

Mr. Joshuah Klier, G.I.T., M.S. New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway, 12th Floor Albany, New York 12233-7014

Date: March 10, 2023 Our Ref: 30147041

Subject: First Quarter 2023 Groundwater Monitoring Report

General Electric Company and Parker-Hannifin Corporation

Old Erie Canal Site, Clyde, New York

NYSDEC Site No. 859015

Dear Mr. Klier,

Arcadis of New York, Inc. One Lincoln Center 110 West Fayette Street Suite 300 Syracuse New York 13202

Phone: 315 446 9120 Fax: 315 449 0017

www.arcadis.com

On behalf of General Electric Company (GE) and Parker-Hannifin Corporation (P-H), this letter provides summaries of the enhanced reductive dechlorination (ERD) injection and post-injection groundwater monitoring activities recently completed at the Old Erie Canal Site (Site) (New York State Department of Environmental Conservation [NYSDEC] Site No. 859015), located in the Village of Clyde, Town of Galen, Wayne County, New York (Figure 1). Specifically, this letter includes summaries of the ERD injection event performed between October 15 and 27, 2022 and the first quarterly post-injection sampling event conducted between January 17 and 26, 2023. Additional details regarding those activities are provided below.

ERD Injection Summary

Remedial Injections

On August 3, 2022, Arcadis of New York, Inc. (Arcadis) submitted the 2022 ERD Injection Work Plan (ERD Work Plan) to the NYSDEC. NYSDEC provided approval of that document in a letter to GE and P-H dated August 18, 2022. That document proposed the injection of 10,800 pounds of EOS_{PRO} emulsified vegetable oil (EVO) and 4,400 pounds of Evonik EHC® Liquid (EHC-L). At 3% (by volume) solution, the ERD Work Plan proposed the injection of 52,000 gallons of injection solution that would be injected into the subsurface via 11 injection wells (seven existing and four new wells) and 16 new direct push technology (DPT) injection points. Further, the ERD Work Plan indicated that approximately 1,600 to 3,500 gallons of dilute organic substrate would be injected at each overburden well or DPT point, and 1,000 gallons would be injected in each bedrock well, followed by a moderate volume of chase water and bioaugmentation at each DPT injection point or well. The ERD Work Plan also indicated that, if an intended injection well or DPT screened interval was unable to accept the target volume of injection solution, the remaining volume for that location would be redistributed to nearby injection locations or alternate DPT intervals. Accordingly, certain modifications to the injection volumes and locations were made based on observations in the field; however, the target injection weight of EVO and EHC-L was achieved, as further described below. The remainder of the remedial injection activities were performed in accordance with the approach described the ERD Work Plan.

2023 Clyde Q1 GWM Letter Report-FINAL 1/6

Based on observed field conditions (i.e., injection solution acceptance rate), the injection network proposed in the ERD Work Plan was modified to include 15 overburden injection wells (IW-17, IW-18, IW-20 through IW-23, IW-30, IW-31, IW-33, IW-34, IW-36 through IW-39, and IW-44), four bedrock injection wells (IW-50 through IW-53), and 12 temporary overburden injection points (DPT 1 through DPT-8, DPT-12, DPT-13, and DPT-15). Specifically, 10,800 pounds of EVO were used to prepare approximately 38,700 gallons of 3.5% EVO solution. EVO concentrations were increased to 3.5% from the proposed concentration of 3%, to minimize the injection volumes in wells where surfacing was observed or where target flow rates were not obtainable. EVO solution was injected into overburden injection wells IW-17, IW-18, IW-20 through IW-23, IW-30, IW-31, IW-33, IW-34, IW-36 through IW-39, and IW-44 and temporary overburden injection points DPT-1 through DPT-8 and DPT-10, as indicated in **Table 1**. Per the ERD Work Plan, EHC-L was initially injected into bedrock injection wells IW-50 through IW-53; however due to the limited injection solution acceptance rate, only a small volume of EHC-L solution was injected into these wells. Therefore, the remaining EHC-L solution was adjusted to 5% (by volume) and injected along the top of the bedrock surface at temporary overburden injection points DPT-8, DPT-12, DPT-13, and DPT-15. A total of approximately 2,460 gallons of the EHC-L solution was injected in these well and DPT points, as indicated in **Table 1**.

Following completion of EVO and EHC-L solution injection, bioaugmentation was performed at each overburden injection well (except IW-34, as further discussed below) and overburden DPT point. Specifically, between 50 and 100 gallons of deoxygenated water were injected at each location, followed by one liter of KB-1 bioaugmentation culture and an additional 50 to 100 gallons of deoxygenated water. Bioaugmentation was not completed at IW-34 due to immediate daylighting of solution when bioaugmentation was attempted.

In summary, the target quantities of reagents (i.e., 10,800 pounds EVO and 4,400 pounds of EHC-L) were injected via overburden and bedrock wells and overburden DPT points at the Site. A total of approximately 46,900 gallons of injection solutions and deoxygenated water were injected into 15 overburden injection wells, four bedrock injection wells and 12 overburden DPT injection points.

Injection Monitoring

Per the ERD Work Plan, monitoring activities were performed at certain wells during the performance of the injection activities. Specifically, field personnel collected pre- and post-injection groundwater level measurements, pH, and conductivity data from monitoring wells in the vicinity of the injection wells and DPT points, including monitoring wells MW-1S, MW-4B, MW-4S, MW-6B, MW-6S, MW-13S, MW-14S, MW-and 15S. The pre- and post-injection measurements and dates of those measurements are provided in **Table 2**. In addition, these wells were visually inspected twice each day during the injection activities to monitor for the presence of injection solution in the wells. As summarized in Table 2, injection solution was observed in four monitoring wells (MW-1S, MW-6S, MW-6B, and MW-13S), indicating good distribution of injection solution in the vicinity of those four wells.

January 2023 Quarterly Post-Injection Monitoring and Sampling Event

Per the ERD Work Plan, the first post-injection quarterly monitoring and sampling event was performed in January 2023. The scope of the quarterly monitoring and sampling event involved the following:

Measurement of groundwater elevations and depth to bottom at 12 source area monitoring wells (i.e., MW-1S, MW-4B, MW-4S, MW-6B, MW-7S, MW-13S, MW-14S, MW-15S, MW-17S, MW-18S, and MW-19S); and

 Collection of groundwater samples via low-flow purging and sampling at the same 12 source area monitoring wells (i.e., MW-1S, MW-4B, MW-4S, MW-6B, MW-6S, MW-7S, MW-13S, MW-14S, MW-15S, MW-17S, MW-18S, and MW-19S).

In addition, although not part of the scope proposed in the ERD Work Plan, monitoring well MW-14B was gauged for the potential presence of non-aqueous phase liquid (NAPL) based on the prior observation of NAPL during installation of that monitoring well in August 2022, and no NAPL was detected. Additional details regarding each of these activities are provided below.

Groundwater Gauging Activities

Arcadis personnel collected depth to water and depth to bottom measurements using surveyed measuring points at the 12 source area monitoring wells (i.e., MW-1S, MW-4B, MW-4S, MW-6B, MW-6S, MW-7S, MW-13S, MW-14S, MW-15S, MW-17S, MW-18S, and MW-19S) on January 17, 2013. The gauging data associated with the January 2023 quarterly monitoring event are presented in **Table 3**. As noted therein, a depth to bottom value was not recorded for MW-4B due to the presence of injection fluids inside the well.

As previously indicated, NAPL was observed in the soil cuttings and wash water during installation of monitoring well MW-14B on August 12, 2022. Based on the prior observation, the well was gauged to determine the potential presence and thickness of NAPL in that well during the quarterly monitoring event. NAPL was not detected in this monitoring well during the January 2023 quarterly monitoring event.

Groundwater Sampling Activities

Arcadis personnel performed low-flow groundwater purging and sampling activities at the 12 source area monitoring wells (i.e., MW-1S, MW-4B, MW-4S, MW-6B, MW-6S, MW-7S, MW-13S, MW-14S, MW-15S, MW-17S, MW-18S, and MW-19S) between January 17 and 26, 2023. The low-flow purging and sampling logs for this event are provided in **Attachment 1.**

The collected groundwater samples (including appropriate quality assurance/quality control samples), were submitted to SGS North America for the following analysis:

- volatile organic compounds (VOCs);
- select metals (total and dissolved iron and manganese);
- general chemistry (total organic carbon, sulfide, and sulfate); and
- dissolved gasses (ethane, ethene, and methane).

The analytical results associated with the collected samples are presented in **Table 4**, which also includes the NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1: Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Class GA (Class GA) groundwater quality standards/guidance values for comparison purposes. **Table 4** also presents the final field parameters collected at each well prior to sample collection (or the field parameters from immediately before a well went dry). The data for trichloroethene (TCE), its reductive dechlorination products, and other indicators of anaerobic activity (i.e., ethane, ethene, and methane) are also presented on **Figure 1**. The laboratory analytical data reports associated with this monitoring event are provided as **Attachment B**. A summary of the constituents (chlorinated VOCs, other VOCs, and inorganics) that were detected at levels above the corresponding Class GA groundwater standards during the January 2023 quarterly sampling event is provided below.

Chlorinated VOCs

- 1,1-dichloroethane was detected in three of 12 wells at concentrations ranging from 1.3 J micrograms per liter (μg/L) (the J flag indicates an estimated concentration) to 7.0 μg/L. However, this constituent was detected in only one well (MW-17S) at a concentration greater than the Class GA groundwater standard of 5 μg/L.
- 1,1-dichloroethene was detected in one of 12 wells (MW-4B) at a concentration of 212 μg/L, which is also greater than the Class GA groundwater standard of 5 μg/L.
- cis-1,2-dichloroethene was detected in 11 of 12 wells (including one sample duplicate) at concentrations ranging from 2.7 μg/L (with a sample duplicate of 2.9 μg/L) to 48,200 μg/L. Further, this constituent was detected in nine wells (MW-1S, MW-4B, MW-6B, MW-6S, MW-13S, MW-14S, MW-17S, MW-18S, and MW-19S) at concentrations greater than the Class GA groundwater standard of 5 μg/L (ranging from 31.5 μg/L to 48,200 μg/L). The maximum detected concentration was reported for monitoring well MW-4B.
- trans-1,2-dichloroethene was detected in eight of 12 wells at concentrations ranging from 0.69 J μg/L to 289 μg/L. Further, this constituent was detected in four wells (MW-4B, MW-6B, MW-13S, and MW-17S) at concentrations greater than the Class GA groundwater standard of 5 μg/L (ranging from 8.9 μg/L to 289 μg/L). The maximum detected concentration was reported for monitoring well MW-4B.
- TCE was detected in five of 12 wells at concentrations ranging from 3 μg/L to 7,550 μg/L. Further, this constituent was detected in four wells (MW-1S, MW-4B, MW-17S, and MW-19S) at concentrations greater than the Class GA groundwater standard of 5 μg/L (ranging from 5.6 μg/L to 7,550 μg/L). The maximum detected concentration was reported for monitoring well MW-4B.
- Vinyl Chloride was detected in 11 of 12 wells (including one sample duplicate) at concentrations ranging from 1.3 μg/L to 22,500 μg/L. Further, this constituent was detected in 10 wells (MW-1S, MW-4B, MW-6B, MW-6S, MW-7S, MW-13S, MW-14S, MW-15S, MW-17S, and MW-18S) at concentrations greater than the Class GA groundwater standard of 2 μg/L (ranging from 2.2 μg/L [with a sample duplicate of 2.3 μg/L] to 22,500 μg/L). The maximum detected concentration was reported for monitoring well MW-4B.

Other VOCs

- Benzene was detected in one of 12 wells (MW-15S) at a concentration of 3.8 μ g/L, which is also greater than the Class GA groundwater standard of 1 μ g/L.
- Ethylbenzene was detected in four of 12 wells at concentrations ranging from 2.6 μg/L to 178 J μg/L.
 However, this constituent was detected in only two wells (MW-4B and MW-6S) at concentrations greater than
 the Class GA groundwater standard of 5 μg/L (ranging from 67.2 μg/L to 178 J μg/L). The maximum detected
 concentration was reported for monitoring well MW-4B.
- Toluene was detected in five of 12 wells (MW-4B, MW-6B, MW-6S, MW-14S, and MW-15S) at concentrations ranging from 93.2 μg/L to 4,130 μg/L, all of which were also greater than the Class GA groundwater standard of 5 μg/L. The maximum detected concentration was reported for monitoring well MW-6S.
- Total Xylenes were detected in four of 12 wells (MW-4B, MW-6S, MW-14S, and MW-15S) at concentrations ranging from 11.8 μg/L to 481 μg/L, all of which were also greater than the Class GA groundwater standard of 5 μg/L. The maximum detected concentration was reported for monitoring well MW-4B.

Inorganics

- Iron was detected in 10 of 12 wells (MW-1S, MW-4S, MW-6B, MW-6S, MW-7S, MW-13S, MW-14S, MW-15S, MW-18S, and MW-19S) (including one sample duplicate) at concentrations ranging from 767 μg/L to 134,000 μg/L, all of which were greater than the Class GA groundwater standard of 300 μg/L. The maximum detected concentration was reported for monitoring well MW-6S.
- Iron (filtered) was detected in eight of 12 wells (MW-1S, MW-4S, MW-6B, MW-6S, MW-7S, MW-13S, MW-14S, and MW-15S) (including one sample duplicate) at concentrations ranging from 364 μg/L to 146,000 μg/L, all of which were greater than the Class GA groundwater standard of 300 μg/L. The maximum detected concentration was reported for monitoring well MW-6S.
- Manganese was detected in all 12 wells (including one sample duplicate) at concentrations ranging from 43.5 μg/L to 49,600 μg/L. Further, this constituent was detected in seven wells (including one sample duplicate) (MW-1S, MW-4S, MW-6S, MW-7S, MW-14S, MW-15S, and MW-18S) at concentrations greater than the Class GA groundwater standard of 300 μg/L (ranging from 308 μg/L to 49,600 μg/L). The maximum detected concentration was reported for monitoring well MW-1S.
- Manganese (filtered) was detected in all 12 wells (including one sample duplicate) at concentrations ranging from 28.2 μg/L to 50,000 μg/L. Further, this constituent was detected in six wells (including one sample duplicate) (MW-1S, MW-4S, MW-6S, MW-7S, MW-14S, and MW-15S) at concentrations greater than the Class GA groundwater standard of 300 μg/L (ranging from 481 μg/L to 50,000 μg/L). The maximum detected concentration was reported for monitoring well MW-1S.

Future Activities and Schedule

Per the ERD Work Plan, the second quarterly monitoring event is scheduled for April 2023. The monitoring network for the second quarterly monitoring event will include the 12 source area monitoring wells sampled during the January 2023 quarterly monitoring event, as well as 11 perimeter wells (EMW-2, EMW-4, MW-3B, MW-3S, MW-4C, MW-5B, MW-5S, MW-7B, MW-9S, MW-16B, and MW-16S), three general wells (EMW-3, EMW-5, and MW-8S), and two surface water sampling locations on the New York State barge canal. In accordance with Arcadis' February 7, 2022, proposal to the NYSDEC (as discussed in Section 2.1 of the ERD Work Plan), the collected groundwater samples will continue to be analyzed for VOCs, dissolved gases (ethane, ethene, and methane), TOC, total and dissolved iron and manganese, sulfate, and sulfide. In addition, monitoring well MW-14B will be gauged to determine if NAPL is present in that well. Finally, Arcadis will deploy Min-Trap® sampling devices during the second quarterly monitoring event to aid in evaluating the effectiveness of the bedrock EHC-L injections.

Per Section 7.3 of the Site Management Plan (SMP), the first Periodic Review Report (PRR) for the Site is due sixteen months after issuance of the Certificate of Completion for the Site. As NYSDEC issued the Certificate of Completion on February 2022, the PRR is due in June 2023. As noted in Section 5 of the ERD Work Plan, the PRR will be completed in conformance with the requirements of NYSDEC's Technical Guidance for Site Investigation and Remediation (DER-10) and Section 7.3 of the SMP, including the necessary certification by a licensed New York State Professional Engineer. As the second quarterly monitoring event is scheduled for April 2023, the PRR will also include the results of that quarterly monitoring event, a summary of data trends, a mass reduction evaluation as specified in Section 6.1 of the SMP and any proposed recommendations to the scope and schedule specified in this ERD Work Plan.

Please contact Ms. Cassie Johnson of P-H or Mr. Lewis Streeter of GE with any questions or comments regarding this report.

Sincerely,

Arcadis of New York, Inc.

Corey Averill Project Manager

Email: corey.averill@arcadis.com

Direct Line: 315.671.9224

CC. Cassie Johnson, Parker-Hannifin Corporation Lewis Streeter, General Electric Company James Nuss, PE, LSP, Arcadis

Enclosures:

Table 1 – EVO and EHC-L Injection Solution Distribution

Table 2 – ERD Injection Monitoring Data

Table 3 - Gauging Data

Table 4 - Groundwater Monitoring Event Data

Figure 1 - Groundwater Analytical Map - January 2023

Attachment 1 – Groundwater Sampling Logs

Attachment 2 – Groundwater Laboratory Results

Tables

Table 1 EVO and EHC-L Injection Solution Distribution First Quarter 2023 Groundwater Monitoring Report Old Erie Canal - NYSDEC Site #859015 124 Columbia Street

Clyde, New York

EVO S	olution
Injection Well ID	Injected Volume (gallons)
IW-17	705
IW-18	400
IW-20	992
IW-21	280
IW-22	523
IW-23	513
IW-30	2,123
IW-31	3,015
IW-33	855
IW-34	115
IW-36	3,140
IW-37	3,128
IW-38	2,629
IW-39	1,493
IW-44	3,919
DPT-1	1,586
DPT-2	1,721
DPT-3	1,538
DPT-4	2,194
DPT-5	1,513
DPT-6	1,613
DPT-7	894
DPT-8	1,745
DPT-10	2,040

EHC-L Solution									
Injection Well ID	Injected Volume (gallons)								
IW-50	16								
IW-51	1								
IW-52	22								
IW-53	1								
DPT-8	368								
DPT-12	365								
DPT-13	693								
DPT-15	995								

Notes:

- 1) EVO = emulsified vegetable oil
- 2) EHC-L = Evonik EHC® Liquid
- 3) IW = injection well
- 4) DPT = direct push technology

Well ID	Date of Initial Water Level	Initial Water Level (ft bmp)	Date of Final Water Level	Final Water Level (ft bmp)	Pre-Injection pH	Post-Injection pH	Pre-Injection Specific Conductivity (mS/cm)	Post-Injection Specific Conductivity (mS/cm)	Reagent Visible? EVO/EHC-L
MW-1S	10/18/2022	2.46	10/24/2022	3.02	6.81	8.39	3.74	1.71	EVO
MW-4S	10/14/2022	4.56	10/24/2022	4.55	6.74	8.20	4.02	2.99	No
MW-4B	10/17/2022	4.46	10/24/2022	4.89	6.15	7.61	3.02	2.62	No
MW-6S	10/11/2022	3.52	10/24/2022	0*	6.61	7.70*	4.40	5.55*	EHC-L
MW-6B	10/21/2022	6.21	10/24/2022	0*	7.64	7.59*	7.33	7.70*	EHC-L
MW-13S	10/11/2022	2.42	10/21/2022	2.26	6.85	7.86	2.04	2.20	EVO
MW-14S	10/11/2022	3.10	10/24/2022	2.75	6.75	8.01	3.59	3.33	No
MW-15S	10/11/2022	1.45	10/24/2022	1.64	6.67	8.01	3.68	3.58	No

Notes:

^{1) * -} Monitoring wells were filled to surface with EHC-L solution from adjacent injection wells. The post-injection pH and conductivity readings represent the final readings collected prior to EHC-L solution entering the well.

2) ft bmp - feet below measuring point

³⁾ mS/cm - milli Siemens per centimeter

⁴⁾ EVO - emulsified vegetable oil

⁵⁾ EHC-L - Evonik EHC® Liquid

Well ID	Measuring Point Elevation (ft amsl)	Screen Interval (ft bgs)	Date	Depth to Water (ft bmp)	Groundwater Elevation (ft amsl)	Depth to Bottom (ft bmp)
MW-1S	394.16	2.3 - 7.3	January 17, 2023	2.72	391.44	6.88
MW-4S	393.02	10.3 - 20.3	January 17, 2023	4.70	388.32	19.56
MW-4B	392.97	28.9 - 38.9	January 17, 2023	6.16	386.81	
MW-6S	394.25	5 - 15	January 17, 2023	3.69	390.56	14.28
MW-6B	394.23	29.4 - 39.4	January 17, 2023	6.11	388.12	39.16
MW-7S	396.92	6.5 - 16.5	January 17, 2023	8.47	388.45	18.20
MW-13S	391.53	16.4 - 21.4	January 17, 2023	2.34	389.19	18.78
MW-14S	391.39	16.4 - 21.4	January 17, 2023	2.72	388.67	23.47
MW-15S	390.12	7.7 - 12.7	January 17, 2023	1.66	388.46	14.50
MW-17S	397.48	4.6 - 9.6	January 17, 2023	3.58	393.90	8.06
MW-18S	397.63	3 - 8	January 17, 2023	3.55	394.08	7.26
MW-19S	396.09	3.5 - 8.5	January 17, 2023	3.31	392.78	8.07

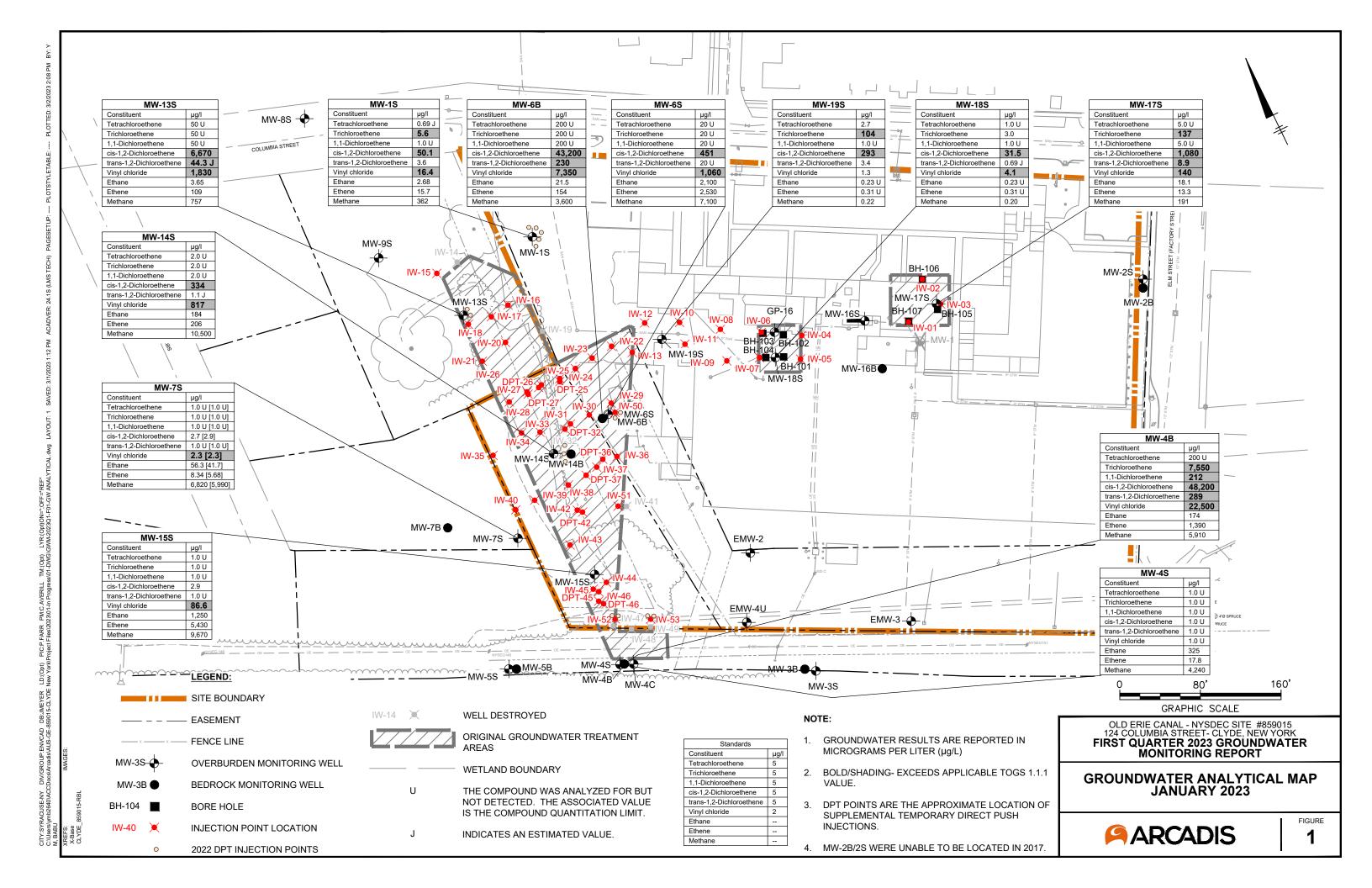
Notes:

- 1) ft bmp feet below measuring point.
- 2) bgs below ground surface.
- 3) amsl above mean sea level.
- 4) Survey data provided from GHD Report Table 3 titled: Water Level Elevation Data November 28, 2006, and Arcadis December 2017 Survey.
- 5) 2023 Q1 gauging consisted of the 12 source area monitoring wells per the 2022 ERD Injection Work Plan (Arcadis 2022).

