

Mr. Tracey Garland, GIT New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway, 12th Floor Albany, New York 12233-7014

Date: June 6, 2025 Our Ref: 30270811

Subject: First Quarter 2025 Groundwater Monitoring Report

New York State Electric & Gas Corporation

Clyde Former Manufactured Gas Plant, Clyde, New York

NYSDEC Site No. 859019

Arcadis of New York, Inc. 100 Chestnut Street Suite 1020 Rochester New York 14604 Phone: 585 385 0090

Fax: 585 546 1973

www.arcadis.com

Dear Mr. Garland,

On behalf of New York State Electric & Gas Corporation (NYSEG), this letter summarizes activities completed during the first guarter of 2025 (Q1) for the Clyde former manufactured gas plant (MGP) site located in the Village of Clyde, Wayne County, New York (New York State Department of Environmental Conservation [NYSDEC] Site No. 859019) (Figure 1).

Arcadis of New York, Inc. (Arcadis) conducted the Q1 monitoring event on February 24-25, 2025, in accordance with the Site Management Plan (SMP)1 (pending NYSDEC approval). In addition, Arcadis installed two monitoring wells (MW14 and MW15), in accordance with the Monitoring Well Installation Work Plan², on March 10-14, 2025. During the March well installation event, Arcadis located several existing monitoring wells (MWBH1, MW11B, MW12, and MW13) that could not be located during the February monitoring event. This quarterly report summarizes activities conducted from January 1, 2025, to March 31, 2025, and includes data from the February 24-25, 2025 monitoring event and the March 10-14, 2025 well installation event.

The SMP1 requires that groundwater samples are collected from MW4, MW12, MW14 and MW15. Please note that the Q1 monitoring event was conducted in February 2025 and MW14 and MW15 were installed in March 2025. As such, groundwater results summarized in this letter are only for groundwater collected from MW4 and MW12.

Relevant background information is presented in the following section, followed by a Q1 monitoring and operation and maintenance activity summary.

Background

The former Clyde MGP was built in 1856 and operated, primarily by the Clyde Gas and Light Company, as a coal gas plant until it was decommissioned in 1908. Above-grade structures associated with the MGP were removed

¹ GEI Consultants, Inc. 2022. Site Management Plan, Clyde Former Manufactured Gas Plant Site, Wayne County, Clyde, New York. October.

² Arcadis. 2025. Monitoring Well Installation Work Plan, Clyde Former Manufactured Gas Plant Site, 16 Sodus Street, Clyde, New York. January. 2025.

between 1907 and 1918. NYSEG purchased the parcel in 1936 and, from the late 1950s until the early 1960s, used an on-site building as a transformer house until it was demolished in the late 1960s. The current electrical substation was built in the early 1970s, during which time below-grade foundations for several of the former MGP structures were removed. Prior to remediation in 2021, the foundations for the MGP Building and the Gas Holder were still present in the subsurface. Key historical features of the MGP and surrounding area are shown on Figure 2.

The former MGP site is located along the west side of Sodus Street (approximately 16 Sodus Street) in the central business district of the Village of Clyde. The site primarily consists of two parcels that are owned by NYSEG, herein referred to as the western and eastern parcels.

The western parcel of the NYSEG property contains the Clyde Electrical Substation, which is surrounded by a perimeter fence that limits access to NYSEG employees only, and the ground surface is covered by gravel inside and around the substation. The eastern parcel of the NYSEG property is primarily maintained grass, except for the gravel access driveway along the northern side of the property that provided access to the property and substation from Sodus Street. Commercial properties, which are mainly vacant and overgrown with brush and trees, are located north of the site, and the Village of Clyde Museum and a bottle and can redemption business are located east of the site. An active railroad corridor, operated by CSX Transportation, Inc., is located south of the site, and the New York State Barge Canal is located south of the railroad corridor. The Village of Clyde owns the parcel west of the site, which is vacant and covered by weeds, brush, and small trees.

Historical site investigations and details about the remedy completed in 2021 are summarized in the SMP¹. The primary groundwater constituents of concern at the site are benzene, toluene, ethylbenzene, and xylenes (BTEX) and naphthalene³.

First Quarter 2025 Monitoring and Sampling

As presented in the SMP1, groundwater remedy objectives for the Q1 monitoring period are to:

- assess site groundwater movement patterns; and
- collect and analyze site groundwater samples quarterly to document dissolved BTEX, polycyclic aromatic hydrocarbons (PAHs), total cyanide, and target analyte list metals concentrations.

To document achieving the objectives, this report presents:

- site-wide data collected during the monitoring period, including groundwater analytical data and groundwater elevation data; and
- conclusions and monitoring modification recommendations, as appropriate.

Groundwater Gauging Activities and Results

During the Q1 monitoring event, field personnel measured depth to groundwater, depth to non-aqueous phase liquid, and depth to bottom from surveyed measuring points at the following monitoring wells (shown on Figure 2):

MWBH1, MW1D, MW1S, MW3, MW4, MW6B, MW8, MW9, MW9B, MW11, MW11B, MW12, and MW13.

www.arcadis.com 2/5

³ NYSDEC. 2024. Record of Decision, NYSEG-Clyde MPG, Clyde, Wayne County, Site No. 859019. February. 2014.

Gauging results, including calculated groundwater elevations and sediment thickness during this reporting period, are summarized in Table 1.

Groundwater Elevation and Flow

The shallow groundwater contour map for the Q1 gauging event is presented on Figure 3. As shown on the figure, the groundwater flow direction was generally to the south.

Non-Aqueous Phase Liquid Monitoring

Non-aqueous phase liquid was not observed in the monitoring wells gauged during the reporting period.

Well Depth Monitoring

Calculated sediment thickness in each monitoring well is summarized in Table 1. Accumulated sediment measured greater than 1 foot at the following locations: MWBH1 (2.53 feet), MW1S (3.57 feet), and MW8 (1.87 feet).

Groundwater Sampling Activities and Results

Groundwater sampling activities and associated analytical results from the Q1 monitoring event and the March well installation event are summarized below.

Groundwater Sampling Activities

Arcadis field personnel collected groundwater samples from two monitoring wells, MW4 and MW12, using low-flow groundwater purging and sampling techniques. Groundwater samples were collected from MW4 on February 25, 2025, and groundwater samples were collected from MW12 on March 14, 2025. As mentioned above, MW12 was not able to be located during the February monitoring event. Groundwater samples and appropriate quality assurance/quality control samples, to facilitate data validation, were submitted to Eurofins Laboratories, located in Amherst, New York, for the following analysis:

- BTEX using United States Environmental Protection Agency (USEPA) SW-846 Method 8260;
- PAHs using USEPA SW-846 Method 8270;
- Total cyanide using USEPA SW-846 Method 9012; and
- Target analyte list metals using USEPA SW-846 Method 6010.

Groundwater sampling logs are provided as Attachment 1.

Groundwater Quality

Arcadis reviewed and validated the laboratory analytical data and prepared Data Usability Summary Reports (DUSRs). The data review indicated that overall laboratory performance was acceptable, and the overall data quality was within the guidelines specified in the respective methods. Instances where laboratory performance was not acceptable (if any) are detailed in the DUSRs, and the data has been appropriately qualified. Laboratory reports are included as Attachment 2, and the DUSRs are included as Attachment 3.

www.arcadis.com 3/5

The analytical results are presented in Table 2 and are compared to the NYSDEC's Division of Water Technical and Operational Guidance Series 1.1.1: Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Class GA⁴ (Class GA) groundwater quality standards/guidance values.

The BTEX, PAHs, total cyanide, and metals analytical results for groundwater samples collected from monitoring wells MW-4 and MW-12 during the reporting period are summarized below.

BTEX:

BTEX was not detected.

PAHs:

- PAH concentrations did not exceed Class GA⁴ groundwater quality standards or guidance values.
- Acenaphthene (0.54 micrograms per liter [μg/L]), fluoranthene (0.90 μg/L), fluorene (0.40 μg/L), and pyrene (1.3 μg/L) were detected in the groundwater sample collected from MW4 at concentrations less than their respective Class GA⁴ groundwater quality standards or guidance values.

Total cyanide:

Total cyanide was not detected.

Metals:

- Iron (25.3 μg/L), manganese (1.0 μg/L), and sodium (36.8 μg/L) were detected in the groundwater sample collected from MW4 at concentrations exceeding their respective Class GA^{Error! Bookmark not defined.} groundwater quality standards or guidance values.
- Iron (0.44 μg/L) and sodium (70.2 μg/L) were detected in the groundwater sample collected from MW12 at concentrations exceeding their respective Class GA^{Error! Bookmark not defined.} groundwater quality standards or guidance values.

Concentrations of groundwater constituents of concern listed in the Record of Decision³ were not detected.

Monitoring Well Installation and Well Repairs

Arcadis installed and developed two monitoring wells, MW14 and MW15, on March 10-14, 2025, in accordance with the Monitoring Well Installation Work Plan². Monitoring well construction details for MW14 and MW15 are provided on the monitoring well installation logs included as Attachment 4.

Some monitoring wells had either been damaged or buried by imported gravel during remedial construction; therefore, Arcadis replaced the well surface completions at five existing monitoring wells (MWBH1, MW1D, MW11B, MW12, and MW13) and increased the riser height at three existing monitoring wells (MW-11B, MW12, and MW13).

Waste Management

Arcadis containerized and staged investigation-derived waste generated during the groundwater sampling and well installation activities in appropriately labeled, New York State Department of Transportation-approved, 55-gallon drums. The drums of investigation-derived waste were staged on pallets on site and will be subsequently transported off site for treatment/disposal by NYSEG's waste disposal vendor.

www.arcadis.com 4/5

⁴ NYSDEC. 1998. Division of Water Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. October 22, 1993, reissued June 1998.

Conclusions and Recommendations

The Q1 monitoring results represent the first groundwater sampling event since completing the remedy in 2021. Based on the Q1 monitoring results:

- The groundwater flow direction is to the south toward the New York State Barge Canal.
- Concentrations of groundwater constituents of concern listed in the Record of Decision³ were not detected.

Based on data from this monitoring period, the following are recommended:

• Remove sediment from monitoring wells MWBH1, MW-1S, and MW-8 using a pump or weighted bailer.

Quarterly monitoring and reporting will continue to be completed as required by the SMP¹. The next groundwater sampling event is scheduled for May 2025 and will include results from newly installed wells MW14 and MW15. Groundwater samples will continue to be analyzed for BTEX, PAHs, total cyanide, and target analyte list metals as required by the SMP¹.

Please contact John Ruspantini of NYSEG at 607.725.3801 or jjruspantini@nyseg.com with any questions or comments.

Sincerely,

Arcadis of New York, Inc.

Nicholas Beyrle Principal Geologist

Email: nicholas.beyrle@arcadis.com

Direct Line: 585.662.4044

CC. John Ruspantini, CHMM, NYSEG Mark Gravelding, PE, Arcadis

Enclosures:

Table 1 – Gauging Data

Table 2 – Groundwater Analytical Results

Figure 1 – Site Location Map

Figure 2 - Site Layout

Figure 3 – Shallow Groundwater Contour Map – February 24, 2025

Attachment 1 – Groundwater Sampling Logs

Attachment 2 – Groundwater Laboratory Reports

Attachment 3 – Data Usability Summary Reports

Attachment 4 – MW-14 and MW-15 Well Installation Logs

www.arcadis.com 5/5

Tables

Table 1
Gauging Data
First Quarter 2025 Groundwater Monitoring Report
New York State Electric & Gas Corporation
Clyde Former Manufactured Gas Plant
Clyde, New York

Well ID	Measuring Point Elevation	Installed Depth to Bottom (feet TOC)	Screen Interval Elevation	Date	Depth to Water (feet TOC)	Groundwater Elevation	Depth to Product (feet TOC)	Depth to Bottom (feet TOC)	Accumulated Sediment Thickness (feet)
Well ID	Licvation	,		February 24, 2025	(1001 100)	Licvation	Could not locate		(ICCI)
MWBH1	393.21	27.71	373.2-368.2	March 12, 2025	3.70	389.51	Codid Hot locate	25.18	2.53
				February 24, 2025	0.95	389.69	-	19.45	0.39
MW1D	390.64	19.84	377.6-382.6	March 12, 2025	0.93	309.09	-	19.43	0.59
				February 24, 2025	0.20	390.66	<u>-</u>	6.09	3.57
MW1S	390.86	9.66	387.8-382.8	March 12, 2025	0.20	-		-	-
				February 24, 2025	3.44	388.92	-	12.78	0.18
MW3	392.36	12.96	385.9-380.9	March 12, 2025	3.44	300.92	-	12.70	0.16
				February 24, 2025	3.76	387.49	-	14.00	-1.05
MW4	391.25	12.95	384.8-379.3	March 12, 2025	3.70	307.49	-	14.00	-1.05
			362.1-352.1	February 24, 2025	8.93	383.74	-	42.60	-0.03
MW6B	392.67	42.57		March 12, 2025	0.93	303.74	-	42.00	-0.03
				February 24, 2025	3.39	389.59	-	22.81	1.87
MW8	392.98	24.68	390.3-376.3	March 12, 2025	3.39	369.59	-	22.01	1.07
					5.27	200.25	-	17.59	0.00
MW9	394.62	17.62	389.0-379.0	February 24, 2025	5.27	389.35	-	17.59	0.03
				March 12, 2025	- 44.00	-	-	-	- 0.00
MW9B	394.58	35.68	370.9-360.9	February 24, 2025	11.33	383.25	-	35.60	0.08
				March 12, 2025		-	-	- 04.07	- 0.04
MW11	393.98	24.58	386.7-371.7	February 24, 2025	5.40	388.58	-	24.27	0.31
				March 12, 2025	-	-	Cauld nat lacate	-	-
MW11B	393.33	39.83	365.5-355.5	February 24, 2025			Could not locate		
				March 12, 2025	-	-	-	-	-
MW12	392.46	15.66	388.8-378.8	February 24, 2025	Could not locate				
				March 12, 2025	0.97	391.49	-	15.75	-0.09
MW13	392.79	17.69	387.1-377.1	February 24, 2025		221.1-	Could not locate		
				March 12, 2025	1.62	391.17	-	17.65	0.04
MW14	393.48	13.85	390.3-380.3	March 12, 2025	-	-	-	-	-
MW15	392.95	13.81	389.2-379.2	March 12, 2025	-	-	-	-	-

Notes:

- 1. Elevations in feet referenced to the 1988 North American Vertical Datum.
- 2. MW-14 and MW-15 were installed by Arcadis on March 12, 2025. All other monitoring wells were installed by GEI.
- 3. Installation depths for MWBH1, MW1D, MW1S, MW3, MW4, MW6B, MW8, MW9, MW9B, MW11, MW11B, MW12, and MW13 were calculated based on well installation information provided by GEI in the Site Management Plan (GEI 2022) table titled "Monitoring Well Details and Groundwater Elevation Measurements." Note that well installation details in the aforementioned SMP table do not match the respective well installation logs in Appendix D of the SMP for MW-1D, MW-3, and MW-8.
- 4. "-" Indicates a measurement was not taken or was not available.

Acronyms and Abbreviations:

TOC - top of casing GEI - GEI Consultants, Inc.

Reference:

GEI Consultants, Inc. 2022. Site Management Plan, Clyde Former Manufactured Gas Plant Site, Wayne County, Clyde, New York. October.

Table 2
Groundwater Analytical Results
First Quarter 2025 Groundwater Monitoring Report
New York State Electric & Gas Corporation
Clyde Former Manufactured Gas Plant
Clyde, New York

Location ID:	NYSDEC TOGS 1.1.1		MW4	MW12
Date Collected:	Standards or Guidance Values	Units	02/25/25	03/14/25
BTEX				
Benzene	1	μg/L	1.0 U	1.0 U
Ethylbenzene	5	μg/L	1.0 U	1.0 U
Toluene	5	μg/L	1.0 U	1.0 U
Xylenes (total)	5	μg/L	2.0 U	2.0 U
Total BTEX		μg/L	ND	ND
PAHs		10		
Acenaphthene	20	μg/L	0.54 J	5.0 U
Acenaphthylene		μg/L	5.0 U	5.0 U
Anthracene	50	μg/L	5.0 U	5.0 U
Benzo(a)anthracene	0.002	μg/L	5.0 U	5.0 U
Benzo(a)pyrene		μg/L	5.0 U	5.0 U
Benzo(b)fluoranthene	0.002	μg/L	5.0 U	5.0 U
Benzo(g,h,i)perylene	0.002	μg/L	5.0 U	5.0 U
Benzo(k)fluoranthene	0.002	μg/L	5.0 U	5.0 U
Chrysene	0.002	μg/L	5.0 U	5.0 U
Dibenzo(a,h)anthracene	0.002	μg/L μg/L	5.0 U	5.0 U
Fluoranthene	50	μg/L	0.90 J	5.0 U
Fluorene	50	μg/L	0.40 J	5.0 U
Indeno(1,2,3-cd)pyrene	0.002	μg/L	5.0 U	5.0 U
Naphthalene	10	μg/L	5.0 U	5.0 U
Phenanthrene	50	μg/L	5.0 U	5.0 U
Pyrene	50	μg/L	1.3 J	5.0 U
Total PAHs		μg/L	3.14 J	ND
		µg/∟	3.14 0	IND
Inorganics Aluminum		m a /l	0.20 U	0.20 U
		mg/L		
Antimony	0.003	mg/L	0.020 U	0.020 U
Arsenic Barium	0.025	mg/L	0.015 U	0.015 U
		mg/L	0.24	0.10 J
Beryllium Cadmium	0.003	mg/L	0.0020 U	0.0020 UJ
Calcium	0.005	mg/L	0.0020 U	0.0020 UJ
		mg/L	197 0.0040 U	142
Chromium Cobalt	0.05	mg/L	0.0040 U	0.0040 U 0.0040 UJ
	0.0	mg/L	0.0040 U	
Copper	0.2	mg/L		0.0017 J
Iron	0.3	mg/L	25.3	0.44 J
Lead	0.025	mg/L	0.0033 J	0.010 UJ
Magnesium	35	mg/L	30.9	22.3
Manganese	0.3	mg/L	1.0	0.16
Nickel	0.1	mg/L	0.010 U	0.010 UBJ
Potassium		mg/L	6.9	4.7 J
Selenium	0.01	mg/L	0.025 U	0.025 UJ
Silver	0.05	mg/L	0.0060 U	0.0060 UJ
Sodium	20	mg/L	36.8	70.2
Thallium	0.0005	mg/L	0.020 U	0.020 UJ
Vanadium		mg/L	0.0050 U	0.0050 U
Zinc	2	mg/L	0.15	0.22
Cyanide				
Cyanide	0.2	mg/L	0.010 U	0.010 U

See notes on Page 2.

Table 2

Groundwater Analytical Results
First Quarter 2025 Groundwater Monitoring Report
New York State Electric & Gas Corporation
Clyde Former Manufactured Gas Plant
Clyde, New York

Notes:

- 1. Samples were submitted to Eurofins TestAmerica, Amherst, New York, for analysis using USEPA SW-846 Methods 8260B (VOCs), 8270C (SVOCs) 6010 (inorganics), and 9012 (cyanide).
- 2. "- -" Indicates no NYSDEC Division of Water TOGS 1.1.1 Water Quality Standard or Guidance Value (NYSDEC 1998) established.
- 3. Sample results detected above the MDL are presented in bold font.
- 4. Shading indicates that the result exceeds the NYSDEC TOGS 1.1.1 Water Quality Standard or Guidance Value (NYSDEC 1998).

Acronyms and Abbreviations:

BTEX - benzene, ethylbenzene, toluene, and xylenes

MDL - Method Detection Limit

mg/L - milligrams per liter

ND - not detected

NYSDEC - New York State Department of Environmental Conservation

PAH - polycyclic aromatic hydrocarbon

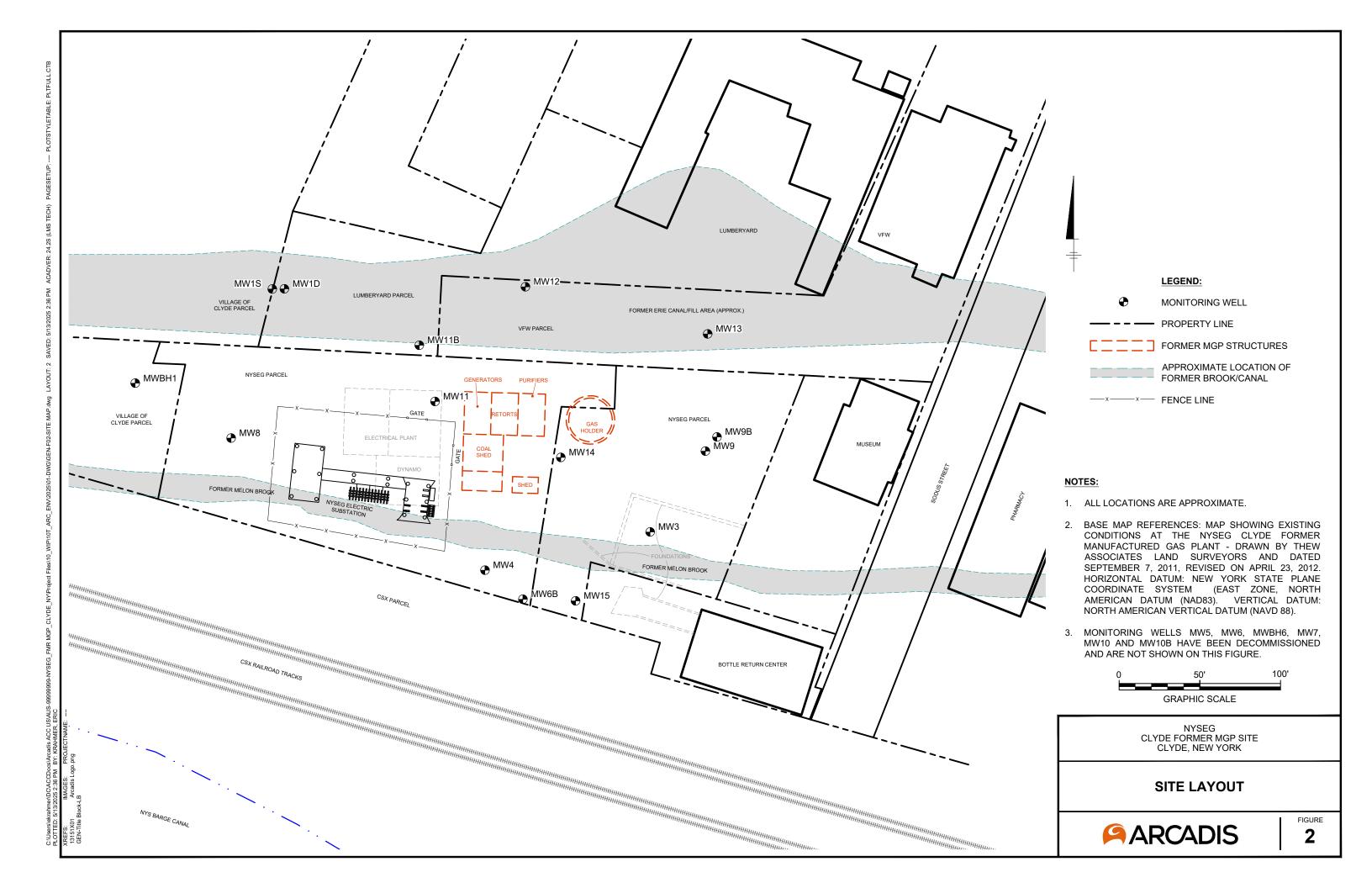
SVOC - semi-volatile organic compound

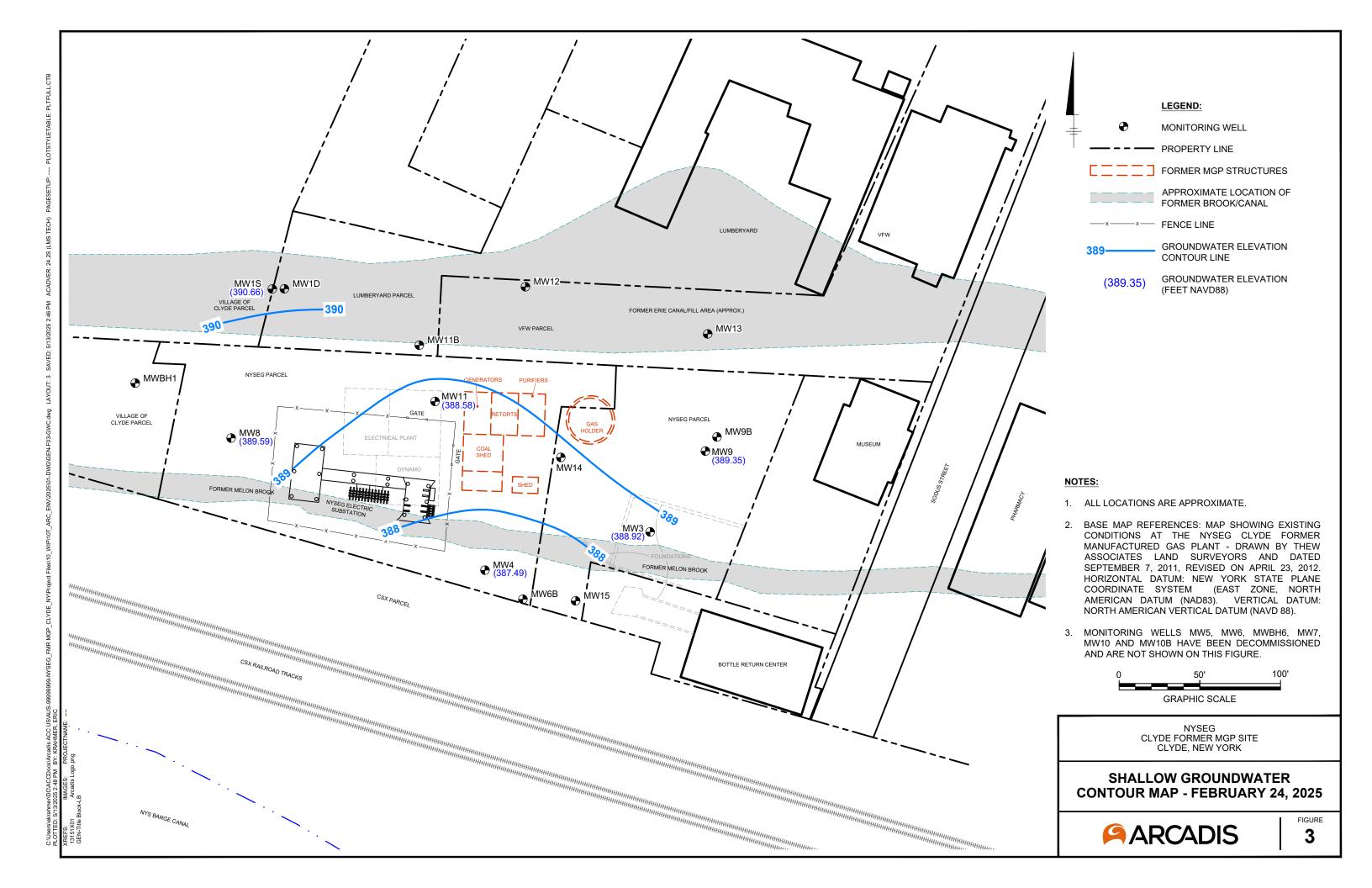
TOGS - Technical and Operational Guidance

μg/L - micrograms per liter

USEPA - United States Environmental Protection Agency

VOC - volatile organic compound


Lab Qualifiers:


- J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
- U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
- UBJ The compound is considered non-detect at the listed value due to associated blank contamination. However, the reported limit is approximate an may or may not represent the actual limit of quantitation.
- UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.

Reference:

NYSDEC 1998. Division of Water Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. October 22, 2993; reissued June 1998.

