics, current and future uses of the Site, and the populations that may be potentially exposed to Site-related contamination under the current and future land uses;
- 2. Identification of potential exposure pathways and exposure points to which the populations may be exposed (discussed in detail in Section 5.0); and
- 3. Screening of potentially complete exposure pathways to identify the Site-related constituents of concern from a health risk perspective.

Exposure Pathway Evaluation and Qualitative Risk Analysis

The current and anticipated future use of the Site property is commercial. The properties to the east, west and south (downgradient) of the Site include industrial/commercial uses. Properties north of the site are currently residential.

PCE and its breakdown products were determined to be the only contaminants of concern at the Site from a health risk perspective. Potentially complete exposure pathways were identified for direct contact with soil and groundwater, and for inhalation of vapors that may migrate from soil and/or groundwater to air within overlying structures.

The significance of exposure pathways associated with soil, groundwater and soil vapor/indoor air media is evaluated in this subsection through comparison of analytical data to standard and guidance concentrations published by the NYS and NYSDOH and/or to background concentrations.

6.1.1 Soil

VOCs were detected in soils located to the rear (north side) of the Loons Corning facility. The Site is currently occupied by four commercial establishments; however, the area north of the building is not actively used by the onsite businesses, which limits worker exposure to contamination located in this area. During the IRM conducted in 2010, contaminated soils were excavated to depths ranging from 2 to 6 feet below grade. Post excavation confirmation samples were collected from each of the sidewalls and the bottom of the excavation; only one location had contamination levels exceeding the soil cleanup criteria (EX-07 at 6.3 mg/kg). This sample was collected from the northern side wall of the soil removal excavation at a depth of 4 feet.

Direct contact with impacted soils located beneath the onsite building is not anticipated because the building foundation serves as a barrier. Under current use scenarios, the direct contact exposure pathway to contaminated soils is not anticipated to be a concern from a health risk perspective for commercial or industrial workers. Because the Site property access is not restricted (i.e. no fencing in place), trespassers could enter the property and come in contact with VOCs in soil that exceed the Part 375 SCGs.

If future sub-surface work were to occur in the vicinity of the noted contaminated soil, a health and safety plan would need to be initiated to address potential worker exposure scenarios and minimize the risk of direct contact to contaminated soil. Residual VOCs in soils may also be a continued source of groundwater contamination. Groundwater exposure scenarios are discussed in the following paragraphs. VOCs in soil near the Site building also have the potential to migrate into the building via soil vapor intrusion (SVI) as discussed further below.

6.1.2 Groundwater

There are no direct exposures to groundwater associated with the site based on the current or foreseeable land uses. Although, a comparison of historical groundwater analytical data to NYS drinking water standards shows that groundwater could be a health risk if extracted for potable uses, the most recent groundwater samples (June 2011) show that current concentrations of contaminants do not exceed the GA standard. Therefore, the groundwater pathway is not an exposure pathway of concern from a health risk perspective under existing and foreseeable land use conditions.

6.1.3 Soil Vapor Intrusion

SVI is the process by which volatile chemicals migrate from a subsurface source into the indoor air of overlying structures. Evaluations of the SVI pathways are often confounded by VOCs in indoor air which are present in part or all due to anthropogenic (background) sources and not the result of the migration of a subsurface source through soil vapor into an enclosed space. Therefore, the evaluation of the SVI pathway was performed by comparing sub-slab vapor sampling data, indoor air sampling data, outdoor (ambient) air sampling data, and air guideline values. The NYSDOH Guidance for evaluating the potential for vapor migration into indoor air was also followed for compounds that have been assigned to the soil vapor indoor air decision matrices (available for carbon tetrachloride, 1,1-DCE, cis-1,2-DCE, PCE, 1,1,1-TCA, TCE and vinyl chloride) (NYSDOH, 2006 and 2007). Recommendations resulting from the decision matrices include: no further action, monitor, and mitigate.

PCE, the primary contaminant of concern at the site was detected at a concentration of 130,000 μ g/m³ in a RI sample collected from below the former dry cleaning facilities concrete slab. Although the indoor air analytical result for PCE of 35.8 μ g/m³ was below the NYSDOH regulatory guidance value for PCE of 100 μ g/m³, the NYSDOH recommends mitigation based on the soil vapor intrusion matrix for PCE (Matrix 2), considering both soil vapor and indoor air concentrations (NYSDOH, 2006).

7.0 SUMMARY AND CONCLUSIONS

7.1 SUMMARY

The Site is located at 37 East Pulteney Street in a mixed residential/commercial neighborhood, in the City of Corning, Steuben County, New York. The property consists of 0.5 acres including a 1 story concrete block retail building and a large parking lot. Between the early 1970's and at least the late 1980s, a dry cleaner operated on the property. The former dry cleaner space was subsequently leased and used as a delicatessen. This business vacated the property in late 2011 and the former dry cleaners space is currently vacant (January 2012).

A RI was completed on the property between June 2010 and January 2012. RI field work included: soil sampling via borings and hand sampling methods, groundwater sampling from direct-push borings and permanent monitoring wells, and soil vapor sampling from an interior sub-slab point and an exterior vapor extraction well. Based on the results of the work conducted:

- PCE concentrations in soil exceeded the NYS SCGs
- PCE concentrations in groundwater exceeded the NYS groundwater criteria of 5 ug/L in onsite wells. Groundwater sampled downgradient of the site did not show contaminants exceeding the groundwater criteria.
- PCE in sub-slab soil vapor exceeded the NYSDOH-recommended value indicating mitigation.

Based on the RI analytical findings two IRMs were conducted at the Site as part of the RI:

- In December 2010, a soil-removal IRM was completed to mitigate impacted soils behind (north) of the former dry cleaner space. The IRM included excavation and off-site disposal of contaminated soil and soil documentation sampling from the excavation limits. The IRM removed accessible soils with PCE-impact and subsequent PCE concentrations in post-IRM onsite groundwater samples (June 2011) were less than the SCGs
- In January 2012, a soil vapor extraction system was implemented. The system draws soil
 vapor from a sub-slab extraction point located within the former dry cleaner space and will
 serve to reduce residual PCE impact to sub-slab soils and to limit potential human exposure to
 impacted sub-slab vapors.

7.2 CONCLUSIONS

An RI was conducted at the Loohns Corning site to evaluate the extent of PCE contamination in soils located north of the building in anticipation of conducting an IRM and to determine if contamination was migrating off site via the groundwater pathway. Findings from the RI confirmed the presence of PCE above the NYS SCGs in soil and groundwater. Based on these findings an IRM was conducted to remove contaminated soil identified during the RI. Post excavation sample results were below the SCGs at all but one location, which was collected on the northern property boundary at a depth of 4 feet. Further excavation at this location was impeded by a building located on the abutting property.

Groundwater sampling results indicate that chlorinated VOCs present in shallow (i.e. overburden) groundwater attenuate to near or below their respective SCGs by the time groundwater reaches the southern site property boundary. Post IRM samples collected from the two onsite monitoring wells in June 2011 show that PCE concentrations do not exceed the NYS groundwater standard in either well. The contaminated soil that was removed from the site appears to represent the most significant source of PCE contamination on the Site. PCE concentrations in groundwater should continue to diminish as a result of the contaminant source removal. Direct contact with contaminated soils and water is not anticipated to be a health risk in the vicinity of the Site because there is no known ongoing or planned excavation at the Site, and the facility is served by public water.

Soil vapor intrusion of PCE into indoor air is the primary health risk associated with the Site. PCE in sub-slab soil and shallow groundwater appears to be volatilizing to soil vapor, as is indicated by the concentrations of PCE found in the onsite sub-slab vapor sample. The NYSDOH guidance recommends mitigation based on the soil vapor intrusion matrix for PCE (Matrix 2), considering both soil vapor concentrations and the indoor air concentration detected during the SC investigation.

Based on the findings, an IRM designed to reduce the concentration of PCE in soil vapor at the Site was implemented. This will minimize the potential for exposure via indoor air.

8.0 DEVELOPMENT OF REMEDIAL ACTION OBJECTIVES, GENERAL RESPONSE ACTIONS, AND CONTAMINATION REQUIRING REMEDIATION

RAOs form the basis for identifying remedial technologies and developing RAs. RAOs are medium-specific or operable unit-specific objectives for the protection of public health and the environment, and are developed based on contaminant-specific SCGs (NYSDEC, 2002).

Site-specific contaminants of concern were determined by comparison of contaminant levels to Chemical-Specific SCGs, which include 6 NYCRR Parts 700-706 Water Quality Standards (NYSDEC, 1998), Technical and Operational Guidance Series 1.1.1 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations (NYSDEC, 1998), and 6 NYCRR Part 375 Remedial Program Soil Cleanup Objectives (NYS, 2006).

The RI results indicate that groundwater contamination exceeded Chemical-Specific SCGs as a result of source area soils present at the Site. The nature and extent of site-related contamination is discussed in Subsections 4.1 and 4.2, and presented in Figures 4.1 and 4.2.

RAOs have been developed consistent with the remedy selection process set forth in 6 NYCRR Part 375 (NYS, 2006) and DER-10 (NYSDEC, 2010). The goal for remedial action is to restore the Site to pre-disposal/pre-release conditions, to the extent practicable. At a minimum, the remedy shall eliminate or mitigate all significant threats to public health and the environment presented by the contaminants disposed at the Site through the proper application of scientific and engineering principles (NYSDEC, 2010).

8.1 REMEDIAL ACTION OBJECTIVES FOR SUBSURFACE SOIL

The QHHEA presented in Subsection 3.14, NYSDEC Technical Guidance (NYSDEC, 2010), did not identify subsurface soil as a potentially complete human health exposure pathway at, or in the vicinity of, the Site. However, subsurface soil contamination continues to be a source of contamination for groundwater and for soil vapor.

The RAOs for subsurface soils at, and in the vicinity of, the Site are:

- prevent ingestion/direct contact with contaminated soil
- prevent soil vapor migration into occupied building spaces
- prevent migration of contaminants in groundwater.

8.2 REMEDIAL ACTION OBJECTIVES FOR GROUNDWATER

The QHHEA did not identify groundwater as an exposure pathway of concern from a health risk perspective under the existing and foreseeable land use conditions. As an apparent result of the soil removal IRM, levels of contaminants in Site groundwater have dropped below GA standards.

The RAOs for groundwater at, and in the vicinity of, the Site are:

- prevent ingestion of groundwater with contaminant levels exceeding drinking water standards
- prevent direct contact with, or inhalation of volatiles, from contaminated groundwater
- restore groundwater aquifer to pre-disposal/pre-release conditions, to the extent practicable

8.3 IDENTIFICATION OF GENERAL RESPONSE ACTIONS AND EXTENT OF CONTAMINATION REQUIRING REMEDIAL ACTION

General response actions describe those actions that will satisfy the RAOs (USEPA, 1988). General response actions may include treatment, containment, excavation, disposal, institutional actions, or a combination of these. Like RAOs, general response actions are medium-specific. The general response actions presented in the following subsections address those media identified as potential threats to human health and the environment at the Site:

- subsurface soil contamination at the Site
- groundwater contamination at and downgradient of the Site
- potential soil vapor intrusion at Site

Site-specific RAOs were developed to address the contamination requiring remedial action for subsurface soil and groundwater, including the identified contaminant source areas.

8.3.1 General Response Actions for Soil

The following general response actions would address the RAOs identified for soil:

- no action
- in-situ treatment
- removal

These general response actions are appropriate for site-specific soil contamination requiring remediation.

8.3.2 General Response Actions for Groundwater

The following general response actions would address the RAOs identified for groundwater:

- no action
- long term monitoring
- in-situ Treatment

These general response actions are appropriate for site-specific groundwater contamination requiring remediation.

8.4 CONTAMINATION REQUIRING REMEDIAL ACTION

This subsection identifies the extent of contaminated media to which the RAOs and general response actions identified above and within the RAs developed in Section 9.0 apply. The nature and extent of site-related contamination is discussed in Subsections 4.1 and 4.2.

In general, the contaminant source area is located in the vicinity of the former Loohns Cleaners Launderers, Inc. building. During the IRM performed in December 2010, approximately 50 tons of soil were removed from behind the dry cleaners. The soil excavation extended from existing grade to approximately 2.5 to 6 feet bgs, depending on location. Accessible source area soils were removed, and leaching of contaminants to groundwater was mitigated. Residual contamination is present beneath the building in the vicinity of the former dry cleaners as evidenced by sub-slab soil vapor analysis.

The RAs developed in Section 9.0 consider the distribution of the contaminants, both horizontally and vertically, co-location of various types of contaminants, and the distribution of contaminants by media.

9.0 IDENTIFICATION AND SCREENING OF TECHNOLOGIES

This section presents the identification and screening of potential remedial technologies. Technologies are identified for the purpose of attaining the RAOs established in Subsections 8.1 and 8.2. Identified technologies correspond to the categories of general response actions described in Subsection 8.3.

Following identification, candidate technologies are screened based on their applicability to site- and contaminant-limiting characteristics. The purpose of the screening is to produce an inventory of suitable technologies that can be assembled into RAs capable of mitigating actual or potential risks at the Site. Potential technologies representing a range of general response actions are considered. The result of technology screening is a list of potential remedial technologies that may be developed into candidate RAs.

9.1 TECHNOLOGY IDENTIFICATION

Table 9.1 summarizes remedial technologies and associated process options identified for screening. These technologies were identified based on USEPA's guidance for Conducting RI/FS (USEPA, 1988) and on experience preparing FS documents and performing site remediation. General response actions were developed for soil and groundwater in Section 8.0.

9.2 TECHNOLOGY SCREENING

The technology screening process reduces the number of potentially applicable technologies and process options by evaluating factors that may influence process-option effectiveness and implementability. This overall screening is consistent with guidance for conducting an FS under Comprehensive Environmental Response, Compensation, and Liability Act (USEPA, 1988). Effectiveness and implementability are incorporated into two screening criteria: waste- and site-limiting characteristics. Waste-limiting characteristics consider the suitability of a technology based on contaminant types, individual compound properties (e.g., volatility, solubility, specific gravity, adsorption potential, and biodegradability), and interactions that may occur between mixtures of compounds. Site-limiting characteristics consider the effect of site-specific physical features on the implementability of a technology, such as site topography and geology, the location of buildings and

underground utilities, available space, and proximity to sensitive operations. Technology screening serves a two-fold purpose of screening out technologies whose applicability is limited by site-specific waste or site considerations, while retaining as many potentially applicable technologies as possible.

Table 9.1 presents the technology-screening process. Technologies and process options judged ineffective or prohibitively difficult to implement have been eliminated from further consideration. The technologies retained following screening represent an inventory of technologies considered most suitable for remediation of soil and groundwater at the Site.

10.0 DEVELOPMENT AND SCREENING OF ALTERNATIVES

The retained technologies identified in Table 9.1 are considered technically feasible and applicable to the waste types and physical conditions at the Site. These medium-specific technologies have been assembled into potential Site-specific RAs capable of achieving the RAOs for the contaminated media requiring remediation.

10.1 DEVELOPMENT OF REMEDIAL ALTERNATIVES FOR THE SITE

The retained remedial technologies presented in Table 9.1 have been combined into the following RAs:

- Alternative 1: No Action
- Alternative 2: No Further Action (Continued Operation of Modified Soil Vapor Extraction System and Land Use Restictions
- Alternative 3: Restoration to Pre-Disposal Conditions

10.1.1 Alternative 1: No Further Action

This alternative will be used as a baseline for comparison to other RAs. No further action would be taken to address contaminated media at the Site.

10.1.2 Alternative 2: No Further Action (Continued Operation of Modified Soil Vapor Extraction System and Land Use Restrictions)

Alternative 2 includes continued operation of the modified SVE system and institutional controls in accordance with NYCRR Part 375 Restricted-Commercial Use to prevent exposure to contamination left in-place. Under this alternative the single SVE point installed as an IRM to protect indoor air quality and reduce residual sub-slab solvent concentrations would be maintained. Based upon results of soil vapor sampling conducted previously at the site, soil vapor intrusion poses a continuing threat to receptors within the building, although indoor air sample results were less than the NYS SCGs. The SVE point consists of a blower exhausting to the atmosphere from an extraction well consist of a slotted pipe installed at an approximate depth of 2-feet bgs. This depth was based on the depth of PCE

contamination found during the soil excavation and capping IRM completed in 2010. This alternative is expected to have little or no impact towards achieving unrestricted cleanup objectives.

Institutional controls would be implemented to restrict future use of the Site as part of an environmental easement. Implementation of the environmental easement would include the development of a Site Management Plan which would set forth the institutional controls necessary to manage exposure to contamination remaining at the Site. Institutional controls would likely include implementation of land-use restrictions restricting subsurface activity, prohibiting installation of drinking water wells in the area of contamination, and restricting changes in zoning of the Site (e.g., change from commercial to residential use). Land-use restrictions would be implemented through legal instruments such as deeds and/or water well permitting processes.

10.1.3 Alternative 3: Restoration to Pre-Disposal Conditions

Alternative 3 includes:

- demolition of the building at 37 East Pulteney
- excavation and off-site disposal of on-site soils including all soil to bedrock within the extent of the building footprint
- site restoration
- treating overburden and bedrock groundwater contamination in-situ through chemical oxidation.

Under this alternative, on-site soils would first be excavated and then transported off-site for treatment and/or disposal.

Imported clean fill would be used to establish the designed finish grades.

Prior to backfilling, chemical oxidation reagent would be placed and mixed with backfill material below the water table. Approximately 80,000 pounds of chemical oxidant (Carus Remediation Technologies' RemOx® L ISCO Reagent is used for estimating purposes) would be mixed with backfill material using the excavator bucket.

10.2 SCREENING OF ALTERNATIVES

This subsection presents a screening of the RAs developed for soil and groundwater. Consistent with DER-10, the developed medium-specific RAs are screened on the basis of whether they are technically implementable for the Site (Implementability) and whether they can meet the RAOs (Effectiveness). Additionally, based upon available information, the relative cost of each RA is also evaluated. Those RAs which are not technically implementable, would not achieve RAOs for the Site, or would incur costs significantly higher than other RAs without providing greater effectiveness or implementability, are eliminated from further evaluation.

The media-specific screening of RAs is presented in Table 10.1. The No Action alternative is not evaluated according to the media-specific screening criteria, as it passes through screening to be evaluated during the detailed analysis as a baseline for other retained alternatives.

Alternative 2: No Further Action (continued Soil Vapor Extraction with Land Use Restrictions). Addresses immediate potential threats to onsite receptors as well as potential future threats due to changing site use.

Alternative 3: Restoration to Pre-Disposal Conditions would be effective in the short term at reducing VOC concentration on site below the unrestricted use criteria. The excavation of contaminated site soils and in-situ chemical oxidation of overburden and bedrock groundwater would eliminate VOC impacts on site soil, groundwater and soil vapor. This alternative would be readily implemented pending the demolition and removal of the building. Also, the unknown depth of contaminants in bedrock groundwater would require further site characterization prior to performing in-situ chemical oxidation of bedrock groundwater. This alternative would have high costs to implement due to the relatively large quantities of soil to excavate and haul, and the potentially large quantities of chemical oxidant required to treat contaminants that may be present in overburden and bedrock groundwater. Furthermore, treatment of overburden groundwater may be difficult due to the low hydraulic conductivity of the tight site soils, and treatment of bedrock groundwater may be difficult given the unknown infiltration characteristics between the overburden-bedrock interface layer and bedrock.

11.0 DETAILED ANALYSIS OF ALTERNATIVES

This section presents the detailed analyses of remedial action alternatives for soil and groundwater at the Site. The detailed analysis is intended to provide decision-makers with relevant information to aid in selection of a site remedy. The detailed description of technologies or processes used for each alternative includes, where appropriate, a discussion of limitations, assumptions, and uncertainties for each component. The descriptions provide a conceptual design of each alternative and are intended to support alternatives-comparison and cost-estimation.

The detailed analysis of each alternative includes an evaluation using the criteria identified in DER-10 (NYSDEC, 2010) and Subpart 375-1.8(f) (NYS, 2006). A description of each of the evaluation criteria are presented in the following paragraphs.

Compliance with Standards, Criteria, and Guidance. Compliance with SCGs addresses whether or not a remedy will meet applicable environmental laws, regulations, standards, and guidance. SCGs for the Site will be listed along with a discussion of whether or not the remedy will achieve compliance. For those SCGs that will not be met, there will be a discussion and evaluation of the impacts of each, and whether waivers are necessary. Chemical-specific SCGs were previously identified in this FS Report. Location- and Action-specific SCGs will be identified for each alternative in this Section and are presented in Table 11.1.

Overall Protection of Public Health and the Environment. This criterion is an evaluation of the remedy's ability to protect public health and the environment, assessing how risks posed through each existing or potential pathway of exposure are eliminated, reduced or controlled through removal, treatment, engineering controls or institutional controls. The remedy's ability to achieve each of the RAOs will be evaluated.

Short-term Impacts and Effectiveness. The potential short-term adverse impacts and risks of the remedy upon the community, the workers, and the environment during the construction and/or implementation are evaluated. A discussion of how the identified adverse impacts and health risks to the community or workers at the Site will be controlled, and the effectiveness of the controls, will be presented, along with a discussion of engineering controls that will be used to mitigate short term

impacts (e.g., dust control measures). The length of time needed to achieve the remedial objectives

Long-term Effectiveness and Permanence. This criterion evaluates the long-term effectiveness of the remedy after implementation. If wastes or treated residuals remain on-site after the selected remedy has been implemented, the following items will be evaluated:

1. magnitude of remaining risks

will be estimated.

- 2. adequacy of the engineering and institutional controls intended to limit the risk
- 3. reliability of these controls
- 4. ability of the remedy to continue to meet RAOs in the future

Effectiveness of alternatives in protecting human health and the environment after RAOs are met will be evaluated. This will include an evaluation of the permanence of the alternative, the magnitude of residual risk, and the adequacy and reliability of controls required to manage wastes or residuals remaining at the Site.

Reduction of Toxicity, Mobility, or Volume with Treatment. The remedy's ability to reduce the toxicity, mobility or volume of site contamination will be evaluated. Preference will be given to remedies that permanently and significantly reduce the toxicity, mobility, or volume of the wastes at the Site.

Implementability. The technical and administrative feasibility of implementing the remedy will be evaluated. Technical feasibility includes the difficulties associated with the construction and the ability to monitor the effectiveness of the remedy. For administrative feasibility, the availability of the necessary personnel and material will be evaluated along with potential difficulties in obtaining specific operating approvals, access for construction, or other issues.

Cost-Effectiveness. Capital and Site Management costs, including Operation, Maintenance and Monitoring costs, will be estimated for the remedy and presented on a present worth (PW) basis.

Community Acceptance. The public's comments, concerns and overall perception of the remedy will be evaluated following a public meeting presenting the proposed remedial action plan in a format

MACTEC Engineering and Consulting, P.C.., Project No. 3612102148

that responds to questions that are raised (i.e., the responsiveness summary). This criterion is not evaluated in this FS Report.

Land Use. The current, intended, and reasonably anticipated future land uses of the Site and its surroundings will be considered in the evaluation of RAs.

11.1 COST ANALYSIS PROCEDURES

Estimated costs presented in this FS Report are intended to be within the target accuracy range of minus 30 to plus 50 percent of actual cost (USEPA, 1988). Costs are presented as a PW and as a total cost for up to a 30-year period.

A summary of the costs for each alternative identifying capital and PW costs are included in each alternative's cost description. Each cost estimate includes a PW analysis to evaluate expenditures that occur over different time periods. The analysis discounts future costs to a PW and allows the cost of RAs to be compared on an equal basis. PW represents the amount of money that, if invested now and disbursed as needed, would be sufficient to cover costs associated with the remedial action over its planned life. A discount rate of 5 percent was used to prepare the cost estimates.

Consistent with USEPA FS cost estimating guidance (USEPA, 2000), the RA cost estimates include costs for project management, remedial design, construction management, technical support, and scope contingency.

Project management includes planning and reporting, community relations support during construction or Operation and Maintenance (O&M), bid or contract administration, permitting (not already provided by the construction or O&M contractor), and legal services outside of institutional controls.

Remedial design applies to capital cost and includes services to design the remedial action. Activities that are part of remedial design include pre-design collection and analysis of field data, engineering survey for design, treatability study/pilot-scale testing, and the various design components such as design analysis, plans, specifications, cost estimate, and schedule.

11-3

Construction management applies to capital cost and includes services to manage construction or installation of the remedial action, except any similar services provided as part of regular construction activities. Activities include review of submittals, design modifications, construction observation or oversight, engineering survey for construction, preparation of O&M manual, documentation of quality control/quality assurance, and record drawings.

Technical support during O&M includes services to monitor, evaluate, and report progress of remedial action. This includes oversight of O&M activities, update of O&M manual, and progress reporting and is generally between 10 percent and 20 percent of total annual O&M costs depending on complexity of the remedial action (USEPA, 2000).

Scope contingency represents project risks associated with the feasibility-level of design presented in this FS Report. This type of contingency represents costs, unforeseeable at the time of estimate preparation, which are likely to become known as the remedial design proceeds. Scope contingency ranges from 10 to 25 percent, with higher values appropriate for alternatives with greater levels of cost growth potential (USEPA, 2000).

Project management, remedial design, and construction management costs presented in this FS Report are based upon the following matrix presented in the USEPA FS cost estimating guidance (USEPA, 2000).

Professional and Technical Costs as Percentage of Direct Costs										
Indirect Cost	<\$100K (%)	\$100K-\$500K (%)	\$500K-\$2M (%)	\$2M-\$10M (%)	>\$10M (%)					
Project Management	10	8	6	5	5					
Remedial Design	20	15	12	8	6					
Construction Management	15	10	8	6	6					

11.2 GENERAL ASSUMPTIONS

Details and assumptions pertaining to the cost estimates are included in each alternative's cost description. In addition to the alternative-specific assumptions, the following cost assumptions were applied, as applicable:

- long-term activities would be conducted for no more than 30 years
- institutional control inspections would be conducted periodically over 30 years

The following RAs developed in Section 10.0 were retained for detailed analysis.

Alternative 1: No Action

Alternative 2: No Further Action (continued operation of SVE with Land Use Restrictions)

Alternative 3: Restoration to Pre-Disposal Conditions

The following subsections present a conceptual design and cost estimate for each of these RAs and a discussion of each alternative relative to the evaluation criteria as set forth in DER-10 (NYSDEC, 2010).

11.3 ALTERNATIVE 1: NO ACTION

This alternative would not include any further actions to address soil and groundwater contamination at the Site.

11.3.1 Detailed Evaluation of Alternative 1

Compliance with Standards, Criteria, and Guidance. This alternative would not meet Chemical-specific SCGs because it would not address soil contamination in excess of the 6 NYCRR Part 375 Remedial Program SCGs for unrestricted use (NYS, 2006) or groundwater in excess of Class GA groundwater standards. This alternative would not trigger any Location- or Action-specific SCGs.

Overall Protection of Public Health and the Environment. This RA would not protect public health and the environment through eliminating, reducing, or controlling existing or potential exposure pathways through removal, treatment, engineering controls, or institutional controls. This RA would not achieve the RAOs for soil and groundwater.

Short-term Effectiveness. Because no further action would be taken, this alternative would not result in short-term adverse impacts and risks to the community, site workers, and the environment.

Long-term Effectiveness and Permanence. This alternative would not include actions to address contaminated soils and groundwater at or in the vicinity of the Site. This remedy does not currently

MACTEC Engineering and Consulting, P.C.., Project No. 3612102148

meet RAOs for soil and groundwater and, due to the properties of the Site-specific conditions (e.g., longevity of VOCs bound in the soils), would not be expected to meet RAOs in the future.

Reduction of Toxicity, Mobility, or Volume with Treatment. This alternative would not result in the reduction of toxicity, mobility, or volume of soil or sediment contamination through treatment.

Implementability. No further action would be conducted, therefore there are no technical difficulties associated with this alternative. However, obtaining regulatory and/or public approval of this alternative would be difficult.

Land Use. The current and reasonably anticipated future land use of the Site is for commercial purposes. Because no further action would be taken as part of this alternative and there would be no restrictions to future use, this alternative would not be protective of potential commercial workers conducting subsurface work at the Site.

Cost. There are no costs associated with this alternative.

11.4 ALTERNATIVE 2: MODIFIED SVE WITH LAND USE RESTRICTIONS

Alternative 2 consists of the following components:

- institutional controls
- modified sub slab ventilation system
- periodic institutional control and SVE system inspections and reporting

Institutional Controls. Institutional controls would be implemented to restrict future use of the Site as part of an environmental easement. Implementation of the environmental easement would include the development of a Site Management Plan which would set forth the institutional controls necessary to manage exposure to contamination remaining at the Site. Institutional controls would likely include implementation of land-use restrictions restricting subsurface activity, prohibiting installation of drinking water wells in the area of contamination, and restricting changes in zoning of the Site (e.g., change from commercial to residential or industrial use). Land-use restrictions would be implemented through legal instruments such as deeds and/or water well permitting processes.

MACTEC Engineering and Consulting, P.C.., Project No. 3612102148

Modified Soil Vapor Extraction System. The soil vapor extraction installation would consist of a single extraction point inside the Loohn's Corning building. The extraction system would consist of a slotted pipe installed to approximately 6-feet in depth through the existing building slab. A blower would vent the exhaust to atmosphere.

Long-term Monitoring. Long-term monitoring would consist of the sampling and analysis of existing on-site and off-site monitoring wells for VOCs. It is assumed that long-term monitoring would be conducted on a periodic basis for thirty years, and that several groundwater monitoring wells would be included in the program.

Periodic Institutional Control Inspections and Reporting. Periodic inspections would be conducted to ensure deed and land-use restrictions are being enforced. A report would be prepared documenting the inspection and the conditions observed.

11.4.1 Detailed Evaluation of Alternative 2

Compliance with Standards, Criteria, and Guidance. This alternative would not meet Chemical-specific SCGs because it would not substantially address soil contamination in excess of the 6 NYCRR Part 375 Remedial Program SCGs for unrestricted use (NYS, 2006) or groundwater in excess of Class GA groundwater standards. Institutional controls would be implemented in accordance with Action- and Location-specific SCGs.

Overall Protection of Public Health and the Environment. This RA would protect public health and the environment through eliminating, reducing, or controlling existing or potential exposure pathways through engineering and institutional controls. This RA would not achieve the RAOs for soil and groundwater in the short-term.

Short-term Effectiveness. Because no substantial active remediation would be conducted as part of this alternative, it would not result in short-term adverse impacts and risks to the community, site workers, and the environment.

Long-term Effectiveness and Permanence. This alternative would not include actions to address groundwater at or in the vicinity of the Site. Soils would not be substantially addressed either. This

remedy does not currently meet RAOs for soil and groundwater and, due to the properties of the Sitespecific conditions (e.g., longevity of VOCs bound in the silt and organic soils), would not be expected to meet RAOs in the future.

Reduction of Toxicity, Mobility, or Volume with Treatment. This alternative would result in a small reduction of toxicity, mobility, or volume of soil or groundwater contamination through treatment. The modified SVE point would reduce contaminant mobility to the building. A small reduction in mobility and toxicity would occur as a result of the single SVE point, although this reduction is not expected to be notable.

Implementability. Installation of the SVE system would create minimal site disturbance and the installation could likely be completed in two days or less.

Land Use. The current and reasonably anticipated future land use of the Site is for commercial purposes. This alternative would be protective of potential site occupants including occupants and customers.

Cost. The capital cost estimate for this Alternative is \$19,000. The PW of this Alternative is estimated to be \$64,000. A summary of the costs associated with this alternative is presented in Table 11.3. Detailed cost analysis backup is provided in Appendix F.

11.5 ALTERNATIVE 3: RETURN TO PREDISPOSAL CONDITIONS

Alternative 3 consists of the following components:

- pre-design investigation
- mobilization and temporary facilities and controls
- demolition of the building
- excavation and off-site treatment or disposal or both of on-site soils, including all soil to bedrock within the extents of the property east of the historic former site building's western extents and soil removals
- in-situ chemical oxidation of bedrock groundwater
- site restoration

Pre-Design Investigations and Studies. Pre-design investigations and/or studies would be conducted to support the remedial design, and would include, but not be limited to:

- subsurface soil sampling and analysis to provide characterization for treatment/disposal purposes
- asbestos and lead analyses study in the Site building

Mobilization and Temporary Facilities and Controls. Site preparation, mobilization, and temporary facilities and controls would include activities required to prepare the Site for remediation, including, but not limited to:

- delivery and setup of site trailers
- installation of temporary utilities
- construction of wastewater treatment facilities and equipment decontamination facilities
- implementation of erosion and sediment control measures
- survey layout of the various work extents

Demolition of the Existing Building and Foundation. Prior to excavating contaminated site soils, the existing building and foundation would be demolished, along with pavement and concrete surface covers overlying the excavation area. A treatment trailer would be required for on-site for treatment of contaminated groundwater generated during dewatering activities. The size would depend on a predesign analysis.

Excavation and Off-Site Treatment or Disposal or Both of Site Soils. On-site soils would be excavated and transported off-site for treatment or disposal, or both. This alternative assumes that wastewater generated as a result of excavation would be treated and discharged on-site; this alternative also assumes that site space may not be available to dewater soils prior to transport, and hence an absorbent has been included in the cost estimate for excavated saturated zone soils. This alternative also assumes that the approximate excavation area would include the footprint of the existing building to a depth of 6 feet. The soils behind the building were removed during a previous IRM. The excavation would be shored along its perimeter both for space considerations on site and to protect and support adjacent buildings. Dewatering throughout excavation will support the identification of fractures in the bedrock surface for infiltration of chemical oxidant into the bedrock; dewatering will be discontinued once chemical oxidation activities commence.

Approximately 2,950 cubic yards of soil would be excavated. Per DER-10, nine excavation floor samples would be taken (at a rate of 1 sample per 900 square feet); no side wall sampling would be taken due to the use of sheet piling.

In-Situ Chemical Oxidation of Bedrock Groundwater. Assuming the pre-design investigation activities do not reveal high concentrations of VOCs deep in bedrock groundwater, chemical oxidant will be administered to the excavation and allowed to infiltrate into the bedrock. It is assumed that approximately 80,356 pounds of oxidant would be added to the excavation to treat groundwater contamination in bedrock beneath the site. It is assumed that contaminant concentrations in bedrock may extend to a depth of 10 feet within bedrock; the vertical extents of bedrock contamination would need to be investigated during pre-design investigations. A permanganate natural oxidant demand of 2 backfill grams/kg has been assumed for site soils and (http://www.ncbi.nlm.nih.gov/pubmed/17140696).

Site Restoration. Site restoration would include backfilling, compacting, grading the excavation area, and paving the area impacted by the excavation.

11.5.1 Detailed Evaluation of Alternative 3

Compliance with Standards, Criteria, and Guidance. Alternative 3 would meet Chemical-specific SCGs for soil and groundwater by removing soil contamination on-site in excess of the Protection of Groundwater SCGs, extracting overburden and interface groundwater in excess of water quality standards and treating bedrock groundwater in excess of water quality standards. Implementation of excavation, transportation, and treatment and/or disposal would be implemented in accordance with Action- and Location-specific SCGs.

Overall Protection of Public Health and the Environment. Alternative 3 would protect public health and the environment through eliminating both the source of soil, groundwater and soil vapor contamination and residual contamination. This remedial action would achieve the RAOs for soil, onsite groundwater, and soil vapor in the short-term and reduce the time to achieve RAOs for potentially contaminated, downgradient, and off-site groundwater and soil vapor.

Short-term Effectiveness. Alternative 3 includes excavation and off-site treatment or disposal, or both of the on-site soils and application of chemical oxidant to the open excavation. Short-term adverse impacts and risks to the community, site workers, and the environment are possible during the excavation and transportation of soils on-site and at adjacent properties. However, these risks could be controlled through coordination and communication, erosion, sedimentation, and dust control, and a comprehensive contractor health and safety program.

Long-term Effectiveness and Permanence. Alternative 3 would provide permanent reduction of site-related soil contamination through the excavation and off-site treatment and disposal of soils on-site and at adjacent properties. This alternative would rely upon natural attenuation to degrade downgradient groundwater VOC contamination and potential soil vapor contamination. The time required for Alternative 3 to achieve remediation goals for downgradient groundwater would be significant.

Reduction of Toxicity, Mobility, or Volume with Treatment. Alternative 3 would provide reduction in the mobility of VOC soil contamination, but would only provide reduction in toxicity and volume if off-site treatment is conducted prior to disposal. Removal of soils on-site and at adjacent properties, extraction of source area groundwater, and in-situ treatment of bedrock groundwater would result in long-term reduction in the toxicity, mobility, and volume of groundwater contamination migrating off site.

Implementability. Implementation of Alternative 3 would be technically difficult due to the presence of source area contamination beneath an adjacent building, the limited site area available to support remediation activities, the relatively shallow water table which would require excavation dewatering, and the difficulty in treating bedrock groundwater in-situ through infiltration. However, implementation from a practical perspective may be prohibitively difficult. The site is currently occupied by three tenants.

Land Use. The current and reasonably anticipated future land use of the Site is for commercial purposes. This alternative would be protective of commercial workers.

Cost. The capital cost estimate for Alternative 3 is \$3,720,000. The PW of this Alternative is estimated to be \$3,720,000, as well. A summary of the costs associated with this alternative is presented in Table 11.2. Detailed cost analysis backup is provided in Appendix F.

12.0 COMPARATIVE ANALYSIS OF ALTERNATIVES

The comparative analysis evaluates the relative performance of each alternative using the same criteria by which the detailed analysis of each alternative was conducted. The purpose of the comparative analysis is to identify the advantages and disadvantages of each alternative relative to one another to aid in selecting an overall remedy for the Site.

The comparative analysis includes a narrative discussion of the strengths and weaknesses of the alternatives relative to one another with respect to each criterion, and how reasonable variations of key uncertainties could change the expectations of their relative performance, as applicable. The comparative analysis presented in this document uses a qualitative approach to comparison, with the exceptions of comparing alternative costs and the required time to implement each alternative.

A comparison of the capital and long-term costs associated with the RAs is presented in Table 12.1. A summary of the performance of each of the RAs presented in Section 11.0 is provided in Table 12.2. Detailed cost analysis backup is provided in Appendix F.

Compliance with Standards, Criteria, and Guidance.

Alternatives 1 and 2 would not meet Chemical-specific SCGs because they would not address contamination at and in the vicinity of the Site which exceeds applicable SCG values. Alternative 2 would rely upon institutional and engineering controls to prevent future exposure to soil contamination for soils exceeding the Part 375 Industrial Use SCGs remaining at the Site.

Alternative 3 would meet all chemical-specific SCGs and return the Site to its pre-disposal condition.

Implementation of RAs would be conducted in accordance with applicable municipal, state, and federal guidance and regulations. Table 11.1 presents a summary of Location- and Action-Specific SCGs associated with RAs evaluated in this Section.

Overall Protection of Public Health and the Environment. Alternative 1 would not protect public health through eliminating, reducing, or controlling existing or potential exposure pathways through

MACTEC Engineering and Consulting, P.C.., Project No. 3612102148

removal, treatment, engineering controls, or institutional controls. This RA would not achieve the RAOs for soil and groundwater.

Alternative 2 would rely upon institutional and engineering controls to prevent human exposure to VOC soil and groundwater contamination, and would allow for continued industrial use of the property in accordance with a Site Management Plan.

Alternative 3 would be most protective of public health and the environment through implementation of remedial actions to immediately and permanently reduce on-site soil and groundwater contamination. Alternative 4 would allow for unrestricted use of the Site.

Short-term Effectiveness. Because no action would be taken, Alternative 1 would not result in short-term adverse impacts and risks to the community, site workers, and the environment. Alternative 2 would include the implementation of institutional and engineering controls, and would result in a short term reduction in potential exposure pathways.

Alternative 3 includes remedial activities which would result in potential short-term risks to the community, site workers, and the environment. However, the risks could be addressed through coordination and communication with the property owner(s), erosion, sedimentation and dust control where applicable, and preparation and implementation of a comprehensive contractor health and safety plan. It is estimated that this alternative could be fully implemented in less than one year.

Long-term Effectiveness and Permanence. Alternatives 1 and 2 would not include actions to address contaminated soils and groundwater at and in the vicinity of the Site. These remedies do not currently meet RAOs for soil and groundwater and, due to the magnitude of the source area contamination, would not be expected to meet RAOs in the near future.

Alternative 3 would be expected to provide significantly increased contamination reduction in the long-term as compared to the other alternatives.

Reduction of Toxicity, Mobility, or Volume with Treatment. Alternatives 1 and 2 would not result in a significant reduction of toxicity, mobility, or volume of soil or groundwater contamination through treatment.

Alternative 3 would result in the reduction of mobility and volume of soil and groundwater contamination at and in the vicinity of the Site through excavation and off-site treatment and/or in-situ remediation of VOC contaminated soils present at the Site. This alternative would not result in a reduction in the toxicity of contamination unless contaminated soil removed from the Site received off-site treatment prior to disposal.

Implementability. Alternative 1 includes no action, therefore there are no technical difficulties associated with this alternative. However, obtaining regulatory approval of this alternative would be difficult.

Alternative 2 includes only the implementation of institutional and engineering controls, and therefore would not be technically difficult to implement. The largest impediment would be receiving owner consent for the installation of the SVE point and institutional controls.

Alternative 3 is anticipated to be very difficult to implement due to the site being used by multiple commercial tenants. The businesses would be required to relocate entirely.

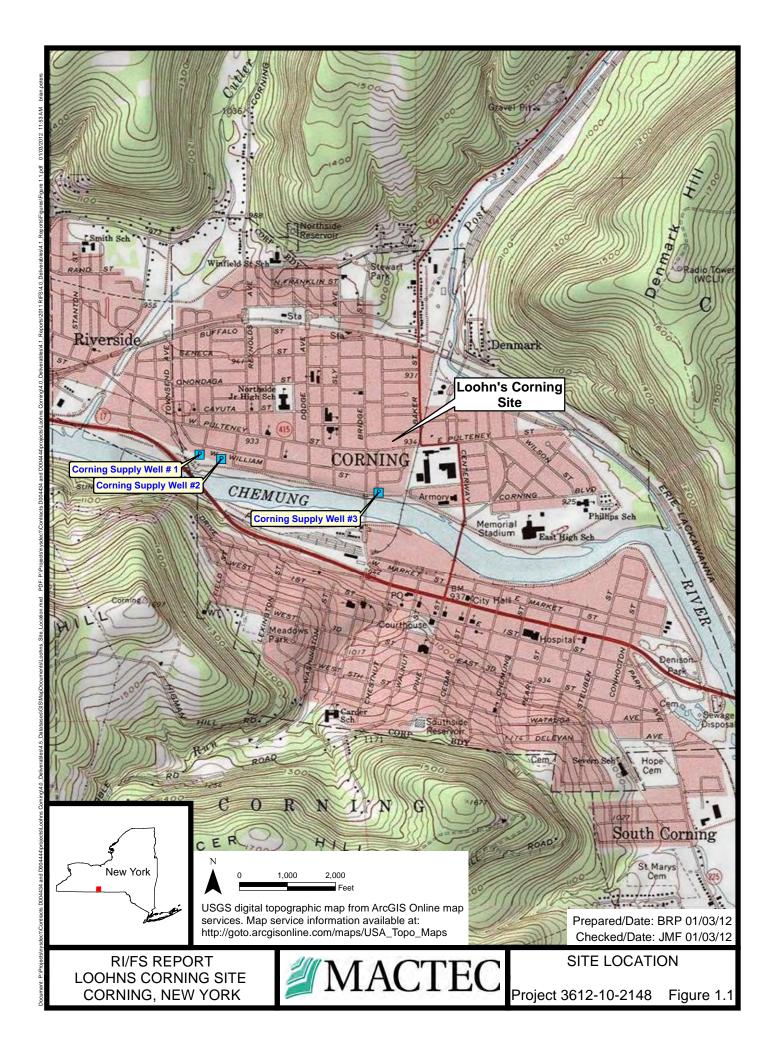
Land Use. The current and reasonably anticipated future land use of the Site is for commercial purposes; however, residential property is located to the west and north of the Site. Because no action would be taken as part of Alternative 1 and there would be no restrictions to future use, Alternative 1 would not be protective of potential occupants/visitors to the Site and the immediate vicinity.

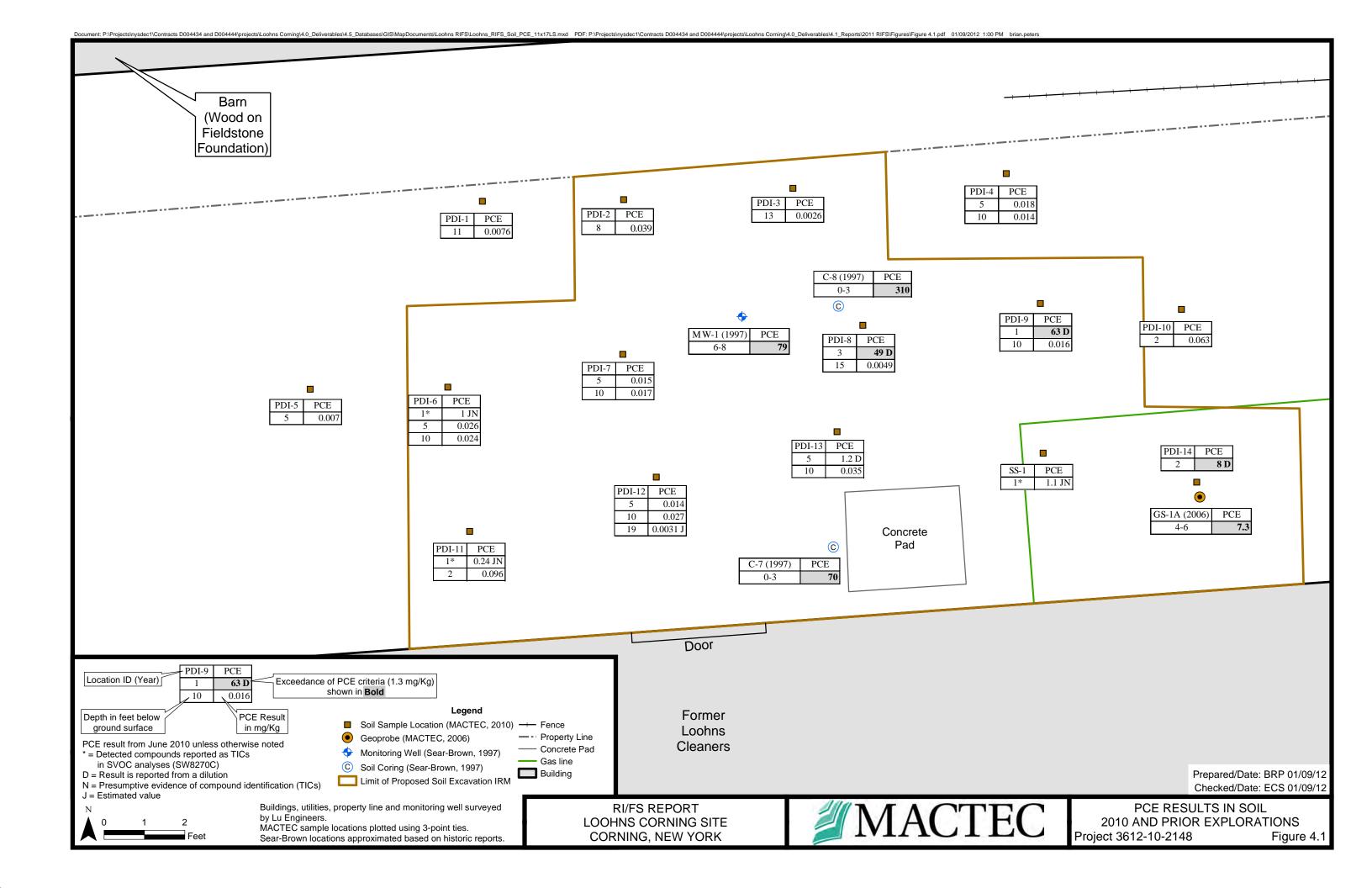
Alternative 2 would be compatible with current land use and reasonably anticipated future land use.

Alternative 3 would be compatible with current land use. After remediation and restoration activities, the site could be used commercially.

Cost. A comparison of the capital and long-term costs associated with the RAs is presented in Table 12.1.

Alternative 3 appears to be prohibitively expensive.


13.0 REFERENCES


- Agency for Toxic Substances and Disease Registry, 1997. Toxicological profile for Tetrachloroethene. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
- Environmental Data resources (EDR), 2006. EDR Radius Map with Geocheck for 37 Pulteney Street, Corning New York. February 27, 2006.
- MACTEC, 2007. Program Quality Assurance Program Plan. Prepared for the New York State Department of Environmental Conservation, Albany, New York. October 2007.
- MACTEC, 2011. Construction Completion Report Loohns Corning Site # 851028, MACTEC Engineering and Consulting, P.C., February 2011.
- Muller et al., 1986. Surficial Geologic Map of New York, Finger Lakes Sheet, New York State Geologic Survey, Map and Chart Series # 40, 1986.
- NCDC, 2004. National Climactic Data Center, Comparative Climactic Data for the United States 1971-2000, February 2004.
- New York State (NYS), 2006. New York Codes, Rules, and Regulations, Title 6, Part 375-Environmental Remediation Programs. December, 2006.
- NYS, 1999a. New York Codes, Rules, and Regulations, Title 6, Part 371- Identification and Listing of Hazardous Wastes. Amended November 1999.
- NYS, 1999b. New York Codes, Rules, and Regulations, Title 6, Part 700-705 Water Quality Regulations Surface Water and Groundwater Classifications and Standards. Amended August 1999.
- NYSDEC, 1998. Division of Water Technical and Operational Guidance Series (1.1.1 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. October 1998 (revised).

- NYSDEC, 1989. Technical and Administrative Guidance Memorandum HWR 89-4025: Guidelines for Remedial Investigations / Feasibility Studies. March 1989.
- NYSDEC, 2010. DER-10/Technical Guidance for Site Investigation and Remediation, FINAL, May 3, 2010
- NYSDOH, 2006. Guidance for Evaluating Soil Vapor Intrusion in the State of New York. Final, October, 2006.
- NYSDOH, 2007. Letter from Litwin, Gary A. NYSDOH, Director of Bureau of Exposure Investigation to Dale Desnoyers, NYS Division of Environmental Remediation re: Soil Vapor/Indoor Air Matrices dated June 25, 2007.
- Panton, 2005. Telephone conversation between Steven Panton, (City of Corning Public Works Superintendent) and Chuck Staples (MACTEC), September 9, 2005.
- Rickard and Fisher, 1970. Geologic Map of New York, Finger Lakes Region, New York State Map and Chart Series 15 by L.V. Rickard and D.W. Fisher
- Sear-Brown, 1997a. The Sear-Brown Group, Phase II environmental Site Assessment, Loohns Convenient Plaza, March 19, 1997
- Sear-Brown, 1997b. The Sear-Brown Group, Recommendations for Additional Level II environmental Site Assessment, Loohns Convenient Plaza, March 19, 1997
- Stantec, Inc. (Stantec), 2005, Groundwater Sampling Report, 33-35 East Pulteney Street, November 23, 2005.
- Teeter Environmental Services, Inc., (Teeter), 2006, Phase II Environmental Site Assessment, May 10, 2006.
- United States Environmental Protection Agency (USEPA), 2000. "A Guide for Developing and Documenting Cost Estimates During the Feasibility Study"; EPA 540-R-00-002, OSWER 9355.0-75; U.S. Environmental Protection Agency; Washington, D.C., July 2000.
- USEPA, 1988. Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA (Interim Final); EPA/540/G-89/004; October 1988.

USGS, 1982. Geohydrology of the valley-fill aquifer in the Corning Area, Steuben County, N.Y. T.S. Miller, W.G. Stelz and others, USGS Open File Report 82-85, 1982.

FIGURES

TABLES

RI/FS Report—Loohns Corning

February 2012

Table 4.1: RI Soil Results - VOCs

					т											
	Sampl	e Location	PDI	-001	PD:	I-001	PD.	[-002	PD	I-003	PD.	[-004	PD	I-004	PD	I-005
Sample ID		LCPDI00101110XD		LCPDI00101110XX		LCPDI00	LCPDI00200810XX		301310XX	LCPDI00400510XX		LCPDI00401010XX		LCPDI00500510XX		
		QC Code	F	D]	FS]	FS]	FS]	FS	FS		FS	
	San	nple Depth	11 f	t bgs	11 1	ft bgs	8 f	t bgs	13	ft bgs	5 f	t bgs	10	ft bgs	5 f	t bgs
	Sa	mple Date	06/0	08/10	06/0	08/10	06/0	08/10	06/	09/10	06/0	09/10	06/	09/10	06/0	08/10
Method	Parameter	Criteria	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SW8260B	1,2-Dichlorobenzene	1	0.0048	U	0.0041	U	0.0053	U	0.0057	U	0.0045	U	0.0074	U	0.0047	U
SW8260B	1,4-Dichlorobenzene	1.8	0.0048	U	0.0041	U	0.0053	U	0.0057	U	0.0045	U	0.0074	U	0.0047	U
SW8260B	Acetic acid, methyl ester	NC	0.0048	U	0.0041	U	0.0053	U	0.0032	J	0.0045	U	0.0076		0.0047	U
SW8260B	Acetone	0.05	0.024	U	0.021	U	0.026	UJ	0.028	U	0.016	J	0.023	J	0.023	U
SW8260B	Cis-1,2-Dichloroethene	0.25	0.0048	U	0.0041	U	0.0053	U	0.0057	U	0.0045	U	0.0074	U	0.0047	U
SW8260B	Cyclohexane	NC	0.0048	U	0.0041	U	0.0053	U	0.0057	U	0.0045	U	0.0074	U	0.0047	U
SW8260B	Methyl cyclohexane	NC	0.0048	U	0.0041	U	0.0053	U	0.0057	U	0.0027	J	0.0074	U	0.0047	U
SW8260B	Methylene chloride	0.05	0.0048	U	0.0041	U	0.0056	U	0.0067		0.0031	J	0.0078		0.0047	U
SW8260B	Tetrachloroethene	1.3	0.0062		0.0073		0.039		0.0026	J	0.018		0.014		0.007	
SW8260B	Toluene	0.7	0.0048	U	0.0012	J	0.0053	U	0.0057	U	0.0045	U	0.0074	U	0.0047	U
SW8260B	Trichloroethene	0.47	0.0048	U	0.0041	U	0.0053	U	0.0057	U	0.0045	U	0.0074	U	0.0047	U
SW8260B	Xylene, m/p	0.26	0.0095	U	0.0082	U	0.011	U	0.011	U	0.0091	U	0.015	U	0.0093	U

Notes:

VOCs = Volatile organic compounds

* = Detected compounds reported as TIC

in SVOC analyses (SW8270C)

TICs = Tentatively Identified Compunds

SVOCs = Semi-volatile organic compounds

Results in milligrams per kilogram (mg/Kg

ft bgs = feet below ground surface

Only detected compounds shown.

"--" = Parameter not analyzed

OC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

U = Not detected greater than the reporting limi

D = Result is reported from a dilution

N = Presumptive evidence of compound

identification (TICs)

J = Estimated value

Criteria - 6 NYCRR 375 Soil Cleanup Objectives

for unrestricted use.

NC = no criteria available

Detections are indicated in BOLD

RI/FS Report—Loohns Corning

February 2012

Table 4.1: RI Soil Results - VOCs

	Sample Location		PDI-00)6*	PD	I-006	PD	[-006	PD.	I-007	PD.	I-007	PD	I-008	PDI	I-008
	Sample ID		LCPDI00600	0110XX	LCPDI00600510XX		LCPDI00601010XX		LCPDI00700510XX		LCPDI00701010XX		LCPDI00800310XX		LCPDI00801510XX	
		QC Code	FS		I	FS	I	FS]	FS	1	FS	FS		FS	
	San	nple Depth	1 ft bg	gs	5 f	t bgs	10 f	t bgs	5 f	t bgs	10 1	ft bgs	3 ft	t bgs	15 f	ft bgs
	Sa	mple Date	06/08/	10	06/0	08/10	06/0	08/10	06/0	08/10	06/0	08/10	06/0	08/10	06/0	08/10
Method	Parameter	Criteria	Result Q	Qualifier	Result	Qualifier										
SW8260B	1,2-Dichlorobenzene	1			0.0047	U	0.0049	U	0.0049	U	0.0043	U	0.027		0.0046	U
SW8260B	1,4-Dichlorobenzene	1.8			0.0047	U	0.0049	U	0.0049	U	0.0043	U	0.012		0.0046	U
SW8260B	Acetic acid, methyl ester	NC			0.0047	U	0.0049	U	0.0028	J	0.0087		0.0051	U	0.0042	J
SW8260B	Acetone	0.05			0.024	U	0.025	U	0.025	U	0.026	U	0.025	U	0.023	UJ
SW8260B	Cis-1,2-Dichloroethene	0.25			0.0047	U	0.0049	U	0.0049	U	0.0043	U	0.19		0.0046	U
SW8260B	Cyclohexane	NC			0.0047	U	0.0049	U	0.0049	U	0.0043	U	0.0051	U	0.0046	U
SW8260B	Methyl cyclohexane	NC			0.0047	U	0.0049	U	0.0049	U	0.0043	U	0.0051	U	0.0046	U
SW8260B	Methylene chloride	0.05			0.0047	U	0.0049	U	0.0049	U	0.0044	U	0.0077	U	0.0051	U
SW8260B	Tetrachloroethene	1.3	1 JN	J	0.026		0.024		0.015		0.017		49	D	0.0049	
SW8260B	Toluene	0.7			0.0047	U	0.0049	U	0.0049	U	0.001	J	0.0051	U	0.0014	J
SW8260B	Trichloroethene	0.47			0.0047	U	0.0049	U	0.0049	U	0.0043	U	0.18		0.0046	U
SW8260B	Xylene, m/p	0.26		·	0.0094	U	0.0098	U	0.0098	U	0.0087	U	0.01	U	0.0091	U

Page 2 of 4

Notes:

VOCs = Volatile organic compounds

* = Detected compounds reported as TIC

in SVOC analyses (SW8270C)

TICs = Tentatively Identified Compunds

SVOCs = Semi-volatile organic compounds

Results in milligrams per kilogram (mg/Kg

ft bgs = feet below ground surface

Only detected compounds shown.

"--" = Parameter not analyzed

OC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

U = Not detected greater than the reporting limi

D = Result is reported from a dilution

N = Presumptive evidence of compound

 $\begin{aligned} &identification \ (TICs)\\ J = Estimated \ value \end{aligned}$

Criteria - 6 NYCRR 375 Soil Cleanup Objectives

for unrestricted use.

NC = no criteria available

Detections are indicated in BOLD

RI/FS Report—Loohns Corning

February 2012

Table 4.1: RI Soil Results - VOCs

	Sample	e Location	PD	[-009	PD	I-009	PD	I-010	PDI	-011*	PD	I-011	PD	I-012	PD	I-012
Sample ID		LCPDI00900110XX		LCPDI00901010XX		LCPDI01	LCPDI01000210XX		LCPDI01100110XX		LCPDI01100210XX		200510XX	LCPDI01	201010XX	
		QC Code	I	FS]	FS	I	FS]	FS	I	FS	FS		FS	
	San	nple Depth	1 f	t bgs	10 :	ft bgs	2 f	t bgs	1 f	t bgs	2 f	t bgs	5 f	ft bgs	10 ft bgs	
	Sa	mple Date	06/0	09/10	06/0	09/10	06/0	09/10	06/0	09/10	06/0	09/10	06/	08/10	06/	08/10
Method	Parameter	Criteria	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SW8260B	1,2-Dichlorobenzene	1	0.0052	J	0.0045	U	0.0048	U			0.0041	U	0.0045	U	0.0044	U
SW8260B	1,4-Dichlorobenzene	1.8	0.0023	J	0.0045	U	0.0048	U			0.0041	U	0.0045	U	0.0044	U
SW8260B	Acetic acid, methyl ester	NC	0.0068	U	0.0023	J	0.0048	U			0.0041	U	0.0019	J	0.0044	U
SW8260B	Acetone	0.05	0.012	J	0.012	J	0.024	U			0.02	U	0.022	U	0.022	U
SW8260B	Cis-1,2-Dichloroethene	0.25	0.0028	J	0.0045	U	0.0048	U	-		0.0041	U	0.0045	U	0.0044	U
SW8260B	Cyclohexane	NC	0.0068	U	0.0045	U	0.0048	U			0.0041	U	0.0045	U	0.0044	U
SW8260B	Methyl cyclohexane	NC	0.0068	U	0.0045	U	0.0048	U			0.0041	U	0.0045	U	0.0044	U
SW8260B	Methylene chloride	0.05	0.0042	J	0.0046		0.004	J			0.003	J	0.0045	U	0.0055	U
SW8260B	Tetrachloroethene	1.3	63	D	0.016		0.063		0.24	JN	0.096		0.014		0.027	
SW8260B	Toluene	0.7	0.0068	U	0.0045	U	0.0048	U			0.0041	U	0.0045	U	0.0044	U
SW8260B	Trichloroethene	0.47	0.0093		0.0045	U	0.0048	U		·	0.0041	U	0.0045	U	0.0044	U
SW8260B	Xylene, m/p	0.26	0.014	U	0.0091	U	0.0096	U			0.0081	U	0.009	U	0.0088	U

Notes:

VOCs = Volatile organic compounds

* = Detected compounds reported as TIC in SVOC analyses (SW8270C)

TICs = Tentatively Identified Compunds

SVOCs = Semi-volatile organic compounds

Results in milligrams per kilogram (mg/Kg

ft bgs = feet below ground surface

Only detected compounds shown.

"--" = Parameter not analyzed

OC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

U = Not detected greater than the reporting limi

D = Result is reported from a dilution

N = Presumptive evidence of compound

identification (TICs)

Criteria - 6 NYCRR 375 Soil Cleanup Objectives

for unrestricted use.

NC = no criteria available

J = Estimated value

Detections are indicated in BOLD

Table 4.1: RI Soil Results - VOCs

	Sample	e Location	PD	I-012	PD:	I-013	PD	I-013	PDI	[-014	SS-001*	
	•	Sample ID	LCPDI01201910XX		LCPDI01	LCPDI01300510XX		LCPDI01301010XX		400210XX	LCSS00100110XX	
		QC Code	1	FS	I	FS]	FS	I	FS	FS	
	Sam	ple Depth	19 1	ft bgs	5 f	t bgs	10 :	ft bgs	2 ft	t bgs	1 ft bgs	
	Sa	mple Date	06/0	08/10	06/0	08/10	06/0	08/10	06/0	09/10	06/08/10	
Method	Parameter	Criteria	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result Qualifier	
SW8260B	1,2-Dichlorobenzene	1	0.0041	U	0.0012	J	0.0044	U	0.00079	J		
SW8260B	1,4-Dichlorobenzene	1.8	0.0041	U	0.0045	U	0.0044	U	0.0042	U		
SW8260B	Acetic acid, methyl ester	NC	0.0041	U	0.0045	U	0.0044	U	0.0042	U	-	
SW8260B	Acetone	0.05	0.025	U	0.022	UJ	0.022	U	0.021	U		
SW8260B	Cis-1,2-Dichloroethene	0.25	0.0041	U	0.0016	J	0.0044	U	0.0042	U		
SW8260B	Cyclohexane	NC	0.0025	J	0.0045	U	0.0044	U	0.0042	U		
SW8260B	Methyl cyclohexane	NC	0.0028	J	0.0045	U	0.0044	U	0.0042	U		
SW8260B	Methylene chloride	0.05	0.0053	U	0.0045	U	0.0044	U	0.0045			
SW8260B	Tetrachloroethene	1.3	0.0031	J	1.2	D	0.035		8	D	1.1 JN	
SW8260B	Toluene	0.7	0.0022	J	0.00091	J	0.0044	U	0.0042	U		
SW8260B	Trichloroethene	0.47	0.0041	U	0.0045	U	0.0044	U	0.0051			
SW8260B	Xylene, m/p	0.26	0.0015	J	0.0089	U	0.0088	U	0.0084	U		

Notes:

VOCs = Volatile organic compounds

* = Detected compounds reported as TIC in SVOC analyses (SW8270C)

TICs = Tentatively Identified Compunds

SVOCs = Semi-volatile organic compounds

Results in milligrams per kilogram (mg/Kg

ft bgs = feet below ground surface

Only detected compounds shown.

"--" = Parameter not analyzed

QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

U = Not detected greater than the reporting limi

D = Result is reported from a dilution

N = Presumptive evidence of compound identification (TICs)

J = Estimated value

Criteria - 6 NYCRR 375 Soil Cleanup Objectives

for unrestricted use.

NC = no criteria available

Detections are indicated in **BOLD**

NYSDEC - Site No. 851028

MACTEC Engineering and Consulting, P.C.., Project No. 3612102148

Table 4.2: RI Soil Results - Metals, PCBs, Pesticides and SVOCs

	1 7 4 1	BKSS-001		DVCC 002	*		DDI 011	CC 001
San	nple Location		BKSS-002 LCBKSS00200110XX	BKSS-003	BKSS-003 LCBKSS00300110XX	PDI-006 LCPDI00600110XX	PDI-011	SS-001 LCSS00100110XX
	Sample ID Oc Code	LCBKSS00100110XX FS	FS LCBKSS00200110XX	LCBKSS00300110XD FD	FS	FS	LCPDI01100110XX FS	FS
	Qc Code Sample Depth						1 ft bgs	
		1 ft bgs 06/09/10	1 ft bgs 06/09/10	1 ft bgs 06/09/10	1 ft bgs	1 ft bgs 06/08/10	1 ft bgs 06/09/10	1 ft bgs 06/08/10
	Sample Date				06/09/10			
Parameter Metals by USEPA Method	Criteria	Result Qualifie	r Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
Aluminum	NC NC	7050 J	5430 J	6400 J	5470 J	5420	6180 J	8240
	NC NC	0.7 J	2.58 U	1.37 J	1.08 J	2.76 U	0.58 J	2.89 U
Antimony	13	***		9.37	7.69	4.22		6
Arsenic Barium	350	5.67 83.2 J	3.94 36.7 J	9.37 106 J	93.6 J	4.22	4.34 66.6 J	97.3
Beryllium	7.2	0.42	0.26 J	0.46	0.36 J	0.26 J	0.3	0.41
Cadmium	2.5	1.09	0.66	1.37	0.96	0.20 J	0.79	1.16
Calcium	NC NC	3400 J	13000 J	1.57 12600 J	2060 J	1050	6320 J	2570
Chromium	30	12.6	7.69	9.65	8.8	7.63	8.64	10.7
Cobalt	NC	8.35	5.57	7.74	6.87	4.68	5.79	7.13
	50	15.6	18.1	37.5	32.8	11.8	21	25.2
Copper	NC NC		18.1 13500 J	37.5 15700 J	32.8 13100 J	12000	13900 J	17400
Iron	63	16600 J 47.9				28.8	44.1	
Lead	NC	2480 J	12.1 4840 J	190 2290 J	144 1540 J	28.8 1450	44.1 1790 J	38.8 2380
Magnesium Manganese	1,600	488 J	317 J	467 J	415 J	405	343 J	413
Nickel	30	488 J 17.8	13	14.9	12.3	9.78	12.8	16.3
Potassium	NC NC	767 J	382 J	584 J	507 J	407	400 J	671
	3.9	2.28 J	1.68 J	2.73 J	2.32 J	1.88	1,92 J	2.45
Selenium Sodium	NC	605 J	96.8 J	2.73 J 211 J	188 J	225	1.92 J 120 J	119
Vanadium	NC NC	11.2	9.13	11.3	9,9	10.4	9.88	13.9
Zinc	109	77.1 J	9.13 58.1 J	11.3 137 J	9.9 113 J	59.2	76.4 J	105
Mercury	0.18	0.088 J	0.017 J	0.164 J	0.193 J	0.106 J	0.134 J	0.081 J
Pesticides by USEPA Meth		0.000 J	0.017 3	0.104 J	0.193 J	0.100 3	0.134 J	0.061
4.4`-DDD	0.0033	0.0021 U	0.00394 U	0.0021 U	0.0021 U	0.0019 U	0.0013 J	0.016
4,4 -DDD 4,4`-DDE	0.0033	0.0021 U	0.00394 U	0.0021 U 0.0027 JP	0.0021 U 0.003 JP	0.0019 U	0.0013 3	0.010
4,4`-DDE 4,4`-DDT	0.0033	0.0021 U	0.00026 U	0.0027 3F	0.0031	0.0019	0.0047	0.036
Dieldrin	0.005	0.0021 U	0.00020 U	0.0029 0.0021 U	0.0031 0.0021 U	0.0017 0.0019 U	0.0037 0.0032 JP	0.0039 U
Methoxychlor	0.003 NC	0.0021 U	13 U	0.0021 U	0.0021 U	0.0019 U	0.0032 JF	0.0039 U
SVOCs by USEPA Method		0.0021 U	13 0	0.0021 U	0.0021 0	0.0019[0	0.014	0.030[]
Benzo(a)anthracene	1 1 1	0.21 J	0.00769 U	0.1 J	0.11 J	0.38 U	0.39 U	0.054 J
Benzo(a)pyrene	1	0.21 J	0.00769 U 0.00557 U	0.11 J	0.11 J	0.38 U	0.39 U	0.054 J
Benzo(b)fluoranthene	1	0.22 J	0.00337 U	0.11 J	0.15 J	0.38 U	0.39 U	0.055 J 0.087 J
Benzo(ghi)perylene	100	0.29 J 0.16 J	13.5 U	0.16 J 0.083 J	0.15 J 0.078 J	0.38 U	0.39 U	0.087 J
Benzo(k)fluoranthene	0.8	0.10 J	0.0121 U	0.054 J	0.41 U	0.38 U	0.39 U	0.38 U
Bis(2-Ethylhexyl)phthalate	NC	0.41 U	4.84 U	0.41 U	0.41 U	0.38 U	0.34 J	1.8
Butylbenzylphthalate	NC NC	0.41 U	0.317 U	0.41 U	0.41 U	0.38 U	0.39 U	0.13 J
Chrysene	1	0.41 U	0.013 U	0.41 U	0.41 U	0.38 U	0.39 U	0.13 J
Di-n-butylphthalate	NC	0.24 J 0.41 U	0.013 U	0.41 U	0.41 U	0.38 U	0.39 U	0.063 J
Di-n-octylphthalate	NC NC	0.41 U	0.00168 U	0.41 U	0.41 U	0.38 U	0.39 U	0.055 J
Fluoranthene	100	0.41 0	0.0968 U	0.41 U	0.41 U	0.38 U	0.056 J	0.035 J
Indeno(1,2,3-cd)pyrene	0.5	0.48 J	0.0908 U	0.072 J	0.068 J	0.38 U	0.39 U	0.049 J
Phenanthrene	100	0.14 J	0.0581 U	0.072 J	0.14 J	0.38 U	0.39 U	0.049 J
1 Henantinene		0.1013	0.0561	U.11 J	U.17 J	0.50	0.37 0	0.001
Pyrene	100	0.35 J	0.000017 U	0.19 J	0.2 J	0.38 U	0.39 U	0.13 J

SVOCs = Semi-volatile organic compounds Results in milligrams per kilogram (mg/Kg ft bgs = feet below ground surface

Only detected compounds shown. NC = no criteria available

QC Code:

FS = Field Sample FD = Field Duplicate

Qualifiers:

U = Not detected greater than the reporting limit

P = Indicates >25% difference for detected

concentrations between the two GC columns.

J = Estimated value

Criteria - 6 NYCRR 375 Soil Cleanup Objectives

for unrestricted use.

Detections are indicated in BOLD

Table 4.3: RI Groundwater Results - VOCs

	Sample Location	GW	-013	GW	-014	GW	-015	
	Sample ID	LCGW01302010XX		LCGW014	402010XX	LCGW01502010XX		
	Sample Date	06/0	9/10	06/0	9/10	06/09/10		
	Qc Code	F	S	F	S	FS		
	Sample Depth	19 ft	t bgs	19 f	t bgs	19 ft bgs		
Parameter	GA Criteria	Result	Qualifier	Result	Qualifier	Result	Qualifier	
Benzene	1	1	U	1	U	2		
Cyclohexane	NC	1	U	1	U	1.8		
Ethyl benzene	5	1	U	1	U	0.57	J	
Methyl cyclohexane	NC	1	U	0.76	J	1.2		
Tetrachloroethene	5	1	U	1.2		1.8		
Toluene	5	0.91	J	0.88	J	3.8		
Xylene, m/p	5	1.2	J	2	U	2.9		
Xylene, o	5	0.51	J	1	U	1.2		

Notes:

Samples analyzed for volatile organic compounds (VOCs) by USEPA Method 8260

Results reported in micrograms per liter (µg/L)

Only detected compounds shown.

ft bgs = feet below ground surface

QC Code:

FS = Field Sample;

Qualifiers:

U = Not detected greater than the reporting limit

J = Estimated value

Criteria = New York State GA Standards, part 703.

NC = no criteria established

Detections are indicated in **BOLD**

Highlighted results exceed criteria

Prepared by: LJB 8/19/2010 Checked by: CRS 8/20/2010 Table 4.4: Post IRM Groundwater Results - VOCs, Metals, PCBs, Pesticide and SVOCs

	Sample Location	MV	V-01	MV	V-02	
	Sample ID	LCMW	001016	LCMW	002019	
	Sample Date	06/0	1/11	06/01/11		
	Qc Code	F	S	F	S	
	Sample Depth	16 f	t bgs	19 f	t bgs	
Parameter	GA Criteria	Result	Qualifier	Result	Qualifier	
VOCs						
Tetrachloroethene	5	1.1		4.7		
SVOCs						
no analytes detected						
Pesticides						
no analytes detected						
PCBs						
no analytes detected						
Metals						
Barium	1000	89		98.4		
Calcium		59,900		83,300		
Copper	200	2.26	J	2.08	J	
Iron	300	50.4		190		
Magnesium	35,000	11,300		18,200		
Manganese	300	3.26	J	27.3		
Potassium		3,090		4,390		
Selenium	10	10	U	5.87	J	
Sodium	20,000	55,700		115,000		
Zinc	2000	10.6	J	20	U	
Mercury	0.7	0.14	J	0.2	U	

Notes:

Results reported in micrograms per liter $(\mu g/L)$

Only detected compounds shown (Tetrachloroethene was the sole compound detected).

ft bgs = sounded well depth - feet below ground surface

QC Code:

FS = Field Sample;

NC = no criteria established

Detections are indicated in BOLD

Shaded cell indicated an exceedance of the GA criteria

Table 4.5: Post IRM Vapor Results

	Location	EW	7-01	SV	-02
	Sample Date	6/1/2		6/1/2	
	Sample ID		EW1005	LCSV(
	Qc Code		S	F	
Analysis	Parameter	Result	Qualifier	Result	Qualifier
EPA TO-15	1,1,1-Trichloroethane	1.1	U	2	
EPA TO-15	1,1,2,2-Tetrachloroethane	1.4	UJ	3.4	J
EPA TO-15	1,2,4-Trimethylbenzene	1.6		4.9	
EPA TO-15	1,3,5-Trimethylbenzene	5.2		9.4	
EPA TO-15	1,4-Dichlorobenzene	1.2	U	1.5	
EPA TO-15	2-Butanone	6.9	J	5.6	J
EPA TO-15	2-Propanol	36	J	5	UJ
EPA TO-15	4-Ethyltoluene	3.7		4.8	
EPA TO-15	Acetone	200		55	
EPA TO-15	Benzene	0.65	U	7.9	
EPA TO-15	Carbon disulfide	1.1		2.1	
EPA TO-15	Cis-1,2-Dichloroethene	5.7		1.6	
EPA TO-15	Cyclohexane	0.7	U	19	
EPA TO-15	Dichlorodifluoromethane	2.5		2.6	
EPA TO-15	Ethyl benzene	2.6		2.8	
EPA TO-15	Heptane	1.2		43	
EPA TO-15	Hexane	1.3		38	
EPA TO-15	Styrene	3		2.8	
EPA TO-15	Tetrachloroethene	3,200		130,000	
EPA TO-15	Tetrahydrofuran	0.6	U	1.3	
EPA TO-15	Toluene	90		92	
EPA TO-15	Trichloroethene	29		170	
EPA TO-15	Trichlorofluoromethane	2.3		2.7	
EPA TO-15	Xylene, o	3.2		5.5	
EPA TO-15	Xylenes (m&p)	7.9		19	

Notes:

Results reported in micrograms per cubic meter ($\mu g/m3$)

QC Code:

FS = Field Sample

Qualifiers:

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

Table 5.1: Conceptual Site Model

Media	Known or Suspected Source of Contamination	Type of Contamination (General)	COPCs (Specific)	Primary or Secondary Source Release mechanism	Migration Pathways	Potential Receptors
					,	Human: direct contact if
	Disposal and or improper					excavation occurs in contaminated
Soil	storage of PCE	Solvents	PCE	Leaks and or Spills	Infiltration / percolation	area (s)
						Human: Although no water supply
						wells are located in the vicinity, if
						excavation is conducted onsite
	Contaminated Soil			Infiltration / percolation from		workers could be exposed to
Groundwater	(Secondary Source)	Solvents	PCE	contaminated soils	Groundwater flow	contaminated groundwater.
	Contaminated Soil and or					
	contaminated			Volatilization of contaminated		
Air /Soil Vapor	groundwater.	Solvents	PCE	groundwater	Migration into buildings / residences	Human: Inhalation

Notes:

COPCs = contaminants of potential concern

TCE = Trichloroethene DCE = Dichloroethene MACTEC Engineering and Consulting, P.C.., Project No. 3612102148

Table 9.1: Identification and Screening of Potential Remedial Technologies and Process Options

Environmental General Remedial Process Option				Screening				
Media	Response Action	Technology		11	bility to	Status	Comments	
				Site-Limiting Characteristics	Waste-Limiting Characteristics			
Soil	No Action			Not Applicable	Not Applicable	Retained.	Retained to be carried through detailed analysis of alternatives.	
	Access Restrictions	Land Use Restrictions		Would require coordination and approval from the current owner.	Would not reduce toxicity, mobility, or volume of site related contaminants.	Retained.	Viable as a component of remedial actions which do not involve remediation allowing for unrestricted use.	
		Fencing		A fence would have to abut the building as contamination is under the building.	Would not provide reliable human or ecological exposure control. Would not reduce toxicity, mobility, or volume of VOC contaminants.	Eliminated.		
	Containment	Capping	Soil Cover	Contamination is genearlly limited to the area beneath the building slab.	Would not prevent leaching of VOC soil contamination to groundwater.	Eliminated.		
			Low Permeability Cover System	Contamination is generally limited to locations under the building slab and therefore capping is impractical.	None.	Eliminated.		
		Vertical Barriers	Slurry wall, sheet piling	Contamination is generally limited to the area beneath the building slab and therefore a vertical barrier would not reduce leaching to the groundwater. This technology would require the wall to be keyed into the confining layer.	None.	Eliminated.		
		Surface Controls	Diversion/collection, grading, soil stabilization	Contamination is generally limited to the saturated zone under the building slab and therefore surface controls would not prevent leaching to the groundwater. Surface controls alone would not prevent leaching of VOC soil contamination to groundwater.	None.	Eliminated.		
	In-Situ Treatment	Biological Treatment	Enhanced Biodegradation	The location of the contamination under the building slab would limit the effectiveness of the application of this technology.	None.	Eliminated.		
		Physical Treatment	Solidification/ Stabilization	The location of the contamination under the building slab would limit the effectiveness of the application of this technology.	Solidification/ stabilization has limited ability to effectively immobilize VOC contamination in soil.	Eliminated.		
			Soil Vapor Extraction	None	Treatment would be limited dependent on the size and type of system installed due to owner's operational constraints.	Retained.	Viable as a modified system. Would protect indoor air quality. May be used in conjunction with other alternatives.	
		Thermal Treatment		The contaminants appear to be located primarily in the shallow saturated and vadose zones. ERH is typically less cost-effective than other alternatives for shallow contamination.	Requires capture of VOC off-gasses.	Eliminated.		

NYSDEC - Site No. 851028

MACTEC Engineering and Consulting, P.C.., Project No. 3612102148

Table 9.1: Identification and Screening of Potential Remedial Technologies and Process Options

Environmental Media	General Response Action	Remedial Technology	Process Option	Applicability to Site-Limiting Characteristics Waste-Limiting Characteristics		Screening Status	Comments
Soil (continued)	Removal	Excavation		The ability to conduct excavation would be limited due to the location of the contamination under the existing building slab. Excavation of contaminated soils occurred outside of the building under a previous IRM.	None.	Retained.	Viable if building can be demolished.
		Disposal On-site		Space is limited, would require treatment of the soils.	Removal not technically feasible.	Eliminated.	
		Disposal Off-site		None	Removal not technically feasible.	Retained.	
	Ex-situ Treatment	Thermal Treatment	Incineration	Removal not technically feasible.	Removal not technically feasible.	Eliminated.	
			Thermal Desorption	Removal not technically feasible.	Removal not technically feasible.	Eliminated.	
		Chemical Treatment	Chemical Dehalogenation	Removal not technically feasible.	Removal not technically feasible.	Eliminated.	
			Solvent Extraction	Removal not technically feasible.	Removal not technically feasible.	Eliminated.	
		Physical Treatment	Soil Washing	Removal not technically feasible.	Removal not technically feasible.	Eliminated.	

MACTEC Engineering and Consulting, P.C.., Project No. 3612102148

Table 9.1: Identification and Screening of Potential Remedial Technologies and Process Options

Environmental Media	General Response Action	Remedial Technology	Process Option	Applica	bility to	Screening Status	Comments
				Site-Limiting Characteristics	Waste-Limiting Characteristics	1	
Groundwater	No Action			Not Applicable	Not Applicable	Retained.	Retained to be carried through detailed analysis of alternatives.
	Access Restrictions	Land Use Restrictions		Would require coordination and approval with current owner.	Would not reduce toxicity, mobility, or volume of VOC contaminants.	Retained.	Viable as a component of remedial actions which do not involve remediation of all contamination above RGs.
	Containment	Capping	Low Permeability Cover System	Contamination is generally limited to locations under the building slab and therefore capping is impractical.	None.	Eliminated.	
		Vertical Barriers	Slurry wall, sheet piling	This technology would require the wall to be keyed into the confining layer which is prohibitively expensive.	None.	Eliminated.	
		Surface Controls	grading, soil stabilization	Surface controls alone would not prevent leaching of VOC soil contamination to groundwater.	None.	Eliminated.	
		Collection	Extraction Wells/ Monitoring Wells	This technology would be limited by the location and existing use of the building.	None.	Eliminated.	
			Collection Trench	This technology would be limited by the location and existing use of the building.	None.	Eliminated.	
	In-Situ Treatment		Enhanced Biodegradation	The location of the contamination under the building slab would limit the effectiveness of the application of this technology.	None.	Eliminated.	
		Physical Treatment	Permeable Reactive Barrier	Area to be treated is too small to make mobilization cost effective.	None.	Eliminated.	
			Air Sparging	This technology would require the capture and treatment of generated vapors.	Removes VOC contaminants from the soil in the saturated zone, but requires additional technologies to treat off-gases.	Eliminated.	
			Electrical Resistance Heating	The contaminants appear to be located primarily in the shallow saturated and vadose zones. ERH is typically less cost-effective than other alternatives for shallow contamination.	None.	Eliminated.	

NYSDEC – Site No. 851028

MACTEC Engineering and Consulting, P.C.., Project No. 3612102148

Table 9.1: Identification and Screening of Potential Remedial Technologies and Process Options

Environmental		Remedial	Process Option				a
Media	Response Action	Technology		11	bility to	Status	Comments
				Site-Limiting Characteristics	Waste-Limiting Characteristics		
Groundwater		Chemical	Oxidation/ Reduction	Oxidation/ Reduction would be limited by poor	None.	Eliminated.	
(continued)		Treatment		conductivity due to the silty characteristics of			
				the soil.			
	Ex-Situ Treatment	Onsite Treatment	Granular Activated	Site is limited due to the space required for	None.	Eliminated.	
			Carbon	extraction wells and a treatment process.			
			Air Stripping	Site is limited due to the space required for	Removes VOC contaminants from	Eliminated.	
				extraction wells and a treatment process.	groundwater, but may require additional		
					technologies to treat off-gases.		
		Offsite treatment	Discharge to POTW	Site is limited due to the space required for	Subject to discharge limitations.	Eliminated.	
		and Disposal	after treatment	extraction wells and a treatment process.			
			Discharge to Surface	No nearby sources of surface water.	Subject to discharge limitations.	Eliminated.	
			Water after treatment				
			Reinjection after	Limited by the high water table.	None.	Eliminated.	
			treatment				

Table 10.1: Screening of Remedial Alternatives

Remedial Alternative	Effectiveness	Implementability	Relative Cost	Comments
Alternative 1: No Action	identified exposure pathways.	There would not be any technical issues with implementing this alternative; however, it is unlikely that the NYSDEC will approve of this alternative.	No cost associated with this alternative.	Retained as base-line for comparison of other alternatives.
Alternative 2: No Further Action (Continued Operation of Modified SVE System with Land Use Restrictiosn on Property)	This alternative would address the identified exposure pathways at the Site through the use of SVE system. The SVE system removes harmful soil	There would not be any technical issues with implementing this alternative;	Estimated relative costs for this alternative would be low.	Retained.
Alternative 3: Return to Pre-disposal Conditions	-	This alternative does not have any technical issues. Practically, however, vacating the sites existing tennants could be a protracted process.	Estimated relative costs for this alternative would be extremely high.	Retained.

Table 11.1: Applicable Location- and Action-Specific Standards, Criteria, and Guidance

Requirement	Consideration in the Remedial Response Process
29 CFR Part 1910.120 - Hazardous Waste	Applicable to implementation of Health and Safety implementation,
Operations and Emergency Response	enforcement, and emergency response.
6 NYCRR Part 371 - Identification and Listing of	Applicable to the characterization, handling, transportation, and
Hazardous Wastes (November 1998)	treatment/disposal of soils to be removed from the Site.
6 NYCRR Part 372 - Hazardous Waste Manifest	Applicable to the handling, transportation, and treatment/disposal
System and Related Standards for Generators,	of soils to be removed from the Site.
Transporters and Facilities (November 1998)	
6 NYCRR Part 375 - Environmental Remediation	Applicable to the development and implementation of remedial
Programs (as amended December 2006)	programs.
6 NYCRR Part 376 - Land Disposal Restrictions	Applicable to disposal of hazardous wastes. Identifies those wastes
	that are restricted from land disposal.
6 NYCRR Part 608 - Use and Protection of Waters	Potentially Applicable to remediation that may impact the wetland
	areas or stream at the Site.
6 NYCRR Part 662 - Freshwater Wetlands - Interim	Potentially Applicable to remediation that may impact the wetland
Permits	areas or stream at the Site.
6 NYCRR Part 663 - Freshwater Wetlands - Permit	Potentially Applicable to remediation that may impact the wetland
Requirements	areas or stream at the Site.
6 NYCRR Parts 700-706 - Water Quality Standards	Potentially Applicable to remediation that may impact the wetland
(June 1998)	areas or stream at the Site.
6 NYCRR Part 750 through 758 - Implementation of	Applicable to construction in and adjacent to water bodies and
NPDES Program in NYS ("SPDES Regulations")	discharge of treated wastewater.
DER-10 Technical Guidance for Site Investigation	Applicable to the development and implementation of remedial
and Remediation	programs.
Citizen Participation in New York's Hazardous	Applicable to the development and implementation of remedial
Waste Site Remediation Program: A Guidebook	programs.
(June 1998)	
TOGS 1.1.1 - Ambient Water Quality Standards &	Applicable to construction in and adjacent to water bodies and
Guidance Values and Groundwater Effluent	discharge of treated wastewater.
Limitations	
Solidification/Stabilization and its Application to	Applicable to disposal of wastes generated during implementation
Waste Materials	of remedial program.

Table 11.2: Cost Summary for Alternative 3 – Restoration to Unrestricted Conditions

ITEM	COST
DIRECT CAPITAL COSTS	0021
Pre-Design Investigation	\$ 78,000
Mobilization and Temporary Facilities and Controls	\$ 804,000
Excavation and Off-site Disposal of Site Soil	\$ 1,447,000
In-Situ Chemical Oxidation	\$ 252,000
Site Restoration	\$ 1,000
Direct Cost Subtotal	\$ 2,582,000
INDIRECT CAPITAL COSTS	
Project Management (@ 5 Percent)	\$ 130,000
Remedial Design (@ 8 Percent)	\$ 207,000
Construction Management (@ 6 Percent)	\$ 155,000
Contingency (@ 25 Percent)	\$ 646,000
Indirect Cost Subtotal	\$ 1,138,000
TOTAL CAPITAL COSTS	\$ 3,720,000
ANNUAL OPERATION AND MAINTENANCE COSTS*	
Quarterly Monitoring (years 1-2)	\$ -
Semi-annual Monitoring (years 3-4)	\$ -
Annual Monitoring (years 5-30)	\$ -
Annual Performance Reporting (years 1-30)	\$ -
PRESENT WORTH OF ANNUAL AND PERIODIC COSTS (30 yrs)	\$ -
TOTAL PRESENT WORTH OF ALTERNATIVE 3 (30 yrs)	\$ 3,720,000
TOTAL NON-DISCOUNTED COST OF ALTERNATIVE 3 (30 yrs) NOTES:	\$ 3,720,000

NOTES:

Costs have been rounded to the nearest thousand.

^{*} Costs include additional 10 percent for bid contingency and 25 percent for scope contingency unforeseen project complexities including insurance, taxes, and licensing costs (USEPA 2000).

Table 11.3: Cost Summary for Alternative 2 - Modified SVE with Land Use Restrictions

ITEM		COST
DIRECT CAPITAL COSTS		
- Institutional Controls and Modified SVE System	\$	11,000
- Direct Cost Subtotal	\$	11,000
INDIRECT CAPITAL COSTS		
- Project Management (@ 10 Percent)	\$	1,000
- Remedial Design (@ 20 Percent)	\$	2,000
- Construction Management (@ 15 Percent)	\$	2,000
- Contingency (@ 25 Percent)	\$	3,000
- Indirect Cost Subtotal	\$	8,000
TOTAL CAPITAL COSTS	\$	19,000
OPERATION AND MAINTENANCE COSTS*		
- Periodic Institutional Control Inspections and Reporting	\$	5,000
- Long-Term Monitoring (Years 1-5)	\$	4,000
DEDICONG GOOTEG!		
PERIODIC COSTS* - None	\$	
- None	Ф	-
PRESENT WORTH OF ANNUAL AND PERIODIC COSTS (5 yrs)	\$	39,000
TOTAL PRESENT WORTH OF ALTERNATIVE 2 (5 yrs)	\$	58,000
TOTAL NON-DISCOUNTED COST OF ALTERNATIVE 2 (5 yrs)	\$	64,000

NOTES:

Costs have been rounded to the nearest thousand.

Prepared by: KAW 12/21/11 Checked by: MJS 1/9/12

^{* -} Costs include additional 10 percent for technical support and 25 percent contingency for unforeseen project complexities, including insurance, taxes, and licensing costs. Costs based on annual inspection and reporting.

Table 12.1: Summary of Estimated Remedial Alternative Costs

		Alt	ernative	Alt	ternative	A	lternative
Item	Description		1		2		3
	1 Capital Costs	\$		\$	19,000	\$	3,720,000
	2 Present Worth of Annual and Periodic Costs	\$	-	\$	39,000	\$	-
	3 Total Present Worth (Item 1 plus 2)	\$	-	\$	58,000	\$	3,720,000
	4 Total Nondiscounted Cost	\$	-	\$	64,000	\$	3,720,000

Notes:

Alternative 1: NoAction

Alternative 2: Modified SVE System with Land Use Restrictions

Alternative 3: Restoration to Pre-Disposal Conditions

Table 12.2: Comparative Analysis of Remedial Alternatives

Remedial Alternative	Alternative 1: No Action	Alternative 4: Restoration to Unrestricted Conditions	Alternative 5: Modified SVE with Land Use Restrictions
Compliance with New York State SCGs	Alternative 1 would include no actions to address VOC-contaminated soils or groundwater at or downgradient of the Site. Alternative 1 would not meet Chemical-specific SCGs for soil or groundwater.	and groundwater. Excavation of contaminated soils and insitu treatment of site groundwater would be implemented in order to restore the site to pre-disposal conditions.	Alternative 4 would not meet Chemical-specific SCGs for soil or groundwater. Site Management, including implementation of insitutional and engineering controls, would be implemented in accordance with Action- and Location-specific SCGs.
Overall Protection of Human Health and the Environment	Alternative I would not protect public health and the environment through eliminating, reducing, or controlling existing or potential exposure pathways through removal or treatment of VOC soil and groundwater contamination, or institutional controls. Existing engineering controls are inplace to address the existing soil vapor to indoor air pathway downgradient of the Site. No potential risks to environmental receptors have been identified.		Alternative 4 would protect public health through controlling existing or potential exposure pathways through institutional and engineering controls. Engineering controls would be in place to address the existing soil vapor to indoor air pathway at the Site. No potential risks to environmental receptors have been identified.
Short-term Impacts and Effectiveness	Alternative 1 would include no actions, and therefore would not result in short-term adverse impacts and risks to the community, site workers, and the environment.	Alternative 4 would have manageable short term impacts. The soil excavation and disposal process would require excavation, disposal, and decontamination procedures designed to ensure the health and safety of the public and environment.	Alternative 4 would includes on implementation of institutional and engineering controls, and therefore would not result in short-term adverse impacts and risks to the community, site workers, and the environment.
Long-term Effectiveness and Permanence	Alternative 1 would rely upon existing engineering controls to address the soil vapor to indoor air pathway, and natural attenuation to address the soil and groundwater VOC contamination contributing to the downgradient groundwater and soil vapor contamination. The time required for Alternative 1 to achieve RGs would be significant.	to onsite contamination.	Alternative 2 would rely upon institutional controls and existing engineering controls to protect human health and natural attenuation to address the soil and groundwater VOC contamination contributing to the downgradient groundwater and soil vapor contamination. The time required for Alternative 2 to achieve RGs would be significant.
Reduction of Toxicity, Mobility, and Volume	Alternative 1 would not provide reduction in the toxicity, mobility, or volume of VOC soil or groundwater contamination through treatment.	Alternative 4 would eliminate all on-site contamination.	Alternative 4 would not provide significant reduction in the toxicity, mobility, or volume of VOC soil or groundwater contamination through treatment.
Implementability	Alternative 1 would include no actions, therefore there are no technical difficulties associated with this alternative. Obtaining regulatory approval of this alternative would be unlikely.	currently occupied by several tennants. The excavation would require the demolition and removal of the existing	Alternative 4 includes only institutional and enginnering controls, which do not pose significant technical difficulties. However, obtaining regulatory approval or property owner cooperation may be difficult.
Land Use	Alternative 1 would not limit land use.		Alternative 4 would limit land use through deed restrictions to limit zoning changes.

Prepared by: KAW 12/21/2012 Checked by: MJS 1/9/2012

4.1 Table 12.2 Comparative Analysis.xls Page 1 of 1

APPENDIX A

PREVIOUS INVESTIGATION INFORMATION

APPENDIX A-1

SEAR-BROWN 1997 PHASE II ENVIRONMENTAL SITE ASSESSMENT

PHASE II ENVIRONMENTAL SITE ASSESSMENT

LOOHN'S CONVENIENT PLAZA 33-35 EAST PULTNEY STREET CORNING, NEW YORK

FFG/CERM FILE NO. EO2824

MARCH 1997

Prepared for:

FLEET BANK
777 MAIN STREET, CT MO H20B
P. O. BOX 5078
HARTFORD, CONNECTICUT 06102-5078

Prepared by:

THE SEAR-BROWN GROUP, INC. 85 METRO PARK ROCHESTER, NEW YORK 14623

THE **SEAR-BROWN** GROUP FULL-SERVICE DESIGN PROFESSIONALS

Privileged and Confidential For Fleet Financial Group Use Only

14301.02

85 METRO PARK ROCHESTER, NEW YORK 14623-2674

716-475-1440 FAX: 716-272-1814

March 19, 1997

Mr. Ronald Punska Fleet Bank 777 Main Street, CT MO H20B Hartford, Connecticut 06102-5078

RE: Phase II Environmental Site Assessment

Loohn's Convenient Plaza 33-35 East Pultney Street Corning, New York 14830

Dear Mr. Punska:

Pursuant to our contractual agreement with Fleet National Bank (Fleet), The Sear-Brown Group (Sear-Brown) is pleased to submit this Phase II Environmental Site Assessment of Loohn's Convenient Plaza, located at 33-35 East Pultney Street in the City of Corning, New York (Figure 1). This investigation was requested to address several potential issues identified in Sear-Brown's February 1997 Level I Environmental Site Assessment Report of the above referenced property. All the information contained herein is true to the best of our knowledge.

This letter confirms the agreement between Fleet National Bank (Fleet) and Sear-Brown that this report shall be for the benefit of, and may be relied upon by Fleet, and the entities affiliated with Fleet which own or hold a mortgage on the subject property, and each of their respective successors and assigns.

Background

The 0.8[±] acre subject property is located at 33-35 East Pultney Street, in the City of Corning, New York (see Figure 1). The subject property is occupied by a 7,560[±] sq. ft. strip plaza, known as Loohn's Convenient Plaza, and contains a Convenient Food Mart, Loohn's Cleaners and Launders, Cellular One and H&R Block (Figure 2). The building was constructed in 1972 and has contained small businesses and a laundromat since its date of construction.

A recommendation for a Level II Environmental Site Assessment was made based upon the potential for soil contamination as a result of the former dry cleaning operations. The scope of work included four shallow soil cores collected from the interior area, immediately near the

NEW YORK • PENNSYLVANIA COLORADO • UTAH

Mr. Ronald Punska March 19, 1997 Page 2

former dry cleaning operation equipment, and four soil cores from the grassy area outside the back door of this area. To investigate the potential for soil and groundwater contamination, drilling and sampling of two soil borings was completed, including monitoring wells, on the north (upgradient) and south (downgradient) side of the dry cleaners. Analytical sampling included a total of six soil samples and two groundwater samples for analysis of volatile organic compounds by EPA Method 8260.

The scope of work was completed by Sear-Brown on March 7, 1997. The following report summarizes the results of the Phase II Environmental Site Assessment.

Soil and Groundwater Investigation

Former Dry Cleaning Operation

Soil coring was performed on March 3, 1997 in the vicinity of the exit door and floor drains observed in the back of the Loohn's Cleaners and Launders building. The soil coring program performed by Sear-Brown involved the extraction of a series of 1-inch diameter soil cores using a JMC_{\odot} subsurface soil probe that allowed for the collection and screening of volatile organic vapors from the soil matrix. Portions of the soil core samples were collected and placed in sealed containers. Each soil core sample was screened with an HNu photoionization detector (PID) equipped with a 10.2 eV lamp for the presence of volatile organic vapors (Table 1). Volatile organic vapors are an indicator of the potential presence of petroleum products and/or solvents. In addition, soil samples were visually evaluated for indications of staining, odors, etc.

A total of eight soil cores were collected during the Phase II Investigation (Figure 2). Four soil cores were taken inside the Loohn's Cleaners store (C-1 through C-4). Soil cores C-1 and C-2 were placed adjacent to floor drains, C-3 was placed in the boiler room and C-4 was placed adjacent to the boiler room. Four soil cores were taken immediately outside the building in the vicinity of the exit door (C-5 through C-8). Attempts were made to core to a depth of 6 ft. below ground surface (BGS) at each location. Refusal depth of five feet was encountered at coring locations C-3, C-5, and C-6.

Soil samples from the soil cores consisted mainly of brown silty sand and fine gravel. Samples from C-1 through C-6 did not exhibit elevated headspace readings. Location C-7, however, did exhibit increased headspace readings in the 0.0 to 3.0 ft. interval. In addition, slightly elevated readings above background were encountered in the 3.0 to 6.0 ft. interval. Location C-8 was impacted from 0.0 to 0.3 ft. BGS with elevated headspace readings of approximately 280 ppm.

Based upon PID readings, visual observations, and odors, four samples were collected for analytical testing. One sample was taken from the shallow zone at location C-3, C-7, and C-8, at

Mr. Ronald Punska March 19, 1997 Page 3

depths of 0.0 to 3.0 ft. The fourth sample was collected from location C-4 at a depth of 3.0 to 6.0 ft. Each sample was submitted for analysis of volatile organic compounds using EPA Method 8260.

Test Borings and Soil Sampling

To investigate the potential for soil and groundwater contamination, Nothnagle Drilling of Scottsville, New York was mobilized to the site on March 4, 1997 to conduct a soil boring and well installation program. Prior to performing the soil borings, underground utilities were located by the Underground Facilities Protection Organization (UFPO). Two soil borings, designated B-1 and B-2 were augured to collect soil samples adjacent to and downgradient of the back of the dry cleaners (see Figure 2).

Each soil boring was drilled and sampled using standard field procedures. A Sear-Brown geologist was present during all drilling and sampling activities. Access by the drilling rig to the rear of the building was restricted, which required an undersized rig for the conditions. Soil conditions consisted of coarse grained sand and gravel, with numerous cobbles. Boring logs describing soil conditions at each location are included in Appendix A.

Field headspace screening of split-spoon samples was conducted using a calibrated HNu PID to evaluate the potential presence of volatile organic vapors (Table 1). Elevated headspace readings were encountered in B-1, with the highest sustained readings of 3.5 ppm in the sample from the interval 6 to 6.4 ft BGS.

Based on visual field observations and the presence of elevated headspace readings, one soil sample from each boring was collected for laboratory analysis. Each sample was submitted for analyses which included volatile organic compounds using EPA Method 8260.

The drill cuttings from B-1 and B-2 were not containerized due to the low headspace readings. to the borehole.

Monitoring Well Installation

Each of the two test borings were completed as overburden monitoring wells: MW-1 and MW-2 (Figure 2). Monitoring well MW-1 was located on the north side of the building, immediately adjacent to the back door of the building. Monitoring well MW-2 was located downgradient of the dry cleaners, on the south side of the building.

The well diameter for each monitoring well was one inch. Well screens were factory milled PVC with 0.010 inch slots. Fine sand was used to fill the annular space between the well screen and

Mr. Ronald Punska March 19, 1997 Page 4

the borehole. The sandpack extended one to two feet above the well screen. An average three ft. thick bentonite seal was placed over the sandpack and cement/bentonite grout was added up to the ground surface. The wells were completed with flush-mounted, protective casings. Monitoring well construction details are summarized in Table 3. Monitoring well diagrams are presented in Appendix A.

Well Development and Sampling

After allowing 48 hrs. for the bentonite seals to hydrate, the monitoring wells were developed and purged using a peristaltic pump and dedicated HDPE tubing. The wells were purged in an effort to reduce turbidity and to allow representative groundwater to enter the well prior to sample collection.

Static water levels at MW-1 and MW-2 were approximately 14.9 and 15.0 ft. BGS, respectively. General water quality field parameters (pH, specific conductance and temperature) were monitored as successive well volumes were removed during purging. The field parameters stabilized during purging indicating inflow was representative of groundwater prior to groundwater sampling. A summary of well development parameters is presented in Table 4.

Two groundwater samples were collected with the peristaltic pump and submitted for the same analyses as the soils samples, including volatile organic compounds using EPA Method 8260. The groundwater samples and analyses are summarized in Table 2.

Analytical Results

Summaries of detected soil and groundwater analytical results are presented in Tables 5 and 6 according to the analytical methods that were performed. The laboratory analytical reports are presented in Appendix B.

Analytical Soil Results

Detectable concentrations of volatile organic compounds (VOCs), as shown in Table 5, were found in each of the six soil samples that were analyzed by EPA Method 8260.

Three of these six samples exhibited tetrachloroethene (PCE) concentrations which were above soil guidance values established by the New York State Department of Environmental Conservation (DEC): C-7, 0'-3'; C-8, 0'-3'; and B-1, S-2, 6'-8'. In addition to PCE, low concentrations of toluene and xylene were detected in sample B-2, S-4 (15'-17'). Elevated levels of PCE were found in the soil samples taken from the rear of the building, adjacent to the back

Mr. Ronald Punska March 19, 1997 Page 5

door. Corresponding headspace readings (Table 1) indicate that the impacted soils likely extend beyond the area from which the samples collected were selected for analytical testing.

Analytical Groundwater Results

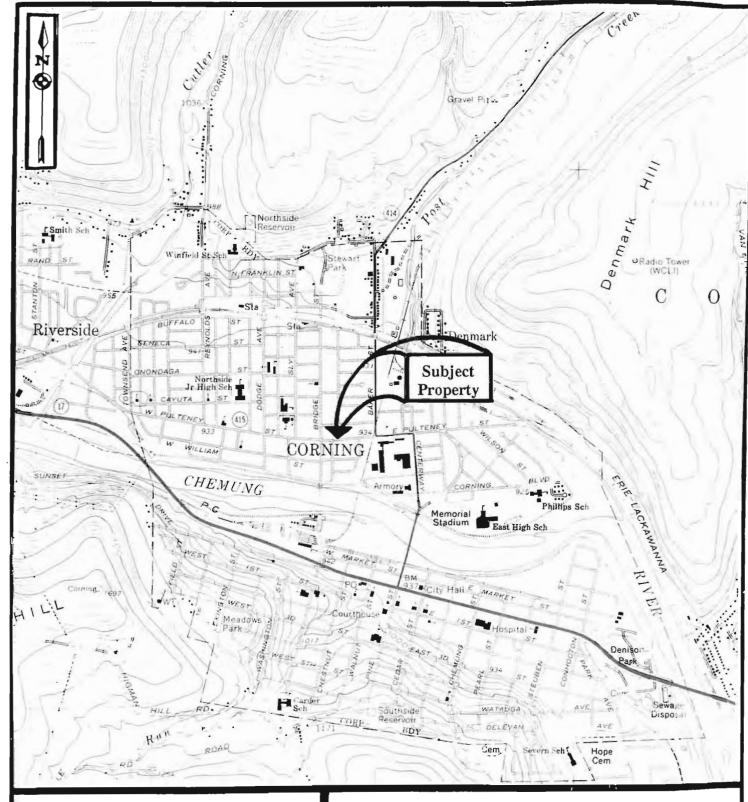
As summarized in Table 6, detectable concentrations of VOCs by EPA Method 8260 were found in the groundwater samples from MW-1 and MW-2.

Sample MW-1 corresponds to the upgradient side and MW-2 to the downgradient side of the facility. Concentrations of PCE in each well exceed NYSDEC Class GA groundwater standards. In addition, an elevated concentration of acetone was detected in MW-1. A low level concentration of toluene was detected in MW-2.

Summary and Conclusions

This soil and groundwater investigation identified the presence of PCE, a chlorinated solvent in soil and groundwater on the subject property. The concentrations of these compounds exceed NYSDEC soil guidance values and/or groundwater standards and guidance values. The zone of most affected soil and groundwater appears to be in the area adjacent to the rear door of the dry cleaning shop.

Should you have any questions or require further information, I would invite your calls.


Sincerely,

Lawrence R. Keefe

Senior Environmental Engineer

LRK:PHS:glv:1430102\R0001.doc

c. Helen M. Sahi

THE **SEAR-BROWN** GROUP FULL-SERVICE DESIGN PROFESSIONALS

AS METRO PARK ROCHESTER, NEW YORK 14623

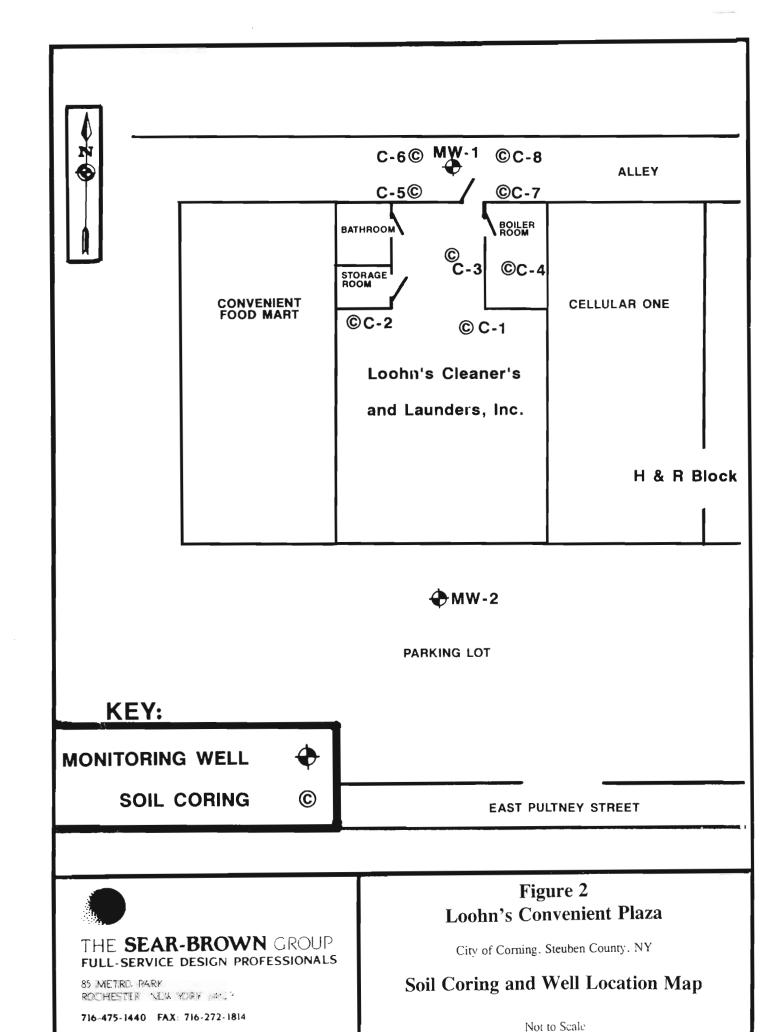

716-475-1446 FAX: 716-272-1814

Figure 1 Loohn's Convenient Plaza

City of Corning, Steuben County, NY

Site Location Map

Scale: 1"=2000' Source: USGS Topographic Map Corning Quadrangle

JE CHILDIAN INC. FORTON

TABLE 1
PID HEADSPACE SUMMARY

				PID Readings	
Borehole	Sample	Depth (e. BCS)	Peak	Sustained	Background
	 .	(ft BGS)			
B-1	S -1	4' - 6'	1.4	0.6	0.2
	S-2	6' - 6.4'	4	3.5	0.2
	S-3	8' - 8.9'	2.4	2	0.2
	S-4	10' - 11'	1.4	1	0.2
	S-5	12' - 12.0'	NR - no	l o recovery	l I
	S-6	18' - 19.3'	1	0.6	0.2
B-2	S-1	1' - 3'	0.5	0.5	0.3
	S-2	3.5' - 5.5'	0.4	0.4	0.3
	S-3	10' - 10.8'	0.7	0.4	0.3
	S-4	15' - 17'	1.2	0.6	0.2
	S-5	18' - 20'	0.3	0.2	0.2
C-1	S-1	0' - 3'	0.4	0.3	0.2
	S-2	3' - 6'	0.4	0.3	0.2
C-2	S-1	0' - 3'	0.5	0.4	0.2
	S-2	3' - 6'	0.3	0.2	0.2
C-3	S-1	0' - 3'	0.6	0.5	0.2
	S-2	3' - 4'	0.5	0.4	0.2
C-4	S-1	0' - 3'	0.5	0.5	0.2
	S-2	3' - 6'	0.4	0.4	0.2

TABLE 1 PID HEADSPACE SUMMARY

				PID Readings	
Borehole	Sample	Depth (ft BGS)	Peak	Sustained	Background
C-5	S-1	0' - 3'	0.2	0.2	0.2
0 3	S-2	3' - 5'	0.4	0.4	0.2
C-6	S -1	0' - 3'	0.9	0.6	0.2
	S-2	3' - 5'	0.3	0.3	0.2
C-7	S-1	0' - 3'	32	30	0.2
	S-2	3' - 6'	4.8	3.2	0.2
C-8	S-1	0' - 3'	280	200	0.2
	S-2	3' - 6'	4.8	3	0.2

TABLE 2 ANALYTICAL SAMPLE SUMMARY

SAMPLE ID	LOCATION	DATE	MATRIX	METHOD	PARAMETERS
B-1, S-2, 6' -6.4'	B-1	3/4/97	soil	grab	8260 Volatiles
B-2, S-4, 15' -17'	B-2	3/5/97	soil	grab	8260 Volatiles
C-3, 0' - 3'	C-3	3/4/97	soil	grab	8260 Volatiles
C-4, 3' - 6'	C-4	3/4/97	soil	grab	8260 Volatiles
C-7, 0' - 3'	C-7	3/4/97	soil	grab	8260 Volatiles
C-8, 0' - 3'	C-8	3/4/97	soil	grab	8260 Volatiles
MW-1	MW-1	3/7/97	groundwater	peristaltic pump	8260 Volatiles
MW-2	MW-2	3/7/97	groundwater	peristaltic pump	8260 Volatiles

TABLE 3 MONITORING WELL CONSTRUCTION DETAIL

WELL DESIGNATION	COMPLETION DATE	TOTAL DEPTH (ft)	SANDPACK INTERVAL (ft BGS)	SCREENED INTERVAL (ft BGS)	BENTONITE INTERVAL (ft BGS)	GROUT INTERVAL (ft BGS)
MW-1	3/4/97	20.0	20.0 - 8.0	20.0 - 10.0	8.0 - 5.0	5.0 - 0.0
MW-2	3/5/97	20.0	20.0 - 9.0	20.0 - 9.0	9.0 - 6.0	6.0 - 0.0

NOTES:

1. ft BGS = feet Below Ground Surface.

TABLE 4
FIELD PARAMETERS

WELL	DATE	TIME	WATER LEVEL	PURGE	pН	CONDUCTIVITY	TEMPERATURE
			(ft BGS)	VOLUME	(su)	(umhos/cm)	(C°)
MW-1	3/7/97	9:42 10:12 10:21 10:31 10:40	14.9	1 2 3 4	8.59 7.97 8.04 8.12	240 265 240 260	7.0 7.3 6.1 7.8
MW-2	3/7/97	10:55 11:15 11:25 11:35 11:44	15.0	1 2 3 4	7.77 8.14 8.02 8.03	1350 1450 1450 1500	9.6 7.1 8.8 9.2

NOTES:

- 1. su = standard units.
- 2. umhos/cm = micromhos per centimeter.
- 3. (C°) = degrees Celcius.
- 4. ft BGS = feet Below Ground Surface.

TABLE 5 SUMMARY OF DETECTED EPA METHOD 8260 VOLATILE ORGANIC COMPOUNDS IN SOIL(ug/kg)

Parameter	Units	Guidance Value	C-3 0' - 3'	C-4 3' - 6'	C-7 0' - 3'	C-8 0' - 3'	B-1 S-2, 6'- 8'	B-2 S-4, 15'- 17'
EPA Method 8260 <u>Volatile Halocarbons</u>								
Tetrachloroethene	ug/kg	1,400	223.1	154.2	69,684	311,058	79,364	28.7
Volatile Aromatics								
Toluene m,p-Xylene	ug/kg ug/kg	100 100						2.6 3.9

Notes:

- 1. Reference for guidance values: NYSDEC, January 24, 1994, Determination of Soil Cleanup Objectives and Cleanup Levels, Division of Hazardous Waste Remediation, Technical and Administrative Guidance Memorandum HWR 94-4046 (Revised).
- 2. ug/kg = micrograms per kilogram (equivalent to parts per billion).
- 3. Blank space = below detection limits.
- 4. M and p -xylene co-elute. Therefore, the reported value may represent either of these compounds or a combination thereof.
- 5. Sample results which exceed guidance values are presented in Bold.

TABLE 6 SUMMARY OF DETECTED VOLATILE ORGANIC GROUNDWATER SAMPLING RESULTS (ug/l)

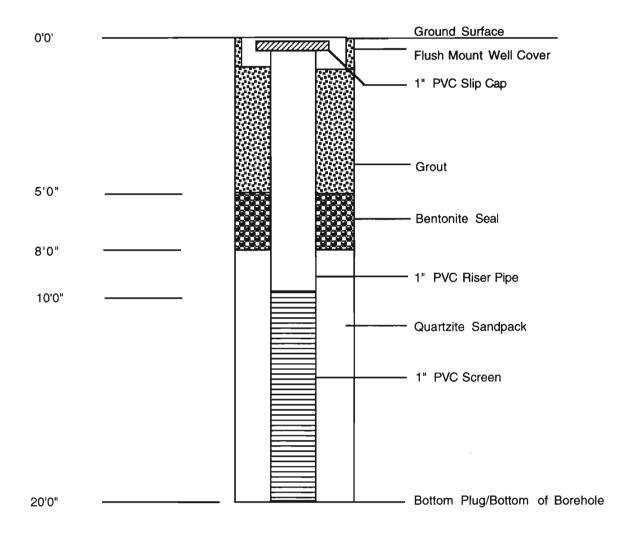
	Groundwate	er Samples	NYSDEC Groundwater Standards and Guidance
COMPOUNDS	MW-1	MW-2	Values(*)
TCL 8260			
Tetrachloroethene	84.5	18.7	5
Toluene		2.9	5
Acetone	25.0		5

Notes:

- 1. (*) = NYSDEC. October 22, 1993. Ambient Water Quality Standards and Guidance Values, Division of Water, Technical and Operational Guidance Series (1.1.1).
- 2. ug/l = all values expressed in micrograms per liter (equivalent to parts per billion).
- 3. blank space = below detection limits.
- 4. Sample results which exceed guidance values are presented in Bold.

NOTHNAGLE DRILLING

1821 Scottsville-Mumford Road SCOTTSVILLE, NEW YORK 14546


Phone (716) 538-2328 Fax (716) 538-2357

Test Boring No.	_	MW	-1
Page _	1	of	_1_
ND Job #	08	388	

							-			Driller N. Short P. Smith
				npletion ,						
5	easc	nal and	climatic	changes	may all	er obse	rved wa	ter le	evels.	
	Blows on Sampler 0" 6" 12" 18				18"		Sa	amp	le	Soil and Rock Information
0	С	6"	12"	18"	24"	N	Rec.	No	Depth	Remarks
<u>. </u>		18	17							Compact brown moist coarse to
		100/4		20	14	37	6"	1	4'0"-6'0"	fine gravel, some sand and silt
		100/4				100/4	2"	2	6'0"-6'4"	Very dense brown moist
_		35	50/5			50/5	6"	3	8'0"-8'11"	Very dense brown moist
0		38	50			50/6	4"	4	10'0"-11'0"	(little sand and silt) Very dense brown moist
			- 50			00/0	**		100-110	No recovery sample No. 5
		50/0				50/0	0"	5	12'0"-12'0"	(Encountered cobbles/
15										difficult drilling 6'0" -12'0")
										16'0
			_							Very dense gray wet coarse to fine sand, some silt, little
		21	34							coarse to fine gravel
20				100/3		134/9	12"	6	18'0"-19'3"	Advanced borings to 20'0" 20'0
25										
30										
										Boring terminated at 20'0"
		_				_				Advanced test boring with hollow stem auger casing.
			_							Well installed in completed borehole.
35			_							See attached well diagram.
10								\vdash		

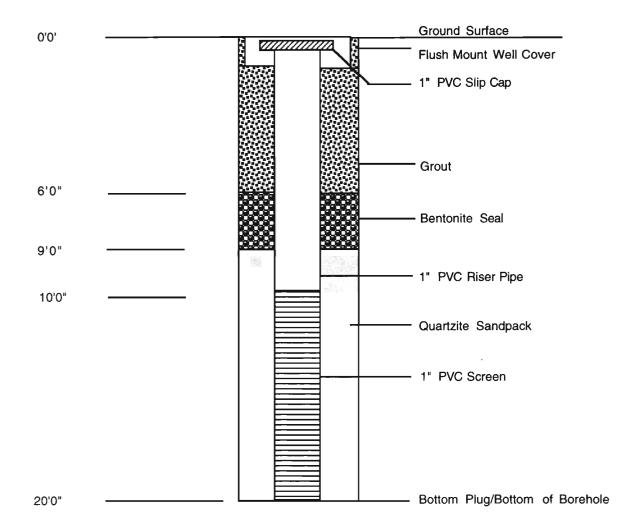
Well Detail Summary

MW-1

Note: Drawing Not to Scale.

NOTHNAGLE DRILLING

1821 Scottsville-Mumford Road SCOTTSVILLE, NEW YORK 14546


Phone (716) 538-2328 Fax (716) 538-2357 Page 1 of 1

ND Job # 0888

٧										Driller N. Short
1/										P. Smith
				•	may alt				evels.	
Ī			lows on S	_						
		0"/	6"	12"	18"		Sa	amp	ole	Soil and Rock Information
0	O	6"	12"	18"	24"	N	Rec.	No	Depth	Remarks
\Box										Asphait 1'0"
ŀ		28	23	9	6	32	6"	1	l 1'0"-3'0"	Compact gray moist silt, some
t		8			0	32	O	Ė	10-30	coarse to fine sand and gravel
5			8	13]	
-					10	21	6"	2	3'6"-5'6"	Firm gray moist
ŀ									1	
]	
10		00	50/0			F0/0			1010" 1010"	Von deno man mais
ŀ		26	50/3			50/3	6"	3	10'0"-10'9"	Very dense gray moist
İ]	
,_										
15		9	20							
ŀ	_	. 9	20	23	18	43	16"	4	15'0"-17'0"	Dense gray moist
Ţ										3 17
<u>, ,</u>		22	8	40	4.0	10		_		Firm gray Moist 20'0"
20	_			10	10	18	_20"	5	18'0"-20'0"	Firm gray Moist 20'0"
Ī										
- }		_		_						
25 25										
[_						
ŀ								ļ		
30 F				_						
										Boring terminated at 20'0"
-										Advanced test boring with hollow
}						_				stem auger casing.
35	\exists	_								Well installed in completed borehole. See attached well diagram.
一										
}	\dashv			_			-			
 										
40										

Well Detail Summary

MW-2

Note: Drawing Not to Scale.

PARADIGM ENVIRONMENTAL SERVICES, INC.

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Aromatic Analysis Report For Soil/Sludge (Additional 8260 Compounds)

The Sear-Brown Group

Lab Project No.:

GE6383

Client Job Site:

Loohn's Cleaners

Lab Sample No.:

16949

Corning, NY

Sample Type:

Soil

Client Job No.:

14301.02

Date Sampled:

03/04/97

Field Location:

C-3, 0'-3'

Date Received:

03/05/97

Field ID No.:

N/A

Date Analyzed:

03/12/97

VOLATILE AROMATICS	RESULTS (ug/Kg)
Methyl tert-Butyl Ether	ND< 8.0
Isopropylbenzene	ND< 8.0
n-Propylbenzene	ND< 8.0
1,3,5-Trimethylbenzene	ND< 8.0
tert-Butylbenzene	ND< 8.0
1,2,4-Trimethylbenzene	ND< 8.0
sec-Butylbenzene	ND< 8.0
p-Isopropyltoluene	ND< 8.0
n-Butylbenzene	ND< 8.0
Naphthalene	ND< 8.0

Analytical Method: EPA 8260 NYS ELAP ID No.: 10958

Comments: ND denotes not detected

Approved By:

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Organic Compound Laboratory Analysis Report For Soil/Sludge

Client: <u>The Sear-Brown Group</u>

Lab Project No:

GE6383

Lab Sample No:

16950

Client Job Site:

Loohn's Cleaners

Sample Type:

Soil

Client Job No:

Corning, NY 14301.02

Date Sampled:

3/4/97

Field Location:

C-4, 3'-6'

Date Received:

3/5/97

Field ID No:

N/A

Date Analyzed:

3/6/97

VOLATILE HALOCARBONS	RESULTS (ug/Kg)	VOLATILE AROMATICS	RESULTS (ug/Kg)
Bromodichloromethane	ND < 2.8	Benzene	ND< 2.8
Bromomethane	ND< 2.8	Chlorobenzene	ND< 2.8
Bromoform	ND< 2.8	Ethylbenzene	ND< 2.8
Carbon tetrachloride	ND < 2.8	Toluene	ND< 2.8
Chloroethane	ND < 2.8	m,p - Xylene	ND< 2.8
Chloromethane	ND < 2.8	o - Xylene	ND< 2.8
2-Chloroethyl vinyl ether	ND< 2.8	Styrene	ND < 2.8
Chloroform	ND< 2.8	1,3-Dichlorobenzene	ND< 2.8
Dibromochloromethane	ND< 2.8	1,4-Dichlorobenzene	ND < 2.8
1,1-Dichloroethane	ND< 2.8	1,2-Dichlorobenzene	ND < 2.8
1,2-Dichloroethane	ND< 2.8		
1,1-Dichloroethene	ND< 2.8		
trans-1,2-Dichloroethene	ND< 2.8	Ketones & Misc.	
1,2-Dichloropropane	ND< 2.8	Acetone	ND< 13.8
cis-1,3-Dichloropropene	ND< 2.8	Vinyl acetate	ND< 6.9
trans-1,3-Dichloropropene	ND< 2.8	2-Butanone	ND< 6.9
Methylene chloride	ND< 2.8	4-Methyl-2-pentanone	ND < 6.9
1,1,2,2-Tetrachloroethane	ND< 2.8	2-Hexanone	ND < 6.9
Tetrachloroethene	154.2	Carbon disulfide	ND< 6.9
1,1,1-Trichloroethane	ND< 2.8		
1,1,2-Trichloroethane	ND< 2.8		
Trichloroethene	ND< 2.8		
Vinyl Chloride	ND< 2.8		

Analytical Method:

EPA 8260

ELAP ID No: 10958

Comments:

ND denotes Not Detected

Approved By

Laboratory Director

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Aromatic Analysis Report For Soil/Sludge (Additional 8260 Compounds)

Client:

The Sear-Brown Group

Lab Project No.:

GE6383

Client Job Site:

Loohn's Cleaners

Lab Sample No.:

16950

Corning, NY

Sample Type:

Soil

Client Job No.:

14301.02

Date Sampled:

03/04/97

Field Location:

C-4, 3'-6'

Date Received:

03/05/97

Field ID No.:

N/A

Date Analyzed:

03/06/97

VOLATILE AROMATICS	RESULTS (ug/Kg)
Methyl tert-Butyl Ether	ND < 2.8
Isopropylbenzene	ND < 2.8
n-Propylbenzene	ND < 2.8
1,3,5-Trimethylbenzene	ND < 2.8
tert-Butylbenzene	ND < 2.8
1,2,4-Trimethylbenzene	ND < 2.8
sec-Butylbenzene	ND < 2.8
p-Isopropyltoluene	ND < 2.8
n-Butylbenzene	ND < 2.8
Naphthalene	ND < 2.8

Analytical Method: EPA 8260

NYS ELAP ID No.: 10958

Comments: ND denotes not detected

Approved By:

Laboratory Director

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Organic Compound Laboratory Analysis Report For Soil/Sludge

Client:

The Sear-Brown Group

Lab Project No:

GE6383

Client Job Site:

Loohn's Cleaners

Lab Sample No:

16951

Corning, NY

Sample Type:

Soil

Client Job No:

14301.02

Date Sampled:

3/4/97

Field Location:

C-7, 0'-3'

Date Received:

03/05/97

Field ID No:

N/A

Date Analyzed: 03/11/97

	VOLATILE HALOCARBONS	RESULTS (ug/Kg)	VOLATILE AROMATICS	RESULTS (ug/Kg)
	Bromodichloromethane	ND< 1796	Benzene	ND< 1796
100	Bromomethane	ND< 1796	Chlorobenzene	ND< 1796
	Bromoform	ND< 1796	Ethylbenzene	ND< 1796
	Carbon tetrachloride	ND< 1796	Toluene	ND< 1796
	Chloroethane	ND< 1796	m,p - Xylene	ND< 1796
	Chloromethane	ND< 1796 ·	o - Xylene	ND< 1796
	2-Chloroethyl vinyl ether	ND< 1796	Styrene	ND< 1796
4	Chloroform	ND< 1796		
	Dibromochloromethane	ND< 1796		
	1,1-Dichloroethane	ND< 1796		
-	1,2-Dichloroethane	ND< 1796		
	1,1-Dichloroethene	ND< 1796		
	trans-1,2-Dichloroethene	ND< 1796	Ketones & Misc.	
	1,2-Dichloropropane	ND< 1796	Acetone	ND < 7184
	cis-1,3-Dichloropropene	ND< 1796	Vinyl acetate	ND < 3592
	trans-1,3-Dichloropropene	ND< 1796	2-Butanone	ND< 3592
	Methylene chloride	ND< 1796	4-Methyl-2-pentanone	ND< 3592
	1,1,2,2-Tetrachloroethane	ND< 1796	2-Hexanone	ND < 3592
	Tetrachloroethene	69684	Carbon disulfide	ND< 3592
	1,1,1-Trichloroethane	ND< 1796		
	1,1,2-Trichloroethane	ND< 1796		
	Trichloroethene	ND< 1796		
	Vinyl Chloride	ND< 1796		

Analytical Method:

EPA 8260

ELAP ID No: 10958

Comments:

ND denotes Not Detected

Approved By

Laboratory Director

GE6383V7.XLS

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Aromatic Analysis Report For Soil/Sludge (Additional 8260 compounds)

Client: The Sear-Brown Group Lab Project No.: GE6383

Lab Sample No.: 16951

Soil

Client Job Site: Loohn's Cleaners

Corning, NY Sample Type:

Client Job No.: 14301.02

 Field Location:
 C-7, 0'-3'
 Date Received:
 03/04/97

 Field ID No.:
 N/A
 Date Analyzed:
 03/11/97

VOLATILE AROMATICS	RESULTS (ug/Kg)	
Methyl tert-Butyl Ether	ND< 1796	
Isopropylbenzene	ND< 1796	
n-Propyibenzene	ND< 1796	
1,3,5-Trimethylbenzene	ND< 1796	
tert-Butylbenzene	ND< 1796	
1,2,4-Trimethylbenzene	ND< 1796	
sec-Butylbenzene	ND< 1796	
p-Isopropyltoluene	ND< 1796	
n-Butylbenzene	ND< 1796	
Naphthalene	ND< 1796	

Analytical Method: EPA 8260 NYS ELAP ID No.: 10958

Comments: ND denotes Not Detected

Approved By:

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Organic Compound Laboratory Analysis Report For Soil/Sludge

Client:

The Sear-Brown Group

Lab Project No:

GE6383

Lab Sample No:

16952

Client Job Site:

Loohn's Cleaners

Sample Type:

Soil

Client Job No:

Corning, NY 14301.02

Date Sampled:

3/4/97

Field Location:

C-8, 0'-3'

Date Received:

03/05/97

Field ID No:

N/A

Date Analyzed:

03/11/97

VOLATILE HALOCARBONS	RESULTS (ug/Kg)	VOLATILE AROMATICS	RESULTS (ug/Kg
Bromodichloromethane	ND< 6496	Benzene	ND< 6496
Bromomethane	ND< 6496	Chlorobenzene	ND< 6496
Bromoform	ND< 6496	Ethylbenzene	ND< 6496
Carbon tetrachloride	ND< 6496	Toluene	ND< 6496
Chloroethane	ND< 6496	m,p - Xylene	ND < 6496
Chloromethane	ND < 6496 ·	o - Xylene	ND< 6496
2-Chloroethyl vinyl ether	ND< 6496	Styrene	ND< 6496
Chloroform	ND< 6496		
Dibromochloromethane	ND< 6496		
1,1-Dichloroethane	ND< 6496		
1,2-Dichloroethane	ND< 6496		
1,1-Dichloroethene	ND< 6496		
trans-1,2-Dichloroethene	ND< 6496	Ketones & Misc.	
1,2-Dichloropropane	ND< 6496	Acetone	ND < 25984
cis-1,3-Dichloropropene	ND< 6496	Vinyl acetate	ND< 12992
trans-1,3-Dichloropropene	ND< 6496	2-Butanone	ND< 12992
Methylene chloride	ND< 6496	4-Methyl-2-pentanone	ND< 12992
1,1,2,2-Tetrachloroethane	ND< 6496	2-Hexanone	ND< 12992
Tetrachloroethene	311058	Carbon disulfide	ND< 12992
1,1,1-Trichloroethane	ND< 6496		
1,1,2-Trichloroethane	ND< 6496		
Trichloroethene	ND< 6496		
Vinyl Chloride	ND< 6496		

Analytical Method:

EPA 8260

ELAP ID No: 10958

Comments:

ND denotes Not Detected

Approved By

Laboratory Dyecto

GE6383V8.XLS

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Aromatic Analysis Report For Soil/Sludge (Additional 8260 compounds)

Client:

The Sear-Brown Group

Lab Project No.:

GE6383

Client Job Site:

Lab Sample No.:

16952

Loohn's Cleaners

Sample Type:

Soil

Client Job No.:

Corning, NY 14301.02

Field Location:

Field ID No.:

C-8, 0'-3'

Date Sampled: Date Received: 03/04/97 03/05/97

N/A

Date Analyzed:

03/11/97

VOLATILE AROMATICS	RESULTS (ug/Kg)	
Methyl tert-Butyl Ether	ND< 6496	
isopropylbenzene	ND< 6496	
n-Propylbenzene	ND< 6496	
1,3,5-Trimethylbenzene	ND< 6496	
tert-Butylbenzene	ND< 6496	
1,2,4-Trimethylbenzene ·	ND< 6496	
sec-Butylbenzene	ND< 6496	
p-lsopropyltoluene	ND< 6496	
n-Butylbenzene	ND < 6496	
Naphthalene	ND< 6496	

Analytical Method: EPA 8260

NYS ELAP ID No.: 10958

Comments:

ND denotes Not Detected

Approved By: __

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Organic Compound Laboratory Analysis Report For Soil/Sludge

Client:

The Sear-Brown Group

Lab Project No:

GE6383

Lab Sample No:

16953

Client Job Site:

Loohn's Cleaners

Soil

Client Job No:

Corning, NY 14301.02

Date Sampled:

Sample Type:

3/4/97

Field Location:

B-1, S-2, 6'-8'

Date Received:

03/05/97

Field ID No:

N/A

Date Analyzed:

03/11/97

VOLATILE HALOCARBONS	RESULTS (ug/Kg)	VOLATILE AROMATICS	RESULTS (ug/Kg
Bromodichloromethane	ND < 3673	Benzene	ND< 3673
Bromomethane	ND < 3673	Chlorobenzene	ND< 3673
Bromoform	ND < 3673	Ethylbenzene	ND< 3673
Carbon tetrachloride	ND< 3673	Toluene	ND< 3673
Chloroethane	ND< 3673	m,p - Xylene	ND < 3673
Chloromethane	ND < 3673 ·	o - Xylene	ND < 3673
2-Chloroethyl vinyl ether	ND< 3673	Styrene	ND< 3673
Chloroform	ND< 3673		
Dibromochloromethane	ND< 3673		
1,1-Dichloroethane	ND< 3673		
1,2-Dichloroethane	ND< 3673		
1,1-Dichloroethene	ND< 3673		
trans-1,2-Dichloroethene	ND< 3673	Ketones & Misc.	
1,2-Dichloropropane	ND< 3673	Acetone	ND< 14693
cis-1,3-Dichloropropene	ND< 3673	Vinyl acetate	ND< 7346
trans-1,3-Dichloropropene	ND< 3673	2-Butanone	ND< 7346
Methylene chloride	ND< 3673	4-Methyl-2-pentanone	ND< 7346
1,1,2,2-Tetrachloroethane	ND< 3673	2-Hexanone	ND< 7346
Tetrachloroethene	79364	Carbon disulfide	ND< 7346
1,1,1-Trichloroethane	ND< 3673		
1,1,2-Trichloroethane	ND< 3673		
Trichloroethene	ND< 3673		
Vinyl Chloride	ND < 3673		

Analytical Method:

EPA 8260

ELAP ID No: 10958

Comments:

ND denotes Not Detected

Approved By

.aboratory Directo

GE6383V9.XLS

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Aromatic Analysis Report For Soil/Sludge (Additional 8260 compounds)

Client:

The Sear-Brown Group

Lab Project No.:

GE6383

Client Job Site:

Loohn's Cleaners

Lab Sample No.:

16953

onone dob one.

Corning, NY

Sample Type:

Soil

Client Job No.:

14301.02

Date Sampled:

03/04/97

Field Location:

B-1, S-2, 6'-8'

Date Received:

03/05/97

Field ID No.:

N/A

Date Analyzed:

03/11/97

VOLATILE AROMATICS	RESULTS (ug/Kg)	
Methyl tert-Butyl Ether	ND < 3673	
Isopropylbenzene	ND< 3673	
n-Propylbenzene	ND< 3673	
1,3,5-Trimethylbenzene	ND < 3673	
tert-Butylbenzene	ND< 3673	
1,2,4-Trimethylbenzene	ND < 3673	
sec-Butylbenzene	ND < 3673	
p-lsopropyltoluene	ND < 3673	
n-Butylbenzene	ND< 3673	
Naphthalene	ND< 3673	

Analytical Method: EPA 8260

NYS ELAP ID No.: 10958

Comments:

ND denotes Not Detected

Approved By:

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Organic Compound Laboratory Analysis Report For Soil/Sludge

Client: <u>The Sear-Brown Group</u>

Lab Project No: Lab Sample No: GE6383

Loohn's Cleaners

16954

Client Job Site: Loohn's Clea Corning, NY

Sample Type:

Soil

Client Job No:

14301.02

Date Sampled:

3/5/97

Field Location:

B-2, S-4, 15'-17'

Date Received: Date Analyzed:

3/5/97 3/6/97

Field ID No:

N/A

VOLATILE HALOCARBONS	RESULTS (ug/Kg)	VOLATILE AROMATICS	RESULTS (ug/Kg)	
Bromodichloromethane ND < 2.2		Benzene	ND< 2.2	
Bromomethane	ND< 2.2	Chlorobenzene	ND < 2.2	
Bromoform	ND< 2.2	Ethylbenzene	ND < 2.2	
Carbon tetrachloride	ND< 2.2	Toluene	2.6	
Chloroethane	ND< 2.2	m,p - Xylene	3.9	
Chloromethane	ND < 2.2	o - Xylene	ND < 2.2	
2-Chloroethyl vinyl ether	ND< 2.2	Styrene	ND < 2.2	
Chloroform	ND < 2.2	1,3-Dichlorobenzene	ND < 2.2	
Dibromochloromethane	ND< 2.2	1,4-Dichlorobenzene	ND < 2.2	
1,1-Dichloroethane	ND< 2.2	1,2-Dichlorobenzene	ND < 2.2	
1,2-Dichloroethane	ND< 2.2			
1,1-Dichloroethene	ND< 2.2			
trans-1,2-Dichloroethene	ND< 2.2	Ketones & Misc.		
1,2-Dichloropropane	ND < 2.2	Acetone	ND < 11.2	
cis-1,3-Dichloropropene	ND < 2.2	Vinyl acetate	ND < 5.6	
trans-1,3-Dichloropropene	ND< 2.2	2-Butanone	ND< 5.6	
Methylene chloride	ND< 2.2	4-Methyl-2-pentanone	ND < 5.6	
1,1,2,2-Tetrachloroethane	ND< 2.2	2-Hexanone	ND < 5.6	
Tetrachloroethene	28.7	Carbon disulfide	ND < 5.6	
1,1,1-Trichloroethane	ND< 2.2			
1,1,2-Trichloroethane	ND< 2.2			
Trichloroethene	ND< 2.2			
Vinyl Chloride	ND< 2.2			

Analytical Method: E

EPA 8260

ELAP ID No: 10958

Comments:

ND denotes Not Detected

Approved By

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Aromatic Analysis Report For Soil/Sludge (Additional 8260 Compounds)

Client:

The Sear-Brown Group

Lab Project No.:

GE6383

Client Job Site:

Loohn's Cleaners

Lab Sample No.:

16954

Corning, NY

Sample Type:

Soil

Client Job No.:

14301.02

Date Sampled:

Field Location:

B-2, S-4, 15'-17'

03/04/97 03/05/97

Field ID No .:

N/A

Date Received: Date Analyzed:

03/06/97

VOLATILE AROMATICS	RESULTS (ug/Kg)
Methyl tert-Butyl Ether	ND < 2.2
Isopropylbenzene	ND < 2.2
n-Propylbenzene	ND < 2.2
1,3,5-Trimethylbenzene	ND < 2.2
tert-Butylbenzene	ND < 2.2
1,2,4-Trimethylbenzene	ND < 2.2
sec-Butylbenzene	ND < 2.2
p-Isopropyltoluene	ND < 2.2
n-Butylbenzene	ND < 2.2
Naphthalene	ND < 2.2
_	

Analytical Method: EPA 8260

NYS ELAP ID No.: 10958

Comments: ND denotes not detected

Approved By: _

Chain-of Custody

Client:	The Seav-Brown Somp	Lab Project No:	(26.53
Address:	SS Metro Park	Client Job No:	14301.02
	Rochester, NY	Client Job Site:	Lookin's Cleaners
			Corning, Ny.
Phone No:	475-140	Sampled By:	Rte Snitz
FAX No:	424-4552		

Lab Sample Number	Field ID Number	• Field Location	Date Sampled	Time Sampled	Sample Type	Preservation	Analyses Requested
16949		C-3, 0'-3'	3/4/97	(330	SOIL	NONE	8260
16950		C-4, 3-6	u	1340	, u	(c	τ_{t}
16951		C-7, 0'-3'	ts.	1515	t)	11	o .
11852		C-8, 0'-3'	V _I	1500	l i	t_1	ti.
16953		B-1,5-2,6'-8'	t.	1530	øf.	f t	11
16954		. B-Z, S-4, 15'17'	3/5/97	1300	ų	16	n.
/ '			,				
	_						
					•		

Relinquished By:

Relinquished By:

Received By:

Received By:

Date/Time:

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Laboratory Analysis Report For Non-Potable Water

Client:

The Sear-Brown Group

Lab Project No.:

GE6390

Client Job Site:

Loohn's

Lab Sample No.:

16967

Client Job No.:

14301.02

Sample Type:

Water

Field Location:

MW-1

Date Sampled:

03/07/97

Date Received:

03/07/97

Field ID No.: N/A

Date Analyzed:

03/10/97

OLATILE HALOCARBONS	RESULTS (ug/L)	VOLATILE AROMATICS	RESULTS (ug/L)	
Bromodichloromethane	ND< 2.0	Benzene	ND< 2.0	
Bromomethane	ND< 2.0	Chlorobenzene	ND < 2.0	
Bromoform	ND< 2.0	Ethylbenzene	ND< 2.0	
Carbon tetrachloride	ND< 2.0	Toluene	ND< 2.0	
Chloroethane	ND< 2.0	m,p - Xylene	ND < 2.0	
Chloromethane	ND< 2.0	o - Xylene	ND< 2.0	
2-Chloroethyl vinyl ether	ND< 2.0	Styrene	ND< 2.0	
Chloroform	ND < 2.0	1,3-Dichlorobenzene	ND< 2.0	
Dibromochloromethane	ND< 2.0	1,4-Dichlorobenzene	ND< 2.0	
1,1-Dichloroethane	ND< 2.0	1,2-Dichlorobenzene	ND < 2.0	
1,2-Dichloroethane	ND < 2.0			
1,1-Dichloroethene	ND < 2.0			
trans-1,2-Dichloroethene	ND< 2.0			
1,2-Dichloropropane	ND< 2.0			
cis-1,3-Dichloropropene	ND< 2.0	<u>Ketones</u>		
trans-1,3-Dichloropropene	ND< 2.0	Acetone	25.0	
Methylene chloride	ND< 2.0	Vinyl acetate	ND< 5.0	
1,1,2,2-Tetrachloroethane	ND< 2.0	2-Butanone	ND< 5.0	
Tetrachloroethene	84.5	4-Methyl-2-pentanone	ND< 5.0	
1,1,1-Trichloroethane	ND< 2.0	2-Hexanone	ND< 5.0	
1,1,2-Trichloroethane	ND< 2.0			
Trichloroethene	ND< 2.0	Carbon disulfide	ND< 2.0	
Vinyl Chloride	ND< 2.0			

Analytical Method:

EPA 8260

ELAP ID No.: 10958

Comments:

ND denotes Not Detected

Approved By

Client Job No.:

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Aromatic Analysis Report For Non-Potable Water (STARS List) (Additional EPA 8260 Compounds)

Client: The Sear-Brown Group Lab Project No.: GE6390

Lab Sample No.: 16967

Client Job Site: Loohn's

Sample Type: Water 14301.02

 Date Sampled:
 03/07/97

 Field Location:
 MW-1
 Date Received:
 03/07/97

Field ID No.: N/A Date Analyzed: 03/10/97

VOLATILE AROMATICS	RESULTS (ug/L)	
Methyl tert-Butyl Ether	ND< 2.0	
Isopropylbenzene	ND < 2.0	
n-Propylbenzene	ND< 2.0	
1,3,5-Trimethylbenzene	ND< 2.0	
tert-Butylbenzene	ND< 2.0	
1,2,4-Trimethylbenzene	ND< 2.0	
sec-Butylbenzene	ND < 2.0	
p-Isopropyltoluene	ND< 2.0	
n-Butylbenzene	ND < 2.0	
Naphthalene	ND< 2.0	

Analytical Method: EPA 8260 NYS ELAP ID No.: 10958

Comments: ND denotes not detected

Approved By: Veboratory Director

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Laboratory Analysis Report For Non-Potable Water

Client:

The Sear-Brown Group

Lab Project No.:

GE6390

Client Job Site:

Loohn's

Lab Sample No.:

16968

Client Job No.:

14301.02

Sample Type:

Water

Field Location:

Date Sampled:

03/07/97

MW-2

Date Received:

03/07/97

Field ID No.:

N/A

Date Analyzed:

03/10/97

DLATILE HALOCARBONS RESULTS (ug/L)		VOLATILE AROMATICS	RESULTS (ug/L)		
Bromodichloromethane	ND< 2.0	Benzene	ND< 2.0		
Bromomethane	ND< 2.0	Chlorobenzene	ND< 2.0		
Bromoform	ND< 2.0	Ethylbenzene	ND< 2.0		
Carbon tetrachloride	ND < 2.0	Toluene	2.9		
Chloroethane	ND < 2.0	m,p - Xylene	ND< 2.0		
Chloromethane	ND< 2.0	o - Xylene	ND< 2.0		
2-Chloroethyl vinyl ether	ND< 2.0	Styrene	ND < 2.0		
Chloroform	ND< 2.0	1,3-Dichlorobenzene	ND < 2.0		
Dibromochloromethane	ND < 2.0	1,4-Dichlorobenzene	ND< 2.0		
1,1-Dichloroethane	ND< 2.0	1,2-Dichlorobenzene	ND< 2.0		
1,2-Dichloroethane	ND< 2.0				
1,1-Dichloroethene	ND< 2.0				
trans-1,2-Dichloroethene	ND< 2.0	ĺ			
1,2-Dichloropropane	ND< 2.0				
cis-1,3-Dichloropropene	ND< 2.0	<u>Ketones</u>			
trans-1,3-Dichloropropene	ND< 2.0	Acetone	ND< 10.0		
Methylene chloride	ND< 2.0	Vinyl acetate	ND< 5.0		
1,1,2,2-Tetrachloroethane	ND< 2.0	2-Butanone	ND< 5.0		
Tetrachloroethene	18.7	4-Methyl-2-pentanone	ND< 5.0		
1,1,1-Trichloroethane	ND< 2.0	2-Hexanone	ND < 5.0		
1,1,2-Trichloroethane	ND< 2.0				
Trichloroethene	ND< 2.0	Carbon disulfide	ND< 2.0		
Vinyl Chloride	ND < 2.0				

Analytical Method: **EPA 8260** ELAP ID No.: 10958

Comments:

ND denotes Not Detected

Approved By

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Aromatic Analysis Report For Non-Potable Water (STARS List) (Additional EPA 8260 Compounds)

Client: The Sear-Brown Group Lab Project No.: GE6390

> Lab Sample No.: 16968

Client Job Site: Loohn's Sample Type: Water

Client Job No.: 14301.02

Date Sampled: 03/07/97 Field Location: MW-2 **Date Received:** 03/07/97

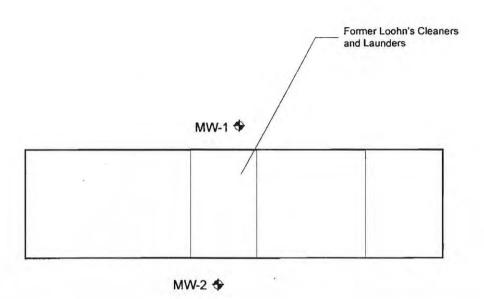
Field ID No.: N/A 03/10/97 Date Analyzed:

VOLATILE AROMATICS	RESULTS (ug/L)	
Methyl tert-Butyl Ether	ND < 2.0	
Isopropylbenzene	ND < 2.0	
n-Propylbenzene	ND < 2.0	
1,3,5-Trimethylbenzene	ND < 2.0	
tert-Butylbenzene	ND < 2.0	
1,2,4-Trimethylbenzene	ND < 2.0	
sec-Butylbenzene	ND < 2.0	
p-isopropyitoluene	ND < 2.0	
n-Butylbenzene	ND < 2.0	
Naphthalene	ND< 2.0	

Analytical Method: EPA 8260 NYS ELAP ID No.: 10958

Comments: ND denotes not detected

Approved By: Butter Aboratory Director


CHAIN OF CUSTODY

				CHAIN		31001						
SERVICES, INC.	REPORT	TTO:				INVOICE	TO: }		LAB	PRC	JECT	#
179 Lake Avenue	COMPANY The Sear-	Bru	Svm	O COMPA	MY	5ame			(-	E	JECT	90
Rochester, NY 14608	ADDRESS & M. X	~ law	,)	ADDRE	SS							
(716) 647-2530 • (800) 724-1997	ADDRESS 85 Metros STA	ATE AIL	ZIP 14/2	2.2 CITY		S	TATE	ZIP	P.O. #			
FAX (716) 647-3311	ATT. PHO	ONE#	475-14Y	ATT.			PHONE	#				
PROJECT NAME/SITE NAME:	FAX		(13 - 19 Y	FAX#					□ ADD	ENDL	JM	_
Loolin's	COMMENTS:											
PROJECT#: 121301.02					TURN AF	ROUND TIME NG DAYS)		THREE KIFIV	E(STD)			
151301.62					(WORKIN	NG DAYS) ENTATIVE:	LI ONE	THREE JAPAN				
C	\$	С		REQUESTE	ED ANALVO	10	Ł		*			
0 0	I	MNON		REQUESTE	U ANAL 15	15	_			ARAE	NCM	
P G	PLE LOCATION/FIELD ID	A U T M A	0					REMARKS	"	LAI		ANALYTICAL
S A SAM	LE LOCATION/FIELD ID	R B I E N	03c					HEIVIANNO		SAMF NUME		COSTS
		X RE							'	TOWIL	<i>J</i>	
		s							+	//	1/1	7
1 3/7/97 10:44 X Mu		N 2					+		-		0 1	
2 3/7/97 11:48 X Mu	/ - Z i	N 2	\mathbb{M}						_/_/	62	68	1
3			7									
4												
5												
6											+	
7		_				+ + + -			\rightarrow			
8						+	+-		+		-	
							\perp		\dashv		4-4-	-
9									\perp		$\bot \bot$	
10												
11												
12												
	ME RECEIVED BY:	DAT	E/TIME SAM	PLE CONDITIO	<u> </u>			CHECK#		TOT	AL COST	-
The Mub 3/7/97/	6:10											
RELINQUISHED BY: DATE/TI	ME RECEIVED BY	DAT	TE/TIME CAR	RIER COMPAN	Y			AIR BILL NO.		Р	P.I.F	
RELINQUISHED BY: DATE/TI	ME REPOSTYED @ AB BY.	DAX	E/ME CAR	RIER PHONE #				DATE RESULTS	REPORT	ED BY	/ :	DATE/TIME
	///Melalesseller	-3/7	197									
	WHITE COPY-SAMPLE	E YELLO	W COPY-F	ILE PINK	COPY-R	ELINQUIS	HER					

APPENDIX A-2

STANTEC 2005 (EXCERPTED FIGURE)

East Pultney Street

Figure 1

Well Location Map

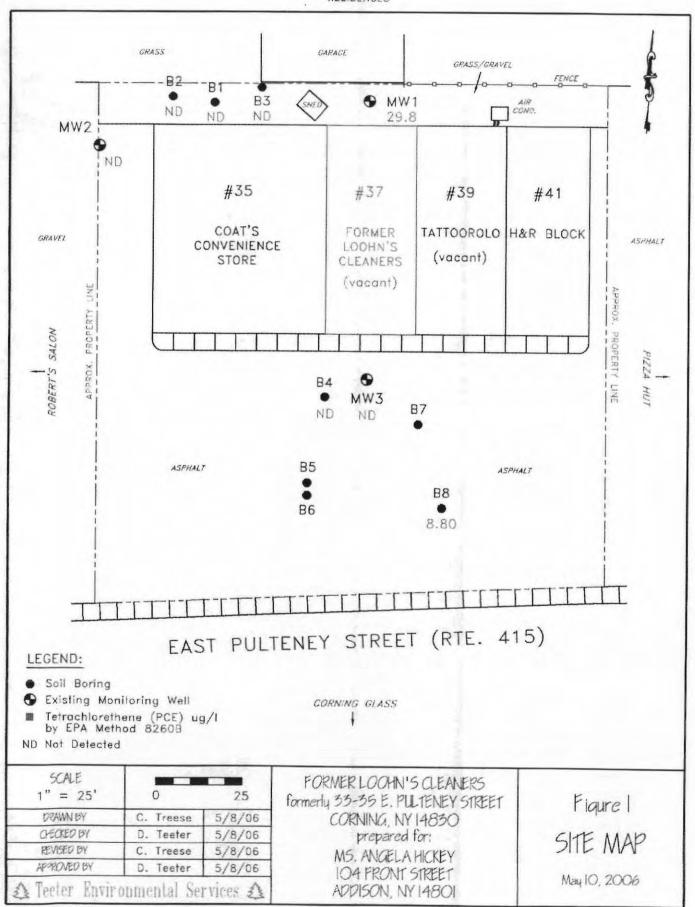
Loohn's Commercial Plaza

33-35 East Pultney Street City of Corning, New York

Source: Stantec Field Notes

TABLE 2 SUMMARY OF DETECTED VOLATILE ORGANIC COMPOUNDS in GROUNDWATER (ug/l)

33-35 E. Pultney Street Corning, NY


DETECTED	Mar-97		Oct-05		NYSDEC Class GA Groundwater and	
COMPOUNDS	MW-1	MW-2	MW-1	MW-2	Guidance Values Standards ⁽¹⁾	
TCL 8260						
Tetrachloroethene	84.5	18.7	41.3		5	
Toluene		2.9			5	
Acetone	25.0				5	

Notes:

- NYSDEC. October 22, 1993. Ambient Water Quality Standards and Guidance Values, Division of Water, Technical and Operational Guidance Series (TOGS 1.1.1); Reissued June 1998. April 2000 Addendum.
- 2. ug/l = all values expressed in micrograms per liter (equivalent to parts per billion).
- 3. blank space = below detection limits.
- 4. Sample results which exceed groundwater standard are presented in Bold.

APPENDIX A-3

TEETER 2006 (EXCERPTED FIGURE)

APPENDIX A-4

MACTEC 2006 (EXCERPTED FIGURES)

APPENDIX B

SITE PHOTOGRAPHS

Photo Number: DSCF2276.JPG

Photo Date: 6/9/10 View Facing Direction:

Description:

View of utility connection at roof above Frills

(Loohn's)

Photo Number: DSCF2281.JPG

Photo Date: 6/9/10

View Facing Direction: SW

Description:

View of surface soil sample BKSS-1. Grass area is between

East Pulteney Street shown and building

Photo Number: DSCF2282.JPG

Photo Date: 6/9/10

View Facing Direction: View facing ENE

Description:

View of back of building, with surface soil sample location BKSS-2, to photo left under tree (orange pin flag).

Pre-IRM Site Investigation Activities (Site Mobilization #1) Photographic Log Loohn's Corning Site, Site #851028 June 9, 2010

Town of Corning, New York

MACTEC Project Number: 3612102148

Photo Number: DSCF2283.JPG

Photo Date: 6/9/10

View Facing Direction: North

Description:

View of BKSS-3 in grassy area between vacant

parking lot and Ontario Street.

Photo Number: DSCF2284.JPG

Photo Date: 6/9/10

View Facing Direction: Facing south

Description:

View of back of building, with surface soil sample location BKSS-2, to photo left under tree (orange pin

flag)

Photo Number: DSCF2285.JPG

Photo Date: 6/9/10

View Facing Direction: East

Description:

View of "discarded material" behind building.

Pre-IRM Site Investigation Activities (Site Mobilization #1) Photographic Log Loohn's Corning Site, Site #851028 June 9, 2010

Town of Corning, New York

MACTEC Project Number: 3612102148

Photo Number: DSCF2286.JPG

Photo Date: 6/9/10

View Facing Direction: View facing ENE.

Description:

View of exploration locations behind building. MW-1 at

photo center.

Photo Number: DSCF2288.JPG

Photo Date: 6/9/10

View Facing Direction: View facing WSW.

Description:

View of exploration locations behind building. MW-1 at

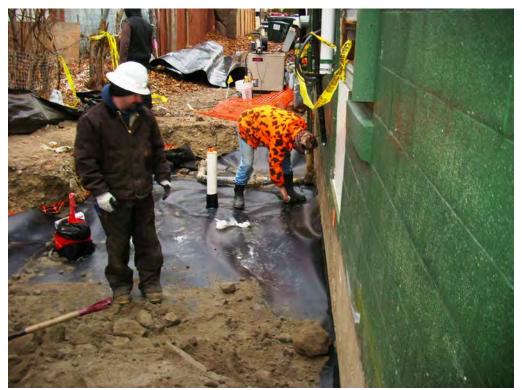
photo right.

MACTEC Project Number: 3612102148

Front of Site Structure December 2010 (Frills Deli occupied former dry cleaner space)

View of Site from Pulteney Street (2006)

IRM Soil Excavation 2010


Stone compaction

Sand installation (sand layer placed on geotextile)

Liner installation (1)

Liner installation (2)

Liner installation (3)

Welding seam around vapor well

Top sand layer placed on liner

Final grade stone (before trash removal)

MW-1 (foreground) and SV-1 (forms still present)

MW-2 road box in parking asphalt (photo from 2006)

RI Sub-slab Soil Vapor Sample (2011)

SV-1 Sub-slab and indoor air sample (2006) showing interior detail

View of Site from north showing wood barn located behind cleaners

APPENDIX C

FIELD DATA RECORDS

									SOIL BORING LOG			
	AS AS de	_						$\overline{}$	Project Name: Loohn's Corning	Boring I	D: PD1-1	
		M	Α	(4	`	E(\ \		T		
	611 (Congress S	tweet	Dortio	and Mo	ine 04	1101	_	Project Location: Corning, New York Project No.: 3612102148 Client: NYSDEC	Page No. Of:		
Pos		cation:				IIIC O	1101	· · · · · ·	Refusal Depth: Total Depth:	Bore Hole ID/OD: 4" OD		
		SUNN				0<			Soil Drilled: (6 Method: Direct Push	Casing S	Size: NA	
	contra				Drill				P.I.D (eV): 10.6 Protection Level: Level D	Sampler		
Dri	ller:	Jeff, La							Date Started: 6 8 10 Date Completed: 6 8 10	Sampler	· ID/OD: 1.85"/4"	
Rig	Туре	Model:	Geoj	probe	6610	DT			Logged By: LJB Checked By: Rim 6 22 10			
Ret	erence	Elevation	n:	Grac	le				Water Level: >16' Time: //55 CB G/22/16	Hamme	r Type: 130130" NA	
 		ole Inform	natior	1	ļ	· · · · ·	nitoring			م	'	
Depth (feet bgs)	Sample Number	Penetration/ Recovery (feet)	SPT Blows/6"	N Value	PID Field Scan	PID Headspace	Lab Tests Performed	Lab Sample ID	Sample Description and Classification	USCS Group Symbol	Remarks	
					O				0.0 - 0.4 TSOM (SM) TOPSOIL AND OLGANIC	SM		
2	1.	4.0.	_						MATERIAL (B)	ML.	9	
3	Ś	50 k			↓				BROWN, MOIST, SILT, SOME SAND, FINE TO COARIE, LIME TO SOME GRAVEL, NPLEANGULAR TO RANDED (FILL) TRAVETO LITTLE CLAY. 1.0-2.0 GRAVELLY SAND W/ SILT (SM) BROWN, MOIST, SAND, FINE TO COARSE, SOME FINE TO COARSE GRAVEL,	SM))	
5	-	4.0	-		0 ++				WET ATIS (ISSLATED)	SM		
7 %	-	63%							4.0-0.5 SAME AS ABOVE COLOR (BY VARIATIONS BROWN GRAVISH BROWN, ISOLATED WET INTERMAL AT 5.00			
9	1	4.0	1		0 0 0		·		8.0 - 11.5 SAME AS ABOVE PID SCREEN @ 11.0 (1.9 PPM) REDOISH BROWN @ 9.0 ; 10.5	SM		
12	5.	D.)			1.9 0.0 0.0	1.4	Yes	⊛			M CC 10 1000 10 10 10 10 10 10 10 10 10 10 1	
(3		4.0	1	7	0 +				12-18 SAME AS ABOUT	5/4		
10	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				\frac{1}{V}							
(₀	OTES:							75	BOE @ 16.0'; NOT REFUSAL			

									SOIL BORING LOG				
al al	ididi.	-	- 4					_	Project Name: Loohn's Corning	Boring I	D: PD1-2		
		M	А	(7.	!	H.(`		Domo Me			
	<u> </u>			Danto		ino 04	1101		Project Location: Corning, New York Project No.: 3612102148 Client: NYSDEC	Page No			
D		Congress S				IIIC O	+101		Refusal Depth: — Total Depth: 16		of: Bore Hole ID/OD: 4" OD		
		cation: مددی					75) .		Soil Drilled: 6 Method: Direct Push	Casing S	· · · · · · · · · · · · · · · · · · ·		
	ontra				Drill		<u></u>		P.I.D (eV): 10.6 Protection Level: Level D	Sampler			
Drill		Jeff, La				ш <u>ь</u>			Date Started: 6/8/10 Date Completed: 6/8/10		· ID/OD: 1.85"/4"		
_		Model:				DT			Logged By: LJB Checked By: RLM 6/22/16		r Wt/Fall: /30/30" NA		
_		Elevatio		Grad					Water Level: 18.48 (MW-1) Time: 1300		r Type: Auto NA		
		le Inform			<u> </u>	Mor	nitoring						
-					E	မွ		Ω		USCS Group Symbol	•		
t bg	qui	ion/ (fee	9/s/v	ie.	Sce	Ispa	sts	l əlc	Sample Description and Classification	P 49	Remarks		
Depth (feet bgs)	Sample Number	Penetration/ Recovery (feet)	SPT Blows/6"	N Value	PID Field Scan	PID Headspace	Lab Tests Performed	ab Sample ID	Sample Description and Glassification	Syn	Romarks		
lg.	ldu	Pene	PT.	z	<u> </u>	D F	La	ab S		ă			
Ĭ	Sa	R	S			Pi		1					
11					0				0.0-0.4 TSDM	TSOM			
Ľ									0.4 - 2.0 SILTY SAMO W GLANEL (SM).	SM	,		
7					\prod				MOIST, BROWN TO ORANGEISH BROWN				
2		4.0			П				SAMO, FINE TO COARSE, LITTLE TO		·		
	1	2.0		-					SOME SILT AND GRAVEL INP.				
3	S				H		,	-	ANGULAR TO ROUNTO, TRACT				
-		50%			HHH				CRGANICS (ROOTS)				
4		J 10			4								
Ľ					4								
-					0				4.0 -6.5 GRAVELY SAND (SMGM) MOIST,	SM-			
5		. /							BROWN TO GRAY BROWN SAUD,	GM			
1		4.0							FINE TO COARSE, SOME FIVE PO		,		
6	7	_	_		\sqcap		1		FINE TO COARSE, SOME FIVE TO COARSE GRAVEL, FEW SILT, NP,				
	2	2.5		_	\sqcap		~	_	ANGULAR TO SUBROULDED				
17	v,				\vdash		1		7,7402,72 10 -0 -1				
-	1	63%			\vdash					ļ			
8	1	-			4		1						
Ľ	├─		ļ					_		C.			
9					Y.8	0.4	8	(3)	8-12 SAME AS ABOVE	Sm-	& Chologo SOGONO		
Ľ]				10				·	GM	1330 BASTO ON		
1,		4.0			Ш	<u> </u>					PID HIT		
10	60	4.0	_	-					·				
	1	1			П								
I	7	100%			П		1						
	1	1 - 10			\top		1		·				
12					V	 	1				,		
\vdash	┼			 	0	ļ		—	12-15 SAME AS ABOVE	Çm-			
113					<u>U</u>		-		16-15 011100 110 1100	GM			
Ĺ	1	140		}	1		-						
1,,,					Ш]						
114	7	3.0	-	-				-					
	8	1			\prod								
((75%		Ι΄									
 	1				1	-	1						
116					-	 	_	1 .	BOE @ 16; NOT REPUSAL				
	TES:	1	1	<u> </u>	1	L	<u> </u>	Ц	// / / / / / / / / / / / / / / / /	!			

									SOIL BORING LOG				
		N //	· /		7		G(~	Project Name: Loohn's Corning	Boring ID: PD1 - 3			
		TAT		I		L		_	Project Location: Corning, New York	Page No			
	511 C	ongress S	treet, 1	Portla	nd Ma	ine 04	101		Project No.: 3612102148 Client: NYSDEC	0	f: I		
		cation:							Refusal Depth: Total Depth: 6	Bore Ho	le ID/OD: 4" OD		
Wea	ther:	Sund	1 .	CAI		5€	3 RA	الما	Soil Drilled: (6 Method: Direct Push	Casing S	Casing Size: NA		
	ontrac		Noth						P.I.D (eV): 10.6 Protection Level: Level D	Sampler	: Macrocore		
Drill	er:	Jeff, La	rry (as	sista	nt)				Date Started: C 910 Date Completed: C 910	Sampler	ID/OD: 1.85"/4"		
Rig T	Гуре/	Model:	Geor	robe	6610	DT			Logged By: LJB Checked By: REM 4/22/10		· Wt/Fall: 130/36 · NA		
_		Elevatio		Grad					Water Level: 18.48 (NW-1) Time: 1300 + 1240 6/8/	Hammer	Type: Anto NA		
	Samp	le Inforn	nation			Mor	nitoring		Ctatio (Co	3	•		
Depth (feet bgs)	Sample Number	Penetration/ Recovery (feet)	SPT Blows/6"	N Value	PID Field Scan	PID Headspace	Lab Tests Performed	Lab Sample ID	Sample Description and Classification	USCS Group Symbol	Remarks		
					0				0.0-0.3 TOPSOIL AND ORGANIC	SM			
1 3 4	۶- /	4.0' 1.5' 36%					1000000		MATERIAL (16DM) (SM) 0.3-1.5 SILTY SAND W GRAVEL (SM) BROWN, MOIST, JAND, FINE TO COARSE, SOME SILT, LITTLE TO SOME FINE TO COARSE GRAVEL, NP, ANGULAR TO SUB ROUMDED (FILL)	5M			
					0				4.0 -6.5 GLAVELLY SANO - SILT (SP-GP)	14,5			
5		US			1_		ŀ		BROWN TO GRAMISH BROWN, MOIST,				
		40			-				SAND, FINE TO COARSE, SOME FINE				
0 7 8	S. 2	2.5	-	-	1			_	TO COARSE GLANEL, LITTLE SILT, NP, ANGULAR TO SUBEOUNDED; (ALLUVIAL DEDOSITS). OCCUSIONAL COODLES > 2"		,		
C			ĺ		0				8-11 SAME AS ABOVE	59-			
J					11					68			
10	5 . 3	4.0° 3.0° 45°/0		_				-					
12	 		-	ļ	4	<u> </u>	ļ	-	12-15 SAME AS ABOVE	-			
(3		4.0			5.8	0,2	6	8	PIO SCREEN AT 45 @ 13. SAMPLE	53-	& LCPD1003013101x		
14	1				1.7	Ė	1		TAXEN		0830		
<u> </u>	15	3.0	_	-	Ó	-	4		·				
1	N				0		-						
 	1	75/0	,			T	1	1.					
16					-	<u> </u>			BOE @ 16' NOT REFUSAL				
NO	TES:												

SOIL BORING LOG Project Name: Loohn's Corning Boring ID: Pol - 4			
Loohn's Corning POL-9			
Project Location: Corning, New York Page No. (
511 Congress Street, Portland Maine 04101 Project No.: 3612102148 Client: NYSDEC of: 7	I		
	Bore Hole ID/OD: 2.75"/6"		
Weather: RAIN Soil Drilled: 20 Method: HSA Casing Size: NA			
Subcontractor: Nothnagle Drilling P.I.D (eV): 10.6 Protection Level: Level D Sampler: SPLIT SARREL			
Driller: Jeff, Larry (assistant) Date Started: (9 10 Date Completed: 6 9 10 Sampler ID/OD: 1.63" 1			
Rig Type/Model: Geoprobe 6610DT Logged By: LJB Checked By: PA 5 (of 2) Hammer Wt/Fall: 1304 /30	"NA		
Reference Elevation: Grade Water Level: 18.48 (AW-1) Time: 1360 (6 18 170) Hammer Type: 4070	-NA		
Sample Information Monitoring			
Sample Number Penetration/ Recovery (feet) SPT Blows/6" N Value PID Field Scan PID Headspace Lab Sample ID USCS Group Symbol			
20 1 @ 0.0-0.2 TSOM 5M @ NO PID	0160		
2.0 1 2 3 - 0.2 - 0.7 SILTY SAND W GRAVEL (SM); LOOSE, SM FOR S-1 (TO DORSE) SOME SILT, LITTLE GRAVEL, NP-LP. IMPACT.	VISSAL		
CUTINAS CONSISTENT ~ OTHER			
BORINGS. EASILY ADVANCED TO			
5-898			
1 20 1 00 6 5.0-5.7 GRANELY SAND W/ SICT (SM) COMPACT, WET, BROWN SAND, FINETO VOCS COMPACT, SOME GRAVEL, LITTLE SICT, NP, ANGURA TO ROUNDED (TILLUVIAL)	1005/04 x		
PEPEDITS)			
o HARD DRIVING FROM 5-10' (NOTOTISUE) AT & OGS). FREQUENT COSSUES (ROUNDED) IN EXCESS OF 4"			
SAME A ADDITION OF THE BOY OF THE PROPERTY SM (B) PID NOT	∪5€ <i>0</i>		
No EVIDE			
1:2 MARCT.			
1 100/2 4	CICIOX		
13 . CUTINGS TRANSITION TO MORE			
SANDY GRAVEL, LESSEL SITUOS AND SE			
14 SILTS SM			
, DIFTICULT OPILLING			
& PID SCREEN GF BONEHOLE (CUTINGS			
PILE 0.0 -1.9; AMBIENT 0.0-1.9			
BASED ON RAW, WILL NIOT CONTRINERIZE			
NOTES:			

	SOIL BORING LOG			
MACTEC	Project Name: Loohn's Corning	Boring ID: PD1 - 4		
MIACIEC	Project Location: Corning, New York	Page No. 💙		
511 Congress Street, Portland Maine 04101	Project No.: 3612102148 Client: NYSDEC	of: Z		
Boring Location: See Site Plan		Bore Hole ID/OD: 2.75" 6"		
Weather: RAIN	Soil Drilled: Zo Method: HSA	Casing Size: NA		
Subcontractor: Nothnagle Drilling	P.I.D (eV): 10.6 Protection Level: Level D	Sampler: Strit BARREL (24")		
Driller: Jeff, Larry (assistant)		Sampler ID/OD: 1.63" / 2"		
Rig Type/Model: Geoprobe 6610DT		Hammer Wt/Fall: 130# 35" NA		
Reference Elevation: Grade	Water Level: 18.48 (MW-1) Time: 1300 (06/18/11)	Hammer Type: 小いい NA		
Sample Information Monitoring				
Sample Number Penetration/ Recovery (feet) SPT Blows/6" N Value PID Field Scan PID Headspace Lab Tests Performed Lab Sample ID	Sample Description and Classification	OSCS Group Symbol Remarks		
16 > 20 (18) 68 (17 6) 4 (18 7) 68 (17 6) 4 (18 7) 69 (VERY DENSE, WET, SAND, FINE TO COARSE, LITTLE SILT THE GRAVEL, NP, SUBASUNDED TO ROSHOED	SA DID WOLL ORED		
19 20	HARD BRILLING 20-22 B 20-21 B	Sm. Gur (49)		
21 (5) 30 (6) 37 (6) 37 (6) 37 (7) 37	GENVELLY JAND W/ SILT (SM-SM) VERY PENSE, WET, GRAM BROWN SAND, FINE TO COARSE, SOME FINE TO COARSE GENVEL, LITTLE SILT, NP, ANKOLORITO ROUNDED HOLE OPEN AFTER REMOVAL OF AUCERS, COLLAPSED TO 9 BGS. BACKFILLED W/ CUTINGS BOE @ 22 ; NOT REFUSAL	8:0 NOT USED (TOO NUCH RAM)		
NOTES:				

									SOIL BORING LOG				
		NΛ	Δ		٦١-		F/	7	Project Name: Loohn's Corning	Boring I	Boring ID: PD1-5		
		TAT	Γ	11	ر مر	LJ		_	Project Location: Corning, New York	Page No	. l'		
L	511 C	Congress S	treet,	Portla	nd Ma	ine 04	101		Project No.: 3612102148 Client: NYSDEC		f: 1		
Borii	ng Lo	cation:	See S	Site P	lan				Refusal Depth: — Total Depth: 6	le ID/OD: 4" OD			
Wea	ther:	Suna	14	,C	ALA	Λ.	505		Soil Drilled: 6 Method: Direct Push	Casing S	Casing Size: NA		
Subc	ontra	ctor:	Noth	nagle	Drill	ing			P.I.D (eV): 10.6 Protection Level: Level D	Sampler: Macrocore			
Drill	er:	Jeff, Lar	ту (а	ssista	nt)				Date Started: 6810 Date Completed: 6810	Sampler ID/OD: 1.85"/4"			
Rig 1	Гуре/	Model:	Geor	robe	6610	DΤ			Logged By: LJB Checked By: £CM 6/22/10	Hammer	Hammer Wt/Fall: 130/36 NA.		
		Elevation		Grad					Water Level: (8,48 (MJ-1) Time: 1300	Hammer	Type: Auto NA		
		le Inform				Mor	itoring			T			
Depth (feet bgs)	Sample Number	Penetration/ Recovery (feet)	SPT Blows/6"	N Value	PID Field Scan	PID Headspace	Lab Tests Performed	Lab Sample ID	Sample Description and Classification	USCS Group Symbol	Remarks		
<u> </u>				_	0				0.0-0.4 TSOM, MOIST, DEBROWN, FINE TO				
2 3	2-1	4.0 2.0 5°10	1				-)	MEDIUM SAND, LITTLE COARGE SAND, SOME SILT, TRAVE GRAVEL, FREDURNT ORGANIGS, REOTS D.4-2.0 GRAVELY SAND W SILT (SM-GM) MOIST, BROWN, SAND, FHETO COARSE, SOME FINE TO COARSE GRAVEL, TRAVE TO LITTLE SILT, NP, POORLY SORTED,				
5 6 7 00	5-5	4.0 - 2.0 50%			0 09 0 0 01	0.0	€	Ð	ANGULAN TO SUBLEMBED 2.0-4.0 SAME AS ABONE. COLOR WARIATIONS (GLAY Brown TO BROWN) PLO HITS AT 5'AND 6' (LOW LEVEL)		@ 1690100500510xc VOCS +04560 1115		
					0				B-11.5 SANE AS ABOVE				
1 (2	5-3	4.0' 3.5' 88%	_		V			_					
13		4,0			0	-			12-15 SAME AS ABOVE				
19	1	3.0			H			_					
<u> </u>	4		_		+	-	1						
15		7500			4								
6							1	.	30-011				
6									BOE @ 16'; NOT REFUSAL				

NOTES:

FIGURE 4-4 SOIL BORING LOG

NYSDEC QUALITY ASSURANCE PROGRAM PLAN

			-		2.11				SOIL BORING LOG			
Al	tist.	N /	- A					$\overline{}$	Project Name: Loohn's Corning	Boring I	D: P01-6	
		M	A).	ا رُ		と(Project Location: Corning, New York	Page No	. (
	511 C	Congress S	treet,	Portla	nd Ma	ine 04	1101		Project No.: 3612102148 Client: NYSDEC	of: (
Borir	ng Lo	cation:	See S	ite P	lan				Refusal Depth: Total Depth: /6	Bore Hole ID/OD: 4" OD		
Weat	ther:	Suivar	CA	rn	, ऽर	۱5			Soil Drilled: /6 Method: Direct Push	Casing S		
Subc	ontra	ctor:	Noth	nagle	Drill	ing			P.I.D (eV): 10.6 Protection Level: Level D	Sampler		
Drill		Jeff, Lar							Date Started: 6/2/10 Date Completed: 6/2/10	Sampler		
		Model:				DT			Logged By: LJB Checked By: 19 (6 14 14) Water Level: 18 (8 (Mw-1)) Time: (3 8 8)	}	Wt/Fall: 30 31 "NA Type: Auto NA	
ļ——		Elevation		Grad	le	Mor	nitoring		Water Level: 1858 (MW-1) Time: (300	Haimnei	Type: Auto NA	
	· . ^	le Inforn			-		IIIOI III g			g g		
Depth (feet bgs)	Sample Number	Penetration/ Recovery (feet)	SPT Blows/6"	N Value	PID Field Scan	PID Headspace	Lab Tests Performed	Lab Sample ID	Sample Description and Classification	USCS Group Symbol	Remarks	
					0				QU-O,4 TSOM	2W		
(П		(A)	(3)	04-20 SILTY SANOWI CLAY AND GRAVEL (SA)	SW	DLCPDIOGLOGIOXX	
									MOIST, BEOWN, SAND, FINE TO CEASE, LITTLE		SUCC, PCB, PEST,	
2	\	4.0			П				TO SOME SILT, LITTLE FINE TO COARSE GRAVEL,		NETALS	
	3	1.0	ٰ ت	_					FEW CLAY MP-LP ANGULAL TO SUBRANOEN,			
3							1		POORLY SORTED (POTENTIAL FILL MATERIAL)			
1,,		50%			\sqcap							
4					V					GP -		
					0		Ø	8	4.8-6-6 SANDY GRANCE WISILT (GP-GM)	GM	@LCPD10060410xx	
3					1	-			MOISTPOWET IN PLACES, BROWN, GRANEL,		GRAPATION .	
广		7.			\vdash	0	8	(%)	FINE TO COARSE, LITTLE SAND, FINE TO	1	@ LCP0100600510xx	
G	V	4.0			+	-	Į Ų	0	COARSE, FEW TO LITTLE SILT, MP,	,	Vocs	
-	5	2.0	ب	-	+				Anicorna 10 subramoso, poorcy	,		
17					H	-	1		SOLITED (ALLUVIAL PEPOSITS) * GRADATION SAMPLE COLLECTED FROM			
-	-	500			H		-		REMAINING MATTRIAL ROLLWING SAMPLY			
6] ,			4	-	-		AT ST FOR VOCS	SP-		
-					1		-	-	B.O-8.4 GRAVELLY SAND W SILT (SP-SM)	Sm	·	
1					10		-		MOLLE 220 11 TO CHAM BROWN, SANO,	, .		
9	-	401			+	_			E TO CORRECT LITTLE GENVEL, HEALE			
10		-			H	0	Ø	(£)	DATED		& CCPD100601010xx	
	ا ک	3.0	-	-	1				Lan Canvella Stad (31) moisi,	54		
H	3	20	i		1		-		exim (oral) 10 1,001			
-	4	75%			#	<u> </u>	-		1 Charles Like			
					<u>H</u>	_	4		CORNEL TRACE SICI, NT		·	
12	 		ļ	ļ	V	<u> </u>	 	-	TO SUB ROLLOED, POORLY SOUTED		,	
1.,					0		-		12-14,5 SAME AS ABOVE	0.0		
13	1	4.0			-		4		16 (1763)	SP		
19	1	2.5	_	L	μ	ļ						
Ľ	الح'	U			\coprod	<u> </u>	_					
K				1	\coprod	<u> </u>	1					
<u> </u>]	(3,3			Ш				BOE CIG ; HOT REFUSAL			
ĺ					\coprod	L])			
l\0		<u></u>			V			<u>L</u> .				
NO'	TES:											

FIGURE 4-4 SOIL BORING LOG

NYSDEC QUALITY ASSURANCE PROGRAM PLAN

- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -									SOIL BORING LOG				
A SEA	11.61 -	N /	Λ		7			7	Project Name: Loohn's Corning	Boring Il	D: PD1-7		
	4	M	A	L	[ر	ĹĴ	じし		Project Location: Corning, New York	Page No			
	511 C	Congress S	treet,	Portla	nd Mai	ne 04	101		Project No.: 3612102148 Client: NYSDEC	of: \			
Bori		cation:							Refusal Depth: Total Depth:	Bore Ho	le ID/OD: 4" OD		
Wea		SUN				, 5	05		Soil Drilled: Method: Direct Push	Casing S	ize: NA		
Subc	ontrac	ctor:	Noth	nagle	Drilli	ng			P.I.D (eV): 10.6 Protection Level: Level D	Sampler			
Drill		Jeff, Lai							Date Started: 6 8 10 Date Completed: 6 8 10		Sampler ID/OD: 1.85"/4"		
		Model:				DΤ			Logged By: LJB Checked By: RLM 6/22/10 Water Level: 18.58 (Mw-1)Time: 1300		Wt/Fall: 130/36"NA		
		Elevatio		Grad		Mor	itoring		Water Level: 18,58 (Mw-1) Time: (300	Hammer	Type: Auto NA		
\vdash	ثب	le Inform		<u>. </u>	1		ntoring			l _B			
Depth (feet bgs)	Sample Number	Penetration/ Recovery (feet)	SPT Blows/6"	N Value	PID Field Scan	PID Headspace	Lab Tests Performed	Lab Sample ID	Sample Description and Classification	USCS Group Symbol	Remarks		
Ī.					0				D.0 -0.5 TSOM	SM			
1									05-25 GLANELLY SAMO N/SILT (SM)				
		40			\prod				MOIST, BROWN TO GRANISH BROWN, SAND				
2	_	-		_	\prod		- 1	_	CORRETO FINE, LITTLE TO. SOME FINE TO				
_	ځ	25					, i		CORPE TO THE CONTRACT OF PROPERTY				
3	′	63%							COARSE GRAVEL, LITTLE SILT, NP, PODRLY				
		656							SONTO ANGULAR TO SUBROLDED				
4				Ì	V								
\vdash					0			\vdash	£ 4.0 - 7.0 SAME AS ABOUT! DEM IN				
5					1				PUNCES				
	1	4.0			H	0	3	②	10000	'	@ LCPD 100700510xx		
Ć		_		_	+	Ť				1	- VOCs		
\vdash	2	3.0			H		İ	Ŀ			·		
7	5	مز ا			H		1						
	1	7510	,		-	┢─	1						
g					K		ł	İ	·				
i -	-	<u> </u>	 	 	 			 	8.0-10.5 SAME AS ABOVE				
٩					8)				6.0 > 10.5				
\vdash	-	4.0			H		1		·				
(೨		i i			H	_	-						
<u> </u>	5-3	25		-	1	-		8			DLCf10100701010xx		
11	ح	1.00			-	0	(%)	18			- Vocs		
_	-	63%	'		\vdash	-	·						
١.,						<u> </u>	4	}					
12	_	ļ	ļ	-	 	-	ļ	<u> </u>					
۱۶					0	<u> </u>	-		12.0-14.5 SAME AS ABOVE				
Ľ	4	4,0			1	<u> </u>	4	Ì					
14			_	-	1	_	4						
<u> </u>	أيا	1.5			H	_	-	-					
15	اے	63%			\perp	<u> </u>	4						
Ľ		160%	7		\sqcup		1						
Ιú					1		4		BOE @ lo NOT REFUSAL				
Ľ				<u> </u>	W.		1	<u>.L</u>			<u> </u>		
NC	TES:	<u>:</u>							•		TIGHT 4		

	SOIL BORING LOG											
	MM .	N /	Λ	1	7	ריו		7	Project Name: Loohn's Corning	Boring I	D: PD1-9	
		IVI		IC					Project Location: Corning, New York	Page No	. (
	511 C	Congress S	treet,	Portla	nd Ma	ine 04	101		Project No.: 3612102148 Client: NYSDEC	0	f: \	
		cation:							Refusal Depth: Total Depth: 16		le ID/OD: 4" OD	
Weat	her:	Suna) 2		Soil Drilled: 16 Method: Direct Push	Casing S		
Subc	ontra				Drill	ing			P.I.D (eV): 10.6 Protection Level: Level D	Sampler: Macrocore		
Drille		Jeff, Lar							Date Started: (8/10 Date Completed: (8/10	Sampler ID/OD: 1.85"/4" Hammer Wt/Fall: 10 10 NA		
		Model:				DI	.	·	Logged By: LJB Checked By: KAK (cilli) Water Level: 18-48 (MU-1) Time: 1300		Type: AND NA	
		Elevation le Inform		Grad	le T	Mor	itoring		Water Level: 1号-48 (MV-1) Time: 1300	Hammer	Type. / /// ANA	
			iatioi	1	-		nioring			l _{Br}		
Depth (feet bgs)	Sample Number	Penetration/ Recovery (feet)	SPT Blows/6"	N Value	PID Field Scan	PID Headspace	Lab Tests Performed	Lab Sample ID	Sample Description and Classification	USCS Group Symbol	Remarks	
					0				0.0-0.4 TSOM			
'	:				0							
ı		40			4:2				0-4 -3.0 SILM SAND W GRAVEL AND CLAY		,	
"	-	3.0	_						(SM-ML) MOIST, BROWN, SAND, FINE			
	ら	J			1.9		. 1		TO COMPLE, SOME SILY, TRACE TO			
3.		بمنرد.		Ì	117	90	@	6			@Lcp7100200310xx	
		756			1111	1.0			MP - LP, POORLY SONTED, ANGULAR		Noce	
4							,		TO ROUNDED (FILL)			
\vdash					VH				As Modern (1702)		•	
5		ř1			0.4				4.0 - 70 GRAVERLY SAND W/SICT (SM)	1		
		40							· · · · · · · · · · · · · · · · · · ·	1		
6		-			0.9				NOISE, BROWN TO DEANGEISH RED		,	
Ů	2	30		_					BROWN SAND, FINE TO COANSE, LITTLE			
7	5	7510			0,4		_	_	FINE TO COARSE GRUNEL, LITTE SILT,			
7		1 3 20			0				MP, POORLY SONTED, ANGULAR TO			
						,			ROWN ED (ALLUVIAL DEPOSITS)			
6									[ACCOVIAC BOX 33118]			
					0							
9		4.0			Ĭ.				6.0- (0.0 SAME AS ABOVE			
		-			+							
w		2-0		_	+						•	
Ě	2	6-1-5			H	·	-					
C	ep				${\mathbb H}$	ļ				-	:	
		50%	·		Н-							
										İ		
15					3				·			
					0				12.0-15.5 SAME AS ABOVE			
٤3		4.0			0,4							
" .		35	-	/	2	<u> </u>			·			
14	3	3,29			2,4	ĹΥ	13	\mathfrak{F}	•	ł	DLCP0100801510xx	
	7	مرر									Yocs	
15	"	75°0			0]					
	1	88%			Ĺ		1 .				·	
16		0010				İ	1		BOEC (6) NOT REPUBLL			
\vdash		L	L	ــــــــــــــــــــــــــــــــــــــ		ــــــــــــــــــــــــــــــــــــــ	<u> </u>				L	

									SOIL BORING LOG				
		N /	. \		7	Γ.		7	Project Name: Loohn's Corning	Boring 1	Boring ID: PID1-9		
		TVI		71				_	Project Location: Corning, New York	Page No	o. }		
Ĺ	511 (Congress S	Street,	Portia	nd Ma	ine 04	101		Project No.: 3612102148 Client: NYSDEC		of:		
		cation:		Site F	lan				Refusal Depth: Total Depth:		Bore Hole ID/OD: 4" OD		
Wea	ther:	RAI							Soil Drilled: 6 Method: Direct Push		Size: NA		
Subo	ontra				Drill	ing			P.I.D (eV): 10.6 Protection Level: Level D	Sampler			
Drill		Jeff, La							Date Started: 6 9 0		Sampler ID/OD: 1.85"/4"		
		Model:				DT			Logged By: LJB Checked By: Rin 6/22/10 Water Level: 1848 (MW-1) Time: 1300 the 40 6/8/1		r Wt/Fall: (36/30" NA		
		Elevatio	_	Grac	1e	Mor	uitoring		Water Level: 18,48 (MW-1) Time: 1300 57840 6/8/1	/-	Type. APM TO THAT		
			nacioi	<u> </u>	_		потше	_	011100c	1 🖁			
Depth (feet bgs)	Sample Number	Penetration/ Recovery (feet)	SPT Blows/6"	N Value	PID Field Scan	PID Headspace	Lab Tests Perfonned	Lab Sample ID	Sample Description and Classification	USCS Group Symbol	Remarks		
					0				0.0-0.3 TSOM	5.M			
١,		4.0			62	3,0	Ø	1		[C.n	@x310090010611		
		<u> </u>			1.9	,			0.3-2.9 SILTY SAND W GRAVEL (SM)	300	OLERA 100900/10xxx VOCS (FROM 0.5 Hol. GT)		
2	į.	20			04	-			BROWN, MOIST, SAND, FINE TO COARSE,		(FROM 0.5 to 1.0")		
-	5		-	_	<u></u>				SOME SILT, LITTLE TO SOME FINE TO				
3	יכו	50/10			i -				COARSE GRAVEL, NP, ANGULAR TO				
<u> </u>		70 /°					,	ļ	ROUMOED (FILL)				
ч			İ										
<u> </u>						<u> </u>		<u> </u>	1 = 0	İ			
1					0				4.0-6.5 GENTELLY SAMP W SILT (SPGP)				
L'					<u> </u>				BROWN TO GRAYISH BROWN, MOIST,				
		4.0			Щ	L			SAND, FINE TO COARSE, SOME FINE				
Ģ	7		_		Ц				TO COARLE GRAVEL, LITTLE SILT,				
7	٩	2-5		_				_	NP, ANGULAR TO SUBROUNDED,				
7					П				OCCASIONAL COBBLES > 2" (ALLUIAL				
		630			П				DEPOSITS)		,		
8					W				'				
	\vdash	<u> </u>	 	 	0		<u> </u>		B.O-10.5 SAME AS ABOVE				
19					0	_							
-	1	4.0			-	0-4		@	•		A COM OF POINT		
10		2.5			0.3	0-1	Ø	0	•		(4005) (1000) (1000) (1000) (1000) (1000)		
-	3	12.7		-	_	-					0000		
16	-3	(3/2			0.2						· ·		
<u> </u>	-	6" "			<u></u>	-							
12							ļ						
	ļ	<u>.</u>	<u> </u>	ļ	<u> </u>				12 15 CAST AS ARRIVE	1			
13					0	_		1	12-15 SAME AS ABOVE				
<u></u>		Uo			1	<u> </u>		l					
14		4.0			1								
	17	20						-					
	النم	3.0]						
15		12/10]						
1.		750		1]						
16					V				BUT @ 16 NOT REFUSAL				
NO	TES:												

	SOIL BODING LOC			
	SOIL BORING LOG Project Name: Lockele Coming	Boring ID:		
MACTEC		Boring ID: POI - 12		
MIACILO	Project Location: Corning, New York	Page No.		
511 Congress Street, Portland Maine 04101	Project No.: 3612102148 Client: NYSDEC	of: 2		
Boring Location: See Site Plan	Refusal Depth: Total Depth: Zo	Bore Hole ID/OD: 4" OD		
Weather: SUNNIT CALM, 50-	Soil Drilled: 20 Method: Direct Push	Casing Size: NA		
Subcontractor: Nothnagle Drilling	P.I.D (eV): 10.6 Protection Level: Level D	Sampler: Macrocore		
Driller: Jeff, Larry (assistant)	Date Started: 6 8 10 Date Completed: 6 5 10	Sampler ID/OD: 1.85"/4"		
Rig Type/Model: Geoprobe 6610DT	Logged By: LJB Checked By: BK(06/21/11)	Hammer Wt/Fall: 70 Ko NA		
Reference Elevation: Grade	Water Level: (8-48 (MW-1) Time: (300	Hammer Type: MAN NA		
Sample Information Monitoring				
Depth (feet bgs) Sample Number Penetration/ Recovery (feet) SPT Blows/6" N Value PID Field Scan PID Headspace Lab Tests Performed Lab Sample ID	Sample Description and Classification	OSCS Group Remarks		
	0.0 - 0.4 TS3m	TSOM		
2 2.5	Q.Y-2.5 SILTY SAND W GRAVEL AND CLAM (SM-ML) MOIST, BROWN TO DEADLEISH (BROWN, FINE TO COARSE SAND, LITTLE	5m- mL		
3 5	TO SOME SPET & SILT, LITTLE GRAVEL, TRACE CLAM, NP-LP, PEORLY SORTED,			
4	ANGULUM TO FOUNDED (FILL)	58 -		
5 4.0 3.0 7 75°6	GRAYISH BROWN, SAND, FINE TO COARSE, LITHE TO SOME FAR TO (CARSE GRAVEL, FEW TO LITTLE SILT, NO, POORLY SORTED, ANGULAR TO	Sn @Leptioizoosioxx Vocs		
8	ROLLOED (ALLUVIAL PEPOSITS)	,		
1 4.0	6,6 -12.0 SIMIC 15 71.00VC	S8-		
(0 M (00 in)		©LCP0101201010xx		
n				
(3) (1.0) (0)	12.0 - 15.5 SAME AS ABOVE	SP- SM		
14 3 35 -				
(() NOTES:				

									SOIL BORING LOG			
ils	elet .	n //	Α		7			_	Project Name: Loohn's Corning Boring	Boring ID: PP1 -12		
		M	A	V			E(الد	Project Location: Corning, New York Page N			
	511 C	Congress S						_		of: Z		
Bori		cation:								Bore Hole ID/OD: 4" OD		
		5022				(70				Casing Size: NA		
	ontra				Drill		-		P.I.D (eV): 10.6 Protection Level: Level D Sample	r: Macrocore		
Drill		Jeff, Lar	ту (а	ssista	nt)					r ID/OD: , 1.85"/4"		
		Model:	Geo	orobe	6610	DT				er Wt/Fall: 130 30" NA		
Refe	rence	Elevatio	n:	Grad					Water Level: 18.48 (nw-1) Time: 1300 Hamme	r Type: Auto -NA		
	Samp	le Inforn	nation	1		Moı	itoring		ه ا			
Depth (feet bgs)	Sample Number	Penetration/ Recovery (feet)	SPT Blows/6"	N Value	PID Field Scan	PID Headspace	Lab Tests Performed	Lab Sample ID	Sample Description and Classification Symbol	Remarks		
17					0				16-20 SAME AS ABOVE			
18	4	4.0	_	_			·		se- sn			
(9	, , 5	100%				D	⊙ -	æ		DLCPD101201910xx VOCS (1/2 02 MTERVAL BELOW WATER SURFACE (18-20))		
20					· Vi		'		BOE CZO , NOT REFUSAL	1 1/2 02 WIERME		
									, , , , , , , , , , , , , , , , , , , ,	BELOW WATER		
					_				·	SURFACE (18 -20))		
						_						
					<u> </u>							
İ					Ŀ							
							,		· ·	,		
									·			
	1		·				1					
							1					
	1									·		
					Г		1					
H	1											
		}										
-	1	1			-	 	1					
					-		1					
-	┨					-	1					
					-	-	1.					
-	-				\vdash	-	-	1				
					<u> </u>	 	4					
_	4		1			-						
						ļ		.				
1		1					I	1				

NOTES: WATER ESTIMATED AT MIB.O FT BELOW GRANIOS ORFORE, CONSISTENT

worwind nu-1.