There is injection material on the inside of the riser acting as an obstruction.

Table 4
Groundwater Monitoring Event Data
First Quarter 2023 Groundwater Monitoring Report
Old Erie Canal - NYSDEC Site #859015
124 Columbia Street
Clyde, New York

Location ID:	NYSDEC TOGS 1 1 1		MW-1S	MW-4B	MW-4S	MW-6B	MW-6S	MW-7S	MW-13S	MW-14S	MW-15S	MW-17S	MW-18S	MW-19S
Date Collected:	(GA GROUNDWATER)	Units	1/17/2023	1/18/2023	1/18/2023	1/18/2023	1/18/2023	1/17/2023	1/18/2023	1/18/2023	1/18/2023	1/17/2023	1/26/2023	1/18/2023
Volatile Organics	_			22211	1011	00011	0011			2.211	1011	· · ·	4.011	
1,1,1-Trichloroethane	5	μg/l	1.0 U	200 U	1.0 U	200 U	20 U	1.0 U [1.0 U]	50 U	2.0 U	1.0 U	5.0 U	1.0 U	1.6
1,1-Dichloroethane	5	μg/l	1.0 U	200 U	1.0 U	200 U	20 U	1.0 U [1.0 U]	50 U	1.3 J	1.8	5.0 U	1.0 U	7.0
1,1-Dichloroethene	5	μg/l	1.0 U	212	1.0 U	200 U	20 U	1.0 U [1.0 U]	50 U	2.0 U	1.0 U	5.0 U	1.0 U	1.0 U
2-Butanone (MEK)	50	μg/l	3.6 J	2000 U	10 U	2000 U	200 U	10 U [10 U]	500 U	20 U	10 U	50 U	10 U	10 U
4-Methyl-2-Pentanone		μg/l	5.0 U	1000 U	5.0 U	1000 U	118	5.0 U [5.0 U]	250 U	10 U	5.0 U	25 U	5.0 U	5.0 U
Acetone	50	μg/l	10.5	2000 U	10 U	2000 U	200 U	10 U [10 U]	500 U	20 U	10 U	50 U	10 U	10 U
Benzene	1	μg/l	0.50 U	100 U	0.50 U	100 U	10 U	0.50 U [0.50 U]	25 U	1.0 U	3.8	2.5 U	0.50 U	0.50 U
cis-1,2-Dichloroethene	5	μg/l	50.1	48200	1.0 U	43200	451	2.7 [2.9]	6670	334	2.9	1080	31.5	293
Ethylbenzene	5	μg/l	1.0 U	178 J	1.0 U	200 U	67.2	1.0 U [1.0 U]	50 U	2.6	3.6	5.0 U	1.0 U	1.0 U
m&p-Xylenes	5	μg/l	1.0 U	361	1.0 U	200 U	410	1.0 U [1.0 U]	50 U	9.6	14.9	5.0 U	1.0 U	1.0 U
Methyl Acetate		μg/l	1.5 J	1000 U	5.0 U	1000 U	100 U	5.0 U [5.0 U]	250 U	10 U	5.0 U	25 U	5.0 U	5.0 U
o-Xylene	5	μg/l	1.0 U	120 J	1.0 U	200 U	70.0	1.0 U [1.0 U]	50 U	2.2	10.9	5.0 U	1.0 U	1.0 U
Tetrachloroethene	5	μg/l	0.69 J	200 U	1.0 U	200 U	20 U	1.0 U [1.0 U]	50 U	2.0 U	1.0 U	5.0 U	1.0 U	2.7
Toluene	5	μg/l	1.0 U	1880	1.0 U	116 J	4130	1.0 U [1.0 U]	50 U	93.2	307	5.0 U	1.0 U	1.0 U
Total Xylenes	5	μg/l	1.0 U	481	1.0 U	200 U	480	1.0 U [1.0 U]	50 U	11.8	25.8	5.0 U	1.0 U	1.0 U
trans-1,2-Dichloroethene	5	μg/l	3.6	289	1.0 U	230	20 U	1.0 U [1.0 U]	44.3 J	1.1 J	1.0 U	8.9	0.69 J	3.4
Trichloroethene	5	μg/l	5.6	7550	1.0 U	200 U	20 U	1.0 U [1.0 U]	50 U	2.0 U	1.0 U	137	3.0	104
Vinyl chloride	2	μg/l	16.4	22500	1.0 U	7350	1060	2.3 [2.3]	1830	817	86.6	140	4.1	1.3
Metals														
Iron	300	μg/l	12100	500 U	18100	1630	134000	8590 [7250]	767	6390	29800	100 U	1510	3660
Manganese	300	μg/l	49600	90.6	2330	116	3330	3750 [3550]	149	462	1170	43.5	308	244
Metals-Filtered														
Iron	300	μg/l	11100	500 U	18600	451	146000	9400 [9340]	364	6090	31900	100 U	100 U	100 U
Manganese	300	μg/l	50000	88.5	2490	106	3760	3600 [3660]	152	481	1240	40.2	195	28.2
General Chemistry														
Total Organic Carbon		mg/l	84.9	95.0	9.4	141	274	2.9 [3.7]	48.5	8.0	27.4	2.5	18.5	11.6
Sulfate		mg/l	10	117	28.0	544	2.0 U	131 [127]	559	6.6	2.0 U	45.7	45.7	27.8
Sulfide		mg/l	2.0 U	155	2.0 U	6.6	2.0 U	2.0 U [2.0 U]	19.2	2.0 U				
Dissolved Gases														
Ethane		μg/l	2.68	174	325	21.5	2100	56.3 [41.7]	3.65	184	1250	18.1	0.23 U	0.23 U
Ethene		μg/l	15.7	1390	17.8	154	2530	8.34 [5.68]	109	206	5430	13.3	0.31 U	0.31 U
Methane		μg/l	362	5910	4240	3600	7100	6820 [5990]	757	10500	9670	191	0.20	0.22
Field Parameters														
рН		dimensionless	6.99	6.47	6.99	6.78	5.8	6.82	6.77	6.67	6.27	6.78	6.81	6.97
Conductivity		mS/cm	4.42	2.848	2.28	2.597	1.865	1.066	1.716	2.21	3.001	1.469	2.786	3.236
Turbidity		NTU	28.98	2.07	38.72	NA	NA	3.59	0.76	NA	9.12	1.82	8.81	19.32
Dissolved Oxygen		mg/L	1.71	0.91	0.82	0.37	0.76	0.71	0.42	0.42	0.78	0.63	0.91	3.97
Temperature		°C	7	9.4	8.9	12.8	10.4	9.3	9.5	10.4	7	20.5	8.9	9.8
Redox Potential		mV	-63.9	-348.1	-71	-305.3	-55.3	-53.3	-325.6	-174	-51.3	19.2	161.7	65.2


Notes

- 1) New York State Department of Environmental Conservation, Division of Water, Technical and Operational Guidance Series (TOGS 1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations for Source of Drinking Water (GA).
- 2) Bold/Shading Exceeds applicable TOGS 1.1.1 value.
- 3) Data in this table is not validated.
- 4) Abbreviations:
- μg/L micrograms per liter
- mg/L milligrams per liter

mS/cm - milli siemens per centimeter

- NTU Nephelometric Turbidity Units
- °C degrees Celsius
- mV millivolts
- NA Not Analyzed/Applicable/Available (Turbidity was not recorded at wells MW-6B, MW-14S due to field equipment error; however, all other parameters had stabilized).
- 5) Monitoring Wells MW-18S and MW19S went dry before stabilization of field parameters; therefore, samples were collected following recharge.
- 6) Only detected Volatile Organics are shown.
- 7) Lab Qualifiers:
- J Indicates an estimated value.
- U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
- UJ The compound was analyzed for but not detected. The associated value is the compound quantitation limit. Indicates an estimated value.

Figure

Attachment 1

Groundwater Sampling Logs

GROUND	WATE	RSAMI	PLING LOG								Page	o 1
Project No	3014704	11 00004			WetID	Mw.	5	-		Date	1/17	13-
Project Name	Cocation	Old Erre	Canal Site / Clyde	NY						Weather	clord	14,38
Measuring Pt						C				Well Mate	enal X	PVC
Description	To	C	Screen Setting (4-5mp)	23	-7.3	Diameter (in	7			1160 13131		ss
Static Water						Water Colu		-				
Level (h brop)	2.	72	Total Depth (4 bm	D) 6	88	Gallons in V		10.0	.7			
MP Elevation					,					Cample		
	-NA		Pump Intake (t-6)	(de.	5,0	Purge Meth	Centrifuga			Sample Method	Peri Pumo	
Pump On/Off	1530/	1510	Volumes Purged	5	.0		Submersit					
Label Time.	150	^	Duplicate Y /	a			Other	Peri Pur	np			,
Start Filling	150		Duplicate Y / MS/MSD Y /	SS SS						Sampled	by KCF	
End Filling	153		QA/QC Code		NA		_					
Time	Minutes	Rate	Depth to Water	Gaflons	pH	Conductivity	Turbidity	Dissolved	Temp	Redax	Appea	erance
	Elapsed	(mL/min)	(fl. bmp)	Purged		(mS/cm)	(NTU)	Oxygen (mg/L)	(°C)	(mV)	Color	Odor
1350	20	150	3.02	0.9	8.60	3.549	171.34	9.42	5.0	-	4.60.	none
1355	25	150	3.04	0.5	8.63		126.30	7.43	5.5	112.6	11	"
1400	30	150	3.10		8.64	3.700	89.94	5.89	5.6	114.4	11	11
1405	35	150	3.10		8.60	3.983	69.19	4.99	5.8	115 4	11	11
1410	40	150	3.10		8.47	4.139	60.95	4.11	6.0	116.4	11	"
1415	45	150	3.10		8.19	4748	53.32	3.43	6.2	113.0	1,	"
1420	50	150	3,10		7.89	4.319	51.78	3.12	6.3	95.4	11	11
1425	55	150	3.10	3.0	7.58	4.406	,	7.66	6.4	33.0	11	11
1430	60	150			1.58	688	14 65	2.00	9.1	33.0		->
1435	65	150	Empty 3.10	turk	7.23	4.492	23.84	1.99	6.6	- 39.6	//	"
1440	70	150	3.10	4.0	7.15	4.488	26.53		6.8	- 49. 3	11	"
1445	75	150	3.10	7.0	7.08	4.461	28.54	1.79	6.7	- 56.	"	11
1450	80	150	3.10		7.03	4.442	28.64	1.76	6.9	-59.9	"	11
1455	85	150	3.10		6.99	4.420	28.98	1.71	7.0	-63.9	11	"
1500	90		IPLE -		G .11	- 100		7	7.0	3.1		->
-	70	2/11	AF UL									
Constituents S	•				Container		Min Vol.		Number		Preservativ	ve
/8260TCL20 - V /RSK175DGME		lved Gasse		-	3 x 40 ml gl. 3 x 40 ml gl:		full		3		HCL	
TOT MET [Fe, M				-	1 x 500 ml		150 ml		- >-		HCL HNO3	
O4 - Sulfate				_	1 x 250 ml	HDPE	250 ml				None	
ulfide				_	2 x 250 ml		200 ml/bottl	е	2		NaOH + Zn	Ac
ISS MET [FF] [F	Fe, Mn]			_	1 x 500 ml 1 x 60 ml gl		full				HNO3	
00				-	i x oo mi gi	d53	TUII				HCL	
				_								
				_								
		-										
	= 0.04	1.5	= 0 09 2	5" = 0.26	3.5	= 0.50	6" = 1 47					
	25" = 0.06	7 =	0.16 3	= 0.37		0 65						
Vell Information	on									FF	= Field F	Filtered
Well Location	_	pravel	parking	are	۹		Well	ocked at	Arrival:	Yes	1	(40)
Condition of V		Fire -		ab 1	M-5010		Well Lock	ed at De	parture:	Yes	1	No
Well Complet	tion:	Flus	sh Mount /	Stick U	р -	holes	, Key I	Number 1	o Well:	NA		
						about a self	~					

Stapped

GROUND	WATE	RSAMI	PLING LOG								Page	٠-
Project No.	3014704	11 00004			Well ID	MW-4	5	_		Date	1-18:	23 Overcas
Project Name/	Location	Old Erie	Canal Site / Clyde,	NY						Weather	407	PVC M
Measuring Pt. Description	To		Screen Setting (fl-bmp)		-20.3	Casing Diameter (in.)	2	_		Well Mate	rial X	ss
Static Water						Water Colum	nn/		21			
Level (ft-bmp)	4.7	4'	Total Depth (ft-bm)	19.	58	Gallons in W	ell 14.8	,	. 37gal			
MP Elevation	_n/a	1	Pump Intake (n-br	mp) ~ 15	5,	Purge Metho	Centrifuga	ow		Sample Method	Peri Pump	
Pump On/Off	1120	1247	Volumes Purged	1.5			Submersit	Perl Pun	np			
Label Time: Start Filling: End Filling:	123	2	Duplicate Y / MS/MSD Y /(QA/QC Code:	B na			Giner			Sampled	by BKU	<u></u>
Time	Minutes	Rate	Depth to Water	Gallons	pH	Conductivity	Turbidity.	Dissolved	Temp.	Redox	Appea	irance
	Elapsed			Purged	,,,,			Oxygen H	(6)	(mV)	Color	Odor
11.45	-	(mL/min)	(fi bmp)			(mS/cm)	(NTU)	(mg/L)	1		*	none
1120	-	150	4.74	-	-	22.1	10.71	3.74	8.2	7.5	light	
1130	10	120	4.82	_	7.63	2.207	82.71		8.2	-41.0	y crons	
1135	15	120	4.82	0.5	7.22	2.232	74.46	1,53	8.5	-ca 0	1.	
1140	10	170	4.82		7.12	2,248	68,00		8.6	-550	1. grt	
1145	25	170	4.82		7.08	2.249	61.88	1,12	8.7	-58.6	1	
1150	30	170	4.82	1.0	7.de	2.248	57.63	1.05		-62.0		
1155	35	170	4.82		7.05	2.247	50.95	0.99	8.7	-63.4		
1200	40	170	4.82		7.05	2.249	48.88		8A			
1205	45	170	4.82	1.5	7.03	2.261	45.17	0.89	8.7	-66.0 -67.3		
1210	50	170	4.82		7.03	2.255	42.72		8-8	-69.4		
1215	55	170	4,82	_	7.02	2.263	41.03	0.86	8,7	-68.4		
1220	60	170	4,72	2.0	7.01	2.274	38,72	0.82	8.9	-7.	1	
1225	65	170	4.82		6.99	2,280	30, 12	U.BZ	0.1	-41-0		
1230	50	MPL	ED-									
							Min Vol.		Number			
Constituents	Sampled				Container 3 x 40 ml g		full		-3		Preservati HCL	ve
V8260TCL20 -	VOCs	1.10			3 x 40 ml g		full	•	3	-	HCL	
VRSK175DGMI	100 TWI	olved Gasse	25		1 x 500 ml		150 ml		1	_	HNO3	
TOT MET [Fe, I	vi/i)				1 x 250 ml		250 ml	•		-	None	
SO4 - Sulfate Sulfide					2 x 250 ml		200 ml/bot	de	_2	-	NaOH + Z	nAc
DISS MET [FF]	Fe, Mn]				1 x 500 ml		150 ml	-	-		HNO3	
тос					1 x 60 ml g	lass	TUII	•		-	HCL	
				-						_		
				-						_		
	1" = 0.04 1.25" = 0.06			2.5° = 0.26 3° = 0.37		5" = 0.50 = 0.65	6" = 1.47					
Well Informati	ion										F = Field	Filtered
Well Locati		Back	rass area				Well	Locked a	t Amval:	Yes) 1	No
							Well Loc	ked at D	eparture:	X es	-	No
Condition of Well: Missing 1 bolt Well Completion: Stick Up						Key Number To Well:						

* Suspended orange particles in first purge ~10 min. Some woody deporticles - root-like

GROUND	WATE	RSAME	LING LOG								Page	o	
Project No	3014704				Well ID	MW-	43			Date	1/18/	23	
Project Name/			Canal Site / Clyde,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	771111		-		Weather	4000	verca	51
Measuring Pt	COLUMN	Old Ene (NT						Well Male	rial X	PVC	
Description	To	-	Screen Setting (fl.brmp)	74 9	7-38.9	Casing Diameter (in)	2				*	ss	
Static Water	10		Setting (it timp)	101	-38.1			-					
Level (N-brnp)	5,9	5`	Total Depth (fi-bmg	,, 7	4	Water Colum Gallons in W	1						
MP Elevation				-				ow.		Sample			
	$-n\mu$		Pump Intake (n on	mp) 40		Purge Metho	Centrifuga	il		Method	Peri Pum		•
Pump On/Off	1345	1515	Volumes Purged	_2.	15_		Submersit	Peri Pur	10				
Label Time:	1455	5	Duplicate Y /	®			Other	Penron			21/1)	
Start Filling	1455		MS/MSD Y /							Sampled b	by pa		,
End Filling:	1515		QA/QC Code	no	L								1
Time	Minutes	Rate	Depth to Water	Gallons	pH	Conductivity	Turbidity	Dissolved	Temp.	Redox		arance	1
	Elapsed	(mL/min)	(fl. brnp)	Purged		(mS/cm)	(NTU)	Oxygen (mg/L)	(°C)	(mV)	Color	Strang	
1345			5,95	_							CASE .	Singra	
1355	10	170	€.91 6.91	0.5							40	-	1
1400	15	120	6.89		—						*	-	air
1405	20	120	6,87		6.60	2.763	10.80	1.70	8.8	~11.	clear	+	bubbles
1410	25	150	6.84		6.46	2,807	6.05	0.95	3.9	-321.2	-		1
1416	30	150	6.84	1	6.46	2.837	4.06	0.93	9.3	-336,4	-		
1420	35	150	6.83		6.46	2.834	3.00	0.94	9.3	-3426	-		
1425	40	150	6.84		6.46	2.840	2.85	0.93	9.3	-344.6	-	 	
1430	45	150	6.86	1.5	6.46	2.839	1.90	0.93	9.3	-346.4	-	 	
1435	50	150	6.86		6.46	2.838	3.51	0.92	9.3	-3470	-	+	
1440	55	150	6.89		6.46	2.847	1,32	0.91	9.4	341.5	1	1.	
1445	60	150	6.29	2.1	6.50	2.842	1,19	0.91	9.4	-347.6	4	-¥-	1
1450	65	150	6.92	2.0	6.47	2.848	2.04	0.11	1.7	-348.1			
1455	sa	m PLE		3	,								
					-								
Constituents S	Sampled				Container		Min Vol.		Number		Preservat	ive	
VB260TCL20 - \	/OCs				3 x 40 ml g		full	-	3	-	HCL		•
VRSK175DGME		lved Gasse	15		1 x 500 ml		150 ml	-	7	_	HNO3		-
TOT MET [Fe, A	An)				1 x 250 m		250 ml	_		_	None		
SO4 - Sulfate Sulfide			, ,	9	2 x 250 m		200 ml/bo	ttle	_2_	_	NaOH + Z	ZnAc	-
DISS MET [FF]	Fe, Mn]				1 x 500 m		full	-		_	HNO3		-
roc					1 x 60 ml	ylass	iuii	-	+	_	HOL		-
								_		_			_
								_		_			_
													-
Gallons/Foot 1	*= 0.04	1.5	= 0.09 2	5" = 0.26	3	5" = 0.50	6" = 1.47						
	25" = 0.06			r = 0.37	4	= 0.65				_			
Well Informati	on											Filtered	-
Well Location	on: k	rack gr	ass area				Wel	Locked	at Arrival:			No	4
Condition of \	Well: _	nissin					-		eparture:		s) /	No	-
Well Comple	tion:	Flu	sh Mount /	Stick	Up		Ke		To Well:				
								VLT					

* Clear with black/gray particles, too turbil to connect YSI

Could not measure DTB-too sticky that who could not go deeper than -6.5'

> accumulation of injection material residue on inside of wall occumulation acting as an obstruction

GROUND	WATER	RSAMF	PLING LOG								Page	of
Project No	3014704	1 00004			Well ID	Mw-	65			Date	1/18/	23
Project Name/	Location	Old Erie	Canal Site / Clyde,	NY						Weather	cland	14,400
Measuring Pt Description	_TO		Screen Setting (8 time)	5'-	15	Casing Diameter (in)	2			Well Male	erial X	SS S
Static Water				Li		Water Colum		_ / ,	7.0			
Level (n-timp)	_3.7		Total Depth (n-bm	0) 14	28_	Gallons in W	en /(). 5	// /	72			
MP Elevation	-NP		Pump Intake (a-br	mp) ~	12	Purge Metho	Centrifugal			Sample Method	Peri Pump	
Pump On/Off	0945/	1015	Volumes Purged	4.	0		Submersib			Neg Bio		
Label Time: Start Filling: End Filling:	095	5	Duplicate Y / MS/MSD Y / QA/QC Code:	8	NA		Other	renrum	<u> </u>	Sampled t	y Ko	F
Time	Minutes	Rate	Depth to Water	Gallons	pН	Conductivity	Turbidity	Dissolved	Temp.	Redox	Appea	rance
	Elapsed	(mL/min)	(ft bmp)	Purged		(mS/cm)	(NTU)	Oxygen (mg/L)	(°C)	(mV)	Color	Odor
0905	20	140	6.39	1.0	5.64	3.333	789.94	5.66	9.7	-7.1	clear -1	slight
0910	25	140	6.31	110	5.68	3.456	255.09	4.38	9.9	-19.4	HACK	//
0915	30	140	6.39		5.73	3.669	336.36	3.81	9.8	- 30.7	SASPENIES	11
0920	35	140	6.39		5.85	4.083	57.17	1.68	9.7	-37.Z	1 11	"
0925	40	140	6.39		5.87	3.878	66.49	0.97	9.7	-45.9	16	11
0930	45	140	6.39		5.87	2.831	*	0.86	9.7	-50.6	"	11
0935	50	140	6.39		5.86	2.831	×	0.79	9.8	- 54.5	11	11
0940	55	140	6.39		5.85	1.814	X	0.78	9.9	-57.0	11	11
0945	60	140	6.39		5.83	1.897	×	0.76	10.2	-57.0	11	"
0950	45	140	6.39		5.80	1.865	×	0.76	10.4	-55.3	"	11
0955	70	SAME	LE -									
\												
Constituents	Sampled				Container		Min Vol.		Number		Preservati	ve
V8260TCL20 -	VOCs				3 x 40 ml g	ass	full		_ 3		HCL	
VRSK175DGM	EE - Disso	lved Gass	es		3 x 40 ml gl		full	•	3.	-	HCL	
TOT MET [Fe, I	Mn]				1 x 500 ml		150 ml		+	-	HNO3	
SO4 - Sulfate Sulfide				•	2 x 250 ml		200 ml/bott	de	2	-	None NaOH + Zi	nAc
DISS MET [FF]	[Fe, Mn]				1 x 500 ml	HDPE	150 ml		1	_	HNO3	
ОС					1 x 60 ml g	lass	full		_1	_	HCL.	
										-		
				-						-		
				-				•		-		
	1" = 0.04 1.25" = 0.06		(Property of the control of the con	2 5° = 0 26 1° = 0 37		5" = 0.50 = 0.65	6" = 1 47					
Well Informat	ion									FF	= Field	Filtered
Well Locat	_	Dow	ay					Locked a	-	Yes	1	40
Condition of	_	tar;		pped				ked at De	-	Yes	1	NO
Well Comple	etion:	Elu	sh Mount) /	Stick L	Jp		Key	Number	To Well:	NA		

