

April 26, 2024

Mr. Gerald Pratt **Project Manager** New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233

Re: 2nd Groundwater Monitoring Program Sampling Report

> NYSEG Jackson Street Former MGP Site Penn Yan, Yates County, New York

NYSDEC Site Code 862008

Dear Mr. Pratt:

The purpose of this report is to present the results of the second (2nd) Groundwater Monitoring Program (GWMP) sampling event completed at the New York State Electric & Gas Corporation (NYSEG) Jackson Street Former Manufactured Gas Plant (MGP) site [New York State Department of Environmental Conservation (NYSDEC) Site No. 862008], located at Linden Street and Court Street in Penn Yan, Yates County, New York (referred to herein as the "Site"), as depicted on Figure 1. This groundwater sampling was completed by NEU-VELLE, LLC (NEU-VELLE) personnel in accordance with the Site Management Plan (SMP) for the Site, prepared by AMEC Geomatrix, Inc. and dated December 2011.

SCOPE OF WORK

Synoptic Water Levels

As summarized in **Table 1**, a Site-wide round of synoptic groundwater levels was collected from eight (8) monitoring wells at the Site (MW-1, MW-2S, MW-2D, MW-3A, MW-4S, MW-4D, MW-5, and MW-6) on April 28, 2023, prior to the start of groundwater sampling activities. The monitoring well locations are depicted on Figure 2. Each well was gauged for the presence of Non-aqueous Phase Liquid (NAPL) using an oil/water interface probe. NAPL was not detected in any of the wells. The well gauging observations and field measurements are provided in **Table 1**, and a groundwater elevation contour map is provided as **Figure 2**.

Groundwater Sampling

From April 28 through May 8, 2023, the GWMP samples were collected from the eight (8) groundwater monitoring wells at the Site (MW-1, MW-2S, MW-2D, MW-3A, MW-4S, MW-4D, MW-5 and MW-6). A stainless-steel bladder pump equipped with a new polyethylene bladder and new polyethylene tubing was used at each sampling location.

Groundwater samples were collected using the low-stress (low-flow) purging techniques outlined in the United States Environmental Protection Agency (USEPA) Ground-Water Sampling Guidelines for Superfund and Resource Conservation and Recovery Act (RCRA) Project Managers dated May 2002.

Prior to initiating purging, field personnel donned new nitrile gloves, and care was taken to avoid introducing contaminants into the groundwater monitoring wells. During purging, time, water-level measurements, temperature, dissolved oxygen (DO), oxidation reduction potential (ORP), pH, turbidity, and specific conductance (purge parameters) were measured and recorded using calibrated field monitoring equipment.

The well information, sample information, monitoring parameters, and field observations were recorded on a groundwater sample log completed at each well. The groundwater sample logs are provided as **Attachment 2**.

New nitrile gloves were donned by field personnel prior to the collection of each groundwater sample. The laboratory samples were collected in appropriate laboratory-supplied sample containers. Samples were placed in a plastic cooler pre-chilled with ice and submitted under chain of custody protocols. The samples were delivered to Paradigm Environmental Services, Inc. (Paradigm) located in Rochester, New York. The groundwater samples were analyzed as follows:

- volatile organic compounds (VOCs), BTEX (benzene, toluene, ethylbenzene, and xylene)
 only, were analyzed in accordance with USEPA Method 8260;
- semi-volatile organic compounds (SVOCs), polycyclic aromatic hydrocarbons (PAHs) only, were analyzed in accordance with USEPA Method 8270; and
- total cyanide was analyzed in accordance with USEPA Method 9012.

Quality Assurance/Quality Control (QA/QC) samples including a field blank, equipment blanks, blind duplicates (collected at MW-6), a trip blank, and matrix spike/matrix spike duplicate samples (MS/MSD) were collected.

Reporting of Results

Copies of the laboratory analytical reports are presented in **Exhibit A**, and the analytical results, including those for the blind duplicate QA/QC samples, are summarized in **Table 2** of this report.

Waste Disposal

Purged groundwater and decontamination water were containerized into two (2) 55-gallon polyethylene drums and staged at the Site. This wastewater was removed from the Site on March 21, 2024, by Clean Harbors and transported for off-Site disposal.

RESULTS

Analytical Results

The groundwater sample analytical results were compared to the NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1, Class A, standards, criteria, and guidance values (SCGs). The analytical results for groundwater samples are summarized in **Table 2** and **Figure 3**, as follows:

- BTEX compounds were detected above their respective TOGS 1.1.1 Class GA SCG values in three (3) of the groundwater samples collected (MW-1, MW-3A, and MW-4S). Benzene was detected above its TOGS 1.1.1 Class GA SCG (1 μg/L) in MW-1, MW-3A, and MW-4S at concentrations of 5.4 micrograms per liter (μg/L) or parts per billion (ppb), 100 μg/L, and 380 μg/L, respectively. Toluene, ethylbenzene, and xylenes (total) were each detected in MW-3A and MW-4S, at concentrations above their respective TOGS 1.1.1 Class GA SCG level (5 μg/L), with the exception of toluene in MW-3A (estimated at 0.72 J μg/L).
- PAHs were detected above laboratory reporting limits in four (4) of the groundwater samples collected (MW-1, MW-3A, MW-4D and MW-4S) and detected (and given estimated concentrations) below reporting limits in five (5) of the groundwater samples collected (MW-2S, MW-3A, MW-4D, MW-4S, MW-5 and MW-6). Seven (7) PAHs (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, indeno(1,2,3-cd)pyrene, and naphthalene) were detected at concentrations above their respective TOGS 1.1.1 Class GA SCG; these include:
 - o MW-2S benzo(b)fluoranthene (0.01 J μ g/L);
 - o MW-3A benzo(a)anthracene (0.02 J μg/L);
 - 0 MW-4D benzo(a)anthracene (0.11 μ g/L), benzo(a)pyrene (0.14 μ g/L), benzo(b)fluoranthene (0.11 μ g/L), benzo(k)fluoranthene (0.03 J μ g/L), chrysene (0.09 J μ g/L), and indeno(1,2,3-cd)pyrene (0.06 J μ g/L);
 - \circ MW-4S benzo(a)anthracene (0.45 J μg/L), benzo(a)pyrene (0.25 J μg/L), benzo(b)fluoranthene (0.20 J μg/L), benzo(k)fluoranthene (0.09 J μg/L), chrysene (0.23 J μg/L), and naphthalene (1,400 μg/L);
 - \circ MW-5 benzo(a)anthracene (0.03 J μg/L), benzo(a)pyrene (0.04 J μg/L), benzo(b)fluoranthene (0.07 J μg/L), benzo(k)fluoranthene (0.03 J μg/L), chrysene (0.05 J μg/L), and indeno(1,2,3-cd)pyrene (0.05 J μg/L);
 - \circ MW-6 benzo(a)anthracene (0.03 J μg/L), benzo(b)fluoranthene (0.01 J μg/L), chrysene (0.01 J μg/L), and indeno(1,2,3-cd)pyrene (0.05 J μg/L).

The other PAHs detected in samples were below their respective TOGS 1.1.1 Class GA SCG values.

• Concentrations of total cyanide were detected above laboratory reporting limits in three (3) of the groundwater samples collected (MW-3A [0.036 milligrams per liter (mg/L) or parts per million (ppm)], MW-4S [2.05 mg/L] and MW-6 [0.237 mg/L]) and detected (and given estimated concentrations) below reporting limits in three (3) of the groundwater samples collected (MW-2D, MW-4D, and MW-5). The reported

concentrations of total cyanide in monitoring wells MW-4S and MW-6 were above the TOGS 1.1.1, Class GA SCG for total cyanide (0.2 mg/L).

The analytical results for the QA/QC samples are summarized as follows:

- No detections of BTEX, PAHs, nor total cyanide were reported in the "equipment blank" sample.
- No BTEX compounds were detected in the Trip Blank sample.
- Similar results for BTEX, PAHs, and total cyanide were reported in the blind duplicate sample collected at MW-4D.

Groundwater Mapping

A groundwater contour map (see **Figure 2**) was prepared based on the water level data collected at the Site on April 28, 2023. This groundwater contour map depicts the groundwater beneath the Site flowing to the east, toward Jacobs Brook. The groundwater flow direction appears to generally follow the topography of the Site, which is consistent with prior findings of groundwater flow direction at the Site.

CONCLUSIONS

This report presents the results of the second (2nd) GWMP sampling event completed at the NYSEG Jackson Street Former MGP site, Penn Yan, NY (NYSDEC Site No. 862008).

BTEX compounds were detected above their respective TOGS 1.1.1 Class GA SCG values in three (3) of the groundwater samples collected (MW-1, MW-3A, and MW-4S). Seven (7) PAHs (benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, indeno(1,2,3-cd)pyrene, and naphthalene) were detected at concentrations above their respective TOGS 1.1.1 Class GA SCGs in six monitoring wells. Concentrations of total cyanide were detected above laboratory reporting limits in three (3) of the groundwater samples collected (MW-3A, MW-4S, and MW-6) and detected (and given estimated concentrations) below reporting limits in three (3) of the groundwater samples collected (MW-2D, MW-4D, and MW-5), all of which were below the TOGS 1.1.1, Class GA SCG for total cyanide (0.2 mg/L) except for in MW-4S and MW-6 in which they were above the TOGS 1.1.1, Class GA SCG.

The groundwater contour map for April 28, 2023 depicts the groundwater beneath the Site flowing predominantly to the east, toward Jacobs Creek, generally following the Site's topography.

The periodic (every 15 months) GWMP sampling will continue as described in the SMP (the next groundwater sampling event is scheduled for August 2024) and will continue to assess the groundwater quality beneath the Site.

Please feel free to contact me at any time at (585) 478-3167 with any questions you may have regarding this letter report.

Sincerely,

Logan Reid NEU-VELLE, LLC

Attachments:

Table 1 – Monitoring Well Reference Data and Groundwater Measurements

Table 2 - Groundwater Sample Analytical Results

Figure 1 – Site Location

Figure 2 – April 2023 Groundwater Elevation Contours

Figure 3 – Spring2023 Analytical Detections in Groundwater

Attachment 1 – Groundwater Sample Logs

Exhibit A - Laboratory Reports

Tables

Table 1
Monitoring Well Reference Data and Groundwater Measurements

Well ID	TOC Elevation (ft)	Depth to Water (ft bgs)	Groundwater Elevation (ft)	Depth to Water (ft bgs)	Elevation (ft)
2004			/2021		2/2023
MW-1	754.49	9.43	745.06	9.00	745.49
MW-2D	754.22	10.60	743.62	11.50	742.72
MW-2S	753.76	9.52	744.24	9.00	744.76
MW-3A	752.48	11.15	741.33	11.60	740.88
MW-4D	754.33	11.78	742.55	11.90	742.43
MW-4S	753.02	12.14	740.88	13.00	740.02
MW-5	749.99	NM*	NA	7.60	742.39
MW-6	751.85	10.30	741.55	10.30	741.55

Notes:

- 1. Top of Casing (TOC) elevations surveyed by NYSEG personnel, September 2007. Vertical datum unknown.
- 2. Depths to water measured by NEU-VELLE on dates indicated.
- 3. bgs = below ground surface
- 4. * MW-5 well cover was damaged and was inaccessible
- 5. NM = not measured
- 6. NA = not applicable

Table 2
Groundwater Sample Analytical Results

	Sam Sample Iden	Location ple Date tification	MW 12/3/ PY-MW-1	2021	MW 5/3/2 MW-1-0	2023	MW-2 12/2/2 PY-MW-2D-	021	MW- 5/4/2 MW-2D-	2023	MW- 12/2/2 PY-MW-25	2021	MW 5/4/2 MW-2S-	2023	MW 12/6/ PY-MW-3	2021	MW 5/8/2 MW-3A-	2023
Analyte	TOGS 1.1.1 Groundwater SCG	Units	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit
BTEX																		
Benzene	1	μg/L	13	1.0	5.4	0.50	ND	1.0	ND	0.50	ND	1.0	ND	0.50	81	1.0	100	0.50
Ethylbenzene	5	μg/L	ND	1.0	ND	2.5	ND	1.0	ND	2.5	ND	1.0	ND	2.5	22	1.0	28	2.5
Toluene	5	μg/L	ND	1.0	ND	2.5	ND	1.0	ND	2.5	ND	1.0	ND	2.5	0.73	1.0	0.72 J	2.5
Xylenes, Total	5	μg/L	ND	2.0	ND	2.5	ND F1	2.0	ND	2.5	ND	2.0	ND	2.5	14	2.0	5.6 J	2.5
PAHs																		
Acenaphthene	20	μg/L	ND	0.54	ND	0.10	ND	0.49	ND	0.10	ND	0.53	ND	0.10	ND	0.53	0.01 J	0.10
Acenaphthylene	NS	μg/L	ND	0.32	ND	0.10	ND	0.29	ND	0.10	ND	0.32	ND	0.10	0.16	0.32	0.21	0.10
Anthracene	50	μg/L	NT	NT	ND	0.10	NT	NT	ND	0.10	NT	NT	ND	0.10	NT	NT	ND	0.10
Benzo(a)anthracene	0.002	μg/L	NT	NT	ND	0.10	NT	NT	ND	0.10	NT	NT	ND	0.10	NT	NT	0.02 J	0.10
Benzo(a)pyrene	ND	μg/L	NT	NT	ND	0.10	NT	NT	ND	0.10	NT	NT	ND	0.10	NT	NT	ND	0.10
Benzo(b)fluoranthene	0.002	μg/L	NT	NT	ND	0.10	NT	NT	ND	0.10	NT	NT	0.01 J	0.10	NT	NT	ND	0.10
Benzo(k)fluoranthene	0.002	μg/L	NT	NT	ND	0.10	NT	NT	ND	0.10	NT	NT	ND	0.10	NT	NT	ND	0.10
Benzo(ghi)perylene	NS	μg/L	NT	NT	ND	0.10	NT	NT	ND	0.10	NT	NT	ND	0.10	NT	NT	ND	0.10
Chrysene	0.002	μg/L	ND	0.49	ND	0.10	ND F1 F2	0.49	ND	0.10	ND	0.49	ND	0.10	ND	0.53	ND	0.10
Dibenzo(a,h)anthracene	NS	μg/L	NT	NT	ND	0.10	NT	NT	ND	0.10	NT	NT	ND	0.10	NT	NT	ND	0.10
Fluoranthene	50	μg/L	ND	0.54	ND	0.10	ND	0.49	ND	0.10	0.11 J	0.53	0.03 J	0.10	ND	0.53	ND	0.10
Fluorene	50	μg/L	ND	0.54	ND	0.10	ND	0.49	ND	0.10	ND	0.53	ND	0.10	ND	0.53	ND	0.10
Indeno(1,2,3-cd) pyrene	0.002	μg/L	NT	NT	ND	0.10	ND	0.49	ND	0.10	ND	0.49	ND	0.10	ND	0.49	ND	0.10
Naphthalene	10	μg/L	0.35 J	1.1	0.19	0.10	ND	0.97	ND	0.10	ND	1.1	ND	0.10	2.9	1.1	0.66	0.10
Phenanthrene	50	μg/L	ND	0.22	ND	0.10	ND	0.19	ND	0.10	ND	0.21	ND	0.10	ND	0.21	ND	0.10
Pyrene	50	μg/L	ND	0.54	ND	0.10	ND	0.49	ND	0.10	ND	0.53	0.02 J	0.10	ND	0.53	ND	0.10
2-Chloronapthalene	10	μg/L	NT	NT	ND	0.20	NT	NT	ND	0.20	NT	NT	ND	0.20	NT	NT	ND	0.20
2-Methylnaphthalene	NS	μg/L	NT	NT	ND	0.10	NT	NT	ND	0.10	NT	NT	ND	0.10	NT	NT	ND	0.10
Cyanide																		
Cyanide, Total	0.2	mg/L	0.015	0.010	ND	0.005	0.0074 J	0.010	0.002 J	0.005	ND	0.010	ND	0.005	0.025	0.010	0.036	0.005

Notes:

- 1. μg/L = micrograms per liter
- 2. mg/L = milligrams per liter
- 3. "NS" = no standard, "ND" = non-detect, and "NT" = not tested
- 4. Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1) Ambient Water Quality Standards and Groundwater Effluent Limitations, June 1998.
- 5. **Bold Sample result** = compound was detected.

