

March 18, 2025

Mr. Michael Squire New York State Department of Environmental Conservation Division of Environmental Remediation, 11th Floor 625 Broadway Albany, New York 12233

Re: Fifth Post-Remediation Groundwater Sampling Report - November 2024

NYSEG Newark Former MGP Site

Corner of Main Street and West Shore Boulevard Village of Newark, Wayne County, New York

NYSDEC Site No. 859021

Dear Mr. Squire:

This report presents the findings of the fifth (5th) post-remediation groundwater sampling event completed at the New York State Electric & Gas Corporation (NYSEG) Newark Former Manufactured Gas Plant (MGP) site [New State Department of Environmental Conservation (NYSDEC) Site No. 859021], located at the corner of Main Street and West Shore Boulevard in the Village of Newark, Wayne County, New York (referred to herein as the "Site"). This groundwater sampling event was completed by NEU-VELLE, LLC (NEU-VELLE) personnel in coordination with NYSEG, pending the adoption of a Site Management Plan (SMP) for the Site.

SCOPE OF WORK

Synoptic Water Levels

On November 4, 2024, groundwater levels were collected from six (6) existing monitoring wells on and around the Site. The locations of the monitoring wells are depicted on the Site Plan provided as **Figure 1**. Each well was also gauged for the presence of non-aqueous phase liquid (NAPL) using an oil/water interface probe. NAPL was not detected in any of the wells. The Site-wide round of groundwater level measurements is summarized in **Table 1** and inferred groundwater elevation contours are presented on **Figure 2**.

Groundwater Sampling

From November 5 through November 6, 2024, groundwater samples were collected from six (6) existing monitoring wells on and around the Site. Groundwater samples were collected using low-flow methods.

Prior to initiating low-flow purging, field personnel donned new nitrile gloves, and care was taken to avoid introducing contaminants into the groundwater monitoring wells. Low-flow purging was conducted using a decontaminated, stainless steel bladder pump equipped with a polyethylene bladder and polyethylene tubing. A new, clean bladder and new, clean tubing were used at each groundwater monitoring well. During purging, water-level measurements, temperature, dissolved oxygen (DO), oxidation reduction potential (ORP), pH, turbidity, and specific conductance (purge parameters) were measured and recorded using calibrated field monitoring equipment.

The well information, sample information, monitoring parameters, and field observations were recorded on a groundwater sample log completed at each well. The groundwater sample logs are provided as **Attachment 1**.

Collection of Laboratory Samples

New nitrile gloves were donned by field personnel prior to the collection of each groundwater sample. The laboratory samples were collected in laboratory-supplied sample containers. Samples were placed in a cooler, pre-chilled with ice, and submitted under standard chain of custody protocols to Paradigm Environmental Services, Inc. (Paradigm) of Rochester, New York. The groundwater samples were analyzed for the following:

- volatile organic compounds (VOCs), BTEX (benzene, toluene, ethylbenzene, and xylene)
 only, in accordance with USEPA Method 8260C;
- semi-volatile organic compounds (SVOCs), polycyclic aromatic hydrocarbons (PAHs) only, in accordance with USEPA Method 8270D; and
- total cyanide in accordance with USEPA Method 335.4.

Copies of the chain of custody forms are included in **Attachment 3**. Quality Assurance/Quality Control (QA/QC) samples, including one (1) equipment blank sample, one (1) field duplicate sample (collected at MW-10-04), one (1) trip blank, and matrix spike/matrix spike duplicate (MS/MSD) samples were collected.

Reporting of Results

Copies of the laboratory analytical reports are presented in **Attachment 3**, and the analytical results are summarized in **Table 2** of this report. **Table 2** also summarizes analytical data for the field duplicate QA/QC sample collected during this sampling event.

Waste Disposal

Purged groundwater and decontamination water were containerized in a 55-gallon, polyethylene drum that was labeled and staged at the Site. This wastewater will then be properly disposed, with disposal documentation submitted to the NYSDEC under separate cover.

RESULTS

Analytical Results

The groundwater sample analytical results were compared to the NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1, Class GA, standards, criteria, and guidance values (SCGs).

The analytical results for groundwater samples are summarized in **Table 2** and **Figure 3**, as follows:

 no BTEX compounds were reported in the groundwater samples collected during this sampling event;

- no PAHs were reported in the groundwater samples collected during this sampling event; and
- total cyanide was detected in the groundwater samples collected from monitoring wells MW-22-01 (0.010 milligrams per liter or mg/L).

The analytical results for the QA/QC samples are summarized as follows:

- no detections of BTEX, PAHs or total cyanide were reported between the "parent sample" and the field duplicate sample collected at MW-10-04;
- no detections of BTEX, PAHs, or total cyanide were reported in the "equipment blank" sample; and
- no detections of BTEX compounds were reported in the "trip blank" sample.

Groundwater Mapping

A groundwater elevation contour map was prepared based upon the water levels measured on November 4, 2024, from six (6) groundwater monitoring wells at the Site. This groundwater elevation contour map is provided as **Figure 2**, and the inferred groundwater flow direction is interpreted to be toward the center of the Site with a possible overall area flow to the northeast, which appears consistent with historic depictions groundwater flow at the Site (i.e., as depicted in the Remedial Investigation Report). Groundwater flow may still be influenced by a former stream (Military Brook) that had been filled in prior to the hotel construction, as depicted on **Figure 2**.

CONCLUSIONS

This report presents the results of the fifth (5th) post-remediation groundwater sampling event completed at the NYSEG Newark Former MGP site (NYSDEC Site No. 859021).

No BTEX or PAH compounds were reported in the groundwater samples collected during this sampling event.

A low-level cyanide detection was reported in monitoring well adjacent to the former MGP Site (MW-22-01). These detections were below the TOGS 1.1.1, Class GA SCG for total cyanide (0.2 mg/L).

Time series plots of contaminants (PAHs and cyanide) over the five groundwater sampling events (June 2022 through November 2024) are provided as **Attachment 2**. A time series plot was not provided for BTEX compounds as there were no detections of these compounds during the monitoring period. The time series for PAHS generally depicts a rise in total PAH concentrations during the two groundwater sampling events of 2023. This is attributed to the lower detection levels of the laboratory used during these events, as a result of a different laboratory being used and the Site detection limits were not correctly communicated to the laboratory. The time series for cyanide depicts an overall downward trend over the monitoring period, with all results well below the TOGS 1.1.1 Class GA SCG for total cyanide (0.2 mg/L).

Based on the results of the last five groundwater sampling events, RG&E is proposing the following modifications to the Site groundwater sampling program:

- Remove BTEX and cyanide analyses from sampling;
- Reduce the sampling frequency to once per year;
- Continue sampling the seven (7) existing monitoring wells (including MW-10-03 when accessible) on and around the Site for PAHs on an annual basis (targeting September), for a three (3) year monitoring period (2026 2028); and
- PAH analysis will be changed to the low-level detection limits utilizing USEPA Method 8270
 SIM.

These proposed modifications will allow for the continued monitoring of the low-level PAHs detected for natural attenuation. Following the proposed 3-year monitoring period, RG&E and the NYSDEC will review the groundwater sampling results to evaluate the need for continued monitoring.

Sincerely,

Andrew Rothfuss

Andrew Rothfuss NEU-VELLE LLC

cc: Jeremy Wolf - NYSEG

Attachments:

Table 1 – Monitoring Well Reference Data and Groundwater Measurements

Table 2 – Analytical Detections in Groundwater

Figure 1 - Site Plan

Figure 2 – Groundwater Elevation Contours

Figure 3 – Analytical Detections in Groundwater

Attachment 1 – Groundwater Sample Logs

Attachment 2 – Time Series Plots of Contaminants

Attachment 3 – Groundwater Laboratory Reports and Chain of Custody Forms

Tables

Table 1
New York State Electric & Gas - Newark Former MGP Site, Newark, NY
NYSDEC Site No. 859021
Monitoring Well Reference Data and Groundwater Measurements

		June 23	3-24, 2022	May 24	-26, 2023	Novemb	er 2, 2023	May 8	3, 2024	Novembe	er 4th, 2024
Well ID	Top of PVC Riser (MP) Elevation (Feet NAVD88)	Depth to Water (Feet below MP)	Groundwater Elevation (Feet NAVD88)	Depth to Water (Feet below MP)	Groundwater Elevation (Feet NAVD88)	Depth to Water (Feet below MP)	Groundwater Elevation (Feet NAVD88)	Depth to Water (Feet below MP)	Groundwater Elevation (Feet NAVD88)	Depth to Water (Feet below MP)	Groundwater Elevation (Feet NAVD88)
MW-10-01	440.88	14.4	426.48	14.2	426.68	15.2	425.68	13.50	427.38	14.74	426.14
MW-22-01 (replacement for MW-10-02)	441.24	15.4	425.84	15.4	425.84	15.6	425.64	14.95	426.29	15.80	425.44
MW-10-03	441.49	15.0	426.49	15.2	426.29	NM	NM	14.65	426.84	NM	NM
MW-10-04	440.80	9.6	431.20	11.1	429.70	11.4	429.40	9.99	430.81	11.62	429.18
MW-11-05	439.95	14.1	425.85	13.9	426.05	14.5	425.45	13.62	426.33	14.50	425.45
MW-1A	441.10	11.0	430.10	12.6	428.50	12.6	428.50	12.10	429.00	12.26	428.84
MW-3A	441.31	12.1	429.21	12.0	429.31	13.4	427.91	11.39	429.92	13.01	428.30

Notes

- 1. Top of PVC Riser Elevations obtained from Table 3 of Remedial Investigation Report (RIR) by ARCADIS, dated July 2012, except for MW-22-01 that was surveyed following the Remedial Action.
- 2. Depths to water measured by NEU-VELLE on date(s) indicated.
- 3. "Elevations given in feet Above Mean Sea Level (AMSL), 1988 North American Vertical Datum (NAVD)." per ARCADIS RIR.
- 4. MP = Measuring Point
- 4. NM = Not measured due to well being inaccessible

Table 2
New York State Electric & Gas - Newark Former MGP Site, Newark, NY
NYSDEC Site No. 859021
Groundwater Sample Analytical Results