* Turbidity meter was getting air bubbles in it, causing the turbidity to go up (tried emptying meter and shaking to get not of air bubbles, but turbidity kept going up)

GROUND	WATER	SAMP	LING LOG								Page 1	01
Project No	3014704	1 00004			Well ID	MW-1	в	_	,	Date	1/10/3	od 1 1023 1, 40° f
Project Name/	Location	Old Erie (Canal Site / Clyde	NY						Weather	cloudy	7401
Measuring PL	,		Screen			Casing	_			Well Mate	erial X	SS
Description	TO	<u></u>	Setting (1-timp)	29.4	-39.4	Diameter (in)		_				
Static Water						Water Colum		-10	.38			
Level (n-timp)	61	<u> </u>	Total Depth (1-bm	1 39	.16_	Gallons in W	ell 33 (05 / ²	. 30			
MP Elevation	Nf	1	Pump Intake (+ 6	mp) ~ 3	2	Purge Metho	Low Fl	ow		Sample Method	Peri Pump	
Pump On/Off	1030/	1220	Volumes Purged	_5,	0		Centrifuga Submersit Other			Menioc		
Label Time:	120	0	Duplicate Y /	0			Other	renran			406	:
Start Filling	120		MS/MSD Y /	N						Sampled	by KCF	
End Filling	123	0	QA/QC Code		NA		-			D 400		
Time	Minutes	Rate	Depth to Water	Gallons	pН	Conductivity	Turbidity	Dissolved Oxygen	Temp	Redox	Appea	Odor
	Elapsed	(mUmin)	(fl. bmp)	Purged		(mS/cm)	(NTU)	(mg/L)	(°C)	(mV)	Color	Sight
1105	35	150	4.39	1.0	6.32	3.171	197.23	0.75	123		Black	
1110	40	150	4.39		6.43	3.356	/	0.56	12.6	- 240.9	parietes	"
1115	45	150	6.39		6.74	4.017	_	0.47	12.7		-	
1120	50	150	6.39		6.61	3 292	_	0.44	12.6	282.C	T	"
1125	55	150	6.39	2.5	6.68	3.652	_	0.43	12.7	-295.7	"	"
1130	60	150	6.39		6.77	3,457	/	0.41	12.6	-305	11	"
1135	65	150	6.39		6.80	3.119	_	0.40	12.8	-311.8	H	
1140	70	150	6.39		6.81	2.863	_	0.39	127	-311.3	/1	1
1145	75	150	6.39		6.80	2.657	_	0.38	12.8	-309.5	11	11
1150	80	150	6.39	3.5	6.79	2.623	_	6.38	12.8	- 307 3		11
1155	85	150	6.39		678	2.597	_	0.37	12.8	- 305 3	//	"
1200	90	SAM	PLE -									2
				-					-	-		$\overline{}$
				-								
				-						-		$\overline{}$
			L							1		
Constituents	Sampled				Container		Min Vol.		Number		Preservati	ve
V8260TCL20 -		-1		_	3 x 40 ml g	lass	full	_	3	_	HCL	
VRSK175DGM	EE - Disso	olved Gass	es		3 x 40 ml g		full	-		-	HCL	
TOT MET (Fe.	Mn)				1 x 500 ml		150 ml	-	+	-	HNO3 None	
SO4 - Sulfate Sulfide				•	2 x 250 m		200 ml/bot	tte	7	-	NaOH + Zi	nAc
DISS MET (FF)	[Fe. Mn]				1 x 500 ml		150 ml	_		_	HNO3	
TOC					1 x 60 ml g	glass	full	_	-	_	HCL	
								-		-		
								-		-		
Gallons/Foot	1" = 0.04		5° = 0.09 = 0.16	25 = 0.26 3 = 0.37		5" = 0.50 " = 0.65	6" = 1 47					
Man La	1.25" = 0.00	, ,	- 0 10	5 - 5 31	. •	- 0 00				c	F = Field	Filtered
Well Informa		0.4					147-1	I I ank and a	1 Aminal			
Well Loca	-	Drive	7				•	I Locked a		Yes		(N)
Condition o	r Well:	(3000	-	Calar			-	cked at D		Ye:	s /	(N)

GROUND	WATER	RSAMP	LING LOG							,	age	or	
Project No	30147041	1 00004			Vell ID	mw-	75_			Date _	1/17/	23	-
Project Name/	Location	Old Erie C	anal Site / Clyde,	NY							· ./.	33 1	•
Measuring Pt Description	_ n/ 0		Screen Setting (ti-bmp)			Casing Diameter (in)	2"			Well Maler		ss	
Static Water Level (ft-bmp)	8.45		Total Depth (ft-bmp			Water Column Gallons in We	9.75	1.5	6gal				
MP Elevation	ala		Pump Intake (n-bm			Purge Method	Low Flo	w		Sample Method .	Peri Pump		-
Pump On/Off			Volumes Purged				Submersib	e Perl Pum	p				
Label Time. Start Filling: End Filling:	1509		Duplicate // MS/MSD // QA/QC Code		P-202	130117	Out-	10°10		Sampled b	y BKU	<i></i>	-
Time	Minutes	Rate	Depth to Water	Gallons	рН	Conductivity	Turbidity	Dissolved	Temp.	Redox	Аррва	rance	
	Elapsed		(fl. bmp)	Purged	0,1	3°10 (mS/cm)	(NTU)	Oxygen (mg/L)	(°C)	(mV)	Color	Odor	*
1340		(mL/min)	(ic birp)			morany							7
1400	20	150	849	0.5	8.32	0.580	42.74	4.16	8.6	90.7	clear	none	3 wood
1405	25	150	8,49		7.61	0.589	33.09		8.7	22,8	clear	++	perticles
1410	30	150	8,49		7.30	0.634	28.01	0.97	8.8	-2.6	dear	1	コノ
1415	35	160	8.49		7.11	0.717	20.20	0.97	9,0	10.45	dear	+	7
1420	40	160	8.49		7.00	0.818	13.88	0.82	9.2		-	+	7
1425	45	160	8,49	1.5	6.93	0.894	8.00	0.19	9,1	-37.1			7
1430	50	160	8.49		6.89	0.952	5.20	0.75	9.2	-44.8		+	
1435	55	160	8:49		6.87	0.979	4,11	0.74	9.1		-	++	7
1440	60	160	849		6.85	1.015	4.36	0.73	9.4	-47.6		1	7
1446	65	160	8,49		6.84	1,033	3.65	0.72	9.2	-50.0	+-	++	7
1450	70	160	8.49	 	6.83	1.049	3.69	0.72	9,3	-51.3	1 1	1	\neg
1455	75	160	8.49	3	6.82	1.066	3.5	0.11	100	- 5 57		+	. 7
1500	50	amp	LED -				-		+		1	1	
	_	-		+			 			1			
Constituents	Sampled	1			Containe		Min Vol.		Number 12	r	Preserva	ative	
VASEULCI 30 -	VOCs			-	3 x 40 ml		full		12	_	HCL		
VRSK175DGM		olved Gass	ies	-	1 x 500 m		150 ml	_	4		ниоз		
TOT MET [Fe,	Mnj			-	1 x 250 m		250 ml	_	4	_	None		
SO4 - Sulfate Sulfide				_	2 x 250 r	nl HDPE	200 ml/b	ottle	-8		NaOH 4	ZnAc	
DISS MET [FF]	(Fe, Mn)			_	1 x 500 n		150 ml	_	-4		HNO3		
TOC				_	1 x 60 ml	glass	full	_			HCL		
				-				-					
				-				_					
				-									
Gallons/Foot	1° = 0.04 1.25° = 0.00		5" = 0.09 ' = 0.16	2.5° = 0.2 3° = 0.37		3.5° = 0.50 4° = 0.65	6* = 1.47					NX S Prome	
Well Informa	ition										FF = Fi	eld Filte	ered
Well Loca		Grass	s area				_ w	ell Locke	d at Amv	al:(Yes) 1	No	
Condition of	f Well:	Good					Well	ocked at	Departu	re:	Yes /	(No	الرف
Well Comp	letion:		lush Mount /	Stick	(QU)		. +	ey Numb	er To W	ell:			
											No.		axw

DUP-20230117

Cut master lock off. book not replaced BXW will replace lock during next sampling event.

**Corganic material (area) suspended in purge + orange particles

..

GROUNDWATER	SAMPLING	LOG
-------------	----------	-----

Prosect No	30147D	141 00004		-1	Well ID	Mw-	135	_		Date	1/18/3		
Meserad M	COCHUCH	Old Ene	Canal Site / Clyde	NY						Weather	cloud	4. 40	•
Describer	TO		Scren		,	Casing				Well Mate		PVC	
Static Water			السم وا المساوي	16.4	1-21.4	Diameter (in	1_2			AA Bir sandru		ss	
Feat la sale	2.3	a ci	5			Water Colum	mn/	- ,			-		
MP Elevation			Total Depth (9-bm)		The second second	Gallons in W	Velt 16.	44/	2.68				
	- 41		Pump Intake (n-br	mp) ~/	6.5	Purge Metho		,		Sample			
Pump On/Off			Volumes Purged		.0	, as the second	Centrifuga Submersit	al ble			Peri Pump		
Label Time Start Filling	153		Duplicate Y /	N			Other	Peri Pur	тр				
End Filling	154		MS/MSD Y /		. 10					Sampled I	by KCF		
Time	Minutes		QA/QC Code		NA		_			Jun 1			
1533	Elapsed	(mL/min)	Depth to Water (fl bmp)	Gallons Purged	P-1	Conductivity	Turbidity	Dissolved Onygen		Redox	Appea		*
1500	20	150	2.71	1.0	6.97	(mS/cm)	(NTU)	(mg/L)	(C)	(mV)	Color	Odor	
1505	25	150	2.71	7.0		1.739	4.77	1.05	9.6	1212	clear	none	
1510	30	150	2.71	1.5	6.89	1.728	3.67	0.60	9.3	- 291.5	w/	11	
1515	35	150	2.71	1,7	6.83	1.724	3.14	0.51	9.4	1 300.1	black	"	
1520	40	150	2.71	2.0	18.0	1.723	1.87	0.47	9.4	7.7	Susp.	"	
1525	45	150	2.71	2.0	6.79	1.719	2.97	0.45	9.5		particles	11	
1530	50	150	271	2.5	6.78	1.718	1.37	0.44	9.6	-322.3	"	//-	
15 35	55		MPLE -		6.77	1.716	0.76	0.42	9.5	-325.6	"	11	
15000	(Per		100									->_	
													
													
						 							
						 	\vdash						
									 				
													
	1								 				
													l
Constituents Sa					Container		Min Vol.		Number		Preservativ	ve	
/8260TCL20 - VC /RSK175DGMEE		and Gasser		_	3 x 40 ml gla	-	full	•	3		HCL		
TOT MET (Fe, Mr		60 063303		_	3 x 40 ml gla 1 x 500 ml l		full 150 ml		3	- ,	HCL		•
O4 - Sulfate	-			-	1 x 250 ml		250 ml	*			HNO3		
ulfide				_	2 x 250 ml		200 ml/bott	de .	2		None NaOH + Zn	- 10	r)
ISS MET [FF] [Fe	Mn]			-	1 x 500 ml	HDPE	150 ml		1	-	HNO3	IAC	•
oc				-	1 x 60 ml gl	ass	full		i	-	HCL		ē.
				-				•		- ,	*		
				-						. ,			
				-				e :	-	-	-67		C.
1.2	= 0 04 5" = 0 06	1.5" = 2" = 0		5° = 0.26 ' = 0.37		5" = 0 50 = 0 65	6" = 1 47				===	- Post	
ell information	n									FF	= Field E	Filtered	
Well Location	1:	Marsh	area				Well	Locked at	Arrival:	Yes		(Ng)	
Condition of W	ell:(Good					Well Loc	ked at De	parture:	Yes	1 (No.	
Well Completion	on:	Flus	sh Mount / C	Stick U	(qu			Number 1	_	NA +	K		
													1

ROUNDY	VATER	SAMP	LING LOG								Page /	01/
Transact has	30147041				Well ID	MW-1	45			Date	1/18/	7022 1,40°F
			Canal Site / Clyde	-	Wei io	1100				Weather	cloud	400
paseuring py	-	Old Ene (NY						Well Mate	arial X	PVC
escription	TO	C	Screen Setting (* timp)	16.4	- 21.4	Casing Diameter (in)	2			****		-55
latic Water			or in A (x mb)	W	•1.1	Water Colum		,				
ושים מן ופעם	2.7	12	Total Depth (6-6	∞ 23	. 47	Gallons in W	ell 20.7	5/3	.38			
IP Elevation	N	4	Pump Intake (n.		18.0	Purge Metho				Sample		
ump On/Off			Volumes Purge			rurge Metro	Centrifuga			Method	Peri Pumi	
			Voidines Furge	3			Other	Peri Pun	пр			,
abel Time: Start Filling:	140			Ø						Sampled	by Ko	F
nd Filling	143		MS/MSD Y	®	NA					Samples		
ime	Minutes	Rate	Depth to Water	Gaflons		Conductivity	Turbidity	Dissolved	Temp	Redox	Appea	arance
	Elapsed	(mL/min)	(ft. bmp)	Purged		,	(NTU)	Oxygen (mg/L)	(°C)	(mV)	Color	Odor
1305	£915	150	3.31	0.7	7.04	2.384	19 06	0.66	9.9	-167.7	dear	none
1310	20	150	3.31	10.7	6.99	2.320	31.76		-	-169.4	11	"
1315	25	150	3.31		6.92	2.280	20.96	0.51	10.1	-170.4	11	11
1320	30	150	3.31		6.88	2.341	36.64	0.51	8.3	-168.9	11	"
1325	35	150	3.31	1.5	6.84	2.247	61.59	0.48	10.1	-170.8	11	11
1330	40	150	3.31		6.82	2.233	_	0.46	10.3	-172.3	11	11
1335	45	150	3.31		6.78	2.224	_	0.44	10.5	172.5	11	1)
1340	50	150	3.31	-	6.74	2.227	248	0.44	10.4	-172.0	1/	11
1345	55	150	3.31	-	6.72	-	_	0.43	10.5	-173.1	11	"
1350	60	150	3.31	3.0	6.68	2.711	=	0.42	10.4	-173.3	11	"
1355	65	150	3.31	3.5	6.67	2.210		0.42	10.4	-174.0	"	"
1400	70	150	3,31	Shi	MPLE					>	"	"
	\vdash			+					-			
	\vdash								<u> </u>	-		
/8260TCL20 -					Container 3 x 40 ml g		Min Vol. full		Number 3		Preservat	ive
RSK175DGM		lved Gass	es	-	3 x 40 ml g	lass	full		3	-	HCL	
OT MET [Fe.	Mn)			_	1 x 500 ml		150 mi		1	_	HNO3	
O4 - Sulfate utfide				-	1 x 250 ml		250 ml 200 ml/bot	tle	1	-	None	
ISS MET [FF]	[Fe, Mn]			_	1 x 500 m		150 ml		1	-	NaOH + Zi HNO3	INC .
ОС				_	1 x 60 ml	glass	full	•		_	HCL	
				-						-		
				-						-		
			-									
Gallons/Foot	1° = 0.04 1.25° = 0.06		5" = 0.09 ' ' = 0.16	25° = 0.26 3° = 0.37		5" = 0.50 " = 0.65	6" = 1 47					
Well Informa					•	- 0 63						-: x
Well Loca		Swo	mo area				Mall	I ocked -	Aria-t			Filtered *
	-							Locked a	-	Yes		MO !
Condition o	A AA GIT.	0000	λ.				Well I ~	cked at De	enarh ire:	Yes		(No)

POUNT	TAW	ER PAM	PLING LOG	1								. ,	1
Project No											Page _	10-	2 - cast, Rain
		041.00004		-	Well ID	MW-	155			Date	1/13	1/23	- Lain
Mannet Name	/Location	Old Erie	Canal Site / Clyd	e, NY						Weathe	380	foser	agt, Killin
Measuring Pt Description	TO	x_	Screen Setting (N-boop)	7.7	-12.7	Casing Diameter (in	, 2			Well Ma	terial 🚽	SS PVC	
Static Water Level (n-bmp)		, \		14.	- \	Water Colu					_		
	Lelet	4	Total Depth (n-bi	mp) 14,	50	Gallons in V	Vell 12,	847	2.05	al			
MP Elegation			Pump Intake (n-	omp) 1	П,	Purge Meth	od: Low F	low		Sample			
Pump On/Off	0820	1026	Volumes Purgeo	4			Centrifug Submers			_ Method	Peri Pu	mp	_
Label Time:	100	20	Duplicate Y	, <u>a</u>			Other	Peri Pu	mp				
Start Filling	100									Sampled	by B	KW	_
End Filling:	521		QA/QC Code.	_00			_	1000		,			_
/ Ine	Minutes		Depth to Water	Gallons Purged		Conductivity	Turbidity 10 40	Dissolved		Redox 7-10	App	pearance	
0000	-	(mL/min)	(fl. bmp)	ruiged	7-0.1	3°/6 (mS/cm)	(NTU)	Oxygen (mg/L)	(°C)	(mV)	Color	_	7
0820	-									_	A CONTRACT	a non	4
0830	10	150	1.71		7.27	2.737	27.93	2.18	6.5	-20.8	dear		4
0835	16	140	1.71	0.5	6.7	2.776	27.00	1.17	6.7	-45.4	1	ues	-1
0840	20	140	1.71	-	6.55	2.828	31.63	1.03	7.1	-47.4	-	Yes	1
08 45 0850	30	150	1.71	1.0	6.46	2.810	34.70	0.94	7.1	-480	\vdash	405	1
0855	35	150	1.H	1.0	6.40	2.936	24.04	0.38	7.5	480	-	305	1
5800	40	150	1. H		6.30	2.949	35,22	0.36	7.4	-47.8	-	++-	1
0805	45	150	1.71	1.5	6.31	2,987	16,50	1.01	7.7	-480		+	1
0910	50	150	1-71		6.30	2.994	15.07	1.33	7.4	-48.3		++-	1
0915	55	150	1.71	2.0	6.30	2,989	27.36	1.26	7.4	-494	\top		1
0920	60	150	671		6.28	3.024	71.50	0.91	7.3	-49.4			
0915	66	150	1.72		6,29	2.499	26.96	0.82	7.3	-50.8			
0830	70	150	1,72	-	6.29	2.957	12.47	0.91	6.8	-510			in the state of th
0935	75		1.72			3,001	8,35	0.78	7.1	-51.0			1
0940	80	150	1.71		6.27	3.001	9.12	0.78	7.0	51.3	1	1	
onstituents Sa	ampled			(Container		Min Vol.		Number		Preserva	tive	-
8260TCL20 - VC		10		-	x 40 ml gla x 40 ml gla		full		3	. ,	HCL		
RSK175DGMEE OT MET [Fe, Mr		veo Gasses		_	x 500 ml H		150 ml		3		HCL HNO3		
04 - Sutfate	,		•	1	x 250 ml F	IDPE	250 ml		1		None		
ulfide				_	2 x 250 ml H		200 ml/bottl	e .	2		NaOH + Z	'nAc	
SS MET [FF] JFC	e, Mn]			_	x 500 ml H x 60 ml gla		150 ml full		-		HNO3		
				_							HCL		
				_									
-		•		_									
75 5 17	7			-				************					
	= 0.04 5" = 0.06	1.5° = 0		= 0.26 = 0.37	3.5 =		= 1.47						
'nformatio		- •				red"				FF	= Field	Filtered	
ation		uetlan.	1				Well I	ocked at	Arrival:	Yes	/	(a)	
		ood	•				Well Lock		_	Yes	'	(8)	
	1 :		Mount /	Stick Up)			lumber To	_	ノ *		-	

see 1

ARCADIS

GROUND	WATE	R SAMI	PLING LOG								Page 2	or 2
Project No.		1.00004		-	Well ID	MW-I	55_			Date	1/18,	123
Project Name/	Location	Old Erie	Canal Site / Clyde	NY						Weather		
Measuring Pt			Screen			Casing				Well Mater	ial	PVC
Description	_		Setting (#-bmp)			Diameter (in)					_	ss
Static Water						Water Colum		•				
Level (n-bmp)			Total Depth (n. orr	(4		Gallons in W	ell					
MP Elevation			Pump Intake (n-6	mp)		Purge Metho	Centriluga			Sample Method	Peri Pump	
Pump On/Off			Volumes Purged				Submersib		_			
Label Time:			D. Handa V.				Other	Perl Pum	р			
Start Filling:			Duplicate Y / MS/MSD Y /							Sampled b	v	
End Filmg:			QA/QC Code:	14						oup.aa.a		
Time	Minutes	Rate	Depth to Water	Gallons	pH	Conductivity	Turbidity	Dissolved	Temp.	Redox		
	Elapsed		Cepui to Water	Purged	, pri	Conductivity	raibidity	Oxygen			Appea	
		(mL/min)	(fl. bmp)	3		(mS/cm)	(NTU)	(mg/L)	(°C)	(mV)	Color	Odor
0945	85	150	1.71	2.5	6.28	3.013_	6.15	0,15	7.3	-52.7	clear	yes
0950	90	150	671		6.27	3.052	6.93	0.74	7.5	53.0		\vdash
0955	95	150	1.71		6.27	3.044	3.88	0.74	1.5	-53.7	V	LY
1000		ami	LED -			21.						_
	-	2111										
			 	+								
			 	-	-							
	_	-	 	+		-				-		+
			-							-		-
												-
												+
				-						-		-
										-		
							L					
onstituents S	ampled				Container		Min Vol.		Number		Description	
8260TCL20 - V					3 x 40 ml g		full		l l		Preserva HCL	tive
RSK175DGME		ved Gasse	es		3 x 40 ml g		full			_	HCL	
OT MET (Fe, M					1 x 500 ml		150 ml	•	-	_	HNO3	
4 - Sulfate					1 x 250 ml		250 ml	•	_		None	
ffide					2 x 250 ml		200 mVbot	tle	1	_	NaOH +	7040
SS MET [FF] [F	e, Mn]		20		1 x 500 ml	HDPE	150 ml	•		_	HNO3	LIVIC
C				-	1 x 60 ml g		full			_	HCL	
				-				-		_	1100	
								-				
								-		_		
						-						
	= 0.04 25" = 0.06			25 = 0.26		5" = 0.50	6" = 1.47					
		2 -	0.16	3° = 0.37	4-	= 0.65						
eli infermatio	_									F	F = Fiel	d Filtered
Well Location	n:						Wel	Locked	at Arrival			No
Condition of V	Vell:			>				cked at D				
Well Complet	ion:	Flor	sh Mount /	Stick I	In			oncu at D	eparture	:Ye	s /	No

see 1

GROUNDWATER SAMPLING LOG

Project No	301470	241.00	0004									Page 1	_ or
Project Name				Canal Site / Cly		Well ID	-Mh	1-175	_		Date	1/	17/2
Measuring Pt			Che		de, NY						Weather	Par	04,32
Description		00		Screen Setting (n.bmp)	11.7	91	Casing	_			Well Mat	erial 🔀	PVC
Static Water	-			y (ii caip)	3.6	-9.6	Diameter (-			_	_ss
Level (fl-bmp)	8,3	58		Total Depth (ft.	brno) 🗸	06	Water Coll		77				
MP Elevation	_n/a	,		Pump Intake (r			Gallons in				Princes Presi		
Pump On/Off		1	11				Purge Met	hod Low F			Sample Method	Peri Puri	no
	1103	/12	4	Volumes Purge	ed ~[.	75		Submers	ble		Wichiod	1 11111111	4
Label Time: Start Filling:	1200	_		Duplicate Y	10			Other	Peri Pu	тр			
End Filling:	120			MS/MSD Y	\sqrt{N}						Sampled	by BK	ω_{-}
Time	122	-	_	QA/QC Code:				_	100				
	Minutes Elapsed	R	ate	Depth to Wate	r Gallons Purged		Conductivity		Dissolved	Temp.	Redox 7-10	Appe	earance
1105	-	(mL	/min)	(fl bmp)	Fulged	+/-0.1	(mS/cm)	(NTU)	Oxygen (mg/L)	(°C)	(mV)	Color	Odor
1105	-			3,58	-								_
1115	10	15	0	3,60	0.5	6.73	1.586	5.17	0.95	20.3	-4.3	hant a	none
1120	15	Н		3.61		6.15	1.507	1.74	0.86	20.4	7.2	-11	11
1125	20	Н		360		6.76	1.484	3.52	0.78	20.4	9.0	clear	-
1130	25			3.60		6.77	1-471	1.56	072	20.4	11/8		+
1135	30			3.60	1	6.77	1.471	1.61	0.69	20.4	136		+
1140	35			3.60		6.78	1.471	1.40	0.66	20.5	16.0		+
11 45	40			3.61		6.78	1.470	1.36	0.64	20.5	17.0		1
1160	45	_	,	3.41	1.5	6.78	1.470	1,34	0.64	20.5	184	1	\perp
1166	50	. 4	4	3.61		6.78	1.469	1.82	0.63	20.5	192	V	V
1200	5	4n	1	PLE -									
—			-		+-+								
-			-		-								
\longrightarrow			\dashv										
			+		-								
Constituents Sa	ampled				-	Container		Min Vol.		Number		Preservat	ive
V8260TCL20 - VC					_	x 40 ml gla		full		3		HCL	
VRSK175DGMEE		ed Ga	15505		_	x 40 ml gla x 500 ml H		full		3		HCL	
TOT MET [Fe, Mn	ı <u>J</u>				_	x 250 ml l		150 ml		 -		HNO3	
SUlfide					-	2 x 250 ml		200 ml/bottl	е .		-	None NaOH + Zi	242
DISS MET (FF) (Fe	. Mn)					x 500 ml H		150 ml		1	-	HNO3	nac
oc					_1	x 60 ml gla	ISS	full		i		HCL	
					_								
					_								
					_								
							And Add Assessment Control						
	0.04		1.5° = 0	100	5" = 0.26 "= 0.37	3.5		6" = 1.47					
Vell Information		•		- ,							EE	= Field	Filtered
Well Location		2-1		1	dies	man	chine	\AJall I	ocked at	Arrival	272	,	No
Condition of We		6	$\mathcal{X}_{\mathcal{L}}$	460	aing.	1.100	- 11VIZ		ocked at		Yes	' ,	
Well Completion			Juch	Mount /	Stick Un			Well Lock	ed at Dep Jumber T		Yes		(NO)
THE CALL CASH CHICKEN		-	1115/11	DOMESTICAL AND A STATE OF THE PARTY OF THE P	. THE R LIP			RAVI	WITTINGE	www.			,

