NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Region 8 6274 East Avon-Lima Road, Avon, NY 14414-9516 P: (585) 226-5353 I F: (585) 226-8139 www.dec.ny.gov

January 05, 2024

Dr. Mark C. Humbert Wayne County Regional Land Bank 16 William Street Lyons, NY 14489

Re: Indoor Air Sampling Report Former Rando Machine Corporation, 859014 Town of Macedon, Wayne County, New York

Dr. Humbert,

The New York State Department of Environmental Conservation – Division of Environmental Remediation (NYSDEC-DER) and New York State Department of Health – Bureau of Environmental Exposure Investigation (NYSDOH-BEEI), collectively referred to as the Departments, have completed their review of the revised Indoor Air Sampling Report (IASR) signed on November 29, 2023, prepared by Stantec Consulting Services, Inc.

In the Summary and Conclusion section of the IASR, the report recommends that following completion of any planned renovations to the roof or other structures that could change the building airflow conditions, a subsequent confirmatory indoor air sampling event should occur. The Departments agree with this conclusion. Indoor air results should be validated with supplemental testing following the completion of building improvements.

As a reminder the Site Management Plan must be adhered to during all planned renovation activities. Breaches of the cover system, including the slab, must be communicated to the Departments in accordance with the Excavation Work Plan.

In accordance with Title 6 of the New York Codes, Rules, and Regulations (NYCRR) part 375-1.6, the Departments have determined that the IASR substantially addresses the requirements of the State Superfund Program, and the report is hereby **approved**.

Please contact me at <u>Joshuah.Klier@dec.ny.gov</u> or at (585) 226-5357 to discuss any questions or concerns regarding this letter.

Sincerely. oshinh

Joshuah J. Klier, G.I.T. Assistant Geologist | Project Manager New York State Department of Environmental Conservation Division of Environmental Remediation Region 8 Hazardous Waste Remediation

Department of Environmental Conservation ec: Kaleigh Flynn, Wayne County Regional Land Bank Dwight Harrienger, Stantec Consulting Services Amanda Matkosky, Stantec Consulting Services J. Matthew Parrinello, Mustard Street Management, LLC. David Pratt, NYSDEC-DER Adam Morgan, NYSDEC-DER Michael Murphy, NYSDEC-OGC Mark Sergott, NYSDOH-BEEI Justin Deming, NYSDOH-BEEI

NYSDEC Site #859014 1071 NY-31

Town of Macedon Wayne County, New York

November 29, 2023

Prepared for:

New York State Department of Environmental Conservation 625 Broadway, 12th Floor Albany, New York 12233

Prepared on Behalf of:

Wayne County Regional Land Bank Corporation 16 Williams Street Lyons, New York 14489

Prepared by:

Stantec Consulting Services Inc. 61 Commercial Street, Suite 100 Rochester, New York 14614

Certification

I, Dwight Harrienger, of Stantec Consulting Services Inc., certify that I am currently a New York Stateregistered professional engineer and that this *Indoor Air Sampling Report, 1071 NY-31, Macedon, New York (Former Rando Machine Corporation)* was prepared in general accordance with applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10) and that the described activities were performed in accordance with the DEC-approved work plan and any DEC-approved modifications.

29/2023 Date

Table of Contents

ABBR	EVIATIONS	II
1.0	INTRODUCTION AND BACKGROUND	1.1
1.1	SITE AND STUDY AREA DESCRIPTION	1.1
1.2	PREVIOUS INVESTIGATIONS	1.2
1.3	PROJECT OBJECTIVES	1.3
2.0	INDOOR AIR SAMPLING AND RELATED ACTIVITES	2.5
2.1	PRE-SAMPLING INSPECTION AND CHEMICAL INVENTORY	.2.5
2.2	INDOOR AIR SAMPLING AND RELATED TASKS	.2.6
3.0	ANALYTICAL PROGRAM	3.8
3.1	OVERVIEW	
3.2	ANALYTICAL RESULTS	.3.8
4.0	SUMMARY AND CONCLUSION	4.10
5.0	REFERENCES	5.11

LIST OF FIGURES

Figure 1	Site Location Map
Figure 2	Overview of Site and Surrounding Area
Figure 3	Overview of Air Sampling Locations/SSD System Installation Drawings

LIST OF TABLES

- Table 1
 Summary of Indoor and Outdoor Air Analytical Results
- Table 2 Summary of Indoor Air Sampling Locations

LIST OF APPENDICES

- Appendix A Mitigation Tech Sub-slab Depressurization (SSD) System Inspection Report
- Appendix B Pre-Indoor Air Sampling Building Condition Inspection Report
- Appendix C NYSDOH Indoor Air Quality Questionnaire and Building Inventory
- Appendix D Air Sampling Log
- Appendix E Laboratory Analytical Report

Abbreviations

ASP	Analytical Services Protocol
CCR	Construction Completion Letter Report
COC	Contaminant of Concern
DER	Division of Environmental Remediation
EDD	Electronic Data Deliverable
EIMS	Environmental Information Management System
ELAP	Environmental Laboratory Approval Program
FS	Feasibility Study
IA	Indoor Air
IAWP	Indoor Air Work Plan
M&M Plan	Maintenance and Monitoring Plan
MT	Mitigation Tech
NYSDEC	New York State Department of Environmental Conservation
NYSDOH	New York State Department of Health
PCE	Tetrachloroethene or Tetrachloroethylene
PID	Photoionization detector
ppm	Parts per million
PRAP	Proposed Remedial Action Plan
PRP	Potentially Responsible Party
QC	Quality Control
Rando	Rando Machine Corporation
RI	Remedial Investigation
ROD	Record of Decision
SCG	Standards, Criteria, and Guidance
SMP	Site Management Plan
SSD	Sub-slab Depressurization
Stantec	Stantec Consulting Services Inc.
SVI	Soil Vapor Intrusion
TCA	1,1,1-Trichloroethane
TCE	Trichloroethene or Trichloroethylene
USEPA	United States Environmental Protection Agency
VOC	Volatile organic compound
WCRLB	Wayne County Regional Land Bank

Introduction and Background

1.0 INTRODUCTION AND BACKGROUND

On behalf of the Wayne County Regional Land Bank (WCRLB), Stantec Consulting Services Inc. (Stantec) has prepared this Indoor Air (IA) Sampling Report (hereinafter referred to as the "Report") for the Former Rando Machine Corporation site located at 1071 New York State Route 31 in the Town of Macedon, Wayne County, New York (hereinafter referred to as the "Site"; see location in Figure 1). This Report is being submitted to the New York State Department of Environmental Conservation (NYSDEC) and the New York State Department of Health (NYSDOH) for review prior to planned occupancy of the Site, which is designated as NYSDEC site #859014. The IA sampling program described in this Report fulfills a site-specific engineering requirement in the NYSDEC-approved 2022 Site Management Plan (SMP), which states that the indoor air must be sampled after the Sub Slab Depressurization (SSD) system has been running for a minimum of 30 days before the building can be occupied.

In May 2023, Mitigation Tech (MT) restored power to the Site's existing SSD system. MT performed an inspection and routine maintenance of the SSD system on June 1, 2 and 5, 2023, and issued a report certifying that the SSD system is effective and in compliance with current *Final Guidance for Evaluating Soil Vapor Intrusion (SVI) in the State of New York* (*"NYSDOH SVI Guidance*"; NYSDOH, 2006) on June 6, 2023.. The Inspection Report issued by MT is available as Appendix A.

Stantec prepared and submitted an Indoor Sampling Work Plan to NYSDEC and NYSDOH on August 28, 2023 revised September 12, 2023, and was accepted by both agencies on September 18, 2023. On September 28, 2023, prior to sampling, Stantec inspected the condition of the structure to evaluate visible conditions that may impact IA sampling, including the condition of the slab, window and door seals, and the structural integrity of the roof, walls, or foundation. The results of this inspection were shared with NYSDEC in a letter report dated October 4, 2023, which is available as Appendix B. Apparent deficiencies in the overall condition of the roof were observed but were found to have little impact on the behavior of indoor air patterns.

On October 13, 2023, IA sampling occurred after obtaining written permission from the Client. The SSD system appeared to be active while sampling occurred and are expected to remain active as the building is prepared for occupancy. The IA sampling program was performed in accordance with the approved Indoor Air Work Plan (IAWP), dated September 12, 2023 (approved September 18, 2023), and followed guidance provided in *NYSDOH SVI Guidance*.

1.1 SITE AND STUDY AREA DESCRIPTION

The Former Rando Machine Corporation (Rando) Site is located at 1071 NY-31 in the Town of Macedon, Wayne County, New York. A Site Location Map is presented on Figure 1. A figure showing the Site boundaries is provided in Figure 2.

Introduction and Background

The Site has a total area of 5.01 acres and is located in a 60-acre industrial park known as The Commons. The Site is occupied by a 35,000 square foot brick, concrete and steel industrial structure built in 1975 that was previously used for manufacturing industrial machines. Minor improvements were made to the structure between 1975 and 1977, including a 1,000 square foot loading dock, but these improvements do not appear to have involved the extension or modification of the slab.

The structure contains one floor that is broadly subdivided into areas designated for production/manufacturing, laboratory space, and office space. An at-grade concrete slab underlies all interior areas except for a small, rectangular recessed area along the west wall of the production/manufacturing floor, referred to as "Pit/Cistern, Not Usable Floor Space" on SSD system installation drawings (Figure 3). The Pit/Cistern floor is approximately 8-10 feet below the concrete floor and is covered by metal plates. A spiral staircase provides means of ingress and egress. The remainder of the Site is a combination of pavement and grass areas.

Rando operated this industrial and manufacturing facility from approximately 1975 through September 2019. The facility manufactured and assembled machines, products were cleaned, painted, packaged, and shipped from the facility. The cleaning and painting process utilized the chlorinated solvent 1,1,1-Trichloroethane (TCA), a chlorinated volatile organic compound (VOC). Between the time that operations began and the mid-1980s, floor drains from the TCA storage area reportedly drained into a buried container, called a dry crock, located immediately outside the northeast corner of the building. During past site operations, the contents of the dry crock were reportedly disposed of off-site.

The Site is bounded to the north by Penta-Tech Coated Products located at 1610 Commons Parkway. The Site is bounded to the south by commercial properties located at 1116 NY-31 and 1090 NY-31. The Site is bounded to the west by commercial properties located at 1059 NY-30 and 1607 Commercial Parkway. The Site is bounded to the east by agricultural farmland. A regulated Class III wetland is located approximately 0.25 miles north of the Site. The Erie Barge Canal is located approximately one mile north of the Site. Historically, the groundwater flow direction has been determined to be towards the north-northeast.

1.2 PREVIOUS INVESTIGATIONS

Environmental investigations were first conducted at the Site after the NYSDOH found TCA in the Village of Macedon water supply wells in 1986. The NYSDEC conducted a preliminary investigation in 1987 and identified Rando as a potentially responsible party (PRP). Rando conducted a soil vapor survey in 1988 and a subsurface investigation in 1989, which identified the dry crock as the source of the TCA plume that extended eastward from the Site towards the Village's supply water wells. Rando conducted a voluntary source removal with oversight by the NYSDEC in 1989. The source area did not indicate any residual soil contamination following the soil excavation activities around the dry crock.

The results of these investigations were used as the basis for a remedial investigation (RI), which started in 1991. Rando's use of TCA in the cleaning and painting process and collection of drainage in a dry

Introduction and Background

crock at the northeast corner of the Site building, appeared to be the root cause of the groundwater contamination at the Site. RI field investigations continued through 1993 and confirmed that the dry crock was the source of the TCA contamination.

The source area is located in the central portion of the Site, immediately outside the northeast corner of the building. The RI also determined that the VOC groundwater plume extended beyond the Site's eastern boundary and migrated towards the Village of Macedon wellfield.

A Feasibility Study (FS) was completed and approved, and a Proposed Remedial Action Plan (PRAP) was issued by the NYSDEC in 1995. Based on the Village of Macedon's decision to permanently discontinue the use of groundwater for a source of public water, Rando submitted an FS Addendum in 1996. The NYSDEC performed additional groundwater sampling in January of 1997, which showed groundwater contaminant levels had decreased. The Record of Decision (ROD) was subsequently issued by the NYSDEC in March 1998.

The NYSDEC selected Alternative 1 (no further action) as the remedy for the Site as presented in the 1998 ROD. As part of Alternative 1, periodic groundwater monitoring (semi-annual for five years and annual thereafter) would be conducted from selected groundwater monitoring wells. In addition, the remedy required administrative controls be placed on the Site property to restrict public access to contaminated groundwater.

A Maintenance and Monitoring Plan (M&M Plan) was prepared for the Site in July 1999. A Declarations of Covenants and Restrictions to restrict public access to contaminated groundwater was filed with Wayne County on December 23, 2009.

On April 1, 2013, an SSD system was installed beneath and encompassing the footprint of the building as outlined in Mitigation Tech's May 20, 2013, construction completion letter report (CCR). Based on a review of select correspondence between NYSDEC and Rando, it appears the SSD system was installed in lieu of evaluating the Site in accordance with NYSDOH SVI Guidance.

1.3 **PROJECT OBJECTIVES**

The primary objective of the Indoor Air sampling program described in this Report was to confirm the effectiveness of the SSD system by evaluating current levels of volatile chemicals in the interior air. A total of four locations throughout the subject building were selected for collection and evaluation of indoor air. The selection factors included (1) proximity to subsurface sources of contamination; (2) historic and/or anticipated uses of building areas; (3) building construction details.

In addition, one upwind outdoor air sample was collected, intended to represent background concentrations of volatile chemicals in the air. The outdoor air sample was placed upwind with respect to the direction of local prevailing winds at the time of sampling. Potential obstructions such as topographic

Introduction and Background

or surface features, nearby structures and trees, and proximity to roadways, were considered before selecting an appropriate sample collection area.

Indoor Air Sampling and Related Activites

2.0 INDOOR AIR SAMPLING AND RELATED ACTIVITES

This section of the Report presents a description of the investigative activities performed, methods used, and procedures followed during the indoor air sampling program. The indoor air sampling and related activities described below were performed in general accordance with the approved IAWP and the *NYSDOH SVI Guidance*.

The pre-sampling building condition inspection occurred on September 28, 2023 following approval of the IAWP on September 18, 2023. The inspection procedure included a provision for documenting occurrences of chemical products stored within the building; however, no such products were observed.

Sampling took place on October 13, 2023 and occurred over an 8-hr period. Prior to establishing indoor air collection points, the interior of the building was briefly inspected to confirm that no significant changes to the building's condition had occurred in the approximately 2 weeks since the initial inspection. Stantec obtained permission from the Client and the prospective property buyer prior to each mobilization to the Site.

The locations for the October 2023 indoor air sampling are identified on Figure 3 and described in Table 2.

2.1 PRE-SAMPLING INSPECTION AND CHEMICAL INVENTORY

On September 28, 2023, Stantec evaluated the general condition of the subject building to determine if sampling would be feasible given structural deficiencies, particularly in the roof, that were noted previously. The building inspection was conducted in response to NYDEC's August 28, 2023 conditional approval of the IAWP, which stated: "If any deficiencies are observed during the pre-sampling inspection, they should be corrected before proceeding with indoor air testing."

The purpose of the inspection was to evaluate visible conditions that may impact IA sampling such as the condition of the walls, foundation, roof, and window and door seals, and the presence of chemical products. The building slab was visually inspected for evidence of modifications, deep cracks, cuts, depressions and deterioration of joint seals. The behavior of indoor air was evaluated qualitatively using irritant smoke generators.

The building was determined to be in a condition suitable to conduct IA sampling. The roof above the main production area, particularly in the "Assembly Shop" area, was observed to be in poor condition due to water damage. Openings in the roof were observed ranging in size from 2 - 3.5 feet. However, based on the behavior of irritant smoke near these openings, deficiencies in the roof were found to have little demonstrable effect on air flow within the subject building. Draftiness throughout the main production area, originating from several large bay doors, reflects the building's age and construction, rather than a critical structural defect, and is considered a normal operating condition of a large, open-floored industrial

Indoor Air Sampling and Related Activites

building. Other deficiencies observed during the inspection, although potentially concerning from the standpoint of human health (ex. mold and mildew) are not considered potential impediments to IA sampling.

Cracks in the floor slab up to 0.5-inches wide were observed throughout the main production area. The cracks are millimeters to 2 centimeters in depth. Divots up to 2-ft. in diameter and 2-in. deep were observed in the main production area. The floor defects observed during the inspection do not appear to penetrate the full thickness of the concrete, and are not considered potential impediments to the effectiveness of the cover system.

In addition, the chemical inventory yielded no instances of chemical products or other VOC producing items stored onsite, and Photoionization Detector (PID) VOC readings remained at 0.0 parts per million (ppm) throughout the duration of the inspection. The full building inspection was shared in a letter to NYSDEC dated October 3, 2023 and is presented as Appendix B.

Given the results of the inspection, Stantec proceeded with IA sampling according to the Departmentsapproved IAWP.

On October 13, 2023, a similar inspection occurred prior IA sampling event, with the intention of confirming that no major changes to the condition of the building had occurred since the initial inspection. The results of this inspection were documented on a NYSDOH Indoor Air Quality Questionnaire and Building Inventory form, which is presented as Appendix C.

2.2 INDOOR AIR SAMPLING AND RELATED TASKS

IA sampling was performed on October 13, 2023 and included the collection of IA samples at four (4) locations throughout the subject building, and one (1) upwind outdoor air sample, representative of the atmospheric background, for laboratory analysis. On the day of sampling, indoor and outdoor PID readings remained at 0.0 ppm. Calm, westerly winds up to 5 mph were observed throughout the day with temperatures ranging 37-47°F and no precipitation.

