

Mr. Joshuah Klier New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway, 12th Floor Albany, New York 12233-7014

Date: October 4, 2023 Our Ref: 30147041

Subject: Third Quarter 2023 Groundwater Monitoring Report

General Electric Company and Parker-Hannifin Corporation

Old Erie Canal Site, Clyde, New York

NYSDEC Site No. 859015

Dear Mr. Klier,

Arcadis of New York, Inc. One Lincoln Center 110 West Fayette Street Suite 300 Syracuse New York 13202

Phone: 315 446 9120 Fax: 315 449 0017 www.arcadis.com

On behalf of General Electric Company (GE) and Parker-Hannifin Corporation (P-H), this letter provides a summary of post-injection groundwater monitoring activities recently completed at the Old Erie Canal Site (Site) (New York State Department of Environmental Conservation [NYSDEC] Site No. 859015), located in the Village of Clyde, Town of Galen, Wayne County, New York (**Figure 1**). Specifically, this letter includes summaries of the third quarterly post-injection sampling event and development activities for bedrock monitoring well MW-14B conducted between July 17 and 28, 2023 by Arcadis of New York, Inc. (Arcadis) on behalf of GE and P-H. Additional details regarding those activities are provided below.

Activities Performed

Per the Enhanced Reductive Dechlorination (ERD) Injection Work Plan (Arcadis 2022) and recommendations included in the 2023 Periodic Review Report (PRR) submitted June 30, 2023, the third post-injection quarterly monitoring and sampling event was performed in July 2023. The scope of the quarterly monitoring and sampling event included the following:

- Measurement of groundwater elevations and depth to bottom at 12 source area monitoring wells (MW-1S, MW-4B, MW-4S, MW-6B, MW-6S, MW-7S, MW-13S, MW-14S, MW-15S, MW-17S, MW-18S, and MW-19S) and one perimeter monitoring well (MW-5B);
- Gauging and development of monitoring well MW-14B;
- Collection of groundwater samples via low-flow purging and sampling at the same source area and perimeter monitoring wells;
- Collection of two surface water grab samples from the New York State barge canal (canal): one upstream (Canal Upstream) and one downstream (Canal Downstream) of the Site wetland/storm water discharge point;
- Retrieval of Min-Trap® sampling devices previously deployed in monitoring wells MW-4B and MW-6B; and
- Annual site wide inspection of engineering controls.

Additional details regarding each of the above-listed activities are provided in the following sections.

2023 Clyde Q3 GWM Letter Report

Groundwater Gauging Activities

Arcadis personnel collected depth to water and depth to bottom measurements using surveyed measuring points at the 12 source area monitoring wells (MW-1S, MW-4B, MW-4S, MW-6B, MW-6S, MW-7S, MW-13S, MW-14S, MW-15S, MW-17S, MW-18S, and MW-19S) and one perimeter monitoring well (MW-5B) on July 17, 2023. These gauging data are presented in **Table 1**.

As noted in Section 1.2 of the June 2023 Periodic Review Report (PRR), non-aqueous phase liquid (NAPL) was observed in the soil cuttings and wash water during installation of monitoring well MW-14B on August 12, 2022. Based on that observation, MW-14B was gauged to determine the potential presence and thickness of NAPL during the July 2023 quarterly monitoring event. NAPL was not detected in a measurable amount in this monitoring well during this quarterly monitoring event; therefore, as proposed in Section 6 of the PRR, well development activities were performed at this monitoring well.

Monitoring Well MW-14B Development Activities

Arcadis personnel performed well development of monitoring well MW-14B on July 28, 2023. Due to the prior observation of NAPL during well installation, as conservative measures, an exclusion zone was established around the work area and workers donned level C personal protective equipment, implemented appropriate engineering controls, and performed workspace and community air monitoring. Per the Site Management Plan (SMP) and community air monitoring plan, upwind (ambient) and downwind air monitoring stations were established.

The initial plan for monitoring well development involved purging up to 10 well volumes while moving the pump intake up and down the screened interval (surging of the monitoring well was not performed due to concerns about the potential presence of NAPL). Initially, a stainless-steel bailer was used to remove any sediments that were present in the well. Next, a pump was lowered into the well and the pump intake was moved along the screened interval in 0.5-foot increments to remove fines. As planned, approximately 10 well volumes (42 gallons) of water were initially removed from the well. After removing the target volume, the purge water remained turbid and NAPL blebs were observed. Development of this monitoring well was continued to see if the turbidity could be reduced and an additional 10 well volumes were removed, for a total of approximately 20 well volumes removed from the well. Throughout the well development, the purge water was visibly turbid; therefore, field parameters (including turbidity) were not recorded. NAPL blebs were still observed in the purge water following removal of 20 well volumes; therefore, groundwater quality sampling was not performed. Going forward, it is recommended that this monitoring well continue to be gauged during monitoring events for the potential presence of measurable quantities of NAPL; however, it is recommended that groundwater quality sampling activities not be performed until no evidence of NAPL is documented in this well.

Groundwater and Surface Water Sampling Activities

Arcadis personnel performed low-flow groundwater purging and sampling activities at the 12 source area monitoring wells (MW-1S, MW-4B, MW-4S, MW-6B, MW-6S, MW-7S, MW-13S, MW-14S, MW-15S, MW-17S, MW-18S, and MW-19S) and one perimeter monitoring well (MW-5B) between July 17 and 28, 2023. The final field parameters collected at each sample location prior to sample collection (or the field parameters from immediately before a well went dry) are presented in **Tables 2 and 3**. The low-flow purging and sampling logs for this event are provided in **Attachment 1**. On July 19, 2023, two canal surface water samples were collected: one upstream (Canal Upstream), and one downstream (Canal Downstream) of the Site wetland/stormwater discharge point.

The collected groundwater and surface water samples (including appropriate quality assurance/quality control samples) were submitted to SGS North America Inc. of Dayton, NJ for laboratory analysis. Groundwater samples were submitted for the following analyses:

- VOCs:
- total and dissolved iron and manganese;
- general chemistry (total organic carbon, sulfide, and sulfate); and
- dissolved gasses (ethane, ethene, and methane).

Canal surface water samples were submitted for volatile organic compound (VOC) analysis only.

In accordance with the ERD Injection Work Plan, Min-Trap® devices were deployed in monitoring wells MW-4B and MW-6B during the second quarter 2023 groundwater monitoring event. These devices were retrieved during the July 2023 monitoring event and submitted to Microbial Insights, Inc. of Knoxville, TN for the following analyses:

- Aqueous and Mineralogical Intrinsic Bioremediation Assessment (AMIBA)
- QuantArray®-BGC

AMIBA is a collection of analyses performed to quantify iron and sulfide availability in various redox states to allow assessment of the microbial-mineral-contaminant interactions. AMIBA includes weak acid soluble ferrous and ferric iron, strong acid soluble ferrous and ferric iron, acid volatile sulfide, and chromium extractible sulfide. AMIBA analyses were performed by Prima Environmental, Inc. (El Dorado Hills, CA) under contract to Microbial Insights. QuantArray®-BGC is a proprietary polymerase chain reaction (PCR) quantification of the abundance of microbial groups and functional genes associated with biogeochemical processes.

Sampling Results

The analytical results associated with the collected groundwater samples are presented in **Tables 2** (July 2023 event) and **3** (2022 to 2023 monitoring data), which also include the NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1: Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Class GA (Class GA) groundwater quality standards/guidance values for comparison purposes. Surface water analytical results are presented in **Table 4**, which includes the NYSDEC Division of Water TOGS 1.1.1: Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Class C (Class C) surface water quality standards/guidance values for comparison purposes. The Min-Trap® analytical results are presented in **Tables 5A and 5B**. The data for trichloroethene (TCE), its reductive dechlorination products, and other indicators of anaerobic activity (i.e., ethane, ethene, and methane) are also presented on **Figure 2**. The laboratory analytical data reports associated with this monitoring event are provided as **Attachment 2**. A summary of the constituents of concern (chlorinated VOCs and other VOCs) that were detected at levels above the corresponding Class GA groundwater standards during the July 2023 quarterly sampling event is provided below (no constituents were detected at concentrations greater than the Class C surface water standards).

Chlorinated VOCs

 1,1-dichloroethane was detected in three of 13 monitoring wells (MW-14S, MW-15S and MW-19S) at concentrations ranging from 1.1 micrograms per liter (μg/L) to 9.7 μg/L. However, this constituent was

detected in only one monitoring well (MW-19S) at a concentration greater than the Class GA groundwater standard of 5 μ g/L.

- 1,1-dichloroethene was detected in two of 13 monitoring wells (MW-4B and MW-6B) at concentrations
 ranging from 88.4 J μg/L (the J flag indicates an estimated concentration) to 238 μg/L, which are both greater
 than the Class GA groundwater standard of 5 μg/L. The maximum detected concentration was reported in
 monitoring well MW-4B.
- Cis-1,2-dichloroethene was detected in 10 of 13 monitoring wells (including one sample duplicate) at concentrations ranging from 1.3 μg/L to 56,100 μg/L. Further, this constituent was detected in eight monitoring wells (MW-4B, MW-5B, MW-6B, MW-13S, MW-14S [and associated sample duplicate], MW-17S, MW-18S, and MW-19S) at concentrations greater than the Class GA groundwater standard of 5 μg/L (ranging from 61.6 μg/L to 56,100 μg/L). The maximum detected concentration was reported in monitoring well MW-4B.
- trans-1,2-dichloroethene was detected in seven of 13 monitoring wells at concentrations ranging from 0.63 J μg/L to 235 μg/L. Further, this constituent was detected in six monitoring wells (MW-1S, MW-4B, MW-6B, MW-13S, MW-17S, and MW-19S) at concentrations greater than the Class GA groundwater standard of 5 μg/L (ranging from 5.5 μg/L to 235 μg/L). The maximum detected concentration was reported in monitoring well MW-4B.
- TCE was detected in six of 13 monitoring wells at concentrations ranging from 0.97 J μg/L to 7,800 μg/L.
 Further, this constituent was detected in four monitoring wells (MW-4B, MW-5B, MW-17S, and MW-19S) at concentrations greater than the Class GA groundwater standard of 5 μg/L (ranging from 215 μg/L to 7,800 μg/L). The maximum detected concentration was reported in monitoring well MW-4B.
- Vinyl chloride was detected in 10 of 13 monitoring wells (including one sample duplicate) at concentrations ranging from 1.8 μg/L to 28,300 μg/L. Further, this constituent was detected in nine monitoring wells (MW-4B, MW-6B, MW-6S, MW-13S, MW-14S, MW-15S, MW-17S, MW-18S, and MW-19S) at concentrations greater than the Class GA groundwater standard of 2 μg/L (ranging from 2.6 μg/L to 28,300 μg/L). The maximum detected concentration was reported in monitoring well MW-4B.

Other VOCs

- Benzene was detected in three of 13 monitoring wells at concentrations ranging from 0.55 μg/L to 5.8 μg/L. However, this constituent was detected in only one monitoring well (MW-15S) at a concentration greater than the Class GA groundwater standard of 5 μg/L.
- Ethylbenzene was detected in four of 13 monitoring wells at concentrations ranging from 1.1 μg/L (with a sample duplicate of 1.2 μg/L) to 162 μg/L. Further, this constituent was detected in three monitoring wells (MW-4B, MW-6S, and MW-15S) at concentrations greater than the Class GA groundwater standard of 5 μg/L (ranging from 5.3 μg/L to 162 μg/L). The maximum detected concentration was reported in monitoring well MW-4B.

- Toluene was detected in six of 13 monitoring wells (including one sample duplicate) at concentrations ranging from 0.82 J μg/L to 2,680 μg/L. Further, this constituent was detected in five monitoring wells (MW-4B, MW-6B, MW-6S, MW-14S, and MW-15S.) at concentrations greater than the Class GA groundwater standard of 5 μg/L (ranging from 16.5 μg/L [with a sample duplicate of 16.0 μg/L] to 2,680 μg/L). The maximum detected concentration was reported in monitoring well MW-4B.
- Total Xylenes were detected in four of 13 monitoring wells (including one sample duplicate) at concentrations ranging from 4.1 μg/L (with a sample duplicate of 4.3 μg/L) to 493 μg/L, Further, this constituent was detected in three monitoring wells (MW-4B, MW-6S, and MW-15S) at concentrations greater than the Class GA groundwater standard of 5 μg/L (ranging from 31.8 μg/L to 493 μg/L). The maximum detected concentration was reported in monitoring well MW-4B.

Inorganics

- Iron was detected in 12 of 13 monitoring wells (including one sample duplicate) at concentrations ranging from 65.7 J μg/L to 122,000 μg/L. Further, this constituent was detected in 10 monitoring wells (including one sample duplicate) (MW-1S, MW-4S, MW-6B, MW-6S, MW-7S, MW-13S, MW-14S, MW-15S, MW-18S, and MW-19S) at concentrations greater than the Class GA groundwater standard of 300 μg/L (ranging from 344 μg/L to 122,000 μg/L). The maximum detected concentration was reported in monitoring well MW-6S.
- Iron (filtered) was detected in 10 of 13 monitoring wells (including one sample duplicate) at concentrations ranging from 60.9 J μg/L to 118,000 μg/L. Further, this constituent was detected in nine monitoring wells (including one sample duplicate) (MW-1S, MW-4S, MW-6B, MW-6S, MW-7S, MW-13S, MW-14S, MW-15S, and MW-18S) at concentrations greater than the Class GA groundwater standard of 300 μg/L (ranging from 343 μg/L to 118,000 μg/L). The maximum detected concentration was reported in monitoring well MW-6S.
- Manganese was detected in all 13 monitoring wells (including one sample duplicate) at concentrations ranging from 38.9 μg/L to 17,900 μg/L. Further, this constituent was detected in seven monitoring wells (including one sample duplicate) (MW-1S, MW-4S, MW-6S, MW-7S, MW-14S, MW-15S, and MW-18S) at concentrations greater than the Class GA groundwater standard of 300 μg/L (ranging from 365 μg/L [sample duplicate of 395 μg/L] to 17,900 μg/L). The maximum detected concentration was reported in monitoring well MW-1S.
- Manganese (filtered) was detected in 12 of 13 monitoring wells (including one sample duplicate) at concentrations ranging from 37.4 μg/L to 20,400 μg/L. Further, this constituent was detected in seven monitoring wells (including one sample duplicate) (MW-1S, MW-4S, MW-6S, MW-7S, MW-14S, MW-15S, MW-18S) at concentrations greater than the Class GA groundwater standard of 300 μg/L (ranging from 380 μg/L [sample duplicate of 418 μg/L] to 20,400 μg/L). The maximum detected concentration was reported in monitoring well MW-1S.

Iron and manganese are both soluble under the reducing conditions created by injection of organic carbon to facilitate the treatment of CVOCs in groundwater. Also, iron was included in the 2022 ERD injections to reduce sulfide concentrations and improve biogeochemical conditions for dechlorinating organisms (as described in the ERD Work Plan).

Min-Trap Results

The AMIBA analysis results (**Table 5A**) indicate that iron and sulfur were captured within the Min-Trap® samplers. The results indicate that iron is largely in the form of ferrous iron, which is expected based on the reducing geochemical conditions. The presence of acid volatile sulfide and chromium extractible sulfide, indicative of FeS and FeS₂, respectively, confirm the precipitation of iron sulfide minerals in situ as a result of organic carbon and iron injection.

The QuantArray®-BGC analysis results indicate the abundance of microbial groups of interest in the anaerobic geochemical conditions created via injection of organic carbon and ferrous iron (**Table 5B**). Monitoring wells MW-4B and MW-6B showed similar abundance of total bacteria, while MW-6B had a higher abundance of total archaea than MW-4B. Both showed the presence of fermenters, iron reducers, sulfate reducers, and methanogens, which is consistent with reducing geochemical conditions.

Future Activities and Schedule

As the monitoring program outlined in the ERD Injection Work Plan has concluded, the proposed groundwater monitoring program through the end of 2024 is outlined below.

The proposed monitoring network for each quarterly monitoring event is specified below:

- The monitoring network for the 4Q2023, 1Q2024, 3Q2024, 4Q2024 monitoring events will include the 12 source area monitoring wells (MW-1S, MW-4B, MW-4S, MW-6B, MW-6S, MW-7S, MW-13S, MW-14S, MW-15S, MW-17S, MW-18S, and MW-19S), as well as the perimeter monitoring well MW-5B.
- The monitoring network for the 2Q2024 monitoring event will include the 12 source area wells, perimeter monitoring well MW-15B, as well as the remaining 10 perimeter wells (EMW-2, EMW-4, MW-3B, MW-3S, MW-4C, MW-5S, MW-7B, MW-9S, MW-16B, and MW-16S), and three general wells (EMW-3, EMW-5, and MW-8S). General monitoring wells MW-2B and MW-2S no longer exist and will be removed from the monitoring program.
- Due to seasonally low water levels, surface water sampling within the canal will be conducted during the 2024 third quarter monitoring event.

The scope of the field activities for each event will be as follows:

- Depth to water and depth to bottom will be measured at each well subject to sampling during the monitoring
 event in question. In addition, monitoring well MW-14B will be gauged during each event to determine if a
 measurable quantity of NAPL is present in that well.
- In accordance with Arcadis' February 7, 2022, proposal to the NYSDEC (as discussed in Section 2.1 of the ERD Injection Work Plan) the following sample analyses will be performed during each monitoring event:
 - Groundwater samples collected from the 12 source area wells and monitoring well MW-5B will be submitted for analysis of:
 - VOCs
 - Dissolved gases (ethane, ethene, and methane)
 - Total organic carbon
 - total and dissolved iron and manganese
 - sulfate and sulfide.

- Groundwater samples collected from the remaining 10 perimeter wells and three other wells (2Q2024 monitoring event only) will be submitted for analysis of VOCs only.
- Surface water samples collected from the canal (3Q2024 monitoring event only) will be submitted for analysis of VOCs only.
- An annual site wide inspection of engineering controls will be conducted concurrently with the 2024 third quarter monitoring event.

Quarterly monitoring reports will be submitted approximately 30 days following receipt of the data collected during the 4Q2023, 1Q2024, 2Q2024, and 3Q2024 monitoring events. The next Periodic Review Report will be submitted during the first quarter of 2025. That report will provide summaries of the quarterly monitoring events performed subsequent to the June 2023 PRR (3Q2023 through 4Q2024), a comprehensive summary of data trends, a mass reduction evaluation as specified in Section 6.1 of the SMP, as well as recommendations and a schedule for future activities.

Please contact Mr. Tom Silverman of P-H or Mr. Lewis Streeter of GE with any questions or comments regarding this report.

Sincerely,

Arcadis of New York, Inc.

Corey Averill
Project Manager

Email: corey.averill@arcadis.com

Direct Line: 315.671.9224

CC.

Lewis Streeter, General Electric Company Tom Silverman, Parker-Hannifin Corporation Cassie Johnson, PE, Parker-Hannifin Corporation James Nuss, PE, LSP, Arcadis

Enclosures:

Table 1 – Gauging Data

Table 2 – Groundwater Monitoring Event Data

Table 3 – Groundwater Analytical Results (2022 to 2023)

Table 4 – Surface Water Analytical Results

Table 5 – Min-Trap® Device Analytical Results

Figure 1 – Site Location Map

Figure 2 – Groundwater Analytical Map – July 2023

Attachment 1 - Groundwater Sampling Logs

Attachment 2 – Groundwater Laboratory Results

Tables

Table 1
Gauging Data
Third Quarter 2023 Groundwater Monitoring Report
Old Erie Canal - NYSDEC Site #859015
124 Columbia Street
Clyde, New York

Well ID	Measuring Point Elevation	Screen Interval	Date	Depth to Water (ft bmp)	Groundwater Elevation	Depth to Bottom (ft bmp)
	(ft amsl)	(ft bgs)		((ft amsl)	(
			February 28, 2022	2.83	391.33	5.91
MW-1S	394.16	2.3 - 7.3	January 17, 2023	2.72	391.44	6.88
			April 17, 2023	2.60	391.56	6.85
			July 17, 2023	2.82	391.34	6.79
MW-3S	393.64	1.3 - 11.3	February 28, 2022	2.95	390.69	9.28
			April 17, 2023	4.26	389.38	9.35
MW-3B	393.91	28.8 - 38.8	February 28, 2022	8.21	385.70	38.69
			April 17, 2023	9.70	384.21	39.00
			February 28, 2022	4.57	388.45	19.31
MW-4S	393.02	10.3 - 20.3	January 17, 2023	4.70	388.32	19.56
			April 17, 2023	4.66	388.36	19.65
			July 17, 2023	4.49	388.53	19.54
			February 28, 2022	5.68	387.29	38.69
MW-4B	392.97	28.9 - 38.9	January 17, 2023	6.16	386.81	
			April 17, 2023	6.03	386.94	38.75
			July 17, 2023	5.07	387.90	38.75
MW-4C	392.81	38.7 - 48.7	February 28, 2022	0.20	392.61	48.35
			April 17, 2023	0.50	392.31	48.80
MW-5S	392.86	1.2 - 11.2	February 28, 2022	3.77	389.09	10.84
			April 17, 2023	4.05	388.81	10.90
MW-5B	392.85	29.3 - 39.3	February 28, 2022	5.85	387.00	38.90
1010V-3D	392.03	29.3 - 39.3	April 17, 2023	6.55	386.30	39.39
			July 17, 2023	5.51	387.34	38.91
			February 28, 2022	3.70	390.55	14.32
MW-6S	394.25	5 - 15	January 17, 2023	3.69	390.56	14.28
			April 17, 2023	3.75	390.50	14.30
			July 17, 2023	3.95	390.30	14.24
			February 28, 2022	6.20	388.03	39.31
MW-6B	394.23	29.4 - 39.4	January 17, 2023	6.11	388.12	39.16
			April 17, 2023	6.20	388.03	39.40
			July 17, 2023	6.46	387.77	39.18
			February 28, 2022	8.45	388.47	18.28
MW-7S	396.92	6.5 - 16.5	January 17, 2023	8.47 8.43	388.45 388.49	18.20 18.15
			April 17, 2023 July 17, 2023		388.45	
				8.47 10.19	388.91	18.06 40.92
MW-7B	399.10	28.9 - 38.9	February 28, 2022	11.01	388.09	40.92
			April 17, 2023 February 28, 2022	0.68	389.23	21.38
MW-8S	389.91	12 - 22	April 17, 2023	1.00	388.91	21.50
				3.86	387.33	18.28
MW-9S	391.19	7.4 - 17.4	February 28, 2022 April 17, 2023	4.65	386.54	18.30
			February 28, 2022	2.37	389.16	18.78
			January 17, 2023	2.34	389.19	18.78
MW-13S	391.53	16.4 - 21.4	April 17, 2023	2.56	388.97	18.70
			July 17, 2023	2.87	388.66	18.63
			February 28, 2022	2.69	388.70	23.29
			January 17, 2023	2.72	388.67	23.29
MW-14S	391.39	16.4 - 21.4	April 17, 2023	2.75	388.64	23.50
			July 17, 2023	2.82	388.57	23.38
			February 28, 2022	1.66	388.46	14.24
			January 17, 2023	1.66	388.46	14.50
MW-15S	390.12	7.7 - 12.7	April 17, 2023	1.62	388.50	15.50
			July 17, 2023	1.59	388.53	14.43

Well ID	Measuring Point Elevation (ft amsl)	Screen Interval (ft bgs)	Date	Depth to Water (ft bmp)	Groundwater Elevation (ft amsl)	Depth to Bottom (ft bmp)
MW-16S	397.30	4.6 - 9.6	February 28, 2022	2.47	394.83	8.90
100	037.00	4.0 3.0	April 17, 2023	2.56	394.74	8.90
MW-16B	397.69	33.6 - 43.6	February 28, 2022	3.12	394.57	42.88
IVIVV-10D	397.09	33.0 - 43.0	April 17, 2023	2.87	394.82	42.95
			February 28, 2022	3.47	394.01	7.91
MW-17S	397.48	4.6 - 9.6	January 17, 2023	3.58	393.90	8.06
10100-173	397.40	4.0 - 9.0	April 17, 2023	3.60	393.88	8.20
			July 17, 2023	3.60	393.88	8.13
			February 28, 2022	3.21	394.42	7.25
MW-18S	397.63	3 - 8	January 17, 2023	3.55	394.08	7.26
10100-103	397.03	3-6	April 17, 2023	3.27	394.36	7.30
			July 17, 2023	3.27	394.36	7.22
			February 28, 2022	3.17	392.92	8.06
MW-19S	396.09	3.5 - 8.5	January 17, 2023	3.31	392.78	8.07
10100-193	390.09	3.5 - 6.5	April 17, 2023	3.15	392.94	8.05
			July 17, 2023	3.18	392.91	7.96
EMW-2	394.32	6 - 11	February 28, 2022	1.85	392.47	9.83
□IVIVV-∠	394.32	6-11	April 17, 2023	1.91	392.41	9.70
EMW-3	393.49	6 - 11	February 28, 2022	4.82	388.67	10.03
EIVIVV-3	393.49	6-11	April 17, 2023	4.45	389.04	10.30
EMW-4	392.22	6 - 11	February 28, 2022			
□IVIVV-4	392.22	0-11	April 17, 2023	3.95	388.27	10.85
EMW-5	393.33	6 - 11	February 28, 2022			
EIVIVV-5	393.33	0-11	April 17, 2023	4.18	389.15	11.95

Notes:

- 1) ft bmp feet below measuring point.
- 2) ft bgs feet below ground surface.
- 3) ft amsl feet above mean sea level.
- 4) Measuring point elevations from GHD Report Table 3 titled: Water Level Elevation Data November 28, 2006, and Arcadis December 2017 Survey.
- 5) March 2022 gauging performed to collect pre-injection baseline data.
- 6) 2023 Q1 gauging consisted of the 12 source area monitoring wells per the 2022 ERD Injection Work Plan (Arcadis 2022).
- 7) 2023 Q2 gauging consisted of the 12 source area, 11 perimeter, and three general area montoring wells.
- 8) 2023 Q3 gauging consisted of the 12 source area monitoring wells and 1 general area well (MW-5B). MW-5B was added to the source area monitoring program per the June 2023 Periodic Review Report.
- 9) "--" Indicates measurement not taken or not available. EMW-4 and EMW-5 were obstructed by snow banks on 2/28/2022. The water level meter probe was not able to be advanced to bottom at MW-4B on 1/17/2023. There is accumulating injection material residue on the inside of the riser acting as an obstruction.

Table 2
Groundwater Monitoring Event Data
Third Quarter 2023 Groundwater Monitoring Report
Old Erie Canal - Slte #859015
124 Columbia Street
Clyde, New York

	NYSDEC														
Leasting ID	TOGS 1 1 1		1004/40	1004 AD	B804/ 40	\$404/ ED	ANN OD	B494/ 00	B8147 70	BBW 400	BBN 440	BBN 450	NO. 470	NUM 400	NUM 400
Location ID:	(Class GA)	Heite	MW-1S	MW-4B	MW-4S	MW-5B	MW-6B	MW-6S	MW-7S	MW-13S	MW-14S	MW-15S	MW-17S	MW-18S	MW-19S
Date Collected:	(Glass Grt)	Units	7/17/2023	7/20/2023	7/20/2023	7/20/2023	7/20/2023	7/20/2023	7/20/2023	7/20/2023	7/17/2023	7/17/2023	7/17/2023	7/28/2023	7/18/2023
Volatile Organics	-	/1	4.011	400.11	4.011	00.11	400.11	40.11	4.011	50.11	1.0 U [1.0 U]	4.011	4.011	4.0.11	2.4
1,1,1-Trichloroethane	5	μg/L	1.0 U	100 U	1.0 U 1.0 U	20 U 20 U	100 U	10 U	1.0 U 1.0 U	50 U 50 U		1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	3.4 1.0 U
1,1,2,2-Tetrachloroethane	-	μg/L									1.0 U [1.0 U]	1.0 U			
1,1,2-trichloro-1,2,2-trifluoroethane	5 1	μg/L	5.0 U	500 U 100 U	5.0 U 1.0 U	100 U 20 U	500 U 100 U	50 U 10 U	5.0 U 1.0 U	250 U 50 U	5.0 U [5.0 U]	5.0 U	1.9 J 1.0 U	5.0 U 1.0 U	5.0 U 1.0 U
1,1,2-Trichloroethane	5	μg/L	1.0 U		1.0 U	20 U	100 U		1.0 U	50 U	1.0 U [1.0 U]	1.0 U 2.7		1.0 U	9.7
1,1-Dichloroethane	-	μg/L	1.0 U	100 U				10 U			1.1 [1.0 U]		1.0 U		-
1,1-Dichloroethene	5	μg/L	1.0 U	238	1.0 U	20 U	88.4 J	10 U	1.0 U	50 U	1.0 U [1.0 U]	1.0 U	1.0	1.0 U	1.0 U
1,2,3-Trichlorobenzene	5	μg/L	1.0 U	100 U	1.0 U	20 U	100 U	10 U	1.0 U	50 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U
1,2,4-Trichlorobenzene	5	μg/L	1.0 U	100 U	1.0 U	20 U	100 U	10 U	1.0 U	50 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dibromo-3-chloropropane	0.04	μg/L	2.0 U	200 U	2.0 U	40 U	200 U	20 U	2.0 U	100 U	2.0 U [2.0 U]	2.0 U	2.0 U	2.0 U	2.0 U
1,2-Dibromoethane	0.0006	μg/L	1.0 U	100 U	1.0 U	20 U	100 U	10 U	1.0 U	50 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichlorobenzene	3	μg/L	1.0 U	100 U	1.0 U	20 U	100 U	10 U	1.0 U	50 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	0.6	μg/L	1.0 U	100 U	1.0 U	20 U	100 U	10 U	1.0 U	50 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	1	μg/L	1.0 U	100 U	1.0 U	20 U	100 U	10 U	1.0 U	50 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U
1,3-Dichlorobenzene	3	μg/L	1.0 U	100 U	1.0 U	20 U	100 U	10 U	1.0 U	50 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U
1,4-Dichlorobenzene	3	μg/L	1.0 U	100 U	1.0 U	20 U	100 U	10 U	1.0 U	50 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U
2-Butanone (MEK)	50	μg/L	13.1	1000 U	10 U	200 U	1000 U	100 U	10 U	500 U	10 U [10 U]	10 U	10 U	10 U	10 U
4-Methyl-2-Pentanone		μg/L	10.6	500 U	5.0 U	100 U	500 U	50 U	5.0 U	250 U	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U	5.0 U
Acetone	50	μg/L	39.7	1000 U	10 U	200 U	1000 U	100 U	10 U	500 U	10 U [10 U]	10 U	10 U	3.8 J	10 U
Benzene	1	μg/L	0.50 U	50 U	0.55	10 U	50 U	4.7 J	0.50 U	25 U	0.50 U [0.50 U]	5.8	0.50 U	0.50 U	0.50 U
Bromochloromethane	5	μg/L	1.0 U	100 U	1.0 U	20 U	100 U	10 U	1.0 U	50 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U
Bromodichloromethane	50	μg/L	1.0 U	100 U	1.0 U	20 U	100 U	10 U	1.0 U	50 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U
Bromoform	50	μg/L	1.0 U	100 U	1.0 U	20 U	100 U	10 U	1.0 U	50 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U
Bromomethane	5	μg/L	2.0 U	200 U	2.0 U	40 U	200 U	20 U	2.0 U	100 U	2.0 U [2.0 U]	2.0 U	2.0 U	2.0 U	2.0 U
Carbon Disulfide	60	μg/L	2.0 U	200 U	2.0 U	40 U	200 U	20 U	2.0 U	100 U	2.0 U [2.0 U]	2.0 U	2.0 U	2.0 U	2.0 U
Carbon Tetrachloride	5	μg/L	1.0 U	100 U	1.0 U	20 U	100 U	10 U	1.0 U	50 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U
CFC-11	5	μg/L	2.0 U	200 U	2.0 U	40 U	200 U	20 U	2.0 U	100 U	2.0 U [2.0 U]	2.0 U	2.0 U	2.0 U	2.0 U
CFC-12	5	μg/L	2.0 U	200 U	2.0 U	40 U	200 U	20 U	2.0 U	100 U	2.0 U [2.0 U]	2.0 U	2.0 U	2.0 U	2.0 U
Chlorobenzene	5	μg/L	1.0 U	100 U	1.0 U	20 U	100 U	10 U	1.0 U	50 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U
Chlorodibromomethane	50	μg/L	1.0 U	100 U	1.0 U	20 U	100 U	10 U	1.0 U	50 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U
Chloroethane	5	μg/L	1.0 U	100 U	1.0 U	20 U	100 U	10 U	1.0 U	50 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U
Chloroform	7	μg/L	1.0 U	100 U	1.0 U	20 U	100 U	10 U	1.0 U	50 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U
Chloromethane	5	μg/L	1.0 U	100 U	1.0 U	20 U	100 U	10 U	1.0 U	50 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,2-Dichloroethene	5	μg/L	4.9	56,100	1.0 U	896	33,300	10 U	1.0 U	8,010	124 [131]	1.3	1,070	61.6	417
cis-1,3-Dichloropropene	0.4	μg/L	1.0 U	100 U	1.0 U	20 U	100 U	10 U	1.0 U	50 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U
Cyclohexane		μg/L	5.0 U	500 U	5.0 U	100 U	500 U	50 U	5.0 U	250 U	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U	5.0 U
Dichloromethane	5	μg/L	2.0 U	200 U	2.0 U	40 U	200 U	20 U	2.0 U	100 U	2.0 U [2.0 U]	2.0 U	2.0 U	2.0 U	2.0 U
Ethylbenzene	5	μg/L	1.0 U	162	1.0 U	20 U	100 U	29.2	1.0 U	50 U	1.2 [1.1]	5.3	1.0 U	1.0 U	1.0 U
Isopropylbenzene	5	μg/L	1.0 U	100 U	1.0 U	20 U	100 U	10 U	1.0 U	50 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U
m&p-Xylenes	5	μg/L	1.0 U	392	1.0 U	20 U	100 U	203	1.0 U	50 U	3.2 [3.3]	22.6	1.0 U	1.0 U	1.0 U
Methyl Acetate		μg/L	5.0 U	500 U	5.0 U	100 U	500 U	50 U	5.0 U	250 U	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U	5.0 U
Methyl N-Butyl Ketone (2-Hexanone)	50	μg/L	5.0 U	500 U	5.0 U	100 U	500 U	50 U	5.0 U	250 U	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U	5.0 U
Methylcyclohexane		μg/L	5.0 U	500 U	5.0 U	100 U	500 U	50 U	5.0 U	250 U	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U	5.0 U
Methyl-tert-butylether	10	μg/L	1.0 U	100 U	1.0 U	20 U	100 U	10 U	1.0 U	50 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U
o-Xylene	5	μg/L	1.0 U	101	1.0 U	20 U	100 U	37.2	1.0 U	50 U	0.94 J [0.99 J]	15.5	1.0 U	1.0 U	1.0 U
Styrene (Monomer)	5	μg/L	1.0 U	100 U	1.0 U	20 U	100 U	10 U	1.0 U	50 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene	5	μg/L	1.0 U	100 U	1.0 U	20 U	100 U	10 U	1.0 U	50 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	4.1
Toluene	5	μg/L	1.0 U	2,680	1.0 U	20 U	74.8 J	1,640	1.0 U	50 U	16.5 [16.0]	478	1.0 U	0.82 J	1.0 U
Total Xylenes	5	μg/L	1.0 U	493	1.0 U	20 U	100 U	240	1.0 U	50 U	4.1 [4.3]	38.1	1.0 U	1.0 U	1.0 U
trans-1,2-Dichloroethene	5	μg/L	6.5	235	1.0 U	20 U	158	10 U	1.0 U	40.6 J	1.0 U [1.0 U]	1.0 U	9.5	0.63 J	5.5
trans-1,3-Dichloropropene	0.4	μg/L	1.0 U	100 U	1.0 U	20 U	100 U	10 U	1.0 U	50 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene	5	μg/L	0.97 J	7,800	1.0 U	2,710	100 U	10 U	1.0 U	50 U	1.0 U [1.0 U]	1.0 U	249	4.7	215
Vinyl chloride	2	μg/L	1.8	28,300	1.0 U	20 U	11,300	36.5	1.0 U	3,920	257 [223]	6.0	133	2.6	4.1