	GROUND	WATER	SAMP	LING LO	G								page L	01
	Project No	3014704					OI PeW	MW-1	85_			Date	1/17/	23 14,4
	Project Name/	Location	Old Erin C	and the ICh	-1- 1	NIV						Weather	cloud	4-
	Westrand Li		00018	ARTON SING / Ch	yoe, I	NY.						Well Mater		PVC
	Description	TOC	,	Screen		3 -		Casing	7			AA Gill IAIGIG		SS
	Static Water			Setting (1 time)	٠ -	3 -		Diameter (in)						
	Level (n. amp)	3.5	5	Total Depth (a timp	7.	26	Water Column Gallons in We	3/0.0					
	MP Elevation	NA	\	Pump Intake	(ft bm	o) ~	7'	Purge Method	Low Flo	w		Sample		
	Pump On/Off	1140/	1205	Volumes Pur		-	RY		Centrifugal Submersibil	e		Method	Peri Pump	
3	Label Time Start Filling End Filling	09	30 30	*	Y 1 (8	A۸		Other	Peri Pump	2	Sampled t	y KC	£
1	Time	Minutes	Rate			C-tons				O	Temp	Redox	Appea	-2009
	10.00	Elapsed	Kate	Depth to Wa	iter	Gallons Purged	pН	Conductivity	Turbidity	Oxygen	1 emp	REGUX		
	TORTON N. D		(mL/min)	(ft bmp)				(mS/cm)	(NTU)	(mg/L)	(°C)	(mV)	Calar	Odor
	1145	5	100	5.38			6.81	2.825	10.13	1.42	88	184 2	none	none
	1150	10	100	5.65			6.83	2.813	8.75	1.16	8.8	175.9	//	//
	1155	15	100	6.75			6.81	2.786	8.81	0.91	8.9	161.7	11	11
	1200	20	100										11	11
								well ve	or De	4				
										2				
	Cai	me	back	on	1,	1.26/	2023	to .	sample	2				
		+		2 90	1.	1	-	7 20	1 050			+		+
		+		7.90	(1	KM)	11 20	7.28	1.		1	+, ,	-	1
		-		-		-	4.38	10.71	(wat	er co	lumn	1/gal	in	ell)
		1-				—	-	-	-	-			-	-
		-				-	-		-			-	-	+
		1											-	
		-				_			-					
	Constituents		1				Containe		Min Vot		Numbe	E.	Preserv	ative
	V8260TCL20 -	VOCs	sheed Case			-	3 x 40 ml		full	-	2	_	HCL	
	VRSK175DGM		olved Gass	ses		-	1 x 500 m		150 ml	-	-	_	HCL HNO3	
	TOT MET [Fe,	Mili				-	1 x 250 m		250 ml	_	i		None	
	SO4 - Sulfate Sulfide					-		ml HDPE	200 ml/bo	ottle	2		NaOH +	ZnAc
	DISS MET [FF]	[Fe. Mn]				-	1 x 500 m	nl HDPE	150 ml	_	1		HNO3	
	TOC						1 x 60 ml	glass	full	_	1		HCL	
						-				1		_		
						-				_		_		
	Gallons/Foot	1" = 0 04 1.25" = 0.0		.5 = 0.09 F = 0.16		25° = 02 3° = 037		3.5° = 0.50 4° = 0.65	6" = 1 47				55 - 5i-	ld Files
	Well Inform	ation											FF = Fie	
	Well Loc	ation:	Porkio	a Lot					_ w	ell Locked	at Arriva	al:Y	es /	<u>160</u>
	Condition	of Well:	Good	J					Well L	ocked at	Departur		es /	M 6)
	Well Com			lush Mount	1	Ctic	k Up			ey Numbe	To We	H: NA		_

1

GROUNDWATER

		WAIE	RSAM	PLING LOG								Page /	al
	Project No	301470	41 00004			Well ID	_MW	-195			Data	1/17/ 1/17/ cland	123
	Project Name	Location	Old Erin	Canal Site / Clyde	-		10140	113			Date	-11-11	
	Measuring Pt Description			Screen			Casing				- Weathe		PVC
	Static Water Level (ft-bmp)			Setting (4 timp)		- 8.5	Diameter (in Water Colum		-				_55
		3.	31	Total Depth (# 6m	10) 8.	07	Gallons in V	vell 4.	06/0	.78	-		
	MP Elevation	NF	_	Pump Intake (1 b	mp) ~	7.8	Purge Meth				Sample		
	Pump On/Off	1225/	1300	Volumes Purged	_1.	5		Submers.	фle		Method	Peri Pum	D
13	Label Time: Start Filling. End Filling	080 083	00		8	۷A		Other	Peri Pur	пр	Sampled	by KCF	:
	Time	Minutes Elapsed	Rate	Depth to Water	Gallons Purged	pH	Conductivity	Turbidity	Dissolved Oxygen		Redox		arance
	1230	5	(mUmin)	(ft bmp) 4.19	_	6.97	(mS/cm)	(NTU) 49.12	2 28	9.8	(mV) 133.5	Color	non
	1235	10	100	4.73		6.91	3,727	42.93	2 34	9.5	133.0	N/ black	
	1240	15	100	5.37	0.6	6.90	3.715	39.45	1.67	9.7	132.5	particles	11
	1245	20	100	6.69	0.6	6.86	3,665	20.19	1.37	9.0	95.8	"	11
	1250	25	100	7.41		6.89	3 425	19.32	1.36	10.0	65.0	11	11
	1255	30	100	8.00	1.2	6.97	3.236	290.26	3.97	9.8	65.2	//	11
	1300	35	100			—¬>	DRY -				->	//	"
	Came	ba	cK I	/18/2023		to	Sample		@ 0	800			
	Constituents S V8260TCL20 - V					Container 3 x 40 ml gl		Min Vol. full		Number 3		Preservativ HCL	0
	VRSK175DGME		lved Gasse	rs	3	3 x 40 ml gla	ass	full		3		HCL	
	TOT MET [Fe, M	(n)			_	1 x 500 ml		150 ml 250 ml	-	1		HNO3	
	SO4 - Sulfate Sulfide				_	1 x 250 ml 2 x 250 ml		250 ml/botth	е -	7		None NaOH + ZnA	·
	DISS MET [FF] [Fe, Mn]			_	1 x 500 ml	HDPE"	150 ml		ī		HNO3	
	тос					1 x 60 ml gl	ass	full	-			HCL	
									-		-		
•	1	" = 0 04 .25" = 0.06			5" = 0.26 = 0.37		= 0 50 6 0 65	- 1 47				_,	
	Well Informati	on										= Field Fi	
ľ		ou.	Partin	a lat				Well	ocked at	Arrival:	Yes	, ,	No
	Well Locati		Paryn Good	g Lot				Well L Well Lock	ocked at a ed at Dep		Yes		₩ ₩

* come back tomorrow morning or sample next week

Attachment 2

Groundwater Laboratory Results

Sample Summary

Arcadis

JD58982 Job No:

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project No: ALL31778.6000.00008

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
This report co Organics ND		llts reported as Not detecte			cted. The following app	olies:
JD58982-1	01/17/23	12:00 BK	01/20/23	AQ	Ground Water	MW-17S
JD58982-1F	01/17/23	12:00 BK	01/20/23	AQ	Groundwater Filtered	MW-17S
JD58982-2	01/17/23	15:00 BK	01/20/23	AQ	Ground Water	MW-1S
JD58982-2F	01/17/23	15:00 BK	01/20/23	AQ	Groundwater Filtered	MW-1S
JD58982-3	01/17/23	15:00 BK	01/20/23	AQ	Ground Water	MW-7S
JD58982-3D	01/17/23	15:00 BK	01/20/23	AQ	Water Dup/MSD	MW-7S
JD58982-3F	01/17/23	15:00 BK	01/20/23	AQ	Groundwater Filtered	MW-7S
JD58982-3FD	01/17/23	15:00 BK	01/20/23	AQ	Water Dup/MSD	MW-7S
JD58982-3FS	01/17/23	15:00 BK	01/20/23	AQ	Water Matrix Spike	MW-7S
JD58982-3S	01/17/23	15:00 BK	01/20/23	AQ	Water Matrix Spike	MW-7S
JD58982-4	01/18/23	08:00 BK	01/20/23	AQ	Ground Water	MW-19S
JD58982-4F	01/18/23	08:00 BK	01/20/23	AQ	Groundwater Filtered	MW-19S

Sample Summary (continued)

Arcadis

Job No: JD58982

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project No: ALL31778.6000.00008

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
JD58982-5	01/18/23	09:55 BK	01/20/23	AQ	Ground Water	MW-6S
JD58982-5F	01/18/23	09:55 BK	01/20/23	AQ	Groundwater Filtered	MW-6S
JD58982-6	01/18/23	12:00 BK	01/20/23	AQ	Ground Water	MW-6B
JD58982-6F	01/18/23	12:00 BK	01/20/23	AQ	Groundwater Filtered	MW-6B
JD58982-7	01/18/23	10:00 BK	01/20/23	AQ	Ground Water	MW-15S
JD58982-7F	01/18/23	10:00 BK	01/20/23	AQ	Groundwater Filtered	MW-15S
JD58982-8	01/18/23	14:00 BK	01/20/23	AQ	Ground Water	MW-14S
JD58982-8F	01/18/23	14:00 BK	01/20/23	AQ	Groundwater Filtered	MW-14S
JD58982-9	01/18/23	12:30 BK	01/20/23	AQ	Ground Water	MW-4S
JD58982-9F	01/18/23	12:30 BK	01/20/23	AQ	Groundwater Filtered	MW-4S
JD58982-10	01/18/23	14:55 BK	01/20/23	AQ	Ground Water	MW-4B
JD58982-10F	01/18/23	14:55 BK	01/20/23	AQ	Groundwater Filtered	MW-4B
JD58982-11	01/18/23	15:35 BK	01/20/23	AQ	Ground Water	MW-13S

Sample Summary (continued)

Arcadis

Job No: JD58982

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project No: ALL31778.6000.00008

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
JD58982-11F	01/18/23	15:35 BK	01/20/23	AQ	Groundwater Filtered	MW-13S
JD58982-12	01/17/23	00:00 BK	01/20/23	AQ	Ground Water	DUP-20230117
JD58982-12F	01/17/23	00:00 BK	01/20/23	AQ	Groundwater Filtered	DUP-20230117
JD58982-13	01/18/23	15:35 BK	01/20/23	AQ	Trip Blank Water	TRIP BLANK

Report of Analysis

Client Sample ID: MW-17S
Lab Sample ID: JD58982-1 Date Sampled: 01/17/23
Matrix: AQ - Ground Water Date Received: 01/20/23
Method: SW846 8260D Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 a	1U52445.D	5	01/23/23 17:41	ŃW	n/a	n/a	V1U2080
Run #2	2U52511.D	50	01/24/23 14:01	NW	n/a	n/a	V2U2082

	Purge Volume
Run #1	5.0 ml
Run #2	5.0 ml

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	50	15	ug/l	
71-43-2	Benzene	ND	2.5	2.1	ug/l	
74-97-5	Bromochloromethane	ND	5.0	2.4	ug/l	
75-27-4	Bromodichloromethane	ND	5.0	2.3	ug/l	
75-25-2	Bromoform	ND	5.0	3.2	ug/l	
74-83-9	Bromomethane	ND	10	8.2	ug/l	
78-93-3	2-Butanone (MEK)	ND	50	14	ug/l	
75-15-0	Carbon disulfide ^b	ND	10	2.3	ug/l	
56-23-5	Carbon tetrachloride	ND	5.0	2.8	ug/l	
108-90-7	Chlorobenzene	ND	5.0	2.8	ug/l	
75-00-3	Chloroethane	ND	5.0	3.6	ug/l	
67-66-3	Chloroform	ND	5.0	2.5	ug/l	
74-87-3	Chloromethane ^b	ND	5.0	3.8	ug/l	
110-82-7	Cyclohexane	ND	25	3.9	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	10	2.6	ug/l	
124-48-1	Dibromochloromethane	ND	5.0	2.8	ug/l	
106-93-4	1,2-Dibromoethane	ND	5.0	2.4	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	5.0	2.7	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	5.0	2.7	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	5.0	2.5	ug/l	
75-71-8	Dichlorodifluoromethane ^b	ND	10	2.8	ug/l	
75-34-3	1,1-Dichloroethane	ND	5.0	2.8	ug/l	
107-06-2	1,2-Dichloroethane	ND	5.0	3.0	ug/l	
75-35-4	1,1-Dichloroethene	ND	5.0	3.0	ug/l	
156-59-2	cis-1,2-Dichloroethene	1080 ^c	50	25	ug/l	
156-60-5	trans-1,2-Dichloroethene	8.9	5.0	2.7	ug/l	
78-87-5	1,2-Dichloropropane	ND	5.0	2.5	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	5.0	2.4	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	5.0	2.2	ug/l	
100-41-4	Ethylbenzene	ND	5.0	3.0	ug/l	
76-13-1	Freon 113	ND	25	2.9	ug/l	
591-78-6	2-Hexanone	ND	25	10	ug/l	

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N =Indicates presumptive evidence of a compound

Date Sampled: 01/17/23

Report of Analysis

Client Sample ID: MW-17S
Lab Sample ID: JD58982-1
Matrix: AQ - Ground Water

Matrix:AQ - Ground WaterDate Received: 01/20/23Method:SW846 8260DPercent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
98-82-8	Isopropylbenzene	ND	5.0	3.2	ug/l	
79-20-9	Methyl Acetate	ND	25	4.0	ug/l	
108-87-2	Methylcyclohexane ^b	ND	25	3.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	5.0	2.5	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	25	9.3	ug/l	
75-09-2	Methylene chloride	ND	10	5.0	ug/l	
100-42-5	Styrene	ND	5.0	2.4	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.0	3.3	ug/l	
127-18-4	Tetrachloroethene	ND	5.0	2.8	ug/l	
108-88-3	Toluene	ND	5.0	2.5	ug/l	
87-61-6	1,2,3-Trichlorobenzene ^b	ND	5.0	2.5	ug/l	
120-82-1	1,2,4-Trichlorobenzene ^b	ND	5.0	2.5	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	5.0	2.7	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	5.0	2.7	ug/l	
79-01-6	Trichloroethene	137	5.0	2.6	ug/l	
75-69-4	Trichlorofluoromethane	ND	10	2.0	ug/l	
75-01-4	Vinyl chloride	140	5.0	2.6	ug/l	
	m,p-Xylene	ND	5.0	3.9	ug/l	
95-47-6	o-Xylene	ND	5.0	3.0	ug/l	
1330-20-7	Xylene (total)	ND	5.0	3.0	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7	Dibromofluoromethane	104%	104%	80-1	20%	
17060-07-0	1,2-Dichloroethane-D4	116%	114%	80-13	20%	
2037-26-5	Toluene-D8	98%	99%	80-13	20%	
460-00-4	4-Bromofluorobenzene	104%	102%	82-1	14%	

⁽a) Dilution required due to high concentration of target compound.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Draft: 5 of 80

⁽b) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

⁽c) Result is from Run# 2

Client Sample ID: MW-17S Lab Sample ID: JD58982-1 Date Sampled: 01/17/23 Matrix: AQ - Ground Water Date Received: 01/20/23 Method: RSK-175 Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project:

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	AA99208.D	1	01/25/23 14:01	JŇ	n/a	n/a	GAA2716
Run #2	AA99209.D	5	01/25/23 14:14	JN	n/a	n/a	GAA2716

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8 74-84-0	Methane Ethane	191 ^a 18.1	0.55 0.23	0.40 0.14	ug/l ug/l	
74-85-1	Ethene	13.3	0.23	0.14	ug/l	

⁽a) Result is from Run# 2

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N =Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: MW-17S Lab Sample ID: JD58982-

JD58982-1 Date Sampled: 01/17/23 Matrix: AQ - Ground Water Date Received: 01/20/23 Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project:

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	< 100	100	ug/l	1	01/24/23	01/27/23 ND	SW846 6010D ¹	SW846 3010A 2
Manganese	43.5	15	ug/l	1	01/24/23	01/27/23 ND	SW846 6010D ¹	SW846 3010A ²

(1) Instrument QC Batch: MA53658 (2) Prep QC Batch: MP37566

Report of Analysis

Page 1 of 1

Client Sample ID: MW-17S Lab Sample ID: JD58982-

JD58982-1 Date Sampled: 01/17/23 Matrix: AQ - Ground Water Date Received: 01/20/23 Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project:

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Sulfate Sulfide Total Organic Carbon	45.7 < 2.0 2.5	2.0 2.0 1.0	mg/l mg/l mg/l	1 1 1	01/23/23 20:14 01/23/23 10:10 01/23/23 20:00	MP	EPA 300/SW846 9056A SM4500S2- F-11 SM5310 B-11/14

Page 1 of 1

Client Sample ID: MW-17S Lab Sample ID: JD58982-

JD58982-1F Date Sampled: 01/17/23 Matrix: AQ - Groundwater Filtered Date Received: 01/20/23 Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project:

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	< 100	100	ug/l	1	01/24/23	01/27/23 ND	SW846 6010D ¹	SW846 3010A ²
Manganese	40.2	15	ug/l	1	01/24/23	01/27/23 ND	SW846 6010D ¹	SW846 3010A 2

(1) Instrument QC Batch: MA53658 (2) Prep QC Batch: MP37566

Client Sample ID: MW-1S
Lab Sample ID: JD58982-2 Date Sampled: 01/17/23
Matrix: AQ - Ground Water Date Received: 01/20/23
Method: SW846 8260D Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 2U52507.D 1 01/24/23 13:02 NW n/a n/a V2U2082 Run #2

Purge Volume
Run #1 5.0 ml
Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	10.5	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	3.6	10	2.7	ug/l	J
75-15-0	Carbon disulfide ^a	ND	2.0	0.46	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane ^a	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	50.1	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	3.6	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	
591-78-6	2-Hexanone	ND	5.0	2.0	ug/l	

ND = Not detected MDL =

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Client Sample ID: MW-1S

Lab Sample ID:JD58982-2Date Sampled:01/17/23Matrix:AQ - Ground WaterDate Received:01/20/23Method:SW846 8260DPercent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	1.5	5.0	0.80	ug/l	J
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	0.69	1.0	0.56	ug/l	J
108-88-3	Toluene	ND	1.0	0.49	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	5.6	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride	16.4	1.0	0.52	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7	Dibromofluoromethane	102%		80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	114%		80-12	20%	
2037-26-5	Toluene-D8	98%		80-12	20%	
460-00-4	4-Bromofluorobenzene	102%		82-13	14%	

⁽a) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

 $ND = Not detected \qquad MDL = Moderate MDL = Moderate$

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N =Indicates presumptive evidence of a compound

Client Sample ID: MW-1S Lab Sample ID: JD58982-2 Date Sampled: 01/17/23 Matrix: AQ - Ground Water Date Received: 01/20/23 Method: RSK-175 Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project:

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	AA99210.D	1	01/25/23 14:28	JŇ	n/a	n/a	GAA2716
Run #2	AA99211.D	10	01/25/23 14:42	JN	n/a	n/a	GAA2716

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8 74-84-0	Methane Ethane	362 a 2.68	1.1 0.23	0.80 0.14	ug/l ug/l	
74-85-1	Ethene	15.7	0.31	0.16	ug/l	

⁽a) Result is from Run# 2

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value

B = Indicates analyte found in associated method blank N =Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-1S

Lab Sample ID: JD58982-2 Date Sampled: 01/17/23
Matrix: AQ - Ground Water Date Received: 01/20/23
Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron Manganese	12100 49600	100 150	ug/l ug/l	1 10			SW846 6010D ¹ SW846 6010D ²	

(1) Instrument QC Batch: MA53658(2) Instrument QC Batch: MA53662(3) Prep QC Batch: MP37566

Page 1 of 1

Client Sample ID: MW-1S Lab Sample ID: JD58982

JD58982-2 Matrix: AQ - Ground Water Date Sampled: 01/17/23 Date Received: 01/20/23 Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project:

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Sulfate	10	2.0	mg/l	1	01/23/23 20:2	7 SS	EPA 300/SW846 9056A
Sulfide	< 2.0	2.0	mg/l	1	01/23/23 10:1	4 MP	SM4500S2- F-11
Total Organic Carbon	84.9	5.0	mg/l	5	01/24/23 10:4	1 MB	SM5310 B-11/14

Page 1 of 1

Client Sample ID: MW-1S

Lab Sample ID: JD58982-2F Date Sampled: 01/17/23
Matrix: AQ - Groundwater Filtered Date Received: 01/20/23
Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron Manganese	11100 50000	100 150	ug/l ug/l	1 10			SW846 6010D ¹ SW846 6010D ²	

(1) Instrument QC Batch: MA53658(2) Instrument QC Batch: MA53662(3) Prep QC Batch: MP37566

Client Sample ID: MW-7S
Lab Sample ID: JD58982-3
Matrix: AQ - Ground Water
Date Received: 01/20/23
Method: SW846 8260D
Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 1U52443.D 1 01/23/23 17:12 NW n/a n/a V1U2080 Run #2

Purge Volume
Run #1 5.0 ml
Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
75-15-0	Carbon disulfide ^a	ND	2.0	0.46	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane ^a	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane ^a	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	2.7	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	
591-78-6	2-Hexanone	ND	5.0	2.0	ug/l	

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Client Sample ID: MW-7S

Lab Sample ID: JD58982-3 Date Sampled: 01/17/23 AQ - Ground Water Date Received: 01/20/23 Matrix: Method: SW846 8260D Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project:

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane ^a	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.56	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
87-61-6	1,2,3-Trichlorobenzene ^a	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene ^a	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride	2.3	1.0	0.52	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	104%		80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	116%		80-12	20%	
2037-26-5	Toluene-D8	99%		80-12	20%	
460-00-4	4-Bromofluorobenzene	103%		82-11	14%	

⁽a) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Client Sample ID: MW-7S

Lab Sample ID: JD58982-3 Date Sampled: 01/17/23 Matrix: AQ - Ground Water Date Received: 01/20/23 Method: RSK-175 Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project:

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1 a	AA99212.D	1	01/25/23 14:55	JN	n/a ¯	n/a	GAA2716
Run #2 a	AA99213.D	100	01/25/23 15:08	JN	n/a	n/a	GAA2716

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	6820 b	11	8.0	ug/l	
74-84-0	Ethane	56.3	0.23	0.14	ug/l	
74-85-1	Ethene	8.34	0.31	0.16	ug/l	

⁽a) 5mm diameter bubble present in headspace.

