FINAL REPORT

Supplemental Ground Water Investigation Summary Report

Old Erie Canal Site Clyde, New York

Parker Hannifin Corporation Cleveland, Ohio

General Electric Company Albany, New York

March 29, 2007

FINAL REPORT

Supplemental Ground Water Investigation Summary Report

Old Erie Canal Site Clyde, New York

Parker Hannifin Corporation Cleveland, Ohio

General Electric Company Albany, New York

R/h E. m

Ralph E. Morse, C.P.G., Managing Scientist O'Brien & Gere Engineers, Inc.

March 29, 2007

435 New Karner Road Albany, New York 12205

TABLE OF CONTENTS

List of Tables	
List of Figures	ii
List of Appendices	ii
1. Introduction	1
1.1. General	
1.2. Project objectives and scope	
2. Supplemental ground water investigation	
2.1. General	
2.2. Drilling and well installation program	2
2.2.1. Shallow unconsolidated unit drilling procedures	2
2.2.2. Shallow bedrock drilling procedures	
2.2.3. Well installation	
2.2.4. Decontamination procedures	4
2.2.5. Well development	4
2.3. Soil and ground water sampling	
2.4. Water level monitoring	
2.5. Hydraulic conductivity testing	6
2.6. Handling of Investigation Derived Waste	7
2.4.1. Drill Cuttings	
2.4.2. Ground Water	7
2.4.3. Decontamination Fluids, Sediment, PPE and Associated Debris	7
3. Geology and hydrogeology	9
3.1. Geologic conditions	9
3.2. Hydrogeologic conditions	9
4. Results1	1
4.1. Soil Sampling Results1	
4.2. Ground Water Sampling Results	
5. Summary1	
References1	5

List of Tables

- 1 Soil boring summary
- 2 Monitoring well construction details
- 3 Water Level Elevation Data
- 4 Hydraulic conductivity test results
- 5 Soil Sampling Results
- 6 Ground water sampling results for VOCs
- 7 Ground water sampling results for MNA and inorganic parameters
- 8 Ground water field parameter results

List of Figures

- 1 Monitoring well location map
- 2 Cross-section location map
- 3 Cross-section A-A'
- 4 Cross-section B-B'
- 5 Cross-section C-C'
- 6 Top of till contour map
- 7 Top of bedrock contour map
- 8 Overburden unit ground water contour map for November 28, 2006
- 9 Shallow bedrock unit ground water contour map for November 28, 2006

List of Appendices

- A Soil boring logs
- B Monitoring well completion logs
- C Hydraulic conductivity test results
- D Soil sampling laboratory data
- E Ground water sampling laboratory data

1. Introduction

1.1. General

This Supplemental Ground Water Investigation Summary Report (Summary Report) has been developed by O'Brien & Gere on behalf of the Parker Hannifin Corporation (Parker-Hannifin) and the General Electric Company (GE) for the Old Erie Canal Site (Site) in Clyde, New York. This summary report presents the results of additional investigations performed in response to comments of the New York State Department of Environmental Conservation (NYSDEC) dated March 1, 2006, regarding the "Feasibility Study (FS), Old Erie Canal Site, Clyde, New York," dated November 2005. This Supplemental Ground Water Investigation was conducted in accordance with the NYSDEC-approved Supplemental Ground Water Investigation Work Plan prepared by Conestoga-Rovers & Associates dated June 2006. This Work Plan was approved by the NYSDEC in an electronic mail correspondence dated October 16, 2006.

1.2. Project objectives and scope

The objective of the Supplemental Ground Water Investigation was to gather additional data to further define the nature and extent of Site-related chemical presence in the ground water beneath the Site to the extent necessary to complete the FS. The scope of work for this additional investigation is described in the Supplemental Ground Water Investigation Work Plan prepared by Conestoga-Rovers & Associates dated June 2006 and included the following:

- Installation of eleven soil borings, nine permanent monitoring wells and two temporary monitoring wells to further define the nature and extent of ground water impact at the Site. and,
- Completion of one round of ground water sampling following completion of the installation and development of the additional monitoring wells. Samples were collected from all new and existing monitoring wells.
- Collection of one soil sample for laboratory analysis for volatile organic compounds (VOCs).

A complete description of the investigation methodology is included as Section 2.

2. Supplemental ground water investigation

2.1. General

This section describes the procedures followed while performing the tasks associated with the Supplemental Ground Water Investigation. Field investigation procedures were conducted in accordance with the NYSDEC-approved Remedial Investigation (RI) Sampling and Analysis Plan (SAP) prepared by O'Brien & Gere, dated February 2000.

2.2. Drilling and well installation program

To further evaluate the hydrogeologic setting at the Site, a monitoring well installation program was implemented. Between November 2 and November 17, a total of four permanent overburden groundwater monitoring wells, two temporary overburden groundwater monitoring wells and five permanent bedrock groundwater monitoring wells, four shallow and one intermediate, were installed on the Site. The monitoring well locations are shown on Figure 1. Parratt-Wolff, Inc. of East Syracuse, New York preformed the drilling and well installation activities under the supervision of an O'Brien & Gere geologist.

2.2.1. Shallow unconsolidated unit drilling procedures

Soil borings were advanced through the unconsolidated deposits to the top of the glacial till unit using 4¹/₄-inch ID hollow stem auger drilling techniques. Continuous split-barrel soil samples were collected at two foot intervals in accordance with American Society for Testing and Materials (ASTM) Method D-1586 during well installation from depth intervals where no previous soil borings existed or samples collected during previously completed phases of the Site investigation.

Following advancement of the hollow-stem auger to the appropriate sampling depth, the split barrel sampler was lowered to the bottom of the boring and driven into the undisturbed soil using a 140-pound hammer with a 30-in drop. A representative sample of the split-spoon was then transferred to a clear glass container, sealed with aluminum foil, and capped for later headspace analysis with a PID for total VOCs.

Upon recovery, soil samples were classified in the field by a supervising geologist using the Modified Burmister and Unified Classification Systems. In addition to logging the geologic descriptions, observations including soil sample texture, composition, color, consistency, moisture content, sample recovery, and the observance of noticeable odors or stains were recorded by the geologist. Samples with a sustained PID reading above 100 parts per million (ppm) were field screened for the presence of NAPL using UV fluorescence and a soil jar shake test.

Table 1 is a summary of the soil boring information, including ground surface elevations, top of till and top of bedrock data. For detailed information, refer to the soil boring logs presented in Appendix A.

2.2.2. Shallow bedrock drilling procedures

Shallow bedrock monitoring wells were installed by initially advancing the soil boring to the top of the bedrock unit using 4¼-inch ID hollow stem augers followed by the installation of a 6-inch temporary casing. The borehole was further advanced a minimum of three feet into the bedrock unit, creating a rock socket, by advancing the augers into the top of the weathered zone or by utilizing rotary drilling techniques. The top of bedrock was identified by split-barrel sampler refusal and/or hollow stem auger refusal. At intermediate bedrock monitoring well MW-4C, the rock socket extended 13.0 feet into the top of bedrock to seal off the shallow bedrock zone prior to drilling and installation of the intermediate bedrock well.

A four-inch ID casing was lowered into the borehole and tapped into place to seat the casing into the bedrock socket. A cement-bentonite grout was tremied into the annulus between the outside of the casing and the borehole. As the grout was pumped into the annulus, the tremie pipe was kept within the grout as it was placed so that a continuous annular seal was achieved. The cement grout was allowed to cure overnight. The shallow bedrock wells were drilled within the four-inch ID casing using a 3-%-inch outside diameter (OD) diamond core bit (HX).

Test boring and rock coring logs that describe the subsurface materials encountered in each boring were prepared by the supervising geologist for each of the bedrock wells. Information for these boreholes are presented on the soil boring and core logs in Appendix A.

2.2.3. Well installation

Monitoring wells were constructed of 2-inch ID, flush joint, schedule 40 PVC riser pipe with either a five or ten-foot length of 0.010-in slot PVC well screen. Each new shallow unconsolidated unit monitoring well (MW-13S, MW-14S, MW-15S and MW-16S) has five feet of well screen and was constructed such that the base of the well screen was set just above the top of the glacial till unit. Each new shallow bedrock monitoring well (MW-3B, MW-5B, MW-6B and MW-16B) was completed with ten feet of well screen set from approximately three to thirteen feet below the top of the bedrock surface. Intermediate bedrock monitoring well MW-4C has ten feet of well screen set from approximately 12.7 to 22.7 feet below the top of the bedrock surface. Temporary monitoring wells (TMW-1 and TMW-2) were constructed of either 1-inch or 2-inch ID, flush joint, Schedule 40 PVC riser pipe with a two foot length of 0.010-inch slot well screen set just above the top of the glacial till unit.

A threaded PVC bottom plug was installed at the base of each ground water monitoring well and a vented, non-threaded, locking J-Plug was installed at the top of each riser pipe. A designated measuring point was notched into the top of the PVC riser pipe in each well to provide a permanent reference point for subsequent total depth and depth to water measurements.

After installing the PVC well materials within each borehole, sand was gradually introduced inside the augers to fill the annular space between the well screen and the borehole. The sand pack extended from the bottom of the boring to approximately two-feet above the top of the screen. The sand pack consists of a clean, well-graded, silica sand with grain size distribution matched to the slot size of the screen. A Morie Grade 0 sand was used.

In the permanent monitoring wells, a bentonite seal was placed above the sand pack to form a seal at least two feet thick. A cement-bentonite grout extended from the top of the bentonite seal to the ground surface. The grout material consisted of Type I Portland cement mixed with either a

powdered or granular bentonite prepared in accordance with ASTM D 5092-90. The grout was placed via a tremie pipe that was kept within the grout as it was placed so that a continuous annular seal was achieved. Each of the temporary monitoring wells were backfilled with overburden soils from the top of the sand pack to ground surface.

In most areas, it was necessary to provide flush mounted casings on the monitoring wells. Monitoring wells MW-6B, MW-13S, MW-14S and MW-15S have a steel casing equipped with a locking cap placed over the monitoring well. The protective casing extended at least two feet below ground surface (bgs) and was cemented in place. The shallow bedrock monitoring wells have a lockable cap installed on top of the four-inch casing grouted into place initially. Table 2 is a summary of the monitoring well construction and survey data, including ground surface and measuring point elevations, screened intervals, and sand pack intervals. For detailed information, refer to the well completion logs provided in Appendix B.

2.2.4. Decontamination procedures

During the drilling program, decontamination procedures as described in the SAP were followed so that potential contaminants were not introduced into the borehole or transferred across the Site. A temporary decontamination pad was constructed at a location approved by Parker-Hannifin. Prior to drilling the first boring, the equipment used for drilling and well installation was steam cleaned to remove possible contaminants that may have been encountered during mobilization of drilling equipment to the Site. Equipment which came into contact with Site soil, as well as drilling tools, augers, drilling rod, hoses, and the rear of the drill rig underwent the initial steam cleaning process. While working at the Site, all drilling equipment coming in contact with soil was decontaminated between drilling locations. At the conclusion of the drilling program, the drilling equipment was decontaminated a final time prior to leaving the Site.

All well construction materials were transported to the Site in factory-sealed plastic. If well construction materials were not sealed, they were decontaminated and maintained in plastic sheeting on-site.

The cleaning process involved the use of a high-pressure steam cleaner. Potable water was used for decontamination and drilling procedures. Decontamination water was collected and stored for subsequent characterization and off-site disposal in accordance with the SAP.

2.2.5. Well development

Following the completion of the monitoring well installation program, each monitoring well was developed prior to ground water sampling. Each newly-constructed monitoring well was developed to:

- Remove fine-grained materials from the sand pack and formation;
- Reduce the turbidity of ground water samples; and
- Increase the yield of the well to ensure a sufficient volume of water was available during ground water sampling.

The monitoring wells were developed as soon as possible, but not less than 24 hours after installation. All ground water and solids produced during well development were managed as described in the SAP. The wells were developed using the procedures presented in the SAP.

Well development included the removal of ground water from the well to remove residual drilling materials and establish an effective hydraulic connection between the screened interval and the formation. The goals for development was to obtain ground water in which the pH, temperature and specific conductivity had stabilized and exhibited a turbidity of less than or equal to 50 Nephelometric Turbidity Units (NTUs). Independent of the field parameters, a minimum of five well volumes was removed during well development. Due to the required management of Site ground water, if the aforementioned field parameters could not be obtained, well development continued until an amount of ground water equivalent to ten well volumes was removed.

2.3. Soil and ground water sampling

As requested by NYSDEC, one soil sample was collected from boring MW-6B using an encore sampler. The sample was collected from the unsaturated zone from a depth of four to six feet below grade and submitted to the laboratory for VOC analysis using USEPA SW-846 8260B.

Ground water samples were collected between November 28 and December 7, 2006 from each of the accessible monitoring wells in accordance with the RI SAP. Prior to the collection of ground water samples, static water levels were measured to the nearest 0.01-ft in each monitoring well. Care was taken to disturb only the upper portion of the water column to avoid re-suspending settled solids in the wells. Water level measurements were performed as described in Section 2.4.

Ground water samples were collected using low-flow well purging techniques in accordance with the RI SAP. The ground water samples were analyzed for VOCs using USEPA SW-846 8260B. In addition, the following natural attenuation parameters were also analyzed: methane, ethane, ethene, dissolved organic carbon, alkalinity, chloride, nitrate, nitrite, nitrogen, sodium, sulfate and sulfide. The following field parameters were measured at the time of sample collection and recorded on the field data sheets: iron II (Fe+2); redox potential; temperature; turbidity; dissolved oxygen; and, pH. New nitrile gloves were donned prior to collection of each ground water sample. Chain-of-custody documentation was maintained daily following procedures outlined in the NYSDEC-approved SAP.

The purge water was transferred from each well in 55-gallon steel drums and subsequently containerized in a 1000-gallon polyethylene tank and staged at the Site. The sample containers were labeled with the sample identification, date, time, project identification, and required laboratory analysis. The same information was recorded on the field data sheets. Each ground water sample was then placed in a cooler containing wet ice immediately after sampling.

The ground water samples were submitted to Accutest Laboratories of Dayton New Jersey for analysis. Field QA/QC procedures included the collection of blind field duplicate and MS/MSD samples at a rate of one per twenty environmental samples. Trip blanks were included with each cooler that contained samples for VOC analysis.

2.4. Water level monitoring

As discussed above, a synoptic water level round was collected from each of the Site's monitoring wells and staff gauges on November 28, 2006 prior to the ground water sampling event. The water level elevation data are presented in Table 3.

Water level measurements were obtained with an electronic water level indicator. The electronic water level measurement method involves lowering a probe into a well, which, upon contact with the water, completes an electric circuit. At the instant the circuit is closed, the water level indicator provides an audible and/or visual alarm, which indicates that the water has been contacted. The depth to water was measured to the nearest 0.01 foot, using the marked measuring point on the monitoring well riser pipe or casing as a reference. Depth to water measurements were recorded on the field form. Nitrile gloves were worn during water level measurement activities.

2.5. Hydraulic conductivity testing

In-situ hydraulic conductivity tests were performed on the newly installed monitoring wells to estimate the hydraulic conductivity of the geologic materials immediately surrounding each well. These tests, commonly referred to as slug tests, involved monitoring the recovery of water levels toward an equilibrium level after an initial perturbation. The perturbation was either a sudden rise or fall in the water level that corresponded to either the addition or removal of a physical slug respectively. During the slug test, either a five foot inert rod or a volume of deionized water was rapidly introduced into the well causing the water level to rise (falling head test). During a rising head test, a five foot inert rod was rapidly removed from the well causing the water level to drop.

Prior to conducting the tests, background water levels were collected manually and digitally using an In-Situ, Inc. mini-troll down-hole pressure transducer equipped with a data logger. The instruments were lowered into the well five to ten feet below the ground water surface and secured by attaching the transducer cable to the well casing using a stainless steel clamp. Since the addition of the data logger displaced water in the 2-in diameter monitoring wells, the water level in each well was allowed to re-equilibrate to static conditions prior to starting the test. Once the ground water recovered to the pre-disturbed level, the data logger was programmed to record the water levels on a logarithmic scale. The hydraulic conductivity tests were not considered complete until a minimum of 90% recovery was achieved. Equipment lowered into the monitoring wells was decontaminated prior to each test using a phosphate-free detergent, distilled water wash and a distilled water rinse.

Interpretation of the slug test data was performed using the Bouwer and Rice (1976) method. The principle behind the Bouwer and Rice method is that a plot of recovery data (So-St) versus time (t) theoretically follows a straight line on a semi-log plot. Horizontal hydraulic conductivity (K) is then calculated as follows:

$$K = [In(so)-In(st)]r2ceIn(re/r w)/2Lt$$

where:

Κ	=	hydraulic conductivity;
L	=	length of well screen/sand pack (intake);
t	=	time since initial displacement.

so	=	initial displacement in well;
st	=	displacement at time t;
re	=	equivalent radius over which head loss occurs;
rc	=	well casing radius;
rw	=	well radius (borehole);and,

 $rce = [rc2+n(rw2-rc2)]^{1/2}$

The Bouwer and Rice method assumes that the aquifer being evaluated is unconfined, homogeneous and isotropic. This method is most appropriate for shallow wells screened in well sorted sand below the water table, but it is also applicable to aquifers that are not in strict accordance with the assumptions stated above. Additionally, application of the above equations to bedrock wells assumes that sufficient joints and bedding planes intersect the screened interval so as to behave like a porous medium with Darcian flow. Bouwer and Rice recommend computing an equivalent casing radius (rce) to correct for the porosity of the gravel pack when the height of the static water column in the well is less than the screen length.

Table 4 summarizes the results of the hydraulic conductivity testing program. Additional details on data acquisition and analysis are presented in Appendix C.

2.6. Handling of Investigation Derived Waste

The supplemental RI activities produced Investigation Derived Materials (IDM) that required appropriate management procedures. The various IDM included drill cuttings, ground water, drilling and sampling equipment decontamination fluids, sediments, and personnel protective equipment (PPE). The handling procedures for the IDM are discussed below.

2.4.1. Drill Cuttings

Drill cuttings derived from the overburden and bedrock drilling were placed in 55-gallons steel drums. Each drum was labeled with the appropriate borehole identification(s), the dates on which the cuttings were generated, and a description of the type of waste (i.e., drill cuttings). In accordance with the NYSDEC-approved RI/FS Work Plan, Parker-Hannifin arranged for or will be arranging for the off-site disposal of the drill cuttings at a permitted facility.

2.4.2. Ground Water

Ground water produced during purging and sampling activities was containerized in 1000-gallon polyethylene tank located on-site. Based on the analytical results from the investigation, Parker-Hannifin arranged for or will be arranging for the final disposal of the ground water in accordance with the NYSDEC-approved RI/FS Work Plan.

2.4.3. Decontamination Fluids, Sediment, PPE and Associated Debris

Liquid/solid mixtures generated during the field investigation were temporarily stored in 55-gallon drums until solids had settled. The water was then transferred into the 1000-gallon polyethylene tank located on Site. The settled solids were also transferred into drums containing similar materials, labeled and temporarily stored on Site. In accordance with the NYSDEC-approved RI/FS Work Plan, Parker-Hannifin arranged for or will be arranging for the characterization and subsequent off-site disposal of this IDM.

Used PPE and other associated debris (polyethylene sheeting, sample tubing, etc.) were containerized in 55-gallon steel drums, labeled and temporarily stored on-site. In accordance with NYSDEC-approved RI/FS Work Plan, Parker-Hannifin performed characterization and subsequent off-site disposal of these materials.

3. Geology and hydrogeology

3.1. Geologic conditions

With the exception of fill, unconsolidated deposits of glacial origin overlie the bedrock throughout most of the Site. Based on the soil borings completed during the RI and subsequent supplemental investigations, the combined maximum thickness of the unconsolidated deposits is approximately 31 feet. Three types of unconsolidated deposits have been identified at the Site. These consist of, in descending order: artificial fill material, glaciofluvial channel deposits, and glacial till. The fill material was encountered across the majority of the Site and ranged in thickness from 0.5 to 9 feet. The maximum thickness of the glaciofluvial deposits is 23 feet at location GP-36 which is located near the southern portion of the Site and appears to pinch-out in the area surrounding the manufacturing building and in the southeastern parking lot. The thickness of the glacial till deposit ranges from 3.5 to 27.2 feet across the majority of the Site and is thickest at location MW-7B which is located west of the former Barge Canal turnaround. The glacial till unit appears to be absent beneath the glaciofluvial channel at locations MW-8S, GP-13, GP-25 and GP-34, which are located along the western portion of the Site. The glacial till unit is observed again along the westernmost property boundary. The depths to bedrock observed during the RI and subsequent supplemental investigations ranged from 16.5 to 31 feet bgs.

The three geologic cross-sections previously presented in the RI Report (O'Brien & Gere, November 24, 2003) have been updated based on the results of the supplemental investigations performed at the Site to illustrate the relationship between the unconsolidated glacial deposits and the underlying bedrock. The location and orientation of the cross-sections are shown on Figure 2. Figure 3 illustrates cross-section (A-A') starting at well pair MW-12, located on the south side of the Clyde River, extending north to monitoring well MW-8S located northwest of the manufacturing building. Figure 4 shows cross-section (B-B') starting at soil boring GP-42/monitoring well MW-9S, located in the northwestern portion of the Site, running eastward to monitoring well MW-2S/2B located just east of the manufacturing building. Cross-section (C-C') starting at soil boring GP-35/monitoring well pair MW-5, located in the southwestern portion of the Site, continuing eastward along the southern property line to well EMW-5 is illustrated on Figure 5.

A summary of the stratigraphic information generated during the RI and supplemental investigations at the Site is presented in Table 1. The top of low permeability unit and the top of bedrock unit contour maps have been updated to include the additional stratigraphic information and are presented as Figures 6 and 7, respectively.

3.2. Hydrogeologic conditions

A conceptual hydrogeologic model for the Site has been developed and includes two hydrogeologic units: the shallow unconsolidated unit and the shallow bedrock unit. The shallow unconsolidated unit is composed of fill material and glaciofluvial deposits and has a thickness ranging from 1.0 to 29.2 feet. The shallow bedrock hydrogeologic unit at the Site is part of the Syracuse-Camillus Formation and consists of interbedded shale and limestone. The depth to the top of the shallow bedrock hydrogeologic unit ranges from 16.5 to 31 feet bgs.

As discussed in Section 2.4, prior to the ground water sampling event, ground water and surface water elevation data were obtained from all accessible monitoring locations. Based on the ground water elevation data obtained on November 28, 2006, contour maps of the potentiometric surface in the overburden and shallow bedrock units have been prepared to confirm the general ground water flow direction at the Site. As shown on Figure 8, ground water flow in the western and central portions of the Site is generally to the west toward a buried channel deposit and to the south toward the Clyde River. Ground water in the southeastern margin of the Site flows to the south-southwest toward the Clyde River and does not appear to be influenced by the buried channel. As shown on Figure 9, in the areas north of the Clyde River, ground water flow within the shallow bedrock unit is generally to the southwest and occurs principally through secondary porosity features such as fractures, joints and bedding planes. South of the Clyde River, shallow bedrock ground water flow is generally to the northeast. These ground water flow directions are consistent with historical data presented in previous reports.

4. Results

The analytical results for the soil sample and ground water samples collected during this supplemental investigation are presented in the following sections.

4.1. Soil Sampling Results

As discussed in Section 2.3, one soil sample, designated as SB6B(4-6), was collected from boring MW-6B using an encore sampler on November 15, 2006. The sample was collected from the unsaturated zone at a depth of 4 to 6 feet below grade and submitted to the laboratory for VOC analysis.

Table 5 presents the results of the laboratory analysis of soil sample SB6B(4-6). As shown on Table 5, VOCs detected in this sample include cis-1,2-DCE at an estimated concentration of 83.0J ug/kg, and toluene at a concentration of 71.5 ug/kg. No other VOCs were detected in the sample obtained from this location. The laboratory reporting forms for the soil analyses are provided in Appendix D.

4.2. Ground Water Sampling Results

Ground water samples were collected from twenty-two overburden monitoring wells (twenty permanent and two temporary wells) and eleven bedrock monitoring wells between November 28 and December 7, 2006 and analyzed for VOCs using USEPA Method SW-846 8260B. Ground water samples were also collected and analyzed for the following natural attenuation parameters and inorganic parameters: methane; ethane; ethene; dissolved organic carbon; alkalinity; chloride; nitrate; nitrite; nitrogen; sodium; sulfate; and, sulfide. The following field parameters were also measured at the time of sample collection and recorded on the field data sheets: iron II (Fe+2); redox potential; temperature; turbidity; dissolved oxygen; and, pH.

The results of the laboratory analyzed ground water samples for VOCs and MNA and inorganic parameters are presented on Tables 6 and 7, respectively. The field parameters measured at the time of sample collection are summarized on Table 8. Laboratory reporting forms from the ground water quality analyses are provided in Appendix E.

The results of the ground water sampling conducted at the Site confirm the findings of the RI and support the conclusion that the extent of the dissolved phase VOC contamination has been defined. As shown on Table 6, very low or non-detectable concentrations of VOCs were detected in ground water samples obtained from background locations east of the manufacturing building (MW-2S, MW-2B, TMW-1 and TMW-2), in the southeastern portion of the Site (EMW-3, EMW-5 and MW-3S), in the northwestern portion of the Site (MW-8S and MW-9S) and in the area located west and southwest of the barge canal turnaround (MW-5S, MW-5B, MW-7S and MW-7B). In addition, no contaminants of concern were detected in any of the samples collected from the wells located on the south side of the Clyde River (MW-10B, MW-11S, MW-11B, MW-12S and MW-12B).

Very low concentrations of VOCs were detected in ground water samples obtained from wells located in the area south of the manufacturing building (MW-1, MW-16S and MW-16B). Elevated concentrations of VOCs occur in the areas west of the manufacturing building (MW-1S and MW-13S) and southwest of the manufacturing building, near the acid shed and the former acid tank (MW-

6S and MW-6B), and the filled in portion of the former barge turnaround (MW-14S and MW-15S). Elevated concentrations of VOCs were also detected in shallow bedrock wells MW-3B and MW-4B, located just south of the former barge canal. The vertical extent of VOC concentrations in bedrock were also defined. As shown on Table 6, no contaminants of concern were detected in the ground water sample collected from intermediate bedrock well MW-4C. The highest VOC concentrations were generally detected in the overburden located in the vicinity of the former barge turnaround and in shallow bedrock near the confluence with the Old Erie Canal.

The VOCs most often detected at the Site are cis-1,2-DCE and vinyl chloride. Given that cis-1,2-DCE and vinyl chloride are known biodegradation products of TCE, this data indicates that natural attenuation is actively occurring at the Site. In addition, the concentrations of these degradation products are typically much greater than those of TCE indicating that much of the parent product has already been biodegraded.

5. Summary

The Old Erie Canal Site supplemental ground water investigation was implemented to address comments to the FS Report for the Old Erie Canal Site provided by the NYSDEC in a March 1, 2006 letter.

The results of the soil sampling conducted at location MW-6B indicate that low level concentrations of VOCs were detected in shallow unconsolidated soils. However, these data and the results of DNAPL field screening performed during the drilling program indicate that no DNAPL source areas were identified.

The results of the ground water sampling conducted at the Site are consistent with historical sampling events indicating that the primary VOCs detected at the Site are TCE and its degradation products (i.e., cis-1,2-DCE and vinyl chloride), toluene, and xylenes. Other VOCs detected during the RI and supplemental investigations were generally detected at the same locations as the primary VOCs and at lower concentrations.

The results of the supplemental investigation support the conclusions of the RI that the extent of the dissolved phase VOC contamination has been defined and that the lateral migration of VOCs at the Site appears to be controlled by the surface topography of the glacial till unit. Very low or non-detectable concentrations of VOCs were detected in ground water samples obtained from background locations east of the manufacturing building, in the southeastern portion of the Site, in the northwestern portion of the Site and in the area located west and southwest of the barge canal turnaround. In addition, no contaminants of concern were detected in any of the samples collected from the wells located on the south side of the Clyde River.

Very low concentrations of VOCs were detected in ground water samples obtained from wells located in the area south of the manufacturing building. Elevated concentrations of VOCs occur in the areas west and southwest of the manufacturing building, near the acid shed and the former acid tank area and in the filled in portion of the former barge turnaround. Elevated concentrations of VOCs were also detected in two of the three shallow bedrock wells located just south of the former barge canal. The vertical extent of VOCs in bedrock were defined based on the ground water results from intermediate bedrock well MW-4C in which no contaminants of concern were detected. Consistent with historical results, the highest VOC concentrations are observed in the vicinity of the former barge turnaround and its confluence with the Old Erie Canal.

The results of the MNA and inorganic parameter analyses continue to indicate that natural processes are attenuating the VOCs in groundwater at the Site. The primary pathway for natural attenuation appears to be biodegradation. The biological processes involve the transformation of higher chlorinated organic compounds to less chlorinated organic compounds (daughter products) and ultimately to innocuous end products (e.g. ethane and ethene) via reductive dechlorination. In addition, physical processes including advection, dispersion, sorption, and volatilization may also be contributing to the overall attenuation.

Evidence of microbial mediated degradation is supported by the presence of both daughter products and end products. TCE concentrations at the Site are generally low in comparison to the concentrations of DCE and vinyl chloride and ethene and ethane are present in groundwater at the Site.

Geochemical evidence that indicates subsurface conditions amenable for microbially mediated degradation include the following:

- An abundance of dissolved TOC that can be utilized as a carbon source (electron donor) by microbes.
- Depleted dissolved oxygen and nitrate levels and elevated ferrous iron concentrations, indicating that anaerobic conditions exist across the Site.
- The presence of methane, suggesting that highly reducing conditions are present, supportive of the reductive dechlorination of TCE and its daughter compounds to innocuous end products.

References

- Conestoga-Rovers & Associates (CRA). 2005. *Feasibility Study. Old Erie Canal Site, Clyde, New York.* Prepared for: Parker Hannifin Corporation, Cleveland, Ohio and General Electric Company, Albany, New York.
- Conestoga-Rovers & Associates (CRA). 2006. Draft Supplemental Ground Water Investigation Work Plan. Old Erie Canal Site, Clyde, New York. Prepared for: Parker Hannifin Corporation, Cleveland, Ohio and General Electric Company, Albany, New York.
- O'Brien & Gere Engineers, Inc. (O'Brien & Gere). 2004. *Remedial Investigation/Feasibility Study Work Plan Addendum No.1. Old Erie Canal Site, Clyde, New York.* Prepared for: Parker Hannifin Corporation, Cleveland, Ohio and General Electric Company, Albany, New York.
- O'Brien & Gere Engineers, Inc. (O'Brien & Gere). 2001. *Remedial Investigation/Feasibility Study Work Plan. Old Erie Canal Site, Clyde, New York.* Prepared for: Parker Hannifin Corporation, Cleveland, Ohio and General Electric Company, Albany, New York. December 16, 1999; Last Revised November 27, 2001.
- O'Brien & Gere Engineers, Inc. (O'Brien & Gere). 2003. *Remedial Investigation Report. Old Erie Canal Site, Clyde, New York.* Prepared for: Parker Hannifin Corporation, Cleveland, Ohio and General Electric Company, Albany, New York. November 24. 2003.

TABLES

Old Erie Canal Site Clyde, New York

Boring No.	Date Completed	Ground Elevation	Boring Depth	End of Boring Elevation	Depth To Glacial Till	Top of Glacial Till Elevation	Depth To Bedrock	Top of Bedrock Elevation
MW-1S	05/30/02	394.6	8.0	386.6	7.0	387.6		
MW-2S	05/21/02	398.5	11.7	386.8				
MW-2B	05/29/02	398.4	28.5	369.9	12.3	386.1	16.5	381.9
MW-3S	05/21/02	394.0	11.5	382.5	10.5	383.5		
MW-3B	11/16/06	394.2	39.0	355.2	10.5	383.7	25.0	369.2
MW-4S	05/22/02	393.3	20.3	373.0	20.0	373.3		
MW-4B	05/28/02	393.3	38.9	354.4	20.0	373.3	26.0	367.3
MW-4C	11/17/06	393.3	50.0	343.3	20.0	373.3	26.0	367.3
MW-5S	05/21/02	393.1	11.4	381.7	10.0	383.1		
MW-5B	11/16/06	393.2	39.0	354.2	10.0	383.2	25.9	367.3
MW-6S	05/30/02	395.0	15.0	380.0	15.0	380.0		
MW-6B	11/15/06	395.1	39.0	356.1	10.0	385.1	25.9	369.2
MW-7S	05/24/02	394.9	17.0	377.9	16.3	378.6		
MW-7B	05/28/02	397.4	39.5	357.9	1.0	396.4	28.2	369.2
MW-8S	05/29/02	390.3	22.0	368.3			21.5	368.8
MW-9S	05/22/02	391.8	17.5	374.3	17.0	374.8		
MW-10B	11/25/02	391.2	42.7	348.5	17.5	373.7	29.0	362.2
MW-11S	11/20/02	390.4	12.0	378.4	11.0	379.4		
MW-11B	11/25/02	389.8	44.0	345.8	11.0	378.8	30.8	359.0
MW-12S	11/22/02	391.1	10.0	381.1	10.0	381.1		
MW-12B	11/22/02	391.4	45.0	346.4	10.0	381.4	31.0	360.4
MW-13S	11/02/06	389.7	20.0	369.7	17.5	372.2		
MW-14S	11/06/06	389.3	22.5	366.8	22.5	366.8		
MW-15S	11/07/06	388.4	14.0	374.4	14.0	374.4		
MW-16S	11/02/06	398.0	10.0	388.0	4.0	394.0		
MW-16B	11/15/06	398.2	44.0	354.2	9.0	389.2	31.0	367.2
EMW-1	10/14/94	394.6	32.0	362.6	10.0	384.6	25.2	369.4
EMW-2	10/17/94	395.0	12.0	383.0	8.0	387.0		
EMW-3	10/14/94	394.2	12.3	381.9				
EMW-4	10/18/94	392.9	12.0	380.9	8.5	384.4		
EMW-5	10/17/94	393.0	12.0	381.0	10.5	382.5		

Notes:

1. All depths in feet below ground surface.

2. All elevations in feet above mean sea level and measured in NGVD 1929.

3. NE indicates not encountered.

Old Erie Canal Site Clyde, New York

Boring No.	Date Completed	Ground Elevation	Boring Depth	End of Boring Elevation	Depth To Glacial Till	Top of Glacial Till Elevation	Depth To Bedrock	Top of Bedrock Elevation
GP-1	04/24/02	397.6	6.5	391.1	5.0	392.6		
GP-2	04/24/02	397.7	6.5	391.2	6.3	391.5		
GP-3	04/24/02	397.7	4.0	393.7	3.5	394.2		
GP-4	04/23/02	391.7	18.0	373.7	17.0	374.7		
GP-5	04/24/02	393.7	8.0	385.7	7.0	386.7		
GP-6	04/24/02	396.2	6.0	390.2	5.0	391.2		
GP-7	04/24/02	397.9	4.0	393.9	3.5	394.4		
GP-8	04/23/02	389.5	10.5	379.0	9.8	379.7		
GP-9	04/25/02	395.6	9.0	386.6	6.0	389.6		
GP-10	04/23/02	389.7	18.5	371.2	17.5	372.2		
GP-11	04/26/02	390.5	10.0	380.5	7.5	383.0		
GP-12	04/25/02	396.0	11.0	385.0	7.0	389.0		
GP-13	04/29/02	389.3	20.0	369.3			19.0	370.3
GP-14	04/25/02	394.6	13.5	381.1	10.5	384.1		
GP-15	04/24/02	396.8	11.0	385.8	7.0	389.8		
GP-16	04/24/02	398.2	12.0	386.2	7.8	390.4		
GP-17	04/24/02	398.0	4.0	394.0	3.5	394.5		
GP-18	04/23/02	391.1	13.0	378.1	12.0	379.1		
GP-19	04/29/02	389.3	20.0	369.3	15.5	373.8	19.0	370.3
GP-20	05/01/02	395.0	16.0	379.0	15.0	380.0		
GP-21	04/25/02	397.4	10.5	386.9	6.0	391.4		
GP-22	04/24/02	397.8	4.0	393.8	3.8	394.0		
GP-23	04/24/02	398.1	8.0	390.1	7.0	391.1		
GP-24	04/23/02	393.7	20.0	373.7	19.0	374.7		
GP-25	04/26/02	389.2	22.0	367.2			21.0	368.2
GP-26	04/26/02	395.4	16.0	379.4	13.0	382.4		
GP-27	04/25/02	396.6	10.0	386.6	6.5	390.1		
GP-28	04/30/02	394.2	24.0	370.2	22.5	371.7		
GP-29	04/25/02	395.8	12.0	383.8	9.5	386.3		
GP-30	04/25/02	396.9	8.0	388.9	3.7	393.2		
GP-31	04/23/02	394.9	17.0	377.9	16.5	378.4		
GP-32	04/23/02	389.4	22.0	367.4	21.5	367.9		
GP-33	04/30/02	394.4	16.0	378.4	15.0	379.4		
GP-34	05/01/02	395.2	29.2	366.0			29.2	366.0
GP-35	05/22/02	393.3	11.0	382.3	10.0	383.3		

Notes:

1. All depths in feet below ground surface.

2. All elevations in feet above mean sea level and measured in NGVD 1929.

3. NE indicates not encountered.

Old Erie Canal Site Clyde, New York

Boring No.	Date Completed	Ground Elevation	Boring Depth	End of Boring Elevation	Depth To Glacial Till	Top of Glacial Till Elevation	Depth To Bedrock	Top of Bedrock Elevation
GP-36	04/22/02	393.2	24.0	369.2	23.0	370.2		
GP-37	04/22/02	393.8	20.0	373.8	16.5	377.3		
GP-38	04/22/02	394.1	12.0	382.1	11.0	383.1		
GP-39	04/22/02	393.5	12.0	381.5	10.2	383.3		
GP-40	05/01/02	398.2	7.0	391.2	3.0	395.2		
GP-41	05/01/02	398.1	4.0	394.1	2.0	396.1		
GP-42	05/01/02	391.8	20.0	371.8	17.0	374.8		
GP-43	05/02/02	391.0	20.5	370.5			20.5	370.5
GP-44	05/02/02	395.4	8.0	387.4	3.0	392.4		
GP-45	11/19/02	398.0	9.0	389.0	8.6	389.4		
GP-46	11/19/02	398.1	8.5	389.6	8.5	389.6		
GP-47	11/19/02	398.5	5.0	393.5	4.6	393.9		
GP-48	11/20/02	396.2	10.2	386.0	6.5	389.7		
GP-49	11/19/02	397.9	10.5	387.4	5.0	392.9		
GP-50	11/19/02	398.3	6.0	392.3	6.0	392.3		
GP-51	11/20/02	396.2	10.1	386.1	8.0	388.2		
GP-52	11/19/02	397.9	10.5	387.4	4.0	393.9		
GP-53	11/19/02	398.1	7.0	391.1	7.0	391.1		
GP-54	11/19/02	398.0	6.0	392.0	6.0	392.0		
GP-55	11/19/02	398.1	8.2	389.9	4.7	393.4		
GP-56	11/20/02	396.2	12.6	383.6	9.5	386.7		
GP-57	11/20/02	397.7	6.0	391.7	4.0	393.7		
GP-58	11/20/02	398.2	7.5	390.7	5.2	393.0		
GP-59	11/20/02	393.1	10.0	383.1	8.0	385.1		
GP-60	11/20/02	393.3	17.0	376.3	16.8	376.5		
GP-61	11/20/02	393.7	11.5	382.2	6.0	387.7		
GP-1A	08/02/04	390.0	20.0	370.0	15.0	375.0		
GP-2A	08/02/04	391.8	20.0	371.8				
GP-3A	08/02/04	391.0	12.0	379.0				
GP-4A	08/02/04	391.7	8.0	383.7	5.0	386.7		
GP-5A	08/02/04	395.4	5.0	390.4	2.0	393.4		
GP-6A	08/02/04	397.6	7.0	390.6	5.5	392.1		
GP-7A	08/02/04	397.7	8.0	389.7	7.8	389.9		

Notes:

1. All depths in feet below ground surface.

2. All elevations in feet above mean sea level and measured in NGVD 1929.

3. NE indicates not encountered.

Old Erie Canal Site Clyde, New York

Boring No.	Date Completed	Ground Elevation	Boring Depth	End of Boring Elevation	Depth To Glacial Till	Top of Glacial Till Elevation	Depth To Bedrock	Top of Bedrock Elevation
SSB-1	1/14/2005	398.11	6	392.1	4.1	394.0		
SSB-2	1/14/2005	398.11	5.7	392.4	4.3	393.8		
SSB-3	1/14/2005	398.11	7.9	390.2	7.9	390.2		
SSB-4	1/14/2005	398.11	5.8	392.3	5.8	392.3		
SSB-5	1/14/2005	398.11	7.3	390.8	4.5	393.6		
SSB-6	1/13/2005	398.11	7.8	390.3	7.1	391.0		
SSB-7	1/12/2005	398.11	9.3	388.8	9.3	388.8		
SSB-8	1/13/2005	398.11	9.3	388.8	9.3	388.8		
SSB-9	1/13/2005	398.11	6.2	391.9	5	393.1		
SSB-10	1/13/2005	398.11	6.8	391.3	4.2	393.9		
SSB-11	1/13/2005	398.11	5.8	392.3	4.2	393.9		
TMW-1	11/3/2006	398.09	14.0	384.1	13.0	385.1		
TMW-2	11/3/2006	398.82	6.0	392.8	5.5	393.3		

Notes:

1. All depths in feet below ground surface.

2. All elevations in feet above mean sea level and measured in NGVD 1929.

3. "---" indicates not encountered.

Table 2Monitoring Well Construction Details

Old Erie Canal Site Clyde, New York

Well	Date	PVC Measuring	Ground	Screen		reen epth		reen vation		d Pack epth		d Pack vation
No.	Completed	Point Elev.	Elevation	Length	Тор	Bottom	Тор	Bottom	Тор	Bottom	Тор	Bottom
MW-1S	05/30/02	394.16	394.6	5.0	2.3	7.3	392.3	387.3	2.1	8.0	392.5	386.6
MW-2S	05/21/02	397.91	398.5	10.0	1.6	11.6	396.9	386.9	1.6	11.7	396.9	386.8
MW-2B	05/29/02	398.08	398.4	10.0	18.5	28.5	379.9	369.9	16.0	28.5	382.4	369.9
MW-3S	05/21/02	393.64	394.0	10.0	1.3	11.3	392.7	382.7	1.3	11.5	392.7	382.5
MW-3B	11/16/06	393.91	394.2	10.0	28.8	38.8	365.4	355.4	27.0	39.0	367.2	355.2
MW-4S	05/22/02	393.02	393.3	10.0	10.3	20.3	383.0	373.0	8.3	20.3	385.0	373.0
MW-4B	05/28/02	392.97	393.3	10.0	28.9	38.9	364.4	354.4	26.9	38.9	366.4	354.4
MW-4C	11/17/06	392.81	393.3	10.0	38.7	48.7	354.6	344.6	38.0	50.0	355.3	343.3
MW-5S	05/21/02	392.86	393.1	10.0	1.2	11.2	391.9	381.9	1.1	38.9	392.0	354.2
MW-5B	11/16/06	392.85	393.2	10.0	29.3	39.3	363.9	353.9	27.0	39.0	366.2	354.2
MW-6S	05/30/02	394.66	395.0	10.0	5.0	15.0	390.0	380.0	3.0	15.0	392.0	380.0
MW-6B	11/15/06	396.99	395.1	10.0	29.4	39.4	365.7	355.7	27.0	39.4	368.1	355.7
MW-7S	05/24/02	396.92	394.9	10.0	6.5	16.5	388.4	378.4	5.0	17.5	389.9	377.4
MW-7B	05/28/02	399.10	397.4	10.0	28.9	38.9	368.5	358.5	26.9	38.9	370.5	358.5
MW-8S	05/29/02	389.91	390.3	10.0	12.0	22.0	378.3	368.3	10.0	22.0	380.3	368.3
MW-9S	05/22/02	391.39	391.8	10.0	7.4	17.4	384.4	374.4	5.4	17.5	386.4	374.3

Notes:

1. All depths in feet below ground surface.

2. All elevations in feet above mean sea level and measured in NGVD 1929.

Table 2Monitoring Well Construction Details

Old Erie Canal Site Clyde, New York

Well	Date	PVC Measuring	Ground	Screen		reen epth		reen vation		d Pack epth		d Pack ation
No.	Completed	Point Elev.	Elevation	Length	Тор	Bottom	Тор	Bottom	Тор	Bottom	Тор	Bottom
MW-10B	11/25/02	390.99	391.2	10.0	32.7	42.7	358.5	348.5	30.2	42.7	361.0	348.5
MW-11S	11/20/02	390.04	390.4	7.0	5.0	12.0	385.4	378.4	4.0	12.0	386.4	378.4
MW-11B	11/25/02	389.75	389.8	10.0	34.0	44.0	355.8	345.8	31.0	44.0	358.8	345.8
MW-12S	11/22/02	390.43	391.1	5.0	5.0	10.0	386.1	381.1	4.0	10.0	387.1	381.1
MW-12B	11/22/02	391.32	391.4	10.0	34.0	44.0	357.4	347.4	31.0	44.0	360.4	347.4
MW-13S	11/02/06	391.53	389.7	5.0	11.9	16.9	377.8	372.8	11.0	17.5	378.7	372.2
MW-14S	11/06/06	391.39	389.3	5.0	16.4	21.4	372.8	367.8	15.0	22.5	374.3	366.8
MW-15S	11/07/06	390.12	388.4	5.0	7.7	12.7	380.7	375.7	6.0	14.0	382.4	374.4
MW-16S	11/02/06	397.30	398.0	5.0	4.6	9.6	393.4	388.4	3.5	10.0	394.5	388.0
MW-16B	11/15/06	397.69	398.2	10.0	33.6	43.6	364.6	354.6	32.0	44.0	366.2	354.2
EMW-1	10/14/94	394.30	394.6	10.0	8.0	18.0	386.6	376.6	6.0	18.5	388.6	376.1
EMW-2	10/17/94	394.72	395.0	5.0	6.0	11.0	389.0	384.0	5.0	12.0	390.0	383.0
EMW-3	10/14/94	396.94	394.2	5.0	6.0	11.0	388.2	383.2	4.0	12.3	390.2	381.9
EMW-4	10/18/94	395.51	392.9	5.0	6.0	11.0	386.9	381.9	5.0	12.0	387.9	380.9
EMW-5	10/17/94	395.53	393.0	5.0	6.0	11.0	387.0	382.0	5.0	12.0	388.0	381.0
TMW-1	11/3/2006	399.11	398.1	2.0	10.1	12.1	388.0	386.0	8.0	14.0	390.1	384.1
TMW-2	11/3/2006	399.91	398.8	2.0	3.8	5.8	395.1	393.1				

Notes:

1. All depths in feet below ground surface.

2. All elevations in feet above mean sea level and measured in NGVD 1929.

Table 3 Water Level Elevation Data November 28, 2006

Old Erie Canal Site Clyde, New York

Well No.	Measuring Point	Depth to Water	Water Elevation
MW-1	401.43	6.86	394.57
MW-1S	394.16	4.42	389.74
MW-2S	397.91	2.93	394.98
MW-2B	398.08	3.82	394.26
MW-3S	393.64	4.34	389.30
MW-3B	393.91	8.19	385.72
MW-4S	393.02	5.20	387.82
MW-4B	392.97	6.52	386.45
MW-4C	392.81	-1.06	393.87
MW-5S	392.86	4.35	388.51
MW-5B	392.85	27.46	365.39
MW-6S	394.66	4.57	390.09
MW-6B	396.99	9.00	387.99
MW-7S	396.92	9.09	387.83
MW-7B	399.10	10.66	388.44
MW-8S	389.91	0.50	389.41
MW-9S	391.39	2.60	388.79
MW-10B	390.99	-1.16	392.15
MW-11S	390.04	3.90	386.14
MW-11B	389.75	-1.37	391.12
MW-12S	390.43	2.42	388.01
MW-12B	391.32	-1.06	392.38
MW-13S	391.53	3.12	388.41
MW-14S	391.39	3.40	387.99
MW-15S	390.12	2.19	387.93
MW-16S	397.30	2.94	394.36
MW-16B	397.69	3.88	393.81

Notes:

1. Water level depths in feet below ground surface.

2. All elevations in feet above mean sea level.

3. Measuring point measured in NGVD 1929.

Table 3 Water Level Elevation Data November 28, 2006

Old Erie Canal Site Clyde, New York

EMW-1	394.30	Well decomm	nissioned in 2002
EMW-2	394.72	2.14	392.58
EMW-3	396.94	7.67	389.27
EMW-4	395.51	6.55	388.96
EMW-5	395.53	5.24	390.29
TMW-1	399.11	4.71	394.4
TMW-2	399.91	4.70	395.21
SG-1	390.21	0.30	389.91
SG-2	387.46	0.50	386.96
SG-3	387.99	7.91	380.08
SG-3A	391.04	7.84	383.2

Notes:

1. Water level depths in feet below ground surface.

2. All elevations in feet above mean sea level.

3. Measuring point measured in NGVD 1929.

Table 4Hydraulic Conductivity Testing ResultsGroundwater Monitoring

Old Erie Canal Site Clyde, New York

Well	Bouwer and Rice K Estimate	Arithmetic Mean			
Identification	(cm/sec)	(cm/sec)	(ft/day)		
Unconsolidated Me	-				
MW-2S	3.04E-04 4.27E-03	2.29E-03	6.48		
MW-3S	3.84E-04 6.31E-04	5.08E-04	1.44		
MW-4S	2.59E-03 3.03E-03	2.81E-03	7.96		
MW-5S	1.94E-03 1.20E-02 6.83E-03	6.92E-03	19.62		
MW-6S	3.54E-04 3.43E-04	3.49E-04	0.99		
MW-7S	7.22E-03 6.06E-03	6.64E-03	18.82		
MW-8S	1.07E-03	1.07E-03	3.03		
MW-9S	1.15E-04	1.15E-04	0.33		
MW-11S	3.29E-03 3.29E-03 3.29E-03	3.29E-03	9.32		
MW-12S	NA	NA	NA		
MW-13S	4.02E-03 2.86E-03 2.21E-03	3.03E-03	8.59		
MW-14S	5.35E-04 3.91E-04 3.62E-04	4.29E-04	1.22		
MW-15S	1.03E-02 9.15E-03 8.98E-03	9.47E-03	26.84		
MW-16S	1.69E-02 7.30E-03 8.72E-03	1.10E-02	31.08		
EMW-2	1.55E-04 1.49E-04	1.52E-04	0.43		

Table 4 Hydraulic Conductivity Testing Results Groundwater Monitoring

Old Erie Canal Site Clyde, New York

Well Identification	Arithmeti (cm/sec)	Arithmetic Mean (cm/sec) (ft/day)				
Unconsolidated Mor	Unconsolidated Monitoring Wells (Continued)					
EMW-3	2.86E-03 2.47E-03	2.67E-03	7.55			
EMW-4	5.39E-04 7.72E-04	6.56E-04	1.86			
EMW-5	3.29E-03 3.29E-03	3.29E-03	9.32			
TMW-1	7.88E-04 6.71E-04	7.29E-04	2.07			
TMW-2	1.60E-02 1.09E-02	1.35E-02	38.12			
Bedrock Monitoring	Wells					
MW-2B	3.79E-06	3.79E-06	0.01			
MW-3B	5.54E-06 9.03E-06 4.43E-06	6.33E-06	0.02			
MW-4B	2.65E-04 3.36E-04	3.01E-04	0.85			
MW-4C	2.35E-05 2.43E-05	2.39E-05	0.07			
MW-5B	NA	NA	NA			
MW-6B	3.07E-04 3.02E-04 2.99E-04	3.03E-04	0.86			
MW-10B	1.49E-05	1.49E-05	0.04			
MW-11B	1.33E-04	1.33E-04	0.38			
MW-12B	NA	NA	NA			
MW-16B	1.89E-07	1.89E-07	0.001			

Notes:

1. The geometric mean hydraulic conductivity of the unconsolidated monitoring wells at the Site is 1.70E-03 (4.82 ft/day).

2. The geometric mean hydraulic conductivity of the bedrock monitoring wells at the Site is 1.93E-05 (0.05 ft/day).

Table 5 Soil Sampling Results

Old Erie Canal Site Clyde, New York

		Sample Date	11/15/2006
		Sample ID SB6B(4-6)1115	
		Sample Matrix	SO
CAS No	Chemical Name	Unit	
71-55-6	1,1,1-Trichloroethane	ug/kg	200 UJ
79-34-5	1,1,2,2-Tetrachloroethane	ug/kg	200 UJ
79-00-5	1,1,2-Trichloroethane	ug/kg	200 UJ
75-34-3	1,1-Dichloroethane	ug/kg	200 UJ
75-35-4	1,1-Dichloroethene	ug/kg	200 UJ
107-06-2	1,2-Dichloroethane	ug/kg	40 UJ
78-87-5	1,2-Dichloropropane	ug/kg	200 UJ
108-10-1	4-Methyl-2-pentanone	ug/kg	200 UJ
67-64-1	Acetone	ug/kg	400 UJ
71-43-2	Benzene	ug/kg	40 UJ
75-27-4	Bromodichloromethane	ug/kg	200 UJ
75-25-2	Bromoform	ug/kg	200 UJ
74-83-9	Bromomethane	ug/kg	200 UJ
75-15-0	Carbon disulfide	ug/kg	200 UJ
56-23-5	Carbon tetrachloride	ug/kg	200 UJ
108-90-7	Chlorobenzene	ug/kg	200 UJ
75-00-3	Chloroethane	ug/kg	200 UJ
67-66-3	Chloroform	ug/kg	200 UJ
74-87-3	Chloromethane	ug/kg	200 UJ
156-59-2	cis-1,2-Dichloroethene	ug/kg	83.0 J
10061-01-5	cis-1,3-Dichloropropene	ug/kg	200 UJ
124-48-1	Dibromochloromethane	ug/kg	200 UJ
100-41-4	Ethylbenzene	ug/kg	40 UJ
591-78-6	Methyl Butyl Ketone	ug/kg	200 UJ
78-93-3	Methyl Ethyl Ketone	ug/kg	400 UJ
75-09-2	Methylene chloride	ug/kg	200 UJ
100-42-5	Styrene	ug/kg	200 UJ
127-18-4	Tetrachloroethene	ug/kg	200 UJ
108-88-3	Toluene	ug/kg	71.5 J
156-60-5	trans-1,2-Dichloroethene	ug/kg	200 UJ
10061-02-6	trans-1,3-Dichloropropene	ug/kg	200 UJ
79-01-6	Trichloroethene	ug/kg	200 UJ
75-01-4	Vinyl chloride	ug/kg	200 UJ
1330-20-7	Xylene (total)	ug/kg	79 UJ

Notes:

- 1. Units expressed in ug/kg.
- 2. Analyses performed by Accutest Laboratories of Dayton, NJ.
- 3. Volatile organic compounds quantitated by EPA SW-846 Method 8260B.
- 4. "U" indicates a compound not detected.
- 5. "J" indicates an estimated value.

Old Erie Canal Site Clyde, New York

	11/30/2006	12/1/2006	12/6/2006	12/1/2006
	GW-EMW-2-113006	GW-EMW-3-120106	GW-EMW-4-120606	GW-EMW-5-120106
Acetone	5.0 UR	5.0 UR	5.0 U	5.0 UR
Benzene	0.37 J	1.0 U	1.0 U	1.0 U
Bromodichloromethane	1.0 U	1.0 U	1.0 U	1.0 U
Bromoform	1.0 U	1.0 U	1.0 U	1.0 U
Bromomethane	1.0 U	1.0 U	1.0 U	1.0 U
2-Butanone (MEK)	5.0 UR	5.0 UR	5.0 U	5.0 UR
Carbon disulfide	1.0 U	1.0 U	1.0 UJ	1.0 U
Carbon tetrachloride	1.0 U	1.0 U	1.0 U	1.0 U
Chlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U
Chloroethane	1.0 U	1.0 U	1.4	1.0 U
Chloroform	1.0 U	1.0 U	1.0 U	1.0 U
Chloromethane	1.0 U	1.0 U	1.0 U	1.0 U
Dibromochloromethane	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	1.0 U	1.0 U	0.71 J	1.0 U
1,2-Dichloroethane	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,2-Dichloroethene	1.1	1.0 U	1.0 U	1.0 U
trans-1,2-Dichloroethene	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,3-Dichloropropene	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,3-Dichloropropene	1.0 U	1.0 U	1.0 U	1.0 U
Ethylbenzene	1.0 U	1.0 U	1.0 U	1.0 U
2-Hexanone	5.0 U	5.0 U	5.0 U	5.0 U
4-Methyl-2-pentanone (MIBK)	5.0 U	5.0 U	5.0 U	5.0 U
Methylene chloride	2.0 U	2.0 U	2.0 U	2.0 U
Styrene	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	1.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene	1.0 U	1.0 U	1.0 U	1.0 U
Toluene	1.0 U	1.0 U	1.0 U	1.0 U
1,1,1-Trichloroethane	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene	1.0 U	1.0 U	1.0 U	1.0 U
Vinyl chloride	5.7	1.0 U	2.2	1.0 U
Xylene (total)	0.57 J	1.0 U	1.0 U	1.0 U
Methane	1440	598	5140	1140
Ethane	340	0.56	226	0.25
Ethene	36.4	0.10 U	0.10 U	0.10 U

Notes:

1. Units expressed in ug/L.

- 2. VOCs quantified using EPA Method 8260B.
- 3. Methane, ethane and ethene were quantified using EPA Method 8015.
- 3. Analyses performed by Accutest Laboratories of Dayton, NJ.
- 4. "U" indicates a compound not detected.
- 5. "J" indicates an estimated value.
- 6. "R" indicates that the result is rejected due to low response factor in the calibration standard..

Old Erie Canal Site Clyde, New York

	11/29/2006	11/29/2006	12/6/2006	11/29/2006
		GW-X-1-112906		
	GW-MW-1S-112906	Duplicate of MW-1S	GW-MW-1-120606	GW-MW-2S-112906
Acetone	130 UR	50 U	5.0 U	5.0 U
Benzene	25 U	10 U	1.0 U	1.0 U
Bromodichloromethane	25 U	10 U	1.0 U	1.0 U
Bromoform	25 U	10 U	1.0 U	1.0 U
Bromomethane	25 U	10 U	1.0 U	1.0 U
2-Butanone (MEK)	130 UR	50 UR	5.0 U	5.0 UR
Carbon disulfide	25 U	10 U	1.0 UJ	1.0 U
Carbon tetrachloride	25 U	10 U	1.0 U	1.0 U
Chlorobenzene	25 U	10 U	1.0 U	1.0 U
Chloroethane	25 U	10 U	1.0 U	1.0 U
Chloroform	25 U	10 U	1.0 U	1.0 U
Chloromethane	25 U	10 U	1.0 U	1.0 U
Dibromochloromethane	25 U	10 U	1.0 U	1.0 U
1,1-Dichloroethane	25 U	10 U	1.0 U	1.0 U
1,2-Dichloroethane	25 U	10 U	1.0 U	1.0 U
1,1-Dichloroethene	25 U	6.9 J	1.0 U	1.0 U
cis-1,2-Dichloroethene	3690	3240	2.2	1.0 U
trans-1,2-Dichloroethene	32.4	34.2	1.0 U	1.0 U
1,2-Dichloropropane	25 U	10 U	1.0 U	1.0 U
cis-1,3-Dichloropropene	25 U	10 U	1.0 U	1.0 U
trans-1,3-Dichloropropene	25 U	10 U	1.0 U	1.0 U
Ethylbenzene	25 U	10 U	1.0 U	1.0 U
2-Hexanone	130 U	50 U	5.0 U	5.0 U
4-Methyl-2-pentanone (MIBK)	130 U	50 U	5.0 U	5.0 U
Methylene chloride	50 U	20 U	2.0 U	2.0 U
Styrene	25 U	10 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	25 U	10 U	1.0 U	1.0 U
Tetrachloroethene	11.0 J	10.6	1.0 U	1.0 U
Toluene	25 U	10 U	1.0 U	1.0 U
1,1,1-Trichloroethane	25 U	10 U	1.0 U	1.0 U
1,1,2-Trichloroethane	25 U	10 U	1.0 U	1.0 U
Trichloroethene	1110	988	0.58 J	1.0 U
Vinyl chloride	147	155	3.3	1.0 U
Xylene (total)	25 U	10 U	1.0 U	1.0 U
Methane	6.88	9.54	897	206
Ethane	7.69	11.0	10.4	0.10 U
Ethene	0.38	0.46	0.10 U	0.10 U

Notes:

1. Units expressed in ug/L.

- 2. VOCs quantified using EPA Method 8260B.
- 3. Methane, ethane and ethene were quantified using EPA Method 8015.
- 3. Analyses performed by Accutest Laboratories of Dayton, NJ.
- 4. "U" indicates a compound not detected.
- 5. "J" indicates an estimated value.
- 6. "R" indicates that the result is rejected due to low response factor in the calibration standard..