Table 2 - Q3 2023 Groundwater Analytical Data-v1

Table 2 Groundwater Monitoring Event Data Third Quarter 2023 Groundwater Monitoring Report Old Erie Canal - Slte #859015 124 Columbia Street Clyde, New York

Location ID: Date Collected:	NYSDEC TOGS 1 1 1 (Class GA)	Units	MW-1S 7/17/2023	MW-4B 7/20/2023	MW-4S 7/20/2023	MW-5B 7/20/2023	MW-6B 7/20/2023	MW-6S 7/20/2023	MW-7S 7/20/2023	MW-13S 7/20/2023	MW-14S 7/17/2023	MW-15S 7/17/2023	MW-17S 7/17/2023	MW-18S 7/28/2023	MW-19S 7/18/2023
Dissolved Gases															
Ethane		μg/L	6.02	187	420	0.45	27.1	868	52.0	1.9	472 [386]	1,670	10.6	0.34	0.18
Ethene		μg/L	2.5	1,410	7.78	0.31 U	174	1,230	0.31 U	515	158 [113]	6,220	7.04	0.39	0.31 U
Methane		μg/L	6,520	5,510	4,890	0.28	2130	4,640	4,730	1,690	13,000 [10,200]	8,530	102	48.2	0.74
Metals															
Iron	300	μg/L	62,800	100 U	19,500	65.7 J	1,130	122,000	18,900	334	5,410 [5,670]	45,200	69.4 J	2,540	1,040
Manganese	300	μg/L	17,900	79.8	1,990	24.3	161	3,570	2,370	81.4	365 [395]	1,890	38.9	862	243
Metals-Filtered															
Iron	300	μg/L	60,800	100 U	18,000	100 U	582	118,000	18,100	343	5,810 [5,300]	43,600	60.9 J	582	100 U
Manganese	300	μg/L	20,400	80.7	2,080	15 U	155	3,550	2,260	83.8	418 [380]	1,900	37.4	896	92.0
General Chemistry															
Total Organic Carbon		mg/L	276	97.6	5.3	1.3	3.9	155	3.0	33.4	6.4 [5.9]	140	2.0	15.7	7.7
Sulfate		mg/L	2.0 U	248	8.7	1,950	1,170	1.9 J	202	711	16.9 [17.1]	2.0 U	48.1	68.0	22.4
Sulfide		mg/L	2.0 U	178	2.0 U	2.0 U	9.7	2.0 U	2.0 U	13.2	2.0 U [2.0 U]	2.0 U	2.0 U	2.0 U	2.0 U
Field Parameters															
pH		dimensionless	6.76	6.40	6.94	7.21	7.00	6.49	6.87	7.14	6.85	6.42	6.92	6.93	7.11
Conductivity		mS/cm	4.931	3.722	3.772	3.035	3.45	6.97	1.732	1.91	2.41	5.437	1.64	3.733	2.55
Turbidity		NTU	41.3	14.7	1.94	1.87	32.8	49.4	1.90	2.20	4.41	9.27	6.29	NA	15.8
Dissolved Oxygen		mg/L	1.80	0.07	0.00	1.83	0.00	0.00	0.02	0.00	0.22	0.00	0.00	1.64	4.63
Temperature		°C	20.3	13.1	13.7	14.4	21.3	21.6	11.8	14.6	19.1	15.1	20.7	24.8	20.3
Redox Potential		mV	-92.4	-345.7	0.2	-40.2	-322.2	-122.9	4.5	-331.0	-53.9	-73.6	21.5	67.0	173.4

Notes

- 1) New York State Department of Environmental Conservation, Division of Water, Technical and Operational Guidance Series (TOGS 1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations for Source of Drinking Water (GA).
- 2) Bold/Shading Exceeds applicable TOGS 1.1.1 value.
- 3) Data in this table is not validated.
- 4) Abbreviations:

μg/L - micrograms per liter

mg/L - milligrams per liter

mS/cm - milli siemens per centimeter

NTU - Nephelometric Turbidity Units

°C - degrees Celsius

NA - Not Analyzed/Applicable/Available (Turbidity was not recorded at wells MW-18S due to field equipment error).

- 5) Monitoring Wells MW-18S and MW-19S went dry before stabilization of field parameters; therefore, samples were collected following recharge.
- 6) Lab Qualifiers:
- J Indicates an estimated value.
- U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
- UJ The compound was analyzed for but not detected. The associated value is the compound quantitation limit. Indicates an estimated value.

Table 3
Groundwater Analytical Results (2022 to 2023)
Third Quarter 2023 Groundwater Monitoring Report
Old Erie Canal - Site #859015
124 Columbia Street
Clyde, New York

Location ID:	NYSDEC TOGS 1 1 1		EM	IW-2	EMW-4		MV	V-1S		MV	V-3B	MV	V-3S		MW	/-4B		MV	V-4C
Date Collected:	(Class GA)	Units	2/28/2022	4/20/2023	4/18/2023	3/2/2022	1/17/2023	4/17/2023	7/17/2023	3/1/2022	4/18/2023	3/1/2022	4/18/2023	3/2/2022	1/18/2023	4/20/2023	7/20/2023	3/2/2022	4/18/2023
Volatile Organics																			
1,1,1-Trichloroethane	5	μg/L	1.0 UJ	1.0 U	1.0 U	2.5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	100 UJ	200 U	100 U	100 U	1.0 UJ	1.0 U
1,1,2-trichloro-1,2,2-trifluoroethane	5	μg/L	5.0 U	5.0 U	5.0 U	13 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	500 UJ	1,000 U	500 U	500 U	5.0 U	5.0 U
1,1-Dichloroethane	5	μg/L	1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	100 UJ	200 U	100 U	100 U	1.0 U	1.0 U
1,1-Dichloroethene	5	μg/L	1.0 U	1.0 U	1.0 U	5.1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	303 J	212	288	238	1.0 U	1.0 U
Benzene	1	μg/L	0.50 U	0.50 U	0.50 U	1.3 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	50 UJ	100 U	50 U	50 U	0.50 U	0.50 U
Carbon Disulfide	60	μg/L	2.0 U	2.0 U	2.0 U	5.0 U	2.0 UJ	2.0 U	2.0 U	2.0 U	2.0 U	2.0 UJ	2.0 U	200 UJ	400 U	118 J	200 U	2.0 U	2.0 U
cis-1,2-Dichloroethene	5	μg/L	1.3	2.3	1.0 U	988 D	50.1	21.7	4.9	1.0 U	1.0 U	1.0 UJ	1.0 U	52,200 DJ	48,200 D	55,800 D	56,100	1.0 U	1.0 U
cis-1,3-Dichloropropene	0.4	μg/L	1.0 UJ	1.0 U	1.0 U	2.5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	100 UJ	200 U	100 U	100 U	1.0 U	1.0 U
Cyclohexane		μg/L	5.0 U	5.0 UJ	5.0 U	13 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	500 UJ	1,000 U	500 UJ	500 U	5.0 U	5.0 U
Dichloromethane	5	μg/L	2.0 U	2.0 U	2.0 U	5.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 UJ	2.0 U	200 UJ	400 U	200 U	200 U	2.0 U	2.0 U
Ethylbenzene	5	μg/L	1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	179 J	178 J	103	162	1.0 U	1.0 U
Isopropylbenzene	5	μg/L	1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	100 UJ	200 U	100 U	100 U	1.0 U	1.0 U
m&p-Xylenes	5	μg/L	1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	433 J	361	222	392	1.0 U	1.0 U
o-Xylene	5	μg/L	1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	109 J	120 J	62.4 J	101	1.0 U	1.0 U
Tetrachloroethene	5	μg/L	1.0 U	1.0 U	1.0 U	8.8	0.69 J	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	100 UJ	200 U	100 U	100 U	1.0 U	1.0 U
Toluene	5	μg/L	1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	3,100 J	1,880	1,990	2,680	1.0 U	1.0 U
Total Xylenes	5	μg/L	1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	542 J	481	284	493	1.0 U	1.0 U
trans-1,2-Dichloroethene	5	μg/L	1.0 U	1.0 U	1.0 U	38.2	3.6	5.0	6.5	1.0 U	1.0 U	1.0 U	1.0 U	282 J	289	247	235	1.0 U	1.0 U
Trichloroethene	5	μg/L	1.0 U	2.0	1.0 U	315	5.6	4.0	0.97 J	1.0 U	1.0 U	1.0 U	1.0 U	18,000 J	7,550	9,500	7,800	1.0 U	1.0 U
Vinyl chloride	2	μg/L	5.4	8.4	1.0 U	96.6	16.4	8.1	1.8	1.0 U	1.0 U	1.0 UJ	1.0 U	12,800 DJ	22,500	31,000 D	28,300	1.0 U	1.0 U
Dissolved Gases																			
Ethane		μg/L	NA	NA	NA	4.08	2.68	4.78	6.02	NA	NA	NA	NA	110 J	174 J	195 J	187	NA	NA
Ethene		μg/L	NA	NA	NA	0.62	15.7	41.4	2.5	NA	NA	NA	NA	1,140 DJ	1,390 DJ	1,450 DJ	1,410	NA	NA
Methane		μg/L	NA	NA	NA	27.2	362 D	5,110 D	6,520	NA	NA	NA	NA	6,400 DJ	5,910 DJ	6,990 DJ	5,510	NA	NA
Metals																			
Iron	300	μg/L	NA	NA	NA	509	12,100	28,600	62,800	NA	NA	NA	NA	41.5 J	500 U	100 U	100 U	NA	NA
Manganese	300	μg/L	NA	NA	NA	1,300	49,600	22,700	17,900	NA	NA	NA	NA	110	90.6	94.5	79.8	NA	NA
Metals-Filtered																			
Iron	300	μg/L	NA	NA	NA	100 U	11,100	32,900	60,800	NA	NA	NA	NA	100 U	500 U	100 U	100 U	NA	NA
Manganese	300	μg/L	NA	NA	NA	1,320	50,000	25,400	20,400	NA	NA	NA	NA	109	88.5	76.4	80.7	NA	NA

Table 3
Groundwater Analytical Results (2022 to 2023)
Third Quarter 2023 Groundwater Monitoring Report
Old Erie Canal - Site #859015
124 Columbia Street
Clyde, New York

Location ID:	NYSDEC TOGS 1 1 1			MW	<i>I</i> -4S			MW-5B		ı	MW-5S		MW	/-6B	
Date Collected:	(Class GA)	Units	3/2/2022	1/18/2023	4/19/2023	7/20/2023	3/1/2022	4/17/2023	7/20/2023	3/1/2022	4/17/2023	3/3/2022	1/18/2023	4/18/2023	7/20/2023
Volatile Organics															
1,1,1-Trichloroethane	5	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	10 U	20 U	1.0 U	1.0 U [1.0 U]	250 U	200 U	100 U	100 U
1,1,2-trichloro-1,2,2-trifluoroethane	5	μg/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	50 U	100 U	5.0 U	5.0 U [5.0 U]	1,300 U	1,000 U	500 U	500 U
1,1-Dichloroethane	5	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	10 U	20 U	1.0 U	1.0 U [1.0 U]	250 U	200 U	100 U	100 U
1,1-Dichloroethene	5	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	20 U	1.0 U	1.0 U [1.0 U]	250 U	200 U	109	88.4 J
Benzene	1	μg/L	0.50 U	0.50 U	0.50 U	0.55	0.50 U	5.0 U	10 U	0.50 U	0.50 U [0.50 U]	130 U	100 U	50 U	50 U
Carbon Disulfide	60	μg/L	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	20 U	40 U	2.0 UJ	2.0 U [2.0 U]	500 U	400 U	200 U	200 U
cis-1,2-Dichloroethene	5	μg/L	0.73 J	1.0 U	1.0 U	1.0 U	5.5	98.9	896	1.0 UJ	1.0 U [1.0 U]	36,400	43,200 D	42,500 D	33,300
cis-1,3-Dichloropropene	0.4	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	10 U	20 U	1.0 U	1.0 U [1.0 U]	250 U	200 U	100 U	100 U
Cyclohexane		μg/L	5.0 U	5.0 U	5.0 UJ	5.0 U	5.0 U	50 U	100 U	5.0 U	5.0 U [5.0 U]	1,300 U	1,000 U	500 U	500 U
Dichloromethane	5	μg/L	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	20 U	40 U	2.0 UJ	2.0 U [2.0 U]	500 U	400 U	200 U	200 U
Ethylbenzene	5	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	20 U	1.0 U	1.0 U [1.0 U]	250 U	200 U	100 U	100 U
Isopropylbenzene	5	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	20 U	1.0 U	1.0 U [1.0 U]	250 U	200 U	100 U	100 U
m&p-Xylenes	5	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	20 U	1.0 U	1.0 U [1.0 U]	250 U	200 U	100 U	100 U
o-Xylene	5	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	20 U	1.0 U	1.0 U [1.0 U]	250 U	200 U	100 U	100 U
Tetrachloroethene	5	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	20 U	1.0 U	1.0 U [1.0 U]	250 U	200 U	100 U	100 U
Toluene	5	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	20 U	1.0 U	1.0 U [1.0 U]	250 U	116 J	70.6 J	74.8 J
Total Xylenes	5	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	20 U	1.0 U	1.0 U [1.0 U]	250 U	200 U	100 U	100 U
trans-1,2-Dichloroethene	5	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	20 U	1.0 U	1.0 U [1.0 U]	194 J	230	234	158
Trichloroethene	5	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	491 D	2,150 D	2,710	1.0 U	1.0 U [1.0 U]	250 U	200 U	100 U	100 U
Vinyl chloride	2	μg/L	7.1	1.0 U	1.0 U	1.0 U	1.0 U	10 U	20 U	1.0 UJ	1.0 U [1.0 U]	6,510	7,350	8,800	11,300
Dissolved Gases															
Ethane		μg/L	41.2	325 D	410 D	420	NA	NA	0.45	NA	NA	13.6	21.5	23.4	27.1
Ethene		μg/L	36.3	17.8	1.5	7.78	NA	NA	0.31 U	NA	NA	130	154	126	174
Methane		μg/L	1,590 D	4,240 DJ	4,470 D	4,890	NA	NA	0.28	NA	NA	1,590 D	3,600 D	3,170 D	2,130
Metals															
Iron	300	μg/L	6,280	18,100	25,400	19,500	NA	NA	65.7 J	NA	NA	1,580	1,630	730	1,130
Manganese	300	μg/L	2,490	2,330	2,560	1,990	NA	NA	24.3	NA	NA	89.4	116	189	161
Metals-Filtered															
Iron	300	μg/L	5,820	18,600	23,600	18,000	NA	NA	100 U	NA	NA	1,290	451	1,030	582
Manganese	300	μg/L	2,470	2,490	2,570	2,080	NA	NA	15 U	NA	NA	91.3	106	157	155

Table 3
Groundwater Analytical Results (2022 to 2023)
Third Quarter 2023 Groundwater Monitoring Report
Old Erie Canal - Site #859015
124 Columbia Street
Clyde, New York

Location ID:	NYSDEC TOGS 1 1 1			MV	/-6S		MV	V-7B		MW-	7S		MV	/-9S
Date Collected:	(Class GA)	Units	3/3/2022	1/18/2023	4/18/2023	7/20/2023	3/1/2022	4/19/2023	3/1/2022	1/17/2023	4/19/2023	7/20/2023	3/1/2022	4/19/2023
Volatile Organics														
1,1,1-Trichloroethane	5	μg/L	10 U	20 U	10 U	10 U	1.0 U	1.0 U	1.0 UJ [1.0 U]	1.0 U [1.0 U]	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U
1,1,2-trichloro-1,2,2-trifluoroethane	5	μg/L	50 U	100 U	50 U	50 U	5.0 U	5.0 U	5.0 U [5.0 U]	5.0 U [5.0 U]	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U
1,1-Dichloroethane	5	μg/L	10 U	20 U	10 U	10 U	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U [1.0 U]	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene	5	μg/L	10 UJ	20 U	10 U	10 U	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U [1.0 U]	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U
Benzene	1	μg/L	4.5 J	10 U	5.0 U	4.7 J	0.50 U	0.50 U	0.50 U [0.50 U]	0.50 U [0.50 U]	0.50 U [0.50 U]	0.50 U	0.50 U	0.50 U
Carbon Disulfide	60	μg/L	20 UJ	40 U	20 U	20 U	2.0 UJ	2.0 U	2.0 U [2.0 UJ]	2.0 U [2.0 UJ]	2.0 U [2.0 U]	2.0 U	2.0 UJ	2.0 U
cis-1,2-Dichloroethene	5	μg/L	1,580 J	451	54.2	10 U	1.0 UJ	1.0 U	4.3 [3.4]	2.7 [2.9]	0.76 J [0.89 J]	1.0 U	1.0 UJ	1.0 U
cis-1,3-Dichloropropene	0.4	μg/L	10 U	20 U	10 U	10 U	1.0 U	1.0 U	1.0 UJ [1.0 U]	1.0 U [1.0 U]	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U
Cyclohexane		μg/L	50 UJ	100 U	50 U	50 U	5.0 U	5.0 UJ	5.0 U [5.0 U]	5.0 U [5.0 U]	5.0 UJ [5.0 UJ]	5.0 U	5.0 U	5.0 UJ
Dichloromethane	5	μg/L	20 UJ	40 U	20 U	20 U	2.0 UJ	2.0 U	2.0 U [2.0 U]	2.0 U [2.0 U]	2.0 U [2.0 U]	2.0 U	2.0 UJ	2.0 U
Ethylbenzene	5	μg/L	16.3	67.2	32.5	29.2	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U [1.0 U]	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U
Isopropylbenzene	5	μg/L	10 U	20 U	10 U	10 U	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U [1.0 U]	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U
m&p-Xylenes	5	μg/L	110	410	203	203	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U [1.0 U]	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U
o-Xylene	5	μg/L	20.9	70.0	39.0	37.2	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U [1.0 U]	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U
Tetrachloroethene	5	μg/L	10 U	20 U	10 U	10 U	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U [1.0 U]	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U
Toluene	5	μg/L	1,540	4,130 D	1,820 J	1,640	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U [1.0 U]	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U
Total Xylenes	5	μg/L	131	480	242	240	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U [1.0 U]	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U
trans-1,2-Dichloroethene	5	μg/L	10 U	20 U	10 U	10 U	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U [1.0 U]	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U
Trichloroethene	5	μg/L	10 U	20 U	10 U	10 U	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U [1.0 U]	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U
Vinyl chloride	2	μg/L	4,940 D	1,060	74.2	36.5	1.0 UJ	1.0 U	2.2 [2.2]	2.3 [2.3]	0.67 J [0.65 J]	1.0 U	1.0 UJ	1.0 U
Dissolved Gases														
Ethane		μg/L	3,870	2,100	1,330	868	NA	NA	5.81 J [11.7]	56.3 [41.7]	38.2 [33.9]	52.0	NA	NA
Ethene		μg/L	3,240	2,530	1,860	1230	NA	NA	1.5 J [3.04]	8.34 J [5.68 J]	0.18 J [0.17 J]	0.31 U	NA	NA
Methane		μg/L	9,530	7,100	3,170	4,640	NA	NA	3,400 DJ [5,110]	6,820 D [5,990]	6,210 DJ [6,110]	4,730	NA	NA
Metals														
Iron	300	μg/L	89,000	134,000	100,000	122,000	NA	NA	7,120 [7,230]	8,590 [7,250 J]	10,900 [11,700]	18,900	NA	NA
Manganese	300	μg/L	2,680	3,330 J	2,530	3,570	NA	NA	3,760 [3,730]	3,750 [3,550]	3,560 [3,710]	2,370	NA	NA
Metals-Filtered														
Iron	300	μg/L	87,500	146,000	116,000	118,000	NA	NA	7,560 [7,590]	9,400 [9,340 J]	11,700 [11,200]	18,100	NA	NA
Manganese	300	μg/L	2,680	3,760 J	3,000	3,550	NA	NA	3,790 [3,630]	3,600 [3,660]	3,610 [3,540]	2,260	NA	NA

Table 3
Groundwater Analytical Results (2022 to 2023)
Third Quarter 2023 Groundwater Monitoring Report
Old Erie Canal - Site #859015
124 Columbia Street
Clyde, New York

Location ID:	TOGS 1 1 1			MW	-13 S			М	W-14S			MW	-15S		MW	/-16B	MW-16	S
Date Collected:	(Class GA)	Units	3/2/2022	1/18/2023	4/19/2023	7/20/2023	3/3/2022	1/18/2023	4/18/2023	7/17/2023	3/3/2022	1/18/2023	4/19/2023	7/17/2023	3/1/2022	4/19/2023	3/1/2022	4/19/2023
Volatile Organics																		
1,1,1-Trichloroethane	5	μg/L	20 U	50 U	50 U	50 U	10 U	2.0 U	1.0 U	1.0 U [1.0 U]	10 U	1.0 U	20 U	1.0 U	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U
1,1,2-trichloro-1,2,2-trifluoroethane	5	μg/L	100 U	250 U	250 U	250 U	50 U	10 U	5.0 U	5.0 U [5.0 U]	50 U	5.0 U	100 U	5.0 U	5.0 U	5.0 U	5.0 U [5.0 U]	5.0 U
1,1-Dichloroethane	5	μg/L	20 U	50 U	50 U	50 U	10 U	1.3 J	1.2	1.1 [1.0 U]	10 U	1.8	20 U	2.7	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U
1,1-Dichloroethene	5	μg/L	20 U	50 U	50 U	50 U	10 U	2.0 U	1.0 U	1.0 U [1.0 U]	10 U	1.0 U	20 U	1.0 U	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U
Benzene	1	μg/L	10 U	25 U	25 U	25 U	5.0 U	1.0 U	0.50 U	0.50 U [0.50 U]	6.5	3.8	10 U	5.8	0.50 U	0.50 U	0.50 U [0.50 U]	0.50 U
Carbon Disulfide	60	μg/L	40 U	100 U	100 U	100 U	20 U	4.0 UJ	2.0 U	2.0 U [2.0 U]	20 U	2.0 UJ	40 U	2.0 U	2.0 UJ	2.0 U	2.0 UJ [2.0 UJ]	2.0 U
cis-1,2-Dichloroethene	5	μg/L	7,920 D	6,670	11,800 D	8,010	1,710	334	76.9	124 [131]	204	2.9	23.5	1.3	1.0 UJ	1.0 U	1.0 UJ [1.0 UJ]	1.0 U
cis-1,3-Dichloropropene	0.4	μg/L	20 U	50 U	50 U	50 U	10 U	2.0 U	1.0 U	1.0 U [1.0 U]	10 U	1.0 U	20 U	1.0 U	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U
Cyclohexane		μg/L	100 U	250 U	250 UJ	250 U	50 U	10 U	5.0 U	5.0 U [5.0 U]	50 U	5.0 U	100 UJ	5.0 U	5.0 U	5.0 UJ	5.0 U [5.0 U]	5.0 UJ
Dichloromethane	5	μg/L	40 U	100 U	100 U	100 U	20 U	4.0 U	2.0 U	2.0 U [2.0 U]	20 U	2.0 U	40 U	2.0 U	2.0 UJ	2.0 U	2.0 UJ [2.0 UJ]	2.0 U
Ethylbenzene	5	μg/L	20 U	50 U	50 U	50 U	7.7 J	2.6	1.0	1.2 [1.1]	10 U	3.6	20 U	5.3	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U
Isopropylbenzene	5	μg/L	20 U	50 U	50 U	50 U	10 U	2.0 U	1.0 U	1.0 U [1.0 U]	10 U	1.0 U	20 U	1.0 U	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U
m&p-Xylenes	5	μg/L	20 U	50 U	50 U	50 U	29.5	9.6	3.8	3.2 [3.3]	9.8 J	14.9	18.4 J	22.6	0.94 J	1.0 U	1.0 U [1.0 U]	1.0 U
o-Xylene	5	μg/L	20 U	50 U	50 U	50 U	10 U	2.2	0.94 J	0.94 J [0.99 J]	7.1 J	10.9	20 U	15.5	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U
Tetrachloroethene	5	μg/L	20 U	50 U	50 UJ	50 U	10 U	2.0 U	1.0 U	1.0 U [1.0 U]	10 U	1.0 U	20 UJ	1.0 U	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U
Toluene	5	μg/L	20 U	50 U	50 U	50 U	460	93.2	9.5	16.5 [16.0]	158	307 D	555	478	1.4 J	1.0 U	1.0 U [1.0 U]	1.0 U
Total Xylenes	5	μg/L	20 U	50 U	50 U	50 U	29.5	11.8	4.7	4.1 [4.3]	16.9	25.8	18.4 J	38.1	0.94 J	1.0 U	1.0 U [1.0 U]	1.0 U
trans-1,2-Dichloroethene	5	μg/L	28.7	44.3 J	46.0 J	40.6 J	5.4 J	1.1 J	1.0 U	1.0 U [1.0 U]	10 U	1.0 U	20 U	1.0 U	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U
Trichloroethene	5	μg/L	20 U	50 U	50 U	50 U	64.5	2.0 U	1.0 U	1.0 U [1.0 U]	10 U	1.0 U	20 U	1.0 U	1.0 U	1.0 U	1.2 J [1.1 J]	1.2
Vinyl chloride	2	μg/L	1,090	1,830	2,740	3,920	1,460	817 D	128	257 [223]	4,310 D	86.6	2,880 D	6.0	1.0 UJ	1.0 U	1.0 UJ [1.0 UJ]	1.0 U
Dissolved Gases																		
Ethane		μg/L	4.00	3.65	1.7	1.9	188 J	184	208	472 [386]	1,440	1,250	2,030 J	1,670	NA	NA	NA	NA
Ethene		μg/L	31.2	109	90.8	515	291 J	206	149	158 [113]	4,100	5,430	7,120 J	6,220	NA	NA	NA	NA
Methane		μg/L	1,730 D	757 D	735 D	1,690	10,900 DJ	10,500 D	13,300	13,000 [10,200]	8,920	9,670	10,600 J	8,530	NA	NA	NA	NA
Metals																		
Iron	300	μg/L	3,130	767	362	334	10,400	6,390	5,240	5,410 [5,670]	25,700	29,800	32,700	45,200	NA	NA	NA	NA
Manganese	300	μg/L	274	149	104	81.4	560	462	374	365 [395]	1,020	1,170	1,630	1,890	NA	NA	NA	NA
Metals-Filtered																		
Iron	300	μg/L	2,320	364	369	343	9,380	6,090	4,380	5,810 [5,300]	24,400	31,900	32,500	43,600	NA	NA	NA	NA
Manganese	300	μg/L	276	152	91.1	83.8	532	481	383	418 [380]	1,010	1,240	1,620	1,900	NA	NA	NA	NA

Table 3
Groundwater Analytical Results (2022 to 2023)
Third Quarter 2023 Groundwater Monitoring Report
Old Erie Canal - Site #859015
124 Columbia Street
Clyde, New York

Location ID:	NYSDEC TOGS 1 1 1			MW-17S				MW	'-18S			MW	-19S	
Date Collected:	(Class GA)	Units	3/2/2022	1/17/2023	4/18/2023	7/17/2023	3/2/2022	1/26/2023	4/28/2023	7/28/2023	3/2/2022	1/18/2023	4/17/2023	7/18/2023
Volatile Organics														
1,1,1-Trichloroethane	5	μg/L	1.0 U	5.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.6	1.6	15.9	3.4
1,1,2-trichloro-1,2,2-trifluoroethane	5	μg/L	6.8	25 U	9.2 J	1.9 J	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	20 U	5.0 U
1,1-Dichloroethane	5	μg/L	1.0 U	5.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10.4	7.0	9.5	9.7
1,1-Dichloroethene	5	μg/L	1.4	5.0 U	10 U	1.0	1.0 U	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	4.0 U	1.0 U
Benzene	1	μg/L	0.50 U	2.5 U	5.0 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	2.0 U	0.50 U
Carbon Disulfide	60	μg/L	2.0 U	10 U	20 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	8.0 U	2.0 U
cis-1,2-Dichloroethene	5	μg/L	810 D	1,080 D	1,920 D	1,070	30.9	31.5	44.3	61.6	432 D	293 D	479	417
cis-1,3-Dichloropropene	0.4	μg/L	1.0 U	5.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	1.0 U
Cyclohexane		μg/L	5.0 U	25 U	50 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	20 U	5.0 U
Dichloromethane	5	μg/L	2.0 U	10 U	20 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	8.0 U	2.0 U
Ethylbenzene	5	μg/L	1.0 U	5.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	1.0 U
Isopropylbenzene	5	μg/L	1.0 U	5.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	1.0 U
m&p-Xylenes	5	μg/L	1.0 U	5.0 U	10 U	1.0 U	1.4	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	1.0 U
o-Xylene	5	μg/L	1.0 U	5.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	1.0 U
Tetrachloroethene	5	μg/L	1.0 U	5.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	9.9	2.7	10.6	4.1
Toluene	5	μg/L	1.7	5.0 U	10 U	1.0 U	2.3	1.0 U	0.54 J	0.82 J	1.0 U	1.0 U	4.0 U	1.0 U
Total Xylenes	5	μg/L	1.0 U	5.0 U	10 U	1.0 U	1.4	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	1.0 U
trans-1,2-Dichloroethene	5	μg/L	3.2	8.9	19.6	9.5	1.0 U	0.69 J	0.78 J	0.63 J	6.3	3.4	7.3	5.5
Trichloroethene	5	μg/L	66.1	137	727	249	2.1	3.0	4.0	4.7	199	104	512	215
Vinyl chloride	2	μg/L	423 D	140	264	133	13.5	4.1	5.3	2.6	1.0 U	1.3	4.0 U	4.1
Dissolved Gases														
Ethane		μg/L	9.97	18.1	14.3	10.6	0.46	0.23 U	1.1 J	0.34	0.23 U	0.23 U	0.16 J	0.18
Ethene		μg/L	14.1	13.3	13.5	7.04	0.31 U	0.31 U	1.6 J	0.39	0.31 U	0.31 U	0.31 U	0.31 U
Methane		μg/L	109	191 D	227	102	31.9	0.20	201 D	48.2	0.45	0.22	1.32	0.74
Metals														
Iron	300	μg/L	93.0 J	100 U	405	69.4 J	1,710	1,510	432	2,540	44.6 J	3,660	4,770	1,040
Manganese	300	μg/L	59.6	43.5	189	38.9	375	308	392 J	862	8.8 J	244	205	243
Metals-Filtered														
Iron	300	μg/L	948	100 U	100 U	60.9 J	100 U	100 U	340	582	100 U	100 U	100 U	100 U
Manganese	300	μg/L	495	40.2	46.3	37.4	321	195	532 J	896	6.2 J	28.2	15 U	92.0

Notes

- 1) New York State Department of Environmental Conservation, Division of Water, Technical and Operational Guidance Series (TOGS 1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations for Source of Drinking Water (Class GA).
- 2) Bold/Shading Exceeds applicable TOGS 1.1.1 value.
- 3) Data in this table is validated.
- 4) Abbreviations:
- μg/L micrograms per liter
- NA Not Analyzed/Applicable/Available (Turbidity was not recorded at wells MW-6B, MW-6S, MW-14S during the January 2023 and MW-18S during the July 2023 event due to field equipment error; however, all other parameters had stabilized).
- 5) Monitoring Wells MW-18S (all events) and MW19S (January and July 2023 event) went dry before stabilization of field parameters; therefore, samples were collected following recharge.
- 6) Only volatile organic constituents where concentration exceeds respective TOGS 1.1.1 value are shown.
- 7) Lab Qualifiers:
- B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- D Concentration is based on a diluted sample analysis.
- J Indicates an estimated value.
- U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
- 8) [] duplicate sample analytical results.
- 9) Dissolved Organic Carbon was analyzed for during the March 2022 event and Total Organic Carbon was analyzed for during the January, April, and July 2023 events.

