

FEASIBILITY STUDY

OLD ERIE CANAL SITE CLYDE, NEW YORK SITE NO. 859015

Prepared For: Parker-Hannifin Corporation Cleveland, Ohio

and

General Electric Company Albany, New York

> Prepared by: Conestoga-Rovers & Associates

2371 George Urban Blvd. Depew, New York 14043

Office: 716·206·0202 Fax: 716·206·0201

MARCH 2007 REF. NO. 035048 (2)

TABLE OF CONTENTS

1.0	INTRODU 1.1	JCTION OBJECTIVE	1
	1.2	ORGANIZATION OF THE REPORT	1
2.0	SITE DES	CRIPTION AND HISTORY	3
2.1	SITE HIST	FORY	
	2.2	CURRENT OPERATIONS	5
3.0	SUMMAF	RY OF REMEDIAL INVESTIGATION	
	AND ASS	OCIATED STUDIES	7
	3.1	GEOLOGY/HYDROGEOLOGY	8
	3.1.1	SITE OVERBURDEN STRATIGRAPHY	
	3.1.2	SITE BEDROCK	9
	3.1.3	SITE HYDROGEOLOGY	10
	3.2	NATURE AND EXTENT OF CONTAMINATION	12
	3.2.1	GROUNDWATER	12
	3.2.2	SUBSURFACE SOIL	13
	3.2.3	SURFACE WATER	14
	3.2.4	SURFACE SOIL	16
	3.2.5	SUB-SLAB SOIL GAS	17
	3.3	GROUNDWATER MIGRATION	
		PATHWAYS AND RECEPTORS	18
	3.4	SUMMARY OF THE NATURE AND EXTENT OF	
		CONTAMINATION AND POTENTIAL	
		EXPOSURE PATHWAYS	20
	3.5	TREATABILITY STUDIES	21
	3.5.1	ENHANCED BIODEGRADATION	21
	3.5.2	IN SITU CHEMICAL OXIDATION	
	3.5.3	MONITORED NATURAL ATTENUATION	22
4.0	REMEDIA	AL GOALS AND REMEDIAL ACTION OBJECTIVES	25
1.0	4.1	POTENTIAL STANDARDS, CRITERIA, AND GUIDELINES	
	4.1.1	TYPES AND APPLICABILITY	
	4.1.1.1	CHEMICAL-SPECIFIC SCGs	
	4.1.1.1.1	GROUNDWATER	
	4.1.1.1.2	SURFACE SOIL	
	4.1.1.1.3	SUB-SLAB SOIL GAS	
	4.1.1.2	ACTION-SPECIFIC SCGs	
	4.1.1.3	LOCATION-SPECIFIC SCGs	
	4.2	REMEDIAL ACTION GOALS AND OBJECTIVES	
	4.2.1	REMEDIAL ACTION GOALS	
	4.2.2	REMEDIAL ACTION OBJECTIVES	
	· · ·	, - · - ·····	

5.0		AL RESPONSE ACTIONS AND	
	IDENTIF	ICATION OF REMEDIAL TECHNOLOGIES	30
	5.1	GROUNDWATER	30
	5.1.1	NO ACTION	
	5.1.2	INSTITUTIONAL CONTROL	30
	5.1.3	MONITORED NATURAL ATTENUATION	31
	5.1.4	IN SITU GROUNDWATER TREATMENT	31
	5.1.4.1	CHEMICAL OXIDATION	32
	5.1.4.2	PERMEABLE REACTIVE BARRIER	33
	5.1.4.3	REDUCTIVE DECHLORINATION	34
	5.1.4.4	ENHANCED BIODEGRADATION	34
	5.1.4.5	AIR SPARGING	35
	5.1.4.6	IN-WELL AIR STRIPPING	36
	5.1.5	CONTAINMENT TECHNOLOGIES	36
	5.1.6	COLLECTION TECHNOLOGIES	37
	5.1.7	EX SITU TREATMENT TECHNOLOGIES	37
	5.1.7.1	AIR STRIPPING	
	5.1.7.2	ACTIVATED CARBON	
	5.1.8	DISPOSAL TECHNOLOGIES	38
	5.1.8.1	OFF-SITE DISPOSAL	
	5.1.8.2	ON-SITE DISPOSAL	39
	5.1.8.2.1	INJECTION	39
	5.1.8.2.2	DISCHARGE TO SURFACE WATER	39
	5.2	SURFACE SOIL	40
	5.2.1	NO ACTION	40
	5.2.2	INSTITUTIONAL CONTROL	40
	5.2.3	CONTAINMENT TECHNOLOGIES	40
	5.2.4	COLLECTION TECHNOLOGIES	40
	5.2.5	EX SITU TREATMENT TECHNOLOGIES	41
	5.2.5.1	THERMAL DESORPTION	41
	5.2.5.2	INCINERATION	41
	5.2.6	DISPOSAL TECHNOLOGIES	42
	5.3	SUB-SLAB SOIL GAS	
		BENEATH THE MANUFACTURING BUILDING	42
	5.3.1	NO ACTION	42
	5.3.2	ENGINEERED CONTROLS	42
	5.3.3	COLLECTION TECHNOLOGIES	43
	5.3.4	TREATMENT TECHNOLOGIES	
6.0	INITIAL	SCREENING OF REMEDIAL TECHNOLOGIES	44
	6.1	GROUNDWATER	44
	6.2	SURFACE SOIL	45
	6.3	SOIL GAS/INDOOR AIR	45
7.0	DETAIL	ED ANALYSES OF RETAINED REMEDIAL ALTERNATIVES	46

7.1	GROUNDWATER	47
7.1.1	GROUNDWATER ALTERNATIVE 1: NO ACTION	47
7.1.1.1	DESCRIPTION	47
7.1.1.2	ASSESSMENT	48
7.1.2	GROUNDWATER ALTERNATIVE 2: MNA	
	WITH INSTITUTIONAL CONTROL	49
7.1.2.1	DESCRIPTION	49
7.1.2.2	ASSESSMENT	51
7.1.3	GROUNDWATER ALTERNATIVE 3:	
	ENHANCED BIODEGRADATION	
	WITH MNA AND INSTITUTIONAL CONTROL	
7.1.3.1	DESCRIPTION	
7.1.3.2	ASSESSMENT	53
7.1.4	GROUNDWATER ALTERNATIVE 4:	
	PERMEABLE REACTIVE BARRIER WITH ENHANCED	
	BIODEGRADATION, MNA, AND INSTITUTIONAL CONTROL	
7.1.4.1	DESCRIPTION	
7.1.4.2	ASSESSMENT	56
7.1.5	GROUNDWATER ALTERNATIVE 5:	
	IN-WELL AIR STRIPPING WITH ENHANCED	
	BIODEGRADATION AND INSTITUTIONAL CONTROL	
7.1.5.1	DESCRIPTION	
7.1.5.2	ASSESSMENT	58
7.1.6	GROUNDWATER ALTERNATIVE 6:	
	HYDRAULIC CONTAINMENT/COLLECTION WITH	
	ON-SITE TREATMENT AND DISPOSAL AND	
	INSTITUTIONAL CONTROL	
7.1.6.1	DESCRIPTION	
7.1.6.2	ASSESSMENT	
7.2	SURFACE SOIL	63
7.2.1	SURFACE SOIL ALTERNATIVE 1:	
	NO FURTHER ACTION	
7.2.1.1	DESCRIPTION	
7.2.1.2	ASSESSMENT	63
7.2.2	SURFACE SOIL ALTERNATIVE 2:	
	INSTITUTIONAL CONTROL	
7.2.2.1	DESCRIPTION	
7.2.2.2	ASSESSMENT	65
7.2.3	SURFACE SOIL ALTERNATIVE 3:	
	CAPPING WITH INSTITUTIONAL CONTROL	
7.2.3.1	DESCRIPTION	
7.2.3.2	ASSESSMENT	67
7.2.4	SURFACE SOIL ALTERNATIVE 4:	
	EXCAVATION WITH OFF-SITE DISPOSAL	
	AND INSTITUTIONAL CONTROL	69

	7.2.4.1	DESCRIPTION	69
	7.2.4.2	ASSESSMENT	70
	7.3	SOIL GAS/INDOOR AIR	
	7.3.1	SOIL GAS ALTERNATIVE 1: NO ACTION	
	7.3.1.1	DESCRIPTION	72
	7.3.1.2	ASSESSMENT	72
	7.3.2	SOIL GAS ALTERNATIVE 2: SUB-SLAB VENTILATION	73
	7.3.2.1	DESCRIPTION	73
	7.3.2.2	ASSESSMENT	74
	7.3.3	SOIL GAS ALTERNATIVE 3:	
		SOIL VAPOR EXTRACTION WITH CARBON TREATMENT	75
	7.3.3.1	DESCRIPTION	75
	7.3.3.2	ASSESSMENT	75
8.0	COMPA	RATIVE ANALYSES OF REMEDIAL ALTERNATIVES	78
	8.1	COMPARATIVE ANALYSIS OF	
		GROUNDWATER REMEDIAL ALTERNATIVES	78
	8.1.1	OVERALL PROTECTION OF HUMAN HEALTH	
		AND THE ENVIRONMENT	78
	8.1.2	COMPLIANCE WITH SCGs	80
	8.1.3	REDUCTION OF TOXICITY, MOBILITY, AND VOLUME	80
	8.1.4	SHORT-TERM EFFECTIVENESS	82
	8.1.5	LONG-TERM EFFECTIVENESS AND PERMANENCE	83
	8.1.6	IMPLEMENTABILITY	85
	8.1.7	COST	86
	8.2	COMPARATIVE ANALYSIS OF REMEDIAL	
		ALTERNATIVES FOR SURFACE SOIL	86
	8.2.1	OVERALL PROTECTION OF HUMAN HEALTH	
		AND THE ENVIRONMENT	86
	8.2.2	COMPLIANCE WITH SCGs	
	8.2.3	REDUCTION OF TOXICITY, MOBILITY, AND VOLUME	
	8.2.4	SHORT-TERM EFFECTIVENESS	
	8.2.5	LONG-TERM EFFECTIVENESS AND PERMANENCE	89
	8.2.6	IMPLEMENTABILITY	90
	8.2.7	COST	91
	8.3	COMPARATIVE ANALYSIS OF REMEDIAL	
		ALTERNATIVES FOR SUB-SLAB SOIL VAPOR	91
	8.3.1	OVERALL PROTECTION OF HUMAN HEALTH	
		AND THE ENVIRONMENT	91
	8.3.2	COMPLIANCE WITH SCGs	
	8.3.3	REDUCTION OF TOXICITY, MOBILITY, AND VOLUME	
	8.3.4	SHORT-TERM EFFECTIVENESS	
	8.3.5	LONG-TERM EFFECTIVENESS AND PERMANENCE	
	8.3.6	IMPLEMENTABILITY	
	8.3.7	COST	95

TABLE OF CONTENTS

9.0	RECOMMENDED REMEDIAL ALTERNATIVE	.96
10.0	REFERENCES	.97

LIST OF FIGURES (Following Text)

- FIGURE 1.1 SITE LOCATION MAP
- FIGURE 2.1 SITE PLAN
- FIGURE 3.1 CROSS-SECTION LOCATION MAP
- FIGURE 3.2 NORTH-SOUTH GEOLOGIC CROSS-SECTION A-A'
- FIGURE 3.3 EAST-WEST GEOLOGIC CROSS-SECTION B-B'
- FIGURE 3.4 EAST-WEST GEOLOGIC CROSS-SECTION C-C'
- FIGURE 3.5 TOP OF TILL CONTOUR MAP
- FIGURE 3.6 BEDROCK SURFACE CONTOURS
- FIGURE 3.7 OVERBURDEN POTENTIOMETRIC CONTOURS AUGUST 2004
- FIGURE 3.8 OVERBURDEN POTENTIOMETRIC CONTOURS NOVEMBER 2006
- FIGURE 3.9 SHALLOW BEDROCK POTENTIOMETRIC CONTOURS NOVEMBER 2006
- FIGURE 3.10 GROUNDWATER AND SUBSURFACE SOIL SAMPLE LOCATIONS
- FIGURE 3.11 CONCENTRATIONS OF TCE, DCE & VINYL CHLORIDE IN OVERBURDEN GROUNDWATER – DECEMBER 2006
- FIGURE 3.12 CONCENTRATIONS OF TCE, DCE & VINYL CHLORIDE IN BEDROCK GROUNDWATER – DECEMBER 2006
- FIGURE 3.13 LOCATIONS OF SURFACE WATER SAMPLES, SURFACE SOIL SAMPLES AND EXCEEDANCES
- FIGURE 3.14 SUB-SLAB SAMPLE LOCATIONS AND TCE ANALYTICAL RESULTS
- FIGURE 3.15 RESIDENTIAL WELL LOCATION MAP
- FIGURE 7.1 CONCEPTUAL PLAN GW ALTERNATIVE 3
- FIGURE 7.2 CONCEPTUAL PLAN GW ALTERNATIVE 4
- FIGURE 7.3 CONCEPTUAL PLAN GW ALTERNATIVE 5

LIST OF FIGURES (Following Text)

- FIGURE 7.4 TYPICAL STRIPPING WELL
- FIGURE 7.5 CONCEPTUAL PLAN GW ALTERNATIVE 6
- FIGURE 7.6 CONCEPTUAL PLAN SURFACE SOIL ALTERNATIVES

- TABLE 3.1GROUNDWATER ANALYTICAL RESULTS-VOLATILE ORGANIC
COMPOUNDS
- TABLE 3.2GROUNDWATER ANALYTICAL RESULTS-SEMI-VOLATILE
ORGANIC COMPOUNDS
- TABLE 3.3GROUNDWATER ANALYTICAL RESULTS-PCBs
- TABLE 3.4GROUNDWATER ANALYTICAL RESULTS-PESTICIDES
- TABLE 3.5GROUNDWATER ANALYTICAL RESULTS-TOTAL METALS
- TABLE 3.6GROUNDWATER ANALYTICAL RESULTS-WET CHEMISTRY
- TABLE 3.7SUBSURFACE SOIL ANALYTICAL RESULTS-VOLATILE ORGANIC
COMPOUNDS
- TABLE 3.8SUBSURFACE SOIL ANALYTICAL RESULTS-SEMI-VOLATILE
ORGANIC COMPOUNDS
- TABLE 3.9SUBSURFACE SOIL ANALYTICAL RESULTS-PCBs
- TABLE 3.10SUBSURFACE SOIL ANALYTICAL RESULTS-PESTICIDES
- TABLE 3.11SUBSURFACE SOIL ANALYTICAL RESULTS-METALS
- TABLE 3.12SUBSURFACE SOIL ANALYTICAL RESULTS-WET CHEMISTRY
- TABLE 3.13SURFACE WATER ANALYTICAL RESULTS-VOLATILE ORGANIC
COMPOUNDS

- TABLE 3.14SURFACE WATER ANALYTICAL RESULTS-SEMI-VOLATILE
ORGANIC COMPOUNDS
- TABLE 3.15SURFACE WATER ANALYTICAL RESULTS-PCBs
- TABLE 3.16SURFACE WATER ANALYTICAL RESULTS-PESTICIDES
- TABLE 3.17SURFACE WATER ANALYTICAL RESULTS-METALS
- TABLE 3.18SURFACE WATER ANALYTICAL RESULTS-WET CHEMISTRY
- TABLE 3.19SURFACE SOIL ANALYTICAL RESULTS-VOLATILE ORGANIC
COMPOUNDS
- TABLE 3.20SURFACE SOIL ANALYTICAL RESULTS-SEMI-VOLATILE ORGANIC
COMPOUNDS
- TABLE 3.21SURFACE SOIL ANALYTICAL RESULTS-PCBs
- TABLE 3.22SURFACE SOIL ANALYTICAL RESULTS-PESTICIDES
- TABLE 3.23SURFACE SOIL ANALYTICAL RESULTS-METALS
- TABLE 3.24SURFACE SOIL ANALYTICAL DATA-
WET CHEMISTRY
- TABLE 3.25SUB-SLAB SOIL VAPOR ANALYTICAL DATA
- TABLE 4.1NEW YORK STATE WATER QUALITY CRITERIA FOR GROUNDWATER
COMPOUNDS OF CONCERN
- TABLE 4.2NEW YORK STATE RECOMMENDED SOIL CLEANUP OBJECTIVES FOR
SVOCs DETECTED IN SURFACE SOIL
- TABLE 4.3NEW YORK STATE AMBIENT AIR GUIDELINE CONCENTRATIONS FOR
COMPOUNDS DETECTED IN SITE GROUNDWATER OR SOIL VAPOR
- TABLE 4.4POTENTIAL ACTION-SPECIFIC STANDARDS, CRITERIA AND
GUIDELINES
- TABLE 5.1POTENTIAL RESPONSE ACTIONS AND REMEDIAL TECHNOLOGIES

- TABLE 6.1SCREENING OF IDENTIFIED REMEDIAL ALTERNATIVES FOR
GROUNDWATER
- TABLE 6.2SCREENING OF IDENTIFIED REMEDIAL ALTERNATIVES FOR SURFACE
SOIL
- TABLE 6.3SCREENING OF IDENTIFIED REMEDIAL ALTERNATIVES FOR SUB-SLAB
SOIL GAS
- TABLE 6.4SUMMARY OF DEVELOPMENT AND SCREENING OF REMEDIAL
TECHNOLOGIES FOR GROUNDWATER
- TABLE 6.5SUMMARY OF DEVELOPMENT AND SCREENING OF REMEDIAL
TECHNOLOGIES FOR SURFACE SOIL
- TABLE 6.6SUMMARY OF DEVELOPMENT AND SCREENING OF REMEDIAL
TECHNOLOGIES FOR SUB-SLAB SOIL GAS
- TABLE 7.1COST ANALYSIS SUMMARY GROUNDWATER ALTERNATIVE 1 -
NO ACTION
- TABLE 7.2COST ANALYSIS SUMMARY GROUNDWATER ALTERNATIVE 2 -
MONITORED NATURAL ATTENUATION AND INSTITUTIONAL
CONTROL
- TABLE 7.3COST ANALYSIS SUMMARY GROUNDWATER ALTERNATIVE 3 -
MONITORED NATURAL ATTENUATION WITH INSTITUTIONAL
CONTROL AND ENHANCED BIOLOGICAL DEGRADATION
- TABLE 7.4COST ANALYSIS SUMMARY GROUNDWATER ALTERNATIVE 4 -
PERMEABLEPERMEABLEREACTIVE BARRIER WITH ENHANCED BIOLOGICAL
DEGRADATION, MONITORED NATURAL ATTENUATION AND
INSTITUTIONAL CONTROL
- TABLE 7.5COST ANALYSIS SUMMARY GROUNDWATER ALTERNATIVE 5 IN-
WELL AIR STRIPPING WITH ENHANCED BIOLOGICAL DEGRADATION
AND INSTITUTIONAL CONTROL
- TABLE 7.6COST ANALYSIS SUMMARY GROUNDWATER ALTERNATIVE 6 -
HYDRAULIC CONTAINMENT/COLLECTION WITH ON-SITE TREATMENT
AND DISPOSAL
- TABLE 7.7COST ANALYSIS SUMMARY SURFACE SOIL ALTERNATIVE 1 NO
ACTION

- TABLE 7.8COST ANALYSIS SUMMARY SURFACE SOIL ALTERNATIVE 2 -
INSTITUTIONAL CONTROL AND FENCING
- TABLE 7.9COST ANALYSIS SUMMARY SURFACE SOIL ALTERNATIVE 3 -
CAPPING WITH INSTITUTIONAL CONTROL
- TABLE 7.10COST ANALYSIS SUMMARY SURFACE SOIL ALTERNATIVE 4 -
SURFACE SOIL EXCAVATION AND DISPOSAL
- TABLE 7.11COST ANALYSIS SUMMARY SOIL GAS ALTERNATIVE 1 NO ACTION
- TABLE 7.12COST ANALYSIS SUMMARY SOIL GAS ALTERNATIVE 2 SUB-SLAB
VENTILATION
- TABLE 7.13COST ANALYSIS SUMMARY SOIL GAS ALTERNATIVE 3 SOIL VAPOR
EXTRACTION
- TABLE 8.1COMPARATIVE RANKING OF GROUNDWATER REMEDIAL
ALTERNATIVES
- TABLE 8.2COMPARATIVE RANKING OF SURFACE SOIL REMEDIAL
ALTERNATIVES
- TABLE 8.3COMPARATIVE RANKING OF SUB-SLAB SOIL VAPOR REMEDIAL
ALTERNATIVES

LIST OF APPENDICES

APPENDIX A	ESTIMATION OF GROUNDWATER PUMPING RATE
APPENDIX B	MICROCOSM STUDY REPORT
APPENDIX C	IN SITU CHEMICAL OXIDATION BENCH SCALE TREATABILITY STUDY REPORT
APPENDIX D	MONITORED NATURAL ATTENUATION EVALUATION
APPENDIX E	COST ESTIMATE DETAIL
APPENDIX F	REPORT OF BUILDING SURVEY, VISUAL INSPECTION, AND DIAGNOSTIC COMMUNICATION TESTING
APPENDIX G	SUPPLEMENTAL GROUNDWATER INVESTIGATION SUMMARY REPORT

1.0 INTRODUCTION

Conestoga-Rovers & Associates, Inc. (CRA) has prepared this Feasibility Study (FS) on behalf of Parker-Hannifin Corporation (P-H) and the General Electric Company (GE) for the Old Erie Canal Site located in Clyde, New York (Site). The location of the Site is shown on Figure 1.1.

The Site is listed in the Registry of Inactive Hazardous Waste Disposal Sites in New York State (NYS) as Site No. 859015. The FS has been completed pursuant to Order on Consent Index No. B8-0533-98-06 between the New York State Department of Environmental Conservation (NYSDEC), P-H, and GE, and the NYSDEC-approved Remedial Investigation/Feasibility Study (RI/FS) Work Plan prepared by O'Brien & Gere Engineers, Inc. (OBG) and dated December 2001. The FS has been performed in a manner consistent with the NYSDEC-approved RI/FS Work Plan, the National Oil and Hazardous Substances Contingency Plan (NCP), the United States Environmental Protection Agency (USEPA) "Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA", dated October 1988, and NYSDEC "TAGM HWR-90-4030: Selection of Remedial Actions at Inactive Hazardous Waste Sites", dated May 15, 1990.

1.1 <u>OBJECTIVE</u>

The primary purpose of the FS is to identify and evaluate the most appropriate remedial alternatives to eliminate or mitigate, through the proper application of scientific and engineering principles, any significant threats to the public health and to the environment presented by hazardous wastes disposed or released at the Site.

1.2 ORGANIZATION OF THE REPORT

This report presents an analysis of remedial alternatives and is organized as follows:

- i) <u>Section 1</u> Introduction: An overview of the project is presented in Section 1;
- ii) <u>Section 2</u> Site Description and History: A description of the Site and a summary of its history are presented in Section 2;
- iii) <u>Section 3</u> Summary of Investigations and Qualitative Risk Assessment: The results of the RI and Supplemental Groundwater Investigation and qualitative risk assessment conducted by OBG are summarized in Section 3;

- iv) <u>Section 4</u> Remedial Goals and Remedial Action Objectives: The goals and objectives of the proposed remedy are discussed in Section 4;
- v) <u>Section 5</u> General Response Actions and Identification of Remedial Technologies: A review and screening of applicable technologies for remediating environmental media exhibiting concentrations of organic chemicals exceeding relevant standards at the Site are presented in Section 5;
- vi) <u>Section 6</u> Initial Screening of Remedial Technologies: The initial screening of the remedial technologies potentially applicable at the Site is presented in Section 6;
- vii) <u>Section 7</u> Detailed Analyses of Retained Remedial Alternatives: The detailed analyses of retained potential remedial alternatives to address the presence of organic chemicals at concentrations exceeding relevant regulatory criteria in environmental media at the Site is presented in Section 7;
- viii) <u>Section 8</u> Comparative Analyses of Remedial Alternative: The comparative analyses of the remedial alternatives for the Site are presented in Section 8;
- ix) <u>Section 9</u> Recommended Remedial Alternatives: A recommendation for the Site remedy and justification of the selection is presented in Section 9; and
- <u>Section 10</u> List of References: A list of the references used in the preparation of this FS is presented in Section 10.

2.0 SITE DESCRIPTION AND HISTORY

The Site is approximately 10.5 acres in size and is located at 124 Columbia Street in the Village of Clyde, New York. The Site includes both property currently owned by P-H, as well as portions of the abandoned Erie Canal (Old Erie Canal) and former Barge Turnaround, currently owned by the Village of Clyde. The Site is bounded by Columbia Street and residential property to the north, the P&C grocery store and commercial property to the east, active rail lines and the NYS Barge Canal (Clyde River) to the south, and residential properties to the west. The P-H property is comprised of the main manufacturing building, three additional storage buildings located along the western side of the Property, paved parking areas, and undeveloped portions of the Old Erie Canal and former Barge Turnaround. A Site Plan is presented on Figure 2.1.

2.1 <u>SITE HISTORY</u>

Manufacturing operations have been conducted on the Site since the early 1800s. Glass manufacturing dominated Site operations into the early 1930s. The Acme Electric Company (Acme Electric) purchased the property in 1941 for production of transformers. The current facility located at the Site was built in or about 1941 shortly after the property was purchased by Acme Electric. From 1941-1945, Acme Electric manufactured electrical equipment, transistors, radar components and transformer components for use by the United States Navy during World War II. These manufacturing activities were similar to the manufacturing activities at Acme Electric's nearby Cuba Plant. During the manufacturing activities at the Cuba Plant, Acme Electric generated halogenated solvents, spent stripping solutions, plating bath sludges, polychlorinated biphenyl (PCB) capacitors, and paint sludges. These wastes were disposed of at the Cuba Landfill Site. (See NYSDEC Record of Decision-Village of Cuba, Municipal Waste Disposal Site, Site Number 9-02-012.) It is likely that the similar manufacturing activities conducted by Acme Electric at the Clyde facility resulted in the generation of similar wastes. The NYSDEC Registry listing for the Old Erie Canal Site identifies Acme Electric as one of the manufacturers at the site who generated waste solvents and other materials.

GE purchased the facility in 1945 for the manufacture of electrical equipment, including fluorescent light ballasts, rectifiers, transistors, and diodes. P-H purchased the facility from GE in 1965 initially for the manufacture of automobile air conditioning systems. Historical manufacturing processes included the use of one stationary closed-loop vapor degreaser and several small portable closed-loop vapor degreasers as well as miscellaneous metal fabricating activities.

The Old Erie Canal was excavated through the southern portion of the Site between 1817 and 1825. Initially, the canal was 40 feet wide and 4 feet deep. Between 1836 and 1862, the canal was enlarged to a width of 70 feet and a depth of 7 feet. The enlarged canal included the former Barge Turnaround located in the southwestern portion of the Site. The present day Barge Canal was constructed beginning in 1908 utilizing a portion of the Clyde River south of the Site. The portion of the Old Erie Canal adjacent to the Site was abandoned in 1917.

The Old Erie Canal and former Barge Turnaround were used as historical disposal/fill sites. In the Village of Clyde, local contractors used the abandoned canal for the disposal of construction and demolition debris. The section of the Old Erie Canal along the southern portion of the P-H property was reportedly filled by P-H between 1968 and 1979.

The Village of Clyde sanitary sewer system historically discharged to a septic tank located at the confluence of the former Barge Turnaround and the Old Erie Canal. Waste was discharged from the septic tank to a catchbasin (CB-3) located in the unfilled portion of the Old Erie Canal, and ultimately, to the Clyde River. The Village abandoned and subsequently demolished the septic tank as part of sanitary sewer system improvements completed between 1968 and 1972. The discharge pipe leading to CB-3 from the septic tank was plugged during the septic tank abandonment.

P-H attempted to install a 12-inch corrugated metal pipe (CMP) to alleviate drainage issues east of the Site in 1971. The proposed plan was to install a 12-inch CMP to direct surface water from the eastern, unfilled portion of the Old Erie Canal to CB-3. During construction, the excavation collapsed and P-H abandoned the project. Later in 1971, the Village of Clyde installed a 48-inch CMP to direct surface water from the eastern area to the western, unfilled portion of the Old Erie Canal. P-H then connected two new storm drains to the 48-inch CMP.

The results of stormwater sampling conducted during the RI, revealed the presence of volatile organic compounds (VOCs) in stormwater discharging to catchbasin CB-3 and in two upgradient manholes (MH-3A and MH-3B), Figure 2.1. Based on the results of the stormwater sampling and subsequent evaluations of the Site storm sewers, an Interim Remedial Measure (IRM) was completed in November 2003 consisting of:

• Decommissioning of storm sewer lines 3 and 4 by filling them with flowable fill, and decommissioning of manholes MH-3A and MH-3B and catchbasins CB-3E and CB-3 by filling them with concrete.

- Installation of concrete water-stops on abandoned storm sewer lines 3 and 4, to minimize potential migration of groundwater along the sewer trenches.
- Regrading and paving a portion of the parking lot behind the manufacturing building to direct surface water away from the locations of the abandoned catchbasins and storm sewer lines.

This IRM is more fully described in the Storm Water IRM Completion Report, prepared by OBG, dated December 2003. The completion report was approved by the NYSDEC in February 2004.

2.2 <u>CURRENT OPERATIONS</u>

Current operations by P-H include the manufacture and testing of fuel injection nozzles for military and industrial applications.

The P-H property is fenced along the east side (Elm Street), south side (Old Erie Canal), and on the west side along the former Barge Turnaround. Access into the manufacturing building is controlled through a secure door access system. Personnel are on-Site 7 days a week, generally between the hours of 5:00 a.m. and 11:00 p.m. on weekdays and 5:00 a.m. and 12:00 p.m. on weekends.

The floors within the production area are sealed with a 100 percent solids, copolymer resin applied at a thickness of 16 to 50 mils. This sealant provides a chemical and abrasion resistant covering which also seals any cracks present in the concrete floor.

Facility personnel are trained in hazard communication and health and safety procedures are in place which define special procedures for subsurface activities performed within areas of known chemical presence in Site soil or groundwater.

Indoor air sampling is conducted periodically to ensure compliance with Occupational Safety and Health Administration (OSHA) standards.

3.0 SUMMARY OF REMEDIAL INVESTIGATION AND ASSOCIATED STUDIES

The NYSDEC and New York State Department of Health (NYSDOH) conducted a number of environmental investigations and sampling rounds at the Site and surrounding residential properties between 1989 and 1994. These investigations involved collection of surface soil, groundwater, surface water, stormwater, sub-slab soil gas, residential well and basement sump water, and residential indoor air samples. Samples were analyzed for Target Compound List (TCL) VOCs, semi-volatile organic compounds (SVOCs), pesticides, PCBs, Target Analyte List (TAL) metals, and total cyanide. The results of the NYSDEC and NYSDOH investigations were presented in the "Remedial Investigation/Feasibility Study Work Plan", prepared by OBG and approved by NYSDEC in December 2001.

A Remedial Investigation (RI) was conducted by OBG on behalf of GE and P-H between April 2002 and January 2005. The results of the RI were reported in the:

- i) "Remedial Investigation Report" prepared by OBG and dated November 2003; and
- ii) "Remedial Investigation Addendum No. 1 Report" prepared by OBG and dated May 13, 2005.

A Supplemental Groundwater Investigation (SGI) was conducted in November/December 2006 to gather additional site data to be considered in the FS. The results of the SGI are presented as Appendix G to this FS in the "Supplemental Groundwater Investigation Summary Report" prepared by OBG and dated March 29, 2007.

Summaries of the results of the RI and SGI and identified potential exposure pathways for each of the impacted environmental media prepared from the information presented in the above-referenced reports are presented in the following subsections.

3.1 <u>GEOLOGY/HYDROGEOLOGY</u>

3.1.1 <u>SITE OVERBURDEN STRATIGRAPHY</u>

The Site is located on the Lake Ontario plain within the Finger Lakes physiographic region of NYS. The soils overlying bedrock at the Site consist of the following in ascending order:

- i) glacial till;
- ii) glaciofluvial deposits; and
- iii) fill.

The combined thickness of the unconsolidated deposits beneath the Site range from 16.5 to 31.0 feet.

Geologic cross-sections were prepared by OBG and presented in the RI and SGI reports. Copies of the most recent cross-sections are presented on Figures 3.2 through 3.4 of this FS. A cross-section location plan is shown on Figure 3.1.

<u>Glacial Till</u>

The till beneath the Site is a Lodgment Till consisting of a poorly sorted mixture of red-brown clayey silt with some coarse to fine sand and little gravel. The till is present across the majority of the Site, ranging in thickness between 3.5 and 27.2 feet. The till is thickest at MW-7B, west of the former Barge Turnaround. As shown on the cross-sections, the till is thin or absent along an apparent channel in the vicinity of the former Barge Turnaround. A contour map showing the elevation of the top of the till, reproduced from the SGI Report, is presented on Figure 3.5.

Where present, the till acts as an aquitard separating the fill and glaciofluvial deposits from the bedrock unit.

Glaciofluvial Deposits

Glaciofluvial deposits consisting of channel silt, sand and gravel, sand, and gravel are present across the majority of the Site. Where the till is absent in the channel near the former Barge Turnaround, the glaciofluvial deposits directly overlie the bedrock. The maximum observed thickness of the glaciofluvial deposits is 23 feet at boring GP-36 located in the southern portion of the Site. The stratigraphic detail shown in the geologic cross-section presented on Figure 3.3 shows that the thickness of the glaciofluvial deposits is less east of the manufacturing building and in the southeast parking lot than it is in the center of the Site. Interbedded silt and clay, referred to in the RI Report as "backswamp deposits," is present overlying the channel materials in the former Barge Turnaround area.

Fill material is present across the majority of the Site, including on the property owned by the Village of Clyde located west of the P-H property. Fill thicknesses range up to approximately 12 feet east of the manufacturing building (Figure 3.3). The fill on the P-H property is not contiguous with the fill on the Village of Clyde property.

The Site fill generally consists of sand, gravel, and silt mixed with cinders, ash, slag, brick, and glass. The volumes of fill are greatest in the Old Erie Canal along the southern Site boundary, along the eastern portion of the former Barge Turnaround, and in the vicinity of the manufacturing building.

3.1.2 <u>SITE BEDROCK</u>

The bedrock beneath the Site consists of shale and dolomitic limestone of the Late Silurian Syracuse-Camillus Formation. Based on the lithologic descriptions of the bedrock cores presented in the RI Report, the bedrock is gray to dark greenish-gray, fine-grained, moderately fractured shale and thinly bedded gray dolomitic limestone which is also moderately fractured.

During the Site investigations, the bedrock was encountered at depths ranging between 16.5 and 31 feet below grade. The bedrock surface generally slopes from the northeast to the southwest. A contour map showing the surface elevation of the bedrock is presented on Figure 3.6.

3.1.3 <u>SITE HYDROGEOLOGY</u>

The geologic units identified in the previous section were grouped into two major hydrogeologic units as follows:

- Shallow unconsolidated unit; and
- Shallow bedrock unit.

Each of these hydrogeologic units is described below.

<u>Fill</u>

Shallow Unconsolidated Unit

The shallow unconsolidated unit consists of the fill and glaciofluvial geologic units. This unit ranges in thickness from 1.0 to 29.2 feet, and is thickest within the glacial channel west of the facility. Based on testing conducted during the Site Investigations, the hydraulic conductivity ranges from 0.33 feet per day (ft/day) (MW-9S) to 38.12 ft/day (-TMW-2). The geometric mean hydraulic conductivity was determined to be 4.75 ft/day.

Water level measurements were collected during the Site investigations on five occasions. The general pattern of groundwater flow exhibited by the five sets of groundwater contours is consistent. The groundwater contour maps for August 3, 2004 and November 28, 2006 are provided on Figures 3.7 and 3.8, respectively. Examination of these figures shows that the glacial channel acts as a local groundwater drainage point where groundwater flow from the east, north, and west converges. Groundwater flow from the eastern and central portions of the Site is westward toward the gravel-filled channel. Groundwater flow from the remainder of the Site is southward, toward the Clyde River. The horizontal hydraulic gradients within the shallow unconsolidated unit are variable. In general, steeper gradients (i.e., on the order of 0.02 feet per feet (ft/ft) occur at the limits of the glacial channel. Within the channel, the hydraulic gradients are much smaller, due to the fact that the unit here consists principally of glaciofluvial sand and gravel.

The volume of groundwater flow into the glacial channel was estimated using the unit's hydraulic conductivity and hydraulic gradient. The flow into the channel was divided into three components (east, north, and west) based on the August 3, 2004 groundwater contours. The calculations show that the total groundwater flow into the channel is on the order of ,1,500 ft³/day (8 gallons per minute [gpm]). A groundwater extraction system would typically be required to pump in excess of the natural flow rate to achieve hydraulic containment. For this FS, it was assumed that a combined rate of 20 gpm would be required. The estimations of natural groundwater flow rate and of groundwater pumping rates are provided in Appendix A.

Over most of the Site, the shallow unconsolidated unit is separated from the shallow bedrock unit by a low hydraulic conductivity, dense glacial till. The only area where the till is thin or absent occurs within the glacial channel. Within the Site, vertical hydraulic gradients are downward from the shallow unconsolidated unit to the shallow bedrock unit. This indicates a potential for groundwater migration from the unconsolidated unit to the bedrock. The intervening till unit mitigates this potential groundwater flow path. There is a potential connection between the unconsolidated unit and the bedrock along the axis of the glacial channel. This connection is manifested by the presence of Site-related chemicals in bedrock monitoring well MW-6B.

The groundwater contours and surface water measurements collected confirm that the groundwater in the unconsolidated unit discharges to the Clyde River. There is also a small potential for shallow groundwater to migrate to the shallow bedrock, where the till is absent.

Shallow Bedrock Unit

The shallow bedrock unit is part of the Syracuse-Camillus Formation and consists of interbedded shale and limestone. Groundwater flow in this unit will occur principally through secondary porosity features (e.g., bedding plane fractures and joints). The hydraulic conductivity of the shallow bedrock is directly related to the frequency and degree of interconnection of the secondary porosity features. The geometric mean hydraulic conductivity of the shallow bedrock unit, based on testing conducted during the Site investigations, is 0.05 ft/day. The bedrock unit is much less permeable than the shallow unconsolidated unit.

A potentiometric contour map of the shallow bedrock unit has been prepared using the hydraulic monitoring data collected on November 28, 2006. The contour map is presented on Figure 3.9. Groundwater flow in the shallow bedrock beneath the Site is southwesterly. The data collected from the bedrock monitoring wells located south of the Barge Canal suggests that flow from south of the Barge Canal is to the northeast, toward the Site.

3.2 NATURE AND EXTENT OF CONTAMINATION

The investigations and data analyses presented in previously submitted reports indicated that current or potential future risks to human health and/or the environment were present if there was direct exposure to:

- i) impacted groundwater;
- ii) on-Site surface water or surface soil; or
- iii) exposure to sub-slab soil gas through vapor intrusion into the manufacturing building.

The potential impact of soil vapor migration and intrusion to the off-Site properties north (upgradient) of the Site is being further investigated and will be evaluated in a separate report.

3.2.1 <u>GROUNDWATER</u>

Groundwater analytical data summaries are presented in Tables 3.1 through 3.6. The groundwater sample locations are shown on Figure 3.10. The analytical data have been compared to the NYSDEC standards for Class GA (potable) groundwater and detected concentrations exceeding the standards are highlighted on the tables. Review of the data shows the following:

- i) VOCs, primarily trichloroethene (TCE), its degradation products cis-1,2-dichloroethene (cis-1,2-DCE) and vinyl chloride (VC), toluene, and xylene are present in Site groundwater at concentrations exceeding the relevant standards;
- ii) few SVOCs were detected in groundwater samples at low concentrations exceeding relevant standards;
- iii) no PCBs or pesticides were detected in groundwater samples;
- iv) iron, manganese, magnesium, ,and sodium were detected in a number of samples at concentrations exceeding the relevant standards;
- v) antimony was detected at a concentration exceeding its standard in one sample;
- vi) chemical presence in Site groundwater occurs primarily in the shallow overburden unit; and
- vii) chemical presence in groundwater within the bedrock unit at concentrations exceeding the relevant standards is limited to the shallow bedrock in the immediate vicinity of the former Barge Turnaround. Chemicals have not been detected at concentrations exceeding standards in samples collected from bedrock monitoring wells MW-10B, MW-11B, or MW-12B located approximately 400 feet downgradient of the southern Site boundary, across the Barge Canal.

The concentrations of TCE, cis-1,2-DCE, and VC,,, in the overburden and shallow bedrock monitoring wells are shown on Figures 3.11 and 3.12, respectively.

The data collected during the Site investigations demonstrate that natural attenuation of chemicals in Site groundwater through biodegradation is effectively reducing chemical presence. Review of the groundwater VOC data shows that in many locations the

concentrations of cis-1,2-DCE and VC, the degradation products of TCE, are higher than the concentration of TCE. In some cases, TCE makes up less than 1 percent of the total VOCs in the groundwater. This indicates that reductive dechlorination is highly advanced in the most highly contaminated areas of the Site. The data further show that in these same areas the degradation of TCE has progressed to the formation of its non-hazardous end products, ethane and ethene. Geochemical data indicate that, at the Site, the groundwater aquifer conditions are reducing which is favorable to the reductive biodegradation of TCE and its daughter products.

3.2.2 <u>SUBSURFACE SOIL</u>

Subsurface soil analytical data summaries are presented in Tables 3.7 through 3.12. The locations from which subsurface soil samples were collected are shown on Figure 3.10. The subsurface soil analytical data have been compared to the NYSDEC recommended soil cleanup objectives and to the data obtained from analysis of a sample collected from a background location (GP-7). Reported concentrations exceeding both the soil cleanup objectives and background concentrations are highlighted in Tables 3.7 through 3.12. Review of the data shows the following:

- i) VOCs, primarily TCE and VC, are present in subsurface soil at concentrations exceeding the soil cleanup objectives within the former Barge Turnaround and beneath and adjacent to the manufacturing building;
- ii) SVOCs and pesticides are present at concentrations exceeding the soil cleanup objectives in background soils;
- iii) SVOCs were not detected in Site subsurface soils at concentrations exceeding both the soil cleanup objectives and background concentrations;
- iv) pesticides were not detected in Site subsurface soils at concentrations exceeding the soil cleanup objectives;
- v) PCBs were not detected in any subsurface soils sample; and
- vi) metals detected in subsurface soil samples at concentrations exceeding both background concentrations and soil cleanup objectives are primarily calcium, magnesium, manganese, nickel, and potassium. Aluminum, beryllium, chromium, iron, and vanadium were each detected at concentrations exceeding both the background concentrations and soil cleanup objectives in a single sample located south of the southern Site boundary (GP-39).

Generally, subsurface soils selected for chemical analyses were those exhibiting elevated organic vapor screening values. Review of the stratigraphic logs presented in

Appendices B and C of the RI Report and Appendices A and B of the SGI Report shows that, with the exception of the sample collected from SB-6B, the depth intervals of samples selected for analyses from locations outside the manufacturing building were below the water table elevation. Thus, the samples were saturated and the analytical results are deemed most reflective of the presence of impacted groundwater. Stratigraphic logs are not available for the sampling conducted below the slab of the manufacturing building. However, if it is assumed that the water table is approximately 8 feet below ground surface (bgs) or higher, as indicated by the logs from the RI, it is apparent that the highest concentrations of VOCs in sub-slab soils were also detected in samples that are also most likely saturated (SSB-7 and SSB-8).

The potential exposure pathway to subsurface soil is for short-term direct contact with VOC-impacted soils by workers conducting subsurface construction-related activities.

3.2.3 <u>SURFACE WATER</u>

Surface water analytical data summaries are presented in Tables 3.13 through 3.18. The locations from which surface water samples were collected are shown on Figure 3.13. As can be seen on the figure, the samples were collected from the former Barge Turnaround west of the manufacturing building and from the drainage swale along the southern boundary of the Site.

Neither the former Barge Turnaround nor the drainage swale are classified streams. These features function to collect surface water runoff and are intermittently dry. For screening purposes, the surface water analytical data have been compared to the regulatory standards for Class C fresh surface waters. Other than mercury, there are no Class C standards for human exposure to metals in surface waters; therefore, to present a conservative evaluation of the presence of metals in surface water, the analytical data have been compared to aquatic standards. Concentrations of analytes exceeding the Class C surface water criteria are highlighted in Tables 3.13 through 3.18. The locations of the exceedances are shown on Figure 3.13. Review of the data shows the following:

- i) VOCs and SVOCs were detected in background/upgradient surface water samples, however, no concentration exceeded the Class C surface water standards;
- concentrations of VOCs and SVOCs detected in surface water discharging from the 48-inch drainage pipe which traverses the southern portion of the Site in the east-west direction and passes through the filled portion of the Old Erie Canal were all below the Class C surface water standards. Therefore, discharge from

this drainage pipe is not a continuing source of chemicals to surface or ground waters;

- iii) tetrachloroethene (PCE) and TCE were detected in surface water samples located near catchbasin CB-3 at concentrations exceeding the Class C surface water standards. Other VOCs, including cis-1,2-DCE, VC, and SVOCs were also detected in these samples; however, the other compounds detected either do not have published standards or were detected at very low concentrations. CB-3 and its contributing lines were abandoned as an IRM completed in November 2003 and, therefore, are no longer potential continuing sources of chemicals to surface or ground waters;
- iv) VOCs were not detected at concentrations exceeding the Class C surface water standards in samples collected from the drainage swale west (downstream) of the Site (no sample for SVOCs was collected);
- v) no PCBs or pesticides were detected in any surface water samples collected during the investigations; and
- vi) aluminum and lead were detected at concentrations exceeding both background and the Class C surface water standards only in the samples collected at the confluence of the former Barge Turnaround and the Old Erie Canal, near CB-3.

As defined in 6 New York Code of Rules and Regulations (NYCRR) Part 701.8, "The best usage of Class C waters is fishing. These waters shall be suitable for fish propagation and survival. The water quality shall be suitable for primary and secondary recreation, although other factors may limit the use for these purposes." As stated previously, the surface water samples were all collected from the Barge Turnaround or from the drainage swale. Neither of these areas would be suitable for uses defined for a Class C stream. A walking path crossing the former Barge Turnaround has been built over the filled Old Erie Canal. It is possible that trespassers or persons or pets leaving the walking path could enter the former Barge Turnaround. Therefore, the potential pathways for exposure to impacted surface water are:

- i) direct contact to workers in the former Barge Turnaround area near CB-3;
- ii) direct contact to trespassers entering the former Barge Turnaround area near CB-3; and/or
- iii) direct contact to individuals leaving the walking path and entering the former Barge Turnaround area near CB-3.

3.2.4 <u>SURFACE SOIL</u>

Surface soil analytical data summaries are presented in Tables 3.19 through 3.24. The locations from which surface soil samples were collected are shown on Figure 3.13. As can be seen on the figure, the samples were collected from the former Barge Turnaround west of the manufacturing building and from the drainage swale along the southern boundary of the Site at the locations from which surface water samples were collected.

Specific information regarding surface soil sample depths was not provided in the RI Report. However, the RI/FS Work Plan described the soils to be sampled as "surface". The potential pathways for exposure to impacted surface soils are:

- i) direct contact to workers in the former Barge Turnaround area near CB-3;
- ii) direct contact to trespassers entering the former Barge Turnaround area near CB-3; and/or
- iii) direct contact to individuals leaving the walking path and entering the former Barge Turnaround area near CB-3.

The surface soil analytical data have been compared to the NYSDEC-recommended soil cleanup objectives. Reported concentrations exceeding both the Site background as defined by the data from locations SED-1 and SED-2 and the soil cleanup objectives are highlighted in Tables 3.19 through 3.24 and on Figure 3.13. Review of the data shows the following:

- i) VOCs were not detected at concentrations exceeding the soil cleanup objectives at any location;
- ii) no detected concentrations of PCBs or pesticides in surface soil samples exceeded the soil cleanup objectives;
- iii) SVOCs were detected in background/upgradient surface soil samples at concentrations exceeding the soil cleanup objectives;
- iv) a number of SVOCs were detected in surface soil samples from the area of CB-3 at concentrations which exceeded both the background concentrations and soil cleanup objectives;
- v) with the exception of benzo(a)anthracene, which was detected at a concentration slightly higher than background (2,200 micrograms per kilogram [μ g/Kg] versus 2,100 μ g/Kg) in the surface soil sample collected at the most downgradient location (SED-10), SVOCs were not detected in surface soil samples collected from any locations other than those near CB-3; and

vi) metals were detected in all surface soil samples at concentrations exceeding both background and the soil cleanup objectives.

3.2.5 <u>SUB-SLAB SOIL GAS</u>

Soil gas samples were collected from beneath the floor slab of the manufacturing building at the locations shown on Figure 3.14. The sub-slab soil gas analytical results are presented in Table 3.25 and summarized on Figure 3.14. Review of the data shows the following:

- i) TCE was detected in all sub-slab soil gas samples; and
- ii) other VOCs, including 1,2-DCE, were also detected in the soil gas samples.

As stated in the NYSDOH "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" (Public Comment Draft, February 2005), NYS currently does not have any standards, criteria, or guidance values for concentrations of compounds in subsurface vapors for use in comparison to the Site data. NYSDOH has developed air guideline values for a limited number of compounds as stipulated in the above-referenced document. All detected concentrations of TCE in sub-slab soil gas samples exceed the NYSDOH guideline value of 5 micrograms per cubic meter (μ g/m³).

The potential exposure pathway of sub-slab soil gas to indoor air and subsequent inhalation has been carried forward for evaluation in this FS.

To aid in the evaluation of potential remedial technologies to address the intrusion of sub-slab soil gas into the indoor air of the manufacturing building, a building survey, visual inspection, and sub-slab diagnostic communication testing were performed. The results of this investigative work was reported to NYSDEC in the "Remedial Investigation Addendum No. 1 Report" prepared by OBG for P-H and GE and dated May 13, 2005. Copies of the portions of the report presenting the results of these investigations are presented in Appendix F.

3.3 GROUNDWATER MIGRATION PATHWAYS AND RECEPTORS

The Site investigations have shown that groundwater has been impacted by previous Site activities. Groundwater flow beneath the Site is primarily westward toward the glacial channel. Once the shallow unconsolidated unit groundwater reaches the glacial channel,

flow is directed south, along the axis of the channel, due to the presence of very permeable material within the channel. The groundwater in the shallow unconsolidated unit within the channel flows toward the Clyde River.

The shallow unconsolidated unit is separated from the bedrock over most of the Site by a low hydraulic conductivity, dense till unit. Where present, this till unit mitigates potential groundwater and chemical migration to the bedrock. The only area where impacted groundwater in the unconsolidated unit is in connection with the bedrock is within the glacial channel. Here the stratigraphic logs indicate that the till unit has been eroded and the glaciofluvial deposits likely rest on the bedrock surface. The hydraulic connection between the unconsolidated unit and the bedrock has been confirmed by the presence of chemicals of concern in the shallow bedrock at monitoring well locations MW-4B and MW-6B.

The limit of chemical presence in shallow bedrock groundwater has been defined by monitoring wells MW-7B, MW-5B, MW-3B, and MW-2B located around the perimeter of the Site to the west and east, by wells MW-10B, MW-11B, and MW-12B, located on the south side of the Clyde River, and by MW-4C located adjacent to MW-4B in the deeper bedrock. Chemical data from groundwater monitoring wells confirm that the process of natural attenuation in the bedrock is effective in limiting the migration of residual chemicals in groundwater.

Chemicals of concern within the shallow unconsolidated unit may also migrate through the vadose zone to indoor or ambient air. Currently, only the Site buildings are located over shallow groundwater exhibiting chemical presence. There is little potential for future building development in the former Barge Turnaround.

An important aspect of the FS is to include consideration of the current and future receptors of chemicals of concern in the groundwater. The Site and the Village of Clyde are serviced by a municipal water supply. The water source for this supply is a well located approximately 4 miles northwest and hydraulically upgradient of the Site. Thus, the Site cannot impact the source water. Given the availability of the municipal water supply system, there is little probability of the future use of Site groundwater for potable purposes. The future use of groundwater on the Site can be restricted through deed restrictions preventing future use of groundwater beneath the properties.

An inventory of residential wells was conducted during the RI. This inventory noted that there were seven wells within a 1/2-mile radius of the Site. Three of the seven wells are currently used for potable purposes, although municipal water is available. The three residential wells in use are located north and west of the Site as shown on Figure 3.15.

Thus, there are no current users of groundwater located hydraulically downgradient of the Site. There are currently no regional restrictions on the use of groundwater for potable or other water needs. Therefore, there is potential for future use of groundwater as a water supply source in areas hydraulically downgradient of the Site.

In summary, the primary receptors of chemicals of concern in the shallow unconsolidated unit groundwater are:

- i) the Clyde River;
- ii) the Shallow Bedrock aquifer; and
- iii) ambient and indoor air.

3.4 SUMMARY OF THE NATURE AND EXTENT OF CONTAMINATION AND POTENTIAL EXPOSURE PATHWAYS

The results of the Site investigations indicate that the primary media of concern is groundwater. Subsurface soil exhibits chemical presence at concentrations exceeding the NYSDEC soil cleanup objectives only in samples collected from below the water table. Therefore, remedial actions addressing groundwater will also address chemical presence in subsurface soil. Surface water exhibited chemical concentrations exceeding the Class C surface water quality standards during the sampling conducted for the RI. An IRM consisting of the abandonment of CB-3 and contributing laterals was completed in November 2003. The IRM has mitigated the potential impact of surface water at the Site and, therefore, surface water has been eliminated as a media of concern in this FS.

SVOCs and metals were detected in surface soil samples at concentrations exceeding both the NYSDEC soil cleanup objectives and Site background. Given the industrial/commercial usage of the area in general and the nearby location of a railroad right-of-way, these constituents are ubiquitous in this area. Nonetheless, surface soil has been carried forward for evaluation in the FS.

The following summarizes the compounds of concern (COCs) and potential exposure pathways identified through the completion of the RI:

- i) Groundwater
 - COCs VOCs
 - Potential Exposure Pathways worker or resident ingestion, inhalation, and/or direct contact;

ii) Surface Soil

- COCs SVOCs and metals
- Potential Exposure Pathways worker or trespasser direct contact; and
- iii) Sub-Slab Soil Gas
 - COCs VOCs
 - Potential Exposure Pathways worker inhalation of indoor air.

3.5 <u>TREATABILITY STUDIES</u>

Bench scale laboratory treatability studies have been conducted to gather the data necessary for evaluations of in situ chemical oxidation (ISCO) and enhanced biodegradation as remedial alternatives for Site groundwater. In addition, an evaluation of monitored natural attenuation (MNA) as a remedial Alternative for the Site was performed in accordance with USEPA guidance. Summaries of the results of the studies and evaluation are presented in the following subsections.

3.5.1 ENHANCED BIODEGRADATION

A microcosm study was designed and conducted to determine whether the complete reductive dechlorination of TCE to ethene could be stimulated at the Site. The results of the study are summarized as follows:

- i) Enhanced bioremediation is a feasible remedial option at this Site. All of the electron donors supported complete reductive dechlorination of TCE to ethene within the course of the experiment. The addition of electron donors promoted a two to three fold increase in the overall biodegradation rate over the comparable unamended control. TCE was biodegraded very rapidly in all the amended bottles. Lactate, chitin, and soybean oil promoted the fastest biodegradation of CC. In these cases, VC was biodegraded almost as fast as it was formed, so that very little was measured in the bottles. The choice of electron donor for use in a potential field application would depend on site conditions and stratigraphy.
- Complete reductive dechlorination of TCE to ethene was observed in both the unamended controls at both concentration levels. It is unusual to observe this level of activity at such a high TCE concentration and indicates robust intrinsic biological activity is currently operative at the site. This suggests that monitored

natural attenuation should be an important part of the remedial strategy at this Site.

iii) The addition of supplemental nutrients did not have a substantial positive effect on the rate or extent of TCE dechlorination. Bioaugmentation also did not have a significant effect on the results observed. These results indicate that neither supplemental nutrients nor bacteria would be required to promote the rapid biodegradation of TCE at this Site.

The complete report of the microcosm studies is presented in Appendix B.

3.5.2 IN SITU CHEMICAL OXIDATION

Bench scale treatability studies utilizing potassium permanganate, Fenton's Reagent, and sodium persulfate as oxidizing agents for VOCs in Site groundwater were conducted. The tests included treatability of groundwater samples as well as quantification of the natural oxidant demand of the site soils. The results of the studies are summarized as follows:

- i) the natural oxidant demand of Site soils is high, which is likely due to the presence of petroleum hydrocarbons and natural organic matter. It was concluded that the natural oxidant demand (NOD) of the Site soil is too high for the use of ISCO alone to be a cost-effective treatment; and
- ii) Fenton's reagent was the recommended oxidant if ISCO is included in the final remedy.

The complete report of the ISCO treatability studies is presented in Appendix C.

3.5.3 MONITORED NATURAL ATTENUATION

An evaluation of MNA was conducted in association with the performance of the FS for the Site. The MNA evaluation was completed to determine the subsurface geochemical conditions and evaluate the significance of biodegradation of chlorinated volatile organic compounds (CVOCs) in groundwater at and in the vicinity of the Site as a result of naturally occurring biological activity. The findings were utilized to support the conclusions of the FS and selection of remedial technologies.

The MNA evaluation was performed in accordance with the protocols outlined in the USEPA documents entitled "Use of Monitored Natural Attenuation at Superfund, RCRA (USEPA Tank Sites" Corrective Action. and Underground Storage OSWER Directive 9200.4-17P, April 1999) and "Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water" (USEPA, September 1998). During the MNA evaluation groundwater samples were collected and analyzed and the results were evaluated for the following evidence or indicators of natural biological activity in groundwater:

- i) CVOC concentrations over time and space;
- ii) geochemical parameters that indicate strong reducing conditions;
- iii) presence of CVOC daughter products;
- iv) microbial evidence of biodegradation potential; and
- v) estimation of chemical mass destroyed by biodegradation.

Results of the MNA analysis are summarized as follows:

- i) there is insufficient data to conduct a meaningful analysis of CVOC concentrations over time;
- geochemical parameters collected from groundwater indicate that the overburden and bedrock aquifers at the Site are reducing. These geochemical conditions are favorable for the reductive biodegradation of TCE, cis-DCE, and VC;
- iii) with a few exceptions, the parent compound TCE is much diminished at the Site relative to its reductive chlorination daughter products cis-DCE, VC, and ethene/ethane. In some cases, TCE made up less than 1 percent of the total VOCs in the groundwater. This indicates that reductive dechlorination is highly advanced in the most highly contaminated areas of the Site. This is supported by the presence of ethane and ethene at those locations, indicating that the dechlorination is proceeding all the way to non-hazardous end products;
- iv) benzene, toluene, ethylbenzene, and xylene (BTEX) compounds are also present in the former Barge Turnaround, suggesting that BTEX may be an important electron donor in supporting the reductive dechlorination of TCE and its daughter products. However, given the swampy nature of the area, natural dissolved organic carbon (DOC) in the form of humic materials is also present and will likely contribute to the support of reductive dechlorination; and
- vi) substantial natural biodegradation by reductive dechlorination is occurring at Site. Calculations based on chloride concentrations and groundwater flux through the bioactive zone suggest that 500 to 5,000 pounds per year (lbs/yr) of

TCE are being destroyed due to ongoing biodegradation processes. This may be a conservative estimate. This analysis, coupled with the stable migration of groundwater and lack of groundwater use in the area indicate that the CVOCs are attenuating rapidly and sufficiently such that there is no threat to groundwater users.

4.0 <u>REMEDIAL GOALS AND REMEDIAL ACTION OBJECTIVES</u>

4.1 POTENTIAL STANDARDS, CRITERIA, AND GUIDELINES

4.1.1 <u>TYPES AND APPLICABILITY</u>

Applicable or relevant and appropriate Standards, Criteria, and Guidelines (SCGs) are used to develop remedial action objectives (RAOs) and to scope and formulate remedial action technologies and alternatives. SCGs may include Federal Applicable or Relevant and Appropriate Requirements (ARARs) or standards if they are more stringent than State standards. SCGs are categorized as:

- i) chemical-specific requirements that define acceptable exposure levels and may, therefore, be used in establishing preliminary remediation goals;
- ii) location-specific requirements that may set restrictions on activities without specific locations, such as floodplains or wetlands; and/or
- iii) action-specific requirements which may set controls or restrictions for particular treatment and disposal activities related to the management of hazardous wastes.

Potential SCGs are described in the following subsections.

4.1.1.1 CHEMICAL-SPECIFIC SCGs

Chemical-specific SCGs define health- or risk-based concentration limits in various environmental media for hazardous substances and contaminants. Concentration limits provide protective cleanup levels or may be used as a basis for estimating appropriate cleanup levels for the COCs in the designated media. Chemical-specific SCGs may be used to determine treatment system discharge requirements or disposal restrictions for remedial activities and/or to assess the effectiveness or suitability of a remedial alternative. Chemical-specific SCGs are generally promulgated standards or other ARARs. Applicable or relevant and appropriate guidance values may be appropriate where a promulgated standard for a particular substance is not available.

Potential chemical-specific SCGs that may apply to groundwater, surface soil, and air at the Site are described in the subsections that follow.

4.1.1.1.1 <u>GROUNDWATER</u>

For the purpose of this FS, Site groundwater will be considered Class GA. Class GA groundwater pertains to fresh groundwater found in the saturated zone of unconsolidated deposits and bedrock. The best usage of Class GA groundwater is a source of potable water supply; however, Site groundwater is not used as a drinking water source. The NYS water quality standards and guidance values for Class GA groundwater are stipulated in:

- i) New York Water Classifications and Quality Standards (6 NYCRR Parts 609, and 700-704); and
- Technical and Operation Guidance Standards (TOGS) 1.1.1, Ambient Water Quality Standards and Guidance Values dated October 22, 1993 (reissued June 1998).

The Class GA groundwater SCGs for VOCs detected in Site groundwater at concentrations exceeding standards are presented in Table 4.1.

4.1.1.1.2 SURFACE SOIL

For the purpose of the FS and the potential exposure scenarios described in Section 3.2.4, potential chemical-specific SCGs for surface soils consist of the NYSDEC recommended soil cleanup objectives. The NYSDEC recommended soil cleanup objectives are stipulated in Technical and Administrative Guidance Memoranda (TAGM) 4046, Determination of Soil Cleanup Objectives and Cleanup Levels dated January 24, 1994. The SCGs for the chemical compounds detected in Site surface soils at concentrations exceeding standards are presented in Table 4.2.

4.1.1.1.3 <u>SUB-SLAB SOIL GAS</u>

As stated in the NYSDOH "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" (Public Comment Draft, February 2005), NYS currently does not have any standards, criteria, or guidance values for concentrations of compounds in subsurface vapors for use in comparison of the Site data. NYSDOH has developed air guideline values for a limited number of compounds as stipulated in the above-referenced document. For the purpose of this FS, these guideline values are considered to be SCGs.

NYS Ambient Air Criteria may be applicable to specific remedial alternatives.

The air SCGs for the constituents detected in Site groundwater and sub-slab soil gas are presented in Table 4.3.

4.1.1.2 <u>ACTION-SPECIFIC SCGs</u>

Action-specific SCGs are determined by the particular remedial activities that are selected for the Site cleanup. Action-specific requirements establish controls or restrictions on the design, implementation, and performance of remedial activities. Following the development of remedial alternatives, action-specific SCGs that specify performance levels, actions, technologies, or specific levels for discharged or residual chemicals provide a means for assessing the feasibility and effectiveness of the remedial activities.

The action-specific SCGs that may be applicable to potential Site remedial technologies are presented in Table 4.4.

4.1.1.3 LOCATION-SPECIFIC SCGs

Potential location-specific SCGs are requirements that set restrictions on activities depending on the physical and environmental characteristics of the Site or its immediate surroundings.

The Site is bounded by commercial, residential, and undeveloped properties. The Fish and Wildlife Impact Analysis, provided as Appendix R to the RI Report, has demonstrated that there are no identified rare, threatened or endangered species, habitats of concern, or freshwater wetlands within a 1/2-mile radius of the Site.

Potential location-specific SCGs that may be applicable to potential Site remedial technologies are the Village of Clyde zoning ordinances and building codes.

4.2 <u>REMEDIAL ACTION GOALS AND OBJECTIVES</u>

4.2.1 <u>REMEDIAL ACTION GOALS</u>

The primary goals of any remedial action are that:

i) it be protective of human health and the environment;

- ii) it maintains protection over time; and
- iii) it minimizes untreated waste (NCP).

The remedy selection process will be performed in a manner consistent with the NYSDEC approved RI/FS Work Plan, the USEPA guidance document "Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA" dated October 1988 (USEPA Guidance), NYSDEC "TAGM HWR-90-4030: Selection of Remedial Actions at Inactive Hazardous Waste Sites", dated May 15, 1990 (NYSDEC TAGM), and any other appropriate USEPA and NYSDEC technical and administrative documents.

4.2.2 <u>REMEDIAL ACTION OBJECTIVES</u>

The USEPA Guidance states "*Remedial action objectives consist of medium-specific or operable-unit specific goals for protecting human health and the environment. The objectives should be as specific as possible but not so specific that the range of alternatives that can be developed is unduly limited.*" RAOs established for the protection of human health and the environment should specify:

- i) the contaminants and media of concern;
- ii) the exposure routes and receptors; and
- iii) an acceptable contaminant level or range of levels for each exposure route.

Based on the results of the RI and the implementation of the IRM, the remedial actions evaluated for the Site in this FS address on-Site groundwater, surface soil, and soil gas impacted by COCs. The following RAOs have been established for Site media:

- i) to eliminate or mitigate all significant threats to the public health and to the environment presented by the disposal or release of hazardous waste at the Site;
- ii) to prevent unacceptable exposure of human receptors to VOCs detected in Site groundwater, VOCs detected in soil gas, and SVOCs and metals in surface soil;
- iii) to address groundwater impacts to the extent practicable so that Site groundwater conditions are consistent with the contemplated use of the Site as a commercial/industrial manufacturing facility;
- iv) to prevent or mitigate, to the extent practicable, the migration of impacted groundwater to off-Site areas; and
- v) to monitor the groundwater to confirm that the selected remedy is protective of human health and the environment.

5.0 GENERAL RESPONSE ACTIONS AND IDENTIFICATION OF REMEDIAL TECHNOLOGIES

General response actions are remedial approaches encompassing those actions that will satisfy the RAOs. General response actions may include treatment, containment, excavation, disposal, institutional controls, or a combination of these, if required, to address varied Site environmental problems and to be effective in meeting all of the RAOs. The general response actions and remedial technologies evaluated for each medium of concern at the Site are described in the following subsections and listed in Table 5.1.

5.1 <u>GROUNDWATER</u>

5.1.1 <u>NO ACTION</u>

The No Action response is primarily used as a basis for comparison with other alternatives. Under the No Action response, no remedial measures are taken to improve environmental conditions at the Site. This response does not reduce the volume, mobility, or toxicity of the hazardous constituents of the Site media beyond the reductions which are achieved through the ongoing natural attenuation mechanisms discussed in Section 3.

In the case of the Site, the No Action Alternative includes the institutional controls already in place. These institutional controls include:

- i) fencing restricting unauthorized access to the P-H property;
- ii) security procedures for access to the P-H property; and
- iii) health and safety procedures for worker protection when conducting subsurface construction in areas within the limit of chemical presence in groundwater.

In addition, public water is available to the Site and the surrounding properties.

5.1.2 INSTITUTIONAL CONTROL

The institutional control response is not intended to reduce the toxicity, mobility, or volume of hazardous site constituents but to reduce the potential for human and wildlife exposure to those constituents. Institutional controls may include controls to restrict or limit the use of the Site or the contaminated media until such time that it is restored to

acceptable quality consistent with the intended land use, implementation of a long-term monitoring program to track contaminant migration and transport, and/or development of protective work procedures to reduce the potential for exposure of workers to Site contaminants during ground intrusive construction activities. At the Site, this may be an additional layer of protection over what currently exists, or an assurance that if P-H stops activities at the site, any controls will remain in place.

5.1.3 MONITORED NATURAL ATTENUATION

Natural attenuation refers to natural subsurface processes that reduce VOC concentrations. Natural attenuation can be sufficiently protective of human health and the environment and can be more cost-effective than other remedial alternatives. Biodegradation, which has been demonstrated to be active at the Site as described in Section 3, is the most important natural in situ destructive mechanism. Non-destructive natural mechanisms include sorption, dispersion, dilution, and volatilization.

The MNA evaluation presented in Appendix D and summarized in Section 3, demonstrates that MNA can be implemented successfully at the Site.

MNA includes long-term groundwater monitoring at and downgradient of the Site until VOC concentrations are deemed acceptable relative to applicable standards and intended Site use.

5.1.4 IN SITU GROUNDWATER TREATMENT

The in situ groundwater treatment technologies identified as potentially applicable at the Site are ISCO, air sparging, enhanced biological degradation, permeable reactive barrier, and in-well air stripping. Each of these technologies is described in detail in the following subsections.

Groundwater monitoring will be included in the Operation and Maintenance Plan (O&M Plan) of any in situ groundwater treatment alternative.

5.1.4.1 <u>CHEMICAL OXIDATION</u>

ISCO uses an oxidizing agent to convert the target compounds into non-hazardous or less toxic compounds, primarily carbon dioxide, water, and chloride.

Because any chemical oxidant is short-lived in the subsurface, the effectiveness of chemical oxidants as a treatment technology depends greatly on the ability to quickly disperse the oxidant throughout the treatment area. The shallow overburden unit at the Site consists of a mixture of till, silt and sand. The hydraulic conductivity of the shallow overburden is generally low (geometric mean of 4.8 ft/day), corresponding to silt or silty sand. A low hydraulic conductivity means that the radius of treatment around each injection point will be relatively small, requiring more numerous injection points compared to the longer-lived bioremediation amendments.

Once in the subsurface, the chemical oxidant will react with the compounds of concern and any naturally occurring material this is oxidizable (e.g., natural organic material, iron coatings). The treatability testing described in Section 3.5 determined that the NOD of the unconsolidated material is high. This means that additional oxidant will be required to treat the groundwater because a significant portion of the oxidant will be consumed by naturally-occurring material.

Fenton's Reagent, potassium permanganate ($KMnO_4$), and ozone are the most commonly used oxidants. Sodium persulfate is emerging as a promising oxidizing reagent but is still in the developmental stage. The following paragraphs present the preliminary screening of each of these oxidants.

Fenton's Reagent

Based on the microcosm tests performed during the treatability study, Fenton's reagent was identified as being the most effective oxidant in treating the VOCs in the soil. However, the use of Fenton's reagent can cause off-gassing of oxygen to the surface. This is a serious safety concern at this Facility because of the presence of open flames in the building above the proposed injection area. The use of Fenton's reagent can also result in excess heat and in rare cases, possibly explosion. Due to these safety concerns, Fenton's reagent will not be considered further.

KMnO₄

KMnO₄ is generally preferred because it is easier and safer to handle than Fenton's Reagent. The application involves simple methods and does not require the sophisticated equipment used in ozone treatment. However, the treatability testing presented in Appendix C indicated that KMnO₄ was not effective in treating many VOCs in the soil samples. This was likely due to interference because of the presence of petroleum hydrocarbon. Therefore, KMnO₄ will not be considered further.

Sodium Persulfate

Sodium persulfate was identified as being as effective as Fenton's reagent in treating VOCs. However, sodium persulfate requires a catalyst to be effective, and the catalyst generally used is hydrogen peroxide. The use of hydrogen peroxide will result in the production and off-gassing of oxygen, which is a health and safety concern because of the presence of open flames in the facility. Therefore, sodium persulfate will not be considered further.

<u>Ozone</u>

Ozone injection includes the same health and safety concerns as Fenton's reagent, due to the gas production and potential oxygen release during its use. Therefore ozone will not be considered further.

Each of the chemical oxidants evaluated has been eliminated from consideration due to the results of treatability tests or safety concerns resulting from injection beneath the facility. Therefore, ISCO will not be considered further as a remedy.

5.1.4.2 <u>PERMEABLE REACTIVE BARRIER</u>

A permeable reactive barrier (PRB) consists of a barrier wall installed across the flow path of impacted groundwater. Groundwater passes through the wall and the target compounds are either degraded or retained in a concentrated form by the barrier material. This method of treatment results in either permanent containment of or decreased volume of chemicals in groundwater passing through the wall. To address the Site groundwater COCs, the reactive barrier material may consist of zero-valent iron.

A PRB may be modified to involve a funnel-and-gate system. For treatment of groundwater, the funnel-and-gate system consists of low permeable cutoff walls (the funnel) and higher conductivity reaction zones (the gate).

Metals precipitation/biofouling is a cause of concern with a PRB, particularly in the presence of elevated calcium and magnesium concentrations. Metal precipitation within the barrier wall causes gradual loss of permeability and deterioration in the treatment performance. Over extended treatment times, the reactive media loses its treatment capacity and may need to be replaced.

5.1.4.3 <u>REDUCTIVE DECHLORINATION</u>

Reductive dechlorination utilizing nano-scale zero valent iron has been shown to be effective in treating a wide range of chemical compounds including chlorinated organic solvents. Nano-scale particles are of small size and large surface area. They have crystalline lattice structures and their size varies around 10⁻⁹ meters. Nano-particles can be injected in solution under pressure or by gravity into the groundwater aquifer.

Nano-scale iron particles are not affected by soil acidity, temperature, or nutrient levels. Zero valent iron has been shown to promote favorable redox conditions and served as an electron donor for microbes in reductive dechlorination of chlorinated solvents. Emulsified zero-valent iron has been utilized to remediate dense non-aqueous phase liquid (DNAPL).

The potential benefits of nano-scale zero valent iron injection include reduced treatment time and cost when compared to traditional pump-and-treat systems. However, there is potential for matrix effects that can limit the treatment ability of this technology. Due to the heavy weight of the nano-iron, distribution over distances of greater than 5 feet is difficult; thus, application of this technology is most appropriate in hotspot areas. Applications of this technology have been limited; therefore, sufficient information as to its effectiveness is not readily available for assessment of the uncertainties.

5.1.4.4 ENHANCED BIODEGRADATION

Biological degradation is a treatment process whereby contaminants are metabolized into less toxic or non-toxic compounds by naturally occurring microorganisms. In the case of the Site COCs, the microorganisms utilize the contaminants for cellular respiration. The by-products are mainly carbon dioxide, ethane, ethene, chloride, and water. Biological degradation can be enhanced through the addition of nutrients and carbon/energy sources.

Techniques that may be applied to enhance the biodegradation of the Site groundwater COCs include injection of co-substrates such as molasses, lactate, chitin, or soybean oil to enhance the rate of reductive dechlorination of TCE and its daughter products currently occurring at the Site.

A Site-specific laboratory microcosm study was conducted to evaluate biodegradation and enhancement as a potential remedial technology for Site groundwater. The results of the study, which are presented in Appendix B and summarized in Section 3, demonstrated that enhanced biodegradation through nutrient enhancement is a feasible remedial option for the Site.

5.1.4.5 <u>AIR SPARGING</u>

Air sparging is accomplished by introduction of air into the groundwater below the level of contamination where it percolates into the groundwater. The air increases the partitioning of dissolved and adsorbed phase VOCs to the vapor phase and into bubbles. The bubbles ideally travel to the top of the water table at a 45° angle, but the actual flow path may vary depending on aquifer heterogeneity, groundwater flow conditions, and sparge pressure. Once the air bubbles reach the vadose zone, the VOCs are removed through soil vapor extraction (SVE). In some cases, direct venting through the vadose zone offers sufficient treatment of the vapors. Following extraction, soil vapors are treated and/or vented to the atmosphere.

For enhancement, sparging can be conducted using steam. However, this is generally applied for removal of SVOCs or fuels and not for VOC removal.

The zone of influence of air sparging wells increases with the depth of groundwater table, using this system in shallow groundwater such as at the Site would likely require installation of wells at narrow spacing.

Given the Site's anaerobic conditions, which promote biodegradation of chemicals in groundwater, implementation of air sparging at the Site would inhibit the natural attenuation processes, which are actively dechlorinating COCs in Site groundwater.

5.1.4.6 <u>IN-WELL AIR STRIPPING</u>

In-well air stripping combines air sparging with water circulation. This combination of processes results in more efficient stripping of chemicals than through air sparging alone. For in-well air stripping, double-screened wells are constructed with the lower screen installed within the saturated zone and the upper screen installed in the unsaturated zone. During in-well air stripping, pressurized air is injected into a double-screened well below the water table, lifting the water in the well and forcing it out the upper screen. Simultaneously, additional water is drawn into the lower screen. The aeration of the water within the lower well screen increases the partitioning of dissolved and adsorbed phase VOCs to the vapor phase and into bubbles which rise in the well to the water

surface where vapors are drawn off and treated and/or discharged by an SVE system. Modifications to the basic in-well stripping process may involve injection of additives (e.g., nutrients) into the stripping well to enhance biodegradation.

Groundwater is not extracted in this type of system. Therefore, pumping and treatment costs may be reduced.

Complete definition of the extent of chemical presence in groundwater is required prior to the installation of a circulating well system to prevent expansion of chemical presence in the groundwater regime. In addition, fouling of the circulating system may occur due to precipitation of constituents of the groundwater.

Given the Site's anaerobic conditions, which currently promote biodegradation of chemicals in groundwater, implementation of in-well air stripping at the Site would inhibit the natural attenuation processes, which are actively dechlorinating COCs in Site groundwater.

5.1.5 <u>CONTAINMENT TECHNOLOGIES</u>

Containment technologies induce physical and hydraulic containment. The containment response does not reduce the volume or toxicity of the contaminants in the Site media. The purpose of this response is to reduce contaminant mobility, and in doing so, minimize exposure and reduce potential hazards. Periodic monitoring is necessary following implementation of the containment response to determine its effectiveness and evaluate the need for further action.

Physical barriers for containment of groundwater at the Site consist of subsurface vertical barriers to control groundwater migration. Surface barriers to control surface water infiltration and thus transport of COCs from soils to groundwater are not applicable at the Site, as COC presence in vadose zone soil has not been identified. Hydraulic containment of groundwater may be achieved through the operation of collection systems (i.e., extraction wells or collection trenches).

Groundwater monitoring will be included in the O&M Plan of any containment alternative.

5.1.6 <u>COLLECTION TECHNOLOGIES</u>

Collection technologies reduce the mass of contaminants present to a greater or lesser degree, dependent on the aggressiveness of the collection effort. Use of collection technologies reduces the mobility and toxicity of Site contaminants by removal and disposition at a secure location. These technologies provide no treatment of contaminated media but may be used in conjunction with an ex situ disposal and/or treatment option to meet the Site-specific goals and objectives.

The groundwater collection technology identified as potentially applicable to the Site utilizes vertical extraction wells and/or a collection trench.

Groundwater monitoring will be included in the O&M Plan of any collection alternative.

5.1.7 <u>EX SITU TREATMENT TECHNOLOGIES</u>

The purpose of an ex situ groundwater treatment technology is to reduce the volume, toxicity and/or mobility of Site contaminants in extracted groundwater. Remedial treatment technologies potentially applicable at the Site are air stripping and carbon treatment.

5.1.7.1 <u>AIR STRIPPING</u>

VOCs are partitioned from extracted groundwater by increasing the surface area of the impacted groundwater exposed to air. Aeration methods include packed towers, diffused aeration, tray aeration, and spray aeration. Water droplets fall from the top of the air stripper, while air is forced countercurrent to the water flow. VOCs partition into the air, which is discharged into the atmosphere. Depending on the concentration of VOCs in the air, it may require treatment prior to discharge.

Air stripping equipment can be subject to fouling when elevated concentrations of metals are present in the incoming stream. Under these conditions, the influent is pretreated with flocculants or sequestering agents to either remove the metals constituents or keep them in the dissolved state.

5.1.7.2 <u>ACTIVATED CARBON</u>

Either extracted groundwater or vapor can be treated by adsorption of VOCs onto activated carbon. Groundwater or vapor is passed through one or more vessels containing activated carbon and VOCs in the influent flow are adsorbed onto the carbon. When the concentration of VOCs in the effluent from the carbon bed(s) exceeds a predetermined level, the carbon is replaced.

When elevated concentrations of metals are present in an influent groundwater stream, carbon beds are subject to fouling due to precipitation. This can result in high operation and maintenance costs.

Carbon treatment may not be appropriate where high concentrations of specific VOCs (e.g., VC) are present.

5.1.8 DISPOSAL TECHNOLOGIES

Disposal technologies involve off-Site or on-Site disposal of contaminated media or products of treatment processes. Disposal technologies do not usually involve reduction of contaminant volume or toxicity, but are primarily intended to reduce contaminant mobility.

5.1.8.1 OFF-SITE DISPOSAL

Off-Site disposal options include municipal sewer discharge or disposal at a permitted treatment, storage, and disposal facility (TSDF). Off-Site disposal options normally involve transportation of the waste to the TSDF. Pre-treatment may be required as a condition for off-site disposal to a municipal sewer. In addition, volume restrictions may be imposed on discharges to a municipal sewer.

5.1.8.2 <u>ON-SITE DISPOSAL</u>

The on-Site treated water disposal options potentially applicable for Site groundwater are injection back into the groundwater aquifer or permitted discharge to surface water.

5.1.8.2.1 <u>INJECTION</u>

In disposal of treated groundwater through injection, treated groundwater is discharged into injection wells. Injection wells are generally located downgradient of the groundwater extraction system, but may be located upgradient or cross-gradient to improve flow of impacted groundwater toward the extraction system. The injection systems may be either passive (e.g., gravity flow) or active (e.g., pumping).

Hydraulic monitoring is required in conjunction with injection to assure that containment of the groundwater in the area of concern is maintained.

5.1.8.2.2 DISCHARGE TO SURFACE WATER

Disposal of treated groundwater can be made through permitted direct discharge to a storm sewer or surface water body. Monitoring of the treated effluent would be conducted in accordance with permit requirements to insure that the quality of discharged water is in accordance with applicable standards.

5.2 <u>SURFACE SOIL</u>

5.2.1 <u>NO ACTION</u>

The No Action response is primarily used as a basis for comparison with other alternatives. Under the No Action response, no additional measures are taken to improve environmental conditions at the Site. This response does not reduce the volume, mobility, or toxicity of the hazardous constituents of the Site media.

5.2.2 INSTITUTIONAL CONTROL

The institutional control response is not intended to reduce the toxicity, mobility, or volume of hazardous site constituents but to reduce the potential for human and wildlife exposure to those constituents. Options may include initiation of institutional controls to restrict or limit the use of the Site or the contaminated media and/or development of protective work procedures to reduce the potential for exposure of workers to Site contaminants during ground intrusive construction activities.

5.2.3 <u>CONTAINMENT TECHNOLOGIES</u>

Containment technologies for surface soils consist of physical containment. The containment response does not reduce the volume or toxicity of the contaminants in the Site media. The purpose of this response is to reduce contaminant mobility, and in doing so, minimize exposure and reduce potential hazards at the Site. Periodic monitoring in the way of inspection is necessary to insure that containment is maintained.

The soil containment technology identified as potentially applicable to the Site is the use of a permeable surface barrier (cap) to prevent exposure to contaminants in Site surface soils.

5.2.4 <u>COLLECTION TECHNOLOGIES</u>

Collection technologies reduce the mass of contaminants present to a greater or lesser degree, dependent on the aggressiveness of the collection effort. Use of the collection technologies reduces the mobility and toxicity of Site contaminants by removal and disposition at a secure location. These technologies provide no treatment of contaminated media but may be used in conjunction with a disposal and/or treatment option to meet the Site-specific goals and objectives.

The collection technology identified as potentially applicable to surface soil at the Site is excavation of impacted soil.

5.2.5 <u>EX SITU TREATMENT TECHNOLOGIES</u>

The purpose of a treatment technology is to reduce the volume, toxicity and/or mobility of Site contaminants. Remedial treatment technologies include biological, physical, chemical, and thermal processes or some combination of those processes (e.g., physical/thermal treatment).

The treatment technologies identified as potentially applicable to excavated surface soils at the Site are thermal desorption and incineration. Considering the relatively small volume of impacted surface soils at the Site, treatment would most likely be performed off-Site.

5.2.5.1 <u>THERMAL DESORPTION</u>

Thermal desorption is a physical treatment method for excavated soils. Thermal desorption does not result in reduction of the volume or toxicity of the Site contaminants. To thermally treat the SVOCs in Site surface soils, excavated soil would be heated to high temperature to volatilize water and the COCs. The resultant vapors would then be transported in a carrier gas or by vacuum extraction to a treatment system.

Dewatering of soils may be required to achieve acceptable soil moisture content prior to treatment.

5.2.5.2 INCINERATION

Incineration is a potential physical/chemical treatment method for excavated soils. Organic chemical compounds present in excavated soils would be destroyed through volatilization and combustion. Off gases and combustion residuals may require treatment.

5.2.6 DISPOSAL TECHNOLOGIES

Disposal technologies involve off-Site or on-Site disposal of contaminated media or products of treatment processes. Disposal technologies do not usually involve reduction of contaminant volume or toxicity, but are primarily intended to reduce contaminant mobility. Off-Site disposal options include disposal at a permitted TSDF. Off-Site disposal options normally involve transportation of the waste to the TSDF.

On-Site soil disposal options include use of excavated, treated soil as excavation backfill. This option is not technically feasible where excavated soil is treated off-Site. The off-Site disposal option for soil is transport to a TSDF.

5.3 SUB-SLAB SOIL GAS BENEATH THE MANUFACTURING BUILDING

5.3.1 <u>NO ACTION</u>

The No Action response is primarily used as a basis for comparison with other alternatives. Under the No Action response, no remedial measures are taken to improve environmental conditions at the Site. This response does not reduce the volume, mobility, or toxicity of the hazardous constituents of the Site media beyond that which is realized through natural attenuation and/or engineered and institutional controls already in place.

5.3.2 ENGINEERED CONTROLS

Engineered controls for the manufacturing building are potentially applicable to address the migration of sub-slab soil gas to indoor air to reduce the potential for exposure of workers to contaminants through inhalation. The engineered controls potentially applicable in or around the manufacturing building are sub-slab venting of soil gas, floor sealing, and positive indoor pressure maintained through building ventilation systems.

The floor of the manufacturing building is sealed with an epoxy coating, which is maintained in good condition. There are no sumps, floor drains, or other significant routes of entry for soil gas through the facility floor. Additionally, as the manufacturing facility is operational, the building has a functional HVAC system providing ventilation for employee comfort and process needs. Information on currently provided engineering controls is available from P-H upon request.

5.3.3 <u>COLLECTION TECHNOLOGIES</u>

Collection technologies reduce the mass of contaminants present to a greater or lesser degree, dependent on the aggressiveness of the collection effort. Use of the collection technologies also reduces the mobility of Site contaminants. These technologies provide no treatment of contaminated media and thus do not reduce the toxicity of the contaminants present. However, collection may be used in conjunction with a treatment option to reduce chemical toxicity.

SVE is identified as a potentially applicable collection technology for sub-slab soil gas at the Site. Shallow vapor extraction wells would be installed and soil gas would be extracted through a vacuum system to remove VOCs from the sub-slab vadose zone. Depending upon VOC concentrations, the extracted soil vapor would either be treated or directly discharged to ambient air.

At the Site, the operation of an SVE system would likely inhibit the natural anaerobic biodegradation of TCE.

5.3.4 TREATMENT TECHNOLOGIES

The purpose of a treatment technology, when used alone or in conjunction with a collection technology, is to reduce the volume, toxicity, and/or mobility of Site contaminants. Remedial treatment technologies include biological, physical, chemical, and thermal processes or some combination of those processes (e.g., physical/thermal treatment).

The treatment technologies identified as potentially applicable to extracted soil gas at the Site are activated carbon and/or catalytic oxidation. Extracted vapors are passed through the treatment system and subsequently discharged to ambient air.

6.0 INITIAL SCREENING OF REMEDIAL TECHNOLOGIES

Prior to developing a list of remedial alternatives potentially applicable at the Site for detailed analysis and comparison, all identified available and appropriate technologies are screened. The identified technologies described in Section 5 have been screened utilizing the following criteria:

- i) short- and long-term effectiveness;
- ii) implementability;
- iii) relative cost; and
- iv) short-term risk.

The initial screening of remedial technologies and process options is designed to determine their applicability to the Site and eliminate those technologies that technically cannot be implemented.

The results of the initial screening of the remedial technologies assembled to address the general response actions presented in Section 5 and listed in Table 5.1, are shown in Tables 6.1 through 6.6.

In summary, the technologies listed below are retained for assembly into remedial alternatives and further evaluation.

6.1 <u>GROUNDWATER</u>

The following technologies are retained for further evaluation. These technologies may be used individually or in combination.

- i) No Action;
- ii) Institutional Control;
- iii) Monitored Natural Attenuation;
- iv) In Situ Treatment Utilizing a Permeable Reactive Barrier;
- v) In Situ Treatment Utilizing In-Well Stripping;
- vi) In Situ Treatment Utilizing Enhanced Biodegradation;
- vii) Hydraulic Containment/Collection Utilizing Extraction Wells;
- viii) Ex Situ Treatment Utilizing Air Stripping; and

ix) On-Site Disposal of Groundwater through Discharge to Surface Water.

6.2 <u>SURFACE SOIL</u>

The following technologies are retained for further evaluation. These technologies may be used individually or in combination.

- i) No Further Action;
- ii) Institutional Control;
- iii) Containment through Capping;
- iv) Collection through Excavation; and
- v) Off-Site Disposal of Excavated Soil.

6.3 <u>SOIL GAS/INDOOR AIR</u>

The following technologies are retained for further evaluation. These technologies may be used individually or in combination.

- i) No Action;
- ii) Engineered Controls Utilizing Sub-Slab Vapor Venting;
- iii) Collection through SVE; and
- iv) Ex Situ Treatment Utilizing Activated Carbon.

7.0 DETAILED ANALYSES OF RETAINED REMEDIAL ALTERNATIVES

Remedial alternatives for Site groundwater, surface soil, and sub-slab soil gas were developed in Section 6 for possible application at the Site. These alternatives are subject to a detailed analysis using the evaluation criteria outlined in USEPA guidance. The evaluation criteria are as follows:

- i) overall protection of human health and the environment;
- ii) compliance with ARARs/SCGs;
- iii) reduction of toxicity, mobility, or volume;
- iv) short-term effectiveness;
- v) long-term effectiveness and permanence;
- vi) implementability;
- vii) cost; and
- viii) community acceptance.

The criterion of community acceptance cannot be evaluated at the feasibility study stage because it is based upon public comments regarding the Site remedy. Consequently, no further discussion of this criterion is provided in this FS.

The remaining seven criteria are divided into two primary groups, namely threshold criteria and balancing criteria.

The threshold criteria include compliance with applicable SCGs and overall protection of human health and the environment. With the exception of the No Action alternative, all remedial alternatives must meet the threshold criteria to be eligible for further consideration.

The remaining five evaluation criteria are considered the balancing criteria. Each of the remedial alternatives is assessed and analyzed on a comparative basis using these evaluation criteria. Ultimately, a remedial action plan is proposed that incorporates the alternatives, which provides the best solution with respect to the balancing criteria.

The detailed analysis of retained alternatives has been performed in a manner consistent with the applicable regulations. The analyses are described in detail in the following subsections. Backup information for the cost estimates is presented in Appendix D.

7.1 <u>GROUNDWATER</u>

The groundwater remedial technologies retained following the initial screening have been assembled into the following alternatives for detailed analysis.

- i) Groundwater Alternative 1: No Action.
- ii) Groundwater Alternative 2: Monitored Natural Attenuation with Institutional Control.
- iii) Groundwater Alternative 3: Monitored Natural Attenuation with Enhanced Biodegradation in Hotspot Areas and Institutional Control.
- iv) Groundwater Alternative 4: Permeable Reactive Barrier with Enhanced Biodegradation in Hotspot Areas, Monitored Natural Attenuation, and Institutional Control.
- v) Groundwater Alternative 5: In-Well Air Stripping with Enhanced Biodegradation in Hotspot Areas and Institutional Control.
- vi) Groundwater Alternative 6: Hydraulic Containment/Collection with On-Site Treatment and Disposal.

Each of the groundwater remedial alternatives is described and evaluated in detail in the following subsections.

7.1.1 <u>GROUNDWATER ALTERNATIVE 1: NO ACTION</u>

7.1.1.1 DESCRIPTION

Groundwater Alternative 1 (GW Alternative 1), No Action, provides no active remedial measures to improve environmental conditions at the Site. Natural attenuation and biodegradation would reduce COC concentrations in groundwater over the long term. A Microcosm Study was conducted to determine whether TCE and its degradation products could be completely degraded via natural reductive biodegradation at the Site. The Microcosm Study report is presented in Appendix B. Complete reductive dechlorination of TCE to ethene was observed in unamended sample groups, demonstrating robust intrinsic biodegradation at the Site. Furthermore, the MNA evaluation presented in Appendix D and summarized in Section 3 showed that the estimated TCE destruction rate through natural attenuation in the former Barge Turnaround is 500, to 5,000 lbs/yr.

The No Action Alternative also includes the institutional controls already in place. These institutional controls include:

- i) fencing restricting unauthorized access to the P-H property;
- ii) security procedures for access to the P-H property; and
- iii) health and safety procedures for worker protection when conducting subsurface construction in areas within the limit of chemical presence in groundwater.

In addition, public water is available to the Site and the surrounding properties.

No additional remedial actions, institutional controls, or monitoring would be implemented with GW Alternative 1. However, existing institutional controls and protective measures would be maintained and enforced until groundwater quality is restored to the extent necessary for the intended future use of the properties.

7.1.1.2 ASSESSMENT

<u>Overall Protection of Human Health and the Environment</u>: Because no additional remedial measures are implemented with GW Alternative 1, the potential future risk to human health and the environment would not be reduced beyond that which would be achieved through natural degradation processes (biodegradation and natural physical processes). However, it has been demonstrated that these processes are destroying TCE at an estimated rate of 500, to 5,000 lbs/yr in the former Barge Turnaround.

<u>Compliance with SCGs</u>: GW Alternative 1 would not achieve the chemical-specific SCGs which apply to groundwater through a remedial action. However, the chemical-specific SCGs will be achieved over time through the natural attenuation processes. Since no remedial action would be implemented, no action-specific or location-specific SCGs apply to GW Alternative 1. The potentially applicable location-specific SCG for this Alternative is the Village of Clyde building codes and zoning ordinances.

<u>Reduction of Toxicity, Mobility, or Volume</u>: GW Alternative 1 provides no active reduction of toxicity, mobility, or volume of the COCs. However, over the long term, the volume and toxicity of COCs in groundwater will be reduced at the Site through the active natural attenuation and biological degradation processes.

<u>Short-Term Effectiveness</u>: GW Alternative 1 requires no remedial actions. Therefore, there would be no additional short-term risks posed to the community, the workers, or the environment as a result of the implementation of this alternative.

Long-Term Effectiveness and Permanence: GW Alternative 1 would not result in any further remedial actions; therefore, the residual risks would not be reduced beyond that which will be achieved through natural attenuation and biological degradation processes and existing controls and practices. GW Alternative 1 will achieve the GW RAOs over time and will provide a permanent remedy once groundwater is restored through the natural attenuation processes.

The RAOs for surface soil or sub-slab soil gas would not be met by GW Alternative 1.

<u>Implementability</u>: Because there are no remedial actions being undertaken, the implementability criterion is not applicable.

<u>Cost</u>: There are no remedial actions, institutional controls, or monitoring being undertaken in GW Alternative 1; therefore, there are no costs. This is reflected in the cost summary is presented in Table 7.1.

7.1.2 GROUNDWATER ALTERNATIVE 2: MNA WITH INSTITUTIONAL CONTROL

7.1.2.1 DESCRIPTION

Data collected during the RI and groundwater treatability studies demonstrate that significant natural attenuation of VOCs in groundwater is currently taking place at the Site.

A Microcosm Study was conducted to determine whether TCE and its degradation products could be completely degraded via natural reductive biodegradation at the Site. The Microcosm Study report is presented in Appendix B. Complete reductive dechlorination of TCE to ethene was observed in unamended sample groups, demonstrating robust intrinsic biodegradation at the Site.

An evaluation of MNA was performed in accordance with the protocols outlined in the USEPA documents entitled "Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites" (USEPA, OSWER Directive 9200.4-17P, April 1999) and "Technical Protocol for Evaluating Natural Attenuation of

Chlorinated Solvents in Groundwater" (USEPA, September 1998). A detailed report of the MNA evaluation is presented in Appendix D. In summary, the evaluation demonstrated that:

- i) geochemical conditions in overburden and bedrock are favorable for reductive dechlorination of the COCs in groundwater;
- ii) natural biodegradation by reductive dechlorination is occurring at the Site; and
- iii) the estimated TCE destruction rate through natural attenuation in the former Barge Turnaround is 500, to 5,000 lbs/yr.

In GW Alternative 2, a long-term groundwater monitoring program would be conducted to evaluate the continuing effectiveness of the natural attenuation processes in restoring groundwater quality. The groundwater monitoring program would consist of both hydraulic and water quality monitoring in overburden and bedrock monitoring wells. The purpose of the hydraulic monitoring program would be to confirm that the groundwater flow patterns do not change over time resulting in unexpected off-site impact. Groundwater quality monitoring would be conducted to track the reductions in COC concentrations over time, evaluate the continuing favorable conditions for natural attenuation, and confirm the protectiveness of the remedy. To obtain a conservative cost estimate for use in this FS it has been assumed that the groundwater samples would be analyzed for VOCs and geochemical parameters. A complete monitoring plan would be prepared and submitted to NYSDEC for approval prior to implementation of the remedy.

In GW Alternative 2, additional Institutional Controls beyond those already in place at the Site (see Section 2.2) would be implemented to further restrict direct exposure to contaminated groundwater. Specifically:

- additional safe work practices and definitions of levels of personnel protective equipment (PPE) for specific work activities would be developed if necessary and implemented for subsurface maintenance or construction activities conducted within the limits of COC presence in groundwater; and
- ii) a Deed Restriction or Record Notice would be added as an addendum to the existing deeds of the properties beneath which groundwater exhibiting COCs is present. The deed restrictions would inform the property owners of the Site history and restricted land use on the property. Deed restrictions would also require the property owners to notify the NYSDEC before performing construction activities in areas within the limit of COC presence in groundwater. Any future conveyance of the property would be subject to these restrictions. The

restriction or restrictive covenants would be drafted in accordance with applicable and relevant State and municipal legal codes to be enforceable.

7.1.2.2 <u>ASSESSMENT</u>

Overall Protection of Human Health and the Environment: Effective deed restrictions and monitoring would be protective of human health by preventing potential exposure to contaminated groundwater. The potential future risk to the environment using GW Alternative 2 would not be reduced beyond that which will be achieved through natural attenuation and biological degradation. However, it has been demonstrated that these processes are destroying TCE at an estimated rate of ,500 to 5,000 lbs/yr in the former Barge Turnaround.

<u>Compliance with SCGs</u>: GW Alternative 2 would achieve the chemical-specific SCGs which apply to groundwater through the Site's active natural attenuation processes. Since no remedial action would be implemented, no action-specific SCGs apply to GW Alternative 2. The potentially applicable location-specific SCGs for this Alternative are the Village of Clyde zoning ordinances.

<u>Reduction of Toxicity, Mobility, or Volume</u>: GW Alternative 2 will provide reductions in toxicity and volume of the COCs in groundwater over time. The mobility of the COCs will not be reduced through the implementation of GW Alternative 2.

<u>Short-Term Effectiveness</u>: No additional short-term risk to the community or the environment would be posed as a result of the implementation of GW Alternative 2. Risk to workers conducting the monitoring program would be mitigated through the implementation of safe work practices and proper PPE.

<u>Long-Term Effectiveness and Permanence</u>: The additional institutional controls established for GW Alternative 2 would make this Alternative effective in the long term as long as they are enforced until groundwater has been restored to the extent necessary for the intended future land use.

GW Alternative 2 would achieve the groundwater RAOs if the institutional controls described in Section 7.1.2.1 are imposed and enforced until groundwater has been restored to the extent necessary for the intended future land use. The RAOs for surface soil or sub-slab soil gas would not be met by GW Alternative 2.

<u>Implementability</u>: The implementability of GW Alternative 2 is dependent upon the ability to impose and enforce institutional controls on the impacted properties.

<u>Cost</u>: The estimated 30-year present worth cost for GW Alternative 2, is \$609,000. The cost summary is presented in Table 7.2.

7.1.3 GROUNDWATER ALTERNATIVE 3: ENHANCED BIODEGRADATION <u>WITH MNA AND INSTITUTIONAL CONTROL</u>

7.1.3.1 DESCRIPTION

Groundwater Alternative 3 (GW Alternative 3) would consist of in situ groundwater treatment performed in hotspot areas to accelerate the biodegradation of COCs in groundwater and thus actively reduce risk. In situ enhancement of biodegradation would be conducted utilizing enhanced biodegradation through supplementation of nutrient/carbon sources. In addition, MNA and Institutional Controls as described for GW Alternative 2 in Section 7.1.2 would be part of GW Alternative 3.

Nutrient/carbon enhancement would consist of the injection of sodium lactate/soybean oil through temporary well points installed in the treatment areas. A field scale pilot test would be conducted to determine injection point spacing and verify the effectiveness of the treatment. The design of the full-scale treatment would be finalized upon completion of the pilot test and analysis of the monitoring data. For the purpose of preparing a cost estimate for this FS, it is assumed that injection points would be installed within the areas shown on Figure 7.1 and that one treatment would be performed.

In GW Alternative 3, a long-term groundwater monitoring program would be conducted to evaluate the continuing effectiveness of the remedial action in restoring groundwater quality. The groundwater monitoring program would consist of both hydraulic and water quality monitoring in overburden and bedrock monitoring wells. The purpose of the hydraulic monitoring program would be to confirm that the groundwater flow patterns do not change over time resulting in unexpected off-Site impact. Groundwater quality monitoring would be conducted to track the reductions in COC concentrations over time, evaluate the continuing favorable conditions for natural attenuation, and confirm the protectiveness of the remedy. To obtain a conservative cost estimate for use in this FS it has been assumed that the groundwater monitoring network would consist of approximately 25 wells and that groundwater samples would be analyzed for VOCs

and geochemical parameters. A complete monitoring plan would be prepared and submitted to NYSDEC for approval prior to implementation of the remedy.

7.1.3.2 <u>ASSESSMENT</u>

<u>Overall Protection of Human Health and the Environment</u>: GW Alternative 3 would reduce the highest concentrations of COCs in groundwater, thus immediately reducing the potential risk attributable to exposure to Site groundwater and enhancing the conditions under which natural attenuation processes can progress. Further, hotspot treatment beneath and adjacent to the manufacturing building would immediately reduce the COC concentrations in groundwater beneath the building, thus immediately reducing potential exposure to COCs in sub-slab soil vapor through intrusion into indoor air.

<u>Compliance with SCGs</u>: GW Alternative 3 would achieve the chemical-specific SCGs which apply to groundwater. The potentially applicable action-specific SCGs which apply to GW Alternative 3 are those listed in Table 4.4 under the following headings:

- i) Container Storage; and
- ii) Surface Water Control.

The potentially applicable location-specific SCGs for this Alternative are the Village of Clyde zoning ordinances.

<u>Reduction of Toxicity, Mobility, or Volume</u>: GW Alternative 3 will provide reduction of the toxicity and volume of the COCs. The mobility of COCs in groundwater will not be effected by GW Alternative 3. The volume of COCs in sub-slab soil vapor will also be reduced by GW Alternative 3.

<u>Short-Term Effectiveness</u>: Short-term hazards to workers during the in situ treatment or monitoring events would be mitigated through the implementation of safe work practices and proper PPE. Mixing and pumping mechanisms may be present on the ground surface during the treatment process; however, all solutions would be containerized and no additional short-term risks would be posed to the community, the workers, or the environment.

Long-Term Effectiveness and Permanence: GW Alternative 3 will achieve the groundwater RAOs and will enhance the performance of the selected remedial

Alternative for sub-slab soil gas. GW Alternative 3 will not achieve the RAOs for surface soil.

GW Alternative 3 would achieve the groundwater RAOs if the institutional controls described in Section 7.1.2.1 are imposed and enforced until groundwater has been restored to the extent necessary for the intended future land use. The RAOs for surface soil or sub-slab soil gas would not be met by GW Alternative 2.

<u>Implementability</u>: The implementability of GW Alternative 3 is primarily dependent upon the ability to impose and enforce institutional controls on the impacted off-Site properties. The ability to access the lowlying areas of the former Barge Turnaround for the injections of the treatment substrate will also effect the implementability of GW Alternative 3.

<u>Cost</u>: The estimated 30-year present worth cost for GW Alternative 3 as described in Section 7.1.3.1 is \$876,000. The cost summary is presented in Table 7.3.

7.1.4 GROUNDWATER ALTERNATIVE 4: PERMEABLE REACTIVE BARRIER WITH ENHANCED BIODEGRADATION, MNA, AND INSTITUTIONAL CONTROL

7.1.4.1 <u>DESCRIPTION</u>

Groundwater Alternative 4 (GW Alternative 4) would consist of MNA and Institutional Controls as described in Section 7.1.2, Enhanced Biodegradation in the hotspots beneath and adjacent to the manufacturing building as described in Section 7.1.3, and the construction of a PRB across the groundwater flow pathway at the downgradient boundary of the area exhibiting COC presence in groundwater.

The PRB constructed at the Site would consist of a passive iron treatment wall. The iron treatment wall would be comprised of 70 percent soil/sand and 30 percent iron contained in a slurry. The slurry is injected into the subsurface under pressure to create a barrier. At the Site, the PRB would be constructed in a "T" configuration as shown schematically on Figure 7.2. The PRB would extend vertically to the top of the confining layer (e.g., till) or, where the till is not present, to the top of the bedrock surface. The geotechnical properties of Site soils would require further characterization prior to the design and construction of a PRB.

Natural attenuation processes would reduce COC concentrations in impacted groundwater downgradient of the alignment of the PRB.

In GW Alternative 4, a long-term groundwater monitoring program would be conducted to evaluate the continuing effectiveness of the remedial action in restoring groundwater quality. The groundwater monitoring program would consist of both hydraulic and water quality monitoring in overburden and bedrock monitoring wells. The purpose of the hydraulic monitoring program would be to confirm that the groundwater flow patterns do not change over time resulting in unexpected off-site impact. Groundwater quality monitoring would be conducted to track the reductions in COC concentrations over time, evaluate the continuing favorable conditions for natural attenuation, and confirm the protectiveness of the remedy. To obtain a conservative cost estimate for use in this FS it has been assumed that the groundwater monitoring network would consist of approximately 25 wells and that groundwater samples would be analyzed for VOCs and geochemical parameters. A complete monitoring plan would be prepared and submitted to NYSDEC for approval prior to implementation of the remedy.

7.1.4.2 ASSESSMENT

<u>Overall Protection of Human Health and the Environment</u>: GW Alternative 4 would be protective of human health and the environment through the treatment of COCs in groundwater and mitigation of the potential for future transport of COCs to off-Site groundwater. The combination of hotspot treatment and treatment of on-site groundwater as it follows its natural flow-path and through the PRB would result in the reduction of COC concentrations. In addition, the hotspot treatment would immediately reduce the COC concentrations in groundwater beneath the manufacturing building, thus immediately reducing potential exposure to COCs in sub-slab soil vapor through intrusion into indoor air.

<u>Compliance with SCGs</u>: GW Alternative 4 would achieve the chemical-specific SCGs which apply to groundwater. The potentially applicable action-specific SCGs which apply to GW Alternative 4 are those listed in Table 4.4 under the following headings:

- i) Container Storage;
- ii) Excavation; and
- iii) Surface Water Control.

Potentially applicable location-specific SCGs for this Alternative are the Village of Clyde zoning ordinances and building codes.

<u>Reduction of Toxicity, Mobility, or Volume</u>: GW Alternative 4 will provide reduction of the toxicity, volume, and mobility of the COCs in groundwater. The volume of COCs in sub-slab vapor will also be reduced by GW Alternative 4.

<u>Short-Term Effectiveness</u>: Short-term hazards to workers during the in situ treatment, PRB construction, or monitoring events would be mitigated through the implementation of safe work practices and proper PPE. Mixing and pumping mechanisms may be present on the ground surface during the treatment and construction processes; however, all solutions would be containerized and no additional short-term risks would be posed to the community, the workers, or the environment. Dust control measures would be implemented during excavation activities associated with the construction of the PRB to prevent airborne dispersion of particulates.

<u>Long-Term Effectiveness and Permanence</u>: The implementation of GW Alternative 4 will achieve the groundwater RAOs and will complement the effectiveness of the remedial Alternative selected for sub-slab soil gas. The RAOs for surface soil would not be met by GW Alternative 4.

<u>Implementability</u>: The implementability of GW Alternative 4 is dependent upon the ability to enact and enforce the institutional controls on the impacted off-Site properties and upon the ability to obtain access permission to off-Site properties for construction of the PRB.

<u>Cost</u>: The estimated 30-year present worth cost for GW Alternative 4 as described in Section 7.1.4.1 is \$1,898,000. The cost summary is presented in Table 7.4.

7.1.5 GROUNDWATER ALTERNATIVE 5: IN-WELL AIR STRIPPING WITH ENHANCED BIODEGRADATION AND INSTITUTIONAL CONTROL

7.1.5.1 DESCRIPTION

Groundwater Alternative 5 (GW Alternative 5) would consist of enhanced biodegradation in the hotspot areas beneath and adjacent to the manufacturing building and institutional control as described for GW Alternatives 3 and 4 combined with in-well air stripping in the former Barge Turnaround.

In-well stripping of COCs would be performed in a system of double-screened wells installed within the former Barge Turnaround. Groundwater would be circulated through the wells in situ for stripping of COCs and soil vapor would be extracted for treatment by catalytic oxidation or carbon. For cost estimation purposes, it is assumed that seven wells would be installed in the former Barge Turnaround and that catalytic oxidation will be required for vapor treatment. A conceptual layout of the well system is shown in plan view on Figure 7.3. A schematic representation of a stripping well is presented on Figure 7.4. Pumping and pilot scale testing will be required prior to design of the circulating well and vapor treatment systems.

In GW Alternative 4, a long-term groundwater monitoring program would be conducted to evaluate the continuing effectiveness of the remedial action in restoring groundwater quality. The groundwater monitoring program would consist of both hydraulic and water quality monitoring in overburden and bedrock monitoring wells. The purpose of the hydraulic monitoring program would be to confirm that the groundwater flow patterns do not change over time resulting in unexpected off-Site impact. Groundwater quality monitoring would be conducted to track the reductions in COC concentrations over time, evaluate the continuing favorable conditions for natural attenuation, and confirm the protectiveness of the remedy. To obtain a conservative cost estimate for use in this FS it has been assumed that the groundwater monitoring network would consist of approximately 25 wells and that groundwater samples would be analyzed for VOCs and geochemical parameters. A complete monitoring plan would be prepared and submitted to NYSDEC for approval prior to implementation of the remedy.

7.1.5.2 <u>ASSESSMENT</u>

<u>Overall Protection of Human Health and the Environment</u>: GW Alternative 5 would be protective of human health and the environment through the treatment of COCs in groundwater and mitigation of the potential for future off-site transport of COCs in groundwater. The combination of hotspot treatment under the manufacturing building and treatment of groundwater as it follows its natural flow-path into the area in which the circulation wells would be located would result in reductions in COC concentrations. In addition, the hotspot treatment would immediately reduce the COC concentrations in groundwater beneath the manufacturing building, thus immediately reducing potential exposure to COCs in sub-slab soil vapor through intrusion into indoor air.

<u>Compliance with SCGs</u>: GW Alternative 5 will achieve the chemical-specific SCGs, which apply to groundwater. The potentially applicable action-specific SCGs which apply to GW Alternative 5 are those listed in Table 4.4 under the following headings:

- i) Container Storage;
- ii) Land Treatment;
- iii) Surface Water Control;
- iv) Treatment (in a unit);
- v) Closure of Land Treatment Units;
- vi) Transporting Hazardous Waste Off Site; and
- vii) Vapor Emissions.

Potentially applicable location-specific SCGs for this Alternative are the Village of Clyde zoning ordinances and building codes.

<u>Reduction of Toxicity, Mobility, or Volume</u>: GW Alternative 5 will provide reduction of the toxicity and volume of the COCs. However, there is concern that the implementation of this technology in the former Barge Turnaround will adversely impact the natural anaerobic conditions and inhibit the ongoing natural attenuation processes resulting in slower restoration of groundwater than is occurring through the natural processes. GW Alternative 5 will not address the mobility of the COCs.

<u>Short-Term Effectiveness</u>: Short-term hazards to workers during the in situ treatment, well system installation and operation/maintenance, or monitoring events would be mitigated through the implementation of safe work practices and proper PPE. Mixing and pumping mechanisms may be present on the ground surface during the treatment and construction processes; however, all solutions would be containerized and no additional short-term risks would be posed to the community, the workers, or the environment.

<u>Long-Term Effectiveness and Permanence</u>: The implementation of GW Alternative 5 will achieve the groundwater RAOs and will complement the effectiveness of the remedial Alternative selected for sub-slab soil gas. However, it is possible that the Site's ongoing natural attenuation processes will be inhibited by the aeration which will occur in the aquifer. This inhibition of the natural degradation processes may result in slower restoration of groundwater quality. The RAOs for surface soil would not be met by GW Alternative 5. <u>Implementability</u>: The implementability of GW Alternative 5 is primarily dependent upon the ability to impose and enforce the institutional controls on the off-Site properties and upon the ability to obtain access permission for construction of the well system in the former Barge Turnaround. The implementability may also be effected by fouling of well screens due to the presence of metals precipitates and bacteria.

<u>Cost</u>: The estimated 30-year present worth cost for GW Alternative 5 as described in Section 7.1.5.1 is \$2,504,000. The cost summary is presented in Table 7.5.

7.1.6 GROUNDWATER ALTERNATIVE 6: HYDRAULIC CONTAINMENT/COLLECTION WITH ON-SITE TREATMENT AND DISPOSAL AND INSTITUTIONAL CONTROL

7.1.6.1 <u>DESCRIPTION</u>

Groundwater Alternative 6 (GW Alternative 6) would consist of enhanced biodegradation in the hotspot areas beneath and adjacent to the manufacturing building and institutional controls as described for GW Alternatives 3 through 5 combined with hydraulic containment and groundwater collection in the former Barge Turnaround.

The extraction well system would be designed to contain and recover impacted groundwater. The system would consist of a series of extraction wells constructed in the former Barge Turnaround. For cost estimation purposes, it is assumed that seven wells would be installed in the alignment shown on Figure 7.5.

Extracted groundwater would be treated utilizing air stripping. If required, catalytic oxidation or carbon would be used to treat vapors. The existing data suggest that carbon treatment of vapors may not be effective. Therefore, for the purpose of the FS cost estimate, it has been assumed that catalytic oxidation will be required. Treated water would be discharged directly to the storm sewer south of the Site. This sewer discharges into the Clyde River.

Pumping and pilot scale testing will be required prior to design of the extraction and treatment systems.

In GW Alternative 6, a long-term groundwater monitoring program would be conducted to evaluate the continuing effectiveness of the remedial action in restoring groundwater quality. The groundwater monitoring program would consist of both hydraulic and water quality monitoring in overburden and bedrock monitoring wells. The purpose of the hydraulic monitoring program would be to confirm that the groundwater flow patterns do not change over time resulting in unexpected off-Site impact. Groundwater quality monitoring would be conducted to track the reductions in COC concentrations over time, evaluate the continuing favorable conditions for natural attenuation, and confirm the protectiveness of the remedy. To obtain a conservative cost estimate for use in this FS it has been assumed that the groundwater monitoring network would consist of approximately 25 wells and that groundwater samples would be analyzed for VOCs and geochemical parameters. A complete monitoring plan would be prepared and submitted to NYSDEC for approval prior to implementation of the remedy.

Treatment system influent and effluent monitoring would be conducted as necessary to monitor system performance and meet permit requirements. For the purpose of the FS, it is assumed that influent and effluent analyses would be conducted weekly for three months and monthly thereafter.

7.1.6.2 ASSESSMENT

<u>Overall Protection of Human Health and the Environment</u>: GW Alternative 6 would be protective of human health and the environment through the hydraulic containment, collection and treatment of contaminated groundwater, and through the enforcement of additional institutional controls.

<u>Compliance with SCGs</u>: GW Alternative 6 will achieve the chemical-specific SCGs, which apply to groundwater. The potentially applicable action-specific SCGs which apply to GW Alternative 5 are those listed in Table 4.4 under the following headings:

- i) Container Storage;
- ii) Discharge of Treatment System Effluent;
- iii) Land Treatment;
- iv) Surface Water Control;
- v) Treatment (in a unit);
- vi) Closure of Land Treatment Units;
- vii) Transporting Hazardous Waste Off Site; and
- viii) Vapor Emissions.

Potentially applicable location-specific SCGs for this Alternative are the Village of Clyde zoning ordinances and building codes.

<u>Reduction of Toxicity, Mobility, or Volume</u>: GW Alternative 6 will provide reduction of the toxicity, volume, and mobility of the COCs in groundwater. However, there is concern that the implementation of this technology in the former Barge Turnaround will adversely impact the natural anaerobic conditions and inhibit the ongoing natural attenuation processes resulting in slower restoration of groundwater than is occurring through the natural processes.

<u>Short-Term Effectiveness</u>: Short-term hazards to workers during the extraction well and treatment system installation and operation/maintenance and monitoring events would be mitigated through the implementation of safe work practices and proper PPE. The short-term effectiveness of GW Alternative 6 would be almost immediate upon startup of the on-Site treatment system as a result of the near-immediate commencement of reduction of the toxicity, mobility, and volume of COCs in groundwater. No additional short-term risks would be posed to the community or the environment.

Long-Term Effectiveness and Permanence: GW Alternative 6 will achieve the groundwater RAOs. However, it is possible that the Site's ongoing natural attenuation processes will be inhibited by waters drawn into the area. This inhibition of the natural degradation processes may result in slower restoration of groundwater quality. GW Alternative 6 will not achieve the RAOs for surface soil and will only achieve the RAOs for sub-slab soil gas after groundwater has been restored.

<u>Implementability</u>: The implementability of GW Alternative 6 is primarily dependent upon the ability to impose and enforce institutional controls on the off-Site properties and upon the ability to obtain access permission for construction of the extraction system in the former Barge Turnaround. The implementability may also be effected by fouling of well screens due to the presence of metals precipitates and bacteria.

<u>Cost</u>: The estimated 30-year present worth cost for GW Alternative 6 as described in Section 7.1.6.1 is \$2,991,000. The cost summary is presented in Table 7.6.

7.2 <u>SURFACE SOIL</u>

The surface soil remedial technologies retained following the initial screening have been assembled into the following alternatives for detailed analysis:

- i) Surface Soil Alternative 1: No Further Action;
- ii) Surface Soil Alternative 2: Institutional Control;

- iii) Surface Soil Alternative 3: Capping with Institutional Control; and
- iv) Surface Soil Alternative 4: Excavation with Off-Site Disposal and Institutional Control.

Each of the surface soil remedial alternatives is evaluated in detail in the following subsections.

7.2.1 SURFACE SOIL ALTERNATIVE 1: NO FURTHER ACTION

7.2.1.1 DESCRIPTION

Surface Soil Alternative 1 (SS Alternative 1), No Further Action, provides no active remedial measures to improve environmental conditions at the Site beyond those already completed as the Storm Water IRM. Natural degradation would reduce COC concentrations in surface soil over the long term. No further remedial actions, institutional controls, or monitoring would be conducted.

7.2.1.2 <u>ASSESSMENT</u>

<u>Overall Protection of Human Health and the Environment</u>: Because no additional remedial measures are implemented with SS Alternative 1, the potential future risk to human health and the environment would not be reduced beyond that which would be achieved through natural degradation processes (biodegradation and natural physical processes) and realized as an indirect result of the remedial action implemented to address Site groundwater.

The apparent source of COCs in surface soil is historic stormwater and/or septic discharge into the former Barge Turnaround. Both of these sources of continuing discharge have been eliminated; therefore, SS Alternative 1 will be protective of human health and the environment in the future.

<u>Compliance with SCGs</u>: SS Alternative 1 would not achieve the chemical-specific SCGs which apply to surface soil. Since no remedial action would be implemented, no action-specific or location-specific SCGs apply to SS Alternative 1.

<u>Reduction of Toxicity, Mobility, or Volume</u>: SS Alternative 1 provides no active reduction of toxicity, mobility, or volume of the COCs. However, over the long term, the

volume and toxicity of COCs in surface soil will be reduced by natural degradation processes.

<u>Short-Term Effectiveness</u>: SS Alternative 1 requires no remedial actions. Therefore, there would be no additional short-term risks posed to the community, the workers, or the environment as a result of the implementation of this alternative.

Long-Term Effectiveness and Permanence: Over time, through natural degradation processes, SS Alternative 1 will achieve the RAOs applicable to surface soil but will not achieve the RAOs for groundwater or sub-slab soil gas.

<u>Implementability</u>: Because there are no remedial actions being undertaken, the implementability criterion is not applicable.

<u>Cost</u>: Because there are no remedial actions, institutional controls, or monitoring being undertaken, there are no costs associated with SS Alternative 1. The cost summary is presented in Table 7.7.

7.2.2 SURFACE SOIL ALTERNATIVE 2: INSTITUTIONAL CONTROL

7.2.2.1 <u>DESCRIPTION</u>

Surface Soil Alternative 2 (SS Alternative 2), Institutional Control, consists of the implementation of institutional control to restrict exposure to contaminated surface soil in the former Barge Turnaround. Specifically,

- i) the area of the former Barge Turnaround in which the soils exhibiting chemical presence in excess of SCGs are contained would be enclosed with fencing;
- ii) safe work practices and definitions of levels of PPE for specific work activities would be developed and implemented for maintenance or construction activities conducted in the area; and
- iii) if possible, a Deed Restriction or Record Notice would be added as an addendum to an existing deed for the former Barge Turnaround property. The deed restriction would inform the property owner of the Site history and restricted land use on the property. Deed restrictions would also require the property owner to obtain regulatory approvals before performing construction activities in the area in which the subject soils are located. Any future conveyance of the property would be subject to these restrictions. The restriction or restrictive covenants

would be drafted in accordance with applicable and relevant State and municipal legal codes to be enforceable.

7.2.2.2 <u>ASSESSMENT</u>

<u>Overall Protection of Human Health and the Environment</u>: The combination of a physical barrier (fencing) and effective deed restrictions would be protective of human health by preventing incidental exposure to the subject soils. The potential future risk to the environment using SS Alternative 2 would not be reduced beyond that which will be achieved through natural attenuation and as an indirect result of the remedial action implemented to address on-Site groundwater.

<u>Compliance with SCGs</u>: SS Alternative 2 would not achieve the chemical-specific SCGs which apply to surface soil. No action-specific SCGs apply to Alternative 2. The potentially applicable location-specific SCGs for this Alternative are the Village of Clyde zoning ordinances and building codes.

<u>Reduction of Toxicity, Mobility, or Volume</u>: SS Alternative 2 provides no active reduction of toxicity, mobility, or volume of the COCs. However, over the long term, the volume and toxicity of COCs in surface soil will be reduced by natural degradation processes and as an indirect result of the remedial action implemented to address on-Site groundwater.

<u>Short-Term Effectiveness</u>: No additional short-term risk to the community or the environment would be posed as a result of the implementation of SS Alternative 2. Risk to workers installing fencing around the area would be mitigated through the implementation of safe work practices and proper PPE.

<u>Long-Term Effectiveness and Permanence</u>: The institutional controls established for SS Alternative 2 would make this Alternative effective in the long term as long as they are enforced and maintained. The RAOs for groundwater and sub-slab soil gas would not be met by SS Alternative 2, and a permanent remedy would not be provided.

<u>Implementability</u>: The implementability of SS Alternative 2 is dependent upon the consent of the owner of the former Barge Turnaround property, the Village of Clyde.

<u>Cost</u>: The estimated 30-year present worth cost for SS Alternative 2, given an estimated life of fencing of 15 years (or two replacements over a 30-year period) is \$54,500. The cost summary is presented in Table 7.8.

7.2.3 SURFACE SOIL ALTERNATIVE 3: CAPPING WITH INSTITUTIONAL CONTROL

7.2.3.1 <u>DESCRIPTION</u>

Surface Soil Alternative 3 (SS Alternative 3), Capping, includes:

- i) construction of a permeable cover (cap) over surface soils containing SVOCs at concentrations exceeding SCGs; and
- ii) implementation of institutional controls to restrict exposure to contaminated subsurface soil.

The estimated area to be capped in SS Alternative 3 is shown on Figure 7.6. Additional surface soil sampling and analyses may be required to fully define the area to be capped. Prior to placing the cap, the area would be cleared and graded as necessary to maintain drainage and the area would be covered with filter fabric to provide a visual separation between the soil and the imported cover. Impacted surface soils would not be removed from the former Barge Turnaround area. The cap would consist of 1 foot of imported, clean, granular fill placed over the entire area containing impacted soil. Four inches of topsoil would be placed on top of the fill and the area revegetated. A long-term O&M program, comprising periodic inspections and routine maintenance activities, would be implemented to maintain the long-term integrity of the cap.

The institutional controls implemented as part of SS Alternative 3 consist of:

- i) safe work practices and definitions of levels of PPE for specific work activities developed and implemented for maintenance or construction activities conducted in the area; and
- ii) if possible, a Deed Restriction or Record Notice added as an addendum to an existing deed for the former Barge Turnaround property. The deed restriction would inform the property owner of the Site history and restricted land use on the property. Deed restrictions would also require the property owner to obtain regulatory approvals before performing construction activities in the area in which the subject soils are located. Any future conveyance of the property would be subject to these restrictions. The restriction or restrictive covenants would be drafted in accordance with applicable and relevant State and municipal legal codes to be enforceable.

7.2.3.2 <u>ASSESSMENT</u>

<u>Overall Protection of Human Health and the Environment</u>: SS Alternative 3 would be protective of human health by preventing potential incidental exposure to contaminated soil. SS Alternative 3 would be protective of the environment by reducing the future potential transport of SVOCs on soil to off-Site areas as a result of wind dispersion, surface runoff, or other mechanical means.

<u>Compliance with SCGs</u>: SS Alternative 3 will comply with the chemical-specific SCGs which apply to surface soil by covering the existing surface soil with clean, imported fill.

The potentially applicable action-specific SCGs for this Alternative are those listed in Table 4.4 under the following headings:

- i) Capping;
- ii) Construction of New Landfill on Site;
- iii) Surface Water Control;
- iv) Treatment (in a unit);
- v) Waste Pile; and
- vi) Closure with Waste in Place.

These SCGs would be satisfied by SS Alternative 3.

The potentially applicable location-specific SCGs for this Alternative are the Village of Clyde zoning ordinances and building codes.

<u>Reduction of Toxicity, Mobility, or Volume</u>: SS Alternative 3 provides no active reduction in toxicity or volume of COCs in surface soil. Mobility of SVOCs in surface soil would be reduced through the mitigation of transport of soil from the area. Over the long term, the volume and toxicity of SVOCs in surface soil would be reduced by natural degradation processes.

<u>Short-Term Effectiveness</u>: The permeable cap would be constructed using standard techniques. Short-term hazards to workers would be mitigated through proper work and health and safety procedures. The short-term effectiveness of SS Alternative 3 would be almost immediate upon completion of the construction of the cap, since direct exposure of human receptors to surface soils in the former Barge Turnaround exhibiting chemical concentrations exceeding SCGs would immediately be prevented. No additional

short-term risks would be posed to the community or the environment by SS Alternative 3.

<u>Long-Term Effectiveness and Permanence</u>: The enforcement of the institutional controls to be established for SS Alternative 3 and implementation of a long-term O&M program would make this Alternative effective in the long term. In addition, the incremental risk attributable to surface soils would be further reduced over the long term as a result of the natural degradation processes of SVOCs in the surface soils. The RAOs for groundwater and sub-slab soil gas would not be achieved by SS Alternative 3.

<u>Cost</u>: The estimated 30-year present worth cost for SS Alternative 3, given the estimated annual repairs to the cap, is \$73,500. The cost summary is presented in Table 7.9.

7.2.4 SURFACE SOIL ALTERNATIVE 4: EXCAVATION WITH OFF-SITE DISPOSAL AND INSTITUTIONAL CONTROL

7.2.4.1 DESCRIPTION

Surface Soil Alternative 4 (SS Alternative 4) includes:

- i) excavation of surface soil within the former Barge Turnaround exhibiting SVOC concentrations exceeding SCGs;
- ii) off-Site disposal of the excavated soil at a permitted landfill; and
- iii) implementation of institutional controls to restrict exposure to contaminated subsurface soil.

The estimated area from which surface soil would be excavated is shown on Figure 7.6. Additional surface soil sampling and analyses may be required prior to commencement of the excavation activities to further define the horizontal extent of the excavation. Given that the former Barge Turnaround has been filled with debris from several sources, definition of the limit of excavation may be difficult.

The surface soils would be excavated to a depth sufficient to allow sufficient backfill to cover the remaining soil/soil and maintain surface water drainage. For the purpose of this FS, it is assumed that soils would be removed from the area to a depth of 1 foot. Excavated soils would be transported to an off-Site, permitted TSDF for treatment (if required) and disposal.

Following completion of the excavation activities, the bottom of the excavation would be covered with filter fabric to provide a visual separation between the soil and the imported cover. The excavation would then be backfilled with a minimum of 1 foot of clean, imported, granular fill and regraded as necessary to promote drainage. The filled area will be covered with 4 inches of topsoil and revegetated.

Excavated soil likely would be removed from the Site concurrently with the excavation activities.

7.2.4.2 <u>ASSESSMENT</u>

<u>Overall Protection of Human Health and the Environment</u>: SS Alternative 4 would be protective of human health by preventing potential incidental exposure to contaminated soil. SS Alternative 4 would be protective of the environment by reducing the future potential transport of SVOCs on soil to off-Site areas as a result of wind dispersion, surface runoff, or other mechanical means.

<u>Compliance with SCGs</u>: SS Alternative 4 would achieve the chemical-specific SCGs which apply to surface soil. However, the chemical-specific SCGs applying to subsurface soils may not be achieved.

The potentially applicable action-specific SCGs for this Alternative are those listed in Table 4.4 under the following headings:

- i) Capping;
- ii) Container Storage;
- iii) Excavation;
- iv) Surface Water Control;
- v) Waste Pile;
- vi) Closure with Waste in Place; and
- vii) Transporting Hazardous Waste Off Site.

These SCGs would be satisfied by SS Alternative 4.

The potentially applicable location-specific SCGs for this Alternative are the Village of Clyde zoning ordinances and building codes.

<u>Reduction of Toxicity, Mobility, or Volume</u>: SS Alternative 4 does not provide a reduction in toxicity or volume of COCs in excavated soil unless treatment is required at the disposal facility. Mobility of SVOCs in surface soil would be reduced through the mitigation of transport of soil from the area.

SS Alternative 4 will not achieve the RAOs for groundwater or sub-slab soil gas.

<u>Short-Term Effectiveness</u>: Surface soil excavation and excavation backfill can be completed using standard techniques. Short-term hazards to workers would be mitigated through proper work and health and safety procedures. The short-term effectiveness of SS Alternative 4 would be almost immediate upon completion since the potential for direct exposure of human receptors to surface soils in the former Barge Turnaround would be eliminated immediately. Dust control and community air monitoring programs would be implemented during construction activities to control short-term risks posed to the community by SS Alternative 4.

<u>Long-Term Effectiveness and Permanence</u>: SS Alternative 4 is a permanent solution to prevent exposure to contaminated surface soils. The enforcement of the institutional controls to be established for SS Alternative 4 would make this Alternative effective to prevent exposure to chemicals in remaining impacted subsurface soils, if present.

<u>Cost</u>: The estimated 30-year present worth cost for SS Alternative 4 is \$115,000, assuming that the excavated materials are classified hazardous and are landfilled without pretreatment. The cost summary is presented in Table 7.10. The cost of SS Alternative 4 is highly dependent upon i) the volume of soil excavated; and ii) whether the excavated soil is a hazardous waste for disposal. Disposal costs range between approximately \$60/ton for non-hazardous material and \$400/ton for hazardous material requiring pretreatment and disposal in a secure (Subtitle C) landfill. With this range of disposal costs, SS Alternative 4 is estimated to cost between approximately \$80,000 and \$180,000.

7.3 <u>SOIL GAS/INDOOR AIR</u>

The soil gas/indoor air remedial technologies retained following the initial screening have been assembled into the following alternatives for detailed analysis.

- i) Soil Gas Alternative 1: No Action;
- ii) Soil Gas Alternative 2: Sub-Slab Ventilation with Carbon; and
- iii) Soil Gas Alternative 3: Soil Vapor Extraction with Carbon Treatment.

7.3.1 SOIL GAS ALTERNATIVE 1: NO ACTION

7.3.1.1 <u>DESCRIPTION</u>

Soil Gas Alternative 1 (SG Alternative 1), No Action, provides no active remedial measures to improve environmental conditions at the Site. COC concentrations in sub-slab soil gas would decrease over time as groundwater quality is restored. No further remedial actions addressing sub-slab soil gas would be conducted.

As discussed previously, the potential route for human exposure to sub-slab soil gas is through intrusion into indoor air and subsequent inhalation by workers at the Site, particularly inside the manufacturing building. There is little potential for transport of soil gas to indoor air within the manufacturing building. There are no sumps or floor drains in the building. Further, the floor within the manufacturing portion of the building (which comprises approximately 90 percent of the building area) is sealed with an epoxy coating which is routinely maintained. The floors of the other portions of the building are covered with tile or carpet.

7.3.1.2 <u>ASSESSMENT</u>

<u>Overall Protection of Human Health and the Environment</u>: Because no remedial measures are implemented with SG Alternative 1, the potential future risk to human health and the environment would not be reduced beyond that which is already realized as a result of the building maintenance and air monitoring programs. No change in Site use or building configuration or further degradation of sub-slab vapor quality is anticipated. Therefore, increased future risk due to intrusion of soil vapors to indoor air is unlikely.

<u>Compliance with SCGs</u>: SG Alternative 1 would not achieve the chemical-specific SCGs listed in Table 4.3. Since no remedial action would be implemented, no action-specific or location-specific SCGs apply to SG Alternative 1.

<u>Reduction of Toxicity, Mobility, or Volume</u>: SG Alternative 1 provides no active reduction of toxicity, mobility, or volume of the COCs. However, over the long term, the volume and toxicity of COCs in sub-slab soil gas will be reduced through natural attenuation as groundwater COC concentrations decrease.

<u>Short-Term Effectiveness</u>: SG Alternative 1 requires no remedial actions. Therefore, there would be no additional short-term risks posed to the community, the workers, or the environment as a result of the implementation of this alternative.

<u>Long-Term Effectiveness and Permanence</u>: Because this Alternative would not result in any further remedial actions, the residual risks would not be reduced beyond that which will be achieved through natural attenuation and the ongoing building maintenance and indoor air monitoring programs. RAOs would not be met by SG Alternative 1, and a permanent remedy would not be provided.

<u>Implementability</u>: Because there are no remedial actions being undertaken, the implementability criterion is not applicable.

<u>Cost</u>: Because there are no remedial actions, institutional controls, or monitoring being undertaken, there are no costs associated with SG Alternative 1. The cost summary is presented in Table 7.11.

7.3.2 SOIL GAS ALTERNATIVE 2: SUB-SLAB VENTILATION

7.3.2.1 <u>DESCRIPTION</u>

Soil Gas Alternative 2 (SG Alternative 2), Sub-Slab Ventilation with Vapor Treatment As Required, consists of the installation of a sub-slab venting system beneath the floor slab of the manufacturing building. The venting system provides a preferential pathway for the migration of sub-slab soil gas, preventing its possible intrusion into indoor air.

At the Site, the sub-slab ventilation system would consist of vapor extraction wells connected to a vacuum system. The vacuum system would be of a size sufficient to provide adequate pressure to create and maintain a gradient for vapor flow into the system. For the purpose of the FS, it is assumed that six wells would be installed along the center line of the manufacturing building and that, to prevent odor nuisance, vented vapors would be passed through vapor phase carbon prior to discharge to ambient air.

7.3.2.2 <u>ASSESSMENT</u>

<u>Overall Protection of Human Health and the Environment</u>: The ongoing OSHA indoor air monitoring program demonstrates that there is currently no risk to human health posed by the presence of VOCs in soil vapor beneath the slab of the manufacturing building. SG Alternative 2 would be protective of future human health exposure through the collection of soil vapors.

<u>Compliance with SCGs</u>: SG Alternative 2 will achieve the chemical-specific SCGs as long as the vented vapors are treated. The action-specific SCGs that may apply to SG Alternative 2 are those listed in Table 4.4 under the headings:

- i) Container Storage;
- ii) Land Treatment;
- iii) Surface Water Control;
- iv) Treatment (in a unit);
- v) Closure of Land Treatment Units;
- vi) Transporting Hazardous Waste Off Site; and
- vii) Vapor Emissions.

No location-specific SCGs apply to SG Alternative 2.

<u>Reduction of Toxicity, Mobility, or Volume</u>: SG Alternative 2 would reduce the mobility of COCs in soil gas. SG Alternative 2 would not provide reduction of toxicity or volume of the COCs in soil gas unless treatment is required.

<u>Short-Term Effectiveness</u>: Short-term hazards to workers during the ventilation system installation would be mitigated through the implementation of safe work practices and proper PPE. The short-term effectiveness of SG Alternative 2 would be almost immediate upon completion, as a result of the near-immediate reduction in potential COC migration into indoor air in the manufacturing building. No additional short-term risks would be posed to the community of the environment.

<u>Long-Term Effectiveness and Permanence</u>: The implementation of SG Alternative 2 will achieve the sub-slab soil gas RAOs through long-term maintenance of a negative pressure preventing flow of vapors to indoor air. Vapor treatment would permanently remove COCs from the soil gas. SG Alternative 2 would achieve the RAOs for sub-slab soil gas. The RAOs for groundwater or surface soil would not be met by SG Alternative 2.

<u>Implementability</u>: The implementability of SG Alternative 2 is dependent upon the construction details of the manufacturing building.

<u>Cost</u>: The estimated 30-year present worth cost for SG Alternative 2 as described in Section 7.3.2.1 is \$155,000. The cost summary is presented in Table 7.12.

7.3.3 SOIL GAS ALTERNATIVE 3: SOIL VAPOR EXTRACTION WITH CARBON TREATMENT

7.3.3.1 DESCRIPTION

Soil Gas Alternative 3 (SG Alternative 3), Soil Vapor Extraction with Carbon Treatment, consists of the installation of a SVE system beneath the floor slab of the manufacturing building. The SVE system would actively extract soil vapors, promote additional volatilization from soil and/or groundwater, and ultimately prevent intrusion of sub-slab soil vapors into indoor air.

For the purpose of the FS, it is assumed that nine wells would be installed evenly spaced in the manufacturing building and that extracted vapors would be passed through vapor phase carbon for treatment prior to discharge to ambient air.

Monitoring of SG Alternative 3 would consist of monthly sampling of influent and effluent from the vapor treatment system with analysis of the samples for VOCs.

7.3.3.2 <u>ASSESSMENT</u>

<u>Overall Protection of Human Health and the Environment</u>: The ongoing OSHA indoor air monitoring program demonstrates that there is currently no risk to human health posed by the presence of VOCs in soil vapor beneath the slab of the manufacturing building. SG Alternative 3 would be protective of future human health exposure and the environment through the collection and treatment of soil vapors.

<u>Compliance with SCGs</u>: SG Alternative 3 would achieve the chemical-specific SCGs in sub-slab soil gas assuming that the on-going source of COCs (groundwater COC presence) is removed. The action-specific SCGs that may apply to SG Alternative 3 are those listed in Table 4.4 under the headings:

- i) Container Storage;
- ii) Land Treatment;
- iii) Surface Water Control;
- iv) Treatment (in a unit);

- v) Closure of Land Treatment Units;
- vi) Transporting Hazardous Waste Off Site; and
- vii) Vapor Emissions.

The potentially applicable location-specific SCG for this Alternative is the Village of Clyde zoning ordinances and building codes.

<u>Reduction of Toxicity, Mobility, or Volume</u>: SG Alternative 3 would reduce the toxicity and mobility of COCs in soil gas. The volume of COCs in soil gas would be reduced by SG Alternative 3 once the ongoing source (COCs in groundwater) has been removed.

<u>Short-Term Effectiveness</u>: Short-term hazards to workers during the installation of the SVE system would be mitigated through the implementation of safe work practices and proper PPE. The short-term effectiveness of SG Alternative 3 would be almost immediate upon completion, as a result of the near-immediate reduction in potential COC migration into indoor air in the manufacturing building. No additional short-term risks would be posed to the community of the environment.

Long-Term Effectiveness and Permanence: The implementation of SG Alternative 3 will achieve the sub-slab soil gas RAOs through long-term extraction of vapors preventing flow of vapors to indoor air. Vapor treatment would permanently remove COCs from the soil gas. SG Alternative 3 would achieve the RAOs for sub-slab soil gas. The RAOs for groundwater or surface soil would not be met by SG Alternative 3.

<u>Implementability</u>: The implementability of SG Alternative 3 is dependent upon the ability to install an adequate number of extraction wells beneath the floor of the manufacturing building.

<u>Cost</u>: The estimated 30-year present worth cost for SG Alternative 3 as described in Section 7.3.3.1 is \$777,000. The cost summary is presented in Table 7.13.

8.0 <u>COMPARATIVE ANALYSES OF REMEDIAL ALTERNATIVES</u>

The purpose of the comparative analysis is to identify the relative advantages and disadvantages of each Alternative evaluated in detail in the previous sections. The detailed evaluation assessed each remedial Alternative independently. The comparison of remedial alternatives in this section evaluates the relative performance of each Alternative with respect to the detailed evaluation criteria: overall protection of human health and the environment, compliance with SCGs, short term effectiveness, long-term effectiveness and permanence, reduction of toxicity, mobility, and volume, implementability and cost.

8.1 COMPARATIVE ANALYSIS OF GROUNDWATER REMEDIAL ALTERNATIVES

Table 8.1 presents a ranking of each of the groundwater remedial alternatives included in the detailed analysis presented in Section 7.1. Discussions of the relative advantages and disadvantages of the alternatives are presented in the following subsections.

Each of the groundwater remedial alternatives except the No Action Alternative would be combined with additional institutional controls and overburden and bedrock groundwater monitoring. The costs associated with the institutional controls and monitoring are included in the cost estimates presented in Tables 7.1 through 7.6.

8.1.1 OVERALL PROTECTION OF HUMAN HEALTH AND THE ENVIRONMENT

The groundwater remedial alternatives are ranked as follows relative to overall protection of human health and the environment:

- i) GW Alternative 3, Enhanced Biodegradation with MNA and Institutional Control;
- ii) GW Alternative 5, In-Well Air Stripping with Enhanced Biodegradation and Institutional Control;
- iii) GW Alternative 4, PRB with Enhanced Biodegradation in Hotspots and Institutional Control;
- iv) GW Alternative 6, Hydraulic Containment/Collection with On-Site Treatment and Disposal; GW Alternative 2, MNA with Institutional Control; and
- v) GW Alternative 1, No Action.

GW Alternative 3, Enhanced Biodegradation with MNA and Institutional Control, would be the most protective of human health and the environment. In situ enhancement of biodegradation in the areas in which COC concentrations are the highest would immediately reduce chemical presence, consequently also immediately reducing the potential risk to human health and the environment. This would be especially effective in the hotspot areas beneath the manufacturing building which is the only area of the Site in which there is currently potential for human exposure to groundwater COCs (via transport to sub-slab soil vapor and subsequently to indoor air).

GW Alternative 5, In-Well Air Stripping with Enhanced Biodegradation in Hotspots and Institutional Control, is ranked second in protectiveness. GW Alternative 5 will immediately reduce chemical presence in groundwater beneath the manufacturing building with an associated immediate reduction in potential risk to human health due to transport of COCs to sub-slab soil vapor and subsequently to indoor air. GW Alternative 5 will also directly treat COC presence in groundwater in the former Barge Turnaround.

GW Alternative 4, PRB with Enhanced Biodegradation in Hotspots and Institutional Control, is ranked third in protection. GW Alternative 4 will immediately reduce chemical presence in groundwater beneath the manufacturing building with an associated immediate reduction in potential risk to human health due to transport of COCs to sub-slab soil vapor and subsequently to indoor air. GW Alternative 4 is deemed less protective than GW Alternative 5 because treatment in the former Barge Turnaround would occur at the rate at which groundwater flows through the reactive barrier. Thus, the restoration time for groundwater quality is expected to be longer with GW Alternative 4 than with GW Alternative 5.

The protectiveness provided by GW Alternative 6, Hydraulic Containment/Collection with On-Site Treatment and Disposal, is ranked fourth. GW Alternative 6 would effectively reduce the potential risk to human health and the environment primarily through containment of groundwater exhibiting COC presence. GW Alternative 6 would also provide reductions in COC presence; however, the dilution effects expected as waters are drawn into the system from the areas surrounding the former Barge Turnaround, which contain lower chemical concentrations, are expected to make this technology less efficient than most others. There would be no immediate reduction in the current potential for risk to human health (transport of COCs to indoor air) with the implementation of GW Alternative 6.

The monitoring conducted in conjunction with GW Alternative 2, MNA with Institutional Control, would make this Alternative more protective than GW Alternative 1 (No Action). However, the restoration of groundwater quality would not be accelerated beyond that which would be achieved by the natural attenuation processes. That being said, the studies conducted at the Site to date demonstrate that natural attenuation is effectively reducing chemical presence in the former Barge Turnaround area.

GW Alternative 1, No Action, provides the least additional protection to human health or the environment.

8.1.2 <u>COMPLIANCE WITH SCGS</u>

All the GW Alternatives considered for the Site will achieve compliance with SCGs over time. Groundwater Alternative 1, No Action, is ranked sixth in compliance with SCGs. All other alternatives are ranked equally, as each will achieve the chemical-specific SCGs either through natural attenuation or a combination of natural attenuation and another remedial technology. All groundwater alternatives will comply with the applicable action- and location-specific SCGs, where such exist.

8.1.3 <u>REDUCTION OF TOXICITY, MOBILITY, AND VOLUME</u>

All the GW Alternatives considered for the Site will achieve reductions in toxicity and volume over time. The groundwater remedial alternatives are ranked as follows relative to reduction of toxicity, mobility, and volume:

- i) GW Alternative 4, PRB with Enhanced Biodegradation in Hotspots and Institutional Control;
- ii) GW Alternative 6, Hydraulic Containment/Collection with On-Site Treatment and Disposal;
- iii) GW Alternative 3, Enhanced Biodegradation with MNA and Institutional Control;
- iv) GW Alternative 5, In-Well Air Stripping with Enhanced Biodegradation in Hotspots and Institutional Control;
- v) GW Alternative 2, MNA with Institutional Control; and
- vi) GW Alternative 1, No Action.

GW Alternative 4, PRB with Enhanced Biodegradation in Hotspots and Institutional Control, is ranked first in reduction of toxicity, mobility, and volume. The toxicity and volume of COCs in groundwater will be reduced by GW Alternative 4. As a result, the volume of COCs in sub-slab soil gas will also be reduced. GW Alternative 4 will also reduce the mobility of COCs in overburden groundwater by providing a barrier to additional off-Site migration.

GW Alternative 6, Hydraulic Containment/Collection with On-Site Treatment and Disposal, is ranked second in reduction of toxicity, mobility, and volume. However, this ranking is based on the presumption that this technology will provide additional reductions in toxicity and volume beyond those achieved through natural attenuation and that it does not inhibit the Site's ongoing natural attenuation processes. GW Alternative 6 would also provide a barrier to off-Site migration of overburden groundwater from the former Barge Turnaround.

GW Alternative 3, Enhanced Biodegradation with MNA and Institutional Control, is ranked third in reduction of toxicity, mobility, and volume. GW Alternative 3 will achieve reductions in toxicity and volume of COCs in groundwater. However, the mobility of impacted groundwater would not be reduced by GW Alternative 3.

GW Alternative 5, In-Well Air Stripping with Enhanced Biodegradation in Hotspots and Institutional Control, is ranked fourth in reduction of toxicity, mobility, and volume. Immediate reductions in toxicity and volume of COCs in groundwater in the immediate treatment area would be realized with GW Alternative 5. However, there is concern that the aeration of the groundwater aquifer, which will occur as a result of the implementation of this technology, will inhibit the Site's natural attenuation processes. A risk of increasing the mobility of COCs in groundwater and soil vapor is associated with GW Alternative 5.

GW Alternatives 1 and 2, No Action and MNA with Institutional Control are ranked sixth and fifth in reduction of toxicity, mobility, and volume, respectively. The reductions in toxicity and volume of COCs in groundwater will be the same in both remedial alternatives. However, the monitoring component of GW Alternative 2 will reduce mobility through identification of changes in groundwater flow patterns.

8.1.4 <u>SHORT-TERM EFFECTIVENESS</u>

The groundwater remedial alternatives are ranked as follows relative to short-term effectiveness:

- i) GW Alternative 1, No Action;
- ii) GW Alternative 2, MNA with Institutional Control;
- iii) GW Alternative 3, Enhanced Biodegradation with MNA and Institutional Control;
- iv) GW Alternative 5, In-Well Air Stripping with Enhanced Biodegradation in Hotspots and Institutional Control;
- v) GW Alternative 6, Hydraulic Containment/Collection with On-Site Treatment and Disposal; and
- vi) GW Alternative 4, PRB with Enhanced Biodegradation and Institutional Control.

No risk to the community, workers, or the environment would be presented by the implementation of GW Alternative 1, No Action. Therefore, GW Alternative 1 is ranked first in short-term effectiveness.

GW Alternative 2, MNA with Institutional Control, is ranked second in short-term effectiveness because a low risk to workers conducting monitoring activities would be present. However, this risk can be mitigated through proper work procedures.

The differences in short-term effectiveness associated with GW Alternatives 3 through 6 are associated with the risks posed by system construction, maintenance, and monitoring activities and the potential for spills or leaks of treatment solutions or extracted groundwater. All these risks can be minimized through the implementation of proper work procedures and operating plans.

GW Alternative 3, Enhanced Biodegradation with MNA and Institutional Control, is ranked third in short-term effectiveness. Risks to workers conducting monitoring activities are the same in GW Alternatives 2 and 3. However, there is additional risk and, as a result, less effectiveness in GW Alternative 3 due to the storage and handling of the in situ treatment solutions.

GW Alternative 5, In-Well Air Stripping with Enhanced Biodegradation in Hotspots and Institutional Control, is ranked fourth in short-term effectiveness. Risks to workers conducting monitoring activities are the same in GW Alternatives 2, 3, and 5. However, additional risk and potentially less effectiveness are associated with the maintenance and operation of the stripping wells and treatment system in GW Alternative 5.

GW Alternative 6, Hydraulic Containment/Collection with On-Site Treatment and Disposal, is ranked fifth in short-term effectiveness. Risks to workers conducting

monitoring activities are the same in GW Alternatives 2, 3, 5, and 6. However, greater risk and potentially less effectiveness is associated with GW Alternative 6 through the maintenance and operation of the extraction and treatment systems and the potential for leaks or spills of untreated extracted groundwater.

GW Alternative 4, PRB with Enhanced Biodegradation and Institutional Control is ranked sixth in short-term effectiveness. This ranking is due to the more complex nature of the construction activities associated with this alternative, the greater potential for dust dispersion, and anticipated increase in vehicle access.

8.1.5 LONG-TERM EFFECTIVENESS AND PERMANENCE

The groundwater remedial alternatives are ranked as follows relative to long-term effectiveness and permanence:

- i) GW Alternative 3, Enhanced Biodegradation with MNA and Institutional Control;
- ii) GW Alternative 4, PRB with Enhanced Biodegradation and Institutional Control;
- iii) GW Alternative 6, Hydraulic Containment/Collection with On-Site Treatment and Disposal;
- iv) GW Alternative 5, In-Well Air Stripping with Enhanced Biodegradation in Hotspots and Institutional Control;
- v) GW Alternative 2, MNA with Institutional Control; and
- vi) GW Alternative 1, No Action.

No significant continuing sources of VOCs to groundwater remain at the Site. Therefore, since the Site's natural attenuation processes are effective for the destruction of COCs in groundwater, all remedial alternatives evaluated will provide long-term effectiveness and permanence.

GW Alternative 3, Enhanced Biodegradation with MNA and Institutional Control, is ranked first in long-term protectiveness and permanence because it is the most predictable of the alternatives and will reduce chemical concentrations through treatment (in situ biodegradation) thus accelerating the restoration of groundwater quality. The extent of natural attenuation at the Site is well defined and will effectively and permanently degrade and destroy the COCs in groundwater. The enforcement of the institutional controls will protect residents and workers until such time as the restoration of groundwater quality to the extent appropriate for the intended future land use is complete.

GW Alternative 4, PRB with Enhanced Biodegradation and Institutional Control, is ranked second in long-term protectiveness and permanence. GW Alternative 4 is ranked lower than GW Alternative 3 because the permanence of the reactive barrier is unknown.

GW Alternative 6, Hydraulic Containment/Collection with On-Site Treatment and Disposal, is ranked third in long-term protectiveness and permanence. More uncertainty as to long-term effectiveness is associated with GW Alternative 6 as it is difficult to establish and maintain hydraulic containment. In addition, the effect that groundwater pumping will have on the natural attenuation mechanisms is unknown. The permanence of the remedy is also uncertain as extraction well and treatment system maintenance may be problematic due to the high metals content of the groundwater and potential for fouling of well screens, pumps, and treatment equipment.

GW Alternative 5, In-Well Air Stripping with Enhanced Biodegradation in Hotspots and Institutional Control, is ranked fourth in long-term protectiveness and permanence. Uncertainties similar to those described for GW Alternative 6 are associated with GW Alternative 5. The implementation of GW Alternative 5 is more likely to interfere with the Site's ongoing natural attenuation processes and, therefore, be less effective over the long term than the alternatives discussed previously. The potential difficulty in the control of soil vapor migration with GW Alternative 5 also makes it less effective in mitigating risk to human health or the environment over the long term. As with GW Alternative 6, the permanence of the remedy is uncertain as circulation well maintenance may be problematic due to the fouling of the well screens.

GW Alternative 2, MNA with Institutional Control, provides greater long-term effectiveness than GW Alternative 1, No Action, through the monitoring of groundwater and enforcement of institutional controls for protection of residents and workers while restoration of groundwater quality is underway.

The long-term effectiveness and permanence of GW Alternative 1, No Action, is the lowest of the remedial alternatives evaluated. While the Site's ongoing natural attenuation processes will effectively and permanently restore groundwater quality over the long term, there would not be protection provided by the institutional controls which are part of the other remedies.

8.1.6 **IMPLEMENTABILITY**

The groundwater remedial alternatives are ranked as follows relative to implementability:

- i) GW Alternative 1, No Action;
- ii) GW Alternative 2, MNA with Institutional Control;
- iii) GW Alternative 3, Enhanced Biodegradation with MNA and Institutional Control;
- iv) GW Alternative 5, In-Well Air Stripping with Enhanced Biodegradation in Hotspots and Institutional Control;
- v) GW Alternative 6, Hydraulic Containment/Collection with On-Site Treatment and Disposal; and
- vi) GW Alternative 4, PRB with Enhanced Biodegradation and Institutional Control.

GW Alternative 1, No Action, would be the most implementable since there would be no work involved and thus no access to off-Site properties required, interference with ongoing facility operations, and no imposition or enforcement of institutional controls.

The ability to impose and enforce institutional controls is a major factor in the implementability of the other remedial alternatives. The other important factor is the acquisition of access permission to off-Site properties for construction/treatment and monitoring and maintenance.

The differences in ranking are primarily due to the access issues. GW Alternative 4, PRB with Enhanced Biodegradation and Institutional Control will require access to areas beyond the former Barge Turnaround for construction. Therefore, it is considered the most difficult to implement. The other alternatives are ranked based upon the extent access is required to the off-Site areas and the duration and frequency of system operation and maintenance.

8.1.7 <u>COST</u>

The cost associated with the implementation of the groundwater remedial alternatives is lowest for GW Alternative 1, No Action (\$0). The costs of GW Alternatives 2 through 6 are \$609,000, \$876,000, \$1,898,000, \$2,504,000, and \$2,991,000, respectively.

8.2 COMPARATIVE ANALYSIS OF REMEDIAL ALTERNATIVES FOR SURFACE SOIL

Table 8.2 presents a ranking of each of the surface soil remedial alternatives included in the detailed analysis presented in Section 7.2. Discussions of the relative advantages and disadvantages of the alternatives are presented in the following subsections.

8.2.1 OVERALL PROTECTION OF HUMAN HEALTH AND THE ENVIRONMENT

The surface soil remedial alternatives are ranked as follows relative to overall protection of human health and the environment:

- i) SS Alternative 4, Excavation and Disposal;
- ii) SS Alternative 3, Capping with Institutional Control;
- iii) SS Alternative 2, Institutional Control and Fencing; and
- iv) SS Alternative 1, No Further Action.

SS Alternative 4, Excavation and Disposal provide the highest overall protection of human health and the environment. Excavation of surface soils with disposal in accordance with applicable regulations will eliminate potential impacts on human health through removal and potential impacts to the environment through transport to off-Site areas. Subsurface soil exhibiting chemical presence may be left in place; however, it would be covered with the permeable backfill preventing incidental contact.

SS Alternative 3, Capping with Institutional Control, is protective although the impacted soils will remain in place. Potential incidental exposure to the soils or transport from the area will be eliminated because the soils will not be exposed. The institutional controls will mitigate worker exposure through safe work practices.

SS Alternative 2, Institutional Control and Fencing, will be protective of human health through the enforcement of institutional controls and restriction of access to the area in which the impacted soils are located. No additional protection of the environment will be afforded by SS Alternative 2.

SS Alternative 1, No Further Action, provides no protection to human health or the environment.

8.2.2 <u>COMPLIANCE WITH SCGs</u>

The surface soil remedial alternatives are ranked as follows relative to compliance with SCGs:

- i) SS Alternative 4, Excavation and Disposal;
- ii) SS Alternative 3, Capping with Institutional Control; and
- iii) SS Alternative 2, Institutional Control and Fencing and SS Alternative 1, No Further Action.

SS Alternative 4, Excavation and Disposal, will comply with the chemical-specific SCGs for surface soil by removing the surface soils from the Site. Underlying soil would be covered with clean, imported fill.

SS Alternative 3, Capping with Institutional Control, will comply with the chemical-specific SCGs for surface soil by covering the existing surface soil with clean, imported fill.

Neither SS Alternative 1 (No Further Action) nor SS Alternative 2 (Institutional Control and Fencing) will comply with the chemical-specific SCGs.

All surface soil alternatives will comply with the applicable action- and location-specific SCGs, where such exist.

8.2.3 <u>REDUCTION OF TOXICITY, MOBILITY, AND VOLUME</u>

The surface soil remedial alternatives are ranked as follows regarding reduction of toxicity, mobility, and volume:

- i) SS Alternative 4, Excavation and Disposal;
- ii) SS Alternative 3, Capping with Institutional Control; and
- iii) SS Alternative 2, Institutional Control and Fencing and SS Alternative 1, No Further Action.

SS Alternative 4, Excavation and Disposal, will reduce the mobility and volume of COCs in surface soils by removal from the Site. Toxicity will be reduced through proper disposal at a TSDF.

SS Alternative 3, Capping with Institutional Control, will result in reduction in mobility of COCs in surface soil but will not effect the toxicity or volume.

Neither SS Alternative 1, No Further Action, nor SS Alternative 2, Institutional Control and Fencing, will actively reduce the toxicity, mobility, or volume of the COCs in surface soil.

8.2.4 SHORT-TERM EFFECTIVENESS

The surface soil remedial alternatives are ranked as follows regarding short-term effectiveness:

- i) SS Alternative 1, No Further Action;
- ii) SS Alternative 2, Institutional Control and Fencing;
- iii) SS Alternative 3, Capping with Institutional Control; and
- iv) SS Alternative 4, Excavation and Disposal.

No risk to the community, workers, or the environment would be presented by the implementation of SS Alternative 1, No Further Action.

A low risk to community, workers, or the environment would be presented by SS Alternatives 2 and 3, Institutional Control and Fencing and Capping with Institutional Control. However, these risks can be mitigated through proper work procedures. SS Alternative 3 is ranked lower than SS Alternative 2 since handling of impacted surface soils (e.g., grading) may be required.

The greatest risk to the community, workers, or the environment would be presented by the implementation of SS Alternative 4, Excavation and Disposal. All these risks can be minimized through the implementation of proper work procedures and community monitoring plans.

8.2.5 LONG-TERM EFFECTIVENESS AND PERMANENCE

The surface soil remedial alternatives are ranked as follows relative to long-term effectiveness and permanence:

- i) SS Alternative 4, Excavation and Disposal;
- ii) SS Alternative 3, Capping with Institutional Control;
- iii) SS Alternative 2, Institutional Control and Fencing; and
- iv) SS Alternative 1, No Further Action.

SS Alternative 4, Excavation and Disposal, provides both long-term effectiveness and permanence through removal of the impacted surface soil from the Site.

SS Alternative 3, Capping with Institutional Control, is similar to SS Alternative 4 in that it can provide long-term effectiveness. However, SS Alternative 3 does not provide a permanent remedy, as the impacted soil will remain in place. Risks associated with the remaining soil will be mitigated through the maintenance of the cap and enforcement of the institutional controls for protection of workers required to perform sub-surface activities in the area.

SS Alternative 2, Institutional Control and Fencing, can provide long-term effectiveness by preventing incidental contact with impacted surface soil. However, SS Alternative 2 does not provide a permanent remedy.

No long-term effectiveness or permanence is provided by SS Alternative 1, No Further Action.

8.2.6 **IMPLEMENTABILITY**

The surface soil remedial alternatives are ranked as follows for implementability:

- i) SS Alternative 1, No Further Action;
- ii) SS Alternative 2, Institutional Control and Fencing;
- iii) SS Alternative 3, Capping with Institutional Control; and
- iv) SS Alternative 4, Excavation and Disposal.

SS Alternative 1 would be the most implementable since there would be no work involved.

The implementability of the other alternatives is primarily dependent upon:

- i) the ability to obtain access to off-Site properties for construction and long-term maintenance; and
- ii) the complexity of the construction activities.

Assuming that access is acquired, SS Alternative 4, Excavation and Disposal, would be the most difficult to implement.

The former Barge Turnaround is a lowlying area, which is wet during most seasons. Implementation of SS Alternative 4 would be very difficult if the excavation were to be conducted under these wet conditions. Dewatering of excavated materials with containment and possibly treatment of water would be difficult to implement and would add significant additional cost.

8.2.7 <u>COST</u>

The cost associated with the implementation of the surface soil remedial alternatives is lowest for SS Alternative 1, No Further Action (\$0). The costs of SS Alternatives 2 through 4 are \$54,500, \$73,500, and \$115,000, respectively. There is a high degree of uncertainty associated with the cost of SS Alternative 4, Excavation and Disposal. These uncertainties include the extent of the excavation due to the presence of fill materials from other sources, the unknown characterization of the excavated materials for disposal, and the handling of excavated soils and water should the excavation have to be conducted during wet periods.

8.3 COMPARATIVE ANALYSIS OF REMEDIAL ALTERNATIVES FOR SUB-SLAB SOIL VAPOR

Table 8.3 presents a ranking of each of the sub-slab soil vapor remedial alternatives included in the detailed analysis presented in Section 7.3. Discussions of the relative advantages and disadvantages of the alternatives are presented in the following subsections.

8.3.1 OVERALL PROTECTION OF HUMAN HEALTH AND THE ENVIRONMENT

The sub-slab soil vapor remedial alternatives are ranked as follows relative to overall protection of human health and the environment:

- i) SG Alternative 2, Sub-Slab Ventilation;
- ii) SG Alternative 3, Soil Vapor Extraction; and
- iii) SG Alternative 1, No Action.

SG Alternative 2, Sub-Slab Ventilation, will be protective of human health through the venting of sub-slab vapors to ambient air thus preventing intrusion into indoor air.

SG Alternative 3, Soil Vapor Extraction, would also be protective of human health through the extraction of sub-slab vapors thus preventing intrusion into indoor air. However, there is potential that the vapor extraction process could interfere with the natural attenuation processes for COCs in groundwater beneath the manufacturing building.

SG Alternative 1, No Action, provides no additional protection to human health or the environment.

8.3.2 <u>COMPLIANCE WITH SCGS</u>

The sub-slab soil vapor remedial alternatives are ranked as follows relative to compliance with SCGs:

- i) SG Alternative 3, Sub-Slab Ventilation;
- ii) SG Alternative 2, Soil Vapor Extraction; and
- iii) SG Alternative 1, No Action.

There are no promulgated chemical-specific SCGs applicable directly to sub-slab soil vapors. Over time, VOC concentrations in sub-slab soil vapor will be reduced through combinations of natural attenuation and the implementation of groundwater and/or sub-slab soil vapor remedial alternatives. The ranking of the sub-slab soil vapor remedial alternatives is based on these anticipated reductions.

SG Alternative 3, Soil Vapor Extraction, would reduce concentrations of VOCs in sub-slab soil vapor over time.

SG Alternative 2, Sub-Slab Ventilation, will reduce concentrations of VOCs in sub-slab soil vapor if the vented vapors are treated and will prevent migration of VOCs in sub-slab vapor into the indoor air of the manufacturing building.

SG Alternative 1, No Action, will not reduce concentrations of VOCs in sub-slab soil vapor nor will it address intrusion of sub-slab vapors into indoor air.

All sub-slab soil vapor alternatives will comply with the applicable action- and location-specific SCGs.

8.3.3 <u>REDUCTION OF TOXICITY, MOBILITY, AND VOLUME</u>

The sub-slab soil vapor remedial alternatives are ranked as follows relative to reduction of toxicity, mobility, and volume:

- i) SG Alternative 3, Sub-Slab Ventilation;
- ii) SG Alternative 2, Soil Vapor Extraction; and
- iii) SG Alternative 1, No Action.

SG Alternative 3, Soil Vapor Extraction, will reduce the toxicity, mobility, and volume of VOCs in sub-slab soil vapor through extraction of the vapors with treatment prior to discharge to ambient air.

SG Alternative 2, Sub-Slab Ventilation, will reduce the mobility of soil vapors by preventing intrusion into indoor air. SG Alternative 2 will not reduce the toxicity or volume of VOCs in sub-slab soil vapor.

SG Alternative 1, No Action, will not actively reduce the toxicity, mobility, or volume of the VOCs in sub-slab soil vapor.

8.3.4 <u>SHORT-TERM EFFECTIVENESS</u>

The sub-slab soil vapor remedial alternatives are ranked as follows for short-term effectiveness:

- i) SG Alternative 1, No Action;
- ii) SG Alternative 2, Sub-Slab Ventilation; and
- iii) SG Alternative 3, Soil Vapor Extraction.

No risk to the community, workers, or the environment would be presented by the implementation of SG Alternative 1, No Action.

A low risk to workers inside the manufacturing building would be presented by SG Alternatives 2 and 3 during construction. However, these risks can be mitigated through proper work procedures and scheduling. SG Alternative 3 has additional potential risk associated with discharge of extracted vapors.

8.3.5 LONG-TERM EFFECTIVENESS AND PERMANENCE

The sub-slab soil vapor remedial alternatives are ranked as follows for long-term effectiveness:

- i) SG Alternative 3, Soil Vapor Extraction;
- ii) SG Alternative 2, Sub-Slab Ventilation; and
- iii) SG Alternative 1, No Action.

SG Alternative 3, Soil Vapor Extraction, can provide long-term effectiveness through the extraction of sub-slab soil vapors and a permanent remedy through the treatment of VOCs in the extracted vapors.

SG Alternative 2, Sub-Slab Ventilation, can provide long-term effectiveness through the mitigation of soil vapor intrusion into indoor air. However, SG Alternative 2 does not provide a permanent remedy in that VOCs present in sub-slab vapors will not be destroyed. Nonetheless, the venting of vapors to ambient air (with treatment , if necessary) will be protective of human health.

No long-term effectiveness or permanence is provided by SG Alternative 1, No Action.

8.3.6 **IMPLEMENTABILITY**

The sub-slab soil vapor remedial alternatives are ranked as follows for implementability:

- i) SG Alternative 1, No Action;
- ii) SG Alternative 2, Sub-Slab Ventilation; and
- iii) SG Alternative 3, Soil Vapor Extraction

SG Alternative 1 would be the most implementable since there would be no work involved.

SG Alternative 2, Sub-Slab Ventilation, is implementable with difficulty due to interference with manufacturing activities. These interferences can be minimized through adjusting work schedules during construction and through proper siting of permanent features of the ventilation system.