Old Erie Canal Site Clyde, New York

	11/29/2006	12/5/2006	12/5/2006	12/5/2006
	GW-MW-2B-112906	GW-MW-3S-120506	GW-MW-3B-120506	GW-MW-4S-120506
• ·	5.0.115			
Acetone	5.0 UR	5.0 U	5.0 U	5.0 U
Benzene	1.0 U	1.0 U	1.0 U	1.0 U
Bromodichloromethane	1.0 U	1.0 U	1.0 U	1.0 U
Bromoform	1.0 U	1.0 U	1.0 U	1.0 U
Bromomethane	1.0 U	1.0 U	1.0 U	1.0 U
2-Butanone (MEK)	5.0 UR	5.0 UR	5.0 UR	5.0 UR
Carbon disulfide	1.0 U	1.0 U	1.0 U	1.0 U
Carbon tetrachloride	1.0 U	1.0 U	1.0 U	1.0 U
Chlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U
Chloroethane	1.0 U	1.0 U	1.0 U	1.0 U
Chloroform	1.0 U	1.0 U	1.0 U	1.0 U
Chloromethane	1.0 U	1.0 U	1.0 U	1.0 U
Dibromochloromethane	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,2-Dichloroethene	1.0 U	1.0 U	351	6.3
trans-1,2-Dichloroethene	1.0 U	1.0 U	5.9	1.0 U
1,2-Dichloropropane	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,3-Dichloropropene	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,3-Dichloropropene	1.0 U	1.0 U	1.0 U	1.0 U
Ethylbenzene	1.0 U	1.0 U	1.0 U	1.0 U
2-Hexanone	5.0 U	5.0 U	5.0 U	5.0 U
4-Methyl-2-pentanone (MIBK)	5.0 U	5.0 U	5.0 U	5.0 U
Methylene chloride	2.0 U	2.0 U	2.0 U	2.0 U
Styrene	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	1.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene	1.0 U	1.0 U	1.0 U	1.0 U
Toluene	1.0 U	1.0 U	0.48 J	1.0 U
1,1,1-Trichloroethane	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene	1.0 U	1.0 U	1.4	1.0 U
Vinyl chloride	1.0 U	1.0 U	237	2.3
Xylene (total)	1.0 U	1.0 U	1.0 U	1.0 U
Methane	2.98U	6.12	24.4	6.43
Ethane	0.13	0.10 U	2.3	0.12
Ethene	0.10 U	0.10 U	16.2	0.10 U

Notes:

1. Units expressed in ug/L.

2. VOCs quantified using EPA Method 8260B.

3. Methane, ethane and ethene were quantified using EPA Method 8015.

- 3. Analyses performed by Accutest Laboratories of Dayton, NJ.
- 4. "U" indicates a compound not detected.
- 5. "J" indicates an estimated value.
- 6. "R" indicates that the result is rejected due to low response factor in the calibration standard..

Old Erie Canal Site Clyde, New York

	12/5/2006	12/5/2006	12/5/2006	12/5/2006
			GW-X-2-120506	
	GW-MW-4B-120506	GW-MW-4C-120506	Duplicate of MW-4C	GW-MW-5S-120506
Acetone	500 U	5.0 U	5.0 UJ	5.0 U
Benzene	100 U	1.0 U	1.0 UJ	1.0 U
Bromodichloromethane	100 U	1.0 U	1.0 UJ	1.0 U
Bromoform	100 U	1.0 U	1.0 UJ	1.0 U
Bromomethane	100 U	1.0 U	1.0 UJ	1.0 U
2-Butanone (MEK)	500 UR	5.0 UR	5.0 UR	5.0 UR
Carbon disulfide	100 U	1.0 U	1.0 UJ	1.0 U
Carbon tetrachloride	100 U	1.0 U	1.0 UJ	1.0 U
Chlorobenzene	100 U	1.0 U	1.0 UJ	1.0 U
Chloroethane	100 U	1.0 U	1.0 UJ	1.0 U
Chloroform	100 U	1.0 U	1.0 UJ	1.0 U
Chloromethane	100 U	1.0 U	1.0 UJ	1.0 U
Dibromochloromethane	100 U	1.0 U	1.0 UJ	1.0 U
1,1-Dichloroethane	100 U	1.0 U	1.0 UJ	1.0 U
1,2-Dichloroethane	100 U	1.0 U	1.0 UJ	1.0 U
1,1-Dichloroethene	100 U	1.0 U	1.0 UJ	1.0 U
cis-1,2-Dichloroethene	64800	1.0 U	1.0 UJ	1.0 U
trans-1,2-Dichloroethene	130	1.0 U	1.0 UJ	1.0 U
1,2-Dichloropropane	100 U	1.0 U	1.0 UJ	1.0 U
cis-1,3-Dichloropropene	100 U	1.0 U	1.0 UJ	1.0 U
trans-1,3-Dichloropropene	100 U	1.0 U	1.0 UJ	1.0 U
Ethylbenzene	100 U	1.0 U	1.0 UJ	1.0 U
2-Hexanone	500 U	5.0 U	5.0 UJ	5.0 U
4-Methyl-2-pentanone (MIBK)	500 U	5.0 U	5.0 UJ	5.0 U
Methylene chloride	200 U	2.0 U	2.0 UJ	2.0 U
Styrene	100 U	1.0 U	1.0 UJ	1.0 U
1,1,2,2-Tetrachloroethane	100 U	1.0 U	1.0 UJ	1.0 U
Tetrachloroethene	100 U	1.0 U	1.0 UJ	1.0 U
Toluene	100 U	1.0 U	1.0 UJ	1.0 U
1,1,1-Trichloroethane	100 U	1.0 U	1.0 UJ	1.0 U
1,1,2-Trichloroethane	100 U	1.0 U	1.0 UJ	1.0 U
Trichloroethene	2130	1.0 U	1.0 UJ	1.0 U
Vinyl chloride	8740	1.0 U	1.0 UJ	1.0 U
Xylene (total)	100 U	1.0 U	1.0 UJ	1.0 U
Methane	287	4.16	4.46J	21.8
Ethane	60.0	0.12	0.14J	0.10 U
Ethene	163	0.10 U	0.10 UJ	0.10 U

Notes:

1. Units expressed in ug/L.

- 2. VOCs quantified using EPA Method 8260B.
- 3. Methane, ethane and ethene were quantified using EPA Method 8015.
- 3. Analyses performed by Accutest Laboratories of Dayton, NJ.
- 4. "U" indicates a compound not detected.
- 5. "J" indicates an estimated value.
- 6. "R" indicates that the result is rejected due to low response factor in the calibration standard..

Old Erie Canal Site Clyde, New York

	12/6/2006	12/6/2006	12/6/2006	12/4/2006
	GW-MW-5B-120606	GW-MW-6S-120606	GW-MW-6B-120606	GW-MW-7S-120406
Acetone	4.7 J	2500 UJ	500 U	5.0 U
Benzene	1.0 U	500 UJ	100 U	1.0 U
Bromodichloromethane	1.0 U	500 UJ	100 U	1.0 U
Bromoform	1.0 U	500 UJ	100 U	1.0 U
Bromomethane	1.0 U	500 UJ	100 U	1.0 U
2-Butanone (MEK)	5.0 U	2500 UR	500 UR	5.0 U
Carbon disulfide	1.0 UJ	500 UJ	100 UJ	1.0 UJ
Carbon tetrachloride	1.0 U	500 UJ	100 U	1.0 U
Chlorobenzene	1.0 U	500 UJ	100 U	1.0 U
Chloroethane	1.0 U	500 UJ	100 U	1.0 U
Chloroform	1.0 U	500 UJ	100 U	1.0 U
Chloromethane	1.0 U	500 UJ	100 U	1.0 U
Dibromochloromethane	1.0 U	500 UJ	100 U	1.0 U
1,1-Dichloroethane	1.0 U	500 UJ	100 U	1.0 U
1,2-Dichloroethane	1.0 U	500 UJ	100 U	1.0 U
1,1-Dichloroethene	1.0 U	500 UJ	59.3 J	0.62 J
cis-1,2-Dichloroethene	1.0 U	186000J	50400	414 J
trans-1,2-Dichloroethene	1.0 U	478 J	119	2.5
1,2-Dichloropropane	1.0 U	500 UJ	100 U	1.0 U
cis-1,3-Dichloropropene	1.0 U	500 UJ	100 U	1.0 U
trans-1,3-Dichloropropene	1.0 U	500 UJ	100 U	1.0 U
Ethylbenzene	1.0 U	500 UJ	100 U	1.0 U
2-Hexanone	5.0 U	2500 UJ	500 U	5.0 U
4-Methyl-2-pentanone (MIBK)	5.0 U	2500 UJ	500 U	5.0 U
Methylene chloride	2.0 U	1000 UJ	200 U	2.0 U
Styrene	1.0 U	500 UJ	100 U	1.0 U
1,1,2,2-Tetrachloroethane	1.0 U	500 UJ	100 U	1.0 U
Tetrachloroethene	1.0 U	500 UJ	100 U	1.0 U
Toluene	1.0 U	24900J	100 U	1.0 U
1,1,1-Trichloroethane	1.0 U	500 UJ	100 U	1.0 U
1,1,2-Trichloroethane	1.0 U	500 UJ	100 U	1.0 U
Trichloroethene	1.0 U	500 UJ	95.5 J	0.46 J
Vinyl chloride	1.0 U	73200J	1750	12.4
Xylene (total)	1.0 U	854J	100 U	1.0 U
Methane	6.97	3520J	93.0	6.28
Ethane	0.70	718J	2.0	0.10 U
Ethene	0.35	2710J	41.3	0.10 U

Notes:

1. Units expressed in ug/L.

- 2. VOCs quantified using EPA Method 8260B.
- 3. Methane, ethane and ethene were quantified using EPA Method 8015.
- 3. Analyses performed by Accutest Laboratories of Dayton, NJ.
- 4. "U" indicates a compound not detected.
- 5. "J" indicates an estimated value.
- 6. "R" indicates that the result is rejected due to low response factor in the calibration standard..

Old Erie Canal Site Clyde, New York

	12/4/2006	11/30/2006	11/30/2006	11/30/2006
	GW-MW-7B-120406	GW-MW-8S-113006	GW-MW-9S-113006	GW-MW-10B-113006
Acetone	5.0 U	5.0 UR	5.0 UR	5.0 UR
Benzene	1.0 U	1.0 U	1.0 U	1.0 U
Bromodichloromethane	1.0 U	1.0 U	1.0 U	1.0 U
Bromoform	1.0 U	1.0 U	1.0 U	1.0 U
Bromomethane	1.0 U	1.0 U	1.0 U	1.0 U
2-Butanone (MEK)	5.0 U	5.0 UR	5.0 UR	5.0 UR
Carbon disulfide	1.0 U	1.0 U	0.55 J	1.0 U
Carbon tetrachloride	1.0 U	1.0 U	1.0 U	1.0 U
Chlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U
Chloroethane	1.0 U	1.0 U	1.0 U	1.0 U
Chloroform	1.0 U	1.0 U	1.0 U	1.0 U
Chloromethane	1.0 U	1.0 U	1.0 U	1.0 U
Dibromochloromethane	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,2-Dichloroethene	0.58 J	1.0 U	1.0 U	1.0 U
trans-1,2-Dichloroethene	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,3-Dichloropropene	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,3-Dichloropropene	1.0 U	1.0 U	1.0 U	1.0 U
Ethylbenzene	1.0 U	1.0 U	1.0 U	1.0 U
2-Hexanone	5.0 U	5.0 U	5.0 U	5.0 U
4-Methyl-2-pentanone (MIBK)	5.0 U	5.0 U	5.0 U	5.0 U
Methylene chloride	2.0 U	2.0 U	2.0 U	2.0 U
Styrene	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	1.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene	1.0 U	1.0 U	1.0 U	1.0 U
Toluene	1.0 U	1.0 U	1.0 U	1.0 U
1,1,1-Trichloroethane	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene	0.35 J	1.0 U	1.0 U	1.0 U
Vinyl chloride	1.0 U	1.0 U	1.0 U	1.0 U
Xylene (total)	1.0 U	1.0 U	1.0 U	1.0 U
Methane	7.1	0.13	4.00	2.27
Ethane	0.30	0.10 U	0.11	0.10 U
Ethene	0.62	0.10 U	0.10 U	0.10 U

Notes:

1. Units expressed in ug/L.

- 2. VOCs quantified using EPA Method 8260B.
- 3. Methane, ethane and ethene were quantified using EPA Method 8015.
- 3. Analyses performed by Accutest Laboratories of Dayton, NJ.
- 4. "U" indicates a compound not detected.
- 5. "J" indicates an estimated value.
- 6. "R" indicates that the result is rejected due to low response factor in the calibration standard..

Old Erie Canal Site Clyde, New York

	11/30/2006	11/30/2006	11/30/2006	11/30/2006
	GW-MW-11S-113006	GW-MW-11B-113006	GW-MW-12S-113006	GW-MW-12B-113006
Azətərə	E A LID	50,00	5.0.11D	
Acetone	5.0 UR	5.0 UR	5.0 UR	5.0 UR
Benzene	1.0 U	1.0 U	1.0 U	1.0 U
Bromodichloromethane	1.0 U	1.0 U	1.0 U	1.0 U
Bromoform	1.0 U	1.0 U	1.0 U	1.0 U
Bromomethane	1.0 U	1.0 U	1.0 U	1.0 U
2-Butanone (MEK)	5.0 UR	5.0 UR	5.0 UR	5.0 UR
Carbon disulfide	1.0 U	1.0 U	1.0 U	1.0
Carbon tetrachloride	1.0 U	1.0 U	1.0 U	1.0 U
Chlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U
Chloroethane	1.0 U	1.0 U	1.0 U	1.0 U
Chloroform	1.0 U	1.0 U	1.0 U	1.0 U
Chloromethane	1.0 U	1.0 U	1.0 U	1.0 U
Dibromochloromethane	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,2-Dichloroethene	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,2-Dichloroethene	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,3-Dichloropropene	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,3-Dichloropropene	1.0 U	1.0 U	1.0 U	1.0 U
Ethylbenzene	1.0 U	1.0 U	1.0 U	1.0 U
2-Hexanone	5.0 U	5.0 U	5.0 U	5.0 U
4-Methyl-2-pentanone (MIBK)	5.0 U	5.0 U	5.0 U	5.0 U
Methylene chloride	2.0 U	2.0 U	2.0 U	2.0 U
Styrene	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	1.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene	1.0 U	1.0 U	1.0 U	1.0 U
Toluene	1.0 U	1.0 U	1.0 U	1.0 U
1.1.1-Trichloroethane	1.0 U	1.0 U	1.0 U	1.0 U
1.1.2-Trichloroethane	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene	1.0 U	1.0 U	1.0 U	1.0 U
Vinyl chloride	1.0 U	1.0 U	1.0 U	1.0 U
Xylene (total)	1.0 U	1.0 U	1.0 U	1.0 U
Methane	218	2.87	34.3	2.53
Ethane	0.10 U	0.10 U	0.10 U	0.89
Ethene	0.10 U	0.10 U	0.10 U	0.36

Notes:

1. Units expressed in ug/L.

2. VOCs quantified using EPA Method 8260B.

3. Methane, ethane and ethene were quantified using EPA Method 8015.

3. Analyses performed by Accutest Laboratories of Dayton, NJ.

4. "U" indicates a compound not detected.

5. "J" indicates an estimated value.

6. "R" indicates that the result is rejected due to low response factor in the calibration standard..

Old Erie Canal Site Clyde, New York

	11/30/2006	12/6/2006	12/7/2006	12/6/2006
	GW-MW-13S-113006	GW-MW-14S-120606	GW-MW-15S-120706	GW-MW-16S-120606
Acetone	200 UR	250 U	130 U	5.0 U
	40 U		25 U	
Benzene		50 U		1.0 U
Bromodichloromethane	40 U	50 U	25 U	1.0 U
Bromoform	40 U	50 U	25 U	1.0 U
Bromomethane	40 U	50 U	25 U	1.0 U
2-Butanone (MEK)	200 UR	250 UR	130 U	5.0 UR
Carbon disulfide	40 U	50 UJ	25 U	1.0 UJ
Carbon tetrachloride	40 U	50 U	25 U	1.0 U
Chlorobenzene	40 U	50 U	25 U	1.0 U
Chloroethane	40 U	50 U	25 U	1.0 U
Chloroform	40 U	50 U	25 U	1.0 U
Chloromethane	40 U	50 U	25 U	1.0 U
Dibromochloromethane	40 U	50 U	25 U	1.0 U
1,1-Dichloroethane	40 U	50 U	25 U	1.0 U
1,2-Dichloroethane	40 U	50 U	25 U	1.0 U
1,1-Dichloroethene	40 U	51.8	13.7 J	1.0 U
cis-1,2-Dichloroethene	6870	28200	20800	5.7
rans-1,2-Dichloroethene	40 U	80.0	30.8	1.0 U
1,2-Dichloropropane	40 U	50 U	25 U	1.0 U
cis-1,3-Dichloropropene	40 U	50 U	25 U	1.0 U
rans-1,3-Dichloropropene	40 U	50 U	25 U	1.0 U
Ethylbenzene	40 U	50 U	25 U	1.0 U
2-Hexanone	200 U	250 U	130 U	5.0 U
4-Methyl-2-pentanone (MIBK)	200 U	250 U	130 U	5.0 U
Vethylene chloride	80 U	100 U	50 U	2.0 U
Styrene	40 U	50 U	25 U	1.0 U
1,1,2,2-Tetrachloroethane	40 U	50 U	25 U	1.0 U
Tetrachloroethene	40 U	50 U	25 U	1.0 U
Foluene	40 U	639	98.9	1.0 U
1,1,1-Trichloroethane	40 U	50 U	25 U	1.0 U
1.1.2-Trichloroethane	40 U	50 U	25 U	1.0 U
Trichloroethene	845	254	5.6 J	8.4
Vinyl chloride	348	4610	9040	1.0 U
Xylene (total)	40 U	50 U	25 U	1.0 U
Vethane	115	588	6660	2.07
Ethane	13.2	151	426	0.35
Ethene	22.9	215	512	0.13

Notes:

1. Units expressed in ug/L.

2. VOCs quantified using EPA Method 8260B.

3. Methane, ethane and ethene were quantified using EPA Method 8015.

3. Analyses performed by Accutest Laboratories of Dayton, NJ.

4. "U" indicates a compound not detected.

5. "J" indicates an estimated value.

6. "R" indicates that the result is rejected due to low response factor in the calibration standard..

Old Erie Canal Site Clyde, New York

	12/6/2006	11/28/2006	11/29/2006
	GW-MW-16B-120606	GW-TMW-1-112806	GW-TMW-2-112906
Acetone	5.0 U	5.0 UR	5.0 UR
Benzene	1.0 U	1.0 U	1.0 U
Bromodichloromethane	1.0 U	1.0 U	1.0 U
Bromoform	1.0 U	1.0 U	1.0 U
Bromomethane	1.0 U	1.0 U	1.0 U
2-Butanone (MEK)	5.0 UR	5.0 UR	5.0 UR
Carbon disulfide	1.0 UJ	1.0 U	1.0 U
Carbon tetrachloride	1.0 U	1.0 U	1.0 U
Chlorobenzene	1.0 U	1.0 U	1.0 U
Chloroethane	1.0 U	1.0 U	1.0 U
Chloroform	1.0 U	1.0 U	1.0 U
Chloromethane	1.0 U	1.0 U	1.0 U
Dibromochloromethane	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene	1.0 U	1.0 U	1.0 U
cis-1,2-Dichloroethene	16.0	1.0 U	1.0 U
trans-1,2-Dichloroethene	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	1.0 U	1.0 U	1.0 U
cis-1,3-Dichloropropene	1.0 U	1.0 U	1.0 U
trans-1,3-Dichloropropene	1.0 U	1.0 U	1.0 U
Ethylbenzene	1.0 U	1.0 U	1.0 U
2-Hexanone	5.0 U	5.0 U	5.0 U
4-Methyl-2-pentanone (MIBK)	5.0 U	5.0 U	5.0 U
Methylene chloride	2.0 U	2.0 U	2.0 U
Styrene	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	1.0 U	1.0 U	1.0 U
Tetrachloroethene	1.0 U	1.0 U	1.0 U
Toluene	0.72 J	1.0 U	0.51 J
1.1.1-Trichloroethane	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	1.0 U	1.0 U	1.0 U
Trichloroethene	1.0 U	1.0 U	1.0 U
Vinyl chloride	1.2	1.0 U	1.0 U
Xylene (total)	1.0 U	1.0 U	1.0 U
Methane	6.70	152	8.97
Ethane	0.60	1.7	1.2
Ethene	0.72	0.53	0.10 U

Notes:

- 1. Units expressed in ug/L.
- 2. VOCs quantified using EPA Method 8260B.
- 3. Methane, ethane and ethene were quantified using EPA Method 8015.
- 3. Analyses performed by Accutest Laboratories of Dayton, NJ.
- 4. "U" indicates a compound not detected.
- 5. "J" indicates an estimated value.
- 6. "R" indicates that the result is rejected due to low response factor in the calibration standard..

Old Erie Canal Site Clyde, New York

	11/30/2006	12/1/2006	12/6/2006	12/1/2006	11/29/2006
	GW-EMW-2-113006	GW-EMW-3-120106	GW-EMW-4-120606	GW-EMW-5-120106	GW-MW-1S-112906
Alkalinity, Total(As CaCO3)	559	453	425	477	374
Chloride	108	38.3	70.9	77.2	182
Dissolved Organic Carbon (DOC)	4.8	3.6	5.6	1.0 U	1.0 UJ
Nitrate (as N)	0.11 U	0.66	0.11 U	0.11 U	0.11 U
Nitrogen, Nitrate + Nitrite	0.10 U	0.66	0.10 U	0.10 U	0.10 U
Nitrogen, Nitrite	0.010 U				
Sodium	65600	30900	59200	55000	103000
Sulfate	11.8	10 U	10 U	10 U	34.9
Sulfide	2.0 U				

Notes:

1. Units expressed in mg/L, with the exception of sodium, which is expressed in ug/L.

2. Analyses performed by Accutest Laboratories of Dayton, NJ.

3. "U" indicates a compound not detected.

Old Erie Canal Site Clyde, New York

	11/29/2006	12/6/2006 11/29/2006		11/29/2006	12/5/2006	
	GW-X-1-112906					
	Duplicate of MW-1S	GW-MW-1-120606	GW-MW-2S-112906	GW-MW-2B-112906	GW-MW-3S-120506	
Alkalinity, Total(As CaCO3)	460	275	441	128	462	
Chloride	182	24.3	21.5	57.4	10.4	
Dissolved Organic Carbon (DOC)	4.6 J	6.4	2.2	5.1	2.1	
Nitrate (as N)	0.11 U	0.11 U	0.33	0.11 U	0.35	
Nitrogen, Nitrate + Nitrite	0.10 U	0.10 U	0.33	0.10 U	0.35	
Nitrogen, Nitrite	0.011	0.010 U	0.010 U	0.010 U	0.010 U	
Sodium	103000	21400	61800	70600	11200	
Sulfate	35.1	12.7	10.4	1140	21.3	
Sulfide	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	

Notes:

1. Units expressed in mg/L, with the exception of sodium, which is expressed in ug/L.

2. Analyses performed by Accutest Laboratories of Dayton, NJ.

3. "U" indicates a compound not detected.

Old Erie Canal Site Clyde, New York

	12/5/2006	12/5/2006	12/5/2006	12/5/2006	12/5/2006
					GW-X-2-120506
	GW-MW-3B-120506	GW-MW-4S-120506	GW-MW-4B-120506	GW-MW-4C-120506	Duplicate of MW-4C
Alkalinity, Total(As CaCO3)	63.4	393	361	188	159
Chloride	104	12.8	187	253	256
Dissolved Organic Carbon (DOC)	1.1	4.3	2.8	1.0 U	1.0 U
Nitrate (as N)	0.11 U				
Nitrogen, Nitrate + Nitrite	0.10 U				
Nitrogen, Nitrite	0.010 U				
Sodium	192000	10000 U	95200	244000	239000
Sulfate	2090	42.2	1150	1710	1790
Sulfide	2.0 U				

Notes:

1. Units expressed in mg/L, with the exception of sodium, which is expressed in ug/L.

2. Analyses performed by Accutest Laboratories of Dayton, NJ.

3. "U" indicates a compound not detected.

Old Erie Canal Site Clyde, New York

	12/5/2006	12/6/2006	12/6/2006	12/6/2006	12/4/2006
	GW-MW-5S-120506	GW-MW-5B-120606	GW-MW-6S-120606	GW-MW-6B-120606	GW-MW-7S-120406
Alkalinity, Total(As CaCO3)	739	105	439	256	352
Chloride	2.0 U	123	236	144	74.2
Dissolved Organic Carbon (DOC)	1.9	1.0 U	33.8	1.5	1.3
Nitrate (as N)	0.11 U				
Nitrogen, Nitrate + Nitrite	0.10 U				
Nitrogen, Nitrite	0.010 U				
Sodium	10000 U	166000	67800	73600	37700
Sulfate	12.3	1840	10.4	1420	231
Sulfide	2.0 U				

Notes:

1. Units expressed in mg/L, with the exception of sodium, which is expressed in ug/L.

2. Analyses performed by Accutest Laboratories of Dayton, NJ.

3. "U" indicates a compound not detected.

Old Erie Canal Site Clyde, New York

	12/4/2006	11/30/2006	11/30/2006	11/30/2006	11/30/2006
	GW-MW-7B-120406	GW-MW-8S-113006	GW-MW-9S-113006	GW-MW-10B-113006	GW-MW-11S-113006
Alkalinity, Total(As CaCO3)	16.1	409	340	152	442
Chloride	40.6	248	55.5	751 J	10.1
Dissolved Organic Carbon (DOC)	5.0 U	1.4	5.1	1.0 U	2.5
Nitrate (as N)	0.19	0.17	0.11 U	0.11 U	0.11 U
Nitrogen, Nitrate + Nitrite	0.19	0.17	0.10 U	0.10 U	0.10 U
Nitrogen, Nitrite	0.010 U	0.010 U	0.010 U	0.025	0.010 U
Sodium	90600	158000	58900	568000	10900
Sulfate	1740	67.3	96.3	1970 J	24.3
Sulfide	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U

Notes:

1. Units expressed in mg/L, with the exception of sodium, which is expressed in ug/L.

2. Analyses performed by Accutest Laboratories of Dayton, NJ.

3. "U" indicates a compound not detected.

Old Erie Canal Site Clyde, New York

	11/30/2006	11/30/2006	11/30/2006	11/30/2006	12/6/2006
	GW-MW-11B-113006	GW-MW-12S-113006	GW-MW-12B-113006	GW-MW-13S-113006	GW-MW-14S-120606
Alkalinity, Total(As CaCO3)	159	629	59.7	289	371
Chloride	613 J	3.0	964 J	163	141
Dissolved Organic Carbon (DOC)	1.0 U	3.8	1.0 U	5.4	6.7
Nitrate (as N)	0.11 U	5.3	0.11 U	0.11 U	0.11 U
Nitrogen, Nitrate + Nitrite	0.10 U	5.3	0.10 U	0.10 U	0.10 U
Nitrogen, Nitrite	0.010 U				
Sodium	477000	10000 U	778000	93800	90400
Sulfate	1930 J	72.4	2130 J	878	355
Sulfide	2.0 U	2.0 U	3.0	2.0 U	2.0 U

Notes:

1. Units expressed in mg/L, with the exception of sodium, which is expressed in ug/L.

2. Analyses performed by Accutest Laboratories of Dayton, NJ.

3. "U" indicates a compound not detected.

Old Erie Canal Site Clyde, New York

	12/7/2006	12/6/2006	12/6/2006	11/28/2006	11/29/2006
	GW-MW-15S-120706	GW-MW-16S-120606	GW-MW-16B-120606	GW-TMW-1-112806	GW-TMW-2-112906
Alkalinity, Total(As CaCO3)	550	134	37.6	840	586
Chloride	122	13.1	128	223	19.4
Dissolved Organic Carbon (DOC)	11.7	1.7	21.4	8.5	12.7
Nitrate (as N)	0.11 U	2.0	0.11 U	0.11 U	0.11 U
Nitrogen, Nitrate + Nitrite	0.10 U	2.0	0.10 U	0.10 U	0.10 U
Nitrogen, Nitrite	0.010 U	0.010 U	0.010 U	0.010 UJ	0.010 U
Sodium	68200	20000	153000	111000	12700
Sulfate	18.3	19.2	1690	72.0	35.0
Sulfide	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U

Notes:

1. Units expressed in mg/L, with the exception of sodium, which is expressed in ug/L.

2. Analyses performed by Accutest Laboratories of Dayton, NJ.

3. "U" indicates a compound not detected.

Old Erie Canal Site Clyde, New York

	EMW-2 11/30/06	EMW-3 12/1/06	EMW-4 12/6/06	EMW-5 12/1/06	MW-1 12/6/06	MW-1S 11/29/06	MW-2S 11/29/06	MW-2B 11/29/06	MW-3S 12/5/06
Field Tested									
Redox Potential (mV)	-114	-85	-201	-178	76	31	21	-20	-5
Temperature (°C)	13.01	11.72	12.11	10.11	14.26	14.58	15.86	17.84	11.19
Dissolved Oxygen (mg/L)	1.06	0.00	0.90	3.88	1.59	1.19	1.00	2.07	1.91
pH (standard units)	10.14	7.20	12.47	7.37	7.78	7.90	8.02	7.36	9.13
Turbidity (NTU)	21.0	0.0	0.0	41.4	0.0	4.8	10.0	264.0	0.0
Specific Conductivity (uS/cm)	1150	940	1110	1080	588	1330	914	-20	942
Field Test Kits									
Iron II (mg/L)	10.0	1.0	10.0	9.5	0.0	2.5	3.0	1.5	<1

Notes:

1. Measurements and analyses performed by O'Brien & Gere personel.

Old Erie Canal Site Clyde, New York

	MW-3B 12/5/06	MW-4S 12/5/06	MW-4B 12/5/06	MW-4C 12/5/06	MW-5S 12/5/06	MW-5B 12/5/06	MW-6S 12/6/06	MW-6B 12/6/06	MW-7S 12/4/06
Field Tested									
Redox Potential (mV)	-53	-46	-43	-83	10	128	-121	-95	151
Temperature (°C)	11.24	12.60	11.90	9.59	9.83	11.43	13.10	12.88	12.06
Dissolved Oxygen (mg/L)	0.00	1.20	0.00	0.00	0.00	6.63	1.03	0.00	1.35
pH (standard units)	7.61	9.84	6.67	7.14	6.75	8.49	10.96	6.82	6.09
Turbidity (NTU)	62	0.0	0.0	0.0	0.0	>999	0.0	0.0	0.0
Specific Conductivity (uS/cm)	3540	831	2760	3660	900	3290	1650	3090	1310
Field Test Kits									
Iron II (mg/L)	<1	0.5	0.5	1.0	0.5	1.0	10.0	1.5	<1

Notes:

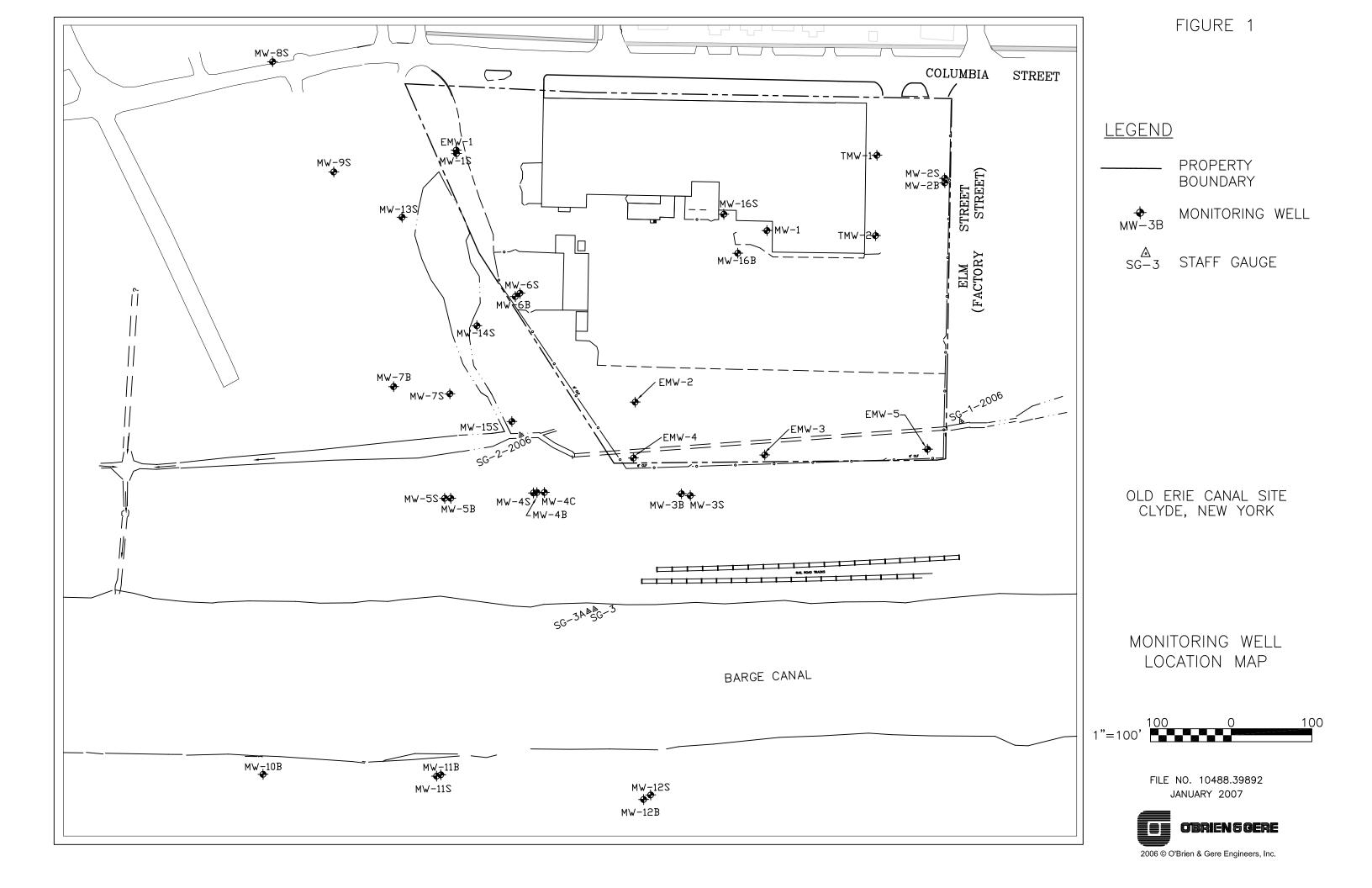
1. Measurements and analyses performed by O'Brien & Gere personel.

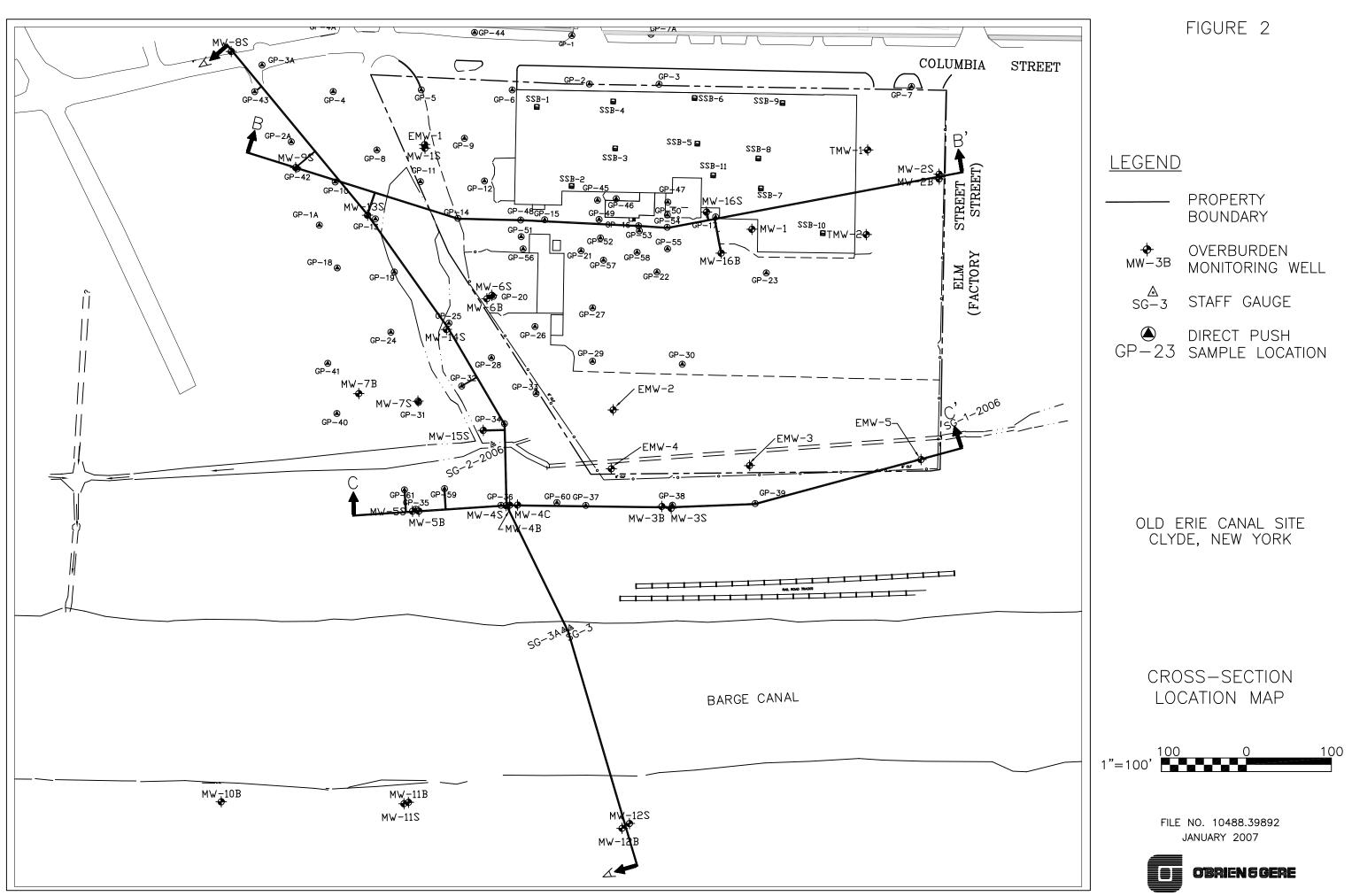
Old Erie Canal Site Clyde, New York

	MW-7B	MW-8S	MW-9S	MW-10B	MW-11S	MW-11B	MW-12S	MW-12B	MW-13S
	12/4/06	11/30/06	11/30/06	11/30/06	11/30/06	11/30/06	11/30/06	11/30/06	11/30/06
Field Tested Redox Potential (mV)	-172	-11	-12	-106	-156	-121	46	-412	-93
Temperature (°C)	12.50	12.64	14.50	13.75	13.41	13.11	10.39	11.63	13.26
Dissolved Oxygen (mg/L)	0.00	1.04	0.00	0.00	0.95	0.00	2.37	0.00	0.99
pH (standard units)	7.52	8.68	6.90	7.38	10.85	7.33	7.39	9.40	10.17
Turbidity (NTU)	89.0	52.1	156.0	324.0	5.9	120.0	60	231.0	>999
Specific Conductivity (uS/cm)	3020	1600	950	5320	890	4750	1250	6050	2270
Field Test Kits									
Iron II (mg/L)	10.0	3.0	2.5	3.0	10.0	1.5	<1	0.0	4.0

Notes:

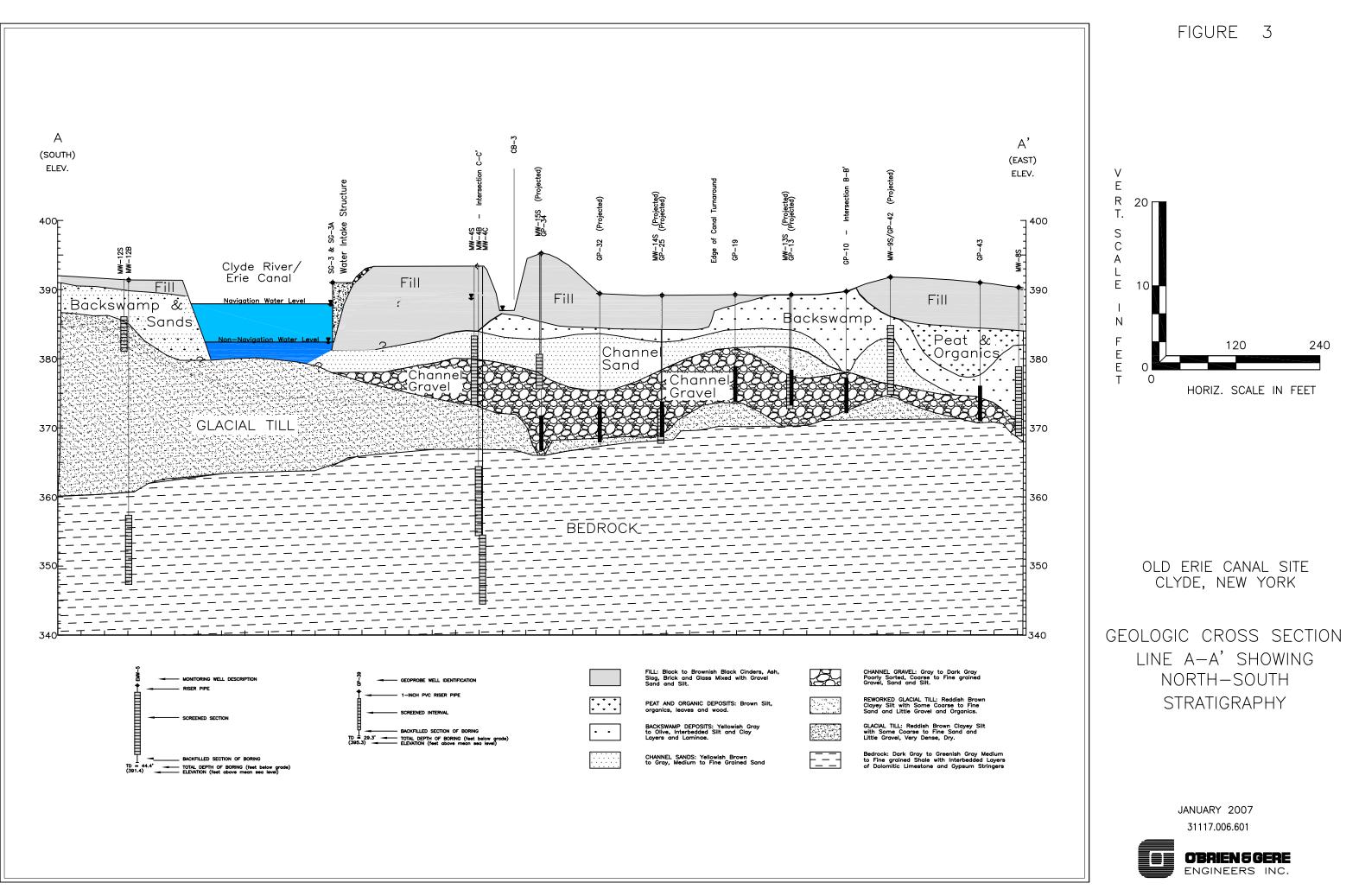
1. Measurements and analyses performed by O'Brien & Gere personel.

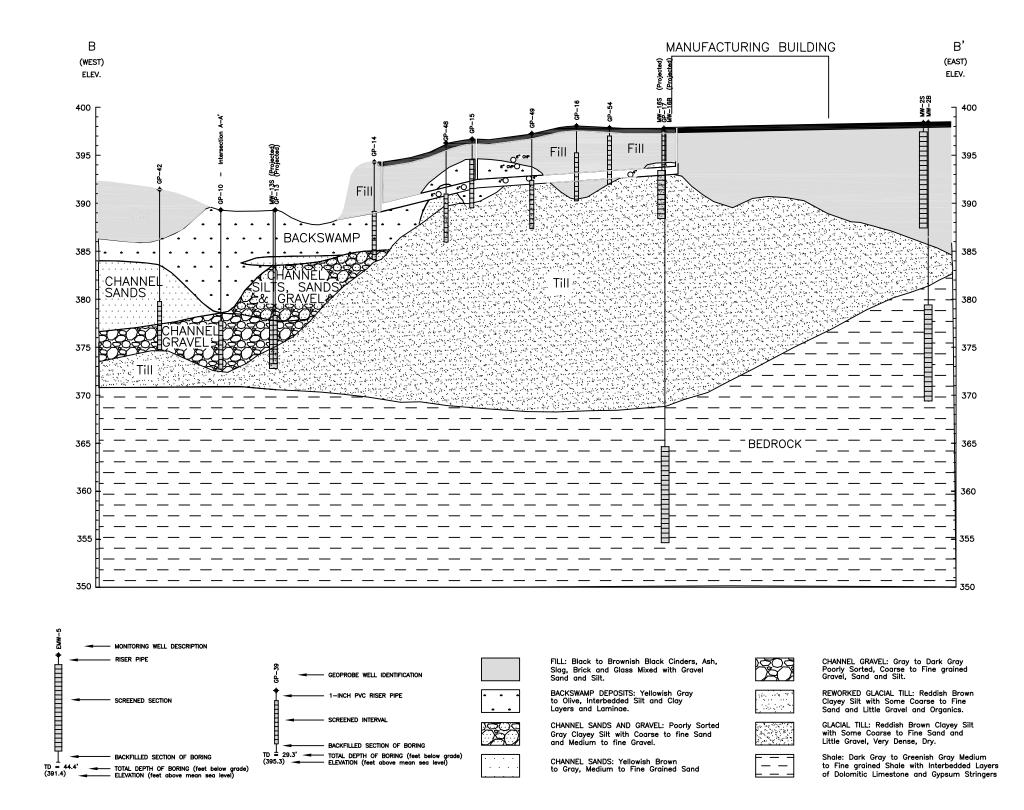

Old Erie Canal Site Clyde, New York


	MW-14S 12/6/06	MW-15S 12/7/06	MW-16S 12/6/06	MW-16B 12/6/06	TMW-1 11/28/06	TMW-2 11/29/06
Field Tested						
Redox Potential (mV)	-94	-111	-27	-236	-90	136
Temperature (°C)	11.08	7.64	14.44	15.85	16.49	14.16
Dissolved Oxygen (mg/L)	1.02	1.12	5.73	0.00	8.21	7.63
pH (standard units)	10.54	10.84	9.73	10.57	9.50	6.31
Turbidity (NTU)	68.0	339.0	683.0	0.0	107.0	>999
Specific Conductivity (uS/cm)	1770	1330	352	3130	2200	1090
Field Test Kits						
Iron II (mg/L)	5.5	10.0	<1	0.0	5.5	0.0

Notes:

1. Measurements and analyses performed by O'Brien & Gere personel.

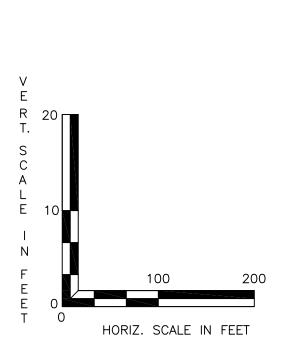

FIGURES



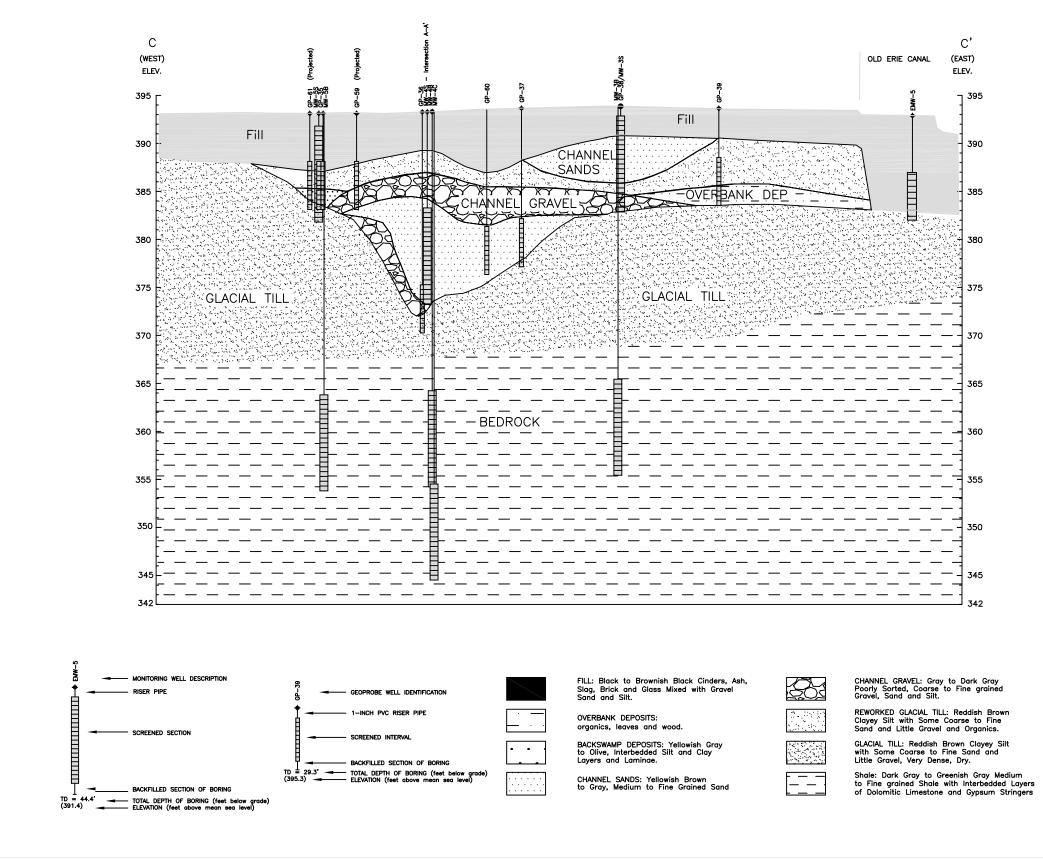
^{2006 ©} O'Brien & Gere Engineers, Inc.

DWG PATH: I:\ALBANY\PROJ\0612\31117\5_rpts\RI_Report\Figures\Fig_4-2 xsec-a-Revised.

/24/07



OBRIEN 5 GERE Engineers inc.


JANUARY 2007 31117.006.601

GEOLOGIC CROSS SECTION LINE B-B' SHOWING EAST-WEST STRATIGRAPHY MANUFACTURING BUILDING

OLD ERIE CANAL SITE CLYDE NEW YORK

DWG PATH: I:\ALBANY\PROJ\0612\31117\5_rpts\RI_Report\Figures\Fig_4-4 xsec-c-

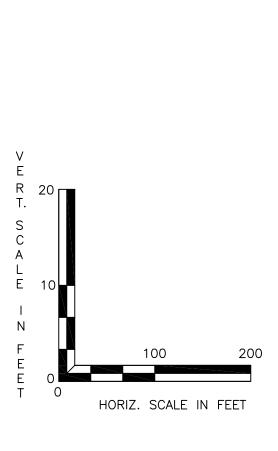
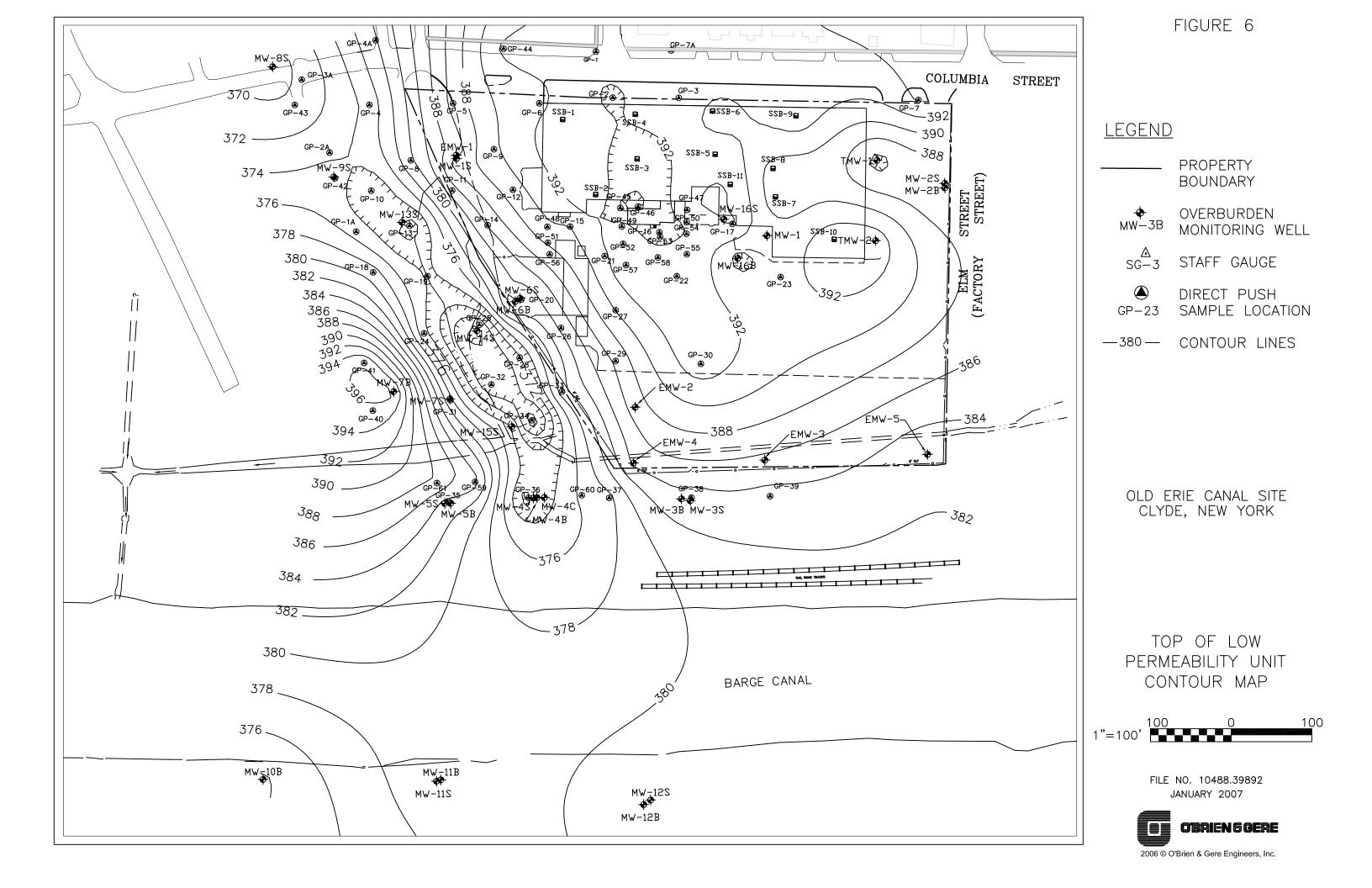
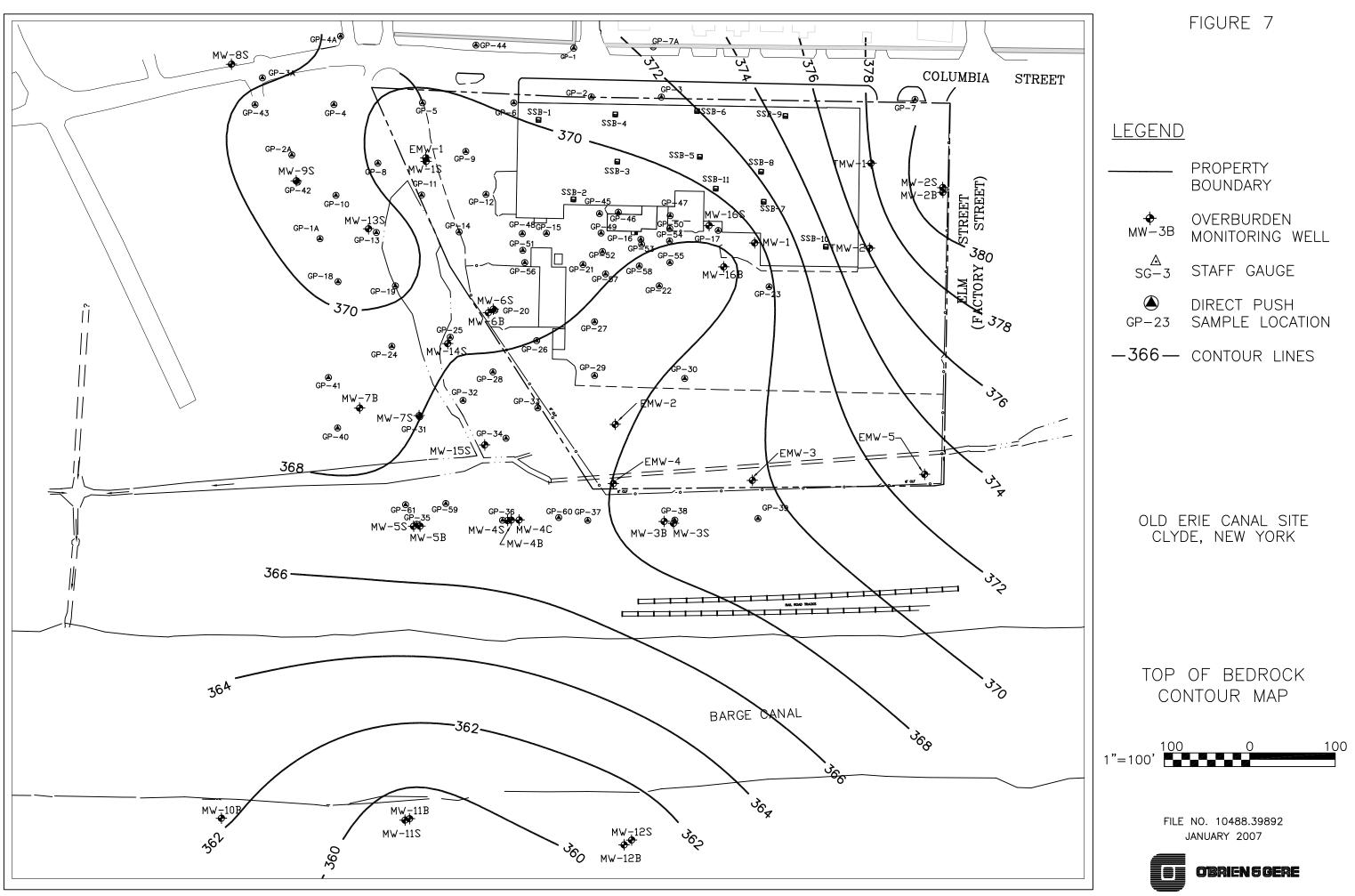
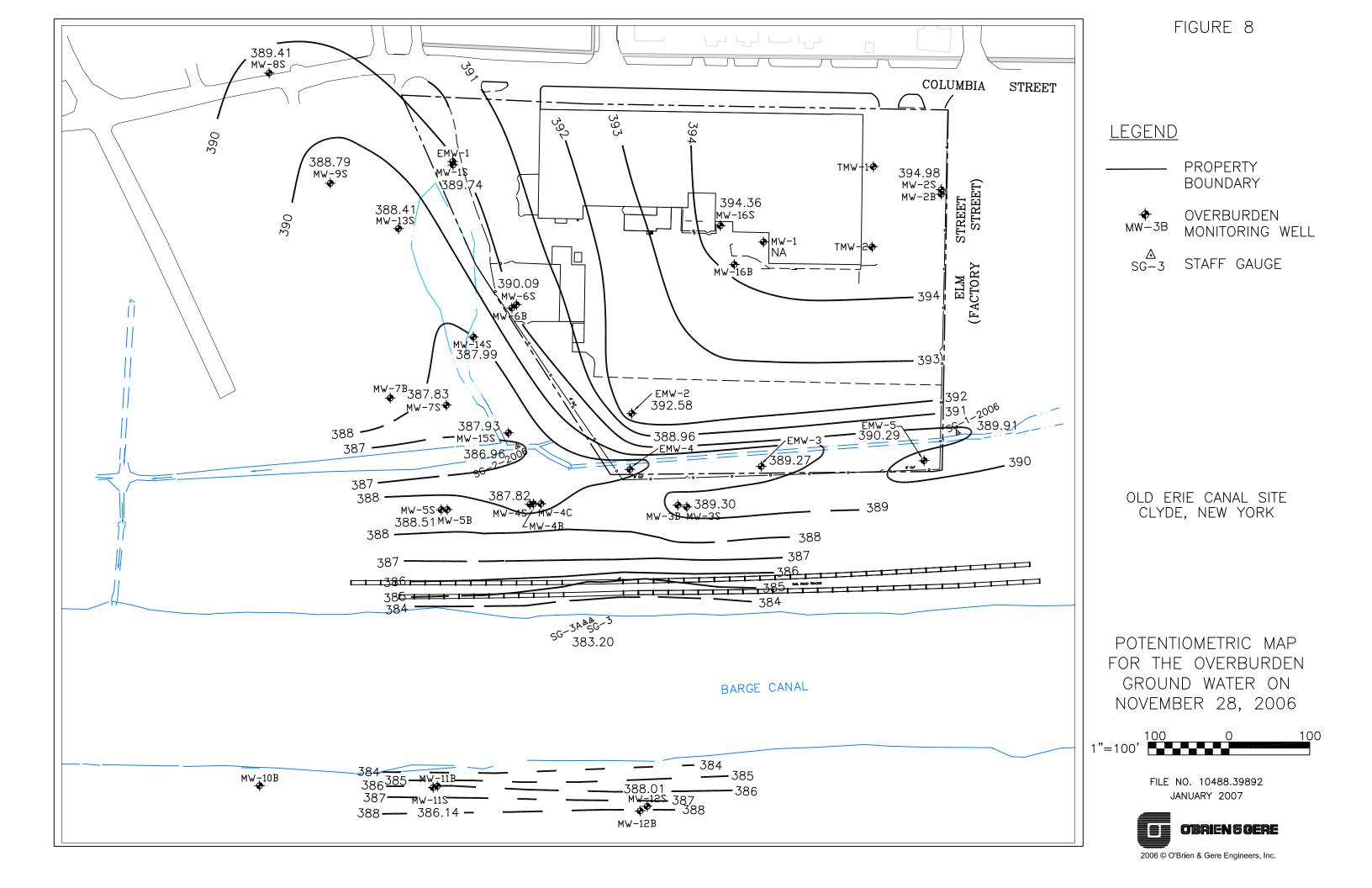
1/23/07

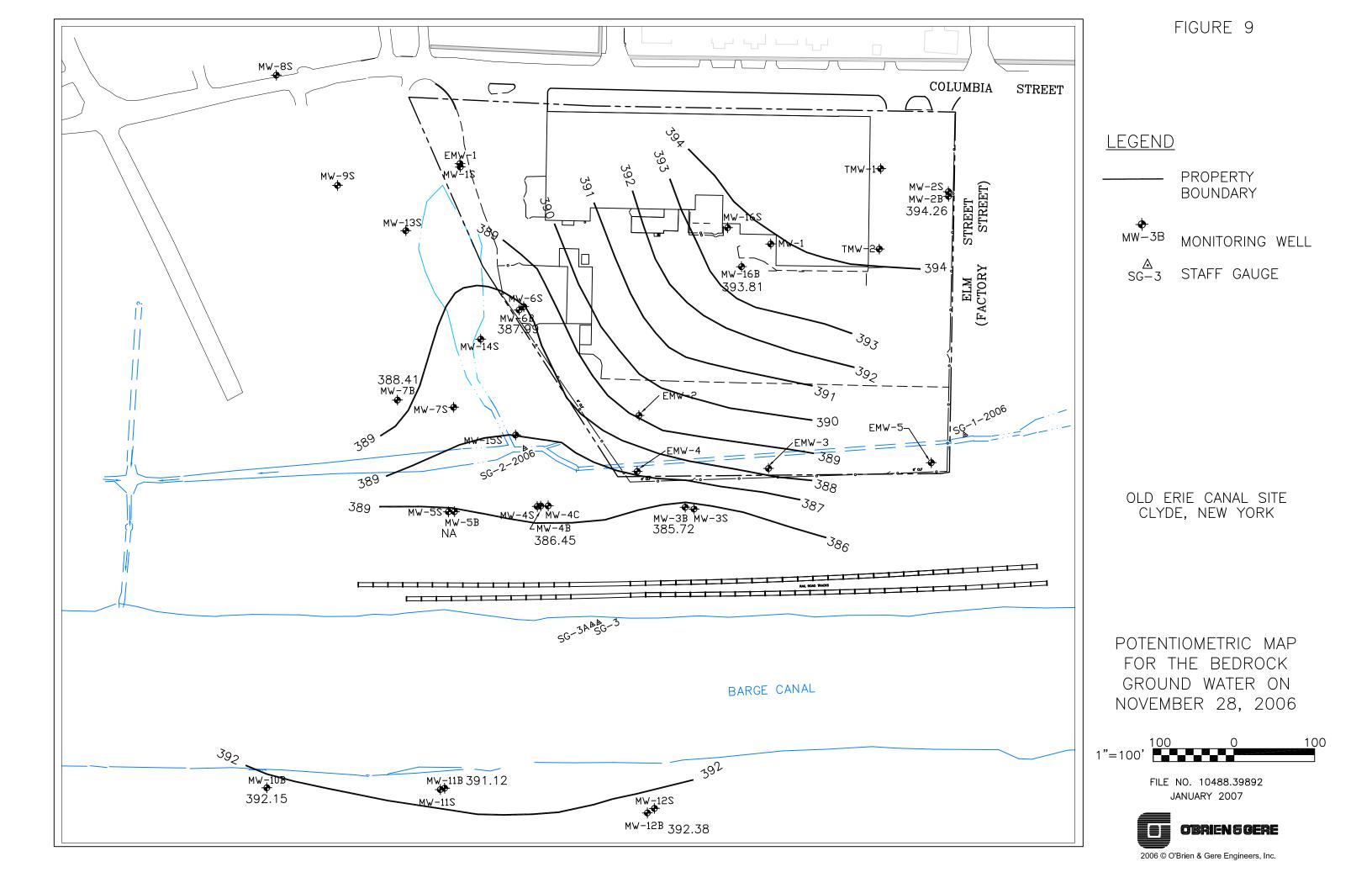
OBRIEN 5 GERE Engineers inc.