 As both these analyses produce almost identical results (dissolved = sample is filtered), these results are reported together in the same row 'Dissolved/Total Organic Carbon'.

	NYSDEC			
Location ID:	TOGS 1 1 1 H(WS)		CANAL DOWNSTREAM	CANAL UPSTREAM
Date Collected:	(Class C)	Units	7/19/2023	7/19/2023
Volatile Organics				
1,1,1-Trichloroethane	5	μg/L	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	0.2	μg/L	1.0 U	1.0 U
1,1,2-trichloro-1,2,2-trifluoroethane	5	μg/L	5.0 U	5.0 U
1,1,2-Trichloroethane	1	μg/L	1.0 U	1.0 U
1,1-Dichloroethane	5	μg/L	1.0 U	1.0 U
1,1-Dichloroethene	0.7	μg/L	1.0 U	1.0 U
1,2,3-Trichlorobenzene	5	μg/L	1.0 U	1.0 U
1,2,4-Trichlorobenzene	5	μg/L	1.0 U	1.0 U
1,2-Dibromo-3-chloropropane	0.04	μg/L	2.0 U	2.0 U
1,2-Dibromoethane		μg/L	1.0 U	1.0 U
1,2-Dichlorobenzene	3	μg/L	1.0 U	1.0 U
1,2-Dichloroethane	0.6	μg/L	1.0 U	1.0 U
1,2-Dichloropropane	1	μg/L	1.0 U	1.0 U
1,3-Dichlorobenzene	3	μg/L	1.0 U	1.0 U
1,4-Dichlorobenzene	3	μg/L	1.0 U	1.0 U
2-Butanone (MEK)	50	μg/L	10 U	10 U
4-Methyl-2-Pentanone		μg/L	5.0 U	5.0 U
Acetone	50	μg/L	10 U	10 U
Benzene		μg/L	0.50 U	0.50 U
	1 50	μg/L		
Bromochloromethane	50		1.0 U	1.0 U
Bromodichloromethane	50	μg/L μg/L	1.0 U	1.0 U
Bromoform	50		1.0 U	1.0 U
Bromomethane	5	μg/L	2.0 U	2.0 U
Carbon Disulfide		μg/L	2.0 U	2.0 U
Carbon Tetrachloride	0.4	μg/L	1.0 U	1.0 U
CFC-11		μg/L	2.0 U	2.0 U
CFC-12	_	μg/L	2.0 U	2.0 U
Chlorobenzene	5	μg/L	1.0 U	1.0 U
Chlorodibromomethane		μg/L	1.0 U	1.0 U
Chloroethane	5	μg/L	1.0 U	1.0 U
Chloroform	7	μg/L	1.0 U	1.0 U
Chloromethane		μg/L	1.0 U	1.0 U
cis-1,2-Dichloroethene	5	μg/L	1.0 U	1.0 U
cis-1,3-Dichloropropene	0.4	μg/L	1.0 U	1.0 U
Cyclohexane		μg/L	5.0 U	5.0 U
Dichloromethane		μg/L	2.0 U	2.0 U
Ethylbenzene	5	μg/L	1.0 U	1.0 U
Isopropylbenzene	5	μg/L	1.0 U	1.0 U
m&p-Xylenes	5	μg/L	1.0 U	1.0 U
Methyl Acetate		μg/L	5.0 U	5.0 U
Methyl N-Butyl Ketone (2-Hexanone)		μg/L	5.0 U	5.0 U
Methylcyclohexane		μg/L	5.0 U	5.0 U
Methyl-tert-butylether		μg/L	1.0 U	1.0 U
o-Xylene	5	μg/L	1.0 U	1.0 U
Styrene (Monomer)	5	μg/L	1.0 U	1.0 U
Tetrachloroethene	0.7	μg/L	1.0 U	1.0 U
Toluene	5	μg/L	1.0 U	1.0 U
Total Xylenes	5	μg/L	1.0 U	1.0 U
trans-1,2-Dichloroethene	5	μg/L	1.0 U	1.0 U
trans-1,3-Dichloropropene	0.4	μg/L	1.0 U	1.0 U
Trichloroethene	5	μg/L	1.0 U	1.0 U
Vinyl chloride	0.3	μg/L	1.0 U	1.0 U

Table 4

Surface Water Analytical Data
Third Quarter 2023 Groundwater Monitoring Report
Old Erie Canal - Slte #859015
124 Columbia Street
Clyde, New York

Notes:

1) New York State Department of Environmental Conservation, Division of Water, Technical and Operational Guidance Series (TOGS 1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations for Source of Drinking Water H(WS).

2)

- 3) Data in this table is not validated.
- 4) Abbreviations:

H(WS) = Source of Drinking Water (surface water)

μg/L - micrograms per liter

mg/L - milligrams per liter

mS/cm - milli siemens per centimeter

NTU - Nephelometric Turbidity Units

°C - degrees Celsius

NA - Not Analyzed/Applicable/Available (Turbidity was not recorded at wells MW-18S due to field equipment error).

- 5) Monitoring Wells MW-18S and MW19S went dry before stabilization of field parameters; therefore, samples were collected following recharge.
- 6) Only detected Volatile Organics are shown.
- 7) Lab Qualifiers:
- J Indicates an estimated value.
- U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
- UJ The compound was analyzed for but not detected. The associated value is the compound quantitation limit. Indicates an estimated value.

Table 5A Min-Trap AMIBA Results Third Quarter 2023 Groundwater Monitoring Report Old Erie Canal - NYSDEC Site #859015 124 Columbia Street Clyde, New York

Well ID		cid Solub (mg/kg)	le Iron	Strong	Acid Soluk (mg/kg)	ole Iron	Acid Volatile Sulfide	Chromium Extractible Sulfide
	Ferrous Iron	Ferric Iron	Total Iron	Ferrous Iron	Ferric Iron	Total Iron	(mg/kg)	(mg/kg)
MW-4B	22	6	27	40	5	40	9.7	57
MW-6B	25	3.8	29	30	20	50	12	51

Notes:

Table 5A-AMIBA DATA Page 1 of 1

¹⁾ mg/kg - milligrams per kilogram

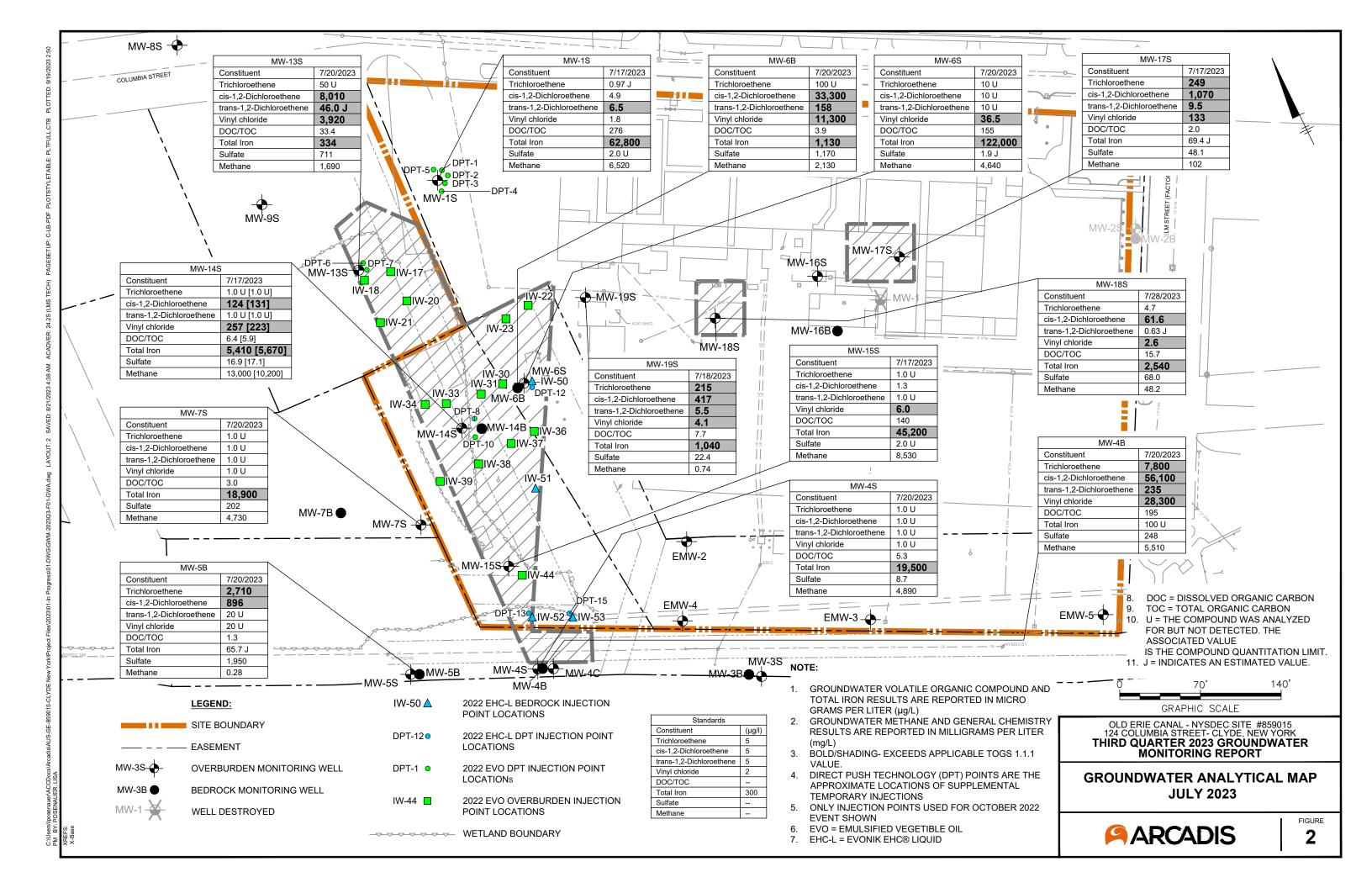
²⁾ AMIBA - Aqueous and Mineralogical Intrinsic Bioremediation Assessment

Table 5B Min-Trap QuantArray-BGC Results Third Quarter 2023 Groundwater Monitoring Report Old Erie Canal - NYSDEC Site #859015 124 Columbia Street Clyde, New York

Microbial Group	MW-4B	MW-6B
	cells/g	cells/g
Total Bacteria	6.55x10 ⁸	6.54x10 ⁸
Total Archaea	3.95x10 ³ (J)	3.27x10 ⁵
Sulfate Reducing Bacteria	1.86x10 ⁶	4.58x10 ⁷
Sulfate Reducing Archaea	<1.00x10 ⁴	<1.00x10 ⁴
Iron Reducing Archaea	<1.00x10 ⁴	<1.00x10 ⁴
Iron Reducing Bacteria - Other	<1.00x10 ⁴	4.20x10 ⁴
Iron Reducing Geobacter	2.65x10 ⁶	1.84x10 ³ (J)
Iron Reducing Shewanella	<1.00x10 ⁴	<1.00x10 ⁴
Iron Oxidizing Bacteria	6.20x10 ⁴	5.07x10 ³ (J)
Manganese Oxidizing Bacteria	8.08x10 ³ (J)	<1.00x10 ⁴
Sulfur Oxidizing Bacteria	1.41x10 ⁵	2.43x10 ⁵
Ammonia Oxidizing Bacteria	<1.00x10 ⁴	<1.00x10 ⁴
Ammonia Oxidizing Archaea	1.11x10 ³ (J)	<1.00x10 ⁴
Nitrite Oxidizing Bacteria	<1.00x10 ⁴	<1.00x10 ⁴
Anaerobic Ammonia Oxidizers AMXNIRK)	<1.00x10 ⁴	<1.00x10 ⁴
Anaerobic Ammonia Oxidizers AMXNIRS)	<1.00x10 ⁴	<1.00x10 ⁴
Nitrogen Fixering Bacteria	<1.00x10 ⁴	3.70x10 ⁵
Denitrifying Bacteria (nirK)	<1.00x10 ⁴	<1.00x10 ⁴
Denitrifying Bacteria (nirS)	<1.00x10 ⁴	<1.00x10 ⁴
Denitrifying Archaea (ANIRK)	<1.00x10 ⁴	<1.00x10 ⁴
Denitrifying Archaea (ANIRS)	<1.00x10 ⁴	<1.00x10 ⁴
Methanogens	2.78x10 ³ (J)	4.02x10 ⁴
Fermenters	9.35x10 ⁷	1.90x10 ⁷
Acetogens	<1.00x10 ⁴	<1.00x10 ⁴
Acetylene Degraders	<1.00x10 ⁴	<1.00x10 ⁴

Notes:

1) cells/g - cells per gram


2) J - Estimated gene copies below PCL but above LQL

3) < - Result not detected

Table 5B-QuantArray Data Page 1 of 1

Figures

--- PLOTSTYLETABLE: PLTFULL.CTB PLOTTED: 5/25/2023 7:02

Attachment 1

Groundwater Sampling Logs

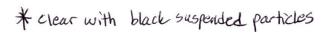
CUND	MATE	R SAMF	PLING LOG								Page /		
GROUND	VALL					0 9 00 1	15			Date	7/17/	2023	0-6
	3014704			-	Well ID	MW-	13			Weather	Partly	cloudy,	85
Project Name/	ocation	Old Erie (Canal Site / Clyde	, NY						Well Mate	rial	SS	
Measuring Pt.			Screen	4.0	- 7.3	Casing Diameter (in		_					
Description	TO	C	Setting (ft-bmp)	2.3	- 1.3		-1	//	.64				
				,	10	Water Colun Gallons in W	/ell 3.9	7/0	0.09_				
Static Water Level (ft-bmp)	1	82_	Total Depth (ft-bm	np) 6.	79_	Purge Metho	a Low Fl	ow		Sample Method	Peri Pump		
Level (II-omp)			Pump Intake (ft-b	mp) ~	5.0	Purge Metric	Centrifuga	al		Metriod			
MP Elevation	Ν,						Submersit	Peri Pun	р				
Pump On/Off	1235/	1415	Volumes Purged	,			Other			Sampled	by Ka	CF	
			Duplicate Y /	0						Sampled	9		
Label Time:	135		MS/MSD Y /							T Redox	Appea	rance	
Start Filling. End Filling:	135	0	QA/QC Code:		NA	Conductivity	Turbidity	Dissolved	Temp	Kedox		Odor	
	Minutes	Rate	Depth to Water	Gallons	рН	Conductivity		Oxygen (mg/L)	(°C)	(mV)	Color		
Time	Elapsed		(ft. bmp)	Purged		(mS/cm)	(NTU)	(mg/L)	20.5	-82.5	5450	Slight	
		(mL/min)	4.43	1.0	6.76	3.434		-	20.4	-85.8	sediment		
1255	20	130			6.75	3.474		1.02	20.4	- 85.1	clear	11	
1300	25	130	4,58		6.76	3.789		1.12		- 86.0	1/	11	
1305	30	130	4.64	170	6.70	4.056	_	1.28	20.6	- 87.7	11	/1	
1310	35	130	4.68	1.70	6.77	4.267	_	1.65	20-1	-89.1	11	11	
1315	40	130	4.92	- ^		4.618		1.67	20.3		11	11	
1320	45	130	5.08	2.0	Charles and the second	4.817		1.76	20.2	- 88. [11	11	
1325	50	130	5.08		6.77	4.808		1.83	20.3	-93.2	11	11	
1330	60	130	5.08		6.80	4.887	38.6	1.95	20.3	-93.9	11	(1	
1335	45	130	5.08		6.79	4.940	39.0	1.89	20.4	-92.8		//	
1340	70	130	5.08	3.0	6.77	4.931	41.3	1.80	20.3	-92.4	//		
1345	75	130	5.08		6.76	7.751	71.0					-	
1350	80	130	SAMPL	E-									
175-									1100 1100				
					Container		Min Vol.		Number		Preservati HCL	Ve	
Constituents :					3 x 40 ml g		full			-	HCL		
V8260TCL20 - V VRSK175DGME	/OCs	olved Gasse	es		3 x 40 ml g		full	-	3_	-	HNO3		
TOT MET [Fe, I	00000000000000000000000000000000000000				1 x 500 ml		150 ml	-		-	None		
SO4 - Sulfate					1 x 250 ml	HDPE	250 ml 200 ml/bott	- tle	2		NaOH + Zr	AC	
Sulfide					1 x 500 ml		150 ml		1		HNO3		
DISS MET [FF]	Fe, Mn]				1 x 60 ml g		full			-	HCL		
TOC								-					
								-		-			
		- War						-		-			
												10000000	
	1" = 0.04		5" = 0.09 = 0.16	2.5" = 0.26 3" = 0.37		5° = 0.50 ° = 0.65	6° = 1.47			i			
	1.25" = 0.0	0 2	- 0.10							FF	= Field I		
Well Information		-	` 0				Well	Locked a	Arrival:	Yes	1	N	
Well Loca		Grave	el Parki	ng a	nea		-	ked at De		Yes	1	No	
Condition of		Fair		Ctials	Un			Number		14	7		
Well Compl	etion:		ush Mount /	Stick	ОР								

* Turbidity meter not working; took 3 consecutive readings at the end to verify stabilization (field staff switching off using the one meter that works)

GROUNDWATER SAMPLING LOG

											Page _	of
Project No	3014704	1 00004		_	WellID	MW-	15	_		Date	7/20/	2023
Project Name	Location	Old Erie	Canal Site / Clyde	e, NY						Weather	Sunn	V. 75
Measuring Pt			Screen			Casing				Well Mate		PVC
Description	_TO	C	Setting (ft-bmp)	10.3	3 - 20.3	Diameter (in)	7				_	ss
Static Water			, ,	10.	20.5	Maria a mai on		- ,				
Level (ft-bmp)	4	.49	Total Depth (ft-br	mp) 16	1.54	Water Colum Gallons in W	ell 15.	05/	2.45			
MP Elevation					` `	Purge Metho		Sample				
			Pump Intake (ft-	pub)	15.	Purge Metho	Centrifuga	Method	Peri Pump	0		
Pump On/Off	1000/	1105	Volumes Purgeo		0		Submersit	Peri Pum				
Label Time:	105	50	Duplicate Y	10			Other	Perirun	·P			_
Start Filling:	105		MS/MSD Y	~						Sampled	by KC	F
End Filling:	_110		QA/QC Code:	0	NA		_					
Time	Minutes	Rate	Depth to Water	Gallons	рН	Conductivity	Turbidity	Dissolved	Temp	Redox	Appe	arance
	Elapsed	1	(0 5)	Purged		(0()	(NTU)	Oxygen (mg/L)	(°C)	(mV)	Color	Odor
1010	10	(mL/min)	(ft. bmp)	0.5	1.00	(mS/cm)	3.02	0.59	14.1	0.9	Clear	none
	_	150	4.67	0.5	6.90	3.954		0.19	14.1	- 28.0	11	11
1015	15	150	4.67	+	6.93	3.931	2.78			-33.2	11	11
1020	20	150	4.67	1.00	6.95	3.919	2.65	0.09	13.8		11	11
1025	25	150	4.67	1.30	6.96	3.882	2.45	0.04	13.8	-7.0	11	11
1030	30	150	4.67	-	6.94	3.841	2.32	0.01	13.6			-
1035	35	150	4.67		6.95	3.822	3.32	0.00	13.8	-6.4	11	11
1040	40	150	4.67	-	6.95	3.785	4.16	0.00	13.7	-6.2	11	11
1045	45	150	4.67	2.70	6.94	3,772	1.94	0.00	13.7	0.2	11	11
1050	50	SA	MPLE -	+								
												-
												-
												-
												-
									Number		Preservat	ive
Constituents	- 50	d			3 x 40 ml g		Min Vol. full		3		HCL	
V8260TCL20 VRSK175DGM		olved Gas	ses	_	3 x 40 ml g		full	-	3	_	HCL	
TOT MET [Fe					1 x 500 ml	HDPE	150 ml	_	1	_	HNO3	
SO4 - Sulfate					1 x 250 m		250 ml	-		-	None NaOH + Z	nAc
Sulfide				_	2 x 250 m		200 ml/bot	tle		-	HNO3	IIAC
DISS MET [FF] [Fe, Mn]			_	1 x 500 m		full	-	-	-	HCL	0.73000
TOC				_	1 x 60 ml	giass	Tun	-		-		
				_				-		_		
				_				-		-		
				-								
Gallons/Foot	1" = 0.04		1.5" = 0.09	2.5" = 0.26	5 3	3.5" = 0.50	6" = 1.47					
	1.25" = 0.0		2" = 0.16	3" = 0.37		" = 0.65						□:I4 '
Well Inform	ation					_				FF	= Field	
Well Loc	cation:	Boo	K grass	area			Well	Locked a	t Arrival: _	Yes		NO
Condition		Fai	, ,				-	cked at De	_	Yes	/	6
Well Com	pletion:	1	Flush Mount	Stick	Up		Key	Number	To Well:	NA		
	Well Completion: Flush Mount /											

GROUNDWATER SAMPLING LOG


Well Comp	Well Completion: Flush Mount				Up			Number ⁻	_	NA		
		Fair	grass o	rea				Locked at De	_	Yes Yes	1	(A)
Well Informa			' = 0.16	3" = 0.37	4	* = 0.65	Mall	l sakad at	A	2000	= Field	Filtered
Gallons/Foot	1" = 0.04 1.25" = 0.00		5" = 0.09 ' = 0.16	2.5" = 0.26		.5" = 0.50	6" = 1.47					
										- ,		
roc	[. U, Will]				1 x 60 ml g		full		1	-	HCL	
DISS MET [FF]	[Fe. Mn]				2 x 250 m		200 ml/bott	ile		-	NaOH + Z HNO3	LIIAC
SO4 - Sulfate Sulfide					1 x 250 ml		250 ml			-	None	70.00
TOT MET [Fe,	Mn]				1 x 500 ml		150 ml		1	_	HNO3	
VRSK175DGM		olved Gass	es		3 x 40 ml g		full		3	_	HCL	
V8260TCL20 -		5a 500000			3 x 40 ml g	lass	full		_3	_	HCL	
Constituents	Sampled				Container		Min Vol.		Number		Preserva	tive
1225	55		PUE -									->
1220	50	150	6.42		6.40	3:722	14.7	0.07	13.1	-345.7	11	11
1215	45	150	6.42		6.42	3,705	14.2	0.09	13.2	-346.5	//	11
1210	40	150	6.42		6.45	3.710	14.6	0.16	13.1	- 346.4	//	11
1205	35	150	6.42		6.47	3.717	6.22	0.22	12.9	-340.8	11	11
1200	30	150	6.21		6.50	3.711	6.52	0.32	13.1	•329.6	11	11
1155	25	150	6.21		6.49	3,703	6.97	0.92	13.3	- 314.6	"	"
tello 1150	20	150	6.21	1.0	6.46	3.731	7.11	8.94	13.1	-301.2	clear	strono
		(mL/min)	(ft bmp)	Purged		(mS/cm)	(NTU)	(mg/L)	(°C)	(mV)	Color	Odor
Time	Minutes Elapsed	Rate	Depth to Water	Gallons	pН	Conductivity	Turbidity	Dissolved Oxygen	Temp.	Redox	Appe	earance
End Filling:	_12:	35	QA/QC Code:		MA		-					
Start Filling:	12		Duplicate Y / MS/MSD Y /	ð						Sampled I	by KC	F
Label Time:	127	15	Duplicate Y /				Other	Peri Pum	р			
Pump On/Off	1130/	1240	Volumes Purged	3	3.5		Submersib	ole				
MP Elevation	N		Pump Intake (ft-br	np) ~ 3	3.9	Purge Metho	Centrifuga	ow		Sample Method	Peri Pum	ıp
Level (ft-bmp)	5.	07	Total Depth (ft-bm		.75	Gallons in W	ell 33.68		48			
Static Water			Setting (N-Ship)	20.1	30.1	Water Colum		-			-	_
Measuring Pt. Description	To		Screen Setting (ft-bmp)	200	38.9	Casing Diameter (in)	7			Well Mate	rial X	PVC SS
Mos-	Location	Old Erie	Canal Site / Clyde,	NY						Weather		ny, 80
				•	VVEII ID	_MW-	10	-			,	,
Project No.	3014704	11 00004			Well ID	_MW-	42			Date		20/202
											Page /	of /

GROUND	WATE	R SAMI	PLING LOG								Page /	of /
Project No.	3014704	1 00004			Well ID	MW - 5	5R			Date	7/20	12023
Project Name	Location	Old Erie	Canal Site / Clyde,	NY	200 200		10	-		Weather	Sune	N 850
Measuring Pt. Description			Screen Setting (ft-bmp)		-39.3	Casing Diameter (in)		Well Mate	rial X	PVC SS		
Static Water Level (ft-bmp)	5.		Total Depth (ft-bm)		3.91_	Water Colum Gallons in W	n/	/ 5.	44			
MP Elevation	N	A	Pump Intake (ft-br	mp) ~ 1	30	Purge Metho				Sample		
Pump On/Off	1340	1440	Volumes Purged	2	5		Centrifuga Submersib			Method	Peri Pum	<u>p</u>
Label Time: Start Filling: End Filling:		25 25	Duplicate Y / MS/MSD Y /		۸۱۸.		Other	Peri Pum	p	Sampled I	by KC	F
Time	Minutes	Rate	QA/QC Code: Depth to Water	Gallons	NA	Conductivity	Turbidity	Dissolved	Temp.	Redox	Λορο	earance
	Elapsed	(mL/min)	(ft. bmp)	Purged	pi i		(NTU)	Oxygen (mg/L)	(°C)	(mV)	Color	Odor
1350	10	145	7.90	0.5	7.32	(mS/cm) 3.053	4.98	8.66	14.2	-23.9	clear	none
1355	15	145	10.11		7.32	3,050	2.02	1.49	13.7	-55.2	H	11
1400	20	145	11.75		7.31	3.053	2.22	1.85	13.7	-55.0	11	11
1405	25	145	12.82		7.29	3.050	2.15	1.82	14.0	-51.9	H	11
1410	30	145	14.05	1.5	7.29	3,041	2.04	1.81	14.3	-49.6)i	11
1415	35	145	15.35		7.24	3.036	2.02	1.87	14.3	-43.3	li .	11
1420	40	145	16.29	_	7.21	3.035	1-87	1.83	14.4	-40.2		
1425	45	145	SAMPL	F —								-
V8260TCL20 - VRSK175DGMI TOT MET [Fe, I SO4 - Sulfate Sulfide	VOCs EE - Disso Mn]		es		Container 3 x 40 ml g 3 x 40 ml g 1 x 500 ml 1 x 250 ml 2 x 250 m	lass lass HDPE I HDPE I HDPE	Min Vol. full full 150 ml 250 ml 200 ml/bott		Number 3 3 1	-	HCL HCL HNO3 None NaOH + Z	
DISS MET [FF] TOC	[Fe, Mn]		200		1 x 500 ml		150 ml			-	HNO3 HCL	
					1 x 60 ml g	giass	full			-	HUL	
										-		
										-		
Gallons/Foot	1" = 0.04 1.25" = 0.06		.5" = 0.09 " = 0.16	2.5" = 0.26 3" = 0.37		5" = 0 50 " = 0 65	6" = 1.47				= Field	Filtered
Well Loca		2	V 0.000	01			Well	Locked at	Arrival:	Yes	/	No
Condition		Bac		arco				ked at De	_	Yes		(80)
Well Comp		_	lush Mount /	Stick	Up			Number 7		NA		