The indoor/outdoor air samples were collected concurrently in 6L batch-certified Summa® canisters affixed with a regulator to collect samples over an 8-hour period. The canister inlets for both indoor and outdoor air were placed at breathing height, approximately 3-5 feet above grade/ground surface (NYSDOH, 2006). At 2-hour intervals, pressure readings were obtained, and the rate of intake was recalculated to ensure vacuum depressurization remained at a pace commensurate with 8-hour sampling. Regulators were closed with ample vacuum pressure (typically \geq -4 in Hg) to prevent reversal of flow direction. Samples were returned to ALS Environmental in Simi Valley, CA under proper Chain of Custody procedures.

Indoor Air Sampling and Related Activites

The sampling log is included in Appendix D. The quality control (QC) batch certification for Summa canisters used in the collection of indoor/outdoor air (Can IDs AS02319, AS01302, AS01718, AS01626 and AS01010) is provided on page 213 of the laboratory report, which is presented as Appendix E.

The IA sample locations depicted on Figure 3 are identical to those identified in the IAWP with the exception of one location, identified as IA-Rando-2, which moved approximately 20-ft west of its proposed location to the enclosed "Locker Room" area, where the sample could be shielded from a gentle draft emanating from a nearby bay door. This location was thought to be more representative of conditions within the main production area where chlorinated solvents were potentially used, than the proposed location. Sampling locations were approximately identified based on field observations relative to fixed interior features (e.g. walls, stairs, etc.). The outdoor/background sample location was selected to capture potential background contaminants blowing in the from the west. Field staff selected a flat, open, grassy area approximately 75-ft. west of the subject building, and 25-ft. east of Commons Parkway.

Photographs of each sample location obtained for internal documentation purposes are available for review upon request.

Analytical Program

3.0 ANALYTICAL PROGRAM

3.1 OVERVIEW

A total of five (5) samples were submitted to ALS Environmental in Simi Valley, CA for analysis of 62 VOC compounds by United States Environmental Protection Agency (USEPA) Method TO-15. ALS Environmental is a NYSDOH Environmental Laboratory Approval Program (ELAP) certified laboratory.

An analytical summary table was prepared to summarize the data for comparison to New York State Standards, Criteria, and Guidance values (SCGs) presented in the *NYSDOH SVI Guidance* with updates as noted on the Soil Vapor Intrusion Updates webpage (NYSDOH, 2013; NYSDOH, 2015; and NYSDOH, 2017). The following SCGs are applicable to this Report:

Compound	Guideline Value (µg/m³)	Immediate Action Level (µg/m³)	Revision Date
TCE	2	20	August 2015
PCE	30	300	September 2013
methylene chloride	60	n/a	n/a

Adapted from Table 3.1 of the NYSDOH SVI Guidance (2006), Ambient Air Guidelines for Trichloroethylene (TCE), Tetrachloroethylene (PCE) and methylene chloride, as follows:

Note that NYSDOH SVI Guidance Table 3.1 does not contain air guidance values for the Contaminants of Concern (COCs) identified at the Site, which includes TCA, chloroethane, 1,1-Dichloroethane, 1,2-Dichloroethane, 1,1-Dichloroethene and 1,4 Dioxane. While TCA is the primary COC, concentrations of additional chlorinated compounds were considered given the Site history.

Laboratory analytical reports were prepared in accordance with the NYSDEC Analytical Services Protocol (ASP) Category B requirements. Sample analytical data was uploaded to NYSDEC's Environmental Information Management System (EIMS) in the appropriate EQuIS Electronic Data Deliverable (EDD) format, in accordance with NYSDEC's EDD manual (NYSDEC, 2018).

3.2 ANALYTICAL RESULTS

The analytical results for the October 13, 2023 sampling are summarized in Table 1. The analytical laboratory report is presented in Appendix E.

TCE or PCE were not detected in outdoor/indoor samples above laboratory reporting limits. Methylene chloride was detected in each indoor sample at estimated concentrations ranging from 0.22 to 0.27 μ g/m³. These detections are well below the NYSDOH Air Guidance Value of 60 μ g/m³ for methylene chloride. Furthermore, the concentration of methylene chloride in the outdoor/background sample (an

Analytical Program

estimated 0.30 μ g/m³) is similar to the concentrations reported for the indoor samples, implying an outside source.

Low levels (< 1 μ g/m³) of TCA were detected in three (3) IA samples (IA-RANDO-1, IA-RANDO-2, IA-RANDO-3) at estimated concentrations of 0.21 μ g/m³, 0.11 μ g/m³, 0.11 μ g/m³, respectively. NYSDOH reports that TCA levels in the indoor air of occupied homes and offices are typically around 3.0 μ g/m³; the concentrations reported in the IA samples are lower by an order of magnitude, measured just above the laboratory reporting limit.

Low levels (< 1 μ g/m³) of 1,4-Dioxane were detected in three (3) IA samples (IA-RANDO-1, IA-RANDO-2, IA-RANDO-3) at estimated concentrations of 0.58 μ g/m³, 0.16 μ g/m³, 0.18 μ g/m³, respectively. 1,4-Dioxane is an emerging contaminant for which no guideline values exist. The concentration reported for 1,4-Dioxane in the outdoor sample was an estimated 0.24 μ g/m³, which exceeds the concentrations reported for IA-RANDO-2 (0.16 μ g/m³) and IA-RANDO-3 (0.18 μ g/m³). The concentration of 1,4-Dioxane in IA-RANDO-1 (0.58 μ g/m³), collected in the contaminant source area (near the former "dry crock"), was slightly elevated compared to the outdoor sample.

Chloroethane was not detected in IA samples above laboratory reporting limits. However, chloroethane was reported in the outdoor sample at a concentration of 2.4 μ g/m³, possibly related to upwind (offsite) industrial activities.

Remaining site COCs 1,1-Dichloroethane, 1,2-Dichloroethane and 1,1-Dichloroethene were not detected in samples above laboratory reporting limits.

Several low-level concentrations of other VOCs were detected in IA/outdoor samples. The concentrations of those compounds are generally low (near the laboratory reporting limit) and assumed to be associated with outdoor sources (e.g. vehicle exhaust, nearby non-residential property uses, etc.).

Summary and Conclusion

4.0 SUMMARY AND CONCLUSION

Based on the results of the October 13, 2023 IA sampling, no further action regarding monitoring or mitigating potential soil-vapor intrusion is warranted with the current building conditions. Concentrations of VOC compounds discussed in *NYSDOH SVI Guidance* are below published ambient air guideline values. Other VOC compounds, including site COCs (TCA, chloroethane, 1,1-Dichloroethane, 1,2-Dichloroethane, 1,1-Dichloroethene and 1,4 Dioxane) were generally low, below background concentrations, or non-detect.

Therefore, it is our opinion that the SSD system are effective and appear to be mitigating SVI to a satisfactory degree.

If future plans for building occupancy involve repairs to the roof, windows, doors, siding, or indoor renovations that could change the building conditions and airflow conditions that were present during this sampling event, performing a follow-up IA sampling event is suggested prior to occupancy.

References

5.0 **REFERENCES**

NYSDEC, 2010	Technical Guidance for Site Investigation and Remediation (DER-10). May 3, 2010.
NYSDEC, 2018	NYSDEC Electronic Data Deliverable Manual, NYSDEC EDD Format v.4-10). November 2018.
NYSDOH, 2006	Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York. October 2006.
NYSDOH, 2010	Soil Vapor Intrusion Updates, May 2010: Update on Building Questionnaires and Product Inventories. Website: https://health.ny.gov/environmental/indoors/vapor_intrusion/update.htm
NYSDOH, 2013	Soil Vapor Intrusion Updates, September 2013: New Ambient Air Guideline for Tetrachloroethene. Website: <u>https://health.ny.gov/environmental/indoors/vapor_intrusion/update.htm</u>
NYSDOH, 2014	Tenant Notification Fact Sheet for 1,1,1-Trichloroethane (1,1,1-TCA). Revised January 2014. Website: <u>https://www.health.ny.gov/environmental/indoors/air/contaminants/1_1_1_tca.htm</u>
NYSDOH, 2015	Soil Vapor Intrusion Updates, August 2015: New Ambient Air Guideline for Trichloroethene. Website: <u>https://health.ny.gov/environmental/indoors/vapor_intrusion/update.htm</u>
NYSDOH, 2017	Soil Vapor Intrusion Updates, May 2017: Updates to Soil Vapor/Indoor Air Decision Matrices. Website: <u>https://health.ny.gov/environmental/indoors/vapor_intrusion/update.htm</u>
Stantec, 2021	Phase I Environmental Site Assessment, 1071 New York State Route 31, Macedon, New York. September 22, 2021.
TRC Engineers, 2022	Site Management Plan, NYSDEC Site #859014, Rando Machine Corp., 1071 NY-31, Macedon, Wayne County, New York. December 2022.
Stantec, 2023	Pre-Indoor Air Sampling Building Condition Inspection, 1071 New York State Route 31 (Former Rando Machine Corporation Site), NYSDEC Site #659014, Macedon, Wayne County, New York. October 4, 2023.
Mitigation Tech, 2023	Inspection of Sub-slab Depressurization (SSD) System, 1071 NYS Route 31, Macedon, NY 14502 – Rando Machine. June 6, 2023.

FIGURES

Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result. Stantec assumes no responsibility for data supplied in electronic format, and the recipient accepts full responsibility for verifying the accuracy and completeness of the data.

U:\195602768\05_report_deI\vIdwgs_design\GIS_figures\mxd\Figure 2 - Property Vicinity Map.mxd Revised: 2023-11-28 By: amatko

Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsibility for varifying the accuracy and/or completeness of the data.

Legend

Indoor/Outdoor Air sample location

Project Location 1071 NYS Route 31 Macedon, New York

Prepared by PS on 2023-11-16 TR by AM on 2023-11-27 IR by DH on 2023-11-27

Client/Project Indoor Air Sampling Report Wayne County Regional Land Bank

Figure No 3

Title

Overview of Air Sampling Locations/SSD System Installation Drawings

TABLES

Table 1 **Summary of Air Analytical Results Rando Machine Corporation Site** 1071 NY-31, Macedon, New York 14502

Sample Location Sample Date Sample ID Sampling Company Laboratory Laboratory Work Order Laboratory Sample ID	Units	NYSDOH Air Guideline Values	AMB-RANDO-1 13-Oct-23 AMB-RANDO-1 STANTEC ALS P2304974 P2304974-005	IA-RANDO-1 13-Oct-23 IA-RANDO-1 STANTEC ALS P2304974 P2304974-001	IA-RANDO-2 13-Oct-23 IA-RANDO-2 STANTEC ALS P2304974 P2304974-002	IA-RANDO-3 13-Oct-23 IA-RANDO-3 STANTEC ALS P2304974 P2304974-003	IA-RANDO-4 13-Oct-23 IA-RANDO-4 STANTEC ALS P2304974 P2304974-004
Volatile Organic Compounds							
Acetone	µg/m3		4.2 J	3.8 J	4.4 J	5.2 J	3.8 J
Benzene	µg/m3		0.37 J	0.43 J	0.41 J	0.43 J	0.45 J
Benzyl Chloride	µg/m3		U (0.18)	U (0.16)	U (0.18)	U (0.17)	U (0.17)
Bromodichloromethane	µg/m3		U (0.11)	U (0.10)	U (0.11)	U (0.11)	U (0.11)
Bromoform (Tribromomethane)	µg/m3		U (0.16)	U (0.15)	U (0.16)	U (0.16)	U (0.15)
Bromomethane (Methyl bromide)	µg/m3		U (0.11)	U (0.098)	U (0.11)	U (0.11)	U (0.10)
Butadiene, 1,3-	µg/m3		U (0.13)	U (0.12)	U (0.13)	U (0.13)	U (0.12)
Carbon Disulfide	µg/m3		0.41 J	0.42 J	0.32 J	0.97 J	U (0.22)
Carbon Tetrachionde (Tetrachioromethane)	µg/m3		0.44 J	0.43 J	0.42 J	0.42 J	0.45 J
Chloroothano (Ethyl Chlorido)	µg/m3		0 (0.10) 24	U (0.094)			0 (0.099)
Chloroform (Trichloromethane)	µg/m3		2. 4	0 (0.087)	0 (0.097)	0 14 .1	0 (0.092)
Chloromethane	ua/m3		8.4 J V	0.33 J V	0.28 J V	0.31 J V	0.27 J V
Cvclohexane	ua/m3		U (0.22)	U (0.20)	U (0.22)	U (0.21)	U (0.21)
Dibromochloromethane	µg/m3		U (0.10)	U (0.092)	U (0.10)	U (0.10)	U (0.097)
Dichlorobenzene, 1,2-	µg/m3		U (0.12)	U (0.10)	U (0.12)	U (0.11)	U (0.11)
Dichlorobenzene, 1,3-	µg/m3		U (0.12)	U (0.11)	U (0.12)	U (0.11)	U (0.11)
Dichlorobenzene, 1,4-	µg/m3		U (0.12)	U (0.11)	U (0.12)	U (0.12)	U (0.11)
Dichlorodifluoromethane (Freon 12)	µg/m3		2.3	3.5	4.0	3.1	2.6
Dichloroethane, 1,1-	µg/m3		U (0.11)	U (0.10)	U (0.11)	U (0.11)	U (0.11)
Dichloroethane, 1,2-	µg/m3		U (0.087)	U (0.078)	U (0.087)	U (0.084)	U (0.082)
Dichloroethene, 1,1-	µg/m3		U (0.11)	U (0.098)	U (0.11)	U (0.11)	U (0.10)
Dichloroethene, cis-1,2-	µg/m3		U (0.11)	U (0.099)	U (0.11)	U (0.11)	U (0.10)
Dichloroethene, trans-1,2-	µg/m3		U (0.11)	U (0.098)	U (0.11)	U (0.11)	U (0.10)
Dichloropropane, 1,2-	µg/m3		0 (0.097)	0 (0.087)	0 (0.097)	0 (0.094)	0 (0.092)
Dichloropropene, cis-1,3-	µg/m3		U (0.12)	U (0.11)	U (0.12)	U (0.12)	U (0.12)
Dichlorotetrafluoroethane 1.2. (Freon 114)	µg/m3		U (0.10)	0 (0.13)	0 (0.10)	0 (0.10)	0 (0.13)
Dioxane 14-	ug/m3		0.24.1	0.58 J	0.16.J	0.18.J	U (0.088)
Ethyl Acetate	ua/m3		4.1	4.9	4.4	6.3	4.9
Ethylbenzene	ua/m3		U (0.11)	0.23 J	0.16 J	0.15 J	0.54 J
Ethylene Dibromide (Dibromoethane, 1,2-)	µg/m3		U (0.091)	U (0.082)	U (0.091)	U (0.089)	U (0.086)
Ethyltoluene, 4-	µg/m3		U (0.12)	U (0.11)	U (0.12)	U (0.12)	U (0.12)
Heptane (C7)	µg/m3		0.16 J	0.26 J	0.23 J	0.23 J	U (0.12)
Hexachlorobutadiene (Hexachloro-1,3-butadiene)	µg/m3		U (0.16)	U (0.15)	U (0.16)	U (0.16)	U (0.15)
Hexane (n-Hexane)	µg/m3		U (0.16)	0.22 J	0.23 J	0.24 J	0.17 J
Hexanone, 2- (Methyl Butyl Ketone)	µg/m3		U (0.097)	0.091 J	U (0.097)	U (0.094)	U (0.092)
Isopropyl Alcohol (2-Propanol)	µg/m3		0.43 J	0.40 J	0.48 J	0.62 J	0.93 J
Isopropylbenzene	µg/m3		U (0.11)	U (0.10)	U (0.11)	U (0.11)	0.30 J
Methyl Ethyl Ketone (MEK) (2-Butanone)	µg/m3		0.40 J	0.43 J	0.39 J	0.52 J	0.37 J
Methyl Isobutyl Ketone (MIBK)	µg/m3		0 (0.11)	0.11 J	0 (0.11)	0 (0.10)	U (0.10)
Methylone Chloride (Dichloromothane)	µg/m3		0 (0.093)	0 (0.063)	0 (0.093)	0 (0.090)	0 (0.066)
Nanhthalene	μg/m3		U.30 3	0.22 5	0.25 J	0.25 J	15
Propene	μg/m3		U (0.19)	U (0 17)	U (0 19)	U (0 19)	U (0 18)
Styrene	ug/m3		0.39 J	U (0.11)	U (0.13)	U (0.12)	1.8
Tetrachloroethane, 1.1.2.2-	ua/m3		U (0.11)	U (0.098)	U (0.11)	U (0.11)	U (0.10)
Tetrachloroethene (PCE)	µg/m3	30	U (0.10)	U (0.091)	U (0.10)	U (0.099)	U (0.096)
Tetrahydrofuran	µg/m3		0.19 J	0.12 J	U (0.098)	U (0.096)	U (0.093)
Toluene	µg/m3		0.44 J	0.89	0.89	0.84	0.92
Trichlorobenzene, 1,2,4-	µg/m3		U (0.19)	U (0.17)	U (0.19)	U (0.19)	U (0.18)
Trichloroethane, 1,1,1-	µg/m3		U (0.097)	0.21 J	0.11 J	0.11 J	U (0.092)
Trichloroethane, 1,1,2-	µg/m3		U (0.079)	U (0.071)	U (0.079)	U (0.077)	U (0.075)
Trichloroethene (TCE)	µg/m3	2	U (0.11)	U (0.095)	U (0.11)	U (0.10)	U (0.10)
I richlorofluoromethane (Freon 11)	µg/m3		1.2	3.8	3.7	3.5	1.9
ricniorotrifluoroethane (Freon 113)	µg/m3		0.49 J	0.48 J	0.55 J	0.51 J	0.48 J
Trimethylbenzene, 1,2,4-	µg/m3		U (0.11)	0.12 J	U.12 J	U (U.11)	0.21 J
Vinul Acetate	µg/m3		U (U.TT)	U (0.10)			
Vinyl Chloride	µg/113 µg/m3		U (0.084)	U (0.075)	U (0 084)	U (0 082)	U (0 079)
Xvlene m&n-	µg/m3		U (0.21)	0.93.1	0.52	0.43	0.64.1
Xvlene, o-	ug/m3		U (0.11)	0.59 J	0.31 J	0.27.1	0.36.1

Notes:

New York State Department of Health Center for Environmental Health Bureau of Environmental Exposure Indicates no Air Guideline Value has been established by NYSDOH for this compound. Measured concentration did not exceed the indicated standard. NYSDOH

15.2

U (0.03) Analyte was not detected at a concentration greater than the laboratory reporting limit shown in parentheses.