	Sampling	Location	MW1	.0-04	MW	10-04	MW1	0-04	MW	10-04		MW1	0-04		MW	/10-01		MW1	.0-01			MW1	.0-01		MW-1	l0-01	MW-1	10-01
	Sa	ample ID	MW10-0	04/SB19	MW10/0	4-052523	MW10/04	-110223	NK-MW-10	-04-051024	NK_MW-10	-04_110624	NK_Dup	_110624	MW10/0	01-052423	MW10-0	1/SB11	Dupe-0	52423	MW10/0	1-110423	Dupe-1	10423	NK-MW-10-	01-050924	NK_MW-1	0-110624
	Sam	ple Date	6/23/	2022	5/25	/2023	11/2/	2023	5/10	/2024		11/6/	2024		6/24	/2022		5/24/	2023			11/4/	2023		5/9/2	2024	11/6/	2024
Labor	ratory Ident	ification	22299	96-01	23298	362-05	23518	7-01	2421	04-09	2452	51-04	2452	51-04	2230	014-02	23298	62-01	23298	62-02	2351	87-06	23518	7-07	24210	04-05	24525	1-07
Analyte	TOGS 1.1.1 Class GA SCG	Units	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit
BTEX		_																										
Benzene	1	μg/L	ND	1.00	ND	0.50	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	0.50	ND	0.50	ND	1.00	ND	1.00	ND	1.00	ND	1.00
Toluene	5	μg/L	ND	2.00	ND	2.50	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.50	ND	2.50	ND	2.00	ND	2.00	ND	2.00	ND	2.00
Ethylbenzene	5	μg/L	ND	2.00	ND	2.50	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.50	ND	2.50	ND	2.00	ND	2.00	ND	2.00	ND	2.00
m,p-Xylene	. 5	μg/L	ND	2.00	ND	2.50	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.50	ND	2.50	ND	2.00	ND	2.00	ND	2.00	ND	2.00
o-Xylene		μg/L	ND	2.00	ND	2.50	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.50	ND	2.50	ND	2.00	ND	2.00	ND	2.00	ND	2.00
PAHs															_													
Acenaphthene	20	μg/L	ND	5.0	ND	0.1	ND	0.1	ND	10.3	ND	10.9	ND	12.4	ND	5.0	ND	0.1	ND	0.1	ND	0.1	ND	0.1	ND	10.1	ND	11.3
Acenaphthylene	NS	μg/L	ND	5.0	ND	0.1	ND	0.1	ND	10.3	ND	10.9	ND	12.4	ND	5.0	ND	0.1	ND	0.1	ND	0.1	ND	0.1	ND	10.1	ND	11.3
Anthracene	50	μg/L	ND	5.0	0.09	J 0.1	0.06 J	0.1	ND	10.3	ND	10.9	ND	12.4	ND	5.0	ND	0.1	ND	0.1	ND	0.1	ND	0.1	ND	10.1	ND	11.3
Benzo(a)anthracene	0.002	μg/L	ND	5.0	0.58	0.1	0.48	0.1	ND	10.3	ND	10.9	ND	12.4	ND	5.0	0.06 J	0.1	0.04 J	0.1	0.04 J	0.1	0.04 J	0.1	ND	10.1	ND	11.3
Benzo(a)pyrene	ND	μg/L	ND	10.0	1.8	0.1	1.3	0.1	ND	10.3	ND	10.9	ND	12.4	ND	10.0	0.1	0.1	0.08 J	0.1	0.05 J	0.1	0.05 J	0.1	ND	10.1	ND	11.3
Benzo(b)fluoranthene	0.002	μg/L	ND	10.0	3.7	0.1	2.5	0.1	ND	10.3	ND	10.9	ND	12.4	ND	10.0	0.15 J	0.1	0.14	0.1	0.07 J	0.1	0.08 J	0.1	ND	10.1	ND	11.3
Benzo(g,h,i)perylene	NS	μg/L	ND	10.0	2.6	0.1	2.2	0.1	ND	10.3	ND	10.9	ND	12.4	ND	10.0	0.11	0.1	0.10	0.1	0.07 J	0.1	0.07 J	0.1	ND	10.1	ND	11.3
Benzo(k)fluoranthene	0.002	μg/L	ND	10.0	0.85	0.1	0.75	0.1	ND	10.3	ND	10.9	ND	12.4	ND	10.0	0.05 J	0.1	0.04 J	0.1	ND	0.1	ND	0.1	ND	10.1	ND	11.3
Dibenz(a,h)anthracene	NS	μg/L	ND	5.0	0.36	0.1	0.3	0.1	ND	10.3	ND	10.9	ND	12.4	ND	5.0	ND	0.1	ND	0.1	ND	0.1	ND	0.1	ND	10.1	ND	11.3
Chrysene	0.002	μg/L	ND	5.0	1.7	0.1	1.1	0.1	ND	10.3	ND	10.9	ND	12.4	ND	5.0	0.08 J	0.1	ND	0.1	0.04 J	0.1	ND	0.1	ND	10.1	ND	11.3
Fluoranthene	50	μg/L	ND	5.0	2.3	0.1	1.3	0.1	ND	10.3	ND	10.9	ND	12.4	ND	5.0	0.12	0.1	0.11	0.1	0.06 J	0.1	0.06 J	0.1	ND	10.1	ND	11.3
Fluorene	50	μg/L	ND	5.0	ND	0.1	ND	0.1	ND	10.3	ND	10.9	ND	12.4	ND	5.0	ND	0.1	ND	0.1	ND	0.1	ND	0.1	ND	10.1	ND	11.3
Indeno(1,2,3-cd)pyrene	0.002	μg/L	ND	5.0	2.4	0.1	2.2	0.1	ND	10.3	ND	10.9	ND	12.4	ND	5.0	0.1	0.1	0.10 J	0.1	0.07 J	0.1	0.07 J	0.1	ND	10.1	ND	11.3
Naphthalene	10	μg/L	ND	5.0	ND	0.1	ND	0.1	ND	10.3	ND	10.9	ND	12.4	ND	5.0	ND	0.1	ND	0.1	ND	0.1	ND	0.1	ND	10.1	ND	11.3
Phenanthrene	50	μg/L	ND	5.0	0.44	0.1	0.25	0.1	ND	10.3	ND	10.9	ND	12.4	ND	5.0	0.07 J	0.1	ND	0.1	0.02 J	0.1	0.1	0.1	ND	10.1	ND	11.3
Pyrene	50	μg/L	ND	5.0	1.9	0.1	1.1	0.1	ND	10.3	ND	10.9	ND	12.4	ND	5.0	0.1	0.1	0.09 J	0.1	0.05 J	0.1	0.05 J	0.1	ND	10.1	ND	11.3
Cyanide																												
Cyanide, Total	0.2	mg/L	ND S	0.010	ND	0.005	ND S	0.010	ND	0.010	ND	0.010	ND	0.010	ND	S 0.010	ND	0.005	0.002 J	0.005	ND SI	N 0.010	ND S	0.010	ND	0.010	ND	0.010

Notes

- 1. μg/L = micrograms per liter
- 2. mg/L = milligrams per liter
- 3. NT = not tested, NS = No standard, and ND = non-detect
- 4. Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1) Ambient Water Quality Standards and Groundwater Effluent Limitations, June 1998.
- 5. S is a laboratory data qualifier indicating "Laboratory Control Sample (LCS) Spike below accepted limits"
- 6. N is a laboratory data qualifier indicating "Matrix Spike below accepted limits"
- 7. J is a laboratory data qualifier indicating "Result estimated between the quantitation limit and half the quantitation limit."
- 8. **Bold Sample result** = compound was detected.

9. Gray shading indicates the sample result is above the TOGS 1.1.1 Standards, Criteria and Guidance Value.

Table 2
New York State Electric & Gas - Newark Former MGP Site, Newark, NY
NYSDEC Site No. 859021
Groundwater Sample Analytical Results

	Sampling	Location	MW	/-3A	MW	-3A	MW	/-3A	MW	-3A	Duplicate	(MW-3A)	MW	-3A	MW1	L1-05	MW1	1-05	MW	11-05	MW-	11-05	MW-	11-05
	Sa	ample ID	MW	/-3A	MW3A-	052423	MW3A-	110323	NK-MW3	A-050924	NK-Dup-	050924	NK_MW-3	A_110624	MW11-0	05/SB47	MW11/0	5-052623	MW11/0	5-110323	NK-MW-11	-05-050924	NK_MW-11	-05_110524
	Sam	ple Date	6/24/	/2022	5/24/	2023	11/3/	2023		5/9/	2024		11/6/	2024	6/24/	2022	5/25/	2023	11/3	/2023	5/9/	2024	11/5/	2024
Labor	atory Ident	tification	2230:	14-03	23298	62-03	23518	87-04	24210	04-04	24210	4-07	24525	1-08	22301	14-04	23298	62-04	2351	87-05	2421	04-01	24210	04-01
Analyte	TOGS 1.1.1 Class GA SCG	Units	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit
BTEX																								
Benzene	1	μg/L	ND	1.00	ND	0.50	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	0.50	ND	1.00	ND	1.00	ND	1.00
Toluene	5	μg/L	ND	2.00	ND	2.50	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.50	ND	2.00	ND	2.00	ND	2.00
Ethylbenzene	5	μg/L	ND	2.00	ND	2.50	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.50	ND	2.00	ND	2.00	ND	2.00
m,p-Xylene	5	μg/L	ND	2.00	ND	2.50	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.50	ND	2.00	ND	2.00	ND	2.00
o-Xylene	3	μg/L	ND	2.00	ND	2.50	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.50	ND	2.00	ND	2.00	ND	2.00
PAHs															_		•			•		•		
Acenaphthene	20	μg/L	ND	5.0	ND	0.1	ND	0.1	ND	11.0	ND	11.2	ND	12.7	ND	5.0	ND	0.1	ND	0.1	ND	10.5	ND	11.2
Acenaphthylene	NS	μg/L	ND	5.0	ND	0.1	ND	0.1	ND	11.0	ND	11.2	ND	12.7	ND	5.0	ND	0.1	ND	0.1	ND	10.5	ND	11.2
Anthracene	50	μg/L	ND	5.0	ND	0.1	ND	0.1	ND	11.0	ND	11.2	ND	12.7	ND	5.0	ND	0.1	0.04	J 0.1	ND	10.5	ND	11.2
Benzo(a)anthracene	0.002	μg/L	ND	5.0	ND	0.1	ND	0.1	ND	11.0	ND	11.2	ND	12.7	ND	5.0	ND	0.1	ND	0.1	ND	10.5	ND	11.2
Benzo(a)pyrene	ND	μg/L	ND	10.0	ND	0.1	ND	0.1	ND	11.0	ND	11.2	ND	12.7	ND	10.0	ND	0.1	ND	0.1	ND	10.5	ND	11.2
Benzo(b)fluoranthene	0.002	μg/L	ND	10.0	ND	0.1	0.02 J	0.1	ND	11.0	ND	11.2	ND	12.7	ND	10.0	ND	0.1	ND	0.1	ND	10.5	ND	11.2
Benzo(g,h,i)perylene	NS	μg/L	ND	10.0	ND	0.1	ND	0.1	ND	11.0	ND	11.2	ND	12.7	ND	10.0	ND	0.1	ND	0.1	ND	10.5	ND	11.2
Benzo(k)fluoranthene	0.002	μg/L	ND	10.0	ND	0.1	ND	0.1	ND	11.0	ND	11.2	ND	12.7	ND	10.0	ND	0.1	ND	0.1	ND	10.5	ND	11.2
Dibenz(a,h)anthracene	NS	μg/L	ND	5.0	ND	0.1	ND	0.1	ND	11.0	ND	11.2	ND	12.7	ND	5.0	ND	0.1	ND	0.1	ND	10.5	ND	11.2
Chrysene	0.002	μg/L	ND	5.0	ND	0.1	ND	0.1	ND	11.0	ND	11.2	ND	12.7	ND	5.0	ND	0.1	ND	0.1	ND	10.5	ND	11.2
Fluoranthene	50	μg/L	ND	5.0	0.02 J	0.1	ND	0.1	ND	11.0	ND	11.2	ND	12.7	ND	5.0	ND	0.1	ND	0.1	ND	10.5	ND	11.2
Fluorene	50	μg/L	ND	5.0	ND	0.1	ND	0.1	ND	11.0	ND	11.2	ND	12.7	ND	5.0	ND	0.1	ND	0.1	ND	10.5	ND	11.2
Indeno(1,2,3-cd)pyrene	0.002	μg/L	ND	5.0	ND	0.1	ND	0.1	ND	11.0	ND	11.2	ND	12.7	ND	5.0	ND	0.1	ND	0.1	ND	10.5	ND	11.2
Naphthalene	10	μg/L	ND	5.0	ND	0.1	ND	0.1	ND	11.0	ND	11.2	ND	12.7	ND	5.0	ND	0.1	ND	0.1	ND	10.5	ND	11.2
Phenanthrene	50	μg/L	ND	5.0	ND	0.1	ND	0.1	ND	11.0	ND	11.2	ND	12.7	ND	5.0	0.03	0.1	ND	0.1	ND	10.5	ND	11.2
Pyrene	50	μg/L	ND	5.0	ND	0.1	ND	0.1	ND	11.0	ND	11.2	ND	12.7	ND	5.0	ND	0.1	ND	0.1	ND	10.5	ND	11.2
Cyanide												·										, ,		
Cyanide, Total	0.2	mg/L	ND S	0.010	0.004 J	0.005	ND S	0.010	ND	0.010	ND	0.010	ND	0.010	ND S	0.010	0.008	0.005	ND	S 0.010	0.019	0.010	ND	0.010

Notes

- 1. μg/L = micrograms per liter
- 2. mg/L = milligrams per liter
- 3. NT = not tested, NS = No standard, and ND = non-detect
- 4. Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1) Ambient Water Quality Standards and Groundwater Effluent Limitations, June 1998.
- 5. S is a laboratory data qualifier indicating "Laboratory Control Sample (LCS) Spike below accepted limits"
- ${\bf 6.\ N\ is\ a\ laboratory\ data\ qualifier\ indicating\ "Matrix\ Spike\ below\ accepted\ limits"}$
- 7. J is a laboratory data qualifier indicating "Result estimated between the quantitation limit and half the quantitation limit."
- 8. **Bold Sample result** = compound was detected.

9. Gray shading indicates the sample result is above the TOGS 1.1.1 Standards, Criteria and Guidance Value.

Table 2
New York State Electric & Gas - Newark Former MGP Site, Newark, NY
NYSDEC Site No. 859021
Groundwater Sample Analytical Results