6. Gray shading indicates the sample result is above the TOGS 1.1.1 Standards, Criteria and Guidance Value.

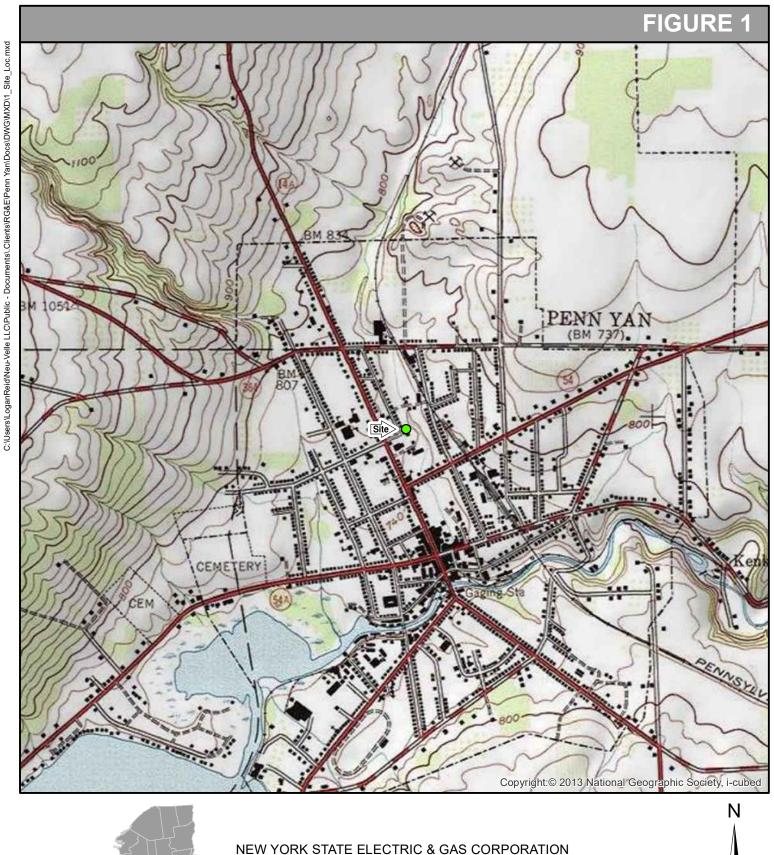
- 7. "J" is a laboratory data qualifier indicating "Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value"
- 8. "F1" is a laboratory data qualifier indicating "MS and/or MSD recovery exceeds control limits"
- 9. "F2" is a laboratory data qualifier indicating "MS/MSD RPD exceeds control limits"

Table 2
Groundwater Sample Analytical Results

		Location	MW- 12/4/2		MW-	4D 4/28/		UPLICATE)	MW 12/4/		MW 4/28/		MW 5/5/2		MV	V-6 12/3/	MW-6 (DU 2021	PLICATE)	MW 5/5/2	
	Sample Iden	tification	PY-MW-4D	-120421	MW-4D-0	042823	DUP-0	42823	PY-MW-49	S-120421	MW-4S-	042823	MW-5-0	50523	PY-MW-6	5-120321	PY-DUP-	120321	MW-6-0	
	TOGS 1.1.1			Reporting		Reporting		Reporting		Reporting		Reporting		Reporting		Reporting		Reporting		Reporting
Analyte	Groundwater SCG	Units	Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit
ВТЕХ	300																			
Benzene	1	μg/L	ND	1.0	ND	0.5	ND	0.5	1,600	40	380	5	ND	0.50	ND	1.0	ND	1.0	ND	0.50
Ethylbenzene	5	μg/L	ND	1.0	ND	2.5	ND	2.5	480	40	110	25	ND	2.5	ND	1.0	ND	1.0	ND	2.5
Toluene	5	μg/L	ND	1.0	ND	2.5	ND	2.5	91	40	22 J	25	ND	2.5	ND	1.0	ND	1.0	ND	2.5
Xylenes, Total	5	μg/L	ND	2.0	ND	2.5	ND	2.5	800	80	230	25	ND	2.5	ND	2.0	ND	2.0	ND	2.5
PAHs	'																			
Acenaphthene	20	μg/L	ND	0.53	ND	0.10	0.02	J 0.10	13	2.5	5	1.00	ND	0.10	ND	0.48	ND	0.49	ND	0.10
Acenaphthylene	NS	μg/L	ND	0.32	0.07 J	0.10	0.11	0.10	64	1.5	35	1.00	ND	0.10	ND	0.29	ND	0.29	ND	0.10
Anthracene	50	μg/L	ND	0.53	0.08 J	0.10	0.13	0.10	6.3	2.5	3.2	1.00	ND	0.10	ND	0.48	ND	0.49	ND	0.10
Benzo(a)anthracene	0.002	μg/L	ND	0.49	0.11	0.10	0.18	0.10	ND	2.5	0.45 J	1.00	0.03 J	0.10	ND	0.48	ND	0.49	0.03 J	0.10
Benzo(a)pyrene	ND	μg/L	ND	0.49	0.14	0.10	0.24	0.10	ND	2.5	0.25 J	1.00	0.04 J	0.10	ND	0.48	ND	0.49	ND	0.10
Benzo(b)fluoranthene	0.002	μg/L	ND	0.49	0.11	0.10	0.18	0.10	ND	2.5	0.20 J	1.00	0.07 J	0.10	ND	0.48	ND	0.49	0.01 J	0.10
Benzo(k)fluoranthene	0.002	μg/L	ND	0.49	0.03 J	0.10	0.05	J 0.10	ND	2.5	0.09 J	1.00	0.03 J	0.10	ND	0.48	ND	0.49	ND	0.10
Benzo(ghi)perylene	NS	μg/L	ND	0.49	0.07 J	0.10	0.12	0.10	ND	2.5	ND	1.00	0.05 J	0.10	ND	0.48	ND	0.49	ND	0.10
Chrysene	0.002	μg/L	ND	0.49	0.09 J	0.10	0.15	0.10	ND	2.5	0.23 J	1.00	0.05 J	0.10	ND	0.48	ND	0.49	0.01 J	0.10
Dibenzo(a,h)anthracene	NS	μg/L	ND	0.53	0.01 J	0.10	0.02	J 0.10	ND	2.5	ND	1.00	ND	0.10	ND	0.48	ND	0.49	ND	0.10
Fluoranthene	50	μg/L	ND	0.53	0.15	0.10	0.26	0.10	2.5	2.5	1.7	1.00	0.10	0.10	ND	0.48	ND	0.49	0.03 J	0.10
Fluorene	50	μg/L	ND	0.53	0.04 J	0.10	0.08	J 0.10	17	2.5	8	1.00	ND	0.10	ND	0.48	ND	0.49	ND	0.10
Indeno(1,2,3-cd) pyrene	0.002	μg/L	ND	0.49	0.06 J	0.10	0.09	J 0.10	ND	2.5	ND	1.00	0.05 J	0.10	ND	0.48	ND	0.49	0.05 J	0.10
Naphthalene	10	μg/L	0.67 J	1.1	0.47	0.1	0.56	0.10	2,600	400	1,400	5.0	ND	0.10	ND	0.95	ND	0.97	ND	0.10
Phenanthrene	50	μg/L	ND	0.21	0.24	0.10	0.39	0.10	23	1.0	8.4	1.00	0.04 J	0.10	ND	0.19	ND	0.19	0.04 J	0.10
Pyrene	50	μg/L	ND	0.53	0.22	0.10	0.37	0.10	2.2 J	2.5	1.6	1.00	ND	0.10	ND	0.48	ND	0.49	0.08 J	0.10
2-Chloronapthalene	10	μg/L	NT	NT	ND	0.20	ND	0.20	NT	NT	ND	2.00	ND	0.20	NT	NT	NT	NT	ND	0.20
2-Methylnaphthalene	NS	μg/L	NT	NT	0.09 J	0.10	0.13	0.10	NT	NT	74	1.00	ND	0.10	NT	NT	NT	NT	ND	0.10
Cyanide																				
Cyanide, Total	0.2	mg/L	ND	0.010	0.003 J	0.005	ND	0.005	0.083	0.010	2.05	0.025	0.001 J	0.005	ND	0.010	ND	0.010	0.237	0.005

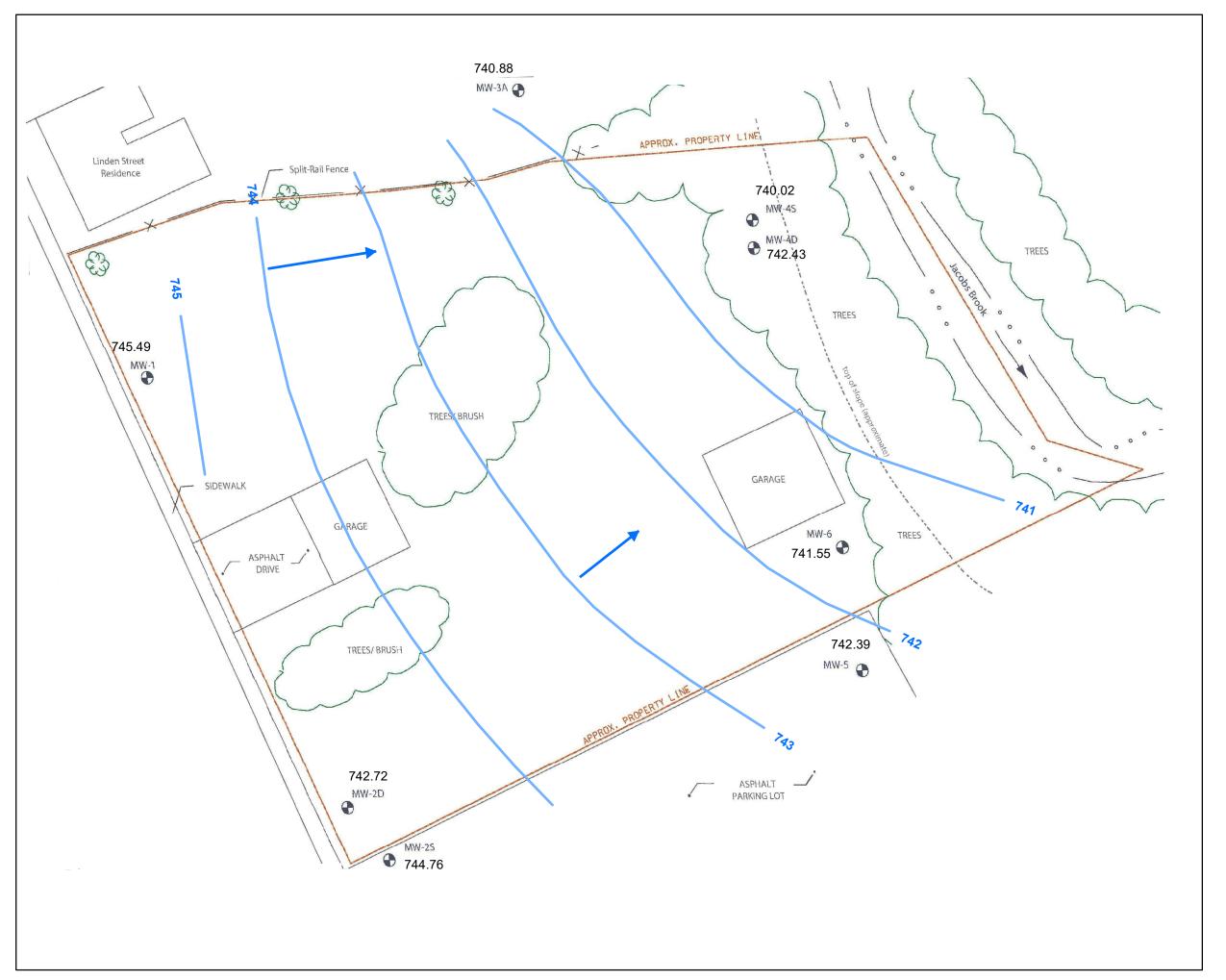
Notes:

- 1. μg/L = micrograms per liter
- 2. mg/L = milligrams per liter
- 3. "NS" = no standard, "ND" = non-detect, and "NT" = not tested
- 4. Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1) Ambient Water Quality Standards and Groundwater Effluent Limitations, June 1998.
- 5. **Bold Sample result** = compound was detected.


6. Gray shading indicates the sample result is above the TOGS 1.1.1 Standards, Criteria and Guidance Value.

- 7. "J" is a laboratory data qualifier indicating "Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value"
- 8. "F1" is a laboratory data qualifier indicating "MS and/or MSD recovery exceeds control limits"
- 9. "F2" is a laboratory data qualifier indicating "MS/MSD RPD exceeds control limits"

Figures


NEW YORK STATE ELECTRIC & GAS CORPORATION
JACKSON STREET FORMER MGP SITE
PENN YAN, NEW YORK

SITE LOCATION

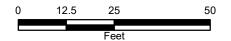
APRIL 2024

FIGURE 2

LEGEND

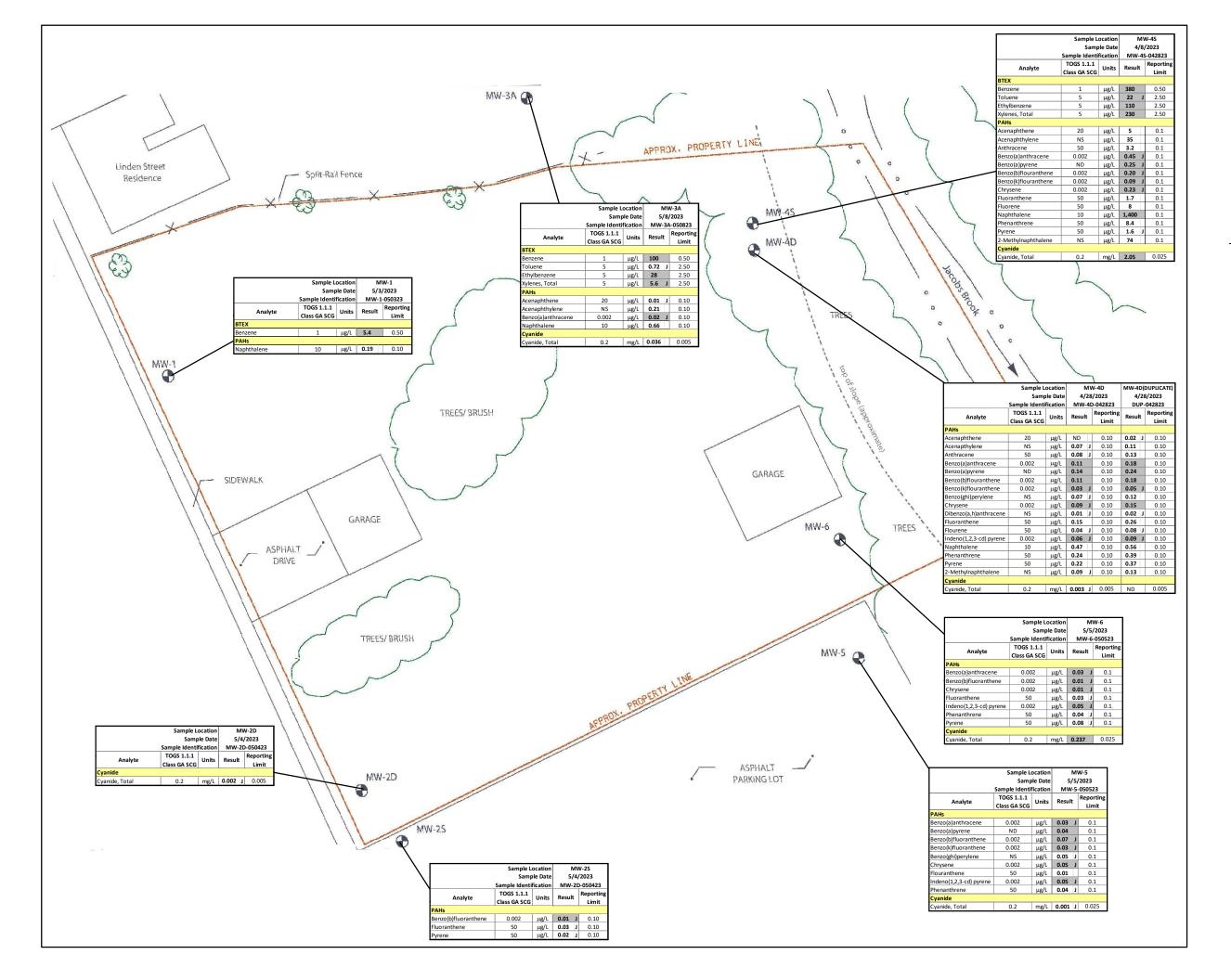
MONITORING WELL

INFERRED GROUNDWATER ELEVATION CONTOUR


INFERRED GROUNDWATER FLOW DIRECTION

NOTES

- 1. BASEMAP ADAPTED FROM SITE MANAGEMENT PLAN, FIGURE 1B.
- 2. GROUNDWATER ELEVATION MEASURED APRIL 28, 2023 IN FEET (NAVD 88).
- 3. ALL LOCATIONS ARE APPROXIMATE.
- 4. MW-2D AND MW4D GROUNDWATER ELEVATIONS EXCLUDED FROM INTERPOLATION.

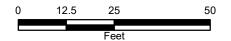

NEW YORK STATE ELECTRIC & GAS CORPORATION JACKSON STREET FORMER MGP SITE PENN YAN, NEW YORK

APRIL 2023 GROUNDWATER ELEVATION CONTOURS

APRIL 2024

FIGURE 3

LEGEND



NOT:

- 1. BASEMAP ADAPTED FROM SITE MANAGEMENT PLAN, FIGURE 1B.
- 2. ONLY ANALYTICAL DETECTIONS ARE DEPICTED.
- 3. ALL LOCATIONS ARE APPROXIMATE.

