

PERIODIC REVIEW REPORT MARCH 2020 – MARCH 2021

RANDO MACHINE CORPORATION SITE MONITORING PROGRAM MACEDON, NEW YORK 14502

NYSDEC Site No. 859014 Work Assignment No. D009812-11

Prepared for:

Department of Environmental Conservation

Division of Environmental Remediation 625 Broadway, 12th Floor Albany, New York 12233 Prepared by:

TRC Engineers, Inc. 10 Maxwell Drive Clifton Park, New York 12065

TRC Project No. 413002

SECTION

TABLE OF CONTENTS

n	•	1	רי	
Р	А		т	н
1	11	-		_

Execu	itive Summaryiv
1.0	Introduction1
1.1	Site Location, Ownership, and Description2
1.2	Investigation/Remedial History2
1.3	Residual Contamination
1.4	Regulatory Requirements/Cleanup Goals4
2.0	Institutional and Engineering Control Plan Compliance5
2.1	Institutional Controls
2.2	Engineering Controls
3.0	Monitoring and Maintenance Plan Compliance
3.1	Site Inspection
3.2 3.	Groundwater Monitoring Summary
3	2.2 Groundwater Monitoring
3	2.3 Groundwater Analytical Results
4.0	Cost Summary 11
5.0	Conclusions and Recommendations12
5.1	Conclusions12
5.2	Recommendations12
6.0	Certification of Engineering and Institutional Controls14
7.0	Future Site Activities

TABLE OF CONTENTS (CONT.)

LIST OF FIGURES

- Figure 1Site Location Map
- Figure 2 Site Layout Map

LIST OF TABLES

Table 1Analytical Data Summary (2006 through 2021)

LIST OF APPENDICES

Appendix A Data Usability Summary Reports

Appendix B Daily Field Activity Report, Photographic Log, Groundwater Sampling Logs

LIST OF ACRONYMS AND ABBREVIATIONS

COCs	Contaminants of Concern
DER	Department of Environmental Remediation
DUSRs	Data Usability Summary Report
EC	Engineering Control
EDD	Electronic Data Deliverable
EE	Environmental Easement
Eurofins/TestAmerica	Eurofins/TestAmerica Laboratories of Amherst, New York
FS	Feasibility Study
GWMR	Groundwater Monitoring Report
IC	Institutional Control
IHWDS	Inactive Hazardous Waste Disposal Site
MCL	Maximum Contaminant Level
M&M	Maintenance and Monitoring
NYSDEC	New York State Department of Environmental Conservation
NYSDEC DER-10	NYSDEC DER-10, Technical Guidance for Site Investigation and Remediation
NYSDOH	New York State Department of Health
PRR	Periodic Review Report
RI	Remedial Investigation
ROD	Record of Decision
Site	Rando Machine Corporation Site
SM	Site management
SMP	Site Management Plan
SSD	Sub-Slab Depressurization
SGVs	Standard Guidance Values
TAL	Target Analyte List
USEPA	United States Environmental Protection Agency
WA	Work Assignment

Executive Summary

Category	Summary/Results		
Engineering Controls	• Vapor Mitigation (Sub-Slab Depressurization System installed March 2013).		
Institutional Controls	 Environmental Easement which includes: Maintenance and Monitoring Plan; Groundwater Use Restriction; Land-use Restriction; O&M Plan; and IC/EC Plan. 		
Site Classification	The site is currently classified as Class 4 Inactive Hazardous Waste site.		
Site Management Plan	The Revised Monitoring and Maintenance Plan is dated July 1999 (certified 2018).		
Certification/Reporting Period	The Certification Period is Annual. This Periodic Review Report (PRR) covers the time frame from March 2020 through March 2021. The next Periodic Review Report will cover the period of March 2021 through March 2022.		
Site Inspection	Annual site inspections to continue as recommended in this PRR.		
Groundwater Monitoring	Groundwater monitoring conducted every 5 th quarter as recommended in this PRR.		
Prior PRR/GWMR Recommendations	A Site Management PRR Notice for this Site was prepared for the period of October 29, 2019 to February 28, 2020 and transmitted to the NYSDEC in a letter dated February 28, 2020. Recommendation was to conduct annual sampling in the third quarter of 2020.		
Site Management Activities (Routine)	vities Site inspections were conducted on January 20, 2021 and March 30, 2021. Groundwa sampling was begun on January 20, 2021 with samples collected from monitoring wells B1 OW-A and B206-OW-B. Monitoring well B206-OW-C was broken at the ground surface, a frozen beneath a layer of ice. A second visit was made on March 30, and a sample v subsequently collected from the damaged well (at NYSDEC direction). All groundwa samples were analyzed for volatile organic compounds (VOCs) using USEPA Method 826 and 1,4-Dioxane using USEPA Method 8270D.		
Site Management Activities (Non-Routine)	Evaluation of the sub-slab depressurization system (SSDS) was not performed as part of these Site Management activities as the main building is unoccupied, and all utilities are shut down (including power to the SSDS).		
Significant Findings or Concerns	 1,1-Dichloroethane, 1,2-Dichloroethane, 1,1-Dichloroethene, Chloroethane, 1,1,1- Trichloroethane were detected slightly above Class GA Values in groundwater samples collected from monitoring wells B206-OW-B and B206-OW-C. The increase in Choroethane is likely attributable to biological reductive dichlorination of 1,1-Dichloroethane and 1,1,1-Trichloroethane (natural process). 1,4-Dioxane was detected in groundwater samples collected from all three monitoring wells. 		

Recommendations	1. The Site inspection frequency should continue on an annual basis to evaluate building occupancy. Annual inspections and evaluations of the SSDS should then continue once the building is re-occupied, to certify that the ICs/ECs are functioning as intended. A site inspection report should be completed following each inspection event.	
	2. Based on the progress of the natural attenuation of groundwater at the Site, the groundwater sampling frequency should be reduced from annually to once every 5 th quarter. Due to the low concentrations and demonstrated reductive dichlorination of VOCs, analysis of future groundwater samples should be limited to 1,4-Dioxane. The next groundwater sampling and analysis event should be scheduled to occur following well repairs and new well installations.	
	 Two new groundwater monitoring wells should be installed to the north and east of B206- OW-C, and within the same groundwater interval as B206-OW-C, to evaluate 1,4- Dioxane migration, if any. 	
	4. The well casing and protective casing for monitoring well B206-OW-C should be repaired. The riser should be extended, and the protective casing should be replaced.	
	5. The protective casing at monitoring well B103-OW-A should be repaired or the protective casing replaced entirely.	
	Preparation of PRRs should continue on an annual basis to certify the ICs/ECs are in- place, effective and protective of human health and the environment.	
Cost Evaluation	The total cost of TRC's site management activities for the period March 2020 through Marc 2021 was approximately \$16,000.	
	This cost only includes engineering (e.g., labor and expenses). It should be noted that this total does not include any direct costs incurred by the NYSDEC.	

Introduction 1.0

OPPORTUNITY.

This Periodic Review Report (PRR) has been prepared for the Rando Machine Corporation (Rando) Site (the Site) and covers the period March 2020 through March 2021. This PRR was prepared in accordance with the New York State Department of Environmental Conservation (NYSDEC) Department of Environmental Remediation (DER) Work Assignment (WA) No. D009812-11 Notice to Proceed dated September 17, 2020, the subsequent WA Package Approval dated November 25, 2020, and NYSDEC DER-10, Technical Guidance for Site Investigation and Remediation (NYSDEC DER-10). This PRR discusses the site management (SM) activities and results from those activities, performed by TRC during the referenced reporting period. Portions of this report include pertinent historical background information and monitoring data from documents pertaining to activities completed by others and are incorporated only by reference where applicable:

- Sub-Slab Depressurization System (SSDS) Construction Completion Report (May 2013) •
- Site Periodic Review Report (February 2020) •

The Site and applicable remedial program information is summarized below.

Site Information					
Site Name:	Rando Corporation	NYSDEC Site No:	859014		
Site Location:	The Commons, 1071 NY-31, Macedon, Wayne County, NY	Remedial Program:	State Superfund Program		
Site Type:	Commercial/Industrial	Classification:	04		
Parcel	62111-00-212778	Parcel Acreage /	5.01		
Identification(s):	(1071 NY-31)	EE Acreage:	(1071 NY-31)		
Selected Remedy:	No Further Action (ROD 1998)	Site COC(s):	 1,1,1-Trichloroethane Chloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethane 1,4 Dioxane 		
Current Remedial Program Phase:	Post RA Site Monitoring; Site Management	Institutional Controls:	 EE which includes: M&M Plan Groundwater Use Restriction Land-use Restriction O&M Plan IC/EC Plan 		
Post-Remediation Monitoring and Sampling Frequency:	Annual groundwater monitoring and Site Inspections	Engineering Controls:	Vapor Mitigation (SSDS Installed March 2013)		
Monitoring Well Network:	3 Monitoring Wells: - B103-OW-A - B206-OW-B - B206-OW-C	Required Reporting	 GWMR – Annual for the first five years following completion of remedial construction then at a frequency determined by the NYSDEC. PRR – Annual following issuance of the Certificate of Completion. 		

1.1 Site Location, Ownership, and Description

The Site is located in a suburban portion of Wayne County on Route 31, just west of the Village of Macedon. The Site is approximately 5 acres in size and located in a 60-acre industrial park known as The Commons (**Figure 1**). The site is primarily occupied by a one-story industrial structure (approximately 35,000 square foot). The remainder of the property is a combination of pavement and landscaped/grass areas. The surrounding parcels to the north, south, and west are used for a combination of light industrial and commercial purposes, and agricultural purposes (farmed field) to the east. A regulated Class III wetland is located approximately 0.25 miles north. The Erie Barge Canal is located approximately one mile north of the Site.

Rando manufactured and assembled industrial machines from approximately 1975 through September 2019. The machines were cleaned, painted, packaged and shipped from the facility. The cleaning and painting process utilized the chlorinated solvent 1,1,1-Trichloroethane (TCA). Between the time that operations began and the mid-1980s, floor drains from the TCA storage area reportedly drained into a buried container, also called a dry crock, located immediately outside the northeast corner of the building. During its past operation, contents of the dry crock were reportedly removed for off-site disposal. Rando's use of TCA in the cleaning and painting process and collection of drainage in a dry crock at the northeast corner of the Site building, appears to be the root cause of the groundwater contamination at the Site.

The Village of Macedon operated a well field as a source of public water approximately 0.25 miles northnortheast of the Site. Analytical results from a NYSDOH sampling event conducted in 1986 at the Village of Macedon municipal water supply Well #2 detected TCA contamination. This detection eventually led to the investigation at the Rando Site. As a result of the contamination observed at Well #2, the Village of Macedon immediately stopped the use of this well and the adjacent municipal water supply Well #1 as a source of public drinking water and began purchasing part of its drinking water from the Monroe County Water Authority.

1.2 Investigation/Remedial History

As indicated above, analytical results from a NYSDOH sampling event conducted in 1986 at a Village of Macedon municipal water supply well led to the investigation at the Site. A preliminary investigation conducted by the NYSDEC in 1987 identified Rando as a potentially responsible party with the dry crock as the likely source of the TCA contamination. In 1988, Rando conducted a soil vapor survey. It was determined that the volatile organic compound (VOC) groundwater plume extended beyond the Site's eastern boundary towards the Village of Macedon wellfield.

In 1989, Rando conducted a subsurface investigation (SSI) consisting of the installation of groundwater monitoring wells. The results of this investigation confirmed that the dry crock was the source of the TCA

contamination. Additional VOCs, including 1,1-Dichloroethane (1,1-DCA) and 1,1-Dichloroethene (1,1-DCE) were also detected in groundwater near the dry crock. As a result, Rando conducted a voluntary source removal (soil excavation) under NYSDEC observation in 1989. Post excavation soil sampling from the source area did not indicate any residual soil contamination.

Remedial investigation (RI) activities were conducted at the Site from 1991 through 1993. A Feasibility Study (FS) was also completed and approved, and a Proposed Remedial Action Plan (PRAP) was issued by the NYSDEC in 1995. Based on the Village of Macedon decision to permanently discontinue the use of groundwater for a source of public water, Rando submitted an FS Addendum in 1996. The DEC did additional groundwater sampling in January of 1997 which showed groundwater contaminant levels had decreased. The Record of Decision (ROD) was subsequently issued by NYSDEC in March 1998.

The NYSDEC selected Alternative 1 (no further action) as the remedy for the Site as presented in the 1998 ROD. As part of Alternative 1, periodic groundwater monitoring (semi-annual for five years and annual thereafter) would be conducted from selected groundwater monitoring wells. In addition, the remedy required administrative controls be placed on the Site property to restrict public access to contaminated groundwater.

A Maintenance and Monitoring Plan (M&M Plan) was prepared for the Site in July 1999. A Declarations of Covenants and Restrictions to restrict public access to contaminated groundwater was filed with Wayne County on December 23, 2009.

On April 1, 2013, a SSDS was installed beneath and encompassing the entire footprint of the Site building as outlined in Mitigation Tech's May 20, 2013 construction completion letter report (CCR). Based on a review of select correspondence between NYSDEC and Rando, it appears the SSDS was installed in lieu of evaluating the Site in accordance with the NYSDOH's "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" (2006). Although not included in the M&M Plan, this PRR has a section to perform evaluations and give recommendations for operations and maintenance in regards to the installed SSDS. It should be noted that since the building has been shut down and is not occupied, the SSDS evaluation component of the field work could not be completed for this PRR.

1.3 Residual Contamination

Based on the 2021 groundwater monitoring results, residual contamination consisting of TCA, 1,1-DCA, 1,1-DCE, 1,2-Dichloroethane (1,2-DCA), and Chloroethane remains in the Site groundwater at concentrations slightly above NYSDEC TOGS 1.1.1 Class GA Groundwater Standards and Guidance Values (SGVs), as shown on **Table 1** and **Figure 2**. The highest concentration of TCA was observed at monitoring well B206-OW-B, at a concentration of 8.7 μ g/L (SGV of 5 ug/L). The highest concentrations of other residual VOCs were observed at monitoring well B206-OW-C. Chloroethane was detected at 10.7

ug/L (SGV of 5 ug/L); 1,1-DCA was detected at 10 ug/L (SGV of 5 ug/L); 1,1-DCE was detected at 9.9 ug/L (SGV of 5 ug/L); and 1,2-DCA was detected at 1 ug/L (SGV of 0.6 ug/L). All other VOCs detected were at concentrations below the respective SGVs. While there is no standards or guidance value for 1,4-Dioxane, it should be noted that detected concentrations remained relatively consistent, with only a slight increase in well B206-OW-C (from 380 ug/L in 2019 to 430 μ g/L in 2021).