Figures

Attachment 1

Groundwater Sampling Logs

GROUNDWATER SAMPLING LOG Clyde, NY Event: February 2025 GWS Site: NYSEG Clyde Former MGP Well ID: MW - 4 Bailey Kudla-Williams / Kaitlyn Fleming Sampling Personnel: Date: 2/25/2025 Client / Job Number: NYSEG / 30270811 Time In: 1040 Weather: 37°F, Light Rain 1230 Time Out: Well Information Depth to Water: (feet TIC) Well Type: Flushmount Stick-Up Total Depth: 14.00 (feet TIC) Well Material: Stainless Steel **PVC** Length of Water Column: 10. 24 (feet) Well Locked: No Volume of Water in Well: 1.6 Yes (gal) Measuring Point Marked: Screen Interval: Yes No (feet) Well Diameter: Depth to pump Intake: ~12 (feet TIC) 4"

Purging Information

Purging Method:	Bailer		Peristaltic	Grundfos	Other:
Tubing/Bailer Material:	St. Steel		Polyethylene	Teflon	Other:
Sampling Method:	Bailer	(Peristaltic	Grundfos	Other:
Duration of Pumping:	84	(min)			
Average Pumping Rate:	200	(ml/min)	Wate	r-Quality Meter Ty	rpe: YSI ProDSS
T-4-11/-1 D					

Conversion Factors								
gal / ft.	1" ID 2" ID		4" ID	6" ID				
of water	0.041	0.163	0.653	1.469				
1 gal = 3.785 L =3785 ml = 0.1337 cubic feet								

Unit Stability								
pН	DO	Cond.	ORP					
±0.1	± 10%	± 3.0%	± 10 mV					

Total Volume Removed:

2.25

(gal)

Did well go dry:

		1	2	3	4	5	6	7	8	9	10	11	12	13
Parameter:	105	5	1100	1105	1110	1115	1120	1125	1130	1135	1140			
Volume Purged (gal)	Pum	IP	0.25	0.5	0.75	1.0	1.25	1.5	1.75	2.0	2.25			
Rate (mL/min)	on	•	200	200	200	200	200	200	200	200	5			
Depth to Water (ft.)	3.7	1	3.72	3.72	3.72	3.72	3,72	3.72	3.72	3.72	A			
рН	1	-	7.00	7.00	7.00	7.01	7,01	7.01	7.01	7.01	M			
Temp. (C)			9.2	9.2	9.2	9.2	9.2	9.3	9.2	9.2	ρ			
Conductivity (mS/cm)			1,209	1,210	1.211	1.213	1.213	1.214	1,215	1.215	L			
Dissolved Oxygen (mg/l)			1.22	0.95	0.79	0469	0.61	0.58	0.55	0.53	E			
ORP (mV)			-90.8	-99.9	-106.1	-112.1	-117.0	-118.7	-120.0	-121.0	D			
Turbidity (NTU)			7,97	7.48	4.93	4.51	2.88	2.60	2.31	1,80	1			
Notes:														
	'													
											,			

Sampling Information

Analyses	#	Laboratory
VOCs - 8260	12	Eurofins
PAHs - 8270	8	Eurofins
Total Cn - 9012	4	Eurofins
TAL Metals - 6010	4	Eurofins
Sample ID: MW	4	Sample Time: 1140
MS/MSD:	(es)	No
Duplicate:	®	No
Duplicate ID DU	2-202502	15 ^{Dup. Time:} 1150
Chain of Custody Signed By:	KW	

Problems / Observations

Initial Purge: Pump on at 1055 - clear w/ suspended particles, no odor

Final Purge: Pump off at 1219 - clear, no odor

GROUNDWATER SAMPLING LOG

Site: NYSEG Clyde Former MGP Event: February 2025 GWS Clyde, NY

Sampling Personnel: Bailey Kudla-Williams / Kaitlyn Fleming Well ID: MW12 Client / Job Number: NYSEG / 30270811 3/14/25 Weather: Time Out: 1220 Time In: 1040 Sunny 45°F

Well Information

Depth to Water:	1.95	(feet TIC)
Total Depth:	16.28	(feet TIC)
Length of Water Column:	14.33	(feet)
Volume of Water in Well:	2.34	(gal)
Screen Interval:	4-14	(feet)
Depth to pump Intake:	~110	(feet TIC)

1.8

(gal)

Well Type:	Flushmount	Stick-Up
Well Material:	Stainless Steel	PVC
Well Locked:	Yes	No
Measuring Point Marked:	Yes	No
Well Diameter: 2	4"	

Purging Information

Total Volume Removed:

Purging Method:	Bailer	Peristaltic	Grundfos	Other:
Tubing/Bailer Material:	St. Steel	Polyethylene	Teflon	Other:
Sampling Method:	Bailer	Peristaltic	Grundfos	Other:
Duration of Pumping:	85	(min)		
Average Pumping Rate:	150	(ml/min) Wate	er-Quality Meter Type:	Y51

Conversion Factors								
gal / ft.	1" ID	2" ID	4" ID	6" ID				
of water	0.041	0.163	0.653	1.469				
1 gal = 3.785 L =3785 ml = 0.1337 cubic feet								

Unit Stability								
рН	DO	Cond.	ORP					
±0.1	± 10%	± 3.0%	± 10 mV					

A Comment of the Comm	1	2	3	4	5	6	7	8	9	10	11	12	13
Parameter:	1050	1055	1100	1105	1110	1115	1120	1125	1130	1135			
Volume Purged (gal)									M. Contract	5			
Rate (mL/min)	150	150	150	150	150	150	150	150	150	A		To the second	
Depth to Water (ft.)	3.21	3.23	3.27	3.27	3.21	3.21	3.21	3.21	3.21	m			
pH	7.03	7.01	7.01	7.00	7.00	7.00	7.00	7.00	7.01	P			
Temp. (C)	7.6	7.8	7.8	7.8	7.9	7.9	7.9	7.9	7.9	L			
Conductivity (mS/cm)	1.339	1.347	1.344	1.339	1.345	1.348	1.353	1.362	1.362	E			
Dissolved Oxygen (mg/l)	2.02	1.87	1.74	1.68	1.63	1.60	1.61	1.55	1.54	18 116			
ORP (mV)	126.9	125.6	123.0	119.9	116.7	114.3	111.9	109.5	106.6				
Turbidity (NTU)	13.81	16.60	21.64	19.12	28.20	37.04	7.06	7.22	6.77			A PARTY OF	
Notes:				S. Carlotte									

Did well go dry:

Yes

Sampling Information

	Analyses	#	Laboratory
	VOCs - 8260	12	Eurofins
I	PAHs - 8270	8	Eurofins
Ī	Total Cn - 9012	4	Eurofins
	TAL Metals - 6010	4	Eurofins
	Sample ID:	MWIZ	Sample Time: 1135
Ì	MS/MSD:	Yes	No
Ì	Duplicate:	Yes	No
Ì	Duplicate ID DuP	20250314	Dup. Time: 135
l	Chain of Custody Signed By:	MRS	

Problems / Observations

No

Initial Purge:

Pump on @ 1045, Clear. No odor.

Final Purge:

Pump off @ 1210. Clear. No odor.

Attachment 2

Groundwater Laboratory Reports

11 12

13

4 E

PREPARED FOR

Attn: Mr. John J Ruspantini New York State Electric & Gas 18 Link Drive Binghamton, New York 13902 Generated 3/5/2025 10:42:21 AM

ANALYTICAL REPORT

JOB DESCRIPTION

NYSEG - Clyde Groundwater

JOB NUMBER

480-227535-1

Eurofins Buffalo 10 Hazelwood Drive Amherst NY 14228-2298

Eurofins Buffalo

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northeast, LLC Project Manager.

Authorization

Generated 3/5/2025 10:42:21 AM

Authorized for release by Anton Gruning, Project Management Assistant I Anton.Gruning@et.eurofinsus.com Designee for

John Schove, Project Manager II John.Schove@et.eurofinsus.com (716)504-9838

15

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	10
QC Sample Results	12
QC Association Summary	19
Lab Chronicle	21
Certification Summary	22
Method Summary	23
Sample Summary	24
Chain of Custody	25
Receipt Checklists	26

4

6

8

10

12

13

14

1

Definitions/Glossary

Client: New York State Electric & Gas

Job ID: 480-227535-1 Project/Site: NYSEG - Clyde

Qualifiers

001	BAC	C	: V/O A
G C/	IVIO	Sem	i VOA

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier	Qualifier Description
^5-	Linear Range Check (LRC) is outside acceptance limits, low biased.
^5+	Linear Range Check (LRC) is outside acceptance limits, high biased.
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier	Qualifier Description
F1	MS and/or MSD recovery exceeds control limits.

Glossary

QC

RER

RPD

TEF

TEQ TNTC

RL

Quality Control

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Abbreviation	These commonly used abbreviations may or may not be present in this report.
\(\phi \)	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive

Page 4 of 26 3/5/2025

Case Narrative

Client: New York State Electric & Gas

Project: NYSEG - Clyde

Eurofins Buffalo Job ID: 480-227535-1

> Job Narrative 480-227535-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 2/26/2025 11:20 AM. Unless otherwise noted below, the samples arrived in good condition, and. where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.6°C.

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC/MS Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

Method 6010D: The linear range check (LRC) standard recovery associated with 480-739825 is outside the acceptance criteria for the following analytes: total Silver, Beryllium, Chromium, Copper, Iron, Magnesium, Manganese, Sodium, Vanadium, and Zinc The concentration of these analyte(s) in the sample(s) are below the highest standard of the calibration curve; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

Method 9012B NP: The continuing calibration blank (CCB) for analytical batch 480-739740 contained Cyanide, Total above the reporting limit (RL). All reported samples associated with this CCB were either ND for this analyte or contained this analyte at a concentration greater than 10X the value found in the CCB; therefore, re-analysis of samples was not performed: MW-4 (480-227535-1), MW-4 (480-227535-1[MS]), MW-4 (480-227535-1[MSD]) and Dup-20250225 (480-227535-2).

Method 9012B NP: The method blank for batch 480-739740 contained Cyanide, Total above the reporting limit (RL). None of the samples associated with this method blank contained the target compound; therefore, re-extraction and/or re-analysis of samples were not performed: MW-4 (480-227535-1), MW-4 (480-227535-1[MS]), MW-4 (480-227535-1[MSD]) and Dup-20250225 (480-227535-2).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Page 5 of 26

Detection Summary

Client: New York State Electric & Gas

Project/Site: NYSEG - Clyde

Client Sample ID: MW-4

Lab Sample ID: 480-227535-1

Job ID: 480-227535-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acenaphthene	0.54	J	5.0	0.41	ug/L		_	8270D	Total/NA
Fluoranthene	0.90	J	5.0	0.40	ug/L	1		8270D	Total/NA
Fluorene	0.40	J	5.0	0.36	ug/L	1		8270D	Total/NA
Pyrene	1.3	J	5.0	0.34	ug/L	1		8270D	Total/NA
Barium	0.24		0.0020	0.00070	mg/L	1		6010D	Total/NA
Calcium	197		0.50	0.10	mg/L	1		6010D	Total/NA
Iron	25.3	^5-	0.050	0.019	mg/L	1		6010D	Total/NA
Lead	0.0033	J	0.010	0.0030	mg/L	1		6010D	Total/NA
Magnesium	30.9	^5-	0.20	0.043	mg/L	1		6010D	Total/NA
Manganese	1.0	^5-	0.0030	0.00040	mg/L	1		6010D	Total/NA
Potassium	6.9		0.50	0.10	mg/L	1		6010D	Total/NA
Sodium	36.8	^5-	1.0	0.32	mg/L	1		6010D	Total/NA
Zinc	0.15	^5-	0.010	0.0015	mg/L	1		6010D	Total/NA

Client Sample ID: Dup-20250225

Lab Sample ID: 480-227535-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acenaphthene	0.51	J	5.0	0.41	ug/L	1	_	8270D	Total/NA
Fluoranthene	0.87	J	5.0	0.40	ug/L	1		8270D	Total/NA
Fluorene	0.38	J	5.0	0.36	ug/L	1		8270D	Total/NA
Pyrene	1.3	J	5.0	0.34	ug/L	1		8270D	Total/NA
Barium	0.24		0.0020	0.00070	mg/L	1		6010D	Total/NA
Calcium	189		0.50	0.10	mg/L	1		6010D	Total/NA
Iron	25.5	^5-	0.050	0.019	mg/L	1		6010D	Total/NA
Lead	0.0037	J	0.010	0.0030	mg/L	1		6010D	Total/NA
Magnesium	31.2	^5-	0.20	0.043	mg/L	1		6010D	Total/NA
Manganese	1.0	^5-	0.0030	0.00040	mg/L	1		6010D	Total/NA
Potassium	6.9		0.50	0.10	mg/L	1		6010D	Total/NA
Sodium	36.7	^5-	1.0	0.32	mg/L	1		6010D	Total/NA
Zinc	0.097	^5-	0.010	0.0015	mg/L	1		6010D	Total/NA

This Detection Summary does not include radiochemical test results.

3

5

7

9

10

12

13

14

15

Client Sample Results

Client: New York State Electric & Gas Job ID: 480-227535-1

Project/Site: NYSEG - Clyde

Client Sample ID: MW-4 Lab Sample ID: 480-227535-1

Date Collected: 02/25/25 11:40 **Matrix: Ground Water** Date Received: 02/26/25 11:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	0.41	ug/L			02/27/25 22:19	1
Ethylbenzene	ND		1.0	0.74	ug/L			02/27/25 22:19	1
Toluene	ND		1.0	0.51	ug/L			02/27/25 22:19	1
Xylenes, Total	ND		2.0	0.66	ug/L			02/27/25 22:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		77 - 120					02/27/25 22:19	1
4-Bromofluorobenzene (Surr)	100		73 - 120					02/27/25 22:19	1
Dibromofluoromethane (Surr)	101		75 - 123					02/27/25 22:19	1
Toluene-d8 (Surr)	101		80 - 120					02/27/25 22:19	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.54	J	5.0	0.41	ug/L		02/28/25 13:52	03/03/25 16:11	1
Acenaphthylene	ND		5.0	0.38	ug/L		02/28/25 13:52	03/03/25 16:11	1
Anthracene	ND		5.0	0.28	ug/L		02/28/25 13:52	03/03/25 16:11	1
Benzo[a]anthracene	ND		5.0	0.36	ug/L		02/28/25 13:52	03/03/25 16:11	1
Benzo[a]pyrene	ND		5.0	0.47	ug/L		02/28/25 13:52	03/03/25 16:11	1
Benzo[b]fluoranthene	ND		5.0	0.34	ug/L		02/28/25 13:52	03/03/25 16:11	1
Benzo[g,h,i]perylene	ND		5.0	0.35	ug/L		02/28/25 13:52	03/03/25 16:11	1
Benzo[k]fluoranthene	ND		5.0	0.73	ug/L		02/28/25 13:52	03/03/25 16:11	1
Chrysene	ND		5.0	0.33	ug/L		02/28/25 13:52	03/03/25 16:11	1
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		02/28/25 13:52	03/03/25 16:11	1
Fluoranthene	0.90	J	5.0	0.40	ug/L		02/28/25 13:52	03/03/25 16:11	1
Fluorene	0.40	J	5.0	0.36	ug/L		02/28/25 13:52	03/03/25 16:11	1
Indeno[1,2,3-cd]pyrene	ND		5.0	0.47	ug/L		02/28/25 13:52	03/03/25 16:11	1
Naphthalene	ND		5.0	0.76	ug/L		02/28/25 13:52	03/03/25 16:11	1
Phenanthrene	ND		5.0	0.44	ug/L		02/28/25 13:52	03/03/25 16:11	1
Pyrene	1.3	J	5.0	0.34	ug/L		02/28/25 13:52	03/03/25 16:11	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	86		53 - 126	02/28/25 13:52	03/03/25 16:11	1
Nitrobenzene-d5 (Surr)	76		29 - 129	02/28/25 13:52	03/03/25 16:11	1
p-Terphenyl-d14 (Surr)	81		33 - 132	02/28/25 13:52	03/03/25 16:11	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20	0.060	mg/L		02/27/25 09:16	02/27/25 15:04	1
Antimony	ND		0.020	0.0068	mg/L		02/27/25 09:16	02/27/25 15:04	1
Arsenic	ND		0.015	0.0056	mg/L		02/27/25 09:16	02/27/25 15:04	1
Barium	0.24		0.0020	0.00070	mg/L		02/27/25 09:16	02/27/25 15:04	1
Beryllium	ND	^5-	0.0020	0.00030	mg/L		02/27/25 09:16	02/27/25 15:04	1
Cadmium	ND		0.0020	0.00050	mg/L		02/27/25 09:16	02/27/25 15:04	1
Calcium	197		0.50	0.10	mg/L		02/27/25 09:16	03/04/25 18:17	1
Chromium	ND	^5-	0.0040	0.0010	mg/L		02/27/25 09:16	02/27/25 15:04	1
Cobalt	ND		0.0040	0.00063	mg/L		02/27/25 09:16	02/27/25 15:04	1
Copper	ND	^5+	0.010	0.0016	mg/L		02/27/25 09:16	02/27/25 15:04	1
Iron	25.3	^5-	0.050	0.019	mg/L		02/27/25 09:16	02/27/25 15:04	1
Lead	0.0033	J	0.010	0.0030	mg/L		02/27/25 09:16	02/27/25 15:04	1
Magnesium	30.9	^5-	0.20	0.043	mg/L		02/27/25 09:16	02/27/25 15:04	1

Eurofins Buffalo

Page 7 of 26

3/5/2025

Client Sample Results

Client: New York State Electric & Gas

Project/Site: NYSEG - Clyde

Client Sample ID: MW-4 Lab Sample ID: 480-227535-1

Date Collected: 02/25/25 11:40 Matrix: Ground Water
Date Received: 02/26/25 11:20

Method: SW846 6010D - Meta	Is (ICP) (Co	ontinued)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese	1.0	^5-	0.0030	0.00040	mg/L		02/27/25 09:16	02/27/25 15:04	1
Nickel	ND		0.010	0.0013	mg/L		02/27/25 09:16	02/27/25 15:04	1
Potassium	6.9		0.50	0.10	mg/L		02/27/25 09:16	02/27/25 15:04	1
Selenium	ND		0.025	0.0087	mg/L		02/27/25 09:16	02/27/25 15:04	1
Silver	ND	^5-	0.0060	0.0017	mg/L		02/27/25 09:16	02/27/25 15:04	1
Sodium	36.8	^5-	1.0	0.32	mg/L		02/27/25 09:16	02/27/25 15:04	1
Thallium	ND		0.020	0.010	mg/L		02/27/25 09:16	02/27/25 15:04	1
Vanadium	ND	^5-	0.0050	0.0015	mg/L		02/27/25 09:16	02/27/25 15:04	1
Zinc	0.15	^5-	0.010	0.0015	mg/L		02/27/25 09:16	02/27/25 15:04	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total (SW846 9012B)	ND	F1	0.010	0.0041	mg/L			02/26/25 20:36	1

Client Sample ID: Dup-20250225

Date Collected: 02/25/25 00:00

Lab Sample ID: 480-227535-2

Matrix: Ground Water

Date Received: 02/26/25 11:20

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND -	1.0	0.41	ug/L			02/27/25 22:41	1
Ethylbenzene	ND	1.0	0.74	ug/L			02/27/25 22:41	1
Toluene	ND	1.0	0.51	ug/L			02/27/25 22:41	1
Xylenes, Total	ND	2.0	0.66	ug/L			02/27/25 22:41	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		77 - 120		02/27/25 22:41	1
4-Bromofluorobenzene (Surr)	102		73 - 120		02/27/25 22:41	1
Dibromofluoromethane (Surr)	105		75 - 123		02/27/25 22:41	1
Toluene-d8 (Surr)	100		80 - 120		02/27/25 22:41	1

Analyte	Result Qu	ualifier R	L MDI	_ Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.51 J		.0 0.4	ug/L		02/28/25 13:52	03/03/25 17:58	1
Acenaphthylene	ND	5	.0 0.38	3 ug/L		02/28/25 13:52	03/03/25 17:58	1
Anthracene	ND	5	.0 0.28	3 ug/L		02/28/25 13:52	03/03/25 17:58	1
Benzo[a]anthracene	ND	5	.0 0.36	3 ug/L		02/28/25 13:52	03/03/25 17:58	1
Benzo[a]pyrene	ND	5	.0 0.47	₹ ug/L		02/28/25 13:52	03/03/25 17:58	1
Benzo[b]fluoranthene	ND	5	.0 0.34	l ug/L		02/28/25 13:52	03/03/25 17:58	1
Benzo[g,h,i]perylene	ND	5	.0 0.3	5 ug/L		02/28/25 13:52	03/03/25 17:58	1
Benzo[k]fluoranthene	ND	5	.0 0.73	3 ug/L		02/28/25 13:52	03/03/25 17:58	1
Chrysene	ND	5	.0 0.33	3 ug/L		02/28/25 13:52	03/03/25 17:58	1
Dibenz(a,h)anthracene	ND	5	.0 0.42	2 ug/L		02/28/25 13:52	03/03/25 17:58	1
Fluoranthene	0.87 J	5	.0 0.40	ug/L		02/28/25 13:52	03/03/25 17:58	1
Fluorene	0.38 J	5	.0 0.36	3 ug/L		02/28/25 13:52	03/03/25 17:58	1
Indeno[1,2,3-cd]pyrene	ND	5	.0 0.4	ug/L		02/28/25 13:52	03/03/25 17:58	1
Naphthalene	ND	5	.0 0.76	3 ug/L		02/28/25 13:52	03/03/25 17:58	1
Phenanthrene	ND	5	.0 0.44	l ug/L		02/28/25 13:52	03/03/25 17:58	1
Pyrene	1.3 J	5	.0 0.34	l ug/L		02/28/25 13:52	03/03/25 17:58	1

Eurofins Buffalo

3/5/2025

Client Sample Results

Client: New York State Electric & Gas

Project/Site: NYSEG - Clyde

Client Sample ID: Dup-20250225

Date Collected: 02/25/25 00:00 Date Received: 02/26/25 11:20

Lab Sample ID: 480-227535-2

Matrix: Ground Water

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	85		53 - 126	02/28/25 13:52	03/03/25 17:58	1
Nitrobenzene-d5 (Surr)	75		29 - 129	02/28/25 13:52	03/03/25 17:58	1
p-Terphenyl-d14 (Surr)	78		33 - 132	02/28/25 13:52	03/03/25 17:58	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
General Chemistry						_			
Zinc	0.097	^5-	0.010	0.0015	mg/L		02/27/25 09:16	02/27/25 15:13	
Vanadium	ND	^5-	0.0050	0.0015	mg/L		02/27/25 09:16	02/27/25 15:13	
Thallium	ND		0.020	0.010	mg/L		02/27/25 09:16	02/27/25 15:13	
Sodium	36.7	^5-	1.0	0.32	mg/L		02/27/25 09:16	02/27/25 15:13	
Silver	ND	^5-	0.0060	0.0017	mg/L		02/27/25 09:16	02/27/25 15:13	
Selenium	ND		0.025	0.0087	mg/L		02/27/25 09:16	02/27/25 15:13	
Potassium	6.9		0.50	0.10	mg/L		02/27/25 09:16	02/27/25 15:13	
Nickel	ND		0.010	0.0013	mg/L		02/27/25 09:16	02/27/25 15:13	
Manganese	1.0	^5-	0.0030	0.00040	mg/L		02/27/25 09:16	02/27/25 15:13	
Magnesium	31.2	^5-	0.20	0.043	mg/L		02/27/25 09:16	02/27/25 15:13	
Lead	0.0037	J	0.010	0.0030	mg/L		02/27/25 09:16	02/27/25 15:13	
Iron	25.5	^5-	0.050	0.019	mg/L		02/27/25 09:16	02/27/25 15:13	
Copper	ND	^5+	0.010	0.0016	mg/L		02/27/25 09:16	02/27/25 15:13	
Cobalt	ND		0.0040	0.00063	mg/L		02/27/25 09:16	02/27/25 15:13	
Chromium	ND	^5-	0.0040	0.0010	mg/L		02/27/25 09:16	02/27/25 15:13	
Calcium	189		0.50	0.10	mg/L		02/27/25 09:16	03/04/25 18:27	
Cadmium	ND		0.0020	0.00050	mg/L		02/27/25 09:16	02/27/25 15:13	
Beryllium	ND	^5-	0.0020	0.00030	mg/L		02/27/25 09:16	02/27/25 15:13	
Barium	0.24		0.0020	0.00070	mg/L		02/27/25 09:16	02/27/25 15:13	
Arsenic	ND		0.015	0.0056	mg/L		02/27/25 09:16	02/27/25 15:13	
Antimony	ND		0.020	0.0068	mg/L		02/27/25 09:16	02/27/25 15:13	
Aluminum	ND		0.20	0.060	mg/L		02/27/25 09:16	02/27/25 15:13	
Method: SW846 6010D - Meta	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
p-Terphenyl-d14 (Surr)	78		33 - 132				02/28/25 13:52	03/03/25 17:58	
THE ODE IZETIC GO (Odit)	, 0		20 - 120				02/20/20 10:02	00/00/20 17:00	

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total (SW846 9012B)	ND		0.010	0.0041	mg/L			02/26/25 20:46	1

Client: New York State Electric & Gas

Project/Site: NYSEG - Clyde

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Ground Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(77-120)	(73-120)	(75-123)	(80-120)
480-227535-1	MW-4	105	100	101	101
480-227535-1 MS	MW-4	103	100	102	98
480-227535-1 MSD	MW-4	100	97	98	102
480-227535-2	Dup-20250225	106	102	105	100
Oausta I.ausud					

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(77-120)	(73-120)	(75-123)	(80-120)
LCS 480-739828/6	Lab Control Sample	101	101	103	97
MB 480-739828/8	Method Blank	103	102	106	98
Surrogate Legend					

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Ground Water Prep Type: Total/NA

			Pe	ercent Surrog	ate Recovery (Acceptance Limits)
		FBP	NBZ	TPHd14	
Lab Sample ID	Client Sample ID	(53-126)	(29-129)	(33-132)	
480-227535-1	MW-4	86	76	81	
480-227535-1 MS	MW-4	94	87	72	
480-227535-1 MSD	MW-4	88	84	68	
480-227535-2	Dup-20250225	85	75	78	

Surrogate Legend

FBP = 2-Fluorobiphenyl (Surr)

NBZ = Nitrobenzene-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

_			Pe	ercent Surro
		FBP	NBZ	TPHd14
Lab Sample ID	Client Sample ID	(53-126)	(29-129)	(33-132)
LCS 480-739876/2-A	Lab Control Sample	83	76	93
MB 480-739876/1-A	Method Blank	74	67	86
Surrogate Legend				
FBP = 2-Fluorobiphen	yl (Surr)			

Eurofins Buffalo

3/5/2025

Page 10 of 26

Surrogate Summary

Client: New York State Electric & Gas Project/Site: NYSEG - Clyde NBZ = Nitrobenzene-d5 (Surr) TPHd14 = p-Terphenyl-d14 (Surr) Job ID: 480-227535-1

2

4

7

0

10

11

13

14

15

Client: New York State Electric & Gas

Project/Site: NYSEG - Clyde

Job ID: 480-227535-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-739828/8

Matrix: Water

Analysis Batch: 739828

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac D 0.41 ug/L Benzene ND 1.0 02/27/25 20:03 Ethylbenzene ND 1.0 0.74 ug/L 02/27/25 20:03 ND Toluene 1.0 0.51 ug/L 02/27/25 20:03 0.66 ug/L Xylenes, Total ND 2.0 02/27/25 20:03

MB MB Qualifier Surrogate Limits Prepared Dil Fac %Recovery Analyzed 1,2-Dichloroethane-d4 (Surr) 77 - 120 103 02/27/25 20:03 102 73 - 120 4-Bromofluorobenzene (Surr) 02/27/25 20:03 106 Dibromofluoromethane (Surr) 75 - 123 02/27/25 20:03 Toluene-d8 (Surr) 98 80 - 120 02/27/25 20:03