) V

The reported result is an estimated value. The continuing calibration verification standard was outside (biased high) the specified limits for this compound.

µg/m3 micrograms per cubic meter

 Table 2

 Summary of Indoor Air Sampling Locations

 Indoor Air Sampling Report

 1071 NY-31, Macedon, New York (Former Rando Machine Corporation Site)

 NYSDEC Site #859014

Sample ID	Туре	Area ¹	Sample location selection criteria	Description/Justification
IA-RANDO-1	Indoor	Paint Shop	Proximity to subsurface source of contamination	Closest interior space to 'dry crock', which was identified as the source of TCA plume. ²
IA-RANDO-2	Indoor	Main production area	Historic/anticipated use of area	Main production floor where chlorinated solvents were potentially used; sample to be placed in "Locker Rooms" which is the center of large, open area where future production could occur.
IA-RANDO-3	Indoor	Recessed crawl space access area	Building construction details	Beneath concrete slab; appears to be the lowest level accessible.
IA-RANDO-4	Indoor	Offices	Historic/anticipated use of area	Office space, separated from the main production area by a doorway where building occupants could be for a prolonged period of time.
AMB-RANDO-1	Outdoor	Grassy area west of building	Upwind of subject building	Representative of background concentrations of volatile chemicals in the air; placed west of subject building to intercept westerly prevailing winds.

Notes:

1. Refer to Figure 3 for approximate air sampling locations

2. Refer to Figure 2 for location of dry crock

Abbreviation: TCA

1,1,1-Trichloroethane

APPENDIX A

Mitigation Tech Sub-slab Depressurization (SSD) System Inspection Report

mitigation tech vapor intrusion specialists

INSPECTION REPORT

June 6, 2023

Mr. Mark Humbert Executive Director Wayne County Land Bank 16 William Street, Lyons, NY 14489 Via email: Mark Humbert mhumbert@wclandbank.org, Cell: 315-946-5495 [Kaleigh]

Re: 1071 NYS Route 31, Macedon, NY 14502 - Rando Machine Inspection of Sub-slab Depressurization (SSD) Systems

On June 1,2 & 5, 2023, we visited this location to perform Inspection and Routine Maintenance of the installed SSD systems in order to determine condition and certify system effectiveness. We performed the following procedures and recorded the following observations:

- 1. Conduct a visual inspection of the complete SSD systems (e.g., vent fans, piping, vacuum gauges, etc.); **Observation : Acceptable**
- 2. Inspect all components for condition and proper operation; Observation: Acceptable.
- 3. Identify (and repair) any leaks in accordance with Sections 4.3.1(a) of the NYS DOH Guidance; **No leaks noted.**
- 4. Inspect the discharge points to verify that no air intakes have been located nearby; **Observation: No intakes.**
- 5. Conduct a stack pressure measurement: Observation: Acceptable.

Fan system	Value (water column inches)
Office	1.7
Former Display	0.9
Office Wing	6.0
East Manufacturing	1.5
West Manufacturing	1.4

6. Conduct sample pressure field extension testing at (16) original vacuum monitoring points; restore test holes with backer and urethane caulk: **Observation -Acceptable**

Test point values: See schematic for point locations

Point	Value (negative water column inches)
1	.022
2	.046
3	.012
4	.016
5	.102
6	.032
7	.110
8	.002
9	.015
10	n/a
11	.035
12	.013
13	.011
14	.040
15	.006
16	.013
17	.024

Two vacuum gauges were replaced during the inspection. Audible loss of vacuum warning devices, although not required or installed at time of construction, are recommended under current guidance.

I certify that the installed systems are effective and in compliance with current *New York State DOH SVI Guidance*, as noted.

Thank you

Nicholas E. Mouganis EPA listing # 15415-I; NEHA ID# 100722

Attachment: "Rando Machine SSDS Schematic"

APPENDIX B

Pre-Indoor Air Sampling Building Condition Inspection Report

Stantec Consulting Services Inc. 61 Commercial Street Suite 100, Rochester NY 14614-1009

October 4, 2023 File: 213414026

Attention: Mr. Joshuah J. Klier Division of Environmental Remediation

NYSDEC Region 8 6274 East Avon-Lima Road Avon, NY 14414

Reference: Pre-Indoor Air Sampling Building Condition Inspection 1071 New York State Route 31 (Former Rando Machine Corporation Site) NYSDEC Site #859014 Macedon, Wayne County, New York

Dear Mr. Klier,

This letter report describes the results of the September 28, 2023 building condition inspection of the former Rando Machine Corporation Site, located at 1071 NY-Rt.31, Macedon, Wayne County, NY. The purpose of the inspection was to evaluate visible conditions that may impact Indoor Air (IA) sampling, including the condition of the slab, window and door seals, and structural integrity of the roof, walls, or foundation.

The structure consists of 35,000 square feet of industrial and office space. Each room was inspected visually, and notes of the building's condition were recorded. The behavior of air flow patterns in the building was evaluated qualitatively using 3M VeriFit Irritant Smoke Generators. The Site is currently vacant but is being prepared for occupancy.

This work was conducted in response to NYDEC's August 28, 2023 conditional approval of Stantec's Indoor Air Sampling Work Plan (IAWP), which stated: "If any deficiencies are observed during the pre-sampling inspection, they should be corrected before proceeding with indoor air testing." We are requesting the Department accept Stantec's recommendation below to conduct the IA sampling with the current building conditions, as described in the IAWP.

Photographs documenting the condition of the building are included as **Appendix A**. A diagram of the layout of the building is included as **Appendix B**. The following items of note were identified during the inspection:

- Minor outside air infiltration from poorly sealed window in contaminant source area ("Paint Shop", nearly location of former dry crock). (Photograph ID: 1)
- Outdoor air infiltration from large bay door in north portion of main floor, in an area designated "Storage" (see attached Building Schematic). Air near bay door is noticeably cooler due to leaky door seal. Turbulent air currents. (Photograph ID: 2).
- The roof in the main floor is generally in poor condition due to water damage (Photograph IDs: **3-8**). 3 openings in roof through tar and corrugated metal slats ranging in size from ~2-3.5 feet were observed (Photograph IDs: **3, 6-8**). Tracer smoke behavior in the vicinity of the roof openings indicated that the air is generally stagnant, and the openings do not appear to be a major source of

October 4, 2023 Mr. Joshuah J. Klier Page 2 of 3

Reference: Pre-Indoor Air Sampling Building Condition Inspection

outside air exchange. Piles of saturated, rusty metal from the roof were observed in several locations throughout the building, especially in the northeast portion of the main floor where the water damage to the roof is most severe (Photograph ID: **5**). The roof in the office area is in good condition and appears to have been repaired shortly before the building was vacated. Water damage to office roof tiles is possible evidence that the office had water issues in the past that were abated.

- Cracks in the slab up to 3" wide were observed throughout the main floor. The cracks are generally millimeters to 2 centimeters in depth (Photograph ID: 9). 2x1 foot and 1x1 foot divots were observed in the center of main floor (Photograph ID: 11). The slab is in fair condition otherwise. Surficial pits observed throughout (Photograph ID: 10). SSDS system was active at the time of inspection and appears to be functioning properly.
- Exterior door in "Lab" has defective weather stripping on the bottom.
- Strong odors of mold and mildew throughout. Mold is visible on drywall and other painted surfaces.
- Glass is intact on all exterior doors and windows. Exterior of the building is in good conditions except for roof elements. Exterior doors seals are intact except as noted above. No attempt was made to open/shut doors and windows except for building access.
- No chemical products or other potential VOC producing items were found. Building is empty except for office related items such as paper records and office supplies.
- Standing water was observed in recessed area and within subgrade drainage structure near recessed area.

(see next page for Closing and list of Attachments)

October 4, 2023 Mr. Joshuah J. Klier Page 3 of 3

Reference: Pre-Indoor Air Sampling Building Condition Inspection

RECOMMENDATIONS

Stantec recommends that the IA testing receive approval to be conducted at the facility with the current building condition to allow sale of the property.

CLOSING

Should you have any questions or require additional information, please contact us.

Regards,

STANTEC CONSULTING SERVICES INC.

Patrick Sutor

Patrick Suter Environmental Scientist Phone: 585 559-9625 Patrick.suter@stantec.com

Amanda Matkos

Environmental Scientist Phone: 585 285-3598 Amanda.matkosky@stantec.com

Honsingen with Dwight Harrienger

Senior Associate Phone: 585 413-8740 Dwight.harrienger@stantec.com

ATTACHMENTS

Appendix A – Inspection Photographs Appendix B – Building Layout Diagram

c. WCLB – Mark Humbert, Kaleigh Flynn

bl \\us0275-ppfss01\shared_projects\213414026\05_report_deliv\deliverables\reports\site-17_1071_nys_route_31_macedon\2023_prr\air sampling\pre-sampling inspection\\et_1071.rt.31.building.inspection.report_20231003.docx

Stantec

Appendix A

Inspection Photographs

Stantec			Photographic Log
Client:	Wayne County Regional Land Bank	Project:	Pre-Indoor Air Sampling Building Inspection
Site Name:	Former Rando Machine Corporation (NYSDEC Site #859014)	Site Location:	1071 NY-Rt.31, Macedon, NY
Photograph ID: 1			10 TURA
Photo Location: Paint Shop (Source A	rea)		The states
Direction: N			
Survey Date: 9/28/2023			
Comments: Minor outside air infiltr was observed from po sealed window in contaminant source an near location of forme crock.	ration porly rea, r dry		
Photograph ID: 2			
Photo Location: Main Floor - North			
Direction: N			
Survey Date: 9/28/2023			
Comments: Significant outdoor air infiltration from large, north-facing overhead located in the north pa the main floor, designa as "Storage" on buildin layout map.	I door art of ated ng		

Stantec			Photographic Log
Client:	Wayne County Regional Land Bank	Project:	Pre-Indoor Air Sampling Building Inspection
Site Name:	Former Rando Machine Corporation (NYSDEC Site #859014)	Site Location:	1071 NY-Rt.31, Macedon, NY
Photograph ID: 3		HIMMESSAS	
Photo Location: Main Floor - Northwes corner	st		
Direction: n/a			
Survey Date: 9/28/2023			
Comments: Sunlight shining throu approximately 2' open the roof above the the designated "Welding S	gh an ing in area Shop"		
Photograph ID: 4			
Photo Location: Main floor - Central			
Direction: n/a			·
Survey Date: 9/28/2023			
Comments: An example of advance stages of corrosion ab "Assembly Shop" obse on numerous corrugate roof panels throughout main product area.	erved ted tt the		

Stantec			Photographic Log
Client:	Wayne County Regional Land Bank	Project:	Pre-Indoor Air Sampling Building Inspection
Site Name:	Former Rando Machine Corporation (NYSDEC Site #859014)	Site Location:	1071 NY-Rt.31, Macedon, NY
Photograph ID: 5			
Photo Location: Main Floor - Central			
Direction: S			
Survey Date: 9/28/2023			
Comments: Piles of saturated, rus metal from the roof we observed in several locations throughout t building, especially in northeast portion of th main floor designated "Assembly Shop" whe the water damage to t roof is most severe.	ere he the he he		
Photograph ID: 6	trat and the second		
Photo Location: Main Floor - Central			
Direction: n/a			
Survey Date: 9/28/2023			
Comments: A 1 ft opening in the reabove the the areadesignated "Welding Shop."	oof		

Photographic Log

Client:	Wayne County Regional Land Bank	Project:	Pre-Indoor Air Sampling Building Inspection
Site Name:	Former Rando Machine Corporation (NYSDEC Site #859014)	Site Location:	1071 NY-Rt.31, Macedon, NY
Photograph ID: 7	ALL CHARTER CHARTER		
Photo Location: Main Floor -West			
Direction: SW			
Survey Date: 9/28/2023			
Comments: Sunlight shining throu opening in the roof illuminates the area al "Recessed sump area	gh an pove "		
Photograph ID: 8		Martine .	
Photo Location: Main Floor - West			Janiil Inn
Direction: n/a	And American and American		
Survey Date: 9/28/2023			
Comments: An approximately 3.5 opening in the roof ab the "Recessed Sump Area." Water and plan material was seen cor through the opening.	ft ove t ning		
Stantec			Photographic Log
--	--	----------------	--
Client:	Wayne County Regional Land Bank	Project:	Pre-Indoor Air Sampling Building Inspection
Site Name:	Former Rando Machine Corporation (NYSDEC Site #859014)	Site Location:	1071 NY-Rt.31, Macedon, NY
Photograph ID: 9			
Photo Location: Main Floor - North			
Direction: E			
Survey Date: 9/28/2023	Port-		
Comments: Cracks in slab up to 3 wide were observed throughout the main production area. The cracks are generally millimeters to up to 2 centimeters scale in d 2'x1'	-inch lepth.		
Photograph ID: 10			
Photo Location: Main Floor - North			
Direction: N			
Survey Date: 9/28/2023		A	
Comments: Cracks and pitting we observed sporadically throughout the main fl but diminish in severit one moves south of th "Storage Area"	re loor, y as he		

A

S s	tantec
-----	--------

Client:	Wayne County Regional Land Bank	Project:	Pre-Indoor Air Sampling Building Inspection	
Site Name:	Former Rando Machine Corporation (NYSDEC Site #859014)	Site Location:	1071 NY-Rt.31, Macedon, NY	
Photograph ID: 11				
Photo Location: Main Floor - Central			the second second	
Direction: n/a		all Alternation		
Survey Date: 9/28/2023				
Comments: Divots up to 2-ft diame and several inches de were observed in the center of the main floo	eter ep or.			

Stantec

Appendix B

Building Layout Diagram

RANDO MACHINE CORP.

1071 STATE ROUTE 31 - MACEDON, NY 14502

Indoor Air Sampling Report 1071 NY-31, Macedon, New York (Former Rando Machine Corporation) NYSDEC Site #859014

APPENDIX C

NYSDOH Indoor Air Quality Questionnaire and Building Inventory

This form must be completed for each residence involved in indoor air testing.