NEW YORK STATE ELECTRIC & GAS CORPORATION JACKSON STREET FORMER MGP SITE PENN YAN, NEW YORK

SPRING 2023 ANALYTICAL DETECTIONS IN GROUNDWATER

APRIL 2024

Attachment 1
Groundwater Sampling Logs

NEU-VELI	LE, LLC	ake.		Low F	low Groun	nd Water Sa	ampling Loc	1
	1120123		onnel	Due		Weather		,0°1=
Site Name V	SEG-Pan Y.	Evac	uation Metho	d Low Flow	Bladder	Well#		D
Site Location _		Sam	pling Method	Low Flow	Total Section 1	Project #	7	
Well information	on:							
Depth of Well *	40	ft.		* Measure	ements taken fro	m		
Depth to Water		ft.				Top of Well Ca	sina	
Length of Water	Column 18.	S ft.			X	Top of Protectiv	4.50	
						(Other, Specify)		
Start Purge Time	e: 10:55						-	
Elapsed	Depth	T	T		0.11.0	150000		
Time	To Water	Temperature		Conductivity	Oxidation Reduction	Dissolved	T	
() ()	(°C)	рН	(ms/cm)	Potential	Oxygen (mg/l) 1.0	Turbidity	Flow
11:00	12.8	10,6	9.26	0.290	94.3	87.3	A 0	Rate (ml/min).
0.5	13.5	10.5	82.21	0.309	109.7	1.26	1.6.6	130
0	14.6	10.5	8.53	0.260	102.6	3.31	24.4	150
10	19	10.4	8.64	0.218	104.5	1.04	26.5	150
15	19.9	10.4	2.67	0.254	103	3.05	22	150
30	13.2	10.4	8.67	0.257	97.8	3.95	35.9	150
35	25.1	10.4	8.67	0.258	91,9	4.00	19.0	150
40	76.7	10,4	8.64	0.261	89.4	3.82	15 8	150
50	20.6	10.4	8.64	0262	83.7	3.71	12.7	150
5.5	30 3	10,4	8.61	0.266	77.8	3.53	11.3	150
	31.4	10,5	8.01	6.347	-567	1.31	20.9	150
05	31.7	10.5	8.70	0,264	-78.3	2 653	13. (150
	32 3	10.5	8.98	0.271	13 5	1.02	7.80	150
	32.7	10.5	2,00	0.269	16.7	0.72	11.6	150
	33	10.5	9.01	0.269	17	0.49	11, 18	150
	33.8	10.5	8,97	0.168	12.6	0.39	10,77	150
	11.3	10:5	8,91	0.190	-13.9	0.28	7.04	150
40	34,6	10.5	8.80	0.103	-35	0.35	5.72	150
45	35.2	10,5	8.57	0.306	-53	0.2-1	7 44	150
30	32.3	0.5	8.32	0,318	-65	0.18	32 A	130
nd Purge Time:	-	_						
later sample:								
ime collected:			7	Total volume of	ourged water ren	anuad.	-	
	- Valle			otal volume of	Jurgeu water ren	wohad:		-
hysical appearan					Physical appears	ance at sampling		
Cole						Color		
Odo						Odor		
neen/Free Produ	ct Nane				Sheen/Free	e Product		
ALCO TO THE REAL PROPERTY.								
nalytical Parame	eters:							
Container Size	Contain	or Typo	#0."					
Outrainer Size	Containe	ет туре	# Collected	Field	Filtered	Preservative	e Co	ntainer pH
	-							
-			-	-				
-								
	+		7771	outlowlog				

C 1 1 1/C 1 1	EIIC	4.		Low Flo	w Ground	d Water Sa	mpling Log	Co°r
EU-VELI		Personn	el F	Suc	Che	Weather		^
ite	1,20,23	<u> </u>	on Method	Low Flow B	ladder	Well#	NW-4	D_
te Name 🛚 💆	175EG-Pen			Low Flow B		Project #		
te Location _		Samplin	g Method	LOW Flow				
ell informati epth of Well ' epth to Wate ength of Wate	. <u>40</u>			* Measurer	nents taken from		ve Casing (5))
				1000	exti u		2.44	
Start Purge Ti Elapsed Fime	Depth To Water	Temperature	рН	Conductivity	Oxidation Reduction Potential	Dissolved Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min).
3,00	36.3	10.5	8.18 7.98 7.98	0.323	-70.2 -67 -56.0	0.19	[4.7] 60.7 [6.3]	150
13:15	39	10.6	7.90	0.331	-64.8	0.53	16.6	150
	¥.							
			P					
End Plime Water sam Time collect	17 7			Total volume	of purged water	er removed:	21,000 n	L
Sheen/Free	opearance at start Color Odor Product Now		<i>t</i>	4.00-96	Shee	Color Odor n/Free Product	No-collect	1.00
Analytical I	Parameters:	ainer T						
Containe	Cont	ainer Type	# Collec	ted Fi	eld Filtered	Preserv	ative I	Container pH
						11/11/11		Samanoi pri

NEU-VELLE.	LLC			Low F	low Groun	d Water S	ampling Lo	g
Date 4	78173 EG-Pen 7		uation Method	le	Bladder	Weather Well # Project #	MW-15	60-1-
Well information: Depth of Well * Depth to Water * Length of Water Colu Start Purge Time:	13.9.9 14:30			* Measure	ements taken from	7 6 VA/OIL CO	ve Casing (33	<i>L</i>)
Time () () () () () () () () () () (3. 9 4. 1 4. 8 5. 1 5. 1	mperature ()	pH (.97 7.07 7.03 7.03 7.03 7.00 7.07 7.07 7.0	Conductivity (MS/LM) 2.13 2.13 7.19 7.19 7.19 7.19 1.19 1.19 1.19 1.19 1.71 1.77 1.77	Reduction Potential [(Oxygen (mg/l) 1.51 0.61 0.43 0.17 0.10 0.46 0.15 0.15 1.78 1.80	Turbidity (NTU) 42.7 30.7 24.1 16.13 11.3 11.5 11.5 11.5 6.3 7	Flow Rate (ml/mln) (S 0 15 0
End Purge Time: Water sample: 5', Time collected: Physical appearance a Color Odor Sheen/Free Product Analytical Parameters Container Size	at start Cless Brown Word Ye	<u>νν</u> <u>5, Μ</u> 6 Ρ			purged water rem Physical appeara Sheen/Free	ance at sampling Color Odor	Lleav Yes, MGP None	
				owflowlog				

NEU-VEL	LE. LLC		Low Flow Ground Water Sampling Log									
Date Site Name Site Location	5/3/27 17/66-Pen Pen 7m, N	A CONTRACTOR OF THE CONTRACTOR	nnel uation Method ling Method	Low Flow		Weather Well # Project #	Mw-1	76°1=				
Well informat Depth of Well Depth to Wate Length of Wate	er Column 4.1	9 ft. ft. ft.		* Measure	ments taken from	m Top of Well Ca Top of Protecti (Other, Specify	ve Casing					
Elapsed Time	Depth To Water	Temperature	рН	Conductivity	Oxidation Reduction Potential	Dissolved Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min).				
15:10 15 10 10 10 10 10 10 10 10 10 10 10 10 10	10 - 9 10 - 9 10 - 9 11 - 1 11 - 1		7.11 7.10 7.11 7.11 7.11 7.11 7.10 7.10	0.618 0.618 0.618 0.617 0.615 0.610 0.600 0.600 0.600 0.596 0.596 0.597 0.	137.6 131.4 117.0 55.4 44.0 40 37.3 14.6 17.8 11.1 22.4 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	0.44 0.13 0.10 0.07 0.01 0.07 0.0 0.0 0.0 0.0 0.0 0.0 0.	38.3 A7 G56 59 54 64 1718 1413 1459 61 33 56 63 8 46 102 94 90 87 940 97 940 97 940 97 97 97 97 97 97 97 97 97 97	100 100 100 100 100 100 100 100				
End Purge Time Water sample: Time collected: Physical appear Container Si	to tack. rance at start color Brand odor Note duct Note	ty Sino	# Collecte		Physical appear Sheen/Fre	Odor	Non	L 40-16.50				
						1		F				
				owflowlog	3							

				Low Flor	w Ground	Water Sam	pling Log	ACOE
te Name	114 123 11EG-Pen 7~	Personnel Evacuation Sampling	n Method	Low Flow Bla	adder	Weather C	10001, = 100-21)	13 [
Vell information Septh of Well * Depth to Water Length of Water	11.	7 ft.		* Measurem	ents taken from	Top of Well Casin Top of Protective (Other, Specify)		,
Start Purge Tir Elapsed Time	Depth To Water	Temperature	pН	Conductivity	Oxidation Reduction Potential	Dissolved Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min)
10 :45	16 2 16 2 18 6 21 3 23 2 25 7 26 5 30 5 30 5 30 7 31 7	11.4	8 6 6 8 6 7 8 6 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 7 8 7 7 6 7 7 7 6 7 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 7 6 7 7 7 6 7 7 7 6 7 7 7 6 7	0.443 0.449 0.451 0.457 0.460 0.462 0.473 0.491 0.491 0.491 0.492 0.493 0.493 0.493 0.493 0.508 0.514 0.519 0.514 0.544 0.561 0.561	52.3 22.6 -31.9 -52.9 -70.6 -76 -73	5.51 4.83 4.30 3.68 3.69 3.50 2.80	287 18.4 24.6 35.8 37.6 45.7 46.8 31.7 31.7 31.7 27.8 27.8 27.8 27.8 21.4 16.2 16.3 11.33 534 21.4	700 700 700 700 700 700 700 700
End Purge Ti Water samp Time collecte	le:	10	7 3		of purged water r		23,000	
Physical appoints of the Physical Appoints of	earance at start Color Odor Product					arance at samplir Color Odor ree Product	Non Non	
Analytical Pa		ainer Type	# Collect	ed Fie	eld Filtered	Preserva	tive	Container pH
				V				
				outloude				

NEU-VELL	E, LLC			Low Flo	ow Ground	water Sai	()	1(01
	14/13	Person	nel	Dol	(JW	Weather	UVUL	-25
Site Name	1566 - Pena 7	Evacua	ation Method	Low Flow B			MW	
Site Location P	in Tu, Ny		ing Method	Low Flow B	ladder	Project #		
Well information Depth of Well * Depth to Water * Length of Water	13.0	ft. ft.		* Measurer	nents taken from	Top of Well Cas Top of Protective (Other, Specify)	e Casing	
Start Purge Time	e: 13:30							
Elapsed Time (Depth To Water) (A) (A) (A) (A) (A) (A) (A) (A) (A)	Temperature ()	pH 7.29 7.23 7.23 7.21 7.20 7.20 7.20 7.20	Conductivity (ns/cn) 1.2 1 1.3 5 1.3 4 1.3 2 1.3 0 1.2 8 1.2 8 1.2 7 1.2 7	Oxidation Reduction Potential 113.5 102.6 109.2 112.8 112.8 112.5 120.5	Dissolved Oxygen (mg/l) 4,86 5,25 4,54 4,09 4,09 4,06 3,97 3,77 3,63 3,53	Turbidity (NTU) 31.8 11.9 6.0 8.0 4.8 4.12 5.72 4.9	Flow Rate (ml/min). 100 100 100 100 100 100 100 100 100 1
End Purge Time Water sample: Time collected:	11125			Total volume of	f purged water re	emoved:	9,00	Onl
Physical appea	rance at start Color ()					arance at samplin Color Odor ree Product		
Analytical Para	ameters:							
Container Si	Ze Costs	iner Type	I # Collect	ed El-	eld Filtered	I Preserva	tive I	Container pH
Container Si	Conta	iner Type	# Collect	ed FIE	nu riitered	Preserva	uve	Container pH
			+	-		-		
				owflowlo	oa		-F	

NEU-VEL	LE, LLC			Low F	low Groun	nd Water S	ampling Lo	a
Date	515 123		onnel)62	Cale	Weather		,6501=
Site Name	N7SEG-Penn	Evac	cuation Metho	d Low Flow	Bladder	Well #		3
Site Location	Pen Juin	Samı	pling Method	Low Flow	Bladder	Project #		
Well informat	tion:	4						
Depth of Well		ft.		* Measure	ements taken fro	m		
Depth to Wate		ft.			7	Top of Well Ca	asing	
Length of Wat	er Column 29.	ft.				Top of Protect		
						(Other, Specifi		
Start Purge Tir	me: 12:35							
Elapsed	Depth		1		Oxidation	T	_	
Time	To Water	Temperature		Conductivity	Reduction	Dissolved		
()	()	()	рН	(m)/(n)	Potential	Oxygen	Turbidity	Flow
12:40	811.3	10.8	7.50	0.500	11A 0	(mg/l)	(NTU)	Rate (ml/mir
95	14.7	10.8	7.50	(1505	1747	3.15	48.1	700
SO	16.6	10.7	7.60	0.506	1	1.)	6.5	200
35	20.1	10.6	760	0.500		4.55	7.02	200
13:00	21,9	10.6	7.60	2 (01	200	4.40	3.87	200
05	25,3	10.6	7.00	0.506	133.6	4.29	2.61	100
10	26.9	iclis	7.61		135.9	4.66	2.56	200
15	30.2	10.5	7.61	0.506	1371	4.43	12.45	005
7.6	30.2	10.6	7.60	0.500	138,5	7.18	2.61	200
25	30.5	10.5	7.60	0:507	139.2	3,96	3.22	100
30	31. 7	10,8	7.57	0.509	139.5	2,90	2.77	200
35	32	10.9	7.55	0.511	138,5	1.28	4.14	200
20	32.6	10.9	7.54	0.513	136.8	0.54	3.60	700
45	33. 3	THE STATE OF THE S	7.54		136.7	0.85	3.57	7.00
50	34	111	7.55	0.514	134.4	0.42	3.53	200
55	34.5		7.55	0.01.	132.3	0.24	3.28	200
14:00	35,3	11	7.55	0,500	170.2	0.13	3, 2 3	200
05	35, 8	11.1	7.55	0.495	170.1	0.15	3,53	100
10	36	11.2	7,54	0.494		0.08	3.30	200
15	36.5		7.55	0.496	109.0	0.09	3.56	700
10	36.8		7.55	0,496	108.0	0.74	3,52	200
25	37,1	11.1	7,56		108.9	0.70	3.56	200
30	37.4	11.1	7.65	0.495	109.4	0.64	3.67	200
nd Purge Time:	14/30		7.77	0.2[1]	107.5	0,49	3.64	200
	12:30							
ater sample: ne collected:	14:35							
ne conected.	(1.7)		T	otal volume of p	urged water remo	oved:	22,000 ml	
					*			
ysical appearar	nce at start		* *					
Col	lor (lew			Ρ	hysical appearar			
Ode						Color _	(le Nos	
een/Free Produ	ict No.1					Odor	Non	
					Sheen/Free	Product	None !	The same of
						_		
distinct D								-
alytical Parame	eters:					1.50		
Container Size	Containe	er Tyne I	# C-11-1	N.				
	Johnanie		# Collected	Field F	iltered	Preservative	Cor	tainer pH
				+			301	рг
							EXECUTE OF THE PARTY OF THE PAR	
		$ \Box$		owflowlog		1788		
						WOMEN'T.		

NEU-VEI	LE, LLC	1961	- 7.7	Low F	ow Ground	d Water Sa	mpling Log	
Date	515123	Perso	nnei	700	C	Weather	Cloraly,	65°F
Site Name	N75EG-Pen	- Evacu	uation Method	Low Flow	Bladder	Well#	MW-5	
Site Location	A 1 1/3		ling Method	Low Flow	(Sec.)	Project #		
		1. Camp						
Well informa Depth of Well	20	8 ft.	1	* Measure	ments taken fron	1, 1		
		_		Measure	×	Top of Well Cas	eina	
Depth to Wate Length of Wa		ft.		the second	^	Top of Protectiv		
Length of Wa		11.				(Other, Specify)		
				- 7 /				
Start Purge T	ime: 15:25		46	100	: 110	1 4		
Elapsed	Depth				Oxidation	Dissolved		
Time	To Water	Temperature		Conductivity	Reduction	Oxygen	Turbidity	Flow
15:30	00	1 (1)	7.18	(ns/cn)	Potential	(mg/l)	(NTU)	Rate (ml/min).
35	12.9	11.5	7.16	0.83	100	0.05	75	200
40	13.7	111.4	7.16	0.83	-8.5	0.0	66	200
45	15.4	11,3	7.13	0.83	0.2	0.0	+	700
50	5.4	11.3	7.05	0.84	-23.1	0.03	67	200
16:00	15.4	11.2	7.05	0.85	-7	0.29	22	100
16.00	13.4	11.6	7.34	0.87	127	2.65	14.2	240
10	163	11.3	7.40	0.89	23.2	3.00	10:18	700
15	17	111.2	7.41	0.99	5.6	1.26	11.7	700
20	17.4	11.3	7.37	0.86	-13	0.65	10.16	7.00
25	17.8	11.4	7.38	0.85	-17.2	0.35	11.4	700
30	18.6	11.4	7.46	0.83	-20.5	1.10	10.25	100
35	193	11.3	7.46	0.87	-186	0.22	11.8	zec
45	19,0	1113	7.46	0.87	-49	0.13	10.3	200
50	20.7	11.3	7.15	0.79	-4.9	0.13	10.63	200
55	21.4	11.4	7.38	0.80	- 32.6	0.00	11,82	200
17:00	21.8	11.2	7.34	0.80	_22.3	0.13	10.8	100
05	22.1	11,2	7.76	0,80	-44.3	0.30	11.7	200
10	22.7	11.2	7.38	0.21	- 39	0.13	10.73	200
15	23.1	11.7	7.35	0.80	-28.9	0.23	11.63	200
	1717	<u> </u>	1130	0.79	-26.1	0,25	10.76	100
End Purge Tir	ne: 17:7							
Water sample	e: 17/1 c						0.0	1.0
Time collected	1:17:25			Total volume of	purged water ren	noved:	22,000,	L
Physical appe	arance at start	_			Physical appear	ance at campling	-	
,	Color Light Odor More	Brown			r nysical appeal	Color	Clar	
	Odor Nove					Odor	None	- /
Sheen/Free P			*		Sheen/Fre		Nan	- /
								-
Analytical Par	rameters:		AND THE PARTY					
Container S	Size Contai	ner Type	T # Oallest	d F	d Filtons			
Jonaine C	Contai	пет туре	# Collecte	ed Fiel	d Filtered	Preservat	ive C	Container pH
				į.				
								A COL
				Outfloude	,			1.1
				owflowlog	4			