Lab Sample ID: LCS 480-739828/6

Matrix: Water

Analysis Batch: 739828

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits Benzene 25.0 24.5 ug/L 98 71 - 124 Ethylbenzene 25.0 23.1 92 77 - 123 ug/L 25.0 24.2 97 80 - 122 Toluene ug/L Xylenes, Total 50.0 46.9 94 76 - 122 ug/L

LCS LCS Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 101 77 - 120 101 73 - 120 4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) 103 75 - 123 97 80 - 120 Toluene-d8 (Surr)

Lab Sample ID: 480-227535-1 MS

Client Sample ID: MW-4 **Matrix: Ground Water** Prep Type: Total/NA **Analysis Batch: 739828** MS MS %Rec Sample Sample Snika

	Sample	Sample	Spike	IVIO	IVIO				/orvec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	ND		25.0	26.8		ug/L		107	71 - 124	
Ethylbenzene	ND		25.0	25.6		ug/L		103	77 - 123	
Toluene	ND		25.0	26.8		ug/L		107	80 - 122	
Xylenes, Total	ND		50.0	50.9		ug/L		102	76 - 122	

MS	MS
	0

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	103		77 - 120
4-Bromofluorobenzene (Surr)	100		73 - 120
Dibromofluoromethane (Surr)	102		75 - 123
Toluene-d8 (Surr)	98		80 - 120

Eurofins Buffalo

Client: New York State Electric & Gas Job ID: 480-227535-1

Project/Site: NYSEG - Clyde

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-227535-1 MSD

Matrix: Ground Water Analysis Batch: 739828 Client Sample ID: MW-4 Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	ND		25.0	26.8		ug/L		107	71 - 124	0	13
Ethylbenzene	ND		25.0	25.8		ug/L		103	77 - 123	1	15
Toluene	ND		25.0	27.3		ug/L		109	80 - 122	2	15
Xylenes, Total	ND		50.0	51.3		ug/L		103	76 - 122	1	16

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		77 - 120
4-Bromofluorobenzene (Surr)	97		73 - 120
Dibromofluoromethane (Surr)	98		75 - 123
Toluene-d8 (Surr)	102		80 - 120

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-739876/1-A

Matrix: Water

Analysis Batch: 739945

Client Sample ID: Method Blank Prep Type: Total/NA **Prep Batch: 739876**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		5.0	0.41	ug/L		02/28/25 13:52	03/03/25 14:24	1
Acenaphthylene	ND		5.0	0.38	ug/L		02/28/25 13:52	03/03/25 14:24	1
Anthracene	ND		5.0	0.28	ug/L		02/28/25 13:52	03/03/25 14:24	1
Benzo[a]anthracene	ND		5.0	0.36	ug/L		02/28/25 13:52	03/03/25 14:24	1
Benzo[a]pyrene	ND		5.0	0.47	ug/L		02/28/25 13:52	03/03/25 14:24	1
Benzo[b]fluoranthene	ND		5.0	0.34	ug/L		02/28/25 13:52	03/03/25 14:24	1
Benzo[g,h,i]perylene	ND		5.0	0.35	ug/L		02/28/25 13:52	03/03/25 14:24	1
Benzo[k]fluoranthene	ND		5.0	0.73	ug/L		02/28/25 13:52	03/03/25 14:24	1
Chrysene	ND		5.0	0.33	ug/L		02/28/25 13:52	03/03/25 14:24	1
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		02/28/25 13:52	03/03/25 14:24	1
Fluoranthene	ND		5.0	0.40	ug/L		02/28/25 13:52	03/03/25 14:24	1
Fluorene	ND		5.0	0.36	ug/L		02/28/25 13:52	03/03/25 14:24	1
Indeno[1,2,3-cd]pyrene	ND		5.0	0.47	ug/L		02/28/25 13:52	03/03/25 14:24	1
Naphthalene	ND		5.0	0.76	ug/L		02/28/25 13:52	03/03/25 14:24	1
Phenanthrene	ND		5.0	0.44	ug/L		02/28/25 13:52	03/03/25 14:24	1
Pyrene	ND		5.0	0.34	ug/L		02/28/25 13:52	03/03/25 14:24	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	74		53 - 126	02/28/25 13:52	03/03/25 14:24	1
Nitrobenzene-d5 (Surr)	67		29 - 129	02/28/25 13:52	03/03/25 14:24	1
p-Terphenyl-d14 (Surr)	86		33 - 132	02/28/25 13:52	03/03/25 14:24	1

Lab Sample ID: LCS 480-739876/2-A

Matrix: Water

Analysis Batch: 739945

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 739876

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier l	Jnit	D	%Rec	Limits	
Acenaphthene	32.0	28.2		ıg/L		88	60 - 120	
Acenaphthylene	32.0	29.1	ι	ıg/L		91	63 - 120	
Anthracene	32.0	32.2	ι	ıg/L		100	67 - 120	

Eurofins Buffalo

Page 13 of 26

Client: New York State Electric & Gas

Project/Site: NYSEG - Clyde

Job ID: 480-227535-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-739876/2-A

Matrix: Water

Analysis Batch: 739945

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 739876

Spike	LCS	LCS				%Rec	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
32.0	32.1		ug/L		100	70 - 121	
32.0	32.7		ug/L		102	60 - 123	
32.0	32.0		ug/L		100	66 - 126	
32.0	31.9		ug/L		100	66 - 150	
32.0	33.8		ug/L		106	65 - 124	
32.0	31.6		ug/L		99	69 - 120	
32.0	31.0		ug/L		97	65 - 135	
32.0	32.2		ug/L		101	69 - 126	
32.0	30.1		ug/L		94	66 - 120	
32.0	31.8		ug/L		99	69 - 146	
32.0	23.3		ug/L		73	57 - 120	
32.0	32.6		ug/L		102	68 - 120	
32.0	32.9		ug/L		103	70 - 125	
	Added 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0	Added Result 32.0 32.1 32.0 32.7 32.0 32.0 32.0 31.9 32.0 31.6 32.0 31.0 32.0 32.2 32.0 30.1 32.0 31.8 32.0 23.3 32.0 32.6	Added Result Qualifier 32.0 32.1 32.0 32.7 32.0 32.0 32.0 31.9 32.0 33.8 32.0 31.6 32.0 31.0 32.0 32.2 32.0 30.1 32.0 31.8 32.0 23.3 32.0 32.6	Added Result Qualifier Unit 32.0 32.1 ug/L 32.0 32.7 ug/L 32.0 32.0 ug/L 32.0 31.9 ug/L 32.0 33.8 ug/L 32.0 31.6 ug/L 32.0 31.0 ug/L 32.0 32.2 ug/L 32.0 30.1 ug/L 32.0 31.8 ug/L 32.0 23.3 ug/L 32.0 32.6 ug/L	Added Result Qualifier Unit D 32.0 32.1 ug/L ug/L 32.0 32.7 ug/L ug/L 32.0 32.0 ug/L ug/L 32.0 31.9 ug/L ug/L 32.0 33.8 ug/L ug/L 32.0 31.0 ug/L ug/L 32.0 32.2 ug/L ug/L 32.0 30.1 ug/L ug/L 32.0 31.8 ug/L 32.0 23.3 ug/L 32.0 32.6 ug/L	Added Result Qualifier Unit D %Rec 32.0 32.1 ug/L 100 32.0 32.7 ug/L 102 32.0 32.0 ug/L 100 32.0 31.9 ug/L 100 32.0 33.8 ug/L 99 32.0 31.6 ug/L 99 32.0 31.0 ug/L 97 32.0 32.2 ug/L 101 32.0 30.1 ug/L 94 32.0 31.8 ug/L 99 32.0 23.3 ug/L 73 32.0 32.6 ug/L 102	Added Result Qualifier Unit D %Rec Limits 32.0 32.1 ug/L 100 70 - 121 32.0 32.7 ug/L 102 60 - 123 32.0 32.0 ug/L 100 66 - 126 32.0 31.9 ug/L 100 66 - 150 32.0 33.8 ug/L 106 65 - 124 32.0 31.6 ug/L 99 69 - 120 32.0 31.0 ug/L 97 65 - 135 32.0 32.2 ug/L 101 69 - 126 32.0 30.1 ug/L 94 66 - 120 32.0 31.8 ug/L 99 69 - 146 32.0 23.3 ug/L 73 57 - 120 32.0 32.6 ug/L 102 68 - 120

LCS LCS

Surrogate	%Recovery Qualifi	er Limits
2-Fluorobiphenyl (Surr)	83	53 - 126
Nitrobenzene-d5 (Surr)	76	29 - 129
p-Terphenvl-d14 (Surr)	93	33 - 132

Lab Sample ID: 480-227535-1 MS

Matrix: Ground Water

Analysis Batch: 739945

Client Sample ID: MW-4 Prep Type: Total/NA

Prep Batch: 739876

Analysis Baten. 100040	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthene	0.54	J	32.0	32.0		ug/L		98	48 - 120
Acenaphthylene	ND		32.0	32.6		ug/L		102	63 - 120
Anthracene	ND		32.0	33.4		ug/L		104	65 - 122
Benzo[a]anthracene	ND		32.0	30.4		ug/L		95	43 - 124
Benzo[a]pyrene	ND		32.0	29.7		ug/L		93	23 - 125
Benzo[b]fluoranthene	ND		32.0	29.2		ug/L		91	27 - 127
Benzo[g,h,i]perylene	ND		32.0	28.0		ug/L		87	16 - 147
Benzo[k]fluoranthene	ND		32.0	29.9		ug/L		93	20 - 124
Chrysene	ND		32.0	30.6		ug/L		96	44 - 122
Dibenz(a,h)anthracene	ND		32.0	27.3		ug/L		85	16 - 139
Fluoranthene	0.90	J	32.0	34.9		ug/L		106	63 - 129
Fluorene	0.40	J	32.0	33.6		ug/L		104	62 - 120
Indeno[1,2,3-cd]pyrene	ND		32.0	28.0		ug/L		88	16 - 140
Naphthalene	ND		32.0	26.3		ug/L		82	45 - 120
Phenanthrene	ND		32.0	37.5		ug/L		117	65 - 122
Pyrene	1.3	J	32.0	35.5		ug/L		107	58 - 128

MS MS

Surrogate	%Recovery Qualifier	Limits
2-Fluorobiphenyl (Surr)	94	53 - 126
Nitrobenzene-d5 (Surr)	87	29 - 129
p-Terphenvl-d14 (Surr)	72	33 - 132

Eurofins Buffalo

Client: New York State Electric & Gas

Project/Site: NYSEG - Clyde

Job ID: 480-227535-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-227535-1 MSD

Matrix: Ground Water Analysis Batch: 739945 Client Sample ID: MW-4 **Prep Type: Total/NA Prep Batch: 739876**

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthene	0.54	J	32.0	29.7		ug/L		91	48 - 120	7	24
Acenaphthylene	ND		32.0	30.6		ug/L		96	63 - 120	6	18
Anthracene	ND		32.0	31.5		ug/L		98	65 - 122	6	15
Benzo[a]anthracene	ND		32.0	28.5		ug/L		89	43 - 124	7	15
Benzo[a]pyrene	ND		32.0	26.8		ug/L		84	23 - 125	10	15
Benzo[b]fluoranthene	ND		32.0	26.9		ug/L		84	27 - 127	8	15
Benzo[g,h,i]perylene	ND		32.0	25.4		ug/L		79	16 - 147	10	15
Benzo[k]fluoranthene	ND		32.0	27.8		ug/L		87	20 - 124	7	22
Chrysene	ND		32.0	28.3		ug/L		89	44 - 122	8	15
Dibenz(a,h)anthracene	ND		32.0	25.0		ug/L		78	16 - 139	9	15
Fluoranthene	0.90	J	32.0	32.5		ug/L		99	63 - 129	7	15
Fluorene	0.40	J	32.0	31.2		ug/L		96	62 - 120	8	15
Indeno[1,2,3-cd]pyrene	ND		32.0	25.6		ug/L		80	16 - 140	9	15
Naphthalene	ND		32.0	25.5		ug/L		80	45 - 120	3	29
Phenanthrene	ND		32.0	35.0		ug/L		109	65 - 122	7	15
Pyrene	1.3	J	32.0	33.1		ug/L		99	58 - 128	7	19

MSD MSD

Surrogate	%Recovery Qualifi	er Limits
2-Fluorobiphenyl (Surr)	88	53 - 126
Nitrobenzene-d5 (Surr)	84	29 - 129
p-Terphenyl-d14 (Surr)	68	33 - 132

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 480-739713/1-A

Matrix: Water

Analysis Batch: 739825

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 739713

	MB	MB							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20	0.060	mg/L		02/27/25 09:16	02/27/25 15:00	1
Antimony	ND		0.020	0.0068	mg/L		02/27/25 09:16	02/27/25 15:00	1
Arsenic	ND		0.015	0.0056	mg/L		02/27/25 09:16	02/27/25 15:00	1
Barium	ND		0.0020	0.00070	mg/L		02/27/25 09:16	02/27/25 15:00	1
Beryllium	ND	^5-	0.0020	0.00030	mg/L		02/27/25 09:16	02/27/25 15:00	1
Cadmium	ND		0.0020	0.00050	mg/L		02/27/25 09:16	02/27/25 15:00	1
Calcium	ND	^5-	0.50	0.10	mg/L		02/27/25 09:16	02/27/25 15:00	1
Chromium	ND	^5-	0.0040	0.0010	mg/L		02/27/25 09:16	02/27/25 15:00	1
Cobalt	0.000951	J	0.0040	0.00063	mg/L		02/27/25 09:16	02/27/25 15:00	1
Copper	ND	^5+	0.010	0.0016	mg/L		02/27/25 09:16	02/27/25 15:00	1
Iron	ND	^5-	0.050	0.019	mg/L		02/27/25 09:16	02/27/25 15:00	1
Lead	ND		0.010	0.0030	mg/L		02/27/25 09:16	02/27/25 15:00	1
Magnesium	ND	^5-	0.20	0.043	mg/L		02/27/25 09:16	02/27/25 15:00	1
Manganese	ND	^5-	0.0030	0.00040	mg/L		02/27/25 09:16	02/27/25 15:00	1
Nickel	ND		0.010	0.0013	mg/L		02/27/25 09:16	02/27/25 15:00	1
Potassium	ND		0.50	0.10	mg/L		02/27/25 09:16	02/27/25 15:00	1
Selenium	ND		0.025	0.0087	mg/L		02/27/25 09:16	02/27/25 15:00	1
Silver	ND	^5-	0.0060	0.0017	mg/L		02/27/25 09:16	02/27/25 15:00	1
Sodium	ND	^5-	1.0	0.32	mg/L		02/27/25 09:16	02/27/25 15:00	1

Eurofins Buffalo

Page 15 of 26

Client: New York State Electric & Gas

Project/Site: NYSEG - Clyde

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: MB 480-739713/1-A

Matrix: Water

Analysis Batch: 739825

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 480-227535-1

Prep Batch: 739713

	1410	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Thallium	ND		0.020	0.010	mg/L		02/27/25 09:16	02/27/25 15:00	1
Vanadium	ND	^5-	0.0050	0.0015	mg/L		02/27/25 09:16	02/27/25 15:00	1
Zinc	ND	^5-	0.010	0.0015	mg/L		02/27/25 09:16	02/27/25 15:00	1

Lab Sample ID: LCS 480-739713/2-A

Matrix: Water

Analysis Batch: 739825

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 739713

Analysis Batch: 739825	0	1.00	1.00				Prep Batch: /39/13
	Spike		LCS		_		%Rec
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
Aluminum	5.11	5.09		mg/L		99	80 - 120
Antimony	0.500	0.486		mg/L		97	80 - 120
Arsenic	1.01	0.961		mg/L		96	80 - 120
Barium	1.00	0.993		mg/L		99	80 - 120
Beryllium	0.496	0.516	^5-	mg/L		104	80 - 120
Cadmium	0.500	0.502		mg/L		100	80 - 120
Calcium	25.0	25.41	^5-	mg/L		102	80 - 120
Chromium	0.499	0.514	^5-	mg/L		103	80 - 120
Cobalt	0.500	0.506		mg/L		101	80 - 120
Copper	0.500	0.493	^5+	mg/L		99	80 - 120
Iron	5.12	5.46	^5-	mg/L		107	80 - 120
Lead	0.500	0.518		mg/L		104	80 - 120
Magnesium	25.0	24.65	^5-	mg/L		99	80 - 120
Manganese	0.498	0.497	^5-	mg/L		100	80 - 120
Nickel	0.501	0.522		mg/L		104	80 - 120
Potassium	25.0	25.91		mg/L		104	80 - 120
Selenium	1.00	0.987		mg/L		99	80 - 120
Silver	0.0500	0.0498	^5-	mg/L		100	80 - 120
Sodium	25.0	25.12	^5-	mg/L		101	80 - 120
Thallium	1.00	1.01		mg/L		101	80 - 120
Vanadium	0.502	0.497	^5-	mg/L		99	80 - 120
Zinc	0.500	0.531	^5-	mg/L		106	80 - 120

Lab Sample ID: 480-227535-1 MS

Matrix: Ground Water

Analysis Batch: 739825

Client Sample ID: MW-4
Prep Type: Total/NA
Prep Batch: 739713

Analysis Batch. 700020	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aluminum	ND		5.11	5.01		mg/L		98	75 - 125
Antimony	ND		0.500	0.498		mg/L		100	75 - 125
Arsenic	ND		1.01	0.972		mg/L		97	75 - 125
Barium	0.24		1.00	1.21		mg/L		97	75 - 125
Beryllium	ND	^5-	0.496	0.506	^5-	mg/L		102	75 - 125
Cadmium	ND		0.500	0.514		mg/L		103	75 - 125
Chromium	ND	^5-	0.499	0.510	^5-	mg/L		102	75 - 125
Cobalt	ND		0.500	0.504		mg/L		101	75 - 125
Copper	ND	^5+	0.500	0.531	^5+	mg/L		106	75 - 125
Iron	25.3	^5-	5.12	30.81	^5- 4	mg/L		108	75 - 125
Lead	0.0033	J	0.500	0.524		mg/L		104	75 - 125
Magnesium	30.9	^5-	25.0	53.87	^5-	mg/L		92	75 - 125

Eurofins Buffalo

3/5/2025

Page 16 of 26

Client: New York State Electric & Gas

Project/Site: NYSEG - Clyde

Job ID: 480-227535-1

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: 480-227535-1 MS Client Sample ID: MW-4 **Matrix: Ground Water Prep Type: Total/NA** Analysis Batch: 739825 **Prep Batch: 739713** Sample Sample Spike

	Sample	Sample	Spike	IVIO	IVIO				70KeC	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Manganese	1.0	^5-	0.498	1.46	^5-	mg/L		91	75 - 125	
Nickel	ND		0.501	0.518		mg/L		103	75 - 125	
Potassium	6.9		25.0	32.84		mg/L		104	75 - 125	
Selenium	ND		1.00	1.00		mg/L		100	75 - 125	
Silver	ND	^5-	0.0500	0.0511	^5-	mg/L		102	75 - 125	
Sodium	36.4		25.0	60.33		mg/L		96	75 - 125	
Thallium	ND		1.00	1.03		mg/L		103	75 - 125	
Vanadium	ND	^5-	0.502	0.499	^5-	mg/L		99	75 - 125	
Zinc	0.15	^5-	0.500	0.624	^5-	mg/L		95	75 - 125	

Client Sample ID: MW-4 Lab Sample ID: 480-227535-1 MS **Matrix: Ground Water Prep Type: Total/NA Analysis Batch: 740058 Prep Batch: 739713** Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits

Calcium 197 25.0 212.7 4 62 75 - 125 mg/L

Matrix: Ground Water

Lab Sample ID: 480-227535-1 MSD Client Sample ID: MW-4 **Prep Type: Total/NA Analysis Batch: 739825 Prep Batch: 739713** %Rec **RPD** Spike MSD MSD Sample Sample

Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	ND		5.11	5.23		mg/L		102	75 - 125	4	20
Antimony	ND		0.500	0.504		mg/L		101	75 - 125	1	20
Arsenic	ND		1.01	0.989		mg/L		98	75 - 125	2	20
Barium	0.24		1.00	1.25		mg/L		101	75 - 125	3	20
Beryllium	ND	^5-	0.496	0.527	^5-	mg/L		106	75 - 125	4	20
Cadmium	ND		0.500	0.522		mg/L		104	75 - 125	2	20
Chromium	ND	^5-	0.499	0.519	^5-	mg/L		104	75 - 125	2	20
Cobalt	ND		0.500	0.510		mg/L		102	75 - 125	1	20
Copper	ND	^5+	0.500	0.537	^5+	mg/L		107	75 - 125	1	20
Iron	25.3	^5-	5.12	31.13	^5- 4	mg/L		114	75 - 125	1	20
Lead	0.0033	J	0.500	0.530		mg/L		105	75 - 125	1	20
Magnesium	30.9	^5-	25.0	56.51	^5-	mg/L		102	75 - 125	5	20
Manganese	1.0	^5-	0.498	1.51	^5-	mg/L		102	75 - 125	4	20
Nickel	ND		0.501	0.523		mg/L		104	75 - 125	1	20
Potassium	6.9		25.0	33.89		mg/L		108	75 - 125	3	20
Selenium	ND		1.00	1.01		mg/L		101	75 - 125	1	20
Silver	ND	^5-	0.0500	0.0515	^5-	mg/L		103	75 - 125	1	20
Sodium	36.4		25.0	61.93		mg/L		102	75 - 125	3	20
Thallium	ND		1.00	1.04		mg/L		104	75 - 125	1	20
Vanadium	ND	^5-	0.502	0.506	^5-	mg/L		101	75 - 125	1	20
Zinc	0.15	^5-	0.500	0.625	^5-	mg/L		95	75 - 125	0	20

Client: New York State Electric & Gas Job ID: 480-227535-1

Project/Site: NYSEG - Clyde

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: 480-227535-1 MSD Client Sample ID: MW-4 **Matrix: Ground Water** Prep Type: Total/NA **Analysis Batch: 740058** Prep Batch: 739713

Sample Sample Spike MSD MSD %Rec **RPD** Result Qualifier %Rec Result Qualifier Added Limits RPD Limit Analyte Unit Calcium 197 25.0 216.6 4 mg/L 78 75 - 125 2 20

Method: 9012B - Cyanide, Total and/or Amenable

Lab Sample ID: MB 480-739740/47 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 739740

MB MB Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 0.010 Cyanide, Total 0.0041 mg/L 02/26/25 20:30 0.0134

Lab Sample ID: HLCS 480-739740/22 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 739740

Spike HLCS HLCS %Rec Added Result Qualifier Limits Analyte Unit %Rec Cyanide, Total 0.400 0.407 mg/L 102 90 - 110

Lab Sample ID: LCS 480-739740/48 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 739740

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit D %Rec Limits Cyanide, Total 0.250 0.256 102 90 - 110 mg/L

Lab Sample ID: 480-227535-1 MS Client Sample ID: MW-4

Matrix: Ground Water

Analysis Batch: 739740

%Rec Sample Sample Spike MS MS Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Cyanide, Total ND F1 0.100 0.0700 F1 mg/L 70 90 - 110

Lab Sample ID: 480-227535-1 MSD Client Sample ID: MW-4 Prep Type: Total/NA

Matrix: Ground Water Analysis Batch: 739740

MSD MSD RPD Spike %Rec Sample Sample Result Qualifier Added Result Qualifier RPD Limit Analyte Unit %Rec Limits 0.0724 F1 Cyanide, Total ND F1 0.100 72 90 - 110 mg/L

Eurofins Buffalo

3/5/2025

Prep Type: Total/NA

QC Association Summary

Client: New York State Electric & Gas

Project/Site: NYSEG - Clyde

Job ID: 480-227535-1

GC/MS VOA

Analysis Batch: 739828

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-227535-1	MW-4	Total/NA	Ground Water	8260C	
480-227535-2	Dup-20250225	Total/NA	Ground Water	8260C	
MB 480-739828/8	Method Blank	Total/NA	Water	8260C	
LCS 480-739828/6	Lab Control Sample	Total/NA	Water	8260C	
480-227535-1 MS	MW-4	Total/NA	Ground Water	8260C	
480-227535-1 MSD	MW-4	Total/NA	Ground Water	8260C	

GC/MS Semi VOA

Prep Batch: 739876

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-227535-1	MW-4	Total/NA	Ground Water	3510C	-
480-227535-2	Dup-20250225	Total/NA	Ground Water	3510C	
MB 480-739876/1-A	Method Blank	Total/NA	Water	3510C	
LCS 480-739876/2-A	Lab Control Sample	Total/NA	Water	3510C	
480-227535-1 MS	MW-4	Total/NA	Ground Water	3510C	
480-227535-1 MSD	MW-4	Total/NA	Ground Water	3510C	

Analysis Batch: 739945

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-227535-1	MW-4	Total/NA	Ground Water	8270D	739876
480-227535-2	Dup-20250225	Total/NA	Ground Water	8270D	739876
MB 480-739876/1-A	Method Blank	Total/NA	Water	8270D	739876
LCS 480-739876/2-A	Lab Control Sample	Total/NA	Water	8270D	739876
480-227535-1 MS	MW-4	Total/NA	Ground Water	8270D	739876
480-227535-1 MSD	MW-4	Total/NA	Ground Water	8270D	739876

Metals

Prep Batch: 739713

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-227535-1	MW-4	Total/NA	Ground Water	3005A	
480-227535-2	Dup-20250225	Total/NA	Ground Water	3005A	
MB 480-739713/1-A	Method Blank	Total/NA	Water	3005A	
LCS 480-739713/2-A	Lab Control Sample	Total/NA	Water	3005A	
480-227535-1 MS	MW-4	Total/NA	Ground Water	3005A	
480-227535-1 MSD	MW-4	Total/NA	Ground Water	3005A	

Analysis Batch: 739825

Lab Sample ID 480-227535-1	Client Sample ID MW-4	Prep Type Total/NA	Matrix Ground Water	Method 6010D	Prep Batch 739713
480-227535-2	Dup-20250225	Total/NA	Ground Water	6010D	739713
MB 480-739713/1-A	Method Blank	Total/NA	Water	6010D	739713
LCS 480-739713/2-A	Lab Control Sample	Total/NA	Water	6010D	739713
480-227535-1 MS	MW-4	Total/NA	Ground Water	6010D	739713
480-227535-1 MSD	MW-4	Total/NA	Ground Water	6010D	739713

Analysis Batch: 740058

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-227535-1	MW-4	Total/NA	Ground Water	6010D	739713
480-227535-2	Dup-20250225	Total/NA	Ground Water	6010D	739713
480-227535-1 MS	MW-4	Total/NA	Ground Water	6010D	739713

Eurofins Buffalo

Page 19 of 26 3/5/2025

QC Association Summary

Client: New York State Electric & Gas

Project/Site: NYSEG - Clyde

Job ID: 480-227535-1

Metals (Continued)

Analysis Batch: 740058 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-227535-1 MSD	MW-4	Total/NA	Ground Water	6010D	739713

General Chemistry

Analysis Batch: 739740

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-227535-1	MW-4	Total/NA	Ground Water	9012B	
480-227535-2	Dup-20250225	Total/NA	Ground Water	9012B	
MB 480-739740/47	Method Blank	Total/NA	Water	9012B	
HLCS 480-739740/22	Lab Control Sample	Total/NA	Water	9012B	
LCS 480-739740/48	Lab Control Sample	Total/NA	Water	9012B	
480-227535-1 MS	MW-4	Total/NA	Ground Water	9012B	
480-227535-1 MSD	MW-4	Total/NA	Ground Water	9012B	

3

4

6

_

9

11

13

14

Lab Chronicle

Client: New York State Electric & Gas

Project/Site: NYSEG - Clyde Client Sample ID: MW-4

Date Collected: 02/25/25 11:40

Date Received: 02/26/25 11:20

Lab Sample ID: 480-227535-1

Matrix: Ground Water

Job ID: 480-227535-1

Batch Batch Dilution Batch **Prepared** Method or Analyzed **Prep Type** Type Run **Factor** Number Analyst Lab Total/NA 8260C 739828 LCH 02/27/25 22:19 Analysis **EET BUF** Total/NA Prep 3510C 739876 LSC **EET BUF** 02/28/25 13:52 Total/NA Analysis 8270D 1 739945 AF **EET BUF** 03/03/25 16:11 Total/NA Prep 3005A 739713 ET **EET BUF** 02/27/25 09:16 Total/NA 6010D 739825 BMB **EET BUF** Analysis 1 02/27/25 15:04 Total/NA Prep 3005A 739713 ET **EET BUF** 02/27/25 09:16 Total/NA 6010D 740058 ESB **EET BUF** 03/04/25 18:17 Analysis 1 Total/NA Analysis 9012B **EET BUF** 02/26/25 20:36 1 739740 GW