JANUARY 2007 31117.006.601

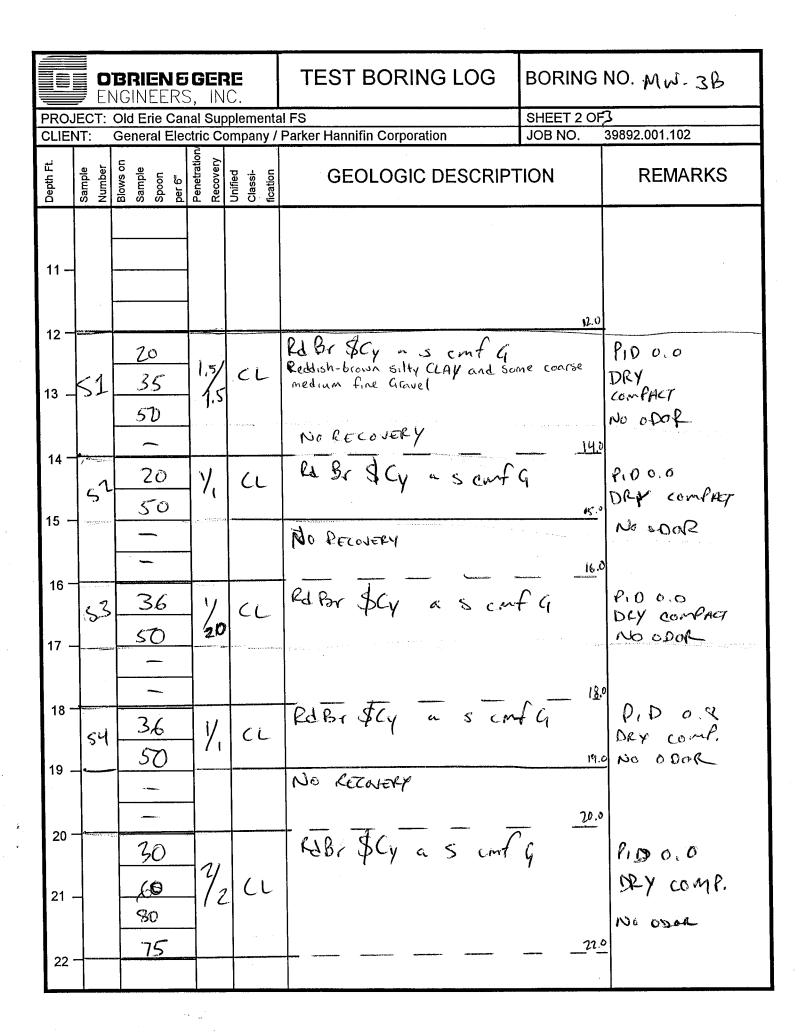
GEOLOGIC CROSS SECTION LINE C-C' SHOWING EAST-WEST STRATIGRAPHY

OLD ERIE CANAL SITE CLYDE, NEW YORK


FIGURE 5

^{2006 ©} O'Brien & Gere Engineers, Inc.



APPENDICIES

APPENDIX A

Soil Boring Logs

		Brie Ngine				TES	ST BOF	RING L	.OG	BORING NO. MW - 3B		
PRO.J				1.0.00	plementa	al FS				SHEET 1 OF 3		
CLIEN							annifin Corp	oration		JOB NO. 39892.001.102		
					rratt Woll		<u> </u>			MEAS. PT. ELEV. 343.91 NOV 24		
PURP					stallation					GROUND ELEV. 394.15		
					tem Aug		SAMPLE	CORE	DATUM	Ground Surface		
		TYPE: (TYPE	Split Spoon		Steel	DATE START		
		WATER				DIA.	1.5"	NA	4"	DATE FINISH		
		VATER			TOC	WEIGHT			<u></u>	DRILLER J		
		MEASUF				FALL	30"	١		INSPECTOR		
		T		c	,			L				
Depth Ft.	Sample Number	Blows on Sample	Spoon per 6"	Penetratio Recovery	Unified Classi- fication	C	GEOLOG	SIC DE	SCRIP1	ΓΙΟΝ	REMARKS	
						SEE	BORINC	1 694	FOR 1	MM-35	1	
	ļ				ł	1	O-R'h	,q				
1 –	1			1 1	ļ		- 1- 6	с		l		
I	ł	ļ	h			1						
i	1	 		1								
2 -	1		I							Ì		
<u>_</u> ا				ļ						ł		
l				.						i		
1										I		
3 -	1			1								
1				1								
				1								
4 -	-			{								
	1			{								
I	1			1		1						
5 -]			1								
					1							
Í		 		4	1							
Í					1							
6 -	1			1								
				1	1							
1												
7 -	4			4	1							
	1					1						
1	1	 		-	1	1						
1			_			1						
8 ·	٦			7							1	
1				-								
1											1	
9.	-			-								
				1		1						
1				7								
10	_			_	1							
											1	

	EN EN	BRIEN DI Ngineers,	, IN	C.	TEST BORING LOG		NO. MW-3B
PROJ CLIEI		Old Erie Cana General Elect			I FS Parker Hannifin Corporation	SHEET 3C	F 3 39892.001.102
Depth Ft.		Blows on Sample Spoon per 6"		Unified Classi- fication	GEOLOGIC DESCRIP	TION	REMARKS
23-	0 2	70	0,5	Ci	RdBr \$Ky a semt	<u> </u>	PiD 0.0 DRY com AACT No 000R
24-		- 50 125	Y,	CL	Red Br \$Cy & S chu Reddish-brown silty CLAY and some co	<u>२</u> ५.७ f G ^{NISE} 15. ⁹	PID 0.0 DRY
25- 26.			and Alfridan	· · ·	medium f.ne Gravel		COMPACT NOR BEDROCK @ 25' by EDB 25.0' by
27-	-						
29.						•	
30							
31							
دد 35	-						
	-						

	O'BRIEN & GERE ENGINEERS, INC. PROJECT: Old Erie Canal Supplement							TES	ST BOF	RING L	_OG	BORING NO. MW-4C		
PRO.I	_						ental	'FS				SHEET 1 OF		
CLIEN									annifin Corp	oration			39892.001.102	
					R: Par								LEV. 392.81 NAVD 29	
PURP	_				Well In:				<u> </u>			GROUND EL		
									SAMPLE	CORE		DATUM	Ground Surface	
					ollow St		~uge							
	ILL RIG TYPE: CME 75 TYPE Split Spoon NA Steel DATE STAR													
	DUND WATER DEPTH: DIA. 1.5" NA 4" DATE FINIS													
			POIN			TOC	:	WEIGHT		1			JOE PERCY	
DATE	OF	ME	EASUF	REME	NT:			FALL	30"			INSPECTOR	P. D'Ánnibale	
Depth Ft.	Sample	Number	Blows on Sample	Spoon per 6"	Penetration Recovery	Unified Classi	Classi- fication	Ģ	GEOLOO	SIC DE	SCRIP	ΓΙΟΝ	REMARKS	
	٣́	╧╋		<u>., a</u>		ļ`	<u> </u>	SEE	= Bof	ING	106 M	1W-4B		
		ŀ						0-	40'6	a				
1 –	1	ŀ			1 i				L.	L				
1		1										ļ		
İ 👘	{	Ţ												
2 -	1	F			1								,	
		╞			1									
3 –	4	ŀ			4						·		• · · ·	
		ł		<u> </u>	$\frac{1}{1}$									
4 -	-				-									
		l	۱ 											
5 -														
5														
6 -	-		 		1								1	
			ļ		-									
7 -	_		ļ		-									
		ł												
8 -	1				1									
					-									
9.	-		├		-									
					_									
					7			1						
10	4		 											

O'BRIEN & GERE Engineers, Inc.		T BOF	RING L	.0G	BORING NO. MW-5B		
PROJECT: Old Erie Canal Supplementa	I FS				SHEET 1 OF		
CLIENT: General Electric Company /		nnifin Corp	oration		the second s	39892.001.102	
DRILLING CONTRACTOR: Parratt Wolf					MEAS. PT. E	LEV. 392,85 NGVD 24	
PURPOSE: Bedrock Well Installation					GROUND EL		
DRILLING METHOD: Hollow Stem Augo	er	SAMPLE	CORE	CASING	DATUM	Ground Surface	
DRILL RIG TYPE: CIME 75	TYPE	Split Spoon	NA	Steel	DATE STAR	TED 11/4/06	
GROUND WATER DEPTH:	DIA.	1.5"	NA	4"	DATE FINIS		
MEASURING POINT: TOC	WEIGHT	140 lbs.		•	DRILLER ;	JOE PERCY	
DATE OF MEASUREMENT:	FALL	30"			INSPECTOR		
Depth Ft. Sample Sample Number Blows on Spoon Spoon Per 6" Peretration Classi- fication	G	EOLOG		SCRIP	ΓΙΟΝ	REMARKS	
		- 55	104 1	LOG F	or		
		55	0-	17' 1-			
┃ 1 –┥	1 mm	- 30	\mathcal{O}^{\perp}	12 09)		
					•		
2 -							
3 -							
4	1						
	1						
5							
6							
7 -							
8 -							
9							
10 -							

.

		BRIEN 6 NGINEERS			TEST BORING LOG	BORING	NO. NW-5B
	JECT:	Old Erie Can	nal Sup	plementa		SHEET 2 OF	= <u>3</u> 39892.001.102
CLIEI			È		Parker Hannifin Corporation	JOB NO.	39892.001.102
Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	Penetration Recovery	Unified Classi- fication	GEOLOGIC DESCRI	PTION	REMARKS
					SEE BOFING LOG MW-	575	
11 —				ľ			
12 -	- in the second s					12.5	
14		12	1/2	CL	RdBr \$Cy a s confe Reddish-brown silty CLAY and som	a ne coarse	PID 0.0 SATURATED
13 –	-51	29	12		medium fine Gravel		COMPACT NO ODOR
44-		38		Manuary 3 (1) & Statements	(20)		
14 -		33			Ed Br \$Cy a s Cr	mG	P.D 7.0
15 -	-52	35	1.5	CL			SAT.
		35				i6.0	ComPACT No obor
16 -	53		0.57	g CL	Rober & Cy us cm G		PID 0.0 SAT. COMPACT NO
17 -					NO RECOVERY	en en entre de la tradeción de las	600
	-	-					
18 [.]	_	105			Rd Br Sky a s cm g		PiD 5.7 ppm
ĺ	54	25	-05/	CL	The start of the s		SAT. COMPACT NO ODOR SOME BEDA
19	-				NO RECOVERY		• -
20						20.0	The second se
20		8		,	Robr \$Cy a l mfg	•	PiD 0.0 GAT. COMPACT
21	-65	18	-1/2	CL			No oper
		34	_			21	
22	4	40	-				

-4111111111-		EN EN	BRIEN 5 NGINEERS	5, IN	C.	TEST BORING LOG		NO. MW - 5B	
_			Old Erie Car General Elec			IFS Parker Hannifin Corporation	SHEET 3 C JOB NO.	39892.001.102	
t	.		Blows on Sample Spoon per 6"		Unified Classi- fication	GEOLOGIC DESCRIPT	ΓΙΟΝ	REMARKS	
	23-	56	30 28 30	1/2	a	ldbr \$Cy a lmfg	243	PID 0.0 SAT. COMPACT NO ODOR	
	24- 25-	57	35 30 34 35 50	1.5/	CL	Rebr & Cy a lmf G Reddish - brown silty CLAY and Medium fine Gravel	uttle	PiDo,0 SAT. COMPACT NO ODOR BEDROCK @ 25.9'	
	26- 27-							EDB ZE'69	
	28-								
	29.								
	31								
	31						· .		
	33	, –							
	30	1							

		BRIEN 5 NGINEERS			TES	ST BOF	RING L	OG	BORING NO. MW -6B			
		Old Erie Can			IFS				SHEET 1 OF 3			
CLIE		General Ele				annifin Corp	oration		JOB NO.	39892.001.102		
DRIL	LING	CONTRACTO							MEAS. PT. E	LEV. 396, 99 NOV 29		
PUR	OSE:	Bedrock	Well In	stallation					GROUND EL			
DRIL	LING I	METHOD: Ho	ollow S	tem Auge	r	SAMPLE	CORE	DATUM	Ground Surface			
DRIL	L RIG	TYPE: CM	E 75	5	TYPE	Split Spoon	NA	Steel	DATE STAR	TED 11/13/66		
		VATER DEPT			DIA.	1.5"	NA	4"	DATE FINISI			
MEA	SURIN	IG POINT:		тос	WEIGHT	140 lbs.			DRILLER			
DATI	EOFN	IEASUREME	NT:		FALL	30"			INSPECTOR	P. D'Annibale		
Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	Penetration Recovery	Unified Classi- fication	G	EOLOG		SCRIPT		REMARKS		
		3			D.c.	50	d.	cle		PID 1.7 ppm DRY SOFT		
			ai	. 0	BIN	170 ~	ϕ, c	, 175	t, organic	NPV SOFT		
	51	10	$\frac{2}{2}$	51	Blown n	nedium tine	SAND	and Sili	t, organic	De 50%		
1 -		(2)	12		roots					NO ODOR		
	1	10										
		6							~ n	5		
2 -		<u> </u>			All second second second					PIDOS		
		8			Bro	nfs	a \$	0		PID 0.8 ppm		
		10000	0.57	SP			• •			DRY SOFT NO ODOR		
3 -	52	5		SP								
	່ງລະ	7	12							NO ODOK		
		ļ										
		7						an an the second state of the s				
4 -	-	-	*****	12 mm and a	A REAL PROPERTY OF			<u></u>		NO RECOVERY		
		0										
		6										
5 -	4		-		-							
		0										
		1	1		ļ					a second production of a station officer and and framework of a station of a station of a station of the station		
6 -	-								6.0	PiD c.o (pm		
		ų –		1	Dr	GUB.	mf S	~ \$	LCy, e SAND and			
1		(01-	77 ~~ 1		··· F /	~~~,	MOIST - SATURATED		
	53	7	1/2	SP	1 to	mf G		~		SOFT		
/ -	ب د		1 4		9 cm 2	a coursh.	brown n	nedium fin	e SAND and	NO ODOR		
		13	4		C.14 1.4	He clav	+race c	oarse me	dium fine			
		13			gravel	in any i			\$.0			
8 -	_		+									
		Z								No LECON.		
			1									
9 -	_		4									
		2										
		<u> </u>	-									
	1	2										
10 -	1											

		BRIEN E NGINEERS			TEST BORING LOG	BORING	NO. MW-6B
PRO	JECT:	Old Erie Car	nal Sup	plementa	II FS	SHEET 2 OF	
CLIE	NT:	General Elec		ompany /	Parker Hannifin Corporation	JOB NO.	39892.001.102
Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	Penetratior Recovery	Unified Classi- fication	GEOLOGIC DESCRIPT	ΓΙΟΝ	REMARKS
11 —	54	2	025	· CL	GyBr\$Gy, & CG Grayish-brown silty CLAY, tri Gravel	ace coarse	PiD 0.0 ppm Moist SOFT No odor
12 13	55	<u>Ч</u> 3 Ц Ч	0.35	CL	Gybr \$Cy, tcG		PID 7.4 SATURATED SOFT NO ODOL
14 15	510	-	1.5/2		Gy \$Cy, t cG		PID 333 ppm SATURATED SOFT SLIGHT ODOR (SAMPLE)
16 - 17 -	67	,, _,, _	15	and the second s	Gybr \$Ky, t cG Rebr \$Ky a cmf G		PID 724 (SAMPLE) SAT SOFT SLIGHT ODOL PID 234
18 -		50	, 1'2	CL	Reddish-brown silty CLAY and con fine Gravel	arse medium	SAT. COMPACT NO ODOR TILL
19 -	5	50 50 -		CL	Rd Br \$ Cy a conf 4		PID 8.2 SAT. ComPACT
20 -		40			Robr Scy a conf 4	20.0	PID 14.2
21 -	6	, 50 -	05				SATURATED COMPACT
22 -		~					no oper

AUDITORIA.			BRIEN E			TEST BORING LOG	BORING	NO. MW-6B
_			Old Erie Car				SHEET 3 JOB NO.	OF 3 39892.001.102
ŀ						Parker Hannifin Corporation	JOB NO.	59692.001.102
	Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	Penetrati Recovery	Unified Classi- fication	GEOLOGIC DESCRI	PTION	REMARKS
	23-	Sio	50 65	1.5	CL	Rebrikky cmfg	24.	PIO 4.0 ppm SATURATED ComPACT NO ODOR
	24- 25-	511	45 62 85 100	1.57	CL	Rd Br & Cy a conf Reddish-brown silty CLAY and medium fine Gravel	-G nd coarse	PID 5.1ppm SAT. COMPACT NO ODOR
•	26-							OBEDROCIC @ 25.9'by EOB ZE'bg
	78-			_				
	24						•	
	30	2						
	31							
	52 32							
	34							

					TEC			00			
		BRIEN 5 Igineers			150	ST BOF		-06	BORING NO. MW-135		
PROJ		Old Erie Can	al Sup	plementa			· · ·		SHEET 1 OF		
CLIEN		General Ele				nnifin Corp	oration			39892.001.102	
	<u>ING C</u> OSE:									LEV. 391,53 NGVO 29 EV. 389,67	
		IETHOD: Ho				SAMPLE	CORE	CASING		Ground Surface	
	RIG		te 1		TYPE	Split Spoon	NA	NA		TED 11/2/06	
GROI	JND W	ATER DEPT		,05	DIA.	1.5"	NA	NA	DATE FINISH	HED 11/2/06	
MEAS				TOC	WEIGHT						
		EASUREME		1/0/06	FALL	30"		<u></u>	INSPECTOR		
Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	Penetratic Recovery	Unified Classi- fication	Ģ	BEOLOG	SIC DE	SCRIPT	ΓΙΟΝ	REMARKS	
_		2			1	(y as	C1 <			PID= 0.0 ppm	
				CL	12-			C t	some coats	Meist	
1 —	51	4	1%2.3		DONA	Silty C		iganic s	DIVIC IOUIS	SEMI - COMPACT	
)	8	123							Jenn Common	
		-33	1						2.0		
2 -					0.4		_ 1			PID=0.0pp	
		Ч			1 pr \$	Cy o s	roots				
~		k	1,75/	CL						SEMI - COMPACT	
3 —	12	11	1/2						3.5		
	5		1		41-6	2dBr G	1			PiD=0.0 ppm	
4 -		3	<u>_</u>	cu	Tacay	to Redd.	sh-Bron	IN CLAY	4.0	MOIST COMPACT	
•		3			NO R	ECOVERY					
		4	9								
5 -	-		12								
		6	1								
		6					المتعارفة المحافري		6.0		
6 -	1	3		-	NO R	ECOVERY		,		SATURATED	
			0			- 1					
7 -			1/2								
·			4								
			1						я		
8 -		-				210	<u> </u>		8.0		
		19	1.75	CL	4y-1	2d Br C	ý			PiD=0,0 ppm	
		14]/_						~	SATURATED	
9.	53	17	1/2	-		d' -		<u> </u>	9.	- com filet	
1		18		GP	Gy c	m \$G	s Cy				
1		20	1	141	Gray 6	oarse me	edium	silty 4R	AVEL, some		

		BRIEN 5 Igineers			TEST BORING LOG		NO. MW - 135		
		Old Erie Can			I FS Parker Hannifin Corporation		SHEET 2 OF 2 JOB NO. 39892.001.102		
CLIE				39892.001.102					
Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	Penetratio Recovery	Unified Classi- fication	GEOLOGIC DESCRIPT	TION	REMARKS		
11 —	5.4	19 20 24	1% 1/ _{2.0}	GP	Gy cm G l \$cy		PiD=0.0 ppm SATURATED LEOSE		
12 -		17	15/		ay conf G lacy	12.0	PID=0.0 ppm		
13 –	55	16 12	1.5/	GP			SATURATED LOOSE		
14 -	-	<i>II</i> 47			Gy conf G l \$cy	<u>jų ,u</u>	PID=0.0 ppm		
15 -	6,10	24 20	0.5	GP			SATURATED LOOSE		
16 -	all short designed and	19	11 AL 11 AL 14		Gy config il \$Cy	16.0			
17 -	3		0.5	1 1	/ · · · · · · · · · · · · · · · · · · ·	17.5	fid = 0, 0 ffn SHTURATED LUOSE		
18 ⁻	an an that the	3	 	a	Rd.Br \$Cy Reddish frown Si		베이지 이 것 같아요. 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이		
19 -	53				NO RECOVERY	ж.	0 -0		
20 ⁻	and a second and a s	i i i i i i i i i i i i i i i i i i i				20,	802002 @ 19.8 EOB ZO'69		
21	-		-						
22	-					·			
		Э́г							

				•			•				
		BRIEN 5 Igineers			TES		RING L	.0G	BORING	BORING NO. MW-14 S	
PROJ		Old Erie Can							SHEET 1 OF		
CLIEN		General Elec				nnifin Corp	oration			39892.001.102	
									GROUND EL	LEV. 391, 39 N(N) 29 EV. 389, 27	
	OSE:	IETHOD: Ho				SAMPLE	CORE	CASING		Ground Surface	
		TYPE: TRAK		ioni / lugo	TYPE	Split Spoon	NA	NA		TED 11/6/06	
		ATER DEPT		5,51	DIA.	1.5"	NA	NA	DATE FINIS		
		G POINT:		тос	WEIGHT				DRILLER	SOE PERCY	
DATE	OFM	EASUREME	NT: /	1/8/06	FALL	30"			INSPECTOR	P. D'Annibale	
Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	Penetratio Recovery	Unified Classi- fication	G	EOLOG	SIC DE	SCRIP	TION	REMARKS	
		1			BI-T.	1.5	~		• /	PID 0.0 pm	
			71	(CO)	Barata	Cy\$ tan clay	, 0,	5 M3	S Some	Moist	
1 _	51	4	2/	×	Coots	Tan Clay	ey SILI	, organi			
1		3	100	a						Compact	
.										NO ODOF	
2 -		3			in in the second se				2.0	a construction of the second sec	
-		5			Br-7	n Ly\$	0.	s (#s		PID 0.0 ppm	
		53	0.5/			Cy p	, -,.				
3 -	52		/	20						MOIST	
		2	12	01						CONPACT	
		2	1	C					4.8	LONPACT NO ODER	
4 -				·····	· · · · · · · · ·						
		12			Gy C	\mathcal{N}				PID 0.0 pro	
		7	0.5/		Gray C	I AY				MOIST	
5 -	-53		+ /	CL	any c					COMPACT	
		3	1/2							NO obor	
		3							6.	o	
6 -	- eratif	4		-	· - · - ·		1985 - 1986 	-	<u> </u>		
		<u> </u>	11		Gy C	Y				PID O.O Ipm	
	154	7	2/2	CL						MOIST COMPACT	
7.	٦´`	3	7′		1				7,5		
				a harta atta anno	GAR	4			- 7 •	PID 0.0 PPM	
		7		CL	Gray	y \$ clayey_SI	ILT		8	SHT. COMPACE NO DOG	
8		5			Gy						
		·····	0.5	1	4y 1	$\neg \phi$				PID 3.1 ppm	
9	_55	6	/	LL						MOIST - SAT.	
ľ		8	1 ''	-						COMPACT	
		3	-							NO ODOR	
10		58	<u> </u>						10		

	······	BRIEN 5 NGINEERS			TEST BORING LOG	BORING	NO. MW-145	
PRO		Old Erie Can			al FS	SHEET 2 OF		
CLIE	NT:			ompany /	Parker Hannifin Corporation	39892.001.102		
Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	Penetratior Recovery	Unified Classi- fication	GEOLOGIC DESCRIPT		REMARKS	
11 –		3 6 12 33	1/2	GP	Gy cmf G a \$, 5 Gy \$ Gray coarse, medium, fine GRANEL some clayey silt	f - and Silt, 12.0	PID: 103 ppm SATURATED LOOSE ODOR	
12 - 13 -	51	11 12 16 20	2/ /2	GP	Gy cmf G a Ø	14.0	PID 374 ppm SAT. LOOSE	**** •
14 - 15 -	5	A 5 5 9	0.5/	GP	Gy conf G a \$		PID 28. 7ppm SATURATED LOOSE SLIGHT ODOR	
17	_59	20 17 20 30	2.8		Gy cmf G Bat		PID 12. Sppm SATURATED LOOSE No ODER	
	-510	21 15 12 6	2/2	2 GP	Cay cmf 4 a \$	20.5	PID 203 ppm SAT. 1005E ODOR SAMPLE COLLECTED	
20 21 22	-511	-10 13 20 6		5 GP	Gy conf G a \$. 22.	PID 117 ppm SAT. LOOSE ODOR SAMPLE COLLEGED	

	D En	BRIEN E	GER S, IN	RE C.	TEST BORING LOG	BORING	NO. MW-145	
PROJ	ECT:	Old Erie Car	nal Sup	plementa	I FS	SHEET 3 O	F 3	
CLIEN	νT:	General Elec	ctric C	ompany /	Parker Hannifin Corporation	JOB NO. 39892.001.102		
Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	Penetratior Recovery	Unified Classi- fication	GEOLOGIC DESCRIP	REMARKS		
	512	50	0.5/2	CL	Gy- Radiy Cy \$ 5 MfG Gray to Feddish-Sray clayer silt, so	me ned a forball	COMPACT O, O PID	
23-					Glacial T.11		EOB 22.5/6g	
24-								
25-								
26-								
27-			4					
28 -					·			
29.								
30.	-							
31			-					
32	-							
s?	-							
34	(_					

		BRIEN & Igineers			TES	T BOF	RING L	.OG	BORING	NO. MW-155	
PROJ		Old Erie Can		the second s	IFS				SHEET 1 OF 2		
CLIEN		General Elec				nnifin Corp	oration		JOB NO. 39892.001.102		
		ONTRACTO							MEAS. PT. E	LEV. 390.12 NON029	
	OSE:								GROUND EL		
	0.000.000.000.000.000.000	ETHOD: Ho	and the second sec							Ground Surface	
A CONTRACTOR OF		TYPE: TRAC		<u>J</u>	TYPE Split Spoon NA NA DATE STARTED 11/7					TED 11/7 /06	
		IATER DEPT		1.19	DIA.	1.5"	NA	NA	DATE FINIS		
		G POINT:		TOC	WEIGHT		147.	<u> </u>	DRILLER 3		
		EASUREME			FALL	30"			INSPECTOR		
		C C	ion V	10/00							
Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	Penetrat Recover	Unified Classi- fication	G	EOLOC	BIC DE	SCRIPT	ΓΙΟΝ	REMARKS	
1		0		and the second se		- 44 0	4\$.	0.50	45	PID 0.0	
		-	11	<i>C</i> :	Dark Bro	- Gy C	ay class	y SILT	Olganic.	VERY MOIST	
	٨	0	120	CL	some roo	sts	and could	cy one i	- J- /		
1 -	54		1							SOFT	
	V	Ø	-addoministration	and the second sec		CORDUCTION OF THE OWNER OF THE		a na ana amin'ny fanana amin'ny fanana amin'ny fanana amin'ny fanana amin'ny fanana amin'ny fanana amin'ny fan Ny fanana amin'ny fan	and a state of the second	No obor	
	-	1	-	-					2.0	NO RECONSTRY	
2 -	- Standighter and and	0			DUG	·	4	alananing a rayon tag ng nanjang panamanang.		PID 0.0	
			21		VER	- Gy C	17,0				
	0	0	1	CL						SATURATED	
3° —	52		12	0-	7					SOFT	
	-	7	1							and the second	
		3								No opol	
4 -	Wandada managana	5				\sim			4.0		
		3			DKG	1 cmt	Ga	\$		PID 0.0	
			0,5/		Dark gr	ay coarse	medium	fine GR	AVEL and	5147.	
_	117		01	41	sil+	a					
5 -	-53	Z	1/2	141	- 11.					LOOSE	
			10							NO ODOR	
		3							6.0		
6 -	-					ana ana ing an		d -		Piboro ppn	
		3		GP	REGY	cmf	Ga	Þ		the bio ppri	
		-	11							SAT.	
7 -	-54	S	12							leost	
	2	° 5	12							0	
				U	RIBO	\$ Cy ?	and the first of	anana ay karite o watana anatan	anta derena da la cana de en anta a derena de esta de Esta de esta de	No opok	
81		6		, u	7		unte de participation de la casa d	8	8.0		
8 -					DVG	- DAI		0.			
		14		1	VK MY	- Raci	Y CM.	+4 a	SA	PiD 1.7 ppm	
			11/	GP				and		Kng n	
9.	-55	20	1/2	91	and the		ø			SAT. OD	
	-	20	17		· ·					LOOSE COMPACT	
			-	2						NO ODE	
		15						(Care-)*		NO STA	
10 -	-										

•

		BRIEN B			TEST BORING LOG		NO. MW-155
		Old Erie Car				SHEET 2 OF	
CLIE	NT:			ompany /	Parker Hannifin Corporation	JOB NO.	39892.001.102
Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	Penetration Recovery	Unified Classi- fication	GEOLOGIC DESCRIPT	ΓΙΟΝ	REMARKS
		22			DKGy- RdGy cmf G as:	\$	PID Z.O
11 –	56	18	1.75	GP			SAT. COMPACT
		28	.7			12.0	No odol
12 -		23 16		- 0	DK Gy cmf G a s\$		PiD 0.0
13 -		23	1.5/			13.0	SAT COMPACT No odef D:0 26
	57	33	120	CL	Gy Rd \$Cy a lG Grayish-red silty CLAY and litt	· · · · ·	PID Z.6 SAT. COMPACT
14 -		41			1987. 1987	14.0	No oder
					and the second sec		EOB 18'69 14:5-9
15 -							
16 -						: ;	
17 -			-				
					-		
18 -	-		-	F.			
19 -							
		(°	. -				
20 ·	4						
			-				
21	-		-		r		
20							
22							
	į						

ŧ

1

		BRIEN 5 Igineers			TES	ST BOF	RING L	.OG	BORING	NO. MW-165
PROI		Old Erie Can			IFS				SHEET 1 OF	
CLIEN		General Ele				nnifin Corr	oration		and the second sec	39892.001.102
		ONTRACTO							MEAS. PT. E	LEV. 397,30 NGND29
PURF		Overburd							GROUND EL	
		ETHOD: Ho				SAMPLE	CORE	CASING	DATUM	Ground Surface
	RIG		PHE 5		TYPE	Split Spoon	NA	NA	DATE STAR	TED 11/2/06
-		ATER DEP		.97	DIA.	1.5"	NA	NA	DATE FINIS	HED 11/2/06
		G POINT:		тос	WEIGHT	140 lbs.			DRILLER (MARK EAVES
		EASUREME			FALL	30"			INSPECTOR	P. D'Annibale
Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	Penetration Recovery	Unified Classi- fication	G	EOLOG		SCRIPT	ΓΙΟΝ	REMARKS
	.				ASP	HALT				
1	5-1	3	0,5/	CL	ASP RaBr	\$су				OLO PID DEY
	5		12	_						COMPACT
2 -		50				1				
					CONCRE	TE ? R	EBITE			
3 —			NA	NA						
4 -		10			Rd Br	\$Cy	o cm	4		12.5 PID WOIST TO SATURATED
5 —	5-2	10	1/2	с						COMPACT WATER TABLE AT
		25	-					and an approximate of the second		~ 4' bg
6 -		30			RIB	r \$Cy	s cr	~ G		0.0 PID
		3.6				· (-	•		SATULATED
7 -	1	3,6	1/2	CL						COMPACT
		38	1		·					
8 -		12	1		RdB	r \$cy	SCI	mG		0.4 PID
		12	1.5/	CL		· (SATURATED
9 _	1	33	1/2							ComPACT
10 -	_	40	_			(GLI	ACIAL -	TILL)		EOB 10' 60

માં આવેલું. આ ગામમાં આવેલું આ

.

O'BRIEN & GERE Engineers, Inc.	TEST BO	RING LOG	BORING NC). MW- 16B	
ROJECT: Old Erie Canal Suppleme	tal FS		SHEET 1 OF 3		
LIENT: General Electric Compan	/ Parker Hannifin Cor	poration		92.001.102	
RILLING CONTRACTOR: Parratt W				1. 397, 69 NEWD 29	
URPOSE: Bedrock Well Installati			GROUND ELEV.		
		Ground Surface			
RILLING METHOD: Hollow Stem Au			DATE STARTED		
RILL RIG TYPE: CME 75	TYPE Split Spoon				
ROUND WATER DEPTH:	DIA. 1.5"	NA 4"	DATE FINISHED		
EASURING POINT: TOC	WEIGHT 140 lbs.	-	DRILLER Jo INSPECTOR	E PERCY P. D'Annibale	
ATE OF MEASUREMENT:	FALL 30"				
Sample Number Blows on Sample Spoon Peretratior Recovery Unified Classi-	GEOLO	GIC DESCRIP	ΓΙΟΝ	REMARKS	
	ACRIANT			and the second	
	ASPHALT	and the second		enter de la companya de la companya de la	
	SEE BORING	LOG MW-	165		
		Log MW- bg	Terrar Instant	den 1972 - English and a marine	
	0-9	ba			
		<u>с</u>			
2 -					
		· ·			
3 -		2 - C - C - C - C - C - C - C - C - C -	والمتعادية ومعاورة ومعاورة والمعاورة		
Ť					
4 -					
5		Andreas - Angeles - A Angeles - Angeles - A	entre al anti-	an a	
			60		
6			aller and a second second second second	ang	
	C Rober \$Cy	r cmt 4			
	Rallichation	silty CLAY and a	carse medium		
	Leadistic or own	fine fine	Gravel 1.0		
7	Di bi dei	a cmf G	1	GMPACT	
27 4 6	-				
				dry	
8 51 60 1/2				0.00	
12		•	1	vo obol	
		يحمد المراجع والمراجع والمحمد والمحمد والمراجع والمراجع	9,0		
9		••••••		• • •	
21 1/ CI	loder SC	y a cmf 4	1	PID 4.5 ppn	
	Fur- t	/	C	OMPACT	
57 72 2				A	
10 -		·	F	sky No odof	

		BRIEN B			TEST	BORIN	IG LOG	BOR	ING N	NO. MW-16B
	ECT:	Old Erie Car	nal Su	oplementa		<u> </u>		SHEET		3 39892.001.102
CLIE					Parker Hanni	rin Corpora	tion	JOB N		59692.001.102
Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	Penetratio Recovery	Unified Classi- fication	GEO	DLOGIC	DESCR	IPTION		REMARKS
		-					• • • • • • • • • • • • • •	n <u>.</u>		an an an an ann an an an Ann an a
11 —	17	37 50	1/2		Rig \$	y an	cmf 4			PID 0.0 DRY COMPACT NO ODOR
12 -	53	-				aver - Xourtla			13.0	
13 –	54	50	2.5		Pabl 5	5Cy an	cmf G			P.D. O.9 DRY CONPACT
14 - 15 -		-		100 TO 1 T		. 	·····	<u> </u>	15.0	NO ODOR
16 -	55	7 40 50	1.5	cl	Rd Br	₿Су	n conf	- q		PID 0 0 DRY company No oper
17 -	-	- 47	0,75		Rabar	Ky a	ent G	, an st grad the state of the	17:0	PID 0.0
18 ·	56	90 50		CL		·	Y			DRY COMPACT NO ODOR
19		31			Rabr	QCy -	a conf	<u> </u>	<u>-19.0</u>	P.D 0.0
20	-51	50 61								DRY SLIGHTLY moisy compact
21		50			Ribr	4 Cy	a conf	<u> </u>	_2'.4	VID 0.0
22	57	56	1.0							MOIST COMPACT NO ON

		BRIEN 6			TEST BORING LOG	BORING N	10. MW-16B
PRO		GINEERS			IFS	SHEET 3 OF	
CLIE	NT: (the second s	mpany /	Parker Hannifin Corporation	JOB NO.	39892.001.102
Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	Penetration. Recovery	Unified Classi- fication	GEOLOGIC DESCRIP	ΓΙΟΝ	REMARKS
		75				<u>03.</u> 0	
23- 24-	- 59	45 50 95	1/	ci	Rdbr \$Cy a cont c	4	P.D. 1.2 MOIST COMPACT NO ODOR
25-	- 510	60 60	2/2	CL	Rebr \$Cy a conf	<u></u> G	PID O.D MOIST COMPACT
-27		65 65 27 40	2/	a	fd br \$ Cy a conf	<u> </u>	No agab
2 ^g		42 45	2		Pd.Br \$ Cy a conf	- 29.3	
34	24	50	- 0.5 - / 1 - / 1		Fach pay a cont	35	PID 0.0 NOIST KOMPACT NO ODOR
3	~	110	0.2		Reddish-brown silty CLAY and medium five Grave	1	PiD 0.0 Meist comPACT
3	2-5					33	e beblock C 31' W COB 31' 69
ž	4-						

				•						
		BRIEN & Igineers			TES	ST BOF	RING L	.0G	BORING	NO. TMW-1
PROJ	ECT:	Old Erie Can							SHEET 1 OF	
CLIEN		General Elec				nnifin Corp	oration			39892.001.102
		ONTRACTO								LEV. 399. 11 NGID 29
	POSE:					SAMPLE	CORE	CASING	GROUND EL	.EV. 3 9 8.09 Ground Surface
		IETHOD: Ho		tem Auge	TYPE		NA	NA		TED 11/3/06
	~~ ~~	TYPE: DSC ATER DEPT		3,93	DIA.	Split Spoon 1.5"	NA NA	NA NA	DATE STAR	
		G POINT:		TOC	WEIGHT				DRILLER 1	
		EASUREME			FALL	30"			INSPECTOR	
Depth Ft.		Blows on Sample Spoon per 6"	ion y	Unified Classi- fication		EOLOG		SCRIP	1	REMARKS
De	Sa Nu	Bic Sa Sp Pei	Re Re	iç çı L						
		2		SP	Br - 7	n mfs	0 60	iown to tan	redium fire SAND	DRY ComPACT
		2	1 67							0,0 PiD
1 -	51	5	1.0/	SP	B1 20	nt G	, s\$	0	VEL, some	
		4	6	51	Black to	gray coarse	nedium	Pine GRA	VEL, some	DRY
		Ч			Silt					COMPACT
2 -		۳					en e	••• <u></u>	2.0	
		(B1-Gy	cmf	6 s	\$		0.0 R.D
			001		'		Ч, -	/		SATURATED
3 -		2	0.5	SR						
ľ	52		12							Locse
	1		-							
		3				··· •			<u> </u>	La constanti di Martena Martena e
4 -		2			BI-GV	cruf	Gs	g		0.0 PID SHTURHTED
				C.R				Ŧ		
_	12	4	1.9						5.0	LOOSE
5 -	53	6	12.5	11	Gu-To	Car				SHTURATED
			4	LL	Grav to	tan CL	AY			-
		b						1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	6.0	COMPACT
6 -	Brigging data see soo o	(Bill	I cinf (·			0.0 PID
		6		SP	Buck	CINT ($1, 5, \varphi$	fine GRA	NEL, some Silt	0.0 11.2
	- 11	8	1.0		UNALK T	a Pert Case	se mucount		<u>ר, נ</u>	
7 -	- 54		1/1	1	0 -	اسو	<u></u>			LOOSE
		6	12.6	CL	Gray to t	1 Cy				SATURATED
		10			Gray to +	tan CLHY			8.	-
8 -		a serie france and the first sector of the	+			<u> </u>	• • • • • •	1	8.	and the second
I		10	_	SP	161-Gy	1 cmf	G,s	×		0.6 F.M
		14	2/		'				9	b
9 -	- 55				1		<u></u>		<u>``</u> Lı	LOOSE
		19	1/2	CL	Gy-7	ncy				SATURATED
		21							10	DALINICA .
10 -	+		-						e - 1	-† [
		· · · · · · · · · · · · · · · · · · ·		<u> </u>	1					

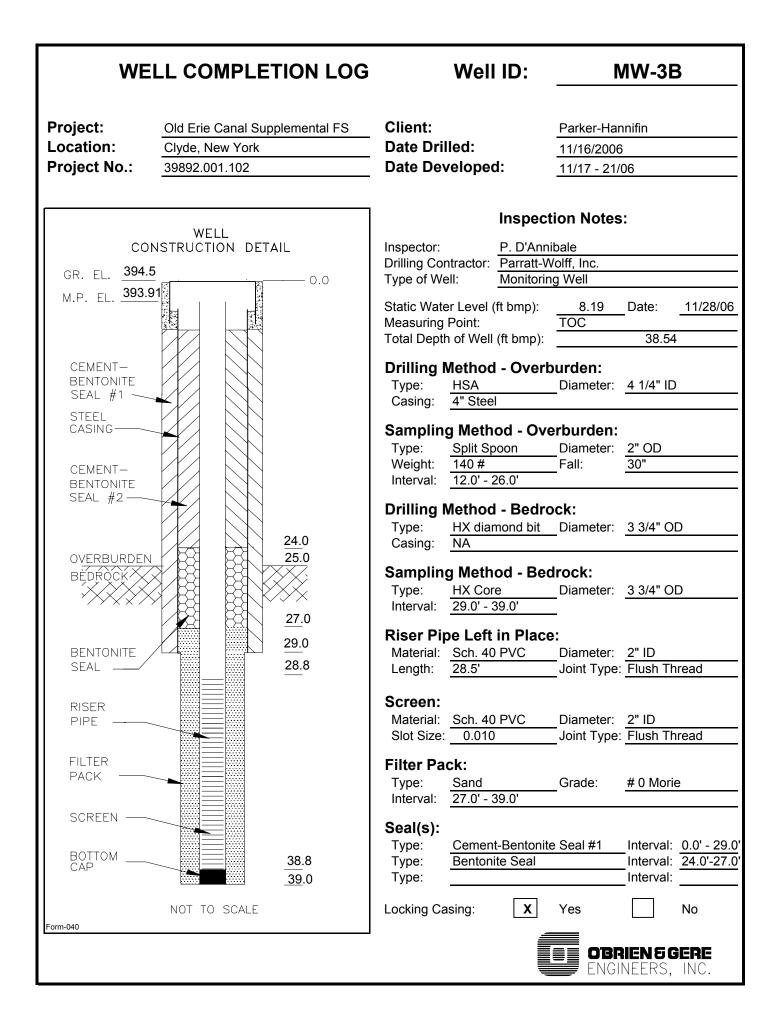
		BRIEN E			TEST BORING LOG	BORING	NO. TMW-1
	JECT:	Old Erie Car	nal Su	oplementa	al FS	SHEET 2 OF	
CLIE				ompany /	Parker Hannifin Corporation	JOB NO.	39892.001.102
Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	Penetratio Recovery	Unified Classi- fication	GEOLOGIC DESCRIP	ΓΙΟΝ	REMARKS
		27		GP	BI-Gy carf G	10.5	0.0 PID
11 _	61	39	2/	<u> </u>	Ciy-TA Cy	11.0	SVFT.
11 —	26	50	12		BI-Gy crif G	11.5	LOOSE
12 -	-			LL	Gy-Tn Cy	<u>12.</u> 0	
	57	<u>38</u> 50	1/2	U	Gy-Tn Cy	13.0	0.0 FID STURMED LOOSE
13 -			12	ĉι	Rd Gy \$Cy Reddish-gray Silty CLAY		QOPID DRY- COMPACT EOB 14'69
14 -	>					<u></u>	EOB 14'6g
15 -		 	-				
16 -							
17 -							
18 [.]							
19	-						
20							
21			_				
22	_						

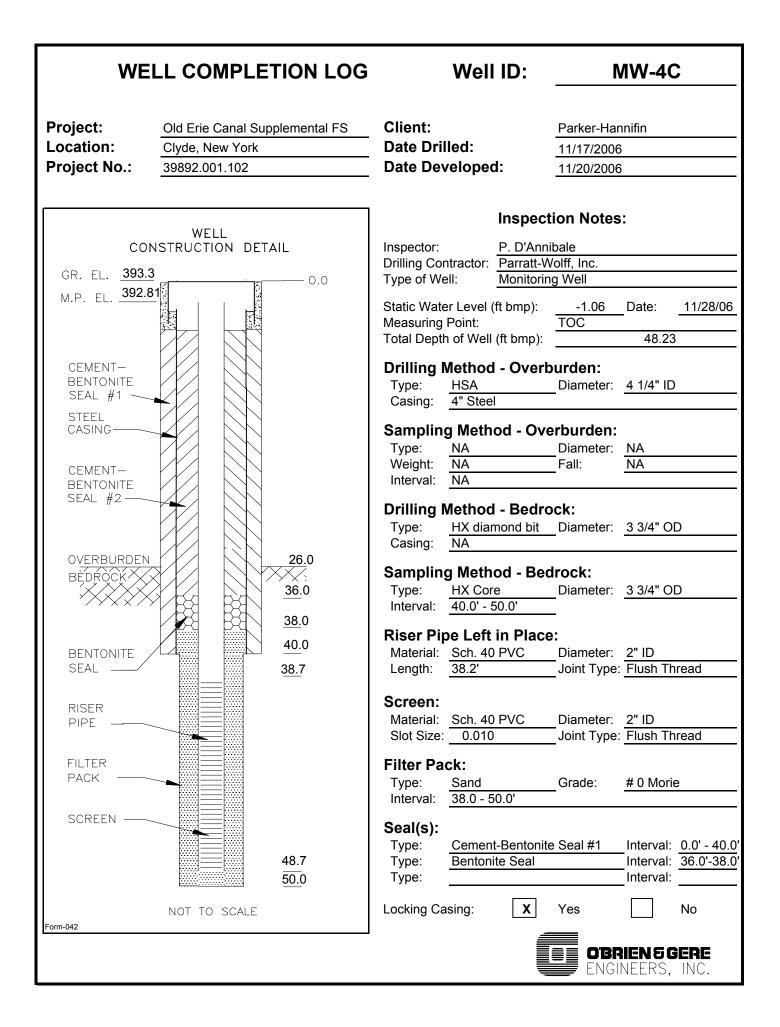
		BRIEN 5 Igineers			TES	ST BOF	RING L	.OG	BORING	NO. TMW-Z
PRO.		Old Erie Can			I FS				SHEET 1 OF	1
CLIEN		General Elec				nnifin Corr	oration			39892.001.102
		ONTRACTO						······		LEV. 399,91 NGVD 29
	POSE:	Overburd			and the second se					EV. 398,52
		IETHOD: Ho				SAMPLE	CORE	CASING	DATUM	Ground Surface
					TYPE		NA	NA		TED 11/3/06
				1,48	DIA.	Split Spoon 1.5"	NA	NA	DATE STAR	
		ATER DEPT								MARK EAVES
		G POINT:		TOC	WEIGHT	140 lbs. 30"			INSPECTOR	
DAIL		EASUREME		1/8/06	FALL	30			LINGFECTOR	
Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	Penetratio Recovery	Unified Classi-	G	EOLOG		SCRIPT	ΓΙΟΝ	REMARKS
					Br-T	e f c	~			e e la
		2.		10		o tan me	1	SAND	OrgaNIC	oolid
		5	1.07	C75	Brown t	o tan me	dium tin	L JUNN	, ,	DRY
1 –	S١		123							
I		10								compact
· .										and the second second second
2 -		k:			· · · · · · · · · · · · · · · · · · ·		··· ·	an a	2.0	
		11			No R	Rovery				GRAVEL
	l					covery				GRAVEZ IN SPLIT SPOONS
	1									
3 -	1/		1/							
1									** -	
4 -	<u></u>		ļ			<u></u>			4.0	· · · · · · · · · · · · · · · · · · ·
		6			Gy in	$\mathcal{P}\mathcal{C}$				
1			1.757	GR	7 0	FG arse medium	C	ALCI		
1.	52	ю			Gray ca	arse medium	m time Gf	VIVEL	5.0	and the second s
5 -	†		1 / 1		818	a de				0.0 fiD
1		11	120	u	I note	pr \$C	y .	1		MOIST
		12			feddis1	h - brown	silty CI	-47	1 -	COMPACT
6 -		<u>'`</u>		<u> </u>					6.0	EDB: 6 6g
1										EUL D m
			1							
7 -					1					
′ -]							
1			4							
8 -	-		-							
				1						
			1							
9.										
l · ·	1		1							
			4							
10 -	-		-							

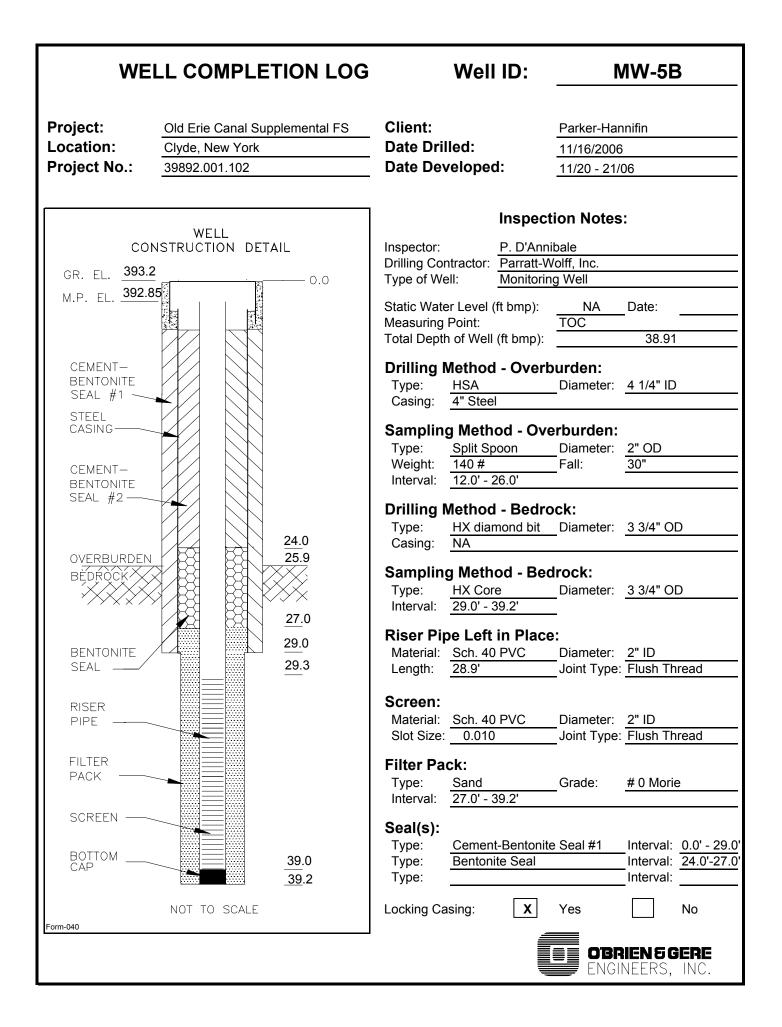
•

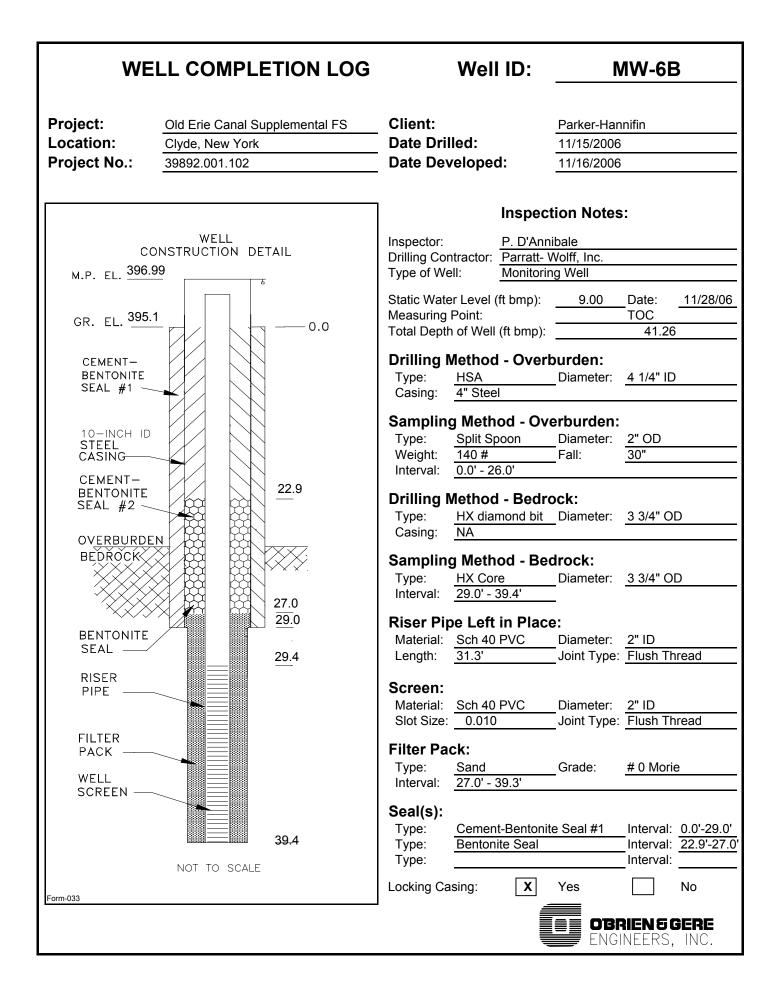
O'BRIEN & GERE ENGINEERS. INC.	ERE ENG	NEERS. I	NC.				LOLONO MINI-28 100 NO.		30802 001 102	100	
435 New Karner Road	ier Road				55	CORE LOG	Choot 1 of		110100	70	
Albany, New York 12205	York 1220) 0 . .	9	
Project: Old	Old Erie Canal Supplemental FS	Supplem	ental FS		Drilling Contracto	Drilling Contractor: Parratt Wolff Inc.		Date Finished: 11/16/06	NICK	0	
Client: Ger	ieral Electr	ic Compar	General Electric Company / Parker Hannifin	Hannifin	Driller: Joe P	Percy		Total Depth: 3	39 '		
Purpose: Bed	Bedrock Well Installation	nstallatior			Geologist:	P. D'Annibale		Ground Elev.: 394/15 NGVD	94.15	NGVD	1929
	Clyde, New York	¥			Length of Casing: $\mathcal{27.0}^{\prime}$:29.0'		S.W.L.:			
Hole Location: S	S of Facility		along wal	walk path (near Ricasing Size:	Casing Size:	B" (1) Core Size:	3 3/4"	Inclination/Bearing	ng:		
Formation	Run No. Time:		(Core	e D	
Wemper Unit	t Stop	(min. per foot)	Scale	(include in or	der ROCK TYPE,	(include in order: ROCK TYPE, color, grain size, texture, bedding, fracture & minerals.)	bedding, fracture & m		Length Percent	Percent	RQD
				Berling advance bedrock at 25 log MW-38 for	ed through o 5.0' bos. Set	Bering advanced through overburden utilizing 41/4" HSA. Top of bedrock at 25.0' bgs. Set 4" steel as ing to 29.0' bgs. See soil boring log MW-3B for soil description.	g 4'4" HSA. Top 29.0' bgs. See 3	soil boring			
	1	0.0		lereenish-gray occasional hu	shale, fine 1 orizontal fra	W shale, fine to medium grained, mircontal bedding, horizontal fractures, few vertical fractures	d, noricontal be cal fractures		6'h	36	86.7%
	1128			Sray to dark gr	av shale, fine fractures.	Gray to dark gray shale, fine to medium grained, horizontal bedding, some horizontal fractures.	horizontal bedo	ling, some			
ບບຸ່ມດ	2 0 <u>2</u>	Q		sreenish-gray beckling. Arge partings and	to gray shower the second of t	Greenish-gray to gray shalle, fine to mechium grained, nonzantal bedding. Frequent horizontal fractures and occasional gypsum partings and stringers	un grained in occasional gy		N. O	00/	91%
وت کرا	т. «		,0,0 ,	End of core @	8 39.0' bgs.						
190								+ + 			
								-1 1			
						·		1 1			