	Sampling L	.ocation		MW	/-1A		MW	/-1A	MW	/-1A	MW	/-1A	MV	V-1A	MW	10-03	MW	10-03	MW-	10-03	MW-2	2-01 ⁽⁸⁾	MW-2	2-01	MW-	22-01	MW-2	22-01	MW-2	2-01
	Sai	mple ID	MW-	1A	MW1A-FIEL	DDUPLICATE	MW1A-	052623	MW1A	-110223	NK-MW1A	-05102024	NK_MW-	1A_110524	MW10-	03/SB16	MW10/0	03-052523	NK-MW-10	-03-050924	MW-2	22-01	MW22/01	-052623	MW22/0	1-110223	NK-MW-22-	01-050924	NK-MW-22-	01-110524
	Samp	ole Date		6/23/	/2022		5/25	/2023	11/2	/2023	5/10/	2024	11/5	/2024	6/24	/2022	5/25	5/2023	5/9/	2024	7/8/2	2022	5/26/	2023	11/22	/2023	5/9/2	2024	11/5/2	2024
Labor	atory Identi	ification	22299	6-02	2229	96-03	23298	62-07	2351	87-02	2421	04-08	2452	51-03	2230	14-05	2329	862-06	2421	04-06	22323	9-01	23298	62-08	23518	37-03	24210	04-02	24210	4-02
Analyte	TOGS 1.1.1 Class GA SCG	Units	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Results	Reporting Limit	Results	Reporting Limit
BTEX																														
Benzene	1	μg/L	ND	1.00	ND	1.00	ND	0.50	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	0.50	ND	1.00	ND	1.00	ND	0.50	ND	1.00	ND	1.00	ND	1.00
Toluene	5	μg/L	ND	2.00	ND	2.00	ND	2.50	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.50	ND	2.00	ND	2.00	ND	2.50	ND	2.00	ND	2.00	ND	2.00
Ethylbenzene	5	μg/L	ND	2.00	ND	2.00	ND	2.50	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.50	ND	2.00	ND	2.00	ND	2.50	ND	2.00	ND	2.00	ND	2.00
m,p-Xylene	5	μg/L	ND	2.00	ND	2.00	ND	2.50	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.50	ND	2.00	ND	2.00	ND	2.50	ND	2.00	ND	2.00	ND	2.00
o-Xylene	3	μg/L	ND	2.00	ND	2.00	ND	2.50	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.50	ND	2.00	ND	2.00	ND	2.50	ND	2.00	ND	2.00	ND	2.00
PAHs																														
Acenaphthene	20	μg/L	ND	5.0	ND	5.0	ND	0.1	ND	0.1	ND	9.82	ND	11.20	ND	5.0	ND	0.1	ND	10.2	ND	5.0	ND	0.1	ND	0.1	ND	10.4	ND	11.0
Acenaphthylene	NS	μg/L	ND	5.0	ND	5.0	ND	0.1	ND	0.1	ND	9.82	ND	11.20	ND	5.0	ND	0.1	ND	10.2	ND	5.0	ND	0.1	ND	0.1	ND	10.4	ND	11.0
Anthracene	50	μg/L	ND	5.0	ND	5.0	ND	0.1	ND	0.1	ND	9.82	ND	11.20	ND	5.0	ND	0.1	ND	10.2	ND	5.0	ND	0.1	ND	0.1	ND	10.4	ND	11.0
Benzo(a)anthracene	0.002	μg/L	ND	5.0	ND	5.0	0.06	0.1	0.15	0.1	ND	9.82	ND	11.20	ND	5.0	ND	0.1	ND	10.2	ND	5.0	ND	0.1	0.03 J	0.1	ND	10.4	ND	11.0
Benzo(a)pyrene	ND	μg/L	ND	10.0	ND	10.0	0.14	0.1	0.39	0.1	ND	9.82	ND	11.20	ND	10.0	ND	0.1	ND	10.2	ND	10.0	ND	0.1	ND	0.1	ND	10.4	ND	11.0
Benzo(b)fluoranthene	0.002	μg/L	ND	10.0	ND	10.0	0.25	0.1	0.71	0.1	ND	9.82	ND	11.20	ND	10.0	ND	0.1	ND	10.2	ND	10.0	0.01 J	0.1	0.05 J	0.1	ND	10.4	ND	11.0
Benzo(g,h,i)perylene	NS	μg/L	ND	10.0	ND	10.0	0.21	0.1	0.69	0.1	ND	9.82	ND	11.20	ND	10.0	ND	0.1	ND	10.2	ND	10.0	ND	0.1	0.04 J	0.1	ND	10.4	ND	11.0
Benzo(k)fluoranthene	0.002	μg/L	ND	10.0	ND	10.0	0.06	0.1	0.23	0.1	ND	9.82	ND	11.20	ND	10.0	ND	0.1	ND	10.2	ND	10.0	0.01 J	0.1	ND	0.1	ND	10.4	ND	11.0
Dibenz(a,h)anthracene	NS	μg/L	ND	5.0	ND	5.0	0.03	0.1	0.09 .	0.1	ND	9.82	ND	11.20	ND	5.0	ND	0.1	ND	10.2	ND	5.0	ND	0.1	ND	0.1	ND	10.4	ND	11.0
Chrysene	0.002	μg/L	ND	5.0	ND	5.0	0.13	0.1	0.36	0.1	ND	9.82	ND	11.20	ND	5.0	ND	0.1	ND	10.2	ND	5.0	0.04 J	0.1	ND	0.1	ND	10.4	ND	11.0
Fluoranthene	50	μg/L	ND	5.0	ND	5.0	0.20	0.1	0.45	0.1	ND	9.82	ND	11.20	ND	5.0	ND	0.1	ND	10.2	ND	5.0	0.04 J	0.1	ND	0.1	ND	10.4	ND	11.0
Fluorene	50	μg/L	ND	5.0	ND	5.0	ND	0.1	ND	0.1	ND	9.82	ND	11.20	ND	5.0	ND	0.1	ND	10.2	ND	5.0	ND	0.1	ND	0.1	ND	10.4	ND	11.0
Indeno(1,2,3-cd)pyrene	0.002	μg/L	ND	5.0	ND	5.0	0.18	0.1	0.68	0.1	ND	9.82	ND	11.20	ND	5.0	ND	0.1	ND	10.2	ND	5.0	ND	0.1	0.04 J	0.1	ND	10.4	ND	11.0
Naphthalene	10	μg/L	ND	5.0	ND	5.0	ND	0.1	ND	0.1	ND	9.82	ND	11.20	ND	5.0	ND	0.1	ND	10.2	ND	5.0	ND	0.1	ND	0.1	ND	10.4	ND	11.0
Phenanthrene	50	μg/L	ND	5.0	ND	5.0	ND	0.1	0.1	0.1	ND	9.82	ND	11.20	ND	5.0	ND	0.1	ND	10.2	ND	5.0	0.03 J	0.1	ND	0.1	ND	10.4	ND	11.0
Pyrene	50	μg/L	ND	5.0	ND	5.0	0.17	0.1	0.37	0.1	ND	9.82	ND	11.20	ND	5.0	ND	0.1	ND	10.2	ND	5.0	0.07 J	0.1	0.05 J	0.1	ND	10.4	ND	11.0
Cyanide																														
Cyanide, Total	0.2	mg/L	ND SN	0.010	ND	S 0.010	0.002	0.005	ND S	0.010	ND	0.010	ND	0.010	ND :	0.010	ND	0.005	ND	0.010	0.034	0.010	0.026	0.005	0.011 S	0.010	0.023 N	0.010	0.010	0.010

Notes:

- 1. μg/L = micrograms per liter
- 2. mg/L = milligrams per liter
- 3. NT = not tested, NS = No standard, and ND = non-detect
- 4. Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1) Ambient Water Quality Standards and Groundwater Effluent Limitations, June 1998.
- 5. S is a laboratory data qualifier indicating "Laboratory Control Sample (LCS) Spike below accepted limits"
- 6. J is a laboratory data qualifier indicating "Result estimated between the quantitation limit and half the quantitation limit."
- 7. N is a laboratory data qualifier indicating "Matrix spike below acceptable limit."
- 8. **Bold Sample result** = compound was detected.
- 9. Gray shading indicates the sample result is above the TOGS 1.1.1 Standards, Criteria and Guidance Value.

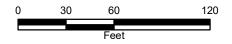
Figures

FIGURE 1

LEGEND

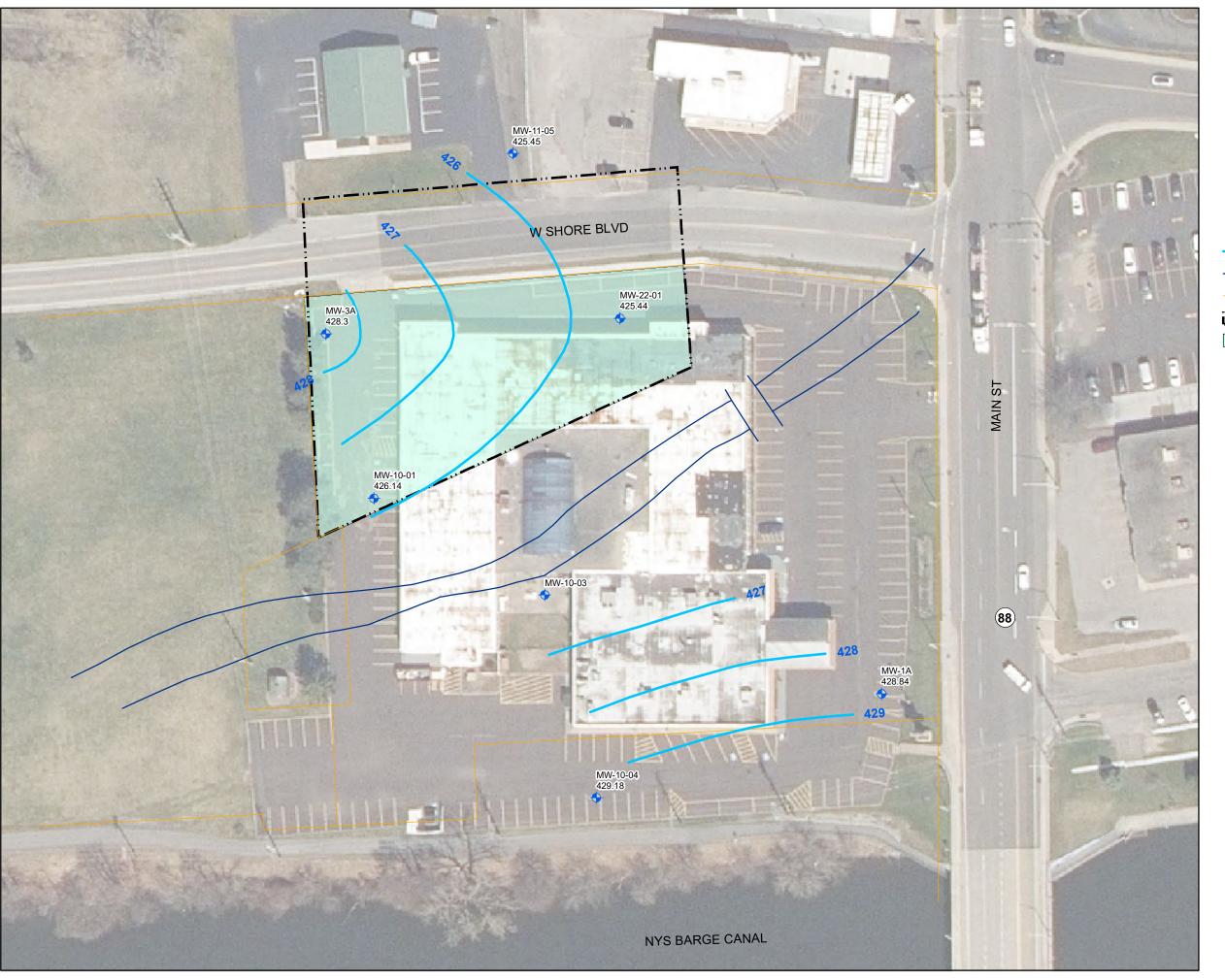
MONITORING WELL (ACTIVE)PROPERTY LINES/ROW

APPROXIMATE FORMER MGP SITE


HISTORIC MGP INFRASTRUCTURE

SOIL REMOVAL AREA (WITH DEPTHS)

INSTITUTIONAL CONTROL BOUNDARY


NEW YORK STATE ELECTRIC & GAS CORPORATION NEWARK FORMER MGP SITE NYSDEC SITE NO. 8-59-021 NEWARK, NEW YORK

SITE PLAN AND INSTITUTIONAL CONTROL BOUNDARIES

MARCH 2025

FIGURE 2

LEGEND

MONITORING WELL

INFERRED GROUNDWATER ELEVATION CONTOUR

FORMER LOCATION OF MILITARY BROOK

PROPERTY LINES/ROW

APPROXIMATE FORMER MGP BOUNDARY

INSTITUTIONAL CONTROL BOUNDARY

- 1. AERIAL IMAGERY PROVIDED BY NYS GIS CLEARINGHOUSE, IMAGERY DATE SPRING 2023.
 2. GROUNDWATER ELEVATIONS MEASURED ON NOVEMBER 4, 2024.


NEW YORK STATE ELECTRIC & GAS CORPORATION NEWARK FORMER MGP SITE NYSDEC SITE NO. 8-59-021 NEWARK, NEW YORK

GROUNDWATER ELEVATION CONTOURS NOVEMBER 2024

MARCH 2025

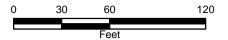
FIGURE 3

LEGEND

MONITORING WELL (SAMPLED)

FORMER LOCATION OF MILITARY BROOK

PROPERTY LINES/ROW


APPROXIMATE FORMER MGP BOUNDARY

INSTITUTIONAL CONTROL BOUNDARY

I. AERIAL IMAGERY PROVIDED BY NYS GIS CLEARINGHOUSE, IMAGERY DATE SPRING 2018.

NEW YORK STATE ELECTRIC & GAS **CORPORATION** NEWARK FORMER MGP SITE NYSDEC SITE NO. 8-59-021 NEWARK, NEW YORK

ANALYTICAL DETECTIONS IN GROUNDWATER **NOVEMBER 2024**

MARCH 2025

Attachment 1

Groundwater Sampling Logs

NEU-VE	LLE, LLC		A A A A A A A A A A A A A A A A A A A	Low F	low Ground	d Water S	ampling Log	<u> </u>
Date	11 /05 /2024	Perso	onnel	Andrew R	199	Weather	60°F	
Site Name	MGP Newark	Evac	uation Method	Bladder P	ump 1.75-in. dia.	Well#	MW-11-	05
Site Location	Newark NY	Samı	oling Method	Bladder P	ump 1.75-in. dia.	Project #		
Well informa		2 . 1						
Depth of Well	er*	1.6 ± ft. 1.5 ft.	11/04/20	* Measure	ments taken from		A) (NAPL
Length of Wa	iter Column 080	7.5 ft.	11/07/ 201	-7	Х	Top of Well Ca Top of Protecti	g	, , , , , ,
						(Other, Specify	•	
Start Purge T	ïme:							
	Depth				Oxidation	Dissolved		
Time	To Water	Temperature	1	onductivity	Reduction	Oxygen	Turbidity	Flow
0905	(Ft. BTOC)	(°C)	7.04	μs/cm) 2,13/	Potential	(mg/l)	(NTU)	Rate (ml/min)
0810	14.59	16.6	7.03	4126	211.8	3.07	39.1	200
0815	14.54	17.0	7.03	2.039	217.2	1.93	32.2	
0820	14.56	17.1	7.01	1.966	252.8	4.64	37.4	
9825	14.55	17.2		1.908	261.3	5.26	7.7.1	
0830	4,55	17.3	6.97	1.875	266.7	5.04	24.9	
0835								