Client Sample ID: Dup-20250225

Date Collected: 02/25/25 00:00

Date Received: 02/26/25 11:20

Lab Sample ID: 480-227535-2

Matrix: Ground Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	739828	LCH	EET BUF	02/27/25 22:41
Total/NA	Prep	3510C			739876	LSC	EET BUF	02/28/25 13:52
Total/NA	Analysis	8270D		1	739945	AF	EET BUF	03/03/25 17:58
Total/NA	Prep	3005A			739713	ET	EET BUF	02/27/25 09:16
Total/NA	Analysis	6010D		1	739825	BMB	EET BUF	02/27/25 15:13
Total/NA	Prep	3005A			739713	ET	EET BUF	02/27/25 09:16
Total/NA	Analysis	6010D		1	740058	ESB	EET BUF	03/04/25 18:27
Total/NA	Analysis	9012B		1	739740	GW	EET BUF	02/26/25 20:46

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Eurofins Buffalo

Accreditation/Certification Summary

Client: New York State Electric & Gas Job ID: 480-227535-1

Project/Site: NYSEG - Clyde

Laboratory: Eurofins Buffalo

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
New York	NELAP	10026	03-31-25

1

3

_

4

9

11

12

11

Method Summary

Client: New York State Electric & Gas

Project/Site: NYSEG - Clyde

Job ID: 480-227535-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	EET BUF
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	EET BUF
6010D	Metals (ICP)	SW846	EET BUF
9012B	Cyanide, Total and/or Amenable	SW846	EET BUF
3005A	Preparation, Total Metals	SW846	EET BUF
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	EET BUF
5030C	Purge and Trap	SW846	EET BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Eurofins Buffalo

2

4

5

7

4.6

11

40

1 A

Sample Summary

Client: New York State Electric & Gas

Project/Site: NYSEG - Clyde

Job ID: 480-227535-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-227535-1	MW-4	Ground Water	02/25/25 11:40	02/26/25 11:20
480-227535-2	Dup-20250225	Ground Water	02/25/25 00:00	02/26/25 11:20

4

5

9

10

11

13

14

Client Information	Der Kartyn		Lat PM					Carrier Tracking No(s)	(s) No(s).		COC No.	
Client Contact	7	sw2	Schove, John R	ohn R							480-201975-41503.1	
Mr. John Ruspantini	619-727	,	E-Mail. John.Schove@et.eurofinsus.com	ove@et.	eurofins	us.com		State of Ongin:	in:		Page:	
New York State Electric & Gas		PWSID.	_			Anal	veis Ro	Analysis Reguested			100 #: 100 #:	
Address: 18 Link Drive	Due Date Requested:		120	1000			1 2 2	nearen	-		Preservation Codes:	
Grty. Binghamton				e (100 cm							B - NaOH N - None	
State, Zip NY 13902	anda	rd		Store							A - HCL	
Phone	Compliance Project: A Yes	Δ No	T						_	9		
Frair	Purchase Order Requested		(0									
jiruspantini@nyseg.com	WO # NYSEG-Clyde/John Ruspa	ntini		- (-)								
Project Name NYSEG - Clyde/ Event Desc: Groundwater	Project #: 48028408			leti	soli							
Site New York	SSOW#.			oT ,əbir	tslovim					480-22	480-227535 Chain of Custody	
Sample Identification	Sample Date Tine	Sample (Wewater. Type Sesolid. (C=comp, Onwasteel. G=grab) 81=71ssue Andre?	Field Filtered S	9012B_NP - Cyai	A0747, G0108	3260C - BTEX			,	otal Number		
		On 1	X	8	, "	8 <				1	Special Instructions/Note:	/Note:
MVV-4	2/25/25 1140	G Water	7	×	Ι.	×				7		
(AC) WELLE DUP - 20250225	2/25/25	G Water		X	×	×				1		
(ET)		Water										
(Experience)		Water										
		Water										
		Water										
		Water										
	1	Water								7		
TRIP BLANK	1	Water				×						-
	A A A A A A A A A A A A A A A A A A A	Water										
/			- 0	Jolume	- Jienoes	1/ 4 foo	- 4					
Non-Hazard Flammable Skin Irritant	Poison B Unknown	Radiological		Ret	turn To	Client	R	Disposal By Lab	Samples	Archive For	Return To Client Disposal By Lab Archive For Manths	
Convenione (Specify)			Ś	oecial In	struction	ns/QC R	Special Instructions/QC Requirements:	ıts.				
Relinquished by.	Date:		Time			11	\	Metho	Method of Shipment:			
B. Hudlawilliams Malli Mil	Date/Time: 2/25/2025	1730 Acc	2415	Received by:	ed by:	F	1	-	Date/Time:	, , , , , , , , , , , , , , , , , , ,	y company	1
Relinquished to	Date/fine: Date/125	1:26 Company		Received by	\$2	3			Date/Time:	7	Company	7
An parenthina.	Date/Time:	Company		Received by	ed by:				Date/Time.	0	Company	2
Custody Seals macr. Custody Seal No.: Δ Yes Δ No				Cooler	Temperat	(s) °C a	Cooler Temperature(s), C and Other Remarks:	marks:	PA	5		
)	Ver: 10/10/2024	/2024

🕻 eurofins

Chain of Custody Record

Phone: 716-691-2600 Fax: 716-691-7991

Client: New York State Electric & Gas

List Source: Eurofins Buffalo

Job Number: 480-227535-1

Login Number: 227535 List Number: 1

Creator: Yeager, Brian A

ordatori roagor, miarri		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.6 ICE IR# SC
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	Arcadis
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

PREPARED FOR

Attn: Mr. John J Ruspantini New York State Electric & Gas 18 Link Drive Binghamton, New York 13902

JOB DESCRIPTION

Generated 3/20/2025 12:44:06 PM

NYSEG - Clyde Groundwater

JOB NUMBER

480-227898-1

Eurofins Buffalo 10 Hazelwood Drive Amherst NY 14228-2298

Eurofins Buffalo

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northeast, LLC Project Manager.

Authorization

Generated 3/20/2025 12:44:06 PM

Authorized for release by Anton Gruning, Project Management Assistant I Anton.Gruning@et.eurofinsus.com Designee for

John Schove, Project Manager II John.Schove@et.eurofinsus.com (716)504-9838

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	10
QC Sample Results	12
QC Association Summary	
Lab Chronicle	21
Certification Summary	22
Method Summary	23
Sample Summary	24
Chain of Custody	25
Receint Checklists	26

Definitions/Glossary

Client: New York State Electric & Gas Job ID: 480-227898-1

Project/Site: NYSEG - Clyde

Qualifiers

Qualifier	Qualifier Description
^5-	Linear Range Check (LRC) is outside acceptance limits, low biased.
^5+	Linear Range Check (LRC) is outside acceptance limits, high biased.
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qι	alifier	Qualifier Description
В		Compound was found in the blank and sample.
F1		MS and/or MSD recovery exceeds control limits.
J		Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

3	Nesult is less than the NE but greater than or equal to the MDE and the concentration is an approximate value.
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
\$	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number

MQL NC

IC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

Method Quantitation Limit

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Buffalo

Page 4 of 26 3/20/2025

3

6

9

10

12

13

Case Narrative

Client: New York State Electric & Gas

Project: NYSEG - Clyde

Job ID: 480-227898-1 Eurofins Buffalo

Job Narrative 480-227898-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 3/15/2025 9:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.6°C.

GC/MS VOA

Method 8260C: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analytical batch 480-741081 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits. The following associated sample is impacted: MW-12 MSD (480-227898-1[MSD])

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC/MS Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

Method 6010D: The linear range check (LRC) standard recovery associated with 480-741101 is outside the acceptance criteria for the following analytes: total Silver, Beryllium, Cobalt, Copper, Lead, Selenium, and Thallium. The concentration of these analyte(s) in the sample(s) are below the highest standard of the calibration curve; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Buffalo

Page 5 of 26

2

Job ID: 480-227898-1

3

4

5

7

8

10

4.0

13

14

Detection Summary

Client: New York State Electric & Gas

Project/Site: NYSEG - Clyde

Client Sample ID: MW-12

Lab Sample ID: 480-227898-1

Job ID: 480-227898-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	0.10		0.0020	0.00070	mg/L	1	_	6010D	Total/NA
Calcium	142		0.50	0.10	mg/L	1		6010D	Total/NA
Copper	0.0017	J ^5+	0.010	0.0016	mg/L	1		6010D	Total/NA
Iron	0.44		0.050	0.019	mg/L	1		6010D	Total/NA
Magnesium	22.3		0.20	0.043	mg/L	1		6010D	Total/NA
Manganese	0.16		0.0030	0.00040	mg/L	1		6010D	Total/NA
Nickel	0.0014	JB	0.010	0.0013	mg/L	1		6010D	Total/NA
Potassium	4.7		0.50	0.10	mg/L	1		6010D	Total/NA
Sodium	70.2		1.0	0.32	mg/L	1		6010D	Total/NA
Zinc	0.22		0.010	0.0015	mg/L	1		6010D	Total/NA
Cyanide, Total	0.0091	JBF1	0.010	0.0041	mg/L	1		9012B	Total/NA

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-227898-2

No Detections.

Client Sample ID: DUP-20250314 Lab Sample ID: 480-227898-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	0.10		0.0020	0.00070	mg/L	1	_	6010D	Total/NA
Calcium	140		0.50	0.10	mg/L	1		6010D	Total/NA
Copper	0.0020	J ^5+	0.010	0.0016	mg/L	1		6010D	Total/NA
Iron	0.46		0.050	0.019	mg/L	1		6010D	Total/NA
Magnesium	22.0		0.20	0.043	mg/L	1		6010D	Total/NA
Manganese	0.16		0.0030	0.00040	mg/L	1		6010D	Total/NA
Potassium	4.7		0.50	0.10	mg/L	1		6010D	Total/NA
Sodium	70.7		1.0	0.32	mg/L	1		6010D	Total/NA
Zinc	0.22		0.010	0.0015	mg/L	1		6010D	Total/NA
Cyanide, Total	0.0061	JB	0.010	0.0041	mg/L	1		9012B	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Buffalo

3/20/2025

Page 6 of 26

9

3

6

8

_

1 1

12

. .

Client Sample Results

Client: New York State Electric & Gas Job ID: 480-227898-1

Project/Site: NYSEG - Clyde

Client Sample ID: MW-12 Lab Sample ID: 480-227898-1

Date Collected: 03/14/25 11:35 Matrix: Ground Water
Date Received: 03/15/25 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	0.41	ug/L			03/19/25 01:56	1
Ethylbenzene	ND		1.0	0.74	ug/L			03/19/25 01:56	1
Toluene	ND		1.0	0.51	ug/L			03/19/25 01:56	1
Xylenes, Total	ND		2.0	0.66	ug/L			03/19/25 01:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	94		77 - 120					03/19/25 01:56	1
4-Bromofluorobenzene (Surr)	107		73 - 120					03/19/25 01:56	1
Dibromofluoromethane (Surr)	97		75 - 123					03/19/25 01:56	1
Toluene-d8 (Surr)	89		80 - 120					03/19/25 01:56	1

Analyte	Result Qualifier	r RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND ND	5.0	0.41	ug/L		03/17/25 13:27	03/18/25 16:19	1
Acenaphthylene	ND	5.0	0.38	ug/L		03/17/25 13:27	03/18/25 16:19	1
Anthracene	ND	5.0	0.28	ug/L		03/17/25 13:27	03/18/25 16:19	1
Benzo[a]anthracene	ND	5.0	0.36	ug/L		03/17/25 13:27	03/18/25 16:19	1
Benzo[a]pyrene	ND	5.0	0.47	ug/L		03/17/25 13:27	03/18/25 16:19	1
Benzo[b]fluoranthene	ND	5.0	0.34	ug/L		03/17/25 13:27	03/18/25 16:19	1
Benzo[g,h,i]perylene	ND	5.0	0.35	ug/L		03/17/25 13:27	03/18/25 16:19	1
Benzo[k]fluoranthene	ND	5.0	0.73	ug/L		03/17/25 13:27	03/18/25 16:19	1
Chrysene	ND	5.0	0.33	ug/L		03/17/25 13:27	03/18/25 16:19	1
Dibenz(a,h)anthracene	ND	5.0	0.42	ug/L		03/17/25 13:27	03/18/25 16:19	1
Fluoranthene	ND	5.0	0.40	ug/L		03/17/25 13:27	03/18/25 16:19	1
Fluorene	ND	5.0	0.36	ug/L		03/17/25 13:27	03/18/25 16:19	1
Indeno[1,2,3-cd]pyrene	ND	5.0	0.47	ug/L		03/17/25 13:27	03/18/25 16:19	1
Naphthalene	ND	5.0	0.76	ug/L		03/17/25 13:27	03/18/25 16:19	1
Phenanthrene	ND	5.0	0.44	ug/L		03/17/25 13:27	03/18/25 16:19	1
Pyrene	ND	5.0	0.34	ug/L		03/17/25 13:27	03/18/25 16:19	1

Surrogate	%Recovery Qualifi	ier Limits	Prepared And	alyzed Dil Fac
2-Fluorobiphenyl (Surr)	76	53 - 126	03/17/25 13:27 03/18/	<u>25 16:19</u> 1
Nitrobenzene-d5 (Surr)	66	29 - 129	03/17/25 13:27 03/18/	²⁵ 16:19 1
p-Terphenyl-d14 (Surr)	66	33 - 132	03/17/25 13:27 03/18	²⁵ 16:19 1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20	0.060	mg/L		03/18/25 08:50	03/18/25 14:25	1
Antimony	ND		0.020	0.0068	mg/L		03/18/25 08:50	03/18/25 14:25	1
Arsenic	ND		0.015	0.0056	mg/L		03/18/25 08:50	03/18/25 14:25	1
Barium	0.10		0.0020	0.00070	mg/L		03/18/25 08:50	03/18/25 14:25	1
Beryllium	ND	^5-	0.0020	0.00030	mg/L		03/18/25 08:50	03/18/25 14:25	1
Cadmium	ND		0.0020	0.00050	mg/L		03/18/25 08:50	03/18/25 14:25	1
Calcium	142		0.50	0.10	mg/L		03/18/25 08:50	03/18/25 14:25	1
Chromium	ND		0.0040	0.0010	mg/L		03/18/25 08:50	03/18/25 14:25	1
Cobalt	ND	^5+	0.0040	0.00063	mg/L		03/18/25 08:50	03/18/25 14:25	1
Copper	0.0017	J ^5+	0.010	0.0016	mg/L		03/18/25 08:50	03/18/25 14:25	1
Iron	0.44		0.050	0.019	mg/L		03/18/25 08:50	03/18/25 14:25	1
Lead	ND	^5+	0.010	0.0030	mg/L		03/18/25 08:50	03/18/25 14:25	1
Magnesium	22.3		0.20	0.043	mg/L		03/18/25 08:50	03/18/25 14:25	1

Eurofins Buffalo

Page 7 of 26 3/20/2025

Client Sample Results

Client: New York State Electric & Gas

Project/Site: NYSEG - Clyde

Client Sample ID: MW-12 Lab Sample ID: 480-227898-1

Date Collected: 03/14/25 11:35 **Matrix: Ground Water** Date Received: 03/15/25 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese	0.16		0.0030	0.00040	mg/L		03/18/25 08:50	03/18/25 14:25	1
Nickel	0.0014	JB	0.010	0.0013	mg/L		03/18/25 08:50	03/18/25 14:25	1
Potassium	4.7		0.50	0.10	mg/L		03/18/25 08:50	03/18/25 14:25	1
Selenium	ND	^5+	0.025	0.0087	mg/L		03/18/25 08:50	03/18/25 14:25	1
Silver	ND	^5-	0.0060	0.0017	mg/L		03/18/25 08:50	03/18/25 14:25	1
Sodium	70.2		1.0	0.32	mg/L		03/18/25 08:50	03/18/25 14:25	1
Thallium	ND	^5+	0.020	0.010	mg/L		03/18/25 08:50	03/18/25 14:25	1
Vanadium	ND		0.0050	0.0015	mg/L		03/18/25 08:50	03/18/25 14:25	1
Zinc	0.22		0.010	0.0015	mg/L		03/18/25 08:50	03/18/25 14:25	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total (SW846 9012B)	0.0091	J B F1	0.010	0.0041	mg/L			03/18/25 19:34	1

Lab Sample ID: 480-227898-2 Client Sample ID: TRIP BLANK Date Collected: 03/14/25 00:00 Matrix: WQ

Date Received: 03/15/25 09:00

Method: SW846 8260C - Volatile Organic Compounds by GC/MS Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac Benzene ND 1.0 0.41 ug/L 03/19/25 02:20 Ethylbenzene ND 1.0 0.74 ug/L 03/19/25 02:20 Toluene ND 1.0 0.51 ug/L 03/19/25 02:20 Xylenes, Total ND 2.0 0.66 ug/L 03/19/25 02:20

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103	77 - 120		03/19/25 02:20	1
4-Bromofluorobenzene (Surr)	118	73 - 120		03/19/25 02:20	1
Dibromofluoromethane (Surr)	110	75 - 123		03/19/25 02:20	1
Toluene-d8 (Surr)	100	80 - 120		03/19/25 02:20	1

Client Sample ID: DUP-20250314 Lab Sample ID: 480-227898-3

Date Collected: 03/14/25 00:00

Matrix: Water Date Received: 03/15/25 09:00 Method: SW846 8260C - Volatile Organic Compounds by GC/MS

WELLIOU. 344040 0200C - 40	nathe Organic v	Joinpounus	by GC/IVIS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	0.41	ug/L			03/19/25 02:43	1
Ethylbenzene	ND		1.0	0.74	ug/L			03/19/25 02:43	1
Toluene	ND		1.0	0.51	ug/L			03/19/25 02:43	1
Xylenes, Total	ND		2.0	0.66	ug/L			03/19/25 02:43	1

Surrogate	%Recovery	Qualifier	Limits	Prepar	ed Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		77 - 120		03/19/25 02:43	1
4-Bromofluorobenzene (Surr)	119		73 - 120		03/19/25 02:43	1
Dibromofluoromethane (Surr)	108		75 - 123		03/19/25 02:43	1
Toluene-d8 (Surr)	102		80 - 120		03/19/25 02:43	1

Method: SW846 8270D - Semi	volatile Orgai	nic Comp	ounds (GC	:/MS)					
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		5.0	0.41	ug/L		03/17/25 13:27	03/18/25 16:46	1

Eurofins Buffalo

Job ID: 480-227898-1

Page 8 of 26 3/20/2025

Client Sample Results

Client: New York State Electric & Gas Job ID: 480-227898-1

Project/Site: NYSEG - Clyde

Client Sample ID: DUP-20250314

Lab Sample ID: 480-227898-3 Date Collected: 03/14/25 00:00 **Matrix: Water**

Date Received: 03/15/25 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthylene	ND		5.0	0.38	ug/L		03/17/25 13:27	03/18/25 16:46	1
Anthracene	ND		5.0	0.28	ug/L		03/17/25 13:27	03/18/25 16:46	1
Benzo[a]anthracene	ND		5.0	0.36	ug/L		03/17/25 13:27	03/18/25 16:46	1
Benzo[a]pyrene	ND		5.0	0.47	ug/L		03/17/25 13:27	03/18/25 16:46	1
Benzo[b]fluoranthene	ND		5.0	0.34	ug/L		03/17/25 13:27	03/18/25 16:46	1
Benzo[g,h,i]perylene	ND		5.0	0.35	ug/L		03/17/25 13:27	03/18/25 16:46	1
Benzo[k]fluoranthene	ND		5.0	0.73	ug/L		03/17/25 13:27	03/18/25 16:46	1
Chrysene	ND		5.0	0.33	ug/L		03/17/25 13:27	03/18/25 16:46	1
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		03/17/25 13:27	03/18/25 16:46	1
Fluoranthene	ND		5.0	0.40	ug/L		03/17/25 13:27	03/18/25 16:46	1
Fluorene	ND		5.0	0.36	ug/L		03/17/25 13:27	03/18/25 16:46	1
Indeno[1,2,3-cd]pyrene	ND		5.0	0.47	ug/L		03/17/25 13:27	03/18/25 16:46	1
Naphthalene	ND		5.0	0.76	ug/L		03/17/25 13:27	03/18/25 16:46	1
Phenanthrene	ND		5.0	0.44	ug/L		03/17/25 13:27	03/18/25 16:46	1
Pyrene	ND		5.0	0.34	ug/L		03/17/25 13:27	03/18/25 16:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	102		53 - 126				03/17/25 13:27	03/18/25 16:46	1
Nitrobenzene-d5 (Surr)	87		29 - 129				03/17/25 13:27	03/18/25 16:46	1
p-Terphenyl-d14 (Surr)	87		33 - 132				03/17/25 13:27	03/18/25 16:46	1
- Method: SW846 6010D -	Metals (ICP)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20	0.060	mg/L		03/18/25 08:50	03/18/25 14:36	1
Antimony	ND		0.020	0.0068	mg/L		03/18/25 08:50	03/18/25 14:36	1
Arsenic	ND		0.015	0.0056	mg/L		03/18/25 08:50	03/18/25 14:36	1
Barium	0.10		0.0020	0.00070	mg/L		03/18/25 08:50	03/18/25 14:36	1
Beryllium	ND	^5-	0.0020	0.00030	mg/L		03/18/25 08:50	03/18/25 14:36	1
Cadmium	ND		0.0020	0.00050	mg/L		03/18/25 08:50	03/18/25 14:36	1
Calcium	140		0.50	0.10	mg/L		03/18/25 08:50	03/18/25 14:36	1
Chromium	ND		0.0040	0.0010	mg/L		03/18/25 08:50	03/18/25 14:36	1
Cobalt	ND	^5+	0.0040	0.00063	mg/L		03/18/25 08:50	03/18/25 14:36	1
Copper	0.0020	J ^5+	0.010	0.0016	mg/L		03/18/25 08:50	03/18/25 14:36	1
Iron	0.46		0.050	0.019	mg/L		03/18/25 08:50	03/18/25 14:36	1
Lead	ND	^5+	0.010	0.0030	mg/L		03/18/25 08:50	03/18/25 14:36	1
Magnesium	22.0		0.20	0.043	mg/L		03/18/25 08:50	03/18/25 14:36	1
Manganese	0.16		0.0030	0.00040	mg/L		03/18/25 08:50	03/18/25 14:36	1
Nickel	ND		0.010	0.0013	mg/L		03/18/25 08:50	03/18/25 14:36	1
Potassium	4.7		0.50	0.10	mg/L		03/18/25 08:50	03/18/25 14:36	1
Selenium	ND	^5+	0.025	0.0087	mg/L		03/18/25 08:50	03/18/25 14:36	1
Silver	ND	^5-	0.0060	0.0017	mg/L		03/18/25 08:50	03/18/25 14:36	1
Sodium	70.7		1.0	0.32	mg/L		03/18/25 08:50	03/18/25 14:36	1
Thallium	ND	^5+	0.020	0.010	mg/L		03/18/25 08:50	03/18/25 14:36	1
Vanadium	ND		0.0050	0.0015	mg/L		03/18/25 08:50	03/18/25 14:36	1
Zinc	0.22		0.010	0.0015	mg/L		03/18/25 08:50	03/18/25 14:36	1
General Chemistry									
Δnalyte	Result	Qualifier	RI	MDI	Unit	ח	Prenared	Analyzed	Dil Fac

General Chemistry							
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total (SW846 9012B)	0.0061 JB	0.010	0.0041 mg/L			03/18/25 19:53	1

Eurofins Buffalo

Page 9 of 26

Client: New York State Electric & Gas Job ID: 480-227898-1

Project/Site: NYSEG - Clyde

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Ground Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(77-120)	(73-120)	(75-123)	(80-120)
480-227898-1	MW-12	94	107	97	89
480-227898-1 MS	MW-12 MS	100	113	108	101
480-227898-1 MSD	MW-12 MSD	103	115	108	103
Surrogate Legend					

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Rec
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(77-120)	(73-120)	(75-123)	(80-120)
480-227898-3	DUP-20250314	101	119	108	102
LCS 480-741081/6	Lab Control Sample	100	116	109	103
MB 480-741081/8	Method Blank	96	104	97	90
Surrogate Legend					

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: WQ Prep Type: Total/NA

Percent Surrogate R
DCA BFB DBFM TOL
Lab Sample ID Client Sample ID (77-120) (73-120) (75-123) (80-123)
480-227898-2 TRIP BLANK 103 118 110 100

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Ground Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)						
		FBP	NBZ	TPHd14				
Lab Sample ID	Client Sample ID	(53-126)	(29-129)	(33-132)				
480-227898-1	MW-12	76	66	66				
480-227898-1 MS	MW-12 MS	101	97	83				
480-227898-1 MSD	MW-12 MSD	99	94	80				
Surrogate Legend								
FBP = 2-Fluorobipher	nyl (Surr)							

NBZ = Nitrobenzene-d5 (Surr)

Surrogate Summary

Client: New York State Electric & Gas

Project/Site: NYSEG - Clyde TPHd14 = p-Terphenyl-d14 (Surr) Job ID: 480-227898-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surro
		FBP	NBZ	TPHd14
Lab Sample ID	Client Sample ID	(53-126)	(29-129)	(33-132)
480-227898-3	DUP-20250314	102	87	87
LCS 480-740955/2-A	Lab Control Sample	98	94	100
MB 480-740955/1-A	Method Blank	84	76	94

FBP = 2-Fluorobiphenyl (Surr)

NBZ = Nitrobenzene-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

QC Sample Results

Client: New York State Electric & Gas

Project/Site: NYSEG - Clyde

Job ID: 480-227898-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-741081/8

Matrix: Water

Analysis Batch: 741081

Client Sample ID: Method	Blank
Prep Type: Tot	al/NA

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Dil Fac Analyzed Benzene ND 1.0 0.41 ug/L 03/19/25 01:33 Ethylbenzene ND 1.0 0.74 ug/L 03/19/25 01:33 ND 03/19/25 01:33 Toluene 1.0 0.51 ug/L Xylenes, Total ND 2.0 0.66 ug/L 03/19/25 01:33

MB MB Qualifier Dil Fac Surrogate Limits Prepared %Recovery Analyzed 1,2-Dichloroethane-d4 (Surr) 77 - 120 96 03/19/25 01:33 4-Bromofluorobenzene (Surr) 104 73 - 120 03/19/25 01:33 Dibromofluoromethane (Surr) 97 75 - 123 03/19/25 01:33 Toluene-d8 (Surr) 90 80 - 120 03/19/25 01:33

Lab Sample ID: LCS 480-741081/6

Matrix: Water

Analysis Batch: 741081

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Бріке	LUS	LUS			%Rec	
Analyte	Added	Result	Qualifier Ur	nit D	%Rec	Limits	
Benzene	25.0	25.3	ug	/L	101	71 - 124	
Ethylbenzene	25.0	26.1	ug	/L	105	77 - 123	
Toluene	25.0	24.8	ug	/L	99	80 - 122	
Xylenes, Total	50.0	52.2	ug	/L	104	76 - 122	

LCS LCS Surrogate %Recovery Qualifier Limits 100 1,2-Dichloroethane-d4 (Surr) 77 - 120 4-Bromofluorobenzene (Surr) 73 - 120 116 Dibromofluoromethane (Surr) 109 75 - 123 103 80 - 120 Toluene-d8 (Surr)