FIGURE 4-4 SOIL BORING LOG

NYSDEC QUALITY ASSURANCE PROGRAM PLAN

	SOIL BORING LOG											
		NΛ	Δ		7			7	Project Name: Loohn's Corning	Boring I	D: PP1-13	
		IVI	\mathcal{L}^{-}	11		LJ		_	Project Location: Corning, New York	Page No		
L		ongress S				ine 04	101	<u> </u>	Project No.: 3612102148 Client: NYSDEC	of: J		
_	Boring Location: See Site Plan Weather: SVANY CYLM, 50;								Refusal Depth: Total Depth: 70	Bore Hole ID/OD: 4" OD		
	ther:) <u>s</u>		Soil Drilled: 100 Method: Direct Push	Casing S		
-	ontra				Drill	ing			P.I.D (eV): 10.6 Protection Level: Level D	Sampler		
Drill		Jeff, Lar			_				Date Started: 6 8 10 Date Completed: 6 8 10	Sampler		
		Model:				D.I.			Logged By: LJB Checked By: BA-S Water Level: 8.78 (MW-1/Time: 1/300		Wt/Fall: 136 130 -NA	
		Elevation	_	Grad	ie	Man	itarina		Water Level: 18.98 (MW-1/Time: 1300	Hammer	Type: / WTO -NA	
-		le Inform	atioi	<u> </u>	_	1	itoring	_		g.		
Depth (feet bgs)	Sample Number	Penetration/ Recovery (feet)	SPT Blows/6"	N Value	PID Field Scan	PID Headspace	Lab Tests Performed	Lab Sample ID	Sample Description and Classification	USCS Group Symbol	Remarks	
					0				0.0-0.4 Tsom			
		60.							0.4-1.7 SILTY SONIP W(GAAVEL (SM)			
Ė		do			Ħ				MOIST, BROWN, FINETO COARSE SAND,			
2		20							Miss, Drawn / The Coarie			
	5	Li	_	-	H		-	_	Some SILT, LITTLE FORE TO COARSE			
3.	-0	76			\vdash				GRAVEL, NO ANGULAR TO SUBREUNDED,			
الله		50%			H	$\vdash \vdash$			POORLY SOUTED (FILL)			
4					V	\vdash			1.7-2.0 GRAVELLY SAND W/SILT (SPSM)			
)					4				GRAPES COARED THAN ABOVE,			
<					0				CESSER FINES (SILT), INCREMSED	†		
Ľ		4.0			Щ				SAND FRACTION, NA, POORLY SONTED,			
L	ایما	10			Щ	0	8	1	(ALLOVIAL PEPOSITS)		@ Lee0101300510xx	
Ú	2	3.0			Ш						Vocs	
V		J.							40-7.0 SAME AS ADOVE WET		,	
1		75%							IN PUTLES ((SOLATES))			
0		1.0										
0					1							
		<u> </u>			0	Н		<u> </u>	8-0-10.8 SAME AS ABOVE			
٩					H	-						
H	-	4.0			\vdash							
łυ					\vdash							
	5-3	25			W ₂		_					
u	اث				M	1.4	لع	(& Leroidisoldiax	
Ë		63%			4		,			ļ.	Jocs	
12					Ц.							
					y V				•		,	
[,					0				12.0-14.0 STME 15 100VE		·	
13]	9:0										
, ,	12		سندا		\perp							
14	3-6	2°					,	-	†			
(5		~f.			\prod							
10		20 ₁ ,			\prod							
					N							
16					A				·			
			_									

NOTES:

	SOIL BORING LOG														
	MACTEC								Loomis Corning				Boring ID: POI-13		
		TAT	\mathcal{L}	IC		L		_						Page No. 2	
	511 (Congress S	treet,	Portla	nd Ma	ine 04	101		Project No.:	3612102148	Client: NYSI			f: Z	
Bori	ng Lo	cation:	See	Site P	lan				Refusal Depth:		Total Depth: し			le ID/OD: 4" OD	
Wea	ther:	JUMA	17.	CAL	m,	<u>50:</u>	5		Soil Drilled:	20.0	Method: Direc		+	Size: NA	
	contra		Noth	magle	Drill	ing			P.I.D (eV):	10.6	Protection Level:	· · · · · · · · · · · · · · · · · · ·	Sampler		
Drill		Jeff, La							Date Started:	618(10	Date Completed:		Sampler		
Rig	Type/	Model:	Geo	probe	6610	DT			Logged By:	LJB	Checked By:			Wt/Fall: 30 30 NA	
		Elevatio		Grad	le				Water Level:	18,48 (MW-1) Time: (300		Hammer	Type: Alto NA	
	Samp	de Inform	nation	1		Mor	nitoring]						
Depth (feet bgs)	Sample Number	Penetration/ Recovery (feet)	SPT Blows/6"	N Value	PID Field Scan	PID Headspace	Lab Tests Performed	Lab Sample ID		Sample Descript	ion and Classificatio	n	USCS Group Symbol	Remarks	
17	4	4.0/			0		·		16-1%-5	SAME AS	KOOVÉ	-		ATPANELIT DTW	
20		63%			V				B05 C1	10-0) NO	- 25 PU SIAL				
							-								

NOTES:

SURFACE SOIL SAMPLE FIE	ELD DATA RECORD
Project Number: 3412 to 2148 02.01	Site: Carning, N7 Date: 61910 Time: Start: 620/550 End: 4625/555 Signature of Sampler: 69
FIELD GC DATA: [] FIELD DOFICIATE SOLUTION [] 1YES DUPLICATE ID:	ALL USED ETHYL ALCOHOL 25% METHANOL/75% ASTM TYPE II WATER DEIONIZED WATER LIQUINOX SOLUTION HEXANE HNO 3 SOLUTION POTABLE WATER NONE NONE SOIL TYPE: CLAY SAND GRANIC GRAVEL
SAMPLES COLLECTED MATRIX VIF REQUIRED AT THIS LOCATION DO COLLECTED STANGE COLLECTED STANGE ST	VOLUME COILECTED/NOTES LCBICSSOCIODITOXX COUCTED BET TAZ ETURO FOR THE LISTED SEX
NOTES/SKETCH SAMPLE COLLECTED FROM 0.5-1.0. SAMPLE 0.0-0.5 TOPSOIL AND DEGLANIC MOIST, PAUL BROWN, SILT, S NY-LP, ABMOANT DRCG 0.5-1.0 SAME AD ABME. NO C FINE GLAVEL.	ANIC POUND (ROUTS). (Som MEDML) PREMIESS AT THIS DEATH. TEALE
CAMPLED BY: CJB	CHECKED BY: Alm 6/22/16

SURFACE S	OIL SAMPLE FIELD DATA	RECORD
Project: LOOHN'S COZNING Project Number: 3612102148 02.0	Site: Corn. Date: 6/ Time: Start:	9/10 1620 End: 1\$25
Sample Location ID: LCBC5500	Signature of	1 4/
SOIL SAMPLE		
DEPTH OF SAMPLE INTERVAL: O.Sh-loft (Feet below ground surface) reported to 1/10 foot	EQUIPMENT USED FOR COLLECTION: [] HAND AUGER ['] S.S. SPLIT SPOON [] SHOVEL [X] HAND SPOON [] ALUMINUM PANS [] SS BUCKET [] A/A(LA) TYPE OF SAMPLE COLLECTED: [] DISCRETE [] COMPOSITE SAMPLE OBSERVATIONS: [M] ODOR A(EM) [M] COLOR [M] (FM)	DECONTAMINATION FLUIDS USED: ALL USED [] ETHYL ALCOHOL [] 25% METHANOL/75% ASTM TYPE II WATER [] DEIONIZED WATER [] LIQUINOX SOLUTION [] HEXANE - [] HNO 3 SOLUTION [] POTABLE WATER [] NONE SOIL TYPE: [] CLAY
FIELD GC DATA: [] FIELD DUPLICATE COLLECTED DUPLICATE ID:	SAMPLE LOCATION SKETC (Im) []YES SEE SITE	H: PCAN
LOCATION BO COLLECTED [] VOC [] [] [A] SVOC [H]	SAMPLE LCBILS	VOLUMB COLLECTED/NOTES) 60200110 xx Coneurob TATL FILLED
NOTES/SKETCH SOIL PETCALIPTION	MOIST, BROWN FINE TO COARS C-ARSE, LITT	ORMANIC MATORIAL (TSOM) W GLAMBL (SM-GM) TO GLAMBIT BROWN SAND, TO, AND GLAMBL, FINE TO LE SILT, NP, ANGULANTO PLO O.OPPM)
SAMPLED BY: LTR	,	entrucied But Aca G

SURFACE SOIL SAMPLE	FIELD DATA RECORD
	Site CORNING MY
Project: LOOHN'S CORNING	JRC
Project Number: 3612102148	Date: 6 1 1 6 30 Engl: (635
BCBUSS00300110	Signature of Sampler:
Sample Location ID: L CB IC 55 0 0 3 0 0 1 (0 x	D Signature of Gampier.
SOIL SAMPLE	·
SERTH OF SAMPLE INTERVAL: 0.1-10 EQUIPMENT USED	FOR COLLECTION: DECONTAMINATION FLUIDS USED:
DEPTH OF SAME EL III LAND AUGER	ALL USED
(Feet below ground surface) [] S.S. SPLIT SPO	25% METHANOL/75% ASTM TYPE II WATER
IXTHAND SPOON	[X] DEIONIZED WATER NS
[] ALUMINUM PAN	1 HEXANE
1	[] HNO 3 SOLUTION [] POTABLE WATER
TYPE OF SAMPLE	
1 DISCRETE	SOIL TYPE:
(X) COMPOSITE	[] CLAY
SAMPLE OBSERV	ATIONS: [] SAND LE [X] ORGANIC
X ODOR <u>NO</u> K COLOR <u>NO</u>	
ij	
SAMPLE SAMPLE	E LOCATION SKETCH:
FIELD GC DATA: A FIELD DUPLICATE COLLEGE OF 1 1YES	
1 · · · · · · · · · · · · · · · · · · ·	
PID Reading O.O PPM.	
SAMPLES COLLECTED	
MATRIX	
✓ IF REQUIRED OF AT THIS LOCATION OF COLLECTED COLLECTED	VOLUME COLLECTED/NOTES
AT THIS I F SAMPLE IF PRESERVED. COLLECTED	- 1000 CO0300110 La A10
1 1 VOC []	PLE LCBICSSOO3 COLLICTED
I XI SVOC [4]	
INPCB IN WI YEW!	
[]INORGANICS []	
WATALS LA	
NOTES/SKETCH	. Oa. Se d
Soics Vereing	SED AS SIMILAL TO BILSS-1
Sole Description	I CLOY (MC) BROWN TO DARK BROWN,
	TO SONS FIND DIPPI
moist, sict,	LITTLE TO TAKE FINE GRAVEL
LITTLE CLA	M, NP TO LP, TRAVE FINE GRAVEL
	((a
a 160	CHEVILLE DY

SAMPLED BY: LSB

Pin 6/22/10

SURFACE SOIL SAMPLE FIELD DATA RECORD
Project: LOOHN'S CERNING Project Number: 3612102148 /02,01 (21) Date: 6810 Time: Start: 1030 Signature of Sampler: Site: [ORNING, A47] 35-1] Date: 6810
SOIL SAMPLE
EQUIPMENT USED FOR COLLECTION: (Feet below ground surface) reported to 1/10 fool EQUIPMENT USED FOR COLLECTION: [] HAND AUGER [] S.S. SPLIT SPOON [] SHOVEL [] HAND SPOON [] ALUMINUM PANS [] SS BUCKET [] HEXANE [] HONO 3 SOLUTION [] HEXANE [] HONO 3 SOLUTION [] HONO [] HONO [] HONO [] COMPOSITE SAMPLE OBSERVATIONS: [] CLAY [] COLOR [] COLOR [] CORROLL []
FIELD GC DATA: I FIELD DUPLICATE OCCUPANT [IYES COTE PLANT
PID Reading 0.0 PIB
SAMPLES COLLECTED MATRIX
VIFREQUIRED ATTHIS LOCATION SO OCCUPANTION INCOMPLE COLLECTED VOLUME COLLECTED/NOTES VOLUME COLLECTED/NOTES VOLUME COLLECTED/NOTES VOLUME COLLECTED/NOTES STROPE CONTENTS FOR SAS (INE EXCAVATION) METALS FROM SAS (INE EXCAVATION) METALS FROM SAS (INE EXCAVATION) SAMPLE CONTENTS FOR SAS (INE EXCAVATION) SAMPLE CONTENTS INCOMPLE CONTENTS INC

Rin 6/22/10

SURFACE SOIL SAMPLE FIE	ELD DATA RECORD
Project: LOUIN > (ORNING Project Number: 3612102148 /62,01 (25)	Site: Coenila 11 [PDI-10] Date: 6910 Time: Start: 1620 End: 1650 Signature of Sampler:
SOIL SAMPLE SOIL SAMPLE EQUIPMENT USED FOI	R COLLECTION: DECONTAMINATION FLUIDS USED:
DEPTH OF SAMPLE INTERVAL (Feet below ground surface) reported to 1/10 foot (Feet below ground surface) reported to 1/10 foot (Feet below ground surface) (Feet below gr	ALL USED [] ETHYL ALCOHOL [] 25% METHANOL/ 75% ASTM TYPE II WATER [] DEIONIZED WATER [] HIOUINOX SOLUTION [] HEXANE [] HNO 3 SOLUTION [] POTABLE WATER LLECTED: [] NONE SOIL TYPE: [] CLAY [] SAND [] ORGANIC
Land B GG BATA: 1 FIFI B DUPLICATE COLLEGIONE	SEE SITE PLAN
SAMPLES COLLECTED MATRIX	
IF REQUIRED	VOLUME COLLECTED/NOTES YO SOUNDS SAMILE CONFITCH Z'BLS AT THIS LOCATIONS
NOTES/SKETCH SEE SAMPLE DESCRIPTION NOTES F EN CONTROLE DORING ADVANCEME	FOR PDI-11. NO ORGANICS, FABRIC

1 BA 11/21/2010

SURFACE	SOIL SAMPLE FIELD DATA RECORD
Print LOOHN'S CORNING	Site: Coming Ng (PDI-11) Date: 6910
Sample Location ID: LCCCDI	Time: Start: 1300 Pnd: 1795 Signature of Sampler:
SOIL SAMPLE	EQUIPMENT USED FOR COLLECTION: DECONTAMINATION FLUIDS USED:
DEPTH OF SAMPLE INTERVAL: 0.5 2.0 (Feet below ground surface) reported to 1/10 foot	[] HAND AUGER [] S.S. SPLIT SPOON [] SHOVEL [] HAND SPOON [] ALUMINUM PANS [] SS BUCKET [] HEXANE [] HOO 3 SOLUTION [] POTABLE WATER
	TYPE OF SAMPLE COLLECTED: [] NONE [X] DISCRETE [X] COMPOSITE SOIL TYPE: [] CLAY SAMPLE OBSERVATIONS: [X] SAND [*] ODOR NONE [X] COLOR NONE [X] GRAVEL []
FIELD GC DATA: [X FIELD DUPLICATE COLLECTE DUPLICATE ID: LCP0/0/100 LCP0/0/100 PID Reading NOT SCREENED (TOO W.	00 210 MS12 101 NO Sec 3110
SAMPLES COLLECTED MATRIX	
IF REQUIRED OF ATTHIS LOCATION STORY COLLECTED [X] VOC [X] SVOC [X] [X] [X] PEST [X] [X] [X] PCB [X] [X] [X] MCTALS [X] [VOLUME COLLECTED/NOTES FOUR (4) SAMPLES (ENECTED AT THIS LOCATION). LCPOIDE COLLOXX (SUCC., PEST/NOBS, METALS) LCPOIDE ON ZIEXX (LCPOIDE CONTO) (CPDIDITEDZ JOMSD) (1) (1)
NOTES/SKETCH PUE TO ACLESS RE THE SITE, BOLING STAINLESS CITEEL SOIL DESCRIPTION	ESTRICTIONS (OVERHEND UTILITIES) PISCOURCED AT L POI -H WAS ADVANCED BY HAMP USING A SHOWER. Y SAMPLES CONECTED (SEE AROVE NICTATION) IS A FOLLOWS:
0.0-0.4 0.4-1.5 0.4-1.5	

SURFACE SOILS	SAMPLE FIELD DATA RECORD
Project: LOWHN'S CORNING Project Number: 3612102148 102.01 (Site: COLVING, NT (PDI-14) Date: 69100 Time: Start: 620 End: 655 Signature of Sampler:
SOIL SAMPLE	
DEPTH OF SAMPLE INTERVAL: 2 EQUIF (Feet below ground surface) [] H/ (Feet below ground surface) [] S. reported to 1/10 foot [] H/ [] A/ [] SAM SAM	DECONTAMINATION FLUIDS USED: ALL USED S. SPLIT SPOON AND SPOON AND SPOON LUMINUM PANS BUCKET TELACONE SOF SAMPLE COLLECTED: SISCRETE SOMPOSITE PLE OBSERVATIONS: DOOR NONE SAMPLE LOCATION SKETCH: SAMPLE LOCATION SKETCH: SAMPLE LOCATION SKETCH: SAMPLE LOCATION SKETCH: SAMPLE LOCATION SKETCH: SAMPLE LOCATION SKETCH: SAMPLE LOCATION SKETCH: SAMPLE LOCATION SKETCH: SAMPLE LOCATION SKETCH: SAMPLE LOCATION SKETCH: SAMPLE LOCATION SKETCH: SAMPLE LOCATION SKETCH: SAMPLE LOCATION SKETCH:
SAMPLES COLLECTED MATRIX	
IF REQUIRED AT THIS LOCATION SOS COLLECTED COLLECTED [XVOC [] SVOC [] [] [] [] [] [] [] [] [] [] [] [] []	VOL SAMPLE COLLECTED AT 7 1865 96 SOLIOS AS PART OF YOU ANALYSIS
NOTES/SKETCH SOLL DESCRIPTION	of Similar TO LOCATION PRI-11
WITHOUT ONLGAN	C INTORUM POBRIS ENCOUNTERED

JBAS 06/21/2010

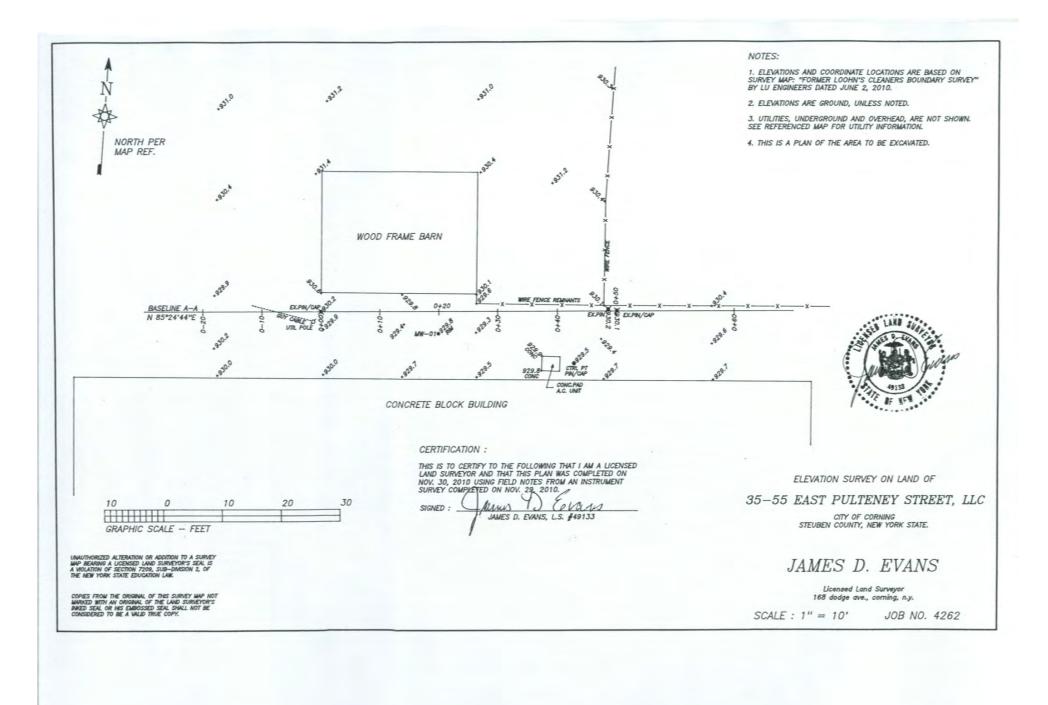
	GROUNDWATE	ER SAMPLING RECOI		
	PROJECT NAME		LOCATION ID GW-13	DATE 6/9/10
MACTE	1	ning Site	Coming, NY START TIME	END TIME
IVIACTE(PROJECT NUMBER/TASK 361210214		1525	/S 3-0
511 Congress Street, Portland Maine 04101	SAMPLE ID	SAMPLE TIME /530	SITE NAME/NUMBER 851028	NYSDEZ
	GRAB MICROWELL MONIT	TORING WELL X GEOPI	ROBE PORE WATER	VELL INTEGRITY
SAMPLE IIIE		OTHER	CAP	YES NO N/A NA NA NA
WELL DIAMETER 1-IN. 2-IN			CASING LOCKED	NA NA NA
MEASUREMENT POINT TOP OF RISE	R (TOR) TOP OF CASING (TOC)	X OTHER Ground Surf	COLLAR	NA NA NA
INITIAL DTW	FINAL DTW	PROT. CASING STICKUP (AGS)	NA FT DIFFERENCE	FT
(TOR) FT	(TOR)		DEFILITION	ER NA OTO
WELLDEFIH	SCREEN 4 F	PID AMBIENT AIR	OO PPM SETTING	NA SEC
(IOK)	DRAWDOWN	PID WELL	O O PPM SETTING	NA SEC
WATER COLUMN (TOR) FT	VOLUME GA (initial - final x 0.16 {2 in.} or x 0.65 {4 in.})	L MOUTH		320
CALCULATED	TOTAL VOL.	DRAWDOWN/ L TOTAL PURGED	PRESSURE TO PUMP	NA PSI
GAL/VOL (column x well rad. squared {2 in. ² } x 0.041)	PURGED GA (mL per minute x total minutes x 0.00026 gal/mL			
FIELD PARAMETERS WITH STABILIZATION	ON CRITERIA		PUMP	
DEPTH TO PURGE RATE	TEMP. (°C) Sr. CONDOCTATION	pH (units) (mg/L) (+/-1	SIDITY (ntu) REDOX (mv) INTAKE 0% <10 ntu) (+/- 10 mv) DEPTH (ft)	COMMENTS
WAIER (F1) (IIII)	(+/- 10 degrees) (+/- 3%)	(+/- 1078)	20	
1525	16.0	<u> </u>		
1530 SAMPLE COL	FINAL VAL			
	11 1.2	8:3 5.2		
	16			
	·			
EQUIPMENT DOCUMENTATION		<u> </u>	TRIAT C	ADDITIONAL EQUIPMENT USED
TYPE OF PUMP			STEEL PUMP MATERIAL	ELECTRIC WATER LEVEL METER FLOAT ACTIVATED WL METER
PERISTALTIC PUMP SUBMERSIBLE PUMP	DEIONIZED WATER TEFLON	LINED TUBING GE	C PUMP MATERIAL OPROBE SCREEN	INTERFACE PROBE
BLADDER PUMP	NITRIC ACID HEXANE HDPE T LDPE T	UBING TE	FLON BLADDER HER	TURB. METER
WATTERA PUMP OTHER CHECIC VALVE	METHANOL A~	· · · · · · · · · · · · · · · · · ·	NUMI	FILTERS BER TYPE
ANALYTICAL PARAMETERS	OTHER		VOLUME SAMPLE	SAMPLE BOTTLE
	METHOD FIELD NUMBER FILTER	PRESERVATION ED METHOD	VOLUME SAMPLE REQUIRED COLLECT	
PARAMETER	VOC-TAL VOA - 10 SW846 8260B	П нсі/4° С	3 X 40 ML	LIGW0130201026
VOCs SVOCs	SW846 8270C	4° C 1 4° C	2 X 1 L AG 2 X 1 L AG	
PESTICIDES/PCBs METALS	SW846 8081/8082 SW846 6010	HNO ₃ to pH <2	1 X 500 ML P	
OTHER OTHER				
OTHER				
OTHER		LOCATION SKET	гсн	
PURGE OBSERVATIONS PURGE WATER VES (NO)	NUMBER OF GALLONS $\angle \mathcal{O}$.		UILDING	
CONTAINERIZED	GENERATED	- 3170 13	VILVIMA	
NOTES CHEUC WILLE (TUBING	YEAU OFD BY			
MOTHNALLS HORIBA	1-10 (WOLA-10) 0000'			8
Sampler Signature:	Print Name: Lucas BENE Checked By: Rim 6/22	0105	42-14	GW -15 FIGURE
Sampled By: LAB	Checked By: Rim 6/22	100 QW-13	T OW DI OV	V GROUNDWATER DATA REC ITY ASSURANCE PROGRAM P

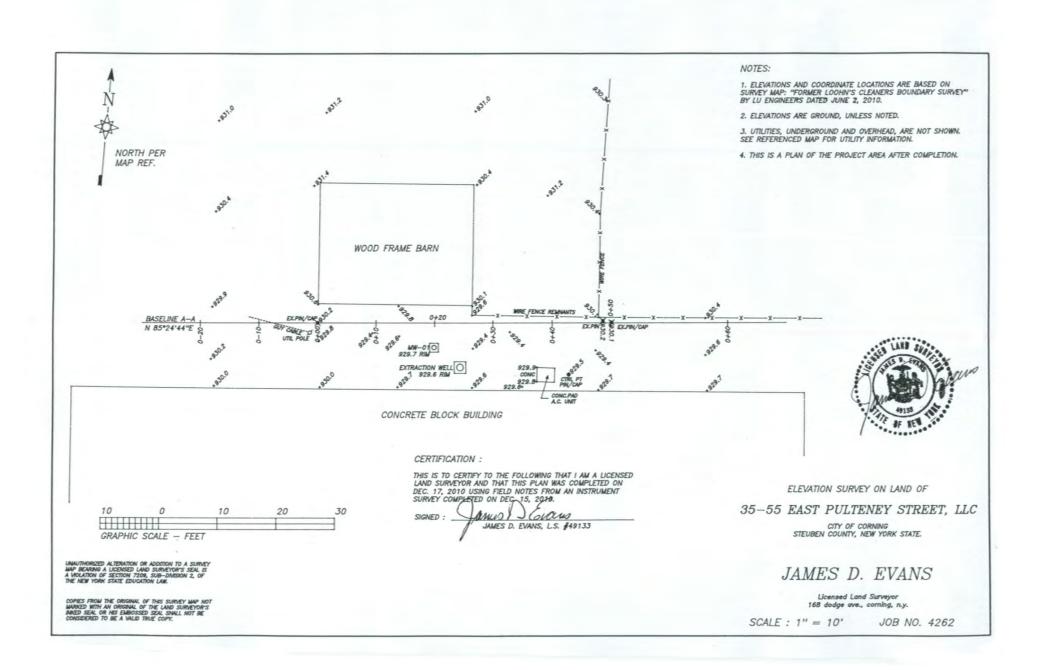
2.07/2015				GROUNDWA	TER SAN	APLING F	RECORD			
			PROJECT			•		LOCATION ID	5W-14	DATE / Q / L
	MAC	TE	PROJECT	NUMBER/TASK	Corning Site			START TIME		C/9//O END TIME
	•		SAMPLE I		2148/02.01	12			5/0	1515
511 C	Congress Street, Portl	and Maine 04 [0]		u wo/4020/0	اد کرد. احد کرد:	SAMPL 151		SITE NAME/NU 85	MBER 1028	FILE TYPE VYSDEC
SAMPL	E TYPE LO	w FLOW X			NITORING W	ELL X	GEOPROBE	PORE V	VATER Y	WELL INTEGRITY
WELL 1	DIAMETER 🔀	7 _{1-IN.} 2-II	N 4-IN.	6-IN. 8-II	и. 🔲 от	HER			CAP	YES NO N/A NA NA NA
1	REMENT POINT		ER (TOR)	TOP OF CASING (TO	с) 🗓 от	HER_ Gro	und Surface		CASING LOCKED	NA NA NA
									COLLAR	NA NA NA
INITIAL (TOR)	DTW	FT	FINAL DTW (TOR)			OT. CASING CKUP (AGS)	N	A FT	TOC/TOR DIFFERENCE	FT
WELL DI (TOR)	EPTE	FT	SCREEN LENGTH	4	FT AM	BIENT AIR	0.0	PPM	REFILL TIME SETTING	ER NA SEC
WATER COLUMN	N (TOR)	FT	DRAWDOWN VOLUME	· · · · · · · · · · · · · · · · · · ·		WELL UTH	0, 0	PPM	DISCH. TIME SETTING	R NA SEC
CALCUL			TOTAL VOL.	2 in.} or x 0.65 {4 in.})		AWDOWN/	60-	2/	PRESSURE	NA
GAL/VOI (column x	well rad. squared {2	in. ² } x 0.041)	PURGED (mL per minute x total	minutes x 0.00026 gal/n		FAL PURGED	,		TO PUMP	PSI
•	AMETERS WITH	STABILIZATIO		SP. CONDUCTANCE		DISS. O ₂			PUMP	
TIME	DEPTH TO WATER (FT)	PURGE RATE (mL/min)	TEMP. (°C) (+/- 10 degrees)	(ms/cm)	pH (units) (+/- 3%)	(mg/L)	TURBIDITY ((+/- 10% <10:	ntu) REDOX (mv) ntu) (+/- 10 mv)	INTAKE	COMMENTS
1510			15.0	(+/- 3%)	8.17	(+/- 10%) G.ZY		,	DEPTH (ft)	
1212	SAMPLI	5 CALL	13.50 2020	LC9W01				·		· ·
1312	O TIVE CA	<u> </u>	Fina			O XX				
			15	1.2	8.2	Ç.Z	_			
				4						
	ļ									
					<u> </u>				· .	·
								<u> </u>	<u> </u>	
ļ 	<u> </u>							_		
			, .			· .				
					-					
	 		!		 	 				
					 	 				
EQUIPMEN	T DOCUMENTA	TION	ŀ			L	<u> </u>		 	
PE SU BL	TYPE OF PUMP ERISTALTIC PUMP JBMERSIBLE PUMP LADDER PUMP ATTERA PUMP THER Cific IC V		ECON FLUIDS USED LIQUINOX DEIONIZED WATE POTABLE WATER NITRIC ACID HEXANE METHANOL OTHER	R SILICOI TEFLOI	N TUBING N TUBING N LINED TUB UBING	P/BLADDER N		SCREEN		DITIONAL EQUIPMENT USED ELECTRIC WATER LEVEL METER FLOAT ACTIVATED WL METER INTERFACE PROBE PID A 159EL Z TURB. METER FILTERS TYPE
ANALYTIC	CAL PARAMETE	RS	METHOD	FIELD	PRESE	RVATION	VOLUM	E	SAMPLE	SAMPLE BOTTLE
1 .	PARAM	ETER	NUMBER VOC-THLUGA-	FILTER	ED METHO	DD	REQUIR	ED	COLLECTED	ID NUMBERS
	OCs VOCs		SW846 8260B SW846 8270C	N	HCi / 4° 4° C	С	3 X 40 M 2 X 1 L		7	LCGW01302010XK
PE	ESTICIDES/PCBs ETALS	•	SW846 8081/80 SW846 6010	982	4° C HNO ₃ to	nH ←?	2:X1L 1 X 500	AG .		,
o.	THER		2 M 040 00 IO		71103 11	. pri ~2	1 X 300			
o	THER				1 ==					
	THER				J					
PURGE OF PURGE WAT CONTAINER		s (NO	NUMBER OF GALL	LONS CO. 1	LC	CATION SI آن ڪ	KETCH E BJIL	ointa l)	
		UNIVE PRO-	rived By Me	THNALLE.		``		. \	Ţ	
1	0-10 (M)			, , , , , , , ,		4				
	\mathcal{M}^{\bullet}	2/-		عرب ع		.a.				GW-15
Sampler Sign	· · · VIN	~1		LUCAS BENEC	. 1	æ Gwi3		5		FIGURE 4-10
Sampled By:	12 P	•	Checked By:	ALM 6/2	-110	400,5	G	WIY LO	OW FLOW G	ROUNDWATER DATA RECORI ASSURANCE PROGRAM PLAN

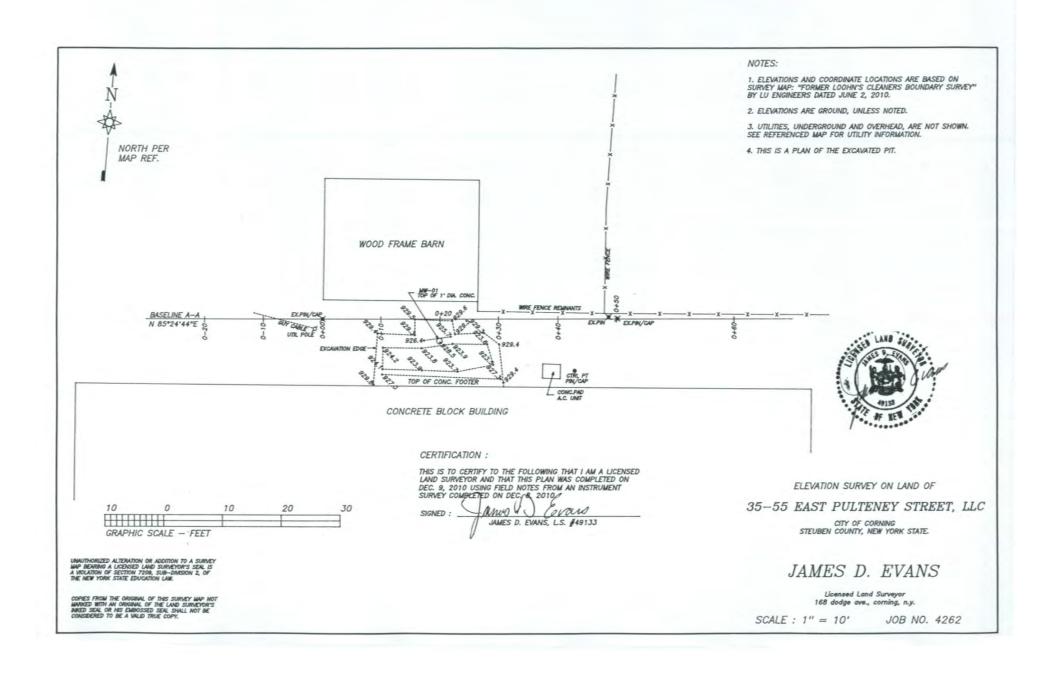
	GROUN	DWATER SAMPLING.	RECORD		
	PROJECT NAME	Loohn's Corning Site	LOCATION ID	GW-15	DATE
MACTE	PROJECT NUMBER/TAS	K	START TIME		6/9/10 END TIME
511 Congress Street, Portland Maine 04101	SAMPLE ID	3612102148/02.01	E TIME SITE NAME/N		FILE TYPE
	LCGW01502	2010 XX 14:	a - I I	51028	NYSDEC
	GRAB MICROWELL	MONITORING WELL X	GEOPROBE PORE		LL INTEGRITY
WELL DIAMETER 1-IN. 2-I		8-IN, OTHER	·	CAP	YES NO N/A NA NA NA NA NA
MEASUREMENT POINT TOP OF RIS	ER (TOR) TOP OF CASIN	IG (TOC) X OTHER Gro	und Surface	LOCKED	NA NA NA NA
INITIAL DTW FT	FINAL DTW (TOR)	PROT. CASING STICKUP (AGS)	NA FT	TOC/TOR	
WELL DEPTH	SCREEN 5	PID	0.0 pp	DIFFERENCE REFILL TIMER	FT
(TOR) FT	DRAWDOWN 7	FT AMBIENT AIR PID WELL	III	SETTING	NA SEC
COLUMN (TOR) FT	VOLUME (initial - final x 0.16 {2 in.} or x 0.65 {4	GAL MOUTE	O.O PPM	DISCH. TIMER SETTING	NA SEC
CALCULATED GAL/VOL	TOTAL VOL.	GAL DRAWDOWN/ TOTAL PURGED		PRESSURE	NA
(column x well rad. squared {2 in.²} x 0.041)	(mL per minute x total minutes x 0.0002			TO PUMP	PSI
FIELD PARAMETERS WITH STABILIZATION DEPTH TO PURGE RATE	SP CONDUCT	ANCE DISS. O ₂		PUMP	
TIME WATER (FT) PURGE RATE (mL/min)	TEMP. (°C) (ms/cm) (+/- 3%)	pH (units) (mg/L) (+/- 3%) (+/- 10%)	TURBIDITY (ntu) REDOX (mv (+/- 10% <10 ntu) (+/- 10 mv)) INTAKE	COMMENTS
1415 — —	16.2 1.32	7.19 5.79		20	
170 SAMPLE COL	ITTIES LCGW				
	FIRST WAL	-VED			
	16 1-3	7.2 5.8			
·			,		
				1 .	
EOUIPMENT DOCUMENTATION				<u> </u>	
PERISTALTIC PUMP SUBMERSIBLE PUMP BLADDER PUMP WATTERA PUMP	DEIONIZED WATER TE POTABLE WATER TE NITRIC ACID HI	EFLON TUBING EFLON LINED TUBING DPE TUBING	ATERIALS S. STEEL PUMP MATERIAL PVC PUMP MATERIAL GEOPROBE SCREEN TEFLON BLADDER OTHER	FLOA INTE PID	DNAL EQUIPMENT USED CTRIC WATER LEVEL METER AT ACTIVATED WL METER ERFACE PROBE
PARAMETER		ELD PRESERVATION	VOLUME		SAMPLE BOTTLE
PARAMETER	NUMBER FU VOC-TAL-VOA-10 -SW846-8260B-	LTERED METHOD	REQUIRED		ID NUMBERS
SVOCs PESTICIDES/PCBs	SW846 8270C	HCI / 4° C	3 X 40 ML 2 X 1 L AG	4 4	CGW015 C 2C 10 XX
METALS OTHER	SW846 8081/8082 SW846 6010	4° C HNO ₃ to pH <2	2·X 1 L AG 1 X 500 ML P		
OTHER OTHER					
OTHER					
PURGE OBSERVATIONS	_	LOCATION SK			
PURGE WATER CONTAINERIZED YES	NUMBER OF GALLONS GENERATED		SILDING		
BY MENAL & CHECKING	WED TO COMPLE. P	र्थाण्डेल	1		
BY NOTHINAGE CHOUSE.	01-41cm) and		1	O(w	iC.
Sampler Signature:	Print Name: LOCAS BENTE	101cf Gar-13	GW-14 1	(W	•
Sampled By:	Checked By: 16 22 //	0	, ro		FIGURE 4-16 INDWATER DATA RECORD SURANCE PROGRAM PLAN

	SOIL VAP	OR SA	MPLING RECOR	D					
Lo	ohns Corning	LOCATION ID: EW-001 DATE: 1/11/2011							
K NO.:	3612102148-02.01		CLIENT: NYSDEC						
ON:	Corning, New York	¢.	SAMPLER NAME	SAMPLER NAME: Brandon Shaw					
TIONS (AM)	: 80 F, sunny		SAMPLER SIGNATURE:						
TIONS (PM)	89 F, sunny								
	SUMMA	Canister	Record Information						
			FIRST FLOOR SAMPLE	AIR	AMBIENT AIR SAMPLE				
4970	Flow Regulator Number:	NA	Flow Regulator Number;	NA	Flow Regulator Number:	NA			
-50	Flow Rate (mL/min):	NA	Flow Rate (mL/min):	NA	Flow Rate (mL/min):	NA			
245	Canister Serial Number:	NA	Canister Serial Number:	anister Serial Number: NA		NA			
6 850	Start Date/Time		Start Date/Time		Start Date/Time	Start Date/Time			
-28	Start Pressure ("Hg):	NA	Start Pressure ("Hg):	NA	Start Pressure ("Hg):	NA			
16920	Stop Date/Time		Stop Date/Time		Stop Date/Time				
-5	Stop Pressure ("Hg):	NA	Stop Pressure ("Hg):	NA	Stop Pressure ("Hg):	NA			
1005	Sample ID: NA		Sample ID: NA		Sample ID: NA				
	Othe	r Sampli	ng Information:						
4" py6.	Story/Level:	NA	Story/Level:	NA	Direction from Building	NA			
NA	Room:	NA	Room:	NA	Distance from Building:	NA			
ential Vapor Entry nts:		Potential Vapor Entry Points: NA		Potential Vapor Entry Points: NA		NA			
or Surface:		NA	Floor Surface:	NA	Ground Surface:	NA			
oticable Odor: Nove No		NA	Noticable Odor:	NA	Noticable Odor:	NA			
7.4	PID Reading (ppb):	NA	PID Reading (ppb):	NA	PID Reading (ppb):	NA			
15	Intake Height:	NA	Intake Height: NA		Intake Height above Ground Surface:	NA			
Nr.	Indoor Air Temp	NA	Indoor Air Temp	NA	Intake tubing?	NA			
Sketch: 9" pvc nkil (, throug	extraction we rewrited their than a 4" pro-	11 adje nu tie cop; Regen	, July Com	1.66	FIGU	RE 4-19			
	KNO:: ON: TIONS (AM) TIONS (PM) VAPOR 4970 -50 245 (-850 -28 16920 -5 1005 1" Dyli. NA none Just none 7.4 none 7.4	Loohns Corning K NO.: 3612102148-02.01 ON: Corning, New Yord TIONS (AM): 80 F, sunny SUMMA VAPOR BASEMENT INDO SAMPLE 4970 Flow Regulator Number: -50 Flow Rate (mL/min): 245 Canister Serial Number: (*850 Start Date/Time -28 Start Pressure ("Hg): 1005 Sample ID: NA Other Three Potential Vapor Entry Points: MA Room: None Potential Vapor Entry Points: MA Room: None Noticable Odor: 7.4 PID Reading (ppb): -5 Intake Height: None Noticable Odor: 7.4 PID Reading (ppb): -5 Intake Height: None Noticable Odor: 7.4 PID Reading (ppb): -5 Intake Height: None Noticable Odor: 7.4 PID Reading (ppb): -5 Intake Height: None Noticable Odor: 7.4 PID Reading (ppb): -5 Intake Height: None Noticable Odor: 7.4 PID Reading (ppb): -5 Intake Height: None Noticable Odor: 7.4 PID Reading (ppb): -5 Intake Height: None Noticable Odor: 7.4 PID Reading (ppb): -5 Intake Height: None Noticable Odor: 7.4 PID Reading (ppb): -5 Intake Height: None Noticable Odor: 7.4 PID Reading (ppb): -5 Intake Height: None Noticable Odor: 7.4 PID Reading (ppb): -5 Intake Height: None Noticable Odor: 7.4 PID Reading (ppb): -5 Intake Height: None Noticable Odor: 7.4 PID Reading (ppb): -6 Intake Height: None Noticable Odor: 7.4 PID Reading (ppb): -6 Intake Height: None Noticable Odor: 7.4 PID Reading (ppb):	Loohns Corning K NO: 3612102148-02.01 ON: Corning, New York TIONS (AM): 80 F, sunny TIONS (PM): 89 F, sunny SUMMA Canister VAPOR BASEMENT INDOOR AIR SAMPLE 1970 Flow Regulator Number: NA -50 Flow Rate (mL/min): NA 245 Canister Serial Number: NA (850 Start Date/Time -28 Start Pressure ("Hg): NA 1 (920 Stop Date/Time -5 Stop Pressure ("Hg): NA 1 (005 Sample ID: NA Other Sampli 1 () NA NA Room: NA NA NA NOTICE NA NA NA NOTICE NA NA NA NA NA NA NA NA NA NA	Loohns Corning K NO.: 3612102148-02.01 CLIENT: N SAMPLER NAME TIONS (AM): 80 F, sunny SAMPLER SIGNA TIONS (PM): 89 F, sunny CHECKED BY: SUMMA Canister Record Information VAPOR BASEMENT INDOOR AIR SAMPLE Flow Regulator NA Flow Regulator Number: A 50 Flow Rate (mL/min): NA Flow Rate (mL/min): A 50 Flow Rate (mL/min): NA Flow Rate (mL/min): A 50 Flow Rate (mL/min): NA Start Date/Time A 50 Start Date/Time A 50 Start Date/Time Start Date/Time A 50 Stop Date/Time A 50 Stop Date/Time A 50 Stop Pressure ("Hg): NA Start Pressure ("Hg): A 50 Stop Pressure ("Hg): NA Stop Pressure ("Hg): A 50 Sample ID: NA Other Sampling Information: A 70 PM A 70 POEntial Vapor Entry Points: MA 70 Potential Vapor Entry Points: MA 70 Potential Vapor Entry Points: MA 71 PID Reading (ppb): A 5 Intake Height: NA Intake Height: MA 1 Indoor Air Temp NA 1 Indoor Air Temp NA 1 A 7 PV 6 Cap; RYAN PUTZING C 8 TT RYAN PUTZING	K NO: 3612102148-02.01 CLIENT: NYSDEC ON: Corning, New York SAMPLER NAME: B TIONS (AM): 80 F, sunny SAMPLER SIGNATURE: TIONS (PM): 89 F, sunny CHECKED BY: ACA SUMMA Canister Record Information VAPOR BASEMENT INDOOR AIR SAMPLE Flow Regulator NA Plow Rate (mL/min): NA Flow Rate (mL/min): NA Flow Rate (mL/min): NA Flow Rate (mL/min): NA Flow Rate (mL/min): NA Flow Rate (mL/min): NA Flow Rate (mL/min): NA Start Date/Time 28 Start Date/Time Start Date/Time 28 Start Pressure ("Hg): NA Start Pressure ("Hg): NA Stop Date/Time 5 Stop Date/Time Stop Date/Time 5 Stop Pressure ("Hg): NA Stop Pressure ("Hg): NA Stop Pressure ("Hg): NA Stop Pressure ("Hg): NA Flow Sample ID: NA Stop Pressure ("Hg): NA Floor Surface: NA Floor Surface: NA Potential Vapor Entry Points: NA Potential Vapor Entry Points: NA Floor Surface:	LOOMING COMING K NO.: 3612102148-02.01 CLIENT: NYSDEC ON: Corning, New York SAMPLER NAME: Brandon Shaw TIONS (AM): 80 F. sunny SAMPLER SIGNATURE: TIONS (PM): 89 F. sunny CHECKED BY: A. DATE: 7 SUMMA Canister Record Information VAPOR BASEMENT INDOOR AIR SAMPLE Flow Regulator Number: NA Start Pressure ("Hg): NA Canister Serial Number: NA Canister Serial Number: NA Canister Serial Number: NA Start Pressure ("Hg): NA Start			

PROJECT NAME: PROJECT NO./TASK N PROJECT LOCATION:		ohns Corning			07.11	1.	1 -				
reside and a second	IO.:			LOCATION ID:	SV-002	DATE:) W	16/20				
PROJECT LOCATION:		3612102148-02.01		CLIENT: NYSDEC							
		Corning, New York		SAMPLER NAME: Brandon Shaw							
WEATHER CONDITION	NS (AM)	80 F, sunny		SAMPLER SIGNA	TURE)				
WEATHER CONDITION	NS (PM):	89 F, sunny		CHECKED BY:	Rim	DATE: 7/12/11					
		SUMMA	Canister 1	Record Information							
SUB-SLAB SOIL V. SAMPLE	APOR	BASEMENT INDO SAMPLE	OR AIR	FIRST FLOOR SAMPLE	AIR	AMBIENT AIR SAMPLE					
Flow Regulator Number:	1969	Flow Regulator Number:	NA	Flow Regulator Number:	NA	Flow Regulator Number:	NA				
Flow Rate (mL/min):	85-50.	Flow Rate (mL/min):	NA	Flow Rate (mL/min):	NA	Flow Rate (mL/min):	NA				
Canister Serial Number:	283	Canister Serial Number: NA		Canister Serial Number:	NA	Canister Serial Number:	NA				
Start Date/Time 6-1-11	1051	Start Date/Time -		Start Date/Time	_	Start Date/Time					
Start Pressure ("Hg):	-28	Start Pressure ("Hg):	NA	Start Pressure ("Hg):	NA	Start Pressure ("Hg):	NA				
Stop Date/Time [-1-1]	1120	Stop Date/Time		Stop Date/Time		Stop Date/Time					
Stop Pressure ("Hg):	-6	Stop Pressure ("Hg):	NA	Stop Pressure ("Hg):	NA	Stop Pressure ("Hg):	NA				
Sample ID: LCSV002 C	07	Sample ID: NA		Sample ID: NA		Sample ID: NA					
		Other	r Samplin	g Information:							
Finished Basement, Unfinished Basement	n grade	Story/Level:	NA	Story/Level:	NA	Direction from Building	NA				
Floor Slab Thickness:	5"	Room:	NA	Room:	NA	Distance from Building:	NA				
Potential Vapor Entry Points:	none	Potential Vapor Entry Points: NA		Potential Vapor Entry Points: NA		Distance from Roadway:	NA				
Floor Surface:	onercte	Floor Surface: NA		Floor Surface:	NA	Ground Surface:	NA				
Noticable Odor:	None	Noticable Odor: NA		Noticable Odor:	NA	Noticable Odor:	NA				
PID Reading (ppb):	-	PID Reading (ppb): NA		PID Reading (ppb):	NA	PID Reading (ppb):	NA				
Intake Depth/Height:	ake Depth/Height: 37^{11}		Intake Height: NA		NA	Intake Height above Ground Surface:	NA				
elium Test Conducted? reakthrough %:		Indoor Air Temp NA		Indoor Air Temp	NA	Intake tubing?	NA				


FIGURE 4-19 INDOOR AIR SAMPLING RECORD NYSDEC QUALITY ASSURANCE PROJECT PLAN


PROJECT NAME Loohns Corning					L	OCATION ID	1 W-Z	DATE 06-1-2011		
	Λ A(CTEC	Loohns Corning PROJECT NUMBER				S	START TIME		END TIME 1025
	ongress Street, Portl			3612	102148-02.0	SAMPLE TIM	ME SI	TE NAME/NUI	MBER -	PAGE
				26MW002	2619	1000			028.	OF
WELL DIAME	ETER (INCHES)	X 1	P/ 1 4	6	8	OTHER				YELL INTEGRITY YES NO N/A
UBING ID (II	NCHES)	1/8 X	1/4 3/8	1/2	5/8	OTHER			CAP CASING	\frac{2}{4} = =
MEASUREME	ENT POINT (MP)	TOP OF I	RISER (TOR)	TOP OF CASING	(TOC)	OTHER			LOCKED COLLAR	* = =
INITIAL DT (BMP)	w 13		FINAL DTW (BMP)	13.94		T. CASING CKUP (AGS)	ø	FT	TOC/TOR DIFFERENCE	- FT
WELL DEPI (BMP)	гн 19		SCREEN LENGTH	unknew	PID AMI	BIENT AIR	æ	PPM	REFILL TIMER SETTING	SEC
WATER COLUMN	51	FT :	DRAWDOWN VOLUME		GAL MO	WELL UTH	7767	PPM	DISCHARGE TIMER SETTIN	G SEC
CALCULAT GAL/VOL (column X we	ED Ø	2 GAL	FOTAL VOL. PURGED	W X well diam. squared	GAL TOT	WDOWN/ CAL PURGED	401		PRESSURE TO PUMP	— PSI
	METERS WITH P		ZATION CRITERIA	(AS LISTED IN THE	E QAPP)					
TIME 5 Minutes	DTW (FT) 0.0-0.33 ft Drawdown	PURGE RATE (mL/min)	TEMP. (°C) (+/- 3 degrees)	SP. CONDUCTANCE (mS/cm) (+/- 3%)	pH (units) (+/- 0.1 units)	DISS. O ₂ (mg/L) (+/- 10%)	TURBIDITY (nt (+/- 10% <10 nt		PUMP INTAKE DEPTH (ft)	COMMENTS
1920.	BEGIN PURG	ING								
925	13.94	175	14.73	1.178	7.27	9.42	180	8413	119'	
930	13.94	175	15.07	1.175	7.26	8,62	1.91	63.1	7	
935	13.94	175	14.93	1.178	7.25	8.61	2.31	40.7		
940	13.94	175	14.98	1.176	7.25	8.90	202	40.2		
1945	13.94	175	15.05	1.174	7.25	8.37	1.62	59.6		
950	13.94	175	14.96	1.175	7,25	8,49	2,17	58.9		
1955	13.94	175	14.91	1,173	7.24	8.95	8.70	58.7		
600	Collec	ted our	Sample	PMN	-2				1/	
		0								
100										
184										
	FI	NAL STABILIZI	ED FIELD PARA	METERS (to appr	opriate signif	icant figures[SF	7))	(Am)	TEMP.: nearest degree COND.: 3 SF max (ex. pH: nearest tenth (ex. 5	3333 = 3330, 0.696 = 0.696)
			15 1178 9			2 4.0 0,7		DO: nearest tenth (ex. 3.51 = 3.5) TURB: 3 SF max pearest tenth (6.19 = 6.2.10		.51 = 3.5) est tenth (6.19 = 6.2, 101 = 101)
	SIBLE R	LIQU DEM POT. NITH	CON FLUIDS USED JINOX DNIZED WATER ABLE WATER RIC ACID ANE HANOL ER DOBE	X SILICON TUI TEFLON TUI TEFLON LIN HDPE TUBIN X LOPE TUBIN OTHER OTHER	BING BING IED TUBING NG	PVC PUT GEOPRO	ERIALS L PUMP MATERIAI MP MATERIAL DBE SCREEN BLADDER DONE	59		Solinst Thermo OVM 580B YSI MPS 556
IALYTICAL	PARAMETERS PARAME	TER	METHOD	FIELD	PRESERV			SAMPLE	QC	SAMPLE BOTTLE ID
X	VOC		NUMBER 8260	FILTERED	METI HCL	2 x 4		DLLECTED	COLLECTED	NUMBERS See Hove
X	SVOC		8270	7	4C	2 x 1	L _	/		"
PCBs Inorganics			6010	N 4C		1 L 500 mL				. "
× -	Pesticide		8081	И	4 C	1 L		~		* "
H -	/ BK		9	-5 (5 <u>—</u>	= \s	= 7			
URGE OBSER URGE WATER ONTAINERIZE D-PURGE ME TILIZED	R YES ED	NO If	sampling or	y 1 standing volume prior mL for this sample location	ski †	etchnotes Musub - 3	ed for	n 10gg	, JK s	ampled musz
mpler Signatur	O fi	r ten Kibe	Print Name: J	en Fibe	rz					


			LOW	FLOW GRO	UNDWA	TER SAMPI	LING RECO	ORD			
1110-			PROJECT		has Comins		Lo	CATION ID	w-l	DATE 06-01-11	
	MA(CTE	PROJECT		nns Corning	3	ST	ART TIME		END TIME 856	
	Congress Street, Portl		SAMPLE I		02148-02.0	SAMPLE TIN	ME SI	E NAME/NUN	0740.	PAGE	
				LUMWOO	1016	0839	5	E NAME/NUN	028	OF	
WELL DIAM	IETER (INCHES)	¥1 ×	2 M4	6	8	OTHER				VELL INTEGRITY YES NO N/A	
TUBING ID	INCHES)	1/8 X] 1/4 3/8	1/2	5/8	OTHER		CAP *			
MEASUREM	IENT POINT (MP)	TOP OF	RISER (TOR)	TOR) TOP OF CASING (TOC) OTHER					CASING X LOCKED X COLLAR X		
(BMP)	rw 13	.78 FT	FINAL DTW (BMP)	13.85	The second secon	OT. CASING CKUP (AGS)	8	FT	TOC/TOR DIFFERENCE	0.25 FT	
WELL DEF (BMP)	тн	1.7 FT	SCREEN LENGTH	MAKNOWY	FT AMI	BIENT AIR	10.1	PPM	REFILL TIMER SETTING	SEC	
WATER COLUMN	25	.9 FT	DRAWDOWN VOLUME	W X well diam. squared	GAL MO	WELL UTH	22.8	PPM	DISCHARGE TIMER SETTIN	ig Sec	
GALCULA' GAL/VOL	TED 0	UAL	TOTAL VOL. PURGED	. 2 /	GAL TOT	WDOWN/ FAL PURGED	40.		PRESSURE TO PUMP	PSI	
				A (AS LISTED IN THE							
TIME 3-5 Minutes	DTW (FT) 0.0-0.33 ft Drawdown	PURGE RATE (mL/min)	TEMP. (°C) (+/- 3 degrees)	SP. CONDUCTANCE (mS/cm) (+/- 3%)	pH (units) (+/- 0.1 units)	DISS. O ₂ (mg/L) (+/- 10%)	TURBIDITY (ntu (+/- 10% <10 ntu)		PUMP INTAKE DEPTH (ft)	COMMENTS	
0749	BEGIN PURG	GING									
0755	13.85	300	12.58	1.137	7.39	6.74	171	-56.0	~16"		
0800	13,85	300	12.40	6,978	7.42	6.36	27.8	-57.3	1		
0805	1315	700	12.31	0.950	7.43	6.30	17.3	- 58.6			
1810	13.85	300	12,17	0,917	7.44	6.45	13.7	-58.7			
0815	13.85	300	12.19	0,877	7.45	le.51	10.1	-59.0			
0820	13,85	300	12.14	0.851	7.46	4.55	6.33	-59.6			
0825	13.85	200	12.06	0.832	7,47	6.61	5.27	-60.2			
0830	13.85	300	12/10	0.814	7.47	449	3.29	-60.6			
0835	bile	rted g	w sarry	le CMV	1-1	-	-	-	V		
		0	V						. = = 1		
RAK	.		12	9					TEMP.: nearest degree	/ 10.1 . 100	
,	FI	NAL STABILIZ	ED FIEMD PARA	MEPERS (to appro	opriate signif	ficant figures[SF	TD		COND.: 3 SF max (ex. pH: nearest tenth (ex. 5	3333 = 3330, 0.696 = 0.696) 5.53 = 5.5)	
		Rem	12	0.814	7.5	6.7	3.3	-61	DO: nearest tenth (ex. 3 TURB: 3 SF max, near ORP: 2 SF (44.1 = 44,	rest tenth $(6.19 = 6.2, 101 = 101)$	
X PERISTA SUBMEI BLADDI WATTEL OTHER OTHER	RSIBLE ER RA	DE LIC	ECON FLUIDS USED QUINOX IONIZED WATER TABLE WATER RIC ACID XANE ETHANOL HER	X SILICON TUE TEFLON TUE TEFLON LINI HOPE TUBIN X LOPE TUBIN OTHER OTHER	BING ING ED TUBING G	PVC PUI GEOPRO	ERIALS L PUMP MATERIAL MP MATERIAL OBE SCREEN 1 BLADDER 1 10000		X WL METER X PID X WQ METER X TURB. MET PUMP OTHER FILTERS	Thermo OVM 580B YSI MPS 556	
ANALYTICA	L PARAMETERS PARAME	TER	METHOD NUMBER	FIELD FILTERED	PRESERV			AMPLE LLEÇTED	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS	
X	VOC		8260	N	HCL		0 mL	To the second	———	See Above	
X	SVOC PCBs		8270 8082	_ N	4C	2 x 1	<u>L</u>	/		$\overline{}$	
×	Inorganics		6010	- N	HNO3		mL —	1			
X	Pesticide		8081	N.	4C	1L		/			
PURGE OBSE	PVATIONS				Loren	ETCH/NOTES					
PURGE WATE CONTAINER NO-PURGE M UTILIZED	ER YES	NO NO		NS	- [T N		×.	mv-l ×1	EM-1	
Sampler Signat	ure:		Brand Print Name:	on shan	/ -		clan	X	X		
Checked By:	Run		Date: 7/6	2/11			site.		× \		

APPENDIX D

SITE SURVEY

APPENDIX E

DATA USABILITY SUMMARY REPORTS (DUSR)

DATA USABILITY SUMMARY REPORT 2010 REMEDIAL INVESTIGATION SAMPLING PROGRAM LOOHNS CORNING SITE CORNING, NEW YORK

1.0 INTRODUCTION

Thirty-three soil samples were collected from June 8th, 2010 to June 9th, 2010 at the Loohns Corning Site (Site) in Corning, New York. Sample analyses were completed by Chemtech laboratory located in Mountainside, New Jersey. Results were reported in sample delivery groups (SDGs) B2618 and B2643. A listing of samples included in this Data Usability Summary Report is presented in Table 1. A summary of the analytical results is presented in Table 2. Samples were analyzed for:

- Volatile organic compounds (VOCs) by USEPA Method 8260B,
- Semi volatile organic compounds (SVOCs) by USEPA Method 8270C,
- Pesticides by USEPA Method 8081,
- Aroclors (PCBs) by USEPA Method 8082,
- Metals by USEPA Method 6010B/7471,

Deliverables for the off-site laboratory analyses included a Category B deliverable as defined in the New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocols (NYSDEC, 2005).

A project chemist review was completed based on the NYSDEC "Technical Guidance for Site Investigation and Remediation-Appendix 2B"; DER-10; Division of Environmental Remediation; May 2010. Quality control (QC) limits from USEPA Region II data validation guidelines and laboratory QC limits were used during the data evaluation. The project chemist review included evaluations of sample collection, data package completeness, holding times, QC data (blanks, instrument calibrations, duplicates, surrogate recovery, and spike recovery), internal standard response, data transcription, electronic data reporting, calculations, and data qualification.

The following laboratory or data validation qualifiers are used in the final data presentation.

U = target analyte is not detected at the reported detection limit J = concentration is estimated

Results are interpreted to be usable as reported by the laboratory unless discussed in the following sections.

2.0 VOCs

Blanks

SDG B2618: Acetone (13 μ g/kg) and methylene chloride (8.5 μ g/kg) were reported in the trip blank. Action levels were established at ten times the reported blank concentrations. Reported detections for acetone and methylene chloride were less than the action level and were qualified non-detect (U) if greater than the reporting limit, or if less than the reporting limit, were qualified non-detect (U) at the reporting limit.

Initial Calibration

SDG B2618: For a subset of samples, the percent relative standard deviation (RSD) for dichlorodifluoromethane (25) exceeded the QC limit of 20. Associated sample results for dichlorodifluoromethane were non-detect, and the reporting limits were qualified estimated (UJ).

For a subset of samples, the RSD for dichlorodifluoromethane (24) and acetone (22) exceeded the QC limit of 20. Associated sample results for dichlorodifluoromethane and acetone were non-detect, and the reporting limits were qualified estimated (UJ).

SDG B2643: For a subset of samples, the RSD for dichlorodifluoromethane (29) and acetone (22) exceeded the QC limit of 20. Associated sample results for dichlorodifluoromethane and acetone were non-detect, and the reporting limits were qualified estimated (UJ).

For a subset of samples, the RSD for chloroethane (24) exceeded the QC limit of 20. Associated sample results for chloroethane were non-detect, and the reporting limits were qualified estimated (UJ).

Continuing Calibration

SDG B2618: For a subset of samples, the percent difference for chloroethane (24) exceeded the QC limit of 20. Associated sample results for chloroethane were non-detect, and the reporting limits were qualified estimated (UJ).

For a subset of samples, the percent difference for dichlorodifluoromethane (50), chloromethane (27), vinyl chloride (28), chloroethane (31), trichlorofluoromethane (23), carbon disulfide (21), and 1,1,2-trichloro-1,2,2-trifluoroethane (24) exceeded the QC limit of 20. Associated sample results for dichlorodifluoromethane were non-detect and were qualified previously under the initial calibration criteria. Associated sample results for chloromethane, vinyl chloride, chloroethane, trichlorofluoromethane, carbon disulfide, and 1,1,2-trichloro-1,2,2-trifluoroethane were non-detect, and the reporting limits were qualified estimated (UJ).

SDG B2643: For a subset of samples, the percent difference for dichlorodifluoromethane (34), trichlorofluoromethane (24), acetone (27), 1,2-dichloropropane (22), bromodichloromethane (21), 4-methyl-2-pentanone (26), toluene (21), trans-1,3-dichloropropene (24), cis-1,3-dichloropropene (21), 1,1,2-trichloroethane (27), 2-hexanone (38), 1,2-dibromoethane (25), and styrene (22) exceeded the QC limit of 20. Associated sample results for dichlorodifluoromethane and acetone were qualified previously under the initial calibration criteria. Associated sample results for trichlorofluoromethane, 1,2-dichloropropane, bromodichloromethane, 4-methyl-2-pentanone, toluene, trans-1,3-dichloropropene, cis-1,3-dichloropropene, 1,1,2-trichloroethane, 2-hexanone, 1,2-dibromoethane, and styrene were non-detect, and the reporting limits were qualified estimated (UJ).

For a subset of samples, the percent difference for dichlorodifluoromethane (50), chloromethane (27), vinyl chloride (28), chloroethane (31), trichlorofluoromethane (23), carbon disulfide (21), and 1,1,2-trichloro-1,2,2-trifluoroethane (24) exceeded the QC limit of 20. The associated sample result for chloroethane was non-detect and was qualified previously under the initial calibration criteria. Associated sample results for dichlorodifluoromethane, chloromethane, vinyl chloride, chloroethane, trichlorofluoromethane, carbon disulfide, and 1,1,2-trichloro-1,2,2-trifluoroethane were non-detect, and the reporting limits were qualified estimated (UJ).

For a subset of samples, the percent difference for chloroethane (47) exceeded the QC limit of 20. The associated sample results for chloroethane were non-detect and were qualified previously under the initial calibration criteria.

Laboratory Control Sample

SDG B2618: For a subset of samples, the LCS percent recovery of chloroethane (145) exceeded the QC limit of 130. Sample results for chloroethane were non-detect and no qualification action was required.

SDG B2643: For a subset of samples, the LCS percent recovery of chloroethane (145) exceeded the QC limit of 130. Sample results for chloroethane were non-detect and no qualification action was required.

Tentatively Identified Compounds (TICs)

TICs were reported by the laboratory if detected in samples. TICs reported in associated blanks were rejected in the final data set. A summary of TICs detected in samples is presented on Table 3.

3.0 SVOCs

Blanks

SDG B2618 and SDG B2643: Dimethylphthalate (200 and 210 μ g/kg) was reported in the method blanks. An action level was established at ten times the reported concentration in the blanks. Reported detections of dimethylphthalate in the samples were less than the action level and were qualified non-detect (U).

Initial Calibration

SDG B2618 and SDG B2643: In the initial calibration the RSD for 2,4-dinitrophenol (56), 4,6-dinitro-2-methylphenol (41), and pentachlorophenol (19) exceeded the QC limit of 15. 2,4-Dinitrophenol, 4,6-dinitro-2-methylphenol, and pentachlorophenol were not detected in samples, and the reporting limits for these compounds were qualified estimated (UJ).

Continuing Calibration

SDG B2618: In the continuing calibration the percent difference for 2,4-dinitrophenol (-22) exceeded the QC limit of 20. Sample results for 2,4-dinitrophenol were qualified previously under the initial calibration criteria.

SDG B2618: In the continuing calibration the percent difference for 2,4-dinitrophenol (-140), 4,6-dinitro-2-methylphenol (-61), and pentachlorophenol (-27) exceeded the QC limit of 20. Sample results for 2,4-dinitrophenol, 4,6-dinitro-2-methylphenol, and pentachlorophenol were qualified previously under the initial calibration criteria.

Laboratory Control Sample

SDG B2618: The LCS percent recovery of benzaldehyde (11), 4-chloroaniline (44), and 3,3-dichlorobenzidine (22) were less than the lower QC limit of 50. Benzaldehyde, 4-chloroaniline, and 3,3-dichlorobenzidine were not detected in samples, and the reporting limits were qualified estimated (UJ).

Matrix Spike/Matrix Spike Duplicate

SDG B2618: Sample LCPDI00600110XX was analyzed as an MS/MSD by the laboratory. The MS/MSD percent recoveries of benzaldehyde (13 and 13) and 4-chloroaniline (31 and 44) were less than the lower QC limit of 50. Results for benzaldehyde and 4-chloroaniline were qualified previously under the LCS criteria.

SDG B2643: Sample LCPDI01100110XX was analyzed as an MS/MSD by the laboratory. The MS/MSD percent recoveries of benzaldehyde (11 and 10) and 4-chloroaniline (47) were less than the lower QC limit of 50. The result for benzaldehyde was qualified previously under the LCS criteria. The result for 4-chloroaniline was non-detect and the reporting limit was qualified estimated (UJ).

Tentatively Identified Compounds (TICs)

TICs were reported by the laboratory if detected in samples. TICs reported in associated blanks were rejected in the final data set. A summary of TICs detected in samples is presented on Table 3.

4.0 Pesticides

Ouantitation

SDG B2643: The percent difference between the primary and confirmatory column results for 4,4-DDE in samples LCBKSS00300110XD (35) and LCBKSS00300110XX (43), and dieldrin in sample LCPD101100110XX (46) exceeded the QC limit of 25. The results for 4,4-DDE in samples LCBKSS00300110XD and LCBKSS00300110XX, and dieldrin in sample LCPD101100110XX were qualified estimated (J).

Matrix Spike/Matrix Spike Duplicate

SDG B2618: Sample LCPDI00600110XX was analyzed as an MS/MSD by the laboratory. The MS/MSD relative percent difference (RPD) for methoxychlor (24) exceeded the laboratory limit of 20. The unspiked sample result for methoxychlor was qualified estimated (J).

5.0 PCBs

Matrix Spike/Matrix Spike Duplicate

SDG B2618: Sample LCPDI00600110XX was analyzed as an MS/MSD by the laboratory. The MSD percent recovery of Aroclor 1260 (144) exceeded the upper QC limit of 129. Aroclor 1260 was not detected in the unspiked sample, and no further action was required.

6.0 Metals

Blanks

SDG B2643: Aluminum, calcium, and iron were reported in the continuing calibration blanks. Action levels were established at five times the highest reported blank concentration for aluminum, calcium, and iron. Sample results for aluminum, calcium, and iron were greater than the action levels, and no further action was required.

Serial Dilution

SDG B2643: The serial dilution percent difference for calcium (13), iron (14), magnesium (12), manganese (14), potassium (12), and zinc (13) exceeded the QC limit of 10. Sample results for calcium, iron, magnesium, manganese, potassium, and zinc were qualified estimated (J).

Laboratory Control Sample

SDG B2643: The LCS percent recovery of aluminum (76), calcium (78), iron (78), mercury (73), potassium (67), selenium (74), and sodium (70), were less than the lower QC limit of 80. Sample results for aluminum, calcium, iron, mercury, potassium, selenium, and sodium were qualified estimated (J).

Matrix Spike/Matrix Spike Duplicate

SDG B2618: The MS/MSD percent recoveries of aluminum (348 and 323), calcium (246 and 237), iron (402 and 371), magnesium (157 and 154), and manganese (207 and 195) exceeded the upper QC limit of 125. The unspiked sample concentrations of aluminum, calcium, iron, magnesium, and manganese were greater than four times the spike concentration, and no further action was required.

SDG B2643: The MS percent recovery of barium (147) exceeded the upper QC limit of 125. Sample results for barium were qualified estimated (J) and were potentially biased high.

Field Duplicate

SDG B2643: The field duplicate RPD for magnesium (39) and calcium (144) exceeded the QC limit of 35. Sample results for magnesium and calcium were qualified estimated (J).

Reference:

New York State Department of Environmental Conservation (NYSDEC), 2005. "Analytical Services Protocols"; July 2005.

New York State Department of Environmental Conservation (NYSDEC), 2010. "Technical Guidance for Site Investigation and Remediation-Appendix 2B"; DER-10; Division of Environmental Remediation; May 2010.

Data Validator: Wolfgang D. Calicchio

Project No. 3612102148

Date: August 6, 2010

Reviewed by Chris Ricardi, NRCC-EAC

Date: August 16, 2010

TABLE 1 - DUSR - LOOHNS CORNING SITE DATA USABILITY SUMMARY REPORT 2010 REMEDIAL INVESTIGATION SAMPLING PROGRAM LOOHNS CORNING SITE CORNING, NEW YORK

				Class	VOCs	SVOCs	PEST	PCB	Metals
		* ,		Method	8260B	8270	8081	8082	6010B/7470A
				Fraction	N	N	. N	N	N
SDG	Sample ID	Lab ID	Sample Date	QC Code					
B2618	LCPDI00500510XX	B2618-01	6/8/2010	FS	X				
B2618	LCPDI00101110XX	B2618-02	6/8/2010	FS	X				
B2618	LCPDI00101110XD	B2618-03	6/8/2010	FD	X				
B2618	LCSS00100110XX	B2618-04	6/8/2010	FS		X	X	X	X
B2618	LCPDI00600510XX	B2618-05	6/8/2010	FS	X				
B2618	LCPDI00601010XX	B2618-06	6/8/2010	FS	X				
B2618	LCPDI00200810XX	B2618-07	6/8/2010	FS	X		ŀ		
B2618	LCPDI00700510XX	B2618-08	6/8/2010	FS	X				
B2618	LCPDI00701010XX	B2618-09	6/8/2010	FS	Х				
B2618	LCPDI01200510XX	B2618-10	6/8/2010	FS	X				
B2618	LCPDI01201010XX	B2618-11	6/8/2010	FS	X				
B2618	LCPDI01201910XX	B2618-12	6/8/2010	FS	X				
B2618	LCPDI01300510XX	B2618-13	6/8/2010	FS	X				
B2618	LCPDI01301010XX	B2618-14	6/8/2010	FS	X				
B2618	LCPDI00800310XX	B2618-15	6/8/2010	FS	X				
B2618	LCPDI00801510XX	B2618-16	6/8/2010	FS	X				
B2618	LCPDI00600110XX	B2618-17	6/8/2010	FS		X	X	X	X
B2618	TRIPBLANK-1	B2618-18	6/8/2010	TB	X				
B2643	LCPDI00301310XX	B2643-01	6/9/2010	FS	X				
B2643	LCPDI00900110XX	B2643-02	6/9/2010	FS	X		•		
B2643	LCPDI00901010XX	B2643-03	6/9/2010	FS	X		1		
B2643	LCPDI00400510XX	B2643-04	6/9/2010	FS	X				
B2643	LCPDI00401010XX	B2643-05	6/9/2010	FS	X				
B2643	LCPDI01100110XX	B2643-06	6/9/2010	FS		X	X	Х	X
B2643	LCPDI01100210XX	B2643-07	6/9/2010	FS	X				
B2643	LCGW01502010XX	B2643-10	6/9/2010	FS	X				
B2643	LCGW01402010XX	B2643-11	6/9/2010	FS	X				
B2643	LCGW01302010XX	B2643-12	6/9/2010	FS	X				
B2643	LCBKSS00100110XX	B2643-13	6/9/2010	FS		X	X	X	X
B2643	LCBKSS00200110XX	B2643-14	6/9/2010	FS		·X	X	x	X
B2643	LCBKSS00300110XX	B2643-15	6/9/2010	FS		x	X	x	X
B2643	LCBKSS00300110XD	B2643-16	6/9/2010	FD		X	X	x	X
B2643	LCPDI01000210XX	B2643-17	6/9/2010	FS	X		1		
B2643	LCPDI01400210XX	B2643-18	6/9/2010	FS	X				
B2643	TRIPBLANK	B2643-20	6/2/2010	TB	X				

Sample Delivery Group	ery Group	B2618	B2618	B2618	B2618	B2618
	Location	PDI-003	PDI-001	TDI-001	FDI-000	6/8/2010 12:55
San	Sample Date	6/8/2010 11:15 CPDI00500510XX	6/8/2010 11:45 LCPDI00101110XX	6/8/2010 11:45 LCPDi00101110XD	6/8/2010 12:45 LCPDi00600510XX	6/6/2010 12:33 LCPD100601010XX
	Qc Code	FS	FS	FD	FS	FS
Analysis Param Name	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
SW8260B 1,1,1-Trichloroethane	ug/Kg	4.7 U	4.1 U	4.8 U	4.7 U	4.9 U
SW8260B 1,1,2,2-Tetrachloroethane	ug/Kg	4.7 U	4.1 U	4.8 U	4.7 U	4.9 U
SW8260B 1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/Kg	4.7 U	4.1 U	4.8 U	4.7 U	4.9 U
	ug/Kg	4.7 U	4.1 U	4.8 U	4.7 U	4.9 U
	ug/Kg	4.7 U	4.1 U	4.8 U	4.7 U	4.9 U
SW8260B 1,1-Dichloroethene	ug/Kg	4.7 U	4.1 U	4.8 U	4.7 U	4.9 U
SW8260B 1,2,4-Trichlorobenzene	ug/Kg	4.7 U	4.1 Ü	4.8 U	4.7 U	4.9 U
SW8260B 1,2-Dibromo-3-chloropropane	ug/Kg	4.7 U	4.1 U	4.8 U	4.7 U	4.9 U
SW8260B 1,2-Dibromoethane	ug/Kg	4.7 U	4.1 U	4.8 U	4.7 U	4.9 U
SW8260B 1,2-Dichlorobenzene	ug/Kg	4.7 U	4.1 U	4.8 U	4.7 U	4.9 U
SW8260B 1,2-Dichloroethane	ug/Kg	4.7 U	4.1 U	4.8 U	4.7 U	4.9 U
SW8260B 1,2-Dichloropropane	ug/Kg	4.7 U	4.1 U	4.8 U	4.7 U	4.9 U
SW8260B 1,3-Dichlorobenzene	ug/Kg	4.7 U	4.1 U	4.8 U	4.7 U	4.9 U
SW8260B 1,4-Dichlorobenzene	ug/Kg	4.7 U	4.1 U	4.8 U	4.7 U	4.9 U
	ug/Kg	23 U	21 U	24 U	24 U	25 U
SW8260B 2-Hexanone	ug/Kg	23.N	21 U	24 O	24 O	
SW8260B 4-Methyl-2-pentanone	ug/Kg	23 N	21 U	24 U	24 U	25 U
SW8260B Acetic acid, methyl ester	ug/Kg	4.7 U	4.1 U	4.8 U	4.7 U	4.9 U
SW8260B Acetone	ug/Kg	23 U	21 Ü	24 U	24 U	25 U
SW8260B Benzene	ug/Kg	4.7 U	4.1 U	4.8 U	4.7 U	4.9 U
SW8260B Bromodichloromethane	ug/Kg	4.7 U	4.1 U	4.8 U	4.7 U	4.9 U
SW8260B Bromoform	ug/Kg	4.7 U	4.1 U	4.8 U	4.7 U	4.9 U
SW8260B Bromomethane	ug/Kg	4.7 U	4.1 U	4.8 U	4.7 U	0 6.4 0 6.4
SW8260B Carbon disulfide	ug/Kg	4.7 U	4.1 U	∪ 8.4	4.7 U	0 6.4
SW8260B Carbon tetrachloride	ug/Kg	4.7 U	4.1 U	4.8 U	4.7 U	4.9 U
SW8260B Chlorobenzene	ug/Kg	4.7 U	4.1 U	4.8 U	4.7 U	4.9 U
SW8260B Chlorodibromomethane	ug/Kg	4.7 U	4.1 U	4.8 U	4.7 U	4.9 U
SW8260B Chloroethane	ug/Kg	4.7 UJ	4.1 UJ	4.8 UJ	4.7 UJ	4.9 UJ
SW8260B Chloroform	ug/Kg	4.7 U	4.1 U	4.8 U	4.7 U	4.9 U
SW8260B Chloromethane	ug/Kg	4.7 U	4.1 Ü	4.8 U	4.7 U	4.9 U
SW8260B Cis-1,2-Dichloroethene	ug/Kg	4.7 U	4.1 ∪	4.8 U	4.7 U	4.9 U
SW8260B cis-1,3-Dichloropropene	ug/Kg	4.7 U	4.1 U	4.8 U	4.7 U	4.9 U
SW8260B Cyclohexane	ug/Kg	4.7 U	4.1 U	4.8 U	4.7 U	4.9 U
SW8260B Dichlorodifluoromethane	ug/Kg	4.7 UJ	4.1 UJ	4.8 UJ	4.7 UJ :- 1	4.9 UJ
SW8Z6UB EINYI BENZENE	l flyfin l	-	+ - -	-	o F	- - - -
						Diagonal Land

Created by: BJS
Date: 8/05/10
Reviewed by: WDC
Date: 8/13/10

Date: 8/13/10

DATA USABILITY SUMMARY REPORT TABLE 2 - RESULTS SUMMARY JUNE 2010 SOIL SAMPLING LOOHNS CORNING SITE CORNING, NEW YORK

Sample Delivery Group	very Group	B2618	B2618	B2618	B2618	B2618	
	Location	PDI-005	PDI-001	PDI-001	PDI-006	PDI-006	
Sai	Sample Date	6/8/2010 11:15	6/8/2010 11:45	6/8/2010 11:45	6/8/2010 12:45	6/8/2010 12:55	
	Sample ID	LCPD100500510XX	LCPDI00101110XX	LCPDI00101110XD	LCPD100600510XX	LCPDI00601010XX	
	Qc Code	FS	FS	6	FS	S.	
Analysis Param Name	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	
SW8260B Isopropylbenzene	ug/Kg	4.7 U	4.1 U	4.8 U	4.7 U	4.9 U	
SW8260B Methyl cyclohexane	ug/Kg	4.7 U	4.1 U	4.8 U	4.7 U	4.9 U	
SW8260B Methyl Tertbutyl Ether	ug/Kg	4.7 U	4.1 U	4.8 U	4.7 U	4.9 U	
SW8260B Methylene chloride	ug/Kg	4.7 U	4.1 U	4.8 U	4.7 U	4.9 U	
SW8260B Styrene	ug/Kg	4.7 U	4.1 U	4.8 U	4.7 Ü	4.9 U	
SW8260B Tetrachloroethene	ug/Kg	7	7.3	6.2	56	24	
SW8260B Toluene	ug/Kg	4.7 U	1.2 J	4.8 U	4.7 U	4.9 U	
SW8260B trans-1,2-Dichloroethene	ug/Kg	4.7 U	4.1 U	4.8 U	4.7 U	4.9 U	
SW8260B trans-1,3-Dichloropropene	ug/Kg	4.7 U	4.1 Ü	4.8 U	4.7 U	4.9 U	
SW8260B Trichloroethene	ug/Kg	4.7 U	4.1 U	4.8 U	4.7 U	4.9 U	
SW8260B Trichlorofluoromethane	ug/Kg	4.7 U	4.1 U	4.8 U	4.7 U	4.9 U	
SW8260B Vinyl chloride	ug/Kg	4.7 U	4.1 U	4.8 U	4.7 U	4.9 U	
SW8260B Xylene, m/p	ug/Kg	9.3 U	8.2 U	9.5 U	9.4 U	9.8 U	
SW8260B Xylene, o	ug/Kg	4.7 U	4.1 U	4.8 U	4.7 U	4.9 U	

Notes:

μg/Kg = micorgrams per kilogram mg/Kg = milligrams per kilogram

Qualifiers

U =not detected at the reporting limit J = estimated concentration

FS = Field Sample QC Code

FD = Field Duplicate

TB = Trip Blank

June 2010 soils Table 2 Final Results.xls

Sample Delivery Group	ery Group	B2618 PDI-002	B2618 PDI-007	B2618 PDI-007	B2618 PDI-012	B2618 PDI-012
Sal	Sample Date	6/8/2010 13:30 I CPD100200810XX	6/8/2010 13:45 LCPDI00700510XX	6/8/2010 13:55 LCPDI00701010XX	6/8/2010 14:55 LCPDI01200510XX	6/8/2010 14:55 LCPDI01201010XX
	Qc Code	FS	FS	FS	FS	FS
Analysis Param Name	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
SW8260B 1,1,1-Trichloroethane	ug/Kg	5.3 U	4.9 U	4.3 ∪	4.5 U	4.4 U
SW8260B 1,1,2,2-Tetrachloroethane	ug/Kg		4.9 Ü	4.3 U	4.5 U	4.4 U
SW8260B 1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/Kg	5.3 UJ	4.9 U	4.3 U	4.5 U	4.4 ∪
SW8260B 1,1,2-Trichloroethane	ug/Kg	5.3 U	4.9 U	4.3 U	4.5 U	4.4 U
SW8260B 1,1-Dichloroethane	ug/Kg	5.3 U	4.9 U	4.3 Ü	4.5 U	4.4 ∪
SW8260B 1,1-Dichloroethene	ug/Kg	5.3 U	4.9 U	4.3 U	4.5 U	4.4 ∪
SW8260B 1,2,4-Trichlorobenzene	ug/Kg	5.3 U	4.9 U	4.3 U	4.5 U	4.4 U
SW8260B 1,2-Dibromo-3-chloropropane	ug/Kg	5.3 U	4.9 U	4.3 U	4.5 U	4.4 U
SW8260B 1,2-Dibromoethane	ug/Kg	5.3 U	4.9 U	4.3 U	4.5 U	4.4 U
SW8260B 1,2-Dichlorobenzene	ug/Kg	5.3 U	4.9 U	4.3 U	4.5 U	4.4 U
SW8260B 1,2-Dichloroethane	ug/Kg	5.3 U	4.9 U	4.3 U	4.5 U	4.4 U
SW8260B 1,2-Dichloropropane	ug/Kg	5.3 U	4.9 Ü	4.3 U	4.5 U	4.4 U
SW8260B 1,3-Dichlorobenzene	ug/Kg	5.3 U	4.9 U	4.3 U	4.5 U	
SW8260B 1,4-Dichlorobenzene	ug/Kg	5.3 U	4.9 U	4.3 U	4.5 U	4.4 U
SW8260B 2-Butanone	ug/Kg	26 U	25 U	22 U	22 U	22 U
SW8260B 2-Hexanone	ug/Kg	26 U	25 U	22 U	22 U	22 U
SW8260B 4-Methyl-2-pentanone	ug/Kg	26 U	25 U	22 U	22 U	22 U
SW8260B Acetic acid, methyl ester	ug/Kg		2.8 J	8.7	1.9 J	4.4 ∪
SW8260B Acetone	ug/Kg	.26 UJ	25 U	76 U	22 U	22 U
	ug/Kg	5.3 U	4.9 U	4.3 U	4.5 U	4.4 U
	ug/Kg	5.3 U	4.9 U	4 .3 U	4.5 0	4.4 U
	ug/Kg	5.3 Ü	4.9 U	4.3 U	4.5 U	4.4 U
SW8260B Bromomethane	ug/Kg	5.3 U	4.9 U	4 .3 U	4.5 U	4.4 U
SW8260B Carbon disulfide	ug/Kg	.5.3 UJ	4.9 U	4.3 U	4.5 U	4.4 U
SW8260B Carbon tetrachloride	ug/Kg	5.3 U	4.9 U	4.3 U	4.5 U	4.4 U
SW8260B Chlorobenzene	ug/Kg	5.3 U	4.9 U	4.3 U	4.5 U	4.4 U
SW8260B Chlorodibromomethane	ug/Kg			4.3 U		
SW8260B Chloroethane	ug/Kg	5.3 UJ	4.9 UJ	4.3 UJ	4.5 UJ	4.4 UJ
SW8260B Chloroform	ug/Kg	5.3 U	4.9 U	n	4.5 U	4.4 U
SW8260B Chloromethane	ug/Kg	5.3 UJ	4.9 U	4.3 U	4.5 U	4.4 U
SW8260B Cis-1,2-Dichloroethene	ug/Kg	5.3 U	4.9 U	4.3 U	4.5 U	4.4 ∪
SW8260B cis-1,3-Dichloropropene	ug/Kg	5.3 U	4.9 U	4.3 U	4.5 U	4.4 U
SW8260B Cyclohexane	ug/Kg	5.3 U	4.9 U	4.3 U	4.5 U	4.4 ∪
	ug/Kg	5.3 UJ	4.9 UJ	4.3 UJ	4.5 UJ	4.4 UJ
Jovvozoubjemyi benzene	f flyfin	9.5 C	4. D		÷	

Created by: BJS
Date: 8/05/10
Reviewed by: WDC
Date: 8/13/10

P:\Projects\nysdec1\projects\Loohns Corning\3.0_Site_Data\3.4_Test_Results\DUSR\ June 2010 soils Table 2 Final Results.xls

DATA USABILITY SUMMARY REPORT TABLE 2 - RESULTS SUMMARY JUNE 2010 SOIL SAMPLING **LOOHNS CORNING SITE** CORNING, NEW YORK

Location PDI-002 PDI-007 Sample Date Sample ID CPDI00200810XX 6/8/2010 13:45 Qc Code Units FS FS Units Result Qualifier Unifier Unified Unifi	PDI-002 6/8/2010 13:30 LCPDI00200810XX L0 FS Result Qualifier 5.3 U 5.3 U 5.3 U 5.3 U	PDI-007 //2010 13:45 D100700510XX I FS sult Qualifier 4.9 U 4.9 U 4.9 U	6/8/2010 13:55 LCPDI00701010XX FS Result Qualifier 4.3 U 4.3 U	PDI-012 6/8/2010 14:55 LCPDI01200510XX FS Result Qualifier 4.5 U 4.5 U	PDI-012 6/8/2010 14:55 LCPDI01201010XX FS Result Qualifier 4.4 U
Sample Date 6/8/2010 13:30 6/8/2010 13:45 Sample ID LCPDI00200810XX LCPDI00700510XX LCPDI00700XX LCPDI00700510XX LCPDI00700XX LCPDI00700510XX LCPDI0070	6/8/2010 13:30 LCPD100200810XX L0 FS Result Qualifier 5.3 U 5.3 U 5.3 U 5.3 U 5.3 U	3/2010 13:45 5/2010 13:45 FS Sult Qualifier 4.9 U 4.9 U 4.9 U	6/8/2010 13:55 LCPDI00701010XX FS Result Qualifier 4.3 U 4.3 U	6/8/2010 14:55 LCPDI01200510XX FS Result Qualifier 4.5 U 4.5 U	6/8/2010 14:55 LCPDI01201010XX FS Result Qualifier 4.4 U
Sample ID LCPDI00200810XX LCPDI00700510XX LCPDI00700510XX Qc Code FS FS FS Units Result Qualifier As U As U ug/kg 5.3 U 4.9 U 4.9 U ug/kg 5.3 U 4.9 U 4.9 U ug/kg 5.3 U 4.9 U 4.9 U ug/kg 5.3 U 4.9 U 4.9 U ug/kg 5.3 U 4.9 U 4.9 U ug/kg 5.3 U 4.9 U 4.9 U ug/kg 5.3 U 4.9 U 4.9 U ug/kg 5.3 U 4.9 U 4.9 U	LCPD100200810XX LCFS	Sult Qualifier 4.9 U 4.9 U 4.9 U 4.9 U 4.9 U	LCPDI00701010XX FS Result Qualifier 4.3 U 4.3 U 4.3 U	LCPDI01200510XX FS FS A.5 U 4.5 U 4.5 U	LCPDI01201010XX FS FS Result Qualifier 4.4 U
Qc Code FS FS Units Result Qualifier Result Qualifier ug/Kg 5.3 U 4.9 U 4.9 U	FS Result Qualifier 5.3 U 5.3 U 5.3 U 5.3 U 5.3 U			S 10 10 10	FS 4
Units Result Qualifier ug/kg 5.3 U 4.9 U	Result Qualifier 5.3 U 5.3 U 5.3 U 5.3 U 5.3 U 5.3 U	ممصصا		וני נט נט	4
ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg 5.3 U ug/kg 5.3 U ug/kg 5.3 U		4.9 U 0.4 4.9 U	4.3 U	4.5 U C:4	4.4 U
03/80 03/80 03/80 03/80 03/80 03/80		0.4 0.9.4 0.9.0 0.0	U 8.4 U 5.4 U 5.4	4.4 U 5:4 U 0:5	
9/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg		4.9 U 0 e.4 0 e.4	4.3 U	4.5 U	4.4 U
19/kg 19/kg 19/kg 19/kg 19/kg		4.9 U			4.4 ∪
19/Kg 19/Kg 19/Kg 19/Kg 19/Kg				4.5 U	5.5 U
ug/kg ug/kg ug/kg ug/kg	_	4.9 U	4.3 U	4.5 U	4.4 U
19/Kg 19/Kg 19/Kg		15	17	4	27
ug/kg ug/kg ug/kg	5.3 U	4.9 U		4.5 U	4.4 U
ug/Kg ug/Kg		4.9 U	4.3 U	4.5 U	4.4 U
ng/Kg		4.9 U	4.3 U	4.5 U	4.4 U
		4.9 U	4.3 U	4.5 U	4.4 U
omethane ug/Kg	g 5.3 UJ	4.9 U	4.3 U	4.5 U	4.4 U
SW8260B Vinyl chloride		4.9 U	4.3 U	4.5 U	4.4 ∪
	110	0.8.6	8.7 U	<u>n</u> 6	8.8 U
SW8260B Xylene, o		4.9 U	4.3 ∪	4.5 U	4.4 ∪

Notes:

μg/Kg = micorgrams per kilogram mg/Kg = milligrams per kilogram

Qualifiers

J = estimated concentration

U = not detected at the reporting limit

FS = Field Sample QC Code

FD = Field Duplicate TB = Trip Blank

Sample Delivery Group	ery Group	B2618 PDI-012	B2618 PDI-013	B2618 PDI-013	B2618 PDI-008	B2618 PDI-008
San	Sample Date	6/8/2010 14:55	6/8/2010 15:30	6/8/2010 15:30 I CPDI01301010XX	6/8/2010 16:00	6/8/2010 16:00 I CPDI00801510XX
•	Qc Code	FS	FS	FS	FS	FS
Analysis Param Name	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
SW8260B 1,1,1-Trichloroethane	ug/Kg	4.1 U	4.5 U	4.4 U	5.1 U	4.6 U
SW8260B 1,1,2,2-Tetrachloroethane	ug/Kg	4.1 U	4.5 U	4.4 U	5.1 U	4.6 U
SW8260B 1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/Kg	4.1 U	4.5 UJ	4.4 U	5.1 U	4.6 UJ
SW8260B 1,1,2-Trichloroethane	ug/Kg	4.1 U	4.5 ∪	4.4 ∪	5.1 U	4.6 U
SW8260B 1,1-Dichloroethane	ug/Kg	4.1 U	4.5 ∪	4.4 U	5.1 U	4.6 U
SW8260B 1,1-Dichloroethene	ug/Kg	4.1 U	4.5 U	4.4 U	5.1 U	4.6 U
SW8260B 1,2,4-Trichlorobenzene	ug/Kg	4.1 U	4.5 U	4.4 U	5.1 U	4.6 U
SW8260B 1,2-Dibromo-3-chloropropane	ug/Kg	4.1 Ü	4.5 U	4.4 U	5.1 U	4.6 U
SW8260B 1,2-Dibromoethane	ug/Kg	4.1 U	4.5 U	4.4 U	5.1 U	4.6 U
SW8260B 1,2-Dichlorobenzene	ug/Kg	4.1 U	1.2 J	4.4 U	27	4.6 U
SW8260B 1,2-Dichloroethane	ug/Kg	4.1 U	4.5 U	4.4 U	5.1 U	4.6 U
SW8260B 1,2-Dichloropropane	ug/Kg	4.1 U	4.5 U	4.4 U	5.1 U	4.6 U
SW8260B 1,3-Dichlorobenzene	ug/Kg	4.1 U	4.5 U	4.4 U	5.1 U	4.6 U
SW8260B 1,4-Dichlorobenzene	ug/Kg	4.1 U	4.5 U	4.4 ∪	12	4.6 U
SW8260B 2-Butanone	ug/Kg	20 N	22 U	22 U	25 U	23 U
SW8260B 2-Hexanone	ug/Kg	20 U	22 U	22 N	25 U	23 U
SW8260B 4-Methyl-2-pentanone	ug/Kg	20 U	22 U	22 U	25 U	23 U
SW8260B Acetic acid, methyl ester	ug/Kg	4.1 U	4.5 U	4.4 U	5.1 U	4.2 J
	ug/Kg	25 U	22 UJ	22 U	25 U	23 UJ
SW8260B Benzene	ug/Kg	4.1 U	4.5 U	4.4 U	5.1 U	4.6 U
SW8260B Bromodichloromethane	ng/Kg	4.1 U	4.5 U	4.4 U	5.1 U	4.6 U
SW8260B Bromoform	ug/Kg	4.1 U	4.5 U	4.4 U	5.1 U	4.6 U
SW8260B Bromomethane	ug/Kg	4.1 U	4.5 U	4.4 U	5.1 U	4.6 U
SW8260B Carbon disulfide	ug/Kg	4.1 U	4.5 UJ	4.4 U	5.1 U	4.6 UJ
SW8260B Carbon tetrachloride	ug/Kg	4.1 U	4.5 ∪	4.4 U	5.1 U	4.6 U
SW8260B Chlorobenzene	ug/Kg	4.1 U	4.5 U	4.4 ∪	5.1 U	4.6 U
	dg/Kg	4.1 U	4.5 U	4.4 U	5.1 U	4.6 U
SW8260B Chloroethane	ug/Kg	4.1 UJ	4.5 UJ	4.4 UJ	5.1 UJ	4.6 UJ
SW8260B Chloroform	ug/Kg	4.1 U	4.5 U	4.4 U	5.1 U	4.6 U
SW8260B Chloromethane	ug/Kg	4.1 U	4.5 UJ	4.4 U	5.1 U	4.6 UJ
SW8260B Cis-1,2-Dichloroethene	ug/Kg	4.1 U	1.6 J	4.4 U	190	4.6 ∪
SW8260B cis-1,3-Dichloropropene	ug/Kg	4.1 ∪	4.5 U	4.4 U	5.1 U	4.6 U
SW8260B Cyclohexane	ug/Kg	2.5 J	4.5 U	4.4 U	5.1 U	4.6 U
SW8260B Dichlorodifluoromethane	ug/Kg	4.1 UJ	4.5 UJ	4.4 UJ	5.1 UJ .	4.6 UJ
SW8260B Ethyl benzene	ng/Kg	4.10	4.5 U	4.4 U	5.1 0	4.6 U
						0

Created by: BJS
Date: 8/05/10
Reviewed by: WDC
Date: 8/13/10

P:\Projects\nysdec1\projects\Loohns Corning\3.0_Site_Data\3.4_Test_Results\DUSR\ June 2010 soils Table 2 Final Results.xls

DATA USABILITY SUMMARY REPORT TABLE 2 - RESULTS SUMMARY JUNE 2010 SOIL SAMPLING LOOHNS CORNING SITE CORNING, NEW YORK

Sample De	Sample Delivery Group	B2618	B2618	B2618	B2618	B2618	
	Location	PDI-012	PDI-013	PDI-013	PDI-008	PDI-008	
	Sample Date	6/8/2010 14:55	6/8/2010 15:30	6/8/2010 15:30	6/8/2010 16:00	6/8/2010 16:00	
	Sample ID	LCPDI01201910XX	LCPDI01300510XX	LCPDI01301010XX	LCPD100800310XX	LCPDI00801510XX	
	Qc Code	FS	FS	FS	FS	FS	
Analysis Param Name	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	
SW8260B Isopropylbenzene	ug/Kg	4.1 U	4.5 U	4.4 U	5.1 U	4.6 U	
SW8260B Methyl cyclohexane	ug/Kg	2.8 J	4.5 U	4.4 U	5.1 U	4.6 U	
SW8260B Methyl Tertbutyl Ether	ug/Kg	4.1 U	4.5 U	4.4 U	5.1 U	4.6 U	
SW8260B Methylene chloride	ug/Kg	5.3 U	4.5 U	4.4 ∪	7.7 U	5.1 U	
SW8260B Styrene	ug/Kg	4.1 Ü	4.5 U	4.4 U	5.1 U	4.6 U	
SW8260B Tetrachloroethene	ug/Kg	3.1 J	1200 D	35	49000 D	4.9	
SW8260B Toluene	ug/Kg	2.2 J	0.91 J	4.4 U	5.1 U	1.4 J	
SW8260B trans-1,2-Dichloroethene	ug/Kg	4.1 U	4.5 U	4.4 U	5.1 U	4.6 U	
SW8260B trans-1,3-Dichloropropene	ug/Kg	4.1 U	4.5 U	4.4 ∪	5.1 U	4.6 U	
SW8260B Trichloroethene	ug/Kg	4.1 U	4.5 U	4.4 ∪	180	4.6 U	
SW8260B Trichlorofluoromethane	ug/Kg	4.1 U	4.5 UJ	4.4 U	5.1 U	4.6 UJ	
SW8260B Vinyl chloride	ug/Kg	4.1 U	4.5 UJ	4.4 U	5.1 U	4.6 UJ	
SW8260B Xylene, m/p	ug/Kg	1.5 J	8.9 U	8.8 U	10 U	9.1 U	
SW8260B Xylene, o	ng/Kg	4.1 U	4.5 U	4.4 U	5.1 U	4.6 U	

Notes:

μg/Kg = micorgrams per kilogram mg/Kg = milligrams per kilogram

U = not detected at the reporting limit Qualifiers

FS = Field Sample QC Code

J = estimated concentration

FD = Field Duplicate

TB = Trip Blank

Created by: BJS
Date: 8/05/10
Reviewed by: WDC
Date: 8/13/10

TABLE 2 - RESULTS SUMMARY
DATA USABILITY SUMMARY REPORT
JUNE 2010 SOIL SAMPLING
LOOHNS CORNING SITE
CORNING, NEW YORK

_	82618	6/8/20		ode TB	ts Result Qualifier) (d			G 5 U	0 P		- 2 C						~~				(a 2 C					(g 5 U	(g 5 U) i i) S	(g 5 U
	Sample Delivery Group	Sample Date	Sample ID	Qc Code	Analysis Param Name Units	SW8260B 1,1,1-Trichloroethane ug/Kg	1,1,2,2-Tetrachloroethane	1,1,2-Trichloro-1,2,2-Trifluoroethane	1,1,2-Trichloroethane	SVV8Z6UB 11,1-Dichloroetnane ug/ng	1.1-Diction of the second of t	1,2-Dibromo-3-chloropropane	SW8260B 1,2-Dibromoethane ug/Kg	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2-Butanone	SW8260B 2-Hexanone ug/Kg	4-Methyl-2-pentanone	Acetic acid, methyl ester	Acetone	Benzene	Bromodichloromethane	Bromoform	Bromomethane	SVV8ZBUB Calbuil disuillue	Chlorobenzene	Chlorodibromoethane	SW8260B Chloroethane ug/Kg	SW8260B Chloroform ug/Kg	Cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	Cyclohexane	Dichlorodifluoromethane	SW8260B Ethyl.benzene ug/Kg

Date: 8/13/10

TABLE 2 - RESULTS SUMMARY DATA USABILITY SUMMARY REPORT JUNE 2010 SOIL SAMPLING LOOHNS CORNING SITE CORNING, NEW YORK

Sample Delivery Group
Location
Sample Date
Sample ID
Qc Code
Units
ng/Kg
ng/Kg
ng/Kg
ng/Kg
ug/Kg
ng/Kg
ng/Kg
SW8260B trans-1,2-Dichloroethene ug/Kg
SW8260B trains-1,3-Dichloropropene ug/Kg
ug/Kg
SW8260B Trichlorofluoromethane ug/Kg
ng/Kg
ng/Kg
/ ng/Kg

Notes:

μg/Kg = micorgrams per kilogram mg/Kg = milligrams per kilogram

mg/ng – mme Qualifiers U = not detected at the reporting limit

J = estimated concentration

OC Code

FS = Field Sample

FD = Field Duplicate

TB = Trip Blank

																															_								_
B2643	6/0/2010 11:05	LCPDI00401010XX	FS	ug/kg	7	0 4. 6	0.4.7	7.4 U	7.4 U	7.4 U	7.4 U	7.4 U	7.4 U	7.4 U	7.4 U	7.4 U	7.4 U	7.4 U	7.4 U	37 U	37 U	37 U	9.7	23 J	7.4 U	7.4 U	7.4 U	7.4 U	7.4 U	7.4 U	7.4 U	7.4 U	7.4 UJ	7.4 U	7.4 U	7.4 U	7.4 U	7.4 U	7.4 UJ
B2643 PDI-004	6/0/2010 10:55	LCPD100400510XX	FS	ug/kg		U C:4	4.5 U	4.5 U	4.5 U	4.5 U	4.5 U	4.5 U	4.5 U	4.5 U	4.5 U	4.5 U	4.5 U	4.5 U	4.5 U	23 U	23 U	23 U	4.5 U	16 J	4.5 U	4.5 U	4.5 U	4.5 U	4.5 U	4.5 U	4.5 U	4.5 U	4.5 UJ	4.5 U	4.5 U	4.5 U	4.5 U	4.5 U	4.5 UJ
B2643	FDI-003	LCPD100901010XX	FS	g/kg	Kesult Qualifier	4.5 U	4.5 U	4.5 U	4.5 U	4.5 U	4.5 U	4.5 U	4.5 U	4.5 U	4.5 U	4.5 U	4.5 U	4.5 U	4.5 U	23 U	23 U	23 U	2.3 J	12 J	4.5 U	4.5 U	4.5 U	4.5 U	4.5 U	4.5 U	4.5 U	4.5 U	4.5 UJ	4.5 U	4.5 U	4.5 U	4.5 U	4.5 U	4.5 UJ
B2643	PDI-009	6/9/2010 9.20 LCPDI00900110XX	FS	g/kg	Result Qualifier	6.8 U	0.8 U	6.8 U	0.8 ∪	6.8 U	6.8 U	6.8 U	6.8 ∪	6.8 U	5.2 J	6.8 U	6.8 U	6.8 U	2.3 J	34 U	34 ∪	34 ∪	6.8 U	12 J	6.8 U	6.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	6.8 U	6.8 UJ	6.8 U	6.8 U	2.8 J	6.8 U	6.8 U	6.8 UJ
B2643	PDI-003	6/9/2010 8:30 I CPD100301310XX	FS	g/kg		5.7 U	5.7 U	5.7 U	5.7 U	5.7 U	5.7 U	5.7 U	5.7 U	5.7 U	5.7 U	5.7 U	5.7 U	5.7 U	5.7 U	28 U	28 U	28 Ú	3.2 J	28 U	5.7 U	5.7 U	5.7 U	5.7 U	5.7 U	5.7 U	5.7 U	5.7 U	5.7 UJ	5.7 U	5.7 U	5.7 U	5.7 U	5.7 U	5.7 UJ
Sample Delivery Group	Location	Sample Date	opo O O	i	щ,	SW8260B 1,1,1-Trichloroethane	SW8260B 1,1,2,2-Tetrachloroethane	$\overline{}$	_	_	_	_	_	_		_	. ~	_	_			SW8260B 4-Methyl-2-pentanone	SW8260B Acetic acid, methyl ester			SW8260B Bromodichloromethane	SW8260B Bromoform	SW8260B Bromomethane	SW8260B Carbon disulfide	SW8260B Carbon tetrachloride	SW8260B Chlorobenzene	SW8260B Chlorodibromomethane				SW8260B Cis-1.2-Dichloroethene	SW8260B cis-1 3-Dichloropropene	SW8260B Cyclohexane	SW8260B Dichlorodifluoromethane

Created by: BJS
Date: 8/05/10
Reviewed by: WDC
Date: 8/13/10

P:\Projects\nysdec1\projects\Loohns Corning\3.0_Site_Data\3.4_Test_Results\DUSR\ June 2010 soils Table 2 Final Results.xls

Sample Delivery Group Location Sample Delivery Group		Uc Code Units	Analysis Param Name Result	SW8260B Ethyl benzene	SW8260B (sopropylbenzene	SW8260B Methyl cyclohexane	SW8260B Methyl Tertbutyl Ether	SW8260B Methylene chloride	SW8260B Stvrene	SW8260B Tetrachloroethene	SW8260B Toluene	SW8260B trans-1.2-Dichloroethene	SW8260B trans-1,3-Dichloropropene	SW8260B Trichloroethene	SW8260B Trichlorofluoromethane	SW8260B Vinvl chloride	SW/8260B Xvlene m/n	SW8260B Xylene, o
B2643 PDI-003	LCPD100301310XX	rs ug/kg	ult Qualifier	5.7 U	5.7 U	5.7 U	5.7 U	6.7	5.7 U	2.6 J	5.7 U	5.7 U	5.7 U	5.7 U	5.7 U	5.7 U	11 U	5.7 U
B2643 PDI-009 6/9/2010 9:20	LCPDI00900110XX	rs ug/kg	Result Qualifier	0.8 U	0.8 U	6.8 U	6.8 U	4.2 J	0.8 U	63000 D	0.8 U	6.8 U	6.8 U	9.3	6.8 U	6.8 U	14 U	6.8 U
B2643 PDI-009 6/9/2010 9:20	LCPD100901010XX	r3 ug/kg	Result Qualifier	4.5 U	4.5 U	4.5 U	4.5 U	4.6	4.5 U	16	4.5 U	4.5 U	4.5 U	4.5 U	4.5 U	4.5 U	9.1 U	4.5 U
B2643 PDI-004 6/9/2010 10:55	LCPD100400510XX	r S ug/kg	Result Qualifier	4.5 U	4.5 U	2.7 J	4.5 U	3.1 J	4.5 U	18	4.5 U	4.5 U	4.5 U	4.5 U	4.5 U	4.5 U	9.1 U	4.5 U
B2643 PDI-004 6/9/2010 11:05	LCPDI00401010XX FS	ug/kg	Result Qualifier	7.4 U	7.4 U	7.4 U	7.4 U	7.8	7.4 U	4-	7.4 U	7.4 U	7.4 U	7.4 U	7.4 U	7.4 U	15 U	7.4 U

Notes:

 $\mu g/Kg = micorgrams$ per kilogram mg/Kg = milligrams per kilogram Qualifiers

U = not detected at the reporting limit J = estimated concentration

J – estilliate QC Code FS = Field Sample

FD = Field Duplicate

TB = Trip Blank

Sample Delivery Group	B2643	B2643	B2643 GW-014	B2643 GW-013	B2643 PDI-010
Sample Date	6/9/2010 14:05	6/9/2010 14:20 I GGW01502010XX	6/9/2010 15:15 LCGW01402010XX	6/9/2010 15:30 LCGW01302010XX	6/9/2010 16:50 LCPDI01000210XX
Oc Code		FS	FS	FS.	FS
	J/kg	ug/l	ug/i	ug/I Result Oualifier	ug/kg Result Qualifier
Analysis Param Name	Result Qualifier	Kesult Qualifier	-	-	4 8
SW8260B 1,1,1-Trichloroethane	4, 4 O :) <u>-</u>) = - +		4.8 U
Υ—	0 :) - v) = - •) =	4.8.1
₹	4.1 UJ) = T	- ÷		4.8 U
$\overline{}$	0 :) - •) = 	·	0 5 5 4 0 8 4
$\overline{}$	7.4 0 :	- -	- -		4.8 U
Ψ.	4, 4 0 =) = - ÷		- T	4.8 U
SW8260B 1,2,4-1 richlorobenzene	0 1.4))		1 U	4.8 U
SVV8Z6UB 1,Z-Dibromoothane	2 1 4	1 N	- T	1 C	4.8 U
	4.10	10	1 U	. O L	4.8 U
	4.1 U	10	1 C	10	4.8 U
	4.1 U	10	1 U	1 0	0 8.4 U :
_	4.1 U	1 U	1 U	J .	0 8.4
Ψ.	4.1 U) L	1 U) - -	4.8 U
C	20 U	5 U	200) : G	24 0
SW8260B 2-Hexanone	20 U	2 C	0 5 1	O =	24.0
SW8260B 4-Methyl-2-pentanone	20 U))	0.7	0 =	7 4 0
SW8260B Acetic acid, methyl ester	4.10) : - ') = - u	- r	
-	20 O) 0	0 -		4.8 U
	- -	7 -) - - -) T	4.8 U
	0 1 4		i D	10	4.8 U
SVV8Z60B Bromomethane	4.1 U) T	10	10	4.8 U
	4.1 UJ	10	10	10	4.8 U
_	41 U	10	1 U))	4.8 U
	4.1 U	1 n	10))	4.8 U
	4.1 U	n F	1 C	J U	4.8 U
	4.1 UJ	10	10))	4.8 UJ
	4.1 U	1 U	1 U) .	ω. · Ο : ·
	4.1 UJ	0 L))	0:	0 8.4
SW8260B Cis-1,2-Dichloroethene	4.1 U	J :) ;) : - ·	0 6.4
SW8260B cis-1,3-Dichloropropene	4.1 U	0,) = - v) = - •	0.4
SW8260B Cyclohexane	410	1.8 1 UJ	- t	1 03	4.8 UJ
טעעסבטטט בוייטיויטייטיייטיייט ביייטייטייטייטייט		-		_	Created by: BI

Created by: BJS
Date: 8/05/10
Reviewed by: WDC
Date: 8/13/10

P:\Projects\nysdec1\projects\Loohns Corning\3.0_Site_Data\3.4_Test_Results\DUSR\ June 2010 soils Table 2 Final Results.xls

DATA USABILITY SUMMARY REPORT TABLE 2 - RESULTS SUMMARY JUNE 2010 SOIL SAMPLING **LOOHNS CORNING SITE** CORNING, NEW YORK

SW8260B Methyl cyclohexane SW8260B Methyl Tertbutyl Ether SW8260B Methylene chloride SW8260B Styrene SW8260B Tetrachloroethene SW8260B Toluene SW8260B trans-1,2-Dichloroethene SW8260B trans-1,3-Dichloropropene SW8260B Trichloroethene SW8260B Trichloroethene SW8260B Trichloroethene SW8260B Vinyl chloride 4.1 U SW8260B Vinyl chloride		0.88 0.88 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		
SW8260B Xylene, m/p 8.1 U	2.9	2 0	1.2 J	9.8 0.84

Notes:

μg/Kg = micorgrams per kilogram mg/Kg = milligrams per kilogram

Qualifiers

U = not detected at the reporting limitJ = estimated concentration

QC Code

FS = Field Sample

FD = Field Duplicate

TB = Trip Blank

Created by: BJS
Date: 8/05/10
Reviewed by: WDC
Date: 8/13/10

TABLE 2 - RESULTS SUMMARY
DATA USABILITY SUMMARY REPORT
JUNE 2010 SOIL SAMPLING
LOOHNS CORNING SITE
CORNING, NEW YORK

B2643 QC	6/2/2010 10:30 TRIPBLANK	TB.	/g/	Result Qualifier	> =	- T	. T	10	1 0	1 U) U))	-))))		-	2 C	2 N	2 C) U :	2.0) - -))))) : -	7))	10	10	10) U	J :		
B2643 QC	6/2/2010 10:30 TRIPBLANK	E T	I/br	Result Qualifier) = - - -	> =) -	1 U	1 U	1 U	J 0	1 C	. 1 U	10	J .	10	1 U	2 N	5 U .	2 N))	5 U	10))	.	10	10	1 C	1 C	10	1 O	10	10) U		
B2643 PDI-014	6/9/2010 16:05	FS	g/kg	Result Qualifier	0 2 c 4	0 2.4	4.2 U	4.2 U	4.2 U	4.2 U	4.2 U	4.2 U	0.79 J	4.2 U	4.2 U	4.2 U	4.2 U	21 U	21 U	21 U	4.2 U	21 U	4.2 U	4.2 N	_	4.2 U	4.2 U	4.2 U	4.2 U	4.2 U	4.2 UJ	4.2 U	4.2 U	4.2 U	4.2 U	4.2 U 4.2 UJ
Sample Delivery Group	Sample Date Sample ID	Oc Code		۱۱۳		SW8Z60B 1,1,z,z-1etrachioroethane SW8260B 1 1 2-Trichloro-1 2-Trifluoroethane	_ —	- ~	_	~	SW8260B 1,2-Dibromo-3-chloropropane	SW8260B 1,2-Dibromoethane	SW8260B 1,2-Dichlorobenzene	SW8260B 1,2-Dichloroethane	_	SW8260B 1,3-Dichlorobenzene	SW8260B 1,4-Dichlorobenzene	SW8260B 2-Butanone	SW8260B 2-Hexanone	SW8260B 4-Methyl-2-pentanone	SW8260B Acetic acid, methyl ester		SW8260B Benzene	SW8260B Bromodichloromethane			SW8260B Carbon disulfide	SW8260B Carbon tetrachloride	SW8260B Chlorobenzene	SW8260B Chlorodibromomethane	SW8260B Chloroethane	SW8260B Chloroform				SW8260B Cyclohexane SW8260B Dichlorodifluoromethane

Sample Delivery Group	B2643	B2643	B2643
Location	PDI-014	၁၀	ص ص
Sample Date	6/9/2010 16:05	6/2/2010 10:30	6/2/2010 10:30
Sample ID	LCPDI01400210XX	TRIPBLANK	TRIPBLANK
Qc Code	FS	TB	2
Units	ug/kg	l/gu	l/gu
Analysis Param Name	Result Qualifier	Result Qualifier	Result Qualifier
SW8260B Ethyl benzene	4.2 U))	.1 U
SW8260B Isopropylbenzene	4.2 U	J U))
SW8260B Methyl cyclohexane	4.2 U	n	1 U
SW8260B Methyl Tertbutyl Ether	4.2 U) L))
SW8260B Methylene chloride	4.5	1 U	- -
SW8260B Styrene	4.2 U	1 U))
SW8260B Tetrachloroethene	8000 D) L))
SW8260B Toluene	4.2 U	1 U	
SW8260B trans-1,2-Dichloroethene	4,2 U	10	1 0
SW8260B trans-1,3-Dichloropropene	4.2 U	10	10
SW8260B Trichloroethene	5.1	1 U))
SW8260B Trichlorofluoromethane	4.2 U	10	J C
SW8260B Vinyl chloride	4.2 U	J L	10
SW8260B Xylene, m/p	8.4 U	2 U	2 U
SW8260B Xylene, o	4.2 U		1 U

Notes:

 $\mu g/Kg = micorgrams \ per \ kilogram \ mg/Kg = milligrams \ per \ kilogram$

Qualifiers

U = not detected at the reporting limit

J = estimated concentration

QC Code

FS = Field Sample

FD = Field Duplicate

TB = Trip Blank

*	Sample I	Delivery Group	B2618	B2618
	•	Location		PDI-006
	•	Sample Date	6/8/2010 10:30	6/8/2010 12:45
		Sample ID	LCSS00100110XX	LCPDI00600110XX
		Qc Code		FS
Analysis	Param Name	Units	Result Qualifier	Result Qualifier
	2,4,5-Trichlorophenol	ug/Kg	380 U	380 U
	2,4,6-Trichlorophenol	ug/Kg	380 U	380 U
SW8270	2,4-Dichlorophenol	ug/Kg	380 U	380 U
SW8270	2,4-Dimethylphenol	ug/Kg	380 U	380 U
SW8270	2,4-Dinitrophenol	ug/Kg	380 UJ	380 UJ
SW8270	2,4-Dinitrotoluene	ug/Kg	380 U	380 U .
SW8270	2,6-Dinitrotoluene	ug/Kg	380 U	380 U
SW8270	2-Chloronaphthalene	ug/Kg	380 U	380 U
SW8270	2-Chlorophenol	ug/Kg	380 U	380 U
SW8270	2-Methylnaphthalene	ug/Kg	380 U	380 U
SW8270	2-Methylphenol	ug/Kg	380 U	380 U 380 U
SW8270	2-Nitroaniline	ug/Kg	380 U	380 U
SW8270	2-Nitrophenol	ug/Kg	380 U 380 UJ	380 UJ
SW8270	3,3`-Dichlorobenzidine	ug/Kg	380 U	380 U
SW8270	3-Nitroaniline	ug/Kg	380 UJ	380 UJ
SW8270	4,6-Dinitro-2-methylphenol	ug/Kg	380 U	380 U
SW8270	4-Bromophenyl phenyl ether	ug/Kg	380 U	380 U
SW8270	4-Chioro-3-methylphenol	ug/Kg ug/Kg	380 UJ	380 UJ
SW8270	4-Chloroaniline	ug/Kg ug/Kg	380 U	380 U
SW8270	4-Chlorophenyl phenyl ether	ug/Kg ug/Kg	380 U	380 U
SW8270	4-Nitroaniline	ug/Kg ug/Kg	380 U	380 U
SW8270	4-Nitrophenol	ug/Kg ug/Kg	380 U	380 U
SW8270	Acenaphthene Acenaphthylene	ug/Kg	380 U	380 U
SW8270 SW8270	Acetophenone	ug/Kg	380 U	380 U
SW8270	Anthracene	ug/Kg	380 U	380 U
SW8270	Atrazine	ug/Kg	380 U	380 U
SW8270	Benzaldehyde	ug/Kg	380 UJ	380 UJ
SW8270	Benzo(a)anthracene	ug/Kg	54 J	380 U
SW8270	Benzo(a)pyrene	ug/Kg	55 J	380 U
SW8270	Benzo(b)fluoranthene	ug/Kg	87 J	380 U
SW8270	Benzo(ghi)perylene	ug/Kg	93 J	380 U
SW8270	Benzo(k)fluoranthene	ug/Kg	380 U	380 U
SW8270	Biphenyl	ug/Kg	380 U	380 U
SW8270	Bis(2-Chloroethoxy)methane	ug/Kg	380 U	380 U
SW8270	Bis(2-Chloroethyl)ether	ug/Kg	380 U	380 U
SW8270	Bis(2-Chloroisopropyl)ether	ug/Kg	380 U	380 U
SW8270	Bis(2-Ethylhexyl)phthalate	ug/Kg	1800	130 J
SW8270	Butylbenzylphthalate	ug/Kg	130 J	380 U
SW8270	Caprolactum	ug/Kg	380 U	380 U
SW8270	Carbazole	ug/Kg	380 U	380 U
SW8270	Chrysene	ug/Kg	80 J	380 U
SW8270	Di-n-butylphthalate	ug/Kg	63 J	380 U
SW8270	Di-n-octylphthalate	ug/Kg	55 J [.]	380 U
SW8270	Dibenz(a,h)anthracene	ug/Kg	380 U	380 U
SW8270	Dibenzofuran	ug/Kg	380 U	380 U
SW8270	Diethylphthalate	ug/Kg	380 U	380 U
SW8270	Dimethylphthalate	ug/Kg	450 U	460 U
SW8270	Fluoranthene	ug/Kg	160 J	380 U
SW8270	Fluorene	ug/Kg	380 U	380 U

Created by: BJS
Date: 8/05/10
Reviewed by: WDC
Date: 8/13/10

	Sample Deliv	ery Group	B26	18	B261	18
		Location	SS-0	01	PDI-0	06
	Sa	mple Date	6/8/2010	10:30	6/8/2010	12:45
		Sample ID	LCSS0010	0110XX	LCPDI0060	0110XX
		Qc Code	FS	;	FS	
Analysis	Param Name	Units	Result	Qualifier	Result	Qualifier
SW8270	Hexachlorobenzene	ug/Kg	380	U	380	U
SW8270	Hexachlorobutadiene	ug/Kg	380	U	380	U
SW8270	Hexachlorocyclopentadiene	ug/Kg	380	U	380	U
SW8270	Hexachloroethane	ug/Kg	380	U	380	U
SW8270	Indeno(1,2,3-cd)pyrene	ug/Kg	49	J	380	U
SW8270	Isophorone	ug/Kg	380	U	380	U
SW8270	m+p-Methylphenol	ug/Kg	380	U	380	U
SW8270	N-Nitrosodi-n-propylamine	ug/Kg	380	U	380	U
SW8270	N-Nitrosodiphenylamine	ug/Kg	380	U	380	U
SW8270	Naphthalene	ug/Kg	380	U	380	U
SW8270	Nitrobenzene	ug/Kg	380	U	380	U .
SW8270	Pentachlorophenol	ug/Kg	380	UJ	380	UJ
SW8270	Phenanthrene	ug/Kg	61	J	380	U
SW8270	Phenol	ug/Kg	380	U	380	U
SW8270	Pyrene	ug/Kg	130	J	380	U

Notes:

 μ g/Kg = micorgrams per kilogram mg/Kg = milligrams per kilogram

Qualifiers

U = not detected at the reporting limit

J = estimated concentration

QC Code

FS = Field Sample

FD = Field Duplicate

TB = Trip Blank

Created by: BJS Date: 8/05/10

Reviewed by: WDC Date: 8/13/10

P:\Projects\nysdec1\projects\Loohns Corning\3.0_Site_Data\3.4_Test_Results\DUSR\ June 2010 soils Table 2 Final Results.xls

	Sample Delivery Group	B2643	B2643	B2643
	Location	PDI-011	BKSS-001	BKSS-002
	Sample Date	6/9/2010 13:10	6/9/2010 15:55	6/9/2010 16:25
	Sample ID	LCPDI01100110XX	LCBKSS00100110XX	LCBKSS00200110XX
	Qc Code	FS	FS	FS
	Units	ug/kg	ug/kg	ug/kg
Analysis	Param Name	Result Qualifier	Result Qualifier	Result Qualifier
SW8270	2,4,5-Trichlorophenol	390 U	410 U	360 U
SW8270	2,4,6-Trichlorophenol	. 390 U	410 U	360 U
SW8270	2,4-Dichlorophenol	390 U	410 U	360 U
SW8270	2,4-Dimethylphenol	390 U	410 U	360 U
SW8270	2,4-Dinitrophenol	390 UJ	410 UJ	360 UJ
SW8270	2,4-Dinitrotoluene	390 U	410 U	360 U
SW8270	2,6-Dinitrotoluene	390 U	410 U	360 U
SW8270	2-Chloronaphthalene	390 U	410 U	360 U
SW8270	2-Chlorophenol	390 U	410 U	360 U
SW8270	2-Methylnaphthalene	390 U	410 U	360 U
SW8270	2-Methylphenol	390 U	410 U	360 U
SW8270	2-Nitroaniline	390 U	410 U	360 U
SW8270	2-Nitrophenol	390 U	410 U	360 U
SW8270	3,3`-Dichlorobenzidine	390 U	410 U	360 U
SW8270	3-Nitroaniline	390 U	410 U	360 U
SW8270	4,6-Dinitro-2-methylphenol	390 UJ	410 UJ	360 UJ
SW8270	4-Bromophenyi phenyi ether	390 U	410 U	360 U
SW8270	4-Chloro-3-methylphenol	390 U	410 U	360 U
SW8270	4-Chloroaniline	390 UJ	410 U	360 U
SW8270	4-Chlorophenyl phenyl ether	390 U	410 U	360 U
SW8270	4-Nitroaniline	390 U	410 U	360 U
SW8270	4-Nitrophenol	390 U	410 U	360 U
SW8270	Acenaphthene	390 U	410 U	360 U
SW8270	Acenaphthylene	390 U	410 U	360 U
SW8270	Acetophenone	390 U	410 U	360 U
SW8270	Anthracene	390 U	410 U	360 U
SW8270	Atrazine	390 U	410 U	360 U
SW8270	Benzaldehyde	390 UJ	410 UJ	360 UJ
SW8270	Benzo(a)anthracene	390 U	210 J	360 U
SW8270	Benzo(a)pyrene	390 U	220 J	360 U
SW8270	Benzo(b)fluoranthene	390 U	290 J	360 U
SW8270	Benzo(ghi)perylene	390 U	160 J	360 U
SW8270	Benzo(k)fluoranthene	390 U	130 J	360 U
SW8270	Biphenyl	390 U	410 U	360 U
SW8270	Bis(2-Chloroethoxy)methane	390 U	410 U	360 U
SW8270	Bis(2-Chloroethyl)ether	390 U	410 U	360 U
SW8270	Bis(2-Chloroisopropyl)ether	390 U	410 U	360 U
SW8270	Bis(2-Ethylhexyl)phthalate	340 J	410 U	360 U
SW8270	Butylbenzylphthalate	390 U	410 U	360 U
SW8270	Caprolactum	390 U	410 U	360 U
SW8270	Carbazole	390 U	410 U	360 U
SW8270	Chrysene	390 U	240 J	360 U
SW8270	Di-n-butylphthalate	390 U	410 U	360 U
SW8270	Di-n-octylphthalate	390 U	410 U	360 U
SW8270	Dibenz(a,h)anthracene	390 U	410 U	360 U
SW8270	Dibenzofuran	390 U	410 U	360 U
SW8270	Diethylphthalate	390 U	410 U	360 U
SW8270	Dimethylphthalate	460 U	410 U	400 U
SW8270	Fluoranthene	56 J	480	360 U

Created by: BJS Date: 8/05/10

Reviewed by: WDC Date: 8/13/10

	Sample Delivery Group	B2643	B2643	B2643
	Location	PDI-011	BKSS-001	BKSS-002
	Sample Date	6/9/2010 13:10	6/9/2010 15:55	6/9/2010 16:25
	Sample ID	LCPDI01100110XX	LCBKSS00100110XX	LCBKSS00200110XX
	Qc Code	FS	FS	FS
	Units	ug/kg	ug/kg	ug/kg
Analysis	Param Name	Result Qualifier	Result Qualifier	Result Qualifier
SW8270	Fluorene	390 U	410 U	360 U
SW8270	Hexachlorobenzene	390 U	410 U	360 U
SW8270	Hexachlorobutadiene	390 U	410 U	360 U
SW8270	Hexachlorocyclopentadiene	390 U	410 U	360 U
SW8270	Hexachloroethane	390 U	410 U	360 U
SW8270	indeno(1,2,3-cd)pyrene	390 U	140 J	360 U
SW8270	Isophorone	390 U	410 U	360 U
SW8270	m+p-Methylphenol	390 U	410 U	360 U
SW8270	N-Nitrosodi-n-propylamine	390 U	410 U	360 U
SW8270	N-Nitrosodiphenylamine	· 390 U	410 U	360 U
SW8270	Naphthalene	390 U	410 U	360 U
SW8270	Nitrobenzene	390 U	410 U	360 U
SW8270	Pentachlorophenol	390 UJ	410 UJ	360 UJ
SW8270	Phenanthrene	390 U	160 J	360 U
SW8270	Phenol	390 U	410 U	360 U
SW8270	Pyrene	390 U	350 J	360 U

Notes:

 μ g/Kg = micorgrams per kilogram mg/Kg = milligrams per kilogram Qualifiers

U = not detected at the reporting limit

J = estimated concentration

OC Code

FS = Field Sample

FD = Field Duplicate

TB = Trip Blank

Created by: BJS Date: 8/05/10

Reviewed by: WDC

Date: 8/13/10

	Sample Delivery Group Location Sample Date Sample ID Qc Code	BKSS-003 6/9/2010 16:35 LCBKSS00300110XX FS	B2643 BKSS-003 6/9/2010 16:35 LCBKSS00300110XD FD
	Units	ug/kg	ug/kg
Analysis	Param Name	Result Qualifier 410 U	Result Qualifier 410 U
SW8270		410 U	410 U
SW8270 SW8270	2,4-Dichlorophenol	410 U	410 U
SW8270	2,4-Dimethylphenol	410 U	410 U
SW8270	2,4-Dinitrophenol	410 UJ	410 UJ
SW8270	2,4-Dinitrotoluene	410 U	410 U
SW8270	2,6-Dinitrotoluene	410 U	410 U
SW8270	2-Chloronaphthalene	410 U	410 U
SW8270	2-Chlorophenol	410 U	410 U
SW8270	2-Methylnaphthalene	410 U	410 U
SW8270	2-Methylphenol	410 U	410 U
SW8270	2-Nitroaniline	410 U	410 U
SW8270	2-Nitrophenol	410 U	410 U
SW8270	3,3`-Dichlorobenzidine	410 U	410 U
SW8270	3-Nitroaniline	410 U	410 U
SW8270	4,6-Dinitro-2-methylphenol	410 UJ	410 UJ
SW8270	4-Bromophenyl phenyl ether	410 U 410 U	410 U 410 U
SW8270	4-Chloro-3-methylphenol 4-Chloroaniline	410 U	410 U
SW8270 SW8270	4-Chlorophenyl phenyl ether	410 U	410 U
SW8270	4-Nitroaniline	410 U	410 U
SW8270	4-Nitrophenol	410 U	410 U
SW8270	Acenaphthene	410 U	410 U
SW8270	Acenaphthylene	410 U	410 U
SW8270	Acetophenone	410 U	410 U
SW8270	Anthracene	410 U	410 U
SW8270	Atrazine	410 U	410 U
SW8270	Benzaldehyde	410 UJ	410 UJ
SW8270	Benzo(a)anthracene	110 J	100 J
SW8270	Benzo(a)pyrene	100 J	110 J
SW8270	Benzo(b)fluoranthene	150 J	160 J
SW8270	Benzo(ghi)perylene	78 J	83 J
SW8270	Benzo(k)fluoranthene	410 U	54 J 410 U
SW8270	Biphenyl	410 U 410 U	410 U
SW8270 SW8270	Bis(2-Chloroethoxy)methane Bis(2-Chloroethyl)ether	410 U	410 U
SW8270	Bis(2-Chloroisopropyl)ether	410 U	410 U
SW8270	Bis(2-Ethylhexyl)phthalate	410 U	410 U
SW8270	Butylbenzylphthalate	410 U	410 U
SW8270	Caprolactum	410 U	410 U
SW8270	Carbazole	410 U	410 U
SW8270	Chrysene	130 J	130 J
SW8270	Di-n-butylphthalate	410 U	410 ∪
SW8270	Di-n-octylphthalate	410 U	410 U
SW8270	Dibenz(a,h)anthracene	410 U	410 U
SW8270	Dibenzofuran	410 U	410 U
SW8270	Diethylphthalate	410 U	410 U
SW8270	Dimethylphthalate	440 U	450 U
SW8270	Fluoranthene	260 J	240 J

Created by: BJS Date: 8/05/10 Reviewed by: WDC

Date: 8/13/10

	Sample Delivery Group	B2643	B2643
	Location	BKSS-003	BKSS-003
	Sample Date	6/9/2010 16:35	6/9/2010 16:35
	Sample ID	LCBKSS00300110XX	LCBKSS00300110XD
	Qc Code	FS	FD
	Units	ug/kg	ug/kg
Analysis	Param Name	Result Qualifie	r Result Qualifier
SW8270	Fluorene	410 U	410 U
SW8270	Hexachlorobenzene	410 U	410 U
SW8270	Hexachlorobutadiene	410 U	410 U
SW8270	Hexachlorocyclopentadiene	410 U	410 U
SW8270	Hexachloroethane	410 U	410 U
`SW8270	Indeno(1,2,3-cd)pyrene	68 J	72 J
SW8270	Isophorone	410 U	410 U
SW8270	m+p-Methylphenol	410 U	410 U
SW8270	N-Nitrosodi-n-propylamine	410 U	410 U
SW8270	N-Nitrosodiphenylamine	410 U	410 U
SW8270	Naphthalene	410 U	410 U
SW8270	Nitrobenzene	410 U	410 U
SW8270	Pentachlorophenol	410 UJ	410 UJ
SW8270	Phenanthrene	140 J	110 J
SW8270	Phenol	410 U	410 U
SW8270	Pyrene	200 J	190 J

Notes:

 μ g/Kg = micorgrams per kilogram mg/Kg = milligrams per kilogram Qualifiers

U = not detected at the reporting limit

J = estimated concentration

QC Code

FS = Field Sample

FD = Field Duplicate

TB = Trip Blank

Created by: BJS Date: 8/05/10

Reviewed by: WDC Date: 8/13/10

B2618 PDI-006 6/8/2010 12:45	LCPUIU00UUIIUAA FS	Result Qualifier	1.9 U	1.9 U	17	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	19 0	19 0	19 U	19 0	19 U	19 U	19 N	19 0
B2618 SS-001 6/8/2010 10:30	LCSSUU100110XX FS	Result Qualifier	16	10	36	3.9 U	3.9 U	3.9 U	3.9 U	3.9 U	3.9 U	3.9 U	3.9 U	3.9 U	3.9 U	3.9 U	3.9 U	3.9 U	3.9 U	3.9 U	3.9 U	38 J	39 U	20 U	20 U	20 U	20 U	20 U	20 N	20 U
livery Group Location Sample Date	Sample ID Qc Code	Units	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ng/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	l ug/Kg
Sample Delivery Group Location Sample Date	in and a second	Analysis Param Name	SW8081 4,4'-DDD	SW8081 4,4'-DDE	SW8081 4,4'-DDT	SW8081 Aldrin	SW8081 Alpha-BHC	SW8081 Alpha-Chlordane	SW8081 Beta-BHC	SW8081 Delta-BHC	SW8081 Dieldrin	SW8081 Endosulfan I	SW8081 Endosulfan II	SW8081 Endosulfan sulfate	SW8081 Endrin	SW8081 Endrin aldehyde	SW8081 Endrin ketone	SW8081 Gamma-BHC/Lindane	SW8081 Gamma-Chlordane	SW8081 Heptachlor	SW8081 Heptachlor epoxide	SW8081 Methoxychlor	SW8081 Toxaphene	SW8082 Aroclor-1016	SW8082 Aroclor-1221	SW8082 Aroclor-1232	SW8082 Aroclor-1242	SW8082 Aroclor-1248	SW8082 Aroclor-1254	SW8082 Aroclor-1260

Notes:

μg/Kg = micorgrams per kilogram QC Code mg/Kg = milligrams per kilogram FS = Field Sample Qualifiers FD = Field Duplicate

U = not detected at the reporting limit TB = Trip Blank

J = estimated concentration

P:\Projects\nysdec1\projects\Loohns Corning\3.0_Site_Data\3.4_Test_Results\DUSR\ June 2010 soils Table 2 Final Results.xls

DATA USABILITY SUMMARY REPORT TABLE 2 - RESULTS SUMMARY JUNE 2010 SOIL SAMPLING **LOOHNS CORNING SITE** CORNING, NEW YORK

		· ·
B2643 BKSS-003 6/9/2010 16:35 LCBKSS00300110XD FD ug/kg	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	2.4.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2
B2643 BKSS-003 6/9/2010 16:35 LCBKSS00300110XX FS ug/kg	2. ε. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.
B2643 BKSS-002 6/9/2010 16:25 LCBKSS00200110XX FS ug/kg	2	0.7.7.0 0.0.0.0 0.0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0
B2643 BKSS-001 6/9/2010 15:55 LCBKSS00100110XX FS ug/kg	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2.7.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2
B2643 PDI-011 · 6/9/2010 13:10 LCPDI01100110XX FS ug/kg		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Sample Delivery Group Location Sample Date Sample ID Qc Code	SW8081 4,4'-DDD SW8081 4,4'-DDE SW8081 4,4'-DDT SW8081 Aldrin SW8081 Alpha-BHC SW8081 Alpha-Chlordane SW8081 Delta-BHC SW8081 Delta-BHC SW8081 Endosulfan I SW8081 Endosulfan II SW8081 Endosulfan II SW8081 Endrin aldehyde SW8081 Endrin aldehyde SW8081 Endrin aldehyde SW8081 Endrin aldehyde SW8081 Endrin Aldehyde SW8081 Endrin Aldehyde SW8081 Endrin Aldehyde SW8081 Endrin Aldehyde SW8081 Endrin Aldehyde	SW8081 Heptachlor SW8081 Heptachlor epoxide SW8081 Methoxychlor SW8082 Aroclor-1016 SW8082 Aroclor-1221 SW8082 Aroclor-1221 SW8082 Aroclor-1232 SW8082 Aroclor-1248 SW8082 Aroclor-1248 SW8082 Aroclor-1248

Notes:

FS = Field Sample QC Code µg/Kg = micorgrams per kilogram mg/Kg = milligrams per kilogram Qualifiers

FD = Field Duplicate

TB = Trip Blank U = not detected at the reporting limit

J = estimated concentration

DATA USABILITY SUMMARY REPORT TABLE 2 - RESULTS SUMMARY JUNE 2010 SOIL SAMPLING LOOHNS CORNING SITE CORNING, NEW YORK

B2618 PDI-006 6/8/2010 12:45 LCPDI00600110XX FS	Result Qualifier	5420	2.76 U	4.22	49.1	0.26 J	0.61	1050	7.63	4.68	11.8	12000	28.8	1450	405	9.78	407	1.88	0.55 U	225	2.21 U	10.4	59.2	0.106 J
B2618 SS-001 6/8/2010 10:30 LCSS00100110XX FS	Result Qualifier	8240	2.89 U	9	97.3	0.41	1.16	2570	10.7	7.13	25.2	17400	38.8	2380	413	16.3	671	2.45	0.58 U	119	2.31 U	13.9	105	0.081 J
Location Sample Date Sample ID Qc Code	Units	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Sample Delivery Group Location Sample Date Sample ID Qc Code	Param Name	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcinm	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc	Mercury
	Analysis	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW7471

 $\mu g/Kg = micorgrams$ per kilogram mg/Kg = milligrams per kilogram

Qualifiers

U =not detected at the reporting limit

J = estimated concentration

FS = Field Sample QC Code

FD = Field Duplicate

TB = Trip Blank

P:\Projects\nysdec1\projects\Loolnns Corning\3.0_Site_Data\3.4_Test_Results\DUSR\ June 2010 soils Table 2 Final Results.xls

Date: 8/13/10

DATA USABILITY SUMMARY REPORT TABLE 2 - RESULTS SUMMARY JUNE 2010 SOIL SAMPLING LOOHNS CORNING SITE CORNING, NEW YORK

B2643 B2643 B2643 B2643 B2643 B2643 B2643 B2643 B2643 B2643 B2643 B2643 B2643 B2643 B2643 B2643 B2643 BKSS-003 BKS-003
B2643 BKSS-001 BKSS-001 BKSS-002 BKSS-0
B2643 BKSS-00 6/9/2010 1-1 ES mg/kg fifer Result 7050 0.72 83.2 0.42 1.09 3400 12.6 8.35 15.6 17.9 2480 47.9 2480 47.9 22.8 17.1 17.8 17.1
100110XX 100110XX 100110XX 100110XX = S g/kg Qualiffer 80 J 58 J 58 J 58 J 6.6 J 6.6 J 6.6 J 7.79 2.1 7.90 J 7.90
88 88 8 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Sample Delivery Group Location Sample Date Sample ID Qc Code Units In In In In In In In In In In In In In
Analysis Param Name SW6010 Aluminum SW6010 Aritmony SW6010 Aritmony SW6010 Barium SW6010 Beryllium SW6010 Cadmium SW6010 Chromium SW6010 Chromium SW6010 Chromium SW6010 Chromium SW6010 Chromium SW6010 Calcium SW6010 Calcium SW6010 Calcium SW6010 Calcium SW6010 Calcium SW6010 Calcium SW6010 Calcium SW6010 Calcium SW6010 Calcium SW6010 Calcium SW6010 Calcium SW6010 Calcium SW6010 Calcium SW6010 Magnesium SW6010 Potassium SW6010 Selenium SW6010 Selenium SW6010 Zinc Zinc

Notes:

µg/Kg = micorgrams per kilogram

nıg/Kg = milligrams per kilogram

U =not detected at the reporting limit Qualifiers

J = estimated concentration

FS = Field Sample

QC Code

FD = Field Duplicate

TB = Trip Blank

P:\Projects\nysdec1\projects\Loohns Corning\3.0_Site_Data\3.4_Test_Results\DUSR\ June 2010 soils Table 2 Final Results.xls

Table 3 - Tentatively Identified Compounds DATA USABILITY SUMMARY REPORT JUNE 2010 SOIL SAMPLING LOOHNS CORNING SITE CORNING, NEW YORK

Sample ID	CAS#	Chemical Name	Result	Qual	Units
LCSS00100110XX	72-56-0	Benzene, 1,1-(2,2-dichloroethylid	1200		ug/Kg
LCSS00100110XX	4294-95-5	4-Methoxyanthranilic acid	560	JN	ug/Kg
LCSS00100110XX	57-11-4	Octadecanoic acid	130	JN	ug/Kg
LCSS00100110XX	127-18-4	Tetrachloroethylene	1100	JN	ug/Kg
LCSS00100110XX	74579-34-3	3,4-Bis-(methylthio)-quinoline	6600	JN	ug/Kg
LCSS00100110XX	1140-08-5	2-Methyl-7-phenylindole	650	JN	ug/Kg
LCSS00100110XX	3910-35-8	1H-Indene, 2,3-dihydro-1,1,3-trime	660	JN	ug/Kg
LCSS00100110XX	30020-98-5	1-Methyl-3-phenylindole	170		ug/Kg
LCSS00100110XX	1000147-85-5	(E)-2-Hydroxy-4-cyano-stilbene	6000	JN	ug/Kg
LCSS00100110XX	98-83-9	.alphaMethylstyrene	890		ug/Kg
LCSS00100110XX	1000111-58-0	2,4-Diphenyl-4-methyl-1-pentene	210		ug/Kg
LCPDI01201910XX	unknown1.95	unknown1.95		JN	ug/Kg
LCPDI01201910XX	000109-66-0	Pentane		JN	ug/Kg
LCPDI00600110XX	74579-34-3	3,4-Bis-(methylthio)-quinoline	740		ug/Kg
LCPDI00600110XX	1000297-24-5	3-[(2-Methyl-5-nitro-phenylimino)-	110		ug/Kg
LCPDI00600110XX	630-02-4	Octacosane		JN	ug/Kg
LCPDI00600110XX	127-18-4	Tetrachloroethylene	1000		ug/Kg
LCPDI00600110XX	3910-35-8	1H-Indene, 2,3-dihydro-1,1,3-trime	280		ug/Kg
TRIPBLANK-1	000110-54-3	Hexane	17	JN	ug/Kg
LCPDI01100110XX	72-56-0	Benzene, 1,1-(2,2-dichloroethylid	160		ug/kg
LCPDI01100110XX	74579-34-3	3,4-Bis-(methylthio)-quinoline	510		ug/kg
LCPDI01100110XX	1000297-24-5	3-[(2-Methyl-5-nitro-phenylimino)-	150		ug/kg
LCPDI01100110XX	84-61-7	1,2-Benzenedicarboxylic acid, dicy	130		ug/kg
LCPDI01100110XX	3910-35-8	1H-Indene, 2,3-dihydro-1,1,3-trime		JN	ug/kg
LCPDI01100110XX	98-83-9	.alphaMethylstyrene	230		ug/kg
LCPDI01100110XX	127-18-4	Tetrachloroethylene	240		ug/kg
LCPDI01100110XX	UNKNOWN17.8	unknown17.8	130		ug/kg
LCPDI01100110XX	UNKNOWN19.75	unknown19.75	1200		ug/kg
LCPDI01100110XX	UNKNOWN19.79	unknown19.79		JN	ug/kg
LCPDI01100110XX	UNKNOWN30.2	unknown30.2		JN	ug/kg
LCBKSS00100110XX	192-97-2	Benzo[e]pyrene		JN	ug/kg
LCBKSS00100110XX	646-31-1	Tetracosane		JN	ug/kg
LCBKSS00100110XX	UNKNOWN17,64	unknown17.64		JN	ug/kg
LCBKSS00200110XX	UNKNOWN17.63	unknown17.63		JN	ug/kg
LCBKSS00300110XX	UNKNOWN17.64	unknown17.64		JN	ug/kg
LCBKSS00300110XX	7390-81-0	Oxirane, hexadecyl-		JN	ug/kg
LCBKSS00300110XD	UNKNOWN17.64	unknown17.64		JN	ug/kg
LCBKSS00300110XD	57-10-3	n-Hexadecanoic acid		JN	ug/kg
LCBKSS00300110XD	638-66-4	Octadecanal		JN	ug/kg
TRIPBLANK	UNKNOWN1.22	unknown1.22		JN	ug/l
TRIPBLANK-1	141-78-6	Ethyl Acetate		JN	ug/Kg
TRIPBLANK-1	60-29-7	Diethyl Ether		JN	ug/Kg
LCGW01502010XX	95-63-6	1,2,4-Trimethylbenzene		JN	ug/l
LCGW01302010XX	95-63-6	1,2,4-Trimethylbenzene	0.72	JN	ug/l

Prepared by: BJS 8/5/10 Checked by: WDC 8/13/10

SUMMARY

Cheld for completeers

ANALYTICAL RESULTS of parameters opened.

PROJECT NAME: LOOHNS DRY CLEANERS- APO 201007181

MACTEC INC. 1105 Lakewood Parkway Suite 300 Alpharetta, GA - 30009

Phone No: 7703600600

ORDER ID: B2618

ATTENTION: Tige Cunningham

DoD ELAP

VOCs

NYSDEC DUSR PROJECT CHEMIST REVIEW RECORD

Project: Looks cong. Method: SW-846 8260B

estimated (UJ).

			Chemtech	l	SDG# B2618		
Date	e:	sell	 .				
	iew Level		DEC DUSR		□ USEPA Re	egion II Guideline	е
1.	Were prob	lems noted?	No.		ckage Complet the requested a	~	COMMENTS NO (circle one)
2.	X Holdin All sample	g time and es were anal	Sample Col yzed within	llection the 14 day ho	lding time.	ES) NO (circle o	one)
Ace esta chlo	Are T Are R tone (13 µg blished at toride were l f less than t X Instru Were all r X Instru Initial Initial	nethod blanks frip blanks frip blanks frip blanks frip. g/kg) and me en times the less than the reporting iment Tunicesults were valued to a libration. Avg RRF a	ree of contar free of contar ethylene chlorated blaction level g limit, were mg within method bration Wer with Continuity	nination? Y amination? Y amination? Y amination? Y oride (8.5 µg/ank concentral and were qualified non od criteria. Y e all results w 0% (30% for 1, ing RRF shou	tions. Reported alified non detect detect (U) at the ES NO (circuithin criteria?	e one) A (circle one) ed in the trip bland detections for act (U) if greater the reporting limit. le one) YES (NO) (circle, 1,2-DCP, toluene,	le one)
	ılorodifluo	romethane (2	25) exceeded	d the QC limi		tion (RSD) for ated sample result ere qualified estin	
	limit of 20	. Associated		ults for dichle			tone (22) exceeded the were non detect and
	Conti	nuing Calibi	ration %D=	20%			
		nple results :				hane (24) exceed reporting limits v	led the QC limit of 20. were qualified
	For a	subset of sa	mples, the p	ercent differe	nce for dichloro	difluoromethane	(50), chloromethane

(27), vinyl chloride (28), chloroethane (31), trichlorofluoromethane (23), carbon disulfide (21), and 1,1,2-

dichlorodifluoromethane were non detect and were qualified previously under the initial calibration criteria. Associated sample results for chloromethane, vinyl chloride, chloroethane, trichlorofluoromethane, carbon disulfide, and 1,1,2-trichloro-1,2,2-trifluoroethane were non detect and the reporting limits were qualified

trichloro-1,2,2-trifluoroethane (24) exceeded the QC limit of 20. Associated sample results for

Were all results were within Region II limits? YES NO (circle one)

X Surrogate Recovery - Region II limits (water 80-120%, soil 70-130%)

X Matrix Spike - Region II limits (water and soil 70-130%, water RPD 20, soil RPD 35)

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

LCPD100500510XX Lab Name: Chemtech Contract: MACT03 B2618 SAS No.: B2618 SDG No.: B2618 Lab Code: **CHEM** Case No.: Lab Sample ID: SOIL B2618-01 Matrix (soil/water): 5.83 (g/mL) Lab File ID: VK039511.D Sample wt/vol: 06/09/10 LOW Date Received: Level: (low/med) Date Analyzed: 06/10/10 8 % Moisture: not dec. ID: 0.18 Dilution Factor: GC Column: RTX-VMS (mm) Soil Aliquot Volume: (uL) Soil Extract Volume: 5000 (uL) Concentration Units: CAS NO. COMPOUND (ug/L or ug/Kg) ug/Kg Q U T 75-71-8 Dichlorodifluoromethane 4.7 U 4.7 Chloromethane 74-87-3 U 75-01-4 Vinyl Chloride 4.7 74-83-9 Bromomethane 4.7 IJ 4.7 ぴづ 75-00-3 Chloroethane U Trichlorofluoromethane 4.7 75-69-4 4.7 IJ 1,1,2-Trichlorotrifluoroethane 76-13-1 U 1,1-Dichloroethene 4.7 75-35-4 U 67-64-1 Acetone 23 4.7 U Carbon Disulfide 75-15-0 4.7 U Methyl tert-butyl Ether 1634-04-4 IJ 79-20-9 Methyl Acetate 4.7 3.5-4,7. U ستير Methylene Chloride 75-09-2 ŢŢ 156-60-5 trans-1,2-Dichloroethene 4.7 U 75-34-3 1.1-Dichloroethane 4.7 110-82-7 Cyclohexane 4.7 U U 23 78-93-3 2-Butanone U Carbon Tetrachloride 4.7 56-23-5 4.7 IJ cis-1,2-Dichloroethene 156-59-2 U 4.7 67-66-3 Chloroform 1,1,1-Trichloroethane 4.7 U 71-55-6 4.7 U 108-87-2 Methylcyclohexane 4.7 U 71-43-2 Benzene 1,2-Dichloroethane 4.7 U 107-06-2 4.7 U 79-01-6 Trichloroethene U 4.7 78-87-5 1,2-Dichloropropane

FORM I VOA-1 MAN Clin 7/19/18

EPA SAMPLE NO.

4.7

Bromodichloromethane

75-27-4

106-46-7

95-50-1

96-12-8

120-82-1

1.4-Dichlorobenzene

1,2-Dichlorobenzene

1,2,4-Trichlorobenzene

1.2-Dibromo-3-Chloropropane

1 A

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO. LCPD100500510XX MACT03 Lab Name: Chemtech Contract: Lab Code: **CHEM** Case No .: B2618 SAS No.: B2618 SDG No.: B2618 Lab Sample ID: SOIL B2618-01 Matrix (soil/water): Lab File ID: VK039511.D 5.83 (g/mL)Sample wt/vol: LOW Date Received: 06/09/10 Level: (low/med) 8 06/10/10 % Moisture: not dec. Date Analyzed: Dilution Factor: GC Column: RTX-VMS ID: 0.18 (mm) 5000 Soil Aliquot Volume: (uL) Soil Extract Volume: (uL) Concentration Units: (ug/L or ug/Kg) ug/Kg COMPOUND Q CAS NO. 108-10-1 4-Methyl-2-Pentanone 23 IJ 4.7 U 108-88-3 Toluene 4.7 U 10061-02-6 t-1,3-Dichloropropene 4.7 U 10061-01-5 cis-1,3-Dichloropropene 79-00-5 1,1,2-Trichloroethane 4.7 U U 23 591-78-6 2-Hexanone Dibromochloromethane 4.7 U 124-48-1 4.7 IJ 106-93-4 1,2-Dibromoethane 127-18-4 Tetrachloroethene 7 4.7 Ū 108-90-7 Chlorobenzene 4.7 IJ 100-41-4 Ethyl Benzene 9.3 U 179601-23-1 m/p-Xylenes 95-47-6 o-Xylene 4.7 U 4.7 U 100-42-5 Styrene 4.7 U 75-25-2 Bromoform 4.7 U 98-82-8 Isopropylbenzene U 4.7 79-34-5 1,1,2,2-Tetrachloroethane Ú 4.7 541-73-1 1.3-Dichlorobenzene

Mal (Mhs.

U

U

U

Ú

4.7

4.7

4.7

4.7

-1E-

SOIL VOLATILE ANALYSIS TENTIVELY IDENTIFIED COMPOUNDS

						LCPD:	100500510XX	
ab Name: Che	emtech		·	Contra	act: MACT03	· · · · · · · · · · · · · · · · · · ·		
ab Code: CH	EM (Case No.:	B2618	SAS No.:	B2618	SDG No.:	B2618	
Matrix (soil/water):	<u>S</u>	SOIL			Lab Sample ID:	B2618-01		
Sample wt/vol:	5.83	(g/mL)	<u>g</u>		Lab File ID:	VK039511.D	<u> </u>	
Level: (low/med)	LOV	V			Date Received:	06/09/10		
% Moisture: not dec	s. <u>8</u>				Date Analyzed:	06/10/10		
GC Column: R	TX-VM: ID	: 0.18			Dilution Factor:	1		
Soil Extract Volume	e: <u>5000</u>				Soil Aliquot Volume:	<u> </u>		
Number TICS found	d:	1	•		Concentration Units:	ug/Kg		
					(ug/L or ug/Kg)			

			FOT COMO		
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q ·	<u> </u>
60-29-7	Diethyl Ether	1.48	1.9	I	×

popul alla

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO. LCPD1001011110XX MACT03 Lab Name: Chemtech Contract: CHEM Case No.: B2618 SAS No.: B2618 SDG No.: B2618 Lab Code: Lab Sample ID: B2618-02 Matrix (soil/water): SOIL Lab File ID: VK039512.D Sample wt/vol: 6.4 (g/mL)LOW Date Received: 06/09/10 Level: (low/med) 06/10/10 5 Date Analyzed: % Moisture: not dec. Dilution Factor: ID: 0.18 GC Column: RTX-VMS (mm) (uL) 5000 Soil Aliquot Volume: (uL) Soil Extract Volume: Concentration Units: COMPOUND Q (ug/L or ug/Kg) ug/Kg CAS NO. U ゴ 4.1 75-71-8 Dichlorodifluoromethane U 4.1 74-87-3 Chloromethane 75-01-4 Vinyl Chloride 4.1 U IJ 4.1 Bromomethane 74-83-9 4.1 ひづ 75-00-3 Chloroethane 75-69-4 Trichlorofluoromethane 4.1 U U 4.1 1,1,2-Trichlorotrifluoroethane 76-13-1 U 1,1-Dichloroethene 4.1 75-35-4 6.9 21 U J--67-64-1 Acetone IJ 4.1 75-15-0 Carbon Disulfide U Methyl tert-butyl Ether 4.1 1634-04-4 U 4.1 79-20-9 Methyl Acetate 75-09-2 Methylene Chloride -3.7 U 4.1 U 156-60-5 trans-1,2-Dichloroethene 1,1-Dichloroethane U 75-34-3 4.1 ŢŢ 4.1 110-82-7 Cyclohexane U 2-Butanone 21 78-93-3 Carbon Tetrachloride 56-23-5 4.1 U IJ 4.1 cis-1,2-Dichloroethene 156-59-2 U Chloroform 4.1 67-66-3 4.1 U 71-55-6 1,1,1-Trichloroethane IJ 4.1 Methylcyclohexane 108-87-2 U 71-43-2 Benzene 4.1 4.1 U 107-06-2 1,2-Dichloroethane 4.1 IJ 79-01-6 Trichloroethene U 78-87-5 1,2-Dichloropropane 4.1 4.1 U 75-27-4 Bromodichloromethane

Form I VOA-1

21

1.2

4-Methyl-2-Pentanone

Toluene

108-10-1

108-88-3

Mallela +/19/10

U

VOLATILE ORGANICS ANALYSIS DATA SHEET

1A

EPA SAMPLE NO.

LCPD100101110XX

Lal	Name:	Chemtech				Cont	ract:	MACT03			
Lal	Code:	СНЕМ	Case No.:	B261	8	SAS No.:]	B2618	SDG No.:	B2618	
Ma	trix (soil/wa	ter):	SOIL				Lab S	Sample ID:	B2618-02		
Sar	nple wt/vol:	6.4	(g/r	nL)	<u>g</u>		Lab F	ile ID:	VK039512.D		_
Lev	vel: (low/me	d)	LOW				Date 1	Received:	06/09/10		
% l	Moisture: no	t dec.	5				Date .	Analyzed:	06/10/10		
GC	Column:	RTX-VMS	ID: 0.1	8	(mm)		Diluti	on Factor:	1		
					_ (11111)	•			<u>, </u>		
501	l Extract Vo	lume: <u>5000</u>	(uL)				Soil A	Aliquot Volume:			(uL)
							Conc	entration Units:			
	CAS NO.		COMPOUN	1D				(ug/L or ug/Kg	g) ug/Kg	Q	
	10061-02-	6	t-1,3-Dichlo	ropropen	ie		4.1			U	
	10061-01-	5	cis-1,3-Dicl	nloroprop	ene		4.1			U	
	79-00-5		1,1,2-Trichl	oroethan	e		·4.1			U	÷
	591-78-6		2-Hexanone	÷			[′] 21			U	
	124-48-1		Dibromoch	lorometha	ine		4.1			U	
	106-93-4		1,2-Dibrom	oethane			4.1			U .	
	127-18-4		Tetrachloro	ethene			7.3				
	108-90-7		Chlorobenz	ene			4.1			U	
	100-41-4		Ethyl Benze	ene	***		4.1			U	
	179601-23	-1	m/p-Xylene	s			8.2			U ,	
	95-47-6		o-Xylene				4.1			U	
	100-42-5	·	Styrene				4.1			U	
	75-25-2		Bromoform				4.1			U	
	98-82-8		Isopropylbe	nzene			4.1			U	
	79-34-5		1,1,2,2-Tetr	achloroet	hane		4.1			U	
	541-73-1		1,3-Dichlor	obenzene			4.1			U	
	106-46-7		1,4-Dichlor	obenzene			4.1			U	
	95-50-1		1,2-Dichlor	obenzene			4.1			U	
	96-12-8		1,2-Dibrom	o-3-Chlo	ropropane		4.1			U	

plantlh 7/19/10

-1E-

SOIL VOLATILE ANALYSIS TENTIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.						
LCPD100101110XX						

Lab Name: Chemtech	Contract: MACT03
Lab Code: CHEM Case No.: B2618	SAS No.: <u>B2618</u> SDG No.: <u>B2618</u>
Matrix (soil/water): SOIL	Lab Sample ID: B2618-02
Sample wt/vol: 6.4 (g/mL) g	Lab File ID: VK039512.D
Level: (low/med) LOW	Date Received: 06/09/10
% Moisture: not dec. 5	Date Analyzed: 06/10/10
GC Column: RTX-VM! ID: 0.18	Dilution Factor: 1
Soil Extract Volume: 5000	Soil Aliquot Volume:
Number TICS found: 1	Concentration Units: ug/Kg
	(ug/L or ug/Kg)

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q	۶
7-	-60-29-7	Diethyl Ether	1.48	1:7		

108-88-3

Toluene

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO. LCPD100101110XD Lab Name: Chemtech Contract: MACT03 Lab Code: CHEM Case No.: B2618 SAS No.: B2618 SDG No.: B2618 SOIL Matrix (soil/water): Lab Sample ID: B2618-03 Sample wt/vol: 5.71 (g/mL) Lab File ID: VK039513.D Level: (low/med) LOW Date Received: 06/09/10 % Moisture: not dec. Date Analyzed: 06/10/10 GC Column: RTX-VMS ID: 0.18 Dilution Factor: (mm) Soil Extract Volume: 5000 (uL) Soil Aliquot Volume: (uL) Concentration Units: CAS NO. COMPOUND (ug/L or ug/Kg) ug/Kg Q 75-71-8 Dichlorodifluoromethane U "3 4.8 74-87-3 Chloromethane 4.8 IJ 75-01-4 Vinyl Chloride 4.8 U 74-83-9 Bromomethane 4.8 U 75-00-3 Chloroethane 4.8 IJ 7 75-69-4 Trichlorofluoromethane 4.8 U 76-13-1 1,1,2-Trichlorotrifluoroethane 4.8 IJ 75-35-4 1,1-Dichloroethene 4.8 IJ 67-64-1 Acetone 19 24 a _J--75-15-0 Carbon Disulfide 4.8 U 1634-04-4 Methyl tert-butyl Ether 4.8 U 79-20-9 Methyl Acetate 4.8 U 75-09-2 Methylene Chloride 3-4.8 U .J... 156-60-5 trans-1,2-Dichloroethene 4.8 U 75-34-3 1.1-Dichloroethane 4.8 U 110-82-7 Cyclohexane 4.8 U 78-93-3 2-Butanone 24 U 56-23-5 Carbon Tetrachloride 4.8 U 156-59-2 cis-1,2-Dichloroethene 4.8 U 67-66-3 Chloroform 4.8 IJ 71-55-6 1,1,1-Trichloroethane 4.8 U 108-87-2 Methylcyclohexane 4.8 U 71-43-2 Benzene 4.8 IJ 107-06-2 1,2-Dichloroethane 4.8 U 79-01-6 Trichloroethene 4.8 U 78-87-5 1,2-Dichloropropane 4.8 U 75-27-4 Bromodichloromethane 4.8 U 108-10-1 4-Methyl-2-Pentanone 24 U

1. Malleth.

4.8

120-82-1

1,2,4-Trichlorobenzene

1 4

VOLATILE ORGANICS ANALYSIS DATA SHEET

LCPD100101110XD Lab Name: Chemtech Contract: MACT03 Lab Code: **CHEM** Case No .: B2618 SAS No.: B2618 SDG No.: B2618 SOIL Matrix (soil/water): Lab Sample ID: B2618-03 Sample wt/vol: 5.71 (g/mL) Lab File ID: VK039513.D LOW Level: (low/med) Date Received: 06/09/10 % Moisture: not dec. 8 Date Analyzed: 06/10/10 GC Column: RTX-VMS ID: 0.18 Dilution Factor: (mm) Soil Extract Volume: 5000 (uL) Soil Aliquot Volume: (uL) Concentration Units: CAS NO. COMPOUND (ug/L or ug/Kg) ug/Kg 0 10061-02-6 t-1,3-Dichloropropene 4.8 U 10061-01-5 cis-1,3-Dichloropropene 4.8 U 79-00-5 1,1,2-Trichloroethane 4.8 U 591-78-6 2-Hexanone 24 U 124-48-1 Dibromochloromethane 4.8 U 106-93-4 1,2-Dibromoethane 4.8 U 127-18-4 Tetrachloroethene 6.2 108-90-7 Chlorobenzene 4.8 U 100-41-4 Ethyl Benzene 4.8 U 179601-23-1 m/p-Xylenes 9.5 IJ 95-47-6 o-Xylene 4.8 U 100-42-5 Styrene 4.8 U 75-25-2 Bromoform 4.8 U Isopropylbenzene 98-82-8 4.8 U 79-34-5 1,1,2,2-Tetrachloroethane 4.8 U 541-73-1 1,3-Dichlorobenzene 4.8 U 106-46-7 1,4-Dichlorobenzene 4.8 U 95-50-1 1,2-Dichlorobenzene 4.8 U 96-12-8 1,2-Dibromo-3-Chloropropane 4.8 U

12. Cha 7/19/10

U

EPA SAMPLE NO.

4.8

SOIL VOLATILE ANALYSIS TENTIVELY IDENTIFIED COMPOUNDS

 EPA SAMPLE NO.	
LCPD100101110XD	

Lab Name:	Chemtech	Contr	act: MACT03		
Lab Code:	CHEM Case No.: B2618	SAS No.:	B2618	SDG No.:	B2618
Matrix (soil/wa	ter): SOIL		Lab Sample ID:	B2618-03	
Sample wt/vol:	5.71 (g/mL) g		Lab File ID:	VK039513.D	
Level: (low/med	d) <u>LOW</u>		Date Received:	06/09/10	
% Moisture: no	t dec. <u>8</u>		Date Analyzed:	06/10/10	
GC Column:	RTX-VM: ID: 0.18		Dilution Factor:	1	
Soil Extract Vo.	lume: 5000		Soil Aliquot Volume:		
Number TICS f	ound: 1		Concentration Units:	ug/Kg	
			(ug/L or ug/Kg)		

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	· Q	, ,
į	- 60-2 9-7	Diethyl Ether	1.47	2.1	J	
1						

MANA

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

LCPD100600510XX

Lab	Name:	Chemtech		·	Contr	ract: MACT03				•
Lab	Code:	СНЕМ	Case No.:	B2618	SAS No.:	B2618	SDG No.:	B2618		
Mat	rix (soil/wa	ter):	SOIL			Lab Sample ID:	B2618-05			
	iple wt/vol:			<u> </u>		Lab File ID:	VK039514.D		-	
				L) <u>g</u>						
Lev	el: (low/me	d)	LOW			Date Received:	06/09/10			
% N	Aoisture: no	t dec.	14	-		Date Analyzed:	06/10/10			
GC	Column:	RTX-VMS	ID: <u>0.18</u>	(mm)		Dilution Factor:	<u>1</u>			
Soil	Extract Vo	lume: 5000	(uL)			Soil Aliquot Volume:			(uL)	
			` ′		-				, ,	
						Concentration Units:				
	CAS NO.		COMPOUN	D		(ug/L or ug/Kg	ug/Kg	<u> </u>		
Ī	75-71-8		Dichlorodifly	ıoromethane		4.7		U 7		
Ī	74-87-3		Chlorometha	ne		4.7		U		
	75-01-4		Vinyl Chlori	de		4.7	,	U		
	74-83-9		Bromometha	ne		4.7		U		
	75 - 00-3		Chloroethane	•		4.7		υJ		
` [75-69-4		Trichlorofluc	oromethane		4.7		U		
	76-13-1		1,1,2-Trichlo	rotrifluoroethane		4.7		U		
	75-35-4		1,1-Dichloro	ethene		4.7	•	U		
	67-64-1		Acetone			24		U		
	75-15-0		Carbon Disu	lfide		4.7		U		
	1634-04-4		Methyl tert-b	outyl Ether		4.7 .		U		
	79-20-9		Methyl Acet	ate		4.7		U		·
	75-09-2		Methylene C	hloride		29 4,7 U		4		
	156-60-5		trans-1,2-Dic	chloroethene		4.7		U		
	75-34-3		1,1-Dichloro	ethane		4.7		U		
	110-82-7		Cyclohexane	;		4.7		Ù		
	78-93-3		2-Butanone			24		U		
	56-23-5		Carbon Tetra	achloride		4.7		U		
	156-59-2		cis-1,2-Dich	loroethene		4.7		U		
Ì	67-66-3		Chloroform			4.7		U		
	71-55-6		1,1,1-Trichlo	oroethane		4.7		U		
	108-87-2		Methylcyclo	hexane		4.7		U		
	71-43-2		Benzene			4.7		U		
	107-06-2		1,2-Dichloro	ethane		4.7		U		
	79-01-6		Trichloroeth	ene		4.7		· U		
	78-87-5		1,2-Dichloro	propane	•	4.7		U		
	75-27-4		Bromodichlo	oromethane		4.7		U		
	108-10-1		4-Methyl-2-	Pentanone		24		U		
	108-88-3		Toluene	·		4.7		U		

Form I VOA-1

MM 2/19/10

GEMIEGH

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

LCPD100600510XX

ſ.ah ˈ	Name:	Chemtech	•	Con	tract: MACT03			
.		01101111011						
Lab	Code:	CHEM	Case No.: <u>B2618</u>	SAS No.:	B2618	SDG No.:	B2618	
Matr	ix (soil/wa	uter):	SOIL		Lab Sample ID:	B2618-05		
Sam	ple wt/vol:	6.17	(g/mL) g		Lab File ID:	VK039514.D		
Leve	:l: (low/me	 ed)	LOW		Date Received:	06/09/10		
	oisture: no		14		Date Analyzed:	06/10/10		
/0 1V3	oisture. ne	n dec.	17		Date I mary 200.	00/10/10		
GC (Column:	RTX-VMS	ID: <u>0.18</u> (mm)	Dilution Factor:	1		·
Soil	Extract Vo	olume: <u>5000</u>	(uL)		Soil Aliquot Volume:			(uL)
					Concentration Units:			
	CAS NO.		COMPOUND		(ug/L or ug/K	σ) 11σ/Κσ	Q	•
_	CAS NO.		- COMI COND	······································		5) <u>ub</u> /116	-	
L	10061-02-	-6	t-1,3-Dichloropropene		4.7		U	
L	10061-01-	-5	cis-1,3-Dichloropropene	;	4.7		U	
L	79-00-5		1,1,2-Trichloroethane		4.7		Ŭ	
	591-78-6		2-Hexanone		24		Ū.	
Γ	124-48-1		Dibromochloromethane		4.7		U	
Γ	106-93-4		1,2-Dibromoethane		4.7		U	
	127-18-4		Tetrachloroethene		26			
	108-90-7		Chlorobenzene		4.7		U	
	100-41-4		Ethyl Benzene		4.7		U	
T	179601-2	3-1	m/p-Xylenes		9.4		U	
r	95-47-6		o-Xylene		4.7		U	
ı	100-42-5		Styrene		4.7		U	
f	75-25-2		Bromoform	İ	4.7		U	
	98-82-8	********	Isopropylbenzene		4.7		U	
ı	79-34-5		1,1,2,2-Tetrachloroetha	ne l	4.7		U	
ŀ	541-73-1		1,3-Dichlorobenzene		4.7		U	
ŀ	106-46-7		1,4-Dichlorobenzene		4.7		U	
H	95-50-1		1,2-Dichlorobenzene		4.7		U	
f	96-12-8		1,2-Dibromo-3-Chlorop	ropane	4.7		U	
t	120-82-1		1,2,4-Trichlorobenzene		4.7		U .	

M. M. 7/19/10

CHITECH

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

LCPD100601010XX

Lab Name:	Chemtech			Contr	ract: MACT03			
Lab Code:	CHEM	Case No.:	B2618	SAS No.:	B2618	SDG No.:	B2618	
Matrix (soil/wat	er):	SOIL	•	•	Lab Sample ID:	B2618-06		
Sample wt/vol:	5.41		mL) g		Lab File ID:	VK039515.D	·	
_			mL) <u>g</u>					
Level: (low/med		LOW	-		Date Received:	06/09/10		
% Moisture: not	dec.	6			Date Analyzed:	06/10/10		
GC Column:	RTX-VMS	ID: <u>0.1</u>	18 (mm)		Dilution Factor:	1	·	
Soil Extract Vol	ume: 5000	(uL)			Soil Aliquot Volume:			(uL)
					•		· · · · · · · · · · · · · · · · · · ·	· · · · · ·
					Concentration Units:			
CAS NO.		COMPOU	ND .		(ug/L or ug/Kg	ug/Kg	_ Q	
75-71-8		Dichlorodi	fluoromethane	·	4.9		υJ	
74-87-3	·····	Chloromet	hane		4.9		U	
75-01-4		Vinyl Chlo	oride		4.9		U	
74-83-9		Bromomet	hane		4.9		U	
75-00-3		Chloroetha	nne	<u>.</u>	4.9		ひろ	
75-69-4		Trichlorof	luoromethane		4.9		U	
76-13-1		1,1,2-Trick	nlorotrifluoroethane	<u> </u>	4.9		U	
75-35-4		1,1-Dichlo	roethene		4.9		U	
67-64-1		Acetone			25		U	
75-15-0		Carbon Di			4.9		U ·	
1634-04-4		•	t-butyl Ether		4.9		U	
79-20-9		Methyl Ac			4.9		U	
75-09-2		Methylene		<u> </u>	4A- 4.9U	· · · · · · · · · · · · · · · · · · ·		
156-60-5		† ´	Dichloroethene		4.9	· ·	U	
75-34-3		1,1-Dichlo			4.9		U 	
110-82-7		Cyclohexa			4.9		U	
78-93-3		2-Butanon			25		U	
56-23-5		1	trachloride	<u> </u>	4.9		U	
156-59-2			chloroethene		4.9		U	
67-66-3		Chloroform			4.9		U	
71-55-6			nloroethane		4.9		U	
108-87-2		Methylcyc	cionexane		4.9	· · · · · · · · · · · · · · · · · · ·	U	
71-43-2		Benzene 1,2-Dichlo	41.0		4.9		U U	
107-06-2		Trichloroe			4.9		U	
79-01-6 78-87-5			propropane	<u>-</u>	4.9		U	
75-27-4			hloromethane		4.9		U	
108-10-1	·	÷	2-Pentanone		25	<u></u>	U	
108-88-3		Toluene	2-1 CIII.diiOile		4.9		U	,

10/1/1/10 7/19/10

120-82-1

1,2,4-Trichlorobenzene

14

VOLATILE ORGANICS ANALYSIS DATA SHEET

LCPD100601010XX Lab Name: Chemtech MACT03 Contract: Lab Code: **CHEM** B2618 Case No .: SAS No.: B2618 SDG No.: B2618 SOIL Matrix (soil/water): Lab Sample ID: B2618-06 5.41 Sample wt/vol: (g/mL) Lab File ID: VK039515.D Level: (low/med) LOW Date Received: 06/09/10 % Moisture: not dec. 6 Date Analyzed: 06/10/10 GC Column: RTX-VMS ID: 0.18 Dilution Factor: (mm) Soil Extract Volume: 5000 (uL) Soil Aliquot Volume: (uL) Concentration Units: CAS NO. COMPOUND (ug/L or ug/Kg) ug/Kg Q 10061-02-6 t-1.3-Dichloropropene 4.9 IJ 4.9 10061-01-5 cis-1,3-Dichloropropene U 79-00-5 1,1,2-Trichloroethane 4.9 U 591-78-6 2-Hexanone 25 U Dibromochloromethane 124-48-1 4.9 U 106-93-4 1,2-Dibromoethane 4.9 U 127-18-4 Tetrachloroethene 24 108-90-7 Chlorobenzene 4.9 U 100-41-4 Ethyl Benzene 4.9 U 179601-23-1 m/p-Xylenes 9.8 U 95-47-6 4.9 o-Xylene U 100-42-5 Styrene 4.9 U 75-25-2 Bromoform 4.9 IJ 98-82-8 Isopropylbenzene 4.9 U 79-34-5 1,1,2,2-Tetrachloroethane 4.9 U 541-73-1 1.3-Dichlorobenzene 4.9 U 106-46-7 1,4-Dichlorobenzene 4.9 U 95-50-1 1,2-Dichlorobenzene U 4.9 96-12-8 1,2-Dibromo-3-Chloropropane 4.9 U

1/1/lele 7/19/10

U

EPA SAMPLE NO.

4.9

-1E-

SOIL VOLATILE ANALYSIS TENTIVELY IDENTIFIED COMPOUNDS

LCPD100601010XX Lab Name: Chemtech Contract: MACT03 Lab Code: CHEM Case No.: B2618 SAS No.: B2618 SDG No.: B2618 Matrix (soil/water): SOIL Lab Sample ID: B2618-06 Sample wt/vol: <u>5.4</u>1 (g/mL) Lab File ID: VK039515.D LOW Level: (low/med) Date Received: 06/09/10 % Moisture: not dec. Date Analyzed: 06/10/10 GC Column: RTX-VM: ID: 0.18 Dilution Factor: Soil Extract Volume: 5000 Soil Aliquot Volume: Number TICS found: Concentration Units: ug/Kg (ug/L or ug/Kg)

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q	
	60-29-7	Diethyl Ether	1.48	2.7		
•	····					ı

1/15/10 7/19/10

EPA SAMPLE NO.

108-88-3

Toluene

VOLATILE ORGANICS ANALYSIS DATA SHEET

LCPD100200810XX MACT03 Lab Name: Chemtech Contract: Lab Code: CHEM Case No.: B2618 SAS No.: B2618 SDG No.: B2618 Lab Sample ID: B2618-07 Matrix (soil/water): SOIL Sample wt/vol: Lab File ID: VK039570.D 6.08 (g/mL) LOW Date Received: 06/09/10 Level: (low/med) 06/15/10 22 Date Analyzed: % Moisture: not dec. Dilution Factor: RTX-VMS ID: 0.18 GC Column: (mm) (uL) 5000 Soil Aliquot Volume: (uL) Soil Extract Volume: Concentration Units: CAS NO. COMPOUND (ug/L or ug/Kg) ug/Kg Q ט ש 5.3 75-71-8 Dichlorodifluoromethane ב ט 5.3 74-87-3 Chloromethane UJ 75-01-4 Vinyl Chloride 5.3 IJ 5.3 Bromomethane 74-83-9 Chloroethane 5.3 どび 75-00-3 75-69-4 Trichlorofluoromethane 5.3 **L**, n ַט 📆 5.3 1.1.2-Trichlorotrifluoroethane 76-13-1 1,1-Dichloroethene 5.3 U 75-35-4 33 26 UJ <u>...</u> 67-64-1 Acetone U T 5.3 75-15-0 Carbon Disulfide 5.3 U 1634-04-4 Methyl tert-butyl Ether 5.3 U 79-20-9 Methyl Acetate 5.6 75-09-2 Methylene Chloride U 156-60-5 trans-1,2-Dichloroethene 5.3 U 75-34-3 1,1-Dichloroethane 5.3 U 5.3 110-82-7 Cyclohexane U 26 78-93-3 2-Butanone Carbon Tetrachloride 56-23-5 5.3 U IJ 5.3 cis-1,2-Dichloroethene 156-59-2 U 5.3 67-66-3 Chloroform U 71-55-6 1,1,1-Trichloroethane 5.3 IJ 5.3 Methylcyclohexane 108-87-2 U 71-43-2 Benzene 5.3 U 107-06-2 1,2-Dichloroethane 5.3 5.3 U 79-01-6 Trichloroethene U 78-87-5 1,2-Dichloropropane 5.3 U 75-27-4 Bromodichloromethane 5.3 26 U 108-10-1 4-Methyl-2-Pentanone

MMhls 7/19/10

U

EPA SAMPLE NO.