								1
								_
End Purge Tim	ne: <u>83</u> 0							
Water sample								
Time collected:	_ /							
- Inno dollocted	000		Tota	al volume of p	urged water remo	oved:	1.5 gal t	
							J	-
Physical appea	rance at start							
	Color Cler				Physical appearar			
	Odor Ma					Color	CLEAN	
Sheen/Free Pro						Odor	MINE	
					Sheen/Free	Product -	None.	
		"NK.	" WW - 1	1-05	110524"			
nalytical Para	meters:				0,0001			

NEU-VE	LLE, LLC			I ow F	low Group	d Water Sc	ampling Log	
Date	11/05/2024	Perso	nnol		医疗		inpinig Log	
Site Name	MGP Newark	-		Andrew R		Weather		
	Newark NY		uation Metho		ump 1.75-in. dia.	-	Mw-2	2-61
		_ Samp	ling Method	Bladder P	ump 1.75-in. dia.	Project #		**************************************
Well informa								
Depth of Well	er*	0.7 ft.	41	* Measure	ments taken fron	1		
Length of Wa	ater Column	ft. 1	11412	1	X	Top of Well Cas	- 0(1)	o NAPL
		1.				Top of Protectiv (Other, Specify)	•	
Start Purge T	ime: 0 34	<u> </u>						
Start Purge		J	Ţ			·		
Time	Depth To Water	Temperature		Complication	Oxidation	Dissolved		
Time	(Ft. BTOC)	(°C)	pH	Conductivity (µs/cm)	Reduction Potential	Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min)
POMO	_	16.8	6.94	1.699	276.6	2.19	36.7	200
945	15.98	16.9	6.93	1.560	278.6	3.24	66.8	1
950	16.09	16.8	6.85	1.462	279.1	1.30	67.0	
1000	16.05	16.9	6.83	1.436	278.9	7.90	95.7	
1040	16.05	16.9	6.83	1.416	112.5	219	42.2	

								V
End Purge Tin					N	ns/msd	>	
Water sample								
Time collected	: 1016		•	Total volume of	ourged water rem	oved:	1.5 gal	土
							0	
Physical appea	arance at start				Dhysical appears			2
	color Cley/				Physical appeara	Color		
	Odor Nine					Odor		
Sheen/Free Pr	oduct Now				Sheen/Free	Product		
								vermentica
		11 NX	WV	v-22-01	- 11052	W (I		
Analytical Par	ameters:				- 11-00	1		
								1

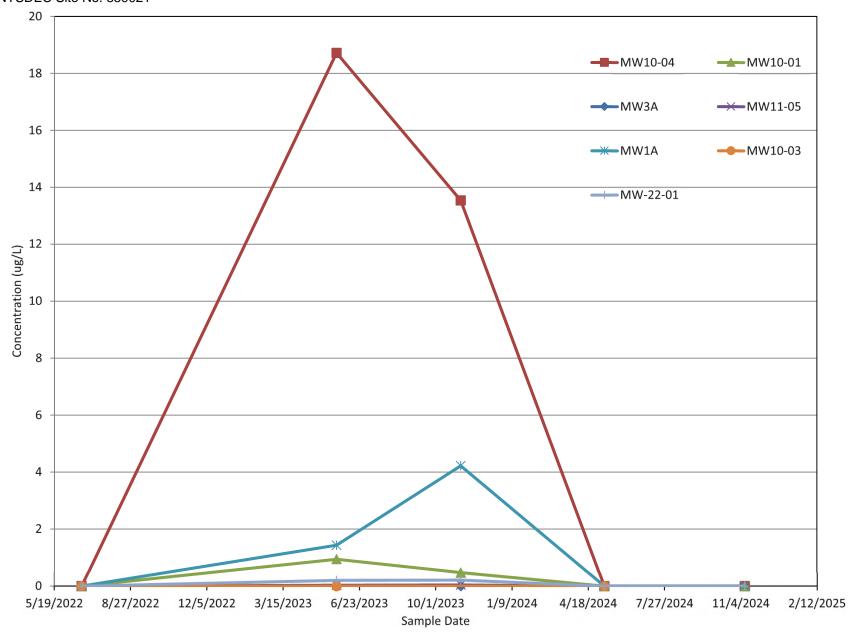
NEU-VE	LLE, LLC		***************************************	Low F	low Groun	d Water Sa	ampling Log	
Date	11 105 12024	Perso	nnel	Andrew R		Weather	70° F	
Site Name	MGP Newark	– Evacı	ation Method	Bladder P	ump 1.75-in. dia.	- Well#	mw-	14
Site Location	Newark NY	Samp	ling Method		ump 1.75-in. dia.	-		
Well information of Well Depth to Wall Length of Wall	*	. 0 ± ft. 26 ft. 4 ft.	14124	* Measure	ements taken from X	Top of Well Cas Top of Protectiv (Other, Specify)	e Casing	NAPL
Start Purge 1	Time:	2-5						
Time	Depth To Water (Ft. BTOC)	Temperature (°C)	1	onductivity μs/cm) (. 347	Oxidation Reduction Potential 267.5	Dissolved Oxygen (mg/l) 2.56 2.22	Turbidity (NTU) (6.5	Flow Rate (ml/min)
1140	13.12	18.4	7.08	1.300	262.5	2.10	10.3	
1145	3.13	18.5	7.67	1.274	259.7	1.90	11.33	
1155	13.13	18.4	7.09	1.268	296.4	1.58	10.90	
1200								
1210								
emil 1				25				
								
								V
								The state of the s
End Purge Tin Water sample Time collected	 e:		Tot	tal volume of p	ourged water remo	oved:	1.5gal 3	<u>L</u>
	arance at start Color Cley Odor Nave roduct Nove					Color Odor	clear	
Analytical Par	li	" NE_	MW-1A	- 110524		- Todact	Nong.	

NEU-VE	LLE, LLC			Low F	low Ground	d Water S	ampling Log	<u> </u>
Date	1 / 6 /2024	Perso	onnel	Andrew R		Weather	65° F	
Site Name	MGP Newark	Evac	uation Metho	d Bladder F	ump 1.75-in. dia.	Well#	MW-10	
Site Location	Newark NY	_ Samp	oling Method	Bladder F	ump 1.75-in. dia.	Project #		
Well informa	ation:							
Depth of Well	1*	7 <u>†</u> ft. <u>62</u> ft. ft.		* Measure	ments taken from			
Depth to Wate	er *	62 ft. 1	14/4/24		х	Top of Well Ca	-	
Length of vva	Lei Column	π.	,			Top of Protecti (Other, Specify	•	
Start Purge T	ime: 0835	<u> </u>						
	Depth				Oxidation	Dissolved	T	T
Time	To Water	Temperature		Conductivity	Reduction	Oxygen	Turbidity	Flow
0840	(Ft. BTOC)	(°C)	pH	(μs/cm)	Potential	(mg/l)	(NTU)	Rate (ml/min)
0845	12.05	18.8	6.42	0.366	176.0	1.97	70.1	700
0850	12.12	18.6	6.25	0.316	198.8	2.59	13.5	
0855	12.17	18.6	6.33	0.377	219.7	2.85	12.3	
0850 0855 0900	12.36	18.6	6.48	0.464	220.5	2.63	12.0	
0905 9910	17.41	18.7	6.51	0.467	294.1	2.49	11.8	
-110	12.76	10 · 1	6.54	0.50	231.0	2.71	11.9	
								/
							/	/
							-	
								1
								V
							-	
End Dune Tim	e: 2916						L	
End Purge Tim					DUPL	icala		
Water sample:	G. /							,
Time collected:	715		•	Fotal volume of p	ourged water remo	ved:	2 agal	<u>ナ</u>
							0	
Physical appea	rance at start				Dhysiasl same			
	Color Clear				Physical appearar	ice at sampling Color	Clow	
	Odor Nime					Odor	in her /	
Sheen/Free Pro	oduct Nine				Sheen/Free		Nort	
		VI .						
		11 NI	c- W1	N-10-04	- 40620	1 1	NK_DUP-	11062411
nalytical Para	meters:							(

NEU-VE	LLE, LLC			Low F	low Groun	d Water Sa	ampling Log	<u> </u>
Date	11/6 /2024	Perso	nnel	Andrew R	othfuss	Weather	65°F 1	Zuin
Site Name	MGP Newark	– Evacu	ation Metho	d Bladder P	ump 1.75-in. dia.	- Well#	MW-10-	
Site Location	Newark NY	_ _ Samp	ling Method		ump 1.75-in. dia.	-		
Well information Depth of Well Depth to Wat Length of Wat	1* 20 /4. ter Column	74 ft. u ft.	14124	* Measure	ments taken fron X	n Top of Well Ca Top of Protectiv (Other, Specify	ve Casing	VO MARC
Start Purge T		1050						
1055	Depth To Water (Ft. BTOC)	Temperature	pH 7 60	Conductivity (μs/cm)	Oxidation Reduction Potential - 32.2	Dissolved Oxygen (mg/l) 7.48	Turbidity (NTU) 28.3	Flow Rate (ml/min)
1105	14.80	16.4	6.77	1.723	54.5	4.32	13.1	1
1110	14.81	16.4	6.75	1.642	88.8	4.62	11.77	
1120	14.81	16.4	6.74	1.579	126.9	5.41	9.39	
1125	14.82	16.4	6.79	1.573	139.5	5.14	9.30	
End Purge Tim Water sample Time collected	:	L			EB_II 06 ourged water rem		2945 2gal ±	
	Odor Slight P	10			Physical appeara Sheen/Free	Color Odor	None.	
Analytical Para	ameters:	106-2	M//W~ 10.	01-110624				

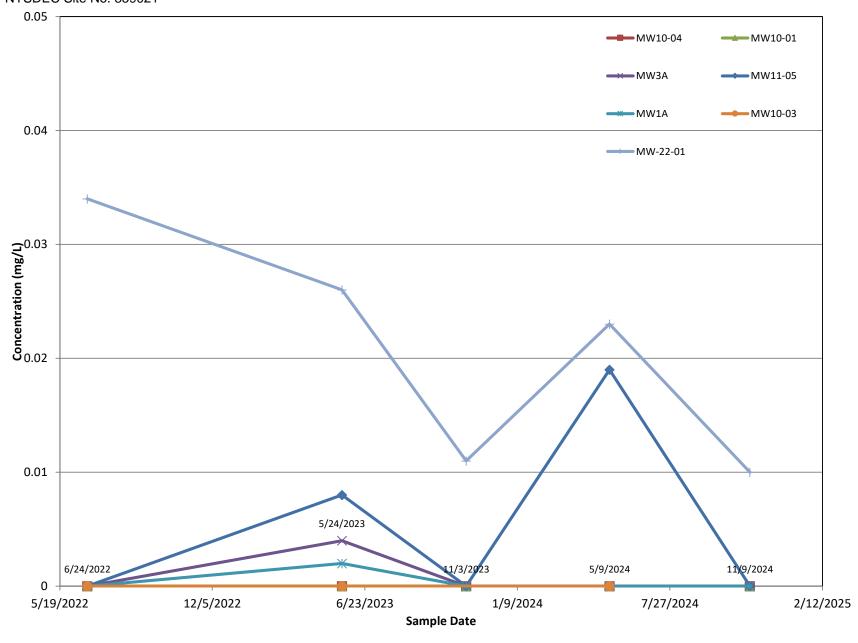
NEU-VE	LLE, LLC			Low F	low Groun	d Water Sa	ampling Log	
Date	116 12024	Perso	onnel	Andrew F		Weather	600F	Cain
Site Name	MGP Newark	Evac	uation Metho	d Bladder F	ump 1.75-in. dia.	- Well#	MW-34	
Site Location	Newark NY	Samp	oling Method	Bladder F	ump 1.75-in. dia.	Project #		
Well informa								
Depth of Wel Depth to Wat Length of Wa	er * 7	1 <u>†</u> ft. 5.01 ft. 11 ft.	14/24	* Measure	ements taken from X	Top of Well Car Top of Protectiv (Other, Specify	ve Casing \(\square\)	NAZ
Start Purge T	ime:	5						
Time	Depth To Water (Ft. BTOC)	Temperature	рH	Conductivity (μs/cm)	Oxidation Reduction Potential	Dissolved Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min)
1220	12.00	16.0	7.05	2.759	102.2	7.29	23. 7	100
1225	13.10	15.9	7.03	2.709	34.8	3.38	16.9	1
1235	13.11	15.8	7.07	7.457	51.8	5.83	13.7	
1240	13.11	15.8	7.08	2.389	54.9	5.84	12.7	
1245	13.12	15.8	7.09	2.312	60-1	5.85	11.7	
								11/
End Purge Tim Water sample Time collected	: 1=-			Fotal volume of p	ourged water remo	oved:	2 gal	
	rance at start Color CleA/ Odor None					Color	Cloar	
Sheen/Free Pro						Odor _	None	
		(1	NK N	NW-3A	Sheen/Free	roduct _	Nonl	,
nalytical Para	meters:			200	V. V - V			

* . .