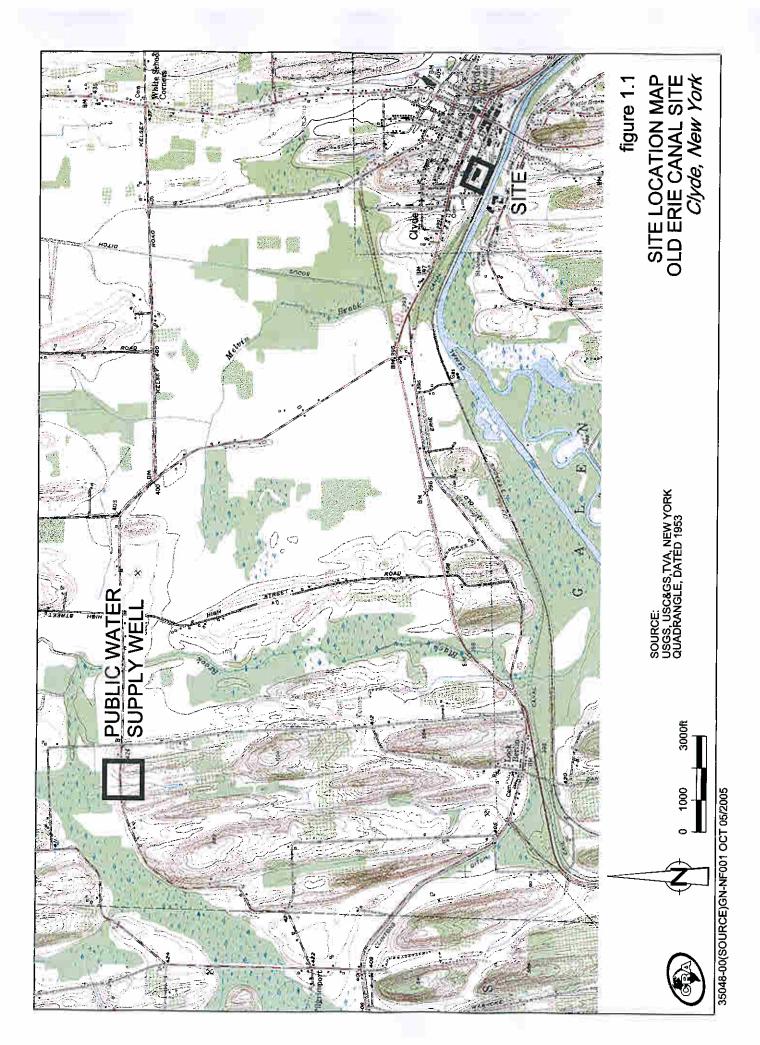
SG Alternative 3, Soil Vapor Extraction, will be the most difficult to implement due to the more extensive extraction and treatment systems.

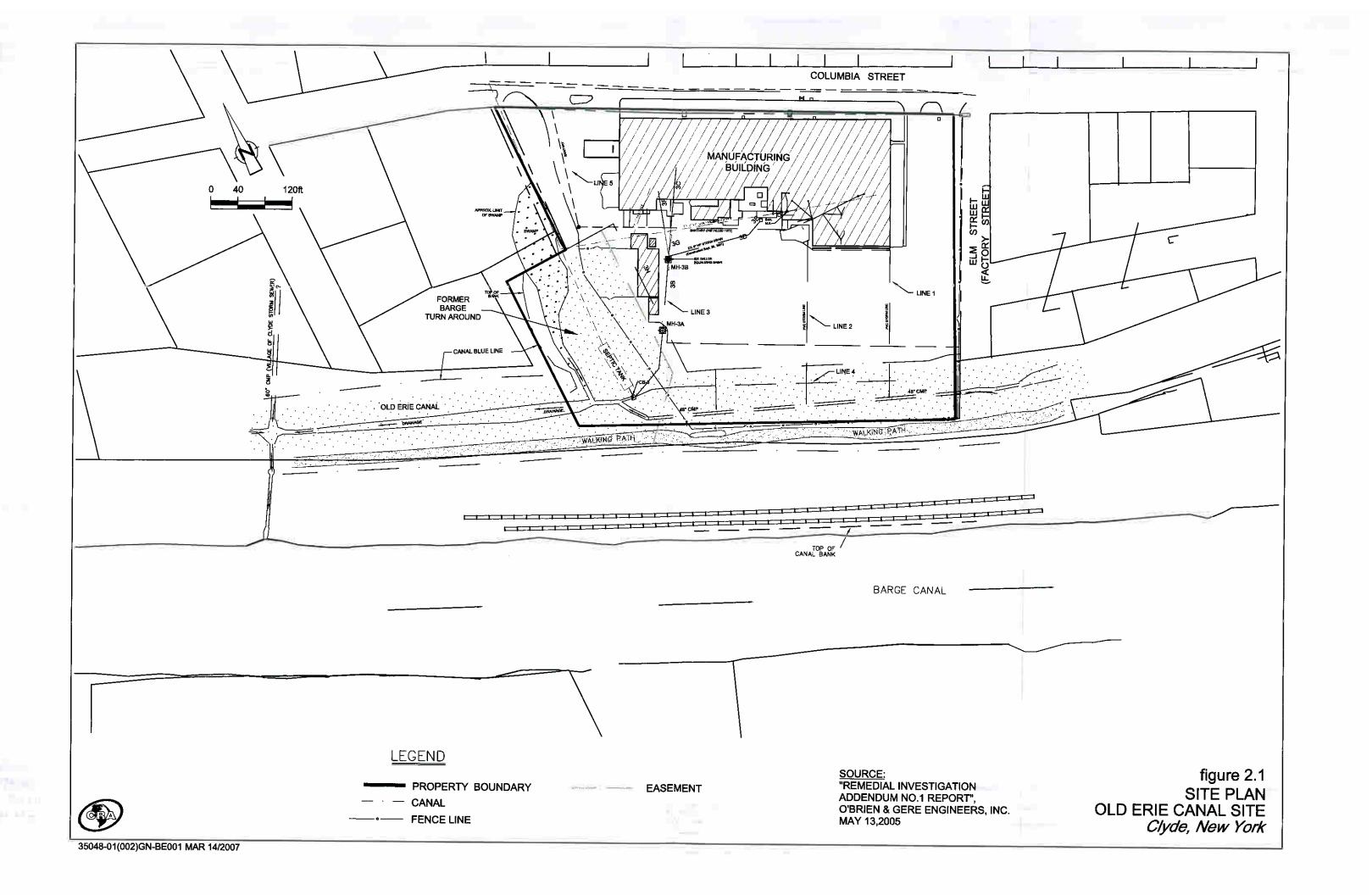
8.3.7 <u>COST</u>

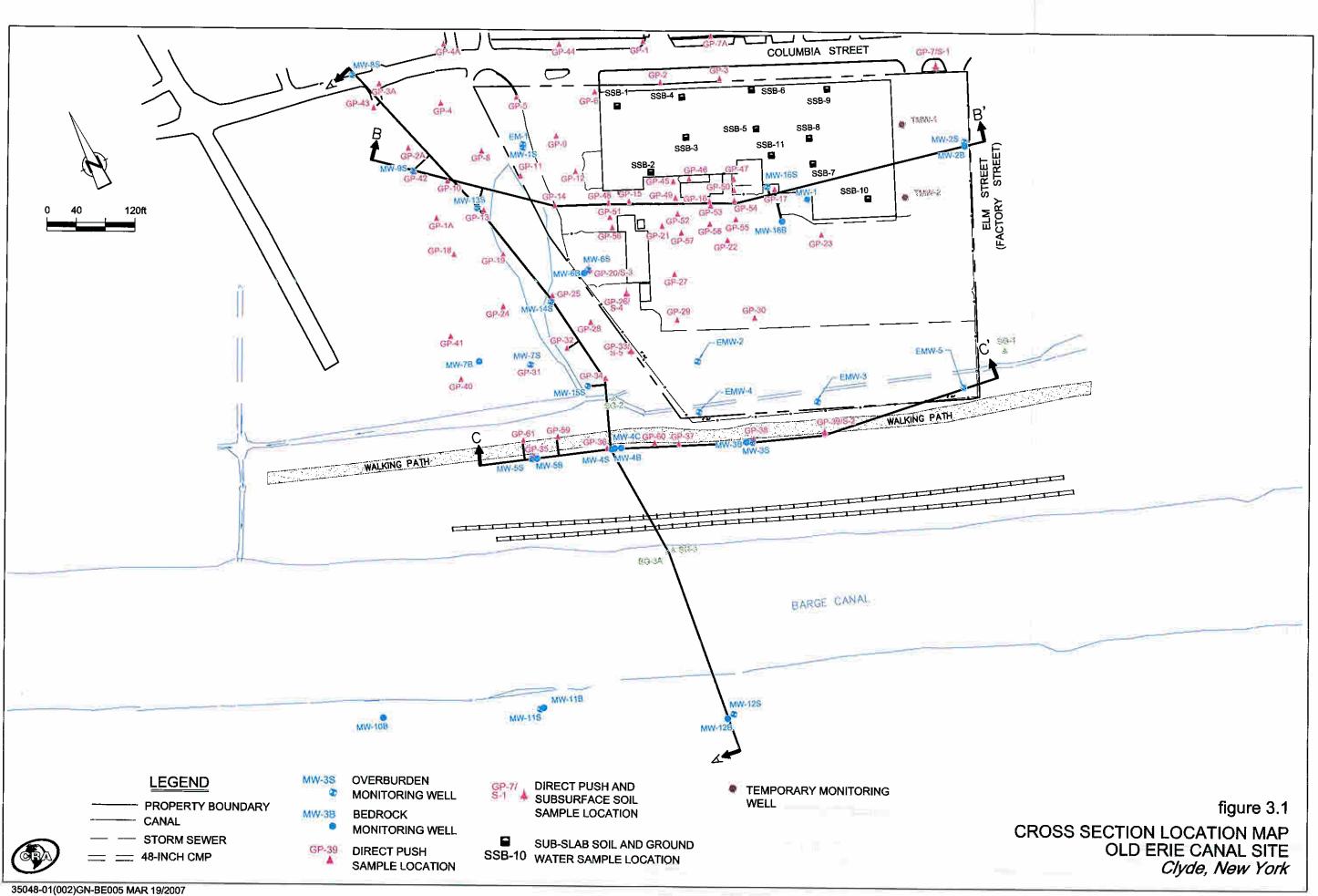
The cost associated with the implementation of the sub-slab soil vapor remedial alternatives is lowest for SG Alternative 1, No Action (\$0). The costs of SG Alternatives 2 and 3 are \$155,000 and \$777,000, respectively.

9.0 <u>RECOMMENDED REMEDIAL ALTERNATIVE</u>

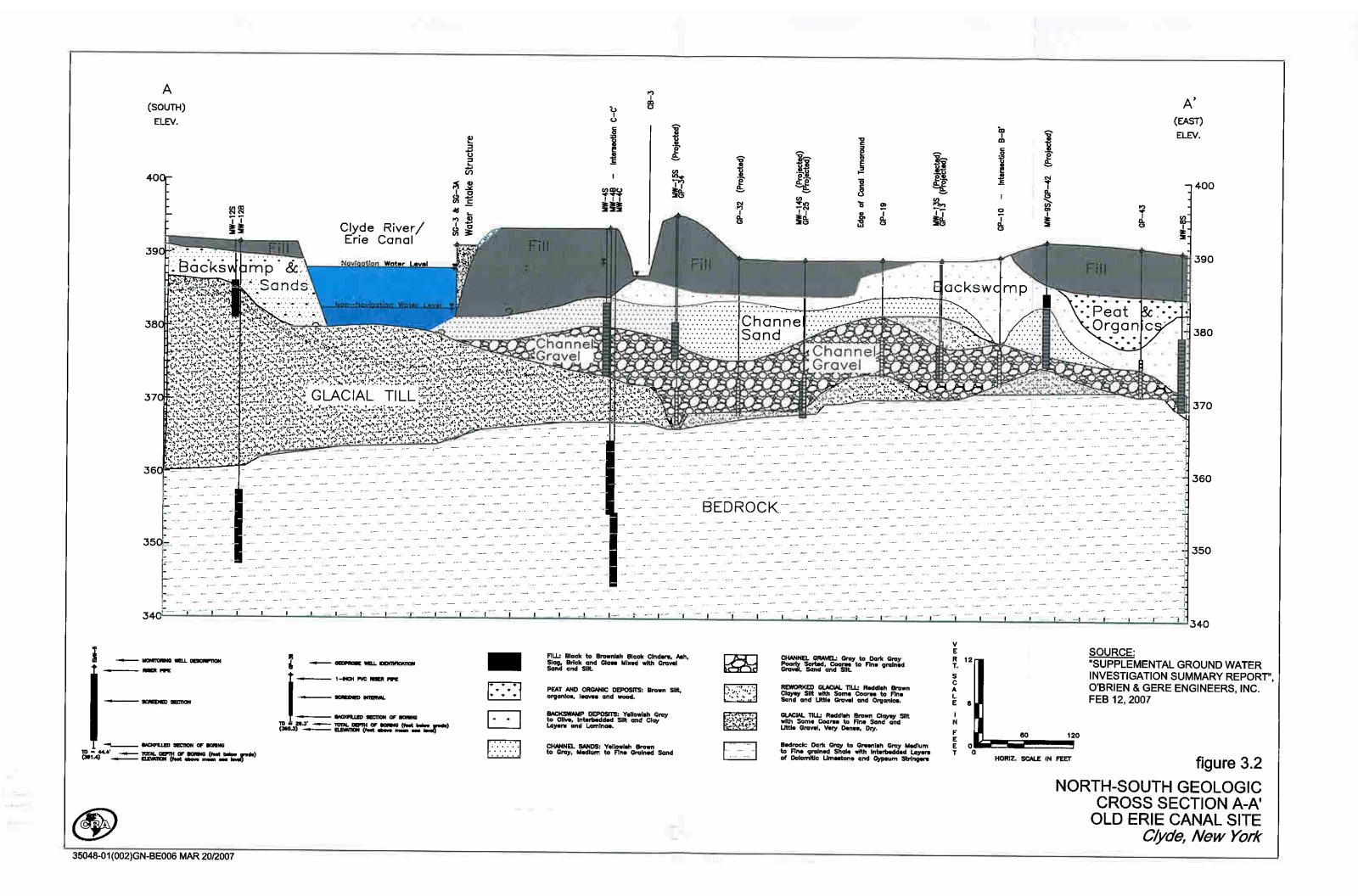
The remedial Alternative recommended for the Site is a combination of remedial alternatives for groundwater, surface soil, and sub-slab soil vapor. The recommended remedial Alternative is:

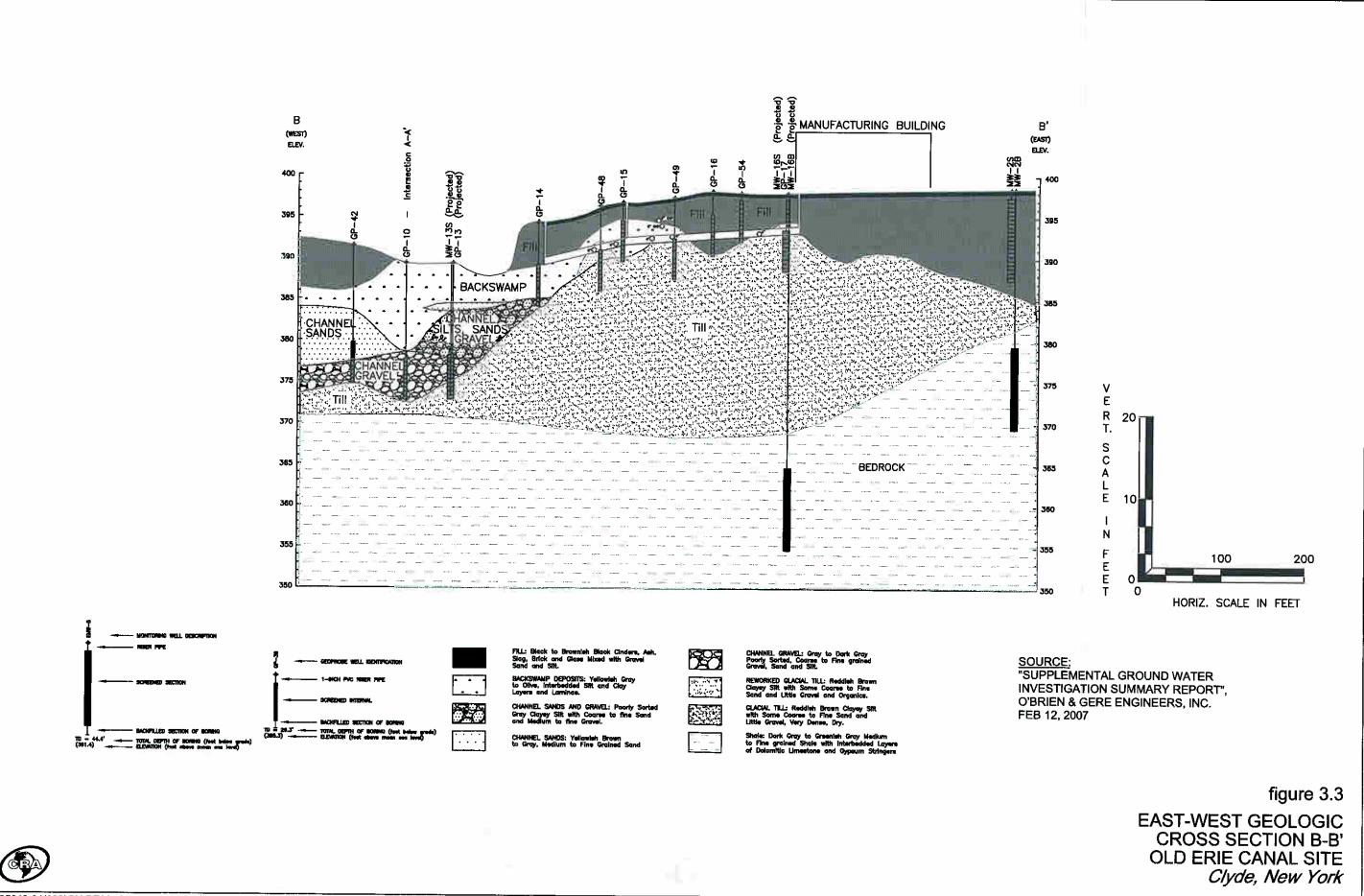

- i) GW Alternative 3, Enhanced Biodegradation with MNA and Institutional Control;
- ii) SS Alternative 3, Capping; and
- iii) SG Alternative 2, Sub-Slab Ventilation.

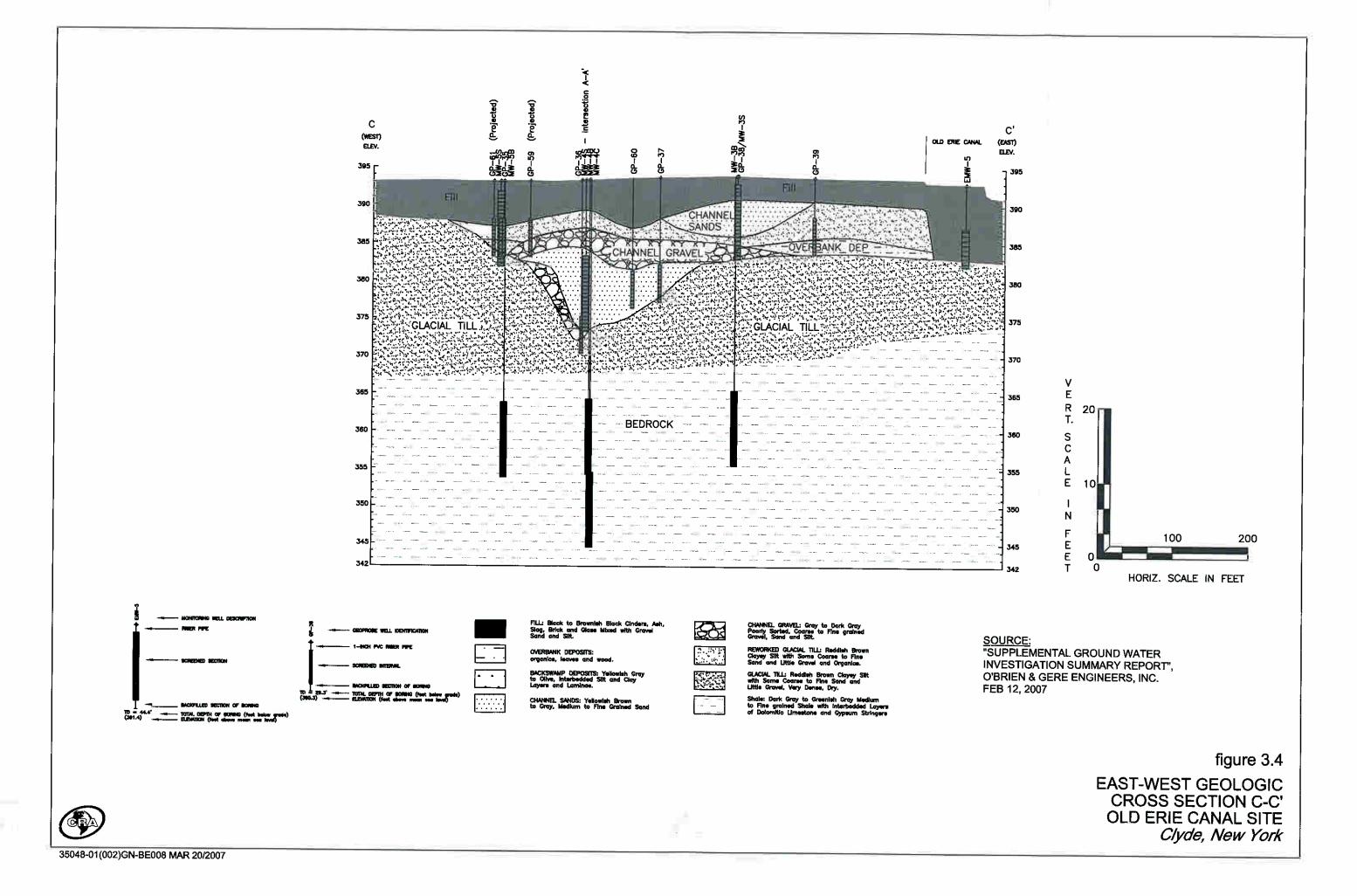

This combination of remedial alternatives will achieve the RAOs for each of the environmental media as discussed previously in this FS Report.

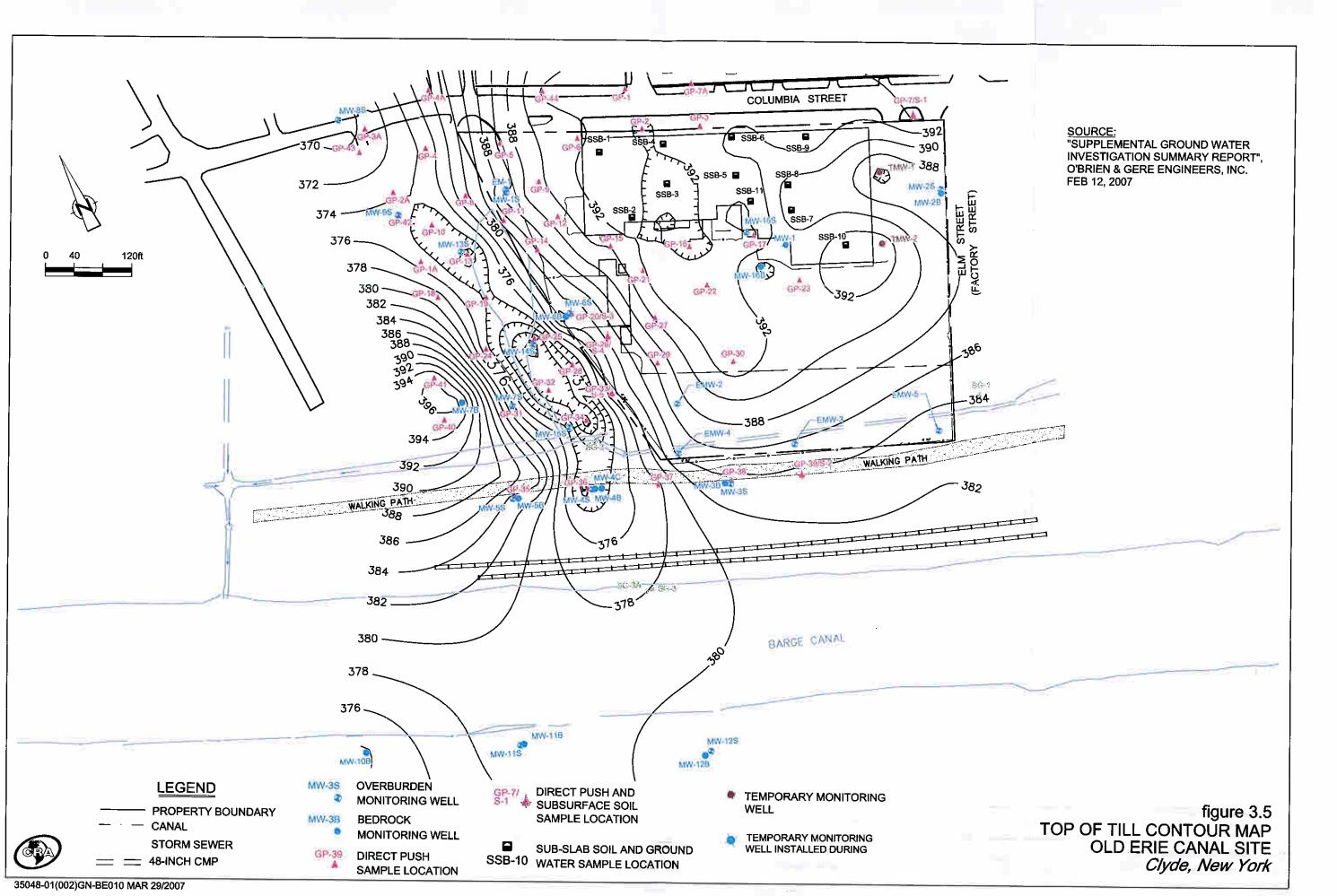

The total estimated cost of the recommended remedial Alternative is \$1,104,500.

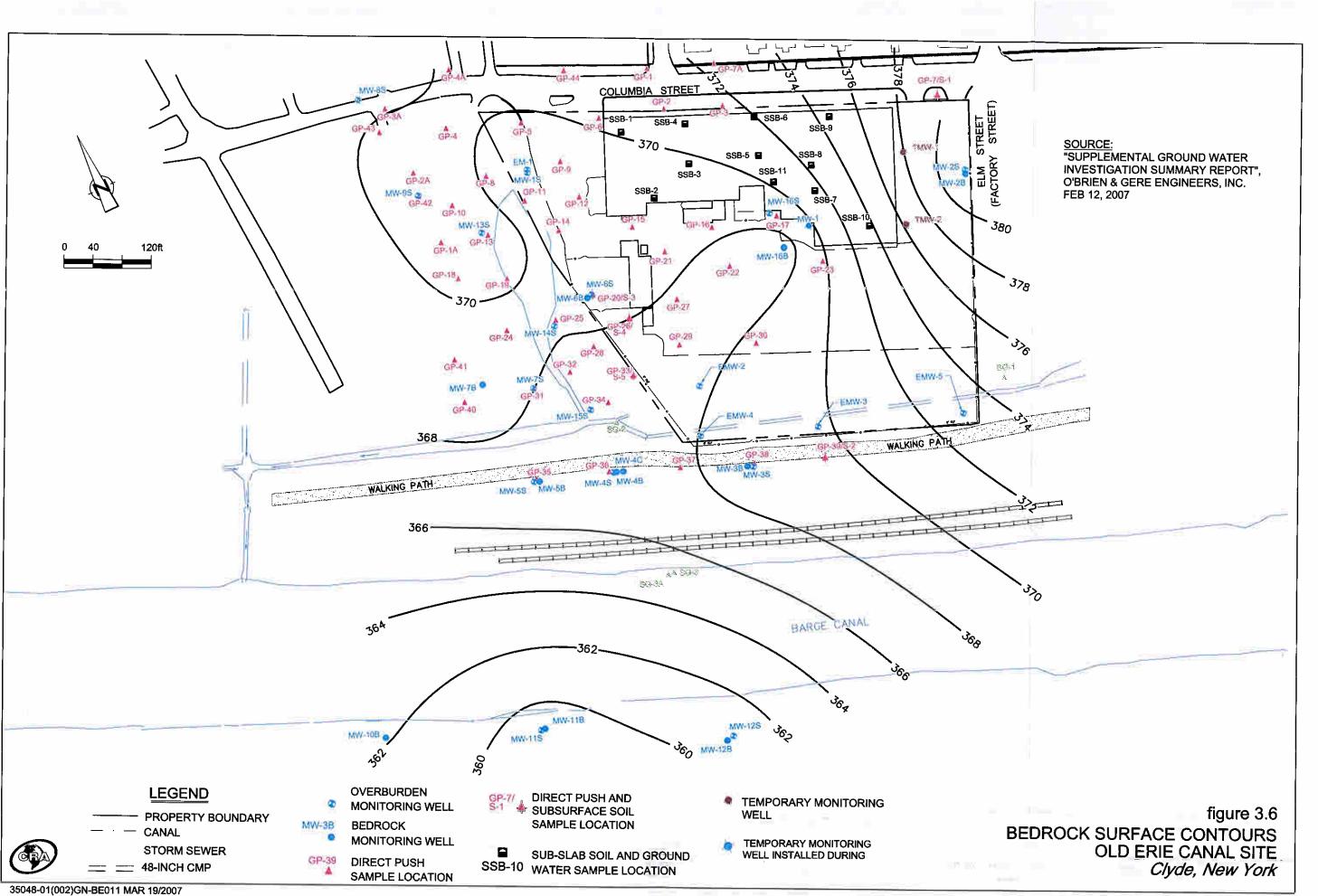
10.0 <u>REFERENCES</u>

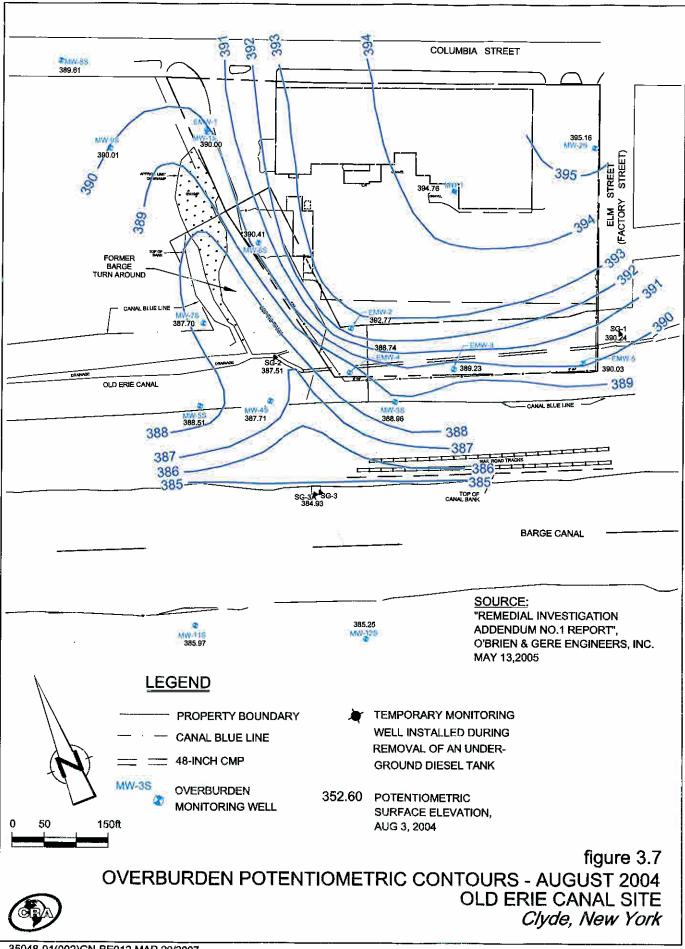

- NYSDEC, "Technical and Guidance Memorandum #4030, Selection of Remedial Actions at Inactive Hazardous Waste Sites," May 15, 1990.
- O'Brien and Gere Engineers, Inc., "Fish and Wildlife Impact Analysis, Old Erie Canal Site, Clyde, New York," November 2003.
- O'Brien and Gere Engineers, Inc., "Remedial Investigation/Feasibility Study Work Plan, Old Erie Canal Site, Clyde, New York," November 27, 2001.
- O'Brien and Gere Engineers, Inc., "Remedial Investigation Report, Old Erie Canal Site, Clyde, New York," November 24, 2003.
- 6 NYCRR Part 701, "Classifications-surface Waters and Groundwaters."
- New York State Department of Environmental Conservation, "DAR-1 AGC/SGC Tables," December 22, 2003.
- New York State Department of Health, "Guidance for Evaluating Soil Vapor Intrusion in the State of New York, Public Comment Draft," February 2005.
- Correspondence from J. R. Heckathorne, P.E. (O'Brien & Gere) to D. G. Pratt, P.E. (NYSDEC), dated December 23, 2003.
- New York State Department of Environmental Conservation, Division Technical and Administrative Guidance Memorandum: Determination of Soil Cleanup Objectives and Cleanup Levels, January 24, 1994 [TAGM 4046]
- Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, Reissued June 1998 [TOGS 1.1.1]
- Federal Remediation Technologies Roundtable, "Remediation Technologies Screening Matrix and Reference Guide," Version 4.0.
- O'Brien and Gere Engineers, Inc., "Supplemental Ground Water Investigation Summary Report, Old Erie Canal site, Clyde, New York," March 29, 2007.



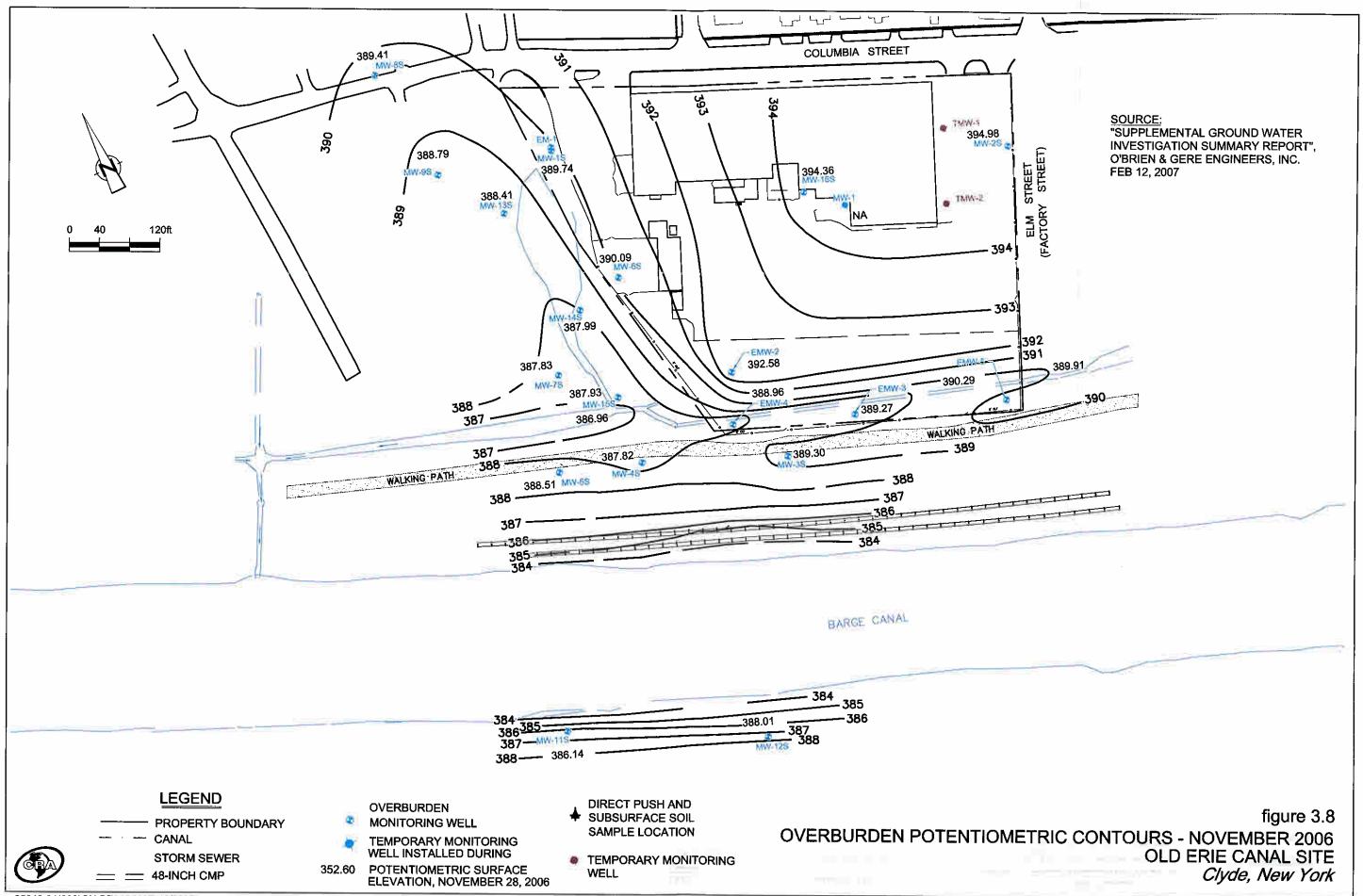


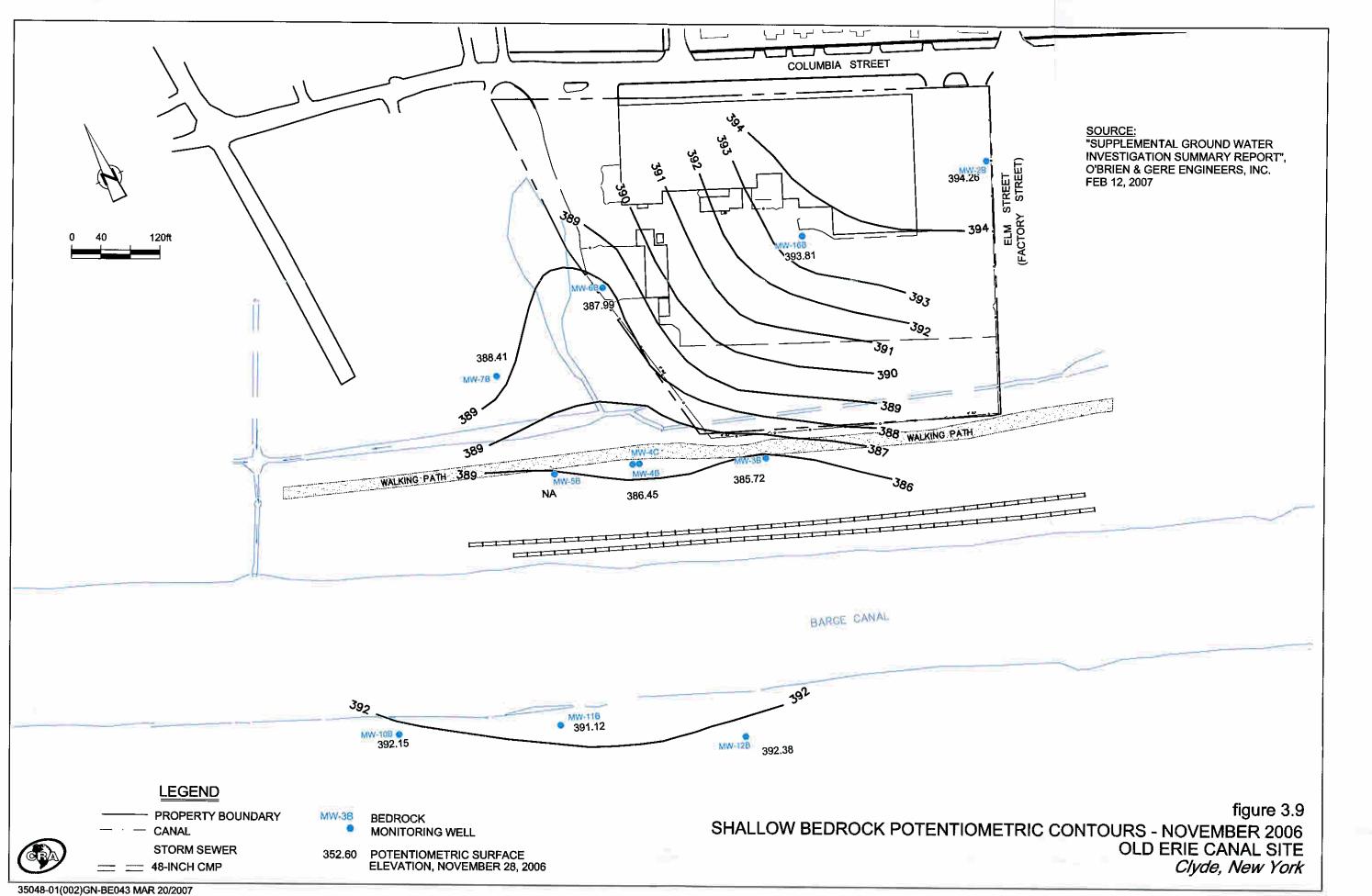

. . .



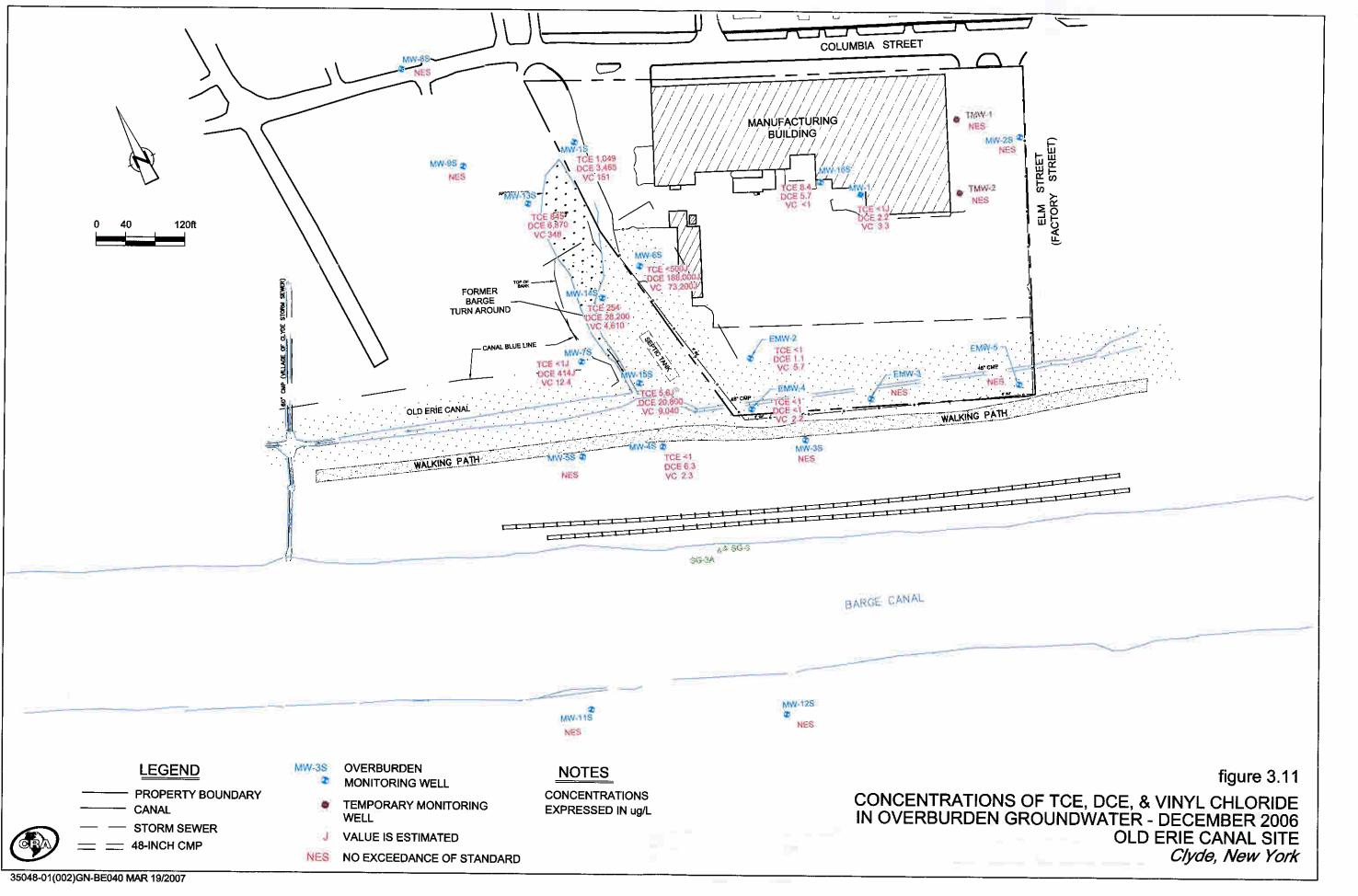


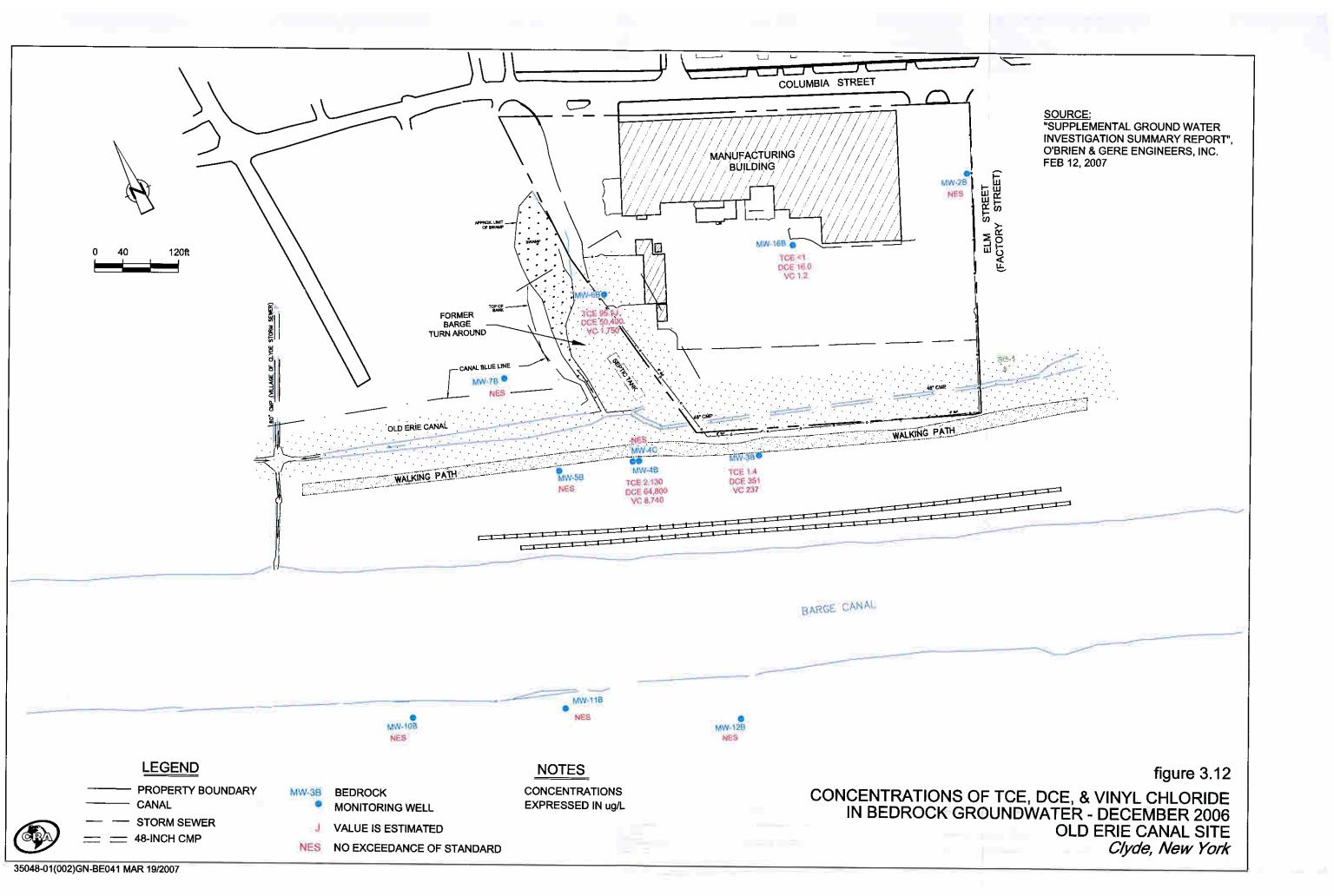
35048-01(002)GN-BE007 MAR 20/2007

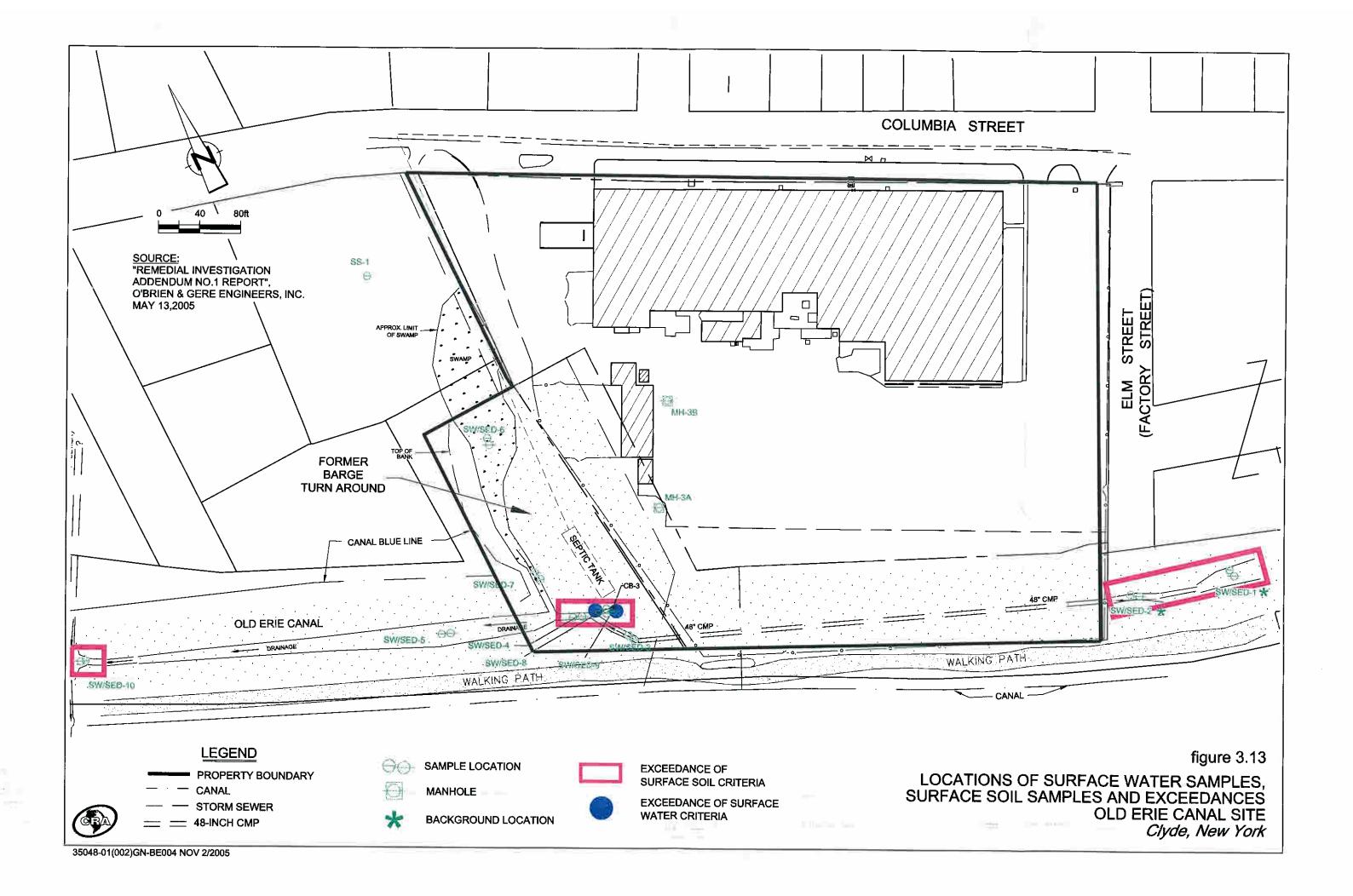


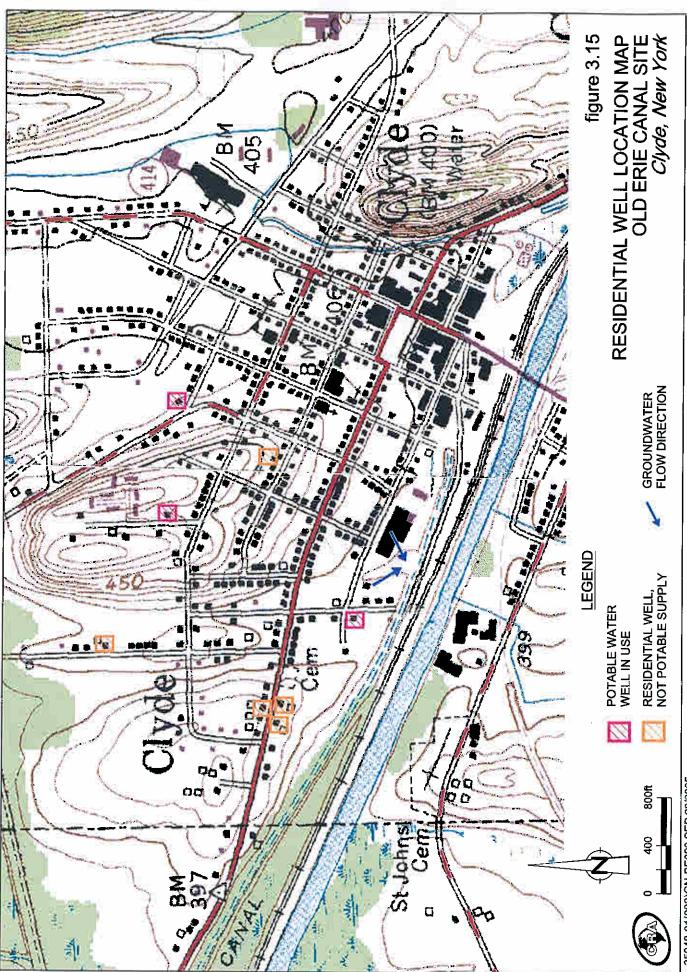



35048-01(002)GN-BE012 MAR 20/2007




35048-01(002)GN-BE042 MAR 19/2007





35048-01(002)GN-BE002 OCT 21/2005

³⁵⁰⁴⁸⁻⁰¹⁽⁰⁰²⁾GN-BE023 SEP 28/2005

						TABLE 3.1								Pa	Page 1 of 22	
			GROUNI	DWATER AN	ALYTICAL FE OLI CI	GROUNDWATER ANALYTICAL RESULTS - VOLATILE ORGANIC COMPOUNDS FEASIBILITY STUDY OLD ERLE CANAL SITE CLYDE, NEW YORK	DLATILE O UDY L SITE DRK	RGANIC CON	SUNDAN							
	S	Sample Location: Sample Date:	EMW-2 6/26/2002	EMW-2 12/19/2002	EMW-2 5/27/2003 PR 1	EMW-2 5/27/2003 PB-Dunlicate	EMW-2 11/4/2003 PR	EMW-2 11/4/2003 DR-Dunlicate	EMW-2 8/25/2005	EMW-2 8/25/2005 Dunlicate	EMW-2 11/30/2006	EMW-3 6/26/2002	, EMW-3 5/27/2003 PR	EMW-3 8/25/2005	EMW-3 12/1/2006	EMW-4 6/26/2002
Compound	Criteria ^{a)}	Units											1			
1,1,1,2-Tetrachloroethane	υ	µg/L	}	:	1 1	1 4 9	4 6 1		3 3 3) 		;	;	;	1	
1,1,1-Trichloroethane	ŝ	hg/L	2 U	2 U	2.5 U	1U	1U	1U	1 U	1U	1U	1U	1 U	1U	1 U	10
1,1,2,2-Tetracitloroethane	ស	hg/L	2 U	2 U	2.5 U	10	1U	10	1 U	10	1 U	10	11	ΠΩ	1 U	IU
1,1,2-Trichdoroethane		µg/L /I	2 0	2 0	2.5 U			10	10		1 1	10			10	<u>,</u>
1,1-Dichloroethene	יש מ	н8/ г. 110/1	0 ¥ C	o 11 6	2511	111	111	111	111) []	11			110	7
1,2-Dichloroethane	0.6	ug/L	2 U	2 U	2.5 U	10	10	10	10		10	10	10	10	2 I 1	10
1,2-Dichtoropropane	-	J/Bri	2 U	2 U	2.5 U	1U	1U	10	1 U	10	10	IU	10	10	10	10
2-Butanone (MEK)	50 ⁽²⁾	hg/L	10 U	10 R	13UR	SUR	SUR	1.3 R	5 U	5U	5 UR	5 U	SUR	5 U	5 UR	5 R
2-Hexanone	50 ⁽²⁾	hg/L	10 U	10 UJ	13UR	SUR	SUR	SUR	5 U	5 U	5 U	5 U	SUR	5 U	5 U	5 UJ
4-Methyi-2-pentanone	SN	hg/L	10 U	, 10 U	13UR	SUR	SUR	SUR	5 U	5 U	5 U	5 U	SUR	5 U	5 U	5 U
Acetone	20	J/Bri	10 U	10 R	13UR	6.2R	13R	11 R	5 U	5 U	5 UR	5 U	6.1R	5 U	5 UR	5 U
Benzene	-	hg/L	2 U	2 U	2.5 U	1 U	1.6	2.1	1U	1U	0.37]	10	10	10	10	10
Bromodichloromethane	20	р8/L	20	20	2.5 U	10	10	21	10		10	10	10	10		01
Bf0Hl0t0ffl1 Remonsthene	g u	р8/ L 116 / Г	n 7 7	0 7 C	0 6 7	1 1	11) [] 			2 2		
Carbon disulfide	מי ה	нб/с ug/L	2 C 7	5 C 5 V	2.5 U	10	10		101	10	10	10		2 1	22	
Carbon tetrachloride	5	hg/L	2 U	2 U	2.5 U	1U	1U	10	1U	1U	1U	1 U	1 U	1 U	ιu	ιU
Chlorobenzene	ъ	µg/L	2 U	2 U	2.5 U	1U	1U	1U	1U	1 U	1U	Π	10	1 U	1 C	ΠŪ
Chloroethane	ы Гол	hg/L	2 U	20	2.5 U	D1 ;	10	10	10	10	10	10	10	10	D :	0.64]
Chlorotorm	× u	µg/L	2 0	5 0	2.5 0) 1			D 1
Cruoronneutane cis-1,2-Dichloroethene	о ю	ng/L	26	63 D	15	16]	1.7	1.5	21.6	24.2	11	0.51]	<u>ה</u>	2 2	2 2	1.1
cis-1,3-Dichloropropene	0.4	hg/L	2 U	2 U	2.5 U	101	1 U	1 U	10]11	1U	10	1 U	1U	Π	1 U
Dibromochloromethane	50	J/Bri	2 U	2 U	2.5 U	1U	10	1 U	10	1U	1U	1U	10	10	1U	10
Ethylbenzene	u) i	hg/L	2 0	2 U	2.5 U	10	0.61]	0.7]	10	10	10	10		10	10	10
M+P-Xylene	ı م	hg/L			2.5 U	2.1]	4.5	5.4		• •	4 4 4 1	• •		1 J 1 J	:	
Methylene chloride	ۍ ۱	J/Bri	0.8]	4 U	2.5 U	10	10	1U	2 U	2 U	2 U	2 U	n i	2 U	2 U	2 U
O-Xylene	ۍ ا	hg/L		1	2.5 U	10	0.54]	0.57]	1					;	;	1
Styrene	ın ا	hg/L	20	2 U	2.5 U	10	10	10	10	10	1 C					5
Tetrachloroethene	ы N	hg/L	2 U	2 N	2.5 U	1 U	10	10	10		; ; ;	10	0 : !	10	10	2:
Ioluene	הי	hg/L	07		77	[62	- n#	40	9.6	C.UI	2:	2;		C.U1	<u> </u>	<u>-</u> ;
trans-1,2-Dichloroethene	ۍ م	hg/L	0.54]	2 U	2.5 U	11	10	10				1 1	10	10	о : 1	<u>n</u> :
traus-1,5-Dichloropropene Trichlorochana	۲. L	hg/L	0 Z C	0 Z C	2.5 U	2 1		0 II I	1 U 5 6 []	110			1 1			
Vinvl chloride	רא ני	н8/ г ug/L	23	130 D	640	530EJ	3.7	4.1	7.2	8.1	5.7	10	10	1.0 U		
Xylene (total)	ະດ	hg/L	6U	0.71]			-		1.0	-	0.57]	3 U	1	1.1	10	3 U

CRA 035048 (2)

Revised: 03/21/07

Contracting and a second a								110 310 41								e'l	Page 2 of 22	
Tendentiality Entry					GROUNE	WATER AN	ALYTICAL I FEA OLD CL	RESULTS - V ASIBILITY ST ERIE CANA YDE, NEW Y(OLATILE OI TUDY L SITE ORK	KGANIC CON	MPOUNDS							
Contract			Sai	mple Location: Sample Date:	EMW-2 6/26/2002			EMW-2 5/27/2003 8-Duni/2044		EMW-2 11/4/2003 8 D11.244								EMW-4 6/26/2002
Tritical intermediates (CC11) 9 0/1 0		Compound	Criteria ⁽¹⁾	Units				aturndura-o		anonquu-a	·	npucare			84			
1.3.1.1.0.00000000000000000000000000000		Trichiorofluoromethane (CFC-11)	ស	ng/L	:	:	:		3	:	:	:		1		1		,
13.3.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		1,1-Dicitloropropene	ъ л	ng/L	:	1 1 3	;		;	;	:	:	:	, , ,	;			
123-Thrandlyphenome 03 gyl user use		1,2,3-Trichlorobenzene	ß	l/Bri	:	1		3		;	7 5 1		:	:	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		5 1 1	;
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1,2,3-Trichloropropane	0.04	hg/L	;	;	8 8 1	e 3 3	;	ł	8 8 7	4 4 4	:	÷	•	• • •	:	;
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1,2,4-Trimethylbenzene	ы Г	µg/L	:	:	:	:	:	ł	4 8 8	*	1	:	*		:	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1,2-Dibromo-3-chloropropane (DBCP) 1.2-Dibromontrum (BDB)	0.04 NIS	µg/L va∕T	•	:		4 4 1	1 1		:	:	1	;	}) 7 1
15 Distribution 0		1,35. Trimethylbonzene	ζ.v	но/Г.	;							, , , ,			• •			•
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.3-Dichloropropane) из	гь/ - ug/L	1	1	-	+ 1 1	1	;								
2 Characteriane 5 00,1 0		2,2-Dichloropropane	a in	ug/L	;	;	;	1 1 1	1	1	;		;	;	:			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2-Chlorotoluene	л	ug/L	;	:	:	•	1 4 7		į		, ; ;		,	:	:	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2-Phenylbutane	ъ	Hg/L	ł	:	;	8 3 1	,				• • •		:	:	;;	:
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		3-Chlorotoluene	5	µg/L	:	:	:		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		;	••••	, , ,	, , ,	:	:	••••	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4-Chlorotoluene	ហ	µg/L	:	:	!		:		:				:	;	•	:
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Bromobenzene	ß	hg/L	1	;	1 1	1 1	1 1 1	;			;	:		:	:	, ,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Chlorobromomethane	പ	hg/L	:	1 1 1	;	1	;;;	6 6	:	1	ļ	ļ	:	4 7		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Cymene	SN	µg/L	۲ ۱ ۲	8 8 8	:	1	;			4 5 7	;	:	:	:	•	;
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Dibromonethane	S	µg/L	:	;	t 1	:	1 1	1	;	}) 7 1	:		: : :	:
		Dichloromonofluoromethane	SN	µg/L	ł	:		÷	1 1 1	1	;	;	:) 	:	;	:	!
		Isopropylbenzene	ŝ	µg/L	:			:						;;;	:	;	* * *	:
$\label{eq:relation} Propylencene \qquad $		n-Butylbenzene	ß	µg/L					:	1 1 1	•	1	;	:	;	;;;	:	1 1 1
p-Xylene 5 µg/L <		n-Propylbenzene	S	µg/L		1				1	:	:	ł	ł	:::	;	:) # 1
tert-Burylberzene 5 µg/L ··· ·· · · · · · · · · · · · · · · ·		p-Xylene	വ	hg/L	;	, , ,	4 - 4					:	;	ł	:		•	:
		tert-Butylbenzene	ъ	нg/L	1	1	;	:	1		•	3 3 3	1 1 1	:	;	1) 1 2	ļ
	Notes:																	
	ê	Groundwater Effluent Limitations, Class G.	A Groundwate	Ш,														
		NYSDEC TOGS 1.1.1, June 1998.																
	(2)	Guidance value.																
	1	Compound not analyzed.																
	n ۵	Compounds identified in an analysis at the	secondary dil	ution factor.														
		Reported value is outside the calibration ra Detected concentration is estimated	nge of the mst	rument.														
	Z	Tentatively identified compound.																
Π	SN	No standard.																
Π	PB	Passive Bag sampling technique.																
Π	2	Reported sample result is not usable.																
Concentration exceeds criteria.		Compound was not detected at or above th	e quantitation	limit shown.														
		Jeoncentration exceeds criteria.																

Page 2 of 22

CRA 035048 (2)

ANALYTICAL RESULTS - VOLATTLE ORGANIC COMPOUNDS FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK	EMW-5 EMW-5 EMW-5 EMW-5 MW-1 MW-1 MW-1 MW-1S MW-1S 6/26/2002 5/27/2003 8/25/2005 12/1/2006 6/25/2002 5/28/2003 12/6/2006 6/26/2002 11/4/2003 PR						1U 1U 1U 1U 1U 1U 1U 1U 10U 1U	1 U	1U 1U 1U 1U 1U 1U 1U	10 10	5U 5UR 5U 5UR 5U 5UR 5U 500U 5U	5UR 5U 5U 5U 5UR	5UR 5U 5U 5U 5U 5UR 5U 500U	2.5J 8.3K 5U 500U	01		1U 1U 1U 1U 1U	1U 1U 1U 1U 1U	1U 1U 1U 1U 1U 1U 1U 10U 1	100 U		1 U 100 U	U 1U 1U 1U 3.4 4.7 2.2 3700 3100	1U 1U 1U 1U 1U 1U 1U 10U			1U 2U 2U 2U 1U 2U 20U	- 10 10 10	1U 1U 1U 1U 1U 1U 1U 10U 11	10 10 10 10 10 10	1U		1U 1U 1U 1U 1U 1U 1U 100U	1U 1U 1U 5:9 3.2 0.58J 1000	1U 1U 1U 1U 0.42J 1U 3.3 260 160	
GROUNDWATER ANAI	Sample Location: EMW-4 EMW-4 Sample Date: 12/19/2002 5/27/2003 PB	Criteria ⁽¹⁾ Units	بر المراجع الم المراجع المراجع ا		ид/Г 1U 1	1U 1	hg/L	µg/L 1U 1	μg/L 1U 1	10	µg/L 5UR	µg/L 5UJ		μg/L 3∪K	ж8/с IO 1 10 1	Hg/L 1U 1		μg/L 1U 1	μg/L 1U 1	5 µg/L 1U 1U	10.1	hg/L	hg/L (Hg/L 1U 1	0 10 11 11 10 10 10 10 10 10 10 10 10 10		μg/L 2U 1		Hg/L	hg/L	μg/L 1U 1	μg/L 1U 1	µg/L 1U 1	hg/L 10	hg/L	
		Сотроний	1.1.1.2.Tetrachloroethane	1.1.1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	1,2-Dichloropropane	2-Butanone (MEK)	2-Hexanone	4-Methyl-2-pentanone	Acelone Renzone	Bronnodichloromethane	Bromoform	Bromomethane	Carbon disulfide	Carbon tetrachloride	Chiorobenzene	Chloroform	Chloromethane	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	Lubromochloromemane Fhydhenzene	M+P-Xvlene	Methylene chloride	O-Xylene	Styrene	Tetrachioroethene	Toluene	trans-1,2-Dichloroethene	trans-1,3-Dichloropropene	I richioroethene	Vinyl chloride	Yulana (John)

Page 3 of 22

Revised: 03/21/07

-	
ц	
1	
AB	
F	

Page 4 of 22

GROUNDWATER ANALYTICAL RESULTS - VOLATILE ORGANIC COMPOUNDS FEASIBILITY STUDY OLD ERIE CANAL SITE

	MW-1S 11/4/2003		:	:	, ; ;	;	÷	;	* * *		:	ł	:	:) : ;	:		÷	÷	\$ 1 8	ł	;	•	i	:	:
	MW-1S 6/26/2002		, , ,	:	:	* *	* * 1	;	:		• • •		;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	;	÷	:)))	* * *	;	••••	, , ,	:		:	;	
	MW-1 12/6/2006			,	* * *	;	:	:	:	* * *					• • •		,		, , ,	1 1 1	;	:		:	:	
	MW-1 5/28/2003 BR	2	1 1 1			• ;	\$ 2 8		:	:	:		;	;;	:	;		*	1	;	;	*	!	:	:	
	MW-1 6/25/2002		;	:	* = z	;	:		, , ,		7 6 7	:	; ; ;	, ,	, , ,	1 3 1	2 3 3	1	;	;	, , ,	:)))	, , ,	:	:
	EMW-5 12/1/2006		;	1		:		* • •	:	:	:	:			1 1 1	1 F		!	;	:	:	:	8 7 8	:	:	
	EMW-5 8/25/2005		3 3 2	1 1 1		*	:	:	:	:	1) 		, , ,		:	:		:		1	
	EMW-5 5/27/2003				1 1 1	:	;	1 1) 1)	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		1 1 1	;	:	1	1 4 1	1 9 1	1 1 1	;	:	::	1 	:	:		!
	EMW-5 6/26/2002		- - - -	, , ,	:	;	,,,		:	1 1 1	:	;	;	;		1 1 1		:	;	, , ,	:	1	, , ,) 1 1	:	:
ORK	EMW-4 12/6/2006			:	;	•	:	:	:	;	;) ; ;) ;)	1			:			:	:	;	;	:	1	1
CLYDE, NEW YORK	EMW-4 8/25/2005		:	;	;;;	:	:	;	:	, ,		;			:	1	- 		:	;		;	:		:	1 1 1
СГУ	EMW-4 11/4/2003 PR	1	1	• • •	:		, , ;	;	:	;	:	:	;	:	:	: : :		:			•	:	1	1	:	!
	EMW-4 5/27/2003 PR	1	•		;	5 8 8	;	:	÷	;	;;	;	;	:	:			:	;		:	:			;	1
	EMW-4 12/19/2002				:	;	;	1 1 1)) 1			• • •	;;;	;				• • •	2 1 1	;	;	:	:	:	;	, , ,
	Sample Location: EMW-4 Sample Date: 12/19/2002	Units	µg/Г	hg/L	hg/L	Hg/L	µg/L	hg/L	hg/L	hg/L]∕8ri	µg∕Ľ	µg/L	hg/L	ng/L	µg/L	µg/L	'µg/L	µg/L	µg/L	hg/L	hg/L	hg/L	µg∕L	hg/L	J/Br
	S Samp S	Criteria ⁽¹⁾	ъ	ъ	5	0.04	ъ С	0.04	NS	S	5	5	5	5	S	5	5	5	NS	ŝ	NS	5 2	ŝ	ŝ	сı	5
		Сонгроний	Trichlorofluoromethane (CFC-11)	1,1-Dichtoropropene	1,2,3-Trichlorobenzene	1,2,3-Trichtoropropane	1,2,4-Trimethylbenzene	1,2-Dibromo-3-chloropropane (DBCP)	1,2-Dibromoethane (EDB)	1,3,5-Trimethylbenzene	1,3-Dichloropropane	2,2-Dichloropropane	2-Chlorotoluene	2-Phenylbutane	3-Chlorotoluene	4-Chlorotoluene	Bromobenzene	Chlorobromethane	Cymene	Dibromethane	Dichloromonofluoromethane	Isopropylbenzene	n-Butylbenzene	n-Propylbenzene	p-Xylene	tert-Butylbenzene

Noles: 3

Groundwater Effluent Limitations, Class GA Groundwater, NYSDEC TOGS 1.1.1, June 1998.

Guidance value.

ට

Compound not analyzed.

Compounds identified in an analysis at the secondary dilution factor. Reported value is outside the calibration range of the instrument.

Detected concentration is estimated. Tentatively identified compound.

No standard.

Passive Bag sampling technique. Reported sample result is not usable. Compound was not detected at or above the quantitation limit shown.

Concentration exceeds criteria.

	-35 MW-35 1003 S/24/2005 3							0	
	MW-3S MW-3S 6/25/2002 5/27/2003 PB			.,					
	MW-2B M 11/29/2006 6/2				- 4			110 11- 11-	
	MW-2B 8/25/2005 1	1000		5 U 5 U	ם ב ז ר ז ר				
	MW-2B 5/28/2003 PB			5UR 5UR 5UR	IIR IU IU				
SQL	MW-2B 6/25/2002			5 R 5 U 5 U	1.9 J U 1 U 1			50 - 10 5 - 1 0	
GROUNDWATER ANALYTICAL RESULTS - VOLATILE ORGANIC COMPOUNDS FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK	MW-2S 11/29/2006	; n n i ;		5 C 2 2 C 2 2 C 2	5U 1U			2 1 1 0 5 1 1 0	
ORGANIC	MW-2S 8/25/2005			5 C C 2 C C	5U 1U			10 5 1 1 1 1 1 1 1 1 1 1 1 1	110 110 140 110 110
VOLATILE STUDY AL SITE YORK	MW-25 5/28/2003 PB			5UR 5UR 5UR	8.1R 1 U 1 U				
AL RESULTS - VOLATI FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK	MW-2S 5 6/24/2002	1001		5 R 5 U 5 U	5 R 1 U 1 U	11 10 11 10 11			
ALYTICAL FE OLI CI	MW-1S 11/29/2006 Duplicate		1 0.0 1 0.0 1 0.0 1 0.0	50 UR 50 U 50 U	50 U 10 U 10 U	10 10 10 10 10 10 10	10 U 10 U 10 U 10 U 10 U 10 U 10 U	20 U 20 U 20 U	10.6 10.0 34.2 10.0 10.0 155 155
WATER AN	MW-1S 11/29/2006	25 U 25 U 25 U	33 23 23 23 C C C	130 UR 130 U 130 U	130 UR 25 U 25 U	25 U 25 U 25 U 25 U	25 U 25 U 25 U 25 U 25 U 25 U 25 U	15 U 50 U	25 U 25 U 32.4 25 U 1110 147 25 U 25 U
GROUND	: MW-15 : 8/24/2005	25 U 25 U 25 U	23 C C 23 C C	130 U 130 U 130 U	130 U 25 U 25 U	25 U 25 U 25 U 25 U	25 U 25 U 25 U 25 U 4880 25 U 25 U	25 U 25 U 25 U	17.3 J 25 U 50.6 25 U 25 U 1940 345 25 U
	Sample Location: MW-1S Sample Date: 8/24/2005 ⁽¹⁾ Units	л 1/8н 1/8н 1/8н	нg/L hg/L нg/L	нg/L нg/L	нg/L µg/L µg/L	hg/L hg/L hg/L	нg/L µg/L µg/L µg/L	не/Г 1/84 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	ност 1/84 1/8/L 1/84 1/24 1/84 1/84 1/84 1/84 1/84
	Sam Criteria ⁽¹⁾	איראימי	ء 1.05	50 ⁽²⁾ 50 ⁽²⁾ NS	50 50	ນ ໙ ໙ എ	እ	ງ ເດ ເດ ເດ ເຊ	տ <i>Ի</i> տ <mark>է</mark> ա ա ա ա
	Сотроинд	1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Trichloroethane	1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane	2-Butanone (MEK) 2-Hexanone 4-Methyl-2-pentanone	Acetone Benzene Bromodichloromethane	Bromoform Bromomethane Carbon disulfide Carbon tetrachloride Chlacolarsona	Cutoroperzene Chloroform Chloroform Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene Dichromochloromothane	Ethylbenzene M+P-Xylene Methylene chloride O-Xylene Stvrene	Tetrachloroethene Tohuene Irans-1,2-Dichloroethene Irans-1,3-Dichloropropene Trichloroethene Viryd chloride Xylene (total)

.

, +
5
щ
8
<

GROUNDWATER ANALYTICAL RESULTS - VOLATILE ORGANIC COMPOUNDS FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

Sample Location: MW-1S MW-1S Sample Date: 8/24/2005 11/29/2006	Compound Criteria ⁽¹⁾ Units		5 µg/L		0.04 µg/L	5 µg/L				5 µg/L									5 µg/L			5 µg/L		5 µg/L ··· ···
ST-WW-1S 006 11/29/2006	Duplicate	:	:	:	::	*		1			3 9 8	3	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1	1		:		:		1 1 7	8 9 9	;
MW-2S MW-2S 6/24/2002 5/28/2003	βd	:) } ; ;		1 3 1 1 1) ; ;	* * *	4 6 1 1			
-2S MW-2S 2003 8/25/2005	~	-			::	3 } }				1 1 1		•					:			••••	1	* • •		1 1 1
MW-25 11/29/2006		3 3 4	, , ,					8 8 8				;;	:	:	:	:						:		
'MW-2B 6/25/2002		:	:		ł	:		;		1	:	:	:	;	;	;	,	, , ,			:	;	;;;	1
MW-2B 5/28/2003	Βđ	-	:	:	• • •	r t 1	:	;;	-	7 2 5	4 6 6	1 }	, , ,	••••	:	:		;		:	:		;	
MW-2B 8/25/2005 1) 3 1	;	:	:	:		:		:	1 1	3	3		1 8 1	+ † 2		;	ł	!	1 1	ł	ļ	, , ,
MW-2B 11/29/2006			:	, , ,	:	ł	1 1 1	1	1 1 1				:						:	:	:	• •		:
MW-35 6/25/2002		3	:	:		, , ,	;	;		1 2 1	1 4 1		:	:	:	:	:	1	1 1 1	: : :			1 1	:
MW-3S 5/27/2003	ЪВ	i	:	* * *	:		, , ,)) 1	3 8 1	:			,	;		5 1 3	,	;;					:	, , ,

Notes: ŝ

Groundwater Effluent Limitations, Class GA Groundwater, NYSDEC TOGS 1.1.1, June 1998.

Guidance value.

Compound not analyzed. 9

Compounds identified in an analysis at the secondary dilution factor. Reported value is outside the calibration range of the instrument.

Detected concentration is estimated. Tentatively identified compound.

No standard. los_zsaz

Passive Bag sampling technique. Reported sample result is not usable.

Compound was not detected at or above the quantitation limit shown.

Concentration exceeds criteria.

Page 6 of 22

		-	GROUNDV	VATER AN	ALYTICAL FE OLI	GROUNDWATER ANALYTICAL RESULTS - VOLATILE ORGANIC COMPOUNDS FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK	/OLATILE TUDY AL SITE YORK	ORGANIC C	OMPOUN	DS					>	
	Sa	Sample Location: MW-3S Sample Date: 12/5/2006	MW-3S 12/5/2006	MW-3B 12/5/2006	MW-4S 6/25/2002	MW-4S 12/19/2002	MW-4S 4/24/2003 DD T			MW-45 5/28/2003				MW-4S 8/24/2005	MW-45 12/5/2006	MW-4B 6/25/2002
Сотроинд	Criteria ⁽¹⁾	Units						1101109-9-1	do 1-9.1	motton-dr	1 do 1-91-1	PB-Bottom	PB-Bottom			
1.1.1.2.Tetrachloroethane	ť	110/1														
1.1.1.1.1.Trichleroefhane	יש ה	1/2/1		11		117					11 8) ; .		· · · ·	
1.1.2.5.Fetrachloroethane	o ur	1/2ri	2 =	2 =		0 1 ₽	2 E	2 2		2 2				5	- -	2000 U
1,1,2-Trichloroethane	o	ug/L	10	1 U	10	4 C	2 11			11		2 1	01	6 1 1	0 II I	2000 11
1,1-Dichloroethane	ŝ	hg/L	1U	1U	1U	2]	10	1 1	10	10	0 I 1	2. 1 U	nı	101	21	200011
1,1-Dichloroethene	ŵ	µg/L	1 U	1U	10	5.4	10	10	1U	IU	10	10	1U	I UI	10	2000 U
1,2-Dichloroethane	0.6	µg/L	1U	1U	1U '	40	lUI	ĺŊ	1U	1 U	1UJ	10	1U	1 UJ	1U	2000 U
1,2-Dichloropropane	4	Hg/L	1U	ιυ	10	4 U	10	10	1 U	1U	10	1 U	1U	1 UJ	ΙŪ	2000 U
2-Butanone (MEK)	50 ⁽³⁾	hg/L	5 U	5 UR	5 U	20 R	SUR	SUR	SUR	SUR	4.6JR	SUR	SUR	5 UJ	5 UR	10000 UR
2-Fiexanone	50 ⁽²⁾	hg/L	5 U	5 U	5 U	20 UJ	SUR	SUR	SUR	SUR	SUR	SUR	SUR	5 UJ	5 U	10000 U
4-Methyl-2-pentanone	NS	ng/L	5 U	5 U	5 U	20 U	SUR	SUR	SUR	SUR	SUR	SUR	5UR	5 UJ	5 U	10000 U
Acelone	50	ng/L	5 U	5 U	4]	20 UR	SUR	SUR	10R	9.5R	7.6R	10R	9.4R	s UJ	5 U	10000 U
Benzene	÷	µg/L	1U	1 U	1U	1.1]	10	10	ΙŪ	1U	1U	1 U	1U	1 UJ	1U	2000 U
Bromodichloromethane	20	hg/L	1U	1U	10	4 U	1U	10	1U	ΙU	ΙΩ	1U	1U	1 UJ	10	2000 U
Bromoform	20	hg/L	10	1U	1U	4 U	10	DI	10	١U	ΙŪ	10	10	1 UJ	10	2000 U
Bromoniethaue	uð i	μg/L	10	10	10	4 U	Ū	ĺ <u>n</u>	1 U		IΩ	10	10	1 UJ	ΙŪ	2000 U
Carbon disulfide	տեւ	μg/L); [10		4 U	5		1 U		10	D 1	10	1 1 1	1 C	2000 U
Carbon letractioride Chlorobenzene	יי ה	µg/L 116/I			110	4 U) 1	D 1			1 C			5	10	2000 U
Chloroethane	പറ	Р5/ с ug/L	2	201	101	4 U		111	10			01		1 C)		2000 U
Chloroform	4	pg/L	n	IU	10	4 U	P	DI	10	10	1U	10	10	, <u>1</u>	10	2000 U
Chloromethane	ъ	hg/L	10	10	0.48]	4 U	1U	IJ	1U	1U	1U	1 U	١U	1 UJ	ΠŪ	2000 U
cis-1,2-Dichloroethene	ഹ	µg/L	10	351	120 D	6400 D	8.7	3.9	1.6	3.2	2.9	2.3	7.9	121 J	6.3	58000
cis-1,3-Dichloropropene	0.4	hg/L	1U	10	1 U	4 U	1U	1U	10	1U	1 U	10	1U	1 UJ	10	2000 U
Dibromochioromethane	ς, γ	hg/L	<u>-</u>	D :	10	40	5:	2 :	10	1 1	2	2	10	101	1U	2000 U
M (D Yulano	դս	нg/ L /1	10	D I	0 T	- 4	3 5	3 5			2:		1 C :	0.44 J		2000 U
	n u	нg/ L					2 ;] :		<u>,</u> ;		0 :		: :	; ;	
iveurytene cruoride	n ı	hg/L	7 U	7 0	7 N	80	3 5	3				1	10	2 UJ	2 U	1200)
U-Aylene 2.	הי	hg/L		;;			<u></u>	2	10		10	10	1U	:	\$ \$ •	:
Slyrene	n I	Hg/L			10	40	1UJ	IUJ	10	D	10	10	1U	1 UJ	ΙŪ	2000 U
Tetrachloroethene	n I	hg/L		10		4 U	11	10	1U	10	1U	1U	1U	1 UJ	10	2000 U
Toluene	ſŊ	hg/L	10	0.48]	1.2	6	10	1U	ΠŪ	10	10	1U	1U	0.71 J	1U	2000 U
trans-1,2-Dichloroethene	n	hg/L		5.9	0.76]	37	10	10	10	10	1Ŭ	1U	1U	1.2 J	10	2000 U
trans-1,3-Dichloropropene	0.4	µg∕L	10	10	10	4 U	51	IJ	10	1U	1 U	lυ	10	10]	2	2000 U
Trichloroethene	ഗ	µg/L		1.5	0.36]	3]	5	5		1U	n		10	47.7]	10	1900]
Vinyl chloride	1 13	ng/L		237	110 D	6600 D	13	3.6	1U	1.4	n	0.85]	28	47.0 J	2.3	27000
Xylene (total)	ç	µg∕L	10	10	3 (4 U	:	,		:	* * •	;	1 1 1	0.98 J	10	6000 U

Page 7 of 22

CRA 035046 (2)

			÷	SROUNDM	'ATER ANA	LYTICAL I FEA	GROUNDWATER ANALYTICAL RESULTS • VOLATILE ORGANIC COMPOUNDS FEASIBILITY STUDY	/OLATILE (TUDY	DRGANIC	COMPOUNI	DS						
						100	OLD ERIE CANAL SITE CLYDE, NEW YORK	AL SITE									
		Sa.	Sample Location: MW-3S Sample Date: 12/5/2006		MW-3B 12/5/2006 6	MW-4S 6/25/2002 1	MW-4S 12/19/2002 4		MW-4S 4/24/2003		MW-45 5/28/2003			MW-45 11/4/2003	MW-4S 8/24/2005	MW-45 12/5/2006	MW-4B 6/25/2002
	Сонроинд	Criteria ⁽¹⁾	Units					do1-94	PB-Bottom	1 do1-94	PB-Bottom	doT-84	PB-Bottom 1	PB-Bottom			
	Trichlorofluoromethane (CFC-11)	ъ	hg/L	1	t 7 1	}		3	:	, , ;	;	2 5 6	:	8 5 7	1	1	
	1,1-Dichioropropene	ŝ	hg/L	;	:		;	:	:			• • •	1) ;	:	:	•	
	1,2,3-Trichiorobenzene	ഗ	μg/L	, , ,	:	:	:	:	•	ļ	4 1 1		;	;	:	;	
	1,2,3-Trichtoropropane	0.04	µg/L		1	:	4 4 1	;	1 1	;	:	,	:	4 7 8	:	, ,	;
	1,2,4-Trimethylbenzene	ю	μg/L	1 1 1	1	ł	• • •	:	:	:	:	1 4 2	:	5 5 1	:	, ,	:
	1,2-Dibromo-3-chloropropane (DBCP)	0.04	μg/L	:	4 4 4	, ,	!	;		8 2 7	:	;	1 9 8	1	1 2 3	1	
	1,2-Dibromoethane (EDB)	NS '	hg/L	ļ	1 1 1	:	:	;	:	5 3 6	:	1	1 7 7		* * *	:	;
	anaznadiyilani i ta'ci.	ה ו	µg/L		, ,	ł	:	1	1	1 9 2	:	1			• • •	:	ļ
	1,3-Dichloropropane	ഗ	µg/L	1	•	*	;	1	:	:	, , ,	:	* 4 1	:	•	:	
	2,2-Uchtopropane	ກເ	1/8r		••••	;	:	;	:	t 1 1	1 2 2		* * *	:	:	ļ	•
	2-Chiorololuene	ה מ	hg/L	;	:	;			:	;	Ŧ A Ŧ	;	:	• • •	;)) 1	5 1 1
	2-Phenylbutane	ις ι	μg/L		, , ,	;		:		:	;	ł	•	;	;	;	•
		n I	hg/ L	;	•	:	1	;	;	:	:	:	:	;	:	:	:
	4-Chlorotoluene	ກເ	hg/L	:	;) 1)	:	ł	;	:	\$:	÷	•	;	;	:
	eromobenzene	ດເ	hg/ L	:	:	2 2 8	:	:	;	:	;) 1 1	;	:	• • • •	÷	;
	Culoropromomentane	υż	hg/L	1	:	:	:	ļ	:	1 1 7	:	:	2	:	\$ • •	• • •	:
	Dihamathana	Ω Ω	hg/L	;	:	:	2 2 1	1 1	:	8 8 8	!	ł	•		;	••••	ł
	Diddamana Guanandhara	n y	р <u>8</u> / с	5 5 5	1 3 1	:		:	1	:	•	:	:	•	:	;	:
	Lichloromonolluoromethane	S n	hg/L	;	8 2 2	, ,	;	:	:	;	4 1 1	1 1 7	ļ	}	;	:	;
	isopropylicetizene	וח	р <u>в</u> / с	}	•	, ,	1	1	:	:		:	;	:	, , ,	:	
	n-bulylbenzene	ı م	/₿rt		}	;	:::::::::::::::::::::::::::::::::::::::	:	:	÷	:	:	*	ļ	:	•••	:::
	n-Propylbenzene	ŝ	hg/L	•	:	;	r 2	1 1 1	-		:	111	* * *	•	:	;;;;	;
	p-Xylene	ഹ	μg/L	:	ļ	ļ	1	:		:	3 3 8			••••	;	:	:
	tert-Butylbenzene	ц	µg/L	•		:		, , ,	:		; ; ;			1 2 1	:	•	
Noles	<u>8</u>																
0	Groundwater Effluent Limitations, Class GA Groundwater,	Groundwate	н,														
	NYSDEC TOGS 1.1.1, June 1998.																
(2)	Guidance value.																
I	Compound not analyzed.																
Q	Compounds identified in an analysis at the secondary dilution factor.	condary dilı	ition factor.														
ш	Reported value is outside the calibration range of the instrument.	e of the instr	ument.														
- 7	Detected concentration is estimated.																
N SN	renauvery identified compound. No standard.																
ΡB	Passive Bag sampling technique.																
R	Reported sample result is not usable.																
Ъ	Compound was not detected at or above the quantitation limit shown.	Juanfitation	limit shown.														
	Concentration exceeds criteria.																

Page 8 of 22

		ö	GROUNDWATER		ANALYTICAL RESULTS - VOLATILE ORGANIC COMPOUNDS FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK	CAL RESULTS - VOLATI FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK	LATILE OI JDY SITE RK	IGANIC C	OMFOUNE	S						
	S	Sample Location: Sample Date:		MW-4B 12/19/2002	MW-4B 12/19/2002	MW-4B 5/28/2003	MW-4B 11/4/2003	MW-4B 8/24/2005	MW-4B 12/5/2006	MW-4C 12/5/2006	MW-4C 12/5/2006	MW-5S 6/25/2002	5S 103	5S 003	MW-55 8/25/2005	MW-5S 12/5/2006
Сотроинд	Criteria ^(I)	Units	Dupucare		Dupticate	94	PB				Duplicate		BB	PB		
1,1,1,2-Tetrachloroethane	ъ	ug/L	:			:		1		3)) 3	;	1	
1,1,1-Frichloroethane	ъ Ъ	ug/L	2000 U	2000 U	2000 U	100 U	250 U	200 UI	100 U	1U	1 UI	10	11	111	111	11,
1,1,2,2-Tetrachioroethane	ŝ	J/gu	2000 U	2000 U	2000 U	100 U	250 U	200 UJ	100 U	10	1 UJ	10	10	10	10	10
1,1,2-Trichloroethane	P*4	µg/L	2000 U	2000 U	2000 U	100 U	250 U	200 UJ	100 U	1U	ıuj	1 U	1U	IU	1 U	10
1,1-Dichloroethane	5	µg/L	2000 U	2000 U	2000 U	100 U	250 U	200 UJ	100 U	١U	1 UJ	1 U	υ	1 U	10	10
1,1-Dichloroethene	ŝ	hg/L	2000 U	2000 U	2000 U	100 U	250 U	105 J	100 U	ΙU	1 UJ	1 U	1U	10	1U	1 U
1,2-Dichloroethane	0.6	µg/L	2000 U	2000 U	2000 U	100 U	250 U	200 UJ	100 U	1 U	1 UJ	1U	10	1 U	1 U	1U
1,2-Dichloropropane	1	µg/L	2000 U	2000 U	2000 U	100 U	250 U	200 UJ	100 U	10	1 UJ	Π	1 U	1U	1 U	1U
2-Butanone (MEK)	50 ⁽³⁾	hg/L	10000 U	10000 R	10000 R	500UR	1300UR	1000 UJ	500 U	5 UR	5 UR	5 U	SUR	SUR	5 U	5 UR
2-Hexanone	20 ⁽³⁾	hg/L	10000 U	10000 UJ	10000 UJ	500UR	1300UR	1000 UJ	500 U	5 U	5 UJ	5 U	SUR	SUR	5 U	5 U
4-Methyl-2-pentanone	NS	µg/L	10000 U	10000 U	10000 U	500UR	1300UR	1000 UJ	500 U	5 U	s uj	5 U	SUR	SUR	5 U	5 U
Acetone	50	μg/L	10000 U	10000 R	10000 R	500UR	1300UR	1000 UJ	500 U	5 U	5 UJ	3.8]	11R	7.5R	5 U	5 U
Benzene	1	hg/L	2000 U	2000 U	2000 U	100 U	250 U	200 UJ	100 U	1U	1 UJ	10	10	n	ΙŪ	١U
Bromodichloromethane	20	μg/L	2000 U	2000 U	2000 U	100 U	250 U	200 UJ	100 U	lυ	1 UJ	1 U	1U	ΙU	1U	١U
Bromoform	20	μg/L	2000 U	2000 U	2000 U	100 U	250 U	200 UJ	100 T	10	1 UJ	1U	1U	1 0	1 U	١U
Bromomethane	urs te	μg/L	2000 U	2000 U	2000 U	100 U	250 U	200 UJ	100 U	2	<u>الا</u>	10		1 U	10	IC
Carbon distuitae	n n	1/8rl	2000 0	2000 0	11 000C		250 U	200 UJ	100 U		<u>[]</u>		2:			10
Chlorobenzene	סו כ	н5/ L u2/L	2000 U	2000 U	2000 U	D 001	250 U	200 UI	1001		ío i) [] 	0 1
Chloroethane	3	hg/L	2000 U	2000 U	2000 U	100 L	250 U	200 UJ	100 U		Б.	10	2 1	2 1	10	21
Chloroform	7	hg/L	2000 U	2000 U	2000 U	100 U	250 U	200 UJ	100 U	10	1 U.	1U	10	1U	1U	10
Chloromethane	5	µg/L	2000 U	2000 U	2000 U	100 U	250 U	200 UJ	100 U	10	1 UJ	1 U	1 U	١U	ΙŪ	١U
cis-1,2-Dichloroethene	5	hg/L	29000	100000 D	100000 D	32000	31000	84500 J	64800	IU	1 UJ	1 U	1 U	Π	15.1	١U
cis-1,3-Dichloropropene	0.4	µg/L	2000 U	2000 U	2000 U	100 U	250 U	200 UJ	100 U	1U	5	1 U	1 U	1 U	١U	10
Dubromocutoromethane Filwilhanzene	y r	µg∕L uo∕I	2000 U	2000 U	2000 U	100 1	250 U	200 UJ	100 U	110	1 UJ				10	10
M+P-Xvlane	. 10	1/01				1001	25011						21	5 = -	2	2
Methylene chloride	ŝ		12001	4000 U	4000 U	1001	250 U	400 UI	200 U	2.U	2 UI	2 []	111		116	116
O-Xylene	ŝ	μg/L		:	:	100 U	250 U	Ì	:	1			10	10		
Styrene	5	hg/L	2000 U	2000 U	2000 U	100 U	250 U	200 UJ	100 U	1U	1 UJ	10	1U	1U	1 U	1U
Tetrachloroethene	ŝ	Hg/L	2000 U	2000 U	2000 U	100 U	250 U	200 UJ	100 U	1U	1 UJ	ΙŪ	1U	1U	10	1 U
Toluene	S	hg/L	2000 U	2000 U	2000 U	100 U	250 U	95.5 J	100 U	1U	1 UJ	1U	1 U	10	7.4	ιu
trans-1,2-Dichloroethene	S	µg/L	2000 U	2000 U	2000 U	100 U	250 U	345]	130	υI	1 UJ	10	1U	10	10	١U
trans-1,3-Dichloropropene	0.4	hg/L	2000 U	2000 U	2000 U	100 U	250 U	200 UJ	100 U	1 U	1 UJ	1U	1 U	10	1 U	1U
Trichloroethene	ŝ	hg/L	2600	680 J	750 J	100 L	250 U	5170 J	2130	1 C	1 UJ	ΙŪ	10	n	5.2 U	IU
Vinyl chloride	2	hg/L [42000	33000	35000	14000	9400	30500 J	8740	D I	1 UJ	1U	1 U	10	1.7	n
Xylene (total)	3	µg/L	6000 U	2000 U	2000 U		-	200 UJ	100 U	DI	1 UJ	3 U	;	2 2 7	0.5]	10

Page 9 of 22

CRA 035048 (2)

Revised: 03/21/07

• •	
3	
5	
1	
m	
.	
Ē	

GROUNDWATER ANALYTICAL RESULTS - VOLATILE ORGANIC COMPOUNDS FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

Compound Trichlorofluoronnethane (CFC-11) 1,1-Dichloropropene 1,2,3-Trichloropropene 1,2,3-Trichloropropane 1,2,4-Trinnethylbenzene 1,2,4-Trinnethylbenzene 1,2,2-Dibrono-3-chloropropane (DBCP) 1,3-Dichloropropane 1,3-Dichloropropane 2,2-Dibronoethane (EDB) 1,3-Dichloropropane 2,2-Dibronoethane 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloronomethane Bronobenzene Chloroblenzene Dichlorononothane Dichlorononothane Dichlorononothane	Samp Criteria So So So So So So So So So So So So So	Sample Location: MW-4B Sample Date: 6/25/2002 hg/L 6/25/2002 hg/L		MW-48 12/19/2002 	MW-4B 12/19/2002 Diplicate -	MW-4B 5/28/2003 PB 	MW-48 11/4/2003 PB PB PB PB PB PB PB PB PB PB PB PB PB	MW-48 8/24/2005 	MW-48 12/5/2006 	MW-4C 12/5/2006 	MW-4C Dujlicate Dujlicate	MW-5S 6/25/2002 6/25/2000 6/25/2000 6/25/20002 6/25/2002 6/25/2002 6/25/2002 6/25/2002 6/25/2002 6/25/2002 6/25/2002 6/25/2002 6/25/2002 6/25/2002 6/25/2002 6/25/2002 6/25/2000 6/2000 6/2000 6/2000 6/20000000000	<i>MW-5S</i> 5/28/2003 PB 	MW-5S 11/4/2003 PB 	MW-5S 8/25/2005 7 7 7 7 7 7 7 7	
n-Butylbenzene	o vo	- 1/8/L		1	1	1		* * *	;	•					•	
n-Propylbenzene	പ	1/84	;	1	1	-	1	1 8 1	***	:	3 1 1		}	-		
p-Xylene	n no	н6/г ug/L	{	;	;		:								;	
p-Ayiene	n	µ8/ г		:			:					•			;;	

Notes: ε

Groundwater Effluent Limitations, Class GA Groundwater, NYSDEC TOGS 1.1.1, June 1998.

Guidance value. 8

Compound not analyzed.

Compounds identified in an analysis at the secondary dilution factor.

Reported value is outside the calibration range of the instrument.

Detected concentration is estimated. Tentatively identified compound.

No standard.

Passive Bag sampling technique. Reported sampte result is not usable.

Compound was not detected at or above the quantitation limit shown. Concentration exceeds criteria.

CRA 035048 (2)

Page 10 of 22

						TABLE 3.1	1							Pa	Page 11 of 22	
		·	GROUND	WATER AN	ALYTICAL FE OLI C	GROUNDWATER ANALYTICAL RESULTS - VOLATILE ORGANIC COMPOUNDS FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK	VOLATILE (TUDY AL SITE YORK	DRGANIC (COMPOUN	DS						
	Sar	Sample Location: Sample Date:	MW-5B 12/6/2006	MW-6S 6/26/2002	MW-6S 5/28/2003 PR-Ton 1	MW-6S 5/28/2003 DR-Rotton	MW-6S 11/4/2003 DB R04000	MW-6S 8/24/2005	MW-6S 12/6/2006	MW-6B 12/6/2006	MW-7S 6/24/2002	MW-7S 12/18/2002	7S 103	MW-7S 5/27/2003	22 103	MW-7S 8/26/2005
Сотроинд	Criteria ⁽¹⁾	Units					110310a-a-						g.1	P-b-Dipticate	78	
1,1,1,2-Tetrachioroethane	5	μg/L		4		:	2 9 6	ł		1 1 1	-	1 1 1		:	,,	••••
1,1,1-Trichloroethane	ъ	µg/L	1U	1000 U	5 U	100 U	5 U	100 UJ	500 UJ	100 U	1U	50 U	1 U	10	1 U	1U
1,1,2,2-Tetrachloroethane	۰ £	μg/L	10	1000 U	50	100 U	5 U	100 UJ	500 UJ	100 U	1 U	50 U	10	1 U	1 U	1U
L, L, Z, Z, L FICHIOFOEHAIRE	- 4	hg/L		10001	ວ 1 ຄູ່ມ	100 U	5 1		500 UJ	100 U		20 C	10	0	<u>-</u>	
1.1-Dichloroethene	מור	н8/ г. 110-/[.		10001		1001	200	1001			1 01	20 D		2 5		01
1,2-Dichloroethane	0.6	19, 16, L	10	1000 U	50	1001		1001	 500 UT	11001	111	201	11	2 =	11	2 1
1,2-Dichloropropane	1	μg/L	10	1000 U	5 U	100 U	5 U	100 U	500 UJ	100 U	10	20 C	20	10	2 I C	22
2-Butanone (MEK)	50 ⁽²⁾	hg/L	5 U	5000 U	25UR	500UR	25UR	500 UJ	2500 UR	500 UR	5 R	250 R	SUR	SUR	5UR	20
2-Hexanone	50 ⁽²⁾	hg/L	5 U	5000 U	25UR	500UR	25UR	500 UJ	2500 UJ	500 U	5 U	250 UJ	SUR	SUR	SUR	5U
4-Methyl-2-pentanone	NS	µg/L	5 U	1000 J	25UR	500UR	25UR	500 UJ	2500 UJ	500 U	5 U	250 U	SUR	SUR	SUR	5U
Acetone	50	µg/L	4.7]	5000 U	25UR	500UR	25UR	500 UJ	2500 UJ	500 U	5 R	250 R	11R	13R	7.8R	5U
Benzene	* -4	µg/L	١U	1000 U	5 U	100 U	5 U	100 UJ	500 UJ	100 U	10	50 U	1 U	1U	1U	1 U
Bronnodichloronnethane	205	μg/L	10	1000 U	250	100 U	50	100 UJ	500 UJ	100 U	D	20 0	10	1 U	10	1U
Bromoton	50 1	р <u>в</u> /L		1000 U	50	100 U	50	100 UJ	500 UJ	100 U	10	20 C 20 C	<u>1</u>	<u>n</u> :	<u>1</u>	10
Carbon disulfide	רט ר	нg/L	2 5	1000 U	2 2 2	100 U	2 U S	10 001	500 UI	100 UI	10	20 C 20 C	10	2 0		n :::
Carbon tetrachloride	5	hg/L	10	1000 U	5 U	100 U	5 U	100 UJ	500 UJ	100 U	10	50 U	10	10	10	10
Chlorobenzene	S	hg/L	10	1000 U	5 U	100 U	5 U	100 UJ	500 UJ	100 U	1U	50 U	1 U	1 U	1 U	1 U
Chloroethane	ις Ω	ng/L	10	1000 U	5 U	100 U	5 U	100 UJ	500 UJ	100 U	10	50 U	10	10	10	ΠŪ
Chloroidrii) Chloroimethana	<i>ر</i> ۲	µ8/L יים/1		10001	0 C L L L	1001	2 2 2	100 UJ	500 UJ	100 U	10	20 C	10	5	5	<u> </u>
cis-1,2-Dichtoroethene	ഹം	μg/L	10	80000 D	1500	9500	480	33100 J	186000 J	50400	1500 D	2100 D	140	130	140	180
cis-1,3-Dichloropropene	0.4	μg/L	10	1000 U	5 U	100 U	5U	100 UJ	500 UJ	100 U	10	50 U	10	10	10	10
Dibromochloromethane	50	μg/L	1	1000 U	5 U	100 U	50	100 UJ	500 UJ	100 U	1U	50 U	1U	ıυ	1U	1 U
Ethylbenzene	ις ι	μg/L ,,	10	10001	20		20	100 UJ	200 N]	100 U	10	50 U		1U	1 C	10
Mathulane chioride Mathulane chioride	n u	hg/L	110		2.0		81	11 UUL	10001		1 1 2	11.001			10	
O-Xvlene	יש נ	н5/ с 110/1			5 5	1001	0 C			7 0.07	2	0.001				0 7
Slyrene	, nu	ue/L	10	1000 U	511	1001	511	10011	500111	1001	111	2011	2 =			
Tetrachloroethene	ານ	ng/L		1000 U	50	100 U	5 U	100 UI	500 UI	1001	2.1	50 []	111			2 =
Toluene	5	ng/L	10	9800	26	670	22	4180	24900 J	100 U	1C	50 U	1 U	1 U	10	10
trans-1,2-Dichloroethene	5	hg/L	10	1000 U	5 U	100 U	5 U	65.5]	478 J	119	14	50 U	١U	U	1U	0.60]
trans-1,3-Dichloropropene	0,4	µg∕L		1000 U	5 U	100 U	5U	100 UJ	500 Ú	100 U	10	50 U	1 U	IU	IU	1U
Trichloroethene	ß	hg/L	2	60 J	5 U	960 J	50	100 UJ	500 U	95.5 J	3.7	50 U	ן נ ו	10	2	12.5 U
Vinyl chloride	с I	µg/L		38000	650	4800	170	13200 J	73200 J	1750	81 D	220	2.0	2.1	1.5	66.4
Xyiene (total)	ŋ	hg/L	DI	3000 U	-	:	;	103 J	854 J	100 U	3 U	50 U	3 3 1	:	, , ,	UI

Ξ.
ы Ш
3
8
È

GROUNDWATER ANALYTICAL RESULTS - VOLATILE ORGANIC COMPOUNDS FEASIBILITY STUDY OLD ERIE CANAL SITE

Notes: ε

Groundwater Effluent Limitations, Class GA Groundwater, NYSDEC TOGS 1.1.1, June 1998.

Guidance value. 8

Compound not analyzed.

Compounds identified in an analysis at the secondary dilution factor.

Reported value is outside the calibration range of the instrument. Detected concentration is estimated.

Tentatively identified compound.

No standard.

LOB Z SS SS R

Passive Bag sampling technique. Reported sample result is not usable.

Compound was not detected at or above the quantitation limit shown. Concentration exceeds criteria. E

CRA 035048 (2)

Page 12 of 22

			CIVICAC	117 TED 4.1						ļ					0	
						LAL NESOLIS - YOLALI FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK	VOLATILE STUDY JAL SITE 'YORK	OKGANIC	COMINUM	S						
	Š	Sample Location: MW-75 Sample Date: 12/4/2006	MW-75 12/4/2006	MW-7B 6/25/2002	MW-7B 5/27/2003 PR	MW-7B 11/4/2003 8 DB	MW-7B 8/26/2005	MW-7B 12/4/2006 (MW-8S 6/24/2002 5	MW-85 5/27/2003	MW-85 5/27/2003	MW-85 8/3/2004	MW-85 11/30/2006	MW-95 612412002	MW-9S 12/19/2002	MW-95 5/27/2003
Сотроинд	Criteria ⁽¹⁾	Units			<u>a</u>	0				94						Bd
1,1,1,2-Tetrachloroethane	ស	ug/L	,				4 1 1	1	6 6 6	1	,	:	1			1
1,1,1-Trichloroethane	ы Б	ng/L	ΠU	ΙŪ	10	10	10	1U	110	111	111	111			· · ·	; =
1,1,2,2-Tetrachloroethane	ъ	µg/L	1U	10	1U	IU	1U	10	10	10	10	10		211		2 =
1,1,2-Trichloroethane	1	ng/L	1 U	1U	1U	1U	1U	1U	10	1U	1U	1 U	10	10	10	10
1,1-Dichloroethane	ຍ	hg/L	1U	1U	1U	1 U	1U	1 U	1U	1U	1U	1U	1 U	1U	10	10
1,1+Dichloroethene	ŝ	μg/L	0.62 J	1U	1 U	1U	ιU	10	10	1U	1 U	1U	1 U	10	ות	10
1,2-Dichloroethane	0.6	µg/L	1 U	1U	1U	1U	1U	1U	1 U	10	10	1U	1U	lU	ΩT	10
1,2-Dichloropropane	÷	μg/L	1U	10	1U	1 U	1U	1 U	1 U	1U	10	ΠŪ	1 U	10	10	
2-Butanone (MEK)	50 ⁽²⁾	Hg/L	5 U	5 R	SUR	SUR	5 U	5 U	5 R	SUR	SUR	5 U	5 UR	5 R	5 R	SUR
2-Hexanone	50 ⁽²⁾	hg/L	5 U	5 U	SUR	SUR	5 U	5 U	5 U	SUR	SUR	5 U	5 U	5U	5 UI	SUR
4-Methyl-2-pentanone	SN	hg/L	5 U	5 U	SUR	SUR	5 U	5 U	5 U	SUR	SUR	5 U	5 U	5 U	505	5UR
Acetone	50	µg/L	5 U	0.75]	9.3R	6.2R	5 U	5 U	5 R	11R	11R	1U	5 UR	5 R	5 R	6.2R
Benzene	1	hg/L	1 U	1U	1 U	1U	1U	10	1U	1U	1U	1U	1U	1 U	1U	1U
Bromodichloromethane	50	hg/L	1 U	1U	1U	1U	1U	1U	1U	lU	1U	1U	10	ΙU	١U	1U
Bromoform	50	µg/L	1U	1U	10	1U	10	1U	10	1U	1U	1U	1 U	10	1U	1U
Bromonethane	υ, I	hg/L	1U	1 UJ	1U	1U	1U	1U	1 UJ	10	ΙU	IU	1U	10	1U	J.U
Carbon disulfide	LC) I	hg/L	1 UJ	IU	IU	υı	ΙŪ	10	1U	1 U	10	1 U	1 U	1 U	1U	10
Carbon tetrachloride	տ, ւ	hg/L		10	10	10	10	1U	10	10	10	n	1 U	ΙŪ	1 U	1 U
Citionopenzene	הו	hg/L		- I C		01	10	10	10	10	10	10	1 U	ΙŪ	1 U	1 U
Chlorofenane	n r	нg/Ł		10	10		10	10	10	10	10	10	<u>;</u>	10	: - -	D I
Chloromethane	. u	д <u>6</u> / с		111	2 1	2 2	- I - I									2:
cis-1,2-Dichloroethene	າທ		414 [10	3.0	0 T	1 U 0.581	را ا م ا		01		n ::	1 U 0 55 1		10
cis-1,3-Dichloropropene	0.4	μg/L	10	10	10	10	10	10	10		10	10	10	111		
Dibromochloromethane	50	μg/L	1U	1U	1U	1U	1U	1U	10	10	1 U	1U	1U	10	10	
Ethylbenzene	ß	µg/L	1U	10	1U	1U	1U	1U	10	10	1U	1U	1 U	ιU	1 U	10
M+P-Xylene	ŝ	µg/L	:	:	IU	1U	•	1	4 4 1	1 U	1U	10	ł	;	:	٦I
Methylene chloride	ß	µg/L	2 U	2 U	10	1U	2 U	2 U	2 U	1U	1 U	n	2 U	2 U	2 U	1U
O-Xylene	2	J/Brl	!	1	10	10		:		10	1 U	ΠŪ	;	, ,		1U
Styrene	N.	hg/L	10	1U	1U	ΙŪ	1U	1U	1U	10	10	10	10	10	1 U	1U
Tetrachloroethene	S	µg/L	1U	1U	1U	10	1U	1U	10	1 U	1U	10	١U	1U	1U	1 U
Toluene	ហ	µg/L	1 U	1U	1U	1 U	1U	10	1U	1U	0.28]	0.28 J	10	1 U	1 U	1U
trans-1,2-Dichloroethene	Ś	μg/L	2.5	1U	1U	ΠŪ	лU	1U	1U	10	1 U	1U	1 U	ΙU	1 U	Π
traus-1,3-Dichloropropene	0.4	μg/L	1 U	1U	1U	10	1U	1U	1U	10	1 U	1U	1U	1 U	IU	1U
Trichloroethene	. م	hg/L	0.46)	10	4.7	1.0	3.5 U	0.35]	10	10	1 U	1U	1U	1 U	١U	IJ
Vinyl chloride	0 1	hg/L	12.4	10	2NJ	0.68]	10	1U	10	ΙŪ	1U	10	1U	1U	1 U	10
Xylene (total)	a	µg/L	IU	3 U	-	1	1 C	10	3 U	 	1	10	10	3 U	1 U	;

3.1
Ë,
Ы
₽

Page 14 of 22

GROUNDWATER ANALYTICAL RESULTS - VOLATILE ORGANIC COMPOUNDS FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

Notes: ε

Groundwater Effluent Limitations, Class GA Groundwater, NYSDEC TOGS 1.1.1, June 1998.

Guidance value.

Compound not analyzed. 3

Compounds identified in an analysis at the secondary dilution factor.

Reported value is outside the calibration range of the instrument. Ч С в _ х S B

Detected concentration is estimated.

Tentatively identified compound.

No standard.

≃⊃

Passive Bag sampling technique. Reported sample result is not usable. Compound was not detected at or above the quantitation limit shown. Concentration exceeds criteria.

-
ŝ
щ
рЩ,
<
H

Page 15 of 22

GROUNDWATER ANALYTICAL RESULTS - VOLATILE ORGANIC COMPOUNDS FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

	Sa	Sample Location: MW-9S	S6-MW	S6-MM	S8-MIM	56-MW	86-MW	MW-10B	MW-10B	MW-10B	MW-10B	SII-WW	SII-MW	SII-MM	MW-11B	MW-11B
		Sample Date: 8/3/2004		11/4/2003 PB	8/24/2005	8/24/2005	11/30/2006	12/17/2002	5/27/2003 PR	11/4/2003 PR	11/30/2006	12/17/2002		11/30/1006	12/17/2002	5/27/2003
Compound	Criteria ⁽¹⁾	Units							•	1			2			9.1
1,1,1,2-Tetrachloroethane	ъ	µg/L	Ì) 3 3	I	3 5 8	;	1		1	:	,	1	:	1	1 2 7
1,1,1-Trichloroethane	5	µg/L	1U	1U	1 UJ	ΙŪ	1U	1 U	1U	1U	1U	10	1U	1 U	1 U	1 U
1,1,2,2-Tetrachioroethane	ъ	μg/L	ΙŪ	1U	1 UJ	١U	1U	1U	1 U	1U	1 U	1U	ιU	10	1U	10
1,1,2+Trichloroethane	ţneţ	µg/L	1 U	1U	1 UJ	10	1U	1U	1 U	ΠŪ	1 U	1U	U I	10	10	10
1,1-Dichloroethane	ŝ	hg/L	1U	1U	1 UJ	1U	1 U	1 U	1U	10	1U	1U	Π	1 U	1 U	1 U
1,1-Dichloroethene	ŝ	µg∕L	10	10	1 UJ	1U	10	IU	JU	Π	1 U	10	10	1U	10	10
1,2-Dichloroethane	0.6	µg/L	ΠΩ	1U	1 UJ	1U	1U	1 U	1U	1 U	1U	1U	1U	1U	1 U	10
1,2-Dichloropropane	н ^н	µg/L	ΠŪ	10	1 UJ	1U	1U	1U	1U	1 U	1U	10	1U	1U	ΙŪ	1U
2-Butanone (MEK)	50 ⁽²⁾	μg/L	SUR	SUR	s UJ	5U	5 UR	5 R	SUR	SUR	5 UR	5 R	SUR	5 UR	5 R	SUR
2-Hexanone	50 ⁽²⁾	µg/L	SUR	SUR	5 UJ	5U	5 U	s uj	SUR	SUR	5 U	5 UJ	SUR	5 U	suj	SUR
4-Methyl-2-pentanone	NS	µg/L	SUR	SUR	5 UJ	5U	5 U	5 U	SUR	SUR	5 U	5 U	SUR	5 U	5 U	SUR
Acetone	50	µg/L	3.7]	9.1R	s uj	5U	5 UR	5 R	10R	7.6R	5 UR	5 R	7.1R	5 UR	5 R	9.1R
Benzene	1	J/Brt	1U	IU	1 UJ	1U	IU	1U	1 U	lυ	1U	1U	ΙU	10	1 U	10
Bromodichloromethane	50	µg/L	ΠŪ	10	1 UJ	1U	10	10	ιu	10	10	1 U	10	10	1U	1 U
Bromoform	50	hg/L	n	ΙŪ	1 UJ	1U	10	IU		10	10	1U	n	IU	10	10
Bromomethane	ŝ	µg/L	n	10	1 UJ	10	1 U	10	1 U	1U	1U	10	ΠŪ	ιu	10	1U
Carbon disulfide	S	hg/L	10	10	1 UJ	10	0.55 J	10	1 U	1 U	1U	ΠŪ	10	1U	10	1 U
Carbon tetrachloride	n, I	μg/L	10	10	1 UJ	10	ΠŪ	10	10	1U	1U	10	10	1U	лU	ΙŪ
Chlorobenzene	ъ	hg/L	10	10	1 UJ	10	10	10	10	10	1U	0.29]	1U	ΙU	1U	1U
Chloroethane	υÇ,	hg/L	10	1U	1 UJ	1U	1U	10	1U	1U	1U	10	10	1U	1 U	1 U
Chloroform	4	µg/L	10	10	1 UJ	10	1 U	1U	1 U	1U	1U	10	1U	1U	10	1U
Chloromethane	5	hg/L	1U	1U	iuj	lυ	10	1U	lυ	1 U	1U	5.9 U	1U	1U	10	1 U
cis-1,2-Dichloroethene	S	hg/L	1U	10	1.9 J	0.83 J	10	1 U	1U	1U	1U	1U	10	ΙU	10	1U
cis-1,3-Dichloropropene	0.4	hg/L	10	10	1 UJ	1 U	10	IU	1 U	ΙŪ	10	ПU	ΙŪ	1 U	1U	10
Ulbromochloromethane	50	ng∕L		10	10	1 U	10	10	10	1U	10	IU	1 U	1U	10	1U
Eulylbenzene	ית	µg/L			1 UJ	10	10	10	10	10	10	10	10	10	1 U	١U
M+I'-Xylene	n	Hg/L	10	10		:	•	:	10	10	:	, , ,	10	2	:	10
Methylene chloride	ŝ	μg/L	10	10	2 UJ	2 U	2 U	2 U	10	10	2 U	2 U	1U	2 U	2 U	лU
O-Xylene	ŋ	μg/L	1 U	10	!	1 1 1			10	ΙŪ	* • •		10	,	:	ЛÜ
Styrene	5	hg/L	1U	1U	1 UJ	10	ιU	1 U	1U	1U	10	1U	ΠC	1U	ΠŪ	1 U
Tetrachloroethene	ŝ	hg/L	1 U	1U	1 UJ	1 U	10	1U	1U	ıυ	1U	1U	ΙŬ	1U	1 U	1 U
Toluene	ß	µg/L	0.28 J	IU	1 UJ	1U	10	1U	1U	1 U	1 U	1 U	1U	1U	ΙU	ΠU
trans-1,2-Dichloroethene	S	hg/L	10	ΙŪ	ıuj	1U	10	1U	1U	10	1U	1 U	1U	1U	1U	١U
trans-1,3-Dichloropropene	0.4	hg/L	1 U	ΠŪ	1 UJ	1U	ıυ	10	10	10	1 U	1U	IU	10	1 U	1 U
Trichloroethene	S	hg/L	ΙŪ	1U	8.5 UJ	22 5 U	1U	10	1 U	1U	10	1 U	١U	1 U	1U	10
Vinyl chloride	2	hg/L	10	10	1.0 UJ	1 U	10	10	10	1 U	1 U	10	IU	10	10	1U
Xylene (total)	ю	µg/L	0.26 J	3 3 5	1 UJ	ΠŪ	1U	10	1 1	;	10	١U	:	10	11	••••

Revised: 03/21/07

-	
t n	
щ	
BL	
7	
È	

GROUNDWATER ANALYTICAL RESULTS - VOLATILE ORGANIC COMPOUNDS FEASIBILITY STUDY OLD ENIE CANAL SITE CLYDE, NEW YORK

Sample L. Samp Contround Criteria ⁽¹⁾ U	(-11) 5	<u>ى</u>	ເເ						ĸ		ю									lsopropylbenzene 5 µ		
Sample Location: MW-9S Sample Date: 8/3/2004 W Units	ue/L	μg/L	μg/L	μg/L	μg/L	µg/L	µg/L	µg/L	hg/L	hg/L	hg/L	hg/L	ng/L	μg/L	µg/L	нg/L	нg/L	µg/L	µg/L	µg/L	µg/L	110 /1
	1		ł	:	, , ,	:	:				:	1	:	:	:			:	:	:		
MW-9S 11/4/2003 PB	1		8 1 1	:	:		: : :	:	;;;;			:			:	1 1 1	, , ,	* * 1				1
MW-85 8/24/2005	5 8 8	:	1 7 7	;	:	•	•		;	;	:			•		1) 1			4 6 8		2 8 9	1
MW-95 8/24/2005	1		;	:		1	;;;		:	:	:	:	:	;;;	:	:	:	;	;	• • •	;	
MW-9S 11/30/2006		:	:	:	1 3 7	!	1	:	1 1 1	* * *		: : ;	1 1			9 8 8	:	;	;	:	1	4
MW-10B 12/17/2002	1		; ; ;		ł	: : :	:	:	1	;	1	;	1	:		1 1 1	, , ,	• • •	}	ļ	1	1
MW-10B 5/27/2003 PB	3		,		;		1	;	ł	;		;	:	4 4 4	* * *	1 1 1	;	1	;	í	3	1
MW-10B 11/4/2003 PB		, , ,			, , ,		:	:	4 1 1		1		, , ,	:	3	,	-		;			
MW-10B 11/30/2006		;	:	:	:	•••	:	;	1 9 9	3 9 1	3 9 9	2 8 7	;	;		2 8 8	}	1			:	
MW-11S 12/17/2002	•	:	;		:	;	, , , , ,	• • •	;	;	:	;	;	ł		;	•	1	;	;		
MW-11S 5/27/2003 PB		;;	:)	•	:	:	:	;		::	ļ		4 5 1		:		4 7 7		1		
3001/06/11		:	;	;	;	, , ,			* * *	* * *	7 6 9	3 1 1		::) ; ;	1	;	, ,	• • • •	•	:	
MW-11B 12/17/2002	;	3 6 1	1	* * *	:	1	;		:	:	:	:	:	:	;;;		3 9 1	1	:		:	
MW-11B 5/27/2003 PB			2 1 3	1	;	3 1 1	+ 	;	;	1 9 1		: : :	, ,	;;	, ,	ł	:	:	:		;	

Notes: Ξ

Groundwater Effluent Limitations, Class GA Groundwater,

; ;

ł

* * *

ł

ł

ł

1

÷

ł

ł

;

ł

:

ł

hg/L

ŝ

tert-Butylbenzene

NYSDEC TOGS 1.1.1, June 1998. Guidance value.

8

Compound not analyzed.

Compounds identified in an analysis at the secondary dilution factor.

Reported value is outside the calibration range of the instrument.

Detected concentration is estimated. Tentatively identified compound.

No standard. L D H L Z SS H D I

Passive Bag sampling technique. Reported sample result is not usable.

Compound was not detected at or above the quantitation limit shown. Concentration exceeds criteria.

CRA 035048 (2)

Page 16 of 22

GROUNDWATER ANALYTICAL RESULT'S - VOLATILE ORGANIC COMPOUNDS FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

	Sau	Sample Location: MW-11B Sample Date: 11/30/2006	MW-11B 11/30/2006	MW-12S 12/18/2002	MW-12S 5/27/2003	MW-12S 11/30/2006	MW-12B 12/18/2002	MW-12B 5/27/2003	MW-12B 11/30/1006	MW-13S 11/30/2006
Сонроинд	Criteria ⁽¹⁾	Units			94 1			84		
1,1,1,2-Tetrachioroethane	ŝ	μg/L		!)) 1	4 8 9	;	,	8 8 1	
1,1,1-Trichloroethane	ιŋ	hg/L	1 U	5 U	10	1U	1U	1U	10	40 U
1,1,2,2-Tetrachloroethane	ю	hg/L	1U	5 U	1 U	1U	1U	1U	1U	40 U
1,1,2-Trichloroethane	1	hg/L	1U	5 U	1U	1U	1 U	1U	1U	40 U
1,1-Dichloroethane	с,	µg∕L	1 U	5 U	1U	1 U	1U	1 U	1 U	40 U
1,1-Dichloroethene	S	µg/L	1U	5 U	10	1U	1U	10	10	40 U
1,2-Dichloroethane	0.6	µg/L	1U	5 U	10	1U	1U	10	10	40 Ú
1,2-Dichloropropane	1	µg/L	1U	5 U	1U	1 U	10	10	1 U	40 U
2-Butanone (MEK)	50 ⁽²⁾	hg/L	5 UR	25 R	SUR	5 UR	5 R	SUR	5 UR	200 UR
2-Hexanone	50 ⁽²⁾	µg/L	5 U	25 UJ	SUR	5 U	5 UJ	SUR	5 U	200 U
4-Metityl-2-pentanone	NS	µg/L	5 U	25 U	SUR	5 U	5 U	SUR	5 U	200 U
Acetone	50	µg/L	5 UR	510 J	8.8R	5 UR	5 R	12R	5 U.R	200 U.R
Benzene	1	μg/L	10	5 U	1U	1 U	1U	1 U	1U	40 U
Bromodichloromethane	50	μg/L	1U	5 U	1U	1U	1U	1U	10	40 U
Bromoform	50	hg/L	1U	5 U	1U	1U	1U	1U	10	40 U
Bromomethane	ŝ	hg/L	1U	5 U	ıυ	1U	10	10	1 U	40 U
Carbon disulfide	5	µg/L	1U	5 U	IU	D	ΙŪ	10	1.0	40 U
Carbon tetrachloride	5	hg/L	1U	5 U	10	10	1 U	10	1U	40 U
Chlorobenzene	5	µg/L	10	5 U	10	10	10	1 U	1 U	40 U
Chioroethane	ы С	μg/L	10	5 U	1 U	1U	10	1 U	10	40 U
Chlorolorin	2	µg/L	10	5 U	10	1U	1U	1 U	1 U	40 U
Chloromethane	ι, Ω	hg/L	10	7.7 U	1U	1U	1U	1U	10	40 U
cis-1,2-Dichloroethene	л,	µg/L	1 U	5 U	1U	1 U	1U	1 U	10	6870
cis-1,3-Dichloropropene	0.4	J/Bri	1U	5 U	ΠŪ	1 U	١U	lυ	1 U	40 U
Libromochloromethane	50	ng/L	10	50	10	10	<u>1</u>	10	10	40 U
M+P-Xvlene	5 Ľ	н5/ L 110 / Г		2	- I - I	⊃ ≓	01	2 2	1 1	40 0
Methylene chloride	י ני		116	10.11	2 1	116		2 1		1100
O-Xylene	υ	ne/L	, 9 , 9		10			2 ==	> ¦	
Styrene	ស	hg/L	1 U	5 U	1U	1U	1U	10	1 U	40 []
Tetrachloroethene	ъ	hg/L	1U	5 U	1U	JU	1U	1U	1U	40 U
Toluene	5	µg/L	1U	5 U	ΙU	1U	0.23]	1U	1 U	40 U
trans-1,2-Dichloroethene	ъ	µg/L	1U	5 U	1U	1U	1U	1U	υι	40 U
trans-1,3-Dichloropropene	0.4	μg/L	1 U	5 U	1 U	1U	1 U	1U	10	40 U
Trichloroethene	ŝ	µg/L	10	5 U	ΙŪ	1 U	1U	1U	10	845
Vinyl chloride	2	hg/L	10	5 U	1U	1U	1 U	10		348
Xylene (total)	ŝ	hg/L	10	5 U	:	1 U	1U	: ;	10	40 U

Page 17 of 22

GROUNDWATER ANALYTICAL RESULTS - VOLATILE ORGANIC COMPOUNDS FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

	ο. Ο	Sample Location: MW-11B Sample Date: 11/30/2006	MW-11B 11/30/2006	MW-12S 12/18/2002	MW-12S 5/27/2003 PR	MW-12S 11/30/2006	MW-12B 12/18/2002	MW-12B 5/27/2003 DB	MW-12B 11/30/1006	MW-13S 11/30/2006
Сотроний	Criteria ⁽¹⁾	Units			1			2		
Trichlorofluoromethane (CFC-11)	٤Ū	hg/L	1		;		:	}	1	;
1,1-Dichloropropene	ŝ	hg/L		:	į	:	1 1 2	:	* * *	:
1,2,3-Trichlorobenzene	с Э	hg/L	;	1 1 1	;	•	:	, , ,	;	
1,2,3-Trichloropropane	0.04	hg/L		;	ļ	1 1 1	;		i	
1,2,4-Trimethylbenzene	5	hg/L	;		;	1			;	•
1,2-Dibromo-3-chloropropane (DBCP)	0.04	Hg/L		1	•	1				
1,2-Dibromoethane (EDB)	SN	Hg/L	8 8 8 8	-	* * *		•	:	:	
1,3,5-Trimethylbenzene	ம	Hg/L		ł	ļ		:			
1,3-Dichloropropane	ŝ	hg/L		4 2 3	1	*	:	- 	;	
2,2-Dichloropropane	ъ Э	hg/L	;	:	ļ		:	• • •	;	1
2-Chlorotoluene	ŝ	J/Bri	:	•	;		:	:		
2-Phenylbutane	ŝ	J/B(:		:		:	:		:
3-Chlorotolueue	ъ	hg/L	: : :	2 2 4	:	2 7 1			;;	:
4-Chiorotoluene	ъ	hg/L	: : :	•	;		;;;	:	, , ,	:
Bromobenzene	ۍ	hg/L		1 1 1	;	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7 9 1		4 9 1	;
Chlorobromomethane	ß	hg/L	:	;	:	{	5 5 1	, , ,	:	1 3 1
Cymene	NS	hg/L	;	:	* * *	ļ	;	;	;	6 6 7
Dibromomethane	ы	μg/L	:		:		1 4 1	:	1	8 8 9
Dichloromonofluoromethane	SN	hg/L	•		1	1	1	*	1	1 1 1
Isopropylbenzene	ю	µg/L	2 1 5	:	:		;	; ; ;		1
n-Butylbenzene	5	hg/L	{	• • •	:	:	1	:	:	
n-Propylbenzene	ъ	hg/L	1	:	1. 1. 1.	÷	;	;	:	\$ + +
p-Xylene	ß	µg/L			:	:::		:	3	:
tert-Bulylbenzene	ŝ	ng/L	•	• •	;	:	;	:		,

.

Notes:

Groundwater Effluent Limitations, Class GA Groundwater, NYSDEC TOGS 1.1.1, June 1998. ε

Guidance value. 0

Compound not analyzed.

Compounds identified in an analysis at the secondary dilution factor.

Reported value is outside the calibration range of the instrument. L D H L N SS R A

Detected concentration is estimated.

Tentatively identified compound. No standard.

Passive Bag sampling technique.

Reported sample result is not usable. Compound was not detected at or above the quantitation limit shown. Concentration exceeds criteria. Э

GROUNDWATER ANALYTICAL RESULTS - VOLATILE ORGANIC COMPOUNDS FEASIBILITY STUDY OLD ERLE CANAL SITE CLYDE, NEW YORK

Sample Location: MW-14S MW-15S MW-16S MW-16B TMW-1 TMW-2 GP-1 GP-1A Sample Date: 12/6/2006 12/6/2006 12/6/2006 11/28/2006 11/29/2006 4/26/2002 8/2/2004

Compound	Criteria ^(I)	Units								
1,1,1,2-Tetrachioroetitane	£	μg/L	1		:	•	1	-	5 U	\$ 3 7
1,1,1-Trichloroethane	ம	hg/L	50 U	25 U	ΙŪ	1 U	1 U	1 U	5 U	1 U
1,1,2,2-Tetrachloroethane	ы	µg/L	50 U	25 U	1U	1U	1U	1U	5 U	1 U
1,1,2-Trichloroethane	-1	µg/L	50 U	25 U	1 U	1 U	1U	1U	5 U	1 U
1,1-Dichloroethane	a	hg/L	50 U	25 U	1U	1 U	1U	1U	5 U	1 U
1,1-Dichloroethene	'n	µg/L	51.8	13.7 J	1U	1U	1 U	1U	5 U	1U
1,2-Dichloroethane	9.0	µg/L	50 U	25 U	1U	10	ΠŪ	1 U	5 U	1U
1,2-Dichloropropane	1	µg/L	50 U	25 U	1U	1U	10	1 U	5 U	10
2-Butanone (MEK)	50 ⁸⁾	hg/L	250 UR	130 U	5 UR	5 UR	5 UR	5 UR		5 U
2-Hexanone	50 ⁽²⁾	hg/L	250 U	130 U	5 U	5 U	5 U	5 U	:	5]
4-Methyl-2-pentanone	NS	hg/L	250 U	130 U	sи	5 U	5 U	5 U	:	5]
Acetone	50	hg/L	250 U	130 U	5 U	5 U	5 UR	5 UR	:	5R
Benzene	1	hg/L	50 U	25 U	1 U	10	10	1 U	5 U	ΙU
Bromodichloromethane	50	hg/L	50 U	25 U	1U	1U	1 U	10	5 U	1 U
Bromoform	50	µg/L	50 U	25 U	1U	Π	1 U	1 U	50	1 U
Bromomethane	ഗ	µg/L	50 U	25 U	1U	10	1U	1U	5 U	1 U
Carbon disulfide	ம்	hg/L	50 U	25 U	1 UJ	1 UJ	1U	1U	1	1 U
Carbon tetrachloride	ഹ	hg/L	50 U	25 U	1U	1U	10	10	5 U	Π
Chlorobenzene	ഹ	hg/L	50 U	25 U	10	1U	1U	1U	5 U	Π
Chloroethane	ю	hg/L	50 U	25 U	1 U	10	1U	10	5 U	1 U
Chloroform	7	µg/L	50 U	25 U	10	1U	10	1U	5 U	1 U
Chloromethane	വ	μg/L	50 U	25 U	1U	1Ü	1 U	1U	5 U	ſŧ
cis-1,2-Dichloroethene	ъ	hg/L	28200	20800	5.7	16.0	1 U	1 U	5 U	ΙŪ
cis-1,3-Dichloropropene	0.4	µg/L	50 U	25 U	ΙŪ	1U	1 U	lυ	5 U	Π
Dibromochloromethane	50	hg/L	50 U	25 U	1 U	1U	10	10	5 U	ΠŪ
Ethylbenzene	ŝ	hg/L	50 U	25 U	1 U	1 U	1 U	υι	0.33]	1 U
M+P-Xylene	ŝ	µg/L	:	1	:		:	: :	1.3]	1 U
Methylene chloride	ŝ	hg/L	100 U	50 U	2 U	2 U	2 U	2 U	5 U	1 U
O-Xylene	പ	hg/L	:	3 3 3	:	ł		1 1 1	0.52]	1U
Styrene	ŝ	µg/L	50 U	25 U	1 U	1U	1 U	10	5 U	1 U
Tetrachloroethene	പ	hg/L	50 U	25 U	IU	1U	1 U	1 U	5 U	1 U
Toluene	ŝ	hg/L	639	98.9	1 U	0.72]	1U	0.51]	1.3]	1 U
trans-1,2-Dichloroethene	ъ	hg/L	80.0	30.8	10	10	10	1 U	5 U	1 U
trans-1,3-Dichloropropene	0,4	ug/L	50 U	25 U	1 U	1 U	10	10	5 U	10
Trichloroethene	S	hg/L	254	5.6 J	8.4	10	10	ΠŪ	0.24 BJ	10
Vinyl chloride	2	hg/L	4610	9040	1 U	1.2	1U	10	5 U	1 U
Xylene (total)	പ	J∕8rt	50 U	25 U	١U	10	1 U	1 U	1 6 5	1 U

Page 19 of 22

CRA 035048 (2)

GROUNDWATER ANALYTICAL RESULTS - VOLATILE ORGANIC COMPOUNDS FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

TMW-2 Sample Location: MW-14S MW-15S MW-16S MW-16B TMW-1

.

Sample Date: 12/6/2006 12/7/2006 12/6/2006 12/6/2006 11/28/2006 11/29/2006 4/26/2002 8/2/2004 GP-1A GP-1

		1 1 7		¥ + 1	;	1	1	!	7 8 2	2 3 3	: ; r	: ;	, ; ;	:	:	ļ	1 1 1		;	;	:	;;;	;	;
	5 U	5 U	5 U	5 U	0.28]	5 U	5 U	5 U	5 U	5 U	5 U	5U	5 U	5 U	5 U	5 U	0.45]	5 U	5 U	5 U	5 U	5 U	1	5 U
	:	;;	ł	;	:	;	:	:	:			:	:	:		1	;				;		•	8 8 8
)) 1	1 1 7	;	4 4 1	;	;	ļ	:	1 1 7	, ,	1 1 1	;;;	;	, , ;	2 5 1	;	;	1 1 7			;;;			
	!		1 1 1	;;;	:	:	;	:			:	:		:	:	:	;	* * *	;	:	::::	, , ,	:	ł
	;	1 1 1	:	;	*				;	:	:	:	:	:	:	: ; ;	:	ł	;	1 1 2			;	;
	, , ,	1 1 1			1					:	:	:	:	:	, , ,	* • •			; ; ;	!			••••	1 1 1
	:	!	:	:	:	1 7 7	1 1 1	1	:	7 7 8	:	: ; ;	4 5 F	r 1	ļ	:	:	:	:	;	1 1 1	1	:	:
Units	µg∕L	µg/L	hg/L	µg/L	μg/L	µg/L	μg/L	µg/L	µg/L	μg/L	µg/L	hg/L	hg/L	hg/L	µg∕L	µg∕L	J/Bri	hg/L	hg/L	hg/L	hg/L	μg/L	μg/L	hg/L
Criteria ⁽¹⁾	ß	5	5	0.04	ß	0.04	NS	ŝ	ŝ	ŝ	5	5	5	5	5	ъ	NS	5	SN	S	ŝ	ъ	ю	n
Compound	Trichlorofluoromethane (CFC-11)	1,1-Dichloropropene	1,2,3-Trichlorobenzene	1,2,3-Trichloropropane	1,2,4-Trimethylbenzene	1,2-Dibromo-3-chloropropane (DBCP)	1,2-Dibromoethane (EDB)	1,3,5-Trimethylbenzene	1,3-Dichloropropane	2,2-Dichloropropane	2-Chlorotoluene	2-Phenylbutane	3-Chlorotoluene	4-Chlorotoluene	Bromobenzene	Chlorobromenthane	Cymene	Dibromonethane	Dichloromonofluoromethane	Isopropylbenzene	n-Butylbenzene	n-Propylbenzene	p-Xylene	tert-Butylbenzene

Notes: ε

Groundwater Effluent Limitations, Class GA Groundwater,

NYSDEC TOGS 1.1.1, June 1998. Guidance value. e

Compound not analyzed.

Compounds identified in an analysis at the secondary dilution factor.

Reported value is outside the calibration range of the instrument. I O H L Z Ž Ž Z Z

Delected concentration is estimated. Tentatively identified compound.

No standard.

Passive Bag sampling techuique.

Reported sample result is not usable.

Compound was not detected at or above the quantitation limit shown.

Concentration exceeds criteria.

Page 20 of 22

Revised: 03/21/07

CRA 035048 (2)

			GROUND	WATER AI	NALYTIC	AL RESULI FEASIBILI NLD ERIE C CLYDE, N	GROUNDWATER ANALYTICAL RESULTS - VOLATILE ORGANIC COMPOUNDS FEASIBILITY STUDY OLD ENLE CANAL SITE CLYDE, NEW YORK	TILE ORG/ E	INIC COM	POUNDS							
	.,	Sample Location: GP-2 Sample Date: 4/25/2002	GP-2 4/25/2002	GP-2A 8/2/2004	GP-3A 8/2/2004	GP-4 4/24/2002	GP-4A 8/3/2004	GP-5 4/25/2002	GP-6 4/26/2002	GP-7A 8/3/2004	GP-8 4/24/2002	GP-9 4/26/2002	GP-10 4/24/2002 4	GP-11 4/30/2002	GP-12 4/26/2002	GP-13 4/30/2002	GP-14 4/26/2002
Сотроина	Criteria ⁽¹⁾	u Units															
Trichlorofluoromethane (CFC-11)	5	hg/L	5 U	4 1 1	1 1 1	5 U	;	5 U	20 U		5 U	2 U	5 U	20 U	5 U	10 U	200 U
1,1-Dichloropropene	5	µg∕L	5 U	1 1 1) 1 1	5 U	:	5 U	20 U	:	5 U	2 U	5 U	20 U	5 U	10 U	200 U
1,2,3-Trichlorobenzene	5	hg/L	5 U	1	ļ	5 U	3	5 U	20 U	÷	5 U	2 U	5 U	20 U	5 U	10 U	200 U
1,2,3-Trichloropropane	0.04	hg/L	5 U	, , ,		5 U		1 2 0	20 U	:	5 U	2 U	5 U	20 U	5 U	10 U	200 U
1,2,4-Trimethylbenzene	ŝ	μg/L	0.21]		# \$ \$	5 U	:	5 U	29	1	5 U	2 U	5 U	20 U	5 U	10 U	200 U
1,2-Dibromo-3-chloropropane (DBCP)	0.04	μg/L	5 U	:		5 U)) ;	5 U	20 U) 1 3	5 U	2 U	5 U	20 U	5 U	10 U	200 U
1,2-Dibromoethane (EDB)	NS	hg/L	5 U	:		5 U	-	5U -	20 U	; ; ;	5 U	2 U	5 U	20 U	5 U	10 U	200 U
1,3,5-Trimethylbenzene	ŝ	Hg/L	5 U		1	5 U	• •	20	7.9 J	•	5 U	2 U	5 U	20 U	5 U	10 U	200 U
1,3-Dichloropropave	Ś	µg/L	5 U		1 1 1	5 U	:	5 U	20 U	:	5 U	2 U	5 U	20 U	5 U	10 U	200 U
2,2-Dichloropropare	ŝ	µg/L	5 U	•	;;	5 U		5 U	20 U	:	5 U	2 U	5 U	20 U	5 U	10 U	200 U
2-Chlorotoluene	ŝ	µg/L	5 U	8 2 1	1	5 U	:	5 U	20 U	;	5 U	2 U	5 U	20 U	5 U	10 U	200 U
2-Phenylbutane	S	µg/L	5 U	:		5 U	1	5 U	20 U	:	5 U	2 U	5 U	20 U	5 U	10 U	200 U
3-Chlorotoluene	ъ	hg/L	5 U	:	;	5 U	:	5 U	20 U	+ 1 1	5 U	2 U	5 U	20 U	5 U	10 U	200 U
4-Chlorotoluene	S	µg∕L	5 U		ł	5 U	1	5 U	20 U	:	5 U	2 U	5 U	20 U	5 U	10 U	200 U
Bromobenzene	ъ	µg/L	5 U	:		5 U	;	5 U	20 U)))	5 U	2 U	5 U	20 U	5 U	10 U	200 U
Chlorobromethane	ъ	ng/L	5 U	:	:	5 U	1	5 U	20 U	3 3 3	5 U	2 U	5 U	20 U	5 U	10 N	200 U
Cymene	NS	hg/L	5 U	-	:	5 U	3 4 3	5 U	20 U	, , ,	5 U	2 U	5 U	20 U	5 U	10 U	200 U
Dibromomethane	ŝ	hg/L	5 U	1	;	5 U	1 1 1	5 U	20 U	1	5 U	2 U	5 U	20 U	5 U	10 U	200 U
Dichloromonofluoromethane	NS	μg/L	5 U	3 8 3		5 U)))	5 U	20 U	:	5 U	2 U	5 U	20 U	5 U	10 U	200 U
Isopropylbenzene	ŝ	μg/L	5 U	3 9 8	1	5 U		5 U	20 U		5 U	2 U	5 U	20 U	50	10 U	200 U
n-Butylbenzene	ഹ	μg/L	5 U			5 U	¥ 4 8	5 U	20 U		5 U	2 U	5 U	20 U	5 U	10 U	200 U
n-Propylbenzene	IJ	hg/L	5 U	;	1	5 U		5 U	20 U	:	5 U	2 U	5 U	20 U	5 U	10 U	200 U
p-Xylene	ŝ	μg/L	:	:	:	:	1	;		,	;	ł		:	:	***	
tert-Butylbenzene	വ	hg/L	5 U	:	;	50	, , ,	5 U	20 U	:	5 U	2 U	5 U	20 U	5 U	10 U	200 U
otes:																	

Notes: ε

Groundwater Effluent Limitations, Class GA Groundwater, NYSDEC TOGS 1.1.1, June 1998.

Guidance value.

9

Compound not analyzed. Compounds identified in an analysis at the secondary dilution factor. Reported value is outside the calibration range of the instrument. Detected concentration is estimated. Tentatively identified compound. No standard.

LOH NS SS AD

Passive Bag sampling technique. Reported sample result is not usable. Compound was not detected at or above the quantitation limit shown. Concentration exceeds criteria.

Page 22 of 22

TABLE 3.1

						TABLE 3.2	7							Page 1 of 12	2
			GRO	GROUNDWATER /	NALYTICAL	ANALYTICAL RESULTS -SEMI-VOLATILE ORGANIC COMPOUNDS FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK	11-VOLATILE STUDY AL SITE YORK	ORGANIC C	SOMPOUNDS						
	Sample San	Sample Location: Sample Date:	GP-1 4/26/02	GP-2 4/25/02	GP-4 4/24/02	GP-5 4/25/02	GP-6 4/26/02	GP-S 4/24/02	GP-9 4/26/02	<i>GP-10</i> 4/24/02	GP-11 4/30/02	GP-12 4/26/02	GP-13 4/30/02	GP-14 4/26/02	GP-15 4/26/02
Сотроина	Criteria ⁽¹⁾	Units													
Acenaphthene	20	J∕8t	ļ	1	*	{	!	, , ,	;	;	, , ,	:		:	* * *
Acenaplithylene	NS	hg/L	•		-	•••			÷	:	:	1 7 6	;		
Authracene	50 ⁽²⁾	µg/L	;	ł	-	• • •	1						,	:	;
Beuzo(a)authracene	0.002	1/βπ	ł	(:		ł	:	;;	:	:			, , ,	:
Benzo(b)fluoranthene	0.002	hg/L	;			•	;	:	•	;	:	1 1	, ,	ł	••••
Benzo(k)fluoranthene Benzo(z h i)nerritene	0.002	µg/L ™2/1	:	:		ļ	ļ	4 3	-	ļ	,	:	:	;	•
Benzo(s)hyrene Benzo(s)hyrene	2 G	Hg/T		· · ·		• •				: :	:	7 1. 1.		1 P 3	:
bis(2-Chloroethoxy)methane		ue/L	;	:	8 5	,									• •
bis(2-Chloroethyl)ether	1	hg/L	•	* * *			:	:	:	:		:	4 4 5	;	
bis(2-Chloroisopropyl)ether	NS	hg/L			;		ł	:	:	;	:	;	:	1 3	
bis(2-Ethylhexyl)phthalate	ŝ	hg/L	•	,	:	:	:	;	:	:	,	;	;;;	:	;;;
4-Bromophenyl phenyl ether	SN	µg/L	;		, , ,		:		:	÷	:	* * *	,	:	;
Butyl benzylphthalate	$50^{(2)}$	hg/L	:		1 2 3				1	!	ļ	3 8 1		ł	;
4-Chloroaniline	ŝ	7l∕8ti	{		•	;		;		÷	÷	,		:	, , ,
4-Chloro-3-methylphenol	SS	hg/L	1 1 1	;	:	:	:	•	:	:	:	ļ	ł	*	;
2-Chloronaphthalene	<u>9</u> ,	hg/L	*	•	1	1	1 1 1	•	3 3		-	*	, ,)) ?
2-Chiorophenol 4-Chiorochenul shenul alber	I NIC	µg/L че/I	:		1 } t	•		;	:	7 1 1	;	ļ	;	:	1
	0.002	н5/с ug/L	, 1 , 1 , 1	: :	; ;		: :		: :	: :	; ;		: :		: :
Dibenzo(a,h)authracene	SN	hg/L	:	•	;	:	:	•	:	;	ł	: ; ;	:		•••
Dibenzofuran	SN	µg/L	;		1	* * *	;	ł	;	:	;		•	ł	;
Di-n-butylpithalate	20	µg/L		, , , , , ,	· · ·			1 1	* *				::::	: :	1
1,2-UICHIOFODENZERE	γ, r	л2/1 л2/1	2 2	0	1.5	200	20.0	5 0	20	25	20 U	201	10 U	200 U	200 U
1,4-Dichlorobenzene	ი თ	нб/г µg/L	50	50	50	5U	20 U	50	2 C	202	20 U	2 22	10 U	200 U	2001
3,3'-Dichlorobenzidine	ß	µg/L	:		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		:	1	÷	;	}		8 5 9		
2,4-Dichlorophenal	ŝ	μg/L	:		, ,		;		1		:	• • • •		•	:
Diethyl plulalate	$50^{(2)}$	µg∕L	;	1	, , ,	1	5 8 9	::			* * *	, , t		;	;
2,4-Dimethylphenol	$50^{(2)}$	μg/L	1	:	:	1	1 1 1	•	:	:		4 9 7	:	:	;
Dimethyl phthalate	50 ⁽²⁾	hg/L	:			;;	: : :	,	÷		;	3 * *	• • •	;	+ + 2
4,6-Dinitro-2-methylphenol	SN	hg/L	, , ,	• • •				;	5 8 8) 1 7	÷	:	1	• • •	:
2,4-Dinitrophenol	10	µg/L	:			;	1 .		:		• • •	2			;
2,4-Dinitrotoluene	ις, ι	hg/L	;					1	• • •	•	:		:	;	:
2,6-LJuntrotoluene	¢	7/8t	:	1	-	;	t t	2 2 4					1 1		, , ,
Di-11-octyl phthalate	20-1	μg/L	ł	:	;	:	:	:	:	1 7 1	ļ	:	•	:	;
Fluoranthene	20-1	µg/L	1 1 1		8 2 5	7 3 4		;	;		:	1	-	2 3 7	;
Fluorenc	20-10	µg/L	}	:			7 1 4	;		:	•	7 4 7	1	t 9 9	:

CRA 035045 (2)

						14041	1.							rage 2 01 12	2
			GROI	UNDWATER /	ANALYTICAL	L RESULTS -SEMI-VOLA FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK	GROUNDWATER ANALYFICAL RESULTS -SEMI-VOLATILE ORGANIC COMPOUNDS FEASIBILITY STUDY OLD ERLE CANAL SITE CLYDE, NEW YORK	E ORGANIC (SOMPOUNDS						
	Sample Sa	Sample Location: Sample Date:	GP-1 4/26/02	GP-2 4/25/02	GP-4 4/24/02	GP-5 4/25/02	GP-6 4/26/02	GP-8 4/24/02	GP-9 4/26/02	GP-10 4/24/02	GP-11 4/30/02	GP-12 4/26/02	GP-13 4/30/02	GP-14 4/26/02	GP-15 4/26/02
Compound	Criteria ⁽¹⁾	Units													
Hexachlorobenzene	0.04	ng/L		1	:	;	1 8 9		1	9 3 9	;		3		;
Hexachlorobutadiene	0.5	µg/L	5 U	5 U	5 U	5 U	20 U	5 U	2 U	5 U	20 U	5 U	10 U	200 U	200 U
Hexachlorocyclopentadiene	5	hg/L	4	1	1	;	ł		1 1 1						
Hexachloroethane	5	ng/L		, , ,	1	;	1 1 1	1			• • •				• • •
Indeno(1,2,3-cd)pyrene	0.002	hg/L			•	1	1	•	1 1 1	;		3		± † †	
Isophorone	50	µg∕L	• • •				2 2 3			, , ,	1	ļ	1 1 1	:	
2-Methyl naphthalene	SZ	µg/L		•		1	1	3	1	1	+ + + + + + + + + + + + + + + + + + + +		ļ		
2-Methyiphenol	1	hg/L	1 7 7				3 9 1		•	*		!	*	:	• • •
4-Methylphenol	1	J/gq			!	1 1 1	3 8 4	;	1	• • •					••••
Naplıthalene	10	hg/L	0.91 J	0.95 J	5 U	5 U	22	5 U	2 U	5 U	20 U	5 U	10 U	200 U	200 U
2-Nitroaniline	ŝ	hg/L	:	:	:	4 7 1			:				:	;;;	*
3-Nitroawiline	5	hg/L	1	1	1	1 1 1	1			6 8 7			;	, , ,	:
4-Nitroaniline	л	µg/L	, , ,	1	1 1	1	1	8 1 3		!	•				
Nitrobenzene	0.4	hg/L		* * *	3		:		:) 	1	!) 5 1	!	
2-Nitrophenol	1	µg/L	:				:		:	4 1 1	3 2 6	;	:	+ 1 1	:
4-Nitrophenol	1	µg/L				•				•			•		
N-Nitrosodiphenylamine	50 ⁽³⁾	µg/L	:	}	1	;;	, ,			* * *) 1	,		* * *	;
N-Nitrosodi-n-propylanine	NS	hg/L	•	•	1		!		, ,	1	!		3		* * *
Pentachlorophenol	1	hg/L					; ; ;		:	••••	, , ,	1	;	3 5 7	;
Phenanthrene	50 ⁽²⁾	µg/L	;		1		•	1 1 1	;;	:	÷	: ;			:
Phenol	1	µg/L				÷	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;			•	1 1 1	1	;		:
Pyrene	50 ⁽³⁾	hg/L	• • •					;;;				•	;	1 1 1	
1,2,4-Trichlorobenzene	5	µg/L	5 U	5 U	5 U	5 U	20 U	5 U	2 U	5 U	20 U	5 U	10 U	200 U	200 U
2,4,5-Trichlorophenol	1	µg/L	;	ļ	:		:	:	;	:::	*	:	:	•	:
2,4,6-Trichlorophenol	1	µg∕L	;	;	;	;	-	*	:	ļ	:		1 1 1		* * *

Notes: (1)

Groundwater Effluent Limitations, Class GA Groundwater, NYSDEC TOGS 1.1.1, June 1998. Guidance value. Not analyzed. Detected concentration is estimated. No standard. Compound was not detected at or above the quantitation limit shown. Concentration exceeds criteria.

6

SN SN

⊐

CRA (035045 {2}

TABLE 3.2

														1 486 2 01 17	
			GRO	UNDWATER /	INALYTICAL J J O	GROUNDWATER ANALYTICAL RESULTS -SEMI-VOLATILE ORGANIC COMPOUNDS FEASIBILITY STUDY OLID ERIE CANAL SITE CLYDE, NEW YORK	II-VOLATILE TUDY AL SITE YORK	ORGANIC C	OMPOUNDS						
	Sampl Sa	Sample Location: Sample Date:	GP-16 4/25/02	GP-17 4/25/02	GP-18 4/24/02	GP-19 5/1/02	GP-20 5/2/02	GP-22 4/25/02	GP-23 4/25/02	GP-24 4/24/02	GP-25 4/30/02	GP-25 4/30/02 Duplicate	GP-26 5/1/02	GP-27 4/26/02	GP-28 5/1/02
Сотронид	Criteria ⁽¹⁾	Units													
Accuaphthene	20	µg/L			:	1 3 1	ł	;) 3 4	;	;	*	1		:
Acenaplithylene	NS	μg/L	* * 1		4 7 6	1	1	:	;	1			•		
Anthracene	50 ⁽²⁾	hg/L		;	*	:	:	:	;	:	1	;	,	:	1 1 1
Benzo(a)anthracene	0.002	hg/L	:	8 6 1	1	8 # 8		:	:		, ,	*	:	;	, , , , , , , , , , , , , , , , , , ,
Benzo(b)fluoranthene	0.002	pg/L	8 4 9	ł	:	:	;	:	:	÷	1	1	,	::-	:
Benzo(k)fluoranthene	0.002	µg/L	:	1 7 7	1	1	* * *	:	* * *		:	•	1	:	:
Benzo(g,n,J)perylene	SN (hg/L	:	* * *		•	1		÷	:	s • •		:	• • •	2 8 8
benzo(a)pyrene bis(2-Chloroethoxy)methane	ξ. Γ	рg/L 110/I					:	:	ļ	1 1 1	;	;		÷	:
bis(2-Chiloroethyt)ether	, -	гь/ - цд/L	;			: :					; ;	4 I 4 I		;	;
bis(2-Chloroisopropy1)ether	NS	hg/L		;	4 7 1	:	÷	:	1 3 7	ł	;	•			; ;
bis(2-Ethylhexyl)phthalate	ĥ	µg/L		ļ	:	:	:		ļ	1 3 1	;		1 1 1	:	;
4-Bromophenyl phenyl ether	SN	hg/L	* *	;	:	:	* *	;	:	:	;		:	•	*
Butyl benzylphthalate	$50^{(2)}$	hg/L		• • • •	į	:	;	:	;	÷	:		a 8 1	:	;
4-Chloroaniline	n j	hg/L	:	1 1 1					:	•	ł	, , ,		;	:
4-Chloro-3-methylphenol	SN	hg/L	•	1	# k	1	*	ł			, , ,		• • •	÷	:
2-Cutoronaphithalene 3-Chtoronhonol	lo +	1/2ri	:	•	:	;	ļ	ţ	ļ	1 8 1	:	* * *	:	;	•
4-Chloronhenvi nhenvi ether	A NIC	н5/ г	\$ 1		s t F		•	1	9 8 8	, , ,	1 E I	1,1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		;
Chrysene	0.002	н5/ L ue/L	:	: ;		; ;	; ;	1	; ;	:	•	6 1	;	*	;
Dibenzo(a,lı)autlıracene	SN	ng/L	;	:	:	;	:			: ;				, , , ,	; ;
Dibenzofuran	SN	µg∕L			• • •		6 6 1	1 1 1	1 1 1					,	:
Di-n-butyiphthalate	50	J/gu		;;	:	•	;	•	;	:	:	• • •		;	3 7 8
1,2-Dichlorobenzene	(¹) (1	hg/L	20 U	5 U	50	10 U	100 U	2 U	5 U	5 U	10 U	10 U	20 U	5 U	10 U
1,4-Dichlorobenzene	<u>ი</u> ო	нg/L ug/L	20 U	202	50	10 L	100 U	2 U 2 U	50	25	10 [1	101	20 U	50	10 U
3,3'-Dichlorobenzidine	ŝ	µg/L	;				• • •		••••					2	
2,4-Dichlorophenol	5	ng/L	;	:::		•	:	i	ļ	L 9 1	:			:	:
Diethy! pluthalate	$50^{(2)}$	hg/L	;	:	:	i	;	r 8 8	;	į		:		*	ł
2,4-Dimethylphenol	50 ⁽²⁾	Π/βη	}	•			:	:	;	:	:	:	•		:
Dimethyl phthalate	50(4)	hg/L	:		,		1 1	:	: ; ;	1	7 .	:	•••	:	:
4,6-Dinitro-2-methylphenol	SN	hg/L	, , ,			4 7 1	;	7 8 3					:	* *	:
Z,4-Dinitrophenoi	5 *	hg/L	:	* - *			• •	!	, ,	!	1	;			;
Z/A-LJIIIItroioluene	עו	hg/L	+ + 1	;					!		1	1	5 8	:	;
2,b-Dintrotoniene	n Ör	ng/L	1			4 3 4							1	* *	:
Di-n-octyl phthalate	204	hg/L	1 8 1	}	1	4 5 1	;	:	• • • •		;;;		•	:	:
Fluoranthene	50(21	hg/L	ł	;				:	:		:		r 1. f	ļ	
Fluorene	20(1)	hg/L	!	•	;	ļ	:	1	* * *	1	:	1	:	;	

							l							1 464 1 01 1	J
			GRO	UNDWATER	ANALYTICAL C	GROUNDWATER ANALYTICAL RESULTS -SEMI-VOLATILE ORGANIC COMPOUNDS FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK	MI-VOLATILI STUDY IAL SITE 'YORK	E ORGANIC C	COMPOUNDS						
	Sampl Sa	Sample Location: Sample Date:	GP-16 4/25/02	GP-17 4/25/02	GP-18 4/24/02	GP-19 5/1/02	GP-20 5/2/02	GP-22 4/25/02	GP-23 4/25/02	GP-24 4/24/02	GP-25 4/30/02	GP-25 4130/02 Duplicate	GP-26 5/1/02	GP-27 4/26/02	GP-28 5/1/02
Сотроинд	Criteria ⁽¹⁾	Units													
Hexachlorobenzene	P.04	hg/L	•••	;		:	:	:	;		:	:::::::::::::::::::::::::::::::::::::::	;	:	
Hexachlorobutadiene	0.5	µg/L	20 U	5 U	5 U	10 U	100 U	2 U	5 U	5 U	10 U	10 U	20 U	5 U	10 U
Hexachlorocyclopentadiene	ъ	μg/L	:	•	•	;	ł	* * 1	3 3 1		:		• • •		• • •
Hexachloroethane	S	µg/L		1	1		5 7 8	;	;	* * *	* * *	:) 1 2	:
Indeno(1,2,3-cd)pyrene	0.002	μg/L			•	•	;		5 6 7		1	1	5 7 8	!	4 3 7
Isophorone	50	hg/L									:			* 5 7	:
2-Methyl naphthalene	SN	µg/L	•	•)))				, , ,	• • •		1 7	*	1	۲ ۲ ۲
2-Methylphenol	1	hg/L				* • •	:				::			•	;
4-Methylphenol	1	µg/L			::	* * *		1	F 1 1	:	1 1 1	1		9 1 2	:
Naphthalene	10	hg/L	15 J	1.4]	5 U	10 U	100 U	2.7	0.66 J	5 U	8.7]	9.1 J	20 U	0.83 J	2.9 J
2-Nitroaniline	ŝ	J/gu			1	;	F L T	1			:	4 8 8	1 2	:	
3-Nitroaniline	5	μg/L	•		:	:	:	1 .	1		1	:			:
4-Nitroaniline	5	µg/L			:	:	1		!		: ; ;	, ,	:	ь 1 1	:::
Nitrobenzene	0.4	µg∕L					:	:		;	:		•	1 .	;
2-Nitrophenol	1	µg/L	• • •	, ,	• • • •					8 2 8	• • •			••••	;;
4-Nitrophenol	-	J∕8́d			!		1	:			:	:			ł
N-Nitrosodiphenylamine	50 ⁽²⁾	µg∕L	•	5 6 8) 1 1) 7 3	1	;	1		* *	4 7 7	1 .	:	1 7 1
N-Nitrosodi-n-propylamine	SN	J/84				:	:	• • •	;					1 .	:
Pentachlorophenol	1	µg/L		5 1 1	* 1: 1:	;	:		:			, ; ,		1 / 1	;;
Phenanthrene	50(2)	hg/L	1	1	1) 1 1)) 1			,	, , ,	, ,	ł
Phenol	1	µg/L			:	8 1	;) 1)			:		•		:
Pyrene	$50^{(2)}$	<u>л/8</u> ц							•	;;					;
1,2,4-Trichlorobenzene	ŝ	hg/L	20 U	5 U	5 U	10 U	100 U	2 U	5 U	5 U	10 U	10 U	20 U	50	10 U
2,4,5-Trichlorophenol	1	µg∕L					:	• • •	,		, ,			8 8 1	;
2,4,6-Trichlorophenol	1	μg/L	:	:		:			:	• •		•	:	:	4 1 4

Notes: (I)

Groundwater Effluent Limitations, Class GA Groundwater, NYSDEC TOGS 1.1.1, june 1998. Guidance value. Not analyzed. Detected concentration is estimated. No standard. Compound was not detected at or above the quantitation limit shown. Concentration exceeds criteria.