5.3

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.
LCPD100200810XX

Lab Name:	Chemtech		Con	tract: MACT03			
Lab Code:	CHEM	Case No.: B2618	SAS No.:	B2618	SDG No.:	B2618	
Matrix (soil/v	vater):	SOIL		Lab Sample ID:	B2618-07		•
Sample wt/vo				Lab File ID:	VK039570.D		
_	<u> </u>		-			· · · · · · · · · · · · · · · · · · ·	
Level: (low/n		LOW		Date Received:	06/09/10		
% Moisture: 1	not dec.	22		Date Analyzed:	06/15/10		
GC Column:	RTX-VMS	ID: <u>0.18</u> ((mm)	Dilution Factor:	1		
Soil Extract V	Volume: <u>5000</u>	(uL)		Soil Aliquot Volume:		,	(uL)
	·			Concentration Units:			
CAS NO).	COMPOUND		(ug/L or ug/Kg	g) ug/Kg	_ Q	
10061-0	2-6	t-1,3-Dichloropropene		5.3		U .	
10061-0	1-5	cis-1,3-Dichloropropens	e	5.3		U	
79-00-5		1,1,2-Trichloroethane		5.3		U	
591-78-	5	2-Hexanone		26		U	
124-48-		Dibromochloromethane		5.3		Ŭ	
106-93-	1	1,2-Dibromoethane		5.3		U	
127-18-	1	Tetrachloroethene		39			
108-90-	7	Chlorobenzene		5.3		U	
100-41-	4	Ethyl Benzene		5.3		U	
179601-	23-1	m/p-Xylenes		11 .		U	
95-47-6		o-Xylene		5.3		U	
100-42-	5	Styrene		5.3		U	
75-25-2		Bromoform		5.3		U	
98-82-8		Isopropylbenzene		5.3		Ŭ ·	
79-34-5		1,1,2,2-Tetrachloroetha	ne	5.3		U	
541-73-	1	1,3-Dichlorobenzene		5.3		U	
106-46-	7	1,4-Dichlorobenzene		5.3		U	
95-50-1		1,2-Dichlorobenzene		5.3		U	
96-12-8		1,2-Dibromo-3-Chlorop	propane	5.3		Ù	
120-82-	1	1,2,4-Trichlorobenzene		5.3		U	

11.Cll. 7/19/10

-1E-

SOIL VOLATILE ANALYSIS TENTIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.	
LCPD100200810XX	

Lab	Name:	Chemtech		<u> </u>	Contr	ract: MACT03			
Lab	Code:	СНЕМ	Case No.:	B2618	SAS No.:	B2618	SDG No.:	B2618	
Ma	trix (soil/wa	iter):	SOIL	·		Lab Sample ID:	B2618-07		
San	nple wt/vol:	6.08	(g/mL	,) <u>g</u>		Lab File ID:	VK039570.D		
Lev	el: (low/me	d)	LOW			Date Received:	06/09/10		
% N	Moisture: no	ot dec. 22				Date Analyzed:	06/15/10		
GC	Column:	RTX-VM	ID: 0.18	· 		Dilution Factor:	1		,
Soi	l Extract Vo	olume: 500	00			Soil Aliquot Volume	:		
Nui	mber TICS	found:	2			Concentration Units	: ug/Kg		
						(ug/L or ug/Kg)		
								1	
	CAS NUI	MBER	COMPOUND N.	AME		RT	EST. CON	e.	Q
	60-29-7		Diethyl Ether		~	1.47	5.3		J
	000110-5	4-3	Hexane			1.96	5.9		J

2/11/10 7/19/10

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

LCPD100700510XX

Lab Name:	Chemtech	·		Contract	:: MACT03		•	
Lab Code:	CHEM	Case No.:	B2618	SAS No.:	B2618	SDG No.:	B2618	
Matrix (soil/wa	iter):	SOIL		L	ab Sample ID:	B2618-08		
Sample wt/vol:	•	(g/m	J.) a		ab File ID:	VK039517.D		-
-	-		nL) <u>g</u>			06/09/10		
Level: (low/me	_	LOW			eate Received:			
% Moisture: no	ot dec.	<u>17</u>		D	eate Analyzed:	06/10/10		
GC Column:	RTX-VMS	ID: 0.18	3 (mm)	D	ilution Factor:	1		
Soil Extract Vo			. ` ′	Q.	oil Aliquot Volume:	<u> </u>		(uL)
Soli extract ve	Jume: 3000	(uL)		ان	on Anquot Volume.	_	<u> </u>	(uL)
				(Concentration Units:			
CAS NO.		COMPOUN	ID .		(ug/L or ug/Kg	g) ug/Kg	Q	
75.51.0		I Diale tro		1 4	0		ב ט	
75-71-8			luoromethane	4.			U	
74-87-3 75-01-4		Chlorometh Vinyl Chlor		4.			U	
74-83-9		Bromometh		4.			. U	
75-00-3		Chloroethar		4.			U" .	
75-69-4			ioromethane		.9		U	
76-13-1			orotrifluoroethane	<u></u>	.9		U	
75-35-4		1,1-Dichlor			.9		U ·	
67-64-1		Acetone			5 25 U		-J-	
75-15-0		Carbon Dis	ulfide		.9		· U	
1634-04-4		Methyl tert-	butyl Ether	4	.9		U	
79-20-9		Methyl Ace	tate	2	.8		J	
75-09-2	,	Methylene	Chloride	-4	<u>5- 4,94</u>		J	
156-60-5		trans-1,2-D	ichloroethene	4	.9		U	
75-34-3		1,1-Dichlor	oethane	4	.9		U	
110-82-7		Cyclohexan	ie :	4	.9		U	
78-93-3		2-Butanone		2	5		U	
56-23-5		Carbon Tetr	rachloride	4	.9		U	
156-59-2	·	cis-1,2-Dicl	nloroethene	4	.9		U	
67-66-3		Chloroform		4	.9		U	
71-55-6		1,1,1-Trich	loroethane	4	.9		U	
108-87-2		Methylcycl	ohexane	4	.9		U	
71-43-2		Benzene			.9		U	
107-06-2		1,2-Dichlor	oethane		.9		U	
79-01-6		Trichloroet			.9		U	
78-87-5		1,2-Dichlor			.9		U	
75-27-4			loromethane		.9		U	
108-10-1	·	4-Methyl-2	-Pentanone		5		U	
108-88-3		Toluene		4	.9		U	

Form I VOA-1

16/1 She 4/19/10

96-12-8

120-82-1

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO. LCPD100700510XX MACT03 Lab Name: Chemtech Contract: Lab Code: CHEM Case No .: B2618 SAS No.: B2618 SDG No.: B2618 Lab Sample ID: B2618-08 Matrix (soil/water): SOIL Lab File ID: VK039517.D 6.14 Sample wt/vol: (g/mL) LOW Date Received: 06/09/10 Level: (low/med) 06/10/10 17 Date Analyzed: % Moisture: not dec. Dilution Factor: ID: 0.18 GC Column: RTX-VMS (mm) 5000 Soil Aliquot Volume: (uL) Soil Extract Volume: (uL) Concentration Units: CAS NO. COMPOUND (ug/L or ug/Kg) ug/Kg Q 10061-02-6 t-1,3-Dichloropropene 4.9 U 4.9 U 10061-01-5 cis-1,3-Dichloropropene 4.9 U 79-00-5 1,1,2-Trichloroethane 25 U 591-78-6 2-Hexanone Dibromochloromethane 4.9 U 124-48-1 4.9 U 106-93-4 1.2-Dibromoethane 15 127-18-4 Tetrachloroethene 4.9 U 108-90-7 Chlorobenzene 100-41-4 Ethyl Benzene 4.9 U 9.8 U 179601-23-1 m/p-Xylenes 4.9 U 95-47-6 o-Xylene 4.9 U 100-42-5 Styrene 75-25-2 Bromoform 4.9 U 4.9 U 98-82-8 Isopropylbenzene 4.9 U 1,1,2,2-Tetrachloroethane 79-34-5 4.9 IJ 541-73-1 1,3-Dichlorobenzene 4.9 U 106-46-7 1,4-Dichlorobenzene U 95-50-1 1,2-Dichlorobenzene 4.9

M. W. L. 2/19/10

U

U

4.9

4.9

1,2-Dibromo-3-Chloropropane

1,2,4-Trichlorobenzene

SOIL VOLATILE ANALYSIS TENTIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

LCPD100700510XX

Lab Name:	Chemtech			Contr	ract: MACT03		
Lab Code:	CHEM	Case No.:	B2618	SÁS No.:	B2618	SDG No.:	B2618
Matrix (soil/wat	ter):	SOIL			Lab Sample ID:	B2618-08	
Sample wt/vol:	6.14	(g/mL	.) <u>g</u>		Lab File ID:	VK039517.D	
Level: (low/med	i) <u>LC</u>	OW			Date Received:	06/09/10	
% Moisture: not	t dec. <u>17</u>				Date Analyzed:	06/10/10	
GC Column:	RTX-VM! I	D: <u>0.18</u>			Dilution Factor:	1	
Soil Extract Vol	lume: <u>5000</u>				Soil Aliquot Volume:		
Number TICS fo	ound:	11			Concentration Units:	ug/Kg	
			<i>)</i> •		(ug/L or ug/Kg)		

			·		T	i
	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q	
•	60-29-7	Diethyl-Ether	1.47	3.8	J	1
						į

N. Alm 7/19/10

CHINTECH

VOLATILE ORGANICS ANALYSIS DATA SHEET

LCPD100701010XX

Lab Name:	Chemtech			Contrac	et: MACT03			
Lab Code:	CHEM	Case No.:	B2618	SAS No.:	B2618	SDG No.:	B2618	
Matrix (soil/wa	ter):	SOIL	· · · · · · · · · · · · · · · · · · ·	I	Lab Sample ID:	B2618-09		
Sample wt/vol:		(g/m	—— ıL) g		Lab File ID:	VK039518.D		
-			<u> </u>		Date Received:	06/09/10		
Level: (low/me	•	LOW						
% Moisture: no	t dec.	4		I	Date Analyzed:	06/10/10	·	
GC Column:	RTX-VMS	ID: 0.18	3 (mm)	I	Dilution Factor:	1		
Soil Extract Vo		-	``,	Ç	Soil Aliquot Volume:			(uL)
Son Extract vo	1011e: <u>5000</u>	(uL)		· ·	son Anquot volume.			(uL)
					Concentration Units:			
CAS NO.		COMPOUN	TD.		(ug/L or ug/Kg) ug/Kg	Q	
75.71.0		D:414:6		1	1.2		บว	
75-71-8 74-87-3		Chlorometh	luoromethane		4.3 4.3		U	
75-01-4	····	Vinyl Chlor			1.3		U .	
74-83-9		Bromometh			1.3		Ŭ	
75-00-3		Chloroethan			1.3		ΰ́́́́́	
75-69-4			oromethane		1.3	•	U	
76-13-1			orotrifluoroethane		1.3		Ŭ	
75-35-4		1,1-Dichlore			1.3		Ŭ	
67-64-1		Acetone	Octione		26		ü	
75-15-0		Carbon Dist	alfide		1.3	···	U	•
1634-04-4		Methyl tert-			1.3		U	
79-20-9		Methyl Ace			3.7			
75-09-2		Methylene (1.4		u	
156-60-5	·		ichloroethene		1.3	ĺ	Ŭ	
75-34-3		1,1-Dichlor	oethane		1.3		U	
110-82-7	1	Cyclohexan	e	4	1.3		U	
78-93-3		2-Butanone		2	22		U	
56-23-5		Carbon Tetr	rachloride	4	4.3		U	
156-59-2		cis-1,2-Dich	nloroethene	4	4.3		U	
67-66-3		Chloroform			4.3		Ŭ	
71-55-6		1,1,1-Trichl	loroethane	4	4.3		U	
108-87-2		Methylcycle	ohexane	4	4.3		Ŭ	
71-43-2		Benzene		4	4.3		U	
107-06-2		1,2-Dichlor	oethane	4	4.3		U	
79-01-6		Trichloroetl	hene		4.3		Ŭ	
78-87-5		1,2-Dichlor	opropane		4.3		Ŭ	
75-27-4		Bromodichl	loromethane		4.3		U	
108-10-1		4-Methyl-2	-Pentanone		22		Ŭ	
108-88-3		Toluene			1		J	

Form I VOA-1

Adollaha 7/19/10

96-12-8

120-82-1

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO. LCPD100701010XX Lab Name: Chemtech Contract: MACT03 Lab Code: **CHEM** Case No.: B2618 SAS No.: B2618 SDG No.: B2618 Matrix (soil/water): SOIL Lab Sample ID: B2618-09 6.01 Sample wt/vol: (g/mL) Lab File ID: VK039518.D LOW Level: (low/med) Date Received: 06/09/10 % Moisture: not dec. 4 Date Analyzed: 06/10/10 GC Column: RTX-VMS ID: 0.18 (mm) Dilution Factor: Soil Extract Volume: 5000 (uL) Soil Aliquot Volume: (uL) Concentration Units: CAS NO. COMPOUND (ug/L or ug/Kg) ug/Kg Q 10061-02-6 t-1,3-Dichloropropene 4.3 IJ 10061-01-5 cis-1,3-Dichloropropene 4.3 U 79-00-5 1,1,2-Trichloroethane 4.3 U 591-78-6 2-Hexanone 22 U 124-48-1 Dibromochloromethane 4.3 U 106-93-4 1,2-Dibromoethane 4.3 U 127-18-4 Tetrachloroethene 17 108-90-7 Chlorobenzene 4.3 U 100-41-4 Ethyl Benzene 4.3 U 179601-23-1 m/p-Xylenes 8.7 U 95-47-6 o-Xylene 4.3 U 100-42-5 Styrene 4.3 U Bromoform 75-25-2 4.3 U 98-82-8 Isopropylbenzene 4.3 U 79-34-5 1,1,2,2-Tetrachloroethane 4.3 U 541-73-1 1,3-Dichlorobenzene 4.3 IJ 106-46-7 1,4-Dichlorobenzene 4.3 U 95-50-1 1,2-Dichlorobenzene 4.3 U

16/16/16 7/19/10

U

U

4.3

4.3

1,2-Dibromo-3-Chloropropane

1,2,4-Trichlorobenzene

-1E-

SOIL VOLATILE ANALYSIS TENTIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.	
LCPD100701010XX	

Lab Name:	Chemtech			Contr	act: MACT03		
Lab Code:	CHEM	Case No.:	B2618	SAS No.:	B2618	SDG No.:	B2618
Matrix (soil/wat	ter):	SOIL			Lab Sample ID:	B2618-09	
Sample wt/vol:	6.01	(g/m	L) <u>g</u>		Lab File ID:	VK039518.D	
Level: (low/med	i) <u>LC</u>	ow			Date Received:	06/09/10	· · · · · · · · · · · · · · · · · · ·
% Moisture: not	t dec. <u>4</u>			٠	Date Analyzed:	06/10/10	
GC Column:	RTX-VM: I	D: <u>0.18</u>			Dilution Factor:	1	
Soil Extract Vol	lume: <u>5000</u>	····			Soil Aliquot Volume:		
Number TICS fo	ound:	22			Concentration Units:	ug/Kg	
					(ug/L or ug/Kg)		

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	0
60-29-7	Diethyl Ether	1.47	6.1	J
141-78-6	Ethyl Acetate	2.82	4.0	Ј

1. Ula 9/19/10

GEMIECH

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

LCPD101200510XX

Lab Name:	Chemtech	· · · · · · · · · · · · · · · · · · ·		Contr	ract: MACT03			
Lab Code:	CHEM	Case No.:	B2618	SAS No.:	B2618	SDG No.:	B2618	
Matrix (soil/wa	uter):	SOIL			Lab Sample ID:	B2618-10		
`	ŕ	(g/m)	I) «		Lab File ID:	VK039519.D		
Sample wt/vol:			L) <u>g</u>					
Level: (low/me	-d)	LOW	•		Date Received:	06/09/10		
% Moisture: no	ot dec.	2	<i>,</i>		Date Analyzed:	06/10/10		
GC Column:	RTX-VMS	ID: 0.18	(mm)		Dilution Factor:	· <u>1</u>		
Soil Extract Vo	olume: 5000	(uL)			Soil Aliquot Volume:	·		(uL)
Jon Entado 1 o	<u> </u>				<u> </u>			,
					Concentration Units:	:		
CAS NO.		COMPOUN	D ·		(ug/L or ug/K	g) ug/Kg	_ Q	
75-71-8		Dichlorodifly	uoromethane		4.5		Շ՞Մ	
74-87-3		Chlorometha	ine		4.5		U	
75-01-4		Vinyl Chlori	de		4.5		U	
74-83-9		Bromometha	ine		4.5		U	
75-00-3 Chloroethane					4.5		บ ัว	
75-69-4 Trichlorofluoromethane					4.5		U	
76-13-1 1,1,2-Trichlorotrifluoroeth			orotrifluoroethane		4.5		U	
75-35-4	75-35-4 1,1-Dichloroethene				4.5		U	
67-64-1		Acetone			-16- 22 U			
75-15-0		Carbon Disu	lfide		4.5		U	
1634-04-4	ļ	Methyl tert-b	outyl Ether		4.5		U	
79-20-9		Methyl Acet	ate		1.9		'J	
75-09-2		Methylene C	Chloride		3.2 4.54			
156-60-5		trans-1,2-Dio	chloroethene		4.5		U	
75-34-3		1,1-Dichloro	oethane		4.5		U	
110-82-7		Cyclohexane	2		4.5		U	
78-93-3		2-Butanone			22		U	
56-23-5		Carbon Tetra	achloride		4.5		U	
156-59-2		cis-1,2-Dich	loroethene		4.5		U	
67 - 66-3		Chloroform			4.5		U	
71-55-6		1,1,1-Trichle	oroethane		4.5	·	U	
108-87-2		Methylcyclo	hexane		4.5		U	
71-43-2		Benzene			4.5		U	
107-06-2		1,2-Dichloro	oethane		4.5		U	
79-01-6		Trichloroeth	ene		4.5		U	
78-87-5		1,2-Dichloro	opropane		4.5		U	
75-27-4		Bromodichle	oromethane		4.5		U	
108-10-1		4-Methyl-2-	Pentanone		22		U	
108-88-3		Toluene			4.5		U	

Form I VOA-1

4/1 Mla 7/19/10

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

LCPD101200510XX

Lab Name:	Chemtech		·	Contr	ract:	MACT03			
Lab Code:	СНЕМ	Case No.:	B2618	SAS No.:	<u> 1</u>	B2618	SDG No.:	B2618	
Matrix (soil/w	ater):	SOIL			Lab S	Sample ID:	B2618-10		
Sample wt/vol	: 5.68	(g/ml			Lab F	ile ID:	VK039519.D		-
•		LOW				Received:	06/09/10		
Level: (low/m	_							· · ·	
% Moisture: n	ot dec.	2			Date .	Analyzed:	06/10/10		
GC Column:	RTX-VMS	ID: <u>0.18</u>	(mm)		Diluti	ion Factor:	1		
Soil Extract V	olume: <u>5000</u>	(uL)			Soil A	Aliquot Volume:			(uL)
					Cond	centration Units:	:		
CAS NO.	·	COMPOUNI)			(ug/L or ug/Kg	g) ug/Kg	_ Q	
10061-02	-6	t-1,3-Dichlor	opropene		4.5			U	
10061-01	- 5	cis-1,3-Dichl	oropropene		4.5			U	
79-00-5	0-00-5 1,1,2-Trichloroethan		roethane		4.5			U	
591-78-6		2-Hexanone			22			U	
124-48-1		Dibromochlo	romethane		4.5			U	
106-93-4		1,2-Dibromo	ethane		4.5			U	
127-18-4		Tetrachloroe	thene		14				
108-90-7		Chlorobenze	ne		4.5			U	
100-41-4		Ethyl Benzer	ie		4.5			U .	
179601-2	3-1	m/p-Xylenes			9			U	
95-47-6		o-Xylene			4.5			U	
100-42-5		Styrene			4.5			U	
75-25-2	•	Bromoform			4.5			U	
98-82-8		Isopropylben	zene		4.5			U	
79-34-5		1,1,2,2-Tetra	chloroethane		4.5			U	
541-73-1		1,3-Dichloro	benzene		4.5			U	
106-46-7		1,4-Dichloro	benzene		4.5			U	
95-50-1		1,2-Dichloro	benzene		4.5			U	
96-12-8		1,2-Dibromo	-3-Chloropropane		4.5			U	
120-82-1		1,2,4-Trichle	robenzene		4.5			U	

72/1 (Sila 3/19/10

SOIL VOLATILE ANALYSIS TENTIVELY IDENTIFIED COMPOUNDS

]	EPA	SAN	<u> 1PLI</u>	S NO	•	
LCI	PD10	0120	0510	XX		

Lab Name:	Chemtech	· · · · · · · · · · · · · · · · · · ·		Contr	act: MACT03		
Lab Code:	СНЕМ	Case No.:	B2618	SAS No.:	B2618	SDG No.:	B2618
Matrix (soil/wa	ter):	SOIL	<u>.</u>		Lab Sample ID:	B2618-10	
Sample wt/vol:	5.68	(g/mI	_) <u>g</u>		Lab File ID:	VK039519.D	
Level: (low/med	d) <u>L(</u>	OW			Date Received:	06/09/10	·
% Moisture: no	t dec. 2				Date Analyzed:	06/10/10	,
GC Column:	RTX-VM: I	D: <u>0.18</u>			Dilution Factor:	1	
Soil Extract Vo	lume: <u>5000</u>				Soil Aliquot Volume:		
Number TICS f	found:	1			Concentration Units:	ug/Kg	
					(ug/L or ug/Kg)		

2	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q	
	60-29-7	Diethyl Ether	1.48	1.9		

N. A.M. 7/19/10

1**A**

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

LCPD101201010XX

Lab Name:	Chemtech			Contr	act: MACT03			
Lab Code:	CHEM	Case No.:	B2618	SAS No.:	B2618	SDG No.:	B2618	
Matrix (soil/w	ater):	SOIL			Lab Sample ID:	B2618-11		
Sample wt/vol	5.8	(g/m	σ		Lab File ID:	VK039520.D		-
Level: (low/m			iL) <u>g</u>					
		LOW			Date Received:	06/09/10	 .	•
% Moisture: n	ot dec.	2	_		Date Analyzed:	06/10/10		
GC Column:	RTX-VMS	ID: <u>0.18</u>	(mm)		Dilution Factor:	1		
Soil Extract V	olume: 500	00 (uL)			Soil Aliquot Volume:			(uL)
		()			oon miquot voidino.			(uL)
					Concentration Units:			
CAS NO.		COMPOUN	D		(ug/L or ug/K	g) ug/Kg	. Q	
75-71-8		Dichlorodifl	uoromethane		4.4		υ " 3	
74-87-3		Chlorometh	ane		4.4		U	
75-01-4		Vinyl Chlor	ide		4.4		U	
74-83-9	· · · · · · · · · · · · · · · · · · ·	Bromometh	ane		4.4		U	
75-00-3		Chloroethan	e		4.4		ט כ	
75-69-4		Trichloroflu	oromethane		4.4		U	
76-13-1		1,1,2-Trichle	orotrifluoroethane		4.4		U	
75-35-4		1,1-Dichloro	ethene		4.4		U	
67-64-1		Acetone			22		U	
75-15-0		Carbon Disu	lfide		4.4		U	
1634-04-4		Methyl tert-l	outyl Ether		4.4		U	
79-20-9		Methyl Acet	ate		4.4	ŀ	U	
75-09-2		Methylene C	Chloride		5.5		и	
156-60-5		trans-1,2-Di	chloroethene		4.4	i i	U	
75-34-3		1,1-Dichloro	ethane		4.4		U	
110-82-7		Cyclohexan	2		4.4		U	
78-93-3		2-Butanone			22		U	
56-23-5		Carbon Tetra	achloride		4.4		U	
156-59-2		cis-1,2-Dich	loroethene		4.4		U	
67-66-3		Chloroform			4.4		U	
71-55-6		1,1,1-Trichle	oroethane		4.4		U	
108-87-2		Methylcyclo	hexane		4.4		U	
71-43-2		Benzene			4.4 .		U	
107-06-2		1,2-Dichloro	ethane		4.4		U	
79-01-6		Trichloroeth	ene		4.4		U	
78-87-5		1,2-Dichloro	propane		4.4		Ŭ	
75-27-4		Bromodichlo	promethane		4.4		U	
108-10-1	,	4-Methyl-2-	Pentanone		22		U	
108-88-3		Toluene			4.4		U	

Form I VOA-1

Millih

7/19/10

1**A**

VOLATILE ORGANICS ANALYSIS DATA SHEET

		·					LCPD	101201010	XX	
La	b Name:	Chemtech			Cont	ract: MACT03				
La	b Code:	CHEM	Case No.:	B2618	SAS No.:	B2618	SDG No.:	B2618		
Ma	atrix (soil/wa	ter):	SOIL			Lab Sample ID:	B2618-11			
Saı	mple wt/vol:	5.8	(g/mL) g		Lab File ID:	VK039520.D			
	vel: (low/me	-	LOW			Date Received:				
	•				•		06/09/10	···		
% .	Moisture: no	t dec.	2			Date Analyzed:	06/10/10			
GC	Column:	RTX-VMS	ID: <u>0.18</u>	(mm)		Dilution Factor:	1			
Soi	il Extract Vo	lume: 5000	(uL)			Soil Aliquot Volume:			(uL)	
		<u></u>	·····			· · · · · · · · · · · · · · · · · · ·			()	
						Concentration Units:				
	CAS NO.		COMPOUND			(ug/L or ug/K	g) ug/Kg	. Q	`	
	10061-02-	6	t-1,3-Dichloro	propene		4.4		U		
	10061-01-	5	cis-1,3-Dichlo	ropropene		4.4		U		\neg
	79 - 00-5		1,1,2-Trichlor	oethane		4.4		U		一
	591-78-6		2-Hexanone			22		U		\neg
	124-48-1		Dibromochlor	omethane		4.4		U		
	106-93-4		1,2-Dibromoe	thane		4.4		U	2	\neg
-	127-18-4		Tetrachloroeth	iene		27				\dashv
	108-90-7		Chlorobenzen	e		4.4		U ·		\dashv
	100-41-4		Ethyl Benzene			4.4		U		\neg
	179601-23	-1	m/p-Xylenes			8.8		U		\dashv
	95-47-6		o-Xylene			4.4		U		\neg
	100-42-5		Styrene			4.4		U		1
	75-25-2		Bromoform			4.4		U		_
	98-82-8		Isopropylbenz	ene	.	4.4		U		\dashv
	79-34-5		1,1,2,2-Tetracl			4.4		U		\dashv
	541-73-1		1,3-Dichlorob			4.4		U		\dashv
	106-46-7		1,4-Dichlorobe			4.4		U		\dashv
	95-50-1		1,2-Dichlorob			4.4	l	U		\dashv
	96-12-8			3-Chloropropane		4.4		U		\dashv

pr. Chlin 7/19/10

EPA SAMPLE NO.

4.4

1,2,4-Trichlorobenzene

120-82-1

-1E-

SOIL VOLATILE ANALYSIS TENTIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

LCPD101201010XX

Lab Name:	Chemtech	·		Contr	ract: MACT03		
Lab Code:	СНЕМ	Case No.:	B2618	SAS No.:	B2618	SDG No.:	B2618
Matrix (soil/wat	ter):	SOIL			Lab Sample ID:	B2618-11	
Sample wt/vol:	5.8	(g/mI	L) <u>g</u>		Lab File ID:	VK039520.D	
Level: (low/med	d) <u>LC</u>	<u>ow</u>			Date Received:	06/09/10	· ·
% Moisture: not	t dec. 2				Date Analyzed:	06/10/10	
GC Column:	RTX-VM: I	D: <u>0.18</u>	<u></u>		Dilution Factor:	1	
Soil Extract Vol	lume: <u>5000</u>				Soil Aliquot Volume:		. · ·
Number TICS fo	ound:	3			Concentration Units:	ug/Kg	
					(ug/L or ug/Kg)		

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
60-29-7	Diethyl Ether	1.47	4.0	J
000110-54-3	Hexane	1.96	8.7	J
141-78-6	Ethyl Acetate	2.83	7.5	J

N.Clih 7/19/10

108-88-3

Toluene

VOLATILE ORGANICS ANALYSIS DATA SHEET

LCPD101201910XX MACT03 Lab Name: Chemtech Contract: Lab Code: **CHEM** Case No.: B2618 SAS No.: B2618 SDG No.: B2618 SOIL Lab Sample ID: B2618-12 Matrix (soil/water): 6.43 Sample wt/vol: (g/mL) Lab File ID: VK039521.D LOW Date Received: 06/09/10 Level: (low/med) 5 Date Analyzed: 06/10/10 % Moisture: not dec. GC Column: RTX-VMS 0.18 (mm) Dilution Factor: Soil Extract Volume: 5000 (uL) Soil Aliquot Volume: (uL) Concentration Units: CAS NO. COMPOUND (ug/L or ug/Kg) ug/Kg Q どび 75-71-8 Dichlorodifluoromethane 4.1 Chloromethane 4.1 U 74-87-3 Vinyl Chloride 4.1 IJ 75-01-4 U 74-83-9 Bromomethane 4.1 Chloroethane 4.1 UJ 75-00-3 Trichlorofluoromethane 4.1 U 75-69-4 1,1,2-Trichlorotrifluoroethane 4.1 U 76-13-1 75-35-4 1.1-Dichloroethene 4.1 U 25 U 67-64-1 Acetone U 75-15-0 Carbon Disulfide 4.1 Methyl tert-butyl Ether 4.1 U 1634-04-4 79-20-9 Methyl Acetate 4.1 U le Methylene Chloride 5.3 75-09-2 trans-1,2-Dichloroethene 4.1 U 156-60-5 4.1 IJ 75-34-3 1,1-Dichloroethane J 2.5 110-82-7 Cyclohexane 20 U 78-93-3 2-Butanone 4.1 U Carbon Tetrachloride 56-23-5 cis-1,2-Dichloroethene 4.1 U 156-59-2 67-66-3 Chloroform 4.1 U 4.1 U 71-55-6 1,1,1-Trichloroethane 2.8 J 108-87-2 Methylcyclohexane U 71-43-2 Benzene 4.1 U 107-06-2 1,2-Dichloroethane 4.1 U 4.1 79-01-6 Trichloroethene U 78-87-5 1,2-Dichloropropane 4.1 75-27-4 Bromodichloromethane 4.1 U U 108-10-1 4-Methyl-2-Pentanone 20

Allah alalio

EPA SAMPLE NO.

2.2

96-12-8

120-82-1

14

VOLATILE ORGANICS ANALYSIS DATA SHEET

LCPD101201910XX Lab Name: Chemtech MACT03 Contract: **CHEM** B2618 SAS No.: Lab Code: Case No.: B2618 SDG No.: B2618 Matrix (soil/water): SOIL Lab Sample ID: B2618-12 Sample wt/vol: 6.43 (g/mL) Lab File ID: VK039521.D LOW Date Received: Level: (low/med) 06/09/10 % Moisture: not dec. 5 Date Analyzed: 06/10/10 GC Column: RTX-VMS ID: 0.18 (mm) Dilution Factor: Soil Extract Volume: 5000 (uL) Soil Aliquot Volume: (uL) Concentration Units: CAS NO. COMPOUND (ug/L or ug/Kg) ug/Kg Q 10061-02-6 4.1 U t-1,3-Dichloropropene 10061-01-5 cis-1,3-Dichloropropene 4.1 U 79-00-5 1,1,2-Trichloroethane 4.1 U U 591-78-6 2-Hexanone 20 Dibromochloromethane 124-48-1 4.1 U 106-93-4 1.2-Dibromoethane 4.1 U 127-18-4 Tetrachloroethene 3.1 J 108-90-7 Chlorobenzene 4.1 U 100-41-4 Ethyl Benzene 4.1 U J m/p-Xylenes 1.5 179601-23-1 95-47-6 o-Xylene 4.1 U 100-42-5 U Styrene 4.1 U 75-25-2 4.1 Bromoform 98-82-8 Isopropylbenzene 4.1 U 79-34-5 1,1,2,2-Tetrachloroethane 4.1 U U 541-73-1 4.1 1,3-Dichlorobenzene 106-46-7 1.4-Dichlorobenzene 4.1 U 95-50-1 1,2-Dichlorobenzene U 4.1

N. Wale 3/19/10

U

U

EPA SAMPLE NO.

4.1

4.1

1,2-Dibromo-3-Chloropropane

1.2.4-Trichlorobenzene

-1E-

SOIL VOLATILE ANALYSIS TENTIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

LCPD101201910XX

Lab Name:	Chemtech			Contra	ct: MACT03		
Lab Code:	СНЕМ	Case No.:	B2618	SAS No.:	B2618	SDG No.:	B2618
Matrix (soil/wa	ater):	SOIL	·	•	Lab Sample ID:	B2618-12	· · · · · · · · · · · · · · · · · · ·
Sample wt/vol:	6.43	(g/m	L) <u>g</u>		Lab File ID:	VK039521.D	
Level: (low/me	ed) <u>L</u>	OW			Date Received:	06/09/10	
% Moisture: no	ot dec. 5				Date Analyzed:	06/10/10	
GC Column:	RTX-VM	ID: <u>0.18</u>			Dilution Factor:	1	(
Soil Extract Vo	olume: 5000)			Soil Aliquot Volume:		
Number TICS	found:	4			Concentration Units:	ug/Kg	
			•		(ug/L or ug/Kg)		

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q	
000109-66-0	Pentane	1.33	5.1	$N_{ m J}$] ,
60-29-7	Diethyl Ether	1.48	4.4	J]-(
	unknown1.95	1.95	7.1	NJ	
141-78-6	Ethyl Acetate	2.83	12	J	}

1/(/ll. 7/19/10

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO. LCPD101300510XX Contract: MACT03 Lab Name: Chemtech SDG No.: B2618 B2618 Case No.: SAS No.: B2618 Lab Code: CHEM SOIL Lab Sample ID: B2618-13 Matrix (soil/water): 6.3 (g/mL) Lab File ID: VK039571.D Sample wt/vol: LOW Level: (low/med) Date Received: 06/09/10 % Moisture: not dec. 11 Date Analyzed: 06/15/10 GC Column: RTX-VMS ID: 0.18 Dilution Factor: (mm) Soil Extract Volume: 5000 (uL) Soil Aliquot Volume: (uL) Concentration Units: COMPOUND (ug/L or ug/Kg) ug/Kg Q CAS NO. 7 U 75-71-8 Dichlorodifluoromethane 4.5 I 4.5 IJ Chloromethane 74-87-3 U 4.5 Vinyl Chloride 75-01-4 74-83-9 Bromomethane 4.5 U IJ 75-00-3 Chloroethane 4.5 4.5 U Trichlorofluoromethane 75-69-4 U 76-13-1 1,1,2-Trichlorotrifluoroethane 4.5 1,1-Dichloroethene 4.5 IJ 75-35-4 U "S 22 67-64-1 Acetone U 75-15-0 Carbon Disulfide 4.5 4.5 U Methyl tert-butyl Ether 1634-04-4 Methyl Acetate 4.5 U 79-20-9 u 25- 4,5 75-09-2 Methylene Chloride U trans-1,2-Dichloroethene 4.5 156-60-5 U 1,1-Dichloroethane 4.5 75-34-3 U Cyclohexane 4.5 110-82-7 22 U 2-Butanone 78-93-3 IJ 4.5 Carbon Tetrachloride 56-23-5 156-59-2 J cis-1,2-Dichloroethene 1.6 Chloroform 4.5 IJ 67-66-3 U 4.5 71-55-6 1.1.1-Trichloroethane U Methylcyclohexane 4.5 108-87-2 IJ 4.5 71-43-2 Benzene U 1,2-Dichloroethane 4.5 107-06-2 U 79-01-6 Trichloroethene 4.5 4.5 U 1,2-Dichloropropane 78-87-5 U Bromodichloromethane 4.5 75-27-4 108-10-1 4-Methyl-2-Pentanone 22 U

////// ha

J

0.91

Toluene

108-88-3

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

LCPD101300510XX Lab Name: Chemtech Contract: MACT03 Lab Code: CHEM Case No.: B2618 SAS No.: B2618 SDG No.: B2618 Matrix (soil/water): SOIL Lab Sample ID: B2618-13 (g/mL) Lab File ID: 6.3 VK039571.D Sample wt/vol: 06/09/10 LOW Date Received: Level: (low/med) Date Analyzed: 06/15/10 % Moisture: not dec. 11 GC Column: Dilution Factor: RTX-VMS ID: 0.18 (mm) Soil Aliquot Volume: Soil Extract Volume: 5000 (uL) (uL) Concentration Units: CAS NO. COMPOUND Q (ug/L or ug/Kg) ug/Kg 10061-02-6 t-1,3-Dichloropropene 4.5 U 4.5 U 10061-01-5 cis-1,3-Dichloropropene 79-00-5 1,1,2-Trichloroethane 4.5 U 591-78-6 2-Hexanone 22 U Dibromochloromethane 4.5 U 124-48-1 106-93-4 1.2-Dibromoethane 4.5 U 127-18-4 Tetrachloroethene-180 E 4.5 U 108-90-7 Chlorobenzene 100-41-4 Ethyl Benzene U 179601-23-1 m/p-Xylenes 8.9 IJ 4.5 U 95-47-6 o-Xylene 100-42-5 Styrene 4.5 U U 75-25-2 Bromoform 4.5 98-82-8 4.5 U Isopropylbenzene 79-34-5 1,1,2,2-Tetrachloroethane 4.5 U IJ 541-73-1 1,3-Dichlorobenzene 4.5 4.5 U 106-46-7 1,4-Dichlorobenzene 95-50-1 1,2-Dichlorobenzene 1.2 J U 96-12-8 1,2-Dibromo-3-Chloropropane 4.5

* Combine with dilution analysis

120-82-1

1,2,4-Trichlorobenzene

11, (Mz.) 7/19/10

U

EPA SAMPLE NO.

4.5

-1E-

SOIL VOLATILE ANALYSIS TENTIVELY IDENTIFIED COMPOUNDS

						LCPD	101300510XX	
Lab Name:	Chemtech	·		Contract:	MACT03			
Lab Code:	CHEM	Case No.:	B2618	SAS No.:	B2618	SDG No.:	B2618	
Matrix (soil/wat	ter):	SOIL	·	Lab	Sample ID:	B2618-13		
Sample wt/vol:	6.3	(g/m	L) <u>g</u>	Lab	File ID:	VK039571.D		
Level: (low/med	d) <u>L</u> (OW		Dat	e Received:	06/09/10		
% Moisture: no	t dec. <u>11</u>	····		Dat	e Analyzed:	06/15/10		
GC Column:	RTX-VM:	ID: <u>0.18</u>		Dile	ution Factor:	1		
Soil Extract Vo	lume: <u>5000</u>)		Soi	l Aliquot Volume:	·		
Number TICS f	Found:	1		Co	oncentration Units: (ug/L or ug/Kg)	ug/Kg		
					(~B ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q	0_
000110-54-3	Hexane	1.96	5.1	J	

Mll. An 4/19/10

EPA SAMPLE NO.

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

LCPD101300510XXDL

Lab Name:	Chemtech			Contr	ract: MACT03			
Lab Code:	CHEM	Case No.:	B2618	SAS No.:	B2618	SDG No.:	B2618	
Matrix (soil/wate	er):	SOIL			Lab Sample ID:	B2618-13I	DL .	
•	4.24				Lab File ID:	VF022595.D		
Sample wt/vol:	N	(g/mL	.) <u>g</u>					
Level: (low/med))	MED			Date Received:	06/09/10		
% Moisture: not	dec.	11 .			Date Analyzed:	06/16/10	<u>:</u>	
GC Column:	RTX-VMS	ID: 0.18	(mm)		Dilution Factor:	11		
Soil Extract Volu	ume: 10000	(uL)			Soil Aliquot Volume	:	100	(uL)
					_	_		
					Concentration Units	: •		
CAS NO.		COMPOUNI) ·		(ug/L or ug/K	(g) ug/Kg	_ Q	
75-71-8		Dichlorodiflu	oromethane		660 .		U	
74-87-3		Chlorometha	ne		660		U	
75-01-4		Vinyl Chloric	le .		660		U ,	
74-83-9		Bromometha	ne		660		U /	
75-00-3		Chloroethane	:		660		Ŋ	
75-69-4		Trichlorofluo	romethane		660		/ U	
76-13-1		1,1,2-Trichlo	rotrifluoroethane		660	\mathcal{X}	U	
75-35-4		1,1-Dichloro	ethene		660		U	
67-64-1		Acetone			3300		U	
75-15-0		Carbon Disul	fide		660		U	
1634-04-4		Methyl tert-b	utyl Ether		660		U	
79-20-9		Methyl Aceta	ite		660		Ŭ.	
75-09-2		Methylene C	hloride		660		U	
156-60-5		trans-1,2-Dic	hloroethene		660		U	
75-34-3		1,1-Dichloro	ethane		660		U	
110-82-7		Cyclohexane			660		U	
78-93-3		2-Butanone			3300		U	
56-23-5		Carbon Tetra	chloride	1	660		Ŭ	
156-59-2		cis-1,2-Dichl	oroethene		660		U	
67-66-3		Chloroform		•	660		Ŭ	
71-55-6		1,1,1-Trichlo	roethane		660		U	
108-87-2		Methylcyclol	nexane		660		U	
71-43-2		Benzene			660		U	
107-06-2		1,2-Dichloro	ethane		660		U	
79-01-6		Trichloroethe	ene		660		U	
78-87-5		1,2-Dichloro	propane		660		U	
75-27-4		Bromodichlo			660		U	
108-10-1		4-Methyl-2-F		i	3300		U	
108-88-3		Toluene			660		U	

Mille 7/19/10

1**A**

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

LCPD101300510XXDL

Lab Name	: Chemtech		Contra	act: MACT03				_
Lab Code:	CHEM	Case No.: <u>B2618</u>	SAS No.:	B2618	SDG No.:	B2618		
Matrix (so	oil/water):	SOIL		Lab Sample ID:	B2618-13I	DL	_	
Sample wt	t/vol: <u>4.24</u>	(g/mL) g_		Lab File ID:	VF022595.D			
Level: (lov	w/med)	MED		Date Received:	06/09/10			
·	re: not dec.	11		Date Analyzed:	06/16/10			
GC Colum	ın: RTX-VMS	ID: 0.18 (mm)		Dilution Factor:	1			
	ct Volume: 1000	, , , , , , , , , , , , , , , , , , , ,		Soil Aliquot Volume:		100	(uL)	
				·	_		` '	
				Concentration Units:				
CAS	NO.	COMPOUND		(ug/L or ug/Kg	g) ug/Kg	_ Q	0	
1006	1-02-6	t-1,3-Dichloropropene		660		U		
1006	1-01-5	cis-1,3-Dichloropropene		660		· U		
79-00	0-5	1,1,2-Trichloroethane		660		U		
591-7	78-6	2-Hexanone		_3300		U		
124-4	48-1	Dibromoehloromethane		660		U		
106-9		1,2-Dibromoethane		660		U		
127-1	18-4	Tetrachloroethene		1200		D]?
108-0	90-7	Chlorobenzene		660		U		1
100-4	41-4	Ethyl Benzene		660		U		
1796	01-23-1	m/p-Xylenes		1300		U		
95-41	7-6	o-Xylene		660		U]
100-4	42-5	Styrene		660		U]
75-2:	5-2	Bromoform		660		U]
98-82	2-8	Isopropylbenzene		~ 660		U]
79-34	4-5	1,1,2,2-Tetrachloroethane		660		U		1
541-	73-1	1,3-Dichlorobenzene		660		U		
106~	46-7	1,4-Dichlorobenzene		660		U		•
95-50	0-1	1,2-Dichlorobenzene		660		U]
96-1		1,2-Dibromo-3-Chloropropan	ne	660		W.]
120-	82-1	1,2,4-Trichlorobenzene		660		U]

* Comboine with original analysis

///// 7/19/10

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO. LCPD101301010XX

Lab Name:	Chemtech		· · · · · · · · · · · · · · · · · · ·	Contr	act: MACT03		,	
Lab Code:	CHEM	Case No.:	B2618	SAS No.:	B2618	SDG No.:	B2618	
Matrix (soil/w	ater):	SOIL			Lab Sample ID:	B2618-14		
Sample wt/vol		(g/m	 L) g		Lab File ID:	VK039523.D		
-		LOW			Date Received:	06/09/10		
	_	· · · · · · · · · · · · · · · · · · ·				·		
% Moisture: n	ot dec.	2	-		Date Analyzed:	06/10/10		
GC Column:	RTX-VMS	ID: <u>0.18</u>	(mm)		Dilution Factor:	1		
Soil Extract V	olume: 5000	(uL)		•	Soil Aliquot Volume:		(uL)	
						-		
					Concentration Units:			
CAS NO	•	COMPOUN	D		(ug/L or ug/K	g) ug/Kg	_ Q	
75-71-8		Dichlorodifl	uoromethane		4.4		υŒυ	
74-87-3		Chlorometh	ane		4.4		U	
75-01-4		Vinyl Chlor	ide	·	4.4		U ·	
74-83-9		Bromometh	ane		4.4		U	
75-00-3		Chloroethan	е		4.4		ぴぴ	
75-69-4		Trichloroflu	Trichlorofluoromethane		4.4		U	
76-13-1		1,1,2-Trichlorotrifluoroethane		_	4.4		U	
75-35-4		1,1-Dichloroethene			4.4		U ·	
67-64-1		Acetone			-16 22 U		- -	
75-15-0		Carbon Disulfide		<u>.</u> . L.	4.4		U	
1634-04-	4	Methyl tert-	butyl Ether		4.4		U	
79-20-9		Methyl Ace	ate		4.4		U	
75-09-2		Methylene (Chloride		-3.5- 4.4 U		-J	
156-60-5	· · · · · · · · · · · · · · · · · · ·	trans-1,2-Di	chloroethene		4.4		U	
75-34-3		1,1-Dichlor	oethane		4.4		U	
110-82-7		Cyclohexan	e		4.4		U	
78-93-3		2-Butanone			22		U	
56-23-5		Carbon Tetr	achloride		4.4		U	
156-59-2		cis-1,2-Dich	loroethene		4.4		U	
67-66-3		Chloroform			4.4		U	
71-55-6		1,1,1-Trichl	oroethane		4.4		U	
108-87-2	2	Methylcycle	ohexane		4.4		U	
71-43-2		Benzene		<u> </u>	4.4		U	
107-06-2		1,2-Dichlor	1,2-Dichloroethane		4.4		U	
79-01-6		Trichloroetl	nene		4.4		U	
78-87-5		1,2-Dichlor	1,2-Dichloropropane		4.4		U	
75-27-4		Bromodichl	oromethane		4.4		U	
108-10-	<u> </u>	4-Methyl-2-	Pentanone .		22		U	
108 88	,	Toluene			4.4		. TT	

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

LCPD101301010XX Lab Name: Chemtech Contract: MACT03 Lab Code: CHEM Case No.: B2618 SAS No.: B2618 SDG No.: B2618 Matrix (soil/water): SOIL Lab Sample ID: B2618-14 Lab File ID: VK039523.D Sample wt/vol: 5.82 (g/mL) LOW Date Received: 06/09/10 Level: (low/med) % Moisture: not dec. 2 Date Analyzed: 06/10/10 GC Column: **RTX-VMS** ID: 0.18 (mm) Dilution Factor: 5000 Soil Aliquot Volume: (uL) Soil Extract Volume: (uL) Concentration Units: COMPOUND CAS NO. (ug/L or ug/Kg) ug/Kg Q 10061-02-6 4.4 U t-1,3-Dichloropropene 4.4 U 10061-01-5 cis-1,3-Dichloropropene 79-00-5 1,1,2-Trichloroethane 4.4 U 22 U 591-78-6 2-Hexanone U Dibromochloromethane 4.4 124-48-1 106-93-4 1,2-Dibromoethane 4.4 U 127-18-4 Tetrachloroethene 35 U Chlorobenzene 4.4 108-90-7 100-41-4 Ethyl Benzene 4.4 U m/p-Xylenes 8.8 IJ 179601-23-1 U 95-47-6 o-Xylene 4.4 100-42-5 Styrene 4.4 U U 4.4 75-25-2 Bromoform 4.4 U 98-82-8 Isopropylbenzene 79-34-5 1,1,2,2-Tetrachloroethane 4.4 U U 4.4 541-73-1 1,3-Dichlorobenzene 4.4 U 106-46-7 1,4-Dichlorobenzene 95-50-1 1.2-Dichlorobenzene 4.4 U U 96-12-8 1,2-Dibromo-3-Chloropropane 4.4

1/1/1/h

U

EPA SAMPLE NO.

4.4

1.2,4-Trichlorobenzene

120-82-1

SOIL VOLATILE ANALYSIS TENTIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.	
LCPD101301010XX	

Lab Name:	Chemtech			Conti	ract: MACT03		
Lab Code:	CHEM	Case No.:	B2618	SAS No.:	B2618	SDG No.:	B2618
Matrix (soil/wa	nter):	SOIL			Lab Sample ID:	B2618-14	
Sample wt/vol:	5.82	(g/m	L) <u>g</u>		Lab File ID:	VK039523.D	
Level: (low/me	ed) <u>I</u>	Low	f		Date Received:	06/09/10	····
% Moisture: no	ot dec. 2	····			Date Analyzed:	06/10/10	
GC Column:	RTX-VM	ID: <u>0.18</u>			Dilution Factor:	1	
Soil Extract Vo	olume: <u>500</u>	00			Soil Aliquot Volume:		
Number TICS 1	found:	3			Concentration Units:	ug/Kg	
					(ug/L or ug/Kg)		
		•				•	2
CHONTR	<u> </u>	COL MOLININ 1	- 1	<u> </u>	_:_		

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	10
60-29-7	Diethyl Ether	1.47	2.7	J
000110-54-3	Hexane	1.96	5.5	J
141-78-6	Ethyl Acetate	2.83	9.9	J

11. (Al. 7/19/10

CHEMIECH

79-01-6

78-87-5 75-27-4

108-10-1

108-88-3

Trichloroethene

1,2-Dichloropropane

Toluene

Bromodichloromethane

4-Methyl-2-Pentanone

VOLATILE ORGANICS ANALYSIS DATA SHEET

LCPD100800310XX Contract: MACT03 Lab Name: Chemtech Case No.: B2618 SAS No.: SDG No.: Lab Code: **CHEM** B2618 B2618 Matrix (soil/water): SOIL Lab Sample ID: B2618-15 ___ (g/mL) 5.5 Lab File ID: Sample wt/vol: VK039524.D LOW Date Received: 06/09/10 Level: (low/med) % Moisture: not dec. 10 Date Analyzed: 06/10/10 GC Column: RTX-VMS ID: 0.18 (mm) Dilution Factor: Soil Aliquot Volume: (uL) Soil Extract Volume: 5000 (uL) Concentration Units: CAS NO. COMPOUND (ug/L or ug/Kg) ug/Kg 0 U 75-71-8 Dichlorodifluoromethane 5.1 74-87-3 Chloromethane 5.1 U 75-01-4 Vinyl Chloride 5.1 IJ 5.1 U 74-83-9 Bromomethane Chloroethane 5.1 TU 75-00-3 Trichlorofluoromethane 5.1 IJ 75-69-4 1,1,2-Trichlorotrifluoroethane 5.1 U 76-13-1 U 75-35-4 1.1-Dichloroethene 5.1 IJ 25 67-64-1 Acetone U 75-15-0 Carbon Disulfide 5.1 1634-04-4 Methyl tert-butyl Ether 5.1 U IJ 79-20-9 Methyl Acetate 5.1 7.7 U 75-09-2 Methylene Chloride trans-1,2-Dichloroethene 5.1 U 156-60-5 1,1-Dichloroethane 5.1 IJ 75-34-3 U 5.1 110-82-7 Cyclohexane 78-93-3 2-Butanone 25 U U Carbon Tetrachloride 5.1 56-23-5 156-59-2 cis-1,2-Dichloroethene 190 67-66-3 Chloroform 5.1 U IJ 1,1,1-Trichloroethane 5.1 71-55-6 Methylcyclohexane 5.1 U 108-87-2 Benzene 5.1 U 71-43-2 U 1,2-Dichloroethane 5.1 107-06-2

Form I VOA-1

180

5.1

5.1

25

11/10h

U

U U

U

EPA SAMPLE NO.

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

LCPD100800310XX

	,						<u></u>		
Lab Name:	Chemtech			Cont	tract:	MACT03			
Lab Code:	CHEM	Case No.:	B2618	SAS No.:	B261	8	SDG No.:	B2618	
Matrix (soil/w	vater):	SOIL			Lab Samp	le ID:	B2618-15		_
Sample wt/vo	l: 5.5	(g/m)	L) g		Lab File II	D: '	VK039524.D		
Level: (low/m	ned)	LOW			Date Rece	ived: (06/09/10		
% Moisture: r	· · · · ·	10			Date Anal	-	06/10/10		
70 IVIOISIUI C. I	ioi dec.	10	-		Date Aliai	yzeu.	00/10/10		
GC Column:	RTX-VMS	ID: <u>0.18</u>	(mm)		Dilution F	actor:	1		
Soil Extract V	Volume: <u>5000</u>	(uL)			Soil Aliqu	ot Volume:			(uL)
					Concentra	ation Units:			
CAS NO).	COMPOUNI)		(ug	/L or ug/Kg)	ug/Kg	Q	
10061-02	2-6	t-1,3-Dichlor	opropene		5.1			U	
10061-0	1-5	cis-1,3-Dichl	oropropene		5.1			Ŭ	
79-00-5		1,1,2-Trichlo	roethane		5.1			U	
591-78-6	;	2-Hexanone			25	_		Ŭ	
124-48-1		Dibromochlo	romethane		5.1			U	
106-93-4		1,2-Dibromo	ethane		5.1			U	
H127-18-4		Tetrachiloroe	thene		9300			E	
108-90-7	,	Chlorobenze	ne		5.1			Ŭ	
100-41-4	ļ	Ethyl Benzer	ne		5.1			U	
179601-2	23-1	m/p-Xylenes			10			U	
95-47-6		o-Xylene			5.1			U	
100-42-5	5	Styrene			5.1			U	
75-25-2		Bromoform		.	5.1			U	
98-82-8		Isopropylben	zene		5.1			U	
79 - 34-5		1,1,2,2-Tetra	chloroethane		5.1			U	
541-73-1		1,3-Dichloro	benzene		5.1		· .	U	
106-46-7	7	1,4-Dichloro	benzene		12				
95-50-1		1,2-Dichloro	benzene		27				
96-12-8		1,2-Dibromo	-3-Chloropropane		5.1			U	
120-82-1		1,2,4-Trichlo	robenzene		5.1			Ŭ	

* Combone with DL2 analyis.

Millh 7/19/10

-1E-

SOIL VOLATILE ANALYSIS TENTIVELY IDENTIFIED COMPOUNDS

LCPD100800310XX Lab Name: Chemtech Contract: MACT03 Lab Code: Case No.: **CHEM** B2618 SAS No.: B2618 SDG No.: B2618 Matrix (soil/water): SOIL Lab Sample ID: B2618-15 (g/mL) Sample wt/vol: Lab File ID: VK039524.D LOW Level: (low/med) Date Received: 06/09/1.0 % Moisture: not dec. 10 Date Analyzed: 06/10/10 GC Column: RTX-VM! ID: 0.18 Dilution Factor: Soil Extract Volume: 5000 Soil Aliquot Volume: Number TICS found: Concentration Units: ug/Kg (ug/L or ug/Kg)

CAS NUMBER	COMPQUND NAME	RT	EST. CONC.	0	
60-29-7	Diethyl Ether	1.46	5.7	J	-

Allha 2/19/10

EPA SAMPLE NO.

EPA SAMPLE NO.

CHEMIECH

VOLATILE ORGANICS ANALYSIS DATA SHEET

LCPD100800310XXDL Lab Name: Chemtech Contract: MACT03 Lab Code: **CHEM** Case No .: B2618 SAS No.: B2618 SDG No.: B2618 Matrix (soil/water): SOIL Lab Sample ID: B2618-15DL 5.14 Sample wt/vol: (g/mL) Lab File ID: VE018739.D Level: (low/med) MED Date Received: 06/09/10 % Moisture: not dec. 10 Date Analyzed: 06/15/10 GC Column: ZB-624 ID: 0.25 Dilution Factor: (mm) (uL) Soil Extract Volume: 10000 Soil Aliquot Volume: 100 (uL) Concentration Units: (ug/L or ug/Kg) ug/Kg CAS NO. COMPOUND Q 75-71-8 Dichlorodifluoromethane 540 U 74-87-3 Chloromethane 540 U 75-01-4 Vinyl Chloride 540 U 74-83-9 Bromomethane 540 IJ 75-00-3 Chloroethane 540 U Trichlorofluoromethane 75-69-4 540 U 76-13-1 1,1,2-Trichlorotrifluoroethane 540 Ū 75-35-4 1,1-Dichloroethene 540 U 67-64-1 Acetone 2700 U 75-15-0 Carbon Disulfide 540 IJ 1634-04-4 Methyl tert-butyl Ether 540 U 79-20-9 Methyl Acetate 540 U 75-09-2 Methylene Chloride 540 U 156-60-5 trans-1,2-Dichloroethene 540, U £40 75-34-3 1,1-Dichloroethane IJ 110-82-7 Cyclohexane 540 U 78-93-3 2-Butanone 2700 U 56-23-5 Carbon Tetrachloride 540 U 156-59-2 cis-1,2-Dichloroethene 400 ЛD 67-66-3 Chloroform 540 U 71-55-6 1,1,1-Trichloroethane 540 U Methylcyclohexane 108-87-2 540 U Benzene 71-43-2 540 U 1.2-Dichloroethane 107-06-2 540 U 79-01-6 Trichloroethene 640 D 78-87-5 1,2-Dichloropropane 540 U 75-27-4 Bromodichloromethane 540 IJ 108-10-1 4-Methyl-2-Pentanone 2700 U 108-88-3 Toluene 540 U

Form I VOA-1

M//////

96-12-8

120-82-1

1 A

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO. LCPD100800310XXDL MACT03 Lab Name: Chemtech Contract: Lab Code: CHEM Case No .: B2618 SAS No.: B2618 SDG No.: B2618 Lab Sample ID: Matrix (soil/water): SOIL B2618-15DL 5.14 Lab File ID: VE018739.D Sample wt/vol: (g/mL)Date Received: **MED** 06/09/10 Level: (low/med) 10 Date Analyzed: % Moisture: not dec. 06/15/10 GC Column: ZB-624 ID: 0.25 (mm) Dilution Factor: 10000 (uL) Soil Aliquot Volume: 100 Soil Extract Volume: (uL) Concentration Units: (ug/L or ug/Kg) ug/Kg CAS NO. COMPOUND Q 10061-02-6 t-1,3-Dichloropropene 540 U 10061-01-5 cis-1,3-Dichloropropene 540 540 1,1,2-Trichloroethane 79-00-5 591-78-6 2-Hexanone 2700 U Dibromochloromethane 540 U 124-48-1 540 U 106-93-4 1,2-Dibromoethane Tetrachloroethene 37000 ED 127-18-4 U 108-90-7 Chlorobenzene 540 *-*540 U 100-41-4 Ethyl Benzene 179601-23-1 m/p-Xylenes 1100 U 95-47-6 o-Xylene 540 U U 100-42-5 Styrene 540 Bromoform 540 U 75-25-2 98-82-8 Isopropylbenzene 540 U 1,1,2,2-Tetrachloroethane U 540 79-34-5 541-73-1 1,3-Dichlorobenzene 540 U 370 JD 106-46-7 1,4-Dichlorobenzene D 95-50-1 1,2-Dichlorobenzene 600

> 20 //llio 7/19/10

U

U

540

540

1,2-Dibromo-3-Chloropropane

1,2,4-Trichlorobenzene

156-59-2

67-66-3

71-55-6

108-87-2

71-43-2

107-06-2

79-01-6

78-87-5

75-27-4

108-10-1

108-88-3

cis-1,2-Dichloroethene

1.1.1-Trichloroethane

Methylcyclohexane

1,2-Dichloroethane

1.2-Dichloropropane

Bromodichloromethane

4-Methyl-2-Pentanone

Trichloroethene

Chloroform

Benzene

Toluene

1 A

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO. LCPD100800310XXDL2 Lab Name: Chemtech Contract: MACT03 Lab Code: CHEM Case No .: B2618 SAS No.: B2618 SDG No.: B2618 Matrix (soil/water): SOIL Lab Sample ID: B2618-15DL2 Sample wt/vol: 5.14 (g/mL)Lab File ID: VF022592.D MED Level: (low/med) Date Received: 06/09/10 % Moisture: not dec. 10 Date Analyzed: 06/16/10 GC Column: ID: RTX-VMS 0.18 (mm) Dilution Factor: 20 Soil Extract Volume: 10000 (uL) Soil Aliquot Volume: 100 (uL) Concentration Units: CAS NO. COMPOUND Q (ug/L or ug/Kg) ug/Kg 75-71-8 Dichlorodifluoromethane 11000 74-87-3 Chloromethane 11000 75-01-4 Vinyl Chloride 11000 74-83-9 Bromomethane 11000 75-00-3 Chloroethane 11000 75-69-4 Trichlorofluoromethane 11000 76-13-1 1,1,2-Trichlorotrifluoroethane 11000 75-35-4 1.1-Dichloroethene 11000 67-64-1 Acetone 54000 75-15-0 Carbon Disulfide 11000 1634-04-4 Methyl tert-butyl Ether 11000 79-20-9 Methyl Acetate 11000 75-09-2 11000 Methylene Chloride 156-60-5 trans-1.2-Dichloroethene 11.000 75-34-3 11000 1,1-Dichloroethane 110-82-7 Cyclohexane 11000 78-93-3 2-Butanone 54000 56-23-5 Carbon Tetrachloride 11000

Form I VOA-1

11000

11000

11000

11000

11000

11000

11000

11000

11000

54000

11000

MM 7/19/10

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO. LCPD100800310XXDL2 Lab Name: Chemtech Contract: MACT03 Lab Code: **CHEM** Case No.: B2618 SAS No.: SDG No.: B2618 B2618 Matrix (soil/water): SOIL Lab Sample ID: B2618-15DL2 Sample wt/vol: 5.14 (g/mL) Lab File ID: VF022592.D Level: (low/med) MED Date Received: 06/09/10 % Moisture: not dec. 10 Date Analyzed: 06/16/10 GC Column: RTX-VMS ID: 0.18 Dilution Factor: (mm) 20 Soil Extract Volume: 10000 Soil Aliquot Volume: (uL) 100 (uL) Concentration Units: CAS NO. COMPOUND (ug/L or ug/Kg) ug/Kg 10061-02-6 t-1,3-Dichloropropene 11000 10061-01-5 11000 cis-1,3-Dichloropropene 79-00-5 1,1,2-Trichloroethane 11000 591-78-6 54000 2-Hexanone Dibromochloromethane 124-48-1 11000 106-93-4 1.2-Dibromoethane 11000 127-18-4 Tetrachloroethene 49000 D 108-90-7 Chlorobenzene 11000 100-41-4 Ethyl Benzene 11000 179601-23-1 m/p-Xylenes 22000 95-47-6 o-Xylene 11000 100-42-5 Styrene 11000 11000 75-25-2 Bromoform 11000 98-82-8 Isopropylbenzene 79-34-5 1,1,2.2-Tetrachloroethane 11000 541-73-1 1,3-Dichlorobenzene 11000 106-46-7 1,4-Dichlorobenzene 11000 95-50-1 1,2-Dichlorobenzene 11000 96-12-8 1,2-Dibromo-3-Chloropropane 11000 1,2,4-Trichlorobenzene 120-82-1 11000

* Contine with original and ;.

2/lle 7/17/w

CHEMIECH

VOLATILE ORGANICS ANALYSIS DATA SHEET

						LCPL	0100801510	XX
_ab Name:	Chemtech			Contr	ract: MACT03			
Lab Code:	СНЕМ	Case No.: B	2618	SAS No.:	B2618	SDG No.:	B2618	·
Matrix (soil/wa	iter):	SOIL	_		Lab Sample ID:	B2618-16		_
Sample wt/vol:	5.78	(g/mL)	g		Lab File ID:	VK039572.D		
_evel: (low/me	:d)	LOW			Date Received:	06/09/10		
% Moisture: no	· 	5			Date Analyzed:	06/15/10		
% ivioisture: no	n dec.	<u> </u>			Date Allaryzed.	00/13/10		
GC Column:	RTX-VMS	ID: <u>0.18</u>	(mm)		Dilution Factor:	· <u>1</u>		
Soil Extract Vo	olume: 5000	(uL)			Soil Aliquot Volume:			(uL)
							<u> </u>	
					Concentration Units:	:	•	•
CAS NO.		COMPOUND			(ug/L or ug/K	g) ug/Kg	_ Q	
75-71-8		Dichlorodifluoro	methane		4.6		υIJ	
74-87-3		Chloromethane			4.6		ับ วี	
75-01-4		Vinyl Chloride			4.6	<u> </u>	υJ	
74-83-9		Bromomethane			4.6		U	
75-00-3		Chloroethane			4.6		U "Z	
75-69-4		Trichlorofluoron	nethane		4.6		U 3	
76-13-1		1,1,2-Trichlorott	ifluoroethane		4.6		υ "Ͻ	
75-35-4		1,1-Dichloroethe	ene		4.6	<u> </u>	U	
67-64-1	· · · · · · · · · · · · · · · · · · ·	Acetone			22 234J		<u>J</u>	
75-15-0		Carbon Disulfid	2		4.6		U J	
1634-04-4	ļ	Methyl tert-buty	l Ether		4.6		U	
79-20-9		Methyl Acetate			4.2		J	
75-09-2		Methylene Chlo	ride		5.1		u	
156-60-5		trans-1,2-Dichlo	roethene		4.6		U	
75-34-3		1,1-Dichloroetha	ne		4.6		U	
110-82-7		Cyclohexane			4.6		U	
78-93-3		2-Butanone			23		U	
56-23-5		Carbon Tetrachl			4.6		U	
156-59-2		cis-1,2-Dichloro	ethene		4.6		U	
67-66-3		Chloroform			4.6		U	
71-55-6		1,1,1-Trichloroe			4.6		U	
108-87-2		Methylcyclohex	ane		4.6		U	
71-43-2		Benzene			4.6		U	
107-06-2		1,2-Dichloroeth	ane		4.6		U	
79-01-6		Trichloroethene			4.6		U	
78-87-5	****	1,2-Dichloropro			4.6		U	
75-27-4		Bromodichloron			4.6		U	
108-10-1		4-Methyl-2-Pen	anone		23		U	
108-88-3		Toluene			1.4		J	

Form I VOA-1

1/1/h

EPA SAMPLE NO.

120-82-1

1,2,4-Trichlorobenzene

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO. LCPD100801510XX Lab Name: Chemtech Contract: MACT03 Lab Code: **CHEM** Case No.: B2618 SAS No.: B2618 SDG No.: B2618 Matrix (soil/water): SOIL Lab Sample ID: B2618-16 Sample wt/vol: 5.78 (g/mL) Lab File ID: VK039572.D Level: (low/med) LOW Date Received: 06/09/10 % Moisture: not dec. 5 Date Analyzed: 06/15/10 GC Column: RTX-VMS ID: 0.18 Dilution Factor: Soil Extract Volume: 5000 (uL) Soil Aliquot Volume: (uL) Concentration Units: CAS NO. COMPOUND (ug/L or ug/Kg) ug/Kg Q 10061-02-6 t-1,3-Dichloropropene 4.6 U 10061-01-5 cis-1,3-Dichloropropene 4.6 U 79-00-5 1,1,2-Trichloroethane 4.6 U 591-78-6 2-Hexanone 23 U 124-48-1 Dibromochloromethane 4.6 U 106-93-4 1,2-Dibromoethane 4.6 U 127-18-4 Tetrachloroethene 4.9 108-90-7 Chlorobenzene 4.6 U 100-41-4 Ethyl Benzene 4.6 U 179601-23-1 m/p-Xylenes 9.1 U 95-47-6 o-Xylene 4.6 U 100-42-5 Styrene 4.6 U 75-25-2 Bromoform 4.6 U 98-82-8 Isopropylbenzene 4.6 U 79-34-5 1,1,2,2-Tetrachloroethane 4.6 U 541-73-1 1,3-Dichlorobenzene 4.6 U 106-46-7 1,4-Dichlorobenzene 4.6 U 95-50-1 1,2-Dichlorobenzene 4.6 U 96-12-8 1,2-Dibromo-3-Chloropropane 4.6 U

1/C/ldem 7/19/10

U

4.6

SOIL VOLATILE ANALYSIS TENTIVELY IDENTIFIED COMPOUNDS

							LCPD	100801510XX	
Lab Name:	Chemtech			Contr	act:	MACT03			
Lab Code:	СНЕМ	Case No.:	B2618	SAS No.:	B2	618	SDG No.:	B2618	
Matrix (soil/wat	ter):	SOIL			Lab San	nple ID:	B2618-16		
Sample wt/vol:	5.78	(g/m]	_) <u>g</u>		Lab File	ID:	VK039572.D		
Level: (low/med	i) <u>LC</u>)W			Date Re	ceived:	06/09/10		
% Moisture: not	dec. <u>5</u>				Date An	alyzed:	06/15/10		
GC Column:	RTX-VM: I	D: <u>0.18</u>			Dilution	Factor:	1		
Soil Extract Vol	lume: <u>5000</u>				Soil Alie	quot Volume:		<u> </u>	
Number TICS fo	ound:	1			Concen	ntration Units:	ug/Kg		
					(uį	g/L or ug/Kg)			

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
60-29-7	Diethyl Ether	1.46	4.9	J

12///// 7/19/10

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

					EP	A SAMPL	E NO.
					TRIP	BLANK-1	
Lab Name:	Chemtech		Conti	ract: MACT03	I		
Lab Code:	СНЕМ	Case No.: B2618	SAS No.:	B2618	SDG No.:	B2618	
Matrix (soil/w	ater):	SOIL		Lab Sample ID:	B2618-18		
Sample wt/vol	•			Lab File ID:		·	
- 1 .					VK039569.D		
Level: (low/m	ed)	LOW		Date Received:	06/09/10		
% Moisture: n	ot dec.	0		Date Analyzed:	06/15/10	·	
GC Column:	RTX-VMS	ID: <u>0.18</u> (mm)		Dilution Factor:	1		
Soil Extract V	olume: <u>5000</u>	(uL)		Soil Aliquot Volume:			(uL)
				Concentration Units:			
CAS NO	•	COMPOUND		(ug/L or ug/Kg	g) ug/Kg	Q	
75-71-8	,	Dichlorodifluoromethane	1	5	1	U	
74-87-3		Chloromethane		5	<u> </u>	U	
75-01-4	 	Vinyl Chloride		5		U.	
74-83-9		Bromomethane		5		U	
75-00-3		Chloroethane		5		U	
75 - 69 - 4		Trichlorofluoromethane		5		U	
76-13-1		1,1,2-Trichlorotrifluoroethane		5	<u>.</u>	U	
75-35-4		1,1-Dichloroethene		5		U	
67-64-1		Acetone		13		J	
75-15-0		Carbon Disulfide		5		U	
1634-04-		Methyl tert-butyl Ether		5		U	
79-20-9		Methyl Acetate		5	-	U	
75-09-2		Methylene Chloride		8.5			
156-60-5	****	trans-1,2-Dichloroethene		5		U	· · · · · · · · · · · · · · · · ·
75-34-3		1,1-Dichloroethane		5	1	Ū	
110-82-7		Cyclohexane		5		U	
78-93-3		2-Butanone	<u> </u>	25		U	
56-23-5	<u></u>	Carbon Tetrachloride		5		U	
156-59-2		cis-1,2-Dichloroethene		5		U	
67-66-3		Chloroform		5		U	
71-55-6		1,1,1-Trichloroethane		5	1	U	
108-87-2		Methylcyclohexane		5		U	
71-43-2		Benzene		5		U	
107-06-2		1,2-Dichloroethane		5 .		U	
79-01-6		Trichloroethene	<u> </u>	5		U	
78-87-5		1,2-Dichloropropane		5		U	
75-27-4		Bromodichloromethane		5		U	
108-10-1		4-Methyl-2-Pentanone	T I	25		U	
108-88-3		Toluene		5		U	

MAL.

120-82-1

1,2,4-Trichlorobenzene

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

					E	PA SAMPI	E NO.
					TRIP	BLANK-1	
mtech			Contr	ract: MACT03			<u> </u>
EM	Case No.:	B2618	SAS No.:	B2618	_ SDG No.:	B2618	
	SOIL			Lab Sample ID:	B2618-18		
5		<u> </u>		_	-		
<u> </u>		<i></i> g					•
_	LOW			Date Received:	06/09/10		
•	0	-		Date Analyzed:	06/15/10		
TX-VMS	ID: <u>0.18</u>	(mm)		Dilution Factor:	1		· ··········
: <u>5000</u>	(uL)			Soil Aliquot Volume	e:		(uL)
				Concentration Units	s:		
	COMPOUNT	1			•	0	
	·			(ug/L or ug/A	rg) ng/Kg	_	
	t-1,3-Dichlor	opropene		5		Ū	
				5		U	
		roethane		5		U	
	2-Hexanone			25		U	
	Dibromochlo	romethane		5		U	
	1,2-Dibromo	ethane		5		U	
	Tetrachloroet	thene		5		U	
,	Chlorobenzer	ne		5		U	
	Ethyl Benzer	ne		5		U	
	m/p-Xylenes			10		U	
	o-Xylene			5		U	
				5			
	· · · · · · · · · · · · · · · · · · ·			5	i		
		zene					
							NT-MARKET !
				5	·	TI .	
	EM 5 . TX-VMS	EM Case No.: SOIL	EM	SOIL SOIL	EM Case No.: B2618 SAS No.: B2618 SOIL Lab Sample ID: 5	TRIP Case No.: B2618 SAS No.: B2618 SDG No.: B2618 SDG No.: B2618 SDG No.: B2618 SDG No.: B2618 SDG No.: B2618 SDG No.: B2618 SDG No.: B2618 SDG No.: B2618-18 SDG	EM Case No.: B2618 SAS No.: B2618 SDG No.: B2618 SOIL Lab Sample ID: B2618-18 5 (g/mL) g Lab File ID: VK039569.D LOW Date Received: 06/09/10 06/09/10 ID: 0.18 (mm) Dilution Factor: 1 Soil Aliquot Volume: Concentration Units: COMPOUND Concentration Units: COMPOUND Concentration Units: Concentration Units: COMPOUND Concentration Units: Concentration Units: <td< td=""></td<>

7/15/10

SOIL VOLATILE ANALYSIS TENTIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

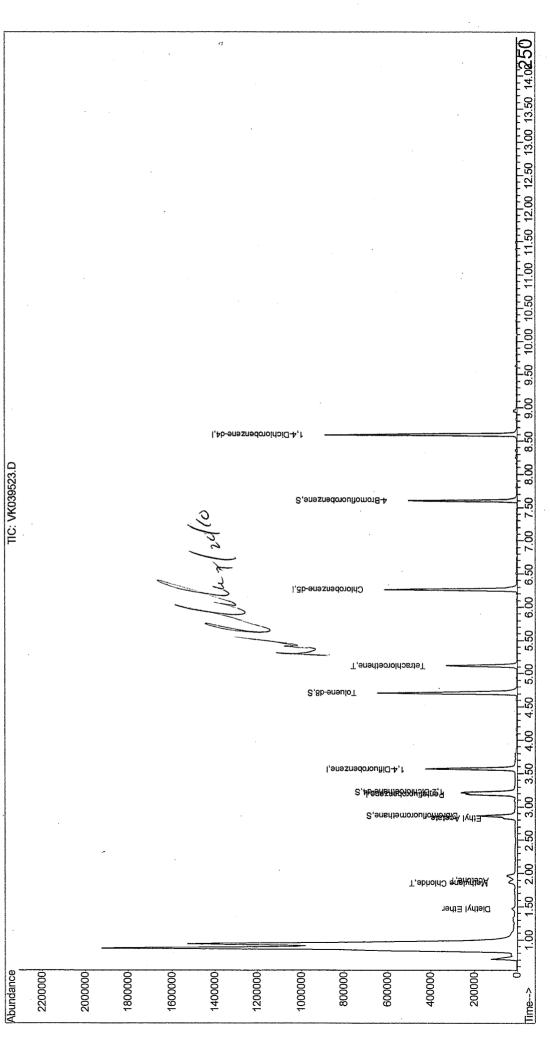
					TRIPE	LANK-1	
Lab Name: <u>Cher</u>	mtech		Contra	act: MACT03			
Lab Code: <u>CHE</u>	Case No.:	B2618	SAS No.:	B2618	SDG No.:	B2618	
Matrix (soil/water):	SOIL			Lab Sample ID:	B2618-18		
Sample wt/vol:	<u>5</u> (g/ml	.) <u>g</u>		Lab File ID:	VK039569.D		
Level: (low/med)	LOW			Date Received:	06/09/10		
% Moisture: not dec.	0			Date Analyzed:	06/15/10		
GC Column: RT	X-VM: ID: 0.18			Dilution Factor:	1		
Soil Extract Volume:	5000			Soil Aliquot Volume:		<u> </u>	
Number TICS found:	3	•		Concentration Units:	ug/Kg	,	
	•			(ug/L or ug/Kg)			

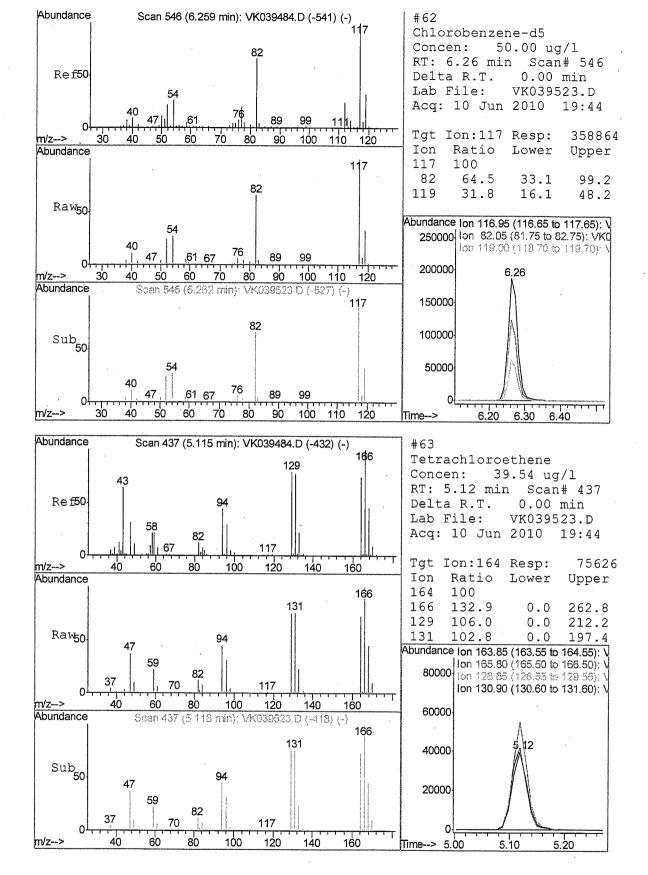
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
60-29-7	Diethyl Ether	1.46	5.5	J
000110-54-3	Hexane	1.96	17	J
141-78-6	Ethyl Acetate	2.82	24	J

2K060910S.M Fri Jun 11 09:28:23 2010

W:\HPCHEM1\Msvoa_K\Data\VK061010\ VK039523.D Data Path Data File Acq On

10 Jun 2010 MS Operator


Sample


Sample Multiplier: B2618-14 5.82g/5mL,MSVOAK 19 Sample Multi Misc ALS Vial

Quant Time: Jun 11 07:46:19 2010 Quant Method: W:\HPCHEM1\MSVOA_K\METHOD\82K060910S.M SW846 8260 Title Quant

: Wed Jun 09 14:12:54 2010 : Initial Calibration QLast Update

Response via

1/10/10 a/20/10

Data File: VK039523.D

Acq On : 10 Jun 2010 19:44

Operator : MS

Sample : B2618-14

Misc : 5.82g/5mL, MSVOAK

ALS Vial : 19 Sample Multiplier: 1

Quant Time: Jun 11 07:46:19 2010

Quant Method: W:\HPCHEM1\MSVOA K\METHOD\82K060910S.M

Quant Title : SW846 8260

QLast Update : Wed Jun 09 14:12:54 2010

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc U	nits Dev	(Min)
 Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 1,4-Dichlorobenzene-d4 	3.19 3.57 6.26 8.59	168 114 117 152	143829 319955 358864 173151	50.00	ug/l ug/l ug/l ug/l	0.00 0.00 0.00 0.00
System Monitoring Compounds						
34) 1,2-Dichloroethane-d4	3.22	65	165477			0.00
Spiked Amount 50.000			Recove	ry =	102.36%	
36) Dibromofluoromethane	2.86	113	107242	43.93	ug/l	0.00
Spiked Amount 50.000			Recove:	ry =	87.86%	
48) Toluene-d8	4.71	98	434929	48.39	ug/l	0.00
Spiked Amount 50.000			Recove:	ry =	_	
61) 4-Bromofluorobenzene	7.61	95		48.81		0.00
Spiked Amount 50.000		r			97.62%	
Target Compounds					0.77	alue
11) Diethyl Ether	1.47	74	· 5551	2 12	ug/l	55
17) Acetone	1.89				ug/1 ug/l #	74
20) Methylene Chloride	1.86	84	11280		ug/l #	
30) Ethyl Acetate	2.83	43	75699		ug/l ug/l	-88
63) Tetrachloroethene	5.12	164	75626			98
	J.1Z	104	(13026)	39.54	ug/I	98

(#) = qualifier out of range (m) = manual integration (+) = signals summed

$$\frac{\left(40.524 \, \text{us/L}\right) \left(0.0054\right) \left(1000 \, \text{s/ky}\right)}{\left(5.82 \, \text{y}\right) \left(0.98\right)} = 35.28 \, \text{ug/ky}$$

AMh 2/10/6

CHIMIECH

Instrument: 5972 - In

284 Sheffield Street, Mountainside NJ 07092 (908) 789-8900

Daily Analysis Runlog For Sequence/QCBatch ID #VK061010

STD. NAME	STD REF.#	STD. NAME	STD REF.#
Review By	apatel	Review On	6/11/2010 12:00:00 AM
Tune/Reschk	VP1499	Initial Calibration Stds	N/A
ccc	VP1500, VP1501	SubDirectory	VK061010
Internal Standard/PEM	VP1181	HP Acquire Method	MSVOA_K
ICV/I.BLK	N/A	HP Processing Method	82K060910S.M

Sr#	Sampleld	Data File Name	Comment	Status
1	BFB TUNE CHECK	VK039504.D	tune fail .	Not Ok
2	BFB TUNE CHECK	VK039505.D		Ok
3	50 PPB CCC	VK039506.D	CCC fail	Not Ok
4	20 PPB CCC	VK039507.D	#6(-23.7%)-over 20%Dev on high side	Ok,M
5	VBK0610S1	VK039508.D		Ok
6	BSK0610S1	VK039509.D		Ok,M
7	B2620-06	VK039510.D	use this run	Ok
8	B2618-01	VK039511.D	·	Ok
9	B2618-02	VK039512.D		Ok
10	B2618-03	VK039513.D		Ok
11	B2618-05	VK039514.D		Ok
12	B2618-06	VK039515.D	·	Ok
13	B2618-07	VK039516.D	Internal Std fail(1,4-DCB-d4)	ReRun
14	B2618-08	VK039517.D		Ok
15	B2618-09	VK039518.D		Ok
16	B2618-10	VK039519.D		Ok
17	B2618-11	VK039520.D		Ok
18	B2618-12	VK039521.D		Ok
19	B2618-13	VK039522.D	Internal Std fail,not used	Not Ok
20	B2618-14	VK039523.D		Ok
21	B2618-15	VK039524.D	Need Meoh	Dilution

Method Path : W:\HPCHEM1\MSVOA_K\METHOD\

Method File: 82K060910S.M Title: SW846 8260

Last Update : Wed Jun 09 14:12:54 2010

Response Via: Initial Calibration

Calibration Files

5 =VK039483.D 10 =VK039482.D 20 =VK039481.D 50 =VK039484.D 100 =VK039485.D 200 =VK039486.D

Compound	5	10	20	50 - 	100	200	Avg	%RSD	
3) T cis-1,3-Dichlorop 4) T 1,1,2-Trichloroet 5) Ethyl methacrylat 6) T 1,3-Dichloropropa 7) T 2-Chloroethyl vin 8) T 2-Hexanone	0.424 0.822 0.912 0.379 0.768	0.432 0.858 0.897 0.364 0.741	0.410 0.809 0.804 0.331 0.684	0.425 0.853 0.847 0.348 0.763	0.453 0.933 0.900 0.377 0.835	0.424 0.855 0.830 0.344 0.701	0.428 0.855 0.865 0.357 0.749	4.37 3.34 5.02 5.08 5.36 7.21	
9) T Dibromochlorometh 0) T 1,2-Dibromoethane 1) S 4-Bromofluorobenz	0.475	0.486	0.440	0.468	0.505	0.474	0.475	5.78 4.54 3.53	
·					İ			3.33	
2) I Chlorobenzene-d53) T Tetrachloroethene	0 2/11	0 257	0 248	⊥3 <mark>1</mark> 11	U 203	0 288	0 266	7.99	
4) PM Chlorobenzene	0.241	0.237	0.240	0.271	0.293	0.200	0.868	3.89	
5) T 1,1,1,2-Tetrachlo								6.36	
6) Hexachloroethane								8.25	
7) C Ethyl Benzene							1.484	4.93#	
8) T m/p-Xylenes		0.544						3.72	
9) T o-Xylene	0.463	0.541	0.504	0.524	0.526	0.528	0.514	5.37	2=0 7/ midua
0) T Styrene	0.848	1.002	0.930	0.968	0.959	0.948	0.943	5.55	7-0.260019111
1) P Bromoform							0.261	14.24	
<pre>2) n-Amyl Acetate</pre>	1.108	1.240	1.138	1.231	1.302	1.267	1.214	6.21	$\bar{z} = 0.260014119$ $RSD = 8.293$
3) I 1,4-Dichlorobenze	ne-d -			ТЅТ!)				
4) T Isopropylbenzene								5.04	
5) P 1,1,2,2-Tetrachlo								3.38	
6) T 1,2,3-Trichloropr								4.06	
7) T Bromobenzene								2.79	•
8) T n-propylbenzene								5.81	
9) p-ethyltoluene								4.44	
0) T 2-Chlorotoluene	2.420	2.501	2.410	2.326	2.312	2.303	2.378	3.29	
1) T 1,3,5-Trimethylbe								4.72	
2) trans-1,4-Dichlor								9.43	
3) T 4-Chlorotoluene							2.190	4.60	
4) T tert-Butylbenzene								6.33	1
5) T 1,2,4-Trimethylbe								4.64	10 //
6) T sec-Butylbenzene								7.25	
7) T p-Isopropyltoluen 8) T 1,3-Dichlorobenze								5.78	$M/(AA_{\ell})$
8) T 1,3-Dichlorobenze9) T 1,4-Dichlorobenze								5.44	10000
0) p-diethylbenzene								3.20 3.21	/
1) T n-Butylbenzene		2.679						6.44	-1.1.
2) T 1,2-Dichlorobenze								4.66	7/20/16
3) 1,2,4,5-tetrameth								1.45	,
4) T 1,2-Dibromo-3-Chl								13.91	•
5) T 1,2,4-Trichlorobe								3.54	
6) T Hexachlorobutadie								9.27	
7) T Naphthalene		3.016						5.01	
8) T 1,2,3-Trichlorobe	0.791	0.847	0.774	0.819	0.860	0.835	0.821	4.04	

^{#) =} Out of Range

Method Path : \\TERASTORAGE\\VOASRV\\HPCHEM1\\MSVOA F\\METHOD\\

Method File: 82F061510W.M Title : SW846 8260

Last Update : Tue Jun 15 17:13:26 2010

Response Via: Initial Calibration

Calibration Files

Compound

5 = VF022576.D 10 = VF022575.D 20 = VF022574.D =VF022572.D 100 =VF022573.D 1 =VF022577.D

1) I Pentafluorobenzene -----ISTD------2) T Dichlorodifluorom 0.352 0.638 0.572 0.777 0.683 0.390 0.569 29.45 3) P Chloromethane. 0.454 0.607 0.557 0.670 0.631 0.538 0.576 13.37 0.512 0.549 0.540 0.617 0.589 0.535 0.557 4) CM Vinyl Chloride 6.94# 5) T Bromomethane 0.263 0.297 0.270 0.313 0.228 0.390 0.294 0.154 0.184 0.201 0.209 0.153 0.254 0.193 18.87 19.77 Trichlorofluorome 0.597 0.707 0.653 0.872 0.703 0.736 0.711 7) T 8) T Tert butyl alcoho 0.061 0.062 0.060 0.061 0.054 0.098 0.066 24.15 9) T Diethvl Ether 0.227 0.251 0.206 0.229 0.207 0.292 0.236 13.19# 0) CM 1.1-Dichloroethen 0.410 0.436 0.372 0.432 0.413 0.541 0.434 1) T Methvl Iodide 0.577 0.516 0.582 0.647 0.613 0.602 0.589 7.47 2) T 0.061 0.049 0.048 0.045 0.047 0.075 0.054 21.56 Acrolein 3) T 1,1,2-Trichlorotr 0.449 0.468 0.415 0.507 0.475 0.574 0.481 11.38 Acrylonitrile 0.169 0.163 0.151 0.169 0.151 0.199 0.167 Allvl Chloride 0.216 0.189 0.192 0.225 0.205 0.323 0.225 4) T 10.66 5) T 6.54 6) T 7) T Carbon Disulfide 1.126 1.308 1.108 1.256 1.175 1.383 1.226 8) T Methyl Acetate 1.338 1.256 1.099 1.203 1.073 1.450 1.236 11.61 9) T Methyl tert-butyl 1.417 1.373 1.282 1.465 1.349 1.505 1.399 Methylene Chlorid 0.474 0.484 0.439 0.476 0.435 0.657 0.494 16.66 0) T trans-1,2-Dichlor 0.450 0.434 0.404 0.450 0.405 0.490 0.439 1) T Acetonitrile 0.750 0.754 0.684 0.752 0.705 0.825 0.745 Vinyl Acetate 0.633 0.633 0.626 0.706 0.658 0.720 0.663 2) T 3) T 1,1-Dichloroethan 0.931 0.890 0.812 0.921 0.840 1.013 0.901 4) P 7.95 5) TM 2-Butanone 0.544 0.435 0.424 0.491 0.405 0.519 0.470 11.98 6) T 2,2-Dichloropropa 0.622 0.586 0.547 0.637 0.584 0.713 0.615 9.33 7) T cis-1,2-Dichloroe 0.646 0.600 0.551 0.625 0.580 0.735 0.623 10.32 8) T Bromochloromethan 0.325 0.270 0.276 0.267 0.265 0.398 0.300 17.71 9) CM Chloroform 1.124 0.990 0.895 1.109 1.029 1.169 1.053 9.62# 0) T Ethvl Acetate 1.634 1.433 1.427 1.641 1.598 1.667 1.567 1) T Cvclohexane 0.708 0.683 0.619 0.678 0.605 0.746 0.673 6.91 7.93 2) T 1,1,1-Trichloroet 0.962 0.898 0.759 0.937 0.800 1.046 0.900 11.83 1,2-Dichloroethan 0.809 0.803 0.834 0.812 0.734 0.822 0.802 4.37 3) S 4) I 1,4-Difluorobenzene ----ISTD-----Dibromofluorometh 0.363 0.366 0.334 0.347 0.332 0.345 0.348 4.15 5) S 6) T 1,1-Dichloroprope 0.590 0.541 0.480 0.562 0.488 0.597 0.543 9.22 7) TM Carbon Tetrachlor 0.582 0.540 0.476 0.565 0.546 0.533 0.540 8) TM Benzene 1.467 1.355 1.214 1.400 1.321 1.561 1.386 8.67 9) T Methacrylonitrile 0.325 0.292 0.270 0.297 0.270 0.320 0.296 0) TM 1,2-Dichloroethan 0.662 0.616 0.551 0.630 0.610 0.711 0.630 1) T 7.94 Isobutyl Alcohol 0.973 0.846 0.822 0.961 0.963 0.997 0.927 2) T Isopropyl Acetate 0.745 0.623 0.646 0.763 0.779 0.810 0.728 10.38 3) TM Trichloroethene 0.418 0.380 0.346 0.418 0.407 0.446 0.403 8.66 4) T Methylcyclohexane 0.734 0.588 0.507 0.570 0.528 0.514 0.573 14.78 5) C 1,2-Dichloropropa 0.412 0.376 0.357 0.418 0.413 0.516 0.415 6) T Dibromomethane 0.323 0.298 0.276 0.331 0.329 0.354 0.318 7) T Bromodichlorometh 0.619 0.567 0.535 0.648 0.646 0.666 0.614 8) S Toluene-d8 1.062 1.057 1.077 1.080 1.115 1.052 1.074 4-Methyl-2-Pentan 0.555 0.496 0.477 0.545 0.497 0.548 0.520 9) T 0) CM Toluene 0.909 0.794 0.749 0.892 0.880 0.904 0.855 7.83# 1) T t-1,3-Dichloropro 0.640 0.593 0.574 0.673 0.627 0.635 0.624 2) T Methyl Methacryla 0.285 0.266 0.261 0.312 0.316 0.295 0.289

5 10 20 50 100 1

Ava

F061510W.M Wed Jun 16 09:53:55 2010 RPT1

MCM 7/19/18 Page: 1

Data File: VK039558.D

Acq On : 15 Jun 2010 11:00

Operator : MS

Sample : 50 PPB CCC

Misc : 5.00g/5mL, MSVOAK

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jun 15 11:26:33 2010

Quant Method: W:\HPCHEM1\MSVOA K\METHOD\82K061410S.M

Quant Title : SW846 8260

QLast Update : Mon Jun 14 17:09:54 2010

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 25% Max. Rel. Area : 150%

	Compound	AvgRF	CCRF	%Dev Area%.Dev(min)
1 I	Pentafluorobenzene	1.000	1.000	0.0 90 0.00
2 T	Dichlorodifluoromethane	0.455	0.681	-49.7 # 119 0.00
3 P	Chloromethane	1.057	1.346	27.3# 111 0.00
4 C	Vinyl Chloride	0.826	1.058	28.1# 116 0.00
5 T	Bromomethane	0.614	0.692	-12.7 99 0.00
6 T	Chloroethane	0.413	0.542	<u>31.2</u> # 113 0.00
7 T	Trichlorofluoromethane	0.792	0.972	22. 7 117 0.00
8 T	Diethyl Ether	0.566	0.661	-16.8 102 0.00
9 CM	1,1-Dichloroethene	0.523	0.610	-16.6# 111 0.00
T O	Carbon Disulfide	2.403	2.898	20.6, 114 0.00
1 TM	1,1,2-Trichlorotrifluoroeth	0.551	0.684	(-24.1) 118 0.00
2 T	Methyl Iodide	1.088	1.209	-11.1 102 0.00
3 Ť	Acrolein	0.234	0.267	-14.1 137 0.00
4 T	Allyl chloride	1.620	1.908	-17.8 116 0.00
5 T	Methylene Chloride	0.904	0.960	-6.2 98 0.00
6 T	Acetone	0.202	0.219	-8.4 88 0.00
7 T	trans-1,2-Dichloroethene	0.548	0.622	-13.5 109 0.00
8 T	Methyl Acetate	0.656	0.739	-12.7 96 0.00
9 T	Methyl tert-butyl Ether	2.655	2.860	-7.7 96 0.00
0 T	Tert butyl alcohol	0.133	0.147	-10.5 96 0.00
1 T	Diisoprpyl ether	3.765	3.980	-5.7 99 0.00
2 P	1,1-Dichloroethane	1.452	1.593	-9.7 105 0.00
3 T	Acrylonitrile	0.551	0.593	-7.6 99 0.00
4 T	Vinyl Acetate	1.871	2.108	-12.7 109 0.00
5 T	cis-1,2-Dichloroethene	0.794	0.907	-14.2 103 0.00
6 T	2,2-Dichloropropane	0.929	1.057	-13.8 111 0.00
7 T	Bromochloromethane	0.360	0.409	-13.6 101 0.00
8 T	Cyclohexane	1.227	1.454	-18.5 118 0.00
9 C	Chloroform	1.337	1.430	-7.0# 102 0.00
0 T	Ethyl Acetate	2.179	2.366	-8.6 100 -0.02
1 T	Carbon Tetrachloride	0.707	0.809	-14.4 112 0.00
2 T	1,1,1-Trichloroethane	0.723	0.824	-14.0 105 0.00
3 T	2-Butanone	1.117	1.204	- 7.8 94 0.00
4 S	1,2-Dichloroethane-d4	1.088	1.143	-5.1 101 0.00
5 I	1,4-Difluorobenzene	1.000	1.000	0.0 87 -0.02
6 S	Dibromofluoromethane	0.374	0.393	-5.1 96 0.00
.7 T	1,1-Dichloropropene	0.463	0.552	-19.2 114 0.00
8 TM	Benzene	1.404	1.613	-14.9 107 0.00
9 T	Methacrylonitrile	0.500	0.546	-9.2 101 0.00
O TM	1,2-Dichloroethane	0.543	0.599	-10.3 97 0.00
1 T	Isopropyl Acetate	1.466	1.580	-7.8 98 0.00
2 T	Isobutyl alcohol	0.000	1.580	0.0 0# 0.00
3 T	Methylcyclohexane	0.507	0.567	-11.8 111 0.00
4 TM	Trichloroethene	0.267	0.302	-13.1 102 0.00
5 T	Dibromomethane	0.304	0.347	-14.1 100 0.00

2/6/6/2 1/20/10 Page: 1

537

Data File: VK039507.D

: 10 Jun 2010 12:17 Acq On

Operator : MS

Sample : 20 PPB CCC
Misc : 5.00g/5mL, MSVOAK

ALS Vial : 3 Sample Multiplier: 1

Quant Time: Jun 10 12:50:20 2010

Quant Method: W:\HPCHEM1\MSVOA K\METHOD\82K060910S.M

Quant Title : SW846 8260

QLast Update: Wed Jun 09 14:12:54 2010

Response via: Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 25% Max. Rel. Area : 150%

		Compound	Amount	Calc.	%Dev Area% Dev(min)
1 2	I T	Pentafluorobenzene Dichlorodifluoromethane	50.000	50.000 16.204	0.0 93 0.00 19.0 94 -0.01
	P	Chloromethane	20.000	19.592	2.0 97 -0.01
	C	Vinyl Chloride	20.000	20.726	-3.6# 97 -0.01
	T	Bromomethane	20.000	21.959	-9.8 100 -0.01
	T	Chloroethane		24.715	-3.6 100 -0.01 -23.6 98 0.00
7	T	Trichlorofluoromethane		21.706	
8	TM				
9	T M	1,1,2-Trichlorotrifluoroeth	20.000	22.023	-10.1 95 -0.01
0	Т	Methyl Iodide Tert butyl alcohol		20.338	-1.7 92 0.00
1	T	Diethyl Ether		101.079	-1.1 101 0.01 -5.6 99 0.01
2	CM			21.121	
	CM	1,1-Dichloroethene		22.791	-14.0# 98 0.00
3	T	Methyl Acetate		21.361	-6.8 110 0.01
4	T	Acrolein		111.084	-11.1 105 0.00
5		Allyl chloride	20.000	22.669	-13.3 98 0.00
6	T	Acrylonitrile		105.161	-5.2 99 0.01
7	T	Acetone		99.612	0.4 116 0.00
8	T	Carbon Disulfide		22.017	-10.1 96 0.01
9.	T	Methyl tert-butyl Ether		19.881	0.6 93 0.00
0	T	Methylene Chloride		21.268	-6.3 95 0.01
1	T	trans-1,2-Dichloroethene	20.000		<u>-8.0</u> 94 0.00
2	_	Acetonitrile	20.000	0.000	100.0#) 0 0.00
3	T	Vinyl Acetate	100.000		8.9 96 0.00
4	P .	1,1-Dichloroethane		21.762	-8.8 94 0.00
- 5	T	2-Butanone	100.000		2.2 98 0.00
6	T	2,2-Dichloropropane	20.000		-7.3 93 0.02
7	T	cis-1,2-Dichloroethene	20.000		-2.5 91 0.01
8	Τ .	Bromochloromethane	20.000	18.650	6.8 91 0.00
9	С	Chloroform	20.000	20.814	-4.1# 93 0.01
0	_	Ethyl Acetate	20.000		-3.0 98 0.00
1	T	1,1,1-Trichloroethane	20.000		-10.6 99 0.00
. 2	T	Cyclohexane	20.000		-9.2 95 0.00
3		Isopropyl Acetate	20.000		-3.9 98 0.01
4	S	1,2-Dichloroethane-d4	50.000	47.352	5.3 88 0.00
5	I	1,4-Difluorobenzene	50.000	50.000	0.0 89 0.01
6	S	Dibromofluoromethane	50.000	48.278	3.4 87 0.01
7	${f T}$	1,1-Dichloropropene	20.000	21.852	-9.3 93 0.00
8	T	Carbon Tetrachloride	20.000	20.379	-1.9 90 0.00
9	TM	Benzene	20.000	21.246	-6.2 100 0.01
. 0		Methacrylonitrile	20.000	19.589	2.1 98 0.00
1	$TM \cdot$	1,2-Dichloroethane	20.000	20.606	-3.0 97 0.01
2		Isobutyl alcohol	20.000	0.000	. 100,0# 0 0.01
3	TM	Trichloroethene	20.000	22.783	13.9 96 0.00
4	T	Methylcyclohexane	20.000	22.248	-11.2 94 0.00
5	C	1,2-Dichloropropane	20.000	21.213	-6.1# 97 0.00
		. -			1//////

534

MCCle 7/10/1.

Method Path : \\TERASTORAGE\\VOASRV\\HPCHEM1\\MSVOA E\\METHOD\\

Method File : 82E061010W.M Title : SW846 8260

Last Update : Fri Jun 11 10:36:06 2010 Response Via : Initial Calibration

Calibration Files

Compound

5 =VE018633.D 10 =VE018632.D 20 =VE018631.D 50 =VE018630.D 150 =VE018628.D 100 =VE018629.D

										
1)		Pentafluorobenzene								
2)	T	Dichlorodifluorom	0.260	0.507	0.381	0.413	0.522	0.520	0.434	2 3. 95
3)	P	Chloromethane	0.254	0.328	0.254	0.290	0.237	0.328	0.282	14.08
4)	С	Vinyl Chloride								12.97#
5)	T	Bromomethane	0.177	0.225	0.168	0.168	0.188	0.196	0.187	11.62
	Т	Chloroethane								13.13
	Т	Trichlorofluorome								18.76
	T	1,1,2-Trichlorotr								13.54
	T·	Tert butvl alcoho								11.36
	T	Diethvl Ether								12.59
	CM	1,1-Dichloroethen								12.07#
	T	Methyl Todide	0.200	0.502	0.222	0.243	0.233	0.234	0.200	12.19
	T	Acroloin	0.033	0.070	0.303	0.040	0.070	0.074	0.020	10.40.47
	T	Methyl Todide Acrolein Acrylonitrile Allyl Chloride Acetone	0.027	0.030	0.023	0.020	0.023	0.032	0.020	10.400
		ACTVIONITITIE	0.100	0.120	0.090	0.096	0.101	0.117	0.106	10.05
5)		Allvi Chioride	0.510	0.564	0.426	0.469	0.51/	0.569	0.509	10.80
	T	Acetone	0.100	0.162	0.121	0.127	0.144	0.155	0.146	12.74
	T	Carbon Disulfide	0.830	1.003	0.749	0.828	0.929	1.018	0.893	12.05
	T	Methvl Acetate								10.71
	T	Methyl tert-butyl								12.43
- ,	T	Methylene Chlorid								9.63
	\mathbf{T}	trans-1,2-Dichlor								10.73
	T	Acetonitrile								10.80
	T	Vinyl Acetate								15.89
	P	1,1-Dichloroethan								11.15
5)	T	2-Butanone	0.293	0.315	0.248	0.264	0.255	0.308	0.281	10.22
6)	T	2,2-Dichloropropa	0.345	0.393	0.294	0.320	0.371	0.397	0.353	11.71
7)	T	cis-1,2-Dichloroe	0.463	0.512	0.398	0.422	0.459	0.485	0.456	9.03
8)	T	Bromochloromethan	0.435	0.464	0.356	0.355	0.455	0.456	0.420	12.12
9)	C	Chloroform	0.996	0.993	0.732	0.778	0.962	0.952	0.902	12.86#
0)	T	Ethvl Acetate	1.467	1.575	1.241	1.319	1.273	1.540	1.403	10.22
1)	T	Cvclohexane								
	Т	1,1,1-Trichloroet								
	S	1,2-Dichloroethan								
- /,		_,								0.02
4)	I	1,4-Difluorobenzer								
5)	S	Dibromofluorometh								
6)	T	1,1-Dichloroprope	0.446	0.491	0.366	0.397	0.485	0.502	0.448	12.43
7)	T	Carbon Tetrachlor								
8)	T	Methvlcvclohexane	0.285	0.334	0.252	0.269	0.306	0.342	0.298	12.02
9)	TM	Benzene		1.109						10.87
	Т	Methacrylonitrile								11.10
	TM	1,2-Dichloroethan								15.32
	T	Isobutyl Alcohol								10.98
	T	Isopropyl Acetate								12.67
4)	TM			0.418						11.76
	C	1,2-Dichloropropa								9.36#
	T			0.289						12.14
	T	Bromodichlorometh								15.58
	S	Toluene-d8		1.052						1.78
		4-Methyl-2-Pentan								10.75
8)	d.		0.344	\cup . \supset \supset \cup	0.29/	U.3Z/	0.32/	U.300	0.345	10.70
8) 9)	T					0 600	0 710		0 600	
8) 9) 0)	CM	Toluene	0.714	0.758	0.571			0.767		11.30#
8) 9) 0)			0.714 0.497	0.758 0.540	0.571 0.424	0.476	0.608	0.767 0.624	0.528	

5 10 20 50 150 100 Avg

Mly 7/19/10 Page: 1

%RSD

3**A**

SOIL VOLATILE LABORATORY CONTROL SPIKE/LABORATORY CONTROL SPIKE DURI ICATE RECOVERY

Lab Name: CHEMTECH		Contra	Contract: MACT03					
Lab Code: CHEM	Cas No:	B2618 SAS No:	B2618 SDG	No: <u>B2618</u>				
Matrix Spike - EPA Sample No :	BSK0610S1							
	SPIKE		LCS	LCS	QC			
COMPOUND	ADDED (ug/Kg)	CONCENTRATION (ug/Kg)	CONCENTRATION (ug/Kg)	% REC#	LIMITS REC			
Dichlorodifluoromethane	20		16	80	(47-148)			
Chloromethane	20		20	100	(56-145)			
Vinyl Chloride	20		22	110	(60-138)			
Bromomethane	20		24	120	(45-158)			
Chloroethane	20		29	(145)	(42-161)			
Trichlorofluoromethane	20		22	110	(55-146)			
1,1,2-Trichlorotrifluoroethane	. 20		23	115	(65-134)			
1,1-Dichloroethene	20		22	110	(65-136)			
Acetone	100		110	110	(57-148)			
Carbon Disulfide	20		. 23	115	(60-138)			
Methyl tert-butyl Ether	20		23	115	(70-131)			
Methyl Acetate	20		25	125	(44-187)			
Methylene Chloride	20		24	120	(63-141)			
trans-1,2-Dichloroethene	20		23	115	(73-130)			
1,1-Dichloroethane	20		23	115	(74-133)			
Cyclohexane	20		22	110	(66-132)			
2-Butanone	100		110	110	(52-153)			
Carbon Tetrachloride	20		21	105	(74-122)			
cis-1,2-Dichloroethene	20		22	110	(75-129)			
Chloroform	20		22	110	(75-135)			
1,1,1-Trichloroethane	20		22	110	(75-128)			
Methylcyclohexane	20		22	110	(71-124)			
Benzene	20		22	110	(79-122)			
1,2-Dichloroethane	20		22	110	(75-132)			
Trichloroethene	20		22	110	(77-120)			
1,2-Dichloropropane	20		22	110	(76-127)			
Bromodichloromethane	20		22	110	(77-124)			
4-Methyl-2-Pentanone	100		120	120	(70-141)			
Toluene	20		22	110	(78-121)			
t-1,3-Dichloropropene	20		22	110	(76-127)			
cis-1,3-Dichloropropene	20		21	105	(79-122)			
1,1,2-Trichloroethane	20		22	110	(76-127)			
2-Hexanone	100		110	110	(55-154)			
Dibuomochlouomothomo	20				· · · · · · · · · · · · · · · · · · ·			

 $RPD: \ 0 \quad Out \ of \ 0 \quad outside \ limits$

Spike Recovery: 0 Out of 88 outside limits

Comments:

^{*} Values outside of QC limits

Method Path: W:\HPCHEM1\MSVOA K\METHOD\

Method File: 82K060910S.M

Title : SW846 8260

Last Update : Wed Jun 09 14:12:54 2010

Response Via: Initial Calibration

Calibration Files

20 = VK039481.D 5 =VK039483.D 10 =VK039482.D 50 = VK039484.D 100 = VK039485.D 200 = VK039486.D

5 10 20 50 100 200 Avg Compound 1) I Pentafluorobenzene -----ISTD------ISTD-----2) T Dichlorodifluorom 0.374 0.350 0.379 0.586 0.600 0.549 0.473 24.72 3) P Chloromethane 1.023 1.014 1.033 1.203 1.217 1.100 1.098 4) C Vinyl Chloride 0.746 0.805 0.836 0.906 0.924 0.852 0.845 8.35 7.77# 5) T Bromomethane 0.721 0.610 0.620 0.632 0.586 0.490 0.610 0.721 0.472 0.490 0.508 0.485 0.370 0.285 0.435 12.28 20.28 5.18 7) T Trichlorofluorome 0.762 0.829 0.876 0.811 0.877 0.837 0.832 8) TM 1,1,2-Trichlorotr 0.541 0.636 0.638 0.599 0.575 0.550 0.590 7.13 Methyl Iodide 1.116 1.232 1.207 1.189 1.188 1.127 1.176 9) Tert butyl alcoho 0.144 0.159 0.141 0.149 0.172 0.147 0.152 0) T Diethyl Ether 0.607 0.681 0.612 0.642 0.601 0.562 0.617 1) 2) CM 1,1-Dichloroethen 0.520 0.596 0.598 0.558 0.540 0.507 0.553 3) T Methyl Acetate 0.717 0.659 0.631 0.710 0.790 0.699 0.701 4) T Acrolein 0.274 0.282 0.243 0.231 0.244 0.214 0.248 5) Allyl chloride 2.030 1.677 1.791 1.514 1.529 1.508 1.675 6) T Acrylonitrile 0.593 0.612 0.569 0.563 0.612 0.509 0.576 6.77 0.188 0.201 0.159 0.221 0.233 0.189 0.198 13.32 7) T Acetone 8) T Carbon Disulfide 2.357 2.684 2.660 2.562 2.457 2.217 2.489 Methyl tert-butyl 3.046 3.180 3.009 2.953 3.105 2.861 3.026 9) T 0) T Methylene Chlorid 1.053 1.090 1.019 0.951 0.942 0.847 0.984 1) T trans-1,2-Dichlor 0.562 0.684 0.642 0.584 0.606 0.538 0.603 0.000 -1.00 2) Acetonitrile 3) T 2.210 2.321 2.184 1.960 2.017 1.683 2.062 11.06 Vinyl Acetate 1,1-Dichloroethan 1.526 1.689 1.677 1.518 1.539 1.434 1.564 4).P 2-Butanone 1.135 1.186 1.082 1.186 1.295 1.096 1.163 5) T 6.68 7.31 2,2-Dichloropropa 1.044 1.139 1.109 0.964 0.979 0.972 1.035 6) T cis-1,2-Dichloroe 0.842 0.934 0.917 0.865 0.874 0.854 0.881 4.17 7) T Bromochloromethan 0.388 0.417 0.383 0.388 0.420 0.417 0.402 8) T Chloroform 1.416 1.588 1.516 1.404 1.426 1.431 1.463 Ethyl Acetate 2.439 2.502 2.283 2.204 2.462 2.153 2.340 9) C 0) 1) T 1,1,1-Trichloroet 0.763 0.836 0.829 0.759 0.802 0.799 0.798 Cyclohexane 1.250 1.439 1.393 1.250 1.291 1.193 1.303 2) T 7.23 Isopropyl Acetate 3.390 3.410 3.170 3.059 3.281 3.042 3.226 3) 1,2-Dichloroethan 1.047 1.072 1.119 1.064 1.184 1.258 1.124 4) S 1,4-Difluorobenzene -----ISTD-----5) I Dibromofluorometh 0.389 0.378 0.379 0.375 0.388 0.380 0.382 1.48 6) S 1,1-Dichloroprope 0.472 0.499 0.505 0.466 0.491 0.479 0.485 3.20 7) T Carbon Tetrachlor 0.345 0.381 0.376 0.354 0.382 0.387 0.371 8) T 1.629 1.585 1.425 1.463 1.485 1.465 1.509 5.31 9) TM Benzene Methacrylonitrile 0.544 0.527 0.456 0.494 0.559 0.492 0.512 0) 1) TM 1,2-Dichloroethan 0.565 0.586 0.538 0.558 0.590 0.582 0.570 3.48 0.000 2) Isobutyl alcohol 3) TM Trichloroethene 0.245 0.262 0.292 0.276 0.284 0.291 0.275 4) T Methylcyclohexane 0.573 0.568 0.568 0.506 0.506 0.502 0.537 5) C 1,2-Dichloropropa 0.509 0.542 0.497 0.498 0.514 0.492 0.509 3.56# 6) T Dibromomethane 0.320 0.320 0.303 0.313 0.337 0.325 0.320 3.49 7) T Bromodichlorometh 0.583 0.562 0.536 0.589 0.606 0.594 0.579 Toluene-d8 1.523 1.413 1.412 1.365 1.410 1.305 1.405 8) S 4-Methyl-2-Pentan 1.017 0.952 0.878 0.901 0.995 0.830 0.929 9) T 0) CM Toluene 0.914 0.913 0.896 0.852 0.869 0.816 0.877 4.38# t-1,3-Dichloropro 0.758 0.759 0.708 0.754 0.808 0.754 0.757 4.19 1) T Methyl Methacryla 0.751 0.749 0.647 0.688 0.765 0.686 0.714

2/19/10

Data File : VK039483.D

Acq On : 9 Jun 2010 12:34

Operator : MS

Sample : 5 PPB ICC

Misc : 5.00g/5mL, MSVOAK

ALS Vial : 6 Sample Multiplier: 1

Quant Time: Jun 09 13:37:04 2010

Quant Method: W:\HPCHEM1\MSVOA K\METHOD\82K060910S.M

Quant Title : SW846 8260

QLast Update : Wed Jun 09 13:31:16 2010

Internal Standards	R.T.	QIon	Response	Conc Ui	nits	Dev	(Min)
1) Pentafluorobenzene	3.19	168	172840	50.00			0.00
<pre>35) 1,4-Difluorobenzene</pre>	3.56	114	345997	50.00			0.00
62) Chlorobenzene-d5	6.26		426595	50.00			0.00
73) 1,4-Dichlorobenzene-d4	8.59	152	213293	50.00	ug/l		0.00
System Monitoring Compounds							
34) 1,2-Dichloroethane-d4	3.22	65	181034				0.00
Spiked Amount 50.000			Recove		88.		
36) Dibromofluoromethane	2.86	113	134635	50.80			0.00
Spiked Amount 50.000			Recove				
48) Toluene-d8	4.71	98	526788	55.33			0.00
Spiked Amount 50.000			Recove				
61) 4-Bromofluorobenzene	7.59	95.	215263	54.77			0.00
Spiked Amount 50.000			Recove	ery =	109.	54%	
Target Compounds							alue
Dichlorodifluoromethane	1.01	85	6465		ug/l		8.1
Chloromethane	1.01	50	17680		ug/l		9,1
4) Vinyl Chloride	1.07	62	12893		ug/l		95
5) Bromomethane	1.21	94	12466		ug/l		81
6) Chloroethane	1.28	64	8161	4.20	ug/l	#	82
Trichlorofluoromethane	1.39	101	13179m	4.08	ug/l		
8) 1,1,2-Trichlorotrifluoroet	1.62	101	9349	4.08	ug/l		97
9) Methyl Iodide	1.65	142	19289	4.30	ug/l		96
10) Tert butyl alcohol	2.06	59	12436	21.11	ug/l	#	100
11) Diethyl Ether	1.46	74	10484	4.30	ug/l		96
12) 1,1-Dichloroethene	1.58	96	8989	4.10	ug/l		94
13) Methyl Acetate	1.93	74	12392	5.08	ug/l		96
14) Acrolein	1.74	56	23661	22.57	ug/l		91
15) Allyl chloride	1.80	41	35086	5.09	ug/l	#	89
16) Acrylonitrile	2.29	53	51248	22.62	ug/l		99
17) Acetone	1.88	58	16268	22.02	ug/l	#	87
18) Carbon Disulfide	1.59	76	40738	3.95	ug/l	#	77
19) Methyl tert-butyl Ether	2.00	73	52643	4.68	ug/l		95
20) Methylene Chloride	1.85	84	18202	5.09	ug/l		92
21) trans-1,2-Dichloroethene	1.94	96	9707	4.28	ug/l		91
23) Vinyl Acetate	2.40	43	190951	22.62	ug/l		96
24) 1,1-Dichloroethane	2.26	63	26376	4.36	ug/l	#	96
25) 2-Butanone	2.94	43	98105	21.90	ug/l		96
26) 2,2-Dichloropropane	2.65	77	18044	4.66	ug/l		98
27) cis-1,2-Dichloroethene	2.58	96	14547	4.47	ug/l		96
28) Bromochloromethane	2.69	128	6699	4.81	ug/l		89
29) Chloroform	2.74	83	24469		ug/l		98
30) Ethyl Acetate	2.83	43	42153		ug/l		83
31) 1,1,1-Trichloroethane	2.87	97	13186		uġ/l		81
32) Cyclohexane	2.70		21598		ug/l		98
33) Isopropyl Acetate	3.46		58598		ug/l		95
37) 1,1-Dichloropropene	2.95		16335		ug/l		89
38) Carbon Tetrachloride	2.84	117	11947		ug/1		93
39) Benzene	3.11	78	56378		ug/l		47
•					J. —		

Data File : VK039483.D

Acq On : 9 Jun 2010 12:34

Operator : MS

Sample : 5 PPB ICC
Misc : 5.00g/5mL, MSVOAK

ALS Vial : 6 Sample Multiplier: 1

Quant Time: Jun 09 13:37:04 2010

Quant Method: W:\HPCHEM1\MSVOA_K\METHOD\82K060910S.M

Quant Title : SW846 8260

QLast Update : Wed Jun 09 13:31:16 2010

_							
Inte	rnal Standards	R.T.	QIon	Response	Conc Units Dev	(Min)	
40)	Methacrylonitrile	3.15	41	18809	4.88 ug/l #	64	
	1,2-Dichloroethane	3.26		19564	4.49 ug/l	97	
	Trichloroethene	3.54		8489	4.04 ug/l	17	
	Methylcyclohexane	3.53		19825	4.88 ug/l	91	
	1,2-Dichloropropane	3.94		17622	5.16 ug/l	99	
	Dibromomethane	3.86		11062	5.73 ug/l	96	
	Bromodichloromethane	4.00		20168	5.11 ug/l #	96	
	4-Methyl-2-Pentanone	5.15		175972	27.22 ug/l	95	
	Toluene	4.75		31624	5.02 ug/l	97	
	t-1,3-Dichloropropene	5.17		26229	4.92 ug/l	92	
	Methyl Methacrylate	4.15		25998	5.28 ug/l	94	
	cis-1,3-Dichloropropene			30534	5.27 ug/l	96	,
	1,1,2-Trichloroethane	5.32		14660		96	
		5.37		28457	4.67 ug/l	91	
	1,3-Dichloropropane	5.58		31554	5.05 ug/l	99	
	2-Chloroethyl vinyl ether	4.51		65574	25.36 ug/l	97	(\ (\ (\ \))
	2-Hexanone	6.02		132882	25.80 ug/l	98	(10294) (50)
	Dibromochloromethane	5.48		14446	4.53 ug/l	100	
	1,2-Dibromoethane	5.70		16437		98	(3459 7) (5)
	Tetrachloroethene	5.12		(10294)		99	(0)
	Chlorobenzene	6.28		37078	4.74 ug/l	95	426191
	1,1,1,2-Tetrachloroethane	6.36		11601	4.14 ug/l	96	, , , ,
	Hexachloroethane	8.90		9424		96	
	Ethyl Benzene	6.33	91	59838	4.36 ug/l	95	= 2 21.201 IT
	m/p-Xylenes	6.51		41385		95 97	=0,241306176
	o-Xylene	6.99	106	19768		87	•
	Styrene	7.06		36166	_	97	
	Bromoform	7.05	173	8767	3.64 ug/l	100	
	n-Amyl Acetate	7.55		47269	4.36 ug/l	93	
	Isopropylbenzene	7.34		52566	4.54 ug/l	94	
	1,1,2,2-Tetrachloroethane		83	27179	4.53 ug/l	98	
	1,2,3-Trichloropropane	7.93		21462		100	
	Bromobenzene	7.68		14066	4.51 ug/l	92	
	n-propylbenzene	7.75	91	67210	4.40 ug/l	97	
	p-ethyltoluene	7.85				97	111
	2-Chlorotoluene		91	56896 51619	4.80 ug/l	95	. 111
	1,3,5-Trimethylbenzene	7.95		43009	4.57 ug/l	93	
	trans-1,4-Dichloro-2-buten	7.99	75	11362	4.01 ug/l	89	, ,
	4-Chlorotoluene	8.02		45584	4.49 ug/l	. 98	7/20/13
	tert-Butylbenzene	8.21		40670	4.66 ug/l	96	.,
	1,2,4-Trimethylbenzene	8.28		44297	4.55 ug/l	97	
	sec-Butylbenzene	8.37		58475	4.61 ug/l	96	
	p-Isopropyltoluene	8.50			4.35 ug/l	97	
	1,3-Dichlorobenzene	8.53		26541	4.47 ug/l	97	
	1,4-Dichlorobenzene	8.60		28936	4.72 ug/l	97	
	p-diethylbenzene	8.80		27002	4.91 ug/l	96	
	n-Butylbenzene	8.84		50664	4.28 ug/l	95	
	1,2-Dichlorobenzene	8.94		26678	4.42 ug/l	97	
	1,2,4,5-tetramethylbenzene	9.43		50227	4.99 ug/l	94	
	1,2-Dibromo-3-Chloropropan	9.54		3732	3.70 ug/l	93	
•					_		.50

Data File : VK039482.D

Acq On : 9 Jun 2010 12:07

Operator : MS

Sample : 10 PPB ICC

Misc : 5.00g/5mL,MSVOAK

ALS Vial : 5 Sample Multiplier: 1

Quant Time: Jun 09 13:38:39 2010

Quant Method: W:\HPCHEM1\MSVOA K\METHOD\82K060910S.M

Quant Title : SW846 8260

QLast Update: Wed Jun 09 13:31:16 2010

Internal Standards	R.T.	QIon	Response	Conc Ui	nits	Dev	(Min)
1) Pentafluorobenzene	3.18	168	179008	50.00			0.00
35) 1,4-Difluorobenzene	3.56			50.00			0.00
62) Chlorobenzene-d5	6.26			50.00			0.00
73) 1,4-Dichlorobenzene-d4	8.59	152	217872	50.00	ug/l		0.00
System Monitoring Compounds							
34) 1,2-Dichloroethane-d4	3.22	65	191814	45.50			0.00
Spiked Amount 50.000			Recove		91.		
36) Dibromofluoromethane	2.86	113	144524	49.34			0.00
Spiked Amount 50.000	_		Recove			68%	
48) Toluene-d8	4.71	98	540320	51.35			0.00
Spiked Amount 50.000			Recove				
61) 4-Bromofluorobenzene	7.59	95	226153	52.06	_		-0.01
Spiked Amount 50.000			Recove	ery =	104.	12%	
Target Compounds							alue
Dichlorodifluoromethane	1.01	85	12531		ug/l		94
Chloromethane	1.01	50	36297		ug/l		97
4) Vinyl Chloride	1.06		28812	7.74			96
5) Bromomethane	1.21		21838		ug/l		96
6) Chloroethane	1.27		17552	8.72			100
7) Trichlorofluoromethane	1.39		29663m	8.87			
8) 1,1,2-Trichlorotrifluoroet	1.61	101	22787		ug/l		25
9) Methyl Iodide	1.65	142	44114		ug/l		98
10) Tert butyl alcohol	2.05	59	28495	46.71			100
11) Diethyl Ether	1.46	74	24372		ug/1		95
12) 1,1-Dichloroethene	1.58	96	21351	9.39			100
13) Methyl Acetate	1.94	74	23588		ug/l		64
14) Acrolein	1.74	56	50563	46.56			92
15) Allyl chloride	1.80		60023	8.40			94
16) Acrylonitrile	2.29		109565	46.70			100
17) Acetone	1.88		36050	47.10			99
18) Carbon Disulfide	1.59		96090		ug/l		93
19) Methyl tert-butyl Ether	2.00		113866	9.78			97
20) Methylene Chloride	1.85		39022	10.53			95
21) trans-1,2-Dichloroethene	1.94		24477	10.42			94
23) Vinyl Acetate	2.40		415562	47.53			99
24) 1,1-Dichloroethane	2.26		60453		ug/l		91
25) 2-Butanone	2.94		212316	45.77			99
26) 2,2-Dichloropropane	2.64	77	40775	10.18			63
27) cis-1,2-Dichloroethene	2.58	96	33455		ug/l		93
28) Bromochloromethane	2.70		14913	10.34			83
29) Chloroform	2.74	83	56862		ug/l		97
30) Ethyl Acetate	2.82		89561		ug/l		84
31) 1,1,1-Trichloroethane	2.87	97	29943		ug/l		81
32) Cyclohexane	2.70		51506		ug/l		9.8
33) Isopropyl Acetate	3.46		122067		ug/l		96
37) 1,1-Dichloropropene	2.95		38161		ug/l		. 98
38) Carbon Tetrachloride	2.84		29111	10.00			98
39) Benzene	3.11	78	121237	10.05	ug/l		99

Data File : VK039482.D

Acq On : 9 Jun 2010 12:07

Operator : MS

Sample : 10 PPB ICC

Misc : 5.00g/5mL, MSVOAK

ALS Vial : 5 Sample Multiplier: 1

Quant Time: Jun 09 13:38:39 2010

Quant Method: W:\HPCHEM1\MSVOA K\METHOD\82K060910S.M

Quant Title : SW846 8260

QLast Update : Wed Jun 09 13:31:16 2010

Internal Star	ndards	R.T.	QIon	Response	Conc Units	s Dev	(Min)	•
40) Methacry		3.15	 41	40285 .	9.45 ug,	 /1 #	95	
41) 1,2-Dich		3.26		44792	9.31 ug,		99	
43) Trichlon		3.53		20025			59	<u></u>
44) Methylcy		3.53		43433			95	
	loropropane	3.94		41431	10.98 ug		92	
46) Dibromon		3.86		24457			97	
•	chloromethane	4.00		42994	9.85 ug,		97	
•	-2-Pentanone	5.15		364087	50.95 ug		100	
50) Toluene	2 I chicanone	4.75		69805	10.03 ug		96	
	chloropropene	5.17		58053	9.86 ug		. 97	
52) Methyl M	Methacrylate	4.15		57304	10.53 ug	/1	93	
	-Dichloropropene	4.54		62152	9.70 ug	/1	96	
	cichloroethane	5.31		33061	9.70 ug	/ _ / 1	98	,
55) Ethyl me		5.37		65646	9.74 ug		97	
	nloropropane	5.58		68574	9.93 ug		99	
	ethyl vinyl ether	4.51		139278			99	
58) 2-Hexand		6.02		283223	49.75 ug		98	
	chloromethane		129	32908	9.33 ug			
60) 1,2-Dib			107	3 <u>715</u> 9	10.09 ug		9.5	
63) Tetrach		5.11		(21940)	8.25 ug		961	(21940)(50)
64) Chlorobe		6.28		79402	10.15 ug		97	(4)(3-)
	-Tetrachloroethane	6.36		25828	9.21 ug		94	(1) (10)
66) Hexachlo		8.90		20985	9.21 ug		97	(426107)(10)
67) Ethyl Be		6.33		138600	10.09 ug		97	
68) m/p-Xyle	,	6.51		92880	20.33 ug		97	
69) o-Xylene			106	46204	9.79 ug		88	(21940)(50) (42680P)(10) 0,256564029
70) Styrene			104	85586	10.02 ug		99	01236/6465
70) Bromofo:	∽m	7.05		21458	8.89 ug		99	
71) n-Amyl 2		7.55		105836	9.76 ug		97	
74) Isoprop		7.34		119209	10.08 ug		98	NM. 7/20/10
	-Tetrachloroethane	7.83		59014	9.63 ug		98	A/(AA.
	richloropropane		75	46463	9.79 ug		100	10000
77) Bromober			156	30453	9.56 ug		96	2/2/4
78) n-propy.		7.75		155404	9.95 ug		97	1/20/10
79) p-ethyl		7.86		122160	10.50 ug		98	
80) 2-Chlore		7.86		108963	9.92 ug		100	
1.5	rimethylbenzene	7.95		97728	10.17 ug		99	
	4-Dichloro-2-buten	7.99		26587	9.18 ug		47	
	otoluene	8.02		103941	10.02 ug		96	
84) tert-Bu		8.22		88991	9.98 ug		97	
	rimethylbenzene	8.28		100901	10.14 ug		97	
	ylbenzene	8.37		135750	10.49 ug		98	
87) p-Isopr	-	8.50		102786	10.20 ug		98	
	hlorobenzene	8.52		62342	10.29 ug		97	
	nlorobenzene	8.60		62137	9.92 ug		97	
90) p-dieth		8.80		58295	10.38 ug		100	
91) n-Butyl		8.84		116717	9.64 ug		98	
	hlorobenzene	8.93		61406	9.97 ug		96	
	-tetramethylbenzene	9.43		103364	10.05 ug		100	
	romo-3-Chloropropan	9.54		9054	8.78 ug		95	437
, -,~					5			701

Data File : VK039481.D

Acq On : 9 Jun 2010 11:40

Operator : MS

Sample : 20 PPB ICC

Misc : 5.00g/5mL, MSVOAK

ALS Vial : 4 Sample Multiplier: 1

Quant Time: Jun 09 13:39:45 2010

Quant Method: W:\HPCHEM1\MSVOA K\METHOD\82K060910S.M

Quant Title : SW846 8260

QLast Update : Wed Jun 09 13:31:16 2010

Internal Standards	R.T.	QIon	Response	Conc Ur	nits De	v(Min)
1) Pentafluorobenzene	3.19	168	189030	50.00	ug/l	0.00
35) 1,4-Difluorobenzene	3.56	114	412519	50.00		0.00
62) Chlorobenzene-d5	6.26	117	472991	50.00	ug/l	0.00
73) 1,4-Dichlorobenzene-d4	8.59	152	235954	50.00	ug/l	0.00
Contan Manitanina Companda						
System Monitoring Compounds 34) 1,2-Dichloroethane-d4	3.21	65	211554	47.53	nα/1	0.00
Spiked Amount 50.000	. 3.21	00	Recove		95.06	
36) Dibromofluoromethane	2.86	113	156427	49.51		0.00
Spiked Amount 50.000	2.00	220	Recove		99.02	
48) Toluene-d8	4.71	98	582335	51.30		0.00
Spiked Amount 50.000			Recove		102.60	
61) 4-Bromofluorobenzene	7.59	95	242111	51.67		0.00
Spiked Amount 50.000			Recove		103.34	
Margat Compounds					0	value
Target Compounds 2) Dichlorodifluoromethane	0.99	85	28692	10.86		100
3) Chloromethane	1.01	50	78073	14.64		100
4) Vinyl Chloride	1.08	62	63236	16.08		97
5) Bromomethane	1.21	94	46857	16.47		95
6) Chloroethane	1.28	64	38406	18.06		95
7) Trichlorofluoromethane	1.39	101	66242m	18.76		33
8) 1,1,2-Trichlorotrifluoroet	1.62	101		19.25		98
9) Methyl Iodide	1.65	142	91253	18.60		99
10) Tert butyl alcohol	2.05	59	53181		ug/l #	
11) Diethyl Ether	1.46	74	46251	17.34		100
12) 1,1-Dichloroethene	1.57	96	45179	18.82		99
13) Methyl Acetate	1.94	74		17.88		73
14) Acrolein	1.74	56	91969	80.20	ug/l	94
15) Allyl chloride	1.79	41	135458	17.96	ug/l	95
16) Acrylonitrile	2.29	53	215209	86.87	ug/l	100
17) Acetone	1.87	58	59996	74.24	ug/l #	68
18) Carbon Disulfide	1.59	76	201091	17.85	ug/l #	
19) Methyl tert-butyl Ether	1.99	73	227527	18.51		97
20) Methylene Chloride	1.85	84	77011	19.68		95
21) trans-1,2-Dichloroethene	1.94	96	48571	19.59		93
23) Vinyl Acetate	2.40	43		89.42		98
24) 1,1-Dichloroethane	2.26	63	126813	19.15	_	99
25) 2-Butanone	2.94	43	409204	83.53		98
26) 2,2-Dichloropropane	2.64	77	83888	19.83		. 99
27) cis-1,2-Dichloroethene	2.58	96	69349	19.49		86
28) Bromochloromethane	2.69	128	28962	19.02		95
29) Chloroform	2.74	83	114596	18.83		98
30) Ethyl Acetate	2.83	43	172647	17.77		97 07
31) 1,1,1-Trichloroethane	2.87	97 5.0	62694	19.20	-	97
32) Cyclohexane	2.70	56	105308	19.17	_	97
33) Isopropyl Acetate	3.46	43	239725	17.98		99
37) 1,1-Dichloropropene	2.94	75	83369	19.34		97
38) Carbon Tetrachloride	2.83	117 78	61993 235068:	19.73 18.06		98 99
39) Benzene	2.11	10	233000.	T0.00	ug/1	99

Data File : VK039481.D

Acq On : 9 Jun 2010 11:40 Operator : MS

Sample : 20 PPB ICC Misc

: 5.00g/5mL, MSVOAK Misc : 5.00g/5mL,MSVOAK
ALS Vial : 4 Sample Multiplier: 1

Quant Time: Jun 09 13:39:45 2010

Quant Method: W:\HPCHEM1\MSVOA_K\METHOD\82K060910s.M

Quant Title : SW846 8260

QLast Update : Wed Jun 09 13:31:16 2010

•				
Internal Standards	R.T. QIon	Response	Conc Units De	v(Min) .
40) Methacrylonitrile	3.15 41	75211	16 26 /1 "	
41) 1,2-Dichloroethane	3.26 62	88805	16.36 ug/l #	
43) Trichloroethene	3.53 130	48186	17.11 ug/l	97
44) Methylcyclohexane	3.52 83	93742	19.22 ug/l	90
45) 1,2-Dichloropropane	3.93 63	82011	19.35 ug/l	98
46) Dibromomethane	3.86 93	50041	20.14 ug/l 21.73 ug/l	99
47) Bromodichloromethane	3.99 83	88477	18.80 ug/l	98
40) 4 55 41 5 5 5	5.15 43	724754		97
50) Toluene	4.75 92	147861	94.02 ug/l 19.69 ug/l	99
51) t-1,3-Dichloropropene	5.17 75	116803	18.39 ug/l	99
52) Methyl Methacrylate	4.15 41	106713	18.18 ug/l	99
53) cis-1,3-Dichloropropene	4.54 75	128305	18.57 ug/l	99
54) 1,1,2-Trichloroethane	5.32 97	67698	18.42 ug/l	99
	5.37 69	133557	18.42 ug/1 18.37 ug/l	97
56) 1,3-Dichloropropane	5.58 76	132632	17.80 ug/l	98
57) 2-Chloroethyl vinyl ether	4.51 63	273477	88.72 ug/l	100
58) 2-Hexanone	6.02 43	564568		100
59) Dibromochloromethane	5.48 129	68050	17.89 ug/l	100
60) 1,2-Dibromoethane	5.69 107	72607	17.69 ug/1 18.28 ug/1	99
63) Tetrachloroethene	5.12 164	47001	15.95 ug/l	99 (1200) (10)
64) Chlorobenzene	6.28 112	157708		97 (723)
65) 1,1,1,2-Tetrachloroethane	6.36 131	54791	18.19 ug/l 17.64 ug/l	99 ((7)00)
66) Hexachloroethane	8.90 117	45972		98 (4 +2991)(20)
67) Ethyl Benzene	6.33 91	277817		100
_	6.51 106	194529	18.25 ug/l 38.43 ug/l	99 97 (17001) (50) 99 98 (472991)(24) 100 98
69) o-Xylene	6.98 106	95374	18.24 ug/l	98
70) Styrene	7.06 104		18.58 ug/l	⁹⁴ 0 , 248424388
71) Bromoform	7.05 173	44554	16.67 ug/l	98
72) n-Amyl Acetate	7.55 43	215381	17.93 ug/l	
74) Isopropylbenzene	7.34 105	251269	19.62 ug/l	99 99
75) 1,1,2,2-Tetrachloroethane	7.83 83	119040	17.94 ug/l	99
76) 1,2,3-Trichloropropane	7.93 75	90656	17.63 ug/l #	. 100
77) Bromobenzene	7.68 156	63113	18.29 ug/l	97
78) n-propylbenzene	7.75 91	324158	19.17 ug/l	98
79) p-ethyltoluene	7.86 105		21.06 ug/l	100
80) 2-Chlorotoluene	7.86 91	227431		100
81) 1,3,5-Trimethylbenzene	7.95 105	198485	19.07 ug/l	98
82) trans-1,4-Dichloro-2-buten	7.99 75	56644	18.05 ug/l #	76
83) 4-Chlorotoluene	8.02 91	208888	18.60 ug/l .	. 1
84) tert-Butylbenzene	8.21 119	196777	20.37 ug/l	99 98 7/20/Co
85) 1,2,4-Trimethylbenzene	8.28 105	204763	18.99 ug/l	99
86) sec-Butylbenzene	8.37 105	282649	20.16 ug/l	100
87) p-Isopropyltoluene	8.50 119	215563	19.76 ug/l	99
88) 1,3-Dichlorobenzene	8.53 146	120059	18.30 ug/l	97
89) 1,4-Dichlorobenzene	8.60 146	126606	18.65 ug/l	100
90) p-diethylbenzene	8.80 119	128764	21,17 ug/l	98
91) n-Butylbenzene	8.84 91	252772	19.28 ug/l	96
92) 1,2-Dichlorobenzene	8.93 146	117962	17.68 ug/l	97
93) 1,2,4,5-tetramethylbenzene	9.43 119	227784	20.44 ug/l	100
94) 1,2-Dibromo-3-Chloropropan	9.54 75	18757	16.80 ug/l	
<u> </u>	. 3	,	20.00 ug/1	⁹⁹ 441

Data File : VK039484.D

Acq On : 9 Jun 2010 13:01 Operator : MS

: 50 PPB ICC Sample

Misc : 5.00g/5mL,MSVOAK

ALS Vial : 7 Sample Multiplier: 1

Quant Time: Jun 09 13:29:35 2010

Quant Method: W:\HPCHEM1\MSVOA_K\METHOD\82K060910s.M

Quant Title : SW846 8260

QLast Update: Wed Jun 09 13:26:46 2010

Internal Standards	R.T.	QIon	Response	Conc U	nits	Dev	(Min)
1) Pentafluorobenzene	3.18	168	189940	50.00			0.00
35) 1,4-Difluorobenzene	3.56	114		50.00			0.00
62) Chlorobenzene-d5	6.26		426475	50.00			0.00
73) 1,4-Dichlorobenzene-d4	8.59		222446	50.00			0.00
				00.00	49/1		0.00
System Monitoring Compounds 34) 1,2-Dichloroethane-d4	2 00	65	000111				
	3.22	65	202114	44.66			0.00
Spiked Amount 50.000 36) Dibromofluoromethane	2 0 6	110	Recove				
	2.86	113	145940	48.33			0.00
Spiked Amount 50.000 48) Toluene-d8	4 71	0.0	Recove			66%	
	4.71	98	531290	49.33			0.00
Spiked Amount 50.000 61) 4-Bromofluorobenzene	7 60	0.5	Recove				
	7.60	95	226245	51.21			0.00
Spiked Amount 50.000			Recove	ery =	102.	42%	
Target Compounds						Qva	alue
Dichlorodifluoromethane	1.00	85	111394	38.63	ug/l		97
3) Chloromethane	1.02	50	228423	41.21			98
4) Vinyl Chloride	1.09	62	172034	41.64			99
5) Bromomethane	1.22	94	120073	40.28			99
6) Chloroethane	1.27	64	92057	40.11			93
7) Trichlorofluoromethane	1.39	101	154090m	41.37			
 1,1,2-Trichlorotrifluoroet 	1.63	101	113853	42.66			98
9) Methyl Iodide	1.65	142	225776	44.07			98
10) Tert butyl alcohol	2.05	. 59	141579	215.53			100
11) Diethyl Ether	1.46	74	121884	44.13			95
<pre>12) 1,1-Dichloroethene</pre>	1.58	96	106035	41.51			97
13) Methyl Acetate	1.94	74	134934	49.29			86
14) Acrolein	1.74	56	219194	181.84			100
15) Allyl chloride	1.80	41	287539	35.72			94
16) Acrylonitrile	2.29	53	534257	209.84			99
17) Acetone	1.88	58	209747	255.91		#	93
18) Carbon Disulfide	1.59	76	486540	40.87			98
19) Methyl tert-butyl Ether	2.00	73	560922	44.47			99
20) Methylene Chloride	1.85	84	180628	44.78			89
21) trans-1,2-Dichloroethene	1.94	96	110892	42.63			98
23) Vinyl Acetate	2.40	43	1861209	192.33			100
24) 1,1-Dichloroethane	2.26	63	288370	41.80			100
25) 2-Butanone	2.94	43	1126457	224.95			99
26) 2,2-Dichloropropane	2.64	77	183090	40.94			99
27) cis-1,2-Dichloroethene	2.58	96	164225	44.32			97
28) Bromochloromethane	2.70	128	73651	47.11			95
29) Chloroform	2.74	83	266763	42.01			99
30) Ethyl Acetate	2.83	43	418639	41.94			99
31) 1,1,1-Trichloroethane	2.88	97	144238	41.62			97
32) Cyclohexane	2.70	56	237445	40.84			98
33) Isopropyl Acetate	3.46	43	581102	42.41			100
37) 1,1-Dichloropropene	2.95	75	181340	42.50			96
38) Carbon Tetrachloride	2.84	117	137772	44.07			98
39) Benzene	3.11	78	569489	44.74			99

Data File : VK039484.D

Acq On : 9 Jun 2010 13:01 Operator : MS

Sample : 50 PPB ICC

Misc : 5.00g/5mL,MSVOAK

ALS Vial : 7 Sample Multiplier: 1

Quant Time: Jun 09 13:29:35 2010

Quant Method: W:\HPCHEM1\MSVOA_K\METHOD\82K060910s.M

Quant Title : SW846 8260

QLast Update: Wed Jun 09 13:26:46 2010

Inte	rnal Standards	R.T.	QIon	Response	Conc Units De	v(Min)	
40)	Methacrylonitrile	3.15	 41	192160	43.26 ug/l #	94	
41)	1,2-Dichloroethane	3.26	62	217288	43.14 ug/l	98	
43)	Trichloroethene	3.54	130	107266	43.33 ug/l	99	
44)	Methylcyclohexane	3.53	83	197081	41.06 ug/l	98	
45)	1,2-Dichloropropane	3.94	63	193751	49.36 ug/l	96	
		3.86	93	121935	56.57 ug/l	96	
	Bromodichloromethane	4.00	83	229409	50.15 ug/l	100	
	4-Methyl-2-Pentanone	5.15	43	1753699	238.78 ug/l	100	
	Toluene	4.75	92	331495	45.31 ug/l	99	
51)	t-1,3-Dichloropropene	5.17	75	293447	47.99 ug/l	98	
	Methyl Methacrylate	4.15	41	267630	47 58 ug/1	99	
	cis-1,3-Dichloropropene	4.55	75	317615	47.94 ug/l	98	
		5.31	97	165496	46.84 ug/l	98	
	Ethyl methacrylate	5.37	69	331944		98	•
56)	1,3-Dichloropropane	5.58	. 76	329792	45.85 ug/l	100	
	2-Chloroethyl vinyl ether		63	676588	228.59 ug/l	98	
	2-Hexanone	6.02	43	1484495	254.48 ug/l	100	
	Dibromochloromethane	5.48	129	172138	46.81 ug/l	99	
	1,2-Dibromoethane	5.70	107	182180	47.60 ug/l	99/	
	Tetrachloroethene	5.12	164	115421	41.80 ug/l	98 (11,	5421)(SD)
	Chlorobenzene	6.28	112	372072	46.46 ug/l	99 📐	
65)	1,1,1,2-Tetrachloroethane	6.36	131	133340	46.61 ug/l	95	
	Hexachloroethane	8.90	117	110638	47.31 ug/l	95(4)	2647) (30)
	Ethyl Benzene	6.33	91	627764	44.27 119/1	99 🔪	
	m/p-Xylenes	6.51	106	436060	93.25 ug/l	98	
	o-Xylene	6.98	106	223446	46.20 ug/l	94	
	Styrene	7.06	104	412989		99 🔿	270639545
	Bromoform	7.05	173	117307	47.91 ug/l	97	ex 700371 41
	n-Amyl Acetate	7.55	43	525075	47.97 ug/l	97	
	Isopropylbenzene	7.34	105	550444	43.98 ug/l	99	
	1,1,2,2-Tetrachloroethane	7.83	83	288645	45.25 ug/l	. 99	
	1,2,3-Trichloropropane	7.93	75	221871	45.09 ug/l #	100	•
	Bromobenzene	7.68	156	151510	45.11 ug/l	99	
	n-propylbenzene	7.75	91	703501	42.47 ug/l	99	11/1/
	p-ethyltoluene	7.86	105	595098	49.73 ug/l	99	//////
	2-Chlorotoluene	7.86	91	517349	45.08 ug/l	98 /	VUII.
	1,3,5-Trimethylbenzene	7.95	105	443419	43.64 ug/l	99/	
	trans-1,4-Dichloro-2-buten	7.99	75	141992	46.76 ug/l #	83	- / /
83)	4-Chlorotoluene	8.02	91	478593	43.76 ug/l	99	7/20/10
	tert-Butylbenzene	8.22	119	399852	42.12 ug/l	96	,
85)		8.28	105	464836	44.11 ug/l	100	
	sec-Butylbenzene	8.37	105	581474	41.95 ug/l	99	
	p-Isopropyltoluene	8.50	119	472228	44.14 ug/l	97	
	1,3-Dichlorobenzene	8.53	146	281046	43.91 ug/l	98	
	1,4-Dichlorobenzene	8.60	146	291210	43.97 ug/l	98	
	p-diethylbenzene	8.80	119	288669	49.37 ug/l	100	•
	n-Butylbenzene	8.84	91	525862	39.68 ug/l	89	
	1,2-Dichlorobenzene	8.93	146	283753	43.66 ug/l	97	
93)	1,2,4,5-tetramethylbenzene 1,2-Dibromo-3-Chloropropan	9.43	119	536521	50.55 ug/l	99	
		9.54	75	48351			

Data File: VK039485.D
Acq On: 9 Jun 2010 13:27
Operator: MS

Sample : 100 PPB ICC Misc : 5.00g/5mL,MSVOAK

ALS Vial : 8 Sample Multiplier: 1

Quant Time: Jun 09 14:03:03 2010

Quant Method: W:\HPCHEM1\MSVOA_K\METHOD\82K060910S.M

Quant Title : SW846 8260

QLast Update : Wed Jun 09 13:38:15 2010

Internal Standards	R.T.	QIon	Response	Conc U	nits	Dev	(Min)
1) Pentafluorobenzene	3.18	168	186973	50.00	110/1		0.00
35) 1,4-Difluorobenzene	3.56			50.00			0.00
62) Chlorobenzene-d5	6.26	117	428406	50.00			
73) 1,4-Dichlorobenzene-d4	8.59		223338	50.00			0.00
, o, i, i bioniologomente di	0.00	102	223330	30.00	ug/1		0.00
System Monitoring Compounds							
34) 1,2-Dichloroethane-d4	3.21	65	221458	50.30	ug/l		0.00
Spiked Amount 50.000			Recove		_		
36) Dibromofluoromethane	2.86	113	146415	50.62	ug/l		0.00
Spiked Amount 50.000			Recove	ry =	101.	24%	
48) Toluene-d8	4.71	98	532650	51.25	ug/l		0.00
Spiked Amount 50.000			Recove		102.		
61) 4-Bromofluorobenzene	7.59	95	226196	52.72			0.00
Spiked Amount 50.000			Recove		-		
Target Compounds						Qva	alue
Dichlorodifluoromethane	0.99	85	224264	85.82			96
3) Chloromethane	1.03	50	455033	86.29			100
4) Vinyl Chloride	1.10	62	345651	88.85	ug/l		99
5) Bromomethane	1.21	94	219292	77.91	ug/l		100
6) Chloroethane	1.28	64	138306	65.75	ug/l		99
Trichlorofluoromethane	1.39	101	328127m	93.93	ug/l		
 1,1,2-Trichlorotrifluoroet 	1.62	101	214897	86.68	ug/l		. 94
9) Methyl Iodide	1.66	142	444165	91.53	ug/l		98
10) Tert butyl alcohol	2.05	59	321948	505.22			100
11) Diethyl Ether	1.47	74	224860	85.22			97
12) 1,1-Dichloroethene	1.57	96	201980	85.06	ug/l		98
13) Methyl Acetate	1.94	74	295242	111.91			88
14) Acrolein	1.73	56	455830	401.87			99
15) Allyl chloride	1.79	41	571849	76.65			97
16) Acrylonitrile	2.30	53	1144099	466.88	ug/l		98
17) Acetone	1.88	58	435820	545.21	ug/l	#	90
18) Carbon Disulfide	1.59	76	918777m	82.44	ug/l		
19) Methyl tert-butyl Ether	1.99	73	1160979	95.50	ug/l		97
20) Methylene Chloride	1.85	84	352419	91.04	ug/l		99
21) trans-1,2-Dichloroethene	1.94	96	226753	92.45	ug/l		99
23) Vinyl Acetate	2.40	43	3770433	412.83			99
24) 1,1-Dichloroethane	2.26	63	575509	87.87	ug/l		99
25) 2-Butanone	2.95	43	2421090	499.67			100
26) 2,2-Dichloropropane	2.64	77	366183	87.51	ug/l		. 97
27) cis-1,2-Dichloroethene	2.58	96	326662	92.83	ug/l		100
28) Bromochloromethane	2.69	128	157026	104.24	ug/l	,	97
29) Chloroform	2.75	83	533136	88.55	ug/l		99
30) Ethyl Acetate	2.83	43	920477	95.80	ug/l		98
31) 1,1,1-Trichloroethane	2.88	97	300010	92.87	ug/l		98
32) Cyclohexane	2.69	56	482857	88.88	ug/l		97
33) Isopropyl Acetate	3.46	43	1226955	93.06	ug/l		99
37) 1,1-Dichloropropene	2.95	75	370557	93.91	ug/l		98
38) Carbon Tetrachloride	2.83	117	288713	100.37	ug/l		99
39) Benzene	3.11	78	1121878	94.17	ug/l		97

Data File: VK039485.D
Acq On: 9 Jun 2010 13:27
Operator: MS

Sample : 100 PPB ICC
Misc : 5.00g/5mL, MSVOAK

ALS Vial : 8 Sample Multiplier: 1

Quant Time: Jun 09 14:03:03 2010

Quant Method: W:\HPCHEM1\MSVOA K\METHOD\82K060910S.M

Quant Title : SW846 8260

QLast Update: Wed Jun 09 13:38:15 2010

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)	
40) Methacrylonitrile	3.16	41	422242	100.33 ug/l		
41) 1,2-Dichloroethane	3.26	62		93.81 ug/l	.#99 .99	
43) Trichloroethene	3.53		214376	93.39 ug/l		•
44) Methylcyclohexane	3.52	83	382174	86.16 ug/l		
45) 1,2-Dichloropropane	3.93	63	388185	104.13 ug/l		
46) Dibromomethane	3.86	93	254261	120.60 ug/l		
	4.01	83	458095 ⁻			
	5.15	43	3756729			
50) Toluene	4.75			95.55 ug/l		
51) t-1,3-Dichloropropene	5.17	75	610177	104.91 ug/l		
52) Methyl Methacrylate	4.15	41	577822	107.54 ug/l		
53) cis-1,3-Dichloropropene			630961	99.73 ug/l		
54) 1,1,2-Trichloroethane	5.32	97	342502	101.79 ug/l		
55) Ethyl methacrylate	5.37		704689	105.88 ug/l		
56) 1,3-Dichloropropane			679584	99.61 ug/l		
57) 2-Chloroethyl vinyl ether		63	1423278			
58) 2-Hexanone	6.02	43	3154719	561.08 ug/l		
59) Dibromochloromethane	5.48		361127	103.70 ug/l		
60) 1,2-Dibromoethane	5.69		381828	104.98 ug/l		
63) Tetrachloroethene	5.12			94.17 ug/l	99	(251350)(50)
64) Chlorobenzene	6.28	112	727295		99	
65) 1,1,1,2-Tetrachloroethane	6.37	131	271423	96.47 ug/l	98	(428406)(100)
66) Hexachloroethane	8.91	117	234683	102.61 ug/l	99	
67) Ethyl Benzene	6.33	91	1256319	91.14 ug/l	100	
68) m/p-Xylenes	6.51	106	875753	191.01 ug/l	99	(251350)(50) (428406)(100) (0,293361904
69) o-Xylene	6.99	106	450452	95.12 ug/l	100	0,275361709
70) Styrene	7.05	104	821920	95.86 ug/l	99	
71) Bromoform	7.05	173	252830	'104.42 ug/l	96	
72) n-Amyl Acetate	7.54	43	1115836	102.57 ug/l	99	•
74) Isopropylbenzene	7.34		1105335	91.19 ug/l	100	
75) 1,1,2,2-Tetrachloroethane			613656	97.71 ua/l	98	
76) 1,2,3-Trichloropropane	7.93	75		97.84 ug/l	# 100	01///
77) Bromobenzene	7.68		311766	95.46 ug/l	100	11/1/1/1/2
78) n-propylbenzene	7.75		1419203	88.68 ug/l	99	NICK 7/20/10
79) p-ethyltoluene			1142356		100	7/201.
80) 2-Chlorotoluene	7.87		1032787	91.74 ug/l		127/3
81) 1,3,5-Trimethylbenzene		105	896153	90.97 ug/l	98	
82) trans-1,4-Dichloro-2-buten		75		104.64 ug/l	98	
83) 4-Chlorotoluene	8.02	91	948300	89.21 ug/l	100	
84) tert-Butylbenzene	8.21	119	822065	89.90 ug/l	98	
85) 1,2,4-Trimethylbenzene	8.29	105	917442	89.91 ug/l	99	
86) sec-Butylbenzene	8.37	105	1213884	91.47 ug/l	99	•
87) p-Isopropyltoluene	8.51	119	964255	93.37 ug/l	99	
88) 1,3-Dichlorobenzene	8.53	146	558371	89.90 ug/l	97	
89) 1,4-Dichlorobenzene	8.60	146	588893	91.67 ug/l	. 99	
90) p-diethylbenzene	8.80	119	560535	97.38 ug/l	99	
91) n-Butylbenzene	8.84	91	1067931	86.07 ug/l	100	
92) 1,2-Dichlorobenzene	8.93	146	581459	92.07 ug/l	98	
93) 1,2,4,5-tetramethylbenzene 94) 1,2-Dibromo-3-Chloropropan	9.42 9.55	119	1053261	99.88 ug/l	100	
51, 1/2 DIDIOMO-3-CHIOLOPIOPAN	9.00	75	112622	106.57 ug/l	98	449

Data File : VK039486.D

Acq On : 9 Jun 2010 13:54 Operator : MS

Sample : 200 PPB ICC

Misc : 5.00g/5mL,MSVOAK
ALS Vial : 9 Sample Multiplier: 1

Quant Time: Jun 09 14:11:13 2010

Quant Method: W:\HPCHEM1\MSVOA_K\METHOD\82K060910S.M

Quant Title : SW846 8260

QLast Update: Wed Jun 09 13:38:15 2010

Internal Standards	R.T.	QIon	Response	Conc U	nits	Dev	(Min)
1) Pentafluorobenzene	3.19	168	208916	50.00	ug/1		0.00
35) 1,4-Difluorobenzene	3.56	114	418813		ug/l		0.00
62) Chlorobenzene-d5	6.26	117	441579	50.00	ug/l		0.00
73) 1,4-Dichlorobenzene-d4	8.59	152	229212		ug/l		0.00
System Monitoring Compounds							
34) 1,2-Dichloroethane-d4	3.21	65	262761	53.41	ug/l		0.00
Spiked Amount 50.000			Recove		106.		
36) Dibromofluoromethane	2.86	113	159219	49.64			0.00
Spiked Amount 50.000			Recove		-		
48) Toluene-d8	4.71	98	546596	47.43	ug/l		0.00
Spiked Amount 50.000			Recove			86%	
61) 4-Bromofluorobenzene	7.59	95	234110	49.21	ug/l		0.00
Spiked Amount 50.000			Recove	ery =	98.	42%	
Target Compounds		•				Ova	alue
Dichlorodifluoromethane	0.99	85	459049	157.21	ug/l	~	95
3) Chloromethane	1.04	50	918911	155.95			99
4) Vinyl Chloride	1.11	62	711938	163.79	ug/l		98
5) Bromomethane	1.22	94	409080	130.07			100
6) Chloroethane	1.28	64	238346	101.41			99
7) Trichlorofluoromethane	1.39	101	699043m	179.09	ug/l		
8) 1,1,2-Trichlorotrifluoroet	1.62	101	459365	165.82	ug/l		95
9) Methyl Iodide	1.65	142	941416	173.62			96
10) Tert butyl alcohol	2.05	__ 59	613380		ug/l	#	100
11) Diethyl Ether	1.47	74	469732	159.32	ug/l		94
12) 1,1-Dichloroethene	1.57	96	423697	159.70			99
13) Methyl Acetate 14) Acrolein	1.94	74	583724	198.02			83
	1.73	56	893345	704.87			98
15) Allyl chloride	1.79	41	1259836	151.13			97
16) Acrylonitrile 17) Acetone	2.29	53	2126234	776.54			97
18) Carbon Disulfide	1.89	58	788017	882.26		#	90
19) Methyl tert-butyl Ether	1.63	76	1852543m	148.76			
20) Methylene Chloride	1.99	73	2390712	176.00	ug/l		95
21) trans-1,2-Dichloroethene	1.85	84	707623	163.59			100
23) Vinyl Acetate	1.93 2.40		449799	164.13			98
24) 1,1-Dichloroethane	2.40	43 63		689.00			98
25) 2-Butanone	2.26		1198004	163.71			99
26) 2,2-Dichloropropane	2.64	43	4579789	845.90			97
27) cis-1,2-Dichloroethene	2.58	77 96	811955	173.65			97
28) Bromochloromethane	2.69	128	713982	181.58			99
29) Chloroform	2.75	83	348480	207.03			93
30) Ethyl Acetate	2.83	43	1195629 1798885	177.73			98
31) 1,1,1-Trichloroethane	2.87	97	667956	167.55		#	84
32) Cyclohexane	2.69	56	996928	185.05			84
33) Isopropyl Acetate	3.46	43	2542497	164.22 172.58			95
37) 1,1-Dichloropropene	2.95	75	801974	183.27			99
38) Carbon Tetrachloride	2.83	117	648042	203.16			98
39) Benzene	3.11	78	2453892	185.74			98
		. 0	_ 100072	100./4	uy/1		99

Data Path : W:\HPCHEM1\Msvoa K\Data\VK060910\

Data File : VK039486.D

Acq On : 9 Jun 2010 13:54 Operator : MS

Sample : 200 PPB ICC Misc : 5.00g/5mL,MSVOAK

ALS Vial : 9 Sample Multiplier: 1

Quant Time: Jun 09 14:11:13 2010

Quant Method: W:\HPCHEM1\MSVOA K\METHOD\82K060910S.M

Quant Title : SW846 8260

QLast Update: Wed Jun 09 13:38:15 2010

Inte	rnal Standards	R.T.	OIon	Response	Conc Units Dev	(Min)	
	Matha and and the la						ı
	Methacrylonitrile	3.16	41	824465		98	
	1,2-Dichloroethane	3.26		974491	184.88 ug/l	99	
	Trichloroethene	3.53		488121	191.76 ug/l	92	
	Methylcyclohexane	3.52	83	841673	171.12 ug/l	98	
	1,2-Dichloropropane	3.93	63	824987.	199.56 ug/l	100	
	Dibromomethane	3.86	93	543874	232.62 ug/l	. 98	
	Bromodichloromethane	4.00	83	995645	208.35 ug/l	99	
	4-Methyl-2-Pentanone	5.15	43		887.92 ug/l	98	
		4.75	92		179.45 ug/l	99	
	t-1,3-Dichloropropene	5.17		1263117	195.84 ug/l	99	
52)	Methyl Methacrylate	4.15	41	1148453	192.74 ug/l	99	
53)	cis-1,3-Dichloropropene	4.55	75		190.97 ug/l	99	
	1,1,2-Trichloroethane	5.32	97		190.38 ug/l	99	
	Ethyl methacrylate	5.37	69		194.06 ug/l	100	
	1,3-Dichloropropane	5.58			183.87 ug/l	99	
	2-Chloroethyl vinyl ether		63		921.30 ug/l	97	
		6.02	. 43	5871321	941.68 ug/l	97	
	Dibromochloromethane	5.48	129	771471	199.78 ug/l	100	
		5.69		793583	196.76 ug/l	100	(.) (50)
	Tetrachloroethene	5.12	1.64	509174	185.08 ug/l	99	(509174)(10)
-	Chlorobenzene	6.28	112	1503612	185.79 ug/l	99	
	1,1,1,2-Tetrachloroethane	6.37		571822	197.18 ug/l	98	(441574) (200)
	Hexachloroethane	8.90	117	487161	206.64 ug/l	95	(4,3,)
67)	Ethyl Benzene	6.33	91	2602934	183.19 ug/l	100	
	m/p-Xylenes	6.51	106	1780932	376.86 ug/l	100	(509174)(50) (441579)(200) (0.288268916
69)	o-Xylene	6.98	106	931928	190.92 ug/l	99	0.218268916
	Styrene	7.06	104	1674235	189.44 ug/l	99	- 55
71)	Bromoform	7.05	173	534144	214.02 ug/l	97	
	n-Amyl Acetate	7.54	43	2237656	199.56 ug/l	98	
74)	Isopropylbenzene	7.34	105	2219352	178.40 ug/l	99	
75)	1,1,2,2-Tetrachloroethane	7.83	83	1201174	186.36 ug/l	99	
76)	1,2,3-Trichloropropane	7.93	75	925907	185.40 ug/l #	100	. 1 1
77)	Bromobenzene	7.68	156	649236	193.69 ug/l	100	
78)	n-propylbenzene	7.75	91	2837519	172.77 ug/l	100	
79)	p-ethyltoluene	7.87	105	2319706	189.44 ug/l	100,	Molle
80)	2-Chlorotoluene	7.87	91		182.73 ug/l	99	NAAL 7/20/10
81)	1,3,5-Trimethylbenzene	7.95	105	1839790	181.97 ug/l	98	7/20/10
82)	trans-1,4-Dichloro-2-buten	7.99	75	622139	204.12 ug/l	99	1/20/16
83)	4-Chlorotoluene	8.02	91	1954520	179.16 ug/l	99	
84)	tert-Butylbenzene	8.21	119	1668803	177.83 ug/l	96	
85)	1,2,4-Trimethylbenzene	8.29	105	1905813	181.99 ug/l	. 99	,
86)	sec-Butylbenzene	8.37	105	2423143	177.91 ug/l	98	
87)	p-Isopropyltoluene	8.51	119	1945546	183.56 ug/l	98	
	1,3-Dichlorobenzene	8.53	146	1173946	184.17 ug/l	98	
89)	1,4-Dichlorobenzene	8.60	146	1211694	183.79 ug/l	99	
. 90)	p-diethylbenzene	8.80	119	1187542	201.02 ug/l	98	
	n-Butylbenzene	8.84	91	2157432	169.41 ug/l	99	
	1,2-Dichlorobenzene	8.94	146	1221075	188.38 ug/l	99	
	1,2,4,5-tetramethylbenzene	9.42	119	2236704	206.66 ug/l	98	
	1,2-Dibromo-3-Chloropropan	9.54	75	229868	211.94 ug/l	98	453
•	<u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u>					20	400

Data Path : W:\HPCHEM1\Msvoa K\Data\VK061010\

Data File : VK039507.D

Acq On : 10 Jun 2010 12:17

Operator : MS

Sample : 20 PPB CCC

Misc : 5.00g/5mL,MSVOAK

ALS Vial : 3 Sample Multiplier: 1

Quant Time: Jun 10 12:50:20 2010

Quant Method: W:\HPCHEM1\MSVOA_K\METHOD\82K060910S.M

Quant Title : SW846 8260 QLast Update : Wed Jun 09 14:12:54 2010

Internal Standards	R.T.	QIon	Response	Conc U	nits	Dev	(Min)
1) Pentafluorobenzene	3.18	168	175663	50.00	ug/l		0.00
35) 1,4-Difluorobenzene		114	367372	50.00			0.01
62) Chlorobenzene-d5	6.27	117	401003	50.00			0.01
73) 1,4-Dichlorobenzene-d4	8.60	152	202822	50.00	ug/l		0.01
System Monitoring Compounds							
34) l,2-Dichloroethane-d4	3.22	65	186998	47.35	ug/l		0.00
Spiked Amount 50.000			Recove			70%	
36) Dibromofluoromethane	2.87	113	135326	48.28	ug/l		0.01
Spiked Amount 50.000			Recove	ery =	96.	56%	
48) Toluene-d8	4.72	98	503740	48.81	ug/l		0.01
Spiked Amount 50.000			Recove	ery =	97.	62%	
61) 4-Bromofluorobenzene	7.60	95	211433	48.78	ug/l		0.00
Spiked Amount 50.000	•		Recove	ery =	97.	56%	
Target Compounds						Qva	alue
Dichlorodifluoromethane	0.99	85	26938	16.20	ug/l	_	99
3) Chloromethane	1.01	50	75582	19.59			98
4) Vinyl Chloride	1.08	62	61517	20.73			100
5) Bromomethane	1.21	94	47048	21.96	ug/l		95
6) Chloroethane	1.27	64	37772	24.71	ug/l		96
7) Trichlorofluoromethane	1.39	101	63451m	21.71	ug/l		
8) 1,1,2-Trichlorotrifluoroet	1.62	101	45642	22.02	ug/l		99
9) Methyl Iodide	1.65	142	84054	20.34			99
10) Tert butyl alcohol	2.06	59	53967	101.08			100
11) Diethyl Ether	1.47	74	45811	21.12			99
12) 1,1-Dichloroethene	1.58	96	44297	22.79			97
13) Methyl Acetate	1.95	74	52598	21.36			93
14) Acrolein	1.74	56	96781	111.08			96
15) Allyl chloride	1.80	41	133384	22.67			94
16) Acrylonitrile	2.30	53	212910	105.16			99
17) Acetone	1.88	58	69460	99.61			89
18) Carbon Disulfide	1.60	76	192548	22.02			83
19) Methyl tert-butyl Ether	2.00	73	211334	19.88			92
20) Methylene Chloride	1.86	84	73495	21.27			92
<pre>21) trans-1,2-Dichloroethene 23) Vinyl Acetate</pre>	1.94		45754	21.61			96
	2.40	43	788899	108.88			99
	2.26	63	119557	21.76			99
25) 2-Butanone 26) 2,2-Dichloropropane	2.94	43	399743	97.80			98
	2.66	77	77968	21.45			99
27) cis-1,2-Dichloroethene28) Bromochloromethane	2.59	96	63444	20.50			95
29) Chloroform	2.70	128	26339	18.65	_		79
30) Ethyl Acetate	2.75	83	107010	20.81			100
31) 1,1,1-Trichloroethane	2.83	43	169443	20.61			98
32) Cyclohexane	2.88	97 5.6	62007	22.11			96
33) Isopropyl Acetate	2.70	56	99962	21.84			99
37) 1,1-Dichloropropene	3.47	43	235598	20.79			97
38) Carbon Tetrachloride	2.95	75	77909	21.85	_		96
39) Benzene	2.84	117	55518	20.38			97
JOI DONGENE	3.12	78	235517	21.25	ug/I		98

Data Path : W:\HPCHEM1\Msvoa_K\Data\VK061010\

Data File: VK039507.D
Acq On: 10 Jun 2010 12:17
Operator: MS

Sample : 20 PPB CCC

Misc : 5.00g/5mL,MSVOAK

ALS Vial : 3 Sample Multiplier: 1

Quant Time: Jun 10 12:50:20 2010

Quant Method: W:\HPCHEM1\MSVOA K\METHOD\82K060910S.M

Quant Title : SW846 8260 QLast Update : Wed Jun 09 14:12:54 2010

Internal Standards R.T. QIon Response Conc Units Dev(Min) 40) Methacrylonitrile 3.15 41 73668 19.59 ug/l # 97 41) 1,2-Dichloroethane 3.27 62 86287 20.61 ug/l 98 43) Trichloroethene 3.54 130 46032 22.78 ug/l 92 44) Methylcyclohexane 3.53 83 87826 22.25 ug/l 97 45) 1,2-Dichloropropane 3.94 63 79285 21.21 ug/l 96 46) Dibromomethane 3.87 93 49238 20.97 ug/l 95 47) Bromodichloromethane 4.00 83 86726 20.40 ug/l 97 49) 4-Methyl-2-Pentanone 5.15 43 714117 104.64 ug/l 99 50) Toluene 4.76 92 137821 21.39 ug/l 99 51) t-1,3-Dichloropropene 5.18 75 113218 20.36 ug/l 98 52) Methyl Methacrylate 4.16 41 104338 19.88 ug/l 100	
41) 1,2-Dichloroethane 3.27 62 86287 20.61 ug/l 98 43) Trichloroethene 3.54 130 46032 22.78 ug/l 92 44) Methylcyclohexane 3.53 83 87826 22.25 ug/l 97 45) 1,2-Dichloropropane 3.94 63 79285 21.21 ug/l 96 46) Dibromomethane 3.87 93 49238 20.97 ug/l 95 47) Bromodichloromethane 4.00 83 86726 20.40 ug/l 97 49) 4-Methyl-2-Pentanone 5.15 43 714117 104.64 ug/l 99 50) Toluene 4.76 92 137821 21.39 ug/l 99 51) t-1,3-Dichloropropene 5.18 75 113218 20.36 ug/l 98 52) Methyl Methacrylate 4.16 41 104338 19.88 ug/l 100	
41) 1,2-Dichloroethane 3.27 62 86287 20.61 ug/l 98 43) Trichloroethene 3.54 130 46032 22.78 ug/l 92 44) Methylcyclohexane 3.53 83 87826 22.25 ug/l 97 45) 1,2-Dichloropropane 3.94 63 79285 21.21 ug/l 96 46) Dibromomethane 3.87 93 49238 20.97 ug/l 95 47) Bromodichloromethane 4.00 83 86726 20.40 ug/l 97 49) 4-Methyl-2-Pentanone 5.15 43 714117 104.64 ug/l 99 50) Toluene 4.76 92 137821 21.39 ug/l 99 51) t-1,3-Dichloropropene 5.18 75 113218 20.36 ug/l 98 52) Methyl Methacrylate 4.16 41 104338 19.88 ug/l 100	
43) Trichloroethene 3.54 130 46032 22.78 ug/l 92 44) Methylcyclohexane 3.53 83 87826 22.25 ug/l 97 45) 1,2-Dichloropropane 3.94 63 79285 21.21 ug/l 96 46) Dibromomethane 3.87 93 49238 20.97 ug/l 95 47) Bromodichloromethane 4.00 83 86726 20.40 ug/l 97 49) 4-Methyl-2-Pentanone 5.15 43 714117 104.64 ug/l 99 50) Toluene 4.76 92 137821 21.39 ug/l 99 51) t-1,3-Dichloropropene 5.18 75 113218 20.36 ug/l 98 52) Methyl Methacrylate 4.16 41 104338 19.88 ug/l 100	
44) Methylcyclohexane 3.53 83 87826 22.25 ug/l 97 45) 1,2-Dichloropropane 3.94 63 79285 21.21 ug/l 96 46) Dibromomethane 3.87 93 49238 20.97 ug/l 95 47) Bromodichloromethane 4.00 83 86726 20.40 ug/l 97 49) 4-Methyl-2-Pentanone 5.15 43 714117 104.64 ug/l 99 50) Toluene 4.76 92 137821 21.39 ug/l 99 51) t-1,3-Dichloropropene 5.18 75 113218 20.36 ug/l 98 52) Methyl Methacrylate 4.16 41 104338 19.88 ug/l 100	
45) 1,2-Dichloropropane 3.94 63 79285 21.21 ug/l 96 46) Dibromomethane 3.87 93 49238 20.97 ug/l 95 47) Bromodichloromethane 4.00 83 86726 20.40 ug/l 97 49) 4-Methyl-2-Pentanone 5.15 43 714117 104.64 ug/l 99 50) Toluene 4.76 92 137821 21.39 ug/l 99 51) t-1,3-Dichloropropene 5.18 75 113218 20.36 ug/l 98 52) Methyl Methacrylate 4.16 41 104338 19.88 ug/l 100	
46) Dibromomethane 3.87 93 49238 20.97 ug/l 95 47) Bromodichloromethane 4.00 83 86726 20.40 ug/l 97 49) 4-Methyl-2-Pentanone 5.15 43 714117 104.64 ug/l 99 50) Toluene 4.76 92 137821 21.39 ug/l 99 51) t-1,3-Dichloropropene 5.18 75 113218 20.36 ug/l 98 52) Methyl Methacrylate 4.16 41 104338 19.88 ug/l 100	
49) 4-Methyl-2-Pentanone 5.15 43 714117 104.64 ug/l 99 50) Toluene 4.76 92 137821 21.39 ug/l 99 51) t-1,3-Dichloropropene 5.18 75 113218 20.36 ug/l 98 52) Methyl Methacrylate 4.16 41 104338 19.88 ug/l 100	
49) 4-Methyl-2-Pentanone 5.15 43 714117 104.64 ug/l 99 50) Toluene 4.76 92 137821 21.39 ug/l 99 51) t-1,3-Dichloropropene 5.18 75 113218 20.36 ug/l 98 52) Methyl Methacrylate 4.16 41 104338 19.88 ug/l 100	
50) Toluene 4.76 92 137821 21.39 ug/l 99 51) t-1,3-Dichloropropene 5.18 75 113218 20.36 ug/l 98 52) Methyl Methacrylate 4.16 41 104338 19.88 ug/l 100	
51) t-1,3-Dichloropropene 5.18 75 113218 20.36 ug/1 98 52) Methyl Methacrylate 4.16 41 104338 19.88 ug/1 100	
52) Methyl Methacrylate 4.16 41 104338 19.88 119/1 100	
53) cis-1,3-Dichloropropene 4.55 75 124237 20.60 ug/l 99	
53) cis-1,3-Dichloropropene 4.55 75 124237 20.60 ug/l 99 54) 1,1,2-Trichloroethane 5.32 97 62106 19.74 ug/l 98 55) Ethyl methacrylate 5.38 69 125870 20.03 ug/l 98	
55) Ethyl methacrylate 5.38 69 125870 20.03 ug/l 98	
56) 1,3-Dichloropropane 5.59 76 134292 21.13 ug/l 97	
57) 2-Chloroethyl vinyl ether 4.52 63 263921 100.55 ug/l 100	
58) 2-Hexanone 6.02 43 554931 100.88 ug/l 98	
59) Dibromochloromethane 5.49 129 64063 19.81 ug/l 100	
	1
63) Tetrachloroethene 5.11 164 (3278) 20.25 ug/l 98 (43278)	75 ylh.
63) Tetrachloroethene 5.11 164 <u>43278</u> 20.25 ug/l 98(43278/ 64) Chlorobenzene 6.28 112 146547 21.06 ug/l 98	7
65) 1,1,1,2-Tetrachloroethane 6.37 131 51260 21.10 $ug/1$ 95 (40)	3)(O,2600()
66) Hexachloroethane 8.91 117 44689 22.01 ug/l 98	
67) Ethyl Benzene 6.34 91 270555 22.73 ug/l 97 20.	75 //
68) m/p-Xylenes 6.51 106 182090 44.38 ug/l 97 69) o-Xylene 6.99 106 90631 21.97 ug/l 94 70) Styrene 7.06 104 162855 21.54 ug/l 99 71) Bromoform 7.06 173 40955 19.58 ug/l 100	to ugh.
69) o-Xylene 6.99 106 90631 21.97 ug/l 94	U
69) o-Xylene 6.99 106 90631 21.97 ug/l 94 70) Styrene 7.06 104 162855 21.54 ug/l 99 71) Bromoform 7.06 173 40955 19.58 ug/l 100 72) p-/myl / cotate	
71\ $Rromoform$ 7 06 173 40055 10 50/1 100	
72) n-Amyl Acetate 7.55 43 211730 21.74 ug/l 98 74) Isopropylbenzene 7.35 105 235285 22.85 ug/l 100 75) 1,1,2,2-Tetrachloroethane 7.84 83 117172 22.02 ug/l 98 76) 1,2,3-Trichloropropane 7.94 75 86735 21.01 ug/l # 100 77) Bromobenzene 7.69 156 58380 20.99 ug/l 94 78) n-propylbenzene 7.76 91 309554 23.38 ug/l 98 79) p-ethyltoluene 7.86 105 243312 22.43 ug/l 99 80) 2-Chlorotoluene 7.87 91 217072 22.50 ug/l 100	1/
74) Isopropylbenzene 7.35 105 235285 22.85 ug/l 100 //	1//
75) 1,1,2,2-Tetrachloroethane 7.84 83 117172 22.02 ug/l 98 ///	'AM
76) 1,2,3-Trichloropropane 7.94 75 86735 21.01 ug/l # 100	
77) Bromobenzene 7.69 156 58380 20.99 ug/l 94	,
77) Bromobenzene 7.69 156 58380 20.99 ug/l 94 78) n-propylbenzene 7.76 91 309554 23.38 ug/l 98	26/12
79) p-ethyltoluene 7.86 105 243312 22.43 ug/l 99	0 / •
80) 2-Chlorotoluene 7.87 91 217072 22.50 ug/l 100	
81) 1,3,5-Trimethylbenzene 7.96 105 191761 22.93 ug/l 95	
82) trans-1,4-Dichloro-2-buten 8.00 75 51804 20.40 ug/l 96	
83) 4-Chlorotoluene 8.02 91 192364 21.65 ug/l 99	•
84) tert-Butylbenzene 8.22 119 179398 23.09 ug/l 99	
85) 1,2,4-Trimethylbenzene 8.29 105 194727 22.53 ug/l 99	
86) sec-Butylbenzene 8.38 105 260563 22.91 ug/l 100	
87) p-Isopropyltoluene 8.51 119 199969 22.66 ug/l 97	•
88) 1,3-Dichlorobenzene 8.52 146 113343 21.66 ug/l 99	
89) 1,4-Dichlorobenzene 8.61 146 117466 21.52 ug/l 99	
90) p-diethylbenzene 8.81 119 122112 23.11 ug/l 100	
91) n-Butylbenzene 8.85 91 235911 23.51 ug/l 99	
92) 1,2-Dichlorobenzene 8.93 146 116797 22.09 ug/l 97	
93) 1,2,4,5-tetramethylbenzene 9.43 119 212116 21.86 ug/l 99	
94) 1,2-Dibromo-3-Chloropropan 9.55 75 19047 21.64 ug/l 96	532

Data Path : W:\HPCHEM1\Msvoa_K\Data\VK061010\

Data File : VK039507.D

Acq On : 10 Jun 2010 12:17 Operator : MS

: 20 PPB CCC Sample

: 5.00g/5mL,MSVOAK Misc

ALS Vial : 3 Sample Multiplier: 1

Quant Time: Jun 10 12:50:20 2010

Quant Method: W:\HPCHEM1\MSVOA_K\METHOD\82K060910S.M

Quant Title : SW846 8260

QLast Update : Wed Jun 09 14:12:54 2010

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 25% Max. Rel. Area : 150%

	Compound	Amount	Calc.	%Dev Ar	ea%	Dev(min)	
6 Т	Dibromomethane	20.000	20.972	-4.9	98	0.01	
7 T	Bromodichloromethane	20.000		-2.0	98	0.00	
8 S	Toluene-d8	50.000		2.4	87	0.01	·
9 T	4-Methyl-2-Pentanone	100.000		-4.6	99	0.00	
0 CM	Toluene	20.000	21.395	-7.0#	93	0.01	
1 T	t-1,3-Dichloropropene	20.000		-1.8	97	0.01	
2	Methyl Methacrylate	20.000	19.882	0.6	98	0.01	
3 T	cis-1,3-Dichloropropene	20.000	20.605	-3.0	97	0.00	
4 T	1,1,2-Trichloroethane	20.000	19.743	1.3	92	0.01	
5	Ethyl methacrylate	20.000	20.033	-0.2	94	0.01	
6 T	1,3-Dichloropropane	20.000	21.131	-5.7	101	0.01	•
7 T	2-Chloroethyl vinyl ether	100.000	100.549	-0.5	97	0.01	·
8 T	2-Hexanone	100.000	100.881	-0.9	98	0.00	
9 T	Dibromochloromethane	20.000	19.808	1.0	94	0.01	
0 T	1,2-Dibromoethane	20.000	19.965	0.2	96	0.00	
1 S	4-Bromofluorobenzene	50.000	48.779	2.4	87	0.00	
2 I	Chlorobenzene-d5	50.000	50.000	0.0	85	0.01	
3 T	Tetrachloroethene	20.000		-1.2	92	0.00	
4 PM	Chlorobenzene	20.000		-5.3	93	0.00	
5 T	1,1,1,2-Tetrachloroethane	20.000		-5.5	94	0.01 20	7 77 7755 1
6	Hexachloroethane	20.000		-10.1	97	0.01 20.	TI 3.71 ~ 9
7 C	Ethyl Benzene	20.000		-13.6#	97	0.01	
8 T	m/p-Xylenes	40.000	44.381	-11.0	94	0.00	16
9 T	o-Xylene	20.000	21.972	-9.9	95	0.01	
0 T	Styrene		21.543	-7.7	93	0.00	/// U
1 P	Bromoform	20.000	19.580	2.1	92	0.00	
2	n-Amyl Acetate	20.000	21.739	-8.7	98	0.00	_
		20.000	21.759	0.7	90	0.00 /	75 3.7529 Mh 7/20/10
3 I	1,4-Dichlorobenzene-d4	50.000	50.000	0.0	8.6	0.01	1 1 -
4 T	Isopropylbenzene	20.000	22.847	-14.2	94	0.01	
5 P	1,1,2,2-Tetrachloroethane	20.000	22.018	-10.1	98	0.01	
6 T	1,2,3-Trichloropropane	20.000	21.010	-5.1	96	0.01	
7 T	Bromobenzene	20.000	20.988	-4.9	93	0.01	
8 T	n-propylbenzene	20.000		-16.9	95	0.01	
9	p-ethyltoluene	20.000	22.428	-12.1	92	0.00	
0 T	2-Chlorotoluene	20.000	22.499	-12.5	95	0.01	
1 T	1,3,5-Trimethylbenzene	20.000	22.932	-14.7	97	0.01	
2	trans-1,4-Dichloro-2-butene	20.000	20.403	-2.0	91	0.01	
3 T	4-Chlorotoluene	20.000	21.650	-8.2	92	0.00	
4 T	tert-Butylbenzene	20.000	23.090	-15.4	91	0.00	
5 T	1,2,4-Trimethylbenzene	20.000	22.530	-12.7	95	0.01	
6 T	sec-Butylbenzene	20.000	22.905	-14.5	92	0.01	
7 T	p-Isopropyltoluene	20.000	22.655	-13.3	93	0.01	r
8 T	1,3-Dichlorobenzene	20.000	21.657	-8.3	94	0.00	4
9 T	1,4-Dichlorobenzene	20.000	21.522	-7.6	93	0.01	535
	,					-	555

SVOC

Pro Me	SDEC DUSR PROJECT CHEMIST REVIEW RECORD oject: Loohn's Corning thod: SW-846 8270C
	boratory and SDG(s): Chemtech SDG# B2618 te: 7/21//0 //
Rev	viewer: USEPA Region II Guideline
1.	X Case Narrative Review and Data Package Completeness Were problems noted? Where all the samples on the COC analyzed for the requested analyses? YES NO (circle one)
2.	X Holding time and Sample Collection All water samples were extracted within the 7 day holding time, soil is 14 day?
tim acti	X QC Blanks Are method blanks free of contamination? YES (NO) (circle one) methylphthalate (210 μg/kg) was reported in the method blank. An action level was established at ten es the reported detection. Reported detections of dimethylphthalate in the samples were less than the tion level and were qualified non-detect (U). TICs reported in method blank. Results compared to apples and refused. Are Rinse blanks free of contamination? YES NO (NA) (circle one)
	X Instrument Tuning Were all results were within method criteria. VES NO (circle one)
	X Instrument Calibration
	Control Limits (Region II HW-22): Initial Calibration %RSD = 15% Continuing Calibration %D = 20% Average RRF should be ≥0.05 (or reject NDs, J detects or use professional judgment to J/UJ)
	Were all results were within criteria. YES (IO) (circle one) In the initial calibration, the RSD for 2,4-dinitrophenol (56), 4,6-dinitro-2-methylphenol (41), and pentachlorophenol (19) exceeded the QC limit of 15. The sample results for 2,4-dinitrophenol, 4,6-dinitro-2-methylphenol, and pentachlorophenol were non detect and the reporting limits were qualified estimated (UJ).
	In the continuing calibration, the percent difference for 2,4-dinitrophenol (-22) exceeded the QC limit of 20. Sample results for 2,4-dinitrophenol were qualified previously under the initial calibration criteria.
	X Surrogate Recovery (water and soil limits: Base/Neutral 50-140%, Acid 30-140%) Were all results were within limits? (ES) NO (circle one) Were any recoveries < 10%? (Reject fraction compounds if recoveries are < 10%)
	X Matrix Spike (water & soil limits: Base/Neutral 50-140%, Acid 30-140%) (RPD soil=35,water=20)
	Were MS/MSDs submitted/analyzed? (ES) NO
	Were all results were within limits? YES NA (circle one) Sample LCPDI00600110XX was analyzed as an MS/MSD by the laboratory. The MS/MSD percent coveries of benzaldehyde (13 and 13) and 4-chloroaniline (31 and 44) were less than the lower QC limit 50. Results for benzaldehyde and 4-chloroaniline were qualified previously under the LCS criteria.
	X Duplicates/replicates (RPD limits = water: 50, soil: 100)

E:\B2618\Loohns_DUSR_Checklist_SVOC_8270C_2618.doc

Were Field Duplicates submitted/analyzed? YES NO NA (circle one)

Were RPDs within criteria. YES NO NA (circle one)

X Laboratory Control Sample Results (water and soil limits: Base/Neutral 50-140%, Acid 30-140%)

Were all results were within limits? YES NO (circle one)

The LCS percent recovery of benzaldehyde (11), 4-chloroaniline (44), and 3,3-dichlorobenzidine (22) were less than the lower QC limit of 50. Sample results for benzaldehyde, 4-chloroaniline, and 3,3-dichlorobenzidine were non detect and the reporting limits were qualified estimated (UJ).

- 4. X Raw Data Review and Calculation Checks
- 5. X Electronic Data Review and Edits: Does the EDD match the Form I's? YES NO (circle one)
- 6.

 TIC Review and DUSR Table 1 (sample Listing), Table 2 (results summary), Table 3 (Reason Codes), Table 4 (TIC's). Did lab report TICs?

 YES) NO (circle one)

CHEMIECH

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO. LCSS00100110XX Lab Name: Chemtech Contract: MACT03 CHEM Case No.: B2618 SAS No.: SDG No.: Lab Code: B2618 B2618 SOIL Lab Sample ID: Matrix (soil/water): B2618-04 Sample wt/vol: 30.05 (g/mL) Lab File ID: BE064835.D LOW Date Received: 06/09/10 Level: (low/med) Decanted: (Y/N) 06/10/10 13 Date Extracted: % Moisture: Concentrated Extract Volume: 1000 (uL) Date Analyzed: 06/16/10 Injection Volume: Dilution Factor: N/A Extraction: (Type) SOXH GPC Cleanup: (Y/N) N pH: Concentration Units: CAS NO. COMPOUND (ug/L or ug/Kg) ug/Kg Q T.II 100-52-7 Benzaldehyde 380 U 108-95-2 Phenol 380 111-44-4 bis(2-Chloroethyl)ether 380 U 95-57-8 2-Chlorophenol 380 IJ 2-Methylphenol 380 U 95-48-7 108-60-1 2,2-oxybis(1-Chloropropane) 380 U IJ 380 98-86-2 Acetophenone U 65794-96-9 3+4-Methylphenols 380 621-64-7 N-Nitroso-di-n-propylamine 380 U IJ 67-72-1 Hexachloroethane 380 U Nitrobenzene 380 98-95-3 78-59-1 Isophorone 380 U U 2-Nitrophenol 380 88-75-5 U 105-67-9 2,4-Dimethylphenol 380 bis(2-Chloroethoxy)methane 380 U 111-91-1 120-83-2 2,4-Dichlorophenol 380 U U 91-20-3 Naphthalene 380 U J 106-47-8 4-Chloroaniline 380 IJ Hexachlorobutadiene 380 87-68-3 U Caprolactam 380 105-60-2 4-Chloro-3-methylphenol 380 U 59-50-7 IJ 2-Methylnaphthalene 380 91-57-6 U 380 77-47-4 Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 380 U 88-06-2 U 95-95-4 2,4,5-Trichlorophenol 380 380 U 92-52-4 1,1-Biphenyl

Comments:

91-58-7

MMMh 7/2/10

IJ

380

2-Chloronaphthalene

CHEMITECH

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

LCSS00100110XX

Lab Name:	Chemtech			Contr	ract: MACT03			
Lab Code:	CHEM	Case No.:	B2618	SAS No.:	B2618	SDG No.:	B2618	
Matrix (soil/wa	iter):	SOIL			Lab Sample ID:	- B2618-04		
Sample wt/vol:		(g/mL)	<u> </u>		Lab File ID:	BE064835.D		
•			g					
Level: (low/me	(d) <u>L(</u>	OW			Date Received:	06/09/10		
% Moisture:	13	Decanted: (Y/N)	N		Date Extracted:	06/10/10		
Concentrated E	xtract Volume:	1000	(uL)		Date Analyzed:	06/16/10		
njection Volur	ne: <u>1</u>		<u> </u>		Dilution Factor:	1		
GPC Cleanup:	(Y/N)	N pH: N	I/A ·		Extraction: (Type) Concentration Units:	-	XH	
CAS NO.		COMPOUND			(ug/L or ug/K	g) ug/Kg	_	
88-74-4		2-Nitroaniline			380	1	U	
131-11-3		Dimethylphtha	late		450		-B-U	\neg
208-96-8		Acenaphthylen			380		Ŭ /	
606-20-2		2,6-Dinitrotolu			380		U	
99-09-2		3-Nitroaniline			380		U	
83-32-9		Acenaphthene			380		U	
51-28-5		2,4-Dinitrophe	nol		380		Մ Ծ	
100-02-7		4-Nitrophenol			380		U	
132-64-9		Dibenzofuran			380		U	
121-14-2		2,4-Dinitrotolu	iene		380		U	
84-66-2		Diethylphthala	ite		380		U	
7005-72-3	3	4-Chloropheny	l-phenylether		380		U	
86-73-7		Fluorene			380		U	
100-01-6		4-Nitroaniline			380		U .	
534-52-1		4,6-Dinitro-2-1	nethylphenol		380		บ วั	
86-30-6		N-Nitrosodiph	enylamine		380		U	
101-55-3		4-Bromopheny	/l-phenylether		380		Ŭ	
118-74-1		Hexachlorober	nzene		380		U	
1912-24-9)	Atrazine			380		U	
87-86-5		Pentachloroph	enol		380		บ ี วี	
85-01-8		Phenanthrene			61		J	
120-12-7		Anthracene			380		Ŭ	
86-74-8		Carbazole			380		U	
84-74-2		Di-n-butylphth	nalate		63		J	
206-44-0		Fluoranthene			160		J	
129-00-0		Pyrene			130		J	
85-68-7		Butylbenzylph	thalate		130		J	
91-94-1		3,3-Dichlorobe	enzidine		380		υゴ	
56-55-3		Benzo(a)anthra	acene		54		J	

Comments:

Allha 7/21/10

CHEMITECH

191-24-2

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

LCSS00100110XX Lab Name: Chemtech Contract: MACT03 SAS No.: Lab Code: CHEM Case No.: B2618 B2618 SDG No.: B2618 SOIL Lab Sample ID: Matrix (soil/water): B2618-04 Sample wt/vol: 30.05 (g/mL) Lab File ID: BE064835.D LOW Level: (low/med) Date Received: 06/09/10 Decanted: (Y/N) % Moisture: 13 Ν Date Extracted: 06/10/10 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 06/16/10 Dilution Factor: Injection Volume: GPC Cleanup: (Y/N) N pH: N/A Extraction: (Type) SOXH Concentration Units: CAS NO. COMPOUND (ug/L or ug/Kg) ug/Kg Q 218-01-9 Chrysene 80 J 117-81-7 1800 bis(2-Ethylhexyl)phthalate 117-84-0 Di-n-octyl phthalate 55 J 205-99-2 Benzo(b)fluoranthene 87 J Benzo(k)fluoranthene 380 U 207-08-9 50-32-8 Benzo(a)pyrene 55 J Indeno(1,2,3-cd)pyrene 49 J 193-39-5 53-70-3 Dibenz(a,h)anthracene 380 U

93

Benzo(g,h,i)perylene

Comments:

Mlle alzelo

EPA SAMPLE NO.

J

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.
LCSS00100110XX

Lab Name:	Chemtech			Contr	act: MACT03		
Lab Code:	CHEM	Case No.:	B2618	SAS No.:	B2618	SDG No.:	B2618
Matrix (soil/wa	ater):	SOIL	····		Lab Sample ID:	B2618-04	
Sample wt/vol:	30.05	(g/mL) <u>g</u>		Lab File ID:	BE064835.D	
Level: (low/me	ed) <u>L(</u>)W			Date Received:	06/09/10	
% Moisture:	13	Decanted: (Y/N	J) <u>N</u>	·	Date Extracted:	06/10/10	
Concentrated E	Extract Volume:	1000	(uL)		Date Analyzed:	06/16/10	
Injection Volum	me: <u>1</u>			•	Dilution Factor:	1	
GPC Cleanup:	(Y/N)	N pH:	N/A		Concentration Units:	ug/Kg	
Number TICS :	found:	16					

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
127-18-4	Tetrachloroethylene	4.94	1100	NJ
123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	5.35	580	- AB
98-83-9	.alphaMethylstyrene	7.41	890	NJ
3910-35-8	1H-Indene, 2,3-dihydro-1,1,3-trime	15.45	660	J
57-11-4	Octadecanoic acid	17.65	130	J
	unknown17.67	17.67	130	J
72-56-0	Benzene, 1,1-(2,2-dichloroethylid	18.11	1200	J
	unknown18.91	18.91	84	J
	unknown19.22	19.22	220	J
4294-95-5	4-Methoxyanthranilic acid	19.4	560	J
1000111-58-0	2,4-Diphenyl-4-methyl-1-pentene	19.64	210	J
	unknown19.73	19.73	260	J
74579-34-3	3,4-Bis-(methylthio)-quinoline	19.82	6600	J
1140-08-5	2-Methyl-7-phenylindole	19.86	650 .	J
30020-98-5	1-Methyl-3-phenylindole	20.5	170	J
1000147-85-5	(E)-2-Hydroxy-4-cyano-stilbene	30.4	6000	

Aplinalla renta

FORM I SV-TIC

CHEMIECH

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

LCPD100600110XX

Ļab Name:	Chemtech			Cont	ract: MACT03		
Lab Code:	СНЕМ	Case No.:	B2618	SAS No.:	B2618	SDG No.:	B2618
Matrix (soil/w	ater):	SOIL			Lab Sample ID:	B2618 - 17	
Sample wt/vol	: 30.08	(g/m	 L) g		Lab File ID:	BE064836.D	
Level: (low/me		ow			Date Received:		
	_		- 27			06/09/10	
% Moisture:	13	Decanted: (Y/I	v) <u>N</u>		Date Extracted:	06/10/10	
Concentrated I	Extract Volume:	1000	(uL)		Date Analyzed:	06/16/10	
Injection Volu	me: <u>1</u>				Dilution Factor:	1	
GPC Cleanup:	(Y/N)	N pH:	N/A		Extraction: (Type) Concentration Units:	SOX	CH
CAS NO.		COMPOUNI)		(ug/L or ug/K	g) ug/Kg	Q .
100-52-7		Benzaldehyd	e		380		U ' 3
108-95-2		Phenol			380		Ŭ
111-44-4		bis(2-Chloro	ethyl)ether		380		Ŭ
95-57-8		2-Chloropher	nol		380		Ŭ
95-48-7		2-Methylphe	nol		380		U
108-60-1		2,2-oxybis(1-	Chloropropane)		380		U
98-86-2		Acetophenon	e		380		Ŭ
65794-96	-9	3+4-Methylp			380		U
621-64-7			n-propylamine		380	<u> </u>	Ŭ
67-72-1		Hexachloroet	hane		380		Ŭ
98-95-3		Nitrobenzene			380		Ŭ
78-59-1		Isophorone			380		U
88-75-5		2-Nitropheno			380		U
105-67-9		2,4-Dimethyl			380		U
111-91-1			ethoxy)methane		380	<u> </u>	U
120-83-2	۸	2,4-Dichloro	ohenol		380		U
91-20-3		Naphthalene			380		U
106-47-8		4-Chloroanili			380		Z U
87-68-3		Hexachlorob	ıtadiene		380	· ·	Ŭ ·
105-60-2		Caprolactam			380		Ŭ
59-50-7		4-Chloro-3-m			380		U ·
91-57-6		2-Methylnapl	· · · · · · · · · · · · · · · · · · ·		380		U
77-47-4			clopentadiene		380		U
88-06-2		2,4,6-Trichlo			380		Ŭ
95-95-4		2,4,5-Trichlo			380		U
92-52-4		1,1-Biphenyl			380		Ŭ
91-58-7		2-Chloronaph			380		Ŭ
88-74-4 131-11-3		2-Nitroaniling Dimethylphth			380		Ŭ
1 131-11-3		I Dimethylphtr	iaiaie	i	460	I	-R(1

Comments:

Mllh 7/21/10

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

					LCPD100	0600110XX
Lab Name:	Chemtech		Contract:	MACT03		
Lab Code:	СНЕМ	Case No.: <u>B2618</u>	_ SAS No.:	B2618	SDG No.:	B2618
Matrix (soil/wa	ater):	SOIL	– La	b Sample ID:	- B2618-17	
Sample wt/vol:	ŕ	(/ 7)		b File ID:		
-					BE064836.D	•
Level: (low/me	ed) <u>L</u>	<u>OW</u>	Da	ite Received:	06/09/10	
% Moisture:	13	Decanted: (Y/N) N	Da	ite Extracted:	06/10/10	
Concentrated E	Extract Volume:	1000 (uL)	Da	ate Analyzed:	06/16/10	
njection Volu	me: 1		Di	lution Factor:	1	
GPC Cleanup:	(Y/N)	N pH: <u>N/A</u>		traction: (Type) oncentration Units:		XH
CAS NO.		COMPOUND		(ug/L or ug/K	g) ug/Kg	_ Q
208-96-8		Acenaphthylene	380	0	Ī	U
606-20-2		2,6-Dinitrotoluene	380	0		U
99-09-2		3-Nitroaniline	380	0		Ū
83-32-9		Acenaphthene	380	0		U
51-28-5		2,4-Dinitrophenol	380	0		บ ัว
100-02-7		4-Nitrophenol	380	0		U
132-64-9		Dibenzofuran	380	0		U
121-14-2	·	2,4-Dinitrotoluene	380	0		U
84-66-2	· · · · · · · · · · · · · · · · · · ·	Diethylphthalate	380	0		U
7005-72-3		4-Chlorophenyl-phenylether	380	Ó .		Ŭ .
86-73-7	,	Fluorene	380	0		U .
100-01-6		4-Nitroaniline	380	0		U
534-52-1		4,6-Dinitro-2-methylphenol	380	0		υJ
86-30-6		N-Nitrosodiphenylamine	380	0		U
101-55-3		4-Bromophenyl-phenylether	380	0		U
118-74-1		Hexachlorobenzene	380	0		U
1912-24-9) '	Atrazine	380	0		Ŭ
87-86-5		Pentachlorophenol	380	0		υJ
85-01-8		Phenanthrene Phenanthrene	380	0		U
120-12-7		Anthracene	380	0		U
86-74-8		Carbazole	380	0		U
84-74-2		Di-n-butylphthalate	380	0		U
206-44-0		Fluoranthene	380	0		U
129-00-0		Pyrene	380	0		U
85-68-7		Butylbenzylphthalate	380	0		U
91-94-1		3,3-Dichlorobenzidine	380	0		ぴつ
56-55-3		Benzo(a)anthracene	380	0		U
218-01-9	·	Chrysene	380	0		U
117-81-7		bis(2-Ethylhexyl)phthalate	130	0		J

Comments:

FORM I SV-1

7/4/10

EPA SAMPLE NO.