Lab Sample ID: 480-227898-1 MS

Matrix: Ground Water Analysis Batch: 741081 Client Sample ID: MW-12 MS Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	ND		25.0	28.9		ug/L		116	71 - 124	
Ethylbenzene	ND		25.0	29.9		ug/L		120	77 - 123	
Toluene	ND		25.0	28.3		ug/L		113	80 - 122	
Xylenes, Total	ND		50.0	60.3		ug/L		121	76 - 122	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		77 - 120
4-Bromofluorobenzene (Surr)	113		73 - 120
Dibromofluoromethane (Surr)	108		75 - 123
Toluene-d8 (Surr)	101		80 - 120

Eurofins Buffalo

Client: New York State Electric & Gas Job ID: 480-227898-1

Project/Site: NYSEG - Clyde

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-227898-1 MSD Client Sample ID: MW-12 MSD **Prep Type: Total/NA**

Matrix: Ground Water Analysis Batch: 741081

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	ND		25.0	29.6		ug/L		118	71 - 124	2	13
Ethylbenzene	ND		25.0	30.6		ug/L		122	77 - 123	2	15
Toluene	ND		25.0	28.6		ug/L		114	80 - 122	1	15
Xylenes, Total	ND		50.0	61.0		ug/L		122	76 - 122	1	16

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	103		77 - 120
4-Bromofluorobenzene (Surr)	115		73 - 120
Dibromofluoromethane (Surr)	108		75 - 123
Toluene-d8 (Surr)	103		80 - 120

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-740955/1-A

Matrix: Water

Analysis Batch: 741010

Client Sample ID: Method Blank Prep Type: Total/NA **Prep Batch: 740955**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		5.0	0.41	ug/L		03/17/25 13:27	03/18/25 14:32	1
Acenaphthylene	ND		5.0	0.38	ug/L		03/17/25 13:27	03/18/25 14:32	1
Anthracene	ND		5.0	0.28	ug/L		03/17/25 13:27	03/18/25 14:32	1
Benzo[a]anthracene	ND		5.0	0.36	ug/L		03/17/25 13:27	03/18/25 14:32	1
Benzo[a]pyrene	ND		5.0	0.47	ug/L		03/17/25 13:27	03/18/25 14:32	1
Benzo[b]fluoranthene	ND		5.0	0.34	ug/L		03/17/25 13:27	03/18/25 14:32	1
Benzo[g,h,i]perylene	ND		5.0	0.35	ug/L		03/17/25 13:27	03/18/25 14:32	1
Benzo[k]fluoranthene	ND		5.0	0.73	ug/L		03/17/25 13:27	03/18/25 14:32	1
Chrysene	ND		5.0	0.33	ug/L		03/17/25 13:27	03/18/25 14:32	1
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		03/17/25 13:27	03/18/25 14:32	1
Fluoranthene	ND		5.0	0.40	ug/L		03/17/25 13:27	03/18/25 14:32	1
Fluorene	ND		5.0	0.36	ug/L		03/17/25 13:27	03/18/25 14:32	1
Indeno[1,2,3-cd]pyrene	ND		5.0	0.47	ug/L		03/17/25 13:27	03/18/25 14:32	1
Naphthalene	ND		5.0	0.76	ug/L		03/17/25 13:27	03/18/25 14:32	1
Phenanthrene	ND		5.0	0.44	ug/L		03/17/25 13:27	03/18/25 14:32	1
Pyrene	ND		5.0	0.34	ug/L		03/17/25 13:27	03/18/25 14:32	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	84		53 - 126	03/17/25 13:27	03/18/25 14:32	1
Nitrobenzene-d5 (Surr)	76		29 - 129	03/17/25 13:27	03/18/25 14:32	1
p-Terphenyl-d14 (Surr)	94		33 - 132	03/17/25 13:27	03/18/25 14:32	1

Lab Sample ID: LCS 480-740955/2-A

Matrix: Water

Analysis Batch: 741010

50 .		Prep Type: Total/NA Prep Batch: 740955
		%Rec
	- ~-	,

Client Sample ID: Lab Control Sample

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthene	32.0	31.4		ug/L		98	60 - 120
Acenaphthylene	32.0	31.9		ug/L		100	63 - 120
Anthracene	32.0	33.0		ug/L		103	67 - 120

Eurofins Buffalo

Page 13 of 26

Client: New York State Electric & Gas

Job ID: 480-227898-1 Project/Site: NYSEG - Clyde

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-740955/2-A

Matrix: Water

Analysis Batch: 741010

Client	Sample	ID: Lab	Control	Sample
		_		

Prep Type: Total/NA Prep Batch: 740955

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzo[a]anthracene	32.0	33.9		ug/L		106	70 - 121	
Benzo[a]pyrene	32.0	34.5		ug/L		108	60 - 123	
Benzo[b]fluoranthene	32.0	33.5		ug/L		105	66 - 126	
Benzo[g,h,i]perylene	32.0	33.1		ug/L		103	66 - 150	
Benzo[k]fluoranthene	32.0	36.5		ug/L		114	65 - 124	
Chrysene	32.0	32.9		ug/L		103	69 - 120	
Dibenz(a,h)anthracene	32.0	34.2		ug/L		107	65 - 135	
Fluoranthene	32.0	33.5		ug/L		105	69 - 126	
Fluorene	32.0	32.7		ug/L		102	66 - 120	
Indeno[1,2,3-cd]pyrene	32.0	34.9		ug/L		109	69 - 146	
Naphthalene	32.0	28.4		ug/L		89	57 - 120	
Phenanthrene	32.0	32.7		ug/L		102	68 - 120	
Pyrene	32.0	34.0		ug/L		106	70 - 125	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	98		53 - 126
Nitrobenzene-d5 (Surr)	94		29 - 129
p-Terphenvl-d14 (Surr)	100		33 - 132

Lab Sample ID: 480-227898-1 MS

Matrix: Ground Water

Analysis Batch: 741010

Client Sample	ID:	MW-12 MS
Prep	Тур	e: Total/NA

Prep Batch: 740955

-	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acenaphthene	ND		32.0	33.9		ug/L		106	48 - 120	
Acenaphthylene	ND		32.0	34.0		ug/L		106	63 - 120	
Anthracene	ND		32.0	35.1		ug/L		110	65 - 122	
Benzo[a]anthracene	ND		32.0	32.3		ug/L		101	43 - 124	
Benzo[a]pyrene	ND		32.0	31.1		ug/L		97	23 - 125	
Benzo[b]fluoranthene	ND		32.0	31.0		ug/L		97	27 - 127	
Benzo[g,h,i]perylene	ND		32.0	30.0		ug/L		94	16 - 147	
Benzo[k]fluoranthene	ND		32.0	32.2		ug/L		101	20 - 124	
Chrysene	ND		32.0	30.8		ug/L		96	44 - 122	
Dibenz(a,h)anthracene	ND		32.0	30.1		ug/L		94	16 - 139	
Fluoranthene	ND		32.0	34.5		ug/L		108	63 - 129	
Fluorene	ND		32.0	34.7		ug/L		109	62 - 120	
Indeno[1,2,3-cd]pyrene	ND		32.0	30.9		ug/L		97	16 - 140	
Naphthalene	ND		32.0	30.0		ug/L		94	45 - 120	
Phenanthrene	ND		32.0	35.2		ug/L		110	65 - 122	
Pyrene	ND		32.0	34.2		ug/L		107	58 - 128	

MS MS

Surrogate	%Recovery Qualifier	Limits
2-Fluorobiphenyl (Surr)	101	53 - 126
Nitrobenzene-d5 (Surr)	97	29 - 129
p-Terphenyl-d14 (Surr)	83	33 - 132

Eurofins Buffalo

Client: New York State Electric & Gas

Job ID: 480-227898-1

Project/Site: NYSEG - Clyde

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-227898-1 MSD Client Sample ID: MW-12 MSD

Matrix: Ground Water Analysis Batch: 741010 Prep Type: Total/NA Prep Batch: 740955

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthene	ND		32.0	33.8		ug/L		106	48 - 120	0	24
Acenaphthylene	ND		32.0	32.9		ug/L		103	63 - 120	3	18
Anthracene	ND		32.0	34.4		ug/L		107	65 - 122	2	15
Benzo[a]anthracene	ND		32.0	32.1		ug/L		100	43 - 124	1	15
Benzo[a]pyrene	ND		32.0	32.0		ug/L		100	23 - 125	3	15
Benzo[b]fluoranthene	ND		32.0	31.3		ug/L		98	27 - 127	1	15
Benzo[g,h,i]perylene	ND		32.0	30.2		ug/L		94	16 - 147	1	15
Benzo[k]fluoranthene	ND		32.0	33.2		ug/L		104	20 - 124	3	22
Chrysene	ND		32.0	31.3		ug/L		98	44 - 122	2	15
Dibenz(a,h)anthracene	ND		32.0	31.1		ug/L		97	16 - 139	3	15
Fluoranthene	ND		32.0	33.9		ug/L		106	63 - 129	2	15
Fluorene	ND		32.0	34.0		ug/L		106	62 - 120	2	15
Indeno[1,2,3-cd]pyrene	ND		32.0	31.5		ug/L		98	16 - 140	2	15
Naphthalene	ND		32.0	29.3		ug/L		92	45 - 120	2	29
Phenanthrene	ND		32.0	34.1		ug/L		107	65 - 122	3	15
Pyrene	ND		32.0	34.0		ug/L		106	58 - 128	1	19

MSD MSD

Surrogate	%Recovery Qualifie	r Limits
2-Fluorobiphenyl (Surr)	99	53 - 126
Nitrobenzene-d5 (Surr)	94	29 - 129
p-Terphenyl-d14 (Surr)	80	33 - 132

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 480-740970/1-A

Matrix: Water

Analysis Batch: 741101

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 740970

Analysis Daton. 741101								i icp Datoii.	140310
Analyte		MB Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20	0.060		_ =	03/18/25 08:50		1
Antimony	ND		0.020	0.0068	•		03/18/25 08:50	03/18/25 13:53	1
Arsenic	ND		0.015	0.0056	mg/L		03/18/25 08:50	03/18/25 13:53	1
Barium	ND		0.0020	0.00070	mg/L		03/18/25 08:50	03/18/25 13:53	1
Beryllium	ND	^5-	0.0020	0.00030	mg/L		03/18/25 08:50	03/18/25 13:53	1
Cadmium	ND		0.0020	0.00050	mg/L		03/18/25 08:50	03/18/25 13:53	1
Calcium	ND		0.50	0.10	mg/L		03/18/25 08:50	03/18/25 13:53	1
Chromium	ND		0.0040	0.0010	mg/L		03/18/25 08:50	03/18/25 13:53	1
Cobalt	ND	^5+	0.0040	0.00063	mg/L		03/18/25 08:50	03/18/25 13:53	1
Copper	ND	^5+	0.010	0.0016	mg/L		03/18/25 08:50	03/18/25 13:53	1
Iron	ND		0.050	0.019	mg/L		03/18/25 08:50	03/18/25 13:53	1
Lead	ND	^5+	0.010	0.0030	mg/L		03/18/25 08:50	03/18/25 13:53	1
Magnesium	ND		0.20	0.043	mg/L		03/18/25 08:50	03/18/25 13:53	1
Manganese	ND		0.0030	0.00040	mg/L		03/18/25 08:50	03/18/25 13:53	1
Nickel	0.00328	J	0.010	0.0013	mg/L		03/18/25 08:50	03/18/25 13:53	1
Potassium	ND		0.50	0.10	mg/L		03/18/25 08:50	03/18/25 13:53	1
Selenium	ND	^5+	0.025	0.0087	mg/L		03/18/25 08:50	03/18/25 13:53	1
Silver	ND	^5-	0.0060	0.0017	mg/L		03/18/25 08:50	03/18/25 13:53	1
Sodium	ND		1.0	0.32	mg/L		03/18/25 08:50	03/18/25 13:53	1

Eurofins Buffalo

Page 15 of 26

2

3

4

6

8

10

11 12

4 4

14

QC Sample Results

Client: New York State Electric & Gas

Project/Site: NYSEG - Clyde

Job ID: 480-227898-1

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: MB 480-740970/1-A

Matrix: Water

Analysis Batch: 741101

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 740970

	IVID	IAID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Thallium	ND	^5+	0.020	0.010	mg/L		03/18/25 08:50	03/18/25 13:53	1
Vanadium	ND		0.0050	0.0015	mg/L		03/18/25 08:50	03/18/25 13:53	1
Zinc	ND		0.010	0.0015	mg/L		03/18/25 08:50	03/18/25 13:53	1

Lab Sample ID: LCS 480-740970/2-A

Lab Sample ID: 480-227898-1 MS

Matrix: Water

Barium

Beryllium

Cadmium

Chromium

Calcium

Cobalt

Copper

Iron

Lead

Analysis Batch: 741101

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 740970

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit D %Rec Limits 5.11 80 - 120 Aluminum 4.81 mg/L 94 Antimony 0.500 0.476 95 80 - 120 mg/L 1.00 Arsenic

0.953 95 mg/L 80 - 120 1.00 0.950 mg/L 95 80 - 120 0.496 0.504 ^5mg/L 102 80 - 120 0.500 0.500 mg/L 100 80 - 120

25.0 24.59 98 80 - 120 mg/L 0.500 0.479 mg/L 96 80 - 120 0.500 0.496 ^5+ 99 80 - 120mg/L

0.500 0.467 ^5+ mg/L 93 80 - 120 5.12 5.05 mg/L 99 80 - 120 0.500 0.476 ^5+ 95 80 - 120 mg/L

25.0 23.81 95 80 - 120 Magnesium mg/L 96 Manganese 0.500 0.478 mg/L 80 - 120 Nickel 0.500 0.478 96 80 - 120 mg/L 80 - 120 Potassium 25.0 24.59 mg/L 98

Selenium 1.00 0.962 ^5+ mg/L 96 80 - 120 Silver 0.0500 0.0482 ^5mg/L 96 80 - 120 Sodium 25.0 23.95 mg/L 96 80 - 120 Thallium 1.00 0.991 ^5+ 99 80 - 120 mg/L

Vanadium 0.500 0.476 mg/L 95 80 - 120 Zinc 0.500 0.526 mg/L 105 80 - 120

Matrix: Ground Water Prep Type: Total/NA Analysis Batch: 741101 Prep Batch: 740970

Analysis Baton. 741101	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aluminum	ND		5.11	5.09		mg/L		100	75 - 125
Antimony	ND		0.500	0.501		mg/L		100	75 - 125
Arsenic	ND		1.00	1.01		mg/L		101	75 - 125
Barium	0.10		1.00	1.10		mg/L		100	75 - 125
Beryllium	ND	^5-	0.496	0.524	^5-	mg/L		106	75 - 125
Cadmium	ND		0.500	0.531		mg/L		106	75 - 125
Calcium	142		25.0	165.7	4	mg/L		94	75 - 125
Chromium	ND		0.500	0.496		mg/L		99	75 - 125
Cobalt	ND	^5+	0.500	0.513	^5+	mg/L		103	75 - 125
Copper	0.0017	J ^5+	0.500	0.517	^5+	mg/L		103	75 - 125
Iron	0.44		5.12	5.68		mg/L		102	75 - 125
Lead	ND	^5+	0.500	0.501	^5+	mg/L		100	75 ₋ 125

Eurofins Buffalo

Client: New York State Electric & Gas

Project/Site: NYSEG - Clyde

Job ID: 480-227898-1

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: 480-227898-1 MS **Client Sample ID: MW-12 MS Matrix: Ground Water** Prep Type: Total/NA **Analysis Batch: 741101 Prep Batch: 740970**

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Magnesium	22.3		25.0	46.57		mg/L		97	75 - 125	
Manganese	0.16		0.500	0.648		mg/L		98	75 - 125	
Nickel	0.0014	JB	0.500	0.489		mg/L		97	75 - 125	
Potassium	4.7		25.0	30.14		mg/L		102	75 - 125	
Selenium	ND	^5+	1.00	1.04	^5+	mg/L		104	75 - 125	
Silver	ND	^5-	0.0500	0.0522	^5-	mg/L		104	75 - 125	
Sodium	70.2		25.0	96.41		mg/L		105	75 - 125	
Thallium	ND	^5+	1.00	1.07	^5+	mg/L		107	75 - 125	
Vanadium	ND		0.500	0.496		mg/L		99	75 - 125	
Zinc	0.22		0.500	0.759		mg/L		108	75 - 125	

Lab Sample ID: 480-227898-1 MSD Client Sample ID: MW-12 MSD Matrix: Ground Water Prep Type: Total/NA

Matrix: Ground Water									Prep ly	-	
Analysis Batch: 741101									Prep Ba	atch: 74	
	•	Sample	Spike		MSD				%Rec		RPD
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	ND		5.11	4.99		mg/L		98	75 - 125	2	20
Antimony	ND		0.500	0.497		mg/L		99	75 - 125	1	20
Arsenic	ND		1.00	0.990		mg/L		99	75 - 125	2	20
Barium	0.10		1.00	1.09		mg/L		99	75 - 125	1	20
Beryllium	ND	^5-	0.496	0.514	^5-	mg/L		104	75 - 125	2	20
Cadmium	ND		0.500	0.516		mg/L		103	75 - 125	3	20
Calcium	142		25.0	162.8	4	mg/L		82	75 - 125	2	20
Chromium	ND		0.500	0.486		mg/L		97	75 - 125	2	20
Cobalt	ND	^5+	0.500	0.504	^5+	mg/L		101	75 - 125	2	20
Copper	0.0017	J ^5+	0.500	0.505	^5+	mg/L		101	75 - 125	2	20
Iron	0.44		5.12	5.56		mg/L		100	75 - 125	2	20
Lead	ND	^5+	0.500	0.496	^5+	mg/L		99	75 - 125	1	20
Magnesium	22.3		25.0	45.61		mg/L		93	75 - 125	2	20
Manganese	0.16		0.500	0.636		mg/L		96	75 - 125	2	20
Nickel	0.0014	JB	0.500	0.481		mg/L		96	75 - 125	2	20
Potassium	4.7		25.0	29.53		mg/L		99	75 - 125	2	20
Selenium	ND	^5+	1.00	1.01	^5+	mg/L		101	75 - 125	2	20
Silver	ND	^5-	0.0500	0.0505	^5-	mg/L		101	75 - 125	3	20
Sodium	70.2		25.0	94.71		mg/L		98	75 - 125	2	20
Thallium	ND	^5+	1.00	1.05	^5+	mg/L		105	75 - 125	2	20
Vanadium	ND		0.500	0.487		mg/L		97	75 - 125	2	20
Zinc	0.22		0.500	0.712		mg/L		99	75 - 125	6	20

Method: 9012B - Cyanide, Total and/or Amenable

Lab Sample ID: MB 480-741113/21 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 741113

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Cyanide, Total 0.00560 J 0.010 0.0041 mg/L 03/18/25 18:53

Eurofins Buffalo

QC Sample Results

Client: New York State Electric & Gas Job ID: 480-227898-1

Project/Site: NYSEG - Clyde

Method: 9012B - Cyanide, Total and/or Amenable (Continued)

Lab Sample ID: HLCS 480-741113/22	Client Sample ID: Lab Control Sample
Matrix: Water	Prep Type: Total/NA

Analysis Batch: 741113

-	Spike	HLCS	HLCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cyanide, Total	0.400	0.400		mg/L		100	90 - 110	

Lab Sample ID: LCS 480-741113/23

Matrix: Water

Analysis Batch: 741113

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

 Analyte
 Added Cyanide, Total
 Result Qualifier O.250
 Unit Mg/L
 D 96 90 - 110

Lab Sample ID: 480-227898-1 MS

Matrix: Ground Water

Analysis Batch: 741113

Client Sample ID: MW-12 MS

Prep Type: Total/NA

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Limits Unit D %Rec Cyanide, Total 0.0091 JBF1 0.100 0.0984 F1 mg/L

Lab Sample ID: 480-227898-1 MSD

Matrix: Ground Water

Client Sample ID: MW-12 MSD

Prep Type: Total/NA

Analysis Batch: 741113

Spike MSD MSD %Rec **RPD** Sample Sample Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit Cyanide, Total 0.0091 JBF1 0.100 0.0992 90 - 110 mg/L 90

4

6

8

9

11

13

14

QC Association Summary

Client: New York State Electric & Gas

Job ID: 480-227898-1 Project/Site: NYSEG - Clyde

GC/MS VOA

Analysis Batch: 741081

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-227898-1	MW-12	Total/NA	Ground Water	8260C	
480-227898-2	TRIP BLANK	Total/NA	WQ	8260C	
480-227898-3	DUP-20250314	Total/NA	Water	8260C	
MB 480-741081/8	Method Blank	Total/NA	Water	8260C	
LCS 480-741081/6	Lab Control Sample	Total/NA	Water	8260C	
480-227898-1 MS	MW-12 MS	Total/NA	Ground Water	8260C	
480-227898-1 MSD	MW-12 MSD	Total/NA	Ground Water	8260C	

GC/MS Semi VOA

Prep Batch: 740955

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-227898-1	MW-12	Total/NA	Ground Water	3510C	
480-227898-3	DUP-20250314	Total/NA	Water	3510C	
MB 480-740955/1-A	Method Blank	Total/NA	Water	3510C	
LCS 480-740955/2-A	Lab Control Sample	Total/NA	Water	3510C	
480-227898-1 MS	MW-12 MS	Total/NA	Ground Water	3510C	
480-227898-1 MSD	MW-12 MSD	Total/NA	Ground Water	3510C	

Analysis Batch: 741010

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-227898-1	MW-12	Total/NA	Ground Water	8270D	740955
480-227898-3	DUP-20250314	Total/NA	Water	8270D	740955
MB 480-740955/1-A	Method Blank	Total/NA	Water	8270D	740955
LCS 480-740955/2-A	Lab Control Sample	Total/NA	Water	8270D	740955
480-227898-1 MS	MW-12 MS	Total/NA	Ground Water	8270D	740955
480-227898-1 MSD	MW-12 MSD	Total/NA	Ground Water	8270D	740955

Metals

Prep Batch: 740970

Lab Sample ID 480-227898-1	Client Sample ID MW-12	Prep Type Total/NA	Matrix Ground Water	Method 3005A	Prep Batch
480-227898-3	DUP-20250314	Total/NA	Water	3005A	
MB 480-740970/1-A	Method Blank	Total/NA	Water	3005A	
LCS 480-740970/2-A	Lab Control Sample	Total/NA	Water	3005A	
480-227898-1 MS	MW-12 MS	Total/NA	Ground Water	3005A	
480-227898-1 MSD	MW-12 MSD	Total/NA	Ground Water	3005A	

Analysis Batch: 741101

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-227898-1	MW-12	Total/NA	Ground Water	6010D	740970
480-227898-3	DUP-20250314	Total/NA	Water	6010D	740970
MB 480-740970/1-A	Method Blank	Total/NA	Water	6010D	740970
LCS 480-740970/2-A	Lab Control Sample	Total/NA	Water	6010D	740970
480-227898-1 MS	MW-12 MS	Total/NA	Ground Water	6010D	740970
480-227898-1 MSD	MW-12 MSD	Total/NA	Ground Water	6010D	740970

QC Association Summary

Client: New York State Electric & Gas Job ID: 480-227898-1

Project/Site: NYSEG - Clyde

General Chemistry

Analysis Batch: 741113

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-227898-1	MW-12	Total/NA	Ground Water	9012B	
480-227898-3	DUP-20250314	Total/NA	Water	9012B	
MB 480-741113/21	Method Blank	Total/NA	Water	9012B	
HLCS 480-741113/22	Lab Control Sample	Total/NA	Water	9012B	
LCS 480-741113/23	Lab Control Sample	Total/NA	Water	9012B	
480-227898-1 MS	MW-12 MS	Total/NA	Ground Water	9012B	
480-227898-1 MSD	MW-12 MSD	Total/NA	Ground Water	9012B	

4

6

Q

9

10

12

4 4

Lab Chronicle

Client: New York State Electric & Gas

Project/Site: NYSEG - Clyde

Client Sample ID: MW-12

Lab Sample ID: 480-227898-1

Matrix: Ground Water

Job ID: 480-227898-1

Date Collected: 03/14/25 11:35 Date Received: 03/15/25 09:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	741081	ERS	EET BUF	03/19/25 01:56
Total/NA	Prep	3510C			740955	LSC	EET BUF	03/17/25 13:27
Total/NA	Analysis	8270D		1	741010	JMM	EET BUF	03/18/25 16:19
Total/NA	Prep	3005A			740970	EMO	EET BUF	03/18/25 08:50
Total/NA	Analysis	6010D		1	741101	BMB	EET BUF	03/18/25 14:25
Total/NA	Analysis	9012B		1	741113	GW	EET BUF	03/18/25 19:34

Client Sample ID: TRIP BLANK

Date Collected: 03/14/25 00:00 Date Received: 03/15/25 09:00

Lab Sample ID: 480-227898-2

Matrix: WQ

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	741081	ERS	EET BUF	03/19/25 02:20

Lab Sample ID: 480-227898-3 Client Sample ID: DUP-20250314

Date Collected: 03/14/25 00:00 **Matrix: Water**

Date Received: 03/15/25 09:00

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	741081	ERS	EET BUF	03/19/25 02:43
Total/NA	Prep	3510C			740955	LSC	EET BUF	03/17/25 13:27
Total/NA	Analysis	8270D		1	741010	JMM	EET BUF	03/18/25 16:46
Total/NA	Prep	3005A			740970	EMO	EET BUF	03/18/25 08:50
Total/NA	Analysis	6010D		1	741101	BMB	EET BUF	03/18/25 14:36
Total/NA	Analysis	9012B		1	741113	GW	EET BUF	03/18/25 19:53

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: New York State Electric & Gas Job ID: 480-227898-1

Project/Site: NYSEG - Clyde

Laboratory: Eurofins Buffalo

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
New York	NELAP	10026	03-31-25

1

3

4

5

9

11

12

14

Method Summary

Client: New York State Electric & Gas

Project/Site: NYSEG - Clyde

Job ID: 480-227898-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	EET BUF
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	EET BUF
6010D	Metals (ICP)	SW846	EET BUF
9012B	Cyanide, Total and/or Amenable	SW846	EET BUF
3005A	Preparation, Total Metals	SW846	EET BUF
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	EET BUF
5030C	Purge and Trap	SW846	EET BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Sample Summary

Client: New York State Electric & Gas

Project/Site: NYSEG - Clyde

Job ID: 480-227898-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-227898-1	MW-12	Ground Water	03/14/25 11:35	03/15/25 09:00
480-227898-2	TRIP BLANK	WQ	03/14/25 00:00	03/15/25 09:00
480-227898-3	DUP-20250314	Water	03/14/25 00:00	03/15/25 09:00

3

4

E

6

8

9

11

12

14

Environment Testing

😍 eurofins

Chain of Custody Record

Phone: 716-691-2600 Fax: 716-691-7991

Amherst, NY 14228-2298

10 Hazelwood Drive

Eurofins Buffalo

14

16450 Special Instructions/Note: Ver: 10/10/2024 Company Months Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mont COC No: 480-203695-41503.1 Preservation Codes: B - NaOH N - None D - HNO3 Page. Page 1 of 1 Job#: 900 480-227898 Chain of Custody N a # Total Number of cont 4 > Method of Shipment Carrier Tracking No(s) State of Origin **Analysis Requested** Cooler Temperature(s) °C and Other Remarks. Special Instructions/QC Requirements Lab PM: Schove, John R E-Mail John.Schove@et.eurofinsus.com X X 8260C - BTEX × A0147 , G0108 Received by: eceived by: × XXXX S270D - PAH Semivolatiles X X Z 90128_NP - Cyanide, Total me ARCADIS Preservation Code: Water Matrix Water Water Company Sampler Robbie Salliva MRS Radiological Standard Type (C=comp, Sample G=grab) 1700 1710 5852 065 585 D T wo #: NYSEG-Clyde/John Ruspantini Purchase Order Requested Sample 1135 Time 3/14/65 1 Unknown Date (AT Requested (days): Due Date Requested: Sample Date 3/19/25 2/11/25 3/14/25 Project #: 48028408 SSOW#: Poison B Skin Irritant Carry Non-Hazard Flammable Skin Irriti Deliverable Requested: I, III, IV, Other (specify) Custody Seals Intact: Custody Seal No. NYSEG - Clyde/ Event Desc: Groundwater - DUP - 2025 0514 Possible Hazard Identification Company: New York State Electric & Gas Robbie Empty Kit Relinquished by ruspantini@nyseg.com Client Information Sample Identification John Ruspantini MW12 Address: 18 Link Drive TRIP BLANK elinquished by: elinquished by: linquished by: Binghamton State, Zip: NY, 13902 New York

Client: New York State Electric & Gas Job Number: 480-227898-1

Login Number: 227898 List Source: Eurofins Buffalo

List Number: 1

Creator: Stopa, Erik S

Creator. Stopa, Erik S		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	ARCADIS
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

Eurofins Buffalo

Attachment 3

Data Usability Summary Reports

NYSEG – Clyde Groundwater

Data Usability Summary Report

Clyde, New York

Volatile Organic Compound (VOC), Semi-volatile Organic Compound (SVOC), Metals and Cyanide Analyses

SDG # 480-227535-1

Analyses Performed By: Eurofins Buffalo Amherst, New York

Report # 58267R Review Level: Tier III Project: 30270811.2

Summary

This Data Usability Summary Report (DUSR) summarizes the review of Sample Delivery Group (SDG) # 480-227535-1 for samples collected in association with the NYSEG Clyde, New York site. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

Sample ID	Lab ID N	Matrix	Sample	Sample Parent Sample		Aı	nalysis	
Sample ID		Date	i arent Sample	voc	svoc	Metals	CYANIDE	
MW-4	480-227535-1	Water	02/25/2025		Х	Х	Х	Х
Dup-20250225	480-227535-2	Water	02/25/2025	MW-4	Х	Х	Х	Х

Notes:

VOC = Volatile Organic Compounds

SVOC = Semi-volatile Organic Compounds

www.arcadis.com 2

Analytical Data Package Documentation

The table below evaluates the data package completeness.