1.4 Regulatory Requirements/Cleanup Goals

As presented in the previous PRR and the ROD, the goals for this Site are to:

- Mitigate all significant threats to the public health and to the environment posed by contaminated groundwater at the site; and
- Provide for attainment of SCGs for groundwater quality at the limits of the area of concern, to the extent practicable.

2.0 Institutional and Engineering Control Plan Compliance

The ROD established the application of administrative controls on the Site property to restrict public access to contaminated groundwater. The engineering controls and/or mechanical systems that have been installed on-Site (i.e., the SSDS) is not a component of the original Site remedy outlined in the ROD, but was instead installed in 2013 in response to the potential for vapor intrusion. The operation and maintenance of the SSDS is outlined in the CCR, dated May 20, 2013. The Site management activities specified in the M&M Plan include annual Site inspections, annual groundwater monitoring, and non-routine inspections and/or maintenance, as needed.

2.1 Institutional Controls

The Site is managed as part of New York State's Superfund Program. The Site's inclusion in the Registry as a Class 4 Inactive Hazardous Waste Site acts as an Institutional Control (IC). In addition, Declaration of Covenants and Restrictions (deed restrictions) were filed with the Wayne County Clerk's office to restrict public access to groundwater in perpetuity.

2.2 Engineering Controls

Engineering controls were not a component of the site remedy presented in the ROD. As indicated above, an SSDS was installed by the owner of the Site in 2013. The sub-slab vacuum monitoring results from February 2020 indicated the system was working effectively at the time of the previous inspection. The SSDS is currently shut down due to the fact that the building is vacant and electrical power has been shut off.

3.0 Monitoring and Maintenance Plan Compliance

The monitoring scope for the Site as specified in the M&M Plan includes annual Site inspections and annual groundwater sampling. Presented below is a summary of the monitoring activities performed throughout this reporting period, as well as an evaluation of Site-related data relative to remedy performance, effectiveness, and protectiveness, as appropriate. A summary of the current M&M Plan requirements is presented below:

Summary of 2021 SMP Site Monitoring and Sampling Plan				
Site Management Activity	Frequency	Location	Laboratory Analysis	
Site Inspection	Annual	Site Property	Not Applicable	
Groundwater Sampling	Annual	 B103-OW-A B206-OW-B B206-OW-C 	 VOCs by USEPA Method 8260C 1,4-Dioxane by USEPA Method 8270D 	
SSDS Inspection and Evaluation	Annual	Site Building	Not Applicable	
Groundwater and Site Inspection Report	Annual	Not Applicable	Not Applicable	
PRR	Annual	Not Applicable	Not Applicable	

Notes:

TAL - Target Analyte List.

USEPA - United States Environmental Protection Agency.

3.1 Site Inspection

In January and March 2021, concurrent with groundwater sampling activities, TRC performed an annual Site inspection in accordance with the SMP. The Site inspection included an evaluation of the current Site and surrounding property uses, condition of the limited soil cover system, vegetation, monitoring wells, access gates, roads, etc. Overall, the inspection revealed no unusual conditions and nothing requiring corrective action. There was also no new development in the surrounding properties/parcels noted.

A summary of the January and March 2021 Site Management activities are provided in the table below:

Summary of Site Management Activities					
January and March 2021					
Site Management Activity	Summary of Results	Maintenance/Corrective Measure			
General Site property, eastern fence, and paved and grassed areas	The site property, building, and surrounding areas appeared to be stable and in good condition. The eastern perimeter fence, adjacent to the parking area, appeared to be in good condition with no visible indications of damage or excess wear. The follow up visit in March 2021 revealed similar conditions following snow melt	No routine maintenance or corrective measures needed at this time.			
Drainage	The Site's general vicinity appeared to be in good condition, containing no vegetation that would inhibit stormwater sheet flow offsite. No noticeable areas of active erosion were observed. A follow up visit in March 2021 revealed similar conditions following snow melt.	No routine maintenance or corrective measures needed at this time.			
Monitoring well network	The three remaining monitoring wells were located for the purposes of inspection and sampling. Monitoring well B206-OW-C was broken at the ground surface (well casing and protective casing). In addition, the hinge for the protective casing lid at monitoring well B103-OW-A was broken, allowing the lid to swing freely. A follow up visit in March 2021 revealed conditions had not changed following snow melt.	The riser at B206-OW-C should be extended, and the surface completion and protective casing should be replaced. The protective casing at B103-OW-A should be repaired or replaced.			
Groundwater gauging and sampling	In January 2021, 2 of the monitoring wells were gauged and sampled utilizing USEPA low-flow sampling methods. Monitoring well B206-OW-C could not be sampled due to the presence of snow and ice buildup surrounding the well. During a follow up visit in March 2021, B206-OW-C was gauged and sampled utilizing USEPA low-flow sampling methods.	No routine maintenance or corrective measures needed beyond those indicated above.			
Monitoring sub-slab vacuum	The SSDS inspection and evaluation could not be completed during the 2021 field activities due to the fact that the building has been closed/vacated and the utilities, including electric, shutdown pending sale of the property.	Monitor building occupancy and perform SSDS inspection and evaluation upon re-energizing the building.			

Field activity reports, photographic logs, and low-flow groundwater sampling records from the January 2021 inspection and sampling activities can be found in **Appendix B**.

3.2 Groundwater Monitoring Summary

3.2.1 Groundwater Gauging

On January 20th and March 30th, 2021, prior to groundwater sample collection, all viable wells were gauged for depth to groundwater to determine groundwater flow direction. A summary of the Site Geology and

Hydrogeology, including depth to groundwater and overall depth of well measurements collected, and inferred groundwater flow direction is presented in the table below:

Site Geology and Hydrogeologic Summary				
	Known Geology			
 Bedrock is generally located at 60 ft below ground and is overlain with a clay/silt till A regulated wetland is located 1/4 mile north and the Erie Barge Canal is located approximately 1 mile north of Rando 				
	Number of Gauged Wells			
3 / 3				
Groundwater Elevations and Well Depths*				
Well ID	Depth to Water	Depth to Bottom		
B103-OW-A	17.16 ft	35.52 ft		
B206-OW-B	19.52 ft	58.91 ft		
B206-OW-C	17.16 ft	24.10 ft		
Inferred Groundwater Flow Direction				

Historically North-Northeast toward the Village Extraction Wells and the Erie Barge Canal. Current flow direction would be difficult to confirm due to the lack of survey and vertical control and the broken riser at B206-OW-C. Depth to water measurement are consistent with previous measurements.

Notes:

ft - feet.

* - Measured from top of PVC casings.

3.2.2 Groundwater Monitoring

TRC collected groundwater samples from each of the 3 monitoring wells utilizing USEPA low-flow sampling techniques. As previously noted, monitoring well B206-OW-C casing and protective casing were both broken at the ground surface and snow and ice accumulation at the well prevented sampling during the visit January 20th site visit; A groundwater sample was collected during a subsequent visit on March 30th.

All three groundwater samples were submitted to the NYSDEC callout laboratory, Eurofins/TestAmerica Laboratories of Amherst, New York (Eurofins/TestAmerica), for analysis of Target Compound List (TCL) VOCs by USEPA Method 8260C and 1,4-Dioxane by USEPA Method 8270D.

3.2.3 Groundwater Analytical Results

A summary of historic groundwater analytical data for detected VOCs and 1,4-Dioxane can be found in **Table 1**. A full listing of all data generated during the reporting period is contained in the data usability summary report (DUSR), which is included in **Appendix A**. **Figure 2** illustrates the location of the 3 monitoring wells sampled, and indicates the current concentrations of detected compounds in comparison to the SCGs. Total VOC concentration trend line graphs for each of the monitoring wells sampled (B103-OW-A, B206-OW-B, and B206-OW-C) are provided below:

TRC ENGINEERS, INC.

An exceedance summary of the groundwater analytical results is outlined below:

Exceedance Summary of Laboratory Analytical Results in Groundwater Early 2021					
Constituent Class GA SGV*		Concentration Range (µg/L)	Location with Highest Detection	Frequency Exceeding Class GA Value	
		TAL VOCs, Total			
Chloroethane	5	ND - 10.7	B206-OW-C	1/3	
1,1,1-Trichloroethane	5	ND - 8.7	B206-OW-B	1/3	
1,1-Dichloroethane	5	ND - 10	B206-OW-C	1/3	
1,2-Dichloroethane	0.6	ND - 1	B206-OW-C	1/3	
1,1-Dichloroethene	5	ND - 9.9	B206-OW-C	1/3	
Trichloroethene	5	ND - 1.8	B206-OW-B	0/3	
SVOCs, Total					
1,4-Dioxane NS 0.096 - 430 B206-OW-C N/A					

Notes:

NEW YORK

PORTUNITY.

Department of

Environmental Conservation

ND - Not detected above the specified quantitation limit.

NS - No Standard or Guidance Value.

N/A - Not applicable.

 $\mu g/L-micrograms \ per \ liter.$

* - NYSDEC TOGS 1.1.1 - Ambient Water Quality Standards and Guidance Values for Class GA water, June 1998 with the April 2000 Addendum..

4.0 Cost Summary

The total estimated cost of TRC's site management activities for the period March 2020 through March 2021 is approximately \$16,000. Site management activities included sampling on-Site wells for VOCs and 1,4-Dioxane, annual Site inspection, and preparation of this PRR. The total cost includes engineering and subcontractor costs, as well as direct project expenses. It should be noted that the total does not include costs incurred by NYSDEC in support of the project (i.e. NYSDEC staff). A summary of the site management costs is presented below:

Summary of Site Management Costs - TRC July 2020 through December 2020					
Cost Item	Amount Expended	Percent of Total Cost (Rounded)			
Engineering Support					
TRC	\$14,950	93.4%			
Subcontractors					
Eurofins/Test America	\$600	3.8%			
Expenses					
TRC	\$450	2.8%			
Total Cost	\$16,000	100%			

The following is included in each cost item indicated in the table above:

- Engineering support includes labor costs associated with project management (e.g., WA Package preparation, monthly invoicing, project scheduling and coordination, etc.), site inspections, groundwater monitoring, and reporting (i.e., site inspection report, DUSR, electronic data deliverable (EDD) preparation, and a PRR).
- Subcontractors include analytical laboratory costs associated with the groundwater sampling event.
- Expense costs include travel, equipment, and supplies in support of the site inspections, groundwater sampling event, and site maintenance activities.

5.0 Conclusions and Recommendations

5.1 Conclusions

The constituents that remain in groundwater slightly above the SCGs are 1,1-DCA, 1,2-DCA, 1,1-DCE, Chloroethane, and 1,1,1-TCA. 1,4-Dioxane was also detected in each groundwater sample (no SCG available). Based on the information presented in this PRR, the following conclusions are made regarding concentrations of these groundwater contaminants:

- The only VOC that consistently exceeded the SGVs in monitoring well B103-OW-A was TCA. The concentrations of TCA have continually and steadily declined from a high of 20.8 ug/L in 2006 to ND in 2021. The steady decline would indicate that the groundwater in the vicinity of this well is undergoing natural attenuation, as expected. The last 2 monitoring events suggest that groundwater in this well may have attained SGVs (7 ug/L in 2019, only slightly above the SGV of 5 ug/L, and non-detect in2021).
- Similarly, the only VOC that consistently exceeded the SGVs in monitoring well B206-OW-B was TCA. The concentrations of TCA have continually and steadily declined from a high of 18.8 ug/L in 2006 to 8.7 ug/L in 2021. The steady decline would again indicate that the groundwater in the vicinity of this well is undergoing natural attenuation, as expected. This compound was not detected in one sample in 2017, and the last 2 monitoring events indicated 9.7 ug/L (2019) and 8.7 ug/L (2021), both only slightly above the SGV of 5 ug/L.
- In monitoring well B206-OW-C, TCA concentrations have again steadily declined throughout the monitoring period, from a high of 19 ug/L in 2006 to a low of ND in 2021. In parallel with this decline, concentrations of 1,1-DCA has also declined, 1,1-DCE has remained relatively consistent, and concentrations of Chloroethane have increased (from non-detect in all previous analyses to 10.7 ug/L in 2021). This pattern appears to suggest that TCA is undergoing biological reductive dichlorination to 1,1-DCA, and then further to Chloroethane.
- The continually declining concentrations and demonstrated presence of reductive dichlorination in groundwater suggest that further monitoring of VOCs is likely not necessary.
- Site and groundwater use are consistent with the restrictions set forth in the ROD
- The remedy continued to be protective of human health and the environment during this reporting period.

5.2 Recommendations

- It is recommended that the Site inspection frequency be continued at least once every year to ensure that building occupancy changes are identified promptly. Once the building is again reoccupied and utility service restored, SSDS inspections should again continue on an annual basis. A site inspection report should be completed following each inspection event.
- Monitoring well B206-OW-C should be repaired. The well casing riser should be extended, and the protective casing should be replaced.
- The protective casing at monitoring well B103-OW-A should be repaired or replaced.

- A new monitoring well should be installed to the north of B206-OW-C to measure and evaluate the migration of 1,4-Dioxane in that direction.
- A new monitoring well should be installed to the east of B206-OW-C to measure and evaluate the migration of 1,4-Dioxane in that direction.
- Once the existing wells are repaired and the new wells installed, all wells should be surveyed so that groundwater flow direction can be evaluated under current conditions.
- Due to the very low concentrations and demonstrated natural attenuation process that is underway at the Site, it is recommended that analysis of VOCs in groundwater be discontinued.
- It is recommended that the groundwater sampling and analysis for 1,4-Dioxane be continued on a frequency of once every 5th quarter. The next groundwater monitoring event is expected to be scheduled following completion of the existing well repairs and new well installations, during the summer of 2021. Based on this recommended frequency, the subsequent groundwater monitoring event following the summer of 2021 would be scheduled for the fall of 2022.
- A site management plan should be prepared to consolidate the various plan documents for this Site and include engineering controls that have been incorporated at the at the Site (i.e., SSDS) and update sampling/inspection procedures and frequencies.
- Preparation of PRRs should continue on an annual frequency to certify the ICs and ECs are inplace, effective and protective of human health and the environment.

6.0 Certification of Engineering and Institutional Controls

For each institutional or engineering control identified for the Site, I certify that all of the following statements are true:

- The institutional and/or engineering control employed at this Site is unchanged from the date the control was put in place, or last approved by DER;
- Nothing has occurred that would impair the ability of such control to protect public health and the environment; and,
- Nothing has occurred that would constitute a violation or failure to comply with any Site Management Plan for this control.

TRC Engineers, Inc.