U

191-24-2

Benzo(g,h,i)perylene

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

LCPD100600110XX Lab Name: Chemtech Contract: MACT03 Lab Code: CHEM Case No.: B2618 SAS No.: B2618 SDG No.: B2618 SOIL Matrix (soil/water): Lab Sample ID: B2618-17 Sample wt/vol: 30.08 (g/mL) Lab File ID: BE064836.D LOW Level: (low/med) Date Received: 06/09/10 % Moisture: Decanted: (Y/N) N Date Extracted: 06/10/10 1000 Concentrated Extract Volume: (uL) Date Analyzed: 06/16/10 Injection Volume: Dilution Factor: GPC Cleanup: (Y/N) N N/A pH: Extraction: (Type) SOXH Concentration Units: CAS NO. COMPOUND (ug/L or ug/Kg) ug/Kg Q 117-84-0 Di-n-octyl phthalate 380 U 205-99-2 Benzo(b)fluoranthene 380 U 207-08-9 Benzo(k)fluoranthene 380 U 50-32-8 Benzo(a)pyrene 380 U 193-39-5 Indeno(1,2,3-cd)pyrene 380 U 53-70-3 Dibenz(a,h)anthracene 380 U

380

Allen 7/21/10

Comments:

-1F-

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

LCPD100600110XX

Lab Name:	Chemtech			Cont	ract: MACT03		
Lab Code:	СНЕМ	Case No.:	B2618	SAS No.:	B2618	SDG No.:	B2618
Matrix (soil/wa	nter):	SOIL			Lab Sample ID:	B2618-17	
Sample wt/vol:	30.08	(g/mL	.) <u>g</u>		Lab File ID:	BE064836.D	
Level: (low/me	:d) . <u>LC</u>)W			Date Received:	06/09/10	
% Moisture:	13	Decanted: (Y/I	N) N		Date Extracted:	06/10/10	
Concentrated E	Extract Volume:	1000	(uL)		Date Analyzed:	06/16/10	
Injection Volum	ne: <u>1</u>		<u></u>		Dilution Factor:	1	
GPC Cleanup:	(Y/N) <u>1</u>	N pH:	N/A		Concentration Units:	ug/Kg	
Number TICS t	found:	7					

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
127-18-4	Tetrachloroethylene	4.94	1000	NJ
123-42- 2	2-Pentanone, 4-hydroxy-4-methyl-	5.35	570	- AB
1000297-24-5	3-[(2-Methyl-5-nitro-phenylimino)-	17.68	110	NJ
	unknown17.80	17.8	270	J
630-02-4	Octacosane	18.63	92	J
74579-34-3	3,4-Bis-(methylthio)-quinoline	19.82	740	J
3910-35-8	1H-Indene, 2,3-dihydro-1,1,3-trime	20.13	280	J

M/ M/ 7/21/10

Method Title : Z:\HPCHEM1\BNA E...\8270-BE061410.M (RTE Integrator)

: ASP BNA STANDARDS FOR 5 POINT CALIBRATION

Last Update : Tue Jun 15 12:17:17 2010

Response via : Initial Calibration

Calibration Files

=BE064780.D 25 40 =BE064782.D 10 =BE064781.D =BE064783.D 60 =BE064784.D 80 =BE064785.D 50

		Compound	40	10	25	50	60	80	Avg	%RSD	
1)	I	1,4-Dichlorobenzene-									
2)		1,4-Dioxane						0.474		4.30	
3)		Pyridine						1.213		2.98	
4)		n-Nitrosodimethylam								5.34	
5)	S	2-Fluoropheno1						1.212		4.34	
6)		Aniline						2.054		3.54	
7)	S	Phenol-d5						1.517		4.79	
8)		2-Chlorophenol						1.368		2.76	
9)	_	Benzaldehyde						0.689		14.94	
10)	С	Phenol						1.606		4.55	
11)		bis(2-Chloroethyl)e								3.81	
12)	S	2-Chloropheno1-d4 1,3-Dichlorobenzene						1.200		3.67 3.47	
13)	C	1,4-Dichlorobenzene	1 623	1 629	1.529	1 537	1 523	1 /00	1.500	3.46	
14 _,) 15)	C s	1,2-Dichlorobenzene	0 035	1.020 0.051	0 016	U 803	0 888	0 8/9	0 905	4.02	
16)	5	1,2-Dichlorobenzene	1 500	1 497	1 470	1 428	1 424	1 366	1 447	3.57	
17)		Benzyl Alcohol						1.081		6.07	
18)		2,2'-oxybis(1-Chlor								3.40	
19)		2-Methylphenol							1.129	2.05	
20)		Hexachloroethane						0.589		1.75	
21)	Р	n-Nitroso-di-n-prop								4.23	
22)	_	3+4-Methylphenols		1.536	1.486	1.484	1.463	1.413	1.485	3.00	
23)	I	Naphthalene-d8				-ISTD					
24)		Acetophenone	0.510	0.530	0.521	0.489	0.496	0.466	0.502	4.64	
25)	S	Nitrobenzene-d5						0.359		3.87	
26)		Nitrobenzene ,						0.366		2.81	
27)		Isophorone						0.644		3.66	
28)	С	2-Nitrophenol						0.189		2.19	
29)		2,4-Dimethylphenol						0.309		5.39	
30)		bis(2-Chloroethoxy)								4.48	
31)	С	2,4-Dichlorophenol						0.274		1.90	
32)		1,2,4-Trichlorobenz								2.94	
33)		Naphthalene						0.968	0.065	4.87	18
34)		Benzoic acid 4-Chloroaniline						0.106		2.93	J,01
35) 36)	C	Hexachlorobutadiene								3.74	
37)	C	Caprolactam						0.112		2.11	
38)	C	4-Chloro-3-methylph								2.44	
39)	Ü	2-Methylnaphthalene	0.672	0.684	0.681	0.647	0.654	0.614	0.659	4.03	
40)	I	Acenaphthene-d10				-ISTD-					
41)	_	1,2,4,5-Tetrachloro								2.71	
42)	P	Hexachlorocyclopent	0.319	0.286	0.321	0.337	0.348	0.342	0.326	6.87	
	S	-								4.42	
44)		2,4,6-Trichlorophen								2.09	
45)		2,4,5-Trichlorophen	0.394	0.358	0.383	0.387	0.396	0.389	0.384	3.62	
46)	S	2-Fluorobiphenyl	1.363	1.399	1.355	1.276	1.283	1.189	1.311	5.82	
47)		1,1'-Biphenyl	1.488	1.525	1.484	1.428	1.452	1.353	1.455	4.13	
48)		2-Chloronaphthalene								3.71	
49)		2-Nitroaniline	0.361	0.347	0.355	0.352	0.354	0.339	0.351	2.12	
										/ /	

#) = Out of Range

39 0.301 Mlla 7/2/1.

Response Factor Report GC/MS Ins

Method Title : Z:\HPCHEM1\BNA E...\8270-BE061410.M (RTE Integrator)

: ASP BNA STANDARDS FOR 5 POINT CALIBRATION

Last Update : Tue Jun 15 12:17:17 2010

Response via : Initial Calibration

Calibration Files

=BE064782.D 10 =BE064780.D 25 =BE064781.D 40 =BE064783.D 60 =BE064784.D 80 =BE064785.D 50

	Compound	40	10	25	50	60	80	Avg	%RSD	
50) 51) 52) 53) C 54) 55) P 56) 57) P 58) 59) 60) 61) 62) 63) 64)	Acenaphthylene Dimethylphthalate 2,6-Dinitrotoluene Acenaphthene 3-Nitroaniline 2,4-Dinitrophenol Dibenzofuran	1.866 1.399 0.332 1.133 0.359 0.056 1.710 0.273 0.432 1.391 0.317 1.369 0.673 0.369	1.914 1.415 0.314 1.111 0.342 0.013 1.733 0.238 0.400 1.430 0.285 1.345 0.692 0.351	1.877 1.378 0.330 1.104 0.345 0.038 1.686 0.255 0.411 1.390 0.300 1.354 0.661 0.358	1.805 1.353 0.324 1.102 0.348 0.077 1.627 0.272 0.420 1.328 0.311 1.326 0.646 0.363	1.807 1.368 0.329 1.116 0.354 0.091 1.634 0.279 0.422 1.347 0.315 1.328 0.654 0.372	1.695 1.276 0.308 1.066 0.331 0.110 1.525 0.268 0.402 1.258 0.303 1.252 0.617	1.827 1.365 0.323 1.105 0.347 0.064 1.653 0.264 0.414 1.357 0.305 1.329 0.657	4.23 3.57 2.94 2.02 2.82 55.51 4.55 5.70 2.92 4.46 3.97 3.08 3.86	
65) I 66) C 67) C 68) 69) 70) 71) C 72) 73) 74) 75)	Anthracene Carbazole	0.086 0.690 0.221 0.217 0.209 0.104 1.117 1.133 1.094 1.288	0.026 0.694 0.222 0.224 0.225 0.069 1.160 1.174 1.122 1.303	0.060 0.707 0.224 0.218 0.226 0.092 1.135 1.151 1.096 1.288	0.099 0.670 0.213 0.213 0.220 0.113 1.076 1.105 1.048 1.229	0.107 0.672 0.216 0.213 0.219 0.118 1.069 1.102 1.042	0.118 0.651 0.215 0.209 0.213 0.122 1.029 1.051 0.997 1.154	0.681 0.219 0.216 0.219 0.103 1.098 1.119 1.066 1.248	2.98 2.07 2.44 3.04 19.37 4.40 3.84 4.29	
77) I 78) 79) 80) S 81) 82) 83) 84) 85) 86) C	Chrysene-d12 Benzidine Pyrene Terphenyl-d14 Butylbenzylphthalat Benzo(a) anthracene 3,3'-Dichlorobenzid Chrysene Bis(2-ethylhexyl) ph Di-n-octyl phthalat Indeno(1,2,3-cd) pyr	0.548 1.289 0.877 0.571 1.159 0.419 1.107 0.762	0.526 1.301 0.909 0.552 1.132 0.409 1.103 0.753 1.156 1.086	0.577 1.310 0.890 0.573 1.148 0.424 1.101 0.763 1.208 1.092	0.557 1.226 0.834 0.555 1.113 0.410 1.076 0.747 1.231 1.110	0.551 1.220 0.827 0.564 1.128 0.400 1.073 0.749 1.237 1.121	0.782 0.542 1.081 0.384 1.032 0.725 1.209 1.099	0.544 1.253 0.853 0.559 1.127 0.408 1.082 0.750 1.215	2.16 2.46 3.49 2.65 1.86 2.70 1.33 $z = 0.75010$	145
88) I 89) 90) 91) C 92) 93)	Perylene-d12 Benzo(b) fluoranthen Benzo(k) fluoranthen Benzo(a) pyrene Dibenzo(a,h) anthrac Benzo(g,h,i) perylen	1.223 1.181 1.054	1.164 1.185 1.095 0.964	1.236 1.147 1.023	1.196 1.192 1.132 1.017	1.180 1.206 1.139 1.008	1.177 1.157 1.123 1.011	1.200 1.136 1.013	2.35 2 150 = 2.05 2.36 2.50 2.89 2.33	7

Mallen = 121/10

Data Path : \\TERASTORAGE\SVOASRV\HPCHEM1\BNA_E\DATA\BE061410\

Data File : BE064780.D

: 14 Jun 2010 13:00 Acq On

Operator : QM

: 10 ng BNA ICC Sample

Misc

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jun 15 04:05:12 2010

Quant Method: Z:\HPCHEM1\BNA E\METHOD\8270-BE061410.M Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION QLast Update : Tue Jun 15 03:54:15 2010

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) 1,4-Dichlorobenzene-d4	7.91	152	131044	20.00 ng	0.00
23) Naphthalene-d8	10.15	136	513237	20.00 ng	0.00
40) Acenaphthene-d10	13.44	164	289537	20.00 ng	0.00
65) Phenanthrene-d10	16.08		498244	20.00 ng	0.00
77) Chrysene-d12	19.52		495819	20.00 ng	0.00
88) Perylene-d12	22.89	264	452947	20.00 ng	0.00
System Monitoring Compounds					
5) 2-Fluorophenol	5.84	112	178199	17.92 ng	0.00
7) Phenol-d5	7.24	99	227648	19.40 ng	0.00
12) 2-Chlorophenol-d4	7.53	132	174188	19.31 ng	0.00
<pre>15) 1,2-Dichlorobenzene-d4</pre>	8.17	152	124582	20.65 ng	0.00
25) Nitrobenzene-d5	8.85	82	204672	25.47 ng	0.00
43) 2,4,6-Tribromophenol	14.94		42885	20.38 ng	0.00
46) 2-Fluorobiphenyl	12.15		404928	20.82 ng	0.00
80) Terphenyl-d14	18.01	244	450585	22.36 ng	0.00
Target Compounds					Qvalue
2) 1,4-Dioxane	3.60	88	35015	8.04 ng	# 69
3) Pyridine	4.06	79	80574	7.32 ng	96
4) n-Nitrosodimethylamine	3.98	42	38568	9.29 ng	91
6) Aniline	7.34	93	147363	9.83 ng	98
8) 2-Chlorophenol	7.55	128	95184	9.39 ng	97
9) Benzaldehyde	7.18	77	66248	17.10 ng	95
10) Phenol	7.27	94	118453	9.65 ng	99
11) bis(2-Chloroethyl)ether	7.42	93	96597	9.37 ng	99
13) 1,3-Dichlorobenzene	7.81		101670	9.88 ng	98
14) 1,4-Dichlorobenzene	7.94		106701	10.17 ng	99
16) 1,2-Dichlorobenzene	8.19		98057	10.08 ng	99
17) Benzyl Alcohol	8.10	79	62367	10.35 ng	92
18) 2,2'-oxybis(1-Chloropropan	8.33		112207	7.53 ng	98 93
19) 2-Methylphenol 20) Hexachloroethane	8.28 8.79		76131 40130	10.55 ng 10.80 ng	90
·	8.55		68714	10.80 ng	90 97
<pre>21) n-Nitroso-di-n-propylamine 22) 3+4-Methylphenols</pre>	8.54		100637	10.79 ng	98
24) Acetophenone	8.57		136061	11.29 ng	# 98
26) Nitrobenzene	8.88	77	100842	12.46 ng	99
27) Isophorone	9.29	82	182436	11.66 ng	99
28) 2-Nitrophenol	9.45	139	48300	9.33 ng	96
29) 2,4-Dimethylphenol	9.49		83908	9.20 ng	98
30) bis(2-Chloroethoxy)methane	9.66		114072	9.95 ng	99
31) 2,4-Dichlorophenol	9.89		72342	10.35 ng	98
32) 1,2,4-Trichlorobenzene	10.04		82923	11.45 ng	98
33) Naphthalene	10.19		282563	10.24 ng	99
35) 4-Chloroaniline	10.27		116669	10.11 ng	98
36) Hexachlorobutadiene	10.41		48680	16.42 ng	91
37) Caprolactam	10.85		29774	10.33 ng	96
38) 4-Chloro-3-methylphenol	11.16	107	83799	13.08 ng	97
39) 2-Methylnaphthalene	11.47	142	175520	10.86 ng	98
41) 1,2,4,5-Tetrachlorobenzene	11.78	216	79572	11.20 ng	99

Data Path : \\TERASTORAGE\SVOASRV\HPCHEM1\BNA_E\DATA\BE061410\

Data File : BE064780.D

Acg On : 14 Jun 2010 13:00

Operator : QM

Sample : 10 ng BNA ICC

Misc :

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jun 15 04:05:12 2010

Quant Method: Z:\HPCHEM1\BNA_E\METHOD\8270-BE061410.M
Quant Title: ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update : Tue Jun 15 03:54:15 2010

Response via: Initial Calibration

Interna	l Standards	R.T.	QIon	Response	Conc Units	Dev(Min)	
42) He	xachlorocyclopentadiene	11.77	237	41455	9.90 ng	97	
44) 2.	Aachiolocyclopentadiene 4,6-Trichlorophenol 4,5-Trichlorophenol 1'-Biphenyl Chloronaphthalene Nitroaniline enaphthylene methylphthalate	12.00	196	52984	10.10 ng 9.40 ng 8.96 ng 9.58 ng 9.41 ng	95	
45) 2,	4,5-Trichlorophenol	12.07	196	51776	9.40 ng	95	
47) 1,	1'-Biphenvl	12.34	154	220837	8.96 ng	99	
48) 2-	Chloronaphthalene	12.39	162	178652	9.58 ng	100	
49) 2-	Nitroaniline	12.57	65	50227	9.41 ng	95	
50) Ac	enaphthvlene	13.18	152	277118	9.19 ng	. 99	
51) Di:	methylphthalate	12.90	163	204908	11.07 ng	99	
52) 2,	6-Dinitrotoluene	13.02	165	45476	10.14 ng	95	
53) Ac	6-Dinitrotoluene enaphthene Nitroaniline benzofuran	13.51	154	160780	10.14 ng 8.73 ng 8.70 ng	99 95 100 100	
54) 3-	Nitroaniline	13.34	138	49517	8.70 ng	100	
56) Di	benzofuran	13.83	168	250879	10.30 ng	98	
571 4-	Nitrophenol	13.68	139	34514	737 ng	99	
58) 2,	4-Dinitrotoluene	13.78	165	57963	10.55 ng	96	
59) Fl	4-Dinitrotoluene uorene 3,4,6-Tetrachlorophenol	14.48	166	207039	10.76 ng	99	
60) 2,	3,4,6-Tetrachlorophenol	14.06	232	41204	10.82 ng	98	
61) Di	ethylphthalate	14.23	149	194100	10.82 ng 10.88 ng	99	
62) 4-	Chlorophenyl-phenylether	14.47	204	100128	13.16 ng	96	
	Nitroaniline	14.49	138	50804	8.77 ng	97	
64) Az	obenzene	14.77	77	202129	11.18 ng	98	
66) 4,	6-Dinitro-2-methylphenol	14.56	198	6499	1.98 ng	91	
67) n-	Nitrosodiphenylamine	14.69	169	172900	9.46 ng 10.99 ng 10.51 ng	97	
68) 4-	Bromophenyl-phenylether	15.37	248	55246	10.99 ng	94	
69) He	xachlorobenzene razine	15.49	284	55864	10.51 ng	96	
70) At	razine	15.61	200	55995	12.77 ng	98	
71) Pe	ntachlorophenol	15.79	266	. 17134	5.27 ng	95	
72) Ph	enanthrene thracene rbazole	16.11	178	289072	9.93 ng	99	
.73) An	thracene .	16.18	178	292399	9.95 ng	98	
74) Ca	rbazole	16.40	167	279465	9.95 ng 9.72 ng 9.50 ng	99	
75) Di	-n-butylphthalate	16.83	149	324640	9.50 ng	99	
76) Fl	uoranthene	17.61	202	305316	11.91 ng	100	
78) Be	nzidine	17.73	184		9.09 ng		
79) Py	rene	17.87	202		9.04 ng	99	
81) Bu	rbazole -n-butylphthalate uoranthene nzidine rene tylbenzylphthalate	18.58	149	136780	7.97 ng	99	
82) Be	nzo(a)anthracene	19.50	228	280655	9.98 ng 10.15 ng 9.92 ng	100	
83) 3,	3'-Dichlorobenzidine rysene	19.41	252	101386	10.15 ng	96	
84) Ch	rysene	19.57	228	273511	9.92 ng	99	(186795)(20)
	s(2-ethylhexyl)phthalate			<u>186798</u>	7.68 ng	96	(130113)
	-n-octyl phthalate	20.61	149	286644	7.70 ng	99,	(1195019) (10)
	deno(1,2,3-cd)pyrene	28.26		216932	7.76 ng	# 10d	(4959.19) (10) = (0,753492706
	nzo(b)fluoranthene	21.78		263591	9.96 ng	99	1/10 22/16
90) Be	nzo(k)fluoranthene	21.85		268367	9.14 ng	98	0,7534727
	nzo(a)pyrene	22.72		248045	9.53 ng	96	
	benzo(a,h)anthracene	27.07		218260	9.12 ng	99	
93) Be	nzo(g,h,i)perylene	28.26	276	216932	8.63 ng	97	
							1111

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed $\frac{1}{2}$

96

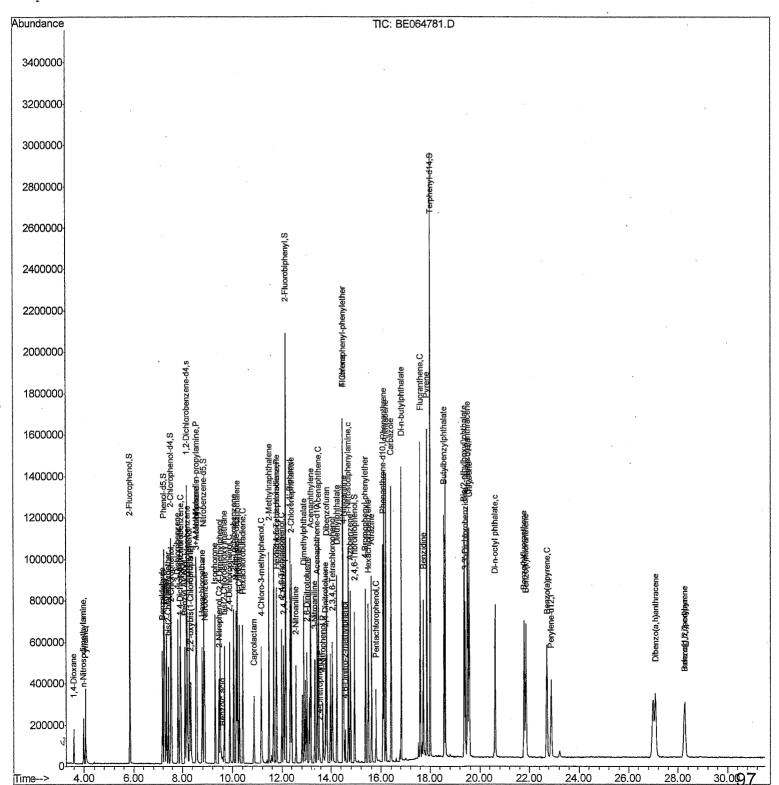
Data Path : \\TERASTORAGE\\SVOASRV\\HPCHEM1\\BNA_E\\DATA\\BE061410\\

Data File : BE064781.D

Acq On : 14 Jun 2010 13:44

Operator : QM

Sample : 25 ng BNA ICC


Misc

ALS Vial : 3 Sample Multiplier: 1

Quant Time: Jun 15 04:07:47 2010

Quant Method: Z:\HPCHEM1\BNA_E\METHOD\8270-BE061410.M Quant Title: ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update : Tue Jun 15 03:54:15 2010

Data Path : \\TERASTORAGE\\SVOASRV\\HPCHEM1\\BNA E\\DATA\\BE061410\\

Data File : BE064781.D

Acq On : 14 Jun 2010 13:44

Operator : QM

Sample : 25 ng BNA ICC

Misc :

ALS Vial : 3 Sample Multiplier: 1

Quant Time: Jun 15 04:07:47 2010

Quant Method: Z:\HPCHEM1\BNA_E\METHOD\8270-BE061410.M
Quant Title: ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update : Tue Jun 15 03:54:15 2010

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) 1,4-Dichlorobenzene-d4 23) Naphthalene-d8 40) Acenaphthene-d10 65) Phenanthrene-d10 77) Chrysene-d12 88) Perylene-d12	10.15 13.44 16.08			20.00 ng 20.00 ng 20.00 ng 20.00 ng 20.00 ng 20.00 ng	0.00 0.00 0.00 0.00 0.00
System Monitoring Compounds 5) 2-Fluorophenol 7) Phenol-d5 12) 2-Chlorophenol-d4 15) 1,2-Dichlorobenzene-d4 25) Nitrobenzene-d5 43) 2,4,6-Tribromophenol 46) 2-Fluorobiphenyl 80) Terphenyl-d14	5.85 7.24 7.53 8.17 8.85 14.94 12.16 18.01	172	420380 539656 412074 290157 488117 109952 951755 1029757	43.70 ng 47.53 ng 47.22 ng 49.71 ng 63.53 ng 53.86 ng 50.45 ng 54.73 ng	0.00 0.00 0.00
Target Compounds 2) 1,4-Dioxane 3) Pyridine 4) n-Nitrosodimethylamine 6) Aniline 8) 2-Chlorophenol 9) Benzaldehyde 10) Phenol 11) bis(2-Chloroethyl)ether 13) 1,3-Dichlorobenzene 14) 1,4-Dichlorobenzene 16) 1,2-Dichlorobenzene 17) Benzyl Alcohol 18) 2,2'-oxybis(1-Chloropropan 19) 2-Methylphenol 20) Hexachloroethane 21) n-Nitroso-di-n-propylamine 22) 3+4-Methylphenols 24) Acetophenone 26) Nitrobenzene 27) Isophorone 28) 2-Nitrophenol 29) 2,4-Dimethylphenol 30) bis(2-Chloroethoxy)methane 31) 2,4-Dichlorophenol 32) 1,2,4-Trichlorobenzene 33) Naphthalene 34) Benzoic acid 35) 4-Chloroaniline 36) Hexachlorobutadiene 37) Caprolactam 38) 4-Chloro-3-methylphenol 39) 2-Methylnaphthalene	3.60 4.06 3.98 7.34 7.56 7.27 7.43 7.81 7.94 8.20 8.34 8.79 8.55 8.57 8.88 9.49 9.49 9.89 10.19 9.89 10.27 10.86 11.16 11.47	93 146 146 146 79 45 107 107 105 77 82 139 122 93 162 128 122 127 225	83216 201613 90709 354152 231500 157141 279113 229156 242247 250995 232887 166197 263796 179007 97133 164354 235434 319552 241709 435539 120850 218584 271529 175168 203281 671810 19630m 285098 114713 70195 205601 417838	19.75 ng 18.94 ng 22.59 ng 24.43 ng 23.62 ng 41.92 ng 23.51 ng 22.99 ng 24.73 ng 24.74 ng 28.52 ng 18.31 ng 25.65 ng 27.03 ng 30.96 ng 27.74 ng 31.25 ng 24.41 ng 25.07 ng 24.41 ng 25.07 ng 24.76 ng 25.47 ng 25.48 ng 33.39 ng 25.48 ng 33.39 ng 25.48 ng 33.39 ng 25.47 ng 25.47 ng 25.47 ng 27.05 ng	Qvalue 70 98 98 98 98 98 98 99 99 99 99

Data Path : \\TERASTORAGE\SVOASRV\HPCHEM1\BNA_E\DATA\BE061410\

Data File : BE064781.D

Acq On : 14 Jun 2010 13:44

Operator : QM

Sample : 25 ng BNA ICC

Misc :

ALS Vial : 3 Sample Multiplier: 1

Quant Time: Jun 15 04:07:47 2010

Quant Method : Z:\HPCHEM1\BNA_E\METHOD\8270-BE061410.M
Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update : Tue Jun 15 03:54:15 2010

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)	
41) 1,2,4,5-Tetrachlorobenze	ne 11.79	216	190189	27.60 ng	99	
42) Hexachlorocyclopentadien			112570	27.72 ng	100	
44) 2,4,6-Trichlorophenol	12.00	196	129101		96	
45) 2,4,5-Trichlorophenol	12.08		129101 134394	25.15 ng	99	
47) 1,1'-Biphenyl	12.34		521007	21.80 ng	99	
48) 2-Chloronaphthalene	12.39		424025	23.44 ng	100	
49) 2-Nitroaniline	12.57		124719		98	
50) Acenaphthylene	13.18	152	659040	22.53 ng	99	
51) Dimethylphthalate	12.90	163	483889 115712 387525 121235	26.95 ng	99	
52) 2,6-Dinitrotoluene	13.03	165	115712	26.59 ng	98	
53) Acenaphthene			387525	21.68 ng	97	
54) 3-Nitroaniline	13.34	138	121235	21.97 ng	98	
55) 2,4-Dinitrophenol 56) Dibenzofuran	13.54	184	13432	6.36 ng	89	
56) Dibenzofuran	13.83	168	591966		99	•
57) 4-Nitrophenol	13.68	139	89414	19.68 ng	98	
58) 2.4-Dinitrotoluene			144372	27.08 ng	98	
58) 2,4-Dinitrotoluene 59) Fluorene	14.48	166	89414 144372 488036 105181	26.15 ng	96	•
60) 2,3,4,6-Tetrachloropheno	14.06	232	105181	28.47 ng	97	
61) Diethylphthalate	14.24	149	475280	27.37 ng	100	
62) 4-Chlorophenyl-phenyleth			232255		98	•
63) 4-Nitroaniline			125577		97	
64) Azobenzene	14.78		480899	27.41 ng	99	
66) 4,6-Dinitro-2-methylpher			480899 36061	11.49 ng	98	
67) n-Nitrosodiphenylamine			422378	24.12 ng		
68) 4-Bromophenyl-phenylethe	14.05 r 15.37	248	134007	27.81 ng		
69) Hexachlorobenzene :	15.37	284	130323	25.58 ng	98	
70) Atrazine	15.62	200	135213		98	
71) Pentachlorophenol			55199	17 70 ng	98	
72) Phenanthrene	16.12	178	677748	17.70 ng 24.27 ng 24.40 ng	99	
73) Anthracene	16.19		687093	24.27 mg	. 98	
74) Carbazole	16:10	167	654333	23.73 ng	99	
75) Di n butulahthalata	16.40 16.83	149	769237	23.48 ng	> 99	
75) Di-n-butylphthalate 76) Fluoranthene	17.61	202	707997		100	
78) Benzidine	17.01	184			99	
78) Benzidine 79) Pyrene	17.73	202	757750	24.92 ng 22.74 ng	100	
01) Putulbongulahthalata	10.50	149	757750	20.70 ng	99	
81) Butylbenzylphthalate	19.51	228	331560 664452	25.32 ng	99	
82) Benzo(a) anthracene	19.31		245345	26.32 ng	99	
83) 3,3'-Dichlorobenzidine			636866	24.74 ng	98	
84) Chrysene	19.57 ate 19.37		441693		90	(441693 \ (20)
85) Bis(2-ethylhexyl)phthala				19.45 ng	99	
86) Di-n-octyl phthalate	20.61		699110	20.11 ng	# 100	(462864 (LS)
87) Indeno(1,2,3-cd)pyrene	28.27		517902	19.84 ng	# 100	()
89) Benzo(b) fluoranthene	21.79		627217	25.71 ng 23.82 ng	99	2000 (39/
90) Benzo(k) fluoranthene	21.86		645385		99	0.463403
91) Benzo(a)pyrene	22.73		599097	24.96 ng	22 70	. /
92) Dibenzo(a,h)anthracene	27.07		534050	24.18 ng	97	10/1
93) Benzo(g,h,i)perylene	28.27 	276	517902 	22.35 ng	98 	A/ (Mm 7/21/10
(#) = qualifier out of range	(m) = man	ual i	ntegration	(+) = signa	ls summed	(441693)(20) (462864 (65) = 0.76380539/ Mm 7/21/16

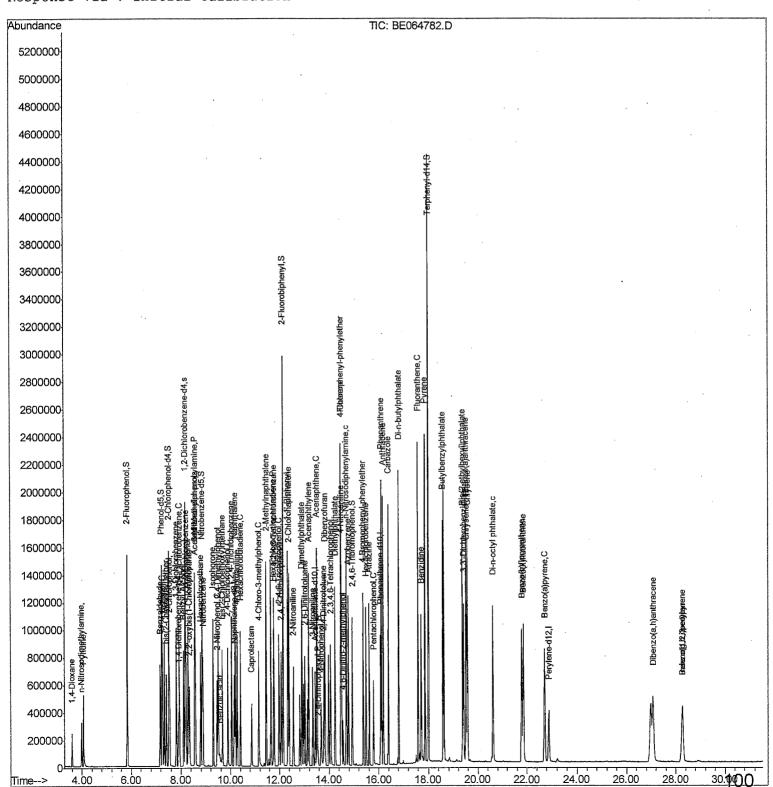
Data Path : \\TERASTORAGE\SVOASRV\HPCHEM1\BNA E\DATA\BE061410\

Data File : BE064782.D

Acq On : 14 Jun 2010 14:23

Operator : QM

Sample : 40 ng BNA ICC


Misc

ALS Vial: 4 Sample Multiplier: 1

Quant Time: Jun 15 04:02:41 2010

Quant Method: Z:\HPCHEM1\BNA_E\METHOD\8270-BE061410.M Quant Title: ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update : Tue Jun 15 03:54:15 2010

Data Path : \\TERASTORAGE\\SVOASRV\\HPCHEM1\\BNA_E\\DATA\\BE061410\\

Data File : BE064782.D

Acq On : 14 Jun 2010 14:23

Operator : QM

Sample : 40 ng BNA ICC

Misc :

ALS Vial : 4 Sample Multiplier: 1

Quant Time: Jun 15 04:02:41 2010

Quant Method : Z:\HPCHEM1\BNA_E\METHOD\8270-BE061410.M Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update : Tue Jun 15 03:54:15 2010

1) 1,4-Dichlorobenzene-d4 7.91 152 114286 20.00 ng	0.00
23) Naphthalene-d8 10.15 136 456672 20.00 ng	0.00
40) Acenaphthene-d10 13.45 164 254022 20.00 ng	0.00
65) Phenanthrene-d10 16.08 188 441117 20.00 ng	0.00
77) Chrysene-d12 19.52 240 435015 20.00 ng	0.00
88) Perylene-d12 22.89 264 390531 20.00 ng	0.00
System Monitoring Compounds	
5) 2-Fluorophenol 5.84 112 620814 71.58 ng	0.00
7) Phenol-d5 7.24 99 770335 75.26 ng 12) 2-Chlorophenol-d4 7.53 132 601395 76.44 ng	0.00
12) 2-Chlorophenol-d4 7.53 132 601395 76.44 ng 15) 1,2-Dichlorobenzene-d4 8.17 152 427534 81.25 ng	0.00
25) Nitrobenzene-d5 8.85 82 707868 98.99 ng	0.00
43) 2,4,6-Tribromophenol 14.94 330 167524 90.74 ng	0.00
46) 2-Fluorobiphenyl 12.15 172 1384859 81.17 ng	0.00
80) Terphenyl-d14 18.01 244 1526499 86.33 ng	0.00
Target Compounds	Qvalue
	# 70
3) Pyridine 4.06 79 301714 31.45 ng	100
4) n-Nitrosodimethylamine 3.98 42 130604 36.08 ng	100
6) Aniline 7.35 93 507711 38.84 ng	100
8) 2-Chlorophenol 7.56 128 335044 37.92 ng	100
9) Benzaldehyde 7.18 77 218732 64.72 ng	100
10) Phenol 7.27 94 413179 38.61 ng	100
11) bis(2-Chloroethyl)ether 7.43 93 331615 36.90 ng	100
13) 1,3-Dichlorobenzene 7.81 146 352961 39.32 ng 14) 1,4-Dichlorobenzene 7.94 146 370973 40.54 ng	100 100
14) 1,4-Dichlorobenzene 7.94 146 370973 40.54 ng 16) 1,2-Dichlorobenzene 8.20 146 342957 40.42 ng	100
17) Benzyl Alcohol 8.11 79 257457 49.01 ng	100
18) 2,2'-oxybis(1-Chloropropan 8.33 45 383464 29.52 ng	100
19) 2-Methylphenol 8.28 107 262598 41.74 ng	100
20) Hexachloroethane 8.79 117 141688 43.74 ng	100
21) n-Nitroso-di-n-propylamine 8.56 70 237372 49.59 ng	100
22) 3+4-Methylphenols 8.55 107 348744 42.86 ng	100
24) Acetophenone 8.58 105 465749 43.45 ng	100
26) Nitrobenzene 8.88 77 357516 49.66 ng	100
27) Isophorone 9.29 82 639565 45.93 ng	100
28) 2-Nitrophenol 9.45 139 180488 39.17 ng	100
29) 2,4-Dimethylphenol 9.49 122 284669m 35.09 ng	100
30) bis(2-Chloroethoxy) methane 9.67 93 393599 38.57 ng	100
31) 2,4-Dichlorophenol 9.89 162 263129 42.32 ng	100
32) 1,2,4-Trichlorobenzene 10.04 180 297874 46.21 ng 33) Naphthalene 10.19 128 979993 39.93 ng	100 100
34) Benzoic acid 9.56 122 57691m 10.72 ng	100
35) 4-Chloroaniline 10.27 127 413785 40.31 ng	100
36) Hexachlorobutadiene 10.41 225 167124 63.35 ng	100
37) Caprolactam 10.87 113 108019 42.12 ng	100
38) 4-Chloro-3-methylphenol 11.16 107 301430 52.88 ng	100
39) 2-Methylnaphthalene 11.47 142 613668 42.69 ng	100

Data Path : \\TERASTORAGE\\SVOASRV\\HPCHEM1\\BNA_E\\DATA\\BE061410\\

Data File : BE064782.D

Acq On : 14 Jun 2010 14:23

Operator : QM

Sample : 40 ng BNA ICC

Misc :

ALS Vial : 4 Sample Multiplier: 1

Quant Time: Jun 15 04:02:41 2010

Quant Method : Z:\HPCHEM1\BNA_E\METHOD\8270-BE061410.M Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update : Tue Jun 15 03:54:15 2010

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)	
41) 1,2,4,5-Tetrachlorobenzene	11.79	216	278424	44.68 ng	. 100	
12\ Weyachlorocyclopentadiene	11 77	237	162151	44 16 na	100	
44) 2,4,6-Trichlorophenol 45) 2,4,5-Trichlorophenol 47) 1,1'-Biphenyl 48) 2-Chloronaphthalene	12.00	196	193417	42.02 ng 41.43 ng	100	
45) 2.4.5-Trichlorophenol	12.08	196	200240	41.43 ng	100	
47) 1.1'-Biphenyl	12.34	154	756218	34.98 ng	100	
48) 2-Chloronaphthalene	12.39	162	619120	27 04	100	
49) 2-Nitroaniline	12.57	65	183204	39.11 ng	100	
50) Acenaphthylene	13.18	152	947930	35.83 ng	100	
48) 2-Chloronaphthalene 49) 2-Nitroaniline 50) Acenaphthylene 51) Dimethylphthalate 52) 2,6-Dinitrotoluene 53) Acenaphthene 54) 3-Nitroaniline	12.91	163	710511	43.76 ng	100	
52) 2.6-Dinitrotoluene	13.02	165	168658	42.86 ng	100	
53) Acenaphthene	13.51	154	575862	35.62 ng	100	
54) 3-Nitroaniline 55) 2,4-Dinitrophenol	13.35	138	182415	36.55 ng	100	
55) 2.4-Dinitrophenol	13.54	184	28628	14.98 ng	100	
56) Dibenzofuran	13.83	168	868987	40.65 ng	100	
57) 4-Nitrophenol			138898	33.81 ng	100	
58) 2.4-Dinitrotoluene	13.79	165	219236	45.47 ng	100	
58) 2,4-Dinitrotoluene 59) Fluorene	14.48	166	706761	33.81 ng 45.47 ng 41.87 ng	100	•
60) 2,3,4,6-Tetrachlorophenol	14.06		161108	48.22 ng	100	
61) Diethylphthalate	14.24		695422	44.28 ng	100	
62) 4-Chlorophenyl-phenylether				51.22 ng		
			187398	36.89 ng	100	
63) 4-Nitroaniline 64) Azobenzene	14 77	77	711131	44 82 ng	100	
66) 4,6-Dinitro-2-methylphenol	14 56	198	75516	26.05 ng	100	
67) n-Nitrosodiphenylamine	14 69	169	608981	44.82 ng 26.05 ng 37.65 ng	. 100	
68) 4-Bromophenyl-phenylether	15.37	248	195369	43.90 ng	100	
69) Hexachlorobenzene	15.49			40.73 ng		
70) Atrazine	15.62			47.54 ng		
71) Pentachlorophenol	15.79			31.74 ng	100	
72) Phonanthrene	16.11		985136	38 21 ng		
72) Phenanthrene 73) Anthracene 74) Carbazole 75) Di-n-butylphthalate 76) Fluoranthene	16.19	178	999453	38.21 ng 38.43 ng	100	
74) Carbazolo	16.40	167	964724	37.89 ng	100	
75) Di-n-butylohthalate	16.40	149	1135983	37.54 ng	100	
76) Fluoranthono	17.61			46.53 ng		
70) Ponzidino	17.01	184		37.91 ng		
70) Delizidine	17 87	202	1121863	35.82 ng	100	
78) Benzidine 79) Pyrene 81) Butylbenzylphthalate 82) Benzo(a)anthracene	18 58	1/19	497045	35.82 ng 33.03 ng 40.88 ng	100	
82) Benzo(a)anthracene	10.50	228	1008486	40.88 ng	100	
83) 3,3'-Dichlorobenzidine	19.41		364711	41.63 ng	100	
84) Chrysene	19.41		963353	39.81 ng		
· · · · · · · · · · · · · · · · · · ·		149	662738	31.05 ng	100	(662738) (20)
85) Bis(2-ethylhexyl)phthalate	20.61		1086020	33.23 ng	100	
86) Di-n-octyl phthalate 87) Indeno(1,2,3-cd)pyrene	28.27		802965	32.72 ng	# 100	(12,5015) (40)
	21.79		971582	42.60 ng	π ±00	(662738) (20) (43505) (40)= 0.761741549
89) Benzo(b) fluoranthene	21.79		955571	37.73 ng	100	م مدسور
90) Benzo(k) fluoranthene	22.72		922610	41.11 ng	100	0.761741549
91) Benzo(a)pyrene	27.72		823567	39.89 ng	100	, -
92) Dibenzo(a,h)anthracene 93) Benzo(g,h,i)perylene	28.27		802965	37.07 ng	100	
						•

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

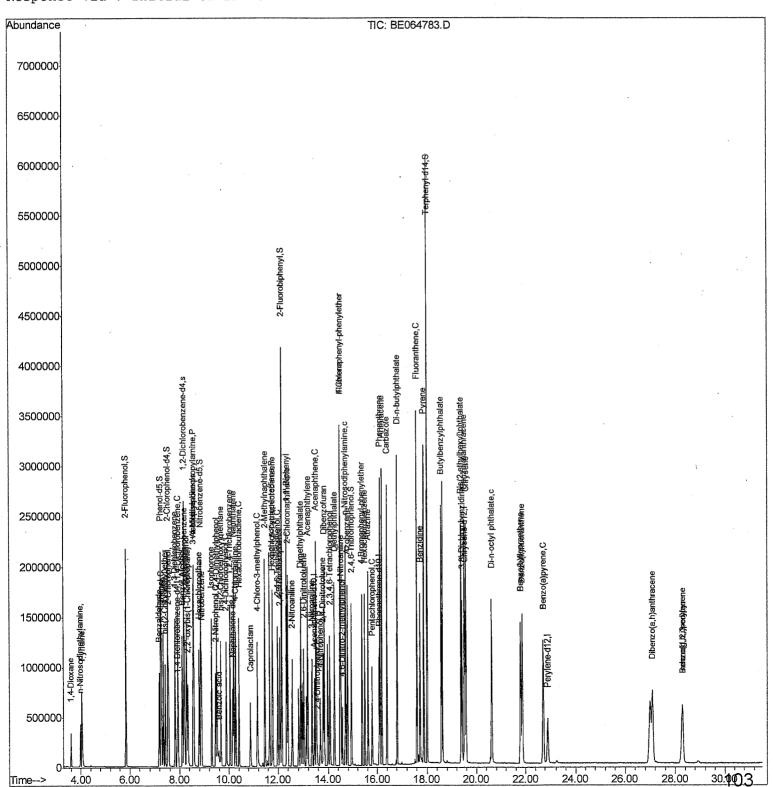
Data Path : \\TERASTORAGE\SVOASRV\HPCHEM1\BNA_E\DATA\BE061410\

Data File: BE064783.D

Acq On : 14 Jun 2010 15:05

Operator : QM

Sample : 50 ng BNA ICC


Misc

ALS Vial : 5 Sample Multiplier: 1

Quant Time: Jun 15 04:10:12 2010

Quant Method: Z:\HPCHEM1\BNA_E\METHOD\8270-BE061410.M Quant Title: ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update: Tue Jun 15 03:54:15 2010

Data Path : \\TERASTORAGE\SVOASRV\HPCHEM1\BNA_E\DATA\BE061410\

Data File : BE064783.D

Acg On : 14 Jun 2010 15:05

Operator : QM

Sample

: 50 ng BNA ICC

Misc

Sample Multiplier: 1 ALS Vial : 5

Quant Time: Jun 15 04:10:12 2010

Quant Method: Z:\HPCHEM1\BNA E\METHOD\8270-BE061410.M Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update : Tue Jun 15 03:54:15 2010

Inter	nal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
23) 40)	1,4-Dichlorobenzene-d4 Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10	7.91 10.16 13.45 16.08	136 164 188	546970 308531 532262	20.00 ng 20.00 ng 20.00 ng 20.00 ng	0.00 0.00 0.00 0.00
	Chrysene-d12 Perylene-d12	19.53 22.89		523982 476389	20.00 ng 20.00 ng	0.00
	m Monitoring Compounds		440	076005	0.4 5.7	0.00
	2-Fluorophenol Phenol-d5	5.84 7.25	112		84.57 ng 91.23 ng	0.00
	2-Chlorophenol-d4	7.53		869381	92.43 ng	0.00
	1,2-Dichlorobenzene-d4	8.18		610103	96.98 ng	0.00
	Nitrobenzene-d5	8.85			120.14 ng	0.00
	2,4,6-Tribromophenol			252444	112.58 ng	
	2-Fluorobiphenyl	12.15	172	1968578	95.00 ng	0.00
80)	Terphenyl-d14	18.01	244	2186053	102.64 ng	0.00
Targe	t Compounds			4		Qvalue
2)	1,4-Dioxane	3.60		171849	37.85 ng	# 71
	Pyridine	4.05		434730	37.90 ng	97
	n-Nitrosodimethylamine	3.98		185018	42.76 ng	98
	Aniline	7.35		739564	47.33 ng	98
	2-Chlorophenol	7.56		487088	46.11 ng	98 97
	Benzaldehyde Phenol	7.18 7.27		280850 582910	69.51 ng 45.56 ng	99
	bis(2-Chloroethyl)ether	7.43		481213	44.79 ng	100
	1,3-Dichlorobenzene	7.82		510158	47.54 ng	99
	1,4-Dichlorobenzene	7.93		524838	47.97 ng	98
	1,2-Dichlorobenzene	8.20		487754	48.08 ng	98
17)	Benzyl Alcohol	8.11	79	379246	60.38 ng	99
	2,2'-oxybis(1-Chloropropan			557335	35.89 ng	99
	2-Methylphenol	8.29		384517	51.13 ng	96
	Hexachloroethane	8.79		207731	53.64 ng	99
	n-Nitroso-di-n-propylamine			339742	59.37 ng	99
	3+4-Methylphenols	8.55 8.58		506854 668984	52.10 ng 52.11 ng	99. # 98
	Acetophenone Nitrobenzene	8.89		519550	60.26 ng	π 96
•	Isophorone	9.29		929507	55.74 ng	99
	2-Nitrophenol		139		47.21 ng	
	2,4-Dimethylphenol	9.50		434840	44.75 ng	97
	bis(2-Chloroethoxy)methane	9.67		563667	46.12 ng	98
	2,4-Dichlorophenol	9.89	162	387238	52.00 ng	98
32)	1,2,4-Trichlorobenzene	10.04		433701	56.17 ng	98
	Naphthalene	10.19		1403094	47.74 ng	99
	Benzoic acid	9.58		84967m	13.18 ng	
	4-Chloroaniline	10.27			49.36 ng	99
	Hexachlorobutadiene	10.41		243946	77.20 ng	97
	Caprolactam	10.88 11.17		160646 442220	52.29 ng 64.77 ng	97 100
	4-Chloro-3-methylphenol 2-Methylnaphthalene	11.47		885038	51.41 ng	99
رود	2 mechyinaphenarene	TT • 4 /	142	000000	J1.41 119	33

Data Path : \\TERASTORAGE\\SVOASRV\\HPCHEM1\\BNA_E\\DATA\\BE061410\\

Data File : BE064783.D

Acq On : 14 Jun 2010 15:05

Operator : QM

Sample : 50 ng BNA ICC

Misc :

ALS Vial : 5 Sample Multiplier: 1

Quant Time: Jun 15 04:10:12 2010

Quant Method: Z:\HPCHEM1\BNA_E\METHOD\8270-BE061410.M Quant Title: ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update : Tue Jun 15 03:54:15 2010

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)	
41) 1,2,4,5-Tetrachlorobenzene	11.79	216	404512	53.45 ng	99	
42) Hexachlorocyclopentadiene 44) 2,4,6-Trichlorophenol 45) 2,4,5-Trichlorophenol 47) 1,1'-Biphenyl 48) 2-Chloronaphthalene 49) 2-Nitroaniline 50) Acenaphthylene 51) Dimethylphthalate 52) 2,6-Dinitrotoluene 53) Acenaphthene 54) 3-Nitroaniline 55) 2,4-Dinitrophenol 56) Dibenzofuran 57) 4-Nitrophenol 58) 2,4-Dinitrotoluene 59) Fluorene 60) 2,3,4,6-Tetrachlorophenol	11.99	196	259980 287741 298169 1101745	51.47 ng	97	
45) 2.4.5-Trichlorophenol	12.08	196	298169	50.79 ng	98	
47) 1.1'-Biphenvl	12.35	154	1101745	41.96 ng	98	
48) 2-Chloronaphthalene	12.39	162	900069	45.29 ng	99	
49) 2-Nitroaniline	12.57	65	271583	47.74 ng	98	
50) Acenaphthylene	13.18	152	1392130	43.32 na	99	
51) Dimethylphthalate	12.91	163	1043904	52.94 ng	99	
52) 2.6-Dinitrotoluene	13.02	165	249834	52.27 ng	96	
53) Acenaphthene	13.50	154	849812	43.28 ng	99	
54) 3-Nitroaniline	13.35	138	268534	44.30 ng	95	
55) 2.4-Dinitrophenol	13.55	184	59135	25.48 ng	94	
56) Dibenzofuran	13.83	168	1255293	48.34 ng	99	
57) 4-Nitrophenol	13.68	139	209775	42.04 ng	95	
58) 2.4-Dinitrotoluene	13.79	165	323872	55.31 na	98	
59) Fluorene	14.49	166	1024420	49.97 ng	97	
59) Fluorene 60) 2,3,4,6-Tetrachlorophenol	14.06	232	240056	42.04 ng 55.31 ng 49.97 ng 59.15 ng	99	•
61) Diethylphthalate				53.63 ng		
62) 4-Chlorophenyl-phenylether	14.47	204	498405	61.47 na	94	
63) 4-Nitroaniline	14.50	138	280029	45.38 ng	97	
63) 4-Nitroaniline 64) Azobenzene	14.77	77	1026635	53.27 ng	98	
66) 4,6-Dinitro-2-methylphenol	14.56	198	131749	37.66 ng	99	
67) n-Nitrosodiphenylamine	14.69	169	892086	45.38 ng 53.27 ng 37.66 ng 45.71 ng	99	
68) 4-Bromophenvl-phenvlether	15.37	248	283624	52.82 ng	95	
69) Hexachlorobenzene 70) Atrazine	15.48	284	203160	10 03 na	9.7	
70) Atrazine	15.62			49.93 ng 62.53 ng 43.29 ng 46.01 ng 46.86 ng 45.39 ng	98	
70) Atrazine 71) Pentachlorophenol 72) Phenanthrene 73) Anthracene 74) Carbazole	15.79	266	150423	43.29 ng	98	
72) Phenanthrene	16.12	178	1431407	46.01 ng	99	
73) Anthracene	16.19	178	1470628	46.86 ng	100	
74) Carbazole	16.41	167	1394435	45.39 ng	99	
75) Di-n-butylphthalate	16.82	149	1635261	44.79 ng	100	
76) Fluoranthene	17.61	202	1521045	55.56 ng	99	
78) Benzidine	17.73	184	729744	48.13 ng	100	
79) Pyrene	17.87	202	1606353	42.58 ng	. 99	
74) Carbazole 75) Di-n-butylphthalate 76) Fluoranthene 78) Benzidine 79) Pyrene 81) Butylbenzylphthalate 82) Benzo(a)anthracene 83) 3,3'-Dichlorobenzidine	18.58	149	727240	48.13 ng 42.58 ng 40.12 ng 49.08 ng 50.85 ng	98	
82) Benzo(a)anthracene	19.51	228	1458380	49.08 ng	. 99	
83) 3,3'-Dichlorobenzidine	19.42	252	536680	50.85 ng	98	
84) Chrysene	19.57	228	1409758	48.37 ng	99,	(2) (20)
85) Bis(2-ethylhexyl)phthalate	19.37	149	979063	38.08 ng	98('	779063)(20)=
86) Di-n-octyl phthalate	20.61	149	1612269	40.96 ng	99}	5,2582)(50)
87) Indeno(1,2,3-cd)pyrene	28.29	276	1198023	40.53 ng	# 100	779063) (20) = 513582) (50) =
89) Benzo(b) fluoranthene	21.79	252	1424880	51.21 ng	99	
90) Benzo(k)fluoranthene	21.87	252	1420157	45.97 ng	100	n 74740201
91) Benzo(a)pyrene	22.73	252	1347626	49.23 ng	98	
92) Dibenzo(a,h)anthracene	27.09	278	1211678	48.12 ng	99	9.74740201
93) Benzo(g,h,i)perylene	28.29	276	1198023	45.34 ng	99	. 10 / /
						Work

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

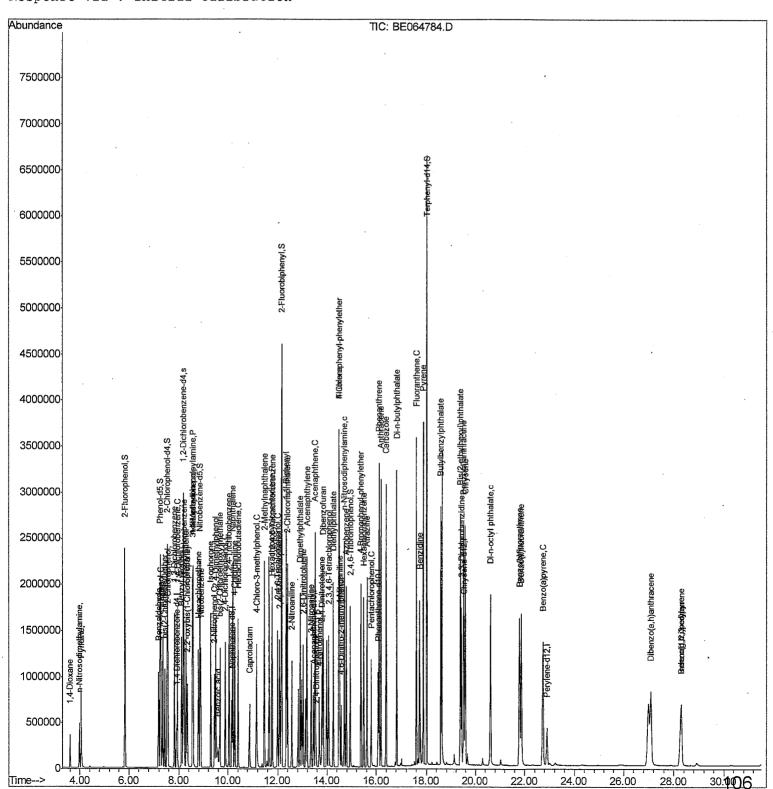
Data Path : \\TERASTORAGE\SVOASRV\HPCHEM1\BNA E\DATA\BE061410\

Data File : BE064784.D

Acq On : 14 Jun 2010 15:44

Operator : QM

Sample : 60 ng BNA ICC


Misc

ALS Vial : 6 Sample Multiplier: 1

Quant Time: Jun 15 04:12:45 2010

Quant Method: Z:\HPCHEM1\BNA_E\METHOD\8270-BE061410.M
Quant Title: ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update : Tue Jun 15 03:54:15 2010

Data Path : \\TERASTORAGE\\SVOASRV\\HPCHEM1\\BNA E\\DATA\\BE061410\\

Data File : BE064784.D

Acq On : 14 Jun 2010 15:44

Operator : QM

Sample : 60 ng BNA ICC

Misc :

ALS Vial : 6 Sample Multiplier: 1

Quant Time: Jun 15 04:12:45 2010

Quant Method: Z:\HPCHEM1\BNA_E\METHOD\8270-BE061410.M Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update : Tue Jun 15 03:54:15 2010

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) 1,4-Dichlorobenzene-d4 23) Naphthalene-d8 40) Acenaphthene-d10 65) Phenanthrene-d10	7.91 10.15 13.44 16.08	152 136 164 188	127774 497762 280313 491264	20.00 ng 20.00 ng 20.00 ng 20.00 ng 20.00 ng	0.00 0.00 0.00
77) Chrysene-dl2 88) Perylene-dl2	19.53 22.90	240 264	483612 443890	20.00 ng	0.00
System Monitoring Compounds 5) 2-Fluorophenol	5.84	112	980090	101.08 ng	0.00
7) Phenol-d5	7.24	99	1235713	107.98 ng	0.00
12) 2-Chlorophenol-d4	7.53	132	963938	109.59 ng	0.00
<pre>15) 1,2-Dichlorobenzene-d4 25) Nitrobenzene-d5</pre>	8.17 8.85	152 82	680762 1135288	115.71 ng 145.66 ng	0.00
43) 2,4,6-Tribromophenol	14.94	330	280955	137.90 ng	0.00
46) 2-Fluorobiphenyl	12.16	172	2157812	114.61 ng	0.00
80) Terphenyl-d14	18.01	244	2400531	122.12 ng	
Target Compounds					Qvalue
2) 1,4-Dioxane	3.60	88	190701	44.91 ng	# 70
3) Pyridine	4.05	79	482394	44.97 ng	99
4) n-Nitrosodimethylamine	3.98	42	201900	49.89 ng	99
6) Aniline	7.35	93	810716	55.48 ng	99
8) 2-Chlorophenol	7.56 7.19	128 77	534906 298834	54.14 ng 79.09 ng	97 97
9) Benzaldehyde	7.19	94	646242	54.01 ng	98
<pre>10) Phenol 11) bis(2-Chloroethyl)ether</pre>	7.43	93	531005	52.84 ng	99
13) 1,3-Dichlorobenzene	7.43	146	561808	55.98 ng	98
14) 1,4-Dichlorobenzene	7.93	146	583898	57.07 ng	98
16) 1,2-Dichlorobenzene	8.20	146	545957	57.55 ng	98
17) Benzyl Alcohol	8.10	79	426588	72.63 ng	99
18) 2,2'-oxybis(1-Chloropropan	8.33	45	616139	42.42 ng	99
19) 2-Methylphenol	8.28	107	426292	60.61 ng	97
20) Hexachloroethane	8.79	117	230664	63.69 ng	96
21) n-Nitroso-di-n-propylamine	8.56	70	377304	70.51 ng	100
22) 3+4-Methylphenols	8.55	107	560792	61.64 ng	98
24) Acetophenone	8.57		740627	63.39 ng	# 98
26) Nitrobenzene	8.88	77	579778	73.89 ng	99
27) Isophorone	9.30	82	1021088	67.28 ng	100
28) 2-Nitrophenol	9.45	139	290748	57.89 ng	98
29) 2,4-Dimethylphenol	9.49	122	474462	53.66 ng	97
30) bis(2-Chloroethoxy) methane	9.67	93	622908	56.00 ng	. 99
31) 2,4-Dichlorophenol	9.89	162	429756	63.41 ng	98
32) 1,2,4-Trichlorobenzene	10.05		480194	68.34 ng	99
33) Naphthalene	10.19		1534020	57.35 ng	100
34) Benzoic acid 35) 4-Chloroaniline	9.59 10.27		123694m 672473	21.09 ng 60.11 ng	98
36) Hexachlorobutadiene	10.27		267339	92.97 ng	97
37) Caprolactam	10.41		175748	62.87 ng	98
38) 4-Chloro-3-methylphenol	11.16		486385	78.28 ng	99
39) 2-Methylnaphthalene	11.47		976142	62.30 ng	99

Data Path : \\TERASTORAGE\SVOASRV\HPCHEM1\BNA_E\DATA\BE061410\

Data File : BE064784.D

: 14 Jun 2010 15:44 Acq On

Operator : QM

Sample : 60 ng BNA ICC

Misc

ALS Vial : 6 Sample Multiplier: 1

Quant Time: Jun 15 04:12:45 2010

Quant Method: Z:\HPCHEM1\BNA_E\METHOD\8270-BE061410.M Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update : Tue Jun 15 03:54:15 2010

Response via : Initial Calibration

	rnal Standards	R.T.	QIon	Response	Conc Units	Dev(1	Min)
	1,2,4,5-Tetrachlorobenzene	11.79	216	450516	65.52 ng		100
		44 55	~ ~ =	000504	E 0 0 1		99
44)	Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 1,1'-Biphenyl 2-Chloronaphthalene 2-Nitroaniline Acenaphthylene Dimethylphthalate 2,6-Dinitrotoluene Acenaphthene 3-Nitroaniline 2,4-Dinitrophenol Dibenzofuran	12.00	196	318399	62.69 ng		99
45)	2,4,5-Trichlorophenol	12.07	196	332601	62.36 ng		98
47)	1,1'-Biphenyl	12.34	154	1220952	51.19 ng		99
48)	2-Chloronaphthalene	12.39	162	990172	54.84 ng		99
49)	2-Nitroaniline	12.57	. 65	297526	57.56 ng		99
50)	Acenaphthylene	13.18	152	1519265	52.04 ng		99
51)	Dimethylphthalate	12.91	163	1150303	64.20 ng		100
52)	2,6-Dinitrotoluene	13.03	165	276774	63.73 ng		100 98
53)	Acenaphthene	13.51	154	938168	52.60 ng		97
54)	3-Nitroaniline	13.35	138	297759	54.07 ng		96
55)	2,4-Dinitrophenol	13.54	184	76274	. 36.17 ng		96
56)	Dibenzofuran	13.83	168	1374301	58.26 ng		99
57)	4-Nitrophenol	13.68	139	234656	51.75 ng		97
58)	2,4-Dinitrotoluene	13.79	165	354475	66.63 ng		99
59)	Dibenzofuran 4-Nitrophenol 2,4-Dinitrotoluene Fluorene	14.48	166	1132572	60.81 ng		97 99 97
60)	2,3,4,6-Tetrachlorophenol	14.06	232	264790	71.81 ng		99
61)	Diethylphthalate	14.24	149	1116387	64.41 ng		100
62)	4-Chlorophenvl-phenvlether	14.47	204	549923	74.65 ng		95
63)	4-Nitroaniline	14.51	138	312866	55.81 ng		97
64)	Azobenzene	14.78	77	1132047	64.65 ng		99
66)	4-Nitroaniline Azobenzene 4,6-Dinitro-2-methylphenol	14.57	198	158197	48.99 ng		99 98
67)	n-Nitrosodiphenylamine	14.69	169	990638	54.99 ng		99
68)	4-Bromophenyl-phenylether	15.37	248	318710	64.31 ng		99
69)	Hexachlorobenzene	15.49	284	313711	59.87 ng		98
70)	Hexachlorobenzene Atrazine Pentachlorophenol	15.62	- 200	322917	74.68 ng		99
71)	Pentachlorophenol	15.79	266	174584	54.44 ng 54.86 ng 56.07 ng		99
72)	Phenanthrene	16.12	178	1575354	54.86 ng		99
73)	Anthracene	16.12 16.19 16.40	178	1624184	56.07 ng		98
74)	Carbazole	16.40	167	1535778	54.16 ng		99
75)	Di-n-butylphthalate	16.83	149	1804408	53.55 ng		100
76)	Di-n-butylphthalate Fluoranthene Benzidine Pyrene	17.61	202	1677534	66.39 ng		99
78)	Benzidine	17.73	184	798812	57.09 ng		99
79)	Pyrene Butylbenzylphthalate Benzo(a)anthracene	17.87	202	1770384	50.84 ng		99 99 100
81)	Butylbenzylphthalate	18.58	149	817550	48.86 ng		99
82)	Benzo(a)anthracene	19.51	228	1636975	59.69 ng		100
83)	3,3'-Dichlorobenzidine	19.42	252	579895	59.53 ng		100
	Chrysene	19.57		1556765	57.87 ng		98,
85)	Bis(2-ethylhexyl)phthalate	19.37	149	1086979	45.81 ng		100 (1086979)(20)
	Di-n-octyl phthalate	20.61	149	1794579	49.40 ng		100 (12) (12)
	Indeno(1,2,3-cd)pyrene	28.29	276	1341529	49.18 ng	#	100(4/3 6/2)(60)
	Benzo(b) fluoranthene	21.79	252	1571175	60.60 ng		98 100 (10gk 977) (20) 100 (4/3 612) (60) 98 99 99 0,747207732
	Benzo(k)fluoranthene	21.86	252	1606149	55.80 ng		99 0 7119702736
	Benzo(a)pyrene	22.73	252	1517045	59.48 ng		99 0174120
92)	Dibenzo(a,h)anthracene	27.09	278	1342581	57.22 ng		99
	Benzo(g,h,i)perylene	28.29	276	1341529	54.49 ng		97

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

108

Page: 2

7/2/10

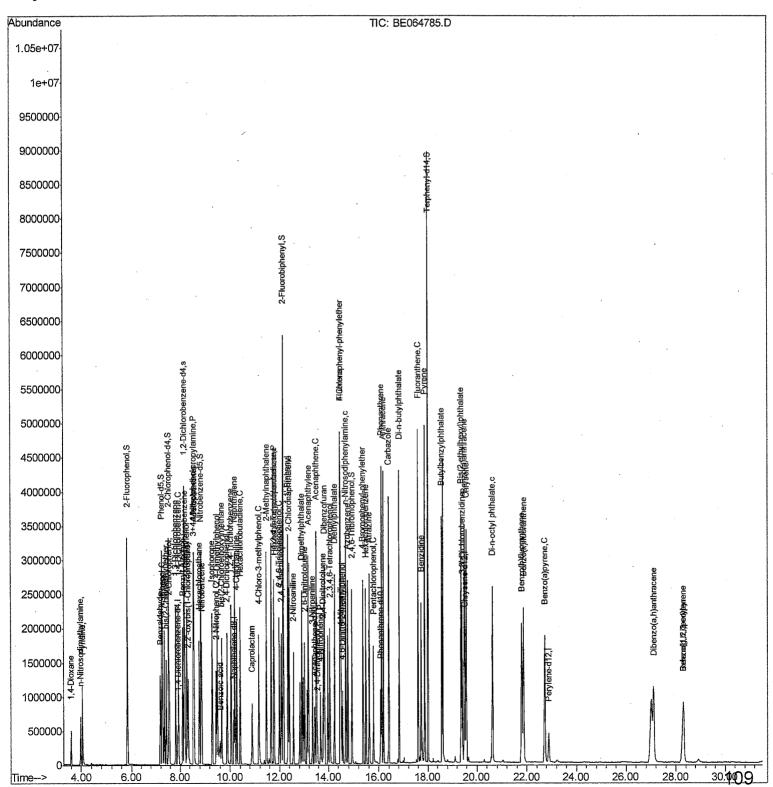
Data Path: \TERASTORAGE\SVOASRV\HPCHEM1\BNA E\DATA\BE061410\

Data File: BE064785.D

Acq On : 14 Jun 2010 16:23

Operator : QM

Sample : 80 ng BNA ICC


Misc :

ALS Vial : 7 Sample Multiplier: 1

Quant Time: Jun 15 04:01:21 2010

Quant Method : Z:\HPCHEM1\BNA_E\METHOD\8270-BE061410.M
Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update : Tue Jun 15 03:54:15 2010

Data Path : \\TERASTORAGE\SVOASRY\HPCHEM1\BNA_E\DATA\BE061410\Data File : BE064785.D

: 14 Jun 2010 16:23 Acq On

Operator : QM

Sample : 80 ng BNA ICC

Misc

Sample Multiplier: 1 ALS Vial : 7

Quant Time: Jun 15 04:01:21 2010

Quant Method: Z:\HPCHEM1\BNA E\METHOD\8270-BE061410.M Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update: Tue Jun 15 03:54:15 2010 Response via: Initial Calibration

Internal Standards	к.т.	QIon	Response	Conc Units	Dev(Min)
1) 1,4-Dichlorobenzene-d4 23) Naphthalene-d8	7.91 10.15	152 136	139333 553029	20.00 ng	0.00
40) Acenaphthene-d10	13.44	164	311807	20.00 ng	0.00
65) Phenanthrene-d10	16.08		521335	20.00 ng	0.00
77) Chrysene-d12	19.53 22.90	240 264	509237 463641	20.00 ng 20.00 ng	0.00
88) Perylene-d12	22.90	204	403041	20.00 ng	0.00
System Monitoring Compounds 5) 2-Fluorophenol	5.84	112	1351356	127.80 ng	0.00
7) Phenol-d5	7.25	99	1690415	135.46 ng	0.00
12) 2-Chlorophenol-d4	7.53	132	1337800	139.47 ng	0.00
15) 1,2-Dichlorobenzene-d4	8.17	152	946875	147.59 ng	0.00
25) Nitrobenzene-d5	8.85	82	1590250	183.64 ng	0.00
43) 2,4,6-Tribromophenol	14.94	330	391146	172.60 ng	0.00
46) 2-Fluorobiphenyl	12.16	172	2966550	141.65 ng	0.00
80) Terphenyl-d14	18.01		3184652	153.85 ng	0.00
Target Compounds					Qvalue
2) 1,4-Dioxane	3.60	88	264133	57.04 ng	# 71
3) Pyridine	4.05	79	675864	57.78 ng	99
 n-Nitrosodimethylamine 	3.98	42	286266	64.87 ng	99
6) Aniline	7.35	93	1144534	71.83 ng	99
8) 2-Chlorophenol	7.56	128	762416	70.77 ng	99
9) Benzaldehyde	7.19	77	383864	93.17 ng	98
10) Phenol	7.27	94	895083	68.60 ng	
<pre>11) bis(2-Chloroethyl)ether</pre>	7.43	93	739278	67.47 ng	100
13) 1,3-Dichlorobenzene	7.81	146	789892	72.18 ng	98
14) 1,4-Dichlorobenzene	7.94	146	835313	74.87 ng	99
16) 1,2-Dichlorobenzene	8.20	146	761042	73.57 ng	98
17) Benzyl Alcohol	8.11		602411	94.05 ng	99
18) 2,2'-oxybis(1-Chloropropan	8.34		866917	54.74 ng	99
19) 2-Methylphenol	8.28		612333	79.84 ng	96 99
20) Hexachloroethane	8.79 8.56		328539 522778	83.19 ng 89.59 ng	99
<pre>21) n-Nitroso-di-n-propylamine 22) 3+4-Methylphenols</pre>	8.55		787507	79.38 ng	97
22) 3+4-methylphenois 24) Acetophenone	8.58		1030917	79.30 ng	# 99
26) Nitrobenzene	8.89		809367	92.84 ng	. 96
27) Isophorone	9.30		1424739	84.50 ng	100
28) 2-Nitrophenol	9.45		417002	74.73 ng	99
29) 2,4-Dimethylphenol	9.50		682591	69.48 ng	99
30) bis(2-Chloroethoxy)methane	9.67		875483	70.84 ng	98
31) 2,4-Dichlorophenol	9.89		605224	80.38 ng	100
32) 1,2,4-Trichlorobenzene	10.05		672382	86.13 ng	98
33) Naphthalene	10.19		2140608	72.03 ng	100
34) Benzoic acid	9.61		239001	36.67 ng	96
35) 4-Chloroaniline	10.27		941976	75.78 ng	98
36) Hexachlorobutadiene	10.41		377862	118.28 ng	96
37) Caprolactam	10.90		247401	79.65 ng	96
38) 4-Chloro-3-methylphenol	11.17		689182	99.84 ng	98
39) 2-Methylnaphthalene	11.48	142	1357148	77.96 ng	100

Data Path : \\TERASTORAGE\SVOASRV\HPCHEM1\BNA_E\DATA\BE061410\

Data File: BE064785.D

Acq On : 14 Jun 2010 16:23

Operator : QM

Sample : 80 ng BNA ICC

Misc

ALS Vial : 7 Sample Multiplier: 1

Quant Time: Jun 15 04:01:21 2010

Quant Method: Z:\HPCHEM1\BNA_E\METHOD\8270-BE061410.M Quant Title: ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update: Tue Jun 15 03:54:15 2010

Inte	rnal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)	
41)	1,2,4,5-Tetrachlorobenzene	11.79	216	639016	83.55 ng	100	•
	Hexachlorocyclopentadiene			426442	94.61 ng	100	
	2,4,6-Trichlorophenol	12.00	196	449761	79.61 ng	98	
	2,4,5-Trichlorophenol	12.08	196	485793	81.88 ng	99	
		12.35	154	1687429	63.60 ng	99	•
		12.39	162	1387540	69.09 ng	99	
49)	2-Nitroaniline	12.57	65	422933	73.56 ng	99	
50)	Acenaphthylene	13.18	152	2114266	65.10 ng	99`	
51)	Dimethylphthalate	12.57 13.18 12.91 13.03	163	1591803	79.87 ng	99	
52)	2,6-Dinitrotoluene	13.03	165	384745	79.65 ng	95	
	Acenaphthene 3-Nitroaniline	13.51	154	1329420	67.00 ng	99	
	3-Nitroaniline	13.35	138	412945	67.41 ng	94	
55)	2,4-Dinitrophenol	13.54	184	136664	58.27 ng	91	•
56)	Dibenzofuran	13.84 13.68	168	1901530	72.46 ng	99	•
57)	4-Nitrophenol	13.68	139	333958	66.22 ng	98	
	2,4-Dinitrotoluene	13.79	165	501607	84.76 ng	99	
	Fluorene	14.48		1569170	75.74 ng	96	
60)	2,3,4,6-Tetrachlorophenol	14.07	232	377659		99	
	Diethylphthalate	14.25	149	1561649	81.01 ng	100	
	4-Chlorophenyl-phenylether	14.47	204	769434	93.90 ng	95	
	4-Nitroaniline	14.51		434200	69.63 ng	97	
	Azobenzene	14.78		1552896	79.73 ng	98	
	4,6-Dinitro-2-methylphenol	14.57	198	245830	71.74 ng	99	•
	n-Nitrosodiphenylamine	14.69		1357191		. 98	
	4-Bromophenyl-phenylether	15.37		447760	_	98	
	Hexachlorobenzene	15.49		436430	78.48 ng	98	
	7. 1	1 = 60	200			98	
	Pentachlorophenol	15.79	266	444382 254978	74.93 ng	99	•
	Phenanthrene	16.12	178	2146738	70.44 ng		
	Anthracene	16.19	178	2192709		99	
		16.41		2078303		99	-
	Di-n-butylphthalate				67.27 ng	99	
	Fluoranthene	17.61	202	2236470	83.40 ng	98	
-	Fluoranthene Benzidine Pyrene	. 17.73	184	1030818	69.96 ng	99	
	Pyrene	17.87	202	2380551	64.92 ng		
		18.58		1103758	62.65 ng	97	
	Benzo(a) anthracene	19.51		2201302	76.23 ng	99	
	3,3'-Dichlorobenzidine	19.42		782870	76.33 ng	99	
	Chrysene	19.58		2101147	74.18 ng	99	
	Bis(2-ethylhexyl)phthalate	19.37		1476181	59.08 ng	100	1476181)(20)
	Di-n-octyl phthalate	20.61		2461681	64.35 ng	99	
	Indeno(1,2,3-cd)pyrene	28.31		1852453	64.49 ng	# 100	(mg 237) (P)
	Benzo(b) fluoranthene	21.80		2182440	80.60 ng	98	(14761P1)(20) = (209237)(PD) = (0,72470234)
	Benzo(k) fluoranthene	21.87		2145848	71.37 ng	100	
	Benzo(a)pyrene	22.73		2082718	78.18 ng	99	M.724702347
	Dibenzo(a,h)anthracene	27.10		1875194	76.51 ng	98	
	Benzo(g,h,i)perylene	28.31		1852453	72.03 ng	98	111
							Mhapriles

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed \sqrt{V}

Data Path : \\Terastorage\svoasrv\HPCHEM1\BNA_E\Data\BE061510\

Data File : BE064822.D

Acq On : 15 Jun 2010 18:45

Operator : QM

: 40 ng BNA CCC

Misc :

Sample

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jun 16 03:34:33 2010

Quant Method : Z:\HPCHEM1\BNA_E\METHOD\8270-BE061410.M Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update : Wed Jun 16 03:33:00 2010

Internal Standa	ards	R.T.	QIon	Response	e Conc Units	Dev(Min)
1) 1,4-Dichlo 23) Naphthaler 40) Acenaphtho 65) Phenanthro 77) Chrysene-0 88) Perylene-0	ne-d8 ene-d10 ene-d10 d12	7.88 10.13 13.42 16.06 19.49 22.84	152 136 164 188 240 264	135041 541194 300317 515679 525627 470608	20.00 ng 20.00 ng 20.00 ng 20.00 ng 20.00 ng 20.00 ng	
25) Nitrobenze	nenol nenol-d4 probenzene-d4 ene-d5 promophenol iphenyl	5.82 7.22 7.51 8.15 8.82 14.91 12.13	112 99 132 152 82 330 172 244	749220 943392 725251 503288 841017 186512 1602566 1762575	85.15 ng 84.78 ng 83.97 ng 82.33 ng 81.08 ng 77.87 ng 81.42 ng 78.60 ng	0.00 0.00 0.00 0.00 0.00 0.00
6) Aniline 8) 2-Chlorop 9) Benzaldeh 10) Phenol 11) bis(2-Chl 13) 1,3-Dichl 14) 1,4-Dichl 16) 1,2-Dichl 17) Benzyl Al 18) 2,2'-oxyb 19) 2-Methylp 20) Hexachlor 21) n-Nitroso 22) 3+4-Methy 24) Acetophen 26) Nitrobenz 27) Isophoron 28) 2-Nitroph 29) 2,4-Dimet	dimethylamine henol yde croethyl)ether crobenzene crobenzene crobenzene cohol is(1-Chloropropan henol cethane -di-n-propylamine lphenols one ene e enol hylphenol croethoxy)methane crophenol chlorobenzene ne cid niline obutadiene	3.58 4.03 3.96 7.32 7.53 7.16 7.24 7.41 7.79 7.91 8.08 8.31 8.26 8.55 8.55 8.55 8.55 8.55 8.64 9.47 9.64 9.86 10.02 10.17 9.53 10.24 10.39 10.84	88 79 42 93 128 77 94 93 146 146 147 107 107 107 107 107 107 107 107 107 10	171609 445315 168812 636045 405952 228041 502057 411178 424161 431869 400294 300469 482012 323431 168118 285606 417440 563306 423724 760607 209467 343333 485769 309589 343700 1168357 85644 507923 186848 129164	49.96 ng 52.30 ng 45.26 ng 43.35 ng 42.10 ng 38.60 ng 43.03 ng 41.87 ng 40.85 ng 40.96 ng 41.52 ng 43.49 ng 42.41 ng 40.99 ng 42.01 ng 41.64 ng 40.63 ng 40.85 ng 40.85 ng 41.16 ng 40.85 ng 41.16 ng 41.46 ng 41.46 ng 41.46 ng 41.46 ng 41.46 ng 41.46 ng 41.46 ng 41.46 ng 41.46 ng 41.46 ng 41.46 ng 41.46 ng 41.46 ng 41.46 ng 41.46 ng 41.46 ng 41.46 ng 41.46 ng	Qvalue 100 100 100 100 100 100 100 100 100 1

Data Path : \Terastorage\svoasrv\HPCHEM1\BNA_E\Data\BE061510\

Data File : BE064822.D

: 15 Jun 2010 18:45 Acq On

Operator : QM

: 40 ng BNA CCC Sample

Misc

Sample Multiplier: 1 ALS Vial : 2

Quant Time: Jun 16 03:34:33 2010

Quant Method: Z:\HPCHEM1\BNA_E\METHOD\8270-BE061410.M Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update : Wed Jun 16 03:33:00 2010

Inte	rnal Standards	R.T.	QIon	Response		Dev(Min)	
41)	1,2,4,5-Tetrachlorobenzene	11.76	216	318380	39.61 ng	100	
42)	Hexachlorocyclopentadiene	11.74	237	193786	39.65 ng	100	•
44)	2,4,6-Trichlorophenol	11.97	196	223453	40.10 ng	100	
	- · ·					100	
47)	2,4,5-Trichlorophenol 1,1'-Biphenyl 2-Chloronaphthalene 2-Nitroaniline Acenaphthylene Dimethylphthalate 2,6-Dinitrotoluene Acenaphthene 3-Nitroaniline 2,4-Dinitrophenol Dibenzofuran 4-Nitrophenol 2,4-Dinitrotoluene	12.32	154	897359	41.07 ng	100	
48)	2-Chloronaphthalene	12.37	162	725203	40.71 ng	100	
49)	2-Nitroaniline	12.54	65	218157	41.36 ng		
50)	Acenaphthylene	13.15	152	1126633	41.36 ng 41.06 ng	100	
51)	Dimethylphthalate	12.88	163	819905	40.00 ng	100	
52)	2.6-Dinitrotoluene	12.99	165	195415	40.31 ng	100	·
53)	Acenaphthene	13.48	154	691739	41.68 ng		
54)	3-Nitroaniline	13.32	138	215171	41.34 ng	100	
55)	2.4-Dinitrophenol	13.52	184	46585	45.13 ng	100	
56)	Dibenzofuran	13.80	168	1008721	45.13 ng 40.65 ng 42.51 ng	100	
57)	4-Nitrophenol	13.65	139	168630	42.51 ng	100	
58)	2.4-Dinitrotoluene	13.76	165	250669	40.28 ng	100	
59)	2,4-Dinitrotoluene Fluorene	14.46	166	835233	40.98 ng		
60)	2,3,4,6-Tetrachlorophenol	14.03	232	181761 803238 390595 229202	39.68 ng		
	Diethylphthalate		149	803238	40.25 ng	100	
62)	4-Chlorophenyl-phenylether	14.45	204	390595	39.58 ng	100	
63)	4-Nitroaniline	14 47	138	229202	39.58 ng 42.39 ng	100	
	Azobenzene	14 74	77	847960	41.89 ng	100	·
66)	4,6-Dinitro-2-methylphenol	14 53	198	99219	40.51 ng	100	
	n-Nitrosodiphenylamine	14 66	169				
681	1-Bromonhanyl-nhanylathar	15 3/	248	219881	39.01 ng	100	
601	Hexachlorobenzene Atrazine Pentachlorophenol Phenanthrene Anthracene Carbazole	15.46	284	219881 220273 229516 116980	39 58 ng	100	
701	Atrazine	15.40	200	229516	39.58 ng 40.68 ng	100	
70)	Pontaghlorophonol	15.00	266	116980	41.05 ng	100	
72)	Phonanthrono	16 00	178	1156286	40.85 ng		
72)	Anthma cone	16.03	178	1189710	41 22 na	100	
741	Carbazole Di-n-butylphthalate Fluoranthene Benzidine Pyrene Butylbenzylphthalate	16 30	167	11612/1	41.22 ng	100	
74)	Calbazoie	16.30	1/0	1327597	42.24 Hg	100	
75)	DI-H-Dutyiphthalate	17 50	202	1232116	41.27 Hg	100	
70)	Pangidina	17.33	104	607407	41.39 mg	100	
70)	Burana	17.71	202	133/905	42.47 mg	100	
79) 01)	Putulbongulphthalata	10 55	1/0	504701	40.33 ng	100	
07)	Benzo(a)anthracene	19.47	228	1207447	40.43 ng	100	
02)	belizo (a) all chi acelle	19.41	220	434312	40.77 ng	100	
83)				1162975			
	Chrysene	19.54 19.35			40.90 ng 40.84 ng	100	(POSC47)(20) 625(27)(0.750) 40.2147z
	Bis (2-ethylhexyl) phthalate			805047 1311608	-	100	2-1-
	Di-n-octyl phthalate	20.57			41.08 ng	100	625627)(0,750)
	Indeno(1,2,3-cd)pyrene	26.88		1162326m	40.03 ng	100	6
	Benzo(b) fluoranthene	21.74		1138788	_	100	110 3117
	Benzo(k) fluoranthene	21.81		1202566m	42.59 ng	100	40-817
	Benzo(a)pyrene	22.67			41.11 ng	100	
	Dibenzo(a, h) anthracene			987259	41.42 ng		
93)	Benzo(g,h,i)perylene	28.17	276	972001	41.38 ng	100	
(#) 70-BE	= qualifier out of range (m) 061410.M Wed Jun 16 03:38:36	= man	ual ir	ntegration	(+) = signa	ls summed,	126 7/4/60 Page: 2

Data Path : \Terastorage\svoasrv\HPCHEM1\BNA_E\Data\BE061510\

Data File : BE064822.D

Acq On : 15 Jun 2010 18:45

Operator : QM

Sample : 40 ng BNA CCC

Misc :

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jun 16 03:34:33 2010

Quant Method: Z:\HPCHEM1\BNA_E\METHOD\8270-BE061410.M Quant Title: ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update: Wed Jun 16 03:33:00 2010

Response via: Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 25% Max. Rel. Area: 150%

		Compound	Amount	Calc.	%Dev A	rea%	Dev(min)
1	 I	1,4-Dichlorobenzene-d4	20.000	20.000	0.0	118	0.00
2		1,4-Dioxane	40.000	49.959	-24.9	145	0.00
3		Pyridine	40.000	52.302	-30.8#	148	0.00
4		n-Nitrosodimethylamine	40.000	45.259	-13.1	129	0.00
5	S	2-Fluorophenol	80.000	85.151	-6.4	121	0.00
6		Aniline	40.000	43.347	-8.4	125	0.00
7	S	Phenol-d5	80.000	84.783	-6.0	122	0.00
8		2-Chlorophenol	40.000	42.098	-5.2	121	0.00
9		Benzaldehyde	40.000	38.596	3.5	104	0.00
0	С	Phenol	40.000	42.999	-7.5	122	0.00
1		bis(2-Chloroethyl)ether	40.000	43.027	-7.6	124	0.00
2	S	2-Chlorophenol-d4	80.000	83.968	-5.0	121	0.00
3		1,3-Dichlorobenzene	40.000	41.874	-4.7	120	0.00
4	С	1,4-Dichlorobenzene	40.000	40.852	-2.1	116	0.00
5	s	1,2-Dichlorobenzene-d4	80.000	82.332	-2.9	118	0.00
6		1,2-Dichlorobenzene	40.000	40.959	-2.4	117	0.00
7		Benzyl Alcohol	40.000	41.517	-3.8	117	0.00
8		2,2'-oxybis(1-Chloropropane	40.000	43.487	-8.7	126	0.00
9		2-Methylphenol	40.000	42.409	-6.0	123	0.00
0		Hexachloroethane	40.000	40.989	-2.5	119	0.00
1	Ρ	n-Nitroso-di-n-propylamine	40.000	42.009	-5.0	120	0.00
2		3+4-Methylphenols	40.000	41.645	-4.1	120	0.00
3	I	Naphthalene-d8	20.000	20.000	0.0	119	0.00
4		Acetophenone	40.000	41.464	-3.7	121	0.00
5	S	Nitrobenzene-d5	80.000	81.079	-1.3	119	0.00
6		Nitrobenzene	40.000	40.628	-1.6	119	0.00
7		Isophorone	40.000	40.847	-2.1	119	0.00
8	С	2-Nitrophenol	40.000	40.157	-0.4	116	0.00
9		2,4-Dimethylphenol	40.000	39.255	1.9	121	0.00
0		bis(2-Chloroethoxy)methane	40.000	42.351	-5.9	123	0.00
1	С	2,4-Dichlorophenol	40.000	40.376	-0.9	118	0.00
2		1,2,4-Trichlorobenzene	40.000	39.623	0.9	115	0.00
3		Naphthalene	40.000	41.184	-3.0	119	0.00
4		Benzoic acid	40.000	48.356	-20.9	148	0.00
5 6		4-Chloroaniline	40.000	41.829	-4.6	123	
	С	Hexachlorobutadiene	40.000	38.081	4.8	112	
7		Caprolactam	40.000	41.164	-2.9	120	0.00
	С	4-Chloro-3-methylphenol	40.000	39.964	0.1		0.00
9		2-Methylnaphthalene	40.000	40.459	-1.1	117	0.00
0	I.	Acenaphthene-d10	20.000	20.000	0.0	118	0.00
1		1,2,4,5-Tetrachlorobenzene	40.000	39.609	1.0	114	0.00
2		Hexachlorocyclopentadiene	40.000	39.648	0.9	120	0.00
3		2,4,6-Tribromophenol	80.000	77.870	2.7	111	0.00
4	С	2,4,6-Trichlorophenol	40.000	40.099	-0.2	116	0.00

 ${\tt Data\ Path\ :\ \ \ \ } LEData\ BE061510\ \ \\$

Data File : BE064822.D

: 15 Jun 2010 18:45 Acq On

Operator : QM

: 40 ng BNA CCC Sample

Misc

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jun 16 03:34:33 2010

Quant Method: Z:\HPCHEM1\BNA E\METHOD\8270-BE061410.M Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update: Wed Jun 16 03:33:00 2010

Response via: Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 25% Max. Rel. Area: 150%

	Compound	Amount	Calc.	%Dev Area	a% Dev(min)	
5 6 S 7 8 9	2,4,5-Trichlorophenol 2-Fluorobiphenyl 1,1'-Biphenyl 2-Chloronaphthalene 2-Nitroaniline Acenaphthylene	40.000 40.000 40.000 40.000	81.416 41.068 40.715 41.357 41.061	-2.7 13 -1.8 13 -3.4 13	15 0.00 16 0.00 19 0.00 17 0.00 19 0.00	
1 2 3 C 4 5 P	Dimethylphthalate 2,6-Dinitrotoluene Acenaphthene 3-Nitroaniline 2,4-Dinitrophenol Dibenzofuran	40.000 40.000 40.000 40.000	40.308 41.683 41.341 45.132 40.649	-0.8 12 -4.2 12 -3.4 13 -12.8 10 -1.6 13	15 0.00 16 0.00 20 0.00 18 0.00 63 0.00 16 0.00	
7 P 8 9 0 1 2 3	4-Nitrophenol 2,4-Dinitrotoluene Fluorene 2,3,4,6-Tetrachlorophenol Diethylphthalate 4-Chlorophenyl-phenylether 4-Nitroaniline	40.000 40.000 40.000 40.000	42.505 40.279 40.978 39.683 40.254 39.580 42.387	-0.7 1: -2.4 1: 0.8 1: -0.6 1: 1.1 1:	21 0.00 14 0.00 18 0.00 13 0.00 16 0.00 14 0.00 22 0.00	
5 I 6 7 C 8	Azobenzene Phenanthrene-d10 4,6-Dinitro-2-methylphenol n-Nitrosodiphenylamine 4-Bromophenyl-phenylether	40.000 20.000 40.000 40.000 40.000	41.893 20.000 40.512 41.166	-4.7 1. 0.0 1: -1.3 1: -2.9 1:	19 0.00 17 0.00 31 0.00 19 0.00 13 0.00	
9 0 1 C 2 3	Hexachlorobenzene Atrazine Pentachlorophenol Phenanthrene Anthracene Carbazole	40.000 40.000 40.000 40.000 40.000 40.000	39.584 40.683 41.050 40.854 41.222	1.0 1 -1.7 1 -2.6 1 -2.1 1 -3.1 1	15 0.00 24 0.00 28 0.00 17 0.00 19 0.00 20 0.00	
5 6 C 7 I	Di-n-butylphthalate Fluoranthene Chrysene-d12 .	40.000 40.000 20.000	41.269 41.385 20.000	-3.2 1 -3.5 1 0.0 1	17 0.00 17 0.00 21 0.00	
8 9 0 S 1 2 3	Benzidine Pyrene Terphenyl-d14 Butylbenzylphthalate Benzo(a)anthracene 3,3'-Dichlorobenzidine	40.000 40.000 80.000 40.000 40.000	42.469 40.550 78.603 40.454 40.766 40.538	-1.4 1 1.7 1 -1.1 1 -1.9 1	27 0.00 19 0.00 15 0.00 20 0.00 20 0.00 19 0.00	40.P147 2.P= 2.030
5 5 6 C 7	Chrysene Bis (2-ethylhexyl) phthalate Di-n-octyl phthalate Indeno(1,2,3-cd) pyrene	40.000 40.000 40.000 40.000	40.897 40.843 41.081 40.030	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21 0.00 21 0.00 21 0.00 21 0.00	7, P= 2.030

128

pollha Hrila Page: 2 ${\tt Data\ Path\ :\ \ \ \ } LEData\ BE061510\ \ \\$

Data File : BE064822.D

Acq On : 15 Jun 2010 18:45

Operator : QM

Sample : 40 ng BNA CCC

Misc

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jun 16 03:34:33 2010

Quant Method: Z:\HPCHEM1\BNA E\METHOD\8270-BE061410.M Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION QLast Update : Wed Jun 16 03:33:00 2010

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 25% Max. Rel. Area: 150%

	Compound	Amount	Calc.	%Dev Area%	Dev(min)
8 I 9 0 1 C 2 3	Perylene-d12 Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene	20.000 40.000 40.000 40.000 40.000	20.000 40.545 42.590 41.107 41.422 41.378	0.0 121 -1.4 117 -6.5 126 -2.8 119 -3.6 120 -3.4 121	0.00 0.06 0.00

(#) = Out of Range SPCC's out = 0 CCC's out = 0 Data Path: \Terastorage\svoasrv\HPCHEM1\BNA_E\Data\BE061510\

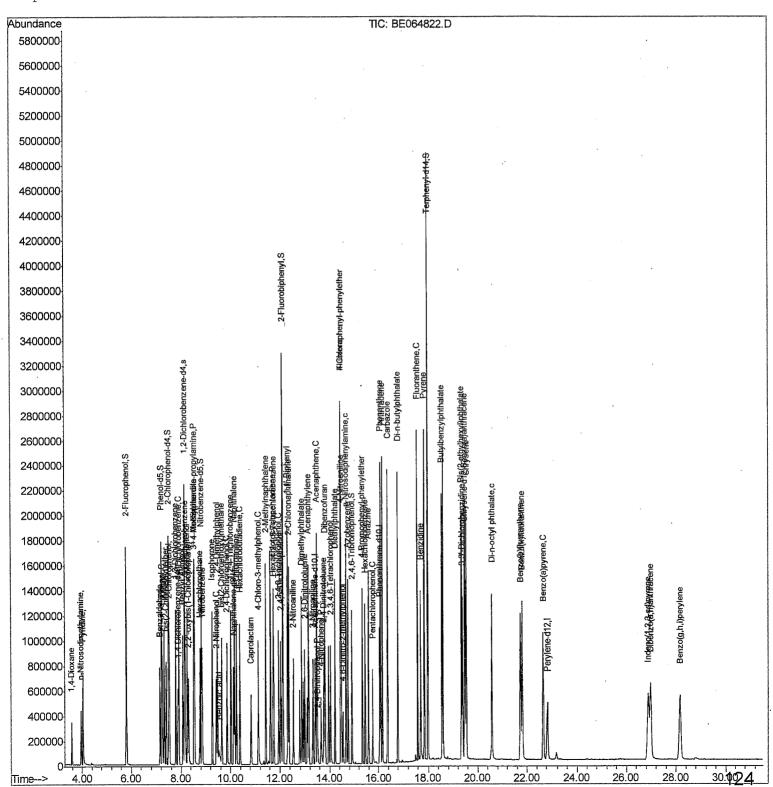
Data File : BE064822.D

Acq On : 15 Jun 2010 18:45

Operator : QM

Sample : 40 ng BNA CCC

Misc :


ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jun 16 03:34:33 2010

Quant Method: Z:\HPCHEM1\BNA_E\METHOD\8270-BE061410.M Quant Title: ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update : Wed Jun 16 03:33:00 2010

Response via: Initial Calibration

Data Path : \Terastorage\svoasrv\HPCHEM1\BNA_E\Data\BE061510\Data File : BE064822.D

Acq On : 15 Jun 2010 18:45 Operator : QM

Sample : 40 ng BNA CCC

Misc

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jun 16 03:34:33 2010

Quant Method: Z:\HPCHEM1\BNA_E\METHOD\8270-BE061410.M Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update: Wed Jun 16 03:33:00 2010

Response via: Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 25% Max. Rel. Area: 150%

	Compound	AvgRF	CCRF	%Dev Area%	Dev(min)
1 I	1,4-Dichlorobenzene-d4	1.000	1.000	0.0 118	0.00
2	1,4-Dioxane	0.509	0.635	(-24.8) 145	0.00
3	Pyridine	1.261	1.649	-30.8 # 148	0.00 19
4	n-Nitrosodimethylamine	0.552	0.625	-13.2 129	0.00
5 S	2-Fluorophenol	1.303	1.387	-6.4 121	0.00
6	Aniline	2.173	2.355	-8.4 125	0.00
7 S	Phenol-d5	1.648	1.746	-5.9 122	0.00
8	2-Chlorophenol	1.428	1.503	-5.3 121	0.00
9	Benzaldehyde	0.875	0.844	3.5 104	0.00
0 C	Phenol	1.729	1.859	-7.5 122	0.00
1	bis(2-Chloroethyl)ether	1.415	1.522	-7.6 124	0.00
2 S	2-Chlorophenol-d4	1.279	1.343	-5.0 121	0.00
3	1,3-Dichlorobenzene	1.500	1.570	-4.7 120	0.00
4 C	1,4-Dichlorobenzene	1.566	1.599	-2.1 116	0.00
5 s	1,2-Dichlorobenzene-d4	0.905	0.932	-3.0 118	0.00
6	1,2-Dichlorobenzene	1.447	1.482	-2.4, 117	0.00
7	Benzyl Alcohol	1.072	1.113	-3.8 117	0.00
8	2,2'-oxybis(1-Chloropropane	1.642	1.785	-8.7 126	0.00
9	2-Methylphenol	1.129	1.198	-6.1 123	0.00
.0	Hexachloroethane	0.607	0.622	-2.5 119	
l P	n-Nitroso-di-n-propylamine	1.007	1.057	-5.0 120	0.00
2	3+4-Methylphenols	1.485	1.546	-4.1 120	0.00
3 I	Naphthalene-d8	1.000	1.000	0.0 119	0.00
4	Acetophenone	0.502	0.520	-3.6 121	0.00
5 S	Nitrobenzene-d5	0.383	0.389	-1.6 119	0.00
6	Nitrobenzene	0.385	0.391	-1.6 119	0.00
7	Isophorone	0.688	0.703	-2.2 119	0.00
8 C	2-Nitrophenol	0.193	0.194	-0.5 116	0.00
9	2,4-Dimethylphenol	0.323	0.317	1.9 121	0.00
0	bis(2-Chloroethoxy)methane	0.424	0.449	- 5.9 123	0.00
1 C	2,4-Dichlorophenol	0.283	0.286	-1.1 118	0.00
2	1,2,4-Trichlorobenzene	0.321	0.318	0.9 115	
3	Naphthalene	1.048	1.079	<u>-3.0</u> 119	0.00
4	Benzoic acid	0.065	0.079	(-21.5) 148	
5	4-Chloroaniline	0.449	0.469	-4.5 123	0.00
6 C	Hexachlorobutadiene	0.181	0.173	4.4 112	0.00
7	Caprolactam	0.116	0.119	- 2.6 120	0.00
8 C	4-Chloro-3-methylphenol	0.325	0.325	0.0 117	0.00
9	2-Methylnaphthalene	0.659	0.666	-1.1 117	0.00
0 I	Acenaphthene-d10	1.000	1.000	0.0 118	0.00
1	1,2,4,5-Tetrachlorobenzene	0.535	0.530	0.9 114	
2 P	Hexachlorocyclopentadiene	0.326	0.323	0.9 120	
3 S	2,4,6-Tribromophenol	0.160	0.155	3.1 111	0.00
4 C	2,4,6-Trichlorophenol	0.371	0.372	-0.3 116	
	•				11/11/

121 121 Mlle 1/21/10 Page: 1

70-BE061410.M Wed Jun 16 03:38:48 2010

Data Path : $\Terastorage\svoasrv\HPCHEM1\BNA_E\Data\BE061510\Data File : BE064822.D$

Acq On : 15 Jun 2010 18:45 Operator : QM

Sample : 40 ng BNA CCC

Misc

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jun 16 03:34:33 2010

Quant Method: Z:\HPCHEM1\BNA_E\METHOD\8270-BE061410.M Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update: Wed Jun 16 03:33:00 2010

Response via: Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 25% Max. Rel. Area: 150%

	Compound	AvgRF	CCRF	%Dev Area% I	Dev(min)
5 S 7 8 9 0 1 2 3 4 5 P 8 9 0 1 2 3 4	2,4,5-Trichlorophenol 2-Fluorobiphenyl 1,1'-Biphenyl 2-Chloronaphthalene 2-Nitroaniline Acenaphthylene Dimethylphthalate 2,6-Dinitrotoluene Acenaphthene 3-Nitroaniline 2,4-Dinitrophenol Dibenzofuran 4-Nitrophenol 2,4-Dinitrotoluene Fluorene 2,3,4,6-Tetrachlorophenol Diethylphthalate 4-Chlorophenyl-phenylether 4-Nitroaniline Azobenzene	0.384 1.311 1.455 1.186 0.351 1.827 1.365 0.323 1.105 0.347 0.064 1.653 0.264 0.414 1.357 0.305 1.329 0.657 0.360 1.348	0.384 1.334 1.494 1.207 0.363 1.876 1.365 0.325 1.152 0.358 0.078 1.679 0.281 0.417 1.391 0.303 1.337 0.650 0.382 1.412	0.0 115 -1.8 116 -2.7 119 -1.8 117 -3.4 119 -2.7 119 0.0 115 -0.6 116 -4.3 120 -3.2 118 -1.6 116 -6.4 121 -0.7 114 -2.5 118 0.7 113 -0.6 116 1.1 114 -6.1 122 -4.7 119	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
5 I C 8 9 O C 2 3 4 5 6 C	Phenanthrene-d10 4,6-Dinitro-2-methylphenol n-Nitrosodiphenylamine 4-Bromophenyl-phenylether Hexachlorobenzene Atrazine Pentachlorophenol Phenanthrene Anthracene Carbazole Di-n-butylphthalate Fluoranthene	1.000 0.083 0.681 0.219 0.216 0.219 0.103 1.098 1.119 1.066 1.248 1.160	1.000 0.096 0.701 0.213 0.214 0.223 0.113 1.121 1.154 1.126 1.287 1.200	0.0 117 -15.7 131 -2.9 119 2.7 113 0.9 115 -1.8 124 -9.7 128 -2.1 117 -3.1 119 -5.6 120 -3.1 117 -3.4 117	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
7 I 8 9 0 S 1 2 3 4 5 6 7	Chrysene-d12 Benzidine Pyrene Terphenyl-d14 Butylbenzylphthalate Benzo(a)anthracene 3,3'-Dichlorobenzidine Chrysene Bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Indeno(1,2,3-cd)pyrene	1.000 0.544 1.253 0.853 0.559 1.127 0.408 1.082 0.750 1.215 1.105	1.000 0.578 1.270 0.838 0.566 1.149 0.413 1.106 0.766 1.248 1.106	0.0 121 -6.2 127 -1.4 119 1.8 115 -1.3 120 -2.0 120 -1.2 119 -2.2 121 -2.1 121 -2.7 121 -0.1 119	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

Arthu 1/4/10

122

Data Path: \\Terastorage\svoasrv\HPCHEM1\BNA_E\Data\BE061510\\Data File: BE064822.D

Acq On : 15 Jun 2010 18:45 Operator : QM

Sample : 40 ng BNA CCC

Misc

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jun 16 03:34:33 2010

Quant Method: Z:\HPCHEM1\BNA_E\METHOD\8270-BE061410.M -Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update: Wed Jun 16 03:33:00 2010

Response via: Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 25% Max. Rel. Area : 150%

	Compound	AvgRF	CCRF	%Dev A	rea%	Dev(min)
8 I 9 0 1 C 2 3	Perylene-d12 Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	1.000 1.194 1.200 1.136 1.013 0.998	1.000 1.210 1.278 1.168 1.049 1.033	0.0 -1.3 -6.5 -2.8 -3.6	121 117 126 119 120 121	0.00 0.00 0.06 0.00 0.00

(#) = Out of Range SPCC's out = 0 CCC's out = 0

CE	CHEMIECH								
	Manual Integration eport								
equence BE061510 Instrument BNA e									
ample ID	File ID	Parameter	evie By	evie On	upervised By	upervised On	eason		
B2618- 17M D	BE064838 D	Indeno (1,2,3-cd) pyrene	zankhana	6/16/2010 8 23 13 AM	ı		Peak Integrated by incorrectly	oft are	

C	JETITECH Instrument: GC/MS Ins								
284	Sheffield S	treet, Mou	ntai	nside NJ 07	092 ((908) 7	789-8900		
Dai	ly Analysis	Runlog Fo	r Sec	quence/QCB	atch	ID#B	E061510		
STD	. NAME	STD REF.#	STD.	NAME	STE	REF.#			
evi	e By	ı	evie	e On	6/1	6/2010 1	2 00 00 AM		
Tune	e/ eschk	P1030	Initia	l Calibration to	ls P1	084-109	1		
ССС		P1088	ubDi	irectory	BEO	61510			
Inter	nal tandard/PEM	1325	HP Ac	quire Method	BNA	. Е			
IC /I	В	NA	HP Pr	ocessing Method	827	0-BE0614	10 M		
Sr#	Sampleld	Data File Name	e l	Date-Time		Operator	Status		
1	25 ng DFTPP	BE064817 D		15 un 2010 13	52	М	Ok		
2	40 ng BNA CCC	BE064818 D		15 un 2010 14	32	М	Not Ok		
3	C EAN P	BE064819 D		15 un 2010 16	46	М	Ok		
4	P1116	BE064820 D		15 un 2010 17	25	М	Ok,M		
5	25 ng DFTPP	BE064821 D		15 un 2010 18	04	М	Ok,M		
6	40 ng BNA CCC	BE064822 D		15 un 2010 18	45	М	Ok,M		
7	PB49736B	BE064823 D		15 un 2010 19	24	М	Ok,M		
8	PB49664B	BE064824 D		15 un 2010 20	03	M	Ok,M		
9	PB49664B D	BE064825 D		15 un 2010 20	45	М	Ok,M		
10	PB49680B	BE064826 D		15 un 2010 21	23	M	Ok		
11	C EAN P	BE064827 D		15 un 2010 22	05	М	Ok		
12	PB49680B	BE064828 D		15 un 2010 22		M	Ok		
13	PB49664B	BE064829 D		15 un 2010 23	23	M	Ok		
14	PB49736B	BE064830 D		16 un 2010 00		M	Ok		
15	B2619-02	BE064831 D		16 un 2010 00		M	Ok		
16	B2616-01	BE064832 D		16 un 2010 1 2		M	Ok,M		
17	B2593-02	BE064833 D		16 un 2010 2 0		_ M	Ok,M		
18	B2593-01 20	BE064834 D	,	16 un 2010 2-4		M	Ok		
19	B2618-04	BE064835 D		16 un 2010 3 2		M	Ok,M		
20	B2618-17	BE064836 D		16 un 2010 4 0	6	M	Ok		

EPA SAMPLE NO.

CHEMIECH

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

PB49736B MACT03 Lab Name: Chemtech Contract: Lab Code: **CHEM** Case No.: B2618 SAS No.: B2618 SDG No.: B2618 SOIL Lab Sample ID: PB49736B Matrix (soil/water): Lab File ID: BE064830.D Sample wt/vol: 30.03 (g/mL) LOW Date Received: Level: (low/med) Date Extracted: 06/10/10 Decanted: (Y/N) % Moisture: Concentrated Extract Volume: 1000 (uL) Date Analyzed: 06/16/10 Injection Volume: Dilution Factor: SOXH GPC Cleanup: (Y/N) pH: Extraction: (Type) Concentration Units: (ug/L or ug/Kg) ug/Kg CAS NO. COMPOUND Q IJ Benzaldehyde 330 100-52-7 U 330 108-95-2 Phenol 111-44-4 bis(2-Chloroethyl)ether 330 U U 95-57-8 2-Chlorophenol 330 U 330 95-48-7 2-Methylphenol U 2,2-oxybis(1-Chloropropane) 330 108-60-1 330 U 98-86-2 Acetophenone U 65794-96-9 3+4-Methylphenols 330 U N-Nitroso-di-n-propylamine 330 621-64-7 U 67-72-1 Hexachloroethane 330 U 98-95-3 Nitrobenzene 330 U 78-59-1 Isophorone 330 U 88-75-5 2-Nitrophenol 330 2.4-Dimethylphenol U 330 105-67-9 111-91-1 bis(2-Chloroethoxy)methane 330 U IJ 120-83-2 2,4-Dichlorophenol 330 U 330 91-20-3 Naphthalene U 106-47-8 4-Chloroaniline 330 Hexachlorobutadiene 330 U 87-68-3 330 U 105-60-2 Caprolactam U 59-50-7 4-Chloro-3-methylphenol 330 U 91-57-6 2-Methylnaphthalene 330 U 77-47-4 Hexachlorocyclopentadiene 330 U 88-06-2 2,4,6-Trichlorophenol 330 95-95-4 2,4,5-Trichlorophenol 330 U U 92-52-4 1,1-Biphenyl 330 U 2-Chloronaphthalene 330 91-58-7 IJ 88-74-4 2-Nitroaniline 330

Comments:

131-11-3

Pollthe 2/21/10

J

Dimethylphthalate

210

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTIVELY IDENTIFIED COMPOUNDS

						PB49736B	
Lab Name:	Chemtech			Contr	act: MACT03		
Lab Code:	CHEM	Case No.:	B2618	SAS No.:	B2618	SDG No.:	B2618
Matrix (soil/wat	ter):	SOIL			Lab Sample ID:	PB49736B	
Sample wt/vol:	30.03	(g/mL) <u>g</u>		Lab File ID:	BE064830.D	
Level: (low/med	i) <u>L(</u>	OW			Date Received:		
% Moisture:	0	Decanted: (Y/N) <u>N</u>		Date Extracted:	06/10/10	
Concentrated Ex	ktract Volume:	1000	(uL)		Date Analyzed:	06/16/10	
Injection Volum	ne: <u>1</u>			-	Dilution Factor:	1	
GPC Cleanup: (Y/N)	N pH:			Concentration Units:	ug/Kg	
Number TICS for	ound:	2		,			

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	5.35	540	A
	unknown2.28	17.67	76	J

in sayles.

EPA SAMPLE NO.

7/2/6

3**A**

SOIL SEMIVOLATILE LABORATORY CONTROL SPIKE/LABORATORY CONTROL SPIKE DUPLICATE RECOVERY

Lab Name:	СНЕМТЕСН			Contract:	MACT03		
Lab Code:	СНЕМ	_ Cas No:	B2618	SAS No:	B2618	SDG No:	B2618
Matrix Spike -	EPA Sample No:	PB49736BS				•	e e

	SPIKE	·	LCS	LCS	QC
	ADDED	CONCENTRATION	CONCENTRATION	% I	LIMITS
COMPOUND	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC#	REC
Benzaldehyde	1700		180	(II)	(10-161)
Phenol	1700		1400	82	(51-111)
bis(2-Chloroethyl)ether	1700		1400	82	(48-114)
2-Chlorophenol	1700		1400	82	(53-110)
2-Methylphenol	1700		1400	82	(52-111)
2,2-oxybis(1-Chloropropane)	. 1700		1400	82	(45-117)
Acetophenone	1700		1400	82	(51-114)
3+4-Methylphenols	1700		1400	82	(54-109)
n-Nitroso-di-n-propylamine	1700		1400	82	(51-114)
Hexachloroethane	1700		1300	76	(44-113)
Nitrobenzene	1700		1400	82	(49-114)
Isophorone	1700		1400	82	(52-113)
2-Nitrophenol	1700		1400	82	(51-116)
2,4-Dimethylphenol	1700		1400	82	(46-148)
bis(2-Chloroethoxy)methane	1700		1400	82	(52-115)
2,4-Dichlorophenol	1700		1400	82	(53-112)
Naphthalene	1700		1400	82	(51-114)
4-Chloroaniline	1700		750	(44)	(25-115)
Hexachlorobutadiene	1700		1300	76	(47-116)
Caprolactam	1700		. 1300	76	(34-117)
4-Chloro-3-methylphenol	1700		1400	82	(56-111)
2-Methylnaphthalene	1700		1400	82	(54-111)
Hexachlorocyclopentadiene	3300		2800	85	(43-112)
2,4,6-Trichlorophenol	1700		1400	82	(53-112)
2,4,5-Trichlorophenol	1700		1400	82	(53-113)
1,1-Biphenyl	1700	`	1500	88	(55-109)
2-Chloronaphthalene	1700		1500	88	(55-112)
2-Nitroaniline	1700		1400	82	(53-118)
Dimethylphthalate .	1700		1600	94	(57-112)
Acenaphthylene	1700		1500	88	(54-113)
2,6-Dinitrotoluene	1700		1500	88	(55-114)
3-Nitroaniline	1700		1100	65	(10-157)
Acenaphthene	1700		1500	88	(54-113)
2,4-Dinitrophenol	3300		2600	79	(15-153)

# C	olumn	to be	used	to flag	recovery	and RPD	values	with an	asterisk

 \star Values outside of QC limits

RPD: 0 Out of 0 outside limits

Spike Recovery: 0 Out of 78 outside limits

Comments:

7/20/1

3A

SOIL SEMIVOLATILE LABORATORY CONTROL SPIKE/LABORATORY CONTROL SPIKE DUPLICATE RECOVERY

Lab Name:	СНЕМТЕСН			Contract:	MACT0	3	
Lab Code:	СНЕМ	Cas No:	B2618	SAS No:	B2618	SDG No:	B2618
Matrix Spike	- EPA Sample No :	PB49736BS					

·	SPIKE		LCS	LCS	QC
COMMONNE	ADDED	CONCENTRATION	CONCENTRATION	% I	LIMITS
COMPOUND	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC#	REC
4-Nitrophenol	3300		3000	91	(44-115)
Dibenzofuran	1700		1500	88	(59-108)
2,4-Dinitrotoluene	1700		1400	82	(55-115)
Diethylphthalate	1700		1400	82	(56-111)
4-Chlorophenyl-phenylether	1700		1400	82	(56-111)
Fluorene	1700		1500	88	(56-113)
4-Nitroaniline	1700		1400	82	(46-113)
4,6-Dinitro-2-methylphenol	1700		1500	88	(39-126)
n-Nitrosodiphenylamine	1700		1400	82	(54-115)
4-Bromophenyl-phenylether	1700		1400	82	(51-120)
Hexachlorobenzene	1700		1400	82	(52-117)
Atrazine	1700		1200	71	(40-127)
Pentachlorophenol	3300		2700	82	(47-116)
Phenanthrene	1700		1500	- 88	(56-113)
Anthracene	1700		1400	82	(56-113)
Carbazole	1700		1400	82	(54-117)
Di-n-butylphthalate	1700		1400	82	(58-115)
Fluoranthene	1700		1400	82	(54-117)
Pyrene	1700		1500	88	(58-117)
Butylbenzylphthalate	. 1700		1500	88	(57-122)
3,3-Dichlorobenzidine	1700		380	(22)	(10-157)
Benzo(a)anthracene	1700		1400	82	(57-112)
Chrysene	1700		1500	88	(59-114)
Bis(2-ethylhexyl)phthalate	1700		1500	88	(60-119)
Di-n-octyl phthalate	1700		1500	88	(56-122)
Benzo(b)fluoranthene	1700		1500	88	(53-120)
Benzo(k)fluoranthene	1700		1500	88	(56-117)
Benzo(a)pyrene	1700		1500	88	(56-117)
Indeno(1,2,3-cd)pyrene	1700		1400	82	(49-120)
Dibenzo(a,h)anthracene	1700		1500	88	(52-119)
Benzo(g,h,i)perylene	1700		1500	88	(53-119)

#	Column	to	be	used	to	flag	recovery	and RI	PD.	values	with	an	asterisk	
---	--------	----	----	------	----	------	----------	--------	-----	--------	------	----	----------	--

* Values outside of QC limits

RPD: 0 Out of 0 outside limits

Spike Recovery: 0 Out of 78 outside limits

Comments:

NIAC. 7/20/10

SOLID SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:	СНЕМТЕСН			Contract:	MACT03		
Lab Code:	СНЕМ	Cas No:	B2618	SAS No:	B2618	SDG No:	B2618
Matrix Spike -	EPA Sample No:	B2618-17					

(ug/Kg) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	240 1800 1800 1700 1700 1700 1800 1700 170	13 95 95 89 89 89 89 89 89 84 89 95 89 95 89 89 95 89 89 89 89 89 89 89 89 89 89	(10-161) (43-127) (43-134) (41-131) (44-129) (36-137) (48-131) (44-131) (41-137) (25-142) (37-136) (42-137) (28-135) (35-136) (38-139) (34-137) (23-160)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1800 1700 1700 1700 1800 1700 1700 1700	95 89 89 95 89 89 84 89 95 89 95 89 95 89	(43-134) (41-131) (44-129) (36-137) (48-131) (44-131) (41-137) (25-142) (37-136) (42-137) (28-135) (38-139) (34-137)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1700 1700 1800 1700 1700 1700 1700 1700	89 89 95 89 89 89 84 89 95 89 95 89	(41-131) (44-129) (36-137) (48-131) (44-131) (41-137) (25-142) (37-136) (42-137) (28-135) (35-136) (38-139) (34-137)
0 0 0 0 0 0 0 0 0 0 0 0 0	1700 1800 1700 1700 1700 1700 1600 1700 1800 1700 1800 1700 1800 1700 1800 1700 17	89 95 89 89 89 84 89 95 89 95 89 95 89	(44-129) (36-137) (48-131) (44-131) (41-137) (25-142) (37-136) (42-137) (28-135) (35-136) (38-139) (34-137)
0 0 0 0 0 0 0 0 0 0 0 0 0	1800 1700 1700 1700 1700 1600 1700 1800 1700 1800 1700 1800 1700 1800 1700 17	95 89 89 84 89 95 89 95 89 95 89	(36-137) (48-131) (44-131) (41-137) (25-142) (37-136) (42-137) (28-135) (35-136) (38-139) (34-137)
0 0 0 0 0 0 0 0 0 0 0	1700 1700 1700 1700 1600 1700 1800 1700 1800 1700 1800 1700 1800 1700 17	89 89 89 84 89 95 89 95 89 95 89	(48-131) (44-131) (41-137) (25-142) (37-136) (42-137) (28-135) (35-136) (38-139) (34-137)
0 0 0 0 0 0 0 0 0 0 0	1700 1700 1600 1700 1800 1700 1800 1700 1800 1700 1800 1700 17	89 89 84 89 95 89 95 89 95 89	(44-131) (41-137) (25-142) (37-136) (42-137) (28-135) (35-136) (38-139) (34-137)
0 0 0 0 0 0 0 0 0 0	1700 1600 1700 1800 1700 1700 1700 1800 1700 17	89 84 89 95 89 95 89 95 89	(41-137) (25-142) (37-136) (42-137) (28-135) (35-136) (38-139) (34-137)
0 0 0 0 0 0 0 0 0	1600 1700 1800 1700 1700 1800 1700 1700 590 1600	84 89 95 89 89 95 89 31	(25-142) (37-136) (42-137) (28-135) (35-136) (38-139) (34-137)
0 0 0 0 0 0 0 0	1700 1800 1700 1700 1800 1700 1800 1700 590 1600	89 95 89 89 95 89 89	(37-136) (42-137) (28-135) (35-136) (38-139) (34-137)
0 0 0 0 0 0 0	1800 1700 1700 1800 1700 1700 590 1600	95 89 89 95 89 89	(42-137) (28-135) (35-136) (38-139) (34-137)
0 0 0 0 0 0	1700 1700 1800 1700 1700 590 1600	89 89 95 89 89	(28-135) (35-136) (38-139) (34-137)
0 0 0 0 0 0	1700 1800 1700 1700 590 1600	89 95 89 89	(35-136) (38-139) (34-137)
0 0 0 0 0	1800 1700 1700 590 1600	95 89 89 (31)	(38-139)
0 0 0 0	1700 1700 590 1600	89 89 31	(34-137)
0 0 0	1700 590 1600	89	
0 0 0	590 1600	(31)	(23-160)
0	1600		
0		84	(10-160)
		04	(37-132)
0	1700	89	(24-145)
·	1600	84	(40-131)
0	1800	95	(37-139)
0	2900	76	(10-128)
0	1700	89	(32-131)
· 0	1700	89	(39-134)
0	1800	95	(47-131)
0	1800	95	(43-133)
0	1800	95	(41-138)
460	2200	92	(51-132
0	1700	89	(28-155
0	1700	89	(41-130
0	1300	68	(10-155
Δ	1000	100	(32-146
	0 0 0 0 460 0 0	0 1700 0 1800 0 1800 0 1800 460 2200 0 1700 0 1700	0 1700 89 0 1800 95 0 1800 95 0 1800 95 460 2200 92 0 1700 89 0 1700 89 0 1300 68

[#] Column to be used to flag recovery and RPD values with an asterisk

Spike Recovery: 1 Out of 78 outside limits

^{*} Values outside of QC limits

3**A**

SOLID SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:	CHEMTECH			Contract:	MACT03		
Lab Code:	СНЕМ	_ Cas No:	B2618	SAS No:	B2618	SDG No:	B2618
Matrix Spike -	EPA Sample No :	B2618-17		· .			

COMPOUND	SPIKE ADDED (ug/Kg)	SAMPLE CONCENTRATION (ug/Kg)	MS CONCENTRATION (ug/Kg)	MS % REC#	QC LIMITS REC
2,4-Dinitrophenol	3800	0	2800	74	(10-177)
4-Nitrophenol	3800	. 0	3500	92	(10-155)
Dibenzofuran	1900	0	1700	89	(36-147)
2,4-Dinitrotoluene	1900	0	1700	89	(38-131)
Diethylphthalate	1900	0	1700	89	(47-132)
4-Chlorophenyl-phenylether	1900	0	1700	89	(43-133)
Fluorene	1900	0	1700	89	(17-166)
4-Nitroaniline	1900	0	1600	84	(23-137)
4,6-Dinitro-2-methylphenol	1900	0	1700	89	(10-153)
n-Nitrosodiphenylamine	1900	0	1800	95	(40-143)
4-Bromophenyl-phenylether	1900	0	1700	89	(40-135)
Hexachlorobenzene	1900	0	1700	89	(43-132)
Atrazine	1900	0	1600	84	(38-135)
Pentachlorophenol	3800	0	3300	87	(10-146)
Phenanthrene	1900	0	1800	95	(30-149)
Anthracene	1900	0	1800	95	(27-158)
Carbazole	1900	0	1800	95	(38-147)
Di-n-butylphthalate	1900	. 0	1800	95	(45-135)
Fluoranthene	1900	0	1700	89	(26-155)
Pyrene	1900	0	1800	95	(22-173)
Butylbenzylphthalate	1900	0	1800	95	(46-141)
3,3-Dichlorobenzidine	1900	0	1100	58	(10-126)
Benzo(a)anthracene	1900	0	1800	95	(27-159)
Chrysene	1900	0	1800	95	(23-166)
Bis(2-ethylhexyl)phthalate	1900	130	2000	98	(39-159)
Di-n-octyl phthalate	1900	0	1900	100	(36-151)
Benzo(b)fluoranthene	1900	0	1700	89	(21-171)
Benzo(k)fluoranthene	1900	0	1700	89	(26-165)
Benzo(a)pyrene	1900	0	1800	95	(26-157)
Indeno(1,2,3-cd)pyrene	1900	0	1900	100	(10-188)
Dibenzo(a,h)anthracene	1900	0	1800	95	(18-147)
Benzo(g,h,i)perylene	1900	0	1900	100	(10-177)

[#] Column to be used to flag recovery and RPD values with an asterisk

RPD: 0 Out of 0 outside limits

Spike Recovery: 1 Out of 78 outside limits

^{*} Values outside of QC limits

SOLID SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:	b Name: CHEMTECH			Contrac	ract: MACT03		
Lab Code:	СНЕМ	Cas No:	B2618	SAS No:	B2618	SDG No:	B2618
Matrix Cuilea	EDA Comple No.	P2619 17					

	COMPOUND	SPIKE ADDED (ug/Kg)	MSD CONCENTRATION (ug/Kg)	MSD % % (ug/Kg)	QC LIMITS	
ļ	Benzaldehyde	1900	250	(13) 0	20 (1	0-161)
1	Phenol	1900	1800	95 0	20 (4	3-127)
	bis(2-Chloroethyl)ether	1900	1800	95 0	20 (4	13-134)
	2-Chlorophenol	1900	1700	89 0	20 (4	11-131)
	2-Methylphenol	1900	1800	95 7	20 (4	14-129)
	2,2-oxybis(1-Chloropropane)	1900	1900	100 5	20 (3	36-137)
ı	Acetophenone	1900	1800	· 95 7	20 (4	18-131)
	3+4-Methylphenols	1900	1800	95 7	20 (4	14-131)
	n-Nitroso-di-n-propylamine	1900	1800	95 7	20 (4	11-137)
	Hexachloroethane	1900	1700	89 6	20 (2	25-142)
	Nitrobenzene	1900	1800	95 7	20 (3	37-136)
ı	Isophorone	1900	1800	95 0	20 (4	42-137)
	2-Nitrophenol	1900	1700	89 0	20 (2	28-135)
	2,4-Dimethylphenol	1900	1700	89 0	20 (35-136)
	bis(2-Chloroethoxy)methane	1900	1800	95 0	20 (38-139)
	2,4-Dichlorophenol	1900	1700	89 0	20 (34-137)
	Naphthalene	1900	1800	95 7	20 (2	23-160)
	4-Chloroaniline	1900	840	44 35*	20 (10-160)
	Hexachlorobutadiene	1900	1600	84 0	20 (37-132)
	Caprolactam	1900	1700	89 0	20 (24-145)
	4-Chloro-3-methylphenol	1900	1700	89 6	20 (40-131)
	2-Methylnaphthalene	1900	1800	95 0	20 (37-139)
	Hexachlorocyclopentadiene	3800	3000	79 4	20 (10-128)
	2,4,6-Trichlorophenol	1900	1800	95 7	20 (32-131)
	2,4,5-Trichlorophenol	1900	1800	95 7	20 (39-134)
	1,1-Biphenyl	1900	1800	95 0	20 (47-131)
	2-Chloronaphthalene	1900	1800	95 0	20 (43-133)
	2-Nitroaniline	1900	1800	95 0	20 (41-138)
	Dimethylphthalate	1900	2200	92 0	20 (51-132)
	Acenaphthylene	1900	1800	95 7	20 (28-155)
	2,6-Dinitrotoluene	1900	1800	95 7	20 (41-130)
	3-Nitroaniline	1900	1500	79 15	20 (10-155)
	Acenaphthene	1900	1800	95 5	20 (32-146)

[#] Column to be used to flag recovery and RPD values with an asterisk

RPD: 1 Out of 78 outside limits

Spike Recovery: 2 Out of 156 outside limits 12/10/10 12

^{*} Values outside of QC limits

SOLID SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:	СНЕМТЕСН			Contract	: MACT03			
Lab Code:	СНЕМ	Cas No:	B2618	SAS No:	B2618	SDG No:	B2618	
Matrix Spike	- EPA Sample No :	B2618-17						

COMPOUND	SPIKE ADDED (ug/Kg)	MSD CONCENTRATION (ug/Kg)	MSD % % (ug/Kg)	QC LIMITS RPD REC
2,4-Dinitrophenol	3800	3100	82 10	20 (10-177)
4-Nitrophenol	3800	3700	97 5	20 (10-155)
Dibenzofuran	1900	1800	95 7	20 (36-147)
2,4-Dinitrotoluene	1900	1800	95 7	20 (38-131)
Diethylphthalate	1900	1800	95 7	20 (47-132)
4-Chlorophenyl-phenylether	1900	1700	89 0	20 (43-133)
Fluorene	1900	1800	95 7	20 (17-166)
4-Nitroaniline	1900	1700	89 6	20 (23-137)
4,6-Dinitro-2-methylphenol	1900	1800	95 7	20 (10-153)
n-Nitrosodiphenylamine	1900	1800	95 0	20 (40-143)
4-Bromophenyl-phenylether	1900	1700	89 0	20 (40-135)
Hexachlorobenzene	1900	1700	89 0	20 (43-132)
Atrazine	1900	1600	84 0	20 (38-135)
Pentachlorophenol	3800	3500	92 6	20 (10-146)
Phenanthrene	1900	1800	95 0	20 (30-149)
Anthracene	1900	1800	95 0	20 (27-158)
Carbazole	1900	1800	95 0	20 (38-147)
Di-n-butylphthalate	1900	1800	95 0	20 (45-135)
Fluoranthene	1900	1800	95 7	20 (26-155)
Pyrene	1900	1800	95 0	20 (22-173)
Butylbenzylphthalate	1900	1800	95 0	20 (46-141)
3,3-Dichlorobenzidine	1900	1300	68 16	20 (10-126)
Benzo(a)anthracene	1900	1800	95 0	20 (27-159)
Chrysene	1900	1800	95 0	20 (23-166)
Bis(2-ethylhexyl)phthalate	1900	2100	104 6	20 (39-159)
Di-n-octyl phthalate	1900	1900	100 0	20 (36-151)
Benzo(b)fluoranthene	1900	1800	95 7	20 (21-171)
Benzo(k)fluoranthene	1900	. 1700	89 0	20 (26-165)
Benzo(a)pyrene	1900	1800	95 0	20 (26-157)
Indeno(1,2,3-cd)pyrene	1900	1900	100 0	20 (10-188)
Dibenzo(a,h)anthracene	1900	1800	95 0	20 (18-147)
Benzo(g,h,i)perylene	1900	1900	100 0	20 (10-177)

[#] Column to be used to flag recovery and RPD values with an asterisk

RPD: 1 Out of 78 outside limits

Spike Recovery: 2 Out of 156 outside limits

foll Ala 2/volio

^{*} Values outside of QC limits

1C

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO. LCSS00100110XX Contract: MACT03 Lab Name: Chemtech B2618 SAS No.: SDG No.: CHEM Case No.: B2618 B2618 Lab Code: Lab Sample ID: Matrix (soil/water): SOIL B2618-04 Sample wt/vol: 30.05 (g/mL) Lab File ID: BE064835.D Level: (low/med) LOW Date Received: 06/09/10 N % Moisture: 13 Decanted: (Y/N) Date Extracted: 06/10/10 Concentrated Extract Volume: (uL) Date Analyzed: 06/16/10 Dilution Factor: Injection Volume: N N/A Extraction: (Type) SOXH GPC Cleanup: (Y/N) pH: Concentration Units: COMPOUND 0 CAS NO. (ug/L or ug/Kg) ug/Kg 380 U 100-52-7 Benzaldehyde 380 U 108-95-2 Phenol U 380 bis(2-Chloroethyl)ether 111-44-4 95-57-8 2-Chlorophenol 380 U IJ 95-48-7 2-Methylphenol 380 U 380 2,2-oxybis(1-Chloropropane) 108-60-1 98-86-2 Acetophenone 380 U 65794-96-9 3+4-Methylphenols 380 U U 380 621-64-7 N-Nitroso-di-n-propylamine U 67-72-1 Hexachloroethane 380 U 98-95-3 Nitrobenzene 380 78-59-1 Isophorone 380 U U 88-75-5 2-Nitrophenol 380 380 U 105-67-9 2,4-Dimethylphenol U 380 111-91-1 bis(2-Chloroethoxy)methane 120-83-2 2.4-Dichlorophenol 380 U IJ 91-20-3 Naphthalene 380 U 380 4-Chloroaniline 106-47-8 87-68-3 Hexachlorobutadiene 380 U 380 IJ 105-60-2 Caprolactam U 59-50-7 4-Chloro-3-methylphenol 380 91-57-6 2-Methylnaphthalene 380 U U 77-47-4 Hexachlorocyclopentadiene 380 88-06-2 2,4,6-Trichlorophenol 380 U 95-95-4 2,4,5-Trichlorophenol 380 U IJ

Comments:

1.1-Biphenyl

2-Chloronaphthalene

92-52-4

91-58-7

U

380

380

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

LCSS00100110XX

Lab Name:	Chemtech		Contr	act: MACT03			
Lab Code:	СНЕМ	Case No.: <u>B2618</u>	SAS No.:	B2618	SDG No.:	B2618	
Matrix (soil/wa	ater):	SOIL		Lab Sample ID:	B2618-04		_
Sample wt/vol	·	(g/mL) g		Lab File ID:	BE064835.D		
Level: (low/me		OW		Date Received:	06/09/10		
•	<i></i>						
% Moisture:	13	Decanted: (Y/N) N		Date Extracted:	06/10/10		
Concentrated I	Extract Volume:	1000 (uL)		Date Analyzed:	06/16/10		
Injection Volu	me: <u>1</u>			Dilution Factor:	1		
GPC Cleanup:	(Y/N)	N pH: N/A		Extraction: (Type) Concentration Units	<u>so</u> :	XH	
CAS NO.		COMPOUND		(ug/L or ug/K	g) ug/Kg	_ Q	
88-74-4		2-Nitroaniline		380		U	
131-11-3		Dimethylphthalate		450		В	
208-96-8		Acenaphthylene	·	380		U	
606-20-2		2,6-Dinitrotoluene		380		U	
99-09-2		3-Nitroaniline		380		U	
83-32-9		Acenaphthene		380		U	
51-28-5		2,4-Dinitrophenol		380		U	
100-02-7		4-Nitrophenol		380		U	
132-64-9		Dibenzofuran		380		U	
121-14-2		2,4-Dinitrotoluene		380		U	
84-66-2		Diethylphthalate		380		U	
7005-72-	3	4-Chlorophenyl-phenylether		380		U .	
86-73-7		Fluorene		380		U	
100-01-6		4-Nitroaniline		380		U	
534-52-1		4,6-Dinitro-2-methylphenol		380		U	
86-30-6		N-Nitrosodiphenylamine		380		U	
101-55-3		4-Bromophenyl-phenylether		380		U	
118-74-1		Hexachlorobenzene		380		U	
1912-24-	9	Atrazine		380		U __	
87-86-5		Pentachlorophenol		380		U	
85-01-8		Phenanthrene		61		J	
120-12-7		Anthracene		380		U	
86-74-8		Carbazole		380		U	
84-74-2		Di-n-butylphthalate		63		J	
206-44-0		Fluoranthene		160		J	
129-00-0		Pyrene		130		J	
85-68-7		Butylbenzylphthalate		130		J	
91 - 94-1		3,3-Dichlorobenzidine		380		U	
56-55-3		Benzo(a)anthracene		54	T	Ţ	

Comments:

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

					EI	PA SAMPLE NO.
					LCSS0010	00110XX
Lab Name:	Chemtech		Contr	act: MACT03		
Lab Code:	CHEM	Case No.: <u>B2618</u>	SAS No.:	B2618	SDG No.:	B2618
Matrix (soil/wa	ater):	SOIL		Lab Sample ID:	B2618-04	
Sample wt/vol:	30.05	(g/mL) g		Lab File ID:	BE064835.D	
Level: (low/me	ed) LO	OW		Date Received:	06/09/10	
% Moisture:	13	Decanted: (Y/N) N		Date Extracted:	06/10/10	
Concentrated E	Extract Volume:	1000 (uL)		Date Analyzed:	06/16/10	
Injection Volum	me: 1			Dilution Factor:	1	
GPC Cleanup:	(Y/N)	N pH: N/A		Extraction: (Type) Concentration Units:	SO	XH
CAS NO.		COMPOUND		(ug/L or ug/K	g) ug/Kg	_ Q
218-01-9		Chrysene		80		J
117-81-7		bis(2-Ethylhexyl)phthalate		1800 🐱		
117-84-0		Di-n-octyl phthalate		55	·	J
205-99-2		Benzo(b)fluoranthene		87		J
207-08-9		Benzo(k)fluoranthene		380		U
50-32-8		Benzo(a)pyrene		55		J
193-39-5		Indeno(1,2,3-cd)pyrene		49		J
53-70-3		Dibenz(a,h)anthracene		380		U
191-24-2		Benzo(g,h,i)perylene		93		J

follow x/u/co

Comments:

Data Path : Z:\HPCHEM1\BNA E\DATA\BE061510\

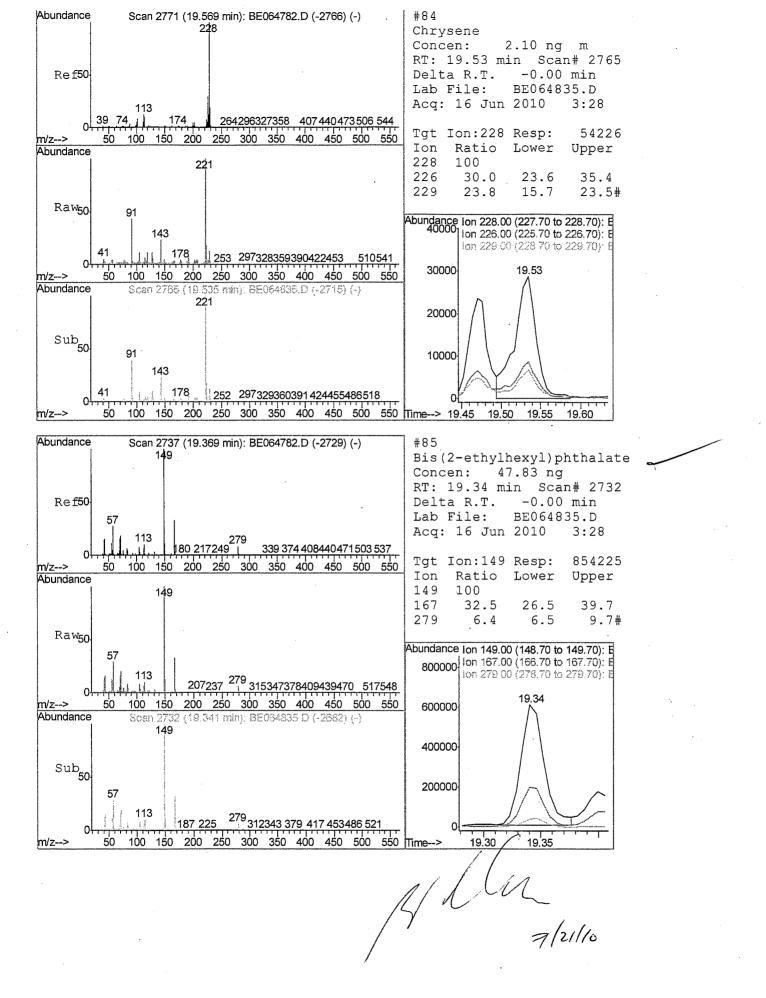
Data File : BE064835.D

Acq On : 16 Jun 2010 Operator : QM 3:28

Sample : B2618-04

Misc Sample Multiplier: 1 ALS Vial : 15

Quant Time: Jun 16 04:40:36 2010


Quant Method: Z:\HPCHEM1\BNA E\METHOD\8270-BE061410.M Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update: Wed Jun 16 03:49:07 2010

Response via: Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)	
1) 1,4-Dichlorobenzene-d4	7.88	152	133829	20.00 ng	0.00)
23) Naphthalene-d8	10.13	136	534780	20.00 ng	0.00	
40) Acenaphthene-d10	13.41	164	288654	20.00 ng	0.00)
65) Phenanthrene-d10	16.06	188	489299	20.00 ng	0.00)
77) Chrysene-d12	19.49	240	476253	20.00 ng	0.00)
88) Perylene-d12	22.83	264	453305	20.00 ng)
System Monitoring Compounds						
5) 2-Fluorophenol	5.82	112		127.56 ng	0.00	
7) Phenol-d5	7.22	99	1459497	132.35 ng	0.00	
12) 2-Chlorophenol-d4	7.51	132	1081407	126.34 ng	0.00	
15) 1,2-Dichlorobenzene-d4	8.15	152	523302	86.38 ng		
25) Nitrobenzene-d5	8.82		875406	85.41 ng		
43) 2,4,6-Tribromophenol	14.91		275493	119.67 ng		
46) 2-Fluorobiphenyl		172		84.94`ng		
80) Terphenyl-d14	17.99	244	1524491	75.03 ng	0.00)
Target Compounds					Qvalue	
51) Dimethylphthalate	12.87	163	229360	11.64 ng	99	}
72) Phenanthrene	16.09	178	42706m	1.59 ng		
75) Di-n-butylphthalate	16.80		50109	1.64 ng	# 97	
76) Fluoranthene	17.58		121489	4.28 ng	98	
79) Pyrene	17.85		101772	3.41 ng	95	
81) Butylbenzylphthalate	18.55		45733	3.43 ng	87	
82) Benzo(a)anthracene	19.47		37453	1.40 ng	98	3
84) Chrysene	19.53		54226m	2.10 ng		
85) Bis(2-ethylhexyl)phthalate	19.34		854225	47.83 ng	# 98	
86) Di-n-octyl phthalate	20.57	149	41238	1.43 ng	# 95	
87) Indeno(1,2,3-cd)pyrene	26.87	276	33687 61633	1.28 ng	# 94	
89) Benzo(b)fluoranthene	21.74	252	61633	2.28 ng	94	
91) Benzo(a)pyrene	22.67		37072	1.44 ng	# 83	
93) Benzo(g,h,i)perylene	28.16	276 	55079	2.43 ng	93 	3

(#) = qualifier out of range (m) = manual integration (+) = signals summed

PCBs

NYSDEC DUSR PROJECT CHEMIST REVIEW RECORD Project: Loohn's Corning
Method: 8082 PCB
Laboratory and SDG(s):Chemtech B2618
Date: 7 (21/10
Reviewer: AND TO DIED TO THE THE THE THE THE THE THE THE THE THE
Review Level X NYSDEC DUSR USEPA Region II Guideline
1. X Case Narrative Review and Data Package Completeness <u>COMMENTS</u>
Where all the samples on the COC analyzed for the requested analyses? (ES) NO (circle one)
 X Holding time and Sample Collection Aqueous hold time is 7days to extraction, solid is 14 days. Hold time met for all samples? YES NO (circle one)
3. X QC Blanks Are method blanks free of contamination? YES NO (circle one) Are Rinse blanks free of contamination? YES NO (NA) (circle one)
X Percent difference between columns (Region II criteria is 25% for PCBs) Is the percent difference between columns ≤25 for PCBs% YES NO (NA) (circle one)
X Instrument Calibration For aroclors was the I-cal criteria of 20% (%RSD) met? YES NO NA (circle one)
For aroclors, was the continuing calibration criteria of 15% (%D) met? (YES)NO NA (circle one)
X Surrogate Recovery (soil and water limits: 30-150%)
Were all results were within limits? (YES) NO (circle one)
X Matrix Spike (soil and water limits: 29-135% and RPD of 20, RPD is 15 for Aroclor 1016)
Were MS/MSDs submitted/analyzed? (YES) NO (circle one)
Were all results were within limits? YES (NO) NA (circle one) Sample LCPDI00600110XX was analyzed as an MS/MSD by the laboratory. The MSD percent recovery of Aroclor 1260 (144) exceeded the upper QC limit of 129. The unspiked sample results for Aroclor 1260 was non detect, no further action required.
X Field Duplicates (RPD limits for soil=100, water = 50)
Were Field Duplicates submitted/analyzed? YES (NO')
Were RPDs within the limits? YES NO NA (circle one)
X Laboratory Control Sample Results (soil and water percent recovery limits: 50-150%)
Were all results were within limits? (YES) NO (circle one)
4. X Raw Data Review and Calculation Checks
5. X Electronic Data Review and Edits
Does the EDD match the Form I's? (YES)NO (circle one)

6. DUSR Table 1 (sample Listing), Table 2 (results summary), Table 3 (Reason Codes). Were all tables produced? YES) NO (circle one)

1E

PESTICIDE ORGANICS ANALYSIS DATA SHEET

						Œ	PA SAMPLE NO.	
	•					LCSS0010	00110XX	
Lab Name:	Chemtech	<u>.</u>		Contract	MACT03			
Lab Code:	СНЕМ	Case No.:	32618	SAS No.:	B2618	SDG No.:	B2618	_
Matrix (soi	il/water):	SOIL		L	ab Sample ID:	B2618-04		
Sample wt/	/vol: <u>30.05</u>	(g/mL)	g	L	ab File ID:	P4021692.D		
Level: (low	v/med) <u>L</u>	ow		D	ate Received:	06/09/10		
% Moisture	e: <u>13</u>	Decanted: (Y/N)	N	D	ate Extracted:	06/10/10		
Concentrat	ed Extract Volume:	10000	(uL)	D	ate Analyzed:	06/10/10		
Injection V	olume: 1		.	D	ilution Factor:	1		_
GPC Clean	up: (Y/N)	N pH: N/	Α		xtraction: (Type) Concentration Units:	<u>so</u> :	XH	-
CAS	NO.	COMPOUND	•		(ug/L or ug/K	g) ug/Kg	_ Q	
12674	-11-2	Aroclor-1016		20)		U	
11104	-28-2	Aroclor-1221		20)		Ū	
11141	-16-5	Aroclor-1232		20)		Ū	·
53469	-21-9	Aroclor-1242		20)		U	
12672	-29-6	Aroclor-1248		20	,		. U	
11097	-69-1	Aroclor-1254		20)		Ŭ	
11096	-82-5	Aroclor-1260		20			ŢŢ	

MM 7/21/10

Comments:			
		 	

1E

PESTICIDE ORGANICS ANALYSIS DATA SHEET

				•	17.1	A SAMULE NO.	
					LCPD1006	500110XX	
Chemtech			Contr	act: MACT03			
СНЕМ	Case No.:	32618	SAS No.:	B2618	SDG No.:	B2618	
ater):	SOIL			Lab Sample ID:	B2618-17		_
30.08	(g/mL)	g		Lab File ID:	P4021693.D		
ed) <u>L</u>	ow			Date Received:	06/09/10		
13	Decanted: (Y/N)	N		Date Extracted:	06/10/10		
Extract Volume:	10000	(uL)		Date Analyzed:	06/10/10		
ne: <u>1</u>		_		Dilution Factor:	1		
(Y/N)	N pH: N/	Α		Extraction: (Type) Concentration Units		H	- -
	COMPOUND			(ug/L or ug/K	g) ug/Kg	Q	
-2	Aroclor-1016			19		U	
-2	Aroclor-1221			19		U	
·5	Aroclor-1232			19		U	
.9	Aroclor-1242			19		U	
.6	Aroclor-1248			19		U	
1	Aroclor-1254			19		U	
-5	Aroclor-1260			19		U	
	CHEM ater): 30.08 ad) L 13 extract Volume: me: 1 (Y/N) 2 2 5 9 6 1	CHEM Case No.: Enter): atter): SOIL 30.08 (g/mL) ad) Low 13 Decanted: (Y/N) Extract Volume: 10000 me: 1 (Y/N) N pH: N/A COMPOUND 2 Aroclor-1016 2 Aroclor-1221 5 Aroclor-1232 9 Aroclor-1242 6 Aroclor-1254 1 Aroclor-1254	CHEM Case No.: B2618 ater): SOIL 30.08 (g/mL) g ed) Low 13 Decanted: (Y/N) N extract Volume: 10000 (uL) me: 1 (Y/N) N pH: N/A COMPOUND 2 Aroclor-1016 2 Aroclor-1221 5 Aroclor-1232 9 Aroclor-1242 6 Aroclor-1248 1 Aroclor-1254	CHEM Case No.: B2618 SAS No.: ater): SOIL 30.08 (g/mL) g ad) Low 13 Decanted: (Y/N) N extract Volume: 10000 (uL) me: 1 (Y/N) N pH: N/A COMPOUND 2 Aroclor-1016 2 Aroclor-1221 5 Aroclor-1232 9 Aroclor-1242 6 Aroclor-1248 1 Aroclor-1254	CHEM Case No.: B2618 SAS No.: B2618 ater): SOIL Lab Sample ID: add) Low Date Received: add) Low Date Received: ateract Volume: 10000 (uL) Date Analyzed: ane: 1 Dilution Factor: (Y/N) N pH: N/A Extraction: (Type) Concentration Units COMPOUND (ug/L or ug/K 2 Aroclor-1016 19 2 Aroclor-1221 19 5 Aroclor-1232 19 9 Aroclor-1242 19 6 Aroclor-1254 19 1 Aroclor-1254 19	Chemtech Contract: MACT03	CHEM Case No.: B2618 SAS No.: B2618 SDG No.: B2618 ster): SOIL Lab Sample ID: B2618-17 30.08 (g/mL) g Lab File ID: P4021693.D ad) Low Date Received: 06/09/10 13 Decanted: (Y/N) N Date Extracted: 06/10/10 extract Volume: 10000 (uL) Date Analyzed: 06/10/10 me: 1 Dilution Factor: 1 (Y/N) N pH: N/A Extraction: (Type) SOXH Concentration Units: Concentration Units: Concentration Units: Q 2 Aroclor-1016 19 U 2 Aroclor-1221 19 U 5 Aroclor-1232 19 U 9 Aroclor-1242 19 U 6 Aroclor-1248 19 U 1 Aroclor-1254 19 U

Al Mala 7/2/10

Comments:		
	Market Control of the	

Method Path : P:\HPCHEM1\Ecd 4\Method\

Method File: P4051310.M : GC EXTRACTABLES Title

Last Update : Fri May 14 14:23:10 2010 Response Via : Initial Calibration

Calibration Files

500 =P4021342.D 1000 =P4021340.D 750 =P4021341.D

250 =P4.021343.D 50 =P4021344.D

		Compound	500	1000	750	250	50	Avg		%RSD
1)	SA	Tetrachloro-m-xylene	1.389	1.515	1.439	1.278	1.001	1.325	E4	15.11
2)	SA	Decachlorobiphenyl	1.486	1.509	1.504	1.454	1.297	1.450	E4	6.09
3)	L1	Aroclor-1016-1	3.837	3.988	3.825	3.917	3.638	3.841	E2	3.41
4)	L1	Aroclor-1016-2	1.203	1.280	1.195	1.172	1.041	1.178	E3	7.36
5)	L1	Aroclor-1016-3	5.142	5.521	4.908	5.277	5.499	5.270	E2	4.87
6)	L1	Aroclor-1016-4	3.292	3.553	2.783	3.356	3.809	3.358	E2	11.30
7)	L1	Aroclor-1016-5				2.732				6.23
8)	L2	Aroclor-1221-1	1.296					1.296	E2	0.00
9)	L2	Aroclor-1221-2	1.084					1.084	E2	0.00
0)	L2	Aroclor-1221-3	3.834					3.834	E2	0.00
1)	L3	Aroclor-1232-1	4.481					4.481	E2	0.00
2)	L3	Aroclor-1232-2	2.272					2.272		0.00
3)	L3	Aroclor-1232-3	5.889					5.889		0.00
4)	L3	Aroclor-1232-4	2.697					2.697		0.00
5)	L3	Aroclor-1232-5	1.242					1.242		0.00
6)	L4	Aroclor-1242-1	3.496					3.496		0.00
7)	L4	Aroclor-1242-2	1.016					1.016		0.00
8)	L4	Aroclor-1242-3	4.414					4.414		0.00
9)	L4	Aroclor-1242-4	2.242					2.242		0.00
0)	L4	Aroclor-1242-5	3.437					3.437		0.00
1)	L5	Aroclor-1248-1	5.050					5.050		0.00
2)	L5	Aroclor-1248-2	3.458					3.458		0.00
3)	L5	Aroclor-1248-3	5.934					5.934		0.00
4)	L5	Aroclor-1248-4	7.205					7.205		0.00
5)	L5	Aroclor-1248-5	6.039					6.039		0.00
6)	L6	Aroclor-1254-1	7.235					7.235		0.00
7)	L6	Aroclor-1254-2	9.572					9.572		0.00
8)	L6	Aroclor-1254-3	5.964				•	5.964		0.00
9)	L6	Aroclor-1254-4	4.197					4.197		0.00
0)	L6	Aroclor-1254-5	8.247					8.247		0.00
1)	L7	Aroclor-1260-1		8.285	8.174	8.603	7.989			2.71
2)	L7	Aroclor-1260-2				1.200				4.30
3)	L7	Aroclor-1260-3				1.127				5.03
4)	L7	Aroclor-1260-4				1.663				8.93
5)	L7	Aroclor-1260-5				0.920				3.78
gn	al #	2 Calibration Files								
50		=P4021342.D 1000	=P40213	340.D	750	=P40	021341	.D		-

250 =P4021343.D 50 =P4021344.D

		Compound	500	1000	750	250	50	Avg		%RSD
1)	SA	Tetrachloro-m-xylene						1.671		6.58
2)	SA	Decachlorobiphenyl	2.091					2.075	$\mathbb{E}4$	4.62
3)	L1	Aroclor-1016-1	9.337			9.031			E2	3.77
4)	L1	Aroclor-1016-2	6.377	5.977	6.067	6.041	5.529	5.998	E2	5.07
5)	L1	Aroclor-1016-3	1.579	1.439	1.472	1.741	1.715	1.589	E3	8.65
6)	L1	Aroclor-1016-4	8.741	8.043	8.232	9.476	8.842	8.667	E2	6.50
7)	L1	Aroclor-1016-5	5.029	4.711	4.776	5.333	4.629	4.895	E2	5.85
8)	L2	Aroclor-1221-1	2.081					2.081	E2	0.00
9)	L2	Aroclor-1221-2	1.657					1.657	E2	0.00
0)	L2	Aroclor-1221-3	5.572					5.572	E2	0.00
1)	L3	Aroclor-1232-1	6.047					6.047	E2	0.00
2)	L3	Aroclor-1232-2	8.602					8.602	E2	0.00
3)	L3	Aroclor-1232-3	4.784					4.784	E2	0.00

No aluffo

6)	L4	Aroclor-1242-1	7.974				7.974	E2	0.00	
7)	L4	Aroclor-1242-2	1.358				1.358	E3	0.00	
8)	L4	Aroclor-1242-3	7.560				7.560	E2	0.00	
9)	L4	Aroclor-1242-4	5.652				5.652	E2	0.00	
0)	L4	Aroclor-1242-5	7.082				7.082	E2	0.00	
1)	L5	Aroclor-1248-1	7.422				7.422		0.00	
2)	L5	Aroclor-1248-2	4.544				4.544		0.00	
3)	L5	Aroclor-1248-3	8.668				8.668		0.00	
4)	L5	Aroclor-1248-4	8.661				8.661		0.00	
5)	L5	Aroclor-1248-5	9.784				9.784		0.00	
6)	L6	Aroclor-1254-1	1.129				1.129		0.00	
7)	L6	Aroclor-1254-2	1.557				1.557	-	0.00	
8)	L6	Aroclor-1254-3	1.144					E3	0.00	
9)	L6	Aroclor-1254-4	7.646				7.646	_	0.00	
0)	L6	Aroclor-1254-5	1.475			-	1.475		0.00	
1)	L7	Aroclor-1260-1	1.167 1.	080 1.075	1.324	1.303			10.00	
2)	L7	Aroclor-1260-2		453 1.431					9.33	
3)	ь7	Aroclor-1260-3			1.365				9.27)
4)	L7	Aroclor-1260-4	1.146 1.		1.234			-	5.92)
5)	_ L7	Aroclor-1260-5		807 2.532					6.44	• /

#) = Out of Range

051310.M Sat May 15 04:08:10 2010 GC/MS

NCCC 7/2/2/co

Data File : P4021340.D

Signal(s): Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Acq On : 13 May 2010 18:33

Operator : BI

Sample : 1660 1000 PPB

Misc

ALS Vial : 4 Sample Multiplier: 1

Integration File signal 1: autoint1.e Integration File signal 2: autoint2.e

Quant Time: May 14 12:47:30 2010

Quant Method: P:\HPCHEM1\Ecd_4\Method\P4051310.M

Quant Title : GC EXTRACTABLES

QLast Update : Fri May 14 12:45:34 2010

Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 2 µl

Signal #1 Phase : ZB-MR1 Signal #2 Phase: ZB-MR2

Signal #1 Info : 30M x 0.32mm x 0. Signal #2 Info : 30M x 0.32mm x0.25µm

Compound	RT#1	RT#2	Resp#1	Resp#2	ng/ml	ng/ml	
System Monitoring) SA Tetrachlo) SA Decachlor	Compounds 3.710 8.608	2.832 7.251	1515284 1509297	1723222 2081423	104.658 100.632	100.977	
Target Compounds) L1 Aroclor-1) L1 Aroclor-1) L1 Aroclor-1) L1 Aroclor-1) L1 Aroclor-1) L7 Aroclor-1) L7 Aroclor-1) L7 Aroclor-1) L7 Aroclor-1) L7 Aroclor-1) L7 Aroclor-1	4.592 4.858 4.917 5.005 5.397 6.252 6.471 6.703 7.209 7.455	3.539 3.714 3.944 4.000 4.113 5.278 5.444 5.568 5.964 6.168	398758 1279752 552123 355282 280350 828461 1192023 1184325 1787202 1011195	597698 1438502 804330 471103 1079845 1452958 1189475 1194364	1026.812 1043.888 1063.719 1107.073 1029.152 1004.088 1011.334 1019.732 1025.263 1031.492	965.290 973.385 961.264 964.586 973.640 975.184 985.192 1002.828 1048.414 1054.545	

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

alle the

Data File : P4021341.D

Signal(s): Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Acq On : 13 May 2010 18:47

Operator : BI

Sample : 1660 750 PPB

Misc

ALS Vial : 5 Sample Multiplier: 1

Integration File signal 1: autoint1.e
Integration File signal 2: autoint2.e

Quant Time: May 14 12:42:47 2010

Quant Method: P:\HPCHEM1\Ecd_4\Method\P4051310.M

Quant Title : GC EXTRACTABLES

QLast Update : Fri May 14 12:41:05 2010

Response via: Initial Calibration

Integrator: ChemStation

Volume Inj. : 2 µl

Signal #1 Phase : ZB-MR1 Signal #2 Phase: ZB-MR2

Signal #1 Info : 30M x 0.32mm x 0. Signal #2 Info : 30M x 0.32mm x0.25µm

	Compound	RT#1	RT#2	Resp#1	Resp#2	ng/ml	ng/ml
Syst) SA) SA	em Monitoring Tetrachlo Decachlor	Compounds 3.710 8.605	2.832 7.251	1079136 1128321	1261743 1497435	76.311 75.468	74.298 73.271
Targ	get Compounds						
) L1	Aroclor-1	4.592	3.539	286900	653932	748.811	724.354
) L1	Aroclor-1	4.859	3.715	896467	455062	747.651	731.360
) L1	Aroclor-1	4.918	3.944	368082	1104026	732.483	723.737
) L1	Aroclor-1	5.006	4.001	208710	617380	687.137	727.506
) L1	Aroclor-1	5.398	4.114	201314	358171	749.946	730.610
) L7	Aroclor-1	6.251	5.279	613065	805997	744.552	718.957 i
) L7	`Aroclor-1	6.472	5.444	867397	1073172	740.109	722.327
) L7	Aroclor-1	6.703	5.568	872934	852721	759.107	719.934
) L7	Aroclor-1	7.209	5.964	1287211	808086	747.879	726.936
) L7	Aroclor-1	7.454	6.168	729536	1899318	756.086	733.546

⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

M Mila aprilio

Data File : P4021342.D

Signal(s): Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Acq On : 13 May 2010 19:01

Operator : BI

Sample : 1660 500 PPB

Misc :

ALS Vial : 6 Sample Multiplier: 1

Integration File signal 1: autoint1.e Integration File signal 2: autoint2.e

Quant Time: May 14 12:48:55 2010

Quant Method : P:\HPCHEM1\Ecd_4\Method\P4051310.M

Quant Title : GC EXTRACTABLES

QLast Update : Fri May 14 12:36:54 2010

Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 2 µl Signal #1 Phase : ZB-MR1

Signal #2 Phase: ZB-MR2

Signal #1 Info : 30M x 0.32mm x 0. Signal #2 Info : 30M x 0.32mm x0.25mm

Compound	RT#1	RT#2	Resp#1	Resp#2	ng/ml	ng/ml
System Monitoring) SA Tetrachlo) SA Decachlor	Compounds 3.711 8.610	2.833 7.252	694708 742875	857052 1045394	50.000	50.000
Target Compounds) L1 Aroclor-1) L1 Aroclor-1) L1 Aroclor-1) L1 Aroclor-1) L1 Aroclor-1) L7 Aroclor-1) L7 Aroclor-1) L7 Aroclor-1) L7 Aroclor-1) L7 Aroclor-1) L7 Aroclor-1	4.593 4.860 4.919 5.007 5.399 6.252 6.473 6.703 7.210 7.456	3.539 3.716 3.945 4.002 4.114 5.280 5.445 5.569 5.965 6.169	191874 601400 257125 164599 134229 414691 593720 567993 863007 478528	466825 318838 789435 437039 251454 583733 770267 615963 572909 1323017	500.000 500.000 500.000 500.000 500.000 500.000 500.000 500.000	500.000 500.000 500.000 500.000 500.000 500.000 500.000 500.000

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

1 Cllle 7/21160

Data File : P4021343.D

Signal(s): Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Acq On : 13 May 2010 19:16

Operator : BI

Sample : 1660 250 PPB

Misc

ALS Vial : 7 Sample Multiplier: 1

Integration File signal 1: autoint1.e
Integration File signal 2: autoint2.e

Quant Time: May 14 12:53:31 2010

Quant Method: P:\HPCHEM1\Ecd 4\Method\P4051310.M

Quant Title : GC EXTRACTABLES

QLast Update : Fri May 14 12:52:13 2010

Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 2 µl

Signal #1 Phase : ZB-MR1 Signal #2 Phase: ZB-MR2

Signal #1 Info : 30M x 0.32mm x 0. Signal #2 Info : 30M x 0.32mm x0.25 μ m

	Compound	RT#1	RT#2	Resp#1	Resp#2	ng/ml	ng/ml
Syst) SA) SA	em Monitoring (Tetrachlo Decachlor	Compounds 3.710 8.609	2.833 7.252	319471 363555	438.481 555587	22.732	25.517 26.484
Targ	et Compounds		•	*			
) L1	Aroclor-1	4.593	3.539	97926	225779	251.617	253.310
) L1	Aroclor-1	4.860	3.715	292880	151032	241.582	246.961
) L1	Aroclor-1	4.919	3.944	131936	435360	253.128	279.487
) L1	Aroclor-1	5.006	4.002	83893	236888	258.463	274.722
) L1	Aroclor-1	5.399	4.114	68307	133315	250.563	268.668
) L7 ₍	Aroclor-1	6.253	5.279	215084	331062	257.926	285.016\
) L7	Aroclor-1	6.473	5.445	300009	434887	253.384	282.214
) L7	Aroclor-1	6.704	5.569	281654	341296	244.341	277.276
·) L7	Aroclor-1	7.210	5.965	415841	308380	241.317	265.207
) L7	Aroclor-1	7.457	6.169	229875	704071	238.184	260.725

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

When 2/11/6

Data File : P4021344.D

Signal(s): Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Acq On : 13 May 2010 19:29

Operator : BI

Sample : 1660 50 PPB

Misc

ALS Vial : 8 Sample Multiplier: 1

Integration File signal 1: autoint1.e
Integration File signal 2: autoint2.e

Quant Time: May 14 13:03:36 2010

Quant Method: P:\HPCHEM1\Ecd 4\Method\P4051310.M

Quant Title : GC EXTRACTABLES

QLast Update : Fri May 14 12:58:46 2010

Response via: Initial Calibration

Integrator: ChemStation

Volume Inj. : 2 μ l

Signal #1 Phase : ZB-MR1 Signal #2 Phase: ZB-MR2

Signal #1 Info : 30M x 0.32mm x 0. Signal #2 Info : 30M x 0.32mm x 0.25µm

	Compound	RT#1	RT#2	Resp#1	Resp#2	ng/ml	ng/ml
Syste) SA) SA	em Monitoring Tetrachlo Decachlor	Compounds 3.711 8.608	2.833 7.253	50074 64845	73958 99096	3.763m 4.468m	4.416m 4.745m
Targe	et Compounds	•					
) L1	Aroclor-1	4.594	3.542	18192	46406	47.360	51.639
) Ll	Aroclor-1	4.860	3.717	52053	27646	44.099m	46.089
) L1	Aroclor-1	4.919	3.947	27497	85739 [*]	52.860m	53.954
) L1	Aroclor-1	5.006	4.003	19045	44211	57.106m	51.012
) L1	Aroclor-1	5.401	4.116	11862	23144	44.672	47.278
) L7	Aroclor-1	6.255	. 5.280	39944	65132	48.306	55.184m
) L7	Aroclor-1	6.476	5.445	53925	86306	46.371	54.869m \
) L7	Aroclor-1	6.706	5.568	51817	53489	45.879	44.834m
) 上7	Aroclor-1	7.211	5.966	70339	54238	42.014m	47.280
) 上7	Aroclor-1	7.456	6.171	50085	121298	51.963m	45.850

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

Nolla Aprileo

Data File : P4021350.D

Signal(s): Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Acq On : 13 May 2010 20:54

Operator : BI

Sample : 1660 500 ICV

Misc

ALS Vial : 14 Sample Multiplier: 1

Integration File signal 1: autoint1.e
Integration File signal 2: autoint2.e

Quant Time: May 14 14:27:21 2010

Quant Method: P:\HPCHEM1\Ecd 4\Method\P4051310.M

Quant Title : GC EXTRACTABLES

QLast Update : Fri May 14 14:23:10 2010

Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 2 µl

Signal #1 Phase : ZB-MR1 Signal #2 Phase: ZB-MR2

Signal #1 Info : 30M x 0.32mm x 0. Signal #2 Info : 30M x 0.32mm $\times 0.25 \mu m$

	Compound	RT#1	RT#2	Resp#1	Resp#2	ng/ml	ng/ml
)	System Monitoring SA Tetrachlo SA Decachlor	Compounds 3.712 8.606	2.833 7.252	676201 722602	853360 1023187	51.050 49.831	51.083 49.319
Т	arget Compounds						
	L1 Aroclor-1	4.593	3.540	186697	453255	486.043	504.358
)	L1 Aroclor-1	4.860	3.716	593259	312427	503.580	520.856
)	L1 Aroclor-1	4.919	3.945	252180	769130	478.549	483.995
)	L1 Aroclor-1	5.006	4.002	160948	424958	479.233	490.334
)	L1 Aroclor-1	5.398	4.115	131919	244441	496.796	499.323
)	L7 Aroclor-1	6.252	5.279	401620	574755	485.696	483.080
)	L7 Aroclor-1	6.473	5.444	564023	776744	485.012	492.229
)	L7 Aroclor-1	6.704	5.568	551898	560987	488.649	468.009
)	L7 Aroclor-1	7.209	5.965	829163	604864	499.518	527.260
) _	L7 Aroclor-1	7.455	6.169	472904	1434627	486.309	542.281
_							

⁽f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

Mluh 7/2,100

Data File: P4021689.D

Signal(s): Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Acq On : 10 Jun 2010 22:22

Operator : BI

Sample : 1660 500

Misc

ALS Vial : 28 Sample Multiplier: 1

Integration File signal 1: autoint1.e Integration File signal 2: autoint2.e

Quant Time: Jun 11 01:56:22 2010

Quant Method: P:\HPCHEM1\Ecd 4\Method\P4051310.M

Quant Title : GC EXTRACTABLES

QLast Update : Fri May 14 14:23:10 2010

Response via : Initial Calibration

Integrator: ChemStation

Volume Inj.

Signal #1 Phase : ZB-MR1 Signal #2 Phase: ZB-MR2

Signal #1 Info : 30M x 0.32mm x 0. Signal #2 Info : 30M x 0.32mm x0.25 μ m

	Compound	RT#1 	RT#2 	Resp#1	Resp#2	ng/ml	ng/ml
Syst) SA) SA	tem Monitoring (Tetrachlo Decachlor	Compounds 3.719 8.602	2.849 7.248	731609 718769	903411 839179	55.233 49.566	54.079 40.450
Tarc) L1) L1) L1) L1) L1	Aroclor-1 Aroclor-1 Aroclor-1 Aroclor-1 Aroclor-1	4.596 4.862 4.921 5.008 5.399	3.544 3.720 3.948 4.005	211760 661054 272112 174876	426734 334149 868641 446242	551.292 561.126 516.372 520.704	474.847 557.068 546.615 514.893
) L7) L7) L7) L7) L7	Aroclor-1 Aroclor-1 Aroclor-1 Aroclor-1 Aroclor-1	6.252 6.472 6.703 7.207 7.454	4.117 5.279 5.444 5.568 5.963 6.167	133506 413526 579802 556590 839685 449268	275544 600461 789474 625759 581499 1349552	502.772m 500.093 498.580 492.804 505.857 462.003	562.857 504.685 500.296 522.046 506.893 510.123

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

Data File: P4021704.D

Signal(s): Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Acq On : 11 Jun 2010 1:53

Operator : BI

Sample : 1660 500

Misc

ALS Vial: 43 Sample Multiplier: 1

Integration File signal 1: autoint1.e
Integration File signal 2: autoint2.e

Quant Time: Jun 11 03:34:36 2010

Quant Method: P:\HPCHEM1\Ecd 4\Method\P4051310.M

Quant Title : GC EXTRACTABLES

QLast Update : Fri May 14 14:23:10 2010

Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 2 µl

Signal #1 Phase : ZB-MR1 Signal #2 Phase: ZB-MR2

Signal #1 Info : 30M x 0.32mm x 0. Signal #2 Info : 30M x 0.32mm x 0.25µm

	Compound	RT#1	RT#2	Resp#1	Resp#2	ng/ml	ng/ml
Sys	tem Monitoring (Compounds					•
) SF	Tetrachlo	3.718	2.848	761981	928447	57.526	55.577
) SF	Decachlor	8.599	7.246	786034	922161	54.205	44.450
Tar	get Compounds					٨	
) L1		4.594	3.542	214182	428244	557.599	476.528
) L1	Aroclor-1	4.860	3.718	676219	334702	573.999	557.991
) L1	Aroclor-1	4.920	3.946	271222	869792	514.684	547.339
) L1	Aroclor-1	5.006	4.003	174276	446063	518.917	514.685
) L1	Aroclor-1	5.397	4.115	144923	273379	545.769m	558.436
) L7	Aroclor-1	6.250	5.277	415415	599740	502.378	504.079 \
) L7	Aroclor-1	6.469	5.442	619983	805346	533.133	510.355
) L7	Aroclor-1	6.700	5.566	601277	648077	532.370	540.665
) L7	Aroclor-1	7.206	5.961	885602	626734	533.519	546.324
) L7	Aroclor-1	7.451	6.165	492317	1462371	506.272	552.768

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

7/21/10 r Cibalis

3F

SOIL MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: CHEMTECH

Contract:

MACT03

Lab Code: CHEM

Case No.: B2618

SAS No.: B2618

SDG No.: B2618

MS/MSD - Client Sample No.:

B2618-04MSD

COMPOUND	SPIKE ADDED (ug/Kg)	MSD CONCENTRATION (ug/Kg)	MSD % REC # RPD #	QC LIMITS RPD REC
AROCLOR 1260	76.2	110	144* / 19	20 (60-130)
AROCLOR 1016	76.2	81	106 2	20 (40-140)

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 0 out of 2 outside limits

Spike Recovery:

0 out of 2 outside limits

PESTICIDES

NYSDEC DUSR PROJECT CHEMIST REVIEW RECORD Project:Loohn's Corning Method :8081 Pesticides Laboratory and SDG(s):Chemtech B2618 Date:Fbi/10 Reviewer:
Review Level X NYSDEC DUSR USEPA Region II Guideline
1. X Case Narrative Review and Data Package Completeness <u>COMMENTS</u>
Where all the samples on the COC analyzed for the requested analyses? YES NO (circle one)
2. X Holding time (HT) and Sample Collection Aqueous is 7days to extraction, solid is 14 days. HT met for all samples? YES NO (circle one)
3. X QC Blanks Are method blanks free of contamination? YES NO (circle one) Are Rinse blanks free of contamination? YES NO (NA) (circle one)
X Percent difference between columns (Region II criteria is 25% for Pest's) Is the percent difference between columns ≤25? YES NO (circle one)
X Instrument Calibration
I-cal criteria of 20% (%RSD) (alpha-BHC, delta-BHC = 25%, Toxaphene = 30%) met? YES NO (circle one)
Continuing calibration criteria of (%D) 20% met? YES NO NA (circle one)
X Surrogate Recovery (soil and water limits: 30-150%)
Were all results were within laboratory limits? (ES) NO (circle one)
X Matrix Spike (Use lab limits) (refer to limits listed in SOP HW-44 Oct 2006 if no lab limits are listed)
Were MS/MSDs submitted/analyzed? YES NO
Were all results were within laboratory limits? YES NO NA (circle one) Sample LCPDI00600110XX was analyzed as an MS/MSD by the laboratory. The MS/MSD relative percent difference (RPD) for methoxychlor (24) exceeded the laboratory limit of 20. The unspiked sample result for methoxychlor was qualified estimated (J).
X Field Duplicates (RPD limits for soil=100, water = 50)
Were Field Duplicates submitted/analyzed? YES NO NA (circle one)
X Laboratory Control Samples (Use lab limits) (refer to limits in SOP HW-44 Oct 2006 if no lab limits are listed)
Were all results were within laboratory limits? YES NO (circle one) Limits used were: Lab Limits Region II SOP HW-44 Oct 2006 (circle one)
4. X Raw Data Review and Calculation Checks
5. X Electronic Data Review and Edits: Does the EDD match the Form I's? YES NO (circle one)
6. DUSR Table 1 (sample Listing), Table 2 (results summary), Table 3 (Reason Codes).
E:\B2618\Loohns_DUSR_Pest_Checklist_2618.doc

Were all tables produced?

YES NO (circle one)

1**E**

PESTICIDE ORGANICS ANALYSIS DATA SHEET

						E	PA SAMPLE N	О.
						LCSS0010	00110XX	
Lab Name:	Chemtech			Contr	ract: MACT03			
Lab Code:	СНЕМ	Case No.: B261	8	SAS No.:	B2618	SDG No.:	B2618	
Matrix (soil/wa	ater):	SOIL			Lab Sample ID:	- B2618-04		
Sample wt/vol	30.05	(g/mL)	g		Lab File ID:	P7049416.D		
Level: (low/me	ed) Lo	ow			Date Received:	06/09/10		
% Moisture:	13	Decanted: (Y/N)	N		Date Extracted:	06/10/10		
•	Extract Volume:	10000	(uL)					
		10000	<u> </u>		Date Analyzed:	06/16/10		
Injection Volui	me: <u>1</u>				Dilution Factor:	2		
GPC Cleanup:	(Y/N)	N pH: <u>N/A</u>			Extraction: (Type) Concentration Units	<u>soz</u> :	XH	
CAS NO.		COMPOUND			(ug/L or ug/K	g) ug/Kg	Q	
319-84-6		alpha-BHC			3.9		U	
319-85-7		beta-BHC			3.9		U	
319-86-8		delta-BHC			3.9		U	
58-89-9		gamma-BHC			3.9		Ŭ	
76-44-8		Heptachlor			3.9		Ŭ	
309-00-2		Aldrin			3.9		U	
1024-57-3		Heptachlor epoxide	•		3.9		Ŭ	
959-98-8	·	Endosulfan I			3.9		U	
60-57-1		Dieldrin			3.9		Ŭ	
72-55-9		4,4-DDE		i i	10			
72-20-8		Endrin			3.9		Ŭ	
33213-65-	.9	Endosulfan II			3.9	Ī	Ū	
72-54-8		4,4-DDD			16			
1031-07-8		Endosulfan Sulfate			3.9		Ū	
50-29-3		4,4-DDT			36			
72-43-5		Methoxychlor			38		ろ	
53494-70-	5	Endrin ketone			3.9		Ŭ	
7421-93-4		Endrin aldehyde			3.9		U	
5103-71-9		alpha-Chlordane			3.9		Ŭ	
5103-74-2		gamma-Chlordane			3.9		Ŭ	
8001-35-2		Toyanhene		i	20		TT	

/// Mm 2/2/10

		•	
Comments:			
	The second secon	 	

5103-74-2

8001-35-2

PESTICIDE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO. LCPD100600110XX Lab Name: Chemtech Contract: MACT03 Lab Code: CHEM Case No.: B2618 SAS No.: B2618 SDG No.: B2618 Matrix (soil/water): SOIL Lab Sample ID: B2618-17 Sample wt/vol: 30.08 (g/mL) Lab File ID: P7049417.D Level: (low/med) Low Date Received: 06/09/10 % Moisture: 13 Decanted: (Y/N) N Date Extracted: 06/10/10 Concentrated Extract Volume: 10000 (uL) Date Analyzed: 06/16/10 Injection Volume: Dilution Factor: GPC Cleanup: (Y/N) N pH: N/A Extraction: (Type) SOXH Concentration Units: CAS NO. COMPOUND (ug/L or ug/Kg) ug/Kg Q 319-84-6 alpha-BHC 1.9 U 319-85-7 beta-BHC 1.9 IJ 319-86-8 delta-BHC 1.9 U 58-89-9 gamma-BHC 1.9 U 76-44-8 Heptachlor 1.9 U 309-00-2 Aldrin 1.9 U 1024-57-3 Heptachlor epoxide 1.9 U 959-98-8 Endosulfan I 1.9 IJ 60-57-1 Dieldrin 1.9 U 72-55-9 4,4-DDE 1.9 U· 72-20-8 Endrin 1.9 U 33213-65-9 Endosulfan II 1.9 U 72-54-8 4,4-DDD 1.9 U 1031-07-8 Endosulfan Sulfate 1.9 U 50-29-3 4,4-DDT 17 72-43-5 Methoxychlor 1.9 U 53494-70-5 Endrin ketone 1.9 U 7421-93-4 Endrin aldehyde 1.9 IJ 5103-71-9 alpha-Chlordane 1.9 U

Affile Heilio

U

Comments:	

gamma-Chlordane

Toxaphene

1.9

19

Data Path : P:\HPCHEM1\Ecd 7\Data\P7061610\

Data File : P7049416.D

Signal(s): Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Acq On : 16 Jun 2010 17:02

Operator : JJ

Sample : B2618-04 2X

Misc

ALS Vial : 23 Sample Multiplier: 1

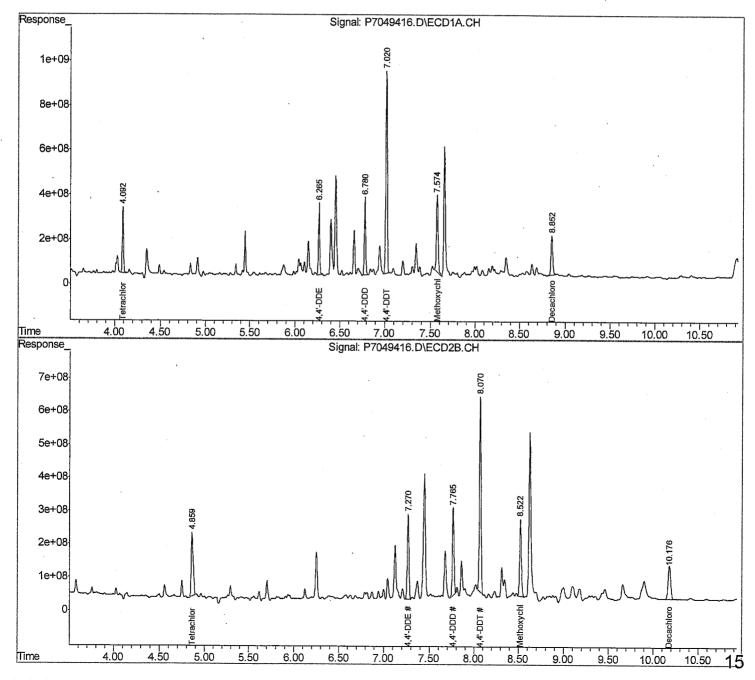
Integration File signal 1: autoint1.e Integration File signal 2: autoint2.e

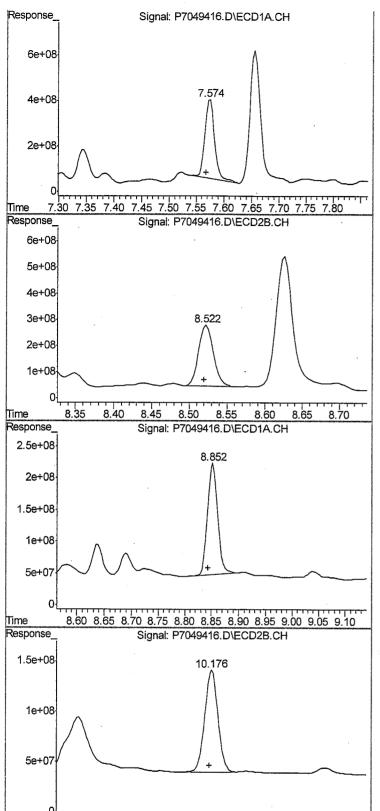
Quant Time: Jun 17 01:14:37 2010

Quant Method: P:\HPCHEM1\Ecd 7\Method\P7061610.M

Quant Title : GC Extractables

QLast Update: Wed Jun 16 12:51:44 2010


Response via: Initial Calibration


Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped

Volume Inj. : 2 μ 1

Signal #1 Phase: ZB-MR2 Signal #2 Phase: ZB-MR1

Signal #1 Info : 30M x 0.32mm x 0.2 Signal #2 Info : 30M x 0.32mm x 0.50um

#20 Methoxychlor

R.T.: 7.576 min
Delta R.T.: 0.008 min
Response: 4210436031
Conc: 49.71 ng/ml

#20 Methoxychlor

R.T.: 8.524 min
Delta R.T.: 0.003 min
Response: 3195873325
Conc: 47.83 ng/ml

#22 Decachlorobiphenyl

R.T.: 8.853 min
Delta R.T.: 0.009 min
Response: 2267804360
Conc: 10.95 ng/ml

#22 Decachlorobiphenyl

R.T.: 10.177 min
Delta R.T.: 0.005 min
Response: 1955875166
Conc: 12.23 ng/ml

10.00

Time

10.10

10.20

10.30

10.40

Data Path : P:\HPCHEM1\Ecd_7\Data\P7061610\

Data File : P7049416.D

Signal(s): Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Acq On : 16 Jun 2010 17:02

Operator : JJ

Sample : B2618-04 2X

Misc

ALS Vial : 23 Sample Multiplier: 1

Integration File signal 1: autoint1.e Integration File signal 2: autoint2.e

Quant Time: Jun 17 01:14:37 2010

Quant Method: P:\HPCHEM1\Ecd 7\Method\P7061610.M

Quant Title : GC Extractables

QLast Update: Wed Jun 16 12:51:44 2010 Response via: Initial Calibration

Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped

Volume Inj. : 2 µl

Signal #1 Phase : ZB-MR2 Signal #2 Phase: ZB-MR1

Signal #1 Info : 30M x 0.32mm x0.2 Signal #2 Info : 30M x 0.32mm x 0.50um

Compound	RT#1	RT#2	Resp#1	Resp#2	ng/ml	ng/ml
System Monitoring) SA Tetrachlo) SA Decachlor	Compounds 4.092 8.853	4.861 10.177	2621.9E6 2267.8E6		9.865m 10.954	14.111 # 12.225
Target Compounds) B 4,4'-DDE) A 4,4'-DDD) MA 4,4'-DDT) A Methoxychlor	6.267 6.781 7.021 7.576	7.272 7.766 8.072 8.524	3555.5E6 3922.1E6	3133.0E6 3487.8E6 7718.1E6	12.358 17.428 47.447 49.707	13.426 20.482 45.685 47.833

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

(4210.4×10°/) (10mL) (2) ×1000 (30.05g) (0.87) (1mL) = 38.02 mg/g Welch 7/21/10

CALIBRATION FACTOR OF INITIAL CALIBRATION

Contract:

MACT03

Lab Code:

CHEM

Case No.:

B2618 SAS No.:

B2618

SDG NO.:

B2618

Instrument ID:

ECD7

Calibration Date(s):

06/16/2010

06/16/2010

Calibration Times:

11:19

12:15

GC Column:

ZB-MR2

ID:

0.32 (mm)

LAB FILE ID:	(CF 005 = <u>P70</u>	49403.D	CF 025 =	P7049402.D		
CF 050 = P7049401	<u>.D</u> (CF 075 = <u>P70</u>	49400.D	CF 100 =	P7049399.D		
COMPOUND	CF 005	CF 025	CF 050	CF 075	CF 100	CF	% RSD
Decachlorobiphenyl	206440919000	201266562240	210103807060	205052718147	212282270860	207029255461	2
Tetrachloro-m-xylene	284134579800	268924299040	274306856220	265028894053	236454944310	265769914685	7
alpha-BHC	414937442400	413292663520	418729839900	335817332867	283450498470	373245555431	16
beta-BHC	150016647600	138548310000	141568570240	138526619120	142805838180	142293197028	3
delta-BHC	343379316000	346201087720	363381331540	324378138760	280569493690	331581873542	10
gamma-BHC (Lindane)	383438137200	377396178800	391522495680	328607250360	278823657080	351957543824	14
Heptachlor	325433947600	314162829600	310553443720	295025839227	267152273690	302465666767	7
Aldrin	341402638400	324117276760	320771666760	309732600653	274054120780	314015660671	8
Heptachlor epoxide	301822473400	273727285440	265024669580	248170763480	243933876400	266535813660	9
Endosulfan I	290838433800	265466035440	256823087600	237982771933	233211179200	256864301595	9
Dieldrin	319642698400	302030450360	295252614900	277987837893	263424045360	291667529383	7
4,4-DDE	290745364000	290799928720	297880496180	285242797973	273854977920	287704712959	3
Endrin	260502313000	246069795760	240648902240	223806693853	222201309990	238645802969	7
Endosulfan II	274848372600	253128340520	245727427900	229465853867	226879693890	246009937755	8
4,4-DDD	232283393600	225516254560	228570166860	213777533773	225072793530	225044028465	3
Endosulfan sulfate	222771200800	212695979800	213632879720	201760295133	202760686910	210724208473	4
4,4-DDT	201138654600	217185834840	230617473140	225503879773	231714437670	221232056005	r 6
Methoxychlor	85297818200 ,	86916712760	87860770180	81207904480~	82242087540	84705058632	3
Endrin ketone	290477270600	266499006360	255989146200	235226116560	226055512700	254849410484	10
Endrin aldehyde	218808661800	199357302400	191238597100	178963756413	174486628100	192570989163	9
alpha-Chlordane	306233414200	295628709200	305647990440	298181385093	273140208380	295766341463	5
gamma-Chlordane	316034181600	307292684520	319475619980	310190788413		307056276839	5

3.4

1/1/la 7/v/10

CALIBRATION FACTOR OF INITIAL CALIBRATION

Calibration Date(s):

Contract: MACT03

Lab Code: **CHEM** Case No.: B2618 SAS No.: B2618 SDG NO.: B2618

Instrument ID: ECD7

06/16/2010 06/16/2010 Calibration Times: 11:19 12:15

GC Column: ZB-MR1 ID: 0.32 (mm)

LAB FILE ID: CF 050 = <u>P7049401.</u>			19403.D 19400.D	CF 025 = CF 100 =	P7049402.D P7049399.D		
COMPOUND	CF 005	CF 025	CF 050	CF 075	CF 100	CF	% RSD
Decachlorobiphenyl	164906165600	156191695000	160727719720	156192532360	161922176910	159988057918	2
Tetrachloro-m-xylene	210739070400	196964270120	198452574900	191993064653	195447176400	198719231295	4
alpha-BHC	312565280400	306399334880	316420411540	305299206360	275987394140	303334325464	5
beta-BHC	119704711400	109372520800	111339627100	108104996213	110085869920	111721545087	. 4
delta-BHC	272726020600	266993721400	277682827520	271018484893	264207781740	270525767231	2
gamma-BHC (Lindane)	293246950000	284670008320	293737649860	287800754067	267670395910	285425151631	4
Heptachlor	257903053200	247258904440	249616243260	237311920373	237157483290	245849520913	4
Aldrin	275762865200	262238174560	263597170480	251454408133	250826698270	260775863329	4
Heptachlor epoxide	242522258600	221962618960	217157263920	204142345720	201261075280	217409112496	8
Endosulfan I	231242893800	214969935480	211645965200	198021363307	195339002180	210243831993	7
Dieldrin	252936217600	239416778000	239421698380	225913299147	223378325440	236213263713	5
4,4-DDE	233239147600	231767914200	238631878160	229071205320	234109222180	233363873492	2
Endrin	187382248800	181180584240	183306975240	173249906187	174273606630	179878664219	3
Endosulfan II	206631481800	192845152080	193349042920	179924326653	181250151990	190800031089	6
4,4-DDD	171768690000	167685288120	174069655120	167572828840	170342029560	170287698328	2
Endosulfan sulfate	173373635600	167221589400	171555077540	163823575707	164317944690	168058364587	3
4,4-DDT	152723309400	163852579360	177068905700	172592955293	178465630600	168940676071	6
Methoxychlor	65066546400 -	67124432240	69333269280	65524043160 -	67014659050	-66812590026-	-3
Endrin ketone	194958732200	183969399160	184399620480	174133162680	172881646240	182068512152	5
Endrin aldehyde	165316531800	153847287360	152472431360	144427291533	142777327220	151768173855	6
alpha-Chlordane	242940381400	233922452520	240757369340	233870697560	237127612060	237723702576	2
gamma-Chlordane	251149449000	243058527240	250620033660	243412527173	247924325160	247232972447	2

7/21/10

3F

SOIL MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: CHEMTECH

Contract:

MACT03

Lab Code: CHEM

Case No.: B2618

SAS No.: B2618

SDG No.: B2618

MS/MSD - Client Sample No.:

B2618-04MS

					
COMPOUND	SPIKE ADDED (ug/Kg)	SAMPLE CONCENTRATION (ug/Kg)	MS CONCENTRATION (ug/Kg)	MS % REC#	QC LIMITS REC
Heptachlor epoxide	38.1	0	17	45	(22-147)
Endosulfan sulfate	38.1	0	14	37	(10-152)
Aldrin	38.1	0	18	47	(11-152)
alpha-BHC	38.1	0	21	55	(16-147)
beta-BHC	38.1	0	18	47	(25-146)
delta-BHC	38.1	0	12	31	(11-146)
Endosulfan II	38.1	0	20	52	(11-146)
4,4-DDT	38.1	36	51	39	(10-192)
alpha-Chlordane	38.1	0	19	50	(10-157)
gamma-Chlordane	38.1	0	20	52	(10-161)
Endrin ketone	38.1	0	14	37	(12-145)
gamma-BHC (Lindane)	38.1	0	19	50	(21-147)
Dieldrin	38.1	0	29	76	(10-162)
Endrin	38.1	0	24	63	(10-171)
Methoxychlor	38.1	38	52	37	(10-200)
4,4-DDD	38.1	16	29	34	(10-150)
4,4-DDE	38.1	10	25	39	(10-174)
Endrin aldehyde	38.1	0	13	34	(10-146)
Heptachlor	38.1	0	19	50	(23-143)
Endosulfan I	38.1	0	18	47	(10-164)

RPD: 0 out of 0 outside limits

Spike Recovery:

0 out of 20 outside limits

Al Chim x121110

 $[\]ensuremath{\mathtt{\#}}$ Column to be used to flag recovery $% \left(1,0\right) =0$ and RPD values with an asterisk

^{*} Values outside of QC limits

3F

SOIL MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: CHEMTECH

Contract:

MACT03

Lab Code:

CHEM

Case No.: B2618

SAS No.: B2618

SDG No.: B2618

MS/MSD - Client Sample No.:

B2618-04MSD

COMPOUND	SPIKE ADDED (ug/Kg)	MSD CONCENTRATION (ug/Kg)	MS % REC #	D % RPD #	QC I	IMITS REC
Heptachlor epoxide	38.2	17	45	1 0	20	(22-147)
Endosulfan sulfate	38.2	13	34	l 8	20	(10-152)
Aldrin	38.2	18	47	0	20	(11-152)
alpha-BHC	38.2	20	52	1 6	20	(16-147)
beta-BHC	38.2	18	47	1 0	20	(25-146)
delta-BHC	38.2	12	31	1 0	20	(11-146)
Endosulfan II	38.2	19	50	4	20	(11-146)
4,4-DDT	38.2	49	34	14	20	(10-192)
alpha-Chlordane	38.2	19	50	ı o	20	(10-157)
gamma-Chlordane	38.2	19	50	4	20	(10-161)
Endrin ketone	38.2	14	37	1 0	20	(12-145)
gamma-BHC (Lindane)	38.2	19	50	1 0	20	(21-147)
Dieldrin	38.2	29	76	I 0	20	(10-162)
Endrin	38.2	23	60	5	20	(10-171)
Methoxychlor	38.2	49	29 /	24*	20	(10-200)
4,4-DDD	38.2	29	34	1	20	(10-150)
4,4-DDE	38.2	25	39	0	20	(10-174)
Endrin aldehyde	38.2	12	31	9	20	(10-146)
Heptachlor	38.2	19	50	1 0	, 20	(23-143)
Endosulfan I	38.2	18	47	1 0	20	(10-164)

RPD: 1 out of 20 outside limits

Spike Recovery:

0 out of 20 outside limits [#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

METALS

NYSDEC DUSR PROJECT CHEMIST REVIEW RECORD Project: Loohn's Corning
Method: SW6010 metals, SW7471 mercury
Laboratory and SDG(s):Chemtech B2618
Date: 7/23/10
Reviewer:
Review Level X NYSDEC DUSR
 X Case Narrative Review and Data Package Completeness Where all the samples on the COC analyzed for the requested analyses? YES NO (circle one)
3. X Holding time and Sample Collection Were all samples were all prepped and analyzed with the holding time (6 month). YES NO (circle one)
4. X QC Blanks Are method blanks clean? YES NO (circle one) Are Initial and continuing calibration blanks clean? YES (NO) (circle one) The mercury continuing calibration blanks (-0.135 and -0.149) were greater than the negative mercury MDL, indicating a low bias to sample results. Sample results for mercury were qualified estimated (J) and are naturably biased law.
are potentially biased low.
X Interference Check Standard
X Instrument Calibration Initial calibration criteria met for the method YES NO (circle one) 90-110% (80-120% Hg) recovery on continuing calibration standards met? YES NO (circle one)
X Serial Dilutions Were all results were within the control limit of 10% (for values > 50X MDL)? YES
X Laboratory Control Sample Results Were all results were within 80-120% limits? YES NO (circle one)
X Matrix Spike Were MS/MSDs submitted/analyzed? YES NO
Were all results were within 75-125% limits? YES NO NA (circle one)
The MS/MSD percent recoveries of aluminum (348 and 323), calcium (246 and 237), iron (402 and 371), magnesium (157 and 154), and manganese (207 and 195) exceeded the upper QC limit of 125. The unspiked sample concentration of aluminum, calcium, iron, magnesium, and manganese were greater than four times the spike concentration, no further action required.
X Duplicates/replicates Were Field Duplicates submitted/analyzed? YES NO NA (circle one) Aqueous RPD within limit? (20%) YES NO NA (circle one) Soil RPD within limit? (35%) YES NO NA (circle one)
Was the lab dup RPD <20% for values > 5X the CRQL (or ± CRQL YES)
X Were both Total and Dissolved metals reported? YES NO NA (circle one) If the dissolved concentration is > 20% of the total concentration then estimate (J) both results
X Percent solids < 50% for any soil/sediment sample? YES (NO) NA (circle one) If yes, estimate all results.