Attachment 2

Time Series Plots of Contaminants

TIME SERIES FOR TOTAL PAHS IN GROUNDWATER


NYSEG Newark Former MGP Site Corner of Main Street and West Shore Boulevard Village of Newark, Wayne County, New York NYSDEC Site No. 859021

NEU-VELLE, LLC MARCH 2025

TIME SERIES FOR TOTAL CYANIDE IN GROUNDWATER

NYSEG Newark Former MGP Site Corner of Main Street and West Shore Boulevard Village of Newark, Wayne County, New York NYSDEC Site No. 859021

NEU-VELLE, LLC MARCH 2025

Attachment 3

Groundwater Laboratory Reports and Chain of Custody Forms

Analytical Report For

Neu-Velle

For Lab Project ID

245251

Referencing

RGE Newark

Prepared

Thursday, November 14, 2024

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or documented on the final report or are noted below:

Portions of the enclosed report reflects analysis that has been subcontracted and are presented in their original form.

Emily farmen

Certifies that this report has been approved by the Technical Director or Designee

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

Client: <u>Neu-Velle</u>

Project Reference: RGE Newark

Sample Identifier: NK_MW-11-05_110524

Lab Sample ID: 245251-01 **Date Sampled:** 11/5/2024 8:35

Matrix: Groundwater Date Received 11/7/2024

Semi-Volatile Organics (PAHs)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Anal	<u>yzed</u>
Acenaphthene	< 11.2	ug/L		11/13/2024	16:31
Acenaphthylene	< 11.2	ug/L		11/13/2024	16:31
Anthracene	< 11.2	ug/L		11/13/2024	16:31
Benzo (a) anthracene	< 11.2	ug/L		11/13/2024	16:31
Benzo (a) pyrene	< 11.2	ug/L		11/13/2024	16:31
Benzo (b) fluoranthene	< 11.2	ug/L		11/13/2024	16:31
Benzo (g,h,i) perylene	< 11.2	ug/L		11/13/2024	16:31
Benzo (k) fluoranthene	< 11.2	ug/L		11/13/2024	16:31
Chrysene	< 11.2	ug/L		11/13/2024	16:31
Dibenz (a,h) anthracene	< 11.2	ug/L		11/13/2024	16:31
Fluoranthene	< 11.2	ug/L		11/13/2024	16:31
Fluorene	< 11.2	ug/L		11/13/2024	16:31
Indeno (1,2,3-cd) pyrene	< 11.2	ug/L		11/13/2024	16:31
Naphthalene	< 11.2	ug/L		11/13/2024	16:31
Phenanthrene	< 11.2	ug/L		11/13/2024	16:31
Pyrene	< 11.2	ug/L		11/13/2024	16:31
	ъ	D 71 1.	0 11		

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Ana	alyzed
2-Fluorobiphenyl	46.8	15.2 - 100		11/13/2024	16:31
Nitrobenzene-d5	63.2	47.4 - 98.9		11/13/2024	16:31
Terphenyl-d14	66.3	56 - 111		11/13/2024	16:31

Method Reference(s): EPA 8270D

EPA 3510C

Preparation Date: 11/12/2024 **Data File:** B74883.D

Volatile Organics (BTEX)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Benzene	< 1.00	ug/L		11/12/2024 16:22
Ethylbenzene	< 2.00	ug/L		11/12/2024 16:22

Client: <u>Neu-Velle</u>

Project Reference: RGE Newark

Sample Identifier: NK_MW-11-05_110524

Lab Sample ID: 245251-01 **Date Sampled:** 11/5/2024 8:35

Matrix: Groundwater Date Received 11/7/2024

m,p-Xylene	< 2.00	ug/L	11/12/2024 16:22
o-Xylene	< 2.00	ug/L	11/12/2024 16:22
Toluene	< 2.00	ug/L	11/12/2024 16:22

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	Outliers	Date Ana	alyzed
1,2-Dichloroethane-d4	108	80.5 - 124		11/12/2024	16:22
4-Bromofluorobenzene	84.6	78.2 - 114		11/12/2024	16:22
Pentafluorobenzene	98.6	90.8 - 109		11/12/2024	16:22
Toluene-D8	97.6	90.3 - 110		11/12/2024	16:22

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z27706.D

Client: <u>Neu-Velle</u>

Project Reference: RGE Newark

Sample Identifier: NK_MW-22-01_110524

Lab Sample ID: 245251-02 **Date Sampled:** 11/5/2024 10:10

Matrix: Groundwater Date Received 11/7/2024

Semi-Volatile Organics (PAHs)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>		Qualifier	Date Analyzed
Acenaphthene	< 11.0	ug/L			11/13/2024 16:58
Acenaphthylene	< 11.0	ug/L			11/13/2024 16:58
Anthracene	< 11.0	ug/L			11/13/2024 16:58
Benzo (a) anthracene	< 11.0	ug/L			11/13/2024 16:58
Benzo (a) pyrene	< 11.0	ug/L			11/13/2024 16:58
Benzo (b) fluoranthene	< 11.0	ug/L			11/13/2024 16:58
Benzo (g,h,i) perylene	< 11.0	ug/L			11/13/2024 16:58
Benzo (k) fluoranthene	< 11.0	ug/L			11/13/2024 16:58
Chrysene	< 11.0	ug/L			11/13/2024 16:58
Dibenz (a,h) anthracene	< 11.0	ug/L			11/13/2024 16:58
Fluoranthene	< 11.0	ug/L			11/13/2024 16:58
Fluorene	< 11.0	ug/L			11/13/2024 16:58
Indeno (1,2,3-cd) pyrene	< 11.0	ug/L			11/13/2024 16:58
Naphthalene	< 11.0	ug/L			11/13/2024 16:58
Phenanthrene	< 11.0	ug/L			11/13/2024 16:58
Pyrene	< 11.0	ug/L			11/13/2024 16:58
Surrogate	Percen	t Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analyzed

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Ana	alyzed
2-Fluorobiphenyl	53.1	15.2 - 100		11/13/2024	16:58
Nitrobenzene-d5	76.0	47.4 - 98.9		11/13/2024	16:58
Terphenyl-d14	75.9	56 - 111		11/13/2024	16:58

Method Reference(s): EPA 8270D

EPA 3510C

Preparation Date: 11/12/2024 Data File: B74884.D

Volatile Organics (BTEX)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
Benzene	< 1.00	ug/L		11/12/2024 16:42
Ethylbenzene	< 2.00	ug/L		11/12/2024 16:42

Client: <u>Neu-Velle</u>

Project Reference: RGE Newark

Sample Identifier: NK_MW-22-01_110524

Lab Sample ID: 245251-02 **Date Sampled:** 11/5/2024 10:10

Matrix: Groundwater Date Received 11/7/2024

m,p-Xylene	< 2.00	ug/L	11/12/2024 16:	42
o-Xylene	< 2.00	ug/L	11/12/2024 16:	42
Toluene	< 2.00	ug/L	11/12/2024 16:	42

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date An	<u>alyzed</u>	
1,2-Dichloroethane-d4	104	80.5 - 124		11/12/2024	16:42	
4-Bromofluorobenzene	83.1	78.2 - 114		11/12/2024	16:42	
Pentafluorobenzene	96.3	90.8 - 109		11/12/2024	16:42	
Toluene-D8	96.6	90.3 - 110		11/12/2024	16:42	

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z27707.D

Client: <u>Neu-Velle</u>

Project Reference: RGE Newark

Sample Identifier: NK_MW-1A_110524

Lab Sample ID: 245251-03 **Date Sampled:** 11/5/2024 12:00

Matrix: Groundwater Date Received 11/7/2024

Semi-Volatile Organics (PAHs)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>		Qualifier	Date Analyzed
Acenaphthene	< 11.2	ug/L			11/13/2024 18:22
Acenaphthylene	< 11.2	ug/L			11/13/2024 18:22
Anthracene	< 11.2	ug/L			11/13/2024 18:22
Benzo (a) anthracene	< 11.2	ug/L			11/13/2024 18:22
Benzo (a) pyrene	< 11.2	ug/L			11/13/2024 18:22
Benzo (b) fluoranthene	< 11.2	ug/L			11/13/2024 18:22
Benzo (g,h,i) perylene	< 11.2	ug/L			11/13/2024 18:22
Benzo (k) fluoranthene	< 11.2	ug/L			11/13/2024 18:22
Chrysene	< 11.2	ug/L			11/13/2024 18:22
Dibenz (a,h) anthracene	< 11.2	ug/L			11/13/2024 18:22
Fluoranthene	< 11.2	ug/L			11/13/2024 18:22
Fluorene	< 11.2	ug/L			11/13/2024 18:22
Indeno (1,2,3-cd) pyrene	< 11.2	ug/L			11/13/2024 18:22
Naphthalene	< 11.2	ug/L			11/13/2024 18:22
Phenanthrene	< 11.2	ug/L			11/13/2024 18:22
Pyrene	< 11.2	ug/L			11/13/2024 18:22
Surrogate	Percen	t Recovery	Limits	Outliers	Date Analyzed

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Ana	alyzed	
2-Fluorobiphenyl	52.1	15.2 - 100		11/13/2024	18:22	
Nitrobenzene-d5	64.9	47.4 - 98.9		11/13/2024	18:22	
Terphenyl-d14	70.2	56 - 111		11/13/2024	18:22	

Method Reference(s): EPA 8270D

EPA 3510C

Preparation Date: 11/12/2024 Data File: B74887.D

Volatile Organics (BTEX)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
Benzene	< 1.00	ug/L		11/12/2024 17:42
Ethylbenzene	< 2.00	ug/L		11/12/2024 17:42

Client: <u>Neu-Velle</u>

Project Reference: RGE Newark

Sample Identifier: NK_MW-1A_110524

Lab Sample ID: 245251-03 **Date Sampled:** 11/5/2024 12:00

Matrix: Groundwater Date Received 11/7/2024

m,p-Xylene	< 2.00	ug/L	11/12/2024 17:42
o-Xylene	< 2.00	ug/L	11/12/2024 17:42
Toluene	< 2.00	ug/L	11/12/2024 17:42

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Ana	<u>alyzed</u>
1,2-Dichloroethane-d4	108	80.5 - 124		11/12/2024	17:42
4-Bromofluorobenzene	84.6	78.2 - 114		11/12/2024	17:42
Pentafluorobenzene	95.9	90.8 - 109		11/12/2024	17:42
Toluene-D8	97.5	90.3 - 110		11/12/2024	17:42

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z27710.D

Client: <u>Neu-Velle</u>

Project Reference: RGE Newark

Sample Identifier: NK_MW-10-04_110624

Lab Sample ID: 245251-04 **Date Sampled:** 11/6/2024 9:15

Matrix: Groundwater Date Received 11/7/2024

Semi-Volatile Organics (PAHs)

Analyte	<u>Result</u>	<u>Units</u>		Qualifier	Date Analyzed
Acenaphthene	< 10.9	ug/L			11/13/2024 18:49
Acenaphthylene	< 10.9	ug/L			11/13/2024 18:49
Anthracene	< 10.9	ug/L			11/13/2024 18:49
Benzo (a) anthracene	< 10.9	ug/L			11/13/2024 18:49
Benzo (a) pyrene	< 10.9	ug/L			11/13/2024 18:49
Benzo (b) fluoranthene	< 10.9	ug/L			11/13/2024 18:49
Benzo (g,h,i) perylene	< 10.9	ug/L			11/13/2024 18:49
Benzo (k) fluoranthene	< 10.9	ug/L			11/13/2024 18:49
Chrysene	< 10.9	ug/L			11/13/2024 18:49
Dibenz (a,h) anthracene	< 10.9	ug/L			11/13/2024 18:49
Fluoranthene	< 10.9	ug/L			11/13/2024 18:49
Fluorene	< 10.9	ug/L			11/13/2024 18:49
Indeno (1,2,3-cd) pyrene	< 10.9	ug/L			11/13/2024 18:49
Naphthalene	< 10.9	ug/L			11/13/2024 18:49
Phenanthrene	< 10.9	ug/L			11/13/2024 18:49
Pyrene	< 10.9	ug/L			11/13/2024 18:49
<u>Surrogate</u>	Percen	t Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analyzed

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Ana	alyzed
2-Fluorobiphenyl	47.3	15.2 - 100		11/13/2024	18:49
Nitrobenzene-d5	65.1	47.4 - 98.9		11/13/2024	18:49
Terphenyl-d14	58.8	56 - 111		11/13/2024	18:49

Method Reference(s): EPA 8270D

EPA 3510C

Preparation Date: 11/12/2024 Data File: B74888.D

Volatile Organics (BTEX)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
Benzene	< 1.00	ug/L		11/12/2024 18:02
Ethylbenzene	< 2.00	ug/L		11/12/2024 18:02

Client: <u>Neu-Velle</u>

Project Reference: RGE Newark

Sample Identifier: NK_MW-10-04_110624

Lab Sample ID: 245251-04 **Date Sampled:** 11/6/2024 9:15

Matrix: Groundwater Date Received 11/7/2024

m,p-Xylene	< 2.00	ug/L	11/12/2024	18:02
o-Xylene	< 2.00	ug/L	11/12/2024	18:02
Toluene	< 2.00	ug/L	11/12/2024	18:02