NEU-VE	LLE. LLC		The state of the s	Low F	low Groun	d Water S	ter Sampling Log		
Date	518123	Pers	Personnel) a e			Weather	5-07.6	SOF	
Site Name	NTIEG-Pon	Evac	cuation Method	Low Flow	Bladder	Well#	nh-3	4	
Site Location	Pen you, Ny	Sam	pling Method	Low Flow	Bladder	Project #			
Well information		_							
Depth of Well	* 23.	7 ft.		* Measure	ements taken from	m			
Depth to Wate	er* 11.0			7.7	4	Top of Well Ca	eina		
Length of Wat	ter Column	6 ft.				Top of Protect			
	<u> </u>					(Other, Specif			
Start Duran T	IN SE						,,		
Start Purge Ti									
Elapsed	Depth		21		Oxidation	Dissolved	1	T	
Time	To Water	Temperature	7.00	Conductivity	Reduction	Oxygen	Turbidity	Flow	
(4)	()	()	pH	(motion)	Potential	(mg/l)	(NTU)	Rate (ml/m	
19.80	12.0	10.5	7.34	0.70	1050	0.54	+		
05	12.9	10,7	7.34	0.73	100	010	+	700	
10	12.9	10.6	7.38	0,687	50.1	0.00	+	200	
1)	1219	111.5	7.39	0.77	18,5	0.00	1	706	
10	12.7	18,6	7,00	0.78	7.5	0.00		003	
23	12,9	10.7	7,41	0,681	-14.2	0.00	+ +	200	
30	12.9	10-6	7.41	0.629	-22	0.00		706	
35	12.9	10.7	7,42	0.573	-29.8		+	200	
40	12.9	10.6	7.38	050	-26	0.00	++	200	
45	12.9	10.9	7,41	0.77	-3-1-1		1	200	
50	12.9	10.7	7.45	0,09	-36.4	0.00	T.		
55	17,9	10.6	7,41	0.77	- 30.9	0.00		700	
12:00	12.4	10.7	7.42	0.73	- 30.6	0,05	122 41	200	
05	12.9	(O, C	7,40	0.6001	- 7.7.7		2244	700	
10	12.9	10,7	7.17	0.80	-38.9	0.00	2369	205	
15	12.9	1016	7,43	0.83	-40	0.00	+	200	
20	11,7	10.6	7,46	0.81	-28.2	0,00	-1	200	
25	12.9	10.7	7.46	0,79	- 3 % 1	0.00	7	700	
36	17.9	10.7	7.46	0.71	-A2:9	0.00		700	
35	12.9	10.7	7,42	0.671	-40		+	200	
40	17.7	10.7	746	0.673	-49.9	6,00	4	700	
	12,9	10.7	7.47	02.604	-52	0.00	715	700	
50	12.4	10.8	7.50	0.525	- >1.6	0.00	3175	200	
d Purge Time):					0.00	1000	1 600	
ater sample:									
me collected:									
ne conected.			T	otal volume of p	urged water remo	oved:			
								71.	
voicel en-									
ysical appeara	.9			F	hysical appeara	nce at sempling			
	olor Grey					Color			
	dor Nul					Odor			
een/Free Prod	luct Nove				Sheen/Free				
1 /	1 . 1 v			11 125					
orstal	- high tw	b.d:1-5 10	00.1	1010 5	'make	c 1.	el throng	1 -1	
alytical Param	neters:	1, 1, 1	0 (0,11	01	, proc.) 1600	PL	20-1-	
Container Size	Containe	er Type	# Collected	Field I	iltered	Dece		el el	
				, loid i		Preservativ	e Co	ontainer pH	
11517									
		The second second		-			- 4		
		14 8	11,						
				owflowlog					

NEU-VE	LLE, LLC			Low F	low Groun	d Water S	ampling Lo	g
Date	51812		sonnel)00		Weather	Sinny, 6	501=
	NYSEG-Pen 7	Seva	cuation Metho	d Low Flow	Bladder	Well#	MW-3	A
Site Location	Pen 7m, N'	Sam	pling Method	Low Flow	Bladder	Project #		
Well informa	7	7						
Depth of Well		π.		* Measure	ements taken from	m		
Depth to Wate Length of Wa					×	Top of Well Ca		
Length of Wa	ter Column	ft.		· Baja	,	Top of Protect		
045						(Other, Specify	/)	
Start Purge T								
Elapsed Time	Depth To Water	Tomoretum			Oxidation	Dissolved		
()	()	Temperature	рН	Conductivity	Reduction	Oxygen	Turbidity	Flow
12:55	12.0	111.3	7.49	0.597	Potential - 5 5	(mg/l)	(NTU)	Rate (ml/min)
13:00	12.9	1 11-2	7,50	0.870	-57.1	0.8	1776	200
05	12.9	11.0	7.51	0.569	- 57.3	0.0	1797	700
10	12.9	10.9	7.51	0.568	-57,9	0.0	1722	200
15	17 9	10.9	7.51	0,565	-59.1	0.0	1631	200
2)	12.0	11,3	7.52	0.575	-C0.7	0.0	1516	700
30	12.9	11-9	7.53	0.571	-61.2	0.0	1438	500
			7.3)	9, 9 1	6 (0.0	1369	200
							+	11/
			-					
			1					
								1
								1.2
								4 2 19 1
								1 11111
								1
								1 3
	1311							A -40
nd Purge Time	13:30							
ater sample:	. 7176							
me collected:	13:35		-	Total volume of s	urged water rem		30,00000	
				otal volume of p	urged water rem	oved:	Je, cook (=
ysical appear				3	Physical appeara	nce at sampling		
	dor Wal					Color	Gus	
	duct Nove					Odor	None	
	The second secon				Sheen/Free	Product	None	
Sang	ted @ hogh	t-hid	1:47					
alytical Parar								
Container Siz	e Containe	er Type	# Collected	Field	Filtered	Preservativ	e Co	ontainer pH
				+				pi i
				owflowlog				

Exhibit A

Groundwater Laboratory Reports and Chain of Custody Forms

ANALYTICAL REPORT

Lab Number: L2324157

Client: NEU-VELLE Inc

10 Jones Avenue Rochester, NY 14608

ATTN: Logan Reid
Phone: (585) 478-3167

Project Name: PENN YANN JACKSON ST FRMR MGP

Project Number: 2023080

Report Date: 05/18/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OH (CL108), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: PENN YANN JACKSON ST FRMR MGP

Project Number: 2023080

Lab Number: L2324157 **Report Date:** 05/18/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2324157-01	MW-4D-042823	WATER	PENN YANN , NY	04/28/23 13:25	05/03/23
L2324157-02	MW-4S-042823	WATER	PENN YANN , NY	04/28/23 13:50	05/03/23
L2324157-03	DUP-042823	WATER	PENN YANN , NY	04/28/23 16:20	05/03/23
L2324157-04	TRIP BLANK	WATER	PENN YANN , NY	04/28/23 00:00	05/03/23

L2324157

Project Name: PENN YANN JACKSON ST FRMR MGP Lab Number:

Project Number: 2023080 Report Date: 05/18/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:PENN YANN JACKSON ST FRMR MGPLab Number:L2324157Project Number:2023080Report Date:05/18/23

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L2324157-02D: The sample has elevated detection limits due to the dilution required by the elevated concentrations of non-target compounds in the sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 05/18/23

Ashaley Moynihan

ALPHA

ORGANICS

VOLATILES

L2324157

Project Name: PENN YANN JACKSON ST FRMR MGP

L2324157-01

MW-4D-042823

PENN YANN, NY

Project Number: 2023080

SAMPLE RESULTS

Date Collected: 04/28/23 13:25

Report Date: 05/18/23

Lab Number:

Date Received: 05/03/23
Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 05/10/23 00:04

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS -	Westborough Lab						
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	107	70-130	
Dibromofluoromethane	113	70-130	

L2324157

05/18/23

Project Name: PENN YANN JACKSON ST FRMR MGP Lab Number:

Project Number: 2023080

SAMPLE RESULTS

_ _ _ ...

Report Date:

Lab ID: L2324157-02 D Date Collected: 04/28/23 13:50

Client ID: MW-4S-042823 Date Received: 05/03/23 Sample Location: PENN YANN , NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 05/09/23 23:43

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS -	Westborough Lab						
Benzene	380		ug/l	5.0	1.6	10	
Toluene	22	J	ug/l	25	7.0	10	
Ethylbenzene	110		ug/l	25	7.0	10	
p/m-Xylene	130		ug/l	25	7.0	10	
o-Xylene	100		ug/l	25	7.0	10	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	104	70-130	

L2324157

Project Name: PENN YANN JACKSON ST FRMR MGP

Project Number: 2023080

SAMPLE RESULTS

05/18/23

Report Date:

Lab Number:

Lab ID: L2324157-03 Date Collected: 04/28/23 16:20

Client ID: Date Received: 05/03/23 DUP-042823 Field Prep: Sample Location: $\mathsf{PENN}\;\mathsf{YANN}\;,\;\mathsf{NY}$ Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 05/09/23 23:22

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS -	Westborough Lab						
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	110	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	107	70-130	
Dibromofluoromethane	114	70-130	

L2324157

05/18/23

Project Name: PENN YANN JACKSON ST FRMR MGP

L2324157-04

TRIP BLANK $\mathsf{PENN}\;\mathsf{YANN}\;,\;\mathsf{NY}$

Project Number: 2023080

SAMPLE RESULTS

Lab Number:

Report Date:

Date Collected: 04/28/23 00:00

Date Received: 05/03/23 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 05/09/23 23:01

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	111	70-130	
Dibromofluoromethane	112	70-130	

Project Name: PENN YANN JACKSON ST FRMR MGP **Lab Number:** L2324157

Project Number: 2023080 Report Date: 05/18/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 05/09/23 21:38

Analyst: LAC

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS - Westb	orough Lab	for sample	(s): 01-04	Batch:	WG1777208-5
Benzene	ND		ug/l	0.50	0.16
Toluene	ND		ug/l	2.5	0.70
Ethylbenzene	ND		ug/l	2.5	0.70
p/m-Xylene	ND		ug/l	2.5	0.70
o-Xylene	ND		ug/l	2.5	0.70

	Acceptance	
Surrogate	%Recovery Q	ualifier Criteria
1,2-Dichloroethane-d4	112	70-130
Toluene-d8	97	70-130
4-Bromofluorobenzene	110	70-130
Dibromofluoromethane	114	70-130

L2324157

Lab Control Sample Analysis Batch Quality Control

Project Name: PENN YANN JACKSON ST FRMR MGP

Project Number: 2023080 Lab Number:

Report Date: 05/18/23

Parameter	LCS %Recovery	Qual		CSD covery		%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-04	Batch:	WG1777208-3	WG1777208-4				
Benzene	87			87		70-130	0		20	
Toluene	88			85		70-130	3		20	
Ethylbenzene	87			85		70-130	2		20	
p/m-Xylene	90			90		70-130	0		20	
o-Xylene	90			85		70-130	6		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
	//necovery Quar	/anecovery quar	
1,2-Dichloroethane-d4	96	98	70-130
Toluene-d8	101	100	70-130
4-Bromofluorobenzene	100	100	70-130
Dibromofluoromethane	98	97	70-130

Matrix Spike Analysis Batch Quality Control

Project Name: PENN YANN JACKSON ST FRMR MGP

Project Number: 2023080

Lab Number:

L2324157

Report Date: 05/18/23

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - MW-4D-042823	Westborough	Lab Assoc	ciated sample(s	s): 01-04 QC	Batch ID:	WG17772	208-6 WG1777	208-7	QC Sample	: L2324	157-01	Client ID:
Benzene	ND	10	9.5	95		9.5	95		70-130	0		20
Toluene	ND	10	9.2	92		9.4	94		70-130	2		20
Ethylbenzene	ND	10	9.3	93		9.5	95		70-130	2		20
p/m-Xylene	ND	20	19	95		20	100		70-130	5		20
o-Xylene	ND	20	19	95		20	100		70-130	5		20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	100	101	70-130
4-Bromofluorobenzene	95	101	70-130
Dibromofluoromethane	101	100	70-130
Toluene-d8	98	101	70-130

SEMIVOLATILES

05/18/23

Dilution Factor

Project Name: Lab Number: PENN YANN JACKSON ST FRMR MGP L2324157

Project Number: 2023080

SAMPLE RESULTS

Date Collected: 04/28/23 13:25

RL

MDL

Report Date:

Lab ID: L2324157-01 Date Received: Client ID: 05/03/23 MW-4D-042823 Sample Location: Field Prep: PENN YANN, NY Not Specified

Sample Depth:

Parameter

Extraction Method: EPA 3510C Matrix: Water

Result

Extraction Date: 05/05/23 09:37 Analytical Method: 1,8270E-SIM Analytical Date: 05/08/23 20:47

Analyst: DV

Parameter	Result	Qualifier	Units	KL	MIDL	Dilution Factor	
Semivolatile Organics by GC/MS-	SIM - Westborough Lat)					
Acenaphthene	ND		ug/l	0.10	0.01	1	
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1	
Fluoranthene	0.15		ug/l	0.10	0.02	1	
Naphthalene	0.47		ug/l	0.10	0.05	1	
Benzo(a)anthracene	0.11		ug/l	0.10	0.02	1	
Benzo(a)pyrene	0.14		ug/l	0.10	0.02	1	
Benzo(b)fluoranthene	0.11		ug/l	0.10	0.01	1	
Benzo(k)fluoranthene	0.03	J	ug/l	0.10	0.01	1	
Chrysene	0.09	J	ug/l	0.10	0.01	1	
Acenaphthylene	0.07	J	ug/l	0.10	0.01	1	
Anthracene	0.08	J	ug/l	0.10	0.01	1	
Benzo(ghi)perylene	0.07	J	ug/l	0.10	0.01	1	
Fluorene	0.04	J	ug/l	0.10	0.01	1	
Phenanthrene	0.24		ug/l	0.10	0.02	1	
Dibenzo(a,h)anthracene	0.01	J	ug/l	0.10	0.01	1	
Indeno(1,2,3-cd)pyrene	0.06	J	ug/l	0.10	0.01	1	
Pyrene	0.22		ug/l	0.10	0.02	1	
2-Methylnaphthalene	0.09	J	ug/l	0.10	0.02	1	

Qualifier

Units

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	90		23-120	
2-Fluorobiphenyl	71		15-120	
4-Terphenyl-d14	61		41-149	

Project Name: Lab Number: PENN YANN JACKSON ST FRMR MGP L2324157

Project Number: Report Date: 2023080 05/18/23

SAMPLE RESULTS

Lab ID: L2324157-02 D2 Date Collected: 04/28/23 13:50

Date Received: Client ID: MW-4S-042823 05/03/23 Sample Location: Field Prep: PENN YANN, NY Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 05/05/23 09:37 Analytical Method: 1,8270E-SIM Analytical Date:

Analyst: RP

05/17/23 17:06

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - West	borough Lab					
Naphthalene	1400		ug/l	5.0	2.4	50

05/18/23

Report Date:

Project Name: PENN YANN JACKSON ST FRMR MGP Lab Number: L2324157

Project Number: 2023080

SAMPLE RESULTS

Lab ID: L2324157-02 D Date Collected: 04/28/23 13:50

Client ID: MW-4S-042823 Date Received: 05/03/23 Sample Location: PENN YANN , NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270E-SIM Extraction Date: 05/05/23 09:37
Analytical Date: 05/17/23 16:40

Analyst: RP

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM	- Westborough La	ıb				
Acenaphthene	5.0		ug/l	1.0	0.14	10
2-Chloronaphthalene	ND		ug/l	2.0	0.18	10
Fluoranthene	1.7		ug/l	1.0	0.20	10
Naphthalene	1300	E	ug/l	1.0	0.49	10
Benzo(a)anthracene	0.45	J	ug/l	1.0	0.20	10
Benzo(a)pyrene	0.25	J	ug/l	1.0	0.15	10
Benzo(b)fluoranthene	0.20	J	ug/l	1.0	0.12	10
Benzo(k)fluoranthene	0.09	J	ug/l	1.0	0.09	10
Chrysene	0.23	J	ug/l	1.0	0.12	10
Acenaphthylene	35		ug/l	1.0	0.12	10
Anthracene	3.2		ug/l	1.0	0.14	10
Benzo(ghi)perylene	ND		ug/l	1.0	0.14	10
Fluorene	8.0		ug/l	1.0	0.14	10
Phenanthrene	8.4		ug/l	1.0	0.23	10
Dibenzo(a,h)anthracene	ND		ug/l	1.0	0.13	10
Indeno(1,2,3-cd)pyrene	ND		ug/l	1.0	0.12	10
Pyrene	1.6		ug/l	1.0	0.19	10
2-Methylnaphthalene	74		ug/l	1.0	0.22	10

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	96	23-120	
2-Fluorobiphenyl	81	15-120	
4-Terphenyl-d14	84	41-149	

L2324157

05/18/23

Project Name: PENN YANN JACKSON ST FRMR MGP Lab Number:

Project Number: 2023080

L2324157-03

SAMPLE RESULTS

Date Collected: 04/28/23 16:20

Report Date:

Client ID: DUP-042823 Date Received: 05/03/23 Sample Location: PENN YANN , NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270E-SIM Extraction Date: 05/05/23 09:37
Analytical Date: 05/08/23 20:31

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/M	S-SIM - Westborough La	b				
Acenaphthene	0.02	J	ug/l	0.10	0.01	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	0.26		ug/l	0.10	0.02	1
Naphthalene	0.56		ug/l	0.10	0.05	1
Benzo(a)anthracene	0.18		ug/l	0.10	0.02	1
Benzo(a)pyrene	0.24		ug/l	0.10	0.02	1
Benzo(b)fluoranthene	0.18		ug/l	0.10	0.01	1
Benzo(k)fluoranthene	0.05	J	ug/l	0.10	0.01	1
Chrysene	0.15		ug/l	0.10	0.01	1
Acenaphthylene	0.11		ug/l	0.10	0.01	1
Anthracene	0.13		ug/l	0.10	0.01	1
Benzo(ghi)perylene	0.12		ug/l	0.10	0.01	1
Fluorene	0.08	J	ug/l	0.10	0.01	1
Phenanthrene	0.39		ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	0.02	J	ug/l	0.10	0.01	1
Indeno(1,2,3-cd)pyrene	0.09	J	ug/l	0.10	0.01	1
Pyrene	0.37		ug/l	0.10	0.02	1
2-Methylnaphthalene	0.13		ug/l	0.10	0.02	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	97		23-120	
2-Fluorobiphenyl	77		15-120	
4-Terphenyl-d14	58		41-149	