GROUND	NATER	RSAME	LING LOG								Page	of 1
Project No.	3014704	1 00004			Well ID	MW-Q	B			Date	7/21	0/2023
Project Name/l	ocation	Old Erie (Canal Site / Clyde,	NY						Weather	80°1	F, Sun
Measuring Pt. Description	To	C	Screen Setting (ft-bmp)	29.4	-39.H	Casing Diameter (in)	2"			Well Mate	rialX	_PVC _SS
Static Water Level (ft-bmp)	6.3	7	Total Depth (ft-bmg	39.	18'_	Water Colum Gallons in W	n/ ell 3 2,5	31/5.	25 ga	1		
MP Elevation		NA	Pump Intake (ft-bm	np)~37	z \	Purge Metho	d: Low Flo	ow		Sample	Peri Pump	
Pump On/Off	1150	11352	Volumes Purged	3.5			Centrifuga Submersib Other		p	Method	<u>renram</u>	
Label Time: Start Filling: End Filling:	1330 133 1350	O	Duplicate Y / MS/MSD Y / QA/QC Code:	<u> </u>	NA					Sampled b	by BK	iw_
Time	Minutes	Rate	Depth to Water	Gallons	pН	Conductivity	Turbidity	Dissolved	Temp.	Redox	Appe	arance
	Elapsed	(mL/min)	(ft. bmp)	Purged		(mS/cm)	(NTU)	Oxygen (mg/L)	(°C)	(mV)	Color	Odor
1150	Pum	PON	6.37	_							1	sught
1200	10	170	6.91		7.21	15.16	107	0.35	20.8	-290.5	_*_	Slight
1205	15	170	6.91	1.0	7.24	14.78	54.4	8000	20.7	-329.7	-	
1210	20	170	6.95		7.23	13.76	37.1	0.05	19.3	-329.3	$-\!$	
1215	25	190	7.00		7.12	10.12	30.5	0.01	20.9	-340.1	-	
1220	30	170	6.91		7.10	8.44	28.0	0.02	20,7	-3427	-	
1225	35	170	6.91	1.25	7.15	7.62	18.3	0.03	21.0	-343.9	Va	
1230	40	170	6.93	1020	7.12	6.54	16.4	0.06	20.7	-339.6	clear	
1235	45	170	6.99	1.5	7.07	5.28	13.8	0.08	20.8	-333.9		
1240	50	150	6.92	100	7.04	4.96	13.5	0.08	21.1	-330.8		\vdash
1245	55	150	6.92		7.05	4.78	18.3	0.08	20.8	-329.0		
1250	60	150	6.92	2.0	7.01	4.57	50.4	0.05	21-1	-327.5		
1255	65	150	6.92	~~~	7,00	4,47	77.8	0.03	20,7	-3270		
1300	70	150	6.92		7.02	4.41	61.1	0.02	21.0	-327.1		
1305	75	150	6.94	2.5	6.99	3.63	49.6	0.00	21.1	-3256		
1310	80	150	6.94	2.0)	7.00	3,49	42.3	0.00	20.6	-325.1		
•									North		Preservat	rive
Constituents : /8260TCL20 - \					Container		Min Vol.		Number 3		HCL	
/RSK175DGME		olved Gass	es		3 x 40 ml g		full	-	3	-	HCL	
TOT MET [Fe, I	vin]				1 x 500 ml	and a state of the	150 ml	_	1	_	HNO3	
SO4 - Sulfate					1 x 250 m	at a way a said and	250 ml	-	1	-	None	2242
Sulfide					2 x 250 m	10 10 10	200 ml/bo	ttle	-7-	-	NaOH + Z HNO3	nac
DISS MET [FF]	[Fe, Mn]				1 x 500 m	100	150 ml full	-		_	HCL	
100	_			•	7 8 00 1111	3.200		_		_		
										_		
				-		•		-		-		
Gallons/Foot Well Informa	1" = 0.04 1.25" = 0.0		.5" = 0.09 " = 0.16	2.5" = 0.26 3" = 0.37		3.5° = 0.50 1° = 0.65	6° = 1.47			FF	= Field	Filtered
Well Loca	1000	Dave	unu				Wel	Locked a	t Arrival:	Yes	1	No
Condition		good	,				Well Lo	cked at De	eparture:	Yes	1	M
Well Comp			lush Mount) /	Stick	Up		Ke	y Number	To Well:	n/a		

GROUND	WATE	R SAMI	PLING LOG								Page 2	of 2
Project No.	3014704	1.00004			Well ID	mw-	6B	_		Date	7/20	1023
Project Name/	Location	Old Erie	Canal Site / Clyde,	NY						Weather		
Measuring Pt Description			Screen Setting (ft-bmp)			Casing Diameter (in.)		/		Well Mate	rial	_PVC _SS
Static Water Level (ft-bmp)			Total Depth (ft-bm	p)		Water Colum Gallons in W	in/	-				
MP Elevation			Pump Intake (ft-br			Purge Metho	d: Low Flo	ow		Sample	Davi Duma	
Pump On/Off			Volumes Purged	_			Submersib			Method	Peri Pump	
Label Time: Start Filling: End Filling:			Duplicate Y / MS/MSD Y / QA/QC Code:		Se	e Page		renrun	.p	Sampled b	ру	
Time	Minutes Elapsed	Rate	Depth to Water	Gallons Purged	pН	Conductivity	Turbidity	Dissolved Oxygen	Temp	Redox	Appea	rance
	<u> </u>	(mL/min)	(ft bmp)			(mS/cm)	(NTU)	(mg/L)	(°C)	(mV)	Color	Odor
1315	85	150	6.94	3.0	7.01	3.47	35.8	0.00	20,8	-324.3	clear	sight
1320	90	150	6.96		7.02	3.46	32.6		20.8	-323.7	1	
13 25	95	150	6.96	3,25	7.00	3.45	32.8	0.00	21.3	-322.2	V	V
1330	sa	MPLE	D -									
		`.										
Constituents S					Container		Min Vol.		Number		Preservati	ve
V8260TCL20 - \	/OCs	lund Coope			3 x 40 ml gl 3 x 40 ml gl		full full				HCL	
VRSK175DGME TOT MET [Fe, M		olved Gasse	25	1	1 x 500 ml		150 ml				HNO3	_
SO4 - Sulfate	/mu				1 x 250 ml		250 ml				None /	
Sulfide					2 x 250 ml	000000000000000000000000000000000000000	200 ml/bott	le			NaOH + Zr	nAc
DISS MET [FF] [Fe, Mn]				1 x 500 ml	HDPE	150 ml				ANO3	
OC					1 x 60 ml g	lass	full			. / .	HCL	
	-		$\overline{}$						_/			
					-				_			
	1" = 0.04 1.25" = 0.06			2.5" = 0.26 3" = 0.37		0.50	6" = 1.47					
Well Informat										FF	= Field F	Filtered
Well Locat							Well	Locked at	Arrival:	Yes	1	No
Condition of	-							Red at De	_	Yes	1	No
Well Comple	_	FI	ush Mount /	Stick	Up			Number				
								2 Pac				

GROUNDWATER SAMPLING LOG mW-6S Project No. Well ID Date 30147041.00004 30°F, Sun Project Name/Location Old Erie Canal Site / Clyde, NY Weather X PVC Measuring Pt. Well Material Screen Casing Description TOC SS Diameter (in) Setting (ft-bmp) Static Water Water Column/ Gallons in Well 10.09 Level (ft-bmp) Total Depth (ft-bmp) 14 Purge Method: Low Flow MP Elevation Sample Pump Intake (ft-bmp) ~ Centrifugal Method Peri Pump Pump On/Off 0910/1059 Volumes Purged Submersible Other Peri Pump Label Time: Y/Q 1035 Duplicate Sampled by BKW Start Filling: MS/MSD 1035 NA End Filling: QA/QC Code: 1059 Time Conductivity Turbidity Dissolved Redox Depth to Water Minutes Rate Gallons Appearance Oxygen Elapsed Purged Color (NTU) (°C) (mV) (ft. bmp) (mS/cm) (mg/L) 0910 Pum 4.15 POA 0.23 0920 130 5.09 6:35 5.81 41.2 21.3 -111.6 hone 10 0.5 40.3 2107 5.47 132.0 6.35 5.89 0.1/0 0925 15 130 0.02 21.8 5.90 46.6 0930 20 130 5.75 6:39 21.9 0.75 6.41 6.02 56.6 0.00 0935 25 130 5.91 -144.6 douder slight 2108 76.4 6.24 0.00 0940 30 6010 6.42 130 64.2 21.5 -141.0 10.28 6.36 0,00 0945 35 6.42 130 68.4 0.00 21.6 6.45 6.46 40 0950 130 6.55 6.63 65.0 -131-9 6.42 21.6 0955 45 0,00 130 1.5 21.3 6.72 6.45 6.72 72.1 0.00 -131.0 1000 50 130 6.30 6.75 62.2 000 6.49 21.7 -12900 1005 55 130 6.93 6.50 7.04 21.6 12.0 126.9 130 0.00 60 1010 21.8 0.00 -125.9 65 130 2.0 6.50 7.04 56.4 1015 7.03 48.9 -124.2 7.11 6.49 21.6 70 130 1020 122,0 21.6 6.50 47.8 0.00 6.99 1025 75 130 7.24 2.5 6.49 21.6 -122.9 7.33 6.97 49.4 130 0.00 1030 80 1035 sampled Min Vol. Number Preservative Constituents Sampled Container HCL 3 x 40 ml glass full V8260TCL20 - VOCs HCL 3 x 40 ml glass full VRSK175DGMEE - Dissolved Gasses HNO3 1 x 500 ml HDPE 150 ml TOT MET [Fe, Mn] 1 x 250 ml HDPE 250 ml None SO4 - Sulfate NaOH + ZnAc 2 x 250 ml HDPE 200 ml/bottle Sulfide HNO3 1 x 500 ml HDPE 150 ml DISS MET [FF] [Fe, Mn] HCL 1 x 60 ml glass full TOC 3.5" = 0.50 1" = 0.04 1.5" = 0.09 2.5° = 0.26 6" = 1.47 Gallons/Foot 1.25" = 0.06 2" = 0.16 3" = 0.37 4" = 0.65FF = Field Filtered Well Information Well Locked at Arrival: Yes No Well Location: Driveway No Yes 000 Well Locked at Departure: Condition of Well: Flush Mount Stick Up Key Number To Well: Well Completion:

GROUNDWATER SAMPLING LOG Project No. MW-75 30147041.00004 Well ID Project Name/Location Old Erie Canal Site / Clyde, NY Weather Su Measuring Pt Well Material Casing Description SS TOC ,5-16.5 Diameter (in) Setting (ft-bmp) Static Water Water Column/ Gallons in Well 9.54 1.55 18.06 Level (ft-bmp) Total Depth (ft-bmp) Purge Method: Low Flow MP Elevation Sample Pump Intake (ft-bmp) Centrifugal Method Peri Pump Pump On/Off 0790 0946 Submersible Volumes Purged 3.5 Other Peri Pump Label Time: 0835 Duplicate Y / 🐿 KCF Sampled by Start Filling MS/MSD Ø/ N 0835 End Filling: QA/QC Code: 0935 MS + MSd Redox Time Temp Turbidity Dissolved Minutes Rate Depth to Water Gallons Conductivity Appearance Oxygen Elapsed Purged Color Odor (°C) (mV) (NTU) (mL/min) (ft. bmp) (mg/L) (mS/cm) 0.1 none 20 clear 0800 150 8.54 6.87 1.765 3,05 1.52 2.78 0.49 12.9 " 0805 25 150 8.54 6.86 1,758 -0.4 11 11 30 0810 6.86 1.747 2.02 0.24 150 8.54 11 0.15 12.0 -6.4 0815 35 150 8.54 6.87 1.745 1.98 11 1.742 11 11 0820 8.54 1.93 0.09 11.9 40 6.87 150 11 11 8.54 1.92 3.6 0825 45 11.8 150 6.87 1.739 0.04 0830 150 8.54 11.8 4.5 11 11 50 6.87 1.732 1.90 0.02 -0835 55 SAMPLE -**Constituents Sampled** Container Min Vol. Number Preservative HCL V8260TCL20 - VOCs 3 x 40 ml glass full 3 x 40 ml glass HCL VRSK175DGMEE - Dissolved Gasses full HNO3 1 x 500 ml HDPE 150 ml TOT MET [Fe, Mn] None SO4 - Sulfate 1 x 250 ml HDPE 250 ml NaOH + ZnAc Sulfide 2 x 250 ml HDPE 200 ml/bottle HNO3 DISS MET [FF] [Fe, Mn] 1 x 500 ml HDPE 150 ml HCL TOC 1 x 60 ml glass full

1" = 0.04 1.5° = 0.09 2.5" = 0.26 3.5" = 0.50 6" = 1.47 Gallons/Foot 1.25" = 0.06 2" = 0.16 3" = 0.374" = 0.65 FF = Field Filtered **Well Information** Well Location: Grass area Well Locked at Arrival: No Condition of Well: Well Locked at Departure: Well Completion: Flush Mount Stick Up Key Number To Well: American key lock

27676

GROUNDWATER SAMPLING LOG

											Page _	of
Project No.	301470	41.00004			Well ID	mw-	135			Date	7/20	123
Project Name	/Location	Old Erie	Canal Site / Clyde	e. NY				_		Weather	Sun	700 F
Measuring Pt			Screen			Casing				Well Mate	erial)	/ PVC
Description	TO	C	Setting (ft-bmp)	16.4-	21.41	Diameter (in	, 2"	_				ss
Static Water		,				Water Colu	mn/	~ /				
Level (ft-bmp)	2.9	26	Total Depth (ft-br	np) 18	.63	Gallons in V	Vell 15.6	57/	2.51a	sal		
MP Elevation	_	NA	Pump Intake (fi-t	omp) N	6.5	Purge Meth	Sample	Prosecute and Account to				
Pump On/Off	0740/	0848	Volumes Purgeo	1.	75 gal		Centrifuga Submersi	ble		Method	Peri Pum	D
Label Time:	082	5	Duplicate Y		•		Other	Peri Pun	тр			
Start Filling:	08		MS/MSD Y /	(1)	.10					Sampled	by BK	$\omega_{}$
End Filling:	08	48	QA/QC Code:		NA		_					
Time	Minutes Elapsed	190000000000000000000000000000000000000	Depth to Water	Gallons Purged	9	Conductivity	Turbidity	Dissolved Oxygen	Temp	Redox	Appe	arance
	Liapsed	(mL/min)	(ft. bmp)	, urgeu		(mS/cm)	(NTU)	(mg/L)	(°C)	(mV)	Color	Odor
0740	Pamo	on	2.96	_								
0750	10	130	3.33		6.85	1.91	44.9	0.31	14.8	-267,4	none	slight
0755	15	130	3.30	0.5	7.06	1.91	12.9	0.03	14.2	-3385	-	1
0800	20	150	3,30		7.18	1.95	11.3	0.00	14.2	-343.3		\Box
0805	25	150	3.31	0.75	1	1.93	8.59	0.00	14.2	-338.4		\vdash
0810	30	150	3.31		7.18	1094	1.46	0.00	14.4	-3340		\vdash
0815	35	150	3,32	100	7.16	1.91	4.89	0,00	14.3	-332.5		
0820	40	150	3,32		7014	1.91	2.20	0.00	14.6	-33100	2	1
0825	45	_sa	MPLED								•	V
											-	
	-											
Constituents S	Sampled				Container		Min Vol.		Number		Preservat	ive
V8260TCL20 - V		wed Cassa			3 x 40 ml gla		full		3		HCL	
VRSK175DGME TOT MET [Fe, M		ved Gasse	5	-	3 x 40 ml gla 1 x 500 ml l		150 ml	1.			HNO3	
SO4 - Sulfate	,			_	1 x 250 ml		250 ml		1		None	
Sulfide					2 x 250 ml		200 ml/bottl	е	2		NaOH + Zr	nAc
DISS MET [FF] [F	Fe, Mn]			-	1 x 500 ml		150 ml		-\-		HNO3	
TOC				-	1 x 60 ml gla	ass	full		- 1		HCL	
				-	-							
				-								
_												
	" = 0.04			2.5" = 0.26			6" = 1.47					
	.25" = 0.06	2" =	0.16	8" = 0.37	4" =	: 0.65					- Ciald	Ciltorod
Well Information			1	1			144 ***			_	= Field	
Well Location		vetla	nd area					ocked at	_	Yes	1	No
Condition of \	_	Good	ah Mariet / /	Stick L	la)		Well Lock			Yes	1	No
Well Comple	tion:	Flu	sh Mount / (Stick			Key	number I	o well: a	lmen'co	UT THE	4016

Key Number To Well: american #27676

GROUNDWATER SAMPLING LOG MW-145 Project No. 30147041.00004 Well ID Project Name/Location Old Erie Canal Site / Clyde, NY Weather X PVC Measuring Pt Well Material 2" Casing Screen SS Description 1604-21.4 TOC Diameter (in) Setting (ft-bmp) Static Water Water Column/ 3.38 3.28 gal Gallons in Well 20.5 Level (ft-bmp) 2.88 Total Depth (ft-bmp) Purge Method: Low Flow Sample MP Elevation Pump Intake (ft-bmp) Centrifugal Method Peri Pump Pump On/Off Submersible Volumes Purged Other Peri Pump 1520 Label Time: Duplicate Sampled by BKW Start Filling: 1520 MS/MSD DUP-20230717 End Filling: QA/QC Code: 1612 Redox Time Minutes Depth to Water Conductivity Turbidity Dissolved Rate Gallons Appearance Purged Elapsed Oxygen (mV) Color Odor (mS/cm) (NTU) (mg/L) (°C) (ft. bmp) (mL/min) Pump 2.88 1420 on -12.2 20.2 0017 1425 5 3.29 6.97 2.8 7.72 CIPAL 150 3.29 6.90 2.59 6.52 19.8 -66.5 1430 0.07 10 150 19.7 1435 15 0.5 6.90 4.98 0.04 60.5 150 3.30 2.68 18.8 1440 2.59 5.85 0.05 -67.1 20 200 6.90 3.40 56.7 1445 15 1.0 6.88 2.49 6.73 18.6 200 0.02 3.44 56.7 1450 30 3.38 6.91 2.5 5.76 19.4 175 0.10 0.08 53.9 1455 35 175 3.38 1.25 6.89 2.51 5.99 19.1 105 6.83 2.47 5.73 19.3 1500 40 3.38 0011 -54.8 175 18.9 1.75 2.42 4.16 -53,2 6.87 3,38 0.27 1505 45 175 2.0 6.85 2.41 4,20 19.1 -54.9 50 175 3,38 0.25 1510 2.25 6.85 2.41 -53.9 1515 175 3.38 4.41 0.22 1901 55 SAMPLED 1520 Constituents Sampled Min Vol Container Number Preservative Dup V8260TCL20 - VOCs 3 x 40 ml glass full HCL full ž HCL VRSK175DGMEE - Dissolved Gasses 3 x 40 ml glass 150 ml HNO3 1 x 500 ml HDPE TOT MET [Fe, Mn] None 1 x 250 ml HDPE 250 ml SO4 - Sulfate NaOH + ZnAc 2 x 250 ml HDPE 200 ml/bottle Sulfide HNO3 DISS MET [FF] [Fe, Mn] 1 x 500 ml HDPE 150 ml HCL 1 x 60 ml glass full TOC 2 5" = 0 26 3.5" = 0.50 6" = 1.47 Gallons/Foot 1'' = 0.041.5" = 0.09 4" = 0.65 1.25" = 0.06 2" = 0.16 3" = 0.37FF = Field Filtered **Well Information** Yes Well Locked at Arrival: No Well Location: Wetland Well Locked at Departure: Xes Condition of Well: No

Stick Up

Flush Mount

Well Completion:

GROUNDWATER SAMPLING LOG

											Page /	_ of	
Project No.	301470	41.00004		_	WellID	MW-	155	_		Date	7/17	12023	
Project Name	/Location	Old Erie	Canal Site / Clyde	, NY						Weather	Partly	dondy	, 85
Measuring Pt.			Screen			Casing	-			Well Mate	rial X	_PVC	
Description	7	OC_	Setting (ft-bmp)	7.7	-12.7	Diameter (in)	1000	-			-	_SS	
Static Water Level (ft-bmp)	1.	59	Total Depth (ft-brr	np) 14	. 43	Water Colum Gallons in W	ell /2.8	4/2	.09				
MP Elevation	N	A	Pump Intake (ft-b		10'	Purge Metho	d: Low FI	ow		Sample			
Pump On/Off					.0		Centrifuga Submersit			Method	Peri Pum	0	
							Other	Peri Pum	ip				
Label Time: Start Filling:		55 55	Duplicate Y / MS/MSD Y /	8						Sampled	by K	CF	
End Filling:	160		QA/QC Code:		NA		-						
Time	Minutes Elapsed	Rate	Depth to Water	Gallons Purged		Conductivity	Turbidity	Dissolved Oxygen	Temp	Redox	Appe	arance	
		(mL/min)	(ft. bmp)	ruigeu		(mS/cm)	(NTU)	(mg/L)	(°C)	(mV)	Color	Odor	
1515	5	150	1.70	0.5	6.50	4.939	_	0.50	16.8	-75.8	clear	none	
1520	10	150	1.70	_	6.51	5.226		0.19	16.8	- 73, 7	11	11	
1525	15	150	1.70	10	6.47	5.377		0.10	15.5	-71.9	"	11	
1530	20	150	1.70	1.0	6.46	5.401		0.04	15.9	-73.1	11	"	
1535 1540	25	150	1.70	1.7	6.43	5.435	9.96	0.01	15.2	-73.6 -73.4	11	11	
1545	30 35	150	1.70	1.1	6.42	5.425	9.59	0.00	_	-73.7	11	11	
1550	40	150	1.70		6.42	5.437	9.27	0.00	15.1	-73.6		11	
1555	45	150	SAMPL	F_	0.10	3.101	1.67	0.00	73.1	- 13.0	,,	->	
,,,,	,,	1,70	3/11										
onstituents	Sampled				Container		Min Vol.		Number		Preservat	ive	
8260TCL20 - \		h	ls)		3 x 40 ml g		full		3	- 1	HCL		
RSK175DGME OT MET [Fe, M		ived Gasse	es		3 x 40 ml g 1 x 500 ml		full 150 ml		3	-	HCL HNO3		
04 - Sulfate	,				1 x 250 ml		250 ml			-	None		
ulfide					2 x 250 ml	HDPE	200 ml/bot	tle	2	-	NaOH + Z	nAc	
ISS MET [FF] [Fe, Mn]				1 x 500 ml		150 ml			-	HNO3 HCL		
oc					1 x 60 ml g	liass	full			-	HCL		
										-			
_													
	1" = 0.04 1.25" = 0.06			2.5" = 0.26 3" = 0.37		5" = 0.50 = 0.65	6" = 1.47						
Vell Informati		, 2	- 0.10	5 - 0.57	-	- 0.03				FF	= Field	Filtered	
Well Loca		Swan	0.0				Well	Locked a	t Δrrival:	(Ves)	/	No	
Condition of	-	Good	T						parture:	-	1	No	
Well Compl			ush Mount /	Stick	Up)				_	Amenca	a Key		
メル	rbid	it a	neter need to	0+	Wor	Kina ;	took	3		ه ۱۰ کا مد	-1014		
art		1	1 1		iG.			,	cons	coun	m n	cading	S
	ac i	ve e	na to	VE	art y	2,101911	izatio	n (tielo	l Sta	H S	witchin	9
0	,	usino	y the	one	me-	ter th	at u	00 cvc	\				J
		_	,					~5)				

GROUND	WATE	R SAM	PLING LOG								Page	of /
Project No.	3014704	41 00004		_	Well ID	mw-	175			Date	7/17	123
Project Name/	Location	Old Erie	Canal Site / Clyde	. NY						Weather	Sun, 8	30°T
Measuring Pt. Description	TO		Screen Setting (ft-bmp)		9.6	Casing Diameter (in)	2"			Well Mate	:/	PVC SS
Static Water Level (ft-bmp)	3.0	60	Total Depth (ft-bm	8 e	13	Water Colum Gallons in W	ell 4.53	3/0.	75_			
MP Elevation	_	_	Pump Intake (ft-b	mp) ~	8	Purge Method: LOW Flow				Sample		
Pump On/Off	115/		Volumes Purged	2.5	oal		Centrifuga Submersib			Method	Peri Pump	
	/	_			300		Other	Peri Pum	р			
Label Time: Start Filling:	1225		Duplicate Y / MS/MSD Y /							Sampled	by BK	ω_{-}
End Filling:	1249	_	QA/QC Code:	<u> </u>			_					
Time	Minutes	Rate	Depth to Water	Gallons	рН	Conductivity	Turbidity	Dissolved	Temp	Redox	Appea	rance
	Elapsed	(mL/min)	(ft. bmp)	Purged		(mS/cm)	(NTU)	Oxygen (mg/L)	(°C)	(mV)	Color	Odor
1115	Pun	Pon	13.60	-								
1125	10	150	3.80		6.71	2016	77.8	0.68	20.6	-18-3	clardy	none
1130	15	150	3.68	0.5	6.85	1.80	196	0.16	2007	35		$\overline{}$
1135	20	150	3.65		6.89	1.70	89.7	0.13	20.7	-11.9		\square
1140	25	150	3.60	0.75	6.93	1.66	52.9	0.11	2007	2.6		
1145	30	150	3.60		6.90	1.63	22.9	0.01	20.7	17.3	V	\square
1150	35	150	3.60	1.0	6.91	1.64	16.7	0.00	20.6	21.4	clear	
1155	40	150	3.60		6.90	1.64	14.5	0.00	20.6	22.1		
1200	45	150	3:60	1.25	6.91	1.63	10.9	0.00	20.6	20.8		
1205	50	150	3.60	1.5	6.91	1.65	10.0	0.00	2007	18.8		` •
1210	55	150	3.66	1.75	6.92	1.64	6.49	0.00	207	16.6		
1215	60	175	3.60	2.0	6.92	1.64	6.50	0000	20,7	18.3		
1220	65	175	3.60	2.25	6.92	1.64	6.29	0.00	2007	21.5	V	V
1225	70	SAV	MPLED									
Constituents :	Sampled				Container		Min Vol.		Number		Preservati	ve
V8260TCL20 - \					3 x 40 ml g		full		3_	-	HCL	
VRSK175DGME		olved Gasse	es		3 x 40 ml g 1 x 500 ml	,	full 150 ml			-	HCL HNO3	
TOT MET [Fe, I SO4 - Sulfate	virij				1 x 250 ml		250 ml			-	None	
Sulfide					2 x 250 ml		200 ml/bott	le	2	_	NaOH + Zn	ıAc
DISS MET [FF]	[Fe, Mn]				1 x 500 ml	HDPE	150 ml			-	HNO3	
TOC					1 x 60 ml g	glass	full			-	HCL	
								6.2		-		
										-		
	1" = 0.04 1.25" = 0.06		5" = 0.09 = 0.16	2.5" = 0.26 3" = 0.37		5" = 0.50 ' = 0.65	6" = 1.47					
Well Informat	tion									FF	= Field F	Filtered
Well Loca	tion:	Inside	building be	hind i	vending	machine	% Well	Locked at	Arrival:	Yes	1	No
Condition of	Well:	6000	~				•	ked at De	-	Yes	1	1
Wall Campl	otion:	(=	uch Mount)/	Stick	l In		Kov	Number 7	To Mall.			

ARCADIS

		30147041		LING LOG		WellID	mw-18	35			Date	Page 1	12023	
P	roject Name/	Donation	Old Ene C	Canal Site / Clyde	NY						Weather	Partly	cloudy	, '
N	Measuring Pt Description		oc	Screen Setting (h-amp)	3'-	4	Casing Diameter (n.)	2			Well Mate	rial 🗴	PVC SS	
5	Static Water Level (fl-bmp)	3.	27	Total Depth (fi-bm)	· 7	22	Water Column Gallons in We	3.95	5/0	. 64				
1	MP Elevation	N	A	Pump Intake (fl-br	np) ~	7`	Purge Method	Low Flo	W		Sample			
1	Pump On/Off			Volumes Purged	0	FY		Centrifugal Submersib Other		p	Method	Peri Pum)	
	Label Time Start Filling End Filling:	See n		Duplicate Y / MS/MSD Y / QA/QC Code:	8	PA					Sampled I	y K	CF	
I	Time	Minutes	Rate	Depth to Water	Gallons	pН	Conductivity	Turbidity	Dissolved	Temp	Redox	Appe	arance	
		Elapsed	(mL/min)	(ft bmp)	Purged		(mS/cm)	(NTU)	Oxygen (mg/L)	(°C)	(mV)	Color	Odor	
	1120	5	100	5.11		6.86	3.815	_	0.37	24.7	133.6	clear	none	
	1125	10	100	6.31	0.7	6.89	3.711	_	0.29	25.5	144.7	"	"	
	1130	15	100	7.20		6.93	3.733	_	1.64	24.8	67.0	"		
_	1135	20	100	DRY -										
.3			Death	to water	× 4	.98	=> 2.24	1/0.	36					
	*							, ,						
		mpled	at	1210 0	7/	28/20	23							
		1			'									
			-											
		-			-	-								
						Containe		Min Vol.		Number		Preserva	tive	
	Constituen V8260TCL20		ea			3 x 40 ml		full	_	2	-	HCL		
	VRSK175DC		solved Ga	sses	_	3 x 40 ml		full	-	7	_	HNO3		
	TOT MET [F				_	1 x 500 m		150 ml	-	1	-	None		
	SO4 - Sulfate	e	_		_	2 x 250 m		200 ml/bo	- ttle	2	_	NaOH + 2	ZnAc	
	Sulfide DISS MET [F	F) (Fe Mr	1		_	1 x 500 n	and the second s	150 ml	_	_/_	_	HNO3		
	TOC	TITI C, WII			_	1 x 60 ml		full	-		-	HCL		
					_				-		-			
	Gallons/Foot	1" = 0.0 1.25" =		1.5" = 0.09 2" = 0.16	2.5" = 0.3" 3" = 0.3"		3.5" = 0.50 4" = 0.65	6" = 1.47			FI	F = Field	Filtered	
	Well Info	rmation						We	II Locked	at Arrival:	Yes		4	
	1	ocation:	•	King Lot						eparture:			6	
4	Condition	on of Well	(50	od	1 00	ok I In				To Well:	PA			
-	Wall Co	ompletion:		Flush Mount	, 500	k Up		. 10						

Turbidity meter not working; well went dry before I had the chance to replace / swap out

R

	GROUND	WATE	R SAM	PLING LOG								Page	of	j
	Project No.	301470	41 00004			Well ID	mw-	195			Date	7/	17/23	
	Project Name	/Location	Old Ene	Canal Site / Clyde	n NY		11110	•	-		Weather	Sur	1, 85	F
	Measuring Pt. Description			Screen Setting (ft-bmp)		-8.5'	Casing Diameter (in)	2"			Well Mate	erial _	Y PVC	
	Static Water Level (ft-bmp)	_3.	26	Total Depth (ft-bn		96	Water Colum Gallons in W	nn/	10.75	5				
	MP Elevation	-Nt	7	Pump Intake (ft-b	mp) ~7	.5'		thod Low Flow			Sample			
	Pump On/Off	1315/	1350	Volumes Purged	1.5	gal		Centrifuga Submersib Other		p	Method	Peri Pu	ımp	
	Label Time: Start Filling: End Filling:	085 085 091	6	Duplicate Y / MS/MSD Y / QA/QC Code:	8_	NA	(Other Territains			Sampled by BKW			
	Time	Minutes	1	Depth to Water	Gallons	pН	Conductivity	Turbidity	Dissolved	Temp	Redox	Ap	pearance	
		Elapsed	(mL/min)	(ft bmp)	Purged		(mS/cm)	(NTU)	Oxygen (mg/L)	(°C)	(mV)	Colo	r Odor	
	1315	Pump		3,26	_									_
10	1320	5	240	5.00		6.87	3,91	10.9	0.00	19.9	1500	class	none	2
*		10	150 PC		0.5	6.92	3.87	19.3	0.13	21.0	51.9	1	+	_
	1330	15	170	5.89		6.95	3,69	15.9	0.22	21,0	-3.0	 	+	-
	1335	20	170	6.85	1 25	6.96	3.55	10.3	0.23	20.5	4.1	1	+	-
- 4	1340	25	170	7.30	1.25	7.09	3.11	+	1.54	20.0	30.6			_
×	1345	30	170	7.50	1.5	6.93	3.87	+	4.75	19.4	60,3	-	-	
haba-	1350	35	DF	7 -									_	-
1/18/23							4.65/	A 7.C					-	-
	Dep	th t	to wa	ter 3.3	1	=7	1,05/	0.75					_	7
	Sam	ple	7/1	8/2023	0	0850								
	Reading		ollecte	1 after s	ample	4								
		,	-		-	17.11	2.55	15.8	4.63	20.3	173.4	ciea	none	2
					/									\dashv
	Constituents :	Sampled				Container		Min Vol.		Number		Preser	vative	_
	V8260TCL20 - \					3 x 40 ml g		full		3	i i	HCL		_
	VRSK175DGME	50 10	olved Gasse	es		3 x 40 ml g	I control of the control	full		3	e i	HCL HNO3		_
	TOT MET [Fe, I SO4 - Sulfate	vinj				1 x 500 ml		150 ml			E :	None		_
	Sulfide					2 x 250 m		200 ml/bott	le	2	ě	NaOH -	+ ZnAc	_
	DISS MET [FF]	[Fe, Mn]	2000			1 x 500 ml		150 ml		ī		HNO3		
	тос					1 x 60 ml g	glass	full				HCL		_
														_
														_
									9					_
		1" = 0.04 1.25" = 0.06		5" = 0.09 = 0.16	2.5° = 0.26 3° = 0.37		5" = 0.50 " = 0.65	6" = 1.47						
	Well Information	tion									FF	= Fiel	d Filtered	<u>t</u>
	Well Loca		Parkin	g Lot				Well	Locked at	Arrival: _	Yes	1	No	\perp
	Condition of	Good					Well Locked at Departure: Ye			Yes	/	NB	\perp	
	Well Compl	Well Completion: Flush Mount /						Key	Number 1	o Well:	_			

* Slowest pump can go

* Tubing lowered to bottom of well

+ not solled measured due to turbitity meter malfunction

Attachment 2

Groundwater Laboratory Results

Sample Summary

Arcadis

Job No: JD69542

Old Erie Canal Site, 124 Columbia Street, Clyde, NY

Project No: 30147041

Sample	Collected			Matrix	Client
Number	Date	Time By	Received	Code Type	Sample ID

This report contains results reported as ND = Not detected. The following applies:

Organics ND = Not detected above the MDL
Metals ND = Not detected above the MDL
General Chemistry ND = Not detected above the MDL

JD69542-1 07/17/23 12:25 BKW 07/19/23 AQ Ground Water MW-17S JD69542-1F 07/17/23 12:25 BKW 07/19/23 AQ Groundwater Filtered MW-17S JD69542-2 07/17/23 13:50 KF 07/19/23 AQ **Ground Water** MW-1S JD69542-2F 07/17/23 13:50 KF 07/19/23 AQ Groundwater Filtered MW-1S JD69542-3 07/17/23 15:55 KF 07/19/23 AQ **Ground Water** MW-15S JD69542-3F 07/17/23 15:55 KF 07/19/23 AQ Groundwater Filtered MW-15S JD69542-4 07/17/23 15:20 BKW 07/19/23 AQ **Ground Water MW-14S** JD69542-4F 07/17/23 15:20 BKW 07/19/23 AQ Groundwater Filtered MW-14S JD69542-5 07/17/23 00:00 BKW 07/19/23 AQ **Ground Water** DUP-20230717 JD69542-5F 07/17/23 00:00 BKW 07/19/23 AQ Groundwater Filtered DUP-20230717 JD69542-6 07/18/23 08:50 BKW 07/19/23 AQ Ground Water MW-19S

Draft: 1 of 42

Sample Summary (continued)

Arcadis

JD69542 Job No:

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project No: 30147041

Sample	Collected			Matri	ix	Client
Number	Date	Time By	Received	Code	Type	Sample ID
JD69542-6F	07/18/23	08:50 BKW	07/19/23	AQ	Groundwater Filtered	MW-19S
JD69542-7	07/18/23	08:50	07/19/23	\mathbf{AQ}	Trip Blank Water	TB-01-20230718

Draft: 2 of 42

Client Sample ID: MW-17S

Lab Sample ID: JD69542-1 Date Sampled: 07/17/23

Matrix: AQ - Ground Water Date Received: 07/19/23

Method: SW846 8260D Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	1N3059.D	1	07/20/23 22:18	ED	n/a	n/a	V1N86
Run #2	1N3081.D	5	07/21/23 11:27	ED	n/a	n/a	V1N87
Run #3	1N3033.D	10	07/20/23 16:17	ED	n/a	n/a	V1N86

	Purge Volume
Run #1	5.0 ml
Run #2	5.0 ml
Run #3	5.0 ml

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone a	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
75-15-0	Carbon disulfide ^b	ND	2.0	1.8	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	1.0	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	1070 ^c	10	5.1	ug/l	
156-60-5	trans-1,2-Dichloroethene	9.5	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-17S

Lab Sample ID:JD69542-1Date Sampled:07/17/23Matrix:AQ - Ground WaterDate Received:07/19/23Method:SW846 8260DPercent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	s Q
76-13-1	Freon 113 ^d	1.9	5.0	0.58	ug/l	J
591-78-6	2-Hexanone	ND	5.0	4.8	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	4.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.56	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	249 e	5.0	2.6	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride	133	1.0	0.52	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run	# 3	Limits
1868-53-7	Dibromofluoromethane	101%	101%	100%	6	80-120%
17060-07-0	1,2-Dichloroethane-D4	110%	108% 105		6	80-120%
2037-26-5	Toluene-D8	99%	100%	99%		80-120 %
460-00-4	4-Bromofluorobenzene	98%	99%	99%		82-114%

⁽a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

⁽b) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

⁽c) Result is from Run# 3

⁽d) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte.