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Ana	<u>alyzed</u>	
1,2-Dichloroethane-d4	104	80.5 - 124		11/12/2024	18:02	
4-Bromofluorobenzene	87.8	78.2 - 114		11/12/2024	18:02	
Pentafluorobenzene	98.7	90.8 - 109		11/12/2024	18:02	
Toluene-D8	97.5	90.3 - 110		11/12/2024	18:02	

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z27711.D

Client: <u>Neu-Velle</u>

Project Reference: RGE Newark

Sample Identifier: NK_DUP_110624

Lab Sample ID:245251-05Date Sampled: 11/6/2024Matrix:GroundwaterDate Received 11/7/2024

Semi-Volatile Organics (PAHs)

<u>Analyte</u>	Result	<u>Units</u>		Qualifier	Date Analyzed
Acenaphthene	< 12.4	ug/L			11/13/2024 19:17
Acenaphthylene	< 12.4	ug/L			11/13/2024 19:17
Anthracene	< 12.4	ug/L			11/13/2024 19:17
Benzo (a) anthracene	< 12.4	ug/L			11/13/2024 19:17
Benzo (a) pyrene	< 12.4	ug/L			11/13/2024 19:17
Benzo (b) fluoranthene	< 12.4	ug/L			11/13/2024 19:17
Benzo (g,h,i) perylene	< 12.4	ug/L			11/13/2024 19:17
Benzo (k) fluoranthene	< 12.4	ug/L			11/13/2024 19:17
Chrysene	< 12.4	ug/L			11/13/2024 19:17
Dibenz (a,h) anthracene	< 12.4	ug/L			11/13/2024 19:17
Fluoranthene	< 12.4	ug/L			11/13/2024 19:17
Fluorene	< 12.4	ug/L			11/13/2024 19:17
Indeno (1,2,3-cd) pyrene	< 12.4	ug/L			11/13/2024 19:17
Naphthalene	< 12.4	ug/L			11/13/2024 19:17
Phenanthrene	< 12.4	ug/L			11/13/2024 19:17
Pyrene	< 12.4	ug/L			11/13/2024 19:17
Surrogate	Percen	nt Recovery	Limits	Outliers	Date Analyzed

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date An	<u>alyzed</u>
2-Fluorobiphenyl	51.1	15.2 - 100		11/13/2024	19:17
Nitrobenzene-d5	60.7	47.4 - 98.9		11/13/2024	19:17
Terphenyl-d14	50.6	56 - 111	*	11/13/2024	19:17

Method Reference(s): EPA 8270D

EPA 3510C

Preparation Date: 11/12/2024 Data File: B74889.D

Volatile Organics (BTEX)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Benzene	< 1.00	ug/L		11/12/2024 18:22
Ethylbenzene	< 2.00	ug/L		11/12/2024 18:22

Client: <u>Neu-Velle</u>

Project Reference: RGE Newark

Sample Identifier: NK_DUP_110624

Lab Sample ID:245251-05Date Sampled: 11/6/2024Matrix:GroundwaterDate Received 11/7/2024

<u>Surrogate</u>	Percei	nt Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analyz	<u>æd</u>
Toluene	< 2.00	ug/L			11/12/2024	18:22
o-Xylene	< 2.00	ug/L			11/12/2024	18:22
m,p-Xylene	< 2.00	ug/L			11/12/2024	18:22

<u>surrogate</u>	r er cent kecover y	LIIIILS	outilets Da	ite Analyzeu
1,2-Dichloroethane-d4	105	80.5 - 124	11/12/2	2024 18:22
4-Bromofluorobenzene	85.5	78.2 - 114	11/12/2	2024 18:22
Pentafluorobenzene	99.5	90.8 - 109	11/12/2	2024 18:22
Toluene-D8	96.8	90.3 - 110	11/12/2	2024 18:22

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z27712.D

Client: <u>Neu-Velle</u>

Project Reference: RGE Newark

Sample Identifier: NK_EB_110624

Lab Sample ID: 245251-06 **Date Sampled:** 11/6/2024 9:45

Matrix: Groundwater Date Received 11/7/2024

Semi-Volatile Organics (PAHs)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>		Qualifier	Date Analyzed
Acenaphthene	< 13.3	ug/L			11/13/2024 19:44
Acenaphthylene	< 13.3	ug/L			11/13/2024 19:44
Anthracene	< 13.3	ug/L			11/13/2024 19:44
Benzo (a) anthracene	< 13.3	ug/L			11/13/2024 19:44
Benzo (a) pyrene	< 13.3	ug/L			11/13/2024 19:44
Benzo (b) fluoranthene	< 13.3	ug/L			11/13/2024 19:44
Benzo (g,h,i) perylene	< 13.3	ug/L			11/13/2024 19:44
Benzo (k) fluoranthene	< 13.3	ug/L			11/13/2024 19:44
Chrysene	< 13.3	ug/L			11/13/2024 19:44
Dibenz (a,h) anthracene	< 13.3	ug/L			11/13/2024 19:44
Fluoranthene	< 13.3	ug/L			11/13/2024 19:44
Fluorene	< 13.3	ug/L			11/13/2024 19:44
Indeno (1,2,3-cd) pyrene	< 13.3	ug/L			11/13/2024 19:44
Naphthalene	< 13.3	ug/L			11/13/2024 19:44
Phenanthrene	< 13.3	ug/L			11/13/2024 19:44
Pyrene	< 13.3	ug/L			11/13/2024 19:44
<u>Surrogate</u>	Percent	t Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analyzed

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Ana	<u>Date Analyzed</u>	
2-Fluorobiphenyl	72.3	15.2 - 100		11/13/2024	19:44	
Nitrobenzene-d5	81.0	47.4 - 98.9		11/13/2024	19:44	
Terphenyl-d14	90.0	56 - 111		11/13/2024	19:44	

Method Reference(s): EPA 8270D

EPA 3510C

Preparation Date: 11/12/2024 Data File: B74890.D

Volatile Organics (BTEX)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
Benzene	< 1.00	ug/L		11/12/2024 18:42
Ethylbenzene	< 2.00	ug/L		11/12/2024 18:42

Client: Neu-Velle

Project Reference: RGE Newark

Sample Identifier: NK_EB_110624

Lab Sample ID: 245251-06 **Date Sampled:** 11/6/2024 9:45

Matrix: Groundwater Date Received 11/7/2024

m,p-Xylene	< 2.00	ug/L	11/12/2024 18:42
o-Xylene	< 2.00	ug/L	11/12/2024 18:42
Toluene	< 2.00	ug/L	11/12/2024 18:42

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	Outliers	Date Ana	<u>alyzed</u>
1,2-Dichloroethane-d4	102	80.5 - 124		11/12/2024	18:42
4-Bromofluorobenzene	85.4	78.2 - 114		11/12/2024	18:42
Pentafluorobenzene	95.7	90.8 - 109		11/12/2024	18:42
Toluene-D8	95.4	90.3 - 110		11/12/2024	18:42

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z27713.D

Client: <u>Neu-Velle</u>

Project Reference: RGE Newark

Sample Identifier: NK_MW-10-01_110624

Lab Sample ID: 245251-07 **Date Sampled:** 11/6/2024 11:30

Matrix: Groundwater Date Received 11/7/2024

Semi-Volatile Organics (PAHs)

<u>Analyte</u>	Result	<u>Units</u>		Qualifier	Date Analyzed
Acenaphthene	< 11.3	ug/L			11/13/2024 20:11
Acenaphthylene	< 11.3	ug/L			11/13/2024 20:11
Anthracene	< 11.3	ug/L			11/13/2024 20:11
Benzo (a) anthracene	< 11.3	ug/L			11/13/2024 20:11
Benzo (a) pyrene	< 11.3	ug/L			11/13/2024 20:11
Benzo (b) fluoranthene	< 11.3	ug/L			11/13/2024 20:11
Benzo (g,h,i) perylene	< 11.3	ug/L			11/13/2024 20:11
Benzo (k) fluoranthene	< 11.3	ug/L			11/13/2024 20:11
Chrysene	< 11.3	ug/L			11/13/2024 20:11
Dibenz (a,h) anthracene	< 11.3	ug/L			11/13/2024 20:11
Fluoranthene	< 11.3	ug/L			11/13/2024 20:11
Fluorene	< 11.3	ug/L			11/13/2024 20:11
Indeno (1,2,3-cd) pyrene	< 11.3	ug/L			11/13/2024 20:11
Naphthalene	< 11.3	ug/L			11/13/2024 20:11
Phenanthrene	< 11.3	ug/L			11/13/2024 20:11
Pyrene	< 11.3	ug/L			11/13/2024 20:11
Surrogate	Percen	t Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analyzed

Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Ana	<u>alyzed</u>	
2-Fluorobiphenyl	61.3	15.2 - 100		11/13/2024	20:11	
Nitrobenzene-d5	68.8	47.4 - 98.9		11/13/2024	20:11	
Terphenyl-d14	68.5	56 - 111		11/13/2024	20:11	

Method Reference(s): EPA 8270D

EPA 3510C

Preparation Date: 11/12/2024 Data File: B74891.D

Volatile Organics (BTEX)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Benzene	< 1.00	ug/L		11/12/2024 19:02
Ethylbenzene	< 2.00	ug/L		11/12/2024 19:02

Client: <u>Neu-Velle</u>

Project Reference: RGE Newark

Sample Identifier: NK_MW-10-01_110624

Lab Sample ID: 245251-07 **Date Sampled:** 11/6/2024 11:30

Matrix: Groundwater Date Received 11/7/2024

m,p-Xylene	< 2.00	ug/L	11/12/2024 19:02
o-Xylene	< 2.00	ug/L	11/12/2024 19:02
Toluene	< 2.00	ug/L	11/12/2024 19:02

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	Outliers	Date Ana	<u>alyzed</u>	
1,2-Dichloroethane-d4	102	80.5 - 124		11/12/2024	19:02	
4-Bromofluorobenzene	86.2	78.2 - 114		11/12/2024	19:02	
Pentafluorobenzene	97.0	90.8 - 109		11/12/2024	19:02	
Toluene-D8	96.6	90.3 - 110		11/12/2024	19:02	

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z27714.D

Client: <u>Neu-Velle</u>

Project Reference: RGE Newark

Sample Identifier: NK_MW-3A_110624

Lab Sample ID: 245251-08 **Date Sampled:** 11/6/2024 12:50

Matrix: Groundwater Date Received 11/7/2024

Semi-Volatile Organics (PAHs)

Analyte	<u>Result</u>	<u>Units</u>		Qualifier	Date Analyzed
Acenaphthene	< 12.7	ug/L			11/13/2024 20:40
Acenaphthylene	< 12.7	ug/L			11/13/2024 20:40
Anthracene	< 12.7	ug/L			11/13/2024 20:40
Benzo (a) anthracene	< 12.7	ug/L			11/13/2024 20:40
Benzo (a) pyrene	< 12.7	ug/L			11/13/2024 20:40
Benzo (b) fluoranthene	< 12.7	ug/L			11/13/2024 20:40
Benzo (g,h,i) perylene	< 12.7	ug/L			11/13/2024 20:40
Benzo (k) fluoranthene	< 12.7	ug/L			11/13/2024 20:40
Chrysene	< 12.7	ug/L			11/13/2024 20:40
Dibenz (a,h) anthracene	< 12.7	ug/L			11/13/2024 20:40
Fluoranthene	< 12.7	ug/L			11/13/2024 20:40
Fluorene	< 12.7	ug/L			11/13/2024 20:40
Indeno (1,2,3-cd) pyrene	< 12.7	ug/L			11/13/2024 20:40
Naphthalene	< 12.7	ug/L			11/13/2024 20:40
Phenanthrene	< 12.7	ug/L			11/13/2024 20:40
Pyrene	< 12.7	ug/L			11/13/2024 20:40
<u>Surrogate</u>	Percen	t Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analyzed

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Ana	alyzed
2-Fluorobiphenyl	63.1	15.2 - 100		11/13/2024	20:40
Nitrobenzene-d5	68.0	47.4 - 98.9		11/13/2024	20:40
Terphenyl-d14	71.7	56 - 111		11/13/2024	20:40

Method Reference(s): EPA 8270D

EPA 3510C

Preparation Date: 11/12/2024 Data File: B74892.D

Volatile Organics (BTEX)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Benzene	< 1.00	ug/L		11/12/2024 19:22
Ethylbenzene	< 2.00	ug/L		11/12/2024 19:22

Client: <u>Neu-Velle</u>

Project Reference: RGE Newark

Sample Identifier: NK_MW-3A_110624

Lab Sample ID: 245251-08 **Date Sampled:** 11/6/2024 12:50

Matrix: Groundwater Date Received 11/7/2024

m,p-Xylene	< 2.00	ug/L	11/12/2024 19:22
o-Xylene	< 2.00	ug/L	11/12/2024 19:22
Toluene	< 2.00	ug/L	11/12/2024 19:22

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	Outliers	Date Ana	alyzed
1,2-Dichloroethane-d4	100	80.5 - 124		11/12/2024	19:22
4-Bromofluorobenzene	84.3	78.2 - 114		11/12/2024	19:22
Pentafluorobenzene	97.9	90.8 - 109		11/12/2024	19:22
Toluene-D8	95.2	90.3 - 110		11/12/2024	19:22

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z27715.D

Client: <u>Neu-Velle</u>

Project Reference: RGE Newark

Sample Identifier: Trip Blank T1222

Lab Sample ID:245251-09Date Sampled: 10/28/2024Matrix:WaterDate Received 11/7/2024

