

# 2024 Periodic Review Report

Penn Yan Former Manufactured Gas Plant Site NYSDEC Site Number: 8620094

November 2024

# **2024 Periodic Review Report**

Penn Yan Former Manufactured Gas Plant Site NYSDEC Site Number: 8620094

November 2024

#### Prepared By:

Arcadis of New York, Inc. 100 Chestnut Street, Suite 1020 Rochester New York 14604 Phone: 585 385 0090

Fax: 585 546 1973

# Our Ref: 30229918

#### Prepared For:

New York State Electric & Gas 18 Link Drive Binghamton, New York 13904

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

# **Contents**

| A | cronym | s and A   | Abbreviations                          | ii |
|---|--------|-----------|----------------------------------------|----|
| 1 | Intro  | duction   | n                                      | 1  |
|   | 1.1    | Backgr    | round                                  | 1  |
|   | 1.1.1  | Reme      | edial Construction                     | 1  |
|   | 1.1.2  | Site I    | Management Plan Revisions              | 2  |
| 2 | Site   | Manage    | ement Plan Compliance                  | 3  |
|   | 2.1    | Site Ma   | anagement Plan Requirements            | 3  |
|   | 2.1.1  | Instit    | tutional and Engineering Controls      | 3  |
|   | 2.1.2  | Moni      | itoring and Sampling                   | 3  |
|   | 2.1.3  | Oper      | ration and Maintenance                 | 4  |
|   | 2.1.4  | Repo      | orting                                 | 4  |
|   | 2.2    | SMP Co    | ompliance Activities                   | 4  |
| 3 | Insti  | itutional | l and Engineering Controls             | 5  |
| 4 | Mon    | itoring a | and Results                            | 6  |
|   | 4.1    | Potenti   | iometric Surfaces and Groundwater Flow | 6  |
|   | 4.2    | Ground    | dwater Quality                         | 6  |
|   | 4.2.1  | Shall     | low Groundwater-Bearing Unit           | 7  |
|   | 4.2    | 2.1.1     | BTEX                                   | 7  |
|   | 4.2    | 2.1.2     | PAHs                                   | 8  |
|   | 4.2    | 2.1.3     | Cyanide                                | 8  |
|   | 4.2.2  | Deep      | Groundwater-Bearing Unit               | 9  |
|   | 4.2    | 2.2.1     | BTEX                                   | 9  |
|   | 4.2    | 2.2.2     | PAHs                                   | 9  |
|   | 4.2    | 2.2.3     | Cyanide                                | 9  |
|   | 4.3    | Keuka l   | Lake Outlet Visual Monitoring          | 9  |
| 5 | Ope    | ration a  | ınd Maintenance                        | 10 |
|   | 5.1    | Monito    | ring Well Network                      | 10 |
|   | 5.1.1  | Moni      | itoring Well Inspection                | 10 |
|   | 5.1.2  | Moni      | itoring Well Maintenance               | 10 |
|   | 5.1.3  | Moni      | itoring Well Depth Monitoring          | 10 |
|   | 5.2    | Monito    | ring Well Decommissioning              | 10 |
|   | 5.3    | Buildin   | ng Maintenance                         | 11 |
|   | 5.4    | Site Imp  | provements                             | 11 |

| 6    | Biotic Ins  | pection                                                  | 12 |
|------|-------------|----------------------------------------------------------|----|
| 7    | Disturban   | ce Activities in Potentially Impacted Areas              | 14 |
| 8    | Conclusion  | ons and Recommendations                                  | 15 |
| 8.   | 1 Cond      | clusions                                                 | 15 |
| 8.   | 2 Reco      | mmendations                                              | 15 |
| 9    | Certificati | on Statement                                             | 16 |
| 10   | Reference   | 9S                                                       | 17 |
|      |             |                                                          |    |
| Ta   | bles        |                                                          |    |
| Tab  | le 1        | Site Management Plan Compliance Activities (in text)     |    |
| Tab  | le 2        | Gauging Data                                             |    |
| Tab  | le 3        | Groundwater Analytical Results                           |    |
|      |             |                                                          |    |
| Fi   | gures       |                                                          |    |
| Figu | ıre 1       | Site Location Map                                        |    |
| Figu | ıre 2       | Site Layout                                              |    |
| Figu | ıre 3       | Shallow Groundwater Contour Map – February 5, 2024       |    |
| Figu | ıre 4       | Deep Groundwater Contour Map – February 5, 2024          |    |
| Figu | ıre 5       | Shallow Groundwater Contour Map – August 28, 2024        |    |
| Figu | ıre 6       | Deep Groundwater Contour Map - August 28, 2024           |    |
|      |             |                                                          |    |
| A    | opend       | lices                                                    |    |
| Арр  | endix A     | Site Inspection Form                                     |    |
| Арр  | endix B     | Site Inspection Photographic Log                         |    |
| Арр  | endix C     | Laboratory Data Packages                                 |    |
| App  | endix D     | Data Usability Summary Reports                           |    |
| Арр  | endix E     | Field Sampling Logs                                      |    |
| App  | endix F     | Well Decommissioning Records                             |    |
| Арр  | endix G     | Former MGP Building Maintenance Photographic Log         |    |
| Арр  | endix H     | Request to Import Materials Document and NYSDEC Approval |    |
| Арр  | endix I     | 2022 Restoration Monitoring Report                       |    |
| Арр  | endix J     | Certification Statements                                 |    |

# **Acronyms and Abbreviations**

μg/L micrograms per liter

BTEX benzene, toluene, ethyl benzene, and xylenes

CLSM controlled low-strength material

MGP manufactured gas plant

mg/kg milligram per kilogram

mg/L milligrams per liter

NAPL non-aqueous phase liquid

NYSDEC New York State Department of Environmental Conservation

NYSEG New York State Electric & Gas

O&M operation and maintenance

PAH polycyclic aromatic hydrocarbon

PRR Periodic Review Report

reporting period December 2023 through November 2024

site Penn Yan former manufactured gas plant site

SMP Site Management Plan

USEPA United States Environmental Protection Agency

#### 1 Introduction

This Periodic Review Report (PRR) summarizes monitoring results obtained and operation and maintenance (O&M) activities conducted for the New York State Department of Environmental Conservation- (NYSDEC-) selected remedy for the New York State Electric & Gas (NYSEG) Penn Yan former manufactured gas plant (MGP) site (site). The former MGP site is located in the Village of Penn Yan, Yates County, New York (Figure 1). The site is approximately 0.889 acres in size and is occupied by a vacant masonry building. The remaining land is comprised of an engineered grass-covered area, an asphalt driveway and gravel parking area, and a section of riparian land along the Keuka Lake Outlet. The site is zoned as a Waterfront Development and Conservation District, which permits commercial and residential uses (AECOM 2023). A site layout is provided as Figure 2.

This PRR covers the period from December 2023 through November 2024 (reporting period) and includes data collected during 2024 semi-annual visits (i.e., February and August 2024). Additionally, this PRR provides documentation of monitoring well decommissioning activities and site surface modifications completed during the reporting period.

Certification that site controls were in place and effective and that no changes have occurred at the site during this reporting period that would impair the ability of the controls to protect public health, and the environment is also included herein.

## 1.1 Background

Relevant site background information is presented in the following subsections.

#### 1.1.1 Remedial Construction

The NYSDEC-selected soil, sediment, and groundwater remedial components are presented in the Record of Decision (NYSDEC 2012). NYSEG completed the soil and sediment remedial activities at the site between July 2015 and May 2020, with a pause in work between July 2017 through August 2018 to address changed conditions with design modifications necessary to achieve the remedial objectives in the Record of Decision.

The soil remedy consisted of the following:

- Excavation and offsite disposal of exposed surface soil exceeding NYSDEC Title 6 New York Codes, Rules, and Regulations Part 375-6.8 (b) restricted residential use soil cleanup objectives to a depth sufficient to allow placing a 2-foot soil cover;
- Excavation and offsite disposal of subsurface soil (greater than 2 feet below ground surface) that exceeds 500 milligrams per kilogram (mg/kg) of total semi-volatile organic compounds, 10 mg/kg of total volatile organic compounds, or is visually impacted with non-aqueous phase liquid (NAPL) (including hardened tar) and/or NAPL sheens; and
- Removing former MGP structures, debris, piping, and major obstructions in the subsurface to the extent practicable.

The soil remedy included removing soil from beneath the former MGP building. However, in areas where the building's foundation was shallower than anticipated, MGP impacts remain on or below the existing foundation between grade beams and controlled low-strength material (CLSM) installed during the remedy.

The sediment remedy consisted of excavation and offsite disposal of sediment from the Keuka Lake Outlet that contained a visible NAPL sheen or that produced a visible sheen when agitated. Additionally, sediment that contained total polycyclic aromatic hydrocarbon (PAH) compounds at concentrations greater than the site-specific background concentration of 43 mg/kg total PAHs was removed to a maximum depth of 2 feet below sediment surface.

#### 1.1.2 Site Management Plan Revisions

The NYSDEC approved the following changes to the groundwater monitoring and sampling plan described in the Site Management Plan (SMP) (AECOM 2023) that were recommended in the Second Quarter 2023 Groundwater Monitoring Report (Arcadis 2023b):

• Discontinue groundwater sampling and decommission monitoring wells TMW-1D, TMW-2D, and TMW-2DR (decommissioned in July 2024);

and recommended in the First Quarter 2024 Groundwater Monitoring Report (Arcadis 2024):

- Reduce the groundwater monitoring frequency from quarterly to semi-annually with the monitoring events to occur in February and August; and
- Discontinue quarterly reporting with the submission of the First Quarterly 2024 Groundwater Monitoring Report and continue with Annual Reporting (PRR).

# 2 Site Management Plan Compliance

This section identifies the key SMP (AECOM 2023) requirements for the site and identifies the activities completed during the reporting period to meet these requirements.

## 2.1 Site Management Plan Requirements

The SMP (AECOM 2023) details the controls to be implemented at the site, as well as the site inspection, monitoring, maintenance, and reporting requirements. SMP requirements are summarized in the following sections.

#### 2.1.1 Institutional and Engineering Controls

Institutional Controls for this site require the imposition of an Environmental Easement that will:

- Limit the use and development of the property to restricted residential use only;
- Restrict the use of site groundwater as a source of potable or process water without appropriate treatment;
- Require annual inspection of the Engineering Controls;
- Require periodic certification of the Institutional and Engineering Controls; and
- Require compliance with the SMP (AECOM 2023).

Engineering Controls at the site are as follows:

- Inspect (annually and following severe weather events) and maintain the existing site covers (soil engineered cover system and CLSM);
- Implement notification and procedural protocols when soil disturbance activities are conducted within soil and engineered cover system areas, as applicable; and
- Execute soil disturbances within the soil and engineered cover system areas in accordance with the Excavation Work Plan (Appendix D of the SMP [AECOM 2023]) and maintain minimum health and safety protocols for contractors performing work within areas potentially containing residual MGP impacts.

### 2.1.2 Monitoring and Sampling

Monitoring and sampling requirements are as follows:

- · Performing semi-annual gauging of monitoring wells;
- Performing semi-annual groundwater sampling for benzene, toluene, ethylbenzene, xylene (BTEX); PAHs;
   and total cyanide laboratory analysis;
- Performing an annual site-wide inspection;
- Performing an annual inspection of the Keuka Lake Outlet water surface near the outlet control structure (flood control gates at the Main Street bridge) during the summer months for the presence of sheen and/or NAPL; and
- Considering the potential for vapor intrusion if structures within areas potentially containing residual MGP impacts are developed in the future.

#### 2.1.3 Operation and Maintenance

O&M requirements consist of maintaining the site monitoring wells, as needed, based on the site inspection and monitoring well inspection results.

#### 2.1.4 Reporting

A PRR will be submitted annually to the NYSDEC that will include the following:

- Certification that Institutional and Engineering Controls are in place and operating as designed;
- Site inspection results; and
- Monitoring and sampling results.

## 2.2 SMP Compliance Activities

A summary of the SMP (AECOM 2023) compliance activities completed during the reporting period is presented in Table 1 below.

Table 1 – Site Management Plan Compliance Activities

|                     | SMP Requirement:   | Engineering<br>Controls | Monitoring and<br>Sampling        | O&M              |
|---------------------|--------------------|-------------------------|-----------------------------------|------------------|
| Event               | Dates Completed    | Site Inspection         | Groundwater<br>Quality Monitoring | Well Inspections |
| February Monitoring | February 5-9, 2024 | Χ                       | X                                 | X                |
|                     |                    |                         |                                   |                  |

For comparison purposes and to support the conclusions and recommendations presented in Section 8, data collected during the previous monitoring events are included in tables, where appropriate. Groundwater monitoring, site inspections, and O&M activities for the current reporting period were conducted in accordance with the SMP (AECOM 2023) and are summarized in this PRR.

# 3 Institutional and Engineering Controls

The environmental easement for the site was in pace during the reporting period.

Arcadis completed an annual site inspection on August 29, 2024. The Upland and Bank covers were visually inspected for sparse vegetation, erosion, and settling. The offsite soil Engineered Cap Cover (AquaGate and AquaBlok) is a subsurface engineered cap overlain by topsoil (above water) and a habitat layer material (below water). The Engineered Cap Cover was not observed during the site inspection, and evidence (soil disturbance/excavation) that the Engineered Cap Cover was potentially breached was not observed.

The Site Inspection Form is included as Appendix A, and a photographic log documenting site conditions observed during the annual inspection is included as Appendix B. The location where each photograph was taken, and the direction that the photographer was facing, is shown on Figure B-1 in Appendix B. The annual site inspection results indicate that the soil engineered covers are in good condition, and:

- Maintenance to the Upland and Bank covers is not required.
- · Maintenance to the Engineered Cap cover is not required.

The CLSM (used as subsurface backfill under the former MGP building walls and between the grade beams) is not visible and, therefore, cannot not be visually inspected without undermining the structure. However, during the annual inspection, no evidence, such as disturbed soil near the building foundation, was observed that would indicate the CLSM was disturbed.

# 4 Monitoring and Results

As described in the SMP (AECOM 2023), along with the NYSDEC-approved modifications to the monitoring program summarized in Section 1.1.2, monitoring during the reporting period consisted of:

- Semi-annual groundwater elevation measurements in 13 monitoring wells (PRMW-1S, PRMW-2S, PRMW-2D, PRMW-3S, PRMW-3D, PRMW-4S, PRMW-5S, PRMW-5D, PRMW-6S, PRMW-6D, TMW-1D, TMW-2D, and TMW-2DR). TMW-1D, TMW-2D, and TMW-2DR were only gauged during the February monitoring event as they were decommissioned prior to the August monitoring event;
- Semi-annual groundwater sampling from 10 monitoring wells (PRMW-1S, PRMW-2S, PRMW-2D, PRMW-3S, PRMD-3D, PRMW-4S, PRMW-5S, PRMW-5D, PRMW-6S, and PRMW-6D) for BTEX, PAHs, and total cyanide analysis;
- An annual site-wide inspection (discussed in Section 3); and
- An annual inspection of the Keuka Lake Outlet water surface near the outlet control structure.

Monitoring and gauging results are presented below.

#### 4.1 Potentiometric Surfaces and Groundwater Flow

To document groundwater elevation and flow direction during the reporting period monitoring events, field personnel measured the depth to groundwater, depth to NAPL, and depth to monitoring well bottom from surveyed measuring points at the following monitoring wells screened in the shallow (i.e., water table) and deep groundwater-bearing units, as described in the SMP (AECOM 2023):

- Shallow groundwater-bearing unit: PRMW-1S, PRMW-2S, PRMW-3S, PRWM-4S, PRMW-5S, and PRMW-6S; and
- Deep groundwater-bearing unit: PRMW-2D, PRMW-3D, PRMW-5D, PRMW-6D, TMW-1D (February 2024 only), TMW-2D (February 2024 only), and TMW-2DR (February 2024 only).

Monitoring well TMW-2D was obstructed during the February 2024 monitoring event. Depth to groundwater was able to be measured at TMW-2D; however, it is suspected to be inaccurate due to the obstruction in the monitoring well. Gauging results, including calculated groundwater elevations and sediment thickness, during this reporting period and previous monitoring events are summarized in Table 2.

The February 2024 monitoring event shallow water table and deep potentiometric contour maps are presented on Figures 3 and 4, respectively, and the August 2024 monitoring event shallow water table and deep potentiometric contour maps are presented on Figures 5 and 6, respectively. As shown on the figures, the shallow and deep groundwater flow directions were generally to the southeast, toward the Keuka Lake Outlet. When compared to previous monitoring periods, no significant changes to site-wide groundwater flow directions are observed in the shallow water tables and deep potentiometric surfaces during the reporting period.

#### 4.2 Groundwater Quality

Arcadis field personnel collected groundwater samples from 10 monitoring wells (PRMW-1S, PRMW-2S, PRMW-2D, PRMW-3S, PRMW-3D, PRMW-4S, PRMW-5S, PRMW-5D, PRMW-6S, and PRMW-6D) using low-flow groundwater purging and sampling techniques. The recommendation made in the Second Quarter 2023

Groundwater Monitoring Report (Arcadis 2023b) to decommission monitoring wells TMW-1D, TMW-2D, and TMW-2DR was approved by the NYSDEC in a letter dated October 20, 2023 (NYSDEC 2023). As such, groundwater samples were not collected from monitoring wells TMW-1D and TMW-2DR during the February monitoring event.

Groundwater samples and appropriate quality assurance/quality control samples, to facilitate data validation, were submitted to Eurofins Laboratories, located in Amherst, New York, for the following analysis:

- BTEX using United States Environmental Protection Agency (USEPA) SW-846 Method 8260C;
- PAHs using USEPA SW-846 Method 8270D; and
- Total cyanide using USEPA SW-846 Method 9012B.

Arcadis reviewed the February and August 2024 monitoring event laboratory data packages, conducted data validation, and prepared Data Usability Summary Reports. The data review indicated that overall laboratory performance was acceptable, and the overall data quality was within guidelines specified in the respective methods. Laboratory reports are included as Appendix C, and the Data Usability Summary Reports are included as Appendix D. Field sampling logs are included as Appendix E.

The groundwater analytical results presented in Table 3 are compared to the NYSDEC's Class GA (NYSDEC 1998) groundwater quality standards/guidance values. Table 3 also includes analytical results for groundwater samples collected during previous groundwater sampling events (conducted by Arcadis and AECOM).

Groundwater analytical results for samples collected during the reporting period are summarized below.

#### 4.2.1 Shallow Groundwater-Bearing Unit

BTEX, PAH, and total cyanide analytical results for groundwater samples collected from the shallow monitoring wells (PRMW-1S, PRMW-2S, PRMW-3S, PRMW-4S, PRMW-5S, and PRMW-6S) during the reporting period are summarized below.

#### 4.2.1.1 BTEX

BTEX analytical results for samples collected during the February 2024 monitoring event are summarized below:

- Benzene (1.7 micrograms per liter [μg/L]) was detected in the groundwater sample collected from monitoring well PRMW-5S at a concentration greater than the Class GA (NYSDEC 1998) groundwater quality standard.
- Ethylbenzene (0.82 μg/L) was detected in the groundwater sample collected from monitoring well PRMW-5S at a concentration less than the respective Class GA groundwater quality standard.
- BTEX was not detected in groundwater samples collected from the remaining shallow monitoring wells.

BTEX analytical results for samples collected during the August 2024 monitoring event are summarized below:

- Benzene (1.9 μg/L) was detected in the groundwater sample collected from monitoring well PRMW-5S at a concentration greater than the Class GA (NYSDEC 1998) groundwater quality standard.
- Ethylbenzene (1.1 μg/L) was detected in the groundwater sample collected from monitoring well PRMW-5S at a concentration less than the respective Class GA groundwater quality standard.
- BTEX was not detected in groundwater samples collected from the remaining shallow monitoring wells.

BTEX detections and concentration trends in the shallow monitoring wells are consistent with historical results. Total BTEX concentrations during the reporting period decreased in monitoring well PRMW-5S when compared to historical results (except for 2.3 µg/L in May of 2023) and indicates an overall decreasing concentration trend.

#### 4.2.1.2 PAHs

PAH analytical results for samples collected during the February 2024 monitoring event are summarized below:

- PAH concentrations in groundwater did not exceed Class GA (NYSDEC 1998) groundwater quality standards or guidance values.
- Acenaphthene (13 μg/L), acenaphthylene (1.8 μg/L), anthracene (0.16 μg/L), fluoranthene (0.78 μg/L), fluorene (4.5 μg/L), naphthalene (6.4 μg/L), phenanthrene (0.94 μg/L), and pyrene (0.46 μg/L) were detected in the groundwater sample collected from monitoring well PRMW-5S at concentrations less than their respective Class GA groundwater quality standards or guidance values.
- PAHs were not detected in groundwater samples collected from the remaining shallow monitoring wells.

PAH analytical results for samples collected during the August 2024 monitoring event are summarized below:

- PAH concentrations in groundwater did not exceed Class GA (NYSDEC 1998) groundwater quality standards or guidance values.
- Acenaphthene (4.5 μg/L), acenaphthylene (0.61 μg/L), anthracene (0.19 μg/L), fluoranthene (0.66 μg/L), fluorene (1.6 μg/L), naphthalene (3.4 μg/L), phenanthrene (0.37 μg/L), and pyrene (0.40 μg/L) were detected in the groundwater sample collected from monitoring well PRMW-5S at concentrations less than their respective Class GA groundwater quality standards or guidance values.
- PAHs were not detected in groundwater samples collected from the remaining shallow monitoring wells.

PAH detections and concentration trends in shallow monitoring wells are consistent with historical results, with the exception that naphthalene detections in PRMW-5S during the reporting period were less than the Class GA (NYSDEC 1998) groundwater quality guidance values. Total PAH concentrations in monitoring well PRWM-5S decreased when compared to historical results and indicate an overall decreasing trend.

#### 4.2.1.3 Cyanide

Total cyanide analytical results for samples collected during the February 2024 monitoring event are summarized below:

Total cyanide was detected in groundwater samples collected from monitoring wells PRMW-2S
 (0.100 milligrams per liter [mg/L]) and PRMW-5S (0.029 mg/L) at concentrations less than the Class GA
 (NYSDEC 1998) groundwater quality standard.

Total cyanide analytical results for samples collected during the August 2024 monitoring event are summarized below:

 Total cyanide was detected in groundwater samples collected from monitoring wells PRMW-2S (0.11 mg/L and PRMW-5S (0.020 mg/L) at concentrations less than the Class GA (NYSDEC 1998) groundwater quality standard.

Total cyanide concentrations in shallow monitoring wells are consistent with historical results.

#### 4.2.2 Deep Groundwater-Bearing Unit

BTEX, PAHs, and total cyanide groundwater analytical results for samples collected from the deep monitoring wells (PRMW-2D, PRMW-3D, PRMW-5D, and PRMW-6D) during the reporting period are summarized below.

#### 4.2.2.1 BTEX

BTEX was not detected in groundwater samples collected from the deep monitoring wells during either the February 2024 or August 2024 monitoring events. This is consistent with historical results.

#### 4.2.2.2 PAHs

PAH analytical results for samples collected during the February 2024 monitoring event are summarized below:

- Acenaphthene (0.089 μg/L) and pyrene (0.074 μg/L) were detected in the groundwater sample collected from monitoring well PRMW-6D at concentrations less than their respective Class GA (NYSDEC 1998) groundwater quality standards or guidance values.
- PAHs were not detected in groundwater samples collected from the remaining deep monitoring wells.

PAH detections and concentration trends in deep monitoring wells have been consistently less than respective Class GA (NYSDEC 1998) groundwater quality standards or guidance values since post-remedial construction monitoring began in May 2021.

#### 4.2.2.3 Cyanide

Total cyanide was not detected in groundwater samples collected from the deep monitoring wells during either the February 2024 or August 2024 monitoring events. This is consistent with historical results.

#### 4.3 Keuka Lake Outlet Visual Monitoring

The SMP (AECOM 2023) requires annual inspection of the Keuka Lake Outlet water surface near the Outlet Control Structure (flood control gates) at the Main Street Bridge. Sheen was observed on August 29, 2024, and when probed by field staff, the sheen broke up into blocky pieces with jagged edges and did not reform its shape. This characteristic is indicative of a biological-based sheen whereas a petroleum-based sheen would exhibit smooth edges when probed. Based on these observations, the sheen was determined in the field to be biological in origin. A photograph of the observed sheen is provided as photograph 12 in Appendix B.

## 5 Operation and Maintenance

O&M activities conducted during the reporting period are presented in Table 1 and included the annual site monitoring well network inspection. A summary of these activities is presented in the following subsections.

## 5.1 Monitoring Well Network

Inspection activities/findings are presented in the following subsections.

#### **5.1.1** Monitoring Well Inspection

Arcadis visually inspected site monitoring wells, including protective covers, well caps, and general well integrity, during the August 2024 monitoring event to confirm protective road box/standpipe and surrounding concrete apron integrity and to identify potential repairs. A Monitoring Well Integrity Assessment Form documenting the condition of each monitoring well associated with the site, with access at the time of inspection, was completed and is saved in the project file.

#### **5.1.2** Monitoring Well Maintenance

As recommended in the Fourth Quarter 2023 Groundwater Monitoring report (Arcadis 2023c), sediment was removed from PRMW-2D and PRMW-5D during the February 2024 monitoring event. Also, as recommended in the First Quarter Groundwater Monitoring report (Arcadis 2024), sediment was removed from PRMW-2D during the August 2024 monitoring event.

## **5.1.3** Monitoring Well Depth Monitoring

Arcadis field personnel measured the depth to bottom and accumulated sediment thickness (e.g., silts, sands) at each monitoring well during the reporting period. Depth to bottom measurements were compared to the installed depth, as reported on each monitoring well's construction or development log, to determine whether redevelopment and/or sediment removal is needed.

The calculated sediment thickness in each monitoring well is summarized in Table 2. Less than 0.5 feet of accumulated sediment was measured in all monitoring wells gauged during the reporting period, except for PRMW-2D (1.20 feet) and TMW-2DR (1.04 feet) during the February 2024 monitoring event. During the August 2024 monitoring event, sediment was removed from PRWM-2D (as detailed in Section 5.1.2) and TMW-2DR was decommissioned (as detailed in Section 5.2). Table 2 summarizes depth to bottom measurements following sediment removal activities, if applicable. Based on data collected during the August monitoring event, sediment quantities are consistent with quantities previously reported and do not appear to be significantly increasing or decreasing.

## 5.2 Monitoring Well Decommissioning

As recommended in the Second Quarter Groundwater Monitoring Report (Arcadis 2023b) and approved by the NYSDEC in a letter dated October 20, 2023 (NYSDEC 2023), Arcadis subcontracted a driller to decommission monitoring wells TMW-1D, TMW-2D, and TMW-2DR on July 16, 2024, by grouting in place. To address the

obstruction in TMW-2D, the drilling subcontractor used the drill rig and drilling rods to push the obstruction deeper, attempting to push it to the bottom of the monitoring well. Ultimately, the obstruction could not be pushed deeper than approximately 40 feet below ground surface. However, grout was able to flow past the obstruction to decommission TMW-2D by grouting in place. Monitoring well decommissioning records are provided as Appendix F.

## 5.3 Building Maintenance

On October 18, 2024, plywood sheeting was re-installed over two windows on the former MGP building where the sheeting installed after completing the remedy was no longer present. One window was on the northeast-facing side of the building, and the second window was on the southeast-facing side. Before and after pictures are provided as photographs 1 through 4 in Appendix G.

## 5.4 Site Improvements

The adjacent property owner (to the west) obtained permission from NYSEG to allow a kayak and bicycle rental company to operate in the southwest corner of the site and to install a gravel parking lot on the site. To comply with the SMP (AECOM 2023), NYSEG submitted a Request to Import Material form to the NYSDEC project manager, which provided a project narrative, sieve information on proposed imported materials, and a project design map showing the limits of the new gravel parking lot. The NYSDEC project manager approved this submittal, and the gravel parking lot was installed in August 2024. The Request to Import Material Form and associated NYSDEC approval is provided as Appendix H. The site figures have been updated to show the gravel parking lot footprint.

# 6 Biotic Inspection

The SMP (AECOM 2023) requires that a one-time, post-remediation inspection be conducted to assess reestablishment of the Keuka Lake Outlet biotic community within the remediated areas. The inspection was completed August 30-31, 2022, and inspection activities and results are reported in Section 3.3.3 of the 2022 Restoration Monitoring Report, which is provided as Appendix I. A summary of the inspection and results is provided below.

Arcadis conducted benthic invertebrate community assessment in each restored sediment cell to determine whether the benthic community had re-colonized after remediation and backfilling. Field personnel collected a representative petite ponar grab sample within each restored sediment cell. Samples were collected in substrates that allowed enough surface penetration to obtain a suitable sample for resident benthic organism taxonomic identification. Sample locations are shown on Figure 4 in Appendix I. Samples were sieved and processed in the field, preserved with isopropanol, and sent to Normandeau Associates in Stowe, Pennsylvania, for identification and enumeration.

Restored substrates observed during sampling are a mix of predominately fine to coarse gravels with sands and silts. Organic materials include varying amounts of both fine and coarse particulate organic matter (i.e., leaf fragments, detritus, woody debris) and shell fragments (primarily zebra mussels and snail shells). Depositional silts and finer organic materials were observed in higher percentages within the shoreline of Cell 6A and Cell 2 when compared to sample locations in other cells. The remaining restored sediment cells had less fine-grained material and were typically composed of fine to coarse gravels and sand.

The benthic community taxonomy results are provided in Tables 4a through 4h in Appendix I and indicate recolonization has occurred within the Keuka Outlet remediated areas as invertebrates were observed in each of the samples. Similar to typical lake outlet waters, several benthic organism orders were more prevalent, including Tubificida (aquatic worms), Gastropoda (aquatic snails), and Chironomidae (midge larvae).

Chironomidae (midges) were the most observed organism, comprising an approximate 40% average of the invertebrate population across the eight restored sediment cells. Midges were most common in Cell 6A and Cell 2, comprising 71% and 65% of the benthic invertebrate samples, respectively, due to a higher frequency of observed soft substrates (i.e., silts and clays) in these cells. Gastropoda and Tubificida averaged approximately 11% and 6% of the community within the six restored sediment cells, respectively. In addition to these benthic organism orders, freshwater bivalves species (Veneroidea), including pill clams and zebra mussels, were relatively abundant, comprising an approximate 13% average of the community across the restored sediment cells.

Several community metrics were derived from each sample to facilitate comparing results, as summarized below:

- Species richness Species richness ranged from 8 to 25, with an average of 20, which is within the index range of 7 to 24 for similar outlet waters (NYSDEC 2021).
- <u>EPT richness</u> EPT richness was low and ranged from 0 to 2, with an average of 1, which is within the index range of 0 to 12 (NYSDEC 2021). Lake outlet waters that receive cold-water hypolimnion releases tend to interfere with the life cycles of Ephemeroptera, Plecoptera, Trichoptera (EPT) species such as mayflies, stoneflies, and caddisflies (NYSDEC 2021). As a result, these species are not as common in lake outlet locations.

- Hilsenhoff biotic index (HBI) HBI measures an organism's potential to tolerate perturbation (i.e., nutrient loading or other pollution) and typically is a water quality indicator. A low HBI indicates organisms have a low tolerance to perturbation and, therefore, indicates a higher water quality. HBI observed within the restored sediment cells ranged from 6.26 to 7.38, with an average of 6.75, which is within the index range of 4.48 to 8.22 (NYSDEC 2021).
- <u>Percent model affinity</u> The percent model affinity is a metric used to compare how similar a study site is with respect to a model non-impacted community and is based on the percent abundance of seven major macroinvertebrate groups (Novak and Bode 1992). The higher the percentage, the less potentially impacted the site. The restored sediment cell benthic community samples ranged from 39% to 71%, with an average of 58%, which is within the index range of 24% to 67% (NYSDEC 2021).

Overall, the benthic community results indicate successful restored sediment substrate re-colonization and the identified invertebrate community results are within the expected ranges for this type of system (i.e., lake outlet waters) in New York State.

# 7 Disturbance Activities in Potentially Impacted Areas

NYSEG is not aware of any intrusive activities that were conducted in potentially impacted areas during the reporting period, except for the monitoring well decommissioning activities detailed in Section 5.2. Furthermore, the gravel parking lot construction, detailed in Section 5.4, did not remove any portion of the post-remediation surface cover. The post-remediation surface cover remains intact underneath the gravel parking lot.

### 8 Conclusions and Recommendations

Conclusions and recommendations, based on the fourth year of site O&M, are presented below.

#### 8.1 Conclusions

Conclusions based on results from the 2024 monitoring events are summarized below.

- Monitoring requirements were met during the reporting period.
- Annual Site Inspection:
  - Maintenance to the Upland and Bank covers is not required.
  - Maintenance to the Engineered Cap cover is not required.
- The groundwater flow direction in the shallow and deep groundwater-bearing units is generally consistent with historical conditions.
- Groundwater Quality:
  - BTEX and PAH concentrations in shallow and deep groundwater were consistent with historical results and show an overall decreasing trend (where detected).
  - Total cyanide concentrations in shallow groundwater are consistent with historical results and indicate stable concentrations. Total cyanide concentrations in deep groundwater are consistent with historical results and remained below detection limits.
- Monitoring Well Network:
  - Monitoring well network deficiencies identified in the Fourth Quarter 2023 Groundwater Monitoring Report (Arcadis 2023c) and First Quarter 2024 Groundwater Monitoring Report (Arcadis 2024) were addressed during the reporting period, and no deficiencies in the monitoring well network were identified during the reporting period that require repair.
- Benthic community sampling results indicated that the restored sediment areas have been re-colonized, and the community is similar to what would be expected in lake outlet waters observed in New York State.

#### 8.2 Recommendations

Recommendations based on O&M of the NYSDEC-selected remedy during the reporting period are provided below.

- Monitoring and Sampling:
  - Continue conducting monitoring and sampling as described in the SMP (AECOM 2023).
  - Continue semi-annual monitoring well gauging as described in the SMP.
  - Continue semi-annual groundwater monitoring as described in the SMP.
- Continue preparing annual PRRs as described in the SMP.

## 9 Certification Statement

The completed NYSDEC Site Management PRR Institutional and Engineering Controls Certification Submittal Form, which certifies that site controls were in place and effective and no changes occurred during the reporting period that would impair the ability of the controls to protect public health and the environment, is included as Appendix J.

Please note that the Submittal Form identifies the reporting period as March 22, 2023 to October 31, 2024. Per correspondence with the NYSDEC project manager on May 21, 2024 (NYSDEC 2024) and as approved, this report provides data from the February and August 2024 monitoring events and defines the period as December 2023 to November 2024 to align with the assumed monitoring period moving forward (based on the PRR due date). The next PRR will cover the reporting period defined in the next Submittal Form and will include any required data/information.

## 10 References

AECOM. 2023. Site Management Plan. Prepared for New York State Electric & Gas Corporation, Penn Yan Former Manufactured Gas Plant Site, Yates County, Penn Yan, New York. January.

Arcadis. 2023a. 2022 Restoration Monitoring Report. Penn Yan Former Manufactured Gas Plant Site, NYSDEC Site Number: 862009. May 2023.

Arcadis. 2023b. Second Quarter 2023 Groundwater Monitoring Report, New York State Electric & Gas Corporation, Penn Yan Former Manufactured Gas Plant, Penn Yan, New York, NYSDEC Site No. 862009. August 25.

Arcadis. 2023c. Fourth Quarter 2023 Groundwater Monitoring Report, New York State Electric & Gas Corporation, Penn Yan Former Manufactured Gas Plant, Penn Yan, New York, NYSDEC Site No. 862009. December 21.

Arcadis. 2024. First Quarter 2024 Groundwater Monitoring Report, New York State Electric & Gas Corporation, Penn Yan Former Manufactured Gas Plant, Penn Yan, New York, NYSDEC Site No. 862009. April 22.

Novak, M.A. and R.W. Bode. 1992. Percent model affinity, a new measure of macroinvertebrate community composition. J. North American Benthological Society 11(1):80-85.

NYSDEC. 1998. Division of Water Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. October 22, 1993, reissued June 1998.

NYSDEC 2012. Record of Decision, NYSEG Penn Yan Water St. MGP Site, Site Number 862009. December.

NYSDEC. 2021. Standard Operating Procedure: Biological Monitoring of Surface Waters in New York State. Division of Water. Albany, New York. SOP-208\_V21-1. April 2021.

NYSDEC. 2023. Letter from Gerald Pratt (NYSDEC) to John Ruspantini (NYSEG). Re: Second Quarter 2023 Groundwater Monitoring Report, Penn Yan Water St. MGP. October 20.

NYSDEC. 2024. Email from Gerald Pratt (NYSDEC) to Nicholas Beyrle (Arcadis). Re: NYSEG Penn Yan Water St (862009) – 2024 Q1 Report Submission. May 21.

# **Tables**





|             |                 | Actual   | _        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Depth to       |                  | Depth to   | Depth to       | Accumulated Sediment |
|-------------|-----------------|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|------------|----------------|----------------------|
|             | Measuring       | Depth to | Screen   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Water          | Groundwater      | Product    | Bottom         | Thickness            |
| Well ID     | Point Elevation | Bottom   | Interval | Date Control of the C | (feet TOC)     | Elevation        | (feet TOC) | (feet TOC)     | (feet)               |
| PRMW-1S     | 731.11          | 29.90    | 20 - 30  | February 22, 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.40          | 715.71           | -          | 29.90          | 0.00                 |
|             |                 |          |          | May 24, 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.23          | 719.88<br>724.59 | -          | 29.75          | 0.15<br>0.22         |
|             |                 |          |          | August 23, 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.52           | 724.59           |            | 29.68          |                      |
|             |                 |          |          | November 29, 2021<br>February 24, 2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.10<br>10.20 | 720.91           | -          | 29.63<br>29.69 | 0.27                 |
|             |                 |          |          | May 31, 2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.20          | 720.91           | -          | 29.67          | 0.21                 |
|             |                 |          |          | August 3, 2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.84          | 720.25           | -          | 29.61          | 0.23                 |
|             |                 |          |          | November 22, 2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.43          | 720.68           | -          | 29.70          | 0.29                 |
|             |                 |          |          | February 8, 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.43          | 720.33           | _          | 29.68          | 0.20                 |
|             |                 |          |          | May 25, 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.05          | 720.06           | -          | 29.67          | 0.22                 |
|             |                 |          |          | August 23, 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.39          | 720.72           |            | 29.70          | 0.20                 |
|             |                 |          |          | November 9, 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.91          | 720.20           | _          | 29.65          | 0.25                 |
|             |                 |          |          | February 5, 2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.91           | 721.20           | -          | 29.66          | 0.23                 |
|             |                 |          |          | August 28, 2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.57          | 720.54           | -          | 29.68          | 0.24                 |
| PRMW-2S     | 734.55          | 23.09    | 10 - 20  | February 22, 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.10          | 718.45           | _          | 23.09          | 0.00                 |
| 1 KWW-20    | 734.33          | 25.05    | 10 - 20  | May 24, 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15.63          | 718.92           | _          | 23.07          | 0.00                 |
|             |                 |          |          | August 23, 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.19          | 720.36           | _          | 23.02          | 0.02                 |
|             |                 |          |          | November 29, 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12.13          | 720.30           | -          | 23.00          | 0.07                 |
|             |                 |          |          | February 24, 2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.87          | 719.68           | -          | 22.98          | 0.03                 |
|             |                 |          |          | May 31, 2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15.71          | 718.84           | -          | 22.98          | 0.11                 |
|             |                 |          |          | August 3, 2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16.26          | 718.29           | <u>-</u>   | 22.94          | 0.11                 |
|             |                 |          |          | November 22, 2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.76          | 718.79           | -          | 23.05          | 0.13                 |
|             |                 |          |          | February 8, 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15.40          | 719.15           | _          | 22.99          | 0.10                 |
|             |                 |          |          | May 25, 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15.52          | 719.03           | <u>-</u>   | 22.96          | 0.10                 |
|             |                 |          |          | August 23, 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.44          | 719.03           | -          | 23.00          | 0.13                 |
|             |                 |          |          | November 9, 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16.26          | 718.29           | -          | 23.00          | 0.09                 |
|             |                 |          |          | February 5, 2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15.13          | 719.42           | <u>-</u>   | 22.96          | 0.03                 |
|             |                 |          |          | August 28, 2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.13          | 718.64           | -          | 23.03          | 0.13                 |
| PRMW-2D     | 734.64          | 38.55    | 25 - 35  | February 22, 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.47          | 718.17           | -          | 38.55          | 0.00                 |
| T KIVIVV-ZD | 734.04          | 30.33    | 20 - 00  | May 24, 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15.84          | 718.80           | _          | 37.92          | 0.63                 |
|             |                 |          |          | August 23, 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.59          | 720.05           | _          | 37.73          | 0.82                 |
|             |                 |          |          | November 29, 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.14          | 719.50           | _          | 37.76          | 0.79                 |
|             |                 |          |          | February 24, 2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.08          | 719.56           | _          | 37.86          | 0.69                 |
|             |                 |          |          | May 31, 2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15.68          | 718.96           | -          | 37.82          | 0.73                 |
|             |                 |          |          | August 3, 2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.89          | 718.75           | -          | 37.78          | 0.77                 |
|             |                 |          |          | November 22, 2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.82          | 718.82           | _          | 38.09          | 0.46                 |
|             |                 |          |          | February 8, 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15.60          | 719.04           | _          | 37.81          | 0.74                 |
|             |                 |          |          | May 25, 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15.49          | 719.15           | _          | 37.84          | 0.71                 |
|             |                 |          |          | August 23, 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.47          | 719.17           | -          | 37.95          | 0.60                 |
|             |                 |          |          | November 9, 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16.03          | 718.61           | -          | 37.10          | 1.45                 |
|             |                 |          |          | February 5, 2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15.20          | 719.44           | -          | 37.35          | 1.20                 |
|             |                 |          |          | August 28, 2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.77          | 718.87           | -          | 38.10          | 0.45                 |
| PRMW-3S     | 723.73          | 22.90    | 10 - 20  | February 22, 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.72           | 716.01           | -          | 22.90          | 0.00                 |
|             |                 |          | .0 20    | May 24, 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.42           | 716.31           | -          | 22.98          | -0.08                |
|             |                 |          |          | August 23, 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.31           | 717.42           | -          | 22.68          | 0.22                 |
|             |                 |          |          | November 29, 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.90           | 716.83           | -          | 22.79          | 0.11                 |
|             |                 |          |          | February 24, 2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.88           | 716.85           | -          | 22.85          | 0.05                 |
|             |                 |          |          | May 31, 2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.18           | 716.55           | -          | 22.80          | 0.10                 |
|             |                 |          |          | August 3, 2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.25           | 716.48           | -          | 22.76          | 0.14                 |
|             |                 |          |          | November 22, 2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.42           | 716.31           | -          | 22.80          | 0.10                 |
|             |                 |          |          | February 8, 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.42           | 716.47           | -          | 22.82          | 0.08                 |
|             |                 |          |          | May 25, 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.13           | 716.60           | _          | 22.80          | 0.10                 |
|             |                 |          |          | August 23, 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.10           | 716.63           | _          | 22.80          | 0.10                 |
|             |                 |          |          | November 9, 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.10           | 716.35           | -          | 22.83          | 0.10                 |
|             |                 |          |          | February 5, 2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.92           | 716.81           | -          | 22.80          | 0.10                 |
|             |                 |          |          | February 5 7074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                  |            |                |                      |





|          |                           | Actual             |                     |                   | Depth to           |                     | Depth to   | Depth to            | Accumulated<br>Sediment |
|----------|---------------------------|--------------------|---------------------|-------------------|--------------------|---------------------|------------|---------------------|-------------------------|
| Well ID  | Measuring                 | Depth to<br>Bottom | Screen              | Date              | Water              | Groundwater         | Product    | Bottom              | Thickness               |
| PRMW-3D  | Point Elevation<br>723.81 | 36.25              | Interval<br>25 - 35 | February 22, 2021 | (feet TOC)<br>6.80 | Elevation<br>717.01 | (feet TOC) | (feet TOC)<br>36.25 | (feet)<br>0.00          |
| T KWW-3D | 725.01                    | 30.23              | 20 - 00             | May 24, 2021      | 5.64               | 718.17              | _          | 36.01               | 0.00                    |
|          |                           |                    |                     | August 23, 2021   | 4.89               | 718.92              | _          | 35.84               | 0.41                    |
|          |                           |                    |                     | November 29, 2021 | 4.94               | 718.87              | -          | 35.88               | 0.37                    |
|          |                           |                    |                     | February 24, 2022 | 4.93               | 718.88              | -          | 35.90               | 0.35                    |
|          |                           |                    |                     | May 31, 2022      | 5.04               | 718.77              | _          | 35.85               | 0.40                    |
|          |                           |                    |                     | August 3, 2022    | 5.85               | 717.96              | -          | 35.78               | 0.47                    |
|          |                           |                    |                     | November 22, 2022 | 6.42               | 717.39              | -          | 35.85               | 0.40                    |
|          |                           |                    |                     | February 8, 2023  | 6.04               | 717.77              | -          | 35.81               | 0.44                    |
|          |                           |                    |                     | May 25, 2023      | 4.98               | 718.83              | -          | 35.75               | 0.50                    |
|          |                           |                    |                     | August 23, 2023   | 5.75               | 718.06              | -          | 36.15               | 0.10                    |
|          |                           |                    |                     | November 9, 2023  | 6.30               | 717.51              | -          | 35.85               | 0.40                    |
|          |                           |                    |                     | February 5, 2024  | 5.53               | 718.28              | -          | 35.80               | 0.45                    |
|          |                           |                    |                     | August 28, 2024   | 5.83               | 717.98              | -          | 35.75               | 0.50                    |
| PRMW-4S  | 721.92                    | 27.30              | 14 - 24             | February 22, 2021 | 7.52               | 714.40              | -          | 27.30               | 0.00                    |
|          |                           |                    |                     | May 24, 2021      | 7.26               | 714.66              | -          | 27.20               | 0.10                    |
|          |                           |                    |                     | August 23, 2021   | 6.00               | 715.92              | -          | 27.04               | 0.26                    |
|          |                           |                    |                     | November 29, 2021 | 6.89               | 715.03              | -          | 27.06               | 0.24                    |
|          |                           |                    |                     | February 24, 2022 | 6.26               | 715.66              | -          | 27.10               | 0.20                    |
|          |                           |                    |                     | May 31, 2022      | 7.16               | 714.76              | -          | 27.09               | 0.21                    |
|          |                           |                    |                     | August 3, 2022    | 7.20               | 714.72              | -          | 27.05               | 0.25                    |
|          |                           |                    |                     | November 22, 2022 | 7.40               | 714.52              | -          | 27.12               | 0.18                    |
|          |                           |                    |                     | February 8, 2023  | 7.10               | 714.82              | -          | 27.10               | 0.20                    |
|          |                           |                    |                     | May 25, 2023      | 7.13               | 714.79              | -          | 27.09               | 0.21                    |
|          |                           |                    |                     | August 23, 2023   | 7.02               | 714.90              | -          | 27.11               | 0.19                    |
|          |                           |                    |                     | November 9, 2023  | 7.50               | 714.42              | -          | 27.12               | 0.18                    |
|          |                           |                    |                     | February 5, 2024  | 6.44               | 715.48              | -          | 27.10               | 0.20                    |
|          |                           |                    |                     | August 28, 2024   | 6.86               | 715.06              | -          | 27.10               | 0.20                    |
| PRMW-5S  | 720.72                    | 22.70              | 10 - 20             | February 22, 2021 | 7.10               | 713.62              | -          | 22.70               | 0.00                    |
|          |                           |                    |                     | May 24, 2021      | 6.66               | 714.06              | -          | 22.67               | 0.03                    |
|          |                           |                    |                     | August 23, 2021   | 6.17               | 714.55              | -          | 22.54               | 0.16                    |
|          |                           |                    |                     | November 29, 2021 | 6.88               | 713.84              | -          | 22.60               | 0.10                    |
|          |                           |                    |                     | February 24, 2022 | 6.48               | 714.24              | -          | 22.61               | 0.09                    |
|          |                           |                    |                     | May 31, 2022      | 6.45               | 714.27              | -          | 22.59               | 0.11                    |
|          |                           |                    |                     | August 3, 2022    | 6.84               | 713.88              | -          | 22.54               | 0.16                    |
|          |                           |                    |                     | November 22, 2022 | 7.17               | 713.55              | -          | 22.60               | 0.10                    |
|          |                           |                    |                     | February 8, 2023  | 7.34               | 713.38              | -          | 22.59               | 0.11                    |
|          |                           |                    |                     | May 25, 2023      | 6.53               | 714.19              | -          | 22.57               | 0.13                    |
|          |                           |                    |                     | August 23, 2023   | 6.59               | 714.13              | -          | 22.63               | 0.07                    |
|          |                           |                    |                     | November 9, 2023  | 7.17               | 713.55              | -          | 22.62               | 0.08                    |
|          |                           |                    |                     | February 5, 2024  | 6.60               | 714.12              | -          | 22.58               | 0.12                    |
|          |                           |                    |                     | August 28, 2024   | 6.28               | 714.44              | -          | 22.58               | 0.12                    |
| PRMW-5D  | 720.74                    | 33.27              | 20 - 30             | February 22, 2021 | 4.32               | 716.42              | -          | 33.27               | 0.00                    |
|          |                           |                    |                     | May 24, 2021      | 3.24               | 717.50              | -          | 32.45               | 0.82                    |
|          |                           |                    |                     | August 23, 2021   | 2.62               | 718.12              | -          | 32.23               | 1.04                    |
|          |                           |                    |                     | November 29, 2021 | 2.63               | 718.11              | -          | 32.00               | 1.27                    |
|          |                           |                    |                     | February 24, 2022 | 3.30               | 717.44              | -          | 32.54               | 0.73                    |
|          |                           |                    |                     | May 31, 2022      | 2.80               | 717.94              | -          | 31.71               | 1.56                    |
|          |                           |                    |                     | August 3, 2022    | 3.58               | 717.16              | -          | 31.59               | 1.68                    |
|          |                           |                    |                     | November 22, 2022 | 4.00               | 716.74              | -          | 31.55               | 1.72                    |
|          |                           |                    |                     | February 8, 2023  | 3.63               | 717.11              | -          | 31.59               | 1.68                    |
|          |                           |                    |                     | May 25, 2023      | 2.57               | 718.17              | -          | 31.45               | 1.82                    |
|          |                           |                    |                     | August 23, 2023   | 3.31               | 717.43              | -          | 33.02               | 0.25                    |
|          |                           |                    |                     | November 9, 2023  | 3.71               | 717.03              | -          | 31.45               | 1.82                    |
|          |                           |                    |                     | February 5, 2024  | 2.91               | 717.83              | -          | 33.08               | 0.19                    |
|          |                           |                    |                     | August 28, 2024   | 3.17               | 717.57              | -          | 33.20               | 0.07                    |





|         |                 |          |          |                   |            |             |              |            | Accumulated |
|---------|-----------------|----------|----------|-------------------|------------|-------------|--------------|------------|-------------|
|         |                 | Actual   |          |                   | Depth to   |             | Depth to     | Depth to   | Sediment    |
|         | Measuring       | Depth to | Screen   |                   | Water      | Groundwater | Product      | Bottom     | Thickness   |
| Well ID | Point Elevation | Bottom   | Interval | Date              | (feet TOC) | Elevation   | (feet TOC)   | (feet TOC) | (feet)      |
| PRMW-6S | 721.10          | 23.20    | 10 - 20  | February 22, 2021 | 6.52       | 714.58      | -            | 23.20      | 0.00        |
|         |                 |          |          | May 24, 2021      | 6.28       | 714.82      | -            | 23.10      | 0.10        |
|         |                 |          |          | August 23, 2021   | 6.05       | 715.05      | -            | 23.02      | 0.18        |
|         |                 |          |          | November 29, 2021 | 6.04       | 715.06      | -            | 23.08      | 0.12        |
|         |                 |          |          | February 24, 2022 | 6.13       | 714.97      | -            | 23.08      | 0.12        |
|         |                 |          |          | May 31, 2022      | 6.09       | 715.01      | -            | 23.05      | 0.15        |
|         |                 |          |          | August 3, 2022    | 6.08       | 715.02      | -            | 23.00      | 0.20        |
|         |                 |          |          | November 22, 2022 | 8.75       | 712.35      | -            | 23.04      | 0.16        |
|         |                 |          |          | February 8, 2023  | 6.16       | 714.94      | -            | 23.05      | 0.15        |
|         |                 |          |          | May 25, 2023      | 5.77       | 715.33      | -            | 23.03      | 0.17        |
|         |                 |          |          | August 23, 2023   | 5.85       | 715.25      | -            | 23.09      | 0.11        |
|         |                 |          |          | November 9, 2023  | 6.03       | 715.07      | -            | 23.18      | 0.02        |
|         |                 |          |          | February 5, 2024  | 5.88       | 715.22      | -            | 23.05      | 0.15        |
|         |                 |          |          | August 28, 2024   | 6.02       | 715.08      | -            | 23.09      | 0.11        |
| PRMW-6D | 721.22          | 37.05    | 24 - 34  | February 22, 2021 | 4.85       | 716.37      | -            | 37.05      | 0.00        |
|         |                 |          |          | May 24, 2021      | 3.75       | 717.47      | -            | 37.05      | 0.00        |
|         |                 |          |          | August 23, 2021   | 2.99       | 718.23      | -            | 36.87      | 0.18        |
|         |                 |          |          | November 29, 2021 | 3.06       | 718.16      | -            | 36.90      | 0.15        |
|         |                 |          |          | February 24, 2022 | 3.97       | 717.25      | -            | 36.94      | 0.11        |
|         |                 |          |          | May 31, 2022      | 3.17       | 718.05      | -            | 36.89      | 0.16        |
|         |                 |          |          | August 3, 2022    | 3.82       | 717.40      | -            | 36.84      | 0.21        |
|         |                 |          |          | November 22, 2022 | 4.39       | 716.83      | -            | 36.90      | 0.15        |
|         |                 |          |          | February 8, 2023  | 4.10       | 717.12      | -            | 36.90      | 0.15        |
|         |                 |          |          | May 25, 2023      | 3.01       | 718.21      | -            | 36.89      | 0.16        |
|         |                 |          |          | August 23, 2023   | 2.72       | 718.50      | -            | 36.90      | 0.15        |
|         |                 |          |          | November 9, 2023  | 4.31       | 716.91      | -            | 36.93      | 0.12        |
|         |                 |          |          | February 5, 2024  | 3.62       | 717.60      | -            | 36.89      | 0.16        |
|         |                 |          |          | August 28, 2024   | 3.79       | 717.43      | -            | 36.88      | 0.17        |
| TMW-1D  | 723.45          | -        | 54 - 64  | May 24, 2021      | 5.17       | 718.28      | -            | 63.38      | -           |
|         |                 |          |          | August 23, 2021   | 3.07       | 720.38      | -            | 63.14      | -           |
|         |                 |          |          | November 29, 2021 | 4.40       | 719.05      | -            | 63.25      | -           |
|         |                 |          |          | February 24, 2022 | 4.43       | 719.02      | -            | 63.37      | -           |
|         |                 |          |          | May 31, 2022      | 4.76       | 718.69      | -            | 63.42      | -           |
|         |                 |          |          | August 3, 2022    | 5.45       | 718.00      | -            | 63.25      | -           |
|         |                 |          |          | November 22, 2022 | 5.86       | 717.59      | -            | 63.60      | -           |
|         |                 |          |          | February 8, 2023  | 5.58       | 717.87      | -            | 63.28      | -           |
|         |                 |          |          | May 25, 2023      | 4.58       | 718.87      | -            | 63.24      | -           |
|         |                 |          |          | August 23, 2023   | 5.49       | 717.96      | -            | 63.25      | -           |
|         |                 |          |          | November 9, 2023  | 5.80       | 717.65      | -            | 63.30      | -           |
|         |                 |          |          | February 5, 2024  | 5.10       | 718.35      | -            | 63.25      | -           |
|         |                 |          |          | July 16, 2024     |            |             | ecommissione | ed         |             |
| TMW-2D  | 719.24          | -        | 50 - 60  | February 22, 2021 | 2.03       | 717.21      | -            | -          | -           |
|         |                 |          |          | May 24, 2021      | 0.79       | 718.45      | -            | -          | -           |
|         |                 |          |          | August 23, 2021   | 0.40       | 718.84      | -            | -          | -           |
|         |                 |          |          | November 29, 2021 | 0.09       | 719.15      | -            | -          | -           |
|         |                 |          |          | February 24, 2022 | 0.15       | 719.09      | -            | -          | -           |
|         |                 |          |          | May 31, 2022      | 0.15       | 719.09      | -            | -          | -           |
|         |                 |          |          | August 3, 2022    | 1.07       | 718.17      | -            | -          | -           |
|         |                 |          |          | November 22, 2022 | -          | -           | -            | -          | -           |
|         |                 |          |          | February 8, 2023  | 1.32       | 717.92      | -            | -          | -           |
|         |                 |          |          | May 25, 2023      | 0.20       | 719.04      | -            | -          | -           |
|         |                 |          |          | August 23, 2023   | 0.98       | 718.26      | -            | -          | -           |
|         |                 |          |          | November 9, 2023  | 1.61       | 717.63      | -            | -          | -           |
|         |                 |          |          | February 5, 2024  | 0.81       | 718.43      | -            | -          | -           |
|         |                 |          |          | July 16, 2024     |            | D           | ecommissione | ed         |             |





| Well ID | Measuring<br>Point Elevation | Actual<br>Depth to<br>Bottom | Screen<br>Interval | Date              | Depth to<br>Water<br>(feet TOC) | Groundwater<br>Elevation | Depth to<br>Product<br>(feet TOC) | Depth to<br>Bottom<br>(feet TOC) | Accumulated<br>Sediment<br>Thickness<br>(feet) |
|---------|------------------------------|------------------------------|--------------------|-------------------|---------------------------------|--------------------------|-----------------------------------|----------------------------------|------------------------------------------------|
| TMW-2DR | 719.23                       | 60.18                        | 50 - 60            | August 3, 2022    | 1.17                            | 718.06                   | -                                 | 59.20                            | 0.98                                           |
|         |                              |                              |                    | November 22, 2022 | 1.57                            | 717.66                   | -                                 | 59.50                            | 0.68                                           |
|         |                              |                              |                    | February 8, 2023  | 1.35                            | 717.88                   | -                                 | 59.08                            | 1.10                                           |
|         |                              |                              |                    | May 25, 2023      | 0.56                            | 718.67                   | -                                 | 58.99                            | 1.19                                           |
|         |                              |                              |                    | August 23, 2023   | 1.31                            | 717.92                   | -                                 | 59.32                            | 0.86                                           |
|         |                              |                              |                    | November 9, 2023  | 1.62                            | 717.61                   | -                                 | 59.29                            | 0.89                                           |
|         |                              |                              |                    | February 5, 2024  | 1.00                            | 718.23                   | -                                 | 59.14                            | 1.04                                           |
|         |                              |                              |                    | July 16, 2024     |                                 | D                        | ecommissione                      | ed                               |                                                |

- 1. Elevations in feet above mean sea level, 1929 National Geodetic Vertical Datum.
- 2. Depth calculated based on well installation information provided by Arcadis (TMW-2DR) and AECOM (all other wells).