5

. í NS

þ

TABLE 3.2

						TABLE 3.2	2							Page 5 of 12	2
			GRO	GROUNDWATER /	ANALYTICAL C	ANALYTICAL RESULTS -SEMI-VOLATILE ORGANIC COMPOUNDS FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK	1-VOLATILE STUDY AL SITE YORK	ORGANIC	COMPOUNDS						
	Sanple San	Sample Location: Sample Date:	GP-29 4/26/02	GP-30 4/26/02	GP-31 4/24/02	GP-32 4/24/02	GP-33 5/1/02	GP-34 5/2/02	GP-34 5/2/02 Duplicate	GP-35 4/23/02	GP-36 4/23/02	GP-37 4/23/02	GP-38 4/23/02	GP-39 4/23/02	GP-40 5/2/02
Сотронид	Criteria ⁽¹⁾	Units													
Acenaphthene	20	J/βµ	:	1 † 1	, , ,		1 4 1		:	k k F	;	:	•	:	;
Acenaphthylene	NS	µg/L	5 5 7	1		:	•••••	÷	:	, ,	:	• • •	ł	1 1 1	;
Anthracene	50 ⁽²⁾	µg/L	:	2 1 1		:		:		•	;	;	:	:	;
Benzo(a)authracene	0.002	hg/L	:	1	:	• • •		;	, , ;	:	:	1		۲ ۶ ٤	:
Benzo(b)fluoranthene	0.002	hg/L	:	:	1 1		:	•	;	4 4 4	;	:	9 a 7	:	;
Benzo(k)Huoranthene Benzo(a h i)merulone	0.002	hg/L	:	•	ł	*	:	:	, ,	:	{	;	:	,	;
enzo(a)prinene Benzo(a)pvrene	2 2	нб/г ue/L				1 1			; ;	; ;	: :	: :	, ,	:	:
bis(2-Chloroethoxy)methane	5	μg/L		;	1		4		i						
bis(2-Chloroethyl)ether	1	hg/L	, , ,	1	:		:	:	;			ł	;;		*
bis(2-Chloroisopropyl)ether	SN	hg/L		•) 1	;	:	•••	:	:	;	:	;	••••	
bis(2-Ethylhexyl)phthalate	£	hg/L	• • •	:	:		÷	:	:	•	:	ł	*	:	
4-Bromophenyl phenyl ether	SN	µg/L	:	•	1 1 2		}	:		:	:	4 1 1		:	;
Butyl benzylphthalate	$50^{(2)}$	µg/L	:	:	1		;	:	1	:	;	, , ,	1	•	;
4-Chloroaniline	ۍ ا	hg/L	:	1	1	:	1) 1	:		, ,	:	:			:
4-Chloro-3-melhylphenol 2-Chloro-statistical	NS 01	µg/L	:	•	;	:	}	:	;	;	•		:	•	÷
2-Chloronhenol	<u>,</u> -	н5/ ч 110/I					· · ·	: :	r 1	7 7 7			*	:	\$ \$ *
4-Chlorophenyl phenyl ether	, SN	46/L					:		: :		:		: :	: ;	: :
Chrysene	0.002	µg/L	:	1	: : :	1 7 1	{	ł		;	;	:	• • • •		;
Dibenzo(a,h)anthracene	SN	μg/L	3	:	:		4 } }		;	:	;	;	;	7	ļ
Dibenzofuran	SS S	µg/L ″	!		•	* * *		;	8 9 9	;	ļ	1	1 1 1	:	3 1 1
UI-n-DutyIphualate 1 2. Dichberbensete	R 4	µg/L				11000		1001	1001			; ; ;	,		
1.3-Dichlorobenzene	ა ო	н6/ н ие/L	101	50	50	20010	210	1001	1001		211				
1,4-Dichlorobenzene	ŝ	ng/L	10 U	5 U	5 U	200 U	10	100 U	100 U	5 U	5 U	5 U	5 U	50	n
3,3'-Dichlorobenzidine	ŝ	µg/L	ł		•	:	,	:		8 8 7	;	1	, ,	5 8 5	:
2,4-Dichtorophenol	5	µg/L	;;		:	:	r } 1	;		,		, ,	,	:	;
Diethyl phılıalate	$50^{(2)}$	hg/L	1	;	1		r 1 1	;	;	:	1	•			;
2,4-Dimethylphenol	$50^{(2)}$	hg/L	;	;;;	1	1	r 4 1	• • •	:	:		, , ,	;	:	;
Dimethył phthalate	50 ⁽²⁾	hg/L					•	3		:		* * *		:	
4,6-Dinitro-2-methylphenol	NS	µg/L			:	4 4 1		:	1 1 1	9 9 8	;		1 1 1		
2,4-Dinitrophenol	10	hg/L	ļ		:	;	•	3 3							;
2,4-Dinitrotoluene	ŝ	hg/L	÷	1 7 3	1			1		1 1 7	;			;	•
2,6-Dinitrotoluene	in s	hg/L	{						1		:		1 7	1	1 2 1
Di-11-octyl phthalate	50 ⁽⁴⁾	hg/L	1	:	;		:	:	•	;	:	;	*	;	:
Fluoranthene	20(7)	µg/L	:	9 F N	5 5 1	4 3	:	1	:	•	•			r 1	:
Fluorene	50(2)	нg/L	;	1 1 1	1	1	:	:	}	;	4 8 1	ғ н я		:	, ,

						TABLE 3.2	4							Page 6 of 12	5
			GRO	UNDWATER /	analytical	GROUNDWATER ANALYTICAL RESULTS -SEMI-VOLATILE ORGANIC COMFOUNDS FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK	AI-VOLATILI STUDY AL SITE YORK	E ORGANIC (COMPOUNDS						
	Samplı Sa	Sample Location: Sample Date:	GP-29 4/26/02	GP-30 4/26/02	GP-31 4/24/02	GP-32 4/24/02	GP-33 5/1/02	GP-34 5/2/02	GP-34 5/2/02 Duplicate	GP-35 4/23/02	GP-36 4/23/02	GP-37 4/23/02	GP-38 4/23/02	GP-39 4/23/02	GP-40 5/2/02
Сонгронна	Criteria ⁽¹⁾	Units													
Hexachlorobenzene	0.04	µg/L		, , ,			:	:	;	1		*	1	:	
Hexachlorobutadiene	0.5	hg/L	10 U	5 U	5 U	200 U	1U	100 U	100 U	5 U	5 U	5 U	5 U	5 U	n I
Hexachlorocyclopentadiene	5	µg/L		*					, , ,			*	;		1
Hexachloroethane	'n	µg/L				:			:		1	1			
Indeno(1,2,3-cd)pyrene	0.002	hg/L	•••				* * *	•	;;;;		•	*	1	L 	
Isophorone	50	µg/L	• • •	:	•	•		•		1	!	1	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	:	4 7 1
2-Methyl naphthalene	NS	hg/L	÷	1			, 1 1	!	;	•	1 1 1	1	:	3 9 9	
2-Methylphenol	1	µg/L	;	•	;;;	1	1	1	2 6 6	1 1 1		1	• • •		
4-Methylphenol	1	µg/L		:	7 1 3	1		1	r 1 1	4 3 1		1	+ + +		
Naphthalene	10	µg/L	10 U	5 U	5 U	200 U	1 U	100 U	100 U	0.76 J	5 U	5 U	5 U	5 U	10
2-Nitroaniline	5	µg∕L				:		1 1 1	1 3 3		:	:	•		:
3-Nitroaniline	5	µg/L	÷	•		:	:	:	6 6	8 1 1) 1 1	1	, 1	;
4-Nitroaniline	5	hg/L				9 9 8	1		:		•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,)) T
Nitrobenzene	0.4	hg/L	:	;	:	:	5 8 9	*				:	••••	:	
2-Nitrophenol	1	hg/L	•	•	1 3 3	, , ,			:	• • •	•			:	,
4-Nitrophenol	1	hg/L		;			•	• • •					4 3 4		:
N-Nitrosodiphenylamine	50 ⁽²⁾	hg/L	4 3 1	1 1 1			1	1	5	1		:		• • •	
N-Nitrosodi-n-propylanine	SN	hg/L	:	1 1 1	• • •	•	1 1	1	1	•	1 8 9	9 9 1		!	* * *
Pentachlorophenol	1	hg/L	:		:	;		÷	1 4 5	,			•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Phenanthrene	$50^{(2)}$	hg/L	:	}	;	}	;	*	3 1					+ • •	:
Phenol	1	hg/L	:			:	6 6 7	;) / /		1			1	1
Pyrene	$50^{(2)}$	hg/L	;	4 9 1			i	į			:				;
1,2,4-Trichlorobenzene	ŝ	hg/L	10 U	5 U	5 U	200 U	1 U	100 U	100 U	5 U	5 U	5 U	5 U	5 U	10
2,4,5-Trichlorophenol	1	hg/L				:	1))				• • • •	• • •			* *
2,4,6-Trichlorophenol		µg/L		1 1 1	* 1 7	•	•	1 3 4	;	1	!	ł	1	• • •	:

Notes: (1)

Groundwater Effluent Limitations, Class GA Groundwater, NYSDEC TOGS 1.1.1, June 1998. Guidance value. Not analyzed. Detected concentration is estimated. No standard. Compound was not detected at or above the quantitation limit shown. Concentration exceeds criteria.

s -- SN

Э

						TABLE 3.2	q							Page 7 of 12	12
			GROI	JNDWATER A	NALYTICAL	GROUNDWATER ANALYTICAL RESULIS -SEMI-VOLATILE ORGANIC COMPOUNDS FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK	MI-VOLATIL STUDY IAL SITE YORK	E ORGANIC (GOMPOUND						
	Sample San	Sample Location: Sample Date:	GP-41 5/2/02	GP-42 5/2/02	GP-43 5/2/02	GP-43 5/2/02 Duplicate	GP-45 11/21/02	GP-46 11/21/02	GP-47 11/21/02	GP-49 11/21/02	GP-50 11/21/02	GP-51 11/21/02	GP-53 11/21/02	GP-54 11/21/02	GP-56 11/21/02
Сотронид	Criteria ⁽¹⁾	Units													
Acenaphthene	20	µg/L			1	•••		:	:	ł	1	*	1	\$ \$ \$:
Acenaphthylene	SN (hg/L	•	;	ł		1 7 9	;	•	, , ,			;	;)) 1
Anthracene Bourd(A) advancena	50 ^{ce)}	µg/L		:	-	:	:	:			:	:	•	:	3 1 7
Benzo(b)fluoranthene	0.002	ng/L		; ;	: :	: :		: ;	: :		•	: :	:	•	:
Benzo(k)fluoranthene	0.002	r₀, - µg/L	:		1			į					: :		: :
Benzo(g,h,i)perylene	SN	hg/L	:	:		•	-	ł	•	:	i		;	:	;
Benzo(a)pyrene	ND	µg/L	:	1 7 8	:	:	1 1 1	;	-	ł	:	;;		:	
bis(2-Chloroethoxy)methane	£.	hg/L	:	ł	:) ; ;	:	;	3 3 6	:	;		;	ł	,
bis(2-Chiloroethyt)ether		µg/L	, ,	:	{	ł	:	;	:		;	:	÷	:	
bis(2-Chioroisopropyijeuter bis/2-Ethivitherchithera	S r	µg/∟ ™″/I	1	t t	3	:			;	:	;	*	;	ł	
ustz-Euryniesytpuniaaw 4.Rremenisanyi rihanul othar	n N	н6/ г 110-/]					5 I				•	:	ļ	, ,	
Burnel housed by the second se	50(2)	н5/ г 112 /1				5			•	,			۶ ۲ ۲	ļ	•
euryt venzytpinnatate 4.Chtoroawiline	ς ι:	hg/r	: :	: :	• • • • • •		: :	: :		; ;	: :			;	•
4-Chloro-3-methylphenol	NS	ug/L	::	:	1	ł	;	1 1 1	:		:		3		1 ÷
2-Chloromaphthalene	10	µg/L	ł	÷		÷	:	ł	;	;	;	!	;	• • • • •	;
2-Chlorophenal	1	hg/L	;	ļ	:		:	1	ł	ļ	:	:	;	;	, ,
4-Chlorophenyl phenyl ether	SN	µg/L	i	:	ł	:	;	ł	:]	;	1)	;	
Chrysene	0.002	μg/Γ	;	į	}		;	:	:	;		:	ł	:	1
Ulbenzo(a,n)anutracene Dibenzofuran	a sz	µg/∟ no/I		; ;					: :	: :	: :		:		: :
Di-n-butyiphthalate	50	ng/L	•	• • •	!		ļ	ł		1		:	:	;	
1,2-Dichlorobenzene	ŝ	ng/L	1U	1U	IU	1U	4 U	2 U	1 U	20 U	10 U	200 U	50 U	1U	50 U
1,3-Dichlorobenzene	ന	hg/L	10	1U	0	1	4 U	2 U	1U	20 U	10 U	200 U	50 U	1U	50 U
L,4-Dichlorobenzene 3.3. Dichlorobenzene	ים הי	р <u></u> g/L 100/1		1 0		11	4 U	5.0	10	20 C	10 U	200 U	50 U	10	50 U
2.4-Dichlorophenol	, n	ne/L	1	•		8	;								, , , ,
Diethyl phthalate	50 ⁽²⁾	µg/L	:	;	1 1 1	+ 1 1	:	:	:	;	1	•	;	:	* * *
2,4-Dimethylphenol	$50^{(2)}$	μg/L	:			:	:	:		:	;	:	:	;	
Dimethyl phthalate	50 ⁽²⁾	hg/L	:	:		1	::	:		:	;	:	:	;	:
4,6-Dinitro-2-methyiphenol	NS	µg/L	:			;	:	;;;			• • •				:::
2,4-Dinitrophenol	10	hg/L				• • •	:	;	:	:	:	:	;	:	•
2,4-Dinitrotoluene	υ,	hg/L	ł	1	1	1	:	1	k 1	4 9 2	3 3 3		:		
2,6-Dinitrotoluene	ی ا	µg/L	:	:			•	3 3 •	1 1		;	:) ,)	:
Di-11-octyl pluthalate	20(3)	hg/L		;	;	;		:		•	, ; ;	:	:	:::	:
Fluoranthene	50 ⁽²⁾	µg/L	, , ,	9 9 9	, 1 1	, , ,		;	:	ł			;;;	:	•
Fluorenc	50 ⁽²⁾	µg∕L	7 8 2	*	• •	;	;	;	-	;	;	:	:	;	

•

			CRO.	GROINDWATER ANALYTICAL RESULTS -SEMI-VOLATHE ORCANIC COMPOUNDS	NAL VTICAL	15" ST 11 154 8	ILT A TOU A TH	EORCANIC						2	
						EESIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK	STUDY NAL SITE V YORK								
	Sample San	Sample Location: Sample Date:	GP-41 5/2/02	GP-42 5/2/02	GP-43 5/2/02	GP-43 5/2/02 Duplicate	GP-45 11/21/02	GP-46 11/21/02	GP-47 11/21/02	GP-49 11/21/02	GP-50 11/21/02	GP-51 11/21/02	GP-53 11/21/02	GP-54 11/21/02	GP-56 11/21/02
Сотроний	Criteria ⁽¹⁾	Units													
Hexachlorobenzene	0.04	μg/L	4 4 9	3 9 8	1		:	ł	# 	† 3 3			;	:	
Hexachlorobutadiene	0.5	hg/L	1 U	1 U	1 U	υι	4 U	2 U	10	20 U	10 U	200 U	50 U	11	50 U
Hexachlorocyclopentadiene	ъ	µg/L	7 7 1	1		1 F T	3				:		1		;
Hexachloroethane	ŝ	µg/L	:	:		!	+ + 1	1 1 1			,		•		:
Indeno(1,2,3-cd)pyrene	0.002	hg/L	ł	1)		1 2 7			: : :			•	
Isophorone	50	µg/L	:			•	1	;	8 8 8		;				
2-Methyl naphthalene	NS	µg/L			, , ,			:		9 9 7	:		* * *	•••	
2-Methylphenol	1	µg/L	*		1	+ - -	1	1	8 8 1		;				
4-Methylphenol	1	µg/L	;;		1	ļ	1 1 1			* 1 *	:		• •	:	;
Naphthalene	10	hg/L	ΙŪ	ιU	10	1 U	đΦ	2 U	1 U	20 U	10 U	200 U	50 U	10	30 J
2-Nitroaniline	ъ	hg/L	1	:	ļ			÷	1 5 1					;	
3-Nitroaniline	'n	hg/L		3 7	;	:	1	1	1		•				
4-Nitroaniline	'n	J/gu	;		L L L	:,	1	1	, , ,	1 1		•		:	
Nitrobenzene	0.4	hg/L	;	1 1 1	,	:	6 8 1	1	1	1	1 1 1			•	
2-Nitrophenol	1	hg/L				:	:	:	•	1 1 1	1	•	3		9 2 ±
4-Nitrophenol	1	hg/L	÷	* 7		:	1 4 7	;	:		:	, ,	}	:	
N-Nitrosodiphenylamine	50 ⁽²⁾	hg/L	1 1 1	:	1				1 1 1			•••		:	, , ,
N-Nitrosodi-n-propylamine	SN	μg/L	1	1		÷	1		*					• •	::
Pentachlorophenol	1	hg/L	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		1	:	;		:	1	•	1) ,			
Phenanthrene	50 ⁽²⁾	µg/L	÷								•	1			
Plenol	***	hg/L	÷		:	1 1	;	;		7	;	ł	ł	:	:
Pyrene	50 ⁽²⁾	µg∕L					• • •		;	(• 5 5	, , ,			,
1,2,4-Trichlorobenzene	5	µg/L	1 U	1 U	Π	1 U	4 U	2 U	1 U	20 U	10 U	200 U	50 U	10	50 U
2,4,5-Trichlorophenol	1	µg/L	!	•		:	, , ,	;;;	:	1 4 2	* * *			4 4 4	:
2,4,6-Trichlorophenol	1	µg/L	:	:	1	;	ļ	4 2 1			:		•	;	*

Notes: (I)

Groundwater Effluent Limitations, Class GA Groundwater, NYSDEC TOGS 1.1.1, June 1998. Guidance value. Not analyzed. Detected concentration is estimated. No standard. Compound was not detected at or above the quantitation limit shown. Concentration exceeds criteria.

e ; SN

Э

TABLE 3.2

						TABLE 3.2	12							Page 9 of 12	2
			GRO	GROUNDWATER ANALYTICAL RESULTS -SEMI-VOLATILE ORGANIC COMPOUNDS FEASIBILITY STUDY OLD ERLE CANAL SITE CLYDE, NEW YORK	INALYTICAL C	L RESULTS -SEMI-VOLA FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK	MI-VOLATIL STUDY AAL SITE YORK	E ORGANIC C	COMPOUNDS						
	Sample San	Sample Location: Sample Date:	GP-59 11/21/02	GP-60 11/21/02	EMW-2 6/26/02	EMW-3 6/26/02	EMW-4 6/26/02	EMW-5 6/26/02	MW-1 6/25/02	MW-1S 6/26/02	MW-2B 6/25/02	MW-2S 6/24/02	MW-35 6/25/02	MW-4B 6/25/02	MW-4B 6/25/02 Duplicate
Compound	Criteria ⁽¹⁾	Units													
Acenaplithene	20	hg/L		5 5 1	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Acenaphthylene	SN 5	hg/L	ł		10 U	10 U	10 0	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Anthracene Benzofalanthracene	0.002	µg/L ue/L			101 101	10 U	10 U	10 U	10 U	10 U	10 U 10 U	10 U	10 U	10 U	10 U
Benzo(b)ftuoranthene	0.002	J/Br	:	:	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	101
Benzo(k)fluoranthene	0.002	hg/L	•	;	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Benzo(g.h.i)perylene	SS 🗄	hg/L	• • •	:	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
benzo(a)pyrene hie@_Chforoalhownhunethana	JS "	µg/L лг /I		:	101	101	101	10.0	10 U	10 U	10 U	10 U	10 U	10 U	10 U
bis(2-Chloroethy)/http://disc. bis(2-Chloroethy)/ether		нg/L ug/L	, , , , , ,	1 ± 7 7 1 F	10 U	10 U	10 U	10 U	101	10 [1	0.01	1011	0.01	0 01	10 I
bis(2-Chloroisopropyl)ether	NS	hg/L	:	:	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
bis(2-Ethylhexyl)phthalate	5	µg/L	•••	: ; ;	10 U	10 U	10 U	10 U	10 U	10 U	10 U	. 10 U	10 U	10 U	10 L
4-Bromophenyl pluenyl ether	SN	µg/L	:		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 D
Butyl benzylphthalate	50 ⁽²⁾	hg/L		:	10 U	10 U	10 U	10 U	1]	10 U					
4-Chloroaniline	ۍ ا	hg/L	ļ	6 5 6	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
4-Chloro-3-methylphenoi 2-Chloronanhthalana	SS =	µg/L	; ;		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2-Chlorophenol	- 1	ug/L	;	1	10 U	10 U		10 U	10 U	101	10 [1	101	10 01		101
4-Chlorophenyi phenyl ether	SN	hg/L	ļ		10 U	. U 01	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Chrysene	0.002	µg∕L	, 1 1	1	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Dibenzo(a,h)anthracene	SN	μg/L	;		10 U	10 U	U 01	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Dibenzofuran	SS 5	hg/L	ł	*	10 U	10 U	10 C	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
124-11-butyphinalate 1.2-Dichlorobenzene	<u>,</u>	ng/L		511	<u>e</u> ¦			(c:n	[7	- ;	101		0 D1	10 I	101
1,3-Dichlorobenzene	ŝ	hg/L	1U	5 U			i	:	*	;;	:		:	;	1
1,4-Dichlorobenzene	ę	J/gq	10	5 U							:	, ,		8 6 1	÷
3,3'-Dichlorobenzidine	ı C	hg/L	1 1 1	1	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U
2,4-Dichlorophenol	ω ⁱ	µg/L	•	E 6 5	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Diethyl phthalate	50 ⁽²⁾	µg/L	÷	3	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2,4-Dimethylphenot	50 ⁽²⁾	hg/L	;	:	10 U	10 C	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	[6:0
Dimethyl phthalate	50 ⁽²⁾	µg/L	1 7 7) 4 1	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
4,6-Dinitro-2-methylphenol	SS e	μg/L	:	L 4 1	25 U	250	25 U	25.0	25 U	25 U	25.0	25 U	25 U 21 :	25 U	25 U
2.4 Dinitrophenol	2 u	л <i>а</i> /1	•	,			LI U L		0 07	0.62	2 2 2	0.67	D 62	1 CZ	200
2,6-Dinitrotoluene	ი თ	н5/с µg/L	;		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	0 OT	10 C
Di-n-octyl phthalate	50 ⁽²⁾	µg/L	• • •		10 U	10 U	10 U	10 U	4]	10 U	10 U	10 U	10 L	10 U	10 FL
Fluoranlhene	50 ⁽²⁾	µg/L	:		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 N	10 U	10 U	10 U
Fluorene	50 ⁽²⁾	µg/L		:	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U

.

			GRO	GROUNDWATER ANALYTICAL RESULTS -SEMI-VOLATILE ORGANIC COMPOUNDS FEASIBILITY STUDY OLD ERIE CANAL SITE	ANALYTICAL C	L RESULTS -SEMI-VOLA FEASIBILITY STUDY OLD ERIE CANAL SITE	AI-VOLATILI STUDY AL SITE	E ORGANIC C	OMPOUNDS					3	
						CLYDE, NEW YORK	УОКК								
	Sample San	Sample Location: Sample Date:	GP-59 11/21/02	GP-60 11/21/02	EMW-2 6/26/02	EMW-3 6/26/02	EMW-4 6/26/02	EMW-5 6/26/02	MW-1 6/25/02	MW-1S 6/26/02	MW-2B 6/25/02	MW-25 6/24/02	MW-3S 6/25/02	MW-4B 6/25/02	MW-4B 6/25/02 Duplicate
Compound	Criteria ⁽¹⁾	Units													
Hexachlorobeuzene	0.04	hg/L) 4 1	:	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Hexachlorobutadiene	0.5	hg/L	1U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Hexachlorocyclopentadiene	S	hg/L			10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Hexachloroethane	ŝ	hg/L		:	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Indeno(1,2,3-cd)pyrene	0.002	hg/L		;	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 N	10 U	10 U
Isophorone	20	ng/L	:	1 1 1	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2-Methyl naphthalene	SN	hg/L		*	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 CL
2-Methylphenol	1	µg/L	•	1 1	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 C	10 U	10 U	10 U
4-Methylphenol	1	hg/L	1 1		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 C	10 U	10 U	10 U
Naphthalene	10	µg/L	10	5 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2-Nitroaniline	ŝ	ng/L	;	:	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U
3-Nitroaniline	5	J/gu		,	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U
4-Nitroaniline	5	J∕B⊓			25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U
Nitrobenzeue	0.4	µg/L	: ; ;	• • •	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2-Nitrophenol	1	µg/L			10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
4-Nitrophenol	1	µg∕L	4 3 7		25 UJ	25 UJ	25 UJ	25 UJ	25 UJ	25 UJ	25 UJ	25 UJ	25 UJ	25 UJ	25 UJ
N-Nitrosodiphenylamine	50 ⁽²⁾	µg∕L	:	; ; ;	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 L
N-Nitrosodi-n-propylamine	SN	၂/ ឳព	:	:	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Pentachlorophenol	1	hg/L	* * *		25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U
Phenanthrene	50 ⁽²⁾	µg/L	•		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	101	10 U
Phenol	1	µg/L	;	,	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 C	10 U	10 U	10 C
Pyrene	$50^{(2)}$	µg/L	:	1	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 C
1,2,4-Trichlorobenzene	5	hg/L	1U	5 U	;			,	•	: ; ;	, , ,	1	•	•	:
2,4,5-Trichlorophenol	ш. <i>-</i>	, 1∕Bri		1	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 C	10 U	10 U	10 U
2,4,b-1 richlorophenoi	I	ng/ L	•	;	0.01	10 N	10 N	0.01	10 0	10.0	10.0	0.01	10 N	10 U	0.01

Groundwater Effluent Limilations, Class GA Groundwater, NYSDEC TOGS 1.11, June 1998.
 Guidance value.
 Guidance value.
 Detected concentration is estimated.
 No standard.
 Compound was not detected at or above the U quantitation limit shown.

Page 10 of 12

GROUNDWATER ANALYTICAL RESULTS -SEMI-VOLATILE ORGANIC COMPOUNDS FEASIBILITY STUDY OLD ERIE CANAL SITE

		,	CLYDE, NEW YORK	W YORK						
	Sample San	Sample Location: Sample Date:	MW-4S 6/25/02	MW-55 6/25/02	MW-6S 6/26/02	MW-7B 6/25/02	MW-75 6(24/02	MW-85 6/24/02	MW-95 6/24/02	
Сотрота	Criteria ⁽¹⁾	Units								
Acenaplutiene	20	hg/L	10 U							
Acenaphthylene	NS	μg/L	10 U							
Anthracene	50 ⁽²⁾	hg/L	10 U							
Benzo(a)anthracene	0.002	hg/L	10 U	10 N						
Benzo(b)fluoranthene	0.002	μg/L	10 U	10 U	10 UJ	10 U	10 U	10 U	10 U	
Benzo(k)fluoranthene Benzo(a h theoreticue	0.002 NS	hg/L	10 U	10 U	[0 0]	10 U	10 U	10 0	10 U	
Benzo(a) byrene	Q	нв/с ue/L	10 U		() 01 10 01	101	n or	10 11		
bis(2-Chloroethoxy)methane	ß	7/8d	10 U							
bis(2-Chloroethyl)ether	1	hg/L	10 U							
bis(2-Chloroisopropyl)ether	SN	hg/L	10 U							
bis(2-Ethylhexyl)phthalate	5	hg/L	10 U	9]						
4-Bromophenyi phenyl ether	NS	μg/L	10 U	10 N	10 U					
Butyl benzylphthalate	50 ⁽²⁾	µg/L	10 U							
4-Chloroaniline	ы	hg/L	10 U							
4-Chloro-3-methylphenol	NS	hg/L	10 U							
2-Chloronaphthalene	10	µg/L	10 U							
2-Chlorophenol	-	hg/L	10 U							
4-Chlorophenyl pnenyl ether	SS 3	ng/L	0.01	10 U	10 U	10 U	10 0	10 1	10 U	
Chrysene	0.002	hg/L		10 1	10 U	10 U	101	10 U	10 U	
Dibenzo(a,h)anthracene Dibenzofurna	NS	µg/L	10 1	10 U	[U 0]	10 [10 [10 0	10 U	
Distribution	50	н <u>6</u> /т 1/2н	0.51	101	5 I C	1101		101	1101	
1,2-Dichlorobenzene	5 m	ны/г µg/L	[~ ~ ~		(; ;		2 :			
1,3-Dichlorobenzene	ť	µg∕L	:		*	;	:	ł	\$ \$ 3	
1,4-Dichlorobenzene	ę	hg/L	;	1	1	:) 4 1		1	
3,3'-Dichlorobenzidine	5	µg/L	20 U							
2,4-Dichlorophenol	ທ	µg/L	10 U							
Diethyl pluthalate	50 ⁽²⁾	μg/L	10 U							
2,4-Dimethylphenol	50 ⁽²⁾	µg∕L	10 U	10 U	3]	10 U	10 U	10 U	10 U	
Dimethyl phthalate	50 ⁽²⁾	µg/L	10 U	10 U	10 U	10 U	10 ()	10 N	10 U	
4,6-Dinitro-2-methylphenol	NS	hg/L	25 U	25 U	25 U	, 25 U	25 U	25 U	25 U	
2,4-Dinitrophenol	10	μg/L	25 U							
2,4-Dinitrotoiuene	ധി	hg/L	10 U	10 U	101	10 U	10 U	10 U	10 U	
2,6-Dinitrololuene	ۍ ئ	hg/L	10 U							
Di-n-octyl pluthalate	50 ⁽²⁾	hg/L	10 U	10 U	10 UJ	10 U	10 U	10 U	10 U	
Fluoranthene	50 ⁽²⁾	µg/L	10 U							
Fluorene	50 ⁽²⁾	µg/L	10 U							

Page 11 of 12

GROUNDWATER ANALYTICAL RESULTS -SEMI-VOLATILE ORGANIC COMPOUNDS FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

	Sample Sam	Sample Location: Sample Date:	MW-45 6/25/02	MW-5S 6/25/02	MW-6S 6/26/02	MW-7B 6/25/02	MW-75 6/24/02	MIW-85 6/24/02	MW-9S 6/24/02
Compound	Critería ⁽¹⁾	Units							
Hexachlorobenzene	0.04	ue/L	10 U	101					
Hexaclılorobutadiene	0.5	hg/L	10 U	10 U					
Hexachlorocyclopentadiene	ы	hg/L	10 U	10 U	10 U	10 C	10 U	10 U	10 U
Hexachloroethane	υ	µg/L	10 U	10 U					
Indeno(1,2,3-cd)pyrene	0.002	µg/L	10 U	10 U	10 UJ	10 U	10 U	10 U	10 U
lsophorone	50	hg/L	10 U	10 U					
2-Methyl naphthatene	NS	hg/L	10 U	10 U					
2-Methylphenol	1	µg/L	10 N	10 U	13	10 U	10 U	10 U	10 U
4-Meithylphenol	₩.	ng/L	10 U	10 U	66	10 U	10 U	10 U	10 U
Naphthalene	10	µg∕L	10 U	10 U	4 J	10 U	10 U	10 U	10 U
2-Nitroaniliue	£	hg/L	25 U	25 U					
3-Nitroaniline	5	ng/L	25 U	25 U					
4-Nitroaniline	5	µg/L	25 U	25 U					
Nitrobenzene	0.4	hg/L	10 U	10 U					
2-Nitrophenol	1	hg/L	10 U	10 U					
4-Nitrophenol	1	µg/L	25 UJ	25 UJ					
N-Nitrosodiphenyiamine	50 ⁽²⁾	µg/L	10 U	10 U					
N-Nitrosodi-n-propylamine	NS	µg/L	10 U	10 U					
Pentachlorophenol	1	hg/L	25 U	25 U					
Phenanthrene	50 ⁽²⁾	µg∕L	10 U	10 U	1]	10 U	10 U	10 U	10 U
Plienol	1	hg/L	10 U	10 U	5]	10 U	10 U	10 U	10 U
Pyrene	50 ⁽²⁾	J/gu	10 U	10 U					
1,2,4-Trichlorobenzene	ŝ	µg/L	••••	; ; ;					
2,4,5-Trichlorophenol	I	μg/L	10 U	10 U					
2,4,6-Trichlorophenol	1	ៗ/នំ៧	10 U	10 U					

Notes: 3

Groundwater Effluent Limitations, Class GA Groundwater, NYSDEC TOGS 1.1.1, June 1998.

Guidance value. Not analyzed. Detected concentration is estimated. No standard. SN

Compound was not detected at or above the quantitation limit shown. Concentration exceeds criteria. Э

÷0
3
11
السر
B
≺.
E.

GROUNDWATER ANALYTICAL RESULTS-PCBs FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

MW-3S 6/25/02		0.48 U	0.48 U 0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	30 MM	6/24/02		0.47 U						
MW-2S 6/24/02		0.48 U	0.48 U 0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	30 M/W	6/24/02		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U `	0.5 U	0.5 U
MW-2B 6/25/02		0.47 U	0.47 U 0.47 U	0.47 U	0.47 U	0.47 U	0.47 U	SZ TAI M	6/24/02		0.47 U						
MW-1S 6/26/02		0.48 U	0.48 U 0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	MM.7R	6/25/02		0.47 U						
MW-1 6/25/02		0.47 U	0.47 U 0.47 U	0.47 U	0.47 U	0.47 U	0.47 U	S9-MJW	6/26/02		0.48 UJ						
EMW-5 6/26/02		0.48 U	0.46 U 0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	MW-5S	6/25/02		0.5 U						
EMW-4 6/26/02		0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	MW-4S	6/25/02		0.47 U						
EMW-3 6/26/02		0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	MW-4B	6/25/02	Duplicate	0.47 U						
EMW-2 6/26/02		0.48 U 0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	· 0.48 U	MW-4B	6/25/02		0.47 U						
Sample Location: Sample Date:	Units	µg/L ue/I	-1/8н рв/L	µg∕L	µg/L	µg/L	µg/L	Sample Location:	Sample Date:	Units	µg/L	hg/L	J/Brl	µg/L	µg/L	µg/L	μg/L
Samp. Se	Criteria ⁽¹⁾	0.09	0.09	0.09	0.09	0.09	0.09	Sampl	Su	Criteria ⁽¹⁾	0.09	0.09	0.09	0.09	0.09	0.09	0.09
	Сотронид	Aroclor 1016 Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclar 1260			Сотроинд	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260

Notes: (1) Gr

Groundwater Effluent Limitations, Class GA Groundwater

NYSDEC TOGS 1.1.1, June 1998.

Ч Г р

Detected concentration is estimated. Compound was not detected at or above the quantitation limit shown.

•

GROUNDWATER ANALYTICAL RESULTS-PESTICIDES FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

Notes:

- Groundwater Effluent Limitations, Class GA 6
- Groundwater, NYSDEC TOGS 1.1.1, June 1998. Detected concentration is estimated.
 - Non-detect.
 - UN S D
- No standard. Compound was not detected at or above the quantitation limit shown.

GROUNDWATER ANALYTICAL RESULTS-PESTICIDES FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

	Sample . Sam	Location: ple Date:	MW-4B 6/25/02	MW-4B 6/25/02	MW-45 6/25/02	MW-5S 6/25/02	MW-6S 6/26/02	MW-7B 6/25/02	MW-7S 6/24/02	MW-85 6/24/02	MW-9S 6/24/02
	(I)			Duplicate							
сотронна	nuana.	units									
Aldrin	QN	µg/L	0.047 UJ	0.047 UJ	0.048 UJ	0.05 UJ	0.048 UJ	0.048 U	0.048 U	0.047 U	0.05 U
alpha-BHC	SN	hg/L	0.047 U	0.047 U	0.048 U	0.05 U	0.048 UJ	0.048 U	0.048 U	0.047 U	0.05 U
beta-BHC	SN	hg/L	0.047 U	0.047 U	0.048 U	0.05 U	0.048 UJ	0.048 U	0.048 U	0.047 U	0.05 U
gamma-BHC (Lindane)	NS	hg/L	0.047 U	0.047 U	0.048 U	0.05 U	0.048 UJ	0.048 U	0.048 U	0.047 U	0.05 U
delta-BHC	SN	hg/L	0.047 U	0.047 U	0.048 U	0.05 U	0.048 UJ	0.048 U	0.048 U	0.047 U	0.05 U
Chlordane	ŝ	hg/L	0.047 U	0.047 U	0.048 U	0.05 U	0.048 UJ	0.048 U	0.048 U	0.047 U	0.05 U
4,4'DDD	0.3	hg/L	0.047 U	0.047 U	0.048 U	0.05 U	0.048 UJ	0.048 U	0.048 U	0.047 U	0.05 U
4,4'DDE	0.2	µg/L	0.047 U	0.047 U	0.048 U	0.05 U	0.048 UJ	0.048 U	0.048 U	0.047 U	0.05 U
4,4'-DDT	0.2	hg/L	0.047 U	0.047 U	0.048 U	0.05 U	0.048 UJ	0.048 U	0.048 U	0.047 U	0.05 U
Dieldrin	0.004	hg/L	0.047 U	0.047 U	0.048 U	0.05 U	0.048 UJ	0.048 U	0.048 U	0.047 U	0.05 U
Endosulfan I	SN	µg/L	0.047 U	0.047 U	0.048 U	0.05 U	0.048 UJ	0.048 U	0.048 U	0.047 U	0.05 U
Endosulfan II	NS	hg/L	0.047 U	0.047 U	0.048 U	0.05 U	0.048 UJ	0.048 U	0.048 U	0.047 U	0.05 U
Endosulfan sulfate	SN	hg/L	0.047 U	0.047 U	0.048 U	0.05 U	0.048 UJ	0.048 U	0.048 U	0.047 U	0.05 U
Endrin	Ð	hg/L	0.047 U	0.047 U	0.048 U	0.05 U	0.048 UJ	0.048 U	0.048 U	0.047 U	0.05 U
Endrín aldehyde	5	hg/L	0.047 U	0.047 U	0.048 U	0.05 U	0.048 UJ	0.048 U	0.048 U	0.047 U	0.05 U
Endrin ketone	ъ	hg/L	0.05 U	0.05 U	0.05 U	0.05 U	0.05 UJ	0.05 U	0.05 U	0.05 U	0.05 U
Heptachlor	0.04	ng/L	0.047 U	0.047 U	0.048 U	0.05 U	0.048 UJ	0.048 U	0.048 U	0.047 U	0.05 U
Heptachlor epoxide	0.03	ng/L	0.047 U	0.047 U	0.048 U	0.05 U	0.048 UJ	0.048 U	0.048 U	0.047 U	0.05 U
Methoxychlor	35	µg/L	0.047 U	0.047 U	0.048 U	0.05 U	0.048 UJ	0.048 U	0.048 U	0.047 U	0.05 U
Toxaphene	0.06	hg/L	0.094 U	0.094 U	0.097 U	0.1 U	0.096 UJ	0.096 U	U 790.0	0.095 U	0.1 U

Notes: (1)

- Groundwater, NYSDEC TOGS 1.1.1, June 1998. Groundwater Effluent Limitations, Class GA
 - Detected concentration is estimated. Ļ
 - Non-detect.
 - Ωn Si ⊃

.

No standard. Compound was not detected at or above the quantitation limit shown.

	EMW-5	8/25/2005*		;	:	;	;	ł	;	;	:	;	ł	12800	*	ŀ	365	1	ł	1	1	1	1	1	I	ł
	EMW-5	6/26/02		21.3 U	2.3 U	3.1 B	250 J	0.3 U	0.4 U	136000 J	0.7 U	0.7 U	U 0.0	14700 J	U 6.1	20000]	418]	0.092 UJ	0.9 U	6910 J	4.8 UJ	0.7 U	57000 J	4.2 U	0.6 U	4 B
	EMW-4	12/6/06		ł	ł	ł	ł	I	ł	*	ł	;	1	;	}	ł	1	1	***	1	ł	:	59200		ł	ł
	EMW-4	8/25/2005*		1	ł	;	;	1	ł	1	2.3	1	ł	32100	}	ł	428	1	;	1	1	ł	1	;	1	ł
	EMW-4	6/26/02		21.3 U	2.3 U	8.4 B	342]	0.3 U	0.4 U	108000 J	0.7 U	0.7 U	0.9 U	27900 J	1.9 U	21600 J	332 J	0.092 UJ	U 6.0	4690 BJ	4.8 UJ	0.7 U	34100 J	4.2 U	0.6 U	6.7 B
ALS	EMW-4	8/25/2005*		1	ł	;	ł	:	;	I	I	ł	ł	6670	ł	I	328	1	:	ł	I	1	ł	1	ł	
TOTAL MET/	EMW-3	12/1/06		ł	ł	1	ł	ł	:	ł	١	:	}	1	1	1	!	ł	I	;	I	1	30900	-	ł	:
ANALYTICAL RESULTS. FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK	EMW-3	6/26/02		87.1 B	2.3 U	2.4 U	193 BJ	0.3 U	0.4 U	136000 J	0.7 U	4.7 B	1.3 B	1910 J	1.9 U	20700 J	170 J	0.092 UJ	0.9 U	5670]	4.8 UJ	0.7 U	28300 J	4.2 U	0.6 U	17.4 B
R ANALYTIC FEASIBILI OLD ERIE (CLYDE, N	EMW-2	11/30/06		ı	ł	ł	ł	ł	I	;	I	ļ	ł	1	ł	ł	:	3	1	1	ł	}	65600	1	I	ł
GROUNDWATER ANALYTICAL RESULTS-TOTAL METALS FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK	EMW-2	8/25/2005* Duuliaata	nupricate	ł	ł	ł	ł	I	ł	ŧ	ł	I	ł	15000	ł	ł	2690	•	1	;	ł	ł	ł	I	ł	ł
υ.	EMW-2	8/25/2005*		;	ł	ł	ł	ł	1	I	1	I	1	14700	I	ł	2560	8	:	1	ł	ł	ł	I	I	I
	EMW-2	6/26/02		21.3 U	2.3 U	13.3	115 BJ	0.3 U	0.4 U	109000 J	0.7 U	0.7 U	U 6.0	13400 J	1.9 U	15000 J	2740 J	0.092 UJ	U 6.0	1640 BJ	4.8 UJ	0.7 U	90100 J	4.2 U	0.6 U	3.6 B
	Sample Location:	Sample Date:	Units	µg/L	hg/L	hg/L	μg/L	µg/L	hg/L	hg/L	hg/L	µg∕L	hg/L	µg/L	µg/L	hg/L	µg/L	hg/L	µg/L	µg/L	µg/L	µg∕L	hg/L	µg/L	hg/L	μg/L
	San		Criteria ⁽¹⁾	SN	ю	25	1000	e	IJ	SN	50	SN	200	300	25	35000	300	0.7	100	SN	10	50	20000	1	SN	2000
			Constituent	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc

Notes: (1)

- Groundwater Effluent Limitations, Class GA Groundwater, NYSDEC TOGS 1.1.1, June 1998. Not analyzed.

 - Results are for dissolved m * 1
- Detected concentration is estimated. No standard. Value greater than or equal to the instrument detection limit, but less that the quantitation limit.
 - U NS
- Compound was not detected at or above the quantitation limit shown. Concentration exceeds criteria.

TABLE 3.5

ņ
<u>e</u>
щ
B
Υ.
F

Page 2 of 5

GROUNDWATER ANALYTICAL RESULTS-TOTAL METALS FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

	Sam	Sample Location:	EMW-5	I-MW	I-MW	SI-MW	SI-MW	MW-1S	SI-WW	MW-2S	MW-2S	MW-2S	MW-2B	MW-2B
		Sample Date:	12/1/06	6/25/02	12/6/06	6/26/02	8/25/2005*	11/29/06	11/29/06 Dunlicate	6/24/02	8/25/2005*	11/29/06	6/25/02	8/25/2005*
Constituent	Criteria ⁽¹⁾	Units												
Aluminum	SN	hg/L	;	68.6 B	1	21.3 U	1	ł	;	78.4 B	;	ł	188 B	:
Antimony	3	µg/L	;	2.3 B	1	2.3 U	1	1	I	2.3 U	;	1	2.3 U	1
Arsenic	25	hg/L	I	2.4 U	ł	2.4 U	1	ł	ţ	5.3 B	\$	ł	2.4 U	ł
Barium	1000	hg/L	;	88.3 BJ	}	101 BJ	ł	ł	1	126 BJ	;	;	90.6 BJ	1
Beryllium	ю	µg/L	ł	0.3 U	ł	0.3 U	ł	\$	ł	0.46 B	;	I	0.77 B	ł
Cadmium	ŝ	µg∕L	I	0.4 U	1	0.4 U	ł	ł	ł	0.4 U	ł	ł	0.4 U	;
Calcium	NS	hg/L	ł	45100 J	I	101000 J	1	I	ł	114000 J	1		540000 J	;
Chromium	50	hg/L	ł	0.7 U	ł	0.7 U	ł	;	;	0.7 U	ł	1	1.4 B	;
Cobalt	NS	µg∕L	ł	0.7 U	ł	0.7 U	I	:	;	1 B	!	1	0.7 U	:
Copper	200	µg∕L	ł	0.9 U	1	1.1 B	ł	;	I	1.2 B	;	1	D 6.0	ł
Iron	300	µg/L	ł	49.4 BJ	ł	19.7 BJ	100 U	I	1	683 J	819	t	133 J	291
Lead	25	hg/L	1	1.9 U	ł	1.9 U	;	1	1	U 0.1		ŧ	U 6.1	;
Magnesium	35000	hg/L	ł	10300 J	ł	28200 J	1	1	I	8300 J	;	:	54100 J	1
Manganese	300	µg/L	1	110 J	;	1980 J	2430	:	1	444 J	366	ł	31.8 J	83.1
Mercury	0.7	hg/L	ł	0.092 UJ	ŧ	0.092 UJ	1	1	;	0.092 UJ	;	1	0.092 UJ	;
Nickel	100	µg/L	1	0.9 U	1	1.6 B	I	;	I	0.9 U	;	1	1.1 B	1
Potassium	NS	ng/L	1	2460 BJ	ł	3120 BJ	1	1	I	7170 J	;	1	76800 J	;
Selenium	10	µg/L	ł	4.8 U	1	4.8 UJ	I	ł	I	4.8 U	;	1	4.8 U	;
Silver	50	ng/L	ł	0.7 U	;	0.7 U	1	1	ł	0.7 U	;	ł	0.7 U	ł
Sodium	2000] 1/8rl	55000	1310 BJ	21400	60800]	1	103000	103000	43300 J	;	61800	138000 J	ł
Thallium	1	hg/L	I	4.2 U	1	4.2 U	1	:	;	4.2 U	1	1	4.2 U	;
Vanadium	NS	hg/L	I	0.72 B	ł	0.6 U	١	:	ł	1.6 B	;	ł	2.2 B	:
Zinc	2000	hg/L	1	2.9 B	ł	2.9 B	ł	ł	I	3.8 B	;	ł	13.8 B	:

Notes: (1)

- Groundwaler Effluent Limitations, Class GA Groundwater, NYSDEC TOGS 1.1.1, June 1998. Not analyzed. Results are for dissolved

 - Value greater than or equal to the instrument detection limit, but less د . ۱ . .
- that the quantitation limit. Detected concentration is estimated. No standard.
 - г _SS р
- Compound was not detected at or above the quantitation limit shown. Concentration exceeds criteria.

	MW-4B 12/5/06		;	: :	1	1	1	ţ	ţ	ł	;	;	1	1	1	1	ł	ł	ł	ł	95200		:	;
	MW-4B 8/25/2005*		:		1	ť	:	:	:	ļ	1	539		:	114	:	;	1	1	ł	;	ł	;	*
	MW-4B 6/25/02	Dupucate	72.8 B	2.4 []	28.2 BJ	0.4 B	0.4 U	614000 J	0.7 U	0.7 U	0.9 U	653 J	1.9 U	52900 J	95.5]	0.092 UJ	0.9 U	5700 J	4.8 UJ	0.7 U	126000 J	4.2 U	0.6 U	3,9 B
	MW-4B 6/25/02		49.2 B	24 U	27.4 BJ	0.3 U	0.4 U	583000 J	0.7 U	0.7 U	U 6.0	702 J	1.9 U	53300 J	96.1 J	0.092 UJ	0.9 U	5560 J	4.8 U	0.7 U	120000 J	4.2 U	0.64 B	5.9 B
	MW-4S 12/5/06												-								10000 U			
ST	MW-45 8/24/2005*		ł		I	;	ł	ł	ł	1	-	2340	l		765	2	1	1	ł	ł	ł	I	;	ł
FOTAL META	MW-4S 6/25/02		345 10 B	2.9B	111 BJ	0.3 U	0.4 U	137000 J	0.7 U	2.1 B	0.9 U	1480 J	U 6.1	25500 J	1800 J	0.092 UJ	1.4 B	3730 BJ	4.8 U	0.7 U	8850]	4.2 U	1.7 B	6.6 B
GROUNDWATER ANALYTICAL RESULTS-TOTAL METALS FEASIBILITY STUDY OLD ERLE CANAL SITE CLYDE, NEW YORK	MW-3B 12/5/06		ł	1	ł	I	I	ł	;	1	1		, ,	:	;	;	ł	ł	ł	:	192000	:	1	ł
ANALYTIC FEASIBIL: OLD ERIE (CLYDE, N	MW-3S 12/5/06		1	ł	I	ł	;	I	ł	1	ł	;	1	ł	I	ı	:	ł	;	I	11200	1	1	ł
OUNDWATER	MW-3S 8/25/2005*		:	ł	;	I	ł	ł	ł	ł	:	5190	1	•	474	ł	I	:	1	ł	1	ł	1	ł
GR	MW-3S 6/25/02		30.7 B 2 3 11	2.4 U	246]	0.3 U	0.4 U	168000 J	0.7 U	0.84 B	0.9 U	5070 J	1.9 U	37300 J	462 J	0.092 UJ	0.9 U	3200 BJ	4.8 U	0.7 U	5280 J	4.2 U	0.82 B	3.2 B
	MW-2B 11/29/06		: :	1	I	ł	ł	1	ł	ł	;	;	1	;	ł	ł	:	ł	ł	-	70600	ł	ł	1
	Sample Location: Sample Date:	Units	µg/L	ne/ - µg/L	hg/L	µg∕L	µg∕L	µg∕L	µg/L	ng/L	µg/L	hg/L	µg/L	µg/L	µg/L	hg/L	hg/L	µg/L	µg/L	µg/L	hg/L	µg/L	J/Bri	hg/L
	S Samp	Criteria ⁽¹⁾	SN &	25	1000	ю	រោ	NS	50	NS	200	300	25	35000	300	0.7	100	NS	10	50	20000	1	SN	2000
		Constituent	Aluminum Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Polassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc

Notes: (1)

- Groundwater Effluent Limitations, Class GA Groundwater, NYSDEC TOGS 1.1.1, June 1998. Not analyzed. Results are for dissolved

 - :* =
- Value greater than or equal to the instrument detection limit, but less that the quantitation limit. Detected concentration is estimated. No standard.
 - U NS U
- Compound was not detected at or above the quantitation limit shown. Concentration exceeds criteria.

GROUNDWATER ANALYTICAL RESULTS-TOTAL METALS FEASIBILITY STUDY
--

Page 4 of 5

	S2-MW	8/26/2005*			:	ł	:	;	ł	;	:	:		;	100 U	;	:	495	;	;	;	;	;	ł	:	;	;
	SZ-WW				347	3 B	2.4 U	94.5 BJ	0.42 B	0.4 U	[000661	1.1 B	1 B	2.8 B	712 J	U 6.1	37300 J	652 J	0.092 UJ	3,2 B	2910 BJ	4.8 U	0.7 U	50200 J	4.2 U	1.2 B	7.6 B
	MW-6B	12/6/06			;	1	ł	;	ł	;	1	ł	ł	;	:	;	-	1	1	1	1	ł	t .	73600	1	1	1
	89-MW	12/6/06			;	ł	1	;	1	ł	ł	1	ł	ł	ł	ł	I	ł	;	ł	I	ł	ł	67800	1	;	;
	S9-MW	8/24/2005*			**	١	ł	ł	I	1	ł	I	I	ł	55000	:	1	2420	ł	1	I	ł	1	;	1	ł	ł
1	89-MW	6/26/02			309	2.3 U	17.4	286 J	0.3 U	0.4 U	231000 J	0.7 U	3.8 B	U 6.0	59500 J	U 6.I	34400 J	2800 J	0.092 UJ	11.3 B	8810 J	4.8 UJ	0.7 U	93600 J	4.2 U	0.6 U	11.5 B
	MW-5B	12/6/06			ł	I	I	I	ł	I	I	1	I	I	1	•	1	1	1	ł	1	ł	ł	166000	ł	1	;
Y STUDY ANAL SITE W YORK	MW-5S	12/5/06			;	ł	1	ł	ł	ţ	I	I	;	;	ł	1	ł	I	ł	I	1	:	1	10000 U	1	ł	ł
FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK	MW-5S	8/25/2005*			1	ł	ł	1	ł	ł	ł	ł	ł	;	858	1	ł	1970	1	ł	ł	ł	1	1	ł	ł	ł
	MW-5S	6/25/02			51.9 B	2.4 B	2.4 B	107 BJ	0.3 U	0.4 U	150000]	0.7 U	1.8 B	0.9 U	9110 J	2.5 B	24300 J	3970 J	0.092 UJ	0.9 U	1440 B	4.8 U	0.7 U	2430 BJ	4.2 U	0.6 U	7.6 B
	MW-4C	12/5/06	Duplicate		1	1	ł	ł	1	ł	ţ	;	I	Ē	;	1	;	;	ŧ	ł	I	ł		239000	ł	ł	ł
	MW-4C				ł	I	ł	I	:	ł	:	1	ł	1	ł	ł	1	;	1	1	ł	1		244000	ł	1	1
	ple Location:	Sample Date:		Units	µg∕L	hg/L	µg/L	µg/L	µg/L	µg/L	hg/L	µg/L	µg/L	µg/L	hg/L	hg/L	hg/L	hg/L	hg/L	μg/L	µg/L	hg/L	μg/L	hg/L	hg/L	hg/L	hg/L
	Sanı			Criteria ⁽¹⁾	SN	ю	25	1000	ŝ	പ	NS	50	NS	200	300	72	35000	300	0.7	100	SN	10	50	20000	1	SN	2000
				Constituent	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc

Notes:

- Groundwater Effluent Limitations, Class GA Groundwater, NYSDEC TOGS 1.1.1, June 1998. Not analyzed. Results are for dissolved

 - : * ¤
- Value greater than or equal to the instrument detection limit, but less that the quantitation limit. Detected concentration is estimated. No standard.

 - S ⊃
- Compound was not detected at or above the quantitation limit shown. Concentration exceeds criteria.

3.5
щ
BL
<
H

Page 5 of 5

GROUNDWATER ANALYTICAL RESULTS-TOTAL METALS FEASIBILITY STUDY OLD ERIE CANAL SITE

	MW-115	11/30/06		:	;	ł	;	;	;	:	1	;	1	;	ł	ł	:	:	;	;	;	1	10900	;	:	ſ
	MW-10B	11/30/06		1	;	1	ł	;	**	:	ł	;	:	;	I	t	*	ł	**	;	ŧ	:	568000	;	I	:
	S6-MW	11/30/06		;	ł	1	;	ł	;	ł	;	;	***	;	;	ł	1	:	;	;	1	;	58900	-	ŧ	1
	S6-WW	8/24/2005*		ł	ţ	;	ŧ	;	;	1	**	ł	1	100 U	;	ł	242	ł	;	ţ	ł	ł	¦	1	1	3
	Se-WIM	6/24/02		1300	2.3 B	2.4 U	88.7 BJ	0.47 B	0.4 U	146000 J	2.3 B	1.4 B	4.2 B	1320 J	2.B	28900 J	429 J	0.092 UJ	3.9 B	1700 BJ	4.8 U	0.7 U	56300 J	4.2 U	3.4 B	9.4 B
	MW-85	11/30/06		I	ł	1	ł	I	ł	;	;	;	ł	1	•	ł	1	'	I	ł	ł	ł	158000	;	I	ł
	MW-85	8/24/2005*		ł	ł	1	I	1	ł	I	:	I	ł	223	ţ	I	126	ł	1	ł	I	1	ł	1	:	ł
CLYDE, NEW YORK	MW-85	6/24/02		207	3.6 B	2.4 U	117 BJ	0.56 B	0.4 U	164000 J	0.98 B	0.7 U	0.9 U	466 J	1.9 U	50900 J	126 J	0.092 UJ	2.8 B	4130 BJ	4.8 U	0.7 U	215000 J	4.2 U	1 B	3 B
CLYDE, N	MW-7B	12/4/06		ł	1	1	ł	ł	I	ł	I	ł	;	ł	1	1	1	ł	ł	ł	:	3	90600	ł	ł	1
	MW-7B	8/26/05		ł	;	ł	ł	1	ł	I	1	ł	1	25700	1	781	l	ł	1	ł	ł	ł	لیست ا	ł	ł	1
	MW-7B	6/25/02		123 B	2.3 U	7.2 B	14.1 BJ	0.66 B	0.61 B	566000 J	0.89 B	0.7 U	0.9 U	636 J	1.9 U	110000 J	144 J	0.092 UJ	U 6.0	10500 J	4.8 U	0.7 U	76700 J	4.2 U	0.77 B	6.1 B
	ST-WM	12/4/06		ł	1	ł	ł	I	ł	I	I	:	;	1	1	;	1	;	I	ł	1	-	37700	E e	;	ł
	Sample Location:	Sample Date:	Units	µg/L	µg/L	µg∕L	hg/L	hg/L	hg/L	hg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg∕L	hg/L	hg/L	hg/L	µg∕L	hg/L	µg/L	hg/L	µg/L	µg∕L	hg/L
	Sam	0,	Criteria ⁽¹⁾	SN	б	25	1000	ĥ	ъ	NS	50	SN	200	300	25	35000	300	0.7	100	SN	10	50	2000	1	NS	2000
			Constituent	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc

Notes: Ξ

- Groundwater Effluent Limitations, Class GA Groundwater, NYSDEC TOGS 1.1.1, June 1998. Not analyzed. Results are for dissolved
- Value greater than or equal to the instrument detection limit, but less that the quantitation limit. Detected concentration is estimated. No standard. ¦ ∗ m

 - U SS D
- Compound was not detected at or above the quantitation limit shown. Concentration exceeds criteria.

CRA 035048 (2)

			0	FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK	STUUY VAL SITE / YORK						
	Sample Location: Sample Date:	MW-1 6/25/02	MW-1 12/6/06	MW-1S 6/26/02	MW-15 5/28/03	MW-1S 8/25/05	MW-1S 11/29/06	MW-1S 11/29/06 Duvlicate	MW-2S 6/24/02	MW-25 8/25/05	MW-2S 11/29/06
Constituent	Units							- -			
Chloride	mg/L	ł	24.3	75.4	173	173	182	182	26.3	52.2	21.5
Cyanide (total)	µg/L	10 U	I	10 U	I	ł	1	ł	10 U]	ł
Conductivity	hmhos/cm	I	۱	922	1220	ł	1	ļ	754	1	***
Nitrate (as N)	mg/L	I	0.11 U	0.22 J	0.5U	0.16	0.11 U	0.11 U	0.05 UJ	0.14	0.33
Nitrogen, Nitrate & Nitrite	μg/L	1	0.10 U		1	I	0.10 U	0.10 U		-	0.33
Nitrogen, Nitrite	µg/L	1	0.010 U		I	I	0.010 U	0.011	-	l	0.010 U
pH (water)	S.U.	ļ		6.98	6.81	ļ	ł		6.94	ł	***
Dissolved Organic Carbon (DOC)	mg/L	ł	6.4	2.1	2.26	1.6	1.0 UJ	4.6]	2.2	1.0 U	2.2
Sulfate	mg/L		12.7	26.7	25.6	29.3	34.9	35.1	7.7	20 U	10.4
Sulfide	ng/L	ł	2.0 U	1 U	1.1	I	2.0 U	2.0 U	1 U]	2.0 U
Alkalinity, Total(As CaCO3)	mg/L		275	359	391	377	374	460	366	545	441
Turbídity	ntu	1	***	5.8	0.960	I	I	1	3.8		1
Ethane	hg/L	ł	10.4	9.6]	7.3	3.6	7.69	11.0	2 UJ	0.10 U	0.10 U
Ethene	µg/L	ł	0.1 U	2 UJ	1U	0.23	0.38	0.46	2 UJ	0.10 U	0.10 U
Methane	μg/L	ł	897	26]	13	4.07	6.88	9.54	13]	106	206
Field Tested											
Iron II	mg/L	0.0	0.0	1	0.0	I	2.5	-	0.9	;	3.0
Redox Potential	mg/L	254.6	76	277.6	-42.0	59.0	31	ł	-10.9	-84	21
Temperature	ပံ	20.01	14.26	16.63	12.40	21.14	14.58	I	20.48	25.83	15.86
Dissolved Oxygen	mg/L	0.63	1.59	0.69	2.99	2.56	1.19	1	0.70	4.68	1.00
Hq	S.U.	7.44	7.78	6.21	6.82	6.77	7.90	ł	6.89	6:69	8.02
Turbidity	ntu	3.90	0.0	4.21	0.76	>999	4.8	l	3.10	44.50	10.0
Specific Conductivity	µS/cm	1	1	ł]	1270	****	I	I	1130	1
Iron (Dissolved)	mg/L	1	1	1	I	<0.05	I	1	ł	1.0	
Nitrate	mg/L	•		1	***	<2.5	1	1	1	<2.5	ł
Sulfite	mg/L	1	1	1	ł	<2.0	-	ł	1	<2.0	I
Manganese (Dissolved)	mg/L	I	1	ł	ļ	2.0	ţ	I	I	<0.1	ł

Notes: Þ

Compound was not detected at or above the quantitation limit shown. Not analyzed. Detected concentration is estimated. Nephelometric turbidity units.

l T utu

TABLE 3.6

GROUNDWATER ANALYTICAL RESULTS-WET CHEMISTRY FEASIBILITY STUDY

Revised: 3/21/07

				H	TABLE 3.6						Pag	Page 2 of 8
			GROUNDWA	GROUNDWATER ANALYTICAL RESULTS-WET CHEMISTRY FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK	ANALYTICAL RESULTS FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK	IS-WET CHEN ל TE	AISTRY					
	Sample Location: Sample Date:	MW-2B 6/25/02	MW-2B 8/25/05	MW-2B 11/29/06	MW-3S 6/25/02	MW-3S 8/25/05	MW-3S 12/5/06	MW-3B 12/5/06	MW-4S 6/25/02	MW-4S 5/29/03	MW-45 8124/05	MW-45 12/5/06
Constituent	Units											
Chloride	mg/L	60.7	74.8	57.4	3.9	20 U	10.4	104	7.5	5.42	34.5	12.8
Cyanide (total)	μg/L	10 U	I		10 U	ļ	I	ł	10 U	NA		***
Conductivity	hmhos/cm	2390	1	ł	987	I	ł	ł	799	763		ł
Nitrate (as N)	mg/L	0.05 UJ	0.11 U	U 11.0	0.05 UJ	0.11 U	0.35	0.11 U	0.19 J	0.5U	0.11 U	0.11 U
Nitrogen, Nitrate & Nitrite	μg/L		1	0.10 U	1	1	0.35	0.10 U	1	l	1	0.10 U
Nitrogen, Nitrite	µg/L	1	ł	0.010 U	1	1	0.010 U	0.010 U	I	1	1	0.010 U
pH (water)	S.U.	8.73		ł	6.83	I	I	I	7.14	7.02	1	
Dissolved Organic Carbon (DOC)	mg/L	4.5	1.8	5.1	5.6	2.0	2.1	1.1	3.6	4.62	1.8	4.3
Sulfate	ng/L	1150	983	1140	64.4	20 U	21.3	2090	77.6	74.7	30.0	42.2
Sulfide	mg/L	1 U		2.0 U	1U	ł	2.0 U	2.0 U	ΠU	IU	ł	2.0 U
Alkalinity, Total(As CaCO3)	mg/L	57	135	128	487	487	462	63.4	358	358	376	393
Turbidity	ntu	1 U			35.1	1	I	ł	19.3	29.7	١	I
Ethane	µg/L	0.46]	0.27	0.13	2 UJ	0.10 U	0.10 U	2.3	5.4 UJ	4.5	2.5	0.12
Ethene	µg/L	0.64]	0.10	0.10 U	2 UJ	0.11	0.10 U	16.2	13 UJ	12	2.9	0.1 U
Methane	µg/L	1.8 J	5.16	2.98	27 UJ	408	6.12	24.4	43 UJ	34	48.4	6.43
Field Tested												
Iron II	mg/L	0.0	I	1,5	6.0	***	0.0	0.0	1.3	1.6		0.5
Redox Potential	mg/L	200.8	-139	-20	-31.6	-116	-5.0	-53	-35.0	-15.2	-69	46
Temperature	ပံ	15.43	22.98	17.84	14.02	21.50	11.19	11.24	13.56	60.6	15.08	12.60
Dissolved Oxygen	mg/L	1.30	5.00	2.07	0.69	0.17	1.91	0.00	0.55	1.39	0.00	1.20
pH	S.U.	10.33	7.40	7.36	6.09	7.28	9.13	7.61	5.18	7.04	7.09	9.84
Turbidity	ntu	112.00	40.4	264.0	1.19	5.20	0.0	62	45.50	11.90	2.00	0.0
Specific Conductivity	μS/cm		1680.0	I	1	767.0	1	ł	I	I	688	ļ
Iron (Dissolved)	mg/L	ł	0.9	ł	ł	7.0	ļ	ļ	ł	I	2.0	I
Nitrate	mg/L	ļ	<2.5	ł	ł	<2.5	I	ł	ł	1	<2.5	ł
Sulfite	mg/L	1	<2.0	1	!	<2.0	ł	1	1	ł	<2.0	1
Manganese (Dissolved)	mg/L		<0.1	1	***	0.9	I	1	-	-	0'0	ł

Compound was not detected at or above the quantitation limit shown. Not analyzed. Detected concentration is estimated. Nephelometric turbidity units.

) –

CRA 035048 (2)

TABLE 3.6

e 2 of 8 Рас

RY	MW-4C MW-4C MW-5S MW-5S MW-5B 12/5/06 12/5/06 6/25/02 8/25/2005 12/5/06 12/6/06 Duplicate	256 2.4 20U 2.0U 10U	829 0.11 U 0.05 UJ 0.11 U 0.11 U	0.10 U 0.10 0.10 0.10 0.10 0.00 0.010 0.010 0.000 0.010 0.000 0.010 0.000 0.010 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	10.7	1.0 U 1.0 U 4.2 4.2 1.9 1.0 U 1710 1790 33.1 20 U 12.3 1840	2.0 U 1U 2.0 U	518 739	106	2 UJ 0.14 0.10 U	4.46 J 14 UJ 94.2		1.0 1.8 0.5 1.0	-8338.7 -39 10 128	9.59 12.83 19.71 9.83 11.43	0.71 0.10	5.56	0.0 0.00 37.0 0.0 >999	752	-	•		
LTS-WET CHE DY SITE KK	MW-4B 12/5/06	187	0.11 U	0.10 U 0.010 U	I	2.8 1150	2.0 U	361	1	60.0 142	287		0.5	43	11.90	0.00	6.67	0.0	1	ł	1	ł	ł
GROUNDWATER ANALYTICAL RESULTS-WET CHEMISTRY FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK	MW-4B 8/24/05	193 	 U 11.0			2.7 1030	1	386	1	65.8 1 21	294			-80	12.80	0.00	6.92	61.50	2940	0.7	<2.5	<2.0	<0.1
ATER ANAL FEAS OLD F CLY	MW-4B 5/29/03	207 NA	0.5U		6.76	7.23 991	1U	401	2.30	270	1200		1.0	-62.7	10.71	1.89	6.87	4.06	•	I		1	I
GROUNDW	MW-4B 6/25/02 Duplicate	204 10 U	20 3 00 0.05 UJ		7.01	4.2 938	1 U	378	5.2	200 DJ	1600 DJ		I	I	I	I	ł		***	I	1	1	***
	MW-4B 6/25/02	204 10 U	0.05 UJ	; ;	6.92	4 965	1 U	382	5.9	430 DJ	1400]		1.0	41.8	13.10	0.55	5.69	1.92	ł	***		ł	ł
	Sample Location: Sample Date: Units	mg/L J/gr	purutos/ cm mg/L	µg/L µg/L	S.U.	mg/L mg/L	mg/L	mg/L	ntu	µg/L	нg/L		mg/L	mg/L	ç	mg/L	S.U.	nţu	hS/cm	mg/L	mg/L	mg/L	mg/L
	Constituent	Chloride Cyanide (total)	Conductivity Nitrate (as N)	Nitrogen, Nitrate & Nitrite Nitrogen, Nitrite	pH (water)	Dissolved Organic Carbon (DOC) Sulfate	Sulfide	Alkalinity, Total(As CaCO3)	Turbidity	Ethane Ethane	Methane	Field Tested	Iron II	Redox Potential	Temperature	Dissolved Oxygen	Hd	Turbidity	Specific Conductivity	Iron (Dissolved)	Nitrate	Sulfite	Manganese (Dissofved)

Compound was not detected at or above the quantitation limit shown. Not analyzed. Detected concentration is estimated. Nephelometric turbidity units.

J ntu

Page 3 of 8

CRA 035048 (2)

Compound was not detected at or above the quantitation limit shown. Not analyzed. Detected concentration is estimated. Nephelometric turbidity units.

ا تر مانا

TABLE 3.6

Page 4 of 8

Page 5 of 8		MW-115 12/17/02		5.6	NA	868	0.05 U	ł	I	6.9	3.6	128	ιυ	234	68.4	0.88 U	0.82 U	65		1,3	-169.1	8.79	1.59	6.58	0.31	1			***	1
Pag		MW-10B 11/30/06		751 J		ł	0.11 U	0.10 U	0.010 U	I	1.0 U	1970 J	2.0 U	152	I	0.10 U	0.10 U	2.27		3.0	-106	13.75	0.00	7.38	324.0	ł	ł	ł	1	ł
		MW-10B 12/17/02		331	NA	4050	0.05 U	•	I	7.47	1 U	987	1 U	87	17.4	0.88 U	0.82 U	2.1 U		1.4	-26.1	7.96	4.24	7.23	31.60	1		1	1	**
		MW-9S 11/30/06		55.5		1	0.11 U	0.10 U	0.010 U		5.1	96.3	2.0 U	340	I	0.11	0.10 U	4.0		2.5	-12	14.50	0.00	6.90	156.0	••••		!	1	I
		MW-9S 8/24/05		160	1	ł	0.52	I	;	-	1.8	386	ł	351		0.14	0.10 U	2.51		1	-12	19.59	2.66	6.80	231	1610	1.5	<2.5	<2.0	<0.1
	MISTRY	MW-9S 6/24/02		87.7	10 U	1030	3.3 J	ļ	I	6.68	4.3	49.2	10	383	5.9	2 UJ	2 UJ	6]		0.7	129.5	14.41	0.83	6.63	35.60	ł	;;	ļ	I	1
	GROUNDWATER ANALYTICAL RESULTS-WET CHEMISTRY FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK	30/0E/11		248	I	I	0.17	0.17	0.010 U	I	1.4	67.3	2.0 U	409	l	0.10 U	0.10 U	0.13		3.0	-11	12.64	1.04	8.68	52.1	ļ	1	ł	I	ł
TABLE 3.6	ANALYTICAL RESULTS FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK	MW-85 8/24/05		242	ł	ļ	0.11 U	ł	1		1.0	62.9	١	394	ł	0.10 U	0.10 U	0.31 U			-84	16.12	2.65	6.98	275	1560	0.2	<2.5	<2.0	<2.0
£	ATER ANALY FEASI OLD EF CLYD	MW-8S 6/24/02		329	10 U	1820	0.56 J	1	ł	7.19	1.6	72.8	1 U	372	3.7	2 UJ	2 UJ	1.4]		0.7	-6.0	12.60	0.39	6.95	7.74	1	١	****	l	ł
	GROUNDW	MW-7B 12/4/06		40.6	ł	ł	0.19	0.19	0.010 U		5.0 U	1740	2.0 U	16.1	I	0.30	0.62	7.1		10.0	-172	12.50	0.00	7.52	0.68	ļ	l	ł	1	l
		MW-7B 8/26/05		45.3	I	ł	0.11 U	ł	•	;	1.0 U	1610		21.8		06.0	1.4	16.1		ł	-173	17.06	2.84	6.85	45.0	2790	>10	<25	3.5	<0.1
		Sample Location: Sample Date:	Units	mg/L	hg/L	pmhos/cm	mg/L	hg/L	hg/L	S.U.	mg/L	mg/L	mg/L	mg/L	ntu	µg/L	µg/Ľ	hg/L		mg/L	mg/L	ပံ	mg/L	S.U.	ntu	hS/cm	mg/L	mg/L	mg/L	mg/L
			Constituent	Chloride	Cyanide (total)	Conductivity	Nitrate (as N)	Nitrogen, Nitrate & Nitrite	Nitrogen, Nitrite	pH (water)	Dissolved Organic Carbon (DOC)	Sulfate	Sulfide	Alkalinity, Total(As CaCO3)	Turbidity	Ethane	Ethene	Methane	Field Tested	Iron II	Redox Potential	Temperature	Dissolved Oxygen	рН	Turbidity	Specific Conductivity	Iron (Dissolved)	Nitrate	Sulfite	Manganese (Dissolved)

Compound was not detected at or above the quantitation limit shown. Not analyzed. Detected concentration is estimated. Nephelometric turbidity units.

J _ I

CRA 035048 (2)

				CLYD	CLYDE, NEW YORK							
	Sample Location: Sample Date:	MW-11S 11/30/06	<i>MW-11B</i> 12/17/02	MW-11B 11/30/06	MW-12S 12/18/02	MW-12S 11/30/06	MW-12B 12/18/02	MW-12B 12/18/02 Dumizate	MW-12B 11/30/06	MW-13S 11/30/06	90/9/21 148	MW-15S 12/7/06
	Units							Duputate				
	mg/L	10.1	548	613	81.5	3.0	682	781	964]	163	141	122
	hg/L	I	NA	ł	NA	1	NA	NA	1	1	1	1
	µmhos/cm	ł	4080	ł	1560	ł	6740	6780	ł	;	ł	;
	mg/L	0.11 U	0.05 R	0.11 U	0.05 U	5.3	0.05 U	0.05 U	0.11 U	0.11 U	0.11 U	0.11 U
	hg/L	0.10 U		0.10 U	I	5.3	ł	ł	0.10 U	0.10 U	0.10 U	0.10 U
	µg/L	0.010 U	ł	0.010 U		0.010 U	ł	1	0.010 U	0.010 U	0.010 U	0.010 U
	S.U.	1	7.26	1	7.1	I	12.2	12.2	;	I	ł	ł
Dissolved Organic Carbon (DOC)	mg/L	2.5	1U	1.0 U	33.5	3.8	3.2 J	1.9 J	1.0 U	5.4	6.7	11.7
	mg/L	24.3	1750	1930 J	483	72.4	1660	1910	2130 J	878	355	18.3
	mg/L	2.0 U	10	2.0 U	1 U	2.0 U	1 U	1 U	3.0	2.0 U	2.0 U	2.0 U
Alkalinity, Total(As CaCO3)	mg/L	442	91	159	410	629	486	491	59.7	289	371	550
	nţu	;	15.4	ł	5.4	I	22	21.5	ł	I	;	ŧ
	hg/L	0.10 U	0.88 U	0.10 U	0.88 U	0.10 U	0.88 U	0.88 U	0.89	13.2	151	426
	hg/L	0.10 U	0.82 U	0.10 U	0.82 U	0.10 U	0.82 U	0.82 U	0.36	22.9	215	512
	hg/L	218	2.5 U	2.87	0.62 U	34.3	1.1 U	1.1 U	2.53	115	588	6660
	mg/L	10.0	1.4	1.5	0.8	0.0	0.0	1	0.0	4.0	5.5	10.0
	mg/L	-156	-168.7	-121	-141.8	46	-138.6	1	-412	-93	-94	-111
	ပိ	13.41	9.79	13.11	7.40	10.39	4.81	1	11.63	13.26	11.08	7.64
	mg/L	0.95	0.69	0.00	3.92	2.37	6.50		0.00	0.99	1.02	1.12
	S.U.	10.85	7.08	7.33	6.57	7.39	12.63	I	9.40	10.17	10.54	10.84
	ntu	5.9	9.08	120.0	15.10	60.0	2.09	1	231.0	666<	68.0	339.0
	hS/cm	1	I	ł	ł	I	-	-		1	1	***
	mg/L	ļ	I		ł	ł	I	* * *		l	1	;
	mg/L	-	ł	;	1	***	ł	***	ł	1		1
	mg/L	ł	•	ł	1	1	ł	1	ł	1	1	ł
	mg/L	ł	ł									

Compound was not detected at or above the quantitation limit shown. Not analyzed. Detected concentration is estimated. Nephelometric turbidity units.

l [–] uh

TABLE 3.6

Page 6 of 8

	EMW-4 6/26/02		48.7	10 U	806	0.05 UJ	;	ţ	7.07	ŝ	1.7	1 U	353	319	180 DJ	28 J	7000 J		4.5	-173.3	14.46	0.39	6.15	12.30	ţ	;	ł	ł	\$
	EMW-3 12/1/06		38.3	I	ł	0.66	0.66	0.010 U	I	3.6	10 U	2.0 U	453	;	0.56	0.10 U	598		1.0	-85	11.72	0.00	7.20	0.0	I	I	1	ł	ł
	EMW-3 8/25/05		118	1	ł	0.11 U	I	ł	;	8.4	20 U	ł	520	:	1.8	0.10 U	4280		ł	-143.0	16.87	5.31	7.00	34.50	1210	8.0	<2.5	2.0	<0.1
	EMW-3 6/26/02		34	10 U	865	0.2)	;	ł	7.61	5.5	22.2	1 U	410	24.4	2 UJ	2 UJ	980 J		2.0	-44.9	13.75	1.17	6.55	2.60	ł	ŝ	I	ł	ł
	EMW-2 11/30/06		108.0	ł	ŀ	U 11.0	0.10 U	0.010 U	1	4.8	11.8	2.0 U	559	ł	340	36.4	1440		10.0	-114	13.01	1.06	10.14	21.0	ł	ł	1	ł	1
MISTRY	EMW-2 8/25/05 D1224	aubucate	68.0	:	;	0.11 U	I	I	I	10.7	20 U	ł	426	I	99.8	3.33	1210		ł	I	;	I	I	1	ł	I	ł	ł	ł
GROUNDWATER ANALYTICAL RESULTS-WET CHEMISTRY FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK	EMW-2 8/25/05		65.4	I	ł	U 11.0	ł	2	I	6.5	20 U	I	572	1	93.5	2.7	1000		1	-157.0	24.48	0.01	7.22	9.80	855	>10	<2.5	3.60	1.7
ANALYTICAL RESULTS FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK	EMW-2 5/28/03		64.4	NA	968	0.5U	ł	ł	6.86	12.7	2U	1U	450	200	48	45	1200		3.4	-106.3	12.19	0.81	6.94	5.01	1	ł	ł	ł	I
ATER ANALY FEASI OLD EI CLYD	EMW-2 6/26/02		34.4	10 U	929	0.05 UJ	ł	I	6.92	6.6	2	JU	466	174	12 J	66]	1700 J		6.0	-84.2	16.15	0.73	6.34	1.62	I	1	1	ł	I
GROUNDW	MW-16B 12/6/06		128	I	I	0.11 U	0.10 U	0.010 U	I	21.4	1690	2.0 U	37.6	ł	0.60	0.72	6.7		0.0	-236	15.85	0	10.57	0.0	•	ł	ł	ļ	I
	MW-16S 12/6/06		13.1	;	1	2.0	2.0	0.010 U	;	1.7	19.2	2.0 U	134	ł	0.35	0.13	2.07		0.0	-27	14.44	5.73	9.73	683.0	1	1	ł		I
	Sample Location: Sample Date:	Units	mg/L	hg/L	µmhos/cm	mg/L	µg/L	hg/L	S.U.	mg/L	mg/L	mg/L	mg/L	ntu	Hg/L	hg/L	J/Brl		mg/L	mg/L	ိ	mg/L	S.U.	ntu	μ5/cm	mg/L	mg/L	mg/L	mg/L
		Constituent	Chloride	Cyanide (total)	Conductivity	Nitrate (as N)	Nitrogen, Nitrate & Nitrite	Nitrogen, Nitrite	pH (water)	Dissolved Organic Carbon (DOC)	Sulfate	Sulfide	Alkalinity, Total(As CaCO3)	Turbidity	Ethane	Ethene	Methane	Field Tested	Iron II	Redox Potential	Temperature	Dissolved Oxygen	рН	Turbidity	Specific Conductivity	Iron (Dissolved)	Nitrate	Sulfite	Manganese (Dissolved)

Compound was not detected at or above the quantitation limit shown. Not analyzed. Detected concentration is estimated. Nephelometric turbidity units.

J I

CRA 035048 (2)

TABLE 3.6

Page 7 of 8

GROUNDWATER ANALYTICAL RESULTS-WET CHEMISTRY FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE. NEW YORK

		CLYE	CLYDE, NEW YORK					
	Sample Location: Sample Date:	EMW-4 8/25/05	EMW-4 12/6/06	EMW-5 6/26/02	EMW-5 8/25/05	EMW-5 12/1/06	TMW-1 12/6/06	TMW-2 12/6/06
Constituent	Units							
Chloride	mg/L	164	70.9	77.9	90.5	77.2	223	19.4
Cyanide (total)	hg/L	ł	1	10 U	ł	;	ł	ŧ
Conductivity	pmhos/cm	t	1	1000	:	ł	ł	**
Nitrate (as N)	mg/L	0.11 U	0.11 U	0.05 UJ	0.11 U	0.11 U	0.11 U	0.11 U
Nitrogen, Nitrate & Nitrite	hg/L	1	0.10 U	I	;	0.10 U	0.10 U	0.10 U
Nitrogen, Nitrite	µg/L	I	0.010 U	1	I	0.010 U	0.010 UJ	0.010 U
pH (water)	S.U.	I	ł	7.2	I	ł	ł	I
Dissolved Organic Carbon (DOC)	mg/L	7.5	5.6	4.6	11.9	1.0 U	8.5	12.7
Sulfate	mg/L	20 U	10 U	17.1	20 U	10 U	72.0	35.0
Sulfide	mg/L	ł	2.0 U	1U	I	2.0 U	2.0 U	2.0 U
Alkalinity, Total(As CaCO3)	mg/L	474	425	388	485	477	840	586
Turbidity	ntu	ł	ł	179	ł	ł	;	1
Ethane	μg/L	311	226	2 UJ	0.23	0.25	1.70	1.20
Ethene	1/8́π	2.6	0.10 U	2 UJ	0.10 U	0.10 U	0.53	0.10 U
Methane	hg/L	4270	5140	410 J	1400	1140	152	8.97
Field Tested								
Iron II	mg/L		10.0	3.1	ł	9.5	5.5	0.0
Redox Potential	mg/L	-215.0	-201	-151.2	-213.0	-178	06-	136
Temperature	ů	17.33	12.11	13.40	15.96	10.11	16,49	14.16
Dissolved Oxygen	mg/L	0.24	0.90	0.42	4.95	3.85	8.21	7.63
pH	S.U.	7.48	12.47	6.57	7.11	7.37	9.50	6.31
Turbidity	ntu	06'26	0.0	2.29	15.50	41.40	107.0	666<
Specific Conductivity	µ5/cm	1250.0	1	1	1070.0	I	1	1
Iron (Dissolved)	mg/L	>10	ł	ł	>10	ł	1	}
Nitrate	mg/L	<2.5	ł	;	<2.5	ł	ł	1
Sulfite	mg/L	2.6	ł	:	4.0	ł	1	ł
Manganese (Dissolved)	mg/L	<0.1	1	I	<0.1	ı	ł	I

Notes:

Compound was not detected at or above the quantitation limit shown. D

- Not analyzed.
- Detected concentration is estimated. Nephelometric turbidity units.
- J I

Ŀ.
ŝ.
Е
B
7
E.
-

SUBSURFACE SOIL ANALYTICAL RESULTS-VOLATHE ORGANIC COMPOUNDS FEASIBILITY STUDY OLD ERLE CANAL SITE CLYDE, NEW YORK

	Sample	Sample Location:	GP-7	GP-16	GP-20	GP-20	GP-25	GP-26	GP-32	GP-33	GP-39	SSB-1	SSB-2
	Sample Depth (ft. bgs):	h (ft. bgs):	0-4	8-12	12-16	12-16	8-12	12-14	12-16	12-16	8-12	4-6	4-5.7
	San	Sample Date:	4/24/2002	5/2/2002	5/1/2002	5/1/2002	4/26/2002	4/30/2002	4/23/2002	4/30/2002	4/22/2002	1/2005	1/2005
			Background			Duplicate							
Сотронид	Criteria ⁽¹⁾	Units											
Acetone	200	µg/Kg	15 U	1360 U	1600 U	1540 U	1400 U	81 U	1350 U	53 U	12 U	34.0	30.0
Benzene	60	µg/Kg	15 U	1360 U	1600 U	1540 U	1400 U	12 U	1350 U	53 U	12 U	5.6 U	5.7 U
Bromodicílloromethane	SN	µg/Kg	15 U	1360 U	1600 U	1540 U	1400 U	12 U	1350 U	53 U	12 U	5.6 U	5.7 U
Bromoform	SN	µg/Kg	15 U	1360 U	1600 U	1540 U	1400 U	12 U	1350 U	53 U	12 U	5.6 U	5.7 U
Bromomethane	SN	µg/Kg	15 U	1360 U	1600 U	1540 U	1400 U	12 U	1350 U	53 U	12 U	5.6 U	5.7 U
2-Butanone	300	gX∕8ų	15 U	1360 U	1600 U	1540 U	1400 U	12 U	1350 U	11 U	12 U	3.1]	5.5]
Carbon disulfide	2700	µg/Kg	15 U	1360 U	1600 U	1540 U	1400 U	12 U	1350 U	53 U	12 U	U 11 U	4.2 J
Carbon tetrachloride	600	µg/Kg	15 U	1360 U	1600 U	1540 U	1400 U	12 U	1350 U	53 U	12 U	5.6 U	5.7 U
Chlorobenzene	0041	µg/Kg	15 U	1360 U	1600 U	1540 U	1400 U	12 U	1350 U	53 U	12 U	5.6 U	5.7 U
Chloroethane	1900	µg/Kg	15 U	1360 U	1600 U	1540 U	1400 U	12 U	1350 U	53 U	12 U	5.6 U	5.7 U
Chloroform	300	µg/Kg	15 U	1360 U	1600 U	1540 U	1400 U	12 U	1350 U	53 U	12 U	5.6 U	5.7 U
Chloromethane	NS	μg/Kg	15 U	1360 U	1600 U	1540 U	1400 U	12 U	1350 U	53 U	12 U	5.6 U	5.7 U
Dibromochloromethane	SN	µg/Kg	15 U	1360 U	1600 U	1540 U	1400 U	12 U	1350 U	53 U	12 U	5.6 U	5.7 U
1,1-Dichloroethane	200	μg/Kg	15 U	1360 U	1600 U	1540 U	1400 U	12 U	1350 U	53 U	12 U	5.6 U	5.7 U
1,2-Dichloroethane	100	µg/Kg	15 U	1360 U	1600 U	1540 U	1400 U	12 U	1350 U	53 U	12 U	5.6 U	5.7 U
1,1-Dichloroethene	400	µg/Kg	15 U	1360 U	1600 U	1540 U	1400 U	12 U	1350 U	53 U	12 U	5.6 U	5.7 U
cis-1,2-Dichloroethene	NS	µg/Kg	15 U	1400	8900	14000	700 J	14	2400	250	12 U	22.0	2.4 J
trans-1,2-Dichloroethene	300	µg/Kg	15 U	1360 U	1600 U	1540 U	1400 U	12 U	1350 U	53 U	12 U	5.6 U	5.7 U
I,2-Dichloropropane	SN	µg/Kg	15 U	1360 U	1600 U	1540 U	1400 U	12 U	1350 U	53 U	12 U	5.6 U	5.7 U
cis-1,3-Dichlaropropene	SN	pg/Kg	15 U	1360 U	1600 U	1540 U	1400 U	12 U	1350 U	53 U	12 U	5.6 U	5.7 U
Irans-1,3-Dichloropropene	SN	µg/Kg	15 U	1360 U	1600 U	1540 U	1400 U	12 U	1350 U	53 U	12 U	5.6 U	5.7 U
Ethylbenzene	5500	µg/Kg	15 U	1360 U	1600 U	190 J	1400 U	2]	1350 U	53 U	12 U	5.6 U	5.7 U
2-Hexanone	SN	µg/Kg	15 U	1360 U	1600 U	1540 U	1400 U	12 U	1350 U	53 U	12 U	11 U	חונ
Methylene chloride	100	µg/Kg	30	1360 U	1600 U	1540 U	1400 U	89	180 J	200	12 U	5.6 U	5.7 U
4-Methyl-2-pentanone	1000	µg/Kg	15 U	1360 U	1600 U	1540 U	1400	12 U	1350 U	11 U	12 U	U []	11 U
Styrene	SN	µg/Kg	15 U	1360 U	1600 U	1540 U	1400 U	12 U	1350 U	53 U	12 U	5.6 U	5.7 U
1,1,2,2-Tetrachloroethane	600	µg/Kg	15 U	1360 U	1600 U	1540 U	1400 U	12 U	1350 U	53 U	12 U	5.6 U	5.7 U
Tetrachloroethene	1400	µg/Kg	15 U	1360 U	1600 U	1540 U	1400 U	12 U	1350 U	53 U	12 U	5.6 U	5.7 U
Toluene	1500	µg/Kg	15 U	1360 U	4300 B	5800 U	1400 U	12 U	1350 U	53 U	12 U	5.6 U	5.7 U
1,1,1-Trichloroethane	800	µg/Kg	15 U	1360 U	1600 U	1540 U	1400 U	12 U	1350 U	53 U	12 U	5.6 U	5.7 U
1,1,2-Trichloroethane	NS	µg/Kg	15 U	1360 U	1600 U	1540 U	1400 U	12 U	1350 U	53 U	12 U	5.6 U	5.7 U
Trichloroethene	700	µg/Kg	15 U	2100	1600 U	590]	4700	6]	1350 U	9 [12 U	1.7 J	13.0
Vinyl chloride	200	µg/Kg	15 U	1360 U	460 J	1200 J	1400 U	84	200 J	25]	12 U	5.6 U	5.7 U
Xylene (total)	1200	µg/Kg	15 U	1875 U	1600 U	1540 U	1400 U	12 U	1350 U	15 U	15 U	****	1
O-Xylene	1200	µg/Kg	ł	1	ł	-	I	ł	ł	1		5.6 U	5.7 U
M+P~Xylene	1200	µg/Kg	I	I	ł	ł	1	I	ł	ł	I	5.6 U	5.7 U

Soil Cleanup Objectives, NYSDEC TAGM #4046, January 24, 1994.

Notes: (1)

Not analyzed. Feet below ground surface. Detected concentration is estimated. --ft. BCS J

CRA (05048 (2)

5
ŝ
11
1
É,
<
H

SUBSURFACE SOIL ANALYTICAL RESULTS-VOLATILE ORGANIC COMPOUNDS FEASIBILITY STUDY

	4-6 4-5.7				
GP-39	8-12	4/22/2002			
GP-33	12-16	4/30/2002			
GP-32	12-16	4/23/2002			
GP-26	12-14	4/30/2002			
<i>GP-25</i>	8-12	4/26/2002			
GP-20	12-16	5/1/2002	Duplicate		
GP-20	12-16	5/1/2002			
GP-16	8-12	5/2/2002			
GP-7	0-4	4/24/2002	Background		
Sample Location: GP-7	Sample Depth (ft. bgs):	Sample Date:		Criteria ⁽¹⁾ Units	
				Сотронид	No standard.

Compound was not detected at or above the quantitation limit shown. Concentration exceeds criteria. SN D

CRA 035H3 (2)

					OLD ERIE CANAL SITE CLYDE, NEW YORK	AL SITE YORK						
	Sample Location:	ocation	SSB-3	SSB-3	SSB-4	SSB-5	SSB-6	SSB-7	SSB-8	SSB-9	SSB-10	SSB-11
	Sample Depth (ft. bgs):	(ft. bgs):	4-6	4-6	4-5.7	4-6	g-4	8.3-9.3	8.9.3	2-4	2-4	4-5.8
	Samp	Sample Date:	1/2005	1/2005	1/2005	1/2005	1/2005	1/2005	1/2005	1/2005	1/2005	1/2005
	(i)			Duplicate								
Сотроина	Criteria	Units										
Acetone	200	μg/Kg	630 J	570	16 J	130	21 J	15000 UJ	17]	320	13]	39
Benzene	60	μg/Kg	54 UJ	42 U	5.9 U	0.9 U	5.9 U	3800 UJ	28 U	8.8 U	5.5 U	5.7 U
Bromodichloromethane	NS	µg/Kg	54 UJ	42 U	5.9 U	6.9 U	5.9 U	3800 UJ	28 U	8.8 U	5.5 U	5.7 U
Bromoform	SN	µg/Kg	54 UJ	42 U	5.9 U	0.9 U	5.9 U	3800 UJ	28 U	8.8 U	5.5 U	5.7 U
Bromomethane	NS	µg/Kg	54 UJ	42 U	5.9 U	0 6.9 U	5.9 U	3800 UJ	28 U	8.8 U	5.5 U	5.7 U
2-Butanone	300	µg/Kg	150 J	100	12 U	24.0	12 U	7600 UJ	57 U	71	13]	4.0 NJ
Carbon disulfide	2700	μg/Kg	16 J	16]	12 U	14 U	4.5]	7600 UJ	57 U	1.9]	11 U	1.3 J
Carbon tetrachloride	600	µg/Kg	54.UJ	42 U	5.9 U	0.9 U	5.9 U	3800 UJ	28 U	8.8 U	5.5 U	5.7 U
Chlorobenzene	1700	µg/Kg	54 UJ	42 U	5.9 U	0.9 U	5.9 U	3800 UJ	28 U	8.8 U	5.5 U	5.7 U
Chloroethane	1900	µg/Kg	54 UJ	42 U	5.9 U	6.9 U	5.9 U	3800 UJ	28 U	8.8 U	5.5 U	5.7 U
Chloroform	300	µg/Kg	54 UJ	42 U	5.9 U	0.9 U	5.9 U	3800 UJ	28 U	8.8 U	5.5 U	5.7 U
Chloromethane	NS	µg/Kg	54 UJ	42 U	5.9 U	6.9 U	5.9 U	3800 UJ	28 U	8.8 U	5.5 U	5.7 U
Dibromochloromethane	NS	µg/Kg	54 UJ	42 U	5.9 U	6.9 U	5.9 U	3800 UJ	28 U	8.8 U	5.5 U	5.7 U
1,1-Dichloroethane	200	µg/Kg	17]	42 U	5.9 U	4.8]	5.9 U	3800 UJ	28 U	8.8 U	5.5 U	1.9 J
1,2-Dichloroethane	100	µg/Kg	54 UJ	42 U	5.9 U	6.9 U	5.9 U	3800 UJ	28 U	8.8 U	5.5 U	5.7 U
1,1-Dichloroethene	400	µg/Kg	54 UJ	42 U	5.9 U	6.9 U	2.4 J	3800 UJ	7.3 J	8.8 U	5.5 U	5.7 U
cis-1,2-Dichloroethene	NS	µg/Kg	1600 J	1300	12	16	1200 J	100001	680	8.8 U	1.9 J	74
trans-1,2-Dichloroethene	300	µg/Kg	58 J	40]	5.9 U	5.3]	2.4]	3800 UJ	13 J	8.8 U	5.5 U	3.1]
1,2-Dichloropropane	NS	µg/Kg	54 UJ	42 U	5.9 U	6.9 U	5.9 U	3800 UJ	28 U	8.8 U	5.5 U	5.7 U
cis-1,3-Dichloropropene	SN	µg/Кg	54 UJ	42 U	5.9 U	6.9 U	5.9 U	3800 UJ	28 U	8.8 U	5.5 U	5.7 U
lrans-1,3-Dichloropropene	NS	µg/Kg	54 UJ	42 U	5.9 U	0.9 U	5.9 U	3800 UJ	28 U	8.8 U	5.5 U	5.7 U
Ethylbenzene	5500	µg/Kg	30 J	13 J	5,9 U	2.6]	5.9 U	3800 UJ	28 U	8.8 U	5.5 U	5.7 U
2-Hexanone	NS	µg/Kg	110 UJ	84 U	12 U	14 U	12 U	7600 UJ	57 U	18 U	11 C	U U
Methylene chloride	100	µg/Kg	54 UJ	42 U	5.9 U	6.9 U	5.9 U	3800 UJ	28 U	2.3]	5.5 U	5.7 U
4-Methyl-2-pentanone	1000	µg/Kg	110 UJ	84 U	12 U	14 U	12 U	7600 UJ	57 U	18 U	11 U	11 U
Styrene	NS	µg/Kg	54 UJ	42 U	5.9 U	0.9 U	5.9 U	3800 UJ	28 U	8.8 U	5.5 U	5.7 U
1,1,2,2-Tetrachloroethane	600	µg/Kg	54 UJ	42 U	5.9 U	0 6.9	5.9 U	3800 UJ	28 U	8.8 U	5.5 U	5.7 UJ
Tetrachloroethene	1400	µg/Kg	12 J	32]	5.9 U	1.8]	5.9 U	3800 UJ	28 U	8.8 U	5.5 U	2.1 J
Toluene	1500	µg/Kg	320 J	150	5.9 U	9.8	5.9 U	3800 UJ	28 U	4.2 J	5.5 U	5.7 U
1,1,1-Trichloroethane	800	µg/Kg	54 UJ	42 U	5.9 U	0.9 U	5.9 U	3800 UJ	28 U	8.8 U	5.5 U	5.7 U
1,1,2-Trichloroethane	NS	µg/Kg	54 UJ	42 U	5.9 U	U 6.9	5.9 U	3800 UJ	28 U	8.8 Ŭ	5.5 U	5.7 U
Trichloroethene	700	µg/Kg	220 J	400	13.0	0.68	5.3 J	130000 J	6200 J	5.3]	7.5	320)
Vinyl chloride	200	µg/Kg	560 J	120 J	5.3]	18.0	210	3800 UJ	28 U	8.8 U	5.5 U	5.7]
Xylene (total)	1200	µg/Kg	1	1	ł	I	l		ł	1	I	****
O-Xylene	1200	µg/Kg	[69]	25]	5.9 U	5.0 J	5.9 U	3800 UJ	28 U	8.8 U	5.5 U	5.7 U
M+P-Xylene	1200	µg/Kg	430 J	150.0	5.9 U	25.0	4.6]	3800 UJ	28 U	8.8 U	5.5 U	5.7 U

SUBSURFACE SOIL ANALYTICAL RESULTS-VOLATILE ORGANIC COMPOUNDS FEASIBILITY STUDY OLD ERLE CANAL SITE

Page 3 of 4

CRA (35443 (2)

ft. BGS J

Notes: (1)

Soii Cleanup Objectives, NYSDEC TAGM #4046, January 24, 1994. Not analyzed. Feel below ground surface. Detected concentration is estimated.

SUBSURFACE SOIL ANALYTICAL RESULTS-YOLATILE ORGANIC COMPOUNDS FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

		Sample Location:	SSB-3	SSB-3	SSB-4	SSB-5	SSB-6	SSB-7	SSB-8	SSB-9	SSB-10	SSB-11
		Sample Depth (ft. bgs) :	4-6	4-6	4-5.7	4-6	4-6	8.3-9.3	8.9.3	2-4	2-4	4-5.8
		Sample Date:	1/2005	1/2005	1/2005	1/2005	1/2005	1/2005	1/2005	1/2005	1/2005	1/2005
				Duplicate								
	Compound	Criteria ⁽¹⁾ Units										
(6	No standard.											
	Compound was not detected	Compound was not detected at or above the quantitation										

.

limit shown. Concentration exceeds criteria. NS N

Page 4 of 4

			SUBSURFACES	OIL ANALYTIC	AL RESULTS-SEMI-VOL FEASIBILITY STUDY OLD ERIE CANAL SITE CI YDF NFW YORK	MI-VOLATILE OF STUDY AL SITE YORK	FACE SOIL ANALYTICAL RESULTS-SEMI-VOLATILE ORGANIC COMPOUNDS FEASIBILITY STUDY OLD ERIE CANAL SITE CUYDE NEW YORK	SON			1
	Samp	Sample Location:	<i>CP-7</i>	GP-16	GP-20	GP-20	GP-25	GP-26	GP-32	GP-33	GP-39
	Sample De	Sample Depth (ft. bgs): Sample Depth (ft. bgs):	0-4 11-11-000	8-12 	12-16	12-16	8-12	12-14	12-16	12-16	8-12
	n	sampre vare:	412412002 Backoround	70071710	7007/11/2	5/1/2002 Dualicate	4/26/2002	4/30/2002	4/23/2002	4/30/2002	4/22/2002
Сотроита	Criteria ⁽¹⁾	Units	0								
Acenaphthene	50000	µg/Kg	420 U	350 U	400 U	412 U	380 U	380 U	350 U	380 U	390 U
Acenaphthylene	41000	µg/Kg	420 U	350 U	400 U	412 U	380 U	380 U	350 U	380 U	390 U
Anthracene	5000	µg/Kg	470	350 U	33]	26 J	380 U	380 U	350 U	380 U	JJ 06E
Benzo(a)anthracene Benzo(b)(f)	224	Hg/Kg	3700	350 U 350 U	1 28	110]	380 U 260 U	380 U	350 UJ	380 U	390 U
Benzo(k)/Iuoranthene	1100	ug/Ke	3500	350 U	02 J 84 I	92]	380 U	38010	350 LT	38011	11.065
Benzo(g,h,i)perylene	5000	hg/Kg	2300	350 U	62]	61]	380 U	380 U	350 UJ	380 U	390 U
Benzo(a)pyrene	61	µg/Kg	3800	350 U	96]	100 J	380 U	380 U	350 UJ	380 U	390 U
Benzyl Alcohol	SN	µg/Kg	420 U	350 U	400 U	412 U	380 U	380 U	350 U	380 U	390 U
bis(2-Chloroethoxy)methane	SN	µg/Kg	420 U	350 U	400 U	412 U	380 U	380 U	350 UJ	380 U	390 U
bis(2-Chloroethyl)ether	SN	µg/Кg	420 U	350 U	400 U	412 U	380 U	380 U	350 U	380 U	390 U
bis(2-Chloroisopropyl)ether	NS	µg/Кg	420 U	350 U	400 U	412 U 22 ·	380 U	380 U	350 U	380 U	390 U
bis(2-Ethylnexyl)phthalate	0000c	µg/Kg	420 U	180 J 260 M	140)	95J	37]	380 U 380 U	350 UJ 750 LI	150J	390 U
T-Droutopatenya puenya erner Burtyi henzyinhthalate	50000	18/28 110/Ke	420 U	35011	40011	412 U	380 11	380 U	0 UCC 350 I II	10 005	390 U 200 U
4-Chloroaniline	220	ue/Ke	330 U	350 U	400 U	412 U	380 U	38011	35017	380 U	39011
4-Chloro-3-methylphenol	240	µg/Kg	420 U	350 U	400 U	412 U	380 U	380 U	350 U	380 U	390 U
2-Chloronaphthalene	SN	µg/Kg	420 U	350 U	400 U	412 U	380 U	380 U	350 U	380 U	390 U
2-Chlorophenol	800	µg/Kg	420 U	350 U	400 U	412 U	380 U	380 U	350 U	380 U	390 U
4-Chlorophenyl phenyl ether	SN 33	hg/Kg	330 U	350 U 250 U	400 U	412 U	380 U	380 U	350 U	380 U	390 U
Chrysene	400 1	hg/Kg	4500	350 U	110)	[021	380 U	380 U	350 UJ	380 U	0.06E
Dibenzo(a,h)anthracene	14	Hg/Kg	260 J	350 U 250 U	[62 1 004	26 J	380 U	380 U	350 UJ 250 U	380 U 300 V	390 U
Dien-buttelin Dien-buttelinbibalate	8100	н <u>в</u> / Ко 110 / Ко	420 U	1000	400 0	107 40 I	380.11	380 U	350 U 350 U	380 U 280 L1	390 U 20011
1,2-Dichlorobenzene	2006	нg/Кg	420 U	350 U	400 U	412 U	380 U	380 U	350 U 350 U	380 U	0.06C
1,3-Dichlorobenzene	1600	µg/Kg	420 U	350 U	400 U	412 U	380 U	380 U	350 U	380 U	390 U
1,4-Dichlorobenzene	8500	µg/Kg	420 U	350 U	400 U	412 U	380 U	380 U	350 U	380 U	390 U
3,3'-Dichlorobenzidine	SZ	μg/Kg	660 U	660 U	660 U	660 U	660 U	660 U	660 UJ	660 U	660 U
2,4-Lichlorophenol	400	µg/Kg	330 U	350 U	400 U	412 U	380 U	380 U	350 UJ	380 U	390 U
Dieutyi piniatate 2.4 Dimethelahanol	NIC/	µ8/⊼8 ua (¥a	1007	0.055 11.055	400 L	11 214	200 U 200 U	380 U 260 I I		360 U	0.02 1005
Dimethyl bhthalate	2000	ue/Ke	420 U	350 U	400 U	412 (J	380 U	380 11	350 U	380 U	39011
4,6-Dinitro-2-methylphenol	92 2	р8/Кв р8/Кв	800 U	880 U	1000 U	1030 U	0101-6	940 U	860 UJ	040 U	020 U
2,4-Dinitrophenol	200	µg/Kg	800 U	880 U	1000 U	1030 U	940 U	940 U	860 U	940 U	070 U
2,4-Dinitrotoluene	SZ	µg/Kg	420 U	350 U	400 U	412 U	380 U	380 U	350 U	380 U	390 U
2,6-Dinitrotoluene	1000	µg/Kg	420 U	350 U	400 U	412 U	380 U	380 U	350 U	380 U	390 U
Di-n-octyl phthalate	50000	µg/Kg	420 U	350 U	21]	30]	380 U	380 U	350 UJ	380 U	390 U
Fluoranthene	50000	pg/Kg	9100	43]	210]	220 J	380 U	380 U	350 U	380 U	390 U
Fluorence	50000	нg/Kg	420 U	350 U	28]	22]	380 U	380 U	350 U	380 U	390 U
Hexachlorobenzene Usenahlorobenzene	410	µg/Kg ™2	420 U	350 U 260 U	400 U	412 U 413 U	380 U 380 U	380 U 380 U	350 U 350 U	380 U 360 U	U 066
trexactuoroutiatuerte Mouschlemontelenerte dione	2 2	нg/ № /У	11004	350 U	0.004	11 C17	200 U	1000	11 000 11 000	1005	200 U
Hexachloroethane	2 2	нв/ № цв/Кв	330 U	350 U	400 U	412 U	380 U	380 U	350 U	380 U	0 062 U
	•	0 ,0.1	*	+ + > >	1	+		-	1	1	2

Page 1 of 2

ø,	
EЭ	
BL	
Z	
•	

SUBSURFACE SOIL ANALYTICAL RESULTS-SEMI-VOLATILE ORGANIC COMPOUNDS FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

	Samp	Sample Location:	Cp-7	GP-16	GP-20	GP-20	GP-25	GP-26	CP-32	GP-33	GP-39
	Sample De	Sample Depth (ft. bgs):	0-4	8-12	12-16	12-16	8-12	12-14	12-16	12-16	8-12
	S.	Sample Date:	4/24/2002	5/2/2002	5/1/2002	5/1/2002	4/26/2002	4130/2002	4/23/2002	4/30/2002	4/22/2002
			Background			Duplicate					
Compound	Criteria ⁽¹⁾	Units	I								
Indeno(1,2,3-cd)pyrene	3200	µg/Kg	2200	350 U	57]	57]	380 U	380 U	320 UJ	380 U	390 U
Isophorone	4400	µg/Kg	420 U	350 U	400 U	412 U	380 U	380 U	350 UJ	380 U	U 095 U
2-Methyi naphthalene	36400	ug/Kg	420 U	350 U	400 U	412 U	380 U	380 U	350 UJ	380 U	390 U
2-Methylphenol	100	µg/Kg	420 U	350 U	400 U	412 U	380 U	380 U	350 U	380 U	390 U
4-Methylphenol	900	µg/Kg	420 U	350 U	400 U	412 U	31 J	380 U	350 U	380 U	390 U
Naphthalene	13000	µg/Kg	420 U	350 U	56 J	54]	380 U	380 U	350 UJ	380 U	390 U
2-Nitroaniline	430	µg/Kg	800 U	880 U	1000 U	1030 U	940 U	940 U	860 U	940 U	0 070 U
3-Nitroaniline	500	µg/Kg	800 U	880 U	1000 U	1030 U	940 U	940 U	860 U	940 U	0 0 O
4-Nitroaniline	SN	µg/Kg	800 UJ	880 U	1000 U	1030 U	940 U	940 U	860 UJ	940 U	D 079
Nitrobenzene	200	µg/Kg	420 U	350 U	400 U	412 U	380 U	380 U	350 UJ	380 U	390 U
2-Nitrophenol	330	µg/Kg	420 U	350 U	400 U	412 U	380 U	380 U	350 UJ	380 U	390 U
4-Nitrophenol	100	µg/Kg	800 UJ	880 U	1000 U	1030 U	940 U	940 U	860 UJ	940 U	970 U
N-Nitrosodiphenylamine	SN	µg/Kg	420 U	350 U	400 U	412 U	380 U	380 U	350 U	380 U	390 U
N-Nitrosodi-n-propylamine	SN	µg/Kg	420 U	350 U	400 U	412 U	380 U	380 U	350 U	380 U	390 U
Pentachlorophenol	1000	µg/Кg	800 U	880 U	1000 U	1030 U	940 U	940 U	860 U	940 U	U 079
Phenanthrene	50000	µg/Kg	3900	350 U	180 J	140 J	380 U	380 U	350 U	380 U	390 U
Plienoi	30	µg/Kg	420 U	350 U	400 U	412 U	380 U	380 U	350 U	380 U	J 065
Pyrene	50000	µg/Kg	6800	33 J	190 J	190 J	380 U	380 U	350 UJ	380 U	390 U
1,2,4-Trichlorobenzene	3400	µg/Kg	330 U	350 U	400 U	412 U	380 U	380 U	350 UJ	380 U	390 U
2,4,5-Trichlorophenol	100	µg/Kg	420 U	350 U	400 U	412 U	380 U	380 U	350 U	380 U	390 U
2,4,6-Trichlorophenol	NS	µg/Kg	420 U	350 U	400 U	412 U	380 U	380 U	350 U	380 U	390 U

Notes: (1)

ft. bgs Freet below ground surface.
J Detected concentration is estimated.
NS No standard.
U Compound was not detected at or above the quantitation limit shown.
Concentration exceeds criteria. Soil Cleanup Objectives, NYSDEC TAGM #4046, January 24, 1994.

SUBSURFACE SOIL ANALYTICAL RESULTS-PCBs FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

GP-39 8-12 4/22/2002		38 U						
GP-33 12-16 4/30/2002		38 U						
GP-32 12-16 4/23/2002		35 U						
GP-26 12-14 4/30/2002		37 U						
GP-25 8-12 4/26/2002		38 U						
GP-20 12-16 5/1/2002	Duplicate	40 U						
GP-20 12-16 5/1/2002		40 U						
GP-16 8-12 5/2/2002		18 U						
GP-7 0-4 04/24/02	Background	42 U						
Sample Location: 'e Depth (ft. BGS): Sample Date:	Units	µg/Kg	µg/Kg	µg/Kg	µg/Kg	μg/Kg	µg/Kg	µg/Kg
Sample Location: Sample Depth (ft. BGS): Sample Date:	Criteria ⁽¹⁾	10000	10000	10000	10000	10000	10000	10000
	Compound	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260

Notes: (1)

Soil Cleanup Objectives, NYSDEC TAGM #4046, January 24, 1994.

ft. bgs PCBs U

Feet below ground surface. Polychlorinated Biphenyls. Compound was not detected at or above the quantitation limit shown.

SUBSURFACE SOIL ANALYFICAL RESULTS-PESTICIDES FEASIBILITY STUDY OLD ERLE CANAL SITE CLYDE, NEW YORK

	San	uple Location:	GP-7	<i>GP-16</i>	GP-20	GP-20	GP-25	GP-26	GP-32	<i>CP-</i> 33	GP-39
	Sample L	Sample Depth (ft. bgs): Sample Date:	0-4 4/24/2002	8-12 5/2/2002	12-16 5/1/2002	12-16 5/1/2002	8-12 4/26/2002	12-1 4 4/30/2002	12-16 4/23/2002	12-16 4/30/2002	8-12 4/22/2002
			Background			Duplicate					
Compound	Criteria ⁽¹⁾	Units									
Aldrin	41	µg/Kg	21 U	1.8 U	8.3 U	8.4 UJ	7.8 U	7.8 U	1.8 U	7.8 U	2 U
alpha-BHC	110	μg/Kg	21 U	1.8 U	8.3 U	8.4 UJ	7.8 U	7.8 U	1.8 U	7.8 U	2 U
beta-BHC	200	µg/Kg	21 U	1.8 U	8.3 U	8.4 UJ	7.8 U	7.8 U	1.8 U	7.8 U	2 U
gamína-BHC (Lindane)	60	µg/Kg	21 U	1.8 U	8.3 U	8.4 UJ	7.8 U	7.8 U	1.8 U	7.8 U	2 U
delta-BHC	300	µg/Kg	21 U	1.8 U	8.3 U	8.4 UJ	7.8 U	7.8 U	1.8 U	7.8 U	2 U
Chlordane	540	µg/Kg	210 U	18 U	48 J	32]	78 U	78 U	18 U	78 U	20 U
4,4'DDD	2900	µg/Kg	21 U	1.8 U	8.3 U	8.4 UJ	7.8 U	7.8 U	1.8 U	7.8 U	2 U
4,4'DDE	2100	µg/Kg	26]	1.8 U	8.3 U	8.4 UJ	7.8 U	7.8 U	1.8 U	7.8 U	2 U
4,4'-DDT	2100	µg/Kg	34	1.8 U	8.3 U	8.4 UJ	7.8 U	7.8 U	1.8 U	7.8 U	2 U
Dieldrín	44	µg/Kg	130	1.8 U	8.3 U	8.4 UJ	7.8 U	7.8 U	1.8 U	7.8 U	2 U
Endosulfan I	006	µg/Kg	21 U	1.8 U	8.3 U	8.4 UJ	7.8 U	7.8 U	1.8 U	7.8 U	2 U
Endosulfan II	006	µg/Kg	21 U	1.8 U	8.3 U	8.4 UJ	7.8 U	7.8 U	1.8 U	7.8 U	2 U
Endosulfan sulfate	1000	µg/Kg	21 U	1.8 U	8.3 U	8.4 UJ	7.8 U	7.8 U	1.8 U	7.8 U	2 U
Endrin	100	pg/Kg	21 U	1.8 U	8.3 U	8.4 UJ	7.8 U	7.8 U	1.8 U	7.8 U	2 U
Endrin aldelıyde	NS	µg/Kg	21 U	1.8 U	8.3 U	8.4 UJ	7.8 U	7.8 U	1.8 U	7.8 U	2 U
Heptachlor	20	pg/Kg	21 U	1.8 U	8.3 U	8.4 UJ	7.8 U	7.8 U	1.8 U	7.8 U	2 U
Heptachlor epoxide	NS	µg/Kg	21 U	1.8 U	8.3 U	8.4 UJ	7.8 U	7.8 U	1.8 U	7.8 U	2 U
Methoxychlor	NS	µg/Kg	21 U	1.8 U	8.3 U	8.4 UJ	7.8 U	7.8 U	1.8 U	7.8 U	2 U
Toxaphene	NS	µg/Kg	500 U	43 U	200 U	200 UJ	180 U	180 U	43 U	180 U	47 U
Endrin ketone	NS	µg/Kg	21 U	1.8 U	8.3 U	8.4 UJ	7.8 U	7.8 U	1.8 U	7.8 U	2 U

Notes: (1)

Soil Cleanup Objectives, NYSDEC TAGM #4046, January 24, 1994.

ft. bgs Feet below ground surface.
 J Detected concentration is estimated.
 NS No standard.
 U Compound was not detected at or above the quantitation limit shown.

SUBSURFACE SOIL ANALYTICAL RESULTS-METALS FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

	100	Sample Location:	GP-7	GP-16	GP-20	GP-20	GP-25	GP-26	GP-32	GP-33	GP-39
	Sample 1	le Depth (ft. bgs):	0-4	8-12	12-16	12-16	8-12	12-14	12-16	12-16	8-12
		Sample Date:	4/24/02	5/2/2002	5/1/2002	5/1/2002	4/26/2002	4/30/2002	4/23/2002	4/30/2002	4/22/2002
	ŝ		Background			Duplicate					
Compound	Criteria ^{cu}	Units									
Aluminum	SB ⁽²⁾	mg/Kg	6790 J	4630 J	7720]	6510 J	6330]	5050]	4110 J	4770	11100 1
Antimony	SB ⁽²⁾	mg/Kg	7.8 UJ	6.7 UI	1.7 UI	10 9.7	7.2 UI	6.8 UI	6.5111	11112	
Arsenic	7.5	mg/Kg	5.8	2.9	2.5	1.5	Ţ	4.7	4.6	1.5	6.5 6.5
Barium	300	mg/Kg	71.9 J	55.9]	43.2]	32.1]	45.2 J	36.2]	46.1]	33	83.6 [
Beryllium	0.16	mg/Kg	0.65 U	0.56 U	0.64 U	0.66 U	0.6 U	0.56 U	0.54 U	0.6 U	0.64
Cadmium	1.5	mg/Kg	0.65 U	0.56 U	0.64 U	0.66 U	0.6 U	0.56 U	0.54 U	0.6 U	0.6 U
Calcium	SB ⁽²⁾	mg/Kg	24400 J	686D0 J	465D0 J	44600 J	26900 J	70800 J	116000 J	72400]	4210 J
Chromium	SB ⁽²⁾	mg/Kg	14.8	7.4	11.5	11.4	9.3	7.9	6.1	7.2	14.9
Cobalt	30	mg/Kg	6.5 U	5.6 U	6.5	6.6 U	6 U	5.6 U	5.4 U	6 U	8.4
Copper	SB ⁽²⁾	mg/Kg	22.7	12.5	17.9	15.6	10.8	16.7	20.6	18.2	13.7
Iron	SB ⁽²⁾	mg/Kg	16000 J	11000 J	13200 J	10800 J	8020 J	12200)	15000 J	10200 J	21300 J
Lead	SB ⁽²⁾	mg/Kg	29.1	4.3	8.7	6,6	1480	6.8	6.7	8,5	9.5
Magnesium	SB ⁽²⁾	mg/Kg	4970 J	17600 J	18800 J	18700 J	8940 J	14800 J	23800 J	21800 J	3650]
Manganese	$SB^{(2)}$	mg/Kg	277]	437 J	345]	280 J	183 J	400 J	1070 J	373 J	570 J
Nickel	13	mg/Kg	12.9 J	9.2 J	14.2 J	13.5]	9.1]	10.4]	7.9]	9.2 J	16.7 J
Potassium	5B ⁽²⁾	mg/Kg	1260 J	1550 J	1830 J	1450 J	1000 J	1280 J	67]	1430 J	1110 J
Selenium	$SB^{(2)}$	mg/Kg	0.92	0.56 U	0.86	0.68	0.6 U	0.56 U	0.54 U	0.6 U	0.88
Mercury	0.1	mg/Kg	0.084	0.022 U	0.024 U	0.023 U	0.025 U	0.021 U	0.022 U	0.021 U	0.03
Silver	$SB^{(2)}$	mg/Kg	1.3 U	U 1.1	1.3 U	1.3 U	1.2 U	ា ហំ	1.1 U	1.2 U	1,2 U
Sodium	SB ⁽²⁾	mg/Kg	646 U	556 U	641 U	656 U	597 U	563 U	539 U	595 U	600 U
Thallium	SB ⁽²⁾	mg/Kg	1.3 U	U I.I	1.3 U	1.3 U	1.2 U	ח ניו	1.1 U	1.2 U	1.2 U
Vanadium	SB ⁽²⁾	mg/Kg	20.4 J	10 J	17.5]	18.9 J	12.4]	12.1 J	12.8]	9.3]	20.8 J
Zinc	SB ⁽²⁾	mg/Kg	61.6 J	27.7 J	39.7]	39.3]	28.1 J	32.8 J	32.2 }-	28.9 J	50.9 J

Notes: Ξ

Soil Cleanup Objectives, NYSDEC TAGM #4046, January 24, 1994.

Where an analyte is not detected in the background sample and the criteria is equal to site background, the criteria is assumed to be equal to one half the detection limit of the background sample. Feet below ground surface. 8

Compound was not detected at or above the quantitation limit shown. Detected concentration is estimated. Concentration exceeds criteria. ft. bgs U

5
3
щ
BL
1
Ĥ

SUBSURFACE SOIL ANALYTICAL RESULTS-WET CHEMISTRY FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

Samp	Sample Location:	GP-7	GP-16	GP-20	GP-20	GP-25	GP-26	GP-32	GP-33	GP-39
Sample De	th (ft. bgs):	0-4	8-12	12-16	12-16	8-12	12-14	12-16	12-16	8-12
S	Sample Date:	4/24/2002	5/2/2002	5/1/2002	5/1/2002	4/26/2002	4/30/2002	4/23/2002	4/30/2002	4/22/2002
		Васкдтонпа			Duplicate					
Сотроинд	Units									
Leachable pH	S.U.	7.97	8.09	7.16	7.08	7.73	7.75	8.25	8.02	7.41
Cyanide - Total	mg/Kg	1.3 U	1.1 U	1.2 U	1.3 U	1.2 U	U 1.1	1.1 U	1.2 U	1.2 U

Notes: ft. bgs Feet below ground surface. U Compound was not detected at or above the quantitation limit shown.

			SURFACE	WATER AN	WATER ANALYTICAL RESULTS-VOLATILE ORGANIC COMPOUNDS FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK	CAL RESULTS-VOLATI FEASIBILITS STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK	OLATILE O TUDY AL SITE ORK	IRGANIC C	INDOAMO	S					5
				Background											
	Sampl. Sa	Sample Location: Sample Date:	5/21/02	SW-02 5/21/02	5/21/02	<i>SW-03</i> 5/21/02	SW-04 5/21/02	5W-05 5/21/02	SW-05 11/21/02	SW-07 5/21/02	<i>5121102</i>	SW-09 5/21/02	SW-09 11/21/02	<i>SW-10</i> 11/21/02	OUTFALL 11/21/02
Сотрониа	Criteria ⁽¹⁾	Units			Duplicate										
1,1,1,2-Tetrachloroethane	NS	µg/L		3 } \$:	:	:	1	10	3	1		10.01	111	111
1,1,1-Trichloroethane	NS	hg/L	1 U	10	1U	1U	1U	đυ	10	5 U	10 U	3.3]	10 U	10	2.0
1,1,2,2-Tetrachloroethane	SN	ng/L	10	1 U	10	10	1U	4 U	1U	5 U	10 U	10 U	10 U	1U	10
1,1,2,1Trichloroethane 1,1,1)Trihloroethane	SN SN	нg/L 110/L	11		110	1 U 0 28 I	1 U	4 U	10	5U 5U	10 U	10 U	10 U	10	10
1,1-Dichloroethene	SN SN	н8/L	10	n P	10	10	1 U	4 U	10	50	10 U	10 U			
1,1-Dichloropropene	NS	µg/L				;		:	1U	1	•	ļ	10 U	1 U	10
1,2,3-Trichlorobenzene	NS	hg/L	:	1	!	:	:	:	ΠŪ	;	;		10 U	1U	1 U
1,2,3-Trichloropropane	NS	hg/L	1	: : :	:	:	: : :	:	10	:	:	:	10 U	nı	11
1,2,4-Trichlorobenzene	SN	,1/8µ	:	1 1 1	, ,	:	ł	1 7 7	- 10	:	1 1 1	ļ	10 U	ΪŪ	1U
1,2,4-1 rimethylbenzene 1,3. Dikrowa 3. ohlorooroon (DBCD)	SNS	hg/L	:	:	# 1	1	ļ	1 1 1	10	;		1 1 1	10 U	10	<u>1</u>
1.2-Dibronnethane (EDR)	SN SN	µ8/∟ ₩a/l	, i , i , i			t 1 1	1 1 3 1 9 1		() I			:	In nt	[] []	[]
1,2-Dichlorobenzene	SN	hg/L	1	-	!		1		10	1	;		10 U	2 2	
1,2-Dichloroethane	NS	hg/L	1U	υı	ΠŪ	1U	ΠŪ	4 U	1 U	5 U	10 U	10 U	10 U	ΙŪ	10
1,2-Dichloropropane	SN	hg/L	Π	10	10	1 U	10	4 U	1 U	5 U	10 U	10 U	10 U	Π	Π
1,3,5-Trimethylbenzene	SN	µg/L	1 1 1	1	8 8 8) 3 4	1	1	10				10 U	10	10
1.3-Dichloronanasia	cn SN	не/] 1/8н	ь : с ;	3 3 3) 	L 	•	110		* * *		10 1		
1,4-Dichlorobenzene	S S	н5/г µg/L				, i , i , i	1 L 1 L 1 I		1 U		1 5 1 2 1 7			10	
2,2-Dichloropropane	SN	hg/L	;	!	1 1 1	:			1U		:		10 U	10	10
2-Butanone	SN	µg/L	5 U	5 U	5 U	5 U	5 U	20 U	:	25 U	50 U	50 U	;	: : :	:
2-Chlorotoluene	SN	hg/L	,	:	5 5 1	1			lυ	:	:		10 U	1U	1 U
2-Flexanone 2-Phanulturana	NS	µg/L	2	20	50	5 U	5 U	20 U		25 U	50 U	50 U			: :
3-Chlorotoluene	SN			t t	1 3 3				10				10 U		
4-Chlorotohuene	NS	hg/L	:	:	8 8 8	3	!	;	ΙŪ	3 2 3	;	;	10 U	1U	10
4-Methyl-2-pentanone	SN	hg/L	5 U	5 U	5 U	5 U	5 U	20 U	1	25 U	50 U	50 U			1 1 7
Acetone	NS	ng/L	8.6	4.4]	5 U	5 U	5 U	20 U	••••	25 U	50 U	50 U	•		1
Benzene	10	ng/L	лu	10	IU	DI	JU	4 U	10	5 U	10 U	10 U	10 U	10	10
Bronnobenzene	SS 2	ng/L	• • •	, , , , , ,	, , , ,				10		:	:	10 U	D	1 C
Broundtchloromethane	SN 2	нg/L			- I C	2:	10	5 ;		50	10 U	10 U	10 U	- - -	
Bromonuethane	S S	нg/г ше/Г.	101			0 I I		4 4 1 C	1 1	200	0.01		10 11	2 =	
Carbon disulfide	SN	μg/L	10	10	10	10	10	4 U		50	10 U	10 U			2 ¦
Carbon tetrachloride	SN	µg/L	ΙŪ	10	10	10	10	4 U	1 U	5 U	10 U	10 U	10 U	1 U	1U
Chlorobenzene	400	µg/L	1U	1 U	10	IU	1U	4 U	1U	5 U	10 U	10 U	10 U	ΙŪ	10
Chloropromomentane Chloropethane	a s	hg/L 110/L	- 11		: =	1		411		115	101	11.01	10 0		11
	!	ı òr) •	1) 1	}) 4) •	1	>	> >	2)))	2	2

C 1
Ξ.
3
μų.
<u>لي</u>
щ.
<
H

SURFACE WATER ANALYTICAL RESULTS-VOLATILE ORGANIC COMPOUNDS FEASIBILITY STUDY OLD ERIE CANAL SITE CUNDE NEW VORK

)										
				Background											
	Sample	Sample Location:	SW-01	SW-02	SW-02	SW-03	5W-04	SW-05	SW-05	20-MS	80-MS	60-MS	60-MS	01-WS	OUTFALL
	Sar	Sample Date:	5/21/02	5/21/02	5/21/02 Duplicate	5/21/02	5/21/02	5/21/02	11/21/02	5/21/02	5/21/02	5/21/02	11/21/02	11/21/02	11/21/02
Compound	Criteria ⁽¹⁾	Units													
Chloroform	SN	µg/L	1U	ΙŪ	1U	10	1U	4 U	1U	5 U	10 U	10 U	10 U	1 U	10
Chloromethane	SN	hg/L	1U	1U	1U	1U	1U	4 U	1U	5 U	10 U	10 U	10 U	1 U	10
cis-1,2-Dichloroethene	SN	hg/L	0.27 J	1U	1U	8.8	13	69	22	100	260	530 D	200	28	16
cis-1,3-Dichloropropene	NS	hg/L	10	10	1U	1U	1 U	4 U	ΙŪ	5 U	10 U	10 U	10 U	1U	1 U
Cymene	NS	нg/L	;	ł	}	:	-		10	;	:	4 7 3	10 U	IU	1U
Dibromochloromethane	NS	µg∕L	10	1U	1 U	IU	1 U	₫ U	1U	5 U	10 U	10 U	10 U	ıυ	n
Dibromomethane	NS	Hg/L		:		; ; ;		5 8 6	1 U	1	1 5 †		10 U	D I	1 U
Dichloromonofluoromethane	NS	нg/L	::	:	1	8 1 1	;	1	10			* *	10 U	10	ΪŪ
Ethylbenzene	NS	μg/L	1U	10	1 U	1U	10	4 U	10	5 U	10 U	10 U	10 U	1 U	IU
Hexachlorobutadiene	0.01	hg/L	:	:		; ; ;	:	:	1U	;	:	1 1 1	10 U	υı	١U
Isopropylbenzene	NS	µg/L	:	:	:	:	1	:	lυ	;	;	ļ	10 U	10	1 U
m&p-xylene	NS	µg/L	;	1	:	:		:	2 U	•	:	:	20 U	2 U	2 U
Methylene chloride	200	µg/L	2 U	2 U	2 U	2 U	2 U	3.2 J	1U	2]	5]	6]	10 U	Π	1U
Naphthalene	NS	hg/L		1		:	:	:	10	;	:	:	10 U	Π	1 U
n-Butylbenzene	NS	ng/L	5 5 7	1 1 1	ļ	:	:	:	10	:	;	:	10 U	1U	10
n-Propylbenzene	NS	µg/L		:)) ,		:	8 8 1	10	:	:	•	10 U	UI	10
o-Xylene	NS	ng/L	2 7 7	:	:		3 3 3	:	10	:	!	-	10 U	1 U	10
Styrene	NS	µg/L	10	1U	IU	10	1U	4 U	10	5 U	10 U	10 U	10 U	ΠŪ	1 U
tert-Butylbenzene	NS	hg/Ľ	, , ,	1 1 3	:		•	;	10	:		:	10 U	n	10
Tetrachloroethene	1	J/Bri	Π	10	IU	n	lυ	4 U	10	50	3.9 J	8.7 J	10 U	ΠŪ	1 U
Toluene	6000	hg/L	ΠŪ	1U	10	IU	1U	4 U	ΙŪ	5 U	10 U	10 U	10 U	ιυ	1 U
trans-1,2-Dichloroethene	NS	μg/L	10	Π	10	1U	IU	4 U	ΙŪ	5 U	2]	3.9 J	10 U	1 U	10
trans-1,3-Dichloropropene	SN	µg/L	1U	IU	10	1U	10	đΰ	1 U	5 U	10 U	10 U	10 U	ΠΩ	Π
Trichloroethene	40	hg/L	0.27 J	10	10	8.4	8.8	9	8.7	1]	59 B	120 B	75	2.5	7.2
Trichloroftuoromethane (CFC-11)	NS	μg/L	1	:	:	•	1 1 1	1	lυ	:	1	-	10 U	10	1U
Vinyl chloride	NS	hg/L	10	ΙŪ	1U	1.8	0.84 J	1.4]	17	5 U	3.4]	30	36	8	2.1
Xylene (total)	NS	µg/L	3 U	3 U	3 U	3 U	3 U	12 U		15 U	30 U	30 U			• • •

Notes:

£

Ambient Water Quality Standard, Class C fresh surface water, human health.

Compound was not detected at or above the quantitation limit shown. Concentration exceeds criteria.

Page 2 of 2

CKA 035048 (2)

SURFACE WATER ANALYTICAL RESULTS-SEMI-VOLATILE ORGANIC COMPOUNDS FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

.

				Background	_						
	Samp	Sample Location: Sammle Date:	SW-01 5/21/2002	SW-02 5/71/2002	SW-02 5/71/2002	5171/2007	5W-04	SW-05 51712007	5W-07	SW-08	5W-09
					Duplicate					10011110	70177100
Сотроинд	Criteria ⁽¹⁾	Units									
Acenaphthene	NS	µg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Acenaphthylene	NS	µg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Anthracene	NS	µg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Benzo(a)anthracene	NS	µg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	1]	10 U
Benzo(b)fluoranthene	NS	µg/L	10 U	1 J	10 U	10 U	5]	10 U	10 U	3]	10 U
Benzo(k)fluoranthene	NS	µg/L	10 U	0.7 J	10 U	10 U	4]	10 U	10 U	2]	10 U
Benzo(g,h,i)perylene	NS	µg/L	10 U	0.8 J	10 U	10 U	5)	10 U	10 U	3]	10 U
Benzo(a)pyrene	0.0012	µg/L	10 U	0.7 J	10 U	10 U	4]	10 U	10 U	2]	10 U
bis(2-Chloroethoxy)methane	NS	µg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
bis(2-Chloroethyl)ether	NS	µg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
bis(2-Chloroisopropyl)ether	NS	µg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
bis(2-Ethylhexyl)phthalate	NS	µg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
4-Bromophenyl phenyl ether	NS	µg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Butyl benzylphthalate	NS	µg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
4-Chloroaniline	NS	µg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
4-Chloro-3-methylphenol	NS	µg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2-Chloronaphthalene	NS	µg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2-Chlorophenol	NS	µg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
4-Chlorophenyl phenyl ether	NS	µg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Chrysene	NS	µg/L	10 U	1]	10 U	10 U	5]	10 U	10 U	3]	10 U
Dibenzo(a,h)anthracene	NS	µg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	0.6 J	10 U
Dibenzofuran	NS	µg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Di-n-butylphthalate	NS	µg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,2-Dichlorobenzene	NS	µg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,3-Dichlorobenzene	NS	µg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,4-Dichlorobenzene	NS	µg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
3,3'-Dichlorobenzidine	SN	µg/L	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U
2,4-Dichlorophenol	NS	µg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Diethyl phthalate	SN	µg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2,4-Dimethylphenol	1000	µg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Dimethyl phthalate	NS	µg∕L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
4,6-Dinitro-2-methylphenol	NS	µg/L	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U
2,4-Dinitrophenol	, 400	µg/L	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U

Page 1 of 3

SURFACE WATER ANALYTICAL RESULTS-SEMI-VOLATILE ORGANIC COMPOUNDS FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

				Background							
	San	Sample Location: Sample Date:	SW-01 5/21/2002	SW-02 5/21/2002	<i>SW-02</i> 5/21/2002	SW-03 5/21/2002	SW-04 5/21/2002	SW-05 5/21/2002	SW-07 5/21/2002	SW-08 5/21/2002	SW-09 05/21/02
Сотронид	Criteria ⁽¹⁾	Units			Duplicate						
2,4-Dinitrotoluene	NS	ug/L	10 U	10 U	10 U	10 U	10 U	10 U	101	11.01	11.01
2,6-Dinitrotoluene	NS	μg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Di-n-octyl phthalate	NS	µg/L	10 U	10 U	10 U	3]	10 U	10 U	10 U	10 U	10 U
Fluoranthene	NS	h8/L	10 U	2]	10 U	10 U	8]	10 U	10 U	6]	10 U
Fluorene	NS	hg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Hexachlorobenzene	0.00003	µg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Hexachlorobutadiene	0.01	μg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Hexachlorocyclopentadiene	NS	μg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Hexachloroethane	0.6	μg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Indeno(1,2,3-cd)pyrene	NS	µg/L	10 U	0.7]	10 U	10 U	4]	10 U	10 U	2]	10 U
Isophorone	NS	µg/L	10 Ú	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2-Methyl naphthalene	NS	μg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2-Methylphenol	NS	µg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
4-Methylphenol	NS	ing/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Naphthalene	NS	µg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2-Nitroaniline	NS	µg/L	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U
3-Nitroaniline	NS	µg/L	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U
4-Nitroaniline	NS	µg/L	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U
Nitrobenzene	NS	µg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2-Nitrophenol	NS	µg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
4-Nitrophenol	NS	µg/L	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U
N-Nitrosodiphenylamine	NS	hg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
N-Nitrosodi-n-propylamine	NS	1/Bri	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Pentachlorophenol	NS	ng/L	25 U	25 U	25 U	25 U	25 U	25 U	2]	25 U	25 U
Phenanthrene	NS	µg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	2]	10 U
Phenol	NS	µg∕L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Pyrene	NS	µg/L	10 U	1 J	10 U	10 U	6 J	10 U	10 U	4 J	10 U
1,2,4-Trichlorobenzene	NS	µg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2,4,5-Trichlorophenol	NS	μg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2,4,6-Trichlorophenol	NS	µg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U

Notes:

(1) Ambient Water Quality Standard, Class C fresh surface water,

SURFACE WATER ANALYTICAL RESULTS-SEMI-VOLATILE ORGANIC COMPOUNDS FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

SW-09 05/21/02 SW-08 5/21/2002 5/21/2002 SW-07 5/21/2002 SW-05 5/21/2002 SW-04 5/21/2002 5/21/2002 SW-03 Duplicate SW-02 Background Sample Location: SW-01 SW-02 Sample Date: 5/21/2002 5/21/2002

Compound Criteria⁽¹⁾ Units

human health

Detected concentration is estimated.

Detected concentration
 NS No standard.
 U Compound was not compound

J Compound was not detected at or above the quantitation limit.

SURFACE WATER ANALYTICAL RESULTS- PCBs FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

	60-MS	5/21/2002		0.49 U						
	SW-08	5/21/2002		0.48 U						
	<i>SW-07</i>	5/21/2002		0.5 U						
	SW-05	5/21/2002		0.49 U						
	5W-04	5/21/2002		0.5 U						
	SW-03	5/21/2002		0.5 U						
	SW-02	5/21/2002	Duplicate	0.51 U						
Background	SW-02	5/21/2002		0.57 U						
	10-MS	5/21/2002		0.49 U						
	Sample Location: SW-01	Sample Date:	Units	ug/L	ng/L	ug/L	ug/L	ug/L	ug/L	ug/L
	Sampi	Sr	Criteria ⁿ⁾	0.000001	0.000001	0.000001	0.00001	0.00001	0.000001	0.00001
			Compound	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260

Notes:

Ambient Water Quality Standard, Class C fresh surface water, human health PCBs Polychlorinated Biphenyls.

Compound was not detected at or above the quantitation limit shown. D

SURFACE WATER ANALYTICAL RESULTS-PESTICIDES FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

	60-MS	5/21/2002			0.048_111	0.048 UI	0.048 UI	0.048 UJ	_	0.048 UT	0.048 UI	_	_	_	_		-	-	_	0.048 UJ	0.048 UJ	0.048 UJ	0.007 111
	SW-08	5/21/2002			0.047 11	0.047 UI	0.047 UJ	0.047 UJ	0.047 UJ	0.047 UI			0.047 UJ								_	0.047 UJ	0.095 111
	5W-07	5/21/2002			0.05 17	0.05 UJ			-	_	-	_	0.05 UJ	-	_	-	_	_	_		0.05 UJ		
	SW-05	5/21/2002			0.048 UI	0.048 UJ	0.048 UJ	_				_			0.048 UJ	_	_	_	_	-	0.048 UJ	_	_
	5W-04	5/21/2002			0.47 UI	0.47 UJ	~	~	-	0.47 UJ	-	_	_	-	_	0.47 UJ	-	_	0.47 UJ		-	0.47 UJ	_
	SW-03	5/21/2002			0.047 UT	0.047 UJ		0.047 UJ	0.047 UJ	0.047 UJ			0.047 UJ									0.047 UJ	
	SW-02	5/21/2002	Duplicate		0.05 UI	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ			0.05 UJ				0.05 UJ	-		0.05 UJ	
ground	SW-02	5/21/2002			0.057 UJ	0.057 UJ	0.057 UJ	0.057 UJ	_	0.057 UJ	0.057 UJ		0.057 UJ						0.057 UJ				
Background		5/21/2002			0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ		-		0.05 UJ		· ·		0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ	[U 660.0
	Sample Location:	Sample Date:		Units	µg/L	л/8н	hg/L	hg/L	µg/L	hg/L	µg∕L	µg/Г	µg∕L	hg/L	µg/L	µg/L	µg/L	hg∕L	J∕8µ	µg/L	hg/L	hg/L	hg/L
	Sample .	Sam		Criteria ⁽¹⁾	0.001	NS	NS	NS	NS	0.00002	0.00008	0.000007	0.0001	0.000006	NS	SN	NS	0.002	NS	0.0002	0.0003	SN	0.00006
				Сотроинд	Aldrin	alpha-BHC	beta-BHC	gamma-BHC (Lindane)	delta-BHC	Chlordane	4,4'DDD	4,4'DDE	4,4'-DDT	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan sulfate	Endrin	Endrin aldehyde	Heptachlor	Heptachlor epoxide	Methoxychior	Toxaphene

Notes:

Ambient Water Quality Standard, Class C fresh surface water, human health Detected concentration is estimated. No standard. Compound was not detected at or above the quantitation limit shown.

U NS D

4	
Ċ٥.	
щ	
H	
E	
2	

SURFACE WATER ANALYTICAL RESULTS-METALS FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

Sample Location: Sample Location: Sample Date:ConstituentCriteria 11 UnitsConstituentCriteria 11 UnitsAluminum $100^{(2)}$ $\mu g/L$ Arsenic $100^{(2)}$ $\mu g/L$ Arsenic $150^{(2)}$ $\mu g/L$ Beryllium $11^{(2)}$ $\mu g/L$ Cadmium $2880^{(3)}$ $\mu g/L$ Calcium NS $\mu g/L$ Cobalt $5^{(2)}$ $\mu g/L$ Icon NS $\mu g/L$ Icon NS $\mu g/L$ Lead NS $\mu g/L$ Magnesium NS $\mu g/L$ Mareancee NS $\mu g/L$			5/21/2002	SW-02 5/21/2002	SW-03	SW-04	SW-05 5/21/2002	50-07 5171/2007	SW-08 5/21/2002	500-MS
tent Criteria ⁽¹⁾ 100 ⁽²⁾ NS 150 ⁽²⁾ NS 2880 ⁽³⁾ NS 2880 ⁽³⁾ 5(2) 5 ⁽²⁾ 12660 ⁽³⁾ NS NS NS		120 B 1 3.9 U 3.9 U 91.5 BJ 0.3 U		700717710			711717		70077720	
tent Criteria ⁽¹⁾ $100^{(2)}$	88/1 88/1 88/1 87/1 87/1 87/1 87/1 87/1	120 B 3.9 U 3.9 U 91.5 BJ 0.3 U		Duplicate	700711710	7007/17/0				700711710
100 ⁽²⁾ NS NS NS NS 11 ⁽²⁾ 2880 ⁽³⁾ NS NS NS NS NS		120 B 3.9 U 3.9 U 91.5 BJ 0.3 U								
NS $150^{(2)}$ NS NS $11^{(2)}$ NS NS $550^{(3)}$ NS		3.9 U 3.9 U 91.5 BJ 0.3 U	240	128 B	88.3 B	1950	86.2 B	92.8 B	1020	54.2 B
150 ⁽²⁾ NS NS NS 2880 ⁽³⁾ 5 ⁽³⁾ 12660 ⁽³⁾ NS NS NS	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3.9 U 91.5 BJ 0.3 U	3.9 U	3.9 U	3.9 U	4.3 B	3.9 U	3.9 U	3.9 U	3.9 U
NS 11 ⁽³⁾ 2880 ⁽³⁾ NS 5 ⁽²⁾ NS NS NS NS	8/1 8/1 8/1 8/1 8/1	91.5 BJ 0.3 U	3.9 U	3.9 U	3.9 U	15.6	3.9 U	3.9 U	12.7	7.5 B
11 ⁽²⁾ 2880 ⁽³⁾ NS 5 ⁽²⁾ NS NS NS NS	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.3 U	86.5 BJ	91.9 BJ	132 BJ	333 J	120 BJ	54.2 BJ	395 J	96.4 BJ
2880 ⁽³⁾ NS 5 ⁵⁽³⁾ NS NS NS NS	8/L 8/L 8/L		0.3 U	0.3 U	0.3 U	0.3 B	0.36 B	0.3 U	0.3 U	0.3 U
NS 5 ⁽³⁾ 12660 ⁽³⁾ NS NS NS	8/L 8/L	0.3 U	0.3 U	0.3 U	0.3 U	0.45 B	0.3 U	0.41 B	0.45 B	0.3 U
2.88 ⁽³⁾ 5 ⁽²⁾ NS NS NS	8/L 8/L	127000 J	109000 J	110000 J	113000 J	126000 J	111000 J	95200 J	111000 J	103000 J
5 ⁽²⁾ 12660 ⁽³⁾ NS NS NS	g/L	1.2 B	U 6.0	0.9 U	0.9 U	7.4 B	0.9 U	0.9 U	6.6 B	1.6 B
12660 ⁽³⁾ NS NS NS		0.7 U	0.7 U	0.7 U	0.7 U	2.9 B	0.7 U	0.7 U	1.7 B	0.7 U
NS 8 ⁽²⁾ NS NS	g/L	0.7 U	0.7 U	0.7 U	0.7 U	17.9 B	0.7 U	0.7 U	10.7 B	0.7 U
8 ⁽²⁾ NS NS	g/L	951 J	798 J	605]	3920 J	39600 J	359]	192]	15200 J	1630]
NS NS	µg∕L	4]	5.7]	4.2]	3.9]	53	2.4 U	2.6 BJ	32.4	2.4 U
SN	µg/L	22100 J	21500 J	21100 J	19700 J	22200)	20100]	14800]	21400 J	23900]
2	hg/L	110 J	87.4]	68.8]	144]	1360 J	40.4]	145]	1510 J	561 J
	µg/L	1.6 B	1.3 U	1.3 U	1.3 U	6.6 B	1.3 U	2.5 B	4 B	1.4 B
	hg/L	7430]	6270 J	6360]	5830]	(0689	5710]	2730 BJ	6970]	8590]
4.6 ⁽²⁾	µg∕L	4.4 U	4.4 U	4.4 U	4.4 U	4.4 U	4.4 U	4.4 U	4.4 U	4.4 U
	µg/L	0.092 U	0.092 U	0.092 U	0.092 U	0.092 U	0.092 U	0.092 U	0.092 U	0.092 U
	μg/L	U 6.0	0.9 U	0.9 U	0.9 U	0.9 U	0.9 U	0.9 U	0.9 U	0.9 U
	µg/L	59000 J	81600 J	74100 J	66800]	(00069	65500]	31100 J	59800]	64200]
	μg/L	5.3 U	5.3 U	5.3 U	5.3 U	5.3 U	5.3 U	5.3 U	5.3 U	5.3 U
	µg∕L	0.7 U	0.7 U	0.7 U	0.7 U	7.7 B	0.7 U	0.7 U	5.6 B	0.7 U
116630 ⁽³⁾ μg	μg/L	16.6 BJ	25.2]	17.2 BJ	87.4]	582	21]	10.1 BJ	364	36.4]

Notes: (1)

Ambient Water Quality Standard, Class C fresh surface water, human health

Aquatic standard, no human health standard. 6

No human health standard, aquatic standard calculated based on hardness of 150 ppm. Э Э

Value greater than or equal to the instrument detection limit.

SURFACE WATER ANALYTICAL RESULTS-METALS FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

- Detected concentration is estimated. No standard.
- U NS U
- Compound was not detected at or above the quantitation limit shown.

٠

SURFACE WATER ANALYTICAL RESULTS-WET CHEMISTRY FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

	SW-09	5/21/2002		7.36	10.0 U
	SW-08	5/21/2002		7.70	10.0 U
	SW-07	5/21/2002		7.93	10.0 U
	SW-05	5/21/2002		7.96	10.0 U
	SW-04	5/21/2002		16.2	10.0 U
	SW-03	5/21/2002		7.73	10.0 U
	SW-02	5/21/2002 Dunlicate		7.94	10.0 U
Background	SW-02	5/21/2002		7.88	10.0 U
	10-MS	5/21/2002		7.77	10.0 U
	Sample Location: SW-1	Sample Date:	Units	S.U.	hg/L
	Sam		Constituent	Leachable pH	Cyanide - Total

Compound was not detected at or above the quantitation limit shown. Note: U

σ.
erj.
123
7
8
\sim
H

SURFACE SOIL ANALYTICAL RESULTS-VOLATILE ORGANIC COMPOUNDS FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

				Background										
	Samp	Sample Location:	SED 01	SED 02	SED 02	SED 03	SED 04	SED 05	SED 06	SED 07	SED 08	SED 09	SED 10	10-SS
	ري. ا	Sample Date:	5/21/2002	5/21/2002	5/21/2002	5/21/2002	5/21/2002	5/21/2002	5/21/2002	5/21/2002	5/21/2002	5/21/2002	11/21/2002	5/21/2002
Сотроний	Criteria ⁽¹⁾	Units			Duplicate									
Acelone	200	110 /Ka	11001	80111	11 1 79	11 182	111066	58 1 13	11 87	111.67	111.00	Ш 76	:	
Benzene	9	110/Ka	37111	11155	38111	26136	10 077 40 LU	30111		67 III 67 III 69 III		10.07	11.01	14 C
Bramodichloromethane	SN	110/Ko	111 28	33111	38111	2611	10 1	30111		(0 30 11 63		10.02		5 I I
Bromoform	SN	гь/ то µg/Кg	37 UI	33 UJ	38 U	26 UI	42 UI	30 UI	68 UI	65 UI	28 UI	25 UT	40 U)	14 []
Bromomethane	SN	μg/Kg	37 UJ	33 UJ	38 UJ	26 UJ	42 UJ	30 UI	68 UJ	62 UI	28 UI	25 UI	40 UI	14 U
2-Bulanone	300	µg/Kg	37 UJ	33 UJ	38 UJ	26 UJ	42 UJ	30 UJ	68 UJ	62 UJ	28 UJ	25 UJ	40 U]	14 U
Carbon disulfide	2700	µg/Kg	37 UJ	33 UJ	38 UJ	26 UJ	42 UJ	30 UJ	68 UJ	62 UJ	28 UJ	4]	40 UJ	14 UJ
Carbon tetrachloride	600	µg/Kg	37 UJ	33 UJ	38 UJ	26 UJ	42 UJ	30 UJ	68 UJ	62 UJ	28 UJ	25 UJ	40 UJ	14 U
Chlorobenzene	1700	pg/Kg	37 UJ	33 UJ	38 UJ	26 UJ	42 UJ	30 UJ	68 UJ	62 UJ	28 UJ	25 UJ	40 UJ	14 U
Chloroethane	1900	µg/Kg	37 UJ	33 UJ	38 UJ	26 UJ	42 UJ	30 UJ	68 UJ	62 UJ	28 UJ	25 UJ	40 UJ	14 U
Chloroform	300	µg/Kg	37 UJ	33 UJ	38 UJ	26 UJ	42 UJ	30 UJ	68 UJ	62 UJ	28 UJ	25 UJ	40 UJ	14 U
Chloromethane	SN	µg/Kg	37 UJ	33 UJ	38 UJ	26 UJ	42 UJ	30 UJ	68 UJ	62 UJ	28 UJ	25 UJ	40 UJ	14 U
Dibromochloromethane	SN	µg/Kg	37 UJ	33 UJ	38 UJ	26 UJ	42 UJ	30 UJ	68 UJ	62 UJ	28 UJ	25 UJ	40 UJ	14 U
1,1-Dichloroethane	200	µg/Kg	37 UJ	33 UJ	38 UJ	3]	42 UJ	30 UJ	68 UJ	62 UJ	5]	4]	40 UJ	14 U
1,2-Dichloroethane	100	µg/Kg	37 UJ	33 UJ	38 UJ	26 UJ	42 UJ	30 UJ	68 UJ	62 UJ	28 UJ	25 UJ	40 UJ	14 U
1,1-Dichloroethene	400	µg/Kg	37 UJ	33 UJ	38 UJ	26 UJ	42 UJ	30 UJ	68 UJ	62 UJ	28 UJ	25 UJ	40 UJ	14 U
cis-1,2-Dichloroethene	NS	µg/Kg	37 UJ	33 UJ	38 UJ	4]	45]	37]	15]	28]	[CI 066	1000 DJ	44	14 U
trans-1,2-Dichloroethene	300	μg/Kg	37 UJ	33 UJ	38 UJ	26 UJ	42 UJ	30 UJ	68 UJ	62 UJ	5]	6]	40 UJ	14 U
1,2-Dichloropropane	NS	µg/Kg	37 UJ	33 UJ	38 UJ	26 UJ	42 UJ	30 UJ	68 UJ	62 UJ	28 UJ	25 UJ	40 UJ	14 U
cis-1,3-Dichloropropene	SN	µg/Кg	37 UJ	33 UJ	38 UJ	26 UJ	42 UJ	30 UJ	68 UJ	62 UJ	28 UJ	25 UJ	40 UJ	14 U
trans-1,3-Dichloropropene	SN	µg/Kg	37 UJ	33 UJ	38 UJ	26 UJ	42 UJ	30 UJ	68 UJ	62 UJ	28 UJ	25 UJ	40 UJ	14 U
Ethylbenzene	5500	µg/Kg	37 UJ	33 UJ	38 UJ	26 UJ	42 UJ	30 UJ	68 UJ	62 UJ	28 UJ	25 UJ	40 UJ	14 U
2-Hexanone	SN	µg/Kg	37 UJ	33 UJ	38 UJ	26 UJ	42 UJ	30 UJ	68 UJ	62 UJ	28 UJ	25 UJ	40 UJ	14 U
Methylene chloride	100	µg/Kg	37 UJ	33 UJ	38 UJ	26 UJ	42 UJ	30 UJ	68 UJ	62 UJ	28 UJ	25 UJ	40 UJ	18 U
4-Methyl-2-pentanone	1000	µg/Kg	37 UJ	33 UJ	38 UJ	26 UJ	42 UJ	30 UJ	68 UJ	62 UJ	28 UJ	25 UJ	40 UJ	14 U
Styrene	NS	µg/Kg	37 UJ	33 UJ	38 UJ	26 UJ	42 UJ	30 UJ	68 UJ	62 UJ	28 UJ	25 UJ	40 UJ	14 U
1,1,2,2-Tetrachloroethane	600	µg/Kg	37 UJ	33 UJ	38 UJ	26 UJ	42 UJ	30 UJ	68 UJ	62 UJ	28 UJ	25 UJ	40 UJ	14 U
Tetrachloroethene	1400	μg/Kg	37 UJ	33 UJ	38 UJ	26 UJ	42 UJ	30 UJ	68 UJ	62 UJ	50]	13]	40 UJ	14 U
Toluene	1500	µg/Kg	37 UJ	33 UJ	38 UJ	26 UJ	42 UJ	30 UJ	68 UJ	62 UJ	28 UJ	25 UJ	40 UJ	14 U
1,1,1-Trichloroethane	800	µg/Kg	37 UJ	33 UJ	38 UJ	26 UJ	42 UJ	30 UJ	68 UJ	62 UJ	5]	25 UJ	40 UJ	14 U
1,1,2-Trichloroethane	NS	μg/Kg	37 UJ	33 UJ	38 UJ	26 UJ	42 UJ	30 UJ	68 UJ	62 UJ	28 UJ	25 UJ	40 UJ	14 U
Trichloroethene	700	µg/Kg	37 UJ	33 UJ	38 UJ	26 UJ	17]	30 UJ	68 UJ	7]	230 J	80 J	6]	14 U
Vinyl chloride	200	µg/Kg	37 UJ	33 UJ	38 UJ	3]	6J	30 UJ	68 UJ	62 UJ	19 J	120 J	10 J	14 U
Xylene (total)	1200	µg/Kg	56 UJ	50 UJ	57 UJ	39 UJ	64 UJ	46 UJ	100 UJ	93 UJ	42 UJ	38 UJ	40 UJ	21 U
ctor.														

Notes:

Goil Clearup Objectives, NYSDEC TAGM #4046, January 24, 1994.
 Compounds identified in an analysis at the secondary dilution factor.
 Detected concentration is estimated.
 No slandard.
 U Compound was not detected at or above the quantitation limit shown.

Page 1 of 4			SED 10 11/21/2002		13000 UJ	13000 UJ	2200]	3000]	1800]	1 2600 L	13000 UI	13000 UJ	13000 UJ	13000 UJ	13000 UJ	13000 UJ	13000 UJ	13000 UJ	13000 U)	13000 UI] 2900 J] 13000 UJ	13000 UJ	13000 UJ	13000 UJ	13000 UJ	27000 UJ	13000 UJ 13000 L11	13000 UJ	13000 UJ	65000 UJ	65000 UJ	13000 UJ	13000 UJ 13000 UJ
			SED 09 5/21/2002		3100 J	15000 UJ	88000 J	130000 J	78000 J	35000]	17000 UJ	17000 UJ	17000 UJ	17000 UJ	17000 UI	17000 UJ	17000 UJ	17000 UJ	1200011	17000 UJ	100000 J	16000 J	1500 J	17000 UJ	17000 UJ	17000 UJ	34000 UJ	17000 L1	17000 UJ	17000 UJ	41000 UJ	41000 UJ	17000 UJ	17000 UJ 17000 UJ
			SED 08 5/21/2002		1200 J	9200 UJ 6800 T	55000 J	98000 J	52000 J	52000 I	9200 UJ	9200 UJ	9200 UJ	9200 UJ 2000 I	9200 UI	9200 UJ	9200 UJ	9200 UJ 9200 UJ	11 0026	9200 UJ	75000 J	13000 J	850 J 9200 I II	9200 UJ	9200 UJ	9200 UJ	18000 UJ	9200 UJ	9200 UJ	9200 UJ	22000 UJ	22000 UJ	fn 0026	10 0026
			SED 07 5/21/2002		10000 UJ	10000 UJ 10000 LT	10000 UJ	760]	640 J	10000 UJ	10000 UJ	10000 UJ	10000 UJ	10000 UJ	10000 UI	10000 UJ	10000 UJ	10000 UJ	10000111	100001	660 J	10000 UJ	10000 UJ	10000 UJ	10000 UJ	10000 UJ	21000 UJ	In noon	10000 UJ	10000 UJ	25000 UJ	25000 UJ	100001	10000 U
			SED 06 5/21/2002		11000 UJ	11000 UJ 11000 UJ	650 J	1400 J	700]	108/	11000 UJ	11000 UJ	11000 UJ	11000 UJ	11000 UI	11000 UJ	11000 UJ	11000 UJ	1100011	11000 UJ	1000]	11000 UJ	11000 UJ	11000 UJ	11000 UJ	11000 UJ	22000 UJ	1100011	11000 UJ	11000 UJ	27000 UJ	27000 UJ		[U 00011
	OMPOUNDS		SED 05 5/21/2002		5100 UJ	5100 UJ 5100 UJ	270]	400 J	340 J	1000 330 I	5100 UJ	5100 UJ	5100 UJ	5100 UJ 990 T	5100 UJ	5100 UJ	5100 UJ	5100 UJ	5100 UT	5100 UJ	360 J	5100 UJ	5100 UJ 5100 UJ	5100 UJ	5100 UJ	5100 UJ	10000 UJ	(n 0015	5100 UJ	5100 UJ	12000 UJ	12000 UJ		5100 UJ
	ANALYTICAL RESULTS-SEMI-VOLATILE ORGANIC COMPOUNDS FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK		SED 04 5/21/2002		14000 UJ	14000 UJ 1900 I	22000 J	52000 J	33000 J	35000 I	14000 UJ	14000 UJ	14000 UJ	14000 UJ 8800 I	14000 UJ	14000 UJ	14000 UJ	14000 UJ	14000 UI	14000 UJ	40000 J	6000 J	14000 UJ 14000 UJ	14000 UJ	14000 UJ	14000 UJ	28000 UJ	14000 UJ	14000 UJ	14000 UJ	33000 UJ	33000 UJ		14000 UJ
1.20	II-VOLATILE STUDY VAL SITE YORK		SED 03 5/21/2002		8500 UJ	8500 UJ 8500 UI	650 J	1400 J	900 J	850 L	8500 UJ	8500 UJ	8500 UJ	8500 UJ 2600 I	8500 UJ	8500 UJ	8500 UJ	8500 UJ 8500 UJ	8500 UI	8500 UJ	1100]	8500 UJ	8500 UJ	8500 UJ	8500 UJ	8500 UJ	17000 UJ	8500 UI	8500 UJ	8500 UJ	21000 UJ	21000 UJ 8500 FT		8500 UJ
TABLE 3.20	RESULTS-SEMI-VOLAT FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK		SED 02 5/21/2002 Duplicate		25000 UJ	25000 UJ 25000 UI	8100]	27000 J	15000 J	15000 I	25000 UJ	25000 UJ	25000 UJ	25000 UJ 4400 I	25000 UJ	25000 UJ	25000 UJ	25000 UJ	25000 UI	25000 UJ	17000 J	1900]	25000 UJ	25000 UJ	25000 UJ	25000 UJ	50000 UJ	25000 UI	25000 UJ	25000 UJ	60000 UJ	60000 UJ 25000 UJ		25000 UJ
	VALYTICAL F C	Background	SED 02 5/21/2002		11000 UJ	11000 UJ 640 [9500 J	27000 J	22000 J	17000]	11000 UJ	11000 UJ	11000 UJ	3300 UJ	11000 UJ	11000 UJ	11000 UJ	11000 UJ	11000 UJ	11000 UJ	20000 J	2800 J	11000 UT	11000 UJ	11000 UJ	11000 UJ	22000 UJ	11000 UI	11000 UJ	11000 UJ	26000 UJ	26000 UJ 11000 TT		11000 UJ
	SURFACE SOIL AN		SED 01 5/21/2002		25000 UJ	25000 UJ 25000 UJ	2100]	5800 J	3500 J	3400]	25000 UJ	25000 UJ	25000 UJ	25000 UJ 5600 I	25000 UJ	25000 UJ	25000 UJ	25000 UJ 25000 UJ	25000 UJ	25000 UJ	3500 J	25000 UJ	25000 UI	25000 UJ	25000 UJ	25000 UJ	49000 UJ	25000 UI	25000 UJ	25000 UJ	60000 UJ	60000 UJ 25000 UJ	25000111	25000 UJ
	SURF		Sample Location <u>SED 01</u> Sample Date: 5/21/2002	d Units	µg/Кg	µg/Kg µg/Kg	Hg/Kg	µg/Kg	µg/Kg /V.c.	HE/KG	µg/Kg	µg/Kg	μg/Kg	ug/Ke	pg/Kg	µg/Kg	µg/Кg	µg/Кg 11 <i>0 /</i> Ко	ны т. µg/Кg	μg/Kg	pg/Kg	hg/Kg	ug/Kg	µg/Kg	µg/Kg	μg/Kg	hg/Kg	ны/кы ug/Kg	µg/Kg	µg/Kg	μg/Kg	µg/Kg ug/Kg	92/24	Hg/Xg Hg/Kg
			Sat	Lowest Background	р;	⊖ 640	2100	5800	3500	3400	D	D););	3300	D	D	D :		• •	n	3500	0061	ככ	D	D	р;) : 	2	n		с:) E	C C
				Criteria ⁽¹⁾	5000	41000 50000	224	1100	1100	61	SN	SN	SS 2	5000 50000	NS	50000	220	240 NS	800	SN	400	14	8100	2900	1600	8500	S S	0012	NS	2000	SN 32	200 NS	0001	50000
				Сотроинд	Acenaphthene	Acenaphutylene Auftracene	Benzo(a)anthracene	Benzo(b)fluoranthene	Benzo(k)iluoranthene Benzo(e h i)nervlene	Benzo(a)pyrene	Benzyl Alcohol	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl)ether	bis(2-Cituoroisopropyi)euter bis(2-Ethythexyt)phthalate	4-Bromophenyl phenyl ether	Butyl benzylphthalate	4-Chloroaniline	4-Untoro-3-methylphenol 2-Chloronanhthalene	2-Chlorophenol	4-Chlorophenyl phenyl ether	Chrysene	Dibenzo(a,n)anurracene	Di-n-butylphthalate	1,2-Dicitlorobenzene	1,3-Dicfulorobenzene	1,4-Dichlorobenzene	2,3-iJichtorobenziame 2.1-Diddaraabaaad	Diethyl phthalate	2,4-Dimethylphenol	Dimethyl phthalate	4,6-Dinitro-2-methylphenol	2,4-Duritrophenol 2,4-Dinitroholmene	2,6 Dinitratolucia	Di-n-octyl philialate

,

CRA 035048 (2)

TABLE 3.20	

Page 2 of 4

SURFACE SOIL ANALYTICAL RESULTS-SEMI-VOLATILE ORGANIC COMPOUNDS FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

SED 10 11/21/2002		6900 J	13000 UJ	13000 UJ	13000 UJ		13000 UI	13000 UI	13000 UI	13000 UJ	65000 UJ	65000 UJ	65000 UJ	13000 UJ	13000 UJ	65000 UJ	13000 UJ	13000 UI	65000 UI	22001	13000 UT	43001	1300011	3200011	13000 UJ
SED 09 5/21/2002		230000 J	17000 UJ	17000 UJ	17000 UJ	12000111	17000 UI	17000 UI	17000 UJ	17000 UJ	41000 UJ	41000 UJ	41000 UJ	17000 UJ	17000 UJ	41000 UJ	17000 UJ	17000 UJ	41000 UT	120000]	17000 UI	1400001	17000111	12000 UI	17000 UJ
SED 08 5/21/2002		150000 J 2000 I	9200 UJ	9200 UJ	9200 UJ	1/1 0026	9200 UI	9200 UJ	9200 UJ	9200 UJ	22000 UJ	22000 UJ	22000 UJ	9200 UJ	9200 UJ	22000 UJ	9200 UJ	9200 UJ	22000 UI	63000]	9200 UI	960001	9200 UI	9200 UI	9200 UJ
SED 07 5/21/2002		1000 J 10000 LJI	10000 UJ	10000 UJ	10000 UJ	10000 UI	10000 UJ	10000 UJ	10000 UJ	10000 UJ	25000 UJ	25000 UJ	25000 UJ	10000 UJ	10000 UJ	25000 UJ	10000 UJ	10000 UJ	25000 UJ	10000 UJ	10000 UJ	870]	10000 UT	10000 UI	10000 UJ
SED 06 5/21/2002		1600 J 11000 LJ	11000 UJ	11000 UJ	11000 UJ	11000 UI	11000 UJ	11000 UJ	11000 UJ	11000 UJ	27000 UJ	27000 UJ	27000 UJ	11000 UJ	11000 UJ	27000 UJ	11000 UJ	11000 UJ	27000 UJ	11000 UJ	11000 UJ	1300]	11000 UI	11000 UJ	11000 UJ
SED 05 5/21/2002		600 J 5100 UI	5100 UJ	5100 UJ	5100 UJ	5100 UI	5100 UJ	5100 UJ	5100 UJ	5100 UJ	12000 UJ	12000 UJ	12000 UJ	5100 UJ	5100 UJ	12000 UJ	5100 UJ	5100 UJ	12000 UJ	5100 UJ	5100 UJ	450]	5100 UI	5100 UJ	5100 UJ
SED 04 5/21/2002		73000 J 14000 UJ	14000 UJ	14000 UJ	14000 UJ	14000 UJ	14000 UJ	14000 UJ	14000 UJ	14000 UJ	33000 UJ	33000 UJ	33000 UJ	14000 UJ	14000 UJ	33000 UJ	14000 UJ	14000 UJ	33000 UJ	24000 J	14000 UJ	47000 J	14000 UJ	14000 UJ	14000 UJ
SED 03 5/21/2002		1700 J 8500 UJ	8500 UJ 8500 UJ	8500 UJ	8500 UJ 8500 UJ	8500 UJ	8500 UJ	8500 UJ	8500 UJ	8500 UJ	21000 UJ	21000 UJ	21000 UJ	8500 UJ	8500 UJ	21000 UJ	8500 UJ	8500 UJ	21000 UJ	610 J	8500 UJ	1000 J	8500 UJ	8500 UJ	8500 UJ
SED 02 5/21/2002 Duplicate		28000 J 25000 UJ	25000 UJ 25000 UJ	25000 UJ	25000 UJ 6200 I	25000 UJ	25000 UJ	25000 UJ	25000 UJ	25000 UJ	60000 UJ	60000 UJ	60000 UJ	25000 UJ	25000 UJ	60000 UJ	25000 UJ	25000 UJ	60000 UJ	7100 J	25000 UJ	17000 J	25000 UJ	25000 UJ	25000 UJ
Background SED 02 5/21/2002		35000 J 11000 UJ	11000 UJ	11000 UJ	11000 UJ 7500 I	11000 UJ	11000 UJ	11000 UJ	11000 UJ	11000 UJ	26000 UJ	26000 UJ	26000 UJ	11000 UJ	11000 UJ	26000 UJ	11000 UJ	11000 UJ	26000 UJ	8700 J	11000 UJ	21000 J	11000 UJ	11000 UJ	11000 UJ
SED 01 5/21/2002		5600 J 25000 UJ	25000 UJ 25000 UJ	25000 UJ	25000 UJ 1300 I	25000 UJ	25000 UJ	25000 UJ	25000 UJ	25000 UJ	60000 UJ	60000 UJ	60000 UJ	25000 UJ	25000 UJ	60000 UJ	25000 UJ	25000 UJ	60000 UJ	1400 J	25000 UJ	3400 J	25000 UJ	25000 UJ	25000 UJ
Sample Location Sample Date:	Units	µg/Кg µg/Кg	µg/Kg ug/Ko	μg/Kg	µg/Kg ue/Ke	ug/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	μg/Kg	µg/Kg	pg/Kg	pg/Kg	µg/Kg	pg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Кg	µg/Kg	µg/Kg	µg/Kg	µg/Kg
Sampl Sa	Lowest Background	5600 U	ת ה	n	U 1300	n	D	D	D	D	D	5;	ום	0				þ	D	1400	ס	3400	D	D	D
	Criteria ⁽¹⁾	5000 5000	410 NS	SN	3200 3200	4400	36400	100	006	13000	430	200	SN	200	330	100	SZ	22	1000	50000	30	50000	3400	100	NS
	Сотроинд	Fluoranthene Fluorene	Hexachlorobenzene Hexachlorobutadiene	Hexachlorocyclopentadiene	Flexachloroethane Indeno(1,2,3-cd)pyrene	Isophorone	2-Methyl naphthalene	2-Methylphenol	4-Methylphenol	Naplithalene	Z-Nitroaniline	3-Nitroaniluse	4-Nritroamiline	Nitrobenzene	Z-Nitrophenol		N-Nitrosodiphenylanune		Pentachlorophenol	Phenauthrene	Phenol	Pyrene	1,2,4-Trichlorobenzene	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol

Noles: (i)

Soil Cleanup Objectives, NYSDEC TACM #4046, January 24, 1994. Detected concentration is estimated No standard.

- U NS
- Compound was not detected at or above the quantitation limit shown. Concentration exceeds criteria and background.