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N =Indicates presumptive evidence of a compound

⁽b) Result is from Run# 2

Page 1 of 1

Client Sample ID: MW-7S Lab Sample ID: JD58982

Lab Sample ID: JD58982-3 Date Sampled: 01/17/23
Matrix: AQ - Ground Water Date Received: 01/20/23
Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	8590	100	ug/l	1	01/24/23	01/27/23 ND	SW846 6010D ¹	SW846 3010A ²
Manganese	3750	15	ug/l	1	01/24/23	01/27/23 ND	SW846 6010D ¹	SW846 3010A ²

(1) Instrument QC Batch: MA53658

(2) Prep QC Batch: MP37566

Page 1 of 1

Client Sample ID: MW-7S Lab Sample ID: JD58982

JD58982-3 Date Sampled: 01/17/23 Matrix: AQ - Ground Water Date Received: 01/20/23 Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project:

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Sulfate	131	2.0	mg/l	1	01/23/23 18:30	MP	EPA 300/SW846 9056A
Sulfide	< 2.0	2.0	mg/l	1	01/23/23 09:37		SM4500S2- F-11
Total Organic Carbon	2.9	1.0	mg/l	1	01/23/23 19:04		SM5310 B-11/14

Page 1 of 1

Client Sample ID: MW-7S Lab Sample ID: JD58982 JD58982-3F Date Sampled: 01/17/23 Matrix: AQ - Groundwater Filtered Date Received: 01/20/23 Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project:

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron Manganese	9400 3600	100 15	ug/l ug/l				SW846 6010D ¹ SW846 6010D ¹	

(1) Instrument QC Batch: MA53658 (2) Prep QC Batch: MP37566

Client Sample ID: MW-19S Lab Sample ID: JD58982-4 Date Sampled: 01/18/23 Matrix: AQ - Ground Water Date Received: 01/20/23 SW846 8260D Method: Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project:

		File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
R	un #1	2U52452.D	1	01/23/23 19:23	NW	n/a	n/a	V2U2080
R	un #2	2U52458.D	10	01/23/23 20:50	NW	n/a	n/a	V2U2080

	Purge Volume
Run #1	5.0 ml
Run #2	5.0 ml

VOA TCL List

67 64 1 Acetone a ND 10 3.1 ug/l 71-43-2 Benzene ND 0.50 0.43 ug/l 74-97-5 Bromodchloromethane ND 1.0 0.48 ug/l 75-27-4 Bromodichloromethane ND 1.0 0.63 ug/l 75-25-2 Bromomethane a ND 1.0 0.63 ug/l 78-93-3 2 Butanone (MEK) ND 10 2.7 ug/l 75-15-0 Carbon disulfide ND 1.0 0.55 ug/l 56-23-5 Carbon tetrachloride ND 1.0 0.55 ug/l 75-00-3 Chlorobenzene ND 1.0 0.56 ug/l 75-03-3 Chloroform ND 1.0 0.50 ug/l 74-87-3 Chloromethane a ND 1.0 0.76 ug/l 96-12-8 1,2-Dibromo-3-chloropropane ND 2.0 0.53 ug/l 106-93-4 1,2-Dibromoethane ND	CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 Benzene ND 0.50 0.43 ug/l 74-97-5 Bromochloromethane ND 1.0 0.48 ug/l 75-27-4 Bromodichloromethane ND 1.0 0.45 ug/l 75-25-2 Bromoform ND 1.0 0.63 ug/l 74-83-9 Bromomethane a ND 2.0 1.6 ug/l 78-93-3 2 Butanone (MEK) ND 10 2.7 ug/l 75-15-0 Carbon disulfide ND 1.0 0.55 ug/l 56-23-5 Carbon tetrachloride ND 1.0 0.55 ug/l 108-90-7 Chlorobenzene ND 1.0 0.56 ug/l 75-00-3 Chloroform ND 1.0 0.50 ug/l 74-87-3 Chloroform ND 1.0 0.76 ug/l 110-82-7 Cyclohexane ND 1.0 0.53 ug/l 96-12-8 1.2-Dibromoethane ND 1.0	67-64-1	Acetone a	ND	10	3.1	ug/l	
74-97-5 Bromochloromethane ND 1.0 0.48 ug/l 75-27-4 Bromodichloromethane ND 1.0 0.45 ug/l 75-25-2 Bromonform ND 1.0 0.63 ug/l 74-83-9 Bromomethane a ND 2.0 1.6 ug/l 78-93-3 2-Butanone (MEK) ND 10 2.7 ug/l 75-15-0 Carbon disulfide ND 1.0 0.55 ug/l 108-90-7 Chlorobenzene ND 1.0 0.56 ug/l 75-00-3 Chloroform ND 1.0 0.56 ug/l 74-87-3 Chloroform ND 1.0 0.50 ug/l 106-82-7 Cyclohexane ND 1.0 0.76 ug/l 96-12-8 1.2-Dibromo-3-chloropropane ND 2.0 0.53 ug/l 106-93-4 1.2-Dibromo-3-chloropertane ND 1.0 0.56 ug/l 95-50-1 1.2-Dichlorobenzene ND <td>71-43-2</td> <td>Benzene</td> <td>ND</td> <td>0.50</td> <td>0.43</td> <td></td> <td></td>	71-43-2	Benzene	ND	0.50	0.43		
75-27-4 Bromodichloromethane ND 1.0 0.45 ug/l 75-25-2 Bromoform ND 1.0 0.63 ug/l 74-83-9 Bromomethane a ND 2.0 1.6 ug/l 78-93-3 2 Butanone (MEK) ND 10 2.7 ug/l 75-15-0 Carbon disulfide ND 1.0 0.55 ug/l 108-90-7 Chlorobenzene ND 1.0 0.56 ug/l 75-00-3 Chloroethane ND 1.0 0.73 ug/l 67-66-3 Chloroform ND 1.0 0.50 ug/l 110-82-7 Cyclohexane ND 1.0 0.76 ug/l 110-82-7 Cyclohexane ND 5.0 0.78 ug/l 106-93-4 1,2-Dibromo-3-chloropropane ND 1.0 0.56 ug/l 106-93-4 1,2-Dichlorobenzene ND 1.0 0.56 ug/l 106-46-7 1,4-Dichlorobenzene <td< td=""><td>74-97-5</td><td>Bromochloromethane</td><td>ND</td><td>1.0</td><td>0.48</td><td></td><td></td></td<>	74-97-5	Bromochloromethane	ND	1.0	0.48		
75-25-2 Bromoform ND 1.0 0.63 ug/l 74-83-9 Bromomethane a ND 2.0 1.6 ug/l 78-93-3 2 Butanone (MEK) ND 10 2.7 ug/l 75-15-0 Carbon disulfide ND 2.0 0.46 ug/l 56-23-5 Carbon tetrachloride ND 1.0 0.55 ug/l 108-90-7 Chlorobenzene ND 1.0 0.56 ug/l 75-00-3 Chloroform ND 1.0 0.50 ug/l 67-66-3 Chloroform ND 1.0 0.73 ug/l 74-87-3 Chloromethane ND 1.0 0.76 ug/l 110-82-7 Cyclohexane ND 5.0 0.78 ug/l 110-82-7 Cyclohexane ND 1.0 0.56 ug/l 110-82-7 Cyclohexane ND 1.0 0.53 ug/l 12-48 1,2-Dibromo-3-chloropromethane ND 1.0	75-27-4	Bromodichloromethane	ND	1.0	0.45		
78-93-3 2 Butanone (MEK) ND 10 2.7 ug/l 75-15-0 Carbon disulfide ND 2.0 0.46 ug/l 56-23-5 Carbon tetrachloride ND 1.0 0.55 ug/l 108-90-7 Chlorobenzene ND 1.0 0.56 ug/l 75-00-3 Chloroform ND 1.0 0.73 ug/l 67-66-3 Chloromethane ND 1.0 0.50 ug/l 74-87-3 Chloromethane a ND 1.0 0.76 ug/l 110-82-7 Cyclohexane ND 5.0 0.78 ug/l 96-12-8 1,2-Dibromo-3-chloropropane ND 2.0 0.53 ug/l 124-48-1 Dibromochloromethane ND 1.0 0.56 ug/l 95-50-1 1,2-Dibromoethane ND 1.0 0.53 ug/l 541-73-1 1,3-Dichlorobenzene ND 1.0 0.54 ug/l 106-46-7 1,4-Dichlorodifluoromethane	75-25-2	Bromoform	ND	1.0	0.63		
78-93-3 2 Butanone (MEK) ND 10 2.7 ug/l 75-15-0 Carbon disulfide ND 2.0 0.46 ug/l 56-23-5 Carbon tetrachloride ND 1.0 0.55 ug/l 108-90-7 Chlorobenzene ND 1.0 0.56 ug/l 75-00-3 Chloroform ND 1.0 0.73 ug/l 67-66-3 Chloromethane ND 1.0 0.50 ug/l 74-87-3 Chloromethane a ND 1.0 0.76 ug/l 110-82-7 Cyclohexane ND 5.0 0.78 ug/l 96-12-8 1,2-Dibromo-3-chloropropane ND 2.0 0.53 ug/l 106-93-4 1,2-Dibromo-3-chloropropane ND 1.0 0.58 ug/l 95-50-1 1,2-Dichlorobenzene ND 1.0 0.53 ug/l 541-73-1 1,3-Dichlorobenzene ND 1.0 0.54 ug/l 75-71-8 Dichlorodifluoromethane a<	74-83-9	Bromomethane ^a	ND	2.0	1.6		
75-15-0 Carbon disulfide ND 2.0 0.46 ug/l 56-23-5 Carbon tetrachloride ND 1.0 0.55 ug/l 108-90-7 Chlorobenzene ND 1.0 0.56 ug/l 75-00-3 Chloroethane ND 1.0 0.73 ug/l 67-66-3 Chloromethane a ND 1.0 0.76 ug/l 74-87-3 Chloromethane a ND 1.0 0.76 ug/l 110-82-7 Cyclohexane ND 5.0 0.78 ug/l 96-12-8 1,2-Dibromo-3-chloropropane ND 2.0 0.53 ug/l 124-48-1 Dibromochloromethane ND 1.0 0.56 ug/l 106-93-4 1,2-Dichlorobenzene ND 1.0 0.53 ug/l 541-73-1 1,3-Dichlorobenzene ND 1.0 0.54 ug/l 75-71-8 Dichlorodifluoromethane a ND 1.0 0.57 ug/l 75-34-3 1,1-Dichloroethan	78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
56 23 -5 Carbon tetrachloride ND 1.0 0.55 ug/l 108-90-7 Chlorobenzene ND 1.0 0.56 ug/l 75-00-3 Chloroethane ND 1.0 0.73 ug/l 67-66-3 Chloroform ND 1.0 0.50 ug/l 74-87-3 Chloromethane a ND 1.0 0.76 ug/l 110-82-7 Cyclohexane ND 5.0 0.78 ug/l 96-12-8 1.2-Dibromo-3-chloropropane ND 2.0 0.53 ug/l 124-48-1 Dibromochloromethane ND 1.0 0.56 ug/l 106-93-4 1,2-Dichlorobenzene ND 1.0 0.53 ug/l 95-50-1 1,2-Dichlorobenzene ND 1.0 0.54 ug/l 541-73-1 1,3-Dichlorobenzene ND 1.0 0.54 ug/l 75-71-8 Dichlorodifluoromethane a ND 1.0 0.57 ug/l 75-34-3 1,1-Dichloroethene	75-15-0	Carbon disulfide	ND	2.0	0.46		
75-00-3 Chloroethane ND 1.0 0.73 ug/l 67-66-3 Chloroform ND 1.0 0.50 ug/l 74-87-3 Chloromethane a ND 1.0 0.76 ug/l 110-82-7 Cyclohexane ND 5.0 0.78 ug/l 96-12-8 1,2-Dibromo-3-chloropropane ND 2.0 0.53 ug/l 124-48-1 Dibromochloromethane ND 1.0 0.56 ug/l 106-93-4 1,2-Dibromoethane ND 1.0 0.48 ug/l 95-50-1 1,2-Dichlorobenzene ND 1.0 0.53 ug/l 541-73-1 1,3-Dichlorobenzene ND 1.0 0.54 ug/l 106-46-7 1,4-Dichlorobenzene ND 1.0 0.51 ug/l 75-71-8 Dichlorodifluoromethane 7.0 1.0 0.57 ug/l 107-06-2 1,2-Dichloroethane ND 1.0 0.59 ug/l 75-35-4 1,1-Dichloroethen	56-23-5	Carbon tetrachloride	ND	1.0	0.55		
67-66-3 Chloroform ND 1.0 0.50 ug/l 74-87-3 Chloromethane a ND 1.0 0.76 ug/l 110-82-7 Cyclohexane ND 5.0 0.78 ug/l 96-12-8 1,2-Dibromo-3-chloropropane ND 2.0 0.53 ug/l 124-48 1 Dibromochloromethane ND 1.0 0.56 ug/l 106-93-4 1,2-Dibromoethane ND 1.0 0.48 ug/l 95-50-1 1,2-Dichlorobenzene ND 1.0 0.53 ug/l 541-73-1 1,3-Dichlorobenzene ND 1.0 0.53 ug/l 75-71-8 Dichlorodifluoromethane a ND 1.0 0.51 ug/l 75-34-3 1,1-Dichloroethane 7.0 1.0 0.57 ug/l 75-35-4 1,1-Dichloroethene ND 1.0 0.59 ug/l 156-59-2 cis-1,2-Dichloroethene 293 b 10 5.1 ug/l 78-87-5 1,2-Di	108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
74-87-3 Chloromethane a ND 1.0 0.76 ug/l 110-82-7 Cyclohexane ND 5.0 0.78 ug/l 96-12-8 1,2-Dibromo-3-chloropropane ND 2.0 0.53 ug/l 124-48 1 Dibromochloromethane ND 1.0 0.56 ug/l 106-93 4 1,2-Dichlorobenzene ND 1.0 0.48 ug/l 95-50-1 1,2-Dichlorobenzene ND 1.0 0.53 ug/l 541-73-1 1,3-Dichlorobenzene ND 1.0 0.54 ug/l 106-46-7 1,4-Dichlorobenzene ND 1.0 0.51 ug/l 75-71-8 Dichlorodifluoromethane a ND 2.0 0.56 ug/l 75-34-3 1,1-Dichloroethane 7.0 1.0 0.57 ug/l 107-06-2 1,2-Dichloroethene ND 1.0 0.59 ug/l 156-59-2 cis-1,2-Dichloroethene 293 b 10 5.1 ug/l 78-87-5	75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
110-82-7 Cyclohexane ND 5.0 0.78 ug/l 96-12-8 1,2-Dibromo-3-chloropropane ND 2.0 0.53 ug/l 124-48-1 Dibromochloromethane ND 1.0 0.56 ug/l 106-93-4 1,2-Dibromoethane ND 1.0 0.48 ug/l 95-50-1 1,2-Dichlorobenzene ND 1.0 0.53 ug/l 541-73-1 1,3-Dichlorobenzene ND 1.0 0.54 ug/l 106-46-7 1,4-Dichlorobenzene ND 1.0 0.51 ug/l 75-71-8 Dichlorodifluoromethane ND 2.0 0.56 ug/l 75-34-3 1,1-Dichloroethane ND 1.0 0.57 ug/l 107-06-2 1,2-Dichloroethene ND 1.0 0.59 ug/l 75-35-4 1,1-Dichloroethene 293 b 10 5.1 ug/l 156-60-5 trans-1,2-Dichloroethene 3.4 1.0 0.54 ug/l 78-87-5	67-66-3		ND	1.0	0.50	ug/l	
96-12-8 1,2-Dibromo-3-chloropropane ND 2.0 0.53 ug/l 124-48-1 Dibromochloromethane ND 1.0 0.56 ug/l 106-93-4 1,2-Dibromoethane ND 1.0 0.48 ug/l 95-50-1 1,2-Dichlorobenzene ND 1.0 0.53 ug/l 541-73-1 1,3-Dichlorobenzene ND 1.0 0.54 ug/l 106-46-7 1,4-Dichlorobenzene ND 1.0 0.51 ug/l 75-71-8 Dichlorodifluoromethane a ND 2.0 0.56 ug/l 75-34-3 1,1-Dichloroethane 7.0 1.0 0.57 ug/l 107-06-2 1,2-Dichloroethene ND 1.0 0.59 ug/l 75-35-4 1,1-Dichloroethene ND 1.0 0.59 ug/l 156-59-2 cis-1,2-Dichloroethene 293 b 10 5.1 ug/l 78-87-5 1,2-Dichloropropane ND 1.0 0.54 ug/l 10061-02-6	74-87-3	Chloromethane ^a	ND	1.0	0.76	ug/l	
124-48-1 Dibromochloromethane ND 1.0 0.56 ug/l 106-93-4 1,2-Dibromoethane ND 1.0 0.48 ug/l 95-50-1 1,2-Dichlorobenzene ND 1.0 0.53 ug/l 541-73-1 1,3-Dichlorobenzene ND 1.0 0.54 ug/l 106-46-7 1,4-Dichlorobenzene ND 1.0 0.51 ug/l 75-71-8 Dichlorodifluoromethane a ND 2.0 0.56 ug/l 75-34-3 1,1-Dichloroethane 7.0 1.0 0.57 ug/l 107-06-2 1,2-Dichloroethane ND 1.0 0.60 ug/l 75-35-4 1,1-Dichloroethene ND 1.0 0.59 ug/l 156-59-2 cis-1,2-Dichloroethene 293 b 10 5.1 ug/l 156-60-5 trans-1,2-Dichloropropane ND 1.0 0.54 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/l 100-	110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
106-93-4 1,2-Dibromoethane ND 1.0 0.48 ug/l 95-50-1 1,2-Dichlorobenzene ND 1.0 0.53 ug/l 541-73-1 1,3-Dichlorobenzene ND 1.0 0.54 ug/l 106-46-7 1,4-Dichlorobenzene ND 1.0 0.51 ug/l 75-71-8 Dichlorodifluoromethane a ND 2.0 0.56 ug/l 75-34-3 1,1-Dichloroethane 7.0 1.0 0.57 ug/l 107-06-2 1,2-Dichloroethane ND 1.0 0.60 ug/l 75-35-4 1,1-Dichloroethene ND 1.0 0.59 ug/l 156-59-2 cis-1,2-Dichloroethene 293 b 10 5.1 ug/l 156-60-5 trans-1,2 Dichloroethene 3.4 1.0 0.54 ug/l 78-87-5 1,2-Dichloropropane ND 1.0 0.47 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/l 100-	96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
95-50-1 1,2-Dichlorobenzene ND 1.0 0.53 ug/l 541-73-1 1,3-Dichlorobenzene ND 1.0 0.54 ug/l 106-46-7 1,4-Dichlorobenzene ND 1.0 0.51 ug/l 75-71-8 Dichlorodifluoromethane a ND 2.0 0.56 ug/l 75-34-3 1,1-Dichloroethane 7.0 1.0 0.57 ug/l 107-06-2 1,2-Dichloroethane ND 1.0 0.60 ug/l 75-35-4 1,1-Dichloroethene ND 1.0 0.59 ug/l 156-59-2 cis-1,2-Dichloroethene 293 b 10 5.1 ug/l 156-60-5 trans-1,2-Dichloroethene 3.4 1.0 0.54 ug/l 78-87-5 1,2-Dichloropropane ND 1.0 0.51 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/l 100-41-4 Ethylbenzene ND 1.0 0.60 ug/l 76-13-1 <td>124-48-1</td> <td>Dibromochloromethane</td> <td></td> <td>1.0</td> <td>0.56</td> <td>ug/l</td> <td></td>	124-48-1	Dibromochloromethane		1.0	0.56	ug/l	
95-50-1 1,2-Dichlorobenzene ND 1.0 0.53 ug/l 541-73-1 1,3-Dichlorobenzene ND 1.0 0.54 ug/l 106-46-7 1,4-Dichlorobenzene ND 1.0 0.51 ug/l 75-71-8 Dichlorodifluoromethane a ND 2.0 0.56 ug/l 75-34-3 1,1-Dichloroethane 7.0 1.0 0.57 ug/l 107-06-2 1,2-Dichloroethane ND 1.0 0.60 ug/l 75-35-4 1,1-Dichloroethene ND 1.0 0.59 ug/l 156-59-2 cis-1,2-Dichloroethene 293 b 10 5.1 ug/l 156-60-5 trans-1,2-Dichloroethene 3.4 1.0 0.54 ug/l 78-87-5 1,2-Dichloropropane ND 1.0 0.47 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.43 ug/l 100-41-4 Ethylbenzene ND 1.0 0.60 ug/l 76-13-1 <td>106-93-4</td> <td>1,2-Dibromoethane</td> <td>ND</td> <td>1.0</td> <td>0.48</td> <td>ug/l</td> <td></td>	106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
541-73-1 1,3-Dichlorobenzene ND 1.0 0.54 ug/l 106-46-7 1,4-Dichlorobenzene ND 1.0 0.51 ug/l 75-71-8 Dichlorodifluoromethane a ND 2.0 0.56 ug/l 75-34-3 1,1-Dichloroethane 7.0 1.0 0.57 ug/l 107-06-2 1,2-Dichloroethane ND 1.0 0.60 ug/l 75-35-4 1,1-Dichloroethene ND 1.0 0.59 ug/l 156-59-2 cis-1,2-Dichloroethene 293 b 10 5.1 ug/l 156-60-5 trans-1,2-Dichloroethene 3.4 1.0 0.54 ug/l 78-87-5 1,2-Dichloropropane ND 1.0 0.51 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/l 100-41-4 Ethylbenzene ND 1.0 0.60 ug/l 76-13-1 Freon 113 ND 5.0 0.58 ug/l	95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53		
75-71-8 Dichlorodifluoromethane a ND 2.0 0.56 ug/l 75-34-3 1,1-Dichloroethane 7.0 1.0 0.57 ug/l 107-06-2 1,2-Dichloroethane ND 1.0 0.60 ug/l 75-35-4 1,1-Dichloroethene ND 1.0 0.59 ug/l 156-59-2 cis-1,2-Dichloroethene 293 b 10 5.1 ug/l 156-60-5 trans-1,2-Dichloroethene 3.4 1.0 0.54 ug/l 78-87-5 1,2-Dichloropropane ND 1.0 0.51 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/l 100-41-4 Ethylbenzene ND 1.0 0.60 ug/l 76-13-1 Freon 113 ND 5.0 0.58 ug/l	541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
75-34-3 1,1-Dichloroethane 7.0 1.0 0.57 ug/l 107-06-2 1,2-Dichloroethane ND 1.0 0.60 ug/l 75-35-4 1,1-Dichloroethene ND 1.0 0.59 ug/l 156-59-2 cis-1,2-Dichloroethene 293 b 10 5.1 ug/l 156-60-5 trans-1,2-Dichloroethene 3.4 1.0 0.54 ug/l 78-87-5 1,2-Dichloropropane ND 1.0 0.51 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/l 100-41-4 Ethylbenzene ND 1.0 0.60 ug/l 76-13-1 Freon 113 ND 5.0 0.58 ug/l	106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
107-06-2 1,2-Dichloroethane ND 1.0 0.60 ug/l 75-35-4 1,1-Dichloroethene ND 1.0 0.59 ug/l 156-59-2 cis-1,2-Dichloroethene 293 b 10 5.1 ug/l 156-60-5 trans-1,2-Dichloroethene 3.4 1.0 0.54 ug/l 78-87-5 1,2-Dichloropropane ND 1.0 0.51 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/l 100-41-4 Ethylbenzene ND 1.0 0.60 ug/l 76-13-1 Freon 113 ND 5.0 0.58 ug/l	75-71-8	Dichlorodifluoromethane ^a	ND	2.0	0.56	ug/l	
75-35-4 1,1-Dichloroethene ND 1.0 0.59 ug/l 156-59-2 cis-1,2-Dichloroethene 293 b 10 5.1 ug/l 156-60-5 trans-1,2-Dichloroethene 3.4 1.0 0.54 ug/l 78-87-5 1,2-Dichloropropane ND 1.0 0.51 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/l 100-41-4 Ethylbenzene ND 1.0 0.60 ug/l 76-13-1 Freon 113 ND 5.0 0.58 ug/l	75-34-3	1,1-Dichloroethane	7.0	1.0	0.57	ug/l	
75-35-4 1,1-Dichloroethene ND 1.0 0.59 ug/l 156-59-2 cis-1,2-Dichloroethene 293 b 10 5.1 ug/l 156-60-5 trans-1,2 Dichloroethene 3.4 1.0 0.54 ug/l 78-87-5 1,2-Dichloropropane ND 1.0 0.51 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/l 100-41-4 Ethylbenzene ND 1.0 0.60 ug/l 76-13-1 Freon 113 ND 5.0 0.58 ug/l	107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
156-59-2 cis-1,2-Dichloroethene 293 b 10 5.1 ug/l 156-60-5 trans-1,2-Dichloroethene 3.4 1.0 0.54 ug/l 78-87-5 1,2-Dichloropropane ND 1.0 0.51 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/l 100-41-4 Ethylbenzene ND 1.0 0.60 ug/l 76-13-1 Freon 113 ND 5.0 0.58 ug/l	75-35-4	1,1-Dichloroethene		1.0	0.59		
156-60-5 trans-1,2-Dichloroethene 3.4 1.0 0.54 ug/l 78-87-5 1,2-Dichloropropane ND 1.0 0.51 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/l 100-41-4 Ethylbenzene ND 1.0 0.60 ug/l 76-13-1 Freon 113 ND 5.0 0.58 ug/l	156-59-2	cis-1,2-Dichloroethene	293 b	10	5.1		
78-87-5 1,2-Dichloropropane ND 1.0 0.51 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/l 100-41-4 Ethylbenzene ND 1.0 0.60 ug/l 76-13-1 Freon 113 ND 5.0 0.58 ug/l	156-60-5	trans-1,2-Dichloroethene	3.4	1.0	0.54		
10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/l 100-41-4 Ethylbenzene ND 1.0 0.60 ug/l 76-13-1 Freon 113 ND 5.0 0.58 ug/l	78-87-5	1,2-Dichloropropane	ND	1.0	0.51		
100-41-4 Ethylbenzene ND 1.0 0.60 ug/l 76-13-1 Freon 113 ND 5.0 0.58 ug/l	10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
100-41-4 Ethylbenzene ND 1.0 0.60 ug/l 76-13-1 Freon 113 ND 5.0 0.58 ug/l	10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
76-13-1 Freon 113 ND 5.0 0.58 ug/l	100-41-4		ND	1.0	0.60		
	76-13-1		ND	5.0	0.58		
391-76-0 Z-Hexalione IND 3.0 Z.0 ug/l	591-78-6	2-Hexanone	ND	5.0	2.0	ug/l	