CENTER FOR ENVIRONMENTAL HEALTH

Preparer's Name Christ	ana Deluca	Date/Time Prepared 10/13/2023	0830
Preparer's Affiliation $\underline{C_0N}$	sultant (Stan	nte c) Phone No. (585) 683- 3694	1
Purpose of Investigation	re - Samplin	ng Investigation	
1. OCCUPANT:			
Interviewed: Y			
Last Name:	First 1	Name:	
Address:			
County:			
Home Phone:	Office Pho	one:	
Number of Occupants/persons	at this location	Age of Occupants	-
2. OWNER OR LANDLOR	D: (Check if same as	is occupant)	
Interviewed: Y (N)			
Last Name:	First N	Name:	
Address:			
County:		ĸ	
Home Phone:	Office Pho	one:	
3. BUILDING CHARACTEI	RISTICS		
Type of Building: (Circle appr	ropriate response)		
Residential	School Co	ommercial/Multi-use	

÷

School Church

Industrial

>

Commercial/Multi-use Other:

If the property is residential, t	type? (Circle approp	riate response)
Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment House Log Home	3-Family Colonial Mobile Home Townhouses/Condos Other:
If multiple units, how many?		
If the property is commercial,	, type?	
Business Type(s)		
Does it include residences	(i.e., multi-use)? Y	/ N If yes, how many?
Other characteristics:		
Number of floors	Bu	ilding age
Is the building insulated? Y	/N Ho	w air tight? Tight / Average / Not Tight
4. AIRFLOW Use air current tubes or trace Airflow between floors Airflow near source	er smoke to evaluat	e airflow patterns and qualitatively describe:
Outdoor air infiltration		
Infiltration into air ducts		

5. **BASEMENT AND CONSTRUCTION CHARACTERISTICS** (Circle all that apply)

.

a. Above grade construction:	wood frame	concrete	stone	brick
b. Basement type:	full	crawlspace	slab	other slab with recessed "sump" anda.
c. Basement floor:	concrete w/str	dirt undwa water	stone	other
d. Basement floor:	uncovered	covered	covered with	
e. Concrete floor:	unsealed	sealed	sealed with	unknown
f. Foundation walls:	poured	block	stone	other
g. Foundation walls:	unsealed	sealed	sealed with	unknown
h. The basement is:	wet	damp	dry	moldy (recepted area)
i. The basement is:	finished	unfinished	partially finis	hed
j. Sump present?	Y/N poss	ible, unknown	due to ques	itionable structural integrity
k. Water in sump? Y / N	not applicable	of egres	sjarea uns	iate to enter.
Basement/Lowest level depth below	grade: ~ 12	_(feet)		
Identify potential soil vapor entry p Cracks in slab up to 3" u Possible "pot hole" 4" deep	oints and approvide. Recession in slab.	oximate size (e.g., ed area Floo	cracks, utility r drain ne	ports, drains) (recessed) ar Sump area
6. HEATING, VENTING and AIR	CONDITION	ING (Circle all that	it apply)	
Type of heating system(s) used in th	is building: (cir	cle all that apply	– note primar	y)

Hot air circulation Space Heaters Electric baseboard	Heat pump Stream rad Wood stov	o liation /e	Hot water baseboard Radiant floor Outdoor wood boiler	Other
The primary type of fuel used	is:			
Natural Gas Electric Wood	Fuel Oil Propane Coal		Kerosene UnKnown Solar	- likely natural gas
Domestic hot water tank fuele	d by: <u>UNKnown</u>	- likely	gas	
Boiler/furnace located in:	Basement Ou	utdoors	Main Floor	Other Unknown
Air conditioning:	Central Air Wi	indow units	Open Windows	None
	unki	nown - like	ely none	

ž

3

Are there air distribution ducts present? Y / N

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

7. OCCUPANCY Is basement/lowest level occupied? Full-time Occasionally Seldom Almost Never General Use of Each Floor (e.g., familyroom, bedroom, laundry, workshop, storage) Level Basement 1st Floor 2nd Floor 3rd Floor 4th Floor 8. FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY Y/N a. Is there an attached garage? Y/N/NA b. Does the garage have a separate heating unit? Y/N/NA c. Are petroleum-powered machines or vehicles Please specify_____ stored in the garage (e.g., lawnmower, atv, car) Y / N When?_____ d. Has the building ever had a fire?

e. Is a kerosene or unvented gas space heater present?		Y / N Where?
f. Is there a workshop or hobby/craft area?	Y / N	Where & Type?
g. Is there smoking in the building?	Y / N	How frequently?
h. Have cleaning products been used recently?	Y / N	When & Type?
i. Have cosmetic products been used recently?	Y / N	When & Type?

j. Has painting/sta	ining been done	e in the last 6 m	onths? Y / 🕅) Where & V	Vhen?
k. Is there new car	pet, drapes or o	other textiles?	Y/N) Where & V	Vhen?
l. Have air freshen	ers been used r	ecently?	Y / 🕅) When & T	ype?
m. Is there a kitch	en exhaust fan?		(¥ / N	If yes, whe	re vented? roof possible
n. Is there a bath	oom exhaust fa	n?	(Ý)/ N	If yes, whe	re vented? roof
o. Is there a clothe	s dryer?		Y /N) If yes, is it	vented outside? Y / N
p. Has there been a	a pesticide appli	ication?	Y/Ŋ	When & Ty	/pe?
Are there odors in If yes, please desc	the building? ribe:S	trong milde	(v) N W, mold, (lampnes s	
Do any of the buildin (e.g., chemical manufa boiler mechanic, pesti	g occupants use acturing or labora cide application,	e solvents at wo atory, auto mech cosmetologist	rk? Y / N anic or auto body	y shop, painti	ng, fuel oil delivery,
If yes, what types of	f solvents are use	ed? (N/A);	building i	s Curren	hy vacant
If yes, are their cloth	nes washed at wo	ork?	Y / N		
Do any of the buildin response)	g occupants reg	ularly use or w	ork at a dry-cle	aning service	? (Circle appropriate
Yes, use dry-c Yes, use dry-c Yes, work at a	leaning regularly leaning infreque dry-cleaning ser	(weekly) ntly (monthly or vice	less)	No Unknown	N/A
Is there a radon mitig Is the system active or	ation system fo r passive?	r the building/s	tructure? (y)/ N	Date of Inst	allation $04/2013$
9. WATER AND SEV	VAGE				
Water Supply:	Public Water	Drilled Well	Driven Well	Dug Well	Other: UNKNOWN
Sewage Disposal:	Public Sewer	Septic Tank	Leach Field	Dry Well	Other: UnKnown
10. RELOCATION IN a. Provide reasons	NFORMATION why relocation	l (for oil spill re is recommend	sidential emerg	ency)	(N/A)
b. Residents choos	e to: remain in l	nome reloca	te to friends/fam	ilv relo	cate to hotel/motel
c. Responsibility f	or costs associat	ted with reimbi	rsement explain	ned? Y/1	N
d. Relocation pack	age provided a	nd explained to	residents?	Y / 1	Ň

5

×

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

First Floor:

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

+ industrial space to North and West 1 Cropland/ Comfield Wind W 1 4mph AMB 1 3 parking lot ,2 glassi wh abandoned truck Z property lawn NY-31

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used: _____

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y / N</u>
				W.		
-						

* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)** ** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

BTSA\Sections\SIS\Oil Spills\Guidance Docs\Aiproto4.doc

Indoor Air Sampling Report 1071 NY-31, Macedon, New York (Former Rando Machine Corporation) NYSDEC Site #859014

APPENDIX D

Air Sampling Log

Rando Machine Corporation Indoor Air Sampling: 10/13/2023

Sample ID	IA-RANDO-1	IA-Rando-2	IA-Rando-3	IA-Rando-4	AMB-Rando-1
Sample Type	IA	IA	IA	IA	AMB
Building Area	Paint Shop	Interior Hallway	East Wing	South Office Wing	N/A
Can ID	AC02319	AS01302	AS01718	AS01626	AS01010
Regulator ID	13063	12259	14569	03360	16135
Ambient PID (ppm)	0	0	0	0	0
Start Time			8	15	
Start Pressure (in Hg)	-29.26	-27.94	-28.72	-30.12	-30.31
Check #1 Time			9	15	
Check #1 Pressure	-28	-27	-27.3	-28	-27.1
Check #2 Time			11	115	
Check #2 Pressure	-21.1	-20.5	-21	-21.5	-21
Check #3 Time			13	315	
Check #3 Pressure	-14.8	-14	-13.8	-14.8	-15
Stop Time		1600	1605		1615
Stop Pressure (in Hg)	-2.46	-5.22	-4.37	-4.14	-5.07
Comments	none	Regulator swapped out at beginning of test due to pressure reading zero.	none	none	Regulator decreased in pressure quickly and was not a tight seal to cannister, cannister and pressure dial were switched prior to the start of test.

<u>Sample Type Codes:</u> IA = Indoor Air AMB = Outdoor Air Sample Field Instruments:

PID: Stantec 2

Weather: 50 degrees F, sunny.

Field Staff: C. DeLuca and P. Suter

Indoor Air Sampling Report 1071 NY-31, Macedon, New York (Former Rando Machine Corporation) NYSDEC Site #859014

APPENDIX E

Laboratory Analytical Report

LABORATORY REPORT

October 30, 2023

Patrick Suter Stantec Consulting Group, Inc. 61 Commercial St., Suite 100 Rochester, NY 14614

RE: 1071 Rt. 31 Former Rando Machine Corporation Site / 195602768.200

Dear Patrick:

Enclosed are the results of the samples submitted to our laboratory on October 16, 2023. For your reference, these analyses have been assigned our service request number P2304974.

All analyses were performed according to our laboratory's NELAP and DoD-ELAP-approved quality assurance program. The test results meet requirements of the current NELAP and DoD-ELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP and DoD-ELAP-accredited analytes, refer to the certifications section at <u>www.alsglobal.com</u>. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein.

If you have any questions, please call me at (805) 526-7161.

ALS | Environmental

'nl By Sue Anderson at 4:51 pm. Oct 30, 2023

For Sarah Mock Project Manager

Client:Stantec Consulting Group, Inc.Service Request No:P2304974Project:1071 Rt. 31 Former Rando Machine Corporation Site / 195602768.200
New York Lab ID:11221

CASE NARRATIVE

The samples were received intact under chain of custody on October 16, 2023 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

Volatile Organic Compound Analysis

The samples were analyzed for volatile organic compounds in accordance with EPA Method TO-15 from the Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition (EPA/625/R-96/010b), January, 1999. This procedure is described in laboratory SOP VOA-TO15. The analytical system was comprised of a gas chromatograph/mass spectrometer (GC/MS) interfaced to a whole-air preconcentrator. This method is included on the laboratory's NELAP and DoD-ELAP scope of accreditation. Any analytes flagged with an X are not included on the NELAP or DoD-ELAP accreditation.

The upper control criteria were exceeded for Chloromethane and and 1,3-Butadiene in the Continuing Calibration Verification (CCV) analyzed on October 27, 2023. Therefore, a potential for a high bias exists for those associated sample concentrations reported with positive results. The data has been qualified accordingly.

The spike recoveries of Trichlorotrifluoroethane for the Laboratory Control Sample (LCS) and of 1,2-Dichloro-1,1,2,2-tetrafluoroethane (CFC 114), 1,1-Dichloroethene and Trichlorotrifluoroethane (CFC 113) for the Duplicate Laboratory Control Sample (DLCS) analyzed on October 27, 2023 were outside the laboratory generated control criteria. The recovery errors equate to a potential high bias. However, the spike recoveries of the analytes in question were within the method criteria; therefore, the data quality has not been significantly affected. The data has been flagged accordingly. No further corrective action was necessary.

The containers were cleaned, prior to sampling, down to the method reporting limit (MRL) reported for this project. For projects requiring DoD QSM 5.4 compliance canisters were cleaned to <1/2 the MRL. Please note, projects which require reporting below the MRL could have results between the MRL and method detection limit (MDL) that are biased high.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and ALS Environmental (ALS) is not responsible for utilization of less than the complete report.

Use of ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to ALS any test result, tolerance or specification derived from ALS's data ("Attribution") without ALS's prior written consent, which may be withheld by ALS for any reason in its sole discretion. To request ALS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If ALS has not provided written approval of the Materials or Attribution within ten (10) days of receipt from Client, Client's request to use ALS's name or trademark in any Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of ALS's name or trademark may cause ALS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory.

CERTIFICATIONS, ACCREDITATIONS, AND REGISTRATIONS

Agency	Web Site	Number
Alaska DEC	https://dec.alaska.gov/spar/csp/lab-approval/list-of-approved-labs	17-019
Arizona DHS	http://www.azdhs.gov/preparedness/state-laboratory/lab-licensure- certification/index.php#laboratory-licensure-home	AZ0694
Florida DOH (NELAP)	http://www.floridahealth.gov/licensing-and-regulation/environmental- laboratories/index.html	E871020
Louisiana DEQ (NELAP)	https://internet.deq.louisiana.gov/portal/divisions/lelap/accredited- laboratories	05071
Maine DHHS	http://www.maine.gov/dhhs/mecdc/environmental- health/dwp/professionals/labCert.shtm	2022028
Minnesota DOH (NELAP)	http://www.health.state.mn.us/accreditation	006-999-456
New Jersey DEP (NELAP)	https://dep.nj.gov/dsr/oqa/certified-laboratories/	CA009
New York DOH (NELAP)	http://www.wadsworth.org/labcert/elap/elap.html	11221
Oklahoma DEQ (NELAP)	labaccreditation.deq.ok.gov/labaccreditation/	2207
Oregon PHD (NELAP)	http://www.oregon.gov/oha/ph/LaboratoryServices/EnvironmentalLaboratoryA ccreditation/Pages/index.aspx	4068-012
Pennsylvania DEP	http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory- Accreditation-Program.aspx	68-03307 (Registration)
PJLA (DoD ELAP)	http://www.pjlabs.com/search-accredited-labs	65818 (Testing)
Texas CEQ (NELAP)	http://www.tceq.texas.gov/agency/qa/env lab accreditation.html	T104704413- 23-14
Utah DOH (NELAP)	https://uphl.utah.gov/certifications/environmental-laboratory-certification/	CA016272023 -15
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C946

Analyses were performed according to our laboratory's NELAP and DoD-ELAP approved quality assurance program. A complete listing of specific NELAP and DoD-ELAP certified analytes can be found in the certifications section at <u>www.alsglobal.com</u>, or at the accreditation body's website.

Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact the laboratory for information corresponding to a particular certification.

DETAIL SUMMARY REPORT

Client: Stantec Consulting Group, Inc. Service Request: P2304974 Project ID: 1071 Rt 31 Former Rando Machine Corporation Site / 195602768.200 Date Received: 10/16/2023 TO-15 - VOC Cans 62 Time Received: 09:20 Date Time Container Pi1 Pf1 Client Sample ID Lab Code Matrix Collected Collected ID (psig) (psig) IA-RANDO-1 P2304974-001 Air 10/13/2023 16:00 AC02319 -0.52 4.01 Х IA-RANDO-2 P2304974-002 Air 10/13/2023 16:00 AS01302 -1.91 4.05 Х IA-RANDO-3 P2304974-003 10/13/2023 16:05 AS01718 -1.52 4.20 Х Air IA-RANDO-4 P2304974-004 10/13/2023 16:15 Х Air AS01626 -1.36 3.90

16:15

AS01010

-1.85

4.21

Х

AMB-RANDO-1

P2304974-005

Air

10/13/2023

2655 Park Center Drive, Suite A

(ALS)	Simi Valley, C	California 930	65									
	Phone (805)	526-7161		Requested Turnard	ound Time in Busi	ness Days (Sur	charges) please	circle	-	ALS Project N	8x 497	4
				1 Day (100%) 2 Day	y (75%) 3 Day (50%	%) 4 Day (35%)	5 Day (25%) 10	Day-Stand	ALS Contact	10	2 11	Ц
Company Name & Address (Reporting	Information)			Project Name								
Stanter Consulting	,			1071 Rt 31 A	Former Kando 1	Marhine Con	aration SH	2	Analysis	s Method		
61 Commercial St				Project Number	1.07714	200						
Dreject Monagor				ID O #/ Billing Inform	1 3 9 0 2 7 6 7 . 200							
Project Manager Dwight Harri	inger			P.O. #7 Billing mon	nauon	D			2 per		Comments	
Phone (585) 413-8740	Fax			19560276	g-invoice to dwight.) Unight Ma narrithmer@	stanter-cov	n	445		e.g. Actual Preservative or	
Email Address for Result Reporting	1			Sampler (Print & Sign)	Sampler (Print & Sign) Patrick C							ns
patrick. sufer@star	ntec.com	`	1	0.11.15	TUTTICK SUPE	r Desister	Quidatas		1 though			
Client Sample ID	Laboratory ID Number	Date Collected	Time Collected	(Bar code # - AC, SC, etc.)	(Bar code # - FC #)	Canister Start Pressure "Hg	End Pressure "Hg/psig	Sample Volume	Report		STOP TH	hE
IA-RANDU-1		10/13/23	0815	AS01409	13063	-29.26	-2.46	62	×		1600	
IA-RANDO-2	2			AS01302	12259	-27.94	-5.22	62	×		1600	
IA-RANDU-3	1			AS01718	14569	-28.72	- 4,37	62	×		1605	
JA- RANDO-4	T			AS01624	03360	-30.12	-4.14	6L	×		1615	_
AMB-RANDO -1	K	1	7	AS01010	16135	-30.31	-5.07	61	×		1615	_
												_
	1											
					1							
								$\left \right\rangle$	1			
Repo Tier I - Results (Default if not specified)	rt Tier Levels	- please sele (Results + QC	ect & Calibration S	Summaries)	EDD required	s)/ No	1	Chain of	ustody Seal	: (Circle)	Project Requireme (MRLs, QAPP)	ents
Tier II (Results + QC Summaries)	Tier IV (E	Data Validation	Package) 10%	Surcharge6	Type: Dasic Buis Eff	IEDD Units:	(INTACT	BROKEN	ABSENT		
Relinquisted by: Signature)	Patric	k Sute	Date:	3 1800	Received by: (Signa	(Manite	w Pd.		Date: 10/1723	JJU0		
Relinquished by: (Signature)	10/		Dajle: (Time:	Received by: (Signa	ature)		10-1	Date:	5920	Cooler / Blank	°C
1 No	/				5 of 30			(·				

ALS Environmental Sample Acceptance Check Form

Client	t: Stantec Consul	lting Group, Inc.	···· F	· · · · ·		Work order:	P2304974			
Project	t: 1071 Rt 31 Fo	rmer Rando Machine	Corporation S	ite / 19560276	8.200					
Sample	e(s) received on:	10/16/23		I	Date opened:	10/16/23	by:	ADAV	'ID	
Notes This	form is used for all	complex received by ALS	The use of this f	arm for austadu sa	ale is strictly mo	ont to indicate proc	anaa/ahaanaa and r	ot og on i	diantion	of
<u>Note.</u> This	s form is used for <u>an</u>	Thermal preserved by ALS.	"I lie use of this is	ushatad aithar at t	he request of the	aliant and/an ag na	and has the meth		Iuication	01
compitance	e or noncomorninty.	Thermal preservation and	pri will only be e	valuated entiter at t	ne request of the	e chefit and/or as rec	Julied by the meth	Yes	No	N/A
1	Were sample of	containers properly n	narked with cli	ent sample ID	2			X		
2	Did sample co	ntainers arrive in goo	od condition?	1				X		
3	Were chain-of	-custody papers used	and filled out	?				X		
4	Did sample co	ntainer labels and/or	tags agree wi	th custody pap	ers?				X	
5	Was sample v	olume received adequ	ate for analysi	is?				X		
6	Are samples w	ithin specified holding	g times?					X		
7	Was proper te	mperature (thermal p	oreservation) o	f cooler at rece	ipt adhered to	o?				X
8	Were custody	seals on outside of co	oler/Box/Con	tainer?				X		
		Location of seal(s)?	Box sealing.				Sealing Lid?	X		
	Were signature	e and date included?						X		
	Were seals inta	act?						X		
9	Do container	rs have appropriate pr	eservation, a	ccording to me	thod/SOP or	Client specified	information?			X
	Is there a clier	nt indication that the s	ubmitted samp	oles are pH pre	served?					X
	Were <u>VOA vi</u>	ials checked for prese	nce/absence of	f air bubbles?						X
	Does the client	t/method/SOP require	that the analy	st check the sa	nple pH and	if necessary alte	er it?			\mathbf{X}
10	Tubes:	Are the tubes capp	ed and intact?)						X
11	Badges:	Are the badges pr	operly capped	and intact?						X
		Are dual bed bade	ges separated a	nd individuall	v capped and	intact?				\mathbf{X}
12	Lab Notificatio	on: Analyst and PM	were alerted of	· Short HT or RU	SH samples?					X
13	Client Notifica	tion: Client has been no	otified regarding	g HT exceedance	s and/or other	CoC discrepanci	es?			X
Lab	Sample ID	Container	Required	Received	Adjusted	VOA Headspac	e Recei	pt / Pres	ervation	1

Lab Sample ID	Container	Required	Received	Adjusted	VOA Headspace	Receipt / Preservation
	Description	pH *	рН	рН	(Presence/Absence)	Comments
P2304974-001.01	6.0 L Ambient Can					
P2304974-002.01	6.0 L Silonite Can					
P2304974-003.01	6.0 L Silonite Can					
P2304974-004.01	6.0 L Silonite Can					
P2304974-005.01	6.0 L Silonite Can					
P2304974-006.01	6.0 L Silonite Can					Return Unused

Explain any discrepancies: (include lab sample ID numbers):

The can ID for sample -001 notes AS01409 on the COC but the correct ID is AC02319.