Volatile Organics (BTEX)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>		Qualifier	Date An	alyzed
Benzene	< 1.00	ug/L			11/12/202	24 19:42
Ethylbenzene	< 2.00	ug/L			11/12/202	24 19:42
m,p-Xylene	< 2.00	ug/L			11/12/202	24 19:42
o-Xylene	< 2.00	ug/L			11/12/202	24 19:42
Toluene	< 2.00	ug/L			11/12/202	24 19:42
<u>Surrogate</u>	Percen	t Recovery	<u>Limits</u>	Outliers	Date Ana	alyzed
1,2-Dichloroethane-d4		103	80.5 - 124		11/12/2024	19:42
4-Bromofluorobenzene	:	82.8	78.2 - 114		11/12/2024	19:42
Pentafluorobenzene		98.9	90.8 - 109		11/12/2024	19:42
Toluene-D8		96.6	90.3 - 110		11/12/2024	19:42

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z27716.D

Method Blank Report

Client: Neu-Velle

Project Reference: RGE Newark

Lab Project ID: 245251

Matrix: Groundwater

Semi-Volatile Organics (PAHs)

Acenaphthene <10.0	Analyte	Result	<u>Units</u>	Qualifier	Date Analy	zed
Acenaphthylene <10.0 ug/L 11/13/2024 15:35 Anthracene <10.0 ug/L 11/13/2024 15:35 Benzo (a) anthracene <10.0 ug/L 11/13/2024 15:35 Benzo (a) pyrene <10.0 ug/L 11/13/2024 15:35						
Anthracene <10.0	Acenaphthene	<10.0	ug/L		11/13/2024	15:35
Benzo (a) anthracene <10.0	Acenaphthylene	<10.0	ug/L		11/13/2024	15:35
Benzo (a) pyrene <10.0 ug/L 11/13/2024 15:35	Anthracene	<10.0	ug/L		11/13/2024	15:35
	Benzo (a) anthracene	<10.0	ug/L		11/13/2024	15:35
	Benzo (a) pyrene	<10.0	ug/L		11/13/2024	15:35
Benzo (b) fluoranthene <10.0 ug/L 11/13/2024 15:35	Benzo (b) fluoranthene	<10.0	ug/L		11/13/2024	15:35
Benzo (g,h,i) perylene <10.0 ug/L 11/13/2024 15:35	Benzo (g,h,i) perylene	<10.0	ug/L		11/13/2024	15:35
Benzo (k) fluoranthene <10.0 ug/L 11/13/2024 15:35	Benzo (k) fluoranthene	<10.0	ug/L		11/13/2024	15:35
Chrysene <10.0 ug/L 11/13/2024 15:35	Chrysene	<10.0	ug/L		11/13/2024	15:35
Dibenz (a,h) anthracene <10.0 ug/L 11/13/2024 15:35	Dibenz (a,h) anthracene	<10.0	ug/L		11/13/2024	15:35
Fluoranthene <10.0 ug/L 11/13/2024 15:35	Fluoranthene	<10.0	ug/L		11/13/2024	15:35
Fluorene <10.0 ug/L 11/13/2024 15:35	Fluorene	<10.0	ug/L		11/13/2024	15:35
Indeno (1,2,3-cd) pyrene <10.0 ug/L 11/13/2024 15:35	Indeno (1,2,3-cd) pyrene	<10.0	ug/L		11/13/2024	15:35
Naphthalene <10.0 ug/L 11/13/2024 15:35	Naphthalene	<10.0	ug/L		11/13/2024	15:35
Phenanthrene <10.0 ug/L 11/13/2024 15:35	Phenanthrene	<10.0	ug/L		11/13/2024	15:35
Pyrene <10.0 ug/L 11/13/2024 15:35	Pyrene	<10.0	ug/L		11/13/2024	15:35
Surrogate Percent Recovery Limits Outliers Date Analyzed	<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Anal	yzed
2-Fluorobiphenyl 45.0 15.2 - 100 11/13/2024 15:35	2-Fluorobiphenyl	45.0	15.2 - 100		11/13/2024	15:35
Nitrobenzene-d5 73.5 47.4 - 98.9 11/13/2024 15:35	Nitrobenzene-d5	73.5	47.4 - 98.9		11/13/2024	15:35
Terphenyl-d14 80.5 56 - 111 11/13/2024 15:35	Terphenyl-d14	80.5	56 - 111		11/13/2024	15:35

Method Reference(s): EPA 8270D

EPA 3510C

 Preparation Date:
 11/12/2024

 Data File:
 B74881.D

 QC Batch ID:
 QC241112BNW

QC Number: Blk 1

QC Report for Laboratory Control Sample

Client: Neu-Velle

Project Reference: RGE Newark

Matrix: Lab Project ID: 245251

Groundwater

Method Reference(s): Preparation Date: Data File: QC Number: QC Batch ID:	Pyrene	Acenaphthene	Analyte	Semi-Volatile Organics (PAHs)
EPA 8270D EPA 3510C 11/12/2024 B74882.D LCS 1 QC241112BNW)
	50.0	50.0	Added	Spike
	ug/L	ug/L	<u>Units</u>	Spike
	42.6	36.5	Result	FCS
	85.1	73.0	Recovery	LCS %
	56 - 105	48 - 90.7	Limits	% Rec
			Outliers	TCS
	11/13/2024	11/13/2024	Analyzed	Date

QC Report for Matrix Spike and Matrix Spike Duplicate

Client: Neu-Velle Lab Project ID: 245251

Project Reference:

Lab Sample ID:

RGE Newark 245251-02

Matrix: Sample Identifier: Groundwater NK_MW-22-01_110524 **Date Analyzed:** 11/13/2024 **Date Received:** 11/7/2024

Date Sampled:

11/5/2024

Semi-Volatile Organics (PAHs)

Semi-Volatil	Semi-Volatile Organics (PAHS)	s)												
	Sample Result	Result	MS	MS	MS %	MSD	MSD	MSD %	% Rec.	MS	MSD	Relative	RPD	RPD
Analyte	Result	<u>Units</u>	Added	Result	Added Result Recovery Added	Added	Result	Recovery	Limits	Outlier	Outlier	% Diff.	Limit	Outlier
Acenaphthene	< 11.0	ug/L	57.6	39.5	68.5	58.3	37.6	64.6	48 - 90.7			5.98	26.9	
Pyrene	< 11.0	ug/L 57.6	57.6	41.6	72.2	58.3	41.7	71.5	56 - 105			0.928	36	
Ме	Method Reference(s):	EPA 8270D	0C 0D											
Pre Dai	Preparation Date: Data File(s):	11/12/2024 B74885.D	024 D											
		B74886.D B74884.D	D											
QC	QC Batch ID:	QC241112BNW	12BNW											

Any estimated values are displayed, and derived values calculated, based on numeric result only. See primary analytical report for data flags.

Method Blank Report

Client: Neu-Velle

Project Reference: RGE Newark

Lab Project ID: 245251

Matrix: Groundwater

Volatile Organics (BTEX)

Analyte	Result	<u>Units</u>	Qualifier	Date Analy	zed
Benzene	<1.00	ug/L		11/12/2024	16:02
Ethylbenzene	<2.00	ug/L		11/12/2024	16:02
m,p-Xylene	<2.00	ug/L		11/12/2024	16:02
o-Xylene	<2.00	ug/L		11/12/2024	16:02
Toluene	<2.00	ug/L		11/12/2024	16:02
Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	yzed
1,2-Dichloroethane-d4	101	80.5 - 124		11/12/2024	16:02
4-Bromofluorobenzene	83.2	78.2 - 114		11/12/2024	16:02
Pentafluorobenzene	96.3	90.8 - 109		11/12/2024	16:02
Toluene-D8	97.2	90.3 - 110		11/12/2024	16:02
W. J. ID 6 (2) TD100600					

Method Reference(s): EPA 8260C

EPA 5030C

 $\begin{array}{lll} \textbf{Data File:} & z27705.D \\ \textbf{QC Batch ID:} & voaw241112 \\ \textbf{QC Number:} & Blk\ 1 \\ \end{array}$

QC Report for Laboratory Control Sample

Client: Neu-Velle

Lab Project ID: **Project Reference:** 245251 RGE Newark

Groundwater

Matrix:

Volatile Organics (BTEX)

ତୁତ୍ତ ସ	Toluene	Ethylbenzene	Benzene	Analyte	•
Method Reference(s): Data File: QC Number: QC Batch ID:					,
EPA 8260C EPA 5030C z27704.D LCS 1 voaw241112					
	20.0	20.0	20.0	Spike Added	1
	ug/L	ug/L	ug/L	Spike Units	i i
	18.7	19.8	20.3	LCS Result	1
	93.7	99.2	101	LCS % Recovery	
	84.8 - 106	83.3 - 107	83.4 - 108	% Rec Limits	
				LCS Outliers	
	11/12/2024	11/12/2024	11/12/2024	Date Analyzed	ı

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Report Prepared Wednesday, November 13, 2024

QC Report for Matrix Spike and Matrix Spike Duplicate

Client: Neu-Velle Lab Project ID: 245251

Project Reference: RGE Newark

Matrix: Sample Identifier: Lab Sample ID: NK_MW-22-01_110524 245251-02 Groundwater **Date Analyzed:** 11/12/2024 **Date Received:** 11/7/2024 **Date Sampled:** 11/5/2024

<i>Volatile C</i> Analyte	Volatile Organics (BTEX) Sample Result	Result Units	MS Added	MS Result	MS % Recovery	MSD Added	MSD Result	MSD %	% Rec.	MS Outlier		Relative % Diff.	
Analyte	Result	Units	Added	Result	Result Recovery Added	Added	Result	Recovery	Limits	Outlier	Outlier		% Diff.
Benzene	< 1.00	ug/L	50.0	48.5	97.0	50.0	50.9	102	83.4 - 108			_	1.89
Ethylbenzene	< 2.00	ug/L	50.0	49.2	98.4	50.0	50.8	102	83.3 - 107			(1)	3.24
Toluene	< 2.00	ug/L	50.0	45.5	90.9	50.0	48.1	96.1	84.8 - 106			5	.52
	Method Reference(s):	EPA 82600	SOC SOC										
	Data File(s):	EPA 5030C z27708.D z27709.D	D										
		z27707.D 1	D										
	QC Batch ID:	voaw241112	1112										

RPD Outlier

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt. Any estimated values are displayed, and derived values calculated, based on numeric result only. See primary analytical report for data flags.

Report Prepared Wednesday, November 13, 2024

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

- "<" = Analyzed for but not detected at or above the quantitation limit.
- "E" = Result has been estimated, calibration limit exceeded.
- "H" = Denotes a parameter analyzed outside of holding time.
- "Z" = See case narrative.
- "D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.
- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.
- "I" = Result estimated between the quantitation limit and half the quantitation limit.
- "L" = Laboratory Control Sample recovery outside accepted QC limits.
- "P" = Concentration differs by more than 40% between the primary and secondary analytical columns.
- "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.
- "*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
- "(1)" = Indicates data from primary column used for QC calculation.
- "A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.
- "F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written, between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, term or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.

Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.

Scope and Compensation. LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB wi use LAB default method for all tests unless specified otherwise on the Work Order.

Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.

Prices.

Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.

Limitations of Liability.

In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to reperform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services.

LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.

All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB.

Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any

environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.

Hazard Disclosure.

Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.

Sample Handling.

Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on the final report.

Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these samples.

LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.

Legal Responsibility. LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.

Assignment.

LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.

Force Majeure.

LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.

Law.

This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

Standard 5 day Standard 5 day None Required Batch QC Category A Rush 2 day Category B Rush 1 day Other please indicate date needed: please indicate package needed:	Turnaround Time Report Supplements Availability contingent upon lab approval: additional fees may apply		11/6/24 1250 X	124 1130	x 5462 42/9/11	124 dis 1	11/5/24 1200 7		_	DATE COLLECTED COLLECTED S A A		RGE Newark	PROJECT REFERENCE		ENVIRONMENTAL SERVICES	PARADIGM	
needed:	Report Supplements	Trip Blank T 1882	V-3A-	- MW-16	NK_DUP_110624	- MW-10-01	NIC_MW-110524	01	NE M (1) -1) -00 11 05 77.	SAMPLE IDENTIFIER		Matrix Codes: AG - Aqueous Liquid NG - Non-Aqueous Liquid WG - Groun	ATTN	PHONE: FAX:	CITY: STATE: ZIP:	address:	_
ad By Lab By C A 11 7 3 g this form, client agrees to	Land Los Book	JA	XXV	_		1 7 x x x	Wh H XX	× 1 5 5	K BTE	7 N N S C Z C Z C N N N N N N N N N N N N N N N	REQUESTED ANALYSIS	DW - Drinking Water WW - Wastewater	ATTN:	PHONE: FAX:	CITY: STATE:	ADDRESS: SAME	INVOICE TO:
7/24 1322 9 13:23 P.I.F. 13:23 P.I.F. 13:23	- last 71							MS/MSD		REMARKS		SO - Soil SD - Solid WP - Wipe SL - Sludge PT - Paint CK - Caulk	Traid @ Nev-relle, com		ZIP: Onotation #:	LAB PROJECT ID	

PARADIGM ENVIRONMENTAL SERVICES

Chain of Custody Supplement

Client:	NeuVelle	Completed by:	Cedui ru
Lab Project ID:	245251	Date:	11/7/24
	Sample Condition Reper NELAC/ELAP 210/24:	equirements 1/242/243/244	
Condition	NELAC compliance with the sample condi Yes	tion requirements upoi No	n receipt N/A
Container Type			
Comments			
Transferred to method- compliant container			
Headspace (<1 mL) Comments	VOA		
Preservation Comments	TCN VOA(pur laber)		PAH
Chlorine Absent (<0.10 ppm per test strip) Comments	VOA: C/- neg.	12 Hg	TON EF CH
Holding Time Comments		Morine	Strip Lot # 0/2 V431-HH
Temperature Comments	5.0°C iud		
Compliant Sample Quantity/T	ype BTEX TCN	PAH (EG	117
			:

Experience is the solution

Work Order No: 241108015

ELAP#: 10709

314 North Pearl Street ◆ Albany, New York 12207 (800) 848-4983 ◆ (518) 434-4546 ◆ Fax (518) 434-0891

November 13, 2024

Emily Farmen
Paradigm Environmental
179 Lake Avenue
Rochester, NY 14608

TEL: (800) 724-1997

RE: Analysis of Samples Project # 245251

Adirondack Environmental Services, Inc received 8 samples on 11/8/2024 for the analyses presented in the following report.