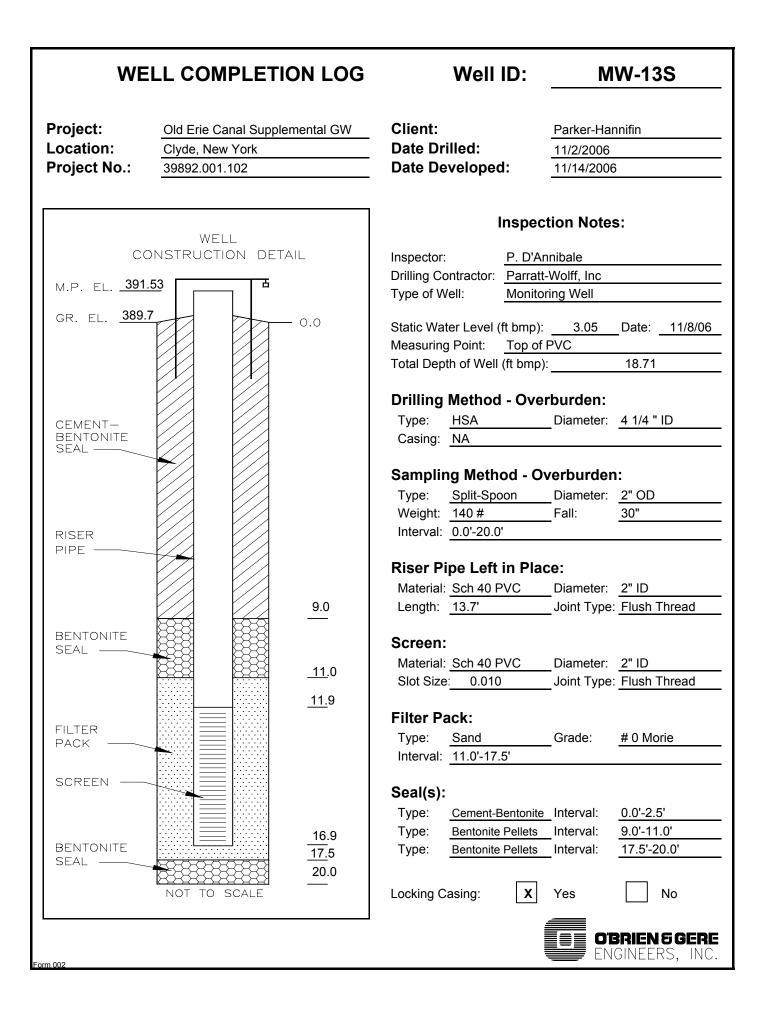
O'BRIEN &	O'BRIEN & GERE ENGINEERS, INC.	NEERS, I	NC.				Hole No.: M M -4C Job No.:		39892.001.102	102	
435 New K	435 New Karner Road	14			55		Sheet 1 of 1	rted:	1/17/06		
Albany, Ne	Albany, New York 12200								11/2/2		
Project: (Old Erie Canal Supplemental FS	I Supplem	ental FS		Drilling Contracto	Drilling Contractor: Parratt Wolff Inc.		Date Finished: '////09	0/11/2	9	
Client: 0	General Electric Company / Parker Hannifin	ic Compa	ny / Parke	ər Hannifin	Driller: Joe R	Percy		Total Depth: 5	50'		
Purpose: E	Bedrock Well Installation	Installation	ſ		Geologist:	P. D'Annibale		Ground Elev.: 39 3.27 NGVD	393.27	NGVD	8]
	Clyde, New York	ork			Length of Casing: 40 ¹	: 40'		S.W.L.:			
Hole Locati	Hole Location: S of facility along	citity al		uri Kpatin	Casing Size:	B ^{n/} 4 ¹¹ Core Size:	3 3/4"	Inclination/Bearing:	rring:		
Formation Member	Run No. Time: Start/	Pen. Rate (min. per	Depth			Lithologic Description			Core Recovery	re very	
	Jnit Stop	foot)		(include in o	rder: ROCK TYPE.	(include in order: ROCK TYPE, color, grain size, texture, bedding, fracture & minerals.)	bedding, fracture & r		Length Percent	Percent	ROD
	55		0. 97	Boring advanced bedrack at 26.0' B boring 1g MW-4C	nced through 5.0' ms. set y w-4c for sol	vanced through overburden utilizing 414" HSA. Top of 26.0' ms. Set "4" Stel cosing to 40.0' bgs. See Soil MW-40 for soil description. MW-40 fine animed banzontal bedding. Arovent	12,10, 4 14" HS 40,0' bgs. See	Sout Cot			
	2501	ci ci		H Nonzontal H	actures, some	nonicontai Mactures, some gypsum partings and stringers	s and stinger		ý.ť	48	17%
noinuliz	1050 2	Ø		Gray shale, fir fractures Greenish gray fractures wit	, fine-grained, h gray shale, fine with bedding	Gray shale, fine-grained, honizontal bedding. Frequent honizontal fractures Greenish gray shale, fine grained, honizontal beading, numerous fractures with bedding	y. Frequent horizontal tal beciding, numerous	umerous -	4.9	98	218
Upper				End of corine	End of coring at 50.0' bgs						

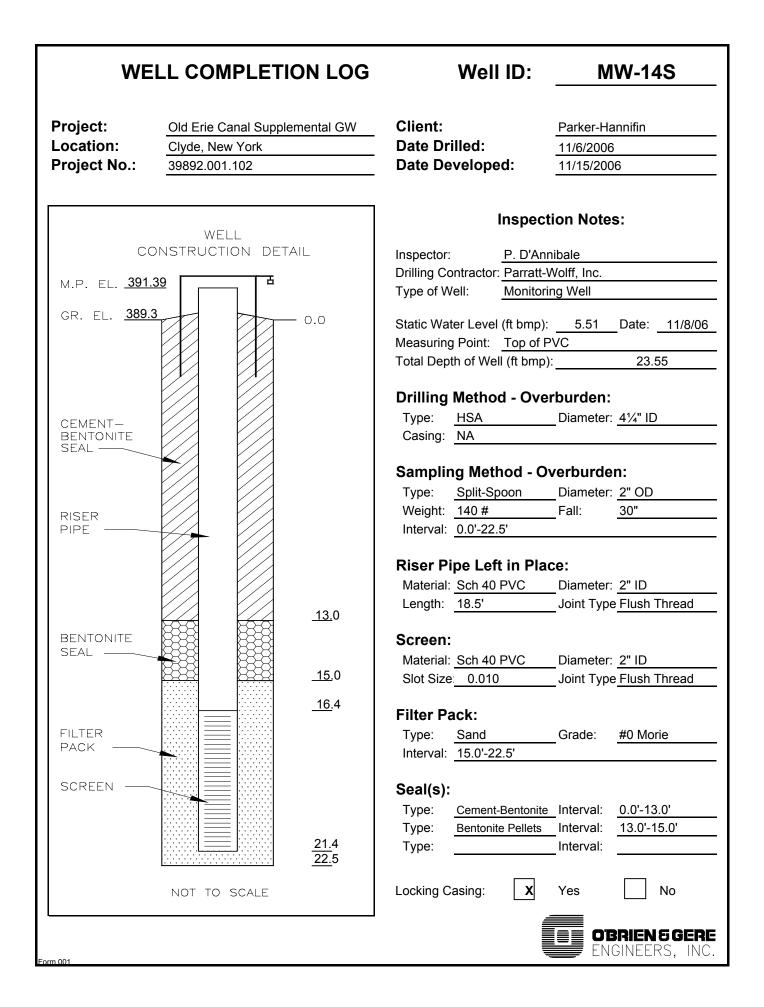

O'BRIEN & GERE ENGINEERS, INC.	GERE ENG	INEERS, I	NC.				Hole No · MW - S.R	Sol No.	39892 001 102	.102	
435 New Karner Road Albany, New York 12205	rner Road York 1220	5			200			rted:	1/16/06		
Project: Ol	Old Erie Canal Supplemental FS	I Supplem	ental FS		Drilling Contractor	Drilling Contractor: Parratt Wolff Inc.		Date Finished: $\frac{11}{11}7/06$	11/17/0	9	
	General Electric Company / Parker Hannifin	ric Compar	ny / Park∈	∋r Hannifin	Driller: Joe Percy	rcy.		Total Depth: 3	39.2'		
i iii	Bedrock Well Installation	Installatior			Geologist:	P. D'Annibale		Ground Elev.: 393, 19' NGVD 1929	393.19	NGUD	939
i i	Ciyde, New York	ork			Length of Casing: $3^{a}.o^{\prime}$	39.0'		S.W.L.:			
Hole Location: S	1: S of fac	inty alc	shq walk	ik poth	Casing Size:	ø' √" Core Size:	3 3/4"	Inclination/Bearing	ring:		
Formation Member	Run No. Time Start/	Run No. Pen. Time. Rate Start/ (min. per De	Depth			Lithologic Description			Core Recovery	re very	
Ð	Unit Stop	****		(include in or	rder: ROCK TYPE,	color, grain size, texti	(include in order: ROCK TYPE, color, grain size, texture, bedding, fracture & minerals.)		Length Percent	Percent	ROD
				Boring advance of bedrock of boring log MW-	Need through	Boring advanced through overburden of bedrock at 25.9' bgs. Set 4" Stel co boring log MW-5B for Soil description.	advanced through overburden utilizing 41/11 MSA. TOP nock at 25.91 bgs. Set 411 Stel casing to 29.01 bgs. Set soil log MW-5B for soil description.	SA. TOP			
	13-48		30.0'	Greenish grav with beddin	y Shale, fine c	grained, horizon	Greenish gray Shale, the grained, horizontal bedding, highly Fracture	y Fractured	ſ	5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		6,4)			- <u> </u>	1	ý	0
	1420		1		Chale Fire	1020 PV0 201	tal reining high				
) (;; (35.0'	Fractured w	Fractured with bedding		h boding	, T	ſ	20	2 2 0
إ ٦ د ب	2	4.0						11	1)	*
':5	0051		39.0	End of coring	1 at 39.2' has	and the second	والمستعملين والمحالي والمحالي المحالي المحالي والمحالي والمحالية والمحالية والمحالية والمحالية المحالي والمحالية و				
		··	1)	X			ſ			
i de			1					┱┓	<u> </u>		
In			1							-	
								Τ			
			11								
								ΤŤ			
			1 I	,							

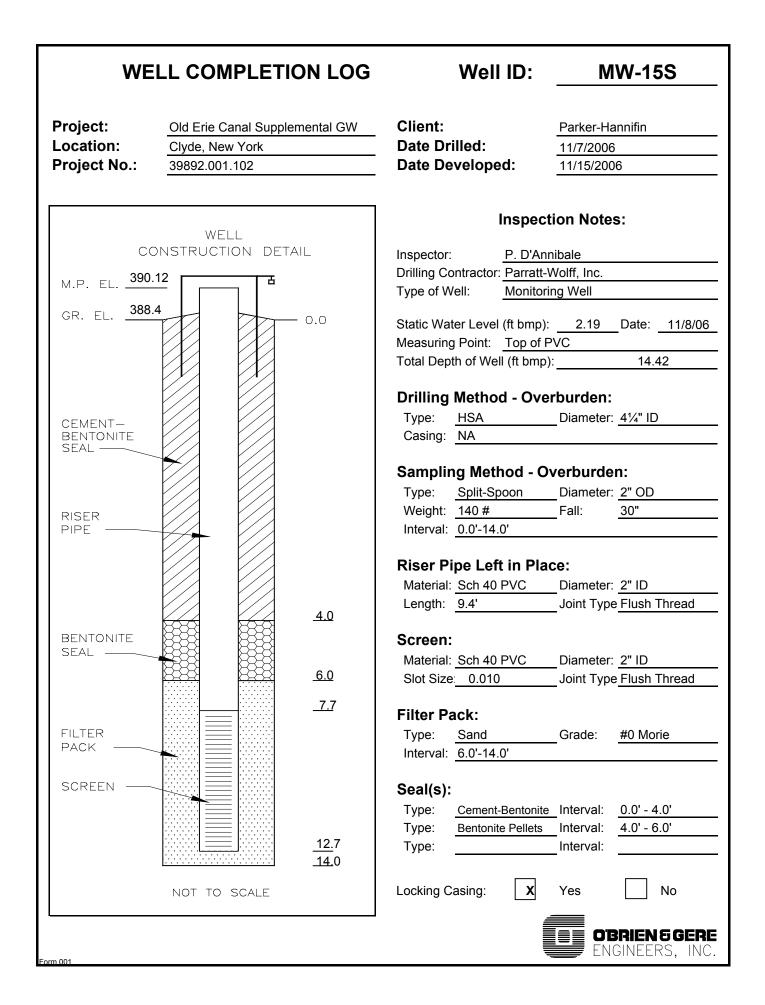

O'BRIEN & GERE ENGINEERS, INC.	ERE ENGI	NEERS, I	NC.				Hole No · MW -6 8 Job No ·		39892.001.102	102	
435 New Karner Road	her Road	14			CORE LOG		Sheet 1 of	rted:	11/15/0	.0	
Albarry, New TUIN 12200								247	11/10/11		
Project: Old	Old Erie Canal Supplemental FS	Supplem	ental FS		Drilling Contractor. Parratt Wolff Inc.	Wolft Inc.		Date FINIShea.	1/0//	2	
Client: Gen	General Electric Company / Parker Hannifin	ic Compa	ny / Parke	sr Hannifin	Driller. Joe Percy			Total Depth:	39.41		
Purpose: Bed	Bedrock Well Installation	Installatior	-		Geologist: P. D'Annibale	nibale		Ground Elev.: 39 5.09	395.09	NOND	626
	Clyde, New York	r X			Length of Casing: 39. ${\cal G}_{\ell}$			S.W.L.:			
Hole Location: Near Indicated tan K. SW of	Near hyc	irogen +	ank SI	W of facility	Casing Size: 6" 4"	Core Size:	3 3/4"	Inclination/Bearing:	ıring:		
Formation	Run No. Time:	Pen. Rate							Core	Ð	
Member Unit	t Start/	(min: per foot)	Depth Scale	(include in or	Lithologic Description (include in order: ROCK TYPE, color, grain size, texture, bedding, fracture & minerals.)	Lithologic Description color, grain size, texture, l	bedding, fracture & n		Length Percent	very Percent	RQD
	:			Boring advance a+ 25,9 bgs. 10g MW -68 fc	boring advanced through overburden utilizing 414" 459. Top of bedrock at 25.91 bos. Set 41" steel casing to 29.01 bos. See soil boring log MW-68 for soil description.	in utilizing	414" HSA. TOP	of bedrock			
	1251		30.0°	Greenish gray	GREENISM gray to gray shale, fine grained, horizontal bedding, frequent horizontal fractures, gypsum stringers	e grained, 1 psum strin	norizontal be	10, DD	The second secon	001	82,1%
	-	<i>b.</i> =)		
ม้อม	1110		35.0'	Greenish gray	Greenish arry to gray shale, fine o	grained, hor	shale, fine grained, horizontal bedding, fractures	6	and the second se	¥.	15 2 2
olis .	7	8°h							Ś	20 2	20/2
Jad	QCF1		39.0	End of coring at	at 39.4° bgs.	and a stand of the stand of t	nen en statut en forsen en eller an eller an eller en eller an eller en en eller en eller en eller en eller en	a management of the state of th	A CALLER AND A C	and an off Total and a state of the total and a state of the total and the total and the total and total and to	
dU			I)				—			
								Ţ-Ţ			
								I			
				.							
			1					T-1			
			 					T			
			1								
			1								

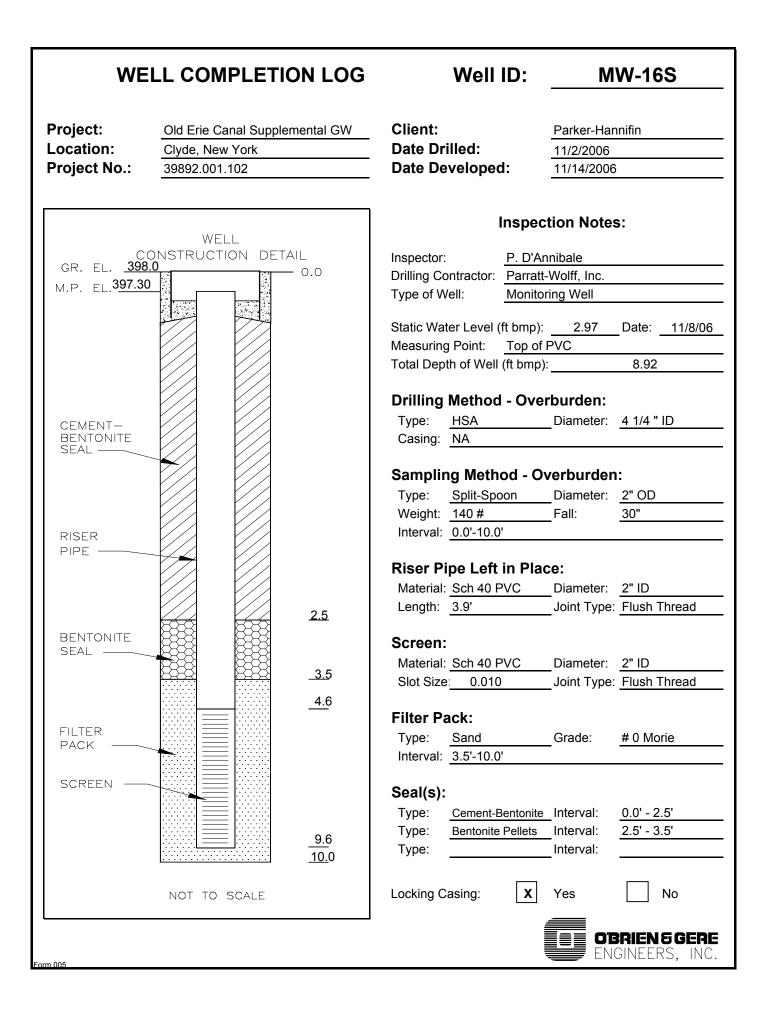

O'BRIEN & GERE ENGINEERS, INC.	CORFIOG Hole No.:)	Hole No.: M	39892.001.102	2
435 New Karner Koad Albany, New York 12205	Sheet 1 of	□ Date Started: ¹¹ //5 /06	11/15/06	
Project: Old Erie Canal Supplemental FS	Drilling Contractor: Parratt Wolff Inc.	Date Finished:	Date Finished: 11/15/06	
Client: General Electric Company / Parker Hannifin	Driller: Joe Revey	Total Depth:	44.0'	
Purpose: Bedrock Well Installation	Geologist: P. D'Annibale	Ground Elev.: 398,48		NGUD 1929
Location: Clyde, New York	Length of Casing: 44,1'	S.W.L.:		
Hole Location: ~ 50 ' SSW of facility	Casing Size: $\delta'' \notin $ Core Size: 3 3/4"	Inclination/Bearing	aring:	
	Lithologic Description Lithologic Description order: ROCK TYPE, color, grain size, texture, bedding, fr	acture & minerals)	Core Recovery Length Percent	y rcent RQD
	Boring ocivanced through overburden Utilizing 4114" HSA Jop of bedrock at 31.0" bgs. Set 4" Steel Casing to 34.0" bgs. See Soil boring log MW-168 for Soil description.	14" HSA TOPOF		
1 9.4 and from 37.5	ay shale, fine anained, hon zontal bedding, numerous the bedding. Verthical Fractures from 36.5 to 37.0 7.55 to 37.83.	101/19, NUMEROUS	6 SL'+	95 52.9%
7.4 40.51 GRENISH 9 7.4 Dark gray.	Fine grained, horizontal Ng e grained, horizontal bedo	ntal bedding, numerous bedding, numerous	4.5 10	100 42.5%
End of coring	actures of at 44.0° bas.			
		1 1	<u> </u>	