SURFACE SOIL ANALYTICAL RESULTS-SEMI-VOLATILE ORGANIC COMPOUNDS FEASIBILITY STUDY OLD EKLE CANAL SITE CLYDE, NEW YORK

Sample Location SS-01

Sample Date: 5/21/2002

50000 U µg/kg ene 224 2100 U µg/kg ene 1100 5500 µg/kg ene 1100 5500 µg/kg ene 1100 5500 µg/kg ene 1100 5500 µg/kg ine 50000 1300 µg/kg in 3400 1300 µg/kg in 3400 1300 µg/kg opyl)ether NS U µg/kg late 50000 U µg/kg opylylether NS U µg/kg opylylether NS U µg/kg late 50000 U µg/kg opyl U µg/kg µg/kg	Compound	Criteria ⁽¹⁾	Lowest Background	Units	
41000 U pg/kg ene 224 2100 pg/kg ene 1100 5800 pg/kg ene 1100 5800 pg/kg ene 1100 5800 pg/kg ine 50000 1300 pg/kg git 3500 pg/kg pg/kg nen 01 3400 pg/kg git 1100 3500 pg/kg state 01 pg/kg pg/kg pyt)acther NS U pg/kg late 50000 1 pg/kg late 50000 U pg/kg late 50000 U pg/kg late 50000 U pg/kg sectic 14 1900 pg/kg late 50000 U pg/kg late 7000 U pg/kg late 800 U pg/kg late <t< td=""><td>Acenaphthene</td><td>50000</td><td>n</td><td>µg/Kg</td><td>450 U</td></t<>	Acenaphthene	50000	n	µg/Kg	450 U
50000 640 Hg/Kg ene 224 2100 Hg/Kg ene 1100 5800 Hg/Kg ene 1100 5800 Hg/Kg ene 1100 5800 Hg/Kg y)methane NS U Hg/Kg NS U Hg/Kg Hg/Kg py))nethane NS U Hg/Kg nsi NS U Hg/Kg hithalae 50000 U Hg/Kg hithalae S0000 U Hg/Kg late 50000 U Hg/Kg late 7000 U Hg/Kg late NS U Hg/Kg late	Acenaplıtlıylene	41000	n	µg/Кg	450 U
te 224 2100 µg/kg ene 1100 5800 µg/kg ene 1100 5800 µg/kg ene 1100 3500 µg/kg ene 1100 3500 µg/kg of 3400 µg/kg µg/kg opyl)ether NS U µg/kg opyl)ether NS U µg/kg opyl)ether NS U µg/kg opyl)ether NS U µg/kg late 50000 U µg/kg late 50000 U µg/kg late 50000 U µg/kg late 50000 U µg/kg enenyl ether NS U µg/kg	Anthracene	5000	640	µg/Кg	450 U
ene 1100 5800 µg/Kg ene 1100 3500 µg/Kg ene 1100 3500 µg/Kg state 50000 1300 µg/Kg state 50000 1300 µg/Kg y)methane NS U µg/Kg state NS U µg/Kg py))nethane NS U µg/Kg py))nethane NS U µg/Kg py))nethane NS U µg/Kg py))nethane NS U µg/Kg late 50000 U µg/Kg late 50000 U µg/Kg late 50000 U µg/Kg secone 14 1900 µg/Kg secone 14 1900 µg/Kg late 7100 U µg/Kg late 8100 U µg/Kg late 8500 U µg/Kg	Benzo(a)anthracene	224	2100	µg/Kg	53]
ene 1100 3500 µg/kg ne 50000 1300 µg/kg st 3400 µg/kg y)methane NS U µg/kg sther NS U µg/kg y)methane NS U µg/kg sther NS U µg/kg py)jnether NS U µg/kg py)jnether NS U µg/kg pyjlether NS U µg/kg late 50000 U µg/kg late 50000 U µg/kg late 50000 U µg/kg secte 14 1900 µg/kg nenyl ether NS U µg/kg secte 14 1900 µg/kg late 7100 U µg/kg late NS U µg/kg late NS U µg/kg late	Benzo(b)fiuoranthene	1100	5800	µg/Kg	80 J
atte 50000 1300 $\mu g/Kg$ kl 3400 $\mu g/Kg$ kl 3400 $\mu g/Kg$ kl 3400 $\mu g/Kg$ $pyl)helher$ NS U $\mu g/Kg$ $hilthalate$ 50000 3300 $\mu g/Kg$ $hilthalate$ 50000 U $\mu g/Kg$ $hilthalate$ 50000 U $\mu g/Kg$ $hilthalate$ 50000 U $\mu g/Kg$ $hilthalate$ NS U $\mu g/Kg$	Benzo(k)fluoranthene	1100	3500	µg/Kg	60 J
61 3400 μg/Kg NS U μg/Kg NS U μg/Kg pyl)nethane NS U μg/Kg pyl)nether NS U μg/Kg pyl)nether NS U μg/Kg pyl)nether NS U μg/Kg pyl)nether NS U μg/Kg hithalate 50000 U μg/Kg late 50000 U μg/Kg late 50000 U μg/Kg env)l ether NS U μg/Kg env)l ether NS U μg/Kg env)l ether NS U μg/Kg nenv)l ether NS U μg/Kg ete 8100 U μg/Kg acente 1400 U μg/Kg et 7100 U μg/Kg et NS U μg/Kg sold U μg/Kg	Benzo(g,h,i)perylene	50000	1300	µg/Kg	45 J
NS U Hg/Kg y)methane NS U Hg/Kg py/)ether NS U Hg/Kg py/)ether NS U Hg/Kg py/)ether NS U Hg/Kg py/)ether NS U Hg/Kg hithalate 50000 3300 Hg/Kg late 50000 U Hg/Kg late 50000 U Hg/Kg late 50000 U Hg/Kg envyl ether NS U Hg/Kg acente 1400 U Hg/Kg e 7100 U Hg/Kg e NS U Hg/Kg e NS U Hg/Kg e NS U Hg/Kg e 20	o(a)pyrene	61	3400	µg/Kg	70 J
y)methane NS U $\mu g/Kg$ pyl)lether NS U $\mu g/Kg$ pyl)lether NS U $\mu g/Kg$ pyl)lether NS U $\mu g/Kg$ htthalate 50000 3300 $\mu g/Kg$ late 50000 U $\mu g/Kg$ late 5000 U $\mu g/Kg$ eneryl ether NS U $\mu g/Kg$ eneryl ether NS U $\mu g/Kg$ acente 14 1900 $\mu g/Kg$ atente 1600 U $\mu g/Kg$ l 7100 U $\mu g/Kg$ e 2000 U $\mu g/Kg$ setter NS U $\mu g/Kg$ e NS U $\mu g/Kg$ filter NS	Benzył Alcohoł	SN	D	µg/Kg	450 U
ether NS U $\mu g/Kg$ pyl)ether NS U $\mu g/Kg$ pyl)ether NS U $\mu g/Kg$ late 50000 3300 $\mu g/Kg$ late 50000 U $\mu g/Kg$ late 50000 U $\mu g/Kg$ late 50000 U $\mu g/Kg$ pyllenol 240 U $\mu g/Kg$ eneryl ether NS U $\mu g/Kg$ eneryl ether NS U $\mu g/Kg$ acente 14 1900 $\mu g/Kg$ acente 16 0 $\mu g/Kg$ acente 16 0 $\mu g/Kg$ acente 16 0 $\mu g/Kg$ atte 0	bis(2-Chloroethoxy)methane	SN	n	µg/Kg	450 U
pyl)ether NS U μg/kg htthalate 50000 3300 μg/kg late 50000 1 μg/kg late 50000 1 μg/kg late 50000 1 μg/kg late 50000 1 μg/kg pylenol 240 1 μg/kg envyl ether NS 1 μg/kg envyl ether NS 1 μg/kg acene 14 1900 μg/kg acene 14 1900 μg/kg aten 6200 1 μg/kg atene 14 1900 μg/kg atene 1400 1 μg/kg atene 1600 1 μg/kg atene 1600 1 μg/kg atene 1600 1 μg/kg atene 10 1 μg/kg atene 10 1 μg/kg	bis(2-Chloroethyl)ether	NS	D	µg/Kg	450 U
Attituate 50000 3300 µg/kg late 50000 U µg/kg late 50000 U µg/kg late 50000 U µg/kg jplenol 240 U µg/kg envyl ether NS U µg/kg acene 14 1900 µg/kg acene 14 1900 µg/kg acene 14 1900 µg/kg acene 1600 U µg/kg acene 1600 U µg/kg attee 8500 U µg/kg	bis(2-Chloroisopropyl)ether	SN	n	µg/Kg	450 U
ternyl ether NS U μg/Kg Jate 50000 U μg/Kg pilenol 240 U μg/Kg eneryl ether NS U μg/Kg eneryl ether NS U μg/Kg eneryl ether NS U μg/Kg acene 14 1900 μg/Kg acene 1600 U μg/Kg acene 1600 U μg/Kg acene 1600 U μg/Kg attee NS U μg/Kg	bis(2-Ethylhexyl)phthalate	50000	3300	µg/Kg	130 J
Jate 50000 U pg/kg 220 U pg/kg 210 U pg/kg 800 U pg/kg 800 U pg/kg 800 U pg/kg 8100 U pg/kg 400 3500 pg/kg acente 14 1900 pg/kg ne 7900 U pg/kg ne 7900 U pg/kg dine NS U pg/kg ol NS U pg/kg scooo </td <td>4-Bromophenyl phenyl ether</td> <td>SN</td> <td>Ŋ</td> <td>ug/Kg</td> <td>450 U</td>	4-Bromophenyl phenyl ether	SN	Ŋ	ug/Kg	450 U
220 U μg/kg Pallenol 240 U μg/kg ene NS U μg/kg ene NS U μg/kg ken NS U μg/kg ken NS U μg/kg ken NS U μg/kg ken 14 1900 μg/kg acente 14 1900 μg/kg ke 8100 U μg/kg he 7900 U μg/kg he 1600 U μg/kg dine 7100 U μg/kg dine NS U μg/kg ol NS U μg/kg sol U μg/kg g <tr< td=""><td>Butyl benzylplıtlıalate</td><td>50000</td><td>D</td><td>pg/Kg</td><td>450 U</td></tr<>	Butyl benzylplıtlıalate	50000	D	pg/Kg	450 U
planol 240 U μg/kg ene NS U μg/kg nenyl ether NS U μg/kg ken NS U μg/kg acente 14 1900 μg/kg acente 14 1900 μg/kg acente 14 1900 μg/kg acente 14 1900 μg/kg ne 7900 U μg/kg ne 7900 U μg/kg ne 1600 U μg/kg dine NS U μg/kg dine NS U μg/kg al 1000 U μg/kg al NS U	4-Chloroaniline	220	D	µg/Kg	450 U
ane NS U μg/kg kenyl ether NS U μg/kg kenyl ether NS U μg/kg 400 3500 μg/kg acene 14 1900 μg/kg acene 14 1900 μg/kg acene 14 1900 μg/kg he 8100 U μg/kg he 7900 U μg/kg he 1600 U μg/kg h 400 U μg/kg dine NS U μg/kg ol 400 U μg/kg ol NS U μg/kg ol NS U μg/kg ol NS U μg/kg sphnenol NS U μg/kg NS U μg/kg g NS U μg/kg g solo U μg/kg g <td>4-Chloro-3-methylphenol</td> <td>240</td> <td>כ</td> <td>µg/Kg</td> <td>450 U</td>	4-Chloro-3-methylphenol	240	כ	µg/Kg	450 U
800 U μg/kg henyl ether NS U μg/kg 400 3500 μg/kg acene 14 1900 μg/kg acene 14 1900 μg/kg acene 6200 U μg/kg he 8100 U μg/kg he 7900 U μg/kg he 1600 U μg/kg h 400 U μg/kg h 400 U μg/kg h 400 U μg/kg ol 400 U μg/kg ol NS U μg/kg ol NS U μg/kg ol NS U μg/kg sylphenol NS U μg/kg NS U μg/kg ke NS U μg/kg ke NS U μg/kg NS <	2-Chioronaphthalene	SN	D	µg/Кg	450 U
λειγj ether NS U μg/kg acene 14 1900 μg/kg acene 14 1900 μg/kg te 8100 U μg/kg te 8100 U μg/kg ne 7900 U μg/kg ne 7900 U μg/kg ne 1600 U μg/kg ne 1600 U μg/kg dine NS U μg/kg ol 400 U μg/kg ol NS U μg/kg ol NS U μg/kg ol NS U μg/kg sphnenol NS U μg/kg NS U μg/kg kg sphnenol NS U μg/kg sphnenol NS U μg/kg sphnenol NS U μg/kg sphnenol U <t< td=""><td>2-Chlorophenol</td><td>800</td><td>כ</td><td>µg/Kg</td><td>450 U</td></t<>	2-Chlorophenol	800	כ	µg/Kg	450 U
400 3500 μg/Kg acene 14 1900 μg/Kg te 8100 U μg/Kg ne 7900 U μg/Kg ne 7900 U μg/Kg ne 7900 U μg/Kg ne 1600 U μg/Kg ne 8500 U μg/Kg n 400 U μg/Kg n 7100 U μg/Kg ol NS U μg/Kg ol NS U μg/Kg ol NS U μg/Kg siphenol NS U μg/Kg NS U μg/Kg g NS U μg/Kg g ie 5000 U μg/Kg	4-Chlorophenyl phenyl elher	SN	D	µg/Kg	450 U
acene 14 1900 µg/Kg te 8100 U µg/Kg ne 7900 U µg/Kg ne 1600 U µg/Kg ne 8500 U µg/Kg dine NS U µg/Kg dine NS U µg/Kg ol 10 µg/Kg ol 10 µg/Kg ol 10 µg/Kg e 2000 U µg/Kg wphenol NS U µg/Kg e 1000 U µg/Kg wphenol NS U µg/Kg wphenol NS U µg/Kg ng/Kg	Cluysene	400	3500	µg/Kg	80 J
б200 U µg/Kg ne 7900 U µg/Kg ne 7900 U µg/Kg ne 1600 U µg/Kg ne 1600 U µg/Kg ne 8500 U µg/Kg n 400 U µg/Kg n 400 U µg/Kg n 7100 U µg/Kg ol NS U µg/Kg ol NS U µg/Kg ol NS U µg/Kg ne 5000 U µg/Kg	Dibenzo(a,ħ)anthracene	14	1900	pg/Kg	450 U
te 8100 U μg/kg ne 7900 U μg/kg ne 1600 U μg/kg dine 8500 U μg/kg dine NS U μg/kg dine NS U μg/kg dine NS U μg/kg din 7100 U μg/kg ol NS U μg/kg ol NS U μg/kg ol NS U μg/kg sphhenol NS U μg/kg NS U μg/kg NS U μg/kg solo U μg/kg e 1000 U μg/kg e 50000 U μg/kg	Dibenzofuran	6200	D	µg/Kg	450 U
ne 7900 U μg/Kg ne 1600 U μg/Kg dine NS U μg/Kg ol NS U μg/Kg ol NS U μg/Kg e 2000 U μg/Kg NS U μg/Kg ie 5000 U μg/Kg	Di-n-butylphthalate	8100	D	µg/Kg	28 J
ne 1600 U μg/Kg ne 8500 U μg/Kg dine NS U μg/Kg di 400 U μg/Kg di 7100 U μg/Kg ol NS U μg/Kg ol NS U μg/Kg ol NS U μg/Kg e 2000 U μg/Kg NS U μg/Kg ie 5000 U μg/Kg	ichlorobenzene	2900	D	µg/Kg	450 U
tte 8500 U μg/Kg dine NS U μg/Kg di 400 U μg/Kg ol 7100 U μg/Kg ol NS U μg/Kg ol NS U μg/Kg ol NS U μg/Kg e 2000 U μg/Kg ylphenol NS U μg/Kg ke 50000 U μg/Kg	ichlorobenzene	1600	n	µg/Kg	450 U
dine NS U μg/kg μ 400 U μg/kg λ 7100 U μg/kg λ 7100 U μg/kg λ 0 U μg/kg λ 0 U μg/kg λ 0 U μg/kg γ 0 U μg/kg NS U μg/kg NS U μg/kg NS U μg/kg NS U μg/kg ke 5000 U μg/kg	iciulorobenzene	8500	D	µg/Kg	450 U
l 400 U µg/Kg ol 7100 U µg/Kg e 2000 U µg/Kg ylphenol NS U µg/Kg NS U µg/Kg NS U µg/Kg NS U µg/Kg e 50000 U µg/Kg	3,3'-Dichlorobenzidine	SN	n	µg/Kg	U 006
7100 U μg/Kg ol NS U μg/Kg e 2000 U μg/Kg ylphenol NS U μg/Kg XS U μg/Kg NS U μg/Kg e 1000 U μg/Kg	2,4-Dichlorophenol	400	D	µg/Kg	450 U
λ1 NS U μg/Kg e 2000 U μg/Kg ylphenol NS U μg/Kg 200 U μg/Kg NS U μg/Kg 1000 U μg/Kg e 1000 U μg/Kg e 50000 U μg/Kg	Diethyl phthalate	7100	n	µg/Kg	450 U
e 2000 U μg/Kg ylphenol NS U μg/Kg 200 U μg/Kg NS U μg/Kg 1000 U μg/Kg te 50000 U μg/Kg	2,4-Dimethylphenol	NS	n	µg∕Kg	450 U
ylphenol NS U μg/Kg 200 U μg/Kg NS U μg/Kg 1000 U μg/Kg te 50000 U μg/Kg	Dimethyl pluthalate	2000	D	µg/Kg	450 U
200 U μg/Kg NS U μg/Kg 1000 U μg/Kg te 50000 U μg/Kg	4,6-Dinitro-2-methylphenol	SN	D	µg/Кg	1100 U
NS U Hg/Kg 1000 U Hg/Kg te 50000 U Hg/Kg	2,4-Dinitrophenol	200	D	µg/Kg	1100 U
1000 U µg/Kg te 50000 U µg/Kg	2,4-Dinitrotoluene	NS	D	µg/Kg	450 U
50000 U µg/Kg	2,6-Dinitrotoluene	1000	D	µg/Kg	450 U
	Di-n-octyl phthalate	5000	n	µg/Kg	41 J

SURFACE SOIL ANALYTICAL RESULTS-SEMI-VOLATILE ORGANIC COMPOUNDS FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

Sample Location SS-01

Sample Date: 5/21/2002

	110]	450 U	450 U	450 U	450 U	450 U	43]	450 U	450 U	450 U	450 U	450 U	1100 U	1100 U	1100 U	450 U	450 U	1100 U	450 U	450 U	1100 U	38 J	450 U	86 J	450 U	450 U	450 U
Units	µg/Kg	µg/Kg	pg/Kg	рg/Кg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	μg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg
Lowest Background	5600	D	D	D	D	D	1300	D	n	n	n	n	D	D	D	D	D	n	D	D	D	1400	n	3400	D	D	D
Criteria ⁽¹⁾	50000	50000	410	SN	NS	SN	3200	4400	36400	100	006	13000	430	500	SN	200	330	100	SN	SN	1000	50000	30	50000	3400	100	NS
Compound	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-cd)pyrene	Isophorone	2-Methyl naphthalene	2-Methylphenol	4-Methylphenol	Naphthalene	2-Nitroaniline	3-Nitroaniline	4-Nitroaniline	Nitrobenzene	2-Nitrophenol	4-Nitrophenol	N-Nitrosodiphenylamine	N-Nitrosodi-n-propylanine	Pentachlorophenol	Phenanthrene	Pluenol	Pyrene	1,2,4-Trichlorobenzene	2,4,5-Trichtorophenoi	2,4,6-Trichlorophenol

Notes:

Soil Cleanup Objectives, NYSDEC TAGM #4046, January 24, 1994. Detected concentration is estimated ε

I NS

No standard. Compound was not detected at or above the quantitation limit shown. Concentration exceeds criteria and background.

SURFACE SOIL ANALYTICAL RESULTS-PCBS FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

SED 05 5/21/2002	250 UJ 250 UJ 250 UJ 250 UJ 250 UJ 490 UJ 64 J	SS-01 5/21/2002	1100 U 1100 U 1100 U 1100 U 2200 U 2200 U
SED 04 5/21/2002	340 UJ 340 UJ 340 UJ 340 UJ 680 UJ 71 J	SED 10 11/21/2002	6 6 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SED 03 5/21/2002	410 UJ 410 UJ 410 UJ 410 UJ 410 UJ 830 UJ 830 UJ	SED 09 5/21/2002	210 UJ 210 UJ 210 UJ 210 UJ 210 UJ 420 UJ
SED 02 5/21/2002 Duplicate	300 UJ 300 UJ 300 UJ 300 UJ 600 UJ 600 UJ	SED 08 5/21/2002	230 UJ 230 UJ 230 UJ 230 UJ 230 UJ 540 UJ
Background SED 02 5/21/2002	270 UJ 270 UJ 270 UJ 270 UJ 270 UJ 540 UJ	SED 07 5/21/2002	500 UJ 500 UJ 500 UJ 500 UJ 1000 UJ 1200 UJ
SED 01 5/21/2002	600 UJ 600 UJ 600 UJ 600 UJ 1200 UJ 1200 UJ	SED 06 5/21/2002	540 UJ 540 UJ 540 UJ 540 UJ 540 UJ 1100 UJ
Sample Location: Sample Date: ia ⁽¹⁾ Units	нg/Kg нg/Kg нg/Kg нg/Kg нg/Kg нg/Kg	Sample Location: Sample Date: ia ⁽¹⁾ Units	нg/Kg µg/Kg µg/Kg µg/Kg µg/Kg
Sampl Sa Criteria ⁽¹⁾	1000 1000 1000 1000 1000 1000 1000	Sampl Sa Criteria ⁽¹⁾	1000 1000 1000 1000 1000 1000 1000
Сотроинд	Aroclor 1016 Aroclor 1221 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	Сотроина	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260

Notes:

Soil Cleanup Objectives, NYSDEC TAGM #4046, January 24, 1994. Concentration is estimated. Compound was not detected at or above the quantitation limit shown.

8 <u></u> D

SURFACE SOIL ANALYTICAL RESULTS-PESTICIDES FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

SS-01 5/21/2002		11 020	230 U	230 U	230 U	230 U	230 U	480	2100 1	370 1	230 U	230 U	230 U	230 U	230 U	230 U	230 U	230 U	230 UI	470 UI	230 U
SED 10 11/21/2002			2 1 1 1																		34 UJ
SED 09 5/21/2002			430 UI																		430 UJ
SED 08 5/21/2002		480 UI	480 UJ								480 UJ										
SED 07 5/21/2002			100 UJ																		
SED 06 5/21/2002			110 UJ																		
SED 05 5/21/2002			51 UJ																		
SED 04 5/21/2002			700 UJ																		
SED 03 5/21/2002			43 UJ																		
SED 02 5/21/2002	Duplicate		640 UJ																		640 UJ
Background SED 02 5/21/2002			560 UJ		560 UJ			560 UJ										560 UJ	560 UJ	1100 UJ	560 UJ
SED 01 5/21/2002		620 UJ	620 UJ	620 UJ	620 UJ	620 UJ	620 UJ	620 UJ	620 UJ	620 UJ	620 UJ	620 UJ		620 UJ	620 UJ	620 UJ	620 UJ	620 UJ	620 UJ	1200 UJ	620 UJ
Sample Location: <u>SED 01</u> Sample Date: 5/21/2002	Units	µg/Kg	µg/Kg	µg/Kg	µg/Kg	pg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg
Samp S	Criteria ⁽¹⁾	41	110	200	60	300	540	2900	2100	2100	44	006	006	1000	100	SN	20	NS	NS	NS	SN
	Сотроинд	Aldrin	alpha-BHC	beta-BHC	gamma-BHC (Lindane)	delta-BHC	Chlordane	4,4'DDD	4,4'DDE	4,4'-DDT	Dieldrin	Endosulfan i	Endosulfan II	Endosulfan sulfate	Endrin	Endrin aldehyde	Heptachlor	Heptachlor epoxide	Methoxychlor	Toxaphene	Endrin ketone

Notes:

Soil Cleanup Objectives, NYSDEC TAGM #4046, January 24, 1994. Detected concentration is estimated. No standard. €

U NS D

Detected at or above the quantitation limit shown.

SURFACE SOIL ANALYTICAL RESULTS-METALS FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

Background

				1		1			-	n														٦			
10-SS	5/21/2002				7530 J	1.2 BJ	7.5]	32.2]	0.24 B	0.39 BJ	2560 J	6.3]	2.5 B	12.71	7830	47.11	1040 J	96.9	5.1 BJ	549 B	0.59 U	0.098	0.18 B	91.6 U	111 12 0		5
SED 10	11/21/2002				6300 J	3.7 BJ	13.1 J	145]	0.56 BJ	2]	75000 J	31.8 J	9.8 BJ	1251	28100]	203]	15900 J	915 J	23.1 J	1440 BJ	4.8]	0.284 J	0.46 BJ	493 BI	Т Ц Ч Ц	24.11	10901
SED 09	5/21/2002				6320 J	5.9 BJ	48.2 J	259]	0.51 BJ	41.1 J	f 00069	95.3 J	17.9]	150	26300]	187 J	18700 J	3230 J	60.2 J	[06E1	2.1]	0.278 J	3.4]	318 UJ	114 1	26.41	802]
SED 08	5/21/2002				5690 J	5 BJ	46.7 J	433 J	0.41 BJ	7.4]	47300 J	117 J	12.5 BJ	[609	23700 J	331 J	12100 J	536 J	61.7 J	1090 BJ	3]	0.338 J	3.5]	349 UJ	1141	30.71	828 J
SED 07	5/21/2002				10100 J	25.6 BJ	102 J	456 J	0.61 BJ	60.1 J	22100 J	159 J	20.2 BJ	103]	35700 J	134 J	4610 J	1430 J	58.9 J	1890 BJ	7.2 J	0.284 J	4.4 BJ	581 UJ	11155	47.2	646)
SED 06	5/21/2002				14400 J	33 BJ	113 J	391 J	0.84 BJ	85.7 J	27600 J	209]	30.5 BJ	139]	45400 J	183 J	6060 J	1640 J	78.7 J	2600 BJ	6.9 J	0.889 J	6.3 BJ	746 UJ	3.7 UI	60.3 [812]
SED 05	5/21/2002				7910 J	5.5 BJ	12.8 J	136 J	0.39 BJ	5.5 J	12500 J	70.5 J	25.3 J	34.5]	17100 J	113 J	5640]	1280 J	74.7 J	1400 BJ	1.5 BJ	0.307 J	2.2 BJ	236 UJ	1.7 UI	18.2	184)
SED 04	5/21/2002				3990 J	7 BJ	66.8 J	464 J	0.3 BJ	4.9 J	28000 J	59.8 J	8.1 BJ	97.4]	119000 J	156 J	5660 J	(669	31.2 J	1110 BJ	5.3]	0.39 J	3.3 BJ	562 UJ	2.2 UI	23.9 J	1700 J
SED 03	5/21/2002				2070 J	6.4 BJ	9.1 J	165 J	0.14 BJ	1.2 BJ	14000 J	8.7]	2.8 BJ	31.8]	37800 J	102 J	2880 J	110 J	14.2 J	590 BJ	2.6 J	0.622 J	0.24 UJ	235 UJ	1.4 UI	7.6 BJ	1060 J
SED 02	5/21/2002 Duplicate				8360 J	2.3 BJ	9.5 J	182 J	0.49 BJ	1.6 BJ	53700 J	26.3 J	6.9 BJ	79.4 J	23700 J	353 J	13900 J	407 J	20.6 J	2070 J	3.2 J	0.547 J	0.35 UJ	613 UJ	2 UJ	25.1 J	725 J
SED 02	5/21/2002			10102	694U J	1.8 BJ	<u> </u>	154 J	0.39 BJ	1.5 BJ	43300 J	21.7]	5.6 BJ	66 J	19600 J	289 J	11200 J	329 J	16.4]	1780 J	2.6 J	0.349 J	0.31 UJ	518 UJ	1.8 UJ	21.1]	615]
SED 01	5/21/2002			10171	[0101	1.4 UJ	6.5 J	58.4 BJ	0.11 BJ	4.5 J	26900 J	23]	2.3 BJ	39.4]	12200 J	142 J	5310 J	155 J	11 BJ	585 BJ	2.3 J	0.216]	0.33 UJ	441 UJ	2 UJ	11.3 BJ	878 J
Sample Location:	Sample Date:		Units	/ <i>1</i> /	84/Sm	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Sample	San	Lowest	Background	1610	101	0.7	6.5	58.4	0.11	1.5	26900	21.7	2.3	39.4	12200	142	11200	155	11	585	2.3	0.216	0.16 ⁽²⁾	220 ⁽²⁾	0.9 ⁽²⁾	11.2	878
			Criteria ⁽¹⁾	cp	5 6	8	7.5	300	0.16	1.5	SB	SB	30	SB	SB	SB	SB	SB	13	SB	SB	0.1	SB	SB	SB	SB	SB
			Constituent	Alumination		Anumony	Arsenic	Barium	Berylliun	Cadmium	Calcium	Chronitun	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Nickel	Polassium	Selenium	Mercury	Silver	Sodium	Thallium	Vanadium	Zinc

Notes:

Soil Cleanup Objectives, NYSDEC TAGM #4046, January 24, 1994. ε

Where an analyte is not detected in the background sample and the criteria is assumed to be equal to one half the detection limit of the background sample. Value greater than or equal to the instrument detection limit, but less that the quantitation limit. B ଷ

Detected concentration is estimated. D

Compound was not detected at or above the quantitation limit shown. Concentration exceeds criteria and/or background.

SURFACE SOIL ANALYTICAL DATA-WET CHEMISTRY FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

	SS-07 5/21/2002		6.62	1.3 UJ
	SED 10 11/21/2002		-	2.1 UJ
	SED 09 5/21/2002		7.52	2.2 UJ
	SED 08 5/21/2002		7.53	2.7 UJ
	SED 07 5/21/2002		7.44	5.7 UJ
	SED 06 5/21/2002		7.44	6.6 UJ
	SED 05 5/21/2002		7.68	3.1 UJ
	SED 0 4 5/21/2002		7.44	3.4 J
	<i>5/21/2002</i>		7.47	2.8 J
	SED 02 5/21/2002 Duplicate		7.51	1.4]
Background	SED 02 5/21/2002		7.32	3.2 UJ
	SED 01 5/21/2002		7.27	(I.I)
	Sample Location: SED 01 Sample Date: 5/21/2002	Units	S.U.	mg/Kg
	Sam _t S	Constituent	Leachable pH	Cyanide - Total

Notes:

Parameter was not analyzed.Concentration is estimated.

S.U. Standard units.U Compound was not detected at or above the quantitation limit shown.

.

SUB-SLAB SOIL VAPOR ANALYTICAL DATA FEASIBILITY STUDY OLD ERIE CANAL CLYDE, NEW YORK

-1 SG-2 SG-3 2004 8/2/2004 8/2/2004	нgini3 ppbv нgini3 ppbv нgini3 ppbv	NA NA NA	2.5U 20U	20U	2.5U	71 240 950	20U	2.5U 20U	2.5U	52 160 630	4.6 20 25NJ 110		2.5U - 20U -	5.5 22 79	81 570	SG-11	2004 8/4/2004 8/4/2004	ugim3 ppbv ugim3 ppbv ugim3 ppbv		NA	1 20	1	5U 100U 1	71 280 950 3800	5U 100U	5U - 100U -	5U 100U	0 68 270 1000 4000	960 180 780	5U 100U	17] 120	8.4 33 100U - 2	17000
GP-6A SG-1 8/4/2004 8/2/2004	ugini3 ppbv	NA NA	I	ł	ł	3.1 7	4.5	ł	73	3.3	3.5	ł	6.8	I	75		8/4/2004 8/4/2004	hg/m3 ppbv p		NA NA		- 10U	- 10U				10U		- 10U		14		
Sample Location: GP-5A GP-6 Sample Date: 8/3/2004 8/4/2(Units: ppbv µg/m3 ppbv Compound	NA NA NA	1,1,1-Trichloroethane 0.5U 0.5	I	1,2+Dichloroethane 0.5U 0.5U	1,2-Dichloroethene (total) 1 4 0.77	58	Carbon tetrachloride 0.5U - 0.5U	0.5U - 15	cis-1,2-Dichloroethene 1.1 4.4 0.84	65	1	1		Trichloroethene 13 70 14	 SG-8	8/3/2004	Units: ppbv µg/m3 ppbv	Compound	33 250 NA	370	(EDB)	1	1200	25U	1	25U 200U	cis-1,2-Dichloroethene 320 1300 1100	2700	Methylene chloride - 25U 200U	Tetrachloroethene 26 180 200U	trans-1,2-Dichloroethene 25U 200U	1500 8100

Page 1 of 2

SUB-SLAB SOIL VAPOR ANALYTICAL DATA FEASIBILITY STUDY OLD ERIE CANAL CLYDE, NEW YORK

SG-24 8/3/2004	3 ppbv µg/m3	NA	7.9	5U	5U	5U	SU	50	5U	5U	5U	5U	5U	5U	000
SG-23 8/4/2004	ppbv µgim3							1							
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		NA	13	5UJ	5U	81	5U	5U	50	58	[N61	5U	17]	25	410
SG-22 8/3/2004	ppbv jugini3	NA	:	1	I	560	ł	ł	1	520	ł	1	ł	44	2500
8' S	aqdd	NA	10U	10U	10U	140	10U	10U	10U	130	10U	10U	101	11	2 EO
SG-21 8/3/2004	ppbv µg/m3	NA	I	I	I	170	I	I	I	79	ł	ł	ł	87	2400
		NA	10U	10U	10U	42	10U	10U	10U	20	10U	10U	10U	22	150
SG-20 8/3/2004	lıg/m3	NA	I	I	ł	750	ł	ł	ł	790	43	1	1	ł	1200
SC 8/3	aqdd	NA	5U	5U	5U	190	5U	5U	5U	200	INOI	5U	5U	5U	000
SG-19 8/3/2004	ppbv yg/m3	NA	1	ł	1	1400	1	ł	1	1500	ł	ł	ł	ł	0000
8/3 8/3	aqdd	AN	20U	20U	20U	350	20U	20U	20U	370	20U	20U	20U	20U	720
SG-18 8/4/2004	ppbv ng/m3	ΝA	ł	ł	ł	7500	;	1	ł	8300	;	ł	ł	I	C1000
SG 8141	aqdd	NA	250U	250U	250U	7500	250U	250U	250U	2100	250U	250U	250U	250U	10000
SG-17 8/4/2004	opbv µg/m3	NA	7.1	ł	1	25	4.5	;	ł	19	27	ł	8.8	7.1	046
	-	NA	1.3	IUJ	10	6.4	1.4	10	10	4.9	6.2NJ	10	1.3]	1.8	62
Sample Location: Sample Date:	Units: Compound	Freon TF	I,I,I+Trichloroethane	1,2-Dibromoethane (EDB)	1,2-Dichloroethane	1,2-Dichloroethene (total)	Benzene	Carbon tetrachloride	Chloroform	cis-1,2-Dichloroethene	Ethylbenzene	Methylene chloride	Tetrachioroethene	trans-1,2-Dichloroethene	Thichloroethene

Sample Location:	5	27-52	20	20-20	5	17-50
Sample Date:	8/4/	8/4/2004	8131	8/3/2004	8131	8/3/2004
Units:	nqad	µg/m3	aqdd	ng/m3	aqdd	เหลี่ทา3
Compound						
Freon TF	NA	NA	1.8	14	NA	NA
1,1,1-Trichloroethane	1.9	10	20U	ł	200U	ł
1,2-Dibromoethane (EDB)	0.5UJ	ł	20U	ł	200U	1
1,2-Dichloroethane	0.5U	ł	20U	1	200U	1
1,2-Dichloroethene (total)	0.5U	1	27	110	4400	17000
Benzene	1.7	5.4	20U	1	200U	1
Carbon tetrachloride	0.5U	ł	20U	:	200U	ł
Chloroform	0.5U	ł	20U	ł	200U	I
cis-1,2-Dichloroethene	0.5U	ł	29	110	4400	17000
Ethylbenzene	4.2	1.8	20U	I	200U	ł
Methylene chloride	0.5U	ł	20U	ł	200U	ł
Tetrachloroethene	2.4]	16	20U	ł	200U	ł
trans-1,2-Dichloroethene	0.5U	ł	20U	ł	240	950
Trichloroethene	18	97	1200	6400	14000	75000

ppbv ng/m3 SG-27 8/3/2004

SG-26 8/3/2004

SG-25 8/4/2004

Sample Location:

Noles:

No data available. Not detected. --NA U

Parts per billion per volume. Non-detect at associated value.

NEW YORK STATE WATER QUALITY CRITERIA FOR GROUNDWATER COMPOUNDS OF CONCERN FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

	Class GA
	Groundwater Criteria ⁽¹⁾
Compound	$(\mu g/L)$
1,1,2-Trichloroethane	1
1,1-Dichloroethane	5
1,1-Dichloroethene	5
1,1-Dichloropropene	5
1,2,4-Trimethylbenzene	5
1,3,5-Trimethylbenzene	5
Acetone	50
Benzene	1
Chloroform	7
cis-1,2-Dichloroethene	5
Ethylbenzene	5
Isopropyl benzene	5
Methylene chloride	5
n-Propylbenzene	5
Tetrachloroethene	5
Toluene	· 5
trans-1,2-Dichloroethene	5
Trichloroethene	5
Vinyl chloride	2
Xylenes	5

Notes: (1)

⁽¹⁾ Class GA groundwater is potable, suitable for drinking.
 Source: NYSDEC "Ambient Water Quality Standards and Guidance Values," Division of Water, Technical Operational Guidance Series (1.1.1), dated October 22, 1993, reissued June 1998.

NEW YORK STATE RECOMMENDED SOIL CLEANUP OBJECTIVES FOR SVOCs DETECTED IN SURFACE SOIL FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

	Recommended Soil Cleanup Objective (ppm)
Compound (1)	
Benzo(a)anthracene	0.224 or MDL
Benzo(a)pyrene	0.061 or MDL
Benzo(b)fluoranthene	1.1
Benzo(k)fluoranthene	1.1
Chrysene	0.4
Dibenzo(a,h)anthracene	0.014 or MDL
Fluoranthene	50.0
Indeno(1,2,3-cd)pyrene	3.2
Phenanthrene	50.0
Pyrene	50.0

Notes:

(1)	Total semi-volatiles to be less than 500 ppm; and any individual semi-volatile to be less than 50 ppm.
MDL	Method detection limit.
ppm	Parts Per Milliion.
Source:	Recommended Soil Cleanup Objectives are guidance values only based on the
	New York State Department of Environmental Conservation, Division of
	Hazardous Waste Remediation: "Technical and Administrative Guidance
	Memorandum (TAGM): Determination of Soil Cleanup Objectives and
	Cleanup Levels," HWR-92-4046 dated January 24, 1994.

NYSDOH

NEW YORK STATE AMBIENT AIR GUIDELINE CONCENTRATIONS FOR COMPOUNDS DETECTED IN SITE GROUNDWATER OR SOIL VAPOR FEASIBILITY STUDY OLD ERIE CANAL CLYDE, NEW YORK

			NISDOM
	SGC ⁽¹⁾	AGC ⁽²⁾	Air Guidance
	$(\mu g/m^3)$	(µg/m ³)	(µg/m ³)
Volatile Organic Compounds			
2-Butanone (MEK)	NGC	NGC	NGC
2-Phenylbutane	NGC	NGC	NGC
1,2-Dibromoethane	NGC	0.0045	NGC
1,2-Dibromoethane	NGC	0.038	NGC
1,2-Dichloroethene	NGC	1,900	NGC
1,1,2-Trichloroethane	NGC	1.4	NGC
1,1-Dichloroethane	NGC	0.63	NGC
1,1-Dichloroethene	NGC	NGC	NGC
1,1-Dichloropropene	NGC	NGC	NGC
1,1,1-Trichloroethane	NGC	NGC	NGC
1,2,4-Trimethylbenzene	NGC	290	NGC
1,3,5-Trimethylbenzene	NGC	290	NGC
Acetone	180,000	28,000	NGC
Benzene	1,300	0.13	NGC
Carbon Tetrachloride	1,900	0.067	NGR
Chlorobenzene	NGC	NGC	NGC
Chloroethane	NGC	NGC	NGC
Chloroform	150	0.043	NGC
Cymene	NGC	NGC	NGC
Ethylbenzene	54,000	1,000	NGC
Freon TF	560,000	NGC	NGC
Isopropyl benzene	NGC	NGC	NGC
Methylene chloride	14,000	2	60
n-Propylbenzene	NGC	NGC	NGC
Tetrachloroethene	1,000	1.0	100
Toluene	37,000	400	NGC
trans-1,2-Dichloroethene	NGC	1,900	NGC
Trichloroethene	54,000	0.45	5
Vinyl chloride	180,000	0.11	NGC
Xylenes	4,300	700	NGC
Semi-Volatiles			
2-Methylphenol	NGC	52.0	NGC
4-Methylphenol	NGC	52.0	NGC
bis(2-Ethylhexyl)phthalate	NGC	NGC	NGC
Butyl benzy lphthalate	NGC	12.0	NGC
Di-n-buyl phthalate	NGC	12.0	NGC
Di-n-octyl phthalate	NGC	0.42	NGC
Naphthalene	7,900	3.0	NGC
Phenanthrene	NGC	0.02	NGC
Phenol	5,800	45.0	NGC

NYSDOH

NEW YORK STATE AMBIENT AIR GUIDELINE CONCENTRATIONS FOR COMPOUNDS DETECTED IN SITE GROUNDWATER OR SOIL VAPOR FEASIBILITY STUDY OLD ERIE CANAL CLYDE, NEW YORK

			N 10D OIL
	SGC ⁽¹⁾ (µg/m ³)	AGC ⁽²⁾ (µg/m ³)	Air Guidance (µg/m³)
Metals			
Aluminum	NGC	5	NGC
Antimony	NGC	1	NGC
Arsenic	NGC	0.00023	NGC
Barium	NGC	1.2	NGC
Beryllium	1.0	0.00042	NGC
Calcium	NGC	NGC	NGC
Chromium	NGC	1.2	NGC
Cobalt	NGC	0.005	NGC
Copper	100	0.02	NGC
Iron	NGC	NGC	NGC
Magnesium	NGC	NGC	NGC
Manganese	NGC	0.05	NGC
Mercury (inorganic/organic)	1.8	0.3	NGC
Nickel	6.0	0.004	NGC
Sodium	NGC	NGC	NGC
Vanadium	NGC	0.2	NGC
Zinc	NGC	50	NGC

Notes:

AGC Annual Guideline Concentration

NGC No guideline concentration.

SGC Short-Term Guideline Concentration

Sources:

NYSDEC "DAR-1, AGC/SGC Tables," December 2003. NYSDOH "Guidance for Evaluating Soil Vapor Intrusion in the State of New York," February 2005.

		Citation	6 NYCRR Subpart 373-1	6 NYCRR Subpart 373-2	6 NYCRR Subpart 373-1	6 NYCRR Subpart 373-1	6 NYCRR Part 750-757	NYSLOOH PWS 68 Part 5 of State Sanitary Code 6 NYCRR Part 608			6 NYCRR Subpart 376		6 NYCRR Subpart 373-1 6 NYCRR Part 200 6 NYCRR Part 201 6 NYCRR Part 211 6 NYCRR Part 212 6 NYCRR Part 212	6 NYCRR Sulpart 373-1 6 NYCRR Appendix 22
	New York State SCGs	Subtitle	:	:	ł	÷	1 1	3 3 3			ł		- Ceneral provisions Permits and certificates General prohibitions General process emission sources Incinerators	 Basis for Listing Hazardous Waste
LAN LENA AND GUIDELINES DY LITTE		Title	Hazardous waste treatment, storage and disposal facility permitting requirements	Final status standards for owners and operators of hazardous waste treatment, storage and disposal facilities	Hazardous waste treatment, storage and disposal facility permitting requirements	Hazardous waste treatment, storage and disposal facility permitting requirements	Implementation of NPDES program in New York State Technical and Operations Guidance Series	biending policy for use of sources of drinking water Drinking water supplies Use and protection of waters			Hazardous waste treatment, storage and disposal facility permitting requirements		Hazardous waste treatment, storage and disposal facility permitting requirements New York air pollution control regulations	Hazardous waste treatment, storage and disposal facility permitting requirements
CLYDE, NEW YORK		Citation	40 CFR 264.310 40 CFR 264.117(c)		40 CFR 264.171 40 CFR 264.172 40 CFR 264.173 40 CFR 264.173 40 CFR 264.175	40 CFR 264.301 40 CFR 264.303-304 40 CFR 264.310 40 CFR 264.91-100	40 CFR 122.44 and State regulations approved under	40 CFK 131 40 CFR 125.100 40 CFR 125.104	40 CFR 136.1-4	40 CFR Part 414	40 CFR 268 (Subpart D)	40 CFR 264.341	40 CFR 264.271 40 CFR 264.273 40 CFR 264.278 40 CFR 264.281	40 CFR 268 (Subpart D)
	Federal SCGs	Subtitle	Closure and post-closure care Post-closure care and use of property		Condition of containers Compatibility of waste with containers Management of containers Inspections Containment	Design and operating requirements Operation and maintenance Closure and post-closure care Groundwater protection	Establishing limitations, standards and other permit conditions	Best management practices Discharge to waters of the U.S.	Identification of test procedures and alternate test procedures	Organic chemicals plastics and synthetic fibers	Treatment standards	Waste analysis	Treatment program Design and operating requirements Unsaturated zone monitoring Special requirements for ignitable or reactive waste	Treatment standards
		Title	Standards for owners and operators of hazardous waste treatment, storage and disposal facilities		Standards for owners and operators of hazardous waste treatment, storage and disposal facilities	Standards for owners and operators of hazardous waste treatment, storage and disposal facilities	Administered permit programs: The national pollutant discharge elimination system	Criteria and standards for the national pollutant discharge elimination program	Guidelines establishing test procedures for the analysis of pollutants	Effluent guidelines and standards	Land disposal restrictions (also see Closure)	Standards for owners and operators of hazardous waste treatment, storage and disposal facilities	Standards for owners and operators of hazardous waste treatment, storage and disposal facilities	Land disposal restrictions
		Activity	Capping		Container Storage	Construction of New Landfill on Site	Discharge of Treatment System Effluent				Excavation	Incineration Off Site	Land Treatment	Placement of Waste in Land Disposal Unit

TABLE 4.4 FOTENTIAL ACTION-SPECIFIC STANDARDS, CRITERIA AND GUIDELINES FEASIBILITY STUDY OID FRIE CANAL STITE

Page 1 of 2

CKA (35048 (2)

		POTENTIAL ACTION	TABLE 4.4 FSPECIFIC STANDARDS, CRI FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK	TABLE 4.4 CTION-SPECIFIC STANDARDS, CRITERIA AND GUIDELINES FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK		Page 2 of 2
		5				
Activity	Title	reaeral SCGS Subtitle	Citation	Title	New York State SCGs Subtitle	Citation
Surface Water Control	Standards for owners and operators of hazardous waste treatment storage and disnosal facilities	Design and operating requirements for waste niles	40 CFR 264.251(c),(d)	Hazardous waste treatment, storage and disposal facility normiting requirements	;	6 NYCRR Subpart 373-1 6 NYCRR Part 201 and 1203
		Design and operating requirements for land treatment	40 CFR 264.273(c),(d)	entering and the second former		
		Design and operating requirements for landfills	40 CFR 264.301(c),(d)			
Treatment (in a unit)	Standards for owners and operators of inzardous waste treatment, storage and disposal facilities	Design and operating requirements for waste piles	40 CFR 264.251	Hazardous waste treatment, storage and disposal facility bermitting requirements	;	6 NYCRR Subpart 373-1
		Design and operating requirements for thermal treatment units	40 CFR 265.373	Interim status standards for owners and operators of hazardons waste facilities	ł	6 NYCRR Subpart 373-3
		Design and operating requirements for miscellaneous treatment units	40 CFR 264.601	New York air pollution control regulations	Ceneral provisions Permits and certificates Ceneral prohibitions Ceneral process emission sources	6 NYCRR Part 200 6 NYCRR Part 201 6 NYCRR Part 211 6 NYCRR Part 212
Treatment (when waste	Land disposal restrictions	Identification of waste	40 CFR 268.10-12	Hazardous waste treatment, storage and disposal	t	6 NYCRR Subpart 373-1
MIL DE JANG (18505CG)		reatricet prohibitions - Solvent wastes	40 CFR 288.30 Suppart LJ 40 CFR 288.30 RCRA Sections 3004 (d) (3), (e) (3) 42 USC 6924 (d) (3), (e) (3)	actury permuting equivenents Interim status standards for owners and operators of hazardous waste facilities	:	6 NYCRR Subpart 373-3
əlfi ətsa W	Standards for owners and operators of hazardous waste treatment, storage and disposal facilities	Design and operating requirements	40 CFR 264.251	New York air pollution control regulations	General provisions Permits and certificates General prohibitions	6 NYCRR Part 200 6 NYCRR Part 201 6 NYCRR Part 211 6 NYCRB Part 211
				Hazardous waste treatment, storage and disposal facility permitting requirements Interim status standards for owners and operators of hazardous waste facilities	CENTRA PILVESS EMISSION SOUTHERS	6 NYCRR Subpart 373-1 6 NYCRR Subpart 373-3 6 NYCRR Subpart 373-3
Closure with Waste	Standards for owners and operators of hazardous	Closure and post-closure care	40 CFR 264.258			
11 1300	wask ורמתווכוו, אנסוופר מוונו נוואסטאו ומנוותנא	Post-closure care and groundwater monitoring	40 CFR 264.310			
Closure of Land Treatment Units	Standards for owners and operators of hazardous waste treatment, storage and disposal facilities	Closure of land treatment units	40 CFR 264.280	Final status standards for owners and operators of hazardous waste faciiities	ł	6 NYCRR Subpart 373-2
Transporting Hazardous Waste Off Site	Standards applicable to transporters of hazardous waste	ı	40 CFR 263	Waste transport permits Hazardous waste manifest system and related standards for generators, transporters and facilities	1 1	5 NYCRR Pari 364 6 NYCRR Pari 372
Vapor Emissions	Air emissions standards for process vents	1	40 CFR 264 (Subpart AA)	NY air pollution control regulations	Ceneral provisions Permits and certificates	6NYCRR Part 200 6NYCRR Part 201

POTENTIAL RESPONSE ACTIONS AND REMEDIAL TECHNOLOGIES FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

Description	No action. Natural processes are allowed to reduce chemical concentrations to acceptable levels.	Restrict groundwater usage on Site and in the immediate vicinity of the Site, initiate long-term monitoring, and/or develop and enforce safe work practices.	Monitor the natural degradation and attenuation of COCs in groundwater through sampling and analysis to document the loss of contaminants over time.	Oxidation agent(s) are injected into the saturated zone to break down chemicals.	A permeable barrier of reactive substrate is constructed across the groundwater flow path to degrade or retain chemicals present.	Emulsified iron particles are injected into the contaminant plume for reductive dechlorination of COCs.	Installation of an air injection system to air-strip volatiles from the groundwater.	In-well air sparging combined with stripping and water circulation to enhance volatilization of chemicals.	Nutrients are injected into groundwater to stimulate biological degradation by indigenous (native) bacteria. If the indigenous microbial population is inactive or inadequate, can supplement with microbes specifically designed for the treatment. Oxygen or oxygen consuming materials may be added to create aerobic or anaerobic conditions.	Construction of a barrier wall downgradient or around the area of concern to restrict off-Site groundwater migration and limit upgradient groundwater flow to the Site.
Process Options	Not Applicable	Deed Restrictions	None	Chemical Oxidation	Permeable Reactive Barrier	Reductive Dechlorination	Air Sparging	In-Well Stripping	Enhanced Biological Degradation	Slurry Wall/Sheet Piling
Remedial Technology	None	None	Natural Attenuation	Physical/Chemical Treatment			Physical Treatment		Biological Treatment	Barrier Walls
General Response Action	No Action	Institutional Control	Monitored Natural Attenuation	In Situ Groundwater Treatment						Physical Containment
Medium	Groundwater									

TABLE 5.1

POTENTIAL RESPONSE ACTIONS AND REMEDIAL TECHNOLOGIES FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

<i>Description</i> A permanent surface barrier is placed over the area (in whole or in part)	containing contaminated media thus eliminating surface water infiltration. Installation and operation of groundwater extraction wells to	provide a hydraulic barrier to groundwater migration through the establishment and maintenance of an inward hydraulic gradient. Installation of downgradient groundwater collection	drains/trenches to achieve a hydraulic barrier that will restrict migration of groundwater off Site.	Installation and operation of groundwater extraction well(s) to remove groundwater containing COCs from the source area.	Installation and operation of collection trenches to remove groundwater containing COCs from the source area.	Remove contaminants to vapor phase. Subsequent disposal of treated water. Vapor treatment may be required.	Adsorption of contaminants onto activated carbon. Subsequent disposal of treated water and used carbon.	Transportation of extracted groundwater to a permitted treatment, storage, and disposal facility. Groundwater may or may not be pretreated.	Extracted, treated groundwater is injected back into the aquifer through on-site points. May also be used to provide hydraulic containment.	Discharge of extracted, treated groundwater to a municipal treatment works.
Process Options Capping	Groundwater Extraction	Well Network Collection Trenches		Groundwater Extraction Well Network	Collection Trenches	Air Stripping	Activated Carbon	Off-site Disposal	Injection	Discharge to POTW
Remedial Technology Surface Barrier	Groundwater Extraction			Groundwater Extraction		On-site Physical Treatment		Off-site Disposal	On-site Disposal	
General Response Action	Hydraulic Containment			Collection		Ex Situ Treatment		Disposal		
Medium Groundwater	(Cont'd)									

TABLE 5.1 POTENTIAL RESPONSE ACTIONS AND REMEDIAL TECHNOLOGIES FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

4

Description	No action. Natural processes are allowed to reduce chemical concentrations to acceptable levels.	Restrict exposure to impacted surface soil and/or develop and enforce special procedures for worker protection.	A permanent surface barrier is placed over the area containing contaminated soil thus preventing or minimizing physical contact.	Excavate contaminated soil for on-site treatment or off-site disposal. Backfill excavation with treated soil or clean, imported granular fill.	Excavated soil is heated to volatilize chemicals. Treated soils may be used as excavation backfill or transported off-site for disposal.	Excavated soil is processed at high temperature to volatilize and combust organic contaminants. Treated soils may be used as excavation backfill or transported off-site for disposal.	Treated excavated soil is returned to the original excavation as backfill.	Treated or untreated excavated soil is transported to a permitted treatment, storage, and disposal facility.	No action. Natural processes are allowed to reduce chemical concentrations to acceptable levels.	A passive or active ventilation system is installed around the foundation of the building or directly beneath the floor slab for venting of vapors to ambient air.	The building floor is sealed to reduce intrusion of vapors.	An active building ventilation system is installed to maintain positive pressure thus preventing the migration of vapors into indoor air.
Process Options	Not Applicable	Physical and Deed Restrictions	Capping	Excavation	Thermal Desorption	Incineration	Backfilling	Off-site Disposal	Not Applicabie	Sub-slab venting	Coating	Industrial Ventilation
Remedial Technology	None	None	Physical Treatment	Excavation	Physical Treatment		On-site Disposal	Off-site Disposal	None	Sub-Surface Ventilation	Floor Sealing	Positive Pressure
General Response Action	No Action	Institutional Control	Containment	Collection	Ex Situ Treatment		Disposal		No Action	Engineered Controls		
Medium	Surface Soil								Sub-Slab Soil Gas/ Fedoor Air			

TABLE 5.1 POTENTIAL RESPONSE ACTIONS AND REMEDIAL TECHNOLOGIES FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

	Description	A vacuum is applied to the soil beneath or surrounding the building through	soil vapor extraction wells and soil vapors are removed.		Adsorption of contaminants in extracted vapors onto activated carbon.	Subsequent discharge of treated vapors to ambient air. Used carbon is disposed at a permitted TSDF.
	Process Options	Soil Vapor Extraction			Activated Carbon	Treatment
	Remedial Technology	Physical Treatment			Physical/Chemical	Treatment
General	Response Action	Collection			Ex Situ Treatment	
Medium		Sub-Slab	Soil Gas/	Indoor Air	(Cont'd)	

VOCs are thermally destroyed using heat and a solid catalyst. Periodic catalyst replacement is required.

Catalytic Oxidation

•

General Response Action NO ACTION INSTITUTIONAL CONTROL Deed Restrictions Deed Restrictions MONITORED NATURAL ATTENUATION Natural Attennation Natural Attennation Natural Attennation Barrier Barrier Air Sparging	The second secon	TABLE 6.1 SCREENING OF IDENTIFIED REMEDIAL ALTERNATIVES FOR GROUNDWATER FEASIBILITY STUDY OLD BRIE CANAL SITE CAVE, NEW YORK Description Effective in usering all RAOS and vate: All containmants of a disk and potential exposure or any arrendial activities. Description Effectiveness is dependant on future enforcement of an exposure to Site related of restrictions and procedures. Vol affectives in reducing for in volume and toxicity of COCS. Not additional risk during implementation. y auy remedial activities. Not additional risk during implementation. y auy remedial activities. Not additional risk during implementation. y auy remedial activities. No additional risk during implementation. y auternatic No additional risk during implementation. propertial commons. No additional risk during implementation. propertial commons. No additional risk during implementation. propertial for non-notating activities. No additional risk during implementation. propertial for non-notating activities. No additional risk during implementation. propertial for non-notation. No additional risk during implementation. propertial for non-notation. Effectivenes is dependant upon the life of the addition in volume and toxicity of COCS. all acostols in anobian.	Implementability readily implemented. Readily implemented. Readily implemented. Readily implemented. Readily implemented. Readily implemented. Groundwater monitoring will be required to track restoration of groundwater. Groundwater monitoring will be required to track restoration of groundwater. Condizing agent commercially available and easy to handle. Permeability of shallow overburden soils is low resulting in difficulty in distribution of oxidant. Site-specific treatability study demonstrated high natural oxidant demand. Off-gassing of oxygen poses safety concerns. Off-gassing off-gassing off-gassing off-gassing off-gassing off-gassing off-gassing off-gassing off-gassing off-gassing off
In Well Stripping	Air is injected into double-screened wells installed to the bottom of the contaminated interval lifting the water in the well and forcing it out through the upper screen. VOCs are transferred from the dissolved to the vapor phase and subsequently	 Reduction in volume, toxicity, and mobility of COCs will be achieved. Effective in reducing potential for human exposure to COCs if migration of soil vapors is 	 Implementable with concern regarding transport of COCs in soil vapor and impact on anaerobic matural attenuation processes. Thickness of saturated interval may limit

Page 1 of 3

CRA 035048 (2)

Page 2 of 3

	Implementability	implementation and effectiveness. • Moderate concern regarding maintenance of well screens.	 Implementable with moderate concern regarding effectiveness in bedrock. Technically feasible. Nutrients conunercially available and easy to handle. 	 Implementable with concern regarding distribution into the groundwater regime. 	- Implementable with concern regarding hydraulic control.	 Implementable in overburden and bedrock. Technically feasible. Requires routine inspection and maintenance. Required mobstructed access to wells may cruse interference with Sile use. Long term access to off-sile properties may be required. Moderate concern regarding maintenance of well screens. 	 Not readily implementable in bedrock. Requires routine inspection and maintenance. Would cause disruption of arca use. Long term access to off-site properties may be required.
TABLE 6.1 SCREENING OF IDENTIFIED REMEDIAL ALTERNATIVES FOR GROUNDWATER FEASIBILITY STUDY OLD ERLE CANAL SITE CLYDE, NEW YORK	Effectiveness	 controlled. Not recommended for areas containing NAPL or high concentrations of COCs. Potential for detrimental impact on natural anaerobic conditions. Potential for foulting of well screens with metals precipitates and bacteria may limit effectiveness. 	 Proven effective in treating COCs in site-specific treatability studies. Reduction in volume and toxicity of COCs will be achieved. Effective in reducing potential for human exposure to COCs. 	 May enhance natural biodegradation of COCs. Reduction in volume and toxicity of COCs will be achieved. Effective in reducing potential for human exposure to COCs. 	 No reduction of volume or toxicity of COCs. Effective in reducing off-site potential for human exposure to COCs. Hydraulic control upgradient of barrier may be required to prevent groundwater flow around the ends of the wall(s). 	 May be effective for collection of groundwater and provision of hydraulic containment. Reduces mobility of contaminants. No reduction of volume or toxicity of COCs without treatment. Potential for fouling of well screens with metals precipitates and bacteria may limit effectiveness. 	 Effective and proven for collection of groundwater from shallow aquifers with a lower confining layer. Reduces mobility of contaminants. No reduction of volume or toxicity of COCs without
SCREENING OF IDENTIFIED REW FEA OLD	Description	extracted and treated.	Delivery of nutrients to stimulate biological degradation by indigenous (native) bacteria. May be used in hotspots to accelerate natural attenuation.	Delivery of iron particles to impacted groundwater to destroy COCs through reductive dechlorination. May be used in hotspots to accelerate natural attenuation.	Slurry or sheet pile barrier walls are constructed around the downgradient perimeter of the COC plume to prevent further migration.	Installation and operation of groundwater extraction wells at the source of contamination and/or downgradient to induce an inward gradient.	Installation of downgradient groundwater collection drains/trenches to achieve a lydraulic barrier restricting migration of groundwater off Site.
	General Response Action	IN SITU TREATMENT (Cont'd) In Well Stripping (Cont'd)	Enhanced Biodegradation		CONTAINMENT AND COLLECTION Physical Containment Vertical Barrier	Hydraulic Containment aud/or Source Removal Extraction Wells	Collection Trenches

Page 3 of 3

٠

TABLE 6.1 SCREENING OF IDENTIFIED REMEDIAL ALTERNATIVES FOR GROUNDWATER FEASIBILITY STUDY	OLD ERIE CANAL SITE CLYDE, NEW YORK
---	--

	Implementability		 Readily implemented. Technically feasible. Requires routine maintenance. May require vapor treatment. Air permitting may be required. 	 Not technically feasible due to polential high concentrations of metals and vinyl chloride in influent stream. 	 Implementable with concern regarding permitting. Pre-treatment prior to discharge may be required. Technically feasible. 	 Implementable with concern regarding permitting. Pre-treatment prior to discharge may be required. Technically feasible. 	
CLYDE, NEW YORK	Effectiveness	treatment.	 Effective in reducing VOC concentrations. 	- Generally effective in reducing VOC concentrations.	 Eliminates potential for human exposure to Sile chemicals in groundwater. Reduces volume, toxicity, and mobility of Sile contaminants. 	 Eliminates potential for human exposure to Sile chemicals in groundwaler. Reduces volume, toxicity, and mobility of Sile contaminants. 	
CLY	Description		Contaminants (VOCs) are removed from the water using an air purging system. Product vapor may need treatment prior to discharge.	Water is passed through activated carbon and VOCs are removed by being adsorbed to the carbon.	Discharge of pre-trealed or untrealed groundwater directly into municipal sewer for subsequent treatment at POTW.	Permitted discharge of treated groundwater directly to surface waler.	
	General Response Action	EX SITU TREATMENT	Air Stripping	Activated Carbon	DISPOSAL Discharge to POTW	Discharge to surface water	Noles: COCs Compounds of Concern. POTW Publicly Owned Treatment Works. RAOs Remedial Action Objectives. VOC Volatile Organic Compound

	Implementability	- Readily implemented.	- Readily implemented.	 Readily implemented. Technically feasible. Requires routine inspection and maintenance. 	 Implementable. Scope of work highly dependent upon results of confirmatory sample analyses. 	- Not technically feasible for on-site use.	- Not lechnically feasible for ou-site use.	 Readily implemented. Technically feasible. Disposal as a hazardous waste may be required. 	
SCREENING OF IDENTIFIED REMEDIAL ALTERNATIVES FOR SURFACE SOIL FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK	Effectiveness	 Not effective in meeting all RAOs. No reduction of volume, toxicity, or mobility of Site contaminants. No additional risk during implementation. 	 Effectiveness is dependant on future enforcement of restrictions. No reduction of volume, toxicity, or mobility of COCs. Effective in reducing potential for human exposure to COCs. 	 Effective in reducing the potential for human exposure to Site chemicals in the soil. Does not reduce the volume, toxicity, or mobility of COCs. 	 Effectively reduces the volume, loxicity, and mobility of contaminants. 	 Does not reduce the volume, toxicity, or mobility of COCs without vapor treatment. 	- Effectively reduces the volume, loxicity, and mobility of contaminants.	 Elininates potential for exposure to chemicals in the surface soil. Reduces volume, toxicity, or mobility of Site contaminants. 	
SCREENING OF IDENTIFIED REMEDIA FEASIBILI OLD ERIE CLYDE, N	Description	No additional measures are taken to improve Site environmental conditions with respect to surface soil. All contaminants remain on Site. Environmental risks and potential exposure pathways are not directly addressed by any activities.	Implementation of institutional controls, such as deed restrictions, safe work practices, or physical barriers such as fencing to reduce potential exposure to Site related chemicals in surface soil.	Areas of Sile containing surface soil exhibiting chemical concentrations exceeding potential soil cleanup goals are regraded if necessary to promote drainage and covered with compacted, clean, granular fill.	Removal of impacted surface soil.	Excavaled soil is treated on-sile utilizing high temperature thermal desorption. Treated soil is used as backfill or transported off-Sile for disposal.	Chemical presence in excavated soil is treated through volatilization and combustion. Treated soil is used as backfill or transported off-Site for disposal.	Transport soil to a permitted waste treatment, storage, and disposal facility.	
	General Response Action	NO FURTHER ACTION	INSTITUTIONAL CONTROLS Physical and Deed Restrictions	PHYSICAL CONTAINMENT Capping	COLLECTION Excavation	EX SITU TREATMENT AND DISPOSAL Thernal Desorption	Incineration	Off-Site Treatment & Disposal	Notes:

TABLE 6.2

Notes: COCs Compounds of Concern. RAOs Remedial Action Objectives. ·

	SCREENING OF IDENTIFIED REMED FEAS OLD E	TABLE 6.3 SCREENING OF IDENTIFIED REMEDIAL ALTERNATIVES FOR SUB-SLAB SOIL GAS FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK	
General Response Action	Description	Effectiveness	Implementability
NO ACTION	No measures are taken to improve Site environmental conditions with respect to sub-slab soil gas. All contaminants remain on Site. Environmental risks and potential exposure pathways are not addressed by any activities.	 Not effective in meeting all RAOs No additional risk during implementation 	- Readily inplemented.
ENGINEERED CONTROLS Sub-Slab Ventilation	Active or passive sub-slab ventilation is provided through installation of venting system around building foundation or through building floor.	 Will not reduce volume or toxicity of COCs in soil vapor. Will reduce mobility of COCs in soil vapor to indoor air. 	 Difficulty of implementation dependent upon building construction. Technically feasible. Treatment of vented vapors may be required.
Positive Pressure	Industrial ventilation system provides positive pressure within the manufacturing building to reduce potential for intrusion of soil vapor to indoor air.	 Will not reduce volume or toxicity of COCs in soil vapor. No additional risk during implementation 	 Difficult to implement in portions of the building with individual small rooms (e.g., offices). Technically feasible in open portions of building (e.g., manufacturing area).
CONTAINMENT Floor Sealing	Floors are sealed with impermeable or low permeability material which provides a barrier to intrusion of soil vapor to indoor air.	 Not effective in meeting all RAOs No additional risk during implementation 	 Difficult to implement in finished portions of the building containing drywall, carpetting, etc. Not technically feasible without significant disruption of operational activities.
COLLECTION Soil Vapor Extraction	Insiallation and operation of soil vapor extraction wells within and/or surrounding the building to collect sub-slab soil vapors and create and maintain an outward gradient of vapor migration.	 Reduces volume and mobility of Site VOCs in soil gas. Potential for detrimental impact on natural anaerobic conditions. 	 Implementable with concern regarding interference with facility operations and/or development and impact on natural anaerbic natural attenutation processes. Technically feasible.
TREATMENT OF COLLECTED VAPORS Activated Carbon renn	1PDRS Vapor is passed through activated carbon and VOCs are removed by being adsorbed to the carbon.	- Effective in reducing VOC concentrations.	 Readily implemented. Technically feasible. Requires routine maintenance.
Catalytic Oxidation	Vapor is heated and then passed through a bed of solid catalyst. VOCs are oxidized in the catalytic reaction.	- Effective in reducing VOC concentrations.	 Readily implemented. Technically feasible. Periodic catalyst replacement is required.
Notes: COCs Compounds of Concern. DOTUD Distriction. Concord Transmin Words	1. Mareter		

POTW Publicty Owned Treatment Works. RAOs Remedial Action Objectives. VOC Volatile Organic Compound.

			CLYDE, NEW YORK				
					In Situ T	In Situ Treatment	
	No Action	Institutional Control	Monitored Natural Attenuation	Chemical Oxidation	Permeable Reactive Barrier	Air Sparging	In-Well Stripping
Effectiveness						2 2	2
 Further reduces toxicity, mobility, and volume of COCs 	No	No	Yes	Yes	Yes	Yes	Yes
 Further minimizes residual risk and affords additional long-term protection 	°N	Yes	Yes	Yes	Yes	Yes	Yes
Implementability	Readily implemented	Readily implemented	Readily implemented	High concern	Moderate concern	Moderate concern	Moderate concern
Relative Cost							
Capital	None	Low	None	High	High	Moderate	Moderate
 O&M (30 years) 	None	Low	Moderate	Moderale	Low to Moderate	Nioderate	Moderale
<u>Recommendation</u>	Required for detailed analysis	Retained for detailed analysis	Retained for detailed analysis	Eliminated from further consideration	Retained for detailed analysis	Eliminated from further consideration	Relained for detailed analysis

TABLE 6.4 SUMMARY OF DEVELOPMENT AND SCREENING OF REMEDIAL TECHNOLOGIES FOR GROUNDWATER FEASIBILITY STUDY OLD ERLE CANAL SITE

Page 1 of 3

•

SUMMARY OF DEVELOPMENT AND SCREENING OF REMEDIAL TECHNOLOGIES FOR GROUNDWATER FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK	In Situ Treatment (Cont'd) Physical Containment Hydraulic Containment & Collection Treatment of Collected Groundwater	Enhanced Biodegradation	Reductive Nutrient/ Dechlorination Carbon Barrier Wall Extraction Wells Collection Trenches Air Strimino Actinated Corbon		ity, and Yes Yes Yes Yes Yes Yes Yes	k aud Yes Yes Yes Yes Yes Yes Yes Yes Yes		Low implementable Moderate concerns implementable with Moderate concerns implementable with Duffcult to implement concern.		Moderale Moderale High Moderale High Moderale Moderale	Low Moderate Low High High Moderate High	Eliminated from Retained for detailed Eliminated from Retained for detailed Eliminated from Retained for detailed
SUMMARY OI	In Situ 7	Enhance	Reductive Decklorination			ioi	ŀ	LOW		Moderale	Low	Eliminated from
				Effectiveness	 Further reduces toxicity, mobility, and volume of COCs 	Further minimizes residual risk and affords additional long-term protection		fundernamerdur	Relative Cost	Capital	 O&M (30 years) 	<u>Recommendation</u>

SUMMARY OF DEVELOPMENT AND SCREENING OF REMEDIAL TECHNOLOGIES FOR GROUNDWATER FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

	Disposal	osal
	Discharge to Sewer	Discharge to Surface Water
Effectiveness		
Further reduces toxicity, mobility, and volume of COCs	No	No
 Further nulninizes residual risk and affords additional long-term protection 	Yes	Yes
Implementability	Readily implemented	Readily implemented
<u>Relative Cost</u>		
Capital	Low	Low
 O&M (30 years) 	Low	Low
Recommendation	Eliminated from further consideration	Retained for detailed analysis

Page 3 of 3

SUMMARY OF DEVELOPMENT AND SCREENING OF REMEDIAL ALTERNATIVES FOR SURFACE SOIL FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

ł Disposał	off-Site		Yes	Yes	stable Readily implemented		Moderate	None	ı further Retained for detailed on analysis
Ex Situ Treatment and Disposal	Incineration		Yes	Yes	Not Implementable		High	None	er Eliminated from further consideration
	Thermal Destruction		No	Yes	Not Implementable		High	None	Eliminated from further consideration
tt Collection	Excavation		Yes	Yes	Impiementable		High	Low	d Retained for detailed analysis
Physical Containment	s Granular Cover		No	Yes	l Implementable		Moderate	Moderate	Retained for detailed analysis
	Institutional Controls		No	Yes	d Readily implemented		Low	Low	d Retained for detailed analysis
	No Further Action		No	Ň	Readily implemented		None	None	Required for detailed analysis
		<u>Effectiveness</u>	 Further reduces toxicity, mobility, and volume of COCs 	Further minimizes residual risk and affords additional long-term protection	Implementability	Relative Cost	Capital	 O&M (30 years) 	<u>Recommendation</u>

SUMMARY OF DEVELOPMENT AND SCREENING OF REMEDIAL ALTERNATIVES FOR SUB-SLAB SOIL GAS FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

Readily Implemented Retained for detailed Ex Situ Treatment Activated Carbon Moderate analysis High Yes Yes Retained for detailed Moderate Concern **Extraction Wells** Collection analysis High High Yes Yes Eliminated from further consideration Questionable Containment Floor Sealing Moderate Low ů Yes Eliminated from further Positive Pressure consideration Questionable Moderate High ů Yes **Engineered** Controls Retained for detailed Implementable Ventilation Moderate Moderate Sub-Slab analysis Yes Ν° Required for detailed Readily implemented No Action analysis None None å å affords additional long-term protection Further reduces toxicity, mobility, and Further minimizes residual risk and volume of COCs O&M (30 years) **Implementability** Recommendation **Relative Cost** Effectiveness Capital

COST ANALYSIS SUMMARY GROUNDWATER ALTERNATIVE 1 - NO ACTION FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

Item	Estimated Cost
Remedial Actions, Institutional Control, Monitoring (no action for any of these)	\$0
TOTAL ESTIMATED COST - GW ALTERNATIVE 1:	\$0

Α.

COST ANALYSIS SUMMARY GROUNDWATER ALTERNATIVE 2 - MONITORED NATURAL ATTENUATION AND INSTITUTIONAL CONTROL FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

		Item		Estimated Cost
А.		Administrative Cost		
	i)	Institutional Control		\$10,000
			Sub-Total, Administrative Cost:	\$10,000
В.		Direct Capital Cost		
	i)	Monitoring Well Installation & Development		\$19,000
	ii)	Waste Disposal		\$2,000
C.		Indirect Capital Cost		\$13,000
<u>_</u>			Sub-Total, Capital Cost:	\$34,000
D.		Contingency		\$4,000
			pital Cost - GW Alternative 2:	\$48,000
			Estimated	Present
			Annual Cost	Worth ""
E.		Annual Operation & Maintenance		
	i)	Years 1 through 5 (Quarterly Monitoring)	\$66,000	\$271,000
	ii)	Years 6 through 30 (Semi-annual Monitoring)	\$35,000	\$290,000
		Sub	Total, Operation & Maintenance:	\$561,000
		TOTAL ESTIMATED	COST - GW ALTERNATIVE 2: =	\$609,000

Notes:

Present worth calculated using a 7% interest rate.
 Estimates are rounded to the nearest \$1,000.

COST ANALYSIS SUMMARY GROUNDWATER ALTERNATIVE 3 - ENHANCED BIOLOGICAL DEGRADATION WITH MONITORED NATURAL ATTENUATION AND INSTITUTIONAL CONTROL FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

				Estimated
		Item		Cost
A.		Administrative Cost		
	i)	Institutional Control		\$10,000
	,		Sub-Total, Administrative Cost:	\$10,000
B.		Pre-Design Pilot Study		\$50,000
			Sub-Total, Pre-Design:	\$50,000
C.		Direct Capital Cost		
	i)	Monitoring Well Installation		\$19,000
	ii)	In Situ Treatment		\$123,000
	iii)	Waste Disposal		\$2,000
D.		Indirect Capital Cost		\$82,000
			Sub-Total, Capital Cost:	\$226,000
E.		Contingency	_	\$29,000
		Te	otal Capital Cost - GW Alternative 3:	\$315,000
			Estimated	Present
			Annual Cost	Worth '''
F.		Annual Operation & Maintenance		
	i)	Years 1 through 5 (Quarterly Monitoring) \$66,000	\$271,000
	ii)	Years 6 through 30 (Semi-annual Monito		\$290,000
	-	~ ·	Sub-Total, Operation & Maintenance:	\$561,000
		TOTAL ESTIMA	ATED COST - GW ALTERNATIVE 3:	\$876,000
			-	

Notes:

⁽¹⁾ Present worth calculated using a 7% interest rate. Estimates are rounded to the nearest \$1,000.

COST ANALYSIS SUMMARY GROUNDWATER ALTERNATIVE 4 - PERMEABLE REACTIVE BARRIER WITH ENHANCED BIOLOGICAL DEGRADATION, MONITORED NATURAL ATTENUATION, & INSTITUTIONAL CONTROL FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

			Estimated
	Item		Cost
А.	Administrative Cost		
i)	Institutional Control		\$10,000
		Sub-Total, Administrative Cost:	\$10,000
B.	Pre-Design Geotechnical Study		\$10,000
		Sub-Total, Pre-Design:	\$10,000
C.	Direct Capital Cost		
i)	PRB Construction		\$640,000
ii)	Enhanced Biological Degradation in Building H	otspots	
iii)	Monitoring Well Installation & Development		\$19,000
iv)	Waste Disposal		\$10,000
D.	Indirect Capital Cost		\$165,000
		Sub-Total, Capital Cost:	\$834,000
E.	Contingency		\$140,000
	Total Ca	pital Cost - GW Alternative 4:	\$994,000
		Estimated	Present
		Annual Cost	Worth ^w
F.	Annual Operation & Maintenance	\$20,000	\$248,000
	-	Total, Operation & Maintenance:	\$248,000
G.	Annual Monitoring		
i)	Years 1 through 5 (Quarterly Monitoring)	\$74,000	\$303,000
ii)	Years 6 through 30 (Semi-annual Monitoring)	\$38,500	\$320,000
	-	Sub-Total, Monitoring:	\$623,000
		COST - GW ALTERNATIVE 4:	\$1,865,000

Notes:

⁽¹⁾ Present worth calculated using a 7% interest rate.

Estimates are rounded to the nearest \$1,000.

COST ANALYSIS SUMMARY GROUNDWATER ALTERNATIVE 5 - IN-WELL AIR STRIPPING WITH ENHANCED BIOLOGICAL DEGRADATION AND INSTITUTIONAL CONTROL FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

	Item	Estimated Cost
А.	Administrative Cost	
ij		\$10,000
	Sub-Total, Administrativ	e Cost: \$10,000
B.	Pre-Design Pumping/Pilot Tests	\$20,000
	Sub-Total, Pre-E	Design: \$20,000
C.	Direct Capital Cost	
ij	Insurance/Mobilization/Demobilization	\$10,000
ii)	Installation of Well System (incl. piping)	\$71,000
iii	Vapor Treatment System	\$155,000
iv)	Treatment Bldg & Mechanical/Electrical	\$192,000
v)	Instrumentation	\$25,000
v)	Enhanced Biological Degradation in	
	Building Hotspots	\$33,000
vi)	0 1	\$19,000
vii)	Waste Disposal	\$10,000
D.	Indirect Capital Cost	\$182,000
	Sub-Total, Capita	l Cost: \$697,000
Е.	Contingency	\$103,000
	Total Capital Cost - GW Alterna	tive 5: \$830,000
	Estimated	Present
	Annual Cost	Worth ⁽¹⁾
3.	Annual Operation & Maintenance \$89,700	\$1,113,000
	Sub-Total, Operation & Mainte	
- 3.	Annual Monitoring	
i)	Years 1 through 5 (Quarterly Monitoring) \$66,000	\$271,000
ii)	Years 6 through 30 (Semi-annual Monitoring) \$35,000	\$290,000
	Sub-Total, Monit	*******
	TOTAL ESTIMATED COST - GW ALTERNAT	IVE 5: \$2,504,000

Notes:

Present worth calculated using a 7% interest rate.Estimates are rounded to the nearest \$1,000.

COST ANALYSIS SUMMARY GROUNDWATER ALTERNATIVE 6 - HYDRAULIC CONTAINMENT/COLLECTION WITH ON-SITE TREATMENT AND DISPOSAL FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

		Item	Estimated Cost
A.		Administrative Cost	
	i)	Institutional Control	\$10,000
		Sub-Total, Administrative Cost:	\$10,000
B.		Pre-Design Pumping/Pilot Tests	\$20,000
		Sub-Total, Pre-Design:	\$20,000
C.		Direct Capital Cost	
	i)	Insurance/Mobilization/Demobilization	\$10,000
	ii)	Installation of Well System (incl. pumps & piping)	\$68,000
	iii)	Groundwater Treatment System	\$248,000
	iv)	Instrumentation	\$40,000
	v)	Treatment Bldg & Mechanical/Electrical	\$290,000
	vi)	Monitoring Well Installation & Development	\$19,000
۲	vii)	Waste Disposal	\$10,000
D.		Indirect Capital Cost	\$213,000
		Sub-Total, Capital Cost:	\$898,000
E.		Contingency	\$137,000
		Total Capital Cost - GW Alternative 6:	\$1,065,000
		Estimated	Present
		Annual Cost	Worth '''
F.		Annual Operation & Maintenance \$110,000	\$1,365,000
		Sub-Total, Operation & Maintenance:	\$1,365,000
G.		Annual Monitoring	
	i)	Years 1 through 5 (Quarterly Monitoring) \$66,000	\$271,000
	ii)	Years 6 through 30 (Semi-annual Monitoring) \$35,000	\$290,000
	,	Sub-Total, Monitoring:	\$561,000
		TOTAL ESTIMATED COST - GW ALTERNATIVE 6	\$2,991,000

Notes: (1)

Present worth calculated using a 7% interest rate. Estimates are rounded to the nearest \$1,000.

COST ANALYSIS SUMMARY SURFACE SOIL ALTERNATIVE 1 - NO ACTION FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

	Item	Estimated Cost
Α.	Remedial Actions, Institutional Control, Monitoring (no action for any of these)	\$0
	TOTAL ESTIMATED COST - SS ALTERNATIVE 1:	\$0

COST ANALYSIS SUMMARY SURFACE SOIL ALTERNATIVE 2 -INSTITUTIONAL CONTROL AND FENCING FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

		Item		Estimated Cost
А.	i)	Administrative Cost Institutional Control		\$10,000 \$10,000
B.	i) ii)	Direct Capital Cost Insurance/Mobilization/Demobilizatio Fencing	on	\$1,500 \$10,000
C.		Indirect Capital Cost	Sub-Total, Capital Cost:	\$5,000 \$16,500
E.		Contingency	Total Capital Cost - SS Alternative 2:	\$3,000 \$29,500
			Estimated Annual Cost	Present Worth ^w
F.		Annual Operation & Maintenance	\$2,000	\$25,000
			Sub-Total, Operation & Maintenance:	\$25,000
		TOTAL ESTI	MATED COST - SS ALTERNATIVE 2: =	\$54,500

Notes:

Present worth calculated using a 7% interest rate.
 Estimates are rounded to the nearest \$500.

COST ANALYSIS SUMMARY SURFACE SOIL ALTERNATIVE 3 -CAPPING WITH INSTITUTIONAL CONTROL FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

A. Administrative Cost i) Institutional Control \$10,	.000
i) Institutional Control \$10,	
Sub-Total, Administrative Cost: \$10,	
 B. Direct Capital Cost i) Insurance/Mobilization/Demobilization \$2,0 	000
ii) Capping \$9,5	500
iii) Survey \$5,0	000
iv) Waste Disposal \$5,0	000
C. Indirect Capital Cost \$10, Sub-Total, Capital Cost: \$31,	
E. Contingency S11 , Total Capital Cost - SS Alternative 3 : \$52 ,	
Estimated Pres Annual Cost Wort	
F. Annual Operation & Maintenance \$1,700 \$21,	.000
Sub-Total, Operation & Maintenance: \$21,	.000
TOTAL ESTIMATED COST - SS ALTERNATIVE 3: \$73,	,500

Notes: (1)

.

Present worth calculated using a 7% interest rate. Estimates are rounded to the nearest \$500.

COST ANALYSIS SUMMARY SURFACE SOIL ALTERNATIVE 4 -SURFACE SOIL EXCAVATION AND DISPOSAL FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

		Item		Estimated Cost
А.	i)	Administrative Cost Institutional Control		\$10,000
			Sub-Total, Administrative Cost:	\$10,000
B.	i) ii) iii) iv)	Direct Capital Cost Insurance/Mobilization/Demobilization Excavation & Restoration Transportation and Disposal Survey	on	\$5,000 \$8,000 \$30,000 \$5,000
C.		Indirect Capital Cost		\$12,000
		~	Sub-Total, Capital Cost:	\$60,000
E.		Contingency	Total Capital Cost - SS Alternative 4:	\$24,000 \$94,000
			Estimated Annual Cost	Present Worth ^w
F.		Annual Operation & Maintenance	\$1,700	\$21,000
			Sub-Total, Operation & Maintenance:	\$21,000
		TOTAL ESTI	MATED COST - SS ALTERNATIVE 4:	\$115,000
			=	

Notes:

Present worth calculated using a 7% interest rate.
 Estimates are rounded to the nearest \$500.

COST ANALYSIS SUMMARY SOIL GAS ALTERNATIVE 1 - NO ACTION FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

	Item	Estimated Cost
A.	Remedial Actions, Institutional Control, Monitoring (no action for any of these)	\$0
	TOTAL ESTIMATED COST - SG ALTERNATIVE 1:	\$0

COST ANALYSIS SUMMARY SOIL GAS ALTERNATIVE 2 - SUB-SLAB VENTILATION FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

Estimated

.

		Item	Cost
A.	ī)	Administrative Cost Institutional Control	\$10,000
	1)	Sub-Total, Administrative Cost:	\$10,000
B.		Confirmatory Testing	\$10,000
		Sub-Total, Pre-Design:	\$10,000
C.	i) ii) iii) iv) v) vi)	Direct Capital Cost Insurance/Mobilization/Demobilization Installation of Well System (incl. piping) Vapor Treatment System Instrumentation Equipment Bldg & Mechanical/Electrical Waste Disposal	\$5,000 \$13,000 \$7,000 \$2,000 \$12,000 \$2,000
D.		Indirect Capital Cost	\$30,000
E.		Sub-Total, Capital Cost: Contingency Total Capital Cost - SG Alternative 2:	\$71,000 \$8,000 \$99,000
		Estimated Annual Cost	Present Worth ^w
F.		Annual Operation & Maintenance \$4,500	\$56,000
		Sub-Total, Operation & Maintenance: TOTAL ESTIMATED COST - SG ALTERNATIVE 2:	\$56,000 \$155,000

Notes:

⁽¹⁾ Present worth calculated using a 7% interest rate. Estimates are rounded to the nearest \$1,000.

COST ANALYSIS SUMMARY SOIL GAS ALTERNATIVE 3 - SOIL VAPOR EXTRACTION FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

		Item		Estimated Cost
A.		Administrative Cost		
	i)	Institutional-Control	_	\$10,000
			Sub-Total, Administrative Cost:	\$10,000
B.		Confirmatory Testing		\$10,000
				\$10,000
C.		Direct Capital Cost		
	i)	Insurance/Mobilization/Demobilization	L	\$5,000
	ii)	Installation of Well System (incl. piping)		\$21,000
	iii)	Vapor Treatment System		\$19,000
	iv)	Instrumentation		\$4,000
	v)	Equipment Bldg & Mechanical/Electrica	1	\$16,000
	vi)	Waste Disposal		\$5,000
D.		Indirect Capital Cost		\$38,000
			Sub-Total, Capital Cost:	\$108,000
E.		Contingency		\$14,000
			otal Capital Cost - GW Alternative 6: –	\$142,000
			Estimated	Present
			Annual Cost	Worth W
F.		Annual Operation & Maintenance	\$39,800	\$494,000
			Sub-Total, Operation & Maintenance:	\$494,000
G.		Monitoring	\$11,400	\$141,000
		~	Sub-Total, Monitoring:	\$141,000

TOTAL ESTIMATED COST - GW ALTERNATIVE 6: \$777,000

Notes: ⑴

Present worth calculated using a 7% interest rate. Estimates are rounded to the nearest \$1,000. **TABLE 8.1**

COMPARATIVE RANKING OF GROUNDWATER REMEDIAL ALTERNATIVES FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

			9	Groundwater Alternative		
	r	2 MNA with Twettertional	3 Enhanced Biodegradation with MNA and Tustitutional	4 PKB with Enhanced Bidegradation and Tuestsutional	5 In-Well Air Stripping Enhanced Biodarwodotion and	6 Hydrantic Containment Collection with On- Site Transment and
	No Action	Control	Control	Control	Institutional Control	Disposal
Overall Protection of Human Health	Q	വ	1	ო	N	4
Compliance with SCGs	9	1	7	7	1	1
Reduction of Toxicity, Mobility, and Volume	Q	ഗ	ςŋ	1	ন	7
Short-Term Effectiveness	E.	2	ς	6	4	Ŋ
Long-Term Effectiveness and Permanence	Q	a	1	6	Ŧ	ω
Implementability	-	2	m	6	4	ы
Net Present Worth Cost*	\$0	\$609,000	\$876,000	\$1,898,000	\$2,504,000	\$2,991,000

Note: * Present worth calculated using a 7 percent interest rate.

TABLE 8.2

COMPARATIVE RANKING OF SURFACE SOIL REMEDIAL ALTERNATIVES OLD ERIE CANAL SITE CLYDE, NEW YORK FEASIBILITY STUDY

	3 4	Capping with Excavation and Institutional Control Disposal	2	2 1	2	3	3	3	\$73,500 \$115,000
Surface Soil Alternative	2	Institutional Control Cap and Fencing Instituti	ო	*œ	ж	5	n	2	\$54,500
	T	No Action	Ą	ð,	ň*		4	1	0\$
	1		Overall Protection of Human Health	Compliance with SCGs	Reduction of Toxicity, Mobility, and Volume	Short-Term Effectiveness	Long-Term Effectiveness and Permanence	Implementability	Net Present Worth Cost**

Notes:

* Alternatives of same ranking are equally effective.
 ** Present worth calculated using a 7 percent interest rate.

TABLE 8.3

COMPARATIVE RANKING OF SUB-SLAB SOIL VAPOR REMEDIAL ALTERNATIVES FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

	5	Sub-Surface Soil Vapor Alternative	oe
	1	2	Э
		Sub-Slab	Soil Vapor
	No Action	Ventilation	Extraction
Overall Protection of Human Health	ო	-	5
Compliance with SCGs	ç	7	1
Reduction of Toxicity, Mobility, and Volume	ņ	2	1
Short-Term Effectiveness	1	2	ĸ
Long-Term Effectiveness and Permanence	ŋ	2	Ч
Implementability	1	2	ю
Net Present Worth Cost**	\$0	\$155,000	000'222\$

Notes:

Alternatives of same ranking are equally effective.

** Present worth calculated using a 7 percent interest rate.

APPENDIX A

ESTIMATION OF GROUNDWATER PUMPING RATE

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	METHODOLOGY	1
3.0	RESULTS	2

,

1.0 <u>INTRODUCTION</u>

Groundwater Alternative 6 (GW Alternative 6) - Hydraulic Containment/Collection with On-Site Treatment and Disposal includes seven extraction wells placed along the axis of the glacial channel on the western portion of the former Barge Turnaround. These extraction wells will pump impacted groundwater from the shallow unconsolidated unit. Site investigations have shown that groundwater flow in the shallow unconsolidated unit converges in this channel from the east, north, and west. Therefore, the glacial channel is the optimum location to extract groundwater and prevent groundwater discharge to the Clyde River.

In order to complete the evaluation of remedial alternatives for the Feasibility Study, an estimation of the total extraction well pumping rate required for hydraulic containment and chemical mass reduction was required. The methods used to calculate the pumping rate from the extraction system are presented in the following discussions.

2.0 <u>METHODOLOGY</u>

The volume of natural groundwater flow through the shallow unconsolidated unit was calculated using the following form of Darcy's Law:

 $Q = (K)(I)(A) \tag{1}$

Where:

Q = groundwater flow volume (ft³/day); K = hydraulic conductivity (ft²/day); I = hydraulic gradient (ft/ft); and A = cross-sectional area of aquifer (ft²).

Using the groundwater contours for August 3, 2004 presented in the Remedial Investigation Report (RI Report), the area around the channel was divided into three components (east, north, and west). The five sets of contours presented in the RI and SGI Reports show very little difference in the general pattern of groundwater flow. Therefore, the use of the August 3, 2004 contours is appropriate.

The east component was delineated as the areas between MW-3S and MW-1S. East of MW-3S, groundwater flow is toward the Clyde River and not the channel. The north component was represented as the flow that occurs between MW-1S and MW-9S. Finally, the west component was represented by the area between MW-9S and MW-5S.

The length (L) of each flow component was measured from Figure A.1. The average thickness of the shallow unconsolidated unit was determined from the available cross-sections and hydrogeologic data.

The hydraulic gradient across each component was calculated using the August 3, 2004 groundwater contours.

An average hydraulic conductivity of 4.8 feet per day (ft/day), determined from testing conducted during the RI, was used in the calculation. The use of the average value is appropriate because the shallow unconsolidated unit consists of both fill and glacio material ranging from back swamp material to sand and gravel. The use of maximum values was not appropriate with this variation in lithology.

3.0 <u>RESULTS</u>

The results of the calculations are summarized in the following table.

Parameter	Unit	East Component	North Component	West Component
К	ft/day	4.8	4.8	4.8
I	ft/ft	0.04	0.012	0.013
Length (L)	ft	569	170	338
Thickness (b)	ft	10	20	10
Flow (Q)	ft ³ /day	1090	196	211

Based on the above, the total groundwater flow (Q_T) into the channel is:

$$Q_{\rm T} = Q_{\rm E} + Q_{\rm N} + Q_{\rm W} = 1500 \, {\rm ft}^3/{\rm day}$$
 (2)

The estimated total flow rate is 1500 ft³/day (approximately 8 gallons per minute [gpm]). It is typically required to pump in excess of this natural flow rate to achieve hydraulic containment. For cost estimating purposes, it was assumed that a combined pumping rate of 20 gpm is required in GW Alternative 6. This higher pumping rate is sufficiently conservative to account for variations in aquifer properties, hydraulic gradients, and influences of the Clyde River.

APPENDIX B

MICROCOSM STUDY REPORT

Microcosm Study Report Old Erie Canal Site

Abstract

The Old Erie Microcosm study was designed to determine if the complete reductive dechlorination of TCE to ethene could be stimulated at the Old Erie Canal site. A study was set up with four electron donors (lactate, ethanol, SC-80 chitin, and soybean oil) added to 120 mL bottles containing soil and groundwater obtained from the a primary source area at the site. Reduced anacrobic mineral media (RAMM) was added to selected bottles in order to determine if nutrients were required to further encourage microbial activity. A set of positive controls, containing an actively dechlorinating microbial population, was included in the study to determine if bioaugmentation would be beneficial to enhance the degradation rate. Unamended and killed controls were also included in each study. TCE was added to the killed control and donor amended bottles at a concentration of approximately 50 mg/L at the beginning of the study. Two sets of unamended control bottles were amended with 5 mg/L and 50 mg/L of TCE.

The overall conclusions that are based on an analysis of variance (ANOVA) statistical analysis are listed below:

Enhanced bioremediation is a feasible remedial option at this site. All of the electron donors supported complete reductive dechlorination of TCE to ethene within the course of the experiment. The addition of electron donors promoted a two to three fold increase in the overall biodegradation rate over the comparable unamended control. TCE was biodegraded very rapidly in all the amended bottles. Lactate, chitin, and soybean oil promoted the fastest biodegradation of cis-dichloroethene (cis-DCE). Chitin and soybean oil promoted the fastest biodegradation of vinyl chloride (VC). In these cases, VC was biodegraded almost as fast as it was formed, so that very little was measured in the bottles. The choice of electron donor for use in a potential field application would depend on site conditions and stratigraphy.

- Complete reductive dechlorination of TCE to ethene was observed in both the unamended controls at both concentration levels. It is unusual to observe this level of activity at such a high TCE concentration and indicates robust intrinsic biological activity is currently operative at the site. This suggests that monitored natural attenuation should be an important part of the remedial strategy at this site.
- The addition of supplemental nutrients in the form of RAMM did not have a substantial positive effect on the rate or extent of TCE dechlorination. Bioaugmentation also did not have a significant effect on the results observed. These results indicate that neither supplemental nutrients nor bacteria would be required to promote the rapid biodegradation of TCE at this site.

Introduction

Accelerated anaerobic biodegradation of chlorinated solvent source areas may represent a reasonable remedial option when natural attenuation processes alone are not sufficient to mitigate risk to human health and the environment. Accelerated biodegradation involves the addition of simple and safe sources of carbon and nutrients to the subsurface in order to stimulate anaerobic bacteria capable of reductively dechlorinating chlorinated solvents like tetrachloroethene (PCE) and trichloroethene (TCE) to innocuous byproducts like ethene and ethane. Reductive dechlorination involves the step-wise replacement of individual chlorine atoms with hydrogen atoms, such that

 $TCE \rightarrow cDCE \rightarrow VC \rightarrow Ethene$

where cDCE and VC are cis-1,2-dichloroethene and vinyl chloride, respectively.

Over a decade ago, the biological conversion of PCE and TCE to ethene or ethane by anaerobic reductive dechlorination was demonstrated both in the laboratory and in the field (Freedman & Gossett, 1989; Major, et al., 1991; de Bruin, et al., 1992). In these processes, the chlorinated compounds act as an electron acceptor, while an electron donor is required to provide energy (McCarty, 1994). Hydrogen is generally considered to be the direct electron donor for reductive dechlorination, but is typically produced from the anaerobic oxidation of other carbon substrates, such as sugars, organic acids, or alcohols (Maymo-Gatell, et al., 1995).

Complete dechlorination of chlorinated aliphatics to ethene or ethane has been demonstrated to occur at many sites impacted by chlorinated solvents. However, this extensive dechlorination does not occur at all sites (Ellis, 1997). In rare instances, no dechlorination is observed. More commonly, partial dechlorination is observed, where the process stops at an intermediate product like cDCE, rather than proceeding all the way to ethene or ethane. This may occur for one or more of the following reasons:

- Carbon sources (electron donors), which provide energy for the dechlorinating microorganisms, are not present or are not present in sufficient quantity;
- Other important nutrients, such a nitrogen or phosphate, are lacking; and.
- The proper dechlorinating microorganisms are not present.

There are many carbon sources suitable for promoting reductive dechlorination of chlorinated aliphatics by anaerobic bacteria. Among these, sugars (e.g., molasses), organic acids (e.g., lactic acid or its sodium salt), and alcohols (e.g., methanol, ethanol) have been most widely used in enhanced biodegradation applications to date. Because these substrates are soluble in water and highly biodegradable, they may need to be added periodically, in continuous or batch mode. Substrate addition and maintenance of the injection system is typically the most expensive aspect of this remedial approach (Harkness, 2000).

More recently, water insoluble carbon sources have seen increasing application in enhanced biodegradation. These carbon sources biodegrade slowly over time and include substances like lactic acid polymers, soybean oil, chitin, and wood chips. Unlike water soluble substrates, these materials do not require continuous or batch additions in order to maintain their effectiveness and therefore can be cheaper to apply due to reduced substrate addition and

system maintenance costs. However, in some cases the cost of these materials can be prohibitive (Harkness, 2000).

Bacteria also require basic nutrients like nitrogen and phosphorus in order to grow. These nutrients are often present in sufficient quantities in soil and groundwater, but can be limiting in some cases. In the same way, dechlorinating bacteria are generally present in the environment, particularly those capable of dechlorinating PCE and TCE to cDCE. However, the bacteria responsible for dechlorinating cDCE through VC to ethene are more sensitive to environmental conditions, and are not present at all sites. In this case, they can be added via bioaugmentation and will grow and proliferate in the subsurface under favorable conditions (Harkness, et al., 1999, Ellis, et al., 2000).

The purpose of this study was to determine whether the complete reductive dechlorination of TCE could be stimulated in soil and groundwater from near a source area at the Old Erie Canal Site, located in the village of Clyde, NY. The study was designed to determine if an optimal carbon source (e.g., sodium lactate, ethanol, chitin, or soybean oil) exists for stimulating dechlorination at this site, and whether other nutrients (e.g., nitrogen, phosphate, or trace minerals) must also be added to promote optimal biodegradation. Finally, the study determined whether bioaugmentation (e.g., the addition of non-native dechlorinating bacteria) was necessary or beneficial to the biodegradation process. The study was performed at the General Electric Company's (GE's) Global Research Center (GRC) in Schenectady, New York, in accordance with standard practices developed in GE's partnership in the Remedial Technology Development Forum's (RTDF's) Bioremediation of Chlorinated Solvents Consortium. The microcosm work lasted for about five months.

Materials and Methods

The soil used in this study was obtained from the saturated soil strata in the former barge turnaround area of the site, where high VOC concentrations were measured in the groundwater. The samples were obtained next to boring points GW-GP-20 and GW-GP-25. Groundwater samples obtained from GW-GP-20 in April 2002 contained 0.1 mg/L of TCE, 44 mg/L of

DCE, and 44 mg/L VC, while those from GW-GP-25 contained 71 mg/L of TCE, 170 mg/L of DCE, and 22 mg/L VC. The soil sample consisted of 2 to 3 kilograms (kg) of soil collected using a direct push rig and 2-inch diameter acetate sleeves. The acetate sleeves were capped and sealed with wax immediately upon retrieval, then packed in iced coolers and sent by overnight courier to GE GRC. Upon arrival, the soil was transferred from the sleeves to glass jars in order to limit diffusion of air through the tubes and stored under anaerobic conditions prior to use. In order to reduce variability in the experiment, all of the soil was sifted through 1/4" screens to homogenize the soil and remove any larger rocks that were present. This ensured that any residual chlorinated solvents, as well as the microbial population, were evenly distributed throughout the soil.

In addition, approximately 8 Liters (L) of groundwater were obtained from well MW-6S, located in the same area as GW-GP-20 and GW-GP-25. The groundwater samples were collected in 1 L plastic or glass containers, filled to the brim with groundwater, capped, packed in iced coolers and shipped by overnight courier to GE GRC. The groundwater was stored at 4°C prior to use.

The microcosm study was performed in sterile 120 milliliter (mL) serum bottles. Fifty (50) grams (g) of soil was weighed out and dispensed into each bottle in an anaerobic glove box containing an atmosphere of approximately 5 percent (%) hydrogen in nitrogen. Each serum bottle was then filled with 75 mL of non-sterile, filtered ground water that was sparged with nitrogen to remove any pre-existing solvents.

Four electron donors (sodium lactate, ethanol, chitin and soybean oil), supplemental nutrients in the form of yeast extract (YE) and reduced anaerobic mineral media (RAMM), and dechlorinating microorganisms were added to the microcosms alone and in combination to determine the optimum conditions for carrying out the reductive dechlorination of TCE. The study design is outlined in Table 1. The design consists of two sets of unamended microcosms (treatments 1 & 2) and multiple sets of microcosms where the individual electron donors are added alone (treatments 3-6) and in combination with supplemental nutrients (treatments 7-10). One of the unamended sets was spiked with 5 mg/L TCE to test the natural

attenuation capacity of the system under low TCE loadings. All other bottles were spiked with 50 mg/L TCE. This design allowed the efficacy of different electron donors to be assessed and the necessity of supplemental nutrients to be determined. In addition, one set of microcosms was amended with sodium lactate, yeast extract, supplemental nutrients and was bioaugmented with an active TCE-dechlorinating culture to act as positive controls, which ensured that there were dechlorinating bacteria available to biodegrade the solvent (treatments 11). Finally, there was also a killed control (treatment 12) to monitor non-biological losses from the bottles.

For each treatment, microcosms were set up in triplicate (Wilson, et al., 1997). The bottles were sealed with Teflon[™]-coated septa and aluminum crimp seals and incubated upside-down in the dark at room temperature.

Treatment	Donor	YE	RAMM	Pinellas	TCE-low	TCE - hi
1. Unamended						X
2. Unamended					X	
3. Lactate	Lactate					X
4. Ethanol	Ethanol					X
5. Chitin	SC-40		11,	· · · · ·		Х
6. Soybean Oil	EOS		1. A.	· · · · · · · · · · · · · · · · · · ·		X
7. Lactate + RAMM	Lactate	X	X			X
8. Ethanol + RAMM	Ethanol	X	X		·	Х
9. Chitin + RAMM	SC-40	X	X	n		X
10. SB Oil + RAMM	EOS	X	X			Х
11. Positive Control	Lactate	X	X	X		Х
12. Killed Control						X

Table 1 Treatments used during the microcosm study

Sodium lactate and ethanol are water-soluble substrates and were added to the microcosms each week as concentrated solutions using a gas-tight syringe. Lactate was added as 1.0 mL of 0.5 molar (M) sodium lactate solution in water, resulting in a final concentration of 5 millimolar (mM) in the microcosms. Ethanol was added as 1.0 mL of 0.75 molar (M) ethanol solution in water, resulting in a final concentration of 7.5 millimolar (mM) in the microcosms.

Chitin and soybean oil are not water-soluble substrates, and were added only at the beginning of the study. The chitin used was SC-40 (JRW bioremediation Products), a commercial bioremediation grade material consisting of 30-40 percent chitin with a calcium carbonate residual. One gram of this material was added to each bottle in a glovebox under anaerobic conditions. The soybean oil used was EOS (EOS Remediation, Inc.), a commercial emulsified soybean oil product that also contains small amounts of sodium lactate and yeast extract. In this case 0.50 g of the EOS substrate was added.

Yeast extract and RAMM was added once to designated bottles at the beginning of the study. Yeast extract was added as a concentrated solution [0.1 mL of 30 grams per liter (g/L) yeast extract], resulting in a final concentration of 30 mg/L in each microcosm. RAMM consists of a phosphate buffer, potassium and ammonium salts, and trace metals (Shelton & Tiedje, 1984) and was also added as a concentrated solution.

The positive control was bioaugmented with the Pinellas consortium, which contains bacteria able to completely dechlorinate TCE to ethane (Flanagan, et al., 1995). The Pinellas consortium was recently used to bioaugment a field test at Dover Air Force Base, resulting in the first successful use of bioaugmentation to promote the complete dechlorination of TCE to ethene in the field (Harkness, et al., 1999, Ellis, et al., 2000). Bioaugmentation took place two to three weeks after the beginning of the study, to ensure anaerobic conditions were established in the microcosms. The Pinellas consortium was added by replacing 5% of the liquid volume in the microcosms with active Pinellas bacteria growing in a low-density liquid culture containing 1×10^7 to 1×10^8 cells per milliliter (cells/mL). The TCE concentration in the Pinellas culture medium was monitored to ensure that all of the TCE had been degraded to ethene prior to bioaugmentation.

The killed controls was autoclaved twice and amended with mercuric chloride using a gastight syringe. The mercuric chloride was added as a concentrated solution (3.0 mL of 6% mercuric chloride in deionized water), resulting in a final concentration of 180 mg/L in each microcosm. The unamended controls did not receive any electron donor or nutrient amendments. Resazurin, a redox-sensitive color indicator for anaerobic conditions, was

added to all the bottles at the beginning of the experiment. No reducing agents were used in this experiment.

TCE was spiked into the microcosms at the beginning of the study using a gas-tight syringe. TCE was added from neat or saturated stock solutions to target concentrations of 50 mg/L (high dosage) for most of the bottles and 5 mg/L (low dosage) for one of the unamended controls.

VOC Analysis

VOC samples were obtained by removing 1.0 mL of liquid from the bottles using glass, gastight syringes. The microcosms were sampled at the start and at two-week intervals throughout the study. PCE, TCE, TCA, 11-DCE, cDCE, 11-DCA, VC, CA, and ethene/ethane were measured using a Tekmar 2016 Purge and Trap Autosampler, a Tekmar 300 Concentrator, and a Hewlett Packard 5890 Series II Gas Chromatograph (GC) equipped with a flame ionization detector (FID) and a HP-624 [30 meter (m) by 0.53 millimeter (mm) inner diameter] fused silica capillary column. Chlorinated aliphatics and ethene/ethane were quantified by comparing peak areas to standard calibration curves generated using water dilutions of a standard mixture containing TCE, cDCE, and VC obtained from Supelco, Inc., or by direct injection of known amounts of a standard gas mixture containing ethene.

Other Biological Indicators

In addition to VOC analysis, other indicators of biological activity were monitored during the study. Resazurin is a redox-sensitive color indicator for anaerobic conditions. Resazurin is blue under oxidizing conditions, pink under mildly reduced conditions, and clear under more strongly reduced conditions (e.g. -100 mV). Therefore, the color of the water in the bottles was monitored, especially early in the experiment.

Biologically mediated sulfate reduction produces hydrogen sulfide, which reacts readily with soluble (ferrous) iron in solution to form a distinctive black precipitate. Given that sulfate

and iron are present in the groundwater, this precipitate is a clear indication that sulfatereducing conditions are present in the bottles. Sulfate reduction is an indicator that strongly reducing conditions are present in the microcosms. Excessive sulfide-reduction can be inhibitory to dechlorinating activity, but this has typically only been observed where sulfate levels are very high in the groundwater.

Under the most highly reduced conditions, carbon dioxide is reduced to methane gas by methanogenic bacteria. This activity is significant because reductive dechlorination of cDCE and VC to ethene and ethane typically occurs under these most highly reduced conditions. Therefore, any gas produced in the microcosm bottles was collected and measured on a weekly basis during the study.

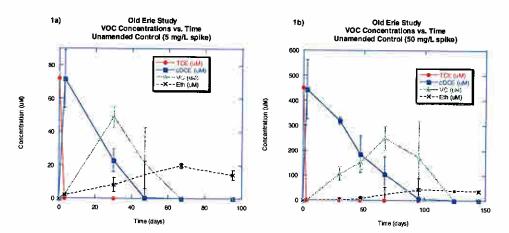
Results and Discussion

Biological activity was observed in the bottles throughout the duration of the experiment. The indicator in all of the bottles went from pink to clear within the first two days of the experiment. Significant gas production was observed in the majority of the bottles. The black precipitate indicative of sulfate reduction was observed in all of the lactate, chitin, and soybean oil-amended bottles during the course of the study.

Time Course Analysis

The graphs of the VOC results over time are provided in Figures 1-5. TCE was completely dechlorinated to cis-DCE prior to the first sampling point (three days) in all bottles, except the killed control (Figure 1c). The killed control bottles were the only set that did not achieve complete reductive dechlorination of TCE to ethene during the course of the experiment. The majority of the bottles went to completion within the first 67 days of the study. The exception to this was the unamended control containing 50 mg/L TCE, which required 124 days to reach complete dechlorination to ethene.

Most of the cis-DCE was dechlorinated to VC as of day 30 in the lactate amended bottles (Figure 2a). Complete dechlorination of VC to ethene was observed by day 47 in two of the bottles. The remaining bottle went to only ethene as of day 67. Cis-DCE and VC were completely dechlorinated to ethene in 47 days in both the lactate and RAMM amended bottles (Figure 2b) and bioaugmented controls (Figure 2c).


Complete dechlorination of cis-DCE and VC to ethene was observed as of the 67-day sampling period in both the ethanol amended bottles (Figure 3a) and bottles containing ethanol and RAMM (Figure 3b).

The time to complete dechlorination to ethene observed for the three bottles amended with chitin ranged from 30 to 67 days (Figure 4a). Very little VC production was observed in these bottles during the experiment. Complete dechlorination of cis-DCE and VC to ethene was observed as of the 47-day sampling period in the chitin amended bottles with RAMM present (Figure 4b). In this case a small amount of VC was observed.

Complete dechlorination of cis-DCE and VC to ethene was observed in the soybean oil amended bottles as of day 47 of the study (Figure 5a). Similar results were observed when nutrient were present (Figure 5b), with one bottle reaching completion as early as day 30.

In the unamended control containing 5 mg/L TCE, cis-DCE was completely dechlorinated to VC in all bottles by day 47 of the study (Figure 1a). The VC in one bottle in this set was completely reduced to ethene by day 47 of the study, while the other two bottles went to completion by day 67. Cis-DCE went completely to VC in the unamended control with 50 mg/L TCE (Figure 1b) by day 95 of the study. The VC is these bottles was completely reduced to ethene as of day 124. It is unusual to observe this level of activity in unamended controls, particularly at such a high TCE concentrations. These results indicate that substantial intrinsic biodegradation of TCE and its daughter products is currently operative at the site and suggest that monitored natural attenuation should play an important role in the remedial strategy at this site.

Finally, a reduction in TCE with a subsequent increase in cis-DCE and VC was observed in the killed control bottles during the first 30 days of the study, suggesting even autoclaving and the addition of mercuric chloride was not sufficient to completely kill off this robust dechlorinating population. However, bioactivity ceased after this point and the TCE and cis-DCE levels remained approximately constant throughout the duration of the study.

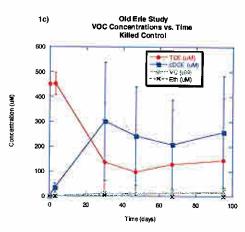
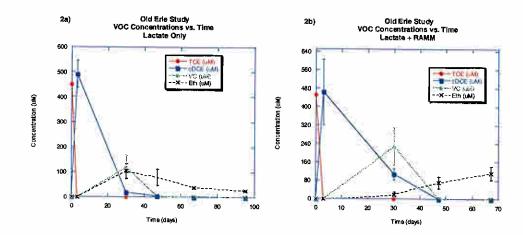



Figure 1 VOC results for a) Unamended control (5 mg/L) b) Unamended Control (50 mg/L) c) Killed Control

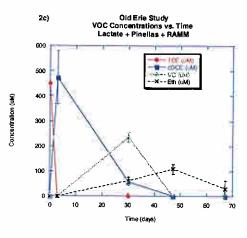


Figure 2 VOC results for a) Lactate b) Lactate + RAMM c) Lactate + Pinellas + RAMM

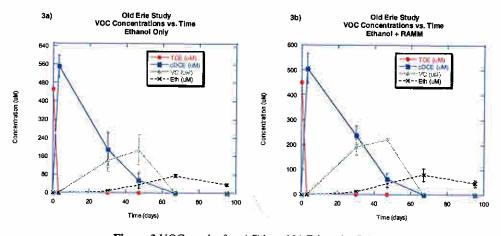


Figure 3 VOC results for a) Ethanol b) Ethanol + RAMM

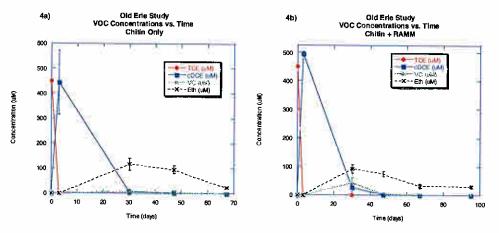


Figure 4 VOC results for a) Chitin b) Chitin + RAMM

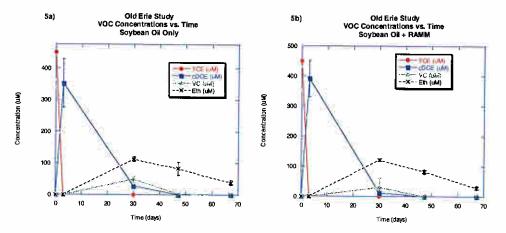
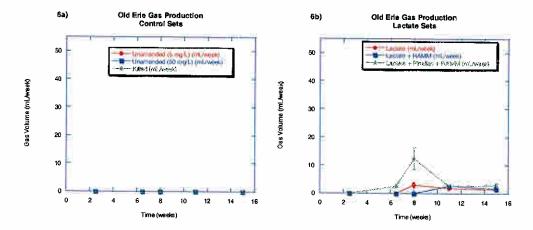



Figure 5 VOC results for a) Soybean Oil b) Soybean Oil + RAMM

Gas Production

In addition to measuring the levels of VOCs present in the bottles, the production of gas over time was measured periodically by venting the headspace of each of the bottles. The results are shown in the graphs in Figure 6. The greatest amount of gas production was observed in the soybean oil-amended sets (Figure 6e), with the maximum production observed around week 11 of the experiment. Gas production in the other amended sets peaked between weeks 8 and 11 and continued throughout the experiment (Figures 6b, 6c, 6d). No measurable gas was produced in the controls (Figure 6a) during the course of the experiment. The gas volumes observed throughout the study further support the observation that the site is extremely biologically active.

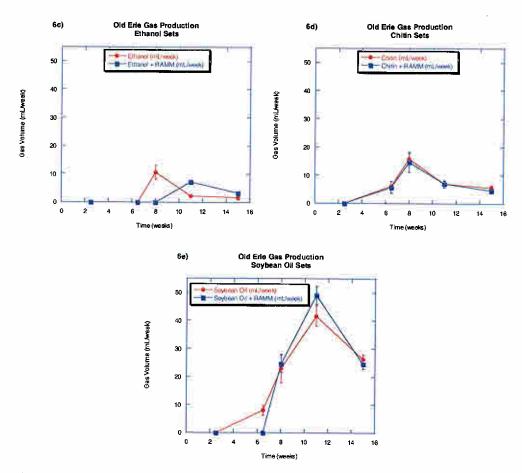


Figure 6 Gas Production for a) Controls b) Lactate sets c) Ethanol sets d) Chitin sets e) Soybean oil sets

CVOC Ratio Analysis

The following molar ratio was used to measure the performance of the microcosms:

<u>Total moles CVOC at day i</u> Total moles CVOC at day 0

where *i* represents the day of sampling for which the ratio was being determined and Total CVOC represents the total concentration of CVOCs at the given point in time. All CVOC concentrations were in uM. Using this ratio, the most successful bottles were those where the ratio approached zero by the end of the experiment, indicating that all the VOCs were degraded and only ethene remained. Graphs of the CVOC ratio results over time are provided in Figures 7-11. The graphs clearly support the observation that all of the treatments were effective, with the exception of the killed control, since they all went to zero during the course of the experiment. Each graph shows the CVOC ratio in each bottle, as well as the average of each set, so that bottle-to-bottle variability can be seen. In general, the bottle-to-bottle consistency in this study was quite good.

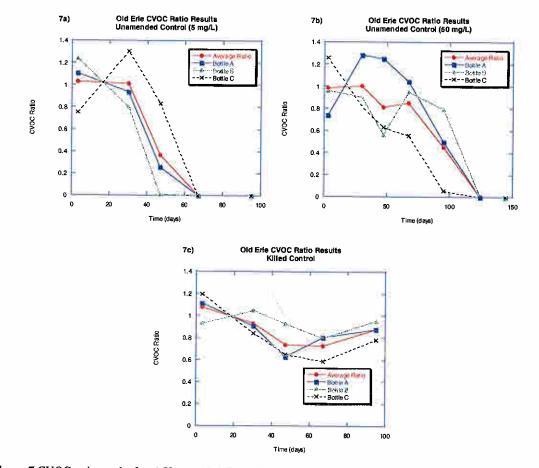


Figure 7 CVOC ratio results for a) Unamended Control (5 mg/L) b) Unamended Control (50 mg/L) c) Killed Control

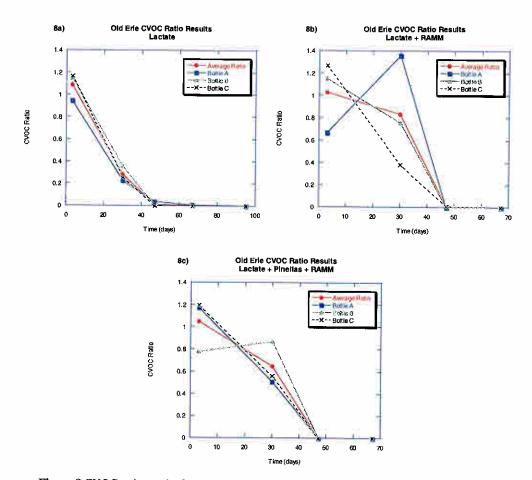
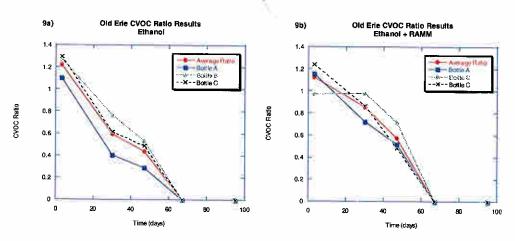
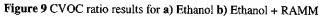




Figure 8 CVOC ratio results for a) Lactate b) Lactate + RAMM c) Lactate + Pinellas + RAMM

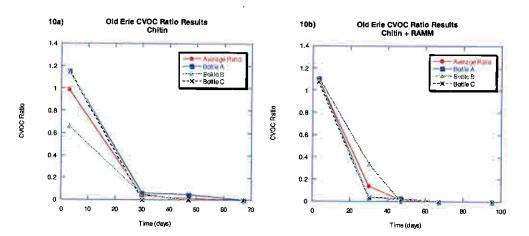


Figure 10 CVOC ratio results for a) Chitin b) Chitin + RAMM

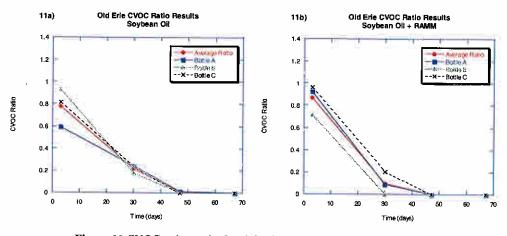


Figure 11 CVOC ratio results for a) Soybean Oil b) Soybean Oil + RAMM

Statistical analysis

Two metrics were used to subject the data to statistical analysis. The CVOC ratio calculated at the end of the study is a measure of the extent or completeness of degradation in each treatment. The time required to reach the zero endpoint in the CVOC ratio is a relative measure of degradation rate. After the CVOC ratio and time to zero endpoint (>97% CVOC removal) were determined for each set, a statistical analysis of each study was performed in Minitab in order to determine the statistical significance of the donor and RAMM terms and the first-order interaction between donor and RAMM. A confidence level of 95% was used to determine the statistical significance of a given factor. The design-of-experiment (DOE) set-up is shown in Table 2.

The results of the statistical analysis of the DOE are shown in the Appendix. The DOE was analyzed according to the two response variables, the CVOC ratio and the time to zero endpoint. None of the terms (donor, RAMM, donor-RAMM interaction) were found to be statistically significant when using the CVOC ratio for the analysis (Table A-1). This is reasonable, since all the bottle sets went to completion during the course of the study, and indicates all conditions were effective in promoting complete dechlorination of TCE to ethene.

However, when the results were analyzed according to the time to endpoint (Table A-2), the donor term was found to be statistically significant (p-value = 0.001). This is primarily due to the fact that all of the ethanol bottles went to completion at day 67, which was longer than the average time to endpoint observed for the other donor treatments. This is evident from both the endpoint values in Table 2 and from the graphs of the interaction effects provided for each analysis in the Appendix (Figures A-1 and A-2). Both show that the time to complete dechlorination was slightly slower using ethanol as the electron donor. However, since this rate difference was relatively small and all of the electron donors were effective in encouraging the complete reductive dechlorination of TCE to ethene, the choice of electron donor for use in a potential field application would depend primarily on site conditions and stratigraphy.

The RAMM term and the donor-RAMM interaction term were not statistically significant in either analysis, indicating that supplemental nutrients did not have a significant effect on the rate or extent of dechlorination. Therefore additional nutrients should not be required at this site.

Donor	RAMM	CVOC ratio at endpoint	Time to endpoint
Lactate	No	0.0082	67
Lactate	No	0.0051	47
Lactate	No	0	47
Lactate	Yes	0	47
Lactate	Yes	0	47
Lactate	Yes	0.012	47
Ethanol	No	0	67
Ethanol	No	0	67

Ethanol	No	0	67
Ethanol	Yes	0	67
Ethanol	Yes	0	67
Ethanol	Yes	0	67
Chitin	No	0	67
Chitin	No	0	47
Chitin	No	0	30
Chitin	Yes	0.026	47
Chitin	Yes	0	47
Chitin	Yes	0.02	47
Soybean Oil	No	0.012	47
Soybean Oil	No	0	47
Soybean Oil	No	0	47
Soybean Oil	Yes	0	47
Soybean Oil	Yes	0	47
Soybean Oil	Yes	0	47

Table 2 DOE set-up for Old Erie study

Effect of bioaugmentation

In order to determine if the addition of Pinellas bacteria to the positive controls was a statistically significant factor in the experiments, t-tests were run between the lactate + RAMM and lactate + Pinellas + RAMM bottle sets. The tests were run using both the CVOC ratio and the time to zero endpoint as response variables. The results of these analyses are shown in the Appendix. Neither analysis showed a statistically significant difference between the two sets in terms of the rate or extent of dechlorination observed. This indicates that bioaugmentation would not be required at this site.

Rate constant analysis

In order to compare the performance of the unamended and amended sets, rate constants for cis-DCE degradation were calculated using Scientist, which is a computer program capable of solving differential equations. The computation was performed assuming the contaminants biodegrade according to first order kinetics. The following equations were used to determine the first order rate constants:

Equation 1: d[TCE]/dT = -KTCE*[TCE] Equation 2: d[cis-DCE]/dT = KTCE*[TCE] - Kcis-DCE*[cis-DCE] Equation 3: d[VC]/dT = Kcis-DCE*[cis-DCE] - KvC*[VC]

Where [TCE], [cis-DCE] and [VC] are the concentrations of the contaminants at a given point in time, T represents time and KTCE, Kcis-DCE and Kvc are the first order rate constants for the three contaminants. The data from the microcosm experiments and initial estimates for the rate constants were required for Scientist to perform the first order rate constant calculations.

The results are in Tables 3 and 4, which show the rate constants in units of day⁻¹. The rate constants for TCE are not reported. The results for these rate constants were not meaningful because the biodegradation of TCE was too rapid to measure accurately.. The comparison between the amended and unamended rate constants and the half-life, in days, for cis-DCE and VC in each set are included. The rate constant for the unamended control with 50 mg/L was used for the comparison to the amended sets. The rate constant for the killed control set was not evaluated because very little dechlorination was observed during the course of the experiment.

The rate constant for cis-DCE biodegradation in the unamended control with 50 mg/L was 0.02 day⁻¹, which corresponded to a half-life of about 35 days. The cis-DCE biodegradation rates observed in the amended bottles were about two to three times greater, with half-lives ranging from 10 to 20 days. In general, the lactate, chitin, and soybean oil promoted the fastest cis-DCE biodegradation. The biodegradation promoted by ethanol was somewhat slower. These rate data are very consistent with the time to overall degradation shown in Table 2.

The rate constant for cis-DCE biodegradation in the unamended control with 50 mg/L was also 0.02 day⁻¹, corresponding to a half-life of about 33 days. The rate constants for VC biodegradation ranged from two to several hundred fold faster in the amended microcosms

20

than in the comparable unamended control. Biodegradation of VC was particularly rapid in the chitin and soybean oil microcosms. In these bottles it was biodegraded almost as fast as it was formed. Biodegradation of VC in the lactate and ethanol amended microcosms proceeded about twice as fast as the unamended control.

Set	K _{cis-DCE} (day ⁻¹)	K _{cis-DCE} Amended/ K _{cis-DCE} Unamended	Half Life for cis-DCF (days)	
Unamended – 5	0.045		15.40	
Unamended – 50	0.02		34.66	
Lactate	0.068	3.40	10.19	
Ethanol	0.04	2.00	17.33	
Chitin (SC-40)	0.07	3.50	9.90	
Soybean Oil	0.064	3.20	10.83	
Lactate + RAMM	0.051	2.55	13.59	
Ethanol + RAMM	0.034	1.70	20.39	
Chitin + RAMM	0.066	3.30	10.50	
Soybean Oil + RAMM	0.069	3.45	10.05	
Lactate + Pinellas + RAMM	0.06	3.00	11.55	
Killed Control				

Table 3 Rate constant analysis for cis-DCE

Set	K _{vc}	K _{VC} Amended/ K _{VC} Unamended	Half Life for VC (days)	
Unamended - 5	0.037 🛛		18.73	
Unamended - 50	0.021		33.01	
Lactate	0.096	4.57	7.22	
Ethanol	0.055	2.62	12.60	
Chitin (SC-40)	16.1	766.67	0.04	
Soybean Oil	2.2	104.76	0.32	
Lactate + RAMM	0.061	2.90	11.36	
Ethanol + RAMM	0.043	2.05	16.12	
Chitin + RAMM	3.64	173.33	0.19	
Soybean Oil + RAMM	4.78	227.62	0.15	
Lactate + Pinellas + RAMM	0.06	2.86	11.55	
Killed Control				

Table 4 Rate constant analysis for VC

Conclusion

The primary objective of the Old Erie study was to determine the feasibility of enhanced bioremediation in reductively dechlorinating TCE to ethene. The experiments studied the effects of the addition of four different electron donors (lactate, ethanol, chitin, and soybean oil), supplemental nutrients (RAMM), and bioaugmentation with bacteria.

Enhanced bioremediation is a feasible remedial option at this site. All of the electron donors tested in the study supported the complete biodegradation of TCE to ethene during the course of the experiment. The addition of electron donors promoted a two to three fold increase in the overall biodegradation rate over the comparable unamended control. Lactate, chitin, and soybean oil promoted the fastest biodegradation of cis-DCE. Chitin and soybean oil promoted the fastest biodegradation of cis-DCE. Chitin and soybean oil promoted the fastest biodegradation of cis-DCE. The electron donors as fast as it was formed, so that very little was measured in the bottles. The electron donor selected for use in a field application would depend on the site conditions and stratigraphy.

The rate and extent of TCE dechlorination was not positively affected by the addition of either RAMM or Pinellas bacteria. Both unamended control sets went to completion during the course of the study, indicating robust intrinsic biodegradation activity is currently operative at the site. Therefore, monitored natural attenuation should be integral part of the remedial strategy at this site.

References

de Bruin, W.P., M.J.J. Kotterman, M.A. Posthumus, G. Schraa, A.J.B. Zehnder, "Complete Biological Reductive Dechlorination of Tetrachloroethene to Ethane", *Appl. Environ. Microbiol.*, **1992**, 58:1996-2000.

DeWeerd, K.A., W.P. Flanagan, M.J. Brennan, J.M. Principe, J.L. Spivack, "Biodegradation of Trichloroethylene and Methylene Chloride in Contaminated Soil and Groundwater", Bioremediation J., **1998**, 2:29-42.

Ellis, D.E., "Intrinsic Remediation in the Industrial Marketplace", in Proceedings of the Symposium on Natural Attenuation of Chlorinated Organics in Ground Water, EPA/540/R-97/504, United States Environmental Protection Agency, Washington, DC, **1997**, pp. 129-132.

22

Ellis, D.E., E.J. Lutz, J.M. Odom, R.J. Buchanan Jr., M.D. Lee, C.L. Bartlett, M.R. Harkness, K.A. Deweerd, "Bioaugmentation for Accelerated In Situ Anaerobic Bioremediation," *Environ. Sci. Technol.*, **2000**, 34:2254-2260.

Freedman, D.L. and J.M. Gossett, "Biological Deductive Dechlorination of Tetrachloroethylene and Trichloroethylene to Ethylene under Methanogenic Conditions" *Appl. Environ. Microbiol.*, **1989**, 55:2144-2151.

Harkness, M.R., "Economic Considerations in Enhanced Anaerobic Biodegradation" In Bioremediation and Phytoremediation of Chlorinated and Recalcitrant Compounds,
Wickramananyake, G.B., Gavaskar, A.R., Alleman, B.C., Magar, V.S. (Editors), 2000, pp. 9-14.

Harkness, M.R., Bracco, A.A., Brennan, M.J. Jr., DeWeerd, K.A., Spivack, J.L., "Use of Bioaugmentation to Stimulate Complete Reductive Dechlorination of Trichloroethene in Dover Soil Columns", *Environ. Sci. Technol.*, **1999**, 33:1100-1109.

Major, D.W., E.H. Hodgins, B.H. Butler, "Field and Laboratory Evidence of In Situ Biotransformation of Tetrachloroethene to Ethene and Ethane at a Chemical Transfer Facility in North Toronto", in *In Situ and On Site Bioreclamation*, R.E. Hinchee and R. Olfenbuttel, Eds., Buttersworth-Heineman, Stoneham, MA, **1991**.

Maymo-Gatell, X., V. Tandoi, J.M. Gossett, S.H. Zinder, "Characterization of an H₂-Utilizing Enrichment Culture that Reductively Dechlorinates Tetrachloroethene to Vinyl Chloride and Ethene in the Absence of Methanogenesis and Acetogenesis", *Appl. Environ. Microbiol.*, **1995**, 61:3928-3933.

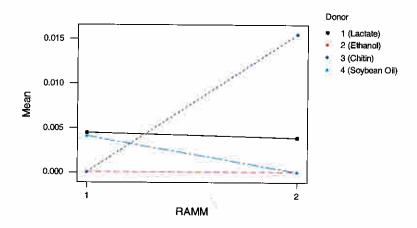
McCarty, P.L., "An Overview of Anaerobic Transformation of Chlorinated Solvents", *Symposium on Intrinsic Bioremediation of Ground Water*, EPA/540/R-94/515, US Environmental Protection Agency, **1994**, pp. 135-142.

Shelton, D.R. and J.M. Tiedje, "General Method for Determining Anaerobic Biodegradation Potential", *Appl. Environ. Microbiol.*, **1984**, 47:850-857.

U.S. Department of Energy, Corrective Measures Study Report: Northeast site, Pinellas Plant, Largo, Florida, Department of Energy, Albequerque Field Office, Draft report, **1993**.

Wilson, B.H., J.T. Wilson, D. Luce, "Design and Interpretation of Microcosm Studies for Chlorinated Compounds", in Proceedings of the Symposium on Natural Attenuation of Chlorinated Organics in Ground Water, EPA/540/R-97/504, United States Environmental Protection Agency, Washington, DC, **1997**, pp. 23-30.

Appendix

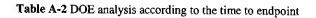

General Linear Model

Factor	Туре	Levels	Values				
Donor	fixed	4	1	2	3	4	
RAMM	fixed	2	1	2			

Analysis of Variance for CVOC rat, using Adjusted SS for Tests

Source	\mathbf{DF}	Seq SS	Adj SS	Adj MS	F	Р	
Donor	3	0.0001978	0.0001978	0.0000659	1.74	D.200	
RAMM	1	0.0000447	0.0000447	0.0000447	1.18	0.294	
Donor*RAMM	3	0.0003411	0.0003411	0.0001137	3.00	0.062	
Error	16	0.0006070	0.0006070	0.0000379			
Total	23	0.0011907					

Table A-1 DOE analysis according to CVOC ratio



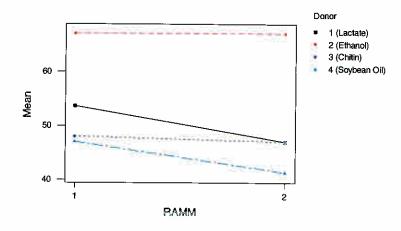
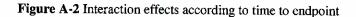

CVOC Ratio Interaction Effects

Figure A-1 Interaction effects according to CVOC ratio


General Linear Model

Donor f	Type La ixed ixed	evels Values 4 1 2 3 2 1 2				
Analysis of	Varia	nce for Time	to, using	Adjusted S	S for Te	ests
Source Donor RAMM Donor*RAMM Error Total	DF 3 1 3 16 23	Seq SS 1854.83 66.67 49.67 1145.33 3116.50	Adj SS 1854.83 66.67 49.67 1145.33	Adj MS 618.28 66.67 16.56 71.58	F 8.64 0.93 0.23	P D.001 D.349 D.873

Time to Endpoint Interaction Effects

Two Sample T-Test and Confidence Interval

Two sample T for 1r cvoc vs 1pr cvoc

 N
 Mean
 StDev
 SE Mean

 lr cvoc
 3
 0.00391
 0.00678
 0.0039

 lpr cvoc
 33.3333E-095.7735E-093.3333E-09
 0.33333E-09
 0.0039

95% CI for mu lr cvoc - mu lpr cvoc: (-0.0129, 0.0207555675) T-Test mu lr cvoc = mu lpr cvoc (vs not =): T = 1.00 P = 0.42 DF = 2

Table A-3 T-test between lactate + RAMM and lactate + Pinellas + RAMM according to CVOC ratio

Two Sample T-Test and Confidence Interval

Two sample T for 1r end vs 1pr end

	N	Mean	StDev	SE Mean
lr end	3	47.00	1.00	0.58
lpr end	3	47.00	1.00	0.58

95% CI for mu lr end - mu lpr end: (-2.27, 2.27)T-Test mu lr end = mu lpr end (vs not =): T = 0.00 P = 1.0 DF = 4

Table A-4 T-test between lactate + RAMM and lactate + Pinellas + RAMM according to time to endpoint

APPENDIX C

IN SITU CHEMICAL OXIDATION BENCH SCALE TREATABILITY STUDY REPORT

TABLE OF CONTENTS

<u>Page</u>

1.0	INTROD 1.1	DUCTION DESCRIPTION OF ISCO	
2.0	TREATA	BILITY STUDY OBJECTIVES	C-3
3.0	BENCH 5 3.1 3.2 3.3	SCALE TREATABILITY STUDY TASK 1: INITIAL CHARACTERIZATION TASK 2: MICROCOSM TESTS TASK 3: NATURAL OXIDANT DEMAND	C-4 C-5
4.0	CONCLU	JSIONS	C-9
5.0	RECOMN	MENDATIONS	C-10

LIST OF TABLES (Following Appendix)

- TABLE 1
 INITIAL ANALYSIS OF GROUNDWATER SAMPLES
- TABLE 2INITIAL ANALYSIS OF SOIL SAMPLES
- TABLE 3CHEMICAL OXIDATION OF GROUNDWATER GW-4B WITH KMnO4
- TABLE 4 CHEMICAL OXIDATION OF GROUNDWATER GW-4B WITH Na₂S₂O₈
- TABLE 5CHEMICAL OXIDATION OF GROUNDWATER GW-4B WITH FENTON'S
REAGENT
- TABLE 6CHEMICAL OXIDATION OF GROUNDWATER GW-6S WITH KMnO4
- TABLE 7CHEMICAL OXIDATION OF GROUNDWATER GW-6S WITH Na2S2O8
- TABLE 8CHEMICAL OXIDATION OF GROUNDWATER GW-6S WITH FENTON'S
REAGENT
- TABLE 9CHEMICAL OXIDATION OF SOIL GP-20-1 WITH KMnO4
- TABLE 10CHEMICAL OXIDATION OF SOIL GP-20-1 WITH Na2S2O8
- TABLE 11 CHEMICAL OXIDATION OF SOIL GP-20-1 WITH FENTON'S REAGENT
- TABLE 12CHEMICAL OXIDATION OF SOIL GP-25-1 WITH KMnO4
- TABLE 13CHEMICAL OXIDATION OF SOIL GP-25-1 WITH Na2S2O8
- TABLE 14 CHEMICAL OXIDATION OF SOIL GP-25-1 WITH FENTON'S REAGENT
- TABLE 15
 ANALYSIS OF NATURAL OXIDANT DEMAND

1.0 **INTRODUCTION**

The GE Old Erie Canal site (Site) is located in Clyde New York. As part of an evaluation of remedial alternatives for the Feasibility Study (FS) being conducted for the Site it was proposed to perform laboratory treatability studies to determine the effectiveness of in situ chemical oxidation (ISCO) and enhanced bioremediation for treatment of the contaminants present at the Site. Conestoga-Rovers & Associates (CRA) were requested to perform an ISCO treatability study at their laboratory in Niagara Falls, New York. The following report describes the results of the ISCO laboratory treatability study and makes recommendations regarding application of the technology at the Site.

The results of the enhanced bioremediation studies are presented in Appendix B of the FS. Descriptions of the Site conditions and nature and extent of chemical presence are presented in Section 3 of the FS.

1.1 DESCRIPTION OF ISCO

ISCO is an effective technology for destroying a wide range of volatile organic compounds (VOCs), including those present at the Site (trichloroethene [TCE], cis-1,2-dichloroethene [cis-1,2-DCE], and vinyl chloride [VC]). The technology is based on the use of strong oxidizing agents to completely oxidize the VOCs within relatively short periods. In a chemical oxidation reaction, the oxidizing agent breaks the double carbon bonds in chlorinated compounds such as TCE, cis 1,2-DCE, and VC and converts them within hours into non-toxic compounds, primarily carbon dioxide and water.

The oxidizing agents most commonly used include:

- i) potassium permanganate [KMnO₄];
- ii) Fenton's Reagent (Fenton's, a solution of hydrogen peroxide and ferrous sulfate);
- iii) ozone; and
- $iv) \qquad so dium \ persulfate \ (Na_2S_2O_8).$

KMnO₄, Fenton's, and ozone are the most commonly used oxidants. $Na_2S_2O_8$ is emerging as a promising oxidizing reagent but is still in the developmental stage. KMnO₄ is preferred because it is demonstrated to be effective and is easier to handle than Fenton's, which is pH-dependent and requires the use of ferrous salt as a catalyst for optimum performance. The application involves simple methods and does not require the sophisticated equipment used in ozone treatment. These oxidizing reagents react relatively quickly with chlorinated ethenes, including TCE, cis 1,2-DCE, and VC, through a series of chemical reactions, completely mineralizing them into neutral end products such as manganese dioxide (MnO_2), chloride ions, water, and carbon dioxide.

ISCO is typically a site-specific and successful treatment technology. However, its effectiveness is often a function of the effectiveness of the delivery system (being able to deliver sufficient amounts of oxidant to the impacted soil and groundwater and making sufficient "contact") and subsequent transport of the oxidant within the aquifer. The treatment performance is dependent to a great extent on the soil and groundwater chemistry.

A critical factor in the evaluation of ISCO treatment is determining the dosages of oxidant that are required to effectively oxidize the contaminants present (referred to as "stoichiometric demand") and overcome competing reactions. Competing reactions are typically caused by the presence of non-target compounds, natural organic materials such as humates and fulvates as well as reduced metal species. The consumption of oxidants by these non-target compounds is defined as natural oxidant demand (NOD). In order to determine the optimum dosage of oxidant required to effectively oxidize the contaminants present, treatability studies are required.

2.0 TREATABILITY STUDY OBJECTIVES

The primary objective of this laboratory study was to gather the data necessary to:

- i) assess the effectiveness of KMnO₄ for treatment of the compounds of concern (VOC, primarily TCE, cis-1,2-DCE, and VC) in representative soil and groundwater samples from the Site;
- ii) assess the variability of the natural oxidant demand in the treatment areas; and
- iii) determine the effective concentration/dosage of oxidant required to complete treatment as expeditiously as possible.

3.0 BENCH SCALE TREATABILITY STUDY

3.1 TASK 1: INITIAL CHARACTERIZATION

Samples were received from the Old Erie Canal Site on May 5, 2004. The groundwater samples were analyzed for:

i) pH; and

ii) VOCs.

Soil samples were removed from soil core liners and homogenized in glass jars. A sub-sample of soil was collected from each homogenized soil sample and analyzed for the following parameters:

- i) pH;
- ii) percent moisture;
- iii) total organic carbon (TOC); and
- iv) VOCs.

The results of the groundwater analyses are shown in Table 1 and the results of the soil analyses are shown in Table 2. Cis-1,2-DCE and VC exhibited the highest concentrations in the groundwater samples. Cis-1,2-DCE concentrations were 60.4 milligrams per liter (mg/L) and 50.2 mg/L in samples GW-6S and GW-4B respectively. VC was present at 32.7 mg/L and 21.2 mg/L in samples GW-6S and GW-4B, respectively. Toluene, ethylbenzene, and xylenes were also present in the samples at lower concentrations. Tetrachloroethene (PCE) was not detected in either groundwater sample. All soil samples contained TCE and cis-1,2-DCE at concentrations ranging from 26.4 milligrams per kilogram (mg/Kg) to 0.171 mg/Kg for TCE and 58.9 mg/Kg to 0.052 mg/Kg for cis-1,2-DCE. The concentrations of toluene, ethylbenzene, and xylenes were generally lower than the chlorinated ethene concentrations. The sample from the area in which boring GP-20 was located had the highest concentrations of VOCs, including toluene, TCE, cis-1,2-DCE, and VC at 31.6 mg/Kg, 3.8 mg/Kg, 58.9 mg/Kg, and 27.1 mg/Kg, respectively. Total organic matter (TOM) varied from 0.37 to 4.66 percent and percent moisture varied from 5.62 to 22.1. The major contributor to the TOM in sample GP-25-1 appeared to be petroleum hydrocarbons.

Based on the VOC results from the initial analyses, two soil samples (GP-20-1 and GP-25-1) were chosen for treatability testing. Both groundwater samples (GW-6S and GW-4B were selected for treatability study testing.

3.2 TASK 2: MICROCOSM TESTS

A series of microcosm tests were conducted. The groundwater microcosms were performed using the two water samples. The soil microcosm tests were performed using 100 gram (g) soil samples from the two soil samples. The tests were conducted to assess the effectiveness of the selected chemical oxidizing agents for treatment of the VOCs in the soils and to determine the optimum concentration range of the chemical oxidizing agent solution, which would be required for field treatment. Based on the specific VOC that was present at the Site, the following three chemical oxidizing agents were selected for bench-scale testing:

- i) potassium permanganate (KMnO₄);
- ii) Fenton's Reagent (Fenton's); and
- iii) sodium persulfate (Na₂S₂O₈).

The groundwater microcosm tests consisted of placing 110 milliliters (mL) of composite groundwater in 125 mL serum bottles and injecting with 10 mL of KMnO₄, hydrogen peroxide (H₂O₂), or Na₂S₂O₈ solutions at varying concentrations. The bottles were injected with:

- i) 10 mL of varying concentrations of KMnO₄ solution (0.05, 0.1, 0.5, and 1 percent, wet weight [w/w]);
- ii) 10 mL of varying concentrations of Na₂S₂O₈ solution (0.5, 1, and 3 percent, w/w) catalyzed with 0.4 g of hydrogen peroxide; and
- iii) 10 mL of varying concentrations of H_2O_2 (1, 5, and 10 percent, w/w) catalyzed with 200 parts per million (ppm) iron (Fe) as ferrous sulfate.

Control tests were prepared similarly but received 10 mL of water rather than oxidant solution. The bottles were sealed to prevent the loss of VOCs through volatilization and incubated at laboratory temperature, inverted, in the dark for 2 weeks. At the end of the incubation period, the water microcosms were sampled and analyzed for residual VOCs. The results of these analyses are shown in Tables 3 through 8.

The soil microcosm tests consisted of placing 100 g of soil in 4 ounce glass jars and mixing with $KMnO_4$, H_2O_2 , or $Na_2S_2O_8$ solutions at varying concentrations. The samples were injected with:

- i) 25 mL of varying concentrations of KMnO₄ solution (0.1, 0.5, 1, and 3 percent, w/w);
- ii) 25 mL of varying concentrations of $Na_2S_2O_8$ solution (1, 3, and 5 percent, w/w) catalyzed with 1 g of H_2O_2 ; and
- iii) 25 mL of varying concentrations of H_2O_2 (5, 15, and 30 percent, w/w) catalyzed with 200 ppm Fe as ferrous sulfate.

Control tests were prepared similarly but received 25 mL of water rather than oxidant solution. The jars were sealed immediately to prevent the loss of VOCs through volatilization and incubated in the dark at lab temperature for 2 weeks. After 2 days it was noticed that the purple color of the KMnO₄ was no longer visible even in the treatments that had received the highest KMnO₄ dose. Therefore, an additional dose of oxidant equal to the first dose was administered to all samples. After another 2 days the KMnO₄ color was no longer visible once again; therefore, a further dose of oxidant was administered to all samples. Two weeks after the first dose of oxidant, the microcosms were sacrificed and analyzed for residual VOCs. The results of these analyses are shown in Tables 9 through 14.

The results for groundwater sample GW-4B showed that all of the VOCs except toluene and xylene were removed to below the detection limit of 50 micrograms per liter (μ g/L) by 1 percent KMnO₄ which corresponds to a loading rate of 0.8 g KMnO₄ per liter (/L) of groundwater. Fifty percent of the toluene was removed and 70 percent of the xylene was removed. Treatment with 3 percent Na₂S₂O₈ (2.4 g Na₂S₂O₈/L of groundwater) removed between 50 percent and 80 percent of the total VOCs. Treatment with Fenton's showed the highest removal rates in this groundwater sample. One percent H₂O₂ (0.8 g H₂O₂/L groundwater) removed between 67 percent and 99 percent of the total VOCs; 5 percent H₂O₂ (4 g H₂O₂/L groundwater) removed greater than 96 percent of the total VOCs; and 10 percent H₂O₂ (8 g H₂O₂/L groundwater) removed greater than 98 percent of the total VOCs.

For groundwater sample GW-6S, all the VOCs except toluene and xylene were removed to below the detection limit by 1 percent KMnO₄, which corresponded to a loading rate of 0.8 g KMnO₄/L of groundwater. Sixty percent of the toluene was removed and 66 percent of the xylene was removed. Treatment with 3 percent Na₂S₂O₈ (2.4 g Na₂S₂O₈/L of groundwater) removed between 56 percent and 99 percent of the VOCs

with the exception of trans-1,2-DCE, of which only 3 percent was removed. Treatment with Fenton's also showed the highest removal rates in this groundwater sample. One percent H_2O_2 (0.8 g H_2O_2/L groundwater) removed between 63 percent and 86 percent of the total VOCs; 5 percent H_2O_2 (4 g H_2O_2/L groundwater) removed greater than 96 percent of total VOCs; and 10 percent H_2O_2 (8 g H_2O_2/L groundwater) removed greater than 95 percent of the VOCs.

For soil sample GP-20-1, VOC removal with KMnO₄ was poor. Only VC and trans-1,2-DCE were effectively removed from the soil. Treatment with Na₂S₂O₈ was somewhat better. One percent Na₂S₂O₈ (7.5 g Na₂S₂O₈ per kilogram [/Kg] of soil) removed between 77 percent and 99 percent of the total VOCs. Treatment with Fenton's containing 30 percent H₂O₂ (225 g H₂O₂/Kg soil) removed between 59 percent and 99 percent of the total VOCs.

For soil sample GP-25-1, removal with KMnO₄ was again poor. Only cis-1,2-DCE and TCE were effectively removed from the soil. Treatment with Na₂S₂O₈ was again better. One percent Na₂S₂O₈ (7.5 g Na₂S₂O₈/Kg of soil) removed between 53 percent and 99 percent of the VOCs with the exception of m/p-xylene, which was not removed. Treatment with Fenton's showed good treatment of cis-1,2-DCE and TCE. However, toluene and xylene were not removed by the treatment, and appeared to increase in concentration. The increase may be because the H₂O₂ broke down the clay matrix of the soil resulting in release of additional toluene and xylene that was previously bound to the clay.

3.3 TASK 3: NATURAL OXIDANT DEMAND

The NOD of the soil samples was assessed by placing 50 g of each original homogenized soil sample in an 8 ounce jar and adding 100 mL of 1 percent KMnO₄. The initial KMnO₄ concentration was recorded by measuring the absorbance at 525 nanometers (nm) and comparing to a standard curve. Each week the jar was sampled and the KMnO₄ concentration was recorded.

The NOD of the groundwater sample was assessed by placing 100 mL of the composite soil in a four ounce jar and dissolving 1 g of solid $KMnO_4$ in it. The initial $KMnO_4$ concentration was recorded. Each week the jar was sampled and the $KMnO_4$ concentration was recorded.

The NOD test was run for 5 weeks. Each week the jars were analyzed for residual KMnO₄. For soil samples GP-16-1 and GP-25-1, all of the KMnO₄ added was consumed

and additional quantities of KMnO₄ were added until the KMnO₄ was no longer consumed. After 5 weeks, soil sample GP-16-1 had consumed 41.6 g of KMnO₄/Kg soil; soil sample GP-20-1 had consumed 19.2 g of KMnO₄/Kg soil; soil sample GP-25-1 had consumed 45.5 g of KMnO₄/Kg soil; soil sample GP-32-1 had consumed 18.9 g of KMnO₄/Kg soil; and soil sample GP-36-1 had consumed 19.7 g of KMnO₄/Kg soil.

After 5 weeks, groundwater sample GW-6S had consumed 7.5 g of KMnO₄/L of groundwater and groundwater sample GW-4B had consumed 6.6 g of KMnO₄/L of groundwater. Neither groundwater sample consumed all of the KMnO₄, therefore the subsequent addition of KMnO₄ was not necessary.

The high NOD in the soil samples may be explained by the presence of petroleum hydrocarbons in the soil. The KMnO₄ does not appear to have completely penetrated the clay matrix; therefore the NOD data obtained using KMnO₄ does not reflect the true NOD of the soil. The dose rates found in the microcosms treated with Fenton's are a better reflection of the amounts needed to treat the soil.

4.0 <u>CONCLUSIONS</u>

Based on the results of the ISCO bench-scale treatability studies undertaken, the following conclusions are drawn:

- the NOD of all five of the soil samples is relatively high, which is likely due to the presence of petroleum hydrocarbons. The NOD of the two water samples is considerably lower that that of the soil samples;
- ii) potassium permanganate:
 - potassium permanganate was effective in treating all the VOCs, except toluene and xylene in the two groundwater samples, and
 - potassium permanganate was effective in treating cis and trans-1,2-DCE and TCE in the soil samples, however it did not remove any of the other VOCs present;
- iii) sodium persulfate:
 - sodium persulfate removed between 50 and 99 percent of the VOC in the two groundwater samples, and
 - sodium persulfate removed between 53 and 99 percent of the VOC in the two soil samples; and
- iv) Fenton's Reagent:
 - Fenton's Reagent was effective in removing over 96 percent of the VOCs in the two groundwater samples using a dose rate of $4 \text{ g} H_2O_2/L$ of groundwater,
 - Fenton's Reagent achieved the best treatment of the VOCs in the soil samples treating between 59 and 99 percent of vinyl chloride, cis- and trans-1,2-DCE, TCE, and ethylbenzene, however toluene and xylenes were not effectively removed and in some cases increased,
 - the breakdown of the clay matrix may have caused the release of previously bound VOCs from the soil, and
 - the optimum dose rate for the soils was 225 g H_2O_2/Kg of soil for sample GP-25-1 and 113 g H_2O_2/Kg of soil for sample GP-20-1.

5.0 **RECOMMENDATIONS**

Based on the results of the ISCO treatability studies, the NOD of the Site soil is too high for ISCO to be a cost-effective treatment. However, ISCO be could be used to effect an initial decrease VOC levels. The residual concentrations of VOCs remaining in the soil could then be treated by natural attenuation or enhanced natural attenuation. If initial treatment with ISCO is selected as a component of the Site remedy, Fenton's Reagent is recommended for use as the oxidizing agent. The recommended dose rate for ISCO using Fenton's Reagent is 113-225 g H₂O₂/Kg of soil. Whether 113 g or 225 g is used will depend on the area to be treated.

APPENDIX C

TABLES

.

INITIAL ANALYSIS OF GROUNDWATER SAMPLES OLD ERIE CANAL CHEMICAL OXIDATION STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

Sample ID	Units	GW-65	GW-4B
рН	S.U.	7.6	7.7
Vinyl Chloride	μg/L	32700	21200
Cis-1,2-Dichloroethylene	µg/L	60400	50200
Trichloroethylene	µg/L	ND (2)	857
Toluene	µg/L	6770	202
Perchloroethylene	µg/L	ND (2)	ND (2)
Ethylbenzene	µg/L	20.1	24.5
m/p-Xylene	µg/L	116	43.8
o-Xylene	µg/L	25.8	16.1

,

Notes:

S.U. Standard Units

INITIAL ANALYSIS OF SOIL SAMPLES OLD ERIE CANAL CHEMICAL OXIDATION STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

Sample ID	Units	S-GP-16-1	S-GP-20-1	S-GP-25 - 1	S-GP-32-1	S-GP-36-1
pН	S.U.	7.8	8.1	7.9	7.7	8.0
Percent Moisture	%	22.1	15.1	27.8	5.62	18.8
Total Organic Matter (TOM)	%	4.66	0.37	2.08	1.13	0.46
Vinyl Chloride	µg/kg	ND (4)	27100	ND (4)	ND (4)	ND (4)
Cis-1,2-Dichloroethylene	µg/kg	1410	58900	11900	778	50.2
Trichloroethylene	µg/kg	8940	3780	26400	196	171
Toluene	µg/kg	ND (2)	31600	2690	91.7	ND (2)
Perchloroethylene	µg/kg	356	ND (2)	ND (2)	59.9	64.6
Ethylbenzene	μg/kg	ND (2)	215	71.7	ND (2)	ND (2)
m/p-Xylene	µg/kg	ND (2)	1130	214	150	ND (2)
o-Xylene	µg/kg	ND (2)	351	ND (2)	48.5	ND (2)

Notes:

S.U. Standard Units

.

CHEMICAL OXIDATION OF GROUNDWATER GW-4B WITH KMnO₄ OLD ERIE CANAL CHEMICAL OXIDATION STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

Sample ID	Units	Control	0.05% KMnO 4	0.1% KMnO 4	0.5% KMnO 4	1.0% KMnO 4
Loading Rate	g/L	0	0.04	0.08	0.4	0.8
Vinyl Chloride	µg/L	30100/22600	4410/2860	781/769	ND(2)/ND (2)	ND(2)/ND (2)
1,1-Dichloroethylene	µg/L	20.7/16.6	20.1/20.5	14.6/14.9	ND(2)/ND (2)	ND(2)/ND (2)
Trans-1,2-Dichloroethylene	µg/L	50.4/43.0	12.3/11.8	ND(2)/ND (2)	ND(2)/ND (2)	ND(2)/ND (2)
Cis-1,2-Dichloroethylene	µg/L	39400/55700	24200/40200	37700/37700	15.1/18.9	ND(2)/ND (2)
Trichloroethylene	µg/L	552/495	555/500	469/468	4.95/5.80	ND(2)/ND (2)
Toluene	µg/L	86.6/83.5	104/80.3	93.6/84.1	103/96.1	47.2/39.4
Ethylbenzene	µg/L	16.9/14.8	17.0/13.9	15.9/16.6	14.2/13.7	ND(2)/ND (2)
m/p-Xylene	µg/L	7.97/15.5	30.2/11.9	27.4/29.1	27.9/27.9	3.83/3.55
o-Xylene	µg/L	9.24/8.72	12.1/6.80	11.0/11.6	11.2/11.2	ND(2)/ND (2)
% Vinyl chloride removed	%	-	86.2	97.1	>99	>99
% 1,1-DCE removed	%	-	<1	20.9	>99	>99
% Trans-1,2-DCE removed	%	-	74.2	>99	>99	>99
% Cis-1,2-DCE removed	%	-	32.3	20.7	>99	>99
% TCE removed	%	-	<1	10.5	>99	>99
% Toluene removed	%	-	<1	<1	<1	49.1
% Ethylbenzene removed	%	-	2.40	<1	12.0	>99
% m/p-Xylene removed	%	-	<1	<1	<1	68.6
% o-Xylene removed	%	-	<1	<1	<1	>99

Notes:

CHEMICAL OXIDATION OF GROUNDWATER GW-4B WITH Na₂S₂O₈ OLD ERIE CANAL CHEMICAL OXIDATION STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

•

Sample ID	Units	Control	0.5% Na 2 S 2 O 8	1.0% Na 2 S 2 O 8	3.0% Na ₂ S ₂ O ₈
Loading Rate	g/L	0	0.4	0.8	2.4
Vinyl Chloride	µg/L	30100/22600	6510/6990	6250/6030	6050/6140
1,1-Dichloroethylene	µg/L	20.7/16.6	10.2/8.48	7.66/8.13	3.94/3.51
Trans-1,2-Dichloroethylene	µg/L	50.4/43.0	32.5/30.8	31.0/31.0	26.1/26.5
Cis-1,2-Dichloroethylene	µg/L	39400/55700	19200/29200	29600/31000	15600/22300
Trichloroethylene	µg/L	552/495	355/318	289/293	222/190
Toluene	µg/L	86.6/83.5	44.5/35.4	31.0/33.4	15.9/13.7
Ethylbenzene	µg/L	16.9/14.8	7.43/7.10	6.17/6.35	2.92/3.12
m/p-Xylene	µg/L	7.97/15.5	13.7/12.4	11.1/11.8	5.56/5.54
o-Xylene	µg/L	9.24/8.72	6.37/5.80	5.17/5.20	2.35/2.95
% Vinyl chloride removed	%	-	74.4	76.7	76.9
% 1,1-DCE removed	%	-	49.9	57.7	80.0
% Trans-1,2-DCE removed	%	-	32.2	33.6	43.7
% Cis-1,2-DCE removed	%	-	49.1	36.3	60.1
% TCE removed	%	-	35.7	44.4	60.6
% Toluene removed	%	-	53.0	62.1	82.6
% Ethylbenzene removed	%	-	54.2	60.5	80.9
% m/p-Xylene removed	%	-	<1	2.43	52.7
% o-Xylene removed	%	-	32.2	42.3	70.5

Notes:

CHEMICAL OXIDATION OF GROUNDWATER GW-4B WITH FENTON'S REAGENT OLD ERIE CANAL CHEMICAL OXIDATION STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

Sample ID	Units	Control	1.0% H2O2	5.0% H2O2	10.0% H2O2
Loading Rate	g/L	0	0.8	4.0	8.0
Vinyl Chloride	µg/L	30100/22600	1350/108	29.5/79.2	ND(2)/ND (2)
1,1-Dichloroethylene	µg/L	20.7/16.6	6.24/5.92	ND(2)/ND (2)	ND(2)/ND (2)
Trans-1,2-Dichloroethylene	µg/L	50.4/43.0	7.90/5.75	1.73/2.86	ND(2)/ND (2)
Cis-1,2-Dichloroethylene	µg/L	39400/55700	6270/3440	484/773	151/408
Trichloroethylene	µg/L	552/495	126/86.2	16.8/23.3	7.18/11.6
Toluene	µg/L	86.6/83.5	7.03/4.06	ND(2)/ND (2)	ND(2)/ND (2)
Ethylbenzene	µg/L	16.9/14.8	ND(2)/ND (2)	ND(2)/ND (2)	ND(2)/ND (2)
m/p-Xylene	µg/L	7.97/15.5	ND(2)/ND (2)	ND(2)/ND (2)	ND(2)/ND (2)
o-Xylene	µg/L	9.24/8.72	ND(2)/ND (2)	ND(2)/ND (2)	ND(2)/ND (2)
% Vinyl chloride removed	%	-	97.2	99.8	>99
% 1,1-DCE removed	%	-	67.4	>99	>99
% Trans-1,2-DCE removed	%	-	85.4	95.1	>99
% Cis-1,2-DCE removed	%	-	89.8	98.7	99.4
% TCE removed	%	-	79.7	96.2	98.2
% Toluene removed	%	-	93.5	>99	>99
% Ethylbenzene removed	%	-	>99	>99	>99
% m/p-Xylene removed	%	-	>99	>99	>99
% o-Xylene removed	%	-	>99	>99	>99

Notes:

CHEMICAL OXIDATION OF GROUNDWATER GW-6S WITH KMnO4 OLD ERIE CANAL CHEMICAL OXIDATION STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

Sample ID	Units	Control	0.05% KMnO $_4$	0.1% KMnO ₄	0.5% KMnO ₄	1.0% KMnO 4
Loading Rate	g/L	0	0.04	0.08	0.4	0.8
Vinyl Chloride	µg/L	14300/36900	24000/13700	16900/15900	ND(2)/ND (2)	ND(2)/ND (2)
1,1-Dichloroethylene	µg/L	11.4/11.0	11.2/8.15	10.8/11.1	4.38/ND (2)	ND(2)/ND (2)
Trans-1,2-Dichloroethylene	µg/L	32.1/43.4	23.2/18.5	15.6/16.2	ND(2)/ND (2)	ND(2)/ND (2)
Cis-1,2-Dichloroethylene	µg/L	39400/64300	39900/42800	41900/41600	3990/4100	ND(2)/ND (2)
Trichloroethylene	µg/L	8.44/10.8	14.6/8.94	9.23/7.57	4.64/4.18	ND(2)/ND (2)
Toluene	µg/L	4320/5880	4210/2780	4260/4100	4030/3580	1560/2600
Ethylbenzene	µg/L	9.96/10.7	9.51/8.74	8.92/8.67	12.5/11.4	ND(2)/ND (2)
m/p-Xylene	µg/L	56.0/60.0	74.1/71.5	68.7/71.9	72.6/71.8	24.9/24.7
o-Xylene	µg/L	13.6/14.7	17.1/16.9	15.7/16.5	16.3/16.0	4.81/4.82
% Vinyl chloride removed	%	-	26.4	35.9	>99	>99
% 1,1-DCE removed	%	-	13.6	2.23	>99	>99
% Trans-1,2-DCE removed	%	-	44.8	57.9	>99	>99
% Cis-1,2-DCE removed	%	-	20.3	19.5	92.2	>99
% TCE removed	%	-	<1	12.5	54.1	>99
% Toluene removed	%	-	31.5	18.0	25.4	59.2
% Ethylbenzene removed	%	-	11.7	14.9	<1	>99
% m/p-Xylene removed	%	-	<1	<1	<1	57.2
% o-Xylene removed	%		<1	<1	<1	65.9

Notes:

CHEMICAL OXIDATION OF GROUNDWATER GW-6S WITH Na₂S₂O₈ OLD ERIE CANAL CHEMICAL OXIDATION STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

Sample ID	Units	Control	0.5% Na 2 S 2 O 8	1.0% Na 2 S 2 O 8	3.0% Na 2 S 2 O 8
Loading Rate	g/L	0	0.4	0.8	2.4
Vinyl Chloride	µg/L	14300/36900	2960/3330	2170/1990	ND(2)/ND (2)
1,1-Dichloroethylene	µg/L	11.4/11.0	6.05/6.52	5.12/5.28	3.52/2.17
Trans-1,2-Dichloroethylene	µg/L	32.1/43.4	35.5/34.7	33.7/34.5	36.3/36.8
Cis-1,2-Dichloroethylene	µg/L	39400/64300	23100/23300	22100/21800	17900/16600
Trichloroethylene	μg/L	8.44/10.8	5.49/5.75	5.13/4.90	4.40/4.06
Toluene	µg/L	4320/5880	677/693	314/366	171/138
Ethylbenzene	µg/L	9.96/10.7	4.43/4.39	3.53/3.45	ND(2)/ND (2)
m/p-Xylene	μg/L	56.0/60.0	10.2/9.62	7.07/6.78	ND(2)/ND (2)
o-Xylene	µg/L	13.6/14.7	3.23/4.00	3.27/2.54	ND(2)/ND (2)
% Vinyl chloride removed	%	-	87.7	91.9	>99
% 1,1-DCE removed	%	-	43.9	53.6	74.6
% Trans-1,2-DCE removed	%	-	7.02	9.67	3.18
% Cis-1,2-DCE removed	%	-	55.3	57.7	66.7
% TCE removed	%	-	41.5	47.8	56.0
% Toluene removed	%	-	86.6	93.3	97.0
% Ethylbenzene removed	%	-	57.3	66.2	>99
% m/p-Xylene removed	%	-	82.9	88.1	>99
% o-Xylene removed	%	-	74.4	79.4	>99

Notes:

Duplicate samples separated by "/"

CHEMICAL OXIDATION OF GROUNDWATER GW-6S WITH FENTON'S REAGENT OLD ERIE CANAL CHEMICAL OXIDATION STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

Sample ID	Units	Control	1.0% H2O2	5.0% H2O2	10.0% H2O2
Loading Rate	g/L	0	0.8	4.0	8.0
Vinyl Chloride	µg/L	14300/36900	3310/3840	423/592	296/203
1,1-Dichloroethylene	µg/L	11.4/11.0	2.88/5.34	ND(2)/ND (2)	ND(2)/ND (2)
Trans-1,2-Dichloroethylene	µg/L	32.1/43.4	6.54/8.02	ND(2)/ND (2)	ND(2)/ND (2)
Cis-1,2-Dichloroethylene	µg/L	39400/64300	8110/9020	1150/2500	2990/1580
Trichloroethylene	µg/L	8.44/10.8	3.87/2.96	ND(2)/ND (2)	ND(2)/ND (2)
Toluene	µg/L	4320/5880	650/762	70.7/93.1	102/52.3
Ethylbenzene	µg/L	9.96/10.7	3.13/3.84	ND(2)/ND (2)	ND(2)/ND (2)
m/p-Xylene	µg/L	56.0/60.0	13.5/15.7	ND(2)/ND (2)	ND(2)/ND (2)
o-Xylene	µg/L	13.6/14.7	2.92/3.49	ND(2)/ND (2)	ND(2)/ND (2)
% Vinyl chloride removed	%	-	86.0	98.0	99.0
% 1,1-DCE removed	%	-	63.3	>99	>99
% Trans-1,2-DCE removed	%	-	80.7	>99	>99
% Cis-1,2-DCE removed	%	-	83.5	96.5	95.6
% TCE removed	%	-	64.4	>99	>99
% Toluene removed	%	-	86.2	98.4	98.5
% Ethylbenzene removed	%	-	66.3	>99	>99
% m/p-Xylene removed	%	-	74.8	>99	>99
% o-Xylene removed	%	-	77.3	>99	>99

Notes:

•

Duplicate samples separated by "/"

CHEMICAL OXIDATION OF SOIL GP-20-1 WITH KMnO₄ OLD ERIE CANAL CHEMICAL OXIDATION STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

Sample ID	Units	Control	0.1% KMnO 4	0.5% KMnO ₄	1.0% KMnO 4	3.0% KMnO 4
Loading Rate	g/kg	0	0.75	3.75	7.5	22.5
Vinyl Chloride	µg/kg	4410/6260	ND(50)/ND (50)	ND(50)/ND (50)	407/ND (50)	7290/4210
1,1-Dichloroethylene	µg/kg	ND(50)/ND (50)	ND(50)/ND (50)	ND(50)/ND (50)	ND(50)/ND (50)	ND(50)/ND (50)
Trans-1,2-Dichloroethylene	µg/kg	23.4/57.6	ND(50)/ND (50)	ND(50)/ND (50)	ND(50)/ND (50)	ND(50)/ND (50)
Cis-1,2-Dichloroethylene	µg/kg	27400/26900	670/1010	9450/10800	2310/467	19600/15800
Trichloroethylene	µg/kg	1810/1700	657/952	2530/3090	868/296	3370/1440
Toluene	µg/kg	9480/9320	2520/3230	8180/15600	10300/2600	41000/33100
Ethylbenzene	µg/kg	174/157	101/134	123/238	127/73.4	347/243
m/p-Xylene	µg/kg	1170/965	606/861	676/1260	1080/425	2870/2110
o-Xylene	µg/kg	299/273	124/135	161/289	269/96.6	1060/960
% Vinyl chloride removed	%	-	>99	>99	>99	<1
% 1,1-DCE removed	%	_	n/a	n/a	n/a	n/a
% Trans-1,2-DCE removed	%	-	>99	>99	>99	>99
% Cis-1,2-DCE removed	%	-	96.9	62.7	94.9	34.8
% TCE removed	%	-	54.2	<1	66.8	<1
% Toluene removed	%	-	69.4	<1	31.4	<1
% Ethylbenzene removed	%	-	28.7	<1	39.2	<1
% m/p-Xylene removed	%	-	31.3	9.3	29.5	<1
% o-Xylene removed	%	-	54.6	21.3	36.1	<1

Notes:

Duplicate samples separated by "/"

CHEMICAL OXIDATION OF SOIL GP-20-1 WITH Na₂S₂O₈ OLD ERIE CANAL CHEMICAL OXIDATION STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

Sample ID	<i>Units</i>	Control	1.0% Na ₂ S ₂ O ₈	3.0% Na 2 S 2 O 8	5.0% Na 2 S 2 O 8
Loading Rate	g/kg	0	7.5	22.5	37.5
Vinyl Chloride	µg/kg	4410/6260	ND(50)/ND (50)	ND(50)/ND (50)	ND(50)/ND (50)
1,1-Dichloroethylene	µg/kg	ND(50)/ND (50)	ND(50)/ND (50)	ND(50)/ND (50)	ND(50)/ND (50)
Trans-1,2-Dichloroethylene	µg/kg	23.4/57.6	ND(50)/ND (50)	ND(50)/ND (50)	ND(50)/ND (50)
Cis-1,2-Dichloroethylene	µg/kg	27400/26900	682/127	254/2520	814/205
Trichloroethylene	µg/kg	1810/1700	577/236	327/1380	644/290
Toluene	µg/kg	9480/9320	2090/319	760/4950	2470/379
Ethylbenzene	µg/kg	174/157	70.2/ND (50)	58.9/114	81.9/62.8
m/p-Xylene	µg/kg	1170/965	284/166	177.3/580	320/231
o-Xylene	µg/kg	299/273	74.3/59.2	56/148	77.1/54.2
% Vinyl chloride removed	%	-	>99	>99	>99
% 1,1-DCE removed	%	~	n/a	n/a	n/a
% Trans-1,2-DCE removed	%	-	>99	>99	>99
% Cis-1,2-DCE removed	%		98.5	94.9	98.1
% TCE removed	%	-	76.8	51.4	73.4
% Toluene removed	%	-	87.2	69.6	84.8
% Ethylbenzene removed	%	-	>99	47.5	56.2
% m/p-Xylene removed	%	-	78.9	64.5	74.2
% o-Xylene removed	%	-	76.7	64.3	77.1

Notes:

Duplicate samples separated by "/"

CHEMICAL OXIDATION OF SOIL GP-20-1 WITH FENTON'S REAGENT OLD ERIE CANAL CHEMICAL OXIDATION STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

Sample ID	Units	Control	5.0% H2O2	15.0% H2O2	30.0% H2O2
Loading Rate	g/kg	0	37.5	112.5	225
Vinyl Chloride 1,1-Dichloroethylene Trans-1,2-Dichloroethylene Cis-1,2-Dichloroethylene Trichloroethylene Toluene Ethylbenzene m/p-Xylene o-Xylene	μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg	4410/6260 ND(50)/ND (50) 23.4/57.6 27400/26900 1810/1700 9480/9320 174/157 1170/965 299/273	ND(50)/ND (50) ND(50)/ND (50) 2290/216 941/511 4700/791 104/78.8 455/381 121/73.6	ND(50)/ND (50) ND(50)/ND (50) ND(50)/ND (50) 1090/1980 838/737 1860/1930 67.8/66.9 212/210 58.1/64.1	ND(50)/ND (50) ND(50)/ND (50) ND(50)/ND (50) 1680/1220 780/662 1700/1010 64.0/ND (50) 182/153 56.5/47.4
% Vinyl chloride removed % 1,1-DCE removed % Trans-1,2-DCE removed % Cis-1,2-DCE removed % TCE removed % Toluene removed % Ethylbenzene removed % m/p-Xylene removed % o-Xylene removed	% % % % %		>99 n/a >99 95.4 58.6 70.8 44.6 60.9 66.0	>99 n/a >99 94.3 55.1 79.8 59.2 80.2 78.6	>99 n/a >99 94.7 58.9 85.6 >99 84.3 81.8

Notes:

Duplicate samples separated by "/"

CHEMICAL OXIDATION OF SOIL GP-25-1 WITH KMnO₄ OLD ERIE CANAL CHEMICAL OXIDATION STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

Sample ID	Units	Control	0.1% KMnO 4	0.5% KMnO 4	1.0% KMnO 4	3.0% KMnO 4
Loading Rate	g/kg	0	0.75	3.75	7.5	22.5
Vinyl Chloride	µg/kg	ND(50)/ND (50)				
1,1-Dichloroethylene	µg/kg	ND(50)/ND (50)				
Trans-1,2-Dichloroethylene	µg/kg	ND(50)/ND (50)				
Cis-1,2-Dichloroethylene	µg/kg	3500/8430	429/202	467/364	218/40	608/388
Trichloroethylene	µg/kg	3180/25410	738/1880	1060/1090	659/213	1450/980
Toluene	µg/kg	267/359	285/488	218/138	257/114	290/165
Ethylbenzene	µg/kg	ND(50)/ND (50)				
m/p-Xylene	µg/kg	49.9/69.7	120/197	85.3/81.9	94.6/65.2	88.6/66.4
o-Xylene	µg/kg	25.0/26.5	40.8/48.8	40.2/42.8	43.2/39.8	40.2/39.6
% Vinyl chloride removed	%	-	n/a	n/a	n/a	n/a
% 1,1-DCE removed	%	-	n/a	n/a	n/a	n/a
% Trans-1,2-DCE removed	%	-	n/a	n/a	n/a	n/a
% Cis-1,2-DCE removed	%	*	94.7	93.0	97.8	91.6
% TCE removed	%	-	90.8	92.5	96.9	91.5
% Toluene removed	%	-	<1	43.1	40.7	27.3
% Ethylbenzene removed	%	-	n/a	n/a	n/a	n/a
% m/p-Xylene removed	%	-	<1	<1	<1	<1
% o-Xylene removed	%	-	<1	<1	<1	<1

Notes:

Duplicate samples separated by "/"

CHEMICAL OXIDATION OF SOIL GP-25-1 WITH Na₂S₂O₈ OLD ERIE CANAL CHEMICAL OXIDATION STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

Sample ID	Units	Control	1.0% Na 2 S 2 O 8	3.0% Na 2 S 2 O 8	5.0% Na 2 S 2 O 8
Loading Rate	g/kg	0	7.5	22.5	37.5
Vinyl Chloride	µg/kg	ND(50)/ND (50)	ND(50)/ND (50)	ND(50)/ND (50)	ND(50)/ND (50)
1,1-Dichloroethylene	µg/kg	ND(50)/ND (50)	ND(50)/ND (50)	ND(50)/ND (50)	ND(50)/ND (50)
Trans-1,2-Dichloroethylene	µg/kg	ND(50)/ND (50)	ND(50)/ND (50)	ND(50)/ND (50)	ND(50)/ND (50)
Cis-1,2-Dichloroethylene	µg/kg	3500/8430	580/49.3	63.0/341	201/1140
Trichloroethylene	µg/kg	3180/25410	1420/389	141/1060	513/2720
Toluene	µg/kg	267/359	183/111	94.5/195	108/367
Ethylbenzene	µg/kg	ND(50)/ND (50)	ND(50)/ND (50)	ND(50)/ND (50)	ND(50)/ND (50)
m/p-Xylene	µg/kg	49.9/69.7	81.3/98.6	73.5/70.6	71.6/89.8
o-Xylene	µg/kg	25.0/26.5	ND(50)/ND (50)	ND(50)/ND (50)	ND(50)/ND (50)
% Vinyl chloride removed	%	-	n/a	n/a	n/a
% 1,1-DCE removed	%	-	n/a	n/a	n/a
% Trans-1,2-DCE removed	%	-	n/a	n/a	n/a
% Cis-1,2-DCE removed	%	~	94.7	96.6	88.8
% TCE removed	%	-	68.2	78.9	43.2
% Toluene removed	%	-	53.1	53.8	24.2
% Ethylbenzene removed	%	-	n/a	n/a	n/a
% m/p-Xylene removed	%	-	<1	<1	<1
% o-Xylene removed	%	-	>99	>99	>99

Notes:

-

Duplicate samples separated by "/"

.