RESULTS OF ANALYSIS

Page 1 of 3

Client: Client Sample ID:	Stantec Consulting Group, Inc. IA-RANDO-1	ALS Project ID: P2	304974			
Client Project ID:	1071 Rt 31 Former Rando Machine Corporation Site / 195602768.20	0 ALS Sample ID: P2.	ALS Sample ID: P2304974-001			
Test Code:	EPA TO-15	Date Collected: 10/	Date Collected: 10/13/23			
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13	Date Received: 10/	Date Received: 10/16/23			
Analyst:	Topacio Zavala	Date Analyzed: 10/	/27/23			
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed:	1.00 Liter(s)			
Test Notes:						
Container ID:	AC02319					

Initial Pressure (psig): -0.52 Final Pressure (psig):

4.01

Canister Dilution Factor: 1.32

CAS #	Compound	Result	MRL	MDL	Result	MRL	MDL	Data
		μg/m³	µg/m³	µg/m³	ppbV	ppb∨	ppbV	Qualifier
115-07-1	Propene	ND	0.70	0.17	ND	0.41	0.10	
75-71-8	Dichlorodifluoromethane (CFC 12)	3.5	0.70	0.11	0.71	0.14	0.023	
74-87-3	Chloromethane	0.33	0.69	0.11	0.16	0.33	0.055	J, V
76 14 2	1,2-Dichloro-1,1,2,2-	0.11	0.60	0.11	0.016	0.008		т
/0-14-2	tetrafluoroethane (CFC 114)	0.11	0.09	0.11	0.010	0.098	0.016	J
75-01-4	Vinyl Chloride	ND	0.67	0.075	ND	0.26	0.029	
106-99-0	1,3-Butadiene	ND	0.70	0.12	ND	0.32	0.053	
74-83-9	Bromomethane	ND	0.67	0.098	ND	0.17	0.025	
75-00-3	Chloroethane	ND	0.69	0.087	ND	0.26	0.033	
67-64-1	Acetone	3.8	7.0	1.6	1.6	2.9	0.67	J
75-69-4	Trichlorofluoromethane (CFC 11)	3.8	0.69	0.11	0.67	0.12	0.019	
67-63-0	2-Propanol (Isopropyl Alcohol)	0.40	1.4	0.29	0.16	0.55	0.12	J
75-35-4	1,1-Dichloroethene	ND	0.71	0.098	ND	0.18	0.025	
75-09-2	Methylene Chloride	0.22	0.70	0.20	0.065	0.20	0.057	J
76-13-1	Trichlorotrifluoroethane (CFC 113)	0.48	0.71	0.10	0.063	0.093	0.013	J
75-15-0	Carbon Disulfide	0.42	1.4	0.21	0.13	0.45	0.068	J
156-60-5	trans-1,2-Dichloroethene	ND	0.71	0.098	ND	0.18	0.025	
75-34-3	1,1-Dichloroethane	ND	0.71	0.10	ND	0.18	0.025	
1634-04-4	Methyl tert-Butyl Ether	ND	0.71	0.083	ND	0.20	0.023	
108-05-4	Vinyl Acetate	ND	6.6	1.6	ND	1.9	0.45	
78-93-3	2-Butanone (MEK)	0.43	1.4	0.15	0.15	0.47	0.049	J
156-59-2	cis-1,2-Dichloroethene	ND	0.70	0.099	ND	0.18	0.025	

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

V = The continuing calibration verification standard was outside (biased high) the specified limits for this compound.

RESULTS OF ANALYSIS

Page 2 of 3

Client: Client Sample ID:	Stantec Consulting Group, Inc. IA-RANDO-1	ALS Project ID: P2	304974			
Client Project ID:	1071 Rt 31 Former Rando Machine Corporation Site / 195602768.20	00 ALS Sample ID: P2	ALS Sample ID: P2304974-001			
Test Code:	EPA TO-15	Date Collected: 10/	Date Collected: 10/13/23			
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13	Date Received: 10/	Date Received: 10/16/23			
Analyst:	Topacio Zavala	Date Analyzed: 10/	/27/23			
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed:	1.00 Liter(s)			
Test Notes:						
Container ID:	AC02319					

Initial Pressure (psig): -0.52

Final Pressure (psig):

4.01

Canister Dilution Factor: 1.32

CAS #	Compound	Result	MRL	MDL	Result	MRL	MDL	Data
		μg/m ³	µg/m³	µg/m²	ppbV	ppbV	ppb∨	Qualifier
141-78-6	Ethyl Acetate	4.9	2.8	0.37	1.4	0.77	0.10	
110-54-3	n-Hexane	0.22	0.70	0.15	0.062	0.20	0.041	J
67-66-3	Chloroform	0.11	0.70	0.094	0.023	0.14	0.019	J
109-99-9	Tetrahydrofuran (THF)	0.12	1.3	0.088	0.041	0.45	0.030	J
107-06-2	1,2-Dichloroethane	ND	0.71	0.078	ND	0.18	0.019	
71-55-6	1,1,1-Trichloroethane	0.21	0.70	0.087	0.039	0.13	0.016	J
71-43-2	Benzene	0.43	0.71	0.10	0.13	0.22	0.032	J
56-23-5	Carbon Tetrachloride	0.43	0.69	0.098	0.069	0.11	0.016	J
110-82-7	Cyclohexane	ND	1.4	0.20	ND	0.40	0.058	
78-87-5	1,2-Dichloropropane	ND	0.70	0.087	ND	0.15	0.019	
75-27-4	Bromodichloromethane	ND	0.71	0.10	ND	0.11	0.015	
79-01-6	Trichloroethene	ND	0.70	0.095	ND	0.13	0.018	
123-91-1	1,4-Dioxane	0.58	0.70	0.083	0.16	0.19	0.023	J
142-82-5	n-Heptane	0.26	0.70	0.11	0.063	0.17	0.027	J
10061-01-5	cis-1,3-Dichloropropene	ND	0.71	0.11	ND	0.16	0.024	
108-10-1	4-Methyl-2-pentanone	0.11	1.5	0.096	0.026	0.35	0.024	J
10061-02-6	trans-1,3-Dichloropropene	ND	0.67	0.15	ND	0.15	0.032	
79-00-5	1,1,2-Trichloroethane	ND	0.70	0.071	ND	0.13	0.013	
108-88-3	Toluene	0.89	0.70	0.086	0.24	0.19	0.023	
591-78-6	2-Hexanone	0.091	1.5	0.087	0.022	0.35	0.021	J

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

RESULTS OF ANALYSIS

Page 3 of 3

Client:	Stantec Consulting Group, Inc.				
Client Sample ID:	IA-RANDO-1	ALS Project ID:	P2304974		
Client Project ID:	1071 Rt 31 Former Rando Machine Corporation Site / 195602768.20	00 ALS Sample ID:	P2304974-001		
Test Code:	EPA TO-15	Date Collected:	Date Collected: 10/13/23		
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13	Date Received:	Date Received: 10/16/23		
Analyst:	Topacio Zavala	Date Analyzed:	10/27/23		
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed:	1.00 Liter(s)		
Test Notes:					
Container ID:	AC02319				
Container ID:	AC02319				

Initial Pressure (psig): -0.52

Final Pressure (psig):

4.01

Canister Dilution Factor: 1.32

		Result	MRL	MDL	Result	MRL	MDL	Data
CAS #	Compound	μg/m³	μg/m³	μg/m³	ppbV	ppbV	ppbV	Qualifier
124-48-1	Dibromochloromethane	ND	0.71	0.092	ND	0.084	0.011	
106-93-4	1,2-Dibromoethane	ND	0.69	0.082	ND	0.089	0.011	
127-18-4	Tetrachloroethene	ND	0.70	0.091	ND	0.10	0.013	
108-90-7	Chlorobenzene	ND	0.70	0.094	ND	0.15	0.020	
100-41-4	Ethylbenzene	0.23	0.70	0.099	0.054	0.16	0.023	J
179601-23-1	m,p-Xylenes	0.93	1.5	0.18	0.21	0.33	0.043	J
75-25-2	Bromoform	ND	0.71	0.15	ND	0.069	0.014	
100-42-5	Styrene	ND	0.70	0.11	ND	0.16	0.027	
95-47-6	o-Xylene	0.59	0.70	0.10	0.14	0.16	0.023	J
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.70	0.098	ND	0.10	0.014	
98-82-8	Cumene	ND	0.71	0.10	ND	0.15	0.021	
622-96-8	4-Ethyltoluene	ND	0.73	0.11	ND	0.15	0.023	
108-67-8	1,3,5-Trimethylbenzene	ND	0.70	0.10	ND	0.14	0.021	
95-63-6	1,2,4-Trimethylbenzene	0.12	0.70	0.098	0.025	0.14	0.020	J
100-44-7	Benzyl Chloride	ND	2.8	0.16	ND	0.54	0.031	
541-73-1	1,3-Dichlorobenzene	ND	0.70	0.11	ND	0.12	0.018	
106-46-7	1,4-Dichlorobenzene	ND	0.70	0.11	ND	0.12	0.018	
95-50-1	1,2-Dichlorobenzene	ND	0.71	0.10	ND	0.12	0.017	
120-82-1	1,2,4-Trichlorobenzene	ND	1.5	0.17	ND	0.20	0.023	
91-20-3	Naphthalene	0.61	0.73	0.17	0.12	0.14	0.033	J
87-68-3	Hexachlorobutadiene	ND	0.70	0.15	ND	0.066	0.014	

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

RESULTS OF ANALYSIS

Page 1 of 3

Client:	Stantec Consulting Group, Inc.					
Client Sample ID:	IA-RANDO-2	ALS Project ID: P2	ALS Project ID: P2304974			
Client Project ID:	1071 Rt 31 Former Rando Machine Corporation Site / 195602768.20	ALS Sample ID: P2304974-002				
Test Code:	EPA TO-15	Date Collected: 10	Date Collected: 10/13/23			
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13	Date Received: 10	Date Received: 10/16/23			
Analyst:	Topacio Zavala	Date Analyzed: 10	/27/23			
Sample Type:	6.0 L Silonite Canister	Volume(s) Analyzed:	1.00 Liter(s)			
Test Notes:						
Container ID:	AS01302					

-1.91 Initial Pressure (psig):

...

Final Pressure (psig):

4.05

Canister Dilution Factor: 1.47

CAS #	Compound	Result	MRL	MDL	Result	MRL	MDL	Data
		μg/m ³	μg/m ³	µg/m ³	рроу	ррву	ррбу	Quaimer
115-07-1	Propene	ND	0.78	0.19	ND	0.45	0.11	
75-71-8	Dichlorodifluoromethane (CFC 12)	4.0	0.78	0.13	0.81	0.16	0.026	
74-87-3	Chloromethane	0.28	0.76	0.13	0.14	0.37	0.061	J, V
76 14 2	1,2-Dichloro-1,1,2,2-	0.12	0.76	0.12	0.019	0.11		т
/6-14-2	tetrafluoroethane (CFC 114)	0.12	0.70	0.12	0.010	0.11	0.018	J
75-01-4	Vinyl Chloride	ND	0.75	0.084	ND	0.29	0.033	
106-99-0	1,3-Butadiene	ND	0.78	0.13	ND	0.35	0.058	
74-83-9	Bromomethane	ND	0.75	0.11	ND	0.19	0.028	
75-00-3	Chloroethane	ND	0.76	0.097	ND	0.29	0.037	
67-64-1	Acetone	4.4	7.7	1.8	1.9	3.3	0.74	J
75-69-4	Trichlorofluoromethane (CFC 11)	3.7	0.76	0.12	0.67	0.14	0.021	
67-63-0	2-Propanol (Isopropyl Alcohol)	0.48	1.5	0.32	0.19	0.61	0.13	J
75-35-4	1,1-Dichloroethene	ND	0.79	0.11	ND	0.20	0.027	
75-09-2	Methylene Chloride	0.25	0.78	0.22	0.072	0.22	0.063	J
76-13-1	Trichlorotrifluoroethane (CFC 113)	0.55	0.79	0.11	0.072	0.10	0.015	J
75-15-0	Carbon Disulfide	0.32	1.6	0.24	0.10	0.51	0.076	J
156-60-5	trans-1,2-Dichloroethene	ND	0.79	0.11	ND	0.20	0.027	
75-34-3	1,1-Dichloroethane	ND	0.79	0.11	ND	0.20	0.028	
1634-04-4	Methyl tert-Butyl Ether	ND	0.79	0.093	ND	0.22	0.026	
108-05-4	Vinyl Acetate	ND	7.4	1.8	ND	2.1	0.50	
78-93-3	2-Butanone (MEK)	0.39	1.5	0.16	0.13	0.52	0.055	J
156-59-2	cis-1,2-Dichloroethene	ND	0.78	0.11	ND	0.20	0.028	

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

V = The continuing calibration verification standard was outside (biased high) the specified limits for this compound.

RESULTS OF ANALYSIS

Page 2 of 3

Client: Client Sample ID:	Stantec Consulting Group, Inc. IA-RANDO-2	ALS Project ID: P2304974 ALS Sample ID: P2304974-002				
Client Project ID:	1071 Rt 31 Former Rando Machine Corporation Site / 195602768.20					
Test Code:	EPA TO-15	Date Collected: 10/	Date Collected: 10/13/23			
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13	Date Received: 10/	Date Received: 10/16/23			
Analyst:	Topacio Zavala	Date Analyzed: 10/	/27/23			
Sample Type:	6.0 L Silonite Canister	Volume(s) Analyzed:	1.00 Liter(s)			
Test Notes:						
Container ID:	AS01302					

Initial Pressure (psig): -1.91

Final Pressure (psig):

4.05

Canister Dilution Factor: 1.47

CAS #	Compound	Result	MRL µg/m ³	MDL µg/m ³	Result ppbV	MRL ppbV	MDL ppbV	Data Oualifier
141-78-6	Ethyl Acetate	4.4	3.1	0.41	1.2	0.86	0.11	Quainter
110-54-3	n-Hexane	0.23	0.78	0.16	0.065	0.22	0.046	J
67-66-3	Chloroform	0.14	0.78	0.10	0.028	0.16	0.021	J
109-99-9	Tetrahydrofuran (THF)	ND	15	0.098	ND	0.50	0.033	Ū
107-06-2	1.2-Dichloroethane	ND	0.79	0.087	ND	0.20	0.021	
71-55-6	1.1.1-Trichloroethane	0.11	0.78	0.097	0.020	0.14	0.018	J
71-43-2	Benzene	0.41	0.79	0.11	0.13	0.25	0.035	J
56-23-5	Carbon Tetrachloride	0.42	0.76	0.11	0.066	0.12	0.017	J
110-82-7	Cvclohexane	ND	1.5	0.22	ND	0.45	0.064	, i i i i i i i i i i i i i i i i i i i
78-87-5	1.2-Dichloropropane	ND	0.78	0.097	ND	0.17	0.021	
75-27-4	Bromodichloromethane	ND	0.79	0.11	ND	0.12	0.017	
79-01-6	Trichloroethene	ND	0.78	0.11	ND	0.15	0.020	
123-91-1	1.4-Dioxane	0.16	0.78	0.093	0.045	0.22	0.026	J
142-82-5	n-Heptane	0.23	0.78	0.12	0.056	0.19	0.031	Ĵ
10061-01-5	cis-1.3-Dichloropropene	ND	0.79	0.12	ND	0.17	0.027	0
108-10-1	4-Methyl-2-pentanone	ND	1.6	0.11	ND	0.39	0.026	
10061-02-6	trans-1.3-Dichloropropene	ND	0.75	0.16	ND	0.17	0.036	
79-00-5	1.1.2-Trichloroethane	ND	0.78	0.079	ND	0.14	0.015	
108-88-3	Toluene	0.89	0.78	0.096	0.24	0.21	0.025	
591-78-6	2-Hexanone	ND	1.6	0.097	ND	0.39	0.024	