⁽e) Result is from Run# 2

Client Sample ID:	MW-17S		
Lab Sample ID:	JD69542-1	Date Sampled:	07/17/23
Matrix:	AQ - Ground Water	Date Received:	07/19/23
Method:	RSK-175	Percent Solids:	n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

Run #1 ^a Run #2	File ID AA102887.D	DF 1	Analyzed 07/21/23 14:15	By JL	Prep Da n/a	ate	Prep Batch n/a	Analytical Batch GAA2847
CAS No.	Compound		Result	RL	MDL	Units	Q	
74-82-8 74-84-0 74-85-1	Methane Ethane Ethene		10.6	0.11 0.23 0.31	0.080 0.14 0.16	ug/l ug/l ug/l		

⁽a) 3mm and 2x2mm diameter bubbles present in headspace.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-17S

Lab Sample ID: JD69542-1 Date Sampled: 07/17/23 Matrix: AQ - Ground Water Date Received: 07/19/23 Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron Manganese	69.4 J 38.9	100 15	32 1.4	ug/l ug/l	1		07/21/23 ND 07/21/23 ND	SW846 6010D ¹ SW846 6010D ¹	SW846 3010A ² SW846 3010A ²

(1) Instrument QC Batch: MA54491(2) Prep QC Batch: MP40870

RL = Reporting Limit MDL = Method Detection Limit ND = Not detected

 $J = Indicates \ a \ result > = \ MDL \ but < \ RL$

Page 1 of 1

Client Sample ID: MW-17S

Lab Sample ID: JD69542-1 Date Sampled: 07/17/23 Matrix: AQ - Ground Water Date Received: 07/19/23 Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

General Chemistry

Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Sulfate	48.1	2.0	0.89	mg/l	1	07/21/23 01:28 SS EPA 300/SW846 9056A
Sulfide	ND	2.0	0.48	mg/l	1	07/23/23 15:30 MK SM4500S2- F-11
Total Organic Carbon	2.0	1.0	0.10	mg/l	1	07/20/23 16:06 MB SM5310 B-11/14

RL = Reporting Limit
MDL = Method Detection Limit

ND = Not detected

J = Indicates a result > = MDL but < RL

Page 1 of 1

Client Sample ID: MW-17S

Lab Sample ID: JD69542-1F Date Sampled: 07/17/23 Matrix: AQ - Groundwater Filtered Date Received: 07/19/23

Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

Dissolved Metals Analysis

Iron 60.9 J 10 Manganese 37.4 15	ug/l 1 ug/l 1		SW846 6010D ¹ SW846 6010D ¹	SW846 3010A ² SW846 3010A ²

(1) Instrument QC Batch: MA54491(2) Prep QC Batch: MP40870

RL = Reporting Limit MDL = Method Detection Limit ND = Not detected

J = Indicates a result > = MDL but < RL

Client Sample ID: MW-1S

Lab Sample ID:JD69542-2Date Sampled:07/17/23Matrix:AQ - Ground WaterDate Received:07/19/23Method:SW846 8260DPercent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 1N3055.D 1 07/20/23 21:23 ED n/a n/a V1N86

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone b	39.7	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	13.1	10	2.7	ug/l	
75-15-0	Carbon disulfide ^c	ND	2.0	1.8	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	4.9	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	6.5	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113 ^c	ND	5.0	0.58	ug/l	
591-78-6	2-Hexanone	ND	5.0	4.8	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: MW-1S

Lab Sample ID:JD69542-2Date Sampled:07/17/23Matrix:AQ - Ground WaterDate Received:07/19/23Method:SW846 8260DPercent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	10.6	5.0	4.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.56	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	0.97	1.0	0.53	ug/l	J
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride	1.8	1.0	0.52	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	96%		80-1	20%	
17060-07-0	1,2-Dichloroethane-D4	101%		80-1	20 %	
2037-26-5	Toluene-D8	101%		80-1	20 %	
460-00-4	4-Bromofluorobenzene	100%		82-1	14%	

⁽a) (pH=4)Sample pH did not satisfy field preservation criteria.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

⁽b) Associated CCV outside of control limits high.

⁽c) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

Client Sample ID: MW-1S

Lab Sample ID:JD69542-2Date Sampled:07/17/23Matrix:AQ - Ground WaterDate Received:07/19/23Method:RSK-175Percent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 a	AA102889.D	1	07/21/23 14:41	JL	n/a	n/a	GAA2847
Run #2 a	AA102890.D	100	07/21/23 15:24	JL	n/a	n/a	GAA2847

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	6520 b	11	8.0	ug/l	
74-84-0	Ethane	6.02	0.23	0.14	ug/l	
74-85-1	Ethene	2.5	0.31	0.16	ug/l	

⁽a) (pH=3)Sample pH did not satisfy field preservation criteria.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

• •

⁽b) Result is from Run# 2

Page 1 of 1

Client Sample ID: MW-1S

Lab Sample ID:JD69542-2Date Sampled:07/17/23Matrix:AQ - Ground WaterDate Received:07/19/23

Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	62800	100	32	ug/l	1			SW846 6010D ¹	SW846 3010A ³
Manganese	17900	75	7.0	ug/l	5	07/21/23	07/25/23 ND	SW846 6010D ²	SW846 3010A ³

(1) Instrument QC Batch: MA54493(2) Instrument QC Batch: MA54500(3) Prep QC Batch: MP40881

RL = Reporting Limit MDL = Method Detection Limit ND = Not detected J = Indicates a result > = MDL but < RL

Page 1 of 1

Client Sample ID: MW-1S

Lab Sample ID: JD69542-2 Date Sampled: 07/17/23 Matrix: AQ - Ground Water Date Received: 07/19/23 Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

General Chemistry

Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Sulfate	ND	2.0	0.89	mg/l	1	07/21/23 01:41 SS EPA 300/SW846 9056A
Sulfide	ND	2.0	0.48	mg/l	1	07/23/23 15:30 MK SM4500S2- F-11
Total Organic Carbon	276	20	2.0	mg/l	20	07/20/23 19:08 MB SM5310 B-11/14

RL = Reporting Limit
MDL = Method Detection Limit

ND = Not detected

J = Indicates a result > = MDL but < RL

Page 1 of 1

Client Sample ID: MW-1S

Lab Sample ID: JD69542-2F Date Sampled: 07/17/23
Matrix: AQ - Groundwater Filtered Date Received: 07/19/23
Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

Dissolved Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	60800	100	32	ug/l	1				_
Manganese	20400	75	7.0	ug/l	5	07/21/23	07/25/23 ND	SW846 6010D ²	SW846 3010A ³

(1) Instrument QC Batch: MA54493(2) Instrument QC Batch: MA54500(3) Prep QC Batch: MP40881

RL = Reporting Limit
MDL = Method Detection Limit

ND = Not detected

J = Indicates a result > = MDL but < RL

Client Sample ID: MW-15S

Lab Sample ID:JD69542-3Date Sampled:07/17/23Matrix:AQ - Ground WaterDate Received:07/19/23Method:SW846 8260DPercent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	2N3080.D	1	07/21/23 11:14	ED	n/a	n/a	V2N87
Run #2	2N3060.D	4	07/20/23 22:32	ED	n/a	n/a	V2N86

	Purge Volume	
Run #1	5.0 ml	
Run #2	5.0 ml	

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone ^a	ND	10	3.1	ug/l	
71-43-2	Benzene	5.8	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane ^a	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.8	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	2.7	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	1.3	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	5.3	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	
591-78-6	2-Hexanone	ND	5.0	4.8	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Analysis Page 2 of 2

Client Sample ID: MW-15S

Lab Sample ID:JD69542-3Date Sampled:07/17/23Matrix:AQ - Ground WaterDate Received:07/19/23Method:SW846 8260DPercent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	4.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.56	ug/l	
108-88-3	Toluene	478 b	4.0	2.0	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride	6.0	1.0	0.52	ug/l	
	m,p-Xylene	22.6	1.0	0.78	ug/l	
95-47-6	o-Xylene	15.5	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	38.1	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	97%	97%	80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	104%	104%	80-12	20%	
2037-26-5	Toluene-D8	102%	100%	80-12	20%	
460-00-4	4-Bromofluorobenzene	99%	98%	82-11	l 4 %	

⁽a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

⁽b) Result is from Run# 2

Client Sample ID: MW-15S Lab Sample ID: JD69542-3

Lab Sample ID:JD69542-3Date Sampled:07/17/23Matrix:AQ - Ground WaterDate Received:07/19/23Method:RSK-175Percent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	AA102893.D	25	07/21/23 16:32	JL	n/a	n/a	GAA2847
Run #2	AA102892.D	200	07/21/23 16:19	JL	n/a	n/a	GAA2847

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	8530 a	22	16	ug/l	
74-84-0	Ethane	1670	5.8	3.5	ug/l	
74-85-1	Ethene	6220	7.8	4.0	ug/l	

⁽a) Result is from Run# 2

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

 $J = \ Indicates \ an \ estimated \ value$

 $\mathbf{B} = \mathbf{Indicates}$ analyte found in associated method blank

Page 1 of 1

Client Sample ID: MW-15S

Lab Sample ID: JD69542-3 Date Sampled: 07/17/23 Matrix: AQ - Ground Water Date Received: 07/19/23 Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron Manganese	45200 1890	100 15	32 1.4	ug/l ug/l	1		07/21/23 ND 07/21/23 ND	SW846 6010D ¹ SW846 6010D ¹	SW846 3010A ² SW846 3010A ²

(1) Instrument QC Batch: MA54491(2) Prep QC Batch: MP40870

RL = Reporting Limit MDL = Method Detection Limit ND = Not detected

 $J = Indicates \ a \ result > = \ MDL \ but < \ RL$

Page 1 of 1

Client Sample ID: MW-15S

Lab Sample ID: JD69542-3 **Date Sampled: 07/17/23** Matrix: AQ - Ground Water Date Received: 07/19/23 Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

General Chemistry

Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Sulfate	ND	2.0	0.89	mg/l	1	07/21/23 01:54 SS
Sulfide	ND	2.0	0.48	mg/l	1	
Total Organic Carbon	140	5.0	0.50	mg/l	5	

RL = Reporting Limit

MDL = Method Detection Limit J = Indicates a result > = MDL but < RL

ND = Not detected

Page 1 of 1

Client Sample ID: MW-15S

Lab Sample ID: JD69542-3F Date Sampled: 07/17/23
Matrix: AQ - Groundwater Filtered Date Received: 07/19/23
Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

Dissolved Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	43600	100	32	ug/l	1	07/20/23	07/21/23 ND	SW846 6010D ¹	SW846 3010A ²
Manganese	1900	15	1.4	ug/l	1	07/20/23	07/21/23 ND	SW846 6010D ¹	SW846 3010A ²

(1) Instrument QC Batch: MA54491(2) Prep QC Batch: MP40870

RL = Reporting Limit MDL = Method Detection Limit ND = Not detected

 $J = Indicates \ a \ result > = \ MDL \ but < \ RL$

Client Sample ID: MW-14S
Lab Sample ID: JD69542-4
Matrix: AQ - Ground Water Date Received: 07/19/23
Method: SW846 8260D Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	2N3058.D	1	07/20/23 22:04	ED	n/a	n/a	V2N86
Run #2	2N3082.D	10	07/21/23 11:41	ED	n/a	n/a	V2N87

	Purge Volume	
Run #1	5.0 ml	
Run #2	5.0 ml	

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
75-15-0	Carbon disulfide ^a	ND	2.0	1.8	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	1.1	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	124	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	1.2	1.0	0.60	ug/l	
76-13-1	Freon 113 a	ND	5.0	0.58	ug/l	
591-78-6	2-Hexanone	ND	5.0	4.8	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-14S

Lab Sample ID:JD69542-4Date Sampled:07/17/23Matrix:AQ - Ground WaterDate Received:07/19/23Method:SW846 8260DPercent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	4.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.56	ug/l	
108-88-3	Toluene	16.5	1.0	0.49	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride	257 b	10	5.2	ug/l	
	m,p-Xylene	3.2	1.0	0.78	ug/l	
95-47-6	o-Xylene	0.94	1.0	0.59	ug/l	J
1330-20-7	Xylene (total)	4.1	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7	Dibromofluoromethane	96%	98%	80-1	20%	
17060-07-0	1,2-Dichloroethane-D4	105%	105%	80-1	20%	
2037-26-5	Toluene-D8	100%	100%	80-1	20%	
460-00-4	4-Bromofluorobenzene	99%	98%	82-1	14%	

⁽a) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

⁽b) Result is from Run# 2

Client Sample ID: MW-14S

Lab Sample ID: JD69542-4 **Date Sampled: 07/17/23** Matrix: AQ - Ground Water Date Received: 07/19/23 Method: **RSK-175** Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY **Project:**

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 a	AA102894.D	1	07/21/23 16:45	JL	n/a	n/a	GAA2847
Run #2 a	AA102896.D	5	07/21/23 17:25	JL	n/a	n/a	GAA2847
Run #3 a	AA102895.D	200	07/21/23 16:58	JL	n/a	n/a	GAA2847

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8 74-84-0	Methane Ethane	13000 b 472 c	22 1.2	16 0.70	ug/l ug/l	
74-85-1	Ethene	158	0.31	0.16	ug/l	

⁽a) 3mm diameter bubble present in headspace.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blankN = Indicates presumptive evidence of a compound

⁽b) Result is from Run# 3

⁽c) Result is from Run# 2

Page 1 of 1

Client Sample ID: MW-14S

Lab Sample ID: JD69542-4 Date Sampled: 07/17/23 Matrix: AQ - Ground Water Date Received: 07/19/23 Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	5410	100	32	ug/l	1		07/24/23 ND	SW846 6010D ¹	SW846 3010A ²
Manganese	365	15	1.4	ug/l	1		07/24/23 ND	SW846 6010D ¹	SW846 3010A ²

(1) Instrument QC Batch: MA54493

(2) Prep QC Batch: MP40881

RL = Reporting Limit MDL = Method Detection Limit ND = Not detected

 $J = Indicates \ a \ result > = \ MDL \ but < \ RL$

Page 1 of 1

Client Sample ID: MW-14S

Lab Sample ID: JD69542-4 Date Sampled: 07/17/23 Matrix: AQ - Ground Water Date Received: 07/19/23 Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

General Chemistry

Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Sulfate	16.9	2.0	0.89	mg/l	1	07/21/23 02:07 SS EPA 300/SW846 9056A 07/23/23 15:30 MK SM4500S2- F-11 07/20/23 16:59 MB SM5310 B-11/14
Sulfide	ND	2.0	0.48	mg/l	1	
Total Organic Carbon	6.4	1.0	0.10	mg/l	1	

RL = Reporting Limit MDL = Method Detection Limit ND = Not detected

J = Indicates a result > = MDL but < RL

Page 1 of 1

Client Sample ID: MW-14S

Lab Sample ID: JD69542-4F Date Sampled: 07/17/23
Matrix: AQ - Groundwater Filtered Date Received: 07/19/23
Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

Dissolved Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	5810	100	32	ug/l	1	07/21/23	07/24/23 ND	SW846 6010D ¹	SW846 3010A ²
Manganese	418	15	1.4	ug/l	1	07/21/23	07/24/23 ND	SW846 6010D ¹	SW846 3010A ²

(1) Instrument QC Batch: MA54493

(2) Prep QC Batch: MP40881

RL = Reporting Limit MDL = Method Detection Limit ND = Not detected

 $J = Indicates \ a \ result > = \ MDL \ but < \ RL$

Client Sample ID: DUP-20230717

Lab Sample ID: JD69542-5 Date Sampled: 07/17/23

Matrix: AQ - Ground Water Date Received: 07/19/23

Method: SW846 8260D Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	1N3057.D	1	07/20/23 21:51	ED	n/a	n/a	V1N86
Run #2	1N3085.D	10	07/21/23 12:23	ED	n/a	n/a	V1N87

	Purge Volume	
Run #1	5.0 ml	
Run #2	5.0 ml	

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone a	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
75-15-0	Carbon disulfide ^b	ND	2.0	1.8	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	131	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	1.1	1.0	0.60	ug/l	
76-13-1	Freon 113 b	ND	5.0	0.58	ug/l	
591-78-6	2-Hexanone	ND	5.0	4.8	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: DUP-20230717

Lab Sample ID:JD69542-5Date Sampled:07/17/23Matrix:AQ - Ground WaterDate Received:07/19/23Method:SW846 8260DPercent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	4.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.56	ug/l	
108-88-3	Toluene	16.0	1.0	0.49	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride	223 ^c	10	5.2	ug/l	
	m,p-Xylene	3.3	1.0	0.78	ug/l	
95-47-6	o-Xylene	0.99	1.0	0.59	ug/l	J
1330-20-7	Xylene (total)	4.3	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7	Dibromofluoromethane	99%	99%	80-1	20%	
17060-07-0	1,2-Dichloroethane-D4	108%	109%	80-1	20%	
2037-26-5	Toluene-D8	100%	101%	80-1		
460-00-4	4-Bromofluorobenzene	98%	101%	82-1	14%	

⁽a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

⁽b) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

⁽c) Result is from Run# 2

Client Sample ID: DUP-20230717

Lab Sample ID:JD69542-5Date Sampled:07/17/23Matrix:AQ - Ground WaterDate Received:07/19/23Method:RSK-175Percent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 a	AA102897.D	1	07/21/23 17:49	JL	n/a	n/a	GAA2847
Run #2 a	AA102899.D	5	07/21/23 18:23	JL	n/a	n/a	GAA2847
Run #3 a	AA102898.D	200	07/21/23 18:02	JL	n/a	n/a	GAA2847

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	10200 b	22	16	ug/l	
74-84-0	Ethane	386 c	1.2	0.70	ug/l	
74-85-1	Ethene	113	0.31	0.16	ug/l	

⁽a) 3mm diameter bubble present in headspace.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Draft: 29 of 42

⁽b) Result is from Run# 3

⁽c) Result is from Run# 2

Page 1 of 1

Client Sample ID: DUP-20230717

Lab Sample ID: JD69542-5 Date Sampled: 07/17/23 Matrix: AQ - Ground Water Date Received: 07/19/23 Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron Manganese	5670 395	100 15	32 1.4	ug/l ug/l	1		07/21/23 ND 07/21/23 ND	SW846 6010D ¹ SW846 6010D ¹	SW846 3010A ² SW846 3010A ²

(1) Instrument QC Batch: MA54491(2) Prep QC Batch: MP40870

RL = Reporting Limit MDL = Method Detection Limit ND = Not detected

 $J = Indicates \ a \ result > = \ MDL \ but < \ RL$

Page 1 of 1

Client Sample ID: DUP-20230717

Lab Sample ID: JD69542-5 Date Sampled: 07/17/23
Matrix: AQ - Ground Water Date Received: 07/19/23
Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

General Chemistry

Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Sulfate	17.1	2.0	0.89	mg/l	1	07/21/23 02:20 SS EPA 300/SW846 9056A 07/23/23 15:30 MK SM4500S2- F-11 07/20/23 17:34 MB SM5310 B-11/14
Sulfide	ND	2.0	0.48	mg/l	1	
Total Organic Carbon	5.9	1.0	0.10	mg/l	1	

RL = Reporting Limit

MDL = Method Detection Limit J = Indicates a result > = MDL but < RL

ND = Not detected

Page 1 of 1

Client Sample ID: DUP-20230717

Lab Sample ID: JD69542-5F Date Sampled: 07/17/23
Matrix: AQ - Groundwater Filtered Date Received: 07/19/23
Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

Dissolved Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	5300	100	32	ug/l	1			SW846 6010D 1	SW846 3010A ²
Manganese	380	15	1.4	ug/l	1	07/20/23	07/21/23 ND	SW846 6010D ¹	SW846 3010A ²

(1) Instrument QC Batch: MA54491(2) Prep QC Batch: MP40870

RL = Reporting Limit MDL = Method Detection Limit ND = Not detected

J = Indicates a result > = MDL but < RL

Client Sample ID: MW-19S

Lab Sample ID: JD69542-6 Date Sampled: 07/18/23

Matrix: AQ - Ground Water Date Received: 07/19/23

Method: SW846 8260D Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	1N3083.D	1	07/21/23 11:55	ED	n/a	n/a	V1N87
Run #2	2N3056.D	10	07/20/23 21:37	ED	n/a	n/a	V2N86

	Purge Volume	
Run #1	5.0 ml	
Run #2	5.0 ml	

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone a	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane ^a	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.8	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	9.7	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND .	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	417 b	10	5.1	ug/l	
156-60-5	trans-1,2-Dichloroethene	5.5	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	
591-78-6	2-Hexanone	ND	5.0	4.8	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-19S

Lab Sample ID: JD69542-6 **Date Sampled: 07/18/23** Matrix: AQ - Ground Water Date Received: 07/19/23 Method: SW846 8260D Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY **Project:**

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	4.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	4.1	1.0	0.56	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	3.4	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	215 b	10	5.3	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride	4.1	1.0	0.52	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	98%	98%	80-1	20%	
17060-07-0	1,2-Dichloroethane-D4	104%	107%	80-1	20 %	
2037-26-5	Toluene-D8	101%	101%	80-1	20 %	
460-00-4	4-Bromofluorobenzene	100%	97%	82-1	14%	

⁽a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

⁽b) Result is from Run# 2

Client Sample ID: MW-19S

Lab Sample ID:JD69542-6Date Sampled:07/18/23Matrix:AQ - Ground WaterDate Received:07/19/23Method:RSK-175Percent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

Run #1	File ID	DF	Analyzed	By	Prep Da	ate	Prep Batch	Analytical Batch
Run #2	AA102900.D	1	07/21/23 18:49	JL	n/a		n/a	GAA2847
CAS No.	Compound		Result	RL	MDL	Units	Q	

CAS No.	Compound	Result	KL	MDL	Units	Q
74-82-8	Methane	0.74	0.11	0.080	ug/l	
74-84-0	Ethane	0.18	0.23	0.14	ug/l	
74-85-1	Ethene	ND	0.31	0.16	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-19S

Lab Sample ID: JD69542-6 Date Sampled: 07/18/23 Matrix: AQ - Ground Water Date Received: 07/19/23 Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron Manganese	1040 243	100 15	32 1.4	ug/l ug/l	1		07/21/23 ND 07/21/23 ND	SW846 6010D ¹ SW846 6010D ¹	SW846 3010A ² SW846 3010A ²

(1) Instrument QC Batch: MA54491(2) Prep QC Batch: MP40870

RL = Reporting Limit MDL = Method Detection Limit ND = Not detected

 $J = Indicates \ a \ result > = \ MDL \ but < \ RL$

Page 1 of 1

Client Sample ID: MW-19S

Lab Sample ID: JD69542-6 Date Sampled: 07/18/23 Matrix: AQ - Ground Water Date Received: 07/19/23 Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

General Chemistry

Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Sulfate	22.4	2.0	0.89	mg/l	1	07/21/23 02:59 SS EPA 300/SW846 9056A
Sulfide	ND	2.0	0.48	mg/l	1	07/23/23 15:30 MK SM4500S2- F-11
Total Organic Carbon	7.7	1.0	0.10	mg/l	1	07/20/23 17:46 MB SM5310 B-11/14

RL = Reporting Limit MDL = Method Detection Limit ND = Not detected

J = Indicates a result > = MDL but < RL

Page 1 of 1

Client Sample ID: MW-19S

Lab Sample ID: JD69542-6F Date Sampled: 07/18/23
Matrix: AQ - Groundwater Filtered Date Received: 07/19/23
Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

Dissolved Metals Analysis

Analyte	Result	RL	MDL	Units	DF	DF Prep Analyzed By		Method	Prep Method
Iron Manganese	ND 92.0	100 15	32 1 4	ug/l ug/l	1		07/21/23 ND 07/21/23 ND	SW846 6010D ¹ SW846 6010D ¹	SW846 3010A ² SW846 3010A ²

(1) Instrument QC Batch: MA54491

(2) Prep QC Batch: MP40870

RL = Reporting Limit MDL = Method Detection Limit ND = Not detected

 $J = Indicates \ a \ result > = \ MDL \ but < \ RL$

Client Sample ID: TB-01-20230718

Lab Sample ID:JD69542-7Date Sampled:07/18/23Matrix:AQ - Trip Blank WaterDate Received:07/19/23Method:SW846 8260DPercent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 2N3036.D 1 07/20/23 16:59 ED n/a n/a V2N86

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
75-15-0	Carbon disulfide ^a	ND	2.0	1.8	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113 ^a	ND	5.0	0.58	ug/l	
591-78-6	2-Hexanone	ND	5.0	4.8	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TB-01-20230718

Lab Sample ID:JD69542-7Date Sampled:07/18/23Matrix:AQ - Trip Blank WaterDate Received:07/19/23Method:SW846 8260DPercent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	4.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.56	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.52	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7	Dibromofluoromethane	99%		80-1	20%	
17060-07-0	1,2-Dichloroethane-D4	107%		80-1	20%	
2037-26-5	Toluene-D8	99%		80-1	20%	
460-00-4	4-Bromofluorobenzene	99%		82-1	14%	