CHEMICAL OXIDATION OF SOIL GP-25-1 WITH FENTON'S REAGENT OLD ERIE CANAL CHEMICAL OXIDATION STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

Sample ID	Units	Control	5.0% H2O2	15.0% H2O2	30.0% H2O2
Loading Rate	g/kg	0	37.5	112.5	225
Vinyl Chloride	µg/kg	ND(50)/ND (50)	ND(50)/ND (50)	ND(50)/ND (50)	ND(50)/ND (50)
1,1-Dichloroethylene	µg/kg	ND(50)/ND (50)	ND(50)/ND (50)	ND(50)/ND (50)	ND(50)/ND (50)
Trans-1,2-Dichloroethylene	µg/kg	ND(50)/ND (50)	ND(50)/ND (50)	ND(50)/ND (50)	ND(50)/ND (50)
Cis-1,2-Dichloroethylene	µg/kg	3500/8430	89.3/233	1190/1140	872/1000
Trichloroethylene	µg/kg	3180/25410	672/525	1230/537	704/791
Toluene	µg/kg	267/359	207/317	1390/377	1010/1090
Ethylbenzene	µg/kg	ND(50)/ND (50)	ND(50)/ND (50)	ND(50)/ND (50)	ND(50)/ND (50)
m/p-Xylene	µg/kg	49.9/69.7	115/110	159/114	139/138
o-Xylene	µg/kg	25.0/26.5	40.7/39.9	50.9/46.0	49.5/47.9
% Vinyl chloride removed	%	-	n/a	n/a	n/a
% 1,1-DCE removed	%	-	n/a	n/a	n/a
% Trans-1,2-DCE removed	%	-	n/a	n/a	n/a
% Cis-1,2-DCE removed	%	-	97.3	80.5	84.3
% TCE removed	%	-	79.0	69.0	73.7
% Toluene removed	%	-	16.3	<1	<1
% Ethylbenzene removed	%	-	n/a	n/a	n/a
% m/p-Xylene removed	%	-	<1	<1	<1
% o-Xylene removed	%	-	<1	<1	<1

Notes:

Duplicate samples separated by "/"

n/a Compound not present in control samples

.

ANALYSIS OF NATURAL OXIDANT DEMAND OLD ERIE CANAL CHEMICAL OXIDATION STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

٠

				Soil			Groun	dwater
Parameters	Units	GP-16-1	GP-20-1	GP-25-1	GP-32-1	GP-36-1	GW-6S	GW-4B
Permanganate concentration at T=0	%	1.39	1.55	1.36	1.65	2.19	1.64	1.62
Permanganate concentration at T=1 week	%	0.0842	1.09	0.121	1.34	2.00	1.30	1.31
Permanganate concentration at T=2 weeks	%	ND (0.000255)	1.04	ND (0.000255)	1.29	1.97	1.51	1.55
Permanganate concentration at T=3 weeks	%	0.0253	0.637	0.0853	0.789	1.24	0.968	1.00
Permanganate concentration at T=4 weeks	%	ND (0.000255)	0.610	ND (0.000255)	0.757	1.21	0.959	0.993
Permanganate concentration at T=5 weeks	%	0.00190	0.59	0.000437	0.704	1.20	0.894	0.961
Amount of Permanganate Added at T=0	g	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Amount of Permanganate Added after T=2 w	g	0.25	0	0.50	0	0	0	0
Amount of Permanganate Added after T=4 w	g	0.25	0	0.25	0	0	0	0
Total Permanganate Added	g	1.5	1.0	1.75	1	1	1	1
Amount of permanganate consumed by NOD per kg of soil after 5 weeks	g/kg	41.6	19.2	47.5	18.9	19.7		
Amount of permanganate consumed by NOD	0 0							
per L of groundwater after 5 weeks	g/L						7.5	6.6
Notes:								

g Grams.

g/kg Grams per Kilogram.

g/L Grams per Liter.

APPENDIX D

MONITORED NATURAL ATTENUATION EVALUATION

TABLE OF CONTENTS

1.0	INTRODUCTION	1					
2.0	GEOLOGY AND HYDROGEOLOGY 2.1 SITE GEOLOGY 2.2 SITE HYDROGEOLOGY 2.3 GROUNDWATER MIGRATION PATHWAYS AND RECEPTORS	2 3					
3.0	OVERVIEW OF BIODEGRADATION	7					
4.0	SITE-SPECIFIC BIODEGRADATION EVALUATION 4.1 DATA COLLECTED 4.2 MNA EVALUATION METHODOLOGY	9					
5.0	MNA EVALUATION FINDINGS.15.1CVOC CONCENTRATIONS OVER SPACE AND TIME.15.2GROUNDWATER GEOCHEMICAL PARAMETERS15.2.1REDOX INDICATOR PARAMETERS.15.2.2PRESENCE OF DEGRADATION/DAUGHTER PRODUCTS15.2.3AVAILABILITY OF ORGANIC SUBSTRATE2TO SUSTAIN MICROBIAL ACTIVITY25.3MICROCOSM STUDY RESULTS25.4ESTIMATION OF MASS DESTROYED BY BIODEGRADATION.2	.4 .5 .5 .9					
6.0	CONCLUSIONS 2	3					
7.0	REFERENCES	REFERENCES					

LIST OF FIGURES (Following Appendix D)

- FIGURE 1 TCE CONCENTRATIONS IN GROUNDWATER
- FIGURE 2 cis-DCE CONCENTRATIONS IN GROUNDWATER
- FIGURE 3 VC CONCENTRATIONS IN GROUNDWATER
- FIGURE 4 BTEX CONCENTRATIONS IN GROUNDWATER
- FIGURE 5 ETHANE+ETHENE CONCENTRATIONS IN GROUNDWATER
- FIGURE 6 VOCs IN GROUNDWATER FROM SELECTED MONITORING WELLS
- FIGURE 7 VOCs IN GROUNDWATER FROM SELECTED GEOPROBE POINTS
- FIGURE 8 VOCs IN GROUNDWATER FROM SELECTED SOIL BORING LOCATIONS
- FIGURE 9 DO CONCENTRATIONS IN GROUNDWATER
- FIGURE 10 ORP CONCENTRATIONS IN GROUNDWATER
- FIGURE 11 DISSOLVED IRON CONCENTRATIONS IN GROUNDWATER
- FIGURE 12 SULFATE CONCENTRATIONS IN GROUNDWATER
- FIGURE 13 METHANE CONCENTRATIONS IN GROUNDWATER
- FIGURE 14 CHLORIDE CONCENTRATIONS IN GROUNDWATER
- FIGURE 15 ALKALINITY CONCENTRATIONS IN GROUNDWATER
- FIGURE 16 DOC CONCENTRATIONS IN GROUNDWATER
- FIGURE 17 MW-1S TCE & DEGRADATION PRODUCTS VS. TIME
- FIGURE 18 MW-4S TCE & DEGRADATION PRODUCTS VS. TIME
- FIGURE 19 MW-6S TCE & DEGRADATION PRODUCTS VS. TIME
- FIGURE 20 MW-7S TCE & DEGRADATION PRODUCTS VS. TIME
- FIGURE 21 EMW-2 TCE & DEGRADATION PRODUCTS VS. TIME

- FIGURE 22 MW-4B TCE & DEGRADATION PRODUCTS VS. TIME
- FIGURE 23 CHLORIDE CONCENTRATION VS. TIME
- FIGURE 24 DISSOLVED ORGANIC CARBON VS. TIME

LIST OF TABLES (Following Appendix D)

TABLE 1 cis-1,2-DCE ABUNDANCE

1.0 <u>INTRODUCTION</u>

An evaluation of Monitored Natural Attenuation (MNA) as a remedial alternative was conducted for the Old Erie Canal Site located in Clyde, New York (Site). The evaluation was conducted on behalf of Parker-Hannifin Corporation (P-H) and the General Electric Company (GE) in association with the performance of the Feasibility Study for the Site. The MNA evaluation was completed to determine the subsurface geochemical conditions and evaluate the significance of biodegradation of chlorinated volatile organic compounds (CVOCs) in groundwater at and in the vicinity of the Site as a result of naturally occurring biological activity. The findings were utilized to support the conclusions of the Feasibility Study (FS) and selection of remedial technologies.

The MNA evaluation was performed in accordance with the protocols outlined in the United States Environmental Protection Agency (USEPA) documents entitled "Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites" (USEPA OSWER Directive 9200.4-17P, April 1999) and "Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water", (USEPA, September 1998).

This report presents the results of the MNA evaluation.

2.0 <u>GEOLOGY AND HYDROGEOLOGY</u>

Detailed descriptions of the Site geology and hydrogeology are presented in Section 3.1 of the FS. For ease of review, a summary of the key points pertaining to this MNA evaluation are presented in this section.

2.1 <u>SITE GEOLOGY</u>

The Site is located on the Lake Ontario plain within the Finger Lakes physiographic region of New York State. The soils at the Site consist of the following in descending order:

- i) fill
- ii) glaciofluvial deposits;
- iii) glacial till; and
- iv) bedrock.

<u>Fill</u>

Fill material is present across the majority of the Site, including on the property owned by the Village of Clyde located west of the P-H property. Fill thicknesses range up to 12 feet east of the manufacturing building. The fill on the P-H property is not contiguous with the fill on the Village of Clyde property.

The Site fill generally consists of sand, gravel, and silt mixed with cinders, ash, slag, brick, and glass. The volumes of fill are greatest in the Old Erie Canal along the southern Site boundary, along the eastern portion of the former Barge Turnaround, and in the vicinity of the manufacturing building.

Glaciofluvial Deposits

Glaciofluvial deposits consisting of channel silt, sand and gravel, sand, and gravel are present across the majority of the Site. Where the till is absent in the channel near the former Barge Turnaround, the glaciofluvial deposits directly overlie the bedrock. The maximum observed thickness of the glaciofluvial deposits is 23 feet at boring GP-36 located in the southern portion of the Site. The thickness of the glaciofluvial deposits is less east of the manufacturing building and in the southeast parking lot than it is in the center of the Site. Interbedded silt and clay, referred to in the Remedial Investigation

(RI) report as "backswamp deposits," is present overlying the channel materials in the former Barge Turnaround area.

<u>Glacial Till</u>

The till beneath the Site is a Lodgment Till consisting of a poorly sorted mixture of red-brown clayey silt with some coarse to fine sand and little gravel. The till is present across the majority of the Site, ranging in thickness between 3.5 and 27.2 feet. The till is thickest at MW-7B, west of the former Barge Turnaround. As shown on the cross-sections, the till is thin or absent along an apparent channel in the vicinity of the former Barge Turnaround. Where present, the till acts as an aquitard separating the fill and glaciofluvial deposits from the bedrock unit.

Bedrock

The bedrock beneath the Site consists of shale and dolomitic limestone of the Late Silurian Syracuse-Camillus Formation. Based on the lithologic descriptions of the bedrock cores presented in the RI Report, the bedrock is gray to dark greenish-gray, fine-grained, moderately fractured shale and thinly bedded gray dolomitic limestone which is also moderately fractured.

During the Site investigations, the bedrock was encountered at depths ranging between 16.5 and 31 feet below grade. The bedrock surface generally slopes with a uniform gradient from the northeast to the southwest.

2.2 <u>SITE HYDROGEOLOGY</u>

The geologic units identified in the previous section were grouped into two major hydrogeologic units as follows:

- shallow unconsolidated unit; and
- shallow bedrock unit.

Each of these hydrogeologic units is described below.

Shallow Unconsolidated Unit

The shallow unconsolidated unit consists of the fill and glaciofluvial geologic units. This unit ranges in thickness from 1.0 to 29.2 feet, and is thickest within the glacial channel west of the facility. Based on testing conducted during the Site investigations, the hydraulic conductivity ranges from 0.33 feet per day (ft/day) (MW-9S) to 38.12 ft/day (TMW-2). The geometric mean hydraulic conductivity was determined to be 4.75 ft/day.

Water level measurements were collected during the Site investigations on five occasions. The general pattern of groundwater flow exhibited by the five sets of groundwater contours was consistent. The glacial channel acts as a local groundwater drainage point where groundwater flow from the east, north, and west converges. Groundwater flow from the east and central portions of the facility is westward towards the gravel-filled channel. Groundwater flow from the remainder of the facility is southward, directly to the Clyde River. The horizontal hydraulic gradients within the shallow unconsolidated unit are variable. In general, steeper gradients (i.e., on the order of 0.02 feet per feet [ft/ft]) occur at the limits of the glacial channel. Within the channel, the hydraulic gradients are much smaller, due to the fact that the unit here consists principally of glaciofluvial sand and gravel.

The groundwater flow volume that flows into the glacial channel was estimated using the units hydraulic conductivity and hydraulic gradient. The flow into the channel was divided into three components (east, north, and west) based on the August 3, 2004 groundwater contours. The calculations show that the total groundwater flow into the channel is on the order of 1500 ft³/day (8 gpm).

Over most of the Site, the shallow unconsolidated unit is separated from the shallow bedrock unit by a low hydraulic conductivity, dense glacial till. The only area where the till is thin or absent occurs within the glacial channel. Within the facility property, vertical hydraulic gradients are downward from the shallow unconsolidated unit to the shallow bedrock unit. This indicates a potential from groundwater migration from the unconsolidated unit to the bedrock. The intervening till unit mitigates this potential groundwater flow is path. There is a potential connection between the unconsolidated unit and the bedrock along the axis of the glacial channel. This connection is manifested by the presence of Site-related chemicals in the bedrock monitoring well MW-6B. The groundwater contours and surface water measurements collected confirm that the groundwater in the unconsolidated unit discharges to the Clyde River. There is also a small potential for shallow groundwater to migrate to the shallow bedrock, where the till is absent.

Shallow Bedrock Unit

The shallow bedrock unit is part of the Syracuse-Camillus Formation and consists of interbedded shale and limestone. Groundwater flow in this unit will occur principally through secondary porosity features (e.g., bedding plane fractures and joints). The hydraulic conductivity of the shallow bedrock is directly related to the frequency and degree of interconnection of the secondary porosity features. The geometric mean hydraulic conductivity of the shallow bedrock unit, based on testing conducted during the Site investigations, is 0.05 ft/day. The bedrock unit is much less permeable than the shallow unconsolidated unit.

Groundwater flow in the shallow bedrock beneath the Site is southwesterly. The data collected from the bedrock monitoring wells located south of the river suggests that flow from the south is to the northeast.

2.3 <u>GROUNDWATER MIGRATION PATHWAYS AND RECEPTORS</u>

An important aspect of the FS MNA evaluation is to include consideration of the current and future receptors of chemicals of concern in the groundwater. The details of the groundwater migration pathways and receptors are presented in Section 3.3 of the FS. For ease of review, the key findings of the groundwater migration pathways and receptors evaluation are repeated below.

- The Site and the Town of Clyde are serviced by a municipal water supply, the source of which is a well located more than a mile northwest of the Site. Thus, the Site cannot impact the source water.
- Given the availability of the municipal water supply system, there is little probability of the future use of groundwater for potable purpose at the Site. The future use of groundwater on the Site can be restricted through deed restrictions preventing future use of groundwater beneath the properties.
- An inventory of residential wells conducted during the RI noted that there were seven wells within a 1/2-mile radius of the Site. Four of these seven wells are not currently used for potable purposes, and the homes are supplied by the municipal

system. The three wells used as potable water supply are located north and west of the Site. Thus, there are no current users of groundwater downgradient of the Site.

- There are currently no regional restrictions on the use of groundwater for potable or other water needs. Therefore, there is potential for future use of groundwater as a water supply in areas downgradient of the Site.
- The primary receptors of CVOCs in the shallow unconsolidated unit groundwater are:
 - the Clyde River;
 - the Shallow Bedrock; and
 - ambient and indoor air.

The flow of shallow groundwater toward the Clyde River in effect limits the migration of chemicals in groundwater (i.e., the extent of chemical presence is mature and cannot expand further). Also, chemical migration in the bedrock is limited. There are no current groundwater users at risk and the potential for future use of groundwater on the Site is limited.

3.0 OVERVIEW OF BIODEGRADATION

Important naturally occurring processes in groundwater are biologically mediated oxidation and reduction reactions. Naturally occurring reductive dechlorination (also called reductive biodegradation) is a biologically mediated degradation process that is effective for the destruction of CVOCs. Reductive dechlorination can result in the complete reduction of trichloroethene (TCE) through dichloroethene (DCE) and vinyl chloride (VC) to non-toxic end products such as ethane and ethene, provided sufficient primary substrate (organic carbon) is available.

Reductive biodegradation involves microbes that utilize carbon from an organic compound (the substrate) for microbial cell growth. As part of the biodegradation process, electrons are transferred from the organic substrate (electron donor) to an available electron acceptor. This transfer of electrons is defined as an oxidation-reduction (redox) reaction. Energy derived from this transfer of electrons is utilized by soil microorganisms for cellular respiration.

Reductive biodegradation will only occur if suitable quantities of the organic substrate and electron acceptors are available for the necessary redox reactions. Certain forms of organic matter; such as naturally existing organic matter, fuel hydrocarbons, and landfill leachate, are readily utilized as primary growth substrates during microbial biodegradation. The biodegradation of a primary substrate often will result in the cometabolic biodegradation of a secondary substrate, an organic compound that does not undergo direct biodegradation but is fortuitously degraded as a secondary reaction.

Typical electron acceptors available in groundwater, in the order of those that release the greatest energy to those that release the least energy, are dissolved oxygen, nitrate, manganese and iron coatings on soil, dissolved sulfate, and carbon dioxide. The sequential use of these electron acceptors occurs as groundwater redox potential becomes increasingly reducing during the biodegradation of organic compounds.

When groundwater becomes depleted of dissolved oxygen and nitrate, the conditions are conducive to the reduction and subsequent dissolution of iron and manganese oxides. Ferric iron (Fe3+) typically exists as an oxide coating on soil and is relatively insoluble in groundwater. Ferric iron is used as an electron acceptor during microbial biodegradation where it is reduced to Fe2+, which exists primarily in the dissolved phase. Manganese oxides are similarly utilized as electron acceptors under the appropriate redox conditions, and are reduced from the relatively insoluble Mn4+ form to dissolved manganese (Mn2+). The mobilization of manganese will begin prior to that of iron because Mn2+ is stable over a larger range of redox conditions than Fe2+.

However, the concentration of dissolved iron in groundwater is often higher than that of manganese because soils typically consist of a higher iron content (Hem 1985). Increased concentrations of dissolved iron in groundwater are indicative of sufficiently reducing conditions for the reductive dechlorination of CVOCs. Reductive degradation of CVOCs can proceed under iron-reducing conditions, but is most effective under sulfate-reducing and methanogenic conditions. Under sulfate-reducing conditions, sulfate concentrations decrease as sulfate is transformed to sulfide. Under methanogenic conditions represent the most strongly reduced subsurface conditions and are most optimal for reductive dechlorination. Changes in the concentrations of the geochemical parameters listed above can be used as evidence of changes in biological activity in the groundwater.

Other processes that can control CVOC concentrations in groundwater include:

- i) dispersion lateral movement of compounds perpendicular to groundwater flow and the centerline of the source;
- ii) diffusion movement of dissolved compounds within the aquifer from a region of higher to regions of lower concentration;
- iii) dilution mixing of groundwater along the flow path;
- iv) adsorption binding of a compound to aquifer soil material; and
- v) volatilization mass transfer from the dissolved phase to the vapor phase in the vadose zone.

4.0 SITE-SPECIFIC BIODEGRADATION EVALUATION

4.1 DATA COLLECTED

Groundwater samples collected in June 2002, May 2003, August 2005, and November 2006 were analyzed for the following MNA parameters:

- volatile organic compounds (VOCs);
- dissolved gases (methane, ethane and ethene);
- total alkalinity;
- chloride;
- dissolved organic carbon (DOC);
- nitrate;
- sulfate; and
- sulfide.

Groundwater samples were collected by conventional purge and sample techniques or, for VOCs only, using Passive Diffusion Bags (PDBs). These groundwater chemistry results are useful in evaluating if groundwater conditions are favorable for biological activity and to determine if biodegradation indicators are present.

Each of the monitoring wells used in the MNA evaluation was purged of three well volumes and allowed to recover prior to collection of samples using conventional methods. Following purging, the following field parameters were measured using field instruments:

- i) temperature;
- ii) dissolved oxygen (DO);
- iii) oxidation-reduction potential (ORP);
- iv) hydrogen ion activity (pH);
- v) dissolved iron; and
- vi) turbidity.

Analytical results collected during the MNA evaluation are presented in the FS tables as follows:

i) Table 3.1 - VOC groundwater analytical results; and

ii) Table 3.6 - wet chemistry (i.e., geochemical parameters) groundwater analytical results (including geochemical, dissolved gas, and field parameters).

4.2 MNA EVALUATION METHODOLOGY

During the MNA evaluation groundwater samples were collected and analyzed and the results were evaluated for the following evidence or indicators of natural biological activity in groundwater:

- i) CVOC concentrations over time and space;
- ii) geochemical parameters that indicate strong reducing conditions;
- iii) presence of CVOC daughter products; and
- iv) microbial evidence of biodegradation potential.

CVOC Concentrations Over Time and Space

Evaluation of CVOC concentrations over time provides information regarding relative increases, steady state or decreases in CVOCs that result from both destructive and non-destructive natural attenuation processes over time. Four rounds of CVOC data were collected between June 2002 and November 2006 Most of the CVOC data was collected using low-flow sampling techniques. However, the 2003 round of CVOC data was collected using passive bag samplers. In general, there was not good correlation between the low flow and passive bag CVOC results, probably due to the discrete nature of the passive bag samples. Therefore the passive bag samples could not be used to evaluate CVOC concentrations over time.

CVOC concentrations over time are presented for six wells on Figures -17 through 22. These wells are MW-1S, MW-4S, MW-6S, MW-7S, EMW-2, and MW-4B. The graphs typically contain four points spread over 5 years, which is not sufficient to determine the statistical significance of any observed trends. However, the number of points and time period is sufficient to provide a general measure of the stability of the contaminant levels at the Site.

In cases where data such as these are lacking, microcosm studies are recommended to provide supplemental information for MNA evaluation (USEPA 1998). Microcosm studies were completed for the Site. The results of the microcosm studies are presented in Appendix B of the FS and are discussed further in this MNA evaluation.

The spatial distribution of samples collected between June 2002 and November 2006 includes background monitoring wells, source area wells, lateral wells and downgradient wells. This provides a general picture of the baseline CVOC distribution, which has resulted from the combined actions of the physical, chemical and biological factors that govern CVOC fate and transport in the subsurface.

Groundwater Geochemical Parameters that Indicate Reducing Conditions

The evaluation of redox indicators was conducted to determine whether conditions in the aquifer are conducive to biodegradation of TCE. This also involves evaluation of other geochemical parameters that are indicative of biodegradation processes, such as the presence of degradation and metabolic byproducts. In order for TCE to be used as an electron acceptor by the microorganisms in the subsurface, the concentrations of more energetically favorable electron acceptors (e.g., oxygen, nitrate) must be depleted. The optimal range for reductive degradation of CVOCs is sulfate-reducing and methanogenic, although, in general, "sufficiently reducing" means that conditions in the aquifer must be in the iron-reducing range.

The following conditions are indicative of iron-reducing conditions (after Wiedemeier et al., 1999):

- i) DO concentrations below 0.5 milligrams per liter (mg/L);
- ii) nitrate concentrations below 10 mg/L;
- iii) dissolved iron and manganese concentrations above 1 mg/L;
- iv) decreased sulfate and increased sulfide concentrations relative to background conditions; and
- v) ORP values below 50 mV.

Under these conditions, iron and manganese oxide coatings on soil grains are reduced, releasing dissolved iron and dissolved manganese into the groundwater. Sulfate in the groundwater is likewise reduced, the concentrations of sulfate decrease, and the concentrations of sulfide increase.

Additionally, if significant biodegradation is occurring, the alkalinity and the concentrations of chloride, calcium, magnesium, and hardness could be higher in the source area relative to concentrations in upgradient wells. Chloride is produced from the degradation of TCE and its daughter products, and the increase in alkalinity is due

to interactions of carbon dioxide with the aquifer material (Wiedemeier et al., 1999). The increases in calcium, magnesium, and hardness may indicate dissolution of carbonate minerals from the reaction with acids formed in the biodegradation of TCE.

Background wells are considered representative of conditions not affected by Site activities. Background conditions are represented by overburden monitoring well MW-2S and bedrock monitoring well MW-2B, which are located at the eastern boundary of the Site, adjacent to Elm Street. Groundwater samples collected from the background wells and from the wells within the source area were analyzed for DO, nitrate, dissolved iron, sulfate, methane, chloride, and total alkalinity. The results from each area were compared to determine if concentrations of each analyte within the source area are significantly greater than concentrations observed in the background wells.

Presence of CVOC Daughter Products

TCE is presumed to be the parent compound originally used at the site. The progress of reductive dechlorination can be readily assessed by comparing the prevalence of parent compound to daughter product (e.g. DCE, VC, ethene, and ethane) present in the subsurface at the site.

There are three DCE isomers: 1,1-DCE, cis-1,2-DCE (cDCE), and trans-1,2-DCE (tDCE). When DCE is produced through biodegradation of TCE, the production of the cDCE isomer is favored over tDCE and 1,1-DCE (Wiedemeier et al. 1999; and USEPA 1998). Therefore, if cDCE is the most abundant isomer (80 percent of total mass), then it can be assumed that the DCE was produced via anaerobic biodegradation.

Microbial Evidence of Biodegradation Potential

Additionally, a laboratory microcosm Study was conducted by GE (Microcosm Study Report GE, July 2004) to determine whether TCE and its degradation products could be completely degraded to ethene via natural reductive biodegradation at the Site. Microcosm experiments were conducted using soil from the Site and the ability of different organic carbon sources (i.e., lactate, ethanol, chitin and soybean oil) to support the reductive dechlorination of TCE was evaluated. Controls were also constructed to measure the natural (unamended) rate of biodegradation. Nutrients and/or supplemental bacterial culture were also added to several of the microcosm bottles to determine if their addition would be required to enhance natural reductive biodegradations.

Estimation of Mass Destroyed by Biodegradation

In some situations it is possible to do a mass balance to estimate the total amount of TCE destroyed due to biodegradation processes. To do the calculation, it is necessary to be able to measure a conservative end product of biodegradation and know the groundwater flux through the reactive zone. Both conditions are satisfied at this Site. In this case, chloride appears to be a reliable end product of the reductive dechlorination of TCE. In addition, the groundwater flow volume that flows into the glacial channel was estimated using the unit's hydraulic conductivity and hydraulic gradient. The calculations show that the total groundwater flow into the channel is on the order of 1500 ft³/day (8 gpm).

5.0 MNA EVALUATION FINDINGS

5.1 CVOC CONCENTRATIONS OVER SPACE AND TIME

The spatial distribution of VOCs at the site is presented on Figures 1 to 5, inclusive. These Figures show the distribution of TCE, cDCE, VC, and benzene, toluene, ethylbenzene, and xylene (BTEX) across the site, utilizing 2002/2003 data from groundwater monitoring well and geoprobe sampling events and 2005 data from soil borings performed underneath the manufacturing building. The data were obtained from both overburden and bedrock locations. The spatial distribution of ethene and ethane are shown on Figure 5. These data were only collected in monitoring wells during the 2002/2003 sampling events, so the number of points is significantly fewer than for the VOCs.

Groundwater flow in the overburden aquifer ranges from a south-southwesterly to westerly direction. Figures 1 to 4 shows that VOCs were generally not detected in the overburden or bedrock wells upgradient or side-gradient from the Site. The concentrations of TCE, cDCE, VC, and ethane/ethene were highest in the barge turnaround area, with more isolated hotspots present underneath the building. Concentrations of BTEX compounds were roughly an order of magnitude lower than the chlorinated VOCs and were highest in the barge turnaround area. No VOCs were observed in the bedrock monitoring wells located across the Clyde River.

The spatial distribution of the CVOCs in the overburden and bedrock aquifer as shown on Figures 1 to 4 is consistent with the conclusion that the aquifer VOCs expansion is limited by ongoing natural attenuation and discharge to the Clyde River. This is evident by the absence of VOCs in the monitoring wells located across the Clyde River. There are no current groundwater users at risk.

CVOC concentrations over time are presented for six wells on Figures -17 through 22. These wells are MW-1S, MW-4S, MW-6S, MW-7S, EMW-2, and MW-4B. In general, CVOC concentrations in the wells are stable and in some cases appear to be declining over time. Concentrations are highest in MW-1S, MW-6S, and MW-4B. Of these, concentrations in MW-1S and MW-4B are stable, while concentrations in MW-6S exhibit some variability. MW-6S is located in the center of the barge turnaround area, where CVOC concentrations are highest. Wells MW-7S and EMW-2 are located on the sides of the barge turnaround in lower concentration areas. While the data are too sparse to infer statistical significance, the CVOC concentrations appear to be declining over time in these areas. A similar CVOC trend is observed in well MW-4S, located at the downgradient edge of the barge turnaround area.

5.2 **GROUNDWATER GEOCHEMICAL PARAMETERS**

The following sections describe the evaluation of the geochemical conditions in and downgradient of the Site for evidence of natural biodegradation. Groundwater samples were collected for geochemical indicator parameters from monitoring wells upgradient, within and downgradient of the Site during sampling events in both 2002 and 2003. The results were very comparable. These are presented on Figures 9 to 16 for DO, ORP, dissolved iron, sulfate, methane, alkalinity, and dissolved organic carbon, respectively. As was the case previously, data from overburden and bedrock wells are combined in these analyses.

5.2.1 <u>REDOX INDICATOR PARAMETERS</u>

The data for DO and ORP are shown on Figures 9 and 10 and indicate that most of the groundwater at the Site is reduced, as indicated by low (<0.5 mg/L) DO and neutral or negative ORP values. The reduction appears to be strongest in the barge turnaround area, but is generally consistent throughout the site. There are a few locations on the Site where the DO and ORP data do not agree. These include wells MW-1S, MW-7S, MW-12S, and MW-12B. These disagreements can occur due to sampling errors or equipment problems with the DO and ORP probes used to take the measurements. In these cases it can be helpful to consult the dissolved iron data. If dissolved iron is present, the groundwater must be anaerobic. Using this criterion, it is safe to say that the groundwater found in most of these wells is reduced.

Nitrate did not appear in any monitoring wells on the site and so was not included in the figures. Dissolved iron in shown on Figure 11 and is present in all on-Site monitoring wells except well MW-1S, indicating the iron reduction was occurring. Iron concentrations are highest in the barge turn-around area and along the former Erie Canal. The sulfate concentrations are shown on Figure 12 and are clearly higher in the bedrock wells than in the overburden wells. Sulfate appears to be reduced in the groundwater in the barge turnaround area and along the former canal relative to other overburden wells on the Site, suggesting that sulfate reduction is occurring. Sulfate levels in bedrock well MW-4B also appears to be reduced relative to other bedrock wells, but it is difficult to determine if these differences are significant. The methane data is shown on Figure 13 and indicate methanogenic conditions are prevalent in the overburden in the barge turnaround area and along the former canal, particularly in the vicinity of monitoring wells EMW-2, MW-6, EMW-4, EMW-3, and EMW-5. Methane production at bedrock well MW-4B is also substantial. The presence of methane

indicates that groundwater conditions are strongly reduced and highly supportive of reductive dechlorination in those areas.

Chloride data is shown on Figure 14 and indicate there are elevated levels of chloride over background in the barge turnaround area, particularly at monitoring wells MW-6S and MW-4B. These concentrations range from 200-300 mg/L and are substantially higher than chloride concentrations in monitoring wells outside of this area, which range from 30-90 mg/L. Chloride is an end-product of reductive dechlorination. The correlation of high chloride concentrations with active biodegradation in the barge turnaround area suggests that reductive dechlorination of TCE and its daughter products is the source of the elevated chloride.

This correlation is strengthened when the chloride data is combined with sodium data. The most common non-biological source of free chloride is road salt. However, if this is the source of the chloride in the aquifer, the molar chloride to sodium ratio should be 1:1. The sodium and chloride balances were performed for all on-site monitoring wells with sodium and chloride concentrations greater than 10 mg/L. The results were tabulated using data from 2002 and 2003 in Table D.1 and using the November 2006 data in Table D.2. There is very good agreement between the two data sets.

The only monitoring wells on site that exhibit significant amounts of excess chloride are those in the bioactive area of the barge turnaround area. This includes MW-1S and MW-13S, which are upgradient of the bioactive zone, MW-6S, which is right in the center of the bioactive zone, MW-15S, which is downgradient in the bioactive zone, and MW-4B and MW-6B, which are in bedrock in the center and downgradient edge of the bioactive zone. The more limited excess chloride in MW-4B and MW-6B should be viewed in the context of the other on-site bedrock wells, which exhibit substantial deficits of chloride. This suggests there may be some natural source of sodium in the bedrock formation.

The sodium and chloride concentrations in well MW-8S is reflective of road salt, where the sodium and chloride concentrations are almost perfectly in balance. Given the high degree of transformation of TCE observed in the bioactive zone, the excess chloride observed there is most certainly derived from biological breakdown of TCE and its daughter products.

TABLE D.1

SODIUM AND CHLORIDE BALANCE AT OLD ERIE CANAL SITE (2002-2003 DATA)

Well ID	Sodium (mg/L)	Chloride (mg/L)	Excess/Deficit Chloride
MW-1S *	60.8	124.2	+ 30.4 %
MW-2S	43.3	26.3	- 40.5 %
MW-6S *	93.6	252.2	+108.0 %
MW-7S *	50.2	79.1	+ 1.6 %
MW-8S	215	329	- 2.8 %
MW-9S	56.3	87.7	+ 0.8 %
EMW-2	90.1	49.4	- 89.7 %
EMW-3	28.3	34	- 3.9 %
EMW-4	28.3	34	- 9.7 %
EMW-5	57.0	77.9	- 10.1 %
MW-2B	138.0	60.7	- 152.3 %
MW-4B *	126.0	205.5	+ 11.2 %
MW-7B	76.7	33.1	- 85.3 %

Note – Sodium and chloride data obtained for June 2002 sampling data. (*) indicates chloride data from June 2002 and May 2003 were averaged to obtain the values shown in the table.

.

TABLE D.2

SODIUM AND CHLORIDE BALANCE AT
OLD ERIE CANAL SITE (2006 DATA)

Well ID	Sodium (mg/L)	Chloride (mg/L)	Excess/Deficit Chloride
MW-1S	103	182	+14.5 %
MW-2S	61.8	21.5	- 54.5 %
MW-6S	67.8	236	+125.5 %
MW-7S	37.7	74.2	+ 27.5 %
MW-8S	158	248	+ 1.6 %
MW-9S	58.9	77.2	- 39.0 %
MW-13S	93.8	163	+12.5 %
MW-14S	90.4	141	+ 1.1 %
MW-15S	68.2	122	+ 15.9%
EMW-2	65.6	108	+ 6.7 %
EMW-3	30.9	38.3	- 19.7 %
EMW-4	59.2	70.9	- 22.5 %
EMW-5	55.0	77.2	- 9.1 %
			· · · · · · · · · · · · · · · · · · ·
MW-2B	70.6	57.4	-47.3 %
MW-3B	192	104	- 65.0 %
MW-4B	95.2	187	+ 27.3 %
MW-6B	73.6	144	+ 26.7 %
MW-5B	166	123	-52.0 %
MW-7B	90.6	40.6	- 71.0 %
MW-4C	244	253	- 32.9 %

Trends over time in chloride concentration for selected wells where data are available are also shown on Figure 23. These include wells MW-1S, MW-4S, MW-6S, MW-7S, EMW-2, and MW-4B. The concentrations of chloride in these wells appear to be stable over time, suggesting that the production of chloride is being sustained at the Site and providing another line of evidence that the biological processes continue to be active in reducing TCE and its daughter products.

Alkalinity data is shown on Figure 15 and indicate there are also elevated concentrations of alkalinity in the barge turnaround area and along the old Erie Canal. Alkalinity is derived from carbon dioxide, produced by the oxidation of organic material. Elevated levels of alkalinity in the barge turnaround area suggest the BTEX compounds are being biodegraded and supporting the reductive dechlorination observed. However,

alkalinity is a non-specific indicator and could result from the biodegradation of other forms of organic carbon as well. This may be the case for the elevated levels of alkalinity observed in the wells located along the old Erie Canal and across the Clyde River in wells MW-12S and MW-12B.

Taken in total, these data strongly suggest that redox conditions and concomitant microbial activity are fully supportive of the reductive dechlorination of TCE and its daughter products to innocuous end products at the Site.

5.2.2 PRESENCE OF DEGRADATION/DAUGHTER PRODUCTS

As shown on Figures 1 to 3, the parent compound TCE is largely depleted across the site relative to its daughter products. This is illustrated for selected locations on Figures 6 to 8. These graphs show column plots of VOC concentrations from monitoring well, geoprobe, and soil boring data. With the exception of geoprobe point GP-25 and soil boring SSB-7, c-DCE and VC dominate in the groundwater and TCE is a minor component of the VOCs present at each location. In some cases TCE makes up less than 1 percent of the total VOCs in the groundwater. This indicates that reductive dechlorination is highly advanced in the most highly contaminated areas of the Site. This is supported by the presence of ethane and ethene at those locations, as shown on Figure 5, indicating that the dechlorination is proceeding all the way to non-hazardous end-products. The relative abundance of ethane and ethene in the graphs of Figures 6 to 8 may be misleading, because ethane and ethene are gases and are not readily retained in the groundwater in the subsurface.

Furthermore, the ratios of cDCE to tDCE and 1,1-DCE provide unequivocal evidence that the presence of cDCE is biogenic. The analytical data presented in Table 1 show that, where detected in both the overburden and bedrock aquifers, the concentrations of cDCE are greater than those of tDCE or 1,1-DCE, with the cDCE abundance ratio ranging from 0.93 to 1.00. Thus the DCE in the groundwater at the Site originates from the biodegradation of TCE.

Ethane and ethene concentrations are the ultimate end products of the reductive dechlorination of TCE. The presence of these innocuous end products is highly supportive of extensive reductive dechlorination of both TCE and its daughter products at the Site. Combined ethene + ethane concentrations of up to 6400 micrograms per liter (μ g/L) and 1600 μ g/L were measured in wells MW-6S and MW-4B, respectively. Ethane and ethene are gases and are highly subject to volatilization and biodegradation losses. As an example, molar balances of ethene in the aqueous phase of the microcosm

study were typically only 10-20 percent of the starting TCE concentration. Therefore, it is reasonable to assume that the amount of ethane and ethene generated in the aquifer is substantially higher than the levels measured.

Trends over time in ethene and ethane concentrations are also shown on Figures -17 through 22 for wells MW-1S, MW-4S, MW-6S, MW-7S, EMW-2, and MW-4B. Concentrations of these end products of the reductive dechlorination process also appear to be stable over time, indicating that the biological processes active at the site continue to support dechlorination of TCE and its daughter products all the way to an innocuous end point.

The higher concentrations of BTEX in the groundwater are generally correlated to locations showing high concentrations of c-DCE and VC. This suggests that BTEX may be an important electron donor fueling the reductive dechlorination of TCE at those locations.

5.2.3 AVAILABILITY OF ORGANIC SUBSTRATE TO SUSTAIN MICROBIAL ACTIVITY

The spatial distribution of dissolved organic carbon (DOC) across the Site is shown on Figure 16. Concentrations of DOC ranged from 1.6 to 37.7 mg/L in the overburden aquifer and from not detected at 1 mg/L to 7.23 mg/L in the bedrock. The highest consistent concentrations of DOC are observed in the barge turnaround area, particularly at monitoring well MW-6S, where 37.7 mg/L DOC was measured. These DOC concentrations are providing electron donors for the reductive dechlorination observed at the Site. As previously mentioned, BTEX concentrations are also highest in the barge turnaround area, suggesting that BTEX may be an important component of this DOC. However, given the swampy nature of the barge turnaround area and the past use of that area by the Town of Clyde for sewage disposal, natural DOC in the form of humic materials will also be present and will likely also contribute to the support of reductive dechlorination. DOC at 33 mg/L is also measured in well MW-12S, located across the Clyde River. This is also most likely a naturally occurring form of DOC, because no contaminants have been measured in that well.

Trends over time in DOC for selected wells where data are available are also shown on Figure 24. These include wells MW-1S, MW-4S, MW-6S, MW-7S, EMW-2, and MW-4B. The concentrations of DOC in these wells appear to be stable over time, suggesting that the DOC at the site is being sustained and is continuing to provide a source of carbon and energy for the dechlorinating bacteria.

5.3 MICROCOSM STUDY RESULTS

A laboratory microcosm study was conducted by GE (Microcosm Study Report GE, July 2004) to determine whether TCE and its degradation products could be completely degraded via natural reductive biodegradation at the Site. Microcosm experiments were conducted using soil from the Site and different organic carbon sources were evaluated (i.e., lactate, ethanol, chitin and soybean oil). Controls were also constructed to measure the natural (unamended) rate of biodegradation. Nutrients and/or supplemental bacterial culture were also added to several of the microcosm bottles to determine if their addition would be required to enhance natural reductive biodegradations.

Complete reductive dechlorination of TCE to ethene was observed in both substrate-amended and unamended sample groups. Notably, the unamended controls were spiked with 5 and 50 mg/L TCE and in both cases completely reduced the TCE to ethene during the course of the study. It is unusual to observe this level of intrinsic activity at such high TCE concentrations. This supports the field data in demonstrating that robust intrinsic biological activity is currently operative at the Site. TCE in particular was dechlorinated very rapidly in the microcosm bottles. Rapid depletion of TCE is also observed in the field data.

All of the electron donors used in the study also supported complete reductive dechlorination of TCE to ethene. The addition of electron donors promoted a two to three fold increase in the overall biodegradation rate over the comparable unamended controls. TCE was biodegraded very rapidly in all the amended bottles. Lactate, chitin, and soybean oil promoted the fastest biodegradation of cDCE. Chitin and soybean oil promoted the fastest biodegradation of VC. In these cases, VC was biodegraded almost as fast as it was formed, so that very little was measured in the bottles.

Supplemental nutrient addition and bioaugmentation did not have a significant effect on the rate or extent of dechlorination. Therefore, neither supplemental nutrients nor bacteria are required to enhance biodegradation at the Site.

5.4 ESTIMATION OF MASS DESTROYED BY BIODEGRADATION

As discussed in Section 4.2, it is possible to estimate the amount of mass destroyed or transformed at the site by measuring the production of end products such as chloride, ethane, and ethene. As previously described, chloride concentrations are significantly elevated in the barge turnaround area relative to surrounding groundwater. Chloride concentrations in monitoring well MW-6S and MW-6B range from 200-300 mg/L,

whereas chloride concentrations in the surrounding groundwater range from 30-90 mg/L. Chloride is a conservative end product of TCE reductive dechlorination, such that

TCE \rightarrow Ethane/Ethene + 3 Chloride

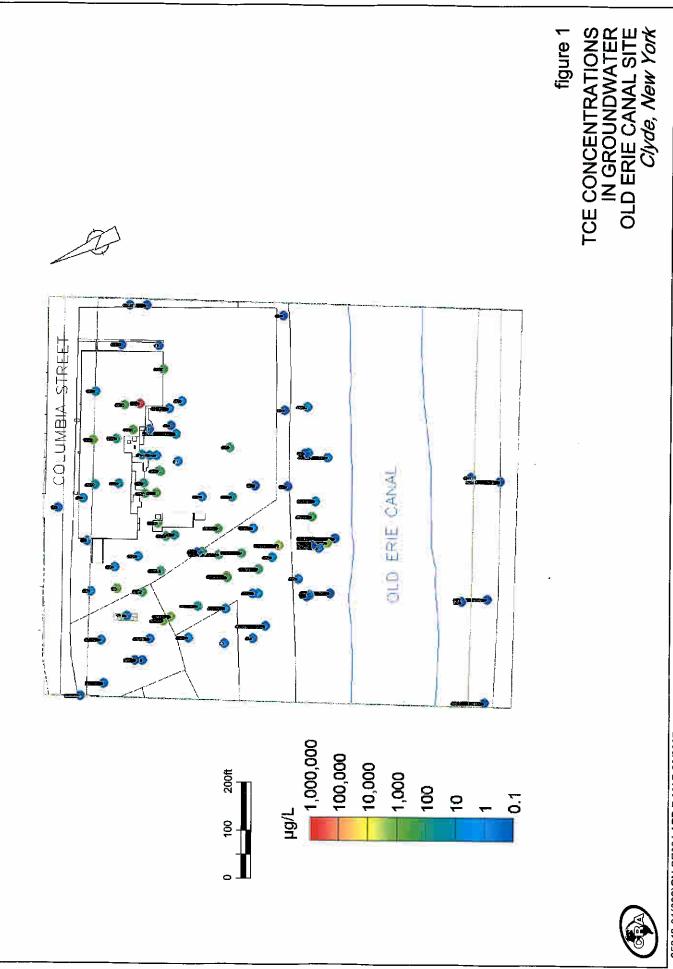
Thus, every mole of TCE that is reduced to ethane or ethene produces three moles of chloride. The differential between chloride concentration inside and outside the bioactive area can be conservatively estimated to be 100 mg/L. In this case, 123.5 mg/L TCE need to destroyed (on a mass basis) to produce 100 mg/L chloride. The calculation is valid as long as there are no other sources of chloride unique to the bioactive area. The sodium balances performed in Section 5.2.1 provide conclusive proof the source of the excess chloride in the barge turnaround area is not road salt.

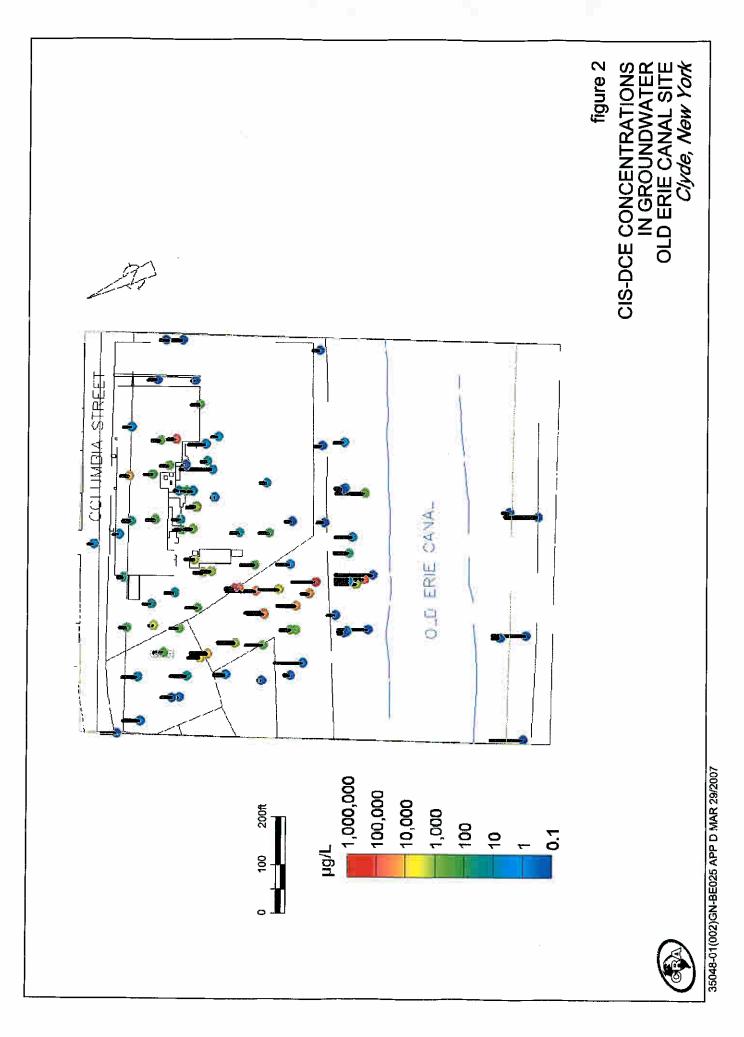
The total mass of TCE destroyed can be estimated if the groundwater flux through the reactive zone is known. In this case, calculations show that the total groundwater flow through the bioactive channel is on the order of 1500 ft³/day (8 gpm). If the groundwater flux is multiplied by the chloride concentration, the amount of chloride produced and TCE destroyed can be calculated. By this method, it is estimated that 6 kg/day of chloride is produced at the Site from the destruction of 7.4 kg/day of TCE. This represents a TCE destruction rate of 5000 lbs/year.

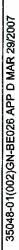
The other significant end products of reductive dechlorination present at the site are ethene and ethane. Because these are unique products of the dechlorination process, these end products are even more conclusive than the chloride data. As previously stated, combined ethene + ethane concentrations of up to 6400 μ g/L and 1600 μ g/L were measured in wells MW-6S and MW-4B, respectively. These levels of ethene and ethane are subject to both biodegradation and volatilization losses. If we conservatively assume that 2500 μ g/L ethane + ethene is generated in the subsurface due to reductive dechlorination of TCE, then the total TCE destroyed is equivalent to 550 lbs/year.

Thus the destruction and complete transformation of TCE at the site is strongly supported by both the chloride and ethane and ethene data. While there is uncertainty in the number, there is no question that substantial destruction of TCE and its daughter products is occurring. A destruction rate of 500-5000 lb/year is quite supportable using the available data. This number can be further refined if additional data is collected during subsequent sampling rounds.

6.0 <u>CONCLUSIONS</u>


- Analysis of CVOC concentrations over time on six monitoring wells indicate the CVOC concentrations are stable in the barge turnaround area and declining on the fringes. There is not yet sufficient data to infer statistical significance to these trends.
- Geochemical parameters collected from groundwater indicate that the overburden and bedrock aquifers at the Site are reducing. These geochemical conditions are favorable for the reductive biodegradation of TCE, cDCE and vinyl chloride and the production of ethene and ethane. Conditions become more oxidizing in both aquifers downgradient of the Site.
- With a few exceptions, the parent compound TCE is much diminished at the Site relative to its reductive chlorination daughter products cDCE, VC, and ethene/ethane. In some cases TCE made up less than 1% of the total VOCs in the groundwater. This indicates that reductive dechlorination is highly advanced in the most highly contaminated areas of the site. This is supported by the presence of ethane and ethene at those locations, indicating that the dechlorination is proceeding all the way to non-hazardous endproducts. Ethene and ethane concentrations appear to be stable over time.
- Chloride is highly elevated in the barge turnaround area. Molar balances performed using sodium data indicate an excess of chloride exists here, eliminating road salt as the source of the excess chloride. The excess chloride is most likely coming from the reductive dechlorination of TCE and its daughter products.
- BTEX compounds are also present in the barge turnaround area, suggesting that BTEX may be an important electron donor in supporting the reductive dechlorination of TCE and its daughter products. However, given the swampy nature of the area, natural DOC in the form of humic materials is also present and will likely contribute to the support of reductive dechlorination. Trend analysis over time indicate the levels of DOC in the groundwater are stable and sufficient to continue to support the ongoing reductive dechlorination of TCE and its daughter products.
- The results of microcosm studies show that the biodegradation capacity of Site soil is very strong, resulting in complete TCE degradation to ethene in both unamended and substrate-amended samples. In unamended controls spiked with 5 and 50 mg/L TCE, TCE was completely reduced to ethene during the course of the study. It is unusual to observe this level of intrinsic activity at such high TCE concentrations. This supports the field data in demonstrating that robust intrinsic biological activity is currently operative at the Site. The addition of electron donors promoted a two to three fold increase in the overall biodegradation rate over the comparable


unamended controls. Neither nutrient supplements nor supplemental biocultures improved biodegradation rates.


 The results of the MNA evaluation show that substantial natural biodegradation by reductive dechlorination is occurring at Site. Calculations based on chloride and ethane and ethene concentrations and groundwater flux through the bioactive zone suggest that 500-5000 lbs/year of TCE are being destroyed due to ongoing biodegradation processes. This analysis, coupled with discharge of overburden aquifer groundwater to the Clyde River and the limited migration of CVOCs in the bedrock aquifer indicate that the CVOCs are attenuating sufficiently such that there is no threat to groundwater users.

7.0 <u>REFERENCES</u>

- General Electric Company Global Research Center. 2004. Microcosm Study Report.
- Hem, J.D. 1985. Study and Interpretation of the Chemical Characteristics of Natural Water, U.S.G.S. Water-Supply paper 2254.
- USEPA, September 1998. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents In Ground Water, EPA/600/R-98/128.
- USEPA, April 1999. Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites, USEPA OSWER Directive 9200.4-17P.
- Wiedemeier, T.H., H.S. Rifai, C.J. Newell, J.T. Wilson. 1999. Natural Attenuation of Fuels and Chlorinated Solvents in the Subsurface. John Wiley & Sons, Inc., New York.

VC CONCENTRATIONS IN GROUNDWATER OLD ERIE CANAL SITE *Clyde, New York*

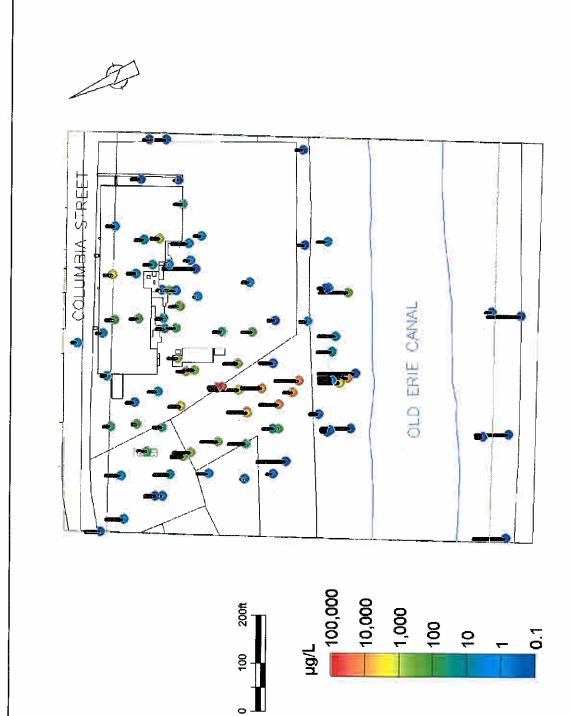


figure 3

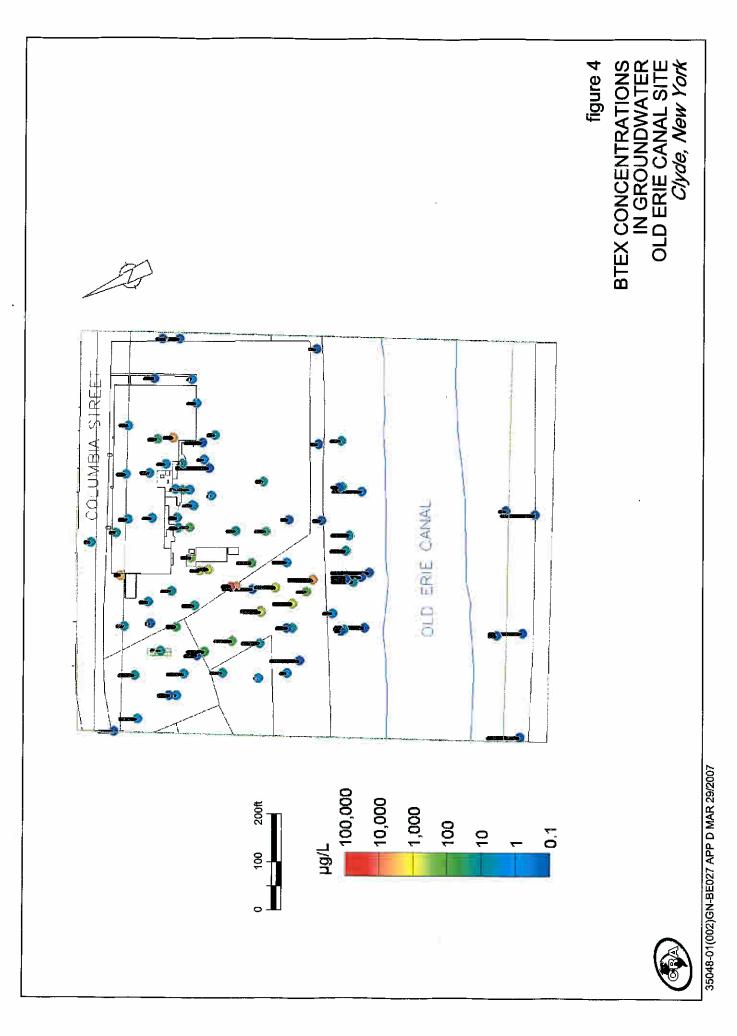
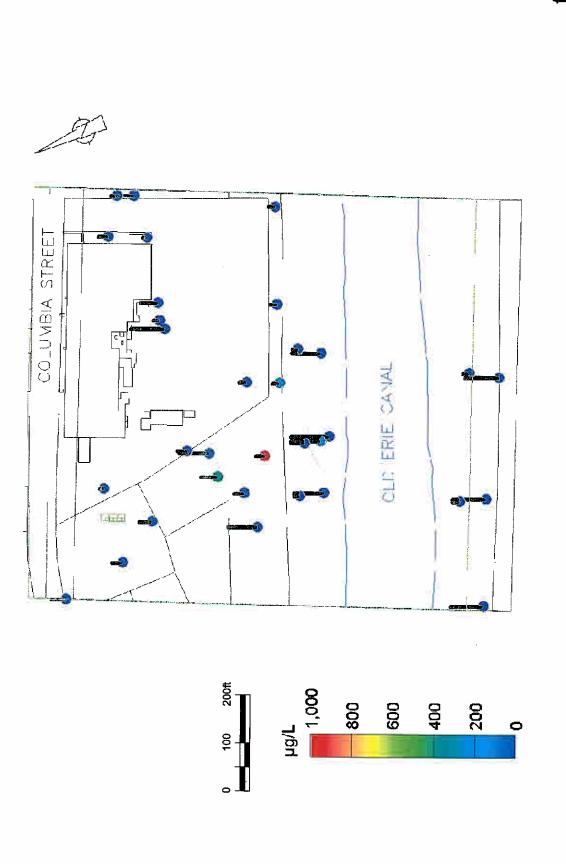
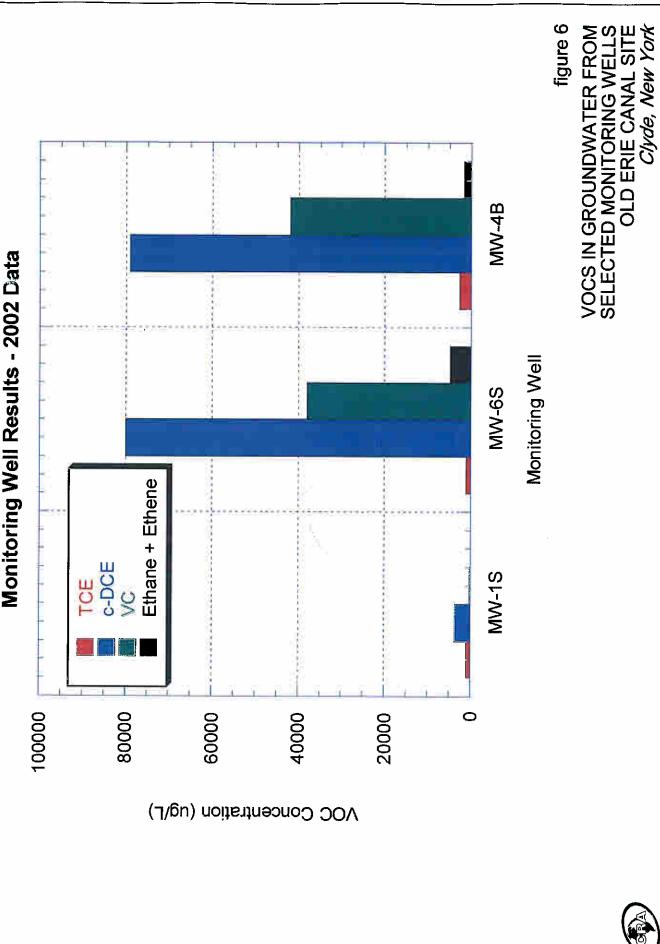
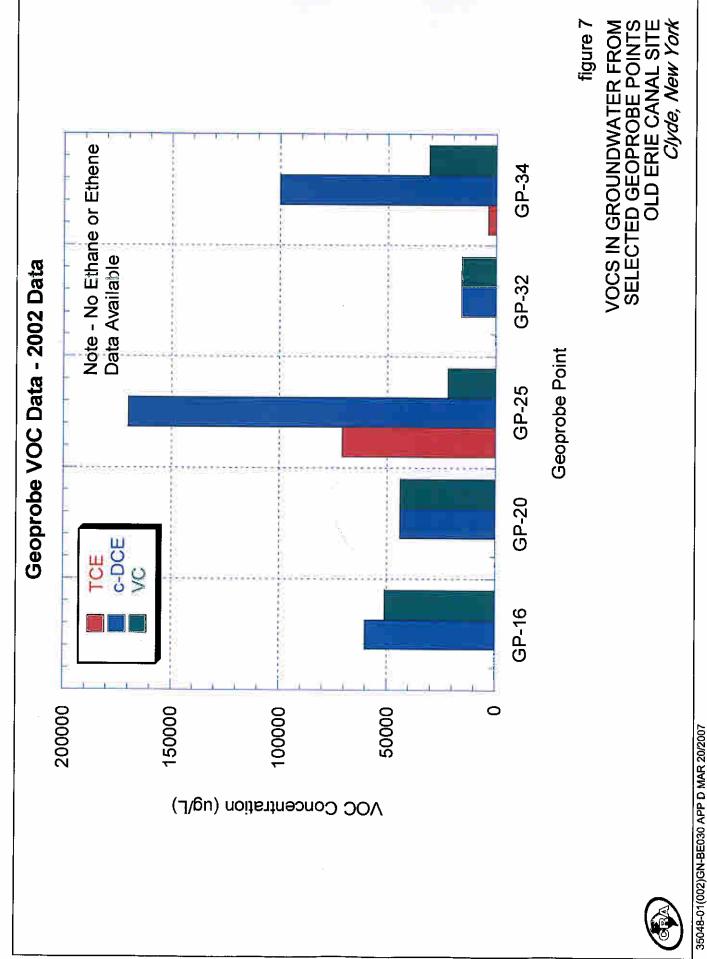
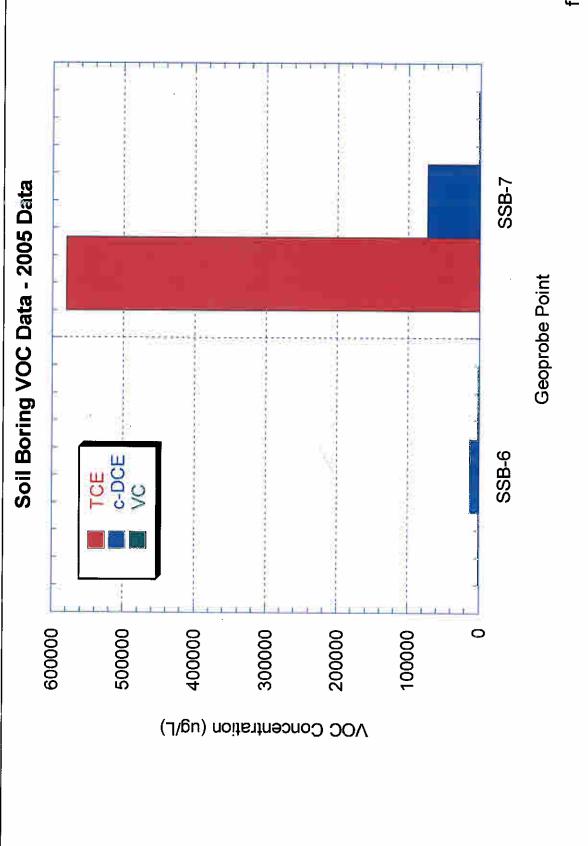
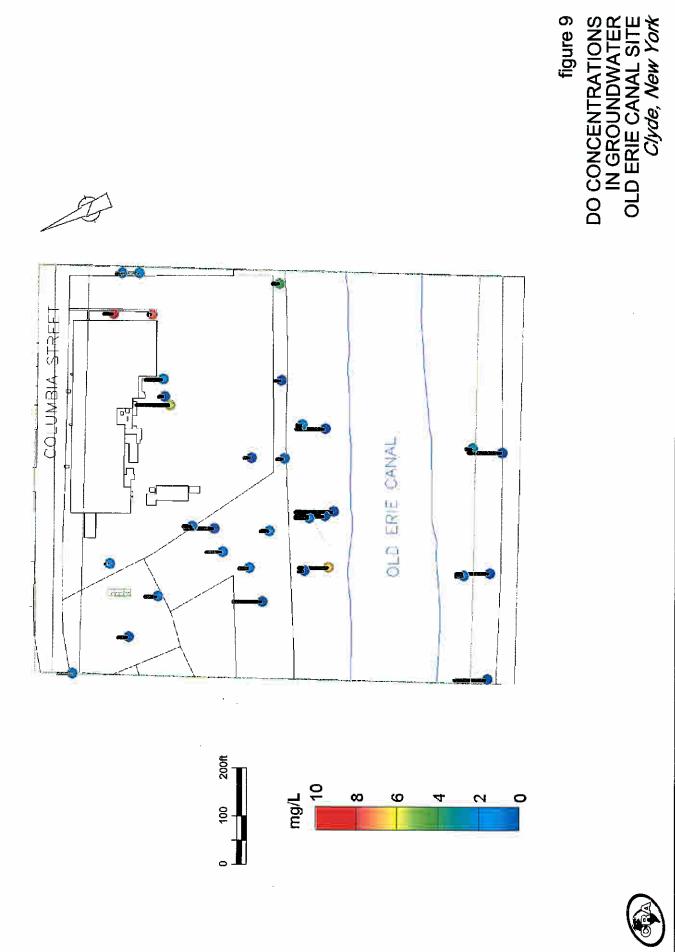
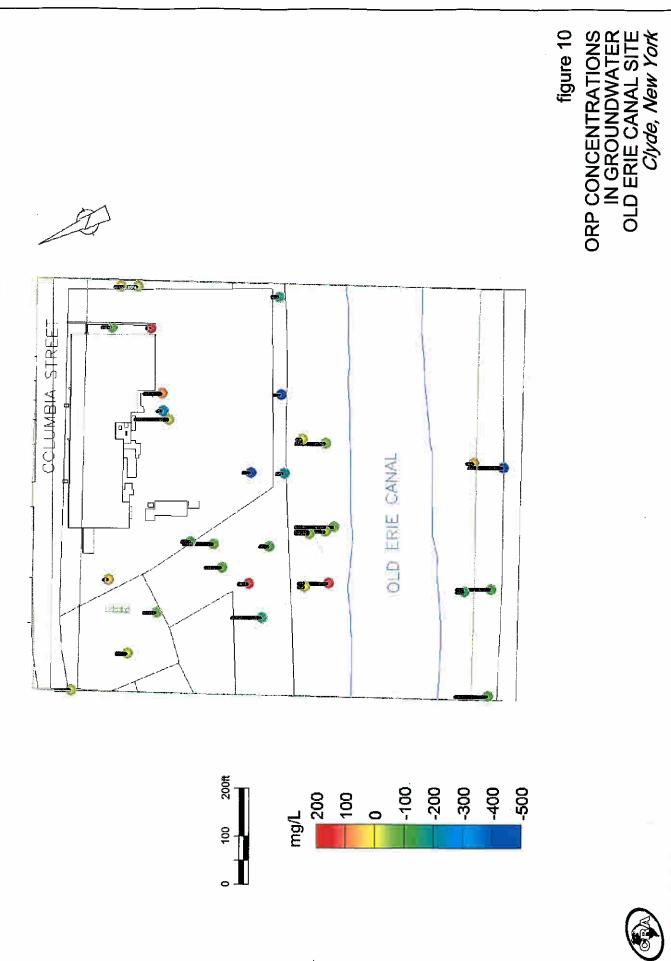





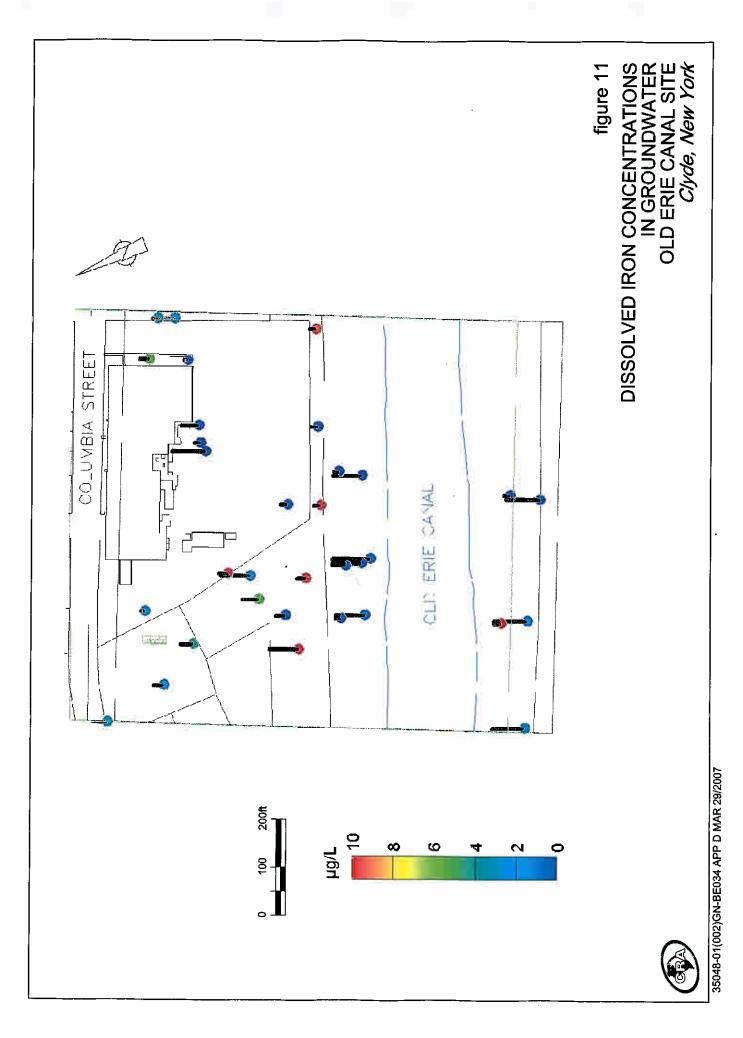
figure 5 ETHANE+ETHENE CONCENTRATIONS IN GROUNDWATER OLD ERIE CANAL SITE Ciyde, New York



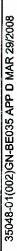
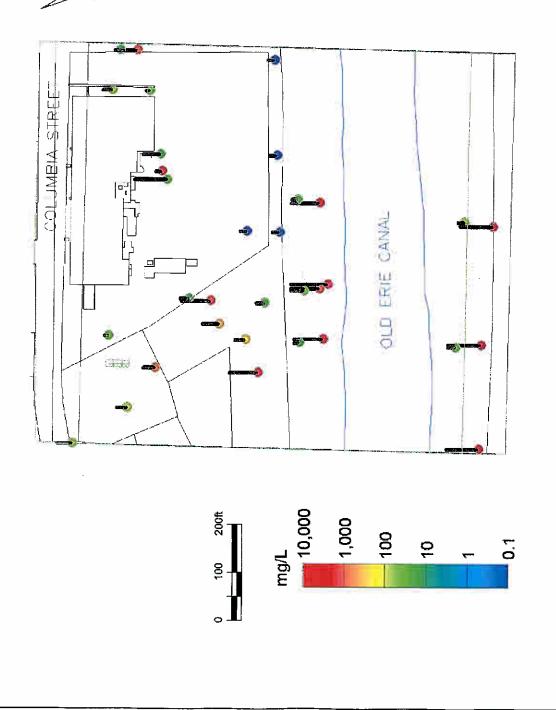


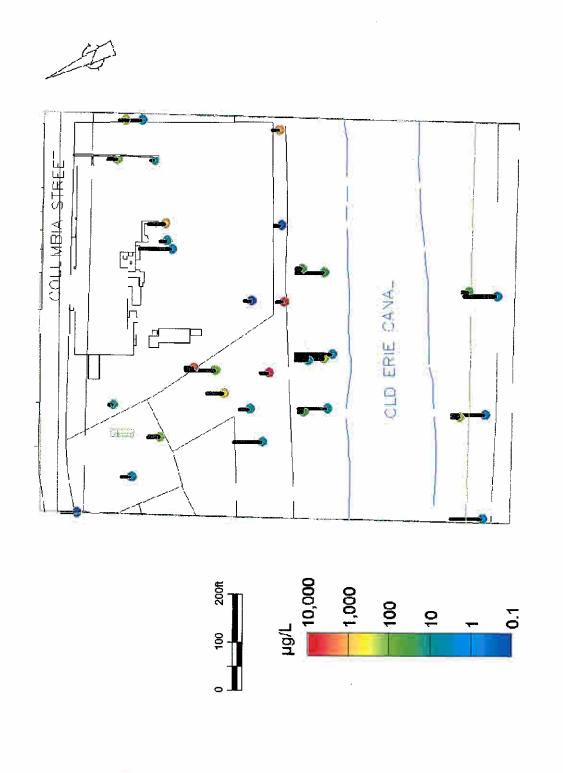


VOCS IN GROUNDWATER FROM SELECTED SOIL BORING LOCATIONS OLD ERIE CANAL SITE *Clyde, New York*


figure 8

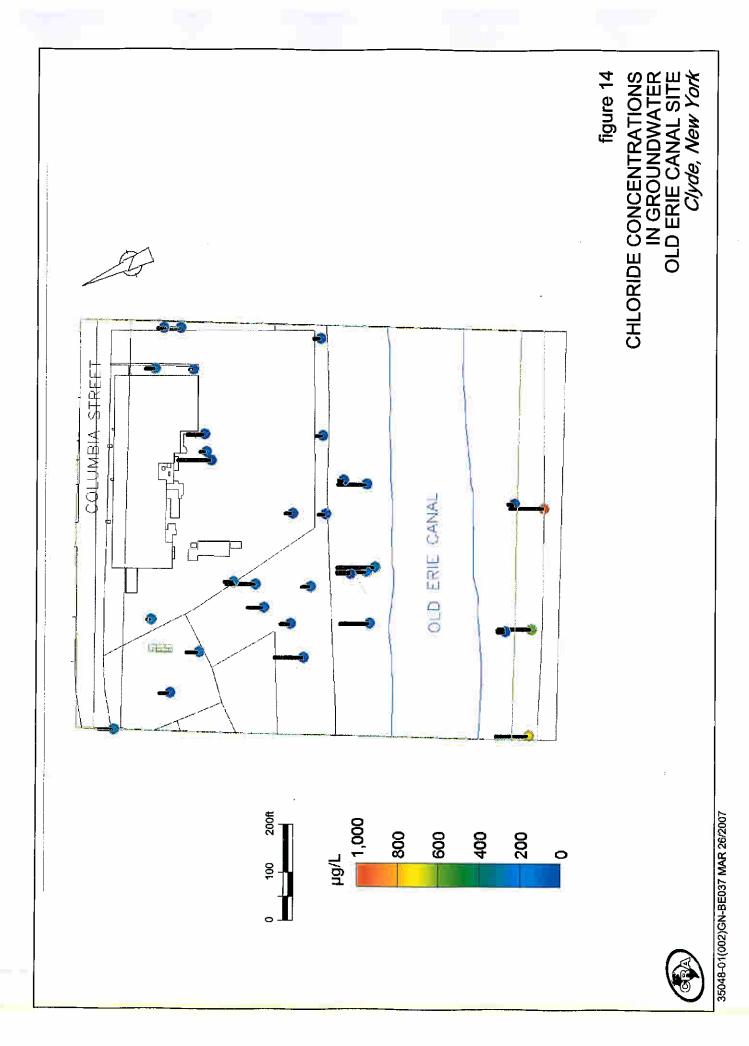
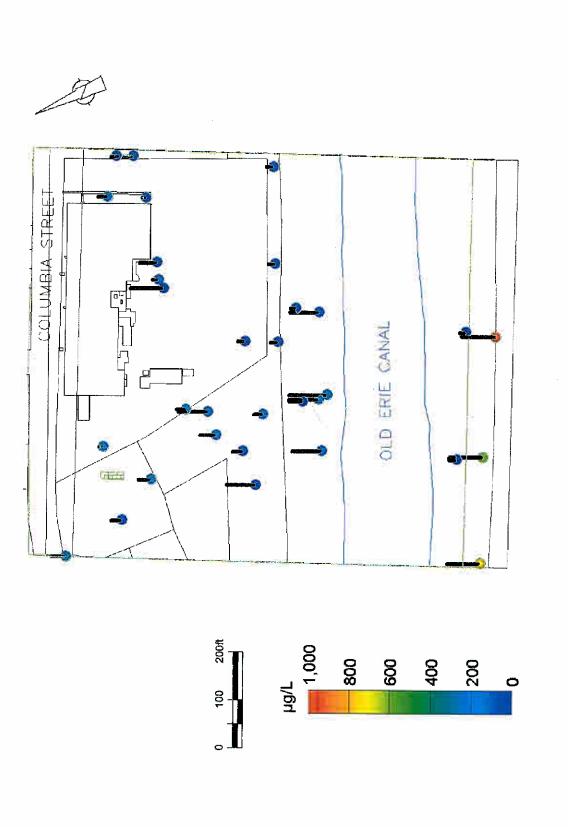
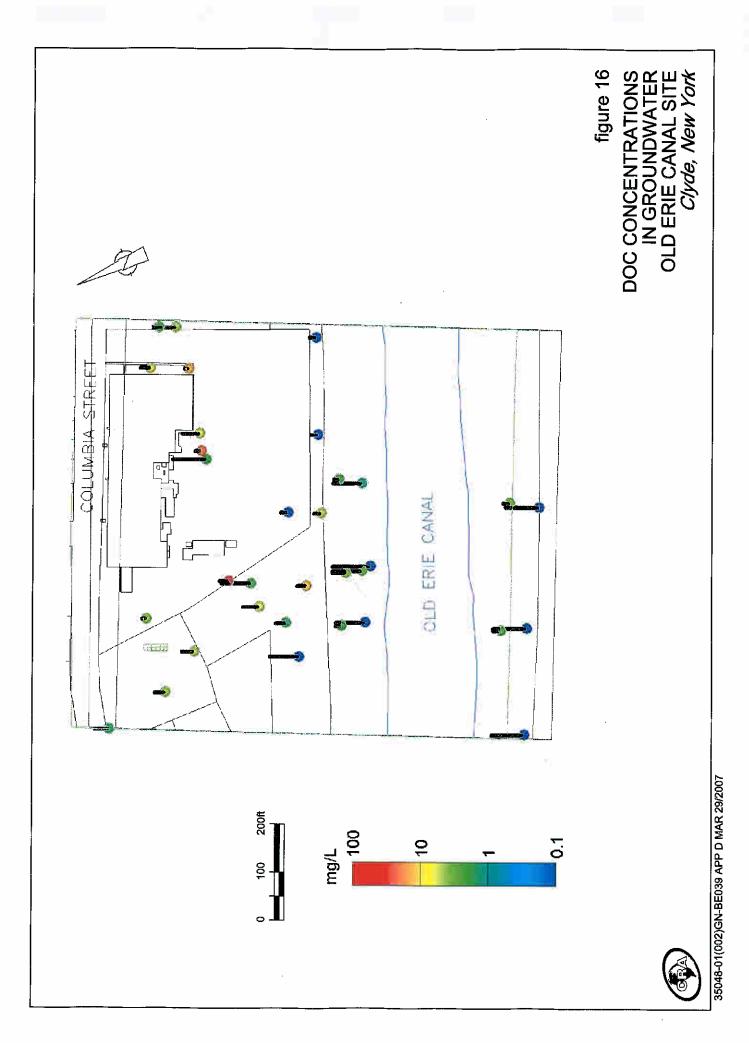
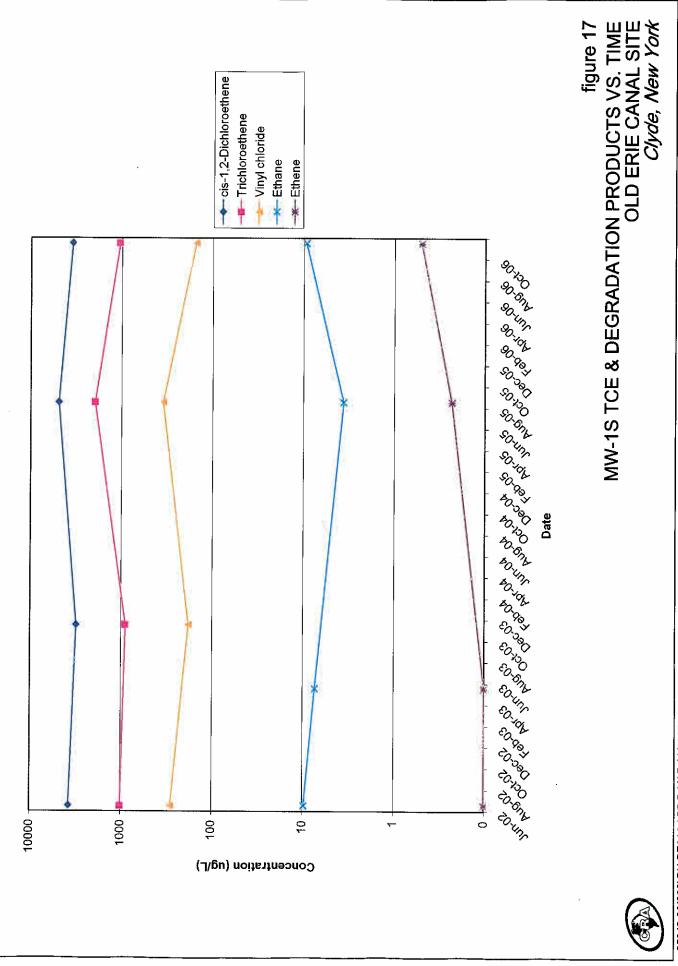
35048-01(002)GN-BE033 APP D MAR 29/2007

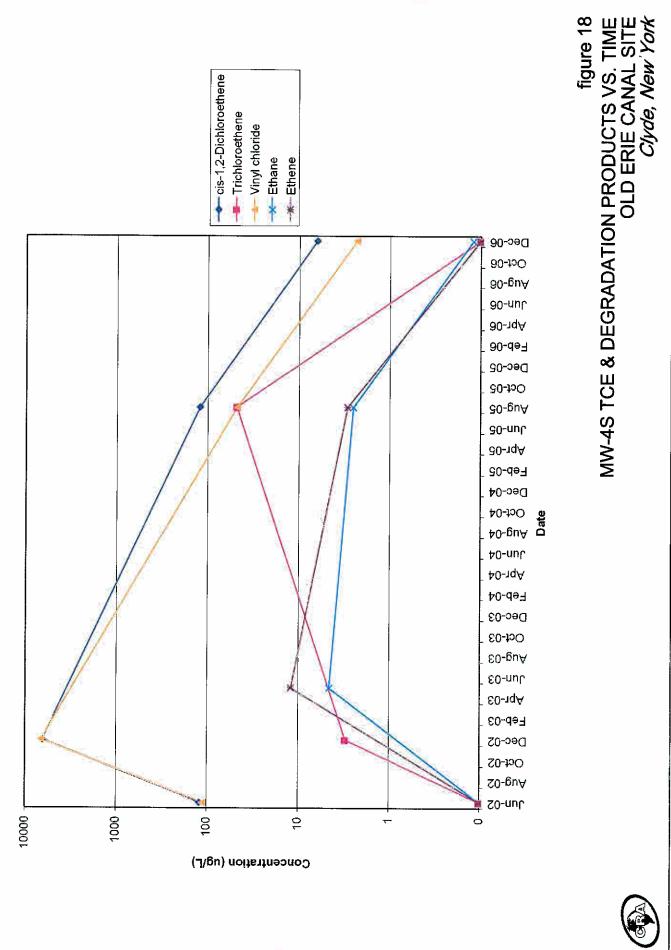



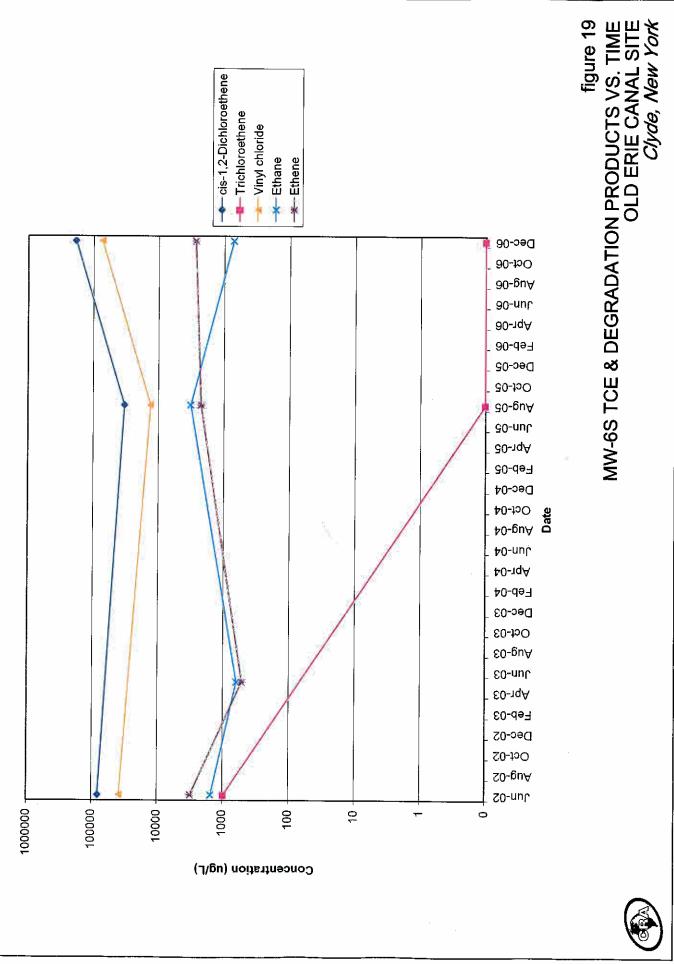

figure 12 SULFATE CONCENTRATIONS IN GROUNDWATER OLD ERIE CANAL SITE Clyde, New York

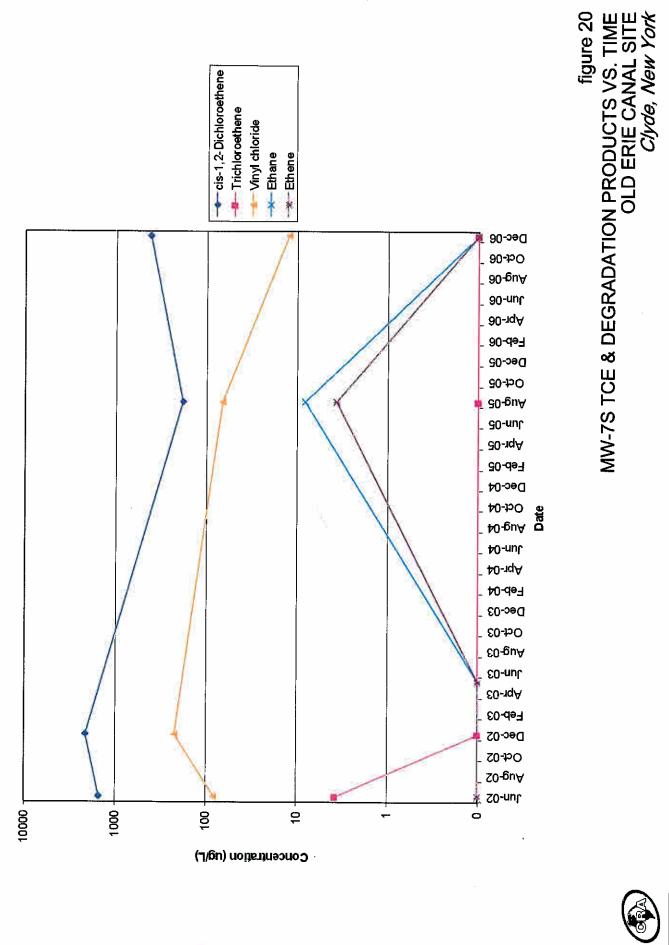
8

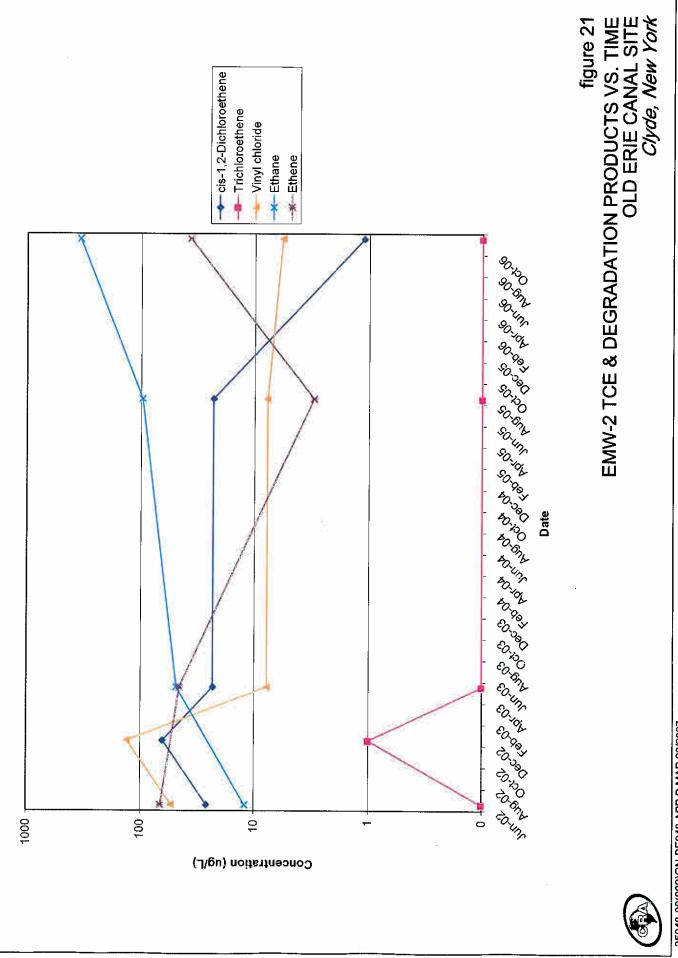
figure 13 METHANE CONCENTRATIONS IN GROUNDWATER OLD ERIE CANAL SITE Clyde, New York

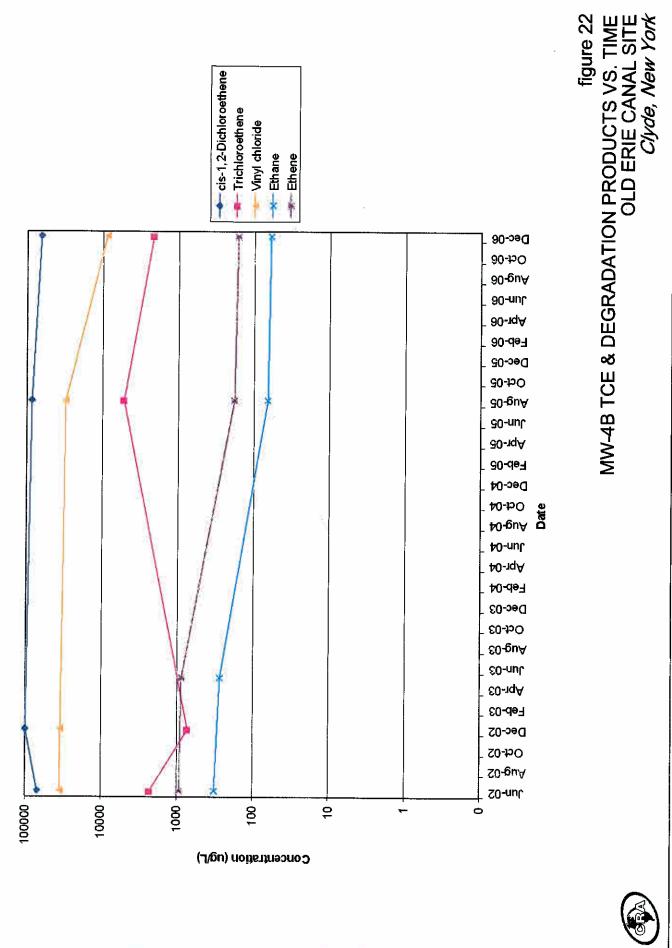





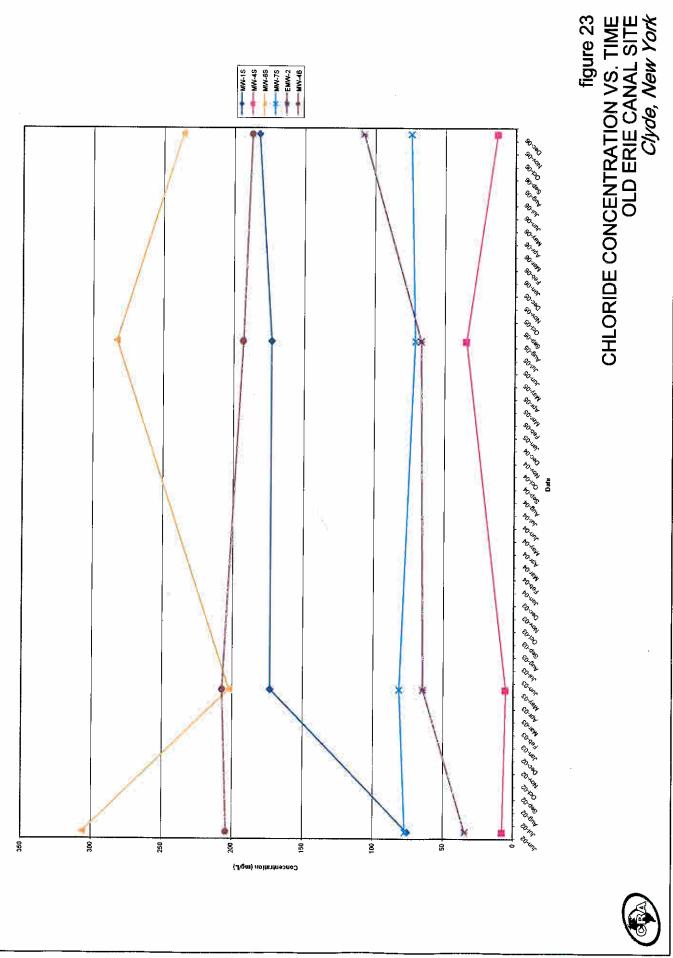


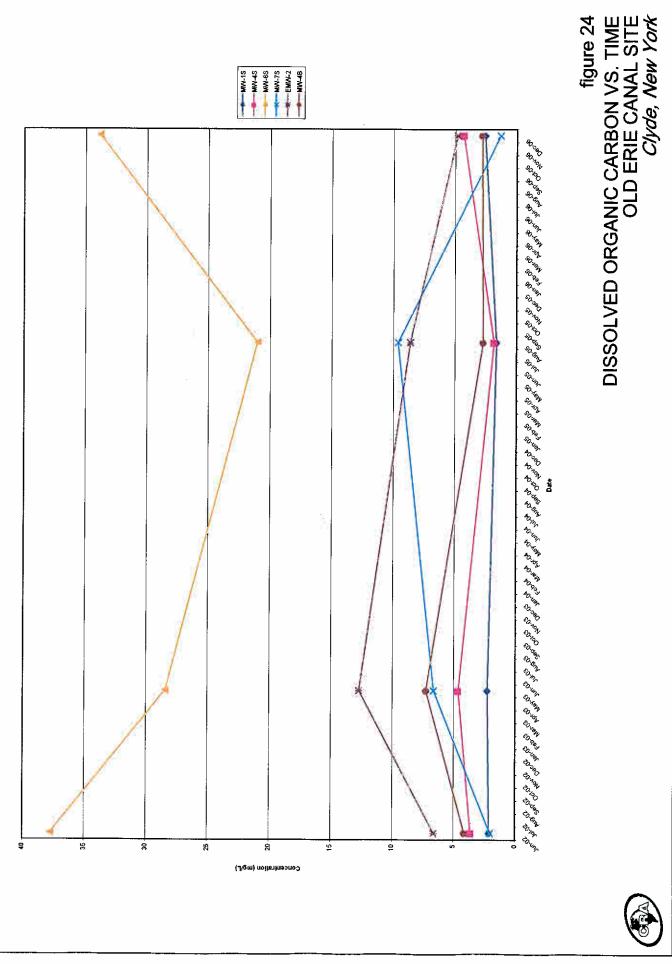

figure 15 ALKALINITY CONCENTRATIONS IN GROUNDWATER OLD ERIE CANAL SITE *Clyde, New York*











35048-00(002)GN-BE048 APP D MAR 20/2007

35048-00(002)GN-BE050 APP D MAR 20/2007

35048-00(002)GN-BE051 APP D MAR 20/2007

EMW-4 EMW-4 6/26/2002 12/19/2062	0 0 1.1 0.76 0 0 1.00 1.00	3B M 006 6/2	0 0 351 120 5.9 0.76	66.0 86.0	MW-4B MW-4B 6/25/2002 6/25/2002 Duplicate	0 0 25000 58000 0 0 75000 1 00	S 33 87 011 011 011		1.00 1.00
EMTW-3 6/26/2002	0 0 1.00 1.00	MTW-3S 8/24/2005	0 57.1 0.68	66.0	MW-45 12/5/2006	0 % 6 0 F	MW-65 5/28/2003 PB-Bottom	0 0 0	1.00
EMW-2 11/30/2006	0 1.1 00 1	MW-1S 11/29/2006 Duplicate	6.9 3240 34.2	0.99	MW-45 8/24/2005	0 121 1.2	do_1-84 21/28/2003	0 1500 0	1.00
EMW-2 8/25/2005 Duplicate	0 24.2 0 1.00	MW-1S 11/29/2006	0 3690 32.4	0.99	MW-4S 11/4/2003 PB-Bottons	0 0 0	MW-65 612612002	0 00000	1.00
EMW-2 8/25/2005	0 21.6 0 1.00	MW-1S 8/24/2005	0 4880 50.6	0.99	MW-4S 7/2/2003 PB-Bottom	0 2,3 0	MTW-55 8125/2005	0 15.1 0	1.00
EMW-2 11/4/2003 PB-Duplicate	0 1.5 1.00	MW-1S 11/4/2003	7.5 3100 35	0.99	MW-4S 7/2/2003 PB-Top	0 50 0 50 0	MW-4B 12/5/2006	0 64800 130	1.00
EMW-2 11/4/2003 PB	0 1.7 0 1.00	6/26/2002	0 3200 32	0.99	MW-45 5/28/2003 PB-Bottom	3.2 0 100	MW-4B 8/24/2005	105 84500 345	66'0
EMW-2 5/27/2003 PB-Duplicate	0 16 1.00	MW-1 12/6/2006	0 22 0	1.00	MW-4S 5/28/2003 PB-Top	0 1.6 0	MW-4B 11/4/2003 PB	20 31000 20	1.00
EMW-2 512712003 PB	15 15 1.00	MW-1 5/28/2003 PB	0 4.7 0	1.00	MW-45 412412603 PB-Bottom	0 3.9 0 4.6 1	MW-4B 5/28/2063 PB	0 32000 0	1.00
EMW-2 12/19/2002	0 (S a) 0 (S a)	MW-1 6/25/2002	0 4.0	1.00	MW-45 412412003 PB-Tcp	0 8.7 0 00 1	MW-48 MW-48 12/19/2002 Duplicate	0 10000 0	00°L
EMW-2 6/26/2002	0 26 0.54 0.98	EMW-4 8/25/2005	0 7.2 0	1,00	MW-45 12/19/2002	5.4 6400 37 0 88	MW-4B 12/19/2002	0 100000 0	1.00
Sample Location: Sample Date:	ne pg/L thene pg/L roethene pg/L cis-DCE Abundance Ratio	Sample Location: Sample Date:	нв/L нв/L нв/L	cis-DCE Abundance Ratio	Sample Location: Sample Date:	ne pg/L sthene pg/L roethene pg/L	Sample Location: Sample Date:	нg/L нg/L	cis-DCE Abundance Ratio
	1,1-Dichloroettene cis-1,2-Dichloroethene trans-1,2-Dichloroethene cis-DCE /		1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene	dis-DCE/		1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene riens-1,2-Dichloroethene		1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene	cis-DCE /

Page 1 of 3

CRA 035048 (2) APPD

cis-1.2-DCE ABUNDANCE MNA EVALUATION OLD ERIE CANAL SITE CLYDE, NEW YORK

Sample Location: Sample Date:	MW-6S 12/6/2006	MW-6B 12/6/2006	MW-75 6/24/2002	MW-75 12/18/2002	MW-75 5/27/2003 PB	MW-7S 5/27/2003 PB-Duplicate	MW-75 11/4/2003 PB	MW-75 8/26/2005	MW-7S 12/4/2006	MW-7B 5/27/2003 PB	MW-7B 11/4/2003 PB	MW-7B 8/26/2005
нg/L нg/L рg/L	0 186000 478	59.3 50400 119	1.2 1500 14	0 2100 0	0 0 0	0 0 0	0 040	0 180 0.6	0.62 414 2.5	0 0 0	0 0 0	0 1.9 0
cis-DCE Abundance Ratio	1.00	1.00	66.0	1.00	1.00	1.00	1.00	1.00	66.0	1.00	1.00	1.00
Sample Location: Sample Date:	MW-7B 12/4/2006	MW-85 6/24/2002	8:24/2002	MW-8S 8/24/2005	MW-9S 8/24/2005	MW22006 11/30/2006	MW-14S 12/6/2006	MW-15S 12/7/2006	MW-16S	MW-16B 12/6/2006	GP-2 4/25/2002	GP-4 4/24/2002
µg/L µg/L	0 0.58 0	0.6	0 0.55 0	0 1.9 0	0 0.83 0	0 6870 0	51.8 28200 80	13.7 20800 30.8	0 5.7 0	0 16 0	0 2.9 0.23	0 8.7 0
cis-DCE Abundance Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.60	00-1	0.93	1.00
Sample Location: Sample Date:	GP-5 4/25/2002	GP-6 4/26/2002	GP-8 4/24/2002	GP-9 4/26/2002	GP-10 4/24/2002	GP-11 4/30/2002	GP-12 4/26/2002	GP-13 4/30/2002	GP-14 4/26/2002	GP-15 4/26/2002	GP-16 4/25/2002	GP-17 4/25/2002
л/Вч Л/Вч Л/Вт	0 170 0.46	၀ ႙ ၀	0.37 230 1	0 14 0	0 2 0	0 420 4.1	0 21 0	22 9100 40	0 180 0	0 3200 53	70 60000 310	0 0.27 0
cis-DCE Abundance Ratio	00'1	1.00	66'0	1.00	1.00	66'0	1.00	66.0	1.00	0.98	66.0	1.00
Sample Location: Sample Date:	GP-18 4/24/2002	GP-19 5/1/2002	GP-20 5/2/2002	GP-22 4/25/2002	GP-23 4/25/2002	GP-24 4/24/2002	GP-25 4/30/2002	GP-25 4/30/2002 Duplicate	GP-26 5/1/2002	GP-27 4/26/2002	GP-28 5/1/2002	GP-29 4/26/2002
1/8n 1/8n	0 0.82 D	5.4 1500 9.9	27 44000 170	0 1.5	0 0.4 0	0.52 310 0.68	210 170000 0	220 180000 0	0 120 0	0.21 17 0.43	4.1 3700 15	0 110 0
vis-DCE Abundance Ratio	1.00	66.0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.96	0.99	1.00

CRA 035048 (2) APPD

GP-43 5/2/2002	0 69:0	1.00	GP-60 11/21/2002	040	1.00		
GP-42 5/2/2002	0 0.46 0	1.00	GP-59 11/21/2002	0 0.31 0	1.00		
GP-41 5/2/2002	0 0.35 0	1.00	GP-56 11/21/2002	0 1400 11	0.99	SSB-11 1/14/2005	0.96 3.9
GP-40 512/2002	0.4.0	1.00	GP-54 11/21/2002	0 7.1 0	1.00	SSB-10 1/14/2005	3.6 210 2.6
GP-37 4/23/2002	0 5.2 0	1.00	GP-53 11/21/2002	0 1300 0	1.00	SSB-9 1/13/2005	0 1.8 0
GP-36 4/23/2002	0.88 1900 3.1	1.00	GP-51 11/21/2002	0 000	1.00	SSB-8 1/13/2005	2.5 320 3.7
GP-34 5/2/2002 Duplicate	170 200000 420	1.00	GP-50 11/21/2002	0 120 0	1.00	SSB-7 1/13/2005	0 73000 0
GP-34 5/2/2002	160 100000 400	0.99	GP-49 11/21/2002	0 600 6.4	66.0	SSB-6 1/14/2005	34 13000 35
GP-33 5/1/2002	0 0.98 0	1.00	GP-47 11/21/2002	0 4 0	1.00	SSB-5 1/14/2005	0 110 5.6
GP-32 4/24/2002	0 16000 93	660	GP-46 11/21/2002	0 11 0.83	0.93	SSB-4 1/14/2005	0 31 0
GP-31 4/24/2002	1.3 500 3.4	6.0	GP-45 11/21/2002	0 160 4.6	0.97	SSB-3 1/14/2005 Duplicate	0.67 210 5.6
GP-30 4/26/2002	0 10 0	1.00	GP- 4 3 5/2/2002 Duplicate	0 0.59 0	1.60	SSB-3 1/14/2005	0.62 200 5.1
Sample Location: Sample Date:	1/8н 1/8н 1/8н	cis-DCE Abundance Ratio	Sample Location: Sample Date:	н8/Г 1/8/Г	cis-DCE Abundance Ratio	Sample Location: Sample Date:	нg/L µg/L
	1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene	cis-tDCE AI	δ	1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene	cis-DCE Al	Sa	1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene

0.98

0.97

1.00

0.98

1.00

0.99

0.95

1.00

0.97

0.97

cis-DCE Abundance Ratio

TABLE D.1 cis-1,2-DCE ABUNDANCE MANA EVALUATION OLD ERLE CANAL SITE CLYDE, NEW YORK

CRA 035048 (2) APPD

Page 3 of 3

APPENDIX E

COST ESTIMATE DETAIL

ESTIMATED COSTS - GROUNDWATER ALTERNATIVE 2 MONITORED NATURAL ATTENUATION & INSTITUTIONAL CONTROL FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

		Estimated		Unit		
		Quantity	Unit	Cost		Total
Administr	ative Cost					
1	Administrative Cost to					
	Implement Deed Restrictions	1	L.S.	\$ 10,0	00 \$	10,000
			Sub-Total, Ad	ministrative Co	st: \$	10,000
Direct Cap	ital Costs					
1	Install monitoring wells					
а.	Insurance, Mobilization/Demobilization	1	L.S.	\$ 5,0)00 \$	5,000
Ь.	Overburden	45	V.F.	\$	45 \$	2,025
с.	Bedrock					
	i) overburden casing	50	V.F.	\$	60 \$	3,000
	ii) bedrock coring	70	V.F.	\$	60 \$	4,200
d.	Curb Boxes/Bollards	5	Each	\$ 1	.50 \$	750
3	Weil Development/Redevelopment	40	Hour	\$1	00 \$	4,000 *
4	Waste Disposal	1	LS	\$ 2,0	000 \$	2,000
			Sub-Total, D	irect Capital Co	st: \$	20,975
	apital Costs					
1	Oversight of well installation &				\$	10,000
-	development (12 days)					
2	Engineering (assume 15% of capital cost)				\$	3,146
3	Contingency Allowance					
	(assume 20% of capital cost)				\$	4,195
			Sub-Total, Indi	rect Capital Cos	ts: \$	17,341
		Total Capital Cos	st - MNA & Instit	utional Contro	ol: \$	48,316
Annual Mo						
	Years 1 through 5					
1	Hydraulic Monitoring & Sampling	4	Each	\$ 5,0	100 \$	20,000
2	Sample Analyses	110	Each	\$ 3	600 \$	33,000
3	Monitoring Well Maintenance & Repair	1	L.S.	\$ 3,0		3,000
4	Reporting	1	L.S.	\$ 10,0		10,000
		Tot	al, Annual O&M	éears 1 through	5: \$	66,000
	Years 6 through 30					
1	Hydraulic Monitoring & Sampling	2	Each	\$ 5,0	00 \$	10,000
2	Sample Analyses	55	Each		i00 \$	16,500
3	Monitoring Well Maintenance & Repair	1	L.S.	\$ 3,0		3,000
4	Reporting	1	L.S.	\$ 5,0 \$ 5,0		5,000 5,000
-	0		L.5. I, Annual O&M Ye			34,500
		1010	, annin Oom 1	ans o anough a	ю. ф	04,000

Notes:

Costs are in total present value.

* Assumes 50% of existing wells require redevelopment.

ESTIMATED COSTS - GROUNDWATER ALTERNATIVE 3 ENHANCED BIOLOGICAL DEGRADATION WITH MONITORED NATURAL ATTENUATION AND INSTITUTIONAL CONTROLS FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

		Estimated Quantity	Unit		Unit Cost		Total
Adn	iinistrative Cost						
1	Administrative Cost to						
	Implement Deed Restrictions	1	1S.	\$	10,000	\$	10,000
			Sub-Total, Admi	nîstral	ive Cost:	\$	10,000
Prc-	Design Cost						
1	Pilot study	1	L.S.	\$	50,000	\$	50,000
			Sub-Total, Pi	re-Desi	ign Cost:	\$	50,000
	ct Capital Costs						
1	Install monitoring wells						
a.	Insurance, Mobilization/Demobilization	1	L.S.	\$	5,000	\$	5,000
b,	Overburden	45	V.F.	\$	45	\$	2,025
С.	Bedrock						
) overburden casing	50	V.F.	\$	60	\$	3,000
) bedrock coring	70	V.F.	\$	60	\$	4,200
d.	Curb Boxes/Bollards	5	Each	\$	150	\$	750
2 3	Well Development/Redevelopment In situ treatment	40	Hour	\$	100	\$	4,000 *
a.	Mobilization/Demobilization	1	L,S.	\$	5,000	\$	5,000
ь.	Install injection points	15	Day	\$	2,500	\$	37,500
С.	Substrate	1	1.S	\$	40,000	\$	40,000
d.	Application of substrate	4	Event	\$	10,000	\$	40,000
4	Waste Disposal	L	LS	\$	2,000	\$	2,000
			Sub-Total, Direc	t Capi	tal Cost:	\$	143,475
r. 15							
	ect Capital Costs						
1 2	Oversight of field activities	60	Manday	\$	1,000	s	60,000
2	Engineering					_	
3	(assume 15% of capital cost)					\$	21,521
ç	Contingency Allowance						
	(assume 20% of capital cost)		Sub-Total, Indirect	c		\$	28,695
			nite-1000, Interet	Capta	a Costs.	Þ	110,216
	Total Capital Cost -	MNA with I	nst. Control & E	hhand	ed Bio:	\$	313,691
Ант	al Monitoring						
	Years 1 through 5						
1	Hydraulic Monitoring & Sampling	4	Each	\$	5,000	\$	20,000
2	Sample Analyses	110	Each	\$	300	\$	33,000
3	Monitoring Well Maintenance & Repair	1	L.S.	\$	3,000	\$	3,000
4	Reporting	1	L.S.	\$	10,000	\$	10,000
		Total, A	nnual O&M Yea	rs 1 Ihi	rough 5:	\$	66,000
	Years 6 through 30						
1	Hydraulic Monitoring & Sampling	2	Each	\$	5,000	\$	10,000
2	Sample Analyses	55	Each	\$	300	\$	16,500
3	Monitoring Well Maintenance & Repair	1	L.S.	\$	3,000	\$	3,000
4	Reporting	1	L.S.	5	5,000	\$	5,000
		Total, An	inual O&M Years	6 thre	mgli 30:	\$	34,500

Notes;

Costs are in total present value.

* Assumes 50% of existing wells require redevelopment.

ESTIMATED COSTS - GROUNDWATER ALTERNATIVE 4 PERMEABLE REACTIVE BARRIER WITH ENHANCED BIODEGRADATION, MONITORED NATURAL ATTENUATION, AND INSTITUTIONAL CONTROL FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

		Estimated Quantity	Unit		Unit Cost		Total
		2	cant.		0000		101111
Admir	istrative Cost						
1	Administrative Cost to						
	Implement Deed Restrictions	1	L.S.	\$	10,000	\$	10,000
			Sub-Total, Adm	inistrat	ive Cost:	\$	10,000
Pre-D	esign Cost						
1	Geotechnical Investigation	1	L.S.	\$	10,000	\$	10,000
			Sub-Total, P	re-Desi	ign Cost:	\$	10,000
	Capital Costs						
1	PRB Construction						
a.	Insurance, Mobilization/Demobilization	1	L.S.	\$	10,000	\$	10,000
b. 2	PRB Construction	700	L.F.	\$	900	\$	630,000
	In situ treatment - Bldg. Hotspots						
a,	Mobilization/Demobilization	1	L.S.	\$	2,000	\$	2,000
ь.	Install injection points	8	Day	\$	2,000	\$	16,000
с.	Substrate	1	L.S.	\$	10,000	\$	10,000
d.	Application of substrate	1	L.S.	\$	5,000	\$	5,000
3	Install monitoring wells						
a.	Insurance, Mobilization/Demobilization	1	L.S.	\$	5,000	\$	5,000
b.	Overburden	45	V.F.	\$	45	\$	2,025
с.	Bedrock						
) overburden casing	50	V.F.	\$	60	\$	3,000
) bedrock coring	.70	V.F.	\$	60	\$	4,200
d.	Curb Boxes/Bollards	5	Each	\$	150	\$	750
4	Well Development/Redevelopment	40	Hour	\$	100	\$	4,000 *
5	Waste Disposal	1	LS	\$	10,000	\$	10,000
			Sub-Total, Dire	ect Capi	tal Cost:	\$	701,975
India	t Constat Const						
1 <i>maire</i> 1	ct Capital Costs	(0					
2	Oversight of field activities	60	Manday	\$	1,000	\$	60,000
Z	Engineering						
3	(assume 15% of capital cost) Contingency Allowance					\$	105,296
5							
	(assume 20% of capital cost)		Cult Tetal to P		10.	\$	140,395
			Sub-Total, Indired	a Capit	at Costs:	\$	305,691
	Total Ca	nital Cost DI	RB with MNA &	Fula	and Dias	¢	1 007 / / /
	101111 Cu	prim Cost - Pr	CD WITH WINA G	snian	cea 1510;	3	1,027,666

ESTIMATED COSTS - GROUNDWATER ALTERNATIVE 4 PERMEABLE REACTIVE BARRIER WITH ENHANCED BIODEGRADATION, MONITORED NATURAL ATTENUATION, AND INSTITUTIONAL CONTROL FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

		Estimated Quantity	Unit		Unit Cost	Total
Annu	al Operation & Maintenance					
1	Wall replacement	1	L.S.	\$	20,000	\$ 20,000 **
Annua	al Monitoring					
	Years 1 through 5					
1	Hydraulic Monitoring & Sampling	4	Each	\$	5,000	\$ 20,000
2	Sample Analyses	130	Each	\$	300	\$ 39,000
3	Monitoring Well Maintenance & Repair	1	L.S.	\$	3,000	\$ 3,000
4	Reporting	1	L.S.	\$	12,000	\$ 12,000
		Total, Ai	nnal O&M Ye	ears 1 th	rough 5;	\$ 74,000
	Years 6 through 30					
1	Hydraulic Monitoring & Sampling	2	Each	\$	5,000	\$ 10,000
2	Sample Analyses	65	Each	\$	300	\$ 19,500
3	Monitoring Well Maintenance & Repair	1	L.S.	\$	3,000	\$ 3,000
4	Reporting	1	L.S.	\$	6,000	\$ 6,000
		Total, An	uual O&M Yea	urs 6 flur	ough 30:	\$ 38,500

Notes:

Costs are in total present value.

* Assumes 50% of existing wells require redevelopment.

** 1 wall replacement averaged over 30 years.

ESTIMATED COSTS - GROUNDWATER ALTERNATIVE 5 IN-WELL AIR STRIPPING WITH ENHANCED BIODEGRADATION AND INSTITUTIONAL CONTROL FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

		Estimated Quantity	Unit		Unit Cost		Total
Admin	nistrative Cost						
1	Administrative Cost to						
	Implement Deed Restrictions	1	L.S.	\$	10,000	\$	10,000
			Sub-Total, Adm			\$	10,000
Pre-D	esign Cost						
1	Pumping/Pilot Tests	1	L.S.	\$	20,000	\$	20,000
	1 0,	_	Sub-Total, F		,	\$	20,000
Direct	t Capital Costs						
1	Insurance, Mobilization/	1	L.S.	\$	10,000	\$	10,000
-	Demobilization	*	13.0.	ų.	10,000	ψ	10,000
2	Installation of Stripping Wells						
а.	Drilling and development	7	Each	\$	3,500	\$	24,500
b.	Above-Ground Completion	, 7	Each	\$	1,500	\$	10,500
3	Vapor Treatment System		Lacti		1,000	Ψ	10,500
a,	Catalytic Oxidizer	1	L.S.	\$	80,000	\$	80,000
b.	Scrubber	1	L.S.	\$	60,000	\$	60,000
с.	Heat Exchanger	1	L.S.	\$	5,000	ŝ	5,000
d.	Blower/Vacuum	1	L.S.	\$	10,000	\$	10,000
4	Mechanical			•	20,000	*	10,000
a.	Trenching & Piping	600	LF.	\$	60	\$	36,000
b.	In Building	1	L.S.	\$	80,000	\$	80,000
5	Treatment Building	- 1	L.S.	\$	50,000	\$	50,000
6	Electrical	1	L.S.	\$	62,000	\$	62,000
7	Instrumentation	1	L.S.	\$	25,000	ŝ	25,000
8	In situ treatment - Bldg. Hotspots					-	,
a.	Mobilization/Demobilization	1	L.S.	\$	2,000	\$	2,000
b.	Install injection points	8	Day	\$	2,000	\$	16,000
с.	Substrate	1	L.S.	\$	10,000	\$	10,000
d.	Application of substrate	1	L.S.	\$	5,000	\$	5,000
9	Install monitoring wells						
a.	Insurance, Mobilization/Demobilization	1	L.S.	\$	5,000	\$	5,000
b.	Overburden	45	V.F.	\$	45	\$	2,025
с.	Bedrock						•
i	i) overburden casing	50	V.F.	\$	60	\$	3,000
ii	i) bedrock coring	70	V.F.	\$	60	\$	4,200
d.	Curb Boxes/Bollards	5	Each	\$	150	\$	750
10	Well Development/Redevelopment	40	Hour	\$	100	\$	4,000 *
11	Waste Disposal	1	LS	\$	10,000	\$	10,000
			Sub-Total, Dire	ct Capi	tal Cost:	\$	514,975
				,			

ESTIMATED COSTS - GROUNDWATER ALTERNATIVE 5 IN-WELL AIR STRIPPING WITH ENHANCED BIODEGRADATION AND INSTITUTIONAL CONTROL FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

		Estimated Quantity	Unit		Uuit Cost	Total
Indir	ect Capital Costs					
1	Oversight of construction activities	90	Manday	\$	1,000	\$ 90,000
2	Extraction & treatment system startup	1	LS	\$	15,000	\$ 15,000
3	Engineering					
	(assume 15% of capital cost)					\$ 77,246
4	Contingency Allowance					
	(assume 20% of capital cost)					\$ 102,995
		Si	ıb-Total, Indirec	t Capit	al Costs:	\$ 285,241
	Total Capita	l Cost - In-Well S	tripping with	Епћан	ced Bio:	\$ 830,216
Анни	al Operation & Maintenance					
1	Stripping Well Maintenance	7	Each	\$	500	\$ 3,500
2	Treatment System					
	a. Operator	416	Hour	\$	75	\$ 31,200
	b. Utilities	1	L.S.	\$	45,000	\$ 45,000
	c. O&M	1	L.S.	\$	10,000	\$ 10,000
			Total,	Annua	l O&M:	\$ 89,700
Анни	al Monitoring					
	Years 1 through 5					
1	Hydraulic Monitoring & Sampling	4	Each	\$	5,000	\$ 20,000
2	Sample Analyses	110	Each	\$	300	\$ 33,000
3	Monitoring Well Maintenance & Repair	1	L.S.	\$	3,000	\$ 3,000
4	Reporting	1	L.S.	\$	10,000	\$ 10,000
	-	Total, Ai	nnual O&M Yea	urs 1 th	rough 5:	\$ 66,000
	View Citizen 1.20					
4	Years 6 through 30					
1	Hydraulic Monitoring & Sampling	2	Each	\$	5,000	\$ 10,000
2	Sample Analyses	55	Each	\$	300	\$ 16,500
3	Monitoring Well Maintenance & Repair	1	L.S.	\$	3,000	\$ 3,000
4	Reporting	1	L.S.	\$	5,000	\$ 5,000
		Total, An	nual O&M Year	s 6 thr	ough 30:	\$ 34,500

Notes:

Costs are in total present value.

* Assumes 50% of existing wells require redevelopment.

ESTIMATED COSTS - GROUNDWATER ALTERNATIVE 6 HYDRAULIC CONTAINMENT/COLLECTION WITH ON-SITE TREATMENT AND DISPOSAL FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

		Estimated			Unit		
		Quantity	Unit		Cost		Total
Admin	istrative Cost						
1	Administrative Cost to						
	Implement Deed Restrictions	1	L.S.	\$	10,000	\$	10,000
			Sub-Total, Adm				10,000
						•	
Pre-De	esign Cost						
1	Pumping/Pilot Tests	1	L.S.	\$	20,000	\$	20,000
			Sub-Total, I	Pre-Des	ign Cost:	\$	20,000
					0		
Direct	Capital Costs						
1	Insurance, Mobilization/	1	L.S.	\$	10,000	\$	10,000
	Demobilization						
2	Installation of Extraction Wells						
a.	Drilling and development	7	Each	\$	1,500	\$	10,500
b.	Above-Ground Completion	7	Each	\$	1,500	\$	10,500
с.	Pump	7	Each	\$	1,500	\$	10,500
3	Groundwater Treatment System						
a.	Air Stripper	1	L.S.	\$	27,000	\$	27,000
b.	Tanks & pumps	1	L.S.	\$	8,000	\$	8,000
d.	Catalytic Oxidizer	1	L.S.	\$	120,000	\$	120,000
e.	Scrubber	1	L.S.	\$	90,000	\$	90,000
f.	Bag Filters	2	Each	\$	1,500	\$	3,000
4	Mechanical						
a.	Trenching & Piping	600	L.F.	\$	60	\$	36,000
ь.	Treatment systems	1	L.S.	\$	80,000	\$	80,000
5	Treatment Building	1	L.S.	\$	90,000	\$	90,000
6	Electrical	1	L.S.	\$	120,000	\$	120,000
7	Instrumentation	1	L.S.	\$	40,000	\$	40,000
8	Install monitoring wells						
a.	Insurance, Mobilization/Demobilization	1	L.S.	\$	5,000	\$	5,000
Ь.	Overburden	45	V.F.	\$	45	\$	2,025
с.	Bedrock						
	i) overburden casing	50	V,F,	\$	60	\$	3,000
	i) bedrock coring	70	V.F.	\$	60	\$	4,200
d.	Curb Boxes/Bollards	5	Each	\$	150	\$	750
9 10	Well Development/Redevelopment	40	Hour	\$	100	\$	4,000 *
10	Waste Disposal	1	LS	\$	10,000	_\$	10,000
			Sub-Total, Dir	ect Cap	ital Cost:	\$	684,475

ESTIMATED COSTS - GROUNDWATER ALTERNATIVE 6 HYDRAULIC CONTAINMENT/COLLECTION WITH ON-SITE TREATMENT AND DISPOSAL FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

		Estimated Quantity	Unit		Unit Cost		Total
Indired	et Capital Costs						
1	Oversight of construction & well installation & development	90	Day	\$	1,000	\$	90,000
2	Extraction & treatment system startup	1	LS	\$	20,000	\$	20,000
3	Engineering (assume 15% of capital cost)					\$	102,671
4	Contingency Allowance					~	104 005
	(assume 20% of capital cost)	c.	b Total Indian		-I Curta	\$	136,895
		51	ıb-Total, Indire	сі Сарн	al Costs:	\$	349,566
	Total Cap	ital Cost - Hydrai	ılic Containm	ent/Co	llection:	\$	1,064,041
Анниа	l Operation & Maintenance						
1	Extraction Well Maintenance	7	Each	\$	500	\$	3,500
2	Treatment System						
a.	Operator	416	Hour	\$	75	\$	31,200
Ь.	Utilities	1	L.S.	\$	60,000	\$	60,000
с.	Treatment monitoring, repairs,						
	materials & supplies	1	L.S.	\$	15,000	\$	15,000
			Total	, Анниа	al O&M:	\$	109,700
Анша	IMonitoring						
	Years 1 through 5						
1	Hydraulic Monitoring & Sampling	4	Each	\$	5,000	\$	20,000
2	Sample Analyses	110	Each	\$	300	\$	33,000
3	Monitoring Well Maintenance & Repair	1	L.S.	\$	3,000	\$	3,000
4	Reporting	1	L.S.	\$	8,000	\$	8,000
		Total, Annual	Monitoring Ye	ars 1 th	rough 5:	\$	64,000
	Years 6 through 30						
1	Hydraulic Monitoring & Sampling	2	Each	\$	5,000	\$	10,000
2	Sample Analyses	55	Each	\$	300	\$	16,500
3	Monitoring Well Maintenance & Repair	1	L.S.	\$	3,000	\$	3,000
4	Reporting	1	L.S.	s	5,000	\$	5,000
		Total, Annual 1		•	•	ŝ	34,500
			in the second second	150140	angn 50.	Ψ	34,300

Notes:

Costs are in total present value.

* Assumes 50% of existing wells require redevelopment.

**Assumes no additional manpower required.

ESTIMATED COSTS - SURFACE SOIL ALTERNATIVE 2 INSTITUTIONAL CONTROL AND FENCING FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

		Estimated Quantity	Unit		Unit Cost		Total
Adm	inistrative Cost						
1	Administrative Cost to						
	Implement Deed Restrictions	1	L.S.	\$	10,000	\$	10,000
		S	Sub-Total, Adm	inistratia	ve Cost:	\$	10,000
Direc	et Capital Costs						
1	Insurance, Mobilization/ Demobilization	1	L.S.	\$	1,500	\$	1,500
2	Supply & install fencing	300	L.F.	\$	32	<u>\$</u>	9,600
			Sub-Total, Dir	ect Capit	al Cost:	\$	11,100
Indire	ect Capital Costs						
1	Design & Engineering	1	L.S.	\$	5,000	\$	5,000
2	Contingency Allowance						
	(assume 30% of capital cost)					\$	3,330
		Su	b-Total, Indire	ct Capita	l Costs:	\$	8,330
		Total Capital	Cost - Institu	tional C	Control	\$	29,430
Annu	al Operation & Maintenance						
1	Monthly inspections	12	Each	\$	100	\$	1,200
2	Fence replacement (@15 years)	1	L.S.	\$	640	\$	640 *
		Total Annua	al Operation (5 Maint	enance	\$	1,840

Notes:

Costs are in total present value.

*Assumes fencing is replaced twice, averaged over 30 years.

ESTIMATED COSTS - SURFACE SOIL ALTERNATIVE 3 CAPPING WITH INSTITUTIONAL CONTROL FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

		Estimated Quantity	Unit		Unit Cost	,	Total
Admi	nistrative Cost						
1	Administrative Cost to						
	Implement Deed Restrictions	1	L.S.	\$	10,000	\$	10,000
			Sub-Total, Adn	iinistrat	ive Cost:	\$	10,000
Direc	t Capital Costs						
1	Insurance, Mobilization/Demobilization	1	L.S.	\$	2,000	\$	2,000
2	Area preparation (incl. filter fabric)	1	L.S.	\$, 5,000	\$	5,000
3	Supply & place imported backfill	100	c.y.	\$	30	\$	3,000
4	Supply & place topsoil	30	c.y.	\$	35	\$	1,050
5	Seed & vegetate	1	L.S.	\$	500	\$	500
6	Survey	1	L.S.	\$	5,000	\$	5,000
7	Waste Disposal	1	L.S.	\$	5,000	\$	5,000
			Sub-Total, Dir	ect Capi	tal Cost:	\$	21,550
Indir	ect Capital Costs						
1	Design, Engineering, & Reporting	1	LC	ሱ	10.000	ሰ	40.000
2	Contingency Allowance	1	L.S.	\$	10,000	\$	10,000
	(assume 50% of capital cost)					\$	10,775
			Sub-Total, Indire	ct Capit	al Costs:	\$	20,775
	Total Ca	apital Cost - Ca	upping & Institu	itional	Control	\$	52,325
Annu	al Operation & Maintenance						
1	Monthly inspections	12	Each	\$	100	\$	1,200
2	Maintenance & Repair	1	L.S.	\$	500	\$	500
		Total Am	ual Operation d	S Main	tenance	\$	1,700

Notes: Costs are in total present value. Assume area is 80 feet x 30 feet

ESTIMATED COSTS - SURFACE SOIL ALTERNATIVE 4 SURFACE SEDIMENT EXCAVATION & DISPOSAL FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

		Estimated Quantity	Unit		Unit Cost	,	Total
Adm	inistrative Cost						
1	Administrative Cost to						
	Implement Deed Restrictions	1	L.S.	\$	10,000	\$	10,000
			Sub-Total, Admi	inistrati	ve Cost:	\$	10,000
Dire	ct Capital Costs						
	Excavate & Restore (100 c.y.)						
1	Insurance, Mobilization/Eemobilization	1	L.S.	\$	5,000	\$	5,000
2	Excavate & load soil	100	c.y.	\$	30	\$	3,000
4	Supply & place filter fabric	300	yď²	\$	1.20	\$	360
5	Supply & place imported backfill	100	c.y.	\$	30	\$	3,000
6	Supply & place topsoil	30	c.y.	\$	35	\$	1,050
7	Seed & vegetate	1	L.S.	\$	500	\$	500
8	Survey	1	L.S.	\$	5,000	\$	5,000
						\$	17,910
1	Transportation & Disposal (100 c.y.)/170 ton) Transportation and disposal	170	ton	\$	175	\$	29,750 *
			Sub-Total, Dire	ct Capit	al Cost:	\$	47,660
Indin	ect Capital Costs						
1	Design & Engineering						
	(assume 25% of capital cost)					\$	11,915
2	Contingency Allowance						
	(assume 50% of capital cost)					\$	23,830
			Sub-Total, Indirec	t Cavita	l Costs:	\$	35,745
				- 0		4	00,710
		Total Capita	l Cost - Excavati	on & Di	isposal	\$	93,405
Annı	al Operation & Maintenance						
1	Monthly inspections	12	Each	\$	100	\$	1,200
2	Maintenance & Repair	1	L.S.	\$	500	\$	500
							~ <u></u>
		Total An	mual Operation &	r Maint	енансе	\$	1,700

Notes:

Costs are in total present value.

Assume area is 80 feet x 30 feet, excavated to 1 foot bgs.

*Assumes hazardous.

ESTIMATED COSTS - SOIL GAS ALTERNATIVE 2 SUB-SLAB VENTILATION FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

		Estimated Quantity	Unit		Unit Cost		Total
Admi	nistrative Cost						
1	Administrative Cost to						
	Implement Deed Restrictions	1	L.S.	\$	10,000	\$	10,000
		•	Sub-Total, Adm		•	\$	10,000
						Ψ	10,000
Pre-D	esign Cost						
1	Confirmatory Testing	1	L.S.	\$	10,000	\$	10,000
			Sub-Total, I	Pre-Desi	gn Cost:	\$	10,000
Direct	t Capital Costs						
1	Insurance, Mobilization/	1	L.S.	ŕ	5 000	¢	F 000
1	Demobilization	1	L.5.	\$	5,000	\$	5,000
2	Installation of Well Points	6	Each	¢	1 200	¢	7 3 00
3	Treatment System	0	Each	\$	1,200	\$	7,200
a.	SVE Skid	1	L.S.	æ	E 000	æ	E 000
b.	Vapor Carbon System	1	L.S. L.S.	\$	5,000	\$	5,000
4	Mechanical	ł	Ц.Э.	\$	2,000	\$	2,000
a.	Collection Piping	600	L.F.	\$	10	\$	6,000 *
ь.	System Installation	1	L.S.	\$	3,500	\$	3,500
5	Equipment Building	1	L.S.	\$	4,000	\$	4,000
6	Electrical	1	L.S.	\$	4,800	\$	4,800
7	Instrumentation/Controls	1	L.S.	\$	2,000	\$	2,000
8	Waste Disposal	. 1	L.S.	\$	2,000	\$	2,000
	-		Sub-Total, Dire	ect Capi		\$	41,500
r. 1.							
	ct Capital Costs						
1	Oversight of construction	15	Day	\$	1,000	\$	15,000
2	System startup	1	LS	\$	5,000	\$	5,000
3	Design, Engineering, & Reporting	1	LS	\$	10,000	\$	10,000
4	Contingency Allowance						
	(assume 20% of capital cost)					\$	8,300
		9	Sub-Total, Indire	ct Capite	al Costs:	\$	38,300
		Total Capita	l Cost - Sub-Sli	ab Vent	ilation:	\$	99,800
A	November St Maint						
1 1	al Operation & Maintenance						
_	Treatment System						
а. ь	Carbon Utilization	1	L.S.	\$	500	\$	500
Ь.	Utilities	1	L.S.	\$	2,000	\$	2,000
с.	Maintenance & Repairs	1	L.S.	\$	2,000	\$	2,000
			Total,	. Annua	I O&M:	\$	4,500

Notes:

Costs are in total present value.

* Assumes all piping is overhead.

•

ESTIMATED COSTS - SOIL GAS ALTERNATIVE 3 SOIL VAPOR EXTRACTION WITH CARBON TREATMENT FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

		Estimated Quantity	Unit		Unit Cost		Total
Adm	inistrative Cost						
1	Administrative Cost to						
	Implement Deed Restrictions	1	L.S.	\$	10,000	\$	10,000
			Sub-Total, Adm	inistrat	•		10,000
							,
Pre-l	Design Cost						
1	Confirmatory Testing	1	L.S.	\$	10,000	\$	10,000
			Sub-Total, F	Pre-Desi	ign Cost:	\$	10,000
	ct Capital Costs						
1	Insurance, Mobilization/	1	L.S.	\$	5,000	\$	5,000
	Demobilization						
2	Installation of Extraction Wells	9	Each	\$	1,200	\$	10,800
3	Treatment System						
	a. SVE Skid	1	L.S.	\$	15,000	\$	15,000
	1. Vapor Carbon System	1	L.S.	\$	4,000	\$	4,000
4	Mechanical						
	a. Collection Piping	1000	L.F.	\$	10	\$	10,000 *
	o. System Installation	1	L.S.	\$	3,500	\$	3,500
5	Civil/Structural (Building)	1	L.S.	\$	8,000	\$	8,000
6	Electrical	1	L.S.	\$	4,800	\$	4,800
7	Instrumentation/Controls	1	L.S.	\$	4,000	\$	4,000
8	Waste Disposal	1	L.S.	\$	5,000	\$	5,000
			Sub-Total, Dire	ect Capi	tal Cost:	\$	70,100
India	rect Capital Costs						
1	Oversight of construction & well	20	Day	\$	1,000	\$	20.000
-	installation	20	Day	-p	1,000	Φ	20,000
2	Extraction & treatment system startup	1	LS	\$	8,000	\$	8,000
3	Design, Engineering, & Reporting	1	LS	.э \$	10,000	э \$	8,000 10,000
		,	Ľ	φ	10,000	φ	10,000
4	Contingency Allowance						
	(assume 20% of capital cost)					\$	14,020
	* /		Sub-Total, Indired	t Cavit	al Costs:	<u>-</u>	52,020
			,			4	,
		Total Cap	oital Cost - SVE u	nder B	uilding:	\$	142,120
		Total Cap	vital Cost - SVE u	nder B	uilding:	\$	142,120

ESTIMATED COSTS - SOIL GAS ALTERNATIVE 3 SOIL VAPOR EXTRACTION WITH CARBON TREATMENT FEASIBILITY STUDY OLD ERIE CANAL SITE CLYDE, NEW YORK

		Estimated		i	Unit	
		Quantity	Unit		Cost	Total
Annu	al Operation & Maintenance					
1	Treatment System					
a	. Operator	384	Hour	\$	75	\$ 28,800
b	. Carbon Utilization	1	L.S.	\$	2,000	\$ 2,000
с	2. Utilities	1	L.S.	\$	7,000	\$ 7,000
d	. Maintenance & Repairs	1	L.S.	\$	2,000	\$ 2,000
			Total	, Annuai	O&M:	\$ 39,800 **
Annu	al Monitoring					
1	Monitoring & Sampling	12	Each	\$	100	\$ 1,200
2	Sample Analyses	12	Each	\$	350	\$ 4,200
4	Reporting	4	L.S.	\$	1,500	\$ 6,000
			Total, Anni	ual Mon	itoring :	\$ 11,400

Notes:

Costs are in total present value.

* Assumes all piping is overhead.

**Assumes no additional manpower required.

APPENDIX F

REPORT OF BUILDING SURVEY, VISUAL INSPECTION, AND DIAGNOSTIC COMMUNICATION TESTING

5.4. Building survey, visual inspection and diagnostic communication testing

5.4.1. Visual inspection/building survey

The results of the building inspection and building survey indicate that with the exception of a few minor items, the general construction of the structure should not present significant design limitations in the event a remedial measure is required to address the concentration of VOCs under the building.

Features identified that may need to be addressed include the building wall construction and a few localized areas that have the potential to contain asbestos containing material. The building walls are mainly constructed of open-top concrete blocks. The walls may allow vapor entry and will need to be sealed if a sub-slab depressurization system is to be installed.

5.4.2. Diagnostic communication testing results

The results of the diagnostic communication testing were documented on a communication test data form. This documentation also included a qualitative assessment of good, marginal, or poor sub-slab communication.

The qualitative assessment is based on the criteria presented on the following table.

Qualitative communication	Micro-manometer depressurization reading
Good	-0.016" or more wg
Marginal	-0.008" to <-0.016" wg
Poor .	-0.004" to <-0.008" wg
Unacceptable	<-0.004" wg

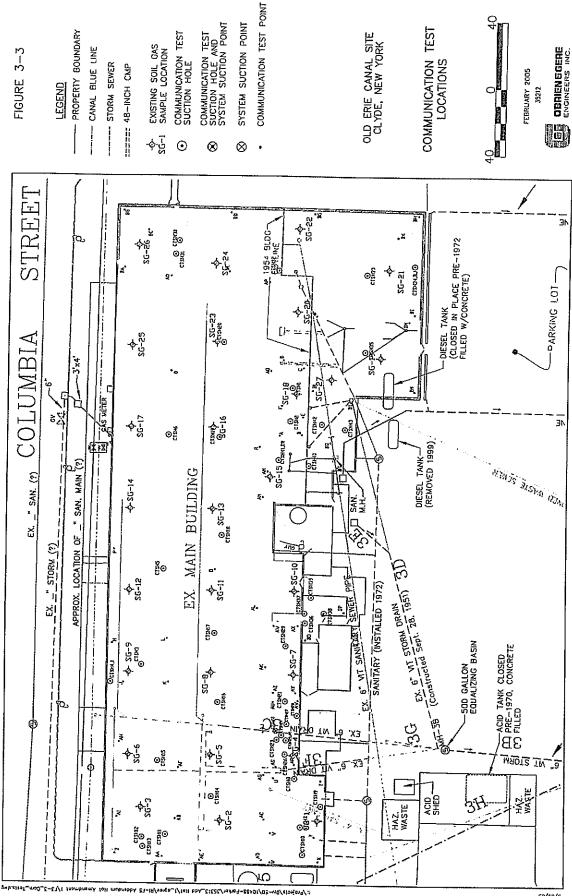
Source: O'Brien & Gere Engineers, Inc.

The communication test results are shown in Table 5-6. The relative quality of communication between vacuum and measurement points is shown graphically on Figure 5-1; arced borders represent approximate vacuum influence boundaries. CTSH holes that could not penetrate the concrete are included to show areas where the concrete thickness is greater than one foot or three feet as noted.

An approximate breakdown of the total building area as it relates to communication results is:

5. Results

48,369 sq.ft.	Acceptable communication
2,919 sq.ft.	Unknown communication
5,938 sq.ft.	Poor communication


As shown above, approximately 85% of the building floor space has acceptable communication, and approximately 10% of the building floor space has poor communication. The areas with poor communication include the packaging area, the cafeteria and office areas. Additional investigation in these areas may result in an increase in the amount of area with acceptable communication.

As shown on the above table, approximately 5% of the building were not evaluated. These areas include the shipping and receiving overhead door area, the product support trailer to the south, the transformer / electrical controls room south of the center of the building, and the restrooms south of the center of the building (south of columns 7D & 8D). These areas either do not support occupancy for extended periods or were not evaluated to avoid drilling into sub-slab utilities. In the case of the product support trailer, a crawlspace exists under the trailer and would not be subject to sub-slab depressurization.

In addition to the diagnostic communication testing, winter heating conditions and the influence of the HVAC system were also evaluated during the diagnostic testing process. To accomplish this, CTSH 5 and CTSH 6 were used to test the influence of the HVAC system. Results are shown in the table below.

Т	est Location	HVAC Off	HVAC On Max Pressure
C	TSH 5	-0.013" w.g.	-0.019" w.g.
C	TSH 6	-0.002" w.g.	-0.004" w.g.

The results of this test indicate that operation of the HVAC system does not significantly influence the differential pressure between the sub-slab and indoor air space.

50/60/5

Table	5-6
-------	-----

				Parker Hann		
			Com	munication	Results	
		Monomet	er Reading (ind	ches w.a.)		
CTSH	CTP	SVacuum Off	Vacuum On	Differential	Smoke	Comments
1	А	-0.002	-0.002	0.000	Into hole	1
	B	-0.002	-0.002	0.000	Into hole	
	С	0.002	-0.042	-0.044	Into hole	······································
	D	0.000	-0.008	-0.008	Into hole	
	E	-0.002	-0.002	0.000	No movement	
2	A	0.000	0.000			
	<u>A</u>	0.000	-0.029	-0.029	Into hole	
	E	0.000	-0.020	-0.020	Into hole	
	CTSH 1	0.000	-0.014 0.000	-0,014	Into hole	
	F	-0.002	-0.000	0.000	No movement	
	•	-0.002	-0.002	0.000	Into hole	Smoke enters well
3			i i		· · · · · · · · · · · · · · · · · · ·	
	Н	0.004	0.004	0.000	Out of hole	
	G	0.001	-0.550	-0.551	Into hole	
	1	0.005	0.004	-0.001	Out of hole	
	J	0.000	-0.117	-0.117	Into hole	
	К	0.000	-0.108	-0.108	Into hole	
	L	-0.009	-0.131	-0.122	Into hole	
4	=CTP					
		0.002	-0.006		Into hole	······································
	H	0.010	-0.012	-0.022	Into hole	
E				· · · · · · · · · · · · · · · · · · ·		
5						
		0.000	-0.073		nto hole	
	M	-0.006	-0.217	· · · · · · · · · · · · · · · · · · ·	nto hole	
	N O	-0.002	-0.067		nto hole	
		-0.043	-0.248		nto hole	
		0.0 10	-0.036	-0.046	nto hole	······································
6 =	CTP N	1	1-	F		· · · · · · · · · · · · · · · · · · ·
	Q	0.010	-0.124	-0.134	nto hal	
	R	0.001	0.001		nto hole	······································
	s	-0.004	-0.192		No movement	
I			<u> </u>	-0.100	nto hole	
7						
	т	0.010	0.010	0.000	Out of hole	
				0.000		
8			i			
	T	0.004	0.000	-0.004	No movement	
	Ü	-0.002	-0.028		nto hole	
9			1	T		Could not drill through concrete.
				l		oodid not ann anough concrete.

Table 5-6 Communication Results.xls

· ----

Та	ble	5-6

			· · · · · · · · · · · · · · · · · · ·	Parker Hann	ifin	
				munication I		
			Com	munication	results	
		Monome	ter Reading (ind	ches w a)	8	
CTSF	I CTP	Vacuum Off	Vacuum On	Differential	Smoke	Comments
1(0					
	V	0.000	-0.563	-0.563	Into hole	
	Ŵ	0.000	-0.419	-0.419	· · · · · · · · · · · · · · · · · · ·	
	X	0.000	-0.002		Into hole	
	Y	0.000	-0.019	-0.002 -0.019	Into hole	
·	- <u> </u>	0.000	-0.019	-0.019	Into hole	
11	Ì					
	·		`			Water encountered
12		1	<u> </u>			
14	Z	0.018	0.040	0.000	<u></u>	
	AA	0.018	0.018	0.000	Out of hole	
		0.020	0.010	-0.010	Out of hole	
13		T				
<u>, , , , , , , , , , , , , , , , , , , </u>	AA	0.020	0.000	0.040		
	Z	0.020	0.002	-0.018	No movement	
	L	0.013	0.001	-0.012	No movement	
14	1	T				
14	AB	0.004				
	AB AC		-0.105		Into hole	
·· · ·		0.007	-0.006	a second state of the seco	Into hole	
	AD AE	0.012	0.006		No movement	
	AE	0.015	0.000		No movement	
	AF	0.001	-0.092		Into hole	····
	AO	0.003	-0.012	-0.015	Into hole	
15						
10						
	AB	0.012	-0.316		Into hole	
	AF	0.003	-0.460		nto hole	
	AH Al	0.004	0.000		No movement	
	Ai	0.010	-0.067	-0.077	nto hole	
271						
16						
	AF	0.000	-0.018		nto hole	······································
	AJ	0.000	-0.022		nto hole	
		-0.006	-0.049		nto hole	
	AK	-0.030	-0.075	-0.045	nto hole	
4-71						
17						
	AK	-0.030	-0.120		nto hole	
	AL	-0.096	-0.278		nto hole	· · · · · · · · · · · · · · · · · · ·
		-0.006	-0.072		nto hole	
	CTSH 5	-0.016	-0.129	-0.113	nto hole	
18					1	
	AL	-0.095	-0.186	-0.091	nto hole	······································
	AM	-0.001	-0.001	1 000.0	lo movement	
	AN	0.000	-0.008	-0.008	nto hole	
	M	-0.008	-0.074		nto hole	

Table 5-6 Communication Results.xls

.

Table	5-6
-------	-----

				Parker Hann munication I		
		Ture and a more than the			-	
TSH	СТР	Monomet	er Reading (ind	ches w.g.)		
ISH			Vacuum On	Differential	Smoke	Comments
19	=CTP S	······				
19	AN	0.000	0.005			
	M	-0.014	-0.025	-0.025	Into hole	
	Q	0.004	-0.351 -0.196	-0.337	Into hole	
	AO	0.004	-0.010	-0.200 -0.010	Into hole	
			-0.010	-0.010	Into hole	
20		1	<u> </u>		·····	
	AO	0.000	-0.010	-0.010	Into hole	
	AP	0.004	-0.004	-0.008	Into hole	Smalka antena wali
	AQ	0.006	-0.034	-0.040	Into hole	Smoke enters well
	Q	0.004	-0.270	-0.274	Into hole	
21		. [1			
	AR	0.002	0.002	0.000	No movement	
	AS	0.000	0.000	·····	No movement	1/2"x3' used in this area
				1	rio nievoment	nz xo used in this area
22			1			Could not drill through concrete.
						could not ann through concrete.
23			1			Could not drill through concrete,
				······································		loodid het dim though concrete.
24					·····	Could not drill through concrete.
						i sente cher enni an edgin contorete.
25				1		Could not drill through concrete.
26						
	AR	0.001	-0.060		nto hole	
	AS	0.000	-0.009		nto hole	
	AT	0.000	-0.021	-0.021	nto hole	Redrilled CTSH 25 with 1/2"x3' bi
27				1		
21						Could not drill through concrete.
28						
20	AU	-0.020				
	AU	-0.020	-0.020		nto hole	
		-0.001	-0.001	0.000	No movement	
29	T					
	AW	-0.066	0.200			
	AX	-0.096	-0.206 -0.197		nto hole	
	AY	-0.030	-0.197		nto hole	·······
	AZ	-0.037	-0.151		nto hole	
				-0.114	nto hole	
30	<u>_</u>					Could not drill through concrete.
JUI						

· •• ·

Table	5-6
-------	-----

				Parker Hann munication I		
					results	
	r	Monomet	er Reading (ind	ches ŵ.g.)		
TSH	СТР	Vacuum Off	Vacuum On	Differential	Smoke	Comments
31						
	BA	0.006	-0.011	-0.017	Into hole	
	BB	0.006	0.006	0.000	No movement	
	BC	0.006	-0.013	-0.019	Into hole	
	BD	0.005	0.002	-0.003	No movement	
	BE	-0.003	-0.069	-0.066	Into hole	
32					<u> </u>	
	BE	0.005	-0.042	-0.047	Into hole	
	BD	0.008	0.000	-0.008	Into hole	
	BF	0.008	-0.037	-0.045	Into hole	
	BG	0.010	0.001	-0.009	No movement	· · · · · · · · · · · · · · · · · · ·
33			I			
	BG	0.008	0.000	-0.008	Into hole	Smoke slightly into hole
	BF	0.006	-0.052	-0.058	Into hole	Childred angruy mito noie
	BH	0.013	0.012	-0.001	No movement	
	BI	0.013	0.003	-0.010	No movement	
	BJ	0.015	0.008	-0.007	Out of hole	
	ВК	0.012	-0.079	-0.091	Into hole	
				······		1
34 =	=CTP BJ					
	BI	0.010	0.009	-0.001	Out of hole	
	BH	0.013	-0.013		Into hole	
						· · · · · · · · · · · · · · · · · · ·
35						
	BL	0.001	0.001	0.000	No movement	
	BM	0.016	0.016	the second se	Out of hole	
	BN	0.006	0.006	0.000	Out of hole	······································
	BF	0.007	0.007	0.000	Out of hole	······
36						Could not drill through concrete.
37						Could not drill through concrete.
0.01						
38						Could not drill through concrete.
0.01						
39						
	BO	-0.017	-0.021		nto hole	
	BP	0.000	0.000	0.000	No movement	Meter jumping from +5 to -5
10						
40						Many control joints need filling
	BQ	0.001	-0.015		nto hole	
	BR	0.001	0.001		Vo movement	

.

Table	5-6
-------	-----

			Com	Parker Hann munication I		
		Monomet	er Reading (ind	ches w.g.)	1	
CTSH	CTP	Vacuum Off	■Vacuum On	Differential	Smoke	Comments
41						
	A	0.000	-0.016	-0.016	Into hole	
	В	0.000	-0.004	-0.004	Into hole	
40		7				
42						Many control joints need filling
	BS	0.004	-0.002	-0.006	Into hole	
	BQ	-0.001	-0.100	-0.099	No movement	
	B	0.000	-0.004	-0.004	Into hole	
	BT	0.004	0.004		No movement	
	BL	0.000	-0.013	-0.013	Into hole	
43		Г — Г				
40	DO	0.000				Many control joints need filling
	BS	0.003	-0.033	-0.036	Into hole	
	BT	0.000	-0.012	-0.012	Into hole	

•

APPENDIX G

SUPPLEMENTAL GROUNDWATER INVESTIGATION SUMMARY REPORT

.

.

FINAL REPORT

Supplemental Ground Water Investigation Summary Report

Old Erie Canal Site Clyde, New York

Parker Hannifin Corporation Cleveland, Ohio

General Electric Company Albany, New York

March 29, 2007

FINAL REPORT

Supplemental Ground Water Investigation Summary Report

> Old Erie Canal Site Clyde, New York

Parker Hannifin Corporation Cleveland, Ohio

General Electric Company Albany, New York

R/h E. 200

Ralph E. Morse, C.P.G., Managing Scientist O'Brien & Gere Engineers, Inc.

March 29, 2007

435 New Karner Road Albany, New York 12205

TABLE OF CONTENTS

List of Tables	.ii
List of Figures	.ii
List of Appendices	.ii
1. Introduction	. 1
1.1. General	. 1
1.2. Project objectives and scope	. 1
2. Supplemental ground water investigation	
2.1. General	2
2.2. Drilling and well installation program	2
2.2.1. Shallow unconsolidated unit drilling procedures	2
2.2.2. Shallow bedrock drilling procedures	3
2.2.3. Well installation	3
2.2.4. Decontamination procedures	4
2.2.5. Well development	4
2.3. Soil and ground water sampling	5
2.4. Water level monitoring	6
2.5. Hydraulic conductivity testing	6
2.6. Handling of Investigation Derived Waste	7
2.4.1. Drill Cuttings	7
2.4.2. Ground Water	7
2.4.3. Decontamination Fluids, Sediment, PPE and Associated Debris	7
3. Geology and hydrogeology	9
3.1. Geologic conditions	9
3.2. Hydrogeologic conditions	9
4. Results1	1
4.1. Soil Sampling Results	1
4.2. Ground Water Sampling Results 1	1
5. Summary1	3
References	5

List of Tables

- I Soil boring summary
- 2 Monitoring well construction details
- 3 Water Level Elevation Data
- 4 Hydraulic conductivity test results
- 5 Soil Sampling Results
- 6 Ground water sampling results for VOCs
- 7 Ground water sampling results for MNA and inorganic parameters
- 8 Ground water field parameter results

List of Figures

- 1 Monitoring well location map
- 2 Cross-section location map
- 3 Cross-section A-A'
- 4 Cross-section B-B'
- 5 Cross-section C-C'
- 6 Top of till contour map
- 7 Top of bedrock contour map
- 8 Overburden unit ground water contour map for November 28, 2006
- 9 Shallow bedrock unit ground water contour map for November 28, 2006

List of Appendices

- A Soil boring logs
- B Monitoring well completion logs
- C Hydraulic conductivity test results
- D Soil sampling laboratory data
- E Ground water sampling laboratory data

1. Introduction

1.1. General

This Supplemental Ground Water Investigation Summary Report (Summary Report) has been developed by O'Brien & Gere on behalf of the Parker Hannifin Corporation (Parker-Hannifin) and the General Electric Company (GE) for the Old Erie Canal Site (Site) in Clyde, New York. This summary report presents the results of additional investigations performed in response to comments of the New York State Department of Environmental Conservation (NYSDEC) dated March 1, 2006, regarding the "Feasibility Study (FS), Old Erie Canal Site, Clyde, New York," dated November 2005. This Supplemental Ground Water Investigation was conducted in accordance with the NYSDEC-approved Supplemental Ground Water Investigation Work Plan prepared by Conestoga-Rovers & Associates dated June 2006. This Work Plan was approved by the NYSDEC in an electronic mail correspondence dated October 16, 2006.

1.2. Project objectives and scope

The objective of the Supplemental Ground Water Investigation was to gather additional data to further define the nature and extent of Site-related chemical presence in the ground water beneath the Site to the extent necessary to complete the FS. The scope of work for this additional investigation is described in the Supplemental Ground Water Investigation Work Plan prepared by Conestoga-Rovers & Associates dated June 2006 and included the following:

- Installation of eleven soil borings, nine permanent monitoring wells and two temporary monitoring wells to further define the nature and extent of ground water impact at the Site. and,
- Completion of one round of ground water sampling following completion of the installation and development of the additional monitoring wells. Samples were collected from all new and existing monitoring wells.
- Collection of one soil sample for laboratory analysis for volatile organic compounds (VOCs).

A complete description of the investigation methodology is included as Section 2.

2. Supplemental ground water investigation

2.1. General

This section describes the procedures followed while performing the tasks associated with the Supplemental Ground Water Investigation. Field investigation procedures were conducted in accordance with the NYSDEC-approved Remedial Investigation (RI) Sampling and Analysis Plan (SAP) prepared by O'Brien & Gere, dated February 2000.

2.2. Drilling and well installation program

To further evaluate the hydrogeologic setting at the Site, a monitoring well installation program was implemented. Between November 2 and November 17, a total of four permanent overburden groundwater monitoring wells, two temporary overburden groundwater monitoring wells and five permanent bedrock groundwater monitoring wells, four shallow and one intermediate, were installed on the Site. The monitoring well locations are shown on Figure 1. Parratt-Wolff, Inc. of East Syracuse, New York preformed the drilling and well installation activities under the supervision of an O'Brien & Gere geologist.

2.2.1. Shallow unconsolidated unit drilling procedures

Soil borings were advanced through the unconsolidated deposits to the top of the glacial till unit using 4¹/₄-inch ID hollow stem auger drilling techniques. Continuous split-barrel soil samples were collected at two foot intervals in accordance with American Society for Testing and Materials (ASTM) Method D-1586 during well installation from depth intervals where no previous soil borings existed or samples collected during previously completed phases of the Site investigation.

Following advancement of the hollow-stem auger to the appropriate sampling depth, the split barrel sampler was lowered to the bottom of the boring and driven into the undisturbed soil using a 140-pound hammer with a 30-in drop. A representative sample of the split-spoon was then transferred to a clear glass container, sealed with aluminum foil, and capped for later headspace analysis with a PID for total VOCs.

Upon recovery, soil samples were classified in the field by a supervising geologist using the Modified Burmister and Unified Classification Systems. In addition to logging the geologic descriptions, observations including soil sample texture, composition, color, consistency, moisture content, sample recovery, and the observance of noticeable odors or stains were recorded by the geologist. Samples with a sustained PID reading above 100 parts per million (ppm) were field screened for the presence of NAPL using UV fluorescence and a soil jar shake test.

Table 1 is a summary of the soil boring information, including ground surface elevations, top of till and top of bedrock data. For detailed information, refer to the soil boring logs presented in Appendix A.

OBRIEN 5 GERE

2.2.2. Shallow bedrock drilling procedures

Shallow bedrock monitoring wells were installed by initially advancing the soil boring to the top of the bedrock unit using 4¼-inch ID hollow stem augers followed by the installation of a 6-inch temporary casing. The borehole was further advanced a minimum of three feet into the bedrock unit, creating a rock socket, by advancing the augers into the top of the weathered zone or by utilizing rotary drilling techniques. The top of bedrock was identified by split-barrel sampler refusal and/or hollow stem auger refusal. At intermediate bedrock monitoring well MW-4C, the rock socket extended 13.0 feet into the top of bedrock to seal off the shallow bedrock zone prior to drilling and installation of the intermediate bedrock well.

A four-inch ID casing was lowered into the borehole and tapped into place to seat the casing into the bedrock socket. A cement-bentonite grout was tremied into the annulus between the outside of the casing and the borehole. As the grout was pumped into the annulus, the tremie pipe was kept within the grout as it was placed so that a continuous annular seal was achieved. The cement grout was allowed to cure overnight. The shallow bedrock wells were drilled within the four-inch ID casing using a 3-%-inch outside diameter (OD) diamond core bit (HX).

Test boring and rock coring logs that describe the subsurface materials encountered in each boring were prepared by the supervising geologist for each of the bedrock wells. Information for these boreholes are presented on the soil boring and core logs in Appendix A.

2.2.3. Well installation

Monitoring wells were constructed of 2-inch ID, flush joint, schedule 40 PVC riser pipe with either a five or ten-foot length of 0.010-in slot PVC well screen. Each new shallow unconsolidated unit monitoring well (MW-13S, MW-14S, MW-15S and MW-16S) has five feet of well screen and was constructed such that the base of the well screen was set just above the top of the glacial till unit. Each new shallow bedrock monitoring well (MW-3B, MW-5B, MW-6B and MW-16B) was completed with ten feet of well screen set from approximately three to thirteen feet below the top of the bedrock surface. Intermediate bedrock monitoring well MW-4C has ten feet of well screen set from approximately 12.7 to 22.7 feet below the top of the bedrock surface. Temporary monitoring wells (TMW-1 and TMW-2) were constructed of either 1-inch or 2-inch ID, flush joint, Schedule 40 PVC riser pipe with a two foot length of 0.010-inch slot well screen set just above the top of the glacial till unit.

A threaded PVC bottom plug was installed at the base of each ground water monitoring well and a vented, non-threaded, locking J-Plug was installed at the top of each riser pipe. A designated measuring point was notched into the top of the PVC riser pipe in each well to provide a permanent reference point for subsequent total depth and depth to water measurements.

After installing the PVC well materials within each borehole, sand was gradually introduced inside the augers to fill the annular space between the well screen and the borehole. The sand pack extended from the bottom of the boring to approximately two-feet above the top of the screen. The sand pack consists of a clean, well-graded, silica sand with grain size distribution matched to the slot size of the screen. A Morie Grade 0 sand was used.

In the permanent monitoring wells, a bentonite seal was placed above the sand pack to form a seal at least two feet thick. A cement-bentonite grout extended from the top of the bentonite seal to the ground surface. The grout material consisted of Type I Portland cement mixed with either a

powdered or granular bentonite prepared in accordance with ASTM D 5092-90. The grout was placed via a tremie pipe that was kept within the grout as it was placed so that a continuous annular seal was achieved. Each of the temporary monitoring wells were backfilled with overburden soils from the top of the sand pack to ground surface.

In most areas, it was necessary to provide flush mounted casings on the monitoring wells. Monitoring wells MW-6B, MW-13S, MW-14S and MW-15S have a steel casing equipped with a locking cap placed over the monitoring well. The protective casing extended at least two feet below ground surface (bgs) and was cemented in place. The shallow bedrock monitoring wells have a lockable cap installed on top of the four-inch casing grouted into place initially. Table 2 is a summary of the monitoring well construction and survey data, including ground surface and measuring point elevations, screened intervals, and sand pack intervals. For detailed information, refer to the well completion logs provided in Appendix B.