#### **Acronyms and Abbreviations:**

"-" - measurement not taken or not available TOC - top of casing

Table 3
Groundwater Analytical Results
Periodic Review Report
New York State Electric & Gas
Penn Yan Former Manufactured Gas Plant
Penn Yan, New York



| Location ID:           | NYSDEC<br>TOGS 1.1.1               |       |          |          |          |          |          |          | PRMW-1S  |          |          |          |          |          |          |
|------------------------|------------------------------------|-------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                        | Standards or<br>Guidance<br>Values | Units | 05/26/21 | 08/23/21 | 44/00/04 | 00/05/00 | 06/01/22 | 00/04/00 | 11/22/22 | 02/08/23 | 05/05/02 | 08/23/23 | 11/09/23 | 00/05/04 | 00/00/04 |
| Date Collected:        | values                             | Units | 05/26/21 | 08/23/21 | 11/29/21 | 02/25/22 | 06/01/22 | 08/04/22 | 11/22/22 | 02/08/23 | 05/25/23 | 08/23/23 | 11/09/23 | 02/05/24 | 08/28/24 |
| Benzene                | 1                                  | /1    | 1.0 U    |
| Ethylbenzene           | <u>I</u>                           | μg/L  | 1.0 UJ   | 1.0 U    |
|                        | 5                                  | μg/L  |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Toluene                |                                    | μg/L  | 1.0 UJ   | 1.0 U    |
| Xylenes (total)        | 5                                  | μg/L  | 2.0 UJ   | 2.0 U    |
| Total BTEX             |                                    | μg/L  | ND       |
| PAHs                   |                                    |       |          | ı        |          |          |          | ı        | ı        |          | ı        |          |          |          |          |
| Acenaphthene           | 20                                 | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.50 U   | 0.49 U   | 5.0 U    | 0.48 U   | 0.48 U   | 0.51 U   | 0.48 U   | 0.52 U   | 0.54 U   | 0.53 U   |
| Acenaphthylene         |                                    | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.30 U   | 0.29 U   | 5.0 U    | 0.29 U   | 0.29 U   | 0.30 U   | 0.29 U   | 0.31 U   | 0.32 U   | 0.32 U   |
| Anthracene             | 50                                 | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.50 U   | 0.49 U   | 5.0 U    | 0.48 U   | 0.48 U   | 0.51 U   | 0.48 U   | 0.52 U   | 0.54 U   | 0.53 U   |
| Benzo(a)anthracene     | 0.002                              | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.30 U   | 0.29 U   | 5.0 U    | 0.29 U   | 0.29 U   | 0.30 U   | 0.29 U   | 0.31 U   | 0.32 U   | 0.32 U   |
| Benzo(a)pyrene         |                                    | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.18 U   | 0.17 U   | 5.0 U    | 0.17 U   | 0.17 U   | 0.18 U   | 0.17 U   | 0.19 U   | 0.19 U   | 0.19 U   |
| Benzo(b)fluoranthene   | 0.002                              | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.30 U   | 0.29 U   | 5.0 U    | 0.29 U   | 0.29 U   | 0.30 U   | 0.29 U   | 0.31 U   | 0.32 U   | 0.32 U   |
| Benzo(g,h,i)perylene   |                                    | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.50 U   | 0.49 U   | 5.0 U    | 0.48 U   | 0.48 U   | 0.51 U   | 0.48 U   | 0.52 U   | 0.54 U   | 0.53 U   |
| Benzo(k)fluoranthene   | 0.002                              | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.30 U   | 0.29 U   | 5.0 U    | 0.29 U   | 0.29 U   | 0.30 U   | 0.29 U   | 0.31 U   | 0.32 UJ  | 0.32 U   |
| Chrysene               | 0.002                              | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.50 U   | 0.49 U   | 5.0 U    | 0.48 U   | 0.48 U   | 0.51 U   | 0.48 U   | 0.52 U   | 0.54 U   | 0.53 U   |
| Dibenzo(a,h)anthracene |                                    | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.50 U   | 0.49 U   | 5.0 U    | 0.48 U   | 0.48 U   | 0.51 U   | 0.48 U   | 0.52 U   | 0.54 U   | 0.53 U   |
| Fluoranthene           | 50                                 | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.50 U   | 0.49 U   | 5.0 U    | 0.48 U   | 0.48 U   | 0.51 U   | 0.48 U   | 0.52 U   | 0.54 U   | 0.53 U   |
| Fluorene               | 50                                 | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.50 U   | 0.49 U   | 5.0 U    | 0.48 U   | 0.48 U   | 0.51 U   | 0.48 U   | 0.52 U   | 0.54 U   | 0.53 U   |
| Indeno(1,2,3-cd)pyrene | 0.002                              | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.50 U   | 0.49 U   | 5.0 U    | 0.48 U   | 0.48 U   | 0.51 U   | 0.48 U   | 0.52 U   | 0.54 U   | 0.53 U   |
| Naphthalene            | 10                                 | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 1.0 U    | 0.97 U   | 5.0 U    | 0.95 U   | 0.95 U   | 1.0 U    | 0.95 U   | 0.094 J  | 1.1 U    | 1.1 U    |
| Phenanthrene           | 50                                 | μg/L  | 5.2 U    | 5.0 UJB  | 5.0 U    | 0.20 U   | 0.19 U   | 5.0 U    | 0.19 U   | 0.19 U   | 0.20 U   | 0.19 U   | 0.21 U   | 0.22 U   | 0.21 U   |
| Pyrene                 | 50                                 | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.50 U   | 0.49 U   | 5.0 U    | 0.48 U   | 0.48 U   | 0.51 U   | 0.48 U   | 0.52 U   | 0.54 U   | 0.53 U   |
| Total PAHs             |                                    | μg/L  | ND       | 0.094 J  | ND       | ND       |
| Inorganics             |                                    |       |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Cyanide, Total         | 0.2                                | mg/L  | 0.01 U   | 0.01 U   | 0.01 U   | 0.010 U  | 0.010 U  | 0.010 UB | 0.0100 U | 0.010 U  | 0.010 UB | 0.010 U  | 0.010 U  | 0.010 U  | 0.010 UJ |

Table 3
Groundwater Analytical Results
Periodic Review Report
New York State Electric & Gas
Penn Yan Former Manufactured Gas Plant
Penn Yan, New York



| Location ID:           | NYSDEC<br>TOGS 1.1.1               |       |          |          |          |          |          |          | PRMW-2D  |          |          |          |          |          |          |
|------------------------|------------------------------------|-------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Date Collected:        | Standards or<br>Guidance<br>Values | Units | 05/25/21 | 08/25/21 | 11/30/21 | 02/25/22 | 06/01/22 | 08/04/22 | 11/22/22 | 02/08/23 | 05/25/23 | 08/23/23 | 11/09/23 | 02/05/24 | 08/28/24 |
| BTEX                   |                                    |       |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Benzene                | 1                                  | μg/L  | 1.0 U    |
| Ethylbenzene           | 5                                  | μg/L  | 1.0 UJ   | 1.0 U    |
| Toluene                | 5                                  | μg/L  | 1.0 UJ   | 1.0 U    |
| Xylenes (total)        | 5                                  | μg/L  | 2.0 UJ   | 2.0 U    |
| Total BTEX             |                                    | μg/L  | ND       |
| PAHs                   |                                    |       |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Acenaphthene           | 20                                 | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.52 U   | 0.50 U   | 5.0 U    | 0.52 U   | 0.53 U   | 0.52 U   | 0.49 U   | 0.51 U   | 0.52 U   | 0.50 U   |
| Acenaphthylene         |                                    | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.31 U   | 0.30 U   | 5.0 U    | 0.31 U   | 0.32 U   | 0.31 U   | 0.29 U   | 0.31 U   | 0.31 U   | 0.30 U   |
| Anthracene             | 50                                 | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.52 U   | 0.50 U   | 5.0 U    | 0.52 U   | 0.53 U   | 0.52 U   | 0.49 U   | 0.51 U   | 0.52 U   | 0.50 U   |
| Benzo(a)anthracene     | 0.002                              | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.31 UJ  | 0.30 U   | 5.0 U    | 0.31 U   | 0.32 U   | 0.31 U   | 0.29 U   | 0.31 U   | 0.31 U   | 0.30 U   |
| Benzo(a)pyrene         |                                    | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.19 UJ  | 0.18 U   | 5.0 U    | 0.19 U   | 0.19 U   | 0.19 U   | 0.17 U   | 0.18 U   | 0.19 U   | 0.18 U   |
| Benzo(b)fluoranthene   | 0.002                              | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.31 UJ  | 0.30 U   | 5.0 U    | 0.31 U   | 0.32 U   | 0.31 U   | 0.29 U   | 0.31 U   | 0.31 U   | 0.30 U   |
| Benzo(g,h,i)perylene   |                                    | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.52 UJ  | 0.50 U   | 5.0 U    | 0.52 U   | 0.53 U   | 0.52 U   | 0.49 U   | 0.51 U   | 0.52 U   | 0.50 U   |
| Benzo(k)fluoranthene   | 0.002                              | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.31 UJ  | 0.30 U   | 5.0 U    | 0.31 U   | 0.32 U   | 0.31 U   | 0.29 U   | 0.31 U   | 0.31 UJ  | 0.30 U   |
| Chrysene               | 0.002                              | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.52 UJ  | 0.50 U   | 5.0 U    | 0.52 U   | 0.53 U   | 0.52 U   | 0.49 U   | 0.51 U   | 0.52 U   | 0.50 U   |
| Dibenzo(a,h)anthracene |                                    | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.52 UJ  | 0.50 U   | 5.0 U    | 0.52 U   | 0.53 U   | 0.52 U   | 0.49 U   | 0.51 U   | 0.52 U   | 0.50 U   |
| Fluoranthene           | 50                                 | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.52 U   | 0.50 U   | 5.0 U    | 0.52 U   | 0.53 U   | 0.52 U   | 0.49 U   | 0.51 U   | 0.52 U   | 0.50 U   |
| Fluorene               | 50                                 | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.52 U   | 0.50 U   | 5.0 U    | 0.52 U   | 0.53 U   | 0.52 U   | 0.49 U   | 0.51 U   | 0.52 U   | 0.50 U   |
| Indeno(1,2,3-cd)pyrene | 0.002                              | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.52 UJ  | 0.50 U   | 5.0 U    | 0.52 U   | 0.53 U   | 0.52 U   | 0.49 U   | 0.51 U   | 0.52 U   | 0.50 U   |
| Naphthalene            | 10                                 | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 1.0 U    | 1.0 U    | 5.0 U    | 0.098 J  | 1.1 U    | 1.0 U    | 0.97 U   | 1.0 U    | 1.0 U    | 1.0 U    |
| Phenanthrene           | 50                                 | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.21 U   | 0.20 U   | 5.0 U    | 0.21 U   | 0.21 U   | 0.21 U   | 0.19 U   | 0.20 U   | 0.21 U   | 0.20 U   |
| Pyrene                 | 50                                 | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.52 U   | 0.50 U   | 5.0 U    | 0.52 U   | 0.53 U   | 0.52 U   | 0.49 U   | 0.51 U   | 0.52 U   | 0.50 U   |
| Total PAHs             |                                    | μg/L  | ND       | ND       | ND       | ND       | ND       | ND       | 0.098 J  | ND       | ND       | ND       | ND       | ND       | ND       |
| Inorganics             |                                    |       |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Cyanide, Total         | 0.2                                | mg/L  | 0.01 U   | 0.01 U   | 0.01 U   | 0.010 U  | 0.010 UB | 0.010 UB | 0.0100 U | 0.010 U  | 0.010 UB | 0.010 U  | 0.010 U  | 0.010 U  | 0.010 UJ |

Table 3
Groundwater Analytical Results
Periodic Review Report
New York State Electric & Gas
Penn Yan Former Manufactured Gas Plant
Penn Yan, New York



|                        | NYSDEC<br>TOGS 1.1.1 |       |          |          |          |          |          |          |           |          |          |          |          |          |          |
|------------------------|----------------------|-------|----------|----------|----------|----------|----------|----------|-----------|----------|----------|----------|----------|----------|----------|
| Location ID:           | Standards or         |       |          |          |          |          |          |          | PRMW-2S   |          |          |          |          |          |          |
|                        | Guidance             |       |          |          |          |          |          |          |           |          |          |          |          |          |          |
| Date Collected:        | Values               | Units | 05/25/21 | 08/24/21 | 11/30/21 | 02/25/22 | 06/01/22 | 08/04/22 | 11/22/22  | 02/08/23 | 05/25/23 | 08/23/23 | 11/09/23 | 02/05/24 | 08/28/24 |
| BTEX                   |                      |       |          |          |          |          |          |          |           |          |          |          |          |          |          |
| Benzene                | 1                    | μg/L  | 1.0 U     | 1.0 U    | 1.0 U    | 1.0 U    | 1.0 U    | 1.0 U    | 1.0 U    |
| Ethylbenzene           | 5                    | μg/L  | 1.0 UJ   | 1.0 U     | 1.0 U    | 1.0 U    | 1.0 U    | 1.0 U    | 1.0 U    | 1.0 U    |
| Toluene                | 5                    | μg/L  | 1.0 UJ   | 1.0 U     | 1.0 U    | 1.0 U    | 1.0 U    | 1.0 U    | 1.0 U    | 1.0 U    |
| Xylenes (total)        | 5                    | μg/L  | 2.0 UJ   | 2.0 U     | 2.0 U    | 2.0 U    | 2.0 U    | 2.0 U    | 2.0 U    | 2.0 U    |
| Total BTEX             |                      | μg/L  | ND        | ND       | ND       | ND       | ND       | ND       | ND       |
| PAHs                   |                      |       |          |          |          |          |          |          |           |          |          |          |          |          |          |
| Acenaphthene           | 20                   | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.50 U   | 0.51 U   | 5.0 U    | 0.49 U    | 0.48 U   | 0.51 U   | 0.48 U   | 0.48 U   | 0.52 U   | 0.52 U   |
| Acenaphthylene         |                      | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.30 U   | 0.30 U   | 5.0 U    | 0.29 U    | 0.29 U   | 0.31 U   | 0.29 U   | 0.29 U   | 0.31 U   | 0.31 U   |
| Anthracene             | 50                   | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.50 U   | 0.51 U   | 5.0 U    | 0.49 U    | 0.48 U   | 0.51 U   | 0.48 U   | 0.48 U   | 0.52 U   | 0.52 U   |
| Benzo(a)anthracene     | 0.002                | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.30 U   | 0.30 U   | 5.0 U    | 0.29 U    | 0.29 U   | 0.31 U   | 0.29 U   | 0.29 U   | 0.31 U   | 0.31 U   |
| Benzo(a)pyrene         |                      | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.18 U   | 0.18 U   | 5.0 U    | 0.18 U    | 0.17 U   | 0.18 U   | 0.17 U   | 0.17 U   | 0.19 U   | 0.19 U   |
| Benzo(b)fluoranthene   | 0.002                | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.30 U   | 0.30 U   | 5.0 U    | 0.29 U    | 0.29 U   | 0.31 U   | 0.29 U   | 0.29 U   | 0.31 U   | 0.31 U   |
| Benzo(g,h,i)perylene   |                      | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.50 U   | 0.51 U   | 5.0 U    | 0.49 U    | 0.48 U   | 0.51 U   | 0.48 U   | 0.48 U   | 0.52 U   | 0.52 U   |
| Benzo(k)fluoranthene   | 0.002                | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.30 U   | 0.30 U   | 5.0 U    | 0.29 U    | 0.29 U   | 0.31 U   | 0.29 U   | 0.29 U   | 0.31 UJ  | 0.31 U   |
| Chrysene               | 0.002                | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.50 U   | 0.51 U   | 5.0 U    | 0.49 U    | 0.48 U   | 0.51 U   | 0.48 U   | 0.48 U   | 0.52 U   | 0.52 U   |
| Dibenzo(a,h)anthracene |                      | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.50 U   | 0.51 U   | 5.0 U    | 0.49 U    | 0.48 U   | 0.51 U   | 0.48 U   | 0.48 U   | 0.52 U   | 0.52 U   |
| Fluoranthene           | 50                   | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.50 U   | 0.51 U   | 5.0 U    | 0.49 U    | 0.48 U   | 0.51 U   | 0.48 U   | 0.48 U   | 0.52 U   | 0.52 U   |
| Fluorene               | 50                   | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.50 U   | 0.51 U   | 5.0 U    | 0.49 U    | 0.48 U   | 0.51 U   | 0.48 U   | 0.48 U   | 0.52 U   | 0.52 U   |
| Indeno(1,2,3-cd)pyrene | 0.002                | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.50 U   | 0.51 U   | 5.0 U    | 0.49 U    | 0.48 U   | 0.51 U   | 0.48 U   | 0.48 U   | 0.52 U   | 0.52 U   |
| Naphthalene            | 10                   | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 1.0 U    | 1.0 U    | 5.0 U    | 0.98 U    | 0.95 U   | 1.0 U    | 0.95 U   | 0.95 U   | 1.0 UB   | 1.0 U    |
| Phenanthrene           | 50                   | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.20 U   | 0.20 U   | 5.0 U    | 0.20 U    | 0.19 U   | 0.20 U   | 0.19 U   | 0.19 U   | 0.21 U   | 0.21 U   |
| Pyrene                 | 50                   | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.50 U   | 0.51 U   | 5.0 U    | 0.49 U    | 0.48 U   | 0.51 U   | 0.48 U   | 0.48 U   | 0.52 U   | 0.52 U   |
| Total PAHs             |                      | μg/L  | ND        | ND       | ND       | ND       | ND       | ND       | ND       |
| Inorganics             |                      |       |          |          |          |          |          |          |           |          |          |          |          |          |          |
| Cyanide, Total         | 0.2                  | mg/L  | 0.015 J  | 0.064    | 0.09     | 0.077    | 0.078 J  | 0.010 U  | 0.0690 UB | 0.078    | 0.086 B  | 0.094    | 0.11     | 0.100    | 0.11 J   |

Table 3
Groundwater Analytical Results
Periodic Review Report
New York State Electric & Gas
Penn Yan Former Manufactured Gas Plant
Penn Yan, New York



|                        | NYSDEC<br>TOGS 1.1.1 |       |          |          |          |          |          |          |          |          |          |          |          |          |          |
|------------------------|----------------------|-------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Location ID:           | Standards or         |       |          |          |          |          |          |          | PRMW-3D  |          |          |          |          |          |          |
|                        | Guidance             |       |          |          |          |          |          |          |          |          |          |          |          |          | l        |
| Date Collected:        | Values               | Units | 05/24/21 | 08/24/21 | 11/30/21 | 02/25/22 | 06/01/22 | 08/04/22 | 11/21/22 | 02/08/23 | 05/25/23 | 08/23/23 | 11/09/23 | 02/05/24 | 08/28/24 |
| BTEX                   |                      |       |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Benzene                | 1                    | μg/L  | 1.0 U    |
| Ethylbenzene           | 5                    | μg/L  | 1.0 UJ   | 1.0 U    |
| Toluene                | 5                    | μg/L  | 1.0 UJ   | 1.0 U    |
| Xylenes (total)        | 5                    | μg/L  | 2.0 UJ   | 2.0 U    |
| Total BTEX             |                      | μg/L  | ND       |
| PAHs                   |                      |       |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Acenaphthene           | 20                   | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.52 U   | 0.49 U   | 5.0 U    | 0.50 U   | 0.50 U   | 0.48 U   | 0.51 U   | 0.53 U   | 0.53 U   | 0.48 U   |
| Acenaphthylene         |                      | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.31 U   | 0.29 U   | 5.0 U    | 0.30 U   | 0.30 U   | 0.29 U   | 0.31 U   | 0.32 U   | 0.32 U   | 0.29 U   |
| Anthracene             | 50                   | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.52 U   | 0.49 U   | 5.0 U    | 0.50 U   | 0.50 U   | 0.48 U   | 0.51 U   | 0.53 U   | 0.53 U   | 0.48 U   |
| Benzo(a)anthracene     | 0.002                | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.31 U   | 0.29 U   | 5.0 U    | 0.30 U   | 0.30 U   | 0.29 U   | 0.31 U   | 0.32 U   | 0.32 U   | 0.29 U   |
| Benzo(a)pyrene         |                      | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.19 U   | 0.17 U   | 5.0 U    | 0.18 U   | 0.18 U   | 0.17 U   | 0.18 U   | 0.19 U   | 0.19 U   | 0.17 U   |
| Benzo(b)fluoranthene   | 0.002                | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.31 U   | 0.29 U   | 5.0 U    | 0.30 U   | 0.30 U   | 0.29 U   | 0.31 U   | 0.32 U   | 0.32 U   | 0.29 U   |
| Benzo(g,h,i)perylene   |                      | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.52 U   | 0.49 U   | 5.0 U    | 0.50 U   | 0.50 U   | 0.48 U   | 0.51 U   | 0.53 U   | 0.53 U   | 0.48 U   |
| Benzo(k)fluoranthene   | 0.002                | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.31 U   | 0.29 U   | 5.0 U    | 0.30 U   | 0.30 U   | 0.29 U   | 0.31 U   | 0.32 U   | 0.32 UJ  | 0.29 U   |
| Chrysene               | 0.002                | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.52 U   | 0.49 U   | 5.0 U    | 0.50 U   | 0.50 U   | 0.48 U   | 0.51 U   | 0.53 U   | 0.53 U   | 0.48 U   |
| Dibenzo(a,h)anthracene |                      | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.52 U   | 0.49 U   | 5.0 U    | 0.50 U   | 0.50 U   | 0.48 U   | 0.51 U   | 0.53 U   | 0.53 U   | 0.48 U   |
| Fluoranthene           | 50                   | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.52 U   | 0.49 U   | 5.0 U    | 0.50 U   | 0.50 U   | 0.48 U   | 0.51 U   | 0.53 U   | 0.53 U   | 0.48 U   |
| Fluorene               | 50                   | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.52 U   | 0.49 U   | 5.0 U    | 0.50 U   | 0.50 U   | 0.48 U   | 0.51 U   | 0.53 U   | 0.53 U   | 0.48 U   |
| Indeno(1,2,3-cd)pyrene | 0.002                | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.52 U   | 0.49 U   | 5.0 U    | 0.50 U   | 0.50 U   | 0.48 U   | 0.51 U   | 0.53 U   | 0.53 U   | 0.48 U   |
| Naphthalene            | 10                   | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 1.0 U    | 0.97 U   | 5.0 U    | 0.99 U   | 1.0 U    | 0.96 U   | 1.0 U    | 1.1 U    | 1.1 UB   | 0.95 U   |
| Phenanthrene           | 50                   | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.21 U   | 0.19 U   | 5.0 U    | 0.20 U   | 0.20 U   | 0.19 U   | 0.20 U   | 0.21 U   | 0.21 U   | 0.19 U   |
| Pyrene                 | 50                   | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.52 U   | 0.49 U   | 5.0 U    | 0.50 U   | 0.50 U   | 0.48 U   | 0.51 U   | 0.53 U   | 0.53 U   | 0.48 U   |
| Total PAHs             |                      | μg/L  | ND       |
| Inorganics             |                      |       |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Cyanide, Total         | 0.2                  | mg/L  | 0.01 U   | 0.01 U   | 0.01 U   | 0.010 U  | 0.010 U  | 0.010 UB | 0.0100 U | 0.010 U  | 0.010 UB | 0.010 U  | 0.010 U  | 0.010 U  | 0.010 UJ |

Table 3
Groundwater Analytical Results
Periodic Review Report
New York State Electric & Gas
Penn Yan Former Manufactured Gas Plant
Penn Yan, New York



|                        | NYSDEC<br>TOGS 1.1.1 |       |          |           |          |          |          |           |          |          |          |          |          |          |          |
|------------------------|----------------------|-------|----------|-----------|----------|----------|----------|-----------|----------|----------|----------|----------|----------|----------|----------|
| Location ID:           | Standards or         |       |          |           |          |          |          |           | PRMW-3S  |          |          |          |          |          |          |
|                        | Guidance             |       |          |           |          |          |          |           |          |          |          |          |          |          |          |
| Date Collected:        | Values               | Units | 05/24/21 | 08/24/21  | 11/30/21 | 02/25/22 | 05/31/22 | 08/04/22  | 11/21/22 | 02/08/23 | 05/25/23 | 08/23/23 | 11/09/23 | 02/05/24 | 08/28/24 |
| BTEX                   |                      |       | 00/2 //2 | 00/2 // - |          | 02,20,22 | 00.0     |           |          | 02.00.20 | 00/20/20 | 00,20,20 |          | 02/00/2  | 00/20/21 |
| Benzene                | 1                    | μg/L  | 1.0 U    | 1.0 U     | 1.0 U    | 1.0 U    | 1.0 U    | 1.0 U     | 1.0 U    | 1.0 U    | 1.0 U    | 1.0 U    | 1.0 U    | 1.0 U    | 1.0 U    |
| Ethylbenzene           | 5                    | μg/L  | 1.0 UJ   | 1.0 U     | 1.0 U    | 1.0 U    | 1.0 U    | 1.0 U     | 1.0 U    | 1.0 U    | 1.0 U    | 1.0 U    | 1.0 U    | 1.0 U    | 1.0 U    |
| Toluene                | 5                    | μg/L  | 1.0 UJ   | 1.0 U     | 1.0 U    | 1.0 U    | 1.0 U    | 1.0 U     | 1.0 U    | 1.0 UJ   | 1.0 U    |
| Xylenes (total)        | 5                    | μg/L  | 2.0 UJ   | 2.0 U     | 2.0 U    | 2.0 U    | 2.0 U    | 2.0 U     | 2.0 U    | 2.0 U    | 2.0 U    | 2.0 U    | 2.0 U    | 2.0 U    | 2.0 U    |
| Total BTEX             |                      | μg/L  | ND       | ND        | ND       | ND       | ND       | ND        | ND       | ND       | ND       | ND       | ND       | ND       | ND       |
| PAHs                   |                      |       |          |           |          |          |          |           |          |          |          |          |          |          |          |
| Acenaphthene           | 20                   | μg/L  | 5.2 U    | 5.0 U     | 5.0 U    | 0.51 U   | 0.49 U   | 5.0 U     | 0.49 U   | 0.49 U   | 0.49 U   | 0.52 U   | 0.53 U   | 0.50 U   | 0.48 U   |
| Acenaphthylene         |                      | μg/L  | 5.2 U    | 5.0 U     | 5.0 U    | 0.31 U   | 0.29 U   | 5.0 U     | 0.29 U   | 0.29 U   | 0.29 U   | 0.31 U   | 0.32 U   | 0.30 U   | 0.29 U   |
| Anthracene             | 50                   | μg/L  | 5.2 U    | 5.0 U     | 5.0 U    | 0.51 U   | 0.49 U   | 5.0 U     | 0.49 U   | 0.49 U   | 0.49 U   | 0.52 U   | 0.53 U   | 0.50 U   | 0.48 U   |
| Benzo(a)anthracene     | 0.002                | μg/L  | 5.2 U    | 5.0 U     | 5.0 U    | 0.31 U   | 0.29 UJ  | 5.0 U     | 0.29 UJ  | 0.29 U   | 0.29 U   | 0.31 UJ  | 0.32 U   | 0.30 UJ  | 0.29 U   |
| Benzo(a)pyrene         |                      | μg/L  | 5.2 U    | 5.0 U     | 5.0 U    | 0.18 U   | 0.17 UJ  | 5.0 U     | 0.18 UJ  | 0.18 U   | 0.18 U   | 0.19 UJ  | 0.19 U   | 0.18 UJ  | 0.17 U   |
| Benzo(b)fluoranthene   | 0.002                | μg/L  | 5.2 U    | 5.0 U     | 5.0 U    | 0.31 U   | 0.29 UJ  | 5.0 U     | 0.29 UJ  | 0.29 U   | 0.29 U   | 0.31 UJ  | 0.32 U   | 0.30 UJ  | 0.29 U   |
| Benzo(g,h,i)perylene   |                      | μg/L  | 5.2 U    | 5.0 U     | 5.0 U    | 0.51 U   | 0.49 UJ  | 5.0 U     | 0.49 U   | 0.49 U   | 0.49 U   | 0.52 UJ  | 0.53 U   | 0.50 UJ  | 0.48 U   |
| Benzo(k)fluoranthene   | 0.002                | μg/L  | 5.2 U    | 5.0 U     | 5.0 U    | 0.31 U   | 0.29 UJ  | 5.0 U     | 0.29 U   | 0.29 U   | 0.29 U   | 0.31 UJ  | 0.32 U   | 0.30 UJ  | 0.29 U   |
| Chrysene               | 0.002                | μg/L  | 5.2 U    | 5.0 U     | 5.0 U    | 0.51 U   | 0.49 UJ  | 5.0 U     | 0.49 UJ  | 0.49 UJ  | 0.49 U   | 0.52 UJ  | 0.53 U   | 0.50 UJ  | 0.48 U   |
| Dibenzo(a,h)anthracene |                      | μg/L  | 5.2 U    | 5.0 U     | 5.0 U    | 0.51 U   | 0.49 UJ  | 5.0 U     | 0.49 U   | 0.49 U   | 0.49 U   | 0.52 UJ  | 0.53 U   | 0.50 UJ  | 0.48 U   |
| Fluoranthene           | 50                   | μg/L  | 5.2 U    | 5.0 U     | 5.0 U    | 0.51 U   | 0.49 U   | 5.0 U     | 0.49 U   | 0.49 U   | 0.49 U   | 0.52 U   | 0.53 U   | 0.50 U   | 0.48 U   |
| Fluorene               | 50                   | μg/L  | 5.2 U    | 5.0 U     | 5.0 U    | 0.51 U   | 0.49 U   | 5.0 U     | 0.49 U   | 0.49 UJ  | 0.49 U   | 0.52 U   | 0.53 U   | 0.50 U   | 0.48 U   |
| Indeno(1,2,3-cd)pyrene | 0.002                | μg/L  | 5.2 U    | 5.0 U     | 5.0 U    | 0.51 U   | 0.49 UJ  | 5.0 U     | 0.49 U   | 0.49 U   | 0.49 U   | 0.52 UJ  | 0.53 U   | 0.50 UJ  | 0.48 U   |
| Naphthalene            | 10                   | μg/L  | 5.2 U    | 5.0 U     | 5.0 U    | 1.0 U    | 0.97 U   | 5.0 U     | 0.98 U   | 0.98 U   | 0.98 U   | 1.0 U    | 1.1 U    | 1.0 UB   | 0.95 U   |
| Phenanthrene           | 50                   | μg/L  | 5.2 U    | 5.0 U     | 5.0 U    | 0.20 U   | 0.19 U   | 5.0 U     | 0.20 U   | 0.20 U   | 0.20 U   | 0.21 U   | 0.21 U   | 0.20 U   | 0.19 U   |
| Pyrene                 | 50                   | μg/L  | 5.2 U    | 5.0 U     | 5.0 U    | 0.51 U   | 0.49 U   | 5.0 U     | 0.49 U   | 0.49 U   | 0.49 U   | 0.52 U   | 0.53 U   | 0.50 U   | 0.48 U   |
| Total PAHs             |                      | μg/L  | ND       | ND        | ND       | ND       | ND       | ND        | ND       | ND       | ND       | ND       | ND       | ND       | ND       |
| Inorganics             |                      |       |          |           |          |          |          |           |          |          |          |          |          |          |          |
| Cyanide, Total         | 0.2                  | mg/L  | 0.011    | 0.01 U    | 0.27     | 0.010 U  | 0.010 U  | 0.010 UBJ | 0.0100 U | 0.010 U  | 0.010 UB | 0.011    | 0.010 U  | 0.010 UB | 0.010 U  |

Table 3
Groundwater Analytical Results
Periodic Review Report
New York State Electric & Gas
Penn Yan Former Manufactured Gas Plant
Penn Yan, New York



| Location ID:           | NYSDEC<br>TOGS 1.1.1<br>Standards or |       |          |          |          |          |          |          | PRMW-4S  |          |          |          |          |          |          |
|------------------------|--------------------------------------|-------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Date Collected:        | Guidance<br>Values                   | Units | 05/25/21 | 08/23/21 | 11/29/21 | 02/25/22 | 05/31/22 | 08/04/22 | 11/22/22 | 02/09/23 | 05/26/23 | 08/24/23 | 11/09/23 | 02/05/24 | 08/29/24 |
| BTEX                   |                                      |       |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Benzene                | 1                                    | μg/L  | 1.0 U    |
| Ethylbenzene           | 5                                    | μg/L  | 1.0 UJ   | 1.0 U    |
| Toluene                | 5                                    | μg/L  | 1.0 UJ   | 1.0 U    |
| Xylenes (total)        | 5                                    | μg/L  | 2.0 UJ   | 2.0 U    |
| Total BTEX             |                                      | μg/L  | ND       |
| PAHs                   |                                      |       |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Acenaphthene           | 20                                   | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 10 U     | 0.48 U   | 5.0 U    | 0.48 U   | 0.50 U   | 0.51 U   | 0.48 U   | 0.52 U   | 0.54 U   | 0.51 U   |
| Acenaphthylene         |                                      | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 6.1 U    | 0.29 U   | 5.0 U    | 0.29 U   | 0.30 U   | 0.30 U   | 0.29 U   | 0.31 U   | 0.32 U   | 0.30 U   |
| Anthracene             | 50                                   | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 10 U     | 0.48 U   | 5.0 U    | 0.48 U   | 0.50 U   | 0.51 U   | 0.48 U   | 0.52 U   | 0.54 U   | 0.51 U   |
| Benzo(a)anthracene     | 0.002                                | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 6.1 U    | 0.29 U   | 5.0 U    | 0.29 U   | 0.30 U   | 0.30 U   | 0.29 U   | 0.31 U   | 0.32 U   | 0.30 U   |
| Benzo(a)pyrene         |                                      | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 3.7 U    | 0.17 U   | 5.0 U    | 0.17 U   | 0.18 U   | 0.18 U   | 0.17 U   | 0.19 U   | 0.19 U   | 0.18 U   |
| Benzo(b)fluoranthene   | 0.002                                | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 6.1 U    | 0.29 U   | 5.0 U    | 0.29 U   | 0.30 U   | 0.30 U   | 0.29 U   | 0.31 U   | 0.32 U   | 0.30 U   |
| Benzo(g,h,i)perylene   |                                      | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 10 U     | 0.48 U   | 5.0 U    | 0.48 U   | 0.50 U   | 0.51 U   | 0.48 U   | 0.52 U   | 0.54 U   | 0.51 U   |
| Benzo(k)fluoranthene   | 0.002                                | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 6.1 U    | 0.29 U   | 5.0 U    | 0.29 U   | 0.30 U   | 0.30 U   | 0.29 U   | 0.31 U   | 0.32 UJ  | 0.30 U   |
| Chrysene               | 0.002                                | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 10 U     | 0.48 U   | 5.0 U    | 0.48 U   | 0.50 U   | 0.51 U   | 0.48 U   | 0.52 U   | 0.54 U   | 0.51 U   |
| Dibenzo(a,h)anthracene |                                      | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 10 U     | 0.48 U   | 5.0 U    | 0.48 U   | 0.50 U   | 0.51 U   | 0.48 U   | 0.52 U   | 0.54 U   | 0.51 U   |
| Fluoranthene           | 50                                   | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 10 U     | 0.48 U   | 5.0 U    | 0.48 U   | 0.50 U   | 0.51 U   | 0.48 U   | 0.52 U   | 0.54 U   | 0.51 U   |
| Fluorene               | 50                                   | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 10 U     | 0.48 U   | 5.0 U    | 0.48 U   | 0.50 U   | 0.51 U   | 0.48 U   | 0.52 U   | 0.54 U   | 0.51 U   |
| Indeno(1,2,3-cd)pyrene | 0.002                                | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 10 U     | 0.48 U   | 5.0 U    | 0.48 U   | 0.50 U   | 0.51 U   | 0.48 U   | 0.52 U   | 0.54 U   | 0.51 U   |
| Naphthalene            | 10                                   | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 20 U     | 0.95.0 U | 5.0 U    | 0.95 U   | 1.0 U    | 1.0 U    | 0.95 U   | 1.0 U    | 1.1 U    | 1.0 U    |
| Phenanthrene           | 50                                   | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 4.1 U    | 0.19 U   | 5.0 U    | 0.19 U   | 0.20 U   | 0.20 U   | 0.19 U   | 0.21 U   | 0.22 U   | 0.20 U   |
| Pyrene                 | 50                                   | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 10 U     | 0.48 U   | 5.0 U    | 0.48 U   | 0.50 U   | 0.51 U   | 0.48 U   | 0.52 U   | 0.54 U   | 0.51 U   |
| Total PAHs             |                                      | μg/L  | ND       |
| Inorganics             |                                      |       |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Cyanide, Total         | 0.2                                  | mg/L  | 0.01 U   | 0.0072 J | 0.01 U   | 0.010 U  | 0.0056 J | 0.011 UB | 0.0100 U | 0.010 U  | 0.010 UB | 0.010 U  | 0.010 U  | 0.010 UB | 0.010 UJ |

Table 3
Groundwater Analytical Results
Periodic Review Report
New York State Electric & Gas
Penn Yan Former Manufactured Gas Plant
Penn Yan, New York



| Landin ID.             | NYSDEC<br>TOGS 1.1.1  |       |          |          |          |          |          |          | DDMW 5D  |          |          |          |          |          |          |
|------------------------|-----------------------|-------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Location ID:           | Standards or Guidance |       |          |          |          |          |          |          | PRMW-5D  |          |          |          |          |          |          |
| Date Collected:        | Values                | Units | 05/24/21 | 08/24/21 | 11/30/21 | 02/25/22 | 05/31/22 | 08/03/22 | 11/21/22 | 02/09/23 | 05/26/23 | 08/24/23 | 11/10/23 | 02/06/24 | 08/28/24 |
| BTEX                   |                       |       |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Benzene                | 1                     | μg/L  | 1.0 U    |
| Ethylbenzene           | 5                     | μg/L  | 1.0 UJ   | 1.0 U    |
| Toluene                | 5                     | μg/L  | 1.0 UJ   | 1.0 U    |
| Xylenes (total)        | 5                     | μg/L  | 2.0 UJ   | 2.0 U    |
| Total BTEX             |                       | μg/L  | ND       |
| PAHs                   |                       |       |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Acenaphthene           | 20                    | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.055 J  | 0.048 J  | 5.0 U    | 0.039 J  | 0.50 U   | 0.041 J  | 0.058 J  | 0.058 J  | 0.53 U   | 0.48 U   |
| Acenaphthylene         |                       | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.30 U   | 0.31 U   | 5.0 U    | 0.29 U   | 0.30 U   | 0.30 U   | 0.30 U   | 0.29 U   | 0.32 U   | 0.29 U   |
| Anthracene             | 50                    | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.51 U   | 0.51 U   | 5.0 U    | 0.48 U   | 0.50 U   | 0.50 U   | 0.50 U   | 0.037 J  | 0.53 U   | 0.48 U   |
| Benzo(a)anthracene     | 0.002                 | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.30 U   | 0.31 U   | 5.0 U    | 0.29 U   | 0.30 U   | 0.30 U   | 0.30 U   | 0.29 U   | 0.32 U   | 0.29 U   |
| Benzo(a)pyrene         |                       | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.18 U   | 0.18 U   | 5.0 U    | 0.17 U   | 0.18 U   | 0.18 U   | 0.18 U   | 0.17 U   | 0.19 U   | 0.17 U   |
| Benzo(b)fluoranthene   | 0.002                 | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.30 U   | 0.31 U   | 5.0 U    | 0.29 U   | 0.30 U   | 0.30 U   | 0.30 U   | 0.29 U   | 0.32 U   | 0.29 U   |
| Benzo(g,h,i)perylene   |                       | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.51 U   | 0.51 U   | 5.0 U    | 0.48 U   | 0.50 U   | 0.50 U   | 0.50 U   | 0.49 U   | 0.53 U   | 0.48 U   |
| Benzo(k)fluoranthene   | 0.002                 | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.30 U   | 0.31 U   | 5.0 U    | 0.29 U   | 0.30 U   | 0.30 U   | 0.30 U   | 0.29 U   | 0.32 UJ  | 0.29 U   |
| Chrysene               | 0.002                 | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.51 U   | 0.51 U   | 5.0 U    | 0.48 U   | 0.50 U   | 0.50 U   | 0.50 U   | 0.49 U   | 0.53 U   | 0.48 U   |
| Dibenzo(a,h)anthracene |                       | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.51 U   | 0.51 U   | 5.0 U    | 0.48 U   | 0.50 U   | 0.50 U   | 0.50 U   | 0.49 U   | 0.53 U   | 0.48 U   |
| Fluoranthene           | 50                    | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.51 U   | 0.51 U   | 5.0 U    | 0.48 U   | 0.50 U   | 0.50 U   | 0.12 J   | 0.11 J   | 0.53 U   | 0.48 U   |
| Fluorene               | 50                    | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.51 U   | 0.51 U   | 5.0 U    | 0.48 U   | 0.50 U   | 0.50 U   | 0.50 U   | 0.49 U   | 0.53 U   | 0.48 U   |
| Indeno(1,2,3-cd)pyrene | 0.002                 | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.51 U   | 0.51 U   | 5.0 U    | 0.48 U   | 0.50 U   | 0.50 U   | 0.50 U   | 0.49 U   | 0.53 U   | 0.48 U   |
| Naphthalene            | 10                    | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 1.0 U    | 1.0 U    | 5.0 U    | 0.95 U   | 1.0 U    | 0.99 U   | 1.0 U    | 0.97 U   | 1.1 U    | 0.95 U   |
| Phenanthrene           | 50                    | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.066 J  | 0.20 U   | 5.0 U    | 0.19 U   | 0.20 U   | 0.20 U   | 0.064 J  | 0.064 J  | 0.21 U   | 0.19 U   |
| Pyrene                 | 50                    | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.51 U   | 0.51 U   | 5.0 U    | 0.48 U   | 0.50 U   | 0.50 U   | 0.087 J  | 0.080 J  | 0.53 U   | 0.48 U   |
| Total PAHs             |                       | μg/L  | ND       | ND       | ND       | 0.12 J   | 0.048 J  | ND       | 0.039 J  | ND       | 0.041 J  | 0.33 J   | 0.349 J  | ND       | ND       |
| Inorganics             |                       |       |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Cyanide, Total         | 0.2                   | mg/L  | 0.01 U   | 0.01 U   | 0.01 U   | 0.010 U  | 0.010 U  | 0.010 UB | 0.0100 U | 0.010 U  | 0.010 UB | 0.010 U  | 0.010 U  | 0.010 U  | 0.010 U  |

Table 3
Groundwater Analytical Results
Periodic Review Report
New York State Electric & Gas
Penn Yan Former Manufactured Gas Plant
Penn Yan, New York



| Location ID:           | NYSDEC<br>TOGS 1.1.1               |       |          |          |          |          |          |          | PRMW-5S   |          |          |          |          |          |          |
|------------------------|------------------------------------|-------|----------|----------|----------|----------|----------|----------|-----------|----------|----------|----------|----------|----------|----------|
|                        | Standards or<br>Guidance<br>Values | Units | 05/25/21 | 08/25/21 | 11/30/21 | 02/25/22 | 05/31/22 | 08/03/22 | 11/21/22  | 02/09/23 | 05/26/23 | 08/24/23 | 11/10/23 | 02/06/24 | 08/29/24 |
| BTEX                   |                                    |       |          |          |          |          |          |          |           |          |          |          |          |          |          |
| Benzene                | 1                                  | μg/L  | 23       | 21       | 27       | 14       | 16       | 12       | 6.1       | 7.6      | 1.4      | 4.3      | 2.6      | 1.7      | 1.9      |
| Ethylbenzene           | 5                                  | μg/L  | 2.4 J    | 3        | 5.9      | 3.3      | 5.7      | 4.5      | 2.4       | 2.0      | 0.89 J   | 2.3      | 1.2      | 0.82 J   | 1.1      |
| Toluene                | 5                                  | μg/L  | 0.75 J   | 0.9 J    | 1.6      | 0.65 J   | 0.95 J   | 0.69 J   | 1.0 U     | 1.0 U    | 1.0 U    | 1.0 U    | 1.0 U    | 1.0 U    | 1.0 U    |
| Xylenes (total)        | 5                                  | μg/L  | 4.9 J    | 3.3      | 6.6      | 2.9      | 4.1      | 2.2      | 1.4 J     | 1.3      | 2.0 U    | 0.77 J   | 2.0 U    | 2.0 U    | 2.0 U    |
| Total BTEX             |                                    | μg/L  | 31 J     | 28 J     | 41       | 21 J     | 27 J     | 19 J     | 9.9 J     | 10.9 J   | 2.3 J    | 7.4 J    | 3.8      | 2.52 J   | 3.0      |
| PAHs                   |                                    |       |          |          |          |          |          |          |           |          |          |          |          |          |          |
| Acenaphthene           | 20                                 | μg/L  | 22       | 39       | 15       | 26 D     | 18 D     | 14 J     | 11        | 16       | 14       | 15       | 12       | 13       | 4.5      |
| Acenaphthylene         |                                    | μg/L  | 4.4 J    | 7.6      | 3.4 J    | 5.2      | 3.5      | 2.7 J    | 1.9       | 2.6      | 2.2      | 2.3      | 1.9      | 1.8      | 0.61 J   |
| Anthracene             | 50                                 | μg/L  | 1.5 J    | 1.6 J    | 0.52 J   | 0.73     | 0.32 J   | 25.0 U   | 2.4 U     | 2.5 U    | 0.32 J   | 0.29 J   | 0.22 J   | 0.16 J   | 0.19 J   |
| Benzo(a)anthracene     | 0.002                              | μg/L  | 5.2 U    | 0.39 J   | 5.0 U    | 0.32 U   | 0.055 J  | 25.0 U   | 1.4 U     | 1.5 U    | 1.4 U    | 1.5 U    | 1.5 U    | 0.31 U   | 1.4 U    |
| Benzo(a)pyrene         |                                    | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.19 U   | 0.18 U   | 25.0 U   | 0.86 U    | 0.90 U   | 0.86 U   | 0.93 U   | 0.90 U   | 0.19 U   | 0.86 U   |
| Benzo(b)fluoranthene   | 0.002                              | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.32 U   | 0.31 U   | 25.0 U   | 1.4 U     | 1.5 U    | 1.4 U    | 1.5 U    | 1.5 U    | 0.31 U   | 1.4 U    |
| Benzo(g,h,i)perylene   |                                    | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.53 U   | 0.51 U   | 25.0 U   | 2.4 U     | 2.5 U    | 2.4 U    | 2.6 U    | 2.5 U    | 0.52 U   | 2.4 U    |
| Benzo(k)fluoranthene   | 0.002                              | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.32 U   | 0.31 U   | 25.0 U   | 1.4 U     | 1.5 U    | 1.4 U    | 1.5 U    | 1.5 U    | 0.31 UJ  | 1.4 U    |
| Chrysene               | 0.002                              | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.084 J  | 0.51 U   | 25.0 U   | 2.4 U     | 2.5 U    | 2.4 U    | 2.6 U    | 2.5 U    | 0.52 U   | 2.4 U    |
| Dibenzo(a,h)anthracene |                                    | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.53 U   | 0.51 U   | 25.0 U   | 2.4 U     | 2.5 U    | 2.4 U    | 2.6 U    | 2.5 U    | 0.52 U   | 2.4 U    |
| Fluoranthene           | 50                                 | μg/L  | 3 J      | 5.5      | 2.1 J    | 2.5      | 1.5      | 25.0 U   | 1.3 J     | 1.3      | 1.5 J    | 1.4 J    | 0.95 J   | 0.78     | 0.66 J   |
| Fluorene               | 50                                 | μg/L  | 7        | 12       | 5.5      | 10       | 5.6      | 4.9 J    | 3.5       | 6.3      | 5.0      | 5.3      | 4.2      | 4.5      | 1.6 J    |
| Indeno(1,2,3-cd)pyrene | 0.002                              | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.53 U   | 0.51 U   | 25.0 U   | 2.4 U     | 2.5 U    | 2.4 U    | 2.6 U    | 2.5 U    | 0.52 U   | 2.4 U    |
| Naphthalene            | 10                                 | μg/L  | 44       | 45       | 44       | 26 D     | 29 D     | 6.4 J    | 12        | 13       | 18       | 14       | 16       | 6.4      | 3.4 J    |
| Phenanthrene           | 50                                 | μg/L  | 8.2      | 21 B     | 5.7      | 9.8      | 3.8      | 2.8 J    | 1.4       | 2.4      | 2.3      | 1.7      | 0.95 J   | 0.94     | 0.37 J   |
| Pyrene                 | 50                                 | μg/L  | 2 J      | 3.4 J    | 1.3 J    | 1.5      | 0.85     | 25.0 U   | 0.83 J    | 0.95     | 0.81 J   | 0.84 J   | 0.61 J   | 0.46 J   | 0.40 J   |
| Total PAHs             |                                    | μg/L  | 92 J     | 140 J    | 78 J     | 82 J     | 63 J     | 31 J     | 31.9 J    | 42.6 J   | 44.1 J   | 41 J     | 36.8 J   | 28.0 J   | 11.7 J   |
| Inorganics             |                                    |       |          |          |          |          |          |          |           |          |          |          |          |          |          |
| Cyanide, Total         | 0.2                                | mg/L  | 0.016    | 0.11     | 0.01 U   | 0.076    | 0.047 J  | 0.045    | 0.0110 UB | 0.041 UB | 0.030 UB | 0.032    | 0.019 UB | 0.0290   | 0.020    |

Table 3
Groundwater Analytical Results
Periodic Review Report
New York State Electric & Gas
Penn Yan Former Manufactured Gas Plant
Penn Yan, New York



|                        | NYSDEC<br>TOGS 1.1.1 |       |          |          |          |          |          |          |          |          |          |          |          |          |          |
|------------------------|----------------------|-------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Location ID:           | Standards or         |       |          | PRMW-6D  |          |          |          |          |          |          |          |          |          |          |          |
|                        | Guidance             |       |          |          |          |          |          |          |          |          |          |          |          |          | l        |
| Date Collected:        | Values               | Units | 05/25/21 | 08/24/21 | 11/30/21 | 02/25/22 | 05/31/22 | 08/03/22 | 11/21/22 | 02/09/23 | 05/26/23 | 08/24/23 | 11/10/23 | 02/06/24 | 08/28/24 |
| BTEX                   |                      |       |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Benzene                | 1                    | μg/L  | 1.0 U    |
| Ethylbenzene           | 5                    | μg/L  | 1.0 UJ   | 1.0 U    |
| Toluene                | 5                    | μg/L  | 1.0 UJ   | 1.0 U    |
| Xylenes (total)        | 5                    | μg/L  | 2.0 UJ   | 2.0 U    |
| Total BTEX             |                      | μg/L  | ND       |
| PAHs                   |                      |       |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Acenaphthene           | 20                   | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.50 U   | 0.48 U   | 5.0 U    | 0.48 U   | 0.49 U   | 0.49 U   | 0.48 U   | 0.51 U   | 0.089 J  | 0.48 U   |
| Acenaphthylene         |                      | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.30 U   | 0.29 U   | 5.0 U    | 0.29 U   | 0.29 U   | 0.29 U   | 0.29 U   | 0.31 U   | 0.29 U   | 0.29 U   |
| Anthracene             | 50                   | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.50 U   | 0.48 U   | 5.0 U    | 0.48 U   | 0.49 U   | 0.49 U   | 0.48 U   | 0.51 U   | 0.48 U   | 0.48 U   |
| Benzo(a)anthracene     | 0.002                | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.30 U   | 0.29 U   | 5.0 U    | 0.29 U   | 0.29 U   | 0.29 U   | 0.29 U   | 0.31 U   | 0.29 U   | 0.29 U   |
| Benzo(a)pyrene         |                      | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.18 U   | 0.17 U   | 5.0 U    | 0.17 U   | 0.18 U   | 0.18 U   | 0.17 U   | 0.18 U   | 0.17 U   | 0.17 U   |
| Benzo(b)fluoranthene   | 0.002                | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.30 U   | 0.29 U   | 5.0 U    | 0.29 U   | 0.29 U   | 0.29 U   | 0.29 U   | 0.31 U   | 0.29 U   | 0.29 U   |
| Benzo(g,h,i)perylene   |                      | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.50 U   | 0.48 U   | 5.0 U    | 0.48 U   | 0.49 U   | 0.49 U   | 0.48 U   | 0.51 U   | 0.48 U   | 0.48 U   |
| Benzo(k)fluoranthene   | 0.002                | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.30 U   | 0.29 U   | 5.0 U    | 0.29 U   | 0.29 U   | 0.29 U   | 0.29 U   | 0.31 U   | 0.29 UJ  | 0.29 U   |
| Chrysene               | 0.002                | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.50 U   | 0.48 U   | 5.0 U    | 0.48 U   | 0.49 U   | 0.49 U   | 0.48 U   | 0.51 U   | 0.48 U   | 0.48 U   |
| Dibenzo(a,h)anthracene |                      | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.50 U   | 0.48 U   | 5.0 U    | 0.48 U   | 0.49 U   | 0.49 U   | 0.48 U   | 0.51 U   | 0.48 U   | 0.48 U   |
| Fluoranthene           | 50                   | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.50 U   | 0.48 U   | 5.0 U    | 0.48 U   | 0.49 U   | 0.49 U   | 0.48 U   | 0.51 U   | 0.48 U   | 0.48 U   |
| Fluorene               | 50                   | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.50 U   | 0.48 U   | 5.0 U    | 0.48 U   | 0.49 U   | 0.49 U   | 0.48 U   | 0.51 U   | 0.48 U   | 0.48 U   |
| Indeno(1,2,3-cd)pyrene | 0.002                | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.50 U   | 0.48 U   | 5.0 U    | 0.48 U   | 0.49 U   | 0.49 U   | 0.48 U   | 0.51 U   | 0.48 U   | 0.48 U   |
| Naphthalene            | 10                   | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 1.0 U    | 0.95.0 U | 5.0 U    | 0.95 U   | 0.98 U   | 0.98 U   | 0.96 U   | 1.0 U    | 0.95 UB  | 0.95 U   |
| Phenanthrene           | 50                   | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.20 U   | 0.19 U   | 5.0 U    | 0.19 U   | 0.20 U   | 0.20 U   | 0.19 U   | 0.20 U   | 0.19 U   | 0.19 U   |
| Pyrene                 | 50                   | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.50 U   | 0.48 U   | 5.0 U    | 0.48 U   | 0.49 U   | 0.49 U   | 0.48 U   | 0.51 U   | 0.074 J  | 0.48 U   |
| Total PAHs             |                      | μg/L  | ND       | 0.163 J  | ND       |
| Inorganics             |                      |       |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Cyanide, Total         | 0.2                  | mg/L  | 0.01 U   | 0.01 U   | 0.01 U   | 0.010 U  | 0.0060 J | 0.010 UB | 0.0100 U | 0.010 U  | 0.010 UB | 0.010 U  | 0.010 U  | 0.010 U  | 0.010    |

Table 3
Groundwater Analytical Results
Periodic Review Report
New York State Electric & Gas
Penn Yan Former Manufactured Gas Plant
Penn Yan, New York



| Location ID:           | NYSDEC<br>TOGS 1.1.1               |       |          |          |          |          |          |          | PRMW-6S  |          |          |          |          |          |          |
|------------------------|------------------------------------|-------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Date Collected:        | Standards or<br>Guidance<br>Values | Units | 05/25/21 | 08/24/21 | 11/30/21 | 02/25/22 | 05/31/22 | 08/03/22 | 11/21/22 | 02/09/23 | 05/26/23 | 08/24/23 | 11/10/23 | 02/06/24 | 08/28/24 |
| BTEX                   |                                    |       |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Benzene                | 1                                  | μg/L  | 1.0 U    |
| Ethylbenzene           | 5                                  | μg/L  | 1.0 UJ   | 1.0 U    |
| Toluene                | 5                                  | μg/L  | 1.0 UJ   | 1.0 U    |
| Xylenes (total)        | 5                                  | μg/L  | 2.0 UJ   | 2.0 U    |
| Total BTEX             |                                    | μg/L  | ND       |
| PAHs                   |                                    |       |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Acenaphthene           | 20                                 | μg/L  | 5.4 U    | 5.0 U    | 5.0 U    | 0.51 U   | 0.48 U   | 5.0 U    | 0.48 U   | 0.50 U   | 0.52 U   | 0.48 U   | 0.48 U   | 0.56 U   | 0.48 U   |
| Acenaphthylene         |                                    | μg/L  | 5.4 U    | 5.0 U    | 5.0 U    | 0.31 U   | 0.29 U   | 5.0 U    | 0.29 U   | 0.30 U   | 0.31 U   | 0.29 U   | 0.29 U   | 0.33 U   | 0.29 U   |
| Anthracene             | 50                                 | μg/L  | 5.4 U    | 5.0 U    | 5.0 U    | 0.51 U   | 0.48 U   | 5.0 U    | 0.48 U   | 0.50 U   | 0.52 U   | 0.48 U   | 0.48 U   | 0.56 U   | 0.48 U   |
| Benzo(a)anthracene     | 0.002                              | μg/L  | 5.4 U    | 5.0 U    | 5.0 U    | 0.31 U   | 0.29 U   | 5.0 U    | 0.29 U   | 0.30 U   | 0.31 U   | 0.29 U   | 0.29 U   | 0.33 U   | 0.29 U   |
| Benzo(a)pyrene         |                                    | μg/L  | 5.4 U    | 5.0 U    | 5.0 U    | 0.18 U   | 0.17 U   | 5.0 U    | 0.17 U   | 0.18 U   | 0.19 U   | 0.17 U   | 0.17 U   | 0.20 U   | 0.17 U   |
| Benzo(b)fluoranthene   | 0.002                              | μg/L  | 5.4 U    | 5.0 U    | 5.0 U    | 0.31 U   | 0.29 U   | 5.0 U    | 0.29 U   | 0.30 U   | 0.31 U   | 0.29 U   | 0.29 U   | 0.33 U   | 0.29 U   |
| Benzo(g,h,i)perylene   |                                    | μg/L  | 5.4 U    | 5.0 U    | 5.0 U    | 0.51 U   | 0.48 U   | 5.0 U    | 0.48 U   | 0.50 U   | 0.52 U   | 0.48 U   | 0.48 U   | 0.56 U   | 0.48 U   |
| Benzo(k)fluoranthene   | 0.002                              | μg/L  | 5.4 U    | 5.0 U    | 5.0 U    | 0.31 U   | 0.29 U   | 5.0 U    | 0.29 U   | 0.30 U   | 0.31 U   | 0.29 U   | 0.29 U   | 0.33 UJ  | 0.29 U   |
| Chrysene               | 0.002                              | μg/L  | 5.4 U    | 5.0 U    | 5.0 U    | 0.51 U   | 0.48 U   | 5.0 U    | 0.48 U   | 0.50 U   | 0.52 U   | 0.48 U   | 0.48 U   | 0.56 U   | 0.48 U   |
| Dibenzo(a,h)anthracene |                                    | μg/L  | 5.4 U    | 5.0 U    | 5.0 U    | 0.51 U   | 0.48 U   | 5.0 U    | 0.48 U   | 0.50 U   | 0.52 U   | 0.48 U   | 0.48 U   | 0.56 U   | 0.48 U   |
| Fluoranthene           | 50                                 | μg/L  | 5.4 U    | 5.0 U    | 5.0 U    | 0.51 U   | 0.48 U   | 5.0 U    | 0.48 U   | 0.50 U   | 0.52 U   | 0.48 U   | 0.48 U   | 0.56 U   | 0.48 U   |
| Fluorene               | 50                                 | μg/L  | 5.4 U    | 5.0 U    | 5.0 U    | 0.51 U   | 0.48 U   | 5.0 U    | 0.48 U   | 0.50 U   | 0.52 U   | 0.48 U   | 0.48 U   | 0.56 U   | 0.48 U   |
| Indeno(1,2,3-cd)pyrene | 0.002                              | μg/L  | 5.4 U    | 5.0 U    | 5.0 U    | 0.51 U   | 0.48 U   | 5.0 U    | 0.48 U   | 0.50 U   | 0.52 U   | 0.48 U   | 0.48 U   | 0.56 U   | 0.48 U   |
| Naphthalene            | 10                                 | μg/L  | 5.4 U    | 5.0 U    | 5.0 U    | 1.0 U    | 0.96 U   | 5.0 U    | 0.95 U   | 1.0 U    | 1.0 U    | 0.95 U   | 0.086 J  | 1.1 UB   | 0.95 U   |
| Phenanthrene           | 50                                 | μg/L  | 5.4 U    | 5.0 U    | 5.0 U    | 0.20 U   | 0.19 U   | 5.0 U    | 0.19 U   | 0.20 U   | 0.21 U   | 0.19 U   | 0.19 U   | 0.22 U   | 0.19 U   |
| Pyrene                 | 50                                 | μg/L  | 5.4 U    | 5.0 U    | 5.0 U    | 0.51 U   | 0.48 U   | 5.0 U    | 0.48 U   | 0.50 U   | 0.52 U   | 0.48 U   | 0.48 U   | 0.56 U   | 0.48 U   |
| Total PAHs             |                                    | μg/L  | ND       | 0.086 J  | ND       | ND       |
| Inorganics             |                                    |       |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Cyanide, Total         | 0.2                                | mg/L  | 0.01 U   | 0.01 U   | 0.051    | 0.010 U  | 0.010 U  | 0.010 UB | 0.0100 U | 0.010 U  | 0.010 UB | 0.010 U  | 0.010 U  | 0.010 U  | 0.010 U  |

See Notes on Page 12.