- 5. X Raw Data Review and Calculation Checks
- 6. X Electronic Data Review and Edits. Does the EDD match the Form I's? (YES) NO (circle one)
- 7. DUSR Tables: Table 1 (sample Listing), Table 2 (results summary), Table 3 (Reason Codes). Were all tables produced? YES NO (circle one)

Metals

1A-IN

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

LCSS00100110XX

Lab Name: Chemtech	Consulting Group	_ Contract:	MACTEC Inc.			
Lab Code: CTECH	Case No.: B2618	NRAS No.:	B2618	SDG NO.:	B2618	
Matrix (soil/water):	SOIL	Lab Sample ID:	B2618-04	·····		
Level (low/med):	LOW	Date Received:	6/9/2010			
& Solide: 96	6			,		

86.6

Concentration Units (ug/L or mg/kg dry weight):

MG/KG

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	8240			P
7440-36-0	Antimony	2.890	Ū		P
7440-38-2	Arsenic	6.000			P
7440-39-3	Barium	97.3			P
7440-41-7	Beryllium	0.41			P
7440-43-9	Cadmium	1.160			P
7440-70-2	Calcium	2570			P
7440-47-3	Chromium	10.7			P
7440-48-4	Cobalt	7.130			P
7440-50-8	Copper	25.2			P
7439-89-6	Iron	17400			P
7439-92-1	Lead	38.8			P
7439-95-4	Magnesium	2380			P
7439-96-5	Manganese	413	,		P
7439-97-6	Mercury	0.081	7	28/16/13	CV
7440-02-0	Nickel	16.3	1		P
7440-09-7	Potassium	671			P
7782-49-2	Selenium	2.450			P
7440-22-4	Silver	0.58	U		P
7440-23-5	Sodium	119			P
7440-28-0	Thallium	2.310	Ū		P
7440-62-2	Vanadium	13.9			P
7440-66-6	Zinc	105			P

Color Before:	BROWN	Clarity Before:	Texture:	MEDIUM
Color After:	YELLOW	Clarity After:	Artifacts:	
Comments:		Malla	7/23/10	·

Metals

1A-IN

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

LCPD100600110XX

Lab Name:	Chemtech (Consulting	Group	Contract:	MACTEC Inc.		
Lab Code:	CTECH	Case No.:	B2618	NRAS No.:	B2618	SDG NO.:	B2618
Matrix (soil	/water):	SOIL		Lab Sample ID:	B2618-17		
Level (low/m	ed) :	LOW		Date Received:	6/9/2010		

% Solids: 87.2

Concentration Units (ug/L or mg/kg dry weight):

MG/KG

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum	5420			P
7440-36-0	Antimony	2.760	Ū	<u> </u>	P
7440-38-2	Arsenic	4.220			P
7440-39-3	Barium	49.1			P
7440-41-7	Beryllium	0.26	J		P
7440-43-9	Cadmium	0.61			P
7440-70-2	Calcium	1050			P
7440-47-3	Chromium	7.630			P
7440-48-4	Cobalt	4.680			P
7440-50-8	Copper	11.8			P
7439-89-6	Iron	12000			P
7439-92-1	Lead	28.8			P
7439-95-4	Magnesium	1450			P
7439-96-5	Manganese	405			P
7439-97-6	Mercury	0.106	7	C09/6/2	CV
7440-02-0	Nickel	9.780		72	P
7440-09-7	Potassium	407			P
7782-49-2	Selenium	1.880			P
7440-22-4	Silver	0.55	Ū		P
7440-23-5	Sodium	225			P
7440-28-0	Thallium	2.210	Ū		P
7440-62-2	Vanadium	10.4			P
7440-66-6	Zinc	59.2			P

Color Before:	BROWN	Clarity Before:		Texture:	MEDIUM
Color After:	YELLOW	Clarity After:		Artifacts:	
Comments:			11/	Alishi	7/23/10

USEPA - CLP

3-IN

BLANKS

UG/L

Lab	Name:	Consulting	Group	Contract:	MACTEC	Inc.

Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg):

	Initial Calibration Blank (ug/L)		CCB24	7	continuing Cal	ibra 'L)	ition (CP4 (f _X		Preparation Blank		
Analyte		\c	cchi(1)	C	4BS 2	Ç	3 "	С		С	М
Aluminum /			50.0	Ū	(-10.3	J	50.0	Ū			P
Antimony			25.0	Ū	25.0	ť	25.0	U			P
Arsenic			10.0	Ū	10.0	υ	10.0	U			P
Barium			50.0	Ū	50.0	Ū	50.0	Ū			P
Beryllium			3.0	U	3.0	บ	3.0	U			P
Cadmium			3.0	Ū	3.0	Ū	3.0	Ū	·		P
Calcium			1000.0	Ū	1000.0	บ	1000.0	Ū			P
Chromium			5.0	Ū	5.0	Ū	5.0	Ū			P
Cobalt			15.0	Ū	15.0	บ	15.0	Ū			P
Copper			10.0	Ū	10.0	Ū	10.0	Ū		Ī	P
Iron			50.0	Ū	50.0	Ū	50.0	Ū		Ī	P
Lead			6.0	Ū	6.0	Ū	6.0	Ū			P
Magnesium			1000.0	U	1000.0	Ū	1000.0	Ū			P
Manganese			10.0	U	10.0	Ū	10.0	Ū	g.		P
Mercury			-0.142	J	-0.135	J	-0.149	J_			CV
Nickel			20.0	U	20.0	U	20.0	U		Ī	P
Potassium			1000.0	U	1000.0	Ū	1000.0	Ū		Ī	P
Selenium			10.0	Ū	10.0	ט	10.0	Ū	1	Ì	P
Silver			5.0	Ŭ	5.0	ט	5.0	Ū			P
Sodium			1000.0	U	1000.0	U	1000.0	Ū		i	P
Thallium			20.0	Ū	20.0	Ū	20.0	IJ		i	P
Vanadium			20.0	Ū	20.0	Ū.	20.0	Ū	<u> </u>	i	P
Zinc			20.0	Ū	20.0	υ	20.0	Ū		i	P

(RQLY 0.010 (RQLY 0.010 (RQLY 0.010 4/2311D

Metals CLP12

Metals

5A-IN

MATRIX SPIKE SAMPLE RECOVERY

EPA SAMPLE NO.

LCSS00100110XXS

Lab Name: Chemtech Consulting Group

Contract:

MACTEC Inc.

Lab Code: CTECH

Case No.: B2618

NRAS No.:

B2618

SDG NO.: B2618

Matrix (soil/water):

SOIL

Level (low/med):

LOW

% Solids for Sample:

86.6

Concentration Units (ug/L or mg/kg dry weight):

MG/KG

Analyte	Control Limit %R	Spiked Sample Result (SSR)	С	Sample Result (SR)	С	Spike Added (SA)	%R	Ω	м	
Aluminum		9039.7240		8235.5660		230.95	348.2		P	'>4x
Antimony	47 - 131	86.5762		2.8868	Ū	92.38	93.7		P	
Arsenic	73 - 114	90.9226		6.0023		92.38	91.9		P	
Barium		125.0347		97.3395		23.09	119.9		P	
Beryllium	79 - 112	20.2310		0.4053		23.09	85.9		P	
Cadmium	73 - 114	23.3834		1.1559		23.09	96.3		P	
Calcium		2852.1940		2568.0140		115.47	246.1		P	>48
Chromium	68 - 122	51.9457		10.6940		46.19	89.3		P	
Cobalt	68 - 119	30.1755		7.1305		23.09	99.8		P	
Copper	59 - 132	56.4434		25.2171		34.64	90.1		₽	
Iron		18799.0800		17407.6200		346.42	401.7	. /	P	>4K
Lead	66 - 125	149.2841		38.8153		115.47	95.7		P	
Magnesium		2742.3790		2379.6770		230.95	157_0	1. /	P	>46
Manganese		460.6698		412.9792		23.09	206.5		₽	742
Nickel	64 - 129	73.4631		16.2656		57.74	99.1		₽	
Potassium	37 - 158	1748.6140		670.9469		1154.73	93.3		P	
Selenium	69 - 105	190.3695		2.4550		230.95	81.4		₽	
Silver	54 - 131	7.2968		0.5774	Ū	8.66	84.3		P	
Sodium	10 - 139	440.8546		118.6490		346.42	93.0		P	
Thallium	74 - 116	209.1686		2.3095	Ū	230.95	90.6		P	
Vanadium	67 - 127	44.9376		13.9261		34.64	89.5		₽	
Zinc		129.3303		104.6848		23.09	106.7		P	

Comments:	12/illa 7/23/10

Metals

5A-IN

MATRIX SPIKE SAMPLE RECOVERY

EPA SAMPLE NO.

LCSS00100110XXSD

Lab Name: Chemtech Consulting Group

Contract: MACTEC Inc.

Lab Code: CTECH

Case No.: B2618

NRAS No.: B2618

SDG NO.: B2618

Matrix (soil/water): SOIL

Level (low/med): LOW

% Solids for Sample: 86.6

Concentration Units (ug/L or mg/kg dry weight):

MG/KG

Analyte	Control Limit %R	Spiked Sample Result (SSR)	С	Sample Result (SR)	С	Spike Added (SA)	%R	Q	М	
Aluminum		8982.4480		8235.5660		230.95	(323.4	\triangleright	P	74x
Antimony	47 - 131	86.4261		2.8868	Ū	92.38	93.6		P	İ
Arsenic	73 - 114	90.6709		6.0023		92.38	91.7		P	İ
Barium		126.0508		97.3395		23.09	124.3		P	İ
Beryllium	79 - 112	20.3199		0.4053		23.09	86.2		P	
Cadmium	73 - 114	23.4134		1.1559		23.09	96.4		P	
Calcium		2841.8020		2568.0140		115.47	(237_1	>	P	746
Chromium	68 - 122	51.3661		10.6940		46.19	88.1		P	ĺ
Cobalt	68 - 119	30.2413		7.1305		23.09	100.1		P	ĺ
Copper	59 - 132	56.3568		25.2171		34.64	89.9		P	
Iron		18694.0000		17407.6200		346.42	371,3	7	P	>4x
Lead	66 - 125	. 149.0300		38.8153		115.47	95.4		P	
Magnesium		2735.3350		2379.6770		230.95	(154_0	8	P	>4x
Manganese		458.0832		412.9792		23.09	(195,3		P	>4
Nickel	64 - 129	73.2229		16.2656		57.74	98.6		P	İ
Potassium	37 - 158	1751.9630		670.9469		1154.73	93.6		P	İ
Selenium	69 - 105	189.5035		2.4550		230.95	81.0		P	
Silver	54 - 131	7.2310		0.5774	Ū	8.66	83.5		P	ĺ
Sodium	10 - 139	444.6536		118.6490		346.42	94.1		P	
Thallium	74 - 116	208.5335		2.3095	U	230.95	90.3		P	İ
Vanadium	67 - 127	44.7564		13.9261		34.64	89.0		P	
Zinc		127.8753		104.6848		23.09	100.4		P	İ

Comments:	1 /23/10

USEPA - CLP

6-IN

DUPLICATES

EPA SAMPLE NO.

LCSS00100110XXD

Lab Name: Chemtech Consulting Group Contract:

MACTEC Inc.

Case No.: B2618 NRAS No.: B2618 SDG

NO.:

B2618

Matrix (soil/water):

CTECH

SOIL

Level (low/med): LOW

% Solids for Sample:

Lab Code:

86.6

% Solids for Duplicate:

86.6

Concentration Units: (ug/L or mg/kg dry weight):

MG/KG

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	м	
Aluminum		8235.5660		8705.1960		5-5		P	İ
Antimony		2.8868	U	0.6536	J(200.0)	P	OK
Arsenic		6.0023		6.2806		4.5		٠P	
Barium		97.3395		101.7540		4.4		P	1
Beryllium	0.3464	0.4053		0.4376		7.7		P	1
Cadmium	0.3464	1.1559		1.2829		10.4		₽	1
Calcium		2568.0140		2691.9170		4.7		P	1
Chromium		10.6940		11.2991		5.5		P	1
Cobalt	1.7321	7.1305		7.6813		7.4		P	
Copper		25.2171		26.3949		4.6		P	
Iron		17407.6200		18256.3500		4.8		₽	
Lead		38.8153		41.1409		5.8		P	
Magnesium		2379.6770		2511.0860		5.4		P	
Manganese		412.9792		433.6836		4.9		P	
Nickel		16.2656		17.1132		5.1		P	
Potassium		670.9469		699.3418		4.1		P]
Selenium	1.1547	2.4550		2.6778		8.7		P	
Silver		0.5774	Ū	0.5774	Ū			P	
Sodium	115.4734	118.6490		122.2517		3.0		P	
Thallium		2.3095	U	2.3095	Ū			P	
Vanadium		13.9261		14.6028		4.7		P	1
Zinc		104.6848		108.9527		4.0		P	

1/L/10

USEPA - CLP

6-IN

DUPLICATES

EPA SAMPLE NO.

B93D2 (60-67) D

Lab Name: Chemtech Consulting Group

Concentration Units: (ug/L or mg/kg dry weight):

Contract:

MACTEC Inc

SDG

B2618

CTECH

Lab Code:

Case No.: B2618

NRAS No.:

B2618

NO.:

Matrix (soil/water):

SOIL

Level (low/med):

LOW

% Solids for Sample:

% Solids for Duplicate:

77.6

77.6

MG/KG

Mercury 0.0129 H 0.0031 J /200.0 /	Analyte	Control Limit	Sample (S)	2	Duplicate (D)	С		RPD	0	м
1 1 200.0 /	Mercury		0.0129 τ	J	0.0031	J	I	200.0		CV

Metals

8-IN

ICP-AES and ICP-MS SERIAL DILUTIONS

EPA SAMPLE NO.

LCSS00100110XXL

Lab Name: Chemtech Consulting Group Contract: MACTEC Inc.

Lab Code: CTECH / Wase No.: B2618 NRAS No.: B2618 SDG NO.: B2618

Matrix (soil/water) WATER (Level (low/med): LOW

Concentration Units: <ug/L Ma 1/2 c

entration Unitși Analyte	Initial Sample Result (I)	С	Serial Dilution Result (S)	C	% Difference	Q	м	
Aluminum	71320.00		71965.00		0.9	1	P	1
Antimony	25.00	ט	125.00	ע ו		i 	P	1
Arsenic	51.98		61.45		18.2	Þ	P	OK
Barium	842.96		865.75		2.7	Ì	P	1
Beryllium	3.51		4.05	J	15.4	P	P	eu
Cadmium	10.01		6.95	J	30.6	≯	P	OK
Calcium	22239.00		23295.00		4.7		P]
Chromium	92.61		100.35		8.4		P]
Cobalt	61.75		67.05	J	8.6		P]
Copper	218.38		234.60		7.4		P]
Iron	150750.00		162225.00		7.6		P]
Lead	336.14		341.85		1.7		P]
Magnesium	20608.00		21821.50		5.9		P]
Manganese	3576.40		3834.25		7.2		P]
Nickel	140.86		142.80		1.4		P]
Potassium	5810.40		6016.00		3.5		P]
Selenium	21.26		50.00	ָט	[100.0	\mathcal{V}_{-}	P	$\mathcal{O}\ell$
Silver	5.00	Ū	25.00	ט		1	P]
Sodium	1027.50		1041.85	J	1.4		P]
Thallium	20.00	ָט	100.00	ט		I	P	
Vanadium	120.60		124.25		3.0		P	
Zinc	906.57		980.20		8.1		P	

Mlh 7/23/10

ample Name: B2618-04

Acquired: 6/10/2010 16:08:15

Type: Unk

ethod: P4 (v122) Mode: CONC

Corr. Factor: 1.000000

ser: admin

Custom ID1:

Custom ID2:

Custom ID3:

omment:

•								
em	As1937	TI1908	Pb2203	Se1960	Sb2068	Al3082	Ba4934	Be2348
າits	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
′g	.05198	00419	.33614	.02126	.00512	71.320	.84296	.00351
ddev	.00428	.00249	.00101 ′	/ .00280	.00043	.499	.00464	.00025
RSD	8.2345	59.394	.30139	13.187	8.3565	.70012	.55078	7.1119
				<i>/</i>				
	.05500	00243	.33543	.02324	.00542	70.967	.83968	.00333
	.04895	00594	.33686 ′	.01928	.00481	71.673	.84624	.00368
em	Cd2265	Ca3736	Cr2677	Co2286	Cu2247	Fe2598	Mn2576	Mg2790
าits	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
′g	.01001	22.239	.09261	.06175	.21838	150.75	3.5764	20.608
ďdev	.00030	.061	.00103	.00004	.00153	.72	.0123	.017
RSD	3.0417	.27307	1.1068	.06065	.70232	.47859	.34337	.08067
		•						
	.00979	22.196	.09189	.06178	.21730	150.24	3.5677	20.597
1	.01022	22,281	.09334	.06172	.21946	151.26	3.5851	20.620
					ű.			
em ·	Ni2316	Ag3280	Na5895	V_2924	Zn2062	K_7664	Mo2020	B_2496
nits	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
′g	.14086	.00065	1.0275	.12060	.90657	5.8104	.00215	00013
ddev	.00026	.00087	.0080	.00131	.01576	.0459	.00027	.00300
RSD	.18404	134.04	.77771	1.0873	1.7385	.78927	12.432	2232.6
			•					
	.14104	.00126	1.0219	.11967	.89542	5.7780	.00233	.00199
1	.14068	.00003	1.0332	.12152	.91771	5.8428	.00196	00225
				·				
em	S_1820	Si2881	Sn1899	Ti3361	Li6707			
nits	ppm	ppm	ppm	ppm	ppm			
<i>ι</i> g	.63680	4.7250	.02209	.43480	.16170			
ddev	.00305	.0406	.00055	.00192	.00080			
RSD	.47938	.85851	2.5071	.44164	.49251			
	•							
	.63464	4.6963	.02248	.43345	.16113			•
1	.63896	4.7537	.02170	.43616	.16226			

R= 0.336145

2 RID = 6.3008

Son/Stude Sample Preparation work				T	Ratcu ID:	FD49/32			
Lab Sample ID	Client Sample ID	Weight	Color Before	Color After	Texture	Artifact	Comments		
B2616-01	CPPPTRENCH-3	1.20	BA	4	14		Charles and Contains		
B2618-04	LCSS00100110XX	1.00	BR	φ	M		A Section of the		
32618-04DUP	LCSS00100110XXDUP	1000	BR	4	1		6610105		
32618-04MS	LCSS00100110XXMS	1.00	BL	¥	with the state of	18 12 max	Spk-Jal-2, Spk-Ja		
32618-04MSD	LCSS00100110XXMSD	1.00	BR	4	N.		11		
32618-17	LCPD100600110XX	1.04	KL	, 4	14				
32619-02	LIBORTYBPLE-1	1.75	BR	Ÿ	The state of the s	2.5			
2620-01	GS-10-LOCATIONTR-1	1.04	13/4	4	A	jan jan i	1000 200 100 14%		
2620-02	GS-11-LOCATIONW-1	1.25	13/-	7	M				
2620-03	GS-12-LOCATIONW-2	1.03	BL	7					
2620-04	GS-13-LOCATIONW-3	1-30	BL	4	N		1 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
2620-05	GS-14-LOCATIONW-4	1-20	BR	. 7	M	F - 2 .			
2620-06	GS-15-LOCATIONW-5	1.09	BL	Y	74				
2620-07	CS-10-TR-1LOCATION	1.22	131	۲	A	54. GA	Alta Maria de La compaña		
2620-08	CS-11-LOCATIONW-1	1-06	RA	7	A	30 A	STEW PROBLET		
2620-09	CS-12-LOCATIONW-2	1.15	BL	Y	A	(A) (B) (A)			
2620-10	CS-13-LOCATIONW-3	1-01	BA	Y	M				
2620-11	CS-14-LOCATIONW-4	1.14	BL	ų	M				
2620-12	CS-15-LOCATIONW-5	1-18	15/1	4	M				
b49732BL	RB49732BL PBS	1.00	<	خ	F	1	6/10/10		
b49732BS	₽849732B6	1.00	C	_	F	4	SpK-301.2 SpK-1		

11011

A / Lylandia

^{*} BL=Blank BS=Blank Spike TB=TCLP Blank

^{*} COLOR: R=Red BU=Blue Y=Yellow GR=Green O=Orange V=Violet W=White C=Colorless BR=Brown GY=Grey BL=Black

^{*} CLARITY: CL=Clear CD=Cloudy O=Opaque

^{*} TEXTURE: F=Fine M=Medium C=Coarse

^{*} ARTIFACT: Y=Yes N=No

ample Name: S0 Acquired: 6/10/2010 11:35:21 Type: Cal

ethod: P4 (v122) Mode: IR Corr. Factor: 1.000000

ser: admin Custom ID1: Custom ID2: Custom ID3:

omment:

em	As1937	TI1908	Pb2203	Se1960	Sb2068	Al3082	Ba4934	Be2348
nits	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S
′g	00117	00210	.00038	.00145	.00044	.01792	.22575	00020
ddev	.00013	.00005	.00010	∠ .00025	.00012	.00075	.00166	.00001
RSD	10.755	2.1658	27.849	,	26.434	4.2074	.73661	4.0724
	00108	00207	.00045	00163	.00036	.01845	.22458	00021
1	00126	00213	.00030	.00127	.00052	.01739	.22693	00020
			,					
em	Cd2265	Ca3736	Cr2677	Co2286	Cu2247	Fe2598	Mn2576	Mg2790
าits	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S
′g	00047	.00061	.00050	.00039	00018	.00018	00001	00009
ďdev	.00008	.00020	.00013	.00031	.00004	.00012	.00006	.00020
RSD	_~ 16.558	33.435	26.950	79.628	22.304	62.538	1056.6	227.01
		•						
	00052	.00075	.00040	.00061	00015	.00027	.00004	.00005
1	00041	.00046	.00059	.00017	00020	.00010	00005	00023
					•			
em	Ni2316	Ag3280	Na5895	V_2924	Zn2062	K_7664	Mo2020	B_2496
าits	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S
′g	00137	00014	.00639	.00040	00034	00295	.00059	.00031
ddev	.00001	.00068	.00075	.00014	.00119	.00028	.00026	.00034
RSD	.38451	502.37	11.679	35.164	348.15	9.5574	44.903	111.55
							,	
	00137	.00035	.00586	.00050	.00050	00315	.00077	.00006
:	00137	00062	.00692	.00030	00118	00275	.00040	.00055
	0.4000	0'0004	0.4000	T:0004			,	
em	S_1820	Si2881	Sn1899	Ti3361	Li6707			
nits	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S		•	
′g į	.00039	.00065	.00023	.00075	00019			
ddev	.00025	.00052	.00031	.00005	.00138			
RSD	63.244	79.538	132.57	6.6229	724.29			
	00055	00405	00001	00075	00075			
	.00022	.00102	.00001	.00072	.00079			
	.00057	.00029	.00045	.00079	00117			

Alalla y histo

ımple Name: S1

Acquired: 6/10/2010 11:38:05

Type: Cal

ethod: P4 (v122)

Mode: IR

Corr. Factor: 1.000000

ser: admin

Custom ID1:

Custom ID2:

Custom ID3:

omment:

em nits /g ddev	As1937 Cts/S .00081 .00077	TI1908 Cts/S .00087 .00024	Pb2203 Cts/S .00083 .00018	Se1960 Cts/S .00326 .00000	Sb2068 Cts/S .00729 .00003	Al3082 Cts/S .02274 .00003	Ba4934 Cts/S .60801 .00203	Be2348 Cts/S .00776 .00012	Cd22 Cts .0062 .000
RSD	94.927	27.154	21.377 ^V	.04400	.47968	.14128	.33409	1.5621	2.99
!	.00027 .00136	.00104 .00070	.00070 / .00095	.00326	.00726 .00731	.02276 .02272	.60657 .60945	.00784 .00767	.006 .006
o.m	Cr2677	Co2286	Cu2247	Fe2598	Mn2576	Ni2316	Λα2200	V_2924	Zn20
em nits	Cts/S	Cts/S	Cuzz47 Cts/S	Cts/S	Cts/S	Cts/S	Ag3280 Cts/S	v_2924 Cts/S	Cts
	.00322	.01313	.00123	.00245	.00649	.00682	.00661	.01262	.1417
∕g ddev	.00322	.00014	.0007	.00243	.00043	.00010	.00113	.00011	.000
RSD	15.514	1.0419	5.5639	2.0946	.76856	1.5239	17.070	85936	.199
	.00357	.01303	.00118	.00242	.00645	.00674	.00581	.01269	.141
1	.00286	.01322	.00127	.00249	.00652	.00689	.00740	.01254	.141
	N. 1 - 2020	D 0400	C 1000	C:0001	C1000	T:0004	1:0707		
em	Mo2020	B_2496	S_1820	Si2881	Sn1899	Ti3361	Li6707		
nits	Cts/S								
∕g	.12162	.01574	.00150	.00289	.00471	.00891	.03042		
ddev	.00012	.00003	.00038	.00019	.00027	.00030	.00105		•
RSD	.09881	.17461	25.589	6.7179	5.7782	3.3764	3.4423		
	.12170	.01572	.00177	.00275	.00452	.00870	.03116		
F	.12153	.01576	.00123	.00303	.00490	.00912	.02968		
		•							
: Std.	Y_2243	Y_2243	Y_3600	Y_3710	In2306				
nits	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S				
⁄g	156.16	1022.1	4015.6	6289.4	1381.1		*		
ddev	.48	.3	12.9	2.0	1.8				
RSD	.30564	.02675	.32136	.03176	.12817				
	155.83	1021.9	4006.5	6290.8	1379.9				
1	155.65	1021.9	4006.5	6288.0	1379.9				
	130.30	1044.3	4024./	U200.U	1304.4				

1 (Ma

ample Name: S3

Acquired: 6/10/2010 11:43:33

Type: Cal

ethod: P4 (v122)

Mode: IR

Corr. Factor: 1.000000

ser: admin

Custom ID1:

1.0169

.0005

.05038

1.0165

1.0173

⁄g ddev

RSD

7.2146

.0048

.06690

7.2112

7.2180

Custom ID2:

Custom ID3:

omment:

em	As1937	TI1908	Pb2203	Se1960	Sb2068	Al3082	Ba4934	Be2348	Cd22
nits	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts
/g	.51507	.43183	.44166	.48424	.68627	.61823	37.655	.33032	2.795
ddev	.00140	.00095	.00065	.00058	.00076	.00168	.074	.00220	.000
RSD	.27139	.22021	.14787	.12012	.11078	.27232	.19614	.66511	.079
	.51408	.43251	.44212	.48465	.68681	.61942	37.707	.33187	2.79
	.51606	.43116	.44120	/ .48383	.68574	.61704	37.603	.32876	2.79
em	Ca3736	Cr2677	Co2286	Cu2247	Fe2598	Mn2576	Mg2790	Ni2316	Ag32
nits	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts
rg	.59530	.30672	.97462	.08776	.10650	.79264	.15185	.49384	.8691
ddev	.00231	.00236	.00057	.00048	.00032	.00030	.00053	.00033	.010
RSD	.38720	.77056	.05874	.54466	.29755	.03795	.35216	.06620	1.22
	.59693	.30839	.97422	.08810	.10673	.79243	.15223	.49407	.876
	.59367	.30505	.97503	.08743	.10628	.79285	.15147	.49361	.861
em nits rg ddev RSD	Na5895 Cts/S 4.8941 .0089 .18274	V_2924 Cts/S .79787 .00459 .57530	Zn2062 Cts/S 8.5701 .1583 1.8472	K_7664 Cts/S 1.5876 .0045 .28304	Mo2020 Cts/S 3.0424 .0032 .10629	B_2496 Cts/S .67103 .00264 .39385	S_1820 Cts/S .26771 .00105 .39380	Si2881 Cts/S .02979 .00043 1.4501	Sn18 Cts .5517 .000
,	4.8878	.80111	8.6820	1.5845	3.0447	.67290	.26697	.03009	.551:
	4.9005	.79462	8.4582	1.5908	3.0401	.66916	.26846	.02948	.552
em nits	Ti3361 Cts/S	Li6707 Cts/S				,			,

67

ımple Name: S4

Acquired: 6/10/2010 11:46:05

Type: Cal

ethod: P4 (v122)

Mode: IR

Corr. Factor: 1.000000

ser: admin

Custom ID1:

Custom ID2:

Custom ID3:

omment:

1.9465

13.849

em nits rg ddev RSD	As1937 Cts/S 1.0127 .0025 .24579	TI1908 Cts/S .85142 .00120 .14105	Pb2203 Cts/S .86630 .00180 .20784 /	Se1960 Cts/S .94178 .00034 .03621	Sb2068 Cts/S 1.3352 .0000 .00251	Al3082 Cts/S 1.1955 .0028 .23143	Ba4934 Cts/S 70.709 .116 .16347	Be2348 Cts/S .62737 .00128 .20334	Cd22 Cts 5.375 .01
!	1.0109 1.0145	.85227 .85057	.86758 .86503	.94202 .94154	1.3352 1.3351	1.1975 1.1936	70.791 70.628	.62828 .62647	5.38 5.36
em nits /g ddev RSD	Ca3736 Cts/S 1.1374 .0040 .35364	Cr2677 Cts/S .59396 .00592 .99699	Co2286 Cts/S 1.8922 .0014 .07267	Cu2247 Cts/S .16859 .00071 .42035	Fe2598 Cts/S .20234 .00060 .29590	Mn2576 Cts/S 1.5136 .0022 .14544	Mg2790 Cts/S .29284 .00122 .41522	Ni2316 Cts/S .96649 .00055 .05732	Ag32 Cts 1.697 .012
1	1.1345 1.1402	.59815 .58978	1.8932 1.8912	.16809 .16909	.20191 .20276	1.5121 1.5152	.29370 .29198	.96688 .96610	1.70 1.68
em nits /g ddev RSD	Na5895 Cts/S 9.4163 .0007	V_2924 Cts/S 1.5217 .0021 .13518	Zn2062 Cts/S 16.427 .234 1.4226	K_7664 Cts/S 3.0607 .0018 .05982	Mo2020 Cts/S 5.8570 .0074 .12638	B_2496 Cts/S 1.2918 .0007 .05541	S_1820 Cts/S .52566 .00248 .47142	Si2881 Cts/S .05563 .00017 .30749	Sn18 Cts 1.079 .000
!	9.4168 9.4158	1.5202 1.5231	16.262 16.592	3.0594 3.0620	5.8622 5.8517	1.2923 1.2913	.52391 .52741	.05550 .05575	1.07 1.07
em nits rg ddev RSD	Ti3361 Cts/S 1.9501 .0051 .26058	Li6707 Cts/S 13.858 .013 .09144		1,1	Uh.	y lustes			
	1.9537	13.867		VU	ŭ		,		

ample Name: S5

Acquired: 6/10/2010 11:48:40

Type: Cal

ethod: P4 (v122)

Mode: IR

Corr. Factor: 1.000000

ser: admin

Custom ID1:

Cts/S

.0138

.35456

3.8855

3.9050

3.8952

nits

⁄g ddev

RSD

Cts/S

.047

27.848

.16701

27.815

27.881

Custom ID2:

Custom ID3:

omment:

em nits /g ddev RSD	As1937 Cts/S 2.0508 .0040 .19499	TI1908 Cts/S 1.7678 .0029 .16321	Pb2203 Cts/S 1.7792 .0003 .01899 */	Se1960 Cts/S 1.9207 .0076 .39462	Sb2068 Cts/S 2.7190 .0063 .23099	Al3082 Cts/S 2.4501 .0022 .08929	Ba4934 Cts/S 139.76 1.37 .98344	Be2348 Cts/S 1.2593 .0039 .31247	Cd22 Cts 10.76 .00
!	2.0536	1.7698	1.7790	1.9261	2.7234	2.4516	140.73	1.2565	10.7
	2.0480	1.7657	1.7794 <i>"</i>	1.9153	2.7145	2.4485	138.78	1.2621	10.7
em	Ca3736	Cr2677	Co2286	Cu2247	Fe2598	Mn2576	Mg2790	Ni2316	Ag32
nits	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts
/g	2.2789	1.1782	3.8292	.33891	.40182	3.0055	.59250	1.9547	3.453
ddev	.0036	.0025	.0045	.00116	.00003	.0099	.00042	.0009	.00
RSD	.15869	.21182	.11667	.34265	.00635	.32949	.07077	.04545	.160
!	2.2814	1.1764	3.8323	.33809	.40180	2.9985	.59221	1.9541	3.44!
	2.2763	1.1800	3.8260	.33973	.40184	3.0125	.59280	1.9553	3.45
em nits rg ddev RSD	Na5895 Cts/S 19.001 .010 .05465	V_2924 Cts/S 3.0227 .0026 .08491	Zn2062 Cts/S 32.095 .052 .16070	K_7664 Cts/S 6.1660 .0026 .04239 6.1642	Mo2020 Cts/S 11.764 .051 .43362	B_2496 Cts/S 2.6346 .0015 .05819	S_1820 Cts/S 1.0811 .0006 .05570	Si2881 Cts/S .11188 .00031 .28082	Sn18 Cts 2.196 .007 .093
em	19.008 Ti3361	3.0209 Li6707	32.131	6.1679	11.728	2.6335	1.0807	.11210	2.19

		W DATA 6 Jun 2010									Page [°]	·.	4
Line	e Con	c. Units	SD/RSD	. 1	2_	·	3	4	<u> </u>	5			
*** Hg	Sample	ID: B2680-14	B93E	Seq EI-60-67 128	: 31	17	:47:53	.16.	Jun	10	HG .		
***	Sample	ID: PB49851BI		Seq	32	1.7	:49:50	16	Jun	10	HG		
Hg	144	ppb	PBS .000	144						· ·.		.*.	
***	Sample	ID: PB49851B5	3 .	. Seq	: 33	17	:51:47	16	Jun	10	HG		
Нg	3.44	ppb	.000	3.44		•		•	• •				
***	Sample	ID: B2616-01	CDDD	Seq:	: 34	<u>.</u> <u>1</u> 7	:53:51	16	Jun	10	ĤG .		
нд	.138	ppo	.000	.136								•	
*** Hg	Sample 1.43	ID: B2618-04	LCSS	Seq: 300100110XX 1.43	35 (. 17	:55:48	16	Jun	10	HG		
***	Sample	ID: B2618-17			: 36	17	:57:42	16	J u n	10	НG		
Hg _.	2.03	ppb	LCPD	2.03 2.03	ΚΧ			•	•			• .	
		ID: B2643-06				17	:59:42	16	Jun	10	НG		
		ID: B2643-13	LCBK	(SS00100110	: 38 XX	18	:01:46	16 .	Jun	10	HG		
*** Line Hg	Check S Flag	Standard: 2 0 %Rcv. Four 103. 5.1	Ck2 nd Tr l4 5.	Seq: ue Units 00 ppb	39	18 SD/RSD .000	:03:39	16	Jun	10	НG		
*** Line Hg	Check S Flag	Standard: 1 C Found Range(142 .20	Ck1 (+/-) Un)0 p	Seq: Sepb	40 SD/RSD .000		:05:34	16 3	Jun	10.	HG		
***	Sample	ID: B2643-14		Seq:		18	:07:27	16	Jun	10	HG		
Нд	.321	ppb	.000	.321	/22/2							•	
	-	ID: B2643-15 ppb		Seq: SS00300110 3.29	42)XX	18	:09:22	16 3	Jun	10	HG		
			06/1	6/10 A	-ρ.								

06/16/10 A.P.

MERCURY PREPARATION WORKSHEET

CHEMITECH

LAB SAMPLE ID	CLIENT SAMPLE ID	TEST	MATRIX	Wt(g)/Vol(ml)	PH	COMMENTS	
B2616-01	CPPPTRENCH-3	Mercury	Solid	0 62	7		7
B2618-04	LCSS00100110XX	Mercury	Solid	0.61			
B2618-17	LCPD100600110XX	Mercury	Solid	0.66			
B2643-06	LCPD101100110XX	Mercury	Solid	0.62	1.		i
B2643-13 · ·	LCBKSS00100110XX	Mercury	Solid	. 0.61		1	
B2643-14	LCBKSS00200110XX	Mercury	Solid	0 63	11		
B2643-15	LCBKSS00300110XX	Mercury	Solid	0.64	11		
B2643-16	LCBKSS00300110XD	Mercury	Solid	0.61	11		
B2648-02	B93D2(5-7)	Mercury	Solid	0,64	11		
B2648-04	B93D2(10-17)	Mercury	Solid	0.62			
B2648-06	B93D2(20-27)	Mercury	Solid	0.65	1	†	
B2648-08	B93D2(30-37)	Mercury	Solid	0.64		· /	
B2648-10	B93D2(40-47)	Mercury	Solid	0 67			
B2648-12	B93D2(50-57)	Mercury	Solid	0.67			
B2648-14	B93D2(60-67)	Mercury	Solid	0.60		†· /	
B2648-14DUP	B93D2(60-67)DUP	Mercury`	solid	0.60	1	/	
B2648-14MS	B93D2(60-67)MS	Mercury	Solid	0.60	1 1	m11892	
B2648-14MSD	B93D2(60-67)MSD	Mercury .	solid	0.60	1 1	mp1892	
B2648-16	B93D2(70-72)	Mercury .	Solid	0.64	1 1	1010	
B2659-01	1005267682	Mercury	Solid	0.62	++		
PB49851BL	PBS	Mercury	Solid	0.60	+ +		4
PB49851BS	LCSS	Mercury	solid	. 0 60	++		61

MAM.

7/23/10

ANALYTICAL RESULTS Constitues
SUMMARY

Javanetes republication

Multiple 1/4/8

PROJECT NAME: LOOHNS DRY CLEANERS- APO 201007181

MACTEC INC. 1105 Lakewood Parkway Suite 300 Alpharetta, GA - 30009 Phone No: 7703600600

ORDER ID: B2643

Tige Cunningham ATTENTION:

DoD ELAP

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION FORM S-I SAMPLE IDENTIFICATION AND ANALYTICAL REQUIREMENT SUMMARY

NYSDEC Sample ID/Code	Laboratory Sample ID/Code	VOA GC/MS (Method #)	BNA GC/MS (Method #)	VOA GC (Method #)	Pest PCBs (Method #)	Metals (Method #)	*#)
LCPD100301310XX	B2643-01	8260B	N				Chemtech -SOP
LCPD100900110XX	B2643-02	8260B					Chemtech -SOP
LCPD100901010XX	B2643-03	8260B			,		Chemtech -SOP
LCPD100400510XX	B2643-04	8260B					Chemtech -SOP
LCPD100401010XX	B2643-05	8260B					Chemtech -SOP
LCPD101100110XX	B2643-06		8270C		8081A, 8082	6010B, 7471A	Chemtech -SOP
LCPD101100210XX	B2643-07	8260B					Chemtech -SOP
LCGW01502010XX	B2643-10	8260B					
LCGW01402010XX	B2643-11	8260B					
LCGW01302010XX	B2643-12	8260B					
LCBKSS00100110XX	B2643-13		8270C		8081A, 8082	6010, 7471A	Chemtech -SOP
LCBKSS00200110XX	B2643-14		8270C		8081A, 8082	6010, 7471A	Chemtech -SOP
LCBKSS00300110XX	B2643-15		8270C		8081A, 8082	6010, 7471A	Chemtech -SOP
LCBKSS00300110XD	B2643-16		8270C	,	8081A, 8082	6010, 7471A	Chemtech -SOP
LCPD101000210XX	B2643-17	8260B					Chemtech -SOP
LCPD101400210XX	B2643-18	8260B		·			Chemtech -SOP
LCPD100600410XX	B2643-19	3					
TRIPBLANK	B2643-20	8260B					

FORM S-IIa

SAMPLE PREPARATION AND ANALYSIS SUMMARY SEMIVOLATILE (BNA) ANALYSES

Laboratory Sample ID	Matrix	Date Collected	Date Rec'd at Lab	Date Extracted	Date Analyzed
B2643-06	SOIL	06/09/10	06/10/10	06/14/10	06/18/10
B2643-13	SOIL	06/09/10	06/10/10	06/14/10	06/18/10
B2643-14	SOIL	06/09/10	06/10/10	06/14/10	06/18/10
B2643-15	SOIL	06/09/10	06/10/10	06/14/10	06/18/10
B2643-16	SOIL	06/09/10	06/10/10	06/14/10	06/18/10

^{*} Details For Test :SVOC-TCL BNA -20

FORM S-IIb

SAMPLE PREPARATION AND ANALYSIS SUMMARY VOLATILE (VOA) ANALYSES

Laboratory Sample ID	Matrix	Date Collected	Date Rec'd at Lab	Date Extracted	Date Analyzed
B2643-01	SOIL	06/09/10	06/10/10	,	06/17/10
B2643-02	SOIL	06/09/10	06/10/10		06/17/10
B2643-03	SOIL	06/09/10	06/10/10		06/17/10
B2643-04	SOIL	06/09/10	06/10/10		06/17/10
B2643-05	SOIL	06/09/10	06/10/10		06/17/10
B2643-07	SOIL	06/09/10	06/10/10		06/15/10
B2643-17	SOIL	06/09/10	06/10/10		06/17/10
B2643-18	SOIL	06/09/10	06/10/10		06/17/10
B2643-10	WATER	06/09/10	06/10/10		06/16/10
B2643-11	WATER	06/09/10	06/10/10		06/16/10
B2643-12	WATER	06/09/10	06/10/10		06/16/10
B2643-20	WATER	06/02/10	06/10/10		06/16/10

^{*} Details For Test :VOC-TCLVOA-10

FORM S-IIc

SAMPLE PREPARATION AND ANALYSIS SUMMARY PESTICIDE/PCB ANALYSES

Laboratory Sample ID	Matrix	Date Collected	Date Rec'd at Lab	Date Extracted	Date Analyzed
B2643-06	SOIL	06/09/10	06/10/10	06/14/10	06/18/10
B2643-13	SOIL	06/09/10	06/10/10	06/14/10	06/18/10
B2643-14	SOIL	06/09/10	06/10/10	06/14/10	06/18/10
B2643-15	SOIL	06/09/10	06/10/10	06/14/10	06/18/10
B2643-16	SOIL	06/09/10	06/10/10	06/14/10	06/18/10

^{*} Details For Test :Pesticide-TCL

FORM S-III

SAMPLE PREPARATION AND ANALYSIS SUMMARY MISCELLANEOUS ORGANIC ANALYSES

Laboratory Sample ID	Matrix	Analytical Protocol	Extraction Method	Auxiliary Cleanup	Dil/Conc Factor
B2643-01	Solid	8260B	5035		
B2643-02	Solid	8260B	5035		
B2643-03	Solid	8260B	5035		
B2643-04	Solid	8260B	5035		
B2643-05	Solid	8260B	5035		
B2643-07	Solid	8260B	5035		
B2643-08	Solid	8260B	5035		
B2643-09	Solid	8260B	5035		
B2643-10	Water	8260B	5030		
B2643-11	Water	8260B	5030		
B2643-12	Water	8260B	5030		
B2643-17	Solid	8260B	5035		
B2643-18	Solid	8260B	5035		
B2643-20	Water	8260B	5030		

FORM S-IV

SAMPLE PREPARATION AND ANALYSIS SUMMARY INORGANIC ANALYSES

Laboratory Sample ID	Matrix	Metals Requested	Date Rec'd at Lab	Date Digested	Date Analyzed
B2643-06	SOIL	Metals ICP- TAL	06/10/10	06/14/10	06/14/10
B2643-13	SOIL	Metals ICP- TAL	06/10/10	06/14/10	06/14/10
B2643-14	SOIL	Metals ICP- TAL	06/10/10	06/14/10	06/14/10
B2643-15	SOIL	Metals ICP- TAL	06/10/10	06/14/10	06/14/10
B2643-16	SOIL	Metals ICP- TAL	06/10/10	06/14/10	06/14/10

^{*} Details For Test :Metals ICP-TAL

FORM S-III

SAMPLE PREPARATION AND ANALYSIS SUMMARY MISCELLANEOUS ORGANIC ANALYSES

Laboratory Sample ID	Matrix	Analytical Protocol	Extraction Method	Auxiliary Cleanup	Dil/Conc Factor
B2643-06	Solid	8081A,8082			
B2643-13	Solid	8081A,8082			
B2643-14	Solid	8081A,8082			
B2643-15	Solid	8081A,8082			
B2643-16	Solid	8081A,8082			

FORM S-IIc

SAMPLE PREPARATION AND ANALYSIS SUMMARY PESTICIDE/PCB ANALYSES

Laboratory Sample ID	Matrix	Date Collected	Date Rec'd at Lab	Date Extracted	Date Analyzed
B2643-06	SOIL	06/09/10	06/10/10	06/14/10	06/14/10
B2643-13	SOIL	06/09/10	06/10/10	06/14/10	06/14/10
B2643-14	SOIL	06/09/10	06/10/10	06/14/10	06/14/10
B2643-15	SOIL	06/09/10	06/10/10	06/14/10	06/14/10
B2643-16	SOIL	06/09/10	06/10/10	06/14/10	06/14/10

^{*} Details For Test :PCB

FORM S-III

SAMPLE PREPARATION AND ANALYSIS SUMMARY MISCELLANEOUS ORGANIC ANALYSES

Laboratory Sample ID	Matrix	Analytical Protocol	Extraction Method	Auxiliary Cleanup	Dil/Conc Factor
B2643-06	Solid	8270C	3541		·
B2643-13	Solid	8270C	3541		
B2643-14	Solid	8270C	3541		
B2643-15	Solid	8270C	3541		
B2643-16	Solid	8270C	3541		

FORM S-IV

SAMPLE PREPARATION AND ANALYSIS SUMMARY INORGANIC ANALYSES

Laboratory Sample ID	Matrix	Metals Requested	Date Rec'd at Lab	Date Digested	Date Analyzed
B2643-06	SOIL	Mercury	06/10/10	06/15/10	06/16/10
B2643-13	SOIL	Mercury	06/10/10	06/15/10	06/16/10
B2643-14	SOIL	Mercury	06/10/10	06/15/10	06/16/10
B2643-15	SOIL	Mercury	06/10/10	06/15/10	06/16/10
B2643-16	SOIL	Mercury	06/10/10	06/15/10	06/16/10

^{*} Details For Test :Mercury

Cover Page

Order ID:

B2643

Project ID:

Loohns Dry Cleaners- APO 201007181

Client:

MACTEC Inc.

Lab Sample Number	Client Sample Number
B2643-01	LCPD100301310XX
B2643-02	LCPD100900110XX
B2643-03	LCPD100901010XX
B2643-04	LCPD100400510XX
B2643-05	LCPD100401010XX
B2643-06	LCPD101100110XX
B2643-07	LCPD101100210XX
B2643-08	B2643-07MS
B2643-09	B2643-07MSD
B2643-10	LCGW01502010XX
B2643-11	LCGW01402010XX
B2643-12	LCGW01302010XX
B2643-13	LCBKSS00100110XX
B2643-14	LCBKSS00200110XX
B2643-15	LCBKSS00300110XX
B2643-16	LCBKSS00300110XD
B2643-17	LCPD101000210XX
B2643-18	LCPD101400210XX
B2643-19	LCPD100600410XX
B2643-20	TRIPBLANK

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Signature :

HI Idied V Reys

I am approving this document 2010.06.23 16:28:28 -04'00'

CHITECH

CASE NARRATIVE

MACTEC Inc.

Project Name: Loohns Dry Cleaners- APO 201007181

Project # N/A

Chemtech Project # B2643

A. Number of Samples and Date of Receipt:

16 Solid samples were received on 06/10/2010.

4 Water samples were received on 06/10/2010.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Grain Size Distribution (sub), Mercury, Metals ICP-TAL, METALS-TAL, PCB, Pesticide-TCL, Pesticides/PCB-TCL, SVOC-TCL BNA -20, VOC-TCLVOA-10 and VOC-TCLVOA-10. This data package contains results for VOC-TCLVOA-10.

C. Analytical Techniques:

The analysis performed on instrument MSVOA F were done using GC column RTX624, which is 75 meters, 0.53 ID, 3.0 df, Restek Cat. #10974. The Trap was supplied by Supelco, VOCARB 3000, Tekmar 2000 Concentrator. The analysis performed on instrument MSVOA H were done using GC column RTX-VMS which is 20 meters, 0.18 ID, 1.0 df, Restek Cat. #49914. The Trap was supplied BY OI Analytical, OI #10 Trap, OI Eclipse 4660 Concentrator. The analysis performed on instrument MSVOA K were done using GC column RTX-VMS which is 20 meters, 0.18 ID, 1.0 df, Restek Cat. #49914. The Trap was supplied by OI Analytical, OI #10 Trap, OI 4560 Concentrator. The analysis of VOC-TCLVOA-10 was based on method 8260B. The method of analysis was 8260.

D. QA/ QC Samples:

The Holding Times were met for all analysis except for TRIPBLANK. This sample was re-analyzed one day outside hold time.

The Surrogate recoveries met the acceptable criteria.

The Internal Standards Areas met the acceptable requirements except TRIPBLANK.

The Retention Times were acceptable for all samples.

The MS recoveries met the requirements for all compounds except for 1,1-

Dichloroethene and Tetrachloroethene.

The MSD recoveries met the acceptable requirements except for 1,1-Dichloroethene, 1,2-Dichloropropane, Bromodichloromethane, Chloroethane, cis-1,3-Dichloropropene and Toluene.

The RPD for sample B2643-09MSD did not meet requirements...

The RPD for sample B2697-01 met criteria except for Bromomethane, Chloroethane and Methylene Chloride.

The Blank Spike met requirements for all samples except for 1,1-Dichloroethene.

The %RSD is greater than 15% in the Initial Calibration (Method 82F061510W.M) for Bromomethane, Chloroethane, Methylene Chloride and Tetrachloroethene. These compounds are passing on Linear/ Quadratic regression but they are kept on Average response factor

The %RSD is greater than 15% in the Initial Calibration (Method 82H061610W.M) for Chloroethane, Chloromethane, Cyclohexane and Vinyl chloride. These compounds are passing on Linear/ Quadratic regression but they are kept on Average response factor The %RSD is greater than 15% in the Initial Calibration (Method 82K061410S.M) for 1,2-Dibromo-3-Chloropropane, Chloroethane, Dichlorodifluoromethane and Methyl Acetate. These compounds are passing on Linear/ Quadratic regression but they are kept on Average response factor

The Calibration File ID ICV (VK039549.D met the requirements except for Dichlorodifluoromethane and Chloromethane.

The Calibration File ID VF022630.D met the requirements except for Trichlorofluoromethane, Acetone, 1,2-Dichloropropane, 4-Methyl-2-Pentanone, Toluene, t-1,3-Dichloropropene, cis-1,3-Dichloropropene, 1,1,2-Trichlorotrifluoroethane, 2-Hexanone, Dibromochloromethane, 1,2-Dibromoethane, Styrene and 1,1,2,2-Tetrachloroethane. Sample associated with this calibration was analyzed for dilution and compound of interest was Tetrachlorothene.

The Calibration File ID VK039558.D met the requirements except for Dichlorodifluoromethane, Chloromethane, Vinyl Chloride, Chloroethane, Trichlorofluoromethane, Carbon disulfide and 1,1,2-Trichlorotrifluoroethane. Sample did not have hit for these compounds.

The Calibration File ID VK039617.D met the requirements except for Chloroethane and Toluene.

The Tuning criteria met requirements.

E. Additional Comments:

Samples LCPD100900110XX and LCPD101400210XX were diluted due to high concentrations.

Please use %D calculated based on Avg RF and CCRF for all compounds using Average Response Factor when the %RSD value for a compound is <15% for the Initial Calibration curve and use %D calculated based on Amount added and Calculated amount for all compounds using Linear Regression when the %RSD value for a compound is > 15% for the Initial Calibration curve for SW-846 analysis.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Mildred V. Reyes I am approving this document 2010.06.23 16:28:16 -04'00'

CHITECH

CASE NARRATIVE

MACTEC Inc.

Project Name: Loohns Dry Cleaners- APO 201007181

Project # N/A

Chemtech Project # B2643

A. Number of Samples and Date of Receipt:

16 Solid samples were received on 06/10/2010.

4 Water samples were received on 06/10/2010.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Grain Size Distribution (sub), Mercury, Metals ICP-TAL, METALS-TAL, PCB, Pesticide-TCL, Pesticides/PCB-TCL, SVOC-TCL BNA -20, VOC-TCLVOA-10 and VOC-TCLVOA-10. This data package contains results for SVOC-TCL BNA -20.

C. Analytical Techniques:

The samples were analyzed on instrument BNA E using GC Column RTX-5 SILMS which is 20 meters, 0.18 mm ID, 0.36 um df, Catalog # 42704. The analysis of SVOC-TCL BNA -20 was based on method 8270C and extraction was done based on method 3541.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria.

The Internal Standards Areas met the acceptable requirements.

The Retention Times were acceptable for all samples.

The MS recoveries met the requirements for all compounds.

The MSD recoveries met the acceptable requirements.

The RPD for (B2643-06MSD) recoveries met criteria except for 2,4,5-

Trichlorophenol, 2,4-Dinitrotoluene, 2-Nitrophenol, 3,3-Dichlorobenzidine, 3-

Nitroaniline, 4-Bromophenyl-phenylether, 4-Chloroaniline, 4-Chlorophenyl-phenylether,

Nitroaniline, 4-Nitrophenol, Atrazine, Benzo(b) fluoranthene, Benzo(k) fluoranthene, bis (2-1) fluor

Ethylhexyl)phthalate,Di-n-butylphthalate,Di-n-octyl phthalate and Pentachlorophenol.

The Blank Spike met requirements for all samples except for Benzaldehyde.

The Blank analysis indicated presence of Dimethylphthalate (200 ug/kg) due to possible lab contamination.

The Initial Calibration did not meet the requirements.

The Calibration File ID BE064915.D met the requirements except for 2,4-Dinitrophenol and 4,6-Dinitro-2-methylphenol. They are biased high and samples do not have hit for these compounds.

The Tuning criteria met requirements.

E. Additional Comments:

Please use %D calculated based on Avg RF and CCRF for all compounds using Average Response Factor when the %RSD value for a compound is <15% for the Initial Calibration curve and use %D calculated based on Amount added and Calculated amount for all compounds using Linear Regression when the %RSD value for a compound is > 15% for the Initial Calibration curve for SW-846 analysis.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature Moleco V Reyes

Mildred V. Reyes I am approving this document 2010.06.23 16:28:05 -04'00'

CASE NARRATIVE

MACTEC Inc.

Project Name: Loohns Dry Cleaners- APO 201007181

Project # N/A

Chemtech Project # B2643

A. Number of Samples and Date of Receipt:

16 Solid samples were received on 6/10/10.

4 Water samples were received on 6/10/10.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Grain Size Distribution (sub), Mercury, Metals ICP-TAL, METALS-TAL, PCB, Pesticide-TCL, Pesticides/PCB-TCL, SVOC-TCL BNA -20, VOC-TCLVOA-10, and VOC-TCLVOA-10. This data package contains results for Pesticide-TCL.

C. Analytical Techniques:

The analyses were performed on instrument GCECD 7. The front column is ZB-MR2 which is 30 meters, 0.32 mm ID, 0.25 um df, Catalog # 111391. The rear column is ZBMR1 which is 30 meters, 0.32 mm ID, 0.5 um df, Catalog # 11324. The method of analysis was 8081 and the extraction method was 3541.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria.

The Retention Times were acceptable for all samples.

The MS recoveries met the requirements for all compounds.

The MSD recoveries met the acceptable requirements.

The RPD recoveries met criteria.

The Blank Spike met requirements for all samples.

The Blank analysis did not indicate the presence of lab contamination.

The Initial Calibration and Continuing Calibration met requirements.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature Mildred VReys

Mildred V. Reyes I am approving this document 2010.06.23 16:27:50 -04'00'

CASE NARRATIVE

MACTEC Inc.

Project Name: Loohns Dry Cleaners- APO 201007181

Project # N/A

Chemtech Project # B2643

A. Number of Samples and Date of Receipt:

16 Solid samples were received on 6/10/10.

4 Water samples were received on 6/10/10.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Grain Size Distribution (sub), Mercury, Metals ICP-TAL, METALS-TAL, PCB, Pesticide-TCL, Pesticides/PCB-TCL, SVOC-TCL BNA -20, VOC-TCLVOA-10, and VOC-TCLVOA-10. This data package contains results for PCB.

C. Analytical Techniques:

The analyses were performed on instrument GCECD 6. The front column is RTX-CLPest which is 30 meters, 0.32 mm ID, 0.5 um df, Catalog # 11139. The rear column is RTX-CLPestII which is 30 meters, 0.32 mm ID, 0.25 um df, Catalog # 11324. The method of analysis was 8082 and the extraction method was 3541.

D. QA/QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria.

The Retention Times were acceptable for all samples.

The MS recoveries met the requirements for all compounds.

The MSD recoveries met the acceptable requirements.

The RPD recoveries met criteria.

The Blank Spike met requirements for all samples.

The Blank analysis did not indicate the presence of lab contamination.

The Calibration File ID CCAL03 met the requirements except for Aroclor-1016(Peak4,5)

for Column2. Column1 met requirements.

The Calibration File ID CCAL04 met the requirements except for Aroclor-1016(Peak5) and Aroclor-1260(Peak3, 4) for Column2. Column1 met requirements.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature___ Holded V Reys

Mildred V. Reyes I am approving this document 2010.06.23 16:27:39 -04'00'

CASE NARRATIVE

MACTEC Inc.

Project Name: Loohns Dry Cleaners- APO 201007181

Project # N/A

Chemtech Project # B2643

A. Number of Samples and Date of Receipt:

16 Solid samples were received on 6/10/10.

4 Water samples were received on 6/10/10.

B. Parameters:

According to the Chain of Custody document, the following analyses were requested: Grain Size Distribution (sub), Mercury, Metals ICP-TAL, METALS-TAL, PCB, Pesticide-TCL, Pesticides/PCB-TCL, SVOC-TCL BNA -20, VOC-TCLVOA-10, and VOC-TCLVOA-10. This data package contains results for Metals ICP-TAL and Mercury.

C. Analytical Techniques:

The analysis of Metals ICP-TAL was based on method 6010 and Mercury was based on method 7471A

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Blank Spike met requirements for all samples.

The Duplicate analysis met criteria for all samples.

The Matrix Spike analysis met criteria for all samples.

The Matrix Spike Duplicate analysis met criteria for all samples.

The Blank analysis did not indicate the presence of lab contamination.

The Calibration met the requirements.

The Serial Dilution met the acceptable requirements except for Barium, Calcium, Copper, Iron, Magnesium, Manganese and Zinc.

E. Additional Comments:

Calcium and Magnesium failed in CCAL02. Samples are not associated with this calibration.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature Wildred V Reys

Mildred V. Reyes I am approving this document 2010.06.23 16:27:22 -04'00'

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

					EP	A SAMPLE NO	
÷					LCPD	0100301310XX	
Lab Name:	Chemtech		Conti	ract: MACT03			
Lab Code:	CHEM	Case No.: B2643	SAS No.:	B2643	_ SDG No.:	B2643	
Matrix (soil/w	ater):	SOIL		Lab Sample ID:	B2643-01		
				Lab File ID:			
Sample wt/vol	: <u>4.78</u>	(g/mL) g			VK039623.D		
_evel: (low/m	ed) _	LOW		Date Received:	06/10/10		
∕₀ Moisture: n	ot dec.	8		Date Analyzed:	06/17/10		
GC Column:	RTX-VMS	ID: <u>0.18</u> (mm)		Dilution Factor:	1		
Soil Extract V	olume: 5000	(uL)		Soil Aliquot Volume	e:	(uL)	
•				Concentration Units	s:		
		CON MOLINIO					
CAS NO		COMPOUND		(ug/L or ug/F	(g) ug/Kg	_ Q	
75-71-8		Dichlorodifluoromethane		5.7		U	
74-87-3		Chloromethane		5.7		U	
75-01-4		Vinyl Chloride		5.7		U	
74-83-9		Bromomethane		5.7		U	
75-00-3		Chloroethane		5.7		บ 꿏	
75-69-4		Trichlorofluoromethane		5.7		U	
76-13-1		1,1,2-Trichlorotrifluoroethane		5.7		U	
75-35-4		1,1-Dichloroethene		5.7		U	
67-64-1		Acetone		28		U	
75-15-0		Carbon Disulfide		5.7	•	U	
1634-04-	4	Methyl tert-butyl Ether		5.7		U	
79-20-9		Methyl Acetate		3.2		J	
75-09-2		Methylene Chloride		6.7			
156-60-5		trans-1,2-Dichloroethene		5.7		U	
75-34-3		1,1-Dichloroethane		5.7		U.	
110-82-7	1	Cyclohexane		5.7		U	
78-93-3		2-Butanone		28		U	
56-23-5		Carbon Tetrachloride		5.7		U	
156-59-2	! 	cis-1,2-Dichloroethene		5.7		U	
67-66-3		Chloroform		5.7		U	
71-55-6		1,1,1-Trichloroethane		5.7		U	
108-87-2	2	Methylcyclohexane		5.7		U	
71-43-2		Benzene		5.7		U	
107-06-2	2	1,2-Dichloroethane		5.7		U	
79-01-6		Trichloroethene		5.7		U	
78-87-5		1,2-Dichloropropane		5.7		U	
75-27-4		Bromodichloromethane		5.7		U	

Form I VOA-1

MM/M/M

EPA SAMPLE NO.

CHEMITECH

VOLATILE ORGANICS ANALYSIS DATA SHEET

LCPD100301310XX MACT03 Contract: Chemtech Lab Name: SDG No.: B2643 CHEM Case No.: B2643 SAS No.: B2643 Lab Code: Lab Sample ID: B2643-01 SOIL Matrix (soil/water): Lab File ID: VK039623.D 4.78 (g/mL)Sample wt/vol: LOW Date Received: 06/10/10 Level: (low/med) Date Analyzed: 06/17/10 % Moisture: not dec. Dilution Factor: ID: 0.18 GC Column: **RTX-VMS** (mm) 5000 (uL) Soil Aliquot Volume: (uL) Soil Extract Volume: Concentration Units: Q COMPOUND (ug/L or ug/Kg) ug/Kg CAS NO. U 108-10-1 4-Methyl-2-Pentanone 28 U 5.7 108-88-3 Toluene U 5.7 10061-02-6 t-1,3-Dichloropropene U 5.7 cis-1,3-Dichloropropene 10061-01-5 U 79-00-5 1,1,2-Trichloroethane 5.7 U 28 591-78-6 2-Hexanone U Dibromochloromethane 5.7 124-48-1 5.7 U 106-93-4 1,2-Dibromoethane J Tetrachloroethene 2.6 127-18-4 U 5.7 108-90-7 Chlorobenzene U 5.7 Ethyl Benzene 100-41-4 U 11 179601-23-1 m/p-Xylenes U 5.7 95-47-6 o-Xylene U 5.7 100-42-5 Styrene IJ 5.7 Bromoform 75-25-2 U 5.7 Isopropylbenzene 98-82-8 U 5.7 79-34-5 1,1,2,2-Tetrachloroethane U 5.7 541-73-1 1.3-Dichlorobenzene 5.7 U 1.4-Dichlorobenzene 106-46-7 5.7 U 1,2-Dichlorobenzene 95-50-1 U 5.7 1.2-Dibromo-3-Chloropropane 96-12-8

Mlu 3/4/10

U

5.7

1,2,4-Trichlorobenzene

120-82-1

-1E

SOIL VOLATILE ANALYSIS TENTIVELY IDENTIFIED COMPOUNDS

EFA SAMIFLE NO.	
LCPD100301310XX	

EDA CAMBITE NO

Lab Name:	Chemtech			Contr	act: MACT03		
Lab Code:	СНЕМ	Case No.:	B2643	SAS No.:	B2643	SDG No.:	B2643
Matrix (soil/wat	er):	SOIL			Lab Sample ID:	B2643-01	
Sample wt/vol:	4.78	(g/mL	_) <u>g</u>		Lab File ID:	VK039623.D	
Level: (low/med	i) <u>LC</u>	OW			Date Received:	06/10/10	·
% Moisture: not	dec. <u>8</u>		•		Date Analyzed:	06/17/10	
GC Column:	RTX-VM! I	D: 0.18			Dilution Factor:	1	
Soil Extract Vol	lume: <u>5000</u>				Soil Aliquot Volume:	<u> </u>	<u> </u>
Number TICS f	ound:	2			Concentration Units:	ug/Kg	
					(ug/L or ug/Kg)		

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q) ******
60-29-7	Diethyl Ether	1.47	6.5	J (
141-78-6	Ethyl-Acetate Ethyl-Acetate	2.82	2.2		Τ,
				<u> </u>	

Mllu 3/4/10

CHEMIECH

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

LCPD100900110XX

Lab Name:	Chemtech			Contr	ract: MACT03			
Lab Code:	СНЕМ	Case No.:	B2643	SAS No.:	B2643	SDG No.:	B2643	
Matrix (soil/wa	ater):	SOIL			Lab Sample ID:	B2643-02		
Sample wt/vol:	4.39	(g/mI	 L) g		Lab File ID:	VK039624.D		_
Level: (low/me	-	LOW	, <u></u>		Date Received:	06/10/10		
% Moisture: no	ot dec.	16	-		Date Analyzed:	06/17/10	· · · · · · · · · · · · · · · · · · ·	
GC Column:	RTX-VMS	ID: <u>0.18</u>	(mm)	ı	Dilution Factor:	1		
Soil Extract Vo	olume: 5000	(uL)			Soil Aliquot Volume:			(uL)
		``			_			
•					Concentration Units:			
CAS NO.		COMPOUNI)		(ug/L or ug/Kg	g) ug/Kg	. Q	
75-71-8		Dichlorodiflu	ıoromethane		6.8		U	
74-87-3		Chloromethan	ne		6.8		U .	
75-01-4		Vinyl Chlorid	de		6.8		U	
74-83-9		Bromometha	ne		6.8		U	
75-00-3		Chloroethane	;		6.8		U '3	
75-69-4		Trichlorofluo	romethane		6.8		U	
76-13-1		1,1,2-Trichlo	rotrifluoroethane		6.8		U	
75-35-4		1,1-Dichloroe	ethene		6.8		U	
67-64-1		Acetone			12		J	
75-15-0		Carbon Disul	lfide		6.8		U	
1634-04-4	ţ	Methyl tert-b		i	6.8	<u> </u>	U	
79-20-9	1	Methyl Aceta		·	6.8	· 1	U	
75-09-2		Methylene Cl			4.2		J	
156-60-5		trans-1,2-Dic			6.8		U	
75-34-3	-	1,1-Dichloroe		1	6.8	i	U	
110-82-7		Cyclohexane			6.8		U	
78-93-3		2-Butanone		i	34	İ	U	
56-23-5		Carbon Tetra	uchloride		6.8		Ū	
156-59-2		cis-1,2-Dichle			2.8	<u> </u>	J	
67-66-3		Chloroform			6.8	i	U	
71-55-6		1,1,1-Trichlo	proethane		6.8		U	
108-87-2		Methylcycloh			6.8		U	
71-43-2		Benzene			6.8		U	
107-06-2		1,2-Dichloroe	ethane		6.8		U	
79-01-6		Trichloroethe			9.3			
78-87-5		1,2-Dichloro			6.8		U	
75-27-4		Bromodichlo			6.8		U	
108-10-1	****	4-Methyl-2-F			34	1	U	
100 10 1		151						

Form I VOA-1

///llha 2/4/10

100-41-4

95-47-6

100-42-5

75-25-2

98-82-8

79-34-5

541-73-1

106-46-7

95-50-1

96-12-8

120-82-1

179601-23-1

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

LCPD100900110XX Lab Name: Chemtech Contract: MACT03 Lab Code: **CHEM** Case No.: B2643 SAS No.: B2643 SDG No.: B2643 Matrix (soil/water): SOIL Lab Sample ID: B2643-02 4.39 (g/mL) Sample wt/vol: Lab File ID: VK039624.D LOW Level: (low/med) Date Received: 06/10/10 % Moisture: not dec. 16 Date Analyzed: 06/17/10 GC Column: RTX-VMS \mathbb{D} : 0.18 (mm) Dilution Factor: 5000 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) Concentration Units: CAS NO. COMPOUND (ug/L or ug/Kg) ug/Kg Q 10061-02-6 t-1,3-Dichloropropene 6.8 U 10061-01-5 cis-1,3-Dichloropropene 6.8 U 1,1,2-Trichloroethane 79-00-5 6.8 U 591-78-6 34 2-Hexanone U 6.8 124-48-1 Dibromochloromethane U 106-93-4 1,2-Dibromoethane 6.8 U Tetrachloroethene. 127-18-4 6100 Ē 108-90-7 Chlorobenzene 6.8 U

6.8

14

6.8

6.8

6.8

6.8

6.8

6.8

2.3

5.2

6.8

6.8

* Combine with dilution analysis.

Ethyl Benzene

m/p-Xylenes

o-Xylene

Styrene

Bromoform

Isopropylbenzene

1,3-Dichlorobenzene

1.4-Dichlorobenzene

1,2-Dichlorobenzene

1.2.4-Trichlorobenzene

1,1,2,2-Tetrachloroethane

1,2-Dibromo-3-Chloropropane

Mlla 2/4/10

EPA SAMPLE NO.

U

U

U

U

U

U

IJ

U

J

J

U

IJ

CHEMIECH

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.
LCPD100900110XXDL

Lab Name:	Chemtech			Contract:	MACT03	·		
Lab Code:	СНЕМ	Case No.:	B2643	SAS No.:	B2643	SDG No.:	B2643	
Matrix (soil/w	ater):	SOIL		La	b Sample ID:	B2643-02I	DL	
Sample wt/vol		(g/r	nL) g	La	b File ID:	VF022608.D		
Level: (low/m		MED	<u></u>	_ -	ate Received:	06/10/10		
·	•		,					
% Moisture: n	ot dec.	16		Da	te Analyzed:	06/17/10		•
GC Column:	RTX-VMS	ID: <u>0.1</u>	8 (mm)	Di	lution Factor:	10		
Soil Extract V	olume: <u>100</u>	00 (uL)		So	il Aliquot Volume:	· 	100	(uL)
	•			_				
				C	oncentration Units:			
CAS NO.		COMPOUN	4D		(ug/L or ug/K	g) ug/Kg	_ Q	5
75-71-8		Dichlorodif	luoromethane	68	00		U	
74-87-3	-	Chlorometh	iane	68	00		U	$\overline{}$
75-01-4		Vinyl Chlor	ride	68	00		U /	/
74-83-9		Bromometh	iane	68	00		JU.	
75-00-3		Chloroetha	ne	68	00		U	
75-69-4		Trichlorofly	uoromethane	68	00	/	U	
76-13-1		1,1,2-Trich	lorotrifluoroethane	68	00		U	
75-35-4		1,1-Dichlor	oethene	68	00	/	U	
67-64-1		Acetone		. 34	000	·	U	
75-15-0		Carbon Dis	ulfide	68	00		U	
1634-04-	4		-butyl Ether		00		U	
79-20-9		Methyl Ace			60		U	
75-09-2		Methylene		68	00		U	
156-60-5			richloroethene	68	00		U	
75-34-3	•	1,1-Dichlor		68	00		U	
110-82-7		Cyclohexar		68	00		U	<u> </u>
78-93-3		2-Butanone		34	000		U	
56-23-5		Carbon Tet	rachloride	68	00	1	U	
156-59-2			hløroethene		00		U	
67-66-3		Chloroform	,	68	00		U	
71-55-6		1,1,1-Trich			000		U	
108-87-2		Methylcycl		68	00		U	
71-43-2		Benzene			300		U	
107-06-2		1,2-Dichlor	roethane		00		U	
79-01-6		Trichloroet			300		U	
78-87-5		1,2-Dichlor			300		U	
75-27-4	/		Ioromethane	· · · · · · · · · · · · · · · · · · ·	300		U	
108-10-1		_	-Pentanone		-000		U	
100 00 2		Talassa	· · · ·				Y T	

MM 3/4/10

Form T VOA-1

96-12-8

120-82-1

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO. LCPD100900110XXDL Lab Name: Chemtech Contract: MACT03 Lab Code: **CHEM** Case No.: B2643 SAS No.: B2643 SDG No.: B2643 Matrix (soil/water): SOIL Lab Sample ID: B2643-02DL 4.35 Sample wt/vol: (g/mL) Lab File ID: VF022608.D MED Date Received: Level: (low/med) 06/10/10 16 Date Analyzed: 06/17/10 % Moisture: not dec. GC Column: RTX-VMS ID: 0.18 (mm) Dilution Factor: 10 10000 Soil Aliquot Volume: 100 Soil Extract Volume: (uL) (uL) Concentration Units: CAS NO. COMPOUND (ug/L or ug/Kg) ug/Kg Q 6800 U. 10061-02-6 t-1,3-Dichloropropene 10061-01-5 cis-1,3-Dichloropropene 6800 79-00-5 1,1,2-Trichloroethane 6800 U U 34000 591-78-6 2-Hexanone IJ Dibromochloromethane 6800 124-48-1 106-93-4 6800 U 1.2-Dibromoethane $\overline{\mathtt{D}}$ 127-18-4 **Tetrachloroethene** 63000 U 108-90-7 Chlorobenzene 6800 100-41-4 6800 U Ethyl Benzene U m/p-Xylenes 14000 179601-23-1 U 95-47-6 o-Xylene 6800 6800 IJ 100-42-5 Styrene 6800 U 75-25-2 Bromoform U 98-82-8 Isopropylbenzene 6800 79-34-5 1,1,2,2-Tetrachloroethane 6800 IJ U 6800 541-73-1 1,3-Dichlorobenzene 106-46-7 1,4-Dichlorobenzene 6800 U 95-50-1 6800 1,2-Dichlorobenzene

Combine with original analysis.

1,2-Dibromo-3-Chloropropane

1,2,4-Trichlorobenzene

U U

6800

6800

CHEMIECH

108-88-3

Toluene

VOLATILE ORGANICS ANALYSIS DATA SHEET

LCPD100901010XX MACT03 Contract: Lab Name: Chemtech SDG No.: Lab Code: CHEM Case No.: B2643 SAS No.: B2643 B2643 B2643-03 Lab Sample ID: Matrix (soil/water): SOIL Lab File ID: VK039632.D 5.79 (g/mL)Sample wt/vol: LOW Date Received: 06/10/10 Level: (low/med) Date Analyzed: 06/17/10 5 % Moisture: not dec. 0.18 Dilution Factor: ID: RTX-VMS (mm) GC Column: 5000 Soil Aliquot Volume: (uL) (uL) Soil Extract Volume: Concentration Units: COMPOUND Q (ug/L or ug/Kg) ug/Kg CAS NO. U Dichlorodifluoromethane 4.5 75-71-8 U 4.5 74-87-3 Chloromethane U 75-01-4 Vinyl Chloride 4.5 4.5 U Bromomethane 74-83-9 Chloroethane 4.5 IJ 75-00-3 U 75-69-4 Trichlorofluoromethane 4.5 U 4.5 1,1,2-Trichlorotrifluoroethane 76-13-1 4.5 U 1,1-Dichloroethene 75-35-4 J 12 67-64-1 Acetone 4.5 U Carbon Disulfide 75-15-0 U 4.5 Methyl tert-butyl Ether 1634-04-4 2.3 J Methyl Acetate 79-20-9 75-09-2 Methylene Chloride 4.6 4.5 IJ trans-1,2-Dichloroethene 156-60-5 U 1,1-Dichloroethane 4.5 75-34-3 4.5 U Cyclohexane 110-82-7 U 23 2-Butanone 78-93-3 U 56-23-5 Carbon Tetrachloride 4.5 U 4.5 cis-1,2-Dichloroethene 156-59-2 4.5 U Chloroform 67-66-3 U 1,1,1-Trichloroethane 4.5 71-55-6 4.5 U Methylcyclohexane 108-87-2 U 4.5 71-43-2 Benzene U 1.2-Dichloroethane 4.5 107-06-2 Trichloroethene 4.5 U 79-01-6 U 4.5 78-87-5 1,2-Dichloropropane U Bromodichloromethane 4.5 75-27-4 U 4-Methyl-2-Pentanone 23 108-10-1

MMM 8/4/10

IJ

EPA SAMPLE NO.

4.5

CHEMIECH

VOLATILE ORGANICS ANALYSIS DATA SHEET

LCPD100901010XX MACT03 Contract: Lab Name: Chemtech SDG No.: **CHEM** Case No .: B2643 SAS No.: B2643 B2643 Lab Code: Lab Sample ID: B2643-03 Matrix (soil/water): SOIL Lab File ID: VK039632.D 5.79 Sample wt/vol: (g/mL) LOW Date Received: 06/10/10 Level: (low/med) Date Analyzed: 06/17/10 5 % Moisture: not dec. Dilution Factor: ID: 0.18 (mm) GC Column: RTX-VMS (uL) 5000 Soil Aliquot Volume: (uL) Soil Extract Volume: Concentration Units: COMPOUND (ug/L or ug/Kg) ug/Kg Q CAS NO. U 10061-02-6 t-1,3-Dichloropropene 4.5 U 4.5 10061-01-5 cis-1,3-Dichloropropene U 4.5 79-00-5 1.1.2-Trichloroethane U 23 591-78-6 2-Hexanone U Dibromochloromethane 4.5 124-48-1 U 4.5 106-93-4 1,2-Dibromoethane 16 127-18-4 Tetrachloroethene 4.5 IJ Chlorobenzene 108-90-7 U Ethyl Benzene 4.5 100-41-4 U 9.1 179601-23-1 m/p-Xylenes U 4.5 95-47-6 o-Xylene 4.5 U 100-42-5 Styrene U 75-25-2 Bromoform 4.5 U 4.5 98-82-8 Isopropylbenzene U 4.5 79-34-5 1,1,2,2-Tetrachloroethane U 4.5 541-73-1 1,3-Dichlorobenzene U 4.5 106-46-7 1,4-Dichlorobenzene IJ 4.5 95-50-1 1,2-Dichlorobenzene U 1,2-Dibromo-3-Chloropropane 4.5 96-12-8

1,2,4-Trichlorobenzene

120-82-1

10 Alle 8/4/10

IJ

EPA SAMPLE NO.

4.5

-1E-

SOIL VOLATILE ANALYSIS TENTIVELY IDENTIFIED COMPOUNDS

	EPA	SAM	1PLE	NO.	
Ĺ	CPD1	00901	10103	ĊΧ	

Lab Name:	Chemtech			Contr	act: MACT03		
Lab Code:	СНЕМ	Case No.:	B2643	SAS No.:	B2643	SDG No.:	B2643
Matrix (soil/wat	ter):	SOIL			Lab Sample ID:	B2643-03	
Sample wt/vol:	5.79	(g/mL	L) <u>g</u>		Lab File ID:	VK039632.D	
Level: (low/med	d) <u>L(</u>	ow :			Date Received:	06/10/10	
% Moisture: not	t dec. 5				Date Analyzed:	06/17/10	·
GC Column:	RTX-VM	D: 0.18			Dilution Factor:	1	
Soil Extract Vo	lume: <u>5000</u>				Soil Aliquot Volume:		
Number TICS f	found:	2			Concentration Units:	ug/Kg	
					(ug/L or ug/Kg)		

CAS NUMBER COMPOUND NAME RT EST. CONC.	Q p
60-29-7 Diethyl-Ether 1.47 3.0	
141-78-6 Ethyl Acetate 2.82 3.0	

A/C/Mh

HEINTECH

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name:	Chemtech			Cont	ract: MACT03			
Lab Code:	CHEM	Case No.:	B2643	SAS No.:	B2643	SDG No.:	B2643	
Matrix (soil/w	ater):	SOIL			Lab Sample ID:	B2643-04		_
Sample wt/vol		(g/m	L) g		Lab File ID:	VK039626.D		-
_		LOW	<u></u>		Date Received:	06/10/10		
Level: (low/m								
6 Moisture: n	ot dec.	11	_		Date Analyzed:	06/17/10		
GC Column:	RTX-VMS	ID: <u>0.18</u>	(mm)		Dilution Factor:	1		
Soil Extract V	olume: <u>5000</u>	(uL)			Soil Aliquot Volume	: 	 .	(uL)
					Concentration Units	: .		
0.4.0.3.10		COMPOIN	TD.		,		0	
CAS NO	•	COMPOUN	D		(ug/L or ug/K	g, ug/rg	_ Q	
75-71-8		Dichlorodifl	uoromethane		4.5		U	
74-87-3		Chlorometh	ane		4.5		U	
75-01-4		Vinyl Chlor	ide .		4.5		U	
74-83-9		Bromometh	ane		4.5		U	
75-00-3		Chloroethan	e		4.5		U 7	
75-69 - 4		Trichloroflu	oromethane		4.5		U	
76-13-1		1,1,2-Trichl	orotrifluoroethane		4.5		U	
75-35-4		1,1-Dichlore	pethene		4.5		U	
67-64-1	•	Acetone			16		J	
75-15-0		Carbon Dist	ulfide		4.5		U	
1634-04-	4	Methyl tert-	butyl Ether		4.5		U ·	
79-20-9		Methyl Ace	tate		4.5		U	
75-09-2		Methylene (Chloride		3.1		J	
156-60-5		trans-1,2-Di	ichloroethene		4.5		U	
75-34-3		1,1-Dichlor	oethane		4.5		U	
110-82-7	7	Cyclohexan	e		4.5		U	
78-93-3		2-Butanone			23		U	
56-23-5		Carbon Teta	rachloride		4.5		U	
156-59-2	2	cis-1,2-Dicl	nloroethene		4.5		U	
67-66-3		Chloroform			4.5		U	
71-55-6		1,1,1-Trichl	loroethane		4.5		U	
108-87-2	2	Methylcycl	ohexane		2.7		J	
71-43-2		Benzene			4.5		U	
107-06-2	2	1,2-Dichlor	oethane		4.5		U	
79-01-6		Trichloroet	hene		4.5		U	
78-87-5		1,2-Dichlor	opropane		4.5		ΰ	
75-27-4		Bromodich	loromethane		4.5		U	
108-10-	1	4-Methyl-2	-Pentanone		23		U	
108-88-		Toluene			4.5		U	

FORM I VOA-1 /1/60

CHEMIECH

96-12-8

120-82-1

VOLATILE ORGANICS ANALYSIS DATA SHEET

LCPD100400510XX Lab Name: Chemtech Contract: MACT03 CHEM B2643 Lab Code: Case No .: SAS No.: SDG No.: B2643 B2643 SOIL Lab Sample ID: B2643-04 Matrix (soil/water): 6.19 Sample wt/vol: (g/mL) Lab File ID: VK039626.D LOW Level: (low/med) Date Received: 06/10/10 % Moisture: not dec. 11 Date Analyzed: 06/17/10 GC Column: RTX-VMS ID: 0.18 (mm) Dilution Factor: Soil Extract Volume: 5000 (uL) Soil Aliquot Volume: (uL) Concentration Units: CAS NO. COMPOUND (ug/L or ug/Kg) ug/Kg Q 10061-02-6 t-1,3-Dichloropropene 4.5 U 4.5 U 10061-01-5 cis-1,3-Dichloropropene 79-00-5 1,1,2-Trichloroethane 4.5 IJ 23 U 591-78-6 2-Hexanone Dibromochloromethane 4.5 U 124-48-1 106-93-4 1,2-Dibromoethane 4.5 U 127-18-4 Tetrachloroethene 18 108-90-7 Chlorobenzene 4.5 IJ 100-41-4 Ethyl Benzene 4.5 U U 179601-23-1 m/p-Xylenes 9.1 95-47-6 4.5 U o-Xylene 100-42-5 Styrene 4.5 U 4.5 U 75-25-2 Bromoform Isopropylbenzene 4.5 U 98-82-8 79-34-5 4.5 IJ 1,1,2,2-Tetrachloroethane 4.5 U 541-73-1 1,3-Dichlorobenzene 1,4-Dichlorobenzene 4.5 U 106-46-7 95-50-1 4.5 IJ 1,2-Dichlorobenzene

1,2-Dibromo-3-Chloropropane

1,2,4-Trichlorobenzene

AM p/4/10

U

U

EPA SAMPLE NO.

4.5

4.5

SOIL VOLATILE ANALYSIS TENTIVELY IDENTIFIED COMPOUNDS

EP	A	S	41	1P	LE	N	0.

LCPD100400510XX

Lab Name:	Chemtech			Contr	act: MACT03		
Lab Code:	CHEM	Case No.:	B2643	SAS No.:	B2643	SDG No.:	B2643
Matrix (soil/wat	er):	SOIL			Lab Sample ID:	B2643-04	
Sample wt/vol:	6.19	(g/mI	L) <u>g</u>		Lab File ID:	VK039626.D	
Level: (low/med	l) . <u>LC</u>)W			Date Received:	06/10/10	·
% Moisture: not	dec. 11	· 			Date Analyzed:	06/17/10	
GC Column:	RTX-VM: II	D: <u>0.18</u>			Dilution Factor:	1	
Soil Extract Vol	ume: 5000				Soil Aliquot Volume:		
Number TICS fo	ound:	11			Concentration Units:	ug/Kg	
		_			(ug/L or ug/Kg)		

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	0	/
60-29-7	Diethyl Ether	1.47	1.9	J	

N/Ma 2/4/10

VOLATILE ORGANICS ANALYSIS DATA SHEET

·				LCPI	01004010102	XX
Lab Name: Chemtech		Contrac	et: MACT03			
Lab Code: <u>CHEM</u> Matrix (soil/water):	Case No.: <u>B2643</u> SOIL	SAS No.:	B2643 Lab Sample ID:	SDG No.: B2643-05	B2643	
Sample wt/vol: 3.74	(g/mL)g_) I	Lab File ID:	VK039627.D		
Level: (low/med)	LOW	I	Date Received:	06/10/10		
Moisture: not dec.	10	1	Date Analyzed:	06/17/10		
% Moisture. Hot dec.	10	1	yato i mary 20d.	00/1//10		
GC Column: RTX-VMS	ID: 0.18 (mm)	I	Dilution Factor:	1		
Soil Extract Volume: 5000	(uL)	Ç	Soil Aliquot Volume:			(uL)
<u></u>					-	
			Concentration Units:		•	
CAS NO.	COMPOUND		(ug/L or ug/Kg)	ug/Kg	_ Q	
75-71-8	Dichlorodifluoromethane		7.4		U	
74-87-3	Chloromethane		7.4		Ū	
75-01-4	Vinyl Chloride		7.4		U	
74-83-9	Bromomethane		7.4		U	
75-00-3	Chloroethane		7.4	<u> </u>	ぴつ	
75-69-4	Trichlorofluoromethane		7.4		U	
76-13-1	1,1,2-Trichlorotrifluoroethane		7.4		U	
75-35-4	1,1-Dichloroethene		7.4		U	
67-64-1	Acetone		23		J	
75-15-0	Carbon Disulfide		7.4		U	
1634-04-4	Methyl tert-butyl Ether		7.4		U	
79-20-9	Methyl Acetate		7.6			
75-09-2	Methylene Chloride		7.8			
156-60-5	trans-1,2-Dichloroethene		7.4		U	
75-34-3	1,1-Dichloroethane		7.4		U	
110-82-7	Cyclohexane		7.4		U	
78-93-3	2-Butanone		37		U	
56-23-5	Carbon Tetrachloride		7.4		U	
156-59-2	cis-1,2-Dichloroethene		7.4		U	
67-66-3	Chloroform		7.4		U	
71-55-6	1,1,1-Trichloroethane		7.4		· U	
108-87-2	Methylcyclohexane		7.4		U	
71-43-2	Benzene	i	7.4	<u> </u>	U	
107-06-2	1,2-Dichloroethane		7.4		U	
79-01-6	Trichloroethene		7.4		U	
78-87-5	1,2-Dichloropropane		7.4		U	
75-27-4	Bromodichloromethane	-	7.4		<u>U ·</u>	
108-10-1	4-Methyl-2-Pentanone		37	1	U U	
108-88-3	Toluene		7.4		U	

EPA SAMPLE NO.

Chemtech

CHEM

Lab Name:

Lab Code:

Matrix (soil/water):

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

Contract:

B2643

Lab Sample ID:

SAS No.:

B2643

Case No.:

SOIL

LCPD100401010XX

MACT03

43 SDG No.: B2643

ble ID: B2643-05

ID: VK039627.D

EPA SAMPLE NO.

Sample wt/vol: 3.74 (g/mL) Lab File ID: Level: (low/med) LOW Date Received: 06/10/10 Date Analyzed: 06/17/10 % Moisture: not dec. 10 GC Column: RTX-VMS D: 0.18 (mm) Dilution Factor: (uL) Soil Extract Volume: 5000 Soil Aliquot Volume: (uL) Concentration Units:

CAS NO.	COMPOUND	(ug/L or ug/Kg) ug/Kg	. Q
10061-02-6	t-1,3-Dichloropropene	7.4	Ū
10061-01-5	cis-1,3-Dichloropropene	7.4	Ū
79-00-5	1,1,2-Trichloroethane	7.4	U.
591-78-6	2-Hexanone	37	U
124-48-1	Dibromochloromethane	7.4	U
106-93-4	1,2-Dibromoethane	7.4	U
127-18-4	Tetrachloroethene "	14	
108-90-7	Chlorobenzene	7.4	U
100-41-4	Ethyl Benzene	7.4	U
179601-23-1	m/p-Xylenes	15	Ū
95-47-6	o-Xylene	7.4	U
100-42-5	Styrene	7.4	Ū
75-25-2	Bromoform	7.4	U
98-82-8	Isopropylbenzene	7.4	Ū
79-34-5	1,1,2,2-Tetrachloroethane	7.4	U
541-73-1	1,3-Dichlorobenzene	7.4	U
106-46-7	1,4-Dichlorobenzene	7.4	U
95-50-1	1,2-Dichlorobenzene	7.4	U
96-12-8	1,2-Dibromo-3-Chloropropane	7.4	Ū
120-82-1	1,2,4-Trichlorobenzene	7.4	U

pl. Chr. 8/4/10

-1E-

SOIL VOLATILE ANALYSIS TENTIVELY IDENTIFIED COMPOUNDS

	EPA	SAMP	LE N	0.	
L	CPD1	004010	10XX		

Lab Name:	Chemtech			Contr	act: MACT03		
Lab Code:	CHEM	Case No.:	B2643	SAS No.:	B2643	SDG No.:	B2643
Matrix (soil/wa	nter):	SOIL			Lab Sample ID:	B2643-05	
Sample wt/vol:	3.74	(g/n	nL) <u>g</u>		Lab File ID:	VK039627.D	
Level: (low/me	:d) <u>L</u> (OW			Date Received:	06/10/10	<u></u>
% Moisture: no	ot dec. 10				Date Analyzed:	06/17/10	
GC Column:	RTX-VM:	D: <u>0.18</u>			Dilution Factor:	1	
Soil Extract Vo	olume: <u>5000</u>	<u> </u>			Soil Aliquot Volume:		
Number TICS i	found:	2	•		Concentration Units:	ug/Kg	
					(ug/L or ug/Kg)		

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q	
60-29-7	Diethyl Ether	1.46	5.3	<u> </u>	<u> </u>
141-78-6	Ethyl Acetate	2.82	16	J	1

1/Clla. 8/4/10 CHEMIECH

VOLATILE ORGANICS ANALYSIS DATA SHEET

LCPD101100210XX MACT03 Contract: `Lab Name: Chemtech B2643 SDG No.: Lab Code: CHEM Case No.: B2643 SAS No.: B2643 Lab Sample ID: B2643-07 SOIL Matrix (soil/water): Lab File ID: VK039573.D 7.07 (g/mL) Sample wt/vol: LOW Date Received: 06/10/10 Level: (low/med) Date Analyzed: 06/15/10 % Moisture: not dec. 13 Dilution Factor: ID: 0.18 GC Column: RTX-VMS (mm) (uL) 5000 (uL) Soil Aliquot Volume: Soil Extract Volume: Concentration Units: COMPOUND (ug/L or ug/Kg) ug/Kg Q CAS NO. J Dichlorodifluoromethane U 4.1 75-71-8 u z 4.1 Chloromethane 74-87-3 U 4.1 75-01-4 Vinvl Chloride 4.1 U Bromomethane 74-83-9 11 3 Chloroethane 4.1 75-00-3 .2 U 75-69-4 Trichlorofluoromethane 4.1 4.1 U 1,1,2-Trichlorotrifluoroethane 76-13-1 4.1 U 1.1-Dichloroethene 75-35-4 U Acetone 20 67-64-1 5 Carbon Disulfide 4.1 U 75-15-0 U 4.1 Methyl tert-butyl Ether 1634-04-4 4.1 U 79-20-9 Methyl Acetate J 75-09-2 Methylene Chloride 3 U 4.1 trans-1,2-Dichloroethene 156-60-5 U 1.1-Dichloroethane 4.1 75-34-3 4.1 U Cyclohexane 110-82-7 U 20 2-Butanone 78-93-3 ·U 56-23-5 Carbon Tetrachloride 4.1 U 4.1 cis-1,2-Dichloroethene 156-59-2 4.1 U Chloroform 67-66-3 U 1,1,1-Trichloroethane 4.1 71-55-6 4.1 U Methylcyclohexane 108-87-2 U 4.1 71-43-2 Benzene U 1,2-Dichloroethane 4.1 107-06-2 79-01-6 Trichloroethene 4.1 U U 4.1 78-87-5 1,2-Dichloropropane U Bromodichloromethane 4.1 75-27-4 4-Methyl-2-Pentanone U 20 108-10-1

Allha 3/4/10

IJ

EPA SAMPLE NO.

4.1

Toluene

108-88-3

CHEMITECH

VOLATILE ORGANICS ANALYSIS DATA SHEET

LCPD101100210XX MACT03 Lab Name: Chemtech Contract: SDG No.: Lab Code: CHEM Case No.: B2643 SAS No.: B2643 B2643 Lab Sample ID: B2643-07 SOIL Matrix (soil/water): Lab File ID: VK039573.D Sample wt/vol: 7.07 (g/mL) LOW Date Received: 06/10/10 Level: (low/med) Date Analyzed: 06/15/10 13 % Moisture: not dec. Dilution Factor: 0.18 ID: GC Column: RTX-VMS (mm) 5000 Soil Aliquot Volume: (uL) (uL) Soil Extract Volume: Concentration Units: (ug/L or ug/Kg) ug/Kg Q COMPOUND CAS NO. 10061-02-6 t-1,3-Dichloropropene 4.1 U 4.1 U 10061-01-5 cis-1,3-Dichloropropene U 79-00-5 1.1.2-Trichloroethane 4.1 20 U 2-Hexanone 591-78-6 U Dibromochloromethane 4.1 124-48-1 U 4.1 106-93-4 1.2-Dibromoethane 96 Tetrachloroethene 127-18-4 4.1 U Chlorobenzene 108-90-7 U Ethyl Benzene 4.1 100-41-4 8.1 U m/p-Xylenes 179601-23-1 U 4.1 o-Xylene 95-47-6 100-42-5 U Styrene 4.1 U 75-25-2 Bromoform 4.1 U 4.1 98-82-8 Isopropylbenzene U 1,1,2,2-Tetrachloroethane 4.1 79-34-5 4.1 U 1,3-Dichlorobenzene 541-73-1 U 4.1 1,4-Dichlorobenzene 106-46-7 4.1 U 95-50-1 1,2-Dichlorobenzene U 4.1 1,2-Dibromo-3-Chloropropane 96-12-8

12/ Calulu 8/4/10

U

EPA SAMPLE NO.

4.1

1,2,4-Trichlorobenzene

120-82-1

-1E-

SOIL VOLATILE ANALYSIS TENTIVELY IDENTIFIED COMPOUNDS

)				LCPD	101100210XX	
Lab Name:	Chemtech			Contra	act: MACT03			
Lab Code:	СНЕМ	Case No.:	B2643	SAS No.:	B2643	SDG No.:	B2643	-
Matrix (soil/wat	ter):	SOIL			Lab Sample ID:	B2643-07		
Sample wt/vol:	7.07	(g/mL) <u>g</u>		Lab File ID:	VK039573.D		
Level: (low/med	i) <u>L(</u>	OW			Date Received:	06/10/10		
% Moisture: not	t dec. <u>13</u>			•	Date Analyzed:	06/15/10		
GC Column:	RTX-VM: I	D: <u>0.18</u>			Dilution Factor:	1		
Soil Extract Vol	lume: <u>5000</u>	!			Soil Aliquot Volume:	<u> </u>		
Number TICS f	ound:	4			Concentration Units:	ug/Kg		
					(ug/L or ug/Kg)			

			T	7	I
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q	1
60-29-7	Diethyl Ether	1.47	1.6	J	

N/ (Ma) 1/4/10

EPA SAMPLE NO.

1**A**

VOLATILE ORGANICS ANALYSIS DATA SHEET

					LCGV	V01502010XX
Lab Name:	Chemtech		Contr	ract: MACT03		
Lab Code:	СНЕМ	Case No.: B2643	SAS No.:	B2643	SDG No.:	B2643
Matrix (soil/wate	er):	WATER		Lab Sample ID:	B2643-10	
Sample wt/vol:	5	(g/mL) ml		Lab File ID:	VH036890.D	
Level: (low/med)	,		Date Received:	06/10/10	
		100				<u>-</u>
% Moisture: not	dec.	100		Date Analyzed:	06/16/10	· ·
GC Column:	RTX-VMS	ID: <u>0.18</u> (mm)		Dilution Factor:	1	100
Soil Extract Vol	ume:	(uL)		Soil Aliquot Volume:	<u></u>	(uL)
				Concentration Units:		
CAS NO.		COMPOUND		(ug/L or ug/Kg	g) ug/L	Q
			<u> </u>	1	1	U
75-71-8		Dichlorodifluoromethane Chloromethane	<u> </u>	1		U
74-87-3	· ·	Vinyl Chloride		1		U
75-01-4 74-83-9		Bromomethane		1		U
		Chloroethane		1		U
75-00-3 75-69-4		Trichlorofluoromethane		1		U
76-13-1	····	1,1,2-Trichlorotrifluoroethane	+	1		U
75-35-4		1,1-Dichloroethene		1		U
67-64-1		Acetone		5		U
75-15-0	· · · · · · · · · · · · · · · · · · ·	Carbon Disulfide		1		U
1634-04-4	·	Methyl tert-butyl Ether		1		U
79-20-9		Methyl Acetate		1		U
75-09-2		Methylene Chloride		1		U
156-60-5		trans-1,2-Dichloroethene		1		U.
75-34-3		1,1-Dichloroethane		1		U
110-82-7		Cyclohexane		1.8		•
78-93-3		2-Butanone		5		U
56-23-5		Carbon Tetrachloride		1	Ì	Ü
156-59-2		cis-1,2-Dichloroethene		1		U
67-66-3		Chloroform		1		U
71-55-6		1,1,1-Trichloroethane		1		U
108-87-2		Methylcyclohexane		1.2		
71-43-2		Benzene		2		
107-06-2		1,2-Dichloroethane		1		U
79-01-6		Trichloroethene		1		U .
78-87-5		1,2-Dichloropropane		1		U
75-27-4	·	Bromodichloromethane		1		U

MMh

96-12-8

120-82-1

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

LCGW01502010XX Contract: MACT03 Lab Name: Chemtech CHEM Case No.: B2643 SAS No.: B2643 SDG No.: B2643 Lab Code: Lab Sample ID: B2643-10 Matrix (soil/water): WATER (g/mL) Lab File ID: VH036890.D Sample wt/vol: Date Received: 06/10/10 Level: (low/med) Date Analyzed: 06/16/10 100 % Moisture: not dec. 0.18 Dilution Factor: GC Column: ID: (mm) **RTX-VMS** (uL) Soil Aliquot Volume: (uL) Soil Extract Volume: Concentration Units: COMPOUND (ug/L or ug/Kg) ug/L Q CAS NO. U 108-10-1 4-Methyl-2-Pentanone 5 3.8 108-88-3 Toluene U 10061-02-6 1 t-1,3-Dichloropropene 1 U 10061-01-5 cis-1,3-Dichloropropene U 79-00-5 1,1,2-Trichloroethane 1 5 U 591-78-6 2-Hexanone U Dibromochloromethane 1 124-48-1 1 IJ 106-93-4 1,2-Dibromoethane 127-18-4 Tetrachloroethene 1.8 1 U 108-90-7 Chlorobenzene J 0.57 Ethyl Benzene 100-41-4 2.9 179601-23-1 m/p-Xylenes 95-47-6 o-Xylene 1.2 1 U 100-42-5 Styrene U 1 75-25-2 Bromoform 1 U 98-82-8 Isopropylbenzene 1 U 79-34-5 1,1,2,2-Tetrachloroethane IJ 1 541-73-1 1,3-Dichlorobenzene U 1 1,4-Dichlorobenzene 106-46-7 1 IJ 1,2-Dichlorobenzene 95-50-1 U

NML 8/4/10

U

1

1,2-Dibromo-3-Chloropropane

1,2,4-Trichlorobenzene

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTIVELY IDENTIFIED COMPOUNDS

						LCGW01502	010XX
Lab Name:	Chemtech			Contra	act: MACT	03	
Lab Code:	СНЕМ	Case No.:	B2643	SAS No.:	B2643	SDG No.: <u>B264</u>	13
Matrix (soil/v	vater):	WATER			Lab Sample ID:	B2643-10	
Sample wt/vo	ol: <u>5</u>	(g/m	nL) ml		Lab File ID:	VH036890.D	
Level: (low/m	ned)	LOW			Date Received:	06/10/10	
% Moisture: 1	not dec. 1	00			Date Analyzed:	06/16/10	
GC Column:	RTX-VM	ID: 0.18			Dilution Factor:	1	
Soil Extract V	/olume:				Soil Aliquot Volu	ume:	
Number TICS	S found:	1			Concentration U	Jnits: ug/L	
					(ug/L or ug		
CAS NU	IMRER	COMPOUND	NAME.		RT	EST. CONC.	0
05-63-6		1 2 4-Trimethy			9.32	1.4	J

Alla 8/4/10

EPA SAMPLE NO.

CHEMIECH

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

LCGW01402010XX

Lab Name:	Chemtech		····	Contr	act: MACT03			
ab Code:	СНЕМ	Case No.:	B2643	SAS No.:	B2643	SDG No.:	B2643	
Matrix (soil/wa	ater):	WATER			Lab Sample ID:	B2643-11		
Sample wt/vol		(g/m)	L) ml		Lab File ID:	VH036891.D		
-		(g/m	<u> </u>					
Level: (low/me	ed)				Date Received:	06/10/10		
6 Moisture: no	ot dec.	100	•		Date Analyzed:	06/16/10	 	
GC Column:	RTX-VMS	ID: <u>0.18</u>	(mm)		Dilution Factor:	1		
Soil Extract Vo	olume:	(uL)			Soil Aliquot Volume:			(uL)
OII EMILIAGE V		(12)			1			, ` ′
					Concentration Units:			
CAS NO.		COMPOUN	D ·		(ug/L or ug/Kg	g) ug/L	_	
75-71 - 8		Dichlorodifly	uoromethane		1		U	
74-87-3		Chlorometha	ne		1		U	
75-01-4		Vinyl Chlori	de		1		U	
74-83-9		Bromometha	ine		1		U	
75-00-3		Chloroethane	e		1		U	
75-69-4		Trichlorofluc	oromethane		1		U	
76-13-1		1,1,2-Trichlo	protrifluoroethane		1		U	<u></u>
75-35-4		1,1-Dichloro	ethene		1		U	
67-64-1		Acetone			5		U	
75-15 - 0		Carbon Disu	lfide		. 1		U	
1634-04-	4	Methyl tert-b	outyl Ether		1		U	
79-20-9		Methyl Acet	ate		1		U	
75-09-2		Methylene C	Chloride		1		U	
156-60-5		trans-1,2-Dio	chloroethene		1		U	
75-34-3		1,1-Dichloro	ethane		1		U	
110-82-7		Cyclohexane			1		U	
78-93-3		2-Butanone			5		U	
56-23-5		Carbon Tetra	achloride		1		U	·
156-59-2		cis-1,2-Dich	loroethene		1		U	
67-66-3		Chloroform			1		U	
71-55-6	·	1,1,1-Trichle	oroethane		1		U	
108-87-2		Methylcyclo	hexane		0.76		J	
71-43-2		Benzene			1		U	
107-06-2		1,2-Dichloro	ethane		1		U	
79-01-6		Trichloroeth	ene		1		U	
78-87-5		1,2-Dichloro	propane		1		U	
75-27-4		Bromodichle	oromethane		1		U	<u>-</u>
108-10-1		4-Methyl-2-	Pentanone		5		U	
108-88-3		Toluene			0.88		J	

Mlh 8/4/10

96-12-8

120-82-1

1**A**

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

LCGW01402010XX Contract: MACT03 Lab Name: Chemtech B2643 Case No .: SAS No.: B2643 SDG No.: B2643 Lab Code: CHEM WATER Lab Sample ID: B2643-11 Matrix (soil/water): (g/mL) Lab File ID: VH036891.D Sample wt/vol: Level: (low/med) Date Received: 06/10/10 % Moisture: not dec. 100 Date Analyzed: 06/16/10 GC Column: RTX-VMS ID: 0.18 (mm) Dilution Factor: Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) Concentration Units: (ug/L or ug/Kg) ug/L Q CAS NO. **COMPOUND** U 1 10061-02-6 t-1,3-Dichloropropene U 10061-01-5 cis-1,3-Dichloropropene 1 1 U 1,1,2-Trichloroethane 79-00-5 5 U 591-78-6 2-Hexanone Dibromochloromethane 1 U 124-48-1 U 1,2-Dibromoethane 1 106-93-4 1.2 127-18-4 Tetrachloroethene 108-90-7 Chlorobenzene 1 U U 1 Ethyl Benzene 100-41-4 2 U 179601-23-1 m/p-Xylenes 1 U 95-47-6 o-Xylene U 100-42-5 Styrene 1 1 U 75-25-2 Bromoform 1 U 98-82-8 Isopropylbenzene 1 U 79-34-5 1,1,2,2-Tetrachloroethane U 1 541-73-1 1.3-Dichlorobenzene U 106-46-7 1,4-Dichlorobenzene 1 U 1 95-50-1 1.2-Dichlorobenzene

1,2-Dibromo-3-Chloropropane

1,2,4-Trichlorobenzene

MML 8/4/10

U

U

1

1

VOLATILE ORGANICS ANALYSIS DATA SHEET

			LCGW01302010XX
ab Name: Chemtech		Contract: MACT03	
ab Code: CHEM		AS No.: <u>B2643</u> SD	G No.: <u>B2643</u>
fatrix (soil/water):	WATER	Lab Sample ID: B	2643-12
ample wt/vol: 5	(g/mL) <u>ml</u>	Lab File ID: VH0	36892.D
Level: (low/med)		Date Received: 06/10	0/10
•	100	Date Analyzed: 06/10	6/10
6 Moisture: not dec.	100	Date Analyzed.	7/10
GC Column: RTX-VMS	ID: <u>0.18</u> (mm)	Dilution Factor:	1
oil Extract Volume:	(uL)	Soil Aliquot Volume:	(uL)
		Concentration Units:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) ug/	L Q
75-71-8	Dichlorodifluoromethane	1	Ŭ
74-87-3	Chloromethane	1	U
75-01-4	Vinyl Chloride	1	Ŭ
74-83-9	Bromomethane	1	U
75-00-3	Chloroethane	1	Ŭ
75-69-4	Trichlorofluoromethane	1	Ŭ
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U
75-35-4	1,1-Dichloroethene	1	U
67-64-1	Acetone	5	U
75-15-0	Carbon Disulfide	· 1	Ŭ
1634-04-4	Methyl tert-butyl Ether	1	U
79-20-9	Methyl Acetate	1	U
75-09-2	Methylene Chloride	1	U
156-60-5	trans-1,2-Dichloroethene	1	U
75-34-3	1,1-Dichloroethane	1	U
110-82-7	Cyclohexane	1	U
78-93-3	2-Butanone	5	U
56-23-5	Carbon Tetrachloride	1	U
156-59-2	cis-1,2-Dichloroethene	1	U
67-66-3	Chloroform	1	U
71-55-6	1,1,1-Trichloroethane	1	U
108-87-2	Methylcyclohexane	1	Ü
71-43-2	Benzene	1	Ü
107-06-2	1,2-Dichloroethane	1	U
79-01-6	Trichloroethene	1	U
78-87-5	1,2-Dichloropropane	1	U
75-27-4	Bromodichloromethane	1	U
108-10-1	4-Methyl-2-Pentanone	5	U
108-88-3	Toluene	0.91	J

Ml- 2/4/10

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

LCGW01302010XX Contract: MACT03 Lab Name: Chemtech SDG No.: B2643 Lab Code: CHEM Case No.: B2643 SAS No.: B2643 Lab Sample ID: B2643-12 Matrix (soil/water): WATER (g/mL) Lab File ID: VH036892.D Sample wt/vol: ml Date Received: 06/10/10 Level: (low/med) Date Analyzed: 06/16/10 100 % Moisture: not dec. Dilution Factor: ID: 0.18 RTX-VMS (mm) GC Column: Soil Aliquot Volume: (uL) (uL) Soil Extract Volume: Concentration Units: Q COMPOUND (ug/L or ug/Kg) ug/L CAS NO. U 10061-02-6 t-1,3-Dichloropropene 1 U cis-1,3-Dichloropropene 10061-01-5 U 1 79-00-5 1,1,2-Trichloroethane 5 U 591-78-6 2-Hexanone 1 U 124-48-1 Dibromochloromethane U 1 1,2-Dibromoethane 106-93-4 1 U Tetrachloroethene 127-18-4 1 U 108-90-7 Chlorobenzene IJ 1 100-41-4 Ethyl Benzene J 1.2 179601-23-1 m/p-Xylenes J 0.51 95-47-6 o-Xylene U 1 100-42-5 Styrene U 75-25-2 Bromoform 1 1 U 98-82-8 Isopropylbenzene U 1 79-34-5 1,1,2,2-Tetrachloroethane U 1 541-73-1 1,3-Dichlorobenzene U 1 106-46-7 1,4-Dichlorobenzene U 1 95-50-1 1,2-Dichlorobenzene U 1,2-Dibromo-3-Chloropropane 1 96-12-8

Mla P/4/10

EPA SAMPLE NO.

1

1,2,4-Trichlorobenzene

120-82-1

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

			,		•	LCGV	V01302010X	X
Lab Name:	Chemtech			Contra	act: MACT03			
Lab Code:	CHEM	Case No.:	B2643	SAS No.:	B2643	SDG No.:	B2643	
Matrix (soil/w	ater):	WATER			Lab Sample ID:	B2643-12		
Sample wt/vol	: <u>5</u>	(g/m	nL) <u>ml</u>		Lab File ID:	VH036892.D		
Level: (low/m	ed)	LOW		•	Date Received:	06/10/10	•	,
% Moisture: n	ot dec. 10	00			Date Analyzed:	06/16/10		
GC Column:	RTX-VM	ID: 0.18			Dilution Factor:	1		
Soil Extract V	olume:			•	Soil Aliquot Volume	•		
Number TICS	found:	1			Concentration Units	: ug/L	•	
					(ug/L or ug/Kg)		
				,				
CAS NU	MBER	COMPOUND	NAME	·	RT	EST. CON	IC.	Q
95-63-6		1,2,4-Trimethy			9.32	0.72		J

108-88-3

Toluene

VOLATILE ORGANICS ANALYSIS DATA SHEET

LCPD101000210XX MACT03 Contract: Lab Name: Chemtech CHEM Case No.: B2643 SAS No.: B2643 SDG No.: B2643 Lab Code: Lab Sample ID: SOIL B2643-17 Matrix (soil/water): Lab File ID: VK039633.D 6.17 (g/mL) Sample wt/vol: LOW Date Received: 06/10/10 Level: (low/med) Date Analyzed: 06/17/10 16 % Moisture: not dec. 0.18 Dilution Factor: RTX-VMS ID: (mm) GC Column: 5000 (uL) Soil Aliquot Volume: (uL) Soil Extract Volume: Concentration Units: COMPOUND (ug/L or ug/Kg) ug/Kg 0 CAS NO. Dichlorodifluoromethane 4.8 IJ 75-71-8 4.8 U 74-87-3 Chloromethane U 75-01-4 Vinyl Chloride 4.8 4.8 U Bromomethane 74-83-9 Chloroethane 4.8 U 75-00-3 U 75-69-4 Trichlorofluoromethane 4.8 4.8 U 1,1,2-Trichlorotrifluoroethane 76-13-1 U 1,1-Dichloroethene 4.8 75-35-4 U 24 67-64-1 Acetone 4.8 U Carbon Disulfide 75-15-0 IJ 4.8 Methyl tert-butyl Ether 1634-04-4 U Methyl Acetate 4.8 79-20-9 75-09-2 Methylene Chloride 4 J U trans-1,2-Dichloroethene 4.8 156-60-5 U 1,1-Dichloroethane 4.8 75-34-3 IJ 4.8 Cyclohexane 110-82-7 24 U 2-Butanone 78-93-3 U 56-23-5 Carbon Tetrachloride 4.8 4.8 U cis-1,2-Dichloroethene 156-59-2 4.8 U Chloroform 67-66-3 1,1,1-Trichloroethane 4.8 U 71-55-6 U Methylcyclohexane 4.8 108-87-2 U 4.8 71-43-2 Benzene U 1,2-Dichloroethane 4.8 107-06-2 Trichloroethene 4.8 U 79-01-6 U 4.8 78-87-5 1,2-Dichloropropane U Bromodichloromethane 4.8 75-27-4 U 4-Methyl-2-Pentanone 24 108-10-1

A/lella 3/4/10

IJ

EPA SAMPLE NO.

4.8

95-50-1

96-12-8

120-82-1

VOLATILE ORGANICS ANALYSIS DATA SHEET

LCPD101000210XX MACT03 Lab Name: Chemtech Contract: Lab Code: **CHEM** Case No.: B2643 SAS No.: B2643 SDG No.: B2643 Lab Sample ID: B2643-17 Matrix (soil/water): SOIL Lab File ID: VK039633.D 6.17 (g/mL) Sample wt/vol: LOW Date Received: 06/10/10 Level: (low/med) Date Analyzed: 06/17/10 % Moisture: not dec. 16 Dilution Factor: ID: 0.18 GC Column: RTX-VMS (mm) 5000 (uL) Soil Aliquot Volume: (uL) Soil Extract Volume: Concentration Units: COMPOUND (ug/L or ug/Kg) ug/Kg Q CAS NO. 10061-02-6 t-1,3-Dichloropropene 4.8 U U 4.8 10061-01-5 cis-1,3-Dichloropropene U 4.8 79-00-5 1,1,2-Trichloroethane 24 U 591-78-6 2-Hexanone U 124-48-1 Dibromochloromethane 4.8 U 4.8 106-93-4 1.2-Dibromoethane Tetrachloroethene 63 127-18-4 4.8 U 108-90-7 Chlorobenzene U 100-41-4 Ethyl Benzene 4.8 9.6 U 179601-23-1 m/p-Xylenes U 4.8 95-47-6 o-Xylene 4.8 U 100-42-5 Styrene U 75-25-2 Bromoform 4.8 U 4.8 98-82-8 Isopropylbenzene U 4.8 79-34-5 1,1,2,2-Tetrachloroethane 4.8 U 541-73-1 1,3-Dichlorobenzene U 4.8 106-46-7 1,4-Dichlorobenzene

Alla 314/10

U

U

IJ

EPA SAMPLE NO.

4.8

4.8

4.8

1,2-Dichlorobenzene

1,2,4-Trichlorobenzene

1,2-Dibromo-3-Chloropropane

-1E-

SOIL VOLATILE ANALYSIS TENTIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.	
LCPD101000210XX	

Lab Name:	Chemtech			Contra	act: MACT03		
Lab Code:	СНЕМ	Case No.:	B2643	SAS No.:	B2643	SDG No.:	B2643
Matrix (soil/wat	ter):	SOIL			Lab Sample ID:	B2643-17	
Sample wt/vol:	6.17	(g/mL	.) <u>g</u>		Lab File ID:	VK039633.D	
Level: (low/med	d) <u>L(</u>	OW	•		Date Received:	06/10/10	
% Moisture: no	t dec. <u>16</u>	·			Date Analyzed:	06/17/10	
GC Column:	RTX-VM: I	D: <u>0.18</u>			Dilution Factor:	1	
Soil Extract Vo	lume: <u>5000</u>				Soil Aliquot Volume:		
Number TICS f	found:	2	,		Concentration Units:	ug/Kg	
					(ug/L or ug/Kg)		

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q	
· 60-29- 7	Diethyl Ether	1.46	2.8	J	۴۷-
000110-54-3	Hexane	1.96	6.6	Ţ	1

NC 11/10

VOLATILE ORGANICS ANALYSIS DATA SHEET

EFA SAMIFLE NO.	
LCPD101400210XX	

Lab Name:	Chemtech		Contra	ct: MACT03			
Lab Code:	CHEM	Case No.: B2643	SAS No.:	B2643	SDG No.:	B2643	
Matrix (soil/w	vater):	SOIL		Lab Sample ID:	B2643-18		
Sample wt/vo	,	(g/mL) g		Lab File ID:	VK039629.D		-
Level: (low/m		LOW		Date Received:	06/10/10		
		· · · · · · · · · · · · · · · · · · ·					
% Moisture: n	ot dec.	9		Date Analyzed:	06/17/10		
GC Column:	RTX-VMS	ID: <u>0.18</u> (mm)		Dilution Factor:	1		
Soil Extract V	Volume: 5000	(uL)		Soil Aliquot Volume:			(uL)
Don Extract 1	<u> </u>			- · · · · · · · · · · · · · · · · · · ·			,
				Concentration Units:			
CAS NO).	COMPOUND		(ug/L or ug/Kg	ug/Kg	Q	
75-71-8		Dichlorodifluoromethane		4.2		U	
74-87-3		Chloromethane		4.2		U	
75-01-4		Vinyl Chloride		4.2		U	·
74-83 - 9		Bromomethane		4.2		Ŭ	
75-00-3		Chloroethane		4.2		υゴ	
75-69-4		Trichlorofluoromethane		4.2		U	
76-13-1		1,1,2-Trichlorotrifluoroethane		4.2		U	
75-35-4		1,1-Dichloroethene		4.2		U	
67-64-1		Acetone		21		U	
75-15-0		Carbon Disulfide		4.2		U	·
1634-04	-4	Methyl tert-butyl Ether		4.2		U	
79-20-9		Methyl Acetate		4.2		U	
75-09-2		Methylene Chloride		4.5			
156-60-5	5	trans-1,2-Dichloroethene	<u></u>	4.2		Ŭ-	
75-34-3		1,1-Dichloroethane		4.2		U	
110-82-7	7	Cyclohexane		4.2		U	
78-93-3		2-Butanone		21		U	
56-23-5		Carbon Tetrachloride		4.2		U	
156-59-2	2	cis-1,2-Dichloroethene		4.2		U	
67-66-3		Chloroform		4.2		U	
71-55-6		1,1,1-Trichloroethane		4.2		U	
108-87-2	2	Methylcyclohexane		4.2		U .	
71-43-2		Benzene		4.2		U	
107-06-2	2	1,2-Dichloroethane		4.2		U	
79-01-6		Trichloroethene		5.1			
78-87-5		1,2-Dichloropropane		4.2		U	
75-27-4		Bromodichloromethane		4.2		U	
108-10-	1	4-Methyl-2-Pentanone		21		U	
108-88-	3	Toluene	1	4.2		U	

Form I VOA-1

Allu 2/4/10

96-12-8

120-82-1

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO. LCPD101400210XX Contract: MACT03 Lab Name: Chemtech SAS No.: B2643 B2643 SDG No.: Lab Code: **CHEM** Case No.: B2643 SOIL Lab Sample ID: B2643-18 Matrix (soil/water): (g/mL) 6.57 Lab File ID: VK039629.D Sample wt/vol: Level: (low/med) LOW Date Received: 06/10/10 % Moisture: not dec. 9 Date Analyzed: 06/17/10 GC Column: ID: 0.18 Dilution Factor: RTX-VMS (mm) Soil Extract Volume: 5000 (uL) Soil Aliquot Volume: (uL) Concentration Units: CAS NO. COMPOUND (ug/L or ug/Kg) ug/Kg Q 4.2 U 10061-02-6 t-1,3-Dichloropropene 4.2 U 10061-01-5 cis-1,3-Dichloropropene 4.2 U 1,1,2-Trichloroethane 79-00-5 U 591-78-6 2-Hexanone 21 4.2 U 124-48-1 Dibromochloromethane U 1.2-Dibromoethane 4.2 106-93-4 127-18-4 E Tetrachloroethene 1400 108-90-7 Chlorobenzene 4.2 U U Ethyl Benzene 4.2 100-41-4 U 179601-23-1 m/p-Xylenes 8.4 4.2 U 95-47-6 o-Xylene 100-42-5 Styrene 4.2 U U 4.2 75-25-2 Bromoform 4.2 U 98-82-8 Isopropylbenzene 4.2 U 79-34-5 1,1,2,2-Tetrachloroethane U 541-73-1 1.3-Dichlorobenzene 4.2 4.2 U 106-46-7 1,4-Dichlorobenzene 0.79 J 1,2-Dichlorobenzene 95-50-1

¥	Combine	with	dilohim	ardy;	
				/3	· N/M 3/4/10

1,2-Dibromo-3-Chloropropane

1,2,4-Trichlorobenzene

4.2

4.2

U

U

SOIL VOLATILE ANALYSIS TENTIVELY IDENTIFIED COMPOUNDS

-1E-

EPA	SAMPLE	NO.	

LCPD101400210XX

Lab Name:	Chemtech			Contra	ect: MACT03	•	·	
Lab Code:	СНЕМ	_ Case No.:	B2643	_ SAS No.:	B2643	SDG No.:	B2643	
Matrix (soil/wa	iter):	SOIL			Lab Sample ID:	B2643-18		
Sample wt/vol:	6.57	(g/n	nL) g		Lab File ID:	VK039629.D		
Level: (low/me	d)	LOW			Date Received:	06/10/10		
% Moisture: no	ot dec. 9			•	Date Analyzed:	06/17/10		
GC Column:	RTX-VM	ID: <u>0.18</u>			Dilution Factor:	1		
Soil Extract Volume: 5000				Soil Aliquot Volume				
Number TICS i	found:	1			Concentration Units	: ug/Kg		
					(ug/L or ug/Kg)		

			T	1	1
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q	
60-29-7	Diethyl Ether	1.47	2.8	J	

/////o

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

LCPD101400210XXDL

Lab Name:	Chemtech			Contr	ract: MACT03			
Lab Code:	CHEM	Case No.:	B2643	SAS No.:	B2643	SDG No.:	B2643	
Matrix (soil/wa	iter):	SOIL			Lab Sample ID:	B2643-1	8DL	
Sample wt/vol:	•	(g/m	I) a		Lab File ID:	VF022646.I		
-			L) <u>g</u>		Date Received:			
Level: (low/me	_	MED				06/10/10	.	
% Moisture: no	ot dec.	9	_		Date Analyzed:	06/18/10		
GC Column:	RTX-VMS	ID: <u>0.18</u>	(mm)		Dilution Factor:	1		
Soil Extract Vo	olume: 1000	0 (uL)			Soil Aliquot Volum	e:	100	_ (uL)
								
					Concentration Unit	is:		
CAS NO.		COMPOUN	D		(ug/L or ug/	Kg) <u>ug/Kg</u>	_ Q	
75-71-8		Dichlorodifl	uoromethane		450		U	
74-87-3		Chlorometha	ane		450		U	
75-01-4		Vinyl Chlori	ide		450		U	
74-83-9		Bromometha	ane		450		Ŭ /	
75-00-3		Chloroethan	е		450		¥	
75-69-4		Trichloroflu	oromethane		450		∕ U	
76-13-1		1,1,2-Trichle	orotrifluoroethane		450		U	
75-35-4		1,1-Dichloro	ethene		450	•/	U	
67-64-1		Acetone			2300		· U	
75-15-0		Carbon Disu	ılfide		450		U	
1634-04-4	ļ.	Methyl tert-	butyl Ether		450		U	
79-20-9		Methyl Acet	tate		450		U	
75-09-2		Methylene C	Chloride		<i>45</i> 0		U	
156-60-5		trans-1,2-Di	chloroethene		450		U	
75-34-3		1,1-Dichlore	oethane		450		U	
110-82-7		Cyclohexan	e ,	$\overline{}$	450		U	
78-93-3		2-Butanone	/-		2300	•	U	
56-23-5		Carbon Tetr	achloride		450		U	
156-59-2		cis-1,2-Dich	loroethene		450		U	
67-66-3		Chloroform			450		U	
71-55-6		1,1,1-Trichl	oroethane		450		Ū	
108-87-2		Methylcyclo	hexane		450		U	·
71-43-2		Benzene		Ī	450		U	
107-06-2		1,2-Dichloro	oethane		450		U	
79-01-6		Trichloroeth	nene		450		· U	
78-87-5		1,2-Dichlor	opropane		450		Ŭ	
75-27-4		Bromodichl	oromethane		450		U	
108-10-1		4-Methyl-2-	Pentanone		2300		U	
108-88-3		Toluene			450		Ŭ	

X Mm 8/4/10

Form T VOA-1

EPA SAMPLE NO. LCPD101400210XXDL

Lab Name:	Chemtech		Cont	ract: MACT03				
Lab Code:	CHEM	Case No.: <u>B2643</u>	SAS No.:	B2643	SDG No.:	B2643		
Matrix (soil/w	ater):	SOIL		Lab Sample ID:	B2643-18I	DL		
Sample wt/vol	: 6.04	(g/mL) g		Lab File ID:	VF022646.D		_	
Level: (low/m	<u></u>	MED		Date Received:	06/10/10			
•	_							
% Moisture: n	ot dec.	9		Date Analyzed:	06/18/10			
GC Column:	RTX-VMS	ID: <u>0.18</u> (mm)		Dilution Factor:	· <u>1</u>			
Soil Extract V	olume: 1000	00 (uL)	N.	Soil Aliquot Volume:		100	(uL)	
			÷	Concentration Units:				
CAS NO	•	COMPOUND		(ug/L or ug/K	g) <u>ug/Kg</u>	Q		
10061-02	-6	t-1,3-Dichloropropene	1	450		U	_عر	}
10061-01		cis-1,3-Dichloropropene		450		<u>U</u>		1
79-00-5		1,1,2-Trichloroethane		450		U		1
591-78-6		2-Hexanone		-2300		U		1
124-48-1		Dibromochloromethane		450		U]
106-93-4		1,2-Dibromoethane		450		U		1
127-18-4		Tetrachloroethene		8000		D		1
108-90-7		Chlorobenzene		450		U		1
100-41-4		Ethyl Benzene		450		U		1
179601-2	23-1	m/p-Xylenes		910		U		1
95-47-6		o-Xylene		450		U		1
100-42-5		Styrene		450		U		1
75-25-2		Bromoform		450		U		1
98-82-8		Isopropylbenzene	$\overline{}$	450		U		1
79-34-5		1,1,2,2-Tetrachloroethane	1	450		U		1
541-73-1		1,3-Dichlorobenzene		450		U		1
106-46-7		1,4-Dichlorobenzene	İ	450		U		1
95-50-1		1,2-Dichlorobenzene	i	450		U		1
96-12-8		1,2-Dibromo-3-Chloropropane		450		71		1
120-82-1		1,2,4-Trichlorobenzene	i	450		U		1

* Combine with original andly six.

108-10-1

108-88-3

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO. TRIPBLANK MACT03 Lab Name: Chemtech Contract: Lab Code: CHEM B2643 SAS No.: B2643 SDG No.: B2643 Case No.: Matrix (soil/water): WATER Lab Sample ID: B2643-20 (g/mL) Sample wt/vol: Lab File ID: VF022607.D Date Received: Level: (low/med) 06/10/10 100 Date Analyzed: 06/17/10 % Moisture: not dec. Dilution Factor: GC Column: RTX-VMS ID: 0.53 (mm) Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) Concentration Units: CAS NO. COMPOUND (ug/L or ug/Kg) ug/L Q Dichlorodifluoromethane 1 U 75-71-8 Chloromethane 1 U 74-87-3 Vinyl Chloride 1 IJ 75-01-4 1 U 74-83-9 Bromomethane 1 U 75-00-3 Chloroethane 1 U Trichlorofluoromethane 75-69-4 1,1,2-Trichlorotrifluoroethane 1 U 76-13-1 75-35-4 1.1-Dichloroethene 1 U 5 U 67-64-1 Acetone 1 U 75-15-0 Carbon Disulfide Methyl tert-butyl Ether 1 U 1634-04-4 79-20-9 Methyl Acetate 1 U 1 U 75-09-2 Methylene Chloride trans-1,2-Dichloroethene 1 U 156-60-5 1 U 75-34-3 1,1-Dichloroethane 1 U 110-82-7 Cyclohexane 5 U 78-93-3 2-Butanone 1 IJ Carbon Tetrachloride 56-23-5 cis-1,2-Dichloroethene 1 U 156-59-2 67-66-3 Chloroform 1 U 1 U 1,1,1-Trichloroethane 71-55-6 1 U 108-87-2 Methylcyclohexane 1 U 71-43-2 Benzene U 107-06-2 1,2-Dichloroethane 1 U 1 79-01-6 Trichloroethene 1 U 78-87-5 1,2-Dichloropropane 75-27-4 Bromodichloromethane 1 U

4-Methyl-2-Pentanone

Toluene

5

U

U

14

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

					TRIPI	BLANK	
Lab Name:	Chemtech		Con	ntract: MACT03			
Lab Code:	СНЕМ	Case No.: B2643	SAS No.	: <u>B2643</u>	SDG No.:	B2643	
Matrix (soil/w	ater):	WATER		Lab Sample ID:	B2643-20		
Sample wt/vo	l: 5	(g/mL) ml		Lab File ID:	VF022607.D		•
Level: (low/m		(8)		Date Received:	06/10/10		
% Moisture: n	ot dec.	100		Date Analyzed:	06/17/10		
GC Column:	RTX-VMS	ID: <u>0.53</u> (mm)		Dilution Factor:	11		
Soil Extract V	olume:	(uL)		Soil Aliquot Volume	:		(uL)
				Constanting Heits			
	•			Concentration Units			
CAS NO	•	COMPOUND		(ug/L or ug/K	g) ug/L	_ Q	
10061-02	2-6	t-1,3-Dichloropropene		1		U	
10061-01	i-5	cis-1,3-Dichloropropene		1		U	
79-00-5		1,1,2-Trichloroethane		1		U	
591-78-6		2-Hexanone		5		U	
124-48-1		Dibromochloromethane		1		U	
106-93-4		1,2-Dibromoethane		1		U	
127-18-4		Tetrachloroethene		1		U	
108-90-7		Chlorobenzene		1		U	
100-41-4		Ethyl Benzene		1		U	
179601-2	23-1	m/p-Xylenes		2		U	
95-47-6		o-Xylene		1		U	
100-42-5		Styrene		1		Ū.	
75-25-2		Bromoform		1		U	
98-82-8		Isopropylbenzene		1		U	
79-34-5		1,1,2,2-Tetrachloroethane		1		U	
541-73-1		1,3-Dichlorobenzene		1		U	
106-46-7		1,4-Dichlorobenzene		1		U	
95-50-1		1,2-Dichlorobenzene		1		U	
96-12-8		1,2-Dibromo-3-Chloropropane		1		U	,5
120-82-1		1,2,4-Trichlorobenzene		1		U	7

Comments:

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

LCPD101100110XX MACT03 Contract: Lab Name: Chemtech B2643 SAS No.: B2643 SDG No.: B2643 Case No.: Lab Code: CHEM Lab Sample ID: B2643-06 SOIL Matrix (soil/water): 30.08 Lab File ID: BE064931.D (g/mL) Sample wt/vol: LOW Date Received: 06/10/10 Level: (low/med) 15 Decanted: (Y/N) Date Extracted: 06/14/10 % Moisture: 06/18/10 Date Analyzed: Concentrated Extract Volume: 1000 (uL) Dilution Factor: Injection Volume: Extraction: (Type) SOXH N pH: N/A GPC Cleanup: (Y/N) Concentration Units: (ug/L or ug/Kg) ug/Kg COMPOUND CAS NO. UJ 100-52-7 Benzaldehyde 390 U 108-95-2 Phenol 390 U 390 bis(2-Chloroethyl)ether 111-44-4 U 390 95-57-8 2-Chlorophenol U 390 2-Methylphenol 95-48-7 U 390 2,2-oxybis(1-Chloropropane) 108-60-1 U 98-86-2 Acetophenone 390 U 390 3+4-Methylphenols 65794-96-9 N-Nitroso-di-n-propylamine 390 U 621-64-7 U 67-72-1 Hexachloroethane 390 U 390 Nitrobenzene 98-95-3 U 390 Isophorone 78-59-1 U 390 88-75-5 2-Nitrophenol 390 u 🏹 105-67-9 2,4-Dimethylphenol 390 bis(2-Chloroethoxy)methane 111-91-1 U 390 120-83-2 2,4-Dichlorophenol U 390 91-20-3 Naphthalene บ 🎝 390 4-Chloroaniline 106-47-8 U 390 87-68-3 Hexachlorobutadiene U 390 Caprolactam 105-60-2 U 390 4-Chloro-3-methylphenol 59-50-7 U 91-57-6 2-Methylnaphthalene 390 U 390 Hexachlorocyclopentadiene 77-47-4 IJ 390 2,4,6-Trichlorophenol 88-06-2 U 390 95-95-4 2,4,5-Trichlorophenol U 390 1,1-Biphenyl 92-52-4 390 2-Chloronaphthalene 91-58-7

1/1/1 8/4/10

EPA SAMPLE NO.

Comments:

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

LCPD101100110XX

					1	
Lab Name:	Chemtech		Contra	act: MACT03	-	
Lab Code:	CHEM	Case No.: <u>B2643</u>	SAS No.:	B2643	SDG No.:	B2643
Matrix (soil/wa	iter):	SOIL		Lab Sample ID:	B2643-06	
Sample wt/vol:	30.08	(g/mL) g		Lab File ID:	BE064931.D	
Level: (low/me	.d) LC)W		Date Received:	06/10/10	
% Moisture:		Decanted: (Y/N) N		Date Extracted:	06/14/10	
						
Concentrated E	Extract Volume:	1000 (uL)		Date Analyzed:	06/18/10	
Injection Volur	me: <u>1</u>	· · · · · · · · · · · · · · · · · · ·		Dilution Factor:	1	
GPC Cleanup:	(Y/N)	<u>N</u> pH: <u>N/A</u>		Extraction: (Type) Concentration Units:	SOX	KH
CAS NO.		COMPOUND		(ug/L or ug/Kg	ug/Kg	_ Q
88-74-4		2-Nitroaniline		390		U
131-11-3		Dimethylphthalate		460		₽ U
208-96-8		Acenaphthylene		390		Ŭ
606-20-2		2,6-Dinitrotoluene		390		Ŭ
99-09-2		3-Nitroaniline		390		U
83-32-9		Acenaphthene		390		U
51-28-5		2,4-Dinitrophenol		390		U
100-02-7		4-Nitrophenol		390		U
132-64-9		Dibenzofuran		390		U
121-14-2		2,4-Dinitrotoluene		390		U
84-66-2		Diethylphthalate		390		U
7005-72-3	3	4-Chlorophenyl-phenylether		390		U
86-73-7		Fluorene		390		U _.
100-01-6		4-Nitroaniline		390		U
534-52-1		4,6-Dinitro-2-methylphenol		390		บ ว
86-30-6		N-Nitrosodiphenylamine		390		U
101-55-3		4-Bromophenyl-phenylether		390		U
118-74-1		Hexachlorobenzene		390		U
1912-24-9	9	Atrazine		390		U
87-86-5		Pentachlorophenol		390		บ วี
85-01-8		Phenanthrene		390		U
120-12-7		Anthracene	<u> </u>	390		U
86-74-8		Carbazole		390		U
84-74-2		Di-n-butylphthalate		390		U
206-44-0		Fluoranthene		56		J .
129-00-0		Pyrene		390	<u></u>	U
85-68-7		Butylbenzylphthalate		390	<u> </u>	U
91-94-1		3,3-Dichlorobenzidine		390		U
56-55-3		Benzo(a)anthracene		390		U

FORM I SV-1

191-24-2

Benzo(g,h,i)perylene

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

					LCPD1011	00110XX
Lab Name:	Chemtech		Cont	ract: MACT03		
Ĺab Code:	CHEM	Case No.: <u>B2643</u>	SAS No.:	B2643	SDG No.:	B2643
Matrix (soil/wat	ter):	SOIL		Lab Sample ID:	B2643-06	
Sample wt/vol:	30.08	(g/mL) g		Lab File ID:	BE064931.D	
Level: (low/med	i) <u>Lo</u>	OW		Date Received:	06/10/10	···
% Moisture:	15	Decanted: (Y/N)	N	Date Extracted:	06/14/10	
Concentrated E	xtract Volume:	1000 (uL)		Date Analyzed:	06/18/10	·
Injection Volum	ne: 1			Dilution Factor:	1	
GPC Cleanup: ((Y/N)	N pH: N/A	,	Extraction: (Type) Concentration Units:	SOX	KH
CAS NO.		COMPOUND		(ug/L or ug/K	g) ug/Kg	Q
218-01-9	***************************************	Chrysene	·	390		U
117-81-7		bis(2-Ethylhexyl)phthalate		340		J
117-84-0		Di-n-octyl phthalate		390		U
205-99-2		Benzo(b)fluoranthene		390		U '
207-08-9		Benzo(k)fluoranthene		390		Ū .
50-32-8		Benzo(a)pyrene		390		U
193-39-5		Indeno(1,2,3-cd)pyrene		390		U
53-70-3		Dibenz(a,h)anthracene		390		U
191-24-2		Benzo(g.h.i)pervlene		390		U

N/M/10

EPA SAMPLE NO.

Comments:

Chemtech

Case No.:

SOIL

LOW

30.08

CHEM

Lab Name:

Lab Code:

Matrix (soil/water):
Sample wt/vol:

Level: (low/med)

% Moisture:

-1F-

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTIVELY IDENTIFIED COMPOUNDS

			LCPD10110	00110XX		
Contr	act:	MACT03			•	
 SAS No.:	B26	43	SDG No.:	B2643		
	Lab Sam	ple ID:	B2643-06		_	
	Lab File	ID:	BE064931.D			
	Date Rec	eived:	06/10/10			

06/14/10

Date Extracted:

EPA SAMPLE NO.

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 06/18/10

Injection Volume: 1 Dilution Factor: 1

GPC Cleanup: (Y/N) N pH: N/A Concentration Units: ug/Kg

B2643

(g/mL)

Decanted: (Y/N)

Number TICS found: 12

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
127-18-4	Tetrachloroethylene	4.89	240	J
1 23-42- 2	2-Pentarione, 4-hydroxy-4-methyl-	5.3	540	AB
98-83-9	.alphaMethylstyrene	7.35	230	J
3910-35-8	1H-Indene, 2,3-dihydro-1,1,3-trime	15.4	130	J
1000297-24-5	3-[(2-Methyl-5-nitro-phenylimino)-	17.64	150	J
	unknown17.8	17.8	130	J
72-56-0	Benzene, 1,1-(2,2-dichloroethylid	18.06	160	J
84-61-7	1,2-Benzenedicarboxylic acid, dicy	19.34	130	J
	unknown19.75	19.75	1200	J
	unknown19.79	19.79	130	J
74579-34-3	3,4-Bis-(methylthio)-quinoline	20.06	510	J
	unknown30.2	30.2	740	J

2/1/ld 0/4/10

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

LCBKSS00100110XX

Lab	Name:	Chemtech			Contra	act: MACT03			
Lab	Code:	СНЕМ	Case No.:	B2643	SAS No.:	B2643	SDG No.:	B2643	
Mati	rix (soil/wa	ater):	SOIL			Lab Sample ID:	B2643-13		
Sam	ple wt/vol:	30.1	(g/mL) g.		Lab File ID:	BE064927.D		•
	el: (low/me		OW	, <u></u>		Date Received:	06/10/10		
	•	_	Decanted: (Y/N) N		Date Extracted:	06/14/10		
	loisture:								
Con	centrated E	Extract Volume:	1000	(uL)		Date Analyzed:	06/18/10		
Inje	ction Volu	me: <u>1</u>	···			Dilution Factor:	1		
GPC	Cleanup:	(Y/N) _	N pH:	N/A		Extraction: (Type) Concentration Units:	SOZ	XH	
	CAS NO.		COMPOUND)		(ug/L or ug/K	g) ug/Kg	_ Q	
Γ	100-52-7		Benzaldehyde	:	ł	410		บ 꿏	
Ī	108-95-2		Phenol			410		U	
	111-44-4	·	bis(2-Chloroe	thyl)ether		410		U	
	95-57 - 8		2-Chlorophen	ol		410		U	
	95-48-7		2-Methylphen	ıol		410	<u> </u>	Ū	
. [108-60-1		2,2-oxybis(1-	Chloropropane)		410		U	
	98-86-2		Acetophenone	e		410		U	
	65794-96	-9	3+4-Methylpl	nenols		410		U	
	621-64-7		N-Nitroso-di-	n-propylamine		410		U	
	67-72-1	····	Hexachloroetl	hane		410		U	
	98-95-3		Nitrobenzene			410		U	
	78-59-1		Isophorone			410		U.	
	88-75-5		2-Nitropheno	<u> </u>		410		U	
l	105-67-9		2,4-Dimethyl	phenol		410		. <u>U</u>	
l	111-91-1		bis(2-Chloroe	thoxy)methane		410		U.	
	120-83-2		2,4-Dichlorop	henol		410		U	
	91-20-3		Naphthalene			410		U	
	106-47-8		4-Chloroanili	ne		410		U	
	87-68-3		Hexachlorobu	ıtadiene		410		U	
	105-60-2		Caprolactam			410		U	
	59-50-7		4-Chloro-3-m	ethylphenol		410		U	
	91-57-6		2-Methylnapl	nthalene		410		U	
	77-47-4		Hexachlorocy	clopentadiene		410		U	
	88-06-2		2,4,6-Trichlo	rophenol		410		U	
l	95-95-4		2,4,5-Trichlo	rophenol		410		U	
ļ	92-52-4		1,1-Biphenyl		<u> </u>	410		U	
ļ	91-58-7		2-Chloronaph	nthalene		410		U	
	88-74-4		2-Nitroaniline	<u>e</u>		410		U	
	121 11 2		Dimethylphth	nalate	1	370- HIO	1	7 FF	a I

Comments:

pM 814/10

EPA SAMPLE NO.

LCBKSS00100110XX

Lab Name:	Chemtech			Contra	act: MACT03	3	
Lab Code:	CHEM	Case No.:	B2643	SAS No.:	B2643	SDG No.:	B2643
Matrix (soil/w	ater):	SOIL			Lab Sample ID:	B2643-13	
Sample wt/vol	•	(g/mL)	 g		Lab File ID:	BE064927.D	
-			<u> </u>			06/10/10	
Level: (low/m	ed) <u>L</u>	OW			Date Received:		
% Moisture:	19	Decanted: (Y/N)	N		Date Extracted:	06/14/10	
Concentrated 1	Extract Volume:	1000	(uL)		Date Analyzed:	06/18/10	
Injection Volu	me: <u>1</u>				Dilution Factor:	1	· .
GPC Cleanup:	(Y/N)	<u>N</u> pH: <u>N</u>	I/A		Extraction: (Type) Concentration Uni		XH
CAS NO		COMPOUND			(ug/L or ug.	/Kg) ug/Kg	_ Q
208-96-8		Acenaphthylen	ie		410		U
606-20-2		2,6-Dinitrotolu	iene.		410		Ŭ
99-09-2		3-Nitroaniline			410		Ŭ
83-32-9		Acenaphthene	·		410		U
51-28-5		2,4-Dinitrophe	nol		410		บ ้ว ี
100-02-7		4-Nitrophenol			410		U
132-64-9		Dibenzofuran			410		Ū
121-14-2		2,4-Dinitrotolı	iene		410		U
84-66-2		Diethylphthala	ite		410		U
7005-72-	3 .	4-Chloropheny	l-phenylether		410		U
86-73-7		Fluorene			410		U .
100-01-6	· ·	4-Nitroaniline		· ·	410		U
534-52-1		4,6-Dinitro-2-	methylphenol		410		ע "ב
86-30-6		N-Nitrosodiph	enylamine		410		U
101-55-3		4-Bromophen	yl-phenylether		410		U
118-74-1	·	Hexachlorobe	nzene		410		U
1912-24	.9	Atrazine			410		U
87-86-5		Pentachloroph	enol		410		U J
85-01-8		Phenanthrene			160		J
120-12-7	7	Anthracene			410		U
86-74-8		Carbazole			410		U
84-74-2		Di-n-butylphtl	nalate		410		U
206-44-0)	Fluoranthene			480		
129-00-0)	Pyrene			350		J
85-68-7		Butylbenzylpl	nthalate		410	·	U ,
91-94-1		3,3-Dichlorob	enzidine		410		U
56-55-3		Benzo(a)anthi	racene		210		J
218-01-)	Chrysene			240		J
117-81-	7	bis(2-Ethylhe	xyl)phthalate		410	1	U

Comments:

/////////// 814/10

EPA SAMPLE NO.

191-24-2

Benzo(g,h,i)perylene

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

					LCBKSS0	0100110XX
Lab Name:	Chemtech		Contr	ract: MACT03		
Lab Code:	СНЕМ	Case No.: <u>B2643</u>	SAS No.:	B2643	SDG No.:	B2643
Matrix (soil/wa	nter):	SOIL		Lab Sample ID:	B2643-13	
Sample wt/vol:	30.1	(g/mL) <u>g</u>		Lab File ID:	BE064927.D	
Level: (low/me	ed) <u>Lo</u>	OW		Date Received:	06/10/10	, , , , , , , , , , , , , , , , , , ,
% Moisture:	19	Decanted: (Y/N) N		Date Extracted:	06/14/10	
Concentrated E	Extract Volume:	1000 (uL)		Date Analyzed:	06/18/10	·
Injection Volum	me: <u>1</u>			Dilution Factor:	1	
GPC Cleanup:	(Y/N)	N pH: <u>N/A</u>		Extraction: (Type) Concentration Units:	SO	<u>KH</u>
CAS NO.		COMPOUND		(ug/L or ug/Kg	g) ug/Kg	_ Q
117-84-0		Di-n-octyl phthalate		410		Ŭ
205-99-2		Benzo(b)fluoranthene		290		J
207-08-9		Benzo(k)fluoranthene		130		J
50-32-8		Benzo(a)pyrene		220		J
193-39-5		Indeno(1,2,3-cd)pyrene		140		J
53-70-3		Dibenz(a h)anthracene		410		U

M/ 8/4/10

160

Comments:

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

LCBKSS00100110XX

Lab Name:	Chemtech			Contr	act: MACT03		
Lab Code:	СНЕМ	Case No.:	B2643	SAS No.:	B2643	SDG No.:	B2643
Matrix (soil/wat	ter):	SOIL			Lab Sample ID:	B2643-13	·
Sample wt/vol:	30.1	(g/mL	,) <u>g</u>		Lab File ID:	BE064927.D	
Level: (low/med	d) <u>L(</u>	OW			Date Received:	06/10/10	·····
% Moisture:	19	Decanted: (Y/N) <u>N</u>	·	Date Extracted:	06/14/10	
Concentrated Ex	xtract Volume:	1000	(uL)		Date Analyzed:	06/18/10	
Injection Volum	ne: <u>1</u>				Dilution Factor:	1	
GPC Cleanup: ((Y/N)	<u>N</u> pH:	N/A		Concentration Units:	ug/Kg	
Number TICS f	ound:	4			·		

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	5.3	480	-AB
	unknown17.64	17.64	90	J
646-31-1	Tetracosane	21.78	210	J
192-97-2	Benzo[e]pyrene	22.41	180	J

Ml. 8/4/10

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

						LCBKSS(00200110XX
_ab Name:	Chemtech			Contr	act: MACT03		
.ab Code:	CHEM	Case No.: B26	43	SAS No.:	<u>B</u> 2643	SDG No.:	B2643
√latrix (soil/wa	iter):	SOIL			Lab Sample ID:	B2643-14	
Sample wt/vol:		(g/mL)	g		Lab File ID:	BE064928.D	
-		OW -			Date Received:	06/10/10	•
Level: (low/me	(a) <u>L(</u>						
% Moisture:	9	Decanted: (Y/N)	N		Date Extracted:	06/14/10	
Concentrated E	extract Volume:	1000	(uL)		Date Analyzed:	06/18/10	
njection Volu	ne: <u>1</u>				Dilution Factor:	1	
GPC Cleanup:	(Y/N)	N pH: <u>N/A</u>	***************************************		Extraction: (Type) Concentration Units		XH
CAS NO.		COMPOUND			(ug/L or ug/K	(g) ug/Kg	Q
100-52-7		Benzaldehyde			360		Մ 🕇
108-95-2		Phenol			360		Ŭ .
111-44-4		bis(2-Chloroethyl)	ether		360		U
95-57 - 8		2-Chlorophenol			360		U
95-48-7		2-Methylphenol			360		U
108-60-1	·	2,2-oxybis(1-Chlor	opropane)		360	<u>_</u>	U
98-86-2		Acetophenone			360		Ŭ
65794-96	-9	3+4-Methylphenol	s		360		Ŭ
621-64-7		N-Nitroso-di-n-pro	pylamine		360		U
67-72-1		Hexachloroethane			360		. U
98-95-3		Nitrobenzene			360		U
78-59-1		Isophorone			360	<u></u>	U
88-75-5		2-Nitrophenol			360		U
105-67-9		2,4-Dimethylphene	ol		360		U
111-91-1		bis(2-Chloroethox	y)methane	<u></u>	360		U
120-83-2		2,4-Dichloropheno	1		360		<u> </u>
91-20-3		Naphthalene			360		U
106-47-8		4-Chloroaniline			360		U
87-68-3		Hexachlorobutadio	ne		360		U
105-60-2		Caprolactam			360	·	U
59-50-7		4-Chloro-3-methy	phenol	<u> </u>	360		U
91-57-6		2-Methylnaphthale			360		U
77-47-4		Hexachlorocyclop	entadiene		360		U
88-06-2	· · · · · · · · · · · · · · · · · · ·	2,4,6-Trichlorophe	enol		360		U
95-95-4		2,4,5-Trichlorophe	nol		360		U
92-52-4		1,1-Biphenyl			360		U
91-58-7		2-Chloronaphthale	ne		360		U
88-74-4		2-Nitroaniline		<u> </u>	360		U
131-11-3		Dimethylphthalate	;	1	400		·B-U

Comments:

MC 3/4/10

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

LCBKSS00200110XX

	•					
Lab Name:	Chemtech		Contr	act: MACT03		
Lab Code:	СНЕМ	Case No.: B2643	SAS No.:	B2643	SDG No.:	B2643
Matrix (soil/wa		SOIL		Lab Sample ID:	B2643-14	
				_	BE064928.D	
-		(g/mL) g		•		
Level: (low/me	ed) <u>F</u>	<u>OW .</u>		•	06/10/10	
% Moisture:	9	Decanted: (Y/N) N	· .	Date Extracted:	06/14/10	
Concentrated E	Extract Volume:	1000 (uL)		Date Analyzed:	06/18/10	
njection Volu	me: 1			Dilution Factor:	1	
GPC Cleanup:		N pH: N/A		Extraction: (Type) Concentration Units:	SO.	ХН
CAS NO.		COMPOUND		(ug/L or ug/Kg)	ug/Kg	_ Q
208-96-8		Acenaphthylene		360		U
606-20-2		2,6-Dinitrotoluene		360		U
99-09-2		3-Nitroaniline		360		Ŭ
83-32-9		Acenaphthene		360		Ŭ
51-28-5		2,4-Dinitrophenol		360		C, D
100-02-7		4-Nitrophenol		360		Ŭ
132-64-9		Dibenzofuran		360		Ŭ
121-14-2		2,4-Dinitrotoluene		360		Ŭ
84-66-2		Diethylphthalate		360		Ŭ
7005-72-	3	4-Chlorophenyl-phenylether		360		Ŭ
86-73-7		Fluorene		360		Ŭ
100-01-6		4-Nitroaniline		360	<u> </u>	U
534-52-1		4,6-Dinitro-2-methylphenol		360		υJ
86-30-6		N-Nitrosodiphenylamine		360		Ŭ
101-55-3		4-Bromophenyl-phenylether		360		U
118-74-1		Hexachlorobenzene		360		U
1912-24-	9	Atrazine		360		U
87-86-5		Pentachlorophenol		360		υ³
85-01-8		Phenanthrene		360		U
120-12-7		Anthracene		360		U
86-74-8		Carbazole		360		U
84-74-2		Di-n-butylphthalate		360		U
206-44-0		Fluoranthene		360		U
129-00-0		Pyrene		360		U
85-68-7		Butylbenzylphthalate		360		U
91-94-1		3,3-Dichlorobenzidine		360		U
56-55-3		Benzo(a)anthracene		360		U
218-01-9)	Chrysene		360		U
117.81.7		his(2-Ethylbeyyl)phthalate		360	1	IJ

Comments:

1./C/L

EPA SAMPLE NO.

LCBKSS00200110XX

Lab Name:	Chemtech			Contr	act: MACT03			
Lab Code:	СНЕМ	Case No.: B2	2643	SAS No.:	B2643	SDG No.:	B2643	
Matrix (soil/wa	iter):	SOIL	_		Lab Sample ID:	B2643-1	4	
Sample wt/vol:	30.07	(g/mL)	g		Lab File ID:	BE064928.I)	
Level: (low/me	ed) Lo	ow			Date Received:	06/10/10		
% Moisture:	9	Decanted: (Y/N)	N		Date Extracted:	06/14/10		
Concentrated E	Extract Volume:	1000	(uL)		Date Analyzed:	06/18/10		
Injection Volu					Dilution Factor:	1		
GPC Cleanup:		N pH: N/A			Extraction: (Type) Concentration Unit		OXH	
CAS NO.		COMPOUND			(ug/L or ug/I	Kg) ug/Kg	Q	
117-84-0		Di-n-octyl phthale	ate		360		U	
205-99-2		Benzo(b)fluoranti			360		U	
207-08-9		Benzo(k)fluoranti			360		. n	
50-32-8		Benzo(a)pyrene			360		U	
193-39-5		Indeno(1,2,3-cd);	pyrene		360		U	
53-70-3		Dibenz(a,h)anthra			360		U	
191-24-2		Benzo(g,h,i)peryl			360		U	

N. 114/10

Comments:

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTIVELY IDENTIFIED COMPOUNDS

	LCBKSS00	0200110XX	
)3			:
	SDG No.:	B2643	
	B2643-14		
	DE064038 D		

EPA SAMPLE NO.

Chemtech Contract: MACT Lab Name: SAS No.: CHEM Case No .: B2643 B2643 Lab Code: Lab Sample ID: SOIL Matrix (soil/water): Lab File ID: Sample wt/vol: (g/mL) LOW 06/10/10 Date Received: Level: (low/med) Date Extracted: 06/14/10 Decanted: (Y/N) N % Moisture: 06/18/10 1000 (uL) Date Analyzed: Concentrated Extract Volume: Dilution Factor: Injection Volume: Concentration Units: ug/Kg pH: N N/A GPC Cleanup: (Y/N) Number TICS found: 2

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
-123-42- 2	2-Pentanone, 4-hydroxy 4-methyl-	5.3	460	AB
	unknown17.63	17.63	99	J

2/Mar 3/4/10.

EPA SAMPLE NO.

LCBKSS00300110XX

Lab Name: <u>Ch</u>	nemtech	Contract: MACT03	
Lab Code: CI	HEM Case No.: B2643 SA	AS No.: B2643 SDG	No.: B2643
			643-15
Matrix (soil/water):		_	
Sample wt/vol:	30.05 (g/mL) g	Lab File ID: BE064	
Level: (low/med)	LOW	Date Received: 06/10/	10
% Moisture: 2	20 Decanted: (Y/N) N	Date Extracted: 06/14	/10
Concentrated Extra	act Volume: 1000 (uL)	Date Analyzed: 06/18/	10
njection Volume:	1	Dilution Factor:	1
GPC Cleanup: (Y/I	N) <u>N</u> pH: <u>N/A</u>	Extraction: (Type) Concentration Units:	SOXH
CAS NO.	COMPOUND	(ug/L or ug/Kg) ug/K	g Q
100-52-7	Benzaldehyde	410	U 5
108-95-2	Phenol	410	U
111-44-4	bis(2-Chloroethyl)ether	410	Ū
95-57-8	2-Chlorophenol	410	U
95-48-7	2-Methylphenol	410	Ų
108-60-1	2,2-oxybis(1-Chloropropane)	410	U
98-86-2	Acetophenone	410	U
65794-96-9	3+4-Methylphenols	410	U
621-64-7	N-Nitroso-di-n-propylamine	410	· U
67-72-1	Hexachloroethane	410	U
98-95-3	Nitrobenzene	410	U
78-59-1	Isophorone	410	Ŭ
88-75-5	2-Nitrophenol	410	U
105-67-9	2,4-Dimethylphenol	410	U
111-91-1	bis(2-Chloroethoxy)methane	410	Ŭ
120-83-2	2,4-Dichlorophenol	410	U
91-20-3	Naphthalene	410	Ŭ
106-47-8	4-Chloroaniline	410	U
87-68-3	Hexachlorobutadiene	410	Ŭ
105-60-2	Caprolactam	410	Ŭ
59-50-7	4-Chloro-3-methylphenol	410	Ŭ
91-57-6	2-Methylnaphthalene	410	Ŭ
77-47-4	Hexachlorocyclopentadiene	410	U
88-06-2	2,4,6-Trichlorophenol	410	Ŭ
95-95-4	2,4,5-Trichlorophenol	410	Ŭ
92-52-4	1,1-Biphenyl	410	Ŭ
91-58-7	2-Chloronaphthalene	410	Ŭ
88-74-4	2-Nitroaniline	410	Ŭ
121 11 2	Dimethylphthalate	440	RU

Comments:

Mllu 8/4/10

FORM I SV-1

EPA SAMPLE NO.

LCBKSS00300110XX

Lab Name:	Chemtech	_		Contr	ract: MACT03	3	
Lab Code:	CHEM	Case No.:	B2643	SAS No.:	B2643	SDG No.:	B2643
Matrix (soil/v	vater):	SOIL			Lab Sample ID:	B2643-15	i
Sample wt/vo	•	(g/mL)	g g		Lab File ID:	BE064926.D	
-					Date Received:	06/10/10	
Level: (low/n	\underline{L}	OW					
% Moisture:	20	Decanted: (Y/N)	N		Date Extracted:	06/14/10	
Concentrated	Extract Volume:	1000	(uL)		Date Analyzed:	06/18/10	· ·
Injection Vol	ume: <u>1</u>				Dilution Factor:	1	
GPC Cleanur	o: (Y/N)	N pH: N	/A		Extraction: (Type) Concentration Uni		XH
CAS NO).	COMPOUND			(ug/L or ug	/Kg) ug/Kg	Q .
208-96-	8	Acenaphthylen	e		410		Ŭ
606-20-	2	2,6-Dinitrotolu	ene		410		U .
99-09-2		3-Nitroaniline			410	·	U
83-32-9		Acenaphthene			410		U
51-28-5		2,4-Dinitropher	nol		410		บ วี
100-02-	7	4-Nitrophenol			410		U
132-64-	9	Dibenzofuran			410		U
121-14-	2	2,4-Dinitrotolu	ene		410		U
84-66-2		Diethylphthala	te		410		U
7005-72	3	4-Chloropheny	l-phenylether		410		Ŭ
86-73-7		Fluorene			410		U
100-01-	6	4-Nitroaniline			410		Ŭ
534-52-	1	4,6-Dinitro-2-r	nethylphenol		410	<u> </u>	U J
86-30-6		N-Nitrosodiphe	enylamine		410		Ŭ
101-55-	3	4-Bromopheny	l-phenylether		410		U
118-74-	1	Hexachlorober	zene		410		U
1912-24	1-9	Atrazine			410		U
87-86-5		Pentachloropho	enol		410		ל ט
85-01-8	·	Phenanthrene			140		J
120-12-	7	Anthracene			410		U
86-74-8	<u> </u>	Carbazole			410		Ŭ
84-74-2		Di-n-butylphth	alate		410		Ŭ
206-44	-0	Fluoranthene			260		J
129-00-	-0	Pyrene			200		J
85-68-7	7	Butylbenzylph	thalate		410		Ŭ
91-94-1		3,3-Dichlorobe	enzidine		410		Ŭ
56-55-3	3	Benzo(a)anthr	acene		110		J
218-01	-9	Chrysene			130		J
117-81	-7	bis(2-Ethylhex	yl)phthalate	i	410		Ŭ

Comments:

FORM I SV-1 / 1/16

	EPA SAMPLE NO.
	LCBKSS00300110XX
ı	

Lab Name:	Chemtech			Contr	act: MACT03	<u> </u>	
Lab Code:	CHEM	Case No.:	B2643	SAS No.:	B2643	SDG No.:	B2643
Matrix (soil/wat	ter):	SOIL			Lab Sample ID:	B2643-15	
Sample wt/vol:	30.05	(g/mL)) <u>g</u>		Lab File ID:	BE064926.D	
Level: (low/med	i) LO)W			Date Received:	06/10/10	
% Moisture:	20	Decanted: (Y/N) <u>N</u>		Date Extracted:	06/14/10	
Concentrated Ex	xtract Volume:	1000	(uL)		Date Analyzed:	06/18/10	
Injection Volum	ne: <u>1</u>	'			Dilution Factor:	1	
GPC Cleanup: (Y/N)	N pH: <u>N</u>	J/A		Extraction: (Type) Concentration Units	SOX	KH
CAS NO.	÷	COMPOUND			(ug/L or ug/k	Kg) ug/Kg	Q
117-84-0		Di-n-octyl pht	halate		410		U
205-99-2		Benzo(b)fluor	anthene		150		J
207-08-9		Benzo(k)fluor	anthene		410		U
50-32-8		Benzo(a)pyrer	ne		100		J
193-39-5		Indeno(1,2,3-c	d)pyrene		68		J
53-70-3		Dibenz(a,h)an	thracene		410		U
191-24-2		Benzo(g,h,i)pe	erylene		78		J

Alla 814/10

Comments:

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTIVELY IDENTIFIED COMPOUNDS

						LCBKSS00	J300110XX	
Lab Name:	Chemtech			Contra	act: MACT03			
Lab Code:	CHEM	Case No.:	B2643	SAS No.:	B2643	SDG No.:	B2643	
Matrix (soil/wat	ter):	SOIL			Lab Sample ID:	B2643-15		
Sample wt/vol:	30.05	(g/mI	L) <u>g</u>		Lab File ID:	BE064926.D		
Level: (low/med	d) <u>L(</u>	OW			Date Received:	06/10/10		
% Moisture:	20	Decanted: (Y/N	I) N		Date Extracted:	06/14/10		
Concentrated Ex	xtract Volume:	1000	(uL)		Date Analyzed:	06/18/10		
Injection Volum	ne: <u>1</u>				Dilution Factor:	1		
GPC Cleanup: ((Y/N)	N pH:	N/A		Concentration Units:	ug/Kg		
Number TICS f	found:	3						

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q	_ [
123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	5.3	490	AB	⇉╴
	unknown17.64	17.64	99	J	
7390-81-0	Oxirane, hexadecyl-	21.28	210	, J]

Mh 2/4/10

EPA SAMPLE NO.

LCBKSS00300110XD

Lab Name: Chemtech		Contra	act: MACT03		
Lab Code: <u>CHEM</u> (Case No.: <u>B2643</u> S	SAS No.:	B2643	SDG No.:	B2643
Matrix (soil/water):	SOIL		Lab Sample ID:	B2643-16	
Sample wt/vol: 30.11	(g/mL) g		Lab File ID:	BE064925.D	
Level: (low/med) LOY			Date Received:	06/10/10	
% Moisture: 19 1	Decanted: (Y/N) N		Date Extracted:	06/14/10	
Concentrated Extract Volume:	1000 (uL)	·	Date Analyzed:	06/18/10	
Injection Volume: 1			Dilution Factor:	1	
GPC Cleanup: (Y/N) N	pH: N/A		Extraction: (Type) Concentration Units:	SOX	CH
CAS NO.	COMPOUND		(ug/L or ug/Kg) ug/Kg	_ Q
100-52-7	Benzaldehyde		410		υ "Σ
108-95-2	Phenol		410		U
111-44-4	bis(2-Chloroethyl)ether		410		U
95-57-8	2-Chlorophenol		410		Ŭ ·
95-48-7	2-Methylphenol		410		U
108-60-1	2,2-oxybis(1-Chloropropane)		410		Ŭ
98-86-2	Acetophenone		410		Ŭ
65794-96-9	3+4-Methylphenols		410		Ŭ
621-64-7	N-Nitroso-di-n-propylamine		410		U
67-72-1	Hexachloroethane		410		U
98-95-3	Nitrobenzene		410		U
78-59-1	Isophorone		410	·	U
88-75-5	2-Nitrophenol		410		U
105-67-9	2,4-Dimethylphenol		410		U
111-91-1	bis(2-Chloroethoxy)methane		410		U
120-83-2	2,4-Dichlorophenol		410		U
91-20-3	Naphthalene		410		U
106-47-8	4-Chloroaniline		410		U
87-68-3	Hexachlorobutadiene		410		U
105-60-2	Caprolactam		410		U
59-50-7.	4-Chloro-3-methylphenol		410		U
91-57-6	2-Methylnaphthalene		410		U
77-47-4	Hexachlorocyclopentadiene		410		U
88-06-2	2,4,6-Trichlorophenol		410		U
95-95-4	2,4,5-Trichlorophenol		410		U
92-52-4	1,1-Biphenyl		410		U
91-58-7	2-Chloronaphthalene		410		U
88-74-4	2-Nitroaniline		410		U
121 11 2	Dimethylphthalate	1	450		BU

Comments:

11 let 8/4/10

FORM I SV-1

EPA SAMPLE NO.

LCBKSS00300110XD

							_
Lab Name:	Chemtech		Cont	ract: MACT03			
Lab Code:	СНЕМ	Case No.: B2643	SAS No.:	B2643	SDG No.:	B2643	
Matrix (soil/wa	ater):	SOIL		Lab Sample ID:	B2643-16		
Sample wt/vol:		(g/mL) g	•	Lab File ID:	BE064925.D		
-					·		
Level: (low/me		OW		Date Received:	06/10/10	-	
% Moisture:	19 .	Decanted: (Y/N)	7	Date Extracted:	06/14/10		
Concentrated E	Extract Volume:	1000 (uL)		Date Analyzed:	06/18/10		
Injection Volu	me: 1			Dilution Factor:	1		
GPC Cleanup:		N pH: N/A		Extraction: (Type) Concentration Units:	SOX	CH .	
CAS NO.		COMPOUND		(ug/L or ug/Kg	g) ug/Kg	_ Q	
208-96-8		Acenaphthylene		410		U	
606-20-2		2,6-Dinitrotoluene		410		U	
99-09-2		3-Nitroaniline		410		U	
83-32-9		Acenaphthene		410		U	
51-28-5		2,4-Dinitrophenol		410		ប ៊ី	
100-02-7		4-Nitrophenol		410		U	
132-64-9	3. 7	Dibenzofuran		410		Ŭ	
121-14-2		2,4-Dinitrotoluene		410		U	
84-66-2		Diethylphthalate		410		U	
7005-72-3	3	4-Chlorophenyl-phenylether		410		U	
86-73-7		Fluorene		410		Ŭ	
100-01-6		4-Nitroaniline		410		U	
534-52-1		4,6-Dinitro-2-methylphenol		410		ע כ	
86-30-6		N-Nitrosodiphenylamine		410		U	
101-55-3		4-Bromophenyl-phenylether		410		U	
118-74-1		Hexachlorobenzene		410		U	
1912-24-9	9	Atrazine		410 ·		U	
87-86-5	,	Pentachlorophenol		410		υŢ	
85-01-8		Phenanthrene		110		J	
120-12-7		Anthracene		410		U	
86-74-8		Carbazole		410		Ŭ ·	
84-74-2		Di-n-butylphthalate		410		U	
206-44-0		Fluoranthene		240		J	
129-00-0		Pyrene		190		J .	
85-68-7		Butylbenzylphthalate		410		U	
91-94-1		3,3-Dichlorobenzidine		410		U	
56-55-3	·	Benzo(a)anthracene		100		J	
218-01-9		Chrysene		130		J	
117-81-7		bis(2-Ethylhexyl)phthalate		410		U	

Comments:

Mllen 8/4/10

FORM I SV-1

EPA SAMPLE NO.

LCBKSS00300110XD

						<u> </u>	
Lab Name: Ch	emtech			Contr	act: MACT03		
Lab Code: <u>CF</u>	EM	Case No.:	B2643	SAS No.:	B2643	_ SDG No.:	B2643
Matrix (soil/water):	:	SOIL			Lab Sample ID:	B2643-1	6
Sample wt/vol:	30.11	(g/mL) <u>g</u>		Lab File ID:	BE064925.I)
Level: (low/med)	LC)W			Date Received:	06/10/10	
% Moisture: 1	.9	Decanted: (Y/N) <u>N</u>		Date Extracted:	06/14/10	
Concentrated Extra	ct Volume:	1000	(uL)		Date Analyzed:	06/18/10	,
Injection Volume:	1		 -		Dilution Factor:	.1	
GPC Cleanup: (Y/N	4)	N pH: [N/A		Extraction: (Type) Concentration Units		DXH
CAS NO.		COMPOUND	•		(ug/L or ug/k	Kg) <u>ug/Kg</u>	Q
117-84-0		Di-n-octyl ph	thalate		410		U
205-99-2		Benzo(b)fluor	anthene		160		J
207-08-9		Benzo(k)fluor	anthene		54	,	J
50-32-8		Benzo(a)pyre	ne		110		J .
193-39-5		Indeno(1,2,3-			72		J
53-70-3		Dibenz(a,h)ar			410		Ŭ
191-24-2		Benzo(g,h,i)p		Ì	83		J

N Mu 7/4/10

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

LCBKSS00300110XD

Lab Name:	Chemtech		Contr	act: MACT03		
Lab Code:	CHEM	Case No.: <u>B2643</u>	SAS No.:	B2643	SDG No.:	B2643
Matrix (soil/wat	er):	SOIL		Lab Sample ID:	B2643-16	
Sample wt/vol:	30.11	(g/mL) <u>g</u>		Lab File ID:	BE064925.D	
Level: (low/med) LOW				Date Received:	06/10/10	
% Moisture:	19	Decanted: (Y/N) N		Date Extracted:	06/14/10	
Concentrated Ex	xtract Volume:	1000 (uL)		Date Analyzed:	06/18/10	· .
Injection Volum	ne: <u>1</u>			Dilution Factor:	1	
GPC Cleanup: (Y/N)	N pH: N/A		Concentration Units:	ug/Kg	
Number TICS f	ound:	4				

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q]
-123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	5.3	560	AB	
57-10-3	n-Hexadecanoic acid	16.71	100	J	
	unknown17.64	17.64	100	J	_
638-66-4	Octadecanal	21.28	490	J	1

N/1/10

1E

PESTICIDE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

						LCPD101	100110XX
ab Name:	Chemtech			Contr	act: MACT03		
		G N PO	4.2	CACNO	D2642	SDG No.:	B2643
ab Code:	CHEM	Case No.: B26	43	SAS No.:	B2643	-	
/latrix (soil/w	vater):	SOIL			Lab Sample ID:	B2643-06	····
ample wt/vo	1: 30.05	(g/mL)	g		Lab File ID:	P7049485.D	
evel: (low/m	ned) <u>Lo</u>	ow			Date Received:	06/10/10	
% Moisture:	15	Decanted: (Y/N)	N		Date Extracted:	06/14/10	·
Concentrated	Extract Volume:	10000	(uL)		Date Analyzed:	06/18/10	····
njection Volu	ume: 1				Dilution Factor:	1	
PC Cleanup	: (Y/N)	N pH: N/A			Extraction: (Type) Concentration Units		ХН
CAS NO).	COMPOUND			(ug/L or ug/K	g) ug/Kg	_ Q
319-84-6	5	alpha-BHC			2		U
319-85-7	7	beta-BHC			2		Ŭ
319-86-8	8	delta-BHC			2		U
58-89-9		gamma-BHC			2		Ŭ
76-44-8		Heptachlor			2		U
309-00-2	2	Aldrin			2		U
1024-57	-3	Heptachlor epoxide	>		2		Ŭ
959-98-	8	Endosulfan I			2		U
60-57-1		Dieldrin			3.2		
72-55-9		4,4-DDE			4.7		
72-20-8	· · · · ·	Endrin			2		U
33213-6	5-9	Endosulfan II			2		U
72-54-8		4,4-DDD			1.3		J
1031-07	7-8	Endosulfan Sulfate			2		Ŭ
50-29-3		4,4-DDT			5.7		
72-43-5		Methoxychlor			12		
53494-7		Endrin ketone			2		U
7421-93	3-4	Endrin aldehyde			2		U
5103-71	-9	alpha-Chlordane			2		U
5103-74	1-2	gamma-Chlordane			2		Ŭ
8001-35	5-2	Toxaphene			20		Ŭ

Comments:

PESTICIDE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

LCBKSS00100110XX

Contract: MACT03 Lab Name: Chemtech B2643 SAS No.: B2643 SDG No.: B2643 CHEM Case No.: Lab Code: SOIL Lab Sample ID: B2643-13 Matrix (soil/water): 30.11 Lab File ID: P7049486.D Sample wt/vol: (g/mL) 06/10/10 Date Received: Level: (low/med) Low Decanted: (Y/N) Ν Date Extracted: 06/14/10 % Moisture: 10000 Date Analyzed: 06/18/10 Concentrated Extract Volume: (uL) Dilution Factor: Injection Volume: GPC Cleanup: (Y/N) N pH: N/A Extraction: (Type) SOXH Concentration Units: Q COMPOUND (ug/L or ug/Kg) ug/Kg CAS NO. 2.1 U alpha-BHC 319-84-6 beta-BHC 2.1 U 319-85-7 delta-BHC 2.1 U 319-86-8 U 2.1 58-89-9 gamma-BHC U Heptachlor 2.1 76-44-8 U 2.1 Aldrin 309-00-2 Heptachlor epoxide 2.1 U 1024-57-3 U 959-98-8 Endosulfan I 2.1 U 2.1 Dieldrin 60-57-1 U 2.1 72-55-9 4.4-DDE U Endrin 2.1 72-20-8 IJ 33213-65-9 Endosulfan II 2.1 U 2.1 72-54-8 4.4-DDD U. Endosulfan Sulfate 2.1 1031-07-8 4,4-DDT 2.1 IJ 50-29-3 2.1 U 72-43-5 Methoxychlor U Endrin ketone 2.1 53494-70-5 2.1 U Endrin aldehyde 7421-93-4 2.1 U

2/Cd/la 2/1/10

U

Comments:

5103-71-9

5103-74-2

8001-35-2

alpha-Chlordane

Toxaphene

gamma-Chlordane

2.1 21

PESTICIDE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

LCBKSS00200110XX

Lab Name:	Chemtech			Contr	ract: MACT03		
Lab Code:	CHEM	Case No.: B26	43	SAS No.:	B2643	SDG No.:	B2643
Matrix (soil/w	vater):	SOIL			Lab Sample ID:	B2643-14	
Sample wt/vol	1: 30.08	(g/mL)	g		Lab File ID:	P7049487.D	
Level: (low/m		ow			Date Received:	06/10/10	
			λī		Date Extracted:	06/14/10	
% Moisture:	9	Decanted: (Y/N)	_ <u>N</u> _				
Concentrated:	Extract Volume:	10000	_ (uL)		Date Analyzed:	06/18/10	
Injection Volu	ıme: <u>1</u>				Dilution Factor:	1	*
GPC Cleanup	: (Y/N) _	N pH: <u>N/A</u>			Extraction: (Type) Concentration Units:	SO	XH
CAS NO).	COMPOUND			(ug/L or ug/Kg	g) ug/Kg	_ Q
319-84-6	;	alpha-BHC			1.9		บ
319-85-7		beta-BHC			1.9		U
319-86-8	3	delta-BHC			1.9		Ŭ
58-89-9		gamma-BHC			1.9		U ·
76-44-8		Heptachlor			1.9		U
309-00-2		Aldrin			1.9		U
1024-57-	-3	Heptachlor epoxide	;		1.9		U
959-98-8	3	Endosulfan I			1.9		U
60-57-1		Dieldrin			1.9		U
72-55-9		4,4-DDE			1.9		U
72-20-8		Endrin			1.9		U
33213-6	5-9	Endosulfan II			1.9		U
72-54-8		4,4-DDD			1.9		U
1031-07-	-8	Endosulfan Sulfate			1.9		U
50-29-3		4,4-DDT			1.9		Ŭ
72-43-5		Methoxychlor			1.9		U
53494-7	0-5	Endrin ketone			1.9		U
7421-93	-4	Endrin aldehyde			1.9		Ŭ
5103-71	-9	alpha-Chlordane			1.9		U
5103-74	-2	gamma-Chlordane			1.9		Ŭ
9001.35	2	Toyonhana			10		TT .

Mllen AM.

Comments:

PESTICIDE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

LCBKSS00300110XX

Lab Name:	Chemtech			Contr	ract: MACT03		
Lab Code:	СНЕМ	Case No.: B2	643	SAS No.:	B2643	SDG No.:	B2643
Matrix (soil/wa	ater):	SOIL	_		Lab Sample ID:	B2643-15	
Sample wt/vol	30.05	(g/mL)	_ g		Lab File ID:	P7049488.D	
Level: (low/me			•		Date Received:	06/10/10	
% Moisture:	20	Decanted: (Y/N)	N		Date Extracted:	06/14/10	
							· · · · · · · · · · · · · · · · · · ·
	Extract Volume:	10000	(uL)		Date Analyzed:	06/18/10	·
Injection Volu	me: <u>1</u>				Dilution Factor:	1	
GPC Cleanup:	(Y/N)	N pH: <u>N/A</u>			Extraction: (Type) Concentration Units	<u>SO2</u>	XH
CAS NO.		COMPOUND			(ug/L or ug/K	g) ug/Kg	_ Q
319-84-6		alpha-BHC			2.1		U
319-85-7		beta-BHC			2.1		U
319-86-8		delta-BHC			2.1		U
58-89-9	•	gamma-BHC			2.1		U
76-44-8		Heptachlor			2.1		Ŭ
309-00-2		Aldrin			2.1		U
1024-57-	3	Heptachlor epoxi	de		2.1		U
959-98-8		Endosulfan I			2.1		U
60-57-1		Dieldrin			2.1		U
72-55-9		4,4-DDE			3		7 P
72-20-8		Endrin			2.1		Ŭ
33213-65	i - 9	Endosulfan II			2.1		U
72-54-8		4,4-DDD			2.1		U
1031-07-	8	Endosulfan Sulfa	te		2.1		U
50-29-3		4,4-DDT			3.1		
72-43-5		Methoxychlor			2.1		U
53494-70)-5	Endrin ketone			2.1		U
7421-93-	4	Endrin aldehyde			2.1		U
5103-71-		alpha-Chlordane			2.1		U
5103-74-		gamma-Chlordan	ıe		2.1		U
8001-35		Toyanhene			21		IJ

Comments: 2/5/60

PESTICIDE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO. LCBKSS00300110XD MACT03 Chemtech Contract: Lab Name: CHEM Case No.: B2643 SAS No.: B2643 SDG No.: B2643 Lab Code: Lab Sample ID: Matrix (soil/water): SOIL B2643-16 Lab File ID: P7049489.D 30.06 Sample wt/vol: (g/mL) 06/10/10 Date Received: Low Level: (low/med) Date Extracted: 06/14/10 N % Moisture: Decanted: (Y/N) Concentrated Extract Volume: 10000 (uL) Date Analyzed: 06/18/10 Injection Volume: Dilution Factor: SOXH N Extraction: (Type) GPC Cleanup: (Y/N) pH: N/A Concentration Units: (ug/L or ug/Kg) ug/Kg Q COMPOUND CAS NO. U 2.1 319-84-6 alpha-BHC 2.1 U 319-85-7 beta-BHC U 319-86-8 delta-BHC 2.1 2.1 U 58-89-9 gamma-BHC IJ 2.1 76-44-8 Heptachlor 2.1 U 309-00-2 Áldrin U 1024-57-3 Heptachlor epoxide 2.1 U 2.1 959-98-8 Endosulfan I U 2.1 Dieldrin 60-57-1 "JP 2.7 72-55-9 4,4-DDE U 72-20-8 Endrin 2.1 U 2.1 33213-65-9 Endosulfan II U 2.1 72-54-8 4,4-DDD

Alla offer

U

U

U

U

U

U

U

1031-07-8

50-29-3

72-43-5

53494-70-5

7421-93-4

5103-71-9

5103-74-2

8001-35-2

Endosulfan Sulfate

4.4-DDT

Methoxychlor

Endrin ketone

Endrin aldehyde

alpha-Chlordane

Toxaphene

gamma-Chlordane

2.1

2.9 2.1

2.1

2.1

2.1

2.1

1E

PESTICIDE ORGANICS ANALYSIS DATA SHEET

						EP	A SAMPLE	NO.
						LCPD1011	00110XX	
Lab Name:	Chemtech			Contra	act: MACT03	·		
Lab Code:	CHEM	Case No.:	B2643	SAS No.:	B2643	SDG No.:	B2643	····
Matrix (soil/w	ater):	SOIL			Lab Sample ID:	B2643-06		
Sample wt/vol	: 30.05	(g/mL)	g		Lab File ID:	P6040141.D		
Level: (low/me	ed) L	ow			Date Received:	06/10/10		
% Moisture:	15	Decanted: (Y/N)	N		Date Extracted:	06/14/10		
Concentrated I	Extract Volume:	10000	(uL)		Date Analyzed:	06/14/10		
Injection Volu	me: 1				Dilution Factor:	1		
GPC Cleanup:	(Y/N)	N pH: N	I/A		Extraction: (Type) Concentration Units	SOX	TH.	_
CAS NO.		COMPOUND			(ug/L or ug/K	g) ug/Kg	Q	
12674-11	-2	Aroclor-1016	······································		20		U	
11104-28	-2	Aroclor-1221			20		U	
11141-16	-5	Aroclor-1232			20		U	
53469-21	-9	Aroclor-1242			20		U	
12672-29)-6	Aroclor-1248			20		· U	
11097-69)-1	Aroclor-1254			20		U	
11006 82	5	Aroolog 1260			20		ΤŢ	

1/2/Min 7/4/10

PESTICIDE ORGANICS ANALYSIS DATA SHEET

						LCBKSS0	0100110XX	
Lab Name:	Chemtech			Contr	ract: MACT03			
Lab Code:	СНЕМ	Case No.: B2	643	SAS No.:	B2643	SDG No.:	B2643	
Matrix (soil/wa	ater):	SOIL	•		Lab Sample ID:	B2643-13		
Sample wt/vol:	30.11	(g/mL)	g		Lab File ID:	P6040142.D		
Level: (low/me	ed) <u>L</u>	ow			Date Received:	06/10/10		
% Moisture:	19	Decanted: (Y/N)	N		Date Extracted:	06/14/10		
Concentrated E	Extract Volume:	10000	(uL)		Date Analyzed:	06/14/10		
injection Volu	me: <u>1</u>				Dilution Factor:	1		
GPC Cleanup:	(Y/N)	N pH: <u>N/A</u>			Extraction: (Type) Concentration Units	<u>SO:</u>	XH	
CAS NO.		COMPOUND			(ug/L or ug/k	(g) ug/Kg	_ Q	
12674-11	-2	Aroclor-1016			21		U	
11104-28	-2	Aroclor-1221			21		U	
11141-16	-5	Aroclor-1232			21		U	
53469-21	-9	Aroclor-1242			21		U	
12672-29	-6	Aroclor-1248			21		U	
11097-69	-1	Aroclor-1254			21		U	
11096-82	-5	Aroclor-1260			21		U	

EPA SAMPLE NO.

Comments:

11096-82-5

Aroclor-1260

PESTICIDE ORGANICS ANALYSIS DATA SHEET

						EPA SAMPLE NO.		
•						LCBKSS0	0200110XX	
ab Name:	Chemtech			Contr	ract: MACT03			
Lab Code:	CHEM	Case No.:	B2643	SAS No.:	B2643	SDG No.:	B2643	
Matrix (soil/w	ater):	SOIL			Lab Sample ID:	B2643-14		
Sample wt/vol	: 30.08	(g/mL) <u>g</u>		Lab File ID:	P6040143.D		
_evel: (low/m	ed) <u>L</u>	ow			Date Received:	06/10/10		
% Moisture:	9	Decanted: (Y/N	N_N_		Date Extracted:	06/14/10		
Concentrated 1	Extract Volume:	1000	(uL)		Date Analyzed:	06/14/10		
njection Volu	me: <u>1</u>				Dilution Factor:	. 1		
GPC Cleanup:	(Y/N)	N pH:	N/A		Extraction: (Type) Concentration Units	<u>SO</u> 2	XH	
CAS NO		COMPOUND)		(ug/L or ug/K	g) <u>ug/Kg</u>	_ Q	
12674-11	-2	Aroclor-1016			19		U	
11104-28	3-2	Aroclor-1221			19		U	
11141-16	5-5	Aroclor-1232			19		U	
53469-21	-9	Aroclor-1242			19		U	
12672-29	9-6	Aroclor-1248			19		U	
11097-69)_1	Aroclor-1254		. [19		IJ	

19

P14/10

U

Comments:

G-EMTECH

PESTICIDE ORGANICS ANALYSIS DATA SHEET

			LCBKSS003	00110XX
Lab Name: Chemtech	C	Contract: MACT03		
Lab Code: CHEM Case No.:	B2643 SAS N	No.: <u>B2643</u>	SDG No.:	B2643
Matrix (soil/water): SOIL		Lab Sample ID:	B2643-15	
Sample wt/vol: <u>30.05</u> (g/m	L) <u>g</u>	Lab File ID:	P6040144.D	
Level: (low/med) Low		Date Received:	06/10/10	
% Moisture: 20 Decanted: (Y/	N) <u>N</u>	Date Extracted:	06/14/10	<u>-</u>
Concentrated Extract Volume: 100	00 (uL)	Date Analyzed:	06/14/10	
Injection Volume: 1		Dilution Factor:	1	
GPC Cleanup: (Y/N) N pH:	N/A	Extraction: (Type) Concentration Units:	SOXH	[
CAS NO. COMPOUN	D	(ug/L or ug/Kg)	ug/Kg	Q
12674-11-2 Aroclor-101	6	21		U
11104-28-2 Aroclor-122	1	21		U.
11141-16-5 Aroclor-123	2	21		U
53469-21-9 Aroclor-124	2	21		U ·
12672-29-6 Aroclor-124	8	21		U
11097-69-1 Aroclor-125	4	21		U
11096-82-5 Aroclor-126	0	21		U

2/4/10

EPA SAMPLE NO.