2.2.4. Decontamination procedures

During the drilling program, decontamination procedures as described in the SAP were followed so that potential contaminants were not introduced into the borehole or transferred across the Site. A temporary decontamination pad was constructed at a location approved by Parker-Hannifin. Prior to drilling the first boring, the equipment used for drilling and well installation was steam cleaned to remove possible contaminants that may have been encountered during mobilization of drilling equipment to the Site. Equipment which came into contact with Site soil, as well as drilling tools, augers, drilling rod, hoses, and the rear of the drill rig underwent the initial steam cleaning process. While working at the Site, all drilling equipment coming in contact with soil was decontaminated between drilling locations. At the conclusion of the drilling program, the drilling equipment was decontaminated a final time prior to leaving the Site.

All well construction materials were transported to the Site in factory-sealed plastic. If well construction materials were not sealed, they were decontaminated and maintained in plastic sheeting on-site.

The cleaning process involved the use of a high-pressure steam cleaner. Potable water was used for decontamination and drilling procedures. Decontamination water was collected and stored for subsequent characterization and off-site disposal in accordance with the SAP.

2.2.5. Well development

Following the completion of the monitoring well installation program, each monitoring well was developed prior to ground water sampling. Each newly-constructed monitoring well was developed to:

- Remove fine-grained materials from the sand pack and formation;
- Reduce the turbidity of ground water samples; and
- Increase the yield of the well to ensure a sufficient volume of water was available during ground water sampling.

The monitoring wells were developed as soon as possible, but not less than 24 hours after installation. All ground water and solids produced during well development were managed as described in the SAP. The wells were developed using the procedures presented in the SAP.

Well development included the removal of ground water from the well to remove residual drilling materials and establish an effective hydraulic connection between the screened interval and the formation. The goals for development was to obtain ground water in which the pH, temperature and specific conductivity had stabilized and exhibited a turbidity of less than or equal to 50 Nephelometric Turbidity Units (NTUs). Independent of the field parameters, a minimum of five well volumes was removed during well development. Due to the required management of Site ground water, if the aforementioned field parameters could not be obtained, well development continued until an amount of ground water equivalent to ten well volumes was removed.

2.3. Soil and ground water sampling

As requested by NYSDEC, one soil sample was collected from boring MW-6B using an encore sampler. The sample was collected from the unsaturated zone from a depth of four to six feet below grade and submitted to the laboratory for VOC analysis using USEPA SW-846 8260B.

Ground water samples were collected between November 28 and December 7, 2006 from each of the accessible monitoring wells in accordance with the RI SAP. Prior to the collection of ground water samples, static water levels were measured to the nearest 0.01-ft in each monitoring well. Care was taken to disturb only the upper portion of the water column to avoid re-suspending settled solids in the wells. Water level measurements were performed as described in Section 2.4.

Ground water samples were collected using low-flow well purging techniques in accordance with the RI SAP. The ground water samples were analyzed for VOCs using USEPA SW-846 8260B. In addition, the following natural attenuation parameters were also analyzed: methane, ethane, ethene, dissolved organic carbon, alkalinity, chloride, nitrate, nitrite, nitrogen, sodium, sulfate and sulfide. The following field parameters were measured at the time of sample collection and recorded on the field data sheets: iron II (Fe+2); redox potential; temperature; turbidity; dissolved oxygen; and, pH. New nitrile gloves were donned prior to collection of each ground water sample. Chain-of-custody documentation was maintained daily following procedures outlined in the NYSDEC-approved SAP.

The purge water was transferred from each well in 55-gallon steel drums and subsequently containerized in a 1000-gallon polyethylene tank and staged at the Site. The sample containers were labeled with the sample identification, date, time, project identification, and required laboratory analysis. The same information was recorded on the field data sheets. Each ground water sample was then placed in a cooler containing wet ice immediately after sampling.

The ground water samples were submitted to Accutest Laboratories of Dayton New Jersey for analysis. Field QA/QC procedures included the collection of blind field duplicate and MS/MSD samples at a rate of one per twenty environmental samples. Trip blanks were included with each cooler that contained samples for VOC analysis.

2.4. Water level monitoring

As discussed above, a synoptic water level round was collected from each of the Site's monitoring wells and staff gauges on November 28, 2006 prior to the ground water sampling event. The water level elevation data are presented in Table 3.

Water level measurements were obtained with an electronic water level indicator. The electronic water level measurement method involves lowering a probe into a well, which, upon contact with the water, completes an electric circuit. At the instant the circuit is closed, the water level indicator provides an audible and/or visual alarm, which indicates that the water has been contacted. The depth to water was measured to the nearest 0.01 foot, using the marked measuring point on the monitoring well riser pipe or casing as a reference. Depth to water measurements were recorded on the field form. Nitrile gloves were worn during water level measurement activities.

2.5. Hydraulic conductivity testing

In-situ hydraulic conductivity tests were performed on the newly installed monitoring wells to estimate the hydraulic conductivity of the geologic materials immediately surrounding each well. These tests, commonly referred to as slug tests, involved monitoring the recovery of water levels toward an equilibrium level after an initial perturbation. The perturbation was either a sudden rise or fall in the water level that corresponded to either the addition or removal of a physical slug respectively. During the slug test, either a five foot inert rod or a volume of deionized water was rapidly introduced into the well causing the water level to rise (falling head test). During a rising head test, a five foot inert rod was rapidly removed from the well causing the water level to drop.

Prior to conducting the tests, background water levels were collected manually and digitally using an In-Situ, Inc. mini-troll down-hole pressure transducer equipped with a data logger. The instruments were lowered into the well five to ten feet below the ground water surface and secured by attaching the transducer cable to the well casing using a stainless steel clamp. Since the addition of the data logger displaced water in the 2-in diameter monitoring wells, the water level in each well was allowed to re-equilibrate to static conditions prior to starting the test. Once the ground water recovered to the pre-disturbed level, the data logger was programmed to record the water levels on a logarithmic scale. The hydraulic conductivity tests were not considered complete until a minimum of 90% recovery was achieved. Equipment lowered into the monitoring wells was decontaminated prior to each test using a phosphate-free detergent, distilled water wash and a distilled water rinse.

Interpretation of the slug test data was performed using the Bouwer and Rice (1976) method. The principle behind the Bouwer and Rice method is that a plot of recovery data (So-St) versus time (t) theoretically follows a straight line on a semi-log plot. Horizontal hydraulic conductivity (K) is then calculated as follows:

$$K = [ln(so)-ln(st)]r2celn(re/r w)/2Lt$$

where:

К	=	hydraulic conductivity;
L	=	length of well screen/sand pack (intake);
t	=	time since initial displacement;

so	=	initial displacement in well;
st	=	displacement at time t;
re	=	equivalent radius over which head loss occurs;
rc	=	well casing radius;
rw	=	well radius (borehole); and,

 $rce = [rc2+n(rw2-rc2)]\frac{1}{2}$

The Bouwer and Rice method assumes that the aquifer being evaluated is unconfined, homogeneous and isotropic. This method is most appropriate for shallow wells screened in well sorted sand below the water table, but it is also applicable to aquifers that are not in strict accordance with the assumptions stated above. Additionally, application of the above equations to bedrock wells assumes that sufficient joints and bedding planes intersect the screened interval so as to behave like a porous medium with Darcian flow. Bouwer and Rice recommend computing an equivalent casing radius (rce) to correct for the porosity of the gravel pack when the height of the static water column in the well is less than the screen length.

Table 4 summarizes the results of the hydraulic conductivity testing program. Additional details on data acquisition and analysis are presented in Appendix C.

2.6. Handling of Investigation Derived Waste

The supplemental RI activities produced Investigation Derived Materials (IDM) that required appropriate management procedures. The various IDM included drill cuttings, ground water, drilling and sampling equipment decontamination fluids, sediments, and personnel protective equipment (PPE). The handling procedures for the IDM are discussed below.

2.4.1. Drill Cuttings

Drill cuttings derived from the overburden and bedrock drilling were placed in 55-gallons steel drums. Each drum was labeled with the appropriate borehole identification(s), the dates on which the cuttings were generated, and a description of the type of waste (i.e., drill cuttings). In accordance with the NYSDEC-approved RI/FS Work Plan, Parker-Hannifin arranged for or will be arranging for the off-site disposal of the drill cuttings at a permitted facility.

2.4.2. Ground Water

Ground water produced during purging and sampling activities was containerized in 1000-gallon polyethylene tank located on-site. Based on the analytical results from the investigation, Parker-Hannifin arranged for or will be arranging for the final disposal of the ground water in accordance with the NYSDEC-approved RI/FS Work Plan.

2.4.3. Decontamination Fluids, Sediment, PPE and Associated Debris

Liquid/solid mixtures generated during the field investigation were temporarily stored in 55-gallon drums until solids had settled. The water was then transferred into the 1000-gallon polyethylene tank located on Site. The settled solids were also transferred into drums containing similar materials, labeled and temporarily stored on Site. In accordance with the NYSDEC-approved RI/FS Work Plan, Parker-Hannifin arranged for or will be arranging for the characterization and subsequent off-site disposal of this IDM.

Used PPE and other associated debris (polyethylene sheeting, sample tubing, etc.) were containerized in 55-gallon steel drums, labeled and temporarily stored on-site. In accordance with NYSDEC-approved RI/FS Work Plan, Parker-Hannifin performed characterization and subsequent off-site disposal of these materials.

3. Geology and hydrogeology

3.1. Geologic conditions

With the exception of fill, unconsolidated deposits of glacial origin overlie the bedrock throughout most of the Site. Based on the soil borings completed during the RI and subsequent supplemental investigations, the combined maximum thickness of the unconsolidated deposits is approximately 31 feet. Three types of unconsolidated deposits have been identified at the Site. These consist of, in descending order: artificial fill material, glaciofluvial channel deposits, and glacial till. The fill material was encountered across the majority of the Site and ranged in thickness from 0.5 to 9 feet. The maximum thickness of the glaciofluvial deposits is 23 feet at location GP-36 which is located near the southern portion of the Site and appears to pinch-out in the area surrounding the manufacturing building and in the southeastern parking lot. The thickness of the glacial till deposit ranges from 3.5 to 27.2 feet across the majority of the Site and is thickest at location MW-7B which is located west of the former Barge Canal turnaround. The glacial till unit appears to be absent beneath the glaciofluvial channel at locations MW-8S, GP-13, GP-25 and GP-34, which are located along the western portion of the Site. The glacial till unit is observed again along the westernmost property boundary. The depths to bedrock observed during the RI and subsequent supplemental investigations ranged from 16.5 to 31 feet bgs.

The three geologic cross-sections previously presented in the RI Report (O'Brien & Gere, November 24, 2003) have been updated based on the results of the supplemental investigations performed at the Site to illustrate the relationship between the unconsolidated glacial deposits and the underlying bedrock. The location and orientation of the cross-sections are shown on Figure 2. Figure 3 illustrates cross-section (A-A') starting at well pair MW-12, located on the south side of the Clyde River, extending north to monitoring well MW-8S located northwest of the manufacturing building. Figure 4 shows cross-section (B-B') starting at soil boring GP-42/monitoring well MW-9S, located in the northwestern portion of the Site, running eastward to monitoring well MW-2S/2B located just east of the manufacturing building. Cross-section (C-C') starting at soil boring GP-35/monitoring well pair MW-5, located in the southwestern portion of the Site, continuing eastward along the southern property line to well EMW-5 is illustrated on Figure 5.

A summary of the stratigraphic information generated during the RI and supplemental investigations at the Site is presented in Table 1. The top of low permeability unit and the top of bedrock unit contour maps have been updated to include the additional stratigraphic information and are presented as Figures 6 and 7, respectively.

3.2. Hydrogeologic conditions

A conceptual hydrogeologic model for the Site has been developed and includes two hydrogeologic units: the shallow unconsolidated unit and the shallow bedrock unit. The shallow unconsolidated unit is composed of fill material and glaciofluvial deposits and has a thickness ranging from 1.0 to 29.2 feet. The shallow bedrock hydrogeologic unit at the Site is part of the Syracuse-Camillus Formation and consists of interbedded shale and limestone. The depth to the top of the shallow bedrock hydrogeologic unit ranges from 16.5 to 31 feet bgs.

As discussed in Section 2.4, prior to the ground water sampling event, ground water and surface water elevation data were obtained from all accessible monitoring locations. Based on the ground water elevation data obtained on November 28, 2006, contour maps of the potentiometric surface in the overburden and shallow bedrock units have been prepared to confirm the general ground water flow direction at the Site. As shown on Figure 8, ground water flow in the western and central portions of the Site is generally to the west toward a buried channel deposit and to the south toward the Clyde River. Ground water in the southeastern margin of the Site flows to the south-southwest toward the Clyde River and does not appear to be influenced by the buried channel. As shown on Figure 9, in the areas north of the Clyde River, ground water flow within the shallow bedrock unit is generally to the southwest and occurs principally through secondary porosity features such as fractures, joints and bedding planes. South of the Clyde River, shallow bedrock ground water flow is generally to the northeast. These ground water flow directions are consistent with historical data presented in previous reports.

4. Results

The analytical results for the soil sample and ground water samples collected during this supplemental investigation are presented in the following sections.

4.1. Soil Sampling Results

As discussed in Section 2.3, one soil sample, designated as SB6B(4-6), was collected from boring MW-6B using an encore sampler on November 15, 2006. The sample was collected from the unsaturated zone at a depth of 4 to 6 feet below grade and submitted to the laboratory for VOC analysis.

Table 5 presents the results of the laboratory analysis of soil sample SB6B(4-6). As shown on Table 5, VOCs detected in this sample include cis-1,2-DCE at an estimated concentration of 83.0J ug/kg, and toluene at a concentration of 71.5 ug/kg. No other VOCs were detected in the sample obtained from this location. The laboratory reporting forms for the soil analyses are provided in Appendix D.

4.2. Ground Water Sampling Results

Ground water samples were collected from twenty-two overburden monitoring wells (twenty permanent and two temporary wells) and eleven bedrock monitoring wells between November 28 and December 7, 2006 and analyzed for VOCs using USEPA Method SW-846 8260B. Ground water samples were also collected and analyzed for the following natural attenuation parameters and inorganic parameters: methane; ethane; ethene; dissolved organic carbon; alkalinity; chloride; nitrate; nitrite; nitrogen; sodium; sulfate; and, sulfide. The following field parameters were also measured at the time of sample collection and recorded on the field data sheets: iron II (Fe+2); redox potential; temperature; turbidity; dissolved oxygen; and, pH.

The results of the laboratory analyzed ground water samples for VOCs and MNA and inorganic parameters are presented on Tables 6 and 7, respectively. The field parameters measured at the time of sample collection are summarized on Table 8. Laboratory reporting forms from the ground water quality analyses are provided in Appendix E.

The results of the ground water sampling conducted at the Site confirm the findings of the RI and support the conclusion that the extent of the dissolved phase VOC contamination has been defined. As shown on Table 6, very low or non-detectable concentrations of VOCs were detected in ground water samples obtained from background locations east of the manufacturing building (MW-2S, MW-2B, TMW-1 and TMW-2), in the southeastern portion of the Site (EMW-3, EMW-5 and MW-3S), in the northwestern portion of the Site (MW-8S and MW-9S) and in the area located west and southwest of the barge canal turnaround (MW-5S, MW-5B, MW-7S and MW-7B). In addition, no contaminants of concern were detected in any of the samples collected from the wells located on the south side of the Clyde River (MW-10B, MW-11S, MW-11B, MW-12S and MW-12B).

Very low concentrations of VOCs were detected in ground water samples obtained from wells located in the area south of the manufacturing building (MW-1, MW-16S and MW-16B). Elevated concentrations of VOCs occur in the areas west of the manufacturing building (MW-1S and MW-13S) and southwest of the manufacturing building, near the acid shed and the former acid tank (MW-

6S and MW-6B), and the filled in portion of the former barge turnaround (MW-14S and MW-15S). Elevated concentrations of VOCs were also detected in shallow bedrock wells MW-3B and MW-4B, located just south of the former barge canal. The vertical extent of VOC concentrations in bedrock were also defined. As shown on Table 6, no contaminants of concern were detected in the ground water sample collected from intermediate bedrock well MW-4C. The highest VOC concentrations were generally detected in the overburden located in the vicinity of the former barge turnaround and in shallow bedrock near the confluence with the Old Erie Canal.

The VOCs most often detected at the Site are cis-1,2-DCE and vinyl chloride. Given that cis-1,2-DCE and vinyl chloride are known biodegradation products of TCE, this data indicates that natural attenuation is actively occurring at the Site. In addition, the concentrations of these degradation products are typically much greater than those of TCE indicating that much of the parent product has already been biodegraded.

5. Summary

The Old Erie Canal Site supplemental ground water investigation was implemented to address comments to the FS Report for the Old Erie Canal Site provided by the NYSDEC in a March 1, 2006 letter.

The results of the soil sampling conducted at location MW-6B indicate that low level concentrations of VOCs were detected in shallow unconsolidated soils. However, these data and the results of DNAPL field screening performed during the drilling program indicate that no DNAPL source areas were identified.

The results of the ground water sampling conducted at the Site are consistent with historical sampling events indicating that the primary VOCs detected at the Site are TCE and its degradation products (i.e., cis-1,2-DCE and vinyl chloride), toluene, and xylenes. Other VOCs detected during the RI and supplemental investigations were generally detected at the same locations as the primary VOCs and at lower concentrations.

The results of the supplemental investigation support the conclusions of the RI that the extent of the dissolved phase VOC contamination has been defined and that the lateral migration of VOCs at the Site appears to be controlled by the surface topography of the glacial till unit. Very low or non-detectable concentrations of VOCs were detected in ground water samples obtained from background locations east of the manufacturing building, in the southeastern portion of the Site, in the northwestern portion of the Site and in the area located west and southwest of the barge canal turnaround. In addition, no contaminants of concern were detected in any of the samples collected from the wells located on the south side of the Clyde River.

Very low concentrations of VOCs were detected in ground water samples obtained from wells located in the area south of the manufacturing building. Elevated concentrations of VOCs occur in the areas west and southwest of the manufacturing building, near the acid shed and the former acid tank area and in the filled in portion of the former barge turnaround. Elevated concentrations of VOCs were also detected in two of the three shallow bedrock wells located just south of the former barge canal. The vertical extent of VOCs in bedrock were defined based on the ground water results from intermediate bedrock well MW-4C in which no contaminants of concern were detected. Consistent with historical results, the highest VOC concentrations are observed in the vicinity of the former barge turnaround and its confluence with the Old Erie Canal.

The results of the MNA and inorganic parameter analyses continue to indicate that natural processes are attenuating the VOCs in groundwater at the Site. The primary pathway for natural attenuation appears to be biodegradation. The biological processes involve the transformation of higher chlorinated organic compounds to less chlorinated organic compounds (daughter products) and ultimately to innocuous end products (e.g. ethane and ethene) via reductive dechlorination. In addition, physical processes including advection, dispersion, sorption, and volatilization may also be contributing to the overall attenuation.

Evidence of microbial mediated degradation is supported by the presence of both daughter products and end products. TCE concentrations at the Site are generally low in comparison to the concentrations of DCE and vinyl chloride and ethene and ethane are present in groundwater at the Site.

Geochemical evidence that indicates subsurface conditions amenable for microbially mediated degradation include the following:

- An abundance of dissolved TOC that can be utilized as a carbon source (electron donor) by microbes.
- Depleted dissolved oxygen and nitrate levels and elevated ferrous iron concentrations, indicating that anaerobic conditions exist across the Site.
- The presence of methane, suggesting that highly reducing conditions are present, supportive of the reductive dechlorination of TCE and its daughter compounds to innocuous end products.

References

- Conestoga-Rovers & Associates (CRA). 2005. Feasibility Study. Old Erie Canal Site, Clyde, New York. Prepared for: Parker Hannifin Corporation, Cleveland, Ohio and General Electric Company, Albany, New York.
- Conestoga-Rovers & Associates (CRA). 2006. Draft Supplemental Ground Water Investigation Work Plan. Old Erie Canal Site, Clyde, New York. Prepared for: Parker Hannifin Corporation, Cleveland, Ohio and General Electric Company, Albany, New York.
- O'Brien & Gere Engineers, Inc. (O'Brien & Gere). 2004. Remedial Investigation/Feasibility Study Work Plan Addendum No.1. Old Erie Canal Site, Clyde, New York. Prepared for: Parker Hannifin Corporation, Cleveland, Ohio and General Electric Company, Albany, New York.
- O'Brien & Gere Engineers, Inc. (O'Brien & Gere). 2001. Remedial Investigation/Feasibility Study Work Plan. Old Erie Canal Site, Clyde, New York. Prepared for: Parker Hannifin Corporation, Cleveland, Ohio and General Electric Company, Albany, New York. December 16, 1999; Last Revised November 27, 2001.
- O'Brien & Gere Engineers, Inc. (O'Brien & Gere). 2003. Remedial Investigation Report. Old Erie Canal Site, Clyde, New York. Prepared for: Parker Hannifin Corporation, Cleveland, Ohio and General Electric Company, Albany, New York. November 24. 2003.

TABLES

•

Old Erie Canal Site Clyde, New York

Boring No.	Date Completed	Ground Elevation	Boring Depth	End of Boring Elevation	Depth To Glacial Till	Top of Glacial Till Elevation	Depth To Bedrock	Top of Bedrock Elevation
MW-1S	05/30/02	394.6	8.0	386.6	7.0	387.6		
MW-2S	05/21/02	398.5	11.7	386.8				
MW-2B	05/29/02	398.4	28.5	369.9	12.3	386.1	16.5	381.9
MW-3S	05/21/02	394.0	11.5	382.5	10.5	383.5		
MW-3B	11/16/06	394.2	39.0	355.2	10.5	383.7	25.0	369.2
MW-4S	05/22/02	393.3	20.3	373.0	20.0	373.3		
MW-4B	05/28/02	393.3	38.9	354.4	20.0	373.3	26.0	367.3
MW-4C	11/17/06	393.3	50.0	343.3	20.0	373.3	26.0	367.3
MW-5S	05/21/02	393.1	11.4	381.7	10.0	383.1		
MW-5B	11/16/06	393.2	39.0	354.2	10.0	383.2	25.9	. 367.3
MW-6S	05/30/02	395.0	15.0	380.0	15.0	380.0		
MW-6B	11/15/06	395.1	39.0	356.1	10.0	385.1	25.9	369.2
MW-7S	05/24/02	394.9	17.0	377.9	16.3	378.6		
MW-7B	05/28/02	397.4	39.5	357.9	1.0	396.4	28.2	369.2
MW-8S	05/29/02	390.3	22.0	368.3			21.5	368.8
MW-9S	05/22/02	391.8	17.5	374.3	17.0	374.8		
MW-10B	11/25/02	391.2	42.7	348.5	17.5	373.7	29.0	362.2
MW-11S	11/20/02	390.4	12.0	378.4	11.0	379.4		
MW-11B	11/25/02	389.8	44.0	345.8	11.0	378.8	30.8	359.0
MW-12S	11/22/02	391.1	10.0	381.1	10.0	381.1		
MW-12B	11/22/02	391.4	45.0	346.4	10.0	381.4	31.0	360.4
MW-13S	11/02/06	389.7	20.0	369.7	17.5	372.2		
MW-14S	11/06/06	389.3	22.5	366.8	22.5	366.8		
MW-15S	11/07/06	388.4	14.0	374.4	14.0	374.4	707 FD 407 498	
MW-16S	11/02/06	398.0	10.0	388.0	4.0	394.0		
MW-16B	11/15/06	398.2	44.0	354.2	9.0	389.2	31.0	367.2
EMW-1	10/14/94	394.6	32.0	362.6	10.0	384.6	25.2	369.4
EMW-2	10/17/94	395.0	12.0	383.0	8.0	387.0		
EMW-3	10/14/94	394.2	12.3	381.9	****			
EMW-4	10/18/94	392.9	12.0	380.9	8.5	384.4		
EMW-5	10/17/94	393.0	12.0	381.0	10.5	382.5		

Notes:

1. All depths in feet below ground surface.

2. All elevations in feet above mean sea level and measured in NGVD 1929.

3. NE indicates not encountered.

Old Erie Canal Site Clyde, New York

Boring No.	Date Completed	Ground Elevation	Boring Depth	End of Boring Elevation	Depth To Glacial Till	Top of Glacial Till Elevation	Depth To Bedrock	Top of Bedrock Elevation
GP-1	04/24/02	397.6	6.5	391.1	5.0	392.6		
GP-2	04/24/02	397.7	6.5	391.2	6.3	391.5		
GP-3	04/24/02	397.7	4.0	393.7	3.5	394.2		
GP-4	04/23/02	391.7	18.0	373.7	17.0	374.7		
GP-5	04/24/02	393.7	8.0	385.7	7.0	386.7		
GP-6	04/24/02	396.2	6.0	390.2	5.0	391.2		
GP-7	04/24/02	397.9	4.0	393.9	3.5	394.4		
GP-8	04/23/02	389.5	10.5	379.0	9.8	379.7		
GP-9	04/25/02	395.6	9.0	386.6	6.0	389.6		
GP-10	04/23/02	389.7	18.5	371.2	17.5	372.2		
GP-11	04/26/02	390.5	10.0	380.5	7.5	383.0		
GP-12	04/25/02	396.0	11.0	385.0	7.0	389.0		
GP-13	04/29/02	389.3	20.0	369.3			19.0	370.3
GP-14	04/25/02	394.6	13.5	381.1	10.5	384.1		
GP-15	04/24/02	396.8	11.0	385.8	7.0	389.8		
GP-16	04/24/02	398.2	12.0	386.2	7.8	390.4		
GP-17	04/24/02	398.0	4.0	394.0	3.5	394.5		
GP-18	04/23/02	391.1	13.0	378.1	12.0	379.1		
GP-19	04/29/02	389.3	20.0	369.3	15.5	373.8	19.0	370.3
GP-20	05/01/02	395.0	16.0	379.0	15.0	380.0		
GP-21	04/25/02	397.4	10.5	386.9	6.0	391.4		
GP-22	04/24/02	397.8	4.0	393.8	3.8	394.0		
GP-23	04/24/02	398.1	8.0	390.1	7.0	391.1		
GP-24	04/23/02	393.7	20.0	373.7	19.0	374.7		
GP-25	04/26/02	389.2	22.0	367.2			21.0	368.2
GP-26	04/26/02	395.4	16.0	379.4	13.0	382.4		
GP-27	04/25/02	396.6	10.0	386.6	6.5	390.1		
GP-28	04/30/02	394.2	24.0	370.2	22.5	371.7		
GP-29	04/25/02	395.8	12.0	383.8	9.5	386.3		
GP-30	04/25/02	396.9	8.0	388.9	3.7	393.2		
GP-31	04/23/02	394.9	17.0	377.9	16.5	378.4		
GP-32	04/23/02	389.4	22.0	367.4	21.5	367.9		
GP-33	04/30/02	394.4	16.0	378.4	15.0	379.4		
GP-34	05/01/02	395.2	29.2	366.0			29.2	366.0
GP-35	05/22/02	393.3	11.0	382.3	10.0	383.3		

Notes:

1. All depths in feet below ground surface.

2. All elevations in feet above mean sea level and measured in NGVD 1929.

3. NE indicates not encountered.

Old Erie Canal Site Clyde, New York

Boring No.	Date Completed	Ground Elevation	Boring Depth	End of Boring Elevation	Depth To Glacial Till	Top of Glacial Till Elevation	Depth To Bedrock	Top of Bedrock Elevation
GP-36	04/22/02	393.2	24.0	369.2	23.0	370.2		
GP-37	04/22/02	393.8	20.0	373.8	16.5	377.3		
GP-38	04/22/02	394.1	12.0	382.1	11.0	383.1		
GP-39	04/22/02	393.5	12.0	381.5	10,2	383.3		
GP-40	05/01/02	398.2	7.0	391.2	3.0	395.2		
GP-41	05/01/02	398.1	4.0	394.1	2.0	396.1		
GP-42	05/01/02	391.8	20.0	371.8	17.0	374.8		
GP-43	05/02/02	391.0	20.5	370.5			20.5	370.5
GP-44	05/02/02	395.4	8.0	387.4	3.0	392.4		
GP-45	11/19/02	398.0	9.0	389.0	8.6	389.4		
GP-46	11/19/02	398.1	8.5	389.6	8.5	389.6		
GP-47	11/19/02	398.5	5.0	393.5	4.6	393.9		
GP-48	11/20/02	396.2	10.2	386.0	6.5	389.7		
GP-49	11/19/02	397.9	10.5	387.4	5.0	392.9		
GP-50	11/19/02	398.3	6.0	392.3	6.0	392.3		
GP-51	11/20/02	396.2	10.1	386.1	8.0	388.2		
GP-52	11/19/02	397.9	10.5	387.4	4.0	393.9		
GP-53	11/19/02	398.1	7.0	391.1	7.0	391.1		
GP-54	11/19/02	398.0	6.0	392.0	6.0	392.0		
GP-55	11/19/02	398.1	8.2	389.9	4.7	393.4		
GP-56	11/20/02	396.2	12.6	383.6	9.5	386.7		
GP-57	11/20/02	397.7	6.0	391.7	4.0	393.7		~~~=
GP-58	11/20/02	398.2	7.5	390.7	5.2	393.0		
GP-59	11/20/02	393.1	10.0	383.1	8.0	385.1		
GP-60	11/20/02	393.3	17.0	376.3	16.8	376.5		
GP-61	11/20/02	393.7	11.5	382.2	6.0	387.7		
GP-1A	08/02/04	390.0	20.0	370.0	15.0	375.0		
GP-2A	08/02/04	391.8	20.0	371.8				
GP-3A	08/02/04	391.0	12.0	379.0				
GP-4A	08/02/04	391.7	8.0	383.7	5.0	386.7		***
GP-5A	08/02/04	395.4	5.0	390.4	2.0	393.4		
GP-6A	08/02/04	397.6	7.0	390.6	5.5	392.1		
GP-7A	08/02/04	397.7	8.0	389.7	7.8	389.9		

Notes:

1. All depths in feet below ground surface.

2. All elevations in feet above mean sea level and measured in NGVD 1929.

3. NE indicates not encountered.

Old Erie Canal Site Clyde, New York

Boring No.	Date Completed	Ground Elevation	Boring Depth	End of Boring Elevation	Depth To Glacial Till	Top of Glacial Till Elevation	Depth To Bedrock	Top of Bedrock Elevation
SSB-1	1/14/2005	398.11	6	392.1	4.1	394.0		
SSB-2	1/14/2005	398.11	5.7	392.4	4.3	393.8		
SSB-3	1/14/2005	398.11	7.9	390.2	7.9	390.2		
SSB-4	1/14/2005	398.11	5.8	392.3	5.8	392.3		
SSB-5	1/14/2005	398.11	7.3	390.8	4.5	393.6		
SSB-6	1/13/2005	398.11	7.8	390.3	7.1	391.0		
SSB-7	1/12/2005	398.11	9.3	388.8	9.3	388.8		
SSB-8	1/13/2005	398.11	9.3	388.8	9.3	388.8		
SSB-9	1/13/2005	398.11	6.2	391.9	5	393.1		
SSB-10	1/13/2005	398.11	6.8	391.3	4.2	393.9		
SSB-11	1/13/2005	398.11	5.8	392.3	4.2	393.9		
TMW-1	11/3/2006	398.09	14.0	384.1	13.0	385.1		
TMW-2	11/3/2006	398.82	6.0	392.8	5.5	393.3		

Notes:

1. All depths in feet below ground surface.

2. All elevations in feet above mean sea level and measured in NGVD 1929.

3. "----" indicates not encountered.

Monitoring Well Construction Details Table 2

Old Erie Canal Site Clyde, New York

Well	Date	PVC Measuring Doint Eleve	Ground	Screen Lonoth	Sci Sci	Screen Depth Dottor	Screen Elevation	een ation	Sanc De	Sand Pack Depth	Sanc Elevi	Sand Pack Elevation
	completen		CIEVAUUI	rengui	do		dol	Bollom	dol	Rottom	dol	Bottom
MW-1S	05/30/02	394.16	394.6	5.0	2.3	7.3	392.3	387.3	2.1	8.0	392.5	386.6
MW-2S	05/21/02	397.91	398.5	10.0	1,6	11.6	396.9	386.9	1.6	11.7	396.9	386.8
MW-2B	05/29/02	398.08	398.4	10.0	18.5	28.5	379.9	369.9	16.0	28.5	382.4	369.9
MW-3S	05/21/02	393.64	394.0	10.0	<u>در</u>	11.3	392.7	387 7	ب د	4 T	2007	2000
MW-3B	11/16/06	393 91	C 702	10.0	a ac	886	365 4	266.4				
		0.000	1.400	10.0	0.02	0.00	4.000	4.000	0.1Z	39.U	307.2	355.2
MW-4S	05/22/02	393.02	393.3	10.0	10.3	20.3	383.0	373.0	8.3	20.3	385.0	373.0
MW-4B	05/28/02	392.97	393.3	10.0	28.9	38.9	364.4	354.4	26.9	38.9	366.4	354.4
MW-4C	11/17/06	392.81	393.3	10.0	38.7	48.7	354.6	344.6	38.0	50.0	355.3	343.3
MW-5S	05/21/02	392.86	393.1	10.0	1.2	11.2	391.9	381.9		38.9	392.0	354 2
MW-5B	11/16/06	392.85	393.2	10.0	29.3	39.3	363.9	353.9	27.0	39.0	366.2	354.2
MW-6S	05/30/02	394.66	395.0	10.0	5.0	15.0	390.0	380.0	3.0	15.0	392.0	380.0
MW-6B	11/15/06	396.99	395.1	10.0	29.4	39.4	365.7	355.7	27.0	39.4	368.1	355.7
MW-7S	05/24/02	396.92	394.9	10.0	6.5	16.5	388.4	378.4	5.0	17.5	389.9	377.4
MW-7B	05/28/02	399.10	397.4	10.0	28.9	38.9	368.5	358.5	26.9	38.9	370.5	358.5
MW-8S	05/29/02	389.91	390.3	10.0	12.0	22.0	378.3	368.3	10.0	22.0	380.3	368.3
S9-WM	05/22/02	391.39	391.8	10.0	7.4	17.4	384.4	374.4	5.4	17.5	386.4	374.3

Notes: 1. All depths in feet below ground surface. 2. All elevations in feet above mean sea level and measured in NGVD 1929.

Page 1 of 2

 Table 2

 Monitoring Well Construction Details

Old Erie Canal Site Clyde, New York

		PVC			Scr	Screen	Scr	Screen	San	Sand Pack	Sand	Pack
Well No.	Date Completed	Measuring Point Elev.	Ground Elevation	Screen Length	Top	Depth Bottom	Elev	Elevation op Bottom	Top D	Depth Bottom	Elev Top	Elevation op Bottom
MW-10B	11/25/02	390.99	391.2	10.0	32.7	42.7	358.5	348.5	30.2	42.7	361.0	348.5
MW-11S	11/20/02	390.04	390.4	7,0	5.0	12.0	385.4	378.4	4.0	12.0	386.4	378.4
MW-11B	11/25/02	389.75	389.8	10.0	34.0	44.0	355.8	345.8	31.0	44.0	358.8	345.8
MW-12S	11/22/02	390.43	391.1	5.0	5.0	10.0	386.1	381.1	4.0	10.0	387.1	381 1
MW-12B	11/22/02	391.32	391.4	10.0	34.0	44.0	357.4	347,4	31.0	44.0	360.4	347.4
MW-13S	11/02/06	391.53	389.7	5.0	11.9	16.9	377.8	372.8	11.0	17.5	378.7	372.2
MW-14S	11/06/06	391.39	389.3	5.0	16.4	21.4	372.8	367.8	15.0	22.5	374.3	366.8
MW-15S	11/07/06	390.12	388.4	5.0	7.7	12.7	380.7	375.7	6.0	14.0	382.4	374.4
MW-16S	11/02/06	397.30	398.0	5.0	4.6	9.6	393.4	388.4	3.5	10.0	394.5	388.0
MW-16B	11/15/06	397.69	398.2	10.0	33.6	43.6	364.6	354.6	32.0	44.0	366.2	354.2
EMW-1	10/14/94	394.30	394.6	10.0	8.0	18.0	386.6	376.6	6.0	18.5	388.6	376.1
EMW-2	10/17/94	394.72	395.0	5.0	6.0	11.0	389.0	384.0	5.0	12.0	390.0	383.0
EMW-3	10/14/94	396.94	394.2	5.0	6.0	11.0	388.2	383.2	4.0	12.3	390.2	381.9
EMW-4	10/18/94	395.51	392.9	5,0	6.0	11.0	386.9	381.9	5.0	12.0	387.9	380.9
EMW-5	10/17/94	395.53	393.0	5.0	6.0	11.0	387.0	382.0	5.0	12.0	388.0	381.0
TMW-1	11/3/2006	399.11	398.1	2.0	10.1	12.1	388.0	386.0	8.0	14.0	390.1	384.1
TMW-2	11/3/2006	399.91	398.8	2.0	3.8	5.8	395.1	393.1				

Notes:

All depths in feet below ground surface.
 All elevations in feet above mean sea level and measured in NGVD 1929.

Page 2 of 2

Table 3 Water Level Elevation Data November 28, 2006

Old Erie Canal Site Clyde, New York

Well No.	Measuring Point	Depth to Water	Water Elevation
MW-1	401.43	6.86	394.57
MW-1S	394.16	4.42	389.74
MW-2S	397.91	2.93	394.98
MW-2B	398.08	3.82	394.26
MW-3S	393.64	4.34	389.30
MW-3B	393.91	8.19	385.72
MW-4S	393.02	5.20	387.82
MW-4B	392.97	6.52	386.45
MW-4C	392.81	-1.06	393.87
MW-5S	392.86	4.35	388.51
MW-5B	392.85	27.46	365.39
MW-6S	394.66	4.57	390.09
MW-6B	396.99	9.00	387.99
MW-7S	396.92	9.09	387.83
MW-7B	399.10	10.66	388.44
MW-8S	389.91	0.50	389.41
MW-9S	391.39	2.60	388.79
MW-10B	390.99	-1.16	392.15
MW-11S	390.04	3.90	386.14
MW-11B	389.75	-1.37	391.12
MW-12S	390.43	2.42	388.01
MW-12B	391.32	-1.06	392.38
MW-13S	391.53	3.12	388.41
MW-14S	391.39	3.40	387.99
MW-15S	390.12	2.19	387.93
MW-16S	397.30	2.94	394.36
MW-16B	397.69	3.88	393.81

Notes:

1. Water level depths in feet below ground surface.

2. All elevations in feet above mean sea level.

3. Measuring point measured in NGVD 1929.

.

Table 3 Water Level Elevation Data November 28, 2006

Old Erie Canal Site Clyde, New York

EMW-1	394.30	Well decomr	nissioned in 2002
EMW-2	394.72	2.14	392.58
EMW-3	396.94	7.67	389.27
EMW-4	395.51	6.55	388.96
EMW-5	395.53	5.24	390.29
TMW-1	399.11	4.71	394.4
TMW-2	399.91	4.70	395.21
SG-1	390.21	0.30	389.91
SG-2	387.46	0.50	386.96
SG-3	387.99	7.91	380.08
SG-3A	391.04	7.84	383.2

Notes:

1. Water level depths in feet below ground surface.

2. All elevations in feet above mean sea level.

3. Measuring point measured in NGVD 1929.

Table 4 Hydraulic Conductivity Testing Results Groundwater Monitoring

Old Erie Canal Site Clyde, New York

Well Identification	Bouwer and Rice K Estimate (cm/sec)	Arithmeti (cm/sec)	i c Mean (ft/day)
Unconsolidated Mo	nitoring Wells		
MW-2S	3.04E-04 4.27E-03	2.29E-03	6.48
MW-3S	3.84E-04 6.31E-04	5.08E-04	1.44
MW-4S	2.59E-03 3.03E-03	2.81E-03	7.96
MW-5S	1.94E-03 1.20E-02 6.83E-03	6.92E-03	19.62
MW-6S	3.54E-04 3.43E-04	3.49E-04	0.99
MW-7S	7.22E-03 6.06E-03	6.64E-03	18.82
MW-8S	1.07E-03	1.07E-03	3.03
MW-9S	1.15E-04	1.15E-04	0.33
MW-11S	3.29E-03 3.29E-03 3.29E-03	3.29E-03	9.32
MW-12S	NA	NA	NA
MW-13S	4.02E-03 2.86E-03 2.21E-03	3.03E-03	8.59
MW-14S	5.35E-04 3.91E-04 3.62E-04	4.29E-04	1.22
MW-15S	1.03E-02 9.15E-03 8.98E-03	9.47E-03	26.84
MW-16S	1.69E-02 7.30E-03 8.72E-03	1.10E-02	31.08
EMW-2	1.55E-04 1.49E-04	1.52E-04	0.43

Table 4 Hydraulic Conductivity Testing Results Groundwater Monitoring

Old Erie Canal Site Clyde, New York

Well Identification	Bouwer and Rice K Estimate (cm/sec)	Arithmet (cm/sec)	ic Mean (ft/day)
Unconsolidated Mo	nitoring Wells (Continu	ed)	
EMW-3	2.86E-03 2.47E-03	2.67E-03	7.55
EMW-4	5.39E-04 7.72E-04	6.56E-04	1.86
EMW-5	3.29E-03 3.29E-03	3.29E-03	9.32
TMW-1	7.88E-04 6.71E-04	7.29E-04	2.07
TMW-2	1.60E-02 1.09E-02	1.35E-02	38.12
Bedrock Monitoring	Wells		
MW-2B	3.79E-06	3.79E-06	0.01
MW-3B	5.54E-06 9.03E-06 4.43E-06	6.33E-06	0.02
MW-4B	2.65E-04 3.36E-04	3.01E-04	0.85
MW-4C	2.35E-05 2.43E-05	2.39E-05	0.07
MW-5B	NA	NA	NA
MW-6B	3.07E-04 3.02E-04 2.99E-04	3.03E-04	0.86
MW-10B	1.49E-05	1.49E-05	0.04
MW-11B	1.33E-04	1.33E-04	0.38
MW-12B	NA	NA	NA
MW-16B	1.89E-07	1.89E-07	0.001

Notes:

1. The geometric mean hydraulic conductivity of the unconsolidated monitoring wells at the Site is 1.70E-03 (4.82 ft/day).

2. The geometric mean hydraulic conductivity of the bedrock monitoring wells at the Site is 1.93E-05 (0.05 ft/day).

Table 5 Soil Sampling Results

Old Erie Canal Site Clyde, New York

		Sample Date	11/15/2006
		Sample ID	SB6B(4-6)111506
		Sample Matrix	SO
CAS No	Chemical Name	Unit	
71-55-6	1,1,1-Trichloroethane	ug/kg	200 UJ
79-34-5	1,1,2,2-Tetrachloroethane	ug/kg	200 UJ
79-00-5	1,1,2-Trichloroethane	ug/kg	200 UJ
75-34-3	1,1-Dichloroethane	ug/kg	200 UJ
75-35-4	1,1-Dichloroethene	ug/kg	200 UJ
107-06-2	1,2-Dichloroethane	ug/kg	40 UJ
78-87-5	1,2-Dichloropropane	ug/kg	200 UJ
108-10-1	4-Methyl-2-pentanone	ug/kg	200 UJ
67-64-1	Acetone	ug/kg	400 UJ
71-43-2	Benzene	ug/kg	40 UJ
75-27-4	Bromodichloromethane	ug/kg	200 UJ
75-25 - 2	Bromoform	ug/kg	200 UJ
74-83-9	Bromomethane	ug/kg	200 UJ
75-15-0	Carbon disulfide	ug/kg	200 UJ
56-23-5	Carbon tetrachloride	ug/kg	200 UJ
108-90-7	Chlorobenzene	ug/kg	200 UJ
75-00-3	Chloroethane	ug/kg	200 UJ
67-66-3	Chloroform	ug/kg	200 UJ
74-87-3	Chloromethane	ug/kg	200 UJ
156-59-2	cis-1,2-Dichloroethene	ug/kg	83.0 J
10061-01-5	cis-1,3-Dichloropropene	ug/kg	200 UJ
124-48-1	Dibromochloromethane	ug/kg	200 UJ
100-41-4	Ethylbenzene	ug/kg	40 UJ
591-78-6	Methyl Butyl Ketone	ug/kg	200 UJ
78-93-3	Methyl Ethyl Ketone	ug/kg	400 UJ
75-09-2	Methylene chloride	ug/kg	200 UJ
100-42-5	Styrene	ug/kg	200 UJ
127-18-4	Tetrachloroethene	ug/kg	200 UJ
108-88-3	Toluene	ug/kg	71.5 J
156-60-5	trans-1,2-Dichloroethene	ug/kg	200 UJ
10061-02-6	trans-1,3-Dichloropropene	ug/kg	200 UJ
79-01-6	Trichloroethene	ug/kg	200 UJ
75-01-4	Vinyl chloride	ug/kg	200 UJ
1330-20-7	Xylene (total)	ug/kg	79 UJ

Notes:

1. Units expressed in ug/kg.

2. Analyses performed by Accutest Laboratories of Dayton, NJ.

3. Volatile organic compounds quantitated by EPA SW-846 Method 8260B.

4. "U" indicates a compound not detected.

5. "J" indicates an estimated value.

Old Erie Canal Site Clyde, New York

	11/30/2006	12/1/2006	12/6/2006	12/1/2006
	GW-EMW-2-113006	GW-EMW-3-120106	GW-EMW-4-120606	GW-EMW-5-120106
Acetone				
	5.0 UR	5.0 UR	5.0 U	5.0 UR
Benzene	0.37 J	1.0 U	1.0 U	1.0 U
Bromodichloromethane	1.0 U	1.0 U	1.0 U	1.0 U
Bromoform	1.0 U	1.0 U	1.0 U	1.0 U
Bromomethane	1.0 U	1.0 U	1.0 U	1.0 U
2-Butanone (MEK)	5.0 UR	5.0 UR	5.0 U	5.0 UR
Carbon disulfide	1.0 U	1.0 U	1.0 UJ	1.0 U
Carbon tetrachloride	1.0 U	1.0 U	1.0 U	1.0 U
Chlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U
Chloroethane	1.0 U	1.0 U	1.4	1.0 U
Chloroform	1.0 U	1.0 U	1.0 U	1.0 U
Chloromethane	1.0 U	1.0 U	1.0 U	1.0 U
Dibromochloromethane	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	1.0 U	1.0 U	0.71 J	1.0 U
1,2-Dichloroethane	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,2-Dichloroethene	1.1	1.0 U	1.0 U	1.0 U
trans-1,2-Dichloroethene	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,3-Dichloropropene	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,3-Dichloropropene	1.0 U	1.0 U	1.0 U	1.0 U
Ethylbenzene	1.0 U	1.0 U	1.0 U	1.0 U
2-Hexanone	5.0 U	5.0 U	5.0 U	5.0 U
4-Methyl-2-pentanone (MIBK)	5.0 U	5.0 U	5.0 U	5.0 U
Methylene chloride	2.0 U	2.0 U	2.0 U	2.0 U
Styrene	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	1.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene	1.0 U	1.0 U	1.0 U	1.0 U
Toluene	1.0 U	1.0 U	1.0 U	1.0 U
1,1,1-Trichloroethane	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene	1.0 U	1.0 U	1.0 U	1.0 U
Vinyl chloride	5.7	1.0 U	2.2	1.0 U
(ylene (total)	0.57 J	1.0 U	1.0 U	1.0 U
Viethane	1440	598	5140	1140
Ethane	340	0.56	226	0.25
Ethene	36.4	0.30 0.10 U		
	JU. 4	0.10 0	0.10 U	0.10 U

Notes:

1. Units expressed in ug/L.

2. VOCs quantified using EPA Method 8260B.

3. Methane, ethane and ethene were quantified using EPA Method 8015.

3. Analyses performed by Accutest Laboratories of Dayton, NJ.

4. "U" indicates a compound not detected.

5. "J" indicates an estimated value.

6. "R" indicates that the result is rejected due to low response factor in the calibration standard...

Old Erie Canal Site Clyde, New York

	11/29/2006	11/29/2006	12/6/2006	11/29/2006
		GW-X-1-112906		
	GW-MW-1S-112906	Duplicate of MW-1S	GW-MW-1-120606	GW-MW-2S-112906
Acetone	130 UR	50 U	5.0 U	5.0 U
Benzene	25 U	10 Ų	1.0 U	1.0 U
Bromodichloromethane	25 U	10 U	1.0 U	1.0 U
Bromoform	25 U	10 U	1.0 U	1.0 U
Bromomethane	25 U	10 U	1.0 U	1.0 U
2-Butanone (MEK)	130 UR	50 UR	5.0 U	5.0 UR
Carbon disulfide	25 U	10 U	1.0 UJ	1.0 U
Carbon tetrachloride	25 U	10 U	1.0 U	1.0 U
Chlorobenzene	25 U	10 U	1.0 U	1.0 U
Chloroethane	25 U	10 U	1.0 U	1.0 U
Chloroform	25 U	10 U	1.0 U	1.0 U
Chloromethane	25 U	10 U	1.0 U	1.0 U
Dibromochloromethane	25 U	10 U	1.0 U	1.0 U
1,1-Dichloroethane	25 U	10 U	1.0 U	1.0 U
1,2-Dichloroethane	25 U	10 U	1.0 U	1.0 U
1,1-Dichloroethene	25 U	6.9 J	1.0 U	1.0 U
cis-1,2-Dichloroethene	3690	3240	2.2	1.0 U
trans-1,2-Dichloroethene	32.4	34.2	1.0 U	1.0 U
1,2-Dichloropropane	25 U	10 U	1.0 U	1.0 U
cis-1,3-Dichloropropene	25 U	10 Ų	1.0 U	1.0 U
trans-1,3-Dichloropropene	25 U	10 U	1.0 U	1.0 U
Ethylbenzene	25 U	10 U	1.0 U	1.0 U
2-Hexanone	130 U	50 U	5.0 U	5.0 U
4-Methyl-2-pentanone (MIBK)	130 U	50 U	5.0 U	5.0 U
Methylene chloride	50 U	20 U	2.0 U	2.0 U
Styrene	25 U	10 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	25 U	10 U	1.0 U	1.0 U
Tetrachloroethene	11.0 J	10.6	1.0 U	1.0 U
Toluene	25 U	10 U	1.0 U	1.0 U
1,1,1-Trichloroethane	25 U	10 U	1.0 U	1.0 U
1,1,2-Trichloroethane	25 U	10 U	1.0 U	1.0 U
Trichloroethene	1110	988	0.58 J	1.0 U
Vinyl chloride	147	155	3.3	1.0 U
Xylene (total)	25 U	10 U	1.0 U	1.0 U
Methane	6.88	9.54	897	206
Ethane	7.69	11.0	10.4	0.10 U
Ethene	0.38	0.46	0.10 U	0.10 U

Notes:

1. Units expressed in ug/L.

2. VOCs quantified using EPA Method 8260B.

3. Methane, ethane and ethene were quantified using EPA Method 8015.

3. Analyses performed by Accutest Laboratories of Dayton, NJ.

4. "U" indicates a compound not detected.

5. "J" indicates an estimated value.

6. "R" indicates that the result is rejected due to low response factor in the calibration standard...

Old Erie Canal Site Clyde, New York

	11/29/2006	12/5/2006	12/5/2006	12/5/2006
	GW-MW-2B-112906	GW-MW-3S-120506	GW-MW-3B-120506	GW-MW-4S-120506
Acetone				
Benzene	5.0 UR	5.0 U	5.0 U	5.0 U
Bromodichloromethane	1.0 U	1.0 U	1.0 U	1.0 U
	1.0 U	1.0 U	1.0 U	1.0 U
Bromoform	1.0 U	1.0 U	1.0 U	1.0 U
Bromomethane	1.0 U	1.0 U	1.0 U	1.0 U
2-Butanone (MEK)	5.0 UR	5.0 UR	5.0 UR	5.0 UR
Carbon disulfide	1.0 U	1.0 U	1.0 U	1.0 U
Carbon tetrachloride	1.0 U	1.0 U	1.0 U	1.0 U
Chlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U
Chloroethane	1.0 U	1.0 U	1.0 U	1.0 Ų
Chloroform	1.0 U	1.0 U	1.0 U	1.0 U
Chloromethane	1.0 U	1.0 U	1.0 U	1.0 U
Dibromochloromethane	1.0 U	1.0 Ų	1.0 U	1.0 U
1,1-Dichloroethane	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,2-Dichloroethene	1.0 U	1.0 U	351	6.3
trans-1,2-Dichloroethene	1.0 U	1.0 U	5.9	1.0 U
1,2-Dichloropropane	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,3-Dichloropropene	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,3-Dichloropropene	1.0 U	1.0 U	1.0 U	1.0 U
Ethylbenzene	1.0 U	1.0 U	1.0 U	1.0 U
2-Hexanone	5.0 U	5.0 U	5.0 U	5.0 U
4-Methyl-2-pentanone (MIBK)	5.0 U	5.0 U	5.0 U	5.0 U
Methylene chloride	2.0 U	2.0 U	2.0 U	2.0 U
Styrene	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	1.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene	1.0 U	1.0 U	1.0 U	1.0 U
Toluene	1.0 U	1.0 U	0.48 J	1.0 U
1.1.1-Trichloroethane	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	1.0 U	1.0 U	1.0 U	1.0 U
frichloroethene	1.0 U	1.0 U	1.00	
/inyl chloride	1.0 U	1.0 U	237	1.0 U 2.3
(ylene (total)	1.0 U	1.0 U		
Vethane	2.98U	6.12	1.0 U	1.0 U
Ethane	0.13		24.4	6.43
Ethene	0.13	0.10 U	2.3	0.12
_01606	L 0,10 U	0.10 U	16.2	0.10 U

Notes:

1. Units expressed in ug/L.

2. VOCs quantified using EPA Method 8260B.

3. Methane, ethane and ethene were quantified using EPA Method 8015.

3. Analyses performed by Accutest Laboratories of Dayton, NJ.

4. "U" indicates a compound not detected.

5. "J" indicates an estimated value.

6. "R" indicates that the result is rejected due to low response factor in the calibration standard..

Old Erie Canal Site Clyde, New York

	12/5/2006	12/5/2006	12/5/2006	12/5/2006
			GW-X-2-120506	
	GW-MW-4B-120506	GW-MW-4C-120506	Duplicate of MW-4C	GW-MW-5S-120506
Acetone	500 U	5.0 U	5.0 UJ	5.0 U
Benzene	100 U	1.0 U	1.0 UJ	1.0 U
Bromodichloromethane	100 U	1.0 U	1.0 UJ	1.0 U
Bromoform	100 U	1.0 U	1.0 UJ	1.0 U
Bromomethane	100 U	1.0 U	1.0 UJ	1.0 U
2-Butanone (MEK)	500 UR	5.0 UR	5.0 UR	5.0 UR
Carbon disulfide	100 U	1.0 U	1.0 UJ	1.0 U
Carbon tetrachloride	100 U	1.0 U	1.0 UJ	1.0 U
Chlorobenzene	100 U	1.0 U	1.0 UJ	1.0 U
Chloroethane	100 U	1.0 U	1.0 UJ	1.0 U
Chloroform	100 U	1.0 U	1.0 UJ	1.0 U
Chloromethane	100 U	1.0 U	1.0 UJ	1.0 U
Dibromochloromethane	100 U	1.0 U	1.0 UJ	1.0 U
1,1-Dichloroethane	100 U	1.0 U	1.0 UJ	1.0 U
1,2-Dichloroethane	100 U	1.0 U	1.0 UJ	1.0 U
1,1-Dichloroethene	100 U	1.0 U	1.0 UJ	1.0 U
cis-1,2-Dichloroethene	64800	1.0 U	1.0 UJ	1.0 U
trans-1,2-Dichloroethene	130	1.0 U	1.0 UJ	1.0 U
1,2-Dichloropropane	100 U	1.0 U	1.0 UJ	1.0 U
cis-1,3-Dichloropropene	100 U	1.0 U	1.0 UJ	1.0 U
trans-1,3-Dichloropropene	100 U	1.0 U	1.0 UJ	1.0 U
Ethylbenzene	100 U	1.0 U	1.0 UJ	1.0 U
2-Hexanone	500 U	5.0 U	5.0 UJ	5.0 U
4-Methyl-2-pentanone (MIBK)	500 U	5.0 U	5.0 UJ	5.0 U
Methylene chloride	200 U	2.0 U	2.0 UJ	2.0 U
Styrene	100 U	1.0 U	1.0 UJ	1.0 U
1,1,2,2-Tetrachloroethane	100 U	1.0 U	1.0 UJ	1.0 U
Tetrachloroethene	100 U	1.0 U	1.0 UJ	1.0 U
Toluene	100 U	1.0 U	1.0 UJ	1.0 U
1,1,1-Trichloroethane	100 U	1.0 U	1.0 UJ	1.0 U
1,1,2-Trichloroethane	100 U	1.0 U	1.0 UJ	1.0 U
Trichloroethene	2130	1.0 U	1.0 UJ	1.0 U
Vinyl chloride	8740	1.0 U	1.0 UJ	<u>1.0 U</u>
Xylene (total)	100 U	1.0 U	1.0 UJ	1.0 U
Methane	287	4.16	4.46J	21.8
Ethane	60.0	0.12	0.14J	0.10 U
Ethene	163	0.10 U	0.10 UJ	0.10 U

Notes:

1. Units expressed in ug/L.

2. VOCs quantified using EPA Method 8260B.

3. Methane, ethane and ethene were quantified using EPA Method 8015.

3. Analyses performed by Accutest Laboratories of Dayton, NJ.

4. "U" indicates a compound not detected.

5. "J" indicates an estimated value.

6. "R" indicates that the result is rejected due to low response factor in the calibration standard ...

Old Erie Canal Site Clyde, New York

	12/6/2006	12/6/2006	12/6/2006	12/4/2006
	GW-MW-5B-120606	GW-MW-6S-120606	GW-MW-6B-120606	GW-MW-7S-120406
Acaton				
Acetone	4.7 J	2500 UJ	500 U	5.0 U
Benzene	1.0 U	500 UJ	100 U	1.0 U
Bromodichloromethane	1.0 U	500 UJ	100 U	1.0 U
Bromoform	1.0 U	500 UJ	100 U	1.0 U
Bromomethane	1.0 U	500 UJ	100 U	1.0 U
2-Butanone (MEK)	5.0 U	2500 UR	500 UR	5.0 U
Carbon disulfide	1.0 UJ	500 UJ	100 UJ	1.0 UJ
Carbon tetrachloride	1.0 U	500 UJ	100 U	1.0 U
Chlorobenzene	1.0 U	500 UJ	100 U	1.0 U
Chloroethane	1.0 U	500 UJ	100 U	1,0 U
Chloroform	1.0 U	500 UJ	100 U	1.0 U
Chloromethane	1.0 U	500 UJ	100 U	1.0 U
Dibromochloromethane	1.0 U	500 UJ	100 U	1.0 U
1,1-Dichloroethane	1.0 U	500 UJ	100 U	1.0 U
I,2-Dichloroethane	1.0 U	500 UJ	100 U	1.0 U
1,1-Dichloroethene	1.0 U	500 UJ	59.3 J	0.62 J
sis-1,2-Dichloroethene	1.0 U	186000J	50400	414 J
rans-1,2-Dichloroethene	1.0 U	478 J	119	2.5
2-Dichloropropane	1.0 U	500 UJ	100 U	1.0 U
cis-1,3-Dichloropropene	1.0 U	500 UJ	100 U	1.0 U
rans-1,3-Dichloropropene	1.0 U	500 UJ	100 U	1.0 U
Ethylbenzene	1.0 U	500 UJ	100 U	1.0 U
2-Hexanone	5.0 U	2500 UJ	500 U	5.0 U
-Methyl-2-pentanone (MIBK)	5.0 U	2500 UJ	500 U	5.0 U
Methylene chloride	2.0 U	1000 UJ	200 U	2.0 U
Styrene	1.0 U	500 UJ	100 U	1.0 U
,1,2,2-Tetrachloroethane	1.0 U	500 UJ	100 U	1.0 U
etrachloroethene	1.0 U	500 UJ	100 U	1.0 U
oluene	1.0 U	24900J	100 U	1.0 U
,1,1-Trichloroethane	1.0 U	500 UJ	100 U	1.0 U
1,2-Trichloroethane	1.0 U	500 UJ	100 U	1.0 U
richloroethene	1.0 U	500 UJ	95.5 J	0.46 J
/inyl chloride	1.0 U	73200J	1750	12.4
(ylene (total)	1.0 U	854J	100 U	1.0 U
Methane	6.97	3520J	93.0	6,28
Ethane	0.70		2.0	0.10 U
Ethene	0.35	2710J	41.3	0.10 U

Notes:

1. Units expressed in ug/L.

2. VOCs quantified using EPA Method 8260B.

3. Methane, ethane and ethene were quantified using EPA Method 8015.

3. Analyses performed by Accutest Laboratories of Dayton, NJ.

4. "U" indicates a compound not detected.

5. "J" indicates an estimated value.

6. "R" indicates that the result is rejected due to low response factor in the calibration standard...

Old Erie Canal Site Clyde, New York

	12/4/2006	11/30/2006	11/30/2006	11/30/2006
	GW-MW-7B-120406	GW-MW-8S-113006	GW-MW-9S-113006	GW-MW-10B-113006
A				
Acetone	5.0 U	5.0 UR	5.0 UR	5.0 UR
Benzene	1.0 U	1.0 U	1.0 U	1.0 U
Bromodichloromethane	1.0 U	1.0 Ú	1.0 U	1.0 U
Bromoform	1.0 U	1.0 U	1.0 U	1.0 U
Bromomethane	1.0 U	1.0 U	1.0 U	1.0 U
2-Butanone (MEK)	5.0 U	5.0 UR	5.0 UR	5.0 UR
Carbon disulfide	1.0 U	1.0 U	0.55 J	1.0 U
Carbon tetrachloride	1.0 U	1.0 U	1.0 U	1.0 U
Chlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U
Chloroethane	1.0 U	1.0 U	1.0 U	1.0 U
Chloroform	1.0 U	1.0 U	1.0 U	1.0 U
Chloromethane	1.0 U	1.0 U	1.0 U	1.0 U
Dibromochloromethane	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	1.0 U	1.0 Ü	1.0 U	1.0 U
1,1-Dichloroethene	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,2-Dichloroethene	0.58 J	1.0 U	1.0 U	1.0 U
trans-1,2-Dichloroethene	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,3-Dichloropropene	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,3-Dichloropropene	1.0 U	1.0 U	1.0 U	1.0 U
Ethylbenzene	1.0 U	1.0 U	1.0 U	1.0 U
2-Hexanone	5.0 U	5.0 U	5.0 U	5.0 U
4-Methyl-2-pentanone (MIBK)	5.0 U	5.0 U	5.0 U	5.0 U
Methylene chloride	2.0 U	2.0 U	2.0 U	2.0 U
Styrene	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	1.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene	1.0 U	1.0 U	1.0 U	1.0 U
Гојџеле	1.0 U	1.0 U	1.0 U	1.0 U
1.1.1-Trichloroethane	1.0 U	1.0 U	1.0 U	1.0 U
1.1.2-Trichloroethane	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene	0.35 J	1.0 U	1.0 U	1.0 U
Vinyl chloride	1.0 U	1.0 U	1.0 U	1.0 U
Xylene (total)	1.0 U	1.0 U	1.0 U	1.0 U
Methane	7.1	0.13	4.00	2.27
Ethane	0,30	0.13 0.10 U	0.11	
Ethene	0.62	0.10 U		0.10 U
	0.02	0.100	0.10 U	0.10 U

Notes:

1. Units expressed in ug/L.

2. VOCs quantified using EPA Method 8260B.

3. Methane, ethane and ethene were quantified using EPA Method 8015.

3. Analyses performed by Accutest Laboratories of Dayton, NJ.

4. "U" indicates a compound not detected.

5. "J" indicates an estimated value.

6. "R" indicates that the result is rejected due to low response factor in the calibration standard ...

Old Erie Canal Site Clyde, New York

	11/30/2006	11/30/2006	11/30/2006	11/30/2006
	GW-MW-11S-113006	GW-MW-11B-113006	GW-MW-12S-113006	GW-MW-12B-113006
Acetone	5.0 UR	5.0 UR	5.0 UR	5.0 UR
Benzene	1.0 U	1.0 U	1.0 U	1.0 U
Bromodichloromethane	1.0 U	1.0 U	1.0 U	1.0 U
Bromoform	1.0 U	1.0 U	1.0 U	1.0 U
Bromomethane	1.0 U	1.0 U	1.0 U	1.0 U
2-Butanone (MEK)	5.0 UR	5.0 UR	5.0 UR	5.0 UR
Carbon disulfide	1.0 U	1.0 U	1.0 U	1.0
Carbon tetrachloride	1.0 U	1.0 U	1.0 U	1.0 U
Chlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U
Chloroethane	1.0 U	1.0 U	1.0 U	1.0 U
Chloroform	1.0 U	1.0 U	1.0 U	1.0 Ų
Chloromethane	1.0 U	1.0 U	1.0 U	1.0 U
Dibromochloromethane	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,2-Dichloroethene	1.0 U	1.0 U	1.0 U	1.0 U
rans-1,2-Dichloroethene	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,3-Dichloropropene	1.0 U	1.0 U	1.0 U	1.0 U
rans-1,3-Dichloropropene	1.0 U	1.0 U	1.0 U	1.0 U
Ethylbenzene	1.0 U	1.0 U	1.0 U	1.0 U
2-Hexanone	5.0 U	5.0 U	5.0 U	5.0 U
4-Methyl-2-pentanone (MIBK)	5.0 U	5.0 U	5.0 U	5.0 U
Methylene chloride	2.0 U	2.0 U	2.0 U	2.0 U
Styrene	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	1.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene	1.0 U	1.0 U	1.0 U	1.0 U
Foluene	1.0 U	1.0 U	1.0 U	1.0 U
1,1,1-Trichloroethane	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	1.0 U	1.0 U	1.0 U	1.0 U
Frichloroethene	1.0 U	1.0 U	1.0 U	1.0 U
/inyl chloride	1.0 U	1.0 U	1.0 U	1.0 U
(vlene (total)	1.0 U	1.0 U	1.0 U	1.0 U
Viethane	218	2.87	34.3	2.53
Ethane	0.10 U	0.10 U	0.10 U	0.89
Ethene	0.10 U	0.10 U	0.10 U	0.36

Notes:

1. Units expressed in ug/L.

2. VOCs quantified using EPA Method 8260B.

3. Methane, ethane and ethene were quantified using EPA Method 8015.

3. Analyses performed by Accutest Laboratories of Dayton, NJ.

4. "U" indicates a compound not detected.

5. "J" indicates an estimated value.

6. "R" indicates that the result is rejected due to low response factor in the calibration standard..

Old Erie Canal Site Clyde, New York

	11/30/2006	12/6/2006	12/7/2006	12/6/2006
	GW-MW-13S-113006	GW-MW-14S-120606	GW-MW-15S-120706	GW-MW-16S-120606
A +				
Acetone	200 UR	250 U	130 U	5.0 U
Benzene	40 U	50 U	25 U	1.0 U
Bromodichloromethane	40 U	50 U	25 U	1.0 U
Bromoform	40 U	50 U	25 U	1.0 U
Bromomethane	40 U	50 U	25 U	1.0 U
2-Butanone (MEK)	200 UR	250 UR	130 U	5.0 UR
Carbon disulfide	40 U	50 ŲJ	25 U	1.0 UJ
Carbon tetrachloride	40 U	50 U	25 U	1.0 U
Chlorobenzene	40 U	50 U	25 U	1.0 U
Chloroethane	40 U	50 U	25 U	1.0 U
Chloroform	.40 U	50 U	25 U	1.0 U
Chloromethane	40 U	50 U	25 U	1.0 U
Dibromochloromethane	40 U	50 U	25 U	1.0 U
I,1-Dichloroethane	40 U	50 U	25 U	1.0 U
,2-Dichloroethane	40 U	50 U	25 U	1.0 U
I,1-Dichloroethene	40 U	51.8	13.7 J	1.0 U
cis-1,2-Dichloroethene	6870	28200	20800	5.7
rans-1,2-Dichloroethene	40 U	80.0	30.8	1.0 U
,2-Dichloropropane	40 U	50 U	25 U	1.0 U
cis-1,3-Dichloropropene	40 U	50 U	25 U	1.0 U
rans-1,3-Dichloropropene	40 U	50 U	25 U	1.0 U
Ethylbenzene	40 U	50 U	25 U	1.0 U
2-Hexanone	200 U	250 U	130 U	5.0 U
I-Methyl-2-pentanone (MIBK)	200 U	250 U	130 U	
Aethylene chloride	80 U	100 U	50 U	5.0 U
Styrene	40 U	50 U	25 U	2.0 U
1,1,2,2-Tetrachloroethane	40 U	50 U	25 U	1.0 U
Tetrachloroethene	40 U	50 U	25 U	<u>1.0 U</u>
oluene	40 U	639		1.0 U
,1,1-Trichloroethane	40 U	50 U	98.9	1.0 U
,1.2-Trichloroethane	40 U	50 U	25 U	<u> </u>
richloroethene	845	254	25 U	1.0 U
/invl chloride	348		5.6 J	8.4
(ylene (total)		4610	9040	1.0 U
Methane	40 U	50 U	25 U	1.0 U
Ithane	115	588	6660	2.07
	13.2	151	426	0.35
Ethene	22.9	215	512	0.13

Notes:

1. Units expressed in ug/L.

2. VOCs quantified using EPA Method 8260B.

3. Methane, ethane and ethene were quantified using EPA Method 8015.

3. Analyses performed by Accutest Laboratories of Dayton, NJ.

4. "U" indicates a compound not detected.

5. "J" indicates an estimated value.

6. "R" indicates that the result is rejected due to low response factor in the calibration standard..

Old Erie Canal Site Clyde, New York

	12/6/2006	11/28/2006	11/29/2006
	GW-MW-16B-120606	GW-TMW-1-112806	GW-TMW-2-112906
Acetone	5.0 U	5.0 UR	<u> </u>
Benzene	1.0 U	1.0 U	5.0 UR 1.0 U
Bromodichloromethane	1.0 U	1.0 U	1.0 U
Bromoform	1.0 U	1.00	
Bromomethane	1.0 U	1.0 U	1.0 U 1.0 U
2-Butanone (MEK)	5.0 UR	5.0 UR	
Carbon disulfide	1.0 UJ	5.0 UR 1.0 U	5.0 UR
Carbon tetrachloride			1.0 U
Chlorobenzene	1.0 U	1.0 U	1.0 U
Chloroethane	1.0 U	1.0 U	1.0 U
Chloroform	1.0 U	1.0 U	1.0 U
	1.0 U	1.0 U	1.0 U
Chloromethane	1.0 U	1.0 U	1.0 U
Dibromochloromethane	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene	1.0 U	1.0 U	1.0 U
cis-1,2-Dichloroethene	16.0	1.0 U	1.0 U
trans-1,2-Dichloroethene	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	1.0 U	1.0 U	1.0 U
cis-1,3-Dichloropropene	1.0 U	1.0 U	1.0 U
trans-1,3-Dichloropropene	1.0 U	1.0 U	1.0 U
Ethylbenzene	1.0 U	1.0 U	1.0 U
2-Hexanone	5.0 U	5.0 U	5.0 U
4-Methyl-2-pentanone (MIBK)	5.0 U	5.0 U	5.0 U
Methylene chloride	2.0 U	2.0 U	2.0 U
Styrene	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	1.0 U	1.0 U	1.0 U
Tetrachloroethene	1.0 U	1.0 U	1.0 U
Toluene	0.72 J	1.0 U	0.51 J
1,1,1-Trichloroethane	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	1.0 U	1.0 U	1.0 U
Trichloroethene	1.0 U	1.0 U	1.0 U
Vinyl chloride	1.2	1.0 U	1.0 U
Xylene (total)	1.0 U	1.0 U	1.0 U
Methane	6.70	152	8.97
Ethane	0.60	1.7	1.2
Ethene	0.72	0.53	0.10 U

Notes:

1. Units expressed in ug/L.

2. VOCs quantified using EPA Method 8260B.

3. Methane, ethane and ethene were quantified using EPA Method 8015.

3. Analyses performed by Accutest Laboratories of Dayton, NJ.

4. "U" indicates a compound not detected.

5. "J" indicates an estimated value.

6. "R" indicates that the result is rejected due to low response factor in the calibration standard ...

Ground Water Sampling Results MNA, Inorganics Table 7

Old Erie Canal Site Clyde, New York

	11/30/2006	12/1/2006	12/6/2006	12/1/2006	11/29/2006
	GW-EMW-2-113006	GW-EMW-3-120106	GW-EMW-4-120606	GWLEMW-5-120106	GIALMIALIS_112006
Alkalinity, Total(As CaCO3)	559	453	425	477	374
Chloride	108	38.3	70.9	77.2	182
Dissolved Organic Carbon (DOC)	4.8	3.6	5.6	1.0 U	1.0 (1.1
Nitrate (as N)	0.11 U	0.66	0.11 U	0.11 U	0.111)
Nitrogen, Nitrate + Nitrite	0.10 U	0.66	0.10 U	0.10 U	0.10 U
Nitrogen, Nitrite	0.010 U				
Sodium	65600	30900	59200	55000	103000
Sulfate	11.8	10 U	10 U	10 U	34.9
Sulfide	2.0 U				

Notes:

Old Erie Canal Site Clyde, New York

	11/29/2006	12/6/2006	11/29/2006	11/29/2006	12/5/2006
	GW-X-1-112906				
	Duplicate of MW-1S	GW-MW-1-120606	GW-MW-2S-112906	GW-MW-2B-112906	GW-MW-3S-120506
Alkalinity, Total(As CaCO3)	460	275	441	128	462
Chloride	182	24.3	21.5	57.4	10.4
Dissolved Organic Carbon (DOC)	4.6 J	6.4	2.2	5.1	2.1
Nitrate (as N)	0.11 U	0.11 U	0.33	0.11 U	0.35
Nitrogen, Nitrate + Nitrite	0.10 U	0.10 U	0.33	0.10 U	0.35
Nitrogen, Nitrite	0.011	0.010 U	0.010 U	0.010 U	0.010 U
Sodium	103000	21400	61800	70600	11200
Sulfate	35.1	12.7	10.4	1140	21.3
Sulfide	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U

Notes:

Old Erie Canal Site Clyde, New York

	12/5/2006	12/5/2006	12/5/2006	12/5/2006	12/5/2006
					GW-X-2-120506
	GW-MW-3B-120506	GW-MW-4S-120506	GW-MW-4B-120506	GW-MW-4C-120506	Duplicate of MW-4C
Alkalinity, Total(As CaCO3)	63.4	393	361	188	159
Chloride	104	12.8	187	253	256
Dissolved Organic Carbon (DOC)	1.1	4.3	2.8	1.0 U	1.0 U
Nitrate (as N)	0.11 U				
Nitrogen, Nitrate + Nitrite	0.10 U				
Nitrogen, Nitrite	0.010 U				
Sodium	192000	10000 U	95200	244000	239000
Sulfate	2090	42.2	1150	1710	1790
Sulfide	2.0 U				

Notes:

Old Erie Canal Site Clyde, New York

	12/5/2006	12/6/2006	12/6/2006	12/6/2006	12/4/2006	
	GW-MW-5S-120506	GW-MW-5B-120606	GW-MW-6S-120606	GW-MW-6B-120606	GW-MW-7S-120406	
Alkalinity, Total(As CaCO3)	739	105	439	256	352	
Chloride	2:0 U	123	236	144	74.2	
Dissolved Organic Carbon (DOC)	1.9	1.0 U	33.8	1.5	1.3	
Nitrate (as N)	0.11 U					
Nitrogen, Nitrate + Nitrite	0.10 U					
Nitrogen, Nitrite	0.010 U					
Sodium	10000 U	166000	67800	73600	37700	
Sulfate	12.3	1840	10.4	1420	231	
Sulfide	2.0 U					

Notes:

Old Erie Canal Site Clyde, New York

	12/4/2006	11/30/2006	11/30/2006	11/30/2006	11/30/2006
	GW-MW-7B-120406	GW-MW-8S-113006	GW-MW-9S-113006	GW/MA410B-113006	GMLMML11S-113006
Alkalinity, Total(As CaCO3)	16.1	409	340	152	442
Chloride	40.6	248	55.5	751 J	10.1
Dissolved Organic Carbon (DOC)	5.0 U	1.4	5.1	1.0 U	2.5
Nitrate (as N)	0.19	0.17	0.11 U	0.11 U	0.11 U
Nitrogen, Nitrate + Nitrite	0.19	0.17	0.10 U	0.10 U	0.10 U
Nitrogen, Nitrite	0.010 U	0.010 U	0.010 U	0.025	0.010 U
Sodium	90600	158000	58900	568000	10900
Sulfate	1740	67.3	96.3	1970 J	24.3
Sulfide	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U

Notes:

Old Erie Canal Site Clyde, New York

	11/30/2006	11/30/2006	11/30/2006	11/30/2006	12/6/2006
	GW-MW-11B-113006	GW-MW-12S-113006	GW-MW-12B-113006	GW-MW-13S-113006	GW-MW-14S-120606
Alkalinity, Total(As CaCO3)	159	629	59.7	289	371
Chloride	613 J	3.0	964 J	163	141
Dissolved Organic Carbon (DOC)	1.0 U	3.8	1.0 U	5.4	6.7
Nitrate (as N)	0.11 U	5.3	0.11 U	0.11 U	0.11 U
Nitrogen, Nitrate + Nitrite	0.10 U	5.3	0.10 U	0.10 U	0.10 U
Nitrogen, Nitrite	0.010 U				
Sodium	477000	10000 U	778000	93800	90400
Sulfate	1930 J	72.4	2130 J	878	355
Sulfide ·	2.0 U	2.0 U	3.0	2.0 U	2.0 U

Notes:

Old Erie Canal Site Clyde, New York

	12/7/2006	12/6/2006	12/6/2006	11/28/2006	11/29/2006
	GW-MW-15S-120706	GW-MW-16S-120606	GW-MW-16B-120606	GW-TMW-1-112806	GW-TMW-2-112906
Alkalinity, Total(As CaCO3)	550	134	37.6	840	586
Chloride	122	13.1	128	223	19.4
Dissolved Organic Carbon (DOC)	11.7	1.7	21.4	8.5	12.7
Nitrate (as N)	0.11 U	2.0	0.11 U	0.11 U	0.11 U
Nitrogen, Nitrate + Nitrite	0.10 U	2.0	0.10 U	0.10 U	0.10 U
Nitrogen, Nitrite	0.010 U	0.010 U	0.010 U	0.010 UJ	0.010 U
Sodium	68200	2000	153000	111000	12700
Sulfate	18.3	19.2	1690	72.0	35.0
Sulfide	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U

Notes:

Units expressed in mg/L, with the exception of sodium, which is expressed in ug/L.
 Analyses performed by Accutest Laboratories of Dayton, NJ.
 "U" indicates a compound not detected.
 "U" indicates an estimated value.

Final: 3/29/2007

۲

Ground Water Quality Data Field Parameters Table 8

Old Erie Canal Site Clyde, New York

	EMW-2 11/30/06	EMW-3 12/1/06	EMW-4 12/6/06	EMW-5 12/1/06	MW-1 12/6/06	MW-1S 11/29/06	MW-2S 11/29/06	MW-2B 11/29/06	MW-3S 12/5/06
Field Tested									
Redox Potential (mV)	-114	-85	-201	-178	76	31	21	-20	Ϋ́
Temperature (°C)	13.01	11.72	12.11	10.11	14.26	14.58	15.86	17.84	11.19
Dissolved Oxygen (mg/L)	1.06	0.00	06.0	3.88	1.59	1.19	1.00	2.07	1.91
pH (standard units)	10.14	7.20	12.47	7.37	7.78	7.90	8.02	7.36	9.13
Turbidity (NTU)	21.0	0.0	0.0	41.4	0.0	4.8	10.0	264.0	0.0
Specific Conductivity (uS/cm)	1150	940	1110	1080	588	1330	914	-20	942
Field Test Kits									
Iron II (mg/L)	10.0	1.0	10.0	9.5	0.0	2.5	3.0	1.5	2

Notes: 1. Measurements and analyses performed by O'Brien & Gere personel. 2. Iron II analyses performed using a Hach test kit Model # IR-18C.

Old Erie Canal Site Clyde, New York

	MW-3B 12/5/06	MW-4S 12/5/06	MW-4B 12/5/06	MW-4C 12/5/06	MW-5S 12/5/06	MW-5B 12/5/06	MW-6S 12/6/06	MW-6B 12/6/06	MW-7S 12/4/06
Field Tested									
Redox Potential (mV)	-53	-46	-43	-83	10	128	-121	-95	151
Temperature (°C)	11.24	12.60	11.90	9.59	9.83	11.43	13.10	12.88	12.06
Dissolved Oxygen (mg/L)	0.00	1.20	0.00	0.00	0.00	6.63	1.03	0.00	1.35
pH (standard units)	7.61	9.84	6.67	7.14	6.75	8.49	10.96	6.82	6.09
Turbidity (NTU)	62	0.0	0.0	0.0	0.0	666<	0.0	0.0	0.0
Specific Conductivity (uS/cm)	3540	831	2760	3660	006	3290	1650	3090	1310
Field Test Kits									
Iron II (mg/L)	Ā	0.5	0.5	1.0	0.5	. 1.0	10.0	1.5	Ÿ

Notes: 1. Measurements and analyses performed by O'Brien & Gere personel. 2. Iron II analyses performed using a Hach test kit Model # IR-18C.

.

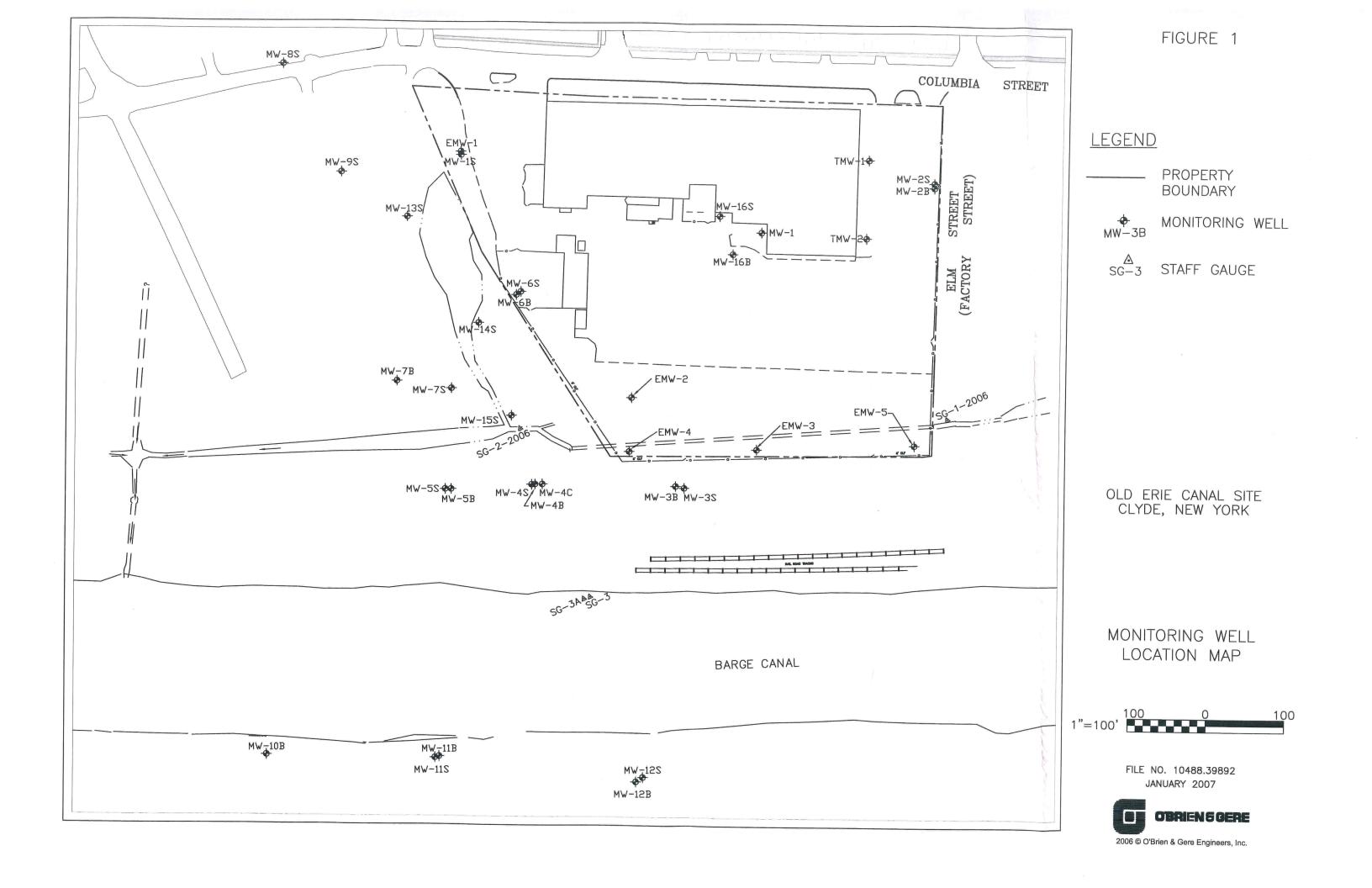
Table 8 Ground Water Quality Data Field Parameters

Old Erie Canal Site Clyde, New York

	MW-7B 12/4/06	MW-8S 11/30/06	MW-9S 11/30/06	MW-10B 11/30/06	MW-11S 11/30/06	MW-11B 11/30/06	MW-12S 11/30/06	MW-12B 11/30/06	MW-13S 11/30/06
Field Tested Redox Potential (mV)	-172	<u>+</u>	-12	-106	-156	-121	46	412	60-
Temperature (°C)	12.50	12.64	14.50	13.75	13.41	13.11	10.39	11.63	13.26
Dissolved Oxygen (mg/L)	0.00	1.04	0.00	0.00	0.95	0.00	2.37	00 0	0.99
pH (standard units)	7.52	8.68	6.90	7.38	10.85	7.33	7.39	9.40	10.17
Turbidity (NTU)	89.0	52.1	156.0	324.0	5.9	120.0	60	231.0	666<
Specific Conductivity (uS/cm)	3020	1600	950	5320	890	4750	1250	6050	2270
Field Test Kits									
Iron II (mg/L)	10.0	3.0	2.5	3.0	10.0	1.5	v	0.0	4.0

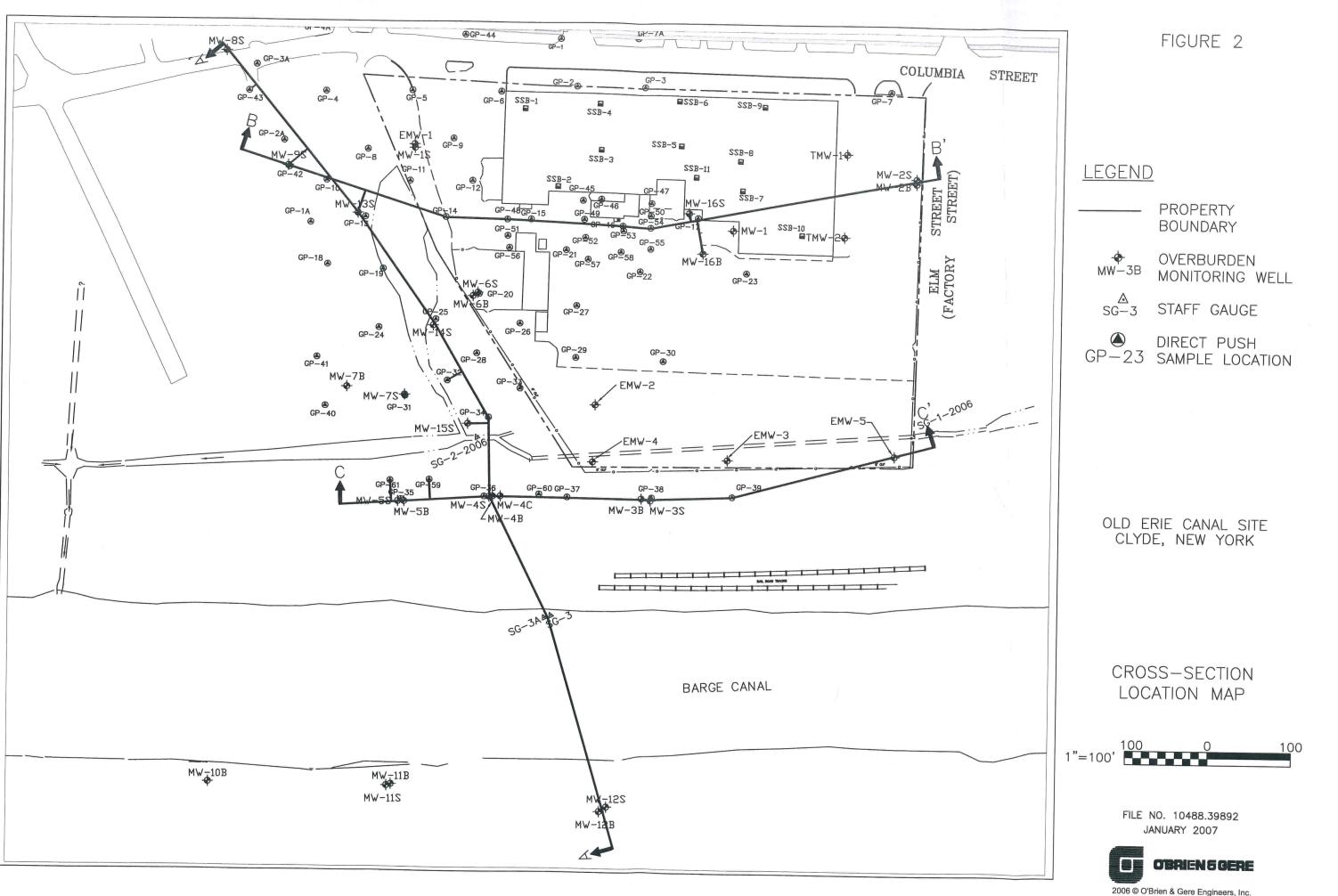
Notes: 1. Measurements and analyses performed by O'Brien & Gere personel. 2. Iron II analyses performed using a Hach test kit Model # IR-18C.

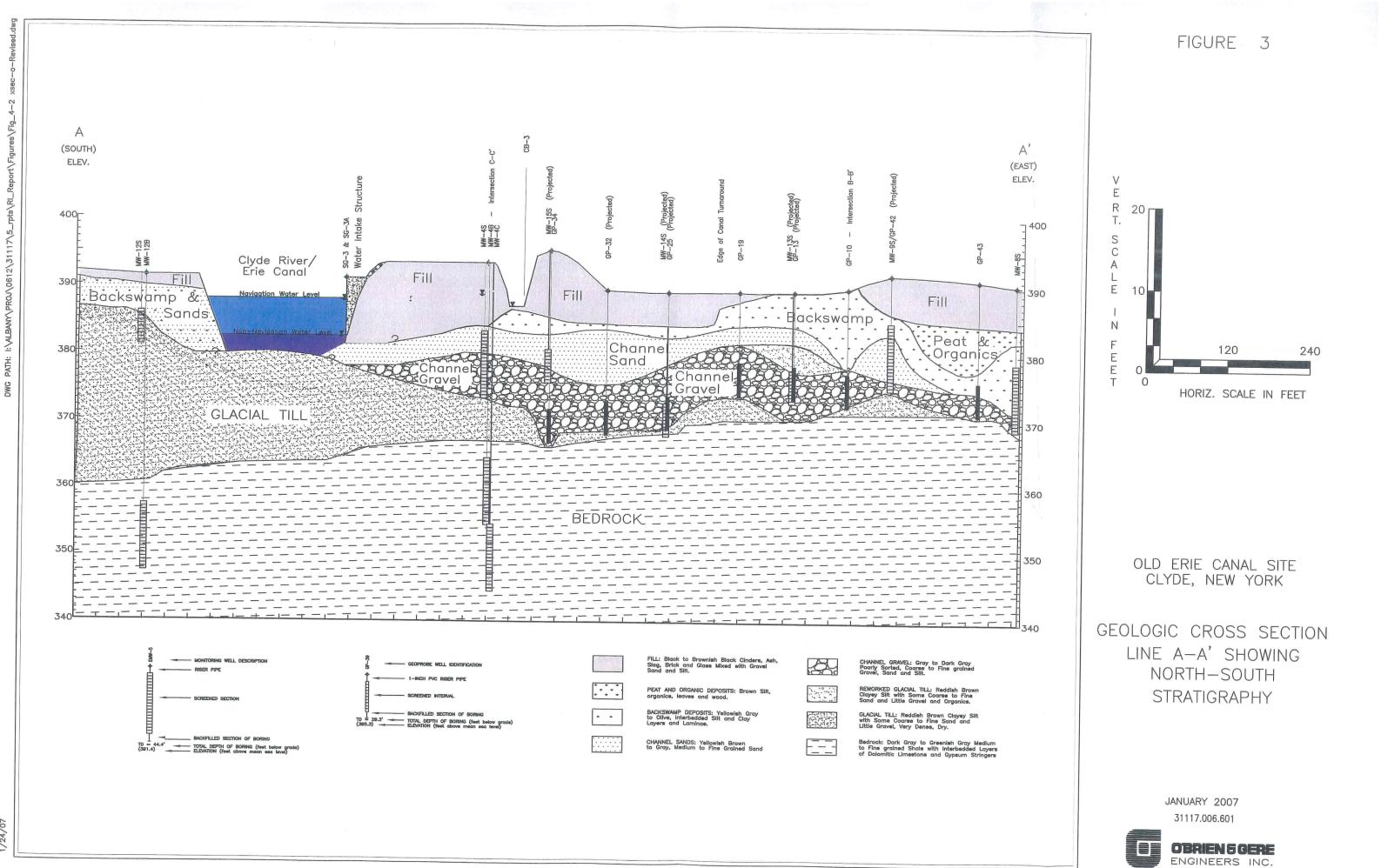
Ground Water Quality Data Field Parameters Table 8

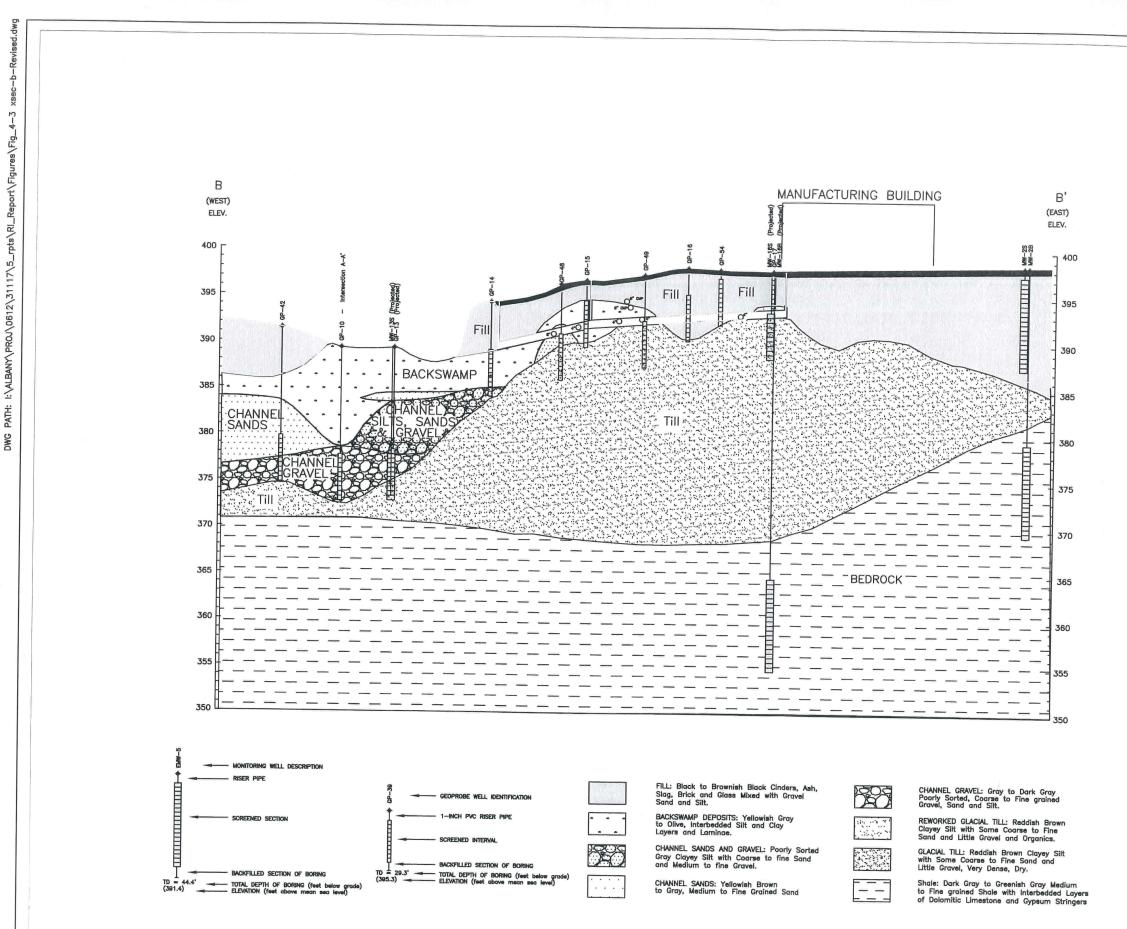

Old Erie Canal Site Clyde, New York

	MW-14S 12/6/06	MW-15S 12/7/06	MW-16S 12/6/06	MW-16B 12/6/06	TMW-1 11/28/06	TMW-2 11/29/06
Field Tested						
Redox Potential (mV)	-94	-111	-27	-236	-90 -	136
Temperature (°C)	11.08	7.64	14.44	15.85	16.49	14,16
Dissolved Oxygen (mg/L)	1.02	1.12	5.73	0.00	8.21	7.63
pH (standard units)	10.54	10.84	9.73	10.57	9.50	6.31
Turbidity (NTU)	68.0	339.0	683.0	0.0	107.0	666<
Specific Conductivity (uS/cm)	1770	1330	352	3130	2200	1090
Field Test Kits						
Iron II (mg/L)	5.5	10.0	Ŷ	0.0	5.5	0.0

Notes:


Measurements and analyses performed by O'Brien & Gere personel.
 Iron II analyses performed using a Hach test kit Model # IR-18C.


FIGURES



/24/07

1/24/07

JANUARY 2007 31117.006.601

GEOLOGIC CROSS SECTION LINE B-B' SHOWING EAST-WEST STRATIGRAPHY MANUFACTURING BUILDING

OLD ERIE CANAL SITE CLYDE NEW YORK

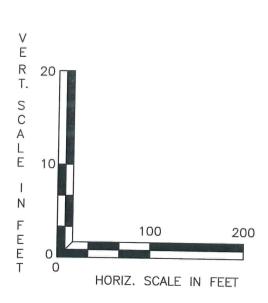
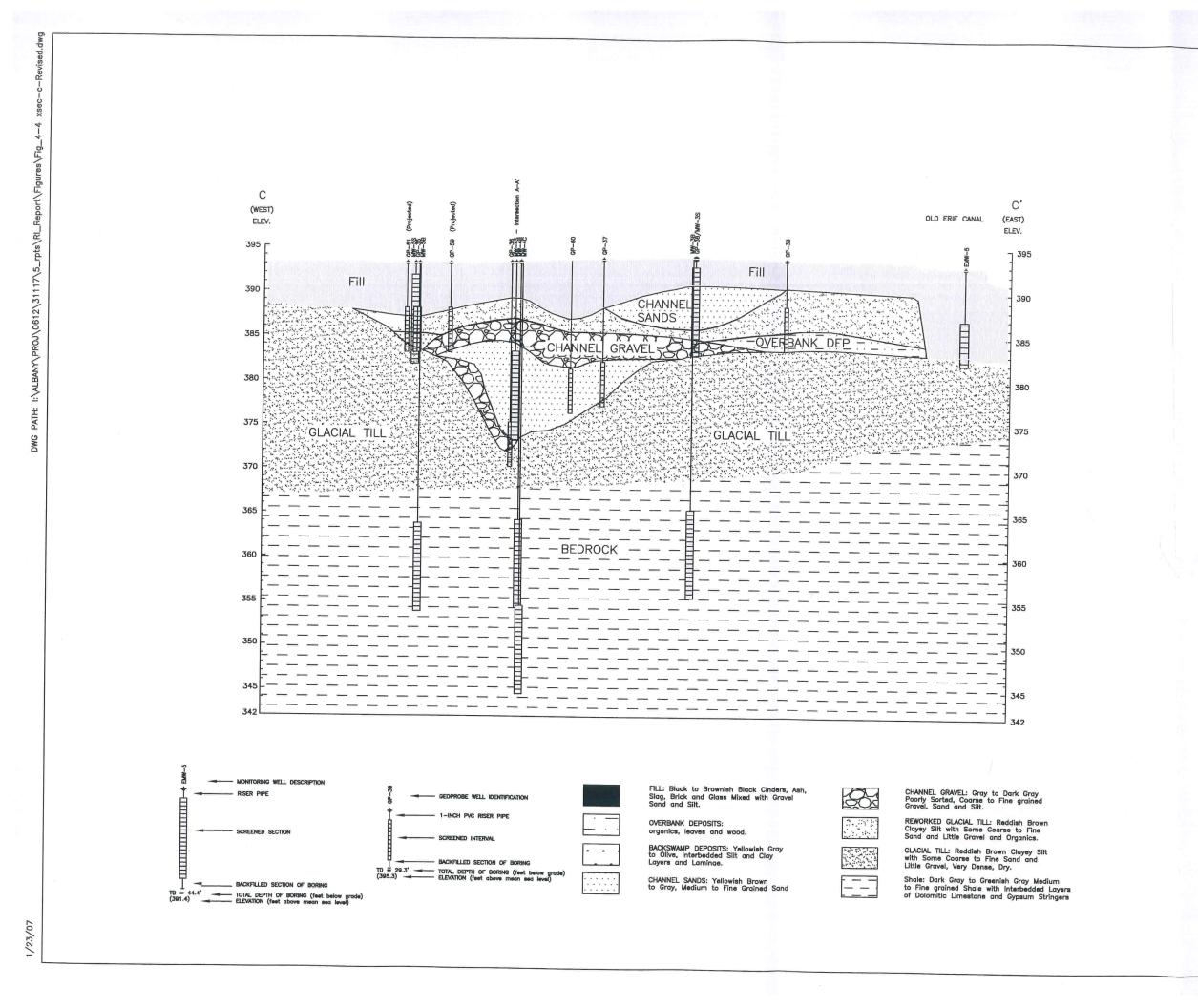



FIGURE 4

JANUARY 2007 31117.006.601

GEOLOGIC CROSS SECTION LINE C-C' SHOWING EAST-WEST STRATIGRAPHY

OLD ERIE CANAL SITE CLYDE, NEW YORK

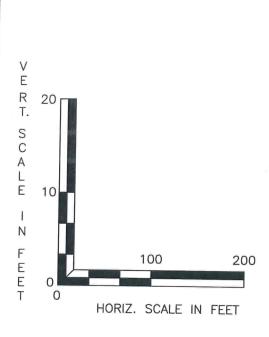
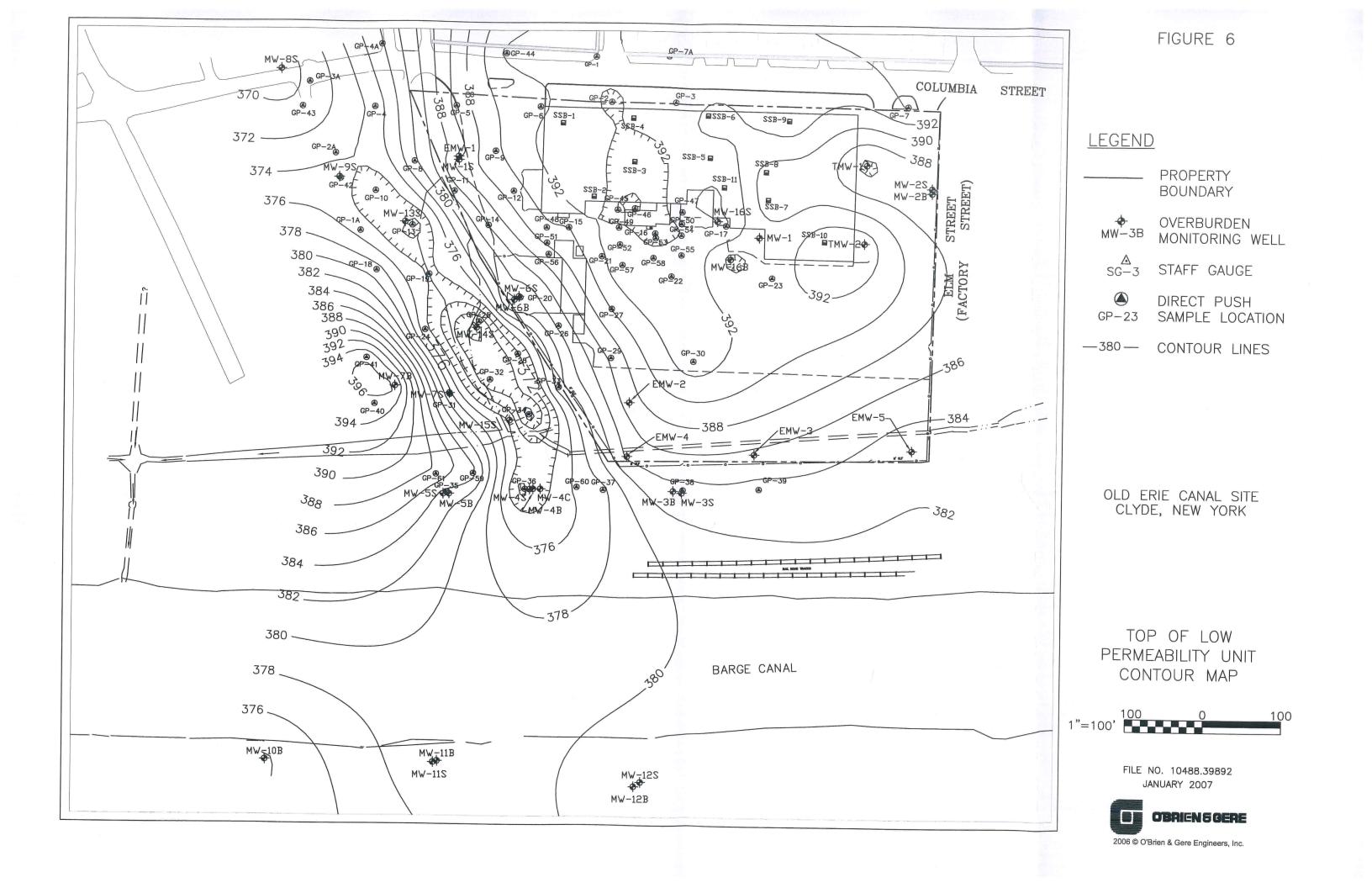
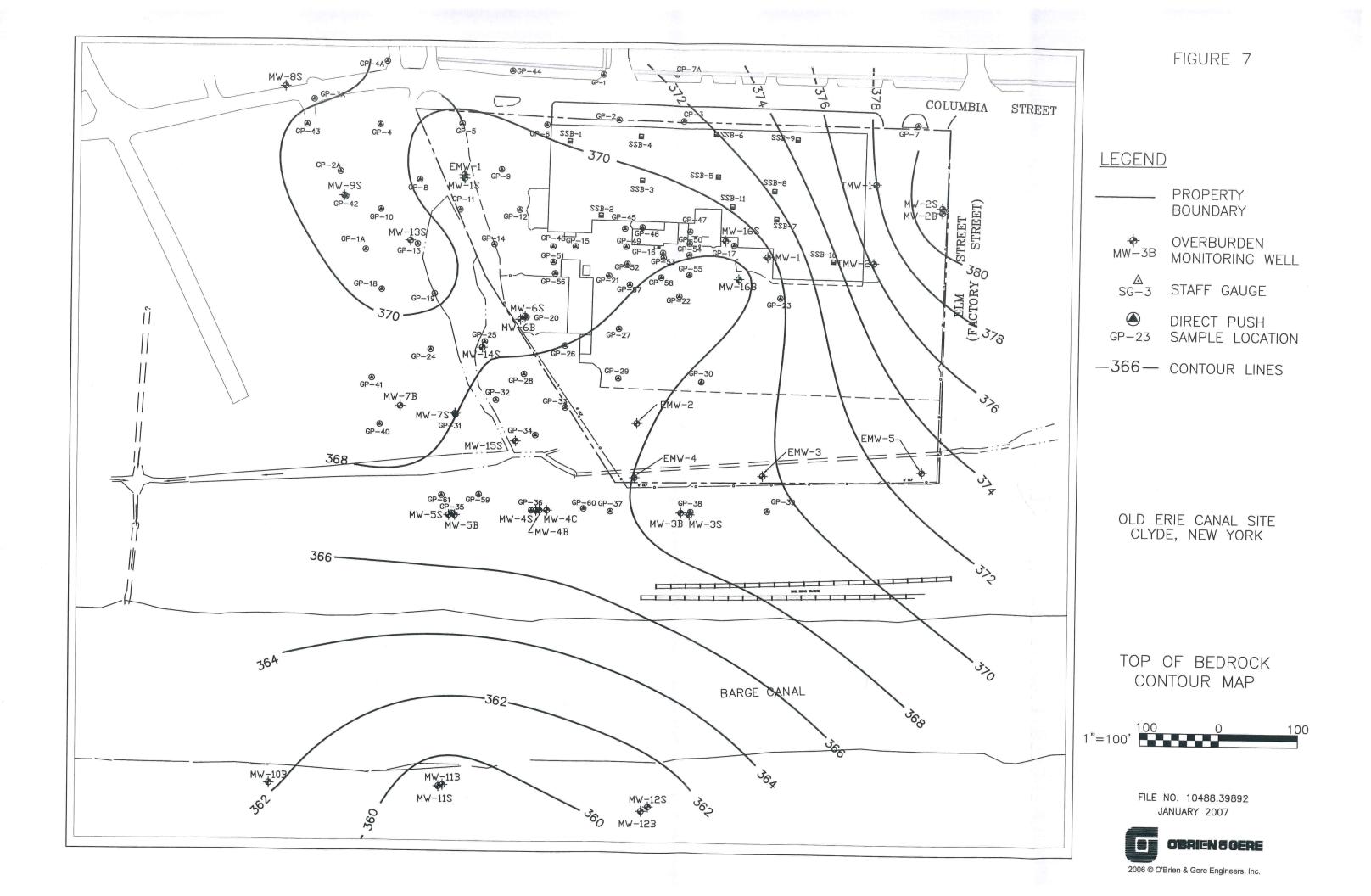
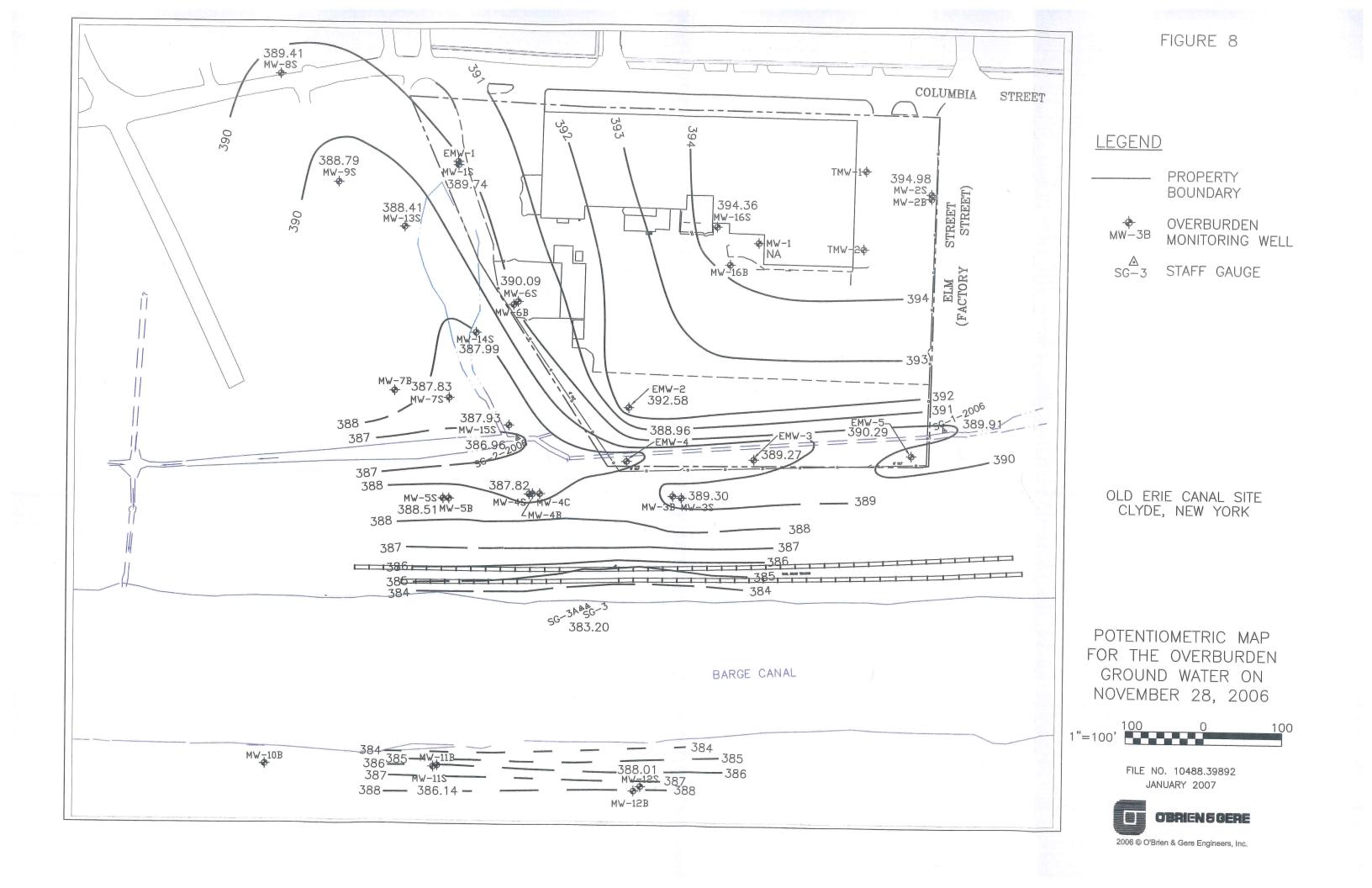
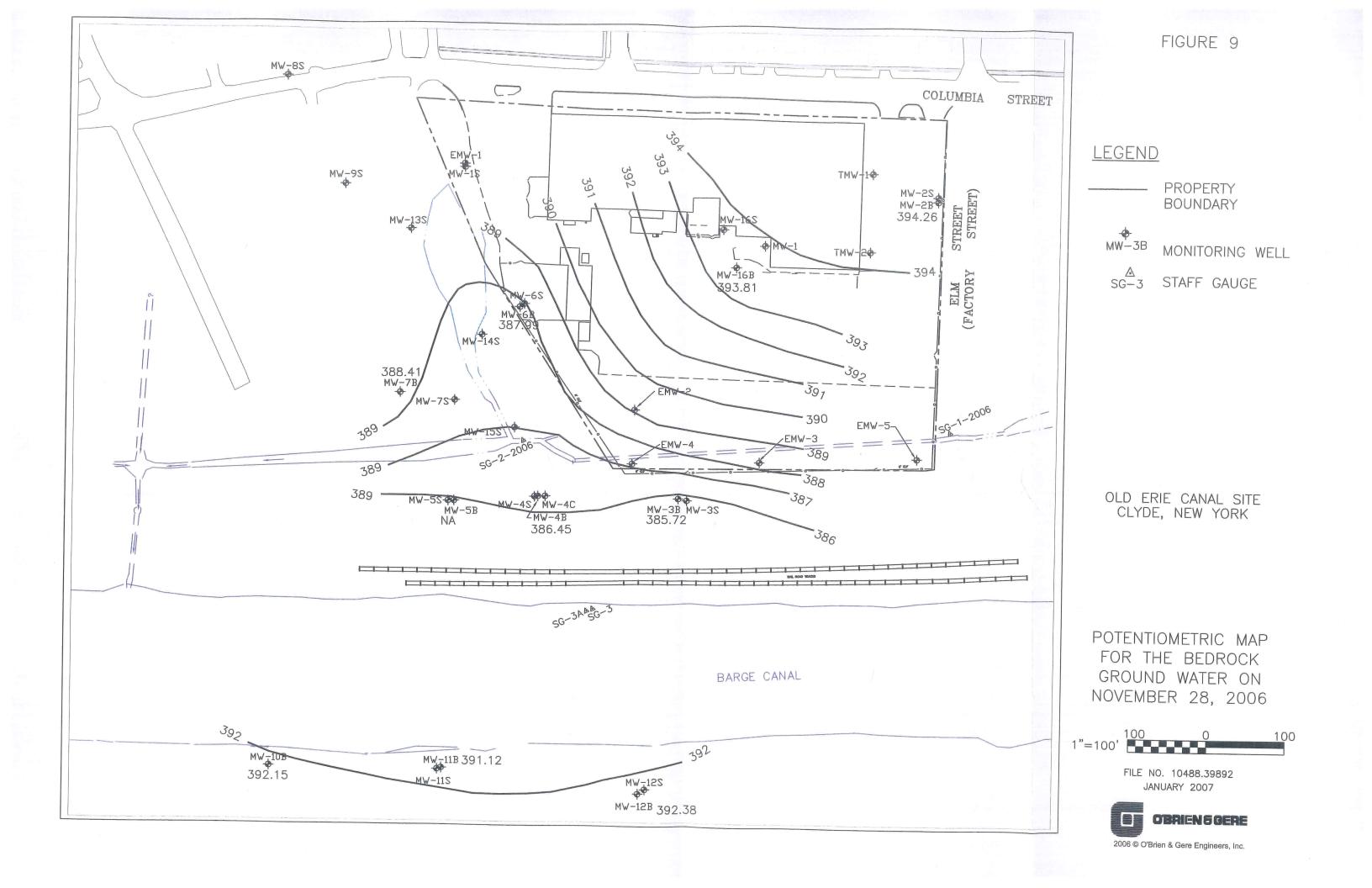






FIGURE 5

APPENDICIES

.

Soil Boring Logs

			BRIEN 8 Igineer					TES	ST BOF	RING L	_OG	BORING	NO. MW - 3B	
PRO	JE	ECT:	Old Erie Ca	nal Su	pple	emen	ita	IFS			n a fan yw daetha Sin yr Canadan yw Canadan yw Canadan yw Canadan yn Canadan yw Canadan yw Canadan yw Canadan y Canadan yw Canadan yw C	SHEET 1 OF 3		
CLIE	EN'	T:	General El	ectric C	Con	npany	11	Parker Ha	nnifin Corp	ooration		JOB NO. 39892.001.102		
DRIL	LI	NG C	ONTRACT	OR: Pa	arra	att Wo	olff	Inc.				MEAS. PT. ELEV. 393.91 NOV 24		
PUR	P	OSE:	Bedrock	Well I	nsta	allatic	on					GROUND EL	EV. 394.15	
DRIL	LI	ING N	IETHOD: H	lollow S	Ster	m Au	ge	r	SAMPLE	CORE	CASING	DATUM	Ground Surface	
DRIL		RIG 1	TYPE: CME	: 15	5			TYPE	Split Spoon	NA	Steel	DATE STAR	TED 11/10/06	
			ATER DEP					DIA.	1.5"	NA	4"	DATE FINIS		
MEA	S	URIN	G POINT:		TC	C		WEIGHT	140 lbs.			DRILLER 3		
DAT	E	OF M	EASUREM	ENT:				FALL	30"			INSPECTOR		
Depth Ft.		Sample Number	Blows on Sample Spoon Der 6"	Penetration	Unified	Classi-	fication	G	EOLOC	BIC DE	SCRIPT	TON	REMARKS	
								10	ONRING	106		11225	J	
				-				760	Bor-195	1 119	rur r	NW-35		
1 -								(9-R'6	2				
]						-				
				4										
2 -	-			-										
3 -	_			4										
				-										
4 ·														
				-										
											L.			
5.	\dashv			-										
ł				4										
1														
6	\dashv			-										
				7										
7	\neg													
													· · · · ·	
				-										
8	٦			7				· ·						
				_										
9	\dashv		<u> </u>	-1										
								1						
10	_													

	EI EI	BRIEN E	S, IN	C.	TEST BORING LOG	BORING	NO. MW-3B
		Old Erie Car				SHEET 2 OF	
CLIE	11:				Parker Hannifin Corporation	JOB NO.	39892.001.102
Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	Penetratio Recovery	Unified Classi- fication	GEOLOGIC DESCRIPT	ION	REMARKS
11							
12 -						12.0	
13 —	51	<u>20</u> <u>35</u> 5D	1.5/	CL	Reddish-brown silty CLAY and som medium fine Gravel	ne coarse	PID 0.0 DRY comPACT NO 0 DOF
14 —		<u> </u>			NO RECOVERY	14.0	
15 -	52	20 50	У,	ά	he br \$Cy a scarfe	4 <u>15.</u> 0	PIDO.0 DRY comPACT No stor
					NO RECOVERY	16.0	No soal
16	\$3	36 50	20	СС	Rd Br \$Cy as cont	- 4	PID 0.0 DLY COMPACT NO ODOR
18		-				· 1 <u>8</u> .º	•
	ક્ય	3.6 50	14	CL	RdBr \$Cy a s cmt	- Cq 19.0	PID O.Q DRY COMP. NO ODOR
19 —					NO RECOVERY		
20 -		30	- 11		Rabi \$Cy a 5 cmf	<u> </u>	Pip 0.0
21 –		.60 80	1/2	CL			Dry comp.
22 -		75	-			22.0	Né ober

		BRIEN E			TEST BORING LOG	BOŔING	NO. MW-3B
		Old Erie Car				SHEET 3C	PF3
CLIE					Parker Hannifin Corporation	JOB NO.	39892.001.102
Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	Penetratic Recovery	Unified Classi- fication	GEOLOGIC DESCRIP	TION	REMARKS
23-	-	75 45 50	0,5	CL	kd Br Ky a s cmf	9.	PiO 0.0 DRY comPACT No obor
24-		50	V,	CL	Rd Br \$Cy & s cm- Reddish-brown silty CLAY and some com	<u></u> <u>२</u> ५.० f G	RD 0.0
25-		125	<u> </u>		Redush-brown silty CLAY and some com medium fine Gravel	urse 15?	DEY
26.				· · ·	and the first and the f		CONPACT NOR BERLOCIC 25' by EDB 25.0' by
							(DB 25.0 'by
27-							
24-		-					
29 -	-						
30-	_						
31 -			-				
35.	-						
נג							
	_						

					GEF S, IN		TES	ST BOF	RING L	.OG	BORING	NO.	MW-4C	
PRO.	JE	CT:	Old E	rie Car	nal Sup	plementa	al FS	an a			SHEET 1 OF			
CLIEI						and the second		annifin Corp	ooration		JOB NO. 39892.001.102			
DRIL	LIN	NG C	ONT	RACTO	DR: Pa	rratt Wolf					MEAS. PT. E	ELEV.	392.81 NAVD 2	9
PURF			and the second se		and the second se	stallation				GROUND EL	EV.	393 .27		
DRIL	LIN	NG N	1ETH	DD: H	ollow S	tem Auge	er	SAMPLE	CORE	CASING	DATUM		Ground Surface	
DRIL	LF	RIG T	TYPE:	CME	75		TYPE	Split Spoon	NA	Steel	DATE STAR	TED	11/8/06	
GRO	UN	N DV	ATE	R DEP	TH:		DIA.	1.5"	NA	4"	DATE FINISI		11/9/06 11/17	106
MEAS	SU	IRIN	G POI	NT:		TOC	WEIGHT	140 lbs.			DRILLER	JOE	PERCY	
DATE	ΞC			IREME			FALL	30"			INSPECTOR	2	P. D'Ánnibale	
Depth Ft.	Samola	Number	Blows on Sample	Spoon per 6"	Penetration Recovery	Unified Classi- fication	G	BEOLOC	GIC DE	SCRIPT	ION		REMARKS	
							CEF	Dal	NGI	OG N	W-4B			
1					-		1 260	601			W-4B			
							0-	40'6	9					
1 -	1				1				7					
2 -	-				-									
					1									
3 -														
5 -														
1					4									
														6
4 -	1				1									
<i>†</i>					1									
						· ·								
5 -	-				-	1								
					1	1								
6 -					4									
Ĭ							1							
					-		ł							
-7														
7 -					1		ļ							
					4									
			1											
8 -	-				-									
					1									
9.					-									
					-									
					-									
10 ·]				5					

		BRIEN NGINEE					TES	ST BOF	RING L	.0G	BORING	NO. MW-5B	
PROJ		Old Erie C		أحزر يتمرد والمستغلا		ntal	FS				SHEET 1 OF	3	
CLIEN								nnifin Corp	oration		JOB NO. 39892.001.102		
DRILL	ING C	ONTRAC									MEAS. PT. ELEV. 392.85 NGVD 29		
PURP	OSE:	Bedro	ck W	/ell In	stallatio	on					GROUND EL	EV. 393,19	
		IETHOD:				igei	ſ	SAMPLE	CORE	CASING	DATUM	Ground Surface	
		TYPE: C			5	_	TYPE	Split Spoon	NA	Steel	DATE STAR	and the second	
		ATER DE				_	DIA.	1.5"	NA	4"	DATE FINIS		
		G POINT:			TOC		WEIGHT					SOE PERCY	
DATE		EASURE				_	FALL	30"			INSPECTOR	P. D'Annibale	
Depth Ft.	Sample Number	Blows on Sample Spoon	per 6"	Penetratio Recovery	Unified Classi-	fication	G	EOLOG	SIC DE	SCRIPT	ION	REMARKS	
							SEE	- 55	124 1	,04 F	or		
							MIA	- 55	0 -	12' ha			
1 -							1100						
										-			
2 -													
			,										
3 —			\neg										
											ň		
4 -	1												
					· ·								
5 —	1												
							-						
6 -	{												
7 -	-												
					-								
					1								
8 -	-												
ľ													
9 _													
10 -	1												

	EN EN	BRIEN E NGINEERS	5, IN	IC.	TEST BORING LOG		NO. NW-5B
PROJ		Old Erie Car	and the second se	the second s	al FS Parker Hannifin Corporation	SHEET 2 OF JOB NO.	<u>く</u> 39892.001.102
Depth Ft.		Blows on Sample Spoon Per 6"		Unified Classi- fication	GEOLOGIC DESCRIPT		REMARKS
11					SEE BUFING LOG MW-5	T	
12 —	1	12			RdBr \$Cy as cmfG	12.5	PID 0.0
13 —	51	28 29 38	1/2	CL	RdBr \$Cy a s confa Roddish-brown silty CLAY and some medium fine Gravel	coarse 14.0	SATURATED COMPACT NO ODOR
14 — 15 —	52	33 35 35	1.57	CL	Rd Br \$Cy a s cm		P.D. 7.0 SAT. COMPACT NO ODOR
16	53	39	0.57	- CL	Robr & Cy & s cm G No fecovery	<u>16.8</u>	PID 0.0 SAT. COMPACT NO GUN
18 - 19 -	54	25 50	05/	cL	Rd Br &y a s cmg NO RECOVERY		PID 5.7 PBM SAT. COMPACT NO ODOR SOME BEDROC FRAC
20 - 21 -	55	8 18 34	2/2	, cı	Robr \$Cy a l mfg	20.0	P.D.O.O SAT. COMPACT NO ODOR
22 -		40				22.3	

		BRIEN D NGINEERS			TEST BORING LOG BORING NO. MW-5B
PRO. CLIE		Old Erie Car			al FSSHEET 3 OF 3Parker Hannifin CorporationJOB NO. 39892.001.102
Depth Ft.	Sample Number			and the second	
De	Sa Nu		Pe Re	La Cla La Cla La Cla	
23-	56	30 28 30	1/2	CL	Robr & Cy a louf G SAT. Compact No abor
24- 25-	5X	35 30 34 35	1.5/	Сг	Reddish - brown silty CLAY and little SAT. Medium fine Gravel COMPACT No aDOR
26-		50			26.0 BEDROCK @ 25.9'
					EDB ZE'69
27-			-		
28-		· · · · · · ·	-		
29-			-		
zo.	_				
31	-				
31			_		
33	_				
34	-				

		BRIEN 5 NGINEERS			TES	ST BOF	RING L	.OG	BORING	NO. MW -6B	
DPO	the state of the s	Old Erie Car				7014caylyy Felliny a sharakar yang mu			SHEET 1 OF 3		
CLIE		General Ele				annifin Corr	oration		JOB NO. 39892.001.102		
				and the second							
	POSE:				1110.				GROUND EI		
						SAMPLE	CORE	CASING		Ground Surface	
		METHOD: Ho									
		TYPE: CAM		>	TYPE	Split Spoon	NA	Steel	DATE STAR		
		VATER DEPT	IH:		DIA.	1.5"	NA	4"	DATE FINIS		
		IG POINT:		тос	WEIGHT	140 lbs.				SOE PERCY	
DATE		IEASUREME			FALL	30"		0.5.0 × 11.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	INSPECTOR	P. D'Annibale	
Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	Penetratio Recovery	Unified Classi- fication	G	EOLOG	BIC DE	SCRIPT	ION	REMARKS	
,		3			0	$\int c$	d	de		PID 1.7 ppm	
			07		BIN	ITV ~	φ, o	,175	t, organic	NOV SOFT	
	51	10	$\frac{2}{2}$	ST	Blown m	nedium fine	SAND	and Silt	t, organic	DRY SOFT	
1 –			12		roots					NO ODOR	
		61									
		(• •	
2 -		6				and the second secon		، محمد - ان موجود به مع المحمد الذي المحمد الذي المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد محمد المحمد ا	2.0	0	
2	ſ	8			0 .	nif S	S.	0		PID 0.8 ppm	
			0.57		157 M		$\alpha \Psi$	U		DRY SOFT	
	10	5	17	SP							
3 -	152		12	9.						NO ODOR	
		7								100 00 0 E	
2		7							11 -		
4		1						ananana di serati kuga dari panganan ku	4.0		
-т 4		6								NO RECOVERY	
1997 - 1997 -											
		6									
5 -	1										
		0									
									ana ang ang ang ang ang ang ang ang ang	n ngan ing manangi pan mangita ng kanana kanang danang danang dangan kanang dan na kanang sa sa sa sa sa sa sa	
6 -	h			ļ		100 at	~		(.0	PiD c.o pm	
	1	4			Br-	Gybr 1	nf S	~ \$	l Cr		
		· · · · · · · · · · · · · · · · · · ·	N/	20		7 7			/)	MOIST - SATURATE	
7	53	1	1/2	St	t ci	of G		Ν		soft	
l ′ [_]		. 7			Que in	acavish -	brown M	edium tine	SAND and	NO ODOR	
		13	Į		5.14 1.44	He clay	trace ce	ourse me	dium fine		
		13			gravel				80		
8 -	- P										
		Z								No LECOL.	
			1								
9 _											
		2									
l			-								
		2									
10 -	-		1								

		BRIENE			TEST BORING LOG	BORING	NO. MVS - 6B
		Old Erie Car		the second s		SHEET 2 OF JOB NO.	- <u>3</u> 39892.001.102
CLIE	NT:			ompany / I	Parker Hannifin Corporation	JOB NO.	39892.001.102
Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	Penetration/ Recovery	Unified Classi- fication	GEOLOGIC DESCRIPT	TON	REMARKS
11 —	54	2	0.25	· CL	GyBr\$Gy, & CG Grayish-brown silty CLAY, tro Gravel		PID 0.0 ppm Moist SOFT No odok
12 13	35	<u>Ч</u> <u>3</u> <u>Ч</u> Ц	0.35	CL	Gybr \$Cy, tcG	12.0	PID 7.4 SATURATED SOFT No obok
14 — 15 —	5/2	0	1.5/2	CL	cy \$cy,tcG		PID 333 ppm SATURATED SOFT SLIGHT ODOR (SAMPLE)
16 — 17 —	67.		15		Gybr \$Ky, t cG Edbr \$Ky a cmf G	16.0 14.0	PID 724 (SAMPLE) SAT SOFT SUIGHTODOL PID 234
18 —		50 - 50	1,5	CL	Reddish-brown silty CLAY and con fine Gravel	rse medium	SAT. COMPACT NO ODOR TILL PID 8.2
19 —	Ş	50		CL	fdbr \$ cmf 4		SAT. ComPACT
20 21	9	40 , 50	05/	CL	Robr Scy a conf 4	20.0	PID 14.2 SATURATED
22 -			•			21.0	COMPACT NOB ODOR

		BRIENE IGINEERS			TEST BORING LOG	BORING	NO. MW-6B
PRO. CLIEI	JECT:	Old Erie Car	nal Sup	plementa	I FS Parker Hannifin Corporation	SHEET 3 C	0F 3 39892.001.102
Depth Ft.	Sample Number			Unified Classi- fication	GEOLOGIC DESCRIP		REMARKS
23-	510	50 65	1.5	CL	ReBr \$Cy cmfG	24.0	PIO 4.0 ppm SATURATED ComPACT NO ODOR
24- 25-	511	45 62 85 100	1.5	СС	Red Br & Cy a conf (Reddish-brown silty CLAY and medium fine Gravel	1 coarse 26.0	PID 5.1ppm SAT. COMPACT NO ODOR
26-	b	700					BEDROCIC @ 25.9'by EOB ZE'bg
27-	_	· · ·					
78-						•	
24							
30							
31	-						
52							
33	3-		_				
34	1_		, ,				

	BRIEN &			TES	ST BOF	ring l	.OG	BORING	NO. MW-135	
PROJECT:	Old Erie Can	al Sup	plementa	IFS			an a	SHEET 1 OF 2		
CLIENT:	General Ele				nnifin Corp	oration		JOB NO. 39892.001.102		
DRILLING C	ONTRACTO	R: Pa	rratt Wolf	f Inc.				MEAS. PT. E	LEV. 391,53 NGVO 29	
PURPOSE:	Overburd	en We	I Installat	tion					EV. 389,61	
DRILLING M	ETHOD: Ho	ollow S	tem Auge	er	SAMPLE	CORE	CASING		Ground Surface	
DRILL RIG	TYPE: GM	te 1	>50	TYPE	Split Spoon	NA	NA	DATE STAR	TED 11/2/06	
GROUND W	ATER DEPT			DIA.	1.5"	NA	NA	DATE FINIS		
MEASURIN		•••••••	TOC	WEIGHT	140 lbs.			DRILLER M	······································	
DATE OF M	EASUREME	NT: /	1/8/06	the second se	30"			INSPECTOR		
Depth Ft. Sample Number	Blows on Sample Spoon per 6"	Penetration Recovery	Unified Classi- fication	G	EOLOG	BIC DE	SCRIPT	ΓΙΟΝ	REMARKS	
	2			Dd	(<u> </u>			PID= 0.0 ppm	
			CL	nc ob	Cyos	(75				
	4	. b .		Brown	silty C	LAY , o	rganic s	iome roots	Meist	
1-151	đ	1%2.0				,			SEMI - COMPACT	
	К	•								
	3							2.0		
2	•							<i>C.O</i>		
	Ц			Br \$	iy o s	roots			PID=0.01pm	
	1	1.700	CL		1			*	MOIST	
3 - 1	k	1.75/							SEM, - COMPACT	
3 - 2	11	1/2						3.5	SERGECENT	
5				Cur D	10 . 6				D.D. O. O CPM	
1	8		CL	4V - F	dBr Cy to Reddie	sh - Brow	n CLAY	4.0	PID= 0.0 ppm MOIST COMPACT	
4 -	1 					and the second	and an	arting for a subsection was an other stars at a subsection of the subsection of th	. In the second s	
	3	~		No Re	COVERY					
	4	0/								
5 —	1	12								
	6									
		1								
	6						<u></u>	6.0		
6	3			NO RE	ECOVERY				SATURATED	
	~>	0,			/					
7 -		1' 1								
]		1				я		
8 -	NAMES AND ADDRESS OF A DESCRIPTION OF A		-					<u> </u>		
ř	19	1.75/	1	14y - R	dbr C	ý			PiD= 0,0 ppm	
	<u> </u>		(L)	'		/			SATURATED	
9 - 53	14	12						9.4		
" 75′	127	1	· · · · · · · · · · · · · · · · · · ·	1	, t'-		<u></u>	and the second distance in the second data and t		
	18	1	GP	lay ca	^ .PG	scy		tVEL, some		
	20		YI	Gray co	oarse, me	dium s	ilty GRA	AVEL, some		
10 —	<i>L</i> ¹	1	1	Clay			•			