Table 3
Groundwater Analytical Results
Periodic Review Report
New York State Electric & Gas
Penn Yan Former Manufactured Gas Plant
Penn Yan, New York



| La contra de           | NYSDEC<br>TOGS 1.1.1 |       |          |          |          |          | T100     | V.45     |          |          |          |          | THUM OR  |          |          | <b>TABLE ODD</b> |          |          |
|------------------------|----------------------|-------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|------------------|----------|----------|
| Location ID:           | Standards or         |       |          |          |          |          | TMV      | V-1D     |          |          |          |          | TMW-2D   |          |          | TMW-2DR          |          |          |
|                        | Guidance             |       |          |          |          |          |          |          |          |          |          |          |          |          |          |                  |          |          |
| Date Collected:        | Values               | Units | 05/26/21 | 08/25/21 | 11/30/21 | 02/25/22 | 06/01/22 | 08/03/22 | 11/21/22 | 02/09/23 | 05/26/23 | 08/23/23 | 02/24/21 | 08/03/22 | 11/21/22 | 02/08/23         | 05/25/23 | 08/23/23 |
| BTEX                   |                      |       |          |          |          |          |          |          |          |          |          |          |          |          |          |                  |          |          |
| Benzene                | 1                    | μg/L  | 1.0 U            | 1.0 U    | 1.0 U    |
| Ethylbenzene           | 5                    | μg/L  | 1.0 UJ   | 1.0 U            | 1.0 U    | 1.0 U    |
| Toluene                | 5                    | μg/L  | 1.0 UJ   | 1.0 U            | 1.0 U    | 1.0 U    |
| Xylenes (total)        | 5                    | μg/L  | 2.0 UJ   | 2.0 U            | 2.0 U    | 2.0 U    |
| Total BTEX             |                      | μg/L  | ND               | ND       | ND       |
| PAHs                   |                      |       |          |          |          |          |          |          |          |          |          |          |          |          |          |                  |          |          |
| Acenaphthene           | 20                   | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.52 U   | 0.48 U   | 5.0 U    | 0.50 U   | 0.50 U   | 0.50 U   | 0.50 U   | 5.4 U    | 5.0 U    | 0.52 U   | 0.49 U           | 0.48 U   | 0.48 U   |
| Acenaphthylene         |                      | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.31 U   | 0.29 U   | 5.0 U    | 0.30 U   | 0.30 U   | 0.30 U   | 0.30 U   | 5.4 U    | 5.0 U    | 0.31 U   | 0.29 U           | 0.29 U   | 0.29 U   |
| Anthracene             | 50                   | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.52 U   | 0.48 U   | 5.0 U    | 0.50 U   | 0.50 U   | 0.50 U   | 0.50 U   | 5.4 U    | 5.0 U    | 0.52 U   | 0.49 U           | 0.48 U   | 0.48 U   |
| Benzo(a)anthracene     | 0.002                | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.31 U   | 0.29 U   | 5.0 U    | 0.30 U   | 0.30 U   | 0.30 U   | 0.30 U   | 5.4 U    | 5.0 U    | 0.31 U   | 0.29 U           | 0.29 U   | 0.29 U   |
| Benzo(a)pyrene         |                      | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.19 U   | 0.17 U   | 5.0 U    | 0.18 U   | 0.18 U   | 0.18 U   | 0.18 U   | 5.4 U    | 5.0 U    | 0.19 U   | 0.18 U           | 0.17 U   | 0.17 U   |
| Benzo(b)fluoranthene   | 0.002                | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.31 U   | 0.29 U   | 5.0 U    | 0.30 U   | 0.30 U   | 0.30 U   | 0.30 U   | 5.4 U    | 5.0 U    | 0.31 U   | 0.29 U           | 0.29 U   | 0.29 U   |
| Benzo(g,h,i)perylene   |                      | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.52 U   | 0.48 U   | 5.0 U    | 0.50 U   | 0.50 U   | 0.50 U   | 0.50 U   | 5.4 U    | 5.0 U    | 0.52 U   | 0.49 U           | 0.48 U   | 0.48 U   |
| Benzo(k)fluoranthene   | 0.002                | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.31 U   | 0.29 U   | 5.0 U    | 0.30 U   | 0.30 U   | 0.30 U   | 0.30 U   | 5.4 U    | 5.0 U    | 0.31 U   | 0.29 U           | 0.29 U   | 0.29 U   |
| Chrysene               | 0.002                | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.52 U   | 0.48 U   | 5.0 U    | 0.50 U   | 0.50 U   | 0.50 U   | 0.50 U   | 5.4 U    | 5.0 U    | 0.52 U   | 0.49 U           | 0.48 U   | 0.48 U   |
| Dibenzo(a,h)anthracene |                      | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.52 U   | 0.48 U   | 5.0 U    | 0.50 U   | 0.50 U   | 0.50 U   | 0.50 U   | 5.4 U    | 5.0 U    | 0.52 U   | 0.49 U           | 0.48 U   | 0.48 U   |
| Fluoranthene           | 50                   | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.52 U   | 0.48 U   | 5.0 U    | 0.50 U   | 0.50 U   | 0.50 U   | 0.50 U   | 5.4 U    | 5.0 U    | 0.52 U   | 0.49 U           | 0.48 U   | 0.48 U   |
| Fluorene               | 50                   | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.52 U   | 0.48 U   | 5.0 U    | 0.50 U   | 0.50 U   | 0.50 U   | 0.50 U   | 5.4 U    | 5.0 U    | 0.52 U   | 0.49 U           | 0.48 U   | 0.48 U   |
| Indeno(1,2,3-cd)pyrene | 0.002                | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.52 U   | 0.48 U   | 5.0 U    | 0.50 U   | 0.50 U   | 0.50 U   | 0.50 U   | 5.4 U    | 5.0 U    | 0.52 U   | 0.49 U           | 0.48 U   | 0.48 U   |
| Naphthalene            | 10                   | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 1.0 U    | 0.96 U   | 5.0 U    | 0.99 U   | 1.0 U    | 1.0 U    | 1.0 U    | 5.4 U    | 5.0 U    | 1.0 U    | 0.98 U           | 0.95 U   | 0.95 U   |
| Phenanthrene           | 50                   | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.21 U   | 0.19 U   | 5.0 U    | 0.20 U   | 0.20 U   | 0.20 U   | 0.20 U   | 5.4 U    | 5.0 U    | 0.21 U   | 0.20 U           | 0.19 U   | 0.19 U   |
| Pyrene                 | 50                   | μg/L  | 5.2 U    | 5.0 U    | 5.0 U    | 0.52 U   | 0.48 U   | 5.0 U    | 0.50 U   | 0.50 U   | 0.50 U   | 0.50 U   | 5.4 U    | 5.0 U    | 0.52 U   | 0.49 U           | 0.48 U   | 0.48 U   |
| Total PAHs             |                      | μg/L  | ND               | ND       | ND       |
| Inorganics             |                      |       |          |          |          |          |          |          |          |          |          |          |          |          |          |                  |          |          |
| Cyanide, Total         | 0.2                  | mg/L  | 0.01 UJ  | 0.01 U   | 0.01 U   | 0.010 U  | 0.010 U  | 0.010 UB | 0.0100 U | 0.010 U  | 0.010 UB | 0.010 U  | 0.0081 J | 0.010 U  | 0.0100 U | 0.010 U          | 0.010 UB | 0.010 UB |

See Notes on Page 12.

#### Table 3

Groundwater Analytical Results
Periodic Review Report
New York State Electric & Gas
Penn Yan Former Manufactured Gas Plant
Penn Yan, New York



#### Notes:

- 1. Samples were submitted to Eurofins, Buffalo, New York, for analysis using United States Environmental Protection Agency SW-846 Methods 8260B (BTEX), 8270C (PAHs), and 9012B (cyanide).
- 2. Sample results detected above the Method Detection Limit are presented in bold font.
- 3. Shading indicates that the result exceeds the NYSDEC TOGS 1.1.1 Water Quality Standard or Guidance Value (NYSDEC 1998).
- 4. Groundwater samples were not collected from wells TMW-1D and TMW-2DR per NYSDEC approval of the Second Quarter 2023 Groundwater Monitoring Report (Arcadis 2023) in a letter dated October 20, 2023 (NYSDEC 2023).

#### **Acronyms and Abbreviations:**

"- -" - Standard or Guidance Value not established

μg/L - micrograms per liter

BTEX - Benzene, Ethylbenzene, Toluene, and Xylenes

mg/L - milligrams per liter

ND - not detected

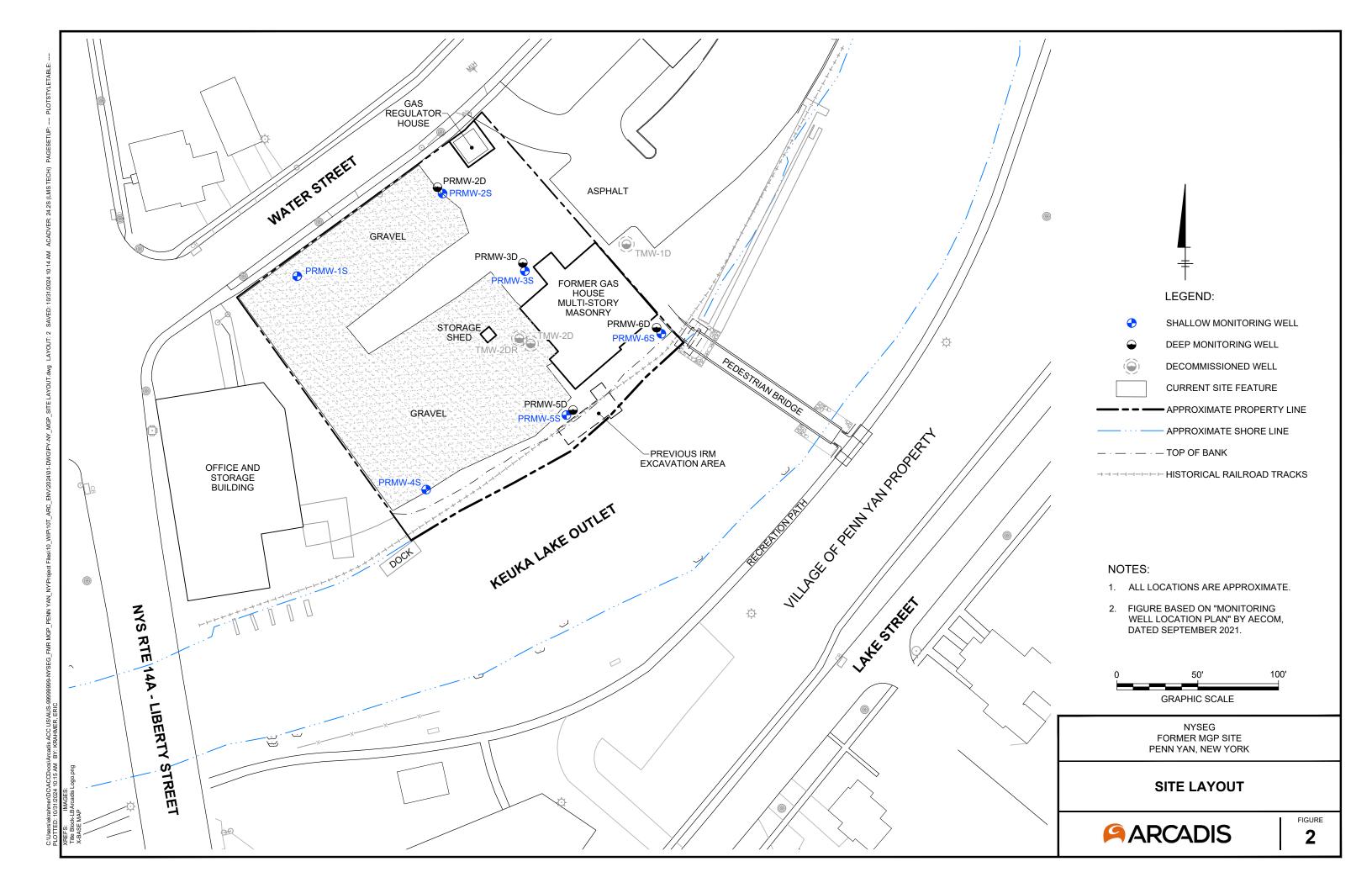
NYSDEC - New York State Department of Environmental Conservation

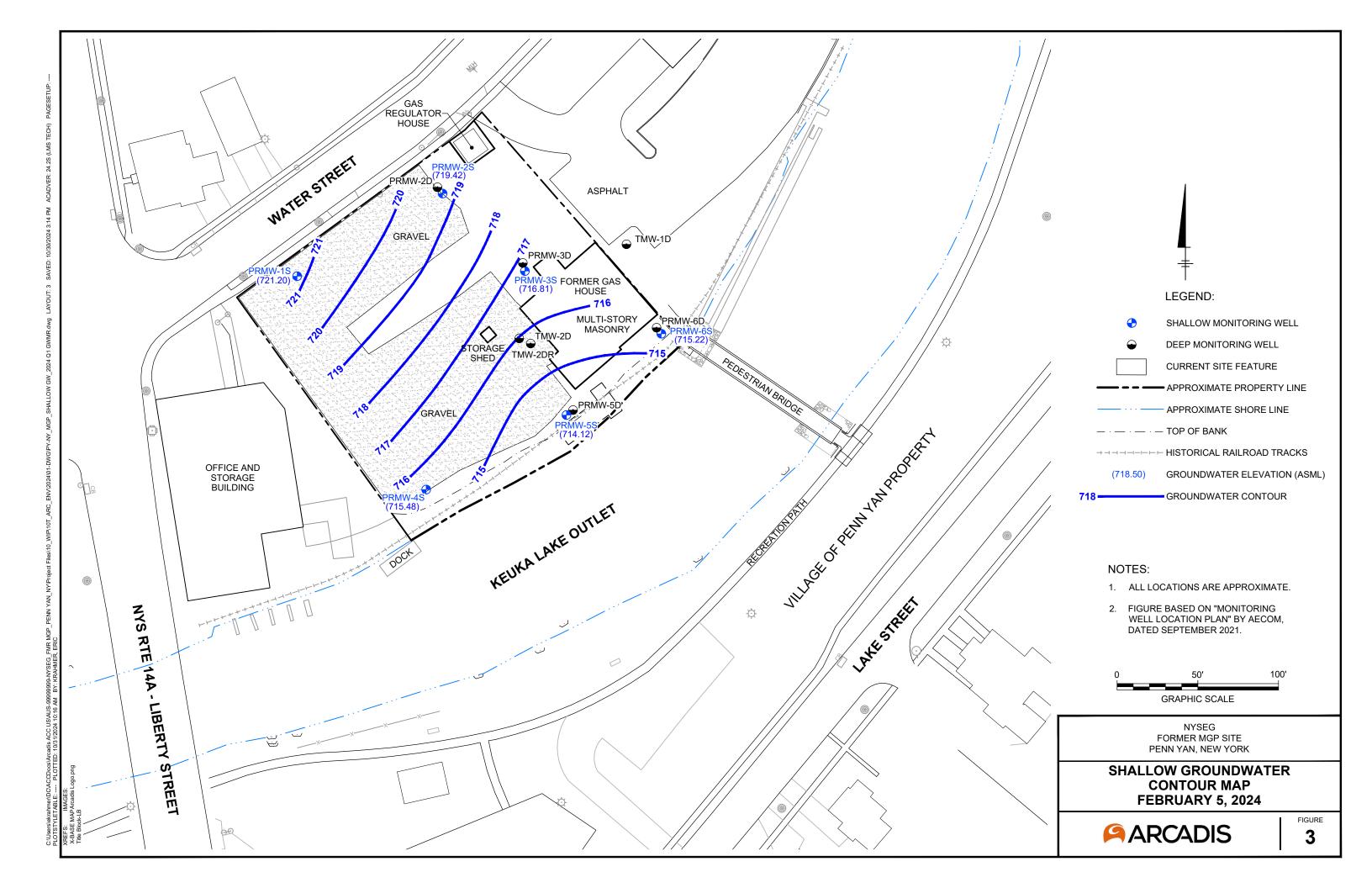
PAH - Polycyclic Aromatic Hydrocarbon

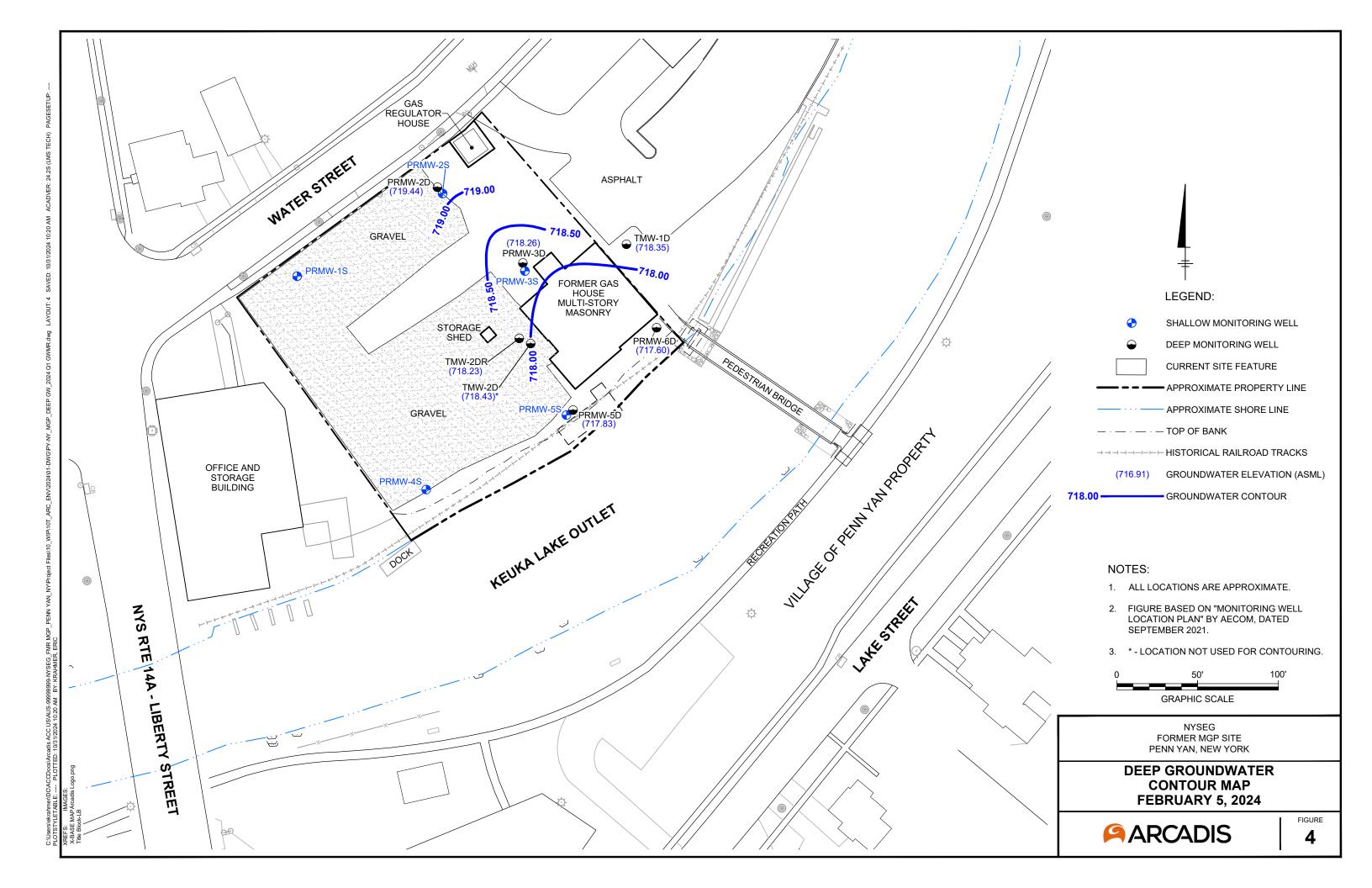
TOGS - Technical and Operational Guidance Series

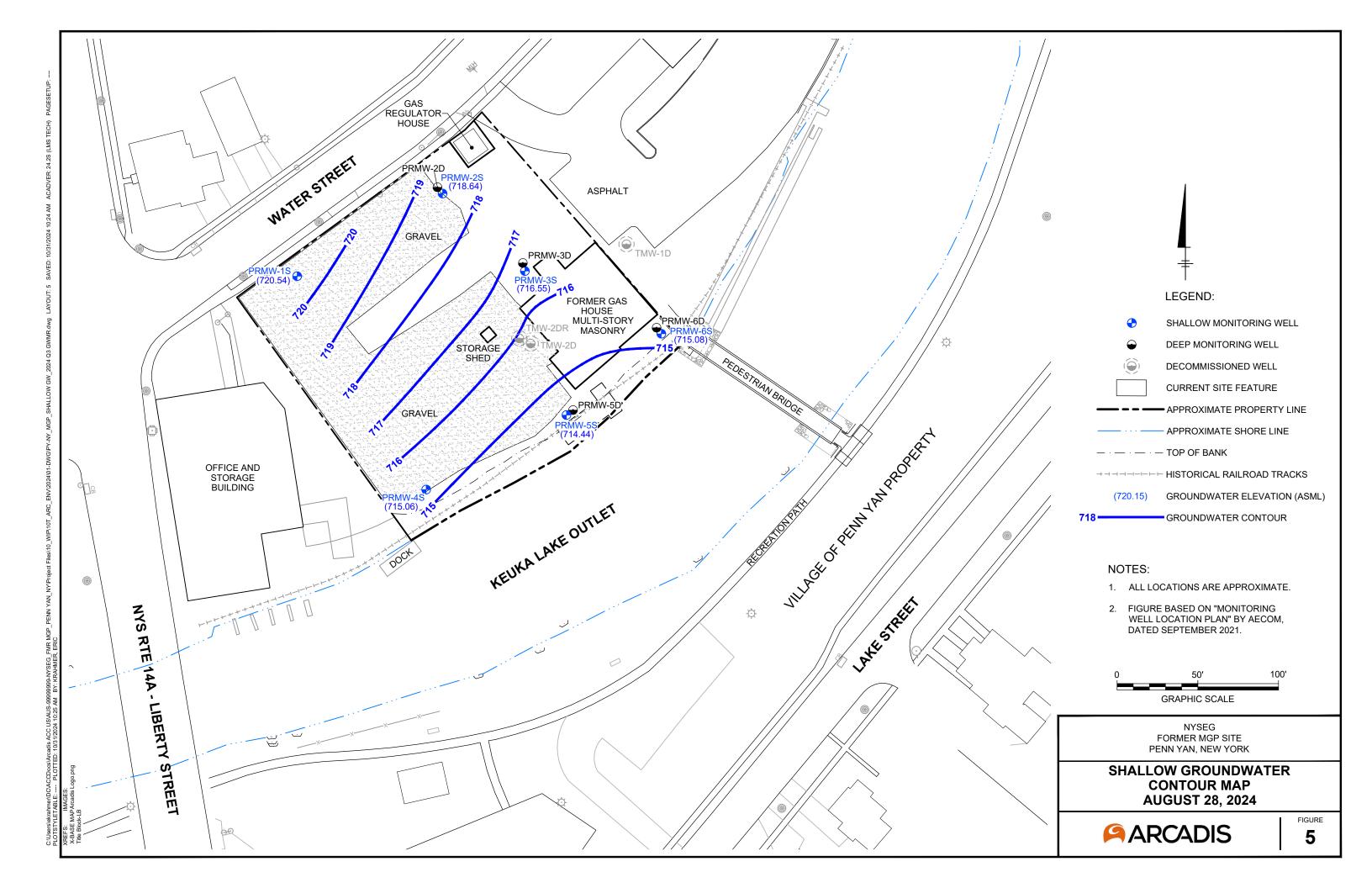
#### **Laboratory Qualifiers:**

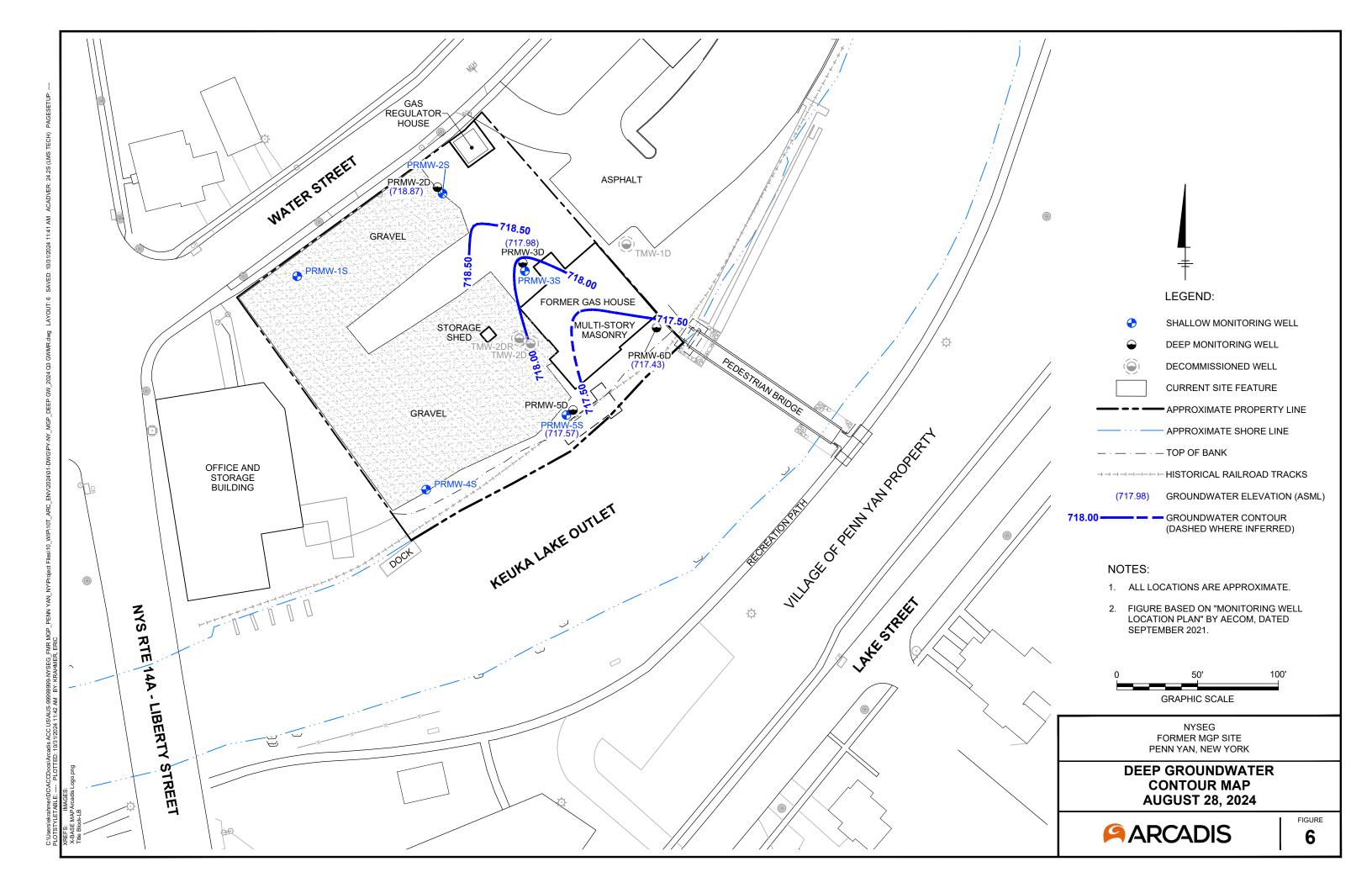
- B The compound has been detected in the sample as well as its associated blank, its presence in the sample may be suspect.
- D Concentration is based on diluted sample analysis.
- J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
- $\label{eq:U-The compound was analyzed for but not detected. The associated value is the compound quantitation limit. \\$
- UB Compound is considered non-detect at the listed value due to associated blank contamination.
- UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.


#### References:


Arcadis. 2023. Second Quarter 2023 Groundwater Monitoring Report, New York State Electric & Gas Corporation, Penn Yan Former Manufactured Gas Plant, Penn Yan, New York, NYSDEC Site No. 4 August 25.


NYSDEC. 1998. Division of Water Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. October 22, 1993, reissued June 1998.


NYSDEC. 2023. Letter from Gerald Pratt (NYSDEC) to John Ruspantini (NYSEG). Re: Second Quarter 2023 Groundwater Monitoring Report, Penn Yan Water St. MGP. October 20.


# **Figures**











# **Appendix A**

**Site Inspection Form** 

### Site-Wide Inspection Form NYSEG Penn Yan Former Manufactured Gas Plant Site

### (NYSDEC Site #862009) Penn Yan, New York

Comments

Engineering Control (s): Site Cover Inspection Date: August 29, 2024

N/A

Item

|                                                                                                                                                              | 1 03     | 110     | 1 1/ 2 1 |                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|----------|----------------------------------------------------------------------------------------------------------|
| Does the Engineering Control continue to perform as designed?                                                                                                | X        |         |          |                                                                                                          |
| Does the Engineering Control continue to protect human health and the environment?                                                                           | X        |         |          |                                                                                                          |
| Does the Engineering Control comply with requirements established in the SMP?                                                                                | X        |         |          |                                                                                                          |
| Has remedial performance criteria been achieved or maintained?                                                                                               | X        |         |          |                                                                                                          |
| Has sampling and analysis of appropriate media been performed during the monitoring event?                                                                   | X        |         |          | Semi-annual groundwater monitoring for BTEX, PAHs, and cyanide.                                          |
| Have there been any modifications made to the remedial or monitoring system?                                                                                 |          | X       |          |                                                                                                          |
| Does the remedial or monitoring system need to be changed or altered at this time?                                                                           |          | X       |          |                                                                                                          |
| Has there been any intrusive activity, excavation, or construction occurred at the site?                                                                     | X        |         |          | Construction of a gravel parking lot. No intrusive activity.                                             |
| Were the activities mentioned above, performed in accordance with the SMP?                                                                                   | X        |         |          |                                                                                                          |
| Was there a change in the use of the site or were there new structures constructed on the site?                                                              | X        |         |          | Construction of a gravel parking lot. No intrusive activity.                                             |
| In case a new occupied structure is constructed or the use of the current building changed, was a vapor intrusion evaluation done?                           |          |         | X        |                                                                                                          |
| Were new mitigation systems installed based on monitoring results?                                                                                           |          | X       |          |                                                                                                          |
| Were the groundwater wells in the monitoring network inspected during this site inspection? If so, were the Monitoring Well Field Inspection Logs Completed? | X        |         |          | Monitoring well inspection logs were completed and kept in the project file. No deficiencies were noted. |
| Note: Upon completion of the form an                                                                                                                         | y non-co | nformin | g items  | warranting corrective action should be identified here within.                                           |
| Name of Inspector: Kaitlyn Fleming  Inspector's Company: Arcadis                                                                                             | g        |         |          | Signature of Inspector:  Date: August 29, 2024                                                           |

# **Appendix B**

**Site Inspection Photographic Log** 

**ARCADIS** 

Periodic Review Report New York State Electric & Gas Penn Yan Former Manufactured Gas Plant Penn Yan, New York



Photograph: 1

**Description:** 

Upland cover in good condition, no repair needed.

**Direction: SE** 

Photograph taken by:

AJS

Date: 8/29/2024



Photograph: 2

**Description:** 

Upland cover in good condition, no repair needed.

**Direction: SW** 

Photograph taken by:

AJS

Date: 8/29/2024

**ARCADIS** 

Periodic Review Report New York State Electric & Gas Penn Yan Former Manufactured Gas Plant Penn Yan, New York



Photograph: 3

#### **Description:**

Upland cover in good condition, no repair needed.

Direction: E

Photograph taken by:

**AJS** 

Date: 8/29/2024



Photograph: 4

#### **Description:**

Upland cover in good condition, no repair needed. Additional gravel was added after taking this photograph.

**Direction: NE** 

Photograph taken by:

AJS

Date: 8/29/2024

**ARCADIS** 

Periodic Review Report New York State Electric & Gas Penn Yan Former Manufactured Gas Plant Penn Yan, New York



Photograph: 5

#### **Description:**

Upland cover in good condition, no repair needed. Additional gravel was added after taking this photograph.

**Direction: NE** 

Photograph taken by:

AJS

Date: 8/29/2024



Photograph: 6

#### **Description:**

Upland cover in good condition, no repair needed. Additional gravel was added after taking this photograph.

**Direction: NE** 

Photograph taken by:

AJS

Date: 8/29/2024

**ARCADIS** 

Periodic Review Report New York State Electric & Gas Penn Yan Former Manufactured Gas Plant Penn Yan, New York



Photograph: 7

#### **Description:**

Upland cover in good condition, no repair needed. Additional gravel was added after taking this photograph.

**Direction: NE** 

Photograph taken by:

AJS

Date: 8/29/2024



Photograph: 8

#### **Description:**

Upland cover in good condition, no repair needed. Additional gravel was added after taking this photograph.

**Direction: NE** 

Photograph taken by:

AJS

Date: 8/29/2024

**ARCADIS** 

**Periodic Review Report New York State Electric & Gas Penn Yan Former Manufactured Gas Plant** Penn Yan, New York



Photograph: 9

**Description:** 

Bank cover in good condition, no repair needed.

**Direction: NE** 

Photograph taken by:

AJS

Date: 8/29/2024



Photograph: 10

**Description:** 

Bank cover in good condition, no repair

needed.

**Direction: NE** 

Photograph taken by:

AJS

Date: 8/29/2024

**ARCADIS** 

**Periodic Review Report New York State Electric & Gas Penn Yan Former Manufactured Gas Plant** Penn Yan, New York



Photograph: 11

**Description:** 

Bank cover in good condition, no repair

needed.

**Direction: NE** 

Photograph taken by:

AJS

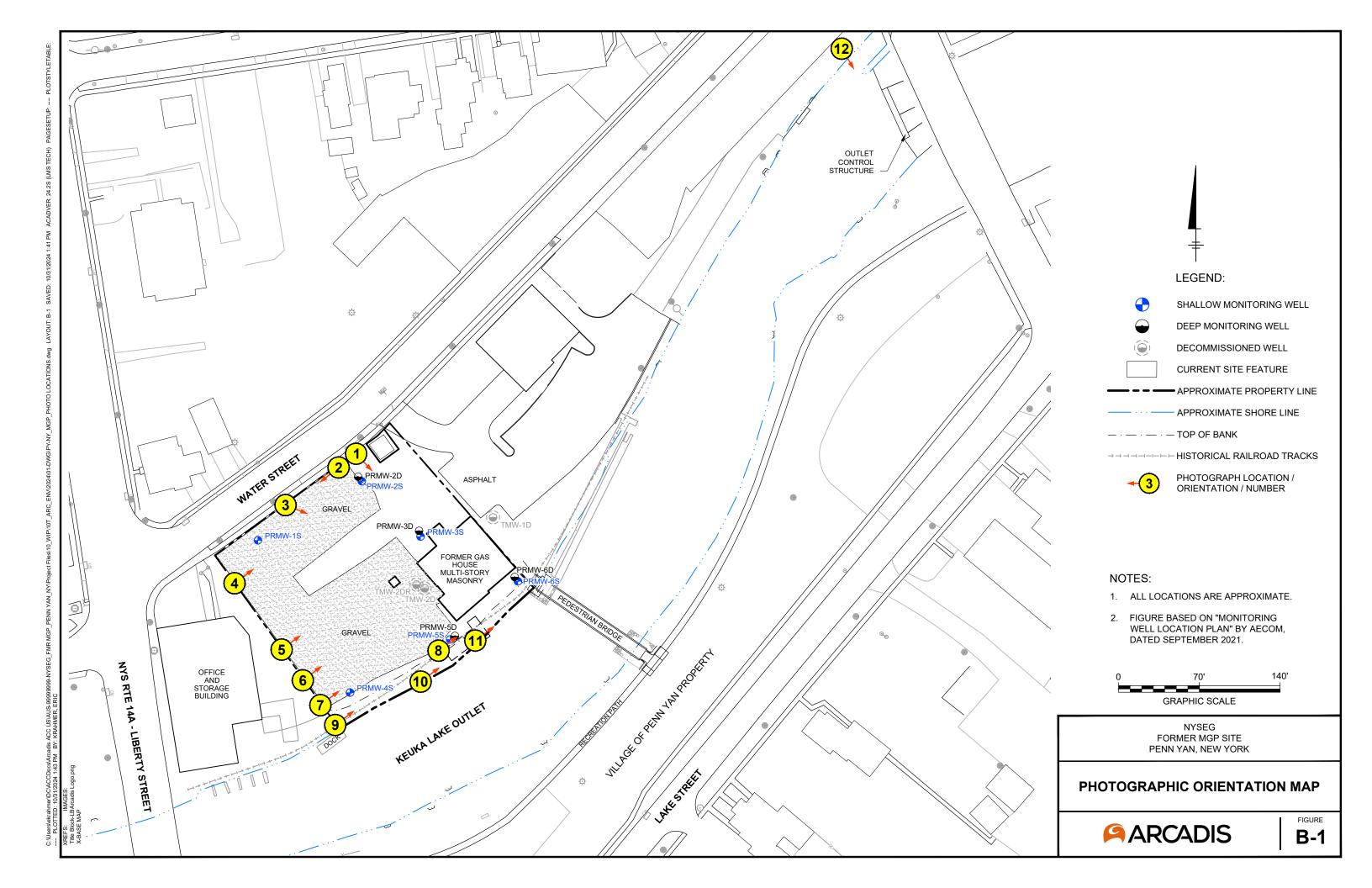
Date: 8/29/2024



Photograph: 12

**Description:** 

Keuka Lake Outlet water surface at Outlet Control Structure. Biological sheen observed on water


surface.

**Direction: SE** 

Photograph taken by:

AJS

Date: 8/29/2024



# **Appendix C**

**Laboratory Data Packages** 

11 12

13

15

# **ANALYTICAL REPORT**

# PREPARED FOR

Attn: Mr. John J Ruspantini New York State Electric & Gas 18 Link Drive Binghamton, New York 13902 Generated 2/14/2024 1:48:56 PM

# **JOB DESCRIPTION**

NYSEG Former MGP Site - Penn Yan NYSEG - Penn Yan Former MGP

# **JOB NUMBER**

480-216887-1

Eurofins Buffalo 10 Hazelwood Drive Amherst NY 14228-2298



# **Eurofins Buffalo**

#### **Job Notes**

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northeast, LLC Project Manager.

### **Authorization**

Generated 2/14/2024 1:48:56 PM

Authorized for release by
Anton Gruning, Project Management Assistant I
Anton.Gruning@et.eurofinsus.com
Designee for
John Schove, Project Manager II
John.Schove@et.eurofinsus.com
(716)504-9838

4

J

7

0

10

11

13

14

15

| T | a   | hl       | e | of         | Co | nte | nts  |
|---|-----|----------|---|------------|----|-----|------|
|   | MI. | $\sim$ 1 |   | <b>V</b> I |    |     | 1110 |

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 3  |
| Definitions/Glossary   | 4  |
| Case Narrative         | 5  |
| Detection Summary      | 6  |
| Client Sample Results  | 8  |
| Surrogate Summary      | 22 |
| QC Sample Results      | 24 |
| QC Association Summary | 29 |
| Lab Chronicle          | 31 |
| Certification Summary  | 34 |
| Method Summary         | 35 |
| Sample Summary         | 36 |
| Chain of Custody       | 37 |
| Receipt Checklists     | 39 |

6

4

6

9

10

12

14

15

### **Definitions/Glossary**

Client: New York State Electric & Gas Job ID: 480-216887-1

Project/Site: NYSEG Former MGP Site - Penn Yan

#### **Qualifiers**

#### **GC/MS VOA**

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

#### **GC/MS Semi VOA**

| Qualifier | Qualifier Description                                                                                          |
|-----------|----------------------------------------------------------------------------------------------------------------|
| *+        | LCS and/or LCSD is outside acceptance limits, high biased.                                                     |
| F1        | MS and/or MSD recovery exceeds control limits.                                                                 |
| F2        | MS/MSD RPD exceeds control limits                                                                              |
| J         | Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. |

#### **General Chemistry**

| Qualifier | Qualifier Description                                                                                          |
|-----------|----------------------------------------------------------------------------------------------------------------|
| В         | Compound was found in the blank and sample.                                                                    |
| F1        | MS and/or MSD recovery exceeds control limits.                                                                 |
| J         | Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. |

| Glossary       |                                                                                                             |
|----------------|-------------------------------------------------------------------------------------------------------------|
| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 |
| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |
| %R             | Percent Recovery                                                                                            |
| CFL            | Contains Free Liquid                                                                                        |
| CFU            | Colony Forming Unit                                                                                         |
| CNF            | Contains No Free Liquid                                                                                     |
| DER            | Duplicate Error Ratio (normalized absolute difference)                                                      |
| Dil Fac        | Dilution Factor                                                                                             |
| DL             | Detection Limit (DoD/DOE)                                                                                   |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |
| DLC            | Decision Level Concentration (Radiochemistry)                                                               |
| EDL            | Estimated Detection Limit (Dioxin)                                                                          |
| LOD            | Limit of Detection (DoD/DOE)                                                                                |
| LOQ            | Limit of Quantitation (DoD/DOE)                                                                             |
| MCL            | EPA recommended "Maximum Contaminant Level"                                                                 |

MQL NC

MDA

MDC

MDL

MPN

ML

ND Not Detected at the reporting limit (or MDL or EDL if shown)

Minimum Detectable Activity (Radiochemistry)

Minimum Detectable Concentration (Radiochemistry)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC Quality Control

RER Relative Error Ratio (Radiochemistry)

Method Detection Limit

Minimum Level (Dioxin)

Most Probable Number

Not Calculated

Method Quantitation Limit

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

**Eurofins Buffalo** 

Page 4 of 39 2/14/2024

#### **Case Narrative**

Client: New York State Electric & Gas Project: NYSEG Former MGP Site - Penn Yan

Job ID: 480-216887-1 Eurofins Buffalo

Job Narrative 480-216887-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to
  demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
  method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed
  unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

#### Receipt

The samples were received on 2/7/2024 10:30 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperatures of the 4 coolers at receipt time were 2.0°C, 2.1°C, 2.3°C and 2.5°C

#### GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### GC/MS Semi VOA

Method 8270D\_LL: Elevated reporting limits are provided for the following sample due to insufficient sample provided for preparation: PRMW-3S MSD (480-216887-7[MSD]).

Method 8270D\_LL: The laboratory control sample (LCS) for preparation batch 480-700227 and analytical batch 480-700337 recovered outside control limits for the following analytes: Benzo[k]fluoranthene. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### **General Chemistry**

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

**Eurofins Buffalo** 

2

Job ID: 480-216887-1

3

4

5

8

11

13

14

1

Client: New York State Electric & Gas

Job ID: 480-216887-1 Project/Site: NYSEG Former MGP Site - Penn Yan

| Client Sample ID: EQUIPMENT BLANK-20240206 | Lab Sample ID: 480-216887-1 |
|--------------------------------------------|-----------------------------|
|                                            |                             |

| Analyte     | Result Qualifier | RL  | MDL Unit   | Dil Fac D | Method   | Prep Type |
|-------------|------------------|-----|------------|-----------|----------|-----------|
| Naphthalene | 0.19 J           | 1.0 | 0.066 ug/L | 1         | 8270D LL | Total/NA  |

#### Client Sample ID: FIELD BLANK-20240206 Lab Sample ID: 480-216887-2

| Analyte        | Result Qualifier | RL    | MDL Unit    | Dil Fac D Method | Prep Type |
|----------------|------------------|-------|-------------|------------------|-----------|
| Cyanide, Total | 0.0046 JBF1      | 0.010 | 0.0041 mg/L | 1                | Total/NA  |

Client Sample ID: PRMW-1S Lab Sample ID: 480-216887-3

No Detections.

Lab Sample ID: 480-216887-4 Client Sample ID: PRMW-2D

No Detections.

Client Sample ID: PRMW-2S Lab Sample ID: 480-216887-5

| Analyte        | Result | Qualifier | RL    | MDL    | Unit | Dil | l Fac | D | Method   | Prep Type |
|----------------|--------|-----------|-------|--------|------|-----|-------|---|----------|-----------|
| Naphthalene    | 0.13   | J         | 1.0   | 0.066  | ug/L |     | 1     |   | 8270D LL | Total/NA  |
| Cyanide, Total | 0.10   | В         | 0.010 | 0.0041 | mg/L |     | 1     |   | 9012B    | Total/NA  |

**Client Sample ID: PRMW-3D** Lab Sample ID: 480-216887-6

| Analyte     | Result Qualifier | RL  | MDL Unit   | Dil Fac D | Method   | Prep Type |
|-------------|------------------|-----|------------|-----------|----------|-----------|
| Naphthalene | 0.14 J           | 1.1 | 0.068 ug/L | 1         | 8270D LL | Total/NA  |

**Client Sample ID: PRMW-3S** Lab Sample ID: 480-216887-7

| Analyte        | Result | Qualifier | RL    | MDL    | Unit | Dil Fac | D | Method   | Prep Type |
|----------------|--------|-----------|-------|--------|------|---------|---|----------|-----------|
| Naphthalene    | 0.32   | J         | 1.0   | 0.064  | ug/L | 1       | _ | 8270D LL | Total/NA  |
| Cyanide, Total | 0.0065 | JB        | 0.010 | 0.0041 | mg/L | 1       |   | 9012B    | Total/NA  |

**Client Sample ID: PRMW-4S** Lab Sample ID: 480-216887-8

| Analyte        | Result Qualifier | RL    | MDL Unit    | Dil Fac D | Method | Prep Type |
|----------------|------------------|-------|-------------|-----------|--------|-----------|
| Cyanide, Total | 0.0070 JB        | 0.010 | 0.0041 mg/L |           | 9012B  | Total/NA  |

Client Sample ID: PRMW-5D Lab Sample ID: 480-216887-9

No Detections.

#### **Client Sample ID: PRMW-5S** Lab Sample ID: 480-216887-10

| Analyte        | Result ( | Qualifier | RL    | MDL    | Unit | Dil Fac | D | Method   | Prep Type |
|----------------|----------|-----------|-------|--------|------|---------|---|----------|-----------|
| Benzene        | 1.7      |           | 1.0   | 0.41   | ug/L | 1       | _ | 8260C    | Total/NA  |
| Ethylbenzene   | 0.82     | J         | 1.0   | 0.74   | ug/L | 1       |   | 8260C    | Total/NA  |
| Acenaphthene   | 13       |           | 0.52  | 0.037  | ug/L | 1       |   | 8270D LL | Total/NA  |
| Acenaphthylene | 1.8      |           | 0.31  | 0.058  | ug/L | 1       |   | 8270D LL | Total/NA  |
| Anthracene     | 0.16     | J         | 0.52  | 0.035  | ug/L | 1       |   | 8270D LL | Total/NA  |
| Fluoranthene   | 0.78     |           | 0.52  | 0.082  | ug/L | 1       |   | 8270D LL | Total/NA  |
| Fluorene       | 4.5      |           | 0.52  | 0.060  | ug/L | 1       |   | 8270D LL | Total/NA  |
| Naphthalene    | 6.4      |           | 1.0   | 0.066  | ug/L | 1       |   | 8270D LL | Total/NA  |
| Phenanthrene   | 0.94     |           | 0.21  | 0.064  | ug/L | 1       |   | 8270D LL | Total/NA  |
| Pyrene         | 0.46     | J         | 0.52  | 0.078  | ug/L | 1       |   | 8270D LL | Total/NA  |
| Cvanide, Total | 0.029 E  | В         | 0.010 | 0.0041 | ma/L | 1       |   | 9012B    | Total/NA  |

This Detection Summary does not include radiochemical test results.

**Eurofins Buffalo** 

Page 6 of 39

# **Detection Summary**

Client: New York State Electric & Gas Job ID: 480-216887-1

Project/Site: NYSEG Former MGP Site - Penn Yan

**Client Sample ID: PRMW-6D** Lab Sample ID: 480-216887-11

| Analyte      | Result Qualifier | RL   | MDL Unit   | Dil Fac D | Method   | Prep Type |
|--------------|------------------|------|------------|-----------|----------|-----------|
| Acenaphthene | 0.089 J          | 0.48 | 0.034 ug/L |           | 8270D LL | Total/NA  |
| Naphthalene  | 0.11 J           | 0.95 | 0.061 ug/L | 1         | 8270D LL | Total/NA  |
| Pyrene       | 0.074 J          | 0.48 | 0.072 ug/L | 1         | 8270D LL | Total/NA  |

**Client Sample ID: PRMW-6S** Lab Sample ID: 480-216887-12

| Analyte     | Result Qualifier | RL  | MDL Unit   | Dil Fac D Method | Prep Type |
|-------------|------------------|-----|------------|------------------|-----------|
| Naphthalene | 0.079 J          | 1.1 | 0.071 ug/L | 1 8270D LL       | Total/NA  |

Client Sample ID: DUP-20240205 Lab Sample ID: 480-216887-13

No Detections.

Lab Sample ID: 480-216887-14 Client Sample ID: TRIP BLANK

No Detections.