Items Reviewed	Rep	Reported		mance ptable	Not Required
	No	Yes	No	Yes	required
Sample receipt condition		Х		Х	
2. Requested analyses and sample results		Х		Х	
3. Master tracking list		X		X	
4. Methods of analysis		Х		Х	
5. Reporting limits		X		X	
6. Sample collection date		Х		Х	
7. Laboratory sample received date		Х		Х	
8. Sample preservation verification (as applicable)		Х		Х	
9. Sample preparation/extraction/analysis dates		Х		Х	
10. Fully executed chain-of-custody form		Х		Х	
11. Narrative summary of QA or sample problems provided		Х		Х	
12. Data package completeness and compliance		Х		Х	

Note:

QA = quality assurance

Organic Analysis Introduction

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260C and 8270D. Data were reviewed in accordance with USEPA National Functional Guidelines for Organic Superfund Methods Data Review, EPA 540-R-20-005, November 2020 (with reference to the historical USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, OSWER 9240.1-05A-P, October 1999), as appropriate and applicable Region II SOPs. USEPA NFGs and Region II SOPs were followed for qualification purposes.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound is considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

The "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

www.arcadis.com

Volatile Organic Compounds (VOCs) Analyses

1. Holding Times/Preservation

The specified holding times for the following methods are presented in the table below.

Method	Matrix	Holding Time	Preservation
SW-846 8260C	Water	14 days from collection to analysis (preserved)	Cool to <6 °C; preserved to a pH of less than 2 s.u. with hydrochloric acid.

Note:

s.u. = standard units

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore, detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock. System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

www.arcadis.com

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits

6. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

The MS/MSD analysis performed on sample MW-4. The MS/MSD analysis exhibited recoveries and RPDs within the control limits.

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

The LCS analysis exhibited recoveries within the control limits.

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the

www.arcadis.com

field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compounds	Sample Result (ug/L)	Duplicate Result (ug/L)	RPD
MW-4 / Dup-20250225	All compounds	U	U	AC

Note:

U Non detected

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

www.arcadis.com

Data Validation Checklist for VOCs

VOCs: SW-846 8260C	Rep	oorted	Performance Acceptable		Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC.	/MS)				
Tier II Validation					
Holding times/Preservation		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					<u>'</u>
A. Method blanks		Х		Х	
B. Equipment blanks/Field Blanks	Х				Х
C. Trip blanks	Х				Х
Laboratory Control Sample (LCS) %R		Х		Х	
Laboratory Control Sample Duplicate (LCSD) %R	Х				Х
LCS/LCSD Precision (RPD)	Х				Х
Matrix Spike (MS) %R		Х		Х	
Matrix Spike Duplicate (MSD) %R		Х		Х	
MS/MSD Precision (RPD)		Х		Х	
Field/Lab Duplicate (RPD)		Х		Х	
Surrogate Spike Recoveries		Х		Х	
Dilution Factor		Х		Х	
Moisture Content	Х				Х
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Initial calibration %Ds		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х		Х	
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Internal standard		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		Х		Х	

www.arcadis.com

Data Usability Summary Report

VOCs: SW-846 8260C		Reported		mance ptable	Not Required	
		Yes	No	Yes	Required	
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/MS)						
D. Transcription/calculation errors present		Х		Х		
E. Reporting limits adjusted to reflect sample dilutions		Х		Х		

Notes:

%RSD = Relative standard deviation

%R = Percent recovery

RPD = Relative percent difference

%D = Percent difference

www.arcadis.com

Semi-volatile Organic Compounds (SVOCs) Analyses

1. Holding Times/Preservation

The specified holding times for the following methods are presented in the table below.

Method	Matrix	Holding Time	Preservation
SW-846 8270D	Water	7 days from collection to extraction and 40 days from extraction to analysis	Cool to <6 °C

All samples were analyzed within the specified holding time criterion.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Caprolactam was detected in the associated equipment blank; however, the associated sample results were non detected. No other qualification of the sample results was required.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock. System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the continuing calibrations were within the specified control limits. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. SVOC analysis requires that two of the three SVOC surrogate compounds within each fraction exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

5. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

6. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on samples where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

The MS/MSD analysis performed on sample MW-4. The MS/MSD analysis exhibited recoveries and RPDs within the control limits.

7. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

The LCS analysis exhibited recoveries within the control limits.

8. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices and 50% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compounds	Sample Result (ug/L)	Duplicate Result (ug/Kg)	RPD
MW-4/ Dup-20250225	Acenaphthene	0.54 J	0.51 J	AC
	Fluoranthene	0.90 J	0.87 J	AC
	Fluorene	0.40 J	0.38 J	AC
	Pyrene	1.3 J	1.3 J	AC

Note:

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

9. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

10. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

Data Validation Checklist for SVOCs

SVOCs: SW-846 8270D	Re	eported		ormance eptable	Not Required
	No	Yes	No	Yes	- Kequirea
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GO	C/MS)				
Tier II Validation					
Holding times/Preservation		Х		Х	
Reporting limits (units)		Х		Х	
Blanks			·		
A. Method blanks		Х		Х	
B. Equipment blanks/Field blanks	Х				Х
Laboratory Control Sample (LCS) %R		Х		Х	
Laboratory Control Sample Duplicate (LCSD) %R	Х				Х
LCS/LCSD Precision (RPD)	Х				Х
Matrix Spike (MS) %R		Х		Х	
Matrix Spike Duplicate (MSD) %R		Х		Х	
MS/MSD Precision (RPD)		Х		Х	
Field/Lab Duplicate (RPD)		Х		Х	
Surrogate Spike Recoveries		Х		Х	
Dilution Factor		Х		Х	
Moisture Content	Х				Х
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Initial calibration %Ds		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х		Х	
Instrument tune and performance check		Х		X	
Ion abundance criteria for each instrument used		Х		Х	
Internal standard		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		X		X	
B. Quantitation Reports		X		Х	
C. RT of sample compounds within the established RT windows		Х		Х	
D. Transcription/calculation errors present		Х		X	

Data Usability Summary Report

SVOCs: SW-846 8270D		Reported		mance ptable	Not Required	
	No	Yes	No	Yes	rtoquiiou	
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/MS)						
E. Reporting limits adjusted to reflect sample dilutions		Х		Х		

Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

Inorganic Analysis Introduction

Analyses were performed according to United States Environmental Protection Agency USEPA Methods 6010D and 9012B. Data were reviewed in accordance with USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review, EPA 542-R-20-006, November 2020 (with reference to the historical USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, EPA 540-R-04-004, October 2004), as appropriate.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and that it was already subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with the USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but not detected. The associated value is the analyte instrument detection limit.
 - J The reported value was obtained from a reading less than the reporting limit (RL), but greater than or equal to the method detection limit (MDL).
- · Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - N Spiked sample recovery is not within control limits.
 - * Duplicate analysis is not within control limits.
- Validation Qualifiers
 - J The analyte was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The analyte was not detected above the reporting limit. However, the reported limit is approximate and may or may not represent the actual limit of detection.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

Metals Analyses

1. Holding Times/Preservation

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 6010D	Water	180 days from collection to analysis	Cool to <6 °C.

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Analytes were detected in the associated method blank; however, the associated sample results were nondetect. No other qualification of the sample results was required.

3. Calibration

Satisfactory instrument calibration is established to provide that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument's continuing performance is satisfactory.

3.1 Initial Calibration and Continuing Calibration

The correct number and type of standards were analyzed. The correlation coefficient of the initial calibration was greater than 0.995 for all non-ICP analytes and all initial calibration verification standard recoveries were within control limits.

All initial and continuing calibration verification standard recoveries were within the control limit.

3.2 RL Check Standard

The RL check standard serves to verify the linearity of calibration of the analysis at the reporting limit. The RL standard is not required for the analysis of aluminum (Al), barium (Ba), calcium (Ca), iron (Fe), magnesium (Mg), sodium (Na), and potassium (K). The criteria used to evaluate the RL standard analysis are presented below in the RL standards evaluation table (if applicable).

All RL standard recoveries were within control limits.

3.3 ICP Interference Control Sample (ICS)

The ICS verifies the laboratories interelement and background correction factors.

All ICS exhibited recoveries within the control limits.

4. Matrix Spike (MS)/Matrix Spike Duplicate (MSD)/Laboratory Duplicate Analysis

MS/MSD and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

4.1 MS/MSD Analysis

All analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater. In instance where this is true, the data will not be qualified even if the percent recovery does not meet the control limits and the laboratory flag will be removed.

The MS/MSD analysis performed on sample MW-4. The MS/MSD analysis exhibited recoveries and RPDs within the control limits.

4.2 Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the RL. A control limit of 20% for water matrices and 35% for soil matrix is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of one time the RL is applied for water matrices and two times the RL for soil matrix.

The laboratory duplicate analysis was not performed on any of the sample from this SDG.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices and 50% for soil matrix is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrix.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Analytes	Sample Result (mg/L)	Duplicate Result (mg/L)	RPD
	Barium	0.24	0.24	AC
	Calcium	197	189	4.1%
MW-4 / Dup-20250225	Iron	25.3	25.5	0.8%
	Lead	0.0033 J	0.0037 J	AC
	Magnesium	30.9	31.2	1.0%

Sample ID/Duplicate ID	Analytes	Sample Result (mg/L)	Duplicate Result (mg/L)	RPD
	Manganese	1.0	1.0	0.0%
	Potassium	6.9	6.9	0.0%
	Sodium	36.8	36.7	0.3%
	Zinc	0.15	0.097	AC

Note:

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

6. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit a percent recovery between the control limits of 80% and 120%.

The LCS analysis exhibited recoveries within the control limits.

7. Serial Dilution

The serial dilution analysis is used to assess if a significant physical or chemical interference exists due to sample matrix. Analytes exhibiting concentrations greater than 50 times the MDL in the undiluted sample are evaluated to determine if matrix interference exists. These analytes are required to have less than a 10% difference (%D) between sample results from the undiluted (parent) sample and results associated with the same sample analyzed with a five-fold dilution.

The serial dilution analysis was not performed on the samples from this SDG.

8. System Performance and Overall Assessment

The laboratory noted: Method 6010D: The linear range check (LRC) standard recovery associated with 480-739825 is outside the acceptance criteria for the following analytes: total Silver, Beryllium, Chromium, Copper, Iron, Magnesium, Manganese, Sodium, Vanadium, and Zinc. The concentration of these analyte(s) in the sample(s) are below the highest standard of the calibration curve; therefore, the data have been reported. No qualification was required.

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

Data Validation Checklist for Metals

METALS: SW-846 6010D	Rep	orted		rmance ptable	Not
	No	Yes	No	Yes	Required
Inductively Coupled Plasma-Optical Emission Spect	rometry (IC	P-OES)			
Tier II Validation					
Holding Times/Preservation		Х		X	
Reporting limits (units)		Х		Х	
Blanks					
A. Instrument Blanks		Х		Х	
B. Method Blanks		Х	Х		
C. Equipment / Field Blanks	Х				Х
Laboratory Control Sample (LCS) %R		Х		Х	
Laboratory Control Sample Duplicate (LCSD) %R	Х				Х
LCS/LCSD Precision (RPD)	Х				Х
Matrix Spike (MS) %R		Х		Х	
Matrix Spike Duplicate (MSD) %R		Х		Х	
MS/MSD Precision (RPD)		Х		Х	
Field/Lab Duplicate (RPD)		Х		Х	
ICP Serial Dilution %D	Х				Х
Reporting Limit Verification		Х		Х	
Tier III Validation					
Initial Calibration Verification		Х		X	
Continuing Calibration Verification		Х		Х	
CRDL Standard Recovery		Х		Х	
ICP Interference Check		Х		Х	
ICP-MS Internal Standards	Х				Х
Transcription/calculations acceptable		Not require	ed for Tie	r II plus cali	bration
Raw Data	Х				Х
Reporting limits adjusted to reflect sample dilutions		Х		Х	

Notes:

%R Percent recovery

RPD Relative percent difference

%D Percent difference

General Chemistry Analyses

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
Total Cyanide by SW-846 9012B	Water	14 days from collection to analysis	Cool to <6 °C; preserved to a pH of greater than 12 with NaOH.

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Total Cyanide was detected in the associated method blank; however, the associated sample results were non-detect. No other qualification of the sample results was required.

3. Calibration

Satisfactory instrument calibration is established to provide that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument's continuing performance is satisfactory.

3.1 Initial Calibration and Continuing Calibration

The correct number and type of standards were analyzed. The correlation coefficient of the initial calibration was greater than 0.995 for all non-ICP analytes and all initial calibration verification standard recoveries were within control limits.

All initial and continuing calibration verification standard recoveries were within the control limit.

4. Matrix Spike (MS)/Matrix Spike Duplicate (MSD)/Laboratory Duplicate Analysis

MS/MSD and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

4.1 MS/MSD Analysis

All analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS recovery control limits do not apply for MS/MSD performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS concentration by a factor of four or greater. In instance where this is true, the data will not be qualified even if the percent recovery does not meet the control limits and the laboratory flag will be removed.

The MS/MSD analysis performed on sample MW-4. The MS/MSD analysis exhibited recoveries and RPDs within the control limits.

4.2 Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the RL. A control limit of 20% for water matrices and 35% for soil matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of one time the RL is applied for water matrices and two times the RL for soil matrices.

The laboratory duplicate analysis was not performed on samples from this SDG.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Analyte	Sample Result (mg/L)	Duplicate Result (mg/L)	RPD
MW-4 / Dup-20250225	Cyanide (total)	U	U	AC

Note:

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

6. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit a percent recovery between the control limits of 80% and 120%.

The LCS analysis exhibited recoveries within the control limits.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

Data Validation Checklist for General Chemistry

General Chemistry: SW-846 9012B	Rep	orted		rmance ptable	Not Required
	No	Yes	No	Yes	Required
Miscellaneous Instrumentation					
Tier II Validation					
Holding Times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Instrument Blanks		X	Х		
B. Method Blanks		Х	Х		
C. Equipment/Field Blanks	Х				Х
Laboratory Control Sample (LCS) %R		Х		Х	
Laboratory Control Sample Duplicate (LCSD) %R	Х				Х
LCS/LCSD Precision (RPD)	Х				Х
Matrix Spike (MS) %R		Х		Х	
Matrix Spike Duplicate (MSD) %R		Х		Х	
MS/MSD Precision (RPD)		Х		Х	
Field/Lab Duplicate (RPD)		Х		Х	
Tier III Validation					
Initial Calibration Verification		Х		Х	
Continuing Calibration Verification		Х		Х	
Transcription/calculations acceptable		Х		Х	
Raw Data		Х		Х	
Reporting limits adjusted to reflect sample dilutions		Х		Х	

Notes:

%R Percent recovery

RPD Relative percent difference

SAMPLE COMPLIANCE REPORT

Sample	Sampling	Day of the same	0		Compliancy ¹ Matrix				
Delivery Group (SDG)	Date	Protocol	Sample ID	Watrix	VOC	svoc	METALS	CYANIDE	Noncompliance
480-227535-1	02/25/2025	SW846	MW-4	Water	Yes	Yes	Yes	Yes	
	02/25/2025	SW846	Dup-20250225	Water	Yes	Yes	Yes	Yes	

Note:

arcadis.com 23

Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant, or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable

VALIDATION PERFORMED BY: Amrutha M

SIGNATURE:

DATE: March 17, 2024

Arutha M

PEER REVIEW: Joe Houser

DATE: March 17, 2024

arcadis.com 24

Chain of Custody Correc	eted Sample Analysis Data Sho	eets

Chain of Custody Record

de eurofins

Phone: 716-691-2600 Fax: 716-691-7991 **Environment Testing** Sampler Kartlyn Fleming

Bailey Kudlawiliams

Phone: 619-727-1921 Lab PM Carrier Tracking No(s) Client Information Schove, John R 480-201975-41503.1 Client Contact Mr. John Ruspantini State of Origin John.Schove@et.eurofinsus.com Page 1 of 1 New York State Electric & Gas **Analysis Requested** Address: Due Date Requested: 18 Link Drive Preservation Codes: TAT Requested (days): Binghamton D - HNO3 Standard State, Zip NY, 13902 Compliance Project: Δ Yes Δ No Phone: Purchase Order Requested jjruspantini@nyseg.com NYSEG-Clyde/John Ruspantini Perform MS/MSD (Yes or No) NYSEG - Clyde/ Event Desc: Groundwater 48028408 SSOW# New York Total Number Matrix Sample 6010D, 7470A (W=water, Type Sample (C=comp. Sample Identification Sample Date Time G=grab) BT=Tissue, A=AH Special Instructions/Note: XXB Preservation Code: MW-4 2/25/25 1140 G X X X 21 DUP- 20250225 G 2/25/25 Water XININ X Water Water Water Water Water Water 2 TRIP BLANK Water Water Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mont Non-Hazard Flammable Skin Irritant Poison B Unknown Radiological Deliverable Requested: I, II, III, IV, Other (specify) Special Instructions/QC Requirements: Empty Kit Relinquished by: Method of Shipment Relinguished by Received by B. Kudla-Williams Received by Relinquished by: Received by Custody Seals Intact: Custody Seal No. △ Yes △ No Ver: 10/10/2024

Definitions/Glossary

Client: New York State Electric & Gas Job ID: 480-227535-1

Project/Site: NYSEG - Clyde

Qualifiers

GC/MS Semi VOA	GC/	MS	Semi	VOA
----------------	-----	----	------	-----

Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals Qualifier

^5- Linear Range Check (LRC) is outside acceptance limits, low biased.

^5+ Linear Range Check (LRC) is outside acceptance limits, high biased.

4 MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not

applicable

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier Qualifier Description

F1 MS and/or MSD recovery exceeds control limits.

Qualifier Description

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
--------------	---

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Buffalo

Page 4 of 26 3/5/2025

Client Sample Results

Client: New York State Electric & Gas Job ID: 480-227535-1

Project/Site: NYSEG - Clyde

Client Sample ID: MW-4 Lab Sample ID: 480-227535-1

Date Collected: 02/25/25 11:40

Date Received: 02/26/25 11:20

Matrix: Ground Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	MD		1.0	0.41	ug/L			02/27/25 22:19	1
Ethylbenzene	ND		1.0	0.74	ug/L			02/27/25 22:19	1
Toluene	ND		1.0	0.51	ug/L			02/27/25 22:19	1
Xylenes, Total	ND		2.0	0.66	ug/L			02/27/25 22:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		77 - 120					02/27/25 22:19	1
4-Bromofluorobenzene (Surr)	100		73 - 120					02/27/25 22:19	1
Dibromofluoromethane (Surr)	101		75 - 123					02/27/25 22:19	1
Toluene-d8 (Surr)	101		80 - 120					02/27/25 22:19	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.54	J	5.0	0.41	ug/L		02/28/25 13:52	03/03/25 16:11	1
Acenaphthylene	ND		5.0	0.38	ug/L		02/28/25 13:52	03/03/25 16:11	1
Anthracene	ND		5.0	0.28	ug/L		02/28/25 13:52	03/03/25 16:11	1
Benzo[a]anthracene	ND		5.0	0.36	ug/L		02/28/25 13:52	03/03/25 16:11	1
Benzo[a]pyrene	ND		5.0	0.47	ug/L		02/28/25 13:52	03/03/25 16:11	1
Benzo[b]fluoranthene	ND		5.0	0.34	ug/L		02/28/25 13:52	03/03/25 16:11	1
Benzo[g,h,i]perylene	ND		5.0	0.35	ug/L		02/28/25 13:52	03/03/25 16:11	1
Benzo[k]fluoranthene	ND		5.0	0.73	ug/L		02/28/25 13:52	03/03/25 16:11	1
Chrysene	ND		5.0	0.33	ug/L		02/28/25 13:52	03/03/25 16:11	1
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		02/28/25 13:52	03/03/25 16:11	1
Fluoranthene	0.90	J	5.0	0.40	ug/L		02/28/25 13:52	03/03/25 16:11	1
Fluorene	0.40	J	5.0	0.36	ug/L		02/28/25 13:52	03/03/25 16:11	1
Indeno[1,2,3-cd]pyrene	ND		5.0	0.47	ug/L		02/28/25 13:52	03/03/25 16:11	1
Naphthalene	ND		5.0	0.76	ug/L		02/28/25 13:52	03/03/25 16:11	1
Phenanthrene	ND		5.0	0.44	ug/L		02/28/25 13:52	03/03/25 16:11	1
Pyrene	1.3	J	5.0	0.34	ug/L		02/28/25 13:52	03/03/25 16:11	1

Su	rrogate %Re	covery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-F	luorobiphenyl (Surr)	86		53 - 126	02/28/25 13:52	03/03/25 16:11	1
Nit	robenzene-d5 (Surr)	76		29 - 129	02/28/25 13:52	03/03/25 16:11	1
p-7	ērphenyl-d14 (Surr)	81		33 - 132	02/28/25 13:52	03/03/25 16:11	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20	0.060	mg/L		02/27/25 09:16	02/27/25 15:04	1
Antimony	ND		0.020	0.0068	mg/L		02/27/25 09:16	02/27/25 15:04	1
Arsenic	ND		0.015	0.0056	mg/L		02/27/25 09:16	02/27/25 15:04	1
Barium	0.24		0.0020	0.00070	mg/L		02/27/25 09:16	02/27/25 15:04	1
Beryllium	ND	^5-	0.0020	0.00030	mg/L		02/27/25 09:16	02/27/25 15:04	1
Cadmium	ND		0.0020	0.00050	mg/L		02/27/25 09:16	02/27/25 15:04	1
Calcium	197		0.50	0.10	mg/L		02/27/25 09:16	03/04/25 18:17	1
Chromium	ND	^5-	0.0040	0.0010	mg/L		02/27/25 09:16	02/27/25 15:04	1
Cobalt	ND		0.0040	0.00063	mg/L		02/27/25 09:16	02/27/25 15:04	1
Copper	ND	^5+	0.010	0.0016	mg/L		02/27/25 09:16	02/27/25 15:04	1
Iron	25.3	^g_	0.050	0.019	mg/L		02/27/25 09:16	02/27/25 15:04	1
Lead	0.0033	J	0.010	0.0030	mg/L		02/27/25 09:16	02/27/25 15:04	1
Magnesium	30.9	^5 -	0.20	0.043	mg/L		02/27/25 09:16	02/27/25 15:04	1

Eurofins Buffalo

Page 7 of 26 3/5/2025

2

3

5

9

10

12

1 /

1 E

Client Sample Results

Client: New York State Electric & Gas

Project/Site: NYSEG - Clyde

Client Sample ID: MW-4 Lab Sample ID: 480-227535-1

Date Collected: 02/25/25 11:40 **Matrix: Ground Water** Date Received: 02/26/25 11:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese	1.0	^5-	0.0030	0.00040	mg/L		02/27/25 09:16	02/27/25 15:04	1
Nickel	ND		0.010	0.0013	mg/L		02/27/25 09:16	02/27/25 15:04	1
Potassium	6.9		0.50	0.10	mg/L		02/27/25 09:16	02/27/25 15:04	1
Selenium	ND		0.025	0.0087	mg/L		02/27/25 09:16	02/27/25 15:04	1
Silver	ND	^g_	0.0060	0.0017	mg/L		02/27/25 09:16	02/27/25 15:04	1
Sodium	36.8	^5-	1.0	0.32	mg/L		02/27/25 09:16	02/27/25 15:04	1
Thallium	ND		0.020	0.010	mg/L		02/27/25 09:16	02/27/25 15:04	1
Vanadium	ND	^5-	0.0050	0.0015	mg/L		02/27/25 09:16	02/27/25 15:04	1
Zinc	0.15	^5-	0.010	0.0015	mg/L		02/27/25 09:16	02/27/25 15:04	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cvanide, Total (SW846 9012B)	ND.	FY	0.010	0.0041	ma/L			02/26/25 20:36	

Client Sample ID: Dup-20250225 Lab Sample ID: 480-227535-2 Date Collected: 02/25/25 00:00 **Matrix: Ground Water**

Date Received: 02/26/25 11:20

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND ND	1.0	0.41	ug/L			02/27/25 22:41	1
Ethylbenzene	ND	1.0	0.74	ug/L			02/27/25 22:41	1
Toluene	ND	1.0	0.51	ug/L			02/27/25 22:41	1
Xylenes, Total	ND	2.0	0.66	ug/L			02/27/25 22:41	1

Surrogate	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (St	urr) 106	77 - 120		02/27/25 22:41	1
4-Bromofluorobenzene (S	turr) 102	73 - 120		02/27/25 22:41	1
Dibromofluoromethane (S	curr) 105	75 - 123		02/27/25 22:41	1
Toluene-d8 (Surr)	100	80 - 120		02/27/25 22:41	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.51 J	5.0	0.41	ug/L		02/28/25 13:52	03/03/25 17:58	1
Acenaphthylene	ND	5.0	0.38	ug/L		02/28/25 13:52	03/03/25 17:58	1
Anthracene	ND	5.0	0.28	ug/L		02/28/25 13:52	03/03/25 17:58	1
Benzo[a]anthracene	ND	5.0	0.36	ug/L		02/28/25 13:52	03/03/25 17:58	1
Benzo[a]pyrene	ND	5.0	0.47	ug/L		02/28/25 13:52	03/03/25 17:58	1
Benzo[b]fluoranthene	ND	5.0	0.34	ug/L		02/28/25 13:52	03/03/25 17:58	1
Benzo[g,h,i]perylene	ND	5.0	0.35	ug/L		02/28/25 13:52	03/03/25 17:58	1
Benzo[k]fluoranthene	ND	5.0	0.73	ug/L		02/28/25 13:52	03/03/25 17:58	1
Chrysene	ND	5.0	0.33	ug/L		02/28/25 13:52	03/03/25 17:58	1
Dibenz(a,h)anthracene	ND	5.0	0.42	ug/L		02/28/25 13:52	03/03/25 17:58	1
Fluoranthene	0.87 J	5.0	0.40	ug/L		02/28/25 13:52	03/03/25 17:58	1
Fluorene	0.38 J	5.0	0.36	ug/L		02/28/25 13:52	03/03/25 17:58	1
Indeno[1,2,3-cd]pyrene	ND	5.0	0.47	ug/L		02/28/25 13:52	03/03/25 17:58	1
Naphthalene	ND	5.0	0.76	ug/L		02/28/25 13:52	03/03/25 17:58	1
Phenanthrene	ND	5.0	0.44	ug/L		02/28/25 13:52	03/03/25 17:58	1
Pyrene	1.3 J	5.0	0.34	ug/L		02/28/25 13:52	03/03/25 17:58	1