•

		BRIEN 5 Igineers			TEST BORING LOG	BORING	NO. MW-135
		Old Erie Car		and the second se		SHEET 2 OF	
LIENT	T			l sector of the	Parker Hannifin Corporation	JOB NO.	39892.001.102
Deput rt. Sample	Number	Blows on Sample Spoon per 6"	Penetratio Recovery	Unified Classi- fication	GEOLOGIC DESCRIPT	ΓΙΟΝ	REMARKS
1-5·	,	29	1% 1/ _{2.0}	GP	Gy cm G l \$cy		PiD= 0.0 ppm SATURATED LEOSE
2		17	s.d	······	Gy cmf G lacy	12.0	PID=0.0 ppm
3 – 4	5	12	1.5/	4P	in the contract		SATURATED LOOSE
4	*****	11 47			Gy conf G l \$cy	14.0	PID=0.0 ppm
5 - Ĺ	نر ۲		0.5/	GP	1		SATURATED LOOSE
6		19	_			16.0	
7 -	л 5	6 9 9	0.5		Gy config il \$Cy	17.5	fid = 0, 0 ppn SWTURATED LOOSE
8		×3		a	Rd.Br \$Cy Reddish & rown Si		
	~~~				No RECOVERY	ંગ	
9 –	, m		4   . -			· · · · · · · · · · · · · · · · · · ·	BEDROCK @ 19.8%
20		Janner Press			A	20.1	BEDFOCK (2 19.8/4 EOB 20'69
1 _							
22 -							
	~						

				•	
		BRIEN 5 Igineers			TEST BORING LOG BORING NO. MW-145
PRO		Old Erie Can			IFS SHEET 1 OF 3
CLIEN	NT:	General Elec	ctric Co	ompany /	Parker Hannifin Corporation JOB NO. 39892.001.102
DRIL	LING C	ONTRACTO	R: Par	ratt Wolff	
	POSE:	Overburd			
		ETHOD: Ho		tem Auge	
And shares in the state of the		YPE: TRAK			TYPE Split Spoon NA NA DATE STARTED 11/6/06
		ATER DEPT			DIA. 1.5" NA NA DATE FINISHED 11/6/06
		3 POINT:		TOC	WEIGHT 140 lbs. DRILLER SOE PERCY
DATE		EASUREME		·	FALL 30" INSPECTOR P. D'Annibale
Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	Penetratio Recovery	Unified Classi- fication	GEOLOGIC DESCRIPTION REMARKS
		1			BI-TA CUS O S CHS PID 0.0 pm
		(	71	00	Br-Tn Cy\$, O, S FtS PID 0.0 pm Brown to tan clayey SILT, organic, some Moist roots (man PART
	51	4	2/2	ŞC	Drown to tan clayey SILT, organic, some MOIST
1 -	12-1	3	12	a	(ours compact
				00	NO ODOF
		3			2.0
2 -					
		5	1	63	Br-Tn Cy\$, 0, 5 (#S PID 0.0 ppm
		3	0.5/		
3 -	52			D	MOIST
		2	12	01-	40 NO ODER
		2		C	NO 0003-
4 -					
		12			PiD 0.0 Mm
			0.5/	ł	GY CY MOIST Gray CLAY COMPACT
5 -	-53	1	10.7	CL	Gray CLAY COMPACT
		3	1/2		NO ODER
		3			
6 -		<u> د</u>			_6.0
U		4			Gy Cy PID 0.0 pm
			2/2		Gy Cy PID 0.0 1pm Moist
7 -	154	7	172	CL	COMPACT
		3			7.5 NO ODOR
		<u> </u>		to another	
		7		CL	GY CY S Gray clayey SILT SO SHT. COMPACT AN ODE
8 -	-	1			
		5		,	GY CY & PID 3.1 ppm
l	1	6	0.5/	21	
9.	-150		$+ 1_{1}$	1 CC	Moist - SAT.
ł		B			COMPACT
		3	1		NO ODOR
10	1	0			<u>ال</u> 10 م

	H	BRIEN E NGINEERS			TEST BORING LOG	BORING	NO. MW-145
PROJ		Old Erie Car	and the second se	and the second se	al FS Parker Hannifin Corporation	SHEET 2 OF JOB NO.	<u>    3</u> 39892.001.102
				ompany /		JOB NO.	00002.001.102
Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	Penetrati Recovery	Unified Classi- fication	GEOLOGIC DESCRIPT	ΓΙΟΝ	REMARKS
11 —	Íb	3 6 12	1/2	GP	Gy CMF G a \$, 5 Gy 9 Gray coarse, medium, fine GRANEL some clayey silt	f - and Silt,	PID: 103 ppm SATURATED LOOSE ODOR
12 — 13 —	57	33 11 12	2/ /2	GP	Gy conf G a \$		COLLECT SIAMPLE PID 374 ppm SAT. LOOSE
14 — ´15 —	58	16 20 <b>A</b> 5	0.57	GP	Gy conf G a \$	14.0	opok
16 - 17 -	59	5 9 20 17	2.0/2.	GR	Gy cmf G Bat	16.0	SLIGHT ODOR PID IZ. Sppm SATURATED LOOSE
		20					pr oper
18 - 19 -	-510	21 15 12 6	2/2	- GP	Cay cmf 4 a \$		PID ZOUS ppm SAT. LOOSE ODOR SAMPLE COLLECTED
20 - 21 -	-511	-10 13 20	1.75	7. 	Gy conf G a \$	20.3	PID 117 ppm SAT. LOOSE ODOR SAMPLE COLLEGED
22 -	-	6.				22.1	2

,

		BRIEN 6 NGINEERS	I <b>GEI</b> S, IN	RE C.	TEST BORING LOG	BORING	NO. MW-145
	JECT:	Old Erie Car	nal Sup	oplementa		SHEET 3 C	
CLIEI	IT:			ompany /	Parker Hannifin Corporation	JOB NO.	39892.001.102
Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	Penetratio Recovery	Unified Classi- fication	GEOLOGIC DESCRIPT	ΓΙΟΝ	REMARKS
	512	50	0.5/2	CL	Gy- Paciny Cy \$ 5 MfG Gray to Reddish-Stay clayer silt, som	re medium fine form	COMPACT O, O PID NO ODOR
23-					Glacial Till		EDB 22.5/6g
24-							
25-							
26-	-						
27-	-						
28 -							
29-							
30-							
31 -				-			
32.							
z3.	-		-				
34			-				

		BRIEN 6 Igineers			TEST BORING LOG BO					NO. MW-155
PROJ	IECT:	Old Erie Car	nal Sup	plementa	al FS				SHEET 1 OF	:2
CLIEN	NT:	General Ele	ctric C	ompany /	Parker Ha	Innifin Corp	ooration		JOB NO.	39892.001.102
DRILL	LING C	ONTRACTO	R: Pa	rratt Wolf	f Inc.				MEAS. PT. E	ELEV. 390.12 NON 29
PURF	POSE:	Overburd	en We	Il Installa	tion				GROUND E	
DRILL	LING N	IETHOD: He	ollow S	tem Aug	er	SAMPLE	CORE	CASING	DATUM	Ground Surface
<del>ئىشىنىشىكەت</del>		TYPE: TRAC	· · · · · · · · · · · · · · · · · · ·		TYPE	Split Spoon	NA	NA		TED 11/7 /06
		ATER DEP		2.19	DIA.	1.5"	NA	NA	DATE FINIS	
		G POINT:		TOC	WEIGHT	140 lbs.			DRILLER	
		EASUREME			FALL	30"			INSPECTOR	
		LASUNLIVIL		18/00					INSFECTOR	F. D'Amilibale
Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	Penetratic Recovery	Unified Classi- fication	G	EOLOG	SIC DE	SCRIPT	TION	REMARKS
		0			DUBC	- and C	· t	0 0 0	12	PID 0.0
		<u> </u>			n L A	- Gy C	-441	100		ø
land Sharan		O	1400	CL	Dark Uld	win to go	iny clay.	ey SILL,	siganic,	VERY MOIST
1 -	cs		14		some roo	575				SOFT
	$\mathcal{D}$	$\boldsymbol{\mathcal{O}}$			a e contractoremente contractore e contracto		real and a second s	Sea "Allan and a state" a Sila S at Mire & R. an and a state of the	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	No obor
	egésseienne († 155		and scale on the stands	(1997) A. B. Constanting of the second se	a sur la cran dependencia d'altra de					NO RECENTEY_
2		1				terre-			2.0	-WG and the Construction of the second
2		0			DUD	<u>, , , , , , , , , , , , , , , , , , , </u>	J		nin dan serien da kana da kana yang menangan dan penangkan da kana da kana da kana da kana da kana da kana da k	PID 0.0
		0	21		DEPE	- Gy Cy	1\$,0			
		0	14	CL			,			SATURATED
3 –	52		12	Cu						< SC-T
		7	1							5087
			1			• 1	N. S. S.			No osof
		3		AND A CONTRACTOR	en antenne en antenne de la compañía			······	4.0	
4 —	and the second s	3			DKG	ry coarse	6 .	4		PID 0.0
		<u> </u>	10		Dala	L. an area	4 ac	En co	AVEL and	
		l l	0,5/	41		ry Coase	medium	TINC OF	1102	S147.
5 -	53	alar sana sana sana Tanàna amin'ny sana		141	Sil+	64-				LOOSE
		Z	12	r						NO ODOR
		3	1							
		<i> </i>			and American matter		Elizabet of Linkshows (1997)	anter and a second s		
6 -	At here we	5		GP	DOC.	cmf	A* 6	¢		Piporo ppn
		<u> </u>	l.,	Gr	ase viy	CIME	G cm	r		AF.
		5	17							SA.
7 -	154	· · · · ·	1/2							leost
	1	5			a SAN STRATIONS AND		para ang pang ang mang pang pang pang pang pang pang pang p	an a	e para na sila ana ana ang kana ang ka	NO ODOR
				LL	PaBr	\$Cy ?			a data di kanan seri Califa dena.	
8 -	_	6	-homostato, gana	an alatin the second strategic second second		n ya wasanan di dagana di sana si kata da sa sa Chigan Lananan	and a statement of the	nt fastante. Politika etas atas statut statut atas atas mana	8.0	ning an grantesis frantesis to the classical and a state and the second state is the state and a state of the state of t
0		1/1		1 1	DK Gy	- Raci	V Con		4	PiD 1. Z ppm
		14	-				/ Crea	Чщ	SP	
_	11	20	1/2	GP			11 m			SAT. 600
9 _	-55		112	-						LOOSE COMPACT
		20							- A	
	i.	مسر د	1					alged + b ^{ter}		NO OCOR
10 -		15								
1 10	1									I have a present of the second second second second

OBRIENS GERE ENCINEERS, INC.TEST BORING LOG BORING NO.BORING NO. $M \omega - 15.5$ PROJECT: Other canal suppomental FS GLIENT:SHEET 20F $\simeq$ SHEET 20F $\simeq$ CLIENT: General Electric Company / Parker Hamifin CorporationJOB NO.30992.001.102 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ 11 - 5/9 $\frac{1}{12}$ $\frac{12}$ $\frac{1}{12}$ $\frac{12}$ $\frac{1}{12}$ $\frac{12}$ $\frac{1}{12}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$								
CLIENT: Ceneral Electric Company / Parker Hannifin Corporation JOB NO. 38882.001.102 $\frac{1}{10}$ $\frac{1}{10}$						TEST BORING LOG	BORING	NO. MW-155
$ \frac{u}{400} = \frac{u}{40} \frac{u}{4$							and the second	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CLIE	NT:			ompany /	Parker Hannifin Corporation	JOB NO.	39892.001.102
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	Penetratior Recovery	Unified Classi- fication	GEOLOGIC DESCRIP	ΓΙΟΝ	REMARKS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			22			DKGy- PdGy conf G AS	8	PID Z.O
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		clo	158	1.75	CP		Т	SAT.
$12 - \frac{28}{16} - \frac{129}{13} - \frac{129}{14} - \frac{119}{14} -$	11 —	12A		1/2	41			COMPACT
12 - 16 - 15 - 15 - 16 - 17 - 18 - 19 - 19 - 19 - 10 - 10 - 10 - 10 - 10							12.0	
$13 - 53 = \frac{23}{33} + \frac{15}{20} + \frac{15}{$	12		******			DK Gy and Com a A		and pressed a subsequence of the second s
$14 \qquad \qquad$				1.5/	4	pray cart y a sp		SAT
$14 \qquad \qquad$	13 –	57				G. Pd do The	13.0	Compact No obst
$ \begin{array}{c} 13 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 1 \end{array} $				1 20	CL	Gravish-red silty (LAY and Lith	le Gravel	SAT. COMPACT
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14 -		4		a an an tao 100 an tao Tao 100 an tao 100 an ta		14.0	No oder
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								EOB 18'69
	15 -					A		14,0
	16 -							
	10							
	47			]			:	
	17 -			1				
				1				
	18 -			-				
				4	<i>c.</i>			
	19 -	<b>-</b> (						
	20 -	-		$\frac{1}{2}$				
				-				
	21 -	-		_		t		
22 -				_				
	22 -	_		_				
		i						

O'BRIEN & GERE Engineers, inc.	TEST BORING LOG	BORING NO. MW-165		
PROJECT: Old Erie Canal Supplementa	IFS	SHEET 1 OF		
		JOB NO. 39892.001.102		
DRILLING CONTRACTOR: Parratt Wolff	Inc. N	MEAS. PT. ELEV. 397.30 NGND 29		
PURPOSE: Overburden Well Installat		GROUND ELEV. 398,01		
DRILLING METHOD: Hollow Stem Auge	r SAMPLE CORE CASING L	DATUM Ground Surface		
DRILL RIG TYPE: 600 D 50	TYPE Split Spoon NA NA D	DATE STARTED 11/2/06		
GROUND WATER DEPTH: 2.97	DIA. 1.5" NA NA E	DATE FINISHED 11/2/06		
MEASURING POINT: TOC		DRILLER MARK EAVES		
DATE OF MEASUREMENT: 11/3/01	FALL 30"	NSPECTOR P. D'Annibale		
Depth Ft. Sample Number Blows on Sample Spoon Spoon Perefration Penetration Recovery Unified Classi- fication	ON REMARKS			
8	ASPHALT ReBr \$Cy			
3	Rabe Scy	O.O P.D		
	TY	DEY		
5-1 4 /2 CC				
		COMPACT		
2 - 50				
	CONCRETE ? REBAR			
3 - NA NA				
	A	12.5 PiD		
4 10	PdBr \$Cy o cm 4			
		WOIST TO SATURATED		
5 10 1/ 14		com PACT		
22		WATER TABLE AT		
25		~ 4 69		
6	0 1	AND A MARKED AND A DISCHARGED A RECEIPTION AND A DISCHARGED AND AND AND AND AND AND AND AND AND AN		
30	Rebr \$Cy s cm G	0.0 PID		
36 11		SATULATED		
7 - 12 CL		COMPACT		
3.6		WAY AC I		
38				
8		0.4 PID		
12	Rabr & cr s cm G			
		SATURATED		
9 12 1.57 CL				
33 2		COMPACT		
40	(GLACIAL TILL)			
10 -	( GLACIAL TILL)	EOB 10' 64		

					GER S, IN		TES	ST BOF	RING L	.OG	BORING	NO. M	W-16B	,
ROJ	the second s	-			the second s	plementa	IFS	*******	<b>a an an</b>		SHEET 1 OF	3		
LIEN	T:	G	iener	al Ele	ctric C	ompany /	Parker Ha	nnifin Corp	poration			39892.00		
RILL	ING					rratt Wolf					MEAS. PT. E	LEV. 3'	17.69	NEWD 29
URP	POSE		Bec	Irock \	Well Ir	stallation					GROUND EL		78,18	
RILL	LING	ME	THO	D: Ho	ollow S	Stem Auge	er	SAMPLE	CORE	CASING	DATUM	G	round Sur	rface
RILL	L RIG	ΤY	PE:	CN	1E 75	5	TYPE	Split Spoon	NA	Steel	DATE STAR	ED 11	11410	6
ROI	UND	NA	TER	DEPT	TH:		DIA.	1.5"	NA	4"	DATE FINISI	IED //	115106	
IEAS	SURI	١G	POIN	NT:		тос	WEIGHT	140 lbs.					PERCY	
ATE				REME			FALL	30"			INSPECTOR	Р	. D'Anniba	ale
nepul r	Sample Number	Blows on	Sample	Spoon per 6"	Penetration Recovery	Unified Classi- fication	G	EOLOC	GIC DE	SCRIPT	ΓΙΟΝ	R	EMARł	<s< td=""></s<>
	~	-		and the second				HALT					and the second	* 210 * ¹
1				*****			SEE	BORING	Log	MW-1	65	· · · · · · · · · · · · · · · · · · ·		
1		Γ					C	5-91	bq	•				
									$\mathbf{J}$					
2 -	-	╞									i			
														1
3 —								11 <u>1</u> 1 1 1 1 1			به العالم معام وروم ال			
		-			4									
4 -	1	F			1									
					1									
5 -	-				4	а болар са 1977 г. с				e na seconda de la composición de la co				
		L									•			
											6.0			
6 -		┿				di-	0.0	Å /		$\int c$	and and a firm of the second second second		enter de la companya	a and a second second
						- CC		\$Cy						the starting of
							Redust	n-brown	silty CLI	AY and co	arse medium Gravel 7.0			
7 -	-	╦╞		-	-11		10.0	da	<u> </u>	fine	ULAVEL 1.0		0	
			2	7	1ªB	Tel	140 01	\$Су а	- cmt 4			Com	VACT	
		$\vdash$		~	-  <b>"</b>							DR	Y	
8 -	<u> </u> 51		66	0	17									
U					1 /2	-						NO	odol	
		┢		<b></b>										
9 =						- Sama Barras		an an an an an Arian Arian Arian an Ar	¢-recenter-		9.0	e en en en	· · · · · ·	10 C P
					1	CL	ala	5 C	· . 	mfla		PID	4.5	- ppm
		╮┠			- i/		Karon	- P - 7	, al	···· ··· ··· ··· ··· ··· ··· ··· ··· ·			PACT	¥ * `
40	5	L		2	17	시						DRY	•	
10 -	7	Γ							-			1	ro e	DOR

------

14**4**9-1

		BRIEN E			TEST BORING LOG	BORING	NO. MW-16B	
PRO		Old Erie Car			I FS	SHEET 2 OF	2	
CLIE		and the second statement of the second statement of the			Parker Hannifin Corporation	JOB NO. 39892.001.102		
Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	^{&gt;} enetration/ ?ecovery	Unified Classi- fication	GEOLOGIC DESCRIP	TION	REMARKS	
11 -		-	1/2		Roby Scy an conf 4	112	PiD 0.0	
12 - 13 -	53	50		September 1		<u>13</u> .t		
	54	50	2.5		REBI \$ Cy an conf 4		P.D.O.9 DRY CONPACT NO ODOR	
15 - 16 -	- 2	- 7 40 50	1,5	ci	Rd Br BCy a conf	<u> </u>	PID 0.0 DRY company No oper	
17 ·	56	- 47 90 50	0,75	el	Rober Dy a cont q	£7 :	PID 0.0 DRY COMPACT NO ODOR	
19		31	2/	' cl	Rober JCy a conf	<u>-19-0</u> Ú	P.D. D.O. DRY. SLIGHTLY MOIST	
20 21	-51	61 50	- 1/2				ompact No obok	
22	_59	20	1.5		Ribr & Ciy a conf i	9	VID 0.0 MOIST COMPACT NO ODD	

		BRIEN G			TEST BORING LOG	BORING	NO. MW- 16B
PRO		Old Erie Car	al Sup	oplementa		SHEET 30	
CLIE					Parker Hannifin Corporation	JOB NO.	39892.001.102
Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	Penetratio Recovery	Unified Classi- fication	GEOLOGIC DESCRIP	TION	REMARKS
		75				<u>13.</u> 0	
23- 24-	- 59	45 50 95	1/	ci	RdBr \$Cy a cont c	250	P.D. 1.2 MOIST COMPACT NO ODOR
25-	510	05	2/2	CL	ReBr & Cy a cont	<u></u> ۲۱۰	PID O.D MOIST COMPACT NO ODOS
-27 2§		65 27 40 42	2/2/2	CC	fd br \$ Cy a conf		PIDO.0 meist compact
30	2 5	45 50 50 	0.5	CL	Pd.Br \$ Cy a conf		PID 0.0 NOIST LOMPACT
3	1	110	0,2		Reddish-brown silty CLAY and medium five Grave (	l coarse	PID O.C ME.ST COMPACT NO ODOR BEDLOCIC C 31' W
37	1-						COS SI' by

		BRIEN &			TES	ST BOF	RING L	.0G	BORING	NO. TMW-1		
		Old Erie Car							SHEET 1 OF	2		
CLIE		General Ele				annifin Corp	poration		JOB NO.			
		ONTRACTO								ELEV. 399, 11 NGID 29		
	POSE:	Overburd							GROUND EI			
		IETHOD: He		Stem Auge	er TYPE	SAMPLE	CORE NA	CASING	DATUM	Ground Surface		
		TYPE: DS	TED 11/3/06									
		ATER DEP	DATE FINIS									
		G POINT:	· h 1****	TOC	WEIGHT				DRILLER √			
DAIE		EASUREME		1/8/06	FALL	30"			INSPECTOR	R P. D'Annibale		
Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	Penetration Recovery	Unified Classi- fication	G	EOLOG	BIC DE	SCRIPT	TION	REMARKS		
		2		SP	Br - 7,	n mfS	, 0 %	own to tan p	redium fire SAND	DRY COMPACT		
	11	2	1.0/		RI. GY	$\Gamma$	d			0,0 PiD		
1	51	<i>}</i>	1.0/	SP	DICA	nf G sray coarse	, s≯	0	IFI cond			
		4	]		Dlack to	gray coarse	medium	tine UKAN	ich, some	DRY		
		ч			Silt				0.5	COMPACT		
2 -		• • • • • • • • • • • • • • • • • • • •					Æ	·	2.0			
		(			161-Gy	cmf	G s	\$		O.O PiD		
		2	0.5		'			,		SATURATED		
3 —		L	12	SR								
0	52	Í	12							LOCSE		
			-									
		3							4.0			
4		2			BIL	cont	<u>c</u> -	<u>d</u> -		Construction and a construction of the state of a		
		<u>د</u>	-	68	1-1-CY	CVNT	BY S.	や		0.0 PID SATURATED		
		4	1.9						5.0	10055		
5 —	53	· · ·	12.5				·····		2.0	and the second		
		6	1	LL	44- Tn	tan CLI	~~ <u>~</u>			SHTURATED		
		6	1		Gray to	tan CLI	-1 Y		£ .	COMPACT		
6 -	<b></b>	N			-	~			6,0	a annaidh ann an ann an ann ann ann ann ann ann		
-		6		SP	BI-4V	cint G	5\$			0.0 PID		
			1.0]	121	Black to	o gray core	se medium	fine GRAN	EL, some Silt			
7 -	54	90	1.7		<u> </u>				ס.ר	1.605		
	] ^ \	1	1/20		C. 1	C				LOOSE		
		k	1	CL	Gy- Tn Gray to to	CY				SHTURATED		
		10			Gray to to	an CLTY			8.0			
8 -						<u> </u>		1	X.			
		10		SP	B1-Gy	cmf	Ģ,s	¥		O.O. FIN		
	/	.11	101	^{&gt;'}								
9 _	55	<u> </u>	2/						<u> </u>			
		19	1/2		Gy-7,	n Cy				LOOSE		
			1.	CL		/				SATURATED		
10.		21							10 ;	ð		
10 -												

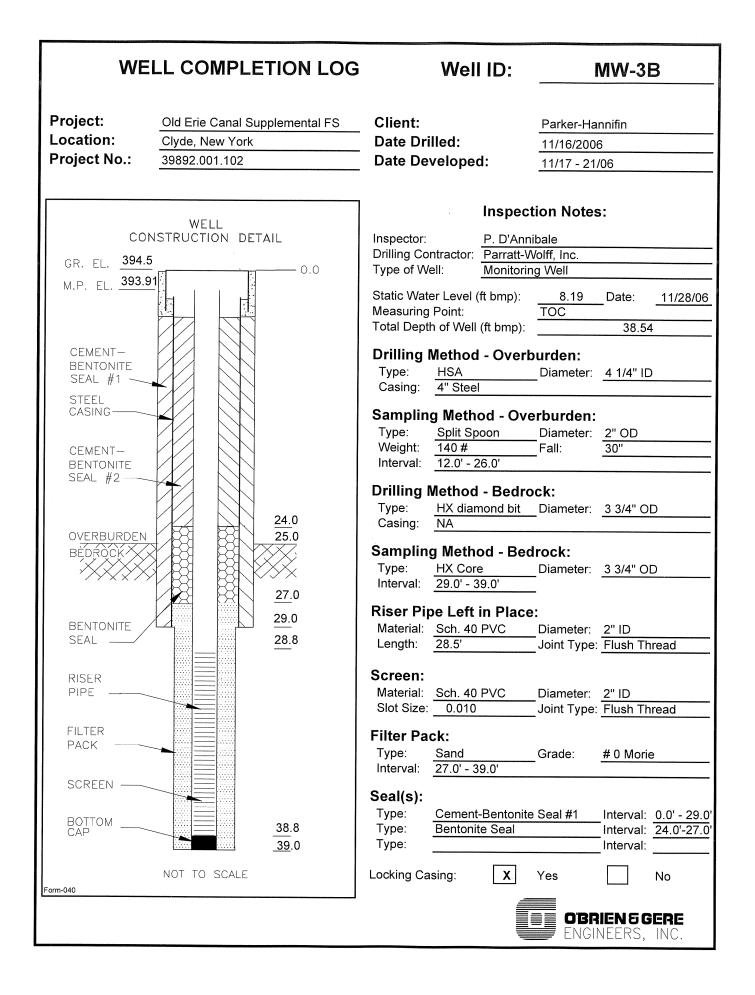
		BRIEN E			TEST BORING LOG		NO. TMW-1
	JECT:	Old Erie Car	nal Suj	pplementa	al FS Parker Hannifin Corporation	SHEET 2 OF JOB NO.	2
			È	{		JOB NO.	00002.001.102
Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	Penetrati Recover	Unified Classi- fication	GEOLOGIC DESCRIP	REMARKS	
		27			BI-Gy carf G	10.5	0.0 PID
		31	2/		Ciy-TA Cy	11.0	-
11 –	156	50	1/2		BI-Gy crif G	11.5	LOOSE
				CL	Gy-Tn Cy		
12 -		38			Gy-Tn Cy	alan anang ing ing na kan ing ana aya ka	0.0 RD
	51	50	1/2	LL	ay-in cy	3.0	SAULIMED LOOSE
13 -			12		Rd Gy \$Cy Reddish-gray Silty CLAY	·	0.0 (1)
					Reddish - gray Silty CLAY		DRY - COMPACT EOB 14'bg
14 -	<b>B</b>	-				110	EOB 14'bg
			-				
15 -	-		-				
			-				
16 -	-		-				
			-				
17 -	-		-				
			-		-		
18 ·	-		-				
			-				
19	-		-				
			-				
20	4		-				
			_				
21	-		-				
22	-		_				

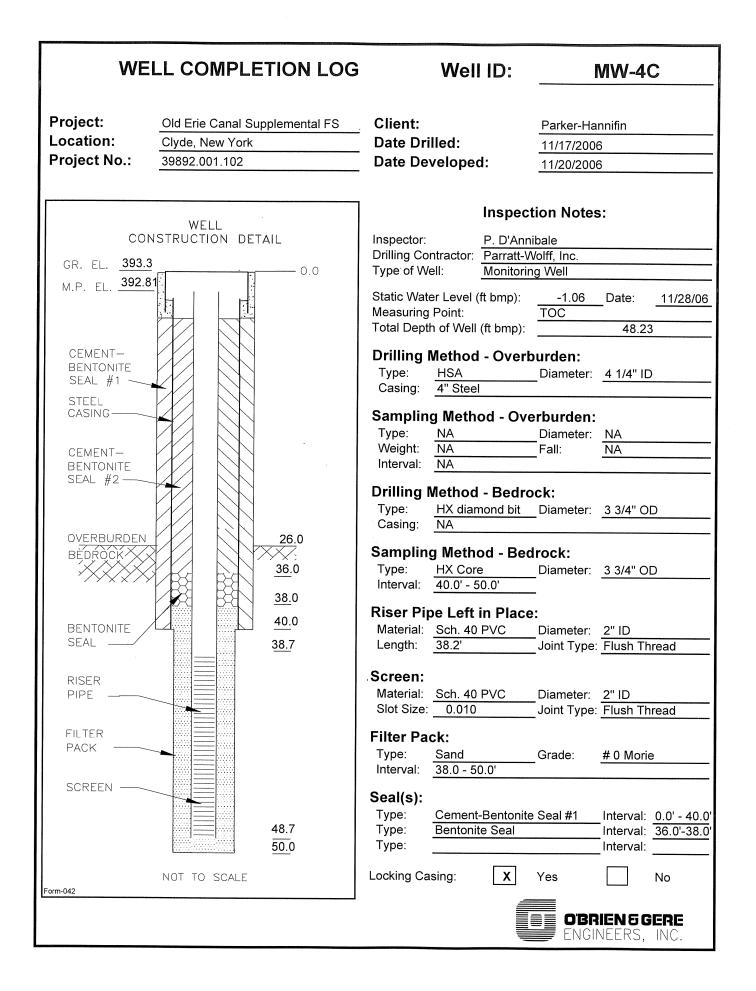
		BRIEN 6 NGINEERS			TES	ST BOF	RING L	.OG	BORING	NO. TMW-Z		
PRO.	IECT:	Old Erie Can	al Sup	plementa	FS				SHEET 1 OF			
CLIE	NT:	General Ele	ctric Co	ompany /	Parker Ha	nnifin Corp	oration		JOB NO.	39892.001.102		
		ONTRACTC Overburd								LEV. 399,91 NGUD 29		
	POSE:	GROUND EL	EV. 398,82									
	LING	Ground Surface										
	RIG			1 1/1	TYPE	Split Spoon	NA	NA		TED 11/3/06		
		VATER DEPT		4,48	DIA.	1.5"	NA	NA	DATE FINIS			
		G POINT: EASUREME		TOC	WEIGHT	140 lbs. 30"			DRILLER INSPECTOR	NACK EA√ES P. D'Annibale		
DATE				11/3/06	FALL				INSPECTOR			
Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	Penetratic Recovery	Unified Classi- fication	G	EOLOG	BIC DE	SCRIPT	ΓΙΟΝ	REMARKS		
		2			Br-Tu	. mfS . tan me	5			e e la		
		<u> </u>		<p< td=""><td>Band</td><td>to a man</td><td>dum fin</td><td>SAND</td><td>organic</td><td>o o fid</td></p<>	Band	to a man	dum fin	SAND	organic	o o fid		
1		5	1.01	-21	1210001111					PRY		
' -	SI	10	(2,9	<,{						COMPACT		
2 -	- Chinagona	k				• • • •	8 <b>4 - 1</b> 1		2.0			
2		11			No fe	Rovery				GRAVEZ		
										IN SPLIT SPOOLS		
3 -												
			/									
4 -	ł					~						
1		6		,0	Gy CM	f G						
	52	16	1.757	GP	Grav coo	f G rse medium	n fine GF	AVEL				
5 -	25	10							5.0	0.0 P.D		
		1 11	1/20	a	RdB	r \$C	Y			MOIST		
		12	1.20	a	Redd.sh	- brown	silty CL	-AY	_	Cara Oder		
6 -	-	12						entre o esta a mila da liga	6.0			
										EDB: 6 kg		
			1									
7 -	4		4									
			1									
8 -	4		4									
			1									
9 -	4		4									
			1									
10 -	4		-									
		1	<u> </u>									

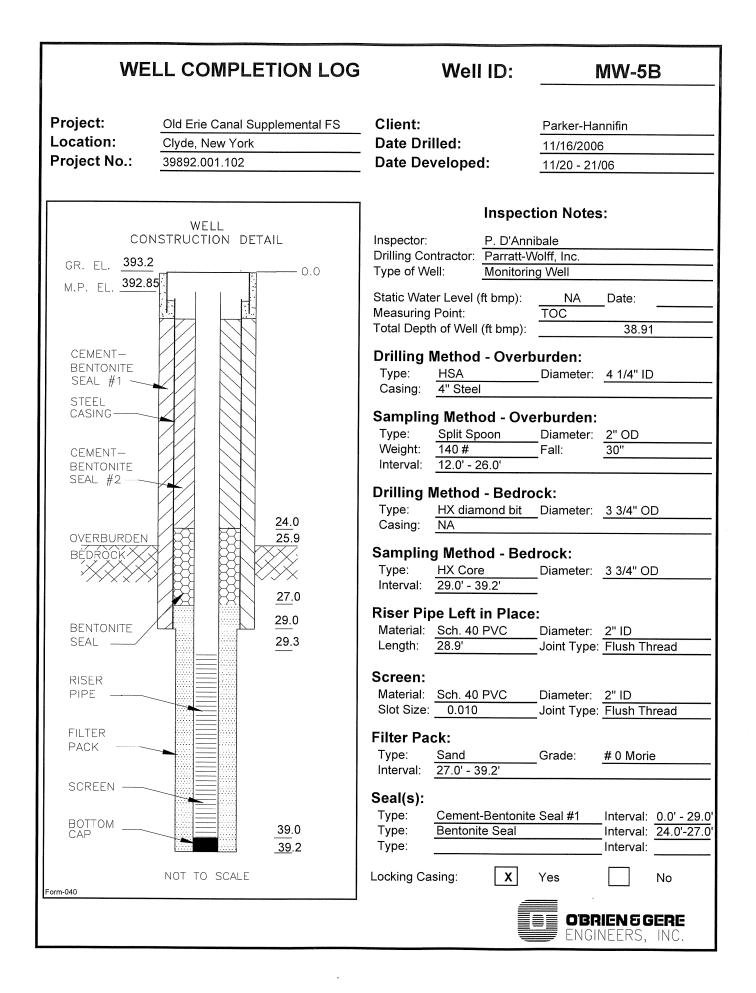
O'BRIEN &	O'BRIEN & GERE ENGINEERS, INC.	INEERS,	INC.			Hole No . MM-3B	- oh ho	00 00802	1 100	
435 New Karner Road	arner Road				CORELOG		JUD INU.	28082.UUI.IUZ	1.102	
Albany, Nev	Albany, New York 12205	15				Sheet 1 of 1	Date Started: ¹¹	11/16/06	06	
Project: O	Old Erie Canal Supplemental FS	il Supplen	rental FS		Drilling Contractor: Parratt Wolff Inc.		Date Finished: 11/16/06	11/16/	66	
Client: G	General Electric Company / Parker Hannifin	ric Compa	ıny / Parke	er Hannifin	Driller: Joe Percy		Total Depth:	39 '		
Purpose: B	Bedrock Well Installation	Installatio	Ľ		Geologist: P. D'Annibale		Ground Elev.: 394/15 NGVD 1929	3941.15	S NGVD	1929
Location: C	Clyde, New York	ork			Length of Casing: $\mathcal{ZP,O}^{\prime}$		S.W.L.:			
Hole Locatio	Hole Location: S of Facility along	ility a		work patho (near RI) Ca	sing Size: Source (	Core Size: 3 3/4"	Inclination/Bearing	iring:		
	Run No.	Pen.								
Formation	Time: Start/	Rate (min ner	r Denth		1 ithologic Description	lin.		Core	)re Wenv	
	Ę	foot)	<u></u>	(include in order	der: ROCK TYPE, color, grain size, texture, bedding, fracture & minerals.)	xture, bedding, fracture & m		Length	cent	ЦÖD
				Bering advance bedrock at 25 log MW-3B for	Bering advanced through overburden utilizing 41/4" HSA. Top of bedrock at 25.0' bgs. Set 4" steel as ing to 29.0' bgs. see soil boring log MW-3B for soil description.	112179 414" HSA. Tol				
	1035	<u>0</u>		Greenish-gray	ay shale, fine to mecham grained, morizontal bedding, horizontal fractures, few vertical fractures	zined, norizontal be ertical fractures	, Scipp	4,9	9 X	86.79%
	1128			Gray to dark gr	Gray to dark gray shale. Fine to medium grained, horizontal bedding, some	ned noricontal bedo	Virg. Some		)	
U-	11148	U	35.0'	Greenish-gray	Greenish-gray to gray shalle, fine to mechium grained, increantal	ection grained, n and occasion 1 ou	onzental	5.0	00/	0626
มาว่า	12:8		1 1	partings and	d stringers					
I'S	يەر يەر بەت بەر		40'0'	End of core @ 39.0' bgs.	) 39.0' bgs.			( marine from the former of	ner ver eine eine eine der eine Belle eine Be	
<b>.</b>			11				TT			
190			1							
			1				TT			
			1.1				<del>1 1</del>			

435 New Karner Koad Albany, New York 12205 Project: Old Erie Canal Supplemental Client: General Electric Company / F Durpose: Bedrock Well Installation Purpose: Bedrock Well Installation Location: Clyde, New York Hole Location: S of Foc Nt ヤy along Formation Fien Da	earner Koad ew York 12205 Old Erie Canal Supplemental FS					Hole No.: M W -4C Job No.:		39892.001.102	1.102	
Durition of the second s	anal Suppler					Sheet 1 of 1	Date Started: $11/17106$	11/17/00	9	
ion ion	loctric Como	nental FS		Drilling Contractor.	Drilling Contractor: Parratt Wolff Inc.		Date Finished: ¹¹ // オ/のら	11/17/0	56	
Purpose: Bedrock V Location: Clyde, Ne Hole Location: S of Formation	וברוור בחוומי	any / Parke	General Electric Company / Parker Hannifin	Driller: Joe Percy	ردم		Total Depth:	50'		
Location: Clyde, Ne Hole Location: S か Formation	Bedrock Well Installation	uc		Geologist:	P. D'Annibale		Ground Elev.: 39 3, 27 NGVD 1929	393.27	NGVD.	8) 02
Hole Location: S of Run Formation	w York			Casing:	40'		S.W.L.:			
Formation Run	focilitya		walk path	Casing Size:	هر <i>۲¹¹</i> Core Size:	ze: 3 3/4"	Inclination/Bearing	aring:		
									Ð	
, Juit	Stop foot)	Scale	(include in or	der: ROCK TYPE, c	color, grain size, textur	(include in order: ROCK TYPE, color, grain size, texture, bedding, fracture & minerals.)	ninerals.)	Length ] Per	Percent	ROD
			Boring advan bedræk at 26. boning log Mil	Need through O' bes. set y	overburden un stel casing n description.	advanced through overburden Utilizing 41/4" HSA. Top of c at 20.0' bes. Set 4" Steel casing to 40,0' bgs. See Soil log MW-4C for soil description.	8.70p.cf			
1201	r, c		Greenish-gray horizontal fra	shale. Fine on Xtures, some	Greenish-grav shale, fine grained, honizontal horizontal Hactures, some gypsum partings	tal bedding, frequent	Sert	2,4 2,4	48	17%
02	1033	45,0'	JJ	ne-grained, ho	nizontal beddin	fine-grained, horizontas bedding. Frequent horizontas	i zontal			
silvriar N	8			shale, fine o	grained, horizontal	otal beciding, numerous	owerows -	4.9	86	218
bee		- D'00-	End of coring at	at 50.0' bgs				to Statut Line Line Line and the second	an - man a function of the state of the stat	
Ô						·				*****
							T			
		1 1  T					1 1 1			
							T			
							1 1			

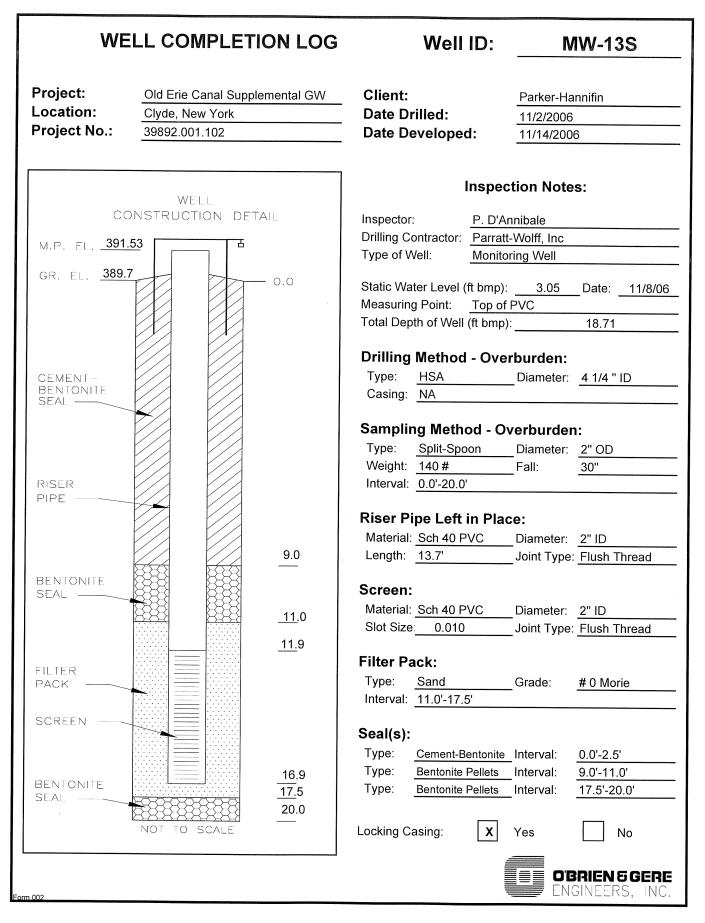
O'BRIEN & GERF ENGINEERS INC.	FRF FNG	NFFRS	NC								
435 New Karner Road	ler Road				COF	CORE LOG	HOIE NO .: MW - SB	Dob No.: 3	39892.001.102	1.102	
Albany, New York 12205	York 1220						Sheet 1 of )	Date Started: ^{II} // ら /0ら	1/16/01	10	
Project: Old	Old Erie Canal Supplemental FS	Supplem	ental FS		Drilling Contractor	Drilling Contractor: Parratt Wolff Inc.		Date Finished: ¹¹ /1 オノのら	シャン	56	
Client: Gen	General Electric Company / Parker Hannifin	ic Compai	ny / Park∈	er Hannifin	Driller: Joe Per	Percy		Total Depth: 3	39.2'		
Purpose: Bed	Bedrock Well Installation	nstallatior	د		Geologist:	P. D'Annibale		Ground Elev.: 393, 19' NGVD 1929	393.19	'NGUE	01929
Location: Clyd	Ciyde, New York	irk			Length of Casing:	: 39.0'		S.W.L.:			
Hole Location: S	S of fac	inty all		walk path	Casing Size:	g ^r イ / / Core Size:	3 3/4"	Inclination/Bearing	ring:		
Formation	Time:	Run No. Pen. Time: Rate Statt (min per D	nanth Tanth			f itholocic Description			Core Rerroviery	ore Wienv	
Unit		foot)	· · · · · · ·	(include in or	der ROCK TYPE,	(include in order: ROCK TYPE, color, grain size, texture, bedding, fracture & minerals.)	, pedding, fracture & m		Length   Percent   RQD	Percent	RQD
			Ì I I I č	Boring advan of becirce a boring log MW	t 25.9' bgs. V.5B for Soi	boring advanced through overburden utilizing 41/4" HSA. TOP of becinck at 25.9' bgs. Set 4" Stel casing to 29.0' bgs. See Soil boring log MW-5B for Soil description.	11/21/0 4 1/1 1/2 1-10 10 29.0' 195	S.A. TOP			
	ଅଧ୍ୟ		30.0	Greenish grav	Shale, fine o	Greenish gray Shale, fine grained, norizontal bedding, highly Fractured	L' bedering, hight	y Fractured		Contraction of the second s	
		6.4			, , , ,	)	)	1 1	Ы	07	0 %
	0271		•								
	Onhi		35.0'	Greenish gray shale, fire Fractured with bedding	the bedding	shale, five grained, honzontal	al pedaling, highly	- / ×			
60,13	N	<i>d.</i> 0			Ĵ				2	60	N O
01:5	1500		39.0'		a A a a a a a a a a a a a	ייראינדי עריירא מעל אין מעריפיינע פאראינער פאראינער איז	ويعاديني والمحادث المحادثين والمحادثين والمحادث والمحادث والمحادثين والمحادث والمحادثين والمحادثين والمحادثين				
5				End of coring	0+ 39.2' 003						
ت يور			1					1			*****
det			1 1					<u>1-1</u>			
0			1					T			
								1			
			11					Γ			
			1					Τ			
			1	<b>.</b>				I			
			I					1			2280931962999
			1					T			
										and the second se	and the second se


O'BRIEN	O'BRIEN & GERE ENGINEERS, INC.	INEERS,	INC.			Hole	Hole No.: MW -6 & Job No.:		39892.001.102	.102	
435 New Albany, N	435 New Karner Road Albany, New York 12205	15			CORE LOG	Shee	Sheet 1 of	rted:	11/15/0	.0	
Project:	Old Erie Canal Supplemental FS	il Suppler	nental FS		Drilling Contractor: Parratt Wolff Inc.	nc.		Date Finished: 11/15/06	11/15/4	Q	
Client:	General Electric Company / Parker Hannifin	ric Compa	any / Park	er Hannifin	Driller: Joe Percy			Total Depth:	39.41		
Purpose:	Bedrock Well Installation	Installatio	Ľ		Geologist: P. D'Annibale			Ground Elev.: 39 5,09	39 5.09	NGVD	(929)
Location:	Clyde, New York	ork			Length of Casing: 39, $\mu^{+}$			S.W.L.:			
Hole Loca	Hole Location: Near hydrogen tan K.	drogen -	tan K. S	sw of facility	Casing Size: 6" 4" Cc	Core Size: 3 3/4"	=	Inclination/Bearing:	ring:		
Formation Member	······································	Rate	r Depth Sraig		Lithologic Desc dar DOCK TVDE color arein size	iription texture headd	ao frantirra & m		Core Recovery Landth J Barcont	re Very Darront	C
					boring advanced through overburden utilizing 414" 45A. Top of bedrock at 25,9" ms. Set 4" stell casing to 29.0" bgs. See soil boring log MW-68 for soil description.	iq,0,600,0,	1. 45A. TOP (				
	1.561	1.4		Greenish gray	Greenish gray to gray shale, fine grained, horizontal bedding, Frequent horizontal fractures. gypsum stringers	zined, hori m stringer	sonal be	6, ja	U U	001	82,1%
- Silurian	1434 2 1438	8.7	35.0	Greenish gray occosional ho	Greenish gray to gray shale, fine grained, horizontal bedding, occasional horizontal Fractures	ect, horizon	tal beacting		5	00/	Z7.6 %
Podd ^U				End of coring at	at 39.4' bgs.						


O'BRIEN & GERE ENGINEERS, INC.	ERE ENG	NEERS, I	NC.		501	Hole No.: M W - (58 Job No.:		39892.001.102	.102	
435 New Karner Koad Albany, New York 12205	er Koad ork 1220	10				Sheet 1 of	Date Started: ¹¹ //5 /06	1/15106		
Project: Old I	Old Erie Canal Supplemental FS	Supplem	ental FS	Drilling Contractor: Parratt Wolff Inc.	arratt Wolff Inc.		Date Finished: 11/15/06	W1510	2	
Client: Gen	eral Electr	ic Compa	General Electric Company / Parker Hannifin	Driller: Joe Percy			Total Depth: 4	44.0'		
Purpose: Bedr	Bedrock Well Installation	nstallatio	F	Geologist: P.	P. D'Annibale		Ground Elev.: 3	398.18	NGUD	1929
Location: Clyd	Clyde, New York	irk		Length of Casing: 4	44.1'		S.W.L.:			
Hole Location: $\sim 5 \sigma'$		SSW of Facility	acitity	Casing Size: 6"	ه" 💜 👘 Core Size:	3 3/4"	Inclination/Bearing:	ing:		
Formation Member	Time. Start/	Pen. Rate (min. per	Depth Srala	Lithologic Description findude in order POPK TVPE color area size texture hedding frenture & minerale )	Lithologic Description	haddino. frantina & m		Core Recovery	e Very Derrent	C Q Q
				Boring ocivanced through overburden utilizing 41/4" HSA, Top of bedrock at \$10' bgs. Set 4" Steel Casing to 34.0' bos. See Soil boring log MW-168 For Soil description.	verburden util verburden util til steel casing vescription.	12109 414 HS				ž Ž
	1	5.5	14.5, Greenish on 135.5' Greenish on Fractures with and from 37,	Greenish gray shale, fine grained, horizontal becking, numerous Fractures with becking. Vertical Fractures from 36,5 to 37.0 and from 37,55 to 37.83.	rained, honzor ical Fractures	tal becking, r from 36.5 t		4.75	95	52.9%
	1048 2401 2	7.4	40.5' Greenish gray fractores with Dark gray sha	ay shale, Fine gra oith bedding shale, fine graince	Fine grained, horizont g grained, horizontal b	shale, Fine grained horizontal beding, numerous bedding le. Fine grained, honizontal bedding, numerous		5.5	001	42.5%
		ACCURATE AND A MARINE AND VILLAR	End of coring	ing at 44.0' has	والمحاجز والمحاجزة والمحاجزة والمحاجزة والمحاجزة والمحاجزة والمحاجز والمحاجز والمحاجز والمحاجز والمحاجز والمحاج	and a constant of the last of the second		an and a second statement of the second statement of t		
	11.5.15		1 1 1	×			<u> </u>			HUI
			.   1							
			T-1 1				111			
			<u>                                     </u>				ΤΤΤ			

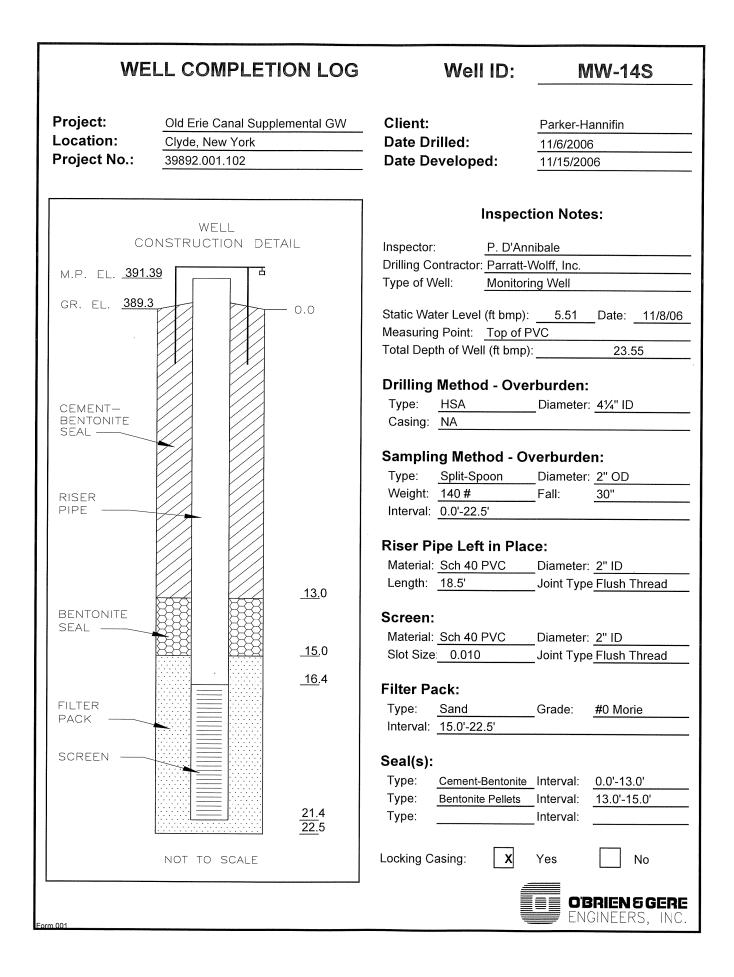

**APPENDIX B** 

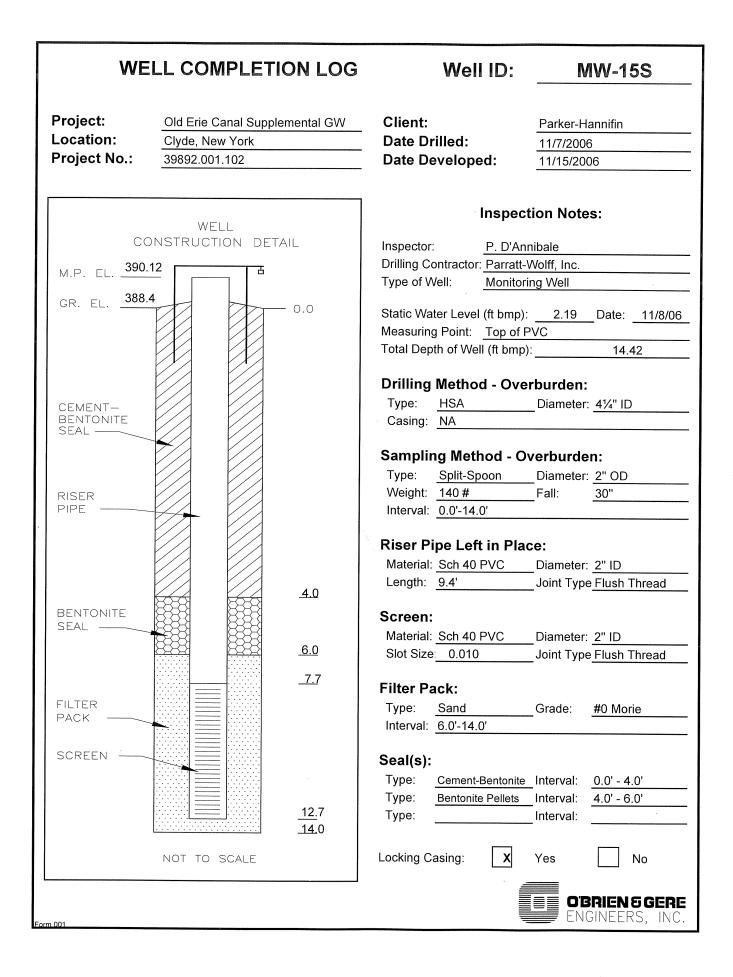
Monitoring Well Completion Logs

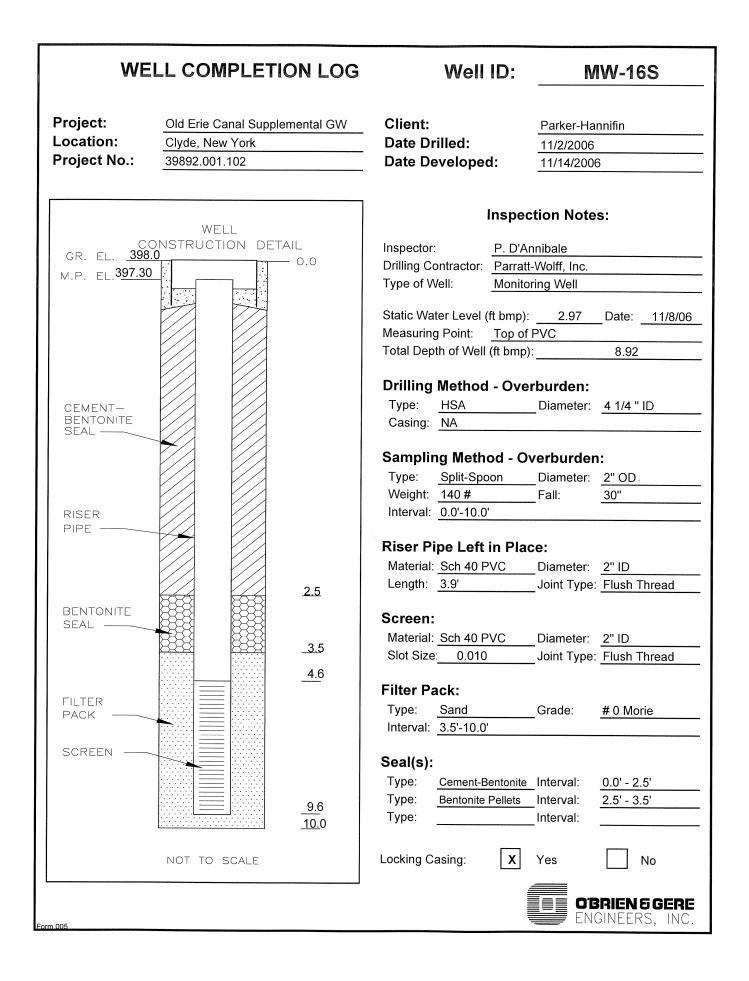

.

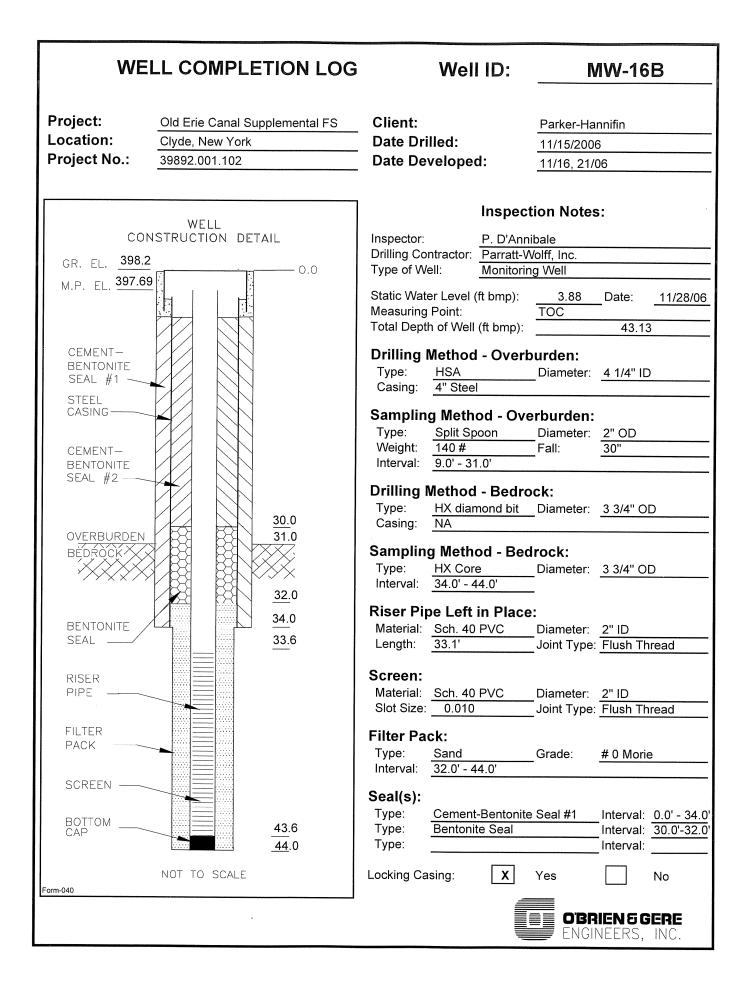


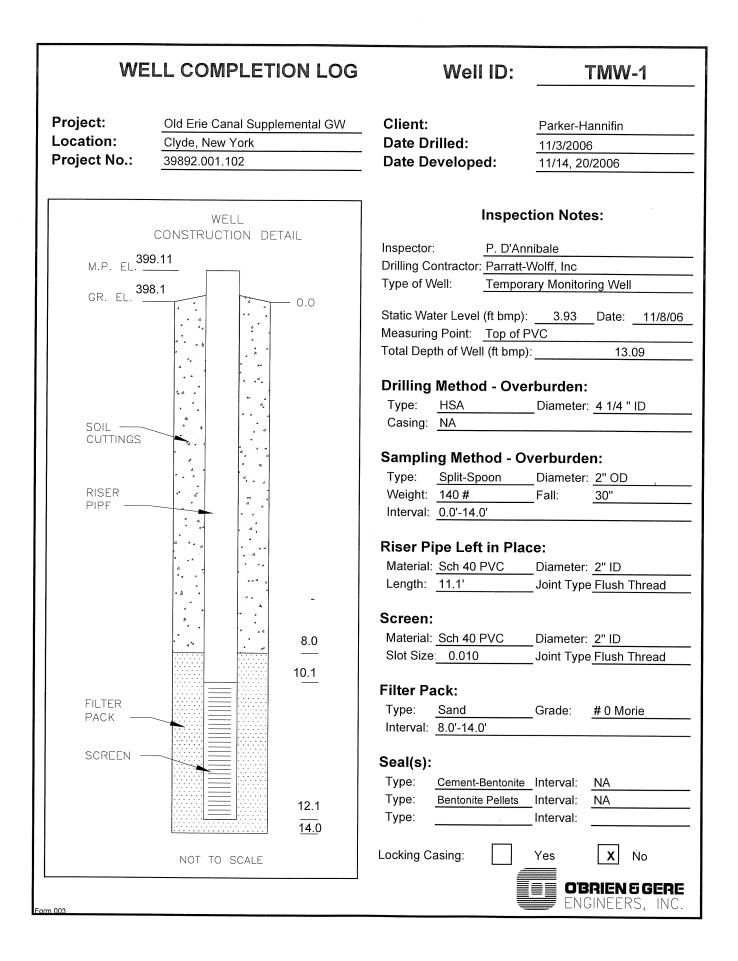






WE	ELL COMPLETION LOG	Well ID:	MW-6B
Project: Location: Project No.:	Old Erie Canal Supplemental FS Clyde, New York 39892.001.102	Client: Date Drilled: Date Developed:	Parker-Hannifin 11/15/2006 11/16/2006
<b></b>		Inspec	tion Notes:
С м.р. еl. <u>396</u>	WELL ONSTRUCTION DETAIL .99	Inspector: P. D'An Drilling Contractor: Parratt- Type of Well: Monitori	Wolff, Inc.
GR. EL. 395		Static Water Level (ft bmp): Measuring Point: Total Depth of Well (ft bmp):	9.00 Date: <u>11/28/06</u> TOC
CEMENT- BENTONITE SEAL #1 ~		Drilling Method - Over       Type:     HSA       Casing:     4" Steel	
10-INCH ID STEEL CASING		Sampling Method - OvType:Split SpoonWeight:140 #Interval:0.0' - 26.0'	erburden: _Diameter: <u>2" OD</u> _Fall: <u>30"</u>
BENTONITE SEAL #2 ~		Drilling Method - Bedr Type: HX diamond bit Casing: NA	<b>ock:</b> _Diameter: <u>3 3/4" OD</u>
BEDROCK	27.0	Sampling Method - Be Type: <u>HX Core</u> Interval: <u>29.0' - 39.4'</u>	
BENTONITE SEAL	<u>29.4</u>	Riser Pipe Left in PlacMaterial:Sch 40 PVCLength:31.3'	
RISER PIPE		Screen: Material: Sch 40 PVC Slot Size: 0.010	Diameter: 2" ID Joint Type: Flush Thread
WELL SCREEN		Filter Pack:Type:SandInterval:27.0' - 39.3'	Grade: <u># 0 Morie</u>
	39.4 NOT TO SCALE	Seal(s):Type:Cement-BentoniType:Bentonite SealType:	te Seal #1 Interval: 0.0'-29.0' Interval: 22.9'-27.0' Interval:
Form-033		Locking Casing: X	Yes No
			<b>OBRIEN &amp; GERE</b> Engineers, inc.



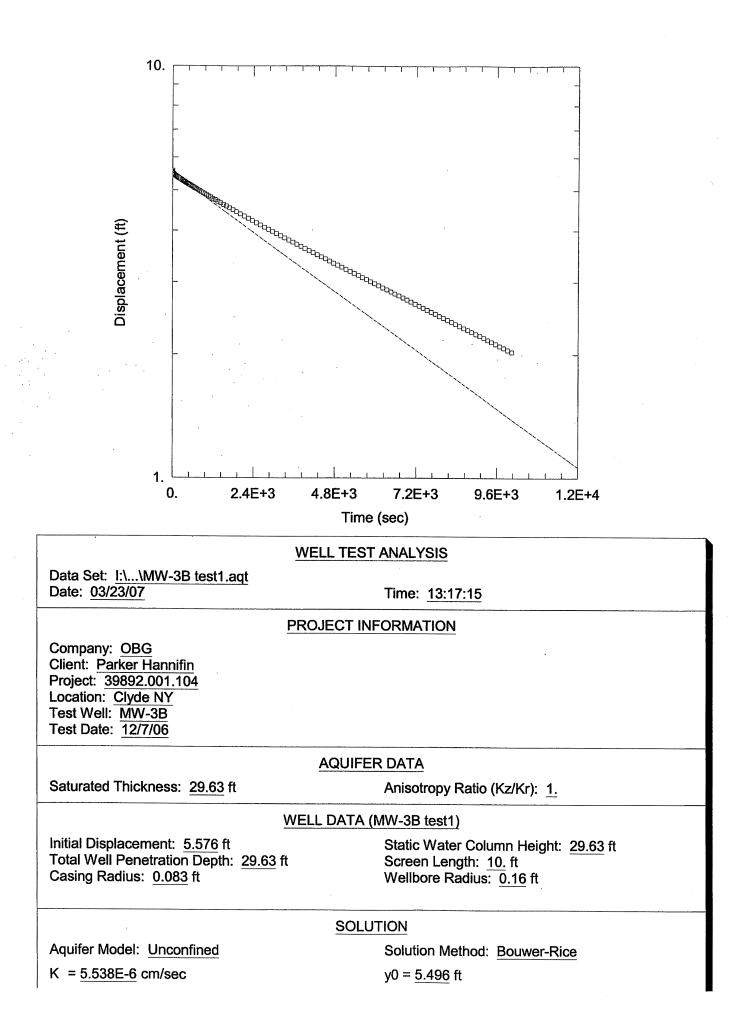


,

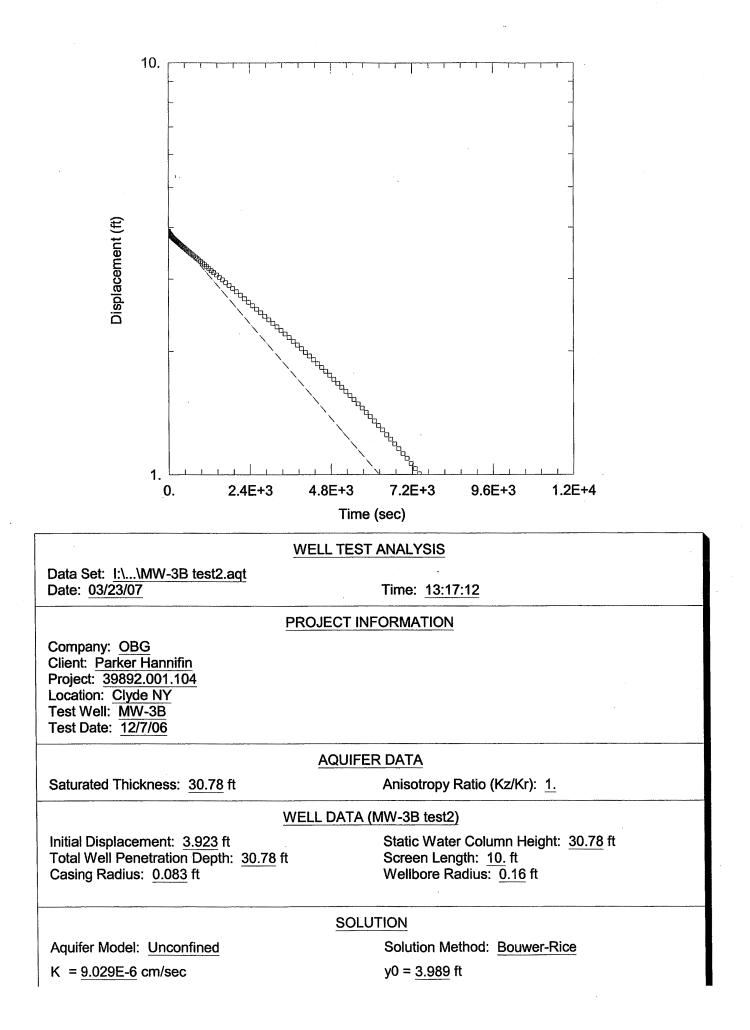

.

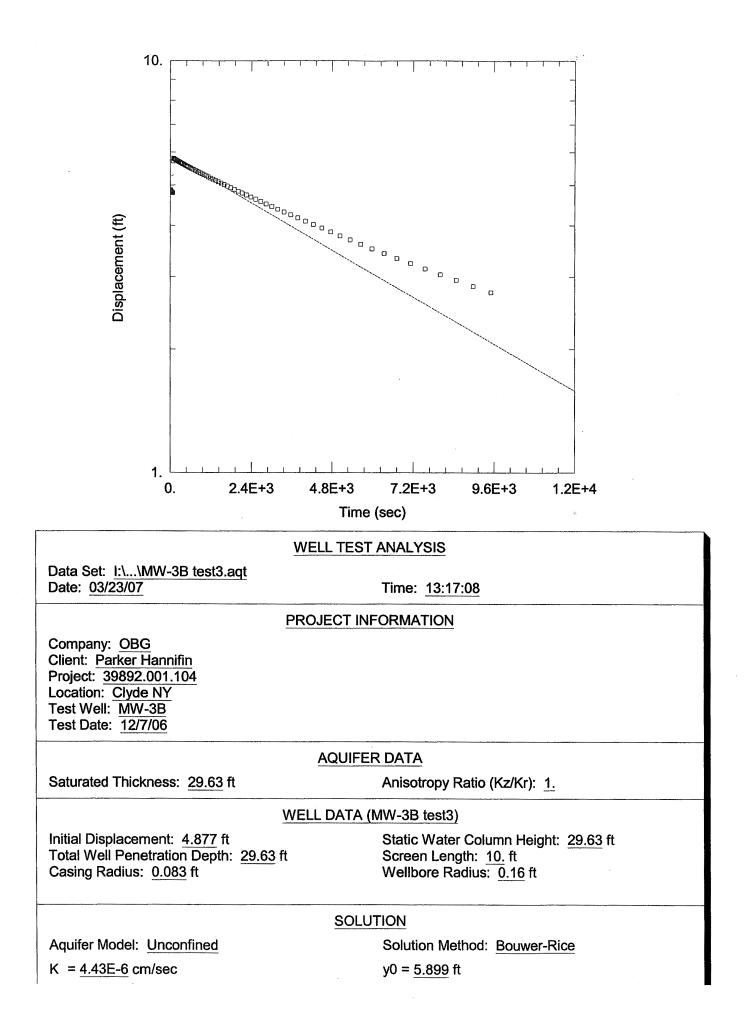


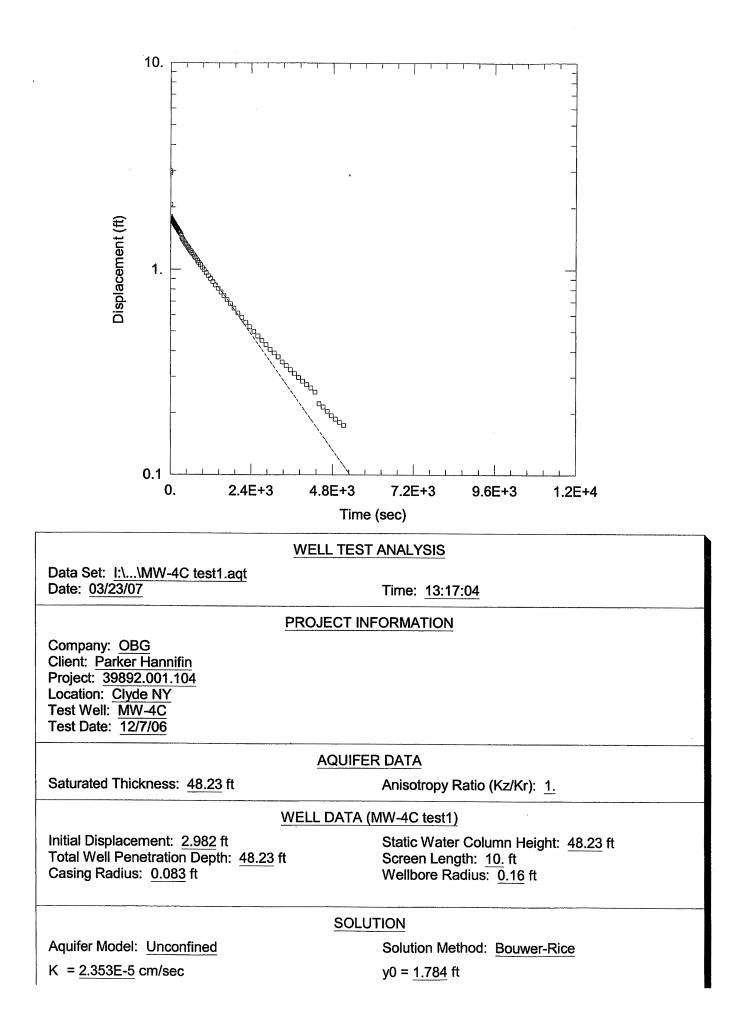


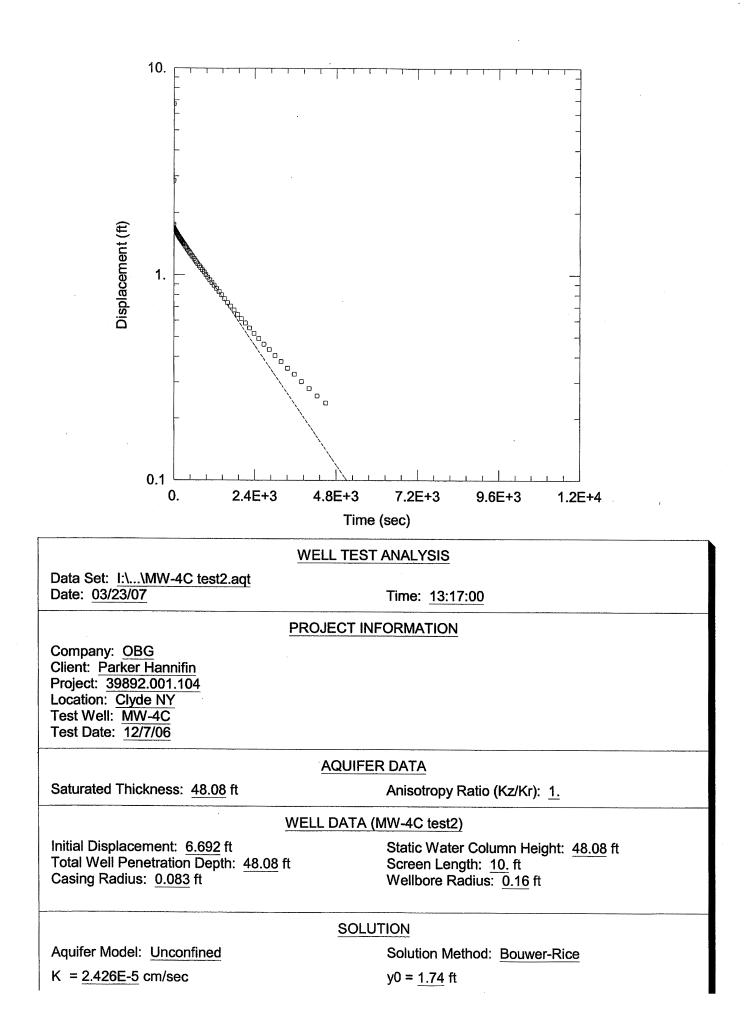


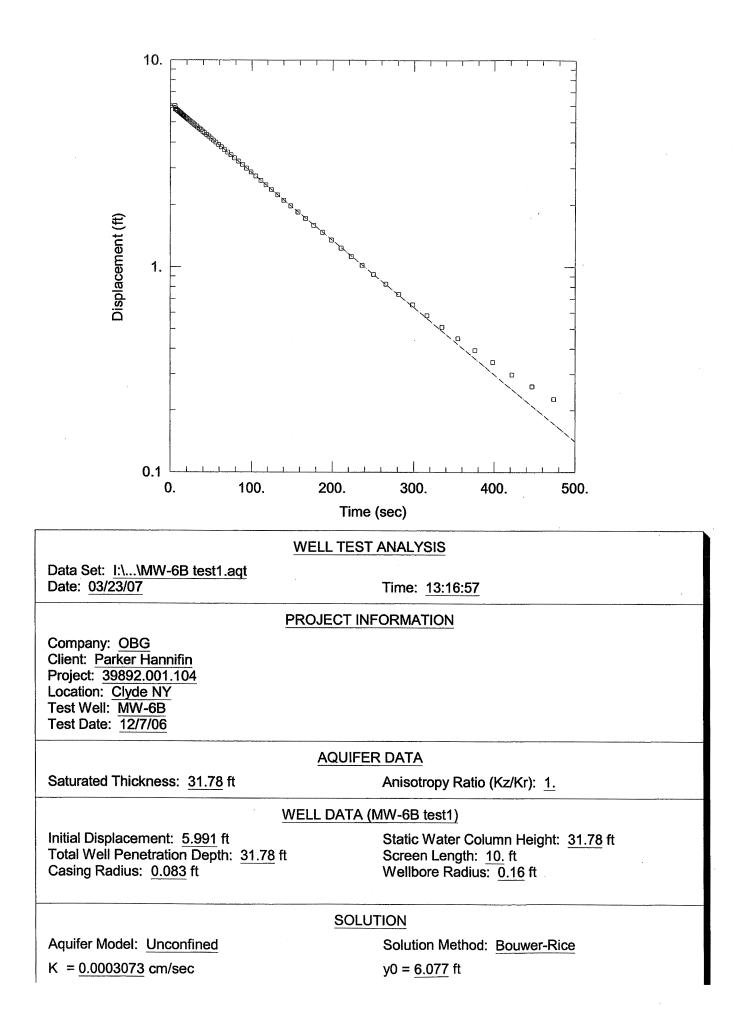


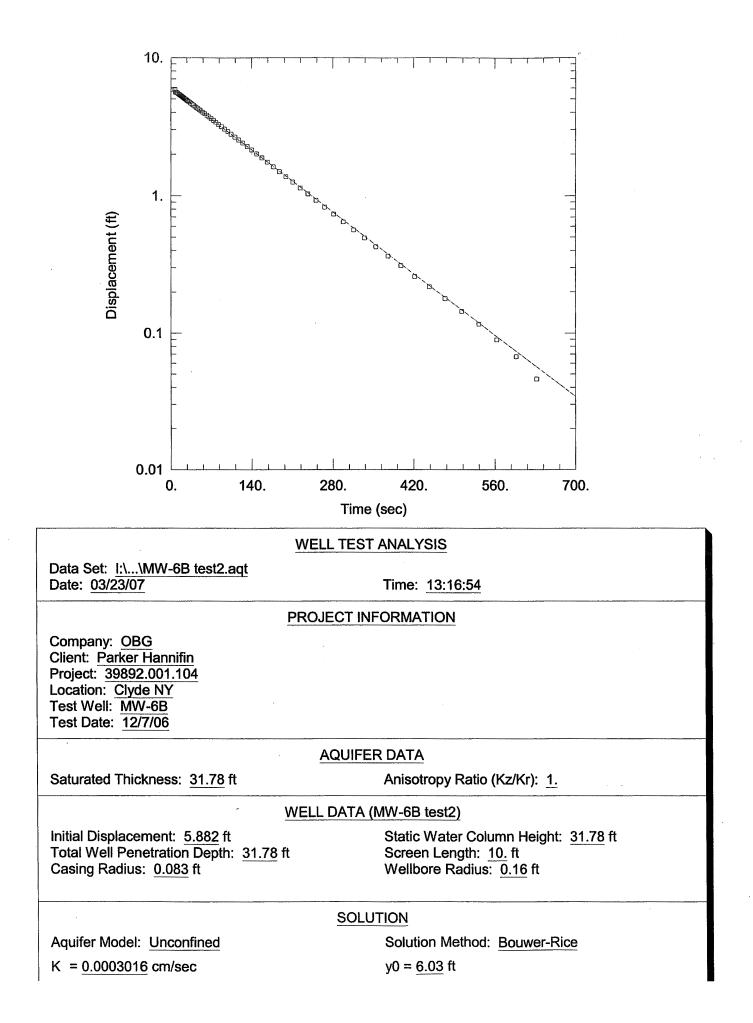



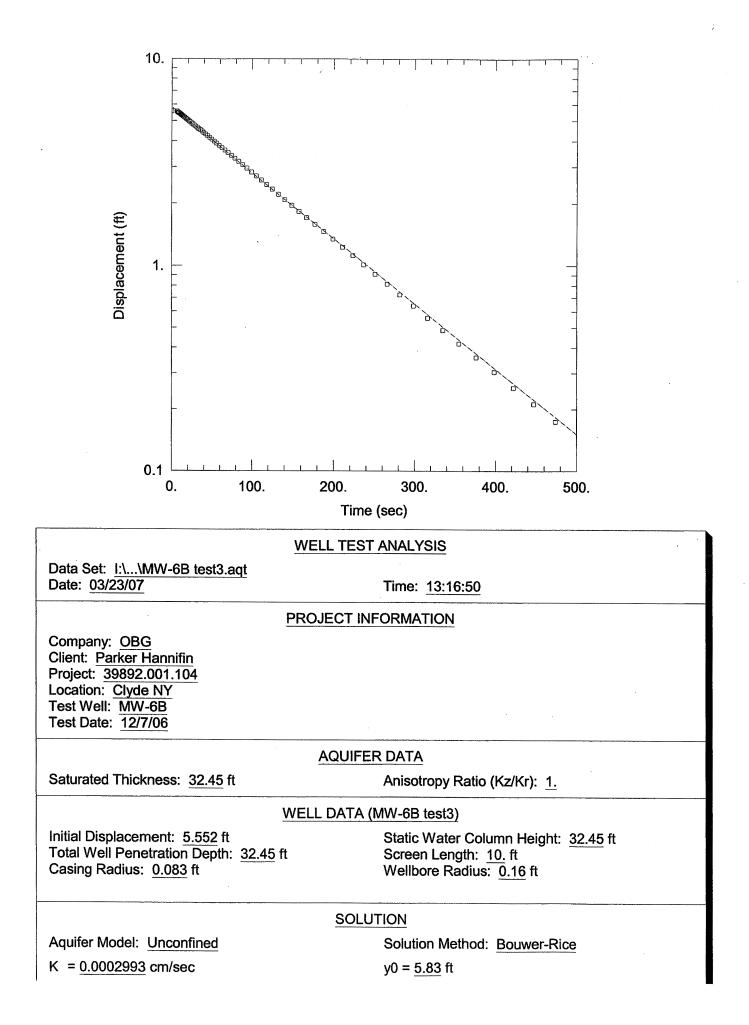


WE	ELL COMPLETION LOG	Well ID:	TMW-2
Project: Location: Project No.:	Old Erie Canal Supplemental GW Clyde, New York 39892.001.102	Client: Date Drilled: Date Developed:	Parker-Hannifin 11/3/2006 11/14/2006
	WELL CONSTRUCTION DETAIL	Inspec	tion Notes:
m.p. el. <u>39</u> gr. el. <u>39</u>	9.91	Inspector: P. D'An Drilling Contractor: Parratt- Type of Well: Tempor	
		Static Water Level (ft bmp): Measuring Point: <u>Top of F</u> Total Depth of Well (ft bmp)	PVC
SOIL		Drilling Method - Ove Type: HSA Casing: NA	<b>rburden:</b> Diameter: <u>4 1/4 " ID</u>
RISER PIPE		Sampling Method - OType:Split-SpoonWeight:140 #Interval:0.0'-6.0'	verburden: _Diameter: <u>2" OD</u> _Fall: <u>30"</u>
		<b>Riser Pipe Left in Pla</b> Material: <u>Sch 40 PVC</u> Length: <u>4.9</u> '	<b>ce:</b> _ Diameter: <u>1" ID</u> _ Joint Type <u>Flush Thread</u>
		Screen: Material: <u>Sch 40 PVC</u> Slot Size: <u>0.010</u>	_Diameter: <u>1" ID</u> _Joint Type <u>Flush Thread</u>
. FILTER PACK	3.8	Filter Pack: Type: <u>Backfill</u> Interval: <u>0.0'-6.0'</u>	_Grade:
SCREEN —	5.8 6.0	<b>Seal(s):</b> Type: Type: Type:	Interval: Interval: Interval:
	NOT TO SCALE	Locking Casing:	Yes X No
Form 003			<b>O'BRIEN 5 GERE</b> Engineers, inc.

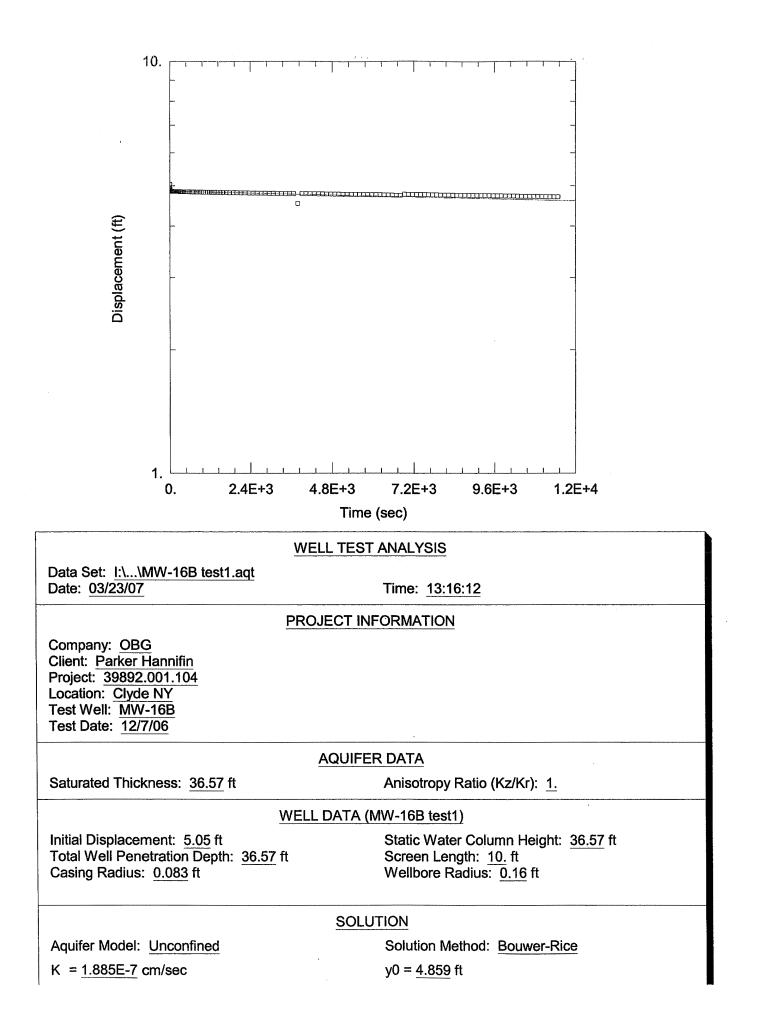

**APPENDIX C** 

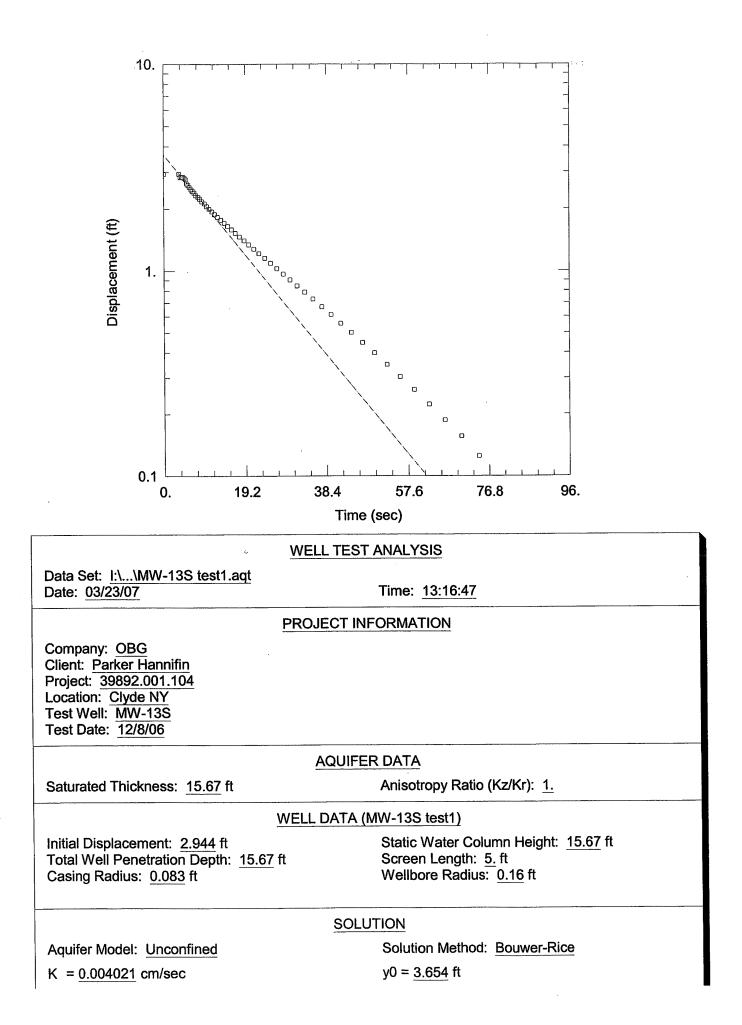

Hydraulic Conductivity Test Results

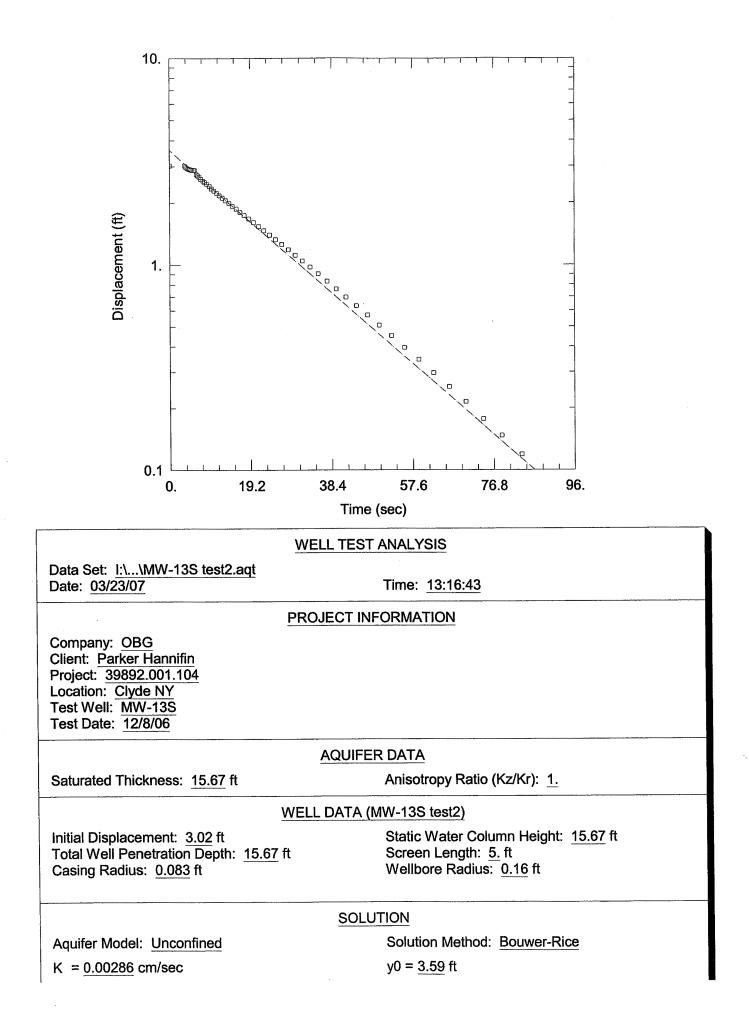


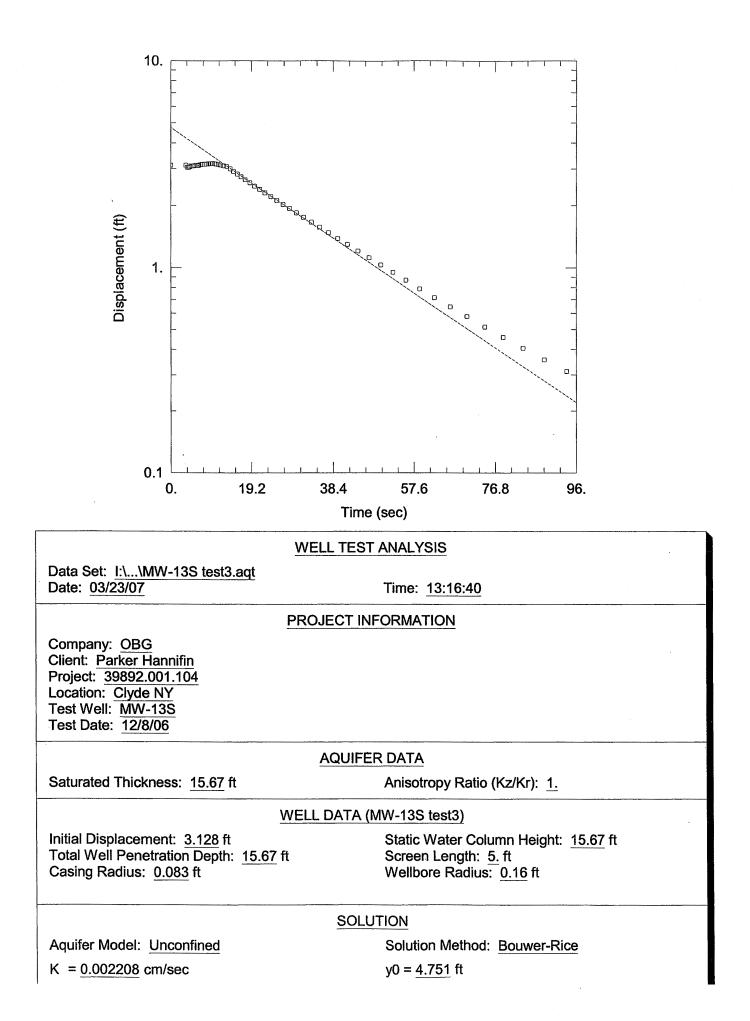



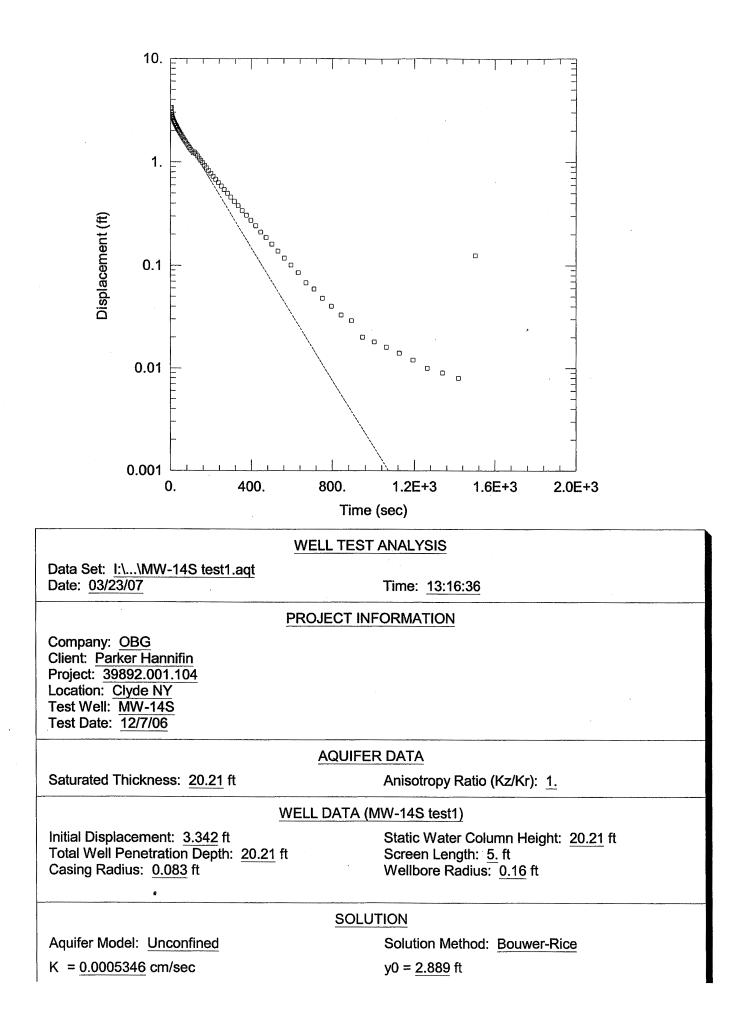



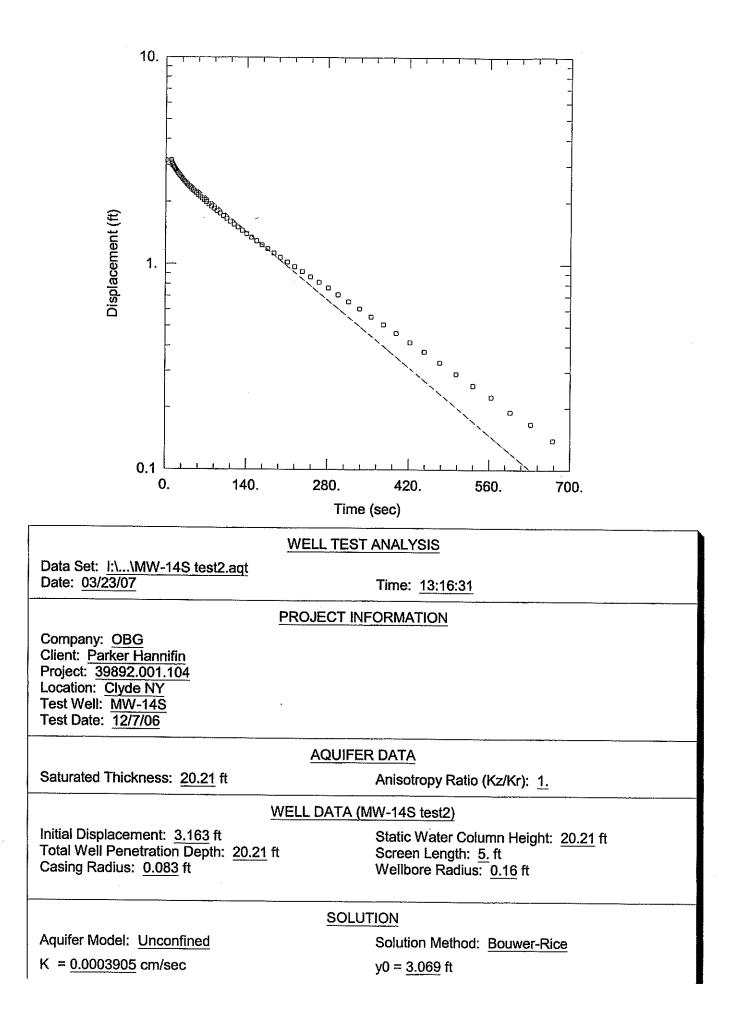



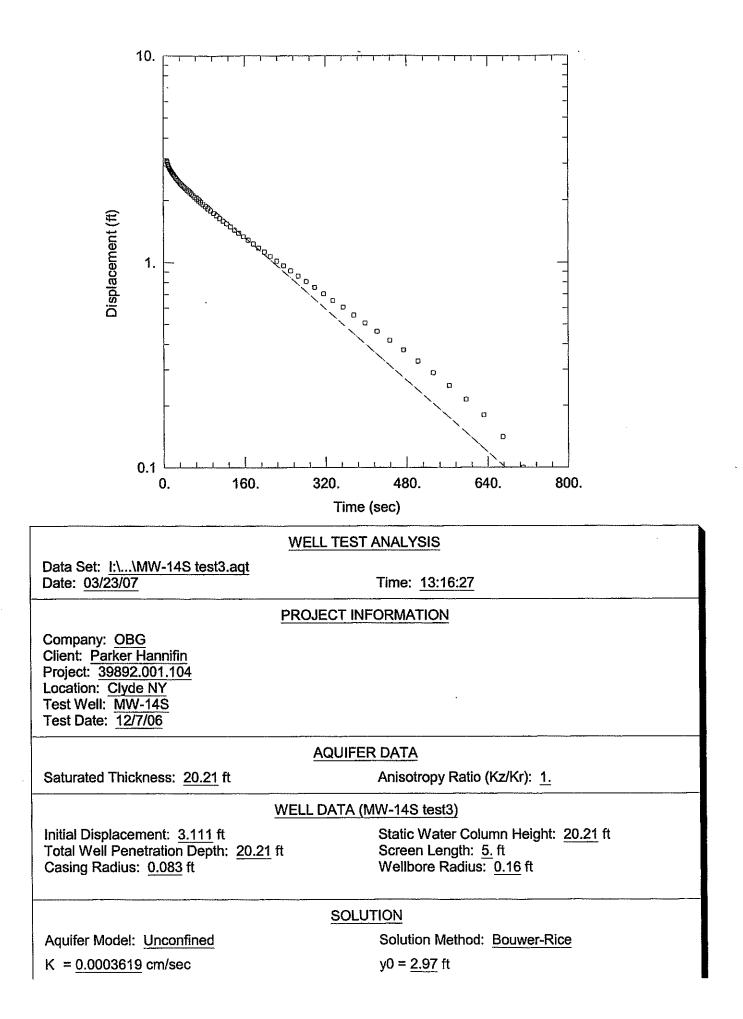



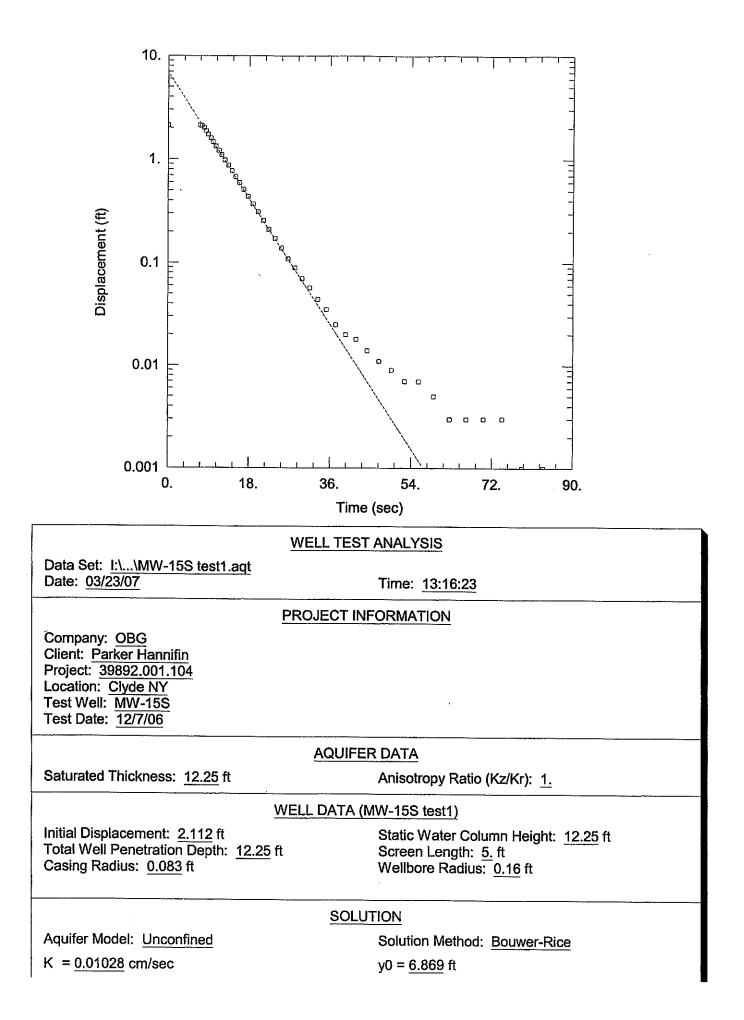



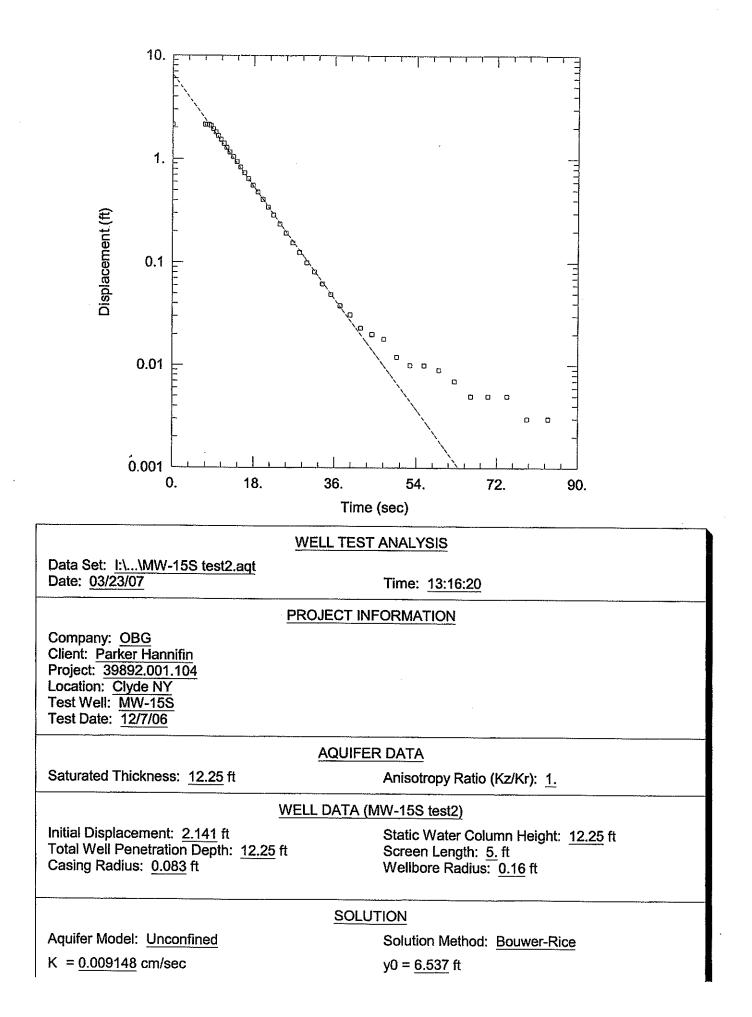


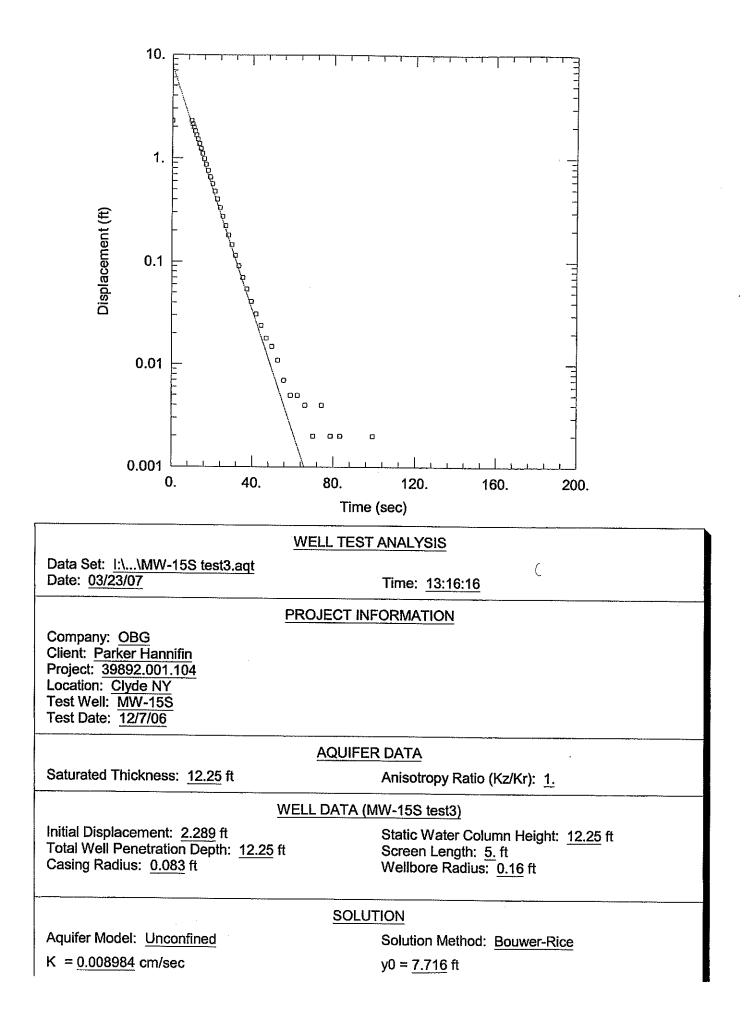



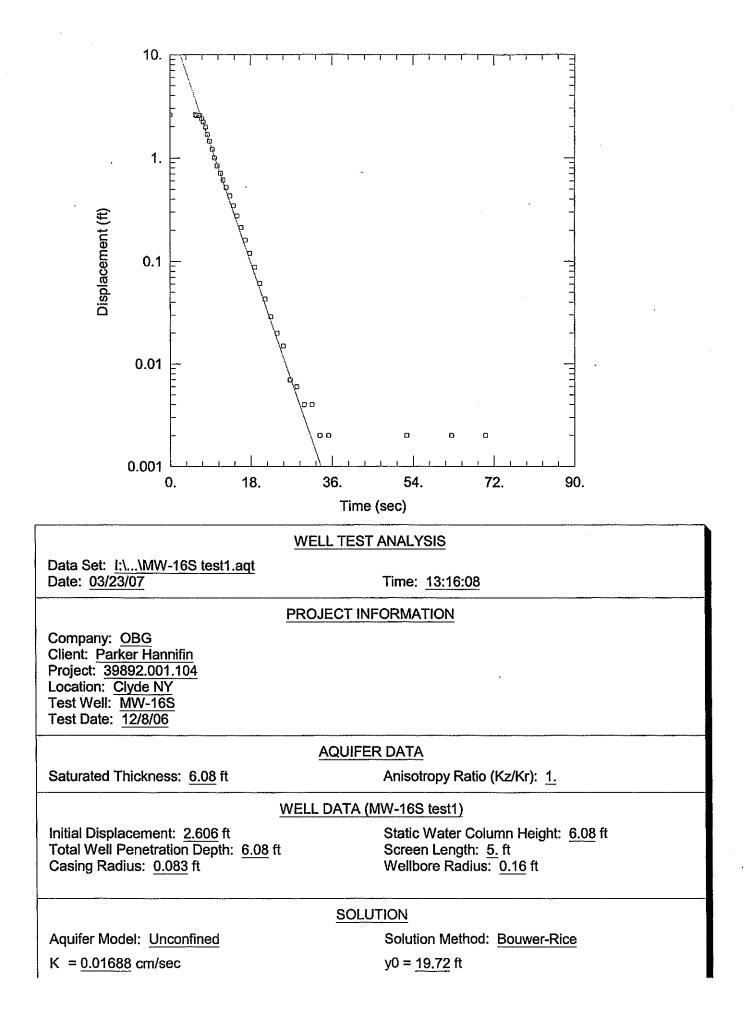



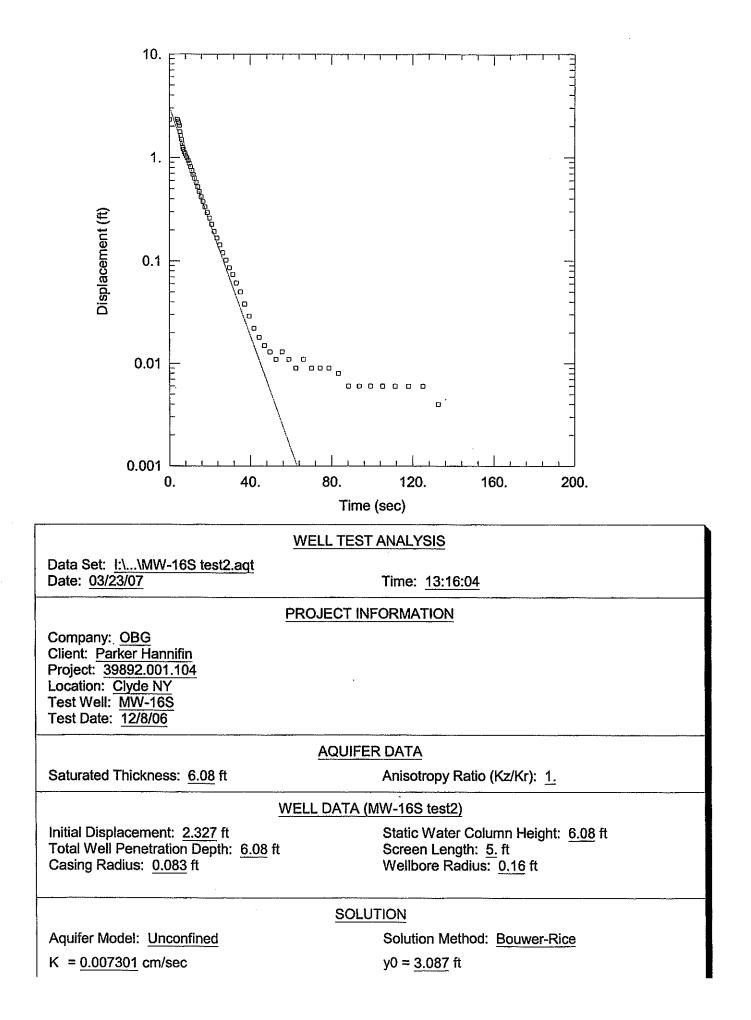



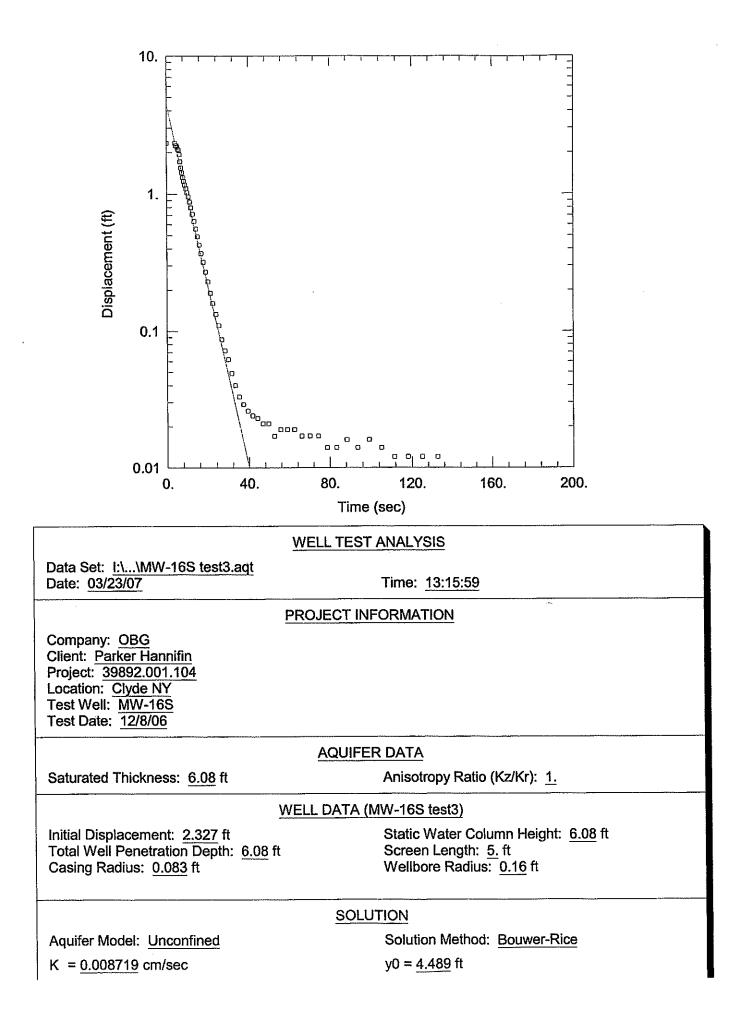



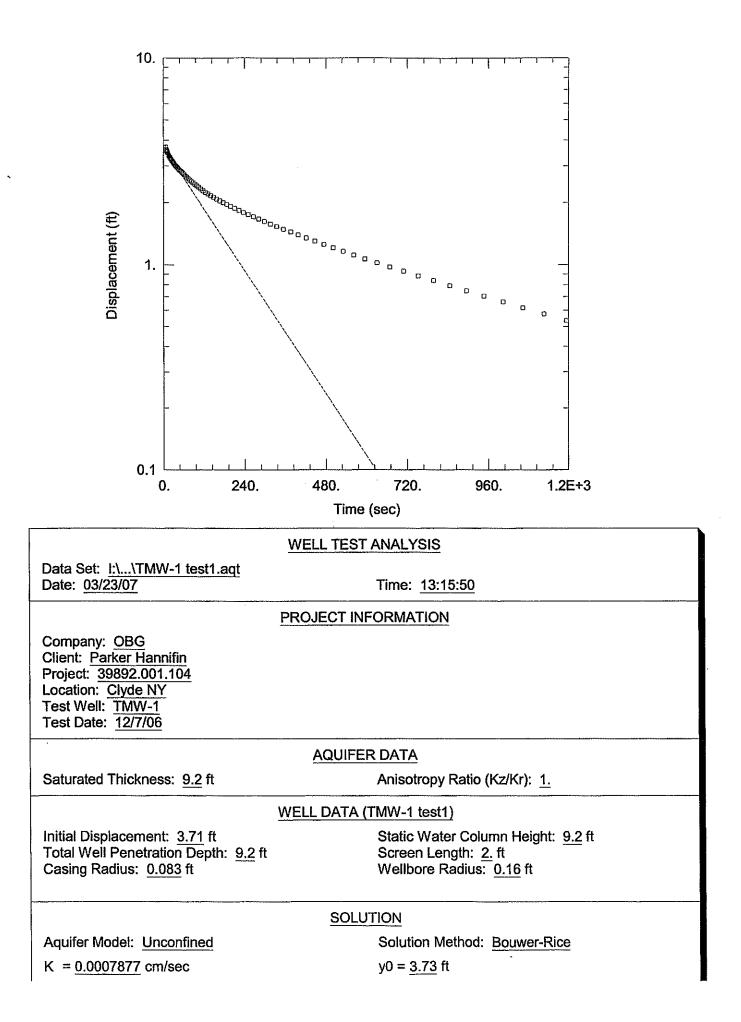


2000 I. 1

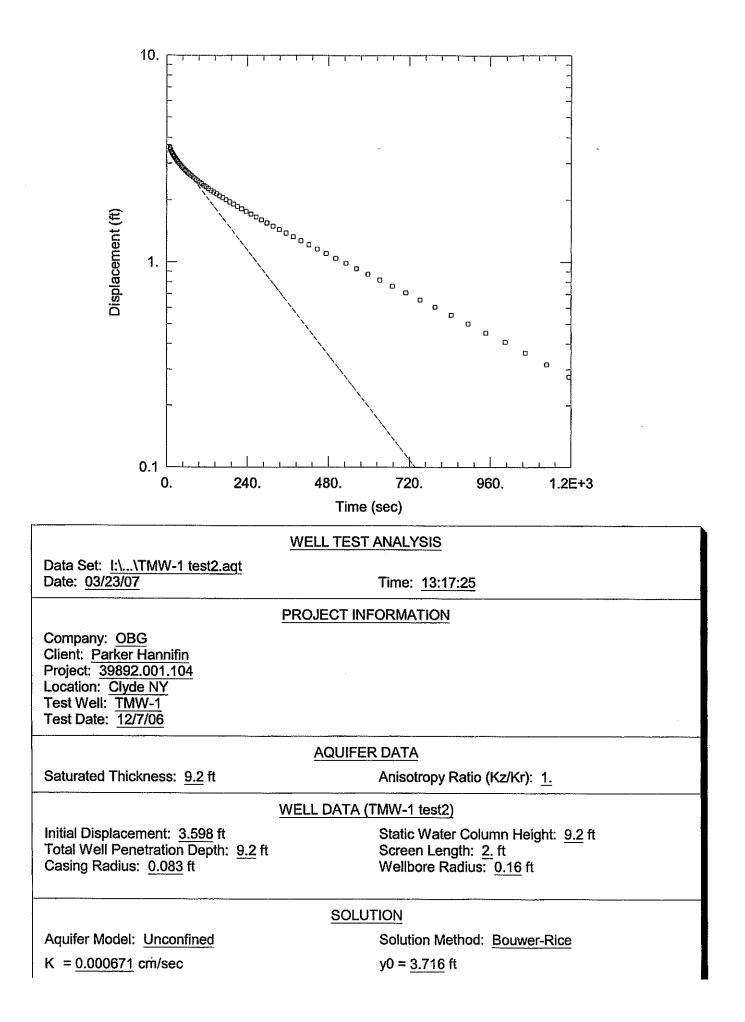


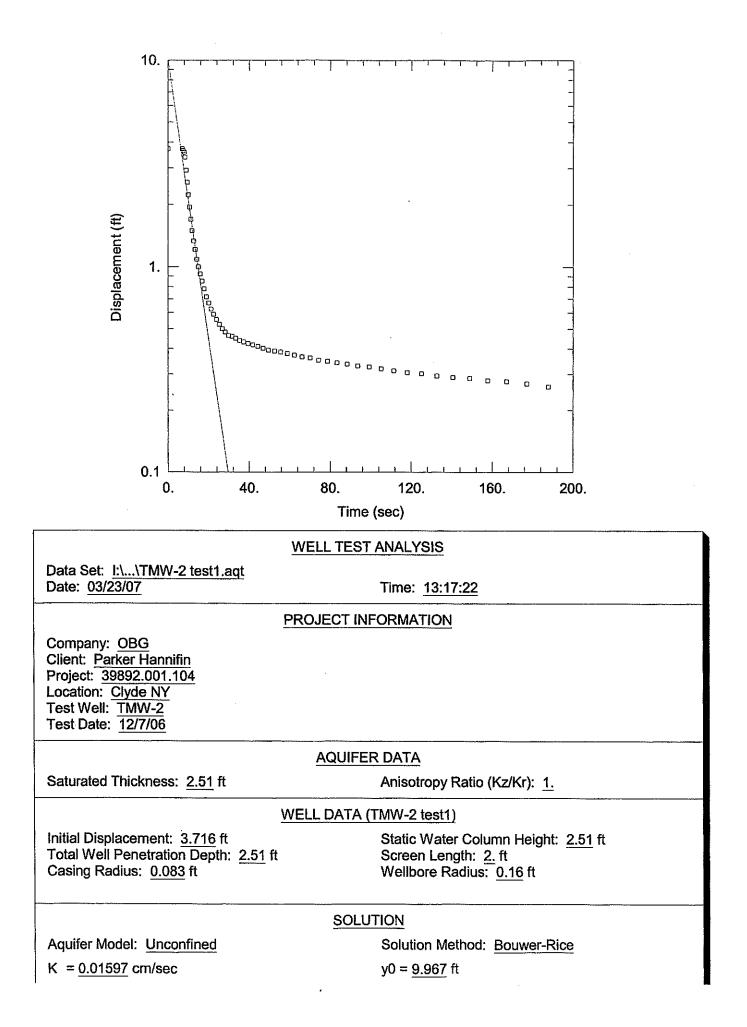



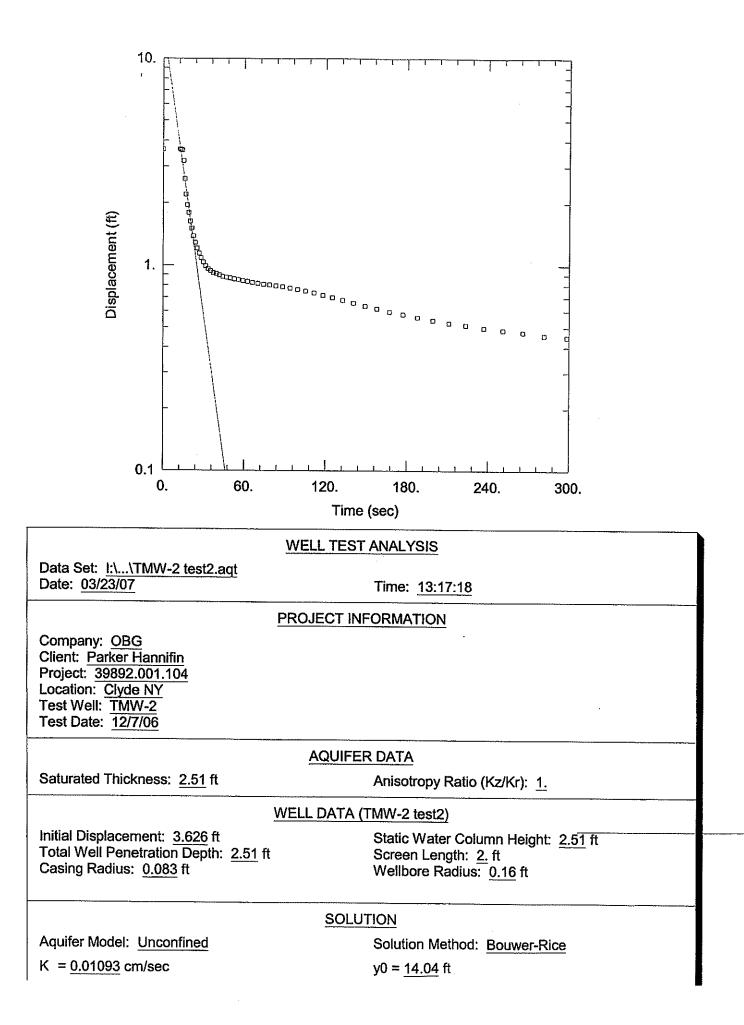














APPENDIX D

Soil Sampling Laboratory Data

		Repo	rt of A	nalysis			Page 1 of 2
Client Sam Lab Sampl Matrix: Method: Project:			Canal Site	Date l Perce	Sampled: Received: nt Solids: IY	: 11/17/06	
Run #1 Run #2		Analyzed 11/22/06	By NDJ	Prep D 11/17/0	ate )6 12:00	Prep Batch n/a	Analytical Batch VS3677
Run #1 Run #2	Initial Weight Final Volum 6.3 g 5.0 ml	ne Meth 100 u	anol Aliqı l	iot			
VOA TCL	List						, , , , , , , , , , , , , , , , , , ,
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1 71-43-2	Acetone Benzene	ND J	400	110	ug/kg		
71-43-2 75-27-4	Bromodichloromethane	ND	40	19	ug/kg		
75-25-2	Bromoform	ND	200	18	ug/kg		
74-83-9	Bromomethane	ND ND	200	17	ug/kg		
78-93-3		ND	200	15	ug/kg		
75-15-0	2-Butanone (MEK) Carbon disulfide	- 「おちぶけんどんだい」 だい	400	110	ug/kg		
75-15-0 56-23-5	Carbon tetrachloride	ND ND	200	22	ug/kg		
108-90-7	Chlorobenzene	ND	200	38	ug/kg		
75-00-3	Chloroethane	ND	200	17	ug/kg		
67-66-3	Chloroform	ND	200 200	69 22	ug/kg		
74-87-3	Chloromethane	ND	200	23 18	ug/kg		
124-48-1	Dibromochloromethane	ND	200	22	ug/kg		
75-34-3	1,1-Dichloroethane	ND	200	19	ug/kg		
107-06-2	1,2-Dichloroethane	ND	40	13 22	ug/kg		
75-35-4	1,1-Dichloroethene	ND	200	27	ug/kg		
156-59-2	cis-1,2-Dichloroethene	83.0	200	27	ug/kg	т	
156-60-5	trans-1,2-Dichloroethene	ND	200	27	ug/kg ug/kg	J	
78-87-5	1,2-Dichloropropane	ND	200	22	ug/kg		
10061-01-5	cis-1,3-Dichloropropene	ND	200	16	ug/kg		
10061-02-6	trans-1,3-Dichloropropene	ND	200	16	ug/kg		
100-41-4	Ethylbenzene	ND	40	18	ug/kg		
591-78-6	2-Hexanone	ND	200	54	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK		200	79	ug/kg		
75-09-2	Methylene chloride	ND	200	27	ug/kg		
100-42-5	Styrene	ND	200	13	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	200	23	ug/kg		
127-18-4	Tetrachloroethene	ND	200	33	ug/kg		
108-88-3	Toluene	71.5	40	22	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	200	23	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	200	21	ug/kg		
79-01-6	Trichloroethene	ND	200	21	ug/kg		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound



μ

				Report	of An	alysis			Page 2
Client Sam Lab Sample Matrix: Method: Project:	-	SB6B(4-6)1115 J46767-1 SO - Soil SW846 8260B GE - Parker Ha	SW84		nal Site,	Date I Perce	Sampled: Received: nt Solids: Y	11/15/06 11/17/06 n/a ^a	
VOA TCL	List								
CAS No.	Comp	ound		Result	RL	MDL	Units	Q	
75-01-4 1330-20-7	•	chloride e (total)		ND Ĵ ND ↓	200 79	26 20	ug/kg ug/kg		
CAS No.	Surro	gate Recoveries		Run# 1	Run# 2	Lim	its		
1868-53-7 17060-07-0 2037-26-5 460-00-4	1,2-D Tolue	mofluoromethane ichloroethane-D4 ne-D8 mofluorobenzene		107% 111% 105% 117%		61-1 75-1	20% 33% 23% 42%		

(a) Percent solids not analyzed due to sample matrix. Results reported on wet weight basis.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank

.

N = Indicates presumptive evidence of a compound



**APPENDIX E** 

Ground Water Sampling Laboratory Data .

Accutest Laboratories

....

		Repor	t of Aı	nalysis			Page 1 of
Client Sam Lab Sample Matrix: Method: Project:		- Old Erie C	Canal Site,	Date I Perce	Sampled: Received: nt Solids: IY	: 12/02/06	
Run #1 Run #2		nalyzed 2/06/06	By YL	Prep D n/a	ate	Prep Batch n/a	Analytical Batch VD4809
Run #1 Run #2	Purge Volume 5.0 ml						
VOA TCL	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone			2 4.6	ug/l		
71-43-2	Benzene	0.37	1.0	0.37	ug/l	J	
75-27-4	Bromodichloromethane	ND	1.0	0.14	ug/l	v	
75-25-2	Bromoform	ND	1.0	0.52	ug/l		
74-83-9	Bromomethane	ND	1.0	0.39	ug/l		
78-93-3	2-Butanone (MEK)	ND	-5.0-2		ug/l		
75-15-0	Carbon disulfide	ND	1.0 '	0.38	ug/l		
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/i		
108-90-7	Chlorobenzene	ND	1.0	0.74	ug/l		
75-00-3	Chloroethane	ND	1.0	0.65	ug/l		
67-66-3	Chloroform	ND	1.0	0.18	ug/l		
74-87-3	Chloromethane	ND	1.0	0.20	ug/l		
124-48-1	Dibromochloromethane	ND	1.0	0.17	ug/l		
75-34-3	1,1-Dichloroethane	ND	1.0	0.089	ug/l		
107-06-2	1,2-Dichloroethane	ND	1.0	0.57	ug/l		
75-35-4	1,1-Dichloroethene	ND	1.0	0.49	ug/l		
156-59-2	cis-1,2-Dichloroethene	1.1	1.0	0.18	ug/l		
156-60-5	trans-1,2-Dichloroethene	ND	0.1	0.18	ug/l		
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l		
10061-01-5	cis-1.3-Dichloropropene	ND	1.0	0.56	ug/l		
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.15	ug/l		
100-41-4	Ethylbenzene	ND	1.0	0.44	ug/l		
591-78-6	2-Hexanone	ND	5.0	0.35	ug/i		
108-10-1	4-Methyl-2-pentanone(MIBK)		5.0	0.50	ug/l		
75-09-2	Methylene chloride	ND	2.0	0.53	ug/l		
100-42-5	Styrene	ND	1.0	0.069	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.11	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l		
108-88-3	Toluene	ND	1.0	0.41	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.094	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.15	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.16	ug/l		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

.

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound





			Report	of An	alysis			Page 2 o		
	Method:SW846 8260BPercent Solids:n/aProject:GE - Parker Hannifin - Old Erie Canal Site, Clyde, NY									
VOA TCL	List									
CAS No.	Comp	ound	Result	RL	MDL	Units	Q			
75-01-4 1330-20-7	-	chloride e (total)	5.7 0.57		0.77 0.34	ug/l ug/l	J			
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lim	its				
1868-53-7 17060-07-0 2037-26-5 460-00-4	1,2-D Tolue	mofluoromethane ichloroethane-D4 ne-D8 mofluorobenzene	96% 110% 96% 107%		65-1 80-1	21% 33% 17% 24%				

J = Indicates an estimated value

N = Indicates presumptive evidence of a compound



Page 2 of 2

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

•

		Report of Analysis											
Client San Lab Samp Matrix: Method: Project:	le ID: J4795 AQ - SW84	Ground Wa 6 8015		Canal Site,	Date I Percei	Sampled: Received at Solids Y	: 12/02/06						
Run #1 Run #2	File ID II33490.D II33491.D	DF 1 2.5	Analyzed 12/08/06 12/08/06	By HSC HSC	Prep D n/a n/a	ate	Prep Batch n/a n/a	Analytical Batch GII1676 GII1676					
CAS No.	Compound		Result	RL	MDL	Units	Q						
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		1440 340 ^a 36.4	0.10 0.25 0.10	0.066 0.14 0.075	ug/l ug/l ug/l							

(a) Result is from Run# 2

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

•

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3 1 1

43 of 1464 ACCUTEST.

				Rej	port of .	Analysis		Page 1 o
Client Samp Lab Sample		EMW-2-1 58-6	13006			Date San	npled: 11/30/00	}
Matrix:	AQ -	Ground V	Vater			Date Rec Percent S	eived: 12/02/00	3
Project:		Parker Ha	annifin -	Old E	rie Canal S	ite, Clyde, NY		······································
Metals Anal	ysis							
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Sodium	65600	10000	ug/l	1	12/18/06	12/19/06 LH	SW846 G010B ^I	SW846 3010A ²
(1) Instrume								

(1) Instrument QC Batch: MA18522(2) Prep QC Batch: MP37272



			Page 1 of 1					
Client Sample ID: Lab Sample ID: Matrix:	J47958-	W-2-113006 6 ound Water						
Project:	GE - Pa							
General Chemistry								
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Alkalinity, Total as	CaCO3	559	13	mg/l	1	12/14/06	ST	EPA 310.1
Chloride		108	2.0	mg/l	1	12/28/06 01:39	JH	EPA 300/SW846 9056
Nitrogen, Nitrate ^a		<0.11	0.11	mg/l	1	12/21/06 15:04	NR	EPA353.2/SM4500NO2B

mg/l

mg/l

mg/L

l

I

1

1

12/21/06 15:04 NR

12/02/06 14:00 HF

12/28/06 01:39 JH

ST

12/06/06

11.8 Sulfide 2.0 < 2.0 mg/l

< 0.10

< 0.010

0.10

10

0.010

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

(b) Analysis done out of holding time.

Nitrogen, Nitrate + Nitrite

Nitrogen, Nitrite b

Sulfate

Page 1 of 1

EPA 353.2/LACHAT

EPA 300/SW846 9056

SM19 4500NO2B

EPA 376.1





	Report of Analysis										
Client Sample ID: Lab Sample ID:	GW-EM' J47958-6	W-2-113006 F			Date 8	Sampled: 11/30/	′06				
Matrix:	AQ - Gro	oundwater Fi	ltered			Received: 12/02/ nt Solids: n/a	'06				
Project:	GE - Par	ker Hannifin	- Old Erie	Canal Site,	Clyde, N	IY					
General Chemistry	<u>,</u>										
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method			
Dissolved Organic	Carbon	4.8	) 1.0	mg/l	1	12/26/06 18:4	імо	EPA415.1/SW8469060M			



	Report of Analysis												
Client Sam Lab Sampl Matrix: Method: Project:		- Old Erie	Canal Site,										
Run #1 Run #2		Analyzed 12/06/06	By YL	Prcp D n/a	ate	Prep Batch n/a	Analytical Batch VD4809						
Run #1 Run #2	Purge Volume 5.0 ml												
VOA TCL	List												
CAS No.	Compound	Result	RL	MDL	Units	Q							
67-64-1	Acetone	-ND	<del>5.</del> 0-P	4.6	ug/l								
71-43-2	Benzene	ND	1.0	0.37	ug/l								
75-27-4	Bromodichloromethane	ND	1.0	0.14	ug/l								
75-25-2	Bromoform	ND	1.0	0.52	uğ/l								
74-83-9	Bromomethane	ND	1.0	0.39	ug/l								
78-93-3	2-Butanone (MEK)	ND		1.4	ug/l								
75-15-0	Carbon disulfide	ND	1.0	0.38	uğ/i								
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l								
108-90-7	Chlorobenzene	ND	1.0	0.74	ug/l								
75-00-3	Chloroethane	ND	1.0	0.65	ug/l								
67-66-3	Chloroform	ND	1.0	0.18	ug/l								
74-87-3	Chloromethane	ND	1.0	0.20	ug/l								
124-48-1	Dibromochloromethane	ND	1.0	0.17	ug/l								
75-34-3	1,1-Dichloroethane	ND	1.0	0.089	ug/l								
107-06-2	1,2-Dichloroethane	ND	1.0	0.57	ug/l								
75-35-4	1,1-Dichloroethene	ND	1.0	0.49	ug/l								
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.18	ug/l								
	trans-1,2-Dichloroethene	ND	1.0	0.18	ug/l								
78-87-5 10061-01-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l								
	cis-1,3-Dichloropropene	ND	1.0	0.56	ug/l								
10061-02-6 100-41-4	trans-1,3-Dichloropropene Ethylbenzene	ND ND	1.0	0.15	ug/l								
591-78-6	2-Hexanone	ND	1.0 5.0	0.44 0.35	ug/l								
108-10-1	4-Methyl-2-pentanone(MIBK		5.0	0.55	ug/l ug/l								
75-09-2	Methylene chloride	ND	2.0	0.53	ug/l								
100-42-5	Styrene	ND	1.0	0.069	ug/l								
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.11	ug/l								
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l								
108-88-3	Toluene	ND	1.0	0.41	ug/l								
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.094	ug/l								
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.15	ug/l								
79-01-6	Trichloroethene	ND	1.0	0.16	ug/l								

ND = Not detected**MDL** - Method Detection Limit

RL = Reporting Limit

**E** = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound





				Page 2 of 2				
Client Sample Lab Sample Matrix: Method: Project:		GW-EMW-3-120100 J47958-8 AQ - Ground Water SW846 8260B GE - Parker Hannifi		Date Sampled: 12/01/06 Date Received: 12/02/06 Percent Solids: n/a Erie Canal Site, Clyde, NY				
VOA TCL	List							
CAS No.	Comp	ound	Result	RL	MDL	Units	Q	
75-01-4 1330-20-7	•	chloride e (total)	ND ND	1.0 1.0	0.77 0.34	ug/l ug/l		
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7 17060-07-0 2037-26-5 460-00-4	1,2-D Tolue	mofluoromethane ichloroethane-D4 ne-D8 mofluorobenzene	97% 112% 97% 109%		65-1 80-1	121% 133% 117% 124%		

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound



		Report of Analysis										
Client San Lab Samp Matrix: Method: Project:	le ID: J4795 AQ - ( SW84	Ground Wa 6 8015		Canal Site	Date l Perce	Sampled: Received nt Solids IY	: 12/02/06					
Run #1 Run #2	File ID II33493.D	DF 1	Analyzed 12/08/06	By HSC	Prep D n/a	oate	Prep Batch n/a	Analytical Batch GII1676				
CAS No.	Compound		Result	RL	MDL	Units	Q					
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		598 0.56 ND	0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l						

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit

- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound





	Report of Analysis										
Client Samp Lab Sample Matrix:	D: J47	V-EMW-3-1 958-8 9 - Ground V				Date San Date Rec Percent S	eived: 12/02/06				
Project:		- Parker H	annifin -	Old E	rie Canal S	ite, Clyde, NY	Jongs. ma				
Metals Anal Analyte	iysis Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method			
Sodium	30900	10000	ug/l	1	12/18/06	12/19/06 LH	SW846 6010B ^I	SW846 3010A 2			
(1) Instrume	nt QC Batch										

(2) Prep QC Batch: MP37272





Nitrogen, Nitrite b

Sulfate

Sulfide

			Repo	rt of An	alysis			Page 1 of 1
Client Sample ID: Lab Sample ID: Matrix:	J47958-	W-3-120106 8 ound Water			Date l	Sampled: 12/01/4 Received: 12/02/4 nt Solids: n/a		
Project:	GE - Pa	rker Hannifin	- Old Erie	Canal Site,				
General Chemistry	<u> </u>							
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Alkalinity, Total as	CaCO3	453	13	mg/l	1	12/14/06	ST	EPA 310.1
Chloride		38.3	2.0	mg/l	I	12/28/06 02:15	jΗ	EPA 300/SW846 9056
Nitrogen, Nitrate ^a		0.66	0.11	mg/l	1	12/21/06 15:08	NR	EPA353.2/SM4500NO2B
Nitrogen, Nitrate +	Nitrite	0.66	0.10	mg/l	1	12/21/06 15:08	NR	EPA 353.2/LACHAT

mg/l

mg/l

mg/l

I

1

1

12/02/06 14:00 HF

12/28/06 02:15 JH

ST

12/06/06

,

< 2.0 (a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

< 0.010

<10

0.010

10

2.0

(b) Analysis done out of holding time.

SM19 4500NO2B

EPA 376.1

EPA 300/SW846 9056



			Repo	ort of An	alysis			Page 1 of 1
Client Sample ID: Lab Sample ID:	J47958-8					Sampled: 12/01/		
Matrix:	AQ - Gr	oundwater Fi	ltered			Received: 12/02/ nt Solids: n/a	06	
Project:	GE - Par	ker Hannifin	- Old Erie	Canal Site,	Clyde, N	ΙY		
General Chemistry	•							
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Dissolved Organic (	Carbon	3.6	(iii) <b>1.0</b>	mg/l	1	12/26/06 19:18	в мо	EPA415.1/SW8469060M



Client Samj Lab Sample Matrix: Method: Project:		- Old Erie (	Canal Site,	Date I Percei	Sampled: Received: ht Solids: Y	12/07/06	
Run #1 Run #2		Analyzed 2/18/06	By PWC	Prep D n/a	ate	Prep Batch n/a	Analytical Batch VIA1947
Run #1 Run #2	Purge Volume 5.0 ml						
VOA TCL I	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	ND	5.0	4.6	ug/I		
71-43-2	Benzene	ND	1.0	0.37	ug/l		
75-27-4	Bromodichloromethane	ND	1.0	0.14	ug/l		
75-25-2	Bromoform	ND	1.0	0.52	ug/l		
74-83-9	Bromomethane	ND	1.0	0.39	ug/l		
78-93-3	2-Butanone (MEK)	ND	5.0	1.4	ug/l		
75-15-0	Carbon disulfide	ND	1.0 🖵	0.38	ug/l		
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l		
108-90-7	Chlorobenzene	ND	1.0	0.74	ug/l		
75-00-3	Chloroethane	1.4	1.0	0.65	ug/l		
67-66-3	Chloroform	ND	1.0	0.18	ug/l		
74-87-3	Chloromethane	ND	1.0	0.20	ug/l		
124-48-1	Dibromochloromethane	ND	1.0	0.17	ug/l		
75-34-3	1,1-Dichloroethane	0.71	1.0	0.089	ug/l	l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.57	ug/l		
75-35-4	I, I-Dichloroethene	ND	1.0	0.49	ug/l		
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.18	ug/l		
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.18	ug/l		
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l		
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.56	ug/l		
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.15	ug/l		
100-41-4	Ethylbenzene	ND	1.0	0.44	ug/l		
591-78-6	2-Hexanone	ND	5.0	0.35	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBK	이 이 집에 가슴에 잘 가운 것을 알고 있는 것 같아요. 이 것 같아요. 아파 것	5.0	0.50	ug/l		
75-09-2	Methylene chloride	ND	2.0	0.53	ug/l		
100-42-5	Styrene	ND	1.0	0.069	ug/l		
79-34-5 127-18-4	1,1,2,2-Tetrachloroethane Tetrachloroethene	ND ND	1.0	0.11	ug/l		
127-18-4	Tetrachloroethene		1.0	0.39	ug/l		
108-88-3 71-55-6	1,1,1-Trichloroethane	ND ND	1.0	0.41	ug/l		
71-55-6 79-00-5		ND ND	1.0	0.094	ug/l		
19-00-9	1,1,2-Trichloroethane Trichloroethene	ND	1.0 1.0	0.15 0.16	ug/l ug/l		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound



Report	of	Analysis
--------	----	----------

Client Samp Lab Sample Matrix: Method: Project:		r	nal Site,	Date H Percer	Sampled: Received: nt Solids: Y	12/06/06 12/07/06 n/a	
VOA TCL I	Jist						
CAS No.	Compound	Result	RL	MDL	Units	Q	
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	2.2 ND	1.0 1.0	0.77 0.34	ug/l ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7 17060-07-0 2037-26-5 460-00-4	060-07-0 1,2-Dichloroethane-D4 37-26-5 Toluene-D8			77-121% 65-133% 80-117% 79-124%			

N = Indicates presumptive evidence of a compound



Page 2 of 2

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

			Repo	ort of A	nalysis			Page 1 of 1
Client Sar Lab Samp Matrix: Method: Project:	ole ID: J484 AQ SW8	Ground W 46 8015		Canal Site	Date l Percei	Sampled: Received nt Solids IY	: 12/07/06	
Run #1 Run #2	File ID 1133583.D 1133584.D	DF I 5	Analyzed 12/13/06 12/13/06	By HSC HSC	Prep D n/a n/a	late	Prep Batch n/a n/a	Analytical Batch GII1679 GII1679
CAS No.	Compound		Result	RL	MDL	Units	Q	
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		5140 ª 226 ND	0.50 0.10 0.10	0.33 0.056 0.075	ug/l ug/l ug/l		

(a) Result is from Run# 2

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

.

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound



3.11

				Rep	port of A	Analysis			Pa	ge 1 of 1	ω 
Client Sample II Lab Sample ID: Matrix: Project:	J48443 AQ - O	round V	/ater	Old E	rie Canal Si	Date R	ampled: .cceived: t Solids: Y	12/06/06 12/07/06 n/a			(45)
Metals Analysis											
Analyte	Result	RL	Units	DF	Prep	Analyzed B	y Meth	od	Prep Method		
Sodium	59200	10000	ug/l	1	12/26/06	12/26/06 L	H SW84	6 6010B ^I	SW846 3010A ²		

.

(1) Instrument QC Batch: MA18554(2) Prep QC Batch: MP37400

		Repo	rt of Ar	alysis			Page 1 of 1
Lab Sample ID: J4844	MW-4-120606 3-6 Ground Water			Date	Sampled: 12/06/0 Received: 12/07/0 nt Solids: n/a		
Project: GE - I	arker Hannifin -	Old Erie	Canal Site,				
General Chemistry					<u>,,, (1,,, (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1</u>		
Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Alkalinity, Total as CaCO3	425	17	mg/i	1	12/20/06	JA	EPA 310.1
Chloride	70.9	2.0	mg/i	1	01/03/07 01:37	JH	EPA 300/SW846 9056
Nitrogen, Nitrate ^a	<0.11	0.11	mg/l	1	12/30/06 13:40	MR	EPA353.2/SM4500NO2B
Nitrogen, Nitrate + Nitrite	< 0.10	0.10	mg/l	1	12/30/06 13:40	MR	EPA 353.2/LACHAT
Nitrogen, Nitrite	< 0.010	0.010	mg/l	1	12/07/06 18:00	MET	SM19 4500NO2B
Sulfate	<10	10	mg/l	1	01/03/07 01:37	JH	EPA 300/SW846 9056
Sulfide	<2.0	2.0	mg/l	1	12/12/06	J۸	EPA 376.1

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

3.11

			Repo	ort of An	alysis			Page 1 of 1
Client Sample ID: Lab Sample ID:	J48443-(		•			Sampled: 12/06		
Matrix:	AQ Gr	oundwater Fi	ltered			Received: 12/07 nt Solids: n/a	700	
Project:	GE - Par	rker Hannifin	- Old Erie	Canal Site,	Clyde, N	Y		
General Chemistry	1							
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Dissolved Organic	Carbon	5.6	23 1.0	mg/l	L	12/29/06 01:3	8 esj	EPA415.1/SW8469060M

Client Sam Lab Sampl Matrix: Method: Project:		- Old Erie	Canal Site,	Date I Percei	Sampled: Received nt Solids Y	: 12/02/06	
Run #1 Run #2		Analyzed 12/06/06	By YL	Prep D n/a	ate	Prep Batch n/a	Analytical Batch VD4809
Run #1 Run #2	Purge Volume 5.0 ml						
VOA TCL	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	··ND	5.0-2	~ 4.6	ug/l		
71-43-2	Benzene	ND	1.0	0.37	ug/l		
75-27-4	Bromodichloromethane	ND	1.0	0.14	ug/l		
75-25-2	Bromoform	ND	1.0	0.52	ug/l		
74-83-9	Bromomethane	ND	1.0	0.39	ug/l		
78-93-3	2-Butanone (MEK)	-ND	- <b>5:0</b>  2	1.4	ug/l		
75-15-0	Carbon disulfide	ND	1.0	0.38	ug/l		
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l		
108-90-7	Chlorobenzene	ND	1.0	0.74	uğ/l		
75-00-3	Chloroethane	ND	1.0	0,65	ug/l		
67-66-3	Chloroform	ND	1.0	0.18	ug/l		
74-87-3	Chloromethane	ND	1.0	0.20	ug/l		
124-48-1	Dibromochloromethane	ND	1.0	0.17	uğ/l		
75-34-3	1,1-Dichloroethane	ND	1.0	0.089	ug/l		
107-06-2	1,2-Dichloroethane	ND	1.0	0.57	ug/l		
75-35-4	1,1-Dichloroethene	ND	1.0	0.49	ug/l		
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.18	ug/l		
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.18	ug/l		
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/I		
10061-01-5		ND	1.0	0.56	ug/l		
10061-02-6		ND	1.0	0.15	ug/l		
100-41-4	Ethylbenzene	ND	1.0	0.44	ug/l		
591-78-6	2-Hexanone	ND	5.0	0.35	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBk	<ul> <li>All and a second se</li></ul>	5.0	0.50	ug/l		
75-09-2	Methylene chloride	ND	2.0	0.53	ug/l		
100-42-5	Styrene	ND	1.0	0.069	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.11	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l		
108-88-3	Toluene	ND	1.0	0.41	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	0.1	0.094	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.15	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.16	ug/l		

ND = Not detected **MDL** - Method Detection Limit

RL = Reporting Limit

.

E = Indicates value exceeds calibration range

J = Indicates an estimated value B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound



			Report	of Ana	alysis			Page 2
Client Samp Lab Sample Matrix: Method: Project:		GW-EMW-5-120106 J47958-7 AQ - Ground Water SW846 8260B GE - Parker Hannifin	- Old Erie Ca	nal Site, (	Date I Percei	Sampled: Received: at Solids: Y	12/01/06 12/02/06 n/a	
VOA TCL I	List		<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>					
CAS No.	Comp	ound	Result	RL	MDL	Units	Q	
75-01-4 1330-20-7	•	chloride e (total)	ND ND	1.0 1.0	0.77 0.34	ug/l ug/l		
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7 17060-07-0 2037-26-5 460-00-4	1,2-D Tolue	ntofluoromethane ichloroethane-D4 ne-D8 mofluorobenzene	96% 113% 96% 108%		65-1 80-1	121% 133% 117% 124%		

N = Indicates presumptive evidence of a compound



Page 2 of 2

J = Indicates an estimated value

 $[\]mathbf{B}$  = Indicates analyte found in associated method blank

Raw Data: 188492.0

Accutest Laboratories

			Repo	ort of Ai	nalysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID: J4795 AQ - SW84	Ground Wate 16 8015		Canal Site	Date I Percei	Sampled: Received at Solids	: 12/02/06	
Run #1 Run #2	File ID II33492.D	DF 1	Analyzed 12/08/06	By HSC	Prcp D n/a	ate	Prep Batch n/a	Analytical Batch GII1676
CAS No.	Compound		Result	RL	MDL	Units	Q	
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		1140 0.25 ND	0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l		

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit

- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound



Accutest Labora	tories								64
				Rej	port of A	Analysis		Page 1 o	
Client Sample I Lab Sample ID: Matrix:	: J4795	GW-EMW-5-120106         Date Sampled:         12/01/06           J47958-7         Date Received:         12/02/06           AQ - Ground Water         Date Received:         12/02/06           Percent Solids:         n/a							(42)
Project:	GE -	Parker Ha	mnifin -	Old E	rie Canal S	ite, Clyde, NY			
Metals Analysis									
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method	
Sodium	55000	10000	ug/l	1	12/18/06	12/19/06 LH	SW846 6010B ¹	SW846 3010A ²	
(1) Instrument O	C Batch:	MA18522							

Instrument QC Batch: MA18522
 Prep QC Batch: MP37272

	Page 1 of 1						
Lab Sample ID: J479	-EMW-5-120106 58-7 - Ground Water						
Project: GE	Parker Hannifin	- Old Erie	Canal Site,	Clyde, N	IY		
General Chemistry	a Barran na sa						
Analyte	Result	RL	Units	DF	Analyzed	By	Method
Alkalinity, Total as CaCO	3 477	13	mg/l	1	12/14/06	ST	EPA 310.1
Chloride	77.2	2.0	mg/l	1	12/28/06 01:57	]H	EPA 300/SW846 9056
Nitrogen, Nitrate ^a	< 0.11	0.11	mg/l	1	12/21/06 15:07	NR	EPA353.2/SM4500NO2B
Nitrogen, Nitrate + Nitri	te < 0,10	0.10	mg/l	L	12/21/06 15:07	NR	EPA 353.2/LACHAT
Nitrogen, Nitrite ^b	< 0.010	0.010	mg/l	1	12/02/06 14:00	) HF	SM19 4500NO2B
Sulfate	<10	10	mg/l	1	12/28/06 01:57	JH	EPA 300/SW846 9056
Sulfide	< 2.0	2.0	mg/l	1	12/06/06	ST	EPA 376.1

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite) (b) Analysis done out of holding time.



	Page 1 of 1							
Client Sample ID: Lab Sample ID:	GW-EM J47958-7							
Matrix: AQ - Groundwater Filtered Date Received: 12/02/06 Percent Solids: n/a								
Project:	GE - Parker Hannifin - Old Erie Canal Site, Clyde, NY							
General Chemistry	/							
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Dissolved Organic	Carbon	<1.0	in <b>1.0</b>	mg/l	1	12/26/06 19:10	мо	EPA415.1/SW8469060M



	Page 1 of 2							
Client Sam Lab Sample Matrix: Method: Project:	c ID: J47796-2 AQ - Ground Water SW846 8260B	Date Sampled: 11/29/06 Date Received: 12/01/06 Percent Solids: n/a A - Old Erie Canal Site, Clyde, NY				12/01/06		
Run #1 Run #2		Analyzed 12/06/06	By YL	Prep D n/a	ate	Prep Batch n/a	Anaiytical Batch VD4809	
Run #1 Run #2	Purge Volume 5.0 ml	C,C,C,						
VOA TCL						0		
CAS No.	Compound	Result	RL	MDL	Units	Q		
67-64-1	Acetone	ND		- 120	ug/l			
71-43-2	Benzene	ND	25	9.3	ug/l			
75-27-4	Bromodichloromethane	ND	25	3.4	ug/l			
75-25-2	Bromoform	ND	25	13	ug/l			
74-83-9	Bromomethane	ND-22	25	9.6	ug/l			
78-93-3	2-Butanone (MEK)		-130 P	36	ug/l			
75-15-0	Carbon disulfide	ND	5 25	9.5	ug/i			
56-23-5	Carbon tetrachloride	ND	25	13	ug/l			
108-90-7	Chlorobenzene	ND	25	18	ug/l			
75-00-3	Chloroethane	ND	25	16	ug/l			
67-66-3	Chloroform	ND	25	4.6	ug/l			
74-87-3	Chloromethane	ND	25	5.0	ug/l			
124-48-1	Dibromochloromethane	ND	25	4.2	ug/l			
75-34-3	1,1-Dichloroethane	ND .	25	2,2	uğ/l			
107-06-2	1,2-Dichloroethane	ND	25	14	ug/l			
75-35-4	1,1-Dichloroethene	ND	25	12	ug/l			
156-59-2	cis-1,2-Dichloroethene	3690	25	4.5	ug/l			
156-60-5	trans-1,2-Dichloroethene	32.4	25	4.6	ug/l			
78-87-5	1,2-Dichloropropane	ND	25	13	ug/I			
10061-01-5	cis-1,3-Dichloropropene	ND	25	14	ug/l			
10061-02-6	· · ·	ND	25	3.8	ug/l			
100-41-4	Ethylbenzene	ND	25	11	ug/l			
591-78-6	2-Hexanone	ND	130	8.8	ug/l			
108-10-1	4-Methyl-2-pentanone(MIB)		130	13	ug/l			
75-09-2	Methylene chloride	ND	50	13	ug/l			
100 40 6	Berne .	ATTACK	Statione -	1.7				

ND 38

ND 25

ND 25

1110 25

ND

11.0

25

25

25

1.7

2.7

9.7

10

2.4

3.8

4.0

**Report of Analysis** 

Page 1 of 2

ND = Not detected MDL - Method Detection Limit

1,1,2,2-Tetrachloroethane

Tetrachloroethene

Trichloroethene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

RL = Reporting Limit

100-42-5

127-18-4

108-88-3

71-55-6

79-00-5

79-01-6

79-34-5

E = Indicates value exceeds calibration range

Styrene

Toluene

J = Indicates an estimated value

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

J

			*		v			-
Client Samp Lab Sample Matrix: Method: Project:		GW-MW-1S-112900 J47796-2 AQ - Ground Water SW846 8260B GE - Parker Hannifi		Sampled: Received: at Solids: Y	11/29/06 12/01/06 n/a			
VOA TCL I	List							
CAS No.	Comp	ound	Result	RL	MDL	Units	Q	
75-01-4 1330-20-7	· · · · · · · · · · · · · · · · · · ·		147 ND		19 8.6	ug/l ug/l		
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7 17060-07-0 2037-26-5 460-00-4	1,2-D Tolue	mofluoromethane ichloroethane-D4 ne-D8 mofluorobenzene	97% 115% 96% 108%		65-1 80-1	21% 133% 117% 124%		

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

# **Report of Analysis**

Client San Lab Samp Matrix: Method: Project:	le ID: J47790 AQ - 0 SW84	Ground Wa 6 8015		Canal Site,	Date Sampled: 11/29/06 Date Received: 12/01/06 Percent Solids: n/a c, Clyde, NY			
Run #1 Run #2	File ID 1133499.D	DF l	Analyzed 12/08/06	By HSC	Prep Date n/a		Prep Batch n/a	Analytical Batch GII1676
CÁS No.	Compound		Result	RL	MDL	Units	Q	
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		6.88 7.69 0.38		0.066 0.056 0.075	ug/l ug/l ug/l		

**Report of Analysis** 

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

				Rej	port of A	Analysis		Page 1 of 1
Client Sample IE Lab Sample ID: Matrix:	J47796	W-IS-II -2 round W				Date Sam Date Rec Percent S	· · · · · · · · · · · · · · · · · · ·	
Project:	GB - Pa	arker Ha	nnifin -	Old E	rie Canal Si	te, Clyde, NY		
Metals Analysis								
Analyte I	Result	RL	Units	DF	Ргер	Analyzed By	Method	Prep Method
Sodium	103000	20000	ug/l	2	12/18/06	12/19/06 lh	SW846 6010B ¹	SW846 3010A ²
(1) Instrument QC	C Batch: M	A18529						

(2) Prep QC Batch: MP37272

		Page 1 of 1						
Lab Sample ID: J4	W-MW-1S-112906 7796-2 Q - Ground Water			Date l	Sampled: 11/29/0 Received: 12/01/0 nt Solids: n/a			
Project: Gl								
General Chemistry	<u></u>				<u></u>	A		
Analyte	Result	RL	Units	DF	Analyzed	Ву	Method	
Alkalinity, Total as Cal	CO3 374	ச <b>13</b>	mg/l	1	12/12/06	ST	EPA 310.1	
Chloride	182	2.0	mg/l	1	12/21/06 01:32	ЪН	EPA 300/SW846 9056	
Nitrogen, Nitrate ^a	<b>0:11</b>	0.11	mg/l	1	12/21/06 14:51	NR	EPA353,2/SM4500NO2B	
Nitrogen, Nitrate + Ni		0.10	mg/l	1	12/21/06 14:51	NR	ЕРА 353.2/LACHAT	
Nitrogen, Nitrite	< 0.010	0.010	mg/l	1	12/01/06 15:50	ST	SM19 4500NO2B	
Sulfate	34,9	2.0	mg/l	1	12/21/06 01:32	Ш	EPA 300/SW846 9056	
Sulfide	< <b>≤2.0</b>	2.0	mg/l	1	12/06/06	\$T	EPA 376.1	

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

	Report of Analysis										
Client Sample ID: Lab Sample ID:	GW-MW-1 J47796-2F			<u></u>		Sampled: 11/29/					
Matrix:	AQ - Grou	ndwater Fi	ltered			Received: 12/01/ nt Solids: n/a					
Project:	GE - Parke	r Hannifin	- Old Erie C	Canal Site,	Clyde, N	Y					
General Chemistry	7										
Analyte	1	Result	RL	Units	DF	Analyzed	Ву	Method			
Dissolved Organic	Carbon 👘	< 1,0	I.0 J	mg/i	1	12/22/06 00:14	4 esj	BPA415.1/SW8469060M			

Client Sam Lab Sampl Matrix: Method: Project:	ple ID: GW-X-1-112906 e ID: J47796-7 AQ - Ground Water SW846 8260B GE - Parker Hannifi		Canal Site,	Date F Percer	ampled: Received: A Solids: Y	12/01/06	
Run #1 Run #2	File ID DF 1A45181.D 10 1A45182.D 50	Analyzed 12/08/06 12/08/06	By PWC PWC	Prep D n/a n/a	ate	Prep Batch n/a n/a	Analytical Batch VIA1932 VIA1932
Run #1 Run #2	Purge Volume 5.0 ml 5.0 ml						
VOA TCL	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	ND	🦻 <b>50</b>	46	ug/l		
71-43-2	Benzene	ND	10	3.7	ug/l		
75-27-4	Bromodichloromethane	승규는	10	1.4	ug/l		
75-25-2	Bromoform	ND	10	5.2	ug/l		
74-83-9	Bromomethane	ND	as 10	3.9	ug/l		
78-93-3	2-Butanone (MEK)	ND	50 - P	14	ug/l		
75-15-0	Carbon disulfide	ND	8605x 10	3.8	ug/l		
56-23-5	Carbon tetrachloride	ND	10	5.3	ug/1		
108-90-7	Chlorobenzene	ND	10	7.4	ug/l		
75-00-3	Chloroethane	ND	10	6.5	ug/l		
67-66-3	Chloroform	ND	10	1.8	ug/l		
74-87-3	Chloromethane	ND	in 10	2.0	ug/l		
124-48-1	Dibromochloromethane	ND	10	1.7	ug/l		
75-34-3	1,1-Dichloroethane	ND	10	0.89	ug/l		
107-06-2	1,2-Dichloroethane	ND	Sg 🗐 10	5.7	ug/l		
75-35-4	1,1-Dichloroethene	6.9	šš 10	4.9	ug/l	J	
156-59-2	cis-1,2-Dichloroethene	3240 ª	50	8.9	ug/l		
156-60-5	trans-1,2-Dichloroethene	34,2	10	1.8	ug/l		
78-87-5	1,2-Dichloropropane	^ND	iii 10	5.0	ug/l		
10061-01-3	5 cis-1,3-Dichloropropene		10	5.6	ug/l		
10061-02-0	5 trans-1,3-Dichloropropene		sis 10	1.5	ug/i		
100-41-4	Ethylbenzene	ND	10	4.4	ug/l		
591-78-6	2-Hexanone	ND,	Sec 50	3.5	ug/l		
108-10-1	4-Methyl-2-pentanone(MII		50	5.0	ug/l		
75-09-2	Methylene chloride	ND	20	5.3	ug/l		
100-42-5	Styrene	ND	10	0.69	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	10	1.1	ug/i		
127-18-4	Tetrachloroethene	10.6	10	3.9	ug/l		
108-88-3	Toluene	ND	385 <b>10</b>	4.1	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	<u> </u>	0.94	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	10	1.5	ug/l		
79-01-6	Trichloroethene	988		1.6	ug/l		

**Report of Analysis** 

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 2

	1ethod: SW846 8260B		- Old Erie Ca	nal Site, C	Date F Percen	ampled: Received: It Solids: Y	11/29/06 12/01/06 n/a	
VOA TCL I	.lst							
CAS No.	Comp	ound	Result	RL.	MDL	Units	Q	
75-01-4	Vinyl	chloride	<b>155</b>	10	7.7	ug/l		
1330-20-7	Xylen	e (total)	ND	10	3.4	ug/l		
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7	Dibro	mofluoromethane	95%		· .	21%		
17060-07-0	1,2-D	ichloroethane-D4	106%	»108%	65-1	33%		
2037-26-5	Tolue	ne-D8	98%					
460-00-4	4-Bro	mofluorobenzene	89%	90%	79-1	24%		

(a) Result is from Run# 2

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

			Repo	rt of Aı	nalysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID; J4 A( S)	W-X-1-112906 7796-7 Q - Ground War V846 8015 E - Parker Hanr						
Run #1 Run #2	File ID II33506.D	DF 1	Analyzed 12/08/06	By HSC	Prep D n/a	late	Prep Batch n/a	Analytical Batch GII1676
CAS No.	Compour	ıd	Result	RL	MDL	Units	Q	
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		9.54 11.0 0.46		0.066 0.056 0.075	ug/l ug/l ug/l		

ND = Not detectedMDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

:00054

	Report of Analysis											
Client Sample I Lab Sample ID Matrix:	: J47796	1-11290 -7 round W				Date San Date Rec Percent S	elved: 12/01/06					
Project:	GE - P	arker Ha	nnifin -	Old E	rie Canal Si	ite, Clyde, NY						
Metals Analysis	3											
Analyte	Result	RL	Units	DF	Ргер	Analyzed By	Method	Prep Method				
Sodium	103000	20000	ug/l	2	12/18/06	12/19/06 г.н	SW846 6010B 1	SW846 3010A ²				

•

Instrument QC Batch: MA18529
 Prep QC Batch: MP37272

			Repor	rt of An	Page 1 of 1				
Lab Sample ID: J	47796-7	-112906 ound Water			Date I	Sampled: 11/29/0 Received: 12/01/0 at Solids: n/a			
Project: C									
General Chemistry		<u> </u>				·····			
Analyte		Result	RL	Units	DF	Analyzed	By	Method	
Alkalinity, Total as C	aCO3	460	13	mg/l	1	12/12/06	ST	EPA 310.1	
Chloride		182	2.0	mg/l	I	12/21/06 02:46	Ή	EPA 300/SW846 9056	
Nitrogen, Nitrate a		<0.11	0.11	mg/l	1	12/21/06 14:57	NR	EPA353.2/SM4500NO2B	
Nitrogen, Nitrate + N	litrite	<0.10	0.10	mg/l	1	12/21/06 14:57	NR	EPA 353.2/LACHAT	
Nitrogen, Nitrite		0.011	0.010	mg/l	1	12/01/06 14:45	ST	SM19 4500NO2B	
Sulfate		35.1	2,0	mg/l	1	12/21/06 02:46	Ш	EPA 300/SW846 9056	
Sulfide		<2.0	^{&amp;_} 2,0	mg/l	1	12/06/06	\$T	EPA 376.1	

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

RL = Reporting Limit

			Repor	t of An	alysis			Page 1 of 1
Client Sample ID: Lab Sample ID: Matrix:	J47796-7		Itered	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Date I	Sampled: 11/29/ Received: 12/01/ ht Solids: n/a		
Project:	GE - Par	ker Hannifin	- Old Erie C	Canal Site,	Clyde, N	Y		
General Chemistry	1							
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Dissolved Organic	Carbon	4.6	1.0 J	mg/l	I	12/22/06 01:1	9 esi	EPA415.1/SW8469060M

RL = Reporting Limit

.

Client Samp Lab Sample Matrix: Method: Project:	D: J48443-5 AQ - Ground Water SW846 8260B	- Old Erie	Date Sampled: 12/06/06 Date Received: 12/07/06 Percent Solids: n/a Old Erie Canal Site, Clyde, NY					
Run #1 Run #2	n #1 1A45518.D 1 12		alyzed By Prep Date Prep E '18/06 PWC n/a n/a		Prep Batch n/a	Analytical Batch V1A1947		
Run #1 Run #2	Purge Volume 5.0 ml							
VOA TCL	List							
CAS No.	Compound	Result	RL	MDL	Units	Q		
67-64-1	Acetone	ND	5.0	4.6	ug/l			
71-43-2	Benzene	ND	1.0	0.37	ug/l			
75-27-4	Bromodichloromethane	ND	1.0	0.14	ug/l			
75-25-2	Bromoform	ND	1.0	0.52	ug/l			
74-83-9	Bromomethane	ND	1.0	0.39	ug/l			
78-93-3	2-Butanone (MEK)	ND	5.0	1.4	ug/l			
75-15-0	Carbon disulfide	ND	1.0 ]	0.38	ug/l			
56-23-5	Carbon tetrachloride	ŃD	1.0	0.53	ug/l			
108-90-7	Chlorobenzene	ND	1.0	0.74	ug/l			
75-00-3	Chloroethane	ND	1.0	0.65	ug/l			
67-66-3	Chloroform	ND	1.0	0.18	ug/l			
74-87-3	Chloromethane	ND	1.0	0.20	ug/l			
124-48-1	Dibromochloromethane	ND	1.0	0.17	ug/l			
75-34-3	1,1-Dichloroethane	ND	1.0	0.089	ug/l			
107-06-2	1,2-Dichloroethane	ND	1.0	0.57	ug/l			
75-35-4	1,1-Dichlorocthene	ND	1.0	0.49	ug/l			
156-59-2	cis-1,2-Dichloroethene	2.2 ND	1.0	0.18	ug/l			
156-60-5	trans-1,2-Dichloroethene	ND ND	1.0 1.0	0.18 0.50	ug/l ug/l			
78-87-5 10061-01-5	1,2-Dichloropropane	ND ND	1.0	0.56	ug/1 ug/1			
10061-01-5	• •	ND	1.0	0.35	ug/1 ug/l			
100-41-4	Ethylbenzene	ND	1.0	0.13	ug/l			
591-78-6	2-Hexanone	ND	5.0	0.35	ug/l			
108-10-1	4-Methyl-2-pentanone(MIBI	「「「「「「」」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「	5.0	0.50	ug/l			
75-09-2	Methylene chloride	ND	2.0	0.53	ug/l			
100-42-5	Styrene	ND	1.0	0.069	ug/l			
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.11	ug/l			
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l			
108-88-3	Toluene	ND	1.0	0.41	ug/l			
71-55-6	1, I, 1-Trichloroethane	ND	1.0	0.094	ug/l			
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.15	ug/l			
79-01-6	Trichloroethene	0.58	1.0	0.16	ug/l	J		

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound





			Report	of An	alysis	\$		Page 2 of 2
Client Sample ID:GW-MW-1-120606Lab Sample ID:J48443-5Matrix:AQ - Ground WaterMethod:SW846 8260BProject:GE - Parker Hannifin		Date Received: 12				12/06/06 12/07/06 n/a		
VOA TCL I	List							
CAS No.	Comp	ound	Result	RL	MDL	Units	Q	
75-01-4 1330-20-7		chloride e (total)	3.3 ND	1.0 1.0	0.77 0.34	ug/l ug/l		
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7 17060-07-0 2037-26-5 460-00-4	1,2-D Tolue	mofluoromethane ichloroethane-D4 ne-D8 mofluorobenzene	102% 122% 97% 88%		65-1 80-1	21% 33% 17% 24%		

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound



			Repo	rt of Ai	nalysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID: J4844 AQ - SW8	Ground Wate 46 8015		Canal Site,	Date I Percei	Sampled; Received at Solids	: 12/07/06	
Run #1 Run #2	File ID II33582.D	DF 1	Analyzed 12/13/06	By HSC	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GII1679
CAS No.	Compound		Result	RL	MDL	Units	Q	
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		897 10.4 ND	0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l		

ND = Not detected **MDL - Method Detection Limit** RL = Reporting Limit

- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound



				Rej	port of A	Analysis		Page 1 of 1
Client Sample I Lab Sample ID Matrix:	: J4844 AQ -	Ground V	Vater	OLLE		Date Sam Date Rec Percent S	eived: 12/07/06	
Project: Metals Analysis		Parker m				ite, Clyde, NY		
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Sodium	21400	10000	ug/l	1	12/26/06	12/26/06 LH	SW846 6010B ¹	SW846 3010A ²
(1) Instrument (	C Batch	MA 18554						

(1) Instrument QC Batch: MA18554

(2) Prep QC Batch: MP37400

		Page 1 of 1						
Client Sample ID: G Lab Sample ID: J4 Matrix: At		Date l	Sampled: 12/06/0 Received: 12/07/0 nt Solids: n/a					
Project: G	GE - Parker Hannifin - Old Eric Canal Site, Clyde, NY							
General Chemistry		<u></u>			·			
Analyte	Result	RL	Units	DF	Analyzed	Ву	Method	
Alkalinity, Total as Cat	CO3 275	5.0	mg/l	1	12/20/06	JA	EPA 310.1	
Chloride	24.3	2.0	mg/l	1	01/03/07 01:19	JH	EPA 300/SW846 9056	
Nitrogen, Nitrate a	< 0.11	0.11	mg/l	l	12/30/06 13:39	MR	EPA353.2/SM4500NO2B	
Nitrogen, Nitrate + Ni	trite < 0.10	0.10	mg/l	1	12/30/06 13:39	MR	EPA 353.2/LACHAT	
Nitrogen, Nitrile	< 0.010	0.010	mg/l	I	12/07/06 18:00	MET	SM19 4500NO2B	
Sulfate	12.7	10	mg/l	1	01/03/07 01:19	JH	EPA 300/SW846 9056	
Sulfide	< 2.0	2.0	mg/l	1	12/12/06	JA	EPA 376.1	

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

Accutest Laboratori	ies								
			Repo	ort of Ar	nalysis			Page 1 of 1	3.10
Client Sample ID: Lab Sample ID: Matrix: Project:	J48443- AQ - G	W-1-120606 5F roundwater F irker Hannifir		Canal Site,	Date Perce	Sampled: 12/06 Received: 12/07 nt Solids: n/a \Y			(45) (45)
General Chemistry	/								
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method	
Dissolved Organic	Carbon	6.4		mg/l	1	12/29/06 01:3	1 ESJ	EPA415.1/SW8469060M	

Client Sam Lab Sample Matrix: Method: Project:		- Old Eric (	Canal Site,	Date S Date F Percen Clyde, N	12/01/06		
Run #1 Run #2		Analyzed 12/06/06	By YL	Prep Da n/a	ate	Prep Batch n/a	Analytical Batch VD4809
Run #1 Run #2	Purge Volume 5.0 ml						
VOA TCL	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	ND 10	s <b>5.0</b>	4.6	ug/l		
71-43-2	Benzene	ND		0.37	ug/l		
75-27-4	Bromodichloromethane	ND	1.0	0.14	ug/l		
75-25-2	Bromoform		1.0	0.52	ug/l		
74-83-9	Bromomethane	and the state of the	1.0	0.39	ug/i		
78-93-3	2-Butanone (MEK)	ND	5.0 2		ug/l		
75-15-0	Carbon disulfide	ND	溪 1.0 ′	0.38	ug/l		
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l		
108-90-7	Chlorobenzene	ND	1.0	0.74	ug/l		
75-00-3	Chloroethane		\$ 1.0	0.65	ug/l		
67-66-3	Chloroform	ND	• • •	0.18	ug/l		
74-87-3	Chloromethane	ND		0.20	ug/l		
124-48-1	Dibromochloromethane	ND	ີ່ 1.0	0.17	ug/l		
75-34-3	1,1-Dichloroethane	ND	1.0	0.089	ug/l		
107-06-2	1,2-Dichloroethane	ND	1.0	0.57	ug/l		
75-35-4	1,1-Dichloroethene	ND	ි 1.0	0.49	ug/l		
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.18	ug/l		
156-60-5	trans-1,2-Dichloroethene	ND Con	1.0	0.18	ug/l		
78-87-5	1,2-Dichloropropane	ND		0.50	ug/l		
10061-01-5		ND	1.0	0.56	ug/l		
10061-02-6		, ND	1.0	0.15	ug/l		
100-41-4	Ethylbenzene	ND	1.0	0.44	ug/l		
591-78-6	2-Hexanone	ND ···	5.0	0.35	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBI		5.0	0.50	ug/l		
75-09-2	Methylene chloride	ND	2.0	0.53	ug/l		
100-42-5	Styrene	ND	1.0	0.069	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.11	ug/l		
127-18-4	Tetrachloroethene Teluare	ND ND	1.0	0.39	ug/i		
108-88-3	Toluene	ND	in 1.0	0.41	ug/l		
71-55-6	1,1,1-Trichloroethane	Contract Contract of	<b>0,1</b>	0.094	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	<u>ે</u> લ 1.0	0.15	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.16	ug/l		

**Report of Analysis** 

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

				•••					
Client Samp Lab Sample Matrix: Method: Project:		GW-MW-2S-112900 J47796-1 AQ - Ground Water SW846 8260B GE - Parker Hannifi		Date Sampled: Date Received: Percent Solids: - Old Eric Canal Site, Clyde, NY					
YOA TCL I	List								
CAS No.	Compound		Result	RL	MDL	Units	Q		
75-01-4 1330-20-7	Vinyl chloride Xylene (total)		ND ND	1.0 1.0	0.77 0.34	ug/l ug/l			
CAS No.	Surrogate Recoveries		Run# 1	Run# 2	Lin	its			
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene		98% 116% 97% 111%	77-121 % 65-133 % 80-117 % 79-124 %					

- J = Indicates an estimated value
- $\mathbf{B}$  = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

# :00017

ų

# **Report of Analysis**

			Repo	rt of Ar	alysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID: J477 AQ SW8	-MW-2S-112906 96-1 - Ground Water 846 8015 - Parker Hannifi		Canal Site,	Date I Percer	Sampled: Received: ht Solids: Y	12/01/06	
Run #1 Run #2	File ID 1133498.D	DF 1	Analyzed 12/08/06	By HSC	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GII1676
CAS No.	Compound		Result	RL	MDL	Units	Q	
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene			0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l		

ND = Not detectedMDL - Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

	Kepo	ort of Analysis		rag
Client Sample ID: Lab Sample ID: Matrix:	GW-MW-2S-112906 J47796-1 AQ - Ground Water	Date Sampled: Date Received: Percent Solids:	12/01/06	

**Metals Analysis** 

Project:

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Sodium	61800	10000	ug/l	1	12/18/06	12/19/06 LH	SW846 6010B ¹	SW846 3010A ²
(1) Instrument	OC Batch: M	A 18522						

GE - Parker Hannifin - Old Erie Canal Site, Clyde, NY

(1) Instrument QC Batch: MA18522 (2) Prep QC Batch: MP37272

**Doport of Analysis** 

	Page 1 of 1						
Lab Sample ID: Je	W-MW-2S-112906 47796-1 .Q - Ground Water	441 - 49999	Date J	Sampled: 11/29/0 Received: 12/01/0 nt Solids: n/a			
Project: C	E - Parker Hannifin -						
General Chemistry							
Analyte	Result	RL	Units	DF	Analyzed	By	Method
Alkalinity, Total as Ca	aCO3 441. suggest	5.0	mg/l	1	12/12/06	ST	EPA 310.1
Chloride	21.5	2.0	mg/l	1	12/21/06 01:14	JR	EPA 300/SW846 9056
Nitrogen, Nitrate ^a	0.33	80.11	mg/l	1	12/21/06 14:49	NR	EPA353.2/SM4500NO2B
Nitrogen, Nitrate + N	litrite 0.33	× 0.10	mg/l	1	12/21/06 14:49	NR	EPA 353.2/LACHAT
Nitrogen, Nitrite	<0.010	0.010	mg/l	1	12/01/06 15:50	ST	SM19 4500NO2B
Sulfate	10:4	2.0	mg/l	i	12/21/06 01:14	JH	EPA 300/SW846 9056
Sulfide	<2.0		mg/l	1	12/06/06	ST	EPA 376.1

,

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

RL = Reporting Limit

· 000000

			Kepu	rt of All	larysis			ragerori
Client Sample ID: Lab Sample ID:	J47796-					Sampled: 11/29/0		
Matrix: Project:	-	oundwater Fil		Canal Site.	Percei	Received: 12/01/0 nt Solids: n/a	)6	
General Chemistry						•		
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Dissolved Organic (	Carbon	2.2	1.0	mg/l	1	12/22/06 00:06	ESJ	EPA415.1/SW8469060M

# **Report of Analysis**

	Report of Analysis							
Client Samj Lab Sample Matrix: Method: Project:	e ID: J48302-5 AQ - Ground Water SW846 8260B	- Old Erie C	Date Sampled: 12/05/06 Date Received: 12/06/06 Percent Solids: n/a Old Erie Canal Site, Clyde, NY					
Run #1 Run #2		Analyzed 12/15/06	By PWC	Prep D n/a	ate	Prep Batch n/a	Analytical Batch VIA1943	
Run #1 Run #2	Purge Volume 5.0 ml		· · · · · · · · · · · · · · · · · · ·					
VOA TCL	List							
CAS No.	Compound	Result	RL	MDL	Units	Q		
67-64-1	Acetone	ND	5.0	4.6	ug/l			
71-43-2	Benzene	ND	1.0	0.37	ug/l			
75-27-4	Bromodichloromethane	ND	1.0	0.14	ug/l			
75-25-2	Bromoform	ND	1.0	0.52	ug/l			
74-83-9	Bromomethane	ND	1.0	0.39	ug/l			
78-93-3	2-Butanone (MEK)	- NĐ	- <u>5:0</u> -2	1.4	ug/l			
75-15-0	Carbon disulfide	ND	1.0	0.38	ug/l			
56-23-5	Carbon tetrachloride	ND ND	1.0	0.53	ug/l			
108-90-7	Chlorobenzene	ND	1.0	0.74	ug/l			
75-00-3	Chloroethane	ND	1.0	0.65	ug/l			
67-66-3 74-87-3	Chloroform Chloromethane	ND	1.0	0.18 0.20	ug/l			
124-48-1		ND	1.0	0.20	ug/l			
	Dibromochloromethane 1,1-Dichloroethane	ND	1.0		ug/l			
75-34-3		ND	1.0	0.089	ug/l			
107-06-2 75-35-4	1,2-Dichloroethane 1,1-Dichloroethene	ND ND	1.0 1.0	0.57 0.49	ug/l ug/l			
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.15	ug/l ug/l			
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.18	ug/l			
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/i ug/i			
10061-01-5	cls-1,3-Dichloropropene	ND	1.0	0.56	ug/1 ug/1			
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.15	ug/1 ug/1			
100-41-4	Ethylbenzene	ND	1.0	0.44	ug/l			
591-78-6	2-Hexanone	ND	5.0	0.35	ug/l			
108-10-1	4-Methyl-2-pentanone(MIBK	みつ かんかい 法部分 かんかいがく いん	5.0	0.50	ug/l			
75-09-2	Methylene chloride	ND	2.0	0.53	ug/l		•	
100-42-5	Styrene	ND	1.0	0.069	ug/l			
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.11	ug/l			
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l			
108-88-3	Tolucne	ND	1.0	0.41	ug/l			
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.094	ug/i			
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.15	ug/l			
79-01-6	Trichloroethene	ND	1.0	0.16	ug/l			

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound



Report	of Analysis
--------	-------------

	fethod: SW846 8260B			nal Site,	Date I Percei	Sampled: Received: nt Solids: IY	12/05/06 12/06/06 n/a
VOA TCL I	List						
CAS No.	Compound		Result	RL	MDL	Units	Q
75-01-4	Vinyl	chloride	ND	1.0	0.77	ug/l	
1330-20-7	Xylen	e (total)	ND	1.0	0.34	ug/l	
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane		98%	98% 77-121%		121%	
17060-07-0	1,2-Dichloroethane-D4		111%	111% 65-133%		133%	
2037-26-5	Tolue	ne-D8	96%			117%	
460-00-4	4-Bro	mofluorobenzene	86%		79-1	24%	

MDL - Method Detection Limit ND = Not detected RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blankN = Indicates presumptive evidence of a compound



			Repo	ort of Ai	nalysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID: J483 AQ - SW8	MW-3S-1205 )2-5 Ground Wat 46 8015 Parker Hann	Sampled: Received nt Solids IY	: 12/06/06				
Run #1 Run #2	File ID II33620.D	DF 1	Analyzed 12/14/06	By HSC	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GII1680
CAS No.	Compound		Result	RL	MDL	Units	Q	
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		6.12 ND ND	0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l		

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit

- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound





				Rej	port of A	Analysis		Page 1 of 1
Client Sample I Lab Sample ID: Matrix:	J4830	MW-3S-12 )2-5 Ground V				Date Sa Date Re Percent	ceived: 12/06/00	
Project:	GE -	Parker Ha	nnifin -	Old E	rie Canal S	ite, Clyde, NY		
Metals Analysis								
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Sodium	11200	00001	ug/l	1	12/21/06	12/22/06 ND	SW846 6010B ¹	SW846 3010A ²
(1) Instrument O	C Batch:	MA18543						

Instrument QC Batch: MA18543
 Prep QC Batch: MP37346

		Repor	t of An	alysis			Page 1 of 1
Lab Sample ID: J483	MW-3S-120506 )2-5 Ground Water			Date I	Sampled: 12/05/( Received: 12/06/( nt Solids: n/a		
Project: GE - Parker Hannifin - Old Erie Canal Site, Clyde, NY							
General Chemistry							
Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Alkalinity, Total as CaCC	3 462	<b>10</b>	mg/l	1	12/19/06	ST	EPA 310.1
Chloride	10.4	2.0	mg/l	1	12/30/06 16:30	VLP	EPA 300/SW846 9056
Nitrogen, Nitrate ^a	0.35	0.11	mg/l	1	12/28/06 19:43	NR	EPA353.2/SM4500NO2B
Nitrogen, Nitrate + Nitri	e 0.35	0.10	mg/l	1	12/28/06 19:43	NR	EPA 353.2/LACHAT
Nitrogen, Nitrite	< 0.010	0.010	mg/l	1	12/07/06 00:29	MET	SM19 4500NO2B
Sulfate	21.3	10	mg/l	1	12/30/06 16:30	VLP	EPA 300/SW846 9056
Sulfide	< 2.0	2.0	mg/l	1	12/11/06	J۸	EPA 376.1

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)



			Repo	rt of Ar	alysis				Page 1 of 1	3.10
Client Sample ID: Lab Sample ID: Matrix: Project:	J48302-9 AQ - Gr	V-3S-120506 5F coundwater Fi cker Hannifin	Date I Perce	Received: nt Solids:	12/05/0 12/06/0 n/a			(63)		
General Chemistry										
Analyte		Result	RL	Units	DF	Analyze	đ	Ву	Method	
Dissolved Organic (	^o ochon	2.1	esta 5 1 0	mg/l	1	12/28/06	23.44	ESI	EPA415.1/SW8469060M	

		Repo	ort of An	alysis			Page 1 of
Client Sampl Lab Sample I Matrix: Method: Project:							
Run #1 1	A45433.D I	Analyzed 12/15/06 12/15/06	By PWC PWC	Prep D n/a n/a	ate	Prep Batch n/a n/a	Analytical Batch V1A1943 V1A1943
Run #2 1	A45434.D 5	2/10/00	F WC	n/a		ti/a	V IM1343
F	Purge Volume						
Run #1 5	i.0 ml						
Run #2 5	i.0 ml						
VOA TCL L	ist						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	ND	5.0	4.6	ug/l		
	Benzene	ND	1.0	0.37	ug/l		
	Bromodichloromethane	ND	1.0	0.14	ug/l		
	Bromoform	ND	1.0	0.52	ug/l		
74-83-9	Bromomethane	ND	1.0	0.39	ug/l		
78-93-3	2-Butanone (MEK)	. ND	<u>5.0 </u>	1.4	ug/l		
75-15-0	Carbon disulfide	ŃD	1.0 '	0.38	ug/l		
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l		
108-90-7	Chlorobenzene	ND	1.0	0.74	ug/l		
75-00-3	Chloroethane	ND	1.0	0.65	ug/l		
67-66-3	Chloroform	ND	1.0	0.18	ug/l		
74-87-3	Chloromethane	ND	1.0	0.20	ug/l		
124-48-1	Dibromochloromethane	ND	1.0	0.17	ug/l		
75-34-3	1,1-Dichloroethane	ND	1.0	0.089	ug/l		
107-06-2	1,2-Dichloroethane	ND	1.0	0.57	ug/l		
75-35-4	1,1-Dichloroethene	ND	1.0	0.49	ug/l		
156-59-2	cis-1,2-Dichloroethene	351 ^a	5.0	0.89	ug/i		
156-60-5	trans-1,2-Dichloroethene	5.9	1.0	0.18	ug/l		
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l		
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.56	ug/l		
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.15	ug/l		
100-41-4	Ethylbenzene	ND	1.0	0.44	ug/l		
591-78-6	2-Hexanone	ND	5.0	0.35	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBH		5.0	0.50	ug/l		
75-09-2	Methylene chloride	ND	2.0 1.0	0.53	ug/l		
100-42-5	Styrene	ND	1.0	0.069 0.11	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane Tetrachloroethene	ND ND	1.0 1.0	0.11	ug/i		
127-18-4	Toluene	0.48	1.0	0.39	ug/l ug/l	J	
108-88-3 71-55-6	1,1,1-Trichloroethane	0.46 ND	1.0	0.094	ug/l	J	
71-55-6 79-00-5	1,1,2-Trichloroethane	ND	1.0	0.054	ug/l		
79-00-5	Trichloroethene	1.4	1.0	0.16	ug/l		
(0-01-0	A FRANCIOGUIGNE	2 <b>.4.53</b> .21230	9997999 • • • • • • • • • • • • • • • •	0.10	- 'õ'		

MDL - Method Detection Limit ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated valueB = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound



Report	of Analysis
--------	-------------

-	lethod: SW846 8260B			Canal Site,	Date I Percei	Sampled: Received: nt Solids: Y	12/05/06 12/06/06 n/a
VOA TCL L	ist						
CAS No.	o. Compound		Result	RL	MDL	Units	Q
75-01-4	Vinyl	chloride	237 a	5.0	3.8	ug/l	
1330-20-7	Xylend	e (total)	ND	1.0	0.34	ug/l	
CAS No.	Surrog	gate Recoveries	Run# 1	Run#2	Lim	its	
1868-53-7	Dibroi	nofluoromethane	97%	98%	77-1	21%	
17060-07-0			112%	114%	65-1	33%	
2037-26-5	Toluene-D8		97%	97%	80-1	17%	
460-00-4	4-Bromofluorobenzene		85%	86%	79-1	24%	

(a) Result is from Run# 2

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



J = Indicates an estimated value

			Repo	ort of Ai	nalysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID: J48 AQ SW	V-MW-3B-12050 302-6 2 - Ground Water 846 8015 5 - Parker Hannif	r	Canal Site,	Date I Percei	Sampled: Received nt Solids	12/06/06	
Run #1 Run #2	File ID 1133626.D	DF 1	Analyzed 12/15/06	By HSC	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GII1681
CAS No.	Compoun	d	Result	RL	MDL	Units	Q	
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		24.4 2.3 16.2	0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l		

**MDL** - Method Detection Limit ND = Not detected RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound



				Rej	port of A	Analysis		Page 1 of 1
Client Sample I Lab Sample ID Matrix: Project:	: J4830 AQ -	Ground V	Vater	Old E	rie Canal S	Date Sam Date Rec Percent S ite, Clyde, NY	eived: 12/06/06	
Metals Analysi	S					<u>,,, , , , , , , , , , , , , , , , , , </u>		
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Sodium	192000	30000	ug/l	3	12/21/06	12/26/06 LH	SW846 6010B ¹	SW816 3010A ²
			Û					

Instrument QC Batch: MA18554
 Prep QC Batch: MP37346

3.11

 $\sum_{i=1}^{n}$ 



Accutest Laboratori	es							
			Repor	t of An	alysis			Page 1 of 1
Client Sample ID:		V-3B-120506					-	
Lab Sample ID:	J48302-0					Sampled: 12/05/0		1
Matrix:	AQ - Gr	ound Water				Received: 12/06/0 nt Solids: n/a	b	
Project:	CE Pa	rker Hannifin -	Old Reio (	Canal Site				
	0E - 1 ai	KCI Hamani -						]
General Chemistry	1							
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Alkalinity, Total as	CaCO3	63.4	5.0	mg/l	1	12/19/06	ST	EPA 310.1
Chloride		104	2.0	mg/l	1	12/30/06 16:48	VLP	EPA 300/SW846 9056
		< 0.11	0.11	mg/l	1	12/30/06 12:35	MR	EPA353.2/SM4500NO2B
Nitrogen, Nitrate ^a		<b></b>		····D· •	-			
Nitrogen, Nitrate ^a Nitrogen, Nitrate +	Nitrite	< 0.10	0.10	mg/l	1	12/30/06 12:35	MR	EPA 353.2/LACHAT
	·Nitrite	- 希望的ななななない パッキッ		~	1 1	12/30/06 12:35 12/07/06 00:29		EPA 353.2/LACHAT SM19 4500NO2B
Nitrogen, Nitrate +	· Nitrite	< 0.10	0.10	mg/l	1 I 10		MET	

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)



J48302 Liboritories

			Repo	rt of An	alysis			Page 1 of 1
Client Sample ID: Lab Sample ID:	J48302-6F Date Sampled: 12/05/06							
Matrix:	AQ - Gr	oundwater Fi	ltered			Received: 12/06. nt Solids: n/a	06	
Project: GE - Parker Hannifin - Old Erie Canal Si								
General Chemistry	1							
Analyte		Result	RL	Units	DF	Analyzed	By	Method
Dissolved Organic	Carbon	1.1	1.0	mg/l	1	12/28/06 23:5	1 ESJ	EPA415.1/SW8469060M



Client Sample ID: GW-MW-4S-120506 Lab Sample ID: J48302-3 Matrix: AQ - Ground Water Method: SW846 8260B Project: GE - Parker Hannifin -		- Old Erie	Canal Site	12/05/06 12/06/06 n/a			
Run #1 Run #2		Analyzed 2/15/06	By PWC	Prep Da n/a	ate	Prep Batch n/a	Analytical Batch VIA1943
Run #1 Run #2	Purge Volume 5.0 ml						
VOA TCL	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	ND	5.0	4.6	ug/l		
71-43-2	Benzene	ND	1.0	0.37	ug/l		
75-27-4	Bromodichloromethane	ND	1.0	0.14	ug/l		
75-25-2	Bromoform	ND	1.0	0.52	ug/l		
74-83-9	Bromomethane	ND	1.0	0.39	ug/l		
78-93-3	2-Butanone (MEK)	-ND	5.0-	$<_{1.4}$	ug/l		
75-15-0	Carbon disulfide	ND	1.0	0.38	ug/l		
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l		
108-90-7	Chlorobenzene	ND	1.0	0.74	ug/l		
75-00-3	Chloroethane	ND	1.0	0.65	ug/l		
67-66-3	Chloroform	ND	1.0	0.18	ug/l		
74-87-3	Chloromethane	ND	1.0	0.20	ug/l		
124-48-1	Dibromochloromethane	ND	1.0	0.17	ug/l		
75-34-3	1,1-Dichloroethane	ND	1,0	0.089	ug/l		
107-06-2	1,2-Dichloroethane	ND	1.0	0.57	ug/l		
75-35-4	1,1-Dichloroethene	ND	1.0	0.49	ug/l		
156-59-2	cis-1,2-Dichloroethene	6.3	1.0	0.18	ug/i		
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.18	ug/l		
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l		
10061-01-5		ND	1.0	0.56	ug/l		
10061-02-6		ND	1.0	0.15	ug/l		
100-41-4	Ethylbenzene	ND	1.0 5 0	0.44	ug/l		
591-78-6	2-Hexanone	ND	5.0	0.35	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBK		5.0	0.50	ug/l		
75-09-2	Methylene chloride	ND ND	2.0	$0.53 \\ 0.069$	ug/l		
100-42-5	Styrene	ND ND	1.0 1.0	0.005	ug/l ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.11	ug/i ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l		
108-88-3	Toluene	ND	1.0	0.094	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.094	ug/l		
79-00-5 79-01-6	1,1,2-Trichloroethane Trichloroethene	ND	1.0	0.15	ug/l		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

**E** = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound



			Report	of An	alysis			Page 2 of 2		
Client Sample ID: Lab Sample ID: Matrix: Method: Project:		•						/06/06		
VOA TCL	List									
CAS No.	Compound		Result	RL	MDL	Units	Q			
75-01-4 1330-20-7	Vinyl chloride Xylene (total)		2.3 ND	1.0 1.0	0.77 0.34	ug/l ug/i				
CAS No.	Surrogate Recoveries		Run# 1	Run# 2	Limits					
1868-53-7 17060-07-0 2037-26-5 460-00-4	1,2-D Toluci	mofluoromethane ichloroethane-D4 ne-D8 mofluorobeuzene	94% 103% 95% 85%	3% 65-133% % 80-117%						

N = Indicates presumptive evidence of a compound



ω ζ

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

		Page 1 of 1						
Client San Lab Samp Matrix: Method: Project:	le ID: ]	GW-MW-4S-12 48302-3 AQ - Ground W SW846 8015 GE - Parker Ha		Canal Site	Date I Perce	Sampled: Received nt Solids		
Run #1 Run #2	File ID II33618.1	DF D I	Analyzed 12/14/06	By HSC	Prep Date n/a		Prep Batch n/a	Analytical Batch GII1680
CAS No.	Compo	und	Result	RL	MDL	Units	Q	
74-82-8 74-84-0 74-85-1	Methano Ethane Ethene	9	6.43 0.12 ND	0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l		

ND = Not detected **MDL - Method Detection Limit** RL = Reporting Limit

- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



.

.

	Report of Analysis											
Client Sample II Lab Sample ID: Matrix: Project:	J483( AQ -	Ground V	Vater	Old E	rie Canal S	Date Sa Date Re Percent ite, Clyde, NY	ceived: 12/06/06 Solids: n/a					
Metals Analysis												
Analyte 1	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method				
Sodium	< 10000	10000	ug/l	1	12/21/06	12/22/06 ND	SW846 6010B ¹	SW846 3010A ²				
(1) Instrument Of	C Batch:	MA18543										

Instrument QC Batch: MA18543
 Prep QC Batch: MP37346

.

ຜ ເກ

	Report of Analysis											
Lab Sample ID: J483	MW-4S-120506 02-3 - Ground Water			Date l	Sampled: 12/05/( Received: 12/06/( nt Solids: n/a							
Project: GE												
General Chemistry		<u> </u>										
Analyte	Result	RL	Units	DF	Analyzed	By	Mcthod					
Alkalinity, Total as CaC	)3 393	10	mg/l	1	12/19/06	ST	ЕРА 310.1					
Chloride	12.8	2.0	mg/l	1	12/30/06 15:53	VLP	EPA 300/SW846 9056					
Nitrogen, Nitrate a	< 0.11	0.11	mg/l	1	12/28/06 19:41	NR	EPA353.2/SM4500NO2B					
Nitrogen, Nitrate + Nitr	te < 0.10	0.10	mg/l	1	12/28/06 19:41	NR	EPA 353.2/LACHAT					
Nitrogen, Nitrite	< 0.010	0.010	mg/l	i	12/07/06 00:29	MET	SM19 4500NO2B					
Sulfate	42.2	10	mg/l	1	12/30/06 15:53	VLP	EPA 300/SW846 9056					
Sulfide	<2.0	2.0	mg/l	1	12/10/06	ST	EPA 376.1					

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)





			Repo	ort of Ar	alysis			Page 1 of 1	
Client Sample ID: Lab Sample ID:	J48302-		06						
Matrix:	AQ - G	roundwater Fi	06						
Project:	GE - Pa	rker Hannifin							
General Chemistry	,								
Analyte Result RL Units DF Analyzed By Method									
Dissolved Organic	4.3	1.0	mg/l	I	12/28/06 23:27	ESJ	EPA415.1/SW846906DM		



		Repor	t of Ana	alysis			Page 1 of
Client Samp Lab Sample Matrix: Method: Project:		- Old Erie	Canal Site, (	Date F Percer	Sampled: Received: nt Solids: Y	12/06/06	
Run #1 Run #2	1A45430.D 100	Analyzed 12/15/06 12/15/06	By PWC PWC	Prep D n/a n/a	ate	Prep Batch n/a n/a	Analytical Batch VIA1943 VIA1943
							······································
Run #1 Run #2	Purge Volume 5.0 ml 5.0 ml						
VOA TCL	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	ND	500	460	ug/l		
71-43-2	Benzene	ND	100	37	ug/l		
75-27-4	Bromodichloromethane	ND	100	14	ug/l		
75-25-2	Bromoform	ND	100	52	ug/l		
74-83-9	Bromomethane	ND	100 _	39	ug/l		
78-93-3	2-Butanone (MEK)	-ND	500-K	140	ug/l		
75-15-0	Carbon disulfide	ND	100	38	ug/l		
56-23-5	Carbon tetrachloride	ND	100	53	ug/l		
108-90-7	Chlorobenzene	ND	100	74	ug/l		
75-00-3	Chloroethane	ND	100	65	ug/l		
67-66-3	Chloroform	ND	100	18	ug/I		
74-87-3	Chloromethane	ND	100	20	ug/l		
124-48-1	Dibromochloromethane	ND	100	17	ug/l		
75-34-3	1,1-Dichloroethane	ND	100	8.9	ug/l		
107-06-2	1,2-Dichloroethane	ND	100	57	ug/l		
75-35-4	1,1-Dichloroethene	ND	100	49	ug/l		
156-59-2	cis-1,2-Dichloroethene	64800 ^a	500	89	ug/l		
156-60-5	trans-1,2-Dichloroethene	130	100	18	ug/l		
78-87-5	1,2-Dichloropropane	ND	100	50	ug/l		
10061-01-5		ND	100	56	ug/l		
10061-02-6		ND	100	15	ug/l		
100-41-4	Ethylbenzene	ND	100	44	ug/l		
591-78-6	2-Hexanone	ND	500	35	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBI		500	50 69	ug/l		
75-09-2	Methylene chloride	ND	200	53	ug/l		
100-42-5	Styrene	ND	100	6.9	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	100	11 39	ug/l		
127-18-4	Tetrachloroethene	ND	100	39 41	ug/l		
108-88-3	Tolucne	ND ND	100		ug/l		
71-55-6	1,1,1-Trichloroethane	ND	100 100	9.4 15	ug/l ug/l		
79-00-5	1,1,2-Trichloroethane	ND 2130	100	15 16	ug/1 ug/1		
79-01-6	Trichloroethene	2130	TAN TAN	10	uBu		

MDL - Method Detection Limit ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound



			Report	of Ana	aly	sis			Page 2 of 2
Client Samp Lab Sample Matrix: Method: Project:		GW-MW-4B-120506 J48302-4 AQ - Ground Water SW846 8260B GE - Parker Hannifin	- Old Erie Ca	nal Site, (	D P	ate F er cer	Sampled: Received: at Solids: Y	12/05/06 12/06/06 n/a	
VOA TCL I	List	<u>annan an an anna ann an an an an an an a</u>					· · · · · · · · · · · · · · · · · · ·		
CAS No.	Comp	ound	Result	RL	M	DL	Units	Q	
75-01-4 1330-20-7	-	chloride e (lotal)	8740 ND	100 100	77 34		ug/l ug/l		
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2		Lim	its		
1868-53-7 17060-07-0 2037-26-5 460-00-4	1,2-D Tolue	mofluoromethane ichloroethane-D4 ne-D8 mofluorobenzene	93% 104% 98% 85%	96% 106% 97% 85%		65-1 80-1	21% 33% 17% 24%		

(a) Result is from Run# 2

.

ND = Not detected **MDL - Method Detection Limit** 

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound



			Repo	rt of Ar	nalysis			Page 1 of 1
Client Sam Lab Samp Matrix: Method: Project:	ole ID: J483 AQ SW8	MW-4B-120 02-4 - Ground Wat 46 8015 Parker Hann	Sampled: Received nt Solids  Y	12/06/06				
Run #1 Run #2	File ID II33619.D	DF I	Analyzed 12/14/06	By HSC	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GII1680
CAS No.	Compound		Result	RL	MDL	Units	Q	
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		287 60.0 163	0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l		

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit

- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



				Rej	port of A	Analysis		Page 1 of
Client Sample I Lab Sample ID: Matrix:	J4830 AQ -	Ground V	Vater			Date Sam Date Rec Percent S	cived: 12/06/00	
Project:	GE -	Parker Ha	nnifin -	Old E	rie Canal S	ite, Clyde, NY		
Metals Analysis								
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Sodium	95200	20000	ug/l	2	12/21/06	12/26/06 LH	SW846 6010B I	SW846 3010A ²
(1) Instrument Q	C Batch:	MA18554						

(2) Prep QC Batch: MP37346



	Page 1 of 1							
Lab Sample ID: J48	-MW-4B-120506 802-4 - Ground Water		9999999 - 97 - 97 - 1 - 1000 AMBOR	Date I	Sampled: 12/05/0 Received: 12/06/0 nt Solids: n/a			
Project: GE	- Parker Hannifin							
General Chemistry			<u> </u>					
Analyte	Result	RL	Units	DF	Analyzed	Ву	Method	
Alkalinity, Total as CaC	<b>361</b>	10	mg/l	I	12/19/06	ST	EPA 310.1	
Chloride	187	2.0	mg/l	1	12/30/06 16:11	VLP	EPA 300/SW846 9056	
Nitrogen, Nitrate ^a	< 0.11	0.11	mg/l	1	12/28/06 19:42	NR	EPA353.2/SM4500NO2B	
Nitrogen, Nitrate + Nitr	ite < 0.10	0.10	mg/l	1	12/28/06 19:42	NR	EPA 353.2/LACHAT	
Nitrogen, Nitrite	< 0,010	0.010	mg/l	1	12/07/06 00:29	MET	SM19 4500NO2B	
Sulfate	1150	50	mg/i	5	01/02/07 19:10	JH	EPA 300/SW846 9056	
Sulfide	< 2.0	2.0	mg/l	i	12/11/06	JA	EPA 376.1	

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

٠



			Repo	ort of An	alysis			Page 1 of 1	
Client Sample ID: Lab Sample ID: Matrix:	J48302-	W-4B-120506 4F roundwater Fl	ltered	••••••		Sampled: 12/05 Received: 12/06			
Project:	-	rker Hannifin		Canal Site,	Perce	nt Solids: n/a			
General Chemistry	,								
Analyte Result RL Units DF Analyzed By Method									
Dissolved Organic	Carbon	2.8	i.0	mg/l	1	12/28/06 23:3	4 esj	EPA415,1/SW8469060M	

.



မ

Client Samj Lab Sample Matrix: Method: Project:	12/05/06 : 12/06/06 : n/a	•					
Run #1 Run #2			By PWC	Prep Da n/a	ite	Prep Batch n/a	Analytical Batch V1A1943
Run #1 Run #2	Purge Volume 5.0 ml						
VOA TCL	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	ND	5.0	4.6	ug/I		
71-43-2	Benzene	ND	1.0	0.37	ug/l		
75-27-4	Bromodichloromethane	ND	1.0	0.14	ug/l		
75-25-2	Bromoform	ND	1.0	0.52	ug/l		
74-83-9	Bromomethane	ND	1.0	0.39	ug/l		
78-93-3	2-Butanone (MEK)	-ND			ug/l		
75-15-0	Carbon disulfide	ND	1.0	0.38	ug/l		
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l		
108-90-7	Chlorobenzene	ND	1.0	0.74	ug/I		
75-00-3	Chloroethane	ND	1.0	0.65	ug/l		
67-66-3	Chloroform	ND	1.0	0.18	ug/l		
74-87-3	Chloromethane	ND	1.0	0.20	ug/l		
124-48-1	Dibromochloromethane	ND	1.0	0.17	ug/i		
75-34-3	1,1-Dichloroethane	ND	1.0	0.089	ug/l		
107-06-2	1,2-Dichloroethane	ND	1.0	0.57	ug/l		
75-35-4	1,1-Dichloroethene	ND	1.0	0.49	ug/l		
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.18	ug/l		
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.18	ug/l		
78-87-5	1,2-Dichloropropane	ND	1.0 1.0	0.50 0.56	ug/l		
10061-01-5		ND ND	1.0	0.30	ug/l ug/l		
10061-02-6 100-41-4	Ethylbenzene	ND	1.0	0.13	ug/l		
100-41-4 591-78-6	2-Hexanone	ND	1.0 5.0	0.35	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBI	2013년 2017년 1월 1월 19 1월 19 18 19 19 19 19 19 19 19 19 19 19 19 19 19	5.0	0.50	ug/l		
75-09-2	Methylene chloride	ND	2.0	0.53	ug/l		
100-42-5	Styrene	ND	1.0	0.069	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.11	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l		
108-88-3	Toluene	ND	1.0	0.41	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.094	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.15	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.16	ug/l		

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



ω 3

			Report	of An	alysis			Page 2
	Method: SW846 8260B		- Old Erie Ca	nal Site, (	Date I Percer	Sampled: Received: nt Solids: IY	12/05/06 12/06/06 n/a	
VOA TCL	List							
CAS No.	Comp	ound	Result	RL	MDL	Units	Q	
75-01-4 1330-20-7	•	chloride e (total)	ND ND	1.0 1.0	0.77 0.34	ug/l ug/l		
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7 17060-07-0 2037-26-5 460-00-4	1,2-D Tolue	mofluoromethane ichloroethane-D4 ne-D8 mofluorobenzene	92% 98% 94% 84%		65-1 80-1	121% 133% 117% 124%		

N = Indicates presumptive evidence of a compound



Page 2 of 2

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

			Repo	rt of Ar	nalysis			Page 1 of 1	
Client San Lab Samp Matrix: Method: Project:	le ID: J4830 AQ - SW8	MW-4C-1205 )2-2 Ground Wate 46 8015 Parker Hann							
Run #1 Run #2	File ID II33617.D	DF 1	Analyzed 12/14/06	By HSC	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GII1680	
CAS No.	Compound		Result	RL	MDL	Units	Q		
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		4.16 0.12 ND	0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l			

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blankN = Indicates presumptive evidence of a compound



ယ (၁



				Rej	port of A	Analysis		Page 1 of 1	
Client Sample IE Lab Sample ID: Matrix: Project:	J48302- AQ - G	2 round V	/ater	Old E	rie Canal S	Date San Date Rec Percent S ite, Clyde, NY	eived: 12/06/00		(4:
Metals Analysis									
Analyte I	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method	
Sodium	244000	50000	ug/l	5	12/21/06	12/26/06 LH	SW846 6010B ¹	SW846 3010A ²	
(1) Instrument QC	C Batch: M	A18554							

(2) Prep QC Batch: MP37346



		Repor	t of An	alysis			Page 1 of 1
Lab Sample ID: J483	MW-4C-120506 02-2 - Ground Water			Date 1	Sampled: 12/05/0 Received: 12/06/0 nt Solids: n/a		
Project: GE	Parker Hannifin -	Old Erie	Canal Site,	Clyde, N	IY		
General Chemistry							
Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Alkalinity, Total as CaCO	)3 188	25	mg/l	1	12/19/06	ST	EPA 310.1
Chloride	253	2.0	mg/l	1	12/30/06 15:35	VLP	EPA 300/SW846 9056
Nitrogen, Nitrate a	< 0.11	0.11	mg/l	1	12/28/06 19:40	NR	EPA353.2/SM4500NO2B
Nitrogen, Nitrate + Nitri	te < 0.10	0.10	mg/l	1	12/28/06 19:40	NR	ЕРА 353.2/І.АСНАТ
Nitrogen, Nitrite	< 0.010	0.010	mg/l	L	12/07/06 00:29	MET	SM19 4500NO2B
Sulfate	1710	100	mg/l	10	01/02/07 18:52	JH	EPA 300/SW846 9056
Sulfide	< 2.0	2.0	mg/l	1	12/10/06	ST	EPA 376.1

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)



RL = Reporting Limit

,

<u>သ</u> သ

			Repo	rt of An	alysis			Page 1 of 1
Client Sample ID: Lab Sample ID: Matrix:	J48302-2	V-4C-120506 2F coundwater Fi	ltered		Date I	Sampled: 12/05 Received: 12/06 nt Solids: n/a		
Project:	GE - Pa	rker Hannifin	- Old Erie	Canal Site,	Clyde, N	IY		
General Chemistry	,							
Analyte		Result	RL	Units	DF	Analyzed	By	Method
Dissolved Organic	Carbon	<1.0	1.0	mg/l	1	12/28/06 23:2	0 esj	EPA415.1/SW8469060M

3.4 @5

Run #1       1A454335.D       1       12/15/06       PWC       n/a       n/a       VIA13         Run #2       IA45614.D       1       12/21/06       PWC       n/a       n/a       VIA13         Purge Volume         Run #1       5.0 ml         WC n/a       n/a       VIA13         VOA TCL List         CAS No.       Compound       Result       RL       MDL       Units       Q         67-64-1       Acetone       ND       5.0       J       4.6       ug/l         71-43-2       Benzene       ND       1.0       0.37       ug/l         75-25-2       Bromodichloromethane       ND       1.0       0.252       ug/l         74-83-9       Bromomethane       ND       1.0       0.39       ug/l         75-25-2       Bromomethane       ND       1.0       0.53       ug/l         75-85-2       Carbon disulfide       ND       1.0       0.53       ug/l         76-82-3       Carbon disulfide       ND       1.0       0.53       ug/l         76-03       Chloroethane       ND       1.0       0.74       ug/l	Page 1 of 2	Pa			alysis									
Run #1       IA45435.D       I       12/15/06       PWC       n/a       n/a       vlAts         Run #2       IA45614.D       I       12/21/06       PWC       n/a       n/a       VlAts         Run #1       5.0 ml       Image Volume       Run #2       5.0 ml       VOA TCL List       Image Volume       Image Volume <th></th> <th></th> <th>12/06/06</th> <th>eccived: t Solids:</th> <th>Date R Percen</th> <th>Canal Site,</th> <th>Old Erie</th> <th>-7 round Water 8260B</th> <th colspan="5">Lab Sample ID: J48302-7 Matrix: AQ - Ground Water Method: SW846 8260B Project: GE - Parker Hannifu</th>			12/06/06	eccived: t Solids:	Date R Percen	Canal Site,	Old Erie	-7 round Water 8260B	Lab Sample ID: J48302-7 Matrix: AQ - Ground Water Method: SW846 8260B Project: GE - Parker Hannifu					
Purge Volume           Run #1         5.0 ml           Run #2         5.0 ml           VOA TCL List           CAS No.         Compound         Result         RL         MDL         Units         Q           67-64-1         Acetone         ND         5.0         4.6         ug/l           71-43-2         Benzene         ND         1.0         0.37         ug/l           75-27-4         Bromodichloromethane         ND         1.0         0.14         ug/l           75-25-2         Bromomethane         ND         1.0         0.39         ug/l           75-25-2         Bromomethane         ND         1.0         0.38         ug/l           75-15-0         Carbon disulfide         ND         1.0         0.38         ug/l           75-15-0         Carbon disulfide         ND         1.0         0.74         ug/l           75-66-3         Chlorobenzene         ND         1.0         0.74         ug/l           75-35-4         1.0ioroethane         ND         1.0         0.18         ug/l           74-87-3         Chloromethane         ND         1.0         0.18         ug/l           74-87-3		Analytics VIA1943 VIA1952	n/a	ate	n/a	PWC	/15/06	1 12	1A45435.D	Run #1 1				
Run #1       5.0 ml         Run #2       5.0 ml         VOA TCL List       CAS No.       Compound       Result       RL       MDL       Units       Q         67-64-1       Acetone       ND       5.0       J       4.6       ug/l         71-43-2       Benzene       ND       1.0       0.37       ug/l         75-27-4       Bromodichloromethane       ND       1.0       0.37       ug/l         75-27-2       Bromodichloromethane       ND       1.0       0.33       ug/l         78-93-3       2-Butanone (MEK)       ND       5.0       Z       1.4       ug/l         75-15-0       Carbon disulfide       ND       1.0       0.53       ug/l         75-00-3       Chloroethane       ND       1.0       0.65       ug/l         75-00-3       Chloroethane       ND       1.0       0.74       ug/l         75-35-4       1,1-Dichloroethane       ND       1.0       0.18       ug/l         75-35-4       1,1-Dichloroethane       ND       1.0       0.17       ug/l         75-35-4       1,2-Dichloroothane       ND       1.0       0.18       ug/l         156-59-2		• • • • • • • • • •	····					1 10	(A43014,D					
CAS No.       Compound       Result       RL       MDL       Units       Q $67-64.1$ Acetome       ND $5.0$ $\int$ $4.6$ ug/l $71-43.2$ Benzene       ND $1.0$ $0.37$ ug/l $75-27-4$ Bromodichloromethane       ND $1.0$ $0.14$ ug/l $75-25-2$ Bromoform       ND $1.0$ $0.52$ ug/l $74-83-9$ Bromomethane       ND $1.0$ $0.39$ ug/l $78-93.3$ $2$ -Butanone (MEK) $-ND$ $5.0^ 2$ $1.4$ ug/l $75-15-0$ Carbon disulfide       ND $1.0$ $0.38$ ug/l $67-66.3$ Chlorobenzene       ND $1.0$ $0.65$ ug/l $75-33-3$ $1.1$ -Dichloroethane       ND $1.0$ $0.65$ ug/l $74-87-3$ Chlorobenzene       ND $1.0$ $0.65$ ug/l $75-34-3$ $1.1$ -Dichloroethane       ND $1.0$ $0.67$ ug/l $107-6-2$ $1.2$ -Dichloroethene       ND $1.0$ $0.5$									5.0 ml	Run #1 - 5				
67-64-1       Acetone       ND       5.0       J       4.6       ug/l         71-43-2       Benzene       ND       1.0       0.37       ug/l         75-27-4       Bromodichloromethane       ND       1.0       0.14       ug/l         75-25-2       Bromomothane       ND       1.0       0.52       ug/l         74-83-9       Bromomethane       ND       1.0       0.39       ug/l         78-93-3       2-Butanone (MEK)       ND       5.0       I.4       ug/l         75-15-0       Carbon disulfide       ND       1.0       0.53       ug/l         108-90-7       Chlorobenzene       ND       1.0       0.74       ug/l         75-00-3       Chloroform       ND       1.0       0.74       ug/l         76-63       Chloroform       ND       1.0       0.18       ug/l         124-48-1       Dibromochloromethane       ND       1.0       0.17       ug/l         107-06-2       I, 2-Dichloroethane       ND       1.0       0.49       ug/l         156-59-2       cis-1, 2-Dichloroethene       ND       1.0       0.18       ug/l         156-60-5       trans-1, 2-Dichloroethene									ist	VOA TCL L				
71-43-2       Benzene       ND       1.0       0.37       ug/l         75-27-4       Bromodichloromethane       ND       1.0       0.14       ug/l         75-25-2       Bromoform       ND       1.0       0.52       ug/l         74-83-9       Bromomethane       ND       1.0       0.39       ug/l         78-93-3       2-Butanone (MEK)       -ND       5.0 ⁻ 2       1.4       ug/l         75-15-0       Carbon disulfide       ND       1.0       0.38       ug/l         56-23-5       Carbon disulfide       ND       1.0       0.53       ug/l         75-00-3       Chlorobenzene       ND       1.0       0.74       ug/l         75-00-3       Chlorobenzene       ND       1.0       0.65       ug/l         67-66-3       Chlorobenzene       ND       1.0       0.18       ug/l         74-87-3       Chloromethane       ND       1.0       0.18       ug/l         124-48-1       Dibromochloromethane       ND       1.0       0.17       ug/l         107-06-2       1,2-Dichloroethane       ND       1.0       0.49       ug/l         156-59-2       cis-1,2-Dichloroethene			Q	Units	MDL	RL	Result		Compound	CAS No.				
75-27-4BromodichloromethaneND1.00.14ug/l75-25-2BromoformND1.0 $0.52$ ug/l74-83-9BromomethaneND1.0 $0.39$ ug/l78-93-32-Butanone (MEK) $-ND$ $50^ 1.4$ ug/l75-15-0Carbon disulfideND $1.0$ $0.38$ ug/l56-23-5Carbon tetrachlorideND $1.0$ $0.38$ ug/l108-90-7ChlorobenzeneND $1.0$ $0.74$ ug/l75-00-3ChloroethaneND $1.0$ $0.65$ ug/l67-66-3ChloronethaneND $1.0$ $0.65$ ug/l74-87-3ChloronethaneND $1.0$ $0.18$ ug/l124-48-1DibronochloromethaneND $1.0$ $0.77$ ug/l107-06-2 $1,2$ -DichloroethaneND $1.0$ $0.57$ ug/l107-06-2 $1,2$ -DichloroetheneND $1.0$ $0.49$ ug/l156-59-2cis- $1,2$ -DichloroetheneND $1.0$ $0.49$ ug/l156-60-5trans- $1,2$ -DichloroetheneND $1.0$ $0.18$ ug/l10061-01-5cis- $1,3$ -DichloropropaneND $1.0$ $0.50$ ug/l10061-02-6trans- $1,3$ -DichloropropeneND $1.0$ $0.56$ ug/l10061-02-6trans- $1,3$ -DichloropropeneND $1.0$ $0.56$ ug/l10041-4EthylbenzeneND $1.0$ $0.44$ ug/l591-78-62-He				ug/l	4.6	J 5.0 J	ND		Acetone	67-64-1				
75-25-2BromoformND1.00.52ug/l74-83-9BromomethaneND1.00.39ug/l78-93-32-Butanone (MEK) $-ND$ $5:0^ 2$ 1.4ug/l75-15-0Carbon disulfideND1.0 $5:0^ 2$ 1.4ug/l56-23-5Carbon tetrachlorideND1.0 $0.53$ ug/l108-90-7ChlorobenzeneND1.0 $0.74$ ug/l75-00-3ChloroethaneND1.0 $0.655$ ug/l67-66-3ChloronethaneND1.0 $0.18$ ug/l74-87-3ChloromethaneND1.0 $0.20$ ug/l124-48-1DibronochloromethaneND1.0 $0.17$ ug/l75-34-31, 1-DichloroethaneND1.0 $0.57$ ug/l107-06-21, 2-DichloroetheneND1.0 $0.49$ ug/l156-59-2cis-1, 2-DichloroetheneND1.0 $0.18$ ug/l156-60-5trans-1, 2-DichloroetheneND1.0 $0.18$ ug/l10061-01-5cis-1, 3-DichloropropeneND1.0 $0.56$ ug/l10061-02-6trans-1, 3-DichloropropeneND1.0 $0.56$ ug/l100-61-26trans-1, 3-DichloropropeneND1.0 $0.44$ ug/l591-78-62-HexanoneND5.0 $0.35$ ug/l108-10-14-Methyl-2-pentanone(MIBK)ND5.0 $0.50$ ug/l				ug/l	0.37	1.0	ND		Benzene					
74-83-9BromomethaneND $1.0$ $0.39$ $ug/l$ 78-93-32-Butanone (MEK) $-ND$ $5.0^{-1}$ $1.4$ $ug/l$ 75-15-0Carbon disulfideND $1.0$ $0.38$ $ug/l$ 56-23-5Carbon tetrachlorideND $1.0$ $0.53$ $ug/l$ 108-90-7ChlorobenzeneND $1.0$ $0.74$ $ug/l$ 75-00-3ChloroethaneND $1.0$ $0.74$ $ug/l$ 67-66-3ChloroformND $1.0$ $0.655$ $ug/l$ 74-87-3ChloromethaneND $1.0$ $0.18$ $ug/l$ 75-34-3 $1,1$ -DichloroethaneND $1.0$ $0.17$ $ug/l$ 107-06-2 $1,2$ -DichloroetheneND $1.0$ $0.57$ $ug/l$ 156-59-2cis-1,2-DichloroetheneND $1.0$ $0.18$ $ug/l$ 156-60-5trans-1,2-DichloroetheneND $1.0$ $0.18$ $ug/l$ 1061-01-5cis-1,3-DichloropropaneND $1.0$ $0.18$ $ug/l$ 10061-01-5cis-1,3-DichloropropeneND $1.0$ $0.56$ $ug/l$ 10061-02-6trans-1,3-DichloropropeneND $1.0$ $0.44$ $ug/l$ 591-78-62-HexanoneND $5.0$ $0.35$ $ug/l$				ug/l	0.14	1.0	ND	omethane	Bromodichlor	75-27-4				
78-93-3       2-Butanone (MEK) $-ND$ $5.0^{-1}$ 1.4       ug/l         75-15-0       Carbon disulfide       ND       1.0 $0.38$ ug/l         56-23-5       Carbon tetrachloride       ND       1.0 $0.53$ ug/l         108-90-7       Chlorobenzene       ND       1.0 $0.74$ ug/l         75-00-3       Chloroethane       ND       1.0 $0.65$ ug/l         67-66-3       Chloroform       ND       1.0 $0.18$ ug/l         74-87-3       Chloronethane       ND       1.0 $0.18$ ug/l         124-48-1       Dibromochloromethane       ND       1.0 $0.17$ ug/l         107-06-2       1,2-Dichloroethane       ND       1.0 $0.657$ ug/l         107-06-2       1,2-Dichloroethene       ND       1.0 $0.49$ ug/l         156-59-2       cis-1,2-Dichloroethene       ND       1.0 $0.18$ ug/l         156-60-5       trans-1,2-Dichloroethene       ND       1.0 $0.18$ ug/l         1061-01-5       cis-1,3-Dichloropropene       ND       1.0 $0.50$ ug/l				ug/l			ND		Bromoform	75-25-2				
75-15-0       Carbon disulfide       ND       1.0       0.38       ug/l         56-23-5       Carbon tetrachloride       ND       1.0       0.53       ug/l         108-90-7       Chlorobenzene       ND       1.0       0.74       ug/l         75-00-3       Chlorobenzene       ND       1.0       0.74       ug/l         75-00-3       Chloroethane       ND       1.0       0.65       ug/l         67-66-3       Chloroform       ND       1.0       0.18       ug/l         74-87-3       Chloromethane       ND       1.0       0.20       ug/l         124-48-1       Dibromochloromethane       ND       1.0       0.17       ug/l         107-06-2       1,2-Dichloroethane       ND       1.0       0.57       ug/l         107-06-2       1,2-Dichloroethene       ND       1.0       0.49       ug/l         156-59-2       cis-1,2-Dichloroethene       ND       1.0       0.18       ug/l         156-60-5       trans-1,2-Dichloroethene       ND       1.0       0.18       ug/l         1061-01-5       cis-1,3-Dichloropropene       ND       1.0       0.50       ug/l         10061-02-6       tran				ug/l	0.39		ND	0	Bromomethan	74-83-9				