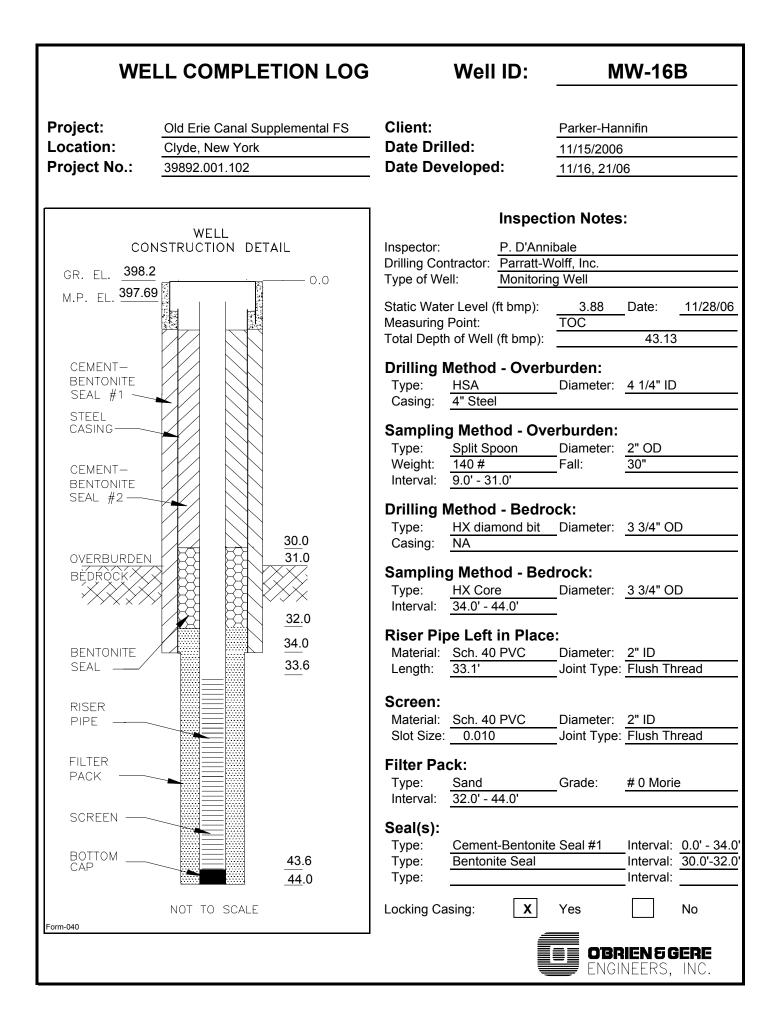

APPENDIX B

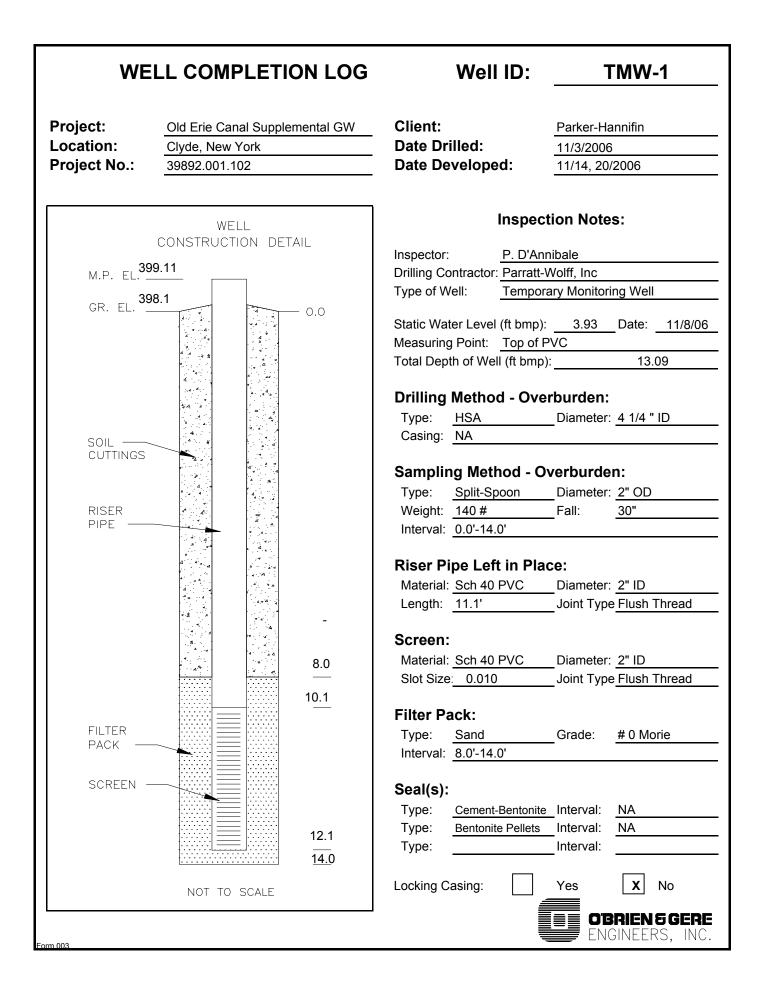

Monitoring Well Completion Logs

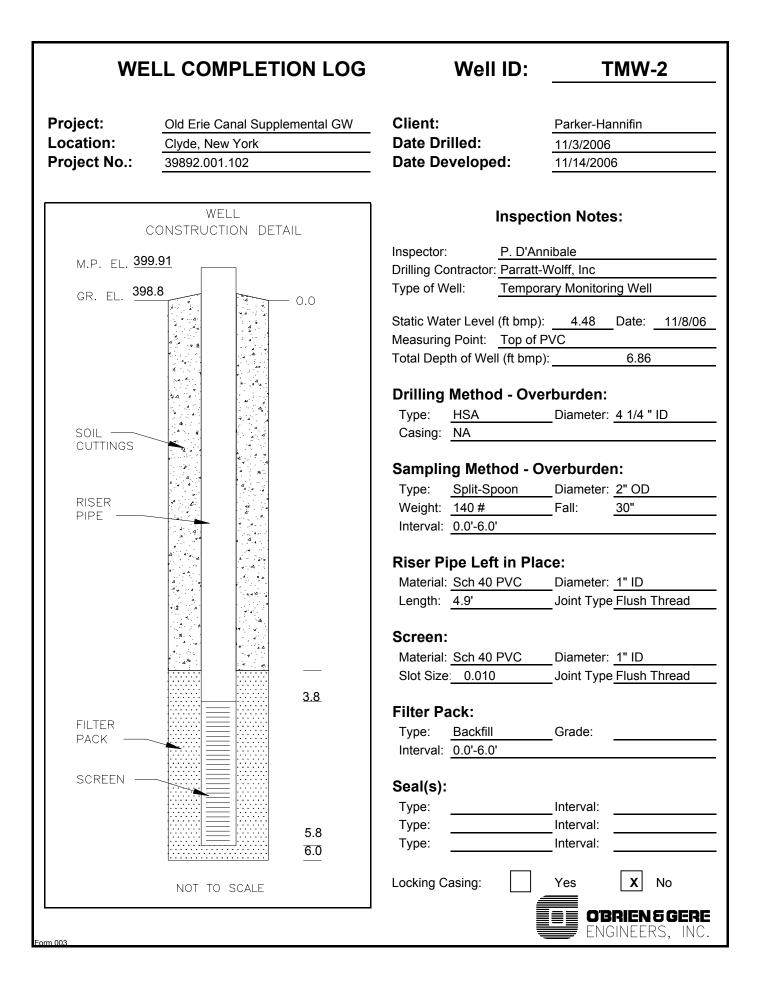


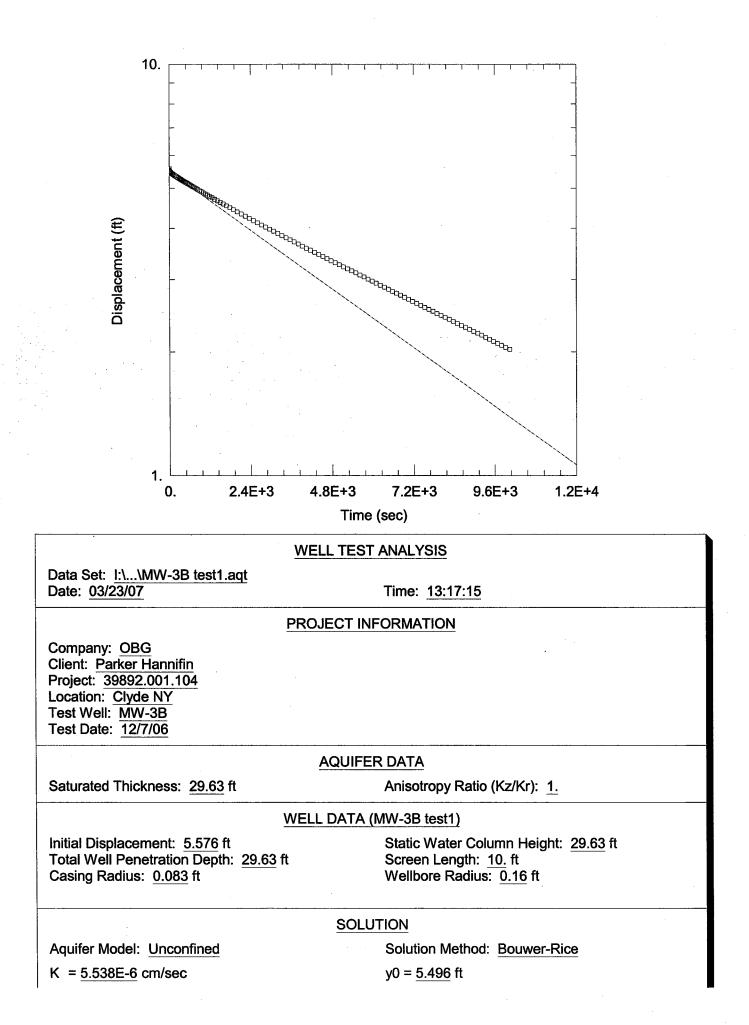


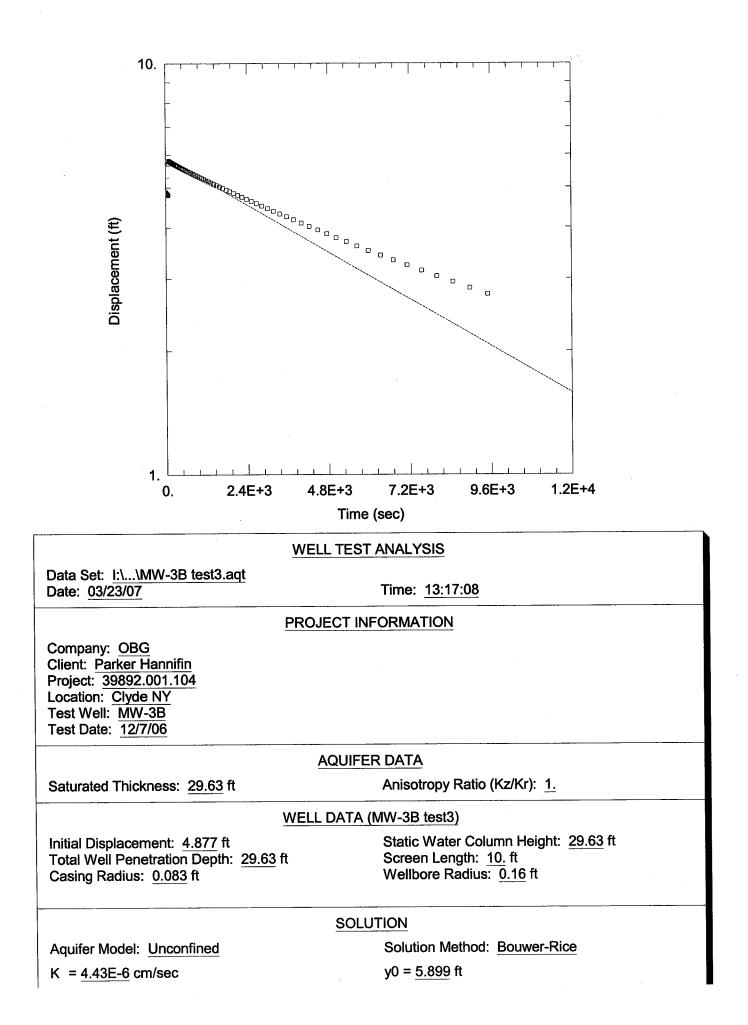


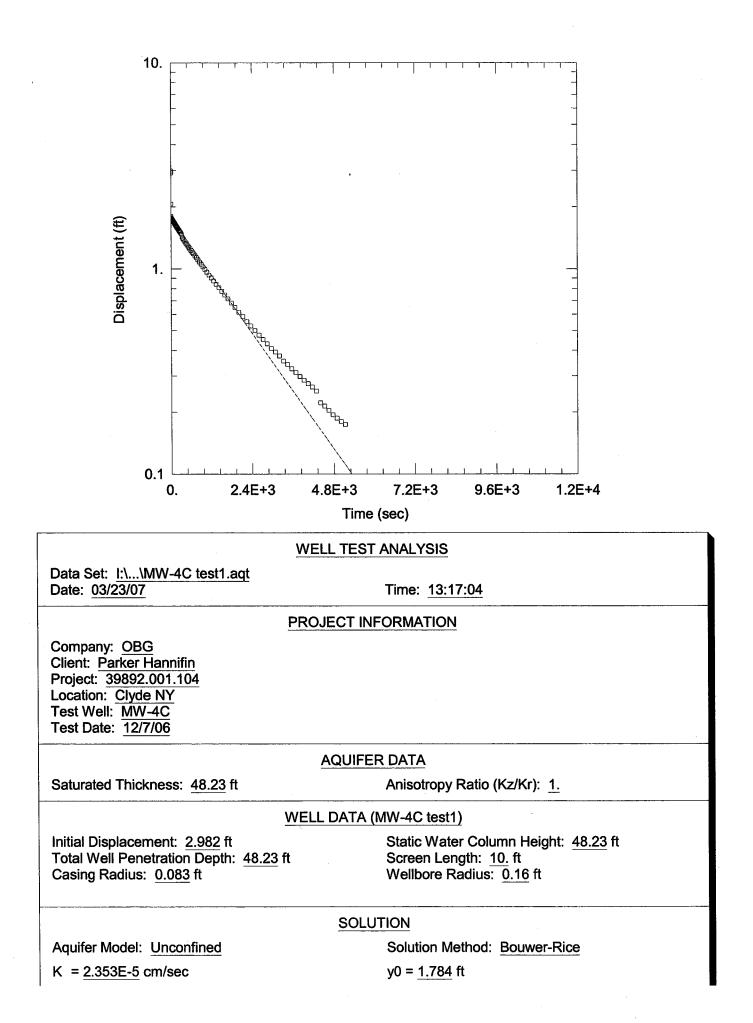


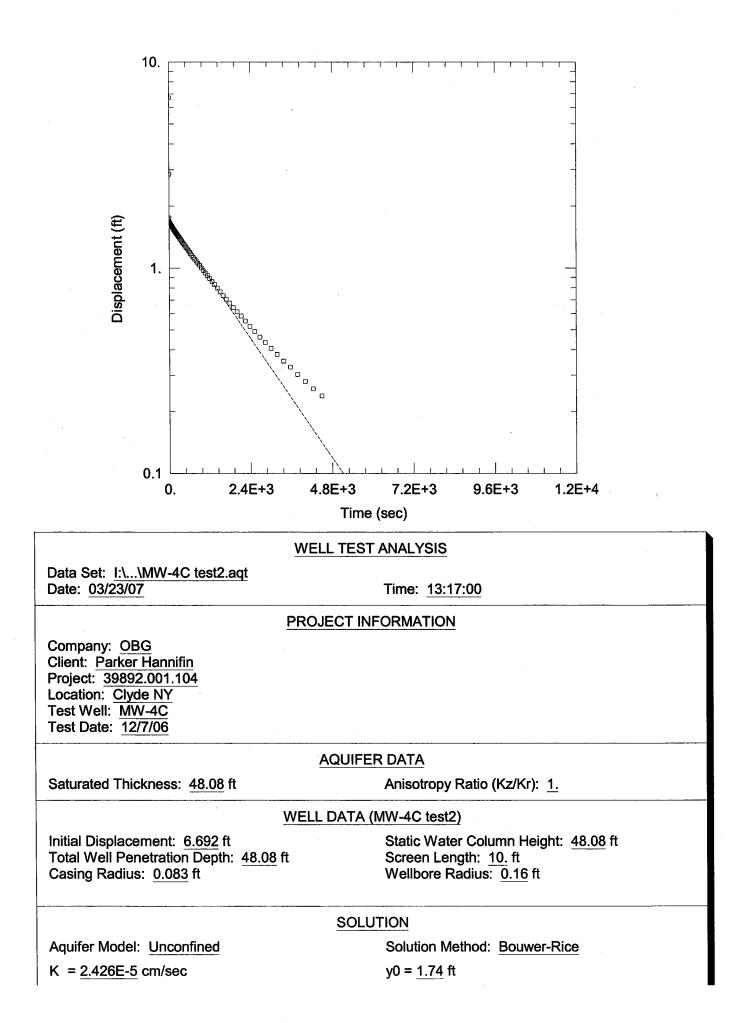


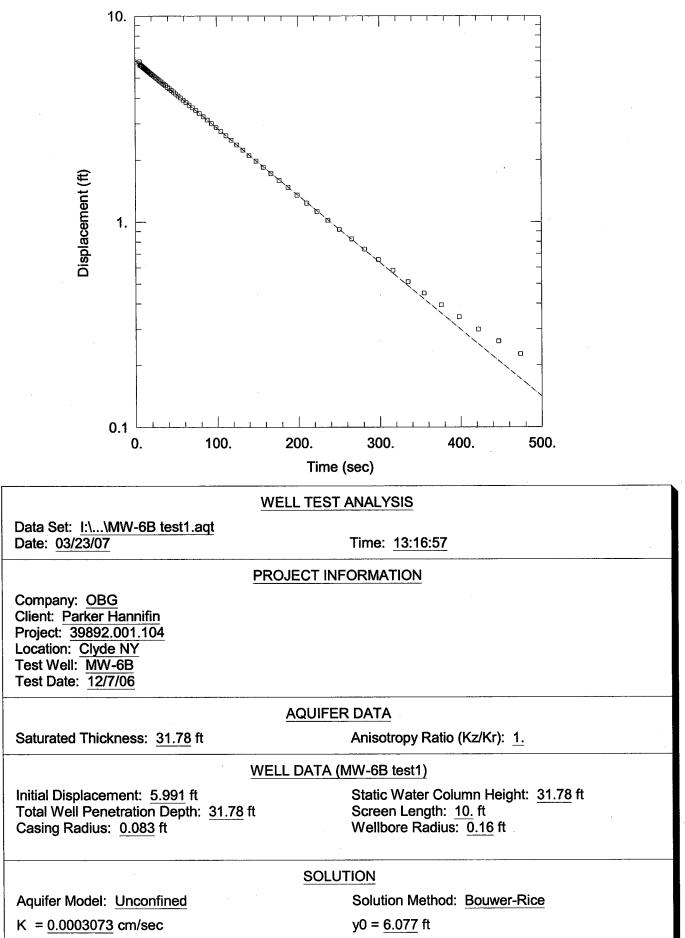


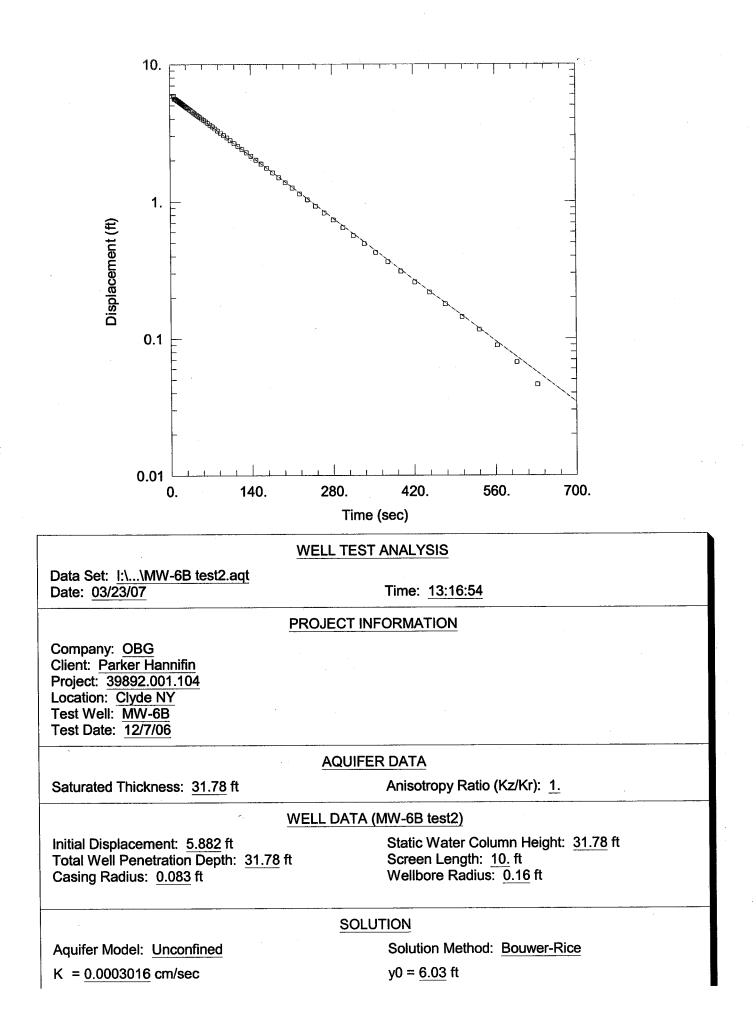


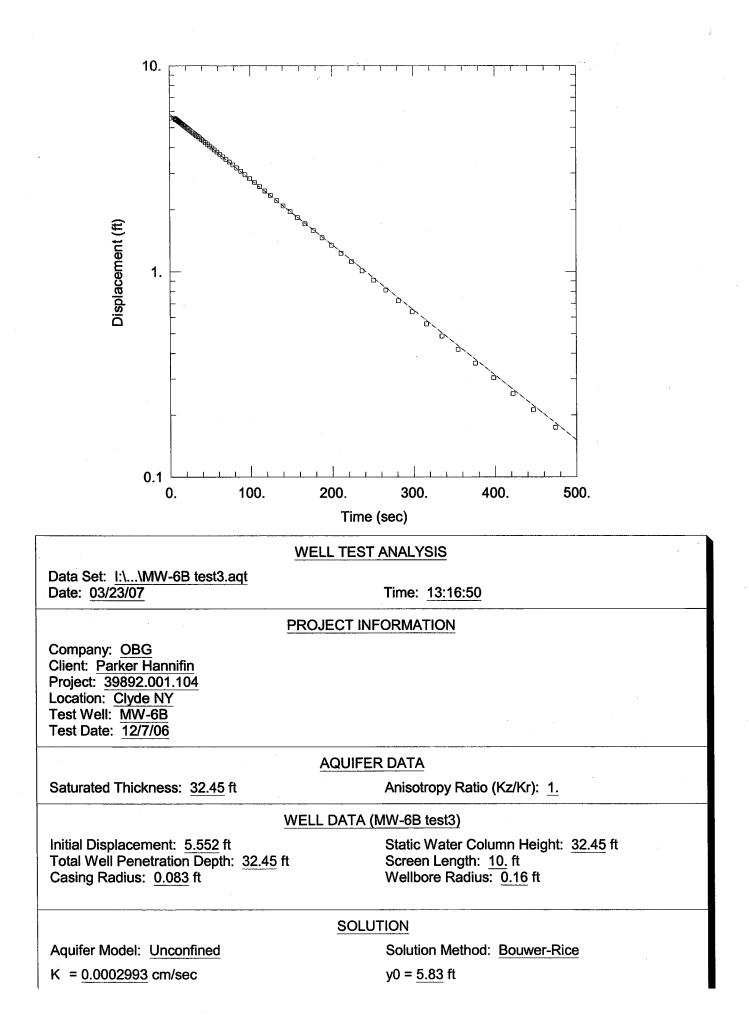


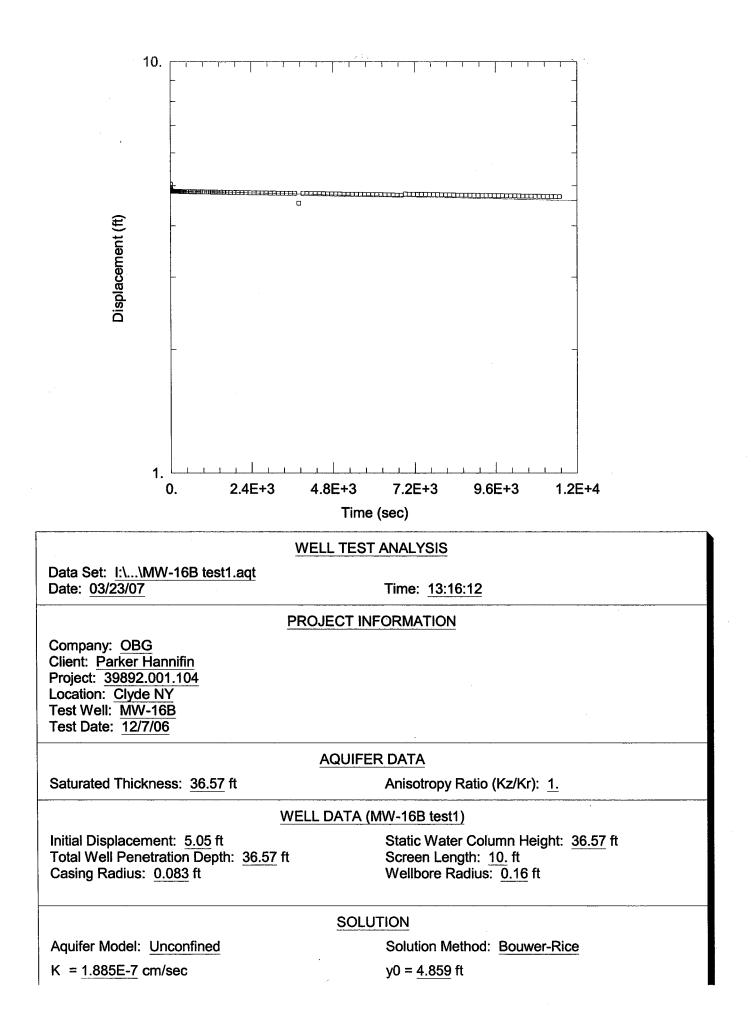

APPENDIX C

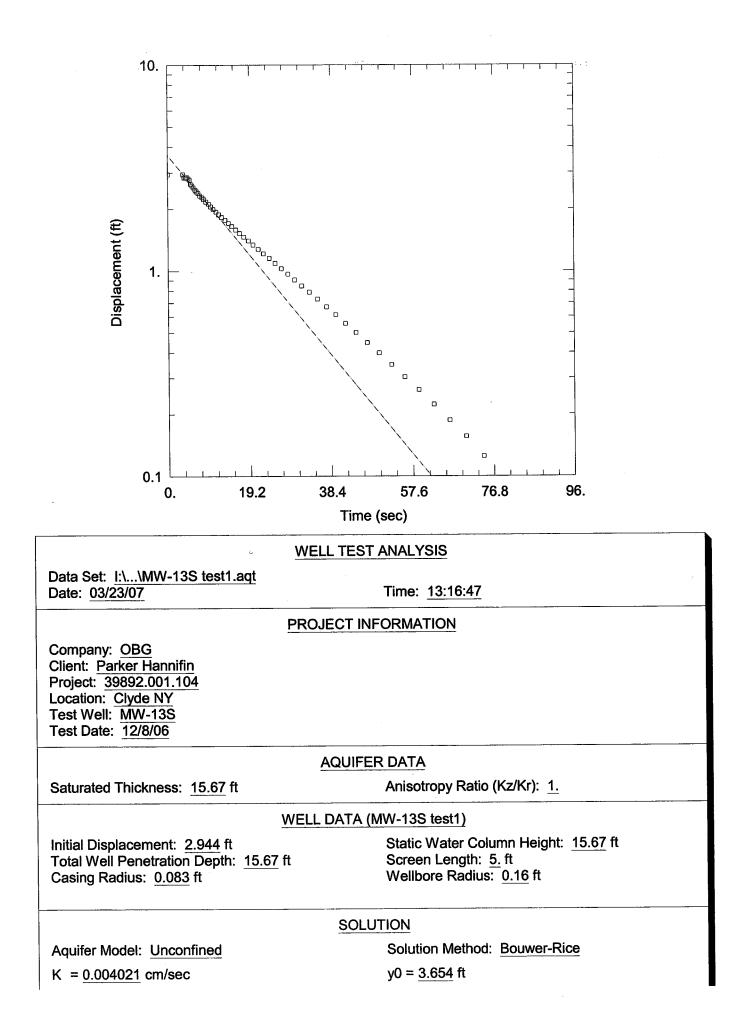

Hydraulic Conductivity Test Results

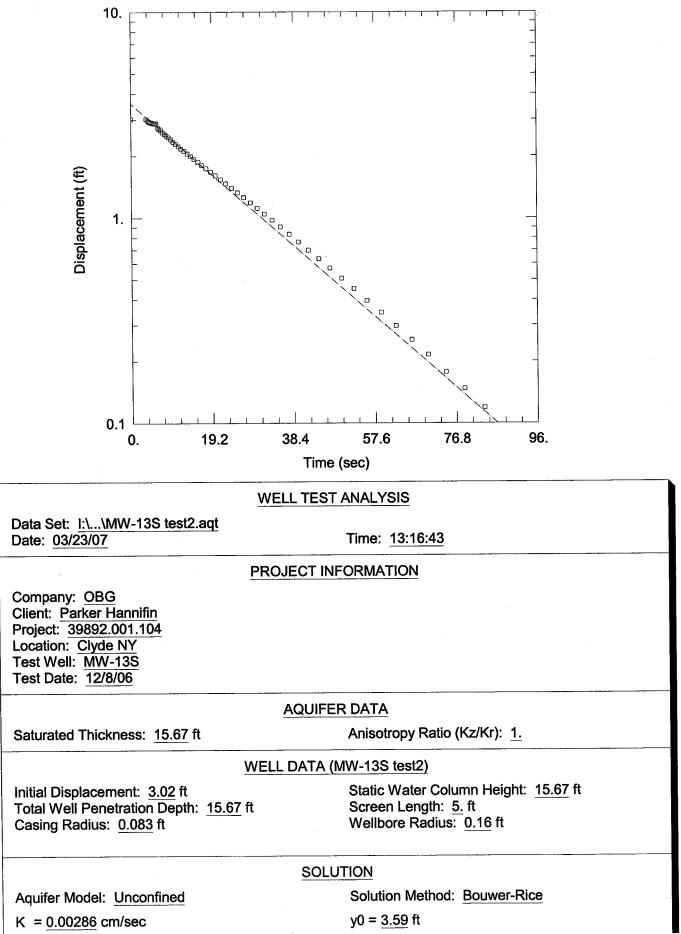


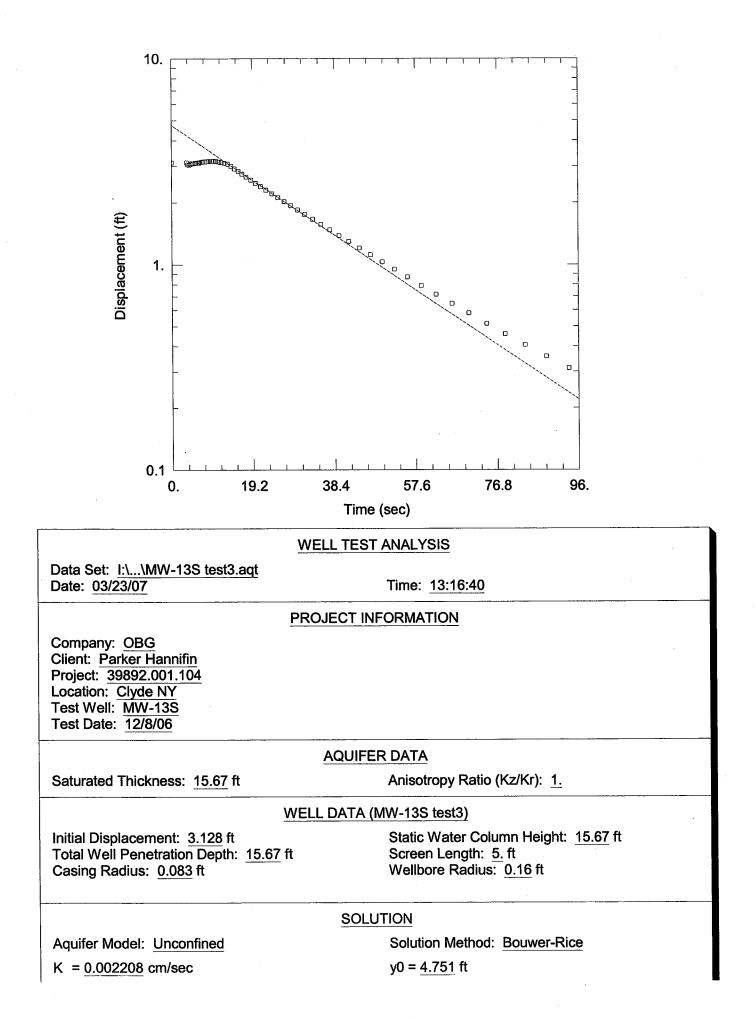


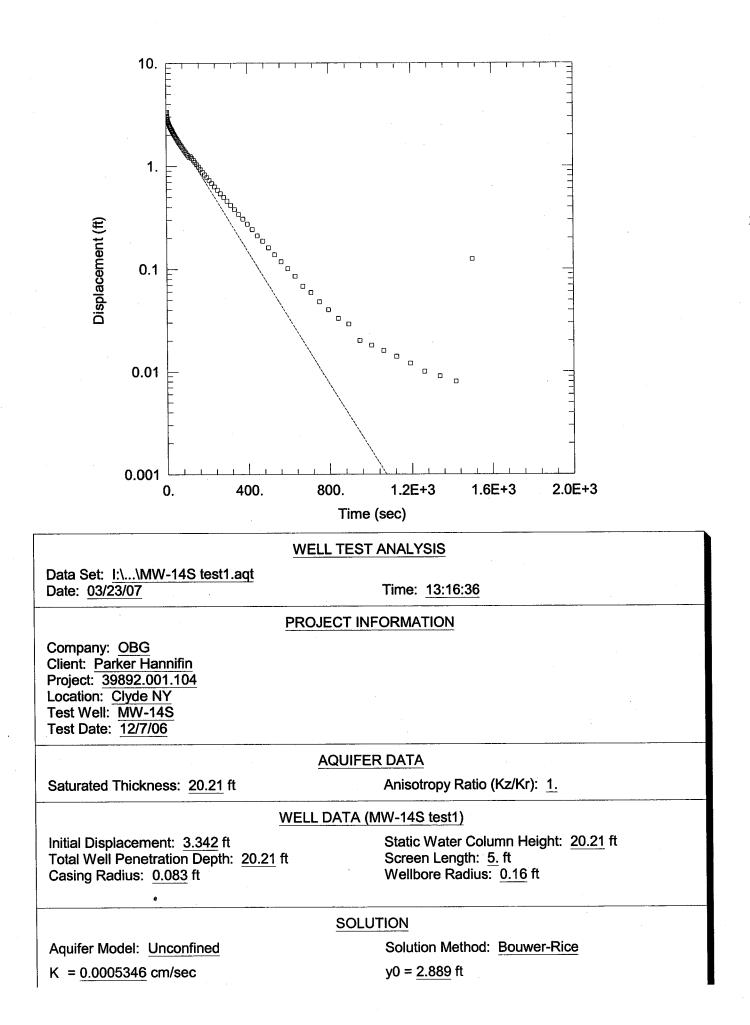


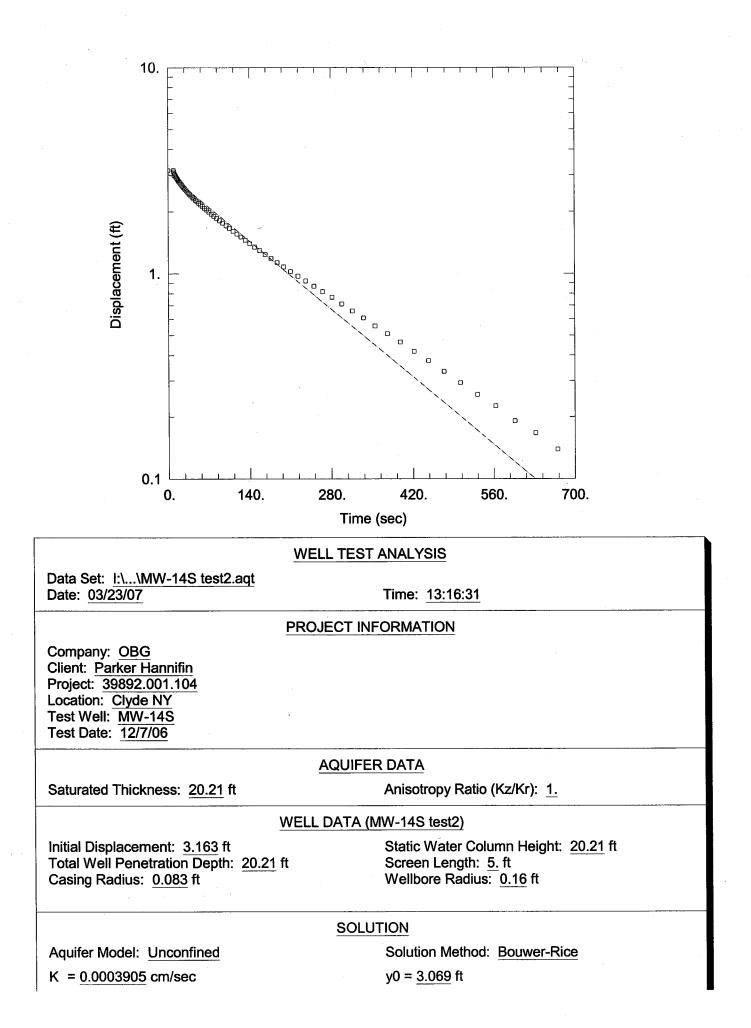


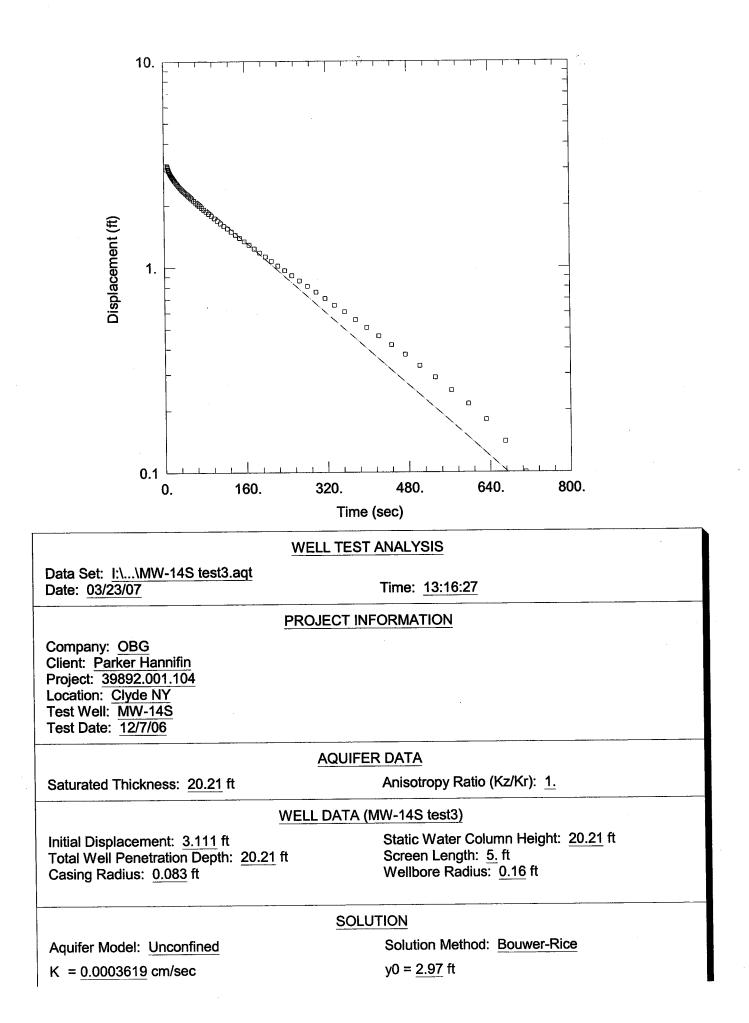


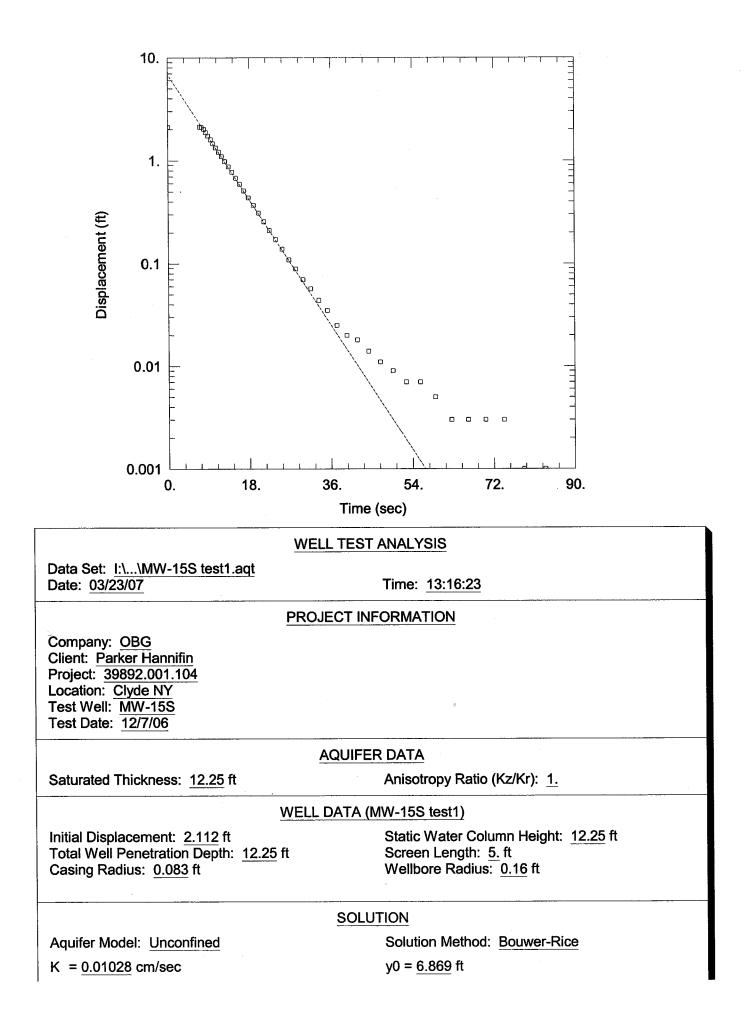


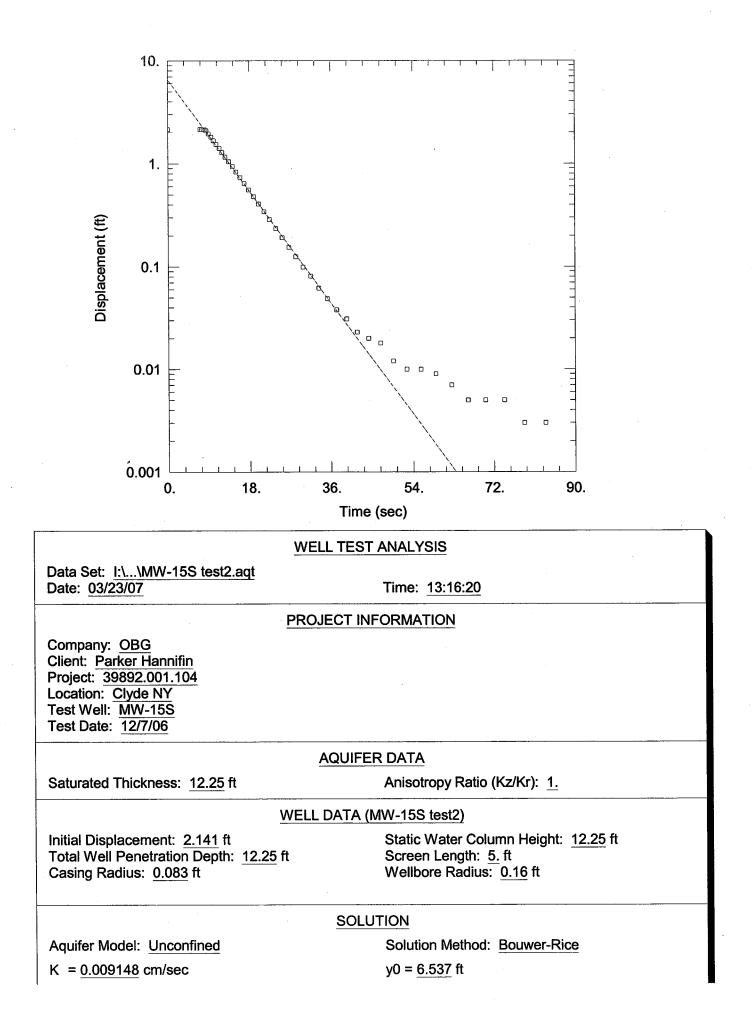


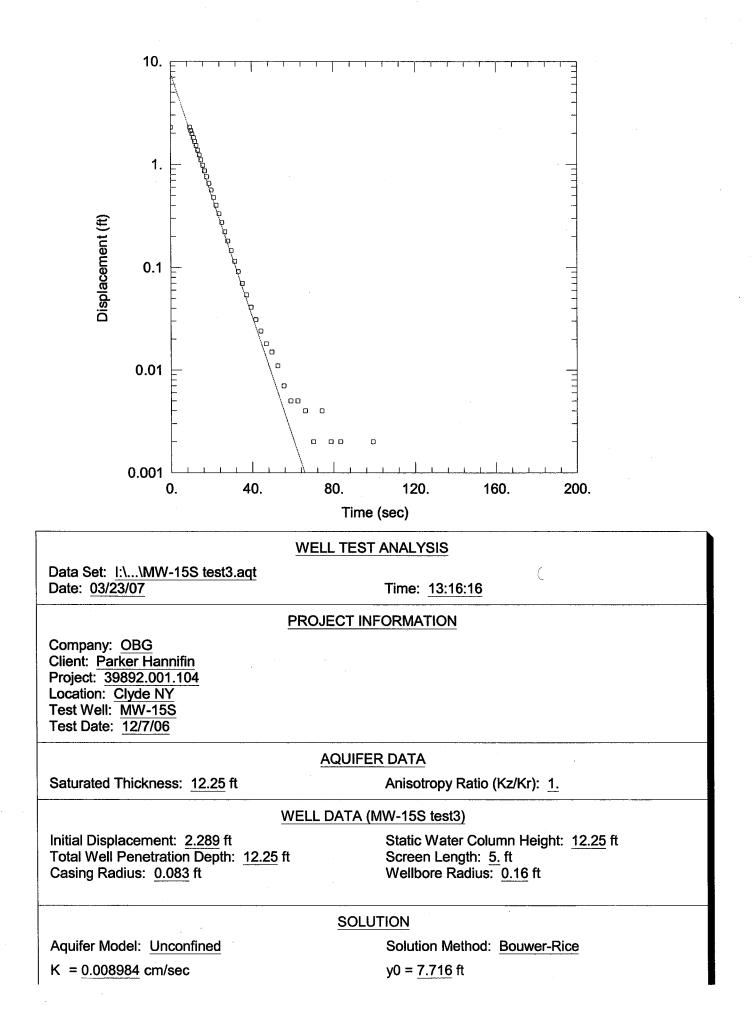


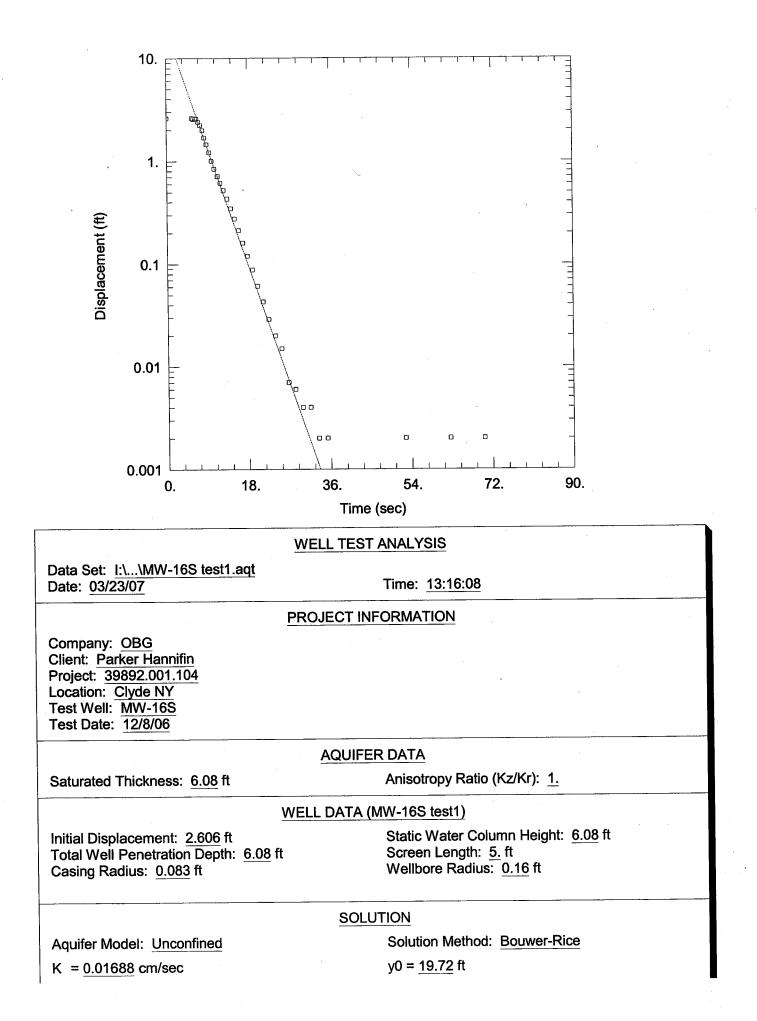


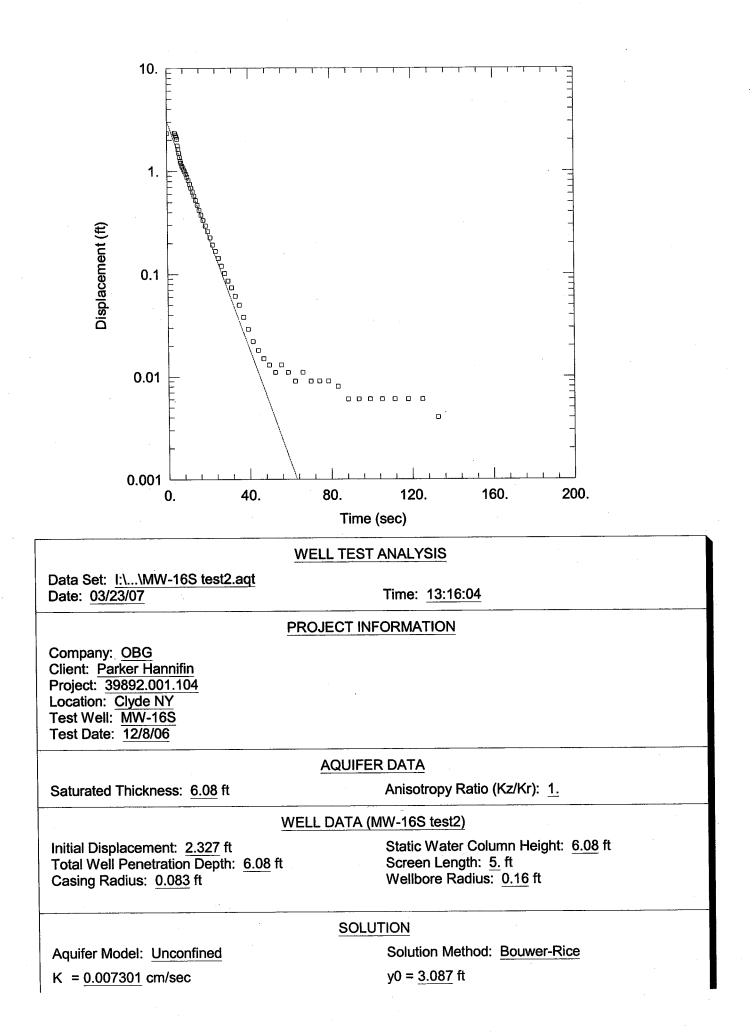


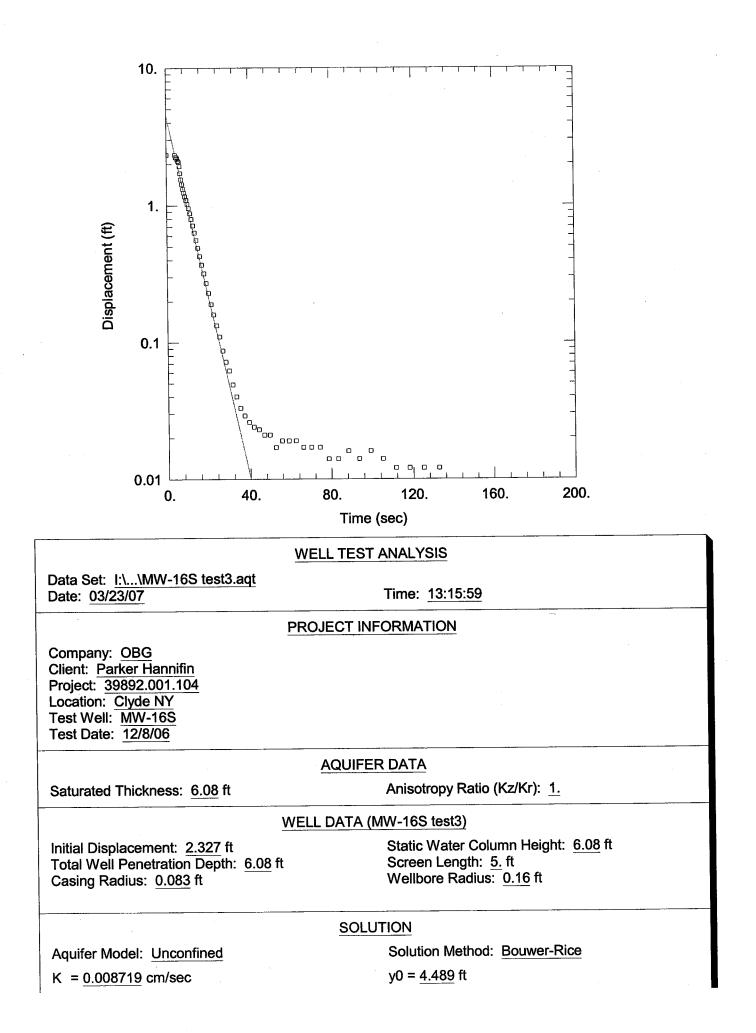


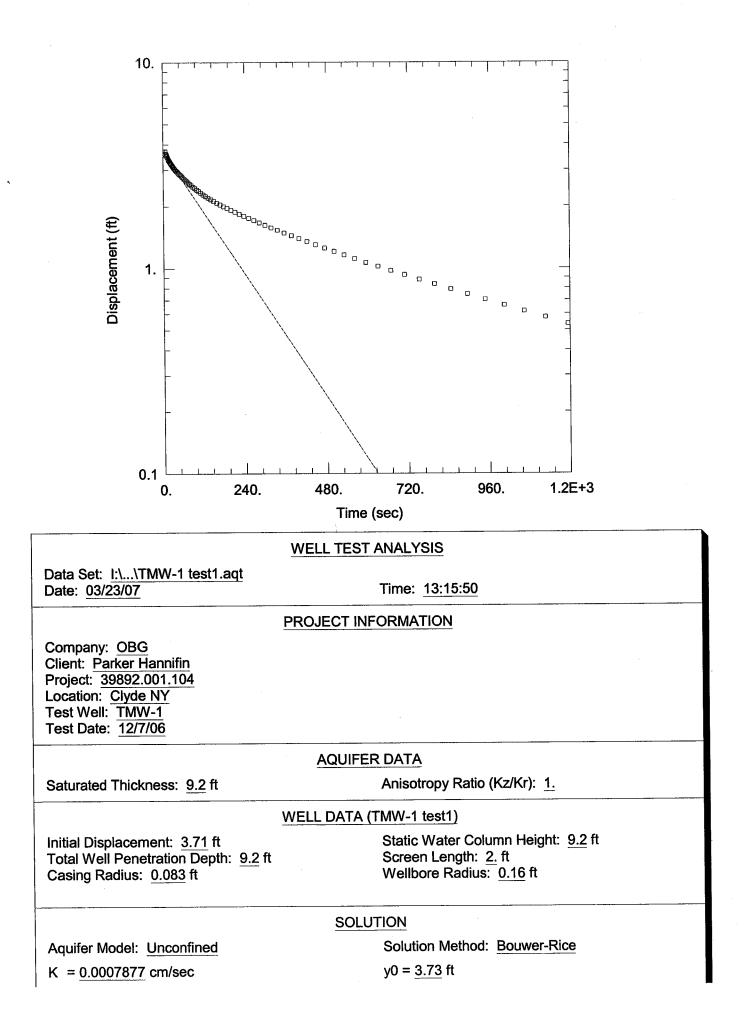


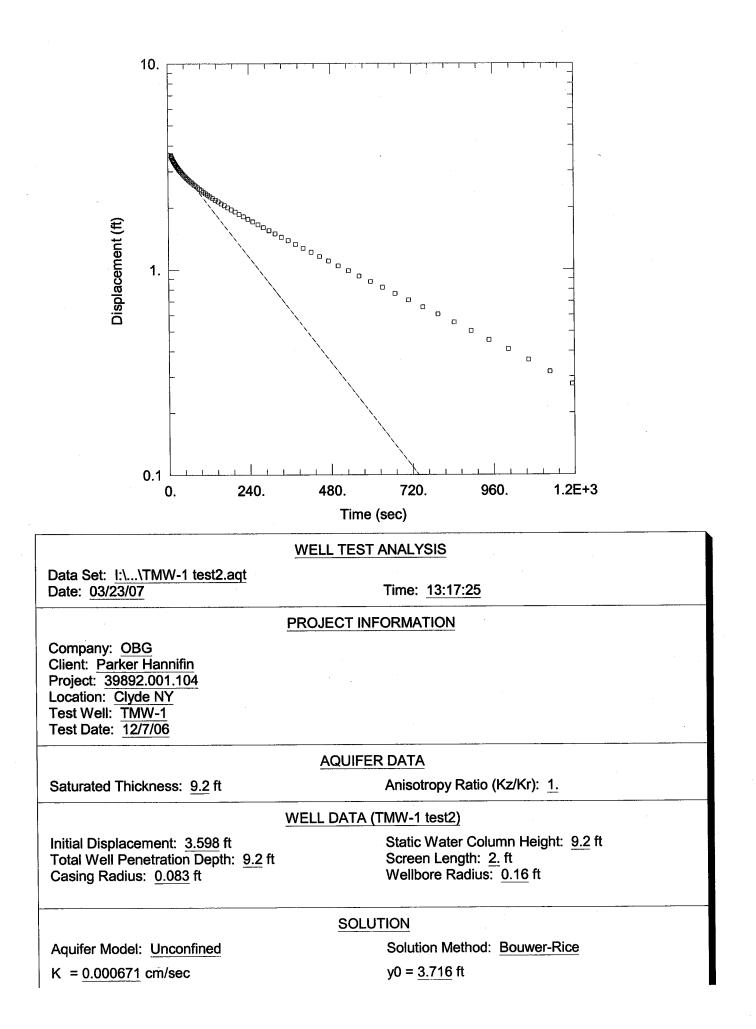


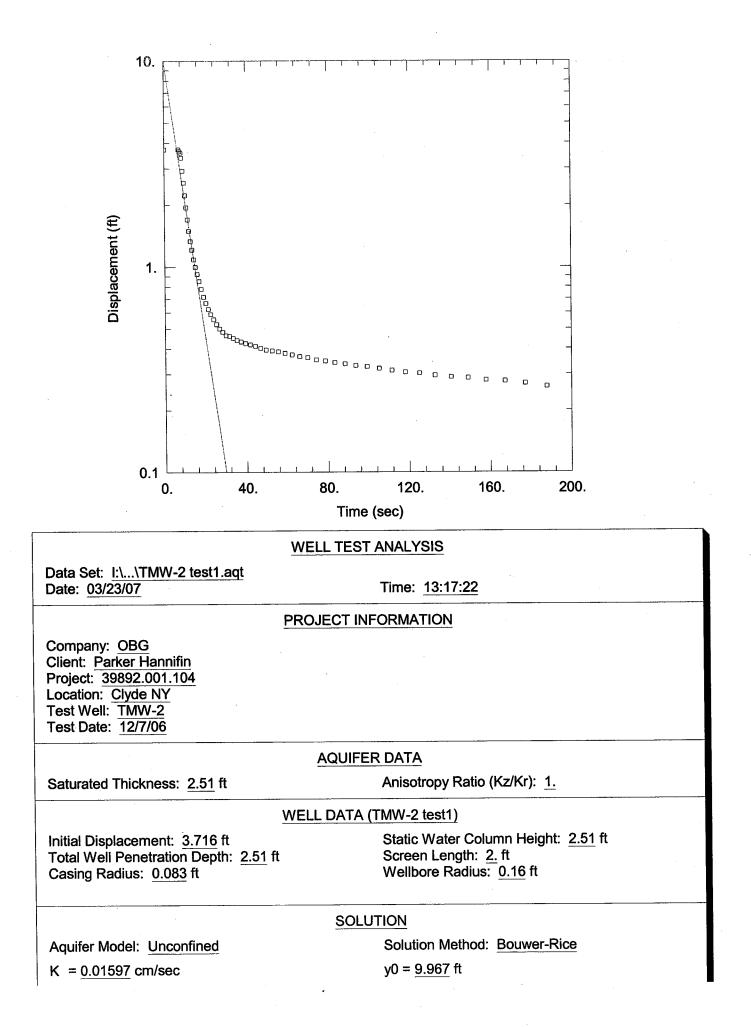


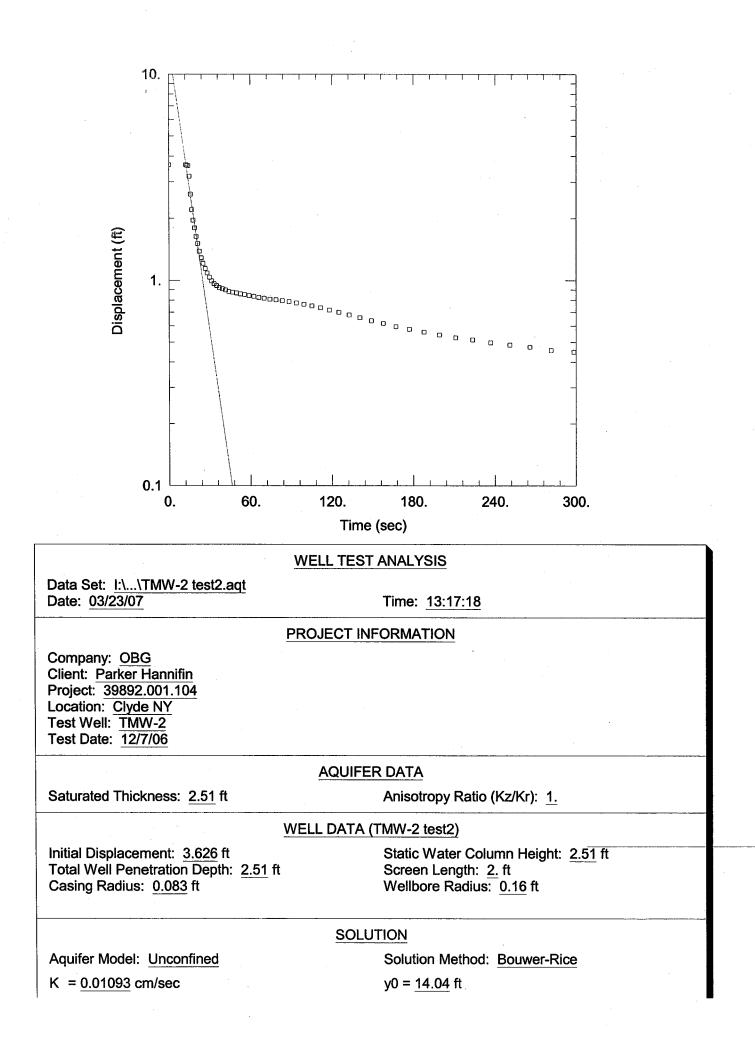












.

APPENDIX D

Soil Sampling Laboratory Data

Raw Data: \$95340.D

Accutest Laboratories

		Repor	t of Af	alysis			Page 1 of 2
Client Samj Lab Sample Matrix: Method: Project:			Canal Site	11/15/06 11/17/06 n/a ^a			
Run #1 Run #2		nalyzed /22/06				Prep Batch n/a	Analytical Batch VS3677
Run #1 Run #2	Initial WeightFinal Volume6.3 g5.0 ml	e Metha 100 ul	anol Aliqu l	ot			
VOA TCL	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	ND	400	110	ug/kg		
71-43-2	Benzene	ND	40	19	ug/kg		
75-27-4	Bromodichloromethane	ND	200	18	ug/kg		
75-25-2	Bromoform	ND	200	17	ug/kg		
74-83-9	Bromomethane	ND	200	15	ug/kg		
78-93-3	2-Butanone (MEK)	ND	400	110	ug/kg		
75-15-0	Carbon disulfide	ND	200	22	ug/kg		
56-23-5	Carbon tetrachloride	ND	200	38	ug/kg		
108-90-7	Chlorobenzene	ND	200	17	ug/kg		
75-00-3	Chloroethane	ND	200	69	ug/kg		
67-66-3	Chloroform	ND	200	23	ug/kg		
74-87-3	Chloromethane	ND	200	18	ug/kg		
124-48-1	Dibromochloromethane	ND	200	22	ug/kg		
75-34-3	1,1-Dichloroethane	ND	200	19	ug/kg		
107-06-2	1,2-Dichloroethane	ND	40	22	ug/kg		
75-35-4	1,1-Dichloroethene	ND	200	27	ug/kg		
156-59-2	cis-1,2-Dichloroethene	83.0	200	27	ug/kg	J	
156-60-5	trans-1,2-Dichloroethene	ND	200	27	ug/kg		
78-87-5	1,2-Dichloropropane	ND	200	22	ug/kg		
10061-01-5		ND	200	16	ug/kg		
10061-02-6	trans-1,3-Dichloropropene	ND	200	16	ug/kg		
100-41-4	Ethylbenzene	ND	40	18	ug/kg		
591-78-6	2-Hexanone	ND	200	54	ug/kg		
100 10 1		ND	000	70	110/110		

Report of Analysis

Page 1 of 2

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

J = Indicates an estimated value

79

27

13

23

33

22

23

21

21

200

200

200

200

200

40

200

200

200

ND

ND

ND

ND

ND

71.5

ND

ND

ND

MDL - Method Detection Limit

RL = Reporting Limit E = Indicates value exceeds calibration range

4-Methyl-2-pentanone(MIBK)

1,1,2,2-Tetrachloroethane

Methylene chloride

Tetrachloroethene

Trichloroethene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Styrene

Toluene

108-10-1

75-09-2

100-42-5

79-34-5

127-18-4

108-88-3

71-55-6 79-00-5

79-01-6

ND = Not detected

	Report of Analysis											
Client Sample Lab Sample Matrix: Method: Project:	E ID: J46767-1 SO - Soil	/846 5035 ìn - Old Erie (
VOA TCL	List											
CAS No.	Compound	Result	RL	MDL	Units	Q						
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND J ND V	200 79	26 20	ug/kg ug/kg							
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its							
1868-53-7 17060-07-0	17060-07-0 1,2-Dichloroethane-D4			61-1	120% 133%							
2037-26-5 460-00-4	Toluene-D8 4-Bromofluorobenzene	105% 117%			123% 142%							

(a) Percent solids not analyzed due to sample matrix. Results reported on wet weight basis.

J = Indicates an estimated value

N = Indicates presumptive evidence of a compound

3

B = Indicates analyte found in associated method blank

APPENDIX E

Ground Water Sampling Laboratory Data Run #1

Run #2

Run #1

Run #2

Accutest Laboratories

1

Client Sample ID: GW-EMW-2-113006 11/30/06 Lab Sample ID: J47958-6 Date Sampled: Matrix: AQ - Ground Water Date Received: 12/02/06 SW846 8260B Percent Solids: n/a Method: GE - Parker Hannifin - Old Erie Canal Site, Clyde, NY Project: Analytical Batch File ID Prep Date Prep Batch DF Analyzed By 12/06/06 VD4809 D120645.D 1 YL n/a n/a Purge Volume 5.0 ml VOA TCL List CAS No. Compound Result RL MDL Units Q

Report of Analysis

67-64-1	Acetone	ND	5.0-2	4.6	ug/l	
71-43-2	Benzene	0.37	1.0	0.37	ug/l	J
75-27-4	Bromodichloromethane	ND	1.0	0.14	ug/l	
75-25-2	Bromoform	ND	1.0	0.52	ug/l	
74-83-9	Bromomethane	ND	1.0	0.39	ug/l	
78-93-3	2-Butanone (MEK)	ND	-5.0-2	1.4	ug/l	
75-15-0	Carbon disulfide	ND	1.0	0.38	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.74	ug/l	
75-00-3	Chloroethane	ND	1.0	0.65	ug/l	
67-66-3	Chloroform	ND	1.0	0.18	ug/l	
74-87-3	Chloromethane	ND	1.0	0.20	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.17	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.089	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.57	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.49	ug/l	
156-59-2	cis-1,2-Dichloroethene	1.1	1.0	0.18	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.18	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.56	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.15	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.44	ug/l	
591-78-6	2-Hexanone	ND	5.0	0.35	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	0.50	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.53	ug/l	
100-42-5	Styrene	ND	1.0	0.069	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.11	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l	
108-88-3	Toluene	ND	1.0	0.41	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.094	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.15	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.16	ug/l	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 2

		Repor	t of Ana	alysis			Pa
Client Sample ID:GW-EMW-2-113006Lab Sample ID:J47958-6Matrix:AQ - Ground WaterMethod:SW846 8260BProject:GE - Parker Hannifin		r	Canal Site, (11/30/06 12/02/06 n/a			
VOA TCL I	List	1.1.2					
CAS No.	Compound	Result	RL	MDL	Units	Q	
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	5.7 0.57	1.0 1.0	0.77 0.34	ug/l ug/l	J	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7Dibromofluoromethane17060-07-01,2-Dichloroethane-D42037-26-5Toluene-D8460-00-44-Bromofluorobenzene		96% 110% 96% 107%		65-1 80-1	121% 133% 117% 124%		

N = Indicates presumptive evidence of a compound

Page 2 of 2

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client San Lab Samp Matrix: Method: Project:	le ID: J4795 AQ - SW84	Ground Wa 6 8015		Canal Site,	Date F Percer	Sampled: Received: nt Solids: Y	12/02/06			
Run #1 Run #2	File ID 1133490.D 1133491.D	DF 1 2.5	Analyzed 12/08/06 12/08/06	By HSC HSC	Prep D n/a n/a	ate	Prep Batch n/a n/a	Analytical Batch GII1676 GII1676		
CAS No.	Compound		Result	RL	MDL	Units	Q			
74-82-8	Methane		1440	0.10	0.066	ug/l				
74-84-0 74-85-1	Ethane Ethene		340 ^a 36.4	0.25 0.10	0.14 0.075	ug/l ug/l				

(a) Result is from Run# 2

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

				Rej	port of A	Analysis		Page 1 of 1
Client Sampl Lab Sample		EMW-2-1	13006			Date Sam	pled: 11/30/06	3
Matrix:		Ground V	Vater			Date Rec Percent S		3
Project:	GE -	Parker Ha	nnifin -	Old E	rie Canal S	ite, Clyde, NY		
Metals Analy	vsis			÷.,				
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Sodium	65600	10000	ug/l	1	12/18/06	12/19/06 LH	SW846 6010B ¹	SW846 3010A ²

Instrument QC Batch: MA18522
 Prep QC Batch: MP37272

3.11

6.3

			Repor	t of An	alysis			Page 1 of 1
Client Sample ID: Lab Sample ID:								
Matrix:	AQ - Gr	ound Water				Received: 12/02/0 nt Solids: n/a		
Percent Solids: n/a Project: GE - Parker Hannifin - Old Erie Canal Site, Clyde, NY								
General Chemistry								
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Alkalinity, Total as	CaCO3	559	13	mg/l	1	12/14/06	ST	EPA 310.1
Chloride		108	2.0	mg/l	1	12/28/06 01:39	JH	EPA 300/SW846 9056
Nitrogen, Nitrate a		< 0.11	0.11	mg/l	1	12/21/06 15:04	NR	EPA353.2/SM4500NO2B
Nitrogen, Nitrate +	Nitrite	< 0.10	0.10	mg/l	1	12/21/06 15:04	NR	EPA 353.2/LACHAT
Nitrogen, Nitrite b		< 0.010	0.010	mg/l	1	12/02/06 14:00	HF	SM19 4500NO2B
Sulfate		11.8	10	mg/l	1	12/28/06 01:39	JH	EPA 300/SW846 9056
Sulfide		< 2.0	2.0	mg/l	1	12/06/06	ST	EPA 376.1

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)(b) Analysis done out of holding time.

Client Sample ID: Lab Sample ID: Matrix:	ltered	Date I	Sampled: 11/30/0 Received: 12/02/0 nt Solids: n/a						
Project: GE - Parker Hannifin - Old Erie Canal Site, Clyde, NY General Chemistry									
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method	
Dissolved Organic	Carbon	4.8	1.0	mg/l	1	12/26/06 18:41	мо	EPA415.1/SW8469060M	

Page 1 of 1

	Page 1 of								
Client Sam Lab Sampl Matrix: Method: Project:	e ID: J47958-8 AQ - Ground Water SW846 8260B		Date Sampled: 12/01/06 Date Received: 12/02/06 Percent Solids: n/a Old Erie Canal Site, Clyde, NY						
Run #1 Run #2		Analyzed 12/06/06	By YL	Prep D n/a	ate	Prep Batch n/a	Analytical Batch VD4809		
Run #1 Run #2	Purge Volume 5.0 ml								
VOA TCL	List								
CAS No.	Compound	Result	RL	MDL	Units	Q			
67-64-1	Acetone	ND		4.6	ug/l				
71-43-2	Benzene	ND	1.0	0.37	ug/l				
75-27-4	Bromodichloromethane	ND	1.0	0.14	ug/l				
75-25-2	Bromoform	ND	1.0	0.52	ug/l				
74-83-9	Bromomethane	ND	1.0	0.39	ug/l				
78-93-3	2-Butanone (MEK)	ND			ug/l				
75-15-0	Carbon disulfide	ND	1.0	0.38	ug/l				
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l				
108-90-7	Chlorobenzene	ND	1.0	0.74	ug/l				
75-00-3	Chloroethane	ND	1.0	0.65	ug/l				
67-66-3	Chloroform	ND	1.0	0.18	ug/l				
74-87-3	Chloromethane	ND	1.0	0.20	ug/l				
124-48-1	Dibromochloromethane	ND	1.0	0.17	ug/l				
75-34-3	1,1-Dichloroethane	ND	1.0	0.089	ug/l				
107-06-2	1,2-Dichloroethane	ND	1.0	0.57	ug/l				
75-35-4	1,1-Dichloroethene	ND	1.0	0.49	ug/l				
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.18	ug/l				
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.18	ug/l				
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l				
10061-01-5		ND	1.0	0.56	ug/l				
10061-02-6		ND	1.0	0.15	ug/l				
100-41-4	Ethylbenzene	ND	1.0	0.44	ug/l				
591-78-6	2-Hexanone	ND	5.0	0.35	ug/l				
108-10-1	4-Methyl-2-pentanone(MIB)	K) ND	5.0	0.50	ug/l				
75-09-2	Methylene chloride	ND	2.0	0.53	ug/l				
100-42-5	Styrene	ND	1.0	0.069	ug/l				
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.11	ug/l				
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l				
108-88-3	Toluene	ND	1.0	0.41	ug/l				
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.094	ug/l				
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.15	ug/l				
79-01-6	Trichloroethene	ND	1.0	0.16	ug/l				

ND = Not detected **MDL** - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

			Repor	t of A	nalysis			Page 2 o
Lab Sample ID: J47958-8 Matrix: AQ - Ground Method: SW846 8260B		GW-EMW-3-120106 J47958-8 AQ - Ground Water SW846 8260B GE - Parker Hannifi		12/01/06 12/02/06 n/a				
VOA TCL	List							
CAS No.	Comp	oound	Result	RL	MDL	Units	Q	
75-01-4 1330-20-7		chloride e (total)	ND ND	1.0 1.0	0.77 0.34	ug/l ug/l		
CAS No.	Surro	gate Recoveries	Run# 1	Run#	2 Lin	its		
1868-53-7 17060-07-0 2037-26-5	160-07-0 1,2-Dichloroethane-D4 17-26-5 Toluene-D8		97% 112% 97%		65- 80-	121% 133% 117%		
460-00-4			109%		79-	124%		

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 2 of 2

E = Indicates value exceeds calibration range

Raw Data: II33493.D

Accutest Laboratories

			Repo	ort of Ar	nalysis			Page 1 of
Client San Lab Samp Matrix: Method: Project:	ole ID: J47 AQ SW	/-EMW-3-120 958-8 - Ground Wa 846 8015 - Parker Han		Canal Site,	Date I Percei	Sampled: Received nt Solids		
Run #1 Run #2	File ID II33493.D	DF 1	Analyzed 12/08/06	By HSC	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GII1676
CAS No.	Compoun	1	Result	RL	MDL	Units	Q	
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		598 0.56 ND	0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l		

 $\begin{array}{ll} ND \ = \ Not \ detected \qquad MDL \ - \ Method \ Detection \ Limit \\ RL \ = \ Reporting \ Limit \\ E \ = \ Indicates \ value \ exceeds \ calibration \ range \end{array}$

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

				Rej	port of A	Analysis		Page 1 o
Client Sample I Lab Sample ID:		EMW-3-12 8-8	20106			Date San	npled: 12/01/06	
Matrix:	AQ -	Ground V	Vater			Date Rec Percent		
Project: GE - Parker Hannifin - Old Erie Canal Site, Clyde, NY								
Metals Analysis	1							
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Sodium	30900	10000	ug/l	1	12/18/06	12/19/06 LH	SW846 6010B 1	SW846 3010A ²

Instrument QC Batch: MA18522
 Prep QC Batch: MP37272

		Repor	t of An	alysis			Page 1 of 1	
Client Sample ID: GV Lab Sample ID: J47 Matrix: AQ			Date I	Sampled: 12/01/0 Received: 12/02/0 nt Solids: n/a				
Project: GE	GE - Parker Hannifin - Old Erie Canal Site, Clyde, NY							
General Chemistry								
Analyte	Result	RL	Units	DF	Analyzed	Ву	Method	
Alkalinity, Total as CaC	03 453	13	mg/l	1	12/14/06	ST	EPA 310.1	
Chloride	38.3	2.0	mg/l	1	12/28/06 02:15	JH	EPA 300/SW846 9056	
Nitrogen, Nitrate ^a	0.66	0.11	mg/l	1	12/21/06 15:08	NR	EPA353.2/SM4500NO2B	
Nitrogen, Nitrate + Nit		0.10	mg/l	1	12/21/06 15:08	NR	EPA 353.2/LACHAT	
Nitrogen, Nitrite b	< 0.010	0.010	mg/l	1	12/02/06 14:00	HF	SM19 4500NO2B	
Sulfate	< 10	10	mg/l	1	12/28/06 02:15	JH	EPA 300/SW846 9056	
Sulfide	< 2.0	2.0	mg/l	1	12/06/06	ST	EPA 376.1	

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

(b) Analysis done out of holding time.

ST EPA 376.1

			Repo	rt of An	alysis			Page 1 of 1
Lab Sample ID: J4795 Matrix: AQ -		Groundwater Filtered			Date I	Sampled: 12/01/ Received: 12/02/ nt Solids: n/a		
Project:	GE - Pa	rker Hannifin	- Old Erie	Canal Site,	Clyde, N	Y		
General Chemistry	,							
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Dissolved Organic	Carbon	3.6	1.0	mg/l	1	12/26/06 19:18	мо	EPA415.1/SW8469060M

3.16

ω

Raw Data: 1/A45519.D

Accutest Laboratories

Client Sample ID: GW-EMW-4-120606 Lab Sample ID: J48443-6 Date Sampled Matrix: AQ - Ground Water Date Received Method: SW846 8260B Percent Solids Project: GE - Parker Hannifin - Old Erie Canal Site, Clyde, NY File ID DF Analyzed By Prep Date Run #1 1A45519.D 1 12/18/06 PWC n/a	: 12/07/06	Analytical Batch V1A1947
Run #1 1A45519.D 1 12/18/06 PWC n/a		
Purge Volume Run #1 5.0 ml Run #2		
VOA TCL List		
CAS No. Compound Result RL MDL Units	Q	
67-64-1 Acetone ND 5.0 4.6 ug/l		
71-43-2 Benzene ND 1.0 0.37 ug/1		
75-27-4 Bromodichloromethane ND 1.0 0.14 ug/l		
75-25-2 Bromoform ND 1.0 0.52 ug/l		
74-83-9 Bromomethane ND 1.0 0.39 ug/l		
78-93-3 2-Butanone (MEK) ND 5.0 1.4 ug/l		
75-15-0 Carbon disulfide ND 1.0 J 0.38 ug/l		
56-23-5 Carbon tetrachloride ND 1.0 0.53 ug/l		
108-90-7 Chlorobenzene ND 1.0 0.74 ug/l		
75-00-3 Chloroethane 1.4 1.0 0.65 ug/l		
67-66-3 Chloroform ND 1.0 0.18 ug/l		
74-87-3 Chloromethane ND 1.0 0.20 ug/l		
124-48-1 Dibromochloromethane ND 1.0 0.17 ug/l		
75-34-3 1,1-Dichloroethane 0.71 1.0 0.089 ug/l	J	
107-06-2 1,2-Dichloroethane ND 1.0 0.57 ug/l		
75-35-4 1,1-Dichloroethene ND 1.0 0.49 ug/l		
156-59-2 cis-1,2-Dichloroethene ND 1.0 0.18 ug/l		
156-60-5 trans-1,2-Dichloroethene ND 1.0 0.18 ug/l		
78-87-5 1,2-Dichloropropane ND 1.0 0.50 ug/l		
10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.56 ug/l		
10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.15 ug/l		
100-41-4 Ethylbenzene ND 1.0 0.44 ug/l 501 79.6 2 Hamman ND 5.0 0.25 ug/l		
591-78-6 2-Hexanone ND 5.0 0.35 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 0.50 ug/l		
100-42-5 Styrene ND 1.0 0.069 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.11 ug/l		
127-18-4 Tetrachloroethene ND 1.0 0.39 ug/l		
108-88-3 Toluene ND 1.0 0.41 ug/l		
71-55-6 1,1,1-Trichloroethane ND 1.0 0.094 ug/l		
79-00-5 1,1,2-Trichloroethane ND 1.0 0.15 ug/l		
79-01-6 Trichloroethene ND 1.0 0.16 ug/l		

ND = Not detected **MDL** - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

J = Indicates an estimated value

			Repor	t of Ana	alysis			Pa
Client Sample ID:GW-EMW-4-120606Lab Sample ID:J48443-6Matrix:AQ - Ground WaterMethod:SW846 8260BProject:GE - Parker Hannifin			Canal Site, (Date I Percer	Sampled: Received: nt Solids: Y	12/06/06 12/07/06 n/a		
VOA TCL I	List	1						
CAS No.	Comp	ound	Result	RL	MDL	Units	Q	
75-01-4 1330-20-7		chloride e (total)	2.2 ND	1.0 1.0	0.77 0.34	ug/l ug/l		
CAS No.	Surrogate Recoveries		Run# 1	Run# 2	Lim	its		
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene		103% 125% 94% 89%	77-121% 65-133% 80-117% 79-124%				

ND = Not detected MDL - Method Detection Limit RL = Reporting LimitE = Indicates value exceeds calibration range J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

	-	•	
ŝ	ŧ.	8	1
ł	2	5	l
h	ñ	÷.	1

3.1

Client Sample ID:GW-EMW-4-120606Lab Sample ID:J48443-6Matrix:AQ - Ground WaterMethod:SW846 8015Project:GE - Parker Hannifin			ıter	Date Sampled: 12/06/06 Date Received: 12/07/06 Percent Solids: n/a - Old Erie Canal Site, Clyde, NY					
Run #1 Run #2	File ID 1133583. 1133584.	76)	DF 1 5	Analyzed 12/13/06 12/13/06	By HSC HSC	Prep D n/a n/a	ate	Prep Batch n/a n/a	Analytical Batch GII1679 GII1679
CAS No.	Compo	und		Result	RL	MDL	Units	Q	
74-82-8 74-84-0 74-85-1	Methan Ethane Ethene	e		5140 ^a 226 ND	0.50 0.10 0.10	0.33 0.056 0.075	ug/l ug/l ug/l		

(a) Result is from Run# 2

ND = Not detected MDL - Method Detection Limit RL = Reporting LimitE = Indicates value exceeds calibration range J = Indicates an estimated value

B = Indicates analyte found in associated method blank

				Rej	port of A	Analysis		Page 1
Client Sample Lab Sample II Matrix: Project:	D: J4844 AQ -	Ground V	Vater	Old E	rie Canal S	Date Sam Date Rec Percent S ite, Clyde, NY	eived: 12/07/06	
Metals Analys	COMMAN							
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Sodium	59200	10000	ug/l	1	12/26/06	12/26/06 LH	SW846 6010B 1	SW846 3010A ²

(1) Instrument QC Batch: MA18554 (2) Prep QC Batch: MP37400

			Repor	t of An	alysis			Page 1 of 1
Client Sample ID:	GW-EM	W-4-120606						
Lab Sample ID:	J48443-6	3			6			
Matrix:	AQ - Gr	ound Water		Date Received: 12/07/06 Percent Solids: n/a				
Project:	GE - Par	ker Hannifin -	Old Erie (Canal Site,	Clyde, N	ΙY		
General Chemistry	,	12,26		-2-11				
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
	C+CO2	425	17	mg/l	1	12/20/06	JA	EPA 310.1
Alkalinity, Total as	Calus					01/00/07 01 07	IH	EPA 300/SW846 9056
	Cacos	70.9	2.0	mg/l	1	01/03/07 01:37	111	LIN 300/311010 3030
Chloride	Cacos	70.9 < 0.11	2.0 0.11	mg/l mg/l	1	12/30/06 13:40		EPA353.2/SM4500NO2B
Nitrogen, Nitrate a		TO STOCK TO A STOCK TO			1 1 1		MR	
Chloride Nitrogen, Nitrate ^a Nitrogen, Nitrate +		< 0.11	0.11	mg/l	1 1 1	12/30/06 13:40	MR MR	EPA353.2/SM4500NO2B
Chloride		<0.11 <0.10	0.11 0.10	mg/l mg/l	1 1 1 1	12/30/06 13:40 12/30/06 13:40	MR MR	EPA353.2/SM4500NO2B EPA 353.2/LACHAT

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

Client Sample ID: Lab Sample ID: Matrix:	J48443-6	W-4-120606 SF oundwater Fi	ltered		Date Sampled: 12/06/06 Date Received: 12/07/06 Percent Solids: n/a			
Project:	GE - Pa	rker Hannifin	- Old Erie	Canal Site,	Clyde, N	IY	<u>.</u>	
General Chemistry	, ,							
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Dissolved Organic	Carbon	5.6	1.0	mg/l	1	12/29/06 01:38	ESJ	EPA415.1/SW8469060M

Raw Data: D120646.D

Accutest Laboratories

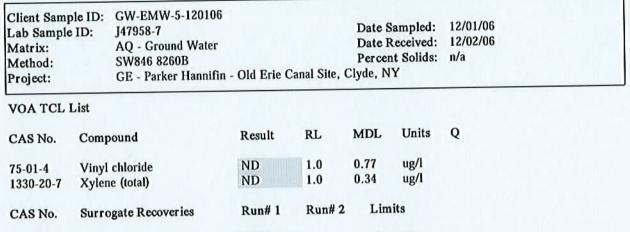
	Report of Analysis							
Client Sampl Lab Sample I Matrix: Method: Project:								
1000		Analyzed 2/06/06	By YL	Prep Da n/a	ate	Prep Batch n/a	Analytical Batch VD4809	
	Purge Volume 5.0 ml							
VOA TCL L	ist							
CAS No.	Compound	Result	RL	MDL	Units	Q		
67-64-1 71-43-2 75-27-4	Acetone Benzene Bromodichloromethane	NÐ ND ND	5:0- 1.0 1.0	0.37 0.14	ug/l ug/l ug/l			
75-25-2 74-83-9 78-93-3	Bromoform Bromomethane 2-Butanone (MEK)	ND ND ND	1.0 1.0 5.0 P	0.52 0.39 1.4	ug/l ug/l ug/l			
75-15-0 56-23-5 108-90-7	Carbon disulfide Carbon tetrachloride Chlorobenzene	ND ND ND	1.0 1.0 1.0	0.38 0.53 0.74	ug/l ug/l ug/l			
75-00-3 67-66-3 74-87-3	Chloroethane Chloroform Chloromethane	ND ND ND	1.0 1.0 1.0	0.65 0.18 0.20	ug/l ug/l ug/l			
124-48-1 75-34-3 107-06-2	Dibromochloromethane 1,1-Dichloroethane 1,2-Dichloroethane	ND ND ND	1.0 1.0 1.0	0.17 0.089 0.57	ug/l ug/l ug/l			
75-35-4 156-59-2 156-60-5	1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene	ND ND ND ND	1.0 1.0 1.0 1.0	0.49 0.18 0.18 0.50	ug/l ug/l ug/l ug/l			
78-87-5 10061-01-5 10061-02-6	1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene	ND ND ND	1.0 1.0 1.0	0.56 0.15 0.44	ug/l ug/l ug/l			
100-41-4 591-78-6 108-10-1 75-09-2	2-Hexanone 4-Methyl-2-pentanone(MIBK Methylene chloride	ND	5.0 5.0 2.0	0.35 0.50 0.53	ug/l ug/l ug/l			
75-09-2 100-42-5 79-34-5	Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene	ND ND ND	1.0 1.0 1.0	0.069 0.11 0.39	ug/l ug/l ug/l			
127-18-4 108-88-3 71-55-6	Toluene 1,1,1-Trichloroethane	ND ND	1.0 1.0	0.35 0.41 0.094 0.15	ug/l ug/l ug/l			
79-00-5 79-01-6	1,1,2-Trichloroethane Trichloroethene	ND ND	1.0 1.0	0.15	ug/l			

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank



J = Indicates an estimated value

Page	2	of	2	
* "S"	-	~ ~		

3.13

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	96%		77-121%
17060-07-0	1,2-Dichloroethane-D4	113%		65-133%
2037-26-5	Toluene-D8	96%		80-117%
460-00-4	4-Bromofluorobenzene	108%		79-124%

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Raw Data: II33492.D

Accutest Laboratories

		Page 1 of 1							
Client San Lab Samp Matrix: Method: Project:	le ID: J47958 AQ - 0 SW84	Ground Wat 6 8015	er	D: D:			Date Sampled: 12/01/06 Date Received: 12/02/06 Percent Solids: n/a Clyde, NY		
Run #1 Run #2	File ID II33492.D	DF 1	Analyzed 12/08/06	By HSC	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GII1676	
CAS No.	Compound		Result	RL	MDL	Units	Q		
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		1140 0.25 ND	0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l			

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit

- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

				Rep	port of A	Analysis			Page 1
Client Sample I Lab Sample ID: Matrix: Project:	J4795 AQ -	Ground W	/ater	Old E	rie Canal S	Date R	ampled: eccived: t Solids: Y	12/01/06 12/02/06 n/a	
Metals Analysis									
Analyte	Result	RL	Units	DF	Prep	Analyzed B	y Meth	od	Prep Method
Sodium	55000	10000	ug/l	1	12/18/06	12/19/06 L	H SW84	6 6010B ¹	SW846 3010A ²

Instrument QC Batch: MA18522
 Prep QC Batch: MP37272

		Repor	t of An	alysis			Page 1 of 1
Client Sample ID: GW	EMW-5-120106				in a deserve		
Lab Sample ID: J479					Sampled: 12/01/0	10 C	
Matrix: AQ	- Ground Water				Received: 12/02/0 nt Solids: n/a	6	
Project: GE	Parker Hannifin	- Old Erie (Canal Site,	Clyde, N	IY		1.21
General Chemistry							
Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Alkalinity, Total as CaCO	03 477	13	mg/l	1	12/14/06	ST	EPA 310.1
Chloride	77.2	2.0	mg/l	1	12/28/06 01:57	JH	EPA 300/SW846 9056
Nitrogen, Nitrate a	< 0.11	0.11	mg/l	1	12/21/06 15:07	NR	EPA353.2/SM4500NO2E
Nitrogen, Nitrate + Nitr	te < 0.10	0.10	mg/l	1	12/21/06 15:07	NR	EPA 353.2/LACHAT
Nitrogen, Nitrite b	< 0.010	0.010	mg/l	1	12/02/06 14:00	HF	SM19 4500NO2B
Sulfate	< 10	10	mg/l	1	12/28/06 01:57	JH	EPA 300/SW846 9056
Sulfide	< 2.0	2.0	mg/l	1	12/06/06	ST	EPA 376.1

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)
(b) Analysis done out of holding time.