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Client Sample ID: MW-19S

Lab Sample ID:JD58982-4Date Sampled:01/18/23Matrix:AQ - Ground WaterDate Received:01/20/23Method:SW846 8260DPercent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	2.7	1.0	0.56	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	1.6	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	104	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride	1.3	1.0	0.52	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	103%	104%	80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	115%	114%	80-12		
2037-26-5	Toluene-D8	98%	99%	80-12		
460-00-4	4-Bromofluorobenzene	102%	103%	82-13	14%	

⁽a) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Draft: 23 of 80

⁽b) Result is from Run# 2

74-84-0

74-85-1

Ethane

Ethene

Page 1 of 1

Client Sample ID:	MW-19S		
Lab Sample ID:	JD58982-4	Date Sampled:	01/18/23
Matrix:	AQ - Ground Water	Date Received:	01/20/23
Method:	RSK-175	Percent Solids:	n/a

ND

ND

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

Run #1 Run #2			Analyzed 01/25/23 15:36	Analyzed By 01/25/23 15:36 JN		ate	Prep Batch n/a	Analytical Batch GAA2716			
CAS No.	Compound		Result	RL	MDL	Units	Q				
74-82-8	Methane		0.22	0.11	0.080	ug/l					

0.23

0.31

ug/l

ug/l

0.14

0.16

J = Indicates an estimated valueND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-19S Lab Sample ID: JD58982-

JD58982-4 Date Sampled: 01/18/23 Matrix: AQ - Ground Water Date Received: 01/20/23 Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project:

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	3660	100	ug/l	1	01/24/23	01/27/23 ND	SW846 6010D ¹	SW846 3010A ²
Manganese	244	15	ug/l	1	01/24/23	01/27/23 ND	SW846 6010D ¹	SW846 3010A ²

(1) Instrument QC Batch: MA53658

(2) Prep QC Batch: MP37566

Page 1 of 1

Client Sample ID: MW-19S Lab Sample ID: JD58982-

JD58982-4 Date Sampled: 01/18/23 Matrix: AQ - Ground Water Date Received: 01/20/23 Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project:

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Sulfate Sulfide Total Organic Carbon	27.8 < 2.0 11.6	2.0 2.0 1.0	mg/l mg/l mg/l	1 1 1	01/23/23 20:39 01/23/23 10:18 01/23/23 20:45	MP	EPA 300/SW846 9056A SM4500S2- F-11 SM5310 B-11/14

Page 1 of 1

Client Sample ID: MW-19S Lab Sample ID: JD58982-

JD58982-4F Date Sampled: 01/18/23 Matrix: AQ - Groundwater Filtered Date Received: 01/20/23 Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project:

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	< 100	100	ug/l	1	01/24/23	01/27/23 ND	SW846 6010D ¹	SW846 3010A ²
Manganese	28.2	15	ug/l	1	01/24/23	01/27/23 ND	SW846 6010D ¹	SW846 3010A ²

(1) Instrument QC Batch: MA53658 (2) Prep QC Batch: MP37566

| Client Sample ID: MW-6S | Lab Sample ID: JD58982-5 | Date Sampled: 01/18/23 | Matrix: AQ - Ground Water | Date Received: 01/20/23 | Method: SW846 8260D | Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #	1 ^a 2U52444.D	20	01/23/23 17:27	NW	n/a	n/a	V2U2080
Run #	2 1U52510.D	100	01/24/23 13:46	NW	n/a	n/a	V1U2082

	Purge Volume
Run #1	5.0 ml
Run #2	5.0 ml

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone b	ND	200	61	ug/l	
71-43-2	Benzene	ND	10	8.5	ug/l	
74-97-5	Bromochloromethane	ND	20	9.6	ug/l	
75-27-4	Bromodichloromethane	ND	20	9.0	ug/l	
75-25-2	Bromoform	ND	20	13	ug/l	
74-83-9	Bromomethane ^b	ND	40	33	ug/l	
78-93-3	2-Butanone (MEK)	ND	200	55	ug/l	
75-15-0	Carbon disulfide	ND	40	9.1	ug/l	
56-23-5	Carbon tetrachloride	ND	20	11	ug/l	
108-90-7	Chlorobenzene	ND	20	11	ug/l	
75-00-3	Chloroethane	ND	20	15	ug/l	
67-66-3	Chloroform	ND	20	10	ug/l	
74-87-3	Chloromethane ^b	ND	20	15	ug/l	
110-82-7	Cyclohexane	ND	100	16	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	40	11	ug/l	
124-48-1	Dibromochloromethane	ND	20	11	ug/l	
106-93-4	1,2-Dibromoethane	ND	20	9.5	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	20	11	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	20	11	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	20	10	ug/l	
75-71-8	Dichlorodifluoromethane ^b	ND	40	11	ug/l	
75-34-3	1,1-Dichloroethane	ND	20	11	ug/l	
107-06-2	1,2-Dichloroethane	ND	20	12	ug/l	
75-35-4	1,1-Dichloroethene	ND	20	12	ug/l	
156-59-2	cis-1,2-Dichloroethene	451	20	10	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	20	11	ug/l	
78-87-5	1,2-Dichloropropane	ND	20	10	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	20	9.4	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	20	8.6	ug/l	
100-41-4	Ethylbenzene	67.2	20	12	ug/l	
76-13-1	Freon 113	ND	100	12	ug/l	
591-78-6	2-Hexanone	ND	100	41	ug/l	

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Page 2 of 2

Client Sample ID: MW-6S

Lab Sample ID:JD58982-5Date Sampled:01/18/23Matrix:AQ - Ground WaterDate Received:01/20/23Method:SW846 8260DPercent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
98-82-8	Isopropylbenzene	ND	20	13	ug/l	
79-20-9	Methyl Acetate	ND	100	16	ug/l	
108-87-2	Methylcyclohexane	ND	100	12	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	20	10	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	118	100	37	ug/l	
75-09-2	Methylene chloride	ND	40	20	ug/l	
100-42-5	Styrene	ND	20	9.7	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	20	13	ug/l	
127-18-4	Tetrachloroethene	ND	20	11	ug/l	
108-88-3	Toluene	4130 ^c	100	49	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	20	10	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	20	10	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	20	11	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	20	11	ug/l	
79-01-6	Trichloroethene	ND	20	11	ug/l	
75-69-4	Trichlorofluoromethane	ND	40	8.0	ug/l	
75-01-4	Vinyl chloride	1060	20	10	ug/l	
	m,p-Xylene	410	20	16	ug/l	
95-47-6	o-Xylene	70.0	20	12	ug/l	
1330-20-7	Xylene (total)	480	20	12	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	104%	103%	80-1	20%	
17060-07-0	1,2-Dichloroethane-D4	115%	114%	80-1		
2037-26-5	Toluene-D8	103%	98%	80-1		
460-00-4	4-Bromofluorobenzene	101%	103%	82-1	14%	

⁽a) Dilution required due to high concentration of target compound.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

⁽b) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

⁽c) Result is from Run# 2

74-85-1

Ethene

Page 1 of 1

Client Sample ID:	MW-6S		
Lab Sample ID:	JD58982-5 Date Samp	led:	01/18/23
Matrix:	AQ - Ground Water Date Recei	ved:	01/20/23
Method:	RSK-175 Percent So	lids:	n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

Run #1 Run #2	File ID AA99217.D	DF 100	Analyzed 01/25/23 16:02	By JN	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GAA2716
CAS No.	Compound		Result	RL	MDL	Units	Q	
74-82-8 74-84-0	Methane Ethane		7100 2100	11 23	8.0 14	ug/l ug/l		

31

2530

16

ug/l

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Draft: 30 of 80

Page 1 of 1

Client Sample ID: MW-6S Lab Sample ID: JD58982 JD58982-5 Date Sampled: 01/18/23 Matrix: AQ - Ground Water Date Received: 01/20/23 Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project:

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	134000	100	ug/l	1	01/24/23	01/27/23 ND	SW846 6010D ¹	SW846 3010A ²
Manganese	3330	15	ug/l	1	01/24/23	01/27/23 ND	SW846 6010D ¹	SW846 3010A ²

(1) Instrument QC Batch: MA53658 (2) Prep QC Batch: MP37566

Page 1 of 1

Client Sample ID: MW-6S Lab Sample ID: JD58982

JD58982-5 Date Sampled: 01/18/23 Matrix: AQ - Ground Water Date Received: 01/20/23 Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project:

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Sulfate	< 2.0	2.0	mg/l	1	01/23/23 20:52	MP	EPA 300/SW846 9056A
Sulfide	< 2.0	2.0	mg/l	1	01/23/23 10:22		SM4500S2- F-11
Total Organic Carbon	274	20	mg/l	20	01/24/23 10:52		SM5310 B-11/14

Page 1 of 1

Client Sample ID: MW-6S Lab Sample ID: JD58982 JD58982-5F Date Sampled: 01/18/23 Matrix: AQ - Groundwater Filtered Date Received: 01/20/23 Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project:

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	146000	100	ug/l	1	01/24/23	01/27/23 ND	SW846 6010D ¹	SW846 3010A ²
Manganese	3760	15	ug/l	1	01/24/23	01/27/23 ND	SW846 6010D ¹	SW846 3010A ²

(1) Instrument QC Batch: MA53658 (2) Prep QC Batch: MP37566

Client Sample ID: MW-6B
Lab Sample ID: JD58982-6 Date Sampled: 01/18/23
Matrix: AQ - Ground Water Date Received: 01/20/23
Method: SW846 8260D Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

Ī		File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
	Run #1 ^a	1U52447.D	200	01/23/23 18:10	NW	n/a	n/a	V1U2080
	Run #2	1U52514.D	1000	01/24/23 14:44	NW	n/a	n/a	V1U2082

	Purge Volume
Run #1	5.0 ml
Run #2	5.0 ml

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	2000	610	ug/l	
71-43-2	Benzene	ND	100	85	ug/l	
74-97-5	Bromochloromethane	ND	200	96	ug/l	
75-27-4	Bromodichloromethane	ND	200	90	ug/l	
75-25-2	Bromoform	ND	200	130	ug/l	
74-83-9	Bromomethane	ND	400	330	ug/l	
78-93-3	2-Butanone (MEK)	ND	2000	550	ug/l	
75-15-0	Carbon disulfide ^b	ND	400	91	ug/l	
56-23-5	Carbon tetrachloride	ND	200	110	ug/l	
108-90-7	Chlorobenzene	ND	200	110	ug/l	
75-00-3	Chloroethane	ND	200	150	ug/l	
67-66-3	Chloroform	ND	200	100	ug/l	
74-87-3	Chloromethane ^b	ND	200	150	ug/l	
110-82-7	Cyclohexane	ND	1000	160	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	400	110	ug/l	
124-48-1	Dibromochloromethane	ND	200	110	ug/l	
106-93-4	1,2-Dibromoethane	ND	200	95	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	200	110	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	200	110	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	200	100	ug/l	
75-71-8	Dichlorodifluoromethane ^b	ND	400	110	ug/l	
75-34-3	1,1-Dichloroethane	ND	200	110	ug/l	
107-06-2	1,2-Dichloroethane	ND	200	120	ug/l	
75-35-4	1,1-Dichloroethene	ND	200	120	ug/l	
156-59-2	cis-1,2-Dichloroethene	43200 c	1000	510	ug/l	
156-60-5	trans-1,2-Dichloroethene	230	200	110	ug/l	
78-87-5	1,2-Dichloropropane	ND	200	100	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	200	94	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	200	86	ug/l	
100-41-4	Ethylbenzene	ND	200	120	ug/l	
76-13-1	Freon 113	ND	1000	120	ug/l	
591-78-6	2-Hexanone	ND	1000	410	ug/l	

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Page 2 of 2

Client Sample ID: MW-6B

Lab Sample ID:JD58982-6Date Sampled:01/18/23Matrix:AQ - Ground WaterDate Received:01/20/23Method:SW846 8260DPercent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
98-82-8	Isopropylbenzene	ND	200	130	ug/l	
79-20-9	Methyl Acetate	ND	1000	160	ug/l	
108-87-2	Methylcyclohexane ^b	ND	1000	120	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	200	100	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	1000	370	ug/l	
75-09-2	Methylene chloride	ND	400	200	ug/l	
100-42-5	Styrene	ND	200	97	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	200	130	ug/l	
127-18-4	Tetrachloroethene	ND	200	110	ug/l	
108-88-3	Toluene	116	200	98	ug/l	J
87-61-6	1,2,3-Trichlorobenzene ^b	ND	200	100	ug/l	
120-82-1	1,2,4-Trichlorobenzene ^b	ND	200	100	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	200	110	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	200	110	ug/l	
79-01-6	Trichloroethene	ND	200	110	ug/l	
75-69-4	Trichlorofluoromethane	ND	400	80	ug/l	
75-01-4	Vinyl chloride	7350	200	100	ug/l	
	m,p-Xylene	ND	200	160	ug/l	
95-47-6	o-Xylene	ND	200	120	ug/l	
1330-20-7	Xylene (total)	ND	200	120	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	103%	104%	80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	116%	112%	80-12	20%	
2037-26-5	Toluene-D8	98%	98%	80-12		
460-00-4	4-Bromofluorobenzene	103%	103%	82-11	14%	

⁽a) Dilution required due to high concentration of target compound.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

⁽b) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

⁽c) Result is from Run# 2

Client Sample ID: MW-6B

Lab Sample ID: JD58982-6 Date Sampled: 01/18/23 Matrix: AQ - Ground Water Date Received: 01/20/23 Method: RSK-175 Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project:

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	AA99219.D	1	01/25/23 16:30	JŇ	n/a ¯	n/a	GAA2716
Run #2	AA99220.D	100	01/25/23 16:43	JN	n/a	n/a	GAA2716

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	3600 ^a	11	8.0	ug/l	
74-84-0	Ethane	21.5	0.23	0.14	ug/l	
74-85-1	Ethene	154	0.31	0.16	ug/l	

⁽a) Result is from Run# 2

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N =Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-6B Lab Sample ID: JD58982

Lab Sample ID: JD58982-6 Date Sampled: 01/18/23
Matrix: AQ - Ground Water Date Received: 01/20/23
Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	1630	100	ug/l	1	01/24/23	01/27/23 ND	SW846 6010D ¹	SW846 3010A ²
Manganese	116	15	ug/l	1	01/24/23	01/27/23 ND	SW846 6010D ¹	SW846 3010A ²

(1) Instrument QC Batch: MA53658(2) Prep QC Batch: MP37566

Page 1 of 1

Client Sample ID: MW-6B Lab Sample ID: JD58982

JD58982-6 Date Sampled: 01/18/23 Matrix: AQ - Ground Water Date Received: 01/20/23 Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project:

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Sulfate	544	6.0	mg/l	3	01/24/23 16:10	MP	EPA 300/SW846 9056A
Sulfide	6.6	2.0	mg/l	1	01/23/23 10:25		SM4500S2- F-11
Total Organic Carbon	141	5.0	mg/l	5	01/24/23 11:04		SM5310 B-11/14

Page 1 of 1

Client Sample ID: MW-6B Lab Sample ID: JD58982

JD58982-6F Matrix: AQ - Groundwater Filtered Date Sampled: 01/18/23 Date Received: 01/20/23 Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project:

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron Manganese	451 106	100 15	ug/l ug/l				SW846 6010D ¹ SW846 6010D ¹	

(1) Instrument QC Batch: MA53658 (2) Prep QC Batch: MP37566

Client Sample ID: MW-15S
Lab Sample ID: JD58982-7 Date Sampled: 01/18/23
Matrix: AQ - Ground Water Date Received: 01/20/23
Method: SW846 8260D Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	1U52512.D	1	01/24/23 14:15	NW	n/a	n/a	V1U2082
Run #2	2U52448.D	20	01/23/23 18:25	NW	n/a	n/a	V2U2080

	Purge Volume
Run #1	5.0 ml
Run #2	5.0 ml

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.1	ug/l	
71-43-2	Benzene	3.8	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
75-15-0	Carbon disulfide ^a	ND	2.0	0.46	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane ^a	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane ^a	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	1.8	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	2.9	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	3.6	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	
591-78-6	2-Hexanone	ND	5.0	2.0	ug/l	

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

E = Indicates value exceeds calibration range

N =Indicates presumptive evidence of a compound

Client Sample ID: MW-15S

Lab Sample ID:JD58982-7Date Sampled:01/18/23Matrix:AQ - Ground WaterDate Received:01/20/23Method:SW846 8260DPercent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane ^a	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.56	ug/l	
108-88-3	Toluene	307 b	20	9.8	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride	86.6	1.0	0.52	ug/l	
	m,p-Xylene	14.9	1.0	0.78	ug/l	
95-47-6	o-Xylene	10.9	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	25.8	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	103%	104%	80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	115%	115%	80-12		
2037-26-5	Toluene-D8	102%	99%	80-12		
460-00-4	4-Bromofluorobenzene	102%	102%	82-13	14%	

⁽a) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N =Indicates presumptive evidence of a compound

⁽b) Result is from Run# 2

Page 1 of 1

Client Sample ID: MW-15S

Lab Sample ID: JD58982-7 Date Sampled: 01/18/23

Matrix: AQ - Ground Water Date Received: 01/20/23

Method: RSK-175 Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

Run #1	File ID	DF	Analyzed	By	Prep D	ate	Prep Batch	Analytical Batch
Run #2	AA99222.D	100	01/25/23 17:10	JN	n/a		n/a	GAA2716
CAS No.	Compound		Result	RL	MDL	Units	Q	

74-82-8 Methane 9670 11 8.0 ug/l 74-84-0 Ethane 1250 23 14 ug/l 74-85-1 Ethene 5430 31 16 ug/l	CAS No.	Compound	Resuit	KL	MDL	Omis	
		Ethane	1250		14	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Draft: 42 of 80

Page 1 of 1

Client Sample ID: MW-15S Lab Sample ID: JD58982-

JD58982-7 Date Sampled: 01/18/23 Matrix: AQ - Ground Water Date Received: 01/20/23 Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project:

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	29800	100	ug/l	1	01/24/23	01/27/23 ND	SW846 6010D ¹	SW846 3010A ²
Manganese	1170	15	ug/l	1	01/24/23	01/27/23 ND	SW846 6010D ¹	SW846 3010A ²

(1) Instrument QC Batch: MA53658

(2) Prep QC Batch: MP37566

Page 1 of 1

Client Sample ID: MW-15S Lab Sample ID: JD58982-

JD58982-7 Date Sampled: 01/18/23 Matrix: AQ - Ground Water Date Received: 01/20/23 Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project:

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Sulfate	< 2.0	2.0	mg/l	1	01/23/23 21:18	MP	EPA 300/SW846 9056A
Sulfide	< 2.0	2.0	mg/l	1	01/23/23 10:28		SM4500S2- F-11
Total Organic Carbon	27.4	1.0	mg/l	1	01/23/23 21:28		SM5310 B-11/14

Page 1 of 1

Client Sample ID: MW-15S Lab Sample ID: JD58982-

JD58982-7F Date Sampled: 01/18/23 Matrix: AQ - Groundwater Filtered Date Received: 01/20/23 Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project:

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron Manganese	31900 1240	100 15	ug/l ug/l	1		01/27/23 ND 01/27/23 ND	SW846 6010D ¹ SW846 6010D ¹	SW846 3010A ² SW846 3010A ²

(1) Instrument QC Batch: MA53658 (2) Prep QC Batch: MP37566

Client Sample ID: MW-14S
Lab Sample ID: JD58982-8
Matrix: AQ - Ground Water
Date Received: 01/20/23
Method: SW846 8260D
Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

		File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
R	lun #1 a	2U52513.D	2	01/24/23 14:30	NW	n/a	n/a	V2U2082
R	tun #2	1U52449.D	10	01/23/23 18:39	NW	n/a	n/a	V1U2080

	Purge Volume
Run #1	5.0 ml
Run #2	5.0 ml

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	20	6.1	ug/l	
71-43-2	Benzene	ND	1.0	0.85	ug/l	
74-97-5	Bromochloromethane	ND	2.0	0.96	ug/l	
75-27-4	Bromodichloromethane	ND	2.0	0.90	ug/l	
75-25-2	Bromoform	ND	2.0	1.3	ug/l	
74-83-9	Bromomethane	ND	4.0	3.3	ug/l	
78-93-3	2-Butanone (MEK)	ND	20	5.5	ug/l	
75-15-0	Carbon disulfide b	ND	4.0	0.91	ug/l	
56-23-5	Carbon tetrachloride	ND	2.0	1.1	ug/l	
108-90-7	Chlorobenzene	ND	2.0	1.1	ug/l	
75-00-3	Chloroethane	ND	2.0	1.5	ug/l	
67-66-3	Chloroform	ND	2.0	1.0	ug/l	
74-87-3	Chloromethane	ND	2.0	1.5	ug/l	
110-82-7	Cyclohexane	ND	10	1.6	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	4.0	1.1	ug/l	
124-48-1	Dibromochloromethane	ND	2.0	1.1	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.95	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	2.0	1.1	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	2.0	1.1	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	2.0	1.0	ug/l	
75-71-8	Dichlorodifluoromethane ^b	ND	4.0	1.1	ug/l	
75-34-3	1,1-Dichloroethane	1.3	2.0	1.1	ug/l	J
107-06-2	1,2-Dichloroethane	ND	2.0	1.2	ug/l	
75-35-4	1,1-Dichloroethene	ND	2.0	1.2	ug/l	
156-59-2	cis-1,2-Dichloroethene	334	2.0	1.0	ug/l	
156-60-5	trans-1,2-Dichloroethene	1.1	2.0	1.1	ug/l	J
78-87-5	1,2-Dichloropropane	ND	2.0	1.0	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	2.0	0.94	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	2.0	0.86	ug/l	
100-41-4	Ethylbenzene	2.6	2.0	1.2	ug/l	
76-13-1	Freon 113	ND	10	1.2	ug/l	
591-78-6	2-Hexanone	ND	10	4.1	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Draft: 46 of 80

Client Sample ID: MW-14S

Lab Sample ID:JD58982-8Date Sampled:01/18/23Matrix:AQ - Ground WaterDate Received:01/20/23Method:SW846 8260DPercent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
98-82-8	Isopropylbenzene	ND	2.0	1.3	ug/l	
79-20-9	Methyl Acetate	ND	10	1.6	ug/l	
108-87-2	Methylcyclohexane	ND	10	1.2	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	2.0	1.0	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	10	3.7	ug/l	
75-09-2	Methylene chloride	ND	4.0	2.0	ug/l	
100-42-5	Styrene	ND	2.0	0.97	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	2.0	1.3	ug/l	
127-18-4	Tetrachloroethene	ND	2.0	1.1	ug/l	
108-88-3	Toluene	93.2	2.0	0.98	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	1.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	1.0	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	2.0	1.1	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	2.0	1.1	ug/l	
79-01-6	Trichloroethene	ND	2.0	1.1	ug/l	
75-69-4	Trichlorofluoromethane	ND	4.0	0.80	ug/l	
75-01-4	Vinyl chloride	817 ^c	10	5.2	ug/l	
	m,p-Xylene	9.6	2.0	1.6	ug/l	
95-47-6	o-Xylene	2.2	2.0	1.2	ug/l	
1330-20-7	Xylene (total)	11.8	2.0	1.2	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	103%	104%	80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	113%	116%	80-12	20%	
2037-26-5	Toluene-D8	99%	99%	80-12		
460-00-4	4-Bromofluorobenzene	100%	103%	82-13	14%	

⁽a) Dilution required due to high concentration of target compound.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

⁽b) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

⁽c) Result is from Run# 2

Client Sample ID: MW-14S

Lab Sample ID: JD58982-8 Date Sampled: 01/18/23 Matrix: AQ - Ground Water Date Received: 01/20/23 Method: RSK-175 Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project:

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 a	AA99223.D	1	01/25/23 17:24	JŇ	n/a	n/a	GAA2716
Run #2 a	AA99224.D	100	01/25/23 17:37	JN	n/a	n/a	GAA2716

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	10500 ^b	11	8.0	ug/l	
74-84-0	Ethane	184	0.23	0.14	ug/l	
74-85-1	Ethene	206	0.31	0.16	ug/l	

⁽a) 2mm diameter bubble present in headspace.