L2324157

05/18/23

Lab Number:

Project Name: PENN YANN JACKSON ST FRMR MGP

Project Number: 2023080 Report Date:

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270E-SIM Extraction Method: EPA 3510C
Analytical Date: 05/08/23 19:42 Extraction Date: 05/05/23 09:37

Analyst: DV

arameter	Result	Qualifier	Units	RL	MDL
emivolatile Organics by GC/M	S-SIM - Westbo	rough Lab	for sample(s)	: 01-03	Batch: WG1775194-7
Acenaphthene	ND		ug/l	0.10	0.01
2-Chloronaphthalene	ND		ug/l	0.20	0.02
Fluoranthene	ND		ug/l	0.10	0.02
Naphthalene	0.05	J	ug/l	0.10	0.05
Benzo(a)anthracene	ND		ug/l	0.10	0.02
Benzo(a)pyrene	ND		ug/l	0.10	0.02
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01
Chrysene	ND		ug/l	0.10	0.01
Acenaphthylene	ND		ug/l	0.10	0.01
Anthracene	ND		ug/l	0.10	0.01
Benzo(ghi)perylene	ND		ug/l	0.10	0.01
Fluorene	0.02	J	ug/l	0.10	0.01
Phenanthrene	0.04	J	ug/l	0.10	0.02
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01
Pyrene	ND		ug/l	0.10	0.02
2-Methylnaphthalene	ND		ug/l	0.10	0.02

		Acceptance			
Surrogate	%Recovery	Qualifier Criteria			
Nitrobenzene-d5	102	23-120			
2-Fluorobiphenyl	80	15-120			
4-Terphenyl-d14	76	41-149			

Lab Control Sample Analysis Batch Quality Control

Project Name: PENN YANN JACKSON ST FRMR MGP

Project Number: 2023080

Lab Number: L2324157

Report Date: 05/18/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recove Limits	ry RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS-SIM -	Westborough Lab A	ssociated sam	ple(s): 01-03	Batch: \	WG1775194-2	WG1775194-3			
Acenaphthene	70		65		40-140	7		40	
2-Chloronaphthalene	69		65		40-140	6		40	
Fluoranthene	77		70		40-140	10		40	
Naphthalene	65		62		40-140	5		40	
Benzo(a)anthracene	86		80		40-140	7		40	
Benzo(a)pyrene	87		81		40-140	7		40	
Benzo(b)fluoranthene	82		77		40-140	6		40	
Benzo(k)fluoranthene	85		78		40-140	9		40	
Chrysene	78		71		40-140	9		40	
Acenaphthylene	78		74		40-140	5		40	
Anthracene	77		71		40-140	8		40	
Benzo(ghi)perylene	76		72		40-140	5		40	
Fluorene	75		70		40-140	7		40	
Phenanthrene	70		65		40-140	7		40	
Dibenzo(a,h)anthracene	74		70		40-140	6		40	
Indeno(1,2,3-cd)pyrene	76		71		40-140	7		40	
Pyrene	75		68		40-140	10		40	
2-Methylnaphthalene	73		69		40-140	6		40	

Lab Control Sample Analysis Batch Quality Control

Project Name: PENN YANN JACKSON ST FRMR MGP

Lab Number:

L2324157

Project Number: 2023080

Panart Data

Report Date:

05/18/23

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-03 Batch: WG1775194-2 WG1775194-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Nitrobenzene-d5	89	87	23-120
2-Fluorobiphenyl	70	66	15-120
4-Terphenyl-d14	69	63	41-149

Matrix Spike Analysis Batch Quality Control

Project Name: PENN YANN JACKSON ST FRMR MGP

Project Number: 2023080

Lab Number:

L2324157

Report Date:

05/18/23

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	y RPD	Qual	RPD Limits
Semivolatile Organics by G Client ID: MW-4D-042823	C/MS-SIM - We	stborough Lab	Associated	d sample(s): 01	-03 QC	Batch ID:	WG1775194-4	WG17	75194-5	QC Samp	ole: L232	24157-01
Acenaphthene	ND	18.2	14	77		15	83		40-140	7		40
2-Chloronaphthalene	ND	18.2	13	72		14	77		40-140	0		40
Fluoranthene	0.15	18.2	17	93		17	93		40-140	13		40
Naphthalene	0.47	18.2	14	74		15	80		40-140	7		40
Benzo(a)anthracene	0.11	18.2	15	82		18	98		40-140	25		40
Benzo(a)pyrene	0.14	18.2	12	65		15	82		40-140	31		40
Benzo(b)fluoranthene	0.11	18.2	12	65		13	71		40-140	17		40
Benzo(k)fluoranthene	0.03J	18.2	11	61		13	72		40-140	17		40
Chrysene	0.09J	18.2	14	77		16	88		40-140	21		40
Acenaphthylene	0.07J	18.2	16	88		18	99		40-140	18		40
Anthracene	0.08J	18.2	16	88		17	94		40-140	13		40
Benzo(ghi)perylene	0.07J	18.2	6.4	35	Q	6.8	37	Q	40-140	29		40
Fluorene	0.04J	18.2	15	83		16	88		40-140	13		40
Phenanthrene	0.24	18.2	15	81		16	87		40-140	13		40
Dibenzo(a,h)anthracene	0.01J	18.2	7.0	39	Q	7.7	42		40-140	35		40
Indeno(1,2,3-cd)pyrene	0.06J	18.2	7.0	39	Q	7.6	42		40-140	39		40
Pyrene	0.22	18.2	16	87		17	92		40-140	13		40
2-Methylnaphthalene	0.09J	18.2	15	83		16	88		40-140	13		40

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
2-Fluorobiphenyl	79	85	15-120
4-Terphenyl-d14	84	90	41-149

Matrix Spike Analysis Batch Quality Control

Project Name: PENN YANN JACKSON ST FRMR MGP

Project Number: 2023080

Lab Number:

L2324157

Report Date:

05/18/23

	Native	MS	MS	MS		MSD	MSD	F	Recovery			RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-03 QC Batch ID: WG1775194-4 WG1775194-5 QC Sample: L2324157-01 Client ID: MW-4D-042823

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
- Nitrobenzene-d5	96	104	23-120

INORGANICS & MISCELLANEOUS

Project Name: PENN YANN JACKSON ST FRMR MGP Lab Number: L2324157

Project Number: 2023080 Report Date: 05/18/23

SAMPLE RESULTS

Lab ID: L2324157-01 Date Collected: 04/28/23 13:25

Client ID: MW-4D-042823 Date Received: 05/03/23 Sample Location: PENN YANN , NY Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	tborough Lat)								
Cyanide, Total	0.003	J	mg/l	0.005	0.001	1	05/08/23 03:00	05/08/23 18:24	1,9010C/9012B	JER

Project Name: PENN YANN JACKSON ST FRMR MGP Lab Number: L2324157

Project Number: 2023080 Report Date: 05/18/23

SAMPLE RESULTS

 Lab ID:
 L2324157-02
 Date Collected:
 04/28/23 13:50

 Client ID:
 MW-4S-042823
 Date Received:
 05/03/23

Sample Location: PENN YANN , NY Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result C	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab									
Cyanide, Total	2.05		mg/l	0.025	0.009	5	05/08/23 03:00	05/08/23 18:51	1,9010C/9012B	JER

Project Name: PENN YANN JACKSON ST FRMR MGP Lab Number: L2324157

Project Number: 2023080 Report Date: 05/18/23

SAMPLE RESULTS

Lab ID: L2324157-03 Date Collected: 04/28/23 16:20

Client ID: DUP-042823 Date Received: 05/03/23 Sample Location: PENN YANN , NY Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Cyanide, Total	ND		mg/l	0.005	0.001	1	05/09/23 03:00	05/10/23 13:44	1,9010C/9012B	JER

Project Name: PENN YANN JACKSON ST FRMR MGF Lab Number: L2324157

Project Number: 2023080 Report Date: 05/18/23

Method Blank Analysis Batch Quality Control

Parameter	Result Q	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab	for sam	nple(s): 01	-02 Bat	tch: WC	G1775958-	1			
Cyanide, Total	0.003	J	mg/l	0.005	0.001	1	05/08/23 03:00	05/08/23 18:07	1,9010C/901	2B JER
General Chemistry -	Westborough Lab	for sam	nple(s): 03	Batch:	WG17	76444-1				
Cyanide, Total	ND		mg/l	0.005	0.001	1	05/09/23 03:00	05/10/23 13:36	1,9010C/901	2B JER

Lab Control Sample Analysis Batch Quality Control

Project Name: PENN YANN JACKSON ST FRMR MGP

Lab Number:

L2324157

Project Number: 2023080

Report Date: 05/18/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab Ass	sociated sample(s): 01-02	Batch: WG1775	958-2 WG	1775958-3				
Cyanide, Total	104		98		85-115	6		20	
General Chemistry - Westborough Lab Associated sample(s): 03 Batch: WG1776444-2 WG1776444-3									
Cyanide, Total	91		96		85-115	5		20	

Matrix Spike Analysis Batch Quality Control

Project Name: PENN YANN JACKSON ST FRMR MGP

Project Number: 2023080

Lab Number:

L2324157

05/18/23

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD (RPD Qual Limits
General Chemistry - Westborou MW-4D-042823	igh Lab Asso	ciated samp	le(s): 01-02	QC Batch II	D: WG1	775958-4	WG1775958-5	QC Sa	mple: L232	24157-01	Client ID:
Cyanide, Total	0.003J	0.2	0.222	111		0.219	110		80-120	1	20
General Chemistry - Westborou Sample	igh Lab Asso	ciated samp	le(s): 03 (QC Batch ID: V	VG1776	6444-4 W	G1776444-5 Q	C Samp	le: L23249	70-02	Client ID: MS
Cyanide, Total	ND	0.2	0.210	105		0.210	105		80-120	0	20

Serial_No:05182316:30 *Lab Number:* L2324157

Project Name: PENN YANN JACKSON ST FRMR MGP

Project Number: 2023080 Report Date: 05/18/23

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Container Information

Cooler Custody Seal

A Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2324157-01A	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-BTEX(14)
L2324157-01A1	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-BTEX(14)
L2324157-01A2	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-BTEX(14)
L2324157-01B	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-BTEX(14)
L2324157-01B1	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-BTEX(14)
L2324157-01B2	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-BTEX(14)
L2324157-01C	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-BTEX(14)
L2324157-01C1	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-BTEX(14)
L2324157-01C2	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-BTEX(14)
L2324157-01D	Plastic 250ml NaOH preserved	Α	>12	>12	2.8	Υ	Absent		TCN-9010(14)
L2324157-01D1	Plastic 250ml NaOH preserved	Α	>12	>12	2.8	Υ	Absent		TCN-9010(14)
L2324157-01D2	Plastic 250ml NaOH preserved	Α	>12	>12	2.8	Υ	Absent		TCN-9010(14)
L2324157-01E	Amber 250ml unpreserved	Α	7	7	2.8	Υ	Absent		NYTCL-PAHSIM-LVI(7)
L2324157-01E1	Amber 250ml unpreserved	Α	7	7	2.8	Υ	Absent		NYTCL-PAHSIM-LVI(7)
L2324157-01E2	Amber 250ml unpreserved	Α	7	7	2.8	Υ	Absent		NYTCL-PAHSIM-LVI(7)
L2324157-01F	Amber 250ml unpreserved	Α	7	7	2.8	Υ	Absent		NYTCL-PAHSIM-LVI(7)
L2324157-01F1	Amber 250ml unpreserved	Α	7	7	2.8	Υ	Absent		NYTCL-PAHSIM-LVI(7)
L2324157-01F2	Amber 250ml unpreserved	Α	7	7	2.8	Υ	Absent		NYTCL-PAHSIM-LVI(7)
L2324157-02A	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-BTEX(14)
L2324157-02B	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-BTEX(14)
L2324157-02C	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-BTEX(14)
L2324157-02D	Plastic 250ml NaOH preserved	Α	>12	>12	2.8	Υ	Absent		TCN-9010(14)
L2324157-02E	Amber 250ml unpreserved	Α	7	7	2.8	Υ	Absent		NYTCL-PAHSIM-LVI(7)

Lab Number: L2324157

Report Date: 05/18/23

Project Name: PENN YANN JACKSON ST FRMR MGP

Project Number: 2023080

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2324157-02F	Amber 250ml unpreserved	Α	7	7	2.8	Υ	Absent		NYTCL-PAHSIM-LVI(7)
L2324157-03A	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-BTEX(14)
L2324157-03B	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-BTEX(14)
L2324157-03C	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-BTEX(14)
L2324157-03D	Plastic 250ml NaOH preserved	Α	>12	>12	2.8	Υ	Absent		TCN-9010(14)
L2324157-03E	Amber 250ml unpreserved	Α	7	7	2.8	Υ	Absent		NYTCL-PAHSIM-LVI(7)
L2324157-03F	Amber 250ml unpreserved	Α	7	7	2.8	Υ	Absent		NYTCL-PAHSIM-LVI(7)
L2324157-04A	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-BTEX(14)
L2324157-04B	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-BTEX(14)

Project Name: PENN YANN JACKSON ST FRMR MGP Lab Number: L2324157

Project Number: 2023080 Report Date: 05/18/23

GLOSSARY

Acronyms

EDL

LCSD

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

Laboratory Control Sample Duplicate: Refer to LCS.

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:PENN YANN JACKSON ST FRMR MGPLab Number:L2324157Project Number:2023080Report Date:05/18/23

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name: PENN YANN JACKSON ST FRMR MGP Lab Number: L2324157

Project Number: 2023080 Report Date: 05/18/23

Data Qualifiers

Identified Compounds (TICs).

- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name: PENN YANN JACKSON ST FRMR MGP Lab Number: L2324157

Project Number: 2023080 Report Date: 05/18/23

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 19

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene

4-Ethyltoluene.

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. **EPA 200.8:** Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. **EPA 245.1** Hg. **EPA 522, EPA 537.1.**

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

ДІРНА	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitner Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	Vay	05	Page			Date in l	Rec'o	5	14	123		ALPHA 306# 12324157
Westborough, MA 01581	Mansfield, MA 02048	Project Information	TO STATE		6111115	S. O. S. S.	Deliv	erable	s			THE REAL PROPERTY.		Billing Information
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300	Project Name: Penn	7.00	ckin St	rul Fran	MAD		ASP-			X AS	P-B		Same as Client Info
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: Pan		NS	1461 1774	701	15		S (1 F	ile)		ulS (4 File	a)	PO#
Client Information	THE RESERVE	Project # 20230		/			17	Other					,	
Client: New-vell	110	(Use Project name as Pr					Regu	and the same	-	rement		300	100	Disposal Site Information
Address: 10 Des		Project Manager: Lon	-	d				NY TO			□ NY	Part 375		
Loclesh N		ALPHAQuote #:	, , , , ,				lБ		Standar	rds		CP-51		Please identify below location of applicable disposal facilities.
Phone: 585-47		Turn-Around Time	THE PERSON	CONTROL OF	-		H		stricted		Oth			Disposal Facility:
Fax:	0 3.0 1	Standard	X	Due Date:			H		restrict			***		□ NJ □ NY
Email: Lyeide	nh-velle.com			# of Days:			lН			ischarge				Other:
These samples have be			· —	# Of Days.				LYSIS		no on ital gro	,		\neg	Sample Filtration
Other project specific				3									-	0
			1 1	W			BTEX	-PAILSIM-LUI						☐ Done to Lab to do
Jarger 4/2019	23, twent in	day 4 of 7d.	y hold	A				5						Preservation
Please specify Metals				V			92	3						Lab to do
r reads specify means							60		5					(Please Specify helew)
ALDUAL S ID			Cell	ation .			771	7	>			1 1		(Please Specify below)
ALPHA Lab ID (Lab Use Only)	Sa	mple ID	31-5-221	ection	Sample Matrix	Sampler's Initials	NYT	1	-				- 1	
	101 10	0.12023	A/28/27	Time	1145000000	310100000	-	5		-	-	+	-	Sample Specific Comments
24157-01	MW 10.	042663 NS/DJ-042623	Contract of the contract of th	13:25	QW.	C	×	^	^	_	-	+	\dashv	
V					(16))(^	×	×	-	_	+	-	
02	MW 45-	042823	1/20/2)		00	25	×	Х	y	_	_	+	-	
03	Dape - 0	12823	1/29/23		Ow)(٨	1-	7-	_	_	+	_	
04	Trip Bla	ile	7 ×	××	77	Xy	×	-		_	_	+	_	
	- W									_		\perp	_	
			V					_						
P0002100000	Container Code P = Plastic	Westboro: Certification N	o: MA935		Cont	ainer Type								Please print clearly, legibly
B = HCl	A = Amber Glass	Mansfield: Certification No	o: MA015		5011	unior Type								and completely. Samples can
	V = Vial G = Glass			- 1	D	reservative								not be logged in and turnaround time clock will not
	B = Bacteria Cup					CSCIVALIVE								start until any ambiguities are
1 - 1110011	C = Cube C = Other	Relinquished E	ly:	Date/1	Time /	TO . F	Receiv	ed By:			. Da	e/Time		resolved. BY EXECUTING
H = Na ₂ S ₂ O ₃	E = Encore	ahar (5/3/130	10:30	Bally	S	ces S	es.	+ 5	/3/23			THIS COC, THE CLIENT HAS READ AND AGREES
K/E = Zn Ac/NaOH	D = BOD Bottle	Alacoger Su	Sart	C/3/23	1300	(KBcll			Ses		13/2	1900		TO BE BOUND BY ALPHA'S
O = Other			fast	6/3/27	1300	Tund o	_	001	_	~ D'	5/0	4/2	3 -	THRUS CONDITIONS.
Form No: 01-25 HC (rev. 30-	Sept-2013)			11		1			1					(See reverse side.)