⁽a) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Draft: 40 of 42

ccc		GW		СН	AIN																		Pag	_{le} / c	of /	,
3 U3 EHSA-QAC-0023-04-FC		TB	SGS North America Inc Dayton 2235 Route 130, Dayton, NJ 08810 TEL. 732-329-0200 FAX: 732-329-3499/3480 www.sgs.com/ehsusa							SGS Que		2021 26	13			Botti See Jot	7/11	17/	102	3-1/1						
Client / Reportin		_		Projec	t Inform		.sgs.coi	rvensu	5-H							-				Reque	etad A	naberie	~	10.13		Matrix Codes
Company Name:	g into mation	Project Name		Projec	i inioini	ation										 				Reques	Sted A	lalysis		\neg		Mainx Codes
Arcadis Street Address		Street			Old	l Erie	Cana	l Site										ered)	pue							DW - Drinking Water GW - Ground Water
110 W. Fayette Stre		24 Colum	bia Street		Biiling II	formatic	on (If diffe	rent from	Report t	o)								Manganese (Field Filtered)	ethene, ar							WW - Water SW - Surface Water SO - Soil
Syracuse, NY 13202	Žip	Clyde		State NY	Company													ese (Fi								SL- Sludge SED-Sediment OI - Oil
Project Contact E-r Chris Kassel chris.kassel cc: edward.mas		Project #	4704	1	Street Ad	dress												Aangan	s (ethane,			Carbon				LIQ - Other Liquid AIR - Air
Phone # 315-671-9127		Client Purchas	se Order#		City						State			Žip			Manganese	ξ	Gasses			₽				SOL - Other Solid WP - Wipe FB - Field Blank
Sampler(s) Name(s) Kaitlyn Fleming and Ba Kudla-Williams	Phone # ailey 619-727-1921	Project Manage	, .		Attention											VOCS	Iron, Mar	Dissolved	Dissolved (methane)	Sulfate	Sulfide	Total Organ				EB-Equipment Blank RB - Rinse Blank TB - Trip Blank
sos Sample # Field ID / Point of	Collection	MF OH/DI Via) #	Date	Time	Sampled by	Grab (G) Comp (C)	Source Chlorinated (Y/N)	Matrix	# of bottles	φ	Numb HO90	So. of b	ONE Served	Bottles Bottles	NCORE				P	Check	(Lab U	e Only		<u> </u>	T	LAB USE ONLY
1F MW-179		1	7/17/23	1225	BKW	G		GW	12	7	\rightarrow	2	1	,		×	X	X	X	X	x	X		_	†	ДU
2F MW-15			7/17/23	1350	KF	G		GW	12	7	2	2	1			Х	X	X	Χ	X	X	Х				ĊĊ
3F MW-155		1	7/17/23	1555	KF	G		GW	12	+	2	2	1			X	X	X	X	X	X	X				197
4F MW-145			7/17/23	1520	BKW	G		GW	12	7	2	2	1	Ш		X	<u> </u>	X	X	X	X	X				ردس
5F DUP - 201	30717		7/17/23		BKW	G		G₩	12	7	1	2	1			X	X	X	X	×	×	X				V439
6F MW -195			7/18/23	0850	BKW	G		GW	12	7	2	z	1	11	_	X	X	X	X	×	×	X				
7 TB-01-	20230718		7/11/23	0730		G		GW	2	2		+	Ш	+		X			ļ		ļ	ļ	\vdash		-	
		+	1	ļ	├	G		GW	-	├-		+-	₩	++	+	-		-		-			- -		+	
		+				G		GW	-		-	+	₩	+i	+	Ĭ						-		+	+	
						G		GW		\vdash	\dashv	┿	H	+	+			-			-			-	+	
						Ť					\dashv	+	H	++		 					<u> </u>	-	 -	-+	+	
	Turn Around Time (Bo	usiness Days)	1	1	<u> </u>		L				Deli	verab	le le	ш									Comme	ents / Spe	cia <u>l I</u> nst	ructions
x 10 Business Days		Approved By (S	iGS PM): / Date:		=	•	nercial "A nercial "B						IYASP					000	QSM5						33	HR
5 Business Days					1 7		educed (L		٤,		F		AA MCI	_	-									ssm en t.		_ · `
3 Business Days*						Full 7	ier I (Lev	ol 4)			Č	۶ ر	T RCP	Crite	eria							ab	ei vert	fication.		•
2 Business Days							nercial "C	•			Ē	_ `	itate Fo													
1 Business Day						ום נא		ammera	ial "A" = 1	Results		_				i (4-file) - OC Sun	marv									
All data available via La	blink A	proval needed f			Ь.,			Comm	ercial "C	' = Res	ults + C	QC Şu	mmary	+ Parti	al Raw	data						h	tp://www	sqs.com	/en/tern	ns-and-conditions
Religquished by:	Arcadis 7/19	122/1600	Received By:	ple Custod	y injust b	docur	nented b	BIOW BB	ch time s		s cha uished		088 88	OA	D V	ing cou 1	rier del	ivery. フノ	Data Ti	ime:/g	30	Receive	d By:	hm o	IZ.	M
Relinquished by:	Date / Tim	100					Ву	/ 3	u-	W			///	Date / Ti	10		Receive	d By: 7	V 7 7 (VL	110						
Relinquished by:	Date / Tim	•:	Received By							Custo	dy Seal					Intact Not intac	<u>. </u>	Absent			Therm See Ser	ID: nple Rece	pl Summer	On Igo	1.00g	Tomp 27. 1
																								43	14	40

JD69542: Chain of Custody Page 1 of 2

SGS Sample Receipt Summary

Job Number:	JD69542 Clien	t: ARCADIS U.S.		Project: OLD ERIE CAI	NAL SITE, 124 COLUMBIA S
Date / Time Received:	7/19/2023 10:30:00 AM	Delivery Method:	FED EX	Airbill #'s:	
Cooler Temps (Cor	asured) °C: Cooler 1: (1.9 rected) °C: Cooler 1: (1.9	S); Cooler 2: (2.4);			
Cooler Security 1. Custody Seals Present: 2. Custody Seals Intact: Cooler Temperature 1. Temp criteria achieved:	✓	Present:	Sample labe Container lal Sample cont	rity - Documentation els present on bottles: beling complete: tainer label / COC agree: grity - Condition	Y or N Z V O Y O Y O N
Cooler temp verification Cooler media: No. Coolers:	Ice (Bag)		 Sample recv All container Condition of 	rs accounted for:	✓ □ Intact
1. Trip Blank present / coo 2. Trip Blank listed on COO 3. Samples preserved prop 4. VOCs headspace free:	ler: 🗸 🗆 🖸		Analysis rece Bottles rece Sufficient vo	grity - Instructions quested is clear: eived for unspecified tests plume recyd for analysis: g instructions clear:	Y or N N/A V V V V V
v C Co noadopado noo.		_	· ·	tructions clear:	
Test Strip Lot #s:	pH 1-12:231619	pH 12+:	203117A	Other: (Specify)	
Comments					

SM089-03 Rev. Date 12/7/17

JD69542: Chain of Custody

Page 2 of 2

Sample Summary

Arcadis

Job No: JD69729

Old Erie Canal Site, 124 Columbia Street, Clyde, NY

Project No: ALL31778.6000.00008

Sample Collected Matrix Client
Number Date Time By Received Code Type Sample ID

This report contains results reported as ND = Not detected. The following applies:

Organics ND = Not detected above the MDL
Metals ND = Not detected above the MDL
General Chemistry ND = Not detected above the MDL

JD69729-1 07/19/23 11:00 KCF 07/21/23 AQ Ground Water **CANAL-UPSTREAM** JD69729-2 **CANAL-DOWNSTREAM** 07/19/23 11:25 KCF 07/21/23 AQ **Ground Water** JD69729-3 07/20/23 08:35 KCF 07/21/23 AQ **Ground Water** MW-7S JD69729-3D 07/20/23 08:35 KCF 07/21/23 AQ Water Dup/MSD MW-7S (MSD) JD69729-3DF 07/20/23 08:35 KCF 07/21/23 AQ Water Dup/MSD MW-7S (MSD) JD69729-3F 07/20/23 08:35 KCF 07/21/23 AQ Groundwater Filtered MW-7S JD69729-3S 07/20/23 08:35 KCF 07/21/23 AQ Water Matrix Spike MW-7S (MS) JD69729-3SF 07/20/23 08:35 KCF 07/21/23 AQ Water Matrix Spike MW-7S (MS) JD69729-4 07/20/23 08:25 BKW 07/21/23 AQ **Ground Water MW-13S** JD69729-4F 07/20/23 08:25 BKW 07/21/23 AQ **Groundwater Filtered MW-13S** JD69729-5 07/20/23 10:50 KCF 07/21/23 AQ **Ground Water** MW-4S

Draft: 1 of 53

Sample Summary (continued)

Arcadis

Old Erie Canal Site, 124 Columbia Street, Clyde, NY Project No: ALL31778.6000.00008

Troject ivo.							
Sample Number	Collected Date		Ву	Received	Matri Code		Client Sample ID
JD69729-5F	07/20/23	10:50	KCF	07/21/23	AQ	Groundwater Filtered	MW-4S
JD69729-6	07/20/23	12:25	KCF	07/21/23	AQ	Ground Water	MW-4B
JD69729-6F	07/20/23	12:25	KCF	07/21/23	AQ	Groundwater Filtered	MW-4B
JD69729-7	07/20/23	10:35	BKW	07/21/23	AQ	Ground Water	MW-6S
JD69729-7F	07/20/23	10:35	BKW	07/21/23	AQ	Groundwater Filtered	MW-6S
JD69729-8	07/20/23	13:30	BKW	07/21/23	AQ	Ground Water	MW-6B
JD69729-8F	07/20/23	13:30	BKW	07/21/23	AQ	Groundwater Filtered	MW-6B
JD69729-9	07/20/23	14:25	KCF	07/21/23	AQ	Ground Water	MW-5B
JD69729-9F	07/20/23	14:25	KCF	07/21/23	AQ	Groundwater Filtered	MW-5B
JD69729-10	07/20/23	14:25		07/21/23	AQ	Trip Blank Water	TB-02-20230720

Draft: 2 of 53

JD69729

Job No:

Client Sample ID: CANAL-UPSTREAM

Lab Sample ID:JD69729-1Date Sampled:07/19/23Matrix:AQ - Ground WaterDate Received:07/21/23Method:SW846 8260DPercent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 1J4330.D 1 07/24/23 14:54 KD n/a n/a V1J144

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone ^a	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane b	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.8	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane ^a	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane ^a	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	
591-78-6	2-Hexanone	ND	5.0	4.8	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: CANAL-UPSTREAM

Lab Sample ID:JD69729-1Date Sampled:07/19/23Matrix:AQ - Ground WaterDate Received:07/21/23Method:SW846 8260DPercent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	4.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.56	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.52	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	94%		80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	91%		80-12	20%	
2037-26-5	Toluene-D8	99%		80-12	20%	
460-00-4	4-Bromofluorobenzene	98%		82-11	4%	

⁽a) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

⁽b) Associated CCV outside of control limits high, sample was ND.

Client Sample ID: CANAL-DOWNSTREAM

Lab Sample ID:JD69729-2Date Sampled:07/19/23Matrix:AQ - Ground WaterDate Received:07/21/23Method:SW846 8260DPercent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 1J4331.D 1 07/24/23 15:19 KD n/a n/a V1J144

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone ^a	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane b	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.8	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane ^a	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane ^a	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	
591-78-6	2-Hexanone	ND	5.0	4.8	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: CANAL-DOWNSTREAM

Lab Sample ID:JD69729-2Date Sampled:07/19/23Matrix:AQ - Ground WaterDate Received:07/21/23Method:SW846 8260DPercent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	4.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.56	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.52	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	93%		80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	91%		80-12	20%	
2037-26-5	Toluene-D8	100%		80-12	20%	
460-00-4	4-Bromofluorobenzene	98%		82-1 1	l 4 %	

⁽a) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

⁽b) Associated CCV outside of control limits high, sample was ND.

Client Sample ID: MW-7S

Lab Sample ID: JD69729-3 Date Sampled: 07/20/23

Matrix: AQ - Ground Water Date Received: 07/21/23

Method: SW846 8260D Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 1J4329.D 1 07/24/23 14:29 KD n/a n/a V1J144

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone a	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane b	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.8	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane ^a	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane ^a	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	
591-78-6	2-Hexanone	ND	5.0	4.8	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-7S

Lab Sample ID:JD69729-3Date Sampled:07/20/23Matrix:AQ - Ground WaterDate Received:07/21/23Method:SW846 8260DPercent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	4.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.56	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.52	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	93%		80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	91%		80-12	20%	
2037-26-5	Toluene-D8	100%		80-12	20%	
460-00-4	4-Bromofluorobenzene	97%		82-1 1	l 4 %	

⁽a) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

⁽b) Associated CCV outside of control limits high, sample was ND.

Client Sample ID: MW-7S

Lab Sample ID:JD69729-3Date Sampled:07/20/23Matrix:AQ - Ground WaterDate Received:07/21/23Method:RSK-175Percent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	AA102911.D	1	07/25/23 08:19	WC	n/a	n/a	GAA2848
Run #2	AA102913.D	100	07/25/23 08:46	WC	n/a	n/a	GAA2848

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	4730 a	11	8.0	ug/l	
74-84-0	Ethane	52.0	0.23	0.14	ug/l	
74-85-1	Ethene	ND	0.31	0.16	ug/l	

⁽a) Result is from Run# 2

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

 $J = \ Indicates \ an \ estimated \ value$

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: MW-7S

Lab Sample ID: JD69729-3 Date Sampled: 07/20/23
Matrix: AQ - Ground Water Date Received: 07/21/23
Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	18900	100	32	ug/l	1	07/24/23	07/27/23 ND	SW846 6010D ¹	SW846 3010A ²
Manganese	2370	15	1.4	ug/l	1	07/24/23	07/27/23 ND	SW846 6010D ¹	SW846 3010A ²

(1) Instrument QC Batch: MA54513

(2) Prep QC Batch: MP40928

RL = Reporting Limit MDL = Method Detection Limit ND = Not detected

 $J = Indicates \ a \ result > = \ MDL \ but < \ RL$

Page 1 of 1

Client Sample ID: MW-7S

Lab Sample ID: JD69729-3 Date Sampled: 07/20/23 Matrix: AQ - Ground Water Date Received: 07/21/23 Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

General Chemistry

Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Sulfate	202	2.0	0.89	mg/l	1	07/25/23 03:15 SS EPA 300/SW846 9056A
Sulfide	ND	2.0	0.48	mg/l	1	07/24/23 14:32 MP SM4500S2- F-11
Total Organic Carbon	3.0	1.0	0.10	mg/l	1	07/24/23 19:19 MB SM5310 B-11/14

RL = Reporting Limit

MDL = Method Detection Limit

ND = Not detected

J = Indicates a result > = MDL but < RL

Page 1 of 1

Client Sample ID: MW-7S

Lab Sample ID: JD69729-3F Date Sampled: 07/20/23
Matrix: AQ - Groundwater Filtered Date Received: 07/21/23
Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

Dissolved Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	18100	100	32	ug/l	1	07/24/23	07/27/23 ND	SW846 6010D ¹	SW846 3010A ²
Manganese	2260	15	1.4	ug/l	1	07/24/23	07/27/23 ND	SW846 6010D ¹	SW846 3010A ²

(1) Instrument QC Batch: MA54513

(2) Prep QC Batch: MP40928

RL = Reporting Limit MDL = Method Detection Limit ND = Not detected

 $J = Indicates \ a \ result > = \ MDL \ but < \ RL$

Client Sample ID: MW-13S

Lab Sample ID:JD69729-4Date Sampled:07/20/23Matrix:AQ - Ground WaterDate Received:07/21/23Method:SW846 8260DPercent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 1J4339.D 50 07/24/23 18:37 KD n/a n/a V1J144

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone b	ND	500	150	ug/l	
71-43-2	Benzene	ND	25	21	ug/l	
74-97-5	Bromochloromethane	ND	50	24	ug/l	
75-27-4	Bromodichloromethane	ND	50	23	ug/l	
75-25-2	Bromoform	ND	50	32	ug/l	
74-83-9	Bromomethane ^c	ND	100	82	ug/l	
78-93-3	2-Butanone (MEK)	ND	500	140	ug/l	
75-15-0	Carbon disulfide	ND	100	90	ug/l	
56-23-5	Carbon tetrachloride	ND	50	28	ug/l	
108-90-7	Chlorobenzene	ND	50	28	ug/l	
75-00-3	Chloroethane ^b	ND	50	36	ug/l	
67-66-3	Chloroform	ND	50	25	ug/l	
74-87-3	Chloromethane b	ND	50	38	ug/l	
110-82-7	Cyclohexane	ND	250	39	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	100	26	ug/l	
124-48-1	Dibromochloromethane	ND	50	28	ug/l	
106-93-4	1,2-Dibromoethane	ND	50	24	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	50	27	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	50	27	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	50	25	ug/l	
75-71-8	Dichlorodifluoromethane	ND	100	28	ug/l	
75-34-3	1,1-Dichloroethane	ND	50	28	ug/l	
107-06-2	1,2-Dichloroethane	ND	50	30	ug/l	
75-35-4	1,1-Dichloroethene	ND	50	30	ug/l	
156-59-2	cis-1,2-Dichloroethene	8010	50	25	ug/l	
156-60-5	trans-1,2-Dichloroethene	40.6	50	27	ug/l	J
78-87-5	1,2-Dichloropropane	ND	50	25	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	50	24	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	50	22	ug/l	
100-41-4	Ethylbenzene	ND	50	30	ug/l	
76-13-1	Freon 113	ND	250	29	ug/l	
591-78-6	2-Hexanone	ND	250	240	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-13S

Lab Sample ID:JD69729-4Date Sampled:07/20/23Matrix:AQ - Ground WaterDate Received:07/21/23Method:SW846 8260DPercent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
98-82-8	Isopropylbenzene	ND	50	32	ug/l	
79-20-9	Methyl Acetate	ND	250	40	ug/l	
108-87-2	Methylcyclohexane	ND	250	30	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	50	25	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	250	240	ug/l	
75-09-2	Methylene chloride	ND	100	50	ug/l	
100-42-5	Styrene	ND	50	24	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	50	33	ug/l	
127-18-4	Tetrachloroethene	ND	50	28	ug/l	
108-88-3	Toluene	ND	50	25	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	50	25	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	50	25	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	50	27	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	50	27	ug/l	
79-01-6	Trichloroethene	ND	50	26	ug/l	
75-69-4	Trichlorofluoromethane	ND	100	20	ug/l	
75-01-4	Vinyl chloride	3920	50	26	ug/l	
	m, p-Xylene	ND	50	39	ug/l	
95-47-6	o-Xylene	ND	50	30	ug/l	
1330-20-7	Xylene (total)	ND	50	30	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	93%		80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	90%		80-12	20%	
2037-26-5	Toluene-D8	100%		80-12	20%	
460-00-4	4-Bromofluorobenzene	100%		82-1 1	l 4 %	

⁽a) Dilution required due to high concentration of target compound.

⁽b) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

⁽c) Associated CCV outside of control limits high, sample was ND.

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Client Sample ID: MW-13S

Lab Sample ID:JD69729-4Date Sampled:07/20/23Matrix:AQ - Ground WaterDate Received:07/21/23Method:RSK-175Percent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	AA102914.D	1	07/25/23 08:59	WC	n/a	n/a	GAA2848
Run #2	AA102916.D	5	07/25/23 09:26	WC	n/a	n/a	GAA2848
Run #3	AA102915.D	25	07/25/23 09:13	WC	n/a	n/a	GAA2848

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	1690 a	2.8	2.0	ug/l	
74-84-0	Ethane	1.9	0.23	0.14	ug/l	
74-85-1	Ethene	515 b	1.6	0.80	ug/l	

⁽a) Result is from Run# 3

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Draft: 15 of 53

⁽b) Result is from Run# 2

Page 1 of 1

Client Sample ID: MW-13S

Lab Sample ID: JD69729-4 Date Sampled: 07/20/23
Matrix: AQ - Ground Water Date Received: 07/21/23
Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron Manganese	334 81.4	100 15	32 1.4	ug/l ug/l	1 1			SW846 6010D ¹ SW846 6010D ¹	SW846 3010A ² SW846 3010A ²

(1) Instrument QC Batch: MA54513

(2) Prep QC Batch: MP40928

RL = Reporting Limit MDL = Method Detection Limit ND = Not detected

 $J = Indicates \ a \ result > = \ MDL \ but < \ RL$

Page 1 of 1

Client Sample ID: MW-13S

Lab Sample ID: JD69729-4 **Date Sampled: 07/20/23** Matrix: AQ - Ground Water Date Received: 07/21/23 Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

General Chemistry

Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Sulfate	711	6.0	2.7	mg/l	3	07/25/23 14:34 JD EPA 300/SW846 9056A
Sulfide	13.2	2.0	0.48	mg/l	1	07/24/23 14:32 MP SM4500S2- F-11
Total Organic Carbon	33.4	1.0	0.10	mg/l	1	07/24/23 19:54 MB SM5310 B-11/14

RL = Reporting Limit

MDL = Method Detection Limit

J = Indicates a result > = MDL but < RL

ND = Not detected

Page 1 of 1

Client Sample ID: MW-13S

Lab Sample ID: JD69729-4F **Date Sampled: 07/20/23** Date Received: 07/21/23 AQ - Groundwater Filtered Matrix:

Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

Dissolved Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	343	100	32	ug/l	1		07/27/23 ND	SW846 6010D ¹	SW846 3010A ²
Manganese	83.8	15	1.4	ug/l	1		07/27/23 ND	SW846 6010D ¹	SW846 3010A ²

(1) Instrument QC Batch: MA54513

(2) Prep QC Batch: MP40928

RL = Reporting Limit MDL = Method Detection Limit ND = Not detected

 $J = Indicates \ a \ result > = \ MDL \ but < \ RL$

Client Sample ID: MW-4S Lab Sample ID: JD69729-5

Lab Sample ID:JD69729-5Date Sampled:07/20/23Matrix:AQ - Ground WaterDate Received:07/21/23Method:SW846 8260DPercent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 1J4340.D 1 07/24/23 19:02 KD n/a n/a V1J144

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone ^a	ND	10	3.1	ug/l	
71-43-2	Benzene	0.55	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane b	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.8	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane ^a	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane ^a	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	
591-78-6	2-Hexanone	ND	5.0	4.8	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: MW-4S

Lab Sample ID:JD69729-5Date Sampled:07/20/23Matrix:AQ - Ground WaterDate Received:07/21/23Method:SW846 8260DPercent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	4.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.56	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.52	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7	Dibromofluoromethane	94%		80-1	20%	
17060-07-0	1,2-Dichloroethane-D4	89%		80-1	20%	
2037-26-5	Toluene-D8	101%		80-1	20%	
460-00-4	4-Bromofluorobenzene	97%		82-1	14%	

⁽a) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

⁽b) Associated CCV outside of control limits high, sample was ND.

Client Sample ID: MW-4S

Lab Sample ID:JD69729-5Date Sampled:07/20/23Matrix:AQ - Ground WaterDate Received:07/21/23Method:RSK-175Percent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	AA102917.D	1	07/25/23 09:44	WC	n/a	n/a	GAA2848
Run #2	AA102918.D	5	07/25/23 09:58	WC	n/a	n/a	GAA2848
Run #3	AA102919.D	100	07/25/23 10:24	WC	n/a	n/a	GAA2848

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	4890 a	11	8.0	ug/l	
74-84-0	Ethane	420 b	1.2	0.70	ug/l	
74-85-1	Ethene	7.78	0.31	0.16	ug/l	

⁽a) Result is from Run# 3

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

⁽b) Result is from Run# 2

Page 1 of 1

Client Sample ID: MW-4S

Lab Sample ID: JD69729-5 Date Sampled: 07/20/23 Matrix: AQ - Ground Water Date Received: 07/21/23 Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

Total Metals Analysis

Iron 19500 100 Manganese 1990 15	32	ug/l ug/l	1	07/27/23 ND 07/27/23 ND	SW846 6010D ¹ SW846 6010D ¹	SW846 3010A ² SW846 3010A ²

(1) Instrument QC Batch: MA54513

(2) Prep QC Batch: MP40928

RL = Reporting Limit MDL = Method Detection Limit ND = Not detected

 $J = Indicates \ a \ result > = \ MDL \ but < \ RL$

Page 1 of 1

Client Sample ID: MW-4S

Lab Sample ID: JD69729-5 Date Sampled: 07/20/23
Matrix: AQ - Ground Water Date Received: 07/21/23
Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

General Chemistry

Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Sulfate	8.7	2.0	0.89	mg/l	1	07/25/23 03:41 SS EPA 300/SW846 9056A
Sulfide	ND	2.0	0.48	mg/l	1	07/24/23 14:32 MP SM4500S2- F-11
Total Organic Carbon	5.3	1.0	0.10	mg/l	1	07/24/23 20:05 MB SM5310 B-11/14

RL = Reporting Limit MDL = Method Detection Limit ND = Not detected

J = Indicates a result > = MDL but < RL

Page 1 of 1

Client Sample ID: MW-4S

Lab Sample ID: JD69729-5F Date Sampled: 07/20/23
Matrix: AQ - Groundwater Filtered Date Received: 07/21/23
Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

Dissolved Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron Manganese	18000 2080	100 15	32 1.4	ug/l ug/l	1		07/27/23 ND 07/27/23 ND	SW846 6010D ¹ SW846 6010D ¹	SW846 3010A ² SW846 3010A ²

(1) Instrument QC Batch: MA54513

(2) Prep QC Batch: MP40928

RL = Reporting Limit MDL = Method Detection Limit ND = Not detected

J = Indicates a result > = MDL but < RL

Client Sample ID: MW-4B

Lab Sample ID: JD69729-6 Date Sampled: 07/20/23

Matrix: AQ - Ground Water Date Received: 07/21/23

Method: SW846 8260D Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 a	1J4341.D	100	07/24/23 19:27	KD	n/a	n/a	V1J144
Run #2	1J4394.D	1000	07/25/23 15:08	KD	n/a	n/a	V1J146

	Purge Volume		
Run #1	5.0 ml		
Run #2	5.0 ml		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone b	ND	1000	310	ug/l	
71-43-2	Benzene	ND	50	43	ug/l	
74-97-5	Bromochloromethane	ND	100	48	ug/l	
75-27-4	Bromodichloromethane	ND	100	45	ug/l	
75-25-2	Bromoform	ND	100	63	ug/l	
74-83-9	Bromomethane ^c	ND	200	160	ug/l	
78-93-3	2-Butanone (MEK)	ND	1000	270	ug/l	
75-15-0	Carbon disulfide	ND	200	180	ug/l	
56-23-5	Carbon tetrachloride	ND	100	55	ug/l	
108-90-7	Chlorobenzene	ND	100	56	ug/l	
75-00-3	Chloroethane b	ND	100	73	ug/l	
67-66-3	Chloroform	ND	100	50	ug/l	
74-87-3	Chloromethane ^b	ND	100	76	ug/l	
110-82-7	Cyclohexane	ND	500	78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	200	53	ug/l	
124-48-1	Dibromochloromethane	ND	100	56	ug/l	
106-93-4	1,2-Dibromoethane	ND	100	48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	100	53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	100	54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	100	51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	200	56	ug/l	
75-34-3	1,1-Dichloroethane	ND	100	57	ug/l	
107-06-2	1,2-Dichloroethane	ND	100	60	ug/l	
75-35-4	1,1-Dichloroethene	238	100	59	ug/l	
156-59-2	cis-1,2-Dichloroethene	56100 ^d	1000	510	ug/l	
156-60-5	trans-1,2-Dichloroethene	235	100	54	ug/l	
78-87-5	1,2-Dichloropropane	ND	100	51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	100	47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	100	43	ug/l	
100-41-4	Ethylbenzene	162	100	60	ug/l	
76-13-1	Freon 113	ND	500	58	ug/l	
591-78-6	2-Hexanone	ND	500	480	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-4B

Lab Sample ID:JD69729-6Date Sampled:07/20/23Matrix:AQ - Ground WaterDate Received:07/21/23Method:SW846 8260DPercent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
98-82-8	Isopropylbenzene	ND	100	65	ug/l	
79-20-9	Methyl Acetate	ND	500	80	ug/l	
108-87-2	Methylcyclohexane	ND	500	60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	100	51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	500	490	ug/l	
75-09-2	Methylene chloride	ND	200	100	ug/l	
100-42-5	Styrene	ND	100	49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	100	65	ug/l	
127-18-4	Tetrachloroethene	ND	100	56	ug/l	
108-88-3	Toluene	2680	100	49	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	100	50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	100	50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	100	54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	100	53	ug/l	
79-01-6	Trichloroethene	7800	100	53	ug/l	
75-69-4	Trichlorofluoromethane	ND	200	40	ug/l	
75-01-4	Vinyl chloride	28300 d	1000	520	ug/l	
	m,p-Xylene	392	100	78	ug/l	
95-47-6	o-Xylene	101	100	59	ug/l	
1330-20-7	Xylene (total)	493	100	59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	92%	90%	80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	92%	92%	80-12	20%	
2037-26-5	Toluene-D8	99%	99%	80-12	20%	
460-00-4	4-Bromofluorobenzene	100%	98%	82-11	l 4 %	

⁽a) Dilution required due to high concentration of target compound.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

⁽b) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

⁽c) Associated CCV outside of control limits high, sample was ND.

⁽d) Result is from Run# 2

Client Sample ID: MW-4B Lab Sample ID: JD69729-6 **Date Sampled: 07/20/23** Matrix: AQ - Ground Water Date Received: 07/21/23 Method: **RSK-175** Percent Solids: n/a

Old Erie Canal Site, 124 Columbia Street, Clyde, NY **Project:**

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 a	AA102920.D	1	07/25/23 10:38	WC	n/a	n/a	GAA2848
Run #2 a	AA102921.D	10	07/25/23 11:05	WC	n/a	n/a	GAA2848
Run #3 a	AA102922.D	100	07/25/23 11:23	WC	n/a	n/a	GAA2848

CAS No.	Compound	Result	RL	MDL	Units
74-82-8	Methane	5510 b	11	8.0	ug/l
74-84-0	Ethane	187	0.23	0.14	ug/l
74-85-1	Ethene	1410 ^c	3.1	1.6	ug/l

⁽a) 5mm diameter bubble present in headspace.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blankN = Indicates presumptive evidence of a compound

Q

⁽b) Result is from Run# 3

⁽c) Result is from Run# 2

Page 1 of 1

Client Sample ID: MW-4B

Lab Sample ID: JD69729-6 Date Sampled: 07/20/23 Matrix: AQ - Ground Water Date Received: 07/21/23 Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	ND	100	32	ug/l	1	07/25/23	07/26/23 ND	SW846 6010D ¹	SW846 3010A ²
Manganese	79.8	15	1.4	ug/l	1	07/25/23	07/26/23 ND	SW846 6010D ¹	SW846 3010A ²

(1) Instrument QC Batch: MA54508

(2) Prep QC Batch: MP40940

RL = Reporting Limit MDL = Method Detection Limit ND = Not detected

J = Indicates a result > = MDL but < RL

Page 1 of 1

Client Sample ID: MW-4B

Lab Sample ID: JD69729-6 Date Sampled: 07/20/23
Matrix: AQ - Ground Water Date Received: 07/21/23
Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

General Chemistry

Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Sulfate	248	2.0	0.89	mg/l	1	07/25/23 03:54 SS
Sulfide	178	2.0	0.48	mg/l	1	
Total Organic Carbon	97.6	5.0	0.50	mg/l	5	

RL = Reporting Limit

MDL = Method Detection Limit

ND = Not detected

J = Indicates a result > = MDL but < RL

Page 1 of 1

Client Sample ID: MW-4B

Lab Sample ID: JD69729-6F Date Sampled: 07/20/23
Matrix: AQ - Groundwater Filtered Date Received: 07/21/23
Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

Dissolved Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron Manganese	ND 80.7	100 15	32 1.4	ug/l ug/l	1		07/26/23 ND 07/26/23 ND	SW846 6010D ¹ SW846 6010D ¹	SW846 3010A ² SW846 3010A ²

(1) Instrument QC Batch: MA54508

(2) Prep QC Batch: MP40940

RL = Reporting Limit MDL = Method Detection Limit ND = Not detected

 $J = Indicates \ a \ result > = \ MDL \ but < \ RL$

Client Sample ID: MW-6S

Lab Sample ID:JD69729-7Date Sampled:07/20/23Matrix:AQ - Ground WaterDate Received:07/21/23Method:SW846 8260DPercent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 1J4342.D 10 07/24/23 19:52 KD n/a n/a V1J144

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone a	ND	100	31	ug/l	
71-43-2	Benzene	4.7	5.0	4.3	ug/l	J
74-97-5	Bromochloromethane	ND	10	4.8	ug/l	
75-27-4	Bromodichloromethane	ND	10	4.5	ug/l	
75-25-2	Bromoform	ND	10	6.3	ug/l	
74-83-9	Bromomethane b	ND	20	16	ug/l	
78-93-3	2-Butanone (MEK)	ND	100	27	ug/l	
75-15-0	Carbon disulfide	ND	20	18	ug/l	
56-23-5	Carbon tetrachloride	ND	10	5.5	ug/l	
108-90-7	Chlorobenzene	ND	10	5.6	ug/l	
75-00-3	Chloroethane ^a	ND	10	7.3	ug/l	
67-66-3	Chloroform	ND	10	5.0	ug/l	
74-87-3	Chloromethane ^a	ND	10	7.6	ug/l	
110-82-7	Cyclohexane	ND	50	7.8	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	20	5.3	ug/l	
124-48-1	Dibromochloromethane	ND	10	5.6	ug/l	
106-93-4	1,2-Dibromoethane	ND	10	4.8	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	10	5.3	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	10	5.4	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	10	5.1	ug/l	
75-71-8	Dichlorodifluoromethane	ND	20	5.6	ug/l	
75-34-3	1,1-Dichloroethane	ND	10	5.7	ug/l	
107-06-2	1,2-Dichloroethane	ND	10	6.0	ug/l	
75-35-4	1,1-Dichloroethene	ND	10	5.9	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	10	5.1	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	10	5.4	ug/l	
78-87-5	1,2-Dichloropropane	ND	10	5.1	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	10	4.7	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	10	4.3	ug/l	
100-41-4	Ethylbenzene	29.2	10	6.0	ug/l	
76-13-1	Freon 113	ND	50	5.8	ug/l	
591-78-6	2-Hexanone	ND	50	48	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 2

Client Sample ID: MW-6S

Lab Sample ID:JD69729-7Date Sampled:07/20/23Matrix:AQ - Ground WaterDate Received:07/21/23Method:SW846 8260DPercent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
98-82-8	Isopropylbenzene	ND	10	6.5	ug/l	
79-20-9	Methyl Acetate	ND	50	8.0	ug/l	
108-87-2	Methylcyclohexane	ND	50	6.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	10	5.1	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	50	49	ug/l	
75-09-2	Methylene chloride	ND	20	10	ug/l	
100-42-5	Styrene	ND	10	4.9	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	10	6.5	ug/l	
127-18-4	Tetrachloroethene	ND	10	5.6	ug/l	
108-88-3	Toluene	1640	10	4.9	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	10	5.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	10	5.0	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	10	5.4	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	10	5.3	ug/l	
79-01-6	Trichloroethene	ND	10	5.3	ug/l	
75-69-4	Trichlorofluoromethane	ND	20	4.0	ug/l	
75-01-4	Vinyl chloride	36.5	10	5.2	ug/l	
	m,p-Xylene	203	10	7.8	ug/l	
95-47-6	o-Xylene	37.2	10	5.9	ug/l	
1330-20-7	Xylene (total)	240	10	5.9	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	92%		80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	89%		80-12	20%	
2037-26-5	Toluene-D8	100%		80-12	20%	
460-00-4	4-Bromofluorobenzene	98%		82-1 1	l 4 %	

⁽a) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

⁽b) Associated CCV outside of control limits high, sample was ND.