			Repo	rt of An	alysis			Page 1 of 1
Client Sample ID: Lab Sample ID: Matrix:	J47958-	IW-5-120106 7F roundwater Fi	ltered		Date I	Sampled: 12/01/0 Received: 12/02/0 nt Solids: n/a		
Project:	GE - Pa	rker Hannifin	- Old Erie	Canal Site,	Clyde, N	IY		
General Chemistry	,							
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Dissolved Organic	Carbon	<1.0	1.0	mg/l	1	12/26/06 19:10	мо	EPA415.1/SW8469060M

				Repo	rt of A	nalysis		Page 1 of 2
Client Sample ID: Lab Sample ID: Matrix: Method: Project:		J47790 AQ - 0 SW84	Ground Wa 6 8260B		Canal Sit	Date Sampled: Date Received: Percent Solids: e, Clyde, NY	12/01/06	
Run #1 Run #2	File ID D1206		DF 25	Analyzed 12/06/06	By YL	Prep Date n/a	Prep Batch n/a	Analytical Batch VD4809
	Purge	Volume	9					

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	-130-P	120	ug/l	
71-43-2	Benzene	ND	25	9.3	ug/l	
75-27-4	Bromodichloromethane	ND	25	3.4	ug/l	
75-25-2	Bromoform	ND	** 25	13	ug/l	
74-83-9	Bromomethane	ND	25	9.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	-130-P	36	ug/l	
75-15-0	Carbon disulfide	ND	o 25	9.5	ug/l	
56-23-5	Carbon tetrachloride	ND	25	13	ug/l	
108-90-7	Chlorobenzene	ND	25	18	ug/l	
75-00-3	Chloroethane	ND	25	16	ug/l	
67-66-3	Chloroform	ND	25	4.6	ug/l	
74-87-3	Chloromethane	ND	25	5.0	ug/l	
124-48-1	Dibromochloromethane	ND	25	4.2	ug/l	
75-34-3	1,1-Dichloroethane	ND	25	2.2	ug/l	
107-06-2	1,2-Dichloroethane	ND	25	14	ug/l	
75-35-4	1,1-Dichloroethene	ND	25	12	ug/l	
156-59-2	cis-1,2-Dichloroethene	3690	25	4.5	ug/l	
156-60-5	trans-1,2-Dichloroethene	32.4	25	4.6	ug/l	
78-87-5	1,2-Dichloropropane	ND	25	13	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	25	14	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	25	3.8	ug/l	
100-41-4	Ethylbenzene	ND	25	11	ug/l	
591-78-6	2-Hexanone	ND	130	8.8	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)		130	13	ug/l	
75-09-2	Methylene chloride	ND	50	13	ug/l	
100-42-5	Styrene	ND	25	1.7	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	25	2.7	ug/l	
127-18-4	Tetrachloroethene	11.0	25	9.7	ug/l	J
108-88-3	Toluene	ND	25	10	ug/l	
71-55-6	1,1,1-Trichloroethane	ND ·····		2.4	ug/l	
79-00-5	1,1,2-Trichloroethane	ND		3.8	ug/l	
79-01-6	Trichloroethene	1110	25	4.0	ug/l	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Client Sample ID:	GW-MW-1S-112906		110000
Lab Sample ID:	J47796-2	Date Sampled:	
Matrix:	AQ - Ground Water	Date Received:	12/01/06
Method:	SW846 8260B	Percent Solids:	n/a
Project:	GE - Parker Hannifin - Old Erie Cana	al Site, Clyde, NY	

Report of Analysis

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4	Vinyl chloride	147	25	19	ug/l	
1330-20-7	Xylene (total)	ND 20	25	8.6	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	97%		77-1	21%	
17060-07-0	1,2-Dichloroethane-D4	115%		65-1	33%	
2037-26-5	Toluene-D8	96%		80-1	117%	
460-00-4	4-Bromofluorobenzene	108%		79-1	124%	

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 2 of 2

				Repo	rt of An	alysis			Page 1 of 1
Client Sample ID:GW-MW-1S-112906Lab Sample ID:J47796-2Date Sampled:11/29/06Matrix:AQ - Ground WaterDate Received:12/01/06Method:SW846 8015Percent Solids:n/aProject:GE - Parker Hannifin - Old Erie Canal Site, Clyde, NYNY									
Run #1 Run #2	File ID 1133499	.D	DF 1	Analyzed 12/08/06	By HSC	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GII1676
CAS No.	Comp	ound		Result	RL	MDL	Units	Q	
74-82-8 74-84-0 74-85-1	Methar Ethane Ethene			6.88 7.69 0.38	0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l		

MDL - Method Detection Limit ND = Not detected RL = Reporting Limit E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

				Rej	port of A	Analysis		Page 1 of
Client Sample I Lab Sample ID Matrix:	: J47790 AQ - 0	Ground W	/ater			Date Sam Date Reco Percent S	eived: 12/01/06	
Project:	GE - I	Parker Ha	nnifin -	Old E	rie Canal Si	te, Clyde, NY		
Metals Analysis	5							
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Sodium	103000	20000	ug/l	2	12/18/06	12/19/06 ін	SW846 6010B 1	SW846 3010A ²

Instrument QC Batch: MA18529
 Prep QC Batch: MP37272

Sulfide

Client Sample ID: Lab Sample ID: Matrix:	J47796-2	V-1S-112906 2 ound Water			Date I	Sampled: 11/29/0 Received: 12/01/0 nt Solids: n/a	1.1	
Project:	GE - Pa	rker Hannifin -	Old Erie (Canal Site,				
General Chemistry								
Analyte		Result	RL	Units	DF	Analyzed	By	Method
Alkalinity, Total as	CaCO3	374	ie: 13	mg/l	1	12/12/06	ST	EPA 310.1
Chloride		182	2.0	mg/l	1	12/21/06 01:32	JH	EPA 300/SW846 9056
Nitrogen, Nitrate a		<0.11	0.11	mg/l	1	12/21/06 14:51	NR	EPA353.2/SM4500NO2
Nitrogen, Nitrate +	Nitrite	<0.10	0.10	mg/l	1	12/21/06 14:51	NR	EPA 353.2/LACHAT
Nitrogen, Nitrite		< 0.010	0.010	mg/l	1	12/01/06 15:50	ST	SM19 4500NO2B
Sulfate		34.9	2.0	mg/l	1	12/21/06 01:32	ЛН	EPA 300/SW846 9056
					1221			

mg/l

1

12/06/06

Report of Analysis

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

<2.0 2.0

Page 1 of 1

EPA 376.1

ST

Client Sample ID: Lab Sample ID: Matrix:	GW-MW-1S-11290 J47796-2F AQ - Groundwater			Date 1	Sampled: 11/29/0 Received: 12/01/0 nt Solids: n/a		
Project:	GE - Parker Hannif	in - Old Erie	Canal Site,	Clyde, N	Y		
General Chemistry							
Analyte	Result	RL	Units	DF	Analyzed	By	Method
Dissolved Organic	Carbon <1.0	1.0	mg/l	1	12/22/06 00:14	ESJ	EPA415.1/SW8469060M

Report of Analysis

Client San Lab Samı Matrix: Method: Project:	ole ID; J4779 AQ - SW84	Ground Wa 6 8260B		Canal Site	Date Sampled: 11/29/06 Date Received: 12/01/06 Percent Solids: n/a ite, Clyde, NY			
	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch	
Run #1	1A45181.D	10	12/08/06	PWC	n/a	n/a	V1A1932	
Run #2	1A45182.D	50	12/08/06	PWC	n/a	n/a	V1A1932	
	Purge Volum	e						
Run #1	5.0 ml							
Run #2	5.0 ml							

Report of Analysis

Page 1 of 2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	50	46	ug/l	
71-43-2	Benzene	ND	10	3.7	ug/l	
75-27-4	Bromodichloromethane	ND	10	1.4	ug/l	
75-25-2	Bromoform	ND	10	5.2	ug/l	
74-83-9	Bromomethane	ND	10	3.9	ug/l	
78-93-3	2-Butanone (MEK)	ND	50-P	14	ug/l	
75-15-0	Carbon disulfide	ND	10	3.8	ug/l	
56-23-5	Carbon tetrachloride	ND	10	5.3	ug/l	
108-90-7	Chlorobenzene	ND	10	7.4	ug/l	
75-00-3	Chloroethane	ND	10	6.5	ug/l	
67-66-3	Chloroform	ND	10	1.8	ug/l	
74-87-3	Chloromethane	ND	10	2.0	ug/l	
124-48-1	Dibromochloromethane	ND	10	1.7	ug/l	
75-34-3	1,1-Dichloroethane	ND	10	0.89	ug/l	
107-06-2	1,2-Dichloroethane	ND	10	5.7	ug/l	
75-35-4	1,1-Dichloroethene	6.9	10	4.9	ug/l	J
156-59-2	cis-1,2-Dichloroethene	3240 ^a	50	8.9	ug/l	
156-60-5	trans-1,2-Dichloroethene	34.2	10	1.8	ug/l	
78-87-5	1,2-Dichloropropane	ND	10	5.0	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	10	5.6	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	. 10	1.5	ug/l	
100-41-4	Ethylbenzene	ND so a se	10	4.4	ug/l	
591-78-6	2-Hexanone	ND	50	3.5	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	50	5.0	ug/l	
75-09-2	Methylene chloride	ND	20	5.3	ug/l	
100-42-5	Styrene	ND	10	0.69	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	10	1.1	ug/l	
127-18-4	Tetrachloroethene	10.6	10	3.9	ug/l	
108-88-3	Toluene	ND	10	4.1	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	10	0.94	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	10	1.5	ug/l	
79-01-6	Trichloroethene	988	10	1.6	ug/l	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: Lab Sample ID: Matrix: Method:	J47796-7 AQ - Ground Water SW846 8260B	Date Sampled: Date Received: Percent Solids:	12/01/06
Project:	GE - Parker Hannifin - Old Erie Canal Site, C	Ciyde, NY	

VOA TCL List

CAS No.	Compound	Result	RĹ	MDL	Units	Q	
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	155 ND		7.7 3.4	ug/1 ug/1		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lin	nits		
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	95% 106% 98% 89%	97% 108% 98% 90%	65- 80-	121% 133% 117% 124%		

(a) Result is from Run# 2

ND = Not detected MDL - Method Detection Limit RL = Reporting LimitE = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 2 of 2

				Repo	rt of An	alysis	<		Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID:	GW-X-1- 147796-7 AQ - Gro SW846 8 GE - Parl	ound Wa 015	Date F	Sampled: Received: It Solids: Y				
Run #1 Run #2	File ID 1133506.	D	DF 1	Analyzed 12/08/06	By HSC	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GII1676
CAS No.	Compo	und		Result	RL	MDL	Units	Q	
74-82-8 74-84-0 74-85-1	Methan Ethane Ethene	e		9,54 11.0 0.46	0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l		

MDL - Method Detection Limit ND = Not detected RL = Reporting Limit E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

D: J47790 AQ - 0	5-7 Ground W	/ater	Old E	rie Canal Si	Date Reco Percent S	eived: 12/01/06	
sis							
Result	RL	Units	DF	Ргер	Analyzed By	Method	Prep Method
103000	20000	ug/l	2	12/18/06	12/19/06 LH	SW846 6010B 1	SW846 3010A ²
	D: J47790 AQ - C GE - F sis Result	D: J47796-7 AQ - Ground W GE - Parker Ha sis Result RL	D: J47796-7 AQ - Ground Water GE - Parker Hannifin - sis Result RL Units	D: J47796-7 AQ - Ground Water GE - Parker Hannifin - Old En sis Result RL Units DF	D: J47796-7 AQ - Ground Water GE - Parker Hannifin - Old Erie Canal Si sis Result RL Units DF Prep	D: J47796-7 Date Sam AQ - Ground Water Date Reco Percent S GE - Parker Hannifin - Old Erie Canal Site, Clyde, NY sis Result RL Units DF Prep Analyzed By	D: J47796-7 Date Sampled: 11/29/06 AQ - Ground Water Date Received: 12/01/06 GE - Parker Hannifin - Old Erie Canal Site, Clyde, NY sis Result RL Units DF Prep Analyzed By Method

Report of Analysis

Page 1 of 1

Instrument QC Batch: MA18529
 Prep QC Batch: MP37272

Lab Sample ID:	GW-X-1 J47796-7 AQ - Gro				Date I	Sampled: 11/29/0 Received: 12/01/0 ht Solids: n/a		
Project:	GE - Par	ker Hannifin	- Old Erie C	Canal Site,	Clyde, N	Y		
General Chemistry								
Analyte		Result	RL	Units	DF	Analyzed	By	Method
Alkalinity, Total as	CaCO3	460	13	mg/l	1	12/12/06	ST	EPA 310.1
Chloride	Cueeds	182	2.0	mg/l	1	12/21/06 02:46	JH	EPA 300/SW846 9056
Nitrogen, Nitrate a		< 0.11	0.11	mg/l	1	12/21/06 14:57	NR	EPA353.2/SM4500NO21
Nitrogen, Nitrate +	Nitrite	20000000000000000000000000000000000000	0.10	mg/l	1	12/21/06 14:57	NR	EPA 353.2/LACHAT
Nitrogen, Nitrite	,	0.011	0.010	mg/l	1	12/01/06 14:45	ST	SM19 4500NO2B
Sulfate		35.1	2.0	mg/l	1	12/21/06 02:46	JH	EPA 300/SW846 9056
Sulfide		<2.0	2.0	mg/l	1	12/06/06	ST	EPA 376.1

Report of Analysis

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

Page 1 of 1

Client Sample ID: Lab Sample ID: Matrix: Project:	GW-X-1-1 J47796-7F AQ - Grou GE - Parke	ndwater Fil		Canal Site,	Date I Percer	Sampled: 11/29/0 Received: 12/01/0 nt Solids: n/a Y		
General Chemistry	,							
Analyte		Result	RL	Units	DF	Analyzed	By	Method
Dissolved Organic	Carbon	4.6	1.0 J	mg/l	1	12/22/06 01:19	ESJ	EPA415.1/SW8469060M

Report of Analysis

Report of Analysis

Page 1 of 2

3.9

	Method: SW846 8260B Percent Solids: n/a Project: GE - Parker Hannifin - Old Erie Canal Site, Clyde, NY									
	The second se	nalyzed 2/18/06	By PWC	Prep Da n/a	ite	Prep Batch n/a	Analytical Batch V1A1947			
Run #1 Run #2	Purge Volume 5.0 ml									
VOA TCL	List									
CAS No.	Compound	Result	RL	MDL	Units	Q				
67-64-1	Acetone	ND	5.0	4.6	ug/l					
71-43-2	Benzene	ND	1.0	0.37	ug/l					
75-27-4	Bromodichloromethane	ND	1.0	0.14	ug/l					
75-25-2	Bromoform	ND	1.0	0.52	ug/l					
74-83-9	Bromomethane	ND	1.0	0.39	ug/l					
78-93-3	2-Butanone (MEK)	ND	5.0	1.4	ug/l					
75-15-0	Carbon disulfide	ND	1.0]	0.38	ug/l					
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l					
108-90-7	Chlorobenzene	ND	1.0	0.74	ug/l					
75-00-3	Chloroethane	ND	1.0	0.65	ug/l					
67-66-3	Chloroform	ND	1.0	0.18	ug/l					
74-87-3	Chloromethane	ND	1.0	0.20	ug/l					
124-48-1	Dibromochloromethane	ND	1.0	0.17	ug/l					
75-34-3	1,1-Dichloroethane	ND	1.0	0.089	ug/l					
107-06-2	1,2-Dichloroethane	ND	1.0	0.57	ug/l					
75-35-4	1,1-Dichloroethene	ND	1.0	0.49	ug/l					
156-59-2	cis-1,2-Dichloroethene	2.2	1.0	0.18	ug/l					
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.18	ug/l					
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l					
10061-01-5		ND	1.0	0.56	ug/l					
	trans-1,3-Dichloropropene	ND	1.0	0.15	ug/l					
100-41-4	Ethylbenzene	ND	1.0	0.44	ug/l					
591-78-6	2-Hexanone	ND	5.0	0.35	ug/l					
108-10-1	4-Methyl-2-pentanone(MIBK) ND	5.0	0.50	ug/l					
75-09-2	Methylene chloride	ND	2.0	0.53	ug/l					
100-42-5	Styrene	ND	1.0	0.069	ug/l					
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.11	ug/l					
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l					
108-88-3	Toluene	ND	1.0	0.41	ug/l					
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.094	ug/l					
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.15 0.16	ug/l	T				
79-01-6	Trichloroethene	0.58	1.0	0.10	ug/l	J				

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

			Repor	t of Ana	alysis			Page 2
Lab Sample ID: Matrix: Method:		GW-MW-1-120606 J48443-5 AQ - Ground Water SW846 8260B GE - Parker Hannifit	n - Old Erie C	Date Sampled: Date Received: Percent Solids: - Old Erie Canal Site, Clyde, NY				
VOA TCL I	List							
CAS No.	Comp	ound	Result	RL	MDL	Units	Q	
75-01-4 1330-20-7		chloride e (total)	3.3 ND	1.0 1.0	0.77 0.34	ug/l ug/l		
CAS No.	Surro	ogate Recoveries	Run# 1	Run# 2	Lin	its		
1868-53-7 17060-07-0 2037-26-5 460-00-4	1,2-D Tolue	mofluoromethane Pichloroethane-D4 ene-D8 mofluorobenzene	102% 122% 97% 88%		65- 80-	121% 133% 117% 124%		

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 2 of 2

E = Indicates value exceeds calibration range

Raw Data: II33582.D

Accutest Laboratories

Lab Sample ID:

Matrix:

Report of Analysis Client Sample ID: GW-MW-1-120606 Date Sampled: 12/06/06 J48443-5 Date Received: 12/07/06 AQ - Ground Water Percent Solids: n/a SW846 8015

Method: Project:	SW840 GE - F		nifin - Old Erie	Canal Site,	Percent Solids: n/a e, Clyde, NY					
Run #1 Run #2	File ID II33582.D	DF 1	Analyzed 12/13/06	By HSC	Prep Date n/a		Prep Batch n/a	Analytical Batch GII1679		
CAS No.	Compound		Result	RL	MDL	Units	Q			
74-82-8	Methane		897	0.10	0.066	ug/l				
74-84-0	Ethane		10.4	0.10	0.056	ug/l				
74-85-1	Ethene		ND	0.10	0.075	ug/l				

MDL - Method Detection Limit ND = Not detected RL = Reporting Limit E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $\mathbf{B} = \mathbf{Indicates}$ analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

3.9

				Rep	port of A	Analysis		Page 1 of 1
Client Sample I Lab Sample ID:	J4844					Date San		
Matrix:	AQ -	Ground W	Vater			Date Rec Percent		
Project:	GE -	Parker Ha	nnifin -	Old E	rie Canal S	ite, Clyde, NY		
Metals Analysis	1							
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Sodium	21400	10000	ug/l	1	12/26/06	12/26/06 LH	SW846 6010B 1	SW846 3010A ²

(1) Instrument QC Batch: MA18554 (2) Prep QC Batch: MP37400

3.9

Client Sample ID: GW-MW-1-120606 Lab Sample ID: J48443-5 Matrix: AQ - Ground Water				Date Sampled: 12/06/06 Date Received: 12/07/06 Percent Solids: n/a					
Project:	GE - Parker Hannifin - Old Erie Canal Site,				Clyde, N	IY			
General Chemistry	,								
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method	
Alkalinity, Total as	CaCO3	275	5.0	mg/l	1	12/20/06	JA	EPA 310.1	
Chloride	0.000	24.3	2.0	mg/l	1	01/03/07 01:19	JH	EPA 300/SW846 9056	
Nitrogen, Nitrate a		< 0.11	0.11	mg/l	1	12/30/06 13:39	MR	EPA353.2/SM4500NO2B	
Nitrogen, Nitrate +	Nitrite	< 0.10	0.10	mg/l	1	12/30/06 13:39	MR	EPA 353.2/LACHAT	
Nitrogen, Nitrite		< 0.010	0.010	mg/l	1	12/07/06 18:00	MET	SM19 4500NO2B	
Sulfate		12.7	10	mg/l	1	01/03/07 01:19	JH	EPA 300/SW846 9056	
Sulfide		< 2.0	2.0	mg/l	1	12/12/06	JA	EPA 376.1	

Report of Analysis

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

3.9

			Page 1 of 1						
Client Sample ID: Lab Sample ID:	J48443-				Date Sampled: 12/06/06				
Matrix:	AQ - Groundwater Filtered				_	Received: 12/07/0 nt Solids: n/a			
Project:	GE - Pa	GE - Parker Hannifin - Old Erie Canal Site, Clyde, NY							
General Chemistry	/								
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method	
Dissolved Organic Carbon		6.4	1.0	mg/l	1	12/29/06 01:31	ESJ	EPA415.1/SW8469060M	

3.10 3

Report of Analysis Client Sample ID: GW-MW-2S-112906 Date Sampled: 11/29/06 Lab Sample ID: J47796-1 12/01/06 Date Received: AQ - Ground Water Matrix: Percent Solids: n/a SW846 8260B Method: GE - Parker Hannifin - Old Erie Canal Site, Clyde, NY **Project: Prep Batch Analytical Batch** Analyzed By **Prep Date** DF File ID VD4809 n/a YL n/a 12/06/06 D120652.D 1 Run #1 Run #2 **Purge Volume** 5.0 ml Run #1 Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	5.0	4.6	ug/l	
71-43-2	Benzene	ND	1.0	0.37	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.14	ug/l	
75-25-2	Bromoform	ND	1.0	0.52	ug/l	
74-83-9	Bromomethane	ND	1.0	0.39	ug/l	
78-93-3		ND	-5.0-R	1.4	ug/l	
75-15-0		ND	1.0	0.38	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.74	ug/l	
75-00-3	Chloroethane	ND	1.0	0.65	ug/l	
67-66-3	Chloroform	ND	1.0	0.18	ug/l	
74-87-3	Chloromethane	ND	1.0	0.20	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.17	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.089	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.57	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.49	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.18	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND.	1.0	0.18	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.56	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.15	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.44	ug/l	
591-78-6	2-Hexanone	ND	5.0	0.35	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	0.50	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.53	ug/l	
100-42-5	Styrene	ND	1.0	0.069	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.11	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l	
108-88-3	Toluene	ND	1.0	0.41	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.094	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.15	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.16	ug/l	

MDL - Method Detection Limit ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: Lab Sample ID: Matrix: Method: Project:	GW-MW-2S-112906 J47796-1 AQ - Ground Water SW846 8260B GE - Parker Hannifin - Old Erie C	Date Sampled: Date Received: Percent Solids: Canal Site, Clyde, NY	12/01/06	
---	--	---	----------	--

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4	Vinyl chloride	ND	1.0	0.77	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.34	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lin	its	
1868-53-7	Dibromofluoromethane	98%		77-3	21%	
17060-07-0	1,2-Dichloroethane-D4	116%		65-1	133%	
2037-26-5	Toluene-D8	97%		80-	117%	2
460-00-4	4-Bromofluorobenzene	111%		79-	124%	

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 2

١

			Repo	rt of An	alysis			Page 1 of 1
Client Sam Lab Samp Matrix: Method: Project:	le ID: J47 AQ SW	-MW-2S-11290 796-1 - Ground Wate 846 8015 - Parker Hanni	r	Canal Site,	Date H Percer	Sampled: Received: nt Solids: Y	12/01/06	
Run #1 Run #2	File ID II33498.D	DF 1	Analyzed 12/08/06	By HSC	Prep D n/a	ate	Prep Batch n/a	Апаlytical Batch GII1676
CAS No.	Compound	d	Result	RL	MDL	Units	Q	
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		206 ND ND	0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l		

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

 $\mathbf{B} = \mathbf{Indicates}$ analyte found in associated method blank

				!					
Client Sample I Lab Sample ID Matrix:	: J4779	W-2S-11 6-1 Ground W				Date Sam Date Rece Percent S	eived: 12/01/06		
Project:	GE -	Parker Ha	nnifin -	Old E	rie Canal Si	te, Clyde, NY			
Metals Analysis	S								
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method	
Sodium	61800	10000	ug/l	• 1	12/18/06	12/19/06 сн	SW846 6010B 1	SW846 3010A ²	

Instrument QC Batch: MA18522
 Prep QC Batch: MP37272

Report of Analysis

Client Sample ID: GW-MW-2S-112906 Lab Sample ID: J47796-1 Matrix: AQ - Ground Water				Date F	ampled: 11/29/04 teceived: 12/01/04 tt Solids: n/a			
Project:	GE - Par	ker Hannifin	- Old Erie C	Canal Site,	Clyde, N	Y		
General Chemistry								
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Alkalinity, Total as	CaCO3	441	5.0	mg/l	1	12/12/06	ST	EPA 310.1
Chloride	Cucos	21.5	2.0	mg/l	1	12/21/06 01:14	ЛН	EPA 300/SW846 9056
Nitrogen, Nitrate a		0.33	0.11	mg/l	1	12/21/06 14:49	NR	EPA353.2/SM4500NO2
Nitrogen, Nitrate +	Nitrite	0.33	0.10	mg/l	1	12/21/06 14:49	NR	EPA 353.2/LACHAT
Nitrogen, Nitrite	Tunno	< 0.010	0.010	mg/l	1	12/01/06 15:50	ST	SM19 4500NO2B
Sulfate		10.4	2.0	mg/l	1	12/21/06 01:14	JH	EPA 300/SW846 9056
Sulfide		<2.0	2.0	mg/l	1	12/06/06	ST	EPA 376.1

Report of Analysis

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

Page 1 of 1

Client Sample ID: Lab Sample ID: Matrix: Project:	Sample ID: J47796-1F rix: AQ - Groundwater Filtered					Sampled: 11/29/0 Received: 12/01/0 nt Solids: n/a Y		
General Chemistry	,							ŧ
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Dissolved Organic	Carbon	2.2	1.0	mg/l	1	12/22/06 00:06	ESJ	EPA415.1/SW8469060M

Report of Analysis

Raw Data: 1A45432.D

Accutest Laboratories

Report of Analysis

Page 1 of 2

Client Sample ID:GW-MW-3S-120Lab Sample ID:J48302-5Matrix:AQ - Ground WaMethod:SW846 8260BProject:GE - Parker Han		- Old Erie	Date Sampled: 12/05/06 Date Received: 12/06/06 Percent Solids: n/a Old Erie Canal Site, Clyde, NY						
Run #1 Run #2				Prep Da n/a	ate	Prep Batch n/a	Analytical Batch V1A1943		
Run #1 Run #2	Purge Volume 5.0 ml								
VOA TCL	List								
CAS No.	Compound	Result	RL	MDL	Units	Q			
67-64-1	Acetone	ND	5.0	4.6	ug/l				
71-43-2	Benzene	ND	1.0	0.37	ug/l				
75-27-4	Bromodichloromethane	ND	1.0	0.14	ug/l				
75-25-2	Bromoform	ND	1.0	0.52	ug/l				
74-83-9	Bromomethane	ND	1.0	0.39	ug/l				
78-93-3	2-Butanone (MEK)	- ND	5.0	2 1.4	ug/l				
75-15-0	Carbon disulfide	ND	1.0	0.38	ug/l				
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l				
108-90-7	Chlorobenzene	ND	1.0	0.74	ug/l				
75-00-3	Chloroethane	ND	1.0	0.65	ug/l				
67-66-3	Chloroform	ND	1.0	0.18	ug/l				
74-87-3	Chloromethane	ND	1.0	0.20	ug/l				
124-48-1	Dibromochloromethane	ND	1.0	0.17	ug/l				
75-34-3	1,1-Dichloroethane	ND	1.0	0.089	ug/l				
107-06-2	1,2-Dichloroethane	ND	1.0	0.57	ug/l				
75-35-4	1,1-Dichloroethene	ND	1.0	0.49	ug/l				
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.18	ug/l				
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.18	ug/l				
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l				
10061-01-5		ND	1.0	0.56	ug/l				
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.15	ug/l				
100-41-4	Ethylbenzene	ND	1.0	0.44	ug/l				
591-78-6	2-Hexanone	ND	5.0	0.35	ug/l				
108-10-1	4-Methyl-2-pentanone(MIBH		5.0	0.50	ug/l				
75-09-2	Methylene chloride	ND	2.0	0.53	ug/l				
100-42-5	Styrene	ND	1.0	0.069	ug/l				
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.11	ug/l				
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l				
108-88-3	Toluene	ND	1.0	0.41	ug/l				
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.094	ug/l				
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.15	ug/l				
79-01-6	Trichloroethene	ND	1.0	0.16	ug/l				

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

J48302 Laboratories

Client Sample Lab Sample Matrix: Method: Project:	mple ID: J48302-5 : AQ - Ground Water I: SW846 8260B			Canal Site, (Date H Percer	Sampled: Received: nt Solids: Y	12/05/06 12/06/06 n/a	
VOA TCL L	ist							
CAS No.	Comp	ound	Result	RL	MDL	Units	Q	
75-01-4	Vinyl	chloride	ND	1.0	0.77	ug/l		
1330-20-7	Xylen	e (total)	ND	1.0	0.34	ug/l		
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7	Dibro	mofluoromethane	98%		77-1	121%		
17060-07-0	1,2-D	ichloroethane-D4	111%			133%		
2037-26-5	Tolue	ne-D8	96%			117%		
460-00-4	4-Bro	mofluorobenzene	86%		79-	124%		

Report of Analysis

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit J = Indicates an estimated value

N = Indicates presumptive evidence of a compound

Page 2 of 2

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

Raw Data: II33620.D

Accutest Laboratories

			Repo	ort of Ai	nalysis			Page 1 of 1	
Client San Lab Samp Matrix: Method: Project:	le ID: J4 A	W-MW-3S-120 8302-5 Q - Ground Wa V846 8015 E - Parker Har		Canal Site	Date I Perce	Sampled: Received nt Solids IY	: 12/06/06	12/06/06	
Run #1 Run #2	File ID II33620.D	DF 1	Analyzed 12/14/06	By HSC	Prep D n/a	Date	Prep Batch n/a	Analytical Batch GII1680	
CAS No.	Compour	nd	Result	RL	MDL	Units	Q		
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		6.12 ND ND	0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l			

ND = Not detected MDL - Method Detection Limit RL = Reporting LimitE = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

				Rej	port of A	Analysis		Page 1 of
Client Sample II Lab Sample ID: Matrix:	J4830	MW-3S-12)2-5 Ground V				Date Sam Date Rec Percent S	eived: 12/06/06	
Project:	GE - Parker Hannifin - Old Erie Canal Site, Clyde, NY							
Metals Analysis	i i		100					
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Sodium	11200	10000	ug/l	1	12/21/06	12/22/06 ND	SW846 6010B ¹	SW846 3010A ²

(1) Instrument QC Batch: MA18543 (2) Prep QC Batch: MP37346

			Repor	t of An	alysis			Page 1 of 1
Client Sample ID: Lab Sample ID: Matrix:	J48302-5 AQ - Gr	/-3S-120506 ; ound Water ;ker Hannifin -	Old Eric (Canal Site	Date I Percer	Sampled: 12/05/0 Received: 12/06/0 nt Solids: n/a		
Project:		Kei Haimini -	Old Life v		0.juo, 1.			
General Chemistry								
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Alkalinity, Total as	CaCO3	462	10	mg/l	1	12/19/06	ST	EPA 310.1
Chloride	0.000	10.4	2.0	mg/l	1	12/30/06 16:30	VLP	EPA 300/SW846 9056
Nitrogen, Nitrate a		0.35	0.11	mg/l	1	12/28/06 19:43	NR	EPA353.2/SM4500NO2B
Nitrogen, Nitrate +	Nitrite	0.35	0.10	mg/l	1	12/28/06 19:43	NR	EPA 353.2/LACHAT
Nitrogen, Nitrite		< 0.010	0.010	mg/l	1	12/07/06 00:29	MET	SM19 4500NO2B
Sulfate		21.3	10	mg/l	1	12/30/06 16:30	VLP	EPA 300/SW846 9056
Sulfide		< 2.0	2.0	mg/l	1	12/11/06	JA	EPA 376.1

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

39 of 1582 ACCU Laborato J48302

			Repo	rt of An	alysis			Page 1 of 1
Client Sample ID: Lab Sample ID:	J48302-					Sampled: 12/05/0	105	
Matrix: AQ - Groundwater Filtered						Received: 12/06/0 nt Solids: n/a)6	
Project:								
General Chemistry	,							
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Dissolved Organic	Carbon	2.1	1.0	mg/l	1	12/28/06 23:44	ESJ	EPA415.1/SW8469060M

Report of Analysis

Page 1 of 2

Client Sample Lab Sample Matrix: Method: Project:			Canal Site,	Date R Percen	ampled: eceived: t Solids: Y	12/06/06	
	File ID DF	Analyzed	Ву	Prep Date		Prep Batch	Analytical Batch
Run #1	1A45433.D 1	12/15/06	PWC	n/a		n/a	V1A1943
Run #2	1A45434.D 5	12/15/06	PWC	n/a		n/a	V1A1943
	Purge Volume	CALL NO.					
Run #1	5.0 ml						
Run #2	5.0 ml	1 21		Sus. 1			
VOA TCL	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	ND	5.0	4.6	ug/l		
71-43-2	Benzene	ND	1.0	0.37	ug/l		
75-27-4	Bromodichloromethane	ND	1.0	0.14	ug/l		
75-25-2	Bromoform	ND	1.0	0.52	ug/l		
74-83-9	Bromomethane	ND	1.0	0.39	ug/l		
78-93-3	2-Butanone (MEK)	.ND-	5.0	1.4	ug/l		
75-15-0	Carbon disulfide	ND	1.0	0.38	ug/l		
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l		
108-90-7	Chlorobenzene	ND	1.0	0.74	ug/l		
75-00-3	Chloroethane	ND	1.0	0.65	ug/l		
67-66-3	Chloroform	ND	1.0	0.18	ug/l		
74-87-3	Chloromethane	ND	1.0	0.20	ug/l		
124-48-1	Dibromochloromethane	ND	1.0	0.17	ug/l		
75-34-3	1,1-Dichloroethane	ND	1.0	0.089	ug/l		
107-06-2	1,2-Dichloroethane	ND	1.0	0.57	ug/l		
75-35-4	1,1-Dichloroethene	ND	1.0	0.49	ug/l		
156-59-2	cis-1,2-Dichloroethene	351 a	5.0	0.89	ug/l		
156-60-5	trans-1,2-Dichloroethene	5.9	1.0	0.18	ug/l		
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l		
10061-01-		ND	1.0	0.56	ug/l		
10061-02-0		ND	1.0	0.15	ug/l		
100-41-4	Ethylbenzene	ND	1.0	0.44	ug/l		
591-78-6	2-Hexanone	ND	5.0	0.35	ug/l		
108-10-1	4-Methyl-2-pentanone(MIE		5.0	0.50	ug/l		
75-09-2	Methylene chloride	ND	2.0	0.53	ug/l		
100-42-5	Styrene	ND	1.0	0.069	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.11	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l		
108-88-3	Toluene	0.48	1.0	0.41	ug/l	J	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.094	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.15	ug/l		
79-01-6	Trichloroethene	1.4	1.0	0.16	ug/l		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

41 of 1582

3.11

65

Report of Ana	lysis	
---------------	-------	--

Client Samp Lab Sample Matrix: Method: Project:	ix: AQ - Ground Water aod: SW846 8260B		Canal Site, (Date H Percer	Sampled: Received: nt Solids: Y	12/05/06 12/06/06 n/a	
VOA TCL	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
75-01-4	Vinyl chloride	237 a	5.0	3.8	ug/l		
1330-20-7	Xylene (total)	ND	1.0	0.34	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7	Dibromofluoromethane	97%	98%	77-1	21%		
17060-07-0	1,2-Dichloroethane-D4	112%	114%	65-1	133%		
2037-26-5	Toluene-D8	97%	97%	80-1	17%		
460-00-4	4-Bromofluorobenzene	85%	86%	79-1	24%		×.

(a) Result is from Run# 2

RL = Reporting Limit E = Indicates value exceeds calibration range

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

N = Indicates presumptive evidence of a compound

B = Indicates analyte found in associated method blank

Raw Data: II33626.D

Run #2

CAS No.

74-82-8

74-84-0

74-85-1

Compound

Methane

Ethane

Ethene

Accutest Laboratories

				Repo	rt of A	nalysis		Page 1 of 1
Client Sar Lab Samp Matrix: Method: Project:		J48302 AQ - Q SW846	Ground Wa 6 8015		Canal Site	Date Sampled: Date Received: Percent Solids: e, Clyde, NY		
Run #1	File ID II33620		DF 1	Analyzed 12/15/06	By HSC	Prep Date n/a	Prep Batch n/a	Analytical Batch GII1681

RL

0.10

0.10

0.10

Result

24.4

2.3

16.2

MDL

0.066

0.056

0.075

Units

ug/l

ug/l

ug/l

Q

ND = Not detected	MDL - Method Detection Limit
RL = Reporting Limit	
E = Indicates value exe	

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

43 of 1582 ACCUTEST.

Laborator

J48302

N = Indicates presumptive evidence of a compound

age 1 of 1

		Report of Analysis										
Client Sample Lab Sample ID Matrix:): J4830	4W-3B-12 2-6 Ground V				Date Sam Date Rec Percent S						
Project:												
Metals Analysi	s											
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method				
Sodium	192000	30000	ug/l	3	12/21/06	12/26/06 LH	SW846 6010B ¹	SW846 3010A ²				

(1) Instrument QC Batch: MA18554 (2) Prep QC Batch: MP37346

			Repor	t of An	alysis			Page 1 of 1
Client Sample ID: Lab Sample ID: Matrix:	J48302-6 AQ - Gr	ound Water			Date I Percer	Sampled: 12/05/0 Received: 12/06/0 nt Solids: n/a	-	
Project: GE - Parker Hannifin - Old Erie Canal Site, Clyde, NY								
General Chemistry								
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Alkalinity, Total as	CaCO3	63.4	5.0	mg/l	1	12/19/06	ST	EPA 310.1
Chloride		104	2.0	mg/l	1	12/30/06 16:48	VLP	EPA 300/SW846 9056
Nitrogen, Nitrate a		< 0.11	0.11	mg/l	1	12/30/06 12:35	MR	EPA353.2/SM4500NO2B
Nitrogen, Nitrate +	Nitrite	< 0.10	0.10	mg/l	1	12/30/06 12:35	MR	EPA 353.2/LACHAT
Nitrogen, Nitrite	22.4	< 0.010	0.010	mg/l	1	12/07/06 00:29	MET	SM19 4500NO2B
Sulfate		2090	100	mg/l	10	01/02/07 19:29	JH	EPA 300/SW846 9056
Sulfide		< 2.0	2.0	mg/l	1	12/11/06	JA	EPA 376.1

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

3.11

Client Sample ID:GW-MW-3B-120506Lab Sample ID:J48302-6FMatrix:AQ - Groundwater FilteredProject:GE - Parker Hannifin - Old Erie Canal Sit					Date I	Sampled: 12/05/0 Received: 12/06/0 nt Solids: n/a		
Project:		rker Hannifin	- Old Erie	Canal Site,	Clyde, N	IY		
General Chemistry Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Dissolved Organic	Carbon	1.1	1.0	mg/l	1	12/28/06 23:54	ESJ	EPA415.1/SW8469060M

		Repo	rt of Ar	alysis			Page 1 of
Client Samp Lab Sample Matrix: Method: Project:		er	Canal Site,	Date R Percen	ampled: .eceived: t Solids: Y	12/06/06	
Run #1 Run #2	File ID DF 1A45429.D 1	Analyzed 12/15/06	By PWC	Prep Da n/a	ate	Prep Batch n/a	Analytical Batch V1A1943
Run #1 Run #2	Purge Volume 5.0 ml						
VOA TCL	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
07 04 1	Asstana	ND	5.0	4.6	ug/l		
67-64-1	Acetone Benzene	ND	1.0	0.37	ug/l		
71-43-2 75-27-4	Bromodichloromethane	ND	1.0	0.14	ug/l		
75-25-2	Bromoform	ND	1.0	0.52	ug/l		
74-83-9	Bromomethane	ND	1.0	0.39	ug/l		
78-93-3	2-Butanone (MEK)	ND	5.0	21.4	ug/l		
75-15-0	Carbon disulfide	ND	1.0	0.38	ug/l		
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l		
108-90-7	Chlorobenzene	ND	1.0	0.74	ug/l		
75-00-3	Chloroethane	ND	1.0	0.65	ug/l		
67-66-3	Chloroform	ND	1.0	0.18	ug/l		
74-87-3	Chloromethane	ND	1.0	0.20	ug/l		
124-48-1	Dibromochloromethane	ND	1.0	0.17	ug/l		
75-34-3	1,1-Dichloroethane	ND	1.0	0.089	ug/l		
107-06-2	1,2-Dichloroethane	ND	1.0	0.57	ug/l		
75-35-4	1,1-Dichloroethene	ND	1.0	0.49	ug/l		
156-59-2	cis-1,2-Dichloroethene	6.3	1.0	0.18	ug/l		
156-60-5	trans-1,2-Dichloroethene		1.0	0.18	ug/l		
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l		
10061-01-5			1.0	0.56	ug/l		
10061-02-6			1.0	0.15	ug/l		
100-41-4	Ethylbenzene	ND	1.0	0.44	ug/l		
591-78-6	2-Hexanone	ND	5.0	0.35	ug/l		
108-10-1	4-Methyl-2-pentanone(M	IIBK) ND	5.0	0.50	ug/l		
75-09-2	Methylene chloride	ND	2.0	0.53	ug/l		
100-42-5	Styrene	ND	1.0	0.069	ug/l		
79-34-5	1,1,2,2-Tetrachloroethan		1.0	0.11	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l		
108-88-3	Toluene	ND	1.0	0.41	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.094	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.15	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.16	ug/l		

MDL - Method Detection Limit ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

23 of 1582 J48302 Laboratories

	Report of Analysis										
Client Sample ID:GW-MW-4S-120506Lab Sample ID:J48302-3Matrix:AQ - Ground WaterMethod:SW846 8260BProject:GE - Parker Hannifin			Canal Site, (Date I Percer	Sampled: Received: nt Solids: Y	12/05/06 12/06/06 n/a					
VOA TCL I	List										
CAS No.	Comp	ound	Result	RL	MDL	Units	Q				
75-01-4 1330-20-7		chloride e (total)	2.3 ND	1.0 1.0	0.77 0.34	ug/l ug/l					
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lim	its					
1868-53-7 17060-07-0 2037-26-5 460-00-4	7060-07-0 1,2-Dichloroethane-D4 2037-26-5 Toluene-D8		94% 103% 95% 85%		65-1 80-1	21% 133% 117% 124%					

RL = Reporting Limit E = Indicates value exceeds calibration range

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

N = Indicates presumptive evidence of a compound

Page 2 of 2

B = Indicates analyte found in associated method blank

Raw Data: II33618.D

Accutest Laboratories

			Repo	rt of Ar	alysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID: J48 AQ SW	/-MW-4S-120 302-3 - Ground Wa 846 8015 - Parker Han						
Run #1 Run #2	File ID II33618.D	DF 1	Analyzed 12/14/06	By HSC	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GII1680
CAS No.	Compoun	d	Result	RL	MDL	Units	Q	
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		6.43 0.12 ND	0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l		

MDL - Method Detection Limit ND = Not detected RL = Reporting Limit E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

		Report of Analysis										
Client Sample Lab Sample II Matrix: Project:	D: J4830 AQ -	4W-4S-12 2-3 Ground V Parker Ha	Vater	Old E								
Metals Analys	is											
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method				
Sodium	< 10000	10000	ug/l	1	12/21/06	12/22/06 ND	SW846 6010B ¹	SW846 3010A ²				

(1) Instrument QC Batch: MA18543 (2) Prep QC Batch: MP37346

Page 1 of 1

3.5

6

Lab Sample ID: J48302-3 Matrix: AQ - Grour					Date I	Sampled: 12/05/0 Received: 12/06/0 nt Solids: n/a	-				
Project:	ker Hannifin -	r Hannifin - Old Erie Canal Site, Clyde, NY									
General Chemistry											
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method			
Alkalinity, Total as	CaCO3	393	10	mg/l	1	12/19/06	ST	EPA 310.1			
Chloride		12.8	2.0	mg/l	1	12/30/06 15:53	VLP	EPA 300/SW846 9056			
Nitrogen, Nitrate a		< 0.11	0.11	mg/l	1	12/28/06 19:41	NR	EPA353.2/SM4500NO2B			
Nitrogen, Nitrate +	Nitrite	< 0.10	0.10	mg/l	1	12/28/06 19:41	NR	EPA 353.2/LACHAT			
Nitrogen, Nitrite		< 0.010	0.010	mg/l	1	12/07/06 00:29	MET	SM19 4500NO2B			
Sulfate		42.2	10	mg/l	1	12/30/06 15:53	VLP	EPA 300/SW846 9056			
Sulfide		< 2.0	2.0	mg/l	1	12/10/06	ST	EPA 376.1			

Report of Analysis

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

Page 1 of 1

27 of 1582 J48302 Laborato

	1.0		nopo					0
Client Sample ID: Lab Sample ID: Matrix:	J48302-	V-4S-120506 3F roundwater Fi	ltered		Date l	Sampled: 12/05/0 Received: 12/06/0 nt Solids: n/a		
Project:	GE - Pa	- Old Erie	Canal Site,	Clyde, N	IY			
General Chemistry	,							
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Dissolved Organic	Carbon	4.3	1.0	mg/l	1	12/28/06 23:27	ESJ	EPA415.1/SW8469060M

Report of Analysis

Page 1 of 1

Report of Analysis

Page 1 of 2

Client Samp Lab Sample Matrix: Method: Project:		- Old Erie C	Canal Site,	Date R Percen	ampled: acceived: at Solids: Y		
	File ID DF A	nalyzed	Ву	Prep Da	ate	Prep Batch	Analytical Batch
Run #1		2/15/06	PWC	n/a		n/a	V1A1943
Run #2	1A45431.D 500 1	2/15/06	PWC	n/a		n/a	V1A1943
	Purge Volume		1120				
Run #1	5.0 ml						
Run #2	5.0 ml			- and the second			
VOA TCL	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	ND	500	460	ug/l		
71-43-2	Benzene	ND	100	37	ug/l		
75-27-4	Bromodichloromethane	ND	100	14	ug/l		
75-25-2	Bromoform	ND	100	52	ug/l		
74-83-9	Bromomethane	ND	100	39	ug/l		
78-93-3	2-Butanone (MEK)	-ND	500	140	ug/l		
75-15-0	Carbon disulfide	ND	100	38	ug/l		
56-23-5	Carbon tetrachloride	ND	100	53	ug/l		
108-90-7	Chlorobenzene	ND	100	74	ug/l		
75-00-3	Chloroethane	ND	100	65	ug/l		
67-66-3	Chloroform	ND	100	18	ug/l		
74-87-3	Chloromethane	ND	100	20	ug/l		
124-48-1	Dibromochloromethane	ND	100	17	ug/l		
75-34-3	1,1-Dichloroethane	ND	100	8.9	ug/l		
107-06-2	1,2-Dichloroethane	ND	100	57	ug/l		
75-35-4	1,1-Dichloroethene	ND	100	49	ug/l		
156-59-2	cis-1,2-Dichloroethene	64800 ^a	500	89	ug/l		
156-60-5	trans-1,2-Dichloroethene	130	100	18	ug/l		
78-87-5	1,2-Dichloropropane	ND	100	50	ug/l		
10061-01-5	cis-1,3-Dichloropropene	ND	100	56	ug/l		
10061-02-6	trans-1,3-Dichloropropene	ND	100	15	ug/l		
100-41-4	Ethylbenzene	ND	100	44	ug/l		
591-78-6	2-Hexanone	ND	500	35	ug/l		
108-10-1	4-Methyl-2-pentanone(MIB)		500	50	ug/l		
75-09-2	Methylene chloride	ND	200	53	ug/l		
100-42-5	Styrene	ND	100	6.9	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	100	11	ug/l		
127-18-4	Tetrachloroethene	ND	100	39	ug/l		
108-88-3	Toluene	ND	100	41	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	100	9.4	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	100	15	ug/l		
79-01-6	Trichloroethene	2130	100	16	ug/l		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

J = Indicates an estimated value

			Repor	t of Ana	alysis			Pa
Client Samp Lab Sample Matrix: Method: Project:		GW-MW-4B-120506 J48302-4 AQ - Ground Water SW846 8260B GE - Parker Hannifi		Canal Site, (Date H Percer	Sampled: Received: nt Solids: Y	12/05/06 12/06/06 n/a	
VOA TCL I	List							
CAS No.	Comp	oound	Result	RL	MDL	Units	Q	
75-01-4 1330-20-7	-	chloride e (total)	8740 ND	100 100	77 34	ug/l ug/l		
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7 17060-07-0 2037-26-5	1,2-D	mofluoromethane ichloroethane-D4 me-D8	93% 104% 98%	96% 106% 97%	65-1	121% 133% 117%		
460-00-4		mofluorobenzene	85%	85%	79-1	124%		

(a) Result is from Run# 2

MDL - Method Detection Limit ND = Not detected RL = Reporting Limit E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 2 of 2

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Raw Data: II33619.D

Accutest Laboratories

			Repo	rt of Ar	nalysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID: J4830 AQ - SW84	Ground Wa 6 8015		Canal Site,	Date F Percer	Sampled: Received: nt Solids: Y	12/06/06	
Run #1 Run #2	File ID II33619.D	DF 1	Analyzed 12/14/06	By HSC	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GII1680
CAS No.	Compound		Result	RL	MDL	Units	Q	
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		287 60.0 163	0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l		

MDL - Method Detection Limit ND = Not detected RL = Reporting Limit E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

				Rep	port of A	Analysis		Page 1 of 1
Client Sample Lab Sample II Matrix: Project:	D: J4830 AQ -	Ground W	/ater	Old E	rie Canal Si	Date Sam Date Rec Percent S ite, Clyde, NY	eived: 12/06/06	
Metals Analys	sis							
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Sodium	95200	20000	ug/l	2	12/21/06	12/26/06 LH	SW846 6010B 1	SW846 3010A ²

Instrument QC Batch: MA18554
 Prep QC Batch: MP37346

			Repor	t of An	alysis			Page 1 of 1
Lab Sample ID:	J48302-4	/-4B-120506 ound Water			Date H	Sampled: 12/05/0 Received: 12/06/0 nt Solids: n/a		
Project:	GE - Par	ker Hannifin -	Old Erie (Canal Site,	Clyde, N	Y		
General Chemistry								
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Alkalinity, Total as (CaCO3	361	10	mg/l	1	12/19/06	ST	EPA 310.1
Chloride	cucco	187	2.0	mg/l	1	12/30/06 16:11	VLP	EPA 300/SW846 9056
Nitrogen, Nitrate a		< 0.11	0.11	mg/l	1	12/28/06 19:42	NR	EPA353.2/SM4500NO2B
Nitrogen, Nitrate +	Nitrite	< 0.10	0.10	mg/l	1	12/28/06 19:42	NR	EPA 353.2/LACHAT
Nitrogen, Nitrite		< 0.010	0.010	mg/l	1	12/07/06 00:29	MET	SM19 4500NO2B
Sulfate		1150	50	mg/l	5	01/02/07 19:10	JH	EPA 300/SW846 9056
Sulfide		< 2.0	2.0	mg/l	1	12/11/06	JA	EPA 376.1

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

Client Sample ID: Lab Sample ID: Matrix:	J48302-	V-4B-120506 4F roundwater Fi	ltered		Date I	Sampled: 12/05/0 Received: 12/06/0 nt Solids: n/a	-	
Project:	GE - Pa	rker Hannifin	- Old Erie	Canal Site,	Clyde, N	Y		
General Chemistry	'							
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Dissolved Organic	Carbon	2.8	1.0	mg/l	1	12/28/06 23:34	ESJ	EPA415.1/SW8469060M

Report of Analysis

Page 1 of 1

Page 1 of 2 Report of Analysis GW-MW-4C-120506 Client Sample ID: Date Sampled: 12/05/06 Lab Sample ID: 148302-2 Date Received: 12/06/06 AQ - Ground Water Matrix: Percent Solids: n/a SW846 8260B Method: GE - Parker Hannifin - Old Erie Canal Site, Clyde, NY Project: Prep Batch Analytical Batch Prep Date DF Analyzed By File ID V1A1943 n/a PWC 12/15/06 n/a 1A45428.D 1 Run #1 Run #2 Purge Volume 5.0 ml Run #1 Run #2 VOA TCL List Units Q MDL Result RL Compound CAS No. ug/l 5.0 4.6 ND Acetone 67-64-1 0.37 ug/l ND 1.0 Benzene 71-43-2 0.14 ug/l ND 1.0 Bromodichloromethane 75-27-4 1.0 0.52 ug/l Bromoform ND 75-25-2 0.39 ug/l ND 1.0 Bromomethane 74-83-9 5.0-R 1.4 ug/l ND 2-Butanone (MEK) 78-93-3 0.38 ug/l 1.0 Carbon disulfide ND 75-15-0 0.53ug/l Carbon tetrachloride ND 1.0 56-23-5 ND 1.0 0.74 ug/l Chlorobenzene 108-90-7 0.65 ug/l 1.0 Chloroethane ND 75-00-3 0.18 ug/l ND 1.0 Chloroform 67-66-3 0.20 ug/l ND 1.0 Chloromethane 74-87-3 0.17 ug/l 1.0 ND Dibromochloromethane 124-48-1 0.089 ug/l 1,1-Dichloroethane ND 1.0 75-34-3 0.57 ug/l ND 1.0 1,2-Dichloroethane 107-06-2 1.0 0.49 ug/l ND 1.1-Dichloroethene 75-35-4 0.18 ug/l ND 1.0 cis-1,2-Dichloroethene 156-59-2 0.18 ug/l ND 1.0 trans-1,2-Dichloroethene 156-60-5 0.50 ND 1.0 ug/l 1.2-Dichloropropane 78-87-5 0.56 ND 1.0 ug/l cis-1,3-Dichloropropene 10061-01-5 0.15 ND 1.0 ug/l trans-1,3-Dichloropropene 10061-02-6 0.44 ug/l ND 1.0 Ethylbenzene 100-41-4 ND 5.0 0.35 ug/l 591-78-6 2-Hexanone 0.50 ND 5.0 ug/l 4-Methyl-2-pentanone(MIBK) 108-10-1 0.53 2.0 ug/l ND Methylene chloride 75-09-2 ND 1.0 0.069ug/l Styrene 100-42-5 ND 1.0 0.11 ug/l 1.1.2.2-Tetrachloroethane 79-34-5 0.39 1.0 ug/l ND Tetrachloroethene 127-18-4 1.0 0.41 ug/l ND Toluene 108-88-3 ND 1.0 0.094 ug/l 1,1,1-Trichloroethane 71-55-6 0.15 ug/l ND 1.0 1,1,2-Trichloroethane 79-00-5 1.0 0.16 ug/l ND Trichloroethene 79-01-6

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

J = Indicates an estimated value

460-00-4

		Repor	t of Ana	alysis			Page
Client Samp Lab Sample Matrix: Method: Project:		r	Canal Site, (Date H Percer	Sampled: Received: nt Solids: Y	12/05/06 12/06/06 n/a	
VOA TCL	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
75-01-4	Vinyl chloride	ND	1.0	0.77	ug/l		
1330-20-7	Xylene (total)	ND	1.0	0.34	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7	Dibromofluoromethane	92%	1		121%		
17060-07-0	1,2-Dichloroethane-D4	98%		1000	133%		
2037-26-5	Toluene-D8	94%		1000	117%		

84%

79-124%

RL = Reporting Limit E = Indicates value exceeds calibration range

ND = Not detected

MDL - Method Detection Limit

4-Bromofluorobenzene

J = Indicates an estimated value

N = Indicates presumptive evidence of a compound

Page 2 of 2

B = Indicates analyte found in associated method blank

Raw Data: II33617.D

Accutest Laboratories

			Repo	rt of Ar	nalysis			Page 1 of 1
Client Sam Lab Samp Matrix: Method: Project:	le ID: J483 AQ SW3	-MW-4C-1205 302-2 - Ground Wate 846 8015 - Parker Hann	er	Canal Site,	Date F Percer	ampled: Received: ht Solids: Y	12/06/06	
Run #1 Run #2	File ID II33617.D	DF 1	Analyzed 12/14/06	By HSC	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GII1680
CAS No.	Compound	I	Result	RL	MDL	Units	Q	
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		4.16 0.12 ND	0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l		

MDL - Method Detection Limit ND = Not detected RL = Reporting Limit E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.3

19 of 1582 ACCUTEST. Laborator J48302

				Rep	port of A	Analysis		Page 1 of 1
Client Sampi Lab Sample Matrix: Project:	ID: J4830 AQ -	Ground W	Vater	Old E	rie Canal Si	Date Sam Date Rec Percent S ite, Clyde, NY	eived: 12/06/06	
Metals Anal	ysis							
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Sodium	244000	50000	ug/l	5	12/21/06	12/26/06 LH	SW846 6010B 1	SW846 3010A ²

Instrument QC Batch: MA18554
 Prep QC Batch: MP37346

Client Sample ID: Lab Sample ID: Matrix:	J48302-2	V-4C-120506 2 ound Water				Sampled: 12/05/0 Received: 12/06/0	-	
Mati IX.	ng oi	ound mater			Percer	nt Solids: n/a		
Project:	GE - Par	rker Hannifin -	Old Erie (Canal Site,	Clyde, N	IY		
				-				
General Chemistry	'							
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Allaliaite Total an	CaCO2	188	25	mg/l	1	12/19/06	ST	EPA 310.1
Alkalinity, Total as Chloride	Cacos	253	2.0	mg/l	î	12/30/06 15:35	VLP	EPA 300/SW846 9056
Nitrogen, Nitrate a		< 0.11	0.11	mg/l	1	12/28/06 19:40	NR	EPA353.2/SM4500NO2B
Nitrogen, Nitrate +	Nitrite	< 0.10	0.10	mg/l	1	12/28/06 19:40	NR	EPA 353.2/LACHAT
Nitrogen, Nitrite	, unite	< 0.010	0.010	mg/l	1	12/07/06 00:29	MET	SM19 4500NO2B
Sulfate		1710	100	mg/l	10	01/02/07 18:52	JH	EPA 300/SW846 9056
Sulfide		< 2.0	2.0	mg/l	1	12/10/06	ST	EPA 376.1

Report of Analysis

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

			Repo	rt of An	alysis			Page 1 of 1
Client Sample ID: Lab Sample ID: Matrix: Project:	J48302-3 AQ - Gi	W-MW-4C-120506 48302-2F Q - Groundwater Filtered E - Parker Hannifin - Old Erie Ca			Date Sampled: 12/05/00 Date Received: 12/06/00 Percent Solids: n/a anal Site, Clyde, NY			
General Chemistry	1							
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Dissolved Organic	Carbon	< 1.0	1.0	mg/l	1	12/28/06 23:20	ESJ	EPA415.1/SW8469060M

Report of Analysis

Page 1 of 2

Client San Lab Samp Matrix: Method: Project:	le ID: J48 AQ SW	7-X-2-120506 302-7 - Ground Wa 846 8260B - Parker Han		Canal Site	Date Sampled: Date Received: Percent Solids: , Clyde, NY		
Run #1	File ID 1A45435.D	DF 1	Analyzed 12/15/06	By PWC	Prep Date n/a	Prep Batch n/a	Analytical Batch V1A1943
Run #2 a	1A45614.D		12/21/06	PWC	n/a	n/a	V1A1952
	Purge Volu	me		1.00			
Run #1 Run #2	5.0 ml 5.0 ml						

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	ND	5.0 J	4.6	ug/l		
71-43-2	Benzene	ND	1.0	0.37	ug/l		
75-27-4	Bromodichloromethane	ND	1.0	0.14	ug/l		
75-25-2	Bromoform	ND	1.0	0.52	ug/l		
74-83-9	Bromomethane	ND	1.0	0.39	ug/l		
78-93-3	2-Butanone (MEK)	ND	-5.0	1.4	ug/l		
75-15-0	Carbon disulfide	ND	1.0	0.38	ug/l		
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l		
108-90-7	Chlorobenzene	ND	1.0	0.74	ug/l		
75-00-3	Chloroethane	ND	1.0	0.65	ug/l		
67-66-3	Chloroform	ND	1.0	0.18	ug/l		
74-87-3	Chloromethane	ND	1.0	0.20	ug/l		
124-48-1	Dibromochloromethane	ND	1.0	0.17	ug/l		
75-34-3	1,1-Dichloroethane	ND	1.0	0.089	ug/l		
107-06-2	1,2-Dichloroethane	ND	1.0	0.57	ug/l		
75-35-4	1,1-Dichloroethene	ND	1.0	0.49	ug/l		
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.18	ug/l		
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.18	ug/l		
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l		
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.56	ug/l		
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.15	ug/l		
100-41-4	Ethylbenzene	ND	1.0	0.44	ug/l		
591-78-6	2-Hexanone	ND	5.0	0.35	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	0.50	ug/l		
75-09-2	Methylene chloride	ND	2.0	0.53	ug/l		
100-42-5	Styrene	ND	1.0	0.069	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.11	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l		
108-88-3	Toluene	ND	1.0	0.41	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.094	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.15	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.16	ug/l		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Samp Lab Sample Matrix: Method: Project:			Canal Site, (Date H Percer	Sampled: Received: nt Solids: Y	12/05/06 12/06/06 n/a
VOA TCL I	Jist					
CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4	Vinyl chloride	ND	1.0	0.77	ug/l	
1330-20-7	Xylene (total)	ND	1.0 🗸	0.34	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	101%	112%	77-1	21%	
17060-07-0	1,2-Dichloroethane-D4	117%	155% ^b		133%	
2037-26-5	Toluene-D8	97%	92%		117%	
460-00-4	4-Bromofluorobenzene	87%	112%	79-	124%	

Report of Analysis

(a) Confirmation run.

(b) Outside control limits.