56-23-5       Carbon tetrachloride       ND       1.0       0.53       ug/l         108-90-7       Chlorobenzene       ND       1.0       0.74       ug/l         75-00-3       Chloroethane       ND       1.0       0.65       ug/l         67-66-3       Chloroform       ND       1.0       0.65       ug/l         74-87-3       Chloromethane       ND       1.0       0.18       ug/l         124-48-1       Dibromochloromethane       ND       1.0       0.17       ug/l         75-34-3       1,1-Dichloroethane       ND       1.0       0.677       ug/l         107-06-2       1,2-Dichloroethane       ND       1.0       0.679       ug/l         156-59-2       cis-1,2-Dichloroethene       ND       1.0       0.49       ug/l         156-60-5       trans-1,2-Dichloroethene       ND       1.0       0.18       ug/l         156-60-5       trans-1,2-Dichloroethene       ND       1.0       0.18       ug/l         10061-01-5       cis-1,3-Dichloropropane       ND       1.0       0.50       ug/l         10061-02-6       trans-1,3-Dichloropropene       ND       1.0       0.56       ug/l         100-				ug/l	1.4		-ND	1EK) -	2-Butanone (N	78-93-3				
108-90-7       Chlorobenzene       ND       1.0       0.74       ug/l         75-00-3       Chloroethane       ND       1.0       0.65       ug/l         67-66-3       Chloroform       ND       1.0       0.18       ug/l         74-87-3       Chloromethane       ND       1.0       0.20       ug/l         124-48-1       Dibromochloromethane       ND       1.0       0.17       ug/l         75-34-3       1, 1-Dichloroethane       ND       1.0       0.657       ug/l         107-06-2       1,2-Dichloroethane       ND       1.0       0.57       ug/l         156-59-2       cis-1,2-Dichloroethene       ND       1.0       0.49       ug/l         156-60-5       trans-1,2-Dichloroethene       ND       1.0       0.18       ug/l         1061-01-5       cis-1,3-Dichloropropane       ND       1.0       0.18       ug/l         10061-02-6       trans-1,3-Dichloropropene       ND       1.0       0.56       ug/l         100-15       cis-1,3-Dichloropropene       ND       1.0       0.15       ug/l         10061-02-6       trans-1,3-Dichloropropene       ND       1.0       0.44       ug/l				ug/l	0.38	1.0 🍸	ND	de	Carbon disulf	75-15-0				
75-00-3       Chloroethane       ND       1.0       0.65       ug/l         67-66-3       Chloroform       ND       1.0       0.18       ug/l         74-87-3       Chloromethane       ND       1.0       0.20       ug/l         124-48-1       Dibromochloromethane       ND       1.0       0.17       ug/l         75-34-3       1,1-Dichloroethane       ND       1.0       0.089       ug/l         107-06-2       1,2-Dichloroethane       ND       1.0       0.57       ug/l         75-35-4       1,1-Dichloroethene       ND       1.0       0.49       ug/l         156-59-2       cis-1,2-Dichloroethene       ND       1.0       0.18       ug/l         156-60-5       trans-1,2-Dichloroethene       ND       1.0       0.18       ug/l         10061-01-5       cis-1,3-Dichloropropane       ND       1.0       0.56       ug/l         10061-02-6       trans-1,3-Dichloropropene       ND       1.0       0.56       ug/l         100-41-4       Ethylbenzene       ND       1.0       0.44       ug/l         591-78-6       2-Hexanone       ND       5.0       0.35       ug/l         108-10-1 <t< td=""><td></td><td></td><td></td><td>ug/l</td><td></td><td>1.0</td><td>ND</td><td>iloride</td><td>Carbon tetrac</td><td>56-23-5</td></t<>				ug/l		1.0	ND	iloride	Carbon tetrac	56-23-5				
67-66-3       Chloroform       ND       1.0       0.18       ug/l         74-87-3       Chloromethane       ND       1.0       0.20       ug/l         124-48-1       Dibromochloromethane       ND       1.0       0.17       ug/l         75-34-3       1,1-Dichloroethane       ND       1.0       0.089       ug/l         107-06-2       1,2-Dichloroethane       ND       1.0       0.57       ug/l         75-35-4       1,1-Dichloroethene       ND       1.0       0.49       ug/l         156-59-2       cis-1,2-Dichloroethene       ND       1.0       0.18       ug/l         156-60-5       trans-1,2-Dichloroethene       ND       1.0       0.18       ug/l         156-60-5       trans-1,2-Dichloroethene       ND       1.0       0.18       ug/l         1061-01-5       cis-1,3-Dichloropropane       ND       1.0       0.18       ug/l         10061-02-6       trans-1,3-Dichloropropene       ND       1.0       0.56       ug/l         100-41-4       Ethylbenzene       ND       1.0       0.44       ug/l         591-78-6       2-Hexanone       ND       5.0       0.35       ug/l         108-10-1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.0</td> <td>Construction of the second second</td> <td>3</td> <td>******</td> <td>108-90-7</td>						1.0	Construction of the second second	3	******	108-90-7				
74-87-3       Chloromethane       ND       1.0       0.20       ug/l         124-48-1       Dibromochloromethane       ND       1.0       0.17       ug/l         75-34-3       1,1-Dichloroethane       ND       1.0       0.089       ug/l         107-06-2       1,2-Dichloroethane       ND       1.0       0.57       ug/l         75-35-4       1,1-Dichloroethene       ND       1.0       0.49       ug/l         156-59-2       cis-1,2-Dichloroethene       ND       1.0       0.18       ug/l         156-60-5       trans-1,2-Dichloroethene       ND       1.0       0.18       ug/l         186-60-5       trans-1,2-Dichloroethene       ND       1.0       0.18       ug/l         196-60-5       trans-1,2-Dichloroethene       ND       1.0       0.50       ug/l         10061-01-5       cis-1,3-Dichloropropane       ND       1.0       0.56       ug/l         10061-02-6       trans-1,3-Dichloropropene       ND       1.0       0.15       ug/l         100-41-4       Ethylbenzene       ND       1.0       0.44       ug/l         591-78-6       2-Hexanone       ND       5.0       0.50       ug/l						1.0	ND			75-00-3				
124-48-1       Dibromochloromethane       ND       1.0       0.17       ug/l         75-34-3       1,1-Dichloroethane       ND       1.0       0.089       ug/l         107-06-2       1,2-Dichloroethane       ND       1.0       0.57       ug/l         75-35-4       1,1-Dichloroethane       ND       1.0       0.49       ug/l         156-59-2       cis-1,2-Dichloroethene       ND       1.0       0.18       ug/l         156-60-5       trans-1,2-Dichloroethene       ND       1.0       0.18       ug/l         78-87-5       1,2-Dichloropropane       ND       1.0       0.50       ug/l         10061-01-5       cis-1,3-Dichloropropene       ND       1.0       0.56       ug/l         10061-02-6       trans-1,3-Dichloropropene       ND       1.0       0.15       ug/l         100-41-4       Ethylbenzene       ND       1.0       0.44       ug/l         591-78-6       2-Hexanone       ND       5.0       0.35       ug/l         108-10-1       4-Methyl-2-pentanone(MIBK)       ND       5.0       0.50       ug/l						1.0	ND		Chloroform	67-66-3				
75-34-3       1,1-Dichloroethane       ND       1.0       0.089       ug/l         107-06-2       1,2-Dichloroethane       ND       1.0       0.57       ug/l         75-35-4       1,1-Dichloroethene       ND       1.0       0.49       ug/l         156-59-2       cis-1,2-Dichloroethene       ND       1.0       0.18       ug/l         156-60-5       trans-1,2-Dichloroethene       ND       1.0       0.18       ug/l         78-87-5       1,2-Dichloropropane       ND       1.0       0.50       ug/l         10061-01-5       cis-1,3-Dichloropropene       ND       1.0       0.56       ug/l         10061-02-6       trans-1,3-Dichloropropene       ND       1.0       0.15       ug/l         100-41-4       Ethylbenzene       ND       1.0       0.44       ug/l         591-78-6       2-Hexanone       ND       5.0       0.35       ug/l         108-10-1       4-Methyl-2-pentanone(MIBK)       ND       5.0       0.50       ug/l						1.0	ほん ゆうれんご しんしにしい 見行	e	Chloromethar	74-87-3				
107-06-2       1,2-Dichloroethane       ND       1.0       0.57       ug/l         75-35-4       1,1-Dichloroethene       ND       1.0       0.49       ug/l         156-59-2       cis-1,2-Dichloroethene       ND       1.0       0.18       ug/l         156-60-5       trans-1,2-Dichloroethene       ND       1.0       0.18       ug/l         78-87-5       1,2-Dichloropropane       ND       1.0       0.50       ug/l         10061-01-5       cis-1,3-Dichloropropene       ND       1.0       0.56       ug/l         10061-02-6       trans-1,3-Dichloropropene       ND       1.0       0.15       ug/l         100-14-4       Ethylbenzene       ND       1.0       0.44       ug/l         591-78-6       2-Hexanone       ND       5.0       0.35       ug/l         108-10-1       4-Methyl-2-pentanone(MIBK)       ND       5.0       0.50       ug/l						1.0	- 19 4 5 - 19 March 20 5 7 1 1 5 7 1 4	omethane	Dibromochlo	124-48-1				
75-35-4       1,1-Dichloroethene       ND       1.0       0.49       ug/l         156-59-2       cis-1,2-Dichloroethene       ND       1.0       0.18       ug/l         156-60-5       trans-1,2-Dichloroethene       ND       1.0       0.18       ug/l         78-87-5       1,2-Dichloropropane       ND       1.0       0.50       ug/l         10061-01-5       cis-1,3-Dichloropropene       ND       1.0       0.56       ug/l         10061-02-6       trans-1,3-Dichloropropene       ND       1.0       0.15       ug/l         100-41-4       Ethylbenzene       ND       1.0       0.44       ug/l         591-78-6       2-Hexanone       ND       5.0       0.35       ug/l         108-10-1       4-Methyl-2-pentanone(MIBK)       ND       5.0       0.50       ug/l						1.0	ND	thane	1,1-Dichlorod	75-34-3				
156-59-2       cis-1,2-Dichloroethene       ND       1.0       0.18       ug/l         156-60-5       trans-1,2-Dichloroethene       ND       1.0       0.18       ug/l         78-87-5       1,2-Dichloropropane       ND       1.0       0.50       ug/l         10061-01-5       cis-1,3-Dichloropropene       ND       1.0       0.56       ug/l         10061-02-6       trans-1,3-Dichloropropene       ND       1.0       0.15       ug/l         100-41-4       Ethylbenzene       ND       1.0       0.44       ug/l         591-78-6       2-Hexanone       ND       5.0       0.35       ug/l         108-10-1       4-Methyl-2-pentanone(MIBK)       ND       5.0       0.50       ug/l							<ul> <li>Aliza polytochy (2004) pretty</li> </ul>			107-06-2				
156-60-5       trans-1,2-Dichloroethene       ND       1.0       0.18       ug/l         78-87-5       1,2-Dichloropropane       ND       1.0       0.50       ug/l         10061-01-5       cis-1,3-Dichloropropene       ND       1.0       0.56       ug/l         10061-02-6       trans-1,3-Dichloropropene       ND       1.0       0.15       ug/l         100-41-4       Ethylbenzene       ND       1.0       0.44       ug/l         591-78-6       2-Hexanone       ND       5.0       0.35       ug/l         108-10-1       4-Methyl-2-pentanone(MIBK)       ND       5.0       0.50       ug/l						(1) (1)	化化物学 化化物学 化乙酸化 化乙酸			75-35-4				
78-87-5       1,2-Dichloropropane       ND       1.0       0.50       ug/l         10061-01-5       cis-1,3-Dichloropropene       ND       1.0       0.56       ug/l         10061-02-6       trans-1,3-Dichloropropene       ND       1.0       0.15       ug/l         100-41-4       Ethylbenzene       ND       1.0       0.44       ug/l         591-78-6       2-Hexanone       ND       5.0       0.35       ug/l         108-10-1       4-Methyl-2-pentanone(MIBK)       ND       5.0       0.50       ug/l						est est and the second s	N 4 9 7 9 7 9 7 9 1 9 9 1							
10061-01-5       cis-1,3-Dichloropropene       ND       1.0       0.56       ug/l         10061-02-6       trans-1,3-Dichloropropene       ND       1.0       0.15       ug/l         100-41-4       Ethylbenzene       ND       1.0       0.44       ug/l         591-78-6       2-Hexanone       ND       5.0       0.35       ug/l         108-10-1       4-Methyl-2-pentanone(MIBK)       ND       5.0       0.50       ug/l							- アニー・パント からい ほんしゃく かく							
10061-02-6         trans-1,3-Dichloropropene         ND         1.0         0.15         ug/l           100-41-4         Ethylbenzene         ND         1.0         0.44         ug/l           591-78-6         2-Hexanone         ND         5.0         0.35         ug/l           108-10-1         4-Methyl-2-pentanone(MIBK)         ND         5.0         0.50         ug/l						. 604								
100-41-4         Ethylbenzene         ND         1.0         0.44         ug/l           591-78-6         2-Hexanone         ND         5.0         0.35         ug/l           108-10-1         4-Methyl-2-pentanone(MIBK)         ND         5.0         0.50         ug/l														
591-78-6         2-Hexanone         ND         5.0         0.35         ug/l           108-10-1         4-Methyl-2-pentanone(MIBK)         ND         5.0         0.50         ug/l								loropropene						
108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 0.50 ug/l									•					
							化氯化化 医神经病的 法认证的							
					0.50	5.0 2.0								
n na har an								ortue						
100-42-5         Styrene         ND         1.0         0.069         ug/l           79-34-5         1,1,2,2-Tetrachloroethane         ND         1.0         0.11         ug/l						1.5.5	그는 그 같은 것과 같은 것 같이 가지?	alaraathana						
127-18-4 Tetrachioroethene ND 1.0 0.39 ug/l							- 왜 주말 한 것이 없는 것							
108-88-3 Toluene ND 1.0 0.41 ug/l														
71-55-6 1,1,1-Trichloroethane ND 1.0 0.094 ug/l						1 S S S S S S S S S S S S S S S S S S S		roethane						
79-00-5 1,1,2-Trichloroethane ND 1.0 0.15 ug/l														
79-01-6 Trichloroethene ND $1.0 \vee 0.16$ ug/l							<ul> <li>Design der Berling und der Berling</li> </ul>							

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound



			Report	of An	alysis			Page 2
Client Samp Lab Sample Matrix: Method: Project:		GW-X-2-120506 J48302-7 AQ - Ground Water SW846 8260B GE - Parker Hannifi	n - Old Erie Ca	anal Site, (	Date I Perce	Sampled: Received: nt Solids: IY	12/05/06 12/06/06 n/a	
VOA TCL I	List							
CAS No.	Comp	ound	Result	RL	MDL	Units	Q	
75-01-4 1330-20-7	-	chloride e (total)	ND ND	1.0 J 1.0 J	0.77 0.34	ug/l ug/l		
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7 17060-07-0 2037-26-5 460-00-4	1,2-D Tolue	mofluoromethane ichloroethane-D4 ne-D8 mofluorobenzene	101% 117% 97% 87%	112% 155% ^b 92% 112%	65-1 80-1	121% 133% 117% 124%		

(a) Confirmation run.

(b) Outside control limits.

ND = Not detected **MDL** - Method Detection Limit RL = Reporting Limit

- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound



Page 2 of 2

				Page 1 of					
Client San Lab Samp Matrix: Method: Project:		J4830 AQ - ( SW84	Ground Wa 6 8015		Canal Site,	Date I Percei	Sampled: Received nt Solids IY	: 12/06/06	
Run #1 Run #2	File ID II33628		DF 1	Analyzed 12/15/06	By HSC	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GII1681
CAS No.	Comp	ound		Result	RL	MDL	Units	Q	
74-82-8 74-84-0 74-85-1	Metha Ethan Ethen	e		4.46 0.14 ND	0.10 J 0.10 J 0.10 J	0.066 0.056 0.075	ug/l ug/l ug/l		

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit

- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound



				Rej	port of A	Analysis			Pag	ge 1 of 1	
Client Sampl Lab Sample I Matrix:	ID: J48302	-2-12050 2-7 Ground V				Date San Date Rec Percent S	eived:	12/05/06 12/06/06 n/a			
Project:	GE - F	Parker Ha	nnifin -	Old E	rie Canal S	ite, Clyde, NY					
Metals Analy	sis										
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Meth	od	Prep Method		
Sodium	239000	50000	ug/l	5	12/21/06	12/26/06 LII	SW84	6 6010B ¹	SW846 3010A ²		
(1) Instances	OC Batala A	A A 1065A									

(1) Instrument QC Batch: MA18554(2) Prep QC Batch: MP37346

			Repor	t of An	alysis			Page 1 of 1
Lab Sample ID: J	GW-X-2-12 [48302-7 AQ - Grou				Date I	Sampled: 12/05/0 Received: 12/06/0 at Solids: n/a		
Project: C	GE - Parke	r Hannifin -	Old Erie (	Canal Site,	Clyde, N	Y		
General Chemistry								
			DI	Units	DF	Awalwaad	Du	14-11-13
Analyte	1	Result	RL	omis	Dr	Analyzed	Ву	Method
-	-	Result	кL		1	12/19/06	Бу ST	Metaoa EPA 310.1
Alkalinity, Total as C	aCO3			mg/l mg/l		-	ST	
Alkalinity, Total as C Chloride	aCO3	159	5.0	mg/l		12/19/06	ST VLP	EPA 310.1
Alkalinity, Total as C Chloride Nitrogen, Nitrate ^a	aCO3	159 256	5.0 2.0	mg/l mg/l		12/19/06 12/30/06 17:43	ST VLP MR	EPA 310.1 EPA 300/SW846 9056
Alkalinity, Total as C Chloride Nitrogen, Nitrate ^a Nitrogen, Nitrate + N	aCO3	159 256 < 0.11	5.0 2.0 0.11	mg/l mg/l mg/l mg/l	1 1 1	12/19/06 12/30/06 17:43 12/30/06 12:36	ST VLP MR MR	EPA 310.1 EPA 300/SW846 9056 EPA353.2/SM4500NO2B
Alkalinity, Total as C Chloride Nitrogen, Nitrate ^a	aCO3 Nitrite	159 256 < 0.11 < 0.10	5.0 2.0 0.11 0.10	mg/l mg/l mg/l	1 1 1	12/19/06 12/30/06 17:43 12/30/06 12:36 12/30/06 12:36	ST VLP MR MR MET	EPA 310.1 EPA 300/SW846 9056 EPA353.2/SM4500NO2B EPA 353.2/LACHAT

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)





Accutest Laboratori	es								63
		Repo	ort of Ar	nalysis				Page 1 of 1	3.14
Client Sample ID: Lab Sample ID: Matrix: Project:	GW-X-2-120506 J48302-7F AQ - Groundwate GE - Parker Hanr		e Canal Site	Date Sampled: 12/05/00 Date Received: 12/06/06 Percent Solids: n/a Site, Clyde, NY			-		(45)
General Chemistry	/								
Analyte	Result	RL	Units	DF	Analyze	d	Ву	Method	
Dissolved Organic	Carbon <1.0	ang 1.0	mg/l	1	12/29/00	6 00:04	ESJ	EPA415.1/SW8469060M	

	Acthod:       SW846 8260B       Percent Solids:       n/a         Project:       GE - Parker Hannifin - Old Erie Canal Site, Clyde, NY										
Run #1 Run #2		Analyzed 12/14/06	By PWC	Prep Da n/a	ate	Prep Batch n/a	Analytical Batch V1A1942				
Run #1 Run #2	Purge Volume 5.0 ml										
VOA TCL	List										
CAS No.	Compound	Result	RL	MDL	Units	Q					
67-64-1	Acetone	ND	5.0	4.6	ug/l						
71-43-2	Benzene	ND	1.0	0.37	ug/l						
75-27-4	Bromodichloromethane	ND	1.0	0.14	ug/l						
75-25-2	Bromoform	ND	1.0	0.52	ug/l						
74-83-9	Bromomethane	ND	1.0	0,39	ug/l						
78-93-3	2-Butanone (MEK)	-ND	<u> </u>	1.4	ug/l						
75-15-0	Carbon disulfide	ND	1.0	0.38	ug/l						
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l						
108-90-7	Chlorobenzene	ND	1.0	0.74	ug/l						
75-00-3	Chloroethane	ND	1.0	0.65	ug/l						
67-66-3	Chloroform	ND	1.0	0.18	ug/l						
74-87-3	Chloromethane	ND	1.0	0.20	ug/l						
124-48-1	Dibromochloromethane	ND	1.0	0.17	ug/l						
75-34-3	1,1-Dichloroethane	ND	1.0	0.089	ug/l						
107-06-2	1,2-Dichloroethane	ND	1.0	0.57	ug/l						
75-35-4	1,1-Dichloroethene	ND	1.0	0.49	ug/l						
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.18	ug/l						
156-60-5	trans-1,2-Dichloroethene	ND ND	1.0 1.0	0.18 0.50	ug/l ug/l						
78-87-5	1,2-Dichloropropane cis-1,3-Dichloropropene	ND	1.0	0.56	ug/i ug/i						
10061-01-5 10061-02-6		ND	1.0	0.30	ug/1 ug/1						
10001-02-0	Ethylbenzene	ND	1.0	0.13	ug/l						
591-78-6	2-Hexanone	ND	5.0	0.35	ug/l						
108-10-1	4-Methyl-2-pentanone(MIB)	ことのなかたとながらない ちゃくもく	5.0	0.50	ug/l						
75-09-2	Methylene chloride	ND	2.0	0.53	ug/l						
100-42-5	Styrene	ND	1.0	0.069	ug/l						
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.11	ug/l						
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l						
108-88-3	Toluene	ND	1.0	0.41	ug/l						
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.094	ug/l						
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.15	ug/l						
79-01-6	Trichloroethene	ND	1.0	0.16	ug/l						

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound



			Report	of An	alysis			Page 2 of
-	Method: SW846 8260B		- Old Erie Ca	nal Site, (	Date S Date I Percer Clyde, N	12/05/06 12/06/06 n/a		
VOA TCL	List							
CAS No.	Comp	ound	Result	RL	MDL	Units	Q	
75-01-4 1330-20-7	•	chloride e (total)	ND ND	1.0 1.0	0.77 0.34	ug/l ug/l		
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lim	nits		
1868-53-7 17060-07-0 2037-26-5 460-00-4	1,2-D Tolue	mofluoromethane ichloroethane-D4 ne-D8 mofluorobenzene	88% 92% 95% 86%		65-1 80-1	121% 133% 117% 124%		

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound



Page 2 of 2

Raw Data:

Accutest Laboratories

			Page 1 of 1					
Client San Lab Samp Matrix: Method: Project:	le ID: J4830 AQ - SW84	Ground Wat 16 8015		Canal Site	Date I Perce	Sampled: Received nt Solids IY	: 12/06/06	
Run #1 Run #2	File ID II33616.D	DF 1	Analyzed 12/14/06	By HSC	Ргср D n/a	late	Prep Batch n/a	Analytical Batch GII1680
CAS No.	Compound		Result	RL	MDL	Units	Q	
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		21.8 ND ND	0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l		

**MDL** - Method Detection Limit ND = Not detectedRL = Reporting Limit

- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound



£ 1 .

 $\frac{\omega}{2}$ 

				Rej	port of A	Analysis		Page 1 of 1
Client Sample I Lab Sample ID Matrix: Project:	: J4830 AQ -	Ground V	Vater	Old E	rie Canal Si	Date Sa Date Re Percent ite, Clyde, NY	ceived: 12/06/06 Solids: n/a	
Metals Analysis	\$						,	
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Sodium	< 10000	10000	ug/l	1	12/21/06	12/22/06 ND	SW846 6010B ¹	SW846 3010A ²
(1) Instrument Q	QC Batch: I	MA18543						

(2) Prep QC Batch: MP37346

ω.1

,

			Repor	t of An	alysis			Page 1 of 1
Lab Sample ID: J	18302-1	-5S-120506 und Water			Date I	Sampled: 12/05/0 Received: 12/06/0 nt Solids: n/a	-	
Project: G	E - Parl	er Hannifin -	Old Erie (	Canal Site,	Clyde, N	IY		
General Chemistry								
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Alkalinity, Total as Ca	CO3	739	25	mg/l	1	12/19/06	<b>S</b> T	ЕРА 310.1
Chloride		< 2.0	2.0	mg/l	1	12/30/06 15:16	VLP	EPA 300/SW846 9056
Nitrogen, Nitrate a		< 0.11	0.11	mg/l	1	12/28/06 19:38	NR	EPA353.2/SM4500NO2B
Nitrogen, Nitrate + N	itrite	<0.10	0.10	mg/l	1	12/28/06 19:38	NR	EPA 353.2/LACHAT
Nitrogen, Nitrite		< 0,010	0.010	mg/l	1	12/07/06 00:29	MET	SM19 4500NO2B
Sulfate		12.3	10	mg/l	1	12/30/06 15:16	VLP	EPA 300/SW846 9056
Sulfide		< 2.0	2.0	mg/l	1	12/10/06	ST	EPA 376.1

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

.





 $3 \\ 1$ 

			Repo	rt of An	alysis			Page 1 of 1
Ciient Sample ID: Lab Sample ID: Matrix:	J48302-	W-5S-120506 1F roundwater Fi	ltered	<u></u>	Date I	Sampled: 12/05 Received: 12/06 nt Solids: n/a		
Project:	GE - Pa	rker Hannifin	- Old Erie	Canal Site,				
General Chemistry	,							
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Dissolved Organic	Carbon	1.9	(j.t., <b>1.0</b>	mg/l	1	12/28/06 23:1	0 esj	EPA415.1/SW8469060M

Client Samp Lab Sample Matrix: Method: Project:		- Old Erie	Canal Site,	Date R Percen	ampled: .cccived: t Solids: Y	12/07/06	
Run #1 Run #2		Analyzed 12/18/06	By PWC	Prep Da n/a	atc	Prep Batch n/a	Analytical Batch V1A1947
Run #1 Run #2	Purge Volume 5.0 ml						
VOATCL	List		ı				
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	4.7	5.0	4.6	ug/l	J	
71-43-2	Benzene	ND	1.0	0.37	ug/l		
75-27-4	Bromodichloromethane	ND	1.0	0.14	ug/l		
75-25-2	Bromoform	ND	1.0	0.52	ug/l		
74-83-9	Bromomethane	ND	1.0	0.39	ug/l		
78-93-3	2-Butanone (MEK)	ND	5.0	1.4	ug/l		
75-15-0	Carbon disulfide	ND	1.0 }	0.38	ug/l		
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l		
108-90-7	Chlorobenzene	ND	1.0	0.74	ug/l		
75-00-3	Chloroethane	ND	1.0	0.65	ug/l		
67-66-3	Chloroform	ND	1.0	0.18	ug/l		
74-87-3	Chloromethane	ND	1.0	0.20	ug/1		
124-48-1	Dibromochloromethane	ND	1.0	0.17	ug/l		
75-34-3	1,1-Dichloroethane	ND	1.0	0.089	ug/l		
107-06-2	1,2-Dichloroethane	ND	1.0	0.57	ug/l		
75-35-4	1,1-Dichloroethene	ND ND	1.0	0.49	ug/l		
156-59-2	cis-1,2-Dichloroethene	ND ND		0.18 0.18	ug/l		
156-60-5	trans-1,2-Dichloroethene	ND ND	1.0 1.0	0.18	ug/l ug/l		
78-87-5	1,2-Dichloropropane	ND	1.0	0.56	ug/1 ug/1		
10061-01-5 10061-02-6	cis-1,3-Dichloropropene trans-1,3-Dichloropropene	ND	1.0	0.35	ug/l		
10061-02-0	Ethylbenzene	ND	1.0	0.13	ug/i		
591-78-6	2-Hexanone	ND	5.0	0.35	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBI	2014 Providence (1915)	5.0	0.50	ug/l		
75-09-2	Methylene chloride	ND	2.0	0.53	ug/l		
100-42-5	Styrene	ND	1.0	0.069	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.11	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l		
108-88-3	Toluene	ND	1.0	0.41	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.094	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.15	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.16	ug/l		

RL = Reporting Limit E = Indicates value exceeds calibration range B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound



			Report	of Ana	alysis			Page 2 of 2
Client Samp Lab Sample Matrix: Method: Project:		GW-MW-5B-120606 J48443-7 AQ - Ground Water SW846 8260B GE - Parker Hannifin	- Old Erie Ca	nal Site, (	Date I Percer	Sampled: Received: nt Solids: IY	12/06/06 12/07/06 n/a	
VOA TCL I	list							
CAS No.	Comp	ound	Result	RL	MDL	Units	Q	
75-01-4 1330-20-7		chloride e (total)	ND ND	1.0 1.0	0.77 0.34	ug/l ug/l		
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7 17060-07-0 2037-26-5 460-00-4	1,2-D Tolue	mofluoromethane ichloroethane-D4 ne-D8 mofluorobenzene	97% 109% 97% 81%		65-1 80-1	121% 133% 117% 124%		

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound





			Repo	rt of Aı	nalysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID: J484 AQ SW8	- Ground Wat 46 8015		Canal Site,	Date I Percei	Sampled: Received nt Solids IY	: 12/07/06	
Run #1 Run #2	File ID II33585.D	DF I	Analyzed 12/13/06	By HSC	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GII1679
CAS No.	Compound		Result	RL	MDL	Units	Q	
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		6.97 0.70 0.35	0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l		

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound





				Rej	port of A	Analysis		Page 1 of 1
Client Sample I Lab Sample ID: Matrix:	J48443	W-5B-12 -7 Ground V				Date San Date Rec Percent S	eived: 12/07/06	
Project: Metals Analysis		arker Ha	innifin -	Old E	rie Canal S	ite, Clyde, NY		
-	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Sodium	166000	50000	ug/l	5	12/26/06	12/27/06 LH	SW846 6010B ¹	SW846 3010A ²
(1) Instrument Q	C Batch: M	IA18563						

(2) Prep QC Batch: MP37400



		Repor	t of An	alysis			Page 1 of 1
Lab Sample ID: J484	MW-5B-120606 43-7 Ground Water		<u></u>	Date l	Sampled: 12/06/0 Received: 12/07/0 nt Solids: n/a		
Project: GE	Parker Hannifin	- Old Erie (	Canal Site,	Clyde, N	IY		
General Chemistry	· · · ·						
Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Alkalinity, Total as CaCO	3 105	SE 5.0	mg/l	1	12/20/06	JΛ	EPA 310.1
Chloride	123	2.0	mg/l	1	01/03/07 01:55	]11	EPA 300/SW846 9056
Nitrogen, Nitrate ^a	< 0.11	0.11	mg/l	1	12/30/06 13:41	MR	EPA353.2/SM4500NO2B
Nitrogen, Nitrate + Nitri	e < 0.10	0.10	mg/l	1	12/30/06 13:41	MR	EPA 353.2/LACHAT
Nitrogen, Nitrite	< 0.010	0.010	mg/l	1	12/07/06 18:00	мет	SM19 4500NO2B
Sulfate	1840	100	mg/l	10	01/03/07 19:07	JH	EPA 300/SW846 9056
Sulfide	<2.0	2.0	mg/l	1	12/12/06	JA	EPA 376.1

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)



.

			Repo	rt of An	alysis			Page 1 of 1
Client Sample ID: Lab Sample ID:	GW-MW-51 J48443-7F	3-120606				Sampled: 12/06/		
Matrix:	AQ - Groun	dwater Fi	ltered			Received: 12/07/ nt Solids: n/a	06	
Project:	GE - Parker	Hannifin	- Old Erie	Canal Site,	Clyde, N	Y		
General Chemistry	1							
Analyte	R	csult	RL	Units	DF	Analyzed	Ву	Method
Dissolved Organic	Carbon <	:1.0	1.0	mg/l	1	12/29/06 01:47	ESJ	EPA415.1/SW8469060M

ral Chemistry	 ,			
xct:	GE - Parker Hannifin - Old Erie Can	al Site, Clyde, NY		
	-	Percent Solids:	n/a	
ix:	AQ - Groundwater Filtered	Date Received:	12/07/06	
Sample ID:	J48443-7F	Date Sampled:		
t Sample ID:	GW-MW-5B-120606			•



		100000	t of An				Page 1 of
Client Sam				Data S	Sampled:	12/06/06	
Lab Sample					Received:		
Matrix:	AQ - Ground Water SW846 8260B				nt Solids:		
Method:	GE - Parker Hannifin	. Old Eria (	anal Site			. 112 G	
Project:	GE - Larket Hammin						
~		Analyzed	Ву	Prep D	late	Prep Batch n/a	Analytical Batch V1A1952
Run #1		12/20/06	PWC	n/a n/a		n/a	VIA1952
Run #2	1A45605.D 2000	12/20/06	PWC	n/a		#/d	
	Purge Volume						
Run #1	5.0 ml						
Run #2	5.0 ml						
VOA TCL	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	ND	2500 J	2300	ug/l		
71-43-2	Benzene	ND	500	190	ug/l		
75-27-4	Bromodichloromethane	ND	500	69	ug/l		
75-25-2	Bromoform	ND	500	260	ug/l		
74-83-9	Bromomethane	ND	🛛 500 🖞	190	ug/l		
78-93-3	2-Butanone (MEK)	·ND	<u>-2500 P</u>	710	ug/I		
75-15-0	Carbon disulfide	ND	500 🕆	190	ug/l		
56-23-5	Carbon tetrachloride	ND	500	260	ug/l		
108-90-7	Chlorobenzene	ND	500	370	ug/l		
75-00-3	Chloroethane	ND	500	320	ug/l		
67-66-3	Chloroform	ND	500	92	ug/l		
74-87-3	Chloromethane	ND	500	100	ug/l		
124-48-1	Dibromochloromethane	ND	500	84	ug/l		
75-34-3	1,1-Dichloroethane	ND	500	45	ug/l		
107-06-2	1,2-Dichloroethane	ND	500	280	ug/l		
75-35-4	1,1-Dichloroethene	ND	500	250	ug/l		
156-59-2	cis-1,2-Dichloroethene	186000 ^a	2000	360	ug/l		
156-60-5	trans-1,2-Dichloroethene	478	500	92	ug/l	J	
78-87-5	1,2-Dichloropropane	ND	500	250	ug/l		
10061-01-5		ND	500	280	ug/l		
10061-02-6		ND	500	76	ug/i		
100-41-4	Ethylbenzene	ND	500	220	ug/l		
591-78-6	2-Hexanone	ND	2500	180	ug/l		
108-10-1	4-Methyl-2-pentanone(MIB		2500	250	ug/l		
75-09-2	Methylene chloride	ND	1000	270	ug/1		
100-42-5	Styrene	ND	500	34	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	500	54	ug/l		
127-18-4	Tetrachloroethene	ND	500	190	ug/1		
108-88-3	Toluene	24900	500	200	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	500	47	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	500	77	ug/l		
79-01-6	Trichloroethene	ND	500 \	/ 80	ug/l		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound



Report of Analysis

Client Samp Lab Sample Matrix: Method: Project:		GW-MW-6S-120606 J48443-2 AQ - Ground Water SW846 8260B GE - Parker Hannifin	- Old Erie Ca	nal Site, (	Date R Percen	ampled: Acceived: at Solids: Y	12/06/06 12/07/06 n/a	
VOA TCL I	List							
CAS No.	Comp	ound	Result	RL	MDL	Units	Q	
75-01-4		chloride	73200	500 J	380	ug/l		
1330-20-7	Xylen	e (total)	854	500 🗸	170	ug/I		
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7	Dibroi	mofluoromethane	96%	92%	77-1	21%		
17060-07-0	1,2-Di	ichloroethane-D4	109%	100%	24	33%		
2037-26-5	Toluer	ne-D8	92%	91%	2.43	17%		
460-00-4	4-Broi	mofluorobenzene	105%	102%	79-1	24%		

(a) Result is from Run# 2

.

ND = Not detected MDL - Method Detection LimitRL = Reporting LimitE = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound



3.3 .3

	Report of Analysis							
Client Sample ID:GW-MW-6S-120606Lab Sample ID:J48443-2Date Sampled:12/06/06Matrix:AQ - Ground WaterDate Received:12/07/06Method:SW846 8015Percent Solids:n/aProject:GE - Parker Hannifin - Old Erie Canal Site, Clyde, NY								
Run #1 Run #2	File ID II33724.D	DF 25	Analyzed 12/20/06	By HSC	Prcp Date n/a		Prep Batch n/a	Analytical Batch GII1684
CAS No.	Compoun	d	Result	RL	MDL	Units	Q	
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		3520 718 2710	$2.5 \ 1$ $2.5 \ 2.5 \ 1$	1.6 1.4 1.9	ug/l ug/l ug/l		

ND = Not detectedMDL - Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

,



B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

				Rej	port of A	Analysis		Page 1 of 1
Client Sample II Lab Sample ID: Matrix: Project:	J4844 AQ -	Ground V	Vater	Old E	rie Canal S	Date Sar Date Rea Percent ite, Clyde, NY	ceived: 12/07/00	
Metals Analysis								
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Sođium	67800	10000	ug/l	1	12/26/06	12/26/06 LH	SW846 6010B ¹	SW846 3010A ²
(1) Instrument Q	C Batch:	MA18554						

(2) Prep QC Batch: MP37400



.



lofi မို့ P₂

	Report of Analysis										
Lab Sample ID: J48	V-MW-6S-120606 3443-2 2 - Ground Water			Date I	Sampled: 12/06/( Received: 12/07/( nt Solids: n/a						
Project: GI	E - Parker Hannifin -	Old Erie (	Canal Site,	Clyde, N	IY						
General Chemistry											
Analyte	Result	RL	Units	DF	Analyzed	By	Method				
Alkalinity, Total as CaC	CO3 (439)	17	mg/l	1	12/20/06	JA	EPA 310.1				
Chloride	236	2.0	mg/l	1	01/02/07 23:46	JH	EPA 300/SW846 9056				
Nitrogen, Nitrate ^a	<0.11	0.11	mg/l	1	12/30/06 13:36	MR	EPA353.2/SM4500NO2B				
Nitrogen, Nitrate + Ni	trite < 0.10	0.10	mg/I	1	12/30/06 13:36	MR	EPA 353.2/LACHAT				
Nitrogen, Nitrite	< 0.010	0.010	mg/l	1	12/07/06 17:55	MET	SM19 4500NO2B				
Sulfate	10.4	10	mg/l	1	01/02/07 23:46	JH	EPA 300/SW846 9056				
Sulfide	<2.0	2.0	mg/l	1	12/12/06	JA	EPA 376.1				

.

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)



			Repo	rt of An	alysis			Page 1 of 1
Client Sample ID: Lab Sample ID:	GW-MV J48443-2	V-6S-120606 2F			Date 8	Sampled: 12/06	+ -	
Matrix:	AQ - Gr	oundwater Fi	ltered			Received: 12/07. nt Solids: 11/a	/06	
Project:	GE - Pa	rker Hannifin	- Old Erie	Canal Site,	Clyde, N	ΙΥ		
General Chemistry	/							
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Dissolved Organic	Carbon	33.8	5.0	mg/l	5	01/03/07 17:0	8 esj	EPA415.1/SW8469060M

,



3.4

		Repor	t of An	aiysis			Page 1 of
Client Samp	ole ID: GW-MW-6B-120606						
Lab Sample					Sampled:	12/06/06	
Matrix:	AQ - Ground Water				Received:	12/07/06	
Method:	SW846 8260B				nt Solids:	n/a	
Project:	GE - Parker Hannifin	- Old Erie (	Canal Site,	Clyde, N	Y		
	File ID DF	Analyzed	Ву	By Prep Date			Analytical Batch
Run #1	1A45608.D 100	12/20/06	PWC	n/a		n/a	V1A1952
Run #2	1A45438.D 500	12/15/06	PWC	n/a		n/a	V1A1943
	Purge Volume						
Run #1	5.0 ml						
Run #2	5.0 ml						
VOA TCL	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	ND	500	460	ug/l		
71-43-2	Benzene	ND	100	37	ug/l		
75-27-4	Bromodichloromethane	ND	100	14	ug/l		
75-25-2	Bromoform	ND	100	52	ug/l		
74-83-9	Bromomethane	ND	100	39	ug/t		
78-93-3	2-Butanone (MEK)	ND	500-2-	140	ug/l		
75-15-0	Carbon disulfide	ND	100丁	38	ug/l		
56-23-5	Carbon tetrachloride	ND	100	53	ug/l		
108-90-7	Chlorobenzene	ND	100	74	ug/l		
75-00-3	Chloroethane	ND	100	65	ug/l		
67-66-3	Chloroform	ND	100	18	ug/l		
74-87-3	Chloromethane	ND	100	20	ug/l		
124-48-1	Dibromochloromethane	ND	100	17	ug/l		
75-34-3	1,1-Dichloroethane	ND	100	8.9	ug/l		
107-06-2	1,2-Dichloroethane	ND	100	57	ug/l		
75-35-4	1,1-Dichloroethene	59.3	100	49	ug/l	J	
156-59-2	cis-1,2-Dichloroethene	50400 ª	500	89	ug/l		
156-60-5	trans-1,2-Dichloroethene	119 ND	100	18	ug/1		
78-87-5	1,2-Dichloropropane	ND	100	50 50	ug/l		
10061-01-5	cis-1,3-Dichloropropene	ND	100	56 16	ug/l		
10061-02-6	trans-1,3-Dichloropropene	ND	100	15 44	ug/i		
100-41-4	Ethylbenzene 2-Hexanone	ND ND	100 500	44 35	ug/1 ug/1		
591-78-6 108-10-1	4-Methyl-2-pentanone(MIBI		500	50 50	ug/l		
108-10-1 75-09-2	Methylene chloride	ND	200	53	ug/i ug/l		
100-42-5	Styrene	ND	100	55 6.9	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	100	11	ug/l		
127-18-4	Tetrachloroethene	ND	100	39	ug/l		
108-88-3	Tohuene	ND	100	41	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	100	9.4	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	100	15	ug/l		
79-01-6	Trichloroethene	95.5	100	16	ug/l	J	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

 $\mathbf{B}$  = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound



.

J = Indicates an estimated value

	Report of Analysis										
Client Samp Lab Sample Matrix: Method: Project:		GW-MW-6B-120606 J48443-1 AQ - Ground Water SW846 8260B GE - Parker Hannifin	- Old Erie Ca	nal Site, (	Date Date Perce Clyde, N	12/06/06 12/07/06 n/a					
VOA TCL I	List										
CAS No.	Comp	ound	Result	RL	MDL	Units	Q				
75-01-4 1330-20-7		chloride e (total)	1750 ND	100 100	77 34	ug/I ug/1					
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lin	nits					
1868-53-7 17060-07-0 2037-26-5 460-00-4	1,2-D Tolue	mofluoromethane ichloroethane-D4 ne-D8 mofluorobenzene	100% 124% 94% 109%	102% 119% 97% 87%	65- 80-	121% 133% 117% 124%					

(a) Result is from Run# 2

- $J = Indicates \ an \ estimated \ value$
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound



3 2

	Sample ID:J48443-1Date Sampled:12/06/06ix:AQ - Ground WaterDate Received:12/07/06												
Lab Sample ID:J48443-1Date Sampled:12/06/06Matrix:AQ - Ground WaterDate Received:12/07/06Method:SW846 8015Percent Solids:n/aProject:GE - Parker Hannifin - Old Erie Canal Site, Clyde, NYNY													
Run #1 Run #2	File ID II33577.D	DF 1	Analyzed 12/13/06	By HSC	Prep D n/a	late	Prep Batch n/a	Analytical Batch GII1679					
CAS No.	Compound		Result	RL	MDL	Units	Q						
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		93.0 2.0 41.3	0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l							

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound



3.1

12 of 1400 ACCUTEST.

				Rej	port of .	Analysis		Page 1 of 1
Client Sample II Lab Sample ID: Matrix:	J48443	W-6B-1 -1 Fround V				Date Sar Date Rec	-	
Project: Metals Analysis		arker Ha	innifin -	Old E	rie Canal S	Percent ite, Clyde, NY	Solids: n/a	
-	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Sodium	73600	10000	ug/l	1	12/26/06	12/26/06 LH	SW846 6010B ¹	SW846 3010A ²
(1) Instrument Q	C Batch: M	A18554						

(2) Prep QC Batch: MP37400

3.1 (49)



	Page 1 of 1								
Client Sample ID: GW-M Lab Sample ID: J48443-	W-6B-120606		··· · · · ·	Date	Sampled: 12/06/				
•	round Water			Date					
Percent Solids: n/a Project: GE - Parker Hannifin - Old Erie Canal Site, Clyde, NY									
General Chemistry									
Analyte	Result	RL	Units	DF	Analyzed	Ву	Method		
Alkalinity, Total as CaCO3	256	5.0	mg/i	I	12/20/06	JA	EPA 310.1		
Chloride	144	2.0	mg/l	1	01/02/07 23:28	JH	EPA 300/SW846 9056		
Nitrogen, Nitrate ^a	< 0,11	0.11	mg/l	1	12/30/06 13:35	MR	EPA353.2/SM4500NO2B		
Nitrogen, Nitrate + Nitrite	< 0.10	0.10	mg/l	1	12/30/06 13:35	MR	EPA 353.2/LACHAT		
Nitrogen, Nitrite	< 0.010	0.010	mg/l	1	12/07/06 17:55	MET	SM19 4500NO2B		
Sulfate	1420	100	mg/l	10	01/03/07 18:30	JH	EPA 300/SW846 9056		
Sulfide	<2.0	2.0	mg/l	1	12/12/06	JA	EPA 376.1		

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

.



			Repo	ort of Ar	nalysis			Page 1 of 1
Client Sample ID: Lab Sample ID:	GW-MV J48443-	V-6B-120606 IF						
Matrix:	AQ - Gr	oundwater Fi	ltered			Received: 12/07. nt Solids: n/a	/06	
Project:	GE - Pa	rker Hannifin	- Old Erie	Canal Site,	Clyde, N	IY		
General Chemistry	1							
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Dissolved Organic	Carbon	1.5	1.0	mg/l	1	12/29/06 00:3	5 esj	EPA415.1/SW8469060M



		Repo	rt of An	alysis			Page 1 of 2
Client Sam Lab Sample Matrix: Method: Project:		ı - Old Eric	Canal Site,	Date R Percen	ampled: Leceived: It Solids: Y	12/05/06	
Run #1 Run #2	1A45179.D 1	Analyzed By Prep Date 12/08/06 PWC n/a 12/14/06 PWC n/a		Prep Batch n/a n/a	Analytical Batch V1A1932 V1A1942		
· · · · · · · · · · · · · · · · · · ·	Purge Volume	·					
Run #1 Run #2	5.0 ml 5.0 ml						
VOA TCL	List		-		_		
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	ND	5.0	4.6	ug/i		
71-43-2	Benzene	ND	1.0	0.37	ug/l		
75-27-4	Bromodichloromethane	ND	1.0	0.14	ug/l		
75-25-2	Bromoform	ND	1.0	0.52	ug/l		
74-83-9	Bromomethane	ND	1.0	0.39	ug/l		
78-93-3	2-Butanone (MEK)	ND	5.0	1.4	ug/l		
75-15-0	Carbon disulfide	ND	1.0 ]	0.38	ug/l		
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l		
108-90-7	Chlorobenzene	ND	1.0	0.74	ug/l		
75-00-3	Chloroethane	ND	1.0	0.65	ug/l		
67-66-3	Chloroform	ND	1.0	0.18	ug/l		
74-87-3	Chloromethane	ND	1.0	0.20	ug/l		
124-48-1	Dibromochloromethane	ND	1.0	0.17	ug/l		
75-34-3	1,1-Dichloroethane	ND	1.0	0.089	ug/l		
107-06-2	1,2-Dichloroethane	ND	1.0	0.57	ug/l		
75-35-4	1,1-Dichloroethene	0.62	1.0	0.49	ug/l	J	
156-59-2	cis-1,2-Dichloroethene	414 a	5.0 J	0.89	ug/l		
156-60-5	trans-1,2-Dichloroethene	2.5	1.0	0.18	ug/l		
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l		
10061-01-5		ND	1.0	0.56	ug/l		
10061-02-6	• • •	ND	1.0	0.15	ug/l		
100-41-4	Ethylbenzene	ND	1.0	0.44	ug/l		
591-78-6	2-Hexanone	ND	5.0	0.35	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBI		5.0	0.50	ug/l		
75-09-2	Methylene chloride	ND	2.0	0.53	ug/l		
100-42-5	Styrene	ND	1.0	0.069	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.11	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l		
108-88-3	Toluene	ND	1.0	0.41	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.094	ug/l		
79-00-5 79-01-6	1,1,2-Trichloroethane Trichloroethene	ND 0.46	1.0 1.0	0.15 0.16	ug/l ug/l	J	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound





Report of Analysis

	ethod: SW846 8260B		- Old Erie C	Canal Site, (	Date I Percei	Sampled: Received: nt Solids: Y	12/04/06 12/05/06 n/a	
VOA TCL	List							
CAS No.	Comp	ound	Result	RL	MDL	Units	Q	
75-01-4	Vinyl	chloride	12.4	1.0	0.77	ug/l		
1330-20-7	Xylen	e (total)	ND	1.0	0.34	ug/l		
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7	Dibro	mofluoromethane	92%	88%	77-1	21%		
17060-07-0	1,2-Di	ichloroethane-D4	101%	89%	65-1	33%		
2037-26-5	Tolue	ne-D8	98%	95%	80-1	17%		
460-00-4	4-Brou	nofluorobenzene	90%	86%	79-1	24%		

(a) Result is from Run# 2

.

ND = Not detectedMDL - Method Detection LimitRL = Reporting LimitE = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound



Page 2 of 2

			Repo	ort of Ai	nalysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:								
Run #1 Run #2	File ID 1133518.D	DF 1	Analyzed 12/11/06	By HSC	Prep D n/a	late	Prep Batch n/a	Analytical Batch GII1677
CAS No.	Compound		Result	RL	MDL	Units	Q	
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		6.28 ND ND	0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l	,	

**MDL** - Method Detection Limit ND = Not detectedRL = Reporting Limit E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



3.1

				Rej	port of A	Analysis		Page 1 of 1
Client Sample II Lab Sample ID: Matrix: Project:	J4814 AQ -	Ground V	Vater	Old E	rie Canal Si	Date San Date Rec Percent S ite, Clyde, NY	eived: 12/05/06	
Mctals Analysis								
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Sodium	37700	10000	ug/l	1	12/21/06	12/22/06 ND	SW846 6010B ¹	SW846 3010A ²
(1) Instrument O	C Batch:	MA 18543						

Instrument QC Batch: MA18543
 Prep QC Batch: MP37346

•



ω

Report of Analysis											
Lab Sample ID: J	W-MW-7S-120406 18143-1 .Q - Ground Water			Date I	Sampled: 12/04 Received: 12/05 nt Solids: n/a						
Project: O	GE - Parker Hannifin - Old Erie Canal Site, Clyde, NY										
General Chemistry											
Analyte	Result	RL	Units	DF	Analyzed	Ву	Method				
Alkalinity, Total as Ca	ICO3 352	5.0	mg/l	1	12/16/06	КD	EPA 310.1				
Chloride	74.2	2.0	mg/l	1	12/29/06 07:0	8 JH	EPA 300/SW846 9056				
Nitrogen, Nitrate a	< 0.11	0.11	mg/l	1	12/21/06 15:1	0 NR	EPA353.2/SM4500NO2B				
Nitrogen, Nitrate + N	litrite < 0.10	0.10	mg/l	1	12/21/06 15:1	0 NR	EPA 353.2/LACHAT				
Nitrogen, Nitrite	< 0.010	0.010	mg/l	1	12/05/06 15:0	3 AO	SM19 4500NO2B				
Sulfate	231	10	mg/l	1	12/29/06 07:0	8 јн	EPA 300/SW846 9056				
Sulfide	< 2.0	2.0	mg/i	1	12/06/06	ST	EPA 376.1				

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)



3.1 -

ربه

			Repo	ort of Ar	nalysis			Page 1 of 1	
Client Sample ID: Lab Sample ID:	GW-MV J48143-	N-7S-120406 1F			Date Sampled: 12/04/06				
fatrix: AQ - Groundwater Filtered Da						Received: 12/05/ nt Solids: n/a			
Project:	GE - Pa	GE - Parker Hannifin - Old Erie Canal Site, Clyde, NY							
General Chemistry	,								
Analyte		Result	RL	Units	DF	Analyzed	By	Method	
Dissolved Organic	Carbon	1.3	1.0	mg/l	L	12/28/06 22:13	ESJ	EPA415.1/SW8469060M	

. .



	Report of Analysis											
Client Sam Lab Sampl Matrix: Method: Project:												
Run #1 Run #2		Analyzed 12/08/06	By PWC	Prep D n/a	ate	Prep Batch n/a	Analytical Batch V1A1932					
Run #1 Run #2	Purge Volume 5.0 ml											
VOA TCL	List											
CAS No.	Compound	Result	RL	MDL	Units	Q						
67-64-1 71-43-2	Acetone Benzene	ND ND	5.0 1.0	4.6 0.37	ug/I ug/I							
75-27-4	Bromodichloromethane	ND	1.0	0.14	ug/l							
75-25-2	Bromoform	ND	1,0	0.52	ug/l							
74-83-9	Bromomethane	ND	1.0	0.39	ug/l							
78-93-3	2-Butanone (MEK)	ND	5.0	1.4	ug/l							
75-15-0	Carbon disulfide	ND	1.0	0.38	ug/l							
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l							
108-90-7	Chlorobenzene	ND	1.0	0.74	ug/l							
75-00-3	Chloroethane	ND	1.0	0.65	ug/l							
67-66-3	Chloroform	ND	1.0	0.18	ug/l							
74-87-3	Chloromethane	ND	1.0	0.20	ug/l							
124-48-1	Dibromochloromethane	ND	1.0	0.17	ug/l		•					
75-34-3	1,1-Dichloroethane	ND	1.0	0.089	ug/l							
107-06-2	1,2-Dichloroethane	ND	1.0	0.57	ug/l							
75-35-4	1,1-Dichloroethene	ND	1.0	0.49	ug/l	-						
156-59-2	cis-1,2-Dichloroethene	0.58	1.0	0.18	ug/l	J						
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.18	ug/l							
78-87-5 10061-01-5	1,2-Dichloropropane	ND ND	1.0 1.0	0.50 0.56	ug/l							
10061-01-5		ND	1.0	0.36	ug/l ug/l							
100-41-4	Ethylbenzene	ND	1.0	0.44	ug/l							
591-78-6	2-Hexanone	ND	1.0 5.0	0.44	ug/l							
108-10-1	4-Methyl-2-pentanone(MIBH		5.0 5.0	0.50	ug/1 ug/l							
75-09-2	Methylene chloride	ND	2.0	0.53	ug/l							
100-42-5	Styrene	ND	1.0	0.069	ug/l							
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.11	ug/l							
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l							
108-88-3	Toluene	ND	1.0	0.41	ug/l							
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.094	ug/l							
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.15	ug/l							
79-01-6	Trichloroethene	0.35	1.0	0.16	ug/l	J						

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



Report of Analysis

Client Sample Lab Sample I Matrix: Method: Project:	ID: J48143- AQ - Gr SW846	ound Water 8260B	Date Sampled: Date Received: Percent Solids: Old Erie Canal Site, Clyde, NY				12/04/06 12/05/06 п/а	
VOA TCL LI	ist							
CAS No.	Compound	I	Result	RL	MDL	Units	Q	
	Vinyl chloride		۱D	1.0	0.77	ug/l		
1330-20-7	Xylene (total)	1	۷D	1.0	0.34	ug/l		
CAS No.	Surrogate Reco	overies I	Run# 1	Run# 2	Lim	its		
1868-53-7	Dibromofluoro	nethane	)3%		77-1	21%		
17060-07-0	1,2-Dichloroeti	ane-D4 J	03%		65-1	33%		
2037-26-5	Toluene-D8	1.0	)7%			17%		
460-00-4	4-Bromofluorobenzene		39%		79-1	24%		

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound



			Repo	rt of Ar	nalysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID: J4814 AQ - SW84	Ground Water 6 8015	Date Sampled: 12/04/06					
Run #1 Run #2	File ID II33519.D	DF I	Analyzed 12/11/06	By HSC	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GIII677
CAS No.	Compound		Result	RL	MDL	Units	Q	
74-82-8 74-84-0 74-85-1	Methane Ethane Ethenc		7.1 0.30 0.62	0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l		

**MDL** - Method Detection Limit ND = Not detectedRL = Reporting Limit E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound



				Rej	port of .	Analysis		Page 1 of 1
Client Sample I Lab Sample ID: Matrix:	: J4814	MW-7B-1 13-2 Ground V				Date San Date Rec Percent S	•	
Project:		Parker Ha	annifin -	Old E	rie Canal S	ite, Clyde, NY		
Mctals Analysis Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
-	90600	20000	ug/l	2	12/21/06	12/26/06 LH	SW846 6010B ¹	SW846 3010A ²
(1) Instrument C	C Batch:	MA 18554						

Instrument QC Batch: MA18554
 Prep QC Batch: MP37346

,



ა ა

	Report of Analysis											
Lab Sample ID: J481	MW-7B-120406 43-2 • Ground Water											
Project: GE												
General Chemistry		· · · ·	<u></u>									
Analyte	Result	RL	Units	DF	Analyzed	Ву	Method					
Alkalinity, Total as CaCC	3 16.1	5.0	mg/l	1	12/16/06	KD	EPA 310.1					
Chloride	40.6	2.0	mg/l	1	12/29/06 06:5	50 JH	EPA 300/SW846 9056					
Nitrogen, Nitrate ^a	0.19	0.11	mg/l	1	12/21/06 14:4	18 NR	EPA353.2/SM4500NO2B					
Nitrogen, Nitrate + Nitri	te 0.19	0.10	mg/l	1	12/21/06 14:4	18 NR	EPA 353.2/LACHAT					
Nitrogen, Nitrite	< 0.010	0.010	mg/l	1	12/05/06 15:0	)3 AO	SM19 4500NO2B					
Sulfate	1740	100	mg/l	10	12/30/06 02:2	28 јн	EPA 300/SW846 9056					
Sulfide	< 2.0	2.0	mg/l	1	12/06/06	ST	EPA 376.1					

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

•

ట టు

	Report of Analysis Page 1 of 1												
Client Sample ID: Lab Sample ID:	GW-MW J48143-2												
Matrix: Project:	AQ - Groundwater FilteredDate Received:12/05/06Percent Solids:n/aGE - Parker Hannifin - Old Erie Canal Site, Clyde, NY												
General Chemistry	,	,											
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method					
Dissolved Organic Carbon ^a <5.0 7/2 5.0 mg/l 5 12/28/06 22:37 ESJ EPA415.1/SW8469060M								EPA415.1/SW8469060M					

(a) Dilution required due to difficult sample matrix.

.



3.4

			Repo	rt of A	nalysis		Page 1 of 2
Client Sa Lab Sam Matrix: Method: Project:	ple ID: J47 AQ SW				Date Sample Date Receive Percent Solie c, Clyde, NY	ed: 12/01/06	
Run #1 Run #2	File ID D120654.D	DF 1	Analyzed 12/06/06	By YL	Prep Date n/a	Prep Batch n/a	Analytical Batch VD4809
	Purge Volu	ime					······

5,0 m) Run #1

Run #2

**VOA TCL List** 

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	-ND	5.0.R	4.6	ug/l	
71-43-2	Benzene	ND	1.0	0.37	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.14	ug/l	
75-25-2	Bromoform	ND	1.0	0.52	ug/l	
74-83-9	Bromomethane	ND		0.39	ug/l	
78-93-3	2-Butanone (MEK)	-ND Terror	<u>5.0 P</u>	1.4	ug/l	
75-15-0	Carbon disulfide	ND	1.0	0.38	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l	
108-90-7	Chlorobenzene	ND	<u>,</u> 1.0	0.74	ug/l	
75-00-3	Chloroethane	ND	[°] 1.0	0,65	ug/l	
67-66-3	Chloroform	ND	1.0	0.18	ug/l	
74-87-3	Chloromethane	ND	, 1.0	0.20	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.17	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.089	ug/l	
107-06-2	1,2-Dichloroethane	ND	j 1.0	0.57	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.49	ug/l	
156-59-2	cis-1,2-Dichloroethene	ŃD	1.0	0.18	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.18	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l	
10061-01-5	cls-1,3-Dichloropropene	ND	1.0	0.56	ug/l	
10061-02-6	trans-1,3-Dichloropropene	914 40127574 36-38265-61 26	<u></u> 1.0	0.15	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.44	ug/l	
591-78-6	2-Hexanone	ND	<u> 5</u> 0	0.35	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)		5.0	0.50	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.53	ug/l	
100-42-5	Styrene	ND	1.0	0.069	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.11	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l	
108-88-3	Toluene	ND	a <b>1.0</b>	0.41	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	៍ 1.0	0.094	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	<b>1.0</b>	0.15	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.16	ug/l	

ND = Not detectedMDL - Method Detection Limit

RL = Reporting Limit

B = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

			Report	of An	alysis			Page 2 o
Client Sample ID:GW-MW-8S-11300Lab Sample ID:J47796-3Matrix:AQ - Ground WaterMethod:SW846 8260BProject:GE - Parker Hannifi		- Old Brie Ca	nal Site,	Date S Date J Percer Clyde, N	11/30/06 12/01/06 n/a			
VOA TCL	List		An <u>n - ann an A</u> rt					
CAS No.	Comp	ound	Result	RL	MDL	Units	Q	
75-01-4 1330-20-7	-	chloride e (total)	ND ŅD	1.0 1.0	0.77 0.34	ug/l ug/l		
CAS No.	Surro	gate Recoverles	Run# 1	Run# 2	Lim	lts		
1868-53-7 17060-07-0 2037-26-5 460-00-4	07-0 1,2-Dichloroethane-D4 6-5 Toluene-D8		99% 119% 97% 108%	99%         77-121%           119%         65-133%           97%         80-117%		33% 17%		

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 2 of 2

### :00029

		Report of Analysis										
Client San Lab Samp Matrix: Method: Project:	le ID: J477 AQ - SW8	Ground Wa 46 8015		Canal Site,	Date 1 Percer	Sampled: Received at Solids Y						
Run #1 Run #2	File ID 1133501.D	DF 1	Analyzed 12/08/06	By HSC	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GII1676				
CAS No.	Compound		Result	RL	MDL	Units	Q					
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene			0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l						

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

# Report of Analysis

Page 1 of 1

Cilent Sample Lab Sample II Matrix:	IW-8S-11 5-3 Ground W				Date San Date Rec Percent S	eived: 12/01/06			
Project:		arker Ha	nnifin -	Old E	rie Canal Si	te, Ciyde, NY			
Metals Analys Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method	
Sodium	158000	30000	ug/l	3	12/18/06	12/19/06 LH	SW846 6010B I	SW846 3010A ²	
(1) Instrument			U	3	12/10/00	12/19/00 LA	211010 00100	5,1010 <b>2010</b>	

(2) Prep QC Batch: MP37272

#### Client Sample ID: GW-MW-8S-113006 Date Sampled: 11/30/06 J47796-3 Lab Sample ID; Date Received: 12/01/06 Matrix: AQ - Ground Water Percent Solids: n/a GE - Parker Hannifin - Old Erie Canal Site, Clyde, NY Project: **General Chemistry** Method DF Analyzed By RL Units Analyte Result 12/12/06 EPA 310.1 ST 409 13 mg/l 1 Alkalinity, Total as CaCO3 12/21/06 00:18 JH 248 2.0 mg/l 1 EPA 300/SW846 9056 Chloride 0.17 0.11 mg/l 1 12/21/06 14:47 NR EPA353.2/SM4500NO2B Nitrogen, Nitrate a 85265266 12/21/06 14:47 NR EPA 353.2/LACHAT Nitrogen, Nitrate + Nitrite 0.17 0.10 mg/l 1 <0.010 0.010 1 12/01/06 15:50 ST SM19 4500NO2B mg/l Nitrogen, Nitrite 12/21/06 00:18 JH EPA 300/SW846 9056 2.0 mg/l 1 Sulfate 67.3 <2.0 2.0 mg/l 1 12/06/06 ST EPA 376.1 Sulfide

**Report of Analysis** 

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

#### Page 1 of 1

## **Report of Analysis**

#### Client Sample ID: GW-MW-8S-113006 Date Sampled: 11/30/06 Lab Sample ID: J47796-3F Date Received: 12/01/06 Matrix: AQ - Groundwater Filtered Percent Solids: n/a GE - Parker Hannifin - Old Eric Canal Site, Clyde, NY Project: **General Chemistry** ŀу Method Analy

Analyte	Result	RL	Units	DF	Analyzed	Ву
Dissolved Organic Carbon	1.4	§ 1.0	mg/l	i	12/22/06 00:21	ESI

Page 1 of 1

EPA415.1/SW8469060M

		Repo	rt of An	alysis			Page 1 of 2
Client Samp Lab Sample Matrix: Method: Project:			Canal Site,	Date F Percen	ampicd: teceived: it Solids: Y	12/01/06	
1		Analyzed 12/06/06	By YL	Prep Da n/a	ate	Prep Batch n/a	Analytical Batch VD4809
	Purge Volume 5.0 mi						
VOA TCL	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	ND	÷		ug/l		
71-43-2	Benzene	ND 😽	. <b>1.0</b>	0.37	ug/l		
75-27-4	Bromodichloromethane	ND	i.0	0.14	ug/l		
75-25-2	Bromoform	ND	1.0	0.52	ug/l		
74-83-9	Bromomethane	ND	1.0	0.39	ug/l		
78-93-3	2-Butanone (MEK)	∮ND	<b>5:0</b> /2	1.4	ug/l		
75-15-0	Carbon disulfide	0.55	1.0	0.38	ug/l	J	
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l		
108-90-7	Chlorobenzene	ND	SS 1.0	0.74	ug/l		
75-00-3	Chloroethane	ND	AG 1.0	0.65	ug/l		
67-66-3	Chloroform	ND	1.0	0.18	ug/l		
74-87-3	Chloromethane	ND	1.0	0.20	ug/l		
124-48-1	Dibromochloromethane	ND	1.0	0.17	ug/l		
75-34-3	1,1-Dichloroethane	ND	1.0	0.089	ug/l		
107-06-2	1,2-Dichloroethane	ND	1.0	0.57	ug/l		
75-35-4	1,1-Dichloroethene	ND		0.49	ug/l		
156-59-2	cis-1,2-Dichloroethene	(ND ³²⁸³ )	20. <b>1.0</b>	0.18	ug/i		
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.18	ug/l		
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/)		
10061-01-5		ND	1.0	0.56	ug/l		
10061-02-6	· · · ·	-ND	1.0	0.15	ug/l		
100-41-4	Ethylbenzene	ND	1.0	0.44	ug/l		
591-78-6	2-Hexanone	ND	5.0	0.35	ug/l		
108-10-1	4-Methyl-2-pentanone(MIB		5.0	0.50	ug/l		
75-09-2	Methylene chloride		2.0	0.53 0.069	ug/l		
100-42-5	Styrene 1,1,2,2-Tetrachloroethane	ND ND	1.0	0.009	ug/l ug/l		
79-34-5		ND	1.0	0.11	ug/l		
127-18-4	Tetrachloroethene	1.1.27(SAM)7(SAM)	8249 6230	0.39	-		
108-88-3	Toluene	ND	1.0		ug/l		
71-55-6	1,1,1-Trichloroethane	ND	-647 (1981)	0.094	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.15	ug/l		
79-01-6	Trichloroethene	ND 1	asta <b>1.0</b>	0.16	ug/l		

MDL - Method Detection Limit ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

 $\mathbf{J} = \mathbf{I}$ ndicates an estimated value

B = Indicates analyte found in associated method blank

N =Indicates presumptive evidence of a compound

			Report	t of An	alysis			Page 2 of
	Method: SW846 8260B		- Old Erie C	Date Sampled: Date Received: Percent Sollds: - Old Erie Canal Site, Clyde, NY				
YOA TCL	List							
CAS No.	Com	ound	Result	RL	MDL	Units	Q	
75-01-4 1330-20-7	-	chloride e (total)	ND ND	1.0 1.0	0.77 0.34	ug/l ug/l		
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lin	nits		
1868-53-7 17060-07-0 2037-26-5 460-00-4	1,2-D Toluc	mofluoromethane vichloroethane-D4 vnc-D8 mofluorobenzene	97% 115% 97% 110%	\$ \$	65-1 80-1	21%  33%  17%  24%		

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Client San Lab Samp Matrix: Method: Project:	le ID: J477 AQ SW	GW-MW-9S-113006J47796-5Date Sampled: 11/30/06AQ - Ground WaterDate Received: 12/01/06SW846 8015Percent Solids: n/aGE - Parker Hannifin - Old Erie Canal Site, Clyde, NY								
Run #1 Run #2	File ID 1133504.D	DF I	Analyzed 12/08/06	By HSC	Prep Date n/a		Prep Batch n/a	Analytical Batch G111676		
CAS No.	Compound		Result	RL	MDL	Units	Q			
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		4.00 0.11 ND	0.10 0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l				

**Report of Analysis** 

Page 1 of 1

ND = Not detectedMDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

				Kel	port of A	anaiysis		Page 1 of 1
Client Sample I Lab Sample ID Matrix:	J47796	W-9S-11 -5 round W				Date Sam Date Rec Percent S	· · · · · · · · ·	
Project:	GE - Pa	arker Ha	unifin -	Old E	rie Canal Si	ite, Clyde, NY	a second a s	
Metals Analysis								
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Sodium	58900	10000	ug/l	1	12/18/06	12/19/06 LH	SW846 6010B ¹	SW846 3010A ²

Instrument QC Batch: MA18522
 Prep QC Batch: MP37272

:00043

Page 1 of 1

## **Report of Analysis**

	Page 1 of 1							
Lab Sample ID:	J47796-	Y-9S-113006 5 ound Water		• • • • • • • • • • • • • • • • • • •	Date I	Sampled: 11/30/ Received: 12/01/ nt Solids: n/a		
Project: GE - Parker Hannifin - Old Eric Canal Site, Clyde, NY								
General Chemistry	<u> </u>							
Analyte		Result	RL	Units	DF	Analyzed	By	Method
Alkalinity, Total as C	CaCO3	340	^{ester} 13	mg/l	1	12/12/06	ST	EPA 310.1
Chloride		55.5	2.0	mg/l	1	12/21/06 02:0	) HI	BPA 300/SW846 9056
Nitrogen, Nitrate ^a		<0.11	0.11	mg/l	1	12/21/06 14:5:	5 NR	EPA353.2/SM4500NO2B
Nitrogen, Nitrate +	Nitrite	<0.10	0.10	mg/l	1	12/21/06 14:5:	5 NR	EPA 353.2/LACHAT
Nitrogen, Nitrite		<0.010	0.010	mg/l	1	12/01/06 14:4:	5 ST	SM19 4500NO2B
Sulfate		96.3	2.0	mg/l	1	12/21/06 02:0	н (	EPA 300/SW846 9056
Sulfide		<2.0	2.0	mg/l	l	12/06/06	ST	EPA 376.1

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

			Керо	rt of An	alysis			Page 1 of 1
Client Sample ID: Lab Sample ID: Matrix:	J47796-5F		ltered		Date I	Sampled: 11/30/ Received: 12/01/ nt Solids: n/a		
Project:	GE - Park	er Hannifin	- Old Erie	Canal Site,	Clyde, N	Y		
General Chemistry	ł							
Analyte		Result	RL	Units	df	Analyzed	By	Method
Dissolved Organic	Carbon	5.1	1.0	mg/l	1	12/22/06 01:03	FSI	EPA415.1/SW8469060M

# Depart of Analysis

RL = Reporting Limit

:00045

Page 1 of 1

,

**Accutest Laboratories** 

	Page 1 of 2								
Client Sam Lab Sample Matrix: Method: Project:	e ID: J47958-5 AQ - Ground Water SW846 8260B		Date Sampled: 11/30/06 Date Received: 12/02/06 Percent Solids: n/a - Old Erie Canal Site, Clyde, NY						
Run #1 Run #2	Run #1 D120644.D 1		yzed By Prep Date /06 YL n/a		Prep Batch n/a	Analytical Batch VD4809			
Run #1 Run #2	Purge Volume 5.0 ml								
VOA TCL	List								
CAS No.	Compound	Result	RL	MDL	Units	Q			
67-64-1	Acetone	·ND	5:0-R	4.6	ug/l				
71-43-2	Benzene	ND	1.0	0.37	ug/l				
75-27-4	Bromodichloromethane	ND	1.0	0.14	ug/l				
75-25-2	Bromoform	ND	1.0	0.52	ug/l				
74-83-9	Bromomethane	ND	1.0	0,39	ug/l				
78-93-3	2-Butanone (MEK)	ND	-5.0-2	1.4	ug/l				
75-15-0	Carbon disulfide	ND	1.0	0.38	ug/l				
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l				
108-90-7	Chlorobenzene	ND	1.0	0.74	ug/l				
75-00-3	Chloroethane	ND	1.0	0.65	ug/l				
67-66-3	Chloroform	ND	1.0	0.18	ug/l				
74-87-3	Chloromethane	ND	1.0	0.20	ug/l				
124-48-1	Dibromochloromethane	ND	1.0	0.17	ug/l				
75-34-3	I, I-Dichloroethane	ND	1.0	0.089	ug/l				
107-06-2	1,2-Dichloroethane	ND	1.0	0.57	ug/l				
75-35-4	1,1-Dichloroethene	ND	1.0	0.49	ug/l				
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.18	ug/l				
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.18	ug/l				
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l				
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.56	ug/l				
10061-02-6		ND ND	1.0 1.0	0.15 0.44	ug/i				
100-41-4 591-78-6	Ethylbenzene 2-Hexanone	ND ND	1.0 5.0	0.44	ug/l ug/l				
108-10-1	4-Methyl-2-pentanone(MIBI	こうちょう 気気 気気なく 単分な かん	5.0 5.0	0.50	ug/i ug/i				
75-09-2	Methylene chloride	ND ND	5.0 2.0	0.53	ug/l				
100-42-5	Styrene	ND	1.0	0.069	ug/l				
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.11	ug/l				
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l				
108-88-3	Toluene	ND	1.0	0.41	ug/l				
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.094	ug/l				
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.15	ug/l				
79-01-6	Trichloroethene	ND	1.0	0.16	ug/l				

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

**E** = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound





			Report	of An	alysis			Page 2 o
Lab Sample ID:J47958-5Matrix:AQ - Ground WaterMethod:SW846 8260B		AQ - Ground Water SW846 8260B		Date Sampled: Date Received: Percent Solids: Id Erie Canal Site, Clyde, NY				
VOA TCL I	List							
CAS No.	Comp	ound	Result	RL	MDL	Units	Q	
75-01-4 1330-20-7	-	chloride e (total)	ND ND	1.0 1.0	0.77 0.34	ug/l ug/l		
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7 17060-07-0 2037-26-5 460-00-4	1,2-D Tolue	mofluoromethane ichloroethane-D4 ne-D8 mofluorobenzene	96% 111% 97% 107%		65-1 80-1	21%  33%  17%  24%		

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound



Page 2 of 2

		Page 1 of 1							
Client Sample ID:       GW-MW-10B-113006         Lab Sample ID:       J47958-5         Date Sampled:       11/30/06         Matrix:       AQ - Ground Water         Date Received:       12/02/06         Method:       SW846 8015         Project:       GE - Parker Hannifin - Old Erie Canal Site, Clyde, NY									
Run #1 Run #2	File ID II33489.D	DF 1	Analyzed 12/08/06	By HSC	Prcp D n/a	ate	Prep Batch n/a	Analytical Batch GII1676	
CAS No.	Compound		Result	RL	MDL	Units	Q		
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		2.27 ND ND	0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l			

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit

- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

3.9

				Rej	port of A	Analysis		Page 1 of	1 ³ 6
Client Sample I Lab Sample ID: Matrix: Project:	J47958 AQ - G	round W	ater	Old E	rie Canal Si	Date Sam Date Rec Percent S ile, Clyde, NY	eived: 12/02/06		(43)
Metals Analysis									
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method	
Sodium	568000	100000	ug/i	10	12/18/06	12/19/06 LH	SW846 6010B ¹	SW846 3010A ²	
(I) Instrument Q	C Batch: M	A18529							

(2) Prep QC Batch: MP37272



		Repo	ort of An	alysis			F	age 1 of 1
•	GW-MW-10B-113006 47958-5			0/06				
	AQ - Ground Water				Received: 12/0 nt Solids: n/a	2/06		
Project: C	GE - Parker Hannlfin	- Old Erie	Canal Site,	Clyde, N	IY			
General Chemistry								
Analyte	Result	RL	Units	DF	Analyzed	Ву	Method	
	-000 12030000	3.005 <b>1.0</b>			12/14/06	CT	EDX 210	t i i i i i i i i i i i i i i i i i i i

Alkalinity, Total as CaCO3 Chloride ^a Nitrogen, Nitrate ^b	152 751 <0.11 0.11	mg/l mg/l mg/l	l 10 1	12/14/06 12/29/06 22:47 12/21/06 15:03	-	EPA 310.1 EPA 300/SW846 9056 EPA353.2/SM4500NO2B
Nitrogen, Nitrate + Nitrite	<0.10 0.10	mg/l	1	12/21/06 15:03	NR	EPA 353.2/LACHAT
Nitrogen, Nitrite c	0.025 0.010	mg/l	1	12/02/06 14:00	ĦF	SM19 4500NO2B
Sulfate d	1970 100 T	mg/l	10	12/29/06 22:47	JH	EPA 300/SW846 9056
Sulfide	<2.0 2.0	mg/l	1	12/06/06	ST	EPA 376.1

(a) Initially analyzed within holding time, but over calibration. Reanalysis on dilution done 1 day out of holding time.

(b) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

(c) Analysis done out of holding time. Spike blank indicates possible slight high bias (113% recovery).

(d) Initially analyzed within holding time, but over calibratiion. Reanalysis on dilution done 1 day out of holding time.



3.9



Accutest Laboratori	es								63
		Repo	ort of Ai	nalysis				Page 1 of 1	3.10
Client Sample IĎ: Lab Sample ID: Matrix: Project:	GW-MW-10B-113 J47958-5F AQ - Groundwate GE - Parker Hann	r Filtered	e Canal Site	Date Perce	Sampled: Received: ent Solids: NY	1 1/30/0 1 2/02/0 n/a	-		తు
General Chemistry	,								
Analyte	Result	RL	Units	DF	Analyz	ed	Ву	Method	
Dissolved Organic	Carbon <1.0	1.0	mg/l	1	12/26/0	6 18:34	мо	EPA415.1/SW8469060M	

		Repo	ort of Ar	nalysis			Page 1 of
Client Sam Lab Sample Matrix: Method: Project:		- Old Erie	Canal Site,	Date I Percei	Sampled: Received nt Solids Y	: 12/02/06	
Run #1 Run #2		nalyzed 2/06/06	By YL	Prep D n/a	ate	Prep Batch n/a	Analytical Batch VD4809
Run #1 Run #2	Purge Volume 5.0 ml						
VOA TCL	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	-ND		4.6	ug/l		
71-43-2	Benzene	ND	1.0	0.37	ug/l		
75-27-4	Bromodichloromethane	ND	1.0	0.14	ug/l		
75-25-2	Bromoform	ND	1.0	0.52	ug/l		
74-83-9	Bromomethane	ND	1.0	0.39	ug/l		
78-93-3	2-Butanone (MEK)	- ND	5.0-1		ug/i		
75-15-0	Carbon disulfide	ND	1.0	0.38	ug/l		
56-23-5	Carbon tetrachloride	ND	1.0	0.53	uğ/l		
108-90-7	Chlorobenzene	ND	1.0	0.74	ug/l		
75-00-3	Chloroethane	ND	1.0	0.65	ug/i		
67-66-3	Chloroform	ND	1.0	0.18	ug/i		
74-87-3	Chloromethane	ND	1.0	0.20	ug/l		
124-48-1	Dibromochloromethane	ND	1.0	0.17	ug/l		
75-34-3	1,1-Dichloroethane	ND	1.0	0.089	ug/l		
107-06-2	1,2-Dichloroethane	ND	1.0	0.57	ug/l		
75-35-4	1,1-Dichloroethene	ND	1.0	0.49	ug/l		
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.18	ug/l		
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.18	ug/l		
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l		
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.56	ug/l		
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.15	ug/l		
100-41-4	Ethylbenzene	ND	1.0	0.44	ug/l		
591-78-6	2-Hexanone	ND	5.0	0.35	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBK)		5.0	0.50	ug/l		
75-09-2	Methylene chloride	ND	2.0	0.53	ug/l		
100-42-5	Styrene	ND	1.0	0.069	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.11	ug/l		
127-18-4 108-88-3	Tetrachloroethene	ND	1.0	0.39	ug/l		
	Toluene	ND ND	1.0	0.41	ug/l		
71-55-6 79-00-5	1,1,1-Trichloroethane	ND ND	1.0	0.094	ug/l		
79-00-5 79-01-6	i,1,2-Trichloroethane Trichloroethene	ND	1.0 1.0	0.15 0.16	ug/l		
19-01-0	THEMOTOCHICHE	<b>IAD</b> (19)	1.0 States	0.10	ug/l		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound





			Report	of An	alysis			Page 2 of 2
Client Samp Lab Sample Matrix: Method: Project:		GW-MW-11S-113006 J47958-3 AQ - Ground Water SW846 8260B GE - Parker Hannifin		ınal Site, 1	Date I Perce	Sampled: Received: nt Solids: IY	1 1/30/06 12/02/06 n/a	
VOA TCL I	List							
CAS No.	Comp	oound	Result	RL	MDL	Units	Q	
75-01-4 1330-20-7	-	chloride e (total)	ND ND	1.0 1.0	0.77 0.34	ug/l ug/l		
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7 17060-07-0 2037-26-5 460-00-4	1,2-D Tolue	mofluoromethane ichloroethane-D4 ne-D8 mofluorobenzene	97% 111% 95% 105%		65-1 80-1	121% 133% 117% 124%		

N = Indicates presumptive evidence of a compound



E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

			Repo	ort of A	nalysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID: J4795 AQ - SW84	Ground W 6 8015		Canal Site	Date 1 Perce	Sampled Received nt Solids IY	: 12/02/06	
Run #1 Run #2	File ID 1133486.D	DF 1	Analyzed 12/08/06	By HSC	Prep D n/a	late	Prep Batch n/a	Analytical Batch Gl11676
CAS No.	Compound		Result	RL	MDL	Units	Q	
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		218 ND ND	0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l		

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit

- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound



				Rej	port of A	Analysis		Page 1 of 1
Client Sample I Lab Sample ID: Matrix:	J4795	1W-11S-1 B-3 Ground V			<u></u>	Date Sar Date Rec Percent	eived: 12/02/06	
Project:	GE - 1	Parker Ha	ınnifin -	Old E	rie Canal S	ite, Clyde, NY		
Metals Analysis								
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Sodium	10900	10000	ug/l	1	12/18/06	12/19/06 LH	SW846 6010B ¹	SW846 3010A ²
(1) Instrument ()	C Batche M	<i>ι</i> ν 182522						

Instrument QC Batch: MA18522
 Prep QC Batch: MP37272

3.5

LL.



		Repor	rt of Ar	nalysis			Page 1 of 1
Lab Sample ID: J4795	IW-11S-113006 3-3 Ground Water				Sampled: 11/30/ Received: 12/02/		
	Stound Water				nt Solids: n/a	00	
Project: GE - I	arker Hannifin -	- Old Erie (	Canal Site,	Clyde, N	IY		· · · · · · · · · · · · · · · · · · ·
General Chemistry							
Analyte	Result	RL	Units	DF	Analyzed	By	Method
Alkalinity, Total as CaCO3	442	13	mg/i	1	12/14/06	SТ	ЕРА 310.1
Chloride	10.1	2.0	mg/l	1	12/28/06 00:43	JH	EPA 300/SW846 9056
Nitrogen, Nitrate ^a	< 0.11	0.11	mg/l	1	12/21/06 15:00	NR	EPA353.2/SM4500NO2B
Nitrogen, Nitrate + Nitrite	<0.10	0.10	mg/l	1	12/21/06 15:00	NR	EPA 353.2/LACHAT
Nitrogen, Nitrite b	< 0.010	0.010	mg/I	1	12/02/06 14:00	HF	SM19 4500NO2B
Sulfate	24.3	10	mg/l	1	12/28/06 00:43	JH	EPA 300/SW846 9056
Sulfide	<2.0	2.0	mg/l	1	12/06/06	ST	EPA 376.1

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)(b) Analysis done out of holding time.



RL = Reporting Limit

ເນ ເກ

## e.

	Page 1 of 1							
Client Sample ID: Lab Sample ID:	J47958-3				Date !	Sampled: 11/30/	D6	
Matrix: Project:		oundwater Fi rker Hannifin		Canal Site,	Perce	Received: 12/02/0 nt Solids: n/a IY	D6	
General Chemistry	,			···				
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Dissolved Organic	Carbon	2.5	1.0	mg/l	I	12/26/06 18:20	мо	EPA415.1/SW8469060M

ა. თ

		Repo	ort of Ar	nalysis			Page 1 of
Client Samp Lab Sample Matrix: Method: Project:			Canal Site,	Date I Perce	Sampled Received nt Solids	: 12/02/06	
		nalyzed 2/06/06	By YL	Prep D 11/a	ate	Prep Batch n/a	Analytical Batch VD4809
	Purge Volume 5.0 ml						
VOA TCL I	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	ND	<b>5.0</b> 12	4.6	ug/l		
71-43-2	Benzene	ND	1.0	0.37	ug/l		
75-27-4	Bromodichloromethane	ND	1.0	0.14	uğ/l		
75-25-2	Bromoform	ND	1.0	0.52	ug/l		
74-83-9	Bromomethane	ND	1.0	0.39	uğ/l		
78-93-3	2-Butanone (MEK)	ND	5.0-2	- 1.4	ug/l		
75-15-0	Carbon disulfide	ND	1.0	0.38	ug/l		
56-23-5	Carbon tetrachloride	ND	1.0	0.53	uğ/l		
108-90-7	Chlorobenzene	ND	1.0	0.74	ug/l		
75-00-3	Chloroethane	ND	1.0	0.65	ug/l		
67-66-3	Chloroform	ND	1.0	0.18	ug/l		
74-87-3	Chloromethane	ŃD	1.0	0.20	ug/l		
124-48-1	Dibromochloromethane	ND	1.0	0.17	ug/l		
75-34-3	1,1-Dichloroethane	ND	1.0	0.089	ug/l		
107-06-2	1,2-Dichloroethane	ND	1.0	0.57	ug/l		
75-35-4	1,1-Dichloroethene	ND	1.0	0.49	ug/l		
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.18	ug/l		
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.18	ug/l		
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l		
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.56	ug/l		
	trans-1,3-Dichloropropene	ND	1.0	0.15	ug/l		
100-41-4	Ethylbenzene	ND ND	1.0	0.44	ug/l		
591-78-6	2-Hexanone	ND	5.0	0.35	ug/l		
108-10-1 75-09-2	4-Methyl-2-pentanone(MIBK) Methylene chloride	ND ND	5.0	0.50	ug/l		
100-42-5	Methylene chloride Styrene	ND ND	2.0 1.0	0.53 0.069	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.009	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l ug/l		
108-88-3	Toluene	ND	1.0	0.35	ug/i		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.41	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.054	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.15	ug/l		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound



Report of Analysis

Client Samp Lab Sample Matrix: Method: Project:	<ul> <li>aple ID: J47958-4 AQ - Ground Wa SW846 8260B GE - Parker Hand</li> <li>CL List</li> <li>Compound Vinyl chloride</li> <li>7 Xylene (total)</li> <li>Surrogate Recoveries</li> <li>7 Dibromofluoromethane</li> <li>7-0 I,2-Dichloroethane-D4</li> </ul>	AQ - Ground Water SW846 8260B		Date Samp Date Recei Percent So d Eric Canal Site, Clyde, NY			11/30/06 12/02/06 n/a	
VOA TCL I	ist							
CAS No.	Comp	ound	Result	RL	MDL	Units	Q	
75-01-4	Vinyl	chloride	ND	1.0	0.77	ug/I		
1330-20-7	Xylen	e (total)	ND	1.0	0.34	ug/l		
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7	Dibro	mofluoromethane	94%		77-1	21%		
17060-07-0	1,2-D	ichloroethane-D4	108%		65-1	.33%		
2037-26-5	Tolue	ne-D8	97%			17%		
460-00-4	4-Bro	mofluorobenzene	107%		79-1	.24%		

N = Indicates presumptive evidence of a compound



3.7

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

÷

**Accutest Laboratories** 

			Repo	ort of Ai	nalysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	ie ID: J479 AQ SW	-MW-11B-1 )58-4 - Ground Wa 846 8015 - Parker Han		Canal Site	Date S Date I Perces , Clyde, N			
Run #1 Run #2	File 1D 1133488.D	DF I	Analyzed 12/08/06	By HSC	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GII1676
CAS No.	Compound		Result	RL	MDL	Units	Q	
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		2.87 ND ND	0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l		

ND = Not detected**MDL** - Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound





				Rej	port of .	Analysis	5		Page 1 of	1 ^{3.7}
Client Sample I Lab Sample ID Matrix: Project:	: J47958 AQ - G	round W	later	Old E	ric Canal S	Date	Rece ent S	pled: 11/30/06 sived: 12/02/06 olids: n/a		49
Metals Analysis	3							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Analyte	Result	RL	Units	DF	Prep	Analyzed	Ву	Method	Prep Method	
Sodium	477000	100000	ug/l	10	12/18/06	12/19/06	LH	SW846 6010B ¹	SW846 3010A ²	
(1) Instrument Q	C Batch: M	A18529								

(2) Prep QC Batch: MP37272



		Repor	t of An		Page 1 of 1		
Lab Sample ID: J4	W-MW-11B-113006 7958-4 Q - Ground Water	2		Date I	Sampled: 11/30/ Received: 12/02/ nt Solids: n/a		
Project: G	E - Parker Hannifin	- Old Erie	Canal Site,	Clyde, N	IY		
General Chemistry							
Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Alkalinity, Total as Cal	CO3 159	13	mg/l	1	12/14/06	ST	EPA 310.1
Chloride ^a	613	20	mg/l	10	12/29/06 21:52	JH	EPA 300/SW846 9056
Nitrogen, Nitrate ^b	< 0.11	0.11	mg/l	1	12/21/06 15:01	NR	EPA353.2/SM4500NO2B
Nitrogen, Nitrate + Ni	trite < 0.10	0.10	mg/l	1	12/21/06 15:01	NR	EPA 353.2/LACHAT
Nitrogen, Nitrite c	< 0.010	0.010	mg/l	1	12/02/06 14:00	HF	SM19 4500NO2B
Sulfate d	1930	100 ]	mg/l	10	12/29/06 21:52	JH	EPA 300/SW846 9056
Sulfide	< 2.0	2.0	mg/l	I	12/06/06	ST	EPA 376.1

(a) Initially analyzed within holding time, but over calibration. Reanalysis on dilution done 1 day out of holding time.

(b) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

(c) Analysis done out of holding time.

(d) Initially analyzed within holding time, but over calibratiion. Reanalysis on dilution done 1 day out of holding time.





			Page 1 of 1					
Client Sample ID: Lab Sample ID:	J47958-							
Matrix:	-	roundwater Fi			Perce	Received: 12/02/ nt Solids: n/a	00	
Project:	oject: GE - Parker Hannifin - Old Erie Canal Site, Clyde, NY							
General Chemistry	1							
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Dissolved Organic	Carbon	<1.0	<u>)</u> [] 1.0	mg/l	1	12/26/06 18:26	і мо	EPA415.1/SW8469060M

.



ယ ဆ

		Repo	rt of An	alysis			Page 1 of 2
Client Sam Lab Sample Matrix: Method: Project:			Canal Site,	Date S Date F Percer Clyde, N	: 12/02/06		
Run #1 Run #2		Analyzed 12/06/06	By YL	Prep D n/a	ate	Prep Batch n/a	Analytical Batch VD4809
Run #1 Run #2	Purge Volume 5.0 ml						
VOA TCL	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	ND	<b>5:0</b> -₽		ug/l		
71-43-2	Benzene	ND	1.0	0.37	ug/i		
75-27-4	Bromodichloromethane	ND	1.0	0.14	ug/l		
75-25-2	Bromoform	ND	1.0	0.52	ug/l		
74-83-9	Bromomethane	ND	1.0	0.39	ug/l		
78-93-3	2-Butanone (MEK)	-ND	<del>5:0</del> P		ug/l		
75-15-0	Carbon disulfide	ND	in 1.0	0.38	ug/l		
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l		
108-90-7	Chlorobenzene	ND	1.0	0.74	ug/l		
75-00-3	Chloroethane	ND	1.0	0.65	ug/l		
67-66-3	Chloroform	ND	1.0	0.18	ug/l		
74-87-3	Chloromethane	ND	1.0	0.20	ug/l		
124-48-1	Dibromochloromethane	ND	1.0	0.17	ug/l		
75-34-3	1,1-Dichloroethane	ND	1.0	0.089	ug/l		
107-06-2	1,2-Dichloroethane	ND	1.0	0.57	ug/l		
75-35-4	1,1-Dichloroethene	ND	1.0	0.49	ug/l		
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.18	ug/l		
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.18	ug/l		
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l		
10061-01-5		ND	1.0	0.56	ug/l		
10061-02-6		ND	1.0	0.15	ug/l		
100-41-4	Ethylbenzene	ND	1.0	0.44	ug/l		
591-78-6	2-Hexanone	ND	5.0	0.35	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBI		5.0	0.50	ug/l		
75-09-2	Methylene chloride	ND	2.0	0.53	ug/l		
100-42-5	Styrene	ND	1.0	0.069	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.11	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l		
108-88-3	Toluene	ND	1.0	0.41	ug/l		
71-55-6	1,1,1-Trichloroethane	ND ND	1.0 1.0	0.094 0.15	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.15	ug/l ug/l		
79-01-6	Trichloroethene	IAD	907.04 <b>1.V</b>	0.10	ugri		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound



			Report	of An	alysis			Page 2 of
Client Samp Lab Sample Matrix: Method: Project:		GW-MW-12S-113006 J47958-1 AQ - Ground Water SW846 8260B GE - Parker Hannifin -	Old Erie Ca	nal Site, (	Date F Percer	Sampled: Received: nt Solids: Y	11/30/06 12/02/06 n/a	
VOA TCL I	List							
CAS No.	Comp	ound	Result	RL	MDL	Units	Q	
75-01-4 1330-20-7	*	chloride e (total)	ND ND	1.0 1.0	0.77 0.34	ug/l ug/l		
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7 17060-07-0 2037-26-5 460-00-4	1,2-D Tolue	mofluoromethane ichloroethane-D4 ne-D8 mofluorobenzene	96% 107% 99% 105%		65-1 80-1	21% 33% 17% 24%		

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound



Page 2 of 2

ω ...

		Report of Analysis										
Client San Lab Samp Matrix: Method: Project:	le ID: J4795 AQ - SW84	Ground Wa 6 8015		Canal Site,	Date H Percei	Sampled: Received at Solids Y	: 12/02/06					
Run #1 Run #2	File ID II33484.D	DF 1	Analyzed 12/08/06	By HSC	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GII1676				
CAS No.	Compound		Result	RL	MDL	Units	Q					
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		34.3 ND ND	0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l						

**MDL** - Method Detection Limit ND = Not detected

RL = Reporting Limit

- **E** = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound





				Rej	port of A	Analysis		Page 1 of 1
Client Sample I Lab Sample ID		MW-12S-1 18-1	13006			Date Sa		
Matrix:	AQ -	Ground W	/ater			2 400 40	eccived: 12/02/00 Solids: n/a	)
Project:	GE -	Parker Ha	nnifin -	Old E	rie Canal Si	ite, Clyde, NY	*	
Metals Analysis	5							
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Sodium	< 10000	10000	ug/l	1	12/18/06	12/19/06 LI	SW846 6010B ¹	SW846 3010A ²

Instrument QC Batch: MA18522
 Prep QC Batch: MP37272

 $\omega_{\Delta}$ 

(**6**5)

Lab Sample ID: J47958	W-12S-113006 -1 Ground Water	3		Date l	Sampled: 11/30/0 Received: 12/02/0 nt Solids: n/a		
Project: GE - F	arker Hannifin	- Old Erie (	Canal Site,	Clyde, N	IY		
General Chemistry							<u></u>
Analyte	Result	RL	Units	DF	Analyzed	By	Method
Alkalinity, Total as CaCO3	629	13	mg/l	I	12/14/06	ST	EPA 310.1
Chloride	3.0	2.0	mg/l	1	12/27/06 23:30	]]]	EPA 300/SW846 9056
Nitrogen, Nitrate ^a	5.3	0.21	mg/l	1	12/21/06 17:03	NR	EPA353.2/SM4500NO2B
Nitrogen, Nitrate + Nitrite	5.3	0.20	mg/l	2	12/21/06 17:03	NR	EPA 353.2/LACHAT
Nitrogen, Nitrite b	< 0.010	0.010	mg/l	1	12/02/06 14:00	HF	SM19 4500NO2B
Sulfate	72.4	10	mg/l	1	12/27/06 23:30	JH	EPA 300/SW846 9056
Sulfide	< 2.0	2.0	mg/l	1	12/06/06	ST	EPA 376.1

Report of Analysis

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

(b) Analysis done out of holding time.

Page 1 of 1

ω ....

			Repo	ort of Ar	alysis			Page 1 of 1
Client Sample ID: Lab Sample ID: Matrix: Project:	J47958- AQ - Gi	W-12S-113006 1F roundwater Fi rker Hannifin	ltered	Canal Site,	Date l Perce	Sampled: 11/30/0 Received: 12/02/0 nt Solids: n/a IY		
General Chemistry						<u></u>		<u></u>
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Dissolved Organic (	Carbon	3.8	1.0	mg/l	1	12/26/06 18:03	мо	EPA415.1/SW8469060M



		Repo	rt of An	alysis			Page 1 of 2		
Client Sam Lab Sample Matrix: Method: Project:	e ID: J47958-2 AQ - Ground Water SW846 8260B	6 Date Sampled: 11/30/06 Date Received: 12/02/06 Percent Solids: n/a a - Old Erie Canal Site, Clyde, NY							
Run #1 Run #2		Analyzed 12/06/06	By YL	Prep Da n/a	ate	Prep Batch n/a	Analytical Batch VD4809		
Run #1 Run #2	Purge Volume 5.0 ml								
VOA TCL	List								
CAS No.	Compound	Result	RL	MDL	Units	Q			
71-43-2 75-27-4 75-25-2 74-83-9 78-93-3 75-15-0 56-23-5 108-90-7 75-00-3 67-66-3 74-87-3 124-48-1 75-34-3 107-06-2	Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chlorobenzene Chloroform Chloromethane Dibromochloromethane 1,1-Dichloroethane	ND ND ND ND 1.0 ND ND ND ND ND ND ND ND	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.38 0.53 0.74 0.65 0.18 0.20 0.17 0.089 0.57	ug/I ug/I ug/I ug/I ug/I ug/I ug/I ug/I				
75-35-4 156-59-2 156-60-5 78-87-5 10061-01-5 10061-02-6 100-41-4 591-78-6 108-10-1 75-09-2 100-42-5 79-34-5 127-18-4 108-88-3 71-55-6 79-00-5	• •	ND ND ND ND ND ND ND ND ND ND ND ND ND N	1.0 1.0 1.0 1.0 1.0 1.0 5.0 5.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	0.49 0.18 0.50 0.56 0.15 0.44 0.35 0.50 0.53 0.069 0.11 0.39 0.41 0.094 0.15 0.16	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l		·		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound





Report of Analysis

Client Samp Lab Sample Matrix: Method: Project:	rix: AQ - Ground Waler hod: SW846 8260B ject: GE - Parker Hannifin - Old Erie Canal Site				Sampled: Received: nt Solids: Y	11/30/06 12/02/06 n/a		
VOA TCL I	List							
CAS No.	Compound	Result	RL	MDL	Units	Q	,	
75-01-4	Vinyl chloride	ND	1.0	0.77	ug/l			
1330-20-7	Xylene (total)	ND	1.0	0.34	ug/l			
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its			
1868-53-7	Dibromofluoromethane	97%		77-1	121%			
17060-07-0	1,2-Dichloroethane-D4	109%			133%			
2037-26-5	Toluene-D8	98%			117%			
460-00-4	4-Bromofluorobenzene	105%		79-	24%			

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound



Page 2 of 2

			Repo	rt of Ar	alysis			Page I of 1
Client San Lab Samp Matrix: Method: Project:	le ID: J4795 AQ - SW84	Ground Wat 6 8015		Canal Site,	Date F Percer	Sampled: Received nt Solids Y	12/02/06	
Run #1 Run #2	File ID II33485.D	DF 1	Analyzed 12/08/06	By HSC	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GII1676
CAS No.	Compound		Result	RL	MDL	Units	Q	
74-82-8 74-84-0 74-85-1	Methane Ethane Ethenc		2.53 0.89 0.36	0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l		

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound



3. 3.

				Rej	port of A	Analysis	\$		Page 1 of 1
Client Sample I Lab Sample ID: Matrix:	J4795	MW-12B-1 i8-2 Ground W				Date	Samp Recei ent So		
Project:	GE -	Parker Ha	nnifin -	Old E	rie Canal Si	ite, Clydc,	NY		
Metals Analysis									
Analyte	Result	RL	Units	DF	Prep	Analyzed	Ву	Method	Prep Method
Sodium	778000	250000	ug/l	25	12/18/06	12/19/06	LH	SW846 6010B ¹	SW846 3010A ²
(1) Instrument O	C. Batch: J	MA 18529							

Instrument QC Batch: MA18529
 Prep QC Batch: MP37272

ယ လ

Client Sample ID: Lab Sample ID: Matrix:	GW-MW-12B-113006 J47958-2 AQ - Ground Water	Date Sampled: Date Received: Percent Solids:	12/02/06	
Project:	GE - Parker Hannifin - Old Erie C	anal Site, Clyde, NY		

Report of Analysis

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Alkalinity, Total as CaCO3 Chloride ^a Nitrogen, Nitrate ^b Nitrogen, Nitrate + Nitrite Nitrogen, Nitrite ^c Sulfate ^d Sulfide	59.7 964 < 0.11 < 0.10 < 0.010 2130 3.0	5.0 20 J 0.11 0.10 0.010 100 J 2.0	mg/l mg/l mg/l mg/l mg/l mg/l	1 10 1 1 1 10 1	12/14/06 12/29/06 21:34 12/21/06 14:59 12/21/06 14:59 12/02/06 14:50 12/02/06 21:34 12/06/06	NR NR HF	EPA 310.1 EPA 300/SW846 9056 EPA353.2/SM4500NO2B EPA 353.2/LACHAT SM19 4500NO2B EPA 300/SW846 9056 EPA 376.1

(a) Initially analyzed within holding time, but over calibration. Reanalysis on dilution done 1 day out of holding time.

(b) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

(c) Analysis done out of holding time.

(d) Initially analyzed within holding time, but over calibratiion. Reanalysis on dilution done 1 day out of holding time.







			Repo	rt of An	alysis			Page 1 of 1
Client Sample ID: Lab Sample ID: Matrix:	J47958-2I	12B-113000 a undwater Fi			Date I	Sampled: 11/30/ Received: 12/02/ nt Solids: n/a		
Project:	GE - Park	er Hannifin	- Old Eric	Canal Site,	Clyde, N	Y		
General Chemistry	,							
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Dissolved Organic	Carbon	<1.0	iga alt <b>.0</b>	mg/l	1	12/26/06 18:0	9 мо	EPA415.1/SW8469060M

•

		Rep	ort of A	nalysis			Page 1 of 2
Client Sam Lab Sample Matrix: Method: Project:	E ID: J47796-4 AQ - Ground SW846 8260	d Water	ic Canal Site	Date l Perce	Sampled: Received: nt Solids: IY	: 12/01/06	
Run #1 Run #2	File ID DF D120655.D 40	+	By YL	Prep D n/a	ate	Prep Batch n/a	Analytical Batch VD4809
Run #1 Run #2	Purge Volume 5.0 ml		ann 1, 7, 1				
VOA TCL	List						1
CAS No.	Compound	Resul	RL	MDL	Units	Q	
67-64-1	Acetone	-ND	200	2180	ug/l		
71-43-2	Benzene	ND	8.96686	15	ug/l		
75-27-4	Bromodichlorometh	2020H 053300	40	5.5	ug/l		
75-25-2	Bromoform	ND	40	21	ug/l		
74-83-9	Bromomethane	ND	40	15	ug/l		
78-93-3	2-Butanone (MEK)	-ND			ug/l		
75-15-0	Carbon disulfide	ND		15	ug/l		
56-23-5	Carbon tetrachloride	1. State		21	ug/l		
108-90-7	Chlorobenzene	ND .	3 8 40	29	ug/l		
75-00-3	Chloroethane	ND	· · · · · · · · · · · · · · · · · · ·	26	ug/l		
67-66-3	Chloroform	ND	40	7.3	ug/l		
74-87-3	Chloromethane	ND	40	8.0	ug/l		
124-48-1	Dibromochlorometh		40	6.7	ug/l		
75-34-3	1,1-Dichlorocthane		40	3.6	ug/l		
107-06-2	1,2-Dichloroethane	14026407939393	^{9/2/93)} 40	23	ug/l		
75-35-4	1,1-Dichloroethene	1 The State Stat	40	20	ug/l		
156-59-2	cis-1,2-Dichloroeth	2,2602426266266	40	7.1	ug/l		
156-60-5	trans-1,2-Dichloroe		40	7.4	ug/l		
78-87-5	1,2-Dichloropropan		40	20	ug/l		
10061-01-5	cis-1,3-Dichloropro	opene ND	40	22	ug/l		
10061-02-6	trans-1,3-Dichlorop		sing <b>40</b>	6,0	ug/l		
100-41-4	Ethylbenzene	ND	40	18	ug/l		
591-78-6	2-Hexanone	ND	200	14	ug/l		
108-10-1	4-Methyl-2-pentano		200	20	ug/l		
75-09-2	Methylene chloride		X	21	ug/l		
100-42-5	Styrene	ND	් ^ස ් 40	2.8	ug/l		
79-34-5	1,1,2,2-Tetrachloro		40	4.3	ug/l		
127-18-4	Tetrachloroethene	ND	40	16	ug/l		
108-88-3	Toluene	ND	40	16	ug/l		
71-55-6	1,1,1-Trichloroetha	2	40	3.8	ug/l		
79-00-5	1,1,2-Trichloroetha	tees 1	40	6.1	ug/l		
79-01-6	Trichloroethene	845	i 40	6.4	ug/l		

MDL - Method Detection Limit ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

J = Indicates an estimated value

Client Samp Lab Sample Matrix: Method: Project:		GW-MW-13S-1130 J47796-4 AQ - Ground Water SW846 8260B GE - Parker Hannif		anal Site, (	Date I Percer	Sampled: Received: 1t Solids: Y	11/30/06 12/01/06 п/а
VOA TCL I	List						
CAS No.	Comp	ound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7		chloride e (total)	348 ND	40 40	31 14	ug/l ug/l	
CAS No.	Surro	gate Recoveries	Run#1	Run# 2	Lim	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	1,2-D Tolue	mofluoromethane ichloroethane-D4 ne-D8 nofluorobenzene	99% 118% 97% 107%	21 	65-1 80-1	21% 33% 17% 24%	

**Report of Analysis** 

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 2

			Repo	ort of Ar	nalysis			Page 1 of 1
Client Sam Lab Samp Matrix: Method: Project:	ile ID: J47 AQ SW	'-MW-13S-11: 796-4 - Ground Wat 846 8015 - Parker Hanr		Canal Site,	Date l Percei	Sampled: Received nt Solids Y	12/01/06	
Run #1 Run #2	File ID II33503.D	DF 1	Analyzed 12/08/06	By HSC	Prep D n/a	ate	Prep Batch n/a	Analytical Batch Gl11676
CAS No.	Compound	}	Result	RL	MDL	Units	Q	
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		13.2	0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l		

MDL - Method Detection Limit

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

#### **Report of Analysis** Client Sample ID: GW-MW-13S-113006 Date Sampled: 11/30/06 Lab Sample ID: J47796-4 Date Received: 12/01/06 AQ - Ground Water Matrix: Percent Solids: n/a GE - Parker Hannifin - Old Erie Canal Site, Clyde, NY Project: Metals Analysis **Prep Method** Method Analyzed By Result RL Units DF Prep Analyte SW846 3010A 2 SW846 6010B 1 12/18/06 12/19/06 LH 2 93800 20000 ug/l Sodium

(1) Instrument QC Batch: MA18529

(2) Prep QC Batch: MP37272

Page 1 of 1

Client Sample ID: Lab Sample ID: Matrix:	J47796-4 AQ - Gr	ound Water			Date I Percer	Sampled: 11/30/C Received: 12/01/C at Solids: n/a		
Project:	GE - Par	ker Hannifin	- Old Erie (	Canal Site,	Clyde, N	Y		
General Chemistry								
Analyte		Result	RL	Units	DF	Analyzed	By	Method
Alkalinity, Total as	CaCO3	289	13	mg/l	i	12/12/06	ST	EPA 310.1
Chloride		163	2.0	mg/l	1	12/21/06 01:50	JH	EPA 300/S\Y846 9056
Nitrogen, Nitrate a		<0,11	alea <b>0.11</b>	mg/l	1	12/21/06 14:54	NR	6PA353.2/SM4500NO2B
Nitrogen, Nitrate +	Nitrite	1.10.00	0.10	mg/l	1	12/21/06 14:54	NR	EPA 353.2/LACHAT
Nitrogen, Nitrite		<0.010	0.010	mg/l	1	12/01/06 15:50	ST	SM19 4500NO2B
Sulfate		878	8.0	mg/l	4	12/27/06 02:34	Л	EPA 300/SW846 9056
Sulfide		<2.0	2.0	mg/l	1	12/06/06	ST	EPA 376.1

**Report of Analysis** 

Page 1 of 1

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

٠,

			Kepo		arjara			
Client Sample ID: Lab Sample ID: Matrix:	J47796-4 AQ - Gro	oundwater Filte		Coursel Sites	Date I Percer	Sampled: 11/30/0 Received: 12/01/0 1t Solids: n/a		
Project:	GE - Par	ker Hannifin -	Old Erie	Canal Sile,	Ciyde, N	1		and the second
General Chemistry	/							
Analyte		Result	RL	Units	DF	Analyzed	By	Method
Dissolved Organic	Carbon	5.4	د. 1.0	mg/l	1	12/22/06 00:56	ESJ	EPA415.1/SW8469060M

# **Report of Analysis**

Page 1 of 1

.

	145 (RA	Repo	rt of An	alysis			Page 1 of
Client Sam Lab Sample Matrix: Method: Project:			Canal Site,	Date Perce	Sampled Received nt Solids IY	: 12/07/06	
Run #1 Run #2	File ID         DF           1A45424.D         50           1A45423.D         500	Analyzed 12/15/06 12/15/06	By PWC PWC	Prep E n/a n/a	)ate	Prep Batch n/a n/a	Analytical Batch VIA1943 VIA1943
Run #1 Run #2	Purge Volume 5.0 ml 5.0 ml						
VOA TCL	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	ND	250	230	ug/I	× ·	
71-43-2	Benzene	ND	50	19	ug/l		
75-27-4	Bromodichloromethane	ND	50	6.9	ug/l		
75-25-2	Bromoform	ND	50	26	ug/l		
74-83-9	Bromomethane	ND	50	19	ug/l		
78-93-3	2-Butanone (MEK)	·ND	-250 2_	71	ug/l		
75-15-0	Carbon disulfide	ND	50 J	19	ug/l		
56-23-5	Carbon tetrachloride	ND	50	26	ug/l		
108-90-7	Chlorobenzene	ND	50	37	ug/l		
75-00-3	Chloroethane	ND	50	32	ug/l		
67-66-3	Chloroform	ND	50	9.2	ug/l		
74-87-3	Chloromethane	ND	50	10	ug/l		
124-48-1	Dibromochloromethane	ND	50	8.4	ug/l		
75-34-3	1,1-Dichloroethane	ND	50	4.5	ug/l		
107-06-2	1,2-Dichloroethane	ND	50	28	ug/l		
75-35-4	1,1-Dichloroethene	51.8	50	25	ug/l		
156-59-2	cis-1,2-Dichloroethene	28200 ª	500	89	ug/l		
156-60-5 78-87 <i>-</i> 5	trans-1,2-Dichloroethene	80,0	50 50	9.2	ug/l		
10061-01-5	1,2-Dichloropropane	ND	50	25	ug/l		
10061-01-5	cis-1,3-Dichloropropene	ND	50 50	28	ug/l		
10001-02-0	trans-1,3-Dichloropropene Ethylbenzene	ND ND	50 50	7.6	ug/l		
591-78-6	2-Hexanone	ND ND	50 250	22	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBK		250 250	18 25	ug/l		
75-09-2	Methylene chloride	ND ND	250 100	25 27	ug/l		
00-42-5	Styrene	ND	50	3.4	ug/l		
9-34-5	1,1,2,2-Tetrachloroethane	ND	50 50	5.4 5.4	ug/l		
27-18-4	Tetrachloroethene	ND	50 50	5.4 19	ug/l		
08-88-3	Toluene	639	50 50	20	ug/l ug/l		
1-55-6	1,1,1-Trichloroethane	ND	50 50	4.7	ug/l ug/l		
79-00-5	1,1,2-Trichloroethane	ND	50	7.7	ug/l		
79-01-6	Trichloroethene	254	50	8.0	ug/l		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound



Report of Analysis

Client Samp Lab Sample Matrix: Method: Project:		GW-MW-148-120606 J48443-8 5 (7) AQ - Ground Water SW846 8260B GE - Parker Hannifin	- Old Erie Ca	nal Site,	Date I Percei	Sampled: Received: nt Solids: Y	12/06/06 12/07/06 n/a
VOA TCL	List						
CAS No.	Comp	ound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	•	chloride	4610 ND	50	38 17	ug/1	
	Ū	e (total)	ND	50		ug/l	
CAS No.	Surro	gate Recoveries	Run# 1	Run#2	Lim	its	
1868-53-7	Dibro	mofluoromethane	91%	90%	77-1	21%	
17060-07-0	1,2-D	ichloroethane-D4	99%	96%	65-1	33%	
2037-26-5	Toluei	1e-D8	97%	97%	80-1	17%	
460-00-4	4-Broi	noAuorobenzene	86%	84%	79-1	24%	

(a) Result is from Run# 2

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound



	Report of Analysis							Page 1 of 1
Client Sar Lab Samp Matrix: Method: Project:	ole ID: J4844 AQ - SW84	AW-145 ² 13 3-8 Ground W 6 8015	20606	Canal Site	Date l Perce	Sampled: Received nt Solids IY	: 12/07/06	
Run #1 Run #2	File ID II33587.D	DF I	Analyzed 12/13/06	By HSC	Prep Date n/a		Prep Batch n/a	Analytical Batch GII1679
CAS No.	Compound		Result	RL	MDL	Units	Q	
74-82-8 74-84-0 74-85-1	Methane Ethanc Ethene		588 151 215	0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l		



B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

				Rej	port of A	Analysis			Pa	ge 1 of 1
Client Sam Lab Sample Matrix: Project:	e ID: J4844 AQ -	Ground V	kfø Vater	Old E	rie Canal Si		ceived: Solids:	12/06/06 12/07/06 n/a		
Metals Ana	lysis									
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Meth	ıod	Prep Method	
Sodium	90400	20000	ug/l	2	12/26/06	12/27/06 LH	SW84	6 6010B ¹	SW846 3010A ²	

٠

Instrument QC Batch: MA18563
 Prep QC Batch: MP37400



Report of Analysis											
Lab Sample ID: J48443-	GW-MW-145-120606         48443-8       5         48443-8       5         48443-8       5         48443-8       5         48443-8       5         48443-8       5         48443-8       5         48443-8       5         48443-8       5         48443-8       5         48443-8       5         48443-8       5         48443-8       5         48443-8       5         48443-8       5         48443-8       5         48443-8       5         48443-8       5         48443-8       5         48443-8       5         48443-8       5         48443-8       5         48443-8       5         48443-8       5         48443-8       5         48443-8       5         48443-8       5         48443-8       5         48443-8       5         48443-8       5         48443-8       5         48443-8       5         48443-8       5         48443-8										
Project: GE - Pa	Percent Solids: n/a GE - Parker Hannifin - Old Erie Canal Sile, Clyde, NY										
General Chemistry											
Analyte	Result	RL	Units	DF	Analyzed	Ву	Method				
Alkalinity, Total as CaCO3	371	17	mg/i	1	12/20/06	JA	EPA 310.1				
Chloride	141	2.0	mg/l	1	01/03/07 02:14	JH	EPA 300/SW846 9056				
Nitrogen, Nitrate ^a	< 0.11	0.11	mg/l	1	12/30/06 13:45	MR	EPA353.2/SM4500NO2B				
Nitrogen, Nitrate + Nitrite	< 0.10	0.10	mg/l	1	12/30/06 13:45	MR	EPA 353.2/LACHAT				
Nitrogen, Nitrite	< 0.010	0.010	mg/l	1	12/07/06 18:00	MET	SM19 4500NO2B				
Sulfate	355	10	mg/l	1	01/03/07 02:14	JH	EPA 300/SW846 9056				
Sulfide	< 2.0	2.0	mg/l	1	12/12/06	JA	EPA 376.1				

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)



•

3.15

	Report of Analysis									
Client Sample ID: Lab Sample ID: Matrix: Project:	J48443-8F AQ - Grou	145-120600 S & undwater F er Hannifin	ltered	Canal Site,	Date l Perce	Sampled: 12/0 Received: 12/0 nt Solids: n/a IY			<b>(4)</b>	
General Chemistry	,					<del></del>		<u>, ,</u>		
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method		
Dissolved Organic (	Carbon	6.7	1.0	mg/l	1	12/29/06 01:	54 esj	EPA415.1/SW8469060M		



		Repo	ort of A	nalysis			Page 1 of 2
Client Samp Lab Sample Matrix: Method: Project:			Canal Site	Date Perce	Sampled Received nt Solids	: 12/08/06	
		Analyzed	Ву	Prep I	Date	Prep Batch	Analytical Batch
		12/21/06	LY	n/a		n/a	V3A1345
		12/21/06	PWC	n/a		n/a	V1A1952
	1A45523.D 200	12/18/06	PWC	n/a		n/a	V1A1947
	Purge Volume						
Run #1	5.0 ml						
Run #2	5.0 ml						
Run #3	5.0 ml						
VOA TCL L	list						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	ND	130	120	ug/l		
71-43-2	Benzene	ND	25	9.3	ug/l		
75-27-4	Bromodichloromethane	ND	25	3.4	ug/l		
75-25-2	Bromoform	ND	25	13	ug/l		
74-83-9	Bromomethane	ND	25	9.6	ug/l		
78-93-3	2-Butanone (MEK)	ND	130	36	ug/l		
75-15-0	Carbon disulfide	ND	25	9.5	ug/l		
56-23-5	Carbon tetrachloride	ND	25	13	ug/l		
108-90-7	Chlorobenzene	ND	25	18	-		
75-00-3	Chloroethane	ND	25	16	ug/l		
67-66-3	Chloroform	ND	25	4.6	ug/l		
74-87-3	Chloromethane	ND	25	5.0	ug/l		
124-48-1	Dibromochloromethane	ND	25 25	3.0 4.2	ug/l		
75-34-3	1,1-Dichloroethane	ND	25 25	4.2	ug/l		
107-06-2	1,2-Dichloroethane	ND	25 25	14	ug/l		
75-35-4	1,1-Dichloroethene	13.7	25	14	ug/l	1	
156-59-2	cis-1,2-Dichlocoethene	20800 b	200	36	ug/l	J	
156-60-5	trans-1,2-Dichloroethene	30.8	25	30 4.6	ug/l		
78-87-5	1,2-Dichloropropane	ND	25 25	13	ug/l		
	cis-1,3-Dichloropropene	ND	25	13	ug/l		
	trans-1,3-Dichloropropene	ND	25	14 3.8	ug/l		
100-41-4	Ethylbenzene	ND	25	3.8 11	ug/l		
591-78-6	2-Hexanone	ND	130	8.8	ug/l		
	4-Methyl-2-pentanone(MIBK)		130	0.0 13	ug/l		
	Methylene chloride	ND	50	13	ug/l		
	Styrene	ND	30 25	1.7	ug/l		
/9-34-5	1,1,2,2-Tetrachloroethane	ND	25 25	2.7	ug/l		
	Tetrachloroethene	ND	25 25	2.7 9.7	ug/l		
	Toluene	98.9	25 25	9.7 10	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	25	2.4	ug/l		
· · · · · · · · · · · · · · · · · · ·	*********************	NN	-111 <b>CO</b>	2.4	ug/l		

ND = Not detectedMDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



ω ....



· .			Repo	rt of An	alysis			Page 2 of 2
Lab Sample ID: J48660-1 Matrix: AQ - Ground Wate Method: SW846 8260B		AQ - Ground Water SW846 8260B		Date Sampled: 12 Date Received: 12 Percent Solids: n/3 Old Erie Canal Site, Clyde, NY				
VOA TCL	List							<i></i>
CAS No.	Comp	ound	Result	RL	MDL	Units	Q	
79-00-5		Frichloroethane	ND	25	3.8	ug/i		
79-01-6 75-01-4		oroethene chloride	5.6 9040 ^b	25 200	4.0 150	ug/l ug/l	J	
1330-20-7		e (total)	ND	25	8.6	ug/l		
CAS No.	Surrog	gate Recoveries	Run# 1	Run# 2	Run#	#3	Limits	
1868-53-7		nofluoromethane	93%	111%	99%		77-121%	
17060-07-0		chloroethane-D4	86%	157% ^c	111%	6	65-133%	
2037-26-5	Toluen		95%	94%	97%		80-117%	
460-00-4	4-Bron	ofluorobenzene	97%	115%	83%		79-124%	

(a) for qc purpose only

(b) Result is from Run# 3

(c) Outside control limits due to matrix interference.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound



			Repo	ort of A	nalysis			Page 1 of 1	
Client Sar Lab Samp Matrix: Method: Project:	ole ID: J4860 AQ - SW86	Ground Wa 16 8015		Canal Site	Date Perce	Sampled Received nt Solids IY			
Run #1 Run #2	File ID II33749.D	DF 5	Analyzed 12/21/06	By HSC	Prep E n/a	Date	Prep Batch n/a	Analytical Batch GII1685	
CAS No.	Compound		Result	RL	MDL	Units	Q		
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		6660 426 512	0.50 0.50 0.50	0.33 0.28 0.38	ug/l ug/l ug/l			

,

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit

- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- $\mathbf{B} = \mathbf{Indicates}$  analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω ....



				Re	port of	Analysis			Page	1 of 1	ω 
Client Sample I Lab Sample ID Matrix:	: J48660 AQ - C	GW-MW-15S-120706 J48660-1 AQ - Ground Water GE - Parker Hannifin - Old Erie Canal S					Date Sampled: 12/07/06 Date Received: 12/08/06 Percent Solids: n/a				(45)
Project: Metals Analysis		arker ria	annilin -	Uld E	rie Canal S	ite, Clyde, N				]	
Analyte	Result	RL	Units	DF	Prcp	Analyzed B	/ Metho	ođ	Prep Method		
Sodium	68200	10000	ug/l	1	12/26/06	12/26/06 Li	I SW846	6010B I	SW846 3010A ²		
(1) Instrument Q	C Batch: M	A18554									

(2) Prep QC Batch: MP37400

٠

Report of Analysis											
Lab Sample ID: J48660	W-15S-120706 -1 Fround Water			Date	Sampled: 12/07/0 Received: 12/08/0 nt Solids: n/a						
Project: GE - Pi											
General Chemistry											
Analyte	Result	RL	Units	DF	Analyzed	Ву	Method				
Alkalinity, Total as CaCO3	550	13	mg/l	1	12/21/06	ST	EPA 310.1				
Chloride	122	2.0	mg/l	1	01/04/07 06:46	JH	EPA 300/SW846 9056				
Nitrogen, Nitrate ^a	< 0.11	0.11	mg/l	1	01/02/07 17:04	NR	EPA353.2/SM4500NO2B				
Nitrogen, Nitrate + Nitrite	< 0.10	0.10	mg/l	1	01/02/07 17:04	NR	EPA 353.2/LACHAT				
Nitrogen, Nitrite	< 0.010	0.010	mg/l	1	12/08/06 22:30	MET	SM19 4500NO2B				
	10 0	10	mg/l	1	01/04/07 06:46	IH	EPA 300/SW846 9056				
Sulfate	18.3	<u>. 10</u>	mg/i	•	01101101 00.10	.141	CIN SUUSIYO10 3030				

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)



3.1 @9



Report of Analysis Page											
Client Sample ID: Lab Sample ID: Matrix:	GW-MW-15S-12070 J48660-1F AQ - Groundwater F										
Project:	GE - Parker Hannifi	n - Old Erie	e Canal Site,		nt Solids: n/a IY						
General Chemistry	,										
Analyte	Result	RL	Units	DF	Analyzed By		Method				
Dissolved Organic (	Carbon 11.7	1.0	mg/l	I	12/31/06 01:4	5 ESJ	EPA415.1/SW8469060M				

3.2

	Report of Analysis									
Client Sam Lab Sampl Matrix: Method: Project:		12/06/06 12/07/06 n/a								
Run #1 Run #2			By PWC	Prep E n/a	Pate	Prep Batch n/a	Analytical Batch V1A1952			
Run #1 Run #2	Purge Volume 5.0 ml									
VOA TCL	List									
CAS No.	Compound	Result	RL	MDL	Units	Q				
67-64-1	Acetone	ND	5.0	4.6	ug/l					
71-43-2	Benzene	ND	1.0	0.37	ug/l					
75-27-4	Bromodichloromethane	ND	1.0	0.14	ug/l					
75-25-2	Bromoform	ND	1.0	0.52	ug/l					
74-83-9	Bromomethane	ND	1.0	0.39	ug/l					
78-93-3	2-Butanone (MEK)	-ND	5.0-12	1.4	ug/l					
75-15-0	Carbon disulfide	ND	1.0 .	0.38	ug/l					
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l					
108-90-7	Chlorobenzene	ND	1.0	0.74	ug/I					
75-00-3	Chloroethane	ND	1.0	0.65	ug/l					
67-66-3	Chloroform	ND	1.0	0.18	ug/l					
74-87-3	Chloromethane	ND	1.0	0.20	ug/l					
124-48-1	Dibromochloromethane	ND	1.0	0.17	ug/l					
75-34-3	1,1-Dichloroethane	ND	1.0	0.089	ug/l					
107-06-2	1,2-Dichloroethane	ND	1.0	0.57	ug/l					
75-35-4	1,1-Dichloroethene	ND	1.0	0.49	ug/l					
156-59-2	cls-1,2-Dichloroethene	5.7	1.0	0.18	ug/l					
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.18	ug/l					
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l					
	cis-1,3-Dichloropropene	ND	1.0	0.56	ug/l					
10061-02-6 100-41-4	trans-1,3-Dichloropropene	ND	1.0	0.15	ug/l					
591-78-6	Ethylbenzene 2-Hexanone	ND ND	1.0	0.44	ug/l					
08-10-1	4-Methyl-2-pentanone(MIBK)		5.0	0.35	ug/l					
75-09-2	Methylene chloride	ND ND	5.0	0.50	ug/l					
00-42-5	Styrene	ND	2.0 1.0	0.53 0.069	ug/l					
9-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.069	ug/l					
27-18-4	Tetrachloroethene	ND	1.0	0.39	ug/l ug/l					
08-88-3	Toluene	ND	1.0	0.33	ug/l					
1-55-6	1,1,1-Trichloroethane	ND	1.0	0.094	ug/l					
9-00-5	1,1,2-Trichloroethane	ND	1.0	0.15	ug/l					
9-01-6	Trichloroethene	8.4	1.0	0.16	ug/l					

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

3.7 😌



			Report	of An	alysis			Page 2 of 2
Client Sample ID:GW-MW-16S-12060Lab Sample ID:J48443-4Matrix:AQ - Ground WaterMethod:SW846 8260BProject:GE - Parker Hannifir			Date Sampled: Date Received: Percent Solids: Canal Site, Clyde, NY			12/06/06 12/07/06 n/a		
VOA TCL	List							
CAS No.	Comp	ound	Result	RL	MDL	Units	Q	
75-01-4 1330-20-7	<b>~</b>	chloride e (total)	ND ND	1.0 1.0	0.77 0.34	ug/l ug/l		
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7 17060-07-0 2037-26-5 460-00-4	7060-07-0 1,2-Dichloroethane-D4 2037-26-5 Toluene-D8		105%77-121%133%65-133%93%80-117%110%79-124%			133% 17%		

-

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound



_		Report of Analysis											
Client San Lab Samp Matrix: Method: Project:	ole ID: J484 AQ SW8	-MW-16S-12 43-4 - Ground Wa 446 8015 - Parker Han		Canal Site	Date 2 Perce	Sampled Received nt Solids IY							
Run #1 Run #2	File ID II33581.D	DF I	Analyzed 12/13/06	By HSC	Prep E n/a	)ate	Prep Batch n/a	Analytical Batch GII1679					
CAS No.	Compound		Result	RL	MDL	Units	Q						
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		2.07 0.35 0.13	0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l							

ND = Not detected MDL - Method Detection Limit RL = Reporting LimitE = Indicates value exceeds calibration range

J = Indicates an estimated value

**B** = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound





	Report of Analysis										
Client Sample I Lab Sample ID Matrix:	: J48443	W-16S- -4 Fround V				Date Sa Date Re Percent	•	-			
Project:		arker Ha	annifin -	Old E	rie Canal S	ite, Clyde, NY					
Metals Analysis	i										
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method			
Sodium	20000	10000	ug/l	1	12/26/06	12/26/06 LH	SW846 6010B ^I	SW846 3010A ²			
(1) Instrument Q	C Batch: M	A18554									

(2) Prep QC Batch: MP37400

ACCUTEST.

		Repo	rt of Ar	nalysis	٠		Page 1 of 1		
Lab Sample ID: J48	V-MW-16S-120606 3443-4 ) - Ground Water								
Project: GE - Parker Hannifin - Old Erie Canal Site, Clyde, NY									
General Chemistry	· · · · · · · · · · · · · · · · · · ·								
Analyte	Result	RL	Units	DF	Analyzed	Ву	Method		
Alkalinity, Total as CaC	O3 134	5.0	mg/l	1	12/20/06	JA	EPA 310.1		
Chloride	13.1	2.0	mg/l	1	01/03/07 01:00		EPA 300/SW846 9056		
Nitrogen, Nitrate ^a	2.0	0.11	mg/l	1	12/30/06 13:38	-	EPA353.2/SM4500NO2B		
Nitrogen, Nitrate + Niti	rite 2.0	0.10	mg/l	1	12/30/06 13:38		EPA 353.2/LACHAT		
Nitrogen, Nitrite	< 0.010	0.010	mg/l	1	12/07/06 18:00		SM19 4500NO2B		
Sulfate	19.2	10	mg/l	1	04 100 100 01 m		EPA 300/SW846 9056		
Sulfide	< 2.0	2.0	mg/i	1	12/12/06	JA	EPA 376.1		

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)



3.7 🕃

		Page 1 of 1						
Client Sample ID: Lab Sample ID: Matrix:	GW-M J48443 AQ - G							
Project:	GE - Parker Hannifin - Old Erie Canal Site					nt Solids: n/a IY		
General Chemistry								
Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Dissolved Organic Carbon		1.7	1.0	mg/l	1	12/29/06 01:23	ESJ	EPA415.1/SW8469060M

.





	Page 1 of						
Client Sam Lab Sampl Matrix: Method: Project:							
Run #1 Run #2		nalyzed 2/20/06	By PWC	Prep E n/a	)ate	Prep Batch n/a	Analytical Batch VIA1952
Run #1 Run #2	Purge Volume 5.0 ml						
VOA TCL	List						<b>MAR FRANK A A A A A A A A A A A A A A A A A A </b>
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	ND	5.0	4.6	ug/l		
71-43-2	Benzene	ND	1.0	0.37	ug/l		
75-27-4	Bromodichloromethane	ND	1.0	0.14	ug/l		
75-25-2	Bromoform	ND	1.0	0.52	ug/l		
74-83-9	Bromomethane	ND	1.0	0.39	ug/l		
78-93-3	2-Butanone (MEK)	ND	5.0 2	1.4	ug/l		
75-15-0	Carbon disulfide	ND	1.0 )	0.38	ug/l		
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l		
108-90-7	Chlorobenzene	ND	1.0	0.74	ug/l		
75-00-3	Chloroethane	ND	1.0	0.65	ug/l		
67-66-3	Chloroform	ND	1.0	0.18	ug/l		
74-87-3	Chloromethane	ND	1.0	0.20	ug/l		
124-48-1	Dibromochloromethane	ND	1.0	0.17	ug/l		
75-34-3	1,1-Dichloroethane	ND	1.0	0.089	ug/l		
107-06-2	1,2-Dichloroethane	ND	1.0	0.57	ug/l		
75-35-4	1,1-Dichloroethene	ND	1.0	0.49	ug/l		
156-59-2	cis-1,2-Dichloroethene	16.0	1.0	0.18	ug/l		
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.18	ug/l		
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l		
	cis-1,3-Dichloropropene	ND	1.0	0.56	ug/l		
	trans-1,3-Dichloropropene	ND	1.0	0.15	ug/l		
100-41-4 591-78-6	Ethylbenzene 2 Hevenene	ND	1.0	0.44	ug/l		
108-10-1	2-Hexanone 4-Methyl-2-pentanone(MIBK)	ND	5.0	0.35	ug/l		
75-09-2	4-memyi-z-penianone(MIBK) Methylene chloride	ND	5.0	0.50	ug/l		
00-42-5	Styrene	ND ND	2.0	0.53	ug/l		
9-34-5	1,1,2,2-Tetrachloroethane	ND	1.0 1.0	0.069	ug/l		
27-18-4	Tetrachloroethene	ND	1.0	0.11 0.39	ug/l		
08-88-3	Toluene	0.72	1.0	0.35	ug/l ug/l	T	
1-55-6	1,1,1-Trichloroethane	ND	1.0	0.094	ug/l ug/l	J	
9-00-5	1,1,2-Trichloroethane	ND	1.0	0.15	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.16	ug/l		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound



	Report of Analysis											
Client Sample Lab Sample Matrix; Method: Project:	•	GW-MW-16B-120606 J48443-3 AQ - Ground Water SW846 8260B GE - Parker Hannifin -	Old Erie C	anal Site,	Date Perce	Sampled: Received: nt Solids: IY						
VOA TCL	List							·				
CAS No.	Comp	ound	Result	RL	MDL	Units	Q					
75-01-4 1330-20-7		chloride e (total)	1.2 ND	1.0 1.0	0.77 0.34	ug/l ug/l						
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lim	its						
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene		103% 128% 93% 108%		65-1 80-1	21% 33% 17% 24%						

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound



.

Accutest Laboratories

			Repo	ort of A	nalysis			Page 1 of 1
Client Sar Lab Samp Matrix: Method: Project:	ole ID: J484 AQ SW8	-MW-16B-12 43-3 - Ground Wa 46 8015 - Parker Han		Canal Site	Date Perce	Sampled Received nt Solids IY	: 12/07/06	
Run #1 Run #2	File ID II33580.D	DF I	Analyzed 12/13/06	By HSC	Prep E n/a	)ate	Prep Batch n/a	Analytical Batch GII1679
CAS No.	Compound		Result	RL	MDL	Units	Q	,
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		6.70 0.60 0.72	0.10 0.10 0.10	0.066 0.056 0.075	ug/l ug/l ug/l		

ND = Not detected **MDL** - Method Detection Limit

RL = Reporting Limit

- E = Indicates value exceeds calibration range
- $\mathbf{J} = \mathbf{Indicates}$  an estimated value
- B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



				Re	port of .	Analysi	S		1	Page 1 of 1	3.5
Client Sample I Lab Sample ID: Matrix: Project:	J48443 AQ - G	GW-MW-16B-120606 J48443-3 AQ - Ground Water GE - Parker Hannifin - Old Erie Cana					e Rec cent S	pled: 12/06/00 eived: 12/07/00 olids: n/a			69)
Metals Analysis											
Analyte	Result	RL	Units	DF	Prep	Analyzed	By	Method	Prep Metho	d	
Sodium	153000	30000	ug/l	3	12/26/06	12/27/06	LH	SW846 6010B ¹	SW846 3010A	2	
(1) Instrument Q											

.

(2) Prep QC Batch: MP37400

	Page 1 of 1						
Lab Sample ID: J48443	W-16B-120606 -3 Ground Water						
Project: GE - P							
General Chemistry					······································		
Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Alkalinity, Total as CaCO3	37.6	5.0	mg/l	1	12/20/06	JA	EPA 310.1
Chloride	128	2.0	mg/l	1	01/03/07 00:05	IH	EPA 300/SW846 9056
Nitrogen, Nitrate ^a	< 0.11	0.11	mg/l	1	12/30/06 13:37	-	EPA353.2/SM4500NO2B
Nitrogen, Nitrate + Nitrite	< 0.10	0.10	mg/i	1	12/30/06 13:37	MR	EPA 353.2/LACHAT
Nitrogen, Nitrite	< 0.010	0.010	mg/l	1	12/07/06 17:55		SM19 4500NO2B
Sulfate	1690	100	mg/l	10	01/03/07 18:49	IH	EPA 300/SW846 9056
Sulfide	<2.0	2.0	mg/l	1	12/12/06	JA	EPA 376.1

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)



3.5



	Page 1 of 1							
Client Sample ID: Lab Sample ID:	J48443-3							
Matrix: Proj <del>e</del> ct:	•					Received: 12/07/( nt Solids: n/a IY		
General Chemistry	7							**************************************
Analyte		Result	RL	Units	DF	Analyzed	By	Method
Dissolved Organic (	Carbon	21.4	1.0	mg/l	1	12/29/06 01:16	ESJ	EPA415.1/SW8469060M

3,0 0,0

		керо	ort of An	alysis			Page 1 of 2
Client Sam Lab Sampl Matrix: Method: Project:			Canal Site,	Date   Perce	Sampled Received nt Solids Y	: 12/01/06	
Run #1 Run #2		Analyzed 12/06/06	By YL	Prep D n/a	ate	Prep Batch n/a	Analytical Batch VD4809
Run #1 Run #2	Purge Volume 5.0 ml						
VOA TCL	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1 71-43-2 75-27-4 75-25-2 74-83-9 78-93-3 75-15-0 56-23-5 108-90-7 75-00-3 67-66-3 74-87-3 124-48-1 75-34-3 107-06-2 75-35-4 156-59-2 156-60-5	Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chlorobenzene Chloroethane Chloroothane Dibromochloromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethane trans-1,2-Dichloroethene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	$ \begin{array}{c} -5.0 - 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0$	0.37 0.14 0.52 0.39	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1		
78-87-5 10061-01-5 10061-02-6 100-41-4 591-78-6 108-10-1 75-09-2 100-42-5 79-34-5 127-18-4 108-88-3 71-55-6 79-00-5 79-01-6	<ul> <li>1,2-Dichloropropane</li> <li>cis-1,3-Dichloropropene</li> <li>trans-1,3-Dichloropropene</li> <li>Ethylbenzene</li> <li>2-Hexanone</li> <li>4-Methyl-2-pentanone(MIBK Methylene chloride</li> <li>Styrene</li> <li>1,1,2,2-Tetrachloroethane</li> <li>Tetrachloroethene</li> <li>Toluene</li> <li>1,1,1-Trichloroethane</li> <li>1,1,2-Trichloroethane</li> <li>Trichloroethene</li> </ul>	ND ND ND ND ND		0.18 0.50 0.56 0.15 0.44 0.35 0.50 0.53 0.069 0.11 0.39 0.41 0.094 0.15 0.16	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	J	<i>,</i>

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

**Report of Analysis** 

Page 1 of 2

J = Indicates an estimated value

			Report	of An	alysis			Page 2 of 2
Client Samp Lab Sample Matrix: Method: Project:		GW-TMW-2-112906 J47796-6 AQ - Ground Water SW846 8260B GE - Parker Hannifin	- Old Erie Ca	mal Site,	11/29/06 12/01/06 n/a			
VOA TCL	List						· · · · · · · · · · · · · · · · · · ·	
CAS No.	Comp	wund	Result	RL	MDL	Units	Q	
75-01-4 1330-20-7	-	chloride e (total)	ND ND	9 - • -	0.77 0.34	ug/l ug/l		
CAS No.	Surro	gate Recoveries	Run#1	Run# 2	Lin	its		
1868-53-7 17060-07-0 2037-26-5 460-00-4	1,2-D Toluci	mofluoromethane ichloroethane-D4 nc-D8 nofluorobenzene	96% 113% 96% 111%		65-1 80-1	21 % 33 % 17 % 24 %		

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

.

			Keho		1413.212			rage I UI I
Client Sam Lab Samp Matrix: Method: Project:	le ID: J A S	GW-TMW-2-11 47796-6 AQ - Ground Wa 5W846 8015 GE - Parker Han						
Run #1 Run #2	File ID 1133505.1	DF ) l	Analyzed 12/08/06	By HSC	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GII1676
CAS No.	Compou	md	Result	RL	MDL	Units	Q	
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		2 11 12	0.10 302 0.10 8664 0.10	0.066 0.056 0.075	ug/l ug/l ug/l		

**Report of Analysis** 

Page 1 of 1

ND = Not detectedMDL - Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

				Rej	port of t	anaiysis		rage 1 of 1
Client Sample I Lab Sample ID: Matrix:	: J47796					6 5		
Project: GE - Parker Hannifin - Old Erie Canal Site, Clyde, NY								
Metals Analysis								
Analyte	Result	RL	Units	DF	Prep	Analyzed B	y Method	Prep Method
Sodium	12700 ab. A	10000	ug/l	I	12/18/06	12/19/06 LI	H SW846 6010B	SW846 3010A ²

Instrument QC Batch: MA18522
 Prep QC Batch: MP37272

## **Report of Analysis**

Page 1 of 1

Client Sample ID: GW-TMW-2-112906 Lab Sample ID: J47796-6 Matrix: AQ - Ground Water					Date Sampled: 11/29/06 Date Reccived: 12/01/06 Percent Solids: n/a					
Project:	GE - Parker Hannifin - Old Erie Canal Site, C									
General Chemistry		^.				2				
Analyte		Result	RL	Units	DF	Analyzed	By	Method		
Alkalinity, Total as	CaCO3	586		mg/l	1	12/12/06	ST	EPA 310.1		
Chloride		19.4	2,0	mg/l	1	12/21/06 02:27	JH	EPA 300/SW846 9056		
Nitrogen, Nitrate a		<0.11	0.11	mg/l	1	12/21/06 14:56	NR	EPA353.2/SM4500NO2B		
Nitrogen, Nitrate +	Nitrite	<0.10	0.10	mg/l	1	12/21/06 14:56	NR	ЕРА 353.2/LACHAT		
Nitrogen, Nitrite		<0.010	0.010	mg/l	í	12/01/06 14:45	ST	SM19 4500NO2B		
Sulfate		35.0	2.0	mg/l	1	12/21/06 02:27	ЪН	EPA 300/SW846 9056		
Sulfide		<2.0	2.0	mg/l	1	12/06/06	ST	EPA 376.1		

# Report of Analysis

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

Page 1 of 1

		Page 1 of 1						
Client Sample ID: Lab Sample ID:	J47796-					Sampled: 11/29		
Matrix:	AQ - G	roundwater Filt	lered			Received: 12/01 nt Solids: n/a		
Project:	GE - Parker Hannifin - Old Erie Canal Site, Clyde, NY							
General Chemistry	,							
Analyte		Result	RL	Units	DF	Analyzed	By	Method
Dissolved Organic	Carbon ^a	12.7	2.0	mg/l	2	12/26/06 20:2	8 мо	EPA415.1/SW8469060M

(a) Detection limit raised due to dilution required for possible matrix interference.