Kevin D. Sullivan, P.E. Principal Engineer

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	e No. 859014	Site Details	Box 1	
Sit	e Name Rando Corporation			
Site Cit Co Site	e Address: The Commons, Rt 31 //Town: Macedon unty: Wayne e Acreage: 0.500	Zip Code: 14502		
Re	porting Period: March 30, 2020 to Marc	h 30, 2021		
			YES	NO
1.	Is the information above correct?		\checkmark	
	If NO, include handwritten above or on	a separate sheet.		
2.	Has some or all of the site property bee tax map amendment during this Report	en sold, subdivided, merged, or undergone a ting Period?		
3.	Has there been any change of use at th (see 6NYCRR 375-1.11(d))?	he site during this Reporting Period		
4.	Have any federal, state, and/or local performed for or at the property during this Report	ermits (e.g., building, discharge) been issuec ting Period?		
	If you answered YES to questions 2 that documentation has been previo	thru 4, include documentation or evidence pusly submitted with this certification form	e n.	
5.	Is the site currently undergoing develop	pment?		
			Box 2	
			YES	NO
6.	Is the current site use consistent with the	he use(s) listed below?	\checkmark	
7.	Are all ICs in place and functioning as a	designed?		
	IF THE ANSWER TO EITHER QU DO NOT COMPLETE THE F	JESTION 6 OR 7 IS NO, sign and date below REST OF THIS FORM. Otherwise continue.	and	
A C	corrective Measures Work Plan must be	e submitted along with this form to address	these iss	ues.

	I	Box 3
ontrols		
Owner	Institutional Control	
	Monitoring Plan	
	Groundwater Use Restriction	Box 4
	Landuse Restriction	
ontrols	O&M Plan	
	Engineering Control	
	Vapor Mitigation	
	Building is vacant, power is shut do	wn including
)13.	power to the SSDS. SSDS will be ϵ building is again re-occupied.	evaluated once
	ontrols Owner ontrols 013.	ontrols Owner Institutional Control Monitoring Plan Groundwater Use Restriction Landuse Restriction Controls Owner O&M Plan Engineering Control Vapor Mitigation Building is vacant, power is shut dow power to the SSDS. SSDS will be explicitly building is again re-occupied.

			Box 5						
	Periodic Review Report (PRR) Certification Statements								
1.	I certify by checking "YES" below that:								
	a) the Periodic Review report and all attachments were prepared under the dire reviewed by, the party making the Engineering Control certification;	ection of,	and						
	b) to the best of my knowledge and belief, the work and conclusions described in this are in accordance with the requirements of the site remedial program, and generally ac engineering practices; and the information presented is accurate and compete.								
	engineering practices, and the mormation presented is accurate and compete.	YES	NO						
		\checkmark							
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all following statements are true:	of the							
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the De	partmen	t;						
	(b) nothing has occurred that would impair the ability of such Control, to protect the environment;	public h	ealth and						
	(c) access to the site will continue to be provided to the Department, to evaluate remedy, including access to evaluate the continued maintenance of this Control	e the ;							
	(d) nothing has occurred that would constitute a violation or failure to comply wi Site Management Plan for this Control; and	ith the							
	(e) if a financial assurance mechanism is required by the oversight document for mechanism remains valid and sufficient for its intended purpose established in t	or the site he docu	e, the ment.						
		YES	NO						
		\checkmark							
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.								
,	A Corrective Measures Work Plan must be submitted along with this form to address t	hese iss	sues.						
	Signature of Owner, Remedial Party or Designated Representative Date								

Г

IC CERTIFICATIONS SITE NO.

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

ا Kevin D. Sullivan	at TRC Engineers, Inc., W. Seneca, NY 14224							
print name	print business address							
am certifying as	tive of Remedial Party (NYSDEC) (Owner or Remedial Party)							
for the Site named in the Site Details Section of this form.								
Signature of Owner, Remedial Party, or D Rendering Certification	esignated Representative Date							

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Kevin D. Sullivan	TRC Engineers, Inc., W. Seneca	a, NY 14224
print name	print business address	
am certifying as a Professional Enginee	for the Remedial Party (NYSDEC)	al Party)
	HERE AND	
M Dall.	CE ENGINEER), JC. ENGINEER	6/28/2021
Signature of Professional Engineer, for Remedial Party, Rendering Certification	the Owner or Stamp (Required for PE)	Date

7.0 Future Site Activities

Based on the recommendations provided in **Section 5.0**, the following site management activities will be completed during the next PRR reporting period (March 2021 to March 2022):

- Site Inspections Annual (next scheduled: Spring 2022)
- Groundwater Sampling once every 5th quarter (next scheduled: Summer 2021, then Fall 2022)
- SSDS Vacuum Monitoring Annual (next scheduled: TBD)
- PRR Annual (next scheduled: March 2022)

FIGURES

Version: 2017-10-21

LEGEND

APPROXIMATE SITE BOUNDARY

MONITORING WELL

Data Key

-

Data Ney			
ug/L	MICROGRAI		
J	ESTIMATED	VALUE OR L	IMIT
E	RESULT EX	CEEDED CAL	IBRATION RANGE
F1	CONTROL L	MSD RECOV	ERY EXCEEDS
SVOCs	SEMI-VOLA	TILE ORGAN	IC COMPOUNDS
VOCs	VOLATILE C	RGANIC CO	MPOUNDS
	EXCEEDS S	TANDARDS	OR GUIDANCE
	VALUES 1,1	,1-TRICHLOF	ROETHANE IN
	STANDARD	ABOVE 5 UG	G/L AND FOR
	1,4-DIOXAN	E A NYSDEC	CLASS GA
	STANDARD	DOES NOT E	EXIST.
	É		
	É	∃n₽	
0		100	200
	APPROXIM	ATE SCALE IN	FEET
PROJECT:	N		
	RANDO CO	RPORATION	ISITE
	MACEDO	ON, NEW YO	RK
TITLE:			
	SITE	LAYOUT	
DRAWN BY:	D. STEHLE	PROJ NO.:	413002.0000.03.02
APPROVED BY:	K. SULLIVAN		FIGURE 2
DATE:	JUNE 2021		
A =			10 Maxwell Drive, Suite 200 Clifton Park, NY 12065
	RC		Phone: 518.348.1190
-			www.uccompanies.com
FILE NO.:			

TABLES

TABLE 1 New York State Department of Environmental Conservation Rando Machine Corporation Site Macedon, New York Analytical Data Summary (2006 through 2021)

		TOGS 1.1.1						B103-OW-A					
Parameter/Analysis	Unit	SGV*	11/21/06	2/6/08	7/7/09	9/17/10	12/8/11	11/7/12	11/12/15	2/28/17	11/27/17	10/30/19	1/20/21
VOCs													
Chloromethane	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	ug/L	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	ug/L	5	2.96	3.51	ND	ND	2.17	ND	ND	ND	ND	0.8 J	ND
1,2-Dichloroethene	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	ug/L	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/L	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	ug/L	5	20.8	19.3	12.9	14.6	15.1	11.5	9.94	9.75	ND	7.00	ND
Carbon Tetrachloride	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	ug/L	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	ug/L	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	ug/L	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	ug/L	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	ug/L	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	ug/L	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	ug/L	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SVOCs													
1,4-Dioxane	ug/L	NS										ND	0.13 J

Notes

ug/I - All values presented in micrograms per liter

ND - Analyzed for but not detected

NS: Not sampled

J - Estimated value or limit

F1 - MS and/or MSD recovery exceeds control limits

E: Result exceeded calibration range

NA - No Standard or Guidance Value Available

* - NYSDEC Ambient Water Quality Standards and Guidance Values

for Class GA water, June 1998 with the April 2000 Addendum.

Exceeds Class GA Standard or Guidance Value

TABLE 1 New York State Department of Environmental Conservation Rando Machine Corporation Site Macedon, New York Analytical Data Summary (2006 through 2021)

		TOGS 1.1.1						B206-OW-B					
Parameter/Analysis	Unit	SGV*	11/21/06	2/6/08	7/7/09	9/17/10	12/8/11	11/7/12	11/12/15	2/28/17	11/27/17	10/30/19	1/20/21
VOCs													
Chloromethane	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	ug/L	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	ug/L	5	2.24	3.23	ND	ND	2.05	ND	ND	ND	ND	1.2	0.83 J
1,2-Dichloroethene	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	ug/L	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/L	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	ug/L	5	18.8	18.5	13.4	11.6	15.6	10.5	10.9	11.7	ND	9.7	8.7
Carbon Tetrachloride	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	ug/L	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	ug/L	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	ug/L	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	ug/L	5	2.16	2.49	ND	3.45	2.39	2.21	ND	ND	ND	1.6	1.8
Dibromochloromethane	ug/L	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	ug/L	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	ug/L	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	ug/L	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND F1
1,1,2,2-Tetrachloroethane	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SVOCs													
1,4-Dioxane	ug/L	NS										0.35	0.096 J

Notes

ug/I - All values presented in micrograms per liter

ND - Analyzed for but not detected

NS: Not sampled

J - Estimated value or limit

F1 - MS and/or MSD recovery exceeds control limits

E: Result exceeded calibration range

NA - No Standard or Guidance Value Available

* - NYSDEC Ambient Water Quality Standards and Guidance Values

for Class GA water, June 1998 with the April 2000 Addendum.

Exceeds Class GA Standard or Guidance Value

TABLE 1 New York State Department of Environmental Conservation Rando Machine Corporation Site Macedon, New York Analytical Data Summary (2006 through 2021)

		TOGS 1.1.1						B206-OW-C					
Parameter/Analysis	Unit	SGV*	11/21/06	2/6/08	7/7/09	9/17/10	12/8/11	11/7/12	11/12/15	2/28/17	11/27/17	10/30/19	3/30/21
VOCs													
Chloromethane	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	ug/L	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10.7
Methylene Chloride	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	ug/L	5	27.1	14.1	11.6	10.5	12.2	9.35	10.7	9.79	13.8	13	10 F1
1,1-Dichloroethene	ug/L	5	7.87	9.33	8.85	5.25	7.82	4.57	6.58	6.95	8.56	10	9.9 F1
1,2-Dichloroethene	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	ug/L	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/L	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,1,1-Trichloroethane	ug/L	5	19	14.9	16.2	9.22	12.3	6.57	9.64	7.89	ND	9.3	ND
Carbon Tetrachloride	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	ug/L	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	ug/L	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	ug/L	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.6	1.3
Dibromochloromethane	ug/L	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	ug/L	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	ug/L	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	ug/L	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	ug/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SVOCs													
1,4-Dioxane	ug/L	NS										380 E	430 E

Notes

ug/I - All values presented in micrograms per liter

ND - Analyzed for but not detected

NS: Not sampled

J - Estimated value or limit

F1 - MS and/or MSD recovery exceeds control limits

E: Result exceeded calibration range

NA - No Standard or Guidance Value Available

* - NYSDEC Ambient Water Quality Standards and Guidance Values

for Class GA water, June 1998 with the April 2000 Addendum.

Exceeds Class GA Standard or Guidance Value

APPENDIX A

Data Usability Summary Report

Site:Rando Corp Site - NYS StandbyLaboratory:Eurofins TestAmerica – Amherst, NYSDG Nos.:480-180429-1 and 480-182694-1Parameters:Volatile Organic Compounds (VOCs), 1,4-DioxaneData Reviewer:Kristen Morin/TRCPeer Reviewer:Sue Milcan/TRCDate:May 12, 2021

Samples Reviewed and Evaluation Summary

3 Groundwater Samples: RC-OW-A, RC-OW-B, B-206-OW-C

The above-listed groundwater samples were collected on January 20 and/or March 30, 2021 and were analyzed for the following parameters:

- VOCs by SW-846 Method 8260C
- 1,4-Dioxane by SW-846 Method 8270D with Selective Ion Monitoring (SIM)

The data validation was performed in accordance with USEPA National Functional Guidelines for Organic Superfund Methods Data Review (EPA-540-R-20-005), November 2020, modified for the SW-846 methodologies utilized.

The data were evaluated based on the following parameters:

- Overall Evaluation of Data and Potential Usability Issues
- Data Completeness
- Holding Times and Sample Preservation
 CC(MS Tupes
- GC/MS Tunes
- Initial and Continuing Calibrations
- * Blanks
 - Surrogate Recoveries
 - Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
 - Laboratory Control Sample (LCS) Results
- Internal Standards
- NA Field Duplicate Results
 - Sample Results and Reported Quantitation Limits (QLs)
- Target Compound Identification
- * All criteria were met.
- NA Field duplicates were not associated with this sample set.

Overall Evaluation of Data and Potential Usability Issues

All results are usable for project objectives. There were no qualifications applied to the data because of sampling error. Qualifications applied to the data because of analytical error are discussed below.

• Potential uncertainty exists for select results for 1,4-dioxane and/or VOCs that were below the lowest calibration standard and QL. These results were qualified as estimated (J) in

the associated samples. These results can be used for project objectives as estimated values, which may have a minor impact on the data usability.

- The nondetect results for select VOCs in all samples were qualified as estimated (UJ) due to continuing calibration nonconformances. These results can be used for project objectives as nondetects with estimated QLs, which may have a minor impact on the data usability.
- The positive results for 1,1-dichloroethane and 1,1-dichloroethene were qualified as estimated (J+) with a potential high bias in sample B-206-OW-C due to high recoveries in the MS and/or MSD analyses. These results can be used for project objectives as estimated values, which may have a minor impact on the data usability.
- The positive result for 1,4-dioxane in sample B-206-OW-C was qualified as estimated (J) due to a significant dilution causing low response of the isotopically labeled surrogate used to quantitate the sample result. This result can be used for project objectives as an estimated value, which may have a minor impact on the data usability.

Data Completeness

The data package was a complete Level IV data deliverable with the following exception. The laboratory did not report LCS and MS/MSD percent recoveries (%Rs), relative percent differences (RPDs), or laboratory acceptance criteria for total xylenes on the summary forms. The %Rs and RPDs were calculated and the laboratory acceptance limits were provided by the laboratory during validation of previous projects; no validation actions were taken on this basis.

Holding Times and Sample Preservation

All holding time and sample preservation criteria were met.

GC/MS Tunes

All criteria were met in the 1,4-dioxane and VOC analyses.

Initial and Continuing Calibrations

1,4-Dioxane

All relative response factors (RRFs) and percent relative standard deviations (%RSDs) were within the acceptance criteria in the initial calibrations (ICs) associated with the samples in this data set. The percent differences (%Ds) met the method acceptance criteria in the continuing calibration (CC) standards associated with the samples in this data set.