Eurofins Buffalo

Job ID: 480-227535-1

Client Sample Results

Client: New York State Electric & Gas Job ID: 480-227535-1

Project/Site: NYSEG - Clyde

Client Sample ID: Dup-20250225

Date Collected: 02/25/25 00:00 Date Received: 02/26/25 11:20

Lab Sample ID: 480-227535-2

Matrix: Ground Water

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	85		53 - 126	02/28/25 13:52	03/03/25 17:58	1
Nitrobenzene-d5 (Surr)	75		29 - 129	02/28/25 13:52	03/03/25 17:58	1
p-Terphenyl-d14 (Surr)	78		33 - 132	02/28/25 13:52	03/03/25 17:58	1

THE ODE 12 CHE GO (OUT)	, 0		20 - 120				02/20/20 10.02	00/00/20 11.00	,
p-Terphenyl-d14 (Surr)	78		33 - 132				02/28/25 13:52	03/03/25 17:58	1
- Method: SW846 6010D - Me	etals (ICP)								
Analyte	` '	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND	-	0.20	0.060	mg/L		02/27/25 09:16	02/27/25 15:13	1
Antimony	ND		0.020	0.0068	mg/L		02/27/25 09:16	02/27/25 15:13	1
Arsenic	ND		0.015	0.0056	mg/L		02/27/25 09:16	02/27/25 15:13	1
Barium	0.24		0.0020	0.00070	mg/L		02/27/25 09:16	02/27/25 15:13	1
Beryllium	ND	^5-	0.0020	0.00030	mg/L		02/27/25 09:16	02/27/25 15:13	1
Cadmium	ND		0.0020	0.00050	mg/L		02/27/25 09:16	02/27/25 15:13	1
Calcium	189		0.50	0.10	mg/L		02/27/25 09:16	03/04/25 18:27	1
Chromium	ND	^5-	0.0040	0.0010	mg/L		02/27/25 09:16	02/27/25 15:13	1
Cobalt	ND		0.0040	0.00063	mg/L		02/27/25 09:16	02/27/25 15:13	1
Copper	ND	^5+	0.010	0.0016	mg/L		02/27/25 09:16	02/27/25 15:13	1
Iron	25.5	^5-	0.050	0.019	mg/L		02/27/25 09:16	02/27/25 15:13	1
Lead	0.0037	J	0.010	0.0030	mg/L		02/27/25 09:16	02/27/25 15:13	1
Magnesium	31.2	^5-	0.20	0.043	mg/L		02/27/25 09:16	02/27/25 15:13	1
Manganese	1.0	^5-	0.0030	0.00040	mg/L		02/27/25 09:16	02/27/25 15:13	1
Nickel	ND		0.010	0.0013	mg/L		02/27/25 09:16	02/27/25 15:13	1
Potassium	6.9		0.50	0.10	mg/L		02/27/25 09:16	02/27/25 15:13	1
Selenium	ND		0.025	0.0087	mg/L		02/27/25 09:16	02/27/25 15:13	1
Silver	ND	^5-	0.0060	0.0017	mg/L		02/27/25 09:16	02/27/25 15:13	1
Sodium	36.7	^5-	1.0	0.32	mg/L		02/27/25 09:16	02/27/25 15:13	1
Thallium	ND		0.020	0.010	mg/L		02/27/25 09:16	02/27/25 15:13	1
Vanadium	ND	^5-	0.0050	0.0015	mg/L		02/27/25 09:16	02/27/25 15:13	1
Zinc	0.097	1 5-	0.010	0.0015	mg/L		02/27/25 09:16	02/27/25 15:13	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

General Chemistry								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total (SW846 9012B)	ND ND	0.010	0.0041	mg/L			02/26/25 20:46	1

3/5/2025

NYSEG – Clyde Groundwater

Data Usability Summary Report

Clyde, New York

Volatile Organic Compound (VOC), Semi-volatile Organic Compound (SVOC), Metals and Cyanide Analyses

SDG # 480-227898-1

Analyses Performed By: Eurofins Buffalo Amherst, New York

Report # 58603R Review Level: Tier III Project: 30270811.2

Summary

This Data Usability Summary Report (DUSR) summarizes the review of Sample Delivery Group (SDG)# 480-227898-1 for samples collected in association with the NYSEG Clyde, New York site. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

Sample ID	mple ID Lab ID Matrix Collection Parent Sample			Analysis				
Sample ID	Labib	Matrix	Date Parent Sample		voc	svoc	Metals	CYANIDE
MW-12	480-227898-1	Water	03/14/2025		Х	Х	Х	Х
TRIP BLANK	480-227898-2	Water	03/14/2025		Х			
DUP-20250314	480-227898-3	Water	03/14/2025	MW-12	Х	Х	Х	Х

Notes:

VOC = Volatile Organic Compounds

SVOC = Semi-volatile Organic Compounds

Analytical Data Package Documentation

The table below evaluates the data package completeness.

Items Reviewed	Rep	orted		mance ptable	Not Required
	No	No Yes		Yes	required
Sample receipt condition		Х		Х	
2. Requested analyses and sample results		Х		Х	
3. Master tracking list		X		Х	
4. Methods of analysis		Х		Х	
5. Reporting limits		X		Х	
6. Sample collection date		Х		Х	
7. Laboratory sample received date		Х		Х	
8. Sample preservation verification (as applicable)		Х		Х	
9. Sample preparation/extraction/analysis dates		Х		Х	
10. Fully executed chain-of-custody form		Х		Х	
11. Narrative summary of QA or sample problems provided		Х		Х	
12. Data package completeness and compliance		Х		Х	

Note:

QA = quality assurance

Organic Analysis Introduction

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260C and 8270D. Data were reviewed in accordance with USEPA National Functional Guidelines for Organic Superfund Methods Data Review, EPA 540-R-20-005, November 2020 (with reference to the historical USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, OSWER 9240.1-05A-P, October 1999), as appropriate and applicable Region II SOPs. USEPA NFGs and Region II SOPs were followed for qualification purposes.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound is considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

The "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

Volatile Organic Compounds (VOCs) Analyses

1. Holding Times/Preservation

The specified holding times for the following methods are presented in the table below.

Method	Matrix	Holding Time	Preservation
SW-846 8260C	Water	14 days from collection to analysis (preserved)	Cool to <6 °C; preserved to a pH of less than 2 s.u. with hydrochloric acid.

Note:

s.u. = standard units

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore, detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock. System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

www.arcadis.com

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits

6. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

The MS/MSD analysis performed on sample MW-12. The MS/MSD analysis exhibited recoveries and RPDs within the control limits.

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

The LCS analysis exhibited recoveries within the control limits.

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the

www.arcadis.com

field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compounds	Sample Result (ug/L)	Duplicate Result (ug/L)	RPD
MW-12 / DUP-20250314	All compounds	U	U	AC

Notes:

U Non detected AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

www.arcadis.com

Data Validation Checklist for VOCs

VOCs: SW-846 8260C	Rep	oorted		mance ptable	Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC.	/MS)				
Tier II Validation					
Holding times/Preservation		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					<u>'</u>
A. Method blanks		Х		Х	
B. Equipment blanks/Field Blanks	Х				Х
C. Trip blanks		Х		Х	
Laboratory Control Sample (LCS) %R		Х		Х	
Laboratory Control Sample Duplicate (LCSD) %R	Х				Х
LCS/LCSD Precision (RPD)	Х				Х
Matrix Spike (MS) %R		Х		Х	
Matrix Spike Duplicate (MSD) %R		Х		Х	
MS/MSD Precision (RPD)		Х		Х	
Field/Lab Duplicate (RPD)		Х		Х	
Surrogate Spike Recoveries		Х		Х	
Dilution Factor		Х		Х	
Moisture Content	Х				Х
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Initial calibration %Ds		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х		Х	
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Internal standard		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		Х		Х	

Data Usability Summary Report

VOCs: SW-846 8260C	Rep	oorted		mance ptable	Not Required
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/N	IS)	<u>'</u>			
D. Transcription/calculation errors present		Х		Х	
E. Reporting limits adjusted to reflect sample dilutions		Х		Х	

Notes:

%RSD = Relative standard deviation

%R = Percent recovery

RPD = Relative percent difference

%D = Percent difference

www.arcadis.com

9

Semi-volatile Organic Compounds (SVOCs) Analyses

1. Holding Times/Preservation

The specified holding times for the following methods are presented in the table below.

Method	Matrix	Holding Time	Preservation
SW-846 8270D	Water	7 days from collection to extraction and 40 days from extraction to analysis	Cool to <6 °C

All samples were analyzed within the specified holding time criterion.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore, detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock. System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the continuing calibrations were within the specified control limits.

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. SVOC analysis requires that two of the three SVOC surrogate compounds within each fraction exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

6. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on samples where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

The MS/MSD analysis performed on sample MW-12. The MS/MSD analysis exhibited recoveries and RPDs within the control limits.

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

The LCS analysis exhibited recoveries within the control limits.

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices and 50% for soil matrices is applied to the RPD between the

parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compounds	Sample Result (ug/L)	Duplicate Result (ug/Kg)	RPD
MW-12/ DUP-20250314	All compounds	U	U	AC

Notes:

U Non detected AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

Data Validation Checklist for SVOCs

SVOCs: SW-846 8270D	Re	eported		ormance eptable	Not Required
	No	Yes	No	Yes	- Kequirea
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GO	C/MS)				
Tier II Validation					
Holding times/Preservation		Х		Х	
Reporting limits (units)		Х		Х	
Blanks			·		
A. Method blanks		Х		Х	
B. Equipment blanks/Field blanks	Х				Х
Laboratory Control Sample (LCS) %R		Х		Х	
Laboratory Control Sample Duplicate (LCSD) %R	Х				Х
LCS/LCSD Precision (RPD)	Х				Х
Matrix Spike (MS) %R		Х		Х	
Matrix Spike Duplicate (MSD) %R		Х		Х	
MS/MSD Precision (RPD)		Х		Х	
Field/Lab Duplicate (RPD)		Х		Х	
Surrogate Spike Recoveries		Х		Х	
Dilution Factor		Х		Х	
Moisture Content	Х				Х
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Initial calibration %Ds		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х		Х	
Instrument tune and performance check		Х		X	
Ion abundance criteria for each instrument used		Х		Х	
Internal standard		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		X		X	
B. Quantitation Reports		X		Х	
C. RT of sample compounds within the established RT windows		Х		Х	
D. Transcription/calculation errors present		Х		Х	

Data Usability Summary Report

SVOCs: SW-846 8270D	Rep	oorted		mance ptable	Not Required
	No	Yes	No	Yes	rtoquiiou
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/N	IS)				
E. Reporting limits adjusted to reflect sample dilutions		Х		Х	

Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

Inorganic Analysis Introduction

Analyses were performed according to United States Environmental Protection Agency USEPA Methods 6010D and 9012B. Data were reviewed in accordance with USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review, EPA 542-R-20-006, November 2020 (with reference to the historical USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, EPA 540-R-04-004, October 2004), as appropriate.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and that it was already subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with the USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but not detected. The associated value is the analyte instrument detection limit.
 - J The reported value was obtained from a reading less than the reporting limit (RL), but greater than or equal to the method detection limit (MDL).
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - N Spiked sample recovery is not within control limits.
 - * Duplicate analysis is not within control limits.
- Validation Qualifiers
 - J The analyte was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The analyte was not detected above the reporting limit. However, the reported limit is approximate and may or may not represent the actual limit of detection.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

Metals Analyses

1. Holding Times/Preservation

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 6010D	Water	180 days from collection to analysis	Cool to <6 °C.

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

All compounds associated with the QA blanks exhibited a concentration less than the MDL, with the exception of the compounds listed in the following table. Sample results less than the BAL associated with the following sample locations were qualified as listed in the following table.

Sample ID	Compound	Sample Result	Qualification
MW-12	Nickel (MB)	Detected sample results >RL and <bal< td=""><td>"UB" at detected sample concentration</td></bal<>	"UB" at detected sample concentration

Note:

MB Method blank

3. Calibration

Satisfactory instrument calibration is established to provide that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument's continuing performance is satisfactory.

3.1 Initial Calibration and Continuing Calibration

The correct number and type of standards were analyzed. The correlation coefficient of the initial calibration was greater than 0.995 for all non-ICP analytes and all initial calibration verification standard recoveries were within control limits.

All initial and continuing calibration verification standard recoveries were within the control limit with the exception noted below.

Sample ID	ICV/CCV	Analytes	Standard Recovery
		Arsenic	116%
		Barium	83%
		Cadmium	85 %
		Cobalt	117%
	ICV %D	Iron	114%
		Nickel	116%
MW-12		Potassium	85%
DUP-20250314		Thallium	120%
		Zinc	119%
		Arsenic	115%
		Barium	82%
	CCV %D	Cobalt	125%
		Lead	119%
		Zinc	111%

The criteria used to evaluate the ICV and CCV standard recoveries are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Analytes	Control Limit	Sample Result	Qualification
All analytes quantitated with multi-	Correlation coefficient < 0.995	Non-detect	UJ
point curve	Corrolation Coomolone v 0.000	Detect	J
	75% to 89%	Non-detect	UJ
	7570 10 0070	Detect	J
	111% to 125%	Non-detect	No Action
All analytes	11170 10 12070	Detect	J
(except Mercury)	<75%	Non-detect	R
	77070	Detect	J
	>125%	Non-detect	No Action
	7 120 /0	Detect	R

3.2 RL Check Standard

The RL check standard serves to verify the linearity of calibration of the analysis at the reporting limit. The RL standard is not required for the analysis of aluminum (Al), barium (Ba), calcium (Ca), iron (Fe), magnesium (Mg), sodium (Na), and potassium (K). The criteria used to evaluate the RL standard analysis are presented below in the RL standards evaluation table (if applicable).

All RL standard recoveries were within control limits.

3.3 ICP Interference Control Sample (ICS)

The ICS verifies the laboratories interelement and background correction factors.

All ICS exhibited recoveries within the control limits.

4. Matrix Spike (MS)/Matrix Spike Duplicate (MSD)/Laboratory Duplicate Analysis

MS/MSD and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

4.1 MS/MSD Analysis

All analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater. In instance where this is true, the data will not be qualified even if the percent recovery does not meet the control limits and the laboratory flag will be removed.

The MS/MSD analysis performed on sample MW-12. The MS/MSD analysis exhibited recoveries and RPDs within the control limits.

4.2 Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the RL. A control limit of 20% for water matrices and 35% for soil matrix is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of one time the RL is applied for water matrices and two times the RL for soil matrix.

The laboratory duplicate analysis was not performed on any of the sample from this SDG.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices and 50% for soil matrix is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrix.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Analytes	Sample Result (mg/L)	Duplicate Result (mg/L)	RPD
	Barium	0.10	0.10	0.0%
	Calcium	142	140	1.4%
MW-12 / DUP-20250314	Copper	0.0017 J	0.0020 J	AC
•	Iron	0.44	0.46	4.4%
	Magnesium	22.3	22.0	1.4%

Sample ID/Duplicate ID	Analytes	Sample Result (mg/L)	Duplicate Result (mg/L)	RPD
	Manganese	0.16	0.16	0.0%
	Nickel	0.0014 J	0.010 U	AC
	Potassium	4.7	4.7	0.0%
	Sodium	70.2	70.7	0.7%
	Zinc	0.22	0.22	0.0%

Note:

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

6. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit a percent recovery between the control limits of 80% and 120%.

The LCS analysis exhibited recoveries within the control limits.

7. Serial Dilution

The serial dilution analysis is used to assess if a significant physical or chemical interference exists due to sample matrix. Analytes exhibiting concentrations greater than 50 times the MDL in the undiluted sample are evaluated to determine if matrix interference exists. These analytes are required to have less than a 10% difference (%D) between sample results from the undiluted (parent) sample and results associated with the same sample analyzed with a five-fold dilution.

The serial dilution analysis was not performed on the samples from this SDG.

8. System Performance and Overall Assessment

The laboratory noted: Method 6010D: The linear range check (LRC) standard recovery associated with 480-741101 is outside the acceptance criteria for the following analytes: total Silver, Beryllium, Cobalt, Copper, Lead, Selenium, and Thallium. The concentration of these analyte(s) in the sample(s) are below the highest standard of the calibration curve; therefore, the data have been reported. The analytes listed above for samples MW-12 and DUP-20250314 were qualified as estimated (UJ/J).

Overall system performance was acceptable. Other than those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

Data Validation Checklist for Metals

METALS: SW-846 6010D	Rep	orted		rmance ptable	Not
	No	Yes	No	Yes	Required
Inductively Coupled Plasma-Optical Emission Spect	rometry (IC	P-OES)	•		
Tier II Validation					
Holding Times/Preservation		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Instrument Blanks		Х	Х		
B. Method Blanks		Х	Х		
C. Equipment / Field Blanks	Х				Х
Laboratory Control Sample (LCS) %R		Х		Х	
Laboratory Control Sample Duplicate (LCSD) %R	Х				Х
LCS/LCSD Precision (RPD)	Х				Х
Matrix Spike (MS) %R		Х		Х	
Matrix Spike Duplicate (MSD) %R		Х		Х	
MS/MSD Precision (RPD)		Х		Х	
Field/Lab Duplicate (RPD)		Х		Х	
ICP Serial Dilution %D	Х				Х
Reporting Limit Verification		Х		Х	
Tier III Validation		1			
Initial Calibration Verification		X	Х		
Continuing Calibration Verification		Х	Х		
CRDL Standard Recovery		Х		Х	
ICP Interference Check		Х		Х	
ICP-MS Internal Standards	Х				Х
Transcription/calculations acceptable	Not required for Tier II plus calibration				bration
Raw Data	Х				Х
Reporting limits adjusted to reflect sample dilutions		Х		Х	

Notes:

%R Percent recovery

RPD Relative percent difference

%D Percent difference

General Chemistry Analyses

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
Total Cyanide by SW-846 9012B	Water	14 days from collection to analysis	Cool to <6 °C; preserved to a pH of greater than 12 with NaOH.

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

All compounds associated with the QA blanks exhibited a concentration less than the MDL, with the exception of the compounds listed in the following table. Sample results less than the BAL associated with the following sample locations were qualified as listed in the following table.

Sample ID	Analyte	Sample Result	Qualification
MW-12 DUP-20250314	Cyanide, Total (MB)	Detected sample results >RL and <bal< td=""><td>"UB" at detected sample concentration</td></bal<>	"UB" at detected sample concentration

Note:

MB Method blank

3. Calibration

Satisfactory instrument calibration is established to provide that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument's continuing performance is satisfactory.

3.1 Initial Calibration and Continuing Calibration

The correct number and type of standards were analyzed. The correlation coefficient of the initial calibration was greater than 0.995 for all non-ICP analytes and all initial calibration verification standard recoveries were within control limits.

All initial and continuing calibration verification standard recoveries were within the control limit.

4. Matrix Spike (MS)/Matrix Spike Duplicate (MSD)/Laboratory Duplicate Analysis

MS/MSD and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

4.1 MS/MSD Analysis

All analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater. In instance where this is true, the data will not be qualified even if the percent recovery does not meet the control limits and the laboratory flag will be removed.

The MS/MSD analysis performed on sample MW-4. The MS/MSD analysis exhibited recoveries and RPDs within the control limits.

4.2 Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the RL. A control limit of 20% for water matrices and 35% for soil matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of one time the RL is applied for water matrices and two times the RL for soil matrices.

The laboratory duplicate analysis was not performed on samples from this SDG.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Analyte	Sample Result (mg/L)	Duplicate Result (mg/L)	RPD
MW-12/ DUP-20250314	Cyanide (total)	U	U	AC

Note:

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

6. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit a percent recovery between the control limits of 80% and 120%.

The LCS analysis exhibited recoveries within the control limits.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

Data Validation Checklist for General Chemistry

General Chemistry: SW-846 9012B	Rep	orted		rmance ptable	Not Required
	No	Yes	No	Yes	Required
Miscellaneous Instrumentation					
Tier II Validation					
Holding Times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Instrument Blanks		X	Х		
B. Method Blanks		Х	Х		
C. Equipment/Field Blanks	Х				Х
Laboratory Control Sample (LCS) %R		Х		Х	
Laboratory Control Sample Duplicate (LCSD) %R	Х				Х
LCS/LCSD Precision (RPD)	Х				Х
Matrix Spike (MS) %R		Х		Х	
Matrix Spike Duplicate (MSD) %R		Х		Х	
MS/MSD Precision (RPD)		Х		Х	
Field/Lab Duplicate (RPD)		Х		Х	
Tier III Validation					
Initial Calibration Verification		Х		Х	
Continuing Calibration Verification		Х		Х	
Transcription/calculations acceptable		Х		Х	
Raw Data		Х		Х	
Reporting limits adjusted to reflect sample dilutions		Х		Х	

Notes:

%R Percent recovery

RPD Relative percent difference

SAMPLE COMPLIANCE REPORT

Sample	Sampling	B	0 115	Madeira		Con	npliancy ¹			
Delivery Group (SDG)	Date	Protocol	Sample ID	Matrix	VOC	svoc	METALS	CYANIDE	Noncompliance	
	03/14/2025	SW846	MW-12	Water	Yes	Yes	No	No	Metals- Blank contamination, ICV %D and CCV %D, LRC %R General Chemistry - Blank contamination	
480-227898-1	03/14/2025	SW846	TRIP BLANK	Water	Yes					
	03/14/2025	SW846	DUP-20250314	Water	Yes	Yes	No	No	Metals- ICV %D and CCV %D, LRC %R General Chemistry - Blank contamination	

Note:

arcadis.com 25

Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant, or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable

VALIDATION PERFORMED BY: Amrutha M

SIGNATURE:

DATE: April 8, 2024

Arutha M

PEER REVIEW: Joe Houser

DATE: April 8, 2024

arcadis.com 26

Chain of Custody	Corrected Samp	le Analysis Data Sh	eets

Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991

10 Hazelwood Drive

Chain of Custody Record

🔅 eurofins

Environment Testing

Client Information	Sampler 7.4	ie Salli	ion MA	LS So	b РМ: chove,	Joh	n R					Carrier 1	racking N	o(s):		COC No: 480-203695-	-41503.1		
Client Contact: Mr. John Ruspantini	Phone: 585	590 8	2585	E-1	Mail: ohn.Sc	hove	e@et.	eurofi	insus	s.com		State of	Origin:	٧Y		Page: Page 1 of 1			
Company. New York State Electric & Gas			PWSID:								ysis Re	queste	-			Job #:			
Address: 18 Link Drive	Due Date Requeste	ed:						\top	T		T T	1 1	ĪT			Preservation	Codes:		
City:	TAT Requested (da				- 8										1200	B - NaOH N - None			
Binghamton State, Zip:		St	andard	•									1100000	Billi ram es.	1 I	D - HNO3			
NY, 13902	Compliance Project	t: A Yes	Δ No													 	dinina.		
Phone:	PO#: Purchase Order	Paguantad																	
Email:	WO#:	Requesteu		-	2	À													
ijruspantini@nyseg.com . Project Name:	NYSEG-Clyde/J	ohn Ruspar	ntini			3						4	80-2278	398 Chair	of Cus	stody			
NYSEG - Clyde/ Event Desc: Groundwater	48028408				3	8	otal	tiles				1 1	1 1	1 1	1 -		-	-	
Site: New York	SSOW#:				T T	χ. 0	de, T	ivola				1 1			~ 1	Other:			
New FOIR					-8		Cyanide	Sem	. .					-1-1	0				
			Sample Type	Matrix (w=water,	101		Ā.	8270D - PAH 6010D 7470A	ROGOC - RTEX						Numbe				
		Sample	(C=comp,	S=solid, O=waste/oil,	14	101	9012B_NP	8270D - PAH	ع ا	إ									
Sample Identification	Sample Date	Time	G≃grab) _B		_										Total	Specia	al Instru	ctions/N	Note:
			Preservati		X	-	BN		-	_					X				
MW12	3/19/25	1135	4	Water	M			X X	- 1.	<u>د ا</u>					21				
DUP-20250314	3/14/25	_	G	Water	N	N	X	XX	< X	۲					7				
TRIP BLANK	2/11/25	-		Water	N	N			X	1					2				
			ne	2	1				+										
					П		\top						11	$\top \top$					
					П		\dashv	\top	\top			1 1	11	\top					
					$\forall 1$		\top	+	+	\top		++	1						
					+	\Box	+	+	+	+		++	++	++					
					+	\vdash	+	+	+	+		+-+	++	++-					
					+	\vdash	_	+	+	+		+	\rightarrow	\rightarrow	3.				
					\perp		\perp		┵										
Possible Hazard Identification						Sam	ple D	Dispos	sal (A fee	may be	assesse	d if sam	ples are	retained	d longer tha	ın 1 moı	nth)	
Non-Hazard Flammable Skin Irritant Pois Deliverable Requested: I, II, III, IV, Other (specify)	on B Unkn	own - F	Radiological		_			turn T			- 1	Disposa	By Lab		Archiv	re For	^	Months	
						Spec	cial In	struct	ions/	/QC R	equireme	ents:							
Empty Kit Relinquished by:		Date:			Tin				//	lan		Me	thod of Sh	ipment:					
Relinquished by Robbie, Sallivan Tolke Telle	Date/Time:	14/25	1700 0	ARC	101.	S	Receive	ed by:	H	#			D	ate/Time:	170	170	Con	npany	7
Relinquished by:	Date/Time: 3/14/2			ompany 667	~		Receive	ed by:					D	ate/Time:				npany	
Relinquished by:	Date/Time:		Ċ	ompany		F	Receive	ed by:	-	_			D	ate/Time:	120	Qas	Con	npany	/
Custody Seals Intact: Custody Seal No.:							Cooler	Temper	rature	(s) °C a	ind Other R	emarks:		7117	175	900		10 4	se
Δ Yes Δ No															۷.	6 10	R I	1100	20

Page 25 of 26

Definitions/Glossary

Client: New York State Electric & Gas Job ID: 480-227898-1

Project/Site: NYSEG - Clyde

Qualifiers

Qualifier	Qualifier Description
^5-	Linear Range Check (LRC) is outside acceptance limits, low biased.
^5+	Linear Range Check (LRC) is outside acceptance limits, high biased.
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qι	alifier	Qualifier Description
В		Compound was found in the blank and sample.
F1		MS and/or MSD recovery exceeds control limits.
J		Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

3	Nesult is less than the NE but greater than or equal to the MDE and the concentration is an approximate value.
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
\$	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number