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Page 2 of 2

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Raw Data: II33628.D

Accutest Laboratories

Report of Analysis

Page 1 of 1

Client Sam Lab Samp Matrix: Method: Project:	le ID: J4830 AQ - SW84	GW-X-2-120506 J48302-7 AQ - Ground Water SW846 8015 GE - Parker Hannifin - Old Erie Canal Site,				Date Sampled: 12/05/06 Date Received: 12/06/06 Percent Solids: n/a Clyde, NY			
Run #1 Run #2	File ID II33628.D	DF 1	Analyzed 12/15/06	By HSC	Prep Date n/a		Prep Batch n/a	Analytical Batch GII1681	
CAS No.	Compound		Result	RL	MDL	Units	Q		
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		4.46 0.14 ND	0.10 J 0.10 J 0.10 J	0.066 0.056 0.075	ug/l ug/l ug/l			

 $\begin{array}{ll} ND = Not \ detected & MDL - Method \ Detection \ Limit \\ RL = Reporting \ Limit \\ E = \ Indicates \ value \ exceeds \ calibration \ range \end{array}$

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

				Rep	port of A	Analysis		Page 1 of 1
Client Sample I Lab Sample ID Matrix: Project:	: J4830 AQ -	Ground W	/ater	Old E	rie Canal Si			
Metals Analysis	8							
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Sodium	239000	50000	ug/l	5	12/21/06	12/26/06 LH	SW846 6010B ¹	SW846 3010A ²

Instrument QC Batch: MA18554
 Prep QC Batch: MP37346

Client Sample ID: Lab Sample ID: Matrix:	-120506 , ound Water			Date I	Sampled: 12/05/0 Received: 12/06/0 nt Solids: n/a			
Project:	GE - Par	ker Hannifin	Old Erie (Clyde, N	IY			
General Chemistry								
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Alkalinity, Total as	CaCO3	159	5.0	mg/l	1	12/19/06	ST	EPA 310.1
Chloride	cucou	256	2.0	mg/l	1	12/30/06 17:43	VLP	EPA 300/SW846 9056
Nitrogen, Nitrate a		< 0.11	0.11	mg/l	1	12/30/06 12:36	MR	EPA353.2/SM4500NO2B
Nitrogen, Nitrate +	Nitrite	< 0.10	0.10	mg/l	1	12/30/06 12:36	MR	EPA 353.2/LACHAT
Nitrogen, Nitrite	Inne	< 0.010	0.010	mg/l	1	12/07/06 01:09	MET	SM19 4500NO2B
Sulfate		1790	100	mg/l	10	01/02/07 19:47	JH	EPA 300/SW846 9056
Sulfide		< 2.0	2.0	mg/l	1	12/11/06	JA	EPA 376.1

Report of Analysis

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

			Керо	It of Thi	ulybio		-	
Client Sample ID: Lab Sample ID: Matrix:	GW-X-2 J48302-7 AQ - Gr		ltered		Date 1	Sampled: 12/05/0 Received: 12/06/0 nt Solids: n/a	93	
Project:	GE - Par	ker Hannifin	- Old Erie	Canal Site,	Clyde, N	IY		
General Chemistry	/							
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Dissolved Organic	Carbon	< 1.0	1.0	mg/l	1	12/29/06 00:04	ESJ	EPA415.1/SW8469060M

Report of Analysis

	fethod: SW846 8260B Percent Solids: n/a GE - Parker Hannifin - Old Erie Canal Site, Clyde, NY File ID DF Analyzed By Prep Date Prep Batch Run #1 1A45393.D 1 12/14/06 PWC n/a Prep Batch Run #2 Purge Volume 5.0 ml Result RL MDL Units Q 70A TCL List CAS No. Compound Result RL MDL Units Q 87-64-1 Acetone ND 5.0 4.6 ug/l 72-27-4 Benzene ND 1.0 0.37 ug/l 75-25-2 Bromodichloromethane ND 1.0 0.52 ug/l 74-83-9 Bromomethane ND 1.0 0.39 ug/l 74-83-9 Bromomethane ND 1.0 0.38 ug/l 75-15-0 Carbon disulfide ND 1.0 0.53 ug/l 66-23-5 Carbon tetrachloride ND 1.0 0.53 ug/l 108-90-7 Chlorobenzene ND 1.0										
	DID: J48302-1 AQ - Ground Water SW846 8260B	- Old Erie	Canal Site,								
Run #1 Run #2				and the second sec	ate		Analytical Batch V1A1942				
Run #1 Run #2											
VOA TCL	List										
CAS No.	Compound	Result	RL	MDL	Units	Q					
67-64-1	Acetone	ND	5.0	4.6	ug/l						
				0.37							
		100 100 20 Control 100		0.14							
		ND	1.0	0.52	ug/l						
		ND	1.0	0.39	ug/l						
		ND	5.0	1.4	ug/l						
		ND	1.0	0.38	ug/l						
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l						
108-90-7	Chlorobenzene	ND	1.0								
75-00-3	Chloroethane	ND	1.0	0.65	ug/l						
67-66-3	Chloroform	ND	1.0	0.18	ug/l						
74-87-3	Chloromethane	ND	1.0	0.20	ug/l						
124-48-1	Dibromochloromethane	ND	1.0	0.17	ug/l						
75-34-3	1,1-Dichloroethane	ND	1.0	0.089	ug/l						
107-06-2	1,2-Dichloroethane	ND	1.0	0.57	ug/l						
75-35-4	1,1-Dichloroethene	ND	1.0	0.49	ug/l						
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.18	ug/l						
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.18	ug/l						
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l						
10061-01-5		ND	1.0	0.56	ug/l						
10061-02-6		ND	1.0	0.15	ug/l						
100-41-4	Ethylbenzene	ND	1.0	0.44	ug/l						
591-78-6	2-Hexanone	ND	5.0	0.35 0.50	ug/l ug/l						
108-10-1	4-Methyl-2-pentanone(MIBI		5.0 2.0	0.50	ug/l						
75-09-2	Methylene chloride	ND ND	1.0	0.069	ug/l						
100-42-5	Styrene	ND	1.0	0.003	ug/l						
79-34-5	1,1,2,2-Tetrachloroethane Tetrachloroethene	ND	1.0	0.39	ug/l						
127-18-4	Toluene	ND	1.0	0.41	ug/l						
108-88-3	1,1,1-Trichloroethane	ND	1.0	0.094	ug/l						
71-55-6	1,1,2-Trichloroethane	ND	1.0	0.15	ug/l						
79-00-5 79-01-6	Trichloroethene	ND	1.0	0.16	ug/l						

MDL - Method Detection Limit ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 \mathbf{B} = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Ren	ort	of	Ana	lysis
Trob	, OI C	~		10-0

Client Samp Lab Sample Matrix: Method: Project:		er	Canal Site, C	Date F Percer	ampled: Received: nt Solids: Y	12/05/06 12/06/06 n/a
VOA TCL I	List					
CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4	Vinyl chloride	ND	1.0	0.77	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.34	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	88%	8	77-1	21%	
17060-07-0	1,2-Dichloroethane-D4	92%			133%	
2037-26-5	Toluene-D8	95%			17%	
460-00-4	4-Bromofluorobenzene	86%		79-1	24%	

J = Indicates an estimated value

N = Indicates presumptive evidence of a compound

Page 2 of 2

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

Raw Data: II33616.D

Accutest Laboratories

			Repo	rt of Ar	nalysis			Page 1 of 1
Client Sam Lab Samp Matrix: Method: Project:	le ID: J43 AC SV	W-MW-5S-120 8302-1 Q - Ground Wa V846 8015 3 - Parker Han		Canal Site,	Date F Percer	Sampled: Received: nt Solids: Y	12/06/06	
Run #1 Run #2	File ID II33616.D	DF 1	Analyzed 12/14/06	By HSC	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GII1680
CAS No.	Compour	nd	Result	RL	MDL	Units	Q	
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		21.8 ND ND	0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l		

MDL - Method Detection Limit ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

3.1

				Rep	port of A	Analysis		Page 1 o
Client Sample Lab Sample II Matrix: Project:	D: J4830 AQ -	Ground W	Vater	Old E	rie Canal S			
Metals Analys	is							
Analyte Sodium	Result < 10000	RL 10000	Units ug/l	DF 1	Prep 12/21/06	Analyzed By 12/22/06 ND	Method SW846 6010B ¹	Prep Method SW846 3010A ²

Instrument QC Batch: MA18543
 Prep QC Batch: MP37346

3.1

		Page 1 of 1					
Lab Sample ID: J483	MW-5S-120506)2-1 Ground Water						
Project: GE -	Parker Hannifin	- Old Erie (Canal Site,	Clyde, N	IY		in the second of
General Chemistry							
Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Alkalinity, Total as CaCC	3 739	25	mg/l	1	12/19/06	ST	EPA 310.1
Chloride	< 2.0	2.0	mg/l	1	12/30/06 15:16	VLP	EPA 300/SW846 9056
Nitrogen, Nitrate ^a	< 0.11	0.11	mg/l	1	12/28/06 19:38	NR	EPA353.2/SM4500NO2E
Nitrogen, Nitrate + Nitri	te < 0.10	0.10	mg/l	1	12/28/06 19:38	NR	EPA 353.2/LACHAT
Nitrogen, Nitrite	< 0.010	0.010	mg/l	1	12/07/06 00:29	MET	SM19 4500NO2B
Sulfate	12.3	10	mg/l	1	12/30/06 15:16	VLP	EPA 300/SW846 9056
Sulfide	< 2.0	2.0	mg/l	1	12/10/06	ST	EPA 376.1

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

Client Sample ID: Lab Sample ID: Matrix:	-MW-5S-120506 502-1F - Groundwater Filtered				Sampled: 12/05/0 Received: 12/06/0 nt Solids: n/a			
Project:		ker Hannifin	- Old Erie	Canal Site,	Clyde, N	IY		
General Chemistry	1							
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Dissolved Organic	Carbon	1.9	1.0	mg/l	1	12/28/06 23:10	ESJ	EPA415.1/SW8469060M

Report of Analysis

Page 1 of 2

Client Samp Lab Sample Matrix: Method: Project:		- Old Erie	Canal Site,	Date Re Percent	ampled: eccived: t Solids: Y		
Run #1 Run #2		Analyzed 2/18/06	By PWC	Prep Date n/a		Prep Batch n/a	Analytical Batch V1A1947
Run #1 Run #2	Purge Volume 5.0 ml						
VOA TCL	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	4.7	5.0	4.6	ug/l	J	
71-43-2	Benzene	ND	1.0	0.37	ug/l		
75-27-4	Bromodichloromethane	ND	1.0	0.14	ug/l		
75-25-2	Bromoform	ND	1.0	0.52	ug/l		
74-83-9	Bromomethane	ND	1.0	0.39	ug/l		
78-93-3	2-Butanone (MEK)	ND	5.0	1.4	ug/l		
75-15-0	Carbon disulfide	ND	1.0]	0.38	ug/l		
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l		
108-90-7	Chlorobenzene	ND	1.0	0.74	ug/l		
75-00-3	Chloroethane	ND	1.0	0.65	ug/l		
67-66-3	Chloroform	ND	1.0	0.18	ug/l		
74-87-3	Chloromethane	ND	1.0	0.20	ug/l		
124-48-1	Dibromochloromethane	ND	1.0	0.17	ug/l		
75-34-3	1,1-Dichloroethane	ND	1.0	0.089	ug/l		
107-06-2	1,2-Dichloroethane	ND	1.0	0.57	ug/l		
75-35-4	1,1-Dichloroethene	ND	1.0	0.49	ug/l		
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.18	ug/l		
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.18	ug/l		
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l		
10061-01-5	5 cis-1,3-Dichloropropene	ND	1.0	0.56	ug/l		
10061-02-6	6 trans-1,3-Dichloropropene	ND	1.0	0.15	ug/l		
100-41-4	Ethylbenzene	ND	1.0	0.44	ug/l		
591-78-6	2-Hexanone	ND	5.0	0.35	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBI	K) ND	5.0	0.50	ug/l		
75-09-2	Methylene chloride	ND	2.0	0.53	ug/l		
100-42-5	Styrene	ND	1.0	0.069	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.11	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l		
108-88-3	Toluene	ND	1.0	0.41	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.094	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.15	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.16	ug/l		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

J = Indicates an estimated value

Re	port	of Analys	is

Client Samp Lab Sample Matrix: Method: Project:		GW-MW-5B-120606 J48443-7 AQ - Ground Water SW846 8260B GE - Parker Hannifin	- Old Erie C	Canal Site, (Date I Percer	Sampled: Received: nt Solids: Y	12/06/06 12/07/06 n/a	
VOA TCL I	List							
CAS No.	Comp	ound	Result	RL	MDL	Units	Q	
75-01-4	Vinyl	chloride	ND	1.0	0.77	ug/l		
1330-20-7	Xylen	e (total)	ND	1.0	0.34	ug/l		
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lin	its		
1868-53-7	Dibro	mofluoromethane	97%	1	77-	121%		
17060-07-0	1,2-D	ichloroethane-D4	109%			133%		
2037-26-5	Tolue	ne-D8	97%			117%		
460-00-4	4-Bro	mofluorobenzene	81%		79-	124%		

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

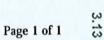
Page 2 of 2

Raw Data: II33585.D

Accutest Laboratories

20606	
	Da

Client San Lab Samp Matrix: Method: Project:	le ID: J48443 AQ - 0 SW840	Ground Wa 6 8015		Canal Site,	Date F Percer	Sampled: Received: nt Solids: Y	12/07/06	
Run #1 Run #2	File ID 1133585.D	DF 1	Analyzed 12/13/06	By HSC	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GII1679
CAS No.	Compound		Result	RL	MDL	Units	Q	
74-82-8 74-84-0	Methane Ethane		6.97 0.70	0.10 0.10	0.066 0.056	ug/l ug/l		
74-85-1	Ethene		0.35	0.10	0.075	ug/l		


Report of Analysis

MDL - Method Detection Limit ND = Not detected RL = Reporting Limit E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

				Rep	port of A	Analysis		Page 1 of 1
Client Sample Lab Sample II		4W-5B-12 3-7	20606			Date Sam	The second se	
Matrix:	AQ -	Ground W	Vater			Date Rec Percent S	220.0.00	3
Project:	GE - 3	Parker Ha	nnifin -	Old E	rie Canal Si	ite, Clyde, NY		
Metals Analys	sis							
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Sodium	166000	50000	ug/l	5	12/26/06	12/27/06 LH	SW846 6010B 1	SW846 3010A ²

(1) Instrument QC Batch: MA18563 (2) Prep QC Batch: MP37400

			Page 1 of 1					
Client Sample ID: Lab Sample ID: Matrix:	J48443-7 AQ - Gr	/-5B-120606 , ound Water ;ker Hannifin -	Old Erie ([°] anal Site	Date I Percer	Sampled: 12/06/0 Received: 12/07/0 nt Solids: n/a	-	
Project:	GE - Fa	Kei Haimiin -	Old Life v	Sundi One,	orjuo, ri			
General Chemistry								
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Alkalinity, Total as	CaCO3	105	5.0	mg/l	1	12/20/06	JA	EPA 310.1
Chloride	oucou	123	2.0	mg/l	1	01/03/07 01:55	JH	EPA 300/SW846 9056
Nitrogen, Nitrate a		< 0.11	0.11	mg/l	1	12/30/06 13:41	MR	EPA353.2/SM4500NO2F
Nitrogen, Nitrate +	Nitrite	< 0.10	0.10	mg/l	1	12/30/06 13:41	MR	EPA 353.2/LACHAT
Nitrogen, Nitrite		< 0.010	0.010	mg/l	1	12/07/06 18:00		SM19 4500NO2B
Sulfate		1840	100	mg/l	10	01/03/07 19:07	JH	EPA 300/SW846 9056
Sulfide		< 2.0	2.0	mg/l	1	12/12/06	JA	EPA 376.1

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

			Repo	rt of An	alysis			Page 1 of 1
Client Sample ID: Lab Sample ID: Matrix: Project:	J48443- AQ - Gi	V-5B-120606 7F coundwater Fi rker Hannifin		Canal Site,	Date I Percer	Sampled: 12/06/0 Received: 12/07/0 nt Solids: n/a Y	121	
General Chemistry	Y							
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Dissolved Organic	Carbon	< 1.0	1.0	mg/l	1	12/29/06 01:47	ESJ	EPA415.1/SW8469060M

Report of Analysis

Page 1 of 2

3.3

Client Samj Lab Sample Matrix: Method: Project:		- Old Erie C	anal Site,	Date R Percen	ampled: Leceived: It Solids: Y	12/07/06	
			Ву	Prep D	ate	Prep Batch	Analytical Batch
Run #1			PWC	n/a		n/a	V1A1952
Run #2	1A45605.D 2000	12/20/06	PWC	n/a	-	n/a	V1A1952
	Purge Volume						
Run #1	5.0 ml						
Run #2	5.0 ml		_				
VOA TCL	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	ND	2500		ug/l		
71-43-2	Benzene	ND	500	190	ug/l		
75-27-4	Bromodichloromethane	ND	500	69	ug/l		
75-25-2	Bromoform	ND	500	260	ug/l		
74-83-9	Bromomethane	ND	500 ¥	190	ug/l		
78-93-3	2-Butanone (MEK)	· ND	2500		ug/l		
75-15-0	Carbon disulfide	ND	500	190	ug/l		
56-23-5	Carbon tetrachloride	ND	500	260	ug/l		
108-90-7	Chlorobenzene	ND	500	370	ug/l		
75-00-3	Chloroethane	ND	500	320	ug/l		
67-66-3	Chloroform	ND	500	92	ug/l		
74-87-3	Chloromethane	ND	500	100	ug/l		
124-48-1	Dibromochloromethane	ND	500	84	ug/l		
75-34-3	1,1-Dichloroethane	ND	500	45	ug/l		
107-06-2	1,2-Dichloroethane	ND	500	280	ug/l		
75-35-4	1,1-Dichloroethene	ND	500	250	ug/l		
156-59-2	cis-1,2-Dichloroethene	186000 a	2000	360	ug/l		
156-60-5	trans-1,2-Dichloroethene	478	500	92	ug/l	J	
78-87-5	1,2-Dichloropropane	ND	500	250	ug/l		
10061-01-5	5 cis-1,3-Dichloropropene	ND	500	280	ug/l		
10061-02-6	6 trans-1,3-Dichloropropene	ND	500	76	ug/l		
100-41-4	Ethylbenzene	ND	500	220	ug/l		
591-78-6	2-Hexanone	ND	2500	180	ug/l		
108-10-1	4-Methyl-2-pentanone(MIB)		2500	250	ug/l		
75-09-2	Methylene chloride	ND	1000	270	ug/l		
100-42-5	Styrene	ND	500	34	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	500	54	ug/l		
127-18-4	Tetrachloroethene	ND	500	190	ug/l		
108-88-3	Toluene	24900	500	200	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	500	47	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	500	77	ug/l		
79-01-6	Trichloroethene	ND	500	V 80	ug/l		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

J = Indicates an estimated value

		Report of Analysis	
Client Sample ID:	GW-MW-6S-120606		

Lab Sample Matrix: Method: Project:	Method: SW846 8260B			Canal Site,	Date S Date I Percer Clyde, N	12/06/06 12/07/06 n/a		
VOA TCL	List							
CAS No.	Comp	ound	Result	RL	MDL	Units	Q	
75-01-4 1330-20-7	ALC: TO BE STORE	chloride e (total)	73200 854	500 J 500 ↓	380 170	ug/l ug/l		

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	96%	92%	77-121%
17060-07-0	1,2-Dichloroethane-D4	109%	100%	65-133%
2037-26-5	Toluene-D8	92%	91%	80-117%
460-00-4	4-Bromofluorobenzene	105%	102%	79-124%

(a) Result is from Run# 2

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 2 of 2

3.3

E = Indicates value exceeds calibration range

Raw Data: II33724.D

Accutest Laboratories

Report of Analysis

Client Sam Lab Samp Matrix: Method: Project:	le ID: J4844 AQ - SW84	Ground Wa 6 8015		Canal Site,	Date F Percer	Sampled: Received: nt Solids: Y	12/07/06	
Run #1 Run #2	File ID II33724.D	DF 25	Analyzed 12/20/06	By HSC	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GII1684
CAS No.	Compound		Result	RL	MDL	Units	Q	
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		3520 718 2710	2.5 J 2.5 2.5	1.6 1.4 1.9	ug/l ug/l ug/l		

ND = Not detected MDL - Method Detection Limit RL = Reporting LimitE = Indicates value exceeds calibration range J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

3.3

				Rep	port of A	Analysis		Page 1 of 1
Client Sample Lab Sample I Matrix: Project:	ID: J4844 AQ -	Ground W	/ater	Old E	rie Canal Si	Date Sar Date Rec Percent ite, Clyde, NY	ceived: 12/07/06	
Metals Analy	sis	1.0						
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Sodium	67800	10000	ug/l	1	12/26/06	12/26/06 LH	SW846 6010B ¹	SW846 3010A ²

(1) Instrument QC Batch: MA18554 (2) Prep QC Batch: MP37400

3.3

65

Client Sample ID:GW-MW-6S-120606Lab Sample ID:J48443-2Matrix:AQ - Ground Water					Date Sampled: 12/06/06 Date Received: 12/07/06 Percent Solids: n/a					
Project:	GE - Par	ker Hannifin -	Old Erie (Canal Site,	Clyde, N	Y				
General Chemistry										
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method		
Alkalinity, Total as	CaCO3	439	17	mg/l	1	12/20/06	JA	EPA 310.1		
Chloride	04000	236	2.0	mg/l	1	01/02/07 23:46	JH	EPA 300/SW846 9056		
Nitrogen, Nitrate a		< 0.11	0.11	mg/l	1	12/30/06 13:36	MR	EPA353.2/SM4500NO2B		
Nitrogen, Nitrate +	Nitrite	< 0.10	0.10	mg/l	1	12/30/06 13:36	MR	EPA 353.2/LACHAT		
Nitrogen, Nitrite	inine	< 0.010	0.010	mg/l	1	12/07/06 17:55	MET	SM19 4500NO2B		
Sulfate		10.4	10	mg/l	1	01/02/07 23:46	JH	EPA 300/SW846 9056		
Sulfide		<2.0	2.0	mg/l	1	12/12/06	IA	EPA 376.1		

Report of Analysis

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

Page 1 of 1

3.3

Client Sample ID: Lab Sample ID:	GW-MV J48443-			Date Sampled: 12/06/06						
Matrix:		oundwater Fi	ltered		1000000000	Received: 12/07/0 nt Solids: n/a				
Project:	GE - Pa	rker Hannifin	- Old Erie	Canal Site,						
General Chemistry				0.00						
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method		
Dissolved Organic	Cashan	33.8	5.0	mg/l	5	01/03/07 17:08	ESI	EPA415.1/SW8469060M		

Report of Analysis

Report of Analysis

Page 1 of 2

Client Samp Lab Sample Matrix: Method: Project:		- Old Erie (Canal Site,	Date S Date R Percen Clyde, N				
Run #1 Run #2	1A45608.D 100	Analyzed 12/20/06 12/15/06	0/06 PWC 1		ate	Prep Batch n/a n/a	Analytical Batch V1A1952 V1A1943	
		10/10/00		n/a	-			
Run #1	Purge Volume 5.0 ml							
Run #1 Run #2	5.0 ml							
Run #5	U.U.M.	1.12.71						
VOA TCL	List							
CAS No.	Compound	Result	RL	MDL	Units	Q		
67-64-1	Acetone	ND	500	460	ug/l			
71-43-2	Benzene	ND	100	37	ug/l			
75-27-4	Bromodichloromethane	ND	100	14	ug/l			
75-25-2	Bromoform	ND	100	52	ug/l			
74-83-9	Bromomethane	ND	100	39	ug/l			
78-93-3	2-Butanone (MEK)	-ND	-500 K	140	ug/l			
75-15-0	Carbon disulfide	ND	100 J	38	ug/l			
56-23-5	Carbon tetrachloride	ND	100	53	ug/l			
108-90-7	Chlorobenzene	ND	100	74	ug/l			
75-00-3	Chloroethane	ND	100	65	ug/l			
67-66-3	Chloroform	ND	100	18	ug/l			
74-87-3	Chloromethane	ND	100	20	ug/l			
124-48-1	Dibromochloromethane	ND	100	17	ug/l			
75-34-3	1,1-Dichloroethane	ND	100	8.9	ug/l			
107-06-2	1,2-Dichloroethane	ND	100	57	ug/l			
75-35-4	1,1-Dichloroethene	59.3	100	49	ug/l	J		
156-59-2	cis-1,2-Dichloroethene	50400 ^a	500	89	ug/l			
156-60-5	trans-1,2-Dichloroethene	119	100	18	ug/l			
78-87-5	1,2-Dichloropropane	ND	100	50	ug/l			
10061-01-5		ND	100	56	ug/l			
10061-02-6	6 trans-1,3-Dichloropropene	ND	100	15	ug/l			
100-41-4	Ethylbenzene	ND	100	44	ug/l			
591-78-6	2-Hexanone	ND	500	35	ug/l			
108-10-1	4-Methyl-2-pentanone(MIB	K) ND	500	50	ug/l			
75-09-2	Methylene chloride	ND	200	53	ug/l			
100-42-5	Styrene	ND	100	6.9	ug/l			
79-34-5	1,1,2,2-Tetrachloroethane	ND	100	11	ug/l			
127-18-4	Tetrachloroethene	ND	100	39	ug/l			
108-88-3	Toluene	ND	100	41	ug/l			
71-55-6	1,1,1-Trichloroethane	ND	100	9.4	ug/l			
79-00-5	1,1,2-Trichloroethane	ND	100	15	ug/l			
79-01-6	Trichloroethene	95.5	100	16	ug/l	J		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

J = Indicates an estimated value

			Repor	t of Ana	alysis			Pa
	Method: SW846 8260B			Canal Site, (Date Perce	Sampled: Received: ent Solids: NY	12/06/06 12/07/06 n/a	
VOA TCL I	List							
CAS No.	Comp	ound	Result	RL	MDL	Units	Q	
75-01-4 1330-20-7		chloride e (total)	1750 ND	100 100	77 34	ug/l ug/l		
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Li	nits		
1868-53-7 17060-07-0 2037-26-5 460-00-4	1,2-Di Toluer	nofluoromethane ichloroethane-D4 ne-D8 nofluorobenzene	100% 124% 94% 109%	102% 119% 97% 87%	65 80	-121% -133% -117% -124%		

(a) Result is from Run# 2

MDL - Method Detection Limit ND = Not detected

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

3.1

RL = Reporting Limit

E = Indicates value exceeds calibration range

Raw Data: II33577.D

Accutest Laboratories

Report of Analysis

Page 1 of 1

Client Sam Lab Samp Matrix: Method: Project:	le ID: J4844 AQ - SW84	Ground Wa 16 8015		Canal Site,	Date F Percer	Sampled: Received: nt Solids: Y	12/07/06	
Run #1 Run #2	File ID II33577.D	DF 1	Analyzed 12/13/06	By HSC	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GII1679
CAS No.	Compound		Result	RL	MDL	Units	Q	
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		93.0 2.0 41.3	0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l		

 $\begin{array}{ll} ND \ = \ Not \ detected & MDL \ - \ Method \ Detection \ Limit \\ RL \ = \ Reporting \ Limit \\ E \ = \ Indicates \ value \ exceeds \ calibration \ range \end{array}$

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3

				Rej	port of A	Analysis		Page 1 c
Client Sample Lab Sample I Matrix:	D: J4844	MW-6B-12 3-1 Ground V				Date Sam Date Rec Percent S	17.	
Project:	GE -	Parker Ha	annifin -	Old E	rie Canal S	ite, Clyde, NY	5011 0 3. 11/a	
Metals Analys	sis							
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Sodium	73600	10000	ug/l	1	12/26/06	12/26/06 LH	SW846 6010B ¹	SW846 3010A ²

(1) Instrument QC Batch: MA18554 (2) Prep QC Batch: MP37400

ω.1

		Repor	t of An	alysis			Page 1 of 1
Lab Sample ID: J48	V-MW-6B-120606 443-1 2 - Ground Water			Date	Sampled: 12/06/0 Received: 12/07/0 nt Solids: n/a		
Project: GE	- Parker Hannifin	- Old Erie (Canal Site,	Clyde, N	IY		
General Chemistry							
Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Alkalinity, Total as CaC	203 256	5.0	mg/l	1	12/20/06	JA	EPA 310.1
Chloride	144	2.0	mg/l	1	01/02/07 23:28	JH	EPA 300/SW846 9056
Nitrogen, Nitrate ^a	< 0.11	0.11	mg/l	1	12/30/06 13:35	MR	EPA353.2/SM4500NO2B
Nitrogen, Nitrate + Nit	rite < 0.10	0.10	mg/l	1	12/30/06 13:35	MR	EPA 353.2/LACHAT
Nitrogen, Nitrite	< 0.010	0.010	mg/l	1	12/07/06 17:55	MET	SM19 4500NO2B
Sulfate	1420	100	mg/l	10	01/03/07 18:30	JH	EPA 300/SW846 9056
Sulfide	< 2.0	2.0	mg/l	1	12/12/06	JA	EPA 376.1

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

3.1

Client Sample ID: Lab Sample ID: Matrix:	ltered		Date I	Sampled: 12/06/0 Received: 12/07/0 nt Solids: n/a				
Project:	GE - Pa	rker Hannifin	- Old Erie	Canal Site,	Clyde, N	IY		
General Chemistry	/							
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Dissolved Organic	Carbon	1.5	1.0	mg/l	1	12/29/06 00:35	ESJ	EPA415.1/SW8469060M

Report of Analysis

Page 1 of 1

Report of Analysis

Page 1 of 2

Client Samp Lab Sample Matrix: Method: Project:		Date R Percen		eceived: 12/05/06 Solids: n/a				
	File ID DF	Analyzed	Ву	Prep Date		Prep Batch	Analytical Batch	
Run #1		2/08/06	PWC	n/a		n/a	V1A1932	
Run #2	1A45392.D 5	12/14/06	PWC	n/a		n/a	V1A1942	
4	Purge Volume						1. S. C. S. K. S.	
Run #1	5.0 ml							
Run #2	5.0 ml		100 M	_				
VOA TCL	List							
CAS No.	Compound	Result	RL	MDL	Units	Q		
67-64-1	Acetone	ND	5.0	4.6	ug/l			
71-43-2	Benzene	ND	1.0	0.37	ug/l			
75-27-4	Bromodichloromethane	ND	1.0	0.14	ug/l			
75-25-2	Bromoform	ND	1.0	0.52	ug/l			
74-83-9	Bromomethane	ND	1.0	0.39	ug/l			
78-93-3	2-Butanone (MEK)	ND	5.0	1.4	ug/l			
75-15-0	Carbon disulfide	ND	1.0 J	0.38	ug/l			
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l			
108-90-7	Chlorobenzene	ND	1.0	0.74	ug/l			
75-00-3	Chloroethane	ND	1.0	0.65	ug/l			
67-66-3	Chloroform	ND	1.0	0.18	ug/l			
74-87-3	Chloromethane	ND	1.0	0.20	ug/l			
124-48-1	Dibromochloromethane	ND	1.0	0.17	ug/l			
75-34-3	1,1-Dichloroethane	ND	1.0	0.089	ug/l			
107-06-2	1,2-Dichloroethane	ND	1.0	0.57	ug/l			
75-35-4	1,1-Dichloroethene	0.62	1.0	0.49	ug/l	J		
156-59-2	cis-1,2-Dichloroethene	414 a	5.0 J	0.89	ug/l			
156-60-5	trans-1,2-Dichloroethene	2.5	1.0	0.18	ug/l			
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l			
10061-01-5	5 cis-1,3-Dichloropropene	ND	1.0	0.56	ug/l			
10061-02-6	6 trans-1,3-Dichloropropene	ND	1.0	0.15	ug/l			
100-41-4	Ethylbenzene	ND	1.0	0.44	ug/l			
591-78-6	2-Hexanone	ND	5.0	0.35	ug/l			
108-10-1	4-Methyl-2-pentanone(MIB)		5.0	0.50	ug/l			
75-09-2	Methylene chloride	ND	2.0	0.53	ug/l			
100-42-5	Styrene	ND	1.0	0.069	ug/l			
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.11	ug/l			
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l			
108-88-3	Toluene	ND	1.0	0.41	ug/l			
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.094	ug/l			
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.15	ug/l			
79-01-6	Trichloroethene	0.46	1.0	0.16	ug/l	J		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

			Repor	t of Ana	alysis			F
Client Samj Lab Sample Matrix: Method: Project:		GW-MW-7S-120406 J48143-1 AQ - Ground Water SW846 8260B GE - Parker Hannifi		Canal Site, (Date F Percer	ampled: Received: nt Solids: Y	12/04/06 12/05/06 n/a	
VOA TCL	List							
CAS No.	Comp	oound	Result	RL	MDL	Units	Q	
75-01-4 1330-20-7		chloride e (total)	12.4 ND	1.0 1.0	0.77 0.34	ug/l ug/l		
CAS No.		ogate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7 17060-07-0		omofluoromethane Dichloroethane-D4	92% 101%	88% 89%		21% 33%		
2037-26-5 460-00-4	Tolue	ene-D8 mofluorobenzene	98% 90%	95% 86%	1000	17% 24%		

(a) Result is from Run# 2

ND = Not detected MDL - Method Detection Limit RL = Reporting LimitE = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 2 of 2

Raw Data: II33518.D

Accutest Laboratories

			Repo	rt of Ar	nalysis			Page 1 of 1			
Client Sample ID:GW-MW-7S-120406Lab Sample ID:J48143-1Date Sampled:12/04/06Matrix:AQ - Ground WaterDate Received:12/05/06Method:SW846 8015Percent Solids:n/aProject:GE - Parker Hannifin - Old Erie Canal Site, Clyde, NY											
Run #1 Run #2	File ID II33518.D	DF Analyzed 1 12/11/06		By HSC	Prep Date n/a		Prep Batch n/a	Analytical Batch GII1677			
CAS No.	Compound		Result	RL	MDL	Units	Q				
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		6.28 ND ND	0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l	,				

MDL - Method Detection Limit ND = Not detected RL = Reporting Limit E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω.1

				Rep	oort of A	Analysis		Page 1 of 1
Client Sample I Lab Sample ID: Matrix:	J4814 AQ -	Ground W	/ater			Date San Date Rec Percent	eived: 12/05/06	
Project:	GE -	Parker Ha	nnifin -	Old E	rie Canal Si	ite, Clyde, NY		
Metals Analysis	i i							
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Sodium	37700	10000	ug/l	1	12/21/06	12/22/06 ND	SW846 6010B ¹	SW846 3010A ²

Instrument QC Batch: MA18543
 Prep QC Batch: MP37346

3.1

6.)

Client Sample ID: GW-MW-7S-120406 Lab Sample ID: J48143-1 Matrix: AQ - Ground Water					Date I	Sampled: 12/04/0 Received: 12/05/0 nt Solids: n/a		
Project: GE - Parker Hannifin - Old Erie Canal Site,						Y		
General Chemistry								
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Alkalinity, Total as	CaCO3	352	5.0	mg/l	1	12/16/06	KD	EPA 310.1
Chloride	04000	74.2	2.0	mg/l	1	12/29/06 07:08	JH	EPA 300/SW846 9056
Nitrogen, Nitrate a		< 0.11	0.11	mg/l	1	12/21/06 15:10	NR	EPA353.2/SM4500NO2B
Nitrogen, Nitrate +	Nitrite	< 0.10	0.10	mg/l	1	12/21/06 15:10	NR	EPA 353.2/LACHAT
Nitrogen, Nitrite		< 0.010	0.010	mg/l	1	12/05/06 15:03	AO	SM19 4500NO2B
Sulfate		231	10	mg/l	1	12/29/06 07:08	JH	EPA 300/SW846 9056
Sulfide		< 2.0	2.0	mg/l	1	12/06/06	ST	EPA 376.1

Report of Analysis

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

3.1

Page 1 of 1

			Repo	rt of An	alysis			Page 1 of 1
Client Sample ID: Lab Sample ID: Matrix:	J48143-1FDate Sampled:12/04/06AQ - Groundwater FilteredDate Received:12/05/06Percent Solids:n/a							
Project:	GE - Parker Hannifin - Old Erie Canal Site, Clyde, NY							
General Chemistry	,							
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Dissolved Organic Carbon		1.3	1.0	mg/l	1	12/28/06 22:13	ESJ	EPA415.1/SW8469060M

Raw Data: 1A45175.D

Accutest Laboratories

Report of Analysis

Client Sample ID:GW-MW-7B-120406Lab Sample ID:J48143-2Matrix:AQ - Ground WaterMethod:SW846 8260BProject:GE - Parker Hannifin		Date Sampled: 12/04/06 Date Received: 12/05/06 Percent Solids: n/a Old Erie Canal Site, Clyde, NY						
Run #1 Run #2		Analyzed 2/08/06	By PWC	Prep Date n/a		Prep Batch n/a	Analytical Batch V1A1932	
Run #1 Run #2	Purge Volume 5.0 ml							
VOA TCL	List							
CAS No.	Compound	Result	RL	MDL	Units	Q		
67-64-1	Acetone	ND	5.0	4.6	ug/l			
71-43-2	Benzene	ND	1.0	0.37	ug/l			
75-27-4	Bromodichloromethane	ND	1.0	0.14	ug/l			
75-25-2	Bromoform	ND	1.0	0.52	ug/l			
74-83-9	Bromomethane	ND	1.0	0.39	ug/l			
78-93-3	2-Butanone (MEK)	ND	5.0	1.4	ug/l			
75-15-0	Carbon disulfide	ND	1.0	0.38	ug/l			
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l			
108-90-7	Chlorobenzene	ND	1.0	0.74	ug/l			
75-00-3	Chloroethane	ND	1.0	0.65	ug/l			
67-66-3	Chloroform	ND	1.0	0.18	ug/l			
74-87-3	Chloromethane	ND	1.0	0.20	ug/l			
124-48-1	Dibromochloromethane	ND	1.0	0.17	ug/l			
75-34-3	1,1-Dichloroethane	ND	1.0	0.089	ug/l			
107-06-2	1,2-Dichloroethane	ND	1.0	0.57	ug/l			
75-35-4	1,1-Dichloroethene	ND	1.0	0.49	ug/l			
156-59-2	cis-1,2-Dichloroethene	0.58	1.0	0.18	ug/l	J		
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.18	ug/l			
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l			
10061-01-5		ND	1.0	0.56	ug/l			
10061-02-0	6 trans-1,3-Dichloropropene	ND	1.0	0.15	ug/l			
100-41-4	Ethylbenzene	ND	1.0	0.44	ug/l			
591-78-6	2-Hexanone	ND	5.0	0.35	ug/l			
108-10-1	4-Methyl-2-pentanone(MIBH		5.0	0.50	ug/l			
75-09-2	Methylene chloride	ND	2.0	0.53	ug/l			
100-42-5	Styrene	ND	1.0	0.069	ug/l			
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.11	ug/l			
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l			
108-88-3	Toluene	ND	1.0	0.41	ug/l			
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.094	ug/l			
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.15	ug/l			
79-01-6	Trichloroethene	0.35	1.0	0.16	ug/l	J		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.3

Page 1 of 2

				Pa					
Lab Sample ID: J48143-2 Matrix: AQ - Ground Wa Method: SW846 8260B		AQ - Ground Water SW846 8260B	Date Sampled: 12/04/06						
VOA TCL I	List								
CAS No.	Comp	oound	Result	RL	MDL	Units	Q		
75-01-4	Vinyl	chloride	ND	1.0	0.77	ug/l			
1330-20-7	Xylen	ie (total)	ND	1.0	0.34	ug/l			
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lim	its			
1868-53-7	Dibro	mofluoromethane	93%		77-1	121%			
17060-07-0	1,2-D	ichloroethane-D4	103%			133%			
2037-26-5	Tolue	ene-D8	97%	97% 80-117%					
460-00-4 4-Bromofluorobenzene		89%							

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Raw Data: II33519.D

Accutest Laboratories

Report of Analysis

Client Sam Lab Samp Matrix: Method: Project:	le ID: J48143 AQ - Q SW840	Ground Wa 6 8015	ater	Canal Site,	Date Sampled: 12/04/06 Date Received: 12/05/06 Percent Solids: n/a Canal Site, Clyde, NY				
Run #1 Run #2	File ID II33519.D	DF 1	Analyzed 12/11/06	By HSC	Prep Date n/a		Prep Batch n/a	Analytical Batch GII1677	
CAS No.	Compound		Result	RL	MDL	Units	Q		
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		7.1 0.30 0.62	0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l			

 $\begin{array}{ll} ND = Not \ detected & MDL - Method \ Detection \ Limit \\ RL = Reporting \ Limit \\ E = Indicates \ value \ exceeds \ calibration \ range \end{array}$

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.3

J48143 Laborator

				Rep	port of A	Analysis		Page 1 of 1
Client Sample Lab Sample II Matrix: Project:	D: J4814 AQ -	Ground W	Vater	Old E	rie Canal Si	Date Sam Date Rec Percent S ite, Clyde, NY	eived: 12/05/06	
Metals Analys	lis							
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Sodium	90600	20000	ug/l	2	12/21/06	12/26/06 LH	SW846 6010B ¹	SW846 3010A ²

Instrument QC Batch: MA18554
 Prep QC Batch: MP37346

3.3

		Repor	t of An	alysis			Page 1 of 1
Lab Sample ID: J4814	MW-7B-120406 3-2 Ground Water			Date I	Sampled: 12/04/0 Received: 12/05/0 nt Solids: n/a		
Project: GE -	Parker Hannifin	- Old Erie (Canal Site,	Clyde, N	Y		
General Chemistry							
Analyte	Result	RL	Units	DF	Analyzed	By	Method
Alkalinity, Total as CaCO	3 16.1	5.0	mg/l	1	12/16/06	KD	EPA 310.1
Chloride	40.6	2.0	mg/l	1	12/29/06 06:50	JH	EPA 300/SW846 9056
Nitrogen, Nitrate ^a	0.19	0.11	mg/l	1	12/21/06 14:48	NR	EPA353.2/SM4500NO2B
Nitrogen, Nitrate + Nitrit	e 0.19	0.10	mg/l	1	12/21/06 14:48	NR	EPA 353.2/LACHAT
Nitrogen, Nitrite	< 0.010	0.010	mg/l	1	12/05/06 15:03	AO	SM19 4500NO2B
Sulfate	1740	100	mg/l	10	12/30/06 02:28	JH	EPA 300/SW846 9056
Sulfide	< 2.0	2.0	mg/l	1	12/06/06	ST	EPA 376.1

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

			Repo	rt of An	alysis			Page 1 of 1
Client Sample ID: Lab Sample ID: Matrix:	J48143-2	/-7B-120406 PF oundwater Fi	ltered		Date I	Sampled: 12/04/0 Received: 12/05/0 nt Solids: n/a		
Project:	GE - Par	ker Hannifin	- Old Erie	Canal Site,	Clyde, N	Y		
General Chemistry	,							
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Dissolved Organic	Carbon ^a	< 5.0	5.0	mg/l	5	12/28/06 22:37	ESJ	EPA415.1/SW8469060M

(a) Dilution required due to difficult sample matrix.

				Repo	rt of An	alysis			Page 1 of 2
Client Sam Lab Sampl Matrix: Method: Project:	le ID: J4 A S	Q - G W846	round Wate 8260B		Canal Site,	Date R Percen	ampled: teceived: t Solids: Y	12/01/06	
	File ID		DF	Analyzed	By	Prep Da	ate	Prep Batch	Analytical Batch
Run #1 Run #2	D120654.	D	1	12/06/06	YL	n/a		n/a	VD4809
Run #1 Run #2	Purge Vo 5.0 ml	lume							
VOA TCL	List								
CAS No.	Compou	md		Result	RL	MDL	Units	Q	
67-64-1	Acetone			ND	5.0-R	4.6	ug/l		
71-43-2	Benzene			ND	1.0	0.37	ug/l		
75-27-4	Bromodi	ichlore	omethane	ND		0.14	ug/l		
75-25-2	Bromofo	оm			1.0	0.52	ug/l		
74-83-9	Bromom			1. 11 M	1.0	0.39	ug/l		
78-93-3	2-Butano	one (N	1EK)	ND	5.0 F	1.4	ug/l		

74-83-9	Bromomethane	ND	1.0	0.39	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0 K	1.4	ug/l	
75-15-0	Carbon disulfide	ND	1.0	0.38	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.74	ug/l	
75-00-3	Chloroethane	ND	1.0	0.65	ug/l	
67-66-3	Chloroform	ND	1.0	0.18	ug/l	
74-87-3	Chloromethane	ND	1.0	0.20	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.17	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.089	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.57	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.49	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.18	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.18	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.56	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.15	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.44	ug/l	
591-78-6	2-Hexanone	ND	5.0	0.35	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	0.50	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.53	ug/l	
100-42-5	Styrene	ND	1.0	0.069	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.11	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l	
108-88-3	Toluene	ND	1.0	0.41	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.094	ug/l	
70 00 5	1.1.2 Trichloroathana	ND	1.0	0.15	110/1	

ND 1.0

ND 1.0

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

79-00-5

79-01-6

E = Indicates value exceeds calibration range

Trichloroethene

1,1,2-Trichloroethane

J = Indicates an estimated value

ug/l

ug/l

0.15

0.16

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

460-00-4

4-Bromofluorobenzene

Client Sample ID: GW-MW-8S-113006 Date Sampled: 11/30/06 Lab Sample ID: J47796-3 Date Received: 12/01/06 Matrix: AQ - Ground Water Percent Solids: n/a SW846 8260B Method: GE - Parker Hannifin - Old Erie Canal Site, Clyde, NY Project: **VOA TCL List** 0 CAS No. Compound Result RL MDL Units 0.77 75-01-4 Vinyl chloride ND 1.0 ug/l ND 1.0 0.34 1330-20-7 Xylene (total) ug/l Run#1 Run# 2 Limits CAS No. Surrogate Recoveries 99% 77-121% 1868-53-7 Dibromofluoromethane 119% 17060-07-0 1,2-Dichloroethane-D4 65-133% 2037-26-5 Toluene-D8 97% 80-117%

108%

79-124%

Report of Analysis

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 2 of 2

Client San Lab Samp Matrix: Method: Project:	le ID:	47796- AQ - G SW846	round Wa 8015		Canal Site,	Date F Percer	ampled: Received: at Solids: Y	12/01/06	
Run #1 Run #2	File ID 1133501.	D	DF 1	Analyzed 12/08/06	By HSC	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GII1676
CAS No.	Compo	und		Result	RL	MDL	Units	Q	
74-82-8 74-84-0	Methan Ethane	e		0.13 ND	0.10	0.066 0.056	ug/l ug/l		
74-85-1	Ethene			ND	0.10	0.075	ug/l		

Report of Analysis

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Client Sample I Lab Sample ID Matrix:		3				Date Sam Date Reco Percent S	ived: 12/01/06	
Project:		arker Ha	nnifin -	Old E	rie Canal Si	te, Clyde, NY		
Metals Analysis	8							
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Sodium	158000	30000	ug/l	3	12/18/06	12/19/06 LH	SW846 6010B 1	SW846 3010A ²

Instrument QC Batch: MA18529
 Prep QC Batch: MP37272

Report of Analysis

Client Sample ID: Lab Sample ID: Matrix:	GW-MW-8S-113006 J47796-3 AQ - Ground Water	Date Sampled: Date Received: Percent Solids:	12/01/06	
Project:	GE - Parker Hannifin - Old Erie G	Canal Site, Clyde, NY		

Report of Analysis

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Alkalinity, Total as CaCO3	409	13	mg/l	1	12/12/06	ST	EPA 310.1
Chloride	248	2.0	mg/l	1	12/21/06 00:18	JH	EPA 300/SW846 9056
Nitrogen, Nitrate a	0.17	0.11	mg/l	1	12/21/06 14:47	NR	EPA353.2/SM4500NO2B
Nitrogen, Nitrate + Nitrite	0.17	0.10	mg/l	1	12/21/06 14:47	NR	EPA 353.2/LACHAT
Nitrogen, Nitrite	< 0.010	0.010	mg/l	1	12/01/06 15:50	ST	SM19 4500NO2B
Sulfate	67.3	2.0	mg/l	1	12/21/06 00:18	ЛН	EPA 300/SW846 9056
Sulfide	<2.0	X3029803 7 1	mg/l	1	12/06/06	ST	EPA 376.1

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

Client Sample ID: Lab Sample ID: Matrix:	J47796-3	V-8S-113006 3F oundwater Fil	ttered		Date H	Sampled: 11/30/0 Received: 12/01/0 nt Solids: n/a		
Project:	GE - Pai	rker Hannifin	- Old Erie	Canal Site,	Clyde, N	Y		
General Chemistry	1							
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Dissolved Organic	Carbon	1.4	1.0	mg/l	1	12/22/06 00:21	ESJ	EPA415.1/SW8469060M

RL = Reporting Limit

		керо	rt of An	arysis			Fage 1 012
Client Samp Lab Sample Matrix: Method: Project:		11/30/06 12/01/06 n/a					
Run #1 Run #2		Analyzed 12/06/06	By YL	Prep Da n/a	ate	Prep Batch n/a	Analytical Batch VD4809
Run #1 Run #2	Purge Volume 5.0 ml						
VOA TCL	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	ND	5.0-R	4.6	ug/l		
71-43-2	Benzene	ND	1.0	0.37	ug/l		
75-27-4	Bromodichloromethane	ND	1.0	0.14	ug/l		
75-25-2	Bromoform	ND	1.0	0.52	ug/l		
74-83-9	Bromomethane	ND	1.0	0.39	ug/l		
78-93-3	2-Butanone (MEK)	-ND	5.0 P	1.4	ug/l		
75-15-0	Carbon disulfide	0.55	1.0	0.38	ug/l	J	
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l		
108-90-7	Chlorobenzene		1.0	0.74	ug/l		
75-00-3	Chloroethane	ND	1.0	0.65	ug/l		
67-66-3	Chloroform	ND	1.0	0.18	ug/l		
74-87-3	Chloromethane	ND	1.0	0.20	ug/l		
124-48-1	Dibromochloromethane	ND	1.0	0.17	ug/l		
75-34-3	1,1-Dichloroethane	ND	1.0	0.089	ug/l		
107-06-2	1,2-Dichloroethane	ND	1.0	0.57	ug/l		
75-35-4	1,1-Dichloroethene	ND	1.0	0.49	ug/l		
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.18	ug/l		
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.18	ug/l		
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/1		
10061-01-5		ND	1.0	0.56	ug/l		
10061-02-6		ND	1.0	0.15 0.44	ug/l ug/l		
100-41-4	Ethylbenzene	ND	1.0 5.0	0.44	ug/l		
591-78-6	2-Hexanone	ND K) ND	5.0	0.50	ug/l		
108-10-1	4-Methyl-2-pentanone(MIB	ND ND	2.0	0.50	ug/l		
75-09-2	Methylene chloride	ND	1.0	0.069	ug/l		
100-42-5	Styrene	IND CO	1.0	0.009	ugn		

Report of Analysis

ND = Not detected MDL - Method Detection Limit

1,1,2,2-Tetrachloroethane

Tetrachloroethene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Toluene

ND

ND

ND

ND

ND

ND 1.0

1.0

1.0

1.0

1.0

1.0

0.11

0.39

0.41

0.094

0.15

0.16

RL = Reporting Limit

79-34-5

127-18-4

108-88-3

71-55-6

79-00-5

79-01-6

E = Indicates value exceeds calibration range

Trichloroethene

J = Indicates an estimated value

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	1.0 1.0	0.77 0.34	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lin	nits	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	97% 115% 97% 110%		65- 80-	121% 133% 117% 124%	

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

	SW846	round Wa 8015		Canal Site,	Date F Percen	t Solids:	12/01/06	
File ID 1133504.	D	DF 1	Analyzed 12/08/06	By HSC	Prep D n/a	ate	Prep Batch n/a	Analytical Batch G111676
Compo	ound		Result	RL	MDL	Units	Q	
			4.00 0.11	0.10	0.066	ug/l ug/l		
	File ID 1133504. Compo Methar Ethane	AQ - G SW846 GE - Pa	AQ - Ground Wa SW846 8015 GE - Parker Ham File ID DF I133504.D 1 Compound Methane Ethane	AQ - Ground Water SW846 8015 GE - Parker Hannifin - Old ErieFile IDDFAnalyzed 12/08/06CompoundResultMethane4.00 0.11	AQ - Ground Water SW846 8015 GE - Parker Hannifin - Old Erie Canal Site, File ID DF Analyzed By I133504.D 1 12/08/06 HSC Compound Result RL Methane 4.00 0.10 Ethane 0.11 0.10	AQ - Ground Water Date F SW846 8015 Percer GB - Parker Hannifin - Old Erie Canal Site, Clyde, N File ID DF Analyzed By Prep D I133504.D 1 12/08/06 HSC n/a Compound Result RL MDL Methane 4.00 0.10 0.066 Ethane 0.11 0.10 0.056	AQ - Ground Water Date Received: SW846 8015 Percent Solids: GE - Parker Hannifin - Old Erie Canal Site, Clyde, NY Prep Date File ID DF Analyzed By Prep Date I133504.D 1 12/08/06 HSC n/a Compound Result RL MDL Units Methane 4.00 0.10 0.066 ug/l Ethane 0.11 0.10 0.056 ug/l	AQ - Ground Water SW846 8015 GB - Parker Hannifin - Old Erie Canal Site, Clyde, NY Date Received: 12/01/06 Percent Solids: n/a File ID I133504.D DF 1 Analyzed 12/08/06 By HSC Prep Date n/a Prep Batch n/a Compound Result RL MDL Units Q Methane Ethane 4.00 0.11 0.10 0.066 ug/l

Report of Analysis

Page 1 of 1

ND = Not detected MDL - Method Detection Limit

E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

RL = Reporting Limit

Client Sample I Lab Sample ID Matrix:	: J47796	W-9S-11 -5 fround W				Date Sam Date Reco Percent S		
Project:	GE - Pa	arker Ha	nnifin -	Old E	rie Canal Si	te, Clyde, NY		
Metals Analysis	5			101778				
		RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Analyte	Result	KD.	Onto	DI	ricp		202202020	NECO.
Sodium	58900	10000	ug/l	1	12/18/06	12/19/06 LH	SW846 6010B ¹	SW846 3010A ²

Report of Analysis

Instrument QC Batch: MA18522
 Prep QC Batch: MP37272

Client Sample ID: Lab Sample ID: Matrix:	GW-MW-9S-113006 J47796-5 AQ - Ground Water		11/30/06 12/01/06 n/a	
Project:	GE - Parker Hannifin - Old Erie	Canal Site, Clyde, NY		

Report of Analysis

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Alkalinity, Total as CaCO3	340	··· 13	mg/l	1	12/12/06	ST	EPA 310.1
Chloride	55.5	2.0	mg/l	1	12/21/06 02:09	JH	EPA 300/SW846 9056
Nitrogen, Nitrate ^a	<0.11	0.11	mg/l	1	12/21/06 14:55	NR	EPA353.2/SM4500NO2B
Nitrogen, Nitrate + Nitrite	< 0.10	0.10	mg/l	1	12/21/06 14:55	NR	EPA 353.2/LACHAT
Nitrogen, Nitrite	< 0.010	0.010	mg/l	1	12/01/06 14:45	ST	SM19 4500NO2B
Sulfate	96.3	2.0	mg/l	1	12/21/06 02:09	JH	EPA 300/SW846 9056
Sulfide	<2.0	2.0	mg/l	1	12/06/06	ST	EPA 376.1

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

Client Sample ID: Lab Sample ID: Matrix:	J47796-3 AQ - Gr	oundwater Fi			Date H Percer	Sampled: 11/30/0 Received: 12/01/0 ht Solids: n/a		
Project:	GE - Pa	rker Hannifin	- Old Erie	Canal Site,	Clyde, N	Y		
General Chemistry	,							
Analyte		Result	RL	Units	DF	Analyzed	By	Method
Dissolved Organic	Carbon	5.1	1.0	mg/l	1	12/22/06 01:03	ESJ	EPA415.1/SW8469060N

Report of Analysis

Raw Data: D120644.D

Accutest Laboratories

		Repo	rt of An	alysis			Page 1 of
Client Samp Lab Sample Matrix: Method: Project:			Canal Site,	Date R Percen	ampled: teceived: t Solids: Y		
Run #1 Run #2		Analyzed 2/06/06	By YL	Prep Da n/a	ate	Prep Batch n/a	Analytical Batch VD4809
Run #1 Run #2	Purge Volume 5.0 ml						
VOA TCL	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	ND	5.0-2	4.6	ug/l		
71-43-2	Benzene	ND	1.0	0.37	ug/l		
75-27-4	Bromodichloromethane	ND	1.0	0.14	ug/l		
75-25-2	Bromoform	ND	1.0	0.52	ug/l		
74-83-9	Bromomethane	ND	1.0	0.39	ug/l		
78-93-3	2-Butanone (MEK)	ND	5.0-2	1.4	ug/l		
75-15-0	Carbon disulfide	ND	1.0	0.38	ug/l		
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l		
108-90-7	Chlorobenzene	ND	1.0	0.74	ug/l		
75-00-3	Chloroethane	ND	1.0	0.65	ug/l		
67-66-3	Chloroform	ND	1.0	0.18	ug/l		
74-87-3	Chloromethane	ND	1.0	0.20	ug/l		
124-48-1	Dibromochloromethane	ND	1.0	0.17	ug/l		
75-34-3	1,1-Dichloroethane	ND	1.0	0.089	ug/l		
107-06-2	1,2-Dichloroethane	ND	1.0	0.57	ug/l		
75-35-4	1,1-Dichloroethene	ND	1.0	0.49	ug/l		
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.18	ug/l		
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.18	ug/l		
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l		
10061-01-5		ND	1.0	0.56	ug/l		
10061-02-6		ND	1.0	0.15	ug/l		
100-41-4	Ethylbenzene	ND	1.0	0.44	ug/l		
591-78-6	2-Hexanone	ND	5.0	0.35	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBH		5.0	0.50	ug/l		
75-09-2	Methylene chloride	ND	2.0	0.53	ug/l		
100-42-5	Styrene	ND	1.0	0.069	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.11 0.39	ug/l		
127-18-4	Tetrachloroethene	ND	1.0 1.0	0.39	ug/l		
108-88-3	Toluene	ND	1.0	0.41	ug/l ug/l		
71-55-6	1,1,1-Trichloroethane	ND ND	1.0	0.094	ug/l		
79-00-5	1,1,2-Trichloroethane			0.15			
79-01-6	Trichloroethene	ND	1.0	0.10	ug/l		

MDL - Method Detection Limit ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

			17					
Client Samp Lab Sample Matrix: Method: Project:		GW-MW-10B-11300 J47958-5 AQ - Ground Water SW846 8260B GE - Parker Hannifin		anal Site, (Date H Percer	Sampled: Received: nt Solids: Y	11/30/06 12/02/06 n/a	
VOA TCL I	List							
CAS No.	Comp	ound	Result	RL	MDL	Units	Q	
75-01-4		chloride	ND	1.0	0.77	ug/l		
1330-20-7	Xylen	e (total)	ND	1.0	0.34	ug/l		
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7	Dibro	mofluoromethane	96%		77-1	121%		
17060-07-0	1,2-D	ichloroethane-D4	111%			133%		
2037-26-5	Tolue	ne-D8	97%			117%		
460-00-4	4-Bro	mofluorobenzene	107%		79-	124%		

Report of Analysis

MDL - Method Detection Limit ND = Not detected RL = Reporting Limit

N = Indicates presumptive evidence of a compound

Page 2 of 2

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Raw Data: II33489.D

Accutest Laboratories

			Kepo	IT OF AL	1419515			Tuge I of
Client San Lab Samp Matrix: Method: Project:	le ID: J47 AQ SW	/-MW-10B-11 958-5 - Ground Wa 846 8015 - Parker Han		Canal Site,	Date F Percer	Sampled: Received: nt Solids: Y	12/02/06	
Run #1 Run #2	File ID II33489.D	DF 1	Analyzed 12/08/06	By HSC	Prep Date n/a		Prep Batch n/a	Analytical Batch GII1676
CAS No.	Compoun	d	Result	RL	MDL	Units	Q	
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		2.27 ND ND	0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l		

Report of Analysis

ND = Not detected MDL - Method Detection Limit RL = Reporting LimitE = Indicates value exceeds calibration range J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

				Rep	port of A	Analysis		Page 1 of 1
Client Sample ID:GW-MW-10B-113006Lab Sample ID:J47958-5Date Sampled:11/30/06Matrix:AQ - Ground WaterDate Received:12/02/06Project:GE - Parker Hannifin - Old Erie Canal Site, Clyde, NYn/a								
Metals Analysi	s							
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Sodium	568000	100000	ug/l	10	12/18/06	12/19/06 LH	SW846 6010B ¹	SW846 3010A ²

Instrument QC Batch: MA18529
 Prep QC Batch: MP37272

Sulfide

Client Sample ID: Lab Sample ID: Matrix:	J47958-5 AQ - Gr	ound Water	Old Fein C	anal Sita	Date Sampled: 11/30/06 Date Received: 12/02/06 Percent Solids: n/a Clyde, NY						
Project: General Chemistry		-ker Hannifin -	Old Erie C	anai She,	Ciyde, iv						
	'				DE	Analyzad	Du	Method			
Analyte		Result	RL	Units	DF	Analyzed	Ву	Witthou			
Alkalinity, Total as	CaCO3	152	13	mg/l	1	12/14/06	ST	EPA 310.1			
Chloride ^a		751	20 J	mg/l	10	12/29/06 22:47	JH	EPA 300/SW846 9056			
Nitrogen, Nitrate b		< 0.11	0.11	mg/l	1	12/21/06 15:03	NR	EPA353.2/SM4500NO2B			
Nitrogen, Nitrate +	- Nitrite	< 0.10	0.10	mg/l	1	12/21/06 15:03	NR	EPA 353.2/LACHAT			
Nitrogen, Nitrite c		0.025	0.010	mg/l	1	12/02/06 14:00	HF	SM19 4500NO2B			
Sulfate d		1970	100 J	mg/l	10	12/29/06 22:47	JH	EPA 300/SW846 9056			
Junat		1010	20		1	12/06/06	CT	EDA 376 1			

mg/l

1

12/06/06

ST

EPA 376.1

Report of Analysis

(a) Initially analyzed within holding time, but over calibration. Reanalysis on dilution done 1 day out of holding time.

2.0

(b) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

<2.0

(c) Analysis done out of holding tine. Spike blank indicates possible slight high bias (113% recovery).

(d) Initially analyzed within holding time, but over calibratiion. Reanalysis on dilution done 1 day out of holding time.

Client Sample ID: Lab Sample ID: Matrix:	GW-MW J47958-5 AQ - Gro			Date Sampled: 11/30/06 Date Received: 12/02/06 Percent Solids: n/a				
Project:		ker Hannifin	- Old Erie	Canal Site,	Clyde, N	Y		
General Chemistry	'							
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Dissolved Organic	Carbon	< 1.0	1.0	mg/l	1	12/26/06 18:34	мо	EPA415.1/SW8469060N

		Repo	rt of Ar	alysis			Page 1 of 2
Client Sam Lab Sampl Matrix: Method: Project:			Canal Site,	Date F Percer	Sampled: Received: nt Solids: Y	: 12/02/06	
Run #1 Run #2		Analyzed 12/06/06	By YL	Prep D n/a	ate	Prep Batch n/a	Analytical Batch VD4809
Run #1 Run #2	Purge Volume 5.0 ml						
VOA TCL	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	-ND	5.0-	4.6	ug/l		
71-43-2	Benzene	ND	1.0	0.37	ug/l		
75-27-4	Bromodichloromethane	ND	1.0	0.14	ug/l		
75-25-2	Bromoform	ND	1.0	0.52	ug/l		
74-83-9	Bromomethane	ND	1.0	0.39	ug/l		
78-93-3	2-Butanone (MEK)	-ND	5.0	_ 1.4	ug/l		
75-15-0	Carbon disulfide	ND	1.0	0.38	ug/l		
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l		
108-90-7	Chlorobenzene	ND	1.0	0.74	ug/l		
75-00-3	Chloroethane	ND	1.0	0.65	ug/l		
67-66-3	Chloroform	ND	1.0	0.18	ug/l		
74-87-3	Chloromethane	ND	1.0	0.20	ug/l		
124-48-1	Dibromochloromethane	ND	1.0	0.17	ug/l		
75-34-3	1,1-Dichloroethane	ND	1.0	0.089	ug/l		
107-06-2	1,2-Dichloroethane	ND	1.0	0.57	ug/l		
75-35-4	1,1-Dichloroethene	ND	1.0	0.49	ug/l		
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.18	ug/l		
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.18	ug/l		
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l		
	cis-1,3-Dichloropropene	ND	1.0	0.56	ug/l		
10061-02-6		ND	1.0	0.15	ug/l		
100-41-4	Ethylbenzene	ND	1.0 5.0	0.44 0.35	ug/l		
591-78-6	2-Hexanone	ND () ND	5.0	0.35	ug/l		
108-10-1	4-Methyl-2-pentanone(MIB)	K) ND ND	2.0	0.50	ug/l ug/l		
75-09-2 100-42-5	Methylene chloride Styrene	ND	1.0	0.069	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.11	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l		
108-88-3	Toluene	ND	1.0	0.41	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.094	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.15	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.16	ug/l		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

J = Indicates an estimated value

			2.96					_
Client Samp Lab Sample Matrix: Method: Project:		GW-MW-11S-11300 J47958-3 AQ - Ground Water SW846 8260B GE - Parker Hannifi		anal Site, (Date I Percer	Sampled: Received: nt Solids: Y	11/30/06 12/02/06 n/a	
VOA TCL L	ist							
CAS No.	Comp	ound	Result	RL	MDL	Units	Q	
75-01-4	Vinyl	chloride	ND	1.0	0.77	ug/l		
1330-20-7	Xylen	e (total)	ND	1.0	0.34	ug/l		
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7	Dibro	mofluoromethane	97%	(77-1	121%		
17060-07-0	1,2-D	ichloroethane-D4	111%		65-1	133%		
2037-26-5	Tolue	ne-D8	95%		0.000	117%		
460-00-4	4-Bro	mofluorobenzene	105%		79-1	124%		

Report of Analysis

N = Indicates presumptive evidence of a compound

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Raw Data: II33486.D

Accutest Laboratories

			Repo	rt of A	nalysis			Page 1 of
Client San Lab Samp Matrix: Method: Project:	le ID: J4795 AQ - SW84	Ground Wa 6 8015		Canal Site	Date I Percer	Sampled: Received: nt Solids IY	12/02/06	
Run #1 Run #2	File ID II33486.D	DF 1	Analyzed 12/08/06	By HSC	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GII1676
CAS No.	Compound		Result	RL	MDL	Units	Q	
74-82-8	Methane		218	0.10	0.066	ug/l		
74-84-0 74-85-1	Ethane Ethene		ND ND	0.10 0.10	0.056 0.075	ug/l ug/l		

MDL - Method Detection Limit ND = Not detected RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

				Rep	oort of A	Analysis		Page 1 of 1
Client Sample I Lab Sample ID Matrix: Project:): J4795 AQ -	Ground W	/ater	Old E	rie Canal Si	Date Sam Date Rec Percent S ite, Clyde, NY	eived: 12/02/06	
Metals Analysi	s							
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Sodium	10900	10000	ug/l	1	12/18/06	12/19/06 LH	SW846 6010B ¹	SW846 3010A ²

Instrument QC Batch: MA18522
 Prep QC Batch: MP37272

			Repor	t of An	alysis			Page 1 of 1
Client Sample ID:	GW-MV	V-11S-113006						
Lab Sample ID:	J47958-3	3			Date S	Sampled: 11/30/0	6	
Matrix:	AQ - Gr	ound Water			Date I	Received: 12/02/0	6	A
					Percer	nt Solids: n/a		
Project:	GE - Pa							
General Chemistry								
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Alkalinity, Total as	CaCO3	442	13	mg/l	1	12/14/06	ST	EPA 310.1
Chloride		10.1	2.0	mg/l	1	12/28/06 00:43	JH	EPA 300/SW846 9056
Nitrogen, Nitrate a		< 0.11	0.11	mg/l	1	12/21/06 15:00	NR	EPA353.2/SM4500NO2B
Nitrogen, Nitrate +	Nitrite	< 0.10	0.10	mg/l	1	12/21/06 15:00	NR	EPA 353.2/LACHAT
Nitrogen, Nitrite b		< 0.010	0.010	mg/l	1	12/02/06 14:00	HF	SM19 4500NO2B
Sulfate		24.3	10	mg/l	1	12/28/06 00:43	JH	EPA 300/SW846 9056
Sulfide		< 2.0	2.0	mg/l	1	12/06/06	ST	EPA 376.1

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)(b) Analysis done out of holding time.