VOCs

All RRFs, correlation coefficients, and %RSDs were within the acceptance criteria in the ICs associated with the samples in this data set.

The RRFs were within the acceptance criteria in the CC standards associated with the samples in this data set. The following table summarizes the %Ds or drifts that did not meet the method acceptance criteria in the CC standards associated with the samples in this data set and the

validation actions.

Instrument/ CC	Compound	%D	Validation Actions						
HP5975D/	Acetone	37.2	The nondetect results for acetone and 2-butanone						
567125/3	2-Butanone (MEK)	26.5	(MEK) were qualified as estimated (UJ) in the associated samples.						
Associated sam	ples: RC-OW-A, RC-OW-B								
-	Dichlorodifluoromethane	-38.0							
	Chloromethane	-21.6							
HP5973S/	Vinyl chloride	-22.7	The nondetect results for the listed VOCs were						
574984/3	Bromomethane	-21.0	qualified as estimated (UJ) in the associated sample.						
	Trichlorofluoromethane	-26.5							
	Acetone	44.4							
Associated sam	Associated sample: B-206-OW-C								

<u>Blanks</u>

Target compounds were not detected in the associated 1,4-dioxane and VOC method blanks.

Surrogate Recoveries

The surrogate percent recoveries (%Rs) met the laboratory acceptance criteria in the 1,4-dioxane and VOC analyses.

MS/MSD Results

MS/MSD analyses were performed on samples RC-OW-B and B-206-OW-C for 1,4-dioxane and VOCs. Qualification of the data is not required for MS/MSD nonconformances when the parent sample concentration is >4x the spike amount; therefore, these MS/MSD results are not summarized in this report. The %Rs and relative percent differences met the laboratory acceptance criteria with the following exceptions. The table below summarizes the MS/MSD %Rs that did not meet the laboratory acceptance criteria and the validation actions. The RPDs were within the laboratory acceptance criteria.

MS/MSD Sample ID	Compound	MS %R	MSD %R	MS/MSD %R QC Limits	Validation Action
RC-OW-B	Tetrachloroethene	127	-	74-122	Qualification was not required since tetrachloroethene was not detected in sample RC-OW-B.
	1,1-Dichloroethane	125	122	77-120	The positive results for 1,1-dichloroethane and 1,1-dichloroethene were qualified as
B 206 OW C	1,1-Dichloroethene	-	128	66-127	estimated (J+) with a potential high bias in sample B-206-OW-C.
Б-200-000-С	1,2-Dichloropropane	122	123	76-120	Qualification was not required since 1,2-
	Acetone	157	160	56-142	dichloropropane, acetone, and
	Methyl tert-butyl ether	126	128 77-12		in sample B-206-OW-C.
-: Met criteria					

Note that the laboratory did not report MS/MSD %Rs and RPDs for total xylenes. The %Rs and RPDs were calculated during validation and were within the laboratory's acceptance criteria except as noted in the table above.

LCS Results

The LCS %Rs were within the laboratory acceptance criteria for the VOC and 1,4-dioxane analyses with one exception. The %R for acetone (155%) in the LCS associated with sample B-206-OW-C, LCS 480-574984/32, recovered above the laboratory's acceptance limits (56-142%). Qualification was not required since acetone was not detected in sample B-206-OW-C.

Note that the laboratory did not report the LCS %Rs for total xylenes. The %Rs were calculated during validation and was within the laboratory's acceptance criteria.

Internal Standards

The %Rs for the internal standards met the laboratory limits in the 1,4-dioxane and VOC analyses.

Field Duplicate Results

There were no field duplicates associated with this data set.

Sample Results and Reported Quantitation Limits

Select results for 1,4-dioxane and VOCs were reported below the lowest calibration standard level and QL. These results were qualified as estimated (J) in the associated samples by the laboratory.

Sample calculations were spot-checked; there were no errors noted.

A 100-fold dilution was performed on sample B-206-OW-C for 1,4-dioxane due to the concentration of 1,4-dioxane that would have exceeded the calibration range if analyzed undiluted. The result for 1,4-dioxane in this sample was flagged with an "E" by the laboratory due to a calibration range exceedance after the raw result was corrected for the recovery of the 1,4-dioxane-d8 isotope; however, the actual response for 1,4-dioxane in this sample was not above the calibration range prior to correction for the recovery of the 1,4-dioxane-d8 isotope. As a result of this dilution, the expected concentration for the isotopically labeled surrogate, 1,4-dioxane-d8, used to quantitate the sample result was significantly below the lowest calibration standard; potential uncertainty exists for the result for 1,4-dioxane in sample B-206-OW-C. Thus, the positive result for 1,4-dioxane in this sample was qualified as estimated (J).

Target Compound Identification

All criteria were met.

QUALIFIED FORM 1s

Client Sample ID: RC-OW-B Date Collected: 01/20/21 12:15

Date Received: 01/21/21 09:30

Method: 8260C - Volatile Organic	Compoi	unds by GC/N	NS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	8.7		1.0	0.82	ug/L			01/25/21 12:56	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			01/25/21 12:56	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			01/25/21 12:56	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			01/25/21 12:56	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			01/25/21 12:56	1
1,1-Dichloroethene	0.83	J	1.0	0.29	ug/L			01/25/21 12:56	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			01/25/21 12:56	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			01/25/21 12:56	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			01/25/21 12:56	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			01/25/21 12:56	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			01/25/21 12:56	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			01/25/21 12:56	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			01/25/21 12:56	1
2-Butanone (MEK)	-ND-	- UJ	10	1.3	ug/L			01/25/21 12:56	1
2-Hexanone	ND		5.0	1.2	ug/L			01/25/21 12:56	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			01/25/21 12:56	1
Acetone	-ND-	- UJ	10	3.0	ug/L			01/25/21 12:56	1
Benzene	ND		1.0	0.41	ug/L			01/25/21 12:56	1
Bromodichloromethane	ND		1.0	0.39	ug/L			01/25/21 12:56	1
Bromoform	ND		1.0	0.26	ug/L			01/25/21 12:56	1
Bromomethane	ND		1.0	0.69	ug/L			01/25/21 12:56	1
Carbon disulfide	ND		1.0	0.19	ug/L			01/25/21 12:56	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			01/25/21 12:56	1
Chlorobenzene	ND		1.0	0.75	ug/L			01/25/21 12:56	1
Dibromochloromethane	ND		1.0	0.32	ug/L			01/25/21 12:56	1
Chloroethane	ND		1.0	0.32	ug/L			01/25/21 12:56	1
Chloroform	ND		1.0	0.34	ug/L			01/25/21 12:56	1
Chloromethane	ND		1.0	0.35	ug/L			01/25/21 12:56	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			01/25/21 12:56	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			01/25/21 12:56	1
Cyclohexane	ND		1.0	0.18	ug/L			01/25/21 12:56	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			01/25/21 12:56	1
Ethylbenzene	ND		1.0	0.74	ug/L			01/25/21 12:56	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			01/25/21 12:56	1
Isopropylbenzene	ND		1.0	0.79	ug/L			01/25/21 12:56	1
Methyl acetate	ND		2.5	1.3	ug/L			01/25/21 12:56	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			01/25/21 12:56	1
Methylcyclohexane	ND		1.0	0.16	ug/L			01/25/21 12:56	1
Methylene Chloride	ND		1.0	0.44	ug/L			01/25/21 12:56	1
Styrene	ND		1.0	0.73	ug/L			01/25/21 12:56	1
Tetrachloroethene	ND	F1	1.0	0.36	ug/L			01/25/21 12:56	1
Toluene	ND		1.0	0.51	ug/L			01/25/21 12:56	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			01/25/21 12:56	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			01/25/21 12:56	1
Trichloroethene	1.8		1.0	0.46	ug/L			01/25/21 12:56	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			01/25/21 12:56	1
Vinyl chloride	ND		1.0	0.90	ug/L			01/25/21 12:56	1
Xylenes, Total	ND		2.0	0.66	ug/L			01/25/21 12:56	1

01/29/2021

Lab Sample ID: 480-180429-1 Matrix: Water

Client Sample ID: RC-OW-B Date Collected: 01/20/21 12:15 Date Received: 01/21/21 09:30

Lab Sample ID: 480-180429-1 Matrix: Water

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99	80 - 120		01/25/21 12:56	1
1,2-Dichloroethane-d4 (Surr)	104	77 - 120		01/25/21 12:56	1
4-Bromofluorobenzene (Surr)	102	73 - 120		01/25/21 12:56	1
Dibromofluoromethane (Surr)	109	75 - 123		01/25/21 12:56	1

Analyte 1.4-Dioxane	Result	Qualifier	RL 0.19	MDL 0.095	Unit ug/L	<u>D</u>	Prepared 01/26/21 08:37	Analyzed 01/27/21 13:03	Dil Fac
Isotope Dilution 1,4-Dioxane-d8	%Recovery 28	Qualifier	Limits 15 - 110		Ū		Prepared 01/26/21 08:37	Analyzed 01/27/21 13:03	Dil Fac

Client Sample ID: RC-OW-A

Date Collected: 01/20/21 14:30 Date Received: 01/21/21 09:30

Lab Sample ID: 480-180429-2

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			01/25/21 13:19	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			01/25/21 13:19	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			01/25/21 13:19	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			01/25/21 13:19	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			01/25/21 13:19	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			01/25/21 13:19	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			01/25/21 13:19	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			01/25/21 13:19	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			01/25/21 13:19	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			01/25/21 13:19	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			01/25/21 13:19	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			01/25/21 13:19	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			01/25/21 13:19	1
2-Butanone (MEK)	ND- UJ	10	1.3	ug/L			01/25/21 13:19	1
2-Hexanone	ND	5.0	1.2	ug/L			01/25/21 13:19	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			01/25/21 13:19	1
Acetone	- ND UJ	10	3.0	ug/L			01/25/21 13:19	1
Benzene	ND	1.0	0.41	ug/L			01/25/21 13:19	1
Bromodichloromethane	ND	1.0	0.39	ug/L			01/25/21 13:19	1
Bromoform	ND	1.0	0.26	ug/L			01/25/21 13:19	1
Bromomethane	ND	1.0	0.69	ug/L			01/25/21 13:19	1
Carbon disulfide	ND	1.0	0.19	ug/L			01/25/21 13:19	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			01/25/21 13:19	1
Chlorobenzene	ND	1.0	0.75	ug/L			01/25/21 13:19	1
Dibromochloromethane	ND	1.0	0.32	ug/L			01/25/21 13:19	1
Chloroethane	ND	1.0	0.32	ug/L			01/25/21 13:19	1
Chloroform	ND	1.0	0.34	ug/L			01/25/21 13:19	1
Chloromethane	ND	1.0	0.35	ug/L			01/25/21 13:19	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			01/25/21 13:19	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			01/25/21 13:19	1
Cyclohexane	ND	1.0	0.18	ug/L			01/25/21 13:19	1
Dichlorodifluoromethane	ND	1.0	0.68	ug/L			01/25/21 13:19	1
Ethylbenzene	ND	1.0	0.74	ug/L			01/25/21 13:19	1

Client Sample ID: RC-OW-A Date Collected: 01/20/21 14:30 Date Received: 01/21/21 09:30

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		1.0	0.73	ug/L			01/25/21 13:19	1
Isopropylbenzene	ND		1.0	0.79	ug/L			01/25/21 13:19	1
Methyl acetate	ND		2.5	1.3	ug/L			01/25/21 13:19	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			01/25/21 13:19	1
Methylcyclohexane	ND		1.0	0.16	ug/L			01/25/21 13:19	1
Methylene Chloride	ND		1.0	0.44	ug/L			01/25/21 13:19	1
Styrene	ND		1.0	0.73	ug/L			01/25/21 13:19	1
Tetrachloroethene	ND		1.0	0.36	ug/L			01/25/21 13:19	1
Toluene	ND		1.0	0.51	ug/L			01/25/21 13:19	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			01/25/21 13:19	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			01/25/21 13:19	1
Trichloroethene	ND		1.0	0.46	ug/L			01/25/21 13:19	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			01/25/21 13:19	1
Vinyl chloride	ND		1.0	0.90	ug/L			01/25/21 13:19	1
Xylenes, Total	ND		2.0	0.66	ug/L			01/25/21 13:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		80 - 120					01/25/21 13:19	1
1,2-Dichloroethane-d4 (Surr)	103		77 - 120					01/25/21 13:19	1
4-Bromofluorobenzene (Surr)	100		73 - 120					01/25/21 13:19	1
Dibromofluoromethane (Surr)	107		75 - 123					01/25/21 13:19	1

Method: 8270D SIM ID - Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.13	J	0.19	0.095	ug/L		01/26/21 08:37	01/27/21 13:50	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Lab Sample ID: 480-180429-2 Matrix: Water