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

RESULTS OF ANALYSIS

Page 3 of 3

Client: Client Sample ID:	Stantec Consulting Group, Inc. IA-RANDO-2	ALS Project ID:	P2304974
Client Project ID:	1071 Rt 31 Former Rando Machine Corporation Site / 195602768.20	00 ALS Sample ID:	P2304974-002
Test Code:	EPA TO-15	Date Collected:	10/13/23
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13	Date Received:	10/16/23
Analyst:	Topacio Zavala	Date Analyzed:	10/27/23
Sample Type:	6.0 L Silonite Canister	Volume(s) Analyzed:	1.00 Liter(s)
Test Notes:			
Container ID:	AS01302		

Initial Pressure (psig): -1.91

Final Pressure (psig):

4.05

Canister Dilution Factor: 1.47

		Result	MRL	MDL	Result	MRL	MDL	Data
CAS #	Compound	μg/m³	μg/m³	µg/m³	ppbV	ppbV	ppbV	Qualifier
124-48-1	Dibromochloromethane	ND	0.79	0.10	ND	0.093	0.012	
106-93-4	1,2-Dibromoethane	ND	0.76	0.091	ND	0.10	0.012	
127-18-4	Tetrachloroethene	ND	0.78	0.10	ND	0.11	0.015	
108-90-7	Chlorobenzene	ND	0.78	0.10	ND	0.17	0.023	
100-41-4	Ethylbenzene	0.16	0.78	0.11	0.036	0.18	0.025	J
179601-23-1	m,p-Xylenes	0.52	1.6	0.21	0.12	0.37	0.047	J
75-25-2	Bromoform	ND	0.79	0.16	ND	0.077	0.016	
100-42-5	Styrene	ND	0.78	0.13	ND	0.18	0.030	
95-47-6	o-Xylene	0.31	0.78	0.11	0.072	0.18	0.026	J
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.78	0.11	ND	0.11	0.016	
98-82-8	Cumene	ND	0.79	0.11	ND	0.16	0.023	
622-96-8	4-Ethyltoluene	ND	0.81	0.12	ND	0.16	0.025	
108-67-8	1,3,5-Trimethylbenzene	ND	0.78	0.11	ND	0.16	0.023	
95-63-6	1,2,4-Trimethylbenzene	0.12	0.78	0.11	0.025	0.16	0.022	J
100-44-7	Benzyl Chloride	ND	3.1	0.18	ND	0.60	0.034	
541-73-1	1,3-Dichlorobenzene	ND	0.78	0.12	ND	0.13	0.020	
106-46-7	1,4-Dichlorobenzene	ND	0.78	0.12	ND	0.13	0.020	
95-50-1	1,2-Dichlorobenzene	ND	0.79	0.12	ND	0.13	0.019	
120-82-1	1,2,4-Trichlorobenzene	ND	1.6	0.19	ND	0.22	0.026	
91-20-3	Naphthalene	0.65	0.81	0.19	0.12	0.15	0.036	J
87-68-3	Hexachlorobutadiene	ND	0.78	0.16	ND	0.073	0.015	

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

RESULTS OF ANALYSIS

Page 1 of 3

Client: Client Sample ID:	Stantec Consulting Group, Inc. IA-RANDO-3	ALS Project ID: P2	304974
Client Project ID:	1071 Rt 31 Former Rando Machine Corporation Site / 195602768.20	0 ALS Sample ID: P2	304974-003
Test Code:	EPA TO-15	Date Collected: 10	/13/23
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13	Date Received: 10	/16/23
Analyst:	Topacio Zavala	Date Analyzed: 10	/27/23
Sample Type:	6.0 L Silonite Canister	Volume(s) Analyzed:	1.00 Liter(s)
Test Notes:			
Container ID:	AS01718		

Initial Pressure (psig): -1.52 Final Pressure (psig):

4.20

Canister Dilution Factor: 1.43

CAS #	Compound	Result	MRL	MDL	Result	MRL	MDL	Data
		μg/m³	µg/m³	µg/m³	ppbV	ppb∨	ppbV	Qualifier
115-07-1	Propene	ND	0.76	0.19	ND	0.44	0.11	
75-71-8	Dichlorodifluoromethane (CFC 12)	3.1	0.76	0.12	0.62	0.15	0.025	
74-87-3	Chloromethane	0.31	0.74	0.12	0.15	0.36	0.060	J, V
76 14 2	1,2-Dichloro-1,1,2,2-	0.12	0.74	0.12	0.010	0.11		т
/0-14-2	tetrafluoroethane (CFC 114)	0.15	0.74	0.12	0.019	0.11	0.017	J
75-01-4	Vinyl Chloride	ND	0.73	0.082	ND	0.29	0.032	
106-99-0	1,3-Butadiene	ND	0.76	0.13	ND	0.34	0.057	
74-83-9	Bromomethane	ND	0.73	0.11	ND	0.19	0.027	
75-00-3	Chloroethane	ND	0.74	0.094	ND	0.28	0.036	
67-64-1	Acetone	5.2	7.5	1.7	2.2	3.2	0.72	J
75-69-4	Trichlorofluoromethane (CFC 11)	3.5	0.74	0.12	0.63	0.13	0.021	
67-63-0	2-Propanol (Isopropyl Alcohol)	0.62	1.5	0.31	0.25	0.60	0.13	J
75-35-4	1,1-Dichloroethene	ND	0.77	0.11	ND	0.19	0.027	
75-09-2	Methylene Chloride	0.25	0.76	0.21	0.072	0.22	0.062	J
76-13-1	Trichlorotrifluoroethane (CFC 113)	0.51	0.77	0.11	0.066	0.10	0.014	J
75-15-0	Carbon Disulfide	0.97	1.5	0.23	0.31	0.49	0.074	J
156-60-5	trans-1,2-Dichloroethene	ND	0.77	0.11	ND	0.19	0.027	
75-34-3	1,1-Dichloroethane	ND	0.77	0.11	ND	0.19	0.028	
1634-04-4	Methyl tert-Butyl Ether	ND	0.77	0.090	ND	0.21	0.025	
108-05-4	Vinyl Acetate	ND	7.2	1.7	ND	2.0	0.49	
78-93-3	2-Butanone (MEK)	0.52	1.5	0.16	0.18	0.50	0.053	J
156-59-2	cis-1,2-Dichloroethene	ND	0.76	0.11	ND	0.19	0.027	

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

V = The continuing calibration verification standard was outside (biased high) the specified limits for this compound.

RESULTS OF ANALYSIS

Page 2 of 3

Client: Client Sample ID:	Stantec Consulting Group, Inc. IA-RANDO-3	ALS Project ID: P2	304974		
Client Project ID:	ID: 1071 Rt 31 Former Rando Machine Corporation Site / 195602768.200 ALS Sample ID: P23				
Test Code:	EPA TO-15	Date Collected: 10	/13/23		
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13	Date Received: 10	/16/23		
Analyst:	Topacio Zavala	Date Analyzed: 10	/27/23		
Sample Type:	6.0 L Silonite Canister	Volume(s) Analyzed:	1.00 Liter(s)		
Test Notes:					
Container ID:	AS01718				

Initial Pressure (psig): -1.52

Final Pressure (psig):

4.20

Canister Dilution Factor: 1.43

CAS #	Compound	Result ug/m ³	MRL ug/m ³	MDL µg/m ³	Result ppbV	MRL ppbV	MDL ppbV	Data Oualifier
141-78-6	Ethyl Acetate	6.3	3.0	0.40	1.8	0.83	0.11	<u>(</u>
110-54-3	n-Hexane	0.24	0.76	0.16	0.067	0.22	0.045	J
67-66-3	Chloroform	0.14	0.76	0.10	0.028	0.16	0.021	J
109-99-9	Tetrahydrofuran (THF)	ND	1.4	0.096	ND	0.49	0.032	
107-06-2	1,2-Dichloroethane	ND	0.77	0.084	ND	0.19	0.021	
71-55-6	1,1,1-Trichloroethane	0.11	0.76	0.094	0.019	0.14	0.017	J
71-43-2	Benzene	0.43	0.77	0.11	0.14	0.24	0.034	J
56-23-5	Carbon Tetrachloride	0.42	0.74	0.11	0.066	0.12	0.017	J
110-82-7	Cyclohexane	ND	1.5	0.21	ND	0.44	0.062	
78-87-5	1,2-Dichloropropane	ND	0.76	0.094	ND	0.16	0.020	
75-27-4	Bromodichloromethane	ND	0.77	0.11	ND	0.12	0.016	
79-01-6	Trichloroethene	ND	0.76	0.10	ND	0.14	0.019	
123-91-1	1,4-Dioxane	0.18	0.76	0.090	0.050	0.21	0.025	J
142-82-5	n-Heptane	0.23	0.76	0.12	0.056	0.19	0.030	J
10061-01-5	cis-1,3-Dichloropropene	ND	0.77	0.12	ND	0.17	0.026	
108-10-1	4-Methyl-2-pentanone	ND	1.6	0.10	ND	0.38	0.025	
10061-02-6	trans-1,3-Dichloropropene	ND	0.73	0.16	ND	0.16	0.035	
79-00-5	1,1,2-Trichloroethane	ND	0.76	0.077	ND	0.14	0.014	
108-88-3	Toluene	0.84	0.76	0.093	0.22	0.20	0.025	
591-78-6	2-Hexanone	ND	1.6	0.094	ND	0.38	0.023	

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

RESULTS OF ANALYSIS

Page 3 of 3

Client: Client Sample ID:	Stantec Consulting Group, Inc. IA-RANDO-3	ALS Project ID: P23	304974
Client Project ID:	1071 Rt 31 Former Rando Machine Corporation Site / 195602768.20	0 ALS Sample ID: P23	304974-003
Test Code:	EPA TO-15	Date Collected: 10/	13/23
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13	Date Received: 10/	16/23
Analyst:	Topacio Zavala	Date Analyzed: 10/2	27/23
Sample Type:	6.0 L Silonite Canister	Volume(s) Analyzed:	1.00 Liter(s)
Test Notes:			
Container ID:	AS01718		

Initial Pressure (psig): -1.52

Final Pressure (psig):

4.20

Canister Dilution Factor: 1.43

		Result	MRL	MDL	Result	MRL	MDL	Data
CAS #	Compound	μg/m³	$\mu g/m^3$	μg/m³	ppbV	ppbV	ppbV	Qualifier
124-48-1	Dibromochloromethane	ND	0.77	0.10	ND	0.091	0.012	
106-93-4	1,2-Dibromoethane	ND	0.74	0.089	ND	0.097	0.012	
127-18-4	Tetrachloroethene	ND	0.76	0.099	ND	0.11	0.015	
108-90-7	Chlorobenzene	ND	0.76	0.10	ND	0.16	0.022	
100-41-4	Ethylbenzene	0.15	0.76	0.11	0.036	0.17	0.025	J
179601-23-1	m,p-Xylenes	0.43	1.6	0.20	0.099	0.36	0.046	J
75-25-2	Bromoform	ND	0.77	0.16	ND	0.075	0.015	
100-42-5	Styrene	ND	0.76	0.12	ND	0.18	0.029	
95-47-6	o-Xylene	0.27	0.76	0.11	0.063	0.17	0.025	J
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.76	0.11	ND	0.11	0.015	
98-82-8	Cumene	ND	0.77	0.11	ND	0.16	0.022	
622-96-8	4-Ethyltoluene	ND	0.79	0.12	ND	0.16	0.025	
108-67-8	1,3,5-Trimethylbenzene	ND	0.76	0.11	ND	0.15	0.022	
95-63-6	1,2,4-Trimethylbenzene	ND	0.76	0.11	ND	0.15	0.022	
100-44-7	Benzyl Chloride	ND	3.0	0.17	ND	0.58	0.033	
541-73-1	1,3-Dichlorobenzene	ND	0.76	0.11	ND	0.13	0.019	
106-46-7	1,4-Dichlorobenzene	ND	0.76	0.12	ND	0.13	0.020	
95-50-1	1,2-Dichlorobenzene	ND	0.77	0.11	ND	0.13	0.019	
120-82-1	1,2,4-Trichlorobenzene	ND	1.6	0.19	ND	0.21	0.025	
91-20-3	Naphthalene	0.65	0.79	0.19	0.12	0.15	0.035	J
87-68-3	Hexachlorobutadiene	ND	0.76	0.16	ND	0.071	0.015	

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

RESULTS OF ANALYSIS

Page 1 of 3

Client: Client Sample ID:	Stantec Consulting Group, Inc. IA-RANDO-4	ALS Project ID: P2	304974		
Client Project ID:	Rt 31 Former Rando Machine Corporation Site / 195602768.200 ALS Sample ID: P2304974-00				
Test Code:	EPA TO-15	Date Collected: 10	/13/23		
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13	Date Received: 10	/16/23		
Analyst:	Topacio Zavala	Date Analyzed: 10	/27/23		
Sample Type:	6.0 L Silonite Canister	Volume(s) Analyzed:	1.00 Liter(s)		
Test Notes:					
Container ID:	AS01626				

Initial Pressure (psig): -1.36

Final Pressure (psig):

3.90

Canister Dilution Factor: 1.39

CAS #	Compound	Result	MRL	MDL	Result	MRL pphV	MDL pphV	Data Qualifier
115-07-1	Propene	μg/m ND	$\frac{\mu g/m}{0.74}$	$\frac{\mu g}{11}$	ND	0.43	0.11	Quanner
75-71-8	Dichlorodifluoromethane (CFC 12)	2.6	0.74	0.12	0.53	0.15	0.024	
74-87-3	Chloromethane	0.27	0.72	0.12	0.13	0.35	0.058	J. V
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	0.12	0.72	0.12	0.017	0.10	0.017	J
75-01-4	Vinyl Chloride	ND	0.71	0.079	ND	0.28	0.031	
106-99-0	1,3-Butadiene	ND	0.74	0.12	ND	0.33	0.055	
74-83-9	Bromomethane	ND	0.71	0.10	ND	0.18	0.027	
75-00-3	Chloroethane	ND	0.72	0.092	ND	0.27	0.035	
67-64-1	Acetone	3.8	7.3	1.7	1.6	3.1	0.70	J
75-69-4	Trichlorofluoromethane (CFC 11)	1.9	0.72	0.11	0.33	0.13	0.020	
67-63-0	2-Propanol (Isopropyl Alcohol)	0.93	1.4	0.31	0.38	0.58	0.12	J
75-35-4	1,1-Dichloroethene	ND	0.75	0.10	ND	0.19	0.026	
75-09-2	Methylene Chloride	0.27	0.74	0.21	0.076	0.21	0.060	J
76-13-1	Trichlorotrifluoroethane (CFC 113)	0.48	0.75	0.11	0.062	0.098	0.014	J
75-15-0	Carbon Disulfide	ND	1.5	0.22	ND	0.48	0.071	
156-60-5	trans-1,2-Dichloroethene	ND	0.75	0.10	ND	0.19	0.026	
75-34-3	1,1-Dichloroethane	ND	0.75	0.11	ND	0.19	0.027	
1634-04-4	Methyl tert-Butyl Ether	ND	0.75	0.088	ND	0.21	0.024	
108-05-4	Vinyl Acetate	ND	7.0	1.7	ND	2.0	0.47	
78-93-3	2-Butanone (MEK)	0.37	1.4	0.15	0.13	0.49	0.052	J
156-59-2	cis-1,2-Dichloroethene	ND	0.74	0.10	ND	0.19	0.026	

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

V = The continuing calibration verification standard was outside (biased high) the specified limits for this compound.