Comments:

11096-82-5

1E

PESTICIDE ORGANICS ANALYSIS DATA SHEET

						LCBKSS00)300110XD
Lab Name:	Chemtech			Contr	ract: MACT03		
Lab Code:	CHEM	Case No.:	B2643	SAS No.:	B2643	SDG No.:	B2643
Matrix (soil/wa	iter):	SOIL			Lab Sample ID:	B2643-16	· · · · · · · · · · · · · · · · · · ·
Sample wt/vol:	30.06	(g/mL) <u>g</u>		Lab File ID:	P6040145.D	
Level: (low/me	d) <u>Lo</u>	ow			Date Received:	06/10/10	
% Moisture:	19	Decanted: (Y/N) <u>N</u>		Date Extracted:	06/14/10	
Concentrated E	xtract Volume:	1000	(uL)		Date Analyzed:	06/14/10	
Injection Volum	ne: <u>1</u>		·		Dilution Factor:	1	· · · · · · · · · · · · · · · · · · ·
GPC Cleanup:	(Y/N)	N pH:	N/A		Extraction: (Type) Concentration Units:	SOX	KH
CAS NO.		COMPOUND)		(ug/L or ug/Kg	g) ug/Kg	Q
12674-11-	-2	Aroclor-1016			21		U
11104-28-	-2	Aroclor-1221			21		Ŭ
11141-16-	-5	Aroclor-1232			21	-	Ŭ
53469-21-	-9	Aroclor-1242			21		Ŭ
12672-29-	-6	Aroclor-1248			21		Ŭ
11097-69	.1	Aroclor-1254			21		U

21

Aroclor-1260

/h///ll 2/4/10

U

EPA SAMPLE NO.

1A-IN

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

LCPD101100110XX

Lab Name:	Chemtech	Consulting	Group	Contract:	MACTEC Inc.			-
Lab Code:	CTECH	Case No.:	B2643	NRAS No.:	B2643	SDG NO.:	B2643	
Matrix (soi	ll/water):	SOIL		Lab Sample ID:	B2643-06			
Level (low/	med):	LOW		Date Received:	6/10/2010			

% Solids:

85.0

Concentration Units (ug/L or mg/kg dry weight):

MG/KG

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	6180	J		P
7440-36-0	Antimony	0.58	J		P
7440-38-2	Arsenic	4.340			P
7440-39-3	Barium	66.6	J		P
7440-41-7	Beryllium	0.30			P
7440-43-9	Cadmium	0.79			P
7440-70-2	Calcium	6320	7		P
7440-47-3	Chromium	8.640			P
7440-48-4	Cobalt	5.790			P
7440-50-8	Copper	21.0			P
7439-89-6	Iron	13900	7		P
7439-92-1	Lead	44.1			P
7439-95-4	Magnesium	1790	3		P
7439-96-5	Manganese	343	J		P
7439-97-6	Mercury	0.134	7		CV
7440-02-0	Nickel	12.8			P
7440-09-7	Potassium	400	73		P
7782-49-2	Selenium	1.920	7		P
7440-22-4	Silver	0.40	Ū		P
7440-23-5	Sodium	120	73		P
7440-28-0	Thallium	1.600	Ū		P
7440-62-2	Vanadium	9.880			P
7440-66-6	Zinc	76.4	7		P

Color Before:	BROWN	Clarity Before:	Texture: MEDIUM	
Color After:	YELLOW	Clarity After:	Artifacts:	
Comments:				

Mlln 8/4/10

Metals

1A-IN

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

LCBKSS00100110XX

Lab Name:	Chemtech	Consulting	Group	Contract:	MACTEC Inc.		
Lab Code:	CTECH	Case No.:	B2643	NRAS No.:	B2643	SDG NO.:	B2643
Matrix (soi	.l/water):	SOIL		Lab Sample ID:	B2643-13		
Level (low/	med):	LOW		Date Received:	6/10/2010		

% Solids:

80.6

Concentration Units (ug/L or mg/kg dry weight):

MG/KG

CAS No.	Analyte	Concentration	С	. Q	М
7429-90-5	Aluminum	7050	7		P
7440-36-0	Antimony	0.70	J		P
7440-38-2	Arsenic	5.670			P
7440-39-3	Barium	83.2	ב		P
7440-41-7	Beryllium	0.42			P
7440-43-9	Cadmium	1.090			P
7440-70-2	Calcium	3400	フ		P
7440-47-3	Chromium	12.6			P
7440-48-4	Cobalt	8.350			P
7440-50-8	Copper	15.6			P
7439-89-6	Iron	16600	J		P
7439-92-1	Lead	47.9			P
7439-95-4	Magnesium	2480	7		P
7439-96-5	Manganese	488	3		P
7439-97-6	Mercury	0.088	7		CV
7440-02-0	Nickel	17.8			P
7440-09-7	Potassium	767	7		P
7782-49-2	Selenium	2.280	3		₽
7440-22-4	Silver	0.42	Ū		P
7440-23-5	Sodium	605	7.		P
7440-28-0	Thallium	1.700	U		P
7440-62-2	Vanadium	11.2			P
7440-66-6	Zinc	77.1	73		P

Color Before:	BROWN	Clarity Before:		Texture:	MEDIUM
Color After:	YELLOW	Clarity After:		Artifacts:	
Comments:					
_					
			1	1411	

1A-IN

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

LCBKSS00200110XX

Lab Name:	Chemtech (Consulting (Group	Contract:	MACTEC Inc.		
Lab Code:	CTECH	Case No.:	B2643	NRAS No.:	B2643	SDG NO.:	B2643
Matrix (soil	L/water):	SOIL		Lab Sample ID:	B2643-14		
Level (low/m	ned):	LOW	_	Date Received:	6/10/2010		
% Solids:	90.7	,				•	

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	5430	ご	,	P
7440-36-0	Antimony	2.580	Ū		P
7440-38-2	Arsenic	3.940			P
7440-39-3	Barium	36.7	7	·	P
7440-41-7	Beryllium	0.26	J		P
7440-43-9	Cadmium	0.66			P
7440-70-2	Calcium	13000	[]		P
7440-47-3	Chromium	7.690			P
7440-48-4	Cobalt	5.570			P
7440-50-8	Copper	18.1			P
7439-89-6	Iron	13500	~		P
7439-92-1	Lead	12.1			P
7439-95-4	Magnesium	4840	ゴ		P
7439-96-5	Manganese	317	3		P
7439-97-6	Mercury	0.017	7		CV
7440-02-0	Nickel	13.0			P
7440-09-7	Potassium	382	Z		P
7782-49-2	Selenium	1.680	J		P
7440-22-4	Silver	0.52	Ū		P
7440-23-5	Sodium	96.8	J		P
7440-28-0	Thallium	2.060	Ū		P
7440-62-2	Vanadium	9.130			P
7440-66-6	Zinc	58.1	2	·	P

Color Before:	BROWN	Clarity Be	efore:	 Texture:	MEDIUM
Color After:	YELLOW	Clarity Af	fter:	Artifacts:	
Comments:					
				////	

1A-IN

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

LCBKSS00300110XX

Lab Name:	Chemtech (Consulting Group	Contract:	MACTEC Inc.		
Lab Code:	CTECH	Case No.: <u>B2643</u>	NRAS No.:	B2643	SDG NO.:	B2643
Matrix (soil	L/water):	SOIL	Lab Sample ID	: B2643-15	· .	
Level (low/m	ned) :	LOW	Date Received	6/10/2010		
% Solids:	79.8				,	

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	5470	7		P
7440-36-0	Antimony	1.080	J		P
7440-38-2	Arsenic	7.690			P
7440-39-3	Barium	93.6	7		P
7440-41-7	Beryllium	0.36	J		P
7440-43-9	Cadmium	0.96			P
7440-70-2	Calcium	2060	7		P
7440-47-3	Chromium	8.800			P
7440-48-4	Cobalt	6.870			P
7440-50-8	Copper	32.8			P
7439-89-6	Iron	13100	7		P
7439-92-1	Lead	144			P
7439-95-4	Magnesium	1540	プ		P
7439-96-5	Manganese	415	J		P
7439-97-6	Mercury	0.193	コ		CV
7440-02-0	Nickel	12.3			P
7440-09-7	Potassium	507	ゴ		P
7782-49-2	Selenium	2.320	3		P
7440-22-4	Silver	0.63	Ū		P
7440-23-5	Sodium	188	2		P
7440-28-0	Thallium	2.510	Ü		P
7440-62-2	Vanadium	9.900			P
7440-66-6	Zinc	113	1		P

Color Before:	BROWN	Clarity Before:	Texture:	MEDIUM
Color After:	YELLOW	Clarity After:	Artifacts:	
Comments:			 	
			1/1/	

1A-IN

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

LCBKSS00300110XD

Lab Name: Che	mtech Consulting	Group	Contract:	MACTEC Inc.		···-	
Lab Code: CTE	CH Case No.	B2643	NRAS No.:	B2643	SDG NO.:	B2643	
Matrix (soil/wa	ter): SOIL		Lab Sample ID:	B2643-16			
Level (low/med)	: LOW		Date Received:	6/10/2010			
% Solids:	81.4			•	•	•	

MG/KG

Concentration Units (ug/L or mg/kg dry weight):

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	6400	て		P
7440-36-0	Antimony	1.370	J		₽
7440-38-2	Arsenic	9.370			₽
7440-39-3	Barium	106	し		₽
7440-41-7	Beryllium	0.46			P
7440-43-9	Cadmium	1.370			P
7440-70-2	Calcium	12600	7		P
7440-47-3	Chromium	9.650			P
7440-48-4	Cobalt	7.740		·	P
7440-50-8	Copper	37.5			P
7439-89-6	Iron	15700	て		P.
7439-92-1	Lead	190			P
7439-95-4	Magnesium	2290	J		P
7439-96-5	Manganese	467	7		P
7439-97-6	Mercury	0.164	J		CV
7440-02-0	Nickel	14.9			P
7440-09-7	Potassium	584	ゴ		P
7782-49-2	Selenium	2.730	ゴ		P
7440-22-4	Silver	0.50	Ū		P
7440-23-5	Sodium	211	コ		P
7440-28-0	Thallium	2.000	บ		P
7440-62-2	Vanadium	11.3			P
7440-66-6	Zinc	137	T		P

Color Before:	BROWN	Clarity Before:	 Texture:	MEDIUM
Color After:	YELLOW	Clarity After:	Artifacts:	
Comments:				

VOCs

NYSDEC DUSR PROJECT CHEMIST REVIEW RECORD

Project: Loohn's Corning Method: <u>SW-846 8260B</u>

Laboratory and SDG(s): Chemtech

SDG# B2643

Date: Reviewer:

Review Level

X NYSDEC DUSR

☐ USEPA Region II Guideline

1. X Case Narrative Review and COC/Data Package Completeness

COMMENTS

Were problems noted? No.

Where all the samples on the COC analyzed for the requested analyses?

(circle one)

2. X Holding time and Sample Collection

All samples were analyzed within the 14 day holding time. (YES) NO (circle one)

3. X OC Blanks

Are method blanks free of contamination? YES NO (circle one) Are Trip blanks free of contamination? **VES** NO (circle one) Are Rinse blanks free of contamination? YES NO (NA) (circle one)

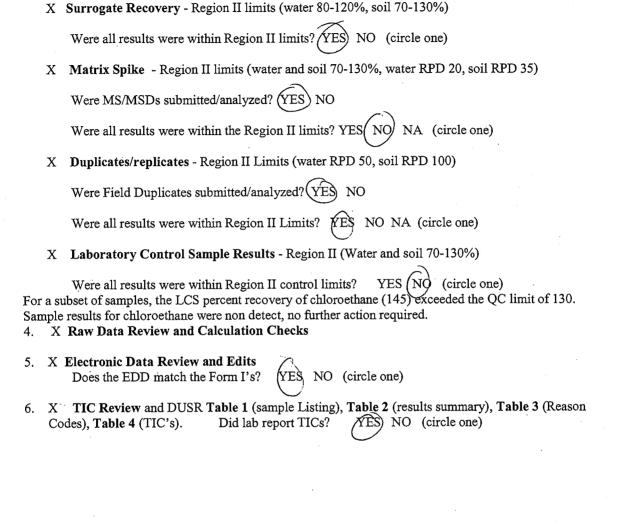
X Instrument Tuning

Were all results were within method criteria. (YES

\NO (circle one)

X Instrument Calibration Were all results within criteria? YES (NO) circle one) Initial Calibration %RSD = 20% (30% for 1,1-DCE, chloroform, 1,2-DCP, toluene, ethylbenzene, VC) Initial Avg RRF and Continuing RRF should be ≥ 0.05 and 0.10 for Chloromethane, 1,1-Dichloroethane, Bromoform and 0.30 for Chlorobenzene and 1,1,2,2-Tetrachloroethane

For a subset of samples, the percent relative standard deviation (RSD) for dichlorodifluoromethane (29) and acetone (22) exceeded the OC limit of 20. Associated sample results for dichlorodifluoromethane and acetone were non detect and the reporting limits were qualified estimated (UJ).


For a subset of samples, the RSD for chloroethane (24) exceeded the QC limit of 20. Associated sample results for chloroethane were non detect and the reporting limits were qualified estimated (UJ).

Continuing Calibration %D = 20%

For a subset of samples, the percent difference for dichlorodifluoromethane (34), trichlorofluoromethane (24), acetone (27), 1,2-dichloropropane (22), bromodichloromethane (21), 4methyl-2-pentanone (26), toluene (21), trans-1,3-dichloropropene (24), cis-1,3-dichloropropene (21), 1,1,2trichloroethane (27), 2-hexanone (38), 1,2-dibromoethane (25), and styrene (22) exceeded the QC limit of 20. Associated sample results for dichlorodifluoromethane and acetone were qualified previously under the initial calibration criteria. Associated sample results for trichlorofluoromethane, 1,2-dichloropropane, bromodichloromethane, 4-methyl-2-pentanone, toluene, trans-1,3-dichloropropene, cis-1,3dichloropropene, 1,1,2-trichloroethane, 2-hexanone, 1,2-dibromoethane, and styrene were non detect and the reporting limits were qualified estimated (UJ).

For a subset of samples, the percent difference for dichlorodifluoromethane (50), chloromethane (27), vinyl chloride (28), chloroethane (31), trichlorofluoromethane (23), carbon disulfide (21), and 1,1,2trichloro-1,2,2-trifluoroethane (24) exceeded the QC limit of 20. The associated sample result for chloroethane was non detect and was qualified previously under the initial calibration criteria. Associated sample results for dichlorodifluoromethane, chloromethane, vinyl chloride, chloroethane, trichlorofluoromethane, carbon disulfide, and 1,1,2-trichloro-1,2,2-trifluoroethane were non detect and the reporting limits were qualified estimated (UJ).

For a subset of samples, the percent difference for chloroethane (47) exceeded the QC limit of 20. The associated sample results for chloroethane were non detect and were qualified previously under the initial calibration criteria.

Instrument: MSVOA_F

284 Sheffield Street, Mountainside NJ 07092 (908) 789-8900

Daily Analysis Runlog For Sequence/QCBatch ID #VF061510

STD. NAME	STD REF.#	STD. NAME	STD REF.#
Review By	HSIN.CHEN	Review On	6/16/2010 12:00:00 AM
Tune/Reschk	VP1608	Initial Calibration Stds	VP1609 to VP1614
ccc	N/A	SubDirectory	VF061510
Internal Standard/PEM	VP1181	HP Acquire Method	MOON
ICV/I.BLK	VP1615	HP Processing Method	82f061510w.m

Sr#	Sampleld	Data File Name	Comment	Status
1	BFB TUNE CHECK	VF022571.D		Ok
2	50 PPB ICC	VF022572.D		Ok,M
3	100 PPB ICC	VF022573.D		Ok,M
4	20 PPB ICC	VF022574.D		Ok,M
5	10 PPB ICC	VF022575.D		Ok,M
6	5 PPB ICC	VF022576.D		Ok,M
7	1 PPB ICC	VF022577.D		Ok,M
8	50 PPB ICV	VF022578.D		Not Ok
9	50 PPB ICV	VF022579.D		Ok,M
10	VBF0615M1	VF022580.D		Not Ok
11	VBF0615W1	VF022581.D		Not Ok
12	BSF0615W1	VF022582.D		Not Ok
13	BSF0615W2	VF022583.D	MS error,instrument stop	Not Ok

Deskon

Method Path : \\TERASTORAGE\\VOASRV\\HPCHEM1\\MSVOA F\\METHOD\\

Method File: 82F061510W.M

Title : SW846 8260

Last Update : Tue Jun 15 17:13:26 2010 Response Via : Initial Calibration

Calibration Files

20 =VF022574.D =VF022576.D 10 =VF022575.D 50 =VF022572.D 100 =VF022573.D 1 =VF022577.D

	(Compound	5	10	20	50	100	1	Avq	%RSD	
1)	I	Pentafluorobenzene)		 -		~
2)	T	Dichlorodifluorom	0.352	0.638	0.572	0.777	0.683	0.390	0.569	29.45	Ä
3)	Р	Chloromethane	0.454	0.607	0.557	0.670	0.631	0.538	0.576	13.37	
4)	CM	Vinyl Chloride	0.512	0.549	0.540	0.617	0.589	0.535	0.557	6.94#	
5)	T	Bromomethane	0.263	0.297	0.270	0.313	0.228	0.390	0.294	18.87	
6)		Chloroethane	0.154	0.184	0.201	0.209	0.153	0.254	0.193	19.77	
7)	T	Trichlorofluorome								13.04	
8)		Tert butyl alcoho									N
9)		Diethyl Ether								13.68	
0)		1,1-Dichloroethen								13.19#	
1)	T	Methyl Iodide								7.47	5
2)	T	Acrolein	0.077	0.010	0.002	0.047	0.013	0.002	0.000		N
3)	T	1,1,2-Trichlorotr								11.38	
4)		Acrylonitrile								10.66	
5)		Allvl Chloride								_6.54	
		Acetone	0.730	0.754	0.004	0.732	0.705	0.023	0.745	22.22	ハー
6)		Carbon Disulfide								\ /	7
7)										8.83 11.61	
8)	T	Methyl Acetate									
9)	T	Methyl tert-butyl								5.80	
0)	T	Methylene Chlorid								16.66	
1)	T	trans-1,2-Dichlor								7.35	
2)	T	Acetonitrile	0.750	0./54	0.684	0.752	0.705	0.825	0.745	6.54	
3)	T	Vinvl Acetate	0.633	0.633	0.626	0.706	0.658	0.720	0.663	6.1/	
4)	P	1,1-Dichloroethan 2-Butanone	0.931	0.890	0.812	0.921	0.840	1.013	0.901	7.95	
5)		2-Butanone	0.544	0.435	0.424	0.491	0.405	0.519	0.470	11.98	
6)	${f T}$	2,2-Dichloropropa	0.622	0.586	0.547	0.637	0.584	0.713	0.615	9.33	
7)		cis-1,2-Dichloroe	0.646	0.600	0.551	0.625	0.580	0.735	0.623		
8)	${f T}$	Bromochloromethan								17.71	
9)	CM	Chloroform	1.124	0.990	0.895	1.109	1.029	1.169	1.053	9.62#	
0)	${f T}$	Ethvl Acetate	1.634	1.433	1.427	1.641	1.598	1.667	1.567	6.91	
1)	${f T}$	Cyclohexane	0.708	0.683	0.619	0.678	0.605	0.746	0.673	7.93	
2)	T	1,1,1-Trichloroet	0.962	0.898	0.759	0.937	0.800	1.046	0.900	11.83	
3)	S	1,2-Dichloroethan	0.809	0.803	0.834	0.812	0.734	0.822	0.802	4.37	
· // \	I	1,4-Difluorobenze	no			TQT	D				
5)		Dibromofluorometh								1 15	
	T	1,1-Dichloroprope								9.22	
		Carbon Tetrachlor								6.65	•
	TM	Benzene							1.386	8.67	
8)		Methacrylonitrile								7.95	
9)		1,2-Dichloroethan								8.51	
0)	TM									7.94	
1)	T	Isobutyl Alcohol									
2)		Isopropyl Acetate								10.38	
3)		Trichloroethene								8.66	
4)		Methylcyclohexane								14.78	
5)		1,2-Dichloropropa									
6)		Dibromomethane							0.318	8.61	
7)		Bromodichlorometh								8.44	
8)		Toluene-d8							1.074	2.13	
9)		4-Methyl-2-Pentan								6.41	
0)		Toluene							0.855	7.83#	
1)		t-1.3-Dichloropro								5.67	
2)	${f T}$	Methyl Methacryla	0.285	0.266	0.261	0.312	0.316	0.295	0.289	7.95	

Method Path : \\TERASTORAGE\VOASRV\HPCHEM1\MSVOA F\METHOD\
Method File : 82F061510W.M
Title : SW846 8260

Last Update : Tue Jun 15 17:13:26 2010

Response Via : Initial Calibration

Calibration Files

5 =VF022576.D 10 =VF022575.D 20 =VF022574.D 50 =VF022572.D 100 =VF022573.D 1 =VF022577.D

	Compound	5	10	20	50	100	. 1	Avq	%RSD
3) T 4) T 5) T 6) T 7) T 8) T 9) T 0) T 1) S	1,3-Dichloropropa 2-Chloroethyl Vin 2-Hexanone Dibromochlorometh 1,2-Dibromoethane	0.361 0.573 0.678 0.197 0.432 0.446 0.422	0.332 0.508 0.592 0.127 0.370 0.409 0.374	0.309 0.501 0.578 0.128 0.362 0.390 0.356	0.370 0.607 0.682 0.148 0.435 0.495 0.433	0.365 0.594 0.682 0.146 0.416 0.494 0.432	0.359 0.551 0.657 0.196 0.379 0.454 0.425	0.350 0.556 0.645 0.157 0.399 0.448 0.407	6.63 6.84 7.94 7.37 20.28 8.13 9.55 8.20 0.95
2) I 3) T 4) P 5) T 6) C 7) T 8) T 9) T 0) P	M Tetrachloroethene M Chlorobenzene 1.1.1.2-Tetrachlo Ethvl Benzene m/p-Xvlenes o-Xvlene Stvrene	0.450 1.149 0.447 0.556 0.713 0.697 1.119	1.032	0.331 0.946 0.371 0.468 0.588 0.584 0.988	0.409 1.157 0.470 0.567 0.711 0.719 1.236	0.393 1.103 0.440 0.527 0.655 0.670 1.155	0.531 1.158 0.466 0.559 0.714 0.678 1.046	0.421 1.091 0.434 0.529 0.669 0.663 1.100	15.81 7.87 8.61 7.58# 7.87 7.45 8.06 12.61
1) TT P TT TT TT TT TT TT TT TT TT TT TT T	Isopropylbenzene n-Amyl Acetate 1,1,2,2-Tetrachlo 1,2,3-Trichloropr Bromobenzene n-propylbenzene 2-Chlorotoluene 1,3,5-Trimethylbe trans-1,4-Dichlor p-ethyltoluene 4-Chlorotoluene tert-Butylbenzene 1,2,4-Trimethylbe sec-Butylbenzene p-Isopropyltoluen 1,3-Dichlorobenze 1,4-Dichlorobenze 1,4-Dichlorobenze n-Butylbenzene n-Butylbenzene hexachloroethane 1,2-Dichlorobenze 1,2,4,5-tetrameth 1,2-Dibromo-3-Chl 1,2,4-Trichlorobe Hexachlorobutadie Naphthalene	3.441 2.036 1.178 0.950 0.888 4.332 3.116 2.857 0.467 3.388 2.821 2.704 2.960 3.773 2.937 1.679 1.728 1.637 3.135 0.755 1.637 2.633 0.242 1.042 2.590	3.189 1.925 1.060 0.842 0.8921 2.774 2.695 0.446 2.956 2.5466 2.5466 3.470 2.739 1.507 1.402 2.864 0.691 1.475 2.231 0.915 0.425 2.326	2.948 1.804 1.015 0.796 0.747 2.626 2.466 0.434 3.111 2.340 2.370 2.491 3.232 2.513 1.406 1.468 1.490 2.612 0.635 1.362 2.444 0.211 0.854 0.403 2.261	3.458 2.108 1.155 0.876 0.888 4.203 2.830 2.851 0.503 2.433 2.650 2.805 2.994 1.668 1.728 1.211 3.127 0.778 1.625 2.032 0.253 1.094 0.505 2.854	3.488 2.142 1.125 0.801 0.907 4.080 2.636 2.641 0.455 3.112 2.384 2.732 2.776 3.602 2.922 1.613 1.680 1.618 2.900 0.757 1.562 2.658 0.248 1.102 0.492 2.812	3.342 2.015 1.184 0.963 0.925 3.153 2.623 2.624 2.563 2.819 3.668 2.856 1.916 1.490 3.063 0.722 1.594 0.253 1.007 0.459 2.231	2.005 1.119 0.871 0.860 4.100 2.856 2.689 0.474 2.995 2.560 2.607 2.772 3.588 2.827 1.612 1.689 1.475 2.950 0.723 1.542 2.382 0.240 1.002 0.463 2.512	6.30 6.20 6.09 8.30 7.89 7.05 8.05 5.53 8.50 10.55 6.99 6.47 6.23 5.84 6.25 8.75 10.60 6.83 7.28 6.87 10.18 6.77 9.92 9.00 11.11 10.40

^{#) =} Out of Range

CHE	GEMTECH									
			M	anı	ual Inte	gration	Report			
	Sequence VF061710 In				trumer	nt	MSVOA_f			A_f
Sample ID	File ID	Para	ameter		Review By	Review On	Supervised By	Supe On	vised	Reason
B2697- 01MS	VF022616.D	Tricl	nlorofluorometh	ane	VISHAL	6/18/2010 10:24:49 AM	apatel	6/18/2 10:44 AM	.05	Peak Integrated by Software incorrectly
B2697- 01MSD	VF022617.D	Cark	oon Disulfide		VISHAL	6/18/2010 10:24:51 AM	apatel			Peak Integrated by Software incorrectly
B2697- 01MSD	VF022617.D	Tricl	nlorofluorometh	ane		6/18/2010 10:24:51 AM	apatel	6/18/2 10:44 AM		Peak Integrated by Software incorrectly

d	EMIEG			Ins	trum	ent: N	/ISVOA_F
				inside NJ 070			
Da	ily Analysis I	Runlog Fo	r Se	quence/QCBa	itch	ID #V	F061710
STD	. NAME	STD REF.#	STD	. NAME	STD	REF.#	
Revi	ew By	HSIN.CHEN	Revi	ew On	6/17	/2010 1	2:00:00 AM
Tune	e/Reschk	VP1685	Initia	al Calibration Stds	VP16	609 to V	P1614
CCC		VP1686	SubD	Directory	VF06	1710	
Inter	nal Standard/PEM	VP1181	HP A	cquire Method	MOOI	N	
ICV/	I.BLK	N/A	HP P	rocessing Method	82f06	61510w.r	n
Sr#	SampleId	Data File Nam	е	Date-Time		Operator	Status
1	BFB TUNE CHECK	VF022599.D		17 Jun 2010 11:10)	PS	Not Ok
2	BFB TUNE CHECK	VF022600.D		17 Jun 2010 11:48		НС	Ok
3	50 PPB CCC	VF022601.D		17 Jun 2010 12:32		НС	Ok,M
4	VBF0617M1	VF022602.D		17 Jun 2010 13:13		НС	Ok
5	VBF0617W1	VF022603.D		17 Jun 2010 13:41		НС	Ok
6	BSF0617W1	VF022604.D		17 Jun 2010 14:1	5	НС	Ok,M
7	BSF0617W2	VF022605.D		17 Jun 2010 14:4:	2	НС	Ok,M
8	B2617-03	VF022606.D		17 Jun 2010 15:1	6	НС	Ok
9	B2643-20RE 🌯	VF022607.D		17 Jun 2010 15:4	3	НС	Ok
10	B2643-02DL	VF022608.D		17 Jun 2010 16:1	0	НС	Ok
11	BSF0617M1	VF022609.D		17 Jun 2010 16:3	8	HC	Ok,M
10	0.5 PPB LOD	VF022610.D		17 Jun 2010 17:0	5	НС	Not Ok
12	1	VE022011 D		17 Jun 2010 17:33		НС	Not Ok
13	2 PPB LOQ	VF022611.D		17 Jun 2010 17:33			Hee on

Data Path : Z:\HPCHEM1\Msvoa F\Data\VF061710\

Data File : VF022601.D

Acg On : 17 Jun 2010 12:32 Operator : HC

Sample : 50 PPB CCC
Misc : 5.0mL,MSVOAF
ALS Vial : 2 Sample Multiplier: 1

Ouant Time: Jun 17 12:49:26 2010

Ouant Method: \\TERASTORAGE\VOASRV\HPCHEM1\MSVOA F\METHOD\82F061510W.M

Quant Title : SW846 8260

QLast Update : Tue Jun 15 17:13:26 2010

Response via: Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 20% Max. Rel. Area : 150%

	Compound	AvqRF	CCRF	%Dev Area%	Dev(min)
-123456789012345678901234567890	Pentafluorobenzene Dichlorodifluoromethane Chloromethane Vinvl Chloride Bromomethane Chloroethane Trichlorofluoromethane Tert butvl alcohol Diethvl Ether 1.1-Dichloroethene Methvl Iodide Acrolein 1.1,2-Trichlorotrifluoroeth Acrylonitrile Allyl Chloride Acetone Carbon Disulfide Methyl Acetate Methyl tert-butyl Ether Methylene Chloride trans-1,2-Dichloroethene Acetonitrile Vinvl Acetate 1.1-Dichloroethane 2-Butanone 2.2-Dichloropropane cis-1,2-Dichloroethene Bromochloromethane Chloroform	1.000 0.569 0.576 0.557 0.294 0.193 0.711 0.066 0.236 0.434 0.589 0.054 0.481 0.167 0.745 0.225 1.226 1.236 1.399 0.494 0.439 0.4439 0.4439 0.4563 0.901 0.6623 0.300 1.053	1.000 0.610 0.566 0.544 0.256 0.196 0.718 0.058 0.243 0.407 0.527 0.032 0.459 0.158 0.703 0.191 1.208 1.085 1.336 0.449 0.400 0.703 0.652 0.833 0.406 0.579 0.572 0.264 0.983	0.0 117 -7.2 92 1.7 99 2.3# 103 12.9 95 -1.6 109 -1.0 96 12.1 110 -3.0 124 6.2# 110 10.5 95 40.7# 83 4.6 109 5.6 109 15.1 99 1.5 112 12.2 105 4.5 106 9.1 110 8.9 104 5.6 109 1.7 108 7.5 106 13.6 96 5.9 106 8.2 107 12.0 116 6.6# 104	0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0 T 1 T 2 T 3 S	Ethvl Acetate Cvclohexane 1,1,1-Trichloroethane 1,2-Dichloroethane-d4	1.567 0.673 0.900 0.802	0.621	6.0 105 7.7 107 10.8 100 2.0 113	0.00 0.00 0.00 0.00
4 I 5 S 6 T 7 TM 8 TM 9 T 0 TM 1 T 2 T 3 TM 4 T 5 C	1,4-Difluorobenzene Dibromofluoromethane 1,1-Dichloropropene Carbon Tetrachloride Benzene Methacrylonitrile 1,2-Dichloroethane Isobutyl Alcohol Isopropyl Acetate Trichloroethene Methylcyclohexane 1,2-Dichloropropane	1.000 0.348 0.543 0.540 1.386 0.296 0.630 0.927 0.728 0.403 0.573 0.415	1.000 0.330 0.496 0.509 1.280 0.279 0.579 0.883 0.687 0.377 0.510 0.378	0.0 114 5.2 109 8.7 101 5.7 103 7.6 104 5.7 107 8.1 105 4.7 105 5.6 103 6.5 103 11.0 102 8.9# 103	0.00

Data Path : Z:\HPCHEM1\Msvoa F\Data\VF061710\

Data File : VF022601.D

Acq On : 17 Jun 2010 12:32

Operator : HC

Sample : 50 PPB CCC Misc : 5.0mL, MSVOAF

ALS Vial : 2 Sample Multiplier: 1

Ouant Time: Jun 17 12:49:26 2010

Ouant Method: \\TERASTORAGE\VOASRV\HPCHEM1\MSVOA_F\METHOD\82F061510W.M Quant Title: SW846 8260

QLast Update: Tue Jun 15 17:13:26 2010

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 20% Max. Rel. Area: 150%

		Compound	AvgRF	CCRF	%Dev Area%	Dev(min)
- 67 8 9 0 1 2 3 4 5 6 7 8 9 0	T S T T T T T T T T	Dibromomethane Bromodichloromethane Toluene-d8 4-Methvl-2-Pentanone Toluene t-1,3-Dichloropropene Methvl Methacrvlate cis-1,3-Dichloropropene 1,1,2-Trichloroethane Ethvl Methacrvlate 1,3-Dichloropropane 2-Chloroethyl Vinyl ether 2-Hexanone Dibromochloromethane 1,2-Dibromoethane	0.318 0.614 1.074 0.520 0.855 0.624 0.289 0.695 0.350 0.556 0.645 0.157 0.399 0.448 0.407	0.297 0.577 1.069 0.488 0.816 0.609 0.284 0.658 0.335 0.548 0.614 0.132 0.378 0.434 0.388	6.6 103 6.0 102 0.5 113 6.2 102 4.6# 104 2.4 103 1.7 104 5.3 102 4.3 103 1.4 103 4.8 103 15.9 102 5.3 99 3.1 100 4.7 102	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
1	S	4-Bromofluorobenzene	0.490	0.476	2.9 112	
2 3 4 5 6 7 8 9	TM PM . T C T T	Chlorobenzene-d5 Tetrachloroethene Chlorobenzene 1,1,1,2-Tetrachloroethane Ethyl Benzene m/p-Xvlenes o-Xvlene Stvrene Bromoform	1.000 0.421 1.091 0.434 0.529 0.669 0.663 1.100 0.337	1.000 0.349 1.049 0.419 0.513 0.639 0.638 1.088 0.340	0.0 113 17.1 96 3.8 102 3.5 101 3.0# 102 4.5 101 3.8 100 1.1 99 -0.9 97	0.02 0.01 0.02 0.01 0.01 0.01
11 22 33 44 55 66 77 88 99 00 11 22 33 44 55 66 77 88 99 89 89 89 89 89 89 89 89 89 89 89		1,4-Dichlorobenzene-d4 Isopropvlbenzene n-Amvl Acetate 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane Bromobenzene n-propvlbenzene 2-Chlorotoluene 1,3,5-Trimethylbenzene trans-1,4-Dichloro-2-Butene p-ethyltoluene 4-Chlorotoluene 1,2,4-Trimethylbenzene sec-Butylbenzene p-Isopropvltoluene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene p-diethylbenzene	1.000 3.311 2.005 1.119 0.871 0.860 4.100 2.856 2.689 0.474 2.995 2.560 2.607 2.772 3.588 2.827 1.612 1.689 1.475	1.000 3.151 1.899 1.054 0.799 0.818 3.782 2.552 2.593 0.435 2.659 2.378 2.556 2.620 3.349 2.670 1.487 1.567 1.262	0.0 111 4.8 101 5.3 100 5.8 101 8.3 101 4.9 102 7.8 100 10.6 100 3.6 101 8.2 96 11.2 121 7.1 100 2.0 101 5.5 100 6.7 98 7.8 99 7.8 99 7.2 101 14.4 116	0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01

Data Path : Z:\HPCHEM1\Msvoa F\Data\VF061710\

Data File : VF022601.D

: 17 Jun 2010 12:32 Aca On

Operator : HC

Sample : 50 PPB CCC Misc : 5.0mL, MSVOAF

ALS Vial : 2 Sample Multiplier: 1

Ouant Time: Jun 17 12:49:26 2010

Ouant Method: \\TERASTORAGE\VOASRV\HPCHEM1\MSVOA F\METHOD\82F061510W.M

Quant Title : SW846 8260

QLast Update: Tue Jun 15 17:13:26 2010

Response via: Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 20% Max. Rel. Area : 150%

	Compound	AvqRF	CCRF	%Dev A	rea%	Dev(min)
0 T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 T	n-Butylbenzene Hexachloroethane 1,2-Dichlorobenzene 1,2,4,5-tetramethvlbenzene 1,2-Dibromo-3-Chloropropane 1,2,4-Trichlorobenzene Hexachlorobutadiene Naphthalene 1,2,3-Trichlorobenzene	2.950 0.723 1.542 2.382 0.240 1.002 0.463 2.512 0.918	2.695 0.655 1.449 1.985 0.215 0.866 0.376 2.224 0.786	8.6 9.4 6.0 16.7 10.4 13.6 18.8 11.5	96 94 99 109 94 88 83 87	0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01

^{(#) =} Out of Range

SPCC's out = 0 CCC's out = 6

Instrument: MSVOA_F

284 Sheffield Street, Mountainside NJ 07092 (908) 789-8900

Daily Analysis Runlog For Sequence/QCBatch ID #VF061810

STD. NAME	STD REF.#	STD. NAME	STD REF.#	
Review By	HSIN.CHEN	Review On	6/18/2010 12:00:00 AM	
Tune/Reschk	VP1709	Initial Calibration Stds	VP1609 to VP1614	
ccc	VP1710	SubDirectory	VF061810	
Internal Standard/PEM	VP1181	HP Acquire Method	MOON	
ICV/I.BLK	N/A	HP Processing Method	82f061510w.m	

Sr#	Sampleld	Data File Name	Comment	Status
1	BFB TUNE CHECK	VF022629.D		Ok
2	50 PPB CCC	VF022630.D		Ok,M
3	VBF0618W1	VF022631.D	MS ERROR	Not Ok
4	VBF0618W2	VF022632.D		Ok
5	B2697-02 5X	VF022633.D	T.Blank for this projet is in VF061710	Ok
6	B2697-07 5X	VF022634.D	MS MSD for this projet is in VF061710	Ok
7	BSF0618W1	VF022635.D		Ok,M
8	B2646-05 5X	VF022636.D	Use this	Ok
9	B2697-03 5X	VF022637.D		Ok
10	B2697-04 5X	VF022638.D		Ok
11	B2697-05 5X	VF022639.D		Ok
12	B2697-06 5X	VF022640.D		Ok
13	B2697-08 5X	VF022641.D		Ok
14	B2698-01 5X	VF022642.D	MS -Error	Not Ok
15	T.BLANK 5X	VF022643.D		Ok
16	VBF0618M1	VF022644.D		Ok
17	BSF0618M1	VF022645.D		Ok,M
18	B2643-18DL	VF022646.D		Ok
19	B2667-02 5X	VF022647.D	MS -Error	Not Ok

Balseratheld

«Data Path : Z:\HPCHEM1\Msvoa F\Data\VF061810\

Data File : VF022630.D

Aca On : 18 Jun 2010 10:32 Operator : HC

Sample : 50 PPB CCC

Misc : 5.0mL,MSVOAF
ALS Vial : 2 Sample Multiplier: 1

Ouant Time: Jun 18 13:15:52 2010

Ouant Method: \\TERASTORAGE\VOASRV\HPCHEM1\MSVOA_F\METHOD\82F061510W.M

Ouant Title : SW846 8260

QLast Update : Tue Jun 15 17:13:26 2010 Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 20% Max. Rel. Area : 150%

	Compound	AvgRF	CCRF	%Dev Area% Dev(min)
1 I 2 T 3 P 4 CM 5 T 6 T	Pentafluorobenzene Dichlorodifluoromethane Chloromethane Vinvl Chloride Bromomethane Chloroethane	1.000 0.569 0.576 0.557 0.294 0.193	1.000 0.765 0.673 0.639 0.280 0.227	0.0. 79 0.00 T -34.4# 78 0.00 T -16.8 79 0.00 -14.7# 82 -0.02 4.8 71 0.00 -17.6 86 0.00
7 T	Trichlorofluoromethane	0.711	0.880 0.068	-23.8# 80 0.00 r -3.0 88 0.00
8 T 9 T	Tert butvl alcohol Diethvl Ether	0.066 0.236	0.058	-9.7 8.9 0.00
0 CM	1,1-Dichloroethene	0.434	0.463	-6.7# 85 -0.04
1 T	Methyl Iodide	0.589	0.637	-8.1 78 0.00 $\cancel{1}$ 31.5# 65 0.00 $\cancel{1}$
2 T 3 T	Acrolein	0.054 0.481	0.037 0.530	31.5♯ 65 0.00 M -10.2 83 0.00
3 T 4 T	1,1,2-Trichlorotrifluoroeth Acrylonitrile	0.461	0.175	-4.8 82 0.00
5 T	Allyl Chloride	0.745	0.744	0.1 78 0.00
6 T	Acetone	0.225	0.285	€26.7#100 0.00 T
7 T .	Carbon Disulfide	1.226	1.388	-13.2 87 0.00
8 T	Methyl Acetate	1.236	1.231	0.4 81 0.00
9 T	Methyl tert-butyl Ether	1.399	1.500	-7.2 81 0.00
0 T	Methylene Chloride	0.494 0.439	0.510 0.460	-3.2 85 0.00 -4.8 81 0.00
1 T 2 T	trans-1,2-Dichloroethene Acetonitrile	0.439	0.440	0.1 78 0.00
2 I 3 T	Vinvl Acetate	0.663	0.775	-16.9 87 0.00
4 P	1,1-Dichloroethane	0.901	0.990	-9.9 85 0.00
5 TM		0.470	0.542	-15.3 87 0.00
6 T	2,2-Dichloropropane	0.615	0.693	-12.7 86 0.00
7 T	cis-1,2-Dichloroethene	0.623	0.680	-9.1 86 0.00
8 T	Bromochloromethane	0.300	0.295	1.7 87 0.00
9 CM	Chloroform	1.053 1.567	1.179 1.986	-12.0# 84 0.00 -26.7∰ 96 0.00 M
0 T 1 T	Ethvl Acetate Cvclohexane	0.673	0.694	-3.1 81 0.00
2 T	1,1,1-Trichloroethane	0.900	0.999	-11.0 84 0.00
3 S	1,2-Dichloroethane-d4	0.802	0.860	-7.2 84 0.00
	•			
4 I	1,4-Difluorobenzene	1.000	1.000	0.0 81 0.00
5 S	Dibromofluoromethane	0.348	0.315	9.5 74 0.00 -5.3 83 0.00
6 T	1,1-Dichloropropene	0.543 0.540	0.572 0.602	-5.3 83 0.00 -11.5 87 0.00
7 TM 8 TM	Carbon Tetrachloride Benzene	1.386	1.596	-15.2 93 0.00
8 TM 9 T	Methacrylonitrile	0.296	0.332	-12.2 91 0.00
O TM	1,2-Dichloroethane	0.630	0.726	-15.2 94 0.00 -
1 T	Isobutyl Alcohol	0.927	1.129	21.8# 96 0.00 M
2 T	Isopropyl Acetate	0.728	0.924	€26.9 99 0.00 M
3 TM	Trichloroethene	0.403	0.460	-14.1 90 0.00
4 T	Methylcvclohexane	0.573	0.628	-9.6 90 0.00
5 C	1,2-Dichloropropane	0.415	0.506	21.9₽ 99 0.00 1

Data Path : Z:\HPCHEM1\Msvoa F\Data\VF061810\

Data File : VF022630.D

Aca On : 18 Jun 2010 10:32

Operator : HC

Sample : 50 PPB CCC
Misc : 5.0mL, MSVOAF

ALS Vial : 2 Sample Multiplier: 1

Ouant Time: Jun 18 13:15:52 2010

Ouant Method: \\TERASTORAGE\VOASRV\HPCHEM1\MSVOA_F\METHOD\82F061510W.M Quant Title: SW846 8260

QLast Update : Tue Jun 15 17:13:26 2010

Response via: Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 20% Max. Rel. Area: 150%

	Compound	AvqRF	CCRF	%Dev Area% Dev(min)
6 T 7 S T CM 1 T T T T T T T T T S T T S T T T T T T	Dibromomethane Bromodichloromethane Toluene-d8 4-Methvl-2-Pentanone Toluene t-1,3-Dichloropropene Methvl Methacrvlate cis-1,3-Dichloropropene 1,1,2-Trichloroethane Ethvl Methacrvlate 1,3-Dichloropropane 2-Chloroethyl Vinyl ether 2-Hexanone Dibromochloromethane 1,2-Dibromoethane 4-Bromofluorobenzene	0.318 0.614 1.074 0.520 0.855 0.624 0.289 0.695 0.350 0.556 0.645 0.157 0.399 0.448 0.407 0.490	0.386 0.743 1.126 0.656 1.038 0.776 0.353 0.838 0.444 0.706 0.810 0.165 0.551 0.556 0.509 0.530	-21.4# 95 0.00 7 -21.0# 93 0.00 7 -4.8 85 0.00 -26.2# 98 0.00 7 -21.4# 95 0.00 7 -21.4# 95 0.00 7 -21.4# 94 0.00 7 -21.4# 94 0.00 7 -21.6# 92 0.00 7 -25.6# 92 0.00 7 -5.1 90 0.00 7 -5.1 90 0.00 7 -5.1 90 0.00 7 -5.1 90 0.00 7 -5.1 90 0.00 7 -5.1 90 0.00 7 -5.1 90 0.00 7 -8.2 89 0.00
2 I 3 TM 4 PM 5 T 6 C 7 T 8 T 9 P	Chlorobenzene-d5 Tetrachloroethene Chlorobenzene 1,1,1,2-Tetrachloroethane Ethyl Benzene m/p-Xvlenes o-Xvlene Stvrene Bromoform	1.000 0.421 1.091 0.434 0.529 0.669 0.663 1.100 0.337	1.000 0.398 1.269 0.492 0.607 0.762 0.771 1.338 0.404	0.0 87 0.00 5.5 85 0.00 -16.3 96 0.00 -13.4 92 0.00 -14.7# 94 0.00 -13.9 94 0.00 -16.3 94 0.00 -16.3 94 0.00 -16.3 95 0.00 T
1 T T P T T T T T T T T T T T T T T T T	1,4-Dichlorobenzene-d4 Isopropvlbenzene n-Amvl Acetate 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane Bromobenzene n-propvlbenzene 2-Chlorotoluene 1,3,5-Trimethylbenzene trans-1,4-Dichloro-2-Butene p-ethyltoluene 4-Chlorotoluene tert-Butylbenzene 1,2,4-Trimethylbenzene sec-Butylbenzene p-Isopropyltoluene 1,3-Dichlorobenzene 1,4-Dichlorobenzene p-diethylbenzene	1.000 3.311 2.005 1.119 0.871 0.860 4.100 2.856 2.689 0.474 2.995 2.560 2.607 2.772 3.588 2.827 1.612 1.689 1.475	1.000 3.812 2.505 1.344 0.995 0.962 4.640 3.076 3.127 0.545 2.877 2.897 3.129 3.177 4.112 3.205 1.795 1.876 1.404	0.0 86 0.00 -15.1 95 0.00 -24.9# 102 0.00 -20.1# 100 0.00 -14.2 98 0.00 -11.9 93 0.00 -7.7 93 0.00 -7.7 93 0.00 -16.3 94 0.00 -15.0 93 0.00 -15.0 93 0.00 -15.0 93 0.00 -14.6 93 0.00 -14.6 93 0.00 -14.6 93 0.00 -14.6 93 0.00 -14.6 93 0.00 -14.6 93 0.00 -11.4 92 0.00 -11.4 92 0.00 -11.1 93 0.00 4.8 100 0.00

Data Path : Z:\HPCHEM1\Msvoa F\Data\VF061810\

Data File: VF022630.D

: 18 Jun 2010 10:32 Aca On

Operator : HC

Sample : 50 PPB CCC
Misc : 5.0mL,MSVOAF

ALS Vial : 2 Sample Multiplier: 1

Ouant Time: Jun 18 13:15:52 2010

Ouant Method: \\TERASTORAGE\\VOASRV\\HPCHEM1\\MSVOA_F\\METHOD\\82F061510\W.M
Quant Title: SW846 8260

QLast Update : Tue Jun 15 17:13:26 2010

Response via: Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 20% Max. Rel. Area: 150%

	Compound	AvqRF	CCRF	%Dev Ar	ea%	Dev(min)
1 T 2 T 3 T 4 T 5 T 6 T	n-Butylbenzene Hexachloroethane 1,2-Dichlorobenzene 1,2,4,5-tetramethvlbenzene 1,2-Dibromo-3-Chloropropane 1,2,4-Trichlorobenzene Hexachlorobutadiene Naphthalene 1,2,3-Trichlorobenzene	2.950 0.723 1.542 2.382 0.240 1.002 0.463 2.512 0.918	3.323 0.794 1.752 2.218 0.269 1.035 0.428 2.820 0.952	-12.6 -9.8 -13.6 6.9 -12.1 -3.3 7.6 -12.3	91 88 93, 94 91 81 73 85	0.00 0.00 0.00 0.00 0.00 0.00 0.00

^{(#) =} Out of Range SPCC's out = 0 CCC's out = 6

Da	ily Analysis	Runlog F	or Se	equence/QCE	Batch	ID #\	/H061610
STE	D. NAME	STD REF.#	STD.	NAME	STD	REF.#	
Rev	iew By	HSIN.CHEN	Review On		6/16	/2010 1	2:00:00 AM
Tun	e/Reschk	VP1645	Initia	Calibration Stds	VP16	646 to V	'P1651
CCC	<u> </u>	N/A	SubDire		VH061		
	nal Standard/PEM		<u> </u>	uire Method	MSVO.		
ICV/I		VP1656	HP Prod	cessing Method		1610w.m	
Sr#	Sampleld	Data File Na	ame	Date-Time		Operato	or Status
1	BFB TUNE CHECK	VH036869.D		16 Jun 2010 10:03		НС	Not Ok
2	BFB TUNE CHECK	VH036870.D		16 Jun 2010 10:31		НС	Not Ok
3	BFB TUNE CHECK	VH036871.D		16 Jun 2010 11:07		НС	Ok
4	100 PPB ICC	VH036872.D		16 Jun 2010 11:48		НС	Ok
5	50 PPB ICC	VH036873.D		16 Jun 2010 12:14		НС	Not Ok
6	20 PPB ICC	VH036874.D		16 Jun 2010 12:40		HC	Ok
7	10 PPB ICC	VH036875.D		16 Jun 2010 13:07		НС	Ok,M
8	5 PPB ICC	VH036876.D		16 Jun 2010 13:35		НС	Ok,M
9	1 PPB ICC	VH036877.D		16 Jun 2010 14:01		НС	Ok,M
10	50 PPB ICC	VH036878.D		16 Jun 2010 14:39		HC	Ok
11	50 PPB ICV	VH036879.D		16 Jun 2010 16:00		НС	Ok
12	VBH0616M1	VH036880.D		16 Jun 2010 16:24		HC	Not Ok
13	VBH0616W1	VH036881.D		16 Jun 2010 16:50		HC	Ok
14	BSH0616W1	VH036882.D		16 Jun 2010 17:25		HC	Ok
15	BSH0616W2	VH036883.D		16 Jun 2010 17:51		НС	Ok,M
16	0.5 PPB LOD	VH036884.D		16 Jun 2010 18:17		HC	Not Ok
17	2 PPB LOQ	VH036885.D		16 Jun 2010 18:43		HC	Not Ok
18	B2617-03	VH036886.D		16 Jun 2010 19:09	-	HC	ReRun
19	B2643-20	VH036887.D		16 Jun 2010 19:35	<u></u>	HC	ReRun
20	B2617-01	VH036888.D		16 Jun 2010 20:01		HC	Ok
21	R2617_02	VH036889 D		16 Jun 2010 20·27		llHC.	llOk

Trip Blank a/a

CHEMIECH Instrument: MSVOAH 284 Sheffield Street, Mountainside NJ 07092 (908) 789-8900 Daily Analysis Runlog For Sequence/QCBatch ID #VH061610 STD REF.# STD. NAME STD REF.# STD. NAME 6/16/2010 12:00:00 AM Review By HSIN.CHEN Review On Initial Calibration Stds VP1646 to VP1651 Tune/Reschk VP1645 VH061610 SubDirectory CCC N/A MSVOAX H HP Acquire Method Internal Standard/PEM VP1049 HP Processing Method 82h061610w.m ICV/I.BLK VP1656 Operator Status Data File Name Sr# ||Sampleid Date-Time 16 Jun 2010 20:53 HC Ok B2643-10 ¥ |VH036890.D НС Ok 16 Jun 2010 21:19 VH036891.D 23 B2643-11 Ok * VH036892.D ∥нс 16 Jun 2010 21:45 B2643-12 24 ||нс Ok VH036893.D 16 Jun 2010 22:10 25 BLANK

16 Jun 2010 22:36

26

BLANK

VH036894.D

HC

Ok

Method Path : \\TERASTORAGE\\VOASRV\\HPCHEM1\\MSVOA H\\METHOD\\
Method File : 82H061610W.M

5 10

20

50

100 1

Avq

: SW846 8260 Title

Last Update : Wed Jun 16 16:37:50 2010

Response Via : Initial Calibration

Calibration Files

Compound

=VH036876.D 10 =VH036875.D 20 =VH036874.D 50 =VH036878.D 100 =VH036872.D =VH036877.D 1

	(Compound	5	10	20	50	100	_	AVG	91/20
1)	т	Pentafluorobenzene				TSTI)			
2)		Dichlorodifluorom	0.452	0.897	0.813	0.925	0.982	0.563	0.772	27 84
3)		Chloromethane	0.539	0.887	0.795	0.832	0.852	0.772	0.779	15.96
	CM	Vinyl Chloride	0.595	0.825	0.782	0.842	0.866	0.540	0.742	18.73#
5)		Bromomethane	0.404	0.443	0.464	0.453	0.411	0.486	0.443	7.05
6)	T		0.309							16.56
7)		Trichlorofluorome								13.20
8)		Tert butyl alcoho	0.064	0.060	0.058	0.059	0.064	0.073	0.063	
9)		Diethvl Ether						0.377		6.52
	CM	1,1-Dichloroethen								3.40#
1)	T		1.203							7-20 (
2)	T	Acrolein						0.157		/
3)		1,1,2-Trichlorotr								5.63
4)		Acrylonitrile	0.215	0.223	0.208	0.212	0.224	0.291	0.229	13.54
5)		Allyl Chloride								6.36
6)	T	Acetone	0.217	0.193	0.183	0.203	0.214	0.531	0.257	(52.56, 1
7)		Carbon Disulfide	2.095	2.351	2.227	2.379	2.333	2.245	2.272	4.64
8)	T	Methvl Acetate	1.381	1.390	1.279	1.333	1.294	2.352	1.505	27.72) N
9)	T	Methyl tert-butyl								5.28
0)	T	Methylene Chlorid	0 730	0.785	0.656	0.731	0.742	1.144	0.798	(21.85)
1)	T	trans-1,2-Dichlor	0.541	0.678	0.585	0.659	0.704	0.784	0.658	13.13
2)	T	Acetonitrile	0.011	0.070	0.000				0.000	-1.00
3)	T	Vinyl Acetate	0 908	0.906	0.894	0.960	0.930	0.965		
4)	P	1,1-Dichloroethan	1 246	1 314	1.161	1.294	1.342	1.563	1.320	
5)	ΤM	2-Butanone	0.390	0.422	0.378	0.419	0.430	0.528	0.428	
6)	T	2,2-Dichloropropa	1 052	1 083	0.996	1.038	1.063	1.273	1.084	8.93
7)	T	cis-1,2-Dichloroe	0.820	0.869	0.330	0.832	0.909	0.903	0.856	5.29
8)	T	Bromochloromethan	0.020	0.351	0.320	0.343	0.357	0.296	0.330	7.14
9)		Chloroform	1.468	1.496	1.333	1.455	1.550	1.994	1.549	14.80#
0)	T		0.875							
1)	T	Cvclohexane						1.408		
2)	T	1,1,1-Trichloroet								
3)	S	1,2-Dichloroethan	0 848	0.865	0.750	0.711	0.778	0.966	0.820	11.27
3 /	b	1,2 Dichioloechan	0.040	0.000	0.700	0.711	0.770	0.300		,
4)	I	1,4-Difluorobenze								
5)	S	Dibromofluorometh	0.443	0.388	0.381	0.376	0.385	0.366	0.390	6.97
6)		1.1-Dichloroprope	0.584	0.574	0.511	0.564	0.592	0.585	0.568	5.24
7)	TM	Carbon Tetrachlor	0.601	0.573	0.597	0.624	0.692	0.511	0.600	9.93
8)	TM	Benzene						1.143		7.69
9)		Methacrylonitrile								6.00
0)		1,2-Dichloroethan	0.536	0.479	0.489	0.539	0.571	0.525	0.523	6.56
1)	T	Isobutyl Alcohol							0.000	
2)		Isopropyl Acetate	0.787	0.797	0.724	0.808	0.811	0.974	0.817	10.20
3)		Trichloroethene	0.351	0.343	0.314	0.346	0.370	0.357	0.347	5.39
4)		Methylcyclohexane								
5)		1,2-Dichloropropa	0.350	0.333	0.323	0.368	0.379	0.349	0.350	6.01#
6)		Dibromomethane	0.270	0.289	0.254	0.282	0.304	0.242	0.274	8.30
7)		Bromodichlorometh								
8)		Toluene-d8	1.055	1.052	0.982	0.992	1.046	1.087	1.036	3.91
9)		4-Methyl-2-Pentan	0.389	0.377	0.328	0.395	0.395	0.381	0.378	6.69
	CM	Toluene	0.814	0.762	0.719	0.809	0.887	0.740	0.788	7.76#
1)		t-1,3-Dichloropro	0.550	0.548	0.505	0.571	0.623	0.475	0.545	9.44
	T	Methyl Methacryla	0.228	0.247	0.191	0.240	0.265	0.197	0.228	
- /	_									

%RSD

Method Path : \\TERASTORAGE\\VOASRV\\HPCHEM1\\MSVOA H\\METHOD\\

Method File: 82H061610W.M Title : SW846 8260

Last Update : Wed Jun 16 16:37:50 2010 Response Via : Initial Calibration

Calibration Files

5 =VH036876.D 10 =VH036875.D 20 =VH036874.D 50 =VH036878.D 100 =VH036872.D 1 =VH036877.D

	Compound	5	10	20	50	100	1	Avq	%RSD
3) T 4) T 5) T 6) T 7) T 8) T 9) T 0) T	cis-1,3-Dichlorop 1,1,2-Trichloroet Ethyl Methacrylat 1,3-Dichloropropa 2-Chloroethyl Vin 2-Hexanone Dibromochlorometh 1,2-Dibromoethane 4-Bromofluorobenz	0.283 0.424 0.531 0.192 0.279 0.291 0.331	0.259 0.407 0.533 0.176 0.260 0.358 0.306	0.272 0.377 0.480 0.164 0.211 0.328	0.313 0.453 0.572 0.184 0.279 0.380 0.341	0.336 0.487 0.591 0.215 0.277 0.433 0.383	0.315 0.452 0.462 0.185 0.295 0.215 0.283	0.296 0.433 0.528 0.186 0.267 0.334 0.325	13.86 9.95 8.99 9.50 9.21 11.04 22.62 10.86 9.26
2) I 3) TM 4) PM 5) T 6) C 7) T 8) T 9) T 0) P	Chlorobenzene-d5 Tetrachloroethene Chlorobenzene 1,1,1,2-Tetrachlo Ethvl Benzene m/p-Xvlenes o-Xvlene Stvrene Bromoform	0.981 0.379 0.515 0.679 0.630 1,169	1.035 0.399 0.517 0.689 0.693 1.155	0.309 0.927 0.367 0.485 0.597 0.629 1.034	1.045 0.401 0.525 0.697 0.692 1.114	0.338 1.116 0.431 0.578 0.726 0.711 1.210	0.255 0.997 0.335 0.438 0.572 0.678 1.075	1.017 0.385 0.510	9.95 6.35 8.52 9.09# 9.24 5.19 5.77 20.24
1) T T P T T T T T T T T T T T T T T T T	1,4-Dichlorobenzer Isopropylbenzene n-Amyl Acetate 1,1,2,2-Tetrachlo 1,2,3-Trichloropr Bromobenzene n-propylbenzene 2-Chlorotoluene 1,3,5-Trimethylbe trans-1,4-Dichlor p-ethyltoluene 4-Chlorotoluene tert-Butylbenzene 1,2,4-Trimethylbe sec-Butylbenzene p-Isopropyltoluen 1,3-Dichlorobenze 1,4-Dichlorobenze 1,4-Dichlorobenze p-diethylbenzene m-Butylbenzene hexachloroethane 1,2-Dichlorobenze 1,2,4,5-tetrameth 1,2-Dibromo-3-Chl 1,2,4-Trichlorobe Hexachlorobutadie Naphthalene 1,2,3-Trichlorobe	3.611 1.885 1.016 0.814 0.776 4.258 2.850 2.846 0.367 2.777 2.497 2.819 3.195 2.578 1.521 1.502 2.675 0.583 1.386 0.159 0.702 0.214 2.108	3.620 1.934 0.995 0.791 0.814 4.295 2.708 2.902 0.364 2.890 2.647 3.094 3.481 2.633 1.535 1.551 2.744 0.560 1.477 0.211 0.695 0.227 2.238	3.239 1.664 0.969 0.724 0.773 3.812 2.604 2.559 0.304 2.471 2.413 2.658 3.035 2.464 1.353 1.428 2.295 0.506 1.283 0.179 0.651 0.195 2.041	3.596 1.868 1.097 0.827 4.263 2.829 2.844 0.388 2.850 2.560 2.875 3.415 2.679 1.545 1.570 2.649 0.542 1.441 0.201 0.696 0.227 2.209	3.817 1.897 1.047 0.826 0.892 4.355 2.882 2.972 0.414 2.946 2.722 3.024 3.315 2.726 1.578 1.588 2.612 0.593 1.520 0.209 0.752 0.239 2.265	4.115 2.090 1.286 0.745 0.688 4.537 2.988 2.607 0.389 2.784 2.571 3.104 3.564 2.849 1.636 1.600 2.923 0.505 1.487 0.182 0.284 2.332	3.666 1.890 1.068 0.788 0.795 4.253 2.810 2.788 0.371 0.000 2.786 2.568 2.929 3.334 2.655 1.528 1.528 1.540 0.0650 0.190 0.681 0.231 2.199	7.87 7.24 10.82 5.58 8.56 5.64 4.82 5.98 10.06 -1.00 6.00 4.22 6.02 5.85 4.94 6.22 4.19 -1.00 7.76 6.79 6.01 -1.00 10.77 8.11 13.05 4.85 8.67

^{#) =} Out of Range

Instrument: 5972 - In

284 Sheffield Street, Mountainside NJ 07092 (908) 789-8900

Daily Analysis Runlog For Sequence/QCBatch ID #VK061410

STD. NAME	STD REF.#	STD. NAME	STD REF.#		
Review By	apatel	Review On	6/15/2010 12:00:00 AM		
Tune/Reschk	VP1580	Initial Calibration Stds	VP1587 to VP1592,VP1594		
ccc	VP1581,VP1582	SubDirectory	VK061410		
Internal Standard/PEM	VP1181	HP Acquire Method	MSVOA_K		
ICV/I.BLK	VP1595	HP Processing Method	82K061410S.M		

Sr#	Sampleld	Data File Name	Comment	Status
1	BFB TUNE CHECK	VK039539.D		Ok
2	50 PPB CCC	VK039540.D	CCC fail	Not Ok
3	20 PPB CCC	VK039541.D	CCC fail	Not Ok
4	20 PPB ICC	VK039542.D	#2,6,18,94-over 15%RSD,kept on AvgRF	Ok,M
5	10 PPB ICC	VK039543.D		Ok,M
6	5 PPB ICC	VK039544.D		Ok,M
7	50 PPB ICC	VK039545.D	bad purge,rerun	Not Ok
8	100 PPB ICC	VK039546.D		Ok,M
9	200 PPB ICC	VK039547.D		Ok,M
10	50 PPB ICC	VK039548.D		Ok,M
11	50 PPB ICV	VK039549.D	#2,6-over 30%Dev(failing)	Ok,M
12	VBK0614S1	VK039550.D		Ok
13	BSK0614S1	VK039551.D		Ok,M
14	B2654-01	VK039552.D		Ok
15	B2654-01MS	VK039553.D	MSD failed	Not Ok
16	B2654-01MSD	VK039554.D	MS error	Not Ok
17	B2654-02	VK039555.D	Instrument stopped after MS error,out of tune time	Not Ok

d Chroeffue

Method Path : W:\HPCHEM1\MSVOA_K\METHOD\

Method File: 82K061410S.M

Title : SW846 8260

Last Update : Mon Jun 14 16:03:06 2010

Response Via: Initial Calibration

Calibration Files

5 =VK039544.D 10 =VK039543.D 20 =VK039542.D 50 =VK039548.D 100 =VK039546.D 200 =VK039547.D

(Compound	5	10	20	50 .	100	200	Avg	%RSD
				-					
1) I	Pentafluorobenzene								16.00
2) T	Dichlorodifluorom								16.39
3) P	Chloromethane						1.054		3.70
4) C	Vinyl Chloride	0.768	0.800	0.916	0.825	0.818	0.830	0.826	6.00#
5) T							0.470		14.80
6) T							0.271		24.45
7) T	Trichlorofluorome	0.742	0.744	0.956	0.749	0.771	0.791	0.792	10.40
8)	Diethyl Ether	0.545	0.585	0.637	0.584	0.547	0.498	0.566	8.32
9)	1,1-Dichloroethen	0.483	0.518	0.628	0.496	0.499	0.512	0.523	10.17
0)	Carbon Disulfide	2.275	2.452	2.855	2.295	2.290	2.254	2.403	9.66
l) TM	1,1,2-Trichlorotr	0.490	0.560	0.667	0.524	0.525	0.540	0.551	11.10
2)	Methyl Iodide	0.999	1.059	1.200	1.065	1.073	1.134	1.088	6.39
3)	ACTOLEIN	U /46	11. /44	11 / / 4	U 1/5	U / 3h	U. / 3 L	11. 7.34	13.86
4)	Allyl chloride	1.623	1.581	1.969	1.481	1.448	1.620	1.620	11.45
5)	Methylene Chlorid	0.887	0.915	1.001	0.882	0.853	0.883	0.9.04	5.75
6)	Acetone	0.187	0.159	0.188	0.225	0.218	0.232	0.202	13.82
7)	trans-1,2-Dichlor	0.505	0.563	0.624	0.514	0.522	0.558	0.548	8.05
8)								0.656	17.03
9)	Methyl tert-butyl	2.447	2.557	2.839	2.684	2.603	2.798	2.655	5.60
O) T	Tert butyl alcoho	0.142	0.108	0.138	0.138	0.137	0.138	0.133	9.50
1)	Diisoprpyl ether	3.934	3.782	4.198	3.627	3.429	3.623	3.765	7.21
2)	1,1-Dichloroethan	1.463	1.457	1.657	1.373	1.348	1.416	1.452	7.57
3) T	Acrylonitrile	0.572	0.509	0.595	0.539	0.529	0.561	0.551	5.70
4)	Vinvl Acetate	1.953	1.919	2.178	1.751	1.742	1.682	1.871	9.87
5)	Vinyl Acetate cis-1,2-Dichloroe	0.719	0.761	0.912	0.793	0.783	0.795	0.794	8.12
6)	2,2-Dichloropropa	0.886	0.953	1.138	0.858	0.858	0.880	0.929	11.65
7)	Bromochloromethan	0.322	0.344	0.371	0.365	0.372	0.386	0.360	6.45
8)	Cyclohexane								
9)	Chloroform	1.303	1.358	1.494	1.264	1.259	1.346	1.337	6.50
0)	Ethyl Acetate	2.228	2.028	2.351	2.132	2.126	2.211	2.179	5.06
1)	Carbon Tetrachlor	0 695	0.680	0.821	0.652	0.672	0.720	0.707	8.54
2)	1,1,1-Trichloroet								
3)	2-Butanone	1 085	0 972	1 157	1 152	1 162	1 176	1.117	6.97
4)	1,2-Dichloroethan	1 048	0.372	1 145	1 022	1 092	1 227	1 088	7.93
4 /	1,2 Dichiolocchan	1.040	0.555	1.110	1.022	1.032	1.22,	1.000	,
5)	1,4-Difluorobenzer	ne -			IST	D 			
6)	Dibromofluorometh	0.387	0.383	0.369	0.357	0.371	0.374	0.374	2.93
7)	1,1-Dichloroprope	0.465	0.480	0.508	0.422	0.443	0.463	0.463	6.38
8)	Benzene	1.503	1.418	1.476	1.323	1.290	1.417	1.404	5.97
9)	Methacrylonitrile	0.554	0.482	0.500	0.471	0.480	0.516	0.500	6.14
0) TM	1,2-Dichloroethan								3.76
1)	Isopropyl Acetate	1.593	1.407	1.461	1.413	1.423	1.501	1.466	4.85
2)	Isobutyl alcohol	•						0.000	-1.00
3) T	Methylcyclohexane	0.579	0.527	0.565	0.446	0.454	0.468		11.48
4)	Trichloroethene	0.268	0.236	0.289	0.258	0.268	0.283	0.267	7.02
5) T	Dibromomethane								2.74
6)	1,2-Dichloropropa								3.28
7) T	Bromodichlorometh								3.66
8)	Methyl Methacryla								3.90
9)	2-Chloroethyl vin								3.13
0) T	cis-1,3-Dichlorop								2.35
1)	Toluene-d8							1.399	5.06
2)	Toluene							0.818	6.33
<i>- 1</i>		0.011	0.001	2.700		22770		2.010	2.00

Method Path : W:\HPCHEM1\MSVOA_K\METHOD\

Method File: 82K061410S.M Title: SW846 8260

Last Update : Mon Jun 14 16:03:06 2010 Response Via : Initial Calibration

Calibration Files

5 =VK039544.D 10 =VK039543.D 20 =VK039542.D 50 =VK039548.D 100 =VK039546.D 200 =VK039547.D

	. (Compound	5	10	20	50	100	200	Avg	%RSD
3) 4) 5) 6) 7) 8) 9) 0)	T T S	Tetrachloroethene 4-Methyl-2-Pentan t-1,3-Dichloropro 1,1,2-Trichloroet Ethyl methacrylat Dibromochlorometh 1,3-Dichloropropa 1,2-Dibromoethane 4-Bromofluorobenz	0.992 0.682 0.402 0.751 0.372 0.857 0.443	0.860 0.713 0.373 0.751 0.377 0.806 0.443	0.908 0.732 0.409 0.805 0.407 0.803 0.434	0.857 0.708 0.401 0.800 0.416 0.786 0.449	0.839 0.685 0.394 0.790 0.420 0.775 0.437	0.851 0.736 0.413 0.824 0.445 0.793 0.458	0.885 0.709 0.399 0.787 0.406 0.803 0.444	3.66 6.53 3.18 3.52 3.79 6.77 3.56 1.96 4.09
2) 3) 4) 5) 6) 7) 8) 9)	I PM T T T	Chlorobenzene-d5 2-Hexanone Chlorobenzene Ethyl Benzene 1,1,1,2-Tetrachlo m/p-Xylenes o-Xylene Styrene Bromoform	0.625 0.794 1.407 0.255 0.465 0.486 0.832	0.483 0.469	0.623 0.852 1.529 0.284 0.521 0.509 0.916	0.643 0.789 1.299 0.278 0.465 0.449 0.850	0.658 0.772 1.301 0.286 0.460 0.476 0.831	0.667 0.824 1.377 0.312 0.484 0.502 0.935	0.625 0.810 1.390 0.281 0.480 0.482 0.866	7.44 ³ .70 6.21 6.71 4.70 4.57 5.43 13.46
1) 2) 3) 4) 5) 6) 7) 8)	I T P	1,4-Dichlorobenze: Isopropylbenzene n-Amyl Acetate Bromobenzene n-propylbenzene 1,1,2,2-Tetrachlo p-ethyltoluene 2-Chlorotoluene 1,2,3-Trichloropr	2.416 2.181 0.625 3.191 1.207 2.279 2.298	2.524 2.134 0.680 3.163 1.174 2.640 2.237	2.647 2.309 0.662 3.441 1.266 2.986 2.491	2.242 2.326 0.671 3.005 1.250 2.346 2.164	2.285 2.257 0.645 2.911 1.229 2.419 2.103	2.315 2.393 0.677 2.925 1.303 2.408 2.182	2.267 0.660 3.106 1.238 2.513 2.246	6.49 4.24 3.21 6.50 3.69 10.41 6.10 4.56
0) 1) 2) 3) 4) 5) 6) 7)	T T T T T	1,3,5-Trimethylbe trans-1,4-Dichlor 4-Chlorotoluene tert-Butylbenzene 1,2,4-Trimethylbe sec-Butylbenzene p-Isopropyltoluen 1,3-Dichlorobenze 1,4-Dichlorobenze	1.971 0.554 1.985 1.794 1.915 2.756 2.058 1.185 1.238	2.020 0.514 2.168 1.939 2.052 2.842 2.164 1.255	2.161 0.601 2.148 2.053 2.175 3.033 2.310 1.300 1.335	1.905 0.624 2.031 1.708 1.947 2.502 1.979 1.217 1.245	1.825 0.610 1.915 1.694 1.898 2.488 1.992 1.201 1.224	1.893 0.685 2.006 1.728 1.988 2.507 1.997 1.243 1.277	1.962 0.598 2.042 1.819 1.996 2.688 2.083 1.234 1.270	6.02 9.82 4.78 8.00 5.19 8.40 6.26 3.39 3.35 10.49
9) 0) 1) 2) 3) 4) 5) 6)	T T	p-diethylbenzene n-Butylbenzene Hexachloroethane 1,2-Dichlorobenze 1,2,4,5-tetrameth 1,2-Dibromo-3-Chl 1,2,4-Trichlorobe Hexachlorobutadie Naphthalene 1,2,3-Trichlorobe	2.570 0.431 1.163 2.077 0.166 0.682 0.302 2.656	2.496 0.475 1.242 2.321 0.166 0.783 0.322 2.639	3.151 0.513 1.307 2.616 0.216 0.827 0.360 2.868	2.572 0.474 1.239 2.179 0.222 0.772 0.310 2.843	2.625 0.484 1.186 2.215 0.226 0.762 0.328 2.714	2.177 0.519 1.267 2.278 0.258 0.841 0.345 2.996	2.599 0.483 1.234 2.281 0.209 0.778 0.328 2.786	10.49 12.12 6.54 4.27 8.08 17.43 7.25 6.60 5.02 5.39

^{#) =} Out of Range

							!
		Manua	linte	gration F	Report		
Sequence		VK061510 Instru	ıment			MSVO	
Sample ID	File ID	Parameter	Review By	Review On	Supervised By	Supervised On	Reason
50 PPB CCC	VK039558.D	Trichlorofluoromethane	1	6/15/2010 11:30:02 AM	apatel	6/16/2010 5:48:07 PM	Peak Integrated by Software incorrectly
BSK0615S1	VK039560.D	Carbon Disulfide	margret	6/15/2010 1:16:43 PM	apatel	6/16/2010 5:48:12 PM	Peak Integrated by Software incorrectly
BSK0615S1	VK039560.D	Trichlorofluoromethane	margret	6/15/2010 1:16:43 PM	apatel	6/16/2010 5:48:12 PM	Peak Integrated by Software incorrectly
B2643- 08MS	VK039574.D	Carbon Disulfide	dhairya	6/16/2010 3:03:58 AM	margret	6/16/2010 9:51:12 AM	Peak Integrated by Software incorrectly
B2643- 08MS	VK039574.D	Trichlorofluoromethane	dhairya	6/16/2010 3:03:58 AM	margret	6/16/2010 9:51:12 AM	Peak Integrated by Software incorrectly
B2643- 09MSD	VK039575.D	Carbon Disulfide	dhairya	6/16/2010 3:03:55 AM	margret	6/16/2010 9:51:17 AM	Peak Integrated by Software incorrectly
B2643- 09MSD	VK039575.D	Trichlorofluoromethane	dhairya	6/16/2010 3:03:55 AM	margret	6/16/2010 9:51:17 AM	Peak Integrated by Software incorrectly
B2660-01	VK039583.D	1,2,4,5- tetramethylbenzene	margret	6/16/2010 9:49:26 AM	apatel	6/16/2010 5:48:20 PM	Peak Integrated by Software incorrectly
B2660-01	VK039583.D	1,2,4- Trimethylbenzene	margret	6/16/2010 9:49:26 AM	apatel	6/16/2010 5:48:20 PM	Peak Integrated by Software incorrectly

CHEMIECH

Instrument: 5972 - In

284 Sheffield Street, Mountainside NJ 07092 (908) 789-8900

Daily Analysis Runlog For Sequence/QCBatch ID #VK061510

STD. NAME	STD REF.#	STD. NAME	STD REF.#	
Review By	apatel	Review On	6/16/2010 12:00:00 AM	
Tune/Reschk	VP1602	Initial Calibration Stds	N/A	
ccc	VP1603	SubDirectory	VK061510	
Internal Standard/PEM	VP1181	HP Acquire Method	MSVOA_K	
ICV/I.BLK	N/A	HP Processing Method	82K061410S.M	

Sr# SampleId		Data File Name	Date-Time	Operator	Status
1	BFB TUNE CHECK	VK039556.D	15 Jun 2010 9:51	MS	Not Ok
2	BFB TUNE CHECK	VK039557.D	15 Jun 2010 10:23	MS	Ok
3	50 PPB CCC	VK039558.D	15 Jun 2010 11:00	MS	Ok,M
4	VBK0615S1	VK039559.D	15 Jun 2010 11:36	MS	Ok
5	BSK0615S1	VK039560.D	15 Jun 2010 12:09	MS	Ok,M

See attential"

B2654-02	VK039561.D	15 Jun 2010 12:36	MS	Ok
B2654-03	VK039562.D	15 Jun 2010 13:03	MS	Ok
B2654-04	VK039563.D	15 Jun 2010 13:29	MS	Ok
B2654-05	VK039564.D	15 Jun 2010 13:56	MS	Ok
B2654-06	VK039565.D	15 Jun 2010 14:23	MS	Ok
B2654-07	VK039566.D	15 Jun 2010 14:50	MS	Ok
B2654-08	VK039567.D	15 Jun 2010 15:16	MS	Ok
B2654-09	VK039568.D	15 Jun 2010 15:43	MS	Ok
B2618-18	VK039569.D	15 Jun 2010 16:10	MS	Ok
B2618-07	VK039570.D	15 Jun 2010 16:36	MS	Ok
B2618-13	VK039571.D	15 Jun 2010 17:03	MS	Dilution
B2618-16	VK039572.D	15 Jun 2010 17:29	MS	Ok
B2643-07	VK039573.D	15 Jun 2010 17:56	MS	Ok
B2643-08MS	VK039574.D	15 Jun 2010 18:22	MS	Ok,M
B2643-09MSD	VK039575.D	15 Jun 2010 18:49	MS	Ok,M
B2648-01	VK039576.D	15 Jun 2010 19:16	MS	Ok
	B2654-03 B2654-04 B2654-05 B2654-06 B2654-07 B2654-09 B2618-18 B2618-13 B2618-16 B2643-07 B2643-07 B2643-09MSD	B2654-03 VK039562.D B2654-04 VK039563.D B2654-05 VK039564.D B2654-06 VK039565.D B2654-07 VK039566.D B2654-08 VK039567.D B2618-18 VK039569.D B2618-13 VK039570.D B2618-16 VK039571.D B2643-07 VK039573.D B2643-08MS VK039575.D	B2654-03 VK039562.D 15 Jun 2010 13:03 B2654-04 VK039563.D 15 Jun 2010 13:29 B2654-05 VK039564.D 15 Jun 2010 13:56 B2654-06 VK039565.D 15 Jun 2010 14:23 B2654-07 VK039566.D 15 Jun 2010 14:50 B2654-08 VK039567.D 15 Jun 2010 15:16 B2654-09 VK039568.D 15 Jun 2010 15:43 B2618-18 VK039569.D 15 Jun 2010 16:10 B2618-07 VK039570.D 15 Jun 2010 16:36 B2618-13 VK039571.D 15 Jun 2010 17:03 B2618-16 VK039572.D 15 Jun 2010 17:56 B2643-07 VK039573.D 15 Jun 2010 18:22 B2643-09MSD VK039575.D 15 Jun 2010 18:49	B2654-03 VK039562.D 15 Jun 2010 13:03 MS B2654-04 VK039563.D 15 Jun 2010 13:29 MS B2654-05 VK039564.D 15 Jun 2010 13:56 MS B2654-06 VK039565.D 15 Jun 2010 14:23 MS B2654-07 VK039566.D 15 Jun 2010 14:50 MS B2654-08 VK039567.D 15 Jun 2010 15:16 MS B2654-09 VK039568.D 15 Jun 2010 15:43 MS B2618-18 VK039569.D 15 Jun 2010 16:10 MS B2618-13 VK039570.D 15 Jun 2010 16:36 MS B2618-16 VK039572.D 15 Jun 2010 17:29 MS B2643-07 VK039573.D 15 Jun 2010 17:56 MS B2643-08MS VK039575.D 15 Jun 2010 18:22 MS B2643-09MSD VK039575.D 15 Jun 2010 18:49 MS

Data Path : W:\HPCHEM1\Msvoa_K\Data\VK061510\

Data File: VK039558.D

Acq On : 15 Jun 2010 11:00 Operator : MS

: 50 PPB CCC Sample

: 5.00g/5mL,MSVOAK Misc

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jun 15 11:26:33 2010

Quant Method: W:\HPCHEM1\MSVOA_K\METHOD\82K061410S.M

Quant Title : SW846 8260

QLast Update : Mon Jun 14 17:09:54 2010 Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 25% Max. Rel. Area : 150%

	Compound	AvgRF	CCRF	%Dev Area%	Dev(min)
1 I	Pentafluorobenzene	1.000 0.455	1.000	0-0 90 49.7# 119	0.00 0.00
2 T	Dichlorodifluoromethane		1.346	$\begin{pmatrix} -27.3 & 111 \\ -27.3 & 111 \end{pmatrix}$	0.00 7
3 P	Chloromethane	1.057	1.058	-28 <u>.1</u> # 116	0.00 T
4 C	Vinyl Chloride	0.826	0.692	- 12.7 99	0.00
5 T	Bromomethane	0.614	0.692	31 2# 113	0.00 7
6 T	Chloroethane	0.413	0.342	-22.7 117	0.00 r
7 T	Trichlorofluoromethane	0.792	0.972	-16.8 102	0.00
8 T	Diethyl Ether	0.566 0.523	0.610	-16.6# 111	0.00
9 CM	1,1-Dichloroethene	2.403	2.898	-20.6 114	0.00 5
0 T	Carbon Disulfide	0.551	0.684	-24.2 118	0.00 1/1
1 TM	1,1,2-Trichlorotrifluoroeth	1.088	1.209	-11.1 102	0.00
2 T	Methyl Iodide	0.234	0.267	-14.1 137	0.00
3 . T	Acrolein	1.620	1.908	-17.8 116	0.00
4 T	Allyl chloride	0.904	0.960	-6.2 98	0.00
5 T	Methylene Chloride	0.202	0.219	-8.4 88	0.00
6 T	Acetone	0.202	0.622	-13.5 109	
7 T	trans-1,2-Dichloroethene	0.546	0.022	-12.7 96	
8 T .	Methyl Acetate	2.655	2.860	-7.7 96	
9 T	Methyl tert-butyl Ether	0.133	0.147	-10.5 96	
0 T	Tert butyl alcohol	3.765	3.980	-5.7 99	
1 T	Diisoprpyl ether	1.452	1.593	-9.7 105	
2 P	1,1-Dichloroethane	0.551	0.593	-7.6 99	
3 T	Acrylonitrile	1.871	2.108	-12.7 109	
4 T	Vinyl Acetate	0.794	0.907	-14.2 103	
5 T	cis-1,2-Dichloroethene	0.794	1.057	-13.8 111	
6 T	2,2-Dichloropropane	0.360	0.409	-13.6 101	
7 T	Bromochloromethane	1.227	1.454	-18.5 118	
8 T	Cyclohexane	1.337	1.434	-7.0# 102	
9 C	Chloroform	2.179	2.366	-8.6 100	
0 T	Ethyl Acetate	0.707	0.809	-14.4 112	
1 T	Carbon Tetrachloride	0.707	0.809	-14.0 105	
2 T	1,1,1-Trichloroethane	1.117	1.204	-7.8 94	
3 T	2-Butanone	1.088	1.143	-5.1 101	
4 S	1,2-Dichloroethane-d4	1.000	1.140	5.1 101	0.00
5 I	1,4-Difluorobenzene	1.000	1.000	0.0 87	
6 S	Dibromofluoromethane	0.374	0.393	-5.1 96	
7 т	1,1-Dichloropropene	0.463	0.552	-19.2 114	
8 TM	Benzene	1.404	1.613	-14.9 107	
9 T	Methacrylonitrile	0.500	0.546	-9.2 101	
0 TM	1,2-Dichloroethane	0.543	0.599	-10.3 97	
1 T	Isopropyl Acetate	1.466	1.580	-7.8 98	
2 T	Isobutyl alcohol	0.000	1.580		0.00
3 T	Methylcyclohexane	0.507	0.567	-11.8 111	
4 TM	Trichloroethene	0.267	0.302	-13.1 102	
5 T	Dibromomethane	0.304	0.347	-14.1 100	0.00
1	•				

Instrument: 5972 - In

284 Sheffield Street, Mountainside NJ 07092 (908) 789-8900

Daily Analysis Runlog For Sequence/QCBatch ID #VK061710

STD. NAME	STD REF.#	STD. NAME	STD REF.#		
Review By	apatel	Review On	6/21/2010 12:00:00 AM		
Tune/Reschk	VP1670	Initial Calibration Stds	N/A		
	VP1671	SubDirectory	VK061710		
Internal Standard/PEM	VP1181	HP Acquire Method	MSVOA_K		
ICV/I.BLK		HP Processing Method	82K061410S.M		

ICV/I.BLK		N/A HP Pro		ocessing Method 82K061410S.M		VI
Sr# SampleId		Data File Name		Comment		Status
1	BFB TUNE CHECK	VK039616.D				Ok
2	20 PPB CCC	VK039617.D		#6,14,26,27,52-over 20%Dev on high side		Ok,M
3	VBK0617S1	VK039618.D				Ok
4	BSK0617S1	VK039619.D		#48-failing on high side		Ok,M
5	B2686-05	VK039620.D				Ok
6	B2686-06	VK039621.D				Ok
7	B2686-07	VK039622.D				Ok
8	B2643-01 3	VK039623.D				Ok
9	B2643-02	VK039624.D		need MeOH		Dilution
10	B2643-03	VK039625.D		possible carry-ove	r,rerun	Not Ok
11_	B2643-04	VK039626.D				Ok
12	B2643-05	VK039627.D				Ok
13	B2643-17	VK039628.D		Internal Std out		ReRun
14	B2643-18;	VK039629.D		need MeOH		Dilution
15	BLANK	VK039630.D		clean-up blank		Ok
16	BLANK	VK039631.D		clean-up blank		Ok
17	B2643-03	VK039632.D				Ok
18	B2643-17 [©]	VK039633.D		use this run	-	Ok
19	BLANK	VK039634.D		clean-up blank		Ok

see attacks.

Data Path : W:\HPCHEM1\Msvoa K\Data\VK061710\

Data File: VK039617.D

: 17 Jun 2010 10:15 Acq On

Operator : MS

sample : 20 PPB CCC
Misc : 5 000' : 5.00g/5mL,MSVOAK

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jun 17 11:55:50 2010

Quant Method: W:\HPCHEM1\MSVOA_K\METHOD\82K061410S.M

Quant Title : SW846 8260

QLast Update: Mon Jun 14 17:09:54 2010

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 25% Max. Rel. Area: 150%

		Compound	AvgRF	CCRF	%Dev Are	a% D	ev(min)
67890123456789012345678901		Pentafluorobenzene Dichlorodifluoromethane Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane Diethyl Ether 1,1-Dichloroethene Carbon Disulfide 1,1,2-Trichlorotrifluoroeth Methyl Iodide Acrolein Allyl chloride Methylene Chloride Acetone trans-1,2-Dichloroethene Methyl Acetate Methyl tert-butyl Ether Tert butyl alcohol Diisoprpyl ether 1,1-Dichloroethane Acrylonitrile Vinyl Acetate cis-1,2-Dichloroethene 2,2-Dichloropropane Bromochloromethane Cyclohexane Chloroform Ethyl Acetate Carbon Tetrachloride	1.000 0.455 1.057 0.826 0.614 0.413 0.792 0.566 0.523 2.403 0.551 1.088 0.234 1.620 0.904 0.202 0.548 0.656 2.655 0.133 3.765 1.452 0.551 1.871 0.794 0.929 0.360 1.227 1.337 2.179 0.707	1.000 0.366 1.082 0.873 0.691 0.607 0.826 0.602 0.578 2.575 0.602 1.076 0.264 1.965 0.925 0.175 0.601 0.691 2.850 0.144 4.153 1.619 0.567 1.998 0.929 1.117 0.434 1.458 1.458 1.499 2.334 0.809	0.0 19.6 -2.4 -5.7# -12.5 -47.0# -4.3 -6.4 -10.5# -7.2 -9.3 1.1 -12.8 -21.3 -2.3 13.4 -9.7 -5.3 -7.3 -8.3 -10.5 -7.2 -9.6.8 -17.0 -20.2 -20.2 -20.2 -20.2 -18.8 -12.1# -7.1 -14.4	-916973899642228145872509743070210 	0.00 0.00 0.00 -0.01 -0.01 0.00 0.00 -0.01 0.00 0.0
2 3 4	T T S	<pre>1,1,1-Trichloroethane 2-Butanone 1,2-Dichloroethane-d4</pre>	0.723 1.117 1.088	0.848 1.144 1.045	-2.4	96 90 83	0.00 0.00 0.00
5 6 7 8 9 0 1 2 3 4 5	I S T TM T T T T T	1,4-Difluorobenzene Dibromofluoromethane 1,1-Dichloropropene Benzene Methacrylonitrile 1,2-Dichloroethane Isopropyl Acetate Isobutyl alcohol Methylcyclohexane Trichloroethene Dibromomethane	1.000 0.374 0.463 1.404 0.500 0.543 1.466 0.000 0.507 0.267 0.304	1.000 0.376 0.536 1.570 0.495 0.571 1.514 1.514 0.587 0.314 0.250	0.0 -0.5 -15.8 -11.8 1.0 -5.2 -3.3 0.0 -15.8 -17.6 17.8	85 87 90 91 85 92 88 0# 89	0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

Data Path : W:\HPCHEM1\Msvoa_K\Data\VK061710\

Data File: VK039617.D
Acq On: 17 Jun 2010 10:15
Operator: MS

: 20 PPB CCC Sample

: 5.00g/5mL,MSVOAK Misc

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jun 17 11:55:50 2010

Quant Method: W:\HPCHEM1\MSVOA_K\METHOD\82K061410S.M

Quant Title : SW846 8260

QLast Update: Mon Jun 14 17:09:54 2010

Response via: Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 25% Max. Rel. Area: 150%

	Compound	AvgRF	CCRF	%Dev Area% Dev(min)
67 TTTSM 901234TTTTTTTTS 67 TTTTTTTTTS	1,2-Dichloropropane Bromodichloromethane Methyl Methacrylate 2-Chloroethyl vinyl ether cis-1,3-Dichloropropene Toluene-d8 Toluene Tetrachloroethene 4-Methyl-2-Pentanone t-1,3-Dichloropropene 1,1,2-Trichloroethane Ethyl methacrylate Dibromochloromethane 1,3-Dichloropropane 1,2-Dibromoethane 4-Bromofluorobenzene	0.475 0.545 0.658 0.307 0.768 1.399 0.818 0.299 0.885 0.709 0.399 0.787 0.406 0.803 0.444 0.587	0.560 0.596 0.732 0.333 0.858 1.444 0.984 0.353 0.947 0.773 0.451 0.876 0.441 0.889 0.482 0.609	-17.9# 97 0.00 -9.4 90 0.00 -11.2 93 0.01 -8.5 94 0.00 -11.7 93 0.00 -3.2 88 0.00 -20.3# 93 0.00 -18.1 101 0.00 -7.0 89 0.00 -9.0 90 0.00 -13.0 94 0.00 -11.3 93 0.00 -11.3 93 0.00 -8.6 92 0.00 -10.7 94 0.00 -8.6 95 0.00 -3.7 89 0.00
2 I 3 T 4 PM 5 C 6 T 7 T 8 T 9 T	Chlorobenzene-d5 2-Hexanone Chlorobenzene Ethyl Benzene 1,1,1,2-Tetrachloroethane m/p-Xylenes o-Xylene Styrene Bromoform	1.000 0.625 0.810 1.390 0.281 0.480 0.482 0.866 0.253	1.000 0.612 0.883 1.587 0.313 0.549 0.560 0.957 0.248	0.0 89 0.00 2.1 88 0.00 -9.0 93 0.00 -14.2# 93 0.00 -11.4 98 0.00 -14.4 94 0.00 -16.2 98 0.00 -10.5 93 0.00 2.0 90 0.00
1 T T T T T T T T T T T T T T T T T T T	1,4-Dichlorobenzene-d4 Isopropylbenzene n-Amyl Acetate Bromobenzene n-propylbenzene 1,1,2,2-Tetrachloroethane p-ethyltoluene 2-Chlorotoluene 1,2,3-Trichloropropane 1,3,5-Trimethylbenzene trans-1,4-Dichloro-2-butene 4-Chlorotoluene tert-Butylbenzene 1,2,4-Trimethylbenzene sec-Butylbenzene p-Isopropyltoluene 1,3-Dichlorobenzene 1,4-Dichlorobenzene p-diethylbenzene	1.000 2.405 2.267 0.660 3.106 1.238 2.513 2.246 0.962 1.962 0.598 2.042 1.819 1.996 2.688 2.083 1.234 1.270 1.262	1.000 2.748 2.307 0.691 3.517 1.300 3.007 2.479 1.016 2.229 0.617 2.256 2.037 2.243 3.047 2.374 1.360 1.418 1.491	0.0 89 -0.01 -14.3 92 0.00 -1.8 89 0.00 -4.7 93 0.00 -13.2 91 0.00 -5.0 91 0.00 -19.7 90 0.00 -10.4 88 0.00 -10.4 88 0.00 -13.6 92 0.00 -3.2 91 0.00 -10.5 93 0.00 -12.0 88 0.00 -12.4 92 0.00 -13.4 89 0.00 -14.0 91 -0.01 -10.2 93 0.00 -11.7 94 0.00 -18.1 88 0.00

Data Path : W:\HPCHEM1\Msvoa K\Data\VK061710\

Data File : VK039617.D

Acq On : 17 Jun 2010 10:15 Operator : MS

Sample : 20 PPB CCC
Misc : 5.00g/5mL,MSVOAK
ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jun 17 11:55:50 2010

Quant Method: W:\HPCHEM1\MSVOA_K\METHOD\82K061410S.M

Quant Title : SW846 8260

QLast Update : Mon Jun 14 17:09:54 2010

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 25% Max. Rel. Area : 150%

	Compound	AvgRF	CCRF	%Dev Ar	cea%	Dev(min)
0 T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 T	n-Butylbenzene Hexachloroethane 1,2-Dichlorobenzene 1,2,4,5-tetramethylbenzene 1,2-Dibromo-3-Chloropropane 1,2,4-Trichlorobenzene Hexachlorobutadiene Naphthalene 1,2,3-Trichlorobenzene	2.599 0.483 1.234 2.281 0.209 0.778 0.328 2.786 0.789	2.713 0.509 1.361 2.599 0.204 0.822 0.369 2.843 0.834	-4.4 -5.4 -10.3 -13.9 2.4 -5.7 -12.5 -2.0 -5.7	77 88 93 88 84 88 91 88	0.00 0.00 0.00 0.00 0.00 -0.01 0.00 0.00

^{(#) =} Out of Range

SPCC's out = 0 CCC's out = 6

METALS

NYSDEC DUSR PROJECT CHEMIST REVIEW RECORD Project: Linku's Corney
Method: 6010 Metho 7471 Hs
Laboratory and SDG(s): Chartech B2643
Date: 8/4/10
Reviewer:
Review Level X NYSDEC DUSR USEPA Region II Guideline
 Case Narrative Review and Data Package Completeness Where all the samples on the COC analyzed for the requested analyses? YES NO (circle one)
3. If Holding time and Sample Collection Were all samples were all prepped and analyzed with the holding time (6 month). YES NO (circle one)
4. De Company of the Control of the
Interference Check Standard
Instrument Calibration Initial calibration criteria met for the method? YES NO (circle one) 90-110% (80-120% Hg) recovery on continuing calibration standards met? YES NO (circle one)
Serial Dilutions Were all results were within the control limit of 10% (for values > 50X MDL)? Leberatory Control Sample Results
Laboratory Control Sample Results Were all results were within 80-120% limits? YES (NO (circle one)
Matrix Spike Were MS/MSDs submitted/analyzed? YES NO
Were all results were within 75-125% limits? YES NO NA (circle one)
Were MS/MSDs submitted/analyzed? YES NO Were all results were within 75-125% limits? YES NO NA (circle one) Duplicates/replicates Were Field Duplicates submitted/analyzed? YES NO Aqueous RPD within limit? (20%) YES NO NA (circle one) Soil RPD within limit? (35%) YES NO NA (circle one)
Was the lab dup RPD <20% for values > 5X the CRQL (or \pm CRQL)
Were both Total and Dissolved metals reported? YES (NO) NA (circle one) If the dissolved concentration is > 20% of the total concentration then estimate (J) both results
Percent solids < 50% for any soil/sediment sample? YES NO NA (circle one) If yes, estimate all results.
5. Raw Data Review and Calculation Checks
6. Electronic Data Review and Edits. Does the EDD match the Form I's? (YES) NO (circle one)
7. DUSR Tables: Table 1 (sample Listing), Table 2 (results summary), Table 3 (Reason Codes).

13-IN

ANALYSIS RUN LOG

Contract: MACTEC Inc. Lab Name: Chemtech Consulting Group

Lab Code: CTECH Case No.: B2643 NRAS No.: B2643 SDG No.: B2643

Analysis Method: P Instrument ID: P4

Start Date: 6/14/2010 End Date: 6/14/2010

EPA												2	\na	lyt	tes											_
Sample NO.	. D/F	Time	A L	S B	A S	B A		C D	C A	C R			F E		M G	- 1	H G		K	S E		N A	T L		Z N	
S0	1.00	1414	Х	х	х	X	X	X	Х	X	Х	x	Х	х	Х	х		X	х	х	Х	X	Х	Х	Х	L
S1	1.00	1417	Х	х	x	Х	X	X		X	x	Х	Х	Х		Х		х		Х	Х		Х	Х	Х	L
S2	1.00	1420							Х						X				Х			X				L
S3	1.00	1422	х	Х	х	X	X	x	Х	X	Х	X	Х	Х	Х	х		х	х	Х	х	Х	Х	х	х	
S4	1.00	1425	х	X	х	X	X	х	X	X	Х	X	Х	Х	x	Х		х	X	Х	х	х	Х	Х	X	L
S5	1.00	1428	Х	х	х	X	X	x	Х	X	Х	X	X	Х	X	X	ļ	Х	Х	х	Х	х	X	Х	Х	L
ICV01	1.00	1430	Х	Х	х	X	Х	х	Х	X	Х	X	Х	Х	Х	х		Х	х	Х	Х	х	Х	Х	Х	L
ICB01	1.00	1433	x	х	х	Х	Х	x	Х	X	Х	X	X	X	X	Х		Х	Х	Х	Х	Х	Х	Х	Х	
CRI01	1.00	1435	x	х	х	Х	Х	Х		X	X	X	X	X		Х		X		Х	-		Х	Х	Х	L
ICS-A01	1.00	1441	x	х	х	Х	Х	X	X	X	X	X	Х	X	X	X		X	Х	Х	Х		Х	Х	Х	Ļ
CRI02	1.00	1451							Х						х				Х			Х				Ļ
ICS-AB01	1.00	1455	x	Х	x	Х		х	Х	x	X	x	Х	Х	х	Х		X	Х	Х	Х	X	 	Х	-	÷
CCV01	1.00	1458	x	х	х	Х		x		Х	X	X	Х	Х	Х	Х		X	х	-	-	Х	-	Х	-	÷
CCB01	1.00	1501	Х	Х	х	Х	Х	x	Х	Х	Х	х	Х	X	Х	х		Х	Х	Х	Х	Х	Х	Х	Х	ļ
ZZZZZZ	1.00	1503																		辶	L	ㄴ	<u> </u>	Ļ		1
ZZZZZZ	1.00	1506																		<u> </u>	Ļ	Ļ		Ļ		ļ
ZZZZZZ	1.00	1509													<u> </u>		_			Ļ		_	<u> </u>	Ļ		ļ
ZZZZZZ	1.00	1512		丄								<u> </u>								Ļ	L	Ļ		ᄂ	<u> </u>	ļ
ZZZZZZ	1.00	1514			<u> </u>														<u> </u>	Ļ	<u> </u>	Ļ		<u> </u>	_	ļ
ZZZZZZ	5.00	1517												_	<u> </u>	<u> </u>				Ļ	Ļ	Ļ	<u> </u>	ᄂ	<u> </u>	ļ
ZZZZZZ	1.00	1520											<u> </u>			<u> </u>			_	Ļ	<u> </u>	Ļ	<u> </u>	丄	<u> </u>	ļ
ZZZZZZ	1.00	1522	L		\perp								<u>L</u>				_	_	Ļ	Ļ	上	丄	L	丄	Ļ	ļ
ZZZZZZ	1.00	1525													L				<u> </u>	丄	丄	╄	L	丄	Ļ	1
ZZZZZZ	1.00	1528						L						<u> </u>	<u> </u>		<u> </u>			丄	Ļ	Ļ	_	╄	Ļ	ļ
CCV02	1.00	1530	Х	X	x		Х	- -	-	X	_	÷		X	X	Х	<u> </u>	X	 		Х	-	-	X	-	÷
CCB02	1.00	1533	X	X	X	Х	Х	x	X	Х	Х	x	X	Х	X	X		X	X	X	x	X	X	X	X	1
ZZZZZZ	1.00	1536		┸	<u> </u>	_		<u> </u>		Ļ		<u> </u>	<u> </u>	<u> </u>	<u> </u>	_	_	<u> </u>	Ļ	Ļ	<u> </u>	Ļ	_	丄	Ļ	ļ
ZZZZZZ	1.00	1538	<u> </u>									<u> </u>		<u> </u>	Ļ	<u> </u>	<u> </u>	<u>L</u>	Ļ	Ļ	<u> </u>	╄	Ļ	 	뉴	1
ZZZZZZ	1.00	1541					<u> </u>		<u> </u>			<u> </u>	L	<u> </u>	<u> </u>	<u> </u>		_	<u> </u>	Ļ	╄	Ļ	<u> </u>	丰	<u> </u>	<u> </u>
ZZZZZZ	1.00	1544						L				L		L	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	丄	Ļ	丰		╀	Ļ	1
ZZZZZZ	1.00	1547									_	丄			<u> </u>	<u> </u>	<u> </u>	<u> </u>	Ļ	丰	丄	Ļ	<u> </u>	丄	Ļ	1
ZZZZZZ	1.00	1549								L	$oldsymbol{\perp}$	\perp	_	1	_	_		<u> </u>		丰	⊥	丄	\perp	\perp	丄	_
ZZZZZZ	1.00	1552													<u> </u>		_	_	Ļ	丰	丄	Ļ	Ļ	丄	Ļ	_
ccy03	1.00	1555	2	χ	Х	Х	X	Х	X	Х	Х	x	x	X	X	X	L	+-	÷	-		-	÷	X	÷	÷
CCB03	1.00	1558	3	ĸΧ	X	X	X	X	X	Х	X	X	X	X	x	x		X	x p	: x	. X	X	X	: x	X	[2

13-IN

ANALYSIS RUN LOG

_____ Contract: MACTEC Inc. Lab Name: Chemtech Consulting Group

Lab Code: CTECH Case No.: B2643 NRAS No.: B2643 SDG No.: B2643

Analysis Method: P Instrument ID: P4

.... องน์

art Date: 6/14/2010		1,420	Γ		+																_				
EPA Sample	D/F	Time	 ,											lyt	_	_					_	<u> </u>			
NO.	27.1	1	A L	S B	A S	R .	B	С	C A	C R	0		F E		M G		H	N	ĸ	S	A G	N A	T L	V	Z N
PB49784BL	1.00	1600	х	х	х	Х	Х	X	х	X	X	x	х	х	Х	х		X	X	X	х	х	х	Х	x
PB49784BS	1.00	1603	Х	x	х	Х	X	X	Х	X	x	x	х	X	Х	Х		X	X	X	Х	Х	Х	Х	$ \mathbf{x} $
LCPD101100110XX	1.00	1606	х	х	Х	Х	X	Х	Х	X	x	x	х	Х	Х	X		Х	X	Х	X	Х	X	X	х
LCBKSS00100110XX	1.00	1608	х	Х	Х	Х	X	x	Х	X	x	x	Х	Х	X	x		Х	X	x	x	х	Х	X	Х
LCBKSS00200110XX	1.00	1611	х	х	Х	Х	Х	x	X	X	х	x	х	Х	Х	Х		X	X	Х	х	X	Х	Х	x
LCBKSS00300110XX	1.00	1614	X	Х	Х	Х	Х	x	Х	X	Х	х	х	X	х	Х		X	х	х	Х	Х	X	х	х
LCBKSS00300110XXD	1.00	1616	X	x	Х	Х	X	х	Х	X	Х	x	х	х	x	X		X	X	x	Х	Х	Х	Х	х
LCBKSS00300110XXL	5.00	1619	x	X	Х	Х	Х	x	х	X	Х	x	х	Х	X	X		Х	X	х	Х	X	Х	Х	х
LCBKSS00300110XXS	1.00	1622	X	X	X	х	Х	х	х	X	x	x	Х	Х	X	X		X	X	Х	х	Х	Х	х	x
LCBKSS00300110XXSD	1.00	1624	х	х	Х	Х	Х	x	х	X	Х	x	Х	X	X	X		Х	Х	Х	х	х	X	x	x
CCV04	1.00	1627	x	х	х	Х	Х	x	Х	Х	Х	X	X	X	X	X		х	X	Х	х	Х	Х	х	x
CCB04	1.00	1629	Х	х	х	Х	Х	X	Х	Х	х	x	X	Х	X	Х		х	Х	Х	х	Х	х	x	х
LCBKSS00300110XXA	1.00	1632	32.4		-	412						4	10.9												\Box
LCBKSS00300110XD	1.00	1635	Х	х	х	х	Х	х	Х	Х	Х	Х	х	Х	Х	х		х	х	х	X	х	х	Х	Х
ZZZZZZ	1.00	1637			Г																				\Box
ZZZZZZ	1.00	1640																							
ZZZZZZ	1.00	1643	Ì																	Γ					
ZZZZZZ	1.00	1645	<u> </u>				Г												Г	Г	Г	Π			
ZZZZZZ	1.00	1648	İ					Π											Γ		Π				
ZZZZZZ	1.00	1651	T		Г				Γ																
ZZZZZZ	1.00	1653	†					İ	İ											Г	Г	Ī	Ī		
ZZZZZZ	1.00	1656	T		T			İ	İ									Γ	Г	Π	T				П
CCV05	1.00	1659	x	х	х	х	Х	х	х	х	х	х	х	х	х	х	Ī	Х	х	х	х	х	х	х	х
CCB05	1.00	1701	x	х	X.	Х	х	х	х	х	х	х	х	х	х	х	Ī	Х	x	х	х	х	х	x	х
ZZZZZZ	1.00	1704	13.	1		-5		T	Г								Γ	Ī	Г	Г	T				
ZZZZZZ	1.00	1707				T		T	<u> </u>		T						Ī	Г		Γ	T				Г
ZZZZZZ	1.00	1709	T				T	Ť										Ī		Г	T	Ī			Г
ZZZZZZ	1.00	1712	T		T	T	T	T	Ì	T				İ		Ì	İ		İ	Ĺ	T	Ī			Г
ZZZZZZ	5.00	1715	Ϊ.					İ	Ī	Ī	Τ						İ	Ì	Γ	Ĺ	T			Γ	П
ZZZZZZ	1.00	1718	Ť					T	T	Ī										Г	Π				
ZZZZZZ	1.00	1720	丅			T	T	İ	İ							Ì	T			T	Ť	Ī	Ť		П
ZZZZZZ	1.00	1723	十			T	T	T	İ	İ	T	İ		İ	İ	i -	İ	İ	İ	T	T	İ	İ	İ	
ZZZZZZ	1.00	1726	\dagger	T	 	T	T	Ť	Ť	İΤ		İ	İ		İ	İΤ	T	İ	Ť	T	Ť	Ť	İ	İ	T
ZZZZZZ	1.00	1729	十			+	T	T	T	T	T	T		İ	İ	İ	İ	İ	İ	T	T	T		İ	T
CCV06	1.00	1731	x	х	x	x	x	x	х	х	х	х	х	x	х	х	T	Х	x	x	x	х	х	x	x
	2.6	•			1		т			<u> </u>		• • •	•	=	<u>. </u>	•	<u>. </u>		_		2				1
AL = 32.4 AL = 1 $Ba = 0.6 AL = 1$	b) all?				F	'orı	n X	II	[-I	N			12	=	٦,	٠ (ry ==				: L		

13-IN

ANALYSIS RUN LOG

_____ Contract: MACTEC Inc. Lab Name: Chemtech Consulting Group

Case No.: <u>B2643</u> NRAS No.: <u>B2643</u> SDG No.: <u>B2643</u> CTECH Lab Code:

Analysis Method: CV Instrument ID: CV1

End Date: 6/16/2010 Start Date: 6/16/2010

EPA	_ /	nn-≟	<u> </u>					,					Ana	ly												_
Sample NO.	D/F	Time	A L		A S		B	C D	C A	C R	0	C U			M G	M N		N	ĸ				T L		z N	
Std01Rep1	1.00	1646															X									
Std02Rep1	1.00	1649															X									
Std03Rep1	1.00	1651															Х									
Std04Rep1	1.00	1653															Х									
Std05Rep1	1.00	1655															Х									
Std06Rep1	1.00	1657															X									
ICV01	1.00	1700															X									
ICB01	1.00	1702															X								_	
CCV01	1.00	1703															X									
ССВ01 /	1.00	1706												٠.			X									
CRI01	1.00	1707															X									
HIGH STD	1.00	1710															X									
ZZZZZZ	1.00	1711																								
ZZZZZZ	1.00	1713																								Ι
ZZZZZZ	1.00	1715																								Γ
ZZZZZZ	1.00	1717							·							\prod										Γ
ZZZZZZ	1.00	1719																								Τ
ZZZZZZ	1.00	1721																								Γ
CCV02	1.00	1723			Π			Γ									х									T
CCB02	1.00	1725			П												Х									Τ
ZZZZZZ	1.00	1727			Π																		Γ			Τ
ZZZZZZ	1.00	1729																								T
ZZZZZZ	1.00	1731																								T
ZZZZZZ	5.00	1733			Π			Г	Π																	T
ZZZZZZ	1.00	1735																							Π	T
ZZZZZZ	1.00	1737			Τ			Π																		T
ZZZZZZ	1.00	1739			Τ					Π			Π						Г						Π	T
ZZZZZZ	1.00	1741	T			Γ														Γ				Γ	Π	Ţ
CCV03	1.00	1743	T	Τ		Т		Ī	Ī	Π	Τ						х			Г				Г	Π	T
CCB03	1.00	1745	T		Т		·	Ť	T		Π		Π				х		-	0,	14	1				T
ZZZZZZ	1.00	1747		T			Τ						Γ							Γ				Γ	Γ	Ţ
PB49851BL	1.00	1749	Τ					T		Π							х			Π				Γ	Γ	T
PB49851BS	1.00	1751	T	T	T			T	Ì	Γ					Π	Π	х			Γ				Γ	Γ	T
ZZZZZZ	1.00	1753	Ť		T	T			Τ				T	Π	Π									Γ		T
ZZZZZZ	1.00	1755	Ť	†	†	\top	Т	Ť	Ť	Ť	\top		Ť	Ť	П	T	Ι	Г	П	Т	Ī	Т	Π	Т	Т	Ť

FORM XIII-IN Hg = -0.142 AL = -0.71

all < Jquility

8-IN

ICP-AES and ICP-MS SERIAL DILUTIONS

EPA SAMPLE NO.

LCBKSS00300110XXL

Lab Name: Chemtech Consulting Group

Contract:

MACTEC Inc.

Lab Code: CTECH

Case No.:

B2643 NRAS No.:

B2643

1014.00

SDG NO.: B2643

Matrix (soil/water):

WATER

Concentration Units: ug/L

Zinc

Level (low/med): LOW

Analyte	Initial Sample Result (I)		Serial Dilution Result (S)		g. Difference			
Analy te		С		С		Ω,	М	▋
Aluminum	43649.00		47514.50	.	8.9		P	
Antimony	8.64	J	125.00	ט	100.0	1	P	
Arsenic	61.37		60.90		0.8	1/	P	
Barium	747.05		822.70		10.1	/	P	
Beryllium	2.91	J	3.65	J	25.4	\mathbb{L}	P	╛
Cadmium	7.63		6.45	J	15.5	1/	P]
Calcium >	16461.00		18650.00		13.3	<u>L</u>	P]>
Chromium	70.24		73.00		3.9		P	╛
Cobalt	54.82		62.00	J	13.1	<u> </u>	P	_
Copper	261.35		296.75		13.5	1/	P	_
Iron	104320.00		119225.00		14.3	Ŀ	P	_ \
Lead	1150.20		1247.30		8.4	<u> </u>	P	
Magnesium	12267.00		13785.50		12.4	<u> </u>	P	دل
Manganese	3309.40		3765.80		13.8	Ц	P	
Nickel	98.31		102.65		4.4	レ	P	<u>ا</u>
Potassium	4049.50		4523.30	J	11.7		P]>
Selenium	18.55		50.00	Ū	100.0	\ <u>'</u>	P	
Silver	5.00	Ū	25.00	ע			P	
Sodium	1499.70		1622.10	J	8.2		P	ŀ
Thallium	20.00	Ū	100.00	ָט		1	P	
Vanadium	79.01		90.00	J	13.9	i/	P	

899.36

9-IN METHOD DETECTION LIMITS (ANNUALLY)

Chemtech Consulting Group

Contract: MACTEC Inc.

CTECH Case No.:

B2643

NRAS No.: B2643

SDG NO.:

B2643

Instrument Type: P

Instrument ID:

P4

Date:

02/14/2009

Preparation Method:

NP1

Concentration Units (ug/L or mg/kg):

UG/L

Analyte	Wave-Length /Mass	CRQL	MDL
Aluminum	308.22	50.0	6.50.
Antimony	206.83	25.0	, 8.00
Arsenic	193.76	10.0	4.20
Barium	493.41	50.0	4.00
Beryllium	234.86	3.0	0.70
Cadmium	226.50	3.0	0.50
Calcium	373.69	1000.0	31.80
Chromium	267.72	5.0	1.10
Cobalt	228.62	15.0	5.80
Copper	224.70	10.0	6.60
Iron	259.83	50.0	20.40
Lead	220.35	6.0	2.60
Magnesium	279.08	1000.0	32.50
Manganese	257.61	10.0	1.70
Nickel	231.60	20.0	4.20
Potassium	766.49	1000.0	38.80
Selenium	196.02	10.0	4.80
Silver	328.07	5.0	1.50
Sodium	589.59	1000.0	13.90
Thallium	190.86	20.0	2.40
Vanadium	292.40	20.0	6.10
Zinc	206.20	20.0	6.50

13-IN

ANALYSIS RUN LOG

Lab Name: Chemtech Consulting Group Contract: MACTEC Inc.

Lab Code: CTECH Case No.: B2643 NRAS No.: B2643 SDG No.: B2643

Instrument ID: CV1 Analysis Method: CV

Start Date: 6/16/2010 End Date: 6/16/2010

EPA										7	Ana	lу	tes	3										
Sample NO	D/F	Time	A L	S B	A S	B E	C D	C A	C 0	C U		P B	M G		H G	N I	K	S E	A G	N A	T L	v		C N
ZZZZZZ	1.00	1757																						
LCPD101100110XX	1.00	1759													X									
LCBKSS00100110XX	1.00	1801													Х									
CCV04	1.00	1803													х									
CCB04	1.00	1805													Х		~≈	O	11	4.	<u> </u>		Ш	
LCBKSS00200110XX	1.00	1807													Х									_
LCBKSS00300110XX	1.00	1809													X								\bigsqcup	L
LCBKSS00300110XD	1.00	1811													Х				_					
ZZZZZZ	1.00	1813																				<u> </u>		_
ZZZZZZ	1.00	1815									L								<u> </u>		<u> </u>			L
ZZZZZZ	1.00	1817											<u> </u>			ļ					L		<u> </u>	上
ZZZZZZ	1.00	1819																						<u> </u>
ZZZZZZ	1.00	1823																		_	<u> </u>			Ļ
CCV05	1.00	1824													Х						L		<u> </u>	Ļ
CCB05	1.00	1826													x		<u> </u>	(، (۵	/ /3	2			L
ZZZZZZ	1.00	1828														<u> </u>	<u> </u>		<u> </u>		_	Ļ	Ļ	Ļ
ZZZZZZ	1.00	1831														<u> </u>	<u> </u>						<u> </u>	辶
B93D2(60-67)D	1.00	1833													X		<u> </u>		L				Ļ	Ļ
B93D2(60-67)L	5.00	1835													X				<u> </u>	L		<u> </u>	Ļ	辶
B93D2 (60-67) S	1.00	1837											<u> </u>		x	<u> </u>		L			L	<u> </u>	丄	<u> </u>
B93D2 (60-67) SD	1.00	1839													X					<u> </u>	Ļ		丄	上
B93D2 (60-67) A	1.00	1841											<u> </u>			L						_	Ļ	Ļ
ZZZZZZ	1.00	1843												<u> </u>		<u> </u>				<u> </u>	<u> </u>	<u> </u>	丄	Ļ
ccv06	1.00	1845					T							1	X	:			<u> </u>					上
CCB06	1.00	1847	Ī												X	:								Ļ
ZZZZZZ	1.00	1850		Ι																			丄	丄
ZZZZZZ	10.00	1852																					<u> </u>	丄
ZZZZZZ	100.00	1854						Τ	Γ															
CCV07	1.00	1856													X									
CCB07	1.00	1858	T	T	T		T	T	Τ					Ţ	Х			Γ		\prod				

USEPA - CLP

3-IN

BLANKS

Lab Name: Chemtech Consulting Group

Contract:

MACTEC Inc.

Lab Code:

CTECH

Case No.: <u>B2643</u>

NRAS No.:

B2643 SDG NO.:

B2643

Preparation Blank Matrix (soil/water):

SOIL

Preparation Blank Concentration Units (ug/L or mg/kg):

MG/KG

	Initial Calibration Blank(ug/L)			С	ontinuing Cal Blank (ug/		tion		Preparation Blank		
Analyte		С	1	С	2	Ċ	(3)	⟨		₹	М
Aluminum	14.6	J	7.2	J	16.1	J	(12.7	\G	1.420	J) P
Antimony	25.0	ם	25.0	ַ	25.0	Ū	25.0	Ŭ	2.500	U	P
Arsenic	10.0	Ū	10.0	Ū	10.0	Ū	10.0	Ŭ	1.000	9	P
Barium	50.0	Ū	50.0	Ū	50.0	U	50.0	Ŭ	-0.424	J	P
Beryllium	3.0	Ü	3.0	Ū	3.0	ט	3.0	Ų,	0.300	Ū	P
Cadmium	3.0	Ü	3.0	U	3.0	ט	(0.6	Ĵ	0.300	U	P
Calcium	1000.0	ט	1000.0	Ū	1000.0	ט	1000.0	Ū	100.000	U	Р
Chromium	5.0	ט	5.0	U	5.0	Ū	5.0	Ū	0.500	U	P
Cobalt	15.0	Ū	15.0	Ū	15.0	Ū	15.0	Ŭ	1.500	U	P
Copper	10.0	Ū	10.0	Ū	10.0	Ū	10.0	Ŭ	1.000	U	P
Iron	50.0	Ū	50.0	Ū	50.0	Ū	50.0	Ū	5.000	U	P
Lead	6.0	Ū	6.0	Ū	6.0	Ū	6.0	U	0.600	U	P
Magnesium	1000.0	Ū	1000.0	Ū	1000.0	Ū	1000 0	Ū	100.000	U	P
Manganese	10.0	Ū	10.0	Ū	10.0	Ū	((10.0)) U	1.000	U	P
Mercury	-0.157	J	-0.156	J	-0.175	J	-0.140	J	OK-0.007	J	CV
Nickel	20.0	Ū	20.0	Ū	20.0	Ū	20.0	Ū	2.000	Ŭ	P
Potassium	1000.0	U	1000.0	Ū	1000.0	U	1000.0	Ū	100.000	Ū	P
Selenium	10.0	Ū	10.0	U	10.0	Ū	10.0	Ū	1.000	Ū	P
Silver	5.0	Ū	5.0	Ū	5.0	Ū	5.0	Ū	0.500	Ū	P
Sodium	1000.0	Ū	1000.0	Ū	1000.0	Ū	1000.0	U	100.000	Ū	P
Thallium	20.0	Ū	20.0	Ū	20.0	U	20.0	U	2.000	Ū	P
Vanadium	20.0	Ū	20.0	Ū	20.0	U	20.0	Ū	2.000	Ū	P
Zinc	20.0	U	20.0	U	20.0	U	20.0	Ū	2.000	Ū	P

USEPA - CLP

3-IN

BLANKS

Lab Name: Chemtech Consulting Group

MACTEC Inc. Contract:

Lab Code: CTECH

Case No.: B2643

NRAS No.:

B2643

___ SDG NO.: B2643

Preparation Blank Matrix (soil/water):

WATER

Preparation Blank Concentration Units (ug/L or mg/kg):

UG/L

	Initial Calibration Blank (ug/L)			C	ontinuing Cal Blank (ug/		tion		Preparation Blank		
Analyte		С	14	С	75	γ	36	С		С	М
Aluminum			(32.4)	Ū	13.4	IJ	50.0	Ū			P
Antimony			25.0	Ū	25.0	Ū	25.0	Ū		j	P
Arsenic			10.0	U	10-0	Ū	10.0	Ū		ļ	P
Barium			-4.2)J	(-5.0	Ď	50.0	Ū			P
Beryllium			3.0	Ū	3.0	Ū	3.0	U	·		P
Cadmium			3.0	Ū	3.0	Ū	3.0	Ū			P
Calcium			1000.0	Ū	1000.0	Ū	1000.0	Ū			P
Chromium			5.0	Ū	5.0	Ū	5.0	Ū			P
Cobalt			15.0	Ū	15.0	ם	15.0	ט			P
Copper			10_0	Ū	10.0	Ū	10.0	Ū			P
Iron			(<u>4</u> 2.9	Σ	50.0	ט	50.0	ם			P
Lead			6.0	Ū	6.0	Ū	6.0	Ū			P
Magnesium			1000.0	Ū	1000.0	Ū	1000.0	ם			P
Manganese			10.0	Ū	10.0	Ū	10.0	Ū			P
Mercury		Ī	(-0.142	ŊĴ	(0.135	দ	-0.149	J			CV
Nickel			20.0	Ū	20.0	Ū	20.0	Ū			P
Potassium		Ì	1000.0	Ū	1000.0	U	1000.0	Ū			P
Selenium			10.0	Ū	10.0	Ū	10.0	Ū			P
Silver		İ	5.0	U	5.0	Ū	5.0	Ū			P
Sodium			1000.0	Ū	1000.0	Ū	16.6	J			P
Thallium		Ì	20.0	U	20.0	Ū	20.0	ט			P
Vanadium			20.0	Ū	20.0	U	20.0	Ū			P
Zinc			20.0	Ū	20.0	U	20.0	Ū			P

12-IN

PREPARATION LOG

Lab Name: Chemtech Consulting Group Contract: MACTEC Inc.

Lab Code: CTECH

Case No.: B2643

NRAS No.: B2643

SDG NO.:

B2643

Preparation Method:

EPA Sample No.	Preparation Date	Weight (gram)	Volume (mL)
PB49784BL	6/14/2010	1.00	100
PB49784BS	6/14/2010	1.00	100.
LCPD101100110XX	6/14/2010	1.47	100
LCBKSS00100110XX	6/14/2010	1.46	100
LCBKSS00200110XX	6/14/2010	1.07	100
LCBKSS00300110XX	6/14/2010	1.00	100
LCBKSS00300110XXD	6/14/2010	1.00	100
LCBKSS00300110XXS	6/14/2010	1.00	100
LCBKSS00300110XXSD	6/14/2010	1.00	100
LCBKSS00300110XD	6/14/2010	1.23	100

Comments:		 	
	 	 	

12-IN

PREPARATION LOG

Lab Name: Chemtech Consulting Group Contract: MACTEC Inc.

Lab Code: CTECH Case No.: B2643 NRAS No.: B2643 SDG NO.: B2643

Preparation Method:

EPA Sample No.	Preparation Date	Weight (gram)	Volume (mL)
PB49851BL	6/15/2010	0.60	30
PB49851BS	6/15/2010	0.60	30
LCPD101100110XX	6/15/2010	0.62	30
LCBKSS00100110XX	6/15/2010	0.61	30
LCBKSS00200110XX	6/15/2010	0.63	30
LCBKSS00300110XX	6/15/2010	0.64	30
LCBKSS00300110XD	6/15/2010	0.61	30
B93D2(60-67)D	6/15/2010	0.60	30
B93D2 (60-67)S	6/15/2010	0.60	30
B93D2 (60-67) SD	6/15/2010	0.60	30

Comments:		 	

Metals 5A-IN

MATRIX SPIKE SAMPLE RECOVERY

EPA SAMPLE NO.

LCBKSS00300110XXS

Lab Name: Chemtech Consulting Group

Contract: MACTEC Inc.

Lab Code: CTECH

Case No.: B2643

NRAS No.: B2643

SDG NO.: B2643

Matrix (soil/water):

SOIL

Level (low/med): LOW

% Solids for Sample: 79.8

Concentration Units (ug/L or mg/kg dry weight):

MG/KG

Analyte	Control Limit %R	Spiked Sample Result (SSR)	С	Sample Result (SR)	С	Spike Added (SA)	8B	-92	м	D7(4x
Aluminum		6365.1630		5469.8000		250.63	357.2		P	01(45
Antimony	47 - 131	93.8822		1.0827	J	100.25	92.6		P	
Arsenic	73 - 114	106.2820		7.6905		100.25	98.3		P	
Barium	39 - 158	129.7368		93.6153		25.06	144.1	>	P	-
Beryllium	79 - 112	23.2481		0.3647	J	25.06	91.3		P	,
Cadmium	73 - 114	27.1065		0.9561		25.06	104.4		P	
Calcium		2419.1730	1	2062.7820		125.31	284.4	Š	P	OK 4x
Chromium	68 - 122	57.7306		8.8020		50.13	97.6		P	
Cobalt	68 - 119	33.7807		6.8697		25.06	107.4		P	
Copper	59 - 132	71.0414		32.7506		37.59	101.9		P	
Iron		14818.3000		13072.6800		375.94	(464.3)	>	P	0k 4x
Lead	66 - 125	284.9248		144.1353		125.31	112.4		P	
Magnesium		1930.3260		1537.2180		250.63	156.8		P	OKYX
Manganese		483.7845		414.7118		25.06	275.6	^	P	CKYX
Nickel	64 - 129	79.0038		12.3196		62.66	106.4		P	
Potassium	37 - 158	1705.2630		507.4561		1253.13	95.6		P	
Selenium	69 - 105	219.3484		2.3246		250.63	86.6		₽]
Silver	54 - 131	8.6466		0.6266	Ü	9.40	92.0		P	
Sodium	10 - 139	552.1679		187.9323		375.94	96.9		P	
Thallium	74 - 116	242.1303		2.5063	Ü	250.63	96.6		P	J
Vanadium	67 - 127	46.4436		9.9010		37.59	97.2		P	
Zinc		145.1003		112.7018		25.06	129.3	^	P	0k4x

Comments:		

7 - IN LABORATORY CONTROL SAMPLE

Lab Name:	Chemtec	h Consulting	Group	_	Conti	ract:	MACTEC	Inc.	
Lab Code:	CTECH	Case No.:	B2643	NRAS	No:	B2643		SDG NO.:	B2643_
Solid LCS	Source:	INOR-VEN							
Aqueous L	CS Source:			_					

	Aq	ueous (ug/L)			Solid	(mọ	g/kg)		
Analyte	True	Found	%R	True	Found	С	Limits	·	%R
Aluminum				200.0	183.2		76.0	118.0	91.6
Antimony				80.0	78.8		81.0	112.0	98.5
Arsenic				80.0	78.7			112.0	98.4
Barium				20.0	20.4			118.0	102.0
Beryllium		•		20.0	19.7		84.0	113.0	98.5
Cadmium				20.0	20.3		82.0	117.0	101.5
Calcium				100.0	93.3	J	78.0	138.0	93.3
Chromium				40.0	39.1		84.0	115.0	97.8
Cobalt	·]	20.0	20.0		84.0	114.0	100.0
Copper				30.0	28.9		80.0	115.0	96.3
Iron				300.0	298.5		(78.0)	109.0	99.5
Lead				100.0	96.3		82.0	117.0	96.3
Magnesium				200.0	181.0		80.0	121.0	90.5
Manganese				20.0	19.9		84.0	114.0	99.5
Mercury				0.200	0.172		(73.0)	121.0	86.0
Nickel				50.0	50.0			118.0	100.0
Potassium				1000.0	930.0			116.0	93.0
Selenium				200.0	193.6		(74.0)	110.0	96.8
Silver				7.5	6.8			123.0	90.7
Sodium				300.0	285.6		(70.0)	135.0	95.2
Thallium				200.0	184.6		86.0	119.0	92.3
Vanadium				30.0	29.1		84.0	113.0	97.0
Zinc				20.0	19.5		88.0	127.0	97.5

					_	
	Aluminum	6400	J	5470	J	16
	Iron	15700	J	13100	J	18
	Lead	190		144		28
	Magnesium	2290		1540		39
	Manganese	467		415		12
	Nickel	14.9		12.3		19
	Potassium	584	J	507	J	14
	Silver	0.5	U	0.63	U	23
	Sodium	211	J	188	J	12
	Thallium	2	U	2.51	U	23
	Antimony	1.37	J	1.08	J	24
	Arsenic	9.37		7.69	•	20
	Barium	106	J	93.6	J	12
	Beryllium	0.46		0.36	J ·	24
	Cadmium	1.37		0.96		35
	Chromium	9.65		8.8		9
	Cobalt	7.74		6.87		12
•	Copper	37.5		32.8		13
	Vanadium	11.3		9.9		13
	Zinc .	137		113		19
	Calcium	12600	J	2060	J	144
	Selenium	2.73	J	2.32	J	16
	Mercury	0.164	J	0.193	J	16

•

Metals 5A-IN

MATRIX SPIKE SAMPLE RECOVERY

EPA SAMPLE NO.

LCBKSS00300110XXSD

Lab Name: Chemtech Consulting Group

Contract: MACTEC Inc.

Lab Code: CTECH

Case No.: B2643

NRAS No.: B2643 SDG NO.: B2643

Matrix (soil/water):

SOIL

Level (low/med): LOW

% Solids for Sample: 79.8

Concentration Units (ug/L or mg/kg dry weight):

MG/KG

Analyte	Control Limit %R	Spiked Sample Result (SSR)	С	Sample Result (SR)	С	Spike Added (SA)	%R	Q	М	
Aluminum		6409.6490		5469.8000		250.63	(375.0)	₽	OK 44
Antimony	47 - 131	92.2983		1.0827	J	100.25	91.0		P	
Arsenic	73 - 114	104.9211		7.6905		100.25	97.0		₽	
Barium		130.4010		93.6153		25.06	146.8	\triangle	P	
Beryllium	79 - 112	23.3208		0.3647	J	25.06	91.6		P	
Cadmium	73 - 114	26.6203		0.9561		25.06	102.4		Р	
Calcium		2421.6790		2062.7820		125.31	286.4		Ρ	OK 4x
Chromium	68 - 122	57.1353		8.8020		50.13	96.4		Ρ	
Cobalt	68 - 119	33.1404		6.8697		25.06	104.8		Ρ]
Copper	59 - 132	71.1880		32.7506		37.59	102.3		Ρ]
Iron		14858.4000		13072.6800		375.94	(475.0	>	P	OKE
Lead	66 - 125	279.4110		144.1353		125.31	108.0		P	,,
Magnesium		1942.3560		1537.2180		250.63	(161.6		P	ox 4×
Manganese		483.3709		414.7118		25.06	(274.0)		P	ok 4x
Nickel	64 - 129	77.3910		12.3196		62.66	103.8		P	
Potassium	37 - 158	1698.1200		507.4561		1253.13	95.0		P	
Selenium	69 - 105	215.9273		2.3246		250.63	85.2		P]
Silver	54 - 131	8.4925		0.6266	υ	9.40	90.3		P]
Sodium	10 - 139	553.5213		187.9323		375.94	97.2		P]
Thallium	74 - 116	238.0702		2.5063	Ū	250.63	95.0		P]
Vanadium	67 - 127	46.7243		9.9010		37.59	98.0		P]
Zinc		146.0526		112.7018		25.06	133.1	\triangleright	P	0 K4x

Comments:	•		

USEPA - CLP

6-IN

DUPLICATES

EPA SAMPLE NO.

LCBKSS00300110XXD

Lab Name: Chemtech Consulting Group

Contract:

MACTEC Inc.

B2643

Lab Code: CTECH Case No.: B2643

NRAS No.:

SDG NO.:

Matrix (soil/water):

SOIL

Level (low/med): LOW % Solids for Duplicate:

B2643

79.8

% Solids for Sample:

79.8

ncentration U	nits:(ug/L or mg/	kg dry weight): MG	/KG		•		
Analyte	Control Limit	Sample (S)	Duplicate (D)	С	RPD	Q	М
Aluminum		5469.8000	5720.4260		4.5		P
Antimony		1.0827 J	1.2494	J	14.3		P
Arsenic		7.6905	8.0213		4.2		P
Barium		93.6153	98.0276		4.6		P
Beryllium	0.3759	0.3647 ј	0.4048		10.4		P
Cadmium	0.3759	0.9561	1.0276		7.2		P
Calcium		2062.7820	2179.6990		5. 5		P
Chromium		8.8020	9.1729		4.1		P
Cobalt	1.8797	6.8697	7.2419		5.3	·	P
Copper		32.7506	34.1692		4.2		P
Iron		13072.6800	13634.0900		4.2		P
Lead		144.1353	151.1905		4.8		P
Magnesium		1537.2180	1606.6420		4.4		P
Manganese		414.7118	432.6817		4.2		P
Nickel	2.5063	12.3196	12.9198		4.8		P
Potassium	125.3133	507.4561	526.0903		3.6		P
Selenium	1.2531	2.3246	2.9549		(23.9	<u> </u>	P
Silver		0.6266 ប	0.6266	υ			P
Sodium	125.3133	187.9323	194.4737		3.4		P
Thallium		2.5063 ບ	2.5063	Ū			P
Vanadium	2.5063	9.9010	10.3484		4.4		P
Zinc		112.7018	116.6679		3.5		P

06

USEPA - CLP

6-IN

DUPLICATES

EPA SAMPLE NO.

B93D2 (60-67) D

Lab Name: Chemtech Consulting Group

Contract:

MACTEC Inc.

CTECH

Case No.: B2643

NRAS No.:

B2643

SDG

B2643

Matrix (soil/water):

Lab Code:

SOIL

NO.:

Level (low/med):

% Solids for Sample:

77.6

% Solids for Duplicate:

77.6

Concentration Units: (ug/L or mg/kg dry weight):

MG/KG

Analyte	Control Limit	Sample (S)	С	Duplicate	(D)	С	RPD	Q	м
Mercury		0.012	9 ប		0.0031	J	(200.0		CV

PESTICIDES

NYSDEC DUSR PROJECT CHEMIST REVIEW RECORD
Project: Licha's Corny' Method: 3051 Perti
Laboratory and SDG(s): (hurtech B2643
Date: 8/5/10
Reviewer: walk
Review Level X NYSDEC DUSR USEPA Region II Guideline
1. Case Narrative Review and Data Package Completeness COMMENTS 2/5//2
Where all the samples on the COC analyzed for the requested analyses? YES NO (circle one)
2. Holding time (HT) and Sample Collection Aqueous is 7days to extraction, solid is 14 days. HT met for all samples? YES NO (circle one)
3. DOC Blanks Are method blanks free of contamination? YES NO (circle one) Are Rinse blanks free of contamination? YES NO NA (circle one)
Percent difference between columns (Region II criteria is 25% for Pest's) Is the percent difference between columns ≤25? YES NO (circle one)
Instrument Calibration
I-cal criteria of 20% (%RSD) (alpha-BHC, delta-BHC = 25%, Toxaphene = 30%) met? YES NO (circle one)
Continuing calibration criteria of (%D) 20% met? (YES) NO NA (circle one)
Surrogate Recovery (soil and water limits: 30-150%)
Were all results were within laboratory limits? (YES) NO (circle one)
Matrix Spike (Use lab limits) (refer to limits listed in SOP HW-44 Oct 2006 if no lab limits are listed)
Were MS/MSDs submitted/analyzed? YES NO
Were all results were within laboratory limits? YES NO NA (circle one)
Field Duplicates (RPD limits for soil=100, water = 50)
Were Field Duplicates submitted analyzed? (YES) NO Were RPDs within the limits? (YES) NO NA (circle one)
Laboratory Control Samples (Use lab limits) (refer to limits in SOP HW-44 Oct 2006 if no lab limits are listed)
Were all results were within laboratory limits? (YES) NO (circle one) Limits used were: Lab Limits Region II SOP HW-44 Oct 2006 (circle one)
4. Raw Data Review and Calculation Checks
5. Electronic Data Review and Edits: Does the EDD match the Form I's? YES NO (circle one)
6. DUSR Table 1 (sample Listing), Table 2 (results summary), Table 3 (Reason Codes). Were all tables produced? YES NO (circle one)

COMPOUND DETECTION SUMMARY

CLIENT SAMPLE NO.

LCBKSS00300110XX

Contract: MACT03

Lab Code: CHEM Case No.: B2643 SAS No.: B2643 SDG NO.: B2643

Lab Sample ID: B2643-15 Date(s) Analyzed: 06/18/2010 06/18/2010

Instrument ID (1): ECD7 Instrument ID (2): ECD7

GC Column: (1): ZB-MR2 ID: 0.32 (mm) GC Column: (2): ZB-MR1 ID: 0.32 (mm)

ANALYTE	COL	RT	RT WI FROM	NDOW TO	CONCENTRATION	%D
4,4-DDE	1	6.26	6.19	6.33	3.0	1)
	2	7.27	7.20	7.34	2.1	42.9
4,4 - DDT	1	7.01	6.94	7.08	2.9	
	2	8.07	8.00	8.14	3.1	6.9

COMPOUND DETECTION SUMMARY

CLIENT SAMPLE NO.

LCBKSS00300110XD

Contract:

MACT03

Lab Code:

CHEM

Case No.:

SAS No.:

B2643

SDG NO.:

B2643

Lab Sample ID:

B2643-16

Date(s) Analyzed:

06/18/2010

06/18/2010

Instrument ID (1):

ECD7

Instrument ID (2):

ECD7

GC Column: (1):

ZB-MR2

ID: 0.32 (mm)

B2643

GC Column:(2):

ZB-MR1

ID: 0.32 (mm)

ANALYTE	COL	RT	RT WII FROM	NDOW TO	CONCENTRATION	%D
4,4-DDE	1	6.26	6.19	6.33	2.7	
	2	7.27	7.20	7.34	2.0	35.0
4,4-DDT	1	7.01	6.94	7.08	2.6	
	2	8.07	8.00	8.14	2.9	11.5

COMPOUND DETECTION SUMMARY

CLIENT SAMPLE NO.

LCPD101100110XX

Contract:

MACT03

Lab Code:

CHEM

Case No.:

B2643

SAS No.:

B2643

SDG NO.:

B2643

Lab Sample ID:

B2643-06

Date(s) Analyzed:

06/18/2010

06/18/2010

Instrument ID (1):

ECD7

Instrument ID (2):

ECD7

GC Column: (1):

ZB-MR2

ID: 0.32 (mm)

GC Column:(2):

ZB-MR1

ID: 0.32 (mm)

ANALYTE	COL	RT	RT WIT	NDOW TO	CONCENTRATION	%D
Dieldrin	1	6.40	6.32	6.46	2.2	
	2	7.44	7.36	7.50	3.2	45.5
4,4-DDE	1	6.26	6.19	6.33	4.7	
	2	7.27	7.20	7.34	4.5	4.4
4,4-DDD	1	6.78	6.70	6.84	1.2	
	2	7.77	7.69	7.83	1.3	8.3
4,4 - DDT	1	7.02	6.94	7.08	5.7	
	2	8.07	8.00	8.14	5.7	0.0
Methoxychlor	1	7.57	7.50	7.64	12	
	2	8.52	8.45	8.59	12	0.0

SVOC

	SDEC DUSR PROJECT CHEMIST REVIEW RECORD ject:
Met Lab Dat	chod: SW-846 8270C coratory and SDG(s): SDG#
Rev	iew Level X NYSDEC DUSR USEPA Region II Guideline
1.	© Case Narrative Review and Data Package Completeness Were problems noted? Where all the samples on the COC analyzed for the requested analyses? YES NO (circle one)
2.	Holding time and Sample Collection All water samples were extracted within the 7 day holding time, soil is 14 day?
3.	All water samples were extracted within the 7 day holding time, soil is 14 day? QC Blanks Are method blanks free of contamination? YES NO circle one) Are Rinse blanks free of contamination? YES NO NA (circle one)
	Instrument Tuning Were all results were within method criteria. YES NO (circle one)
	Instrument Calibration
	Control Limits (Region II HW-22): Initial Calibration %RSD = 15% Continuing Calibration %D = 20% Average RRF should be ≥0.05 (or reject NDs, J detects or use professional judgment to J/UJ) Were all results were within criteria. YES (NO) (circle one)
	Surrogate Recovery (water and soil limits: Base/Neutral 50-140%, Acid 30-140%) Were all results were within limits? YES NO (circle one) Were any recoveries < 10%? (Reject fraction compounds if recoveries are < 10%)
	Matrix Spike (water & soil limits: Base/Neutral 50-140%, Acid 30-140%) (RPD soil=35,water=20)
	Were MS/MSDs submitted/analyzed? YES NO
	Were MS/MSDs submitted/analyzed? (YES) NO Were all results were within limits? YES (NO) NA (circle one) Pendaldigle (11, 10) (47) < 5
	Were all results were within limits? YES (NO) NA (circle one) Duplicates/replicates (RPD limits = water:50, soil:100) 4- Clemantial (47) < 5 (43)
	Were Field Duplicates submitted/analyzed? YES NO
	Were RPDs within criteria. YES NO NA (circle one)
	Laboratory Control Sample Results (water and soil limits: Base/Neutral 50-140%, Acid 30-140%)
	Were all results were within limits? YES NO (circle one) Benzully (92) (W5)
4.	Raw Data Review and Calculation Checks
5.	Electronic Data Review and Edits: Does the EDD match the Form I's? YES NO (circle one)
6.	☐ TIC Review and DUSR Table 1 (sample Listing), Table 2 (results summary), Table 3 (Reason Codes), Table 4 (TIC's). Did lab report TICs? YES NO (circle one)

Method : Z:\HPCHEM1\BNA E...\8270-BE061410.M (RTE Integrator)

: ASP BNA STANDARDS FOR 5 POINT CALIBRATION Title

Last Update : Tue Jun 15 12:17:17 2010

Response via : Initial Calibration

Calibration Files

=BE064782.D 10 =BE064780.D 25 =BE064783.D 60 =BE064784.D 80 =BE064781.D 40 =BE064785.D 50

		Compound	40	10	25	50	60	80	Avg	%RSD	
							·				
1)	I	1,4-Dichlorobenzene-	·d		. 	·ISTD	- -				
2)	_	1,4-Dioxane					0.497			4.30	
3)		Pyridine					1.258			2.98	
4)		n-Nitrosodimethylam								5.34	
5)	S	2-Fluorophenol					1.278			4.34	
6)	D	Aniline					2.115			3.54	
7)	S	Phenol-d5					1.612			4.79	
8)	D	2-Chlorophenol					1.395			2.76	
9)		Benzaldehyde					0.780			14.94	
	a	Phenol					1.686			4.55	
10)	C	bis(2-Chloroethyl)e								3.81	
11)							1.257			3.67	
12)	S	2-Chlorophenol-d4 1,3-Dichlorobenzene								3.47	
13)	a	1,3-Dichlorobenzene	1.544	1.552	1.529	1 507	1.400	1.41/	1.500		
14)	C	1,4-Dichlorobenzene								3.46	
15)	s	1,2-Dichlorobenzene								4.02	
16)		1,2-Dichlorobenzene								3.57	
17)		Benzyl Alcohol					1.113			6.07	
18)		2,2'-oxybis(1-Chlor								3.40	
19)		2-Methylphenol					1.112			2.05	
20)		Hexachloroethane					0.602			1.75	
21)	P	n-Nitroso-di-n-prop								4.23	
22)		3+4-Methylphenols	1.526	1.536	1.486	1.484	1.463	1.413	1.485	3.00	
23)	I	Naphthalene-d8				-ISTD-					
24)		Acetophenone	0.510	0.530	0.521	0.489	0.496	0.466	0.502	4.64	
25)	S	Nitrobenzene-d5					0.380			3.87	
26)		Nitrobenzene					0.388			2.81	
27)		Isophorone					0.684			3.66	
28)	С	2-Nitrophenol					0.195			2.19	
29)	C	2,4-Dimethylphenol					0.318			5.39	
30)		bis(2-Chloroethoxy)					0.417			4.48	
31)	С	2,4-Dichlorophenol					0.288			1.90	
	C	1,2,4-Trichlorobenz								2.94	
32)							1.027			4.87	
33)		Naphthalene								43.80	X
34)		Benzoic acid									
35)		4-Chloroaniline					0.450			2.93	
36)	С	Hexachlorobutadiene								3.74	
37)		Caprolactam	0.118	0.116	0.114	0.117	0.118	0.112	0.116	2.11	
38)	С	4-Chloro-3-methylph								2.44	
39)		2-Methylnaphthalene	0.672	0.684	0.681	0.647	0.654	0.614	0.659	4.03	
40)	I	Acenaphthene-d10				-ISTD-		-			
41)		1,2,4,5-Tetrachloro							0.535	2.71	
42)	P	Hexachlorocyclopent	0.319	0.286	0.321	0.337	0.348	0.342	0.326	6.87	
43)		2,4,6-Tribromopheno	0.165	0.148	0.157	0.164	0.167	0.157	0.160	4.42	
44)		2,4,6-Trichlorophen								2.09	
45)	•	2,4,5-Trichlorophen								3.62	
46)	c	2-Fluorobiphenyl	1 267	1 300	1 355	1 276	1 283	1 129	1.311	5.82	
47)	ت								1.455	4.13	
		2-Chloronaphthalene								3.71	
48)		2-Chioronaphthalene 2-Nitroaniline							0.351	2.12	
49)		Z-MICIOAIIIIIIE	0.361	0.34/	0.335	0.332	0.554	0.559	0.551	2 . 2	

: Z:\HPCHEM1\BNA_E...\8270-BE061410.M (RTE Integrator) Method

Method Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

Last Update : Tue Jun 15 12:17:17 2010

Response via : Initial Calibration

Calibration Files

40 =BE064782.D 10 25 =BE064781.D =BE064780.D =BE064785.D =BE064784.D 80 =BE064783.D 60 50

	Compound	40	10	25	50	60	80	Avg	%RSD
50)	Acenaphthylene	1 866	1 914	1 877	1.805	1.807	1.695	1.827	4.23
50)	Dimethylphthalate	1.399	1.415	1.378	1.353	1.368	1.276	1.365	3.57
52)	2,6-Dinitrotoluene	0.332	0.314	0.330	0.324	0.329	0.308	0.323	2.94
52) 53) C	Acenaphthene					1.116			2.02
54)	3-Nitroaniline					0.354			2.82
55) P	(2,4-Dinitrophenol)					0.091			55.51
56)	Dibenzofuran	1.710	1.733	1.686	1.627	1.634	1.525	1.653	4.55
57) P	4-Nitrophenol	0.273	0.238	0.255	0.272	0.279	0.268	0.264	5.70
58)	2,4-Dinitrotoluene	0.432	0.400	0.411	0.420	0.422	0.402	0.414	2.92
59)	Fluorene	1.391	1.430	1.390	1.328	1.347	1.258	1.357	4.46
60)	2,3,4,6-Tetrachloro	0.317	0.285	0.300	0.311	0.315	0.303	0.305	3.97
61)	Diethylphthalate	1.369	1.345	1.354	1.326	1.328	1.252	1.329	3.08
62)	4-Chlorophenyl-phen	0.673	0.692	0.661	0.646	0.654	0.617	0.657	3.86
63)	4-Nitroaniline	0.369	0.351	0.358	0.363	0.372	0.348	0.360	2.67
64)	Azobenzene	1.400	1.396	1.370	1.331	1.346	1.245	1.348	4.24
65) I	Phenanthrene-d10			_ 	-ISTD-			-	
66)	4,6-Dinitro-2-methy	0.086	0.026	0.060	0.099	0.107	0.118	0.083	(41.25>
67) c	n-Nitrosodiphenylam	0.690	0.694	0.707	0.670	0.672	0.651	0.681	2.98
68)	4-Bromophenyl-pheny	0.221	0.222	0.224	0.213	0.216	0.215	0.219	2.07
69)	Hexachlorobenzene	0.217	0.224	0.218	0.213	0.213	0.209	0.216	2.44
70)	Atrazine	0.209	0.225	0.226	0.220	0.219	0.213	0.219	3.04
71) C	Pentachlorophenol	0.104	0.069	0.092	0.113	0.118	0.122	0.103	(19.37)
72)	Phenanthrene	1.117	1.160	1.135	1.076	1.069	1.029	1.098	4.40
73)	Anthracene					1.102			3.84
74)	Carbazole					1.042			4.29
75)	Di-n-butylphthalate	1.288	1.303	1.288	1.229	1.224	1.154	1.248	4.54
76) C	Fluoranthene	1.197	1.226	1.186	1.143	1.138	1.072	1.160	4.68
\ -	Character and 1.2				-ISTD-				
77) I	Chrysene-d12 Benzidine	0 549	0 526			0.551	0 506	0.544	4.56
78) 78)						1.220			4.48
79)	Pyrene Terphenyl-d14	1.209	1.301	7.310	0 834	0.827	0 782	0.853	5.53
80) S	Butylbenzylphthalat	0.077	0.505	0.000	0.054	0.564	0.542	0.559	
81) 82)	Benzo (a) anthracene	1 150	1 132	1.148	1 113	1.128	1.081	1.127	2.46
83)	3,3'-Dichlorobenzid	0 419	0 409						3.49
84)	Chrysene	1 107	1 103	1.101	1.076	1.073	1.032	1.082	2.65
85)	Bis (2-ethylhexyl) ph								1.86
86) c	Di-n-octyl phthalat	1 248	1 156	1.208	1.231	1.237	1.209	1.215	
87)	Indeno(1,2,3-cd)pyr	1.121	1.086	1.092	1.110	1.121	1.099	1.105	1.33
0.,	·								
88) I	Perylene-d12				-ISTD-				
89)	Benzo(b)fluoranthen	1.244	1.164	1.201	1.196	1.180	1.177	1.194	2.35
90)	Benzo(k)fluoranthen	1.223	1.185	1.236	1.192	1.206	1.157	1.200	2.36
91) C	Benzo(a)pyrene					1.139			
92)	Dibenzo(a,h)anthrac	1.054	0.964	1.023	1.017	1.008	1.011	1.013	2.89
93)	Benzo(g,h,i)perylen	1.028	0.958	0.992	1.006	1.007	0.999	0.998	2.33

Data Path : \\Terastorage\svoasrv\HPCHEM1\BNA_E\Data\BE061810\

Data File : BE064915.D

Acq On : 18 Jun 2010 12:10

Operator : QM

Sample : 40 ng BNA CCC

Misc

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jun 19 04:00:58 2010

Quant Method: Z:\HPCHEM1\BNA_E\METHOD\8270-BE061410.M
Quant Title: ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update: Sat Jun 19 03:59:12 2010

Response via: Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 25% Max. Rel. Area : 150%

	Compound	AvgRF	CCRF	%Dev Area%	Dev(min)
5	2,4,5-Trichlorophenol	0.384	0.411	-7.0 76	
6 S	2-Fluorobiphenyl	1.311	1.356	-3.4 72	
7	1,1'-Biphenyl	1.455	1.480	-1.7 72	
8	2-Chloronaphthalene	1.186	1.206	-1.7 72	
9	2-Nitroaniline	0.351	0.346	1.4 70	
Ō	Acenaphthylene	1.827	1.868	-2.2 73	
1	Dimethylphthalate	1.365	1.479	-8.4 77	
2	2,6-Dinitrotoluene	0.323	0.345	-6.8 76	
2 3 C	Acenaphthene	1.105	1.119	-1.3 72	
4	3-Nitroaniline	0.347	0.362	73	
5 P	2,4-Dinitrophenol	0.064	0.156		1# -0.06
6	Dibenzofuran	1.653	1.735	-5.0 74	
7 P	4-Nitrophenol	0.264	0.289	-9. 5 77	
8	2,4-Dinitrotoluene	0.414	0.458	-10.6 77	
9	Fluorene	1.357	1.446	-6.6 75	
0	2,3,4,6-Tetrachlorophenol	0.305	0.352	-15.4 81	
1	Diethylphthalate	1.329	1.468	-10.5 78	
2	4-Chlorophenyl-phenylether	0.657	0.711	-8.2 77	-0.06
3	4-Nitroaniline	0.360	0.383	-6.4 75	-0.05
4	Azobenzene	1.348	1.342	0.4 70	-0.06
5 I	Phenanthrene-d10	1.000	1.000	0 0 78	
6	4,6-Dinitro-2-methylphenol	0.083	0.134	-61.4# 122	
7 c	n-Nitrosodiphenylamine	0.681	0.684	0.4 77	
8	4-Bromophenyl-phenylether	0.219	0.229	-4.6 80	
9	Hexachlorobenzene	0.216	0.231	-6.9 82	
0	Atrazine	0.219	0.238	-8 7 88	
1 C	Pentachlorophenol	0.103	0.131	-27.2'# 98	
: 2	Phenanthrene	1.098	1.127	2.6 78	
3	Anthracene	1.119	1.155	-3.2 79	
4	Carbazole	1.066	1.098	-3.0 78	
5	Di-n-butylphthalate	1.248	1.328	-6.4 80	
6 C	Fluoranthene	1.160	1.245	-7.3 83	1 -0.05
7 I	Chrysene-d12	1.000		0.0 88	
8	Benzidine	0.544	0.525	3.5 8	
9	Pyrene	1.253	1.199	4.3 82	
0 S	Terphenyl-d14	0.853	0.856	-0.4 8	
1	Butylbenzylphthalate	0.559	0.549	1.8 8	
2	Benzo(a) anthracene	1.127	1.132	-0.4	
3	3,3'-Dichlorobenzidine	0.408	0.431	-5.6 9	
4	Chrysene	1.082	1.087	-0.5 8	
5	Bis(2-ethylhexyl)phthalate	0.750	0.735	2.0 8	
6 c	Di-n-octyl phthalate	1.215	1.224	-0.7 8	
7	Indeno(1,2,3-cd)pyrene	1.105	1.099	0.5 8	6 -0.16
i				•	

SOLID SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: CHEMTECH				Contract:	MACT03		
Lab Code:	СНЕМ	_ Cas No:	B2643	SAS No:	B2643	SDG No:	B2643
Matrix Spike	- EPA Sample No :	B2643-06					

COMPOUND	SPIKE ADDED (ug/Kg)	SAMPLE CONCENTRATION (ug/Kg)	MS CONCENTRATION (ug/Kg)	MS % REC#	QC LIMITS REC
Benzaldehyde	2000	0	220	(11)	(10-161)
Phenol	2000	0	1600	80	(43-127)
bis(2-Chloroethyl)ether	2000	0	1700	85	(43-134)
2-Chlorophenol	2000	0	1700	85	(41-131)
2-Methylphenol	2000	0	1700	85	(44-129)
2,2-oxybis(1-Chloropropane)	2000	0	1400	70	(36-137)
Acetophenone	2000	0	1700	85	(48-131)
3+4-Methylphenols	2000	0	1700	85	(44-131)
n-Nitroso-di-n-propylamine	2000	0	1700	85	(41-137)
Hexachloroethane	2000	0	1600	80	(25-142)
Nitrobenzene	2000	0	1700	85	(37-136)
Isophorone	2000	0	1700	85	(42-137)
2-Nitrophenol	2000	0	1800	90	(28-135)
2,4-Dimethylphenol	2000	0	1700	85	(35-136)
bis(2-Chloroethoxy)methane	2000	0	1700	85	(38-139)
2,4-Dichlorophenol	2000	0	1800	90	(34-137)
Naphthalene	2000	0	1700	85	(23-160)
4-Chloroaniline	2000	0	1300	65	(10-160)
Hexachlorobutadiene	2000	0	1800	90	(37-132)
Caprolactam	2000	0	1700	85	(24-145)
4-Chloro-3-methylphenol	2000	0	1800	90	(40-131)
2-Methylnaphthalene	2000	0	1700	85	(37-139)
Hexachlorocyclopentadiene	3900	0	3000	77	(10-128)
2,4,6-Trichlorophenol	2000	. 0	1800	90	(32-131)
2,4,5-Trichlorophenol	2000	0	1900	95	(39-134)
1,1-Biphenyl	2000	0	1700	85	(47-131)
2-Chloronaphthalene	2000	0	1700	85	(43-133)
2-Nitroaniline	2000	0	1700	85	(41-138)
Dimethylphthalate	2000	460	2200	87	(51-132)
Acenaphthylene	2000	0	1700	85	(28-155)
2.6-Dinitrotoluene	2000	0	1800	90	(41-130)
3-Nitroaniline	2000	0	1600	80	(10-155)
Acenaphthene	2000	0	1700	85	(32-146)

[#] Column to be used to flag recovery and RPD values with an asterisk

RPD: 0 Out of 0 outside limits

Spike Recovery: 2 Out of 156 outside limits

^{*} Values outside of QC limits

CHEMIECH

SOLID SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:	СНЕМТЕСН			Contract:	MACT03	CT03		
Lab Code:	СНЕМ	_ Cas No:	B2643	SAS No:	B2643	SDG No:	B2643	
Matrix Spike -	EPA Sample No:	B2643-06		··· ·				

COMPOUND	SPIKE ADDED (ug/Kg)	SAMPLE CONCENTRATION (ug/Kg)	MS CONCENTRATION (ug/Kg)	MS % REC#	QC LIMITS REC
2,4-Dinitrophenol	3900	0	3000	77	(10-177)
4-Nitrophenol	3900	0	3600	92	(10-155)
Dibenzofuran	2000	0	1700	85	(36-147)
2,4-Dinitrotoluene	2000	0	1900	95	(38-131)
Diethylphthalate	2000	0	1800	90	(47-132)
4-Chlorophenyl-phenylether	2000	0	1800	90	(43-133)
Fluorene	2000	0	1700	85	(17-166)
4-Nitroaniline	2000	0	1700	85	(23-137)
4,6-Dinitro-2-methylphenol	2000	0	1900	95	(10-153)
n-Nitrosodiphenylamine	2000	0	1700	85	(40-143)
4-Bromophenyl-phenylether	2000	0	1800	90	(40-135)
Hexachlorobenzene	2000	0	1700	85	(43-132)
Atrazine	2000	0	1700	85	(38-135)
Pentachlorophenol	3900	0	3700	95	(10-146)
Phenanthrene	2000	0	1700	85	(30-149)
Anthracene	2000	0	1700	85	(27-158)
Carbazole	2000	0	1700	85	(38-147)
Di-n-butylphthalate	2000	0	1800	90	(45-135)
Fluoranthene	2000	56	1700	82	(26-155)
Pyrene	2000	0	1700	85	(22-173)
Butylbenzylphthalate	2000	0	1700	85	(46-141)
3,3-Dichlorobenzidine	2000	0	1600	80	(10-126)
Benzo(a)anthracene	2000	0	1700	85	(27-159)
Chrysene	2000	0	1700	85	(23-166)
Bis(2-ethylhexyl)phthalate	2000	340	2000	83	(39-159)
Di-n-octyl phthalate	2000	0	1800	90	(36-151)
Benzo(b)fluoranthene	2000	0	1600	80	(21-171)
Benzo(k)fluoranthene	2000	0	1700	85	(26-165)
Benzo(a)pyrene	2000	0	1700	85	(26-157)
Indeno(1,2,3-cd)pyrene	2000	0	1800	90	(10-188)
Dibenzo(a,h)anthracene	2000	0	1700	85	(18-147)
Benzo(g,h,i)perylene	2000	0	. 1700	85	(10-177)

[#] Column to be used to flag recovery and RPD values with an asterisk

RPD: θ Out of θ outside limits

Spike Recovery: 2 Out of 156 outside limits

^{*} Values outside of QC limits

CHEMITECH

SOLID SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:	b Name: CHEMTECH			Contract: MACT03			
Lab Code:	СНЕМ	_ Cas No:	B2643	SAS No:	B2643	SDG No:	B2643
Matrix Spike	- EPA Sample No :	B2643-06		·			

COMPOUND	SPIKE ADDED (ug/Kg)	MSD CONCENTRATION (ug/Kg)	MSD % % (ug/Kg)	QC LIMITS RPD REC
Benzaldehyde	2000	190	10/10	20 (10-161)
Phenol	2000	1400	70 13	20 (43-127)
bis(2-Chloroethyl)ether	2000	1500	75 13	20 (43-134)
2-Chlorophenol	2000	1400	70 19	20 (41-131)
2-Methylphenol	2000	1400	70 19	20 (44-129)
2,2-oxybis(1-Chloropropane)	2000	1200	60 15	20 (36-137)
Acetophenone	2000	1400	70 19	20 (48-131)
3+4-Methylphenols	2000	1400	70 19	20 (44-131)
n-Nitroso-di-n-propylamine	2000	1400	70 19	20 (41-137)
Hexachloroethane	2000	1400	70 13	20 (25-142)
Nitrobenzene	2000	1400	70 19	20 (37-136)
Isophorone	2000	1400	70 19	20 (42-137)
2-Nitrophenol	2000	1400	70 25*	20 (28-135)
2,4-Dimethylphenol	2000	1400	70 19	20 (35-136)
bis(2-Chloroethoxy)methane	2000	1400	70 19	20 (38-139)
2,4-Dichlorophenol	2000	1500	75 18	20 (34-137)
Naphthalene	2000	1400	70 19	20 (23-160)
4-Chloroaniline	2000	930	(47) 32* V	20 (10-160)
Hexachlorobutadiene	2000	1500	75 18	20 (37-132)
Caprolactam	2000	1400	70 19	20 (24-145)
4-Chloro-3-methylphenol	2000	1500	75 18	20 (40-131)
2-Methylnaphthalene	2000	1500	75 13	20 (37-139)
Hexachlorocyclopentadiene	3900	2500	64 18	20 (10-128)
2,4,6-Trichlorophenol	2000	1500	75 18	20 (32-131)
2,4,5-Trichlorophenol	2000	1500	75 24* /	20 (39-134)
1,1-Biphenyl	2000	1400	70 19	20 (47-131)
2-Chloronaphthalene	2000	1400	70 19	20 (43-133)
2-Nitroaniline	2000	1400	70 19	20 (41-138)
Dimethylphthalate	2000	1800	67 26* V	20 (51-132)
Acenaphthylene	2000	1400	70 19	20 (28-155)
2,6-Dinitrotoluene	2000	1500	75 18	20 (41-130)
3-Nitroaniline	2000	1200	60 29*	20 (10-155)
Acenaphthene	2000	1400	70 19	20 (32-146)

[#] Column to be used to flag recovery and RPD values with an asterisk

RPD: 22 Out of 78 outside limits

Spike Recovery: 1 Out of 78 outside limits

^{*} Values outside of QC limits

SOLID SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:	Name: CHEMTECH			Contract:	MACT03		
Lab Code:	СНЕМ	_ Cas No:	B2643	SAS No:	B2643	SDG No:	B2643
Matrix Spike -	EPA Sample No :	B2643-06					

COMPOUND	SPIKE ADDED (ug/Kg)	MSD CONCENTRATION (ug/Kg)	MSD % % (ug/Kg)		QC LI RPD	QC LIMITS RPD REC	
2,4-Dinitrophenol	3900	2600	67	14	20	(10-177)	
4-Nitrophenol	3900	2800	72	24*	20	(10-155)	
Dibenzofuran	2000	1400	70	19	20	(36-147)	
2,4-Dinitrotoluene	2000	1500	75	24*	20	(38-131)	
Diethylphthalate	2000	1500	75	18	20	(47-132)	
4-Chlorophenyl-phenylether	2000	1400	70	25*	20	(43-133)	
Fluorene	2000	1400	70	19	20	(17-166)	
4-Nitroaniline	2000	1300	65	27*	20	(23-137)	
4,6-Dinitro-2-methylphenol	2000	. 1600	80	17	20	(10-153)	
n-Nitrosodiphenylamine	2000	1400	70	19	20	(40-143)	
4-Bromophenyl-phenylether	2000	1400	70	25*	20	(40-135)	
Hexachlorobenzene	2000	1400	70	19	20	(43-132)	
Atrazine	2000	1300	65	27*	20	(38-135)	
Pentachlorophenol	3900	2900	74	25*	20	(10-146)	
Phenanthrene	2000	1400	70	19	20	(30-149)	
Anthracene	2000	1400	70	19	20	(27-158)	
Carbazole	2000	1400	70	19	20	(38-147)	
Di-n-butylphthalate	2000	1400	70	25*	20	(45-135)	
Fluoranthene	2000	1400	67	20	20	(26-155)	
Pyrene	2000	. 1400	70	19	20	(22-173)	
Butylbenzylphthalate	2000	1400	70	19	20	(46-141)	
3,3-Dichlorobenzidine	2000	1200	60	29*	20	(10-126)	
Benzo(a)anthracene	2000	. 1400	70	19	20	(27-159)	
Chrysene	2000	1400	70	19	20	(23-166)	
Bis(2-ethylhexyl)phthalate	2000	1600	63	27*	20	(39-159)	
Di-n-octyl phthalate	2000	1400	70	25*	20	(36-151)	
Benzo(b)fluoranthene	2000	1300	65	21*	20	(21-171)	
Benzo(k)fluoranthene	2000	1300	65	27*	20	(26-165)	
Benzo(a)pyrene	2000	1400	70	19	20	(26-157)	
Indeno(1,2,3-cd)pyrene	2000	1500	75] 18	20	(10-188)	
Dibenzo(a,h)anthracene	2000	1400	70	19	20	(18-147)	
Benzo(g,h,i)perylene	2000	1400	70	19	20	(10-177)	

[#] Column to be used to flag recovery and RPD values with an asterisk

RPD: 22 Out of 78 outside limits

Spike Recovery: 1 Out of 78 outside limits

^{*} Values outside of QC limits

3A

SOIL SEMIVOLATILE LABORATORY CONTROL SPIKE/LABORATORY CONTROL SPIKE DUPLICATE RECOVERY

Lab Code: Matrix Spike - 1	СНЕМ	C No.						
Aatrix Spike -		Cas No:	B2643	SAS No:	B2643	SDG No:	B2643	
	EPA Sample No :	PB49798BS						
<u></u>		SPIKE			LC	cs	LCS	QC
	ļ	ADDED		CONCENTRATION	CONCENT	RATION		LIMITS
COMPO	DUND	(ug/Kg)		(ug/Kg)	(ug/Kg		REC#	REC
Benzaldehyde		1700				150	(9*)	(10-161)
Phenol		1700				1200	71	(51-111)
bis(2-Chloroe	ethyl)ether	1700				1200	71	(48-114)
2-Chloropher		1700				1200	71	(53-110)
2-Methylpher		1700				1200	71	(52-111)
	Chloropropane)	1700				990	58	(45-117)
Acetophenon		1700				1200	71	(51-114) (54-109)
3+4-Methylp		1700				1200	71	(51-114)
	n-propylamine	1700				1200	71	(44-113)
Hexachloroe		1700		····		1200	71	(49-114)
Nitrobenzene		1700				1200	71	(52-113)
Isophorone		1700				1200	71	
2-Nitrophene	ol	1700		·		1200	71	(51-116) (46-148)
2,4-Dimethy		1700				1200	71	(52-115)
	ethoxy)methane	1700				1200	71	(52-113)
2,4-Dichloro		1700				1300	76	
Naphthalene	2	1700				1200	71 54	(51-114)
4-Chloroani		1700			<u> </u>	910	82	(47-116)
Hexachlorol	butadiene	1700				1400	71	(34-117)
Caprolactan	n	1700				1200	71	(56-111)
	methylphenol	1700			 	1200	76	(54-111)
2-Methylna	phthalene	1700			<u> </u>	1300	82	(43-112)
	cyclopentadiene	3300				2700	76	(53-112)
2,4,6-Trichl	orophenol	1700			 	1300	76	(53-112)
2,4,5-Trichl	orophenol	1700			 	1300 1200	70	(55-109)
1,1-Bipheny	/I	1700			 	1200	71	(55-112)
2-Chlorona	phthalene	1700				1100	651	(53-118)
2-Nitroanili	ine	1700		·		1400	82	(57-112)
Dimethylph	rthalate	1700				1200	71	(54-113)
Acenaphth	ylene	1700				1200	71	(55-114)
2,6-Dinitro	toluene	1700				980	58	(10-157)
3-Nitroanil	ine	1700				1200	71	(54-113)
Acenaphth	ene	1700					88	(15-153
2,4-Dinitro	phenol	3300				2700		
2,4-Dinitro		3300	with an aster	risk		2900	88	
RPD: 0	Out of 0 outside							
Spike Recover	ry: 1. Out of 78	outside limits						

Atrazine

Pentachlorophenol

Di-n-butylphthalate

Phenanthrene

Anthracene

Carbazole

3A

SOIL SEMIVOLATILE LABORATORY CONTROL SPIKE/LABORATORY CONTROL SPIKE DUPLICATE RECOVERY

Lab Name:	СНЕМТЕСН			_ Contra	et: MACTO	3		
Lab Code:	СНЕМ	Cas No:	B2643	SAS No:	B2643	SDG No:	B2643	
Matrix Spike -	- EPA Sample No :	PB49798BS						
		SPIKE ADDED	CON	CENTRATION	LCS CONCENTRAT	TION	LCS % I	QC LIMITS
COMPOUND		(ug/Kg)		(ug/Kg)	(ug/Kg)		REC#	REC
4-Nitrophenol		3300			240)0	73	(44-115)
Dibenzofurar	n	1700			120)0	71	(59-108)
2,4-Dinitroto	oluene	1700			130)0	76	(55-115)
Diethylphtha		1700			120)0	71	(56-111)
	enyl-phenylether	1700			130)0	76	(56-111)
Fluorene		1700			120)0	71	(56-113)
4-Nitroanilin	ne	1700			110)0	65	(46-113)
4,6-Dinitro-2	2-methylphenol	1700			160)0	94	(39-126)
n-Nitrosodip	henylamine	1700			120)0	71	(54-115)
	enyl-phenylether	1700			130)0	76 ⁻	(51-120)
Hexachlorob		1700			120)0	71	(52-117)

1700

3300

1700

1700

1700

1700

(40-127)

(47-116)

(56-113)

(56-113)

(54-117)

(58-115)

65

76

71

71

71

71

1100

2500

1200

1200

1200

1200

1200 71 (54-117)Fluoranthene 1700 71 1200 (58-117)1700 Pyrene 71 1200 (57-122)1700 Butylbenzylphthalate 1700 830 49 (10-157)3,3-Dichlorobenzidine 71 (57-112) 1200 1700 Benzo(a)anthracene **71** (59-114)1200 1700 Chrysene 1200 71 (60-119)1700 Bis(2-ethylhexyl)phthalate 71 (56-122) 1200 1700 Di-n-octyl phthalate 1200 71 (53-120)1700 Benzo(b)fluoranthene 1200 71 (56-117) Benzo(k)fluoranthene 1700 71 1200 (56-117)1700 Benzo(a)pyrene 1700 1200 71 (49-120)Indeno(1,2,3-cd)pyrene 71 1200 (52-119)1700 Dibenzo(a,h)anthracene 71 (53-119)1200 1700 Benzo(g,h,i)perylene

# Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits	
RPD: 0 Out of 0 outside limits	
Spike Recovery: 1 Out of 78 outside limits	
Comments:	_

EPA SAMPLE NO.

Comments:

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

PB49798B MACT03 Contract: Lab Name: Chemtech SDG No.: B2643 SAS No.: B2643 B2643 Lab Code: **CHEM** Case No.: Lab Sample ID: PB49798B SOIL Matrix (soil/water): Lab File ID: BE064918.D 30.02 (g/mL)Sample wt/vol: LOW Date Received: Level: (low/med) 06/14/10 Decanted: (Y/N) Ν Date Extracted: % Moisture: 06/18/10 1000 Date Analyzed: Concentrated Extract Volume: (uL) Dilution Factor: 1 Injection Volume: Extraction: (Type) SOXH N pH: GPC Cleanup: (Y/N) Concentration Units: Q (ug/L or ug/Kg) ug/Kg CAS NO. COMPOUND Benzaldehyde 330 IJ 100-52-7 U 330 Phenol 108-95-2 U 330 bis(2-Chloroethyl)ether 111-44-4 IJ 95-57-8 2-Chlorophenol 330 U 2-Methylphenol 330 95-48-7 U 2,2-oxybis(1-Chloropropane) 330 108-60-1 U 330 Acetophenone 98-86-2 330 U 3+4-Methylphenols 65794-96-9 U 330 621-64-7 N-Nitroso-di-n-propylamine U 330 67-72-1 Hexachloroethane U Nitrobenzene 330 98-95-3 330 U Isophorone 78-59-1 U 2-Nitrophenol 330 88-75-5 IJ 330 105-67-9 2,4-Dimethylphenol U 330 bis(2-Chloroethoxy)methane 111-91-1 U 2,4-Dichlorophenol 330 120-83-2 U Naphthalene 330 91-20-3 330 IJ 106-47-8 4-Chloroaniline U Hexachlorobutadiene 330 87-68-3 U 330 Caprolactam 105-60-2 IJ 4-Chloro-3-methylphenol 330 59-50-7 U 330 91-57-6 2-Methylnaphthalene 330 U Hexachlorocyclopentadiene 77-47-4 330 U 88-06-2 2,4,6-Trichlorophenol U 2,4,5-Trichlorophenol 330 95-95-4 U 92-52-4 330 1,1-Biphenyl U 330 2-Chloronaphthalene 91-58-7 330-Ī 2-Nitroaniline 88-74-4 Dimethylphthalate 200 131-11-3

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTIVELY IDENTIFIED COMPOUNDS

						PB49798B	
Lab Name:	Chemtech			Contr	act: MACT03		
Lab Code:	СНЕМ	Case No.:	B2643	SAS No.:	B2643	SDG No.:	B2643
Matrix (soil/wat	ter):	SOIL			Lab Sample ID:	PB49798B	
Sample wt/vol:	30.02	(g/mI	L) g		Lab File ID:	BE064918.D	
Level: (low/med	i) <u>Lo</u>	ow .			Date Received:		
% Moisture:	0	Decanted: (Y/N	I) <u>N</u>	·	Date Extracted:	06/14/10	
Concentrated Ex	xtract Volume:	1000	(uL)		Date Analyzed:	06/18/10	
Injection Volum	ne: <u>1</u>				Dilution Factor:	1	
GPC Cleanup: (Y/N)	N pH:			Concentration Units:	ug/Kg	
Number TICS f	ound:	2					

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	5.3	450	A
52182-29-3	Propenone, 3-(3-chlorophenyl)-1-(3	17.64	78	J

<12's

Data Path : Z:\HPCHEM1\BNA_E\Data\BE061410\

Data File : BE064786.D

Acq On : 14 Jun 2010 17:04

Operator : QM

Sample : 40 ng BNA ICV

Misc

ALS Vial : 8 Sample Multiplier: 1

Quant Time: Jun 15 12:21:21 2010

Quant Method : Z:\HPCHEM1\BNA_E\METHOD\8270-BE061410.M Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update : Tue Jun 15 12:17:17 2010

Response via: Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

		Compound	AvgRF	CCRF	%Dev Area	% Dev(min)
1		1,4-Dichlorobenzene-d4	1.000	1.000	0.0 11	4 0.00
2	-	1,4-Dioxane	0.509	0.485	4.7 10	0.00
3		Pyridine	1.261	1.315	-4.3 11	.3 0.00
4		n-Nitrosodimethylamine	0.552	0.555	-0.5 11	0.00
5	S	2-Fluorophenol	1.303	1.298	0.4 10	0.00
6		Aniline	2.173	2.229	-2.6 11	4 0.00
7	S	Phenol-d5	1.648	1.618	1.8 10	0.00
8		2-Chlorophenol	1.428	1.485	-4.0 11	5 0.00
. 9		Benzaldehyde	0.875	0.939	-7.3 11	L1 0.00
	· C	Phenol	1.729	1.768	-2.3 11	0.00
1		bis(2-Chloroethyl)ether	1.415	1.461	-3.3 11	L4 0.00
2	S	2-Chlorophenol-d4	1.279	1.273	0.5 11	LO 0.00
3		1,3-Dichlorobenzene	1.500	1.558	-3.9 11	L5 0.00
4	С	1,4-Dichlorobenzene	1.566	1.609	-2.7 11	L3 0.00
5	s	1,2-Dichlorobenzene-d4	0.905	0.912	-0.8 11	L1 0.00
6		1,2-Dichlorobenzene	1.447	1.496	-3.4 11	L3 0.00
7		Benzyl Alcohol	1.072	1.133	-5.7 11	L4 0.00
8		2,2'-oxybis(1-Chloropropane	1.642	1.669	-1.6 11	L3 0.00
9		2-Methylphenol	1.129	1.149	-1.8 11	L4 0.00
0		Hexachloroethane	0.607	0.636	-4.8 13	16 0.00
1	P	n-Nitroso-di-n-propylamine	1.007	1.018	-1.1 13	11 0.00
2		3+4-Methylphenols	1.485	1.518	-2.2 1	13 0.00
3	I	Naphthalene-d8	1.000	1.000		0.00
4		Acetophenone	0.502	0.523		12 0.00
5	S	Nitrobenzene-d5	0.383	0.391	-2.1 13	11 0.00
6		Nitrobenzene	0.385	0.408		14 0.00
7		Isophorone	0.688	0.721		13 0.00
. 8	С	2-Nitrophenol	0.193	0.202		12 0.00
9		2,4-Dimethylphenol	0.323	0.336		18 0.00
0		bis(2-Chloroethoxy)methane	0.424	0.440		12 0.00
1	С	2,4-Dichlorophenol	0.283	0.297		13 0.00
2		1,2,4-Trichlorobenzene	0.321	0.340		14 0.00
3		Naphthalene	1.048	1.102		12 0.00
4		Renzoic acid	0.065	0.094	(44.6)	
5		4-Chloroaniline	0.449	0.474		15 0.00
6	С	Hexachlorobutadiene	0.181	0.194		16 0.00
7		Caprolactam	0.116	0.120		12 0.00
8	С	4-Chloro-3-methylphenol	0.325	0.342		13 0.00
9		2-Methylnaphthalene	0.659	0.710	-7.7 1	16 0.00
0	I	Acenaphthene-d10	1.000	1.000		0.00
1		1,2,4,5-Tetrachlorobenzene	0.535	0.566		13 0.00
2		Hexachlorocyclopentadiene	0.326	0.342	-4.9 1	17 0.00
3		2,4,6-Tribromophenol	0.160	0.165	-3.1 1	0.00
	. C	2,4,6-Trichlorophenol	0.371	0.401	-8.1 1	15 0.00
				•		

Data Path : \\Terastorage\svoasrv\HPCHEM1\BNA_E\Data\BE061810\

Data File : BE064915.D

Acq On : 18 Jun 2010 12:10

Operator : QM

Sample : 40 ng BNA CCC

Misc

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jun 19 04:00:58 2010

Quant Method : Z:\HPCHEM1\BNA_E\METHOD\8270-BE061410.M Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update: Sat Jun 19 03:59:12 2010

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

		Compound	AvgRF	CCRF	%Dev Are	a8	Dev(min)	
1 :	 т	1,4-Dichlorobenzene-d4	1.000	1.000	0.0	68	-0.06	
2	.	1,4-Dioxane	0.509	0.553	-8.6	73	-0.05	
3		Pyridine	1.261	1.346	6.7	69	-0.05	
4		n-Nitrosodimethylamine	0.552	0.594	-7.6	71	-0.05	
	S	2-Fluorophenol	1.303	1.291	0.9	65	-0.06	
6	D	Aniline	2.173	2.100	3.4	64	-0.05	
	S	Phenol-d5	1.648	1.610	2.3	65	-0.06	
8	J	2-Chlorophenol	1.428	1.412	1.1	66	-0.06	
9		Benzaldehyde	0.875	0.790	9.7	56	-0.06	
	С	Phenol	1.729	1.639	5.2	62	-0.06	
1	_	bis(2-Chloroethyl)ether	1.415	1.339	5.4	63	-0.06	
	s	2-Chlorophenol-d4	1.279	1.298	-1.5	67	-0.06	
3	~	1,3-Dichlorobenzene	1.500	1.512	-0.8	67	-0.06	
	C	1,4-Dichlorobenzene	1.566	1.600	-2.2	67	-0.06	
	s	1,2-Dichlorobenzene-d4	0.905	0.925	-2.2	67	-0.06	
6	~	1,2-Dichlorobenzene	1.447	1.458	-0.8	66	-0.06	
7		Benzyl Alcohol	1.072	1.121	-4.6	68	-0.05	
8.		2,2'-oxybis(1-Chloropropane	1.642	1.326	19.2	54	-0.06	
9		2-Methylphenol	1.129	1.085	3.9	64	-0.06	
0		Hexachloroethane	0.607	0.609	-0.3	67	-0.06	
	P	n-Nitroso-di-n-propylamine	1.007	0.989	1.8	65	-0.06	
2		3+4-Methylphenols	1.485	1.487	-0.1	66	-0.06	
		•						
3	I	Naphthalene-d8	1.000	1.000	0.0	67	-0.06	
4		Acetophenone	0.502	0.500	0.4	66	-0.05	
	S	Nitrobenzene-d5	0.383	0.383	0.0	67		
6		Nitrobenzene	0.385	0.377	2.1	65	-0.06	
7		Isophorone	0.688	0.684	0.6	66	-0.06	
	C	2-Nitrophenol	0.193	0.198	-2.6	68	-0.06	
9		2,4-Dimethylphenol	0.323	0.312	3.4	68	-0.06	
0		bis(2-Chloroethoxy)methane	0.424	0.412	2.8	64	-0.06	
1	С	2,4-Dichlorophenol	0.283	0.304	-7.4	71	-0.06	
2		1,2,4-Trichlorobenzene	0.321	0.342	-6.5	71		
3		Naphthalene	1.048	1.068	<u>-1.9</u>	67		· 💉
4	,	Benzoic acid	0.065	0.162	149.2#	517	3# -0.02	יש
5		4-Chloroaniline	0.449	0.459	-2.2	68		•
	С	Hexachlorobutadiene	0.181	0.203	-12.2	75	-0.06	
7		Caprolactam	0.116	0.125	-7.8	71	-0.05	
8	С	4-Chloro-3-methylphenol	0.325	0.351	-8.0	72	-0.06	
9		2-Methylnaphthalene	0.659	0.684	-3.8	69	-0.06	
0	I	Acenaphthene-d10	1.000	1.000	0.0	73	-0.06	
1	-	1,2,4,5-Tetrachlorobenzene	0.535	0.571	-6.7	76	-0.06	
	P	Hexachlorocyclopentadiene	0.326	0.363	-11.3	83	-0.06	
	S	2,4,6-Tribromophenol	0.160	0.186	-16.2	82	-0.06	
4		2,4,6-Trichlorophenol	0.371	0.400	-7.8	76	-0.06	
I								

Data Path : \\Terastorage\svoasrv\HPCHEM1\BNA_E\Data\BE061810\

Data File : BE064915.D

Acq On : 18 Jun 2010 12:10

Operator : QM

Sample : 40 ng BNA CCC

Misc

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jun 19 04:00:58 2010

Quant Method : Z:\HPCHEM1\BNA_E\METHOD\8270-BE061410.M

Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update : Sat Jun 19 03:59:12 2010 Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

	Compound	AvgRF	CCRF	%Dev Are	a% 	Dev(min)
5	2,4,5-Trichlorophenol	0.384	0.411	-7.0	76	-0.06
6 S	2-Fluorobiphenyl	1.311	1.356	-3.4	72	-0.06
7	1,1'-Biphenyl	1.455	1.480	-1.7	72	-0.06
8	2-Chloronaphthalene	1.186	1.206	-1.7	72	-0.06
9	2-Nitroaniline	0.351	0.346	1.4	70	-0.06
Ó	Acenaphthylene	1.827	1.868	-2.2	73	-0.06
ĺ	Dimethylphthalate	1.365	1.479	-8.4	77	-0.05
2	2,6-Dinitrotoluene	0.323	0.345	-6.8	76	-0.05
3 C	Acenaphthene	1.105	1.119 >	-1.3	72	-0.06
4	3-Nitroaniline	0.347	0.362	-4.3	73	-0.06
5 P	2,4-Dinitrophenol	0.064	0.156	<-143.8#	<u>`</u> 201	L# -0.06 1
6	Dibenzofuran	1.653	1.735	-5.0	74	-0.06
7 P	4-Nitrophenol	0.264	0.289	-9.5	77	-0.06
8	2,4-Dinitrotoluene	0.414	0.458	-10.6	77	-0.05
9	Fluorene	1.357	1.446	-6.6	75	-0.06
0	2,3,4,6-Tetrachlorophenol	0.305	0.352	-15.4	81	-0.06
1	Diethylphthalate	1.329	1.468	-10.5	78	-0.06
. 2	4-Chlorophenyl-phenylether	0.657	0.711	-8.2	77	-0.06
3	4-Nitroaniline	0.360	0.383	-6.4	75	-0.05
4	Azobenzene	1.348	1.342	0.4	70	-0.06
	AZODCIIZCIIC					
5 I	Phenanthrene-d10	1.000	1.000	0.0	78	-0.05
6	4,6-Dinitro-2-methylphenol	0.083	0.134	61.4		-0.06 1
7 c	n-Nitrosodiphenylamine	0.681	0.684	-0.4	77	-0.06
8	4-Bromophenyl-phenylether	0.219	0.229	-4.6	80	-0.05
9	Hexachlorobenzene	0.216	0.231	-6.9	82	-0.05
0	Atrazine	0.219	0.238	-8.7	88	-0.05
1 C	Pentachlorophenol	0.103	0.131	-27.2#	98	
2	Phenanthrene	1.098	1.127	-2.6	78	
3	Anthracene	1.119	1.155	-3.2	79	
4	Carbazole	1.066	1.098	-3.0	78	
5	Di-n-butylphthalate	1.248	1.328	-6.4	80	
6 C	Fluoranthene	1.160	1.245	-7.3	81	-0.05
7 I	Chrysene-d12	1.000	1.000	0.0	88	
8	Benzidine	0.544	0.525	3.5	84	
9	Pyrene	1.253	1.199	4.3	82	
0 S	Terphenyl-d14	0.853	0.856	-0.4	86	-0.04
1	Butylbenzylphthalate	0.559	0.549	1.8	84	-0.05
2	Benzo(a) anthracene	1.127	1.132	-0.4	86	
3	3,3'-Dichlorobenzidine	0.408	0.431	-5.6	90	
4	Chrysene	1.082	1.087	-0.5	86	
5	Bis(2-ethylhexyl)phthalate	0.750	0.735	2.0	85	
6 c	Di-n-octyl phthalate	1.215	1.224	-0.7	86	-0.08
7	Indeno(1,2,3-cd)pyrene	1.105	1.099	0.5	86	-0.16
1	· , , · · · · ·					

Data Path : \\Terastorage\svoasrv\HPCHEM1\BNA_E\Data\BE061810\

Data File : BE064915.D

Acq On : 18 Jun 2010 12:10 Operator : QM

Sample : 40 ng BNA CCC

Misc

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jun 19 04:00:58 2010

Quant Method : Z:\HPCHEM1\BNA_E\METHOD\8270-BE061410.M Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update : Sat Jun 19 03:59:12 2010

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

	Compound	AvgRF	CCRF	%Dev Area	% Dev(min)
8 I 9 0 1 C 2	Perylene-d12 Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	1.000 1.194 1.200 1.136 1.013	1.000 1.207 1.228 1.160 1.013	-1.1 8 -2.3 8 -2.1 8	39 -0.12 36 -0.10 39 -0.09 37 -0.11 35 -0.17

SPCC's out = 0 CCC's out = 1 (#) = Out of Range

NYSDEC DUSR PROJECT CHEMIST REVIEW RECORD
Project: Leohn's Corny
Method: 802 - Laboratory and SDG(s): Chem tech B2643
Laboratory and Obotaly
Date: 8/4/10
Review Level X NYSDEC DUSR USEPA Region II Guideline
Review Level NYSDEC DUSR USEPA Region II Guideline
1. Case Narrative Review and Data Package Completeness COMMENTS Where all the samples on the COC analyzed for the requested analyses? YES NO (circle one)
Where are the samples on the cool analyzed for the samples of the
2. Holding time and Sample Collection Aqueous hold time is 7days to extraction, solid is 14 days. Hold time met for all samples? YES NO (circle one)
3. E QC Blanks Are method blanks free of contamination? VES NO (circle one) Are Rinse blanks free of contamination? YES NO NA (circle one)
Percent difference between columns (Region II criteria is 25% for PCBs) Is the percent difference between columns <25 for PCBs% YES NO NA (circle one)
Instrument Calibration For aroclors was the I-cal criteria of 20% (%RSD) met? YES NO NA (circle one)
For aroclors, was the continuing calibration criteria of 15% (%D) met? YES NO NA (circle one)
Surrogate Recovery (soil and water limits: 30-150%)
Were all results were within limits? YES NO (circle one)
Matrix Spike (soil and water limits: 29-135% and RPD of 20, RPD is 15 for Aroclor 1016)
Were MS/MSDs submitted/analyzed? (YES) NO (circle one)
Were all results were within limits YES NO NA (circle one)
Field Duplicates (RPD limits for soil=100, water = 50)
Were Field Duplicates submitted/analyzed? (YES) NO
Were RPDs within the limits? YES NO NA (circle one)
Laboratory Control Sample Results (soil and water percent recovery limits: 50-150%)
Were all results were within limits? YES NO (circle one)
4. Raw Data Review and Calculation Checks
5. Electronic Data Review and Edits
Does the EDD match the Form I's? YES NO (circle one)
6. DUSR Table 1 (sample Listing), Table 2 (results summary), Table 3 (Reason Codes). Were all tables produced? YES NO (circle one)

DATA USABILITY SUMMARY REPORT JUNE 2011 SOIL VAPOR AND GROUNDWATER SAMPLING LOOHNS DRY CLEANERS SITE CORNING, NEW YORK

1.0 INTRODUCTION

Soil vapor and groundwater samples were collected at the Loohns Dry Cleaning Site (Site) in Corning, New York in June 2011 and submitted to an off-site laboratory for analysis. Soil vapor samples were analyzed by Enalytic located in Syracuse, New York and groundwater samples were analyzed by Chemtech in Mountainside, New Jersey. Results were reported in the following Sample Delivery Groups (SDG): E1106002 (soil vapor) and C2487 (water).

A listing of samples included in this Data Usability Summary Report is presented in Table 1. A summary of the analytical results is presented in Table 2. A summary of sample results qualified during this review is presented in Table 3 (Summary of Validation Actions). Tentatively Identified Compounds (TICs) are presented in Table 4. Samples were analyzed by the following methods:

- Volatile organic compounds (VOCs) by USEPA Method TO-15
- VOCs by USEPA Method SW-846-8260B
- Semi volatile organic compounds (SVOCs) by USEP Method SW-846-8270C
- Metals by USEPA Method SW-846-6010B
- Mercury by USEPA Method SW-846-7470A
- Polychlorinated biphenyls (PCBs) by USEPA Method SW-846-8082
- Pesticides by USEPA Method SW-846-8081

Deliverables for the off-site laboratory analyses included a Category B deliverable as defined in the New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocols (NYSDEC, 2005).

A project chemist review was completed based on NYSDEC Division of Environmental Remediation guidance for Data Usability Summary Reports (NYSDEC, 2010). Laboratory quality control (QC) limits were used during the data evaluation unless noted otherwise. The project chemist review included evaluations of sample collection, data package completeness, holding times, QC data (blanks, instrument calibrations, duplicates, surrogate recovery, and spike recovery), data transcription, electronic data reporting, calculations, and data qualification.