MQL NC

IC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

Method Quantitation Limit

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Buffalo

Page 4 of 26 3/20/2025

3

6

9

10

12

13

Client Sample Results

Client: New York State Electric & Gas Job ID: 480-227898-1

Project/Site: NYSEG - Clyde

Client Sample ID: MW-12 Lab Sample ID: 480-227898-1

Date Collected: 03/14/25 11:35 Matrix: Ground Water
Date Received: 03/15/25 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	0.41	ug/L			03/19/25 01:56	1
Ethylbenzene	ND		1.0	0.74	ug/L			03/19/25 01:56	1
Toluene	ND		1.0	0.51	ug/L			03/19/25 01:56	1
Xylenes, Total	ND		2.0	0.66	ug/L			03/19/25 01:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	94		77 - 120					03/19/25 01:56	1
4-Bromofluorobenzene (Surr)	107		73 - 120					03/19/25 01:56	1
Dibromofluoromethane (Surr)	97		75 - 123					03/19/25 01:56	1
Toluene-d8 (Surr)	89		80 - 120					03/19/25 01:56	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		5.0	0.41	ug/L		03/17/25 13:27	03/18/25 16:19	1
Acenaphthylene	ND		5.0	0.38	ug/L		03/17/25 13:27	03/18/25 16:19	1
Anthracene	ND		5.0	0.28	ug/L		03/17/25 13:27	03/18/25 16:19	1
Benzo[a]anthracene	ND		5.0	0.36	ug/L		03/17/25 13:27	03/18/25 16:19	1
Benzo[a]pyrene	ND		5.0	0.47	ug/L		03/17/25 13:27	03/18/25 16:19	1
Benzo[b]fluoranthene	ND		5.0	0.34	ug/L		03/17/25 13:27	03/18/25 16:19	1
Benzo[g,h,i]perylene	ND		5.0	0.35	ug/L		03/17/25 13:27	03/18/25 16:19	1
Benzo[k]fluoranthene	ND		5.0	0.73	ug/L		03/17/25 13:27	03/18/25 16:19	1
Chrysene	ND		5.0	0.33	ug/L		03/17/25 13:27	03/18/25 16:19	1
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		03/17/25 13:27	03/18/25 16:19	1
Fluoranthene	ND		5.0	0.40	ug/L		03/17/25 13:27	03/18/25 16:19	1
Fluorene	ND		5.0	0.36	ug/L		03/17/25 13:27	03/18/25 16:19	1
Indeno[1,2,3-cd]pyrene	ND		5.0	0.47	ug/L		03/17/25 13:27	03/18/25 16:19	1
Naphthalene	ND		5.0	0.76	ug/L		03/17/25 13:27	03/18/25 16:19	1
Phenanthrene	ND		5.0	0.44	ug/L		03/17/25 13:27	03/18/25 16:19	1
Pyrene	ND		5.0	0.34	ug/L		03/17/25 13:27	03/18/25 16:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
0. 51							00/47/05 40 07	00/40/05 40 40	

Surrogate	%Recovery Qualifier	Limits	Prepared Ana	alyzed Dil Fac
2-Fluorobiphenyl (Surr)	76	53 - 126	03/17/25 13:27 03/18/	/25 16:19 1
Nitrobenzene-d5 (Surr)	66	29 - 129	03/17/25 13:27 03/18/	/25 16:19 1
p-Terphenyl-d14 (Surr)	66	33 - 132	03/17/25 13:27 03/18/	/25 16:19 1
	(100)			

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20	0.060	mg/L		03/18/25 08:50	03/18/25 14:25	1
Antimony	ND		0.020	0.0068	mg/L		03/18/25 08:50	03/18/25 14:25	1
Arsenic	ND	UJ	0.015	0.0056	mg/L		03/18/25 08:50	03/18/25 14:25	1
Barium	0.10	J	0.0020	0.00070	mg/L		03/18/25 08:50	03/18/25 14:25	1
Beryllium	ND	<u>⁴5</u> UJ	0.0020	0.00030	mg/L		03/18/25 08:50	03/18/25 14:25	1
Cadmium	ND	UJ	0.0020	0.00050	mg/L		03/18/25 08:50	03/18/25 14:25	1
Calcium	142		0.50	0.10	mg/L		03/18/25 08:50	03/18/25 14:25	1
Chromium	ND		0.0040	0.0010	mg/L		03/18/25 08:50	03/18/25 14:25	1
Cobalt	ND	^5+ UJ	0.0040	0.00063	mg/L		03/18/25 08:50	03/18/25 14:25	1
Copper	0.0017	J*5+-	0.010	0.0016	mg/L		03/18/25 08:50	03/18/25 14:25	1
Iron	0.44	J	0.050	0.019	mg/L		03/18/25 08:50	03/18/25 14:25	1
Lead	ND	^5+ UJ	0.010	0.0030	mg/L		03/18/25 08:50	03/18/25 14:25	1
Magnesium	22.3		0.20	0.043	mg/L		03/18/25 08:50	03/18/25 14:25	1

Eurofins Buffalo

Page 7 of 26 3/20/2025

Client Sample Results

Client: New York State Electric & Gas

Project/Site: NYSEG - Clyde

Client Sample ID: MW-12 Lab Sample ID: 480-227898-1

Date Collected: 03/14/25 11:35 Matrix: Ground Water
Date Received: 03/15/25 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese	0.16		0.0030	0.00040	mg/L		03/18/25 08:50	03/18/25 14:25	1
Nickel	0.0014	JB UBJ	0.010	0.0013	mg/L		03/18/25 08:50	03/18/25 14:25	1
Potassium	4.7	. J	0.50	0.10	mg/L		03/18/25 08:50	03/18/25 14:25	1
Selenium	ND	^5+ UJ	0.025	0.0087	mg/L		03/18/25 08:50	03/18/25 14:25	1
Silver	ND	^\$- UJ	0.0060	0.0017	mg/L		03/18/25 08:50	03/18/25 14:25	1
Sodium	70.2		1.0	0.32	mg/L		03/18/25 08:50	03/18/25 14:25	1
Thallium	ND	^5+ UJ	0.020	0.010	mg/L		03/18/25 08:50	03/18/25 14:25	1
Vanadium	ND		0.0050	0.0015	mg/L		03/18/25 08:50	03/18/25 14:25	1
Zinc	0.22	J	0.010	0.0015	mg/L		03/18/25 08:50	03/18/25 14:25	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total (SW846 9012B)	0.0091	JB-E1 UB	0.010	0.0041	mg/L			03/18/25 19:34	1

Client Sample ID: TRIP BLANK

Date Collected: 03/14/25 00:00

Lab Sample ID: 480-227898-2

Matrix: WQ

Date Received: 03/15/25 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	0.41	ug/L			03/19/25 02:20	1
Ethylbenzene	ND		1.0	0.74	ug/L			03/19/25 02:20	1
Toluene	ND		1.0	0.51	ug/L			03/19/25 02:20	1
Xylenes, Total	ND		2.0	0.66	ug/L			03/19/25 02:20	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103	77 - 120		03/19/25 02:20	1
4-Bromofluorobenzene (Surr)	118	73 - 120		03/19/25 02:20	1
Dibromofluoromethane (Surr)	110	75 - 123		03/19/25 02:20	1
Toluene-d8 (Surr)	100	80 - 120		03/19/25 02:20	1

Client Sample ID: DUP-20250314 Lab Sample ID: 480-227898-3

Date Collected: 03/14/25 00:00 Matrix: Water

Date Collected: 03/14/25 00:00 Date Received: 03/15/25 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	0.41	ug/L			03/19/25 02:43	1
Ethylbenzene	ND		1.0	0.74	ug/L			03/19/25 02:43	1
Toluene	ND		1.0	0.51	ug/L			03/19/25 02:43	1
Xylenes, Total	ND		2.0	0.66	ug/L			03/19/25 02:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101	77 - 120		03/19/25 02:43	1
4-Bromofluorobenzene (Surr)	119	73 - 120		03/19/25 02:43	1
Dibromofluoromethane (Surr)	108	75 - 123		03/19/25 02:43	1
Toluene-d8 (Surr)	102	80 - 120		03/19/25 02:43	1

Method: SW846 8270D - Semi	volatile Orga	anic Comp	ounds (GC	C/MS)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		5.0	0.41	ug/L		03/17/25 13:27	03/18/25 16:46	1

Eurofins Buffalo

Page 8 of 26 3/20/2025

3

Job ID: 480-227898-1

5

7

9

10

12

14

Client Sample Results

Job ID: 480-227898-1 Client: New York State Electric & Gas

Project/Site: NYSEG - Clyde

Client Sample ID: DUP-20250314

Lab Sample ID: 480-227898-3 Date Collected: 03/14/25 00:00 **Matrix: Water**

Date Received: 03/15/25 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acenaphthylene	ND		5.0	0.38	ug/L		03/17/25 13:27	03/18/25 16:46	
Anthracene	ND		5.0	0.28	ug/L		03/17/25 13:27	03/18/25 16:46	
Benzo[a]anthracene	ND		5.0	0.36	ug/L		03/17/25 13:27	03/18/25 16:46	
Benzo[a]pyrene	ND		5.0	0.47	ug/L		03/17/25 13:27	03/18/25 16:46	
Benzo[b]fluoranthene	ND		5.0	0.34	ug/L		03/17/25 13:27	03/18/25 16:46	
Benzo[g,h,i]perylene	ND		5.0	0.35	ug/L		03/17/25 13:27	03/18/25 16:46	
Benzo[k]fluoranthene	ND		5.0	0.73	ug/L		03/17/25 13:27	03/18/25 16:46	
Chrysene	ND		5.0	0.33	ug/L		03/17/25 13:27	03/18/25 16:46	
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		03/17/25 13:27	03/18/25 16:46	
Fluoranthene	ND		5.0	0.40	ug/L		03/17/25 13:27	03/18/25 16:46	
Fluorene	ND		5.0	0.36	ug/L		03/17/25 13:27	03/18/25 16:46	
Indeno[1,2,3-cd]pyrene	ND		5.0	0.47	ug/L		03/17/25 13:27	03/18/25 16:46	
Naphthalene	ND		5.0		ug/L		03/17/25 13:27	03/18/25 16:46	
Phenanthrene	ND		5.0	0.44	ug/L		03/17/25 13:27	03/18/25 16:46	
Pyrene	ND		5.0	0.34	ug/L		03/17/25 13:27	03/18/25 16:46	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl (Surr)	102		53 - 126				03/17/25 13:27	03/18/25 16:46	
Nitrobenzene-d5 (Surr)	87		29 - 129				03/17/25 13:27	03/18/25 16:46	
p-Terphenyl-d14 (Surr)	87		33 - 132				03/17/25 13:27	03/18/25 16:46	
•									
Mothod: SW946 6040D	Motolo (ICD)								
Method: SW846 6010D - Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
	• •	Qualifier		MDL 0.060		<u>D</u>		Analyzed 03/18/25 14:36	
Analyte	Result	Qualifier			mg/L	D	03/18/25 08:50		
Analyte Aluminum	Result ND	Qualifier UJ	0.20	0.060	mg/L mg/L	<u>D</u>	03/18/25 08:50 03/18/25 08:50	03/18/25 14:36	
Analyte Aluminum Antimony	Result ND ND ND 0.10	UJ	0.20	0.060 0.0068	mg/L mg/L mg/L	<u>D</u>	03/18/25 08:50 03/18/25 08:50 03/18/25 08:50	03/18/25 14:36 03/18/25 14:36	
Analyte Aluminum Antimony Arsenic	Result ND ND ND 0.10	UJ	0.20 0.020 0.015	0.060 0.0068 0.0056	mg/L mg/L mg/L mg/L	<u>D</u>	03/18/25 08:50 03/18/25 08:50 03/18/25 08:50 03/18/25 08:50	03/18/25 14:36 03/18/25 14:36 03/18/25 14:36	
Analyte Aluminum Antimony Arsenic Barium	Result ND ND ND 0.10	UJ	0.20 0.020 0.015 0.0020	0.060 0.0068 0.0056 0.00070	mg/L mg/L mg/L mg/L mg/L	<u>D</u>	03/18/25 08:50 03/18/25 08:50 03/18/25 08:50 03/18/25 08:50 03/18/25 08:50	03/18/25 14:36 03/18/25 14:36 03/18/25 14:36 03/18/25 14:36	
Analyte Aluminum Antimony Arsenic Barium Beryllium	Result ND ND ND 0.10 ND	UJ J ~5. UJ	0.20 0.020 0.015 0.0020 0.0020	0.060 0.0068 0.0056 0.00070 0.00030 0.00050	mg/L mg/L mg/L mg/L mg/L	<u>D</u>	03/18/25 08:50 03/18/25 08:50 03/18/25 08:50 03/18/25 08:50 03/18/25 08:50 03/18/25 08:50	03/18/25 14:36 03/18/25 14:36 03/18/25 14:36 03/18/25 14:36 03/18/25 14:36	
Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium		UJ J ~5. UJ	0.20 0.020 0.015 0.0020 0.0020 0.0020	0.060 0.0068 0.0056 0.00070 0.00030 0.00050	mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	03/18/25 08:50 03/18/25 08:50 03/18/25 08:50 03/18/25 08:50 03/18/25 08:50 03/18/25 08:50 03/18/25 08:50	03/18/25 14:36 03/18/25 14:36 03/18/25 14:36 03/18/25 14:36 03/18/25 14:36 03/18/25 14:36	
Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium	Result ND ND ND ND ND ND ND N	UJ J ~5- UJ UJ	0.20 0.020 0.015 0.0020 0.0020 0.0020 0.50	0.060 0.0068 0.0056 0.00070 0.00030 0.00050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	03/18/25 08:50 03/18/25 08:50 03/18/25 08:50 03/18/25 08:50 03/18/25 08:50 03/18/25 08:50 03/18/25 08:50 03/18/25 08:50	03/18/25 14:36 03/18/25 14:36 03/18/25 14:36 03/18/25 14:36 03/18/25 14:36 03/18/25 14:36	
Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt	Result	UJ J ~5- UJ UJ *5+ UJ	0.20 0.020 0.015 0.0020 0.0020 0.0020 0.50 0.0040	0.060 0.0068 0.0056 0.00070 0.00030 0.00050 0.10 0.0010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	03/18/25 08:50 03/18/25 08:50 03/18/25 08:50 03/18/25 08:50 03/18/25 08:50 03/18/25 08:50 03/18/25 08:50 03/18/25 08:50 03/18/25 08:50	03/18/25 14:36 03/18/25 14:36 03/18/25 14:36 03/18/25 14:36 03/18/25 14:36 03/18/25 14:36 03/18/25 14:36	
Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper	Result ND ND ND ND ND ND 140 ND ND ND ND ND ND ND N	UJ J ~5- UJ UJ *5+ UJ	0.20 0.020 0.015 0.0020 0.0020 0.0020 0.50 0.0040 0.0040	0.060 0.0068 0.0056 0.00070 0.00030 0.00050 0.10 0.0010 0.0016	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	03/18/25 08:50 03/18/25 08:50 03/18/25 08:50 03/18/25 08:50 03/18/25 08:50 03/18/25 08:50 03/18/25 08:50 03/18/25 08:50 03/18/25 08:50	03/18/25 14:36 03/18/25 14:36 03/18/25 14:36 03/18/25 14:36 03/18/25 14:36 03/18/25 14:36 03/18/25 14:36 03/18/25 14:36	
Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper	Result ND ND ND 0.10 ND ND ND ND 0.0020 0.46	UJ J ~5_ UJ UJ *5+ UJ J ^5+	0.20 0.020 0.015 0.0020 0.0020 0.0020 0.50 0.0040 0.0040 0.0040	0.060 0.0068 0.0056 0.00070 0.00030 0.00050 0.10 0.0010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	03/18/25 08:50 03/18/25 08:50 03/18/25 08:50 03/18/25 08:50 03/18/25 08:50 03/18/25 08:50 03/18/25 08:50 03/18/25 08:50 03/18/25 08:50 03/18/25 08:50	03/18/25 14:36 03/18/25 14:36 03/18/25 14:36 03/18/25 14:36 03/18/25 14:36 03/18/25 14:36 03/18/25 14:36 03/18/25 14:36 03/18/25 14:36	
Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Cralcium Chromium Cobalt Copper Iron Lead	Result ND ND ND 0.10 ND ND ND 0.0020 0.46 ND	UJ J ~5~ UJ UJ *5+ UJ J ^5+	0.20 0.020 0.015 0.0020 0.0020 0.0020 0.50 0.0040 0.0040 0.010 0.050 0.010	0.060 0.0068 0.0056 0.00070 0.00030 0.00050 0.10 0.0010 0.00063 0.0016 0.019	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	03/18/25 08:50 03/18/25 08:50	03/18/25 14:36 03/18/25 14:36 03/18/25 14:36 03/18/25 14:36 03/18/25 14:36 03/18/25 14:36 03/18/25 14:36 03/18/25 14:36 03/18/25 14:36 03/18/25 14:36	
Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium	Result ND ND ND 0.10 ND 140 ND ND 0.0020 0.46 ND	UJ J ~5~ UJ UJ *5+ UJ J ^5+	0.20 0.020 0.015 0.0020 0.0020 0.0020 0.50 0.0040 0.0040 0.010 0.050 0.010	0.060 0.0068 0.0056 0.00070 0.00030 0.00050 0.10 0.0010 0.0016 0.0016 0.019 0.0030	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	D	03/18/25 08:50 03/18/25 08:50	03/18/25 14:36 03/18/25 14:36	
Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese	Result ND ND ND 0.10 ND ND 140 ND ND 0.0020 0.46 ND 22.0 0.16	UJ -5- UJ UJ *5+ UJ -5+ UJ -5+ UJ	0.20 0.020 0.015 0.0020 0.0020 0.0020 0.50 0.0040 0.0040 0.010 0.050 0.010 0.20 0.0030	0.060 0.0068 0.0056 0.00070 0.00030 0.00050 0.10 0.0010 0.0016 0.0019 0.0030 0.043	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	03/18/25 08:50 03/18/25 08:50	03/18/25 14:36 03/18/25 14:36	
Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel	Result ND ND ND 0.10 ND ND ND 0.0020 0.46 ND 22.0 0.16 ND	UJ J ~5~ UJ UJ *5+ UJ J ^5+	0.20 0.020 0.015 0.0020 0.0020 0.0020 0.50 0.0040 0.0040 0.010 0.050 0.010 0.20 0.0030 0.010	0.060 0.0068 0.0056 0.00070 0.00030 0.00050 0.10 0.0010 0.0016 0.0019 0.0030 0.043 0.0040 0.0013	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	03/18/25 08:50 03/18/25 08:50	03/18/25 14:36 03/18/25 14:36	
Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium	Result ND ND ND 0.10 ND ND 140 ND ND 0.0020 0.46 ND 22.0 0.16 ND 4.7	UJ J ~5- UJ UJ ~5+ UJ ~5+ UJ ~5+ UJ	0.20 0.020 0.015 0.0020 0.0020 0.0020 0.50 0.0040 0.0040 0.010 0.050 0.010 0.20 0.0030 0.010 0.50	0.060 0.0068 0.0056 0.00070 0.00030 0.00050 0.10 0.0010 0.0016 0.019 0.0030 0.043 0.0040 0.0013	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	03/18/25 08:50 03/18/25 08:50	03/18/25 14:36 03/18/25 14:36	
Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium	Result ND ND ND 0.10 ND ND ND 0.0020 0.46 ND 22.0 0.16 ND	UJ -5- UJ UJ *5+ UJ *5+ UJ V5+ UJ	0.20 0.020 0.015 0.0020 0.0020 0.0020 0.50 0.0040 0.0040 0.010 0.050 0.010 0.20 0.0030 0.010 0.50 0.010 0.50	0.060 0.0068 0.0056 0.00070 0.00030 0.00050 0.10 0.0016 0.0016 0.019 0.0030 0.0043 0.0044 0.0013 0.10	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	03/18/25 08:50 03/18/25 08:50	03/18/25 14:36 03/18/25 14:36	
Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver	Result ND ND ND 0.10 ND ND 140 ND 0.0020 0.46 ND 22.0 0.16 ND 4.7 ND ND	UJ J ~5- UJ UJ ~5+ UJ ~5+ UJ ~5+ UJ	0.20 0.020 0.015 0.0020 0.0020 0.0020 0.50 0.0040 0.0040 0.010 0.050 0.010 0.20 0.0030 0.010 0.50 0.010 0.50 0.0050	0.060 0.0068 0.0056 0.00070 0.00030 0.00050 0.10 0.0016 0.0019 0.0030 0.043 0.00040 0.0013 0.10 0.0087 0.0017	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	03/18/25 08:50 03/18/25 08:50	03/18/25 14:36 03/18/25 14:36	
Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese	Result ND ND ND 0.10 ND ND 140 ND ND 0.0020 0.46 ND 22.0 0.16 ND 4.7 ND ND ND ND 70.7	UJ -5- UJ UJ *5+ UJ *5+ UJ V5+ UJ	0.20 0.020 0.015 0.0020 0.0020 0.0020 0.50 0.0040 0.0040 0.010 0.050 0.010 0.20 0.0030 0.010 0.50 0.010 0.50	0.060 0.0068 0.0056 0.00070 0.00030 0.00050 0.10 0.0016 0.0019 0.0030 0.043 0.00040 0.0013 0.10 0.0087 0.0017	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	03/18/25 08:50 03/18/25 08:50	03/18/25 14:36 03/18/25 14:36	Dil Fa

General	Chemistry
Analyte	

Vanadium

Zinc

Concra Chomical								
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
Cvanide, Total (SW846 9012B)	0.0061 J.B. UB	0.010	0.0041 mg/L			03/18/25 19:53	1	

0.0050

0.010

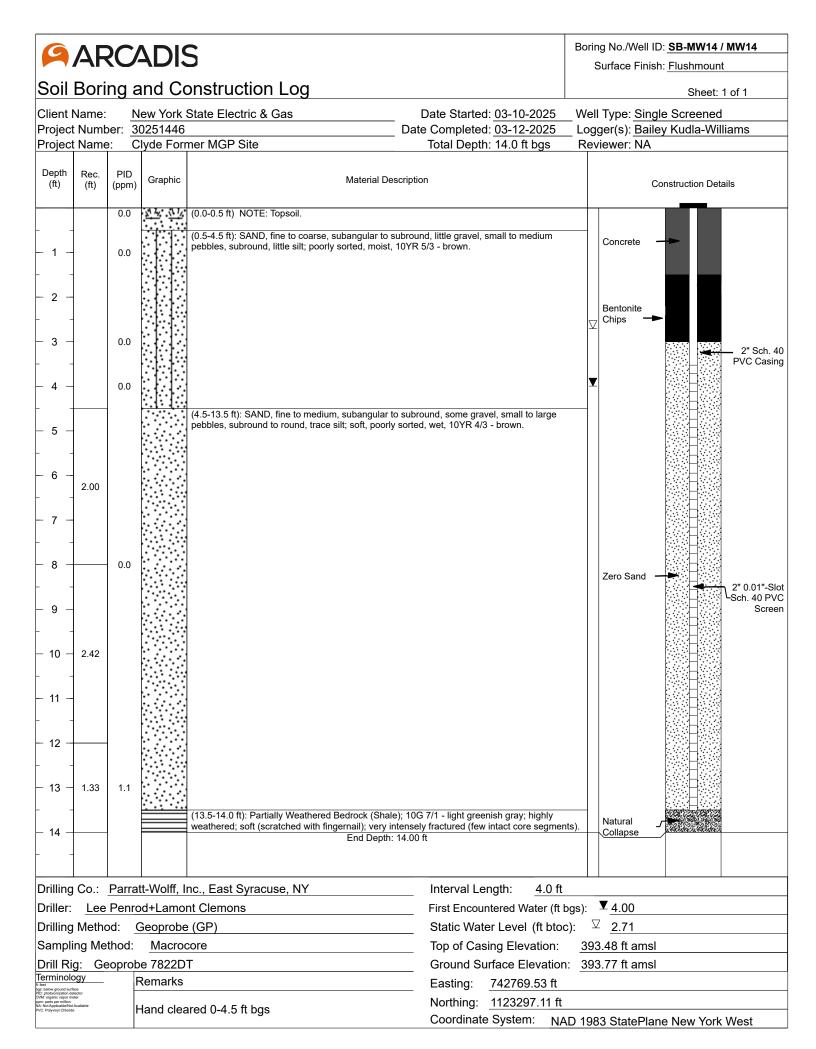
ND

0.22

Eurofins Buffalo

03/18/25 08:50 03/18/25 14:36

03/18/25 08:50 03/18/25 14:36


Page 9 of 26

0.0015 mg/L

0.0015 mg/L

Attachment 4

MW-14 and MW-15 Well Installation Logs

6	ΛГ			2	E	3ori	ng No./Well	ID: SB-M	W15	/ MW15
	/ \		ADI:	3			Surface Finis	sh: <u>NA</u>		
Soil	Bori	ng a	and Co	onstruction Log				Sł	neet:	1 of 1
Client I	Name:		lew York	State Electric & Gas Da	ate Started: 03-10-2025	Wel	I Type: Sin	ale Scre	ened	
Project	Numb	per: 3	0251446	Date (ıger(s): <u>Bai</u>			
Project	Name	e: C	lyde For	mer MGP Site T	otal Depth: 14.0 ft bgs	Re	viewer: NA			
Depth (ft)	Rec. (ft)	PID (ppm)	Graphic	Material Description			(Constructio	n Deta	ails
		0.0	7,1%. 111%.	(0.0-1.0 ft) NOTE: Topsoil. Geotextile membrane at 1'						
_ 1 _			<u>17</u> · <u>x</u> 1·1 ₇ · <u>v</u> 1				Concrete			
				(1.0-3.0 ft): SAND, fine to coarse, subangular to subround, pebbles, subround, little silt; poorly sorted, moist, 10YR 3/3						
- 2 -		0.0					Bentonite			
						∇	Chips —			
- 3 - 				(3.0-4.0 ft): SAND, fine to coarse, subangular to subround, cobbles, subround, trace silt, trace clay; poorly sorted, mois Cobbles and concrete at 3'.		•			•	2" Sch. 40 PVC Casing
- 4 -		11.6	8°0°°	(4.0-4.5 ft): SAND, fine to medium, subangular to subround			_			
				medium pebbles, subround, little clay; soft, low plasticity, no 10YR 3/3 - dark brown. NOTE: Brick, concrete, wood at 4'.		\perp				
- 5 - 				(4.5-6.0 ft): SAND, fine to medium, subangular to subround small pebbles, subangular to subround; soft, no dilatancy, p dark gray. NOTE: Slight petroleum-like odor, mild sheen.						
- 6 -	1.58	46.2		(6.0-8.0 ft): GRAVEL, granules to small pebbles, subangula coarse sand, subangular to subround, trace silt; soft, poorly dark gray. NOTE: Slight petroleum-like odor, mild sheen, gr	y sorted, wet, 2.5Y 3/1 - very					
- 7 - 				slag.	·					
- 8 - - 9 -		0.1		(8.0-10.0 ft): SAND, medium to coarse, subangular to subro granules to small pebbles, subangular to subround; soft, no 3/1 - very dark gray. NOTE: Little slag. Clay lenses 2-3" hig	o dilatancy, poorly sorted, wet, 2.5Y		Zero Sand			Ղ2" 0.01"-Slot Տch. 40 PVC
- 10 -	3.50	0.2		(10.0-11.0 ft): SAND, medium to coarse, subangular to sub	round and SILT little gravel					Screen
				granules, subangular to subround, trace clay; soft, no dilata very dark gray. NOTE: Trace wood chips.						
_ 11 _		0.2		(11.0-11.5 ft): CLAY, little silt; soft, medium plasticity, moist,	5 5 7					
- 12 -		0.0		(11.5-13.0 ft): CLAY; soft, medium plasticity, moist, 10YR 7/ oxidation orange coloring.	/1 - light gray. NOTE: Some					
-										
- 13 - 	3.08	0.0		(13.0-13.9 ft): CLAY, little silt, trace very fine sand; soft, med light gray.	dium plasticity, moist, 10YR 7/1 -					
- 14 - 			XXXXX	(13.9-14.0 ft): Partially Weathered Bedrock (Shale); 10BG (weathered; soft (scratched with fingernail); very intensely fr End Depth: 14.00 ft						
Drilling	Co.:	Parra	tt-Wolff, I	nc., East Syracuse, NY	nterval Length: 4.0 ft			1		
Driller:	Lee	Penro	od+Lamo	nt Clemons F	First Encountered Water (ft bgs	s):	▼ 4.00			
Drilling	Metho	od:	Geoprobe	· (GP)	Static Water Level (ft btoc):	Z	2.92			
Sampli	ng Me	thod:	Macro	core	Гор of Casing Elevation:	39	2.95 ft ams	I		
		oprob	oe 7822D	Τ (Ground Surface Elevation:	39	3.21 ft ams	l		
Terminolo	ogy	Į	Remarks	E	Easting: <u>742778.96 ft</u>					
PiD: photoionization de OVM: organic vapor me ppm: parts per million NA: Not Applicable/Not PVC: Polyvinyl Chloride	nector ster Available	ļ	Hand clea	ared 0-4.5 it bas	Northing: 1123207.93 ft Coordinate System: NAD	198	33 StatePla	ne New	York	West