Job ID: 480-180429-1

Client Sample ID: B-206-OW-C

Date Collected: 03/30/21 15:35 Date Received: 03/31/21 09:10

Method: 8260C - Volatile Organic Compo	ounds by GC/N	IS						
Analyte Result	dualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane NE)	1.0	0.82	ug/L			04/05/21 12:10	1
1,1,2,2-Tetrachloroethane NE)	1.0	0.21	ug/L			04/05/21 12:10	1
1,1,2-Trichloroethane NE)	1.0	0.23	ug/L			04/05/21 12:10	1
1,1,2-Trichloro-1,2,2-trifluoroethane NE)	1.0	0.31	ug/L			04/05/21 12:10	1
1,1-Dichloroethane 10) - F1 J+	1.0	0.38	ug/L			04/05/21 12:10	1
1,1-Dichloroethene 9.9) - F1 - J+	1.0	0.29	ug/L			04/05/21 12:10	1
1,2,4-Trichlorobenzene NE)	1.0	0.41	ug/L			04/05/21 12:10	1
1,2-Dibromo-3-Chloropropane NE)	1.0	0.39	ug/L			04/05/21 12:10	1
1,2-Dichlorobenzene NE)	1.0	0.79	ug/L			04/05/21 12:10	1
1,2-Dichloroethane 1.0)	1.0	0.21	ug/L			04/05/21 12:10	1
1,2-Dichloropropane NE) - F1 -	1.0	0.72	ug/L			04/05/21 12:10	1
1,3-Dichlorobenzene NE)	1.0	0.78	ug/L			04/05/21 12:10	1
1,4-Dichlorobenzene NE)	1.0	0.84	ug/L			04/05/21 12:10	1
2-Butanone (MEK) NE)	10	1.3	ug/L			04/05/21 12:10	1
2-Hexanone NE)	5.0	1.2	ug/L			04/05/21 12:10	1
4-Methyl-2-pentanone (MIBK) NE)	5.0	2.1	ug/L			04/05/21 12:10	1
Acetone NL	/ →+ F1 / UJ	10	3.0	ug/L			04/05/21 12:10	1
Benzene NE)	1.0	0.41	ug/L			04/05/21 12:10	1
Bromodichloromethane NE)	1.0	0.39	ug/L			04/05/21 12:10	1
Bromoform NE)	1.0	0.26	ug/L			04/05/21 12:10	1
Bromomethane -NE	, UJ	1.0	0.69	ug/L			04/05/21 12:10	1
Carbon disulfide NE)	1.0	0.19	ug/L			04/05/21 12:10	1
Carbon tetrachloride NE)	1.0	0.27	ug/L			04/05/21 12:10	1
Chlorobenzene NE)	1.0	0.75	ug/L			04/05/21 12:10	1
Dibromochloromethane NE)	1.0	0.32	ug/L			04/05/21 12:10	1
Chloroethane 8.3	•	1.0	0.32	ug/L			04/05/21 12:10	1
Chloroform NE)	1.0	0.34	ug/L			04/05/21 12:10	1
Chloromethane NE	- UJ	1.0	0.35	ug/L			04/05/21 12:10	1
cis-1,2-Dichloroethene NE)	1.0	0.81	ug/L			04/05/21 12:10	1
cis-1,3-Dichloropropene NE)	1.0	0.36	ug/L			04/05/21 12:10	1
Cyclohexane NE)	1.0	0.18	ug/L			04/05/21 12:10	1
Dichlorodifluoromethane NE	H- UJ	1.0	0.68	ug/L			04/05/21 12:10	1
Ethylbenzene NE)	1.0	0.74	ug/L			04/05/21 12:10	1
1,2-Dibromoethane NE)	1.0	0.73	ug/L			04/05/21 12:10	1
Isopropylbenzene NE)	1.0	0.79	ug/L			04/05/21 12:10	1
Methyl acetate NE)	2.5	1.3	ug/L			04/05/21 12:10	1
Methyl tert-butyl ether NE) 	1.0	0.16	ug/L			04/05/21 12:10	1
Methylcyclohexane NE)	1.0	0.16	ug/L			04/05/21 12:10	1
Methylene Chloride NE)	1.0	0.44	ug/L			04/05/21 12:10	1
Styrene NE)	1.0	0.73	ug/L			04/05/21 12:10	1
Tetrachloroethene NE)	1.0	0.36	ug/L			04/05/21 12:10	1
Toluene NE)	1.0	0.51	ug/L			04/05/21 12:10	1
trans-1,2-Dichloroethene NE)	1.0	0.90	ug/L			04/05/21 12:10	1
trans-1,3-Dichloropropene NE)	1.0	0.37	ug/L			04/05/21 12:10	1
Trichloroethene 1.3	•	1.0	0.46	ug/L			04/05/21 12:10	1
Trichlorofluoromethane TNE	JUJ	1.0	0.88	ug/L			04/05/21 12:10	1
Vinyl chloride NE	UJ	1.0	0.90	ug/L			04/05/21 12:10	1
Xylenes, Total NE)	2.0	0.66	ug/L			04/05/21 12:10	1

Lab Sample ID: 480-182694-1 Matrix: Water

Eurofins TestAmerica, Buffalo

Lab Sample ID: 480-182694-1 Matrix: Water

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		80 - 120		04/05/21 12:10	1
1,2-Dichloroethane-d4 (Surr)	108		77 - 120		04/05/21 12:10	1
4-Bromofluorobenzene (Surr)	95		73 - 120		04/05/21 12:10	1
Dibromofluoromethane (Surr)	109		75 - 123		04/05/21 12:10	1

Method: 8270D SIM ID - Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	430 E J	19	9.6	ug/L		04/05/21 08:28	04/08/21 01:01	100
Isotope Dilution	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac

QC NONCONFORMANCE DOCUMENTATION

FORM VII GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: <u>480-180429-1</u>						
SDG No.:							
Lab Sample ID: CCVIS 480-567125/3	Calibration Date: 01/25/2021 10:31						
Instrument ID: (HP5975D	Calib Start Date: <u>12/01/2020</u> 15:38						
GC Column: <u>ZB-624 (20)</u> ID: <u>0.18(mm)</u>	Calib End Date: <u>12/01/2020</u> 18:22						
Lab File ID: <u>D41054.D</u>	Conc. Units: ug/L Heated Purge: (Y/N) N						

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Ave	1.502	1.654	0.1000	27.5	25.0	10.2	50.0
Chloromethane	Ave	2.322	2.259	0.1000	24.3	25.0	-2.7	20.0
Vinyl chloride	Ave	1.471	1.524	0.1000	25.9	25.0	3.6	20.0
Butadiene	Ave	1.410	1.590		28.2	25.0	12.8	20.0
Bromomethane	Ave	0.9771	0.8977	0.1000	23.0	25.0	-8.1	50.0
Chloroethane	Ave	0.7927	0.7029	0.1000	22.2	25.0	-11.3	50.0
Trichlorofluoromethane	Ave	1.673	1.965	0.1000	29.4	25.0	17.5	20.0
Dichlorofluoromethane	Ave	1.997	1.980		24.8	25.0	-0.8	20.0
Ethyl ether	Ave	1.280	1.185		23.1	25.0	-7.5	20.0
Acrolein	Ave	0.0621	0.0934		188	125	50.5*	50.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Lin1		1.391	0.1000	26.6	25.0	6.3	20.0
1,1-Dichloroethene	Ave	1.116	1.221	0.1000	27.3	25.0	9.3	20.0
Acetone	Ave	0.5530	0.7586	0.1000	171	125	37.2	50.0
Iodomethane	Ave	2.332	2.505		26.9	25.0	7.4	20.0
Carbon disulfide	Ave	4.120	4.059	0.1000	24.6	25.0	-1.5	20.0
Allyl chloride	Ave	2.989	2.875		24.0	25.0	-3.8	20.0
Methyl acetate	Ave	1.527	1.645	0.1000	53.8	50.0	7.7	50.0
Methylene Chloride	Lin1		1.501	0.1000	24.4	25.0	-2.2	20.0
2-Methyl-2-propanol	Ave	0.1543	0.1919		311	250	24.4	50.0
Methyl tert-butyl ether	Ave	3.560	3.653	0.1000	25.7	25.0	2.6	20.0
trans-1,2-Dichloroethene	Ave	1.297	1.341	0.1000	25.9	25.0	3.4	20.0
Acrylonitrile	Ave	0.6837	0.7520		275	250	10.0	20.0
Hexane	Ave	2.169	2.597		29.9	25.0	19.7	20.0
1,1-Dichloroethane	Ave	2.665	2.759	0.2000	25.9	25.0	3.5	20.0
Vinyl acetate	Ave	4.320	4.840		56.0	50.0	12.1	20.0
2,2-Dichloropropane	Ave	1.444	1.592		27.6	25.0	10.3	20.0
cis-1,2-Dichloroethene	Ave	1.479	1.492	0.1000	25.2	25.0	0.9	20.0
2-Butanone (MEK)	Ave	0.9451	1.196	0.1000	158	125	26.5*	20.0
Chlorobromomethane	Ave	0.8514	0.9018		26.5	25.0	5.9	20.0
Tetrahydrofuran	Ave	0.6621	0.7474		56.4	50.0	12.9	20.0
Chloroform	Ave	2.609	2.605	0.2000	25.0	25.0	-0.2	20.0
1,1,1-Trichloroethane	Ave	1.936	2.203	0.1000	28.5	25.0	13.8	20.0
Cyclohexane	Ave	2.602	3.058	0.1000	29.4	25.0	17.5	20.0
Carbon tetrachloride	Ave	1.745	2.017	0.1000	28.9	25.0	15.6	20.0
1,1-Dichloropropene	Ave	1.710	1.880		27.5	25.0	9.9	20.0
Isobutyl alcohol	Ave	0.0807	0.0979		758	625	21.3	50.0
Benzene	Ave	5.174	5.154	0.5000	24.9	25.0	-0.4	20.0
1,2-Dichloroethane	Ave	2.163	2.296	0.1000	26.5	25.0	6.2	20.0
n-Heptane	Ave	2.931	3.629		31.0	25.0	23.8*	20.0
Trichloroethene	Ave	1.420	1.501	0.2000	26.4	25.0	5.7	20.0

FORM VII GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: <u>480-182694-1</u>						
SDG No.:							
Lab Sample ID: CCVIS 480-574984/3	Calibration Date: 04/05/2021 08:31						
Instrument ID: HP5973S	Calib Start Date: 02/23/2021 14:11						
GC Column: ZB-624 (20) ID: 0.18(mm)	Calib End Date: 02/23/2021 16:52						
Lab File ID: S7445.D	Conc. Units: ug/L Heated Purge: (Y/N) N						
ANALYTE CURVE AVE PRE	PRE MIN PRE CAIC SPIKE SD MAY						

ANALYTE	CURVE	AVE RRF	RRF	MIN RRF	CALC	SPIKE	%D	MAX &D
	LIFE				AMOUNI	AMOUNI		~D
Dichlorodifluoromethane	Ave	1.794	1.112	0.1000	15.5	25.0	-38.0	50.0
Chloromethane	Ave	1.918	1.503	0.1000	19.6	25.0	-21.6*	20.0
Butadiene	Ave	1.915	1.466		19.1	25.0	23.5*	20.0
Vinyl chloride	Ave	1.701	1.315	0.1000	19.3	25.0	-22.7*	20.0
Bromomethane	Ave	1.117	0.8827	0.1000	19.7	25.0	-21.0	50.0
Chloroethane	Ave	1.093	0.8969	0.1000	20.5	25.0	-17.9	50.0
Dichlorofluoromethane	Ave	2.481	2.020		20.4	25.0	-18.6	20.0
Trichlorofluoromethane	Ave	2.421	1.779	0.1000	18.4	25.0	-26.5*	20.0
Ethyl ether	Ave	1.340	1.310		24.4	25.0	-2.2	20.0
Acrolein	Ave	0.1796	0.1202		83.6	125		50.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Ave	1.186	1.087	0.1000	22.9	25.0	-8.4	20.0
1,1-Dichloroethene	Ave	1.089	1.001	0.1000	23.0	25.0	-8.1	20.0
Acetone	Ave	0.4182	0.6039	0.1000	181	125	44.4	50.0
Iodomethane	Ave	2.033	1.901		23.4	25.0	-6.5	20.0
Carbon disulfide	Ave	3.737	3.612	0.1000	24.2	25.0	-3.3	20.0
Allyl chloride	Ave	2.484	2.205		22.2	25.0	-11.2	20.0
Methyl acetate	Ave	1.277	1.164	0.1000	45.6	50.0	-8.9	50.0
Methylene Chloride	Lin1		1.343	0.1000	22.5	25.0	-10.2	20.0
2-Methyl-2-propanol	Ave	0.1313	0.1355		258	250	3.2	50.0
Methyl tert-butyl ether	Ave	3.814	3.709	0.1000	24.3	25.0	-2.8	20.0
trans-1,2-Dichloroethene	Ave	1.397	1.230	0.1000	22.0	25.0	-11.9	20.0
Acrylonitrile	Ave	0.5901	0.6189		262	250	4.9	20.0
Hexane	Ave	2.266	2.192		24.2	25.0	-3.3	20.0
1,1-Dichloroethane	Ave	2.600	2.427	0.2000	23.3	25.0	-6.6	20.0
Vinyl acetate	Ave	3.578	2.727		38.1	50.0	-23.8*	20.0
2,2-Dichloropropane	Ave	1.468	1.277		21.7	25.0	-13.1	20.0
cis-1,2-Dichloroethene	Ave	1.539	1.323	0.1000	21.5	25.0	-14.0	20.0
2-Butanone (MEK)	Ave	0.8073	0.7742	0.1000	120	125	-4.1	20.0
Chlorobromomethane	Ave	0.7809	0.7246		23.2	25.0	-7.2	20.0
Tetrahydrofuran	Ave	0.5982	0.5344		44.7	50.0	-10.7	20.0
Chloroform	Ave	2.689	2.304	0.2000	21.4	25.0	-14.3	20.0
1,1,1-Trichloroethane	Ave	2.157	1.840	0.1000	21.3	25.0	-14.7	20.0
Cyclohexane	Ave	2.725	2.425	0.1000	22.2	25.0	-11.0	20.0
Carbon tetrachloride	Ave	1.867	1.537	0.1000	20.6	25.0	-17.7	20.0
1,1-Dichloropropene	Ave	1.918	1.777		23.2	25.0	-7.4	20.0
Benzene	Ave	5.699	5.176	0.5000	22.7	25.0	-9.2	20.0
Isobutyl alcohol	Ave	0.0537	0.0513		597	625	-4.5	50.0
1,2-Dichloroethane	Ave	2.242	2.038	0.1000	22.7	25.0	-9.1	20.0
n-Heptane	Ave	2.585	2.209		21.4	25.0	-14.5	20.0
Trichloroethene	Ave	1.452	1.246	0.2000	21.4	25.0	-14.2	20.0

QC Sample Results

Client: TRC Environmental Corporation Project/Site: Rando Corp Site - NYS Standby

Prep Type: Total/NA

Client Sample ID: RC-OW-B

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-180429-1 MS

Matrix: Water Analysis Batch: 567125

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloromethane	ND		25.0	27.3		ug/L		109	68 - 124	
cis-1,2-Dichloroethene	ND		25.0	28.3		ug/L		113	74 - 124	
cis-1,3-Dichloropropene	ND		25.0	27.7		ug/L		111	74 - 124	
Cyclohexane	ND		25.0	31.1		ug/L		125	59 - 135	
Dichlorodifluoromethane	ND		25.0	28.1		ug/L		112	59 - 135	
Ethylbenzene	ND		25.0	29.3		ug/L		117	77 - 123	
1,2-Dibromoethane	ND		25.0	28.4		ug/L		114	77 - 120	
lsopropylbenzene	ND		25.0	28.6		ug/L		114	77 - 122	
Methyl acetate	ND		50.0	50.2		ug/L		100	74 - 133	
Methyl tert-butyl ether	ND		25.0	26.7		ug/L		107	77 - 120	
Methylcyclohexane	ND		25.0	30.5		ug/L		122	68 - 134	
Methylene Chloride	ND		25.0	27.1		ug/L		108	75 - 124	
Styrene	ND		25.0	29.4		ug/L		118	80 - 120	
Tetrachloroethene	ND	F1	25.0	31.8	F1	ug/L		127	74 - 122	
Toluene	ND		25.0	28.5		ug/L		114	80 - 122	
trans-1,2-Dichloroethene	ND		25.0	29.3		ug/L		117	73 - 127	
trans-1,3-Dichloropropene	ND		25.0	27.6		ug/L		110	80 - 120	
Trichloroethene	1.8		25.0	31.8		ug/L		120	74 - 123	
Trichlorofluoromethane	ND		25.0	31.3		ug/L		125	62 - 150	
Vinyl chloride	ND		25.0	29.0		ug/L		116	65 - 133	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	99		80 - 120
1,2-Dichloroethane-d4 (Surr)	100		77 - 120
4-Bromofluorobenzene (Surr)	102		73 - 120
Dibromofluoromethane (Surr)	103		75 - 123