ANALYTICAL REPORT

Lab Number: L2324872

Client: NEU-VELLE Inc

10 Jones Avenue Rochester, NY 14608

ATTN: Logan Reid
Phone: (585) 478-3167

Project Name: PENN YAN FORMER MGP SITE

Project Number: 2023080

Report Date: 05/19/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OH (CL108), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: PENN YAN FORMER MGP SITE

Project Number: 2023080

 Lab Number:
 L2324872

 Report Date:
 05/19/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2324872-01	MW-1-050323	WATER	PENN YAN, NY	05/03/23 17:00	05/05/23
L2324872-02	MW-2D-050423	WATER	PENN YAN, NY	05/04/23 12:45	05/05/23
L2324872-03	MW-2S-050423	WATER	PENN YAN, NY	05/04/23 14:25	05/05/23
L2324872-04	EQUIPMENT BLANK	WATER	PENN YAN, NY	05/04/23 13:02	05/05/23
L2324872-05	TRIP BLANK	WATER	PENN YAN, NY	05/05/23 09:00	05/05/23

Project Name:PENN YAN FORMER MGP SITELab Number:L2324872Project Number:2023080Report Date:05/19/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:PENN YAN FORMER MGP SITELab Number:L2324872Project Number:2023080Report Date:05/19/23

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Leley Well Kelly O'Neill

Authorized Signature:

Title: Technical Director/Representative

Date: 05/19/23

ORGANICS

VOLATILES

Project Name: Lab Number: PENN YAN FORMER MGP SITE L2324872

Project Number: Report Date: 2023080 05/19/23

SAMPLE RESULTS

Lab ID: L2324872-01 Date Collected: 05/03/23 17:00

Client ID: Date Received: 05/05/23 MW-1-050323 Field Prep: Sample Location: PENN YAN, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 05/15/23 11:43

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS -	Westborough Lab					
Benzene	5.4		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	103	70-130	
Dibromofluoromethane	96	70-130	

05/19/23

Report Date:

Project Name: PENN YAN FORMER MGP SITE **Lab Number:** L2324872

Project Number: 2023080

SAMPLE RESULTS

Lab ID: L2324872-02 Date Collected: 05/04/23 12:45

Client ID: MW-2D-050423 Date Received: 05/05/23
Sample Location: PENN YAN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 05/15/23 12:04

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - \	Westborough Lab						
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	98	70-130	

Project Name: Lab Number: PENN YAN FORMER MGP SITE L2324872

Project Number: Report Date: 2023080 05/19/23

SAMPLE RESULTS

Lab ID: L2324872-03 Date Collected: 05/04/23 14:25

Client ID: MW-2S-050423 Date Received: 05/05/23 Field Prep: Sample Location: PENN YAN, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 05/15/23 12:26

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbo	orough Lab						
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	107	70-130	
Dibromofluoromethane	107	70-130	

L2324872

05/19/23

Project Name: PENN YAN FORMER MGP SITE

Project Number: 2023080

SAMPLE RESULTS

Date Collected:

Lab Number:

Report Date:

Lab ID: L2324872-04 05/04/23 13:02 Client ID:

Date Received: 05/05/23 **EQUIPMENT BLANK** Field Prep: Sample Location: PENN YAN, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 05/15/23 12:48

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	111	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	106	70-130	
Dibromofluoromethane	108	70-130	

Project Name: PENN YAN FORMER MGP SITE Lab Number: L2324872

Project Number: 2023080 Report Date: 05/19/23

SAMPLE RESULTS

Lab ID: L2324872-05 Date Collected: 05/05/23 09:00

Client ID: TRIP BLANK Date Received: 05/05/23 Sample Location: PENN YAN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 05/15/23 13:10

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborou	ugh Lab						
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	93	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	100	70-130	

Project Name: PENN YAN FORMER MGP SITE **Lab Number:** L2324872

Project Number: 2023080 Report Date: 05/19/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 05/15/23 05:36

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS - Westh	orough Lab	for sample	(s): 01-05	Batch:	WG1779333-5
Benzene	ND		ug/l	0.50	0.16
Toluene	ND		ug/l	2.5	0.70
Ethylbenzene	ND		ug/l	2.5	0.70
p/m-Xylene	ND		ug/l	2.5	0.70
o-Xylene	ND		ug/l	2.5	0.70

		Acceptance			
Surrogate	%Recovery Qual	lifier Criteria			
1.2-Dichloroethane-d4	107	70-130			
Toluene-d8	97	70-130			
4-Bromofluorobenzene	100	70-130			
Dibromofluoromethane	98	70-130			

Project Name: PENN YAN FORMER MGP SITE

Project Number: 2023080

Lab Number:

L2324872

05/19/23

Report Date:

Parameter	LCS %Recovery	Qual		.CSD ecovery		%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-05	Batch:	WG1779333-3	WG1779333-4				
Benzene	99			100		70-130	1		20	
Toluene	93			99		70-130	6		20	
Ethylbenzene	96			97		70-130	1		20	
p/m-Xylene	90			95		70-130	5		20	
o-Xylene	95			95		70-130	0		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	104	108	70-130
Toluene-d8	99	102	70-130
4-Bromofluorobenzene	99	100	70-130
Dibromofluoromethane	100	98	70-130

SEMIVOLATILES

Project Name: PENN YAN FORMER MGP SITE Lab Number: L2324872

Project Number: 2023080 Report Date: 05/19/23

SAMPLE RESULTS

OAMII LE NEGOLT

05/10/23 17:11

Lab ID: L2324872-01 Date Collected: 05/03/23 17:00

Client ID: MW-1-050323 Date Received: 05/05/23 Sample Location: PENN YAN, NY Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270E-SIM Extraction Date: 05/09/23 07:35

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-SIM	Л - Westborough La	ab					
Acenaphthene	ND		ug/l	0.10	0.01	1	
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1	
Fluoranthene	ND		ug/l	0.10	0.02	1	
Naphthalene	0.19		ug/l	0.10	0.05	1	
Benzo(a)anthracene	ND		ug/l	0.10	0.02	1	
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1	
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	1	
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1	
Chrysene	ND		ug/l	0.10	0.01	1	
Acenaphthylene	ND		ug/l	0.10	0.01	1	
Anthracene	ND		ug/l	0.10	0.01	1	
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1	
Fluorene	ND		ug/l	0.10	0.01	1	
Phenanthrene	ND		ug/l	0.10	0.02	1	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1	
Pyrene	ND		ug/l	0.10	0.02	1	
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	78		23-120	
2-Fluorobiphenyl	74		15-120	
4-Terphenyl-d14	77		41-149	

Project Name: Lab Number: PENN YAN FORMER MGP SITE L2324872

Project Number: 2023080 **Report Date:** 05/19/23

SAMPLE RESULTS

Lab ID: Date Collected: L2324872-02 05/04/23 12:45

Date Received: Client ID: 05/05/23 MW-2D-050423 Sample Location: Field Prep: PENN YAN, NY Not Specified

Sample Depth:

Parameter

Extraction Method: EPA 3510C Matrix: Water

Result

Extraction Date: 05/10/23 08:42 Analytical Method: 1,8270E-SIM Analytical Date: 05/11/23 18:33

Analyst: AΗ

Parameter	Result	Qualifier	Units	KL	MIDL	Dilution Factor	
Semivolatile Organics by GC/MS-	-SIM - Westborough Lat)					
Acenaphthene	ND		ug/l	0.10	0.01	1	
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1	
Fluoranthene	ND		ug/l	0.10	0.02	1	
Naphthalene	ND		ug/l	0.10	0.05	1	
Benzo(a)anthracene	ND		ug/l	0.10	0.02	1	
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1	
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	1	
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1	
Chrysene	ND		ug/l	0.10	0.01	1	
Acenaphthylene	ND		ug/l	0.10	0.01	1	
Anthracene	ND		ug/l	0.10	0.01	1	
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1	
Fluorene	ND		ug/l	0.10	0.01	1	
Phenanthrene	ND		ug/l	0.10	0.02	1	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1	
Pyrene	ND		ug/l	0.10	0.02	1	
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1	

Qualifier

Units

RL

MDL

Dilution Factor

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	78		23-120	
2-Fluorobiphenyl	74		15-120	
4-Terphenyl-d14	76		41-149	

Project Name: PENN YAN FORMER MGP SITE Lab Number: L2324872

Project Number: 2023080 Report Date: 05/19/23

SAMPLE RESULTS

05/11/23 18:50

Lab ID: L2324872-03 Date Collected: 05/04/23 14:25

Client ID: MW-2S-050423 Date Received: 05/05/23 Sample Location: PENN YAN, NY Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270E-SIM Extraction Date: 05/10/23 08:42

Analyst: AH

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-SIM	- Westborough La	ab					
Acenaphthene	ND		ug/l	0.10	0.01	1	
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1	
Fluoranthene	0.03	J	ug/l	0.10	0.02	1	
Naphthalene	ND		ug/l	0.10	0.05	1	
Benzo(a)anthracene	ND		ug/l	0.10	0.02	1	
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1	
Benzo(b)fluoranthene	0.01	J	ug/l	0.10	0.01	1	
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1	
Chrysene	ND		ug/l	0.10	0.01	1	
Acenaphthylene	ND		ug/l	0.10	0.01	1	
Anthracene	ND		ug/l	0.10	0.01	1	
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1	
Fluorene	ND		ug/l	0.10	0.01	1	
Phenanthrene	ND		ug/l	0.10	0.02	1	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1	
Pyrene	0.02	J	ug/l	0.10	0.02	1	
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	81		23-120	
2-Fluorobiphenyl	69		15-120	
4-Terphenyl-d14	79		41-149	

Project Name: PENN YAN FORMER MGP SITE Lab Number: L2324872

Project Number: 2023080 Report Date: 05/19/23

SAMPLE RESULTS

Lab ID: L2324872-04 Date Collected: 05/04/23 13:02

Client ID: EQUIPMENT BLANK Date Received: 05/05/23
Sample Location: PENN YAN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270E-SIM Extraction Date: 05/10/23 08:42
Analytical Date: 05/11/23 19:06

Analyst: AH

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-SIM	l - Westborough La	ab					
Acenaphthene	ND		ug/l	0.10	0.01	1	
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1	
Fluoranthene	ND		ug/l	0.10	0.02	1	
Naphthalene	ND		ug/l	0.10	0.05	1	
Benzo(a)anthracene	ND		ug/l	0.10	0.02	1	
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1	
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	1	
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1	
Chrysene	ND		ug/l	0.10	0.01	1	
Acenaphthylene	ND		ug/l	0.10	0.01	1	
Anthracene	ND		ug/l	0.10	0.01	1	
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1	
Fluorene	ND		ug/l	0.10	0.01	1	
Phenanthrene	ND		ug/l	0.10	0.02	1	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1	
Pyrene	ND		ug/l	0.10	0.02	1	
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	82		23-120	
2-Fluorobiphenyl	74		15-120	
4-Terphenyl-d14	87		41-149	

L2324872

Lab Number:

Project Name: PENN YAN FORMER MGP SITE

Project Number: 2023080 Report Date: 05/19/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E-SIM Analytical Date: 05/10/23 16:55

Analyst: JJW

Extraction Method: EPA 3510C Extraction Date: 05/09/23 07:35

arameter	Result	Qualifier Units	RL	MDL	
emivolatile Organics by GC/MS	-SIM - Westbo	rough Lab for san	nple(s): 01	Batch: WG1776530)-1
Acenaphthene	ND	ug/l	0.10	0.01	
2-Chloronaphthalene	ND	ug/l	0.20	0.02	
Fluoranthene	ND	ug/l	0.10	0.02	
Naphthalene	ND	ug/l	0.10	0.05	
Benzo(a)anthracene	ND	ug/l	0.10	0.02	
Benzo(a)pyrene	ND	ug/l	0.10	0.02	
Benzo(b)fluoranthene	ND	ug/l	0.10	0.01	
Benzo(k)fluoranthene	ND	ug/l	0.10	0.01	
Chrysene	ND	ug/l	0.10	0.01	
Acenaphthylene	ND	ug/l	0.10	0.01	
Anthracene	ND	ug/l	0.10	0.01	
Benzo(ghi)perylene	ND	ug/l	0.10	0.01	
Fluorene	ND	ug/l	0.10	0.01	
Phenanthrene	ND	ug/l	0.10	0.02	
Dibenzo(a,h)anthracene	ND	ug/l	0.10	0.01	
Indeno(1,2,3-cd)pyrene	ND	ug/l	0.10	0.01	
Pyrene	ND	ug/l	0.10	0.02	
2-Methylnaphthalene	ND	ug/l	0.10	0.02	

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
Nitrobenzene-d5	74	23-120
2-Fluorobiphenyl	69	15-120
4-Terphenyl-d14	75	41-149

L2324872

Lab Number:

Project Name: PENN YAN FORMER MGP SITE

Project Number: 2023080 Report Date: 05/19/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E-SIM Analytical Date: 05/11/23 18:17

Analyst: DV

Extraction Method: EPA 3510C Extraction Date: 05/10/23 08:42

arameter	Result	Qualifier Units	RL	MDL	
emivolatile Organics by GC/	MS-SIM - Westbo	rough Lab for samp	le(s): 02-04	Batch: W	/G1777123-1
Acenaphthene	ND	ug/l	0.10	0.01	
2-Chloronaphthalene	ND	ug/l	0.20	0.02	
Fluoranthene	ND	ug/l	0.10	0.02	
Naphthalene	ND	ug/l	0.10	0.05	
Benzo(a)anthracene	ND	ug/l	0.10	0.02	
Benzo(a)pyrene	ND	ug/l	0.10	0.02	
Benzo(b)fluoranthene	ND	ug/l	0.10	0.01	
Benzo(k)fluoranthene	ND	ug/l	0.10	0.01	
Chrysene	ND	ug/l	0.10	0.01	
Acenaphthylene	ND	ug/l	0.10	0.01	
Anthracene	ND	ug/l	0.10	0.01	
Benzo(ghi)perylene	ND	ug/l	0.10	0.01	
Fluorene	ND	ug/l	0.10	0.01	
Phenanthrene	ND	ug/l	0.10	0.02	
Dibenzo(a,h)anthracene	ND	ug/l	0.10	0.01	
Indeno(1,2,3-cd)pyrene	ND	ug/l	0.10	0.01	
Pyrene	ND	ug/l	0.10	0.02	
2-Methylnaphthalene	ND	ug/l	0.10	0.02	

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
Nitrobenzene-d5	74	23-120
2-Fluorobiphenyl	68	15-120
4-Terphenyl-d14	76	41-149

Project Name: PENN YAN FORMER MGP SITE

Project Number: 2023080

Lab Number: L2324872

Report Date: 05/19/23

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS-SIM - Wo	estborough Lab A	ssociated sample(s): 01 Batch	WG1776530-2 WG17765	30-3	
Acenaphthene	69	66	40-140	4	40
2-Chloronaphthalene	70	68	40-140	3	40
Fluoranthene	76	70	40-140	8	40
Naphthalene	64	62	40-140	3	40
Benzo(a)anthracene	76	72	40-140	5	40
Benzo(a)pyrene	78	75	40-140	4	40
Benzo(b)fluoranthene	72	70	40-140	3	40
Benzo(k)fluoranthene	80	78	40-140	3	40
Chrysene	72	67	40-140	7	40
Acenaphthylene	76	72	40-140	5	40
Anthracene	74	70	40-140	6	40
Benzo(ghi)perylene	70	68	40-140	3	40
Fluorene	74	71	40-140	4	40
Phenanthrene	70	65	40-140	7	40
Dibenzo(a,h)anthracene	73	70	40-140	4	40
Indeno(1,2,3-cd)pyrene	67	64	40-140	5	40
Pyrene	76	71	40-140	7	40
2-Methylnaphthalene	69	67	40-140	3	40

Project Name: PENN YAN FORMER MGP SITE

Lab Number: L2324872

Project Number: 2023080 Report Date:

05/19/23

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1776530-2 WG1776530-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Nitrobenzene-d5	75	76	23-120
2-Fluorobiphenyl	69	66	15-120
4-Terphenyl-d14	73	70	41-149

Project Name: PENN YAN FORMER MGP SITE

Project Number: 2023080

Lab Number: L2324872

Report Date: 05/19/23

Parameter	LCS %Recovery		CSD covery	Qua	%Recove I Limits	ry RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS-SIM - W	Vestborough Lab A	ssociated sample(s):	02-04	Batch:	WG1777123-2	WG1777123-3			
Acenaphthene	70		69		40-140	1		40	
2-Chloronaphthalene	76		74		40-140	3		40	
Fluoranthene	78		77		40-140	1		40	
Naphthalene	68		66		40-140	3		40	
Benzo(a)anthracene	76		77		40-140	1		40	
Benzo(a)pyrene	78		77		40-140	1		40	
Benzo(b)fluoranthene	75		75		40-140	0		40	
Benzo(k)fluoranthene	76		75		40-140	1		40	
Chrysene	72		70		40-140	3		40	
Acenaphthylene	81		81		40-140	0		40	
Anthracene	72		71		40-140	1		40	
Benzo(ghi)perylene	72		72		40-140	0		40	
Fluorene	76		75		40-140	1		40	
Phenanthrene	67		66		40-140	2		40	
Dibenzo(a,h)anthracene	73		73		40-140	0		40	
Indeno(1,2,3-cd)pyrene	69		68		40-140	1		40	
Pyrene	79		76		40-140	4		40	
2-Methylnaphthalene	75		72		40-140	4		40	

Project Name: PENN YAN FORMER MGP SITE

Lab Number: L2324872

Project Number: 2023080 Report Date:

05/19/23

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 02-04 Batch: WG1777123-2 WG1777123-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Nitrobenzene-d5	80	78	23-120
2-Fluorobiphenyl	72	71	15-120
4-Terphenyl-d14	77	77	41-149

INORGANICS & MISCELLANEOUS

Project Name: PENN YAN FORMER MGP SITE Lab Number: L2324872

Project Number: 2023080 Report Date: 05/19/23

SAMPLE RESULTS

 Lab ID:
 L2324872-01
 Date Collected:
 05/03/23 17:00

 Client ID:
 MW-1-050323
 Date Received:
 05/05/23

Sample Location: PENN YAN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab)								
Cyanide, Total	ND		mg/l	0.005	0.001	1	05/13/23 13:00	05/15/23 15:39	1,9010C/9012B	JER

Project Name: PENN YAN FORMER MGP SITE Lab Number: L2324872

Project Number: 2023080 Report Date: 05/19/23

SAMPLE RESULTS

 Lab ID:
 L2324872-02
 Date Collected:
 05/04/23 12:45

 Client ID:
 MW-2D-050423
 Date Received:
 05/05/23

Sample Location: PENN YAN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough La	b								
Cyanide, Total	0.002	J	mg/l	0.005	0.001	1	05/15/23 03:55	05/16/23 13:01	1,9010C/9012B	JER

Project Name: PENN YAN FORMER MGP SITE Lab Number: L2324872

Project Number: 2023080 Report Date: 05/19/23

SAMPLE RESULTS

Lab ID: L2324872-03 Date Collected: 05/04/23 14:25

Client ID: MW-2S-050423 Date Received: 05/05/23 Sample Location: PENN YAN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab									
Cyanide, Total	ND		mg/l	0.005	0.001	1	05/15/23 03:55	05/16/23 13:02	1,9010C/9012B	JER

Project Name: PENN YAN FORMER MGP SITE Lab Number: L2324872

Project Number: 2023080 Report Date: 05/19/23

SAMPLE RESULTS

Lab ID: L2324872-04 Date Collected: 05/04/23 13:02

Client ID: EQUIPMENT BLANK Date Received: 05/05/23 Sample Location: PENN YAN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab									
Cyanide, Total	ND		mg/l	0.005	0.001	1	05/15/23 03:55	05/16/23 13:03	1,9010C/9012B	JER

Project Name: PENN YAN FORMER MGP SITE **Lab Number:** L2324872

Project Number: 2023080 Report Date: 05/19/23

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab for sam	ple(s): 01	Batch:	WG17	78604-1				
Cyanide, Total	ND	mg/l	0.005	0.001	1	05/13/23 13:00	05/15/23 15:29	1,9010C/9012	2B JER
General Chemistry -	Westborough Lab for sam	ple(s): 02-	-04 Bat	tch: W0	G1778857-	1			
Cyanide, Total	ND	mg/l	0.005	0.001	1	05/15/23 03:55	05/16/23 12:53	1,9010C/9012	2B JER

Project Name: PENN YAN FORMER MGP SITE

Project Number:

Lab Number:

L2324872 05/19/23

2023080 Report Date:

Parameter	LCS %Recovery Qual	LCSD %Recovery (%Recovery Qual Limits	RPD	Qual RPD Limits	
General Chemistry - Westborough Lab As	sociated sample(s): 01 Ba	atch: WG1778604-2	WG1778604-3			
Cyanide, Total	99	100	85-115	1	20	
General Chemistry - Westborough Lab As	sociated sample(s): 02-04	Batch: WG1778857	-2 WG1778857-3			
Cyanide, Total	90	96	85-115	6	20	

Matrix Spike Analysis Batch Quality Control

Project Name: PENN YAN FORMER MGP SITE

Project Number: 2023080

Lab Number:

L2324872

Report Date:

05/19/23

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	RPD Qual Limits
General Chemistry - Sample	- Westborough Lab As	sociated sam	ple(s): 01	QC Batch ID:	WG1778	8604-4 WG	91778604-5 C	QC Sam	nple: L23242	260-03	Client ID: MS
Cyanide, Total	ND	0.2	ND	0	Q	0.008	5	Q	80-120	NC	20
General Chemistry - Sample	- Westborough Lab As	sociated sam	ple(s): 02-04	4 QC Batch I	ID: WG1	778857-4	WG1778857-5	QC S	Sample: L23	25061-0	01 Client ID:
Cyanide, Total	0.001J	0.2	0.210	105		0.208	104		80-120	1	20

Serial_No:05192313:28 *Lab Number:* L2324872

Project Name: PENN YAN FORMER MGP SITE

Project Number: 2023080

Report Date: 05/19/23

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2324872-01A	Vial HCl preserved	Α	NA		3.9	Υ	Absent		NYTCL-8260-BTEX(14)
L2324872-01B	Vial HCl preserved	Α	NA		3.9	Υ	Absent		NYTCL-8260-BTEX(14)
L2324872-01C	Vial HCl preserved	Α	NA		3.9	Υ	Absent		NYTCL-8260-BTEX(14)
L2324872-01D	Plastic 250ml NaOH preserved	Α	>12	>12	3.9	Υ	Absent		TCN-9010(14)
L2324872-01E	Amber 250ml unpreserved	Α	7	7	3.9	Υ	Absent		NYTCL-PAHSIM-LVI(7)
L2324872-01F	Amber 250ml unpreserved	Α	7	7	3.9	Υ	Absent		NYTCL-PAHSIM-LVI(7)
L2324872-02A	Vial HCl preserved	Α	NA		3.9	Υ	Absent		NYTCL-8260-BTEX(14)
L2324872-02B	Vial HCl preserved	Α	NA		3.9	Υ	Absent		NYTCL-8260-BTEX(14)
L2324872-02C	Vial HCl preserved	Α	NA		3.9	Υ	Absent		NYTCL-8260-BTEX(14)
L2324872-02D	Plastic 250ml NaOH preserved	Α	>12	>12	3.9	Υ	Absent		TCN-9010(14)
L2324872-02E	Amber 250ml unpreserved	Α	7	7	3.9	Υ	Absent		NYTCL-PAHSIM-LVI(7)
L2324872-02F	Amber 250ml unpreserved	Α	7	7	3.9	Υ	Absent		NYTCL-PAHSIM-LVI(7)
L2324872-03A	Vial HCl preserved	Α	NA		3.9	Υ	Absent		NYTCL-8260-BTEX(14)
L2324872-03B	Vial HCl preserved	Α	NA		3.9	Υ	Absent		NYTCL-8260-BTEX(14)
L2324872-03C	Vial HCl preserved	Α	NA		3.9	Υ	Absent		NYTCL-8260-BTEX(14)
L2324872-03D	Plastic 250ml NaOH preserved	Α	>12	>12	3.9	Υ	Absent		TCN-9010(14)
L2324872-03E	Amber 250ml unpreserved	Α	7	7	3.9	Υ	Absent		NYTCL-PAHSIM-LVI(7)
L2324872-03F	Amber 250ml unpreserved	Α	7	7	3.9	Υ	Absent		NYTCL-PAHSIM-LVI(7)
L2324872-04A	Vial HCl preserved	Α	NA		3.9	Υ	Absent		NYTCL-8260-BTEX(14)
L2324872-04B	Vial HCl preserved	Α	NA		3.9	Υ	Absent		NYTCL-8260-BTEX(14)
L2324872-04C	Vial HCl preserved	Α	NA		3.9	Υ	Absent		NYTCL-8260-BTEX(14)
L2324872-04D	Plastic 250ml NaOH preserved	Α	>12	>12	3.9	Υ	Absent		TCN-9010(14)
L2324872-04E	Amber 250ml unpreserved	Α	7	7	3.9	Υ	Absent		NYTCL-PAHSIM-LVI(7)

Lab Number: L2324872

Report Date: 05/19/23

Project Name: PENN YAN FORMER MGP SITE

Project Number: 2023080

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2324872-04F	Amber 250ml unpreserved	Α	7	7	3.9	Υ	Absent		NYTCL-PAHSIM-LVI(7)
L2324872-05A	Vial HCl preserved	Α	NA		3.9	Υ	Absent		NYTCL-8260-BTEX(14)
L2324872-05B	Vial HCl preserved	Α	NA		3.9	Υ	Absent		NYTCL-8260-BTEX(14)

Project Name:PENN YAN FORMER MGP SITELab Number:L2324872Project Number:2023080Report Date:05/19/23

GLOSSARY

Acronyms

EDL

LOQ

MS

RL

SRM

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for
which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated
using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

 NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCI) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:PENN YAN FORMER MGP SITELab Number:L2324872Project Number:2023080Report Date:05/19/23

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit
 (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:PENN YAN FORMER MGP SITELab Number:L2324872Project Number:2023080Report Date:05/19/23

Data Qualifiers

Identified Compounds (TICs).

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:PENN YAN FORMER MGP SITELab Number:L2324872Project Number:2023080Report Date:05/19/23

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

	2 AU N7 14608 178-3167 Oneu-velle.c.	Project # 2023 0 (Use Project name as P Project Manager: Lc ALPHAQuote #: Turn-Around Time Standard Rush (only if pre approved	Way poper Ave, Suite 7. 1 A 7. 1 B 0 roject #) 7. 1	-orner	MGP S	of	Deliye Regu	in I	S (1 File r Require DGS Standards estricted Unrestricted Gewer Disco	nent	PASP-	B S (4 File) art 375	ALPHA Job # L2314673 Billing Information Same as Client Info Po # Disposal Site Information Please identify below location of applicable disposal facilities. Disposal Facility: NJ NY Other:
These samples have be Other project specific Please specify Metals	requirements/comm	The second secon					879 Om3	8270	Cymide				Sample Filtration Done Lab to do Preservation Lab to do B
ALPHA Lab ID (Lab Use Only) 34573 - 0(- 03 - 04 - 05		050423	Coll Date \$13/23 \$14/23 \$14/23 \$14/23 \$5/4/23	Time 17:00 12:45 14:25 13:70	Sample Matrix GW CW W	Sampler's Initials) () () () (XXXX BTEX	XXXX PAlfs	구				(Please Specify below) Sample Specific Comments
	Container Corte			7.00		, je	×						
A = None B = HCl C = HNO ₃ D = H ₂ SO ₄ E = NaOH F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃	P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup C = Cube D = Other E = Encore D = BOD Bottle	Westboro: Certification Not Mansfield: Certification Not Relinquished E	o: MA015 By:	Date/1 5/5/13 5/5/23 5/5/23	P		Receive		Storage 5 AVE	6 1 2	Date/ -/23 5/23	Time 1030	Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS. (See reverse side.)

ANALYTICAL REPORT

Lab Number: L2325320

Client: NEU-VELLE Inc

10 Jones Avenue Rochester, NY 14608

ATTN: Logan Reid
Phone: (585) 478-3167

Project Name: PENN YAN FORMER MGP SITE

Project Number: 2023080 Report Date: 05/22/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OH (CL108), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: PENN YAN FORMER MGP SITE

Project Number: 2023080

Lab Number: L2325320 **Report Date:** 05/22/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2325320-01	MW6-050523	WATER	PENN YAN, NY	05/05/23 14:35	05/08/23
L2325320-02	MW5-050523	WATER	PENN YAN, NY	05/05/23 17:25	05/08/23
L2325320-03	MW3A-050823	WATER	PENN YAN, NY	05/08/23 13:35	05/08/23
L2325320-04	TRIP BLANK	WATER	PENN YAN, NY	05/08/23 00:00	05/08/23

Project Name:PENN YAN FORMER MGP SITELab Number:L2325320Project Number:2023080Report Date:05/22/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.					

Serial_No:05222315:18

Project Name:PENN YAN FORMER MGP SITELab Number:L2325320Project Number:2023080Report Date:05/22/23

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

The analyses performed were specified by the client.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 05/22/23

Jufani Morrissey-Tiffani Morrissey

ORGANICS

VOLATILES

L2325320

05/22/23

Project Name: Lab Number: PENN YAN FORMER MGP SITE

Project Number: 2023080

SAMPLE RESULTS

Date Collected: 05/05/23 14:35

Report Date:

Lab ID: L2325320-01 Client ID: Date Received: 05/08/23 MW6-050523 Field Prep: Sample Location: Not Specified PENN YAN, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 05/12/23 22:45

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	116	70-130	
Toluene-d8	91	70-130	
4-Bromofluorobenzene	106	70-130	
Dibromofluoromethane	126	70-130	

L2325320

05/22/23

Project Name: PENN YAN FORMER MGP SITE

L2325320-02

MW5-050523

PENN YAN, NY

Project Number: 2023080

SAMPLE RESULTS

Date Collected: 05/05/23 17:25 Date Received: 05/08/23

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 05/12/23 22:24

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	114	70-130	
Toluene-d8	92	70-130	
4-Bromofluorobenzene	106	70-130	
Dibromofluoromethane	124	70-130	

05/22/23

Project Name: Lab Number: PENN YAN FORMER MGP SITE L2325320

Project Number: Report Date: 2023080

SAMPLE RESULTS

Lab ID: L2325320-03 Date Collected: 05/08/23 13:35

Client ID: Date Received: 05/08/23 MW3A-050823 Field Prep: Sample Location: Not Specified PENN YAN, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 05/12/23 22:03

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	stborough Lab						
Benzene	100		ug/l	0.50	0.16	1	
Toluene	0.72	J	ug/l	2.5	0.70	1	
Ethylbenzene	28		ug/l	2.5	0.70	1	
p/m-Xylene	3.3		ug/l	2.5	0.70	1	
o-Xylene	2.3	J	ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	110	70-130	

L2325320

05/22/23

Project Name: PENN YAN FORMER MGP SITE

Project Number: 2023080

SAMPLE RESULTS

Date Collected:

Lab Number:

Report Date:

Lab ID: L2325320-04 05/08/23 00:00 Client ID: Date Received: 05/08/23 TRIP BLANK Field Prep: Sample Location: PENN YAN, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 05/12/23 21:42

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	91	70-130	
4-Bromofluorobenzene	105	70-130	
Dibromofluoromethane	126	70-130	

Project Name: PENN YAN FORMER MGP SITE **Lab Number:** L2325320

Project Number: 2023080 Report Date: 05/22/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 05/12/23 19:56

Analyst: TMS

Parameter	Result	Qualifier l	Units	RL	MDL
Volatile Organics by GC/MS - Westb	orough Lab	for sample(s): 01-04	Batch:	WG1779128-5
Benzene	ND		ug/l	0.50	0.16
Toluene	ND		ug/l	2.5	0.70
Ethylbenzene	ND		ug/l	2.5	0.70
p/m-Xylene	ND		ug/l	2.5	0.70
o-Xylene	ND		ug/l	2.5	0.70

		Α	cceptance
Surrogate	%Recovery	Qualifier	Criteria
1.2-Dichloroethane-d4	116		70-130
Toluene-d8	90		70-130
4-Bromofluorobenzene	101		70-130
Dibromofluoromethane	124		70-130

Project Name: PENN YAN FORMER MGP SITE

Project Number: 2023080

Lab Number: L2325320

Report Date: 05/22/23

Parameter	LCS %Recovery	Qual	LCSD %Recove		%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-04 Batch	n: WG1779128-3	WG1779128-4				
Benzene	94		93		70-130	1		20	
Toluene	88		85		70-130	3		20	
Ethylbenzene	88		83		70-130	6		20	
p/m-Xylene	95		90		70-130	5		20	
o-Xylene	90		90		70-130	0		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	101	102	70-130
Toluene-d8	97	98	70-130
4-Bromofluorobenzene	95	97	70-130
Dibromofluoromethane	100	106	70-130

SEMIVOLATILES

Project Name: Lab Number: PENN YAN FORMER MGP SITE L2325320

Report Date: **Project Number:** 2023080 05/22/23

SAMPLE RESULTS

Lab ID: Date Collected: 05/05/23 14:35 L2325320-01

Date Received: Client ID: 05/08/23 MW6-050523 Sample Location: Field Prep: PENN YAN, NY Not Specified

Sample Depth:

Analytical Date:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 05/11/23 09:39 Analytical Method: 1,8270E-SIM

Analyst: AH

05/12/23 20:08

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Semivolatile Organics by GC/MS-SIM - Westborough Lab										
Acenaphthene	ND		ug/l	0.10	0.01	1				
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1				
Fluoranthene	0.03	J	ug/l	0.10	0.02	1				
Naphthalene	ND		ug/l	0.10	0.05	1				
Benzo(a)anthracene	0.03	J	ug/l	0.10	0.02	1				
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1				
Benzo(b)fluoranthene	0.01	J	ug/l	0.10	0.01	1				
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1				
Chrysene	0.01	J	ug/l	0.10	0.01	1				
Acenaphthylene	ND		ug/l	0.10	0.01	1				
Anthracene	ND		ug/l	0.10	0.01	1				
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1				
Fluorene	ND		ug/l	0.10	0.01	1				
Phenanthrene	0.04	J	ug/l	0.10	0.02	1				
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1				
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1				
Pyrene	0.04	J	ug/l	0.10	0.02	1				
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1				

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	73	23-120	
2-Fluorobiphenyl	64	15-120	
4-Terphenyl-d14	89	41-149	

Project Name: Lab Number: PENN YAN FORMER MGP SITE L2325320

Report Date: **Project Number:**

2023080 05/22/23

SAMPLE RESULTS

Lab ID: Date Collected: 05/05/23 17:25 L2325320-02

Date Received: Client ID: 05/08/23 MW5-050523 Sample Location: Field Prep: PENN YAN, NY Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 05/11/23 09:39 Analytical Method: 1,8270E-SIM Analytical Date: 05/12/23 20:24