The following laboratory or data validation qualifiers are used in the final data presentation.

U = target analyte is not detected at the reported detection limit

J = concentration is estimated

UJ = target analyte is not detected at the reported detection limit and is estimated

Results are interpreted to be usable as reported by the laboratory unless discussed in the following sections.

Page 1 of 4

2.0 VOLATILE ORGANIC COMPOUNDS (VOCs) – AIR

Air samples were reported in SDG E1106002. The laboratory provided results in units of ppbv and $\mu g/m^3$ in the data reports. Final results are reported in units of $\mu g/m^3$.

Initial and Continuing Calibration

In the initial calibration analyzed on April 21, 2011, the percent relative standard deviation for methylene chloride (35) exceeded the QC limit of 30. Methylene chloride was not detected in associated samples and the reporting limits were qualified as estimated (UJ).

In the continuing calibration analyzed on June 20, 2011, the following compounds had a percent difference that exceeded the QC limit of 30: 1,1,2,2-tetrachloroethane (34) and 2-butanone (31). 1,1,2,2-Tetrachloroethane and 2-butanone were not detected in associated samples and the reporting limits were qualified estimated (UJ).

Laboratory Control Sample Results

A subset of sample results were qualified due to low LCS recovery.

In the LSC analyzed on June 20, 2011, the percent recovery for isopropanol (65) was below the QC limit of 70. Isopropanol was not detected in associated samples and the reporting limits were qualified estimated (UJ).

Tentatively Identified Compounds

Tentatively identified compounds (TICs) were reported by the laboratory. TICs reported in samples are presented in Table 4. Only samples that had TICs reported are included on Table 4. If a sample is not listed, no TICs were reported in the sample.

3.0 VOLATILE ORGANIC COMPOUNDS (VOCs) – WATER

Initial and Continuing Calibration

In the initial calibration analyzed on June 1, 2011, the percent relative standard deviation (RSD) QC limit of 20 was exceeded for the following compounds: methylene chloride (79) and bromoform (22). Methylene chloride and bromoform were not detected in the associated samples and the reporting limits were qualified estimated (UJ).

In the continuing calibration analyzed on June 7, 2011, the following compounds had a percent difference that exceeded the QC limit of 20: methylene chloride (39) and bromoform (21). Methylene chloride and bromoform were not detected in the associated samples and the reporting limits were qualified estimated (UJ).

4.0 SEMI VOLATILE ORGANIC COMPOUNDS (SVOCs) – WATER

Initial Calibration

In the initial calibration analyzed on June 4, 2011, the following compounds had a percent RSD that exceeded QC limit of 15: 2,4-dinitrophenol (30) and 4,6-dinitro-2-methlyphenol (23). 2,4-Dintrophenol and 4,6-dinitro-2-methlyphenol were not detected in associated samples and the reporting limits were qualified estimated (UJ)

Surrogates

The percent recoveries of surrogates 2-fluorophenol (27) and phenol-d5 (17) in sample LCMW001016 were less than the lower QC limit of 30. The associated acid fraction compounds in sample LCMW001016 were not detected and the results were qualified estimated (UJ) at the reporting limits.

Laboratory Control Sample and Duplicate (LCS/LCSD)

The LCS/LCSD percent recoveries for benzaldehyde (2/3) and caprolactam (28/26) were below the QC of 50. Benzaldehyde and caprolactam were not detected in the associated samples and the reporting limits were qualified and estimated (UJ).

The LCS/LCSD relative percent difference for benzaldehyde (40) exceeded the QC limit of 30. Benzaldehyde not detected in the associated samples and sample results were qualified estimated (UJ) at the reporting limit.

5.0 METALS – WATER

Blanks

Aluminum (29.7 μ g/L) and lead (6.0 μ g/L) were detected in the method and continuing calibration blank associated with samples in SDG C2487. Action levels were established at five times the highest concentration reported in the blanks and compared to sample results. Concentrations of aluminum and lead reported below the action level were qualified not detected (U) in samples LCMW001016 and LCMW002019.

6.0 PESTICIDES – WATER

Laboratory Control Sample and Duplicate (LCS/LCSD)

The RPD of gamma-chlordane (24) exceeded the laboratory QC limit of 20 in the LCS/LCSD analyzed with associated samples. Gamma-chlordane was not detected in associated samples and the reporting limits were qualified estimated (UJ).

Reference:

New York State Department of Environmental Conservation (NYSDEC), 2005. "Analytical Services Protocols"; July 2005.

New York State Department of Environmental Conservation (NYSDEC), 2010. "Technical Guidance for Site Investigation and Remediation-Appendix 2B"; DER-10; Division of Environmental Remediation; May 2010.

USEPA, 2006. "Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry SW-846 Method 8260B"; SOP # HW-24, Revision 2, Hazardous Waste Support Branch; October 2006.

USEPA, 2006. "Validating Air Samples by Volatile Organic Analysis of Ambient Air Canisiter by Method TO-15"; SOP # HW-31, Revision 4, Hazardous Waste Support Branch; October 2006.

USEPA, 2006. "Validating Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry SW-846 Method 8270D"; SOP # HW-22, Revision 3, Hazardous Waste Support Branch; October 2006.

USEPA, 2006. "Validation of Metals for the Contract Laboratory Program (CLP) based on SOW ILMO5.3 (SOP Revision 13)"; SOP # HW-2, Revision 13, Hazardous Waste Support Branch; September 2006.

USEPA, 2006. "Validating PCBs by Gas Chromatography SW-846 Method 8082A"; SOP # HW-45, Revision 1, Hazardous Waste Support Branch; October 2006.

USEPA, 2006. "Validating Pesticide Compounds Organochlorine pesticides by Gas Chromatography SW-846 Method 8081B"; SOP # HW-44, Revision 1, Hazardous Waste Support Branch; October 2006.

Data Validator: Mike Washburn

Dáte/ 8/2/2011

Reviewed by Tige Cunningham, NRCC-EAC

Date: 8/15/2011

TABLE 1 SUMMARY OF SAMPLES AND ANALYTICAL METHODS DATA USABILITY SUMMARY REPORT JUNE 2011 SOIL VAPOR AND GROUNDWATER SAMPLING

LOOHNS DRY CLEANERS CORNING, NEW YORK

					Class	VOC	VOC		Pesticides		Metals	Metals
				Analys	is Method	EPA TO-15	SW8260B	SW8270C	SW8081A	SW8082	SW6010B	SW7470A
					Fraction	Т	Т	T	Т	Т	Т	Т
SDG	Location	Sample Date	Sample ID	Qc Code	Media							
C2487	MW-1	6/1/2011	LCMW001016	FS	GW		X	Х	Х	X	Х	Х
C2487	MW-2	6/1/2011	LCMW002019	FS	GW		X	X	X	X	X	Х
C2487	QC	6/1/2011	LCTB001	TB	BW		X					
MT005	EW-01	6/1/2011	LCSVEW1005	FS	SV	X						
MT005	SV-02	6/1/2011	LCSV002007	FS	SV	X						

Notes:

QC CODE

FS = field sample, FD = field duplicate, TB = trip blank

Media

GW = groundwater, BW = blank water, SV = soil vapor

Checked by: MJW 8/2/2011

JUNE 2011 SOIL VAPOR AND GROUNDWATER SAMPLING LOOHNS DRY CLEANERS CORNING, NEW YORK

	Sample Delive	rv Group	C2487	C2487	C2487
		Location	MW-1	MW-2	QC
		ple Date	6/1/2011	6/1/2011	6/1/2011
		ample ID	LCMW001016	LCMW002019	LCTB001
		Qc Code	FS	FS	TB
Analysis	Parameter	Units	Result Qualifier	Result Qualifier	
SW8260B	1,1,1-Trichloroethane	ug/l	1 U	1 U	1 U
SW8260B	1,1,2,2-Tetrachloroethane	ug/l	1 U	1 U	1 U
SW8260B	1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/l	1 U	1 U	1 U
SW8260B	1,1,2-Trichloroethane	ug/l	1 U	1 U	1 U
SW8260B	1,1-Dichloroethane	ug/l	1 U	1 U	1 U
SW8260B	1,1-Dichloroethene	ug/l	1 U	1 U	1 U
SW8260B	1,2,4-Trichlorobenzene	ug/l	1 U	1 U	1 U
SW8260B	1,2-Dibromo-3-chloropropane	ug/l	1 U	1 U	1 U
SW8260B	1,2-Dibromoethane	ug/l	1 U	1 U	1 U
SW8260B	1,2-Dibromoemane	ug/l ug/l	1 U	1 U	1 U
		-	1 U	1 U	1 U
SW8260B SW8260B	1,2-Dichloropropage	ug/l	1 U	1 U	1 U
	1,2-Dichloropropane 1,3-Dichlorobenzene	ug/l			
SW8260B SW8260B	1 1	ug/l	1 U 1 U	1 U 1 U	1 U 1 U
	1,4-Dichlorobenzene	ug/l			
SW8260B	2-Butanone	ug/l	5 U	5 U	5 U
	2-Hexanone	ug/l	5 U	5 U	5 U
SW8260B	4-Methyl-2-pentanone	ug/l	5 U	5 U	5 U
SW8260B	Acetic acid, methyl ester	ug/l	1 U	1 U	1 U
SW8260B	Acetone	ug/l	5 U	5 U	5 U
SW8260B	Benzene	ug/l	1 U	1 U	1 U
SW8260B	Bromodichloromethane	ug/l	1 U	1 U	1 U
SW8260B	Bromoform	ug/l	1 UJ	1 UJ	1 U
SW8260B	Bromomethane	ug/l	1 U	1 U	1 U
SW8260B	Carbon disulfide	ug/l	1 U	1 U	1 U
SW8260B	Carbon tetrachloride	ug/l	1 U	1 U	1 U
SW8260B	Chlorobenzene	ug/l	1 U	1 U	1 U
SW8260B	Chlorodibromomethane	ug/l	1 U	1 U	1 U
SW8260B	Chloroethane	ug/l	1 U	1 U	1 U
SW8260B	Chloroform	ug/l	1 U	1 U	1 U
SW8260B	Chloromethane	ug/l	1 U	1 U	1 U
SW8260B	Cis-1,2-Dichloroethene	ug/l	1 U	1 U	1 U
SW8260B	cis-1,3-Dichloropropene	ug/l	1 U	1 U	1 U
SW8260B	Cyclohexane	ug/l	1 U	1 U	1 U
SW8260B	Dichlorodifluoromethane	ug/l	1 U	1 U	1 U
SW8260B	Ethyl benzene	ug/l	1 U	1 U	1 U
SW8260B	Isopropylbenzene	ug/l	1 U	1 U	1 U
SW8260B	Methyl cyclohexane	ug/l	1 U	1 U	1 U
SW8260B	Methyl Tertbutyl Ether	ug/l	1 U	1 U	1 U
SW8260B	Methylene chloride	ug/l	1 UJ	1 UJ	1 U
SW8260B	Styrene	ug/l	1 U	1 U	1 U
SW8260B	Tetrachloroethene	ug/l	1.1	4.7	1 U
SW8260B	Toluene	ug/l	1 U	1 U	1 U
SW8260B	trans-1,2-Dichloroethene	ug/l	1 U	1 U	1 U
SW8260B	trans-1,3-Dichloropropene	ug/l	1 U	1 U	1 U
SW8260B	Trichloroethene	ug/l	1 U	1 U	1 U
SW8260B	Trichlorofluoromethane	ug/l	1 U	1 U	1 U
SW8260B	Vinyl chloride	ug/l	1 U	1 U	1 U
SW8260B	Xylene, o	ug/l	1 U	1 U	1 U
SW8260B	Xylenes (m&p)	ug/l	2 U	2 U	2 U
SW8270C	2,4,5-Trichlorophenol	ug/l	10 UJ	10 U	

JUNE 2011 SOIL VAPOR AND GROUNDWATER SAMPLING LOOHNS DRY CLEANERS CORNING, NEW YORK

	Sample	Delivery Group	C2487	C2487	C2487	
		Location	MW-1	MW-2	QC	
		Sample Date	6/1/2011	6/1/2011	6/1/2011	
		Sample ID	LCMW001016	LCMW002019	LCTB001	
		Qc Code	FS	FS	ТВ	
Analysis	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	
SW8270C	2,4,6-Trichlorophenol	ug/l	10 UJ	10 U		
SW8270C	2,4-Dichlorophenol	ug/l	10 UJ	10 U		
SW8270C	2,4-Dimethylphenol	ug/l	10 UJ	10 U		
SW8270C	2,4-Dinitrophenol	ug/l	10 UJ	10 UJ		
SW8270C	2,4-Dinitrotoluene	ug/l	10 U	10 U		
SW8270C	2,6-Dinitrotoluene	ug/l	10 U	10 U		
SW8270C	2-Chloronaphthalene	ug/l	10 U	10 U		
SW8270C	2-Chlorophenol	ug/l	10 U	10 U		
SW8270C	2-Methylnaphthalene	ug/l	10 U	10 U		
SW8270C	2-Methylphenol	ug/l	10 UJ	10 U		
SW8270C	2-Nitroaniline	ug/l	10 U	10 U		
	2-Nitrophenol	ug/l	10 UJ	10 U		
SW8270C	3,3`-Dichlorobenzidine	ug/l	10 U	10 U		
SW8270C	3-Nitroaniline	ug/l	10 U	10 U		
SW8270C	4,6-Dinitro-2-methylphenol	ug/l	10 UJ	10 UJ		
SW8270C	4-Bromophenyl phenyl ether	ug/l	10 U	10 U		
SW8270C	4-Chloro-3-methylphenol	ug/l	10 UJ	10 U		
SW8270C	4-Chloroaniline	ug/l	10 UJ	10 UJ		
SW8270C	4-Chlorophenyl phenyl ether	ug/l	10 U	10 U		
SW8270C	4-Nitroaniline	ug/l	10 U	10 U		
SW8270C	4-Nitrophenol	ug/l	10 UJ	10 UJ		
SW8270C	Acenaphthene	ug/l	10 U	10 U		
SW8270C	Acenaphthylene	ug/l	10 U	10 U		
SW8270C	Acetophenone	ug/l	10 U	10 U		
SW8270C	Anthracene	ug/l	10 U	10 U		
SW8270C	Atrazine	ug/l	10 U	10 U		
SW8270C	Benzaldehyde	ug/l	10 UJ	10 UJ		
SW8270C	Benzo(a)anthracene	ug/l	10 U	10 U		
SW8270C	Benzo(a)pyrene	ug/l	10 U	10 U		
SW8270C	Benzo(b)fluoranthene	ug/l	10 U	10 U		
SW8270C	Benzo(ghi)perylene	ug/l	10 U	10 U		
SW8270C	Benzo(k)fluoranthene	ug/l	10 U	10 U		
SW8270C		ug/l	10 U	10 U		
	Bis(2-Chloroethoxy)methane	ug/l	10 U	10 U		
	Bis(2-Chloroethyl)ether	ug/l	10 U	10 U		
	Bis(2-Chloroisopropyl)ether	ug/l	10 U	10 U		
SW8270C	Bis(2-Ethylhexyl)phthalate	ug/l	10 U	10 U		
SW8270C	Butylbenzylphthalate	ug/l	10 U	10 U		
SW8270C	Caprolactum	ug/l	10 UJ	10 UJ		
SW8270C	Carbazole	ug/l	10 U	10 U		
SW8270C	Chrysene	ug/l	10 U	10 U		
SW8270C	Di-n-butylphthalate	ug/l	10 U	10 U		
SW8270C	Di-n-octylphthalate	ug/l	10 U	10 U		
SW8270C	Dibenz(a,h)anthracene	ug/l	10 U	10 U		
SW8270C	Dibenzofuran	ug/l	10 U	10 U		
SW8270C	Diethylphthalate	ug/l	10 U	10 U		
SW8270C	Dimethylphthalate	ug/l	10 U	10 U		
SW8270C	Fluoranthene	ug/l	10 U	10 U		
	Fluorene	ug/l	10 U	10 U		
	1	ug/l	10 U	10 U		

JUNE 2011 SOIL VAPOR AND GROUNDWATER SAMPLING LOOHNS DRY CLEANERS CORNING, NEW YORK

	Sample D	elivery Group	C2487	C2487	C2487
		Location	MW-1	MW-2	QC
		Sample Date	6/1/2011	6/1/2011	6/1/2011
		Sample ID	LCMW001016	LCMW002019	LCTB001
		Qc Code	FS	FS	TB
Analysis	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifie
SW8270C	Hexachlorobutadiene	ug/l	10 U	10 U	
SW8270C	Hexachlorocyclopentadiene	ug/l	10 U	10 U	
SW8270C	Hexachloroethane	ug/l	10 U	10 U	
SW8270C	Indeno(1,2,3-cd)pyrene	ug/l	10 U	10 U	
	Isophorone	ug/l	10 U	10 U	
SW8270C	m+p-Methylphenol	ug/l	10 UJ	10 U	
SW8270C	N-Nitrosodi-n-propylamine	ug/l	10 U	10 U	
SW8270C	N-Nitrosodiphenylamine	ug/l	10 U	10 U	
SW8270C	Naphthalene	ug/l	10 U	10 U	
SW8270C	Nitrobenzene	ug/l	10 U	10 U	
SW8270C	Pentachlorophenol	ug/l	10 UJ	10 U	
SW8270C	Phenanthrene	ug/l	10 U	10 U	
SW8270C	Phenol	ug/l	10 UJ	10 UJ	
	Pyrene	ug/l	10 U	10 U	
SW8081A	4,4`-DDD	ug/l	0.052 U	0.051 U	
SW8081A	4,4`-DDE	ug/l	0.052 U	0.051 U	
SW8081A	4,4`-DDT	ug/l	0.052 U	0.051 U	
SW8081A	Aldrin	ug/l	0.052 U	0.051 U	
SW8081A	Alpha-BHC	ug/l	0.052 U	0.051 U	
SW8081A	Alpha-Chlordane	ug/l	0.052 U	0.051 U	
SW8081A	Beta-BHC	ug/l	0.052 U	0.051 U	
SW8081A	Delta-BHC	ug/l	0.052 U	0.051 U	
SW8081A	Dieldrin	ug/l	0.052 U	0.051 U	
SW8081A	Endosulfan I	ug/l	0.052 U	0.051 U	
SW8081A	Endosulfan II	ug/l	0.052 U	0.051 U	
SW8081A	Endosulfan sulfate	ug/l	0.052 U	0.051 U	
SW8081A	Endrin	ug/l	0.052 U	0.051 U	
SW8081A	Endrin aldehyde	ug/l	0.052 U	0.051 U	
SW8081A	Endrin ketone	ug/l	0.052 U	0.051 U	
SW8081A	Gamma-BHC/Lindane	ug/l	0.052 U	0.051 U	
SW8081A	Gamma-Chlordane	ug/l	0.052 UJ	0.051 UJ	
SW8081A	Heptachlor	ug/l	0.052 U	0.051 U	
	Heptachlor epoxide	ug/l	0.052 U	0.051 U	
SW8081A	Methoxychlor	ug/l	0.052 U	0.051 U	
SW8081A	Toxaphene	ug/l	0.52 U	0.51 U	
SW8082	Aroclor-1016	ug/l	0.51 U	0.51 U	
SW8082	Aroclor-1221	ug/l	0.51 U	0.51 U	
SW8082	Aroclor-1232	ug/l	0.51 U	0.51 U	
SW8082	Aroclor-1242	ug/l	0.51 U	0.51 U	
SW8082	Aroclor-1248	ug/l	0.51 U	0.51 U	
SW8082	Aroclor-1254	ug/l	0.51 U	0.51 U	
SW8082	Aroclor-1260	ug/l ug/l	0.51 U	0.51 U	
SW6010B	Aluminum	ug/l ug/l	50 U	106 U	
SW6010B	Antimony	ug/l ug/l	25 U	25 U	
SW6010B	Arsenic	ug/l ug/l	25 U 10 U	25 U 10 U	
SW6010B	Barium	ug/l ug/l	89	98.4	
SW6010B	Beryllium	_	89 3 U	96.4 3 U	
	1	ug/l			
SW6010B SW6010B	Cadmium Calcium	ug/l ug/l	3 U 59,900	3 U 83,300	
		1 11/1/1	TO MILL	0.3.31111	

JUNE 2011 SOIL VAPOR AND GROUNDWATER SAMPLING LOOHNS DRY CLEANERS CORNING, NEW YORK

		Sample Deliver	y Group	C2	487	C2	487	C2	487
		-	ocation		V-1	MW-2		C	(C
		Sam	ple Date	6/1/2011		6/1/	2011	6/1/	2011
			ample ID			LCMW	002019	LCT	B001
			Qc Code	F	S	F	S	Т	В
Analysis	Parameter		Units	Result	Qualifier	Result	Qualifier	Result	Qualifier
SW6010B	Cobalt		ug/l	15	U	15	U		
SW6010B	Copper		ug/l	2.26	J	2.08	J		
SW6010B	Iron		ug/l	50.4	50.4				
SW6010B	Lead		ug/l	6	U	7.35	U		
SW6010B	Magnesium		ug/l	11,300		18,200			
SW6010B	Manganese		ug/l	3.26	J	27.3			
SW6010B	Nickel		ug/l	20	U	20	U		
SW6010B	Potassium		ug/l	3,090		4,390			
SW6010B	Selenium		ug/l	10	U	5.87	J		
SW6010B	Silver		ug/l	5	U	5	U		
SW6010B	Sodium		ug/l	55,700		115,000			
SW6010B	Thallium		ug/l	20	U	20	U		
SW6010B	Vanadium		ug/l	20	U	20 U			
SW6010B	Zinc		ug/l	10.6	10.6 J		20 U		
SW7470A	Mercury		ug/l	0.14	J	0.2	U		

Notes:

ug/l = micrograms per liter

Qualifiers

U = not detected at the reporting limit

J = estimated concentration

QC Code

FS = Field Sample

TB = Trip Blank

TABLE 2 SUMMARY OF ANALYTICAL RESULTS DATA USABILITY SUMMARY REPORT JUNE 2011 SOIL VAPOR AND GROUNDWATER SAMPLING LOOHNS DRY CLEANERS

CORNING, NEW YORK

Sample Delivery Group MT005 MT005							
	Sample Del		MT005	MT005			
	,	Location		SV-02			
		Sample Date		6/1/2011			
		Sample ID		LCSV002007			
Analysis	Parameter	Qc Code Units	FS Result Qualifier	FS Result Qualifier			
Analysis EPA TO-15	1,1,1-Trichloroethane	UG/M3	1.1 U	2			
EPA TO-15	1,1,2,2-Tetrachloroethane	UG/M3	1.1 U 1.4 UJ	3.4 J			
EPA TO-15	1,1,2-Trichloro-1,2,2-Trifluoroethane	UG/M3	1.4 U	1.6 U			
EPA TO-15	1,1,2-Trichloroethane	UG/M3	1.0 U	1.0 U			
EPA TO-15	1,1-Dichloroethane	UG/M3	0.82 U	0.82 U			
EPA TO-15	1,1-Dichloroethene	UG/M3	0.82 U	0.82 U 0.81 U			
EPA TO-15	1,2,4-Trichlorobenzene	UG/M3	1.5 U	1.5 U			
EPA TO-15	1,2,4-Trimethylbenzene	UG/M3	1.6	4.9			
	-		1.6 U	4.9 1.6 U			
EPA TO-15	1,2-Dibromoethane	UG/M3					
EPA TO-15	1,2-Dichloro-1,1,2,2-tetrafluoroethane	UG/M3	1.4 U	1.4 U			
EPA TO-15	1,2-Dichlorobenzene	UG/M3	1.2 U	1.2 U			
EPA TO-15	1,2-Dichloroethane	UG/M3	0.82 U	0.82 U			
EPA TO-15	1,2-Dichloropropane	UG/M3	0.94 U 5.2	0.94 U			
EPA TO-15	1,3,5-Trimethylbenzene	UG/M3		9.4			
EPA TO-15	1,3-Butadiene	UG/M3	0.45 U	0.45 U			
EPA TO-15	1,3-Dichlorobenzene	UG/M3	1.2 U	1.2 U			
EPA TO-15	1,4-Dichlorobenzene	UG/M3	1.2 U	1.5			
EPA TO-15	1,4-Dioxane	UG/M3	1.5 U	1.5 U			
EPA TO-15	2-Butanone	UG/M3	6.9 J	5.6 J			
EPA TO-15	2-Hexanone	UG/M3	0.83 U	0.83 U			
EPA TO-15	2-Propanol	UG/M3	36 J	5 UJ			
EPA TO-15	4-Ethyltoluene	UG/M3	3.7	4.8			
EPA TO-15	4-Methyl-2-pentanone	UG/M3	0.83 U	0.83 U			
EPA TO-15	Acetone	UG/M3	200	55			
EPA TO-15	Benzene	UG/M3	0.65 U	7.9			
EPA TO-15	Benzyl chloride	UG/M3	1.1 U	1.1 U			
EPA TO-15	Bromodichloromethane	UG/M3	1.4 U	1.4 U			
EPA TO-15	Bromoform	UG/M3	2.1 U	2.1 U			
EPA TO-15	Bromomethane	UG/M3	0.79 U	0.79 U			
EPA TO-15	Carbon disulfide	UG/M3	1.1	2.1			
EPA TO-15	Carbon tetrachloride	UG/M3	1.3 U	1.3 U			
EPA TO-15	Chlorobenzene	UG/M3	0.94 U	0.94 U			
EPA TO-15	Chlorodibromomethane	UG/M3	1.7 U	1.7 U			
EPA TO-15	Chloroethane	UG/M3	0.54 U	0.54 U			
EPA TO-15	Chloroform	UG/M3	0.99 U	0.99 U			
EPA TO-15	Chloromethane	UG/M3	0.42 U	0.42 U			
EPA TO-15	Cis-1,2-Dichloroethene	UG/M3	5.7	1.6			
EPA TO-15	cis-1,3-Dichloropropene	UG/M3	0.92 U	0.92 U			
EPA TO-15	Cyclohexane	UG/M3	0.7 U	19			
EPA TO-15	Dichlorodifluoromethane	UG/M3	2.5	2.6			
EPA TO-15	Ethyl benzene	UG/M3	2.6	2.8			
EPA TO-15	Heptane	UG/M3	1.2	43			
EPA TO-15	Hexachlorobutadiene	UG/M3	2.2 U	2.2 U			
EPA TO-15	Hexane	UG/M3	1.3	38			
EPA TO-15	Methyl Tertbutyl Ether	UG/M3	0.73 U	0.73 U			
EPA TO-15	Methylene chloride	UG/M3	0.71 UJ	0.71 UJ			
EPA TO-15	Styrene	UG/M3	3	2.8			
EPA TO-15	Tetrachloroethene	UG/M3	3200	130000			
EPA TO-15	Tetrahydrofuran	UG/M3	0.6 U	1.3			
EPA TO-15	Toluene	UG/M3	90	92			

JUNE 2011 SOIL VAPOR AND GROUNDWATER SAMPLING LOOHNS DRY CLEANERS CORNING, NEW YORK

EPA TO-15	trans-1,2-Dichloroethene	UG/M3	0.81 U	0.81 U
EPA TO-15	trans-1,3-Dichloropropene	UG/M3	0.92 U	0.92 U
EPA TO-15	Trichloroethene	UG/M3	29	170
EPA TO-15	Trichlorofluoromethane	UG/M3	2.3	2.7
EPA TO-15	Vinyl acetate	UG/M3	0.72 U	0.72 U
EPA TO-15	Vinyl chloride	UG/M3	0.52 U	0.52 U
EPA TO-15	Xylene, o	UG/M3	3.2	5.5
EPA TO-15	Xylenes (m&p)	UG/M3	7.9	19

Notes:

ug/m3 = micrograms per cubic meter

Qualifiers

U = not detected at the reporting limit

J = estimated concentration

QC Code

FS = Field Sample

TABLE 3

SUMMARY OF VALIDATION ACTIONS DATA USABILITY SUMMARY REPORT

JUNE 2011 SOIL VAPOR AND GROUNDWATER SAMPLING

LOOHNS DRY CLEANERS CORNING, NEW YORK

SDG	Lab Sample Id			Paramater Name				Validation Qualifie			
C2487	C2487-01	SW6010B	LCMW001016	Aluminum	25.8	J	50	U	BL1	ug/l	CCGE
C2487	C2487-01	SW6010B	LCMW001016	Lead	6		6	U	BL1	ug/l	CCGE
C2487	C2487-01	SW8081A	LCMW001016	Gamma-Chlordane	0.052	U	0.052			ug/l	CCGE
C2487	C2487-01	SW8260B	LCMW001016	Bromoform	1	U	1		ICVRSD, CCV%D		CCGE
C2487	C2487-01	SW8260B	LCMW001016	Methylene chloride	1	U	1	UJ	ICVRSD, CCV%D	ug/l	CCGE
C2487	C2487-01	SW8270C	LCMW001016	2,4,5-Trichlorophenol	10	U	10	UJ	SS-L	ug/l	CCGE
C2487	C2487-01	SW8270C	LCMW001016	2,4,6-Trichlorophenol	10	U	10	UJ	SS-L	ug/l	CCGE
C2487	C2487-01	SW8270C	LCMW001016	2,4-Dichlorophenol	10	U	10	UJ	SS-L	ug/l	CCGE
C2487	C2487-01	SW8270C	LCMW001016	2,4-Dimethylphenol	10	U	10	UJ	SS-L	ug/l	CCGE
C2487	C2487-01	SW8270C	LCMW001016	2,4-Dinitrophenol	10	U	10	UJ	ICVRSD, SS-L	ug/l	CCGE
C2487	C2487-01	SW8270C	LCMW001016	2-Methylphenol	10	U	10	UJ	SS-L	ug/l	CCGE
C2487	C2487-01	SW8270C	LCMW001016	2-Nitrophenol	10	U	10	UJ	SS-L	ug/l	CCGE
C2487	C2487-01	SW8270C	LCMW001016	4,6-Dinitro-2-methylphenol	10	U	10	UJ		ug/l	CCGE
C2487	C2487-01	SW8270C	LCMW001016	4-Chloro-3-methylphenol	10	U	10	UJ	SS-L	ug/l	CCGE
C2487	C2487-01	SW8270C	LCMW001016	4-Nitrophenol	10	U	10	UJ	SS-L	ug/l	CCGE
C2487	C2487-01	SW8270C	LCMW001016	Benzaldehyde	10	U	10	UJ	LCS-L, LCS-RPD	ug/l	CCGE
C2487	C2487-01	SW8270C	LCMW001016	Caprolactum	10	U	10	UJ	LCS-L	ug/l	CCGE
C2487	C2487-01	SW8270C	LCMW001016	m+p-Methylphenol	10	U	10	UJ	SS-L	ug/l	CCGE
C2487	C2487-01	SW8270C	LCMW001016	Pentachlorophenol	10	U	10	UJ	SS-L	ug/l	CCGE
C2487	C2487-01	SW8270C	LCMW001016	Phenol	10	U	10	UJ	SS-L	ug/l	CCGE
C2487	C2487-03	SW6010B	LCMW002019	Aluminum	106		106	U	BL1	ug/l	CCGE
C2487	C2487-03	SW6010B	LCMW002019	Lead	7.35		7.35	U	BL1	ug/l	CCGE
C2487	C2487-03	SW8081A	LCMW002019	Gamma-Chlordane	0.051	U	0.051	UJ	LCS-RPD	ug/l	CCGE
C2487	C2487-03	SW8260B	LCMW002019	Bromoform	1	U	1	UJ	ICVRSD, CCV%D	ug/l	CCGE
C2487	C2487-03	SW8260B	LCMW002019	Methylene chloride	1	U	1	UJ	ICVRSD, CCV%D	ug/l	CCGE
C2487	C2487-03	SW8270C	LCMW002019	2,4-Dinitrophenol	10	U	10		ICVRSD	ug/l	CCGE
C2487	C2487-03	SW8270C	LCMW002019	4,6-Dinitro-2-methylphenol	10	U	10	UJ	ICVRSD	ug/l	CCGE
C2487	C2487-03	SW8270C	LCMW002019	Benzaldehyde	10	U	10	UJ	LCS-L, LCS-RPD	ug/l	CCGE
C2487	C2487-03	SW8270C	LCMW002019	Caprolactum	10	U	10	UJ	LCS-L	ug/l	CCGE
MT005	E1106002-001A	EPA TO-15	LCSV002007	1,1,2,2-Tetrachloroethane	3.4		3.4	J	CCV%D	UG/M3	Enalytic
MT005	E1106002-001A	EPA TO-15	LCSV002007	2-Butanone	5.6		5.6	J	CCV%D	UG/M3	Enalytic
MT005	E1106002-001A	EPA TO-15	LCSV002007	2-Propanol	5	U	5	UJ	LCS-L	UG/M3	Enalytic
MT005	E1106002-001A	EPA TO-15	LCSV002007	Methylene chloride	0.71	U	0.71	UJ	ICVRSD	UG/M3	Enalytic
MT005	E1106002-002A	EPA TO-15	LCSVEW1005	1,1,2,2-Tetrachloroethane	1.4	U	1.4	UJ	CCV%D	UG/M3	Enalytic
MT005	E1106002-002A	EPA TO-15	LCSVEW1005	2-Butanone	6.9		6.9	J	CCV%D	UG/M3	Enalytic
MT005		EPA TO-15	LCSVEW1005	2-Propanol	36		36	J	LCS-L	UG/M3	Enalytic
MT005	E1106002-002A	EPA TO-15	LCSVEW1005	Methylene chloride	0.71	U	0.71	UJ	ICVRSD	UG/M3	Enalytic

Notes:

Validation Qualifier Reason Codes-

BL1 = contamination in a method blank

LCS-L = laboratory control sample recovery below the limit

LCS-RPD = laboratory control sample relative percent difference limit exceeded

ICVRSD = initial calibration relative percent difference limit exceeded

CCV%D = Continuing calibration percent difference limit exceeded

SS-L = surrogate recovery below the limit

TABLE 4 SUMMARY OF TENTATIVELY IDENTIFIED COMPOUNDS DATA USABILITY SUMMARY REPORT JUNE 2011 SOIL VAPOR AND GROUNDWATER SAMPLING LOOHNS DRY CLEANERS CORNING, NEW YORK

SDG	Sample ID	Lab Sample ID	Method	Compound	Final Result	Qualifier	Analysis Date
MT005	LCSV002007	E1106002-001A	EPA TO-15	Butane	25	JN	06/20/2011
MT005	LCSV002007	E1106002-001A	EPA TO-15	Butane, 2-methyl-	18	JN	06/20/2011
MT005	LCSV002007	E1106002-001A	EPA TO-15	Isobutane	19	JN	06/20/2011
MT005	LCSV002007	E1106002-001A	EPA TO-15	Nonadecane	7.9	JN	06/20/2011
MT005	LCSV002007	E1106002-001A	EPA TO-15	Nonane	12	JN	06/20/2011
MT005	LCSV002007	E1106002-001A	EPA TO-15	Propane	17	JN	06/20/2011
MT005	LCSV002007	E1106002-001A	EPA TO-15	unknown hydrocarbon	15	JN	06/20/2011
MT005	LCSVEW1005	E1106002-002A	EPA TO-15	Decane, 2,2-dimethyl-	810	JN	06/20/2011
MT005	LCSVEW1005	E1106002-002A	EPA TO-15	Dodecane, 2,6,10-trimethyl-	410	JN	06/20/2011
MT005	LCSVEW1005	E1106002-002A	EPA TO-15	Heptane, 2,2,4,6,6-pentamethyl-	390	JN	06/20/2011
MT005	LCSVEW1005	E1106002-002A	EPA TO-15	Nonane, 3-methyl-5-propyl-	610	JN	06/20/2011
MT005	LCSVEW1005	E1106002-002A	EPA TO-15	Octane, 2,2,6-trimethyl-	210	JN	06/20/2011
MT005	LCSVEW1005	E1106002-002A	EPA TO-15	Undecane, 3,6-dimethyl-	280	JN	06/20/2011
MT005	LCSVEW1005	E1106002-002A	EPA TO-15	unknown hydrocarbon (12.103)	270	JN	06/20/2011
MT005	LCSVEW1005	E1106002-002A	EPA TO-15	unknown hydrocarbon (13.636)	860	JN	06/20/2011
MT005	LCSVEW1005	E1106002-002A	EPA TO-15	unknown hydrocarbon (13.726)	200	JN	06/20/2011

Notes:

Qualifiers

JN = estimated value with presumptive evidence that the compound is present in the sample

Cr

Checked by: TLC 8/09/2011

SVOC

		C DUSR PROJECT CHEMIST REVIEW RECORD:: Loohn's Dry Cleaners 3612102148
Me Lab	thod ora	1: <u>SW-846 8270C</u> tory and SDG(s): <u>Chemtech</u> SDG# C2487
Rev	iew	er: Mike Washburn Level X NYSDEC DUSR USEPA Region II Guideline
1.		Case Narrative Review and Data Package Completeness Were problems noted? Noted problems addressed in the following sections. Where all the samples on the COC analyzed for the requested analyses? YES NO (circle one)
2.		Holding time and Sample Collection All water samples were extracted within the 7 day holding time, soil is 14 day? Extracted within required hold time
3.		QC Blanks Are method blanks free of contamination? YES NO (circle one) Are Rinse blanks free of contamination? YES NO (NA) (circle one)
4.		Instrument Tuning Were all results were within method criteria. YES NO (circle one)
5.		Internal Standards (Area Limits = 50% to +100%, RT's within 30 seconds of mid point cal Std) Were all results within criteria? YES NO (circle one)
6.		Instrument Calibration
		Control Limits (Region II HW-22): Initial Calibration %RSD = 15% Continuing Calibration %D = 20% Average RRF should be \geq 0.05 (or reject NDs, J detects or use professional judgment to J/UJ)
		Were all results were within criteria. YES NO circle one)
		In the initial calibration dated 6/4/2011, the following compounds exceeded the percent standard deviation QC limit of 15: 2,4-dinitrophenol (30) and 4,6-dinitro-2-methlyphenol (23). 2,4-dintrophenol and 4,6-dinitro-2-methlyphenol were not detected in associated samples and the reporting limits were qualified estimated (UJ)
7.		Surrogate Recovery (water and soil limits: Base/Neutral 50-140%, Acid 30-140%) Were all results were within limits? YES NO (circle one) Were any recoveries < 10%? (Reject fraction compounds if recoveries are < 10%)
		Percent recoveries of surrogates 2-fluorophenol (27) and phenol-d5 (17) in sample LCMW001016 were less than the lower QC limit of 30. Acid fraction compounds in sample LCMW001016 were not detected and were qualified estimated (UJ) at the reporting limits.
8.		Matrix Spike (water & soil limits: Base/Neutral 50=140%, Acid 30-140%) (RPD soil=35, water=20) Were MS/MSDs submitted/analyzed? YES NO NA (circle one)
9.		Duplicates/replicates (RPD limits = water:50, soil:100) Were Field Duplicates submitted/analyzed? YES NO Were RPDs within criteria. YES NO NA (direle one)
10.		Laboratory Control Sample Results (water&soil limits: Base/Neutral 50-140%, Acid 30-140%)
		ects\nysdec1\Contracts D004434 and D004444\projects\Loohns g\3.0_Site_Data\3.4_Test_Results\Checklists\C2487_DUSR_Checklist_SVOC_8270C.doc

Were all results were within limits? YES NO circle one)

LCS/LCSD percent recoveries for benzaldehyde (2/3) and caprolactam (28/26) were below the QC of 50. Benzaldehyde and caprolactam were not detected in the associated and the reporting limits were qualified and estimated (UJ).

The LCS/LCSD relative percent difference for benzaldehyde (40) exceeded the QC limit of 30. Benzaldehyde not detected in the associated samples and sample results were qualified estimated (UJ) at the reporting limit.

11. Raw Data Review and Calculation Checks

When calculating LCS/LCSD RPD values, it was determined that only the value for benzaldehyde was calculated correctly. The remaining RPD values were recalculated and only the benzaldehyde value exceeded the QC limit.

- 12.

 Electronic Data Review and Edits: Does the EDD match the Form I's? YES NO (circle one)
- 13.

 TIC Review and DUSR Table 1 (sample Listing), Table 2 (results summary),

 Table 3 (Reason Codes), Table 4 (TlC's). Did lab report TICs? (YES) NO (circle one)

284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax: 908 789 8922

Date Collected:

Date Received:

SDG No.:

Matrix:

Test:

06/01/11

06/03/11

WATER

SVOC-TCL BNA -20

uL

C2487

Report of Analysis

Client: MACTEC Inc.

Project: Loohns Dry Cleaners- APO 201007181

Client Sample ID: LCMW001016

Lab Sample ID: C2487-01

Soil Aliquot Vol:

Analytical Method: SW8270C % Moisture: 100

Sample Wt/Vol: 980 Units: mLFinal Vol: 1000

 $\mathfrak{u} L$

Extraction Type: SEPF Decanted: N Level:

LOW

Injection Volume: GPC Factor: 1.0 GPC Cleanup: Ν PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID BF046071.D 1 06/07/11 06/07/11 PB55865

CAS Number	Parameter	Cone.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
100-52-7	Benzaldehyde	10	UĴ	0.79	10	ug/L
108-95-2	Phenol	10	U .)	0.21	10	ug/L
111-44-4	bis(2-Chloroethyl)ether	10	U	0.56	10	ug/L
95-57-8	2-Chlorophenol	10	Ü	0.55	10	ug/L
95-48-7	2-Methylphenol	10	υJ	0.24	10	ug/L
108-60-1	2,2-oxybis(1-Chloropropane)	10	บ	0.17	10	ug/L
98-86-2	Acetophenone	10	บ	0.14	10	ug/L
65794-96-9	3+4-Methylphenols	10	U.j	0.39	10	ug/L
621-64-7	N-Nitroso-di-n-propylamine	10	U	0.2	10	ug/L
67-72-1	Hexachloroethane	10	Ū	0.26	10	ug/L
98-95-3	Nitrobenzene	10	U	0.69	10	ug/L
78-59-1	Isophorone	10	U	0.31	10	ug/L
88-75-5	2-Nitrophenol	10	υJ	0.53	10	ug/L
105-67-9	2,4-Dimethylphenol	10	Ū j	0.72	10	ug/L
111-91-1	bis(2-Chloroethoxy)methane	10	U	0.56	10	ug/L
120-83-2	2,4-Dichlorophenol	10	U .)	0.67	10	ug/L
91-20-3	Naphthalene	10	U	0.12	10	ug/L
106-47-8	4-Chloroaniline	10	U	2.9	10	ug/L
87-68-3	Hexachiorobutadiene	10	U	0.26	10	ug/L
105-60-2	Caprolactam	10	U J	2	10	ug/L
59-50-7	4-Chloro-3-methylphenol	10	υĴ	0.41	10	ug/L
91-57-6	2-Methylnaphthalene	10	U	0.33	10	ug/L
77-47-4	Hexachlorocyclopentadiene	10	U	0.24	10	ug/L
88-06-2	2,4,6-Trichlorophenol	10	UĴ	0.57	10	ug/L
95-95-4	2,4,5-Trichlorophenol	10	υ Ž U	0.41	10	ug/L
92-52-4	1,1-Biphenyl	10	U	0.15	10	ug/L
91-58-7	2-Chloronaphthalene	10	U	0.16	10	ug/L
88-74-4	2-Nitroaniline	10	U	0.5	10	ug/L
131-11-3	Dimethylphthalate	10	U	0.22	10	ug/L
208-96-8	Acenaphthylene	10	U	0.71	10	ug/L
606-20-2	2,6-Dinitrotoluene	10	U	0.33	10	ug/L

Myglahi

284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax: 908 789 8922

Report of Analysis

Client: MACTEC Inc.

mL

Project: Loohns Dry Cleaners- APO 201007181

Client Sample ID: LCMW001016

Lab Sample ID: C2487-01

Analytical Method: SW8270C

Sample Wt/Vol: 980 Units:

Soil Aliquot Vol: uL

Extraction Type:

Injection Volume: GPC Factor: 1.0

SEPF

SDG No.:

Matrix:

Date Collected:

Date Received:

% Moisture:

Final Vol:

1000

06/01/11

06/03/11

WATER

C2487

100

иL

Test: SVOC-TCL BNA -20

Level: LOW

GPC Cleanup: Ν PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID BF046071.D 1 06/07/11 06/07/11 PB55865

Decanted:

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
99-09-2	3-Nitroaniline	10	υ	1.1	10	ug/L
83-32-9	Acenaphthene	10	U	0.21	10	ug/L
51-28-5	2,4-Dinitrophenol	10	υ)	2.1	10	ug/L
100-02-7	4-Nitrophenol	10	υ .	2	10	ug/L
132-64-9	Dibenzofuran	10	U	0.24	10	ug/L
121-14-2	2,4-Dinitrotoluene	10	U	1.1	10	ug/L
84-66-2	Diethylphthalate	10	U	0.39	10	ug/L
7005-72-3	4-Chlorophenyl-phenylether	10	U	0.21	10	ug/L
86-73-7	Fluorene	10	U	0.32	10	ug/L
100-01-6	4-Nitroaniline	10	U	1.4	10	ug/L
534-52-1	4,6-Dinitro-2-methylphenol	10	UĴ	0.76	10	ug/L
86-30-6	N-Nitrosodiphenylamine	10	U	0.61	10	ug/L
101-55-3	4-Bromophenyl-phenylether	10	U	0.23	10	ug/L
118-74-1	Hexachlorobenzene	10	U	0.18	10	ug/L
1912-24-9	Atrazine	10	U	0.41	10	ug/L
87-86-5	Pentachlorophenol	10	UĴ	1.8	10	ug/L
85-01-8	Phenanthrene	10	U	0.27	10	ug/L
120-12-7	Anthracene	10	U	0.16	10	ug/L
86-74-8	Carbazole	10	U	0.22	10	ug/L
84-74-2	Di-n-butylphtbalate	10	U	2	10	ug/L
206-44-0	Fluoranthene	10	U	0.41	10	ug/L
129-00-0	Pyrene	10	U	0.2	10	ug/L
85-68-7	Butylbenzylphthalate	10	U	0.19	10	ug/L
91-94-1	3,3-Dichlorobenzidine	10	U	2	10	ug/L
56-55-3	Benzo(a)anthracene	10	U	0.16	10	ug/L
218-01-9	Chrysene	10	U	0.18	10	ug/L
117-81-7	bis(2-Ethylhexyl)phthalate	10	U	0.16	10	ug/L
117-84-0	Di-n-octyl phthalate	10	U	0.52	10	ug/L
205-99-2	Benzo(b)fluoranthene	10	U	0.3	10	ug/L
207-08-9	Benzo(k)fluoranthene	10	U	0.18	10	ug/L
50-32-8	Benzo(a)pyrene	10	U	0.14	10	ug/L
193 - 39-5	Indeno(1,2,3-cd)pyrene	10	U	0.15	10	_{ug} ,21
53-70-3	Dibenz(a,h)anthracene	10	U	0.43	10	ug/L
			4 -	w.	1.4	• •

W/2/28/11

Soil Aliquot Vol:

284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax: 908 789 8922

Report of Analysis

Client: MACTEC Inc. Date Collected: 06/01/11 Project: Loohns Dry Cleaners- APO 201007181 Date Received: 06/03/11 Client Sample ID: LCMW001016 SDG No.: C2487 Lab Sample ID: C2487-01 Matrix: WATER Analytical Method: SW8270C % Moisture: 100

Test:

SVOC-TCL BNA -20

Sample Wt/Vol: 980 Units: mL Final Vol: 1000 uL

Extraction Type: SEPF Decanted: N Level: LOW

цL

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N 'PH: 6

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BF046071.D 1 06/07/11 06/07/11 PB55865

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
191-24-2	Benzo(g,h,i)perylene	10	U	0.3	10	ug/L
SURROGATES	S					
367-12-4	2-Fluorophenol	39.8		10 - 160	27%	SPK: 150
13127-88-3	Phenol-d5	25.2		10 - 160	17%	SPK: 150
4165-60-0	Nitrobenzene-d5	66.5		20 - 139	67%	SPK: 100
321-60-8	2-Fluorobiphenyl	68.2		10 - 173	68%	SPK: 100
118-79-6	2,4,6-Tribromophenol	105		10 - 169	70%	SPK: 150
1718-51-0	Terphenyl-d14	77. 1		20 - 171	77%	SPK: 100
INTERNAL ST	TANDARDS					
3855-82-1	1,4-Dichlorobenzene-d4	167715	4.85			
1146-65-2	Naphthalene-d8	636409	6			
15067-26-2	Acenaphthene-d10	342667	7.7			
1517-22-2	Phenanthrene-d10	491115	9.36			
1719-03-5	Chrysene-d12	321863	12.54			
1520-96-3	Perylene-d12	280222	14.44			
TENTATIVE I	DENTIFIED COMPOUNDS					
<i>)</i> -1 23-42- 2	2-Pentanone, 4-hydroxy-4-methyl-	5.6	——AB——		3.27	ид/L

O compound in method blank

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

m 3/29 hi

284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax : 908 789 8922

Report of Analysis

Client: MACTEC Inc. Date Collected: 06/01/11 Project: Loohns Dry Cleaners- APO 201007181 Date Received: 06/03/11 Client Sample ID: LCMW002019 SDG No.: C2487 Lab Sample ID: C2487-03 Matrix: WATER Analytical Method: SW8270C % Moisture: 100 Sample Wt/Vol: 980 Units: Final Vol: 1000 mLuL Soil Aliquot Vol: uL Test: SVOC-TCL BNA -20 Extraction Type: SEPF Decanted: Level: LOW N Injection Volume: GPC Factor: GPC Cleanup: Ν PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF046070.D 1 06/07/11 06/07/11 PB55865

CAS Number	Parameter	. Conc.	Qualifier	MDL	LOQ/CRQL	Units
TARGETS						
100-52-7	Benzaldehyde	10	U J	0.79	10	ug/L
108-95-2	Phenol	10	υ	0.21	10	ug/L
111-44-4	bis(2-Chloroethyl)ether	10	υ	0.56	10	ug/L
95-57-8	2-Chlorophenol	10	U	0.55	10	ug/L
95-48-7	2-Methylphenol	10	Ū	0.24	10	ug/L
108-60-1	2,2-oxybis(1-Chloropropane)	10	U	0.17	10	ug/L
98-86-2	Acetophenone	10	U	0.14	10	ug/L
65794-96-9	3+4-Methylphenols	10	\mathbf{U}	0.39	10	ug/L
621-64-7	N-Nitroso-di-n-propylamine	10	U	0.2	10	ug/L
67-72-1	Hexachloroethane	10	U	0.26	10	ug/L
98-95-3	Nitrobenzene	10	υ	0.69	10	ug/L
78-59-1	Isophorone	10	U	0.31	10	ug/L
88-75-5	2-Nitrophenol	10	U	0.53	10	ug/L
105-67-9	2,4-Dimethylphenol	10	U	0.72	10	ug/L
111-91-1	bis(2-Chloroethoxy)methane	10	U	0.56	10	ug/L
120-83-2	2,4-Dichlorophenol	10	U	0.67	10	ug/L
91-20-3	Naphthalene	10	U	0.12	10	ug/L
106-47-8	4-Chloroaniline	10	U	2.9	10	ug/L
87-68-3	Hexachlorobutadiene	10	U	0.26	10	ug/L
105-60-2	Caprolactam	10	U 🕽	2	10	ug/L
59-50-7	4-Chloro-3-methylphenol	10	U	0.41	10	ug/L
91-57-6	2-Methylnaphthalene	10	U	0.33	10	ug/L
77-47-4	Hexachlorocyclopentadiene	10	U	0.24	10	ug/L
88-06-2	2,4,6-Trichlorophenol	10	U	0.57	10	ug/L
95-95-4	2,4,5-Trichlorophenol	10	U	0.41	10	ug/L
92-52-4	1,1-Biphenyl	10	U	0.15	10	ug/L
91-58-7	2-Chloronaphthalene	10	U	0.16	10	ug/L
88-74-4	2-Nitroaniline	10	U .	0.5	10	ug/L
131-11-3	Dimethylphthalate	10	U	0.22	10	ug/L
208-96-8	Acenaphthylene	10	U	0.71	10	ug/L
606-20-2	2,6-Dinitrotoluene	10	U	0.33	10	ug/L

284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax: 908 789 8922

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

06/01/11

Project:

Loohns Dry Cleaners- APO 201007181

Units:

Date Received:

06/03/11

Client Sample ID:

LCMW002019

SDG No.:

C2487

100

1000

Lab Sample ID:

C2487-03

Matrix:

WATER

Analytical Method:

SW8270C

% Moisture:

uL

Sample Wt/Vol: Soil Aliquot Vol: 980

mL иL

Test:

Final Vol:

SVOC-TCL BNA -20

PH:

Extraction Type:

SEPF

Decanted:

Ν

Level:

LOW

Injection Volume:

GPC Factor:

GPC Cleanup:

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

BF046070.D

1

06/07/11

06/07/11

PB55865

Ν

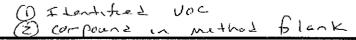
CAS Number Parameter Conc. **Oualifier** MDL LOQ / CRQL Units 99-09-2 3-Nitroaniline 10 U 1.1 10 ug/L 83-32-9 10 U Acenaphthene 0.21 10 ug/L 51-28-5 2,4-Dinitrophenol 10 U.J 2.1 10 ug/L 100-02-7 4-Nitrophenol 10 U 2 10 ug/L 132-64-9 Dibenzofuran 10 U 0.24 10 ug/L 121-14-2 2,4-Dinitrotoluene 10 U 10 1.1 ug/L 84-66-2 Diethylphthalate 10 U 0.39 10 ug/L 7005-72-3 4-Chlorophenyl-phenylether 10 U 0.21 10 ug/L U 86-73-7 Fluorene 10 0.32 10 ug/L 100-01-6 4-Nitroaniline 10 U 1.4 10 ug/L 534-52-1 4,6-Dinitro-2-methylphenol 10 Uΰ 0.76 10 ug/L 86-30-6 N-Nitrosodiphenylamine 10 U 0.61 10 ug/L 101-55-3 4-Bromophenyl-phenylether 10 U 0.23 10 ug/L 118-74-1 Hexachlorobenzene U 10 0.18 10 ug/L 1912-24-9 Atrazine 10 U 0.4110 ug/L 87-86-5 Pentachlorophenol 10 U 1.8 10 ug/L Phenanthrene 85-01-8 10 U 0.27 10 ug/L Anthracene U 120-12-7 10 0.16 10 ug/L 86-74-8 Carbazole 10 U 0.22 10 ug/L 84-74-2 10 U Di-n-butylphthalate 2 10 ug/L 206-44-0 Fluoranthene 10 U 0.41 10 ug/L 129-00-0 Pyrene 10 U 0.2 10 ug/L Butylbenzylphthalate 85-68-7 10 IJ 0.19 10 ug/L 91-94-1 3,3-Dichlorobenzidine 10 U 2 10 ug/L 56-55-3 Benzo(a)anthracene 10 U 0.16 ug/L 10 U 218-01-9 Chrysene 10 0.18 10 ug/L 117-81-7 bis(2-Ethylhexyl)phthalate U 10 0.16 10 ug/L 117-84-0 Di-n-octyl phthalate 10 U 0.52 10 ug/L 205-99-2 Benzo(b)fluoranthene 10 U 0.3 10 ug/L 207-08-9 Benzo(k)fluoranthene 10 U 0.1810 ug/L 50-32-8 Benzo(a)pyrene 10 U 0.14 10 ug/L սց/267 193-39-5 Indeno(1,2,3-cd)pyrene 10 U 0.15 10 53-70-3 Dibenz(a,h)anthracene 10 U 0.43 10 ug/L

months /11

Injection Volume:

284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax: 908 789 8922

Report of Analysis


Client: Date Collected: 06/01/11 Loohns Dry Cleaners- APO 201007181 Project: Date Received: 06/03/11 Client Sample ID: LCMW002019 SDG No.: C2487 Lab Sample ID: C2487-03 Matrix: WATER SW8270C Analytical Method: % Moisture: 100 Sample Wt/Vol: 980 Units: mLFinal Vol: 1000 uL Soil Aliquot Vol: uL Test: SVOC-TCL BNA -20 Extraction Type: SEPF Decanted: LOW Level:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF046070.D 1 06/07/11 06/07/11 PB55865

GPC Factor: 1.0

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ/CRQL	Units
191-24-2	Benzo(g,h,i)perylene	10	U	0.3	10	ug/L
SURROGATES	S					
367-12-4	2-Fluorophenol	50.8		10 - 160	34%	SPK: 150
13127-88-3	Phenol-d5	33.1		10 - 160	22%	SPK: 150
4165-60-0	Nitrobenzene-d5	79.5		20 - 139	79%	SPK: 100
321-60-8	2-Fluorobiphenyl	80.3		10 - 173	80%	SPK: 100
118-79-6	2,4,6-Tribromophenol	130		10 - 169	87%	SPK: 150
1718-51-0	Terphenyl-d14	85.8		20 - 171	86%	SPK: 100
INTERNAL ST	TANDARDS					
3855-82-1	1,4-Dichlorobenzene-d4	170637	4.85			
1146-65-2	Naphthalene-d8	645459	6			
15067-26-2	Acenaphthene-d10	339586	7.7			
1517-22-2	Phenanthrene-d10	491921	9.36			
1719-03-5	Chrysene-d12	326627	12.54			
1520-96-3	Perylene-d12	285570	14.44			
TENTATIVE I	DENTIFIED COMPOUNDS					
127-18-4	Tetrachloroethylene	2.7	J		2.98	ug/L
2) 123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	7.3	AB		3,27	ug/I

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

GPC Cleanup:

PH:

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

M)~ /29/11

Method Path : Z:\HPCHEM1\BNA F\METHOD\

Method File: 8270-BF060411.M

Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

Last Update : Sat Jun 04 20:57:51 2011

Response Via: Initial Calibration

Calibration Files

40 =BF045935.D 10 =BF045936.D 25 =BF045937.D 50 =BF045938.D 60 =BF045939.D 80 =BF045940.D

	~·	Compound	40	10	25	50	60	80	Avg	%RSD	
1)	т	1,4-Dichlorobenzer				T ()					
2)	Т	1,4-Dichiorobenzer							0.690	6.10	
3)		Pyridine							1.556		
4)		n-Nitrosodimethyl									
5)	S								1.356		
6)		Aniline							1.901		
7)	S	Phenol-d5	1.615	1.701	1.673	1.584	1.505	1.463	1,590		
8)		2-Chlorophenol						1.252	1.306	3.22	
9)	_	Benzaldehyde				9.847			9.974		
10)	С	Phenol							1.565		
11)	C	bis(2-Chloroethyl								4.31	
12) 13)	5	2-Chlorophenol-d4 1,3-Dichlorobenze									
14)	С	1,4-Dichlorobenze									
15)		1,2-Dichlorobenze									
16)	_	1,2-Dichlorobenze									
17)		Benzyl Alcohol									
18)		2,2'-oxybis(1-Chl									
19)		2-Methylphenol									
20)		Hexachloroethane									
21)	Ρ	n-Nitroso-di-n-pr									
22)		3+4-Methylphenols	1.423	1.418	1.433	1.413	1.350	1,306	1.391	3.66	
23)	I	Naphthalene-d8	ired 6	will have brok direct block house o		IST	D				
24)	_	Acetophenone							0.474	5.55	
25)	S	Nitrobenzene-d5	0.320	0.346	0.333	0.316	0.298	0.294	0.318	6.32	
26)		Nitrobenzene							0.323	5.30	
27)		Isophorone							0.608	4.51	
28)	С	2-Nitrophenol							0.209	2.63	
29)		2,4-Dimethylpheno								7.33	
30)	~	bis(2-Chloroethox								4.53	
31)	C	2,4-Dichloropheno								2.04	
32) 33)		1,2,4-Trichlorobe Naphthalene							0.899	1.71	
34)		Benzoic acid							0.099	(19.51)	1-1
35)		4-Chloroaniline							0.421	2:77	<i>J</i> /
36)	С	Hexachlorobutadie								8.61	
37)		Caprolactam								3.51	
38)	C	4-Chloro-3-methyl	0.276	0.276	0.286	0.284	0.280	0.280	0.280	1.43	
39)		2-Methylnaphthale	0.671	0.680	0.688	0.667	0.645	0.620	0,662	3.78	
401	_	T 1 1 14 A				~~~	_				
40)	Τ	Acenaphthene-d10				IST					
41)	D	1,2,4,5-Tetrachlo								5.74	
42) 43)		Hexachlorocyclope 2,4,6-Tribromophe								13.90 12.60	
44)		2,4,6-Trichloroph								5.32	
45)	-	2,4,5-Trichloroph								5.38	
46)	. S	2-Fluorobiphenyl								14.60	
47)		1,1'-Biphenyl							1.470	5.97	
48)		2-Chloronaphthale	1.138	1.193	1.132	1.127	1.083	1.055	1.121	4.27	
49)		2-Nitroaniline							0.335	1.89	
50)		Acenaphthylene							1.685	7.50	
51)		Dimethylphthalate	⊥.194	⊥.216	1.195	1.179	1.134	1.112	1.171	3.42	

MJW 7/29/11

Method Path : Z:\HPCHEM1\BNA F\METHOD\

Method File: $8270-BF060411.\overline{M}$

Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

Last Update : Sat Jun 04 20:57:51 2011 Response Via : Initial Calibration

Calibration Files

40 =BF045935.D 10 =BF045936.D 25 =BF045937.D 50 =BF045938.D 60 =BF045939.D 80 =BF045940.D

	(Compound	40	10	25	50	60	80	Avg	%RSD
52) 53) 54) 55) 56) 57) 58) 59) 60) 61) 62) 63)	P <	2,6-Dinitrotoluen Acenaphthene 3-Nitroaniline 2,4-Dinitrophenol Dibenzofuran 4-Nitrophenol 2,4-Dinitrotoluen Fluorene 2,3,4,6-Tetrachlo Diethylphthalate 4-Chlorophenyl-ph 4-Nitroaniline Azobenzene	1.134 0.361 0.073 1.463 0.271 0.364 1.341 0.225 1.158 0.583 0.339	1.088 0.352 0.045 1.540 0.240 0.343 1.276 0.212 1.170 0.511 0.348	1.132 0.359 0.065 1.456 0.265 0.347 1.328 0.224 1.157 0.570 0.336	1.173 0.371 0.091 1.428 0.283 0.368 1.344 0.245 1.151	1.139 0.368 0.098 1.367 0.278 0.369 1.263 0.254 1.123 0.615 0.337	1.130 0.370 0.112 1.324 0.292 0.380 1.218 0.270 1.118 0.606 0.339	1.133 0.363 0.081 1.430 0.271 0.362 1.295 0.238 1.146 0.585 0.340	4.35 2.39 2.09 30.14 5.33 6.72 3.90 3.93 9.14 1.82 7.09 1.39 5.32
65)	I	Phenanthrene-d10				IST	D			
66) 67) 68) 69) 70) 71) 72) 73) 74) 75)	c C	4,6-Dinitro-2-met n-Nitrosodiphenyl 4-Bromophenyl-phe Hexachlorobenzene Atrazine Pentachlorophenol Phenanthrene Anthracene Carbazole Di-n-butylphthala Fluoranthene	0.702 0.198 0.217 0.152 0.116 1.088 1.095 1.040	0.055 0.682 0.179 0.207 0.162 0.084 1.051 1.100 1.014 1.297	0.075 0.687 0.192 0.216 0.168 0.092 1.076 1.082 1.039	0.093 0.690 0.204 0.228 0.155 0.109 1.054 1.056 1.019	0.101 0.691 0.212 0.237 0.147 0.113 1.036 1.035 0.996	0.108 0.691 0.226 0.248 0.133 0.127 1.025 1.015 0.993	0.690 0.202 0.226 0.153 0.107 1.055 1.064 1.017	0.94 8.06 6.79 7.92 14.88 2.24 3.23 1.97 4.99
77) 78) 79) 80) 81) 82) 83) 84) 85)	I S	Chrysene-d12 Benzidine Pyrene Terphenyl-d14 Butylbenzylphthal Benzo(a)anthracen 3,3'-Dichlorobenz Chrysene Bis(2-ethylhexyl) Di-n-octyl phthal	1.397 0.916 0.770 1.185 0.482 1.143 1.011	0.730 1.390 0.834 0.741 1.145 0.443 1.030 0.945	0.701 1.392 0.915 0.764 1.152 0.472 1.100	1.353 0.893 0.744 1.175 0.465 1.179 0.968	0.627 1.322 0.825 0.740 1.178 0.479 1.178 0.941	1.272 0.757 0.730 1.157 0.491 1.098 0.884	1.165 0.472 1.121 0.954	8.17 3.67 7.31 2.06 1.38 3.58 5.09 4.46 4.45
88) 89) 90) 91) 92) 93)	I	Indeno(1,2,3-cd)p Perylene-d12 Benzo(b) fluoranth Benzo(k) fluoranth Benzo(a) pyrene Dibenzo(a,h) anthr Benzo(g,h,i) peryl	1.237 1.229 1.245 1.191 1.132	1.118 1.186 1.137 1.111 1.040	1.204 1.185 1.214 1.139 1.085	1.223 IST 1.257 1.259 1.232 1.125	1.225 D 1.300 1.292 1.253 1.162	1.254 1.329 1.274 1.267 1.179	1.210 1.248 1.237 1.199 1.121	4.74 4.48 5.30 4.56 3.91
7.41.3	_ ^	ut of Dongs								

^{(#) =} Out of Range

Mon Alsali

Analyte	S	11 10	12 25	13 40	L4 50	15 60	Te 80	77	2	61	Ave.	%SD	%RSD
Phenol	DCB	1.65815	1.65815 1.626408	1.570851	1,553165	1.493527	1.490486	-	-		1.565431	6.8	4.4
Fluoranthene	PD10		1.01382	1.005292	1.031614	1.043461	1.052317	1		1	1.014687	4.0	6'8
						-		-		!	i0/\lq#	#DIV/0i	į0/ΛIG#
				ŀ		i			-	!	i0/AIG#	#DIV/0i	i0/ΛIG#
				-		111	-	-	-	1	i0/AIG#	#DIV/0i]0/ΛIG#
		[1	- داد		1					#DIV/0i	#DIN/0i	i0/AlQ#
		-	;		-		1				#DIV/0i	#DIV/0!	i0/∧lQ#
			i				ı			ł	#DIV/0i	#DIV/0i	j0/ΛIΩ#

Analyte	IS	Area	RRF
Phenol	DCB	142838	1.65815
Fluoranthene	PD10	206562	0.941615
0	0		
0	0		
0	0		
0	0		
0	0		
0	0		

IS AMT CAL AMT	20 10	20 10	10	10	,
Area 15	172286	438740			
SI	DCB	PD10	0	0	C

RRF	1.626408	1.01382						
Area	357084	554158						
IS	DCB	PD10	0	0	0	0	0	0
Analyte	Phenol	Fluoranthene	0	0	0	0	0	0

SVOC SDG C2487 LOOHN'S DRY CLEARNERS

DUSR Calculations

<u>s</u>	Area	IS AMT	CAL AMT
DCB	175643	20	25
PD10	437283	20	25
0		0	25
0		0	25
0		0	25
0		0	25

Phenol DCB 423803 1.57c Fluoranthene 0 664510 1.00c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Analyte	IS	Area	RRF
PD10 664510 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Phenol	DCB	423803	1.570851
	Fluoranthene	PD10	664510	1.005292
	0	0		
0 0 0	0	0		
0 0	0	0		
0 0	0	0		
- 0 0	0	0		
	0	0		

SVOC SDG C2487 LOOHN'S DRY CLEARNERS

DUSR Calculations

Ţ						ĺ
CAL AMT	40	40	40	40	40	40
IS AMT	20	20	0	0	0	0
Area	134896	330506				
Si	DCB	PD10	0	0	0	0

Analyte	IS	Area	RRF
henol	DCB	637978	1.553165
luoranthene	PD10	1073428	1,031614
0	0		
0	0		
0	0		
0	0		***
0	0		
0 .	0		

LOOHN'S DRY CLEARNERS

DUSR Calculations SVOC SDG C2487

SI	Area	IS AMT	CAL AMT
DCB	164304	20	20
PD10	416213	20	20
0		0	20
0		0	20
0		0	20
0		0	20

Area IS AWI CAL AWI 164304 20 50 416213 20 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50	
20 0 0 0	
20 0 0 0	
0 50	
0 20	

SVOC SDG C2487 LOOHN'S DRY CLEARNERS **DUSR** Calculations

Analyte	IS	Area	RRF
Phenol	DCB	807517	1.493527
Fluoranthene	PD10	1414411	1,043461
0	0		
0	0		
0	0		
0	0		
0	0		
0	0		

SI	Area	IS AMT	CAL AMT
DCB	180226	20	09
PD10	451833	20	09
. 0		0	09
0		0	09
0		0	09
0		0	09

SVOC SDG C2487 LOOHN'S DRY CLEARNERS **DUSR Calculations**

Analyte	IS	Area	RRF
Phenol	BOO	981610	1.490486
Fluoranthene	PD10	1730783	1.052317
0	0		
0	0		
0	0		
0	0		
0	0		
0	0		

SI	Area	IS AMT	CAL AMT
DCB	164646	20	08
PD10	411184	20	80
0		0	08
0		0	08
0		0	08
0		0	08

SI	Area	IS AMT	CAL AMT
DCB	164646	20	08
PD10	411184	20	80
0		0	08
0		0	08
0		0	08
0		0	08

Evaluate Continuing Calibration Report

Data Path : Z:\HPCHEM1\BNA F\Data\BF060711\

Data File: BF046061.D

Acq On : 7 Jun 2011 17:41

Operator : QM

Sample : 40 ng BNA CCC

Misc

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jun 08 00:53:39 2011

Quant Method: Z:\HPCHEM1\BNA F\METHOD\8270-BF060411.M Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update: Wed Jun 08 00:50:45 2011

Response via: Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 25% Max. Rel. Area : 150%

	Compound	AvgRF	CCRF ·	%Dev Area%	Dev(min)
1 I	1,4-Dichlorobenzene-d4	1.000	1.000	0.0 85	-0.04
2	1,4-Dioxane	0.690	0.671	2.8 91	
3	Pyridine	1,556	1.683	-8.2 98	-0.04
4	n-Nitrosodimethylamine	0.679	0.599	11.8 77	
5 S	2-Fluorophenol	1.356	1.436	-5.9 90	-0.04
6	Aniline	1.901	1.969	-3.6 89	-0.04
7 S	Phenol-d5	1,590	1.680	- 5.7 89	-0.04
8	2-Chlorophenol	1.306	1.342	-2.8 87	-0.04
9	Benzaldehyde	0.974	1.080	-10.9 89	-0.04
10 C	Phenol	1.565	1.677	-7.2 / 91	-0.04
11	bis(2-Chloroethyl)ether	1.363	1.419	-4.1 88	-0.04
12 S	2-Chlorophenol-d4	1.238	1.321	-6.7 88	-0.04
13	1,3-Dichlorobenzene	1.518	1.579	-4.0 88	-0.04
14 C	1,4-Dichlorobenzene	1.482	1.548	-4.5 89	-0.04
15 s	1,2-Dichlorobenzene-d4	0.907	0.931	-2.6 85	-0.04
16	1,2-Dichlorobenzene	1.344	1.403	-4.4 88	-0.04
17	Benzyl Alcohol	0.843	0.869	~3.1 91	-0.04
18	2,2'-oxybis(1-Chloropropane	1.814	1.727	4.8 79	-0.04
19	2-Methylphenol	0.994	1.065	-7.1 92	-0.04
20	Hexachloroethane	0.558	0.554	0.7 86	-0.04
21 P	n-Nitroso-di-n-propylamine	0.876	0.917	-4.7 87	-0.04
22	3+4-Methylphenols	1.391	1.474	-6.0 88	-0.04
23 I	Naphthalene-d8	1.000	1.000	0.0 90	-0.04
24	Acetophenone	0.474	0.479	-1.1 90	-0.04
25 S	Nitrobenzene-d5	0.318	0.314	1.3 88	-0.04
26	Nitrobenzene	0.323	0.317	1.9 89	-0.04
27	Isophorone	0.608	0.617	-1.5 91	-0.04
28 C	2-Nitrophenol	0,209	0.213	-1.9 93	-0.04
29	2,4-Dimethylphenol	0.302	0.313	-3.6 93	
30	bis(2-Chloroethoxy)methane	0.421	0.430	-2.1 91	
31 C	2,4-Dichlorophenol	0.284	0.293	-3.2 94	
32	1,2,4-Trichlorobenzene	0.333	0.332	0.3 90	
33	Naphthalene	0.899	0.972	-8.1 93	
34	Benzoic acid	0.125	0.133	-6.4 125	
35	4-Chloroaniline	0.421	0.441	-4.8 94	
36 C	Hexachlorobutadiene	0.137	0.126	8.0 87	
37	Caprolactam	0.106	0.119	-12.3 104	
38 C	4-Chloro-3-methylphenol	0.280	0.286	-2.1 93	
39	2-Methylnaphthalene	0.662	0.686	-3.6 92	-0.04
40 I	Acenaphthene-d10	1.000	1.000	0.0 96	-0.04
41	1,2,4,5-Tetrachlorobenzene	0.524	0.479	8.6 87	
42 P	Hexachlorocyclopentadiene	0.305	0.266	12.8 88	
43 S	2,4,6-Tribromophenol	0.168	0.168	0.0 99	-0.05
44 C	2,4,6-Trichlorophenol	0.348	0.334	4.0 95	

Evaluate Continuing Calibration Report

Data Path : Z:\HPCHEM1\BNA_F\Data\BF060711\

Data File : BF046061.D

: 7 Jun 2011 17:41 Acq On

Operator : QM

: 40 ng BNA CCC Sample

Misc

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jun 08 00:53:39 2011

Quant Method: Z:\HPCHEM1\BNA F\METHOD\8270-BF060411.M Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION QLast Update : Wed Jun 08 00:50:45 2011

Response via: Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 25% Max, Rel. Area: 150%

	Compound	AvgRF	CCRF	%Dev Area	a% Dev(min)
45	2,4,5-Trichlorophenol	0.333	0.356	-6.9 10	06 -0.04
46 S	2-Fluorobiphenyl	1.147	1.207		93 -0.04
47	1,1'-Biphenyl	1.470	1.485		94 -0.04
48	2-Chloronaphthalene	1.121	1.120		94 -0.04
49	2-Nitroaniline	0.335	0.320		92 -0.04
50	Acenaphthylene	1.685	1.762		97 -0.05
51	Dimethylphthalate	1.171	1.203		96 -0.04
52	2,6-Dinitrotoluene	0.281	0.289		7 ~0.05
53 C	Acenaphthene	1.133	1.125		95 -0.04
54	3-Nitroaniline	0.363	0.374		99 -0.04
55 P	2,4-Dinitrophenol	0.081	0.095		24 -0.04
56	Dibenzofuran	1,430	1.504		98 -0.04
57 P	4-Nitrophenol	0.271	0.294		04 -0.04
58	2,4-Dinitrotoluene	0.362	0.372		98 -0.04
59	Fluorene	1.295	1.351		96 -0.05
60	2,3,4,6-Tetrachlorophenol	0.238	0.232		99 -0.05
61	Diethylphthalate	1.146	1.181		98 -0.05
62	4-Chlorophenyl-phenylether	0.585	0.591		7 -0.05
63	4-Nitroaniline	0.340	0.355		00 -0.05
64	Azobenzene	1.151	1.163		94 -0.05
65 I	Phenanthrene-d10	1.000	1.000	0.0 10	06 -0.05
66	4,6-Dinitro-2-methylphenol	0.085	0.097		30 -0.04
67 c	n-Nitrosodiphenylamine	0.690	0.655		99 -0.05
68	4-Bromophenyl-phenylether	0.202	0.185		99 -0.05
69	Hexachlorobenzene	0.226	0.212		0.05
70	Atrazine	0.153	0.157		09 -0.04
71 C	Pentachlorophenol	0.107	0.093		35 ~0.04
72	Phenanthrene	1.055	1.043		02 -0.05
73	Anthracene	1.064	1.052		02 -0.05
74	Carbazole	1.017	1.041		06 -0.05
75	Di-n-butylphthalate	1,245	1.268		03 -0.05
76 C	Fluoranthene	1.015	1.017	$-0.2 \checkmark 10$	
77 I	Chrysene-d12	1.000	1.000		10 -0.05
78	Benzidine	0.675	0.627	7.1	94 -0.05
79	Pyrene	1.354	1.366	-0.9 10	07 -0.05
80 S	Terphenyl-d14	0.857	0.905	-5.6 1	08 -0.05
81	Butylbenzylphthalate	0.748	0.746	0.3 1	06 -0.05
82	Benzo(a)anthracene	1.165	1.185	-1.7 1:	10 -0.05
83	3,3'-Dichlorobenzidine	0.472	0.478	-1.3 1	09 -0.05
84	Chrysene	1.121	1.089	2.9 1	04 -0.05
85	Bis(2-ethylhexyl)phthalate	0.954	0.943	1.2 1	02 -0.05
86 c	Di-n-octyl phthalate	1.670	1.697	-1.6 1	05 -0.06
87	Indeno(1,2,3-cd)pyrene	1.210	1.156	4.5 1	02 -0.13

Data Path : Z:\HPCHEM1\BNA_F\Data\BF060711\

Data File : BF046061.D

Acg On : 7 Jun 2011 17:41

Operator : QM

Sample : 40 ng BNA CCC

Misc

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jun 08 00:53:39 2011

Quant Method: Z:\HPCHEM1\BNA F\METHOD\8270-BF060411.M Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION QLast Update : Wed Jun 08 00:50:45 2011

Response via: Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)	
1) 1,4-Dichlorobenzene-d4	4.85	152	115112	20.00 ng 20.00 ng 20.00 ng	0.00	
23) Naphthalene-d8 40) Acenaphthene-d10 65) Phenanthrene-d10	6.00	136	423525	20.00 ng	0.00	
40) Acenaphthene-d10	7.70	164	220561	20.00 ng	0.00	
65) Phenanthrene-d10	9.36	188	350016	20.00 ng	0.00	
//) Chrysene-diz	IZ.54	240	254999	20.00 ng		
88) Perylene-d12	14.45	264	219272	20.00 ng	0.00	
System Monitoring Compounds						
5) 2-Fluorophenol	3.58	112	661346			
5) 2-Fluorophenol 7) Phenol-d5 12) 2-Chlorophenol-d4	4.49 4.63	99	773438	84.51 ng 85.35 ng	0.00	
12) 2-Chlorophenol-d4	4.63	132	608358	85.35 ng	0.00	
15) 1,2-Dichlorobenzene-d4			428539	85.35 ng 82.09 ng 79.02 ng	0.00	
25) Nitrobenzene-d5	5.36	82	531830	79.02 ng	0.00	
43) 2,4,6-Tribromophenol	8.56	330	147857	79.72 ng		
46) 2-Fluorobiphenyl	7.01	172	1064709	84.16 ng	0.00	
46) 2-Fluorobiphenyl 80) Terphenyl-d14	11.28	244	923506	84.54 ng	0.00	
Target Compounds					Qvalue	
2) 1,4-Dioxane	2.05	88	154550	38.93 ng	100	
2) 1,4-Dioxane 3) Pyridine	2.36	79	387552	43.26 na	100	·
4) n-Nitrosodimethylamine	2.32	42	137811	35.25 ng	100	
6) Aniline	4.53		453353		100	
8) 2-Chlorophenol	4.65	128	308978	41.11 ng	100	_
9) Benzaldehyde	4.43		248628	44.37 ng	100	201102 (20)
9) Benzaldehyde 10) Phenol	4.50	94	248628 386117	42.85 ng	100	38611+(0)
11) bis(2-Chloroethyl)ether	4.59	93	326653	41.64 ng	100	
13) 1 3-Dichlorobenzene	4 80	116	363432		100	386117(20) 115112(40) = 1,6771
14) 1,4-Dichlorobenzene	4.87	146	356366	41.79 ng	100	
16) 1,2-Dichlorobenzene	5.01	146	322955	41.76 ng	100	-1671
16) 1,2-Dichlorobenzene 17) Benzyl Alcohol	4.97	79	200175	41.24 ng	100	- (, 0 +) '
18) 2,2'-oxybis(1-Chloropropan	5.10	45	397493			
19) 2-Methylphenol	5.07	107	245250	42.89 ng	100	
19) 2-Methylphenol 20) Hexachloroethane	5.32	117	127503	39.71 ng	100	
21) n-Nitroso-di-n-propylamine	5.22	70		41.88 ng	100	
22) 3+4-Methylphenols	5.22	107	339255	41.88 ng 42.39 ng	100	
22) 3+4-Methylphenols 24) Acetophenone	5.22	105		40.44 ng		
26) Nitrobenzene	5.38	77		39.22 na	100	
26) Nitrobenzene27) Isophorone28) 2-Nitrophenol	5.59	82	522343	40.59 ng	100	
28) 2-Nitrophenol	5.66	139	180216	40.81 ng	100	
29) 2,4-Dimethylphenol	5.70	122	264865	41.46 ng		
30) bis(2-Chloroethoxy)methane	5.78	93	364063	40.83 ng	100	
31) 2,4-Dichlorophenol	5,88		248146	41.28 ng	100	
32) 1,2,4-Trichlorobenzene	5.96		281007	39.83 ng	100	
33) Naphthalene	6.03		823599	43.25 ng	100	
34) Benzoic acid	5.75		112865m	44.55 ng	200	
35) 4-Chloroaniline	6.07	127	373234	41.88 ng	100	
36) Hexachlorobutadiene	6.14	225	106412	36.78 ng	100	
37) Caprolactam	6.37		100387	44.84 ng	100	
38) 4-Chloro-3-methylphenol	6.50		241881	40.76 ng	100	
39) 2-Methylnaphthalene	6.66		580829	41.45 ng	100	92
	·			5	·	92

Data Path : Z:\HPCHEM1\BNA F\Data\BF060711\

Data File : BF046061.D

Acq On : 7 Jun 2011 17:41

Operator : QM

Sample : 40 ng BNA CCC

Misc

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jun 08 00:53:39 2011

Quant Method: Z:\HPCHEM1\BNA F\METHOD\8270-BF060411.M Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION QLast Update : Wed Jun 08 00:50:45 2011

Response via: Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)	
41) 1,2,4,5-Tetrachlorobenzene	6.82	216	211113	36.56 ng	100	
42) Hexachlorocyclopentadiene			117169		100	
44) 2,4,6-Trichlorophenol	6.92		147483	38.40 ng	100	
45) 2,4,5-Trichlorophenol			157106		100	
47) 1.1'~Biphenvl	7.10	154			100	
48) 2-Chloronaphthalene 49) 2-Nitroaniline	7.13	162	654880 494121	39.96 ng	100	
49) 2-Nitroaniline	7.23	65	141117	38.23 ng	100	
50) Acenaphthylene	7.55	152	777112	41.83 ng	100	
51) Dimethylphthalate		163	530589		100	
52) 2,6-Dinitrotoluene	7.47		127689	41.27 ng	100	
53) Acenaphthene	7.74		127689 496415	39.74 ng	100	<u>.</u>
54) 3-Nitroaniline	7.65		164802	41.13 ng	100	
55) 2.4-Dinitrophenol			41874		100	
55) 2,4-Dinitrophenol 56) Dibenzofuran	7.92		663447		100	
57) /-Nitrophenol	7 22	120	129750	43.35 ng	100	
58) 2,4-Dinitrotoluene 59) Fluorene	7.90	165	163970	41.09 ng	100	
59) Fluorene	8.29	166	596032		100	
60) 2,3,4,6-Tetrachlorophenol	8.05	232	102423m	_	200	
61) Diethylphthalate	8.16		520763	_	100	
62) 4-Chlorophenyl-phenylether	8.29		260629		100	
63) 4-Nitroaniline	8.31	138	156454		100	
64) Azobenzene	8.47	77	512996	40.40 ng	100	
	8.35		67560	43.99 ng	100	
· · · ·	8.42		458518	37.95 ng	100	
68) 4-Bromophenyl-phenylether			129254	36.60 ng	100	
69) Hexachlorobenzene	8.92		148088	37.52 ng	100	
70) Atrazine	9.03		109632	41.00 ng	100	
71) Pentachlorophenol	9.15	266	65290		100	
72) Phenanthrene	9.39	178	730277	39.55 ng	100	
72) Phenanthrene 73) Anthracene	9.45	178	736629	39.57 ng		
74) Carbazole	9.64	167	728431	40.93 ng	100	711794 (20)
75) Di-n-butylphthalate			887943	40.76 ng	100	
76) Fluoranthene	10.80		711794	40.08 ng	100	350016 (40)
78) Benzidine	10.97		319961	37.20 ng	100	12 (10)
79) Pyrene	11.07		696698	40.35 ng	100	711794 (20) 350016 (40) = 60168
81) Butylbenzylphthalate	11.88		380535	39.90 ng	100	- 60160
82) Benzo(a) anthracene	12.53		604451	40.68 ng	100	
83) 3,3'-Dichlorobenzidine	12.51		243783	40.50 ng	100	
84) Chrysene	12.57	228	555332	38.84 ng	100	
85) Bis(2-ethylhexyl)phthalate	12.59		481054	39.53 ng	100	
86) Di-n-octyl phthalate	13,36		865402	40.64 ng	100	
87) Indeno(1,2,3-cd)pyrene	16.54		589424m	38.20 ng		
89) Benzo(b) fluoranthene	13.87		562796	41.14 ng	100	
90) Benzo(k) fluoranthene	13.91		516514	38.09 ng	100	
91) Benzo(a)pyrene	14.36		511708	38.93 ng	100	
92) Dibenzo(a,h)anthracene	16.60		476944	38.82 ng	100	
93) Benzo(g,h,i)perylene	17,20		494548	38.71 ng	100	
the property of the property of the second property and the second property and the second property property and the						

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Coninuing Calibration Calculations

	Ave RF	CCRF	%D
Phenol	1.565	1.677	7.2
Fluoranthene	1.015	1.017	0.2

m) where hi

Surrogate Summary

SW-846

SDG No.:

C2487

Client:

MACTEC Inc.

Analytical Method:

EPA SW-846 8270

							nits (%)
Lab Sample ID	Client ID	Parameter	Spike (PPM)	Result (PPM)	Recovery (%) Qual	Low	High
C2487-01	LCMW001016	2-Fluorophenol)	150	39.82	(27)	10	160
		Phenol-d5	150	25.15	$\overline{(17)}$	10	160
		Nitrobenzene-d5	100	66.50	67	20	139
		2-Fluorobiphenyl	100	68.18	68	10	173
		2,4,6-Tribromophenol	150	105.09	70	10	169
		Terphenyl-d14	100	77.11	77	20	171
C2487-03	LCMW002019	2-Fluorophenol	150	50.76	34	10	160
		Phenol-d5	150	33.11	(22)	10	160
		Nitrobenzene-d5	100	79.47	79	20	139
		2-Fluorobiphenyl	100	80.34	80	10	173
		2,4,6-Tribromophenol	150	130.80	87	10	169
		Terphenyl-d14	100	85.75	86	20	171
PB55865B	PB55865B	2-Fluorophenol	150	59.92	40	10	160
		Phenol-d5	150	41.06	27	10	160
		Nitrobenzene-d5	100	79.70	80	20	139
		2-Fluorobiphenyl	100	78.12	78	10	173
		2,4,6-Tribromophenol	150	135,28	90	10	169
		Terphenyl-d14	100	96.66	97	20	171
PB55865BS	PB55865BS	2-Fluorophenol	150	71.05	47	10	160
		Phenol-d5	150	52.60	35	10	160
		Nitrobenzene-d5	100	82.04	82	20	139
		2-Fluorobiphenyl	100	79.62	80	10	173
		2,4,6-Tribromophenol	150	133.96	89	10	169
		Terphenyl-d14	100	91.72	92	20	171
PB55865BSD	PB55865BSD	2-Fluorophenol	150	71.12	47	10	160
		Phenol-d5	150	50.82	34	10	160
		Nitrobenzene-d5	100	83.94	84	20	139
		2-Fluorobiphenyl	100	80.12	80	10	173
		2,4,6-Tribromophenol	150	134.52	90	10	169
		Terphenyl-d14	100	90.77	91	20	171

Phenol 05 33.11 100 = 22-07%

ms frali

Laboratory Control Sample/Laboratory Control Sample Duplicate Summary SW-846

SDG No.: C2

C2487

Client:

MACTEC Inc.

Analytical Method:

EPA SW-846 8270

							RPD		Limits	
Lab Sample ID	Parameter	Spike	Result	Rcc	RPD	Qual	Qual	Low	High	RPD
PB55865BS	Benzaldehyde	50	1.2	$\left(\begin{array}{c} 2 \end{array}\right)$)	*		10	161	
	Phenol	50	20	40				10	132	
	bis(2-Chloroethyl)ether	50	44	88				38	127	
	2-Chlorophenol	50	37	74				10	148	
	2-Methylphenol	50	35	70				10	152	
	2,2-oxybis(1-Chloropropane)	50	37	74				46	118	
	Acetophenone	50	43	86				57	116	
	3+4-Methylphenois	50	32	64				10	152	
	N-Nitroso-di-n-propylamine	50	43	86				49	120	
	Hexachloroethane	50	33	66				26	152	
	Nitrobenzene	50	41	82	V			37	127	
	Isophorone	50	43	86	- d			50	122	
	2-Nitrophenol	50	43	86	0,0			49	122	
	2,4-Dimethylphenol	50	43	66-	\sim			10	119	
	bis(2-Chloroethoxy)methane	50	44 \	\ \ 88_	,			48	123	
	2,4-Dichlorophenol	50	43	\ 86				10	124	
	Naphthalene	50	41	82 (ب				42	115	
	4-Chloroaniline	5,0	()34	68				10	161	
	Hexachlorobutadiene	/ 50	7-35	-70-	`			33	114	
	(Caprolactam)	50	14	(28)	ノ			10	161	
	4-Chloro-3-methylphenol	50	42	84				10	114	
	2-Methylnaphthalene	50	42	84				51	114	
	Hexachlorocyclopentadiene	100	74	74				10	155	
	2,4,6-Trichlorophenol	<u>50</u>	43	86				10	121	
	2,4,5-Trichlorophenol	() 50	43	86				10	123	
	1,1-Biphenyl /	V ∕50	41	82				58	115	
	2-Chloronaphthalene	50	41	82				52	117	
	2-Nitroaniline		41	82				62	123	
	Dimethylphthalate	50	44	88				3	142	
	Acenaphthylene	50	4 3	86				52	118	
	2,6-Dinitrotoluene	50	44	88				65	120	
	3-Nitroaniline	50	37	74				10	120	
	Acenaphthene	50	44	88				51	118	
	2,4-Dinitrophenol	100	79	79				10	136	
	4-Nitrophenol	100	42	42				10	161	
	Dibenzofuran	50	43	86				61	115	
	2,4-Dinitrotoluene	50	44	88				68	122	
	Diethylphthalate	50	44	88				51	122	
	4-Chlorophenyl-phenylether	50	44	88				62	119	
	Fluorene	50	43	86				55	121	
	4-Nitroaniline	50	43	86				66	123	
	4,6-Dinitro-2-methylphenol	50	48	96				10	144	
	N-Nitrosodiphenylamine	50	43	86				64	119	
	4-Bromophenyl-phenylether	50	43	86				63	123	
	Hexachlorobenzene	50	43	86				45	136	
	Atrazine	50	52	104				61	132	

1/20/11

CHEMITECH

Laboratory Control Sample/Laboratory Control Sample Duplicate Summary SW-846

SDG No.: C2487

Client: MACTEC Inc.

Analytical Method:

EPA SW-846 8270

							RPD		Limits	
Lab Sample ID	Parameter	Spike	Result	Rec	RPD	Qual	Qual	Low	High	RPD
PB55865BS	Pentachlorophenol	100	100	100				10	124	
	Phenanthrene	50	44	88			\	55	126	
	Anthracene	50	43	86				59	122	
	Carbazole	50	45	90			1	70	124	
	Di-n-butylphthalate	50	45	90			α	72	121	•
	Fluoranthene	50	44	88		, (χV	61	127	
	Pyrene	50	~ 45	90		. ()	62	128	
	Butylbenzylphthalate /	50	45	90	•	//	J	66	129	
	3,3-Dichlorobenzidine/	.50 \	/ /33	66	~ `	$\langle \rangle$		10	160	
	Benzo(a)anthracene	(50)	45	/90	-(I)			52	136	
	Chrysene	\5ø ,	44	/ \$8	\sim			55	136	
	bis(2-Ethylhexyl)phthalate	₹ <u>₹</u>	45	\ 90 .				69	130	
	Di-n-octyl phthalate	50	45	90				66	131	
	Benzo(b)fluoranthene) 50	45	90 `	`			48	149	
	Benzo(k)fluoranthene	/ 50	43	86				54	138	
	Benzo(a)pyrene	50	45	90				55	139	
	Indeno(1,2,3-cd)pyrene	50	43	86				10	145	
	Dibenz(a,h)anthracene	50	44	88				45	150	
	Benzo(g,h,i)perylene	50	43	86				54	138	
PB55865BSD	(Benzaldehyde	50	1.3	(3	840-	} ∗	*	10	161	20
	Phenol	50	19	38	73	۶5	*	10	132	20
	bis(2-Chloroethyl)ether	50	46	92	19			38	127	20
	2-Chlorophenol	50	39	78	3			10	148	20
	2-Methylphenol	50	36	72	13			10	152	20
	2,2-oxybis(1-Chloropropane)	50	38	76	7			46	118	20
	Acetophenone	50	45	90	17			57	116	20
	3+4-Methylphenois	50	33	66	(22)		*	10	152	20
	N-Nitroso-di-n-propylamine	50	44	88	15			49	120	20
	Hexachloroethane	50	36	72	1			26	152	20
	Nitrobenzene	50	43	86	12			37	127	20
	Isophorone	50	46	92	11			50	122	20
	2-Nitrophenol	50	46	92	19			49	122	20
	2,4-Dimethylphenol	50	45	90	9			10	119	20
	bis(2-Chloroethoxy)methane	50	46	92	19			48	123	20
	2,4-Dichlorophenol	50	46	92	11			10	124	20
	Naphthalene	50	43	86	5			42	115	20
	4-Chloroaniline	50	31	62	(67)	9	*	10	1 6 1	20
	Hexaehlorobutadiene	50	37	_74-	4			33	114	20
	(Caprolactam-	50	13	(26))(₁₀₄))7	*	10	161	20
	4-Chloro-3-methylphenol	50	43	86	5			10	114	20
	2-Methylnaphthalene	50	44	88	15			51	114	20
	Hexachlorocyclopentadiene	100	78	78	3			10	155	20
	2,4,6-Trichlorophenol	50	44	88-	-(21))	*	10	121	20
	2,4,5-Trichlorophenol	50	45	90	17			10	123	20
	1,1-Biphenyl	50	43	86	12			58	115	20
	2-Chloronaphthalene	50	42	84	10			52	117	20
	•									12

ms 2/29/11

12

Laboratory Control Sample/Laboratory Control Sample Duplicate Summary SW-846

SDG No.: <u>C2487</u>

Client:

MACTEC Inc.

Analytical Method:

EPA SW-846 8270

							RPD		Limits	
Lab Sample ID	Parameter	Spike	Result	Rec	RPD	Qual	Qual	Low	High	RPD
PB55865BSD	2-Nitroaniline	50	43	86	19			62	123	20
	Dimethylphthalate	50	46	92	19			3	142	20
	Acenaphthylene	50	44	88	15			52	118	20
	2,6-Dinitrotoluene	50	46	92	11			65	120	20
	3-Nitroaniline	50	37	74_	(28-)	r "	*	10	120	20
	Acenaphthene	50	46	92	41			51	118	20
	2,4-Dinitrophenol	100	85	85	7			10	136	20
	4-Nitrophenol	100	41	41	(70)	~~	*	10	161	20
	Dibenzofuran	50	45	90	17			61	115	20
	2,4-Dinitrotoluene	50	46	92	19			68	122	20
	Diethylphthalate	50	45	90	17			51	122	20
	4-Chiorophenyl-phenylether	50	46	92	19			62	119	20
	Fluorene	50	44	88	15			55	121	20
	4-Nitroaniline	50	44	88	15			66	123	20
	4,6-Dinitro-2-methylphenol	50	50	100	6			10	144	20
	N-Nitrosodiphenylamine	50	45	90	17			64	119	. 20
	4-Bromophenyl-phenylether	50	45	90_	924		*	63	123	20
	Hexachiorobenzene	50	44	88	(15)			45	136	20
	Atrazine	50	54	108	20			61	132	20
	Pentachlorophenol	100	100	(100	N9			10	124	20
•	Phenanthrene	50	45	X9gV	17			55	126	20
	Anthracene	50	44	88	15			59	122	20
	Carbazole	_/ 50	45	90	9			70	124	20
	Di-n-butylphthalate	\bigcirc $/$ 50	、46 ✓	92	11			72	121	20
	Fluoranthene	() / 50	46	92	19			61	127	20
	Pyrene /	50	47	94-	-(21)	علارسورسي	*	62	128	20
	Butylbenzylphthalate / /	50	\sim 47	94-	-(21)		*	66	129	20
	3,3-Dichlorobenzidine	50)	/ 32	64_	_(59-)		*	10	160	20
	Benzo(a)anthracene	\sim 50/	47	94	14			52	136	20
	Chrysene	50,	45	90	17			55	136	20
	bis(2-Ethylhexyl)phthalate	/ / 5,0	45	90	17			69	130	20
	Di-n-octyl phthalate	50	46	92	_11			66	131	20
	Benzo(b)fluoranthene	50	47	94-	(21)		*	48	149	20
	Benzo(k)fluoranthene	50	45	90	77			54	138	20
	Benzo(a)pyrene	50	46	92	19			55	139	20
	Indeno(1,2,3-cd)pyrene	50	44	88	7			10	145	20
	Dibenz(a,h)anthracene	50	46	92	19			45	150	20
	Benzo(g,h,i)perylene	50	46	92	19			54	138	20

Cunningham, Tige

From:

Cunningham, Tige

Sent:

Thursday, August 11, 2011 3:20 PM

To: Cc: 'krupa'

Subject:

'Kurt Hummler'; Washburn, Michael; Ricardi, Christian; 'Divya Mehta' Loohns Corning Site: SDG C2487: LCS/LCSD RPD calculation errors?

SVOC spike summary Pages from C2487 SVOC Data Package.pdf

Attachments:

Hi Krupa

When validating the SVOC data reported in SDG C2487 it seems as though the RPDs were calculated incorrectly. I have attached the pages from the report that present the summary forms for the LCS/LCSD. On these forms, is the RPD calculated from the percent recovery value or the analyte concentration value? Can these SVOC summary forms be reprocessed and a revised report sent to us.

Also can you check the LCS/LCSD forms for the other methods (VOC, Pest, PCB and Metals) reported in this SDG and send me an email verifying that the values presented on the forms were checked and are correctly reported?

We are trying to report this data to the NYSDEC as soon as possible.

Thanks for the help.

Tige

Tige Cunningham, NRCC EAC Project Scientist AMEC Environment & Infrastructure 511 Congress Street, Suite 200 Portland Maine 04101 Tel 207-828-3415 Cell 207-329-0164 (personal) Fax 207-772-4762

The information contained in this e-mail message is intended only for the personal and confidential use of the recipient(s) named above.

CHEMIECH

Laboratory Control Sample/Laboratory Control Sample Duplicate Summary SW-846

SDG No.: C2487

Client: MACTEC Inc.

Analytical Method: EPA SW-846 8270

Revised 8/13/11 From Lab

							RPD		Limits	
Lab Sample ID	Parameter	Spike	Result	Rec	RPD	Qual	Qual	Low	High	RPD
PB55865BS	Benzaldehyde	50	1.2	$\overline{2}$	ン			10	109	
	Phenol	50	20	40				10	130	
	bis(2-Chloroethyl)ether	50	44	88				46	116	
	2-Chlorophenol	50	37	74				40	105	
	2-Methylphenol	50	35	70				32	94	
	2,2-oxybis(1-Chloropropane)	50	37	74				60	113	
	Acetophenone	50	43	86				64	120	
	3+4-Methylphenols	50	32	64				24	91	
	N-Nitroso-di-n-propylamine	50	43	86				61	115	
	Hexachloroethane	50	33	66				52	104	
	Nitrobenzene	50	41	82				49	120	
	Isophorone	50	43	86				65	114	
	2-Nitrophenol	50	43	86				57	116	
	2,4-Dimethylphenol	50	43	86				43	108	
	bis(2-Chloroethoxy)methane	50	44	88				65	111	
	2,4-Dichlorophenol	50	43	86				49	113	
	Naphthalene	50	41	82				61	107	
	4-Chloroaniline	50	34	68				10	93	
	Hexachlorobutadiene	50	35	70				35	120	
	Caprolactam	50	14	28	ン			10	130	
	4-Chloro-3-methylphenol	50	42	84				51	109	
	2-Methylnaphthalene	50	42	84				63 -	110	
	Hexachlorocyclopentadiene	100	74	74				42	121	
	2,4,6-Trichlorophenol	50	43	86				62	114	
	2,4,5-Trichlorophenol	50	43	86				58	116	
	1,1-Biphenyl	50	41	82				65	117	
	2-Chloronaphthalene	50	41	82				65	111	
	2-Nitroaniline	50	41	82				63	119	
	Dimethylphthalate	50	44	88				68	112	
	Acenaphthylene	50	43	86				65	110	
	2,6-Dinitrotoluene	50	44	88				68	115	
	3-Nitroaniline	50	37	74				16	104	
	Acenaphthene	50	44	88				66	114	
	2,4-Dinitrophenol	100	79	79				35	129	
	4-Nitrophenol	100	42	42				10	130	
	Dibenzofuran	50	43	86				66	111	
	2,4-Dinitrotoluene	50	44	88				65	119	
	Diethylphthalate	50	44	88				66	116	
	4-Chlorophenyl-phenylether	50	44	88				66	113	
	Fluorene	50	43	86				66	112	
	4-Nitroaniline	50	43	86				53	115	
	4,6-Dinitro-2-methylphenol	50 50	48	96				47	137	
	N-Nitrosodiphenylamine	50 50	43	86				65	116	
	4-Bromophenyl-phenylether	50 50	43	86				66		
	Hexachlorobenzene	50 50	43 43	86					119	
	Atrazine	50 50	43 52	104				57 53	121	

70 8/15/11

CHEMIECH

Laboratory Control Sample/Laboratory Control Sample Duplicate Summary SW-846

SDG No.: C2487

Analytical Method:

Client: MACTEC Inc.

EPA SW-846 8270

uplicate Summ	ary i	Com lab
(evised	8/15/11	from lab

							RPD		Limits	
ab Sample ID	Parameter	Spike	Result	Rec	RPD	Qual	Qual	Low	High	RPD
B55865B\$	Pentachlorophenol	100	100	100				51	128	
	Phenanthrene	50	44	88				68	112	
	Anthracene	50	43	86				69	112	
	Carbazole	50	45	90				65	115	
	Di-n-butylphthalate	50	45	90				67	117	
	Fluoranthene	50	44	88				67	115	
	Pyrene	50	45	90				67	116	
	Butylbenzylphthalate	50	45	90				66	121	
	3,3-Dichlorobenzidine	50	33	66				13	119	
	Benzo(a)anthracene	50	45	90			,	64	1 17	
	Chrysene	50	44	88				65	116	
	bis(2-Ethylhexyl)phthalate	50	45	90				61	123	
	Di-n-octyl phthalate	50	45	90				63	123	
	Benzo(b)fluoranthene	50	45	90				62	122	
	Benzo(k)fluoranthene	50	43	86				60	123	
	Benzo(a)pyrene	50	45	90				65	118	
	Indeno(1,2,3-cd)pyrene	50	43	86				50	133	
•	Dibenz(a,h)anthracene	50	44	88	-			45	150	
	Benzo(g,h,i)perylene	50	_43	86		The state of the s	CONTRACTOR OF STREET	~ 64	123	
PB55865BSD	Benzaldehyde	50	1.3	3	40	*	**) 10	109	20
	Phenol	50	19-	38	5		The same of the sa	10	130	20
	bis(2-Chloroethyl)ether	50	46	92	4		-	46	116	20
	2-Chlorophenol	50	39	78	5			40	105	20
	2-Methylphenol	50	36	72	3			32	94	20
	2,2-oxybis(1-Chloropropane)	, 5 0	38	76	3			60	113	20
	Acetophenone	50	45	90	5			64	120	20
	3+4-Methylphenols	50	33	66	3			24	91	20
	N-Nitroso-di-n-propylamine	50	44	88	2			61	115	20
	Hexachloroethane	50	36	72	9			52	104	20
	Nitrobenzene	50	43	86	5			49	120	20
	Isophorone	50	46	92	7			65	114	20
	2-Nitrophenol	50	46	92	7			57	116	20
	2,4-Dimethylphenol	50	45	90	5			43	108	20
	bis(2-Chloroethoxy)methane	50	46	· 92	4			65	111	20
	2,4-Dichlorophenol	50	46	92	7			49	113	20
	Naphthalene	50	43	86	5			61	107	20
	4-Chloroaniline	50	31	62	9			10	93	20
	Hexachlorobutadiene	50	37	74	6			35	120	20
	Caprolactam	50	13	(26	7			10	130	20
	4-Chloro-3-methylphenol	50	43	86) 2			51	109	20
	2-Methylnaphthalene	50	44	88	5			63	110	20
•	Hexachlorocyclopentadiene	100	78	78	5			42	121	20
	2,4,6-Trichlorophenol	50	44	88	2			62	114	20
	2,4,5-Trichlorophenol	50	45	90	5			58	116	20
	1,1-Biphenyl	50	43	86	5			65	117	20
	2-Chloronaphthalene	50	43 42	84	2			65	111	20

1C 8/15/11

CHEMITECH

	Laboratory Control Sa		W-846	บเอสเก	ipie Di	ирпсан	Sunin 	iary S\	15/W	111
SDG No.: <u>C248</u>	7					Ωa.	rsed			
Client: MAC	TEC Inc.					KE,) \) `			
Analytical Method	d: EPA SW-846 8270					•				
							RPD		Limits	
Lab Sample ID	Parameter	Spike	Result	Rec	RPD	Qual	Qual	Low	Limas Higb	RPD
B55865BSD	2-Nitroaniline	50	43	86	5	V	V	63	119	20
	Dimethylphthalate	50	46	92	4			68	112	20
	Acenaphthylene	50	44	88	2			65	110	20
	2,6-Dinitrotoluene	50	46	92	4			68	115	20
	3-Nitroaniline	50	37	74	0			16	104	20
	Acenaphthene	50	46	92	4			66	114	20
	2,4-Dinitrophenol	100	85	85	7			35	129	20 20
	4-Nitrophenol	100	41	41	2			39 10	130	20 20
	Dibenzofuran	50	45	90	5			66	111	20
	2,4-Dinitrotoluene	50	46	92	4			65	119	20
	Diethylphthalate	50 50	45	90	2			66	116	
	4-Chlorophenyl-phenylether	50	46	92	4			66		20
	Fluorene	50 50	44	88	2			66	113 112	20
	4-Nitroaniline	50 50	44	88	2			53	115	20
	4,6-Dinitro-2-methylphenol	50 50	50		4					20
	N-Nitrosodiphenylamine	50 50		100				47	137	20
	4-Bromophenyl-phenylether		45	90	5			65	116	20
	Hexachlorobenzene	50 50	45	90	5			66	119	20
	Atrazine		44 54	88	2			57	121	20
		50 400		108	4			53	130	20
	Pentachlorophenol	100	100	100	0			51	128	20
	Phenanthrene Anthracene	50	45	90	2			68	112	20
	Carbazole	50	44	88	2			69	112	20
		50	45	90	0			65 67	115	20
	Di-n-butylphthalate Fluoranthene	50 50	46 46	92	2			67 67	117	20
		50 50	46 47	92 94	4 4			67 67	115	20
	Pyrene Butylbenzylphthalate	50 50	47 4 7		•			67 66	116	20
	3,3-Dichlorobenzidine	50 50		94 64	4			66 12	121	20
	Benzo(a)anthracene	50 50	32 47	64	3			13	119	20
	• •	50 50	47 45	94	4			64	117	20
	Chrysene		45 45	90	2			65 64	116	20
	bis(2-Ethylhexyl)phthalate	50 50	45 46	90	0			61	123	20
	Di-n-octyl phthalate	50	46 47	92	2			63	123	20
	Benzo(b)fluoranthene	50	47 45	94	4			62	122	20
	Benzo(k)fluoranthene	50	45	90	5			60	123	20
	Benzo(a)pyrene	50 50	46	92	2			65	118	20
	Indeno(1,2,3-cd)pyrene	50	44	88	2			50	133	20
	Dibenz(a,h)anthracene	50	46	92	4			45	150	20
	Benzo(g,h,i)perylene	50	46	92	7			64	123	20

LCS/LCSD

	LCS	LCSD	Difference	Average	RPD
Phenol	2	3	1	2.5	40
Nitrobenzene	82	86	4	84	5
Fluorene	86	88	2	87	2

MJW 2/29/11

Data Path : Z:\HPCHEM1\BNA F\DATA\BF060711\

Data File : BF046071.D

: 7 Jun 2011 23:04 Acq On

Operator : QM

Sample : C2487-01

Misc

ALS Vial: 12 Sample Multiplier: 1

Quant Time: Jun 08 01:23:05 2011

Quant Method: Z:\HPCHEM1\BNA F\METHOD\8270-BF060411.M Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update: Wed Jun 08 00:50:45 2011

Response via: Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) 1,4-Dichlorobenzene-d4	4.85	152	167715	20.00 ng	0.00
23) Naphthalene-d8	6.00	136	636409	20.00 ng	0.00
40) Acenaphthene-d10	7.70	164	342667	20.00 ng	0.00
65) Phenanthrene-d10	9.36	188	491115	20.00 ng	0.00
77) Chrysene-d12	12.54	240	321863	20.00 ng	0.00
88) Perylene-d12	14.44	264	280222	20.00 ng	0.00
System Monitoring Compounds					
5) 2-Fluorophenol	3.58	112	452906	39,82 ng	0.00
7) Phenol-d5	4.49	99	335387	125.15 ng	0.00
12) 2-Chlorophenol-d4	4.63	132	838018	80.70 ng	0.00
15) 1,2-Dichlorobenzene-d4	5.00	152	487359	64.08 n.q	0.00
25) Nitrobenzene-d5	5.36	82	672520	66.50 ng	0.00
43) 2,4,6-Tribromophenol	8.56	330	302822	105.09 ng	0.00
46) 2-Fluorobiphenyl	7.00	172	1340092	68.18 ng	0.00
80) Terphenyl-d14	11.27	244	1063312	77.11 ng	0.00
Target Compounds					Qvalue

(#) = qualifier out of range (m) = manual integration (+) = signals summed

$$\frac{*7}{335387(20)} = 25.15$$

$$\frac{167715(1-590)}{}$$

VOCs

		EC DUSR PROJECT CHEMIST REVIEW RECORD: Loohn's Dry Cleaners 3612102148
Me	thoc	I: <u>SW-846 8260B</u>
Dat	e: <u>28</u>	tory and SDG(s): Chemtech SDG# C2487 3 July, 2011
		er: Mike Washburn Level
1.		Case Narrative Review and COC/Data Package Completeness <u>COMMENTS</u>
		Were problems noted? No problems were noted Where all the samples on the COC analyzed for the requested analyses? YES NO (circle one)
	-	
2.	□.	Holding time and Sample Collection All samples were analyzed within the 14 day holding time. YES NO (circle one)
3.		QC Blanks Are method blanks free of contamination? YES NO (circle one)
		Are Trip blanks free of contamination (YES) NO (circle one)
		Are Rinse blanks free of contamination? YES NO NA (circle one)
4.		Instrument Tuning Were all results were within method criteria. YES NO (circle one)
5.		Instrument Calibration Were all results within criteria? YES NO peircle one)
		Initial Calibration %RSD = 20% (30% for 1,1-DCE, chloroform, 1,2-DCP, toluene, ethylhenzene, VC) Initial Avg RRF and Continuing RRF should be ≥ 0.05 and 0.10 for Chloromethane, 1,1-Dichloroethane,
		Bromoform and 0.30 for Chlorobenzene and 1,1,2,2-Tetrachloroethane Continuing Calibration %D = 20%
		In the initial calibration dated 6/1/2011, the percent relative standard deviation QC limit of 20 was exceeded for the following compounds: methylene chloride (79) and bromoform (22). Methylene
		chloride and bromoform was not detected in the associated samples and the reporting limits were qualified estimated (UJ).
		In the continuing calibration dated 6/7/2011, the percent difference QC limit of 20 was exceeded
		for the following compounds: methylene chloride (39) and bromoform (21). Methylene chloride and bromoform was not detected in the associated samples and the reporting limits were qualified estimated (UJ).
6.		Internal Standards (Area Limits = 50% to +100%, RT's within 30 seconds of mid point cal Std)
		Were all results within criteria YES NO (circle one)
7.		Surrogate Recovery - Region II limits (water 80-120%, soil 70-130%)
		Were all results were within Region II limits? YES NO (circle one)
8.		Matrix Spike - Region II limits (water and soil 70-130%, water RPD 20, soil RPD 35)
		Were MS/MSDs submitted/analyzed? YES NO
		Were all results were within the Region II limits? YES NO NA (direct one)
9.		Duplicates/replicates - Region II Limits (water RPD 50, soil RPD 100)
		Were Field Duplicates submitted/analyzed? YES NO
		Were all results were within Region II Limits? YES NONA (direct one)
10.		Laboratory Control Sample Results - Region II (Water and soil 70-130%)

	Were all results were within Region II control limits? YES NO (circle one)
11.	☐ Raw Data Review and Calculation Checks
12.	☐ Electronic Data Review and Edits Does the EDD match the Form I's? YES NO (circle one)
13.	☐ TIC Review and DUSR Table 1 (sample Listing), Table 2 (results summary), Table 3 (Reason Codes), Table 4 (TIC's). Did lab report TICs? YES NO (circle one)

Method Path : W:\HPCHEM1\MSVOA H\METHOD\

Method File: 82H060111W.M

Title : SW846 8260

Last Update : Wed Jun 01 17:49:36 2011 Response Via : Initial Calibration

Calibration Files

5 =VH041130.D 20 =VH041131.D 50 =VH041132.D 100 =VH041133.D 150 =VH041134.D 1 =VH041135.D

	(Compound	5	20	50	100			•	%RSD
		~ 								1 1 12 1 1
1)	I	Pentafluorobenzene	,			ISTI	D			
2)	${f T}$	Dichlorodifluorom								6.43
3)	P	Chloromethane Vinyl Chloride	1.188	1.412	1.296	1.265	1.232	1.223	1.269	6.24
4)	CM	Vinyl Chloride	1.003	1.107	/ 0.973	∕ 0.981∕	0.905	0.857	0.971	8.86#
5)		Bromomethane								13.40
6)	${\mathbb T}$	Chloroethane								9.51
7)	\mathbb{T}	Trichlorofluorome								12.54
8)	T	Tert butyl alcoho								6.31
9)							0.471			4.88
10)		Diisopropvl ether								7.38
11)		1.1-Dichloroethen								5.41#
12)	T	Methvl Iodide	1.055	0.9/1	0.815	0.967	0.796	0.891	0.916	10.96 37.96 % 7
13)	T	Acrolein 1,1,2-Trichlorotr								37.96 M 1 6.35
14)	T T	Acrylonitrile								5.06
15) 16)		Acrylonitrile	1 420	1 400	1 217	1 100	1 2/10	1 220	1 200	9.61
17)		Allvl Chloride Acetone	1.420	1.409	0 300	0 401	1.240 0.300	0 491	0 466	20.10
18)		Carbon Disulfide	2 125	2 258	1 998	2 130	1 960	2 041	2 085	5.18
19)	_	Methyl Acetate								5.46
20)		Methyl tert-butyl								3-78
21)	_	Methylene Chlorid								
22)	-	trans-1,2-Dichlor								7:40
23)		Acetonitrile							0.000	-1.00
24)		Vinyl Acetate	1.975	1.979	1.729	1.722	1.636	1.708	1.792	8.23
25)		1,1-Dichloroethan								7.98
26)	TM	2-Butanone								11.48
27)	${f T}$	2,2-Dichloropropa								10.21
28)	T	cis-1,2-Dichlorde								5.24
29)		Bromochloromethan	0.306	0.326	0.307	0.343	0.330	0.337	0.325	4,65
30)		Chloroform Ethvl Acetate Cvclohexane	1.169	1.300	1,181	1.182	1.212	1.230	1,212	4.02#
31)		Ethvl Acetate	1.604	1.664	1.526	1.476	1.556	1.750	1.596	6.22
32)		Cvclohexane	1.204	1.208	1.058	1.075	1.130	1.240	1.152	6.59
33)		1.1.1-Trichloroet								
34)	S	1,2-Dichloroethan	0.753	0.745	0.673	0.626	0.655	0.664	0.686	7.47
35)	I	1,4-Difluorobenze	ne -			IST	D			
36)		Dibromofluorometh								
37)		1.1-Dichloroprope								
38)		Carbon Tetrachlor								
39)		Benzene					1.285			7.71
40)	T	Methacrylonitrile								7.45
41)		1,2-Dichloroethan	0.363	0.416	0.383	0.366	0.405	0.343		7.26
42)	\mathbb{T}	Isobutyl Alcohol							0.000	-1.00
43)		Isopropyl Acetate	1.045	1.082	$\frac{0.986}{2.50}$	0.970	1.056	0.927	1.011	5.88
44)		Trichloroethene	0.353	0.400	0.352	~U.335	0.353	0.353	20. 358°	
45)		Methylcyclohexane								9.94
46)		1,2-Dichloropropa							0.390	5.82#
47) 48)		Dibromomethane Bromodichlorometh								8.98 6.98
49)		Toluene-d8							1.086	10.28
50)		4-Methyl-2-Pentan								9.13
51)		Toluene							0.829	10.28#
52)		t-1,3-Dichloropro								10.28
,	-	-, +smiszspis		,						,

Method Path : W:\HPCHEM1\MSVOA H\METHOD\

Method File: 82H060111W.M

Title : SW846 8260

Last Update : Wed Jun 01 17:49:36 2011

Response Via : Initial Calibration

Calibration Files

5 =VH041130.D 20 =VH041131.D 50 =VH041132.D 100 =VH041133.D 150 =VH041134.D 1 =VH041135.D

	1	Compound	5	20	50	100	150	1	Avq	%RSD
53) T 54) T 55) T 56) T 57) T 58) T 59) T 60) T 61) T 62) T		Methyl Methacryla 1,4-Dioxane cis-1,3-Dichlorop 1,1,2-Trichloroet Ethyl Methacrylat 1,3-Dichloropropa 2-Chloroethyl Vin 2-Hexanone Dibromochlorometh 1,2-Dibromoethane 4-Bromofluorobenz	0.005 0.611 0.318 0.528 0.626 0.244 0.439 0.337 0.369	0.005 0.674 0.382 0.640 0.721 0.203 0.483 0.403	0.004 0.620 0.336 0.595 0.615 0.162 0.424 0.354	0.004 0.592 0.336 0.571 0.605 0.156 0.405 0.351 0.356	0.004 0.637 0.352 0.615 0.628 0.154 0.411 0.367 0.369	0.005 0.547 0.264 0.411 0.587 0.214 0.336 0.253 0.300	0.004 0.613 0.331 0.560 0.630 0.189 0.416 0.344 0.363	11.15 13.77 6.96 11.90 14.77 7.44 19.72 11.61 14.48 10.39 7.93
	CM PM C C C	Chlorobenzene-d5 Tetrachloroethene Chlorobenzene 1.1.1.2-Tetrachlo Ethvl Benzene m/p-Xvlenes o-Xvlene Styrene Bromoform	1.128 0.377 0.531 0.656 0.624 1.007	0.393 1.156 0.383 0.562 0.706 0.697 1.228	0.358 1.023 0.346 0.509 0.623 0.620 1.064	1.019 0.351 0.525 0.630 0.636 1.076	0.306 (1.039 0.366 0.538 0.644 0.644 1.050	0.245 0.872 0.290 0.458 0.557 0.530 0.895	0.328 1.040 0.352 0.520 0.636 0.625 1.054	15.55 9.66 9.57 6.77# 7.62 8.67 10.23 21.81
73) I 74) I 75) I 76) E 77) I 78) I 80) I 82) I 83) I 84) I 85) I 86) I 87) I 88) I	r r r r r r r r r r r r r r r r r	1,4-Dichlorobenzer Isopropylbenzene n-Amyl Acetate 1,1,2,2-Tetrachlo 1,2,3-Trichloropr Bromobenzene n-propylbenzene 2-Chlorotoluene 1,3,5-Trimethylbe trans-1,4-Dichlor p-ethyltoluene 4-Chlorotoluene tert-Butylbenzene 1,2,4-Trimethylbe sec-Butylbenzene p-Isopropyltoluen 1,3-Dichlorobenze	3.468 1.640 1.337 1.133 1.021 3.996 2.675 2.457 0.649 2.711 2.459 2.552 2.852 2.217	3.772 2.282 1.505 1.123 0.981 4.200 2.710 2.713 0.688 2.870 2.521 2.834 3.085 2.397	3.409 2.199 1.355 1.018 0.906 3.748 2.468 2.402 0.644 2.461 2.185 2.471 2.592 2.054	3.425 2.329 1.366 1.027 0.844 3.877 2.514 2.459 0.636 2.513 2.235 2.545 2.738 2.191	3.608 2.542 1.505 1.101 0.917 4.054 2.651 2.545 0.728 2.627 2.359 2.646 2.750 2.189	3.437 0.909 1.182 0.942 0.778 4.221 2.466 2.391 0.463 2.104 2.394 2.445 2.964 2.418	3.520 1.984 1.375 1.057 0.908 4.016 2.581 2.495 0.635 0.000 2.548 2.359 2.582 2.830 2.244	4.06 30.58 NT 8.80 7.07 9.74 4.58 4.28 4.82 14.32 -1.00 10.29 5.46 5.50 6.23 6.18 6.03
90) 3 91) 3 92) 3 93) 3 94) 3 95) 3 96) 3 97) 3 98) 3	r r r r r r	1.4-Dichlorobenze p-diethylbenzene n-Butylbenzene Hexachloroethane 1,2-Dichlorobenze 1,2,4,5-tetrameth 1,2-Dibromo-3-Chl 1,2,4-Trichlorobe Hexachlorobutadie	1.749 1.881 0.475 1.306 0.191 0.531 0.203 2.142 0.490	1.760 2.155 0.519 1.621 0.233 0.675 0.205 2.498 0.567	1.491 1.814 0.451 1.425 0.210 0.594 0.158 2.411 0.537	1.512 2.010 0.478 1.458 0.230 0.646 0.183 2.690 0.592	1.683 1.971 0.498 1.544 0.246 0.719 0.183 2.981 0.711	1.832 2.100 0.430 1.289 0.147 0.782 0.515 2.240 0.846	1.671 0.000 1.988 0.475 1.441 0.000 0.209 0.658 0.241 2.494 0.624	8.37 -1.00 6.48 6.73 9.06 -1.00 17.32 13.54 56.00NT 12.30 21.12

^{(#) =} Out of Range

Analyte	S	111	12.5	13 20	L4 50	15 100	L6 150	77	8	61	Ave.	%SD	%RSD
Vinyl Chloride	PFB	0.857191	0.857191 1.002512	1.107041	0.973491	0.980976 0.904507	0.904507		-		0.970953	8.6	8.9
Trichloroethene	DFB	0.352528	0.352528 0.352558	0.400028	0.352481	0.334893	0.352913	1	-	-	0.357567	2.2	6.1
Chlorobenzene	CB5	 	0.871558 1.128485	1.156059	1.023427	1.018776 1.039197	1.039197	ı	ŀ		1.039584	10.0	6.7
Bromobenzene	DCB	0.778224	0.778224 1.020616	0.98124	0.905635	0.843856 0.917418	0.917418	1	ı	1	0.907831	8.8	9.7
							1		ļ	1	#DIV/0i	#DIN/0i	10/\IQ#
		1	1	i		1	1	1		ļ	#DIN/0i	#DIA/0i	10//\IQ#
			-]	ı	1		1		1	#DIV/0!	#DIA/0i	#DIN/0i
					-			ı		1	#DIV/0i	#DIN/0i	i0/AIG#

Analyte	SI	Area	RRF
Vinyl Chloride	PFB	1788889	1788889 0.904507
Trichloroethene	DFB	1421692	1421692 0.352913
Chlorobenzene	CB5	3485436	3485436 1.039197
Bromobenzene	DCB	1272873	1272873 0.917418
0	0		
0	0		-
0	0		
0	0		

SI	Area	IS AMT	CAL AMT
PFB	659250	50	150
DFB	1342815	50	150
CB5	1117990	50	150
DCB	462484	20	150
0		0	150
0		0	150

VOC SDG C2487 LOOHN'S DRY CLEARNERS **DUSR Calculations**

Analyte	IS	Area	RRF
Vinyl Chloride	PFB	1241456	1241456 0.980976
Trichloroethene	DFB	924386	0.334893
Chlorobenzene	CB5	2318719	2318719 1.018776
Bromobenzene	DCB	837871	0.843856
0	0		
0	0		
0	0		
0	0		

SI	Area	IS AMT	CAL AMT
PFB	632766	50	100
DFB	1380120	50	100
CB5	1137993	20	100
DCB	496454	50	100
0		0	100
0		0	100

Analyte	IS	Area	RRF
Vinyl Chloride	PFB	668259	0.973491
Trichloroethene	DFB	517676	0.352481
Chlorobenzene	CB5	1287747	1.023427
Bromobenzene	DCB	498150	0.905635
0	0		
0	0		-
0	0		
0	0		

SI	Area	IS AMT	CAL AMT
PFB	686456	50	20
DFB	1468665	20	20
CB5	1258270	50	20
DCB	250056	50	20
0		0	20
0		0	05

VOC SDG C2487 LOOHN'S DRY CLEARNERS **DUSR** Calculations

Analyte	IS	Area	RRF
Vinyl Chloride	PFB	310619	1.107041
Trichloroethene	DFB	237484	0.400028
Chlorobenzene	CB5	290860	1.156059
Bromobenzene	DCB	223094	0.98124
0	0		
0	0		
0	0		
0	0		

SI	Area	IS AMT	CAL AMT
PFB	701462	20	20
DFB	1484171	20	20
CB5	1277746	20	70
DCB	268338	50	20
0		0	20
0		0	70

Analyte	15	Area	RRF
Vinyl Chloride	PFB	63380	1.002512
Trichloroethene	DFB	48016	0.352558
Chlorobenzene	CB5	129331	1.128485
Bromobenzene	DCB	49873	1.020616
0	0		
0	0		
0	0		-
0	0		ł

SI	Area	IS AMT	CAL AMT
PFB	632212	50	5
DFB	1361931	50	5
CB5	1146059	20	2
DCB	488656	50	- 5
0		0	2
0		0	5

Analyte	IS	Area	RRF
Vinyl Chloride	PFB	10128	0.857191
Trichloroethene	DFB	9259	0.352528
Chlorobenzene	CB5	19703	0.871558
Bromobenzene	DCB	7053	0.778224
0	0		
0	0		
0	0		
0	0		

Si	Area	IS AMT	CAL AMT
PFB	290767	50	1
DFB	1313229	20	1
CB5	1130332	50	1
DCB	453147	20	1
0			1
0			1

Evaluate Continuing Calibration Report

Data Path : \\TERASTORAGE\VOASRV\HPCHEM1\MSVOA H\DATA\VH060711\

Data File : VH041291.D

Acq On : 7 Jun 2011 12:20

Operator : NS

Sample : 50 PPB CCC
Misc : 5mL MSVOA H

ALS Vial : 2 Sample Multiplier: 1

Ouant Time: Jun 07 14:13:43 2011

Ouant Method: \\TERASTORAGE\VOASRV\HPCHEM1\MSVOA H\METHOD\82H060111W.M

Quant Title : SW846 8260

QLast Update: Mon Jun 06 14:37:57 2011 Response via: Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 20% Max. Rel. Area: 150%

		Compound	AvqRF	CCRF	%Dev Ar	ea%	Dev(min)
1	I	Pentafluorobenzene	1.000	1.000	0.0	98	0.00
	T	Dichlorodifluoromethane	0.761	0.709	6.8	91	0.00
	P	Chloromethane	1.269	. 1.148	9, 5	87	0.00
	CM	Vinvl Chloride	0.971	0.923	4.9#	93	0.00
	T	Bromomethane	0.426	0.399	6.3	99	0.00
	$\overline{\mathbf{T}}$	Chloroethane	0.470	0.426	9.4	97	0.00
	Т	Trichlorofluoromethane	0.904	0,782	13.5	85	0.00
	\mathbf{T}	Tert butvl alcohol	0.137	0.127	7.3	92	0.00
	\mathbf{T}	Diethyl Ether	0.508	0.460	9.4	90	0.00
	\mathbf{T}	Diisopropyl ether	3.048	2.481	18.6	84	0.00
11	CM	1,1-Dichloroethene	0.671	0.621	7.5#	92	0.00
12	Τ	Methyl Iodide	0.916	0.833	9.1	100	0.00
13	Τ	Acrolein	0.187	0.105	43.9#	75	7ر (0.00
14	${f T}$	1,1,2-Trichlorotrifluoroeth	0.644	0.607	5.7	94	0.00
15	${f T}$	Acrylonitrile	0.436	0.399	8.5	95	0.00
16	\mathbf{T}	Allyl Chloride	1.299	1.138	12.4	92	0.00
17	\mathbf{T}	Acetone	0.466	0.390	16.3	96	0.00
18		Carbon Disulfide	2.085	1.826	12.4	89	0.00
19		Methyl Acetate	1.541	1.543	-0.1	105	0.00
20		Me <u>thyl tert-butyl</u> Ether	2.128	1.886	11.4	91	0.00
21		Methylene Chloride	1.206	0.733	39.2#		0.00
22		trans-1,2-Dichloroethene	0.670	0.625	6.7	96	0.00
23		Acetonitrile	0.000	0.000	0.0		-2.57#
24		Vinvl Acetate	1.792	1.643	8.3	93	0.00
25		1,1-Dichloroethane	1.328	1.221	8.1	95	0.00
	TM	2-Butanone	0.752		40.0	95	0.00
27		2.2-Dichloropropane	0.530	0.529	0.2	107	0.00
28		cis-1.2-Dichloroethene	0.876	0.850	3.0	99	0.00
29		Bromochloromethane	0.325	0.382	-17.5	122	0.00
	CM	Chloroform	1.212	1.148	5.3#		0.00
31		Ethvl Acetate	1.596	1.438	9.9	92	0.00
32		Cvclohexane	1.152	0.965	16.2	89	0.00
33		1,1,1-Trichloroethane	0.798	0.817	-2.4	110	0.00
34	S	1,2-Dichloroethane-d4	0.686	0.650	5.2	95	0.00
35	I	1,4-Difluorobenzene	1.000	1.000	0.0	88	0.00
36	S	Dibromofluoromethane	0.306	0.329	-7.5	95	0.00
37	\mathbf{T}	1,1-Dichloropropene	0.455	0.468	-2.9	95	0.00
	TM	Carbon Tetrachloride	0.395	0.442	-11.9	98	0.00
39	TM	Benzene		1.314	-2.4	96	0.00
40		Methacrylonitrile	0,331	0.338	-2.1	94	0.00
	${\tt MT}$	1,2-Dichloroethane	0.379	0.417	-10.0	96	0.00
42	T	Isobutyl Alcohol	0.000	0.000	0.0	0 ‡	
43	\mathbf{T}	Isopropvl Acetate	1.011	1.064	-5,2	95	0.00
44		Trichloroethene	0.358	0.389	-8.7	98	0.00
45	${f T}$	Methylcyclohexane	0.407	0.411	-1.0	96	0.00
							1

NW 4/28/1

Evaluate Continuing Calibration Report

Data Path : \\TERASTORAGE\VOASRV\HPCHEM1\MSVOA H\DATA\VH060711\

Data File : VH041291.D

Acg On : 7 Jun 2011 12:20

Operator : NS

Sample : 50 PPB CCC Misc : 5mL MSVOA H

ALS Vial : 2 Sample Multiplier: 1

Ouant Time: Jun 07 14:13:43 2011

Ouant Method: \\TERASTORAGE\VOASRV\HPCHEM1\MSVOA_H\METHOD\82H060111W.M

Quant Title : SW846 8260

QLast Update: Mon Jun 06 14:37:57 2011

Response via: Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 20% Max. Rel. Area: 150%

	Compound	AvqRF	CCRF	%Dev Area% De	ev(min)
46 C	1,2-Dichloropropane	0.390	0.414	-6.2# 97	0.00
47 T	Dibromomethane	0.257	0.274	-6.6 94	0.00
48 T	Bromodichloromethane	0.462	0.478	-3.5 91	0.00
49 S	Toluene-d8	1,086	1.165	-7.3 93	0.00
50 T	4-Methvl-2-Pentanone	0.563	0.632	-12.3 96	0.00
51 CM	Toluene	0.829	0.917	-10.6# 99	0.00
52 T	t-1,3-Dichloropropene	0.535	0.578	-8.0 95	0.00
53 T	Methvl Methacrvlate	0.362	0.390	-7 . 7 95	0.00
54 T	1,4-Dioxane	0.004	٦را 000.0	-25.0# 99	0.00
55 T	cis-1,3-Dichloropropene	0.613	0.655	-6.9 94	0.00
56 T	1,1,2-Trichloroethane	0.331	0.377	-13.9 99	0.00
57 T	Ethyl Methacrylate	0.560	0.624	-11.4 93	0.00
58 T	1,3-Dichloropropane	0.630	0.701	-11.3 101	0.00
59 T	2-Chloroethyl Vinyl ether	0.189	0.048	74.6# 26#	0.00 p -t
60 T	2-Hexanone	0.416	0.486	-16.8 101	0.00
61 T	Dibromochloromethane	0.344	0.375	-9.0 94	0.00
62 T	1,2-Dibromoethane	0.363	0.410	-12.9 99	0.00
63 S	4-Bromofluorobenzene	0.412	0.437	-6.1 92	0.00
64 I	Chlorobenzene-d5	1,000	1.000	0.0 87	0.00
65 TM	Tetrachloroethene	0.328	0.328	0.0 80 .	0.00
66 PM	Chlorobenzene	1.040	1.145	-10.1 98	0.00
67 T	1,1,1,2-Tetrachloroethane	0.352	0.410	-16.5 103	0.00
68 C	Ethvl Benzene	0.520	0.585	-12.5# 100	0.00
69 T	m/p-Xvlenes	0.636	0.721	-13.4 101	0.00
70 T	o-Xvlene	0.625	0.726	-16.2 102	0.00
71 T	Stvrene	1.054	1.224	-16 100	0.00
72 P	(Bromoform)	0.279	0.337	-20.8# 101	0.00
73 I	1,4-Dichlorobenzene-d4	1.000	1.000	0.0 93	0.00
74 T	Isopropylbenzene	3.520	3.628	-3.1 99	0.00
75 T	n-Amvl Acetate	1.984	2.332	-17.5 99	0.00
76 P	1,1,2,2-Tetrachloroethane	1.375	1.444	-5.0 99	0,00
77 T	1,2,3-Trichloropropane	1.057	1.020	3.5 93	0.00
78 T	Bromobenzene	0.908	1.017	-12.0 104	0.00
79 T	n-propylbenzene	4.016	4.048	-0.8 100	0.00
T 08	2-Chlorotoluene	2.581	2.665	-3.3 100	0.00
81 T	1,3,5-Trimethylbenzene	2.495	2.590	-3.8 100	0.00
82 T	trans-1,4-Dichloro-2-Butene	0.635	0.610	3.9 88	0.00
83 T	p-ethyltoluene	0.000	0.000		-9.53#
84 T	4-Chlorotoluene	2.548	2.729	-7.1 103	0.00
85 T	tert-Butylbenzene	2.359	2.500	-6.0 106	0.00
86 T	1,2,4-Trimethylbenzene	2.582	2.735	-5.9 103	0.00
87 T	sec-Butylbenzene	2.830	2.943	-4.0 106	0.00
88 T	p-Isopropyltoluene	2.244	2.350	-4.7 106	0.00
89 T	1,3-Dichlorobenzene	1.532	1.633	-6.6 103	0.00

Coninuing Calibration Calculations

	Ave RF	CCRF	%D
Vinyl Chloride	0.971	0.923	-4.9
2-butanone	0.752	0.677	-10.0
Benzene	1.283	1.314	2.4
Chrysene	1.081699	1.106159	2.3
Indeno(1,2,3-cd)pyrene	1.282605	1.220694	-4.8

Data Path : \\TERASTORAGE\VOASRV\HPCHEM1\MSVOA H\DATA\VH060711\

Data File : VH041291.D

Acq On : 7 Jun 2011 12:20 Operator : NS

Sample : 50 PPB CCC : 5mL MSVOA H Misc

ALS Vial : 2 Sample Multiplier: 1

Ouant Time: Jun 07 14:13:43 2011

Ouant Method: \\TERASTORAGE\VOASRV\HPCHEM1\MSVOA_H\METHOD\82H060111W.M

Quant Title : SW846 8260

QLast Update: Mon Jun 06 14:37:57 2011

Response via: Initial Calibration

Internal Standards	В.Т.	QIon	Response	Conc Ur	nits Dev	(Min)	
1) Pentafluorobenzene	4 . 08	168	672076	50.00	ua/1	0 - 01	
35) 1.4-Difluorobenzene	4.59	114	1299695	50.00	ug/l	0.00	
64) Chlorobenzene-d5	7.93	117	1098162	50.00	ug/l	0.00	
 Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 1,4-Dichlorobenzene-d4 	10.43	152	511388	50.00	ug/l	0.00	
System Monitoring Compounds							
34) 1,2-Dichloroethane-d4	4.10	65	436874	47.37	ug/l	0.00	
Spiked Amount 50.000	Range 66	- 150	Recove	rv =	94.74%		
36) Dibromofluoromethane	3.64	113	428097	53.79	ua/l	0.00	
Spiked Amount 50.000	Range 76	- 130	Recove	rv =	107.58%		
	6.07	98	1514368	53.66	uq/1	0.00	
49) Toluene-d8 Spiked Amount 50.000	Range 78			rv =	107.32%		
	9.36	95	568230	53.00	uq/l	0.00	
Spiked Amount 50.000	Range 70	- 131	Recove	ry =	106.00%		
Target Compounds					Qv	alue	
Dichlorodifluoromethane			476494			98	. / ``)
3) Chloromethane			771321			99	672076 (50) = 0.923
4) Vinyl Chloride	1.21	62	619999	47.51		100	619111
5) Bromomethane6) Chloroethane	1.39	94	268126 286053	46.85	uq/l	98	
6) Chloroethane	1.48	64				94	672076(50)
7) Trichlorofluoromethane		101	525332m				<i>(</i> ,)
8) Tert butyl alcohol	2.51	59	427229	231.19	uq/1	99	
9) Diethyl Ether 10) Diisopropyl ether 11) 1,1-Dichloroethene 12) Methyl Iodide	1.69	74	309227 1667493 417377	45.31	uq/1	96	~ a co.7.7
10) Diisopropyl ether	2.71	45	1667493	40.71	uq/l	99	- 0 7(0)
11) 1,1-Dichloroethene	1.86	96	417377	46.24	uq/l	97	
12) Methvl Iodide	1.95	142	559597			97	
13) Acrolein	2.02	56		180.60		96	
14) 1.1.2-Trichlorotrifluoro				47.14		99	
15) Acrylonitrile	2.81		1341260			99	
16) Allvl Chloride 17) Acetone	2.12			43.83		99	
17) Acetone	2.22		1310156	239.53	uq/l	99	
18) Carbon Disulfide 19) Methvl Acetate	1.87	76	1227315	43.79	uq/l	100	
19) Methvl Acetate	2.33	43	1036800 1267629	50.06	uq/l	99	
20) Methyl tert-butyl Ether	2.41	73	1267629	44.32	uq/l	100	
	2.19		492756m				
22) trans-1,2-Dichloroethene	2.32	96	420217	46.66	uq/l	94	
24) Vinyl Acetate 25) 1,1-Dichloroethane 26) 2-Butanone	2.99	43	5520477	229.23	uq/l	100	
25) 1,1-Dichloroethane	2.78	63	820353	45.97	uq/l	98	
26) 2-Butanone	3.74	43	2275200	225.04	uq/l	100	
27) 2,2-Dichloropropane	3.30	77	355848	49.92	uq/1	99	
28) cis-1,2-Dichloroethene	3.23	96	571449	48.53		94	
29) Bromochloromethane	3.39	128	256995	58.87		93	
30) Chloroform	3.48	83	771647	47.35		97	
31) Ethyl Acetate	3.60	43	966134		uq/l #	99	
32) Cvclohexane	3.39	56	648806	41.88		98	
33) 1,1,1-Trichloroethane	3.64	97	549034	51.20		99	
37) 1,1-Dichloropropene	3.75	75	608232	51.45		98	
38) Carbon Tetrachloride	3.58	117	573915m	53.08			
39) Benzene	3.97	78	1707613	51.20	ug/l	99	

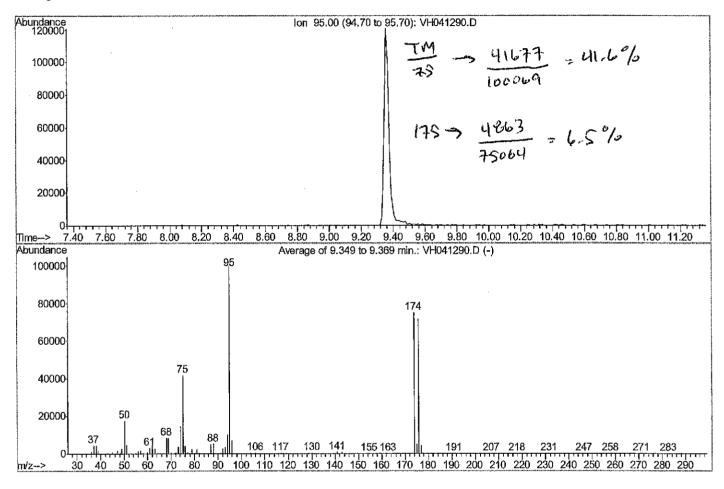
Data Path : \\Terastorage\voasrv\HPCHEM1\Msvoa H\Data\VH060711\

Data File: VH041290.D

Aca On : 7 Jun 2011 11:46

Operator : NS

Sample : BFB TUNE CHECK
Misc : 5mL MSVOA H


ALS Vial: 1 Sample Multiplier: 1

Integration File: RTEINT.P

Method : \TERASTORAGE\VOASRV\HPCHEM1\MSVOA H\METHOD\82H060111W.M

Title : SW846 8260

Last Update : Mon Jun 06 14:37:57 2011

AutoFind: Scans 893, 894, 895; Background Corrected with Scan 888

 	Target Mass	1	Rel. to Mass		Lower Limit%	1	Upper Limit%]	Rel. Abn%		Raw Abn	 	Result Pass/Fail	
	 50		95	 	 15	 	40		17.6		17579	 	PASS	
Ì	75	İ	95	- [30	ļ	60	ŀ	41.6		41677	-	PASS	Į
Ĺ	95	İ	95	Ì	100	-	100	j	100.0		100069	-	PASS	
ĺ	96	İ	95		5	-	9	-	6.8		6833	-	PASS	
ĺ	173		174	1	0.00	-	2	-	0.3		208	1	PASS	1
	174	İ	95	1	50	-	100	-	75.0	٨	75064		PASS	-
- [175	-	174	- [5		9	-	6.5		4863		PASS	1
-	176		174	- [95	-	101	1	95.5	- 1	71682		PASS	
Ì	177		176	1	5		9	İ	6.1		4388		PASS	

CHEMIECH

Lab Code:

WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: CHEMTECH Client: MACTEC Inc.

Analytical Method:

C2487

CASE No.:

EPA SW846 8260

SAS No.:

<u>C2487</u> SDG NO.:

C2487

	Lab Sample ID.	Client Sample NO.	SMC1 (DCE) #	SMC2 (DBFM) #	SMC3 (TOL)#	SMC4 (BFB)#	TOT OUT
) 1	VBH0607W1	VBH0607W1	76	95	94	91	0
)2	BSH0607W1	BSH0607W1	78	94	93	93	0
3	BSH0607W2	BSH0607W2	77	90	88	87	0
)4	C2487-02	LCTB001	83	88	91	84	0
)5	C2487-01	LCMW001016	80	96	97	92	0
6	C2487-03	LCMW002019	106	104	113	108	0

47.61 ,100 = 95.22 50

QC LIMITS

 SMC1 (DCE) = 1,2-Dichloroethane-d4
 (70-120)

 SMC2 (DBFM) = Dibromofluoromethane
 (85-115)

 SMC3 (TOL) = Toluene-d8
 (85-120)

 SMC4 (BFB) = 4-Bromofluorobenzene
 (75-120)

Column to be used to flag recovery values

* Values outside of contract required QC Limits

m 2/28/11

2

Report of Analysis

MACTEC Inc. Date Collected: Client: Loohns Dry Cleaners- APO 201007181 Date Received: Project: Client Sample ID: VBH0607W1 SDG No.: C2487 Lab Sample ID: VBH0607W1 Matrix: WATER % Moisture: Analytical Method: SW8260B 100

Analytical Method: SW8260B % Moisture: 100
Sample Wt/Vol: 5 Units: mL Final Vol: 5000

Soil Aliquot Vol: uL Test: VOC-TCLVOA-10

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VH041293.D 1 06/07/11 VH060711

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0.38	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.41	1	ug/L
127-18-4	Tetrachloroethene	1	U	0.27	1	ug/L
108-90-7	Chlorobenzene	1	U	0.49	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.95	2	ug/L
95-47-6	o-Xylene	1	U	0.43	1	ug/L
100-42-5	Styrene	1	U	0.36	1	ug/L
75-25-2	Bromoform	1	U	0.47	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.45	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.31	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.43	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	υ	0.32	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.45	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.46	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	. 1	U	0.2	1	ug/L
SURROGATES	S					
17060-07-0	1,2-Dichloroethane-d4	37.9	_	70 - 120	76%	SPK: 50
1868-53-7	Dibromofluoromethane	47.6		85 - 115	95%	SPK: 50
2037-26-5	Toluene-d8	46.9		85 - 120	94%	SPK: 50
460-00-4	4-Bromofluorobenzene	45.4		75 - 120	91%	SPK: 50
INTERNAL ST	ANDARDS					
363-72-4	Pentafluorobenzene	716610	4.08			
540-36-3	1,4-Difluorobenzene	1352740	4,6			
3114-55-4	Chlorobenzene-d5	1133670	7.93			
3855-82-1	1,4-Dichlorobenzene-d4	520319	10.43			

цL

Data Path : \\TERASTORAGE\VOASRV\HPCHEM1\MSVOA H\DATA\VH060711\

Data File: VH041293.D

Acq On : 7 Jun 2011 13:30

Operator : NS

Sample : VBH0607W1 Misc : 5mL MSVOA H

ALS Vial : 4 Sample Multiplier: 1

Ouant Time: Jun 07 14:25:44 2011

Ouant Method : \\TERASTORAGE\VOASRV\HPCHEM1\MSVOA H\METHOD\82H060111W.M

Quant Title : SW846 8260

QLast Update: Tue Jun 07 14:17:00 2011 Response via: Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Ur	nits De	v(Min)
1) Pentafluorobenzene	4.08	168	716610	50.00	ug/1	0.00
35) 1,4-Difluorobenzene	4.60	114	1352741	50.00	uq/l	0.00
64) Chlorobenzene-d5	7.93	117	1133673	50.00	ug/l	0.00
73) 1,4-Dichlorobenzene-d	4 10.43	152	520319	50.00	ug/l	0.00
System Monitoring Compound	S					
34) 1,2-Dichloroethane-d4	4.10	65	372826	37.91	ua/l	0.00
Spiked Amount 50.000	Range 66	- 150	Recove	erv =	75.82	용
36) Dibromofluoromethane	3.64	113	394399	47.61	ua/l	0.00
Spiked Amount 50.000	Range 76	- 130	Recove	rv =	95.22	용
49) Toluene-d8	6.07	98	1378147	46.92	uq/l	0.00
Spiked Amount 50.000	Range 78	- 121	Recove	erv =	93.84	9
63) 4-Bromofluorobenzene	9.36	95	507043	45.44	ua/l	0.00
Spiked Amount 50.000	Range 70	- 131	Recove	ery =	90.88	8
Target Compounds					Q.	value

(#) = qualifier out of range (m) = manual integration (+) = signals summed

CHEMIECH

WATER VOLATILE LABORATORY CONTROL SPIKE/LABORATORY CONTROL SPIKE DUPLICATE RECOVERY

Lab Name:	СНЕМТЕСН			Client:	MACTEC Inc.			
Lab Code:	СНЕМ	Cas No:	C2487	SAS No:	C2487	SDG No:	C248	37
Matrix Spike	EPA Sample No :	BSH0607W1	Analytical N	Aethod: E	PA SW846 8260	Data	file :	VH041294.D

			· · ·		
	SPIKE		LCS	LCS	QC
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	%]	LIMITS
	(ug/L)	(ug/L)	(ug/L)	REC#	REC
Dichlorodifluoromethane	20		16	80	(35-124)
Chloromethane	20		17	85	(40-125)
Vinyl Chloride	20		1 7	851	(50-144)
Bromomethane	20		18	90	(44-145)
Chloroethane	20		17	85	(60-135)
Trichlorofluoromethane	20		16	80	(60-137)
1,1,2-Trichlorotrifluoroethane	20		18	90	(52-142)
1,1-Dichloroethene	20		17	85	(70-130)
Acetone	100		86	86	(50-140)
Carbon Disulfide	20		16	80	(36-155)
Methyl tert-butyl Ether	20		15	75	(65-125)
Methyl Acetate	20		18	90	(51-158)
Methylene Chloride	20		18	90	(61-138)
trans-1,2-Dichloroethene	20		16	80	(60-137)
1,1-Dichloroethane	20		16	80	(70-135)
Cyclohexane	20		15	75	(56-141)
2-Butanone	100		84	84	(56-150)
Carbon Tetrachloride	20		20	100	(65-138)
cis-1,2-Dichloroethene	20		17	85	(70-125)
Chloroform	20		17	85	(67-135)
1,1,1-Trichloroethane	20		17	85	(65-130)
Methylcyclohexane	20		19	95	(56-137)
Benzene	20		19	95	(80-120)
1,2-Dichloroethane	20		20	100	(70-130)
Trichloroethene	20		20	100	(70-125)
1,2-Dichloropropane	20		19	95	(75-125)
Bromodichloromethanc	20		19	95	(75-120)
4-Methyl-2-Pentanone	100		100	100	(63-135)
Toluenc	20		19	95	(75-120)
t-1,3-Dichloropropene	20		19	95	(66-135)
cis-1,3-Dichloropropene	20		19	95	(70-130)
1,1,2-Trichloroethane	20		21	105	(75-125)
2-Hexanone	100		100	100	(56-130)
Dihromochloromethane	20		19	95	(64-135)

# Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits	17 -100% = 85%
RPD: 0 Out of 0 outside limits	20
Spike Recovery: 4 Out of 90 outside limits	
Comments:	

Data File : VH041294.D

Acg On : 7 Jun 2011 14:07

Operator : NS

Sample : BSH0607W1 Misc : 5mL MSVOA H

ALS Vial : 5 Sample Multiplier: 1

Ouant Time: Jun 07 14:32:54 2011

Ouant Method : \\TERASTORAGE\VOASRV\HPCHEM1\MSVOA_H\METHOD\82H060111W.M

Quant Title : SW846 8260 QLast Update : Tue Jun 07 14:17:00 2011 Response via : Initial Calibration

Internal Standards			Response	Conc Ui		(Min)	
1) Pentafluorobenzene	4.08	168				0.00	
35) 1,4-Difluorobenzene	4.60	114	1419886	50.00	ug/1	0.00	
64) Chlorobenzene-d5	7.94	117	1197419	50.00	uq/1	0.00	
 Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 1,4-Dichlorobenzene-d4 	10.43	152	533880	50.00	ug/l	0.00	
System Monitoring Compounds							
34) 1.2-Dichloroethane-d4	4.10	65	396766	38.77	uq/l	0.00	
Spiked Amount 50.000	Range 66	- 150	Recove	erv =	77.54%		
36) Dibromofluoromethane	3.63	113	408128	46.94	ug/l	0.00	
Spiked Amount 50.000	Range 76	- 130	Recove	erv =	93.88%		
49) Toluene-d8 Spiked Amount 50.000	6.07	98	1432167	46.45	uq/l	0.00	
Spiked Amount 50.000	Range 78	- 121	Recove	erv =	92.90%		·
63) 4-Bromofluorobenzene	9.36	95	542693	46.34	uq/l	0.00	
Spiked Amount 50.000	Range 70	- 131	Recove	ery =	92.68%		
Target Compounds					Qva	alue	
2) Dichlorodifluoromethane	1.08	85	176931	15,59	ug/1	100	
3) Chloromethane ·	1.16	50	316319		ug/l	100	/)
4) Vinyl Chlor <u>ide</u>	1.21	62					241994 (50)
5) Bromomethane	1.39	94	114950	18.10	ug/l	99	29(11) (30)
5) Bromomethane6) Chloroethane7) Trichlorofluoromethane	1.48	64	244994 114950 116643 216849	16.64	ug/l	89	THE COOK of a said
7) Trichlorofluoromethane	1.56	101	216849	16.08	ug/l #	84	195000(0.971)
8) Tert butyl alcohol	2.51	59	176492	86.06	ug/l #	96	,
9) Diethyl Ether	1.69	74	132536	17.50	ug/l	94	745806 (0.921)=16.92
9) Diethyl Ether 10) Diisopropyl ether 11) 1,1-Dichloroethene 12) Methyl Todide 13) Acrolein	2.71	45	132536 677127 166324	14.90	ug/l	99	- 10-12
11) 1,1-Dichloroethene	1.86	96	166324	16.61	ug/1 #	62	
12) Methvl Iodide	1.96	142	211564	15.49	ug/1	95	
13) Acrolein	2.02	56	125776			97	
14) 1,1,2-Trichlorotrifluoro	et 1.89	101	170719	17.76	ug/l	94	
			170719 542370	83.41	ua/l	94 100	
15) Acrylonitrile 16) Allyl Chloride	2.12	41	323094	16.68	ug/l	97	
17) Acetone	2.23	43	579067			100	
17) Acetone 18) Carbon Disulfide 19) Methyl Acetate	1.87	76				99	
19) Methyl Acetate	2.33	43	508116 411651	17.91	uq/l	99	
20) Methyl tert-butyl Ether	2.41	73	488542	15.39	ua/l	98	
21) Methylene Chloride	2.20	84	226514m				
22) trans-1,2-Dichloroethene	2.32	96	164598	16.47	ug/l	98	
24) Vinyl Acetate25) 1,1-Dichloroethane	3.00	43	2252609	84.29	ug/l	100	
25) 1,1-Dichloroethane	2,78	63	324275	16.37	uq/l	99	
26) 2-Butanone	3.74	43	937641	83.58		98	
27) 2,2-Dichloropropane	3.31	77	143952	18.20		99	
28) cis-1,2-Dichloroethene	3.23	96	224408	17.17		99	
29) Bromochloromethane	3.40		87853	18.13		99	
30) Chloroform	3.48	83	311957	17.25		94	
31) Ethyl Acetate	3.61	43	390143		ug/l #	98	
32) Cyclohexane	3.40		262770	15.29		99	
33) 1,1,1-Trichloroethane	3.63		198786	16.70		93	
37) 1,1-Dichloropropene	3.75	75	249682	19.33		98	
38) Carbon Tetrachloride	3.59		232590m	20.01			
39) Benzene	3.97		681259	18.70		98	
'			= -	•	J. –		4

CHEMIECH

WATER VOLATILE LABORATORY CONTROL SPIKE/LABORATORY CONTROL SPIKE DUPLICATE RECOVERY

Lab Name:	те: СНЕМТЕСН			Client:	MACTEC Inc.		
Lab Code:	СНЕМ	Cas No:	C2487	SAS No:	C2487	SDG No:	C2487
Matrix Spike -	EPA Sample No :	BSH0607W2	Analytical M	Icthod: <u>E</u> E	PA SW846 8260	_ Data	file: VH041295.D

		_				
	SPIKE	LCSD		LCSD		
COMPOUND	ADDED	CONCENTRATION	%	%	QC L	IMITS
00/11/00/12	(ug/L)	(ug/L)	REC#	RPD#	RPD	REC
Dichlorodifluoromethane	20	17	85	6	20	(35-124)
Chloromethane	20	18	90	6	20	(40-125)
Vinyl Chloride	20	19	95	11	20	(50-144)
Bromomethane	20	18	90	0	20	(44-145)
Chloroethane	20	19	95	11	20	(60-135)
Trichlorofluoromethane	20	18	90	12	20	(60-137)
1,1,2-Trichlorotrifluoroethane	20	19	95	5	20	(52-142)
1,1-Dichloroethene	20	18	90	6	20	(70-130)
Acetone	100	89	89	3	20	(50-140)
Carbon Disulfide	20	17	85	6	20	(36-155)
Methyl tert-butyl Ether	20	17	85	13	20	(65-125)
Methyl Acctate	20	19	95	5	20	(51-158)
Methylene Chloride	20	16	80	12	20	(61-138)
trans-1,2-Dichloroethene	20	17	85	6	20	(60-137)
1,1-Dichloroethane	20	17	85	6	20	(70-135)
Cyclohexane	20	16	80	6	20	(56-141)
2-Butanone	100	85	85	1	20	(56-150)
Carbon Tetrachloride	20	20	100	0	20	(65-138)
cis-1,2-Dichloroethene	20	18	90	6	20	(70-125)
Chloroform	20	17	85	0	20	(67-135)
1,1,1-Trichloroethane	20	20	100	16	20	(65-130)
Methylcyclohexanc	20	20	100	5	20	(56-137)
Benzene	20	19	95	0	20	(80-120)
1,2-Dichloroethane	20	21	105	5	20	(70-130)
Trichloroethene	20	. 21	105	5	20	(70-125)
1,2-Dichloropropane	20	19	95	0	20	(75-125)
Bromodichloromethane	20	19	95	0	20	(75-120)
4-Methyl-2-Pentanone	100	110	110	10	20	(63-135)
Toluene	20	20	100	5	20	(75-120)
t-1,3-Dichloropropene	20	19	95	0	20	(66-135)
cis-1,3-Dichloropropene	20	19	95	0	20	(70-130)
1,1,2-Trichloroethane	20	20	100	5	20	(75-125)
2-Hexanone	100	100	100	0	20	(56-130)
Dibromochloromethane	20	20	100	5	20	(64-135)

# Column to be used to flag recovery an	d RPD values with an asterisk
---	-------------------------------

*	Volume	outside	of ΩC	limite
•	Y MIUCS	HULLSHIRE	$\mathbf{u} \cdot \mathbf{v} \cdot$	THE PERSON

RPD: 0	Out o	f 90	outs	ide li	mits
Spike Recov	ery :	4	Out of	90	outside limits

M) 4/28/11

Comments:		

LCS RPD

	LCS	LCSD	Difference	Average	RPD
Vinyl Chloride	17	19	2	18	11

M) W |27/11

284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax: 908 789 8922

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

06/01/11

Project:

Loohns Dry Cleaners- APO 201007181

Date Received:

06/03/11

Client Sample ID:

LCMW002019

SDG No.:

C2487

Lab Sample ID:

C2487-03

Matrix:

WATER

Analytical Method:

SW8260B

% Moisture:

100

Sample Wt/Vol:

Units:

Final Vol:

5000

Soil Aliquot Vol:

mL иL

Test:

VOC-TCLVOA-10

uL

GC Column:

RTX-VMS

ID: 0.18

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VH041312.D

06/07/11

VH060711

CAS Number Parameter Conc. Qualifier MDL LOQ / CRQL

CAS Number	Parameter	Conc,	Qualifier	MDL	LOQ / CRQL	Units	
TARGETS							
75-71-8	Dichlorodifluoromethane	1	U	0.2	1	ug/L	
74-87-3	Chloromethane	1	U	0.2	1	ug/L	
75-01-4	Vinyl Chloride	1	U	0.34	1	ug/L	
74-83-9	Bromomethane	1	U	0.2	1	ug/L	
75-00-3	Chloroethane	1	U	0.2	1	ug/L	
75-69-4	Trichlorofluoromethane	1	U	0.35	1	ug/L	
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	1	ug/L	
75-35-4	1,1-Dichloroethene	1	U	0.47	1	ug/L	
67-64-1	Acetone	5	U	0.5	5	ug/L	
75-15-0	Carbon Disulfide	1	U	0.2	1	ug/L	
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	1	ug/L	
79-20-9	Methyl Acetate	1	U	0.2	1	ug/L	
75-09-2	Methylene Chloride	1	\mathbf{U} 3	0.41	1	ug/L	
156-60-5	trans-1,2-Dichloroethene	1	U	0.41	1	ug/L	
75-34-3	1,1-Dichloroethane	1	U	0.36	1	ug/L	
110-82-7	Cyclohexane	1	U	0.2	1	ug/L	
78-93-3	2-Butanone	5	U	1.3	5	ug/L	
56-23-5	Carbon Tetrachloride	1	U	0.2	1	ug/L	
156-59-2	cis-1,2-Dichloroethene	1	U	0.35	1	ug/L	
67-66-3	Chloroform	1	U	0.34	1	ug/L	
71-55-6	1,1,1-Trichloroethane	1	U	0.4	1	ug/L	
108-87-2	Methylcyclohexane	1	U	0.2	1	ug/L	
71-43-2	Benzene	1	U	0.32	1	ug/L	
107-06-2	1,2-Dichloroethane	1	U	0.48	1	ug/L	
79-01-6	Trichloroethene	1	U	0.28	1	ug/L	
78-87 - 5	1,2-Dichloropropane	1	U	0.46	1	ug/L	
75-27-4	Bromodichloromethane	1	U	0.36	1	ug/L	
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	5	ug/L	
108-88-3	Toluene	1	U	0.37	1	ug/L	
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	1	սց/46	
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	1	ug/L	

MJW 2/28/11

Report of Analysis

Client: MACTEC Inc.

Project: Loohns Dry Cl

Loohns Dry Cleaners- APO 201007181

Client Sample ID:

LCMW002019

C2487-03

Lab Sample ID:
Analytical Method:

SW8260B

Sample Wt/Vol:

Soil Aliquot Vol:

5

Units: mL

uL

GC Column:

RTX-VMS

ID: 0.18

Date Collected:

Date Received:

06/01/11 06/03/11

SDG No.:

C2487 WATER

Matrix:

% Moisture:

100

Final Vol:

5000

VOC-TCLVOA-10

Test: Level:

LOW

File ID/Qc Batch:

VH041312.D

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

06/07/11

VH060711

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0.38	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.41	1	ug/L
127-18-4	Tetrachloroethene	4.7		0.27	1	ug/L
108-90-7	Chlorobenzene	1	U	0.49	1	ug/L
100-41-4	Ethyl Benzene	1	U .	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.95	2	ug/L
95-47-6	o-Xylene	1	U	0,43	1	ug/L
100-42-5	Styrene	1	U	0.36	1	ug/L
75-25-2	Bromoform	1	υ)	0.47	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.45	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.31	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.43	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.32	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.45	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.46	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	. 1	U	0.2	1	ug/L
SURROGATES	S					
17060-07-0	1,2-Dichloroethane-d4	53.2		66 - 150	106%	SPK: 5
1868-53-7	Dibromofluoromethane	52		76 - 130	104%	SPK: 5
2037-26-5	Toluene-d8	56.7		78 - 121	113%	SPK: 5
460-00-4	4-Bromofluorobenzene	54.1		70 - 131	108%	SPK: 5
INTERNAL ST	CANDARDS					
363-72-4	Pentafluorobenzene	583367	4.08			
540-36-3	1,4-Diffuorobenzene	1260780	4.6			
3114-55-4	Chlorobenzene-d5	1025250	7.94			
3855-82-1	1,4-Dichlorobenzene-d4	457379	10.43			

Wan

284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax: 908 789 8922

Report of Analysis

MACTEC Inc. Client:

Date Collected: 06/01/11

Project:

Loohns Dry Cleaners- APO 201007181

Date Received: 06/03/11

Client Sample ID:

LCMW001016

C2487

Lab Sample ID:

C2487-01

Analytical Method:

SW8260B

Matrix:

SDG No.:

WATER

Sample Wt/Vol:

% Moisture:

100

Units: mL

Final Vol:

5000

Soil Aliquot Vol:

цL

Test:

VOC-TCLVOA-10

uL

GC Column:

RTX-VMS

ID: 0.18

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VH041311.D

06/07/11

VH060711

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ/CRQL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	1	U	0.2	1	ug/L
74-87-3	Chloromethane	1	U	0.2	1	ug/L
75-01-4	Vinyl Chloride	1	U	0.34	1	ug/L
74-83-9	Bromomethane	1	υ	0.2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.35	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.47	1	ug/L
67-64-1	Acetone	5	U	0.5	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	1	ug/L
75-09-2	Methylene Chloride	1	U)	0.41	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.41	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.36	1 .	ug/L
110-82-7	Cyclohexane	1	U	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1.3	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.35	1	ug/L
67-66-3	Chloroform	1	U	0.34	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.4	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	1	ug/L
71-43-2	Benzene	1	υ	0.32	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.48	1	ug/L
79-01-6	Trichloroethene	1	U	0.28	1	ug/L
78-87-5	1,2-Diehloropropane	1	υ	0.46	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.36	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	5	ug/L
108-88-3	Toluene	1	U	0.37	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	1	սբ21
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	1	ug/L

W/24/11

Report of Analysis

MACTEC Inc. Date Collected: 06/01/11 Client: Loohns Dry Cleaners- APO 201007181 Date Received: 06/03/11 Project: Client Sample ID: LCMW001016 SDG No.: C2487 Lab Sample ID: C2487-01 Matrix: WATER % Moisture: Analytical Method: SW8260B 100 Final Vol: Sample Wt/Vol: Units: mL5000 иL VOC-TCLVOA-10 Soil Aliquot Vol: uL Test: GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VH041311.D 1 06/07/11 VH060711

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0.38	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	1	ug/L
106-93-4	1,2-Dibromocthane	1	U	0.41	1	ug/L
127-18-4	Tetrachloroethene	. 1.1		0.27	1	ug/L
108-90-7	Chlorobenzene	1	U	0.49	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.95	2	ug/L
95-47-6	o-Xylene	1	U	0.43	1	ug/L
100-42-5	Styrene	1	U	0.36	1	ug/L
75-25-2	Bromoform	1	U)	0.47	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.45	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethanc	. 1	U	0.31	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.43	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.32	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.45	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.46	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	1	ug/L
SURROGATES	S					
17060-07-0	1,2-Dichloroethane-d4	40		66 - 150	80%	SPK: 50
1868-53-7	Dibromofluoromethane	47.9		76 - 130	96%	SPK: 50
2037-26-5	Toluene-d8	48.2		78 - 121	97%	SPK: 50
460-00-4	4-Bromofiuorobenzene	46		70 - 131	92%	SPK: 50
INTERNAL ST	TANDARDS					
363-72-4	Pentafluorobenzene	691573	4.08			
540-36-3	1,4-Difluorobenzene	1346950	4.59			
3114-55-4	Chlorobenzene-d5	1086110	7.94			
3855-82-1	1,4-Dichlorobenzene-d4	493339	10.44			

PCBs

		EC DUSR PROJECT CHEMIST REVIEW RECORD t: Loohn's Dry Cleaners 3612102148
Me	tho	d: <u>EPA SW-846 8082 PCBs</u>
Dat	e: <u>8</u>	atory and SDG(s): Chemtech SDG# C2487 3/1/2011
		ver: Mike Washburn Level X NYSDEC DUSR D USEPA Region II Guideline
1.		Case Narrative Review and Data Package Completeness COMMENTS
		Package complete. No issues noted. Where all the samples on the COC analyzed for the requested analyses? (YES) NO (circle one)
2.		Holding time and Sample Collection Aqueous hold time is 7days to extraction, solid is 14 days. Hold time met for all samples? YES NO (circle one)
3.		QC Blanks Are method blanks free of contamination? YES NO (circle one) Are Rinse blanks free of contamination? YES NO NA (circle one)
		Percent difference between columns (Region II criteria is 25% for PCBs) Is the percent difference between columns ≤ 25 for PCBs% YES NO NA (circle one)
		Instrument Calibration For aroclors was the I-cal criteria of 20% (%RSD) met? YES NO NA (circle one)
		For aroclors, was the continuing calibration criteria of 15% (%D) met? YES NO NA (circle one)
		Surrogate Recovery (soil and water limits: 30-150%)
		Were all results were within limits? YES NO (circle one)
		Matrix Spike (soil and water limits: 29-135% and RPD of 20, RPD is 15 for Aroclor 1016)
		Were MS/MSDs submitted/analyzed? YES NO (circle one)
		Were all results were within limits? YES NO NA (circle one)
		Field Duplicates (RPD limits for soil=100, water = 50)
		Were Field Duplicates submitted/analyzed? YES NO
		Were RPDs within the limits? YES NO NA (circle one)
		Laboratory Control Sample Results (soil and water percent recovery limits: 50-150%)
		Were all results were within limits? YES NO (circle one)
4.		Raw Data Review and Calculation Checks Completed Myw 19/9/11
5.		Electronic Data Review and Edits
		Does the EDD match the Form I's? YES NO (circle one)
6.		DUSR Table 1 (sample Listing), Table 2 (results summary), Table 3 (Reason Codes). Were all tables produced? YES NO (circle one)
		ects\nysdec1\Contracts D004434 and D004444\projects\Loohns g\3.0_Site_Data\3.4_Test_Results\Checklists\C2487_DUSR_PCB_Checklist.doc

284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax : 908 789 8922

Report of Analysis

Client: MACTEC Inc. Date Collected: 06/01/11 Project: Loohns Dry Cleaners- APO 201007181 Date Received: 06/03/11 Client Sample ID: LCMW001016 SDG No.: C2487 Lab Sample ID: C2487-01 Matrix: WATER SW8082 Analytical Method: % Moisture: 100 Decanted: Sample Wt/Vol: 990 Units: Final Vol: 10000 mLuL Soil Aliquot Vol: иL Test: PCB Extraction Type: Injection Volume GPC Factor: 1.0 PH: 5

parameters.	B. Burgara (1994) (1994), see 1995 (1994) (1994) (1994) (1994) (1994) (1994)		en de l'origent de la l'origent de l'alternation de l'alt		Market and the property of the state of the
Fil	e ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
PC	002043.D	1	06/07/11	06/09/11	PB55866

CAS Number	Parameter	Conc.	Conc. Qualifier		LOQ / CRQL	Units
TARGETS						
12674-11-2	Aroclor-1016	0.51	U	0.097	0.51	ug/L
11104-28-2	Aroclor-1221	0.51	U	0.192	0.51	ug/L
11141-16-5	Aroclor-1232	0.51	U	0.152	0.51	ug/L
53469-21-9	Aroclor-1242	0.51	U	0.09	0.51	ug/L
12672-29-6	Aroclor-1248	0.51	U	0.242	0.51	ug/L
11097-69-1	Aroclor-1254	0.51	U	0.044	0.51	ug/L
11096-82-5	Aroclor-1260	0.51	U	0.082	0.51	ug/L
SURROGATES		•				
877-09-8	Tetrachloro-m-xylene	17.1		35 - 137	85%	SPK: 20
2051-24-3	Decachlorobiphenyl	18.6		40 - 135	93%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

m 2/2/11

284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax: 908 789 8922

Report of Analysis

Client: MACTEC Inc. Date Collected: 06/01/11 Project: Loohns Dry Cleaners- APO 201007181 Date Received: 06/03/11 Client Sample ID: LCMW002019 SDG No.: C2487 Lab Sample ID: C2487-03 Matrix: WATER Analytical Method: SW8082 % Moisture: 100 Decanted: Sample Wt/Vol; 980 Units: Final Vol: mL10000 uL Soil Aliquot Vol: uL Test: PCB Extraction Type: Injection Volume

GPC Factor:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID PC002044.D 06/07/11 06/09/11

CAS Number	Parameter	Conc. Qualifier		MDL	LOQ / CRQL	Units	
TARGETS		·					
12674-11-2	Aroclor-1016	0.51	U	0.098	0.51	ug/L	
11104-28-2	Aroclor-1221	0.51	U	0.194	0.51	ug/L	
11141-16-5	Aroclor-1232	0.51	Ū	0.153	0.51	ug/L	
53469-21-9	Aroclor-1242	0.51	U	0.091	0.51	ug/L	
12672-29-6	Aroclor-1248	0.51	U	0.245	0.51	ug/L	
11097-69-1	Aroclor-1254	0.51	U	0.045	0.51	ug/L	
11096-82-5	Aroclor-1260	0.51	U	0.083	0.51	ug/L	
SURROGATES							
877-09-8	Tetrachloro-m-xylene	17.4		35 - 137	87%	SPK: 20	
2051-24-3	Decachlorobiphenyl	16.8		40 - 135	84%	SPK: 20	

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

CALIBRATION FACTOR OF INITIAL CALIBRATION

Contract:

MACT03

Lab Code:

CHEM Case No.:

C2487

SAS No.:

C2487

SDG NO.:

C2487

Instrument ID:

ECD_C

Calibration Date(s):

06/04/2011

06/04/2011

Calibration Times:

ies:

11:02

12:07

GC Column:

RTX-CLPest

ID:

0.32 (mm)

LAB FILE ID: $CF 500 = P$	C001929.E		<u></u>	01931.D 01928.D	CF 250 = CF 1000 =	PC001930.D PC001927,D		
COMPOUND		CF 50	CF 250	CF 500	CF 750	CF 1000	CF	% RSD
Tetrachloro-m-xylene		1501900	1469828	1418864	1380945	1391028	1432513	4
Decachlorobiphenyl		1793560	2007300	2173688	2063085	2110738	2029674	7
AROCLOR 1016	(1)	75398	67706	60781	56933	55815	63327	13
AROCLOR 1016	(2)	153198	148642	138897	132969	133411	141423	6
AROCLOR 1016	(3)	57550	53204	48740	46412	46295	50440	10
AROCLOR 1016	(4)	92092	81487	72571	68451	67594	76439	14
AROCLOR 1016	(5)	61136	59068	54181	52842	52735	55992	7
AROCLOR 1260	(1)	99962	88185	85687	81231	81026	87218	9
AROCLOR 1260	(2)	190740	187246	167217	158981	159761	172789	9
AROCLOR 1260	(3)	168478	159052	147180	142139	144426	152255	7
AROCLOR 1260	(4)	241650	245248	228462	210465	219035	228972	6
AROCLOR 1260	(5)	112324 🗸	108531	102267	99301 🗸	101096	104704 🗸	5 V

N3/2/1"

Quantitation Report (QT Reviewed)

Data Path : P:\HPCHEM1\Ecd C\Data\PC060511\

Data File: PC001931.D

Signal(s): Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Acq On : 4 Jun 2011 12:07

Operator : BI

Sample : 1660 50 PPB

Misc

ALS Vial : 6 Sample Multiplier: 1

Integration File signal 1: autoint1.e Integration File signal 2: autoint2.e

Quant Time: Jun 04 12:23:48 2011

Quant Method: P:\HPCHEM1\Ecd C\Method\PC060511.M

Quant Title : GC EXTRACTABLES

QLast Update: Sat Jun 04 12:07:36 2011 Response via: Initial Calibration

Integrator: ChemStation

Volume Inj. : 2 µl

Signal #1 Phase : Rtx-CLPesticides Signal #2 Phase: Rtx-CLPesticides II Signal #1 Info : 30Mx0.53mmx 0.5μm Signal #2 Info : 30M x 0.53mm x 0.25μm

		Compound	RT#1	RT#2	Resp#1	Resp#2	ng/ml	ng/ml
•		** *** *** *** *** ** ** ** ** ** ** **						
:	Syst	em Monitoring	Compounds					
1)	SA	Tetrachlo	1.597	1.987	75095	154918	5.306	5.547
2)	SA	Decachlor	8.467	9.909	89678	214139	4.293m	5.744m#
	Tarq	et Compounds						
3)	L1	Aroclor-1	2.277	3.025	37699	70905	62.510m	56.078
4)	L1	Aroclor-1	2.767	3.590	76599	145980	55.314m	59.119m
5)	L1	Aroclor-1	2.921	3.763	28775	60833	59.132m	54.664m
6)	L1	Aroclor-1	3.158	3.893	46046	42921	63.490m	48.689m
7)	L1	Aroclor-1	3.400	4.541	30568	51355	55.877m	50.896m
31)	L7	Aroclor-1	4.937	6.105	49981	105372	59.479m	59.923m
32)	L7	Aroclor-1	5.310	6,411	95370	115651	56.666m	56,562m
33)	L7	Aroclor-1	5.674	6,886	84239	155087	56.842	55.067m
34)	L7	Aroclor-1	6.584	7.791	120825	211212	53.509m	55,931
35)	L7	Aroclor-1	6.955	8.285	56162	144467	54.633	50.672m

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

56162 = 11232H

Quantitation Report (QT Reviewed)

Data Path : P:\HPCHEM1\Ecd C\Data\PC060511\

Data File : PC001930.D

Signal(s): Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Acq On : 4 Jun 2011 11:51

Operator : BI

Sample : 1660 250 PPB

Misc

ALS Vial : 5 Sample Multiplier: 1

Integration File signal 1: autoint1.e Integration File signal 2: autoint2.e Quant Time: Jun 04 12:06:56 2011

Quant Method: P:\HPCHEM1\Ecd C\Method\PC060511.M

Quant Title : GC EXTRACTABLES

QLast Update : Sat Jun 04 12:05:39 2011 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 2 µl

Signal #1 Phase : Rtx-CLPesticides Signal #2 Phase: Rtx-CLPesticides II Signal #1 Info : 30Mx0.53mmx 0.5μm Signal #2 Info : 30M x 0.53mm x 0.25μm

		Compound	RT#1	RT#2	Resp#1	Resp#2	ng/ml	ng/ml
			· · · · · · · · · · · · · · · · · · ·					
	Svst	em Monitoring	Compounds					
1)	SA	Tetrachlo	1.597	1.986	367457	744509	25.966	26.657
2)	SA	Decachlor	8.469	9.909	501825	1032801	24.026	27.705
	Tarq	et Compounds				,		
3)	L1	Aroclor-1	2.277	3.024	169266	354684	280.667	280.514
4)	L1	Aroclor-1	2,766	3.589	371604	691471	268.346	280.030
5)	L1	Aroclor-1	2.921	3.763	133010	307600	273.331	276,406
6)	L1	Aroclor-1	3.159	3.893	203717	235908	280.889	267.609
7)	L1	Aroclor-1	3.402	4.542	147671	268813	269.933	266.410
31)	L7	Aroclor-1	4.938	6.106	220463	485153	262,355	275.897
32)	L7	Aroclor-1	5.309	6.411	468115	565463	278.141	276,555
33)	L7	Aroclor-1	5.672	6.886	397630	761889	268.308	270.524
34)	L7	Aroclor-1	6.584	7.790	613119	1020239	271.529	270.168
35)	L7	Aroclor-1	6.954	8.285	271327	773043	263.940	271.146

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

8/3/11 Mon Quantitation Report (QT Reviewed)

Data Path : P:\HPCHEM1\Ecd C\Data\PC060511\

Data File : PC001929.D

Signal(s): Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Acg On : 4 Jun 2011 11:34

Operator : BI

: 1660 500 PPB Sample

Misc

ALS Vial : 4 Sample Multiplier: 1

Integration File signal 1: autoint1.e Integration File signal 2: autoint2.e

Quant Time: Jun 04 11:56:03 2011

Quant Method: P:\HPCHEM1\Ecd C\Method\PC060511.M

Quant Title : GC EXTRACTABLES

QLast Update: Sat Jun 04 11:54:42 2011 Response via: Initial Calibration

Integrator: ChemStation

Volume Inj. : 2 µl

Signal #1 Phase: Rtx-CLPesticides Signal #2 Phase: Rtx-CLPesticides II Signal #1 Info : 30Mx0.53mmx 0.5pm Signal #2 Info : 30M x 0.53mm x 0.25pm

	Compound	RT#1	RT#2	Resp#1	Resp#2	na/ml	ng/ml
Syst	em Monitoring	Compounds					
1) SA	Tetrachlo	1.597	1.986	709432	1396875	50.000	50.000
2) SA	Decachlor	8.469	9.909	1086844	1870764	50.000	50.000
Taro	et Compounds						
3) L1	Aroclor-1	2.277	3.023	303903	636701	500.000	500.000
4) L1	Aroclor-1	2.766	3,589	694484	1240704	500.000	500.000
5) L1	Aroclor-1	2.920	3.763	243699	558496	500.000	500.000
6) L1	Aroclor-1	3.158	3.893	362856	439673	500.000	500.000
7) L1	Aroclor-1	3.401	4.541	270903	506460	500.000	500.000
31) L7	Aroclor-1	4.937	6.104	428436	880799	500.000	500,000
32) L7	Aroclor-1	5.308	6.410	836085	1022064	500.000	500.000
33) L7	Aroclor-1	5.671	6.885	735899	1407680	500.000	500.000
34) L 7	Aroclor-1	6.583	7.790	1142312	1879077	500.000	500.000
35) L 7	Aroclor-1	6.954	8.285	511337	1422023	500.000	500.000

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

511337 ; 102267.4

Data File: PC001928.D

Signal(s): Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Aca On : 4 Jun 2011 11:18

Operator : BI

Sample : 1660 750 PPB

Misc

ALS Vial : 3 Sample Multiplier: 1

Integration File signal 1: autoint1.e Integration File signal 2: autoint2.e

Quant Time: Jun 04 12:02:19 2011

Quant Method: P:\HPCHEM1\Ecd C\Method\PC060511.M

Quant Title : GC EXTRACTABLES

QLast Update: Sat Jun 04 12:01:17 2011

Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 2 µ1

Signal #1 Phase : Rtx-CLPesticides Signal #2 Phase: Rtx-CLPesticides II Signal #1 Info : 30Mx0.53mmx 0.5μm Signal #2 Info : 30M x 0.53mm x 0.25μm

		Compound	RT#1	RT#2	Resp#1	Resp#2	na/ml	ng/ml
,	- -							
	Svst	em Monitoring	Compounds					
1)	SA	Tetrachlo	1.595	1,986	1035709	2026921	74.141	74.212
2)	SA	Decachlor	8.469	9.910	1547314	2648108	73.130	73.693
		_						
'	Tarq	et Compounds						
· 3)	L1	Aroclor-1	2.275	3.023	426996	898743	738.201	740.948
4)	L1	Aroclor-1	2.764	3.589	997266	1752853	738.211	739.475
5)	L1	Aroclor-1	2.919	3.763	348087	794248	738.272	739.746
6)	L1	Aroclor-1	3.157	3.893	513382	637555	738.266	740.618
7)	L1	Aroclor-1	3.400	4.542	396315	731398	744.220	741.072
31)	L7	Aroclor-1	4.936	6.105	609232	1260223	737.140	742.297
32)	L7	Aroclor-1	5.307	6.410	1192359	1461555	736.086	741.051
33)	L7	Aroclor-1	5.671	6.886	1066042	2034613	737.329	742.755
34)	L7	Aroclor-1	6.582	7.790	1578485	2719413	719.716	740.024
35)	ь7	Aroclor-1	6.953	8.285	744761	2061121	738.204	743.914

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

Quantitation Report (QT Reviewed)

Data Path : P:\HPCHEM1\Ecd C\Data\PC060511\

Data File : PC001927.D

Signal(s): Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Acq On : 4 Jun 2011 11:02

Operator : BI

Sample : 1660 1000 PPB

Misc

ALS Vial : 2 Sample Multiplier: 1

Integration File signal 1: autoint1.e Integration File signal 2: autoint2.e

Quant Time: Jun 04 12:00:18 2011

Quant Method: P:\HPCHEM1\Ecd C\Method\PC060511.M

Quant Title : GC EXTRACTABLES
QLast Update : Sat Jun 04 11:58:52 2011 Response via: Initial Calibration

Integrator: ChemStation

Volume Inj. : 2 µl

Signal #1 Phase: Rtx-CLPesticides Signal #2 Phase: Rtx-CLPesticides II Signal #1 Info : $30M \times 0.53mm \times 0.5\mu m$ Signal #2 Info : $30M \times 0.53mm \times 0.25\mu m$

		Compound	RT#1	RT#2	Resp#1	Resp#2	ng/ml	ng/ml
	Svst	em Monitoring	Compounds					
1)	SA	Tetrachlo	1.596	1.985	1391028	2697513	99,009	98.247
2)	SA	Decachlor	8.468	9.909	2110738	3507934	98.531	96.778
	Tarq	et Compounds						
3)	L1	Aroclor-1	2.276	3.023	558148	1167164	957.411	956.469
4)	L1	Aroclor-1	2.765	3.589	1334111	2292665	979.855	960.465
5)	L1	Aroclor-1	2.919	3.762	462952	1045042	974.276	966.721
6)	L1	Aroclor-1	3.157	3.892	675943	853105	964.492	984.854
7)	L1	Aroclor-1	3.400	4.541	527347	972720	986.476	979.755
31)	L7	Aroclor-1	4.936	6.104	810262	1651310	972.042	967.685
32)	L7	Aroclor-1	5,308	6.410	1597609	1923948	977.197	969.713
33)	L7	Aroclor-1	5.671	6.885	1444260	2689658	990.557	977.166
34)	L7	Aroclor-1	6.582	7.790	2190347	3640248	978.932	984.063
35)	L7	Aroclor-1	6.953	8.285	1010961	2719725	994.240	977.655

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

1010961

CHEMITECH

CALIBRATION VERIFICATION SUMMARY

Contract: MACT03

Lab Code: CHEM Case No.: C2487 SAS No.: C2487 SDG NO.: C2487

GC Column: RTX-CLPest ID: 0.32 (mm) Initi. Calib. Date(s): 06/04/2011 06/04/2011

Client Sample No.: CCAL02 Date Analyzed: 06/09/2011

Lab Sample No.: 1660 500 Data File: PC002042.D Time Analyzed: 18:55

COMPOUND	RT	RT WINI FROM	OOW TO	CALC AMOUNT(ng)	NOM AMOUNT(ng)	%D
AROCLOR 1016 (1)	2.285	2.230	2,330	0.461	0.500	7.8
AROCLOR 1016 (2)	2.775	2.720	2.820	0.466	0.500	6.8
AROCLOR 1016 (3)	2,929	2.870	2.970	0.498	0.500	0.4
AROCLOR 1016 (4)	3.166	3.110	3.210	0.518	0,500	3.6
AROCLOR 1016 (5)	3.409	3.350	3.450	0,467	0.500	6.6
AROCLOR 1260 (1)	4.942	4.890	4.990	0.450	0.500	10.0
AROCLOR 1260 (2)	5.314	5.260	5.360	0,445	0.500	11.0
AROCLOR 1260 (3)	5.677	5.620	5.720	0.435	0.500	13.0
AROCLOR 1260 (4)	6.589	6.530	6.630	0.416	0.500	16.8
AROCLOR 1260 (5)	6.959	6.900	7.000	0.466	0.500	6.8
Tetrachloro-m-xylene	1.607	1.550	1.650	0.046	0.050	8.0
Decachlorobiphenyl	8,476	8.370	8.570	0.044	0.050	12.0

1-0.5

MMX/1/11

Data File: PC002042.D

Signal(s): Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Acq On : 9 Jun 2011 18:55

Operator : BI

Sample : 1660 500

Misc

ALS Vial: 14 Sample Multiplier: 1

Integration File signal 1: autoint1.e Integration File signal 2: autoint2.e Quant Time: Jun 10 02:15:46 2011

Quant Method: P:\HPCHEM1\Ecd C\Method\PC060511.M

Quant Title : GC EXTRACTABLES

QLast Update: Sat Jun 04 15:21:08 2011

Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 2 µl

Signal #1 Phase: Rtx-CLPesticides Signal #2 Phase: Rtx-CLPesticides II Signal #1 Info : 30Mx0.53mmx 0.5µm Signal #2 Info : 30M x 0.53mm x 0.25µm

		Compound	RT#1	RT#2	Resp#1	Resp#2	ng/ml	na/ml
	Cwa+	em Monitorina	Compounds				MAN SAN SAN SAN SAN SAN SAN SAN SAN SAN	
1)	SA	Tetrachlo	1.607	1.997	656384	1513432	45.820	53.028
2)	SA	Decachlor	8.476	9.916	884345	2030603	43.571	52,896
	Tarq	et Compounds						
3)	L1	Aroclor-1	2.285	3.033	292172	633614	461.375	489.222
4)	L1	Aroclor-1	2.775	3.598	659391	1295674	466.254	506.253
5)	L1	Aroclor-1	2.929	3.772	251222	578279	498.058	510.117
6)	L1	Aroclor-1	3.166	3.902	395725	457156	517.699	521.323
7)	L1	Aroclor-1	3.409	4.551	261303	526667	466.676	520.094
31)	L7	Aroclor-1	4.942	6.113	392295	936298	449.784m	512.128
32)	L7	Aroclor-1	5.314	6.418	769514	1149549	445.349m	547.837
33)	L7	Aroclor-1	5.677	6.894	662991	1528423	435.448m	531.916
34)	L7	Aroclor-1	6.589	7.797	953383	2057307	416.376m	532.168 #
35)	L7	Aroclor-1	6.959	8.293	487827	1555771	465.911m	544.225

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

Laboratory Control Sample/Laboratory Control Sample Duplicate Summary

SW-846

SDG No.:

C2487

Client:

MACTEC Inc.

Analytical Method:

EPA SW-846 8082

							RPD		Limits	
Lab Sample ID	Parameter	Spike	Result	Rec	RPD	Qual	Qual	Low	High	RPD
PB55866BS	AROCLOR 1016	2.000	2.3	115				56	149	
	AROCLOR 1260	2,000	2.3	سسنة 115				66	147	
PB55866BSD	AROCLOR 1016	2,000	2.3	115	0			56	149	20
	AROCLOR 1260	2.000	2.3	115	0			66	147	20

2.3.100%. 115%

Data Path: P:\HPCHEM1\Ecd C\Data\PC060911\

Data File: PC002039.D

Signal(s): Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Acq On : 9 Jun 2011 18:06

Operator : BI

Sample : PB55866BS

Misc

ALS Vial : 11 Sample Multiplier: 1

Integration File signal 1: autoint1.e Integration File signal 2: autoint2.e

Quant Time: Jun 10 02:08:19 2011

Quant Method: P:\HPCHEM1\Ecd C\Method\PC060511.M

Quant Title : GC EXTRACTABLES

QLast Update : Sat Jun 04 15:21:08 2011 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 2 µl

Signal #1 Phase: Rtx-CLPesticides Signal #2 Phase: Rtx-CLPesticides II Signal #1 Info : 30Mx0.53mmx 0.5µm Signal #2 Info : 30M x 0.53mm x 0.25µm

	Compound .	RT#1	RT#2	Resp#1	Resp#2	ng/ml	ng/ml
nn e							
St	ystem Monitorina	Compounds					
1) 5	SA Tetrachlo	1.608	1,998	291566	590297	20.353	20.683
2) 5	SA Decachlor	8.476	9.917	402605	895641	19.836	23.331
Ta	arget Compounds						
3) I	L1 Aroclor-1	2.285	3.033	141097	285279	222.809m	220.267m
4) I	L1 Aroclor-1	2.775	3.600	277123	636660	195.953m	248.759 #
5) I	L1 Aroclor-1	2.928	3.773	119260	269564	236.438m	237.790
6) I	L1 Aroclor-1	3.165	3.904	169574	209458	221.841m	238.858
7) I	L1 Aroclor-1	3.408	4.552	123262	214545	220.140m	211.867
31) I	L7 Aroclor-1	4.945	6.112	195270	442353	223.886	241.954m 🔪
32) I	L7 Aroclor-1	5.316	6.417	380752	504483	220.357	240.420m
33) I	L7 Aroclor-1	5.680	6.892	353992	689503	232,499	239.958m > AV
34) I	L7 Aroclor-1	6.591	7.798	392861	890610	171.576	230.376 # / 272 9057
35) 1	L7 Aroclor-1	6.959	8.291	193022	605526	184.351m	

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

193022 = 1.84350L

Surrogate Summary

SW-846

SDG No.:

C2487

Client:

MACTEC Inc.