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N =Indicates presumptive evidence of a compound

⁽b) Result is from Run# 2

Page 1 of 1

Client Sample ID: MW-14S Lab Sample ID: JD58982-JD58982-8 Date Sampled: 01/18/23 Matrix: AQ - Ground Water Date Received: 01/20/23 Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project:

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron Manganese	6390 462	100 15	ug/l ug/l	1 1			SW846 6010D ¹ SW846 6010D ¹	_

(1) Instrument QC Batch: MA53658 (2) Prep QC Batch: MP37566

Page 1 of 1

Client Sample ID: MW-14S Lab Sample ID: JD58982-

JD58982-8 Date Sampled: 01/18/23 Matrix: AQ - Ground Water Date Received: 01/20/23 Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project:

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Sulfate	6.6	2.0	mg/l	1	01/23/23 21:31	MP	EPA 300/SW846 9056A
Sulfide	< 2.0	2.0	mg/l	1	01/23/23 10:32		SM4500S2- F-11
Total Organic Carbon	8.0	5.0	mg/l	5	01/24/23 11:17		SM5310 B-11/14

Page 1 of 1

Client Sample ID: MW-14S Lab Sample ID: JD58982-

JD58982-8F Date Sampled: 01/18/23 Matrix: AQ - Groundwater Filtered Date Received: 01/20/23 Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project:

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	6090	100	ug/l	1	01/24/23	01/27/23 ND	SW846 6010D ¹	SW846 3010A ²
Manganese	481	15	ug/l	1	01/24/23	01/27/23 ND	SW846 6010D ¹	SW846 3010A 2

(1) Instrument QC Batch: MA53658 (2) Prep QC Batch: MP37566

Client Sample ID: MW-4S
Lab Sample ID: JD58982-9
Matrix: AQ - Ground Water
Method: SW846 8260D

Date Sampled: 01/18/23
Date Received: 01/20/23
Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 2U52442.D 1 01/23/23 16:57 NW n/a n/a V2U2080 Run #2

Purge Volume
Run #1 5.0 ml
Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone ^a	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane ^a	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.46	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane ^a	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane ^a	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	
591-78-6	2-Hexanone	ND	5.0	2.0	ug/l	

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Client Sample ID: MW-4S

Lab Sample ID:JD58982-9Date Sampled:01/18/23Matrix:AQ - Ground WaterDate Received:01/20/23Method:SW846 8260DPercent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.56	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.52	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	105%		80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	115%		80-12	20%	
2037-26-5	Toluene-D8	99%		80-12		
460-00-4	4-Bromofluorobenzene	103%		82-1	14%	

⁽a) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Draft: 53 of 80

Client Sample ID: MW-4S

Lab Sample ID: JD58982-9 Date Sampled: 01/18/23
Matrix: AQ - Ground Water Date Received: 01/20/23
Method: RSK-175 Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

	File ID	DF	Analyzed By	Prep Date	Prep Batch	Analytical Batch
Run #1	AA99232.D	1	01/26/23 10:01 JN	n/a	n/a	GAA2717
Run #2	AA99234.D	5	01/26/23 10:28 JN	n/a	n/a	GAA2717
Run #3	AA99233.D	100	01/26/23 10:15 JN	n/a	n/a	GAA2717

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	4240 a	11	8.0	ug/l	
74-84-0 74-85-1	Ethane Ethene	325 b 17.8	1.2 0.31	$0.70 \\ 0.16$	ug/l ug/l	

⁽a) Result is from Run# 3

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

⁽b) Result is from Run# 2

Page 1 of 1

Client Sample ID: MW-4S Lab Sample ID: JD58982 JD58982-9 Date Sampled: 01/18/23 Matrix: AQ - Ground Water Date Received: 01/20/23 Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project:

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	18100	100	ug/l	1	01/24/23	01/27/23 ND	SW846 6010D ¹	SW846 3010A ²
Manganese	2330	15	ug/l	1	01/24/23	01/27/23 ND	SW846 6010D ¹	SW846 3010A ²

(1) Instrument QC Batch: MA53658 (2) Prep QC Batch: MP37566

Page 1 of 1

Client Sample ID: MW-4S Lab Sample ID: JD58982

JD58982-9 Date Sampled: 01/18/23 Matrix: AQ - Ground Water Date Received: 01/20/23 Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project:

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Sulfate	28.0	2.0	mg/l	1	01/23/23 21:44	MP	EPA 300/SW846 9056A
Sulfide	< 2.0	2.0	mg/l	1	01/23/23 10:34		SM4500S2- F-11
Total Organic Carbon	9.4	1.0	mg/l	1	01/23/23 22:12		SM5310 B-11/14

Page 1 of 1

Client Sample ID: MW-4S Lab Sample ID: JD58982 JD58982-9F Date Sampled: 01/18/23 Matrix: AQ - Groundwater Filtered Date Received: 01/20/23 Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project:

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	18600	100	ug/l	1	01/24/23	02/01/23 ND	SW846 6010D ¹	SW846 3010A ²
Manganese	2490	15	ug/l	1	01/24/23	02/01/23 ND	SW846 6010D ¹	SW846 3010A ²

(1) Instrument QC Batch: MA53678 (2) Prep QC Batch: MP37566

| Client Sample ID: MW-4B | Lab Sample ID: JD58982-10 | Date Sampled: 01/18/23 | Matrix: AQ - Ground Water | Date Received: 01/20/23 | Method: SW846 8260D | Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
	2U52450.D	200	01/23/23 18:54	NW	n/a	n/a	V2U2080
Run #2 ^b	2U52515.D	500	01/24/23 14:59	NW	n/a	n/a	V2U2082

	Purge Volume
Run #1	5.0 ml
Run #2	5.0 ml

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone c	ND	2000	610	ug/l	
71-43-2	Benzene	ND	100	85	ug/l	
74-97-5	Bromochloromethane	ND	200	96	ug/l	
75-27-4	Bromodichloromethane	ND	200	90	ug/l	
75-25-2	Bromoform	ND	200	130	ug/l	
74-83-9	Bromomethane ^c	ND	400	330	ug/l	
78-93-3	2-Butanone (MEK)	ND	2000	550	ug/l	
75-15-0	Carbon disulfide	ND	400	91	ug/l	
56-23-5	Carbon tetrachloride	ND	200	110	ug/l	
108-90-7	Chlorobenzene	ND	200	110	ug/l	
75-00-3	Chloroethane	ND	200	150	ug/l	
67-66-3	Chloroform	ND	200	100	ug/l	
74-87-3	Chloromethane ^c	ND	200	150	ug/l	
110-82-7	Cyclohexane	ND	1000	160	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	400	110	ug/l	
124-48-1	Dibromochloromethane	ND	200	110	ug/l	
106-93-4	1,2-Dibromoethane	ND	200	95	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	200	110	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	200	110	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	200	100	ug/l	
75-71-8	Dichlorodifluoromethane ^c	ND	400	110	ug/l	
75-34-3	1,1-Dichloroethane	ND	200	110	ug/l	
107-06-2	1,2-Dichloroethane	ND	200	120	ug/l	
75-35-4	1,1-Dichloroethene	212	200	120	ug/l	
156-59-2	cis-1,2-Dichloroethene	48200 d	500	250	ug/l	
156-60-5	trans-1,2-Dichloroethene	289	200	110	ug/l	
78-87-5	1,2-Dichloropropane	ND	200	100	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	200	94	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	200	86	ug/l	
100-41-4	Ethylbenzene	178	200	120	ug/l	J
76-13-1	Freon 113	ND	1000	120	ug/l	
591-78-6	2-Hexanone	ND	1000	410	ug/l	

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

 $N = \ \, \text{Indicates presumptive evidence of a compound} \, \,$

Client Sample ID: MW-4B Lab Sample ID: JD58982-10

Lab Sample ID:JD58982-10Date Sampled:01/18/23Matrix:AQ - Ground WaterDate Received:01/20/23Method:SW846 8260DPercent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
98-82-8	Isopropylbenzene	ND	200	130	ug/l	
79-20-9	Methyl Acetate	ND	1000	160	ug/l	
108-87-2	Methylcyclohexane	ND	1000	120	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	200	100	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	1000	370	ug/l	
75-09-2	Methylene chloride	ND	400	200	ug/l	
100-42-5	Styrene	ND	200	97	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	200	130	ug/l	
127-18-4	Tetrachloroethene	ND	200	110	ug/l	
108-88-3	Toluene	1880	200	98	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	200	100	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	200	100	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	200	110	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	200	110	ug/l	
79-01-6	Trichloroethene	7550	200	110	ug/l	
75-69-4	Trichlorofluoromethane	ND	400	80	ug/l	
75-01-4	Vinyl chloride	22500	200	100	ug/l	
	m,p-Xylene	361	200	160	ug/l	
95-47-6	o-Xylene	120	200	120	ug/l	J
1330-20-7	Xylene (total)	481	200	120	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	102%	103%	80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	115%	112%	80-12	20%	
2037-26-5	Toluene-D8	99%	98%	80-12		
460-00-4	4-Bromofluorobenzene	101%	101%	82-11	4%	
CAS No. 1868-53-7 17060-07-0 2037-26-5	Surrogate Recoveries Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	Run# 1 102% 115% 99%	Run# 2 103% 112% 98%	Limit 80-12 80-12 80-12	ts 20% 20% 20%	

⁽a) (pH= 4)Sample pH did not satisfy field preservation criteria. Dilution required due to high concentration of target compound.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Draft: 59 of 80

⁽b) (pH= 3)Sample pH did not satisfy field preservation criteria.

⁽c) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

⁽d) Result is from Run# 2

Page 1 of 1

Client Sample ID: MW-4B Lab Sample ID: JD58982-10 Date Sampled: 01/18/23 AQ - Ground Water Date Received: 01/20/23 Matrix: Method: RSK-175 Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project:

	File ID	DF	Analyzed By	Prep Date	Prep Batch	Analytical Batch
Run #1 a	AA99236.D	1	01/26/23 10:56 JN	n/a	n/a	GAA2717
Run #2 a	AA99238.D	10	01/26/23 11:23 JN	n/a	n/a	GAA2717
Run #3 a	AA99237.D	100	01/26/23 11:10 JN	n/a	n/a	GAA2717

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	5910 b	11	8.0	ug/l	
74-84-0	Ethane	174	0.23	0.14	ug/l	
74-85-1	Ethene	1390 c	3.1	1.6	ug/l	

⁽a) (pH= 3)Sample pH did not satisfy field preservation criteria. 3mm diameter bubble present in headspace.

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

⁽b) Result is from Run# 3

⁽c) Result is from Run# 2

Page 1 of 1

Client Sample ID: MW-4B

Lab Sample ID: JD58982-10 Date Sampled: 01/18/23
Matrix: AQ - Ground Water Date Received: 01/20/23
Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron ^a Manganese	< 500 90.6	500 15	ug/l ug/l	5 1			SW846 6010D ² SW846 6010D ¹	_

(1) Instrument QC Batch: MA53661(2) Instrument QC Batch: MA53671(3) Prep QC Batch: MP37576

(a) Elevated detection limit due to dilution required for high interfering element.

Page 1 of 1

Client Sample ID: MW-4B Lab Sample ID: JD58982 JD58982-10 Date Sampled: 01/18/23 Matrix: AQ - Ground Water Date Received: 01/20/23 Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project:

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Sulfate	117	2.0	mg/l	1	01/23/23 21:57		EPA 300/SW846 9056A
Sulfide	155	2.0	mg/l	1	01/23/23 10:38	MP	SM4500S2- F-11
Total Organic Carbon	95.0	5.0	mg/l	5	01/24/23 11:26	МВ	SM5310 B-11/14

Page 1 of 1

Client Sample ID: MW-4B

Lab Sample ID: JD58982-10F Date Sampled: 01/18/23
Matrix: AQ - Groundwater Filtered Date Received: 01/20/23
Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron a	< 500	500	ug/l	5	01/25/23	01/31/23 EAL	SW846 6010D ²	SW846 3010A ³
Manganese	88.5	15	ug/l	1	01/25/23	01/29/23 ND	SW846 6010D ¹	SW846 3010A ³

(1) Instrument QC Batch: MA53661(2) Instrument QC Batch: MA53671(3) Prep QC Batch: MP37576

(a) Elevated detection limit due to dilution required for high interfering element.

Client Sample ID: MW-13S

Lab Sample ID: JD58982-11

Matrix: AQ - Ground Water

Method: SW846 8260D

Date Sampled: 01/18/23

Date Received: 01/20/23

Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 1U52451.D 50 01/23/23 19:08 NW n/a n/a V1U2080 Run #2

Purge Volume
Run #1 5.0 ml
Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	500	150	ug/l	
71-43-2	Benzene	ND	25	21	ug/l	
74-97-5	Bromochloromethane	ND	50	24	ug/l	
75-27-4	Bromodichloromethane	ND	50	23	ug/l	
75-25-2	Bromoform	ND	50	32	ug/l	
74-83-9	Bromomethane	ND	100	82	ug/l	
78-93-3	2-Butanone (MEK)	ND	500	140	ug/l	
75-15-0	Carbon disulfide b	ND	100	23	ug/l	
56-23-5	Carbon tetrachloride	ND	50	28	ug/l	
108-90-7	Chlorobenzene	ND	50	28	ug/l	
75-00-3	Chloroethane	ND	50	36	ug/l	
67-66-3	Chloroform	ND	50	25	ug/l	
74-87-3	Chloromethane ^b	ND	50	38	ug/l	
110-82-7	Cyclohexane	ND	250	39	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	100	26	ug/l	
124-48-1	Dibromochloromethane	ND	50	28	ug/l	
106-93-4	1,2-Dibromoethane	ND	50	24	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	50	27	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	50	27	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	50	25	ug/l	
75-71-8	Dichlorodifluoromethane ^b	ND	100	28	ug/l	
75-34-3	1,1-Dichloroethane	ND	50	28	ug/l	
107-06-2	1,2-Dichloroethane	ND	50	30	ug/l	
75-35-4	1,1-Dichloroethene	ND	50	30	ug/l	
156-59-2	cis-1,2-Dichloroethene	6670	50	25	ug/l	
156-60-5	trans-1,2-Dichloroethene	44.3	50	27	ug/l	J
78-87-5	1,2-Dichloropropane	ND	50	25	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	50	24	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	50	22	ug/l	
100-41-4	Ethylbenzene	ND	50	30	ug/l	
76-13-1	Freon 113	ND	250	29	ug/l	
591-78-6	2-Hexanone	ND	250	100	ug/l	

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Client Sample ID: MW-13S

Lab Sample ID: JD58982-11 Date Sampled: 01/18/23 Matrix: AQ - Ground Water Date Received: 01/20/23 Method: SW846 8260D Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
98-82-8	Isopropylbenzene	ND	50	32	ug/l	
79-20-9	Methyl Acetate	ND	250	40	ug/l	
108-87-2	Methylcyclohexane ^b	ND	250	30	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	50	25	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	250	93	ug/l	
75-09-2	Methylene chloride	ND	100	50	ug/l	
100-42-5	Styrene	ND	50	24	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	50	33	ug/l	
127-18-4	Tetrachloroethene	ND	50	28	ug/l	
108-88-3	Toluene	ND	50	25	ug/l	
87-61-6	1,2,3-Trichlorobenzene ^b	ND	50	25	ug/l	
120-82-1	1,2,4-Trichlorobenzene ^b	ND	50	25	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	50	27	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	50	27	ug/l	
79-01-6	Trichloroethene	ND	50	26	ug/l	
75-69-4	Trichlorofluoromethane	ND	100	20	ug/l	
75-01-4	Vinyl chloride	1830	50	26	ug/l	
	m,p-Xylene	ND	50	39	ug/l	
95-47-6	o-Xylene	ND	50	30	ug/l	
1330-20-7	Xylene (total)	ND	50	30	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lin	nits	
1868-53-7	Dibromofluoromethane	103%		80-1	120%	
17060-07-0	1,2-Dichloroethane-D4	116%		80-1	120%	
2037-26-5	Toluene-D8	98%		80-1	120%	
460-00-4	4-Bromofluorobenzene	103%		82-1	14%	

⁽a) Dilution required due to high concentration of target compound.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Draft: 65 of 80

⁽b) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

Client Sample ID: MW-13S Lab Sample ID: JD58982-11 Date Sampled: 01/18/23 Matrix: AQ - Ground Water Date Received: 01/20/23 Method: RSK-175 Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project:

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	AA99239.D	1	01/26/23 11:37	JN	n/a	n/a	GAA2717
Run #2	AA99240.D	10	01/26/23 11:58	JN	n/a	n/a	GAA2717

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	757 ^a	1.1	0.80	ug/l	
74-84-0	Ethane	3.65	0.23	0.14	ug/l	
74-85-1	Ethene	109	0.31	0.16	ug/l	

⁽a) Result is from Run# 2

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N =Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-13S Lab Sample ID: JD58982-JD58982-11 Date Sampled: 01/18/23 Matrix: AQ - Ground Water Date Received: 01/20/23 Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project:

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	767	100	ug/l	1	01/24/23	01/29/23 ND	SW846 6010D ¹	SW846 3010A ²
Manganese	149	15	ug/l	1	01/24/23	01/29/23 ND	SW846 6010D ¹	SW846 3010A ²

(1) Instrument QC Batch: MA53661 (2) Prep QC Batch: MP37567

Page 1 of 1

Client Sample ID: MW-13S Lab Sample ID: JD58982-JD58982-11 Date Sampled: 01/18/23 Matrix: AQ - Ground Water Date Received: 01/20/23 Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project:

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Sulfate	559	6.0	mg/l	3	01/24/23 16:23	MP	EPA 300/SW846 9056A
Sulfide	19.2	2.0	mg/l	1	01/23/23 10:42		SM4500S2- F-11
Total Organic Carbon	48.5	1.0	mg/l	1	01/23/23 23:19		SM5310 B-11/14

Page 1 of 1

Client Sample ID: MW-13S Lab Sample ID: JD58982-

JD58982-11F Date Sampled: 01/18/23 Matrix: AQ - Groundwater Filtered Date Received: 01/20/23 Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project:

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	364	100	ug/l	1	01/24/23	01/29/23 ND	SW846 6010D ¹	SW846 3010A ²
Manganese	152	15	ug/l	1	01/24/23	01/29/23 ND	SW846 6010D ¹	SW846 3010A ²

(1) Instrument QC Batch: MA53661 (2) Prep QC Batch: MP37567

Client Sample ID: DUP-20230117

Lab Sample ID: JD58982-12 Date Sampled: 01/17/23

Matrix: AQ - Ground Water Date Received: 01/20/23

Method: SW846 8260D Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 2U52509.D 1 01/24/23 13:32 NW n/a n/a V2U2082 Run #2

Purge Volume
Run #1 5.0 ml
Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
75-15-0	Carbon disulfide ^a	ND	2.0	0.46	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane ^a	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	2.9	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	
591-78-6	2-Hexanone	ND	5.0	2.0	ug/l	

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Client Sample ID: DUP-20230117

Lab Sample ID:JD58982-12Date Sampled:01/17/23Matrix:AQ - Ground WaterDate Received:01/20/23Method:SW846 8260DPercent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.56	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride	2.3	1.0	0.52	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	102%		80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	111%		80-12	20%	
2037-26-5	Toluene-D8	98%		80-12	20%	
460-00-4	4-Bromofluorobenzene	102%		82-13	14%	

⁽a) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

ND = Not detected MDL = Method

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Client Sample ID: DUP-20230117 Lab Sample ID: JD58982-12 Date Sampled: 01/17/23 Matrix: AQ - Ground Water Date Received: 01/20/23 RSK-175 Method: Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project:

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	AA99241.D	1	01/26/23 12:13	JN	n/a	n/a	GAA2717
Run #2	AA99242.D	100	01/26/23 12:26	JN	n/a	n/a	GAA2717

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	5990 a	11	8.0	ug/l	
74-84-0	Ethane	41.7	0.23	0.14	ug/l	
74-85-1	Ethene	5.68	0.31	0.16	ug/l	

⁽a) Result is from Run# 2

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N =Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: DUP-20230117 Lab Sample ID: JD58982-12

Date Sampled: 01/17/23 Matrix: AQ - Ground Water Date Received: 01/20/23 Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project:

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	7250	100	ug/l	1	01/24/23	01/29/23 ND	SW846 6010D ¹	SW846 3010A ²
Manganese	3550	15	ug/l	1	01/24/23	01/29/23 ND	SW846 6010D ¹	SW846 3010A ²

(1) Instrument QC Batch: MA53661 (2) Prep QC Batch: MP37567

Page 1 of 1

Client Sample ID: DUP-20230117
Lab Sample ID: JD58982-12 Dat
Matrix: AQ - Ground Water Dat

Date Sampled: 01/17/23 Date Received: 01/20/23 Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Sulfate	127	2.0	mg/l	1	01/23/23 22:49	MP	EPA 300/SW846 9056A
Sulfide	< 2.0	2.0	mg/l	1	01/23/23 10:45		SM4500S2- F-11
Total Organic Carbon	3.7	1.0	mg/l	1	01/23/23 23:30		SM5310 B-11/14

Page 1 of 1

Client Sample ID: DUP-20230117 Lab Sample ID: JD58982-12F

Lab Sample ID: JD58982-12F Date Sampled: 01/17/23

Matrix: AQ - Groundwater Filtered Date Received: 01/20/23

Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	9340	100	ug/l	1	01/24/23	01/29/23 ND	SW846 6010D ¹	SW846 3010A ²
Manganese	3660	15	ug/l	1	01/24/23	01/29/23 ND	SW846 6010D ¹	SW846 3010A ²

(1) Instrument QC Batch: MA53661(2) Prep QC Batch: MP37567

Client Sample ID: TRIP BLANK
Lab Sample ID: JD58982-13 Date Sampled: 01/18/23
Matrix: AQ - Trip Blank Water Date Received: 01/20/23
Method: SW846 8260D Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 1U52437.D 1 01/23/23 15:44 NW n/a n/a V1U2080 Run #2

Purge Volume
Run #1 5.0 ml
Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
75-15-0	Carbon disulfide ^a	ND	2.0	0.46	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane ^a	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane ^a	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	
591-78-6	2-Hexanone	ND	5.0	2.0	ug/l	

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N =Indicates presumptive evidence of a compound

Client Sample ID: TRIP BLANK

Lab Sample ID:JD58982-13Date Sampled:01/18/23Matrix:AQ - Trip Blank WaterDate Received:01/20/23Method:SW846 8260DPercent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane ^a	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.56	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
87-61-6	1,2,3-Trichlorobenzene ^a	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene ^a	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.52	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7	Dibromofluoromethane	108%		80-12	20%	
17060-07-0 1,2-Dichloroethane-D4		116%		80-12	20%	
2037-26-5	Toluene-D8	99%		80-12		
460-00-4	4-Bromofluorobenzene	104%		82-1	14%	