2/14/2024

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

Lab Sample ID: 480-216887-1

Client Sample ID: EQUIPMENT BLANK-20240206 Date Collected: 02/06/24 12:15

Matrix: WQ

Job ID: 480-216887-1

Date Received: 02/07/24 10:30

| Analyte                      | Result    | Qualifier | RL       | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|------|------|---|----------|----------------|---------|
| Benzene                      | ND        |           | 1.0      | 0.41 | ug/L |   |          | 02/07/24 18:48 | 1       |
| Ethylbenzene                 | ND        |           | 1.0      | 0.74 | ug/L |   |          | 02/07/24 18:48 | 1       |
| Toluene                      | ND        |           | 1.0      | 0.51 | ug/L |   |          | 02/07/24 18:48 | 1       |
| Xylenes, Total               | ND        |           | 2.0      | 0.66 | ug/L |   |          | 02/07/24 18:48 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |      |      |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 101       |           | 77 - 120 |      |      |   |          | 02/07/24 18:48 | 1       |
| 4-Bromofluorobenzene (Surr)  | 100       |           | 73 - 120 |      |      |   |          | 02/07/24 18:48 | 1       |
| Dibromofluoromethane (Surr)  | 99        |           | 75 - 123 |      |      |   |          | 02/07/24 18:48 | 1       |
| Toluene-d8 (Surr)            | 100       |           | 80 - 120 |      |      |   |          | 02/07/24 18:48 | 1       |

| Analyte                      | Result    | Qualifier | RL       | MDL    | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|--------|------|---|----------------|----------------|---------|
| Acenaphthene                 | ND        |           | 0.52     | 0.037  | ug/L |   | 02/08/24 10:57 | 02/09/24 17:30 | 1       |
| Acenaphthylene               | ND        |           | 0.31     | 0.058  | ug/L |   | 02/08/24 10:57 | 02/09/24 17:30 | 1       |
| Anthracene                   | ND        |           | 0.52     | 0.035  | ug/L |   | 02/08/24 10:57 | 02/09/24 17:30 | 1       |
| Benzo[a]anthracene           | ND        |           | 0.31     | 0.035  | ug/L |   | 02/08/24 10:57 | 02/09/24 17:30 | 1       |
| Benzo[a]pyrene               | ND        |           | 0.19     | 0.13   | ug/L |   | 02/08/24 10:57 | 02/09/24 17:30 | 1       |
| Benzo[b]fluoranthene         | ND        |           | 0.31     | 0.065  | ug/L |   | 02/08/24 10:57 | 02/09/24 17:30 | 1       |
| Benzo[g,h,i]perylene         | ND        |           | 0.52     | 0.060  | ug/L |   | 02/08/24 10:57 | 02/09/24 17:30 | 1       |
| Benzo[k]fluoranthene         | ND        | *+        | 0.31     | 0.072  | ug/L |   | 02/08/24 10:57 | 02/09/24 17:30 | 1       |
| Chrysene                     | ND        |           | 0.52     | 0.076  | ug/L |   | 02/08/24 10:57 | 02/09/24 17:30 | 1       |
| Dibenz(a,h)anthracene        | ND        |           | 0.52     | 0.072  | ug/L |   | 02/08/24 10:57 | 02/09/24 17:30 | 1       |
| Fluoranthene                 | ND        |           | 0.52     | 0.082  | ug/L |   | 02/08/24 10:57 | 02/09/24 17:30 | 1       |
| Fluorene                     | ND        |           | 0.52     | 0.060  | ug/L |   | 02/08/24 10:57 | 02/09/24 17:30 | 1       |
| Indeno[1,2,3-cd]pyrene       | ND        |           | 0.52     | 0.11   | ug/L |   | 02/08/24 10:57 | 02/09/24 17:30 | 1       |
| Naphthalene                  | 0.19      | J         | 1.0      | 0.066  | ug/L |   | 02/08/24 10:57 | 02/09/24 17:30 | 1       |
| Phenanthrene                 | ND        |           | 0.21     | 0.064  | ug/L |   | 02/08/24 10:57 | 02/09/24 17:30 | 1       |
| Pyrene                       | ND        |           | 0.52     | 0.078  | ug/L |   | 02/08/24 10:57 | 02/09/24 17:30 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |        |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl             | 98        |           | 37 - 120 |        |      |   | 02/08/24 10:57 | 02/09/24 17:30 | 1       |
| Nitrobenzene-d5 (Surr)       | 78        |           | 26 - 120 |        |      |   | 02/08/24 10:57 | 02/09/24 17:30 | 1       |
| p-Terphenyl-d14 (Surr)       | 109       |           | 64 - 127 |        |      |   | 02/08/24 10:57 | 02/09/24 17:30 | 1       |
| General Chemistry            |           |           |          |        |      |   |                |                |         |
| Analyte                      | Result    | Qualifier | RL       | MDL    | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Cyanide, Total (SW846 9012B) | ND        |           | 0.010    | 0.0041 | mg/L |   |                | 02/08/24 20:18 | 1       |

2/14/2024

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

Method: SW846 8260C - Volatile Organic Compounds by GC/MS

ND

ND

ND

ND

ND

ND

Client Sample ID: FIELD BLANK-20240206

Date Collected: 02/06/24 11:20 Date Received: 02/07/24 10:30

Chrysene

Fluorene

Fluoranthene

Naphthalene

Dibenz(a,h)anthracene

Indeno[1,2,3-cd]pyrene

| Lab Sample ID: 480-216887- |
|----------------------------|
|                            |

02/08/24 10:57 02/09/24 17:58

02/08/24 10:57 02/09/24 17:58

02/08/24 10:57 02/09/24 17:58

02/08/24 10:57 02/09/24 17:58

02/08/24 10:57 02/09/24 17:58

02/08/24 10:57 02/09/24 17:58

Matrix: WQ

Job ID: 480-216887-1

| Analyte                                                                                                        | Result                                     | Qualifier  | RL                                           | MDL                                                      | Unit                                    | D     | Prepared                                                                                                 | Analyzed                                                                                           | Dil Fac |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------|----------------------------------------------|----------------------------------------------------------|-----------------------------------------|-------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------|
| Benzene                                                                                                        | ND                                         |            | 1.0                                          | 0.41                                                     | ug/L                                    |       |                                                                                                          | 02/07/24 19:10                                                                                     | 1       |
| Ethylbenzene                                                                                                   | ND                                         |            | 1.0                                          | 0.74                                                     | ug/L                                    |       |                                                                                                          | 02/07/24 19:10                                                                                     | 1       |
| Toluene                                                                                                        | ND                                         |            | 1.0                                          | 0.51                                                     | ug/L                                    |       |                                                                                                          | 02/07/24 19:10                                                                                     | 1       |
| Xylenes, Total                                                                                                 | ND                                         |            | 2.0                                          | 0.66                                                     | ug/L                                    |       |                                                                                                          | 02/07/24 19:10                                                                                     | 1       |
| Surrogate                                                                                                      | %Recovery                                  | Qualifier  | Limits                                       |                                                          |                                         |       | Prepared                                                                                                 | Analyzed                                                                                           | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr)                                                                                   | 102                                        |            | 77 - 120                                     |                                                          |                                         |       |                                                                                                          | 02/07/24 19:10                                                                                     | 1       |
| 4-Bromofluorobenzene (Surr)                                                                                    | 102                                        |            | 73 - 120                                     |                                                          |                                         |       |                                                                                                          | 02/07/24 19:10                                                                                     | 1       |
| Dibromofluoromethane (Surr)                                                                                    | 102                                        |            | 75 - 123                                     |                                                          |                                         |       |                                                                                                          | 02/07/24 19:10                                                                                     | 1       |
| ( )                                                                                                            |                                            |            |                                              |                                                          |                                         |       |                                                                                                          |                                                                                                    |         |
| Toluene-d8 (Surr)                                                                                              | 105                                        |            | 80 - 120                                     |                                                          |                                         |       |                                                                                                          | 02/07/24 19:10                                                                                     | 1       |
| Toluene-d8 (Surr)  Method: SW846 8270D LL -                                                                    | Semivolatile (                             |            | ompounds by                                  |                                                          |                                         |       | Propared                                                                                                 |                                                                                                    |         |
| Toluene-d8 (Surr)  Method: SW846 8270D LL - Analyte                                                            | Semivolatile (                             | Organic Co | ompounds by                                  | MDL                                                      | Unit                                    | _evel | Prepared                                                                                                 | Analyzed                                                                                           | Dil Fac |
| Method: SW846 8270D LL - Analyte Acenaphthene                                                                  | Semivolatile ( Result ND                   |            | ompounds by RL 0.50                          | MDL<br>0.036                                             | Unit<br>ug/L                            |       | 02/08/24 10:57                                                                                           | Analyzed 02/09/24 17:58                                                                            |         |
| Method: SW846 8270D LL - Analyte Acenaphthene Acenaphthylene                                                   | Semivolatile ( Result ND ND                |            | 0.50<br>0.30                                 | 0.036<br>0.055                                           | Unit<br>ug/L<br>ug/L                    |       | 02/08/24 10:57<br>02/08/24 10:57                                                                         | Analyzed 02/09/24 17:58 02/09/24 17:58                                                             |         |
| Method: SW846 8270D LL - Analyte Acenaphthene Acenaphthylene Anthracene                                        | Semivolatile ( Result ND ND ND             |            | 0.50<br>0.50<br>0.50                         | 0.036<br>0.055<br>0.034                                  | Unit<br>ug/L<br>ug/L<br>ug/L            |       | 02/08/24 10:57<br>02/08/24 10:57<br>02/08/24 10:57                                                       | Analyzed 02/09/24 17:58 02/09/24 17:58 02/09/24 17:58                                              |         |
| Method: SW846 8270D LL - Analyte Acenaphthene Acenaphthylene                                                   | Semivolatile ( Result ND ND                |            | 0.50<br>0.30                                 | 0.036<br>0.055                                           | Unit<br>ug/L<br>ug/L<br>ug/L            |       | 02/08/24 10:57<br>02/08/24 10:57                                                                         | Analyzed 02/09/24 17:58 02/09/24 17:58                                                             |         |
| Toluene-d8 (Surr)  Method: SW846 8270D LL - Analyte Acenaphthene Acenaphthylene Anthracene                     | Semivolatile ( Result ND ND ND             |            | 0.50<br>0.50<br>0.50                         | 0.036<br>0.055<br>0.034<br>0.034                         | Unit<br>ug/L<br>ug/L<br>ug/L            |       | 02/08/24 10:57<br>02/08/24 10:57<br>02/08/24 10:57                                                       | Analyzed 02/09/24 17:58 02/09/24 17:58 02/09/24 17:58                                              |         |
| Toluene-d8 (Surr)  Method: SW846 8270D LL - Analyte  Acenaphthene Acenaphthylene Anthracene Benzo[a]anthracene | Semivolatile ( Result ND ND ND ND ND       |            | 0.50<br>0.50<br>0.50<br>0.30<br>0.50         | 0.036<br>0.055<br>0.034<br>0.034                         | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L    |       | 02/08/24 10:57<br>02/08/24 10:57<br>02/08/24 10:57<br>02/08/24 10:57                                     | Analyzed 02/09/24 17:58 02/09/24 17:58 02/09/24 17:58 02/09/24 17:58 02/09/24 17:58                |         |
| Method: SW846 8270D LL - Analyte Acenaphthene Acenaphthylene Anthracene Benzo[a]anthracene Benzo[a]pyrene      | Semivolatile ( Result ND ND ND ND ND ND ND |            | 0.50<br>0.30<br>0.30<br>0.30<br>0.30<br>0.18 | MDL<br>0.036<br>0.055<br>0.034<br>0.034<br>0.13<br>0.062 | Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L |       | 02/08/24 10:57<br>02/08/24 10:57<br>02/08/24 10:57<br>02/08/24 10:57<br>02/08/24 10:57<br>02/08/24 10:57 | Analyzed 02/09/24 17:58 02/09/24 17:58 02/09/24 17:58 02/09/24 17:58 02/09/24 17:58 02/09/24 17:58 |         |

| Phenanthrene           | ND        |           | 0.20     | 0.061 | ug/L | 02/08/24 10:57 | 02/09/24 17:58 | 1       |
|------------------------|-----------|-----------|----------|-------|------|----------------|----------------|---------|
| Pyrene                 | ND        |           | 0.50     | 0.075 | ug/L | 02/08/24 10:57 | 02/09/24 17:58 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits   |       |      | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 102       |           | 37 - 120 |       |      | 02/08/24 10:57 | 02/09/24 17:58 | 1       |
| Nitrobenzene-d5 (Surr) | 83        |           | 26 - 120 |       |      | 02/08/24 10:57 | 02/09/24 17:58 | 1       |
| p-Terphenyl-d14 (Surr) | 117       |           | 64 - 127 |       |      | 02/08/24 10:57 | 02/09/24 17:58 | 1       |

0.50

0.50

0.50

0.50

0.50

0.99

0.073 ug/L

0.069 ug/L

0.079 ug/L

0.057 ug/L

0.11 ug/L

0.063 ug/L

| General Chemistry Analyte    | Result Qualifier  | RL    | MDL Unit    | n | Prepared | Analyzed       | Dil Fac |  |
|------------------------------|-------------------|-------|-------------|---|----------|----------------|---------|--|
| Allalyte                     | Tresuit Qualifier |       | WIDE OILL   |   | riepareu | Allalyzea      | Diriac  |  |
| Cyanide, Total (SW846 9012B) | 0.0046 JBF1       | 0.010 | 0.0041 mg/L |   |          | 02/08/24 21:02 | 1       |  |

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

**Client Sample ID: PRMW-1S** Date Collected: 02/05/24 11:40

Date Received: 02/07/24 10:30

| Lab Sample ID: 480-216887-3 |  |
|-----------------------------|--|
| Matrix: Ground Water        |  |

Job ID: 480-216887-1

| Method: SW846 8260C - Vo     | latile Organic | Compoun   | ds by GC/MS |      |      |   |          |                |         |
|------------------------------|----------------|-----------|-------------|------|------|---|----------|----------------|---------|
| Analyte                      | Result         | Qualifier | RL          | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| Benzene                      | ND             |           | 1.0         | 0.41 | ug/L |   |          | 02/07/24 19:32 | 1       |
| Ethylbenzene                 | ND             |           | 1.0         | 0.74 | ug/L |   |          | 02/07/24 19:32 | 1       |
| Toluene                      | ND             |           | 1.0         | 0.51 | ug/L |   |          | 02/07/24 19:32 | 1       |
| Xylenes, Total               | ND             |           | 2.0         | 0.66 | ug/L |   |          | 02/07/24 19:32 | 1       |
| Surrogate                    | %Recovery      | Qualifier | Limits      |      |      |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 103            |           | 77 - 120    |      |      |   |          | 02/07/24 19:32 | 1       |
| 4-Bromofluorobenzene (Surr)  | 100            |           | 73 - 120    |      |      |   |          | 02/07/24 19:32 | 1       |
| Dibromofluoromethane (Surr)  | 102            |           | 75 - 123    |      |      |   |          | 02/07/24 19:32 | 1       |
| Toluene-d8 (Surr)            | 98             |           | 80 - 120    |      |      |   |          | 02/07/24 19:32 | 1       |

| Analyte                | Result    | Qualifier | RL       | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|-------|------|---|----------------|----------------|---------|
| Acenaphthene           | ND        |           | 0.54     | 0.039 | ug/L |   | 02/08/24 10:57 | 02/09/24 18:26 | 1       |
| Acenaphthylene         | ND        |           | 0.32     | 0.060 | ug/L |   | 02/08/24 10:57 | 02/09/24 18:26 | 1       |
| Anthracene             | ND        |           | 0.54     | 0.037 | ug/L |   | 02/08/24 10:57 | 02/09/24 18:26 | 1       |
| Benzo[a]anthracene     | ND        |           | 0.32     | 0.037 | ug/L |   | 02/08/24 10:57 | 02/09/24 18:26 | 1       |
| Benzo[a]pyrene         | ND        |           | 0.19     | 0.14  | ug/L |   | 02/08/24 10:57 | 02/09/24 18:26 | 1       |
| Benzo[b]fluoranthene   | ND        |           | 0.32     | 0.068 | ug/L |   | 02/08/24 10:57 | 02/09/24 18:26 | 1       |
| Benzo[g,h,i]perylene   | ND        |           | 0.54     | 0.062 | ug/L |   | 02/08/24 10:57 | 02/09/24 18:26 | 1       |
| Benzo[k]fluoranthene   | ND        | *+        | 0.32     | 0.075 | ug/L |   | 02/08/24 10:57 | 02/09/24 18:26 | 1       |
| Chrysene               | ND        |           | 0.54     | 0.080 | ug/L |   | 02/08/24 10:57 | 02/09/24 18:26 | 1       |
| Dibenz(a,h)anthracene  | ND        |           | 0.54     | 0.075 | ug/L |   | 02/08/24 10:57 | 02/09/24 18:26 | 1       |
| Fluoranthene           | ND        |           | 0.54     | 0.086 | ug/L |   | 02/08/24 10:57 | 02/09/24 18:26 | 1       |
| Fluorene               | ND        |           | 0.54     | 0.062 | ug/L |   | 02/08/24 10:57 | 02/09/24 18:26 | 1       |
| Indeno[1,2,3-cd]pyrene | ND        |           | 0.54     | 0.12  | ug/L |   | 02/08/24 10:57 | 02/09/24 18:26 | 1       |
| Naphthalene            | ND        |           | 1.1      | 0.069 | ug/L |   | 02/08/24 10:57 | 02/09/24 18:26 | 1       |
| Phenanthrene           | ND        |           | 0.22     | 0.067 | ug/L |   | 02/08/24 10:57 | 02/09/24 18:26 | 1       |
| Pyrene                 | ND        |           | 0.54     | 0.082 | ug/L |   | 02/08/24 10:57 | 02/09/24 18:26 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits   |       |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 99        |           | 37 - 120 |       |      |   | 02/08/24 10:57 | 02/09/24 18:26 | 1       |
| Nitrobenzene-d5 (Surr) | 81        |           | 26 - 120 |       |      |   | 02/08/24 10:57 | 02/09/24 18:26 | 1       |
| p-Terphenyl-d14 (Surr) | 93        |           | 64 - 127 |       |      |   | 02/08/24 10:57 | 02/09/24 18:26 | 1       |

| General Chemistry Analyte    | Result Qualifier | RL    | MDL    | Unit | D | Prepared | Analyzed       | Dil Fac |  |
|------------------------------|------------------|-------|--------|------|---|----------|----------------|---------|--|
| Cyanide, Total (SW846 9012B) | ND ND            | 0.010 | 0.0041 | mg/L |   |          | 02/08/24 21:13 | 1       |  |

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

**Client Sample ID: PRMW-2D** Lab Sample ID: 480-216887-4

Date Collected: 02/05/24 13:15 Date Received: 02/07/24 10:30

**Matrix: Ground Water** 

Job ID: 480-216887-1

| Analyte                      | Result    | Qualifier | RL       | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|------|------|---|----------|----------------|---------|
| Benzene                      | ND        |           | 1.0      | 0.41 | ug/L |   |          | 02/07/24 19:54 | 1       |
| Ethylbenzene                 | ND        |           | 1.0      | 0.74 | ug/L |   |          | 02/07/24 19:54 | 1       |
| Toluene                      | ND        |           | 1.0      | 0.51 | ug/L |   |          | 02/07/24 19:54 | 1       |
| Xylenes, Total               | ND        |           | 2.0      | 0.66 | ug/L |   |          | 02/07/24 19:54 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |      |      |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 102       |           | 77 - 120 |      |      |   |          | 02/07/24 19:54 | 1       |
| 4-Bromofluorobenzene (Surr)  | 102       |           | 73 - 120 |      |      |   |          | 02/07/24 19:54 | 1       |
| Dibromofluoromethane (Surr)  | 102       |           | 75 - 123 |      |      |   |          | 02/07/24 19:54 | 1       |
| Toluene-d8 (Surr)            | 102       |           | 80 - 120 |      |      |   |          | 02/07/24 19:54 | 1       |

| Analyte                | Result    | Qualifier | RL       | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|-------|------|---|----------------|----------------|---------|
| Acenaphthene           | ND        |           | 0.52     | 0.038 | ug/L |   | 02/08/24 10:57 | 02/09/24 18:53 | 1       |
| Acenaphthylene         | ND        |           | 0.31     | 0.058 | ug/L |   | 02/08/24 10:57 | 02/09/24 18:53 | 1       |
| Anthracene             | ND        |           | 0.52     | 0.035 | ug/L |   | 02/08/24 10:57 | 02/09/24 18:53 | 1       |
| Benzo[a]anthracene     | ND        |           | 0.31     | 0.035 | ug/L |   | 02/08/24 10:57 | 02/09/24 18:53 | 1       |
| Benzo[a]pyrene         | ND        |           | 0.19     | 0.14  | ug/L |   | 02/08/24 10:57 | 02/09/24 18:53 | 1       |
| Benzo[b]fluoranthene   | ND        |           | 0.31     | 0.066 | ug/L |   | 02/08/24 10:57 | 02/09/24 18:53 | 1       |
| Benzo[g,h,i]perylene   | ND        |           | 0.52     | 0.060 | ug/L |   | 02/08/24 10:57 | 02/09/24 18:53 | 1       |
| Benzo[k]fluoranthene   | ND        | *+        | 0.31     | 0.073 | ug/L |   | 02/08/24 10:57 | 02/09/24 18:53 | 1       |
| Chrysene               | ND        |           | 0.52     | 0.077 | ug/L |   | 02/08/24 10:57 | 02/09/24 18:53 | 1       |
| Dibenz(a,h)anthracene  | ND        |           | 0.52     | 0.073 | ug/L |   | 02/08/24 10:57 | 02/09/24 18:53 | 1       |
| Fluoranthene           | ND        |           | 0.52     | 0.083 | ug/L |   | 02/08/24 10:57 | 02/09/24 18:53 | 1       |
| Fluorene               | ND        |           | 0.52     | 0.060 | ug/L |   | 02/08/24 10:57 | 02/09/24 18:53 | 1       |
| Indeno[1,2,3-cd]pyrene | ND        |           | 0.52     | 0.11  | ug/L |   | 02/08/24 10:57 | 02/09/24 18:53 | 1       |
| Naphthalene            | ND        |           | 1.0      | 0.067 | ug/L |   | 02/08/24 10:57 | 02/09/24 18:53 | 1       |
| Phenanthrene           | ND        |           | 0.21     | 0.065 | ug/L |   | 02/08/24 10:57 | 02/09/24 18:53 | 1       |
| Pyrene                 | ND        |           | 0.52     | 0.079 | ug/L |   | 02/08/24 10:57 | 02/09/24 18:53 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits   |       |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 99        |           | 37 - 120 |       |      |   | 02/08/24 10:57 | 02/09/24 18:53 | 1       |
| Nitrobenzene-d5 (Surr) | 80        |           | 26 - 120 |       |      |   | 02/08/24 10:57 | 02/09/24 18:53 | 1       |
| p-Terphenyl-d14 (Surr) | 95        |           | 64 - 127 |       |      |   | 02/08/24 10:57 | 02/09/24 18:53 | 1       |
| General Chemistry      |           |           |          |       |      |   |                |                |         |
| Analyte                | Result    | Qualifier | RL       | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |

| General Chemistry Analyte    | Result ( | Qualifier | RL    | MDL    | Unit | D | Prepared | Analyzed       | Dil Fac |  |
|------------------------------|----------|-----------|-------|--------|------|---|----------|----------------|---------|--|
| Cyanide, Total (SW846 9012B) | ND       |           | 0.010 | 0.0041 | mg/L |   |          | 02/08/24 21:15 | 1       |  |

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

Method: SW846 8260C - Volatile Organic Compounds by GC/MS

Result Qualifier

ND

ND

ND

**Client Sample ID: PRMW-2S** Lab Sample ID: 480-216887-5

Benzene

Toluene

Ethylbenzene

| Date Collected: 02/05/24 14:30 | Matrix: Ground Water |
|--------------------------------|----------------------|
| Date Received: 02/07/24 10:30  |                      |
|                                |                      |

1.0

1.0

1.0

MDL Unit

0.41 ug/L

0.74 ug/L

0.51 ug/L

D

Prepared

| Cyanide, Total (SW846 9012B)     | 0.10           |            | 0.010      | 0.0041  |           |      | . 1000100      | 02/08/24 21:18 | 1       |
|----------------------------------|----------------|------------|------------|---------|-----------|------|----------------|----------------|---------|
| General Chemistry Analyte        | Result         | Qualifier  | RL         | MDI     | Unit      | D    | Prepared       | Analyzed       | Dil Fac |
| p-Terphenyl-d14 (Surr)           | 93             |            | 64 - 127   |         |           |      | 02/08/24 10:57 | 02/09/24 19:21 | 1       |
| Nitrobenzene-d5 (Surr)           | 79             |            | 26 - 120   |         |           |      |                | 02/09/24 19:21 | 1       |
| 2-Fluorobiphenyl                 | 98             |            | 37 - 120   |         |           |      |                | 02/09/24 19:21 | 1       |
| Surrogate                        | %Recovery      | Qualifier  | Limits     |         |           |      | Prepared       | Analyzed       | Dil Fac |
| Pyrene                           | ND             |            | 0.52       | 0.078   | ug/L      |      | 02/08/24 10:57 | 02/09/24 19:21 | 1       |
| Phenanthrene                     | ND             |            | 0.21       | 0.064   |           |      |                | 02/09/24 19:21 | 1       |
| Naphthalene                      | 0.13           | J          | 1.0        | 0.066   | J         |      |                | 02/09/24 19:21 | 1       |
| Indeno[1,2,3-cd]pyrene           | ND             |            | 0.52       |         | ug/L      |      |                | 02/09/24 19:21 | 1       |
| Fluorene                         | ND             |            | 0.52       | 0.060   |           |      |                | 02/09/24 19:21 | 1       |
| Fluoranthene                     | ND             |            | 0.52       | 0.082   | -         |      |                | 02/09/24 19:21 | 1       |
| Dibenz(a,h)anthracene            | ND             |            | 0.52       | 0.072   | -         |      |                | 02/09/24 19:21 | 1       |
| Chrysene                         | ND             |            | 0.52       | 0.076   |           |      |                | 02/09/24 19:21 | 1       |
| Benzo[k]fluoranthene             | ND             | *+         | 0.31       | 0.072   | J         |      |                | 02/09/24 19:21 | 1       |
| Benzo[g,h,i]perylene             | ND             |            | 0.52       | 0.060   | Ū         |      |                | 02/09/24 19:21 | 1       |
| Benzo[b]fluoranthene             | ND             |            | 0.31       | 0.065   |           |      |                | 02/09/24 19:21 | 1       |
| Benzo[a]pyrene                   | ND             |            | 0.19       |         | ug/L      |      |                | 02/09/24 19:21 | 1       |
| Benzo[a]anthracene               | ND             |            | 0.31       | 0.035   | •         |      |                | 02/09/24 19:21 | 1       |
| Anthracene                       | ND             |            | 0.52       | 0.035   |           |      |                | 02/09/24 19:21 | 1       |
| Acenaphthylene                   | ND             |            | 0.31       | 0.058   | -         |      | 02/08/24 10:57 |                | 1       |
| Acenaphthene                     | ND             |            | 0.52       | 0.037   | -         |      | 02/08/24 10:57 |                | 1       |
| Analyte                          | Result         | Qualifier  | RL         | MDL     | Unit      | D    | Prepared       | Analyzed       | Dil Fac |
| :<br>Method: SW846 8270D LL - \$ | Somivolatilo ( | Organic Co | omnounde h | v GC/MS | S - Low L | ovol |                |                |         |
| Toluene-d8 (Surr)                | 100            |            | 80 - 120   |         |           |      |                | 02/07/24 20:17 | 1       |
| Dibromofluoromethane (Surr)      | 103            |            | 75 - 123   |         |           |      |                | 02/07/24 20:17 | 1       |
| 4-Bromofluorobenzene (Surr)      | 100            |            | 73 - 120   |         |           |      |                | 02/07/24 20:17 | 1       |
| 1,2-Dichloroethane-d4 (Surr)     | 103            |            | 77 - 120   |         |           |      |                | 02/07/24 20:17 | 1       |
| Surrogate                        | %Recovery      | Qualifier  | Limits     |         |           |      | Prepared       | Analyzed       | Dil Fac |
| Xylenes, Total                   | ND             |            | 2.0        | 0.66    | ug/L      |      |                | 02/07/24 20:17 | 1       |
|                                  |                |            |            | 0.51    |           |      |                | 02/01/24 20.11 |         |

Job ID: 480-216887-1

Analyzed

02/07/24 20:17

02/07/24 20:17

02/07/24 20:17

Dil Fac

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

**Client Sample ID: PRMW-3D** Date Collected: 02/05/24 15:35

Date Received: 02/07/24 10:30

| Lab | Sampl | e ID: | 480-2 | 216887 | <b>7-6</b> |
|-----|-------|-------|-------|--------|------------|
|-----|-------|-------|-------|--------|------------|

**Matrix: Ground Water** 

Job ID: 480-216887-1

| Analyte                      | Result    | Qualifier | RL       | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|------|------|---|----------|----------------|---------|
| Benzene                      | ND        |           | 1.0      | 0.41 | ug/L |   |          | 02/07/24 20:39 | 1       |
| Ethylbenzene                 | ND        |           | 1.0      | 0.74 | ug/L |   |          | 02/07/24 20:39 | 1       |
| Toluene                      | ND        |           | 1.0      | 0.51 | ug/L |   |          | 02/07/24 20:39 | 1       |
| Xylenes, Total               | ND        |           | 2.0      | 0.66 | ug/L |   |          | 02/07/24 20:39 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |      |      |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 104       |           | 77 - 120 |      |      |   |          | 02/07/24 20:39 | 1       |
| 4-Bromofluorobenzene (Surr)  | 98        |           | 73 - 120 |      |      |   |          | 02/07/24 20:39 | 1       |
| Dibromofluoromethane (Surr)  | 102       |           | 75 - 123 |      |      |   |          | 02/07/24 20:39 | 1       |
| Toluene-d8 (Surr)            | 101       |           | 80 - 120 |      |      |   |          | 02/07/24 20:39 | 1       |

| Analyte                | Result | Qualifier | RL   | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|--------|-----------|------|-------|------|---|----------------|----------------|---------|
| Acenaphthene           | ND     |           | 0.53 | 0.038 | ug/L |   | 02/08/24 10:57 | 02/09/24 19:50 | 1       |
| Acenaphthylene         | ND     |           | 0.32 | 0.060 | ug/L |   | 02/08/24 10:57 | 02/09/24 19:50 | 1       |
| Anthracene             | ND     |           | 0.53 | 0.036 | ug/L |   | 02/08/24 10:57 | 02/09/24 19:50 | 1       |
| Benzo[a]anthracene     | ND     |           | 0.32 | 0.036 | ug/L |   | 02/08/24 10:57 | 02/09/24 19:50 | 1       |
| Benzo[a]pyrene         | ND     |           | 0.19 | 0.14  | ug/L |   | 02/08/24 10:57 | 02/09/24 19:50 | 1       |
| Benzo[b]fluoranthene   | ND     |           | 0.32 | 0.067 | ug/L |   | 02/08/24 10:57 | 02/09/24 19:50 | 1       |
| Benzo[g,h,i]perylene   | ND     |           | 0.53 | 0.062 | ug/L |   | 02/08/24 10:57 | 02/09/24 19:50 | 1       |
| Benzo[k]fluoranthene   | ND     | *+        | 0.32 | 0.074 | ug/L |   | 02/08/24 10:57 | 02/09/24 19:50 | 1       |
| Chrysene               | ND     |           | 0.53 | 0.079 | ug/L |   | 02/08/24 10:57 | 02/09/24 19:50 | 1       |
| Dibenz(a,h)anthracene  | ND     |           | 0.53 | 0.074 | ug/L |   | 02/08/24 10:57 | 02/09/24 19:50 | 1       |
| Fluoranthene           | ND     |           | 0.53 | 0.085 | ug/L |   | 02/08/24 10:57 | 02/09/24 19:50 | 1       |
| Fluorene               | ND     |           | 0.53 | 0.062 | ug/L |   | 02/08/24 10:57 | 02/09/24 19:50 | 1       |
| Indeno[1,2,3-cd]pyrene | ND     |           | 0.53 | 0.12  | ug/L |   | 02/08/24 10:57 | 02/09/24 19:50 | 1       |
| Naphthalene            | 0.14   | J         | 1.1  | 0.068 | ug/L |   | 02/08/24 10:57 | 02/09/24 19:50 | 1       |
| Phenanthrene           | ND     |           | 0.21 | 0.066 | ug/L |   | 02/08/24 10:57 | 02/09/24 19:50 | 1       |
| Pyrene                 | ND     |           | 0.53 | 0.081 | ug/L |   | 02/08/24 10:57 | 02/09/24 19:50 | 1       |

| Surrogate              | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|----------------|----------------|---------|
| 2-Fluorobiphenyl       | 101       |           | 37 - 120 | 02/08/24 10:57 | 02/09/24 19:50 | 1       |
| Nitrobenzene-d5 (Surr) | 81        |           | 26 - 120 | 02/08/24 10:57 | 02/09/24 19:50 | 1       |
| p-Terphenyl-d14 (Surr) | 104       |           | 64 - 127 | 02/08/24 10:57 | 02/09/24 19:50 | 1       |

| <b>General Chemistry</b>     |        |           |       |        |      |   |          |                |         |
|------------------------------|--------|-----------|-------|--------|------|---|----------|----------------|---------|
| Analyte                      | Result | Qualifier | RL    | MDL    | Unit | D | Prepared | Analyzed       | Dil Fac |
| Cyanide, Total (SW846 9012B) | ND     |           | 0.010 | 0.0041 | mg/L |   |          | 02/08/24 21:20 | 1       |

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

**Client Sample ID: PRMW-3S** 

Date Collected: 02/05/24 13:15 Date Received: 02/07/24 10:30

Lab Sample ID: 480-216887-7

**Matrix: Ground Water** 

Job ID: 480-216887-1

| Analyte                      | Result    | Qualifier | RL       | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|------|------|---|----------|----------------|---------|
| Benzene                      | ND        |           | 1.0      | 0.41 | ug/L |   |          | 02/07/24 21:01 | 1       |
| Ethylbenzene                 | ND        |           | 1.0      | 0.74 | ug/L |   |          | 02/07/24 21:01 | 1       |
| Toluene                      | ND        |           | 1.0      | 0.51 | ug/L |   |          | 02/07/24 21:01 | 1       |
| Xylenes, Total               | ND        |           | 2.0      | 0.66 | ug/L |   |          | 02/07/24 21:01 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |      |      |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) |           |           | 77 - 120 |      |      |   |          | 02/07/24 21:01 | 1       |
| 4-Bromofluorobenzene (Surr)  | 101       |           | 73 - 120 |      |      |   |          | 02/07/24 21:01 | 1       |
| Dibromofluoromethane (Surr)  | 98        |           | 75 - 123 |      |      |   |          | 02/07/24 21:01 | 1       |
| Toluene-d8 (Surr)            | 101       |           | 80 - 120 |      |      |   |          | 02/07/24 21:01 | 1       |

| Analyte                | Result    | Qualifier | RL       | MDL    | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|--------|------|---|----------------|----------------|---------|
| Acenaphthene           | ND        |           | 0.50     | 0.036  | ug/L |   | 02/08/24 10:57 | 02/09/24 17:01 | 1       |
| Acenaphthylene         | ND        |           | 0.30     | 0.056  | ug/L |   | 02/08/24 10:57 | 02/09/24 17:01 | 1       |
| Anthracene             | ND        |           | 0.50     | 0.034  | ug/L |   | 02/08/24 10:57 | 02/09/24 17:01 | 1       |
| Benzo[a]anthracene     | ND        | F1 F2     | 0.30     | 0.034  | ug/L |   | 02/08/24 10:57 | 02/09/24 17:01 | 1       |
| Benzo[a]pyrene         | ND        | F1 F2     | 0.18     | 0.13   | ug/L |   | 02/08/24 10:57 | 02/09/24 17:01 | 1       |
| Benzo[b]fluoranthene   | ND        | F1 F2     | 0.30     | 0.063  | ug/L |   | 02/08/24 10:57 | 02/09/24 17:01 | 1       |
| Benzo[g,h,i]perylene   | ND        | F1 F2     | 0.50     | 0.058  | ug/L |   | 02/08/24 10:57 | 02/09/24 17:01 | 1       |
| Benzo[k]fluoranthene   | ND        | F1 *+ F2  | 0.30     | 0.070  | ug/L |   | 02/08/24 10:57 | 02/09/24 17:01 | 1       |
| Chrysene               | ND        | F1 F2     | 0.50     | 0.074  | ug/L |   | 02/08/24 10:57 | 02/09/24 17:01 | 1       |
| Dibenz(a,h)anthracene  | ND        | F1 F2     | 0.50     | 0.070  | ug/L |   | 02/08/24 10:57 | 02/09/24 17:01 | 1       |
| Fluoranthene           | ND        |           | 0.50     | 0.080  | ug/L |   | 02/08/24 10:57 | 02/09/24 17:01 | 1       |
| Fluorene               | ND        |           | 0.50     | 0.058  | ug/L |   | 02/08/24 10:57 | 02/09/24 17:01 | 1       |
| Indeno[1,2,3-cd]pyrene | ND        | F1 F2     | 0.50     | 0.11   | ug/L |   | 02/08/24 10:57 | 02/09/24 17:01 | 1       |
| Naphthalene            | 0.32      | J         | 1.0      | 0.064  | ug/L |   | 02/08/24 10:57 | 02/09/24 17:01 | 1       |
| Phenanthrene           | ND        |           | 0.20     | 0.062  | ug/L |   | 02/08/24 10:57 | 02/09/24 17:01 | 1       |
| Pyrene                 | ND        |           | 0.50     | 0.076  | ug/L |   | 02/08/24 10:57 | 02/09/24 17:01 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits   |        |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 115       |           | 37 - 120 |        |      |   | 02/08/24 10:57 | 02/09/24 17:01 | 1       |
| Nitrobenzene-d5 (Surr) | 92        |           | 26 - 120 |        |      |   | 02/08/24 10:57 | 02/09/24 17:01 | 1       |
| p-Terphenyl-d14 (Surr) | 112       |           | 64 - 127 |        |      |   | 02/08/24 10:57 | 02/09/24 17:01 | 1       |
| General Chemistry      |           |           |          |        |      |   |                |                |         |
| Analyte                | Result    | Qualifier | RL       | MDL    | Unit | D | Prepared       | Analyzed       | Dil Fac |
| O                      |           | T.D.      | 0.040    | 0.0044 |      |   |                | 00/00/04 04:05 |         |

| General Chemistry Analyte    | Result | Qualifier | RL    | MDL    | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|--------|-----------|-------|--------|------|---|----------|----------------|---------|
| Cyanide, Total (SW846 9012B) | 0.0065 | JB        | 0.010 | 0.0041 | mg/L |   | -        | 02/08/24 21:35 | 1       |

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

Client Sample ID: PRMW-4S

Date Collected: 02/05/24 11:40

Lab Sample ID: 480-216887-8

Matrix: Ground Water

Date Received: 02/07/24 10:30

Xylenes, Total

|                                                           | 10.00  |           |     |      |      |   |          |                |         |  |  |
|-----------------------------------------------------------|--------|-----------|-----|------|------|---|----------|----------------|---------|--|--|
| Method: SW846 8260C - Volatile Organic Compounds by GC/MS |        |           |     |      |      |   |          |                |         |  |  |
| Analyte                                                   | Result | Qualifier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |  |  |
| Benzene                                                   | ND     |           | 1.0 | 0.41 | ug/L |   |          | 02/07/24 21:23 | 1       |  |  |
| Ethylbenzene                                              | ND     |           | 1.0 | 0.74 | ug/L |   |          | 02/07/24 21:23 | 1       |  |  |
| Toluene                                                   | ND     |           | 1.0 | 0.51 | ua/L |   |          | 02/07/24 21:23 | 1       |  |  |

2.0

0.66 ug/L

| н |                              |                     |          |          |                |         |
|---|------------------------------|---------------------|----------|----------|----------------|---------|
|   | Surrogate                    | %Recovery Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
|   | 1,2-Dichloroethane-d4 (Surr) | 101                 | 77 - 120 |          | 02/07/24 21:23 | 1       |
|   | 4-Bromofluorobenzene (Surr)  | 100                 | 73 - 120 |          | 02/07/24 21:23 | 1       |
|   | Dibromofluoromethane (Surr)  | 100                 | 75 - 123 |          | 02/07/24 21:23 | 1       |
| İ | Toluene-d8 (Surr)            | 103                 | 80 - 120 |          | 02/07/24 21:23 | 1       |

ND

| Analyte                | Result ( | Qualifier | RL   | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|----------|-----------|------|-------|------|---|----------------|----------------|---------|
| Acenaphthene           | ND       |           | 0.54 | 0.039 | ug/L |   | 02/08/24 10:57 | 02/09/24 20:18 | 1       |
| Acenaphthylene         | ND       |           | 0.32 | 0.060 | ug/L |   | 02/08/24 10:57 | 02/09/24 20:18 | 1       |
| Anthracene             | ND       |           | 0.54 | 0.037 | ug/L |   | 02/08/24 10:57 | 02/09/24 20:18 | 1       |
| Benzo[a]anthracene     | ND       |           | 0.32 | 0.037 | ug/L |   | 02/08/24 10:57 | 02/09/24 20:18 | 1       |
| Benzo[a]pyrene         | ND       |           | 0.19 | 0.14  | ug/L |   | 02/08/24 10:57 | 02/09/24 20:18 | 1       |
| Benzo[b]fluoranthene   | ND       |           | 0.32 | 0.068 | ug/L |   | 02/08/24 10:57 | 02/09/24 20:18 | 1       |
| Benzo[g,h,i]perylene   | ND       |           | 0.54 | 0.062 | ug/L |   | 02/08/24 10:57 | 02/09/24 20:18 | 1       |
| Benzo[k]fluoranthene   | ND *     | *+        | 0.32 | 0.075 | ug/L |   | 02/08/24 10:57 | 02/09/24 20:18 | 1       |
| Chrysene               | ND       |           | 0.54 | 0.080 | ug/L |   | 02/08/24 10:57 | 02/09/24 20:18 | 1       |
| Dibenz(a,h)anthracene  | ND       |           | 0.54 | 0.075 | ug/L |   | 02/08/24 10:57 | 02/09/24 20:18 | 1       |
| Fluoranthene           | ND       |           | 0.54 | 0.086 | ug/L |   | 02/08/24 10:57 | 02/09/24 20:18 | 1       |
| Fluorene               | ND       |           | 0.54 | 0.062 | ug/L |   | 02/08/24 10:57 | 02/09/24 20:18 | 1       |
| Indeno[1,2,3-cd]pyrene | ND       |           | 0.54 | 0.12  | ug/L |   | 02/08/24 10:57 | 02/09/24 20:18 | 1       |
| Naphthalene            | ND       |           | 1.1  | 0.069 | ug/L |   | 02/08/24 10:57 | 02/09/24 20:18 | 1       |
| Phenanthrene           | ND       |           | 0.22 | 0.067 | ug/L |   | 02/08/24 10:57 | 02/09/24 20:18 | 1       |
| Pyrene                 | ND       |           | 0.54 | 0.082 | ug/L |   | 02/08/24 10:57 | 02/09/24 20:18 | 1       |

| Surrogate              | %Recovery Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|------------------------|---------------------|----------|----------------|----------------|---------|
| 2-Fluorobiphenyl       | 97                  | 37 - 120 | 02/08/24 10:57 | 02/09/24 20:18 | 1       |
| Nitrobenzene-d5 (Surr) | 79                  | 26 - 120 | 02/08/24 10:57 | 02/09/24 20:18 | 1       |
| p-Terphenyl-d14 (Surr) | 105                 | 64 - 127 | 02/08/24 10:57 | 02/09/24 20:18 | 1       |

| General Chemistry            |        |           |       |        |      |   |          |                |         |
|------------------------------|--------|-----------|-------|--------|------|---|----------|----------------|---------|
| Analyte                      | Result | Qualifier | RL    | MDL    | Unit | D | Prepared | Analyzed       | Dil Fac |
| Cyanide, Total (SW846 9012B) | 0.0070 | J B       | 0.010 | 0.0041 | mg/L |   |          | 02/08/24 21:42 | 1       |

Job ID: 480-216887-1

02/07/24 21:23

3

5

7

9

11

13

14

15

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

**Client Sample ID: PRMW-5D** Lab Sample ID: 480-216887-9 Date Collected: 02/06/24 11:25

Date Received: 02/07/24 10:30

**Matrix: Ground Water** 

Job ID: 480-216887-1

| Method: SW846 8260C - Vo     | latile Organic | Compoun   | ds by GC/MS |      |      |   |          |                |         |
|------------------------------|----------------|-----------|-------------|------|------|---|----------|----------------|---------|
| Analyte                      | Result         | Qualifier | RL          | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| Benzene                      | ND             |           | 1.0         | 0.41 | ug/L |   |          | 02/07/24 21:45 | 1       |
| Ethylbenzene                 | ND             |           | 1.0         | 0.74 | ug/L |   |          | 02/07/24 21:45 | 1       |
| Toluene                      | ND             |           | 1.0         | 0.51 | ug/L |   |          | 02/07/24 21:45 | 1       |
| Xylenes, Total               | ND             |           | 2.0         | 0.66 | ug/L |   |          | 02/07/24 21:45 | 1       |
| Surrogate                    | %Recovery      | Qualifier | Limits      |      |      |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 102            |           | 77 - 120    |      |      |   |          | 02/07/24 21:45 | 1       |
| 4-Bromofluorobenzene (Surr)  | 100            |           | 73 - 120    |      |      |   |          | 02/07/24 21:45 | 1       |
| Dibromofluoromethane (Surr)  | 99             |           | 75 - 123    |      |      |   |          | 02/07/24 21:45 | 1       |
| Toluene-d8 (Surr)            | 100            |           | 80 - 120    |      |      |   |          | 02/07/24 21:45 | 1       |

| Analyte                     | Result    | Qualifier | RL       | MDL    | Unit | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|--------|------|---|----------------|----------------|---------|
| Acenaphthene                | ND        |           | 0.53     | 0.038  | ug/L |   | 02/08/24 10:57 | 02/09/24 20:47 | 1       |
| Acenaphthylene              | ND        |           | 0.32     | 0.059  | ug/L |   | 02/08/24 10:57 | 02/09/24 20:47 | 1       |
| Anthracene                  | ND        |           | 0.53     | 0.036  | ug/L |   | 02/08/24 10:57 | 02/09/24 20:47 | 1       |
| Benzo[a]anthracene          | ND        |           | 0.32     | 0.036  | ug/L |   | 02/08/24 10:57 | 02/09/24 20:47 | 1       |
| Benzo[a]pyrene              | ND        |           | 0.19     | 0.14   | ug/L |   | 02/08/24 10:57 | 02/09/24 20:47 | 1       |
| Benzo[b]fluoranthene        | ND        |           | 0.32     | 0.066  | ug/L |   | 02/08/24 10:57 | 02/09/24 20:47 | 1       |
| Benzo[g,h,i]perylene        | ND        |           | 0.53     | 0.061  | ug/L |   | 02/08/24 10:57 | 02/09/24 20:47 | 1       |
| Benzo[k]fluoranthene        | ND        | *+        | 0.32     | 0.074  | ug/L |   | 02/08/24 10:57 | 02/09/24 20:47 | 1       |
| Chrysene                    | ND        |           | 0.53     | 0.078  | ug/L |   | 02/08/24 10:57 | 02/09/24 20:47 | 1       |
| Dibenz(a,h)anthracene       | ND        |           | 0.53     | 0.074  | ug/L |   | 02/08/24 10:57 | 02/09/24 20:47 | 1       |
| Fluoranthene                | ND        |           | 0.53     | 0.084  | ug/L |   | 02/08/24 10:57 | 02/09/24 20:47 | 1       |
| Fluorene                    | ND        |           | 0.53     | 0.061  | ug/L |   | 02/08/24 10:57 | 02/09/24 20:47 | 1       |
| Indeno[1,2,3-cd]pyrene      | ND        |           | 0.53     | 0.12   | ug/L |   | 02/08/24 10:57 | 02/09/24 20:47 | 1       |
| Naphthalene                 | ND        |           | 1.1      | 0.067  | ug/L |   | 02/08/24 10:57 | 02/09/24 20:47 | 1       |
| Phenanthrene                | ND        |           | 0.21     | 0.065  | ug/L |   | 02/08/24 10:57 | 02/09/24 20:47 | 1       |
| Pyrene                      | ND        |           | 0.53     | 0.080  | ug/L |   | 02/08/24 10:57 | 02/09/24 20:47 | 1       |
| Surrogate                   | %Recovery | Qualifier | Limits   |        |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl            | 110       |           | 37 - 120 |        |      |   | 02/08/24 10:57 | 02/09/24 20:47 | 1       |
| Nitrobenzene-d5 (Surr)      | 90        |           | 26 - 120 |        |      |   | 02/08/24 10:57 | 02/09/24 20:47 | 1       |
| p-Terphenyl-d14 (Surr)      | 104       |           | 64 - 127 |        |      |   | 02/08/24 10:57 | 02/09/24 20:47 | 1       |
| General Chemistry           |           |           |          |        |      |   |                |                |         |
| Analyte                     | Result    | Qualifier | RL       | MDL    | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Cyanida Total (SW946 0012B) | ND.       |           | 0.010    | 0.0044 | ma/l |   |                | 02/09/24 21:45 |         |

| Analyte                      | Result | Qualifier | RL    | MDL    | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|--------|-----------|-------|--------|------|---|----------|----------------|---------|
| Cyanide, Total (SW846 9012B) | ND     |           | 0.010 | 0.0041 | mg/L | _ |          | 02/08/24 21:45 | 1       |
|                              |        |           |       |        |      |   |          |                |         |
|                              |        |           |       |        |      |   |          |                |         |

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

**Client Sample ID: PRMW-5S** Lab Sample ID: 480-216887-10

Date Collected: 02/06/24 10:10 Date Received: 02/07/24 10:30

Chrysene

**Fluorene** 

**Fluoranthene** 

**Naphthalene** 

Dibenz(a,h)anthracene

Indeno[1,2,3-cd]pyrene

02/08/24 10:57 02/09/24 21:15

02/08/24 10:57 02/09/24 21:15 02/08/24 10:57 02/09/24 21:15

02/08/24 10:57 02/09/24 21:15

02/08/24 10:57 02/09/24 21:15

02/08/24 10:57 02/09/24 21:15

**Matrix: Ground Water** 

Job ID: 480-216887-1

| Analyte                                                                                                 | Result                                          | Qualifier               | RL                                   | MDL                                             | Unit                                         | D         | Prepared                                                                                                 | Analyzed                                                                            | Dil Fac      |
|---------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------|--------------------------------------|-------------------------------------------------|----------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------|
| Benzene                                                                                                 | 1.7                                             |                         | 1.0                                  | 0.41                                            | ug/L                                         |           |                                                                                                          | 02/07/24 22:08                                                                      | 1            |
| Ethylbenzene                                                                                            | 0.82                                            | J                       | 1.0                                  | 0.74                                            | ug/L                                         |           |                                                                                                          | 02/07/24 22:08                                                                      | 1            |
| Toluene                                                                                                 | ND                                              |                         | 1.0                                  | 0.51                                            | ug/L                                         |           |                                                                                                          | 02/07/24 22:08                                                                      | 1            |
| Xylenes, Total                                                                                          | ND                                              |                         | 2.0                                  | 0.66                                            | ug/L                                         |           |                                                                                                          | 02/07/24 22:08                                                                      | 1            |
| Surrogate                                                                                               | %Recovery                                       | Qualifier               | Limits                               |                                                 |                                              |           | Prepared                                                                                                 | Analyzed                                                                            | Dil Fac      |
| 1,2-Dichloroethane-d4 (Surr)                                                                            | 102                                             |                         | 77 - 120                             |                                                 |                                              |           |                                                                                                          | 02/07/24 22:08                                                                      | 1            |
| 4-Bromofluorobenzene (Surr)                                                                             | 101                                             |                         | 73 - 120                             |                                                 |                                              |           |                                                                                                          | 02/07/24 22:08                                                                      | 1            |
| Dibromofluoromethane (Surr)                                                                             | 101                                             |                         | 75 - 123                             |                                                 |                                              |           |                                                                                                          | 02/07/24 22:08                                                                      | 1            |
|                                                                                                         |                                                 |                         |                                      |                                                 |                                              |           |                                                                                                          |                                                                                     |              |
| Toluene-d8 (Surr)                                                                                       | 102                                             |                         | 80 - 120                             |                                                 |                                              |           |                                                                                                          | 02/07/24 22:08                                                                      | 1            |
|                                                                                                         |                                                 |                         |                                      | / GC/MS                                         | S - Low Le                                   | evel      |                                                                                                          | 02/07/24 22:08                                                                      | 1            |
| Toluene-d8 (Surr)                                                                                       | - Semivolatile (                                |                         |                                      |                                                 | - Low Le                                     | evel<br>D | Prepared                                                                                                 | 02/07/24 22:08 Analyzed                                                             | 1<br>Dil Fac |
| Toluene-d8 (Surr) Method: SW846 8270D LL                                                                | - Semivolatile (                                | Organic Co              | ompounds by                          |                                                 | Unit                                         |           | Prepared 02/08/24 10:57                                                                                  | Analyzed                                                                            | ·            |
| Toluene-d8 (Surr)  Method: SW846 8270D LL Analyte                                                       | - Semivolatile (                                | Organic Co              | ompounds by                          | MDL                                             | Unit<br>ug/L                                 |           |                                                                                                          | Analyzed 02/09/24 21:15                                                             | ·            |
| Method: SW846 8270D LL Analyte Acenaphthene                                                             | - Semivolatile ( Result                         | Organic Co<br>Qualifier | ompounds by RL 0.52                  | MDL<br>0.037                                    | Unit<br>ug/L<br>ug/L                         |           | 02/08/24 10:57                                                                                           | Analyzed 02/09/24 21:15                                                             | ·            |
| Method: SW846 8270D LL Analyte Acenaphthene Acenaphthylene                                              | - Semivolatile ( Result 13 1.8                  | Organic Co<br>Qualifier | ompounds by RL 0.52 0.31             | MDL<br>0.037<br>0.058                           | ug/L<br>ug/L<br>ug/L                         |           | 02/08/24 10:57<br>02/08/24 10:57                                                                         | Analyzed 02/09/24 21:15 02/09/24 21:15 02/09/24 21:15                               | ·            |
| Method: SW846 8270D LL Analyte Acenaphthene Acenaphthylene Anthracene                                   | - Semivolatile (<br>Result<br>13<br>1.8<br>0.16 | Organic Co<br>Qualifier | 0.52<br>0.52<br>0.52                 | MDL<br>0.037<br>0.058<br>0.035<br>0.035         | ug/L<br>ug/L<br>ug/L                         |           | 02/08/24 10:57<br>02/08/24 10:57<br>02/08/24 10:57                                                       | Analyzed 02/09/24 21:15 02/09/24 21:15 02/09/24 21:15 02/09/24 21:15                | ·            |
| Method: SW846 8270D LL Analyte Acenaphthene Acenaphthylene Anthracene Benzo[a]anthracene                | - Semivolatile ( Result 13 1.8 0.16 ND          | Organic Co<br>Qualifier | 0.52<br>0.31<br>0.52<br>0.31         | MDL<br>0.037<br>0.058<br>0.035<br>0.035         | Unit<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L |           | 02/08/24 10:57<br>02/08/24 10:57<br>02/08/24 10:57<br>02/08/24 10:57                                     | Analyzed 02/09/24 21:15 02/09/24 21:15 02/09/24 21:15 02/09/24 21:15 02/09/24 21:15 | ·            |
| Method: SW846 8270D LL Analyte Acenaphthene Acenaphthylene Anthracene Benzo[a]anthracene Benzo[a]pyrene | - Semivolatile ( Result 13 1.8 0.16 ND ND       | Organic Co<br>Qualifier | 0.52<br>0.31<br>0.52<br>0.31<br>0.52 | MDL<br>0.037<br>0.058<br>0.035<br>0.035<br>0.13 | Unit ug/L ug/L ug/L ug/L ug/L ug/L           |           | 02/08/24 10:57<br>02/08/24 10:57<br>02/08/24 10:57<br>02/08/24 10:57<br>02/08/24 10:57<br>02/08/24 10:57 | Analyzed 02/09/24 21:15 02/09/24 21:15 02/09/24 21:15 02/09/24 21:15 02/09/24 21:15 | ·            |

| Phenanthrene           | 0.94                | 0.21     | 0.064 ug/L | 02/08/24 10:57 | 02/09/24 21:15 | 1       |
|------------------------|---------------------|----------|------------|----------------|----------------|---------|
| Pyrene                 | 0.46 J              | 0.52     | 0.078 ug/L | 02/08/24 10:57 | 02/09/24 21:15 | 1       |
| Surrogate              | %Recovery Qualifier | Limits   |            | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 97                  | 37 - 120 |            | 02/08/24 10:57 | 02/09/24 21:15 | 1       |
| Nitrobenzene-d5 (Surr) | 80                  | 26 - 120 |            | 02/08/24 10:57 | 02/09/24 21:15 | 1       |
| p-Terphenyl-d14 (Surr) | 98                  | 64 - 127 |            | 02/08/24 10:57 | 02/09/24 21:15 | 1       |

0.52

0.52

0.52

0.52

0.52

1.0

0.076 ug/L

0.072 ug/L

0.082 ug/L

0.060 ug/L

0.11 ug/L

0.066 ug/L

ND

ND

0.78

4.5

ND

6.4

| General Chemistry Analyte    | Result | Qualifier | RL    | MDL    | Unit | D | Prepared | Analyzed       | Dil Fac |  |
|------------------------------|--------|-----------|-------|--------|------|---|----------|----------------|---------|--|
| Cyanide, Total (SW846 9012B) | 0.029  | В         | 0.010 | 0.0041 | ma/L |   |          | 02/08/24 21:47 |         |  |

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

**Client Sample ID: PRMW-6D** Lab Sample ID: 480-216887-11 Date Collected: 02/06/24 10:50

Date Received: 02/07/24 10:30

**Matrix: Ground Water** 

Job ID: 480-216887-1

| Method: SW846 8260C - Vo     | olatile Organic | Compoun   | ds by GC/MS |      |      |   |          |                |         |
|------------------------------|-----------------|-----------|-------------|------|------|---|----------|----------------|---------|
| Analyte                      |                 | Qualifier | RL          | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| Benzene                      | ND              |           | 1.0         | 0.41 | ug/L |   |          | 02/07/24 22:30 | 1       |
| Ethylbenzene                 | ND              |           | 1.0         | 0.74 | ug/L |   |          | 02/07/24 22:30 | 1       |
| Toluene                      | ND              |           | 1.0         | 0.51 | ug/L |   |          | 02/07/24 22:30 | 1       |
| Xylenes, Total               | ND              |           | 2.0         | 0.66 | ug/L |   |          | 02/07/24 22:30 | 1       |
| Surrogate                    | %Recovery       | Qualifier | Limits      |      |      |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 101             |           | 77 - 120    |      |      |   |          | 02/07/24 22:30 | 1       |
| 4-Bromofluorobenzene (Surr)  | 99              |           | 73 - 120    |      |      |   |          | 02/07/24 22:30 | 1       |
| Dibromofluoromethane (Surr)  | 100             |           | 75 - 123    |      |      |   |          | 02/07/24 22:30 | 1       |
| Toluene-d8 (Surr)            | 100             |           | 80 - 120    |      |      |   |          | 02/07/24 22:30 | 1       |

| Analyte                      | Result    | Qualifier | RL       | MDL    | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|--------|------|---|----------------|----------------|---------|
| Acenaphthene                 | 0.089     | J         | 0.48     | 0.034  | ug/L |   | 02/08/24 10:57 | 02/09/24 21:43 | 1       |
| Acenaphthylene               | ND        |           | 0.29     | 0.053  | ug/L |   | 02/08/24 10:57 | 02/09/24 21:43 | 1       |
| Anthracene                   | ND        |           | 0.48     | 0.032  | ug/L |   | 02/08/24 10:57 | 02/09/24 21:43 | 1       |
| Benzo[a]anthracene           | ND        |           | 0.29     | 0.032  | ug/L |   | 02/08/24 10:57 | 02/09/24 21:43 | 1       |
| Benzo[a]pyrene               | ND        |           | 0.17     | 0.12   | ug/L |   | 02/08/24 10:57 | 02/09/24 21:43 | 1       |
| Benzo[b]fluoranthene         | ND        |           | 0.29     | 0.060  | ug/L |   | 02/08/24 10:57 | 02/09/24 21:43 | 1       |
| Benzo[g,h,i]perylene         | ND        |           | 0.48     | 0.055  | ug/L |   | 02/08/24 10:57 | 02/09/24 21:43 | 1       |
| Benzo[k]fluoranthene         | ND        | *+        | 0.29     | 0.067  | ug/L |   | 02/08/24 10:57 | 02/09/24 21:43 | 1       |
| Chrysene                     | ND        |           | 0.48     | 0.070  | ug/L |   | 02/08/24 10:57 | 02/09/24 21:43 | 1       |
| Dibenz(a,h)anthracene        | ND        |           | 0.48     | 0.067  | ug/L |   | 02/08/24 10:57 | 02/09/24 21:43 | 1       |
| Fluoranthene                 | ND        |           | 0.48     | 0.076  | ug/L |   | 02/08/24 10:57 | 02/09/24 21:43 | 1       |
| Fluorene                     | ND        |           | 0.48     | 0.055  | ug/L |   | 02/08/24 10:57 | 02/09/24 21:43 | 1       |
| Indeno[1,2,3-cd]pyrene       | ND        |           | 0.48     | 0.10   | ug/L |   | 02/08/24 10:57 | 02/09/24 21:43 | 1       |
| Naphthalene                  | 0.11      | J         | 0.95     | 0.061  | ug/L |   | 02/08/24 10:57 | 02/09/24 21:43 | 1       |
| Phenanthrene                 | ND        |           | 0.19     | 0.059  | ug/L |   | 02/08/24 10:57 | 02/09/24 21:43 | 1       |
| Pyrene                       | 0.074     | J         | 0.48     | 0.072  | ug/L |   | 02/08/24 10:57 | 02/09/24 21:43 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |        |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl             | 117       |           | 37 - 120 |        |      |   | 02/08/24 10:57 | 02/09/24 21:43 | 1       |
| Nitrobenzene-d5 (Surr)       | 94        |           | 26 - 120 |        |      |   | 02/08/24 10:57 | 02/09/24 21:43 | 1       |
| p-Terphenyl-d14 (Surr)       | 118       |           | 64 - 127 |        |      |   | 02/08/24 10:57 | 02/09/24 21:43 | 1       |
| General Chemistry            |           |           |          |        |      |   |                |                |         |
| Analyte                      | Result    | Qualifier | RL       | MDL    | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Cyanide, Total (SW846 9012B) | ND        |           | 0.010    | 0.0041 | ma/L |   |                | 02/08/24 21:50 | 1       |

| Eu | rofins | Buffa | lc |
|----|--------|-------|----|
|    |        |       |    |