Analytical Method:

EPA SW-846 8082

					·		Li	imits
Lab Sample ID	Client ID	Parameter	Spike	Result	Recovery	Qual	Low	High
I.BLK-PC001926.D	PIBLK-PC001926.D	Tetrachloro-m-xylene	20	20,56	103		35	137
		Decachlorobiphenyl	20	24.51	123		40	135
I.BLK-PC002029.D	PIBLK-PC002029.D	Tetrachloro-m-xylene	20	19.42	97		35	137
		Decachlorobiphenyl	20	20.98	105		40	135
PB55866BL	PB55866BL	Tetrachloro-m-xylene	20	20.81	104		35	137
		Decachlorobiphenyl	20	21	105		40	135
PB55866BS	PB55866BS	Tetrachloro-m-xylene	20	20.35	102		35	137
		Decachlorobiphenyl	20	19.84	99		40	135
PB55866B S D	PB55866BSD	Tetrachloro-m-xylene	20	20,2	101		35	137
		Decachlorobiphenyl	20	19.88	99		40	135
I.BLK-PC002041.D	PIBLK-PC002041.D	Tetrachloro-m-xylene	20	20.61	103		35	137
		Decachlorobiphenyl	20	20.55	103		40	135
C2487-01	LCMW001016	<u>Tetrachloro-ın-xylene</u>	20	17.07	85		35	137
		Decachlorobiphenyl	20	18.59	93		40	135
C2487-03	LCMW002019	Tetrachloro-m-xylene	20	17.41	87		35	137
_		Decachlorobiphenyl	20	16.82	84		40	135
I.BLK-PC002052.D	PIBLK-PC002052.D	Tetrachloro-m-xylene	20	20.91	105		35	137
		Decachlorobiphenyl	20	20.77	104		40	135

PESTICIDES

NYSDEC DUSR PROJECT CHEMIST REVIEW RECORD

Project: Loohn's Dry Cleaners 3612102148

Method: EPA SW-846 8081 Pesticide Laboratory and SDG(s): Chemtech SDG# C2487 Date: 8/1/2011 Reviewer: Mike Washburn X NYSDEC DUSR Review Level ☐ USEPA Region II Guideline 1. □ Case Narrative Review and Data Package Completeness COMMENTS Package completed. Problems noted in case narrative discussed in sections below. Where all the samples on the COC analyzed for the requested analyses? (YES NO (circle one) 2. Holding time (HT) and Sample Collection Aqueous is 7 days to extraction, solid is 14 days. HT met for all samples (NO (circle one) □ QC Blanks Are method blanks free of contamination? (YES)NO (circle one) Are Rinse blanks free of contamination? YES NO (☐ Percent difference between columns (Region II criteria is 25% for Pest's) Is the percent difference between columns ≤25? (YES)NO (circle one) Instrument Calibration I-cal criteria of 20% (%RSD) (alpha-BHC, delta-BHC = 25%, Toxaphene = 30%) met (YES) NO (circle one) Continuing calibration criteria of (%D) 20% met? YES NA (circle one) ☐ Surrogate Recovery (soil and water limits: 30-150%) Were all results were within laboratory limits? (YES) NO (circle one) ☐ Matrix Spike (Use lab limits) (refer to limits listed in SOP HW-44 Oct 2006 if no lab limits are listed) Were MS/MSDs submitted/analyzed? YES(NO Were all results were within laboratory limits? YES NO (circle one) Field Duplicates (RPD limits for soil=100, water = 50) Were Field Duplicates submitted/analyzed? YES (NO Were RPDs within the limits? YES NO (NA (circle one) ☐ Laboratory Control Samples (Use lab limits) (refer to limits in SOP HW-44 Oct 2006 if no lab limits are listed) YES(NO Were all results were within laboratory limits? (circle one) The LCS relative percent difference for gamma-chlordane (24) exceeded the laboratory QC limit of 20. Gamma-chlordane was not detected in associated samples and the reporting limits were qualified estimated (UJ). Limits used were: (Lab Limits Region II SOP HW-44 Oct 2006 (circle one)

4.	☐ Raw Data Review and Calculation Checks Completed
5.	☐ Electronic Data Review and Edits: Does the EDD match the Form I's? YES NO (circle one)
6.	 DUSR Table 1 (sample Listing), Table 2 (results summary), Table 3 (Reason Codes). Were all tables produced? YES NO (circle one)

284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax: 908 789 8922

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

06/01/11

Project:

Loohns Dry Cleaners- APO 201007181

Date Received:

06/03/11

Client Sample ID:

LCMW001016

SDG No.:

C2487

Lab Sample ID:

C2487-01

Matrix:

WATER

Analytical Method:

SW8081A

% Moisture:

100

Decanted:

Sample Wt/Vol:

970

Units: mL

Final Vol:

10000

uL

Soil Aliquot Vol:

uL

Test:

Pesticide-TCL

Extraction Type:

GPC Factor:

Injection Volume

File ID/Qc Batch;

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

PD002267.D

1

06/07/11

06/15/11

PB55867

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
319-84-6	alpha-BHC	0.052	U	0.0053	0.052	ug/L
319-85-7	beta-BHC	0.052	U	0.0089	0.052	ug/L
319-86-8	delta-BHC	0.052	U	0.0058	0.052	ug/L
58-89-9	ganma-BHC	0.052	U	0.0057	0.052	ug/L
76-44-8	Heptachlor	0.052	U	0.0071	0.052	ug/L
309-00-2	Aldrin	0.052	U	0.0064	0.052	ug/L
1024-57-3	Heptachlor epoxide	0.052	U	0.0069	0.052	ug/L
959-98-8	Endosulfan I	0.052	U	0.0063	0.052	ug/L
60-57-1	Dieldrin	0.052	U	0.0048	0.052	ug/L
72-55-9	4,4-DDE	0.052	U	0.0041	0.052	ug/L
72-20-8	Endrin	0.052	U	0.006	0.052	ug/L
33213-65-9	Endosulfan II	0.052	U	0.0057	0.052	ug/L
72-54-8	4,4-DDD	0.052	U	0.0073	0.052	ug/L
1031-07-8	Endosulfan Sulfate	0.052	U	0.0062	0.052	ug/L
50-29-3	4 ,4-DDT	0.052	U .	0.0061	0.052	ug/L
72-43-5	Methoxychlor	0.052	U	0.0043	0.052	ug/L
53494-70-5	Endrin ketone	0.052	U	0.0059	0.052	ug/L
7421-93-4	Endrin aldehyde	0.052	U	0.0046	0.052	ug/L
5103-71-9	alpha-Chlordane	0,052	U	0.0051	0.052	ug/L
5103-74-2	gamına-Chlordane	0.052	$\Pi \hat{J}$	0.0052	0.052	ug/L
8001-35-2	Toxaphene	0.52	U	0.103	0.52	ug/L
SURROGATES						
2051-24-3	Decachlorobiphenyl	23.1		10 - 192	116%	SPK: 20
877-09-8	Tetrachloro-m-xylene	19.5		10 - 172	98%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample,

11/18 cm

284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax: 908 789 8922

Report of Analysis

Project: Loohns Dry Cleaners- APO 201007181

MACTEC Inc.

Client Sample ID: LCMW002019

Lab Sample ID: C2487-03

Analytical Method: SW8081A

Sample Wt/Vol: 980

ampie w v voi. 960

Soil Aliquot Vol:
Extraction Type:

GPC Factor:

File ID/Qc Batch:

PD002268.D

Client:

1.0

1

Dilution:

Units:

uL

mL

Prep Date 06/07/11

Date Analyzed

Date Collected:

Date Received:

SDG No.:

% Moisture:

Injection Volume

Final Vol:

Test:

Matrix:

06/01/11

06/03/11

C2487

100

10000

Pesticide-TCL

WATER

06/15/11

Prep Batch ID

Decanted:

uL

PB55867

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
319-84-6	alpha-BHC	0.051	U	0.0052	0.051	ug/L
319-85-7	beta-BHC	0.051	U	0.0088	0.051	ug/L
319-86-8	delta-BHC	0.051	U	0.0057	0.051	ug/L
58-89-9	gamma-BHC	0.051	U	0.0056	0.051	ug/L
76-44-8	Heptachlor	0.051	U	0.007	0.051	ug/L
309-00-2	Aldrin	0.051	U	0.0063	0.051	ug/L
1024-57-3	Heptachlor epoxide	0.051	U	0.0068	0.051	ug/L
959-98-8	Endosulfan I	0.051	U	0.0062	0.051	ug/L
60-57-1	Dieldrin	0.051	U	0.0048	0.051	ug/L
72-55-9	4,4-DDE	0.051	U	0.0041	0.051	ug/L
72-20-8	Endrin	0.051	U	0.0059	0.051	ug/L
33213-65-9	Endosulfan II	0.051	U	0.0056	0.051	ug/L
72-54-8	4,4-DDD	0.051	U	0.0072	0.051	ug/L
1031-07-8	Endosulfan Sulfate	0.051	U	0.0061	0.051	ug/L
50-29-3	4,4-DDT	0.051	U	0.006	0.051	ug/L
72-43-5	Methoxychlor	0.051	U	0.0043	0.051	ug/L
53494-70-5	Endrin ketone	0.051	U	0.0058	0.051	ug/L
7421-93-4	Endrin aldehyde	0.051	U	0.0046	0.051	ug/L
5103-71-9	alpha-Chlordane	0.051	U	0.005	0.051	ug/L
5103-74-2	gamma-Chlordane	0.051	U J	0.0051	0.051	ug/L
8001-35-2	Toxaphene	0.51	บ	0.102	0.51	ug/L
SURROGATES						
2051-24-3	Decachlorobiphenyl	23.3		10 - 192	116%	SPK: 20
877-09-8	Tetrachloro-m-xylene	19.4		10 - 172	97%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected eoncentrations between the two GC columns

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

W2 8/1/11

CALIBRATION FACTOR OF INITIAL CALIBRATION

Contract:

MACT03

Lab Code:

CHEM

Case No.:

C2487

SAS No.:

C2487

SDG NO.:

C2487

Instrument ID:

ECD_D

Calibration Date(s):

06/14/2011

06/14/2011

Calibration Times:

19:08

20:07

GC Column:

ZB-MR2

ID:

0.32 (mm)

LAB FILE ID: CF 050 = <u>PD002206.</u>			02208.D 02205.D		PD002207.D PD002204.D		
COMPOUND	CF 005	CF 025	CF 050	CF 075	CF 100	CF	% RSD
Decachlorobiphenyl	17696601480	16055575548	18874246020	19097390403	16470828837	17638928458	8
Tetrachloro-m-xylene	14883818260	13645556408	13365650114	13139294596	13415324203	13689928716	5
alpha-BHC	251423865800	233195117520	171471461360	242124337800	195741941680	218791344832	15
beta-BHC	101400885600	93843997440	90762977920	90381248347	90603774410	93398576743	5
delta-BHC	247452028400	243954223080	179698836160	252385936880	207870217740	226272248452	14
gamma-BHC (Lindane)	233668538000	232378415120	166771211560	237487431453	193387289920	212738577211	15
Heptachlor	224340050400	214137274760	208236311780	194968634853	200830367160	208502527791	5
Aldrin	238707100800	231291754160 🖊	225752243420 🗸	219235526427	186476254710 ~	220292575903	9 🛩
Heptachlor epoxide	238411849400	218095006040	207272713580	194004844373	191297873240	209816457327	9
Endosulfan I	243445474800	236775794440	224100682540	205703333800	202852449090	222575546934	8
Dieldrin	280908006400	264835173680	196440990560	242299961827	209018456020	238700517697	15
4,4-DDE	266427823800	257960082600	196162863700	255805306373	221953969750	239662009245	12
Endrin	247498800800	240103140040	228881165400	212110559560	205396292790	226797991718	8
Endosulfan II	245037781000	237536734800	229514698740	210357539227	206280564990	225745463751	7
4,4-DDD	225511410200	224295998720	223292220740	207177159213	206880737100	217431505195	4
Endosulfan sulfate	197425630400	191985244120	190227368120	181631625587	177336546190	187721282883	4
4,4-DDT	204317896000	224296545720	232230929600	226121341440	229191555190	223231653590	5
Methoxychlor	92360872800	87536412640	84255439440	80098293347	77185831540	84287369953	7
Endrin ketone	259698133800	240166948360	224817997680	213694673227	203421134530	228359777519	10
Endrin aldehyde	195610944200	188158778080	184380801400	172993023427	166033973720	181435504165	7
alpha-Chlordane	256655187600	249654862480	178119511140	243680904467	209984829820	227619059101	14
gamma-Chlordane	272004500000	257997093800	256095281960	251491361267	249874953960	257492638197	3

Aldrin Conc 0800

CF

 238707100800
 5

 231291754160
 25

 225752243420
 50

 219235526427
 75

 186476254710
 100

9 %RSD

220292575903 Ave

W) // //

Data File : PD002204.D

Signal(s): Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Acq On : 14 Jun 2011 19:08

Operator : JJ

Sample : 100 PPB PEST STD

Misc

ALS Vial : 6 Sample Multiplier: 1

Integration File signal 1: autoint1.e
Integration File signal 2: autoint2.e

Quant Time: Jun 15 02:25:25 2011

Quant Method: P:\HPCHEM1\Ecd D\Method\PD061511.M

Quant Title : GC Extractables

QLast Update: Wed Jun 15 01:59:49 2011 Response via: Initial Calibration

Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped

Volume Inj. : 2 µl

Signal #1 Phase: ZB-MR2 Signal #2 Phase: ZB-MR1

Signal #1 Info : 30M x 0.32mm x0.2 Signal #2 Info : 30M x 0.32mm x 0.50µm

3) MA gamma-BHC 4.470 5.145 19338.7E6 30336.7E6 107.390 99.982m 4) MA Heptachlor 4.744 5.659 20083.0E6 24385.6E6 98.190 103.911 5) MB Aldrin 4.977 5.962 18647.6E6 24357.6E6 90.472 104.405 6) B beta-BHC 4.712 5.321 9060.4E6 13547.3E6 99.912 99.575 7) B delta-BHC 4.902 5.531 20787.0E6 29510.1E6 107.269 104.289m 8) B Heptachlo 5.406 6.348 19129.8E6 23325.6E6 105.259m 104.789m 9) A Endosulfan I 5.728 6.703 20285.2E6 21349.8E6 103.184m 104.471m 10) B gamma-Chl 5.621 6.583 24987.5E6 25580.7E6 106.029m 114.185m 11) B alpha-Chl 5.683 6.656 20998.5E6 24125.3E6 108.211 105.339m 12) B 4,4'-DDE 5.853 6.814 22195.4E6 23770.5E6 106.168 105.010m 13) MA Dieldrin 5.962 6.959 20901.8E6 23437.2E6 103.102 105.001m 14) MA Endrin 6.215 7.175 20539.6E6 19063.9E6 102.580m 106.839m 15) B Endosulfa 6.484 7.383 20628.1E6 18863.0E6 94.488m 105.704m 16) A 4,4'-DDD 6.355 7.302 20688.1E6 17453.8E6 103.296m 107.228m 17) MA 4,4'-DDT 6.588 7.600 22919.2E6 17501.0E6 107.948m 108.444m			Compound	RT#1	RT#2	Resp#1	Resp#2	ng/ml	ng/ml
1) SA Tetrachlo 3.766 4.475 13415.3E6 24341.7E6 100.185 104.678m Decachlor 8.392 9.531 16470.8E6 10599.2E6 93.200 99.833 Target Compounds 2) A alpha-BHC 4.200 4.858 19574.2E6 30827.1E6 106.609 105.814m 3.766 MA gamma-BHG 4.470 5.145 19338.7E6 30336.7E6 107.390 99.982m 4.76 MA Heptachlor 4.744 5.659 20083.0E6 24385.6E6 98.190 103.911 5.704 MB Aldrin 4.977 5.962 18647.6E6 24357.6E6 90.472 104.405 6.70 MB Aldrin 4.977 5.962 18647.6E6 24357.6E6 90.472 104.405 6.70 MB Aldrin 4.972 5.321 9060.4E6 13547.3E6 99.912 99.575 7.70 MB delta-BHC 4.902 5.531 20787.0E6 29510.1E6 107.269 104.289m 8.70 MB Heptachlo 5.406 6.348 19129.8E6 23325.6E6 105.259m 104.789m 9.70 MB Aldrin 5.728 6.703 20285.2E6 21349.8E6 103.184m 104.471m 10.70 MB gamma-Chl 5.683 6.656 20998.5E6 24125.3E6 106.029m 114.185m 11.70 MB alpha-Chl 5.683 6.814 22195.4E6 23770.5E6 106.168 105.010m 12.70 MB Dieldrin 5.962 6.959 20901.8E6 23437.2E6 103.102 105.001m 14.70 MB Endrin 6.215 7.175 20539.6E6 19063.9E6 102.580m 106.839m 15.70 MB Endosulfa 6.484 7.383 20628.1E6 18863.0E6 94.488m 105.704m 16.70 MB 4.44-DDD 6.355 7.302 20688.1E6 17453.8E6 103.296m 107.228m 17.70 MB 4.44-DDD 6.355 7.302 20688.1E6 17453.8E6 103.296m 107.228m 17.70 MB 4.44-DDD 6.355 7.600 22919.2E6 17501.0E6 107.948m 108.444m	,	Svet	em Monitorina	Compounds					
Target Compounds 2) A alpha-BHC					4.475	13415.3E6	24341.7E6	100.185	104.678m
Target Compounds 2) A alpha-BHC	•								
2) A alpha-BHC 4.200 4.858 19574.2E6 30827.1E6 106.609 105.814m 3) MA gamma-BHG 4.470 5.145 19338.7E6 30336.7E6 107.390 99.982m 4) MA Heptachlor 4.744 5.659 20083.0E6 24385.6E6 98.190 103.911 5) MB Aldrin 4.977 5.962 18647.6E6 24357.6E6 90.472 104.405 6) B beta-BHC 4.712 5.321 9060.4E6 13547.3E6 99.912 99.575 7) B delta-BHC 4.902 5.531 20787.0E6 29510.1E6 107.269 104.289m 8) B Heptachlo 5.406 6.348 19129.8E6 23325.6E6 105.259m 104.789m 9) A Endosulfan I 5.728 6.703 20285.2E6 21349.8E6 103.184m 104.471m 10) B gamma-Chl 5.621 6.583 24987.5E6 25580.7E6 106.029m 114.185m 11) B alpha-Chl 5.683 6.656 20998.5E6 24125.3E6 108.211 105.339m 12) B 4,4'-DDE 5.853 6.814 22195.4E6 23770.5E6 106.168 105.010m 13) MA Dieldrin 5.962 6.959 20901.8E6 23437.2E6 103.102 105.001m 14) MA Endrin 6.215 7.175 20539.6E6 19063.9E6 102.580m 106.839m 15) B Endosulfa 6.484 7.383 20628.1E6 18863.0E6 94.488m 105.704m 16) A 4,4'-DDD 6.355 7.302 20688.1E6 17453.8E6 103.296m 107.228m 17) MA 4,4'-DDT 6.588 7.600 22919.2E6 17501.0E6 107.948m 108.444m	,	211	5000011201777	0,032	3,002		20033,220	30,200	33,000
2) A alpha-BHC 4.200 4.858 19574.2E6 30827.1E6 106.609 105.814m 3) MA gamma-BHG 4.470 5.145 19338.7E6 30336.7E6 107.390 99.982m 4) MA Heptachlor 4.744 5.659 20083.0E6 24385.6E6 98.190 103.911 5) MB Aldrin 4.977 5.962 18647.6E6 24357.6E6 90.472 104.405 6) B beta-BHC 4.712 5.321 9060.4E6 13547.3E6 99.912 99.575 7) B delta-BHC 4.902 5.531 20787.0E6 29510.1E6 107.269 104.289m 8) B Heptachlo 5.406 6.348 19129.8E6 23325.6E6 105.259m 104.789m 9) A Endosulfan I 5.728 6.703 20285.2E6 21349.8E6 103.184m 104.471m 10) B gamma-Chl 5.621 6.583 24987.5E6 25580.7E6 106.029m 114.185m 11) B alpha-Chl 5.683 6.656 20998.5E6 24125.3E6 108.211 105.339m 12) B 4,4'-DDE 5.853 6.814 22195.4E6 23770.5E6 106.168 105.010m 13) MA Dieldrin 5.962 6.959 20901.8E6 23437.2E6 103.102 105.001m 14) MA Endrin 6.215 7.175 20539.6E6 19063.9E6 102.580m 106.839m 15) B Endosulfa 6.484 7.383 20628.1E6 18863.0E6 94.488m 105.704m 16) A 4,4'-DDD 6.355 7.302 20688.1E6 17453.8E6 103.296m 107.228m 17) MA 4,4'-DDT 6.588 7.600 22919.2E6 17501.0E6 107.948m 108.444m	1	Targ	et Compounds		,				
3) MA gamma-BHC 4.470 5.145 19338.7E6 30336.7E6 107.390 99.982m 4) MA Heptachlor 4.744 5.659 20083.0E6 24385.6E6 98.190 103.911 5) MB Aldrin 4.977 5.962 18647.6E6 24357.6E6 90.472 104.405 6) B beta-BHC 4.712 5.321 9060.4E6 13547.3E6 99.912 99.575 7) B delta-BHC 4.902 5.531 20787.0E6 29510.1E6 107.269 104.289m 8) B Heptachlo 5.406 6.348 19129.8E6 23325.6E6 105.259m 104.789m 9) A Endosulfan I 5.728 6.703 20285.2E6 21349.8E6 103.184m 104.471m 10) B gamma-Chl 5.621 6.583 24987.5E6 25580.7E6 106.029m 114.185m 11) B alpha-Chl 5.683 6.656 20998.5E6 24125.3E6 108.211 105.339m 12) B 4,4'-DDE 5.853 6.814 22195.4E6 23770.5E6 106.168 105.010m 13) MA Dieldrin 5.962 6.959 20901.8E6 23437.2E6 103.102 105.001m 14) MA Endrin 6.215 7.175 20539.6E6 19063.9E6 102.580m 106.839m 15) B Endosulfa 6.484 7.383 20628.1E6 18863.0E6 94.488m 105.704m 16) A 4,4'-DDD 6.355 7.302 20688.1E6 17453.8E6 103.296m 107.228m 17) MA 4,4'-DDT 6.588 7.600 22919.2E6 17501.0E6 107.948m 108.444m		_	-	4.200	4.858	19574.2E6	30827.1E6	106.609	105.814m
5) MB Aldrin 4.977 5.962 18647.6E6 24357.6E6 90.472 104.405 6) B beta-BHC 4.712 5.321 9060.4E6 13547.3E6 99.912 99.575 7) B delta-BHC 4.902 5.531 20787.0E6 29510.1E6 107.269 104.289m 8) B Heptachlo 5.406 6.348 19129.8E6 23325.6E6 105.259m 104.789m 9) A Endosulfan I 5.728 6.703 20285.2E6 21349.8E6 103.184m 104.471m 10) B gamma-Chl 5.621 6.583 24987.5E6 25580.7E6 106.029m 114.185m 11) B alpha-Chl 5.683 6.656 20998.5E6 24125.3E6 108.211 105.339m 12) B 4,4'-DDE 5.853 6.814 22195.4E6 23770.5E6 106.168 105.010m 13) MA Dieldrin 5.962 6.959 20901.8E6 23437.2E6 103.102 105.001m 14) MA Endrin 6.215 7.175 20539.6E6 19063.9E6 102.580m 106.839m 15) B Endosulfa 6.484 7.383 20628.1E6 18863.0E6 94.488m 105.704m 16) A 4,4'-DDD 6.355 7.302 20688.1E6 17453.8E6 103.296m 107.228m 17) MA 4,4'-DDT 6.588 7.600 22919.2E6 17501.0E6 107.948m 108.444m	3)	MA			5,145	19338.7E6	30336.7E6	107.390	99.982m
5) MB Aldrin 4.977 5.962 18647.6E6 24357.6E6 90.472 104.405 6) B beta-BHC 4.712 5.321 9060.4E6 13547.3E6 99.912 99.575 7) B delta-BHC 4.902 5.531 20787.0E6 29510.1E6 107.269 104.289m 8) B Heptachlo 5.406 6.348 19129.8E6 23325.6E6 105.259m 104.789m 9) A Endosulfan I 5.728 6.703 20285.2E6 21349.8E6 103.184m 104.471m 10) B gamma-Chl 5.621 6.583 24987.5E6 25580.7E6 106.029m 114.185m 11) B alpha-Chl 5.683 6.656 20998.5E6 24125.3E6 108.211 105.339m 12) B 4,4'-DDE 5.853 6.814 22195.4E6 23770.5E6 106.168 105.010m 13) MA Dieldrin 5.962 6.959 20901.8E6 23437.2E6 103.102 105.001m 14) MA Endrin 6.215 7.175 20539.6E6 19063.9E6 102.580m 106.839m 15) B Endosulfa 6.484 7.383 20628.1E6 18863.0E6 94.488m 105.704m 16) A 4,4'-DDD 6.355 7.302 20688.1E6 17453.8E6 103.296m 107.228m 17) MA 4,4'-DDD 6.588 7.600 22919.2E6 17501.0E6 107.948m 108.444m		MA	-	4.744	5.659	20083.0E6	24385.6E6	98.190	103.911
7) B delta-BHC 4.902 5.531 20787.0E6 29510.1E6 107.269 104.289m 8) B Heptachlo 5.406 6.348 19129.8E6 23325.6E6 105.259m 104.789m 9) A Endosulfan I 5.728 6.703 20285.2E6 21349.8E6 103.184m 104.471m 10) B gamma-Chl 5.621 6.583 24987.5E6 25580.7E6 106.029m 114.185m 11) B alpha-Chl 5.683 6.656 20998.5E6 24125.3E6 108.211 105.339m 12) B 4,4'-DDE 5.853 6.814 22195.4E6 23770.5E6 106.168 105.010m 13) MA Dieldrin 5.962 6.959 20901.8E6 23437.2E6 103.102 105.001m 14) MA Endrin 6.215 7.175 20539.6E6 19063.9E6 102.580m 106.839m 15) B Endosulfa 6.484 7.383 20628.1E6 18863.0E6 94.488m 105.704m 16) A 4,4'-DDD 6.355 7.302 20688.1E6 17453.8E6 103.296m 107.228m 17) MA 4,4'-DDT 6.588 7.600 22919.2E6 17501.0E6 107.948m 108.444m	5)	MB	Aldrin	4.977	5.962	18647.6E6	24357.6E6	90.472	104.405
8) B Heptachlo 5.406 6.348 19129.8E6 23325.6E6 105.259m 104.789m 9) A Endosulfan I 5.728 6.703 20285.2E6 21349.8E6 103.184m 104.471m 10) B gamma-Chl 5.621 6.583 24987.5E6 25580.7E6 106.029m 114.185m 11) B alpha-Chl 5.683 6.656 20998.5E6 24125.3E6 108.211 105.339m 12) B 4,4'-DDE 5.853 6.814 22195.4E6 23770.5E6 106.168 105.010m 13) MA Dieldrin 5.962 6.959 20901.8E6 23437.2E6 103.102 105.001m 14) MA Endrin 6.215 7.175 20539.6E6 19063.9E6 102.580m 106.839m 15) B Endosulfa 6.484 7.383 20628.1E6 18863.0E6 94.488m 105.704m 16) A 4,4'-DDD 6.355 7.302 20688.1E6 17453.8E6 103.296m 107.228m 17) MA 4,4'-DDT 6.588 7.600 22919.2E6 17501.0E6 107.948m 108.444m	6)	В	beta-BHC	4.712	5.321	9060.4E6	13547.3E6	99.912	99.575
9) A Endosulfan I 5.728 6.703 20285.2E6 21349.8E6 103.184m 104.471m 10) B gamma-Chl 5.621 6.583 24987.5E6 25580.7E6 106.029m 114.185m 11) B alpha-Chl 5.683 6.656 20998.5E6 24125.3E6 108.211 105.339m 12) B 4,4'-DDE 5.853 6.814 22195.4E6 23770.5E6 106.168 105.010m 13) MA Dieldrin 5.962 6.959 20901.8E6 23437.2E6 103.102 105.001m 14) MA Endrin 6.215 7.175 20539.6E6 19063.9E6 102.580m 106.839m 15) B Endosulfa 6.484 7.383 20628.1E6 18863.0E6 94.488m 105.704m 16) A 4,4'-DDD 6.355 7.302 20688.1E6 17453.8E6 103.296m 107.228m 17) MA 4,4'-DDT 6.588 7.600 22919.2E6 17501.0E6 107.948m 108.444m	7)	В	delta-BHC	4.902	5.531	20787.0E6	29510.1E6	107.269	104.289m
10) B gamma-Chl 5.621 6.583 24987.5E6 25580.7E6 106.029m 114.185m 11) B alpha-Chl 5.683 6.656 20998.5E6 24125.3E6 108.211 105.339m 12) B 4,4'-DDE 5.853 6.814 22195.4E6 23770.5E6 106.168 105.010m 13) MA Dieldrin 5.962 6.959 20901.8E6 23437.2E6 103.102 105.001m 14) MA Endrin 6.215 7.175 20539.6E6 19063.9E6 102.580m 106.839m 15) B Endosulfa 6.484 7.383 20628.1E6 18863.0E6 94.488m 105.704m 16) A 4,4'-DDD 6.355 7.302 20688.1E6 17453.8E6 103.296m 107.228m 17) MA 4,4'-DDT 6.588 7.600 22919.2E6 17501.0E6 107.948m 108.444m	8)	В	Heptachlo	5.406	6.348	19129.8E6	23325.6E6	105.259m	104.789m
11) B alpha-Chl 5.683 6.656 20998.5E6 24125.3E6 108.211 105.339m 12) B 4,4'-DDE 5.853 6.814 22195.4E6 23770.5E6 106.168 105.010m 13) MA Dieldrin 5.962 6.959 20901.8E6 23437.2E6 103.102 105.001m 14) MA Endrin 6.215 7.175 20539.6E6 19063.9E6 102.580m 106.839m 15) B Endosulfa 6.484 7.383 20628.1E6 18863.0E6 94.488m 105.704m 16) A 4,4'-DDD 6.355 7.302 20688.1E6 17453.8E6 103.296m 107.228m 17) MA 4,4'-DDT 6.588 7.600 22919.2E6 17501.0E6 107.948m 108.444m	9)	Α	Endosulfan I	5.728	6.703	20285.2E6	21349.8E6	103.184m	
12) B 4,4'-DDE 5.853 6.814 22195.4E6 23770.5E6 106.168 105.010m 13) MA Dieldrin 5.962 6.959 20901.8E6 23437.2E6 103.102 105.001m 14) MA Endrin 6.215 7.175 20539.6E6 19063.9E6 102.580m 106.839m 15) B Endosulfa 6.484 7.383 20628.1E6 18863.0E6 94.488m 105.704m 16) A 4,4'-DDD 6.355 7.302 20688.1E6 17453.8E6 103.296m 107.228m 17) MA 4,4'-DDT 6.588 7.600 22919.2E6 17501.0E6 107.948m 108.444m	10)	В	gamma-Chl	5,621	6.583	24987.5E6	25580.7E6	106.029m	114.185m
13) MA Dieldrin 5.962 6.959 20901.8E6 23437.2E6 103.102 105.001m 14) MA Endrin 6.215 7.175 20539.6E6 19063.9E6 102.580m 106.839m 15) B Endosulfa 6.484 7.383 20628.1E6 18863.0E6 94.488m 105.704m 16) A 4,4'-DDD 6.355 7.302 20688.1E6 17453.8E6 103.296m 107.228m 17) MA 4,4'-DDT 6.588 7.600 22919.2E6 17501.0E6 107.948m 108.444m	11)	В	alpha-Chl	5.683	6.656			108.211	105.339m
14) MA Endrin 6.215 7.175 20539.6E6 19063.9E6 102.580m 106.839m 15) B Endosulfa 6.484 7.383 20628.1E6 18863.0E6 94.488m 105.704m 16) A 4,4'-DDD 6.355 7.302 20688.1E6 17453.8E6 103.296m 107.228m 17) MA 4,4'-DDT 6.588 7.600 22919.2E6 17501.0E6 107.948m 108.444m	12)	В	4,4'-DDE	5.853	6.814	22195.4E6	23770.5E6	106.168	105.010m
15) B Endosulfa 6.484 7.383 20628.1E6 18863.0E6 94.488m 105.704m 16) A 4,4'-DDD 6.355 7.302 20688.1E6 17453.8E6 103.296m 107.228m 17) MA 4,4'-DDT 6.588 7.600 22919.2E6 17501.0E6 107.948m 108.444m	13)	MΑ	Dieldrin	5.962	6.959	20901.8E6	23437.2E6	103.102	105.001m
16) A 4,4'-DDD 6.355 7.302 20688.1E6 17453.8E6 103.296m 107.228m 17) MA 4,4'-DDT 6.588 7.600 22919.2E6 17501.0E6 107.948m 108.444m	14)	MΑ	Endrin	6.215	7.175	20539.6E6	19063.9E6	102.580m	106.839m
17) MA 4,4'-DDT 6.588 7.600 22919.2E6 17501.0E6 107.948m 108.444m	15)	В	Endosulfa	6.484	7.383	20628.1E6	18863.0E6	94.488m	105.704m
	16)	\boldsymbol{A}	4,4'-DDD	6.355	7.302	20688.1E6	17453.8E6	103.296m	107.228m
	17)	MA	4,4'-DDT	6.588	7.600			107.948m	108.444m
	18)	В	Endrin al		7.507	16603.4E6	14720.1E6	105.136m	96.584m
19) B Endosulfa 6.862 7.733 17733.7E6 16948.7E6 106.819m 98.525	19)	В	Endosulfa						
20) A Methoxychlor 7.142 8.060 7718.6E6 6223.2E6 95.621 96.751m	20)	A							
21) B Endrin ke 7.342 8.199 20342.1E6 16213.8E6 94.647m 97.202	21)	В	Endrin ke	7.342	8.199	20342.1E6	16213.8E6	94.647m	97,202

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

Data File : PD002205.D

Signal(s): Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Acq On : 14 Jun 2011 19:22

Operator : JJ

Sample : 75 PPB PEST STD

Misc

ALS Vial: 7 Sample Multiplier: 1

Integration File signal 1: autointl.e
Integration File signal 2: autoint2.e

Quant Time: Jun 15 03:17:34 2011

Quant Method: P:\HPCHEM1\Ecd D\Method\PD061511.M

Quant Title : GC Extractables

QLast Update: Wed Jun 15 02:03:39 2011 Response via: Initial Calibration

Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped

Volume Inj. : 2 µl

Signal #1 Phase : ZB-MR2 Signal #2 Phase: ZB-MR1

Signal #1 Info : 30M x 0.32mm x 0.2 Signal #2 Info : 30M x 0.32mm x 0.50µm

	Compound	RT#1	RT#2	Resp#1	Resp#2	ng/ml	ng/ml
		LEG SLOT L LEG 5-11 MAY SEE STE SEE LINE L SLEE SLEE					
Syst	em Monitoring	Compounds					
1) SA	Tetrachlo	3.766	4.476		18777.8E6	74.056	83.959m
22) SA	Decachlor	8.393	9.531	14323.0E6	7830.8E6	85.951m	74.167
Taro	et Compounds						
2) A	alpha-BHC	4.194	4.861	18159.3E6	27332.0E6	96.652m	91.158m
3) MA	gamma-BHC	4.466	5.145	17811.6E6	25966.8E6	96.795m	90.525m
4) MA	Heptachlor	4.743	5.659	14622.6E6	18032.0E6	71.936m	76.215
5) MB	Aldrin	4.975	5.962	16442.7E6	21329.0E6	84.419m	90.823m
6) B	beta-BHC	4.712	5.321	6778.6E6	10118.0E6	74.833	74.578
7) B	delta-BHC	4.902	5.535	18928.9E6	25209.3E6	95.770m	93.724m
8) B	Heptachlo	5.406	6.349	14550.4E6	17753.6E6	85.366m	78.106
9) A	Endosulfan I	5.728	6.703	15427.8E6	16330.5E6	83.632m	84.347m
10) B	gamma-Chl	5.622	6.585	18861.9E6	19297.7E6	84.007m	82.076
11) B	alpha-Chl	5.680	6.656	18276.1E6	18422.5E6	93.881m	84.508m
12) B	4,4'-DDE	5.851	6.814	19185.4E6	17980.1E6	91.520m	83.434m
13) MA	Dieldrin	5.964	6.959	18172.5E6	17831.9E6	89.676m	84.021m
14) MA	Endrin	6.214	7.176		14605.0E6	84.305m	79.432
15) B	Endosulfa	6.483	7.385	15776.8E6	14547.2E6	72.945m	79.224
16) A	4,4'-DDD	6.355	7.304	15538.3E6	13421.5E6	82.284m	79.811
17) MA	4,4'-DDT	6.587	7.602	16959.1E6	13329.0E6	84.443π	1 79.897
18) B	Endrin al	6.656	7.509	12974.5E6	11320.9E6	79.624	74.519
19) B	Endosulfa	6.862	7.734		12768.1E6	87.668m	
20) A	Methoxychlor		8.061	6007.4E6		74.614	74.569
21) B	Endrin ke	7.344	8.200	16027.1E6	12353.7E6	74.713	74.371

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

16442.700000 = 219236000000

W) 8/1/1,

Data File: PD002206.D

Signal(s): Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Acq On : 14 Jun 2011 19:37

Operator : JJ

Sample : 50 PPB PEST STD

Misc

ALS Vial: 8 Sample Multiplier: 1

Integration File signal 1: autoint1.e Integration File signal 2: autoint2.e

Quant Time: Jun 15 01:52:23 2011

Quant Method: P:\HPCHEM1\Ecd D\Method\PD061511.M

Quant Title : GC Extractables

QLast Update: Wed Jun 15 01:52:12 2011 Response via : Initial Calibration

Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped

Volume Inj. : 2 μl

Signal #1 Phase : ZB-MR2 Signal #2 Phase: ZB-MR1

Signal #1 Info : 30M x 0.32mm x 0.2 Signal #2 Info : 30M x 0.32mm x 0.50µm

	Compound	RT#1	RT#2	Resp#1	Resp#2	ng/ml	ng/ml
Sys	tem Monitoring	Compounds					
1) SA	Tetrachlo	3.766	4.477	6682.8E6	12849.5E6	50.000	50.000
22) SA	Decachlor	8.395	9.530	9437.1E6	5317.3E6	50.000	50.000
Таг	get Compounds						
2) A	alpha-BHC	4.192	4.865	8573.6E6	17262.7E6	50,000	50.000
3) M <i>P</i>	-	4.470	5.148		18745.8E6	50.000	50.000
4) MA	-	4.744	5.659		11275.0E6	50.000	
5) ME	-	4.977	5.962	11287.6E6	11151.0E6	50.000	50.000
6) B	beta-BHC	4.713	5.321	4538.1E6	6831.5E6	50.000	50.000
7) B	delta-BHC	4.902	5.537	8984.9E6	17119.1E6	50.000	50.000
8) B	Heptachlo	5.407	6.349	10363.6E6	12366.7E6	50.000	50.000
9) A	Endosulfan I	5.729	6.704	11205.0E6	11463.9E6	50.000	50.000
10) B	gamma-Chl	5.623	6.585		13102.1E6	50.000	50.000
11) B	alpha-Chl	5.684	6.657	8906.0E6	12468.1E6	50.000	50.000
12) B	4,4'-DDE	5.853	6.816	9808.1E6	12374.3E6	50.000	50.000
13) M <i>P</i>	A Dieldrin	5.962	6.960	9822.0E6	12372.3E6	50.000	50.000
14) MA	A Endrin	6.216	7.176	11444.1E6	10066.5E6	50.000	50.000
15) B	Endosulfa	6.485	7.384		10080.0E6	50.000	50.000
16) A	4,4'-DDD	6.356	7.304		9196.8E6	50.000	50.000
17) MA	•	6.588	7.601		9002.3E6	50.000	50.000
18) B	Endrin al	6.656	7.508	9219.0E6		50.000	50.000
19) B	Endosulfa	6.863	7.733	9511.4E6		50.000	50.000
20) A	Methoxychlor	7.142	8.062	4212.8E6		50.000	50.000
21) B	Endrin ke	7.344	8.200	11240.9E6	8573.6E6	50.000	50.000

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

112876000000 = 225752000000

Data File: PD002207.D

Signal(s): Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Acq On : 14 Jun 2011 19:52

Operator : JJ

Sample : 25 PPB PEST STD

Misc

ALS Vial: 9 Sample Multiplier: 1

Integration File signal 1: autointl.e Integration File signal 2: autoint2.e

Quant Time: Jun 15 02:14:02 2011

Quant Method: P:\HPCHEM1\Ecd D\Method\PD061511.M

Quant Title : GC Extractables

QLast Update: Wed Jun 15 02:06:24 2011 Response via: Initial Calibration

Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped

: 2 µl Volume Inj.

Signal #1 Phase : ZB-MR2 Signal #2 Phase: ZB-MR1

Signal #1 Info : 30M x 0.32mm x 0.2 Signal #2 Info : 30M x 0.32mm x 0.50µm

	Compound	RT#1	R T #2	Resp#1	Resp#2	ng/ml	ng/ml
Sy	stem Monitoring	Compounds					AM No tre bra 649 b 666
1) S	A Tetrachlo	3.766	4.477	3411.4E6	6431.4E6	25.474	27.715
22) S	A Decachlor	8.394	9.531	4013.9E6	2661.1E6	24.309	25,153
	rget Compounds	4 4 0 4		5000 0-5			
2) A		4.194	4.863		10187.3E6	28.991m	
•	IA gamma-BHC	4.466	5.147		9132.5E6	29.565m	29.709m
•	MA Heptachlor	4.744	5.658		7503.3E6	25.989	29.671m
	B Aldrin	4.976	5.962		7479.9E6	28.358	29.711m
6) E		4.713	5.321		3401.4E6	25.669	25.053
7) E		4.902	5.536		8357.9E6	29.011m	29.248m
8) E	-	5.406	6.349		6439.8E6	29.760m	27.418
9) A		5.729	6.705		5941.0E6	29.964	29,035
10) E	3	5.623	6.585		6604.3E6	27.695	27.247
11) E		5.680	6.657		6282.3E6	29.835m	27.758
12) E	· · · · · · · · · · · · · · · · · · ·	5.851	6.814		6107.2E6	28.718m	27.235m
13) M	MA Dieldrin	5.964	6.958	6620.9E6	6236.0E6	29.847m	28.003m
14) M	M Endrin	6.216	7.176		5193.4E6	29.782	27.358
15) E	Endosulfa	6.485	7.385	5938.4E6	5208.1E6	26.798	27.440
16) P	4,4'-DDD	6.357	7.304	5607.4E6	4678.7E6	28.363	27,058
17) M	IA 4,4'-DDT	6.588	7.602	5607.4E6	4454.3E6	27.128	26.254
18) E	Endrin al	6.655	7.509	4704.0E6	4054.8E6	27.793	26.247
19) E	Endosulfa	6.863	7.733	4799.6E6	4415.3E6	29.171	25.563
20) P	Methoxychlor	7.142	8.062	2188.4E6	1655.9E6	26.601	25.608
21) E	-	7.344	8.200	6004.2E6	4386.9E6	27.177	26.043

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

5782300000 : 231292000000

Data File: PD002208.D

Signal(s): Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Acq On : 14 Jun 2011 20:07

Operator : JJ

Sample : 5 PPB PEST STD

Misc

ALS Vial : 10 Sample Multiplier: 1

Integration File signal 1: autoint1.e Integration File signal 2: autoint2.e

Quant Time: Jun 15 02:18:54 2011

Quant Method: P:\HPCHEM1\Ecd D\Method\PD061511.M

Quant Title : GC Extractables

QLast Update: Wed Jun 15 02:09:06 2011 Response via: Initial Calibration

Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped

Volume Inj. : 2 μl

Signal #1 Phase : ZB-MR2 Signal #2 Phase: ZB-MR1

Signal #1 Info : $30M \times 0.32mm \times 0.2$ Signal #2 Info : $30M \times 0.32mm \times 0.50\mu m$

	Compound	RT#1	RT#2	Resp#1	Resp#2	ng/ml	ng/ml
Suct	em Monitoring	Compounds			TRE PROF. 1984 STOPS SAME PAGE STOP SAME SAME SAME SAME SAME SAME SAME SAME		
1) SA	Tetrachlo	3.767	4.477	744 256	1300.8E6	5.436	5.473
22) SA	Decachlor	8.394	9.531	884.8E6	540.4E6	5.430	5.086
ZZ) SA	Decaciiioi	0.394	9.551	004.000	J40.4E0	J.203	3.000
Targ	et Compounds						
2) A	alpha-BHC	4.196	4.864	1257.1E6	1977.4E6	5.953	5.805
3) MA	gamma-BHC	4.466	5.147	1168.3E6	1787.1E6	5.714m	5.617m
4) MA	Heptachlor	4.744	5.660	1121.7E6	1501.2E6	5.350	5.722
5) MB	Aldrin	4.976	5.963	1193.5E6	1536.5E6	5.660	5.845
6) B	beta-BHC	4.713	5.322	507.0E6	681.1E6	5.428	5.013
7) B	delta-BHC	4.904	5.537	1237.3E6	1644.6E6	5.684	5.586
8) B	Heptachlo	5.406	6.348	1192.1E6	1334.9E6	6.087m	5.481m
9) A	Endosulfan I	5.728	6.703	1217.2E6	1195.4E6	5.820m	5.629m
10) B	gamma-Chl	5.623	6.585	1360.0E6	1332.5E6	5.650	5.390
11) B	alpha-Chl	5.680	6.657	1283.3E6	1267.3E6	5.826m	5.469
12) B	4,4'-DDE	5.851	6.816	1332.1E6	1252,4E6	5.620m	5.457
13) MA	Dieldrin	5.964	6.960	1404.5E6	1289.7E6	5.895m	5.614
14) MA	Endrin	6.216	7.176	1237.5E6	1061.3E6	5.872	5.461
15) B	Endosulfa	6.485	7.385	1225.2E6	1091.6E6	5.414	5.584
16) A	4,4'-DDD	6.357	7.304	1127.6E6	992.8E6	5.547	5.576
17) MA	4,4'-DDT	6.589	7.603	1021.6E6	810.3E6	4.954	4.819
18) B	Endrin al	6.655	7.509	978.1E6	845.3E6	5.604	5,370
19) B	Endosulfa	6.863	7.733	987.1E6	895.9E6	5.769	5.149
20) A	Methoxychlor	7.142	8.062	461.8E6	329.0E6	5.479	5.070
21) B	Endrin ke	7.344	8.199	1298.5E6	892.9E6	5.678	5.238

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

Laboratory Control Sample/Laboratory Control Sample Duplicate Summary

SW-846

SDG No.:

C2487

Client:

MACTEC Inc.

Analytical Method:

EPA SW-846 8081

							RPD		Limits	
ab Sample ID	Parameter	Spike	Result	Rec	RPD	Qual	Qual	Low	High	RP.
PB55867BS	alpha-BHC	0.5000	0.56	112				85	130	
	beta-BHC	0.5000	0.58	116				83	126	
	delta-BHC	0.5000	0.52	104				69	141	
	gamma-BHC (Lindane)	0.5000	0.53	106				82	129	
	Heptachlor	0.5000	0.56	112				79	127	
	Aldrin	0.5000	0.56	112				79	126	
	Heptachlor epoxide	0.5000	0.54	108				81	124	
	Endosulfan I	0.5000	0.61	122				85	122	
	Dieldrin	0.5000	0.47	94				83	125	
	4,4-DDE	0.5000	0.61	122				80	127	
	Endrin	0.5000	0.60	120				81	128	
	Endosulfan II	0.5000	0.59	118				82	123	
	4,4-DDD	0.5000	0.59	118				77	131	
	Endosulfan sulfate	0.5000	0.62	124				76	129	
	4,4-DDT	0.5000	0.63	126				80	133	
	Methoxychlor	0.5000	0.60	120				76	137	
	Endrin ketone	0.5000	0.64	128				80	131	
	Endrin aldehyde	0.5000	0.61	122				82	127	
	alpha-Chlordane	0.5000	0.60	120				82	125	
	gamma-Chlordane	0.5000	0.48	96				82	125	
B55867BSD	alpha-BHC	0.5000	0.55	110	2			85	130	
	beta-BHC	0.5000	0.57	114	2			83	126	
	delta-BHC	0.5000	0.52	104	0			69	141	
	gamma-BHC (Lindane)	0.5000	0.61	122	14			82	129	
	Heptachlor	0.5000	0.55	110	2			79	127	
	Aldrin	0.5000	0.56	112	0			79	126	
	Heptachlor epoxide	0.5000	0.59	118	9			81	124	
	Endosulfan I	0.5000	0.60	120	2			85	122	
	Dieldrin	0.5000	0.47	94	0			83	125	
	4,4-DDE	0.5000	0.61	122	0			80	127	
	Endrin	0.5000	0.60	120	0			81	128	
	Endosulfan II	0.5000	0.59	118	0			82	123	
	4,4-DDD	0.5000	0.59	118	0			77	131	
	Endosulfan sulfate	0.5000	0.62	124	0			76	129	
	4,4-DDT	0.5000	0.63	126	0			80	133	
	Methoxychlor	0.5000	0.60	120	0			76	137	
	Endrin ketone	0.5000	0.65	130	2			80	131	
	Endrin aldehyde	0.5000	0.61	122	0 .			82	127	
	alpha-Chlordane	0.5000	0.59	118	2			82	125	
	gamma-Chlordane	0.5000	0.61	122	24		*	82	125	

M) 8/1/11

CHEMITECH

CALIBRATION VERIFICATION SUMMARY

Contract:

MACT03

Lab Code:

CHEM

Case No.:

C2487

SAS No.:

C2487

SDG NO.:

C2487

GC Column:

ZB-MR2

ID:

0.32 (mm)

Initi. Calib. Date(s):

06/14/2011

06/14/2011

Client Sample No.:

CCAL01

Date Analyzed:

06/15/2011

Lab Sample No.:

STD 50

Data File:

PD002263.D

Time Analyzed:

09:37

COMPOUND	RT	RT WINDOW CALC FROM TO AMOUNT(ng) AM		NOM AMOUNT(ng)	%D	
alpha-BHC	4.194	4.150	4.250	0.052	0.050	4.0
beta-BHC	4.713	4.660	4.760	0.046	0.050	8.0
delta-BHC	4.902	4.850	4.950	0.053	0.050	6.0
gamma-BHC (Lindane)	4.466	4.420	4.520	0.053	0.050	6.0
Heptachlor	4.744	4.690	4.790	0.049	0.050	2.0
Aldrin	4.977	4.930	5.030	0.049	0.050	2.0 •
Heptachlor epoxide	5,407	5,340	5,480	0.047	0.050	6.0
Endosulfan I	5.729	5.660	5.800	0.048	0.050	4.0
Dieldrin	5.964	5.890	6.030	0.052	0.050	4.0
4,4-DDE	5.853	5,780	5,920	0.052	0.050	4.0
Endrin	6,217	6.150	6.290	0.048	0.050	4.0
Endosulfan II	6.485	6.410	6.550	0.050	0.050	0.0
4,4-DDD	6.357	6.290	6.430	0.049	0.050	2.0
Endosulfan sulfate	6.864	6.790	6,930	0.052	0.050	4.0
4,4-DDT	6.589	6.520	6.660	0.051	0.050	2.0
Methoxychlor	7,144	7.070	7,210	0.051	0.050	2.0
Endrin ketone	7,345	7.270	7.410	0.053	0.050	6.0
Endrin aldehyde	6.656	6.590	6.730	0.050	0.050	0.0
alpha-Chlordane	5.682	5.610	5,750	0.052	0.050	4.0
gamma-Chlordane	5.623	5,550	5,690	0.047	0.050	6.0
Decachlorobiphenyl	8.395	8.290	8.490	0.056	0.050	12.0
Tetrachloro-m-xylene	3.767	3.670	3.870	0.046	0.050	8.0

100% 0,05 1,00 = 2°60

malli

Data File : PD002263.D

Signal(s): Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Acq On : 15 Jun 2011 9:37

Operator : JJ

Sample : STD 50

Misc

ALS Vial: 65 Sample Multiplier: 1

Integration File signal 1: autoint1.e Integration File signal 2: autoint2.e

Quant Time: Jun 15 12:33:23 2011

Quant Method: P:\HPCHEM1\Ecd D\Method\PD061511.M

Quant Title : GC Extractables

QLast Update: Wed Jun 15 03:19:27 2011 Response via: Initial Calibration

Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped

Volume Inj. : 2 µl

Signal #1 Phase : ZB-MR2 Signal #2 Phase: ZB-MR1

Signal #1 Info : $30M \times 0.32mm \times 0.2$ Signal #2 Info : $30M \times 0.32mm \times 0.50\mu m$

		Compound	RT#1	RT#2	Resp#1	Resp#2	ng/ml	ng/ml
 Q-		em Monitoring	Compounds					
1)	-	Tetrachlo	3.767	4.477	6285 3E6	12620.0E6	45.912	49,755
	SA	Decachlor	8.395	9.531		6171.6E6	56.306	58.083
22/	021	Decaemioi	0.353	J. 331	JJ31.0E0	0171.000	30.300	30.003
\mathbf{T}	arge	et Compounds						
2)	Α	alpha-BHC	4.194	4.865	11402.4E6	5 17596.6E6	52.116m	ı 48.318
3) 1	MΑ	gamma-BHC	4.466	5.149	11198.5E6	5 15643.3E6	52.640m	44.766
4)	MΑ	Heptachlor	4.744	5.659	10314.2E	5 12002.5E6	49.468	45.806
5) !	мв _	Aldrin	4.977	5.962	10849.7E6	5 11831.9E6	49.251	43.581
6)	В	beta-BHC	4.713	5.321	4306.6E6	7000.4E6	46.110	51.528
7)	В	delta-BHC	4.902	5.538	12053.7E	5 18085.0E6	53.271π	i 55.244
8)	В	Heptachlo	5,407	6.349		13122,1E6	47.417	52.832
9).	A	Endosulfan I	5.729	6.704	10642.6E6	5 12324.4E6	47.816	54.186
10)	В	gamma-Chl	5.623	6.585	12172.9E6	5 14215.2E6	47.275	54.430
11)	В	alpha-Chl	5.682	6.657	11914.5E6	5 13600.6E6	52.344	54.797
12)	В	4,4'-DDE	5.853	6.816	12525.3E	5 13418.0E6	52.262	55.006
13)	MΑ	Dieldrin	5.964	6.960	12320.8E	5 13467.4E6	51.616m	ı 54.881
14)	MA	Endrin	6.217	7.177	10979.0E	6 10865.9E6		53.969
15)	В	Endosulfa	6.485	7.385		5 11181.1E6		55.306
16).	A	4,4'-DDD	6.357	7.304	10651.4E	5 9903.9E6	48.987	53.643
17)	MA	4,4'-DDT	6.589	7.601		5 9861.6E6	50.547	56.480m
18)	В	Endrin al	6.656	7.509	8999.2E6	8613.1E6	49.600	54.771
	В	Endosulfa	6.864	7.733		9674.0E6	51.702	55.592
20) .	Α	Methoxychlor	7.144	8.062		3652.2E6	51.124	56.420
21)	В	Endrin ke	7.345	8.200	12158.3E	6 9942.1E6	53.242	58.319

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

10849700000 = 0.049 ng

N~ 8/1/1

284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax: 908 789 8922

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

Date Received: SDG No.:

Project:

Loohns Dry Cleaners- APO 201007181

Client Sample ID:

PB55867BL

C2487

Lab Sample ID:

PB55867BL

WATER

Analytical Method:

SW8081A

Sample Wt/Vol:

1000

Units: mL % Moisture: Final Vol:

100 10000 Decanted:

Soil Aliquot Vol:

uL

Matrix:

υL

Extraction Type:

Test:

Pesticide-TCL

Injection Volume

GPC Factor:

1

236,100,118%

Date Analyzed

Prep Batch ID

File ID/Qc Batch: PD002264.D

Dilution:

Prep Date 06/07/11

06/15/11

PB55867

CAS Number	Parameter	Conc.	Qual ifie r	MDL	LOQ / CRQL	Units
TARGETS						
319-84-6	alpha-BHC	0.05	U	0.0051	0.05	ug/L
319-85-7	beta-BHC	0.05	U	0.0086	0.05	ug/L
319-86-8	delta-BHC	0.05	U	0.0056	0.05	ug/L
58-89-9	gamma-BHC	0.05	U	0.0055	0.05	ug/L
76-44-8	Heptachlor	0.05	U	0.0069	0.05	ug/L
309-00-2	Aldrin	0.05	U	0.0062	0.05	ug/L
1024-57-3	Heptachlor epoxide	0.05	U	0.0067	0.05	ug/L
959-98-8	Endosulfan I	0.05	U	0.0061	0.05	ug/L
60-57-1	Dieldrin	0.05	U	0.0047	0.05	ug/L
72-55-9	4,4-DDE	0.05	U	0.004	0.05	ug/L
72-20-8	Endrin	0.05	U	0.0058	0.05	ug/L
33213-65-9	Endosulfan II	0.05	U	0.0055	0.05	ug/L
72-54-8	4,4-DDD	0.05	U	0.0071	0.05	ug/L
1031-07-8	Endosulfan Sulfate	0.05	U	0.006	0.05	ug/L
50-29-3	4,4-DDT	0.05	U	0.0059	0.05	ug/L
72-43-5	Methoxychlor	0.05	U	0.0042	0.05	ug/L
53494-70-5	Endrin ketone	0.05	U	0.0057	0.05	ug/L
7421-93-4	Endrin aldehyde	0.05	U	0.0045	0.05	ug/L
5103-71-9	alpha-Chlordane	0.05	U	0.0049	0.05	ug/L
5103-74-2	gamma-Chlordane	0.05	U	0.005	0.05	ug/L
8001-35-2	Toxaphene	0.5	U	0.1	0.5	ug/L
SURROGATES		,			-	
2051-24-3	Decachlorobiphenyl	23.6		10 - 192	118%	SPK: 20
877-09-8	Tetrachloro-m-xylene	21.2		10 - 172	106%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Quantitation Report (QT Reviewed)

Data Path : P:\HPCHEM1\Ecd_D\Data\PD061511\

Data File : PD002264.D

Signal(s): Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Acq On : 15 Jun 2011 10:00

Operator : JJ

Sample : PB55867BL

Misc

ALS Vial: 1 Sample Multiplier: 1

Integration File signal 1: autoint1.e
Integration File signal 2: autoint2.e

Quant Time: Jun 15 12:33:48 2011

Quant Method: P:\HPCHEM1\Ecd D\Method\PD061511.M

Quant Title : GC Extractables

QLast Update: Wed Jun 15 03:19:27 2011 Response via: Initial Calibration

Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped

Volume Inj. : 2 µl

Signal #1 Phase : ZB-MR2 Signal #2 Phase: ZB-MR1

Signal #1 Info : 30M x 0.32mm x0.2 Signal #2 Info : 30M x 0.32mm x 0.50pm

	Compound	RT#1	RT#2	Resp#1	Resp#2	ng/ml	ng/ml
1) SA	em Monitoring Tetrachlo Decachlor	3.773	4.477 9.536	2897.7E6 4162.1E6		21.167 23.596	22.158 25.167
Targ	et Compounds						

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.

4162100000 2897700000 , 23.6 / 0.02* 17638928458

* Wm /11

METALS

NYSDEC DUSR PROJECT CHEMIST REVIEW RECORD

Project: Loohn's Dry Cleaners 3612102148

Method: TAL Metals-SW6010B, Mercury-SW7470A Laboratory and SDG(s): Chemtech SDG# C2487 Date: 8/1/2011 Reviewer: Mike Washburn Review Level X NYSDEC DUSR ☐ USEPA Region II Guideline ☐ Case Narrative Review and Data Package Completeness COMMENTS Where all the samples on the COC analyzed for the requested analyses? YES) NO (circle one) ☐ Holding time and Sample Collection Were all samples were all prepped and analyzed with the holding time (6 month). YES) NO (circle one) □ OC Blanks Are method blanks clean? YES (circle one) NO Aluminum (11.99 µg/L) and lead (3.06 µg/L) were detected in the method blank associated with samples in SDG C2487. Action levels were established at five times the concentration reported in the blank and compared to sample results. Concentrations of aluminum and lead reported below the action level were qualified not detected (U) in samples LCMW001016 and LCMW002019. Are Initial and continuing calibration blanks clean? YES NO Yeircle one) Aluminum (29.7 μg/L), magnesium (36.2 μg/L), lead (6.0 μg/L), and mercury (0.09 μg/L) were detected in the continuing calibration blanks associated with samples in SDG C2487. Action levels were established at five times the highest concentration reported in the blanks and compared to sample results. Concentrations of aluminum and lead reported below the action level were qualified not detected (U) in samples LCMW001016 and LCMW002019. Interference Check Standard Within QC limits. ☐ Instrument Calibration Initial calibration criteria met for the method? YES NO (circle one) 90-110% (80-120% Hg) recovery on continuing calibration standards met(YES) NO (circle one) ☐ Serial Dilutions Were all results were within the control limit of 10% (for values > 50X MDL) Laboratory Control Sample Results Were all results were within 80-120% limits? NO (circle one) ☐ Matrix Spike Were MS/MSDs submitted/analyzed? YES Were all results were within 75-125% limits? YES NO (circle one) □ Duplicates/replicates Were Field Duplicates submitted/analyzed? YES Agueous RPD within limit? (50%) YES NO (circle one) Soil RPD within limit? (100%) YES NO NA)(circle one) Was the lab dup RPD <20% for values > 5X the CRQL (or \pm CRQL) NA P:\Projects\nysdec1\Contracts D004434 and D004444\projects\Loohns Corning\3.0 Site Data\3.4 Test Results\Checklists\C2487 DUSR Checklist Metals.doc

	Were both Total and Dissolved metals reported? YES NO NA (circle one) If the dissolved concentration is > 20% of the total concentration then estimate (J) both results
	Percent solids < 50% for any soil/sediment sample? YES NO NA (circle one) If yes, estimate all results.
5.	Raw Data Review and Calculation Checks
	Completed
6.	Electronic Data Review and Edits. Does the EDD match the Form I's? YES NO (circle one
7.	DUSR Tables: Table 1 (sample Listing), Table 2 (results summary), Table 3 (Reason Codes) Were all tables produced? (YES) NO (circle one)

284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax: 908 789 8922

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

06/01/11

Project:

Loohns Dry Cleaners- APO 201007181

Date Received:

06/03/11

Client Sample ID:

LCMW002019

SDG No.:

C2487

Lab Sample ID:

C2487-03

Matrix:

WATER

Level (low/med):

low

% Solid:

0

Cas	Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
7429-90-5	Aluminum	106	ч	1	6.5	50	ug/L	06/07/11	06/07/11	SW6010B
7440-36-0	Antimony	25	U	1	8	25	ug/L	06/07/11	06/07/11	SW6010B
7440-38-2	Arsenic	10	U	1	4.2	10	ug/L	06/07/11	06/07/11	SW6010B
7440-39-3	Barium	98.4		1	4	50	ug/L	06/07/11	06/07/11	SW6010B
7440-41-7	Beryllium	3	U	1	0.7	3	ug/L	06/07/11	06/07/11	SW6010B
7440-43-9	Cadmium	3	U	1	0.5	3	ug/L	06/07/11	06/07/11	SW6010B
7440-70-2	Calcium	83300		1	31.8	1000	ug/L	06/07/11	06/07/11	SW6010B
7440-47-3	Chromium	5	U	1	1.1	5	ug/L	06/07/11	06/07/11	SW6010B
7440-48-4	Cobalt	15	U	1	5.8	15	ug/L	06/07/11	06/07/11	SW6010B
7440-50-8	Copper	2.08	J	1	2	10	ug/L	06/07/11	06/07/11	SW6010B
7439-89-6	Iron	190		1	20.4	50	ug/L	06/07/11	06/07/11	SW6010B
7439-92-1	Lead	7.35	u	1	2.6	6	ug/L	06/07/11	06/07/11	SW6010B
7439-95-4	Magnesium	18200		1	32.5	1000	ug/L	06/07/11	06/07/11	SW6010B
7439-96-5	Manganese	27.3		1	1.7	10	ug/L	06/07/11	06/07/11	SW6010B
7439-97-6	Mercury	0.2	U	1	0.09	0.2	ug/L	06/13/11	06/14/11	SW7470A
7440-02-0	Nickel	20	U	1	4.2	20	ug/L	06/07/11	06/07/11	SW6010B
7440-09-7	Potassium	4390		1	38.8	1000	ug/L	06/07/11	06/07/11	SW6010B
7782-49-2	Selenium	5.87	J	1	4.8	10	ug/L	06/07/11	06/07/11	SW6010B
7440-22-4	Silver	5	U	1	1.5	5	ug/L	06/07/11	06/07/11	SW6010B
7440-23-5	Sodium	115000		1	13.9	1000	ug/L	06/07/11	06/07/11	SW6010B
7440-28-0	Thallium	20	U	1	2.4	20	ug/L	06/07/11	06/07/11	SW6010B
7440-62-2	Vanadium	20	U	1	6.1	20	ug/L	06/07/11	06/07/11	SW6010B
7440-66-6	Zinc	20	U	1	6.5	20	ug/L	06/07/11	06/07/11	SW6010B

Color Before:

Colorless

Clarity Before:

Clear

Texture:

Color After:

Colorless

Clarity After:

Clear

Artifacts:

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

OR = Over Range

Mulling

284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax: 908 789 8922

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

06/01/11

Project:

Loohns Dry Cleaners- APO 201007181

Date Received:

06/03/11

Client Sample ID:

LCMW001016

SDG No.:

C2487

Lab Sample ID:

C2487-01

Matrix:

WATER

Level (low/med):

low

% Solid:

0

Cas	Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
7429-90-5	Aluminum	50 -25.8-	JU	1	6.5	50	ug/L	06/07/11	06/07/11	SW6010B
7440-36-0	Antimony	25	U	1	8	25	ug/L	06/07/11	06/07/11	- SW6010B
7440-38-2	Arsenic	10	U	1	4.2	10	ug/L	06/07/11	06/07/11	SW6010B
7440-39-3	Barium	89		1	4	50	ug/L	06/07/11	06/07/11	SW6010B
7440-41-7	Beryllium	3	U	1	0.7	3	ug/L	06/07/11	06/07/11	SW6010B
7440-43-9	Cadınium	3	U	1	0.5	3	ug/L	06/07/11	06/07/11	SW6010B
7440-70-2	Calcium	59900		1	31,8	1000	ug/L	06/07/11	06/07/11	SW6010B
7440-47-3	Chromium	5	U	1	1.1	5	ug/L	06/07/11	06/07/11	SW6010B
7440-48-4	Cobalt	15	U	1	5.8	15	ug/L	06/07/11	06/07/11	SW6010B
7440-50-8	Copper	2.26	J	1	2	10	ug/L	06/07/11	06/07/11	SW6010B
7439-89-6	Iron	50.4		1	20.4	50	ug/L	06/07/11	06/07/11	SW6010B
7439-92-1	Lead	6	U	1	2.6	6	ug/L	06/07/11	06/07/11	SW6010B
7439-95-4	Magnesium	11300		1	32.5	1000	ug/L	06/07/11	06/07/11	SW6010B
7439-96-5	Manganese	3.26	J	1	1.7	10	ug/L	06/07/11	06/07/11	SW6010B
7439-97-6	Mercury	0.14	J	1	0.09	0.2	ug/L	06/13/11	06/14/11	SW7470A
7440-02-0	Nickel	20	U	1	4.2	20	ug/L	06/07/11	06/07/11	SW6010B
7440-09-7	Potassium	3090		1	38.8	1000	ug/L	06/07/11	06/07/11	SW6010B
7782-49-2	Selenium	10	U	1	4.8	10	ug/L	06/07/11	06/07/11	SW6010B
7440-22-4	Silver	5	U	1	1.5	5	ug/L	06/07/11	06/07/11	SW6010B
7440-23-5	Sodium	55700		1	13.9	1000	ug/L	06/07/11	06/07/11	SW6010B
7440-28-0	Thallium	20	U	1	2.4	20	ug/L	06/07/11	06/07/11	SW6010B
7440-62-2	Vanadium	20	U	1	6.1	20	ug/L	06/07/11	06/07/11	SW6010B
7440-66-6	Zinc	10.6	J	1	6.5	20	ug/L	06/07/11	06/07/11	SW6010B

Color Before:

Colorless

Clarity Before:

Clear

Texture:

Color After:

Colorless

Clarity After:

Clear

Artifacts:

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

OR = Over Range

W1m 811/11

Metals - 3b -PREPARATION BLANK SUMMARY

Client:

MACTEC Inc.

SDG No.:

C2487

Instrument: P4

		Result	Acceptance	Conc	MDL	CRQL		Analysis	Analysis	
Sample ID	Analyte	(ug/L)	Limit	Qual	ug/L	ug/L	M	Date	Time	Run
B55852BL		WATER		Batch Number	: I	PB55852		Prep Date:	06/07/20	11
	Aluminum	11.990	<50.000	J	6.500	50.000	P	06/07/2011	15:18	LB55416
	Antimony	8.000	<25.000	U	8.000	25,000	P	06/07/2011	15:18	LB55416
	Arsenic	4.200	<10.000	U	4.200	10.000	P	06/07/2011	15:18	LB55416
	Barium	4.000	<50,000	U	4.000	50.000	P	06/07/2011	15:18	LB55416
	Beryllium	0.700	<3.000	U	0.700	3.000	P	06/07/2011	15:18	LB55416
	Cadmium	0.500	<3.000	U	0.500	3.000	P	06/07/2011	15:18	LB55416
	Calcium	31.800	<1000.000	U	31.800	1000,000	P	06/07/2011	15:18	LB55416
	Chromium	1.100	<5.000	\mathbf{U}	1.100	5.000	P	06/07/2011	15:18	LB55416
	Cobalt	5.800	<15.000	U	5.800	15.000	P	06/07/2011	15:18	LB55416
	Copper	2.000	<10.000	U	2.000	10.000	P	06/07/2011	15:18	LB55416
	lron_	20,400	<50.000	U	20.400	50.000	P	06/07/2011	15:18	LB55416
	Lead >	3.060	<6.000	J	2.600	6.000	P	06/07/2011	15:18	LB55416
	Magnesium	32,500	<1000.000	U	32.500	1000,000	P	06/07/2011	15:18	LB55416
	Manganese	1.700	<10.000	U	1.700	10.000	P	06/07/2011	15:18	LB55416
	Nickel	4.200	<20.000	U	4.200	20.000	P	06/07/2011	15:18	LB55416
	Potassium	38.800	<1000.000	U	38.800	1000.000	P	06/07/2011	15:18	LB55416
	Selenium	4.800	<10.000	U	4.800	10.000	P	06/07/2011	15:18	LB55416
	Silver	1.500	<5.000	U	1.500	5.000	P	06/07/2011	15:18	LB55416
	Sodium	13.900	<1000.000	U	13.900	1000.000	P	06/07/2011	15:18	LB55416
	Thallium	2.400	<20.000	U	2.400	20.000	P	06/07/2011	15:18	LB55410
	Vanadium	6.100	<20,000	U	6.100	20.000	P	06/07/2011	15:18	LB5541
	Zinc	6.500	<20.000	υ	6.500	20.000	P	06/07/2011	15:18	LB55410
B56025BL		WATER		Batch Number	1	PB56025		Prep Date:	06/13/20)11
- -	Mercury	0.092	< 0.200	U	0.092	0.200	CV	06/14/2011	15:48	LB55526

Metals

- 3a - INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: MACTEC Inc. SDG No.: C2487

Contract:	MACT03		Lab Code:	СНЕМ	Cas	e No.: <u>C2</u>	487	SA	S No.: <u>C2</u>	487
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	М	Analysis Date	Analysis Time	Run Number
	_									
CCB07	Lead	6.0	+/-6.0	J	2.6	6.0	P	06/07/2011	15:42	LB55416
	Magnesium	36.2	+/-1000.0	J	32,5	1000.0	P	06/07/2011	15:42	LB55416
	Manganese	1.7	+/-10.0	U	1.7	10.0	P	06/07/2011	15:42	LB55416
	Nickel	4.2	+/-20.0	U	4.2	20.0	P	06/07/2011	15:42	LB55416
	Potassium	38.8	+/-1000.0	U	38.8	1000.0	P	06/07/2011	15:42	LB55416
	Selenium	4.8	+/-10.0	U	4.8	10.0	P	06/07/2011	15:42	LB55416
	Silver	1.5	+/-5.0	U	1.5	5.0	P	06/07/2011	15:42	LB55416
	Sodium	13.9	+/-1000.0	U	13.9	1000.0	P	06/07/2011	15:42	LB55416
	Thallium	2.4	+/-20.0	U	2.4	20.0	P	06/07/2011	15:42	LB55416
	Vanadium	6,1	+/-20.0	U	6.1	20.0	P	06/07/2011	15:42	LB55416
	Zine	6.5	+/-20.0	U	6.5	20.0	P	06/07/2011	15:42	LB55416
CCB08	Aluminum	29.7	+/-50.0		6.5	50.0	P	06/07/2011	16:53	LB55416
CCDO	Antimony	8.0	+/-25,0	U	8.0	25.0	P	06/07/2011	16:53	LB55416
	Arsenic	4.2	+/-10.0	Ü	4.2	10.0	P	06/07/2011	16:53	LB55416
	Barium	4.0	+/-50.0	U	4.0	50.0	P	06/07/2011	16:53	LB55416
	Beryllium	0.7	+/-3.0	U	0.7	3.0	P	06/07/2011	16:53	LB55416
	Cadmium	0.5	+/-3.0	ΰ	0.5	3.0	P	06/07/2011	16:53	LB55416
	Calcium	31.8	+/-1000.0	Ü	31.8	1000.0	P	06/07/2011	16:53	LB55416
	Chromium	1.1	+/-5.0	Ü	1,1	5.0	P	06/07/2011	16:53	LB55416
	Cobalt	5.8	+/-15.0	U	5,8	15.0	P	06/07/2011	16:53	LB55416
	Copper	2.0	+/-10.0	Ü	2.0	10.0	P	06/07/2011	16:53	LB55416
	Iron	20.4	+/-50.0	U	20.4	50.0	P	06/07/2011	16:53	LB55416
	Lead	2,6	+/-6.0	บ	2,6	6.0	P	06/07/2011	16:53	LB55416
	Magnesium	32.5	+/-1000.0	U	32.5	1000.0	P	06/07/2011	16:53	LB55416 LB55416
	Manganese	1.7	+/-10.0	U	1.7	10.0	P P			
	Nickel	4.2	+/-10.0	U	4.2	20.0	P	06/07/2011	16:53	LB55416
	Potassium	38.8	+/-1000.0	U				06/07/2011	16:53	LB55416
	Selenium	4.8	+/-10.0	υ	38.8	1000.0	P	06/07/2011	16:53	LB55416
	Silver	1.5	+/-5.0	U	4.8 1.5	10.0 5.0	P P	06/07/2011	16:53	LB55416
	Sodium	13.9	+/-1000.0	U	13.9	1000.0	P	06/07/2011 06/07/2011	16:53 16:53	LB55416
	Thallium	2.4	+/-20.0		2,4	20.0	Р			LB55416
	Vanadium	6.1	+/-20.0	U U			-	06/07/2011	16:53	LB55416
	Zinc	6.5	+/-20.0	U	6.1	20.0	P	06/07/2011	16:53	LB55416
					6.5	20.0	P	06/07/2011	16:53	LB55416
CCB09	Aluminum	24.8	+/-50.0	J	6,5	50.0	P -	06/07/2011	17:29	LB55416
	Antimony	8.0	+/-25.0	U	8.0	25.0	P	06/07/2011	17:29	LB55416
	Arsenic	4.2	+/-10.0	U	4.2	10.0	P	05/07/2011	17:29	LB55416
	Barium	4.0	+/-50.0	Ŭ	4.0	50.0	P	06/07/2011	17:29	LB55416
	Beryllium	0.7	+/-3.0	U	0.7	3.0	P	06/07/2011	17:29	LB55416
	Cadmium	0.5	+/-3.0	U	0.5	3.0	P	06/07/2011	17:29	LB55416
	Calcium	31.8	+/-1000.0	Ü	31.8	1000.0	P	06/07/2011	17:29	LB55416
	Chromium	1,1	+/-5.0	U	1.1	5.0	P	06/07/2011	17:29	LB55416
	Cobalt	5.8	+/-15.0	U	5.8	15.0	₽	06/07/2011	17:29	LB55416

M3W 1/11

Metals

- 3a -INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: MACTEC Inc. SDG No.: C2487

MACT03 C2487 Lab Code: **CHEM** Contract: Case No.: SAS No.: C2487 Acceptance Result Conc Analysis Analysis Run Limit Qual Sample ID MDL CRQL Analyte ug/L M Date Time Number +/-5.0 U CCB11 Chromium 1.1 1.1 5.0 P 06/07/2011 18:42 LB55416 U P Cobalt 5.8 +/-15.0 5.8 15.0 06/07/2011 18:42 LB55416 Copper 2.0 +/-10.0 U 2.0 10.0 P 06/07/2011 18:42 LB55416 Iron 20.4 +/-50.0 U 20.4 50.0 P 06/07/2011 18:42 LB55416 Ţ 4.0 +/-6.0 P Lead 2.6 6.0 06/07/2011 18:42 LB55416 Magnesium 32.5 +/-1000.0 U 32.5 1000,0 P 06/07/2011 18:42 LB55416 Manganese 1.7 +/-10.0 U 1.7 10.0 P 06/07/2011 18:42 LB55416 Nickel 4.2 +/-20.0 U 4.2 20.0 P 06/07/2011 18:42 LB55416 Potassium 38.8 +/-1000.0 U 38.8 1000.0 P 06/07/2011 18:42 LB55416 U Selenium 4.8 +/-10.0 4.8 10.0 P 06/07/2011 18:42 LB55416 Silver +/-5.0 U 1.5 P 1.5 5.0 06/07/2011 18:42 LB55416 Sodium 13.9 +/-1000.0 U 13.9 1000.0 P 06/07/2011 18:42 LB55416 U Thallium 2.4 +/-20.0 2.4 20.0 P 06/07/2011 18:42 LB55416 U Vanadium 6.1 +/-20.0 6.1 20.0 P 06/07/2011 18:42 LB55416 U Zinc 6,5 +/-20.0 6.5 20.0 P 06/07/2011 18:42 LB55416 CCB12 Aluminum 38.9 +/-50.0 J 6.5 50.0 P 06/07/2011 19:03 LB55416 Antimony 8.0 +/-25.0 U 8.0 25.0 Р 06/07/2011 19:03 LB55416 Arsenic 4.2 +/-10.0 U 4.2 10.0 p 06/07/2011 19:03 LB55416 U Barium 4.0 +/-50.0 50.0 p 4.0 06/07/2011 19:03 LB55416 Beryllium 0.7 +/-3.0U 0.7 3.0 P 06/07/2011 19:03 LB55416 Cadmium 0,5 +/-3.0 U 0.5 3.0 P 06/07/2011 19:03 LB55416 1000.0 Calcium 31.8 +/-1000.0 U P 31,8 06/07/2011 19:03 LB55416 Chromium +/-5.0 U 1.1 P 1.1 5.0 06/07/2011 19:03 LB55416 U Cobalt 5.8 +/-15.0 5.8 15.0 P 06/07/2011 19:03 LB55416 υ Copper 2.0 +/-10.02.0 10.0 P 06/07/2011 19:03 LB55416 U Iron 20,4 +/-50.0 20.4 50.0 P 06/07/2011 19:03 LB55416 Lead. 4.1 +/-6.0 J 2.6 6.0 P 06/07/2011 19:03 LB55416 68.1 +/-1000.0 J 32.5 1000.0 P Magnesium 06/07/2011 19:03 LB55416 \mathbf{U} Manganese 1.7 +/-10.0 1.7 10.0 P 06/07/2011 19:03 LB55416 U Nickel 4.2 +/-20.0 4.2 20.0 P 06/07/2011 19:03 LB55416 Potassium 38.8 +/-1000.0 U 38.8 1000,0 P 06/07/2011 19:03 LB55416 Selenium +/-10.0 U 4.8 4.8 10.0 P 06/07/2011 19:03 LB55416 Silver 1,5 +/-5.0 U 1.5 P 5.0 06/07/2011 19:03 LB55416 Sodium +/-1000.0 Ū 1000.0 13.9 13.9 D 06/07/2011 19:03 LB55416 Thallium U 2.4 +/-20.0 2.4 20.0 P 06/07/2011 19:03 LB55416 Vanadium 6.1 +/-20.0 U 6.1 20.0 P 06/07/2011 19:03 LB55416 +/-20.0 U 6.5 20.0 р Zinc 6.5 06/07/2011 19:03 LB55416 U ICB01 Mercury 0.09 +/-0.20 0.09 0.20 CV 06/14/2011 15:36 LB55526 CCB01 Мегсигу 0.09 +/-0.20 U 0.09 0.20 C۷ 06/14/2011 15:40 LB55526 0.09 Ū CV CCB02 Mercury +/-0.20 0.09 0.20 06/14/2011 16:09 LB55526 0.09 +/-0.20 J 0.09 0.20 CV 06/14/2011 CCB03 Mercury 16:30 LB55526

Metals

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client:

MACTEC Inc.

SDG No.:

C2487

Contract:

MACT03

Lab Code:

CHEM

Case No.:

C2487

SAS No.: C2487

Initial Calibration Source:

EPA

Continuing Calibration Source:

INORGANIC-VENTURES

Sample ID	Analyte	Result ug/L	True Value	% Recovery	Acceptance Window (%R)	M	Analysis Date	Analysis Time	Run Number
1CV01	Aluminum	2413.70	2521.0	95.7	90 - 110	P	06/07/2011	11:15	LB55416
	Antimony	964,64	994.0	97.0	90 - 110	P	06/07/2011	11:15	LB55416
	Arsenic	1001.20	999,0	100.2	90 - 110	P	06/07/2011	11:15	LB55416
	Barium	515.41	503.0	102.5	90 - 110	P	06/07/2011	11:15	LB55416
	Beryllium	487,29	495.0	98.4	90 - 110	P	06/07/2011	11:15	LB55416
	Cadmium	501.58	496.0	101.1	90 - 110	P	06/07/2011	11:15	LB55416
	Calcium	10004.00	10026.0	99.8	90 - 110	P	06/07/2011	11:15	LB55416
	Chromium	496.40	490.0	سسن 101.3	90 - 110	P	06/07/2011	11:15	LB55416
	Cobalt	497.42	49 9.0	99.7	90 - 110	P	06/07/2011	11:15	LB55416
	Copper	500,62	492.0	101.8	90 - 110	P	06/07/2011	11:15	LB55416
	Iron	5082.00	5082.0	100.0	90 - 110	P	06/07/2011	11:15	LB55416
	Lead	981.47	1002.0	98.0	90 - 110	P	06/07/2011	11:15	LB55416
	Magnesium	5998.50	6074.0	98.8	90 - 110	P	06/07/2011	11:15	LB55416
	Manganese	506.85	499.0	101.6	90 - 110	P	06/07/2011	11:15	LB55416
	Nickel	502.47	503.0	99.9	90 - 110	P	06/07/2011	11:15	LB55416
	Potassium	9994,80	10021.0	99.7	90 - 110	P	06/07/2011	11:15	LB55416
	Selenium	964.84	1003.0	96.2	90 - 110	P	06/07/2011	11:15	LB55416
	Silver	491.44	501.0	98.1	90 - 110	P	06/07/2011	11:15	LB55416
	Sodium	9815.00	10097.0	97.2	90 - 110	P	06/07/2011	11:15	LB55416
	Thallium	994.17	1003.0	99.1	90 - 110	P	06/07/2011	11:15	LB55416
	Vanadium	504.07	501.0	100,6	90 - 110	P	06/07/2011	11:15	LB55416
	Zinc	1006.20	1025.0	98.2	90 - 110	P	06/07/2011	11:15	LB55416
CCV01	Aluminum	10701.00	10000.0	107.0	90 - 110	P	06/07/2011	11:44	LB55416
	Antimony	5113.20	5000.0	102.3	90 - 110	P	06/07/2011	11:44	LB55416
	Arsenic	5152,60	5000.0	103.1	90 - 110	P	06/07/2011	11:44	LB55416
	Barium	10925.00	10000.0	109.2	90 - 110	P	06/07/2011	11:44	LB55416
	Beryllium	266.65	250.0	106.7	90 - 110	P	06/07/2011	11;44	LB55416
	Cadmium	2499.90	2500.0	100.0	90 - 110	P	06/07/2011	11:44	LB55416
	Calcium	27081.00	25000.0	108.3	90 - 110	P	06/07/2011	11:44	LB55416
	Chromium	1056.80	1000.0	105.7	90 - 110	P	06/07/2011	11:44	LB55416
	Cobalt	2695.00	2500,0	107.8	90 - 110	P	06/07/2011	11:44	LB55416
	Copper	1338.40	1250.0	107.1	90 - 110	P	06/07/2011	11:44	LB55416

496,40 -100% - 101.3%

Metals

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

CHEM

Client:

MACTEC Inc.

SDG No.:

C2487

Contract:

MACT03

Lab Code:

Case No.:

C2487

SAS No.: C2487

Initial Calibration Source:

EPA

Continuing Calibration Source:

INORGANIC-VENTURES

		Result	True Value	%	Acceptance		Analysis	Analysis	Run
Sample ID	Analyte	ug/L		Recovery	Window (%R)	M	Date	Time	Number
CCV06	Cadmium	2458.70	2500.0	98,3	90 - 110	P	06/07/2011	15:03	LB55416
00100	Calcium	24018.00	25000.0	96.1	90 - 110	P	06/07/2011	15:03	LB55416
	Chromium	926,93	1000.0	92.7	90 - 110	P	06/07/2011	15:03	LB55416
	Cobalt	2453.00	2500.0	98.1	90 - 110	P	06/07/2011	15:03	LB55416
	Copper	1202.60	1250.0	96.2	90 - 110	P	06/07/2011	15:03	LB55416
•	Iron	4872.00	5000.0	97.4	90 - 110	P	06/07/2011	15.03	LB55416
	Lead	4909.80	5000,0	98.2	90 - 110	P	06/07/2011	15:03	LB55416
	Magnesium	24619.00	25000.0	98.5	90 - 110	P	06/07/2011	15:03	LB55416
	Manganese	2450,00	2500.0	98.0	90 - 110	P	06/07/2011	15:03	LB55416
	Nickel	2451.90	2500,0	98.1	90 - 110	P	06/07/2011	15:03	LB55416
	Potassium	25189.00	25000.0	100.8	90 - 110	P	06/07/2011	15:03	LB55416
	Selenium	5242.40	5000.0	104.8	90 - 110	P	06/07/2011	15:03	LB55416
	Silver	1176,00	1250.0	94.1	90 - 110	P	. 06/07/2011	15:03	LB55416
	Sodium	25376.00	25000.0	101.5	90 - 110	P	06/07/2011	15:03	LB55416
	Thallium	4953,20	5000,0	99.1	90 - 110	P	06/07/2011	15:03	LB55416
	Vanadium	2386.10	2500.0	95.4	90 - 110	P	06/07/2011	15:03	LB55416
	Zinc	2400.20	2500,0	96.0	90 - 110	P	06/07/2011	15:03	LB55416
CCV07	Aluminum	9706.50	10000.0	97.1	90 - 110	P	06/07/2011	15:39	LB55416
	Antimony	5381.90	5000,0	107.6	90 - 110	P	06/07/2011	15:39	LB55416
	Arsenic	5388.10	5000.0	107.8	90 - 110	P	06/07/2011	15:39	LB55416
	Barium	10444,00	10000.0	104.4	90 - 110	P	06/07/2011	15:39	LB55416
	Beryllium	234.17	250.0	93.7	90 - 110	P	06/07/2011	15:39	LB55416
	Cadmium	2499.20	2500.0	100,0	90 - 110	P	06/07/2011	15:39	LB55416
	Calcium	24157.00	25000.0	96,6	90 - 110	P	06/07/2011	15:39	LB55416
	Chromium	946.05	1000.0	94.6	90 - 110	P	06/07/2011	15:39	LB55416
	Cobalt	2496.20	2500.0	99.8	90 - 110	P	06/07/2011	15:39	LB55416
	Copper	1202.30	1250,0	96.2	90 - 110	P	06/07/2011	15:39	LB55416
	Iron	4925.30	5000.0	98,5	90 - 110	P	06/07/2011	15:39	LB55416
	Lead	4992.70	5000,0	99.9	90 - 110	P	06/07/2011	15:39	LB55416
	Magnesium	24932.00	25000.0	99.7	90 - 110	P	06/07/2011	15:39	LB55416
	Manganese	2463.70	2500.0	98.5	90 - 110	P	06/07/2011	15:39	LB55416
	Nickel	2496,20	2500,0	99.8	90 - 110	P	06/07/2011	15:39	LH55416
	Potassium	25410,00	25000.0	101.6	90 - 110	P	06/07/2011	15:39	LB55416
	Selenium	5449.90	5000.0	109.0	90 - 110	p	06/07/2011	15:39	LB55416
	Silver	1205,80	1250,0	96.5	90 - 110	P	06/07/2011	15:39	LB55416

946.05 100 = 94.6%

ma Alli

Metals - 4 -INTERFERENCE CHECK SAMPLE

Client:

MACTEC Inc.

SDG No.: C2487

Contract:

MACT03

Lab Code:

CHEM Case No.: C2487

P4

SAS No.: C2487

ICS Source:

EPA

Instrument ID:

Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window	Analysis Date	Analysis Time	Run Number
ICSA01	Aluminum	246000	244100	100.8	80 - 120%	06/07/2011	11:30	LB55416
ICBAUI	Antimony	6,5	271700	100.5	00 - 120/0	06/07/2011	11:30	LB55416
	Arsenic	11.2				06/07/2011	11:30	LB55416
	Barium	2.7				06/07/2011	11:30	LB55416
	Beryllium	2.1				06/07/2011	11:30	LB55416
	Cadmium	-4.5				06/07/2011	11:30	LB55416
	Calcium	251000	234900	106.9	80 - 120%	06/07/2011	11:30	LB55416
	Chromium	41.4	. 43	96.3	80 - 120%	06/07/2011	11:30	LB55416
	Cobalt	2.4	,	74.2	33 120,0	06/07/2011	11:30	LB55416
	Copper	50.2				06/07/2011	11:30	LB55416
	Iron	96400	95600	100.8	80 - 120%	06/07/2011	11:30	LB55416
	Lead	5,2	,	20010	30 12015	06/07/2011	11:30	LB55416
	Magnesium	259000	247500	104.6	80 - 120%	06/07/2011	11:30	LB55416
	Manganese	19.4	19	102.1	80 - 120%	06/07/2011	11:30	LB55416
	Nickel	24,3	-			06/07/2011	11:30	LB55416
	Potassium	-0.100				06/07/2011	11:30	LB55416
	Selenium	1.6	414	43 - 160% =	a1 30/2	06/07/2011	11:30	LB55416
	Silver	-1.5	*11.77	112 160 6	16,770	06/07/2011	11:30	LB55416
	Sodium	756	,	' ግ ን		06/07/2011	11:30	LB55416
	Thallium	0.97				06/07/2011	11:30	LB55416
	Vanadium	5.6				06/07/2011	11:30	LB55416
	Zinc	26.9				06/07/2011	11:30	LB55416
CSAB01	Aluminum	243000	241100	100.8	80 - 120%	06/07/2011	11:33	LB55416
COLLEGE	Antimony	607	589	103.1	80 - 120%	06/07/2011	11:33	LB55416
	Arsenic	115	101	113.9	80 - 120%	06/07/2011	11:33	LB55416
	Barium	502	495	101.4	80 - 120%	06/07/2011	11:33	LB55416
	Beryllium	501	475	105.5	80 - 120%	06/07/2011	11:33	LB55416
	Cadmium	988	940	105.1	80 - 120%	06/07/2011	11:33	LB55416
	Calcium	248000	231100	107.3	80 - 120%	06/07/2011	11:33	LB55416
	Chromium	493	511	96.5	80 - 120%	06/07/2011	11:33	LB55416
•	Cobalt	497	461	107.8	80 - 120%	06/07/2011	11:33	LB55416
	Copper	536	548	97.8	80 - 120%	06/07/2011	11:33	LB55416
	Iron	95600	94800	100.8	80 - 120%	06/07/2011	11:33	LB55416
	Lead	59.2	61	97.0	80 - 120%	06/07/2011	11:33	LB55416
	Magnesium	254000	251100	101.2	80 - 120%	06/07/2011	11:33	LB55416
	Manganese	510	502	101.6	80 - 120%	06/07/2011	11.33	LB55416
	Nickel	1030	984	104.7	80 - 120%	06/07/2011	11:33	LB55416
	Potassium	-19.4				06/07/2011	11:33	LB55416
	Selenium	57.3	53	108.1	80 - 120%	06/07/2011	11:33	LB55416
	Silver	201	206	97.6	80 - 120%	06/07/2011	11:33	LB55416
	Sodium	739				06/07/2011	11:33	LB55416
	Thallium	102	103	99.0	80 - 120%	06/07/2011	11:33	LB55416
	Vanadium	476	494	96.4	80 - 120%	06/07/2011	11:33	LB55416
	Zinc	961	1028	93.5	80 - 120%	06/07/2011	11:33	LB55416

Metals -7-

LABORATORY CONTROL SAMPLE SUMMARY

Client:

MACTEC Inc.

SDG No.: C2487

Contract:

MACT03

Lab Code:

CHEM

Case No.: C2487 SAS No.: C2487

					%	Acceptance	
Analyte	Units	True Value	Result	С	Recovery	Limits	M
B55852BS							
Aluminum	ug/L	2000.0	1821,20		91.1	81 - 117	P
Antimony	ug/L	800.0	793.80		99,2	7 9 - 114	P
Arsenic	ug/L	800.0	816.56		102.1	82 - 113	P
Barium	ug/L	200.0	207.74		103.9	83 - 118	P
Beryllium	ug/L	200.0	186,25		93.1	84 - 115	P
Cadmium	ug/L	200.0	197.52		98.8	82 - 119	P
Calcium	ug/L	1000,0	942.02	J	94.2	10 - 129	P
Chromium	ug/L	400.0	378.57		94.6 🖊	83 - 118	P
Cobalt	ug/L	200.0	194.59		97.3	82 - 118	P
Copper	ug/L	300,0	289.35		96. 4	80 - 115	P
Iron	ug/L	3000,0	2952.80		98.4	79 - 112	P
Lead	ug/L	1000.0	945.91		94.6	83 - 119	P
Magnesium	ug/L	2000.0	1994.90		99.7	10 - 123	P
Manganese	ug/L	200.0	198.01		99.0	10 - 115	P
Nickel	ug/L	500.0	491.93		98.4	84 - 123	P
Potassium	ug/L	10000.0	9973.30		99.7	67 - 121	P
Selenium	ug/L	2000.0	2025.30		101.3	75 - 108	P
Silver	ug/L	75.0	70.02		93.4	81 - 126	P
Sodium .	ug/L	3000.0	2951.00		98.4	10 - 165	P
Thallium	ug/L	2000.0	1870.20		93.5	86 - 122	P
Vanadium	ug/L	300.0	289.94		96.6	84 - 114	P
Zinc	ug/L	200.0	192.89		96.4	89 - 126	P .

Metals - 7 -

LABORATORY CONTROL SAMPLE SUMMARY

Client:

MACTEC Inc.

SDG No.: C2487

Contract:

MACT03

Lab Code:

CHEM

Case No.: C2487

SAS No.:

Analyte	Units	True Value	Result	С	% Recovery	Acceptance Limits	M	
PB56025BS Mercury	ug/L	4.000	3.840		96.0	80 - 120	CV	

Metals

-9 -

ICP SERIAL DILUTIONS

MW-01L	

Lab Name:

Chemtech Consulting Group

Contract:

MACT03

Lab Code:

CHEM

C2487 Case No.:

SAS No.:

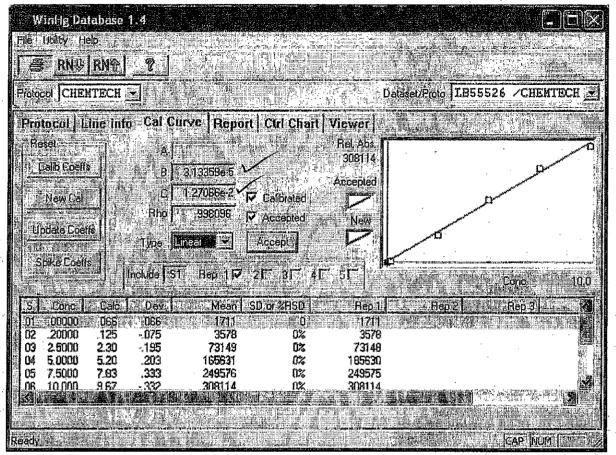
C2487

SDG No.: C2487

Matrix (soil/water):

WATER

Level (low/med):


<u>LO</u>W

Concentration Units:

ug/L

Analyte	Initial Sample Result (I)	C		Serial Dilution Result (S)		% Differ- ence	Q	М
Aluminum	18.0)5 J		76.00	J	321.1		Р
Antimony	8,0	00 U		40.00	U			P
Arsenic	4,:	0 U		21.00	U		·	P
Barium	47.	39 J		48,65	J	1.6		Р
Beryllium	. 0.	70 U		3.50	U			Р
Cadmium	0.	0 U		2.50	U			P
Calcium .	69145.	00		74395,00		7.6		Р
Chromium	1.	i0 U		5.50	U			P
Cobalt	5,	30 U		29.00	U			P
Copper	2.:	37 J		10.00	U	100.0		P
Iron	33.	50 J		102,00	U	100.0		P
Lead	7.	53		23,30	J	205.4		P
Magnesium	29309.	00		30939,50		5.6		Р
Manganese	2.	38 J		9.30	J	290,8		P
Nickel	4.	20 U		21.00	U			P
Potassium	4792.	30		5014.50		4,6		Р
Selenium	4.	30 U		24.00	U			P
Silver	1.	50 U		7.50	U			P
Sodium	28966.	00	\neg	30032,00		3.7		Р
Thallium	2.	10 U		12.00	U			P
Vanadium	6.	10 U		30.50	U			P
Zinc	16.)9 J		32.50	U	100.0	ļ	P

74395 -1-100% = 7.59%

Inst Summer ID: a, LB 55526 AT.

m) ~ [m]

VOCs in Air

NYSDEC DUSR PROJECT CHEMIST REVIEW RECORD

Me Lab Dat	thod ora e: <u>2</u> 0	: Loohn's Dry Cleaners 3612102148 : TO-15 tory and SDG(s): Enalytic SDG# E1106002 6 July, 2011
		er: Mike Washburn Level X NYSDEC DUSR USEPA Region II Guideline
		Control limits are from EPA Region 2 - SOP# HW-31, October 2006.
1.		Case Narrative Review and Data Package Completeness Were problems noted? Package complete, noted problems addressed in the following sections.
2.	ם	Holding time and Sample Collection All samples were analyzed within the 30 day holding time.
3.		QC Blanks (use 5x rule for calculating action levels) Are method blanks free of contamination? YES NO (circle one)
		Acetone (1.9 μ g/m³) and isopropanol (2.3 μ g/kg) were reported in the method blank. Action levels were established at five times the reported blank concentrations. Reported detections for acetone and methylene chloride were greater than the action level. No action was necessary`.
		Are Trip blanks free of contamination? YES NO (circle one) There were no trip blanks analyzed.
4.		Instrument Tuning Were all results were within method criteria YES NO (circle one)
5.		Instrument Calibration Initial Calibration %RSD = 30%, RRF ≥0.05. Were all results were within criteria? YES NO
		In the initial calibration dated 4/27/2011, the %RSD exceeds the QC limit of 30 for methylene chloride (35). Methylene chloride was not detected in associated samples and the reporting limits were qualified as estimated (UJ).
		Continuing Calibration %D = 30% Were all results were within criteria? YES NO
		In a continuing calibration dated 6/20/2011, the %D exceeded the QC limit of 30 for 1,1,2,2-tetrachloroethane (34) and 2-butanone (31). Results for 1,1,2,2-tetrachloroethane and 2-butanone in associated samples were qualified estimated (J/UJ).
6.		Internal Standards (Area Limits +40% to -40%, RT's within 20 seconds of mid point cal Std) Were all results within criteria? YES NO (circle one)
7.		Surrogate Recovery
		Were all results were within laboratory limits? YES NO (circle one)
8.		Field Duplicates/replicates Were Field Duplicates submitted/analyzed? YES NO
		Were all results were within criteria (Field Dup RPD goal = 50). YES NO NA (circle one)
9.		Laboratory Control Sample Results (limits 70-130%)

 $P:\Projects\nysdec 1\Contracts\ D004434\ and\ D004444\projects\Loohns\ Corning\3.0_Site_Data\3.4_Test_Results\Checklists\E1106002_DUSR_Checklist_VOC_TO-15.doc$

In LSC dated 6/20/2011, the percent recovery for isopropanol (65) was below the QC limit of 70. The sample results for isopropanol in the associated samples were qualified estimated (J/UJ).

10.

Raw Data Review and Calculation Checks
Completed.

11.

Electronic Data Review and Edits
Does the EDD match the Form I's? YES NO (circle one)

12.

TIC Review and DUSR Table 1 (sample Listing), Table 2 (results summary),
Table 3 (Reason Codes), Table 4 (TIC's). Did lab report TICs' YES NO (circle one)

Were all results were within limits?

NO (circle one)

Analytical Report

Date 22-Jun-11

CLIENT MACTEC Engineering and Consulting, I

Locatio Loohn's Corning Project: PO#210107176

Lab ID E1106002-001A

Client Sample ID LCSV002007

Collection Date: 6/1/2011

Tag # 283/4969

Matrix SOIL VAPOR

TO-15(SG	G+TICS)	Dilution	Date	ppi	bV	Data	uç	j/m3
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
71-55-6	1,1,1~Trichloroethane	1	20-Jun-11	0.20	0,38		1.10	2.0
79-34-5	1,1,2,2-Tetrachioroethane	1	20-Jun-11	0.20	0.48	J	1,40	3.4
79-00-5	1,1,2-Trichloroethane	1	20-Jun-11	0.20	ND	•	1.10	ND
76-13-1	1,1,2-Trifluoro-1,2,2-Trichloroethane (Freon 11:	1	20-Jun-11	0.20	ND		1,60	ND
75-34-3	1,1-Dichloroethane	1	20-Jun-11	0.20	ND		0.82	ND
75-35-4	1,1-Dichloroethene	1	20-Jun-11	0.20	ND		0.81	ND
120-82-1	1,2,4-Trichlorobenzene	1	20-Jµn-11	0,20	ND		1.50	ND
95-63-6	1,2,4-Trimethylbenzene	1	20-Jun-11	0.30	0.98		1,50	4.9
106-93-4	1,2-Dibromoethane	1	20-Jun-11	0,20	ND		1.60	ND
76-14-2	1,2-Dichioro-1,1,2,2-tetrafluoroethane (Freon-1	1	20-Jun-11	0.20	ND		1,40	ND
95-50-1	1,2-Dichlorobenzene	1	20-Jun-11	0,20	ND		1.20	ND
107-06-2	1,2-Dichloroethane	1	20-Jun-11	0.20	ND		0.82	ND
78-87-5	1,2-Dichloropropane	1	20-Jun-11	0.20	ND		0.94	ND
108-67-8	1,3,5-Trimethylbenzene	1	20-Jun-11	0.20	1.9		1,00	9,4
106-99-0	1,3-Butadiene	1	20-Jun-11	0,20	ND		0.45	ND
541-73-1	1,3-Dichlorobenzene	1	20-Jun-11	0.20	ND		1.20	ND
106-46-7	1,4-Dichlorobenzene	1	20-Jun-11	0.20	0.24		1,20	1.5
123-91-1	1,4-Dloxane	1	20-Jun-11	0.40	ND		1.50	ND
78-93-3	2-Butanone (MEK)	1	20-Jun-11	0,20	1.9	J	0,60	5.6
591-78-6	2-Hexanone (*)	1	20-Jun-11	0.20	ND		0,83	ND
622-96-8	4-Ethyltoluene (*)	1	20-Jun-11	0,20	0.96		1.00	4.8
108-10-1	4-Methyl-2-Pentanone (MIBK)	1	20-Jun-11	0.20	ND		0.83	ND
67-64-1	Acetone	1	20-Jun-11	2,0	. 23		4.80	55
71-43-2	Benzene	1	20-Jun-11	0,20	2.4		0.65	7.9
100-44-7	Benzyl chloride	1	20-Jun-11	0.20	ND		1.10	ND
75-27-4	Bromodichloromethane	1	20-Jun-11	0,20	ND		1.40	ND
75-25-2	Bromoform	1	20-Jun-11	0.20	ND		2.10	ND
74-83- 9	Bromomethane	1	20-Jun-11	0,20	ND		0.79	ND
75-15-0	Carbon disulfide	1	20-Jun-11	0,20	0,67		0.63	2,1
56-23-5	Carbon tetrachloride	1	20-Jun-11	0.20	ND		1.30	ND
108-90-7	Chlorobenzene	1	20-Jun-11	0.20	ND		0.94	ND
75-00-3	Chloroethane	1	20-Jun-11	0.20	ND		0.54	ND
67-66-3	Chloroform	1	20-Jun-11	0,20	ND		0.99	ND
74-87-3	Chloromethane	1	20-Jun-11	0,20	ND		0,42	ND
156-59-2	cls-1,2-Dichloroethene	1	20-Jun-11	0.20	0,39		0.81	1.6

Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

Approved By K

Page 1 of 4

Date: 6-22-11

nsw Herkli

Analytical Report

Date 22-Jun-11

CLIENT	MACTEC	Engineering	and	Consulting,	I
--------	--------	-------------	-----	-------------	---

Locatio Loohn's Corning **Project:** PO#210107176 : Lab ID E1106002-001A

Client Sample ID LCSV002007

Collection Date: 6/1/2011

Tag# 283/4969

Matrix SOIL VAPOR

TO-15(SG	+TICS)	Dilution	Date	ppl	υV	Data	иg	/m3
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
10061-01-5	cis-1,3-Dichloropropene	1	20-Jun-11	0.20	ND		0.92	ND
110-82-7	Cyclohexane	1	20-Jun-11	0.20	5.5		0.70	19
124-48-1	Dibromochloromethane	1	20-Jun-11	0.20	ND		1.70	ND
75-71-8	Dichlorodifluoromethane (Freon 12)	1	20-Jun-11	0.20	0.51		1,00	2,6
100-41-4	Ethyl benzene	1	20-Jun-11	0.20	0.63		88.0	2.8
87-68-3	Hexachiorobutadiene	1	20-Jun-11	0,20	ND		2.20	ND
110-54-3	Нехапе	1	20-Jun-11	0.20	10		0.72	37
67-63-0	Isopropanol	1	20-Jun-11	2.0	ND	ΝJ	5.00	ND
1330-20-7	m,p-Xylene	1	20-Jun-11	0.60	4.3	• •	2.60	19
1634-04-4	Methyl tert-butyl ether (MTBE)	1	20-Jun-11	0.20	ND		0.73	ND
75-09-2	Methylene chloride	1	20-Jun-11	0.20	ND	W)	0.71	ND
142-82-5	n-Heptane	1	20-Jun-11	0.20	10		0.83	43
95-47-6	o-Xylene	1	20-Juก-11	0.20	1.2		0.88	5.5
100-42-5	Styrene	1	20-Jun-11	0.30	0,65		1,30	2.8
127-18-4	Tetrachloroethene	262	21-Jun-11	52	19000		360.00	130000
109-99-9	Tetrahydrofuran (*)	1	20-Jun-11	0.20	0.45		0.60	1.3
108-88-3	Toluene	1	20-Jun-11	0.20	24		0.77	91
166-60-5	trans-1,2-Dichloroethene	1	20-Jun-11	0.20	ND		0.81	ND
10061-02-6	trans-1,3-Dichloropropene	1	20-Jun-11	0.20	ND		0,92	ND
79-01-6	Trichloroethene	1	20-Jun-11	0.20	32		1.10	180
75-69-4	Trichlorofluoromethane (Freon 11)	1	20-Jun-11	0.20	0.47		1.10	2.7
108-05-4	Vinyl acetate	1	20-Jun-11	0.20	ND		0.72	ND
75-01-4	Vinyl chloride	1	20-Jun-11	0,20	ND		0.52	ND
	Surr: Bromofluorobenzene	262	21-Jun-11	65-136	106		0.00	0
	Surr: Bromofluorobenzene	1	20-Jun-11	65-135	103		0.00	0
	TIC: Butane	1	20-Jun-11	0	25	ŊĴ	0.00	0
	TIC: Butane, 2-methyl-	1	20-Jun-11	0	18	1	0.00	0
	TIC: Cyclotetrasiloxane, octamethyl-	1	20-Jun-11	0	26	Į.	0.00	0
	TIC: Isobutane	1	20-Jun-11	0	19	ľ	0.00	. 0
	TIC: Nonadecane	1	20-Jun-11	0	7.9	1	0.00	0
	TIC: Nonane	1	20-Jun-11	0	12	1	0.00	0
	TIC: Propane	1	20-Jun-11	0	17		0.00	0
	TIC: unknown hydrocarbon	1	20-Jun-11	0	15	\checkmark	0,00	0

Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

Page 2 of 4

Date: 6-22-11

Now Max/11

Approved By

Analytical Report

Date 22-Jun-11

CLIENT MACTEC Engineering and Consulting, I

Locatio Loohn's Corning Project: PO#210107176

Lab ID E1106002-002A

Client Sample ID LCSVEW1005

Collection Date: 6/1/2011

Tag# 245/4970

Matrix SOIL VAPOR

TO-15(SG	+TICS)	Dilution	Date	ppl	bV	Data	ид	j/m3
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
71-55-6	1,1,1-Trichloroethane	1	20-Jun-11	0.20	ND		1.10	ND
79-34-5	1,1,2,2-Tetrachloroethane	1	20-Jun-11	0.20	ND	W)	1.40	ND
79-00-5	1,1,2-Trichloroethane	1	20-Jun-11	0.20	ND		1,10	ND
76-13-1	1,1,2-Trifluoro-1,2,2-Trichloroethane (Freon 11:	1	20-Jun-11	0.20	ND		1,60	ND
75-34-3	1,1-Dichloroethane	1	20-Jun-11	0.20	ND		0.82	ND
75-35-4	1,1-Dichloroethene	1	20-Jun-11	0.20	ND		0.81	ND
120-82-1	1,2,4-Trichlorobenzene	1	20-Jun-11	0.20	ND		1.50	ND
95-63-6	1,2,4-Trimethylbenzene	1	20-Jun-11	0.30	0,32		1.50	1.6
106-93-4	1,2-Dibromoethane	1	20-Jun-11	0,20	ND		1.60	ND
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluorcethane (Freon-1	1	20-Jun-11	0.20	ND		1.40	ND
95-50-1	1,2-Dichlorobenzene	1	20-Jun-11	0,20	ND		1.20	ND
107-06-2	1,2-Dichloroethane	1	20-Jun-11	0.20	ND		0.82	ND
78-87- 5	1,2-Dichloropropane	1	20-Jun-11	0.20	ND		0.94	ND
108-67-8	1,3,5-Trimethylbenzene	1	20-Jun-11	0.20	1.0		1.00	5.2
106-99-0	1,3-Butadlene	1	20-Jun-11	0,20	ND		0.45	ND
541-73-1	1,3-Dichlorobenzene	1	20-Jun-11	0,20	ND		1.20	ND
106-46-7	1,4-Dichlorobenzene	1	20-Jun-11	0.20	ND		1.20	ND
123-91-1	1,4-Dioxane	1	20-Jun-11	0.40	ND		1.50	ND
78-93-3	2-Butanone (MEK)	1	20-Jun-11	0.20	2.3	J	0.60	6.9
591-78-6	2-Hexanone (*)	1	20-Jun-11	0.20	ND		0.83	ND
622-96-8	4-Ethyltoluene (*)	1	20-Jun-11	0.20	0.75		1.00	3.7
108-10-1	4-Methyl-2-Pentanone (MIBK)	1	20-Jun-11	0.20	ND		0.83	ND
67-64-1	Acetone	1	20-Jun-11	2.0	. 83		4.80	200
71-43-2	Benzene	1	20-Jun-11	0,20	ND		0.65	ND
100-44-7	Benzyl chloride	1	20-Jun-11	0,20	ND		1.10	ND
75-27-4	Bromodichloromethane	1	20-Jun-11	0.20	ND		1.40	ND
75-25-2	Bromoform	1	20-Jun-11	0.20	ND		2.10	ND
74-83-9	Bromomethane	1	20-Jun-11	0.20	ND		0.79	ND
75-15-0	Carbon disulfide	1	20-Jun-11	0.20	0.35		0.63	1,1
56-23-5	Carbon tetrachloride	1	20-Jun-11	0.20	ND		1.30	ND
108-90-7	Chlorobenzene	1	20-Jun-11	0,20	ND		0.94	ND
75-00-3	Chloroethane	1	20-Jun-11	0.20	ND		0.54	ND
67-66-3	Chloroform	1	20-Jun-11	0.20	NĐ		0.99	ND
74-87-3	Chloromethane	1	20-Jun-11	0.20	ND		0.42	ND
156-59-2	cis-1,2-Dichloroethene	1	20-Jun-11	0.20	1.4		0.81	5.7

Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

Page 3 of 4

Date: 6-22-11

Msin 227 (u

Approved By

Analytical Report

Date 22-Jun-11

CLIENT MACTEC Engineering and Consulting, I

Locatio Loohn's Corning
Project: PO#210107176

Lab ID E1106002-002A

Client Sample ID LCSVEW1005

Collection Date: 6/1/2011

Tag # 245/4970

Matrix SOIL VAPOR

TO-15(SG	+TICS)	Dilution	Date	ppt	οV	Data	uç	g/m3
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
10061-01-5	cis-1,3-Dichloropropene	1	20-Jun-11	0,20	ND		0,92	ND
110-82-7	Cyclohexane	1	20-Jun-11	0.20	ND		0.70	ND
124-48-1	Dibromochloromethane	1	20-Jun-11	0,20	ND		1.70	ND
75-71-8	Dichlorodifluoromethane (Freon 12)	1	20-Jun-11	0,20	0.50		1.00	2,5
100-41-4	Ethyl benzene	1	20-Jun-11	0.20	0,59		0.88	2,6
87-68-3	Hexachlorobutadiene	1	20-Jun-11	0.20	ND		2.20	ND
110-54-3	Hexane	1	20-Jun-11	0.20	0,35		0.72	1.3
67-63-0	Isopropanol	1	20-Jun-11	2.0	16	J	5,00	37
1330-20-7	m,p-Xylene	1	20-Jun-11	0,60	1.8	-	2.60	7.9
1634-04-4	Methyl tert-butyl ether (MTBE)	1	20-Jun-11	0.20	ND		0.73	ND
75-09-2	Methylene chloride	1	20-Jun-11	0.20	ND	7	0.71	ND
142-82-5	n-Heptane	1	20-Jun-11	0.20	0.29		0.83	1.2
95-47-6	o-Xylene	1	20-Jun-11	0.20	0.73		0.88	3,2
100-42-5	Styrene	1	20-Jun-11	0,30	0.69		1,30	3.0
127-18-4	Tetrachioroethene	5	21-Jun-11	1.0	470		6.90	3200
109-99-9	Tetrahydrofuran (*)	1	20-Jun-11	0.20	ND		0.60	ND
108-88-3	Toluene	1	20-jun-11	0.20	23		0.77	90
156-60-5	trans-1,2-Dichloroethene	1	20-Jun-11	0.20	ND		0.81	ND
10061-02-6	trans-1,3-Dichloropropene	1	20-Jun-11	0.20	ND		0.92	ND
79-01-6	Trichloroethene	1	20-Jun-11	0,20	5.4		1.10	29
75-69-4	Trichlorofluoromethane (Freon 11)	1	20-Jun-11	0.20	0.41		1.10	2,3
108-05-4	Vinyl acetate	1	20-Jun-11	0,20	ND		0.72	ND
75-01-4	Vinyl chloride	1	20-Jun-11	0,20	. ND		0.52	ND
	Surr: Bromofluorobenzene	1	20-Jun-11	65-135	78.6		0.00	0
	Surr: Bromofluorobenzene	5	21-Jun-11	65-135	67.5		0,00	0
	TIC: Decane, 2,2-dimethyl-	1	20-Jun-11	0	810	ΝJ	0.00	0
	TIC: Dodecane, 2,6,10-trimethyl-	1	20-Jun-11	0 -	410	1	0.00	0
	TIC: Heptane, 2,2,4,6,6-pentamethyl-	1	20-Jun-11	0	390	1	0.00	0
	TIC: Nonane, 3-methyl-5-propyl-	1	20-Jun-11	0	610	ł	0.00	0
	TIC: Octane, 2,2,6-trimethyl-	1	20-Jun-11	0	210	}	0.00	0
	TIC: Undecane, 3,6-dimethyl-	1	20-Jun-11	0	280	1	0.00	0
	TIC: unknown hydrocarbon (12.103)	1	20-Jun-11	0	270	}	0.00	0
	TIC: unknown hydrocarbon (13.636)	1	20-Jun-11	0	860]	0.00	0
	TIC: unknown hydrocarbon (13.726)	1	20-Jun-11	0	200	Ψ	0.00	0

Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

Page 4 of 4

Approved By

Date: 6-22-11

M) W 2/27/11

Form 6

EPA TO-15 INITIAL CALIBRATION DATA

Enalytic, LLC Lab Name:

Contract:

MACTEC

Case No.: Lab Code: 11920

SDG No.: MT005 SAS No.:

Instrument ID:

4/27/2011 4/27/2011 Calibration Dates:

Calibration Times:

۲I

Heated Purge: (Y/N)

17:42 14:29

GC Column: Rtx-VMS

(<u>III</u>) Ä

LAB FILE ID:	vSTD100=		EN5003.D	VSTD050=	50= EN5004.D	04 D	VSTD030=)= EN5005.D	VSTD010= EN5006.D	VSTD002= EN5008.D	ENSOUB.	Ы
	VSTD0.2=	ENSC	EN5009.D									
		-									%	rs P
COMPOUND		<u> </u>	/STD100	VSTD050	VSTD030	VSTD010	VSTD100 VSTD050 VSTD030 VSTD010 VSTD002 VSTD0.2	VSID0.2		RRF	RSD	
Вепzепе		*	2.552	2.598	2.895	3.083	3.696	3.046		2.978	13.957	
Benzyl chloride		*	0.553	0.652	0.559	0.657	0.854	0.544		0.636	18.523	
Bromodichloromethane		*	0.519	0.567	0.583	0.63	0.781	0.521		9.0	16.298	
Bromoform		*	0.284	0.355	0.359	0.385	0.491	0.282		0.359	21.437	
Bromomethane		*	0.904	0.915	1.012	1.096	1.242	1.034		1.034	12.132	
Carbon disulfide		k	2.421	2.399	2.719	2.939	3.128	3.392		2.833	13.958	
Carbon tetrachloride		*	1.898	1.953	2.245	2.491	2.818	1.977		2.23	16.352	
Спорендене		*	0.831	0.93	\$ 973	7.052	7.354	0.856		√ 0.999	19.141	
Chloroethane		*	0.461	0.466	0.516	0.546	9.0	0.593		0.53	11.369	
Chloroform		*	1.864	1.92	2.172	2.311	2.878	1.928		2.179	17.601	
Chloromethane		*	0.936	0.9	1.021	1.111	0.431	1.2		0.933	28.907	
cis-1,2-Dichloroethene		*	1.215	1.273	1.388	1.516	1.856	1,352		1.433	16.138	
cis-1,3-Dichloropropene		*	0.443	0.468	0.486	0.52	0.63	0.501		0.508	12.874	
Cyclohexane		*	1.235	1.331	1.547	1.694	2.15	1.243		1.533	22.975	
Dibromochloromethane		*	0.473	0.472	0.473	0.506	0.621	0.387		0.489	15.563	
Dichlorodifiuoromethane (Freon 12)	(Freon 12)	*	2.56	2.482	2.833	3.076	3.877	2.707		2.922	17.545	
Ethyi benzene		*	0.845	0.846	0.826	0.851	1.068	0.748		0.866	12.355	
Hexachlorobutadiene		*	0.454	0.441	0.55	0.44	0.688	0.502		0.512	18.737	
Hexane		*	1.462	1.474	1.625	1.786	1,754	1.629		1.622	8.359	
Isopropanol		*	1.137	1.064	1,106	1.207	1.076	o		1:118	5.12	
m,p-Xylene		*	0.746	0.887	0.918	0.898	1.102	0.898		0.908	12.518	
Methyl tert-bubyl ether (MTBE)	TBE)	*	1.98	1.916	2.123	2.154	1.986	1.699		1.976	8225	
Methylene chloride	\wedge	*	0.762	0.755	0.854	0.926	0.981	1.665		0.99	34.548	\langle
										J		1

FORM VI

EPA TO-15

Form 6 BPA TO-15 INITIAL CALIBRATION DATA

17:42 4/27/2011 MT005 SDG No.: 14:29 4/27/2011 MACTEC Calibration Dates: Calibration Times: Contract: SAS No.: (IIII) Ä Case No.: Þ١ Enalytic, LLC Heated Purge: (Y/N) GC Column: Rtx-VMS Lab Code: 11920 Instrument ID: Lab Name:

LAB FILE ID:	VSTD100= EN5003.D	ENS	₫.£00;	VSTD050=	50= EN5004.D	04.D	VSTD030=	= EN5005.D	VSTD010= EN5006.D	VSTD002= EN5008.D	N5008.1	
	VSTD0.2=		EN5009.D									
				,,,							0/0	F
COMPOUND			VSTD100	VSTD050	VSTD030	VSTD010	VSTD100 VSTD050 VSTD030 VSTD010 VSTD002 VSTD0.2	VSTD0.2		RRF	RSD	다 '
n-Heptane		*	1.505	1.561	1.733	1.922	2.257	1.772		1.792	15.239	
о-Хујепе		*	0.601	0.667	0.703	0,694	0.704	0.743	Annal & Vacan	0.685	7.001	
Styrene		*	0.467	0.546	0.536	0.548	0.559	0.527		0.53	6.214	
Tetrachioroethene		*	0.423	0.41	0.423	0.477	0.589	0.451		0.462	14.424	
Tetrahydrofuran (*)		*	0.992	1.056	1.133	1.183	1.215	0.99		1.095	8.831	
Toluene		*	0.872	0.862	0.892	0.953	1.158	1.032		0.962	11.985	
trans-1,2-Dichloroethene		*	1.06	1.075	1.193	1.309	1.296	1.043		1.163	10.368	
trans-1,3-Dichloropropene		*	0,373	0.37	0.378	0,393	0.482	0.367		0.394	11.211	
Trichloroethene		*	0.408	6.445	9 .476	6.545	× 0.698	✓ 0.686		6.543	12.77	
Trichlorofluoromethane (Freon 11)	reon 11)	*	2.112	2.122	2.394	2.65	2.857	2.377		2.419	12.125	
Vinyl acetate		*	1.724	1.732	1.828	1.61	1.534	1.515		1.657	7.482	
Vinyl chloride		*	1.062	Z.022	A.173	1.255	1.508	71.066		71.181	4 5.388	
Bromofluorobenzene			0.49	0.517	0.425	0.482	0.528	0.408		0.475	10.243	

* Compounds with required minimum RRF and maximum %RSD values.

All other compounds must meet a minimum RRF of 0.010.

FORM VI

74

DUSR Calculations TO-15 SDG E1106002 LOOHN'S DRY CLEANER

Analyte	SI	11.2	777	13 10	L4 30	TS 50	L6 100	17	83	ឡ	Ave.	ds%	%RSD
Vinyl Chloride	BCM	1.066103	1.066103 1.508017	1.254901	1.172963	1.022432	1.062074	-			1.181082	18.2	15.4
Trichloroethene	DFB	0.685473	0.685473 0.697762	0.544623	0.475983	0.544623 0.475983 0.444938 0.408591	0.408591				0.542895	12.4	22.8
Chlorobenzene	CBS	0.85636	0.85636 1.354346	1.052098	0.972979	0.972979 0.929867 0.831366	0.831366	-		LLEMAN	0.999503	19.1	1.61
							1	ı	-		10/\lq#	#D1V/01	i0/\lq#
						1	1	ł			i0/∧lG#	#DIV/01	10/\IQ#
			1	******		1	}	ŀ			i0//\lag	#DIV/01	ì0/∧iΩ#
			-	l	-	-		†			io/∧la#	#DIV/0i	i0/∧lΩ#
			1	-			1		-		#DIV/01	#DIV/0i	#DIV/0!

My May III

Analyte	SI	Area	RRF
Vinyl Chloride	BCM		
Trichloroethene	DFB		-
Chlorobenzene	CB5		
0	0		
0	0		
0	0		
0	0		
0	0		

SI	Area	IS AMT	CAL AMT
BCM		10	70
DFB		10	20
CB5		10	. 20
0		0	20
0		0	20
0		0	20

Analyte	IS	Area	RRF
Vinyl Chloride	BCM		
Trichloroethene	DFB		
Chlorobenzene	CB5		
0	0		
0	0		
0	0		
0	0		
0	0		

AL AMT	15	15	15	15	15	15
IS AMT C		10	10	0	0	0
Area						
lS	BCM	DFB	CB5	0	0	0

		,	וווון
a .	M		
	.B		
Cilioropenzene CB3	CB5		-
0 0			-
0 0			
0 0			
0 0			
0 0			·

SI	Area	IS AMT	CAL AMT
BCM		10	10
DFB		10	10
CB5		10	10
0		0	10
0		0	10
0		0	10

Analyte	IS	Area	RRF
Vinyl Chloride	BCM	1399219	1399219 1.062074
Trichloroethene	DFB	1726307	1726307 0.408591
Chlorobenzene	CB5	2353430	2353430 0.831366
0	0		-
0	0		
0	0		
0	0		
0	0		

SI	Area	IS AMT	CAL AMT
BCM	131744	10	100
DFB	422502	10	100
CB5	283080	10	100
0		0	100
0		0	100
0		0	100

DUSR Calculations TO-15 SDG E1106002 LOOHN'S DRY CLEARNERS

Analyte	IS	Area	RRF
Vinyl Chloride	BCM	702452	1.022432
Trichloroethene	DFB	909880	0.444938
Chlorobenzene	CB5	1167058	0.929867
0	0		
0	0		
0	0		
0	0		
0	0		i

SI	Area	IS AMT	CAL AMT
BCM	137408	10	20
DFB	408992	10	20
CB5	251016	10	20
0		0	20
0		0	20
0		0	20

page 7 of 12

Analyte	15	Area	RRF
Vinyl Chloride	BCM	426711	1.172963
Trichloroethene	8JQ	549645	0.475983
Chlorobenzene	CB5	645955	0.972979
0	0		
0	0		****
0	0		
0	0		
0	0		

15	Area	IS AMT	CAL AMT
BCM	121263	10	30
DFB	384919	10	30
CB5	221298	10	0E
0	·	0	08
0		0	30
0		0	90

کی

DUSR Calculations TO-15 SDG E1106002 LOOHN'S DRY CLEARNERS

Analyte	15	Area	RRF
Vinyl Chloride	BCM	146063	1.254901
Trichloroethene	DFB	200273	0.544623
Chlorobenzene	CB5	229713	1.052098
0	0		
0	0		
0	0		
0	0		
0	0		

	Area	IS AMT	CAL AMT
	116394	10	10
	367728	10	10
	218338	10	10
		0	10
		0	10
**		0	10

RRF	1.508017	0.697762	1.354346					-
22	1.50	0.69	1.35				·	
Area	40537	2/895	61756					
IS	BCM	DFB	CB5					
Analyte	Vinyl Chloride	Trichloroethene	Chlorobenzene	0	0	0	0	0

IS AMT CAL AMT	10 2	10 2	10 2	0 2	0 2	0 2
	134405	403970	227992			
SI	BCM	DFB	CB5			

page 10 of 12

Analyte	IS	Area	RRF
Vinyl Chloride	BCM	2465	1.066103
Trichloroethene	DFB	4923	0.685473
Chlorobenzene	CB5	3714	0.85636
0	0		
0	0		
0	0		
0	0		
0	0		

SI	Area	IS AMT	CAL AIMT
BCM	115608	10	0.2
DFB	329095	10	0.2
CB5	216848	10	0.2
0			0.2
0			0.2
0			0.2

VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: Enalytic, LLC

Contract: MACTEC

Lab Code: 11920 Case No.:

SAS No.: SDG No.: MT005

Instrument ID: 1.0 Calibration Date: 06/20/11

Time: 12:59

Lab File ID: EN5128.D

Init. Calib. Date(s): 04/27/11 04/27/11

EPA Sample No. (VSTD050##): CC Init. Calib. Times: 14:29 17:42

Heated Purge: (Y/N) N

GC Column: Rtx-VMS ID: (mm)

			MIN		MAX
COMPOUND	RRF	RRF10	RRF	ъъ	%D
cis-1,3-Dichloropropene	0.508	0.456		10.2	30.0
Cyclohexane	1.533	1.413		7.8	30.0
Dibromochloromethane	0.489	0.523		-7.0	30.0
Dichlorodifluoromethane (Freon 12)	2,922	2,522		13.7	30.0
Ethyl benzene	0.866	0.855		1.3	30.0
Hexachlorobutadiene	0.512	0,509		0,6	30.0
Hexane	1,622	1.326		18.2	30.0
Isopropanol	1.118	0.827		26.0	30.0
m,p-Xylene	0,908	0,914		-0.7	30.0
Methyl tert-butyl ether (MTBE)	1.976	1.717		13.1	30.0
Methylene chloride	0.990	0.706		28.7	30.0
n-Heptane	1.792	1.412		21.2	30.0
o-Xylene	0,685	0.650	,	5.1	30.0
Styrene	0,530	0.485		8.5	30.0
Tetrachloroethene	0,462	0.487		-5.4	30.0
Tetrahydrofuran (*)	1.095	0.884		19.3	30.0
Toluene	0.962	0.864		10.2	30,0
trans-1,2-Dichloroethene	1,163	1.012		13.0	30.0
trans-1,3-Dichloropropene	0.394	0.360		8.6	30.0
Trichloroethene	0.543	0.464		14,5	30.0
Trichlorofluoromethane (Freon 11)	2.419	2,213		8.5	30.0
Vinyl acetate	1.657	1.357		18.1	30.0
Vinyl chloride	1,181	0.982		16.9	30.0

All other compounds must meet a minimum RRF of 0,010,

FORM VII VOA - 2 OLM04,2

97

Data Path : \\LAB-01\GCMS-01\DATA\

Data File : EN5128.D

Acq On : 20 Jun 2011 12:59 pm

Operator : KLP Sample : CC : 100MLS Misc

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jun 20 13:14:52 2011 Quant Method: C:\GCMS-01\METHODS\E042711.M Quant Title: Volatiles in Air by TO-15 QLast Update: Tue Jun 07 12:20:03 2011 Response via : Initial Calibration

Compound			Response				
Internal Standards							
	7.318	130	177789	10,00	vdaa	0,00	
	8,283						
48) Chlorobenzene-d5	11,167			10.00 j 10.00 j	vdaa	0.00	
					L 1,		
System Monitoring Compounds							
54) BFB	12.472	95	92000	5.97 j	vdqq	0,00	
Spiked Amount 10.000			Recove	ery =	59.7	'0%	
Target Compounds						Qvalue	
Dichlorodifluoromethane			448365			99	
3) 1,2-Dichloro-1,1,2,2-t			463951			94	
4) Chloromethane	4.572		153329				
5) Vinyl chloride	4.672		174511			1.00-	
•	4.685		116187			93	104611/10
7) Bromomethane	5.029	94	162007	8,82		98	(442) (19)
8) Chloroethane	5,132	64	79682	8,45		91	
9) Trichlorofluoromethane	5,251		393386	9.15		100	177789(16)
10) 1,1,2-Trifluoro-1,2,2			323812	8,65		99	11. 2- 3.0 /
11) 1,1-Dichloroethene	5,691		202163			93	
12) Carbon disulfide			410967			99	174511 (10) 177789 (10) = 0.981562
13) Acrolein	5.939		24712	7.97		97	- 0,701560
14) Isopropanol	5.919					94	
15) Methylene chloride	6.125						
16) Acetone	6.135		134055	8.21			
17) trans-1,2-Dichloroethene			1.80000	8,71			
18) Hexane	6.276		235795				
19) Methyl tert-butyl ethe			305280	8,69			
20) 1,1-Dichloroethane 21) Vinyl acetate	6.733		299843				
	6.820		241190				
22) cis-1,2-Dichloroethene			219786				
23) Chloroform	7.312		343661			99	
24) Cyclohexane	7.360		251199				
25) Tetrahydrofuran (*)			157114				
26) Carbon Tetrachloride	7.508		407554			99	
27) 2-Butanone (MEK)	7.540		213658				
28) 1,1,1-Trichloroethane	7.556		329428	9,40		99	
	7.697			7.88			
30) Benzene 31) 1,2-Dichloroethane							
33) Trichloroethene	8.006 8.308		184564		bbb∧		
	8.791	130	241718 153073	8,55	pppv.	98 97	•
35) Bromodichloromethane	B.787	83	294879	8.41 9.43	DDD.		
36) Methyl methacrylate	8.820	69	104407	7.99		100 92	
37) 1,4-Dioxane	8.961	88	60510			94	
38) cis-1,3-Dichloropropene	9,360	75	237398	8.41 8.98		98	
39) Toluene	9.607	91	449849			98	
40) 4-Methyl-2-pentanone (9.897	43	185320	8.98 6.96		97	
41) trans-1,3-Dichloropropene	9.961	75	187555	9.14		99	
42) Tetrachloroethene	10.012	166	253446	10.53		99	
43) 1,1,2-Trichloroethane	10.148	97	163567	9,60	DDDA PPDA	99	
44) Dibromochloromethane	10.360	129	272441	10.71		98	
1		~~~	_,		-FV	<i>.</i>	100

	MB	
	1111	

Lab Name: Enalytic, LLC

Contract: MACTEC

Lab Code: 11920 Case No.:

SAS No.: SDG No.: MT005

Matrix: (soil/water/air)

Sample wt/vol: 100.00

(g/mL) <u>G</u>

Lab File ID:

Lab Sample ID:

EN5130,D

Level: (low/med)

LOW

Date Received:

% Moisture: not dec.

Date Analyzed: 6/20/2011

GC Column: Rtx-VMS

ID: (mm)

Dilution Factor:

1,00

Extract Volume:

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ppbV or ug/m3)	Vdqq	Q
71-55-6	1,1,1-Trichloroethane	0,20	ΰ
79-34-5	1,1,2,2-Tetrachloroethane	0.20	Ü
79-00-5	1,1,2-Trichloroethane	0.20	U
76-13-1	1,1,2-Trifluoro-1,2,2-Trichloroethane (0.20	Ū
75-34-3	1,1-Dichloroethane	0,20	Ū
75-35-4	1,1-Dichloroethene	0,20	U
120-82-1	1,2,4-Trichlorobenzene	0.20	Ü
95-63-6	1,2,4-Trimethylbenzene	0.30	Ŭ
106-93-4	1,2-Dibromoethane	0.20	Ū
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethane	0.20	ט
95-50-1	1,2-Dichlorobenzene	0.20	U
107-06-2	1,2-Dichloroethane	0.20	Ü
78-87-5	1,2-Dichloropropane	0,20	Ū
108-67-8	1,3,5-Trimethylbenzene	0.20	ט
106-99-0	1,3-Butadiene	0,20	ับ
541-73-1	1,3-Dichlorobenzene	0.20	Ü
106-46-7	1,4-Dichlorobenzene	0.20	Ü
123-91-1	1,4-Dioxane	0.40	Ü
78-93-3	2-Butanone (MEK)	0,20	Ü
591-78-6	2-Hexanone (*)	0,20	Ü
622-96-8	4-Ethyltoluene (*)	0.20	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	0.20	ש
67-64-1	Acetone	(0.8)	J
71-43-2	Benzene	0.20	ט
100-44-7	Benzyl chloride	0,20	ט
75-27-4	Bromodichloromethane	0.20	U
75-25-2	Bromoform	0.20	ט
74-83-9	Bromomethane	0.20	U
75-15-0	Carbon disulfide	0.20	Ū
56-23-5	Carbon tetrachloride	0,20	Ü
108-90-7	Chlorobenzene	0.20	ט
75-00-3	Chloroethane	0.20	ט
67-66-3	Chloroform	0,20	Ü

FORM I VOA

EPA TO-15

VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: Enalytic, LLC

Contract:

and the grant of the first facilities of the control of the second of the control

MACTEC .

Lab Code: 11920

Case No.:

SAS No.: SDG No.: MT005

Instrument ID: 1.0

Calibration Date: 06/20/11

Time: 12:59

Lab File ID: EN5128.D

Init. Calib. Date(s): 04/27/11 04/27/11

EPA Sample No. (VSTD050##): CC Init. Calib. Times:

14:29 17:42

Heated Purge: (Y/N)

GC Column: Rtx-VMS

ID;

(mm)

, t			MIN		MAX
COMPOUND	RRF	RRF10	RRF	%D	%D
1,1,1-Trichloroethane	1.971	1.853		6.0	30,0
1,1,2,2-Tetrachloroethane	0.640	0,425		33.6	30,0
1,1,2-Trichioroethane	0.327	0,314		4.0	30,0
1,1,2-Trifluoro-1,2,2-Trichloroethane (Freon 113)	2.106	1.821		13.5	30.0
1,1-Dichloroethane	1,869	1.686		9.8	30.0
1,1-Dichloroethene	1,431	1.137	i	20.5	30,0
1,2,4-Trichlorobenzene	0.345	0,417		-20,9	30.0
1,2,4-Trimethylbenzene	0.873	0.902		-3,3	30.0
1,2-Dibromoethane	0,462	0.465		-0.6	30.0
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-114)	3.013	2,610		13.4	30,0
1,2-Dichlorobenzene	0.539	0.577		-7.1	30.0
1,2-Dichloroethane	1.244	1.038		16.6	30.0
1,2-Dichloropropane	0.350	0,294		16.0	30,0
1,3,5-Trimethylbenzene	0.807	0.796		1.4	30.0
1,3-Butadiene	0.834	0.654		21.6	30,0
1,3-Dichlorobenzene	0,680	0.702		-3.2	30.0
1,4-Dichlorobenzene	0,646	0,653		-1.1	30,0
1,4-Dioxane	0.138	0.116		1,5.9	30.0
2-Butanone (MEK)	1.748	1,202		31.2	30.0
2-Flexanone (*)	0.435	0.308		29,2	30.0
4-Ethyltoluene (*)	1.039	0.961		7.5	30.0
4-Methyl-2-Pentanone (MIBK)	0.511	0,356		30,3	30,0
Acetone	0.919	0.754		18.0	30.0
Benzene	2.978	2,575		13.5	30,0
Benzyl chloride	0.636	0.681		-7,1	30,0
Bromodichioromethane	0,600	0.566		5.7	30,0
Bromoform	0,359	0.382		-6.4	30,0
Bromomethane	1.034	0.911		11.9	30.0
Carbon disulfide	2.833	2,312		18.4	30,0
Carbon tetrachloride	2.230	2.292		-2.8	30.0
Chlorobenzene	0.999	0.978		2.1	30.0
Chloroethane	0,530	0.448		15.5	30,0
Chloroform	2.179	1.933		11.3	30,0
Chloromethane	0.933	0,862		7.6	30,0
cis-1,2-Dichloroethene	1.433	1.236		13.7	30,0

FORM VII VOA - 1

All other compounds must meet a minimum RRF of 0.010.

MW 4/26/11

3A SYSTEM MONITORING SPIKE RECOVERY

Lab Name: Enalytic, LL	3	Contract	: MACTEC		
Lab Code: 11920 Case	e No.:	SAS No.:	SDG	No.:	MT005
damala ID Ida			Y even 1	- / 1 /	~
Sample ID LCS			Level:	(Tow/me	α <u>ro₩</u>
Chlorobenzene	10	0	9.9	99	45.4-115
Chloroethane	10	0	9.2	92	46.7-117
Chloroform	10	0	9.7	97	51.6-106
Chloromethane	10	0	9.4	94	21.6-163
cis-1,2-Dichloroethene	10	0	9,1	91	51.6-107
cis-1,3-Dichloropropene	10	0	9.1	91	43.2-113
Cyclohexane	10	0	10	100	55.1-109
Dibromochloromethane	10	0	11	109*	43.4-108
Dichlorodifluoromethane (Freon 12)	10	0	9	90	46.5-122
Ethyl benzene	10	0	9.9	99	36.6-114
Hexachlorobutadiene	10	0	12	120	2.51-149
Hexane	10	0	8,8	88	28.4-142
Isopropanol	10	0.94	7.5	65	13.6-151
m,p-Xylene	20	Ó	20	99	19.6-143
Methyl tert-butyl ether (MTBE)	10	0	9	90	34.1-134
Methylene chloride	10	0	7.5	75	19.3-145
n-Heptane	10	0	8.3	B3	50-110
o-Xylene	10	0	9.7	97	25.5-149
Styrene	10	0	9.4	94	14.4-161
Tetrachloroethene	10	0	11	110*	40-106
Tetrahydrofuran (*)	10	0	7.9	79	42,6-121
Toluene	10	0	9.3	93	34.8-116
trans-1,2-Dichioroethene	10	0	8.9	89	30.3-139
trans-1,3-Dichloropropene	10	0	. 9	90	43.4-109
Trichloroethene	10	0	9.6	96	45.6-111
Trichlorofluoromethane (Freon 11)	10	0	10	102	49.4-119
Vinyl acetate	10	0	7.9	79	44.9-124

Column to be used to flag recovery and RPD values with an asterisk

*	Walnes	outside	ΩĒ	OC	limite
n	values	outside	OT	UC	11M1.US

Vinyl chloride

Spike Recove	4	out of	£ 58	outside	limits
COMMENTS:					
	 				The state of the s

FORM III

EPA TO-15

57.1-123

		1
- 1	MB	
	· · ·	ļ
		ŀ
		i
		i

Lab Name: Enalytic, LLC

Contract: MACTEC

Lab Code: 11920

Case No.:

SAS No.: _____ SDG No.: MT005

Matrix: (soil/water/air)

Lab Sample ID:

Sample wt/vol: 100.00 (ց/mĽ) <u>G</u> Lab File ID:

EN5130,D

Level: (low/med)

LOW

Date Received:

% Moisture: not dec.

Date Analyzed: 6/20/2011

GC Column: Rtx-VMS

ID: (mm)

Dilution Factor:

1.00

Extract Volume:

 (μl)

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ppbV	or ug/m3)	ppbV	Q
74-87-3	Chloromethane		0,20	U
156-59-2	cis-1,2-Dichloroethene	WINTE	0.20	ע
10061-01-5	cis-1,3-Dichloropropene		0,20	Ü
110-82-7	Cyclohexane		0.20	U
124-48-1	Dibromochloromethane		0,20	U
75-71-8	Dichlorodifluoromethane (Freon	12)	0.20	Ū
100-41-4	Ethyl benzene		0.20	Ü
B7-68-3	Hexachlorobutadiene		0.20	U
110-54-3	Нехапе	77.30.00	0.20_	U
67-63-0	(Isopropanol)		0.9	J
1330-20-7	m,p-Xylene		0,60	Ū
1634-04-4	Methyl tert-butyl ether (MTBE)		0,20	Ü
75-09-2	Methylene chloride		0.20	U
142-82-5	n-Heptane		0,20	U
95-47-6	o-Xylene		0,20	Ŭ
100-42-5	Styrene	.]	0,30	Ü
127-18-4	Tetrachloroethene	1.1.2.1.0.3.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	0.20	U
109-99-9	Tetrahydrofuran (*)		0,20	Ü
108-88-3	Toluene		0.20	U
156-60-5	trans-1,2-Dichloroethene	2	0.20	Ü
10061-02-6	trans-1,3-Dichloropropene		0.20	Ü
79-01-6	Trichloroethene	The Property of the Party of th	0.20	Ŭ
75-69-4	Trichlorofluoromethane (Freon	11)	0.20	Ŭ
108-05-4	Vinyl acetate	1	0.20	บ
75-01-4	Vinyl chloride		0.20	U

MW 2/20 /11

FORM I VOA

EPA TO-15

Quantitation Report (QT Reviewed)

Data Path : \LAB-01\GCMS-01\DATA\

Data File : EN5130.D

Acq On : 20 Jun 2011 2:09 pm

Operator : KLP Sample : MB Misc : 100MLS

ALS Vial : 4 Sample Multiplier: 1

Quant Time: Jun 20 14:24:32 2011

Quant Method: C:\GCMS-01\METHODS\E042711.M Quant Title: Volatiles in Air by TO-15 QLast Update: Mon Jun 20 13:36:12 2011 Response via: Initial Calibration

Compound	R.T,	QIon	Response	Conc U	nits Dev	(Min)
Internal Standards 1) Bromochloromethane 32) 1,4-Difluorobenzene 48) Chlorobenzene-d5	7.315 8.283 11.170	130 114 117	170855 514992 336135	10.00 10.00 10.00	ppbv	0.00 0.00 0.00
System Monitoring Compounds 54) BFB Spiked Amount 10.000	12,475	95	99056 Recove		ppbv 62,10%	0.00
Target Compounds 14) Isopropanol 16) Acetone 50) m,p-Xylene	5,926 6,128 11,295	45 43 91	18005 12715 6368	0.81	ppbv	value 88 97 91

(#) = qualifier out of range (m) = manual integration (+) = signals summed

$$\frac{12715(10)}{170855(0915)} = 0.8097$$

M) at 20/11

3A SYSTEM MONITORING SPIKE RECOVERY

Lab Name: Enalytic, LLC		Contract:		MACTEC			
Lab Code: 11920	Case	No.:	SAS No.:	SDG	No.:	MT005	
Sample ID LC	g	···		Level:	(low/m	ed LOW	
r	·				-r ···-		
Chlorobenzene		10	0	9.4	94	45.4-115	
Chloroethane		10	0	8.6	86	46.7-117	
Chloroform		10	0	8.3	83	51.6-106	
Chloromethane		10	0 .	9.4	94	21.6-153	
cis-1,2-Dichloroethene		10	0	7.8	78	51.6-107	
cis-1,3-Dichloropropene)	10	0	8.4	84	43.2-113	
Cyclohexane		10	0	8.9	89	55.1-109	
Dibromochloromethane	and the second s	10	0	9,9	99	43.4-108	
Dichlorodifluoromethan	e (Freon 12)	10	0	8.6	86	46.5-122	
Ethyl benzene		10	0	9,3	93	36.6-114	
Hexachlorobutadiene		10	0	10	100	2.51-149	
Hexane		10	0	7.7	77	28.4-142	
Isopropanol	71 3 1 1	10	0	7.3	73	13.6-151	
m,p-Xylene		20	0	17	85	19.6-143	
Methyl tert-butyl ether (MTBE)	10	0	8,5	85	34.1-134	
Methylene chloride		10	0	6.8	68	19.3-145	
n-Heptane		10	0	7,4	74	50-110	
o-Xylene		10	0	8.4	84	25.5-149	
Styrene		10	0	8.4	84	14.4-161	
Tetrachloroethene		10	0	9.8	98	40-106	
Tetrahydrofuran (*)		10	0	7.9	79	42.6-121	
Toluene		10	0	8.5	85	34.8-116	
trans-1,2-Dichloroethen	ie	10	0	8,4	84	30.3-139	
trans-1,3-Dichloroprope	ne	10	0	8,4	84	43.4-109	
Trichloroethene		10	0	8.2	82	45.6-111	
Trichiorofluoromethane	(Freon 11)	10	0	9,5	95	49.4-119	
Vinyl acetate		10	0	8,2	82	44.9-124	
Vinyl chloride		10	0	8.5		57.1-123	

8.5 100 = 85%

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

Spike Recov	ery: 0	_out of	58 outsi	de limits	
COMMENTS:					

FORM III

EPA TO-15

MJW 4/27/11

Data Path : \\LAB-01\GCMS-01\DATA\

Data File : EN5131.D

: 20 Jun 2011 Acq On 2:33 pm

; KLP Operator : LCS Sample : 100MLS Misc

: 5 ALS Vial Sample Multiplier: 1

Quant Time: Jun 20 14:48:34 2011

Quant Method: C:\GCMS-01\METHODS\E042711.M Quant Title : Volatiles in Air by TO-15 QLast Update : Mon Jun 20 13:36:12 2011

Response via	;	Initial	Calibration
--------------	---	---------	-------------

Compound	R.T.	QIon	Response	Conc Units De	v(Min)	
Internal Standards						
	7.318	130	164009	10.00 ppbv	0.00	
32) 1,4-Difluorobenzene	7.318 8.283	114	480668	10.00 ppbv		
48) Chlorobenzene-d5	11.170	117	164009 480668 298306	10.00 ppbv	0.00	
						1
System Monitoring Compounds	10 470	٥٦	00017	C 00 1		
54) BFB Spiked Amount 10,000	12.479	95		6.28 ppbv		
Spiked Amount 10,000			Kecove	ery = 62.80	₹	
Target Compounds				Q	value	
Dichlorodifluoromethane	4.331	85	433639		100	
3) 1,2-Dichloro-1,1,2,2-t	4.485	85	450204	9,11 ppbv	96	()
4) Chloromethane	4.572	50	144239	9,42 ppbv	98	11.1.(21./10)
5) Vinyl chloride	4.672	62	1.00001	A co - " \		166571 (10) 164009 (1.181) = 8.59967
6) 1,3-Butadiene	4.688	39	108741	7.95 ppbv 10.00 ppbv	94	
7) Bromomethane	5.026	94	169608	10.00 ppbv	100	11.10
	5.135		80224	9.22 ppbv	90	164009 (1-181)
9) Trichlorofluoromethane	5.254		403694	10.18 ppbv	99	,
10) 1,1,2-Trifluoro-1,2,2			347513	10.06 ppbv	99	
	5,694	61	209492	8.92 ppbv		- 85551-7
12) Carbon disulfide	5.797		400553			- 0.21164
13) Acrolein	5,936	56	21951 137154	7.68 ppbv	96	
14) Isopropanol	5.923	45			98	
15) Methylene chloride	6,128	49	121299	7.47 ppbv	91	
<pre>16) Acetone 17) trans-1,2-Dichloroethene</pre>	6,135		121221 170416	8.05 ppbv	96	
18) Hexane					91	
19) Methyl tert-butyl ethe	6.276 6.286	57	232817		99	
20) 1,1-Dichloroethane	6,736		293545	9.05 ppbv	100	
21) Vinyl acetate	6.823		300872 214901	* *	98	
22) cis-1,2-Dichloroethene	7.148				93 97	
23) Chloroform	7,315		212881 347419	9.06 ppbv 9.72 ppbv	99	
24) Cyclohexane	7,363		250951	9,98 ppbv	97	
25) Tetrahydrofuran (*)	7.492	42	142587	7.94 ppbv	96	
26) Carbon Tetrachloride	7.508		401127	10.97 ppbv	100	
27) 2-Butanone (MEK)	7.543	43	200751	7.00 ppbv #		
28) 1,1,1-Trichloroethane		97	330626	10.23 ppbv	99	
29) n-Heptane	7,701		244167	8 31 ppbv		
30) Benzene	7,855		453891	8.31 ppbv 9.29 ppbv	98	
31) 1,2-Dichloroethane	8.006	62		8.70 ppbv	96	
33) Trichloroethene	8.312	130	251721	9.65 ppbv	99	
34) 1,2-Dichloropropane	8.791	63	146164			•
35) Bromodichloromethane	8.791	83	289131	10.02 ppbv	98	
36) Methyl methacrylate	8.823	69	98683	8.18 ppbv	91	
37) 1,4-Dioxane	8,961	88	56703	8.54 ppbv	97	
38) cis-1,3-Dichloropropene	9.363	75	222104	9.10 ppbv	99	
39) Toluene	9.611	91	429312	9.29 ppbv	98	
40) 4-Methyl-2-pentanone (9.900	43	192280	7.83 ppbv	97	
41) trans-1,3-Dichloropropene	9.968	75	170985	9,03 ppbv	9 9	
42) Tetrachloroethene	10.019	166	244814	11.02 ppbv	99	
43) 1,1,2-Trichloroethane	10.151	97	154425	9.82 ppbv	99	
44) Dibromochloromethane	10,366	129	255063	10,86 ppbv	99	
						127

127 Page: 1

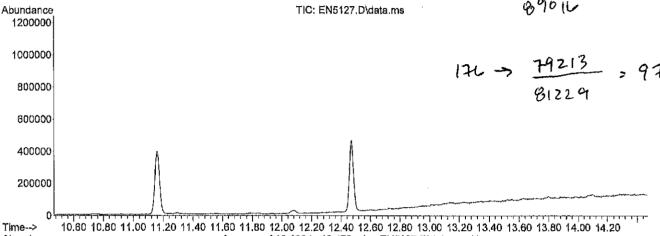
Mon 2/22/11

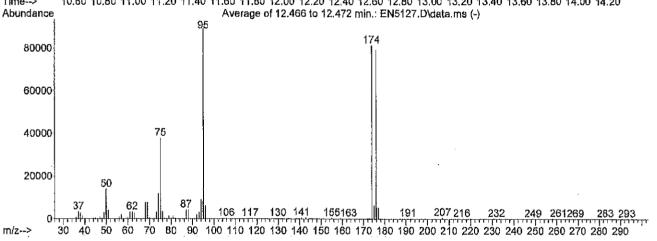
Data Path : \\LAB-01\GCMS-01\DATA\

Data File : EN5127 D

Acq On : 20 Jun 2011 12:07 pm

Operator : KLP ; BFB Sample : 1.00MLS Misc


: 1 Sample Multiplier: 1 ALS Vial


Integration File: rteint.p

: \\Lab-01\GCMS-01\METHODS\E042711.M Method

: Volatiles in Air by TO-15

Last Update : Mon Jun 20 13:36:12 2011

AutoFind: Scans 2917, 2918, 2919; Background Corrected with Scan 2902

Target	Rel. to	Lower	Upper	Rel,	Raw	Result	
Mass	Mass	Limit%	Limit%	Abnŧ	Abn	Pass/Fail	
50 75 95 96 173 174 175 176	95 95 95 95 174 95 174 174	15 30 100 5 0.00 50 5 95	40 60 100 9 2 100 9 101	15,6 42.4 100.0 6.8 0.4 91.3 7.6 97.5 6.8	13917 37712 89016 6061 299 81229 6161 79213 5347	Pass Pass Pass Pass Pass Pass Pass Pass	

Data Path : \\LAB-01\GCMS-01\DATA\ Data File : EN5132.D

: 20 Jun 2011 Acq On

2:57 pm

Operator : KLP

: E1106002-001A Sample

: 100MLS

ALS Vial : 6 Sample Multiplier: 1

Quant Time: Jun 21 13:53:27 2011

Quant Method : C:\GCMS-01\METHODS\E042711.M Quant Title : Volatiles in Air by TO-15 QLast Update : Mon Jun 20 13:36:12 2011 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc U	nits Dev	(Min)
Internal Standards						
1) Bromochloromethane	7.318	130	159672	10 00	ppbv	0.00
•	8,283	114			pppv	0.00
48) Chlorobenzene-d5	11,180	117	334892		ppbv	0.01
it, directoronizatio de	11,100		331032	10.00	PPD 4	0.01
System Monitoring Compounds						
54) BFB	12.485	95	163620	10.29	ppbv	0,01
Spiked Amount 10.000			Recove		102.90%	
_				-		
Target Compounds					Qv	alue
Dichlorodifluoromethane	4.328	85	23595	0.51	ppbv	97
9) Trichlorofluoromethane	5.254	101	18043		ppbv	96
12) Carbon disulfide	5.801	76			ppbv #	82
16) Acetone	6.135	43	333376	22,73		98
18) Hexane	6.276	57	270892	10.46		91
22) cis-1,2-Dichloroethene	7,145	61	8897		ppbv	92
24) Cyclohexane	7.366	84			ppbv #	39
25) Tetrahydrofuran (*)	7.495	42	7930		ppbv #	б0
27) 2-Butanone (MEK)	7.543		51856		ppbv #	88
28) 1,1,1-Trichloroethane	7.559	97	11452		ppbv	98
29) n-Heptane	7.701	43	297528	10,40	ppbv	96
30) Benzene	7.855	78	115675	2.43	ppbv	99
33) Trichloroethene	8.312	130	901960	$\sqrt{32.05}$		98
39) Toluene	9.617	91	1190326	23.88		98
42) Tetrachloroethene	10.096	166	~9			
47) Ethylbenzene	11.170	91	28296		ppbv	94
50) m,p-Xylene	11.315	91	131908		ppbv	99
51) o-Xylene	11.807	91	28423		ppbv	98
52) Styrene	11.855	104			ppbv	91
55) 1,1,2,2-Tetrachloroethane	12,623	83			ppbv #	32
56) 4-Ethyltoluene (*)	12.659				vaqq	79
57) 1,2,4-Trimethylbenzene	12.749				ppbv	96
58) 1,3,5-Trimethylbenzene	13.157	105			ppbv	98
60) 1,4-Dichlorobenzene	13.643	146	5212	0,24	ppbv	86

(#) = qualifier out of range (m) = manual integration (+) = signals summed

BUNZUNE

= 2,432685 = 7,9 ws/m3

TCE

 $= 32.039799 = 175.4 w9/m^3$

E042711.M Tue Jun 21 14:18:23 2011 1

CLIENT SAMPLE NO.

LCSV002007

Lab Name: Enalytic, LLC

Contract: MACTEC

Lab Code: 11920

Case No.:

SAS No.: SDG No.: MT005

Matrix: (soil/water/air) Soil Vapor

E1106002-001A

Sample wt/vol: 100.00

(g/mL) ML

Lab File ID:

EN5132.D

Level: (low/med)

LOW

Date Received:

Lab Sample ID:

6/7/2011

% Moisture: not dec.

Date Analyzed:

6/20/2011

GC Column: Rtx-VMS

ID:

(mm)

Dilution Factor:

1.00

Extract Volume:

(µ1)

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ppbV or ug/m3)	ug/m3	Q
1-55-6	1,1,1-Trichloroethane	2,0	
19-34-5	1,1,2,2-Tetrachloroethane	3.4	,
79-00-5	1,1,2-Trichloroethane	1,1	U
76-13-1	1,1,2-Trifluoro-1,2,2-Trichloroethane (1,6	Ü
75-34-3	1,1-Dichloroethane	0.82	U
75-35-4	1,1-Dichloroethene	0.81	Ū
.20-82-1	1,2,4-Trichlorobenzene	1,5	Ü
5-63-6	1,2,4-Trimethylbenzene	4.9	9#P31#82****
.06~93-4	1,2-Dibromoethane	1,6	U
6-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethane	1.4	U
5-50-1	1,2-Dichlorobenzene	1,2	U
.07-06-2	1,2-Dichloroethane	0.82	Ū
8-87-5	1,2-Dichloropropane	0,94	Ü
08-67-8	1,3,5-Trimethylbenzene	9.4	
06-99-0	1,3-Butadiene	0,45	U
41-73-1	1,3-Dichlorobenzene	1,2	Ū
06-46-7	1,4-Dichlorobenzene	1,5	
23-91-1	1,4-Dioxane	1,5	Ü
8-93-3	2-Butanone (MEK)	5.6	- HALLES CHARLES
91-78-6	2-Hexanone (*)	0,83	U
22-96-8	4-Ethyltoluene (*)	4.8	
08-10-1	4-Methyl-2-Pentanone (MIBK)	0.83	Ū
7-64-1	Acetone	55	
1-43-2	Benzene	7.9	· ·
00-44-7	Benzyl chloride	1.1	U
5-27-4	Bromodichloromethane	1,4	U
5-25-2	Bromoform	2.1	Ū
4-83-9	Bromomethane	0.79	U
5-15-0	Carbon disulfide	2.1	
6-23-5	Carbon tetrachloride	1,3	U
08-90-7	Chlorobenzene	0.94	Ū
5-00-3	Chloroethane	0.54	U
7-66-3	Chloroform	0.99	Ū

FORM I VOA

EPA TO-15

LCSV002007

Lab Name: Enalytic, LLC

Contract: MACTEC

Lab Code: 11920

Case No.:

SAS No.: SDG No.: MT005

Matrix: (soil/water/air) Soil Vapor

Lab Sample ID:

E1106002-001A

Sample wt/vol: 100.00

(g/mL) ML

Lab File ID:

EN5132.D

Level:

(low/med)

FOM

Date Received:

6/7/2011

% Moisture: not dec.

GC Column: Rtx-VMS

ID:

Date Analyzed:

Dilution Factor:

6/20/2011 1.00

Extract Volume:

(µ1)

(mm)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ppbV or ug/m3) ug/m3 74-87-3 Chloromethane 0.42 U 156-59-2 cis-1,2-Dichloroethene 1,6 10061-01-5 cis-1,3-Dichloropropene U 0,92 110-82-7 Cyclohexane 19 124-48-1 Dibromochloromethane 1.7 75-71-8 Dichlorodifluoromethane (Freon 12) 2.6 100-41-4 Ethyl benzene 2,8 87-68-3 Hexachlorobutadiene 2,2 Ü 110-54-3 Hexane 37 67-63-0 Isopropanol 5.0 U 1330-20-7 m,p-Xylene 19 Methyl tert-butyl ether (MTBE) 1634-04-4 0.73 TT 75-09-2 Methylene chloride 0.71 U 142-82-5 n-Heptane 43 95-47-6 o-Xylene 5.5 100-42-5 Styrene 2.8 109-99-9 Tetrahydrofuran (*) 1,3 108-88-3 Toluene 91 156-60-5 trans-1,2-Dichloroethene 0.81 IJ 10061-02-6 trans-1,3-Dichloropropene 0,92 U 79~01~6 Trichloroethene 180 Trichlorofluoromethane (Freon 11) 75-69-4 2,7 108-05-4 Vinyl acetate 0.72 U 75-01-4 Vinyl chloride 0.52 U

APPENDIX F

DETAILED COST ESTIMATE AND CALCULATIONS

Alternative 2 - Continued Operation of SVE with Land Use Institutional controls

Prepared By: ECS Date: 1/12/2012 Checked By: RTB Date: 1/12/2012

Task Subtask Assembly (1) ALTERNATIVE CA	Description PITAL COSTS	Quantity	Unit of Measure	Mate Unit		Lab Cost	or Unit	Equi Unit	pment Cost	Exte	ended Cost	Comments/ Assumptions
Institutional Controls	(Year 0 only)											
	Overnight Delivery, 8 oz Letter	4	4 EA	\$	13.18	\$	-	\$	-	\$	52.72	RSMeans 2004 ECHOS
33220102	2 Project Manager	32	2 HR	\$	-	\$	51.77	\$	-	\$	1,656.64	RACER 2007
33220103	5 Project Engineer	48	B HR	\$	-	\$	50.20	\$	-	\$	2,409.60	RACER 2007
33220100	5 Staff Engineer	48	3 HR	\$	-	\$	43.93	\$	-	\$	2,108.64	RACER 2007
33220110	QA/QC Officer	8	B HR	\$	-	\$	42.34	\$	-	\$	338.72	RACER 2007
33220114	Word Processing/Clerical	24	4 HR	\$	-	\$	22.35	\$	-	\$	536.40	RACER 2007
33220115	5 Draftsman/CADD	10	5 HR	\$	-	\$	29.22	\$	-	\$	467.52	RACER 2007
33220120	Computer Data Entry	10	6 HR	\$	-	\$	20.08	\$	-	\$	321.28	RACER 2007
33220505	5 Attorney, Senior Associate, Real	(5 HR	\$	-	\$	175.00	\$	-	\$	1,050.00	RACER 2007
	Estate									\$	-	
33220509	Paralegal, Real Estate	(5 HR	\$	-	\$	100.00	\$	-	\$	600.00	RACER 2007
3324010	Other Direct Costs		l LS	\$	751.16	\$	-	\$	-	\$	751.16	RACER 2007
99041205	Portable GPS Set with Mapping,	1	l MO	\$	689.22	\$	-	\$	-	\$	689.22	RACER 2007
99130602	2 Local Fees	2	2 LS	\$	200.00	\$	-	\$	-	\$	400.00	RACER 2007

Task Subtotal

ALTERNATIVE ANNUAL AND PERIODIC COSTS

Annual SSV OM&M (Assume planned operation of SSV system is 5 years)

Annual Inspection/Sampling Event	1 LS	\$ -	\$ 1,500.00	\$ -	\$ 1,500.00	one day labor and travel costs
Quaterly Inspection (no sampling)	1 ea	\$ -	\$ 650.00	\$ -	\$ 650.00	SVE sucontractor quote
Analytical for annual inspection	4 ea	\$ 225.00	\$ -	\$ -	\$ 900.00	lab only (1 samples per quarter)
Electrical	1 LS	\$ 100.00	\$ -	\$ -	\$ 100.00	estimated fan usage
Reporting for IRM	1 LS/annual	\$ -	\$ 3,500.00	\$ -	\$ 3,500.00	data management/annual O&M report

Task Subtotal \$ 6,650.00

\$ 11,381.90

February 2012

APPENDIX F - PRESENT VALUE OF PERIODIC COSTS FOR ALTERNATIVE 2

		Number	Annual	Number	5-Year	Number	10-Year	Total Non-	Present
		of Annual	Discount	of 5-Year	Discount	of 10-Year	Discount	Discounted	Value
Year	Cost*	Periods	Rate	Periods	Rate	Periods	Rate	Cost	Cost
Capital (Year 0)	\$ 19,000	1	0	NA	NA	NA	NA	\$ 19,000.00	\$ 19,000.00
Periodic Inspections and Reporting (Years 1-5)	\$ 5,000	5	0.05	NA	NA	NA	NA	\$ 25,000.00	\$ 21,647.38
Long Term Monitoring (Years 1-5)	\$ 4,000	5	0.05	NA	NA	NA	NA	\$ 20,000.00	\$ 17,317.91
Totals								\$ 64,000.00	\$ 57,965.29

^{*}Annual and periodic costs include 10% for technical support and 25% contingency for unforeseen project complexities, including insurance, taxes, and licensing costs. Capital costs include 25% contingency, as well as and project management, remedial design, and construction management costs per DER-10 guidance.

Alternative 3 - Restoration to Pre-Disposal Conditions

Task	Description	n Quantity	Unit of		aterial Unit	Labor			quipment	E	xtended Cost	Comments/ Assumptions
ALTERNATIVE CAI	PITAL COSTS	1	Measure		Cost	Co	st		Jnit Cost			•
ALIERIATIVE CAI	TIAL COSTS											
Pre-Design Investigati	ion											
Sampling Crew												
	33010104 Sample collection, vehicle	500	MI	\$	0.49	\$	-	\$	-	\$	245.00	
	mileage charge, car or van	150	HR	\$	_	e	70.87	e.	_	6	10,630.50	
	33220108 Project Scientist 's Estimate Field Technician	150 75		\$		\$ \$	75.00		-	\$ \$	5,625.00	
	33010202 Per Diem	5.00		\$	89.40			\$	-	\$	447.00	
	33010202 Fei Dielli	5.00	DAI	Ф	07.40	ý.	-	Ф	-	Ф	447.00	
Subsurface Soil S	Sampling (five locations with five samp	ole intervals and four locations	with one ir	iterval	D							
	1 3				,					\$	8,814.00	
	33021720 Testing, purgeable organics	60	EA	\$	146.90	\$	-	\$	-			
	(624, 8260)											
Drilling												
	33010101 Mobilize/DeMobilize Drill	ing Rig 1	LS	\$	1,500.00	\$	-	\$	-	\$	1,500.00	
	& Crew											
	Estimate Geoprobe			\$	1,000.00		-	\$	-	\$		20 borings to 20'
	33231813 Portland Cement Grout	400	LF	\$	9.78	\$	-	\$	-	\$	3,912.00	
Surveying	22020002 G		DAW	Φ.	1 227 20	•		Φ.		•	1 227 20	
	33029903 Ground penetrating radar	1	DAY	\$ \$		\$ \$ 1.	- 004.76	\$	240.97	\$	1,327.28 2,491.46	
	99041201 Surveying - 2-man Crew	2	DAY	Э	-	\$ 1,	004.76	Э	240.97	\$	2,491.46	
Bench Testing - F	Reagent	1	LS	\$	20,000.00					\$	20,000.00	Engineer's estimate
GW monitoring v												Assume 4 additional monitoring wells will be installed as part of pre-design investigation activities.
	Eng. Est Driller mobilization	1		\$	1,000.00		-	\$	-	\$	1,000.00	
	Eng. Est Drill - Day rate	2		\$		\$	-	\$	2,500.00		5,000.00	
22.21.1	Eng. Est 4" -solid pipe PVC sch40	80		\$	4.83		-	\$	-	\$		
33-21-1	3.10-8130 4" stainless steel well scree	n 40		\$ \$	157.00		-	\$ \$	-	\$ \$	6,280.00	Assume 10 foot screens
	Eng. Est Sand pack Eng. Est Bentonite chips	40		\$	12.00 5.00		-	\$	-	\$	960.00 200.00	
	Eng. Est Wellhead/vault	40		\$ \$	1.000.00		-	\$	-	\$	4,000.00	
	Eng. Est Weinicad/vault	·	Lo	φ	1,000.00	φ	-	Ф	-	Ψ	4,000.00	
		Task Subtotal								\$	77,818.32	
Mobilization and Tem	porary Facilities and Controls											
Temporary Utili		240	IID	•		¢	100.00	ø		¢.	24 000 00	
	Eng. Est Site Superintendent Eng. Est Site Foreman	240	HR HR	\$ \$	-		75.00			\$ \$	24,000.00	
	99040101 Temporary Office 20' x 8'	240	HR MO	\$	206.42			\$		\$	18,000.00 270.41	RSMeans 2004 ECHOS adjusted by 1.31 multiplier for escalation
	99140201 Temporary Storage Trailer	16' x 8'	MO	\$	80.72		-			\$		RSMeans 2004 ECHOS adjusted by 1.31 multiplier for escalation
	99040501 Portable Toilets	10 10 1	MO	\$	82.65			\$		\$		RSMeans 2004 ECHOS adjusted by 1.31 multiplier for escalation RSMeans 2004 ECHOS adjusted by 1.31 multiplier for escalation
	0.550.0140 Telephone utility fee	1	MO	\$	210.00			\$		\$		RSMeans Site Work & Landscape Cost Data 2006 adjusted by 1.169 multiplier for escalation
	MACTEC Electrical utility fee	1	MO	\$	200.00			\$		\$	200.00	Assistants one work or Education Data 2000 adjusted by 1.107 indiapries for cocalidation
	0.550.0100 Field office expenses, office	e equipment 1	MO	\$		\$		\$		\$		RSMeans Site Work & Landscape Cost Data 2006 adjusted by 1.169 multiplier for escalation
****	rental, average											

Alternative 3 - Restoration to Pre-Disposal Conditions

Alternative 3 – Restoration to l	Pre-Disposal Conditions			1		_						
Task	Description	Quantity	Unit of Measure	Ma	aterial Unit Cost		or Unit Cost		quipment Init Cost	I	Extended Cost	Comments/ Assumptions
Dewatering/Wastewater	Γreatment System											
_	·											Assumes 20,000 gallon FRAC EQ tank could be used to store water and existing MPE treatment tailer could be used for
	. Frac EQ Tank	30 30		\$ \$	30.00		-	\$	-	\$		treatment.
02240.500.1000	Pumping 8 hr., attended 2 hrs. per day, including 20 LF of suction hose and	30	DAY	\$	-	\$	405.00	\$	83.00	\$	17,114.16	RSMeans Site Work & Landscape Cost Data 2006 adjusted by 1.169 multiplier for escalation
	100 LF of discharge hose, w/ 4"											
	diaphragm pumped used 8 hrs.											
Temporary Discharge												
	. Aqueous Sampling, Metals	30		\$	130.00					\$		24-hr turn around expedited at additional 100% of cost
Eng. Est	. Aqueous Sampling, VOCs	30	EA	\$	140.00					\$	4,200.00	24-hr turn around expedited at additional 100% of cost
Decontamination Facility												
3329040	25 gpm, 1-1/2" discharge, cast iron sump pu	1	EA	\$	_	\$	_	\$	2,317.00	\$	3,035.27	RSMeans 2004 ECHOS adjusted by 1.31 multiplier for escalation
	4 50' Flexible, Product Discharge Hose	1		\$		\$	-	\$	175.00			RSMeans 2004 ECHOS adjusted by 1.31 multiplier for escalation
02060.150.0300) 3/4" crushed stone borrow, spread w/	56	CY	\$	27.50	\$	1.43	\$	3.12	\$	2,081.47	RSMeans Site Work & Landscape Cost Data 2006 adjusted by 1.169 multiplier for escalation,
02215 210 5100	200 HP dozer, no compaction, 2 mi rt haul	56	ECY	\$	_	e	0.16	¢.	0.16	•	20.78	assume 125 ft by 65 ft by one foot thick RSMeans Site Work & Landscape Cost Data 2006 adjusted by 1.169 multiplier for escalation
02313.310.3100	Compaction, General, riding vibrating roller, 12" lifts, 4 passes	30	ECI	Ф	-	Þ	0.10	Ф	0.10	Ф	20.78	RSMeans Site Work & Landscape Cost Data 2000 adjusted by 1.109 indulpher for escalation
3308544	4 60-mil Polymeric Liner, Very Low Density I	167	SY	\$	1.97	\$	-			\$	430.12	RSMeans 2004 ECHOS adjusted by 1.31 multiplier for escalation, assume 135 ft by 75 ft
										\$	521.82	
	1 16 oz/sy nonwoven geotextile	167	SY	\$ \$		\$	-	6	1 (25 00	e	2 141 95	RSMeans 2004 ECHOS adjusted by 1.31 multiplier for escalation
33170814	1,800 psi pressure washer, 6HP, 4.8 gpm	1	EA	\$	-	\$	-	\$	1,635.00	\$	2,141.85	RSMeans 2004 ECHOS adjusted by 1.31 multiplier for escalation
19040605	5 2,000 gal steel sump, aboveground w/	1	EA	\$	2,233.00	\$	853.69	\$	123.26	\$	4,205.03	RSMeans 2004 ECHOS adjusted by 1.31 multiplier for escalation
	supports and fittings											·
33170823	3 Operation of pressure washer, including water, soap, electricity, and labor	40	HR	\$	-	\$	-	\$	41.69	\$	2,184.56	RSMeans 2004 ECHOS adjusted by 1.31 multiplier for escalation, assume 4 hours per day
3341010	Pump and motor maintenance/repair	1	EA	\$	-	\$	-	\$	431.15	\$	564.81	RSMeans 2004 ECHOS adjusted by 1.31 multiplier for escalation
Erosion and Sediment Co	ntrol Measures											
	6 Filter Barrier, Silt Fences, Vinyl, 3' High	500	LF	\$	0.70	\$	1.41	\$	-	\$	1,382.05	RSMeans 2004 ECHOS adjusted by 1.31 multiplier for escalation, around work area
	with 7.5' Posts											
Demolition and MPE Tra	iler Demobilization											
) Bituminous Driveways	65	SY	\$		\$	2.22		1.63			RSMeans 2009 Heavy Construction Cost Data adjusted by 1.047 multiplier for escalation
024113.17.5200	Concrete to 6" thick	903	SY	\$		\$	5.55		4.10			RSMeans 2004 ECHOS adjusted by 1.31 multiplier for escalation
	C&D Debris Transportation and Disposal Trailer Demobilization	8125	TON EA	\$ \$		\$ \$	85.00	\$	\$10.000	\$ \$,.	Engineer's estimate Engineer's estimate
	Monitoring and Extraction Well Removal		LF	\$		\$	-		\$20			Engineer's estimate
1006 S. Clinton Ave. Buil 024116.17.2040	ding Demolition Single story concrete building - walls	0	SF	\$		s	2.31	¢.		\$		PSMoone 2000 House Construction Cost Date
024116.17.2040	Slab	125		\$		\$	5.85		-	\$	731.25	RSMeans 2009 Heavy Construction Cost Data RSMeans 2009 Heavy Construction Cost Data
024116.17.1000	Footings	65	LF	\$		\$	14.30		-	\$		RSMeans 2009 Heavy Construction Cost Data
	C&D Debris Transportation and Disposal	10		\$		\$	85.00		-	\$		Engineer's estimate
	Utility capping	1	LS	\$			1,000.00		-	\$		Engineer's estimate
	Permitting	1	LS	\$	-	\$	500.00	2	-	\$	500.00	Engineer's estimate

Alternative 3 - Restoration to Pre-Disposal Conditions

Alternative 5 - Restoration to 11	C-Disposar Conditions	1 1	TI!4 - 0	34	4 2 - 1 TT- **	Tabaa II 1	-	Ei	T		
Task	Description	Quantity	Unit of Measure		terial Unit Cost	Labor Unit Cost		Equipment Unit Cost	l	Extended Cost	Comments/ Assumptions
Survey of Work/Stockpile A	Areas										
	Surveying - 2-man Crew	1	DAY	\$	1,500.00	\$ -	\$	-	\$	1,500.00	Engineer's estimate
	_										
	Т	ask Subtotal							\$	803,840.56	
Excavation and Off-site Disposal	Lof Site Soil										
	Sheet Piling	1053	SF	\$	35.00	\$ -	\$	-	\$	38,596.01	Excavation perimeter for 10' excavation. Piling driven, extracted and salvaged.
	Sheet Pile bracing and anchoring	1	LS	\$	-	\$ -	\$	-	\$		Assume that excavation bracing will be 100% of sheet piling cost
Eng. Est.	Excavation, soil, loading for stockpile	15	BCY	\$	-	\$ -	\$	-	\$	-	Refer to Excavation Rate Calculations
Eng. Est.	Absorbent	1,270	LB	\$	2.25	\$ -	\$	-	\$		Refer to Alternative 3 Calculations; assumes 25 lb/cy-soil
Eng. Est.	Absorbent application	120	HR	\$	65.70	\$ -	\$	-	\$	8,254.55	RSMeans Heavy Construction Cost Data 2009., assume labor crew B6.
Clean Stockpile											
	Hauling, excavated material, 12 CY dump	0	LCY	\$	-	\$ 0.79	\$	1.66	\$	-	RSMeans Site Work & Landscape Cost Data 2006 adjusted by 1.169 multiplier for escalation
	truck, 1/4 mile RT				# 000 00						
	Stockpile construction and management	1	LS		5,000.00		\$		\$		Assumed cost for construction of stockpiles and erosion controls
	Stockpile loadout and management	0	CY	\$	-	\$ 0.20) \$	0.47	\$	-	Assumed cost for management of stockpiles.
Contaminated Stockpil	Hauling, excavated material, 12 CY dump	17	LCY	\$	_	\$ 0.79	\$	1.66	•	47.26	RSMeans Site Work & Landscape Cost Data 2006 adjusted by 1.169 multiplier for escalation
	truck, 1/4 mile RT	17	LCI	Ф	-	\$ 0.7	, ф	1.00	Φ	47.20	RSIMEARS SHE WORK & Landscape Cost Data 2000 adjusted by 1.109 indiriplier for escalation
	Stockpile construction and management	1	LS	\$	5,000.00		\$	-	\$		Assumed cost for construction of stockpiles and erosion controls
	Stockpile loadout and management	17	CY	\$) \$	0.47			Assumed cost for management of stockpiles.
	Testing, purgeable organics	9	EA	\$	146.90	\$ -	\$	-	\$	1,322.10	Confirmation Sampling per NYSDEC DER-10.
	(624, 8260)										1 sample per 900 sf bottom; no sidewall sampling due to sheet pile
Transportation and D		20.45	morr		44.500					252.004.05	
	Transportation and Disposal, VOCs	3047	TON	\$	115.88	\$ -	\$	-	\$	353,084.06	Refer to Disposal Cost Calculations
	less than 60 ppm Transportation and Disposal, VOCs	1523	TON	\$	210.06	•	\$	-	¢	220 012 29	Refer to Disposal Cost Calculations
	between 60 and 180 ppm	1323	ION	Ф	210.00	5 -	Ф	-	Ф	320,013.28	Refer to Disposal Cost Calculations
	Transportation and Disposal, VOCs	508	TON	\$	1,328.40	\$ -	\$	_	\$	674 578 13	Refer to Disposal Cost Calculations
	greater than 180 ppm	300	1011	Ψ	1,520.40	y -	Ψ		φ	074,376.13	Refer to Disposar Cost Carculations
	greater than 100 ppm										
	Т	ask Subtotal							\$	1,447,358.89	
In-Situ Chemical Oxidation											
Contractor Costs											
	Mobilization	1	LS	\$	-	\$ -	\$	20,000.00	\$	20,000.00	
Eng. Est	Work Plan	1	LS	\$	-	\$ -	\$	10,000.00	\$	10,000.00	
_	Field Technician	20	HR	\$	-	\$ 70.00			\$		
	Equipment	1	LS	\$	-	\$ -	\$	2,500.00			
Vendor		80,356	LB	\$	2.53				\$	203,300.01	Based on Carus product information
Eng. Est	Demobilization	1	LS	\$	-	\$ -	\$	15,000.00			
	T	ask Subtotal							\$	252,200.01	

Remedial Investigation/Feasibility Study Report – Loohns NYSDEC – Site No. 851028

MACTEC Engineering and Consulting, P.C., Project No. 3612102148

Alternative 3 - Restoration to Pre-Disposal Conditions

Task	Description	Quantity	Unit of	Mater	rial Unit	Labor		Equip		Extended Cost	Comments/ Assumptions
Lusk	Description	Qualitity	Measure	C	Cost	Cos	t	Unit	Cost	Extended Cost	Comments/ Assumptions
Site Restoration											
Backfill excavation											
02315.490.0310	Hauling, clean excavated material, 12 CY du	0	LCY	\$	-	\$	0.79	\$	1.66	\$ -	RSMeans Site Work & Landscape Cost Data 2006 adjusted by 1.169 multiplier for escalation
	truck, 1/4 mile RT										
02315.210.4060	Borrow, Loading, commmon earth,	18	LCY	\$	8.25	\$	0.42	\$	0.25	\$ 189.26	5 RSMeans Site Work & Landscape Cost Data 2006 adjusted by 1.169 multiplier for escalation
	1-1/2 CY bucket										
02315.490.0560	Hauling, excavated or borrow, loose CY,	18	LCY	\$	-	\$	5.80	\$	12.20	\$ 381.91	RSMeans Site Work & Landscape Cost Data 2006 adjusted by 1.169 multiplier for escalation, assume 10% fluff
	12 CY dump truck, 20 mile round trip, 0.4										
	loads per hour										
02315.120.3220	Backfill, Structural, dozer or FE Loader,	18	LCY	\$	-	\$	0.66	\$	0.76	\$ 30.13	RSMeans Site Work & Landscape Cost Data 2006 adjusted by 1.169 multiplier for escalation
	from existing stockpile, no compaction,										
	105 HP, 150' haul, common earth										
02315.310.7000	Compaction, Walk behind, vibrating plate	18	ECY	\$	-	\$	1.10	\$	0.13	\$ 26.10	RSMeans Site Work & Landscape Cost Data 2006 adjusted by 1.169 multiplier for escalation, assume 10% consolidation
	18" wide, 6" lifts, 2 passes										
	Ta	sk Subtotal								\$ 627.40	

ALTERNATIVE ANNUAL AND PERIODIC COSTS

NONE

PRESENT VALUE OF ANNUAL AND PERIODIC COSTS FOR ALTERNATIVE 3 – Restoration to Pre-Disposal Conditions

		Number	Annual	Number	2-Year	Number	4-Year	Total Non-	Present
		of Annual	Discount	of 2-Year	Discount	of 4-Year	Discount	Discounted	Value
Year	Cost*	Periods	Rate	Periods	Rate	Periods	Rate	Cost	Cost
Capital (Year 0)	\$3,720,000	1	0	NA	NA	NA	NA	\$ 3,720,000.00	\$ 3,720,000.00
Quarterly Monitoring (Years 1-2)	\$ -	2	0.05	NA	NA	NA	NA	\$ -	\$ -
Semi-Annual Monitoring (Years 3-4)	\$ -	2	0.05	1	0.1025	NA	NA	\$ -	\$ -
Annual Monitoring (Years 5-30)	\$ -	26	0.05	NA	NA	1	0.215506	\$ -	\$ -
Annual Performance Reporting (Years 1-30)	\$ -	30	0.05	NA	NA	NA	NA	\$ -	\$ -
Totals								\$ 3,720,000.00	\$ 3,720,000.00

^{*}Annual and periodic costs include 10% for technical support and 15% contingency for unforeseen project complexities, including insurance, taxes, and licensing costs. Capital costs include 25% contingency, as well as project management, remedial design, and construction management costs per DER-10 guidance. Discount rate of 5% (for 30-years) percent based on NYSDEC PRAP Outline / Instructions.

Demolition and Disposal

Building	

Length Width 125 ft 65 ft Height 12 ft Wall Area 4560 ft² Assume 6" thick concrete block walls 8125 ft^2 Assume 6" thick concrete slab on grade Floor area Assume concrete footing, 1' thick, 2 ' wide Footing length 380 ft Volume 7103 ft^3 Weight 515 tons Assume density =

Excavation Volume

Length 125 ft Width 65 ft Area 8125 ft^2 Depth 10 ft 81250 ft³ Volume 3009 yd³ 5078 tons Volume

Tonnage Assume density = 125 lb/cf

145 lb/cf

Assume density =

3375 lb/cy

Absorbent Quantity
Waste Lock 770=

25 lb/cy 75231 Assume absorbent ratio = lbs

Sheet Piling

Area

Perimeter 380 ft Assume depth into weathered bedrock of 15' Depth 15 ft

Dipsosal Characaterization

752 yd³ 1270 tons Clean soil 25% Tonnage > 180 ppm Tonnage 301 yd³ 508 tons 10%

30%

 5700 ft^2

903 yd³ 1523 tons $180\;ppm>x>60\;ppm$ Tonnage < 60 ppm 1053 yd^3 35% Tonnage 1777 tons

Estimated Bedrock Contamination (including downgradient)

	10ppm	5 _F	ppm		
Area		4063	4063 ft ²		
GW Depth		10	10 ft		
GW Volume		10156	10156 ft ³	Assume porosity =	0.25
Contaminant Conc		10	5 ppm		
Contaminant Mass		6	3 lb		

Estimated Saturated Contamination Downgradient

10ppm

Area GW Depth 0 ft² 10 ft GW Volume 0 ft^3 $Assume\ porosity =$ Contaminant Conc Contaminant Mass 10 ppm 0 lb

0.43

Site Restoration

 8937.5 ft^2 Building Area +10% Area

Page 9 of 12

Excavation Unit Cost Calculation Based on Crew and Equipment Production Rates, Source Soils

	Produ	etion		
Excavated volume of soil	3,009			
2. Excavator	Typ. Hyd.	•		
3. Bucket Size	2.5			
Bucket Size Bucket Fill Factor	90%	cy	Note 1	
			Note 1	
5. CY/bucket	2.3	cy		
6. Operator/Site Efficiency	25%		Note 2	
7. Cycles/minute	1.5		Note 3	
Actual cycles/minute		cycles/min		
9. LCY/minute	0.8	lcy/min		
Productive minutes/hour	49	min/hr	Note 4	
11. LCY/hour	41.3			
12. Hours/day	8	hrs/day		
13. LCY/day		lcy/day		
14. BCY/day		bcy/day	Note 5	
15. Days to complete	11.1			
16. Crew Hours	96.0		Note 6	
		ipment Costs		
Unit	Quantity	Rate	Hours	Cost
1. Laborer	1	\$31.60	96.0	\$3,033.60
2. Operator	1	\$41.35	96.0	\$3,969.60
3. Excavator	1	\$202.38	96.0	\$19,428.00
	Dies			
Machine	HP	\$/gallon	Gallons/hr	Cost
Typ. Hyd.	222	\$3.25	12.68	\$3,956.36

Bucket Fill Factors		
100-110%		
95-110%		
80-90%		
60-75%		
40-50%		

	Total Excavation Costs (Note 7)	
Lump Sum		\$30,387.56
Cost/BCY		\$10.10

Notes:

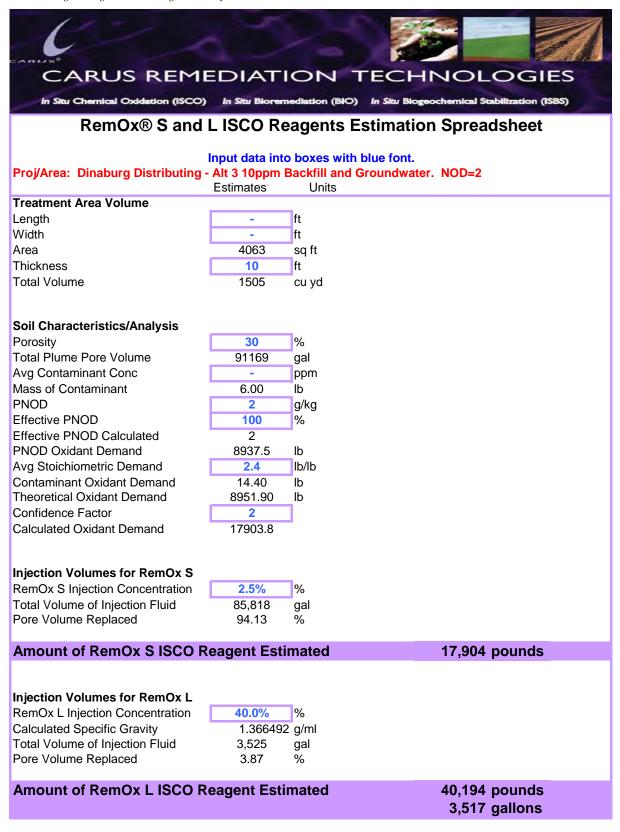
- 1. See "Bucket Fill Factors Table".

- 2. All inefficiencies are carried in the "Operator/Site Efficiency" line item.

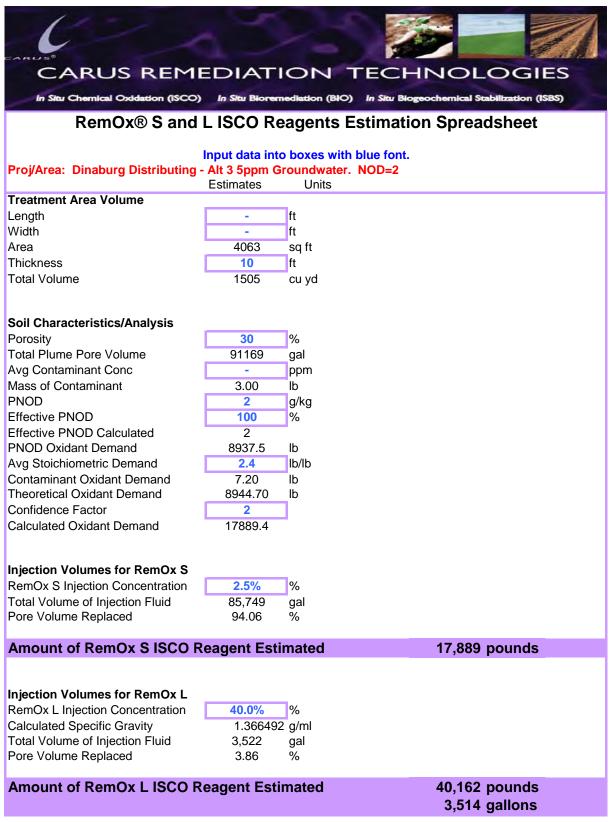
 3. "Cycles/minute" line item assumes 100% efficiency.

 4. "Productive minutes/hour" accounts for time lost to:safety talk, nonproductive time before/after breaks, early breakdown.

calculation: 8 hr work day


15 minute safety talk

15 minutes post talk prior to productive work
10 minutes nonproductive time before and after coffee break (20 min total)
10 minutes nonproductive time before and after lunch break (20 min total)


15 minutes nonproductive time at end of day

85 nonproductive minutes/day

- 11 nonproductive minutes/hour
 49 productive minutes/hour
 5. Assume 10% shrink/swell conversion between bank cubic yards (bcy) and loose cubic yards (lcy).
 6. Assume hours are rounded up to the nearest whole day.
 7. Total excavation cost estimate does not include mobilization/demobilization or transportation.

NYSDEC – Site No. 851028 MACTEC Engineering and Consulting, P.C., Project No. 3612102148