⁽a) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

969					OF C		-						-	D 5	589	78	2				e <u>/</u>		
<u> </u>				2235 R	Route 130, I	Dayton, N	NJ 0881	0					SGS Quo	-					Bottle Or	der Control	197	3 -	7)
EHSA-QAC-0023-04-FORM-Standard	сос		161		www.sgs.c			3/340					SGS QUO	te #					303 300	-			
Client / Reporting Information	Project Name		Project	Informa	tion								-	. VN			Reques	ted Ar				_	Matrix Codes
Arcadis	1 '	old	6 .	Can	al s	.مان							8	P1.55	\neg			, Z					DW - Drinking Water
Street Address	Street	•				110					_		1000	•	. ۲			100	1				GW - Ground Water WW - Water
110 W. Fayette St Suit	Zip City	olumb.a	State	Billing Info	ormation (if dif	ferent from	Report to	o)					' ، ا	MEE	, 28.	ul fate		17			1		SW - Surface Water SO - Soil SL- Sludge
Syracuse, NY 13202	clyde		Yu				_						20	50	1	3		7					SED-Sediment OI - Oil
Project Contact Chas Kassel Chas Kassel @	com Project#			Street Addi	ress								7		E	S	Se	1	İ				L1Q - Other Liquid AIR - Air
Phone # Chard, mason P	Client Purcha	se Order#		City					State		Zij	,	826010	K17	¥	•	Sulfic	Diss M	۱.,				SOL - Other Solid WP - Wipe
315-671-9127													25	5 K	۲-	4	3	85	2				FB - Field Blank EB-Equipment Blank
Dailey	Phone # Project Mana	ger Aveci		Attention:									ري ح	Y R S	707	50	l w	۵ ا	۲				RB - Rinse Blank TB - Trip Blank
7 - 505	-880- Corey	PAVER		ection			Τ		Number	of preser	ved Botti	es				p⊦	l Check	(Lab Us	se Only)				
SGS Sample # Field ID / Point of Collection	MEOH/DI Vial A	Date	Time	Sampled by	Source Grab (G) Chlorinat Comp (C) (Y/N)		# of bottle	8 豆	NaOH HNO ₃	H ₂ SO ₄	Di Water	ENCORE						5			.01		LAB USE ONLY
1F MW - 175		1/17/23	1200	Ť	6 N	GW	12	7	22	1	Ħ	Ħ	X	×	×	×	×	×	×				
2 MW - 15		, , , -	1500	K.F	6 N	GW	12	2	22	1		T	×	×	×	Х	X	Х	X				
3F MW - 75		111/63			GN	GW	48	28	-	4	1	††	X	X	×	×	×	X	Х				the mp/m
4P MW - 195		14.14.2	0800	_	6 N	GW	12	3	2 2	٦,	++	+	×	X	×		×	×	×	\vdash		\top	1.4/11
51 MW - 65		1/18/23	- 6.44		GN	GW	12	7	1 2	Ti	\forall	+†	X	X	×	x	×	X	×		_		AZO
6F MW - 6B		1/18/23	1200	KF	6 N	6W	12	亍	22	+;	$^{+}$	+	×	×	×	×	v	Ý.	1				651
7F MW - 155		11,10/102				GW	12	7	2 2	Ti	H	Ħ	Tx	×	X	X	X	X	T			-	V292
8F MW - 145		1/18/23	1400		G N	GW	12	7	22	+	+	$\dagger \dagger$	1	×	×	×	×	X	X		\neg		1905
9F MW - 45		1/18/23	1230		6 1	GW	12	7	1 2	H	++	††	X	×	×	Y.	*	X	X				
10 F MW - 4B		1/18/13	1455	V -	GN	GW	12	7	2 2	Ti.	\forall	$\dagger \dagger$	1	×	×	×	У.	x	X				
11 - MW - 135		1/18/23			G N	GW	12	7	27	1	Ħ	+	X	×	X	×	×	×	V				
128 DUP - 20230117		1	1227		GY	GW		÷	2 2	1	††	+	X	X	×	×	x	×	×			†	
	me (Business Days		-	DL	<u> </u>	1000			Delive	able				<u> </u>						Comm	ents / Spe	cial Inst	ructions
4	Approved By (S	GS PM): / Date:			Commercial	"A" (Level	1)				SP Cat				DOD-	QSM5							EC 1
10 Business Days					Commercial	•	2)		<u>×</u>		SP Cate						ŀ		Initi	N Ass	Beemer	. 16	3
5 Business Days 3 Business Days*				님	NJ Reduced Full Tier I (L						MCP C												
2 Business Days*					Commercial				F		e Forms								Lag	SOL AGE	Meation	_	
1 Business Day*					NJ DKQP				X	EDD	Forma												
Other All data available via Lablink									s only; Con sults + QC					nmary					<u></u>	tn://www.	sas com	/en/term	s-and-conditions
All data available via Lablink	* Approval needed			y must be	documente									ırier del	ivery.			3'60			1		2
	Date / Time: 1/18/2023/74			5	Nov				quished By		_	f	des	(Date TI	۾ او	2	Ricello	Vill	YY	d_	
	1/18/2023/4	Received By:		- 10				Relin	quished By	:	***		رديد	<u> </u>		Date / Ti		•	Receive	d By:			
3		3						4	ody Seal #				Intact			<u> </u>		Therm	ID:		On Ice	Coole	r Temp. °C
Relinquished by: 5	Date / Time:	Received By: 5						Custi	ouy seal #	_			Not intac	<u>, 1</u>	Absent					pt Summar	, 🗆		
																			ι.	7	1.5		
																			1.	1 7	マ		

JD58982: Chain of Custody Page 1 of 3

Relinguished by: Relinguished by: Date / Time: Time: Time: Received By:		909			CH	AIN												J	D.	58	98	2				Pa	ge _	<u>7</u> o	of _	2
Collect Floor Support Control Collection Collecti		303				2235	Route	130, D	ayton, I	NJ 0881	0							FED-EX	Tracking	#					Bottle Or	der Cont	rol #			
Clear Reporting Information	FH9	 SA-OAC-0023-04-FORM-Standard C	roc		Ti	EL. 732-3					9/34	180						SGS Qu	ote#						SGS Job	#				
Company Name			1		Projec	t Inform		.aga.co	111701130	34								\vdash				Re	aues	ted Ar	alysis					Matrix Codes
Superior State 20 Comment			Project Name	:	,																									GW - Ground Water
Commercial Propert P	Street A	ddress	Street							_								}											ļ	SW - Surface Water
Property	City	State Zip	City		State			on (if diffe	erent fron	1 Report to	o)							1				İ								SL- Sludge SED-Sediment
Process Cleen Purchased Order # Op	Project	Contact E-mail	Project #			Street Ad	Idress										_	٠,												LIQ - Other Liquid AIR - Air
Proof of Proof of Collection	Phone #		Client Purcha	se Order#		City			-			State	,			Zip		ß												WP - Wipe FB - Field Blank
10 10 10 10 10 10 10 10	Sample	(s) Name(s)	hone # Project Mana	ger		Attention	:											>												RB - Rinse Blank
13 Trip Blank					Co	llection					L	Nu	mber	of prese	rved B	ottles				1.5		pH (Check	(Lab Us	e Only)			ļ		
Turn Around Time (Business Days) Turn Around Time (Business Days) Turn Around Time (Business Days) Deliverable Commercial "A" (Level 1) NYASP Category A Approved By (ROS PM) / Deliverable Commercial "A" (Level 1) N Reduced (Level 3) N Reduced (Level 3) N Reduced (Level 3) Business Days Turn Around Time (Business Days) Sustainess Days Sustainess Days Sustainess Days Turn Around Time (Business Days) Sustainess Days Sustainess Days Sustainess Days Sustainess Days Turn Around Time (Business Days) Sustainess Days Sustainess Da		Field ID / Point of Collection	MEOH/DI Vial #	Date	Time		Grab (G) Comp (C)	Chlorinated	Matrix	# of bottle	s <u>2</u>	HOEN	HNO,	H,SO ₄	Di Water	МЕОН	ENCORE												:	LAB USE ONLY
Turn Around Time (Business Days) Deliverable Commercial "A" (Level 1) WYASP Category A DOD-QSM5	13	Trio Blank					6	N	DI	2	2	2	Т	\top		Ħ		X		1										
Approved By (SGS PM): / Dele: Commercial "A" (Level 1) NYASP Category A DOD-QSM5 10 Business Days Commercial "B" (Level 2) NYASP Category B NYASP Category		mp Divine							P		ľ		П	1	П	П				1										
Approved By (SGS PM): / Dele: Commercial "A" (Level 1) NYASP Category A DOD-QSM5 10 Business Days Commercial "B" (Level 2) NYASP Category B NYASP Category				1								T	Г																	
Approved By (SGS PM): / Dele: Commercial "A" (Level 1) NYASP Category A DOD-QSM5 10 Business Days Commercial "B" (Level 2) NYASP Category B NYASP Category	\Box										T	T	П		П	П	T			T-										
Approved By (SGS PM): / Dele: Commercial "A" (Level 1) NYASP Category A DOD-QSM5 10 Business Days Commercial "B" (Level 2) NYASP Category B NYASP Category		7 38.0									Τ		П			П														
Approved By (SGS PM): / Dele: Commercial "A" (Level 1) NYASP Category A DOD-QSM5 10 Business Days Commercial "B" (Level 2) NYASP Category B NYASP Category											Τ				П															
Approved By (SGS PM): / Dele: Commercial "A" (Level 1) NYASP Category A DOD-QSM5 10 Business Days Commercial "B" (Level 2) NYASP Category B NYASP Category												T											i					1		
Approved By (SGS PM): / Dele: Commercial "A" (Level 1) NYASP Category A DOD-QSM5 10 Business Days Commercial "B" (Level 2) NYASP Category B NYASP Category											Т																			
Approved By (SGS PM): / Dele: Commercial "A" (Level 1) NYASP Category A DOD-QSM5 10 Business Days Commercial "B" (Level 2) NYASP Category B NYASP Category																П	П													
Approved By (SGS PM): / Dele: Commercial "A" (Level 1) NYASP Category A DOD-QSM5 10 Business Days Commercial "B" (Level 2) NYASP Category B NYASP Category															П					T										
Approved By (SGS PM): / Dele: Commercial "A" (Level 1) NYASP Category A DOD-QSM5 10 Business Days Commercial "B" (Level 2) NYASP Category B NYASP Category				-											П															
Approved By (SGS PM): / Dels: Commercial "A" (Level 1) NYASP Category A DDD-QSM5 10 Business Days Commercial "B" (Level 2) NYASP Category B NYASP Category									Ī		T		Г		П												ļ			
10 Business Days		Turn Around Time	e (Business Days)	<u> </u>							De	live									4				Com	ments	/ Spec	ial Ins	tructions
S Business Days	Ι,	7	Approved By (S	GS PM): / Date:			-						드							_ DC	D-QSM	15								
3 Business Days'						-	-			2)			F																	
2 Business Days'						-	-						H																	
1 Business Day*	1 5		-			=	•						늗					_												
Commercial "A" = Results only, Commercial To" = Results only,	1 5	-				-	•		•				H																	
Sample Custody must be documented below each time samples change possession, including courier delivery. Relinquished by: Received By: Rece	l ī	Other				"								merci	al "B"	' = Re			nmary											4
Relinguished by: Date / Time: Received By:	<u> </u>	All data available via Lablink	* Approval needed			du musé t	o doc:	monto-											urior 4	oliver					ht	tp://wv	w.sgs	.com/e	n/tern	ns-and-conditions
Received By: Date / Time: Received By: Received By: Bate / Time: Received By: Date / Time: Received By: 4 4 4 4 4 4 4 4 4 4 4 4 4	Reling		e/Time:	Deschart Do	iipie custo		ad e	\/	DelOM 6	acii ame					2	2	(e)	<u>g co</u>	u u		Date			00		d By:				
							L VC	<u> </u>			Reli	inquish	ed By	:		Ľ	*/					+	-		-	d By:				
	Relinq 5	uished by: Date	e / Time:	Received By:							4 Cus	stody Se	ral#						_			п					On k		Coole	r Temp. *C

JD58982: Chain of Custody

Page 2 of 3

SGS Sample Receipt Summary

Job Number: JD	58982 Client:	ARCADIS U.S.		Project: OLD ERIE CANA	AL SITE, 124 COLUMBIA S
Date / Time Received: 1/2	20/2023 10:00:00 AM	Delivery Method:	FEDEX	Airbill #'s:	
Cooler Temps (Raw Measu Cooler Temps (Correc	,	Cooler 2: (1.1); Cooler 3: (Cooler 2: (1.1); Cooler 3: (,		
1. Custody Seals Present: 2. Custody Seals Intact: Cooler Temperature 1. Temp criteria achieved: 2. Cooler temp verification:	Y or N ✓		Sample labels Container labels	iner label / COC agree:	Y or N ✓ □ ✓ □ ✓ □ ✓ □ ✓ □ ✓ □ ✓ □
3. Cooler media: 4. No. Coolers: Quality Control Preservati 1. Trip Blank present / cooler: 2. Trip Blank listed on COC: 3. Samples preserved properly 4. VOCs headspace free:	V		2. All containers 3. Condition of si Sample Integri 1. Analysis requ 2. Bottles receiv 3. Sufficient volu	accounted for: ample:	
Test Strip Lot #s:	pH 1-12:231619	pH 12+:	203117A	Other: (Specify)	
Comments SM089-03 Rev. Date 12/7/17					

JD58982: Chain of Custody

Page 3 of 3

Sample Summary

Arcadis

JD59359 Job No:

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project No: 30147041.4

Sample Collected MatrixClient Number Date Received Code Type Sample ID Time By

This report contains results reported as ND = Not detected. The following applies: = Not detected above the MDL Organics ND

JD59359-1 01/26/23 09:30 FK 01/27/23 AQ Ground Water MW-18S

JD59359-1F 01/26/23 09:30 FK 01/27/23 AQ Groundwater Filtered MW-18S

Draft: 1 of 9

Client Sample ID: MW-18S Lab Sample ID: JD59359-1 Date Sampled: 01/26/23 Matrix: AQ - Ground Water Date Received: 01/27/23 Method: SW846 8260D Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project:

DF Analytical Batch File ID Analyzed By Prep Date Prep Batch Run #1 2A223365.D 01/31/23 11:22 ED V2A9711 1 n/a n/a Run #2

Purge Volume Run #1 5.0 ml Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone ^a	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.46	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane ^a	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	31.5	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	0.69	1.0	0.54	ug/l	J
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	
591-78-6	2-Hexanone	ND	5.0	2.0	ug/l	

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

J = Indicates an estimated value

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

Client Sample ID: MW-18S

Lab Sample ID:JD59359-1Date Sampled:01/26/23Matrix:AQ - Ground WaterDate Received:01/27/23Method:SW846 8260DPercent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene a	ND	1.0	0.56	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	3.0	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride ^b	6.8	1.0	0.52	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	112%		80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	105%		80-12	20%	
2037-26-5	Toluene-D8	100%		80-12	20%	
460-00-4	4-Bromofluorobenzene	101%		82-11	4%	

⁽a) Associated CCV outside of control limits low.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \mbox{ Indicates analyte found in associated method blank } \\ N = \mbox{ Indicates presumptive evidence of a compound}$

⁽b) Associated CCV outside of control limits high.

Page 1 of 1

Client Sample ID: MW-18S

Lab Sample ID: JD59359-1 Date Sampled: 01/26/23

Matrix: AQ - Ground Water Date Received: 01/27/23

Method: RSK-175 Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

Project:	Ola Er	ne Canai S	ile, 124 Columbia 3	Street, G	Jiyae, NY			
Run #1 Run #2	File ID AA99284.D	DF 1	Analyzed 02/01/23 12:06	By 3 JL	Prep Dan/a	ate	Prep Batch n/a	Analytical Batch GAA2719
CAS No.	Compound		Result	RL	MDL	Units	Q	
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		0.20 ND ND	0.11 0.23 0.31	0.080 0.14 0.16	ug/l ug/l ug/l		

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Draft: 4 of 9

Page 1 of 1

Client Sample ID: MW-18S Lab Sample ID: JD59359-

JD59359-1 Date Sampled: 01/26/23 Matrix: AQ - Ground Water Date Received: 01/27/23 Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project:

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	1510	100	ug/l	1	01/30/23	01/31/23 EAL	SW846 6010D ¹	SW846 3010A ²
Manganese	308	15	ug/l	1	01/30/23	01/31/23 EAL	SW846 6010D ¹	SW846 3010A ²

(1) Instrument QC Batch: MA53671 (2) Prep QC Batch: MP37652

Page 1 of 1

Client Sample ID: MW-18S Lab Sample ID: JD59359-

JD59359-1 Date Sampled: 01/26/23 Matrix: AQ - Ground Water Date Received: 01/27/23 Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project:

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Sulfate Sulfide Total Organic Carbon	45.7 < 2.0 18.5	2.0 2.0 1.0	mg/l mg/l mg/l	1 1 1	01/30/23 21:47 01/30/23 11:51 01/31/23 17:37	MP	EPA 300/SW846 9056A SM4500S2- F-11 SM5310 B-11/14

Page 1 of 1

Client Sample ID: MW-18S Lab Sample ID: JD59359-JD59359-1F Date Sampled: 01/26/23 Matrix: AQ - Groundwater Filtered Date Received: 01/27/23 Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project:

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	< 100	100	ug/l	1	01/30/23	01/31/23 EAL	SW846 6010D ¹	SW846 3010A ²
Manganese	195	15	ug/l	1	01/30/23	01/31/23 EAL	SW846 6010D ¹	SW846 3010A ²

(1) Instrument QC Batch: MA53671(2) Prep QC Batch: MP37652

SGS	GW)	СН	SGS	Norti	F CU	ica Ind	: Day	ton						FE	J)	_	93	59				age	/ of	j
EHSA-QAC-0023-04-FORM-Standard COC		2235 Route 130, Dayton, NJ 08810 TEL. 7329-0200 FAX: 732-329-3499/3480 www.sgs.com/ehsusa							- 1	FED-EX Tracking # SGS Quote # 2021 2863					Bottle Order Control 5 - 01923-71										
Client / Reporting Information			Proje	ct Infon			omvens	usa				_			_										
Company Name: Arcadis	Project Name:												+				Requ	ested	Analys	is			Matrix Code:		
Street Address				Old Erie Canal Site									- 1	-	,	1	- [1							
110 W. Fayette Street, Suite 300	Street 24 Colum	nbia Stree									_	- 1	Filtered	ag			1		1	1	DW - Drinking Wa GW - Ground Wa				
City State Zip	City		State	Billing Information (if different from Report to) Company Name								_	- 1	(Field F	ethene,			1				WW - Water SW - Surface Wat			
Syracuse, NY 13202 Project Contact E-mail	Clyde		NY						į.							-	i,	- 1			1			:	SO - Soil SL- Sludge
Chris Kassel chris.kassel@arcadis.com	Project # 30147041.	4		Street A	ddress										7		ganese	(ethane,			_			.	SED-Sediment OI - Oil
Phone # 315-671-9127	Client Purcha	se Order#		City					_	State			Z	p	-	8	n, Mangan	Gasses (e			Carbon				LIQ - Other Liquid AIR - Air SOL - Other Solid
Sampler(s) Name(s) Phone #	Project Manag	ger		Attention	:										4	Manganese	P P	18	.		Organic				WP - Wipe FB - Field Blank
Kaltiyn Fleming and Balley Kudla-Williams	Corey Av	rerill													000	lon.	Dissolved	Dissolved	Sulfate	9	l e	1			EB-Equipment Blank
			Col	lection	_			T		Num	iber of	preserv	ed Bottl	98	_ >	1 5	8	Si E	l S	Sulfide	Total				TB - Trip Blank
sgs Sample # Field ID / Point of Collection	MEOH/DIVisi#	Date	Time	Sampled	Grab (G)	Source Chlorinated	1			Ŧ	3 3		Vater	S.		7	1	1.00		k (Lab U	iste Ontiy	1			
MW-18S	MICOTODI VILIT	1/26/23		by	Comp (C	(Y/N)	Matrix	# of bottles	Ę	NaOH	ž ž	Ž	ME O	18		1.3							10.50		LABUSE ONLY
11		1720/25	0730	KF	G	ļ -	GW	12	7	2	2	11	\perp	Ц	X	X	X	X	X	X	X	\vdash		+	Side At 4
					G		GW			_			\perp			\Box	1		1	<u> </u>	 ^	┼─┤	\vdash	-	A 0
					G		GW					П	T	П		1		_	 	-	-	\vdash			(A) 4
					G		GW			T	\top	П		H	T	_	_	+-	+		├	 			900
					G		GW				T		T	\top	1	†	+	 	+-		├	\vdash		\rightarrow	1967
					G		GW		T	_	1	\Box	\top	\vdash	+-	+	+-	-					_	\bot	U 331
					G		GW		7	\neg	$^{+}$	H	\pm	+	+	+	├	├	 					\bot	* 1
					G		GW		7	十	+	+	+	╁	├	+-	┼								
					G		GW		\dashv	十	+	+	+	+	 	├	 	<u> </u>							100
					G		GW		+	+	+	+	+	+	├	-									
					G	$\neg \neg$	GW		+	+	+	+	++	+			<u> </u>								Me de
									+	+	+	+	++	+	_	<u> </u>	_							\top	P.
Turn Around Time (Busin	ness Days)						1		ᆛ	Delive		Ļ	П			L								_	12.4
_	Approved By (SG	IS PM): / Date:			Comm	ercial "A"	(Level 1)				_		Catego	rv A			DOD-0					Comme	ents / Sp	ecial Inst	tructions
x 10 Business Days 5 Business Days			i			ercial "B" (×			Catego			_	000-0	SMS							
3 Business Days*						duced (Lev							Criter					- 1							1
2 Business Days*				님		er I (Level	4)			드	=		Criter	ia											1
1 Business Day*				Ħ	NJ DK	-				×	-	te For						- 1							l
Other All data available via Lablink * Approx						Co	mmercial	"A" = Resi	ults on	lv Con		i-1 *D*	nat EQ												
ли овка вузнасле via свояпк "Appro-	var needed for	1-3 Business Da Sampi	e Custody	must be	docum																http://	hanan -	de com	ti	
Relinquished by: Arcadis 1/26/23	1330	Received By:				AV	-w each	Re	linquis	hang hed By	e pos	sessi	on, in	cludin	g couri	er deliv			1 10/6	Ø.		<u> </u>	//	en/terms	-and-conditions
Relinguished by: Date / Time;	1	l Pacahand Bur			C C	- 112		2					\rightarrow	<u>20</u>	ex		_ °	to Time	23	Re	to was a	W	M.	unt	
3		Received By:						Re 4	linquisi	hed By:	:						D	ite / Time:	w-	Rei	ceived By	m	6 10	-	
Relinquished by: Date / Time: 5	5	Received By:						Cu	stody 8	Seal #	_				Mact				Th	erm ID:					
•										_				U N	ol intect	A	beent			Sample F	Receipt Sur	on mmary (1100	°3′ (CTO

JD59359: Chain of Custody

Page 1 of 2

SGS Sample Receipt Summary

Job Number:	JD59359	Client:	ARCADIS U.S.		Project: OLD ERIE CANAL SITE, 124 COLUMBIA S						
Date / Time Received:	1/27/2023 10:10:	00 AM	Delivery Method:	FEDEX	Airbill #'s:						
Cooler Temps (Raw Mea	,	. ,									
Cooler Security 1. Custody Seals Present: 2. Custody Seals Intact: Cooler Temperature 1. Temp criteria achieved: 2. Cooler temp verification 3. Cooler media: 4. No. Coolers: Quality Control Present 1. Trip Blank present / coolers	ooler Security Custody Seals Present: Custody Seals Intact: Ooler Temperature 1. Temp criteria achieved: Cooler temp verification: Custody Seals Intact: Ooler Temperature Y or N Y or N Left (Bag)		•	1. Sample labels 2. Container labe 3. Sample contain Sample Integri 1. Sample recvd 2. All containers a 3. Condition of sa Sample Integri	ner label / COC agree: ty - Condition within HT: accounted for: ample: ty - Instructions	Y or N					
Trip Blank listed on COr Samples preserved pro VOCs headspace free:	c: □ perly: ☑			3. Sufficient volu	ed for unspecified tests une recvd for analysis: nstructions clear:						
Test Strip Lot #s:	pH 1-12:	231619	pH 12·	+:203117A	Other: (Specify)						
Comments SM089-03 Rev. Date 12/7/17											

JD59359: Chain of Custody

Page 2 of 2