2/14/2024

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

**Client Sample ID: PRMW-6S** 

Date Collected: 02/06/24 09:50

Date Received: 02/07/24 10:30

Cyanide, Total (SW846 9012B)

Lab Sample ID: 480-216887-12

**Matrix: Ground Water** 

Job ID: 480-216887-1

| Analyte                      | Result    | Qualifier | RL       | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|------|------|---|----------|----------------|---------|
| Benzene                      | ND        |           | 1.0      | 0.41 | ug/L |   |          | 02/07/24 22:52 | 1       |
| Ethylbenzene                 | ND        |           | 1.0      | 0.74 | ug/L |   |          | 02/07/24 22:52 | 1       |
| Toluene                      | ND        |           | 1.0      | 0.51 | ug/L |   |          | 02/07/24 22:52 | 1       |
| Xylenes, Total               | ND        |           | 2.0      | 0.66 | ug/L |   |          | 02/07/24 22:52 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |      |      |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 100       |           | 77 - 120 |      |      |   |          | 02/07/24 22:52 | 1       |
| 4-Bromofluorobenzene (Surr)  | 101       |           | 73 - 120 |      |      |   |          | 02/07/24 22:52 | 1       |
| Dibromofluoromethane (Surr)  | 100       |           | 75 - 123 |      |      |   |          | 02/07/24 22:52 | 1       |
| Toluene-d8 (Surr)            | 101       |           | 80 - 120 |      |      |   |          | 02/07/24 22:52 | 1       |

| Analyte                | Result    | Qualifier | RL       | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|-------|------|---|----------------|----------------|---------|
| Acenaphthene           | ND        |           | 0.56     | 0.040 | ug/L |   | 02/08/24 10:57 | 02/09/24 22:10 | 1       |
| Acenaphthylene         | ND        |           | 0.33     | 0.062 | ug/L |   | 02/08/24 10:57 | 02/09/24 22:10 | 1       |
| Anthracene             | ND        |           | 0.56     | 0.038 | ug/L |   | 02/08/24 10:57 | 02/09/24 22:10 | 1       |
| Benzo[a]anthracene     | ND        |           | 0.33     | 0.038 | ug/L |   | 02/08/24 10:57 | 02/09/24 22:10 | 1       |
| Benzo[a]pyrene         | ND        |           | 0.20     | 0.14  | ug/L |   | 02/08/24 10:57 | 02/09/24 22:10 | 1       |
| Benzo[b]fluoranthene   | ND        |           | 0.33     | 0.070 | ug/L |   | 02/08/24 10:57 | 02/09/24 22:10 | 1       |
| Benzo[g,h,i]perylene   | ND        |           | 0.56     | 0.064 | ug/L |   | 02/08/24 10:57 | 02/09/24 22:10 | 1       |
| Benzo[k]fluoranthene   | ND        | *+        | 0.33     | 0.078 | ug/L |   | 02/08/24 10:57 | 02/09/24 22:10 | 1       |
| Chrysene               | ND        |           | 0.56     | 0.082 | ug/L |   | 02/08/24 10:57 | 02/09/24 22:10 | 1       |
| Dibenz(a,h)anthracene  | ND        |           | 0.56     | 0.078 | ug/L |   | 02/08/24 10:57 | 02/09/24 22:10 | 1       |
| Fluoranthene           | ND        |           | 0.56     | 0.089 | ug/L |   | 02/08/24 10:57 | 02/09/24 22:10 | 1       |
| Fluorene               | ND        |           | 0.56     | 0.064 | ug/L |   | 02/08/24 10:57 | 02/09/24 22:10 | 1       |
| Indeno[1,2,3-cd]pyrene | ND        |           | 0.56     | 0.12  | ug/L |   | 02/08/24 10:57 | 02/09/24 22:10 | 1       |
| Naphthalene            | 0.079     | J         | 1.1      | 0.071 | ug/L |   | 02/08/24 10:57 | 02/09/24 22:10 | 1       |
| Phenanthrene           | ND        |           | 0.22     | 0.069 | ug/L |   | 02/08/24 10:57 | 02/09/24 22:10 | 1       |
| Pyrene                 | ND        |           | 0.56     | 0.084 | ug/L |   | 02/08/24 10:57 | 02/09/24 22:10 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits   |       |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 89        |           | 37 - 120 |       |      |   | 02/08/24 10:57 | 02/09/24 22:10 | 1       |
| Nitrobenzene-d5 (Surr) | 73        |           | 26 - 120 |       |      |   | 02/08/24 10:57 | 02/09/24 22:10 | 1       |
| p-Terphenyl-d14 (Surr) | 90        |           | 64 - 127 |       |      |   | 02/08/24 10:57 | 02/09/24 22:10 | 1       |
| General Chemistry      |           |           |          |       |      |   |                |                |         |
| Analyte                | Result    | Qualifier | RL       | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |

0.010

ND

0.0041 mg/L

| <b>Eurofins</b> | Buffalo |
|-----------------|---------|
|                 | Danaio  |

02/08/24 21:53

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

Client Sample ID: DUP-20240205

Date Collected: 02/05/24 00:00 Date Received: 02/07/24 10:30 Lab Sample ID: 480-216887-13

**Matrix: Ground Water** 

Job ID: 480-216887-1

| Analyte                      | Result    | Qualifier | RL       | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|------|------|---|----------|----------------|---------|
| Benzene                      | MD        |           | 1.0      | 0.41 | ug/L |   |          | 02/07/24 23:14 | 1       |
| Ethylbenzene                 | ND        |           | 1.0      | 0.74 | ug/L |   |          | 02/07/24 23:14 | 1       |
| Toluene                      | ND        |           | 1.0      | 0.51 | ug/L |   |          | 02/07/24 23:14 | 1       |
| Xylenes, Total               | ND        |           | 2.0      | 0.66 | ug/L |   |          | 02/07/24 23:14 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |      |      |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 103       |           | 77 - 120 |      |      |   |          | 02/07/24 23:14 | 1       |
| 4-Bromofluorobenzene (Surr)  | 101       |           | 73 - 120 |      |      |   |          | 02/07/24 23:14 | 1       |
| Dibromofluoromethane (Surr)  | 101       |           | 75 - 123 |      |      |   |          | 02/07/24 23:14 | 1       |
| Toluene-d8 (Surr)            | 104       |           | 80 - 120 |      |      |   |          | 02/07/24 23:14 | 1       |

| Analyte                | Result    | Qualifier | RL       | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|-------|------|---|----------------|----------------|---------|
| Acenaphthene           | ND        |           | 0.53     | 0.038 | ug/L |   | 02/08/24 10:57 | 02/09/24 22:38 | 1       |
| Acenaphthylene         | ND        |           | 0.32     | 0.059 | ug/L |   | 02/08/24 10:57 | 02/09/24 22:38 | 1       |
| Anthracene             | ND        |           | 0.53     | 0.036 | ug/L |   | 02/08/24 10:57 | 02/09/24 22:38 | 1       |
| Benzo[a]anthracene     | ND        |           | 0.32     | 0.036 | ug/L |   | 02/08/24 10:57 | 02/09/24 22:38 | 1       |
| Benzo[a]pyrene         | ND        |           | 0.19     | 0.14  | ug/L |   | 02/08/24 10:57 | 02/09/24 22:38 | 1       |
| Benzo[b]fluoranthene   | ND        |           | 0.32     | 0.066 | ug/L |   | 02/08/24 10:57 | 02/09/24 22:38 | 1       |
| Benzo[g,h,i]perylene   | ND        |           | 0.53     | 0.061 | ug/L |   | 02/08/24 10:57 | 02/09/24 22:38 | 1       |
| Benzo[k]fluoranthene   | ND        | *+        | 0.32     | 0.074 | ug/L |   | 02/08/24 10:57 | 02/09/24 22:38 | 1       |
| Chrysene               | ND        |           | 0.53     | 0.078 | ug/L |   | 02/08/24 10:57 | 02/09/24 22:38 | 1       |
| Dibenz(a,h)anthracene  | ND        |           | 0.53     | 0.074 | ug/L |   | 02/08/24 10:57 | 02/09/24 22:38 | 1       |
| Fluoranthene           | ND        |           | 0.53     | 0.084 | ug/L |   | 02/08/24 10:57 | 02/09/24 22:38 | 1       |
| Fluorene               | ND        |           | 0.53     | 0.061 | ug/L |   | 02/08/24 10:57 | 02/09/24 22:38 | 1       |
| Indeno[1,2,3-cd]pyrene | ND        |           | 0.53     | 0.12  | ug/L |   | 02/08/24 10:57 | 02/09/24 22:38 | 1       |
| Naphthalene            | ND        |           | 1.1      | 0.067 | ug/L |   | 02/08/24 10:57 | 02/09/24 22:38 | 1       |
| Phenanthrene           | ND        |           | 0.21     | 0.065 | ug/L |   | 02/08/24 10:57 | 02/09/24 22:38 | 1       |
| Pyrene                 | ND        |           | 0.53     | 0.080 | ug/L |   | 02/08/24 10:57 | 02/09/24 22:38 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits   |       |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 116       | ·         | 37 - 120 |       |      |   | 02/08/24 10:57 | 02/09/24 22:38 | 1       |
| Nitrobenzene-d5 (Surr) | 94        |           | 26 - 120 |       |      |   | 02/08/24 10:57 | 02/09/24 22:38 | 1       |
| p-Terphenyl-d14 (Surr) | 121       |           | 64 - 127 |       |      |   | 02/08/24 10:57 | 02/09/24 22:38 | 1       |
| General Chemistry      |           |           |          |       |      |   |                |                |         |
| Analyte                | Result    | Qualifier | RL       | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |

| General Chemistry<br>Analyte | Result C | Qualifier | RL    | MDL    | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|----------|-----------|-------|--------|------|---|----------|----------------|---------|
| Cyanide, Total (SW846 9012B) | ND       |           | 0.010 | 0.0041 | mg/L |   |          | 02/08/24 21:55 | 1       |

Client: New York State Electric & Gas Job ID: 480-216887-1

Project/Site: NYSEG Former MGP Site - Penn Yan

**Client Sample ID: TRIP BLANK** 

Lab Sample ID: 480-216887-14

02/07/24 23:36

Matrix: WQ

Date Collected: 02/05/24 00:00 Date Received: 02/07/24 10:30

Toluene-d8 (Surr)

| Method: SW846 8260C - Vo     | ethod: SW846 8260C - Volatile Organic Compounds by GC/MS |           |          |      |      |   |          |                |         |  |  |  |  |
|------------------------------|----------------------------------------------------------|-----------|----------|------|------|---|----------|----------------|---------|--|--|--|--|
| Analyte                      | Result                                                   | Qualifier | RL       | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |  |  |  |  |
| Benzene                      | ND                                                       |           | 1.0      | 0.41 | ug/L |   |          | 02/07/24 23:36 | 1       |  |  |  |  |
| Ethylbenzene                 | ND                                                       |           | 1.0      | 0.74 | ug/L |   |          | 02/07/24 23:36 | 1       |  |  |  |  |
| Toluene                      | ND                                                       |           | 1.0      | 0.51 | ug/L |   |          | 02/07/24 23:36 | 1       |  |  |  |  |
| Xylenes, Total               | ND                                                       |           | 2.0      | 0.66 | ug/L |   |          | 02/07/24 23:36 | 1       |  |  |  |  |
| Surrogate                    | %Recovery                                                | Qualifier | Limits   |      |      |   | Prepared | Analyzed       | Dil Fac |  |  |  |  |
| 1,2-Dichloroethane-d4 (Surr) | 102                                                      |           | 77 - 120 |      |      |   |          | 02/07/24 23:36 | 1       |  |  |  |  |
| 4-Bromofluorobenzene (Surr)  | 99                                                       |           | 73 - 120 |      |      |   |          | 02/07/24 23:36 | 1       |  |  |  |  |
| Dibromofluoromethane (Surr)  | 103                                                      |           | 75 - 123 |      |      |   |          | 02/07/24 23:36 | 1       |  |  |  |  |

80 - 120

Client: New York State Electric & Gas Job ID: 480-216887-1

Project/Site: NYSEG Former MGP Site - Penn Yan

Method: 8260C - Volatile Organic Compounds by GC/MS

**Matrix: Ground Water** Prep Type: Total/NA

|                  |                  |          | Pe       | ercent Surre | ogate Reco |
|------------------|------------------|----------|----------|--------------|------------|
|                  |                  | DCA      | BFB      | DBFM         | TOL        |
| Lab Sample ID    | Client Sample ID | (77-120) | (73-120) | (75-123)     | (80-120)   |
| 480-216887-3     | PRMW-1S          | 103      | 100      | 102          | 98         |
| 480-216887-4     | PRMW-2D          | 102      | 102      | 102          | 102        |
| 480-216887-5     | PRMW-2S          | 103      | 100      | 103          | 100        |
| 480-216887-6     | PRMW-3D          | 104      | 98       | 102          | 101        |
| 480-216887-7     | PRMW-3S          | 101      | 101      | 98           | 101        |
| 480-216887-7 MS  | PRMW-3S MS       | 101      | 101      | 100          | 102        |
| 480-216887-7 MSD | PRMW-3S MSD      | 101      | 99       | 100          | 101        |
| 480-216887-8     | PRMW-4S          | 101      | 100      | 100          | 103        |
| 480-216887-9     | PRMW-5D          | 102      | 100      | 99           | 100        |
| 480-216887-10    | PRMW-5S          | 102      | 101      | 101          | 102        |
| 480-216887-11    | PRMW-6D          | 101      | 99       | 100          | 100        |
| 480-216887-12    | PRMW-6S          | 100      | 101      | 100          | 101        |
| 480-216887-13    | DUP-20240205     | 103      | 101      | 101          | 104        |

**Surrogate Legend** 

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

**Matrix: Water** Prep Type: Total/NA

| CS 490 700009/6 Lab Control Sample 09 100 100 00 | Lab Sample ID    |
|--------------------------------------------------|------------------|
| 25 460-700096/6 Lab Control Sample 96 100 100 99 | LCS 480-700098/6 |
| B 480-700098/8 Method Blank 102 100 103 102      | MB 480-700098/8  |

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: WQ Prep Type: Total/NA

|                  |                          | Percent Surrogate Recovery (Acceptance Limits) |          |          |          |  |  |  |  |
|------------------|--------------------------|------------------------------------------------|----------|----------|----------|--|--|--|--|
|                  |                          | DCA                                            | BFB      | DBFM     | TOL      |  |  |  |  |
| Lab Sample ID    | Client Sample ID         | (77-120)                                       | (73-120) | (75-123) | (80-120) |  |  |  |  |
| 480-216887-1     | EQUIPMENT BLANK-20240206 | 101                                            | 100      | 99       | 100      |  |  |  |  |
| 480-216887-2     | FIELD BLANK-20240206     | 102                                            | 102      | 102      | 105      |  |  |  |  |
| 480-216887-14    | TRIP BLANK               | 102                                            | 99       | 103      | 100      |  |  |  |  |
| Surrogate Legend |                          |                                                |          |          |          |  |  |  |  |

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

**Eurofins Buffalo** 

Page 22 of 39

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

Method: 8270D LL - Semivolatile Organic Compounds by GC/MS - Low Level

**Matrix: Ground Water** Prep Type: Total/NA

|                  |                  | Percent Surrogate Recovery (Acceptance Limits) |          |          |  |  |  |  |
|------------------|------------------|------------------------------------------------|----------|----------|--|--|--|--|
|                  |                  | FBP                                            | NBZ      | TPHd14   |  |  |  |  |
| Lab Sample ID    | Client Sample ID | (37-120)                                       | (26-120) | (64-127) |  |  |  |  |
| 480-216887-3     | PRMW-1S          | 99                                             | 81       | 93       |  |  |  |  |
| 480-216887-4     | PRMW-2D          | 99                                             | 80       | 95       |  |  |  |  |
| 480-216887-5     | PRMW-2S          | 98                                             | 79       | 93       |  |  |  |  |
| 480-216887-6     | PRMW-3D          | 101                                            | 81       | 104      |  |  |  |  |
| 480-216887-7     | PRMW-3S          | 115                                            | 92       | 112      |  |  |  |  |
| 480-216887-7 MS  | PRMW-3S MS       | 105                                            | 100      | 67       |  |  |  |  |
| 480-216887-7 MSD | PRMW-3S MSD      | 110                                            | 106      | 78       |  |  |  |  |
| 480-216887-8     | PRMW-4S          | 97                                             | 79       | 105      |  |  |  |  |
| 480-216887-9     | PRMW-5D          | 110                                            | 90       | 104      |  |  |  |  |
| 480-216887-10    | PRMW-5S          | 97                                             | 80       | 98       |  |  |  |  |
| 480-216887-11    | PRMW-6D          | 117                                            | 94       | 118      |  |  |  |  |
| 480-216887-12    | PRMW-6S          | 89                                             | 73       | 90       |  |  |  |  |
| 480-216887-13    | DUP-20240205     | 116                                            | 94       | 121      |  |  |  |  |

FBP = 2-Fluorobiphenyl

NBZ = Nitrobenzene-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

Method: 8270D LL - Semivolatile Organic Compounds by GC/MS - Low Level

**Matrix: Water** Prep Type: Total/NA

FBP = 2-Fluorobiphenyl

NBZ = Nitrobenzene-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

### Method: 8270D LL - Semivolatile Organic Compounds by GC/MS - Low Level

**Matrix: WQ** Prep Type: Total/NA

|               |                          | Percent Surrogate Recovery (Acceptance Limits) |          |          |  |  |  |  |  |  |
|---------------|--------------------------|------------------------------------------------|----------|----------|--|--|--|--|--|--|
|               |                          | FBP                                            | NBZ      | TPHd14   |  |  |  |  |  |  |
| Lab Sample ID | Client Sample ID         | (37-120)                                       | (26-120) | (64-127) |  |  |  |  |  |  |
| 480-216887-1  | EQUIPMENT BLANK-20240206 | 98                                             | 78       | 109      |  |  |  |  |  |  |
| 480-216887-2  | FIELD BLANK-20240206     | 102                                            | 83       | 117      |  |  |  |  |  |  |

Surrogate Legend

FBP = 2-Fluorobiphenyl

NBZ = Nitrobenzene-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

**Eurofins Buffalo** 

Job ID: 480-216887-1

### QC Sample Results

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-700098/8

**Matrix: Water** 

Analyte

Benzene

Toluene

**Analysis Batch: 700098** 

**Client Sample ID: Method Blank** Prep Type: Total/NA

Job ID: 480-216887-1

MB MB Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac ND 1.0 0.41 ug/L 02/07/24 15:07 Ethylbenzene ND 1.0 0.74 ug/L 02/07/24 15:07 ND 1.0 0.51 ug/L 02/07/24 15:07 Xylenes, Total ND 2.0 0.66 ug/L 02/07/24 15:07

MB MB %Recovery Qualifier Dil Fac Surrogate Limits Prepared Analyzed 1,2-Dichloroethane-d4 (Surr) 77 - 120 02/07/24 15:07 102 4-Bromofluorobenzene (Surr) 100 73 - 120 02/07/24 15:07 Dibromofluoromethane (Surr) 103 75 - 123 02/07/24 15:07 Toluene-d8 (Surr) 102 80 - 120 02/07/24 15:07

Lab Sample ID: LCS 480-700098/6

**Matrix: Water** 

**Analysis Batch: 700098** 

**Client Sample ID: Lab Control Sample** 

**Prep Type: Total/NA** 

|                | Spike | LCS    | LCS       |      |   |      | %Rec     |  |
|----------------|-------|--------|-----------|------|---|------|----------|--|
| Analyte        | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Benzene        | 25.0  | 24.3   |           | ug/L |   | 97   | 71 - 124 |  |
| Ethylbenzene   | 25.0  | 25.6   |           | ug/L |   | 102  | 77 - 123 |  |
| Toluene        | 25.0  | 24.4   |           | ug/L |   | 98   | 80 - 122 |  |
| Xylenes, Total | 50.0  | 51.1   |           | ug/L |   | 102  | 76 - 122 |  |

LCS LCS Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 98 77 - 120 4-Bromofluorobenzene (Surr) 100 73 - 120 Dibromofluoromethane (Surr) 100 75 - 123 99 80 - 120 Toluene-d8 (Surr)

Lab Sample ID: 480-216887-7 MS Client Sample ID: PRMW-3S MS **Matrix: Ground Water** Prep Type: Total/NA **Analysis Batch: 700098** 

|                | Sample | Sample    | Spike | MS     | MS        |      |   |      | %Rec     |  |
|----------------|--------|-----------|-------|--------|-----------|------|---|------|----------|--|
| Analyte        | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Benzene        | ND     |           | 25.0  | 27.1   |           | ug/L |   | 108  | 71 - 124 |  |
| Ethylbenzene   | ND     |           | 25.0  | 28.3   |           | ug/L |   | 113  | 77 - 123 |  |
| Toluene        | ND     |           | 25.0  | 27.9   |           | ug/L |   | 112  | 80 - 122 |  |
| Xylenes, Total | ND     |           | 50.0  | 56.5   |           | ug/L |   | 113  | 76 - 122 |  |

|                              | MS        | MS        |          |
|------------------------------|-----------|-----------|----------|
| Surrogate                    | %Recovery | Qualifier | Limits   |
| 1,2-Dichloroethane-d4 (Surr) | 101       |           | 77 - 120 |
| 4-Bromofluorobenzene (Surr)  | 101       |           | 73 - 120 |
| Dibromofluoromethane (Surr)  | 100       |           | 75 - 123 |
| Toluene-d8 (Surr)            | 102       |           | 80 - 120 |

Spike

Added

25.0

25.0

25.0

50.0

MSD MSD

27.4

28.4

27.7

56.3

Result Qualifier

ug/L

ug/L

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

Job ID: 480-216887-1

### Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Sample Sample

ND

ND

ND

ND

Result Qualifier

Lab Sample ID: 480-216887-7 MSD

**Matrix: Ground Water** 

**Analysis Batch: 700098** 

Client Sample ID: PRMW-3S MSD Prep Type: Total/NA

RPD %Rec %Rec Limits RPD Limit Unit ug/L 110 71 - 124 13 ug/L 114 77 - 123 15

111

113

80 - 122

76 - 122

MSD MSD Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 101 77 - 120 99 4-Bromofluorobenzene (Surr) 73 - 120 Dibromofluoromethane (Surr) 100 75 - 123 Toluene-d8 (Surr) 101 80 - 120

Method: 8270D LL - Semivolatile Organic Compounds by GC/MS - Low Level

Lab Sample ID: MB 480-700227/1-A

**Matrix: Water** 

Analyte

Benzene

Toluene

Ethylbenzene

Xylenes, Total

**Analysis Batch: 700337** 

**Client Sample ID: Method Blank** Prep Type: Total/NA Prep Batch: 700227

MB MB MDL Unit Analyte Result Qualifier RL Prepared Analyzed Dil Fac Acenaphthene ND 0.50 0.036 ug/L 02/08/24 10:57 02/09/24 15:08 ND 0.30 0.056 ug/L 02/08/24 10:57 02/09/24 15:08 Acenaphthylene Anthracene ND 0.50 0.034 ug/L 02/08/24 10:57 02/09/24 15:08 02/08/24 10:57 02/09/24 15:08 Benzo[a]anthracene ND 0.30 0.034 ug/L Benzo[a]pyrene ND 0.18 0.13 ug/L 02/08/24 10:57 02/09/24 15:08 ND 02/08/24 10:57 02/09/24 15:08 Benzo[b]fluoranthene 0.30 0.063 ug/L Benzo[g,h,i]perylene ND 0.50 0.058 ug/L 02/08/24 10:57 02/09/24 15:08 Benzo[k]fluoranthene ND 0.30 0.070 ug/L 02/08/24 10:57 02/09/24 15:08 Chrysene ND 0.50 0.074 ug/L 02/08/24 10:57 02/09/24 15:08 Dibenz(a,h)anthracene ND 0.50 0.070 ug/L 02/08/24 10:57 02/09/24 15:08 Fluoranthene ND 0.50 0.080 ug/L 02/08/24 10:57 02/09/24 15:08 Fluorene ND 0.50 0.058 ug/L 02/08/24 10:57 02/09/24 15:08 ND 02/08/24 10:57 02/09/24 15:08 Indeno[1,2,3-cd]pyrene 0.50 0.11 ug/L 02/08/24 10:57 02/09/24 15:08 Naphthalene ND 1.0 0.064 ug/L 02/08/24 10:57 02/09/24 15:08 Phenanthrene ND 0.20 0.062 ug/L Pyrene ND 0.50 0.076 ug/L 02/08/24 10:57 02/09/24 15:08

MB MB

Surrogate Qualifier Limits Prepared Dil Fac %Recovery Analyzed 2-Fluorobiphenyl 37 - 120 02/08/24 10:57 02/09/24 15:08 103 Nitrobenzene-d5 (Surr) 83 26 - 120 02/08/24 10:57 02/09/24 15:08 1 p-Terphenyl-d14 (Surr) 119 64 - 127 02/08/24 10:57 02/09/24 15:08

Lab Sample ID: LCS 480-700227/2-A

**Matrix: Water** 

**Analysis Batch: 700337** 

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA Prep Batch: 700227

|                | Spike | LCS    | LCS       |      |         | %Rec     |
|----------------|-------|--------|-----------|------|---------|----------|
| Analyte        | Added | Result | Qualifier | Unit | %Rec    | Limits   |
| Acenaphthene   | 8.00  | 8.56   |           | ug/L | <br>107 | 62 - 120 |
| Acenaphthylene | 8.00  | 8.54   |           | ug/L | 107     | 57 - 120 |
| Anthracene     | 8.00  | 9.20   |           | ug/L | 115     | 65 - 123 |

**Eurofins Buffalo** 

Page 25 of 39

15

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

Job ID: 480-216887-1

## Method: 8270D LL - Semivolatile Organic Compounds by GC/MS - Low Level (Continued)

Lab Sample ID: LCS 480-700227/2-A

**Matrix: Water** 

**Analysis Batch: 70** 

**Client Sample ID: Lab Control Sample** Prep Type: Total/NA

| 700337 |  |       |        |           |      |   |      | Prep Batch: 700227 |
|--------|--|-------|--------|-----------|------|---|------|--------------------|
|        |  | Spike | LCS    | LCS       |      |   |      | %Rec               |
|        |  | Added | Result | Qualifier | Unit | D | %Rec | Limits             |

| Analyte                | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
|------------------------|-------|--------|-----------|------|---|------|----------|--|
| Benzo[a]anthracene     | 8.00  | 8.53   |           | ug/L |   | 107  | 77 - 123 |  |
| Benzo[a]pyrene         | 8.00  | 8.88   |           | ug/L |   | 111  | 72 - 120 |  |
| Benzo[b]fluoranthene   | 8.00  | 9.63   |           | ug/L |   | 120  | 73 - 123 |  |
| Benzo[g,h,i]perylene   | 8.00  | 8.28   |           | ug/L |   | 103  | 48 - 150 |  |
| Benzo[k]fluoranthene   | 8.00  | 9.67   | *+        | ug/L |   | 121  | 68 - 120 |  |
| Chrysene               | 8.00  | 8.91   |           | ug/L |   | 111  | 75 - 120 |  |
| Dibenz(a,h)anthracene  | 8.00  | 8.74   |           | ug/L |   | 109  | 54 - 147 |  |
| Fluoranthene           | 8.00  | 9.26   |           | ug/L |   | 116  | 74 - 133 |  |
| Fluorene               | 8.00  | 8.68   |           | ug/L |   | 108  | 64 - 120 |  |
| Indeno[1,2,3-cd]pyrene | 8.00  | 9.21   |           | ug/L |   | 115  | 55 - 150 |  |
| Naphthalene            | 8.00  | 7.76   |           | ug/L |   | 97   | 40 - 138 |  |
| Phenanthrene           | 8.00  | 9.03   |           | ug/L |   | 113  | 71 - 122 |  |
| Pyrene                 | 8.00  | 9.18   |           | ug/L |   | 115  | 65 - 126 |  |

LCS LCS

| Surrogate              | %Recovery Qu | ıalifier Limits |
|------------------------|--------------|-----------------|
| 2-Fluorobiphenyl       | 103          | 37 - 120        |
| Nitrobenzene-d5 (Surr) | 98           | 26 - 120        |
| p-Terphenvl-d14 (Surr) | 107          | 64 - 127        |

Lab Sample ID: 480-216887-7 MS Client Sample ID: PRMW-3S MS

**Matrix: Ground Water** 

Analysis Batch: 700337

**Prep Type: Total/NA Prep Batch: 700227** 

| / many one Dutom / cooo! | Sample | Sample    | Spike | MS     | MS |      |            |      | %Rec     |
|--------------------------|--------|-----------|-------|--------|----|------|------------|------|----------|
| Analyte                  | •      | Qualifier | Added | Result |    | Unit | D          | %Rec | Limits   |
| Acenaphthene             | ND     |           | 8.89  | 9.86   |    | ug/L | — <u>-</u> | 111  | 35 - 125 |
| Acenaphthylene           | ND     |           | 8.89  | 9.54   |    | ug/L |            | 107  | 43 - 141 |
| Anthracene               | ND     |           | 8.89  | 10.1   |    | ug/L |            | 113  | 65 - 123 |
| Benzo[a]anthracene       | ND     | F1 F2     | 8.89  | 4.88   | F1 | ug/L |            | 55   | 68 - 132 |
| Benzo[a]pyrene           | ND     | F1 F2     | 8.89  | 4.15   | F1 | ug/L |            | 47   | 60 - 137 |
| Benzo[b]fluoranthene     | ND     | F1 F2     | 8.89  | 3.84   | F1 | ug/L |            | 43   | 68 - 129 |
| Benzo[g,h,i]perylene     | ND     | F1 F2     | 8.89  | 4.03   | F1 | ug/L |            | 45   | 48 - 150 |
| Benzo[k]fluoranthene     | ND     | F1 *+ F2  | 8.89  | 4.43   | F1 | ug/L |            | 50   | 55 - 142 |
| Chrysene                 | ND     | F1 F2     | 8.89  | 5.02   | F1 | ug/L |            | 56   | 66 - 144 |
| Dibenz(a,h)anthracene    | ND     | F1 F2     | 8.89  | 4.19   | F1 | ug/L |            | 47   | 54 - 138 |
| Fluoranthene             | ND     |           | 8.89  | 9.15   |    | ug/L |            | 103  | 63 - 146 |
| Fluorene                 | ND     |           | 8.89  | 10.0   |    | ug/L |            | 113  | 54 - 137 |
| Indeno[1,2,3-cd]pyrene   | ND     | F1 F2     | 8.89  | 4.28   | F1 | ug/L |            | 48   | 55 - 140 |
| Naphthalene              | 0.32   | J         | 8.89  | 8.80   |    | ug/L |            | 95   | 25 - 138 |
| Phenanthrene             | ND     |           | 8.89  | 10.1   |    | ug/L |            | 114  | 60 - 143 |
| Pyrene                   | ND     |           | 8.89  | 9.38   |    | ug/L |            | 106  | 65 - 139 |
|                          |        |           |       |        |    |      |            |      |          |

MS MS

| Surrogate              | %Recovery | Qualifier | Limits   |
|------------------------|-----------|-----------|----------|
| 2-Fluorobiphenyl       | 105       |           | 37 - 120 |
| Nitrobenzene-d5 (Surr) | 100       |           | 26 - 120 |
| p-Terphenyl-d14 (Surr) | 67        |           | 64 - 127 |

Page 26 of 39

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

Method: 8270D LL - Semivolatile Organic Compounds by GC/MS - Low Level (Continued)

Lab Sample ID: 480-216887-7 MSD

**Matrix: Ground Water** 

Client Sample ID: PRMW-3S MSD

123

113

60 - 143

65 - 139

Client Sample ID: Method Blank

Client Sample ID: Method Blank

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA

**Prep Type: Total/NA** 

Prep Type: Total/NA

Prep Type: Total/NA Prep Batch: 700227

10

9

Job ID: 480-216887-1

**Analysis Batch: 700337** Sample Sample Spike MSD MSD %Rec **RPD** Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Analyte D Acenaphthene ND 9.09 10.5 ug/L 116 35 - 125 6 24 Acenaphthylene ND 9.09 10.4 ug/L 114 43 - 141 8 18 ND 9.09 65 - 123 Anthracene 10.8 ug/L 119 7 15 9.09 15 Benzo[a]anthracene ND F1F2 6.76 F2 ug/L 74 68 - 13232 Benzo[a]pyrene ND F1F2 9.09 6.29 F2 ug/L 69 60 - 137 41 15 ND F1F2 9.09 6.42 F2 ug/L 71 68 - 129 50 15 Benzo[b]fluoranthene 9.09 ND F1F2 6.14 F2 68 48 - 150 41 15 Benzo[g,h,i]perylene ug/L Benzo[k]fluoranthene ND F1 \*+ F2 9.09 6.61 F2 ug/L 73 55 - 142 40 22 ug/L Chrysene ND F1F2 9.09 7.16 F2 79 66 - 144 35 15 Dibenz(a,h)anthracene ND F1 F2 9.09 6.46 F2 ug/L 71 54 - 138 43 15 Fluoranthene ND 9.09 10.4 63 - 146ug/L 115 13 15 Fluorene ND 9.09 10.7 ug/L 117 54 - 137 6 15 Indeno[1,2,3-cd]pyrene ND F1F2 9.09 6.64 F2 ug/L 73 55 - 140 43 15 Naphthalene 9.09 9.57 102 8 29 0.32 J ug/L 25 - 138

9.09

9.09

11.2

10.3

ug/L

ug/L

MSD MSD

ND

ND

| Surrogate              | %Recovery | Qualifier | Limits   |
|------------------------|-----------|-----------|----------|
| 2-Fluorobiphenyl       | 110       |           | 37 - 120 |
| Nitrobenzene-d5 (Surr) | 106       |           | 26 - 120 |
| p-Terphenyl-d14 (Surr) | 78        |           | 64 - 127 |

### Method: 9012B - Cyanide, Total and/or Amenable

Lab Sample ID: MB 480-700345/21

**Matrix: Water** 

Phenanthrene

Pyrene

**Analysis Batch: 700345** 

MB MB

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Cyanide, Total  $\overline{\mathsf{ND}}$ 0.010 0.0041 mg/L 02/08/24 19:46

Lab Sample ID: MB 480-700345/47

**Matrix: Water** 

**Analysis Batch: 700345** 

MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 0.010 Cyanide, Total 0.00430 J 0.0041 mg/L 02/08/24 20:55

Lab Sample ID: HLCS 480-700345/22

**Matrix: Water** 

**Analysis Batch: 700345** 

|                | Spike | HLCS   | HLCS      |      |   |      | %Rec     |  |
|----------------|-------|--------|-----------|------|---|------|----------|--|
| Analyte        | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Cyanide, Total | 0.400 | 0.387  |           | mg/L | _ | 97   | 90 - 110 |  |

**Eurofins Buffalo** 

15

Client: New York State Electric & Gas Job ID: 480-216887-1

Project/Site: NYSEG Former MGP Site - Penn Yan

Method: 9012B - Cyanide, Total and/or Amenable (Continued)

Lab Sample ID: LCS 480-700345/23 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

**Analysis Batch: 700345** 

Spike LCS LCS %Rec Added Result Qualifier %Rec Limits Analyte Unit D 0.250 90 - 110 Cyanide, Total 0.250 mg/L 100

Lab Sample ID: LCS 480-700345/48 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

**Matrix: Water** 

**Analysis Batch: 700345** 

Spike LCS LCS %Rec Added Result Qualifier D %Rec Limits Analyte Unit 0.250 0.247 Cyanide, Total mg/L 99 90 - 110

Lab Sample ID: 480-216887-1 MS Client Sample ID: EQUIPMENT BLANK-20240206

**Matrix: WQ** 

**Analysis Batch: 700345** 

Sample Sample Spike MS MS %Rec Result Qualifier Added Result Qualifier Limits Analyte Unit %Rec Cyanide, Total ND 0.100 0.0946 95 90 - 110 mg/L

Lab Sample ID: 480-216887-2 MS Client Sample ID: FIELD BLANK-20240206 Prep Type: Total/NA

**Matrix: WQ** 

**Analysis Batch: 700345** 

Spike MS MS %Rec Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Cyanide, Total 0.0046 JBF1 0.100 0.0908 F1 mg/L 86 90 - 110

Lab Sample ID: 480-216887-7 MS Client Sample ID: PRMW-3S MS **Matrix: Ground Water** Prep Type: Total/NA

Analysis Batch: 700345

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Cyanide, Total 0.0065 JB 0.100 0.0994 93 90 - 110 mg/L

Lab Sample ID: 480-216887-7 MSD Client Sample ID: PRMW-3S MSD **Matrix: Ground Water** Prep Type: Total/NA

**Analysis Batch: 700345** 

Sample Sample Spike MSD MSD %Rec **RPD** Result Qualifier Added Result Qualifier Limits **RPD** Analyte Unit D %Rec Limit 0.0065 JB 0.100 Cyanide, Total 0.100 mg/L 94 90 - 110

Lab Sample ID: 480-216887-2 DU Client Sample ID: FIELD BLANK-20240206 Prep Type: Total/NA

Matrix: WQ

**Analysis Batch: 700345** 

Sample Sample DU DU **RPD** Result Qualifier Result Qualifier RPD Limit Analyte Unit D 0.0046 JBF1 Cyanide, Total ND mg/L NC 15

**Eurofins Buffalo** 

2/14/2024

Prep Type: Total/NA

## **QC Association Summary**

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

### **GC/MS VOA**

### **Analysis Batch: 700098**

| Lab Sample ID    | Client Sample ID         | Prep Type | Matrix              | Method | Prep Batch |
|------------------|--------------------------|-----------|---------------------|--------|------------|
| 480-216887-1     | EQUIPMENT BLANK-20240206 | Total/NA  | WQ                  | 8260C  |            |
| 480-216887-2     | FIELD BLANK-20240206     | Total/NA  | WQ                  | 8260C  |            |
| 480-216887-3     | PRMW-1S                  | Total/NA  | <b>Ground Water</b> | 8260C  |            |
| 480-216887-4     | PRMW-2D                  | Total/NA  | Ground Water        | 8260C  |            |
| 480-216887-5     | PRMW-2S                  | Total/NA  | <b>Ground Water</b> | 8260C  |            |
| 480-216887-6     | PRMW-3D                  | Total/NA  | <b>Ground Water</b> | 8260C  |            |
| 480-216887-7     | PRMW-3S                  | Total/NA  | Ground Water        | 8260C  |            |
| 480-216887-8     | PRMW-4S                  | Total/NA  | <b>Ground Water</b> | 8260C  |            |
| 480-216887-9     | PRMW-5D                  | Total/NA  | <b>Ground Water</b> | 8260C  |            |
| 480-216887-10    | PRMW-5S                  | Total/NA  | Ground Water        | 8260C  |            |
| 480-216887-11    | PRMW-6D                  | Total/NA  | <b>Ground Water</b> | 8260C  |            |
| 480-216887-12    | PRMW-6S                  | Total/NA  | <b>Ground Water</b> | 8260C  |            |
| 480-216887-13    | DUP-20240205             | Total/NA  | Ground Water        | 8260C  |            |
| 480-216887-14    | TRIP BLANK               | Total/NA  | WQ                  | 8260C  |            |
| MB 480-700098/8  | Method Blank             | Total/NA  | Water               | 8260C  |            |
| LCS 480-700098/6 | Lab Control Sample       | Total/NA  | Water               | 8260C  |            |
| 480-216887-7 MS  | PRMW-3S MS               | Total/NA  | <b>Ground Water</b> | 8260C  |            |
| 480-216887-7 MSD | PRMW-3S MSD              | Total/NA  | Ground Water        | 8260C  |            |

### **GC/MS Semi VOA**

### Prep Batch: 700227

| Lab Sample ID      | Client Sample ID         | Prep Type | Matrix              | Method | Prep Batcl |
|--------------------|--------------------------|-----------|---------------------|--------|------------|
| 480-216887-1       | EQUIPMENT BLANK-20240206 | Total/NA  | WQ                  | 3510C  |            |
| 480-216887-2       | FIELD BLANK-20240206     | Total/NA  | WQ                  | 3510C  |            |
| 480-216887-3       | PRMW-1S                  | Total/NA  | <b>Ground Water</b> | 3510C  |            |
| 480-216887-4       | PRMW-2D                  | Total/NA  | Ground Water        | 3510C  |            |
| 480-216887-5       | PRMW-2S                  | Total/NA  | <b>Ground Water</b> | 3510C  |            |
| 480-216887-6       | PRMW-3D                  | Total/NA  | <b>Ground Water</b> | 3510C  |            |
| 480-216887-7       | PRMW-3S                  | Total/NA  | Ground Water        | 3510C  |            |
| 480-216887-8       | PRMW-4S                  | Total/NA  | <b>Ground Water</b> | 3510C  |            |
| 480-216887-9       | PRMW-5D                  | Total/NA  | <b>Ground Water</b> | 3510C  |            |
| 480-216887-10      | PRMW-5S                  | Total/NA  | Ground Water        | 3510C  |            |
| 480-216887-11      | PRMW-6D                  | Total/NA  | <b>Ground Water</b> | 3510C  |            |
| 480-216887-12      | PRMW-6S                  | Total/NA  | <b>Ground Water</b> | 3510C  |            |
| 480-216887-13      | DUP-20240205             | Total/NA  | Ground Water        | 3510C  |            |
| MB 480-700227/1-A  | Method Blank             | Total/NA  | Water               | 3510C  |            |
| LCS 480-700227/2-A | Lab Control Sample       | Total/NA  | Water               | 3510C  |            |
| 480-216887-7 MS    | PRMW-3S MS               | Total/NA  | Ground Water        | 3510C  |            |
| 480-216887-7 MSD   | PRMW-3S MSD              | Total/NA  | Ground Water        | 3510C  |            |

### **Analysis Batch: 700337**

| Lab Sample ID | Client Sample ID         | Prep Type | Matrix              | Method   | Prep Batch |
|---------------|--------------------------|-----------|---------------------|----------|------------|
| 480-216887-1  | EQUIPMENT BLANK-20240206 | Total/NA  | WQ                  | 8270D LL | 700227     |
| 480-216887-2  | FIELD BLANK-20240206     | Total/NA  | WQ                  | 8270D LL | 700227     |
| 480-216887-3  | PRMW-1S                  | Total/NA  | <b>Ground Water</b> | 8270D LL | 700227     |
| 480-216887-4  | PRMW-2D                  | Total/NA  | Ground Water        | 8270D LL | 700227     |
| 480-216887-5  | PRMW-2S                  | Total/NA  | <b>Ground Water</b> | 8270D LL | 700227     |
| 480-216887-6  | PRMW-3D                  | Total/NA  | <b>Ground Water</b> | 8270D LL | 700227     |
| 480-216887-7  | PRMW-3S                  | Total/NA  | Ground Water        | 8270D LL | 700227     |
| 480-216887-8  | PRMW-4S                  | Total/NA  | Ground Water        | 8270D LL | 700227     |

Eurofins Buffalo

Job ID: 480-216887-1

3

4

7

9

10

12

14

## **QC Association Summary**

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

### GC/MS Semi VOA (Continued)

### **Analysis Batch: 700337 (Continued)**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix              | Method   | Prep Batch |
|--------------------|--------------------|-----------|---------------------|----------|------------|
| 480-216887-9       | PRMW-5D            | Total/NA  | Ground Water        | 8270D LL | 700227     |
| 480-216887-10      | PRMW-5S            | Total/NA  | Ground Water        | 8270D LL | 700227     |
| 480-216887-11      | PRMW-6D            | Total/NA  | <b>Ground Water</b> | 8270D LL | 700227     |
| 480-216887-12      | PRMW-6S            | Total/NA  | <b>Ground Water</b> | 8270D LL | 700227     |
| 480-216887-13      | DUP-20240205       | Total/NA  | Ground Water        | 8270D LL | 700227     |
| MB 480-700227/1-A  | Method Blank       | Total/NA  | Water               | 8270D LL | 700227     |
| LCS 480-700227/2-A | Lab Control Sample | Total/NA  | Water               | 8270D LL | 700227     |
| 480-216887-7 MS    | PRMW-3S MS         | Total/NA  | Ground Water        | 8270D LL | 700227     |
| 480-216887-7 MSD   | PRMW-3S MSD        | Total/NA  | Ground Water        | 8270D LL | 700227     |

### **General Chemistry**

### **Analysis Batch: 700345**

| Lab Sample ID      | Client Sample ID         | Prep Type | Matrix              | Method | Prep Batcl |
|--------------------|--------------------------|-----------|---------------------|--------|------------|
| 480-216887-1       | EQUIPMENT BLANK-20240206 | Total/NA  | WQ                  | 9012B  |            |
| 480-216887-2       | FIELD BLANK-20240206     | Total/NA  | WQ                  | 9012B  |            |
| 480-216887-3       | PRMW-1S                  | Total/NA  | <b>Ground Water</b> | 9012B  |            |
| 480-216887-4       | PRMW-2D                  | Total/NA  | Ground Water        | 9012B  |            |
| 480-216887-5       | PRMW-2S                  | Total/NA  | <b>Ground Water</b> | 9012B  |            |
| 480-216887-6       | PRMW-3D                  | Total/NA  | <b>Ground Water</b> | 9012B  |            |
| 480-216887-7       | PRMW-3S                  | Total/NA  | Ground Water        | 9012B  |            |
| 480-216887-8       | PRMW-4S                  | Total/NA  | <b>Ground Water</b> | 9012B  |            |
| 480-216887-9       | PRMW-5D                  | Total/NA  | <b>Ground Water</b> | 9012B  |            |
| 480-216887-10      | PRMW-5S                  | Total/NA  | Ground Water        | 9012B  |            |
| 480-216887-11      | PRMW-6D                  | Total/NA  | <b>Ground Water</b> | 9012B  |            |
| 480-216887-12      | PRMW-6S                  | Total/NA  | <b>Ground Water</b> | 9012B  |            |
| 480-216887-13      | DUP-20240205             | Total/NA  | Ground Water        | 9012B  |            |
| MB 480-700345/21   | Method Blank             | Total/NA  | Water               | 9012B  |            |
| MB 480-700345/47   | Method Blank             | Total/NA  | Water               | 9012B  |            |
| HLCS 480-700345/22 | Lab Control Sample       | Total/NA  | Water               | 9012B  |            |
| LCS 480-700345/23  | Lab Control Sample       | Total/NA  | Water               | 9012B  |            |
| LCS 480-700345/48  | Lab Control Sample       | Total/NA  | Water               | 9012B  |            |
| 480-216887-1 MS    | EQUIPMENT BLANK-20240206 | Total/NA  | WQ                  | 9012B  |            |
| 480-216887-2 MS    | FIELD BLANK-20240206     | Total/NA  | WQ                  | 9012B  |            |
| 480-216887-7 MS    | PRMW-3S MS               | Total/NA  | <b>Ground Water</b> | 9012B  |            |
| 480-216887-7 MSD   | PRMW-3S MSD              | Total/NA  | Ground Water        | 9012B  |            |
| 480-216887-2 DU    | FIELD BLANK-20240206     | Total/NA  | WQ                  | 9012B  |            |

\_

Job ID: 480-216887-1

3

4

6

8

9

11

13

14

10

Client Sample ID: EQUIPMENT BLANK-20240206

Date Collected: 02/06/24 12:15 Date Received: 02/07/24 10:30 Lab Sample ID: 480-216887-1

Matrix: WQ

| _         | Batch    | Batch    |     | Dilution | Batch  |         |         | Prepared       |
|-----------|----------|----------|-----|----------|--------|---------|---------|----------------|
| Prep Type | Туре     | Method   | Run | Factor   | Number | Analyst | Lab     | or Analyzed    |
| Total/NA  | Analysis | 8260C    |     | 1        | 700098 | AXK     | EET BUF | 02/07/24 18:48 |
| Total/NA  | Prep     | 3510C    |     |          | 700227 | JMP     | EET BUF | 02/08/24 10:57 |
| Total/NA  | Analysis | 8270D LL |     | 1        | 700337 | EMD     | EET BUF | 02/09/24 17:30 |
| Total/NA  | Analysis | 9012B    |     | 1        | 700345 | GW      | EET BUF | 02/08/24 20:18 |

Client Sample ID: FIELD BLANK-20240206

Date Collected: 02/06/24 11:20 Date Received: 02/07/24 10:30 Lab Sample ID: 480-216887-2

Matrix: WQ

|           | Batch    | Batch    |     | Dilution | Batch  |         |         | Prepared       |
|-----------|----------|----------|-----|----------|--------|---------|---------|----------------|
| Prep Type | Type     | Method   | Run | Factor   | Number | Analyst | Lab     | or Analyzed    |
| Total/NA  | Analysis | 8260C    |     | 1        | 700098 | AXK     | EET BUF | 02/07/24 19:10 |
| Total/NA  | Prep     | 3510C    |     |          | 700227 | JMP     | EET BUF | 02/08/24 10:57 |
| Total/NA  | Analysis | 8270D LL |     | 1        | 700337 | EMD     | EET BUF | 02/09/24 17:58 |
| Total/NA  | Analysis | 9012B    |     | 1        | 700345 | GW      | EET BUF | 02/08/24 21:02 |

Client Sample ID: PRMW-1S Lab Sample ID

Date Collected: 02/05/24 11:40

Date Received: 02/07/24 10:30

Lab Sample ID: 480-216887-3

Matrix: Ground Water

|           | Batch    | Batch    |     | Dilution | Batch  |         |         | Prepared       |
|-----------|----------|----------|-----|----------|--------|---------|---------|----------------|
| Prep Type | Type     | Method   | Run | Factor   | Number | Analyst | Lab     | or Analyzed    |
| Total/NA  | Analysis | 8260C    |     | 1        | 700098 | AXK     | EET BUF | 02/07/24 19:32 |
| Total/NA  | Prep     | 3510C    |     |          | 700227 | JMP     | EET BUF | 02/08/24 10:57 |
| Total/NA  | Analysis | 8270D LL |     | 1        | 700337 | EMD     | EET BUF | 02/09/24 18:26 |
| Total/NA  | Analysis | 9012B    |     | 1        | 700345 | GW      | EET BUF | 02/08/24 21:13 |

Client Sample ID: PRMW-2D

Date Collected: 02/05/24 13:15 Date Received: 02/07/24 10:30 Lab Sample ID: 480-216887-4

**Matrix: Ground Water** 

|           | Batch    | Batch    |     | Dilution | Batch  |         |         | Prepared       |
|-----------|----------|----------|-----|----------|--------|---------|---------|----------------|
| Prep Type | Type     | Method   | Run | Factor   | Number | Analyst | Lab     | or Analyzed    |
| Total/NA  | Analysis | 8260C    |     | 1        | 700098 | AXK     | EET BUF | 02/07/24 19:54 |
| Total/NA  | Prep     | 3510C    |     |          | 700227 | JMP     | EET BUF | 02/08/24 10:57 |
| Total/NA  | Analysis | 8270D LL |     | 1        | 700337 | EMD     | EET BUF | 02/09/24 18:53 |
| Total/NA  | Analysis | 9012B    |     | 1        | 700345 | GW      | EET BUF | 02/08/24 21:15 |

Client Sample ID: PRMW-2S Lab Sample ID: 480-216887-5

Date Collected: 02/05/24 14:30

Date Received: 02/07/24 10:30

Matrix: Ground Water

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run **Factor Number Analyst** or Analyzed Lab 02/07/24 20:17 Total/NA Analysis 8260C 700098 AXK EET BUF Total/NA Prep 3510C 700227 JMP **EET BUF** 02/08/24 10:57 Total/NA Analysis 8270D LL 700337 EMD **EET BUF** 02/09/24 19:21 1 Total/NA Analysis 9012B 700345 GW **EET BUF** 02/08/24 21:18

**Eurofins Buffalo** 

Client Sample ID: PRMW-3D

Date Collected: 02/05/24 15:35 Date Received: 02/07/24 10:30

Lab Sample ID: 480-216887-6

**Matrix: Ground Water** 

|           | Batch    | Batch    |     | Dilution | Batch  |         |         | Prepared       |
|-----------|----------|----------|-----|----------|--------|---------|---------|----------------|
| Prep Type | Туре     | Method   | Run | Factor   | Number | Analyst | Lab     | or Analyzed    |
| Total/NA  | Analysis | 8260C    |     | 1        | 700098 | AXK     | EET BUF | 02/07/24 20:39 |
| Total/NA  | Prep     | 3510C    |     |          | 700227 | JMP     | EET BUF | 02/08/24 10:57 |
| Total/NA  | Analysis | 8270D LL |     | 1        | 700337 | EMD     | EET BUF | 02/09/24 19:50 |
| Total/NA  | Analysis | 9012B    |     | 1        | 700345 | GW      | EET BUF | 02/08/24 21:20 |

**Client Sample ID: PRMW-3S** 

Date Collected: 02/05/24 13:15 Date Received: 02/07/24 10:30

Lab Sample ID: 480-216887-7

**Matrix: Ground Water** 

|           | Batch    | Batch    |     | Dilution | Batch  |         |         | Prepared       |
|-----------|----------|----------|-----|----------|--------|---------|---------|----------------|
| Prep Type | Type     | Method   | Run | Factor   | Number | Analyst | Lab     | or Analyzed    |
| Total/NA  | Analysis | 8260C    |     | 1        | 700098 | AXK     | EET BUF | 02/07/24 21:01 |
| Total/NA  | Prep     | 3510C    |     |          | 700227 | JMP     | EET BUF | 02/08/24 10:57 |
| Total/NA  | Analysis | 8270D LL |     | 1        | 700337 | EMD     | EET BUF | 02/09/24 17:01 |
| Total/NA  | Analysis | 9012B    |     | 1        | 700345 | GW      | EET BUF | 02/08/24 21:35 |

**Client Sample ID: PRMW-4S** 

Date Collected: 02/05/24 11:40 Date Received: 02/07/24 10:30

Lab Sample ID: 480-216887-8

**Matrix: Ground Water** 

| _         | Batch    | Batch    |     | Dilution | Batch  |         |         | Prepared       |
|-----------|----------|----------|-----|----------|--------|---------|---------|----------------|
| Prep Type | Type     | Method   | Run | Factor   | Number | Analyst | Lab     | or Analyzed    |
| Total/NA  | Analysis | 8260C    |     | 1        | 700098 | AXK     | EET BUF | 02/07/24 21:23 |
| Total/NA  | Prep     | 3510C    |     |          | 700227 | JMP     | EET BUF | 02/08/24 10:57 |
| Total/NA  | Analysis | 8270D LL |     | 1        | 700337 | EMD     | EET BUF | 02/09/24 20:18 |
| Total/NA  | Analysis | 9012B    |     | 1        | 700345 | GW      | EET BUF | 02/08/24 21:42 |

**Client Sample ID: PRMW-5D** 

Date Collected: 02/06/24 11:25 Date Received: 02/07/24 10:30

Lab Sample ID: 480-216887-9

**Matrix: Ground Water** 

|           | Batch    | Batch    |             | Dilution | Batch  |         |         | Prepared       |
|-----------|----------|----------|-------------|----------|--------|---------|---------|----------------|
| Prep Type | Type     | Method   | Run         | Factor   | Number | Analyst | Lab     | or Analyzed    |
| Total/NA  | Analysis | 8260C    | <del></del> | 1        | 700098 | AXK     | EET BUF | 02/07/24 21:45 |
| Total/NA  | Prep     | 3510C    |             |          | 700227 | JMP     | EET BUF | 02/08/24 10:57 |
| Total/NA  | Analysis | 8270D LL |             | 1        | 700337 | EMD     | EET BUF | 02/09/24 20:47 |
| Total/NA  | Analysis | 9012B    |             | 1        | 700345 | GW      | EET BUF | 02/08/24 21:45 |