Lab Sample ID: 480-180429-1 MSD Matrix: Water Analysis Batch: 567125

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	8.7		25.0	39.5		ug/L		123	73 - 126	2	15
1,1,2,2-Tetrachloroethane	ND		25.0	25.5		ug/L		102	76 - 120	4	15
1,1,2-Trichloroethane	ND		25.0	26.0		ug/L		104	76 - 122	7	15
1,1,2-Trichloro-1,2,2-trifluoroetha ne	ND		25.0	25.7		ug/L		103	61 - 148	9	20
1,1-Dichloroethane	ND		25.0	28.2		ug/L		113	77 - 120	3	20
1,1-Dichloroethene	0.83	J	25.0	31.5		ug/L		123	66 - 127	2	16
1,2,4-Trichlorobenzene	ND		25.0	27.0		ug/L		108	79 - 122	1	20
1,2-Dibromo-3-Chloropropane	ND		25.0	26.6		ug/L		106	56 - 134	3	15
1,2-Dichlorobenzene	ND		25.0	25.8		ug/L		103	80 - 124	5	20
1,2-Dichloroethane	ND		25.0	27.3		ug/L		109	75 - 120	4	20
1,2-Dichloropropane	ND		25.0	26.9		ug/L		108	76 - 120	1	20
1,3-Dichlorobenzene	ND		25.0	26.3		ug/L		105	77 - 120	4	20
1,4-Dichlorobenzene	ND		25.0	26.2		ug/L		105	78 - 124	4	20
2-Butanone (MEK)	ND		125	138		ug/L		111	57 - 140	3	20
2-Hexanone	ND		125	137		ug/L		110	65 - 127	4	15
4-Methyl-2-pentanone (MIBK)	ND		125	133		ug/L		107	71 - 125	5	35

Client Sample ID: RC-OW-B Prep Type: Total/NA

Eurofins TestAmerica, Buffalo

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-574984/32

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: B-206-OW-C

Prep Type: Total/NA

Matrix: Water Analysis Batch: 574984

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methylene Chloride	25.0	24.3		ug/L		97	75 - 124	
Styrene	25.0	25.4		ug/L		102	80 - 120	
Tetrachloroethene	25.0	25.1		ug/L		100	74 - 122	
Toluene	25.0	24.9		ug/L		100	80 - 122	
trans-1,2-Dichloroethene	25.0	25.1		ug/L		100	73 - 127	
trans-1,3-Dichloropropene	25.0	23.3		ug/L		93	80 - 120	
Trichloroethene	25.0	24.4		ug/L		98	74 - 123	
Trichlorofluoromethane	25.0	21.2		ug/L		85	62 - 150	
Vinyl chloride	25.0	21.6		ug/L		86	65 - 133	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	103		80 - 120
1,2-Dichloroethane-d4 (Surr)	105		77 - 120
4-Bromofluorobenzene (Surr)	101		73 - 120
Dibromofluoromethane (Surr)	102		75 - 123

Lab Sample ID: 480-182694-1 MS Matrix: Water Analysis Batch: 574984

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	ND		25.0	30.1		ug/L		120	73 - 126
1,1,2,2-Tetrachloroethane	ND		25.0	28.5		ug/L		114	76 - 120
1,1,2-Trichloroethane	ND		25.0	28.3		ug/L		113	76 - 122
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		25.0	29.6		ug/L		118	61 - 148
ne									
1,1-Dichloroethane	10	F1	25.0	41.6	F1	ug/L		125	77 - 120
1,1-Dichloroethene	9.9	F1	25.0	40.6		ug/L		123	66 - 127
1,2,4-Trichlorobenzene	ND		25.0	27.6		ug/L		110	79 - 122
1,2-Dibromo-3-Chloropropane	ND		25.0	29.9		ug/L		120	56 - 134
1,2-Dichlorobenzene	ND		25.0	28.1		ug/L		112	80 - 124
1,2-Dichloroethane	1.0		25.0	30.1		ug/L		116	75 - 120
1,2-Dichloropropane	ND	F1	25.0	30.4	F1	ug/L		122	76 - 120
1,3-Dichlorobenzene	ND		25.0	27.8		ug/L		111	77 - 120
1,4-Dichlorobenzene	ND		25.0	27.3		ug/L		109	78 - 124
2-Butanone (MEK)	ND		125	154		ug/L		123	57 _ 140
2-Hexanone	ND		125	155		ug/L		124	65 - 127
4-Methyl-2-pentanone (MIBK)	ND		125	155		ug/L		124	71 - 125
Acetone	ND	*+ F1	125	197	F1	ug/L		157	56 - 142
Benzene	ND		25.0	30.6		ug/L		122	71 - 124
Bromodichloromethane	ND		25.0	30.4		ug/L		121	80 - 122
Bromoform	ND		25.0	24.3		ug/L		97	61 - 132
Bromomethane	ND		25.0	26.5		ug/L		106	55 - 144
Carbon disulfide	ND		25.0	32.7		ug/L		131	59 - 134
Carbon tetrachloride	ND		25.0	27.2		ug/L		109	72 - 134
Chlorobenzene	ND		25.0	28.5		ug/L		114	80 - 120
Dibromochloromethane	ND		25.0	28.5		ug/L		114	75 - 125
Chloroethane	8.3		25.0	35.8		ug/L		110	69 - 136
Chloroform	ND		25.0	28.5		ug/L		114	73 - 127

Eurofins TestAmerica, Buffalo

QC Sample Results

Client: TRC Environmental Corporation Project/Site: Rando Corp Site - NYS Standby

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-182694-1 MS

Matrix: Water Analysis Batch: 574984

· · · · · , · · · · · · · · · · · · · · · · · · ·	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloromethane	ND		25.0	23.3		ug/L		93	68 - 124	
cis-1,2-Dichloroethene	ND		25.0	29.7		ug/L		119	74 - 124	
cis-1,3-Dichloropropene	ND		25.0	25.7		ug/L		103	74 - 124	
Cyclohexane	ND		25.0	28.9		ug/L		116	59 - 135	
Dichlorodifluoromethane	ND		25.0	20.1		ug/L		80	59 - 135	
Ethylbenzene	ND		25.0	27.9		ug/L		112	77 - 123	
1,2-Dibromoethane	ND		25.0	27.6		ug/L		110	77 - 120	
Isopropylbenzene	ND		25.0	28.5		ug/L		114	77 - 122	
Methyl acetate	ND		50.0	59.3		ug/L		119	74 - 133	
Methyl tert-butyl ether	ND	F1	25.0	31.4	F1	ug/L		126	77 - 120	
Methylcyclohexane	ND		25.0	26.4		ug/L		106	68 - 134	
Methylene Chloride	ND		25.0	29.3		ug/L		117	75 - 124	
Styrene	ND		25.0	27.2		ug/L		109	80 - 120	
Tetrachloroethene	ND		25.0	28.5		ug/L		114	74 - 122	
Toluene	ND		25.0	29.0		ug/L		116	80 - 122	
trans-1,2-Dichloroethene	ND		25.0	29.7		ug/L		119	73 - 127	
trans-1,3-Dichloropropene	ND		25.0	26.1		ug/L		105	80 - 120	
Trichloroethene	1.3		25.0	30.4		ug/L		116	74 - 123	
Trichlorofluoromethane	ND		25.0	25.7		ug/L		103	62 - 150	
Vinyl chloride	ND		25.0	27.5		ug/L		110	65 - 133	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	101		80 - 120
1,2-Dichloroethane-d4 (Surr)	105		77 - 120
4-Bromofluorobenzene (Surr)	99		73 - 120
Dibromofluoromethane (Surr)	104		75 - 123

Lab Sample ID: 480-182694-1 MSD Matrix: Water Analysis Batch: 574984

A maryone Batom of Hoot											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	ND		25.0	30.2		ug/L		121	73 - 126	0	15
1,1,2,2-Tetrachloroethane	ND		25.0	28.3		ug/L		113	76 - 120	1	15
1,1,2-Trichloroethane	ND		25.0	29.1		ug/L		117	76 - 122	3	15
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		25.0	29.8		ug/L		119	61 - 148	1	20
ne											
1,1-Dichloroethane	10	F1	25.0	40.8	F1	ug/L		122	77 - 120	2	20
1,1-Dichloroethene	9.9	F1	25.0	42.0	F1	ug/L		128	66 - 127	3	16
1,2,4-Trichlorobenzene	ND		25.0	28.3		ug/L		113	79 - 122	2	20
1,2-Dibromo-3-Chloropropane	ND		25.0	29.5		ug/L		118	56 - 134	1	15
1,2-Dichlorobenzene	ND		25.0	28.2		ug/L		113	80 - 124	0	20
1,2-Dichloroethane	1.0		25.0	31.0		ug/L		120	75 - 120	3	20
1,2-Dichloropropane	ND	F1	25.0	30.7	F1	ug/L		123	76 - 120	1	20
1,3-Dichlorobenzene	ND		25.0	27.1		ug/L		108	77 - 120	2	20
1,4-Dichlorobenzene	ND		25.0	26.5		ug/L		106	78 - 124	3	20
2-Butanone (MEK)	ND		125	153		ug/L		122	57 - 140	1	20
2-Hexanone	ND		125	152		ug/L		122	65 - 127	2	15
4-Methyl-2-pentanone (MIBK)	ND		125	156		ug/L		125	71 - 125	1	35

Eurofins TestAmerica, Buffalo

Client Sample ID: B-206-OW-C Prep Type: Total/NA

Client Sample ID: B-206-OW-C Prep Type: Total/NA

QC Sample Results

Client: TRC Environmental Corporation Project/Site: Rando Corp Site - NYS Standby

Prep Type: Total/NA

Client Sample ID: B-206-OW-C

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-182694-1 MSD

Matrix: Water

Analysis Batch: 574984	Sampla	Sampla	Spika	Med	Men				% Boo		חחם
Analyte	Result	Sample Qualifier	Spike	Result	Qualifier	Unit	р	%Rec	%Rec.	RPD	l imit
Acetone		*+ F1	125	200	F1	ua/L		160	56 - 142	2	15
Benzene	ND		25.0	30.2		ua/L		121	71 - 124	1	13
Bromodichloromethane	ND		25.0	30.6		ug/L		122	80 - 122	1	15
Bromoform	ND		25.0	24.5		ug/L		98	61 - 132	1	15
Bromomethane	ND		25.0	27.6		ug/L		110	55 - 144	4	15
Carbon disulfide	ND		25.0	32.0		ug/L		128	59 - 134	2	15
Carbon tetrachloride	ND		25.0	27.6		ug/L		110	72 - 134	2	15
Chlorobenzene	ND		25.0	28.4		ug/L		114	80 - 120	0	25
Dibromochloromethane	ND		25.0	29.2		ug/L		117	75 - 125	3	15
Chloroethane	8.3		25.0	36.9		ug/L		115	69 - 136	3	15
Chloroform	ND		25.0	28.3		ug/L		113	73 - 127	0	20
Chloromethane	ND		25.0	24.4		ug/L		98	68 - 124	5	15
cis-1,2-Dichloroethene	ND		25.0	29.7		ug/L		119	74 - 124	0	15
cis-1,3-Dichloropropene	ND		25.0	26.4		ug/L		106	74 - 124	3	15
Cyclohexane	ND		25.0	28.8		ug/L		115	59 - 135	0	20
Dichlorodifluoromethane	ND		25.0	22.0		ug/L		88	59 - 135	9	20
Ethylbenzene	ND		25.0	28.3		ug/L		113	77 - 123	1	15
1,2-Dibromoethane	ND		25.0	28.8		ug/L		115	77 - 120	4	15
lsopropylbenzene	ND		25.0	28.5		ug/L		114	77 - 122	0	20
Methyl acetate	ND		50.0	60.0		ug/L		120	74 - 133	1	20
Methyl tert-butyl ether	ND	F1	25.0	32.0	F1	ug/L		128	77 - 120	2	37
Methylcyclohexane	ND		25.0	26.9		ug/L		107	68 - 134	2	20
Methylene Chloride	ND		25.0	29.7		ug/L		119	75 - 124	2	15
Styrene	ND		25.0	27.1		ug/L		108	80 - 120	0	20
Tetrachloroethene	ND		25.0	29.2		ug/L		117	74 - 122	2	20
Toluene	ND		25.0	29.3		ug/L		117	80 - 122	1	15
trans-1,2-Dichloroethene	ND		25.0	29.9		ug/L		120	73 - 127	1	20
trans-1,3-Dichloropropene	ND		25.0	26.3		ug/L		105	80 - 120	1	15
Trichloroethene	1.3		25.0	30.0		ug/L		114	74 - 123	1	16
Trichlorofluoromethane	ND		25.0	26.3		ug/L		105	62 - 150	2	20
Vinyl chloride	ND		25.0	29.1		ug/L		116	65 - 133	6	15
	MSD	MSD									
Surrogate	%Recoverv	Qualifier	Limits								
Toluene-d8 (Surr)	103		80 - 120								
1.2-Dichloroethane-d4 (Surr)	107		77 - 120								
4-Bromofluorobenzene (Surr)	97		73 - 120								
Dibromofluoromethane (Surr)	106		75 - 123								

Method: 8270D SIM ID - Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)

Lab Sample ID: MB 480-575017/1 Matrix: Water Analysis Batch: 575272	-A						Client Samp	le ID: Method Blank Prep Type: Total/NA Prep Batch: 575017		
	MB	MB								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
1,4-Dioxane	ND		0.20	0.10	ug/L		04/05/21 08:28	04/06/21 15:20	1	
	MB	MB								
Isotope Dilution %	Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
1,4-Dioxane-d8	31		15 - 110				04/05/21 08:28	04/06/21 15:20	1	

Eurofins TestAmerica, Buffalo

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-574984/7 Matrix: Water

Analysis Batch: 574984

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		80 - 120		04/05/21 10:04	1
1,2-Dichloroethane-d4 (Surr)	105		77 - 120		04/05/21 10:04	1
4-Bromofluorobenzene (Surr)	97		73 - 120		04/05/21 10:04	1
Dibromofluoromethane (Surr)	107		75 - 123		04/05/21 10:04	1