Please see case narrative for specifics on analysis.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Matthew Daigneault

Moth Gat

Laboratory Manager

Adirondack Environmental Services, Inc

CASE NARRATIVE

Paradigm Environmental

Analysis of Samples

Project # 245251

Date: 13-Nov-24

Lab WorkOrder: 241108015

Sample containers were not supplied by Adirondack Environmental Services.

Definitions - RL: Reporting Limit DF: Dilution factor

Qualifiers: ND : Not Detected at reporting limit C: CCV below acceptable Limits

J: Analyte detected below quantitation limit C+: CCV above acceptable Limits

B: Analyte detected in Blank S: LCS Spike recovery is below acceptable limits

X: Exceeds maximum contamination limit S+: LCS Spike recovery is above acceptable limits

H: Hold time exceeded Z: Duplication outside acceptable limits

 $N: Matrix \ Spike \ below \ acceptable \ limits \\ T: Tentatively \ Identified \ Compound-Estimated$

N+: Matrix Spike is above acceptable limits E :Above quantitation range-Estimated

Note: All Results are reported as wet weight unless noted

The results relate only to the items tested. Information supplied by the client is assumed to be correct.

Adirondack Environmental Services, Inc

CLIENT: Paradigm Environmental LabWork Order: 241108015 **Project:** Analysis of Samples PO#: Project # 245251 Lab SampleID: 241108015-001 **Collection Date:** 11/5/2024 8:35:00 AM Client Sample ID: 245251-01 (NK_MW-11-05_110 Matrix: GROUNDWATER **RL Qual Units** DF Analyses Result **Date Analyzed CYANIDE, TOTAL - EPA 9012B** Analyst: GK (Prep: 9010C - 11/13/2024) 0.01 Cyanide ND mg/L 11/13/2024 1:52:51 PM Lab SampleID: 241108015-002 **Collection Date:** 11/5/2024 10:10:00 AM Client Sample ID: 245251-02 (NK MW-22-01 110 **Matrix:** GROUNDWATER **RL Qual Units** Result DF Analyses **Date Analyzed CYANIDE, TOTAL - EPA 9012B** Analyst: GK (Prep: 9010C - 11/13/2024) Cyanide 0.01 0.01 mg/L 11/13/2024 1:54:34 PM Lab SampleID: 241108015-003 **Collection Date:** 11/5/2024 12:00:00 PM Client Sample ID: 245251-03 (NK_MW-1A-11052 Matrix: GROUNDWATER **Analyses** Result **RL Qual Units** DF **Date Analyzed CYANIDE, TOTAL - EPA 9012B** Analyst: **GK** (Prep: 9010C - 11/13/2024) ND 0.01 11/13/2024 1:59:46 PM Cyanide mg/L Lab SampleID: 241108015-004 **Collection Date:** 11/6/2024 9:15:00 AM **Client Sample ID:** 245251-04 (NK MW-10-04 110 Matrix: GROUNDWATER **RL Qual Units** DF **Analyses** Result **Date Analyzed CYANIDE, TOTAL - EPA 9012B** Analyst: GK (Prep: 9010C - 11/13/2024) 0.01 Cyanide ND mg/L 11/13/2024 2:01:31 PM 1 Collection Date: 11/6/2024 Lab SampleID: 241108015-005 Client Sample ID: 245251-05 (NK_DUP_110624) Matrix: GROUNDWATER DF **RL Qual Units** Analyses Result **Date Analyzed CYANIDE, TOTAL - EPA 9012B** Analyst: GK (Prep: 9010C - 11/13/2024) Cyanide ND 0.01 mg/L 11/13/2024 2:02:50 PM

Date: 13-Nov-24

Adirondack Environmental Services, Inc

CYANIDE, TOTAL - EPA 9012B

Cyanide

(Prep: 9010C - 11/13/2024

ND

CLIENT: Paradigm Environmental LabWork Order: 241108015

Date: 13-Nov-24

Project: Analysis of Samples

PO#:

Project # 245251

Lab SampleID: 241108015-006 Collection Date: 11/6/2024 9:45:00 AM **Client Sample ID:** 245251-06 (EB_110624) Matrix: GROUNDWATER **RL Qual Units** DF **Analyses** Result **Date Analyzed CYANIDE, TOTAL - EPA 9012B** Analyst: GK (Prep: 9010C - 11/13/2024) Cyanide 0.01 11/13/2024 2:04:33 PM ND mg/L Lab SampleID: 241108015-007 Collection Date: 11/6/2024 11:30:00 AM **Matrix:** GROUNDWATER Client Sample ID: 245251-07 (MW-10-01 110624) Result **RL Qual Units** DF **Analyses Date Analyzed CYANIDE, TOTAL - EPA 9012B** Analyst: GK (Prep: 9010C - 11/13/2024) 11/13/2024 2:06:10 PM Cyanide ND 0.01 mg/L **Collection Date:** 11/6/2024 12:50:00 PM Lab SampleID: 241108015-008 **Client Sample ID:** 245251-08 (MW-3A_110624) Matrix: GROUNDWATER **RL Qual Units Analyses** Result DF **Date Analyzed**

0.01

mg/L

1

Analyst: GK

11/13/2024 2:07:48 PM

CLIENT: Paradigm Environmental

Project: Work Order: 241108015

Analysis of Samples

ANALYTICAL QC SUMMARY REPORT

BatchID: 112776

Analyte Cyanide	MSD	Analyte Cyanide	MS	Analyte Cyanide	LCS	<u>Analyte</u> Cyanide	MBLK
	SeqNo: 3916073 Samp ID: 241108015-002A (245251-02 (NK_M		SeqNo: 3916072 Samp ID: 241108015-002A (245251-02 (NK_M	0	SeqNo: 3916087 Samp ID: LCS-112776		SeqNo: 3916086 Samp ID: MB-112776
Result 0.1129	-02 (NK_M	Result 0.1111	-02 (NK_M	Result 0.08764		Result ND	
<u>PQL</u> 0.010		<u>PQL</u> 0.010		<u>PQL</u> 0.010		<u>PQL</u> 0.010	
SPK value SP 0.098	PrepDate:11/13/: PrepRef:(9010C)	SPK value SP 0.098	PrepDate:11/13/; PrepRef:(9010C)	SPK value SP 0.098	PrepDate:11/13/2 PrepRef:(9010C)	<u>SPK value SP</u> 0	PrepDate:11/13/2 PrepRef:(9010C)
<u>SPK Ref Val</u> 0.01155	PrepDate:11/13/2024 PrepRef:(9010C)	<u>SPK Ref Val</u> 0.01155	PrepDate:11/13/2024 PrepRef:(9010C)	SPK Ref Val 0	PrepDate:11/13/2024 PrepRef:(9010C)	SPK Ref Val 0	PrepDate:11/13/2024 PrepRef:(9010C)
<u>%REC</u> 103		<u>%REC</u> 102		<u>%REC</u> 89.4		%REC 0	
LowLimit HighLimit 75 125	TestNo: SW9012B Units: mg/L	LowLimit HighLimit 75 125	TestNo: SW9012B Units: mg/L	LowLimit HighLimit 80 120	TestNo: SW9012B Units: mg/L	LowLimit HighLimit 0 0	TestNo: SW9012B Units: mg/L
RPD Ref 0.1111		RPD Ref		RPD Ref		RPD Ref	
vLimit HighLimit RPD.Ref <u>%RPD(SD-%D)</u> <u>RPDLimit</u> 75 125 0.1111 1.61 20	RunNo: 239622 Analysis Date: 11/13/2024	%RPD(SD-%D) RPDLimit	RunNo: 239622 Analysis Date: 11/13/2024	%RPD(SD-%D) RPDLimit	RunNo: 239622 Analysis Date: 11/13/2024	%RPD(SD-%D) RPDLimit	RunNo: 239622 Analysis Date: 11/13/2024
<u>it Qual</u>		<u>it Qual</u>		<u>it</u> Qual		<u>it Qual</u>	

R - RPD outside accepted recovery limits

CHAIN OF CUSTODY

ELAP ID: 1

241108@134 of 35

		Date/Time	реў	Cocined @ Lab by	N. C.	2000			
				Daca in a	Z				Comments:
P.I.F		Date/Time		received by]		ature:	Temperature	
	1207	11/8/24	12/1	Borolog C	z		Time:	Holding Time	Comments
		Date/Time		Relinquished B					
	08:30	11/8/24	7		Z		ation:	Preservation:	Comments:
Total Cost:		Date/Time		Sampled By					
			•	Client	х 		r Type:	Container Type	Comments
					NELAC Compliance		Receipt Parameter	Receipt F	
					/244	10/241/242/243	LAC/ELAP 21	Sample Condition: Per NELAC/ELAP 210/241/242/243/244	Sample (
								MODE ON THE STREET	#LAB
									6
	#								9
			- X	10624 J	NK-MW-3A-1		+	12:50	8
			- 人	110624	NK-MW-10-01			11:30	7
- 06			- *		NK_EB_110624			94.40	6
-05			-	4	NK - ONP - 110624				ن ا
- 0 d			7	110624	NK_MW-10-04_			16 19 109: 15	4 1)/6
- 03			- *	110524	NK-MW-1A-11			15	ω 4
- 0 ک			イン	1165011	NK-MW-22-01-			10:10	N
	124525		- X	110524 WAY	NK_MW-11-05_1		X	15/24 08:35	=
		<i>p</i> -13	 	فمدن					
OOM I DE NOMEDE			z - N	×;			ı — <i>v</i>		5.3.5.
ARKS PARADIC	REMARKS	31/	90	···	SAMPLE LOCATION/FIELD ID	× π	, 0 0	DATE	9
		1	2 00	> <		o	≅ o∩		
		STED ANALYSIS	REQUE						
Date Due:	Date		paradigmenv.com	Please email results to reporting@paradigmenv.com		COMMENTS:			19171
	1	Accounts Payable	ATTN: ACCC		Reporting	ATTN:		PROJECT NAME/SITE NAME:	PROJECT
STD		FAX:	PHONE:		FAX:	PHONE:			
TURNAROUND TIME: (WORKING DAYS)	ZIP: TURN	STATE:	CITY:	E: ZIP:	STATE	CITY:	\		
			ADDRESS:			ADDRESS:			
LAB PROJECT #: CLIENT PROJECT	LABP	Same	COMPANY: S	onmental	Parad	COMPANY:	VICES, THE	THURDHICHTAL SEF	
		INVOICE TO:		0:	REPORT TO:		_ Ω ≤	PARADIGM	
			and the state of the second second second						

Experience is the solution

314 North Pearl Street • Albany, New York 12207 • (518) 434-4546 • Fax (518) 434-0891

TERMS, CONDITIONS & LIMITATIONS

All service rendered by the **Adirondack Environmental Services**, **Inc**. are undertaken and all rates are based upon the following terms:

- (a) Neither Adirondack Environmental Services, Inc., nor any of its employees, agents or sub-contractors shall be liable for any loss or damage arising out of Adirondack Environmental Services, Inc.'s performance or nonperformance, whether by way of negligence or breach of contract, or otherwise, in any amount greater than twice the amount billed to the customer for the work leading to the claim of the customer. Said remedy shall be the sole and exclusive remedy against Adirondack Environmental Services, Inc. arising out of its work.
- (b) All claims made must be in writing within forty-five (45) days after delivery of the **Adirondack Environmental Services, Inc.** report regarding said work or such claim shall be deemed or irrevocably waived.
- (c) Adirondack Environmental Services, Inc. reports are submitted in writing and are for our customers only. Our customers are considered to be only those entities being billed for our services. Acquisition of an Adirondack Environmental Services, Inc. report by other than our customer does not constitute a representation of Adirondack Environmental Services, Inc. as to the accuracy of the contents thereof.
- (d) In no event shall Adirondack Environmental Services, Inc., its employees, agents or sub-contractors be responsible for consequential or special damages of any kind or in any amount.
- (e) No deviation from the terms set forth herein shall bind **Adirondack Environmental Services, Inc.** unless in writing and signed by a Director of **Adirondack Environmental Services, Inc.**
- (f) Results pertain only to items analyzed. Information supplied by client is assumed to be correct. This information may be used on reports and in calculations and Adirondack Environmental Services, Inc. is not responsible for the accuracy of this information.
- (g) Payments by Credit Card/Purchase Cards are subject to a 3% additional charge.