**Client Sample ID: PRMW-5S** 

Date Collected: 02/06/24 10:10 Date Received: 02/07/24 10:30

Lab Sample ID: 480-216887-10

**Matrix: Ground Water** 

|           | Batch    | Batch    |     | Dilution | Batch  |         |         | Prepared       |
|-----------|----------|----------|-----|----------|--------|---------|---------|----------------|
| Prep Type | Type     | Method   | Run | Factor   | Number | Analyst | Lab     | or Analyzed    |
| Total/NA  | Analysis | 8260C    |     | 1        | 700098 | AXK     | EET BUF | 02/07/24 22:08 |
| Total/NA  | Prep     | 3510C    |     |          | 700227 | JMP     | EET BUF | 02/08/24 10:57 |
| Total/NA  | Analysis | 8270D LL |     | 1        | 700337 | EMD     | EET BUF | 02/09/24 21:15 |
| Total/NA  | Analysis | 9012B    |     | 1        | 700345 | GW      | EET BUF | 02/08/24 21:47 |

**Eurofins Buffalo** 

Page 32 of 39

### **Lab Chronicle**

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

**Client Sample ID: PRMW-6D** 

Date Collected: 02/06/24 10:50 Date Received: 02/07/24 10:30 Lab Sample ID: 480-216887-11

02/08/24 21:50

**EET BUF** 

**Matrix: Ground Water** 

**Matrix: Ground Water** 

Matrix: WQ

Lab Sample ID: 480-216887-14

Dilution Batch Batch Batch Prepared Method or Analyzed **Prep Type** Type Run **Factor Number Analyst** Lab Total/NA 8260C 02/07/24 22:30 Analysis 700098 AXK **EET BUF** Total/NA Prep 3510C 700227 JMP **EET BUF** 02/08/24 10:57 Total/NA Analysis 8270D LL 1 700337 EMD **EET BUF** 02/09/24 21:43

Client Sample ID: PRMW-6S

Lab Sample ID: 480-216887-12

Date Collected: 02/06/24 09:50

Matrix: Ground Water

700345 GW

1

Date Received: 02/07/24 10:30

Analysis

9012B

Total/NA

Batch Batch Dilution Batch **Prepared** Method or Analyzed **Prep Type** Type Run **Factor Number Analyst** Lab Total/NA 8260C AXK 02/07/24 22:52 Analysis 700098 **EET BUF** Total/NA 3510C 700227 JMP **EET BUF** 02/08/24 10:57 Prep Total/NA 8270D LL 700337 EMD **EET BUF** 02/09/24 22:10 Analysis 1 Total/NA Analysis 9012B 700345 GW **EET BUF** 02/08/24 21:53 1

Client Sample ID: DUP-20240205 Lab Sample ID: 480-216887-13

Date Collected: 02/05/24 00:00 Date Received: 02/07/24 10:30

Prepared Batch Batch Dilution Batch Method or Analyzed **Prep Type** Type Run **Factor** Number Analyst Lab Total/NA 02/07/24 23:14 Analysis 8260C 700098 AXK **EET BUF** Total/NA Prep 3510C 700227 JMP **EET BUF** 02/08/24 10:57 Total/NA Analysis 8270D LL 700337 EMD **EET BUF** 02/09/24 22:38 1 Total/NA **EET BUF** 02/08/24 21:55 Analysis 9012B 1 700345 GW

Client Sample ID: TRIP BLANK

Date Collected: 02/05/24 00:00

Date Received: 02/07/24 10:30

|        | Bat      | tch Bato    | ch      | Dilution | Batch  |         |         | Prepared       |
|--------|----------|-------------|---------|----------|--------|---------|---------|----------------|
| Prep   | Туре Тур | oe Meti     | hod Run | Factor   | Number | Analyst | Lab     | or Analyzed    |
| Total/ | NA Ana   | alysis 8260 | DC      | 1        | 700098 | AXK     | EET BUF | 02/07/24 23:36 |

**Laboratory References:** 

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Job ID: 480-216887-1

3

4

5

7

ŏ

10

12

14

## **Accreditation/Certification Summary**

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

Job ID: 480-216887-1

### **Laboratory: Eurofins Buffalo**

The accreditations/certifications listed below are applicable to this report.

| Authority | Program | Identification Number | <b>Expiration Date</b> |
|-----------|---------|-----------------------|------------------------|
| New York  | NELAP   | 10026                 | 03-31-24               |

## **Method Summary**

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

| Method   | Method Description                                  | Protocol | Laboratory |
|----------|-----------------------------------------------------|----------|------------|
| 8260C    | Volatile Organic Compounds by GC/MS                 | SW846    | EET BUF    |
| 8270D LL | Semivolatile Organic Compounds by GC/MS - Low Level | SW846    | EET BUF    |
| 9012B    | Cyanide, Total and/or Amenable                      | SW846    | EET BUF    |
| 3510C    | Liquid-Liquid Extraction (Separatory Funnel)        | SW846    | EET BUF    |
| 5030C    | Purge and Trap                                      | SW846    | EET BUF    |

### **Protocol References:**

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

### **Laboratory References:**

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Job ID: 480-216887-1

3

4

6

0

9

11

12

14

## **Sample Summary**

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

| Lab Sample ID | Client Sample ID         | Matrix              | Collected      | Received       |
|---------------|--------------------------|---------------------|----------------|----------------|
| 480-216887-1  | EQUIPMENT BLANK-20240206 | WQ                  | 02/06/24 12:15 | 02/07/24 10:30 |
| 480-216887-2  | FIELD BLANK-20240206     | WQ                  | 02/06/24 11:20 | 02/07/24 10:30 |
| 480-216887-3  | PRMW-1S                  | <b>Ground Water</b> | 02/05/24 11:40 | 02/07/24 10:30 |
| 480-216887-4  | PRMW-2D                  | Ground Water        | 02/05/24 13:15 | 02/07/24 10:30 |
| 480-216887-5  | PRMW-2S                  | Ground Water        | 02/05/24 14:30 | 02/07/24 10:30 |
| 480-216887-6  | PRMW-3D                  | Ground Water        | 02/05/24 15:35 | 02/07/24 10:30 |
| 480-216887-7  | PRMW-3S                  | Ground Water        | 02/05/24 13:15 | 02/07/24 10:30 |
| 480-216887-8  | PRMW-4S                  | <b>Ground Water</b> | 02/05/24 11:40 | 02/07/24 10:30 |
| 480-216887-9  | PRMW-5D                  | Ground Water        | 02/06/24 11:25 | 02/07/24 10:30 |
| 480-216887-10 | PRMW-5S                  | Ground Water        | 02/06/24 10:10 | 02/07/24 10:30 |
| 480-216887-11 | PRMW-6D                  | Ground Water        | 02/06/24 10:50 | 02/07/24 10:30 |
| 480-216887-12 | PRMW-6S                  | Ground Water        | 02/06/24 09:50 | 02/07/24 10:30 |
| 480-216887-13 | DUP-20240205             | Ground Water        | 02/05/24 00:00 | 02/07/24 10:30 |
| 480-216887-14 | TRIP BLANK               | WQ                  | 02/05/24 00:00 | 02/07/24 10:30 |

Job ID: 480-216887-1

3

Δ

5

8

9

10

11

13

14

| Amherst, NY 14228-2298                           |                                |                                               | 5                                                                 | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Environment Testing                                 |
|--------------------------------------------------|--------------------------------|-----------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| ione: 716-691-2600 Fax: 716-691-7991             | Samiler                        | 046                                           |                                                                   | Swrocuse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CV COOK                                             |
| Client Information                               | Hyn Fleming 3                  | Bailey K. Scho                                | we, John R                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 480-192151-36782.1                                  |
| Client Contact:<br>Nicholas Beyrle               | 1261-121.                      |                                               | E-Mail John.Schove@et.eurofinsus.com                              | State of Orion#2255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Page<br>Page 1 of 2                                 |
| Company:<br>ARCADIS US Inc                       | DISMA                          | ï                                             | Analysis                                                          | Analysis Requested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10b #                                               |
| Address.<br>295 Woodcliff Drive, Suite 301       | Due Date Requested:            |                                               |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e<br>Code                                           |
| City.<br>Fairport                                |                                |                                               |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NaOH O AsNaO2                                       |
| State, Zip:<br>NY, 14450                         | Compliance Project: A Yes A No |                                               |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| Phone:                                           |                                |                                               | selite                                                            | 480-216887 Chain of Custody                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - MeOH S - H2SO4<br>- Amchior T - TSP Dodecahydrate |
| Email:<br>nicholas. beyrle@arcadis. com          | WO#                            |                                               | · · ·                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ice<br>J - Di Water                                 |
| Project Name<br>NYSEG Former MGP Site - Penn Yan | Project #<br>48024595          |                                               | 70.80<br>2 HA9                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K - EDTA<br>L - EDA                                 |
| Site<br>New York                                 | SSOW#.                         |                                               | ) (Je                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Other:                                              |
| Sample Identification                            | Sample Date Time G==           | Sample (waveler, Type Should, Cacomp, Cacrah) | 10128 - Cyanide<br>1270D_LL - Low<br>1260C - BTEX<br>1260C - BTEX | and the same of th | otal Number                                         |
|                                                  | X                              | - (6)                                         | Z                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| PRMW-1S                                          | 2/5/2024 1140 6                | Water                                         | XXXZZ                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9                                                   |
| PRMW-2S                                          | 1315                           | Water                                         | × × × 2 7                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9                                                   |
| PRMW-2D                                          | 1 7202                         | Water                                         | × × × 2 2                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9                                                   |
| PRMW-3S                                          | 15/2024 1315                   | Water                                         | メメメンマ                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8/                                                  |
| PRMW-3D                                          | 12024 1535                     | Water                                         | XXXX                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9                                                   |
| PRMW-4S                                          | 0411                           | Water                                         | × × × ~ ~ ~                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9                                                   |
| PRMW-5S                                          | 1010                           | Water                                         | × × × ~ ~ ~ ~                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9                                                   |
| PRMW-5D                                          | 2/6/2024 1125 6                | Water                                         | XXXV                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9                                                   |
| PRMW-6S                                          | 0560 1202                      | Water                                         | × × × ~ ~ ~                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | و                                                   |
| PRMW-6D                                          | _                              | Water                                         | ×<br>×<br>×<br>~                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9                                                   |
| FMM- @ DUP-20240205                              | 2/5/2024 - G                   | Water                                         | × × × ~ ~ ~                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9                                                   |
| Possible Hazard Identification  Non-Hazard       |                                | Radiological                                  | Sample Disposal ( A fee may                                       | Sample Disposal ( A fee may be assessed if samples are retained longer than 1 month)  Return To Client  Disposal By Lab  Monthly For                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tained longer than 1 month) Archive For             |
| ō<br>>                                           |                                |                                               | Special Instructions/QC Requirements                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| Empty Kit Relinquished by:                       | Date:                          |                                               | Time:                                                             | Method of Shipment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |
| Reinquished by WWW                               | 6-24 15                        | 36 Company Acad                               | W                                                                 | Date Time. 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1536 Company                                        |
| elinquished by:                                  | Date/Time:                     | Company                                       |                                                                   | De-T-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1620 Company 4R                                     |
| Relinquished by                                  | Date/Time                      | Company                                       | Received by:                                                      | Date/Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Company                                             |
| Cristody Spale Intact   Cristody Spal No         |                                |                                               | Cooler Temperature (e) One of the Democrate                       | they Demorte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |

| Client Information                                | Baity Medicilians              | Lab PM. Schove, John R. |                                                                                      | Carrier Treking No(s):      | Ming No(s) COC No. COC |
|---------------------------------------------------|--------------------------------|-------------------------|--------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Client Contact Nicholas Beyrle                    | 6                              |                         | r.eurofinsus.com                                                                     | State of Original Color     | Arge<br>Page 2 of 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Company<br>ARCADIS US Inc                         | PWSID                          |                         | Analysis Requested                                                                   | #225                        | Job #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Address.<br>295 Woodcliff Drive, Suite 301        | Due Date Requested:            | ć.                      |                                                                                      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| City<br>Fairport                                  | -                              |                         |                                                                                      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| State, 2p:<br>NY, 14450                           | Compliance Project: A Yes A No |                         |                                                                                      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Phone:                                            |                                | (4                      | selits                                                                               |                             | F - MeOH S - H2SO4 G - Amchlor T - TSP Dodecahydrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Email:<br>nicholas. beyrle@arcadis.com            | WO#:                           | - Indiana               |                                                                                      |                             | 1 - Ice<br>J - DI Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Project Name:<br>NYSEG Former MGP Site - Penn Yan | Project #: 48024595            |                         |                                                                                      |                             | K · EDTA<br>L · EDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Site<br>New York                                  | SSOW#                          |                         | Level I                                                                              | nd confi                    | Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sample Identification                             | Sample Date Time General       |                         | 1200C - BTEX<br>1200C - Lt - Low                                                     | o sea Mumber o              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                   | X                              | ation Code:             | 8 Z                                                                                  |                             | Special Instructions/Note:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (lef)                                             |                                | Water                   |                                                                                      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                   |                                | Water                   |                                                                                      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Trip Blank                                        | 1/25/2014                      | Water NN                | ×                                                                                    | 2                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Christophic (                                     |                                | Water                   |                                                                                      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 02                                                | 2/0/2024 1120 G                | Water N                 | メメメ                                                                                  | 9                           | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| EQUIPMENT BLANK - 20140 206                       | 2/6/2024 1215 6                | Water 2                 | ×<br>×                                                                               | 9                           | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                   | Poison B                       |                         | Sample Disposal ( A fee may be assessed if samples are retained longer than 1 month) | essed if samples are retain | ned longer than 1 month)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| I, III, IV, Other (specify)                       |                                |                         | Requirem                                                                             | ents:                       | MORINE FOI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Empty Kit Relinquished by:                        | Date:                          | Time:                   |                                                                                      | Method of Shipment          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Millionistated by M. W.                           | Date Time - 24 1536            | Gread'S                 | Received by                                                                          | Date/Firme:                 | 336 Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Kenndushed by:                                    | . Date/Time:                   | Company                 | Received by:                                                                         | Date/Time                   | 1030 Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| - 1                                               | Date/Time                      | Company                 | Received by                                                                          | Date/Time.                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Custody Seals Intact Custody Seal No.:            |                                |                         | Cooler Temperature(s) °C and Other Remarks                                           | ks                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Client: New York State Electric & Gas Job Number: 480-216887-1

Login Number: 216887 List Source: Eurofins Buffalo

List Number: 1

Creator: Stopa, Erik S

| Creator. Stopa, Erik 3                                                           |        |         |
|----------------------------------------------------------------------------------|--------|---------|
| Question                                                                         | Answer | Comment |
| Radioactivity either was not measured or, if measured, is at or below background | True   |         |
| The cooler's custody seal, if present, is intact.                                | True   |         |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |         |
| Samples were received on ice.                                                    | True   |         |
| Cooler Temperature is acceptable.                                                | True   |         |
| Cooler Temperature is recorded.                                                  | True   |         |
| COC is present.                                                                  | True   |         |
| COC is filled out in ink and legible.                                            | True   |         |
| COC is filled out with all pertinent information.                                | True   |         |
| Is the Field Sampler's name present on COC?                                      | True   |         |
| There are no discrepancies between the sample IDs on the containers and the COC. | True   |         |
| Samples are received within Holding Time (Excluding tests with immediate HTs)    | True   |         |
| Sample containers have legible labels.                                           | True   |         |
| Containers are not broken or leaking.                                            | True   |         |
| Sample collection date/times are provided.                                       | True   |         |
| Appropriate sample containers are used.                                          | True   |         |
| Sample bottles are completely filled.                                            | True   |         |
| Sample Preservation Verified                                                     | True   |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |         |
| VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.     | True   |         |
| If necessary, staff have been informed of any short hold time or quick TAT needs | True   |         |
| Multiphasic samples are not present.                                             | True   |         |
| Samples do not require splitting or compositing.                                 | True   |         |
| Sampling Company provided.                                                       | True   | ARCADIS |
| Samples received within 48 hours of sampling.                                    | True   |         |
| Samples requiring field filtration have been filtered in the field.              | N/A    |         |
| Chlorine Residual checked.                                                       | N/A    |         |
|                                                                                  |        |         |

12

11

4 6

PREPARED FOR

Attn: Mr. John J Ruspantini New York State Electric & Gas 18 Link Drive Binghamton, New York 13902 Generated 9/9/2024 5:40:08 PM

**ANALYTICAL REPORT** 

## **JOB DESCRIPTION**

NYSEG Former MGP Site - Penn Yan NYSEG - Penn Yan Former MGP

## **JOB NUMBER**

480-222956-1

Eurofins Buffalo 10 Hazelwood Drive Amherst NY 14228-2298



## **Eurofins Buffalo**

### **Job Notes**

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northeast, LLC Project Manager.

### **Authorization**

Generated 9/9/2024 5:40:08 PM

Authorized for release by John Schove, Project Manager II <u>John.Schove@et.eurofinsus.com</u> (716)504-9838

4 4

# **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 3  |
| Definitions/Glossary   | 4  |
| Case Narrative         | 5  |
| Detection Summary      | 6  |
| Client Sample Results  | 7  |
| Surrogate Summary      | 19 |
| QC Sample Results      | 21 |
| QC Association Summary | 28 |
| Lab Chronicle          | 30 |
| Certification Summary  | 33 |
| Method Summary         | 34 |
| Sample Summary         | 35 |
| Chain of Custody       | 36 |
| Receipt Checklists     | 38 |

3

4

Q

9

11

12

14

### **Definitions/Glossary**

Client: New York State Electric & Gas Job ID: 480-222956-1

Project/Site: NYSEG Former MGP Site - Penn Yan

### **Qualifiers**

### **GC/MS VOA**

Qualifier **Qualifier Description** 

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

### GC/MS Semi VOA

**Qualifier Description** Qualifier

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

### **General Chemistry**

| Qualitier | Qualifier Description                                                                |
|-----------|--------------------------------------------------------------------------------------|
| ^+        | Continuing Calibration Verification (CCV) is outside acceptance limits, high biased. |
| F1        | MS and/or MSD recovery exceeds control limits.                                       |

| Glossary     |                                                                                            |
|--------------|--------------------------------------------------------------------------------------------|
| Abbreviation | These commonly used abbreviations may or may not be present in this report.                |
| n            | Listed under the "D" column to designate that the result is reported on a dry weight basis |
| %R           | Percent Recovery                                                                           |
| CFL          | Contains Free Liquid                                                                       |
| CFU          | Colony Forming Unit                                                                        |
| CNF          | Contains No Free Liquid                                                                    |

Duplicate Error Ratio (normalized absolute difference) **DER** 

**Dilution Factor** Dil Fac

DΙ Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

**EDL** Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

Method Detection Limit MDL ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

**Practical Quantitation Limit** PQL

Presumptive **PRES** QC **Quality Control** 

**RER** Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

**RPD** Relative Percent Difference, a measure of the relative difference between two points

**TEF** Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

**TNTC** Too Numerous To Count

**Eurofins Buffalo** 

Page 4 of 38 9/9/2024

### **Case Narrative**

Client: New York State Electric & Gas Project: NYSEG Former MGP Site - Penn Yan

Job ID: 480-222956-1 Eurofins Buffalo

Job Narrative 480-222956-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
  situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
  specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

### Receipt

The samples were received on 8/29/2024 12:52 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperatures of the 3 coolers at receipt time were 10.1°C, 10.3°C and 10.5°C.

### GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

### GC/MS Semi VOA

Method 8270D\_LL: The following sample was diluted due to color, appearance, and viscosity: PRMW-5S (480-222956-7). Elevated reporting limits (RL) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

### **General Chemistry**

Method 9012B\_NP: The continuing calibration verification (CCV) associated with batch 480-724217 recovered above the upper control limit for Cyanide, Total. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.PRMW-1S (480-222956-1), PRMW-2D (480-222956-3), PRMW-3D (480-222956-5) and PRMW-4S (480-222956-6)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

**Eurofins Buffalo** 

Job ID: 480-222956-1

Page 5 of 38 9/9/2024

Client: New York State Electric & Gas Job ID: 480-222956-1

Project/Site: NYSEG Former MGP Site - Penn Yan

Client Sample ID: PRMW-1S Lab Sample ID: 480-222956-1

No Detections.

Client Sample ID: PRMW-2S Lab Sample ID: 480-222956-2

| Analyte        | Result Qualifier | RL    | MDL Unit    | Dil Fac D | Method | Prep Type |
|----------------|------------------|-------|-------------|-----------|--------|-----------|
| Cyanide, Total | 0.11 F1          | 0.010 | 0.0041 mg/L |           | 9012B  | Total/NA  |

Client Sample ID: PRMW-2D Lab Sample ID: 480-222956-3

No Detections.

Client Sample ID: PRMW-3S Lab Sample ID: 480-222956-4

No Detections.

Client Sample ID: PRMW-3D Lab Sample ID: 480-222956-5

No Detections.

Client Sample ID: PRMW-4S Lab Sample ID: 480-222956-6

No Detections.

Client Sample ID: PRMW-5S Lab Sample ID: 480-222956-7

| Analyte        | Result | Qualifier | RL    | MDL    | Unit | Dil Fac | D | Method   | Prep Type |
|----------------|--------|-----------|-------|--------|------|---------|---|----------|-----------|
| Benzene        | 1.9    |           | 1.0   | 0.41   | ug/L | 1       | _ | 8260C    | Total/NA  |
| Ethylbenzene   | 1.1    |           | 1.0   | 0.74   | ug/L | 1       |   | 8260C    | Total/NA  |
| Acenaphthene   | 4.5    |           | 2.4   | 0.17   | ug/L | 5       |   | 8270D LL | Total/NA  |
| Acenaphthylene | 0.61   | J         | 1.4   | 0.27   | ug/L | 5       |   | 8270D LL | Total/NA  |
| Anthracene     | 0.19   | J         | 2.4   | 0.16   | ug/L | 5       |   | 8270D LL | Total/NA  |
| Fluoranthene   | 0.66   | J         | 2.4   | 0.38   | ug/L | 5       |   | 8270D LL | Total/NA  |
| Fluorene       | 1.6    | J         | 2.4   | 0.28   | ug/L | 5       |   | 8270D LL | Total/NA  |
| Naphthalene    | 3.4    | J         | 4.8   | 0.30   | ug/L | 5       |   | 8270D LL | Total/NA  |
| Phenanthrene   | 0.37   | J         | 0.95  | 0.30   | ug/L | 5       |   | 8270D LL | Total/NA  |
| Pyrene         | 0.40   | J         | 2.4   | 0.36   | ug/L | 5       |   | 8270D LL | Total/NA  |
| Cyanide, Total | 0.020  |           | 0.010 | 0.0041 | mg/L | 1       |   | 9012B    | Total/NA  |

Client Sample ID: PRMW-5D Lab Sample ID: 480-222956-8

No Detections.

Client Sample ID: PRMW-6S Lab Sample ID: 480-222956-9

No Detections.

Client Sample ID: PRMW-6D Lab Sample ID: 480-222956-10

No Detections.

Client Sample ID: DUP-20240829 Lab Sample ID: 480-222956-11

No Detections.

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-222956-12

| Analyte | Result Qualifier | RL  | MDL Unit  | Dil Fac D Method | Prep Type |
|---------|------------------|-----|-----------|------------------|-----------|
| Toluene | 0.52 J           | 1.0 | 0.51 ug/L | 1                | Total/NA  |

This Detection Summary does not include radiochemical test results.

**Eurofins Buffalo** 

9/9/2024

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

**Client Sample ID: PRMW-1S** 

Date Collected: 08/28/24 10:40 Date Received: 08/29/24 12:52

Lab Sample ID: 480-222956-1

**Matrix: Ground Water** 

| Analyte                      | Result    | Qualifier | RL       | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|------|------|---|----------|----------------|---------|
| Benzene                      | ND        |           | 1.0      | 0.41 | ug/L |   |          | 08/30/24 00:16 | 1       |
| Ethylbenzene                 | ND        |           | 1.0      | 0.74 | ug/L |   |          | 08/30/24 00:16 | 1       |
| Toluene                      | ND        |           | 1.0      | 0.51 | ug/L |   |          | 08/30/24 00:16 | 1       |
| Xylenes, Total               | ND        |           | 2.0      | 0.66 | ug/L |   |          | 08/30/24 00:16 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |      |      |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) |           |           | 77 - 120 |      |      |   |          | 08/30/24 00:16 | 1       |
| 4-Bromofluorobenzene (Surr)  | 105       |           | 73 - 120 |      |      |   |          | 08/30/24 00:16 | 1       |
| Dibromofluoromethane (Surr)  | 112       |           | 75 - 123 |      |      |   |          | 08/30/24 00:16 | 1       |
| Toluene-d8 (Surr)            | 112       |           | 80 - 120 |      |      |   |          | 08/30/24 00:16 | 1       |

| Analyte                | Result    | Qualifier | RL       | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|-------|------|---|----------------|----------------|---------|
| Acenaphthene           | ND        |           | 0.53     | 0.038 | ug/L |   | 08/30/24 13:14 | 09/03/24 13:20 | 1       |
| Acenaphthylene         | ND        |           | 0.32     | 0.059 | ug/L |   | 08/30/24 13:14 | 09/03/24 13:20 | 1       |
| Anthracene             | ND        |           | 0.53     | 0.036 | ug/L |   | 08/30/24 13:14 | 09/03/24 13:20 | 1       |
| Benzo[a]anthracene     | ND        |           | 0.32     | 0.036 | ug/L |   | 08/30/24 13:14 | 09/03/24 13:20 | 1       |
| Benzo[a]pyrene         | ND        |           | 0.19     | 0.14  | ug/L |   | 08/30/24 13:14 | 09/03/24 13:20 | 1       |
| Benzo[b]fluoranthene   | ND        |           | 0.32     | 0.066 | ug/L |   | 08/30/24 13:14 | 09/03/24 13:20 | 1       |
| Benzo[g,h,i]perylene   | ND        |           | 0.53     | 0.061 | ug/L |   | 08/30/24 13:14 | 09/03/24 13:20 | 1       |
| Benzo[k]fluoranthene   | ND        |           | 0.32     | 0.074 | ug/L |   | 08/30/24 13:14 | 09/03/24 13:20 | 1       |
| Chrysene               | ND        |           | 0.53     | 0.078 | ug/L |   | 08/30/24 13:14 | 09/03/24 13:20 | 1       |
| Dibenz(a,h)anthracene  | ND        |           | 0.53     | 0.074 | ug/L |   | 08/30/24 13:14 | 09/03/24 13:20 | 1       |
| Fluoranthene           | ND        |           | 0.53     | 0.084 | ug/L |   | 08/30/24 13:14 | 09/03/24 13:20 | 1       |
| Fluorene               | ND        |           | 0.53     | 0.061 | ug/L |   | 08/30/24 13:14 | 09/03/24 13:20 | 1       |
| Indeno[1,2,3-cd]pyrene | ND        |           | 0.53     | 0.12  | ug/L |   | 08/30/24 13:14 | 09/03/24 13:20 | 1       |
| Naphthalene            | ND        |           | 1.1      | 0.067 | ug/L |   | 08/30/24 13:14 | 09/03/24 13:20 | 1       |
| Phenanthrene           | ND        |           | 0.21     | 0.065 | ug/L |   | 08/30/24 13:14 | 09/03/24 13:20 | 1       |
| Pyrene                 | ND        |           | 0.53     | 0.080 | ug/L |   | 08/30/24 13:14 | 09/03/24 13:20 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits   |       |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 92        |           | 37 - 120 |       |      |   | 08/30/24 13:14 | 09/03/24 13:20 | 1       |
| Nitrobenzene-d5 (Surr) | 81        |           | 26 - 120 |       |      |   | 08/30/24 13:14 | 09/03/24 13:20 | 1       |
| p-Terphenyl-d14 (Surr) | 106       |           | 64 - 127 |       |      |   | 08/30/24 13:14 | 09/03/24 13:20 | 1       |
| General Chemistry      |           |           |          |       |      |   |                |                |         |
| Analyte                | Result    | Qualifier | RL       | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |

| General Chemistry            |        |           |       |        |      |   |          |                |         |
|------------------------------|--------|-----------|-------|--------|------|---|----------|----------------|---------|
| Analyte                      | Result | Qualifier | RL    | MDL    | Unit | D | Prepared | Analyzed       | Dil Fac |
| Cyanide, Total (SW846 9012B) | ND     | ^+        | 0.010 | 0.0041 | mg/L |   |          | 09/06/24 10:20 | 1       |

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

**Client Sample ID: PRMW-2S** 

Lab Sample ID: 480-222956-2

**Matrix: Ground Water** 

Job ID: 480-222956-1

Date Collected: 08/28/24 12:05 Date Received: 08/29/24 12:52

| Analyte                      | Result    | Qualifier | RL       | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|------|------|---|----------|----------------|---------|
| Benzene                      | ND        |           | 1.0      | 0.41 | ug/L |   |          | 08/30/24 00:38 | 1       |
| Ethylbenzene                 | ND        |           | 1.0      | 0.74 | ug/L |   |          | 08/30/24 00:38 | 1       |
| Toluene                      | ND        |           | 1.0      | 0.51 | ug/L |   |          | 08/30/24 00:38 | 1       |
| Xylenes, Total               | ND        |           | 2.0      | 0.66 | ug/L |   |          | 08/30/24 00:38 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |      |      |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) |           |           | 77 - 120 |      |      |   |          | 08/30/24 00:38 | 1       |
| 4-Bromofluorobenzene (Surr)  | 103       |           | 73 - 120 |      |      |   |          | 08/30/24 00:38 | 1       |
| Dibromofluoromethane (Surr)  | 109       |           | 75 - 123 |      |      |   |          | 08/30/24 00:38 | 1       |
| Toluene-d8 (Surr)            | 110       |           | 80 - 120 |      |      |   |          | 08/30/24 00:38 | 1       |

| Analyte                         | Result    | Qualifier | RL       | MDL    | Unit | D | Prepared       | Analyzed       | Dil Fac |
|---------------------------------|-----------|-----------|----------|--------|------|---|----------------|----------------|---------|
| Acenaphthene                    | ND        |           | 0.52     | 0.038  | ug/L |   | 08/30/24 13:14 | 09/03/24 13:47 | 1       |
| Acenaphthylene                  | ND        |           | 0.31     | 0.058  | ug/L |   | 08/30/24 13:14 | 09/03/24 13:47 | 1       |
| Anthracene                      | ND        |           | 0.52     | 0.035  | ug/L |   | 08/30/24 13:14 | 09/03/24 13:47 | 1       |
| Benzo[a]anthracene              | ND        |           | 0.31     | 0.035  | ug/L |   | 08/30/24 13:14 | 09/03/24 13:47 | 1       |
| Benzo[a]pyrene                  | ND        |           | 0.19     | 0.14   | ug/L |   | 08/30/24 13:14 | 09/03/24 13:47 | 1       |
| Benzo[b]fluoranthene            | ND        |           | 0.31     | 0.066  | ug/L |   | 08/30/24 13:14 | 09/03/24 13:47 | 1       |
| Benzo[g,h,i]perylene            | ND        |           | 0.52     | 0.060  | ug/L |   | 08/30/24 13:14 | 09/03/24 13:47 | 1       |
| Benzo[k]fluoranthene            | ND        |           | 0.31     | 0.073  | ug/L |   | 08/30/24 13:14 | 09/03/24 13:47 | 1       |
| Chrysene                        | ND        |           | 0.52     | 0.077  | ug/L |   | 08/30/24 13:14 | 09/03/24 13:47 | 1       |
| Dibenz(a,h)anthracene           | ND        |           | 0.52     | 0.073  | ug/L |   | 08/30/24 13:14 | 09/03/24 13:47 | 1       |
| Fluoranthene                    | ND        |           | 0.52     | 0.083  | ug/L |   | 08/30/24 13:14 | 09/03/24 13:47 | 1       |
| Fluorene                        | ND        |           | 0.52     | 0.060  | ug/L |   | 08/30/24 13:14 | 09/03/24 13:47 | 1       |
| Indeno[1,2,3-cd]pyrene          | ND        |           | 0.52     | 0.11   | ug/L |   | 08/30/24 13:14 | 09/03/24 13:47 | 1       |
| Naphthalene                     | ND        |           | 1.0      | 0.067  | ug/L |   | 08/30/24 13:14 | 09/03/24 13:47 | 1       |
| Phenanthrene                    | ND        |           | 0.21     | 0.065  | ug/L |   | 08/30/24 13:14 | 09/03/24 13:47 | 1       |
| Pyrene                          | ND        |           | 0.52     | 0.079  | ug/L |   | 08/30/24 13:14 | 09/03/24 13:47 | 1       |
| Surrogate                       | %Recovery | Qualifier | Limits   |        |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl                | 94        |           | 37 - 120 |        |      |   | 08/30/24 13:14 | 09/03/24 13:47 | 1       |
| Nitrobenzene-d5 (Surr)          | 80        |           | 26 - 120 |        |      |   | 08/30/24 13:14 | 09/03/24 13:47 | 1       |
| p-Terphenyl-d14 (Surr)          | 105       |           | 64 - 127 |        |      |   | 08/30/24 13:14 | 09/03/24 13:47 | 1       |
| General Chemistry               |           |           |          |        |      |   |                |                |         |
| Analyte                         | Result    | Qualifier | RL       | MDL    | Unit | D | Prepared       | Analyzed       | Dil Fac |
| 0 11 7 ( 1 (0)110 (0.00 (0.00)) |           |           |          | 0.0044 |      |   |                | 00/00/04 00 00 |         |

| General Chemistry Analyte    | Result | Qualifier | RL    | MDL    | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|--------|-----------|-------|--------|------|---|----------|----------------|---------|
| Cyanide, Total (SW846 9012B) | 0.11   | F1        | 0.010 | 0.0041 | mg/L |   |          | 09/09/24 09:23 | 1       |

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

**Client Sample ID: PRMW-2D** 

Date Collected: 08/28/24 13:25 Date Received: 08/29/24 12:52

Lab Sample ID: 480-222956-3

**Matrix: Ground Water** 

| Method: SW846 8260C - Vo     | latile Organic C | Compound  | ds by GC/MS |      |      |   |          |                |         |
|------------------------------|------------------|-----------|-------------|------|------|---|----------|----------------|---------|
| Analyte                      | Result           | Qualifier | RL          | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| Benzene                      | MD               |           | 1.0         | 0.41 | ug/L |   |          | 08/30/24 01:00 | 1       |
| Ethylbenzene                 | ND               |           | 1.0         | 0.74 | ug/L |   |          | 08/30/24 01:00 | 1       |
| Toluene                      | ND               |           | 1.0         | 0.51 | ug/L |   |          | 08/30/24 01:00 | 1       |
| Xylenes, Total               | ND               |           | 2.0         | 0.66 | ug/L |   |          | 08/30/24 01:00 | 1       |
| Surrogate                    | %Recovery        | Qualifier | Limits      |      |      |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 106              |           | 77 - 120    |      |      |   |          | 08/30/24 01:00 | 1       |
| 4-Bromofluorobenzene (Surr)  | 102              |           | 73 - 120    |      |      |   |          | 08/30/24 01:00 | 1       |
| Dibromofluoromethane (Surr)  | 109              |           | 75 - 123    |      |      |   |          | 08/30/24 01:00 | 1       |
| Toluene-d8 (Surr)            | 111              |           | 80 - 120    |      |      |   |          | 08/30/24 01:00 | 1       |

| Analyte                | Result    | Qualifier | RL       | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|-------|------|---|----------------|----------------|---------|
| Acenaphthene           | ND        |           | 0.50     | 0.036 | ug/L |   | 08/30/24 13:14 | 09/03/24 14:15 | 1       |
| Acenaphthylene         | ND        |           | 0.30     | 0.056 | ug/L |   | 08/30/24 13:14 | 09/03/24 14:15 | 1       |
| Anthracene             | ND        |           | 0.50     | 0.034 | ug/L |   | 08/30/24 13:14 | 09/03/24 14:15 | 1       |
| Benzo[a]anthracene     | ND        |           | 0.30     | 0.034 | ug/L |   | 08/30/24 13:14 | 09/03/24 14:15 | 1       |
| Benzo[a]pyrene         | ND        |           | 0.18     | 0.13  | ug/L |   | 08/30/24 13:14 | 09/03/24 14:15 | 1       |
| Benzo[b]fluoranthene   | ND        |           | 0.30     | 0.063 | ug/L |   | 08/30/24 13:14 | 09/03/24 14:15 | 1       |
| Benzo[g,h,i]perylene   | ND        |           | 0.50     | 0.058 | ug/L |   | 08/30/24 13:14 | 09/03/24 14:15 | 1       |
| Benzo[k]fluoranthene   | ND        |           | 0.30     | 0.070 | ug/L |   | 08/30/24 13:14 | 09/03/24 14:15 | 1       |
| Chrysene               | ND        |           | 0.50     | 0.074 | ug/L |   | 08/30/24 13:14 | 09/03/24 14:15 | 1       |
| Dibenz(a,h)anthracene  | ND        |           | 0.50     | 0.070 | ug/L |   | 08/30/24 13:14 | 09/03/24 14:15 | 1       |
| Fluoranthene           | ND        |           | 0.50     | 0.080 | ug/L |   | 08/30/24 13:14 | 09/03/24 14:15 | 1       |
| Fluorene               | ND        |           | 0.50     | 0.058 | ug/L |   | 08/30/24 13:14 | 09/03/24 14:15 | 1       |
| Indeno[1,2,3-cd]pyrene | ND        |           | 0.50     | 0.11  | ug/L |   | 08/30/24 13:14 | 09/03/24 14:15 | 1       |
| Naphthalene            | ND        |           | 1.0      | 0.064 | ug/L |   | 08/30/24 13:14 | 09/03/24 14:15 | 1       |
| Phenanthrene           | ND        |           | 0.20     | 0.062 | ug/L |   | 08/30/24 13:14 | 09/03/24 14:15 | 1       |
| Pyrene                 | ND        |           | 0.50     | 0.076 | ug/L |   | 08/30/24 13:14 | 09/03/24 14:15 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits   |       |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 99        |           | 37 - 120 |       |      |   | 08/30/24 13:14 | 09/03/24 14:15 | 1       |
| Nitrobenzene-d5 (Surr) | 77        |           | 26 - 120 |       |      |   | 08/30/24 13:14 | 09/03/24 14:15 | 1       |
| p-Terphenyl-d14 (Surr) | 107       |           | 64 - 127 |       |      |   | 08/30/24 13:14 | 09/03/24 14:15 | 1       |
| General Chemistry      |           |           |          |       |      |   |                |                |         |
| Analyte                | Result    | Qualifier | RL       | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |

| General Chemistry Analyte    | Result | Qualifier | RL    | MDL    | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|--------|-----------|-------|--------|------|---|----------|----------------|---------|
| Cyanide, Total (SW846 9012B) | ND     | ^+        | 0.010 | 0.0041 | mg/L |   |          | 09/06/24 10:42 | 1       |

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

Lah Sample ID: 480-222956-4 **Client Sample ID: PRMW-3S** Date Collected: 08/28/24 12:40

Date Received: 08/29/24 12:52

| Lab Sample ID: 4 | 00-222900-4         |
|------------------|---------------------|
| Matrix:          | <b>Ground Water</b> |

| Analyte                      | Result    | Qualifier | RL       | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|------|------|---|----------|----------------|---------|
| Benzene                      | ND        |           | 1.0      | 0.41 | ug/L |   |          | 08/30/24 01:22 | 1       |
| Ethylbenzene                 | ND        |           | 1.0      | 0.74 | ug/L |   |          | 08/30/24 01:22 | 1       |
| Toluene                      | ND        |           | 1.0      | 0.51 | ug/L |   |          | 08/30/24 01:22 | 1       |
| Xylenes, Total               | ND        |           | 2.0      | 0.66 | ug/L |   |          | 08/30/24 01:22 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |      |      |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 109       |           | 77 - 120 |      |      |   |          | 08/30/24 01:22 | 1       |
| 4-Bromofluorobenzene (Surr)  | 105       |           | 73 - 120 |      |      |   |          | 08/30/24 01:22 | 1       |
| Dibromofluoromethane (Surr)  | 111       |           | 75 - 123 |      |      |   |          | 08/30/24 01:22 | 1       |
| Toluene-d8 (Surr)            | 112       |           | 80 - 120 |      |      |   |          | 08/30/24 01:22 | 1       |

| Toluene-d8 (Surr)      | 112              |            | 80 - 120   |         |           |      |                | 08/30/24 01:22 | 1       |
|------------------------|------------------|------------|------------|---------|-----------|------|----------------|----------------|---------|
| Method: SW846 8270D LI | - Semivolatile ( | Organic Co | omnounds b | v GC/MS | i - Low I | evel |                |                |         |
| Analyte                |                  | Qualifier  | RL         | MDL     |           | D    | Prepared       | Analyzed       | Dil Fac |
| Acenaphthene           | ND               |            | 0.48       | 0.034   | ug/L      |      | 08/30/24 13:14 | 09/03/24 12:52 | 1       |
| Acenaphthylene         | ND               |            | 0.29       | 0.053   | ug/L      |      | 08/30/24 13:14 | 09/03/24 12:52 | 1       |
| Anthracene             | ND               |            | 0.48       | 0.032   | ug/L      |      | 08/30/24 13:14 | 09/03/24 12:52 | 1       |
| Benzo[a]anthracene     | ND               |            | 0.29       | 0.032   | ug/L      |      | 08/30/24 13:14 | 09/03/24 12:52 | 1       |
| Benzo[a]pyrene         | ND               |            | 0.17       | 0.12    | ug/L      |      | 08/30/24 13:14 | 09/03/24 12:52 | 1       |
| Benzo[b]fluoranthene   | ND               |            | 0.29       | 0.060   | ug/L      |      | 08/30/24 13:14 | 09/03/24 12:52 | 1       |
| Benzo[g,h,i]perylene   | ND               |            | 0.48       | 0.055   | ug/L      |      | 08/30/24 13:14 | 09/03/24 12:52 | 1       |
| Benzo[k]fluoranthene   | ND               |            | 0.29       | 0.067   | ug/L      |      | 08/30/24 13:14 | 09/03/24 12:52 | 1       |
| Chrysene               | ND               |            | 0.48       | 0.070   | ug/L      |      | 08/30/24 13:14 | 09/03/24 12:52 | 1       |
| Dibenz(a,h)anthracene  | ND               |            | 0.48       | 0.067   | ug/L      |      | 08/30/24 13:14 | 09/03/24 12:52 | 1       |
| Fluoranthene           | ND               |            | 0.48       | 0.076   | ug/L      |      | 08/30/24 13:14 | 09/03/24 12:52 | 1       |
| Fluorene               | ND               |            | 0.48       | 0.055   | ug/L      |      | 08/30/24 13:14 | 09/03/24 12:52 | 1       |
| Indeno[1,2,3-cd]pyrene | ND               |            | 0.48       | 0.10    | ug/L      |      | 08/30/24 13:14 | 09/03/24 12:52 | 1       |
| Naphthalene            | ND               |            | 0.95       | 0.061   | ug/L      |      | 08/30/24 13:14 | 09/03/24 12:52 | 1       |
| Phenanthrene           | ND               |            | 0.19       | 0.059   | ug/L      |      | 08/30/24 13:14 | 09/03/24 12:52 | 1       |
| Pyrene                 | ND               |            | 0.48       | 0.072   | ug/L      |      | 08/30/24 13:14 | 09/03/24 12:52 | 1       |
| Surrogate              | %Recovery        | Qualifier  | Limits     |         |           |      | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 96               |            | 37 - 120   |         |           |      | 08/30/24 13:14 | 09/03/24 12:52 | 1       |
| Nitrobenzene-d5 (Surr) | 81               |            | 26 - 120   |         |           |      | 08/30/24 13:14 | 09/03/24 12:52 | 1       |
| p-Terphenyl-d14 (Surr) | 110              |            | 64 - 127   |         |           |      | 08/30/24 13:14 | 09/03/24 12:52 | 1       |
| General Chemistry      |                  |            |            |         |           |      |                |                |         |
| Analyte                | Result           | Qualifier  | RL         | MDL     | Unit      | D    | Prepared       | Analyzed       | Dil Fac |

| General Chemistry<br>Analyte | Result ( | Qualifier | RL    | MDL    | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|----------|-----------|-------|--------|------|---|----------|----------------|---------|
| Cyanide, Total (SW846 9012B) | ND       |           | 0.010 | 0.0041 | mg/L |   |          | 09/06/24 11:35 | 1       |

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

**Client Sample ID: PRMW-3D** Lab Sample ID: 480-222956-5 Date Collected: 08/28/24 14:45 **Matrix: Ground Water** 

Date Received: 08/29/24 12:52

| Method: SW846 8260C - Vo     | latile Organic | Compoun   | ds by GC/MS |      |      |   |          |                |         |
|------------------------------|----------------|-----------|-------------|------|------|---|----------|----------------|---------|
| Analyte                      | Result         | Qualifier | RL          | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| Benzene                      | ND             |           | 1.0         | 0.41 | ug/L |   |          | 08/30/24 01:44 | 1       |
| Ethylbenzene                 | ND             |           | 1.0         | 0.74 | ug/L |   |          | 08/30/24 01:44 | 1       |
| Toluene                      | ND             |           | 1.0         | 0.51 | ug/L |   |          | 08/30/24 01:44 | 1       |
| Xylenes, Total               | ND             |           | 2.0         | 0.66 | ug/L |   |          | 08/30/24 01:44 | 1       |
| Surrogate                    | %Recovery      | Qualifier | Limits      |      |      |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 108            |           | 77 - 120    |      |      |   |          | 08/30/24 01:44 | 1       |
| 4-Bromofluorobenzene (Surr)  | 102            |           | 73 - 120    |      |      |   |          | 08/30/24 01:44 | 1       |
| Dibromofluoromethane (Surr)  | 110            |           | 75 - 123    |      |      |   |          | 08/30/24 01:44 | 1       |
| Toluene-d8 (Surr)            | 110            |           | 80 - 120    |      |      |   |          | 08/30/24 01:44 | 1       |

| Analyte                     | Result    | Qualifier | RL       | MDL    | Unit | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|--------|------|---|----------------|----------------|---------|
| Acenaphthene                | ND        |           | 0.48     | 0.034  | ug/L |   | 08/30/24 13:14 | 09/03/24 14:42 | 1       |
| Acenaphthylene              | ND        |           | 0.29     | 0.053  | ug/L |   | 08/30/24 13:14 | 09/03/24 14:42 | 1       |
| Anthracene                  | ND        |           | 0.48     | 0.032  | ug/L |   | 08/30/24 13:14 | 09/03/24 14:42 | 1       |
| Benzo[a]anthracene          | ND        |           | 0.29     | 0.032  | ug/L |   | 08/30/24 13:14 | 09/03/24 14:42 | 1       |
| Benzo[a]pyrene              | ND        |           | 0.17     | 0.12   | ug/L |   | 08/30/24 13:14 | 09/03/24 14:42 | 1       |
| Benzo[b]fluoranthene        | ND        |           | 0.29     | 0.060  | ug/L |   | 08/30/24 13:14 | 09/03/24 14:42 | 1       |
| Benzo[g,h,i]perylene        | ND        |           | 0.48     | 0.055  | ug/L |   | 08/30/24 13:14 | 09/03/24 14:42 | 1       |
| Benzo[k]fluoranthene        | ND        |           | 0.29     | 0.067  | ug/L |   | 08/30/24 13:14 | 09/03/24 14:42 | 1       |
| Chrysene                    | ND        |           | 0.48     | 0.070  | ug/L |   | 08/30/24 13:14 | 09/03/24 14:42 | 1       |
| Dibenz(a,h)anthracene       | ND        |           | 0.48     | 0.067  | ug/L |   | 08/30/24 13:14 | 09/03/24 14:42 | 1       |
| Fluoranthene                | ND        |           | 0.48     | 0.076  | ug/L |   | 08/30/24 13:14 | 09/03/24 14:42 | 1       |
| Fluorene                    | ND        |           | 0.48     | 0.055  | ug/L |   | 08/30/24 13:14 | 09/03/24 14:42 | 1       |
| Indeno[1,2,3-cd]pyrene      | ND        |           | 0.48     | 0.10   | ug/L |   | 08/30/24 13:14 | 09/03/24 14:42 | 1       |
| Naphthalene                 | ND        |           | 0.95     | 0.061  | ug/L |   | 08/30/24 13:14 | 09/03/24 14:42 | 1       |
| Phenanthrene                | ND        |           | 0.19     | 0.059  | ug/L |   | 08/30/24 13:14 | 09/03/24 14:42 | 1       |
| Pyrene                      | ND        |           | 0.48     | 0.072  | ug/L |   | 08/30/24 13:14 | 09/03/24 14:42 | 1       |
| Surrogate                   | %Recovery | Qualifier | Limits   |        |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl            | 88        |           | 37 - 120 |        |      |   | 08/30/24 13:14 | 09/03/24 14:42 | 1       |
| Nitrobenzene-d5 (Surr)      | 75        |           | 26 - 120 |        |      |   | 08/30/24 13:14 | 09/03/24 14:42 | 1       |
| p-Terphenyl-d14 (Surr)      | 104       |           | 64 - 127 |        |      |   | 08/30/24 13:14 | 09/03/24 14:42 | 1       |
| General Chemistry           |           |           |          |        |      |   |                |                |         |
| Analyte                     | Result    | Qualifier | RL       | MDL    | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Cvanide Total (SW846 9012B) | ND        | ^+        | 0.010    | 0.0041 | ma/l |   |                | 09/06/24 10:48 |         |

| , |                              |        |           |       |        |      |   |          |                |         |
|---|------------------------------|--------|-----------|-------|--------|------|---|----------|----------------|---------|
|   | General Chemistry            |        |           |       |        |      |   |          |                |         |
|   | Analyte                      | Result | Qualifier | RL    | MDL    | Unit | D | Prepared | Analyzed       | Dil Fac |
|   | Cyanide, Total (SW846 9012B) | ND     | ^+        | 0.010 | 0.0041 | mg/L |   |          | 09/06/24 10:48 | 1       |

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

**Client Sample ID: PRMW-4S** 

Date Collected: 08/28/24 09:20 Date Received: 08/29/24 12:52 Lab Sample ID: 480-222956-6

**Matrix: Ground Water** 

Job ID: 480-222956-1

| Method: SW846 8260C - Vo     | olatile Organic | Compound  | ds by GC/MS |      |      |   |          |                |         |
|------------------------------|-----------------|-----------|-------------|------|------|---|----------|----------------|---------|
| Analyte                      |                 | Qualifier | RL          | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| Benzene                      | ND              |           | 1.0         | 0.41 | ug/L |   |          | 08/30/24 02:06 | 1       |
| Ethylbenzene                 | ND              |           | 1.0         | 0.74 | ug/L |   |          | 08/30/24 02:06 | 1       |
| Toluene                      | ND              |           | 1.0         | 0.51 | ug/L |   |          | 08/30/24 02:06 | 1       |
| Xylenes, Total               | ND              |           | 2.0         | 0.66 | ug/L |   |          | 08/30/24 02:06 | 1       |
| Surrogate                    | %Recovery       | Qualifier | Limits      |      |      |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) |                 |           | 77 - 120    |      |      |   |          | 08/30/24 02:06 | 1       |
| 4-Bromofluorobenzene (Surr)  | 103             |           | 73 - 120    |      |      |   |          | 08/30/24 02:06 | 1       |
| Dibromofluoromethane (Surr)  | 110             |           | 75 - 123    |      |      |   |          | 08/30/24 02:06 | 1       |
| Toluene-d8 (Surr)            | 111             |           | 80 - 120    |      |      |   |          | 08/30/24 02:06 | 1       |

| Analyte                      | Result    | Qualifier | RL       | MDL    | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|--------|------|---|----------------|----------------|---------|
| Acenaphthene                 | ND        |           | 0.51     | 0.036  | ug/L |   | 08/30/24 13:14 | 09/03/24 15:10 | 1       |
| Acenaphthylene               | ND        |           | 0.30     | 0.057  | ug/L |   | 08/30/24 13:14 | 09/03/24 15:10 | 1       |
| Anthracene                   | ND        |           | 0.51     | 0.034  | ug/L |   | 08/30/24 13:14 | 09/03/24 15:10 | 1       |
| Benzo[a]anthracene           | ND        |           | 0.30     | 0.034  | ug/L |   | 08/30/24 13:14 | 09/03/24 15:10 | 1       |
| Benzo[a]pyrene               | ND        |           | 0.18     | 0.13   | ug/L |   | 08/30/24 13:14 | 09/03/24 15:10 | 1       |
| Benzo[b]fluoranthene         | ND        |           | 0.30     | 0.064  | ug/L |   | 08/30/24 13:14 | 09/03/24 15:10 | 1       |
| Benzo[g,h,i]perylene         | ND        |           | 0.51     | 0.059  | ug/L |   | 08/30/24 13:14 | 09/03/24 15:10 | 1       |
| Benzo[k]fluoranthene         | ND        |           | 0.30     | 0.071  | ug/L |   | 08/30/24 13:14 | 09/03/24 15:10 | 1       |
| Chrysene                     | ND        |           | 0.51     | 0.075  | ug/L |   | 08/30/24 13:14 | 09/03/24 15:10 | 1       |
| Dibenz(a,h)anthracene        | ND        |           | 0.51     | 0.071  | ug/L |   | 08/30/24 13:14 | 09/03/24 15:10 | 1       |
| Fluoranthene                 | ND        |           | 0.51     | 0.081  | ug/L |   | 08/30/24 13:14 | 09/03/24 15:10 | 1       |
| Fluorene                     | ND        |           | 0.51     | 0.059  | ug/L |   | 08/30/24 13:14 | 09/03/24 15:10 | 1       |
| Indeno[1,2,3-cd]pyrene       | ND        |           | 0.51     | 0.11   | ug/L |   | 08/30/24 13:14 | 09/03/24 15:10 | 1       |
| Naphthalene                  | ND        |           | 1.0      | 0.065  | ug/L |   | 08/30/24 13:14 | 09/03/24 15:10 | 1       |
| Phenanthrene                 | ND        |           | 0.20     | 0.063  | ug/L |   | 08/30/24 13:14 | 09/03/24 15:10 | 1       |
| Pyrene                       | ND        |           | 0.51     | 0.077  | ug/L |   | 08/30/24 13:14 | 09/03/24 15:10 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |        |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl             | 94        |           | 37 - 120 |        |      |   | 08/30/24 13:14 | 09/03/24 15:10 | 1       |
| Nitrobenzene-d5 (Surr)       | 82        |           | 26 - 120 |        |      |   | 08/30/24 13:14 | 09/03/24 15:10 | 1       |
| p-Terphenyl-d14 (Surr)       | 106       |           | 64 - 127 |        |      |   | 08/30/24 13:14 | 09/03/24 15:10 | 1       |
| General Chemistry            |           |           |          |        |      |   |                |                |         |
| Analyte                      | Result    | Qualifier | RL       | MDL    | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Cyanide, Total (SW846 9012B) | ND        | ^+        | 0.010    | 0.0041 | ma/l |   |                | 09/06/24 10:51 | 1       |

| Eurofins Buffalo |
|------------------|
|------------------|

\_

4

6

8

10

11

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

**Client Sample ID: PRMW-5S** 

Date Collected: 08/28/24 08:35 Date Received: 08/29/24 12:52

Chrysene

Dibenz(a,h)anthracene

Lab Sample ID: 480-222956-7

08/30/24 13:14 09/03/24 15:37

08/30/24 13:14 09/03/24 15:37

**Matrix: Ground Water** 

Job ID: 480-222956-1

| Method: SW846 8260C - Vo     | _                | •          | •           |              | 11!4                                | _    | Dunnanad       | A a l a d                        | D:: F   |
|------------------------------|------------------|------------|-------------|--------------|-------------------------------------|------|----------------|----------------------------------|---------|
| Analyte                      |                  | Qualifier  | RL          |              | Unit                                | D    | Prepared       | Analyzed                         | Dil Fac |
| Benzene                      | 1.9              |            | 1.0         | 0.41         | ug/L                                |      |                | 08/30/24 02:28                   | 1       |
| Ethylbenzene                 | 1.1              |            | 1.0         | 0.74         | ug/L                                |      |                | 08/30/24 02:28                   | 1       |
| Toluene                      | ND               |            | 1.0         | 0.51         | ug/L                                |      |                | 08/30/24 02:28                   | 1       |
| Xylenes, Total               | ND               |            | 2.0         | 0.66         | ug/L                                |      |                | 08/30/24 02:28                   | 1       |
| Surrogate                    | %Recovery        | Qualifier  | Limits      |              |                                     |      | Prepared       | Analyzed                         | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) |                  |            | 77 - 120    |              |                                     |      |                | 08/30/24 02:28                   | 1       |
| 4-Bromofluorobenzene (Surr)  | 102              |            | 73 - 120    |              |                                     |      |                | 08/30/24 02:28                   | 1       |
| Dibromofluoromethane (Surr)  | 111              |            | 75 - 123    |              |                                     |      |                | 08/30/24 02:28                   | 1       |
| Toluene-d8 (Surr)            | 112              |            | 80 - 120    |              |                                     |      |                | 08/30/24 02:28                   | 1       |
| Method: SW846 8270D LL       | - Semivolatile ( | Organic Co | ompounds by | GC/MS        | S - Low L                           | evel |                |                                  |         |
| Analyte                      | Result           | Qualifier  | RL          | MDL          | Unit                                | D    | Prepared       | Analyzed                         | Dil Fac |
| Acenaphthene                 | 4.5              |            | 2.4         | 0.17         | ug/L                                |      | 08/30/24 13:14 | 09/03/24 15:37                   | 5       |
| Acenaphthylene               | 0.61             | J          | 1.4         | 0.27         | ug/L                                |      | 08/30/24 13:14 | 09/03/24 15:37                   | 5       |
| Anthracene                   | 0.19             | J          | 2.4         | 0.16         | ug/L                                |      | 08/30/24 13:14 | 09/03/24 15:37                   | _       |
| Benzo[a]anthracene           |                  |            |             |              | · · · · · · · · · · · · · · · · · · |      | 00/20/24 12:14 |                                  | 5       |
|                              | ND               |            | 1.4         | 0.16         | ug/L                                |      | 08/30/24 13:14 | 09/03/24 15:37                   | 5       |
| Benzo[a]pyrene               | ND<br>ND         |            | 1.4<br>0.86 |              | ug/L<br>ug/L                        |      |                | 09/03/24 15:37<br>09/03/24 15:37 |         |
| • •                          |                  |            |             | 0.62         | •                                   |      |                | 09/03/24 15:37                   | 5       |
| Benzo[a]pyrene               | ND               |            | 0.86        | 0.62<br>0.30 | ug/L                                |      | 08/30/24 13:14 | 09/03/24 15:37<br>09/03/24 15:37 | 5<br>5  |

| Fluoranthene           | 0.66      | J         | 2.4      | 0.38 | ug/L | 08/30/24 13:14 | 09/03/24 15:37 | 5       |
|------------------------|-----------|-----------|----------|------|------|----------------|----------------|---------|
| Fluorene               | 1.6       | J         | 2.4      | 0.28 | ug/L | 08/30/24 13:14 | 09/03/24 15:37 | 5       |
| Indeno[1,2,3-cd]pyrene | ND        |           | 2.4      | 0.52 | ug/L | 08/30/24 13:14 | 09/03/24 15:37 | 5       |
| Naphthalene            | 3.4       | J         | 4.8      | 0.30 | ug/L | 08/30/24 13:14 | 09/03/24 15:37 | 5       |
| Phenanthrene           | 0.37      | J         | 0.95     | 0.30 | ug/L | 08/30/24 13:14 | 09/03/24 15:37 | 5       |
| Pyrene                 | 0.40      | J         | 2.4      | 0.36 | ug/L | 08/30/24 13:14 | 09/03/24 15:37 | 5       |
| Surrogate              | %Recovery | Qualifier | Limits   |      |      | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 56        | -         | 37 - 120 |      |      | 08/30/24 13:14 | 09/03/24 15:37 | 5       |
| Nitrobenzene-d5 (Surr) | 48        |           | 26 - 120 |      |      | 08/30/24 13:14 | 09/03/24 15:37 | 5       |
| p-Terphenyl-d14 (Surr) | 72        |           | 64 - 127 |      |      | 08/30/24 13:14 | 09/03/24 15:37 | 5       |