Lab Sample ID: LCS 480-574984/32 Matrix: Water Analysis Batch: 574984

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	25.0	24.3		ug/L		97	73 - 126	
1,1,2,2-Tetrachloroethane	25.0	23.2		ug/L		93	76 - 120	
1,1,2-Trichloroethane	25.0	24.1		ug/L		96	76 - 122	
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	25.3		ug/L		101	61 - 148	
ne								
1,1-Dichloroethane	25.0	25.4		ug/L		102	77 - 120	
1,1-Dichloroethene	25.0	25.1		ug/L		100	66 - 127	
1,2,4-Trichlorobenzene	25.0	25.4		ug/L		102	79 - 122	
1,2-Dibromo-3-Chloropropane	25.0	24.2		ug/L		97	56 - 134	
1,2-Dichlorobenzene	25.0	24.3		ug/L		97	80 - 124	
1,2-Dichloroethane	25.0	24.9		ug/L		100	75 - 120	
1,2-Dichloropropane	25.0	24.8		ug/L		99	76 - 120	
1,3-Dichlorobenzene	25.0	23.9		ug/L		96	77 - 120	
1,4-Dichlorobenzene	25.0	23.7		ug/L		95	80 - 120	
2-Butanone (MEK)	125	132		ug/L		105	57 - 140	
2-Hexanone	125	134		ug/L		107	65 - 127	
4-Methyl-2-pentanone (MIBK)	125	128		ug/L		102	71 - 125	
Acetone	125	194	*+	ug/L		155	56 - 142	
Benzene	25.0	24.9		ug/L		100	71 - 124	
Bromodichloromethane	25.0	26.4		ug/L		106	80 - 122	
Bromoform	25.0	25.2		ug/L		101	61 - 132	
Bromomethane	25.0	21.5		ug/L		86	55 - 144	
Carbon disulfide	25.0	27.6		ug/L		110	59 - 134	
Carbon tetrachloride	25.0	22.9		ug/L		92	72 - 134	
Chlorobenzene	25.0	24.3		ug/L		97	80 - 120	
Dibromochloromethane	25.0	27.1		ug/L		108	75 - 125	
Chloroethane	25.0	22.6		ug/L		90	69 - 136	
Chloroform	25.0	23.5		ug/L		94	73 - 127	
Chloromethane	25.0	20.4		ug/L		82	68 - 124	
cis-1,2-Dichloroethene	25.0	24.4		ug/L		98	74 - 124	
cis-1,3-Dichloropropene	25.0	23.5		ug/L		94	74 - 124	
Cyclohexane	25.0	24.7		ug/L		99	59 - 135	
Dichlorodifluoromethane	25.0	16.5		ug/L		66	59 - 135	
Ethylbenzene	25.0	25.0		ug/L		100	77 - 123	
1,2-Dibromoethane	25.0	24.2		ug/L		97	77 - 120	
Isopropylbenzene	25.0	24.6		ug/L		98	77 - 122	
Methyl acetate	50.0	50.1		ug/L		100	74 - 133	
Methyl tert-butyl ether	25.0	26.5		ug/L		106	77 - 120	
Methylcyclohexane	25.0	23.7		ug/L		95	68 - 134	

Eurofins TestAmerica, Buffalo

APPENDIX B

DATE: Wednesday, January 20, 2021

REPORT NO. 20210120

PAGE NO. 1 OF 2

PROJECT NO. 413002.0000.0000

LOGBOOK NO. -- PAGES -- to --

DAILY FIELD ACTIVITY REPORT

WIND WIND PRECIP. PROJECT Rando Machine Corporation Site WEATHER TIME ТЕМР. (MPH) (DIR) LOCATION Macedon, New York 10:45 16-22 NW Clear 26°F Lt. Snow ATTACHMENTS Photo Log SITE CONDITIONS: Mostly Cloudy WORK GOAL FOR DAY: Site inspection and groundwater sampling **PERSONNEL ON SITE:** NAME AFFILIATION ARRIVAL TIME DEPART TIME TRC Engineers, Inc. 10:30 Josh Yaeger 15:00 Caitlin Serowik 10:30 TRC Engineers, Inc. 15:00 Scott Cook NYSDEC 11:00 15:00 **EQUIPMENT ON SITE:** TYPE MODEL TYPE MODEL PID MiniRAE 3000 Not Applicable Not Applicable Landfill Gas Meter GEM 2000 Plus Oil/Water Interface Probe Heron YSI Pro DSS Peristaltic Pump Geotech **HEALTH & SAFETY:** LEVEL D \Box LEVEL C LEVEL B LEVEL A **PPE REQUIRED:** HASP? YES SITE SAFETY OFFICER: Steve Johansson H & S NOTES: Site work performed in Level D PPE

DATE: Wednesday, January 20, 2021 REPORT NO. 20210120 PAGE NO. 2 OF 2 PROJECT NO. 413002.0000.0000

DAILY FIELD ACTIVITY REPORT

DESCRIPTION OF WORK PERFORMED AND OBSERVED

TRC Engineers, Inc. (TRC) conducted a quarterly site inspection, landfill gas monitoring event, annual groundwater gauging, and groundwater sampling on Wednesday, January 20, 2021 at the Rando Machine Corporation Site (Site). The Site is located in a suburban portion of Wayne County on Route 31, in the Town of Macedon, NY. A site inspection was performed to document the conditions of the facility's internal slab, drainage swales, groundwater monitoring wells, access roads, and fence lines.

TRC conducted a site walk and initial inspection while conducting the groundwater gauging event. All Site wells were in fair condition, with the exception of B206-OW-C. Monitoring well B206-OW-C was struck and sheered at the base so it could not be gauged or sampled. It was also noted the hinge on B103-OW-A is damaged (see attached photolog). All locks to onsite monitoring wells were replaced with Masterlock® locks coded 2537.

The site inspection involved walking the perimeter of the building and surrounding parking lot. The surrounding lot was stable with no visible erosion, cracks, settlement or seeps. The asphalt appeared intact and in fine condition. The drainage swales and channels did not contain any water. The drainage swales and channels appear to be in good condition do not contain any obstructions which could potentially prohibit stormwater flow.

The building's slab was not evaluated or investigated, as access to the inside of the facility was not possible due to lack of utilities (i.e. electricity) according to the NYSDEC onsite representative.

The ground surface vicinity for the monitoring wells appeared to be in good condition without any evidence of settlement. No animal borrows, or voids, were observed around the wells, and no gas odors or issues related to vapor accumulation were observed during the site inspection.

TRC collected groundwater samples from two of the three accessible Site monitoring wells, B206-OW-B and B103-OW-A. The groundwater samples were submitted to TestAmerica/Eurofins Laboratories, Inc. for analysis of Target Compound List (TCL) Volatile Organic Compounds (VOCs) via EPA method 8260 and 1,4-Dioxane via EPA method 8270. Overall, the first quarter inspection showed the Site to be in good condition, although the interior facility is still unknown. The Site's grading and drainage system appear to be functioning as intended. TRC recommends repairs be made to both damaged wells onsite.

PREPARED BY (OBSERVER):	REVIEWED BY:
PRINT NAME: Josh Yaeger	PRINT NAME: Caitlin Serowik

NYSDEC Rando Machine Corporation Site Photograph Log Date: January 20, 2021

Photo 1: View of the sheered well riser to B206-OW-C.

Photo 2: Zoomed in view of the grade level portion remaining for well B206-OW-C.

Photo 3: Looking southwest at monitoring wells B206-OW-B and B206-OW-C.

Photo 4: Looking south along the fence line at monitoring well B103-OW-A.

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:	
413002.0000 .0000	Josh Yaeger	1 of 3	NYSDEC	Rando Machine Corp Site Macedon, NY	STRC

NYSDEC Rando Machine Corporation Site Photograph Log Date: January 20, 2021

Photo 5: Looking southwest at monitoring well B103-OW-A and piezometer PZ-103.

Photo 6: Looking west, view of the eastern portion of the site containing the sampled monitoring wells.

Photo 7: Looking southeast at a commercial vehicle left within the parking lot, assumed abandoned.

Photo 8: Zoomed in view of the license plate to the abandoned commercial vehicle.

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:	
413002.0000	Josh Yaeger	2 of 3	NYSDEC	Rando Machine Corp Site Macedon, NY	STRC

NYSDEC Rando Machine Corporation Site Photograph Log Date: January 20, 2021

Photo 9: Looking northeast view of the eastern face of the building and loading dock.

Photo 10: View of monitoring well B103-OW-A, the riser cap has been damaged.

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:	
413002.0000 .0000	Josh Yaeger	3 of 3	NYSDEC	Rando Machine Corp Site Macedon, NY	STRC 😯

DATE: Tuesday, March 30, 2021

REPORT NO. 20210330

PAGE NO. 1 OF 2

PROJECT NO. 413002.0000.0000

LOGBOOK NO. -- PAGES -- to --

DAILY FIELD ACTIVITY REPORT

WIND WIND PROJECT Rando Machine Corporation Site PRECIP. WEATHER TIME ТЕМР. (MPH) (DIR) **LOCATION** Macedon, New York Partly Cloudy 14:15 69°F 0% 16-27 From S ATTACHMENTS Photo Log SITE CONDITIONS: Mostly Cloudy WORK GOAL FOR DAY: Site inspection and groundwater sampling **PERSONNEL ON SITE:** NAME AFFILIATION ARRIVAL TIME DEPART TIME Josh Yaeger TRC Engineers, Inc. 14:00 15:00 Nick Gier 14:00 TRC Engineers, Inc. 16:15 **EQUIPMENT ON SITE:** TYPE MODEL TYPE MODEL MiniRAE 3000 PID Oil/Water Interface Probe Heron Pro DSS YSI Peristaltic Pump Geotech **HEALTH & SAFETY:** LEVEL D LEVEL C LEVEL B LEVEL A **PPE REQUIRED:** HASP? YES SITE SAFETY OFFICER: Steve Johansson H & S NOTES: Site work performed in Level D PPE

DATE: Tuesday, March 30, 2021 REPORT NO. 20210330 PAGE NO. 2 OF 2 PROJECT NO. 413002.0000.0000

DAILY FIELD ACTIVITY REPORT

DESCRIPTION OF WORK PERFORMED AND OBSERVED

TRC Engineers, Inc. (TRC) conducted a supplemental site inspection to the quarterly done back in January in order to perform an annual groundwater gauging, and groundwater sampling event for monitoring well B206-OW-C on Tuesday, March 30, 2021 at the Rando Machine Corporation Site (Site). The Site is located in a suburban portion of Wayne County on Route 31, just west of the Village of Macedon in the Town of Macedon, NY. A site visit was performed to document the inspection of groundwater monitoring well B206-OW-C while ensuring all other control implementations remained unchanged since January.

TRC conducted a quick site walk, visual inspection and gauged monitoring well B206-OW-C. All Site wells were still in fair condition, with the exception of B206-OW-C's riser and B103-OW-A's damaged hinge as mentioned in the previous field report.

The site inspection involved walking the perimeter of the building and surrounding parking lot. The surrounding lot was stable with no visible erosion, cracks, settlement or seeps. The asphalt appeared intact and in fine condition. The drainage swales and channels did not contain any water. The drainage swales and channels appear to be in good condition do not contain any obstructions which could potentially prohibit stormwater flow.

The ground surface vicinity for the monitoring wells appeared to be in good condition without any evidence of settlement. No animal borrows, or voids, were observed around the wells, and no gas odors or issues related to vapor accumulation were observed during the site inspection.

TRC collected groundwater samples from monitoring well B206-OW-C. The groundwater samples were submitted to TestAmerica/Eurofins Laboratories, Inc. for analysis of Target Compound List (TCL) Volatile Organic Compounds (VOCs) via EPA method 8260 and 1,4-Dioxane via EPA method 8270. Overall, the first quarter inspection showed the Site to be in good condition, although the interior facility is still unknown. The Site's grading and drainage system appear to be functioning as intended. TRC recommends repairs be made to both damaged wells onsite.

PREPARED BY (OBSERVER):	REVIEWED BY:
PRINT NAME: Josh Yaeger	PRINT NAME: Nick Gier

NYSDEC Rando Machine Corporation Site Photograph Log Date: March 30, 2021

Photo 1: View of the sheered well riser to B206-OW-C.

Photo 2: Zoomed in view of the grade level portion remaining for well B206-OW-C.

Photo 3: Looking northwest at monitoring well B206-OW-C.

Photo 4: Looking west along the building's north side at the access road entrance to the parking lot.