			Repo	It of All	arysis			Tage 1 of 1
Client Sample ID:	GW-M	W-11S-113006	5					
Lab Sample ID:	J47958-	3F			Date !	Sampled: 11/30/0)6	
Alatrix: AQ - Groundwater F			ltered					
						nt Solids: n/a		
Project:	GE - Parker Hannifin - Old Erie Canal Site, Clyde, NY							
General Chemistry								
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Dissolved Organic O	Carbon	2.5	1.0	mg/l	1	12/26/06 18:20	мо	EPA415.1/SW8469060M

Report of Analysis

Raw Data: D120643.D

Accutest Laboratories

	Report of Analysis											
Client Samj Lab Sample Matrix: Method: Project:			Canal Site,	Date I Percer	Sampled: Received nt Solids Y	: 12/02/06						
Run #1 Run #2			By YL	Prep Date n/a		Prep Batch n/a	Analytical Batch VD4809					
Run #1 Run #2	Purge Volume 5.0 ml											
VOA TCL	List											
CAS No.	Compound	Result	RL	MDL	Units	Q						
67-64-1	Acetone	ND	5.0 P	4.6	ug/l							
71-43-2	Benzene	ND	1.0	0.37	ug/l							
75-27-4	Bromodichloromethane	ND	1.0	0.14	ug/l							
75-25-2	Bromoform	ND	1.0	0.52	ug/l							
74-83-9	Bromomethane	ND	1.0	0.39	ug/l							
78-93-3	2-Butanone (MEK)	-ND	5.0-P		ug/l							
75-15-0	Carbon disulfide	ND	1.0	0.38	ug/l							
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l							
108-90-7	Chlorobenzene	ND	1.0	0.74	ug/l							
75-00-3	Chloroethane	ND	1.0	0.65	ug/l							
67-66-3	Chloroform	ND	1.0	0.18	ug/l							
74-87-3	Chloromethane	ND	1.0	0.20	ug/l							
124-48-1	Dibromochloromethane	ND	1.0	0.17	ug/l							
75-34-3	1,1-Dichloroethane	ND	1.0	0.089	ug/l							
107-06-2	1,2-Dichloroethane	ND	1.0	0.57	ug/l							
75-35-4	1,1-Dichloroethene	ND	1.0	0.49	ug/l							
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.18	ug/l							
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.18	ug/l							
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l							
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.56	ug/l							
10061-02-6		ND	1.0	0.15	ug/l							
100-41-4	Ethylbenzene	ND	1.0	0.44	ug/l							
591-78-6	2-Hexanone	ND	5.0	0.35	ug/l							
108-10-1	4-Methyl-2-pentanone(MIBK		5.0	0.50	ug/l							
75-09-2	Methylene chloride	ND	2.0	0.53	ug/l							
100-42-5	Styrene	ND	1.0	0.069	ug/l							
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.11	ug/l							
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l							
108-88-3	Toluene	ND	1.0	0.41	ug/l							
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.094	ug/l							
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.15	ug/l							
79-01-6	Trichloroethene	ND	1.0	0.16	ug/l							

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

			Repor	t of Ana	alysis		Seller Street	Pa	
Client Sample ID:GW-MW-11B-113006Lab Sample ID:J47958-4Matrix:AQ - Ground WaterMethod:SW846 8260BProject:GE - Parker Hannifin			Date Sampled: 11/30/06 Date Received: 12/02/06 Percent Solids: n/a - Old Erie Canal Site, Clyde, NY						
VOA TCL I	list								
CAS No.	Comp	oound	Result	RL	MDL	Units	Q		
75-01-4 1330-20-7	Vinyl chloride Xylene (total)		ND ND	1.0 1.0	0.77 0.34	ug/l ug/l			
CAS No.	. Surrogate Recoveries		Run# 1	Run# 2	Lim	its			
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene		94% 108% 97% 107%		77-121% 65-133% 80-117% 79-124%				

N = Indicates presumptive evidence of a compound

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Raw Data: II33488.D

Accutest Laboratories

			Repo	rt of Ar	nalysis			Page 1 of 1	
Client San Lab Samp Matrix: Method: Project:	le ID: J479 AQ SW	958-4 - Ground W 846 8015	round Water Date Received: 12/02/06						
Run #1 Run #2	File ID II33488.D	DF 1	Analyzed 12/08/06	By HSC	Prep D n/a	Pate	Prep Batch n/a	Analytical Batch GII1676	
CAS No.	Compound		Result	RL	MDL	Units	Q		
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		2.87 ND ND	0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l			

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

				Rep	port of A	Analysis		Page	e 1 of 1	
Client Sample Lab Sample II Matrix:	D: J4795	/W-11B- 8-4 Ground V				Date Sam Date Rec Percent S	eived: 12/02/06			
Project: GE - Parker Hannifin - Old Erie Canal Site, Clyde, NY										
Metals Analys	is	2.54								
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method		
Sodium	477000	10000	0 ug/l	10	12/18/06	12/19/06 LH	SW846 6010B ¹	SW846 3010A ²		

(1) Instrument QC Batch: MA18529 (2) Prep QC Batch: MP37272

Client Sample ID: Lab Sample ID: Matrix:	J47958-4 AQ - Gr	ound Water			Date I Percer	Sampled: 11/30/0 Received: 12/02/0 nt Solids: n/a		
Project:	GE - Pa	rker Hannifin -	Old Erie C	anal Site,	Clyde, N	Y		
General Chemistry	-							
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Alkalinity, Total as	CaCO3	159	13	mg/l	1	12/14/06	ST	EPA 310.1
Chloride ^a		613	20 T	mg/l	10	12/29/06 21:52	JH	EPA 300/SW846 9056
Nitrogen, Nitrate b		< 0.11	0.11	mg/l	1	12/21/06 15:01	NR	EPA353.2/SM4500NO2B
Nitrogen, Nitrate +	Nitrite	< 0.10	0.10	mg/l	1	12/21/06 15:01	NR	EPA 353.2/LACHAT
Nitrogen, Nitrite c		< 0.010	0.010	mg/l	1	12/02/06 14:00	HF	SM19 4500NO2B
Sulfate d		1930	100 T	mg/l	10	12/29/06 21:52	JH	EPA 300/SW846 9056
Sulfide		< 2.0	2.0	mg/l	1	12/06/06	ST	EPA 376.1

Report of Analysis

(a) Initially analyzed within holding time, but over calibration. Reanalysis on dilution done 1 day out of holding time.

(b) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

(c) Analysis done out of holding time.

(d) Initially analyzed within holding time, but over calibratiion. Reanalysis on dilution done 1 day out of holding time.

			Repo	rt of An	alysis			Page 1 of 1
Client Sample ID: Lab Sample ID: Matrix:	: GW-MW-11B-113006 J47958-4F Date Sampled: 11/30/06 AQ - Groundwater Filtered Date Received: 12/02/06 Percent Solids: n/a							
Project:	GE - Pa	rker Hannifin	- Old Erie	Canal Site,				
General Chemistry	1							
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Dissolved Organic Carbon		<1.0	1.0	mg/l	1	12/26/06 18:26	мо	EPA415.1/SW8469060M

Raw Data: D120640.D

Accutest Laboratories

	Page 1 of 2							
Client Samp Lab Sample Matrix: Method: Project:			Canal Site,	Date R Percen	ampled: .eceived: t Solids: Y	11/30/06 12/02/06 n/a		
Run #1 Run #2		Analyzed 12/06/06	By YL	Prep Da n/a	ate	Prep Batch n/a	Analytical Batch VD4809	
Run #1 Run #2	Purge Volume 5.0 ml							
VOA TCL	List							
CAS No.	Compound	Result	RL	MDL	Units	Q		
67-64-1	Acetone	ND		4.6	ug/l			
71-43-2	Benzene	ND	1.0	0.37	ug/l			
71-43-2	Bromodichloromethane	ND	1.0	0.14	ug/l			
75-25-2	Bromoform	ND	1.0	0.52	ug/l			
74-83-9	Bromomethane	ND	1.0	0.39	ug/l			
78-93-3	2-Butanone (MEK)	ND		- 1.4	ug/l			
75-15-0	Carbon disulfide	ND	1.0	0.38	ug/l			
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l			
108-90-7	Chlorobenzene	ND	1.0	0.74	ug/l			
75-00-3	Chloroethane	ND	1.0	0.65	ug/l			
67-66-3	Chloroform	ND	1.0	0.18	ug/l			
74-87-3	Chloromethane	ND	1.0	0.20	ug/l			
124-48-1	Dibromochloromethane	ND	1.0	0.17	ug/l			
75-34-3	1,1-Dichloroethane	ND	1.0	0.089	ug/l			
107-06-2	1,2-Dichloroethane	ND	1.0	0.57	ug/l			
75-35-4	1,1-Dichloroethene	ND	1.0	0.49	ug/l			
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.18	ug/l			
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.18	ug/l			
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l			
10061-01-5		ND	1.0	0.56	ug/l			
10061-02-6		ND	1.0	0.15	ug/l			
100-41-4	Ethylbenzene	ND	1.0	0.44	ug/l			
591-78-6	2-Hexanone	ND	5.0	0.35	ug/l			
108-10-1	4-Methyl-2-pentanone(MIB)	K) ND	5.0	0.50	ug/l			
75-09-2	Methylene chloride	ND	2.0	0.53	ug/l			
100-42-5	Styrene	ND	1.0	0.069	ug/l			
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.11	ug/l			
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l			
108-88-3	Toluene	ND	1.0	0.41	ug/l			
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.094	ug/l			
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.15	ug/l			
79-01-6	Trichloroethene	ND	1.0	0.16	ug/l			

MDL - Method Detection Limit ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

3.1

11 of 1464 J47958 Labors

	Report of Analysis										
Client Sample ID: Lab Sample ID: Matrix: Method: Project:		GW-MW-12S-113006 J47958-1 AQ - Ground Water SW846 8260B GE - Parker Hannifin		Date Sampled: 11/30/06 Date Received: 12/02/06 Percent Solids: n/a - Old Erie Canal Site, Clyde, NY							
VOA TCL I	List										
CAS No.	Comp	ound	Result	RL	MDL	Units	Q				
75-01-4 1330-20-7		chloride e (total)	ND ND	1.0 1.0	0.77 0.34	ug/l ug/l					
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lim	its					
1868-53-7 17060-07-0 2037-26-5 460-00-4	D-07-0 1,2-Dichloroethane-D4 -26-5 Toluene-D8		96% 107% 99% 105%		65-1 80-1	121% 133% 117% 124%					

MDL - Method Detection Limit ND = Not detected RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blankN = Indicates presumptive evidence of a compound

Page 2 of 2

Raw Data: II33484.D

Accutest Laboratories

	Report of Analysis								
Client Sample ID:GW-MW-12S-113006Lab Sample ID:J47958-1Date Sampled:11/30/06Matrix:AQ - Ground WaterDate Received:12/02/06Method:SW846 8015Percent Solids:n/aProject:GE - Parker Hannifin - Old Erie Canal Site, Clyde, NY									
Run #1 Run #2	File ID II33484.D	DF 1	DF Analyzed By 1 12/08/06 HSC		Prep Date n/a		Prep Batch n/a	Analytical Batch GII1676	
CAS No.	Compound	1	Result	RL	MDL	Units	Q		
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		34.3 ND ND	0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l			

MDL - Method Detection Limit ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

				Rep	port of A	Analysis		Page 1 of 1	
Client Sample II Lab Sample ID: Matrix:	J47958 AQ - 0	Ground W	/ater						
Project: GE - Parker Hannifin - Old Erie Canal Site, Clyde, NY									
Metals Analysis	6								
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method	
Sodium	< 10000	10000	ug/l	1	12/18/06	12/19/06 LH	SW846 6010B ¹	SW846 3010A ²	

Instrument QC Batch: MA18522
 Prep QC Batch: MP37272

c .

3.1

Client Sample ID: Lab Sample ID: Matrix:	J47958-1	V-12S-113006 L ound Water			Date I	Sampled: 11/30/0 Received: 12/02/0 nt Solids: n/a	-	
Project:	GE - Par	rker Hannifin -	Old Erie (Canal Site,	Clyde, N	IY		
General Chemistry		24.61						
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Alkalinity, Total as	CaCO3	629	13	mg/l	1	12/14/06	ST	EPA 310.1
Chloride		3.0	2.0	mg/l	1	12/27/06 23:30	JH	EPA 300/SW846 9056
Nitrogen, Nitrate a		5.3	0.21	mg/l	1	12/21/06 17:03	NR	EPA353.2/SM4500NO2B
Nitrogen, Nitrate +	Nitrite	5.3	0.20	mg/l	2	12/21/06 17:03	NR	EPA 353.2/LACHAT
Nitrogen, Nitrite b		< 0.010	0.010	mg/l	1	12/02/06 14:00	HF	SM19 4500NO2B
Sulfate		72.4	10	mg/l	1	12/27/06 23:30	JH	EPA 300/SW846 9056
Sulfide		< 2.0	2.0	mg/l	1	12/06/06	ST	EPA 376.1

Report of Analysis

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)(b) Analysis done out of holding time.

Page 1 of 1

			Repo	rt of An	alysis			Page 1 of 1
Client Sample ID: Lab Sample ID: Matrix:	J47958- AQ - Gi	oundwater Fi	ltered	0.10	Date I Percer	Sampled: 11/30/0 Received: 12/02/0 nt Solids: n/a		
Project:		rker Hannifin	- Old Erie	Canal Site,	Clyde, N	Y		
General Chemistry	<i>'</i>							
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Dissolved Organic	Carbon	3.8	1.0	mg/l	1	12/26/06 18:03	мо	EPA415.1/SW8469060M

16 of 1464

Libora

J47958

		Repo	rt of An	alysis		·	Page 1 of
Client Samp Lab Sample Matrix: Method: Project:			Canal Site,	Date R Percent	ampled: eccived: t Solids: t	11/30/06 12/02/06 n/a	
		Analyzed 12/06/06	By YL	Prep Da n/a	ite	Prep Batch n/a	Analytical Batch VD4809
	Purge Volume 5.0 ml						
VOA TCL	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
07 04 1	Acotomo	-ND		4.6	ug/l		
67-64-1	Acetone Benzene	ND	1.0	0.37	ug/l		
71-43-2	Bromodichloromethane	ND	1.0	0.14	ug/l		
75-27-4	Bromoform	ND	1.0	0.52	ug/l		
75-25-2	Bromomethane	ND	1.0	0.39	ug/l		
74-83-9	2-Butanone (MEK)	ND	5.0 P	- 1.4	ug/l		
78-93-3	Carbon disulfide	1.0	1.0	0.38	ug/l		
75-15-0	Carbon tetrachloride	ND	1.0	0.53	ug/l		
56-23-5	Chlorobenzene	ND	1.0	0.74	ug/l		
108-90-7	Chloroethane	ND	1.0	0.65	ug/l		
75-00-3	Chloroform	ND	1.0	0.18	ug/l		
67-66-3	Chloromethane	ND	1.0	0.20	ug/l		
74-87-3	Dibromochloromethane	ND	1.0	0.17	ug/l		
124-48-1	1,1-Dichloroethane	ND	1.0	0.089	ug/l		
75-34-3 107-06-2	1,2-Dichloroethane	ND	1.0	0.57	ug/l		
	1,1-Dichloroethene	ND	1.0	0.49	ug/l		
75-35-4 156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.18	ug/l		
156-59-2	trans-1,2-Dichloroethene	ND	1.0	0.18	ug/l		
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l		
10061-01-5		ND	1.0	0.56	ug/l		
10061-01-5		ND	1.0	0.15	ug/l		
100-41-4	Ethylbenzene	ND	1.0	0.44	ug/l		
591-78-6	2-Hexanone	ND	5.0	0.35	ug/l		
108-10-1	4-Methyl-2-pentanone(MIB		5.0	0.50	ug/l		
75-09-2	Methylene chloride	ND	2.0	0.53	ug/l		
100-42-5	Styrene	ND	1.0	0.069	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.11	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l		
108-88-3	Toluene	ND	1.0	0.41	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.094	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.15	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.16	ug/l		

MDL - Method Detection Limit ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

			Report	of Ana	alysis			Page 2
Client Sample Lab Sample Matrix: Method: Project:		GW-MW-12B-113006 J47958-2 AQ - Ground Water SW846 8260B GE - Parker Hannifin	· Old Erie Ca	nal Site, (Date F Percer	ampled: Received: nt Solids: Y	11/30/06 12/02/06 n/a	
VOA TCL I	List							
CAS No.	Comp	ound	Result	RL	MDL	Units	Q	
75-01-4 1330-20-7		chloride e (total)	ND ND	1.0 1.0	0.77 0.34	ug/l ug/l		
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7 17060-07-0 2037-26-5 460-00-4	1,2-D Tolue	mofluoromethane bichloroethane-D4 ene-D8 mofluorobenzene	97% 109% 98% 105%		65- 80-	121% 133% 117% 124%		

J = Indicates an estimated value

B = Indicates analyte found in associated method blankN = Indicates presumptive evidence of a compound

Raw Data: II33485.D

Accutest Laboratories

			Repo	rt of An	alysis			Page 1 of 1
Client Sam Lab Samp Matrix: Method: Project:	le ID: J47958 AQ - Q SW840	Ground Wat 6 8015		Canal Site,	Date R Percen	ampled: Received: nt Solids: Y	12/02/06	
Run #1 Run #2	File ID II33485.D	DF 1	Analyzed 12/08/06	By HSC	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GII1676
CAS No.	Compound		Result	RL	MDL	Units	Q	
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		2.53 0.89 0.36	0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l		

MDL - Method Detection Limit ND = Not detected RL = Reporting Limit E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ACCUTEST.

Labor

21

J47958

				Rep	port of A	Analysis		Page 1 of 1
Client Sample Lab Sample Matrix: Project:	ID: J4795 AQ -	Ground W	/ater	Old E	rie Canal Si	Date Sam Date Rec Percent S ite, Clyde, NY	eived: 12/02/06	
Metals Analy	ysis	1211						
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Sodium	778000	250000	ug/l	25	12/18/06	12/19/06 LH	SW846 6010B ¹	SW846 3010A ²

(1) Instrument QC Batch: MA18529 (2) Prep QC Batch: MP37272

3.3

63

Client Sample ID: Lab Sample ID: Matrix:	J47958-2	V-12B-113006 ? ound Water			Date H	Sampled: 11/30/0 Received: 12/02/0 nt Solids: n/a		
Project:	GE - Pa	rker Hannifin -	Old Erie C	anal Site,	Clyde, N	Y		
General Chemistry	,							
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Alkalinity, Total as	C2C03	59.7	5.0	mg/l	1	12/14/06	ST	EPA 310.1
Chloride ^a	Cacos	964	20 J	mg/l	10	12/29/06 21:34	JH	EPA 300/SW846 9056
Nitrogen, Nitrate b		< 0.11	0.11	mg/l	1	12/21/06 14:59	NR	EPA353.2/SM4500NO2I
Nitrogen, Nitrate	Nitrite	< 0.10	0.10	mg/l	1	12/21/06 14:59	NR	EPA 353.2/LACHAT
		< 0.010	0.010	mg/l	1	12/02/06 14:00	HF	SM19 4500NO2B
Nitrogen, Nitrite ^c Sulfate ^d		2130	100 T	mg/l	10	12/29/06 21:34	JH	EPA 300/SW846 9056
Surfate -		5100	200		1	12/06/06	ST	EPA 376.1

mg/l

1

12/06/06

ST

EPA 376.1

Report of Analysis

(a) Initially analyzed within holding time, but over calibration. Reanalysis on dilution done 1 day out of holding time.

2.0

(b) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

3.0

(c) Analysis done out of holding time.

Sulfide

(d) Initially analyzed within holding time, but over calibratiion. Reanalysis on dilution done 1 day out of holding time.

			Repo	rt of An	alysis			Page 1 of 1
Client Sample ID: Lab Sample ID: Matrix: Project:	J47958- AQ - Gi	roundwater Fi	ltered	Date Sample Date Receive Percent Solie Canal Site, Clyde, NY		Received: 12/02/0 nt Solids: n/a		
General Chemistry	/							
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Dissolved Organic	Carbon	< 1.0	1.0	mg/l	1	12/26/06 18:09	мо	EPA415.1/SW8469060M

		керо	rt of An	arysis			Fage 1 01
Client Samp Lab Sample Matrix: Method: Project:			Canal Site,	Date F Percer	ampled: Received: nt Solids: Y	12/01/06	
Run #1 Run #2		Analyzed 12/06/06	By YL	Prep D n/a	ate	Prep Batch n/a	Analytical Batch VD4809
Run #1 Run #2	Purge Volume 5.0 ml						
VOA TCL	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	ND	200	180	ug/l		
71-43-2	Benzene	ND	40	15	ug/l		
75-27-4	Bromodichloromethane	ND	. 40	5.5	ug/l		
75-25-2	Bromoform	ND	40	21	ug/l		
74-83-9	Bromomethane	ND	40	15	ug/l		
78-93-3	2-Butanone (MEK)	-ND	200		ug/l		
75-15-0	Carbon disulfide	ND	40	15	ug/l		
56-23-5	Carbon tetrachloride	ND	40	21	ug/l		
108-90-7	Chlorobenzene	ND	40	29	ug/l		
75-00-3	Chloroethane	ND	40	26	ug/l		
67-66-3	Chloroform	ND	40	7.3	ug/l		
74-87-3	Chloromethane	ND	40	8.0	ug/l		
124-48-1	Dibromochloromethane	ND	40	6.7	ug/l		
75-34-3	1,1-Dichloroethane	ND	40	3.6	ug/l		
107-06-2	1,2-Dichloroethane	ND	40	23	ug/l		
75-35-4	1,1-Dichloroethene	ND	40	20	ug/l		
156-59-2	cis-1,2-Dichloroethene	6870	40	7.1	ug/l		
156-60-5	trans-1,2-Dichloroethene	ND	40	7.4	ug/l		
78-87-5	1,2-Dichloropropane	ND	4.0.145	20	ug/l		
10061-01-5		ND	40	22	ug/l		
10061-02-6		ND	40	6.0	ug/l		
100-41-4	Ethylbenzene	ND	40	18	ug/l		
591-78-6	2-Hexanone	ND	200	14	ug/l		
108-10-1	4-Methyl-2-pentanone(MIB		200	20	ug/l		
75-09-2	Methylene chloride	ND	80	21	ug/l		
100-42-5	Styrene	ND	40	2.8	ug/l		

40

40

40

40

40

ND

845 40

ND

ND

ND

ND

4.3

16

16

3.8

6.1

6.4

Report of Analysis

MDL - Method Detection Limit ND = Not detected

1,1,2,2-Tetrachloroethane

Tetrachloroethene

Trichloroethene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

RL = Reporting Limit

79-34-5

127-18-4

108-88-3

71-55-6

79-00-5

79-01-6

E = Indicates value exceeds calibration range

Toluene

J = Indicates an estimated value

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 2

Report of Analysis

Client Sample ID:	GW-MW-13S-113006			
Lab Sample ID:	J47796-4	Date Sampled:	11/30/06	
Matrix:	AQ - Ground Water	Date Received:	12/01/06	
Method:	SW846 8260B	Percent Solids:	n/a	
Project:	GE - Parker Hannifin - Old Erie C	Canal Site, Clyde, NY		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
75-01-4	Vinyl chloride	348	40	31	ug/l		
1330-20-7	Xylene (total)	ND	40	14	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	nits		
1868-53-7	Dibromofluoromethane	99%	ŧ.	77-1	21%		
17060-07-0	1,2-Dichloroethane-D4	118%		65-1	133%		
2037-26-5	Toluene-D8	97%		80-1	117%		
460-00-4	4-Bromofluorobenzene	107%		79-1	124%		

Page 2 of 2

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Client Sample ID: Lab Sample ID: Matrix: Method: Project:		47796- Q - Gr W846	ound Wa 8015		Canal Site,	Date S Date F Percer Clyde, N			
Run #1 Run #2	File ID II33503.1	D	DF 1	Analyzed 12/08/06	By HSC	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GII1676
CAS No.	Compo	und		Result	RL	MDL	Units	Q	
74-82-8	Methano	e			0.10	0.066	ug/l		
74-84-0	Ethane			13.2	0.5005.44	0.056	ug/l		
74-85-1	Ethene			22.9	0.10	0.075	ug/l		

Report of Analysis

Page 1 of 1

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Client Sample Lab Sample ID Matrix: Project:	: J47790 AQ - 0	Ground W	ater	Date Sampled: 11/30/06 Date Received: 12/01/06 Percent Solids: n/a - Old Erie Canal Site, Clyde, NY							
Metals Analysi	s										
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method			
Sodium	93800	20000	ug/l	2	12/18/06	12/19/06 LH	SW846 6010B ¹	SW846 3010A 2			

Instrument QC Batch: MA18529
 Prep QC Batch: MP37272

Report of Analysis

Page 1 of 1

Client Sample ID: Lab Sample ID: Matrix:	GW-MW-13S-113006 J47796-4 AQ - Ground Water		11/30/06 12/01/06 n/a	
Project:	GE - Parker Hannifin - Old Erie C	Canal Site, Clyde, NY		

Report of Analysis

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Alkalinity, Total as CaCO3	289	13	mg/l	1	12/12/06	ST	EPA 310.1
Chloride	163	2.0	mg/l	1	12/21/06 01:50	JH	EPA 300/SW846 9056
Nitrogen, Nitrate a	<0.11	0.11	mg/l	1	12/21/06 14:54	NR	EPA353.2/SM4500NO2B
Nitrogen, Nitrate + Nitrite	<0.10	0.10	mg/l	1	12/21/06 14:54	NR	EPA 353.2/LACHAT
Nitrogen, Nitrite	< 0.010	0.010	mg/l	1	12/01/06 15:50	ST	SM19 4500NO2B
Sulfate	878	8.0	mg/l	4	12/27/06 02:34	JH	EPA 300/SW846 9056
Sulfide	<2.0	2.0	mg/l	1	12/06/06	ST	EPA 376.1

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

Page 1 of 1

Client Sample ID: GW-MW-13S-113006 Lab Sample ID: J47796-4F Matrix: AQ - Groundwater Filtered Project: GE - Parker Hannifin - Old Erie Canal Site,					Date H Percer	Sampled: 11/30/0 Received: 12/01/0 nt Solids: n/a Y		
General Chemistry								
Analyte		Result	RL	Units	DF	Analyzed	By	Method
Dissolved Organic	Carbon	5,4	1.0	mg/l	1	12/22/06 00:56	ESJ	EPA415.1/SW8469060M

Report of Analysis

٦

Client Sam Lab Sampl Matrix: Method: Project:			Canal Site,	Date I Percer	Sampled: Received nt Solids IY	12/07/06	
		Analyzed	Ву	Prep D	ate	Prep Batch	Analytical Batch
Run #1 Run #2		12/15/06 12/15/06	PWC PWC	n/a n/a		n/a n/a	V1A1943 V1A1943
	Purge Volume						
Run #1	5.0 ml						
Run #2	5.0 ml						
VOA TCL	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	ND	250	230	ug/l		
71-43-2	Benzene	ND	50	19	ug/l		
75-27-4	Bromodichloromethane	ND	50	6.9	ug/l		
75-25-2	Bromoform	ND	50	26	ug/l		
74-83-9	Bromomethane	ND	50	19	ug/l		
78-93-3	2-Butanone (MEK)	ND	250 P	71	ug/l		
75-15-0	Carbon disulfide	ND	50	19	ug/l		
56-23-5	Carbon tetrachloride	ND	50	26	ug/l		
108-90-7	Chlorobenzene	ND	50	37	ug/l		
75-00-3	Chloroethane	ND	50	32	ug/l		
67-66-3	Chloroform	ND	50	9.2	ug/l		
74-87-3	Chloromethane	ND	50	10	ug/l		
124-48-1	Dibromochloromethane	ND	50	8.4	ug/l		
75-34-3	1,1-Dichloroethane	ND	50	4.5	ug/l		
107-06-2	1,2-Dichloroethane	ND	50	28	ug/l		
75-35-4	1,1-Dichloroethene	51.8	50	25	ug/l		
156-59-2	cis-1,2-Dichloroethene	28200 a	500	89	ug/l		
156-60-5	trans-1,2-Dichloroethene	80.0	50	9.2	ug/l		
78-87-5	1,2-Dichloropropane	ND	50	25	ug/l		
10061-01-5	cis-1,3-Dichloropropene	ND	50	28	ug/l		
10061-02-6		ND	50	7.6	ug/l		
100-41-4	Ethylbenzene	ND	50	22	ug/l		
591-78-6	2-Hexanone	ND	250	18	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBK	() ND	250	25	ug/l		
75-09-2	Methylene chloride	ND	100	27	ug/l		
100-42-5	Styrene	ND	50	3.4	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	50	5.4	ug/l		
127-18-4	Tetrachloroethene	ND	50	19	ug/l		
108-88-3	Toluene	639	50	20	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	50	4.7	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	50	7.7	ug/l		
79-01-6	Trichloroethene	254	50	8.0	ug/l		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Client Samp Lab Sample Matrix: Method: Project:		r	Canal Site,	Date I Percer	Sampled: Received: nt Solids: IY	12/06/06 12/07/06 n/a	
VOA TCL I	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
75-01-4	Vinyl chloride	4610	50	38	ug/l		
1330-20-7	Xylene (total)	ND	50	17	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7	Dibromofluoromethane	91%	90%	77-1	121%		
17060-07-0	1,2-Dichloroethane-D4	99%	96%	65-1	133%		
2037-26-5	Toluene-D8	97%	97%		117%		
460-00-4	4-Bromofluorobenzene	86%	84%	79-1	124%		

Report of Analysis

(a) Result is from Run# 2

ND = Not detected MDL - Method Detection Limit RL = Reporting LimitE = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 2 of 2

Raw Data: II33587.D

Accutest Laboratories

		6	P Repo	rt of Aı	nalysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID: J484 AQ SW8	MW-145-12 43-8 - Ground W 46 8015	20606	Canal Site	Date I Percei	Sampled: Received nt Solids IY	12/07/06	
Run #1 Run #2	File ID II33587.D	DF 1	Analyzed 12/13/06	By HSC	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GII1679
CAS No.	Compound		Result	RL	MDL	Units	Q	
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		588 151 215	0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l		

 $\begin{array}{ll} ND = Not \ detected & MDL - Method \ Detection \ Limit \\ RL = Reporting \ Limit \\ E = Indicates \ value \ exceeds \ calibration \ range \end{array}$

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

				Rep	port of A	Analysis		Page 1 of 1
Client Sample II Lab Sample ID: Matrix:	J4844 AQ -	Ground W	ater			Date Sam Date Rec Percent S	eived: 12/07/06	
Project:	GE -	Parker Ha	nnifin -	Old E	rie Canal Si	ite, Clyde, NY		
Metals Analysis			2.5					
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Sodium	90400	20000	ug/l	2	12/26/06	12/27/06 LH	SW846 6010B ¹	SW846 3010A ²

Instrument QC Batch: MA18563
 Prep QC Batch: MP37400

		Page 1 of 1						
Lab Sample ID: J4844	MW-14ダ-120606 3-8 らぼ Ground Water			Date I	Sampled: 12/06/0 Received: 12/07/0 nt Solids: n/a			
Project: GE -								
General Chemistry								
Analyte	Result	RL	Units	DF	Analyzed	Ву	Method	
Alkalinity, Total as CaCO	3 371	17	mg/l	1	12/20/06	JA	EPA 310.1	
Chloride	141	2.0	mg/l	1	01/03/07 02:14	JH	EPA 300/SW846 9056	
Nitrogen, Nitrate ^a	< 0.11	0.11	mg/l	1	12/30/06 13:45	MR	EPA353.2/SM4500NO2B	
Nitrogen, Nitrate + Nitrite	< 0.10	0.10	mg/l	1	12/30/06 13:45	MR	EPA 353.2/LACHAT	
Nitrogen, Nitrite	< 0.010	0.010	mg/l	1	12/07/06 18:00	MET	SM19 4500NO2B	
Sulfate	355	10	mg/l	1	01/03/07 02:14	JH	EPA 300/SW846 9056	
Sulfide	< 2.0	2.0	mg/l	1	12/12/06	JA	EPA 376.1	

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

			Repo	rt of An	alysis			Page 1 of 1	
Client Sample ID: Lab Sample ID: Matrix:	J48443-	N-145-120606 8F S & roundwater Fi			Date I	Sampled: 12/06 Received: 12/07	3103-69		
Project:	Percent Solids: n/a GE - Parker Hannifin - Old Erie Canal Site, Clyde, NY								
General Chemistry									
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method	
Dissolved Organic O	Carbon	6.7	1.0	mg/l	1	12/29/06 01:	54 ESJ	EPA415.1/SW8469060M	

		Repo	rt of A	nalysis			Page 1 of
Client Sam Lab Sampl Matrix: Method: Project:			Canal Site	Date l Perce	Sampled: Received: nt Solids: IY	12/08/06	
	File ID DF	Analyzed	Ву	Prep D	ate	Prep Batch	Analytical Batch
Run #1	3A32189.D 25	12/21/06	LY	n/a		n/a	V3A1345
Run #2 ^a	1A45616.D 50	12/21/06	PWC	n/a		n/a	V1A1952
Run #3	1A45523.D 200	12/18/06	PWC	n/a	and the second	n/a	V1A1947
	Purge Volume						
Run #1	5.0 ml						
Run #2	5.0 ml						
Run #3	5.0 ml						
VOA TCL	List			- 212			
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	ND	130	120	ug/l		
71-43-2	Benzene	ND	25	9.3	ug/l		
75-27-4	Bromodichloromethane	ND	25	3.4	ug/l		
75-25-2	Bromoform	ND	25	13	ug/l		
74-83-9	Bromomethane	ND	25	9.6	ug/l		
78-93-3	2-Butanone (MEK)	ND	130	36	ug/l		
75-15-0	Carbon disulfide	ND	25	9.5	ug/l		
56-23-5	Carbon tetrachloride	ND	25	13	ug/l		
108-90-7	Chlorobenzene	ND	25	18	ug/l		
75-00-3	Chloroethane	ND	25	16	ug/l		
67-66-3	Chloroform	ND	25	4.6	ug/l		
74-87-3	Chloromethane	ND	25	5.0	ug/l		
124-48-1	Dibromochloromethane	ND	25	4.2	ug/l		
75-34-3	1,1-Dichloroethane	ND	25	2.2	ug/l		
107-06-2	1,2-Dichloroethane	ND	25	14	ug/l		
75-35-4	1,1-Dichloroethene	13.7	25	12	ug/l	J	
156-59-2	cis-1,2-Dichloroethene	20800 b	200	36	ug/l		
156-60-5	trans-1,2-Dichloroethene	30.8	25	4.6	ug/l		
78-87-5 10061-01-5	1,2-Dichloropropane cis-1,3-Dichloropropene	ND ND	25	13	ug/l		
10061-01-5		ND	25 25	14 3.8	ug/l		
100-41-4	Ethylbenzene	ND	25	3.8	ug/l		
591-78-6	2-Hexanone	ND	130	8.8	ug/l ug/l		
108-10-1	4-Methyl-2-pentanone(MIB)		130	13	ug/l		
75-09-2	Methylene chloride	ND	50	13	ug/l		
100-42-5	Styrene	ND	25	1.7	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	25	2.7	ug/l		
127-18-4	Tetrachloroethene	ND	25	9.7	ug/l		
108-88-3	Toluene	98.9	25	10	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	25	2.4	ug/l		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

J = Indicates an estimated value

Client Samj Lab Sample Matrix: Method: Project:		г	Canal Site, (Date Sar Date Rec Percent Clyde, NY	ceived	l: 12/08/06	
VOA TCL	List					a general second	
CAS No.	Compound	Result	RL	MDL	Units	Q	
79-00-5	1,1,2-Trichloroethane	ND	25	3.8	ug/l		
79-01-6	Trichloroethene	5.6	25		ug/l	J	
75-01-4	Vinyl chloride	9040 b	200		ug/l	•	
1330-20-7	Xylene (total)	ND	25		ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run# :	3	Limits	
1868-53-7	Dibromofluoromethane	93%	111%	99%	and i	77-121%	
17060-07-0	1,2-Dichloroethane-D4	86%	157% c	111%	1.00	65-133%	
2037-26-5	Toluene-D8	95%	94%	97%		80-117%	
460-00-4	4-Bromofluorobenzene	97%	115%	83%		79-124%	

Report of Analysis

(a) for qc purpose only

(b) Result is from Run# 3

(c) Outside control limits due to matrix interference.

ND = Not detected MDL - Method Detection Limit RL = Reporting LimitE = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Raw Data: II33749.D

Accutest Laboratories

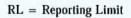
			Repo	ort of A	nalysis			Page 1 of
Client San Lab Samp Matrix: Method: Project:	le ID: J486 AQ - SW8	Ground W 46 8015		Canal Site	Date I Perce	Sampled: Received nt Solids IY		
Run #1 Run #2	File ID 1133749.D	DF 5	Analyzed 12/21/06	By HSC	Prep D n/a	Date	Prep Batch n/a	Analytical Batch GII1685
CAS No.	Compound		Result	RL	MDL	Units	Q	
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		6660 426 512	0.50 0.50 0.50	0.33 0.28 0.38	ug/l ug/l ug/l		

ND = Not detected **MDL** - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

				Re	port of A	Analysis		Page 1 of 1
Client Samp Lab Sample		MW-15S- 60-1	120706			Date San	npled: 12/07/00	3
Matrix: AQ - Ground Water Date Received: 12/08/06 Percent Solids: n/a								3
Project:	GE -	Parker Ha	annifin -	Old E	rie Canal S	ite, Clyde, NY		
Metals Anal	ysis							
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Sodium	68200	10000	ug/l	1	12/26/06	12/26/06 LH	SW846 6010B 1	SW846 3010A ²

(1) Instrument QC Batch: MA18554 (2) Prep QC Batch: MP37400


3

	W-MW-15S-1	20706								
	18660-1			Date Sampled: 12/07/06 Date Received: 12/08/06						
Matrix: A	Vater)6							
	Project: GE - Parker Hannifin - Old Erie Canal Site			Percent Solids: n/a						
Project: G	E - Parker Ha	nnifin - Old Erie	Clyde, N	1Y						
General Chemistry										
Analyte	Resu	lt RL	Units	DF	Analyzed	By	Method			
Alkalinity, Total as Ca	CO3 550	13	mg/l	1	12/21/06	ST	EPA 310.1			
Chloride	122	2.0	mg/l	1	01/04/07 06:46	JH	EPA 300/SW846 9056			
Nitrogen, Nitrate ^a	< 0.1	0.11	mg/l	1	01/02/07 17:04	NR	EPA353.2/SM4500NO2B			
Nitrogen, Nitrate + N	itrite < 0.1	10 0.10	mg/l	1	01/02/07 17:04	NR	EPA 353.2/LACHAT			
Nitrogen, Nitrite	< 0.0	010 0.010		1	12/08/06 22:30	MET	SM19 4500NO2B			
Sulfate	18.3	10	mg/l	1	01/04/07 06:46	JH	EPA 300/SW846 9056			
Sulfide	< 2.0) 2.0	mg/l	1	12/12/06	JA	EPA 376.1			

Report of Analysis

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

Page 1 of 1

			Repo	ort of Ar	nalysis			Page 1 of 1
Client Sample ID: Lab Sample ID:	GW-M [48660-	W-15S-120706	3		Date	Sampled: 12/07/0	16	
Matrix:	AQ - G	roundwater Fi	ltered		Date] Perce			
Project:								
General Chemistry	,							
Analyte		Result	RL	Units	DF	Analyzed	By	Method
Dissolved Organic Carbon		11.7	1.0	mg/l	1	12/31/06 01:45	ESJ	EPA415.1/SW8469060M

Page 1 of 1

Client Sample ID: GW-MW-16S-120606 Lab Sample ID: 148443-4 12/06/06 Date Sampled: Matrix: AQ - Ground Water Date Received: 12/07/06 Method: SW846 8260B Percent Solids: n/a Project: GE - Parker Hannifin - Old Erie Canal Site, Clyde, NY File ID DF Analyzed Prep Date By Prep Batch Analytical Batch Run #1 1A45610.D PWC 1 12/20/06 n/a n/a V1A1952 Run #2 Purge Volume Run #1 5.0 ml Run #2 **VOA TCL List** CAS No. Compound Result RL MDL Units Q ND 67-64-1 Acetone 5.0 4.6 ug/l 71-43-2 Benzene ND 1.0 0.37 ug/l 75-27-4 Bromodichloromethane ND 1.0 0.14 ug/l 75-25-2 Bromoform ND 1.0 0.52 ug/l Bromomethane 74-83-9 ND 1.0 0.39 ug/l 5.0 P 78-93-3 2-Butanone (MEK) ND 1.4 ug/l 75-15-0 Carbon disulfide ND 1.0 0.38 ug/l 56-23-5 Carbon tetrachloride 1.0 ND 0.53 ug/l ug/l 108-90-7 Chlorobenzene ND 1.0 0.74 75-00-3 Chloroethane ND 1.0 0.65 ug/l 67-66-3 Chloroform ND 1.0 0.18 ug/l 74-87-3 Chloromethane ND 1.0 0.20 ug/l 124-48-1 Dibromochloromethane ND 1.0 0.17 ug/l 75-34-3 1,1-Dichloroethane ND 1.0 0.089 ug/l 107-06-2 1.2-Dichloroethane ND 1.0 0.57 ug/l 75-35-4 1,1-Dichloroethene ND 1.0 0.49 ug/l 156-59-2 cis-1,2-Dichloroethene 5.7 1.0 0.18 ug/l trans-1,2-Dichloroethene 156-60-5 ND 1.0 0.18 ug/l 78-87-5 1,2-Dichloropropane ND 1.0 0.50 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.56 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.15 ug/l 100-41-4 Ethylbenzene ND 1.0 0.44 ug/l 2-Hexanone 591-78-6 ND 5.0 0.35 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 0.50 ug/l 75-09-2 Methylene chloride ND 2.0 0.53 ug/l 100-42-5 Styrene ND 1.0 0.069 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.11 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.39 ug/l 108-88-3 Toluene ND 1.0 0.41 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.094 ug/l

Report of Analysis

ND = Not detected MDL - Method Detection Limit

ND

8.4

1.0

1.0

0.15

0.16

RL = Reporting Limit

79-00-5

79-01-6

E = Indicates value exceeds calibration range

1,1,2-Trichloroethane

Trichloroethene

J = Indicates an estimated value

ug/l

ug/l

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

7

			Repor	t of An	alysis			Page 2 of 2
	Method: SW846 8260B			12/06/06 12/07/06 n/a				
VOA TCL	List							
CAS No.	Comp	ound	Result	RL	MDL	Units	Q	
75-01-4	Vinyl	chloride	ND	1.0	0.77	ug/l		
1330-20-7	Xylen	e (total)	ND	1.0	0.34	ug/l		
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7	Dibro	nofluoromethane	105%		77-1	21%		
17060-07-0	1,2-Di	chloroethane-D4	133%		65-1	33%		
2037-26-5	Toluer		93%		80-1	17%		
460-00-4	4-Bron	nofluorobenzene	110%		79-1	24%		

J = Indicates an estimated value

N = Indicates presumptive evidence of a compound

B = Indicates analyte found in associated method blank

Raw Data: II33581.D

Accutest Laboratories

			Repo	ort of A	nalysis			Page 1 of 1
Client Sar Lab Samp Matrix: Method: Project:	ole ID: J48443 AQ - 0 SW84	Ground W 6 8015		Canal Site	Date S Date I Percer , Clyde, N	Analytical Batch GII1679		
Run #1 Run #2	File IDDFII33581.D1		Analyzed 12/13/06	By HSC	Prep Date n/a		Prep Batch n/a	
CAS No.	Compound		Result	RL	MDL	Units	Q	
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		2.07 0.35 0.13	0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l		

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

				Re	port of A	Analysis		Page 1 of 1		
Client Sample I Lab Sample ID		MW-16S-1	120606			Date San	npled: 12/06/06	1		
Matrix:	22,000-1	Ground V	Vater			Date Rec Percent 3	eived: 12/07/06			
Project:	GE -	GE - Parker Hannifin - Old Erie Canal Site, Clyde, NY								
Metals Analysis	5									
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method		
Sodium	20000	10000	ug/l	1	12/26/06	12/26/06 LH	SW846 6010B ¹	SW846 3010A ²		

Instrument QC Batch: MA18554
 Prep QC Batch: MP37400

	W-MW-16S-120606 8443-4			Date	Sampled: 12/06/0	06	
Matrix: A			06				
				Perce	nt Solids: n/a		
Project: G	E - Parker Hannifin	- Old Erie	Canal Site,	Clyde, N	IY		
General Chemistry					1997		
Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Alkalinity, Total as Ca	CO3 134	5.0	mg/l	1	12/20/06	JA	EPA 310.1
Chloride	13.1	2.0	mg/l	1	01/03/07 01:00	JH	EPA 300/SW846 9056
Nitrogen, Nitrate ^a	2.0	0.11	mg/l	1	12/30/06 13:38	MR	EPA353.2/SM4500NO2E
Nitrogen, Nitrate + Ni	trite 2.0	0.10	mg/l	1	12/30/06 13:38	MR	EPA 353.2/LACHAT
Nitrogen, Nitrite	< 0.010	0.010	mg/l	1	12/07/06 18:00	MET	SM19 4500NO2B
Sulfate	19.2	10	mg/l	1	01/03/07 01:00	JH	EPA 300/SW846 9056
Sulfide	< 2.0	2.0	mg/l	1	12/12/06	JA	EPA 376.1

Report of Analysis

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

Page 1 of 1

			Repo	ort of Ar	nalysis			Page 1 of 1
Client Sample ID: Lab Sample ID:	GW-M J48443-	N-16S-120606 4F	3		Date	Sampled: 12/06/0	06	
Matrix:	AQ - G	roundwater Fi	ltered		Date l Perce			
Project:	GE - Pa	rker Hannifin	- Old Erie	Canal Site,	Clyde, N	IY		
General Chemistry								
Analyte		Result	RL	Units	DF	Analyzed	By	Method
Dissolved Organic Carbon		1.7	1.0	mg/l	1	12/29/06 01:23	ESJ	EPA415.1/SW8469060M

Report of Analysis

Page 1 of 2

Client Sam Lab Sampl Matrix: Method: Project:							
Run #1 Run #2		Analyzed 12/20/06	By PWC	Prep D n/a	ate	Prep Batch n/a	Analytical Batch V1A1952
Run #1 Run #2	Purge Volume 5.0 ml						
VOA TCL	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	ND	5.0	4.6	ug/l		
71-43-2	Benzene	ND	1.0	0.37	ug/l		
75-27-4	Bromodichloromethane	ND	1.0	0.14	ug/l		
75-25-2	Bromoform	ND	1.0	0.52	ug/l		
74-83-9	Bromomethane	ND	1.0	0.39	ug/l		
78-93-3	2-Butanone (MEK)	ND	5.0 2	1.4	ug/l		
75-15-0	Carbon disulfide	ND	1.0 丁	0.38	ug/l		
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l		
108-90-7	Chlorobenzene	ND	1.0	0.74	ug/l		
75-00-3	Chloroethane	ND	1.0	0.65	ug/l		
67-66-3	Chloroform	ND	1.0	0.18	ug/l		
74-87-3	Chloromethane	ND	1.0	0.20	ug/l		
124-48-1	Dibromochloromethane	ND	1.0	0.17	ug/l		
75-34-3	1,1-Dichloroethane	ND	1.0	0.089	ug/l		
107-06-2	1,2-Dichloroethane	ND	1.0	0.57	ug/l		
75-35-4	1,1-Dichloroethene	ND	1.0	0.49	ug/l		
156-59-2	cis-1,2-Dichloroethene	16.0	1.0	0.18	ug/l		
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.18	ug/l		
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l		
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.56	ug/l		
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.15	ug/l		
100-41-4	Ethylbenzene	ND	1.0	0.44	ug/l		
591-78-6	2-Hexanone	ND	5.0	0.35	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBK		5.0	0.50	ug/l		
75-09-2	Methylene chloride	ND	2.0	0.53	ug/l		
100-42-5	Styrene	ND	1.0	0.069	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.11	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l		
108-88-3	Toluene	0.72	1.0	0.41	ug/l	J	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.094	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.15	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.16	ug/l		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

			Repor	t of An	alysis			Page 2 of 2
Client Sample ID:GW-MW-16B-1200Lab Sample ID:J48443-3Matrix:AQ - Ground WateMethod:SW846 8260BProject:GE - Parker Hannil			6 Date Sampled: 12/06/06 Date Received: 12/07/06 Percent Solids: n/a n - Old Erie Canal Site, Clyde, NY					
VOA TCL	List							
CAS No.	Comp	ound	Result	RL	MDL	Units	Q	
75-01-4 1330-20-7		chloride e (total)	1.2 ND	1.0 1.0	0.77 0.34	ug/l ug/l		
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7		mofluoromethane	103%		224.63	21%		
17060-07-0 2037-26-5	Toluer		128% 93%		38.5	33% 17%		
460-00-4	4-Bron	nofluorobenzene	108%		79-1	24%		

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Raw Data: II33580.D

Accutest Laboratories

			Repo	ort of A	nalysis			Page 1 of 1
Client Sar Lab Samp Matrix: Method: Project:	ole ID: J4 A S	W-MW-16B-1 48443-3 Q - Ground W W846 8015 E - Parker Hai		Canal Site	Date I Perce	Sampled Received nt Solids IY	: 12/07/06	
Run #1 Run #2	File ID II33580.D	DF 1	Analyzed 12/13/06	By HSC	Prep Date n/a		Prep Batch n/a	Analytical Batch GII1679
CAS No.	Compou	nd	Result	RL	MDL	Units	Q	
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		6.70 0.60 0.72	0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l		

ND = Not detected **MDL** - Method Detection Limit RL = Reporting LimitE = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

				Re	port of a	Analysis		Page 1 of 1
Client Sample Lab Sample I	D: J4844			4		Date San	npled: 12/06/00	5
Matrix: Project:		Ground V Parker Ha		Old E	rie Canal S	Date Rec Percent S ite, Clyde, NY		5
Metals Analy	sis							
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Sodium	153000	30000	ug/l	3	12/26/06	12/27/06 LH	SW846 6010B ¹	SW846 3010A ²

Instrument QC Batch: MA18563
 Prep QC Batch: MP37400

		Repor	t of Ar	alysis			Page 1 of 1
	MW-16B-120606			-			
Lab Sample ID: J4844					Sampled: 12/06/0		
Matrix: AQ -	Ground Water				Received: 12/07/0)6	
P. I. I. OP	D 1 11 10				nt Solids: n/a		
Project: GE -	Parker Hannifin -	Old Erie	Canal Site,	Clyde, N	IY		
General Chemistry							
Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Alkalinity, Total as CaCO	3 37.6	5.0	mg/l	1	12/20/06	JA	EPA 310.1
Chloride	128	2.0	mg/l	1	01/03/07 00:05	JH	EPA 300/SW846 9056
Nitrogen, Nitrate ^a	< 0.11	0.11	mg/l	1	12/30/06 13:37	MR	EPA353.2/SM4500NO2E
Nitrogen, Nitrate + Nitrit	e < 0.10	0.10	mg/l	1	12/30/06 13:37	MR	EPA 353.2/LACHAT
Nitrogen, Nitrite	< 0.010	0.010	mg/l	1	12/07/06 17:55	MET	SM19 4500NO2B
Sulfate	1690	100	mg/l	10	01/03/07 18:49	IH	EPA 300/SW846 9056
Sulfide	< 2.0	2.0	mg/l	1	12/12/06	JA	EPA 376.1

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

3.5

			Repo	rt of Ar	alysis			Page 1 of 1
Client Sample ID:	100000000000000000000000000000000000000	W-16B-120600	3					
Lab Sample ID:	J48443-		F			Sampled: 12/06/		
Matrix: AQ - Groundwater Filtered					Date Received: 12/07/06 Percent Solids: n/a			
Project:	GE - Pa	rker Hannifin	- Old Erie	Canal Site,	Clyde, N	IY		
General Chemistry	,							
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Dissolved Organic	Carbon	21.4	1.0	mg/l	1	12/29/06 01:16	ESJ	EPA415.1/SW8469060M

Client San Lab Samj Matrix: Method: Project:	ple ID: J47 AQ SW	7-TMW-2-11 796-6 - Ground W 846 8260B - Parker Har		Canal Sit	Date Sampled: Date Received: Percent Solids: e, Clyde, NY	12/01/06	
Run #1 Run #2	File ID D120651.D	DF 1	Analyzed 12/06/06	By YL	Prep Date n/a	Prep Batch n/a	Analytical Batch VD4809
Run #1 Run #2	Purge Volu 5.0 ml	me					

Report of Analysis

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	ND	5.0-P	4.6	ug/l		
71-43-2	Benzene	ND	1.0	0.37	ug/l		
75-27-4	Bromodichloromethane	ND	1.0	0.14	ug/l		
75-25-2	Bromoform	ND	1.0	0.52	ug/l		
74-83-9	Bromomethane	ND	1.0	0.39	ug/l		
78-93-3	2-Butanone (MEK)	ND	5.0 P	1.4	ug/l		
75-15-0	Carbon disulfide	ND	1.0	0.38	ug/l		
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l		
108-90-7	Chlorobenzene	ND	1.0	0.74	ug/l		
75-00-3	Chloroethane	ND	1.0	0.65	ug/l		
67-66-3	Chloroform	ND	1.0	0.18	ug/l		
74-87-3	Chloromethane	ND	1.0	0.20	ug/l		
124-48-1	Dibromochloromethane	ND	1.0	0.17	ug/l		
75-34-3	1,1-Dichloroethane	ND	1.0	0.089	ug/l		
107-06-2	1,2-Dichloroethane	ND	1.0	0.57	ug/l		
75-35-4	1,1-Dichloroethene	ND	1.0	0.49	ug/l		
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.18	ug/l		
156-60-5	trans-1,2-Dichloroethene	ND	52 1.0	0.18	ug/l		
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l		
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.56	ug/l		
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.15	ug/l		
100-41-4	Ethylbenzene	ND	1.0	0.44	ug/l		
591-78-6	2-Hexanone	ND	5.0	0.35	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBK)		5.0	0.50	ug/l		
75-09-2	Methylene chloride	ND	2.0	0.53	ug/l		
100-42-5	Styrene	ND	1.0	0.069	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.11	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l		
108-88-3	Toluene	0.51	1.0	0.41	ug/l	J	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.094	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	. 1.0	0.15	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.16	ug/l		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 2

Report of Analysis

Client Sample ID: Lab Sample ID:	GW-TMW-2-112906 J47796-6	Date Sampled:	11/29/06
Matrix:	AQ - Ground Water	Date Received:	
Method:	SW846 8260B	Percent Solids:	n/a
Project:	GE - Parker Hannifin - Old Erie C	Canal Site, Clyde, NY	

CAS No.	Compound	Result	RL	MDL	Units	Q	
75-01-4	Vinyl chloride	ND	1.0	0.77	ug/l		
1330-20-7	Xylene (total)	ND	1.0	0.34	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7	Dibromofluoromethane	96%		77-1	21%		
17060-07-0	1,2-Dichloroethane-D4	113%		65-1	33%		
2037-26-5	Toluene-D8	96%		80-1	17%		
460-00-4	4-Bromofluorobenzene	111%		79-1	24%		

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 2 of 2

Client San Lab Samp Matrix: Method: Project:	le ID: J477 AQ SW3	-TMW-2-112 196-6 - Ground Wa 846 8015 - Parker Han		Canal Site,	Date Sampled: 11/29/06 Date Received: 12/01/06 Percent Solids: n/a e, Clyde, NY				
Run #1 Run #2	File ID 1133505.D	DF 1	Analyzed 12/08/06	By HSC	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GII1676	
CAS No.	Compound		Result	RL	MDL	Units	Q		
74-82-8	Methane	2	8.97	0.10	0.066	ug/l			
74-84-0	Ethane		1.2	0.10	0.056	ug/l			
74-85-1	Ethene		ND	ace 0.10	0.075	ug/l			

Report of Analysis

Page 1 of 1

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Client Sample I Lab Sample ID: Matrix:	J47796	MW-2-11 5-6 Ground W				Date Sam Date Rece Percent S	eived: 12/01/06	
Project:	GE - P	arker Ha	nnifin -	Old E	rie Canal Si	te, Clyde, NY		
Metals Analysis								
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Sodium	12700	. 10000	ug/l	1	12/18/06	12/19/06 LH	SW846 6010B 1	SW846 3010A ²

Instrument QC Batch: MA18522
 Prep QC Batch: MP37272

Report of Analysis

Page 1 of 1

Sulfate

Sulfide

Client Sample ID: Lab Sample ID: Matrix:	J47796-0	W-2-112906 5 ound Water			Date I	Sampled: 11/29/0 Received: 12/01/0 nt Solids: n/a		
Project:	GE - Par	ker Hannifin	Old Erie C	Canal Site,	Clyde, N	Y		
General Chemistry	,							
Analyte		Result	RL	Units	DF	Analyzed	By	Method
Alkalinity, Total as	CaCO3	586	13	mg/l	1	12/12/06	ST	EPA 310.1
Chloride	cucor	19.4	2.0	mg/l	1	12/21/06 02:27	JH	EPA 300/SW846 9056
Nitrogen, Nitrate a		< 0.11	0.11	mg/l	1	12/21/06 14:56	NR	EPA353.2/SM4500NO2B
Nitrogen, Nitrate +		< 0.10	0.10	mg/l	1	12/21/06 14:56	NR	EPA 353.2/LACHAT
Nitrogen, Nitrite	Junite	< 0.010	0.010	mg/l	1	12/01/06 14:45	ST	SM19 4500NO2B
ratiogen, rattine				0.				

mg/l

mg/l

1

1

2.0

2.0

35.0

<2.0

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

12/21/06 02:27 ЈН

ST

12/06/06

Report of Analysis

Page 1 of 1

EPA 300/SW846 9056

EPA 376.1

Client Sample ID: Lab Sample ID: Matrix:	J47796-0 AQ - Gr	oundwater Filt			Date I Percer	Sampled: 11/29/0 Received: 12/01/0 nt Solids: n/a		
Project:		ker Hannifin -	Old Erie	Canal Site,	Clyde, N	Y		
General Chemistry								
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Dissolved Organic	Carbon ^a	12.7	2.0	mg/l	2	12/26/06 20:28	мо	EPA415.1/SW8469060

Report of Analysis

Page 1 of 1

(a) Detection limit raised due to dilution required for possible matrix interference.