2.4

2.4

0.35 ug/L

0.33 ug/L

ND

ND

| General Chemistry            |        |           |       |        |      |   |          |                |         |
|------------------------------|--------|-----------|-------|--------|------|---|----------|----------------|---------|
| Analyte                      | Result | Qualifier | RL    | MDL    | Unit | D | Prepared | Analyzed       | Dil Fac |
| Cyanide, Total (SW846 9012B) | 0.020  |           | 0.010 | 0.0041 | mg/L |   |          | 09/09/24 09:29 | 1       |

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

**Client Sample ID: PRMW-5D** Lab Sample ID: 480-222956-8 Date Collected: 08/28/24 14:40 **Matrix: Ground Water** 

Date Received: 08/29/24 12:52

| Method: SW846 8260C - Vo     | olatile Organic ( | Compoun   | ds by GC/MS |      |      |   |          |                |         |
|------------------------------|-------------------|-----------|-------------|------|------|---|----------|----------------|---------|
| Analyte                      | Result            | Qualifier | RL          | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| Benzene                      | ND                |           | 1.0         | 0.41 | ug/L |   |          | 08/30/24 02:50 | 1       |
| Ethylbenzene                 | ND                |           | 1.0         | 0.74 | ug/L |   |          | 08/30/24 02:50 | 1       |
| Toluene                      | ND                |           | 1.0         | 0.51 | ug/L |   |          | 08/30/24 02:50 | 1       |
| Xylenes, Total               | ND                |           | 2.0         | 0.66 | ug/L |   |          | 08/30/24 02:50 | 1       |
| Surrogate                    | %Recovery         | Qualifier | Limits      |      |      |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 108               |           | 77 - 120    |      |      |   |          | 08/30/24 02:50 | 1       |
| 4-Bromofluorobenzene (Surr)  | 102               |           | 73 - 120    |      |      |   |          | 08/30/24 02:50 | 1       |
| Dibromofluoromethane (Surr)  | 110               |           | 75 - 123    |      |      |   |          | 08/30/24 02:50 | 1       |
| Toluene-d8 (Surr)            | 113               |           | 80 - 120    |      |      |   |          | 08/30/24 02:50 | 1       |

| -                            | 7.70      |            | 00-720     |        |           |          |                | 00/00/27 02:00 |         |
|------------------------------|-----------|------------|------------|--------|-----------|----------|----------------|----------------|---------|
| Method: SW846 8270D LL -     |           | Organic Co | ompounds b | •      | S - Low L | _evel    | Prepared       | Analyzed       | Dil Fa  |
| Acenaphthene                 | — ND      |            | 0.48       | 0.034  |           | <u>-</u> | 08/30/24 13:14 | 09/03/24 16:05 | 1       |
| Acenaphthylene               | ND        |            | 0.29       | 0.053  | -         |          | 08/30/24 13:14 | 09/03/24 16:05 | 1       |
| Anthracene                   | ND        |            | 0.48       | 0.032  | -         |          | 08/30/24 13:14 | 09/03/24 16:05 | 1       |
| Benzo[a]anthracene           | ND        |            | 0.29       | 0.032  |           |          |                | 09/03/24 16:05 | 1       |
| Benzo[a]pyrene               | ND        |            | 0.17       |        | ug/L      |          | 08/30/24 13:14 | 09/03/24 16:05 | 1       |
| Benzo[b]fluoranthene         | ND        |            | 0.29       | 0.060  | -         |          | 08/30/24 13:14 | 09/03/24 16:05 | 1       |
| Benzo[g,h,i]perylene         | ND        |            | 0.48       | 0.055  |           |          | 08/30/24 13:14 | 09/03/24 16:05 | 1       |
| Benzo[k]fluoranthene         | ND        |            | 0.29       | 0.067  | •         |          | 08/30/24 13:14 | 09/03/24 16:05 | 1       |
| Chrysene                     | ND        |            | 0.48       | 0.070  | -         |          | 08/30/24 13:14 | 09/03/24 16:05 | 1       |
| Dibenz(a,h)anthracene        | ND        |            | 0.48       | 0.067  | ug/L      |          | 08/30/24 13:14 | 09/03/24 16:05 | ,       |
| Fluoranthene                 | ND        |            | 0.48       | 0.076  | -         |          | 08/30/24 13:14 | 09/03/24 16:05 |         |
| Fluorene                     | ND        |            | 0.48       | 0.055  | ug/L      |          | 08/30/24 13:14 | 09/03/24 16:05 |         |
| Indeno[1,2,3-cd]pyrene       | ND        |            | 0.48       | 0.10   | ug/L      |          | 08/30/24 13:14 | 09/03/24 16:05 |         |
| Naphthalene                  | ND        |            | 0.95       | 0.061  | -         |          | 08/30/24 13:14 | 09/03/24 16:05 |         |
| Phenanthrene                 | ND        |            | 0.19       | 0.059  | ug/L      |          | 08/30/24 13:14 | 09/03/24 16:05 |         |
| Pyrene                       | ND        |            | 0.48       | 0.072  | ug/L      |          | 08/30/24 13:14 | 09/03/24 16:05 |         |
| Surrogate                    | %Recovery | Qualifier  | Limits     |        |           |          | Prepared       | Analyzed       | Dil Fa  |
| 2-Fluorobiphenyl             | 74        |            | 37 - 120   |        |           |          | 08/30/24 13:14 | 09/03/24 16:05 | -       |
| Nitrobenzene-d5 (Surr)       | 59        |            | 26 - 120   |        |           |          | 08/30/24 13:14 | 09/03/24 16:05 | 1       |
| p-Terphenyl-d14 (Surr)       | 104       |            | 64 - 127   |        |           |          | 08/30/24 13:14 | 09/03/24 16:05 | •       |
| General Chemistry            |           |            |            |        |           |          |                |                |         |
| Analyte                      | Result    | Qualifier  | RL         | MDL    | Unit      | D        | Prepared       | Analyzed       | Dil Fac |
| Cyanide, Total (SW846 9012B) | ND        |            | 0.010      | 0.0041 | mg/L      |          |                | 09/03/24 13:18 | 1       |

| General Chemistry            |        |           |       |        |      |   |          |                |         |
|------------------------------|--------|-----------|-------|--------|------|---|----------|----------------|---------|
| Analyte                      | Result | Qualifier | RL    | MDL    | Unit | D | Prepared | Analyzed       | Dil Fac |
| Cyanide, Total (SW846 9012B) | ND     |           | 0.010 | 0.0041 | mg/L |   |          | 09/03/24 13:18 | 1       |

Eurofins Buffalo

9/9/2024

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

**Client Sample ID: PRMW-6S** Date Collected: 08/28/24 11:10

Date Received: 08/29/24 12:52

| Lab Samp | ie il | ): 4 | 80-222 | 956-9 |
|----------|-------|------|--------|-------|
|          | Mat   | riv. | Ground | Water |

| Analyte                      | Result    | Qualifier | RL       | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|------|------|---|----------|----------------|---------|
| Benzene                      | MD        |           | 1.0      | 0.41 | ug/L |   |          | 08/30/24 03:13 | 1       |
| Ethylbenzene                 | ND        |           | 1.0      | 0.74 | ug/L |   |          | 08/30/24 03:13 | 1       |
| Toluene                      | ND        |           | 1.0      | 0.51 | ug/L |   |          | 08/30/24 03:13 | 1       |
| Xylenes, Total               | ND        |           | 2.0      | 0.66 | ug/L |   |          | 08/30/24 03:13 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |      |      |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) |           |           | 77 - 120 |      |      |   |          | 08/30/24 03:13 | 1       |
| 4-Bromofluorobenzene (Surr)  | 103       |           | 73 - 120 |      |      |   |          | 08/30/24 03:13 | 1       |
| Dibromofluoromethane (Surr)  | 110       |           | 75 - 123 |      |      |   |          | 08/30/24 03:13 | 1       |
| Toluene-d8 (Surr)            | 110       |           | 80 - 120 |      |      |   |          | 08/30/24 03:13 | 1       |

| Analyte                | Result    | Qualifier | RL       | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|-------|------|---|----------------|----------------|---------|
| Acenaphthene           | ND        |           | 0.48     | 0.034 | ug/L |   | 08/30/24 13:14 | 09/03/24 16:32 | 1       |
| Acenaphthylene         | ND        |           | 0.29     | 0.053 | ug/L |   | 08/30/24 13:14 | 09/03/24 16:32 | 1       |
| Anthracene             | ND        |           | 0.48     | 0.032 | ug/L |   | 08/30/24 13:14 | 09/03/24 16:32 | 1       |
| Benzo[a]anthracene     | ND        |           | 0.29     | 0.032 | ug/L |   | 08/30/24 13:14 | 09/03/24 16:32 | 1       |
| Benzo[a]pyrene         | ND        |           | 0.17     | 0.12  | ug/L |   | 08/30/24 13:14 | 09/03/24 16:32 | 1       |
| Benzo[b]fluoranthene   | ND        |           | 0.29     | 0.060 | ug/L |   | 08/30/24 13:14 | 09/03/24 16:32 | 1       |
| Benzo[g,h,i]perylene   | ND        |           | 0.48     | 0.055 | ug/L |   | 08/30/24 13:14 | 09/03/24 16:32 | 1       |
| Benzo[k]fluoranthene   | ND        |           | 0.29     | 0.067 | ug/L |   | 08/30/24 13:14 | 09/03/24 16:32 | 1       |
| Chrysene               | ND        |           | 0.48     | 0.070 | ug/L |   | 08/30/24 13:14 | 09/03/24 16:32 | 1       |
| Dibenz(a,h)anthracene  | ND        |           | 0.48     | 0.067 | ug/L |   | 08/30/24 13:14 | 09/03/24 16:32 | 1       |
| Fluoranthene           | ND        |           | 0.48     | 0.076 | ug/L |   | 08/30/24 13:14 | 09/03/24 16:32 | 1       |
| Fluorene               | ND        |           | 0.48     | 0.055 | ug/L |   | 08/30/24 13:14 | 09/03/24 16:32 | 1       |
| Indeno[1,2,3-cd]pyrene | ND        |           | 0.48     | 0.10  | ug/L |   | 08/30/24 13:14 | 09/03/24 16:32 | 1       |
| Naphthalene            | ND        |           | 0.95     | 0.061 | ug/L |   | 08/30/24 13:14 | 09/03/24 16:32 | 1       |
| Phenanthrene           | ND        |           | 0.19     | 0.059 | ug/L |   | 08/30/24 13:14 | 09/03/24 16:32 | 1       |
| Pyrene                 | ND        |           | 0.48     | 0.072 | ug/L |   | 08/30/24 13:14 | 09/03/24 16:32 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits   |       |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 51        |           | 37 - 120 |       |      |   | 08/30/24 13:14 | 09/03/24 16:32 | 1       |
| Nitrobenzene-d5 (Surr) | 44        |           | 26 - 120 |       |      |   | 08/30/24 13:14 | 09/03/24 16:32 | 1       |
| p-Terphenyl-d14 (Surr) | 91        |           | 64 - 127 |       |      |   | 08/30/24 13:14 | 09/03/24 16:32 | 1       |

| General Chemistry Analyte    | Result ( | Qualifier | RL    | MDL    | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|----------|-----------|-------|--------|------|---|----------|----------------|---------|
| Cyanide, Total (SW846 9012B) | ND       |           | 0.010 | 0.0041 | mg/L |   |          | 09/03/24 13:24 | 1       |

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

**Client Sample ID: PRMW-6D** Lab Sample ID: 480-222956-10 Date Collected: 08/28/24 09:55 **Matrix: Ground Water** 

Date Received: 08/29/24 12:52

| Method: SW846 8260C - Vo     | olatile Organic | Compoun   | ds by GC/MS | ;    |      |   |          |                |         |
|------------------------------|-----------------|-----------|-------------|------|------|---|----------|----------------|---------|
| Analyte                      | Result          | Qualifier | RL          | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| Benzene                      | ND              |           | 1.0         | 0.41 | ug/L |   |          | 08/30/24 03:35 | 1       |
| Ethylbenzene                 | ND              |           | 1.0         | 0.74 | ug/L |   |          | 08/30/24 03:35 | 1       |
| Toluene                      | ND              |           | 1.0         | 0.51 | ug/L |   |          | 08/30/24 03:35 | 1       |
| Xylenes, Total               | ND              |           | 2.0         | 0.66 | ug/L |   |          | 08/30/24 03:35 | 1       |
| Surrogate                    | %Recovery       | Qualifier | Limits      |      |      |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 108             |           | 77 - 120    |      |      |   |          | 08/30/24 03:35 | 1       |
| 4-Bromofluorobenzene (Surr)  | 102             |           | 73 - 120    |      |      |   |          | 08/30/24 03:35 | 1       |
| Dibromofluoromethane (Surr)  | 110             |           | 75 - 123    |      |      |   |          | 08/30/24 03:35 | 1       |
| Toluene-d8 (Surr)            | 110             |           | 80 - 120    |      |      |   |          | 08/30/24 03:35 | 1       |

| Analyte                      | Result    | Qualifier | RL       | MDL    | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|--------|------|---|----------------|----------------|---------|
| Acenaphthene                 | ND        |           | 0.48     | 0.034  | ug/L |   | 08/30/24 13:14 | 09/03/24 17:00 | 1       |
| Acenaphthylene               | ND        |           | 0.29     | 0.053  | ug/L |   | 08/30/24 13:14 | 09/03/24 17:00 | 1       |
| Anthracene                   | ND        |           | 0.48     | 0.032  | ug/L |   | 08/30/24 13:14 | 09/03/24 17:00 | 1       |
| Benzo[a]anthracene           | ND        |           | 0.29     | 0.032  | ug/L |   | 08/30/24 13:14 | 09/03/24 17:00 | 1       |
| Benzo[a]pyrene               | ND        |           | 0.17     | 0.12   | ug/L |   | 08/30/24 13:14 | 09/03/24 17:00 | 1       |
| Benzo[b]fluoranthene         | ND        |           | 0.29     | 0.060  | ug/L |   | 08/30/24 13:14 | 09/03/24 17:00 | 1       |
| Benzo[g,h,i]perylene         | ND        |           | 0.48     | 0.055  | ug/L |   | 08/30/24 13:14 | 09/03/24 17:00 | 1       |
| Benzo[k]fluoranthene         | ND        |           | 0.29     | 0.067  | ug/L |   | 08/30/24 13:14 | 09/03/24 17:00 | 1       |
| Chrysene                     | ND        |           | 0.48     | 0.070  | ug/L |   | 08/30/24 13:14 | 09/03/24 17:00 | 1       |
| Dibenz(a,h)anthracene        | ND        |           | 0.48     | 0.067  | ug/L |   | 08/30/24 13:14 | 09/03/24 17:00 | 1       |
| Fluoranthene                 | ND        |           | 0.48     | 0.076  | ug/L |   | 08/30/24 13:14 | 09/03/24 17:00 | 1       |
| Fluorene                     | ND        |           | 0.48     | 0.055  | ug/L |   | 08/30/24 13:14 | 09/03/24 17:00 | 1       |
| Indeno[1,2,3-cd]pyrene       | ND        |           | 0.48     | 0.10   | ug/L |   | 08/30/24 13:14 | 09/03/24 17:00 | 1       |
| Naphthalene                  | ND        |           | 0.95     | 0.061  | ug/L |   | 08/30/24 13:14 | 09/03/24 17:00 | 1       |
| Phenanthrene                 | ND        |           | 0.19     | 0.059  | ug/L |   | 08/30/24 13:14 | 09/03/24 17:00 | 1       |
| Pyrene                       | ND        |           | 0.48     | 0.072  | ug/L |   | 08/30/24 13:14 | 09/03/24 17:00 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |        |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl             | 54        |           | 37 - 120 |        |      |   | 08/30/24 13:14 | 09/03/24 17:00 | 1       |
| Nitrobenzene-d5 (Surr)       | 47        |           | 26 - 120 |        |      |   | 08/30/24 13:14 | 09/03/24 17:00 | 1       |
| p-Terphenyl-d14 (Surr)       | 103       |           | 64 - 127 |        |      |   | 08/30/24 13:14 | 09/03/24 17:00 | 1       |
| General Chemistry            |           |           |          |        |      |   |                |                |         |
| Analyte                      | Result    | Qualifier | RL       | MDL    | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Cyanide, Total (SW846 9012B) | ND        |           | 0.010    | 0.0041 | mg/L |   |                | 09/03/24 13:28 |         |

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

Lab Sample ID: 480-222956-11 Client Sample ID: DUP-20240829

Date Collected: 08/28/24 00:00 Matrix: WQ

Date Received: 08/29/24 12:52

| Method: SW846 8260C - Vo     | latile Organic | Compoun   | ds by GC/MS |      |      |   |          |                |         |
|------------------------------|----------------|-----------|-------------|------|------|---|----------|----------------|---------|
| Analyte                      | Result         | Qualifier | RL          | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| Benzene                      | ND             |           | 1.0         | 0.41 | ug/L |   |          | 08/30/24 03:57 | 1       |
| Ethylbenzene                 | ND             |           | 1.0         | 0.74 | ug/L |   |          | 08/30/24 03:57 | 1       |
| Toluene                      | ND             |           | 1.0         | 0.51 | ug/L |   |          | 08/30/24 03:57 | 1       |
| Xylenes, Total               | ND             |           | 2.0         | 0.66 | ug/L |   |          | 08/30/24 03:57 | 1       |
| Surrogate                    | %Recovery      | Qualifier | Limits      |      |      |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 108            |           | 77 - 120    |      |      |   |          | 08/30/24 03:57 | 1       |
| 4-Bromofluorobenzene (Surr)  | 104            |           | 73 - 120    |      |      |   |          | 08/30/24 03:57 | 1       |
| Dibromofluoromethane (Surr)  | 108            |           | 75 - 123    |      |      |   |          | 08/30/24 03:57 | 1       |
| Toluene-d8 (Surr)            | 110            |           | 80 - 120    |      |      |   |          | 08/30/24 03:57 | 1       |

| Analyte                      | Result    | Qualifier | RL       | MDL    | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|--------|------|---|----------------|----------------|---------|
| Acenaphthene                 | ND        |           | 0.48     | 0.034  | ug/L |   | 08/30/24 13:14 | 09/03/24 17:28 | 1       |
| Acenaphthylene               | ND        |           | 0.29     | 0.053  | ug/L |   | 08/30/24 13:14 | 09/03/24 17:28 | 1       |
| Anthracene                   | ND        |           | 0.48     | 0.032  | ug/L |   | 08/30/24 13:14 | 09/03/24 17:28 | 1       |
| Benzo[a]anthracene           | ND        |           | 0.29     | 0.032  | ug/L |   | 08/30/24 13:14 | 09/03/24 17:28 | 1       |
| Benzo[a]pyrene               | ND        |           | 0.17     | 0.12   | ug/L |   | 08/30/24 13:14 | 09/03/24 17:28 | 1       |
| Benzo[b]fluoranthene         | ND        |           | 0.29     | 0.060  | ug/L |   | 08/30/24 13:14 | 09/03/24 17:28 | 1       |
| Benzo[g,h,i]perylene         | ND        |           | 0.48     | 0.055  | ug/L |   | 08/30/24 13:14 | 09/03/24 17:28 | 1       |
| Benzo[k]fluoranthene         | ND        |           | 0.29     | 0.067  | ug/L |   | 08/30/24 13:14 | 09/03/24 17:28 | 1       |
| Chrysene                     | ND        |           | 0.48     | 0.070  | ug/L |   | 08/30/24 13:14 | 09/03/24 17:28 | 1       |
| Dibenz(a,h)anthracene        | ND        |           | 0.48     | 0.067  | ug/L |   | 08/30/24 13:14 | 09/03/24 17:28 | 1       |
| Fluoranthene                 | ND        |           | 0.48     | 0.076  | ug/L |   | 08/30/24 13:14 | 09/03/24 17:28 | 1       |
| Fluorene                     | ND        |           | 0.48     | 0.055  | ug/L |   | 08/30/24 13:14 | 09/03/24 17:28 | 1       |
| Indeno[1,2,3-cd]pyrene       | ND        |           | 0.48     | 0.10   | ug/L |   | 08/30/24 13:14 | 09/03/24 17:28 | 1       |
| Naphthalene                  | ND        |           | 0.95     | 0.061  | ug/L |   | 08/30/24 13:14 | 09/03/24 17:28 | 1       |
| Phenanthrene                 | ND        |           | 0.19     | 0.059  | ug/L |   | 08/30/24 13:14 | 09/03/24 17:28 | 1       |
| Pyrene                       | ND        |           | 0.48     | 0.072  | ug/L |   | 08/30/24 13:14 | 09/03/24 17:28 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |        |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl             | 57        |           | 37 - 120 |        |      |   | 08/30/24 13:14 | 09/03/24 17:28 | 1       |
| Nitrobenzene-d5 (Surr)       | 50        |           | 26 - 120 |        |      |   | 08/30/24 13:14 | 09/03/24 17:28 | 1       |
| p-Terphenyl-d14 (Surr)       | 96        |           | 64 - 127 |        |      |   | 08/30/24 13:14 | 09/03/24 17:28 | 1       |
| General Chemistry            |           |           |          |        |      |   |                |                |         |
| Analyte                      | Result    | Qualifier | RL       | MDL    | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Cyanide, Total (SW846 9012B) | ND        |           | 0.010    | 0.0041 | mg/L |   |                | 09/03/24 13:31 | 1       |

Client: New York State Electric & Gas Job ID: 480-222956-1

Project/Site: NYSEG Former MGP Site - Penn Yan

**Client Sample ID: TRIP BLANK** 

Lab Sample ID: 480-222956-12

Matrix: WQ

Date Collected: 08/28/24 00:00 Date Received: 08/29/24 12:52

| Method: SW846 8260C - Vo     | olatile Organic | Compoun   | ds by GC/MS | ;    |      |   |          |                |         |
|------------------------------|-----------------|-----------|-------------|------|------|---|----------|----------------|---------|
| Analyte                      | Result          | Qualifier | RL          | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| Benzene                      | ND              |           | 1.0         | 0.41 | ug/L |   |          | 08/30/24 04:19 | 1       |
| Ethylbenzene                 | ND              |           | 1.0         | 0.74 | ug/L |   |          | 08/30/24 04:19 | 1       |
| Toluene                      | 0.52            | J         | 1.0         | 0.51 | ug/L |   |          | 08/30/24 04:19 | 1       |
| Xylenes, Total               | ND              |           | 2.0         | 0.66 | ug/L |   |          | 08/30/24 04:19 | 1       |
| Surrogate                    | %Recovery       | Qualifier | Limits      |      |      |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 109             |           | 77 - 120    |      |      |   |          | 08/30/24 04:19 | 1       |
| 4-Bromofluorobenzene (Surr)  | 103             |           | 73 - 120    |      |      |   |          | 08/30/24 04:19 | 1       |
| Dibromofluoromethane (Surr)  | 111             |           | 75 - 123    |      |      |   |          | 08/30/24 04:19 | 1       |
| Toluene-d8 (Surr)            | 112             |           | 80 - 120    |      |      |   |          | 08/30/24 04:19 | 1       |

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Ground Water Prep Type: Total/NA

|                  |                  |          | Pe       | ercent Surro | gate Rec |
|------------------|------------------|----------|----------|--------------|----------|
|                  |                  | DCA      | BFB      | DBFM         | TOL      |
| Lab Sample ID    | Client Sample ID | (77-120) | (73-120) | (75-123)     | (80-120) |
| 480-222956-1     | PRMW-1S          | 111      | 105      | 112          | 112      |
| 480-222956-2     | PRMW-2S          | 110      | 103      | 109          | 110      |
| 480-222956-3     | PRMW-2D          | 106      | 102      | 109          | 111      |
| 480-222956-4     | PRMW-3S          | 109      | 105      | 111          | 112      |
| 480-222956-4 MS  | PRMW-3S          | 104      | 99       | 104          | 110      |
| 480-222956-4 MSD | PRMW-3S          | 107      | 101      | 109          | 112      |
| 480-222956-5     | PRMW-3D          | 108      | 102      | 110          | 110      |
| 480-222956-6     | PRMW-4S          | 110      | 103      | 110          | 111      |
| 480-222956-7     | PRMW-5S          | 111      | 102      | 111          | 112      |
| 480-222956-8     | PRMW-5D          | 108      | 102      | 110          | 113      |
| 480-222956-9     | PRMW-6S          | 110      | 103      | 110          | 110      |
| 480-222956-10    | PRMW-6D          | 108      | 102      | 110          | 110      |

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

|                   |                        | Percent Surrogate Recovery (Acceptance Limits) |          |          |          |  |  |  |  |
|-------------------|------------------------|------------------------------------------------|----------|----------|----------|--|--|--|--|
|                   |                        | DCA                                            | BFB      | DBFM     | TOL      |  |  |  |  |
| Lab Sample ID     | Client Sample ID       | (77-120)                                       | (73-120) | (75-123) | (80-120) |  |  |  |  |
| LCS 480-723561/6  | Lab Control Sample     | 112                                            | 101      | 106      | 110      |  |  |  |  |
| LCSD 480-723561/7 | Lab Control Sample Dup | 112                                            | 101      | 106      | 109      |  |  |  |  |
| MB 480-723561/9   | Method Blank           | 109                                            | 104      | 110      | 109      |  |  |  |  |
| Surrogate Legend  |                        |                                                |          |          |          |  |  |  |  |

Surrogate Legent

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: WQ Prep Type: Total/NA

|               |                  | Percent Surrogate Recovery (A |          |          |          |  |  |  |  |
|---------------|------------------|-------------------------------|----------|----------|----------|--|--|--|--|
|               |                  | DCA                           | BFB      | DBFM     | TOL      |  |  |  |  |
| Lab Sample ID | Client Sample ID | (77-120)                      | (73-120) | (75-123) | (80-120) |  |  |  |  |
| 480-222956-11 | DUP-20240829     | 108                           | 104      | 108      | 110      |  |  |  |  |
| 480-222956-12 | TRIP BLANK       | 109                           | 103      | 111      | 112      |  |  |  |  |

**Surrogate Legend** 

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

**Eurofins Buffalo** 

Page 19 of 38

2

Job ID: 480-222956-1

7

10

12

Ic

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

Method: 8270D LL - Semivolatile Organic Compounds by GC/MS - Low Level

**Matrix: Ground Water** Prep Type: Total/NA

|                  |                  |          | Pe       | ercent Surrogate | Recovery (Acceptance Limits) |
|------------------|------------------|----------|----------|------------------|------------------------------|
|                  |                  | FBP      | NBZ      | TPHd14           |                              |
| Lab Sample ID    | Client Sample ID | (37-120) | (26-120) | (64-127)         |                              |
| 480-222956-1     | PRMW-1S          | 92       | 81       | 106              |                              |
| 480-222956-2     | PRMW-2S          | 94       | 80       | 105              |                              |
| 480-222956-3     | PRMW-2D          | 99       | 77       | 107              |                              |
| 480-222956-4     | PRMW-3S          | 96       | 81       | 110              |                              |
| 480-222956-4 MS  | PRMW-3S          | 94       | 91       | 92               |                              |
| 480-222956-4 MSD | PRMW-3S          | 93       | 87       | 90               |                              |
| 480-222956-5     | PRMW-3D          | 88       | 75       | 104              |                              |
| 480-222956-6     | PRMW-4S          | 94       | 82       | 106              |                              |
| 480-222956-7     | PRMW-5S          | 56       | 48       | 72               |                              |
| 480-222956-8     | PRMW-5D          | 74       | 59       | 104              |                              |
| 480-222956-9     | PRMW-6S          | 51       | 44       | 91               |                              |
| 480-222956-10    | PRMW-6D          | 54       | 47       | 103              |                              |
| Surrogate Legend |                  |          |          |                  |                              |

FBP = 2-Fluorobiphenyl

NBZ = Nitrobenzene-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

# Method: 8270D LL - Semivolatile Organic Compounds by GC/MS - Low Level

**Matrix: Water** Prep Type: Total/NA

|                    |                    |          | Percent Surrogate Recovery (Ad |          |  |  |  |  |  |
|--------------------|--------------------|----------|--------------------------------|----------|--|--|--|--|--|
|                    |                    | FBP      | NBZ                            | TPHd14   |  |  |  |  |  |
| Lab Sample ID      | Client Sample ID   | (37-120) | (26-120)                       | (64-127) |  |  |  |  |  |
| LCS 480-723663/2-A | Lab Control Sample | 102      | 94                             | 99       |  |  |  |  |  |
| MB 480-723663/1-A  | Method Blank       | 95       | 79                             | 107      |  |  |  |  |  |
| Surrogate Legend   |                    |          |                                |          |  |  |  |  |  |

FBP = 2-Fluorobiphenyl NBZ = Nitrobenzene-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

# Method: 8270D LL - Semivolatile Organic Compounds by GC/MS - Low Level

**Matrix: WQ** Prep Type: Total/NA

|               |                  |          | Pe       | ercent Surro | ogate Recovery (Acceptance Limits) |
|---------------|------------------|----------|----------|--------------|------------------------------------|
|               |                  | FBP      | NBZ      | TPHd14       |                                    |
| Lab Sample ID | Client Sample ID | (37-120) | (26-120) | (64-127)     |                                    |
| 480-222956-11 | DUP-20240829     | 57       | 50       | 96           |                                    |

**Surrogate Legend** 

FBP = 2-Fluorobiphenyl

NBZ = Nitrobenzene-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

**Eurofins Buffalo** 

Page 20 of 38

# **QC Sample Results**

Client: New York State Electric & Gas

Lab Sample ID: MB 480-723561/9

Project/Site: NYSEG Former MGP Site - Penn Yan

Method: 8260C - Volatile Organic Compounds by GC/MS

**Client Sample ID: Method Blank** 

Prep Type: Total/NA

Job ID: 480-222956-1

**Matrix: Water** Analysis Batch: 723561

|                | MB     | MB        |     |      |      |   |          |                |         |
|----------------|--------|-----------|-----|------|------|---|----------|----------------|---------|
| Analyte        | Result | Qualifier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| Benzene        | ND     |           | 1.0 | 0.41 | ug/L |   |          | 08/29/24 20:34 | 1       |
| Ethylbenzene   | ND     |           | 1.0 | 0.74 | ug/L |   |          | 08/29/24 20:34 | 1       |
| Toluene        | ND     |           | 1.0 | 0.51 | ug/L |   |          | 08/29/24 20:34 | 1       |
| Xylenes, Total | ND     |           | 2.0 | 0.66 | ug/L |   |          | 08/29/24 20:34 | 1       |
|                |        |           |     |      |      |   |          |                |         |

|                              | MB MB               |          |          |                |         |
|------------------------------|---------------------|----------|----------|----------------|---------|
| Surrogate                    | %Recovery Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 109                 | 77 - 120 |          | 08/29/24 20:34 | 1       |
| 4-Bromofluorobenzene (Surr)  | 104                 | 73 - 120 |          | 08/29/24 20:34 | 1       |
| Dibromofluoromethane (Surr)  | 110                 | 75 - 123 |          | 08/29/24 20:34 | 1       |
| Toluene-d8 (Surr)            | 109                 | 80 - 120 |          | 08/29/24 20:34 | 1       |

Lab Sample ID: LCS 480-723561/6 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA** 

Analysis Batch: 723561

|                | Spike | LCS    | LCS       |      |   |      | %Rec     |  |
|----------------|-------|--------|-----------|------|---|------|----------|--|
| Analyte        | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Benzene        | 25.0  | 24.0   |           | ug/L |   | 96   | 71 - 124 |  |
| Ethylbenzene   | 25.0  | 23.6   |           | ug/L |   | 94   | 77 - 123 |  |
| Toluene        | 25.0  | 24.1   |           | ug/L |   | 96   | 80 - 122 |  |
| Xylenes, Total | 50.0  | 47.5   |           | ug/L |   | 95   | 76 - 122 |  |

|                              | LCS       | LCS       |          |
|------------------------------|-----------|-----------|----------|
| Surrogate                    | %Recovery | Qualifier | Limits   |
| 1,2-Dichloroethane-d4 (Surr) | 112       |           | 77 - 120 |
| 4-Bromofluorobenzene (Surr)  | 101       |           | 73 - 120 |
| Dibromofluoromethane (Surr)  | 106       |           | 75 - 123 |
| Toluene-d8 (Surr)            | 110       |           | 80 - 120 |

Lab Sample ID: LCSD 480-723561/7 **Client Sample ID: Lab Control Sample Dup Matrix: Water** Prep Type: Total/NA

Analysis Batch: 723561

|               | Spike | LCSD   | LCSD      |      |   |      | %Rec     |     | RPD   |
|---------------|-------|--------|-----------|------|---|------|----------|-----|-------|
| Analyte       | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |
| Benzene       | 25.0  | 24.9   |           | ug/L |   | 100  | 71 - 124 | 4   | 13    |
| Ethylbenzene  | 25.0  | 24.9   |           | ug/L |   | 99   | 77 - 123 | 5   | 15    |
| Toluene       | 25.0  | 24.7   |           | ug/L |   | 99   | 80 - 122 | 2   | 15    |
| Xvlenes Total | 50.0  | 48.5   |           | ua/l |   | 97   | 76 - 122 | 2   | 16    |

|                              | LCSD      | LCSD      |          |
|------------------------------|-----------|-----------|----------|
| Surrogate                    | %Recovery | Qualifier | Limits   |
| 1,2-Dichloroethane-d4 (Surr) | 112       |           | 77 - 120 |
| 4-Bromofluorobenzene (Surr)  | 101       |           | 73 - 120 |
| Dibromofluoromethane (Surr)  | 106       |           | 75 - 123 |
| Toluene-d8 (Surr)            | 109       |           | 80 - 120 |

**Eurofins Buffalo** 

## QC Sample Results

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-222956-4 MS

**Matrix: Ground Water** Analysis Batch: 723561 Client Sample ID: PRMW-3S **Prep Type: Total/NA** 

Job ID: 480-222956-1

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier %Rec Limits Unit Benzene ND 25.0 26.9 ug/L 108 71 - 124 ug/L Ethylbenzene ND 25.0 28.0 112 77 - 123 ND 25.0 27.6 80 - 122 Toluene ug/L 110 Xylenes, Total ND 50.0 55.8 112 76 - 122 ug/L

MS MS Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 77 - 120 104 99 4-Bromofluorobenzene (Surr) 73 - 120 Dibromofluoromethane (Surr) 104 75 - 123 Toluene-d8 (Surr) 110 80 - 120

Lab Sample ID: 480-222956-4 MSD Client Sample ID: PRMW-3S Prep Type: Total/NA

**Matrix: Ground Water** Analysis Batch: 723561

Sample Sample Spike MSD MSD %Rec **RPD** Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit Benzene ND 25.0 27.2 ug/L 109 71 - 124 13 Ethylbenzene ND 25.0 26.8 107 77 - 123 ug/L 4 15 ND 25.0 27.0 108 80 - 122 15 Toluene ug/L 2 ND 50.0 Xylenes, Total 53.6 ug/L 107 76 - 122

MSD MSD Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 107 77 - 120 4-Bromofluorobenzene (Surr) 101 73 - 120 Dibromofluoromethane (Surr) 109 75 - 123 112 80 - 120 Toluene-d8 (Surr)

Method: 8270D LL - Semivolatile Organic Compounds by GC/MS - Low Level

Lab Sample ID: MB 480-723663/1-A

**Matrix: Water** 

**Analysis Batch: 723772** 

Client Sample ID: Method Blank Prep Type: Total/NA **Prep Batch: 723663** 

|                        | MB     | MB        |      |       |      |   |                |                |         |
|------------------------|--------|-----------|------|-------|------|---|----------------|----------------|---------|
| Analyte                | Result | Qualifier | RL   | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Acenaphthene           | ND     |           | 0.50 | 0.036 | ug/L |   | 08/30/24 13:14 | 09/03/24 11:02 | 1       |
| Acenaphthylene         | ND     |           | 0.30 | 0.056 | ug/L |   | 08/30/24 13:14 | 09/03/24 11:02 | 1       |
| Anthracene             | ND     |           | 0.50 | 0.034 | ug/L |   | 08/30/24 13:14 | 09/03/24 11:02 | 1       |
| Benzo[a]anthracene     | ND     |           | 0.30 | 0.034 | ug/L |   | 08/30/24 13:14 | 09/03/24 11:02 | 1       |
| Benzo[a]pyrene         | ND     |           | 0.18 | 0.13  | ug/L |   | 08/30/24 13:14 | 09/03/24 11:02 | 1       |
| Benzo[b]fluoranthene   | ND     |           | 0.30 | 0.063 | ug/L |   | 08/30/24 13:14 | 09/03/24 11:02 | 1       |
| Benzo[g,h,i]perylene   | ND     |           | 0.50 | 0.058 | ug/L |   | 08/30/24 13:14 | 09/03/24 11:02 | 1       |
| Benzo[k]fluoranthene   | ND     |           | 0.30 | 0.070 | ug/L |   | 08/30/24 13:14 | 09/03/24 11:02 | 1       |
| Chrysene               | ND     |           | 0.50 | 0.074 | ug/L |   | 08/30/24 13:14 | 09/03/24 11:02 | 1       |
| Dibenz(a,h)anthracene  | ND     |           | 0.50 | 0.070 | ug/L |   | 08/30/24 13:14 | 09/03/24 11:02 | 1       |
| Fluoranthene           | ND     |           | 0.50 | 0.080 | ug/L |   | 08/30/24 13:14 | 09/03/24 11:02 | 1       |
| Fluorene               | ND     |           | 0.50 | 0.058 | ug/L |   | 08/30/24 13:14 | 09/03/24 11:02 | 1       |
| Indeno[1,2,3-cd]pyrene | ND     |           | 0.50 | 0.11  | ug/L |   | 08/30/24 13:14 | 09/03/24 11:02 | 1       |
| Naphthalene            | ND     |           | 1.0  | 0.064 | ug/L |   | 08/30/24 13:14 | 09/03/24 11:02 | 1       |

**Eurofins Buffalo** 

9/9/2024

Page 22 of 38

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

# Method: 8270D LL - Semivolatile Organic Compounds by GC/MS - Low Level (Continued)

Lab Sample ID: MB 480-723663/1-A

Lab Sample ID: LCS 480-723663/2-A

**Matrix: Water** 

**Matrix: Water** 

**Analysis Batch: 723772** 

Client Sample ID: Method Blank **Prep Type: Total/NA** 

**Prep Batch: 723663** 

Job ID: 480-222956-1

| Analyte      | Result | Qualifier | RL   | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|--------------|--------|-----------|------|-------|------|---|----------------|----------------|---------|
| Phenanthrene | ND     |           | 0.20 | 0.062 | ug/L |   | 08/30/24 13:14 | 09/03/24 11:02 | 1       |
| Pyrene       | ND     |           | 0.50 | 0.076 | ug/L |   | 08/30/24 13:14 | 09/03/24 11:02 | 1       |

MB MB

|                        | IVID      | IVID      |          |                |                |         |
|------------------------|-----------|-----------|----------|----------------|----------------|---------|
| Surrogate              | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 95        |           | 37 - 120 | 08/30/24 13:14 | 09/03/24 11:02 | 1       |
| Nitrobenzene-d5 (Surr) | 79        |           | 26 - 120 | 08/30/24 13:14 | 09/03/24 11:02 | 1       |
| p-Terphenyl-d14 (Surr) | 107       |           | 64 - 127 | 08/30/24 13:14 | 09/03/24 11:02 | 1       |

**Client Sample ID: Lab Control Sample** 

**Prep Type: Total/NA** 

| Analysis Batch: 723772 | • "   |        |           |      |   |      | Prep Batch: 72366 |
|------------------------|-------|--------|-----------|------|---|------|-------------------|
|                        | Spike | LCS    | LCS       |      |   |      | %Rec              |
| Analyte                | Added | Result | Qualifier | Unit | D | %Rec | Limits            |
| Acenaphthene           | 8.00  | 9.05   |           | ug/L |   | 113  | 62 - 120          |
| Acenaphthylene         | 8.00  | 8.69   |           | ug/L |   | 109  | 57 - 120          |
| Anthracene             | 8.00  | 8.73   |           | ug/L |   | 109  | 65 - 123          |
| Benzo[a]anthracene     | 8.00  | 8.46   |           | ug/L |   | 106  | 77 - 123          |
| Benzo[a]pyrene         | 8.00  | 9.02   |           | ug/L |   | 113  | 72 - 120          |
| Benzo[b]fluoranthene   | 8.00  | 9.70   |           | ug/L |   | 121  | 73 - 123          |
| Benzo[g,h,i]perylene   | 8.00  | 9.60   |           | ug/L |   | 120  | 48 - 150          |
| Benzo[k]fluoranthene   | 8.00  | 9.01   |           | ug/L |   | 113  | 68 - 120          |
| Chrysene               | 8.00  | 8.48   |           | ug/L |   | 106  | 75 - 120          |
| Dibenz(a,h)anthracene  | 8.00  | 9.80   |           | ug/L |   | 122  | 54 - 147          |
| Fluoranthene           | 8.00  | 9.03   |           | ug/L |   | 113  | 74 - 133          |
| Fluorene               | 8.00  | 9.08   |           | ug/L |   | 113  | 64 - 120          |
| Indeno[1,2,3-cd]pyrene | 8.00  | 9.77   |           | ug/L |   | 122  | 55 - 150          |
| Naphthalene            | 8.00  | 7.52   |           | ug/L |   | 94   | 40 - 138          |
| Phenanthrene           | 8.00  | 9.00   |           | ug/L |   | 113  | 71 - 122          |
| Pyrene                 | 8.00  | 8.58   |           | ug/L |   | 107  | 65 - 126          |
|                        |       |        |           |      |   |      |                   |

LCS LCS

| Surrogate              | %Recovery Qualifier | Limits   |
|------------------------|---------------------|----------|
| 2-Fluorobiphenyl       | 102                 | 37 - 120 |
| Nitrobenzene-d5 (Surr) | 94                  | 26 - 120 |
| p-Terphenvl-d14 (Surr) | 99                  | 64 - 127 |

Lab Sample ID: 480-222956-4 MS

**Matrix: Ground Water Analysis Batch: 723772**  **Client Sample ID: PRMW-3S** 

Prep Type: Total/NA **Prep Batch: 723663** 

|                      | Sample Sam | ıple Spike   | MS     | MS        |      |   |      | %Rec     |  |
|----------------------|------------|--------------|--------|-----------|------|---|------|----------|--|
| Analyte              | Result Qua | lifier Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Acenaphthene         | ND         | 7.62         | 8.04   |           | ug/L |   | 106  | 35 - 125 |  |
| Acenaphthylene       | ND         | 7.62         | 7.70   |           | ug/L |   | 101  | 43 - 141 |  |
| Anthracene           | ND         | 7.62         | 8.10   |           | ug/L |   | 106  | 65 - 123 |  |
| Benzo[a]anthracene   | ND         | 7.62         | 7.77   |           | ug/L |   | 102  | 68 - 132 |  |
| Benzo[a]pyrene       | ND         | 7.62         | 7.90   |           | ug/L |   | 104  | 60 - 137 |  |
| Benzo[b]fluoranthene | ND         | 7.62         | 8.72   |           | ug/L |   | 114  | 68 - 129 |  |
| Benzo[g,h,i]perylene | ND         | 7.62         | 7.92   |           | ug/L |   | 104  | 48 - 150 |  |
| Benzo[k]fluoranthene | ND         | 7.62         | 8.64   |           | ug/L |   | 113  | 55 - 142 |  |

**Eurofins Buffalo** 

Page 23 of 38

# **QC Sample Results**

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

Method: 8270D LL - Semivolatile Organic Compounds by GC/MS - Low Level (Continued)

Lab Sample ID: 480-222956-4 MS

Lab Sample ID: 480-222956-4 MSD

**Matrix: Ground Water** 

**Matrix: Ground Water Analysis Batch: 723772**  **Client Sample ID: PRMW-3S** 

**Prep Type: Total/NA Prep Batch: 723663** 

Job ID: 480-222956-1

|                        | Sample Sample   | e Spike  | MS     | MS        |      |   |      | %Rec     |  |
|------------------------|-----------------|----------|--------|-----------|------|---|------|----------|--|
| Analyte                | Result Qualific | er Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Chrysene               | ND              | 7.62     | 7.58   |           | ug/L |   | 99   | 66 - 144 |  |
| Dibenz(a,h)anthracene  | ND              | 7.62     | 8.21   |           | ug/L |   | 108  | 54 - 138 |  |
| Fluoranthene           | ND              | 7.62     | 8.67   |           | ug/L |   | 114  | 63 - 146 |  |
| Fluorene               | ND              | 7.62     | 8.10   |           | ug/L |   | 106  | 54 - 137 |  |
| Indeno[1,2,3-cd]pyrene | ND              | 7.62     | 8.13   |           | ug/L |   | 107  | 55 - 140 |  |
| Naphthalene            | ND              | 7.62     | 6.84   |           | ug/L |   | 90   | 25 - 138 |  |
| Phenanthrene           | ND              | 7.62     | 8.15   |           | ug/L |   | 107  | 60 - 143 |  |
| Pyrene                 | ND              | 7.62     | 7.72   |           | ug/L |   | 101  | 65 - 139 |  |

MS MS

| Surrogate              | %Recovery Qualifie | r Limits |
|------------------------|--------------------|----------|
| 2-Fluorobiphenyl       | 94                 | 37 - 120 |
| Nitrobenzene-d5 (Surr) | 91                 | 26 - 120 |
| p-Terphenyl-d14 (Surr) | 92                 | 64 - 127 |

**Client Sample ID: PRMW-3S** 

**Prep Type: Total/NA** 

| Analysis Batch: 723772 |        |           |       |        |           |      |   |      | Prep Ba  | itch: 72 | 23663 |
|------------------------|--------|-----------|-------|--------|-----------|------|---|------|----------|----------|-------|
|                        | Sample | Sample    | Spike | MSD    | MSD       |      |   |      | %Rec     |          | RPD   |
| Analyte                | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD      | Limit |
| Acenaphthene           | ND     |           | 7.62  | 7.93   |           | ug/L |   | 104  | 35 - 125 | 1        | 24    |
| Acenaphthylene         | ND     |           | 7.62  | 7.68   |           | ug/L |   | 101  | 43 - 141 | 0        | 18    |
| Anthracene             | ND     |           | 7.62  | 7.92   |           | ug/L |   | 104  | 65 - 123 | 2        | 15    |
| Benzo[a]anthracene     | ND     |           | 7.62  | 7.97   |           | ug/L |   | 105  | 68 - 132 | 2        | 15    |
| Benzo[a]pyrene         | ND     |           | 7.62  | 8.02   |           | ug/L |   | 105  | 60 - 137 | 2        | 15    |
| Benzo[b]fluoranthene   | ND     |           | 7.62  | 8.55   |           | ug/L |   | 112  | 68 - 129 | 2        | 15    |
| Benzo[g,h,i]perylene   | ND     |           | 7.62  | 7.99   |           | ug/L |   | 105  | 48 - 150 | 1        | 15    |
| Benzo[k]fluoranthene   | ND     |           | 7.62  | 8.88   |           | ug/L |   | 117  | 55 - 142 | 3        | 22    |
| Chrysene               | ND     |           | 7.62  | 7.76   |           | ug/L |   | 102  | 66 - 144 | 2        | 15    |
| Dibenz(a,h)anthracene  | ND     |           | 7.62  | 8.20   |           | ug/L |   | 108  | 54 - 138 | 0        | 15    |
| Fluoranthene           | ND     |           | 7.62  | 8.45   |           | ug/L |   | 111  | 63 - 146 | 3        | 15    |
| Fluorene               | ND     |           | 7.62  | 8.12   |           | ug/L |   | 107  | 54 - 137 | 0        | 15    |
| Indeno[1,2,3-cd]pyrene | ND     |           | 7.62  | 8.20   |           | ug/L |   | 108  | 55 - 140 | 1        | 15    |
| Naphthalene            | ND     |           | 7.62  | 6.69   |           | ug/L |   | 88   | 25 - 138 | 2        | 29    |
| Phenanthrene           | ND     |           | 7.62  | 8.13   |           | ug/L |   | 107  | 60 - 143 | 0        | 15    |
| Pyrene                 | ND     |           | 7.62  | 7.75   |           | ug/L |   | 102  | 65 - 139 | 0        | 19    |

MSD MSD

| Surrogate              | %Recovery | Qualifier | Limits   |
|------------------------|-----------|-----------|----------|
| 2-Fluorobiphenyl       | 93        |           | 37 - 120 |
| Nitrobenzene-d5 (Surr) | 87        |           | 26 - 120 |
| p-Terphenyl-d14 (Surr) | 90        |           | 64 - 127 |

Job ID: 480-222956-1

Prep Type: Total/NA

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

| Method: 9012B - Cyanide, | Total and/or Amenable |
|--------------------------|-----------------------|
|--------------------------|-----------------------|

Lab Sample ID: MB 480-723873/103 Client Sample ID: Method Blank

**Matrix: Water** 

**Analysis Batch: 723873** 

MB MB

Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte D Prepared 0.010 09/03/24 13:12 Cyanide, Total ND 0.0041 mg/L

Lab Sample ID: MB 480-723873/47 Client Sample ID: Method Blank Prep Type: Total/NA

**Matrix: Water** 

**Analysis Batch: 723873** 

MB MB Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Analyte 0.010 09/03/24 10:06 Cyanide, Total ND 0.0041 mg/L

Lab Sample ID: HLCS 480-723873/22 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA** 

**Analysis Batch: 723873** 

Spike HLCS HLCS %Rec Added Result Qualifier Limits Analyte Unit %Rec Cyanide, Total 0.400 0.401 100 90 - 110 mg/L

Lab Sample ID: LCS 480-723873/104 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

**Matrix: Water** 

**Analysis Batch: 723873** 

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit %Rec Limits Cyanide, Total 0.250 0.230 90 - 110 mg/L

Lab Sample ID: LCS 480-723873/23

**Matrix: Water** 

**Analysis Batch: 723873** 

LCS LCS Spike %Rec Added Limits Analyte Result Qualifier Unit %Rec Cyanide, Total 0.250 0.250 100 90 - 110 mg/L

Lab Sample ID: 480-222956-8 MS

**Matrix: Ground Water** 

**Analysis Batch: 723873** 

Sample Sample Spike MS MS %Rec Result Qualifier Added Result Qualifier Analyte Unit D %Rec Limits 0.100 0.0905 Cyanide, Total ND mg/L 91 90 - 110

Lab Sample ID: MB 480-724217/47

**Matrix: Water** 

**Analysis Batch: 724217** 

MB MB

Result Qualifier RL MDL Unit Prepared Dil Fac Analyte Analyzed 0.010 09/06/24 09:55 Cyanide, Total ND 0.0041 mg/L

Lab Sample ID: MB 480-724217/75 Client Sample ID: Method Blank

**Matrix: Water** 

**Analysis Batch: 724217** 

MB MB MDL Unit Result Qualifier RL Analyte D Prepared Analyzed Dil Fac Cyanide, Total 0.010 09/06/24 11:29 ND 0.0041 mg/L

Prep Type: Total/NA

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: PRMW-5D

Client Sample ID: Method Blank

Prep Type: Total/NA

**Eurofins Buffalo** 

Job ID: 480-222956-1

Project/Site: NYSEG Former MGP Site - Penn Yan

Client: New York State Electric & Gas

| Method: 9012B - Cyanide, | Total and/or Amenable |
|--------------------------|-----------------------|
|--------------------------|-----------------------|

| Lab Sample ID: HLCS 480-724217/22 | Client Sample ID: Lab Control Sample |
|-----------------------------------|--------------------------------------|
| Matrix: Water                     | Prep Type: Total/NA                  |

**Analysis Batch: 724217** 

L

Spike HLCS HLCS %Rec Added Result Qualifier %Rec Limits Analyte Unit 0.400 Cyanide, Total 0.398 mg/L 99 90 - 110

Lab Sample ID: LCS 480-724217/48 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

**Analysis Batch: 724217** 

Spike LCS LCS %Rec Added Result Qualifier D %Rec Limits Analyte Unit 0.250 0.254 ^+ 90 - 110 Cyanide, Total mg/L 102

Lab Sample ID: LCS 480-724217/76 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

**Matrix: Water** 

**Analysis Batch: 724217** 

Spike LCS LCS %Rec Added Limits Analyte Result Qualifier Unit %Rec Cyanide, Total 0.250 0.261 105 90 - 110 mg/L

Lab Sample ID: 480-222956-3 MS Client Sample ID: PRMW-2D **Matrix: Ground Water Prep Type: Total/NA** 

**Analysis Batch: 724217** 

Spike MS MS %Rec Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Cyanide, Total ND ^+ 0.100 0.102 ^+ mg/L 102 90 - 110

Lab Sample ID: 480-222956-4 MS Client Sample ID: PRMW-3S **Matrix: Ground Water** Prep Type: Total/NA

**Analysis Batch: 724217** 

Sample Sample Spike MS MS %Rec Result Qualifier Added Limits Analyte Result Qualifier Unit %Rec ND 0.100 96 90 - 110 Cyanide, Total 0.0961 mg/L

Lab Sample ID: 480-222956-4 MSD Client Sample ID: PRMW-3S Prep Type: Total/NA

**Matrix: Ground Water Analysis Batch: 724217** 

Sample Sample Spike MSD MSD %Rec **RPD** Result Qualifier Added Limits **RPD** Analyte Result Qualifier Unit D %Rec Limit 0.100 0.0992 Cyanide, Total ND mg/L 99 90 - 110

Lab Sample ID: MB 480-724412/21 Client Sample ID: Method Blank Prep Type: Total/NA

**Matrix: Water** 

**Analysis Batch: 724412** 

MB MB Result Qualifier RL MDL Unit Prepared Analyte Analyzed Dil Fac 0.010 Cyanide, Total ND 0.0041 mg/L 09/09/24 09:09

Lab Sample ID: HLCS 480-724412/22 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

**Matrix: Water** 

**Analysis Batch: 724412** 

Spike HLCS HLCS %Rec Added Analyte Result Qualifier Unit %Rec Limits Cyanide, Total 0.400 90 - 110 0.400 mg/L 100

**Eurofins Buffalo** 

# **QC Sample Results**

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

Job ID: 480-222956-1

# Method: 9012B - Cyanide, Total and/or Amenable

Lab Sample ID: LCS 480-724412/23 **Client Sample ID: Lab Control Sample Prep Type: Total/NA** 

**Matrix: Water** 

Analysis Batch: 724412

| Alialysis Datcii. 124412 |       |        |           |      |   |      |          |  |
|--------------------------|-------|--------|-----------|------|---|------|----------|--|
|                          | Spike | LCS    | LCS       |      |   |      | %Rec     |  |
| Analyte                  | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Cyanide, Total           | 0.250 | 0.245  |           | mg/L |   | 98   | 90 - 110 |  |

Lab Sample ID: 480-222956-2 MS Client Sample ID: PRMW-2S Prep Type: Total/NA

**Matrix: Ground Water** 

**Analysis Batch: 724412** 

|               | Sample | Sample    | Spike | MS     | MS        |      |   |      | %Rec     |  |
|---------------|--------|-----------|-------|--------|-----------|------|---|------|----------|--|
| Analyte       | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Cvanide Total | 0 11   | F1        | 0.100 | 0.259  | F1        | ma/l |   | 146  | 90 - 110 |  |