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:	
413002.0000 .0000	Josh Yaeger	1 of 1	NYSDEC	Rando Machine Corp Site Macedon, NY	STRC

			LOW	FLOW GR	OUNDWA	TER SAMPI	LING RE	CORD		
	PROJECT NAME	E	Rando Machine Corp		LO	CATION ID		DATE		
	PROJECT NUME	BER	413002		ST	B103-OW-	-A	1. END TIME	/20/2021	
	SAMPLE ID		SAM	PLE TIME	sn	13:10 *	2	PAGE	14:25	
		RC-OW-A		14:30		859014		1	OF 3	
WELL DIAN	METER (INCHES)	1 X	2 4	6	8	OTHER			- CAP	WELL INTEGRITY YES NO N/A
TUBING ID	(INCHES)	1/8	1/4 3/8	1/2	5/8	OTHER			CASING	
MEASUREM	MENT POINT (MP)	TOP OF	RISER (TOR)	TOP OF CASI	NG (TOC)	OTHER			COLLAR	\equiv \equiv \equiv
INITIAL (BMP)	DTW 17	7.16 FT	FINAL DTW (BMP)	17.20	FT ST	OT. CASING ICKUP (AGS)		FT	TOC/TOR DIFFERENCE	E FT
WELL DI (BMP)	ЕРТН 3:	5.52 FT	SCREEN LENGTH		FT AN) 1BIENT AIR	0.0	PPM	REFILL TIMI SETTING	ER
WATER COLUM	N	FT	DRAWDOWN VOLUME		GAL MO	D WELL DUTH	0.0	PPM	DISCHARGE TIMER SETT	ING SEC
CALCUL	ATED		(final DTW - initial D' TOTAL VOL.	FW X well diam. squa	ared X 0.041) DR	AWDOWN/	[PRESSURE	
GAL/VOI (column X	L Well diameter square	GAL ed X 0.041)	PURGED (mL per minute X tota	1 minutes X 0.00026	GAL TO gal/mL)	TAL PURGED			TO PUMP	PSI
FIELD PA	RAMETERS WITH	I PROGRAM STA	BILIZATION CRITE	RIA (AS LISTED I	N THE QAPP)	1				
TIME 3-5 Minutes	DTW (FT) 0.0-0.33 ft Drawdown	PURGE RATE (mL/min)	TEMP. (°C) (+/- 3 degrees)	SP. CONDUCTANO (mS/cm) (+/- 3%)	CE pH (units) (+/- 0.1 units)	DISS. O ₂ (mg/L) (+/- 10%)	TURBIDITY (+/- 10% <10	(ntu) REDOX (+/- 10	(mv) mv) PUMP INTAKE DEPTH (ft)	COMMENTS
13:55	BEGIN PUR	GING		× /		1	1	!		
14:05	17.21	250	5.68	0.574	9.32	0	2.9	123		
14:15	17.20	250	6.26	0.572	9.20	0	3.1	124		
14:20	17.20	250	6.31	0.572	9.41	0	3.0	124		
14:25	17.20	250	6.36	0.573	9.42	0	2.7	125		
									TEMD - nonrost do	area (ar. 10.1 = 10)
	FI	NAL STABILIZ	LED FIELD PARA	METERS (to ap	propriate sign	ificant figures[SI	F])		COND.: 3 SF max pH: nearest tenth (c	$\begin{array}{l} (ex. 3333 = 3330, 0.696 = 0.696) \\ ex. 5.53 = 5.5) \\ ex. 2.51 = 2.52 \end{array}$
			6	0.573	9.4	0	2.7	125	TURB: 3 SF max, r ORP: 2 SF (44.1 =	hearest tenth $(6.19 = 6.2, 101 = 101)$ 44, 191 = 190)
EQUIPMENT	TYPE OF PUMP	UN <u>DI</u>	ECON FLUIDS USED		TUBING/F	UMP/BLADDER MAT	ERIALS			EQUIPMENT USED
X PERIS SUBM	STALTIC MERSIBLE		IQUINOX DEIONIZED WATER	X SILICO TEFLO	N TUBING N TUBING	S. STE PVC P	EEL PUMP MAT	ERIAL L	WL ME PID	TER Heron MiniRae 3000
BLAD	DDER	E F	POTABLE WATER	TEFLON	N LINED TUBING	GEOP	ROBE SCREEN		WQ ME	METER VSL Pro DSS
WAT	TERA	F	IEXANE	LDPE T	UBING	OTHE	R		PUMP	METER ISTRICTOS
OTHE OTHE	ER.		METHANOL OTHER	OTHER		- OTHE OTHE	RR		OTHER FILTER	<u>s</u> No. TYPE
ANALYTI	CAL PARAMETER	RS	METHOD		DDESE	RVATION V	OLUME	SAMDI E		SAMDLE DOTTLE ID
	PARAMI	ETER	NUMBER	FILTERE	D ME	THOD RE	QUIRED	COLLECTED	COLLECTED	NUMBERS
X	See Chain of Custo	dy								
									<u> </u>	
PURGE OF	BSERVATIONS					SKETCH/NOTES				
PURGE WA	ATER YE	s NO	NUMBER OF GALL	ONS	*	Tubing was freezing	g due to ambien	t conditions; tro	ubleshooting solutions	took until 13:55.
CONTAINE NO-PURCE	EKIZED		GENERATED	tely 1 etanding volum	prior					
UTILIZED			to sampling or	mL for this sample lo	ocation.					
Sampler Sig	gnature:		Print Name Ca	itlin Serowik						
Checked By	7: Josh Yaeger		Date: 1/20/	2021						
			1/20/	*	I			LOY		INWATED CAMPING DECORD
								LUV	10 Maxw	vell Drive, Suite 200, Clifton Park, NY 12065

			LOW	FLOW GRO	JUNDWA	TER SAMPI	LING KE	CORD			
	PROJECT NAME	E	Rando Machine Corp		LO	CATION ID		DATE	1/20/20		1
	PROJECT NUME	BER	413002		STA	ART TIME 11:35	·B	END TIM	1/20/20 E 12:04	5	
	SAMPLE ID		SAM	PLE TIME	SIT	E NAME/NUMBER	2	PAGE	12.0.	,	
		RC-OW-B		12:15		859014		2	OF	3	
WELL DIAN	METER (INCHES)	1 X	2 4	6	8	OTHER				CAP	YES NO N/A
TUBING ID	(INCHES)	1/8	1/4 3/8	1/2	5/8	OTHER				CASING	
MEASUREN	MENT POINT (MP)	TOP OF	RISER (TOR)	TOP OF CASIN	NG (TOC)	OTHER				COLLAR	= $=$ $=$
INITIAL (BMP)	DTW 1	9.52 FT	FINAL DTW (BMP)	19.66	FT STI	OT. CASING CKUP (AGS)		FT		TOC/TOR DIFFERENCI	E FT
WELL D (BMP)	EPTH 5	8.91 FT	SCREEN LENGTH		FT AM) IBIENT AIR	0.0	PPM		REFILL TIMI SETTING	ER
WATER COLUM	N	FT	DRAWDOWN VOLUME		GAL MO) WELL DUTH	0.0	PPM		DISCHARGE TIMER SETT	ING SEC
CALCUL	ATED		(final DTW - initial DT TOTAL VOL.	W X well diam. squa	DR	AWDOWN/				PRESSURE	
GAL/VO (column X	L K well diameter square	GAL ed X 0.041)	PURGED (mL per minute X tota	l minutes X 0.00026 g	GAL TO gal/mL)	TAL PURGED	L			ТО РИМР	PSI
FIELD PA	RAMETERS WITH DTW (FT)	I PROGRAM STA	BILIZATION CRITE	RIA (AS LISTED I SP. CONDUCTANC	N THE QAPP)		TUDDIDITY		$\partial \mathbf{Y}(\cdot)$	PUMP	
3-5 Minutes	0.0-0.33 ft Drawdown	(mL/min)	TEMP. (*C) (+/- 3 degrees)	(mS/cm) (+/- 3%)	(+/- 0.1 units)	DISS. 0 ₂ (mg/L) (+/- 10%)	(+/- 10% <10	(ntu) REDO (+/-	JX (mv) 10 mv)	INTAKE DEPTH (ft)	COMMENTS
11:35	BEGIN PUR	GING	1			T	1				1
11:45	19.68	250	8.94	0.563	9.20	0	9.2		120		
11:55	19.66	250	7.52	0.525	8.83	0	7.0		127		
12:00	19.66	250	7.11	0.510	8.66	0	3.6		130		
	F	NAL STABILIZ	ED FIELD PARA	METERS (to an	nronriate sign	 				TEMP.: nearest deg	gree (ex. 10.1 = 10) (ex. 3333 = 3330, 0.696 = 0.696)
			7	0.510	8.7	0	3.6	1	134	pH: nearest tenth (e DO: nearest tenth (e TURB: 3 SF max, r	(x, 5.53 = 5.5) ex. $(3.51 = 3.5)$ nearest tenth $(6.19 = 6.2, 101 = 101)$
EQUIPMENT	DOCUMENTATI	ON	1	0.510	0.7	U	5.0		134	ORP: 2 SF (44.1 =	44, 191 = 190)
	TYPE OF PUMP		ECON FLUIDS USED	V SILICON	TUBING/P	UMP/BLADDER MAT	ERIALS	EDIAL		WI ME	EQUIPMENT USED
SUBN	MERSIBLE		DEIONIZED WATER	TEFLON	TUBING	PVC P	UMP MATERIA	L		PID	MiniRae 3000
BLAI	DDER	F P	OTABLE WATER	X HDPE T	N LINED TUBING UBING	GEOP	ROBE SCREEN ON BLADDER			TURB.	METER YSI Pro DSS
WAT OTHE	TERA FR	H	IEXANE METHANOL	LDPE TU OTHER	UBING	OTHE	R		_	PUMP OTHER	
OTHI	ER		OTHER	OTHER		OTHE	R			FILTER	<u>S</u> NO TYPE
ANALYTI	CAL PARAMETEI PARAMI	RS ETER	METHOD NUMBER	FIELD FILTERE	PRESEF D MET	RVATION VO	OLUME QUIRED	SAMPLI COLLECT	e E D	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS
х	See Chain of Custo	dy									
									<u> </u>		
PURGE OI	BSERVATIONS					SKETCH/NOTES					<u> </u>
PURGE WA	ATER YE ERIZED	s NO	NUMBER OF GALLO GENERATED	ONS							
NO-PURGE UTILIZED	E METHOD YE	s NO	If yes, purged approxima to sampling or	tely 1 standing volume p mL for this sample lo	prior ocation.						
Second C'	matura		Print Norra Cal	tlin Serowik							
Charles I D	gnature.		Data 1000	0021							
Checked By	7: Josh Yaeger		Date: 1/20/2	2021							
Y .		•							JW FL	OW GROUN 10 Maxw	VDWATER SAMPLING RECORD rell Drive, Suite 200, Clifton Park, NY 1206

			LOW	FLOW GRU	JUNDWA	I ER SAMPI	LING RE	CORD			
	PROJECT NAME	E	Rando Machine Corp		LO	CATION ID		DATE	2/20/20	21	
	PROJECT NUME	BER	413002		STA	B206-OW- ART TIME 14-15		END TIME	3/30/20	3	
	SAMPLE ID		SAM	PLE TIME	SIT	E NAME/NUMBER	2	PAGE	15.55	,	
		B206-OW-C		15:35		859014		3	OF	3	
WELL DIAN	METER (INCHES)	1 X	2 4	6	8	OTHER			_	CAP	YES NO N/A
TUBING ID	(INCHES)	1/8 X	1/4 3/8	1/2	5/8	OTHER			_	CASING	= $=$ $=$
MEASUREM	MENT POINT (MP)	TOP OF	RISER (TOR)	TOP OF CASIN	IG (TOC)	OTHER			_	COLLAR	= $=$ $=$
INITIAL (BMP)	DTW 1	7.1 FT	FINAL DTW (BMP)	19.7	FT STI	DT. CASING CKUP (AGS)	0	FT	, 1	TOC/TOR DIFFERENCI	FT
WELL D (BMP)	ЕРТН 2	4.1 FT	SCREEN LENGTH		FT AM	BIENT AIR	0.0	PPM	1	REFILL TIMI SETTING	ER
WATER COLUM	N	7 FT	DRAWDOWN VOLUME		GAL MO) WELL DUTH	0.0	PPM	1	DISCHARGE TIMER SETT	ING SEC
CALCUL	ATED 1.1	5	(final DTW - initial DT TOTAL VOL.	W X well diam. squar	DR	AWDOWN/			1	PRESSURE	
GAL/VO (column X	L K well diameter square	GAL ed X 0.041)	PURGED (mL per minute X tota	l minutes X 0.00026 g	GAL TO al/mL)	FAL PURGED	L			ТО РИМР	PSI
FIELD PA	RAMETERS WITH DTW (FT)	I PROGRAM STA	BILIZATION CRITE	RIA (AS LISTED IN SP. CONDUCTANC	THE QAPP)					PUMP	
3-5 Minutes	0.0-0.33 ft Drawdown	(mL/min)	TEMP. (*C) (+/- 3 degrees)	(mS/cm) (+/- 3%)	(+/- 0.1 units)	(+/- 10%)	(+/- 10% <10	(ntu) (+/- 1	X (mv) 0 mv)	INTAKE DEPTH (ft)	COMMENTS
14:40	BEGIN PUR	GING	1			1	1				1
14:50	17.9	275	15.0	0.767	7.29	4.0	1024	-18	2.5	22.1	
15:00	18.45	275	14.7	0.733	7.32	0.37	60	-19	0.5	22.1	
15:05	18.7	250	15.6	0.725	7.31	0.41	16 26	-1	66 73	22.1	
15:15	19.05	250	15.7	0.728	7.31	0.35	15.52	-1	77	22.1	
15:20	19.28	250	15.2	0.730	7.31	0.35	9.6	-1	78	22.1	
15:25	19.50	250	15.2	0.734	7.31	0.35	8.8	-1	78	22.1	
15:30	19.70	250	15.4	0.729	7.31	0.35	6.25	-1	76	22.1	
	F			METERS (4			71)			TEMP .: nearest deg	gree (ex. 10.1 = 10)
	F	NAL STABILIZ	LED FIELD PARA	METERS (to app	propriate sign	ificant figures[SI	FD 			pH: nearest tenth (e DO: nearest tenth (e	(ex. 3333 = 3330, 0.696 = 0.696) ex. 5.53 = 5.5) ex. 3.51 = 3.5)
FOUIPMENT		ON	15	0.729	7.3	0.4	6.3	-1	76	TURB: 3 SF max, r ORP: 2 SF (44.1 =	nearest tenth (6.19 = 6.2, 101 = 101) 44, 191 = 190)
EQUITMENT	TYPE OF PUMP		ECON FLUIDS USED	_	TUBING/P	UMP/BLADDER MAT	ERIALS		-		EQUIPMENT USED
X PERIS	STALTIC MERSIBLE	I	.IQUINOX DEIONIZED WATER	X SILICON TEFLON	TUBING	S. STE PVC P	EEL PUMP MAT PUMP MATERIA	ERIAL L	ŀ	WL ME PID	TER Heron MiniRae 3000
BLAI	DDER		POTABLE WATER NITRIC ACID	X HDPE TU	LINED TUBING JBING	GEOP	ROBE SCREEN ON BLADDER		ŀ	WQ ME TURB.	TER METER YSI Pro DSS
WAT OTH	TERA FR		IEXANE METHANOL	LDPE TU OTHER	JBING	OTHE	R		— F	PUMP OTHER	
OTHI	ER		DTHER	OTHER		OTHE	R			FILTER	<u>s</u> NO TYPE
ANALYTI	CAL PARAMETEI PARAMI	RS ETER	METHOD NUMBER	FIELD FILTEREI	PRESER D MET	RVATION VO	OLUME OUIRED	SAMPLE COLLECTE	D	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS
х	See Chain of Custo	dy									
											·
	PSEDVATIONS					EVETCH/NOTES					
PURGE WA	ATER YE	s <u>no</u>	NUMBER OF GALL	ONS		Sample @ 15:	35				
CONTAINE NO-PURGE	EKIZED E METHOD YE	s <u>NO</u>	GENERATED If yes, purged approxima	tely 1 standing volume p	rior						
UTILIZED			to sampling or	mL for this sample lo	cation.						
Sampler Sig	gnature:		Print Name	Nick Gier							
Checked By	/: Josh Yaeger		Date: 3/30/2	2021							
	RC							LO	W FLO	OW GROUN	NDWATER SAMPLING RECORD
										10 Maxw	ell Drive, Suite 200, Clifton Park, NY 1206