Client Sample ID: MW-6S

Lab Sample ID:JD69729-7Date Sampled:07/20/23Matrix:AQ - Ground WaterDate Received:07/21/23Method:RSK-175Percent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	AA102924.D	10	07/25/23 12:30	WC	n/a	n/a	GAA2848
Run #2	AA102925.D	100	07/25/23 12:45	WC	n/a	n/a	GAA2848

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	4640 a	11	8.0	ug/l	
74-84-0	Ethane	868	2.3	1.4	ug/l	
74-85-1	Ethene	1230	3.1	1.6	ug/l	

⁽a) Result is from Run# 2

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

 $J = \ Indicates \ an \ estimated \ value$

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Draft: 33 of 53

Page 1 of 1

Client Sample ID: MW-6S

Lab Sample ID: JD69729-7 Date Sampled: 07/20/23
Matrix: AQ - Ground Water Date Received: 07/21/23
Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	122000	100	32	ug/l	1		07/27/23 ND	SW846 6010D ¹	SW846 3010A ²
Manganese	3570	15	1.4	ug/l	1		07/27/23 ND	SW846 6010D ¹	SW846 3010A ²

(1) Instrument QC Batch: MA54513

(2) Prep QC Batch: MP40928

RL = Reporting Limit MDL = Method Detection Limit ND = Not detected

 $J = Indicates \ a \ result > = \ MDL \ but < \ RL$

Page 1 of 1

Client Sample ID: MW-6S

Lab Sample ID: JD69729-7 Date Sampled: 07/20/23 Matrix: AQ - Ground Water Date Received: 07/21/23 Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

General Chemistry

Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Sulfate	1.9 J	2.0	0.89	mg/l	1	07/25/23 04:07 SS
Sulfide	ND	2.0	0.48	mg/l	1	
Total Organic Carbon	155	10	1.0	mg/l	10	

RL = Reporting Limit MDL = Method Detection Limit ND = Not detected

J = Indicates a result > = MDL but < RL

Page 1 of 1

Client Sample ID: MW-6S

Lab Sample ID: JD69729-7F Date Sampled: 07/20/23
Matrix: AQ - Groundwater Filtered Date Received: 07/21/23
Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

Dissolved Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	118000	100	32	ug/l	1	07/24/23	07/27/23 ND	SW846 6010D ¹	SW846 3010A ²
Manganese	3550	15	1.4	ug/l	1	07/24/23	07/27/23 ND	SW846 6010D ¹	SW846 3010A ²

(1) Instrument QC Batch: MA54513

(2) Prep QC Batch: MP40928

RL = Reporting Limit MDL = Method Detection Limit ND = Not detected

 $J = Indicates \ a \ result > = \ MDL \ but < \ RL$

Client Sample ID: MW-6B
Lab Sample ID: JD69729-8 Date Sampled: 07/20/23
Matrix: AQ - Ground Water Date Received: 07/21/23
Method: SW846 8260D Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 a	1J4343.D	100	07/24/23 20:17	KD	n/a	n/a	V1J144
Run #2	1J4397.D	1000	07/25/23 16:23	KD	n/a	n/a	V1J146

	Purge Volume	
Run #1	5.0 ml	
Run #2	5.0 ml	

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone ^b	ND	1000	310	ug/l	
71-43-2	Benzene	ND	50	43	ug/l	
74-97-5	Bromochloromethane	ND	100	48	ug/l	
75-27-4	Bromodichloromethane	ND	100	45	ug/l	
75-25-2	Bromoform	ND	100	63	ug/l	
74-83-9	Bromomethane ^c	ND	200	160	ug/l	
78-93-3	2-Butanone (MEK)	ND	1000	270	ug/l	
75-15-0	Carbon disulfide	ND	200	180	ug/l	
56-23-5	Carbon tetrachloride	ND	100	55	ug/l	
108-90-7	Chlorobenzene	ND	100	56	ug/l	
75-00-3	Chloroethane ^b	ND	100	73	ug/l	
67-66-3	Chloroform	ND	100	50	ug/l	
74-87-3	Chloromethane ^b	ND	100	76	ug/l	
110-82-7	Cyclohexane	ND	500	78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	200	53	ug/l	
124-48-1	Dibromochloromethane	ND	100	56	ug/l	
106-93-4	1,2-Dibromoethane	ND	100	48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	100	53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	100	54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	100	51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	200	56	ug/l	
75-34-3	1,1-Dichloroethane	ND	100	57	ug/l	
107-06-2	1,2-Dichloroethane	ND	100	60	ug/l	
75-35-4	1,1-Dichloroethene	88.4	100	59	ug/l	J
156-59-2	cis-1,2-Dichloroethene	33300 d	1000	510	ug/l	
156-60-5	trans-1,2-Dichloroethene	158	100	54	ug/l	
78-87-5	1,2-Dichloropropane	ND	100	51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	100	47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	100	43	ug/l	
100-41-4	Ethylbenzene	ND	100	60	ug/l	
76-13-1	Freon 113	ND	500	58	ug/l	
591-78-6	2-Hexanone	ND	500	480	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Client Sample ID: MW-6B

Lab Sample ID: JD69729-8 **Date Sampled:** 07/20/23 Matrix: AQ - Ground Water Date Received: 07/21/23 Method: SW846 8260D Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
98-82-8	Isopropylbenzene	ND	100	65	ug/l	
79-20-9	Methyl Acetate	ND	500	80	ug/l	
108-87-2	Methylcyclohexane	ND	500	60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	100	51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	500	490	ug/l	
75-09-2	Methylene chloride	ND	200	100	ug/l	
100-42-5	Styrene	ND	100	49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	100	65	ug/l	
127-18-4	Tetrachloroethene	ND	100	56	ug/l	
108-88-3	Toluene	74.8	100	49	ug/l	J
87-61-6	1,2,3-Trichlorobenzene	ND	100	50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	100	50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	100	54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	100	53	ug/l	
79-01-6	Trichloroethene	ND	100	53	ug/l	
75-69-4	Trichlorofluoromethane	ND	200	40	ug/l	
75-01-4	Vinyl chloride	11300	100	52	ug/l	
	m,p-Xylene	ND	100	78	ug/l	
95-47-6	o-Xylene	ND	100	59	ug/l	
1330-20-7	Xylene (total)	ND	100	59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7	Dibromofluoromethane	93%	88%	80-1	20%	
17060-07-0	1,2-Dichloroethane-D4	91%	91%	80-1	20%	
2037-26-5	Toluene-D8	nene-D8 99% 98%		80-120%		
460-00-4	4-Bromofluorobenzene	98%	96%	82-1	14%	

⁽a) Dilution required due to high concentration of target compound.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

⁽b) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

⁽c) Associated CCV outside of control limits high, sample was ND.

⁽d) Result is from Run# 2

Client Sample ID: MW-6B

Lab Sample ID: JD69729-8 Date Sampled: 07/20/23

Matrix: AQ - Ground Water Date Received: 07/21/23

Method: RSK-175 Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	AA102926.D	1	07/25/23 14:04	WC	n/a	n/a	GAA2848
Run #2	AA102927.D	50	07/25/23 14:18	WC	n/a	n/a	GAA2848

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	2130 a	5.5	4.0	ug/l	
74-84-0	Ethane	27.1	0.23	0.14	ug/l	
74-85-1	Ethene	174	0.31	0.16	ug/l	

⁽a) Result is from Run# 2

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Draft: 39 of 53

Page 1 of 1

Client Sample ID: MW-6B

Lab Sample ID: JD69729-8 Date Sampled: 07/20/23
Matrix: AQ - Ground Water Date Received: 07/21/23
Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	1130	100	32	ug/l	1			SW846 6010D ¹	
Manganese	161	15	1.4	ug/l	1	07/24/23	07/27/23 ND	SW846 6010D ¹	SW846 3010

(1) Instrument QC Batch: MA54513

(2) Prep QC Batch: MP40928

RL = Reporting Limit MDL = Method Detection Limit ND = Not detected

 $J = Indicates \ a \ result > = \ MDL \ but < \ RL$

Page 1 of 1

Client Sample ID: MW-6B

Lab Sample ID: JD69729-8 Date Sampled: 07/20/23 Matrix: AQ - Ground Water Date Received: 07/21/23 Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

General Chemistry

Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Sulfate	1170	10	4.4	mg/l	5	07/25/23 14:51 JD EPA 300/SW846 9056A
Sulfide	9.7	2.0	0.48	mg/l	1	07/24/23 14:32 MP SM4500S2- F-11
Total Organic Carbon	3.9	1.0	0.10	mg/l	1	07/24/23 20:43 MB SM5310 B-11/14

RL = Reporting Limit

MDL = Method Detection Limit J = Indicates a result > = MDL but < RL

ND = Not detected

Page 1 of 1

Client Sample ID: MW-6B

Lab Sample ID: JD69729-8F Date Sampled: 07/20/23
Matrix: AQ - Groundwater Filtered Date Received: 07/21/23
Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

Dissolved Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	582	100	32	ug/l	1	07/24/23	07/27/23 ND	SW846 6010D ¹	SW846 3010A ²
Manganese	155	15	1.4	ug/l	1	07/24/23	07/27/23 ND	SW846 6010D ¹	SW846 3010A ²

(1) Instrument QC Batch: MA54513

(2) Prep QC Batch: MP40928

RL = Reporting Limit MDL = Method Detection Limit ND = Not detected

 $J = \ Indicates \ a \ result > = \ MDL \ but < \ RL$

Client Sample ID: MW-5B

Lab Sample ID:JD69729-9Date Sampled:07/20/23Matrix:AQ - Ground WaterDate Received:07/21/23Method:SW846 8260DPercent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 1J4344.D 20 07/24/23 20:41 KD n/a n/a V1J144

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone b	ND	200	61	ug/l	
71-43-2	Benzene	ND	10	8.5	ug/l	
74-97-5	Bromochloromethane	ND	20	9.6	ug/l	
75-27-4	Bromodichloromethane	ND	20	9.0	ug/l	
75-25-2	Bromoform	ND	20	13	ug/l	
74-83-9	Bromomethane ^c	ND	40	33	ug/l	
78-93-3	2-Butanone (MEK)	ND	200	55	ug/l	
75-15-0	Carbon disulfide	ND	40	36	ug/l	
56-23-5	Carbon tetrachloride	ND	20	11	ug/l	
108-90-7	Chlorobenzene	ND	20	11	ug/l	
75-00-3	Chloroethane ^b	ND	20	15	ug/l	
67-66-3	Chloroform	ND	20	10	ug/l	
74-87-3	Chloromethane b	ND	20	15	ug/l	
110-82-7	Cyclohexane	ND	100	16	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	40	11	ug/l	
124-48-1	Dibromochloromethane	ND	20	11	ug/l	
106-93-4	1,2-Dibromoethane	ND	20	9.5	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	20	11	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	20	11	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	20	10	ug/l	
75-71-8	Dichlorodifluoromethane	ND	40	11	ug/l	
75-34-3	1,1-Dichloroethane	ND	20	11	ug/l	
107-06-2	1,2-Dichloroethane	ND	20	12	ug/l	
75-35-4	1,1-Dichloroethene	ND	20	12	ug/l	
156-59-2	cis-1,2-Dichloroethene	896	20	10	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	20	11	ug/l	
78-87-5	1,2-Dichloropropane	ND	20	10	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	20	9.4	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	20	8.6	ug/l	
100-41-4	Ethylbenzene	ND	20	12	ug/l	
76-13-1	Freon 113	ND	100	12	ug/l	
591-78-6	2-Hexanone	ND	100	96	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Client Sample ID: MW-5B

Lab Sample ID:JD69729-9Date Sampled:07/20/23Matrix:AQ - Ground WaterDate Received:07/21/23Method:SW846 8260DPercent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
98-82-8	Isopropylbenzene	ND	20	13	ug/l	
79-20-9	Methyl Acetate	ND	100	16	ug/l	
108-87-2	Methylcyclohexane	ND	100	12	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	20	10	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	100	97	ug/l	
75-09-2	Methylene chloride	ND	40	20	ug/l	
100-42-5	Styrene	ND	20	9.7	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	20	13	ug/l	
127-18-4	Tetrachloroethene	ND	20	11	ug/l	
108-88-3	Toluene	ND	20	9.8	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	20	10	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	20	10	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	20	11	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	20	11	ug/l	
79-01-6	Trichloroethene	2710	20	11	ug/l	
75-69-4	Trichlorofluoromethane	ND	40	8.0	ug/l	
75-01-4	Vinyl chloride	ND	20	10	ug/l	
	m, p-Xylene	ND	20	16	ug/l	
95-47-6	o-Xylene	ND	20	12	ug/l	
1330-20-7	Xylene (total)	ND	20	12	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	93%		80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	92%	80-120%			
2037-26-5	Toluene-D8	99%	80-120%			
460-00-4	4-Bromofluorobenzene	96%		82-1 1	l 4 %	

⁽a) Dilution required due to high concentration of target compound.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

⁽b) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

⁽c) Associated CCV outside of control limits high, sample was ND.

Client Sample ID: MW-5B

Lab Sample ID:JD69729-9Date Sampled:07/20/23Matrix:AQ - Ground WaterDate Received:07/21/23Method:RSK-175Percent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

Run #1	File ID	DF	Analyzed	By	Prep D	ate	Prep Batch	Analytical Batch
Run #2	AA102928.D	1	07/25/23 14:36	WC	n/a		n/a	GAA2848
CAS No.	Compound		Result	RL	MDL	Units	Q	

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	0.28	0.11	0.080	ug/l	
74-84-0	Ethane	0.45	0.23	0.14	ug/l	
74-85-1	Ethene	ND	0.31	0.16	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

 $J = \ Indicates \ an \ estimated \ value$

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-5B

Lab Sample ID: JD69729-9 Date Sampled: 07/20/23 Matrix: AQ - Ground Water Date Received: 07/21/23

Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	65.7 J	100	32	ug/l	1		07/27/23 ND	SW846 6010D ¹	SW846 3010A ²
Manganese	24.3	15	1.4	ug/l	1		07/27/23 ND	SW846 6010D ¹	SW846 3010A ²

(1) Instrument QC Batch: MA54513

(2) Prep QC Batch: MP40928

RL = Reporting Limit MDL = Method Detection Limit ND = Not detected

 $J = Indicates \ a \ result > = \ MDL \ but < \ RL$

Page 1 of 1

Client Sample ID: MW-5B

Lab Sample ID: JD69729-9 Date Sampled: 07/20/23
Matrix: AQ - Ground Water Date Received: 07/21/23
Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

General Chemistry

Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Sulfate	1950	16	7.1	mg/l	8	07/25/23 15:08 JD EPA 300/SW846 9056A
Sulfide	ND	2.0	0.48	mg/l	1	07/24/23 14:32 MP SM4500S2- F-11
Total Organic Carbon	1.3	1.0	0.10	mg/l	1	07/24/23 21:16 MB SM5310 B-11/14

RL = Reporting Limit MDL = Method Detection Limit ND = Not detected

J = Indicates a result > = MDL but < RL

Page 1 of 1

Client Sample ID: MW-5B

Lab Sample ID: JD69729-9F Date Sampled: 07/20/23
Matrix: AQ - Groundwater Filtered Date Received: 07/21/23
Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

Dissolved Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	ND	100	32	ug/l	1	07/24/23	07/27/23 ND	SW846 6010D ¹	SW846 3010A ²
Manganese	ND	15	1.4	ug/l	1	07/24/23	07/27/23 ND	SW846 6010D ¹	SW846 3010A ²

(1) Instrument QC Batch: MA54513

(2) Prep QC Batch: MP40928

RL = Reporting Limit MDL = Method Detection Limit ND = Not detected

 $J = Indicates \ a \ result > = \ MDL \ but < \ RL$

Date Sampled: 07/20/23

Report of Analysis

Client Sample ID: TB-02-20230720 Lab Sample ID: JD69729-10

Matrix: AQ - Trip Blank Water Date Received: 07/21/23 Method: SW846 8260D Percent Solids: n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 1J4338.D 1 07/24/23 18:12 KD n/a n/a V1J144

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone a	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane b	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.8	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane ^a	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane ^a	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	
591-78-6	2-Hexanone	ND	5.0	4.8	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Client Sample ID: TB-02-20230720

Lab Sample ID:JD69729-10Date Sampled:07/20/23Matrix:AQ - Trip Blank WaterDate Received:07/21/23Method:SW846 8260DPercent Solids:n/a

Project: Old Erie Canal Site, 124 Columbia Street, Clyde, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q		
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l			
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l			
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l			
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l			
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	4.9	ug/l			
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l			
100-42-5	Styrene	ND	1.0	0.49	ug/l			
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l			
127-18-4	Tetrachloroethene	ND	1.0	0.56	ug/l			
108-88-3	Toluene	ND	1.0	0.49	ug/l			
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l			
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l			
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l			
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l			
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l			
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l			
75-01-4	Vinyl chloride	ND	1.0	0.52	ug/l			
	m,p-Xylene	ND	1.0	0.78	ug/l			
95-47-6	o-Xylene	ND	1.0	0.59	ug/l			
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l			
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts			
1868-53-7	Dibromofluoromethane	94%		80-12	20%			
17060-07-0	1,2-Dichloroethane-D4	91%		80-12	20%			
2037-26-5	Toluene-D8	100%		80-12	20%			
460-00-4	4-Bromofluorobenzene	96%	82-114%					

⁽a) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Draft: 50 of 53

⁽b) Associated CCV outside of control limits high, sample was ND.

200
565
OUO.

UW	
TB	

CHAIN OF CUSTODY

SGS North America Inc. - Dayton

Page / of I

	0
	~
-	1.
/	_
•	

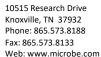
				_			130, Da				_											^	<u>۸۸-</u>	0710	23-	111	
EHSA-QAC-0023-04-FORM-Standard COC		TEL. 732-329-0200 FAX: 732-329-3499/3480 www.sgs.com/ehsusa								SGS G	SGS Quote # 2021 2863						5(18 Jub #)DG7299										
Client / Reporting Information				Projec	t Inform											_	Requested Analysis						Mat	rix Codes			
Company Name:	Project Name	e.														\top		Τ	Ī	1		1					
Arcadis Street Address	Street				Ok	d Erie	e Cana	al Site								4	Filtered)									GW - G	Prinking Wate Ground Water
110 W. Favette Street, Suite 300	24 Colun	nhia S	treet		-				_							1	1	Ē		ŀ			'	1			W - Water Surface Wate
City State Zip	City			State	Compan-		ion (if diffe	rent fron	n Report	to)				_		-		Field	ethene.					1			O-Soll -Sludge
Syracuse, NY 13202	Clyde			NY																						SED	-Sediment
Project Contact E-mail	Project #				Street Ad	idress										٦		Manganese	ethane			ç			1		OI - Oil Other Liquid
Chris Kassel chris.kassel@arcadis.com cc: edward.mason@arcadis.com																	9	Z S		ļ		Carbon		l		A	UR - Air Other Solid
215-671-9127	Client Purcha	ase Order	#		City						State			Z	ıp.		Iron, Manganese	5	d Gasses			Organic C				FB - I	P - Wipe Field Blank
Sampler(s) Name(s) Phone #	Project Mana	ager .			Attention	C										7 8	ž) è	olved (ane)	<u>s</u>	9	ō			.		iipment Blani Rinse Blank
Kaitlyn Fleming and Bailey 619-727-1921 Kudla-Williams	Corey Av	verill														vocs	5	Dissolved	Dissolv	Sulfate	Suffde	Total			.	тв.	Trip Blank
				Col	lection	,	,			I	Nun	nber of p	preserv	ed Hot	les			,	P	H Check	(Lab U	se Only)		\equiv	\equiv		-
sos sense # Field ID / Point of Collection	MEOH.Di Vial a	# D	iate	Lime	hampled by	Grabit) Compit	Source Uncornated (Y.N)	Matrix	æ ∪f b∪ffles	ě	Na Cr	ON I	NONE	Di Water	ENCORE											LABI	USE ONLY
1 Canal - upstream		71.0	122	1100	KF	G		GW	3	3		П	11	T	П	×		1								\/4\	54
2 Canal - downstream	1		_	1125	KCF	G		GW	3	3			Ħ	Ħ	П	X						T				A	13
3F MW - 75				0835	+ -	G		GW	36	21	6	6	3	+	\top	×	×	X	x	×	×	Y				62	
4F MW - 139	 				BKW	G	 	GW	12	7		2	1	\vdash	\forall	1	Τ̈́	X	×	X	X	x	\vdash			1 6	
	···			0825	KCE	G	ļ	GW	12	-	_	2	1	+	++	×	X	X	X	X	Ÿ	Íχ	\vdash		-	16	<u>1</u> 3
				1050		G	· .	GW	+	₩.	_	-	+;+	+	+	-	-	X	10	-	+~	K	\vdash	\vdash		 '''	
6F MW - 4B	<u> </u>			1225	KCF			GW	12	7	_	2	1.	$\vdash \downarrow$	+	X	X	X	 X −	X	X	X	₩	-	_	+-	
7F MW - 65	-				BW	G	ļ		12	7	+-	2	- 1	++	-1-1	X	X	+	Â	+	10	<u>×</u>	+-	\vdash	+		
8F MW-GB				1330		G	ļ	GW	12	7	-	2	-!-	Н	++	X	X	X	X	X	X	+	₩				
9F MW - 5B		7/24			KCF	G	ļ	GW	12	7	2	2	-	H	\dashv	X	X	ΙΧ.	X	X	×	X	₩-	\vdash	-+		
10 TB-02-20230720	ļ	7/11	23	0730	_	G	ļ	GW	1	12	┞	Н	Н	Н	+	X	+	-	1-	-	-		+-		\vdash	-	
MW-ta		ľ				G		GW	<u> </u>	1_	_	Ш	Ш	Ц	44			4	<u> </u>		-		₩	\sqcup	\vdash		
										L	<u>L_</u>	Ш	Ш				_	Т				<u> </u>		<u> </u>	بلي		
Turn Around Time (Bu					-	7					De	livera		en ca	tegory	•		7 000	OSMS	1						nstructions	,
x 10 Business Days	Approved By (S	SGS PM):	/ Date:		-	-	mercial "A mercial "E					_			egory i			_ 500	-COMU	1	1W-	- 75	-t	ms/	lmso	<i>(</i>)	
5 Business Days			_		! =	_	educed (L								riteria					'			•	'			
3 Business Days					7	_	Tier I (Lev					Ħ	CT RO	CP C	riteria											/. A .	
2 Business Days*					=	Com	mercial "C	-				\Box	State	Form	5							-1	nmai .	A6566	RIMEN.	4A-1	9
1 Business Day						พ.เอ	KQP					×	EDD F	Forma	et EQui	S-5 (4-file)						aber	veril	it it	/	//
Other								Commerc									ummary						atten: (han		comionit	erms-and-c	/ nonditions
All data available via Lablink Ap	proval needed t	tor 1-3 B		Day TAT ple Custod	y must b	e docu	mented b		nercial "(ch time								ourier d	elivery.						- W. 545.		///	-o-idipons
Relinquished by: 120011 101 UI/ Arcadis 7-20-		Receive		conin		Fed					quishe			de,					7/2	יייי	10:2	Receive 2	ıd By	PERM	riy 1	£ / //	
Relinquished by. Date / Time	1	Receive 3	d By:							Relia	quishe	d By							Date /	lime:		Receive 4	ed By			12	
Relinquished by: Date / Time	ı:	Receive	d By:					-		Cust	ody Se	al#				nitaci Not in	tact	Absent			Them		opl Samm	90 ke	4,10	ode Temp. C	
<u> </u>		l a			-											- NOT IN	marut .	nuseri			1100 110	2.9		-/~	43		
																									" /		
Code # 100	, 7	77	-	10-	. 1																						

JD69729: Chain of Custody Page 1 of 3

SGS Sample Receipt Summary

Job Number:	JD69729	Client: ARCADIS	U.S.		Project: OLD ERIE CANA	AL SITE, 1	24 COLUME	3IA STR
Date / Time Received:	7/21/2023 10:20:00) AM Delivery	Method:	FEDEX	Airbill #'s:			
Cooler Temps (Raw Me	easured) °C: Coole	, ,,	. ,					
Cooler Security	Y or N		Y or N	Sample Inte	grity - Documentation	<u>Y</u>	or N	
Custody Seals Present: Custody Seals Intact:		3. COC Present: Smpl Dates/Time OK			pels present on bottles:	✓		
Cooler Temperature	Y or N	_		3. Sample co	ntainer label / COC agree:	✓		
1. Temp criteria achieved: 2. Cooler temp verification 3. Cooler media: 4. No. Coolers: Quality Control Preser 1. Trip Blank present / coo 2. Trip Blank listed on CO 3. Samples preserved pro 4. VOCs headspace free:	IR Gun 40	N/A		1. Sample re 2. All contain 3. Condition Sample Inte 1. Analysis r 2. Bottles re 3. Sufficient 4. Compositi	egrity - Condition cvd within HT: ers accounted for: of sample: egrity - Instructions equested is clear: ceived for unspecified tests volume recvd for analysis: ing instructions clear: estructions clear:	Y	N	
Test Strip Lot #s:	pH 1-12:	231619	pH 12+:	203117A	Other: (Specify)			
Comments -9 No collection	on time on COC. Plea	se verify.						

JD69729: Chain of Custody Page 2 of 3 SM089-02 Rev. Date 12/1/16


Responded to by: Kelly Ramos

The sample time for MW-5B is 14:25

JD69729: Chain of Custody Page 3 of 3

Response Date: 7/24

Draft: 53 of 53

SITE LOGIC Report

Min-Trap Study

Contact: Chris Kassel Address: Arcadis

110 West Fayette St, Suite 300

Syracuse, NY 13202

Phone: 315-671-9127

Email: chris.kassel@arcadis.com

MI Identifier: 052UG Report Date: August 18, 2023

Project: Old Erie Canal Site, 30147041

Comments:

NOTICE: This report is intended only for the addressee shown above and may contain confidential or privileged information. If the recipient of this material is not the intended recipient or if you have received this in error, please notify Microbial Insights, Inc. immediately. The data and other information in this report represent only the sample(s) analyzed and are rendered upon condition that it is not to be reproduced without approval from Microbial Insights, Inc. Thank you for your cooperation.

Sample IDs

MI ID	Sample Name
052UG-1	MW-6B
052UG-2	MW-4B

August 17, 2023

Dora Taggart and Sarah Keys Microbial Insights 10515 Research Drive Knoxville, TN 37931

RE: Report of Findings, Measurement of WAS-Fe, AVS, SAS-Fe, CrES

Client Project Name: 052UG 1-2 PRIMA ID: MI-AMIBA 072623

Dear Ms. Taggart and Ms. Keys:

This letter report describes the results of analyses conducted on two solids samples. Each sample was analyzed for total iron, weak acid soluble iron (WAS Fe), strong acid soluble iron (SAS), acid volatile sulfide (AVS), and chromium extractable sulfide (CrES). Procedures and results are reported herein.

Sample Receipt and Preparation

Two Min-Trap samples were received on July 26, 2023. Samples were stored in cold (about 4-7C) in a nitrogen atmosphere.

Procedures

WAS-Fe, AVS, SAS-Fe, and CrES were obtained via sequential extraction of sample based on methods provided by Microseeps, Inc. In order to minimize exposure of the sample or extraction fluid to oxygen, the samples were transferred to the extraction vessel while in a nitrogen-filled glove box and the extractions were carried out on the bench top under a flow of nitrogen. A brief description of the extraction procedure is provided below.

WAS-Fe. Approximately 10 g of sample is extracted with 1 N hydrochloric acid (HCl) for 30 minutes at room temperature (approximately 20° C), after which an aliquot of the HCl is withdrawn and analyzed for ferrous iron and total iron colorimetrically using a Hach DR2800 spectrophotometer and appropriate Hach test kit reagents. Dilutions are made as needed using deoxygenated, deionized (DO/DI) water.

AVS. Hydrogen sulfide generated during the WAS extraction step is collected in a trap filled with 1.25 N sodium hydroxide (NaOH). After collection of the WAS Fe sample, concentrated HCl is added to the soil and the mixture is heated for 30 minutes. The concentration of sulfide in trap is then measured using the methylene blue method via a Hach DR2800 spectrophotometer and appropriate Hach test kit reagents. Dilutions are made as needed using DO/DI water.

SAS-Fe. Upon completion of the AVS step, an aliquot of the HCl solution is withdrawn from the extraction flask and analyzed for ferrous iron and total iron in the same manner as for WAS-Fe.

CrES. After completion of the AVS step, the trap is cleaned and fresh solution added. After removal of an aliquot for SAS-Fe measurement, chromous chloride is added to the soil and the mixture is heated for 30 minutes. The concentration of sulfide in the trap is then measured in the same manner as for AVS.

Results

The amounts of WAS-Fe, SAS-Fe, AVS, and CrES are shown in **Table 1** (attached). QC results are given in **Table 2** (attached).

If you have any questions regarding these results, please give me a call at 916-939-7300. Thank you for the opportunity to be of service.

Sincerely,

PRIMA Environmental, Inc.

Cendy G. Schreier

Cindy G. Schreier, Ph.D.

President

Attachments

Table 1. WAS-Fe, SAS-Fe, AVS, and CrES Results.

Extraction	Sample	W	WAS Fe, mg/kg			AS Fe, mg/	AVS,	CrES,	
Date	Sample	Fe2+	Fe3+	total Fe	Fe2+	Fe3+	total Fe	mg/kg	mg/kg
8/17/2023	052UG-1	25	3.8	29	30	20	50	12	51
8/17/2023	052UG-2	22	5.5	27	40	5	40	9.7	57

Notes

- SAS Fe includes WAS Fe
- Fe3+ is calcuated from the raw data it is the difference between Total Fe and Fe2+. Discrepancies are due to rounding.

Table 2. QC Results for WAS-Fe, SAS-Fe, AVS, and CrES

Sample ID	Result	Units
Blank *		
WAS-Fe	< 4	mg/L
SAS-Fe	< 12	mg/L
AVS	< 0.025	mg/L
CrES	< 0.025	mg/L
FeS standard		
Fe concentration	635	g/kg
SAS-Fe	740	g/kg
% Recovered as SAS	117	%
Sulfide concentration	365	g/kg
AVS	380	g/kg
% Recovered as AVS	104	%

^{*} A blank was run in the absence of a solid material. Therefore, values are concentrations in the extraction fluids or traps.