RESULTS OF ANALYSIS

Page 2 of 3

Client: Client Sample ID:	Stantec Consulting Group, Inc. IA-RANDO-4	ALS Project ID: P2	304974		
Client Project ID:	et ID: 1071 Rt 31 Former Rando Machine Corporation Site / 195602768.200 ALS Sample ID: P2				
Test Code:	EPA TO-15	Date Collected: 10/	/13/23		
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13	Date Received: 10/	/16/23		
Analyst:	Topacio Zavala	Date Analyzed: 10/	/27/23		
Sample Type:	6.0 L Silonite Canister	Volume(s) Analyzed:	1.00 Liter(s)		
Test Notes:					
Container ID:	AS01626				

Initial Pressure (psig): -1.36

Final Pressure (psig):

3.90

Canister Dilution Factor: 1.39

CAS #	Compound	Result	MRL ug/m ³	MDL µg/m ³	Result ppbV	MRL ppbV	MDL ppbV	Data Qualifier
141-78-6	Ethyl Acetate	4.9	2.9	0.39	<u></u> 1.4	0.81	0.11	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>
110-54-3	n-Hexane	0.17	0.74	0.15	0.047	0.21	0.043	J
67-66-3	Chloroform	0.11	0.74	0.099	0.022	0.15	0.020	J
109-99-9	Tetrahvdrofuran (THF)	ND	1.4	0.093	ND	0.47	0.032	, i i i i i i i i i i i i i i i i i i i
107-06-2	1.2-Dichloroethane	ND	0.75	0.082	ND	0.19	0.020	
71-55-6	1,1,1-Trichloroethane	ND	0.74	0.092	ND	0.14	0.017	
71-43-2	Benzene	0.45	0.75	0.11	0.14	0.24	0.034	J
56-23-5	Carbon Tetrachloride	0.45	0.72	0.10	0.072	0.11	0.016	J
110-82-7	Cyclohexane	ND	1.5	0.21	ND	0.42	0.061	
78-87-5	1,2-Dichloropropane	ND	0.74	0.092	ND	0.16	0.020	
75-27-4	Bromodichloromethane	ND	0.75	0.11	ND	0.11	0.016	
79-01-6	Trichloroethene	ND	0.74	0.10	ND	0.14	0.019	
123-91-1	1,4-Dioxane	ND	0.74	0.088	ND	0.20	0.024	
142-82-5	n-Heptane	ND	0.74	0.12	ND	0.18	0.029	
10061-01-5	cis-1,3-Dichloropropene	ND	0.75	0.12	ND	0.17	0.025	
108-10-1	4-Methyl-2-pentanone	ND	1.5	0.10	ND	0.37	0.025	
10061-02-6	trans-1,3-Dichloropropene	ND	0.71	0.15	ND	0.16	0.034	
79-00-5	1,1,2-Trichloroethane	ND	0.74	0.075	ND	0.14	0.014	
108-88-3	Toluene	0.92	0.74	0.090	0.24	0.20	0.024	
591-78-6	2-Hexanone	ND	1.5	0.092	ND	0.37	0.022	

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

RESULTS OF ANALYSIS

Page 3 of 3

Client:	Stantec Consulting Group, Inc.				
Client Sample ID:	IA-RANDO-4	ALS Project ID: P2	2304974		
Client Project ID:	1071 Rt 31 Former Rando Machine Corporation Site / 195602768.20	ALS Sample ID: P2304974-004			
Test Code:	EPA TO-15	Date Collected: 10)/13/23		
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13	Date Received: 10	Date Received: 10/16/23		
Analyst:	Topacio Zavala	Date Analyzed: 10)/27/23		
Sample Type: Test Notes:	6.0 L Silonite Canister	Volume(s) Analyzed:	1.00 Liter(s)		
Container ID:	AS01626				

Initial Pressure (psig): -1.36

Final Pressure (psig):

3.90

Canister Dilution Factor: 1.39

		Result	MRL	MDL	Result	MRL	MDL	Data
CAS #	Compound	μg/m³	$\mu g/m^3$	μg/m³	ppbV	ppbV	ppbV	Qualifier
124-48-1	Dibromochloromethane	ND	0.75	0.097	ND	0.088	0.011	
106-93-4	1,2-Dibromoethane	ND	0.72	0.086	ND	0.094	0.011	
127-18-4	Tetrachloroethene	ND	0.74	0.096	ND	0.11	0.014	
108-90-7	Chlorobenzene	ND	0.74	0.099	ND	0.16	0.021	
100-41-4	Ethylbenzene	0.54	0.74	0.10	0.13	0.17	0.024	J
179601-23-1	m,p-Xylenes	0.64	1.5	0.19	0.15	0.35	0.045	J
75-25-2	Bromoform	ND	0.75	0.15	ND	0.073	0.015	
100-42-5	Styrene	1.8	0.74	0.12	0.43	0.17	0.028	
95-47-6	o-Xylene	0.36	0.74	0.11	0.083	0.17	0.025	J
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.74	0.10	ND	0.11	0.015	
98-82-8	Cumene	0.30	0.75	0.11	0.060	0.15	0.022	J
622-96-8	4-Ethyltoluene	ND	0.76	0.12	ND	0.16	0.024	
108-67-8	1,3,5-Trimethylbenzene	ND	0.74	0.11	ND	0.15	0.022	
95-63-6	1,2,4-Trimethylbenzene	0.21	0.74	0.10	0.042	0.15	0.021	J
100-44-7	Benzyl Chloride	ND	2.9	0.17	ND	0.56	0.032	
541-73-1	1,3-Dichlorobenzene	ND	0.74	0.11	ND	0.12	0.019	
106-46-7	1,4-Dichlorobenzene	ND	0.74	0.11	ND	0.12	0.019	
95-50-1	1,2-Dichlorobenzene	ND	0.75	0.11	ND	0.12	0.018	
120-82-1	1,2,4-Trichlorobenzene	ND	1.5	0.18	ND	0.21	0.024	
91-20-3	Naphthalene	1.5	0.76	0.18	0.29	0.15	0.034	
87-68-3	Hexachlorobutadiene	ND	0.74	0.15	ND	0.069	0.014	

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

RESULTS OF ANALYSIS

Page 1 of 3

Client: Client Sample ID: Client Project ID:	Stantec Consulting Group, Inc. AMB-RANDO-1 1071 Bt 31 Former Bando Machine Corporation Site / 195602768 20	ALS Project ID:	P2304974
Chent I rojett ID.	10/1 Kt 51 Former Kando Machine Corporation Site / 195002/08.20	M ALS Sample ID.	12304974-005
Test Code:	EPA TO-15	Date Collected:	10/13/23
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13	Date Received:	10/16/23
Analyst:	Topacio Zavala	Date Analyzed:	10/27/23
Sample Type:	6.0 L Silonite Canister	Volume(s) Analyzed:	1.00 Liter(s)
Test Notes:			
Container ID:	AS01010		

Initial Pressure (psig): -1.85 Final Pressure (psig):

4.21

Canister Dilution Factor: 1.47

CAS #	Compound	Result	MRL	MDL	Result ppbV	MRL pphV	MDL pphV	Data Qualifier
115-07-1	Propene	ND	$\frac{\mu g/m}{0.78}$	0.19	ND	0.45	0.11	Quaimer
75-71-8	Dichlorodifluoromethane (CFC 12)	2.3	0.78	0.13	0.47	0.16	0.026	
74-87-3	Chloromethane	8.4	0.76	0.13	4.1	0.37	0.061	, V
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CEC 114)	ND	0.76	0.12	ND	0.11	0.018	
75-01-4	Vinyl Chloride	ND	0.75	0.084	ND	0.29	0.033	
106-99-0	1,3-Butadiene	ND	0.78	0.13	ND	0.35	0.058	
74-83-9	Bromomethane	ND	0.75	0.11	ND	0.19	0.028	
75-00-3	Chloroethane	2.4	0.76	0.097	0.90	0.29	0.037	
67-64-1	Acetone	4.2	7.7	1.8	1.8	3.3	0.74	J
75-69-4	Trichlorofluoromethane (CFC 11)	1.2	0.76	0.12	0.21	0.14	0.021	
67-63-0	2-Propanol (Isopropyl Alcohol)	0.43	1.5	0.32	0.17	0.61	0.13	J
75-35-4	1,1-Dichloroethene	ND	0.79	0.11	ND	0.20	0.027	
75-09-2	Methylene Chloride	0.30	0.78	0.22	0.086	0.22	0.063	J
76-13-1	Trichlorotrifluoroethane (CFC 113)	0.49	0.79	0.11	0.064	0.10	0.015	J
75-15-0	Carbon Disulfide	0.41	1.6	0.24	0.13	0.51	0.076	J
156-60-5	trans-1,2-Dichloroethene	ND	0.79	0.11	ND	0.20	0.027	
75-34-3	1,1-Dichloroethane	ND	0.79	0.11	ND	0.20	0.028	
1634-04-4	Methyl tert-Butyl Ether	ND	0.79	0.093	ND	0.22	0.026	
108-05-4	Vinyl Acetate	ND	7.4	1.8	ND	2.1	0.50	
78-93-3	2-Butanone (MEK)	0.40	1.5	0.16	0.14	0.52	0.055	J
156-59-2	cis-1,2-Dichloroethene	ND	0.78	0.11	ND	0.20	0.028	

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

V = The continuing calibration verification standard was outside (biased high) the specified limits for this compound.

RESULTS OF ANALYSIS

Page 2 of 3

Client: Client Sample ID:	Stantec Consulting Group, Inc. AMB-RANDO-1	ALS Project ID: P2	304974
Client Project ID:	1071 Rt 31 Former Rando Machine Corporation Site / 195602768.20	0 ALS Sample ID: P2.	304974-005
Test Code:	EPA TO-15	Date Collected: 10/	/13/23
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13	Date Received: 10/	/16/23
Analyst:	Topacio Zavala	Date Analyzed: 10/	/27/23
Sample Type:	6.0 L Silonite Canister	Volume(s) Analyzed:	1.00 Liter(s)
Test Notes:			
Container ID:	AS01010		

Initial Pressure (psig): -1.85

Final Pressure (psig):

4.21

Canister Dilution Factor: 1.47

CAS #	Compound	Result µg/m³	MRL µg/m ³	MDL µg/m ³	Result ppbV	MRL ppbV	MDL ppbV	Data Qualifier
141-78-6	Ethyl Acetate	4.1	3.1	0.41	1.1	0.86	0.11	<u> </u>
110-54-3	n-Hexane	ND	0.78	0.16	ND	0.22	0.046	
67-66-3	Chloroform	ND	0.78	0.10	ND	0.16	0.021	
109-99-9	Tetrahydrofuran (THF)	0.19	1.5	0.098	0.064	0.50	0.033	J
107-06-2	1,2-Dichloroethane	ND	0.79	0.087	ND	0.20	0.021	
71-55-6	1,1,1-Trichloroethane	ND	0.78	0.097	ND	0.14	0.018	
71-43-2	Benzene	0.37	0.79	0.11	0.11	0.25	0.035	J
56-23-5	Carbon Tetrachloride	0.44	0.76	0.11	0.069	0.12	0.017	J
110-82-7	Cyclohexane	ND	1.5	0.22	ND	0.45	0.064	
78-87-5	1,2-Dichloropropane	ND	0.78	0.097	ND	0.17	0.021	
75-27-4	Bromodichloromethane	ND	0.79	0.11	ND	0.12	0.017	
79-01-6	Trichloroethene	ND	0.78	0.11	ND	0.15	0.020	
123-91-1	1,4-Dioxane	0.24	0.78	0.093	0.066	0.22	0.026	J
142-82-5	n-Heptane	0.16	0.78	0.12	0.039	0.19	0.031	J
10061-01-5	cis-1,3-Dichloropropene	ND	0.79	0.12	ND	0.17	0.027	
108-10-1	4-Methyl-2-pentanone	ND	1.6	0.11	ND	0.39	0.026	
10061-02-6	trans-1,3-Dichloropropene	ND	0.75	0.16	ND	0.17	0.036	
79-00-5	1,1,2-Trichloroethane	ND	0.78	0.079	ND	0.14	0.015	
108-88-3	Toluene	0.44	0.78	0.096	0.12	0.21	0.025	J
591-78-6	2-Hexanone	ND	1.6	0.097	ND	0.39	0.024	

ND = Compound was analyzed for, but not detected above the laboratory detection limit.
RESULTS OF ANALYSIS

Page 3 of 3

Client: Client Sample ID:	Stantec Consulting Group, Inc. AMB-RANDO-1	ALS Project ID: P2	304974
Client Project ID:	1071 Rt 31 Former Rando Machine Corporation Site / 195602768.20	00 ALS Sample ID: P2	304974-005
Test Code:	EPA TO-15	Date Collected: 10	/13/23
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13	Date Received: 10	/16/23
Analyst:	Topacio Zavala	Date Analyzed: 10	/27/23
Sample Type:	6.0 L Silonite Canister	Volume(s) Analyzed:	1.00 Liter(s)
Test Notes:			
Container ID:	AS01010		

Initial Pressure (psig): -1.85

Final Pressure (psig):

4.21

Canister Dilution Factor: 1.47

		Result	MRL	MDL	Result	MRL	MDL	Data
CAS #	Compound	μg/m³	$\mu g/m^3$	μg/m³	ppbV	ppbV	ppbV	Qualifier
124-48-1	Dibromochloromethane	ND	0.79	0.10	ND	0.093	0.012	
106-93-4	1,2-Dibromoethane	ND	0.76	0.091	ND	0.10	0.012	
127-18-4	Tetrachloroethene	ND	0.78	0.10	ND	0.11	0.015	
108-90-7	Chlorobenzene	ND	0.78	0.10	ND	0.17	0.023	
100-41-4	Ethylbenzene	ND	0.78	0.11	ND	0.18	0.025	
179601-23-1	m,p-Xylenes	ND	1.6	0.21	ND	0.37	0.047	
75-25-2	Bromoform	ND	0.79	0.16	ND	0.077	0.016	
100-42-5	Styrene	0.39	0.78	0.13	0.091	0.18	0.030	J
95-47-6	o-Xylene	ND	0.78	0.11	ND	0.18	0.026	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.78	0.11	ND	0.11	0.016	
98-82-8	Cumene	ND	0.79	0.11	ND	0.16	0.023	
622-96-8	4-Ethyltoluene	ND	0.81	0.12	ND	0.16	0.025	
108-67-8	1,3,5-Trimethylbenzene	ND	0.78	0.11	ND	0.16	0.023	
95-63-6	1,2,4-Trimethylbenzene	ND	0.78	0.11	ND	0.16	0.022	
100-44-7	Benzyl Chloride	ND	3.1	0.18	ND	0.60	0.034	
541-73-1	1,3-Dichlorobenzene	ND	0.78	0.12	ND	0.13	0.020	
106-46-7	1,4-Dichlorobenzene	ND	0.78	0.12	ND	0.13	0.020	
95-50-1	1,2-Dichlorobenzene	ND	0.79	0.12	ND	0.13	0.019	
120-82-1	1,2,4-Trichlorobenzene	ND	1.6	0.19	ND	0.22	0.026	
91-20-3	Naphthalene	ND	0.81	0.19	ND	0.15	0.036	
87-68-3	Hexachlorobutadiene	ND	0.78	0.16	ND	0.073	0.015	

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

RESULTS OF ANALYSIS

Page 1 of 3

Client:	Stantec Consulting Group, Inc.		
Client Sample ID:	Method Blank	ALS Project ID: P2	2304974
Client Project ID:	1071 Rt 31 Former Rando Machine Corporation Site / 195602768.20	00 ALS Sample ID: P2	231027-MB
Test Code:	EPA TO-15	Date Collected: N.	A
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13	Date Received: N.	А
Analyst:	Topacio Zavala	Date Analyzed: 10)/27/23
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed:	1.00 Liter(s)
Test Notes:			

Canister Dilution Factor: 1.00

CAS #	Compound	Result	MRL	MDL	Result	MRL	MDL D	ata
		μg/m³	µg/m³	µg/m³	ppbV	ppbV	ppbV Qua	lifier
115-07-1	Propene	ND	0.53	0.13	ND	0.31	0.076	
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	0.53	0.087	ND	0.11	0.018	
74-87-3	Chloromethane	ND	0.52	0.086	ND	0.25	0.042	
76-14-2	1,2-Dichloro-1,1,2,2-	ND	0.52	0.084	ND	0 074		
/0-14-2	tetrafluoroethane (CFC 114)	ND	0.52	0.004	IND.	0.074	0.012	
75-01-4	Vinyl Chloride	ND	0.51	0.057	ND	0.20	0.022	
106-99-0	1,3-Butadiene	ND	0.53	0.088	ND	0.24	0.040	
74-83-9	Bromomethane	ND	0.51	0.074	ND	0.13	0.019	
75-00-3	Chloroethane	ND	0.52	0.066	ND	0.20	0.025	
67-64-1	Acetone	ND	5.3	1.2	ND	2.2	0.51	
75-69-4	Trichlorofluoromethane (CFC 11)	ND	0.52	0.081	ND	0.093	0.014	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	1.0	0.22	ND	0.42	0.090	
75-35-4	1,1-Dichloroethene	ND	0.54	0.074	ND	0.14	0.019	
75-09-2	Methylene Chloride	ND	0.53	0.15	ND	0.15	0.043	
76-13-1	Trichlorotrifluoroethane (CFC 113)	ND	0.54	0.076	ND	0.070	0.0099	
75-15-0	Carbon Disulfide	ND	1.1	0.16	ND	0.34	0.051	
156-60-5	trans-1,2-Dichloroethene	ND	0.54	0.074	ND	0.14	0.019	
75-34-3	1,1-Dichloroethane	ND	0.54	0.078	ND	0.13	0.019	
1634-04-4	Methyl tert-Butyl Ether	ND	0.54	0.063	ND	0.15	0.017	
108-05-4	Vinyl Acetate	ND	5.0	1.2	ND	1.4	0.34	
78-93-3	2-Butanone (MEK)	ND	1.0	0.11	ND	0.35	0.037	
156-59-2	cis-1,2-Dichloroethene	ND	0.53	0.075	ND	0.13	0.019	

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 2 of 3

Client:	Stantec Consulting Group, Inc.		
Client Sample ID:	Method Blank	ALS Project ID: P	2304974
Client Project ID:	1071 Rt 31 Former Rando Machine Corporation Site / 195602768.20	00 ALS Sample ID: P	231027-MB
Test Code:	EPA TO-15	Date Collected: N	JA
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13	Date Received: N	JA
Analyst:	Topacio Zavala	Date Analyzed: 1	0/27/23
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed:	1.00 Liter(s)

Canister Dilution Factor: 1.00

CAS #	Compound	Result	MRL	MDL	Result ppbV	MRL ppbV	MDL ppbV	Data Oualifier
141-78-6	Ethyl Acetate	ND	2.1	0.28	ND	0.58	0.078	Quantiter
110-54-3	n-Hexane	ND	0.53	0.11	ND	0.15	0.031	
67-66-3	Chloroform	ND	0.53	0.071	ND	0.11	0.015	
109-99-9	Tetrahydrofuran (THF)	ND	1.0	0.067	ND	0.34	0.023	
107-06-2	1,2-Dichloroethane	ND	0.54	0.059	ND	0.13	0.015	
71-55-6	1,1,1-Trichloroethane	ND	0.53	0.066	ND	0.097	0.012	
71-43-2	Benzene	ND	0.54	0.077	ND	0.17	0.024	
56-23-5	Carbon Tetrachloride	ND	0.52	0.074	ND	0.083	0.012	
110-82-7	Cyclohexane	ND	1.1	0.15	ND	0.31	0.044	
78-87-5	1,2-Dichloropropane	ND	0.53	0.066	ND	0.11	0.014	
75-27-4	Bromodichloromethane	ND	0.54	0.077	ND	0.081	0.011	
79-01-6	Trichloroethene	ND	0.53	0.072	ND	0.099	0.013	
123-91-1	1,4-Dioxane	ND	0.53	0.063	ND	0.15	0.017	
142-82-5	n-Heptane	ND	0.53	0.085	ND	0.13	0.021	
10061-01-5	cis-1,3-Dichloropropene	ND	0.54	0.083	ND	0.12	0.018	
108-10-1	4-Methyl-2-pentanone	ND	1.1	0.073	ND	0.27	0.018	
10061-02-6	trans-1,3-Dichloropropene	ND	0.51	0.11	ND	0.11	0.024	
79-00-5	1,1,2-Trichloroethane	ND	0.53	0.054	ND	0.097	0.0099	
108-88-3	Toluene	ND	0.53	0.065	ND	0.14	0.017	
591-78-6	2-Hexanone	ND	1.1	0.066	ND	0.27	0.016	