Analyst: AH

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Semivolatile Organics by GC/MS-SIM - Westborough Lab										
Acenaphthene	ND		ug/l	0.10	0.01	1				
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1				
Fluoranthene	0.10		ug/l	0.10	0.02	1				
Naphthalene	ND		ug/l	0.10	0.05	1				
Benzo(a)anthracene	0.03	J	ug/l	0.10	0.02	1				
Benzo(a)pyrene	0.04	J	ug/l	0.10	0.02	1				
Benzo(b)fluoranthene	0.07	J	ug/l	0.10	0.01	1				
Benzo(k)fluoranthene	0.03	J	ug/l	0.10	0.01	1				
Chrysene	0.05	J	ug/l	0.10	0.01	1				
Acenaphthylene	ND		ug/l	0.10	0.01	1				
Anthracene	ND		ug/l	0.10	0.01	1				
Benzo(ghi)perylene	0.05	J	ug/l	0.10	0.01	1				
Fluorene	ND		ug/l	0.10	0.01	1				
Phenanthrene	0.04	J	ug/l	0.10	0.02	1				
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1				
Indeno(1,2,3-cd)pyrene	0.05	J	ug/l	0.10	0.01	1				
Pyrene	0.08	J	ug/l	0.10	0.02	1				
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1				

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	73	23-120	
2-Fluorobiphenyl	64	15-120	
4-Terphenyl-d14	86	41-149	

L2325320

05/22/23

Project Name: Lab Number: PENN YAN FORMER MGP SITE

Project Number: 2023080

SAMPLE RESULTS

Date Collected: 05/08/23 13:35

Report Date:

Lab ID: L2325320-03

Date Received: Client ID: 05/08/23 MW3A-050823 Sample Location: Field Prep: PENN YAN, NY Not Specified

Sample Depth:

Analytical Date:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 05/13/23 00:46 Analytical Method: 1,8270E-SIM

Analyst: JJW

05/13/23 21:58

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	S-SIM - Westborough La	b				
Acenaphthene	0.01	J	ug/l	0.10	0.01	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	ND		ug/l	0.10	0.02	1
Naphthalene	0.66		ug/l	0.10	0.05	1
Benzo(a)anthracene	0.02	J	ug/l	0.10	0.02	1
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	1
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1
Chrysene	ND		ug/l	0.10	0.01	1
Acenaphthylene	0.21		ug/l	0.10	0.01	1
Anthracene	ND		ug/l	0.10	0.01	1
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1
Fluorene	ND		ug/l	0.10	0.01	1
Phenanthrene	ND		ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1
Pyrene	ND		ug/l	0.10	0.02	1
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	78		23-120	
2-Fluorobiphenyl	68		15-120	
4-Terphenyl-d14	66		41-149	

L2325320

Lab Number:

Project Name: PENN YAN FORMER MGP SITE

Project Number: Report Date: 2023080 05/22/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E-SIM Analytical Date: 05/12/23 19:51

Analyst: AΗ

Extraction Method: EPA 3510C 05/11/23 09:39 **Extraction Date:**

arameter	Result	Qualifier Units	RL	MDL	
emivolatile Organics by GC/	MS-SIM - Westbo	rough Lab for sam	ple(s): 01-02	Batch:	WG1777656-1
Acenaphthene	ND	ug/l	0.10	0.01	
2-Chloronaphthalene	ND	ug/l	0.20	0.02	
Fluoranthene	ND	ug/l	0.10	0.02	
Naphthalene	ND	ug/l	0.10	0.05	
Benzo(a)anthracene	ND	ug/l	0.10	0.02	
Benzo(a)pyrene	ND	ug/l	0.10	0.02	
Benzo(b)fluoranthene	ND	ug/l	0.10	0.01	
Benzo(k)fluoranthene	ND	ug/l	0.10	0.01	
Chrysene	ND	ug/l	0.10	0.01	
Acenaphthylene	ND	ug/l	0.10	0.01	
Anthracene	ND	ug/l	0.10	0.01	
Benzo(ghi)perylene	ND	ug/l	0.10	0.01	
Fluorene	ND	ug/l	0.10	0.01	
Phenanthrene	ND	ug/l	0.10	0.02	
Dibenzo(a,h)anthracene	ND	ug/l	0.10	0.01	
Indeno(1,2,3-cd)pyrene	ND	ug/l	0.10	0.01	
Pyrene	ND	ug/l	0.10	0.02	
2-Methylnaphthalene	ND	ug/l	0.10	0.02	

		Acceptance
Surrogate	%Recovery Qu	alifier Criteria
Nitrobenzene-d5	87	23-120
2-Fluorobiphenyl	76	15-120
4-Terphenyl-d14	105	41-149

L2325320

Lab Number:

Project Name: PENN YAN FORMER MGP SITE

Project Number: 2023080 Report Date: 05/22/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E-SIM Analytical Date: 05/13/23 21:41

Analyst: JJW

Extraction Method: EPA 3510C Extraction Date: 05/13/23 00:46

arameter	Result	Qualifier	Units	RL	MDL	
emivolatile Organics by GC/MS-S	SIM - Westbo	rough Lab	for sample	(s): 03	Batch: WG1778490-1	
Acenaphthene	ND		ug/l	0.10	0.01	
2-Chloronaphthalene	ND		ug/l	0.20	0.02	
Fluoranthene	ND		ug/l	0.10	0.02	
Naphthalene	ND		ug/l	0.10	0.05	
Benzo(a)anthracene	ND		ug/l	0.10	0.02	
Benzo(a)pyrene	ND		ug/l	0.10	0.02	
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	
Chrysene	ND		ug/l	0.10	0.01	
Acenaphthylene	ND		ug/l	0.10	0.01	
Anthracene	ND		ug/l	0.10	0.01	
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	
Fluorene	ND		ug/l	0.10	0.01	
Phenanthrene	0.02	J	ug/l	0.10	0.02	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	
Pyrene	ND		ug/l	0.10	0.02	
2-Methylnaphthalene	ND		ug/l	0.10	0.02	

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
Nitrobenzene-d5	94	23-120
2-Fluorobiphenyl	82	15-120
4-Terphenyl-d14	84	41-149

Project Name: PENN YAN FORMER MGP SITE

Project Number: 2023080

Lab Number: L2325320

Report Date: 05/22/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qua	%Recove I Limits	ry RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS-SIM -	Westborough Lab A	ssociated sampl	e(s): 01-02	Batch:	WG1777656-2	WG1777656-3		
Acenaphthene	79		78		40-140	1		40
2-Chloronaphthalene	70		70		40-140	0		40
Fluoranthene	96		96		40-140	0		40
Naphthalene	69		69		40-140	0		40
Benzo(a)anthracene	90		91		40-140	1		40
Benzo(a)pyrene	101		101		40-140	0		40
Benzo(b)fluoranthene	88		91		40-140	3		40
Benzo(k)fluoranthene	89		85		40-140	5		40
Chrysene	85		84		40-140	1		40
Acenaphthylene	85		85		40-140	0		40
Anthracene	89		89		40-140	0		40
Benzo(ghi)perylene	98		101		40-140	3		40
Fluorene	84		84		40-140	0		40
Phenanthrene	78		79		40-140	1		40
Dibenzo(a,h)anthracene	103		105		40-140	2		40
Indeno(1,2,3-cd)pyrene	102		102		40-140	0		40
Pyrene	96		96		40-140	0		40
2-Methylnaphthalene	74		74		40-140	0		40

Project Name: PENN YAN FORMER MGP SITE

Lab Number: L2325320

Project Number: 2023080 Report Date:

05/22/23

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-02 Batch: WG1777656-2 WG1777656-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Nitrobenzene-d5	90	88	23-120
2-Fluorobiphenyl	71	72	15-120
4-Terphenyl-d14	92	93	41-149

Project Name: PENN YAN FORMER MGP SITE

Project Number: 2023080

Lab Number: L2325320

Report Date: 05/22/23

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS-SIM - W	estborough Lab As	ssociated sample(s): 03 Batch	: WG1778490-2 WG17784	90-3	
Acenaphthene	73	73	40-140	0	40
2-Chloronaphthalene	68	67	40-140	1	40
Fluoranthene	79	78	40-140	1	40
Naphthalene	67	66	40-140	2	40
Benzo(a)anthracene	88	85	40-140	3	40
Benzo(a)pyrene	97	96	40-140	1	40
Benzo(b)fluoranthene	87	86	40-140	1	40
Benzo(k)fluoranthene	93	91	40-140	2	40
Chrysene	80	80	40-140	0	40
Acenaphthylene	82	81	40-140	1	40
Anthracene	83	82	40-140	1	40
Benzo(ghi)perylene	85	84	40-140	1	40
Fluorene	79	79	40-140	0	40
Phenanthrene	74	73	40-140	1	40
Dibenzo(a,h)anthracene	92	91	40-140	1	40
Indeno(1,2,3-cd)pyrene	89	87	40-140	2	40
Pyrene	76	75	40-140	1	40
2-Methylnaphthalene	74	72	40-140	3	40

Project Name: PENN YAN FORMER MGP SITE

Lab Number: L2325320

Project Number: 2023080 Report Date:

05/22/23

	LCS		LCSD		%Recovery	RPD		
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 03 Batch: WG1778490-2 WG1778490-3

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria
	98	96	23-120
2-Fluorobiphenyl	76	74	15-120
4-Terphenyl-d14	84	81	41-149

INORGANICS & MISCELLANEOUS

Project Name: PENN YAN FORMER MGP SITE Lab Number: L2325320

Project Number: 2023080 Report Date: 05/22/23

SAMPLE RESULTS

Lab ID: L2325320-01 Date Collected: 05/05/23 14:35

Client ID: MW6-050523 Date Received: 05/08/23 Sample Location: PENN YAN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result 0	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab									
Cyanide, Total	0.237		mg/l	0.005	0.001	1	05/15/23 03:55	05/16/23 13:10	1,9010C/9012B	JER

Project Name: PENN YAN FORMER MGP SITE Lab Number: L2325320

Project Number: 2023080 Report Date: 05/22/23

SAMPLE RESULTS

Lab ID: L2325320-02 Date Collected: 05/05/23 17:25

Client ID: MW5-050523 Date Received: 05/08/23 Sample Location: PENN YAN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab)								
Cyanide, Total	0.001	J	mg/l	0.005	0.001	1	05/15/23 03:55	05/16/23 13:12	1,9010C/9012B	JER

Project Name: PENN YAN FORMER MGP SITE Lab Number: L2325320

Project Number: 2023080 Report Date: 05/22/23

SAMPLE RESULTS

Lab ID: L2325320-03 Date Collected: 05/08/23 13:35

Client ID: MW3A-050823 Date Received: 05/08/23 Sample Location: PENN YAN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	Vestborough Lab									
Cyanide, Total	0.036		mg/l	0.005	0.001	1	05/15/23 03:55	05/16/23 13:15	1,9010C/9012B	JER

Project Name: PENN YAN FORMER MGP SITE L2325320

Project Number: 2023080 Report Date: 05/22/23

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifie	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab for sa	ample(s): 01	Batch:	: WG17	78857-1				
Cyanide, Total	ND	mg/l	0.005	0.001	1	05/15/23 03:55	05/16/23 12:53	1,9010C/9012	B JER
General Chemistry - V	Vestborough Lab for sa	ample(s): 02-	03 Ba	tch: WC	G1778858-	1			
Cyanide, Total	ND	mg/l	0.005	0.001	1	05/15/23 03:55	05/16/23 12:53	1,9010C/9012	B JER

Project Name: PENN YAN FORMER MGP SITE

Project Number: 2023080

Lab Number:

L2325320

05/22/23

Report Date:

Parameter	LCS %Recovery Qual	LCSD %Recovery Q	%Recovery ual Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Ass	ociated sample(s): 01 B	atch: WG1778857-2	WG1778857-3			
Cyanide, Total	90	96	85-115	6		20
General Chemistry - Westborough Lab Ass	ociated sample(s): 02-03	Batch: WG1778858-	2 WG1778858-3			
Cyanide, Total	90	96	85-115	6		20

Matrix Spike Analysis Batch Quality Control

Project Name: PENN YAN FORMER MGP SITE

Project Number: 2023080

Lab Number:

L2325320

Report Date: 05/22/23

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	RPD Qual Limits
General Chemistry - W Sample	estborough Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	NG1778	857-4 WG	G1778857-5 Q	C Sam	ole: L23250	61-01	Client ID: M
Cyanide, Total	0.001J	0.2	0.210	105		0.208	104		80-120	1	20
General Chemistry - W MW5-050523	estborough Lab Asso	ciated samp	le(s): 02-03	3 QC Batch II	D: WG17	778858-4	WG1778858-5	QC S	ample: L232	25320-0	2 Client ID:
Cyanide, Total	0.001J	0.2	0.211	106		0.219	110		80-120	4	20

Project Name: PENN YAN FORMER MGP SITE

Project Number: 2023080

Lab Number: L2325320
Report Date: 05/22/23

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН		Pres	Seal	Date/Time	Analysis(*)
L2325320-01A	Vial HCI preserved	Α	NA		4.3	Υ	Absent		NYTCL-8260-BTEX(14)
L2325320-01B	Vial HCl preserved	Α	NA		4.3	Υ	Absent		NYTCL-8260-BTEX(14)
L2325320-01C	Vial HCl preserved	Α	NA		4.3	Υ	Absent		NYTCL-8260-BTEX(14)
L2325320-01D	Plastic 250ml NaOH preserved	Α	>12	>12	4.3	Υ	Absent		TCN-9010(14)
L2325320-01E	Amber 250ml unpreserved	Α	7	7	4.3	Υ	Absent		NYTCL-PAHSIM-LVI(7)
L2325320-01F	Amber 250ml unpreserved	Α	7	7	4.3	Υ	Absent		NYTCL-PAHSIM-LVI(7)
L2325320-02A	Vial HCl preserved	Α	NA		4.3	Υ	Absent		NYTCL-8260-BTEX(14)
L2325320-02B	Vial HCl preserved	Α	NA		4.3	Υ	Absent		NYTCL-8260-BTEX(14)
L2325320-02C	Vial HCl preserved	Α	NA		4.3	Υ	Absent		NYTCL-8260-BTEX(14)
L2325320-02D	Plastic 250ml NaOH preserved	Α	>12	>12	4.3	Υ	Absent		TCN-9010(14)
L2325320-02E	Amber 250ml unpreserved	Α	7	7	4.3	Υ	Absent		NYTCL-PAHSIM-LVI(7)
L2325320-02F	Amber 250ml unpreserved	Α	7	7	4.3	Υ	Absent		NYTCL-PAHSIM-LVI(7)
L2325320-03A	Vial HCl preserved	Α	NA		4.3	Υ	Absent		NYTCL-8260-BTEX(14)
L2325320-03B	Vial HCl preserved	Α	NA		4.3	Υ	Absent		NYTCL-8260-BTEX(14)
L2325320-03C	Vial HCl preserved	Α	NA		4.3	Υ	Absent		NYTCL-8260-BTEX(14)
L2325320-03D	Plastic 250ml NaOH preserved	Α	>12	>12	4.3	Υ	Absent		TCN-9010(14)
L2325320-03E	Amber 250ml unpreserved	Α	7	7	4.3	Υ	Absent		NYTCL-PAHSIM-LVI(7)
L2325320-03F	Amber 250ml unpreserved	Α	7	7	4.3	Υ	Absent		NYTCL-PAHSIM-LVI(7)
L2325320-04A	Vial HCl preserved	Α	NA		4.3	Υ	Absent		NYTCL-8260-BTEX(14)
L2325320-04B	Vial HCl preserved	Α	NA		4.3	Υ	Absent		NYTCL-8260-BTEX(14)

Project Name:PENN YAN FORMER MGP SITELab Number:L2325320Project Number:2023080Report Date:05/22/23

GLOSSARY

Acronyms

EDL

LOQ

MS

RL

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

 NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

 SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:PENN YAN FORMER MGP SITELab Number:L2325320Project Number:2023080Report Date:05/22/23

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit
 (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:PENN YAN FORMER MGP SITELab Number:L2325320Project Number:2023080Report Date:05/22/23

Data Qualifiers

Identified Compounds (TICs).

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:PENN YAN FORMER MGP SITELab Number:L2325320Project Number:2023080Report Date:05/22/23

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 19

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Fax: 0	14600 8-3167	Project # LOL 70 (Use Project name as P Project Manager. La ALPHAQuote #: Turn-Around Time Standar Rush (only if pre approve	Way ooper Ave, Suite 7 F, An 7 M 8 O Project #)	Ny MC	.p 5.7~	of Control of the Control of the Con	Delivi	ASP-/ EQUIS Other atory NY TO AWQ S NY Res NY Uni	s A S (1 File Requirer	ment	EASP-	S (4 File)	ALPHA Job # L 7325370 Billing Information Same as Client Info Po # Disposal Site Information Please identify below location of applicable disposal facilities. Disposal Facility: NJ NY Other: Sample Filtration
Other project specific	requirements/comm	The same of the sa	or SISII	3 simpl	es K		8200	6170	Guid				Done t Lab to do Preservation Lab to do (Please Specify below)
ALPHA Lab ID (Lab Use Only) 2532.0 - 01 02 03	MW 6-0 MW 5-0 MW 3/4.	050823	Date \$/\$/\$\ \$/\$/\$\ \$/\$/\$\	Time (4:3)	Sample Matrix Gw	Sampler's Initials () () () () () ()	XX XX 87EX	×	× × × 104.				Sample Specific Comments a
A = None B = HCI C = HNO ₃ D = H ₂ SO ₄ E = NaOH F = MeOH G = NaHSO ₄ H = Na ₃ S ₂ O ₃	P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup C = Cube D = Other E = Encore	Westboro: Certification N Mansfield: Certification N Relinquished	lo: MA015	Date/15/9/13	P 'ime	tainer Type reservative	Receive	ed By:		5/9	Date/12/3	Fime , colò	Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING THIS COC, THE CLIENT
K/E = Zn Ac/NaOH	Sept-2013)												HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS. (See reverse side.)