5070 Robert J Mathews Parkway, Suite 300 El Dorado Hills, CA 95762 916-939-7300 www.primaenvironmental.com

Sample Receipt Summary

Date/Time: July 26, 2023	1805		
Client/Company: Microbial Ins	ights		
Project: 052UG 1-2 (MI-AMIB	A 0720	_e 23)
	Yes	No	N/A
Custody seals intact? Chain of custody Present? If no, list number of samples and Sample ID	7		
Ice present? 1 Ce Pechs, froze If no, what is temperature?	₽ \ □		
Samples in good condition? If no, explain:	4		
Do sample IDs on containers match IDs on COC? If no, explain:			
Other Comments: Store in N2 filled reactor in Frid	glass wir	de mo	uth

MI-AMIBA-07-2623

Please see sampling protocol for instructions

REPORT TO:		INVOICE TO:		
Reports will be provided to the contact(s) listed below. Parties other than the contact(s) listed below will require prior approval.		For Invoices paid by a corresponding referen	a third party it is imperative that contact information & ice No. be provided.	microbial insights
Name:	Dora Taggart and Sarah Keys	Name:	Rhonda Mullins	Tille Objetin 13191 to
Company:	Microbial Insights	Company:	Microbial Insights	10515 Research Dr
Address:	10515 Research Dr.	Address:	10515 Research Dr.	Knoxville, TN 37932
	Knoxville, TN 37931		Knoxville, TN 37931	
				865-573-8188
email:	Dtaggart@microbe.com; Data@microbe.com	email:	accounting@microbe.com	www.microbe.com
Phone:	865-573-8188 ext. 107	Phone:	865-573-8188 ext. 115	
Fax:		Fax:		
				Please Check One:
Project Manager:	Dora Taggart and Sarah Keys	Purchase Order No.	23-8987	☐ More samples to follow
Project Name:	052UG 1-2	Subcontract No.		□ No Additional Samples
Project No.:		Quote No.		
				Saturday Delivery

Please contact us prior to submitting samples regarding questions about the analyses you are requesting at (865) 573-8188 (8:00 am to 4:00 pm M-F). After these hours please email customerservice@microbe.com.

	Sample Inform	ation				An	alysis									T ₀								
MI ID (Laboratory Use Only)	Sample Name	Date Sampled	Time Sampled	Matrix		AMIBA (WAS-Fe + AVS + SAS-Fe + CrES)																Other:	Other:	Other:
	052UG-1	7/19/2023		Sand	П	Х		\top	十							T								_
	052UG-2	7/19/2023	0:00	Sand		Χ			T															_
					П				T															
									T															
					П																			
40000000000000000000000000000000000000					П				T															
A PER MINISTRA									T										-					
					П				T															
					П				T	П										T				
					П					П				П										
Relinquished by:	Alexander Hessock	7/25/2023	1600			Re	ceived	by:	5		 PR	Da	ate JA	7	26	123	}	80	5					

In order for analysis to be completed correctly, it is vital that chain of custody is filled out correctly & that all relative information is provided. Failure to provide sufficient and/or correct information regarding reporting, invoicing & analyses requested information may result in delays for which MI will not be liable. * additional cost and sample preservation are associated with RNA samples.

10515 Research Drive Knoxville, TN 37932 Phone: 865.573.8188 Fax: 865.573.8133

Web: www.microbe.com

SITE LOGIC Report

QuantArray®-BGC Study

Contact: Chris Kassel Phone: 315-671-9114

Address: Arcadis

110 West Fayette St

Suite 300

Syracuse, NY 13202

Email: Chris.Kassel@arcadis.com

MI Identifier: 052UG Report Date: 08/08/2023

Project: Old Erie Canal Site, 30147041

Comments:

NOTICE: This report is intended only for the addressee shown above and may contain confidential or privileged information. If the recipient of this material is not the intended recipient or if you have received this in error, please notify Microbial Insights, Inc. immediately. The data and other information in this report represent only the sample(s) analyzed and are rendered upon condition that it is not to be reproduced without approval from Microbial Insights, Inc. Thank you for your cooperation.

The QuantArray®-BGC Approach

Culture dependent methods like plate counts, MPNs, or Biological Activity Response Tests for heterotrophic bacteria and sulfate reducing bacteria are commonly performed to evaluate the potential for bioremediation. However, the overwhelming majority of microorganisms (>99%) cannot be grown in the laboratory. The biogeochemical profile consists of diverse microbial communities which carry out processes such as sulfate reduction, sulfur oxidation, iron reduction, metal oxidation, nitrification, nitrogen fixation, fermentation, acetogenesis, methanogenesis, and various other processes. Thus, conventional techniques and practices may vastly underestimate and oversimplify the biogeochemical activity. The QuantArray®-BGC addresses both of these issues: (1) The QuantArray® is a molecular biological tool (MBT) based on analysis of DNA or RNA extracted directly from a field sample eliminating the biases of traditional approaches and (2) The QuantArray® platform provides simultaneous quantification of a broad spectrum of key microorganisms and functional genes for a much more accurate and comprehensive assessment of BGC activity.

The QuantArray®-BGC is used to quantify specific microorganisms and functional genes to evaluate the following:

Sulfate Reduction

Sulfate reducers are capable of utilizing sulfate as a terminal electron acceptor and reducing it to hydrogen sulfide utilizing hydrogen produced by other organisms as an electron donor.

Iron Reducing Bacteria

Iron reducing bacteria (IRB) are capable of reducing insoluble iron oxides to soluble ferrous iron byproducts. Some IRB can also reduce insoluble manganese oxides to soluble manganese by products. Many IRB also utilize hydrogen as an electron donor.

Metal Oxidizing Bacteria

Iron and manganese oxidizers oxidize soluble iron and manganese to form insoluble iron and manganese oxides.

Sulfur Oxidation

Sulfur oxidizing bacteria oxidize sulfide and elemental sulfur producing sulfuric acid.

Nitrogen Cycle

Nitrogen fixers convert N_2 from the atmosphere into a usable form, ammonia. Then ammonia and nitrite oxidizers carry out nitrification, the conversion of ammonia to nitrate. Denitrifiers then convert the nitrate back into N_2 . Anammox bacteria can also anaerobically convert nitrite and ammonia into N_2

Methanogens

Methanogens utilize fermentation products formed by other anaerobes as electron donors (H_2 , formate, and alcohols) and acceptors (CO_2 , methanol, methylamines, and methylsulfides) to produce methane.

Fermenters

Designed to quantify a broad spectrum of fermenting bacteria, most notably of the class Clostridia. Fermenters produce H₂ during fermentation which can be utilized by other organisms such as acetogens, methanogens, sulfate reducers, Iron and manganese reducers, and nitrate reducers.

10515 Research Drive Knoxville, TN 37932 Phone: 865.573.8188 Fax: 865.573.8133

Acetogens

Acetogens are anaerobic organisms that utilize the acetyl CoA pathway to synthesize acetate from H₂ and CO₂, CO, or formate. The acetate produced by acetogens can be utilized by acetoclastic methanogens for the formation of methane.

Acetylene Degraders

Targets the gene encoding the enzyme for acetylene hydratase which is responsible for the nonredox conversion of acetylene to acetaldehyde.

How do QuantArrays® work?

The QuantArray®-BGC in many respects is a hybrid technology combining the highly parallel detection of microarrays with the accurate and precise quantification provided by qPCR into a single platform. The key to highly parallel qPCR reactions is the nanoliter fluidics platform for low volume, solution phase qPCR reactions.

How are QuantArray® results reported?

One of the primary advantages of the QuantArray®-BGC is the simultaneous quantification of a broad spectrum of different microorganisms and key functional genes involved in a variety of microbial biogeochemical processes. However, highly parallel quantification combined with the various metabolic pathways and capabilities of different target organisms can complicate data presentation. Therefore, in addition to Summary Tables, QuantArray®-BGC results will be presented as Microbial Population Summary and Comparison Figures to aid in data interpretation and subsequent evaluation of O&M activities and facility management practices.

Types of Tables and Figures:

Microbial	Population
Sum	ımary

Figure representing the concentrations of QuantArray®-BGC target populations (e.g. sulfate reducing bacteria) and functional genes (e.g. nitrate reductase) relative to typically observed values.

Summary Tables

Tables of target population concentrations grouped by BGC activity.

Comparison Figures

Depending on the project, sample results can be presented to compare changes over time or examine differences in microbial populations through a facility.

10515 Research Drive Knoxville, TN 37932 Phone: 865.573.8188 Fax: 865.573.8133

Results

Table 1: Summary of the QuantArray®-BGC results obtained for samples MW-6B and MW-4B.

Sample Name	MW-6B	MW-4B
Sample Date	07/19/2023	07/19/2023
Biogeochemical	cells/g	cells/g
Total Bacteria (EBAC)	6.54E+08	6.55E+08
Total Archaea (ARC)	3.27E+05	3.95E+03 (J)
Sulfate Reducing Bacteria (APS)	4.58E+07	1.86E+06
Sulfate Reducing Archaea (SRA)	<1.00E+04	<1.00E+04
Iron Reducing Archaea (IRA)	<1.00E+04	<1.00E+04
Iron Reducing Bacteria - Other (IRB)	4.20E+04	<1.00E+04
Iron Reducing Geobacter (IRG)	1.84E+03 (J)	2.65E+06
Iron Reducing Shewanella (IRS)	<1.00E+04	<1.00E+04
Iron Oxidizing Bacteria (FeOB)	5.07E+03 (J)	6.20E+04
Manganese Oxidizing Bacteria (MnOB)	<1.00E+04	8.08E+03 (J)
Sulfur Oxidizing Bacteria (SOB)	2.43E+05	1.41E+05
Ammonia Oxidizing Bacteria (AMO)	<1.00E+04	<1.00E+04
Ammonia Oxidizing Archaea (AOA)	<1.00E+04	1.11E+03 (J)
Nitrite Oxidizing Bacteria (NOR)	<1.00E+04	<1.00E+04
Anaerobic Ammonia Oxidizers (AMXNIRK)	<1.00E+04	<1.00E+04
Anaerobic Ammonia Oxidizers (AMXNIRS)	<1.00E+04	<1.00E+04
Nitrogen Fixering Bacteria (NIF)	3.70E+05	<1.00E+04
Denitrifying Bacteria (nirK)	<1.00E+04	<1.00E+04
Denitrifying Bacteria (nirS)	<1.00E+04	<1.00E+04
Denitrifying Archaea (ANIRK)	<1.00E+04	<1.00E+04
Denitrifying Archaea (ANIRS)	<1.00E+04	<1.00E+04
Methanogens (MGN)	4.02E+04	2.78E+03 (J)
Fermenters (FER)	1.90E+07	9.35E+07
Acetogens (AGN)	<1.00E+04	<1.00E+04
Acetylene Degraders (AHY)	<1.00E+04	<1.00E+04

Legend:

NA = Not Analyzed I = Inhibited NS = Not Sampled < = Result Not Detected

J = Estimated Gene Copies Below PQL but Above LQL

Microbial Populations MW-6B

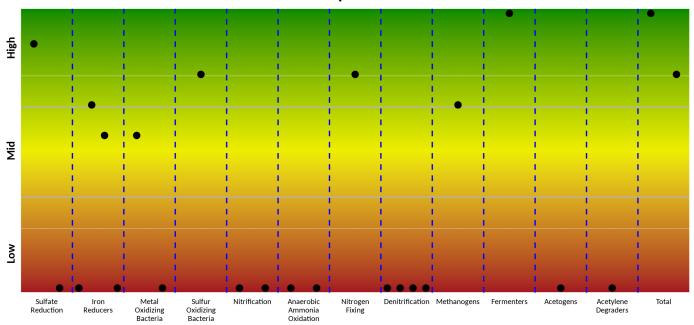


Figure 1: Microbial population summary to aid in understanding biogeochemical conditions.

Sulfate Reduction	APS, SRA	Denitrification	nirK, nirS, ANIRK, ANIRS
Iron Reducers	IRA, IRB, IRG, IRS	Methanogens	MGN
Metal Oxidizing Bacteria	FeOB, MnOB	Fermenters	FER
Sulfur Oxidizing Bacteria	SOB	Acetogens	AGN
Nitrification	AMO, NOR	Acetylene Degraders	AHY
Anaerobic Ammonia Oxidation Nitrogen Fixing	AMXNIRK, AMXNIRS NIF	Total	EBAC, ARC

Microbial Populations MW-4B

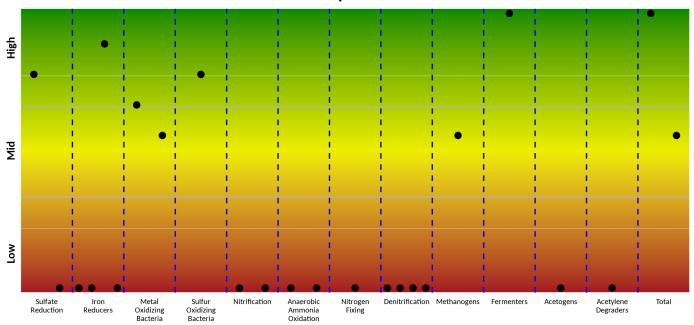


Figure 2: Microbial population summary to aid in understanding biogeochemical conditions.

Sulfate Reduction	APS, SRA	Denitrification	nirK, nirS, ANIRK, ANIRS
Iron Reducers	IRA, IRB, IRG, IRS	Methanogens	MGN
Metal Oxidizing Bacteria	FeOB, MnOB	Fermenters	FER
Sulfur Oxidizing Bacteria	SOB	Acetogens	AGN
Nitrification	AMO, NOR	Acetylene Degraders	AHY
Anaerobic Ammonia Oxidation Nitrogen Fixing	AMXNIRK, AMXNIRS NIF	Total	EBAC, ARC

Table 2: Summary of the QuantArray®-BGC results for samples MW-6B and MW-4B.

Sample Name Sample Date	MW-6B 07/19/2023	MW-4B 07/19/2023
•	cells/g	cells/g
Sulfate Reducers (APS)	4.58E+07	1.86E+06
Sulfate Reducing Archaea (SRA)	<1.00E+04	<1.00E+04
Sulfur Oxidizing Bacteria (SOB)	2.43E+05	1.41E+05
Methanogens (MGN)	4.02E+04	2.78E+03 (J)
Fermenters (FER)	1.90E+07	9.35E+07
Acetogens (AGN)	<1.00E+04	<1.00E+04
Acetylene Degraders (AHY)	<1.00E+04	<1.00E+04

Sulfur Cycle, Methanogens, Fermenters, Acetogens, Acetylene Degraders

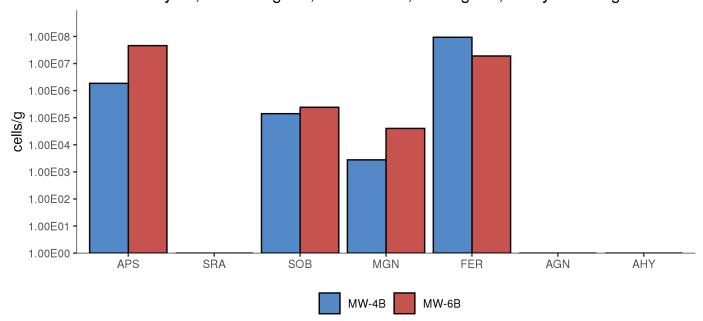


Figure 3: Comparison - Sulfur Cycle, Methanogens, Fermenters, Acetogens, Acetylene Degraders.

Table 3: Summary of the QuantArray®-BGC results for samples MW-6B and MW-4B.

Sample Name Sample Date	MW-6B 07/19/2023	MW-4B 07/19/2023
-	cells/g	cells/g
Iron Reducing Archaea (IRA)	<1.00E+04	<1.00E+04
Iron Reducing Bacteria (IRB)	4.20E+04	<1.00E+04
IRB Geobacter spp. (IRG)	1.84E+03 (J)	2.65E+06
IRB Shewanella spp. (IRS)	<1.00E+04	<1.00E+04
Iron Oxidizing Bacteria (FeOB)	5.07E+03 (J)	6.20E+04
Manganese Oxidizing Bacteria (MnOB)	<1.00E+04	8.08E+03 (J)

Iron Reducers and Metal Oxidizers

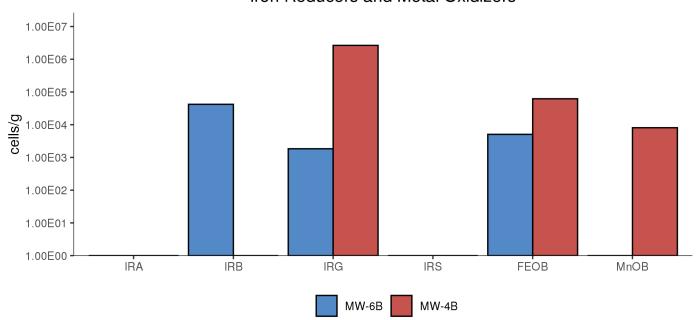


Figure 4: Comparison - Iron Reducers and Metal Oxidizers.

Table 4: Summary of the QuantArray®-BGC results for samples MW-6B and MW-4B.

Sample Name Sample Date	MW-6B 07/19/2023	MW-4B 07/19/2023
•	cells/g	cells/g
Ammonia Oxidizing Bacteria (AMO)	<1.00E+04	<1.00E+04
Ammonia Oxidizing Archaea (AOA)	<1.00E+04	1.11E+03 (J)
Nitrite Oxidizing Bacteria (NOR)	<1.00E+04	<1.00E+04
Anaerobic Ammonia Oxidizers (AMXNIRK)	<1.00E+04	<1.00E+04
Anaerobic Ammonia Oxidizers (AMXNIRS)	<1.00E+04	<1.00E+04
Nitrogen Fixing Bacteria (NIF)	3.70E+05	<1.00E+04
Denitrifying Bacteria (nirK)	<1.00E+04	<1.00E+04
Denitrifying Bacteria (nirS)	<1.00E+04	<1.00E+04
Denitrifying Archaea (ANIRK)	<1.00E+04	<1.00E+04
Denitrifying Archaea (ANIRS)	<1.00E+04	<1.00E+04

Nitrogen Cycle 1.00E06 1.00E05 1.00E04 · **8**/8/8 1.00E03 · 1.00E02 1.00E01 -1.00E00 -AMO AÓA NOR AMXNIRK AMXNIRS NİF nirK nirS ANİRK ANİRS MW-6B MW-4B

Figure 5: Comparison - Nitrogen Cycle.

Interpretation

<u>Total Bacteria:</u> Biogeochemical processes are carried out by a wide array of bacteria. Monitoring total bacteria provides a general measure for evaluating the overall growth of bacteria at the site.

<u>Total Archaea:</u> Archaea are another domain of single-celled microorganisms which, like bacteria, can can play important roles in the biogeochemical processes. Depending upon types and environmental conditions, total archaea can outnumber total bacteria and be a more important factor in BGC processes.

<u>Sulfate Reduction</u>: Sulfate reducers can utilize sulfate as a terminal electron acceptor and reduce it to hydrogen sulfide utilizing hydrogen produced by other organisms as an electron donor.

Sulfate-Reducing Bacteria (APS): Sulfate reducing bacteria (SRB) utilize the APS gene to convert sulfate to hydrogen sulfide. In the absence of sulfate some SRB can switch to fermentative degradation of hydrocarbons which produces acetate and hydrogen that are utilized by methanogens [1, 2].

Sulfate-Reducing Archaea (SRA): Some genera of Archaea including *Archaeoglobus*, *Caldivirga*, and *Vulcanisaeta* spp. are capable of sulfate reduction. In addition, sulfate-reducing archaea will often reduce elemental sulfur and thiosulfate to hydrogen sulfide [3–5].

Iron-Reducing Bacteria (IRB): Iron-reducing bacteria can reduce insoluble iron oxides to soluble ferrous iron byproducts. Some IRB can also reduce insoluble manganese oxides to soluble manganese by products. Many IRB also utilize hydrogen as an electron donor. The IRB assay targets IRB including *Defferibacter*, *Geopsychrobacter*, *Geothrix*, and *Rhodoferax* [6–9].

IRB *Geobacter* **spp. (IRG):** Common genus of iron-reducing bacteria. In addition to utilizing hydrogen, some species are capable of utilizing acetate as an energy source and elemental sulfur as an electron acceptor, producing sulfide. Some *Geobacter* spp. can also reduce insoluble manganese oxides [10].

IRB Shewanella spp. (IRS): Another genus of common and metabolically versatile iron-reducing bacteria. Shewanella spp. can utilize hydrogen as an energy source reducing ferric iron to ferrous iron and elemental sulfur, sulfite, and thiosulfate to sulfide. Some Shewanella spp. can also reduce insoluble manganese oxides [11].

<u>Metal-Oxidizing Bacteria</u>: As the name suggests, metal-oxidizing bacteria oxidize reduced metal ions (FE^{2+} and Mn^{2+}) and form insoluble metal oxides.

<u>Iron-Oxidizing Bacteria (FeOB):</u> Microaerophilic iron-oxidizing bacteria gain energy from the oxidation of ferrous iron to ferric iron often resulting in the formation of dense tubercles or filamentous rusticles of iron oxides. The QuantArray[®]-BGC targets a variety of iron oxidizers including *Gallionella*, *Leptothrix*, *Sphaerotilus*, and *Mariprofundus* spp [12].

Manganese-Oxidizing Bacteria (MnOB): Although the physiological function of manganese oxidation remains unclear, functional genes encoding proteins related to multicopper oxidases have been linked to manganese oxidation. As with iron oxidation, manganese oxidation leads to the formation of insoluble manganese oxides [13].

<u>Sulfur oxidizers:</u> Sulfur oxidizing bacteria oxidize sulfide and elemental sulfur producing sulfuric acid. Some sulfur oxidizers can also oxidize thiosulfates. The SOB assay targets SOB including *Thiobacillus, Thiothrix, Thiomicrospira,* and *Macromonas* spp. among others [14–17].

Ammonia Oxidizing Bacteria (AMO): Ammonia oxidizing bacteria catalyze the conversion of ammonia to nitrite, the first step in the nitrification process. In AOB, ammonia is first converted to hydroxylamine by the ammonia monooxygenase enzyme, and then it is oxidized by hydroxylamine oxidoreductase to nitrite. Some ammonia oxidizers also possess genes for denitrification and can convert the nitrite to nitrogen gas. The AMO assay targets the ammonia monooxygenase gene that encodes the enzyme responsible for the initial oxidation of ammonia in the nitrification process [18].

10515 Research Drive Knoxville, TN 37932 Phone: 865.573.8188 Fax: 865.573.8133

Ammonia Oxidizing Archaea (AOA): Ammonia oxidizing archaea catalyze the conversion of ammonia to nitrite, the first step in the nitrification process. In AOA the first step of this process is carried out by the ammonia ,monooxygenase enzyme, but the enzyme responsible for the second step has yet to be elucidated. AOA do not possess genes for hydroxylamine oxidoreductase which suggests that they do not utilize the same pathway as AOB to complete the conversion of ammonia to nitrite [18].

Nitrite Oxidizing Bacteria (NOR): Nitrite oxidizing bacteria catalyze the conversion of nitrite to nitrate, the last step in the nitrification process, utilizing the nitrite oxidoreductase enzyme. They can be found in terrestrial, marine, and freshwater environments where they have a major role in nitrogen cycling [18].

Anaerobic Ammonia Oxidizing Bacteria (ANAMMOX): Anammox bacteria are responsible for anaerobically converting nitrite and ammonia directly into nitrogen gas. In this process nitrite and ammonia are transported into the anammoxosome where the anammox nitrite reductase genes nirS and nirK reduce the nitrite to nitric oxide. The nitric oxide is then condensed with ammonia to form hydrazine by the enzyme hydrazine synthase (hzsA). The hydrazine is then oxidized to molecular nitrogen by the enzyme hydrazine dehydrogenase/hydrazine oxidoreductase (hdh/hzo). The assays target the genes encoding two types of nitrite reductase enzymes (nirS and nirK) for quantification of anammox bacteria [19, 20].

Nitrogen Fixing Bacteria (NIF): Nitrogen fixers take N_2 from the atmosphere and convert it to ammonia, a bioavailable form that can be assimilated by other organisms. The nitrogenase complex of nitrogen fixers is also capable of reducing acetylene and hydrogen cyanide as well as some other small molecules containing C, N or O multiple bonds [21]. This assay targets the nifD nitrogenase gene from nitrogen fixing bacteria.

Denitrifying Bacteria. (DNF): Denitrifying bacteria are responsible for converting nitrate from nitrification into nitrous oxide and nitrogen gas. The first step is the conversion of nitrate to nitrite utilizing the dissimilatory nitrate reductase genes. Nitrite is then reduced to nitric oxide by the dissimilatory nitrite reductase enzymes (nirS and nirK) genes. The nitric oxide is converted to nitrous oxide by the nitric oxide reductase enzyme (norB). Finally, the nitrous oxide is converted to nitrogen gas by the nitrous oxide reductase enzyme (nosZ), and the nitrogen gas is released into the atmosphere. The assays target the genes encoding two types of nitrite reductase enzymes (nirS and nirK) for quantification of denitrifying bacteria [22].

Denitrifying Archaea (ANIRK and ANIRS): Targets the genes encoding two dissimilatory nitrite reductase genes (nirS and nirK) in archaea which are responsible for the conversion of nitrite to nitric oxide during denitrification [22].

Methanogens: Methanogens utilize fermentation products formed by other anaerobes as electron donors (H_2 , formate, and alcohols) and acceptors (CO_2 , methanol, methylamines, and methylsulfides) to produce methane. There are three main methanogenic pathways H_2 and CO_2 (hydrogenotrophic), acetate (acetoclastic), and methylated C_1 compounds (methylotrophic). Most of the methane produced by methanogens is through the acetoclastic pathway [23].

Acetogens (AGN): Acetogens are anaerobic organisms that utilize the acetyl-CoA pathway to synthesize acetate from H_2 and CO_2 , CO, or formate. The acetate produced by acetogens can be utilized by acetoclastic methanogens for the formation of methane [24].

<u>Fermenters (FER)</u>: Designed to quantify a broad spectrum of fermenting bacteria, most notably of the class Clostridia. Fermenters produce H2 during fermentation which can be utilized by other organisms such as acetogens, methanogens, sulfate reducers, Iron and manganese reducers, and nitrate reducers [25].

Acetylene Degraders (AHY): Targets the gene encoding the enzyme for acetylene hydratase which is responsible for the non-redox conversion of acetylene to acetaldehyde [26, 27].

10515 Research Drive Knoxville, TN 37932 Phone: 865.573.8188

Fax: 865.573.8133 Web: www.microbe.com

References

- 1. Muyzer, G. & Stams, A. The ecology and biotechnology of sulphate-reducing bacteria. *Nature Reviews Microbiology* **6**, 441–454 (2008).
- 2. Barton, L. & Faque, G. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria. *Advances in Applied Microbiology* **68**, 41–98 (2009).
- 3. Gumerov, V. M. *et al.* Complete genome sequence of "*Vulcanisaeta moutnovskia*" strain 768-28, a novel member of the hyperthermophilic crenarchaeal genus Vulcanisaeta. *Journal of bacteriology* **193**, 2355–2356 (2011).
- 4. Itoh, T., Suzuki, K.-i., Sanchez, P. C. & Nakase, T. *Caldivirga maquilingensis* gen. nov., sp. nov., a new genus of rod-shaped crenarchaeote isolated from a hot spring in the Philippines. *International Journal of Systematic and Evolutionary Microbiology* **49**, 1157–1163 (1999).
- 5. Zellner, G. *et al.* Isolation and characterization of a thermophilic, sulfate reducing archaebacterium, *Archaeoglobus fulgidus* strain Z. *Systematic and applied microbiology* **11**, 151–160 (1989).
- 6. Slobodkina, T. G.B.and Kolganova, Chernyh, N., Querellou, J., Bonch-Osmolovskaya, E. & Slobodkin, A. *Deferribacter autotrophicus* sp. Nov., an iron(III)-reducing bacterium from a deep-sea hydrothermal vent. *International Journal of Systematic and Evolutionary Microbiology* **59(6)**, 1508–1512 (2009).
- 7. Holmes, D., Nicoll, J., Bond, D. & Lovley, D. Potential Role of a Novel Psychrotolerant Member of the Family Geobacteraceae, *Geopsychrobacter electrodiphilus* gen. nov., sp. Nov., in Electricity Production by a Marine Sediment Fuel Cell. *Applied and Environmental Microbiology* **70(10)**, 6023–6030 (2004).
- 8. Coates, J., Ellis, D., Gaw, C. & Lovley, D. *Geothrix fermentans* gen. nov., sp. Nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. *International Journal of Systematic and Evolutionary Microbiology* **49(4)**, 1615–1622 (1999).
- 9. Finneran, K., Johnsen, C. & Lovley, D. *Rhodoferax ferrireducens* sp. Nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III). *International Journal of Systematic and Evolutionary Microbiology* **53(3)**, 669–673 (2003).
- 10. Lovley, D. *et al. Geobacter metallireducens* gen. nov. sp. Nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. *Archives of Microbiology* **159(4)**, 336–344 (1993).
- 11. Dawood, Z. & Brözel, V. Corrosion-enhancing potential of *Shewanella putrefaciens* isolated from industrial cooling waters. *Journal of Applied Microbiology* **84**, 929–936 (1998).
- 12. Hedrich, S., Schlömann, M. & Barrie Johnson, D. The iron-oxidizing proteobacteria. *Microbiology* **157**, 1551–1564 (2011).
- 13. Tebo, B., Johnson, H., McCarthy, J. & Templeton, A. Geomicrobiology of manganese(II) oxidation. *TRENDS in Microbiology* **13(9)**, 421–428 (2005).
- 14. Friedrich, C. Physiology and Genetics of Sulfur-oxidizing Bacteria. *Advances in Microbial Physiology* **39,** 235–289 (1997).
- 15. Yang, Z., Stoven, K., Haneklaus, S., Singh, B. & Schnug, E. Elemental Sulfur Oxidation by *Thiobacillus* spp. and Aerobic Heterotrophic Sulfur –Oxidizing Bacteria. *Pedosphere* **20(1)**, 71–79 (2010).
- 16. Janasch, H., Wirsen, C., Nelson, D. & Robertson, L. *Thiomicrospira crunogena* sp. Nov., a Colorless, Sulfur-Oxidizing Bacterium from a Deep-Sea Hydrothermal Ven. *International Journal of Systematic and Evolutionary Microbiology* **35(4)**, 422–424 (1985).
- 17. Berben, T., Overmars, L., Sorokin, D. & Muyzer, G. Diversity and Distribution of Sulfur Oxidation-Related Genes in *Thioalkalivibrio*, a Genus of Chemolithoautotrophic and Haloalkaliphilic Sulfur-Oxidizing Bacteria. *Frontiers in Microbiology* (2019).

- 18. Ward, B. Chapter Thirteen Measurement and Distribution of Nitrification Rates in the Oceans. *Methods in Enzymology* **486**, 307–323 (2011).
- 19. Strous, M. & Jetten, M. Anaerobic oxidation of methane and ammonium. *Annual Review of Microbiology* **58**, 99–117 (2004).
- 20. Karlsson, R., Karlsson, A., Bäckman, O., Johansson, B. & Hulth, S. Identification of key proteins involved in the anammox reaction. *FEMS Microbiology Letters* **297(1)**, 87–94 (2009).
- 21. Jimenez Vicente, E. & Dean, D. Keeping the nitrogen-fixation dream alive. PNAS 114(12), 3009–3011 (2017).
- 22. Philippot, L. Denitrifying genes in bacterial and Archaeal genomes. *Biochimica et Biophisica Acta* **1577(3)**, 355–376 (2002).
- 23. Kurth, J., Op den Camp, H. & Welte, C. Several ways one goal-methanogenesis from unconventional substrates. *Applied Microbiology and Biotechnology* **104**, 6839–3854 (2020).
- 24. Bengelsdorf, F. *et al.* Chapter Four Bacterial Anaerobic Synthesis Gas (Syngas) and CO2+H2 Fermentation. *Advances in Applied Microbiology* **103**, 143–221 (2018).
- 25. Cabrol, L. *et al.* Microbial ecology of fermentative hydrogen producing bioprocesses: useful insights for driving the ecosystem function. *FEMS Microbiology Reviews* **41(2)**, 158–181 (2017).
- 26. Meckenstock, R. U., Krieger, R., Ensign, S., Kroneck, P. M. & Schink, B. Acetylene hydratase of Pelobacter acetylenicus. Molecular and spectroscopic properties of the tungsten iron-sulfur enzyme. *European Journal of Biochemistry* **264(1)**, 176–182 (1999).
- 27. Kroneck, P. M. H. Acetylene hydratase: a non-redox enzyme with tungsten and iron-sulfur centers at the active site. *Journal of Biological Inorganic Chemistry* **21(1)**, 29–38 (2016).

Fax: 865.573.8133 Web: www.microbe.com