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Test Notes:

RESULTS OF ANALYSIS

Page 3 of 3

Client:	Stantec Consulting Group, Inc.		
Client Sample ID:	Method Blank	ALS Project ID:	P2304974
Client Project ID:	1071 Rt 31 Former Rando Machine Corporation Site / 195602768.20	00 ALS Sample ID:	P231027-MB
Test Code:	EPA TO-15	Date Collected:	NA
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13	Date Received:	NA
Analyst:	Topacio Zavala	Date Analyzed:	10/27/23
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed:	1.00 Liter(s)

Canister Dilution Factor: 1.00

		Result	MRL	MDL	Result	MRL	MDL	Data
CAS #	Compound	μg/m³	μg/m³	µg/m³	ppbV	ppbV	ppbV (Qualifier
124-48-1	Dibromochloromethane	ND	0.54	0.070	ND	0.063	0.0082	
106-93-4	1,2-Dibromoethane	ND	0.52	0.062	ND	0.068	0.0081	
127-18-4	Tetrachloroethene	ND	0.53	0.069	ND	0.078	0.010	
108-90-7	Chlorobenzene	ND	0.53	0.071	ND	0.12	0.015	
100-41-4	Ethylbenzene	ND	0.53	0.075	ND	0.12	0.017	
179601-23-1	m,p-Xylenes	ND	1.1	0.14	ND	0.25	0.032	
75-25-2	Bromoform	ND	0.54	0.11	ND	0.052	0.011	
100-42-5	Styrene	ND	0.53	0.086	ND	0.12	0.020	
95-47-6	o-Xylene	ND	0.53	0.077	ND	0.12	0.018	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.53	0.074	ND	0.077	0.011	
98-82-8	Cumene	ND	0.54	0.077	ND	0.11	0.016	
622-96-8	4-Ethyltoluene	ND	0.55	0.085	ND	0.11	0.017	
108-67-8	1,3,5-Trimethylbenzene	ND	0.53	0.077	ND	0.11	0.016	
95-63-6	1,2,4-Trimethylbenzene	ND	0.53	0.074	ND	0.11	0.015	
100-44-7	Benzyl Chloride	ND	2.1	0.12	ND	0.41	0.023	
541-73-1	1,3-Dichlorobenzene	ND	0.53	0.080	ND	0.088	0.013	
106-46-7	1,4-Dichlorobenzene	ND	0.53	0.082	ND	0.088	0.014	
95-50-1	1,2-Dichlorobenzene	ND	0.54	0.079	ND	0.090	0.013	
120-82-1	1,2,4-Trichlorobenzene	ND	1.1	0.13	ND	0.15	0.018	
91-20-3	Naphthalene	ND	0.55	0.13	ND	0.10	0.025	
87-68-3	Hexachlorobutadiene	ND	0.53	0.11	ND	0.050	0.010	

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Test Notes:

SURROGATE SPIKE RECOVERY RESULTS

Page 1 of 1

Client:	Stantec Consulting Group, Inc.	
Client Project ID:	1071 Rt 31 Former Rando Machine Corporation Site / 195602768.200	ALS Project ID: P2304974

Test Code:	EPA TO-15		
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13	Date(s) Collected: 10)/13/23
Analyst:	Topacio Zavala	Date(s) Received: 10)/16/23
Sample Type:	6.0 L Summa Canister(s)	Date(s) Analyzed: 10)/27/23
Test Notes:			

		1,2-Dichloroethane-d4	Toluene-d8	Bromofluorobenzene		
Client Sample ID	ALS Sample ID	Percent	Percent	Percent	Acceptance	Data
		Recovered	Recovered	Recovered	Limits	Qualifier
Method Blank	P231027-MB	105	102	97	70-130	
Lab Control Sample	P231027-LCS	103	98	99	70-130	
Duplicate Lab Control Sample	P231027-DLCS	101	94	100	70-130	
IA-RANDO-1	P2304974-001	103	89	103	70-130	
IA-RANDO-2	P2304974-002	118	94	106	70-130	
IA-RANDO-3	P2304974-003	100	94	100	70-130	
IA-RANDO-4	P2304974-004	98	95	109	70-130	
AMB-RANDO-1	P2304974-005	101	91	98	70-130	

Surrogate percent recovery is verified and accepted based on the on-column result.

Reported results are shown in concentration units and as a result of the calculation, may vary slightly from the on-column percent recovery.

LABORATORY CONTROL SAMPLE / DUPLICATE LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 3

Client:	Stantec Consulting Group, Inc.	
Client Sample ID:	Duplicate Lab Control Sample	ALS Project ID: P2304974
Client Project ID:	1071 Rt 31 Former Rando Machine Corporation Site / 195602768.200	ALS Sample ID: P231027-DLCS
Test Code:	EPA TO-15	Date Collected: NA
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13	Date Received: NA
Analyst:	Topacio Zavala	Date Analyzed: 10/27/23
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed: 0.125 Liter(s)
Test Notes:		

		Spike Amount	Re	sult			ALS			
CAS #	Compound	LCS / DLCS	LCS	DLCS	% Re	covery	Acceptance	RPD	RPD	Data
		μg/m³	$\mu g/m^3$	μg/m³	LCS	DLCS	Limits		Limit	Qualifier
115-07-1	Propene	42.0	37.0	41.1	88	98	50-133	11	25	
75-71-8	Dichlorodifluoromethane (CFC 12)	41.6	40.7	46.1	98	111	66-122	12	25	
74-87-3	Chloromethane	42.8	41.6	48.7	97	114	56-131	16	25	
76 14 2	1,2-Dichloro-1,1,2,2-				112 1	127	62 120		25	т
/0-14-2	tetrafluoroethane (CFC 114)	43.6	49.2	55.5	115	127	03-120	12	23	L
75-01-4	Vinyl Chloride	42.4	48.2	54.7	114	129	57-129	12	25	
106-99-0	1,3-Butadiene	42.4	47.3	53.6	112	126	62-132	12	25	
74-83-9	Bromomethane	40.8	40.2	46.0	99	113	72-120	13	25	
75-00-3	Chloroethane	44.0	38.9	43.3	88	98	67-123	11	25	
67-64-1	Acetone	204	184	209	90	102	61-120	13	25	
75-69-4	Trichlorofluoromethane (CFC 11)	40.4	40.2	45.3	100	112	65-122	11	25	
67-63-0	2-Propanol (Isopropyl Alcohol)	79.2	72.4	81.0	91	102	59-132	11	25	
75-35-4	1,1-Dichloroethene	36.0	40.0	44.8	111	124	75-120	11	25	L
75-09-2	Methylene Chloride	36.4	35.5	40.1	98	110	71-123	12	25	
76-13-1	Trichlorotrifluoroethane (CFC 113)	36.0	44.3	46.8	123	130	65-121	6	25	L
75-15-0	Carbon Disulfide	82.8	80.4	84.4	97	102	69-115	5	25	
156-60-5	trans-1,2-Dichloroethene	42.0	39.9	44.7	95	106	67-123	11	25	
75-34-3	1,1-Dichloroethane	41.2	38.7	42.5	94	103	66-120	9	25	
1634-04-4	Methyl tert-Butyl Ether	42.8	40.9	46.3	96	108	65-124	12	25	
108-05-4	Vinyl Acetate	215	208	239	97	111	76-147	13	25	
78-93-3	2-Butanone (MEK)	81.2	82.3	83.3	101	103	70-125	2	25	
156-59-2	cis-1,2-Dichloroethene	41.2	41.3	42.7	100	104	64-120	4	25	

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result.

Reported results are shown in concentration units and as a result of the calculation, may vary slightly.

L = Laboratory control sample recovery outside the specified limits, results may be biased high.

LABORATORY CONTROL SAMPLE / DUPLICATE LABORATORY CONTROL SAMPLE SUMMARY

Page 2 of 3

Client:	Stantec Consulting Group, Inc.	
Client Sample ID:	Duplicate Lab Control Sample	ALS Project ID: P2304974
Client Project ID:	1071 Rt 31 Former Rando Machine Corporation Site / 195602768.200	ALS Sample ID: P231027-DLCS
Test Code:	EPA TO-15	Date Collected: NA
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13	Date Received: NA
Analyst:	Topacio Zavala	Date Analyzed: 10/27/23
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed: 0.125 Liter(s)
Test Notes:		

		Spike Amount	Re	sult			ALS			
CAS #	Compound	LCS / DLCS	LCS	DLCS	% Re	covery	Acceptance	RPD	RPD	Data
		μg/m³	μg/m³	μg/m³	LCS	DLCS	Limits		Limit	Qualifier
141-78-6	Ethyl Acetate	78.4	80.7	79.3	103	101	56-120	2	25	
110-54-3	n-Hexane	42.0	42.2	41.0	100	98	60-125	2	25	
67-66-3	Chloroform	42.8	44.1	44.8	103	105	64-121	2	25	
109-99-9	Tetrahydrofuran (THF)	75.6	80.4	77.2	106	102	67-117	4	25	
107-06-2	1,2-Dichloroethane	40.8	41.5	42.1	102	103	64-138	1	25	
71-55-6	1,1,1-Trichloroethane	41.2	45.3	47.2	110	115	67-125	4	25	
71-43-2	Benzene	40.8	40.3	40.9	99	100	73-128	1	25	
56-23-5	Carbon Tetrachloride	41.2	44.3	45.8	108	111	71-134	3	25	
110-82-7	Cyclohexane	84.0	88.1	90.7	105	108	71-118	3	25	
78-87-5	1,2-Dichloropropane	43.2	40.1	45.5	93	105	68-121	12	25	
75-27-4	Bromodichloromethane	42.4	43.4	47.4	102	112	70-125	9	25	
79-01-6	Trichloroethene	41.2	39.5	43.3	96	105	68-124	9	25	
123-91-1	1,4-Dioxane	41.6	41.4	47.3	100	114	76-127	13	25	
142-82-5	n-Heptane	42.0	42.5	46.9	101	112	72-121	10	25	
10061-01-5	cis-1,3-Dichloropropene	42.0	45.1	44.6	107	106	87-137	0.9	25	
108-10-1	4-Methyl-2-pentanone	84.0	87.1	85.4	104	102	67-137	2	25	
10061-02-6	trans-1,3-Dichloropropene	39.2	41.1	41.8	105	107	73-127	2	25	
79-00-5	1,1,2-Trichloroethane	43.6	44.1	45.2	101	104	71-119	3	25	
108-88-3	Toluene	43.2	40.1	39.9	93	92	64-121	1	25	
591-78-6	2-Hexanone	81.6	85.2	80.6	104	99	70-136	5	25	

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.

LABORATORY CONTROL SAMPLE / DUPLICATE LABORATORY CONTROL SAMPLE SUMMARY

Page 3 of 3

Client:	Stantec Consulting Group, Inc.	
Client Sample ID:	Duplicate Lab Control Sample	ALS Project ID: P2304974
Client Project ID:	1071 Rt 31 Former Rando Machine Corporation Site / 195602768.200	ALS Sample ID: P231027-DLCS
Test Code:	EPA TO-15	Date Collected: NA
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13	Date Received: NA
Analyst:	Topacio Zavala	Date Analyzed: 10/27/23
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed: 0.125 Liter(s)
Test Notes:		

		Spike Amount	Re	sult			ALS			
CAS #	Compound	LCS / DLCS	LCS	DLCS	% Re	covery	Acceptance	RPD	RPD	Data
		μg/m³	$\mu g/m^3$	μg/m³	LCS	DLCS	Limits		Limit	Qualifier
124-48-1	Dibromochloromethane	40.8	42.6	42.0	104	103	67-128	1	25	
106-93-4	1,2-Dibromoethane	41.2	41.3	39.7	100	96	69-129	4	25	
127-18-4	Tetrachloroethene	42.8	40.6	41.2	95	96	55-132	1	25	
108-90-7	Chlorobenzene	42.8	39.1	41.0	91	96	63-124	5	25	
100-41-4	Ethylbenzene	43.6	43.0	42.0	99	96	64-119	3	25	
179601-23-1	m,p-Xylenes	85.6	82.8	82.4	97	96	64-121	1	25	
75-25-2	Bromoform	43.6	43.8	45.6	100	105	63-132	5	25	
100-42-5	Styrene	42.4	42.0	42.7	99	101	71-125	2	25	
95-47-6	o-Xylene	43.2	42.2	41.6	98	96	66-122	2	25	
79-34-5	1,1,2,2-Tetrachloroethane	43.2	41.3	40.0	96	93	71-128	3	25	
98-82-8	Cumene	41.6	40.5	40.7	97	98	66-126	1	25	
622-96-8	4-Ethyltoluene	41.2	44.8	43.3	109	105	67-128	4	25	
108-67-8	1,3,5-Trimethylbenzene	43.2	46.0	44.3	106	103	66-125	3	25	
95-63-6	1,2,4-Trimethylbenzene	41.6	42.8	46.8	103	113	67-130	9	25	
100-44-7	Benzyl Chloride	82.8	89.0	97.1	107	117	58-151	9	25	
541-73-1	1,3-Dichlorobenzene	41.2	40.8	43.4	99	105	57-135	6	25	
106-46-7	1,4-Dichlorobenzene	41.6	39.8	44.0	96	106	56-129	10	25	
95-50-1	1,2-Dichlorobenzene	41.1	40.0	43.9	97	107	57-138	10	25	
120-82-1	1,2,4-Trichlorobenzene	85.6	80.3	92.0	94	107	50-137	13	25	
91-20-3	Naphthalene	40.4	35.4	42.0	88	104	50-157	17	25	
87-68-3	Hexachlorobutadiene	40.4	34.7	38.6	86	96	50-133	11	25	

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.

RESULTS OF ANALYSIS

Page 1 of 1

Client:Stantec Consulting Group, Inc.ALS Project ID: P2304974Client Project ID:1071 Rt 31 Former Rando Machine Corporation Site / 195602768.200

Method Blank Summary

Test Code:	EPA TO-15	
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13	Lab File ID: 10272303.D
Analyst:	Topacio Zavala	Date Analyzed: 10/27/23
Sample Type:	6.0 L Summa Canister(s)	Time Analyzed: 02:17
Test Notes:		

Client Sample ID	ALS Sample ID	Lab File ID	Time Analyzed
Lab Control Sample	P231027-LCS	10272304.D	02:53
Duplicate Lab Control Sample	P231027-DLCS	10272305.D	03:29
IA-RANDO-1	P2304974-001	10272314.D	11:27
IA-RANDO-2	P2304974-002	10272315.D	12:04
IA-RANDO-4	P2304974-004	10272316.D	12:41
IA-RANDO-3	P2304974-003	10272326.D	19:16
AMB-RANDO-1	P2304974-005	10272327.D	19:53

RESULTS OF ANALYSIS

Page 1 of 1

Client:Stantec Consulting Group, Inc.ALS Project ID: P2304974Client Project ID:1071 Rt 31 Former Rando Machine Corporation Site / 195602768.200

Internal Standard Area and RT Summary

Test Code:	EPA TO-15	
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13	Lab File ID: 10272301.D
Analyst:	Topacio Zavala	Date Analyzed: 10/27/23
Sample Type:	6.0 L Summa Canister(s)	Time Analyzed: 01:06
Test Notes:		

		IS1 (BCM)		IS2 (DFB)			
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	24 Hour Standard	129279	7.32	543455	9.37	129062	14.87
	Upper Limit	180991	7.65	760837	9.70	180687	15.20
	Lower Limit	77567	6.99	326073	9.04	77437	14.54
	Client Sample ID						
01	Method Blank	110602	7.30	487697	9.36	114374	14.87
02	Lab Control Sample	125958	7.32	500053	9.37	128904	14.87
03	Duplicate Lab Control Sample	111498	7.32	469647	9.36	117045	14.87
04	IA-RANDO-1	108524	7.30	510733	9.36	134797	14.87
05	IA-RANDO-2	108894	7.30	486961	9.35	119708	14.87
06	IA-RANDO-4	113533	7.30	465743	9.36	107876	14.87
07	IA-RANDO-3	133047	7.30	547727	9.36	136477	14.87
08	AMB-RANDO-1	114224	7.30	476839	9.36	122936	14.87
09							
10							
11							
12							
13							
14							
15							

16 17

18

19 20

> IS1 (BCM) = Bromochloromethane IS2 (DFB) = 1,4-Difluorobenzene IS3 (CBZ) = Chlorobenzene-d5

AREA UPPER LIMIT = 140% of internal standard area AREA LOWER LIMIT = 60% of internal standard area RT UPPER LIMIT = 0.33 minutes of internal standard RT RT LOWER LIMIT = 0.33 minutes of internal standard RT

Column used to flag values outside QC limits with an I.

I = Internal standard not within the specified limits.