# **QC Association Summary**

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

# **GC/MS VOA**

#### Analysis Batch: 723561

| Lab Sample ID     | Client Sample ID       | Prep Type | Matrix              | Method | Prep Batch |
|-------------------|------------------------|-----------|---------------------|--------|------------|
| 480-222956-1      | PRMW-1S                | Total/NA  | Ground Water        | 8260C  |            |
| 480-222956-2      | PRMW-2S                | Total/NA  | <b>Ground Water</b> | 8260C  |            |
| 480-222956-3      | PRMW-2D                | Total/NA  | <b>Ground Water</b> | 8260C  |            |
| 480-222956-4      | PRMW-3S                | Total/NA  | Ground Water        | 8260C  |            |
| 480-222956-5      | PRMW-3D                | Total/NA  | <b>Ground Water</b> | 8260C  |            |
| 480-222956-6      | PRMW-4S                | Total/NA  | <b>Ground Water</b> | 8260C  |            |
| 480-222956-7      | PRMW-5S                | Total/NA  | Ground Water        | 8260C  |            |
| 480-222956-8      | PRMW-5D                | Total/NA  | Ground Water        | 8260C  |            |
| 480-222956-9      | PRMW-6S                | Total/NA  | <b>Ground Water</b> | 8260C  |            |
| 480-222956-10     | PRMW-6D                | Total/NA  | Ground Water        | 8260C  |            |
| 480-222956-11     | DUP-20240829           | Total/NA  | WQ                  | 8260C  |            |
| 480-222956-12     | TRIP BLANK             | Total/NA  | WQ                  | 8260C  |            |
| MB 480-723561/9   | Method Blank           | Total/NA  | Water               | 8260C  |            |
| LCS 480-723561/6  | Lab Control Sample     | Total/NA  | Water               | 8260C  |            |
| LCSD 480-723561/7 | Lab Control Sample Dup | Total/NA  | Water               | 8260C  |            |
| 480-222956-4 MS   | PRMW-3S                | Total/NA  | Ground Water        | 8260C  |            |
| 480-222956-4 MSD  | PRMW-3S                | Total/NA  | <b>Ground Water</b> | 8260C  |            |

#### GC/MS Semi VOA

#### **Prep Batch: 723663**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix              | Method | Prep Batch |
|--------------------|--------------------|-----------|---------------------|--------|------------|
| 480-222956-1       | PRMW-1S            | Total/NA  | Ground Water        | 3510C  |            |
| 480-222956-2       | PRMW-2S            | Total/NA  | <b>Ground Water</b> | 3510C  |            |
| 480-222956-3       | PRMW-2D            | Total/NA  | <b>Ground Water</b> | 3510C  |            |
| 480-222956-4       | PRMW-3S            | Total/NA  | Ground Water        | 3510C  |            |
| 480-222956-5       | PRMW-3D            | Total/NA  | <b>Ground Water</b> | 3510C  |            |
| 480-222956-6       | PRMW-4S            | Total/NA  | <b>Ground Water</b> | 3510C  |            |
| 480-222956-7       | PRMW-5S            | Total/NA  | Ground Water        | 3510C  |            |
| 480-222956-8       | PRMW-5D            | Total/NA  | <b>Ground Water</b> | 3510C  |            |
| 480-222956-9       | PRMW-6S            | Total/NA  | <b>Ground Water</b> | 3510C  |            |
| 480-222956-10      | PRMW-6D            | Total/NA  | Ground Water        | 3510C  |            |
| 480-222956-11      | DUP-20240829       | Total/NA  | WQ                  | 3510C  |            |
| MB 480-723663/1-A  | Method Blank       | Total/NA  | Water               | 3510C  |            |
| LCS 480-723663/2-A | Lab Control Sample | Total/NA  | Water               | 3510C  |            |
| 480-222956-4 MS    | PRMW-3S            | Total/NA  | <b>Ground Water</b> | 3510C  |            |
| 480-222956-4 MSD   | PRMW-3S            | Total/NA  | <b>Ground Water</b> | 3510C  |            |

#### **Analysis Batch: 723772**

| Lab Sample ID | Client Sample ID | Prep Type | Matrix              | Method   | Prep Batch |
|---------------|------------------|-----------|---------------------|----------|------------|
| 480-222956-1  | PRMW-1S          | Total/NA  | Ground Water        | 8270D LL | 723663     |
| 480-222956-2  | PRMW-2S          | Total/NA  | <b>Ground Water</b> | 8270D LL | 723663     |
| 480-222956-3  | PRMW-2D          | Total/NA  | <b>Ground Water</b> | 8270D LL | 723663     |
| 480-222956-4  | PRMW-3S          | Total/NA  | Ground Water        | 8270D LL | 723663     |
| 480-222956-5  | PRMW-3D          | Total/NA  | <b>Ground Water</b> | 8270D LL | 723663     |
| 480-222956-6  | PRMW-4S          | Total/NA  | <b>Ground Water</b> | 8270D LL | 723663     |
| 480-222956-7  | PRMW-5S          | Total/NA  | Ground Water        | 8270D LL | 723663     |
| 480-222956-8  | PRMW-5D          | Total/NA  | <b>Ground Water</b> | 8270D LL | 723663     |
| 480-222956-9  | PRMW-6S          | Total/NA  | <b>Ground Water</b> | 8270D LL | 723663     |
| 480-222956-10 | PRMW-6D          | Total/NA  | Ground Water        | 8270D LL | 723663     |
| 480-222956-11 | DUP-20240829     | Total/NA  | WQ                  | 8270D LL | 723663     |

Eurofins Buffalo

# **QC Association Summary**

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

# GC/MS Semi VOA (Continued)

#### **Analysis Batch: 723772 (Continued)**

| Lab Sample ID    | Client Sample ID       | Prep Type | Matrix              | Method   | Prep Batch |
|------------------|------------------------|-----------|---------------------|----------|------------|
| MB 480-723663/1- | -A Method Blank        | Total/NA  | Water               | 8270D LL | 723663     |
| LCS 480-723663/2 | 2-A Lab Control Sample | Total/NA  | Water               | 8270D LL | 723663     |
| 480-222956-4 MS  | PRMW-3S                | Total/NA  | <b>Ground Water</b> | 8270D LL | 723663     |
| 480-222956-4 MSI | D PRMW-3S              | Total/NA  | Ground Water        | 8270D LL | 723663     |

#### **General Chemistry**

#### **Analysis Batch: 723873**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix              | Method | Prep Batch |
|--------------------|--------------------|-----------|---------------------|--------|------------|
| 480-222956-8       | PRMW-5D            | Total/NA  | Ground Water        | 9012B  |            |
| 480-222956-9       | PRMW-6S            | Total/NA  | <b>Ground Water</b> | 9012B  |            |
| 480-222956-10      | PRMW-6D            | Total/NA  | <b>Ground Water</b> | 9012B  |            |
| 480-222956-11      | DUP-20240829       | Total/NA  | WQ                  | 9012B  |            |
| MB 480-723873/103  | Method Blank       | Total/NA  | Water               | 9012B  |            |
| MB 480-723873/47   | Method Blank       | Total/NA  | Water               | 9012B  |            |
| HLCS 480-723873/22 | Lab Control Sample | Total/NA  | Water               | 9012B  |            |
| LCS 480-723873/104 | Lab Control Sample | Total/NA  | Water               | 9012B  |            |
| LCS 480-723873/23  | Lab Control Sample | Total/NA  | Water               | 9012B  |            |
| 480-222956-8 MS    | PRMW-5D            | Total/NA  | Ground Water        | 9012B  |            |

#### **Analysis Batch: 724217**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix              | Method | Prep Batch |
|--------------------|--------------------|-----------|---------------------|--------|------------|
| 480-222956-1       | PRMW-1S            | Total/NA  | Ground Water        | 9012B  | _          |
| 480-222956-3       | PRMW-2D            | Total/NA  | <b>Ground Water</b> | 9012B  |            |
| 480-222956-4       | PRMW-3S            | Total/NA  | <b>Ground Water</b> | 9012B  |            |
| 480-222956-5       | PRMW-3D            | Total/NA  | Ground Water        | 9012B  |            |
| 480-222956-6       | PRMW-4S            | Total/NA  | <b>Ground Water</b> | 9012B  |            |
| MB 480-724217/47   | Method Blank       | Total/NA  | Water               | 9012B  |            |
| MB 480-724217/75   | Method Blank       | Total/NA  | Water               | 9012B  |            |
| HLCS 480-724217/22 | Lab Control Sample | Total/NA  | Water               | 9012B  |            |
| LCS 480-724217/48  | Lab Control Sample | Total/NA  | Water               | 9012B  |            |
| LCS 480-724217/76  | Lab Control Sample | Total/NA  | Water               | 9012B  |            |
| 480-222956-3 MS    | PRMW-2D            | Total/NA  | <b>Ground Water</b> | 9012B  |            |
| 480-222956-4 MS    | PRMW-3S            | Total/NA  | <b>Ground Water</b> | 9012B  |            |
| 480-222956-4 MSD   | PRMW-3S            | Total/NA  | Ground Water        | 9012B  |            |

#### **Analysis Batch: 724412**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix       | Method | Prep Batch    |
|--------------------|--------------------|-----------|--------------|--------|---------------|
| 480-222956-2       | PRMW-2S            | Total/NA  | Ground Water | 9012B  | <del></del> : |
| 480-222956-7       | PRMW-5S            | Total/NA  | Ground Water | 9012B  |               |
| MB 480-724412/21   | Method Blank       | Total/NA  | Water        | 9012B  |               |
| HLCS 480-724412/22 | Lab Control Sample | Total/NA  | Water        | 9012B  |               |
| LCS 480-724412/23  | Lab Control Sample | Total/NA  | Water        | 9012B  |               |
| 480-222956-2 MS    | PRMW-2S            | Total/NA  | Ground Water | 9012B  |               |

1

Analysis

9012B

Lab Sample ID: 480-222956-1

**Matrix: Ground Water** 

Job ID: 480-222956-1

Date Collected: 08/28/24 10:40 Date Received: 08/29/24 12:52

Client Sample ID: PRMW-1S

Batch Batch Dilution Batch Prepared Method Number Analyst or Analyzed **Prep Type** Type Run **Factor** Lab Total/NA 8260C 08/30/24 00:16 Analysis 723561 AXK **EET BUF** Total/NA 723663 LSC Prep 3510C **EET BUF** 08/30/24 13:14 Total/NA Analysis 8270D LL 1 723772 JMM **EET BUF** 09/03/24 13:20

Lab Sample ID: 480-222956-2

09/06/24 10:20

**Matrix: Ground Water** 

Date Collected: 08/28/24 12:05 Date Received: 08/29/24 12:52

Client Sample ID: PRMW-2S

Total/NA

|           | Batch    | Batch    |     | Dilution | Batch  |         |         | Prepared       |
|-----------|----------|----------|-----|----------|--------|---------|---------|----------------|
| Prep Type | Type     | Method   | Run | Factor   | Number | Analyst | Lab     | or Analyzed    |
| Total/NA  | Analysis | 8260C    |     | 1        | 723561 | AXK     | EET BUF | 08/30/24 00:38 |
| Total/NA  | Prep     | 3510C    |     |          | 723663 | LSC     | EET BUF | 08/30/24 13:14 |
| Total/NA  | Analysis | 8270D LL |     | 1        | 723772 | JMM     | EET BUF | 09/03/24 13:47 |
| Total/NA  | Analysis | 9012B    |     | 1        | 724412 | CLT     | EET BUF | 09/09/24 09:23 |

Lab Sample ID: 480-222956-3 Client Sample ID: PRMW-2D

724217 CLT

**EET BUF** 

Date Collected: 08/28/24 13:25 **Matrix: Ground Water** Date Received: 08/29/24 12:52

Batch Batch Dilution Batch Prepared **Prep Type** Method Number Analyst or Analyzed Type Run **Factor** Lab Total/NA 8260C 723561 AXK 08/30/24 01:00 Analysis **EET BUF** Total/NA Prep 3510C 723663 LSC **EET BUF** 08/30/24 13:14 Total/NA Analysis 8270D LL 723772 JMM **EET BUF** 09/03/24 14:15 1 Total/NA Analysis **EET BUF** 09/06/24 10:42 9012B 1 724217 CLT

**Client Sample ID: PRMW-3S** Lab Sample ID: 480-222956-4

Date Collected: 08/28/24 12:40 **Matrix: Ground Water** Date Received: 08/29/24 12:52

|           | Batch    | Batch    |     | Dilution | Batch  |         |         | Prepared       |
|-----------|----------|----------|-----|----------|--------|---------|---------|----------------|
| Prep Type | Type     | Method   | Run | Factor   | Number | Analyst | Lab     | or Analyzed    |
| Total/NA  | Analysis | 8260C    |     | 1        | 723561 | AXK     | EET BUF | 08/30/24 01:22 |
| Total/NA  | Prep     | 3510C    |     |          | 723663 | LSC     | EET BUF | 08/30/24 13:14 |
| Total/NA  | Analysis | 8270D LL |     | 1        | 723772 | JMM     | EET BUF | 09/03/24 12:52 |
| Total/NA  | Analysis | 9012B    |     | 1        | 724217 | CLT     | EET BUF | 09/06/24 11:35 |

Client Sample ID: PRMW-3D Lab Sample ID: 480-222956-5

Date Collected: 08/28/24 14:45 **Matrix: Ground Water** Date Received: 08/29/24 12:52

|           | Batch    | Batch    |     | Dilution | Batch  |         |         | Prepared       |
|-----------|----------|----------|-----|----------|--------|---------|---------|----------------|
| Prep Type | Type     | Method   | Run | Factor   | Number | Analyst | Lab     | or Analyzed    |
| Total/NA  | Analysis | 8260C    |     | 1        | 723561 | AXK     | EET BUF | 08/30/24 01:44 |
| Total/NA  | Prep     | 3510C    |     |          | 723663 | LSC     | EET BUF | 08/30/24 13:14 |
| Total/NA  | Analysis | 8270D LL |     | 1        | 723772 | JMM     | EET BUF | 09/03/24 14:42 |
| Total/NA  | Analysis | 9012B    |     | 1        | 724217 | CLT     | EET BUF | 09/06/24 10:48 |

**Eurofins Buffalo** 

10

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

Client Sample ID: PRMW-4S

Date Collected: 08/28/24 09:20 Date Received: 08/29/24 12:52

Lab Sample ID: 480-222956-6

**Matrix: Ground Water** 

|           | Batch    | Batch    |     | Dilution | Batch  |         |         | Prepared       |
|-----------|----------|----------|-----|----------|--------|---------|---------|----------------|
| Prep Type | Type     | Method   | Run | Factor   | Number | Analyst | Lab     | or Analyzed    |
| Total/NA  | Analysis | 8260C    |     |          | 723561 | AXK     | EET BUF | 08/30/24 02:06 |
| Total/NA  | Prep     | 3510C    |     |          | 723663 | LSC     | EET BUF | 08/30/24 13:14 |
| Total/NA  | Analysis | 8270D LL |     | 1        | 723772 | JMM     | EET BUF | 09/03/24 15:10 |
| Total/NA  | Analysis | 9012B    |     | 1        | 724217 | CLT     | EET BUF | 09/06/24 10:51 |

**Client Sample ID: PRMW-5S** 

Date Collected: 08/28/24 08:35 Date Received: 08/29/24 12:52

Lab Sample ID: 480-222956-7

**Matrix: Ground Water** 

|           | Batch    | Batch    |     | Dilution | Batch  |         |         | Prepared       |
|-----------|----------|----------|-----|----------|--------|---------|---------|----------------|
| Prep Type | Type     | Method   | Run | Factor   | Number | Analyst | Lab     | or Analyzed    |
| Total/NA  | Analysis | 8260C    |     | 1        | 723561 | AXK     | EET BUF | 08/30/24 02:28 |
| Total/NA  | Prep     | 3510C    |     |          | 723663 | LSC     | EET BUF | 08/30/24 13:14 |
| Total/NA  | Analysis | 8270D LL |     | 5        | 723772 | JMM     | EET BUF | 09/03/24 15:37 |
| Total/NA  | Analysis | 9012B    |     | 1        | 724412 | CLT     | EET BUF | 09/09/24 09:29 |

Client Sample ID: PRMW-5D

Date Collected: 08/28/24 14:40 Date Received: 08/29/24 12:52

Lab Sample ID: 480-222956-8

**Matrix: Ground Water** 

Batch Batch Dilution Batch Prepared **Prep Type** Method Number Analyst or Analyzed Type Run **Factor** Total/NA 8260C 723561 AXK 08/30/24 02:50 Analysis **EET BUF** 723663 LSC 3510C 08/30/24 13:14 Total/NA Prep **EET BUF** Total/NA Analysis 8270D LL 723772 JMM **EET BUF** 09/03/24 16:05 1 Total/NA Analysis 9012B 723873 CLT **EET BUF** 09/03/24 13:18 1

Client Sample ID: PRMW-6S

Date Collected: 08/28/24 11:10 Date Received: 08/29/24 12:52

Lab Sample ID: 480-222956-9

**Matrix: Ground Water** 

|           | Batch    | Batch    |     | Dilution | Batch  |         |         | Prepared       |
|-----------|----------|----------|-----|----------|--------|---------|---------|----------------|
| Prep Type | Type     | Method   | Run | Factor   | Number | Analyst | Lab     | or Analyzed    |
| Total/NA  | Analysis | 8260C    |     | 1        | 723561 | AXK     | EET BUF | 08/30/24 03:13 |
| Total/NA  | Prep     | 3510C    |     |          | 723663 | LSC     | EET BUF | 08/30/24 13:14 |
| Total/NA  | Analysis | 8270D LL |     | 1        | 723772 | JMM     | EET BUF | 09/03/24 16:32 |
| Total/NA  | Analysis | 9012B    |     | 1        | 723873 | CLT     | EET BUF | 09/03/24 13:24 |

Client Sample ID: PRMW-6D

Date Collected: 08/28/24 09:55

Lab Sample ID: 480-222956-10 **Matrix: Ground Water** Date Received: 08/29/24 12:52

|           | Batch    | Batch    |     | Dilution | Batch  |         |         | Prepared       |
|-----------|----------|----------|-----|----------|--------|---------|---------|----------------|
| Prep Type | Туре     | Method   | Run | Factor   | Number | Analyst | Lab     | or Analyzed    |
| Total/NA  | Analysis | 8260C    |     |          | 723561 | AXK     | EET BUF | 08/30/24 03:35 |
| Total/NA  | Prep     | 3510C    |     |          | 723663 | LSC     | EET BUF | 08/30/24 13:14 |
| Total/NA  | Analysis | 8270D LL |     | 1        | 723772 | JMM     | EET BUF | 09/03/24 17:00 |
| Total/NA  | Analysis | 9012B    |     | 1        | 723873 | CLT     | EET BUF | 09/03/24 13:28 |

**Eurofins Buffalo** 

#### **Lab Chronicle**

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

Lab Sample ID: 480-222956-11 Client Sample ID: DUP-20240829

Date Collected: 08/28/24 00:00 **Matrix: WQ** 

Date Received: 08/29/24 12:52

|           | Batch    | Batch    |     | Dilution | Batch  |         |         | Prepared       |
|-----------|----------|----------|-----|----------|--------|---------|---------|----------------|
| Prep Type | Type     | Method   | Run | Factor   | Number | Analyst | Lab     | or Analyzed    |
| Total/NA  | Analysis | 8260C    |     | 1        | 723561 | AXK     | EET BUF | 08/30/24 03:57 |
| Total/NA  | Prep     | 3510C    |     |          | 723663 | LSC     | EET BUF | 08/30/24 13:14 |
| Total/NA  | Analysis | 8270D LL |     | 1        | 723772 | JMM     | EET BUF | 09/03/24 17:28 |
| Total/NA  | Analysis | 9012B    |     | 1        | 723873 | CLT     | EET BUF | 09/03/24 13:31 |

**Client Sample ID: TRIP BLANK** 

Lab Sample ID: 480-222956-12 Date Collected: 08/28/24 00:00 Matrix: WQ

Date Received: 08/29/24 12:52

|           | Batch    | Batch  |     | Dilution | Batch  |         |         | Prepared       |
|-----------|----------|--------|-----|----------|--------|---------|---------|----------------|
| Prep Type | Type     | Method | Run | Factor   | Number | Analyst | Lab     | or Analyzed    |
| Total/NA  | Analysis | 8260C  |     | 1        | 723561 | AXK     | EET BUF | 08/30/24 04:19 |

**Laboratory References:** 

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

# **Accreditation/Certification Summary**

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

Job ID: 480-222956-1

#### **Laboratory: Eurofins Buffalo**

The accreditations/certifications listed below are applicable to this report.

| Authority | Program | Identification Number | <b>Expiration Date</b> |
|-----------|---------|-----------------------|------------------------|
| New York  | NELAP   | 10026                 | 03-31-25               |

\_\_\_\_

- 0

4

5

8

10

11

13

14

# **Method Summary**

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

| Method   | Method Description                                  | Protocol | Laboratory |
|----------|-----------------------------------------------------|----------|------------|
| 8260C    | Volatile Organic Compounds by GC/MS                 | SW846    | EET BUF    |
| 8270D LL | Semivolatile Organic Compounds by GC/MS - Low Level | SW846    | EET BUF    |
| 9012B    | Cyanide, Total and/or Amenable                      | SW846    | EET BUF    |
| 3510C    | Liquid-Liquid Extraction (Separatory Funnel)        | SW846    | EET BUF    |
| 5030C    | Purge and Trap                                      | SW846    | EET BUF    |

#### **Protocol References:**

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### **Laboratory References:**

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Job ID: 480-222956-1

9

10

12

16

# **Sample Summary**

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

| Lab Sample ID | Client Sample ID | Matrix       | Collected      | Received       |
|---------------|------------------|--------------|----------------|----------------|
| 480-222956-1  | PRMW-1S          | Ground Water | 08/28/24 10:40 | 08/29/24 12:52 |
| 480-222956-2  | PRMW-2S          | Ground Water | 08/28/24 12:05 | 08/29/24 12:52 |
| 480-222956-3  | PRMW-2D          | Ground Water | 08/28/24 13:25 | 08/29/24 12:52 |
| 480-222956-4  | PRMW-3S          | Ground Water | 08/28/24 12:40 | 08/29/24 12:52 |
| 480-222956-5  | PRMW-3D          | Ground Water | 08/28/24 14:45 | 08/29/24 12:52 |
| 480-222956-6  | PRMW-4S          | Ground Water | 08/28/24 09:20 | 08/29/24 12:52 |
| 480-222956-7  | PRMW-5S          | Ground Water | 08/28/24 08:35 | 08/29/24 12:52 |
| 480-222956-8  | PRMW-5D          | Ground Water | 08/28/24 14:40 | 08/29/24 12:52 |
| 480-222956-9  | PRMW-6S          | Ground Water | 08/28/24 11:10 | 08/29/24 12:52 |
| 480-222956-10 | PRMW-6D          | Ground Water | 08/28/24 09:55 | 08/29/24 12:52 |
| 480-222956-11 | DUP-20240829     | WQ           | 08/28/24 00:00 | 08/29/24 12:52 |
| 480-222956-12 | TRIP BLANK       | WQ           | 08/28/24 00:00 | 08/29/24 12:52 |

Job ID: 480-222956-1

Ver: 06/08/2021

1

| Client Contact: Nicholas Beyrle Company.                                                   | 10.0                       |                                              | Scriove, Jorin R<br>F-Mail                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0-195975-36782 1               |
|--------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Company                                                                                    | (                          | 000                                          | VIGIL                                                              | State of Origin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                                                                                            | 619-127                    | 12/                                          | John.Schove@et.eurofinsus.com                                      | State of Original 255 Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Page:<br>Page 1 of 2           |
| Arcadis U.S., Inc.                                                                         |                            | PWSID                                        | Analveie                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #                              |
| Address:<br>295 Woodcliff Drive, Suite 301                                                 | Due Date Requested:        |                                              |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | servation Codes:               |
| City.<br>Fairport                                                                          | TAT Requested (days):      |                                              |                                                                    | ¥ Z o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A - HCL<br>N - None            |
| State, Zip:<br>NY, 14450                                                                   | Compliance Project: Δ Yes  | ON <                                         |                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NaOH                           |
| Phone:                                                                                     |                            |                                              |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| Email:<br>nicholas. beyrle@arcadis. com                                                    | WO #:                      |                                              | (0                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| Project Name:<br>NYSEG Former MGP Site - Penn Yan                                          | Project #:<br>48024595     |                                              |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| Site:<br>New York                                                                          | SSOW#:                     |                                              | 7 (4)                                                              | 480-222956 Chain of Custody                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |
| Sample Identification                                                                      | Sample Date Time           | Sample (wwater, Type Saolid, Cacomp, Garrah) | iejd Filterad 8<br>erform M8/M<br>2500 - BTEX<br>2500 - Lt - Low I | edmuM late                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |
|                                                                                            | $\Lambda$                  | Preservation Code:                           | 28 Z<br>28 X                                                       | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Special Instructions/Note:     |
| PRMW-1S                                                                                    | 8/28/24 1040               | Water                                        | 7 7 2                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| PRMW-2S                                                                                    | 74                         | +                                            | ( -                                                                | ٥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |
| PRMW-2D                                                                                    | 20/20                      | +                                            | x ;                                                                | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |
| PRMW-3S                                                                                    | 5                          | +                                            | X ,                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |
| PRMW-3D                                                                                    | _                          | +                                            | 4 >                                                                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |
| PRMW-4S                                                                                    | 7 4                        | +                                            | <<br>×<br>2                                                        | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |
| PRMW-5S                                                                                    | 03/0 1/6/18/18             | Water                                        | メ                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |
| PRMW-5D                                                                                    | 200                        | Nate W                                       | × >                                                                | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |
| PRMW-6S                                                                                    | 10 17                      |                                              | 2 -                                                                | ٥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |
| PRMW-6D                                                                                    | 7 7                        |                                              | 4 >                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |
| TWW 1D                                                                                     |                            | +                                            |                                                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |
| Identification                                                                             |                            |                                              | Sample Disposal ( A fee may                                        | Sample Disposal ( A fee may be accessed if completed in the may be accessed in the may be ac |                                |
| Non-Hazard Flammable Skin Imiant<br>Deliverable Requested: I, II, III, IV, Other (specify) | Poison B Unknown           | Radiological                                 | Special Instructions (OC Beautisements)                            | Disposal By Lab Archive For                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | onger than 1 month) For Months |
| Empty Kit Relinquished by:                                                                 | Date:                      |                                              | .ewi_                                                              | ΙГ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |
| Relinquished by:                                                                           | (1)                        |                                              | Received by:                                                       | Method of Shipment:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |
| Relinquished by:                                                                           | 9/14/14/1 (5.2. Date/Time. | Company                                      |                                                                    | 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (252 Company                   |
| Relinquished by:                                                                           | Date/Time:                 | Company                                      |                                                                    | Date/ I me:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Company                        |
| Custody Seals Infact:  Custody Seal No                                                     |                            |                                              |                                                                    | Date/Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Company                        |
| Δ Yes Δ No                                                                                 |                            |                                              | Cooler Temperature(s) °C and Other Remarks                         | er Remarks: #   r.p.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |

Internment Testing

🖏 eurofins

Chain of Custody Record

10 Hazelwood Drive Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991 Carrier SVFACUS (20C No.

Page 2 of 2

State of Origin:

**Analysis Requested** 

Compliance Project: A Yes A No

PO#: 4506628846

Project # 48024595 SSOW#:

NYSEG Former MGP Site - Penn Yan

New York

nicholas beyrle@arcadis.com

FAT Requested (days):

Due Date Requested:

295 Woodcliff Drive, Suite 301

State, Zip: NY, 14450

City. Fairport

Arcadis U.S., Inc Nicholas Beyrle

Phone: 716-691-2600 Fax: 716-691-7991

Client Information

Amherst, NY 14228-2298

10 Hazelwood Drive

Preservation Codes: A - HCL N - None B - NaOH

Sample Time

Sample Date

Sample Identification

MW-2DR

12/82/8

Special Instructions/Note:

0

N

Total Number of containers

Ver: 06/08/2021

Company

Method of Shipment

Date/Time

Cooler Temperature(s) °C and Other Remarks.

Received by:

Company

Date/Time

Custody Seal No.

Custody Seals Intact:

Δ Yes Δ No

linquished by: elinquished by

RICadis

1252

h2/62/8

Date

Unknown

Poison B

Skin Irritant

☐ Non-Hazard ☐ Flammable ☐ Skin Intit Deliverable Requested: I, II, III, IV, Other (specify)

Empty Kit Relinquished by:

elinquished by

Possible Hazard Identification

EQUIPMENT BLANK

FIELD BLANK TRIP BLANK

Dup- 20240829

Client: New York State Electric & Gas

Job Number: 480-222956-1

Login Number: 222956 List Source: Eurofins Buffalo

List Number: 1

Creator: Stapleton, Kaitlyn

| Creator. Stapleton, Nathyn                                                       |        |                         |
|----------------------------------------------------------------------------------|--------|-------------------------|
| Question                                                                         | Answer | Comment                 |
| Radioactivity either was not measured or, if measured, is at or below background | True   |                         |
| The cooler's custody seal, if present, is intact.                                | True   |                         |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |                         |
| Samples were received on ice.                                                    | True   |                         |
| Cooler Temperature is acceptable.                                                | True   |                         |
| Cooler Temperature is recorded.                                                  | True   | 10.1, 10.3, 10.5 #1 ice |
| COC is present.                                                                  | True   |                         |
| COC is filled out in ink and legible.                                            | True   |                         |
| COC is filled out with all pertinent information.                                | True   |                         |
| Is the Field Sampler's name present on COC?                                      | True   |                         |
| There are no discrepancies between the sample IDs on the containers and the COC. | True   |                         |
| Samples are received within Holding Time (Excluding tests with immediate HTs)    | True   |                         |
| Sample containers have legible labels.                                           | True   |                         |
| Containers are not broken or leaking.                                            | True   |                         |
| Sample collection date/times are provided.                                       | True   |                         |
| Appropriate sample containers are used.                                          | True   |                         |
| Sample bottles are completely filled.                                            | True   |                         |
| Sample Preservation Verified                                                     | True   |                         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |                         |
| VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.     | True   |                         |
| If necessary, staff have been informed of any short hold time or quick TAT needs | True   |                         |
| Multiphasic samples are not present.                                             | True   |                         |
| Samples do not require splitting or compositing.                                 | True   |                         |
| Sampling Company provided.                                                       | True   | Arcadis US              |
| Samples received within 48 hours of sampling.                                    | True   |                         |
| Samples requiring field filtration have been filtered in the field.              | True   |                         |
| Chlorine Residual checked.                                                       | N/A    |                         |

# **Appendix D**

**Data Usability Summary Reports** 



# NYSEG Penn Yan Former MGP Site

# Data Usability Summary Report

Penn Yan, New York

Volatile Organic Compound (VOC), Semi-volatile Organic Compound (SVOC), and Cyanide Analyses

SDG # 480-216887-1

Analyses Performed By: Eurofins Buffalo Amherst, New York

Report # 53209R Review Level: Tier III Project: 30174322.2

# **Summary**

This Data Usability Summary Report (DUSR) summarizes the review of Sample Delivery Group (SDG) # 480-216887-1 for samples collected in association with the NYSEG Penn Yan Former MGP Site. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

|                          |               |        | Sample Parent      |         |     | Analy | sis     |
|--------------------------|---------------|--------|--------------------|---------|-----|-------|---------|
| Sample ID                | Lab ID        | Matrix | Collection<br>Date | Sample  | voc | svoc  | CYANIDE |
| EQUIPMENT BLANK-20240206 | 480-216887-1  | Water  | 2/6/2024           |         | Х   | Х     | Х       |
| FIELD BLANK-20240206     | 480-216887-2  | Water  | 2/6/2024           |         | Х   | Х     | Х       |
| PRMW-1S                  | 480-216887-3  | Water  | 2/5/2024           |         | Х   | Х     | Х       |
| PRMW-2D                  | 480-216887-4  | Water  | 2/5/2024           |         | Х   | Х     | Х       |
| PRMW-2S                  | 480-216887-5  | Water  | 2/5/2024           |         | Х   | Х     | Х       |
| PRMW-3D                  | 480-216887-6  | Water  | 2/5/2024           |         | Х   | Х     | Х       |
| PRMW-3S                  | 480-216887-7  | Water  | 2/5/2024           |         | Х   | Х     | Х       |
| PRMW-4S                  | 480-216887-8  | Water  | 2/5/2024           |         | Х   | Х     | Х       |
| PRMW-5D                  | 480-216887-9  | Water  | 2/6/2024           |         | Х   | Х     | Х       |
| PRMW-5S                  | 480-216887-10 | Water  | 2/6/2024           |         | Х   | Х     | Х       |
| PRMW-6D                  | 480-216887-11 | Water  | 2/6/2024           |         | Х   | Х     | Х       |
| PRMW-6S                  | 480-216887-12 | Water  | 2/6/2024           |         | Х   | Х     | Х       |
| DUP-20240205             | 480-216887-13 | Water  | 2/5/2024           | PRMW-3S | Х   | Х     | Х       |
| TRIP BLANK               | 480-216887-14 | Water  | 2/5/2024           |         | Х   |       |         |

#### Notes:

VOC = Volatile Organic Compounds

SVOC = Semi-volatile Organic Compounds

www.arcadis.com

# **Analytical Data Package Documentation**

The table below evaluates the data package completeness.

| Items Reviewed                                          | Rep    | orted |    | mance<br>ptable | Not<br>Required |
|---------------------------------------------------------|--------|-------|----|-----------------|-----------------|
|                                                         | No Yes |       | No | Yes             | rtoquii ou      |
| Sample receipt condition                                |        | Х     |    | Х               |                 |
| 2. Requested analyses and sample results                |        | Х     |    | Х               |                 |
| 3. Master tracking list                                 |        | Х     |    | Х               |                 |
| 4. Methods of analysis                                  |        | Х     |    | Х               |                 |
| 5. Reporting limits                                     |        | Х     |    | Х               |                 |
| 6. Sample collection date                               |        | Х     |    | Х               |                 |
| 7. Laboratory sample received date                      |        | Х     |    | Х               |                 |
| 8. Sample preservation verification (as applicable)     |        | Х     |    | Х               |                 |
| 9. Sample preparation/extraction/analysis dates         |        | Х     |    | Х               |                 |
| 10. Fully executed chain-of-custody form                |        | Х     |    | Х               |                 |
| 11. Narrative summary of QA or sample problems provided |        | X     |    | Х               |                 |
| 12. Data package completeness and compliance            |        | Х     |    | Х               |                 |

Note:

QA = quality assurance

www.arcadis.com

# **Organic Analysis Introduction**

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260C and 8270D. Data were reviewed in accordance with USEPA National Functional Guidelines for Organic Superfund Methods Data Review, EPA 540-R-20-005, November 2020 (with reference to the historical USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, OSWER 9240.1-05A-P, October 1999), as appropriate and applicable Region II SOPs. USEPA NFGs and Region II SOPs were followed for qualification purposes.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
  - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
  - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
  - E The compound was quantitated above the calibration range.
  - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
  - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
  - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
  - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
  - UB Compound is considered non-detect at the listed value due to associated blank contamination.
  - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
  - R The sample results are rejected.

The "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

www.arcadis.com 3

# **Volatile Organic Compound (VOC) Analyses**

# 1. Holding Times

The specified holding times for the following methods are presented in the table below.

| Method       | Matrix | Holding Time                                    | Preservation                                                                 |
|--------------|--------|-------------------------------------------------|------------------------------------------------------------------------------|
| SW-846 8260C | Water  | 14 days from collection to analysis (preserved) | Cool to <6 °C; preserved to a pH of less than 2 s.u. with hydrochloric acid. |

#### Note:

s.u. = standard units

All samples were analyzed within the specified holding times.

#### 2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore, detected sample results were not associated with blank contamination.

# 3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock. System performance and column resolution were acceptable.

#### 4. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

#### 4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

www.arcadis.com 4

## 4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the continuing calibrations were within the specified control limits.

# 5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

#### 6. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

# 7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

The MS/MSD analysis performed on sample PRMW-3S. The MS/MSD analysis exhibited acceptable recoveries and RPDs.

# 8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

# 9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field

www.arcadis.com 5

duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water.

Results for duplicate samples are summarized in the following table.

| Sample ID / Duplicate ID | Compound             | Sample Result<br>(µg/L) | Duplicate Result<br>(μg/L) | RPD |
|--------------------------|----------------------|-------------------------|----------------------------|-----|
| PRMW-3S / DUP-20240205   | All target compounds | U                       | U                          | AC  |

#### Notes:

U = Non detect

AC = Acceptable

The calculated differences between the parent and field duplicate sample were acceptable.

# 10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

# 11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

www.arcadis.com

# **Data Validation Checklist for VOCs**

| VOCs: SW-846 8260C                              | Re    | eported |    | ormance<br>eptable | Not      |
|-------------------------------------------------|-------|---------|----|--------------------|----------|
|                                                 | No    | Yes     | No | Yes                | Required |
| GAS CHROMATOGRAPHY/MASS SPECTROMETRY (G         | C/MS) |         |    |                    |          |
| Tier II Validation                              |       |         |    |                    |          |
| Holding times                                   |       | X       |    | X                  |          |
| Reporting limits (units)                        |       | X       |    | X                  |          |
| Blanks                                          |       |         |    |                    |          |
| A. Method blanks                                |       | X       |    | X                  |          |
| B. Equipment blanks/Field Blanks                |       | Х       |    | X                  |          |
| C. Trip blanks                                  |       | Х       |    | Х                  |          |
| Laboratory Control Sample (LCS) %R              |       | Х       |    | Х                  |          |
| Laboratory Control Sample Duplicate (LCSD) %R   | Х     |         |    |                    | Х        |
| LCS/LCSD Precision (RPD)                        | Х     |         |    |                    | Х        |
| Matrix Spike (MS) %R                            |       | Х       |    | Х                  |          |
| Matrix Spike Duplicate (MSD) %R                 |       | Х       |    | Х                  |          |
| MS/MSD Precision (RPD)                          |       | Х       |    | Х                  |          |
| Field/Lab Duplicate (RPD)                       |       | Х       |    | Х                  |          |
| Surrogate Spike Recoveries                      |       | Х       |    | Х                  |          |
| Dilution Factor                                 |       | Х       |    | Х                  |          |
| Moisture Content                                | Х     |         |    |                    | Х        |
| Tier III Validation                             |       |         |    |                    |          |
| System performance and column resolution        |       | Х       |    | Х                  |          |
| Initial calibration %RSDs                       |       | Х       |    | Х                  |          |
| Initial calibration %Ds                         |       | Х       |    | Х                  |          |
| Continuing calibration RRFs                     |       | Х       |    | Х                  |          |
| Continuing calibration %Ds                      |       | Х       |    | Х                  |          |
| Instrument tune and performance check           |       | Х       |    | Х                  |          |
| Ion abundance criteria for each instrument used |       | Х       |    | Х                  |          |
| Internal standard                               |       | Х       |    | Х                  |          |
| Compound identification and quantitation        |       |         |    |                    |          |

| VOCs: SW-846 8260C                                          |     | eported | ted Perfo |     | Not<br>Required |  |
|-------------------------------------------------------------|-----|---------|-----------|-----|-----------------|--|
|                                                             |     | Yes     | No        | Yes | rtequireu       |  |
| GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/                   | MS) |         |           |     |                 |  |
| A. Reconstructed ion chromatograms                          |     | Х       |           | Х   |                 |  |
| B. Quantitation Reports                                     |     | Х       |           | Х   |                 |  |
| C. RT of sample compounds within the established RT windows |     | Х       |           | Х   |                 |  |
| D. Transcription/calculation errors present                 |     | X       |           | X   |                 |  |
| E. Reporting limits adjusted to reflect sample dilutions    |     | Х       |           | Х   |                 |  |

#### Notes:

%RSD = Relative standard deviation

%R = Percent recovery

RPD = Relative percent difference

%D = Percent difference

## Semi-volatile Organic Compound (SVOC) Analyses

## 1. Holding Times

The specified holding times for the following methods are presented in the table below.

| Method       | Matrix | Holding Time                                                                 | Preservation  |
|--------------|--------|------------------------------------------------------------------------------|---------------|
| SW-846 8270D | Water  | 7 days from collection to extraction and 40 days from extraction to analysis | Cool to <6 °C |

All samples were analyzed within the specified holding time criterion.

#### 2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Naphthalene associated with the QA blanks exhibited a concentration less than the MDL, with the exception of the compounds listed in the following table. Sample results less than the BAL associated with the following samples were qualified as listed in the following table.

| Sample ID                                           | Analyte             | Sample Result                                                              | Qualification |
|-----------------------------------------------------|---------------------|----------------------------------------------------------------------------|---------------|
| PRMW-2S<br>PRMW-3D<br>PRMW-3S<br>PRMW-6D<br>PRMW-6S | Naphthalene<br>(EB) | Detected sample results <rl <bal<="" and="" td=""><td>"UB" at RL</td></rl> | "UB" at RL    |

#### Notes:

EB = equipment blank

RL = reporting limit

## 3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

#### 4. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at

the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

#### 4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

#### 4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the continuing calibrations were within the specified control limits.

#### 5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. SVOC analysis requires that two of the three SVOC surrogate compounds within each fraction exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

#### 6. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

## 7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on samples where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

The MS/MSD analysis performed on sample PRMW-3S. The MS/MSD analysis exhibited acceptable recoveries and RPDs with the exceptions noted in the table below. Qualification of sample results were also applied to sample DUP-20240205 which is the duplicate sample of PRMW-3S.

| Sample ID | Compounds              | MS Recovery         | MSD Recovery |
|-----------|------------------------|---------------------|--------------|
|           | Benzo[a]anthracene     | <ll but="">10%</ll> | AC           |
|           | Benzo[a]pyrene         | <ll but="">10%</ll> | AC           |
|           | Benzo[b]fluoranthene   | <ll but="">10%</ll> | AC           |
| PRMW-3S   | Benzo[g,h,i]perylene   | <ll but="">10%</ll> | AC           |
| FRIMW-35  | Benzo[k]fluoranthene   | <ll but="">10%</ll> | AC           |
|           | Chrysene               | <ll but="">10%</ll> | AC           |
|           | Dibenz(a,h)anthracene  | <ll but="">10%</ll> | AC           |
|           | Indeno[1,2,3-cd]pyrene | <ll but="">10%</ll> | AC           |

#### Notes:

AC = Acceptable

LL = Lower control limit

The criteria used to evaluate the MS/MSD recoveries are presented in the following table. In the case of an MS/MSD deviation, the sample results are qualified as documented in the table below.

| Control Limit                                               | Sample Result                                                              | Qualification |  |
|-------------------------------------------------------------|----------------------------------------------------------------------------|---------------|--|
| the upper central limit / III \                             | Non-detect                                                                 | No Action     |  |
| > the upper control limit (UL)                              | Detect                                                                     | J             |  |
| the lower control limit / L \ but > 400/                    | Non-detect                                                                 | UJ            |  |
| < the lower control limit (LL) but > 10%                    | Non-detect No Action  Detect J                                             | J             |  |
| < 10%                                                       | Non-detect                                                                 | R             |  |
| < 10%                                                       | Non-detect  Detect  Non-detect  Detect  Non-detect  Detect  Detect  Detect | J             |  |
| Parent sample concentration > four times the MS/MSD spiking | Detect                                                                     |               |  |
| solution concentration.                                     | Non-detect                                                                 | NO ACTION     |  |

Sample locations associated with MS/MSD recoveries exhibiting an RPD greater than the control limit are presented in the following table.

| Sample Locations | Compound             |  |
|------------------|----------------------|--|
|                  | Benzo[a]anthracene   |  |
| PRMW-3S          | Benzo[a]pyrene       |  |
|                  | Benzo[b]fluoranthene |  |

| Sample Locations | Compound               |
|------------------|------------------------|
|                  | Benzo[g,h,i]perylene   |
|                  | Benzo[k]fluoranthene   |
|                  | Chrysene               |
|                  | Dibenz(a,h)anthracene  |
|                  | Indeno[1,2,3-cd]pyrene |

The criteria used to evaluate the RPD between the MS/MSD recoveries are presented in the following table. In the case of an RPD deviation, the sample results are qualified as documented in the table below.

| Control Limit | Sample Result | Qualification |
|---------------|---------------|---------------|
| > UL          | Non-detect    | UJ            |
| 7 02          | Detect        | J             |

## 8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

Sample locations associated with LCS/LCSD recoveries exhibiting an RPD greater than of the control limit presented in the following table.

| Sample ID                | Compound             |
|--------------------------|----------------------|
| EQUIPMENT BLANK-20240206 |                      |
| FIELD BLANK-20240206     |                      |
| PRMW-1S                  |                      |
| PRMW-2D                  |                      |
| PRMW-2S                  |                      |
| PRMW-3D                  |                      |
| PRMW-3S                  | Benzo[k]fluoranthene |
| PRMW-4S                  |                      |
| PRMW-5D                  |                      |
| PRMW-5S                  |                      |
| PRMW-6D                  |                      |
| PRMW-6S                  |                      |
| DUP-20240205             |                      |

The criteria used to evaluate the RPD between the LCS/LCSD recoveries are presented in the following table. In the case of an RPD deviation, the sample results are qualified as documented in the table below.

| Control Limit | Sample Result | Qualification |
|---------------|---------------|---------------|
| > UL          | Non-detect    | UJ            |
| 7 02          | Detect        | J             |

## 9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water.

Results for duplicate samples are summarized in the following table.

| Sample ID / Duplicate ID | Duplicate ID Compound |        | Sample ID / Duplicate ID Compound Sample Result (µg/L) |    | Duplicate Result<br>(μg/L) | RPD |
|--------------------------|-----------------------|--------|--------------------------------------------------------|----|----------------------------|-----|
| PRMW-3S / DUP-20240205   | Naphthalene           | 0.32 J | 1.1 U                                                  | AC |                            |     |

#### Notes:

U = Non detect

AC = Acceptable

The calculated differences between the parent and field duplicate sample were acceptable.

## 10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

## 11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

## **Data Validation Checklist for SVOCs**

| SVOCs: SW-846 8270D                                         | Re   | eported |    | ormance<br>eptable | Not<br>Required |
|-------------------------------------------------------------|------|---------|----|--------------------|-----------------|
|                                                             | No   | Yes     | No | Yes                | rtoquirou       |
| GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/M                  | /IS) |         |    |                    |                 |
| Tier II Validation                                          |      |         |    |                    |                 |
| Holding times                                               |      | X       |    | X                  |                 |
| Reporting limits (units)                                    |      | Х       |    | X                  |                 |
| Blanks                                                      |      |         |    |                    |                 |
| A. Method blanks                                            |      | Х       |    | Х                  |                 |
| B. Equipment blanks/Field blanks                            |      | Х       | Х  |                    |                 |
| Laboratory Control Sample (LCS) %R                          |      | Х       |    | Х                  |                 |
| Laboratory Control Sample Duplicate (LCSD) %R               | Х    |         |    |                    | Х               |
| LCS/LCSD Precision (RPD)                                    | Х    |         |    |                    | Х               |
| Matrix Spike (MS) %R                                        |      | Х       | Х  |                    |                 |
| Matrix Spike Duplicate (MSD) %R                             |      | Х       |    | Х                  |                 |
| MS/MSD Precision (RPD)                                      |      | Х       | Х  |                    |                 |
| Field/Lab Duplicate (RPD)                                   |      | Х       |    | X                  |                 |
| Surrogate Spike Recoveries                                  |      | Х       |    | Х                  |                 |
| Dilution Factor                                             |      | Х       |    | Х                  |                 |
| Moisture Content                                            | Х    |         |    |                    | Х               |
| Tier III Validation                                         |      |         |    |                    |                 |
| System performance and column resolution                    |      | Х       |    | Х                  |                 |
| Initial calibration %RSDs                                   |      | Х       |    | Х                  |                 |
| Initial calibration %Ds                                     |      | Х       |    | Х                  |                 |
| Continuing calibration RRFs                                 |      | Х       |    | Х                  |                 |
| Continuing calibration %Ds                                  |      | Х       |    | X                  |                 |
| Instrument tune and performance check                       |      | Х       |    | Х                  |                 |
| Ion abundance criteria for each instrument used             |      | Х       |    | Х                  |                 |
| Internal standard                                           |      | Х       |    | Х                  |                 |
| Compound identification and quantitation                    |      |         |    |                    |                 |
| A. Reconstructed ion chromatograms                          |      | Х       |    | Х                  |                 |
| B. Quantitation Reports                                     |      | Х       |    | Х                  |                 |
| C. RT of sample compounds within the established RT windows |      | Х       |    | Х                  |                 |
| D. Transcription/calculation errors present                 |      | X       |    | X                  |                 |

## Data Usability Summary Report

| SVOCs: SW-846 8270D                                      |    | Reported |    | mance<br>ptable | Not<br>Required |
|----------------------------------------------------------|----|----------|----|-----------------|-----------------|
|                                                          | No | Yes      | No | Yes             |                 |
| GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/MS)             |    |          |    |                 |                 |
| E. Reporting limits adjusted to reflect sample dilutions |    | Х        |    | Х               |                 |

#### Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

## **Inorganic Analysis Introduction**

Analyses were performed according to United States Environmental Protection Agency USEPA Method 9012B. Data were reviewed in accordance with USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review, EPA 542-R-20-006, November 2020 (with reference to the historical USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, EPA 540-R-04-004, October 2004), as appropriate.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and that it was already subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with the USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
  - U The analyte was analyzed for but not detected. The associated value is the analyte instrument detection limit.
  - J The reported value was obtained from a reading less than the reporting limit (RL), but greater than or equal to the method detection limit (MDL).
- Quantitation (Q) Qualifiers
  - E The reported value is estimated due to the presence of interference.
  - N Spiked sample recovery is not within control limits.
  - \* Duplicate analysis is not within control limits.
- Validation Qualifiers
  - J The analyte was positively identified; however, the associated numerical value is an estimated concentration only.
  - UJ The analyte was not detected above the reporting limit. However, the reported limit is approximate and may or may not represent the actual limit of detection.
  - UB Analyte considered non-detect at the listed value due to associated blank contamination.
  - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

## **General Chemistry Analyses**

#### 1. Holding Times

The specified holding times for the following methods are presented in the following table.

| Method                           | Matrix | Holding Time                        | Preservation                                                   |
|----------------------------------|--------|-------------------------------------|----------------------------------------------------------------|
| Total Cyanide by<br>SW-846 9012B | Water  | 14 days from collection to analysis | Cool to <6 °C; preserved to a pH of greater than 12 with NaOH. |

All samples were analyzed within the specified holding times.

#### 2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Cyanide associated with the QA blanks exhibited a concentration less than the MDL, with the exception of the compounds listed in the following table. Sample results less than the BAL associated with the following samples were qualified as listed in the following table.

| Sample ID          | Analyte         | Sample Result                                                              | Qualification |
|--------------------|-----------------|----------------------------------------------------------------------------|---------------|
| PRMW-3S<br>PRMW-4S | Cyanide (MB/FB) | Detected sample results <rl <bal<="" and="" td=""><td>"UB" at RL</td></rl> | "UB" at RL    |

#### Notes:

MB = method blank

FB = field blank

RL = reporting limit

#### 3. Calibration

Satisfactory instrument calibration is established to provide that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument's continuing performance is satisfactory.

## 3.1 Initial Calibration and Continuing Calibration

The correct number and type of standards were analyzed. The correlation coefficient of the initial calibration was greater than 0.995 for all non-ICP analytes and all initial calibration verification standard recoveries were within control limits.

All initial and continuing calibration verification standard recoveries were within the control limit.

## 4. Matrix Spike (MS)/Matrix Spike Duplicate (MSD)/Laboratory Duplicate Analysis

MS/MSD and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

## 4.1 MS/MSD Analysis

All analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS recovery control limits do not apply for MS/MSD performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS concentration by a factor of four or greater. In instance where this is true, the data will not be qualified even if the percent recovery does not meet the control limits and the laboratory flag will be removed.

The MS/MSD analysis performed on samples PRMW-3S. The MS/MSD analysis exhibited acceptable recoveries and RPDs.

#### 4.2 Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the RL. A control limit of 20% for water matrices and 35% for soil matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of one time the RL is applied for water matrices and two times the RL for soil matrices.

Laboratory duplicate analysis was not performed on sample within this SDG.

## 5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Results for duplicate samples are summarized in the following table.

| Sample ID / Duplicate ID | Analyte | Sample Result<br>(mg/L) | Duplicate Result<br>(mg/L) | RPD |
|--------------------------|---------|-------------------------|----------------------------|-----|
| PRMW-3S / DUP-20240205   | Cyanide | 0.0065 J                | 0.010 U                    | AC  |

#### Note:

U = Non detect

AC = Acceptable

The calculated differences between the parent and field duplicate sample were acceptable.

#### 6. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit a percent recovery between the control limits of 80% and 120%.

The LCS analysis exhibited recoveries within the control limits.

## 7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

## **Data Validation Checklist for General Chemistry**

| General Chemistry: SW-846 9012B                       | Rep      | orted |    | rmance<br>ptable | Not<br>Required |
|-------------------------------------------------------|----------|-------|----|------------------|-----------------|
|                                                       | No       | Yes   | No | Yes              | Required        |
| Miscellaneous Instrumentation                         |          |       |    |                  |                 |
| Tier II Validation                                    |          |       |    |                  |                 |
| Holding Times                                         |          | Х     |    | Х                |                 |
| Reporting limits (units)                              |          | Х     |    | Х                |                 |
| Blanks                                                | <u>'</u> |       |    |                  |                 |
| A. Instrument Blanks                                  | Х        |       |    |                  | Х               |
| B. Method Blanks                                      |          | Х     | Х  |                  |                 |
| C. Equipment/Field Blanks                             |          | X     | Х  |                  |                 |
| Laboratory Control Sample (LCS) %R                    |          | X     |    | X                |                 |
| Laboratory Control Sample Duplicate (LCSD) %R         | Х        |       |    |                  | Х               |
| LCS/LCSD Precision (RPD)                              | X        |       |    |                  | Х               |
| Matrix Spike (MS) %R                                  |          | X     |    | X                |                 |
| Matrix Spike Duplicate (MSD) %R                       |          | X     |    | X                |                 |
| MS/MSD Precision (RPD)                                |          | X     |    | X                |                 |
| Field/Lab Duplicate (RPD)                             |          | X     |    | X                |                 |
| Tier III Validation                                   |          |       |    |                  |                 |
| Initial Calibration Verification                      |          | X     |    | X                |                 |
| Continuing Calibration Verification                   |          | X     |    | X                |                 |
| Transcription/calculations acceptable                 |          | Х     |    | X                |                 |
| Raw Data                                              |          | X     |    | X                |                 |
| Reporting limits adjusted to reflect sample dilutions |          | X     |    | X                |                 |

#### Notes:

%R Percent recovery

RPD Relative percent difference

#### **DATA USABILITY SUMMARY REPORT**

## **SAMPLE COMPLIANCE REPORT**

| Sample                  |               |          |                          |        |     | Complian | cy <sup>1</sup> |                                                                                                            |
|-------------------------|---------------|----------|--------------------------|--------|-----|----------|-----------------|------------------------------------------------------------------------------------------------------------|
| Delivery<br>Group (SDG) | Sampling Date | Protocol | Sample ID                | Matrix | VOC | svoc     | CYANIDE         | Noncompliance                                                                                              |
|                         | 2/6/2024      | SW846    | EQUIPMENT BLANK-20240206 | Water  | Yes | No       | Yes             | SVOC – LCS %Recovery                                                                                       |
|                         | 2/6/2024      | SW846    | FIELD BLANK-20240206     | Water  | Yes | No       | Yes             | SVOC – LCS %Recovery                                                                                       |
|                         | 2/5/2024      | SW846    | PRMW-1S                  | Water  | Yes | No       | Yes             | SVOC – LCS %Recovery                                                                                       |
|                         | 2/5/2024      | SW846    | PRMW-2D                  | Water  | Yes | No       | Yes             | SVOC – LCS %Recovery                                                                                       |
|                         | 2/5/2024      | SW846    | PRMW-2S                  | Water  | Yes | No       | Yes             | SVOC – LCS %Recovery, Blank contamination                                                                  |
|                         | 2/5/2024      | SW846    | PRMW-3D                  | Water  | Yes | No       | Yes             | SVOC – LCS %Recovery, Blank contamination                                                                  |
| 480-216887-1            | 2/5/2024      | SW846    | PRMW-3S                  | Water  | Yes | No       | No              | SVOC – LCS %Recovery, MS<br>%Recovery, MS/MSD RPD, Blank<br>contamination<br>Cyanide – Blank contamination |
|                         | 2/5/2024      | SW846    | PRMW-4S                  | Water  | Yes | No       | No              | SVOC – LCS %Recovery Cyanide – Blank contamination                                                         |
|                         | 2/6/2024      | SW846    | PRMW-5D                  | Water  | Yes | No       | Yes             | SVOC – LCS %Recovery                                                                                       |
|                         | 2/6/2024      | SW846    | PRMW-5S                  | Water  | Yes | No       | Yes             | SVOC – LCS %Recovery                                                                                       |
|                         | 2/6/2024      | SW846    | PRMW-6D                  | Water  | Yes | No       | Yes             | SVOC – LCS %Recovery, Blank contamination                                                                  |
|                         | 2/6/2024      | SW846    | PRMW-6S                  | Water  | Yes | No       | Yes             | SVOC – LCS %Recovery, Blank contamination                                                                  |
|                         | 2/5/2024      | SW846    | DUP-20240205             | Water  | Yes | No       | Yes             | SVOC – LCS %Recovery, MS<br>%Recovery, MS/MSD RPD                                                          |
|                         | 2/5/2024      | SW846    | TRIP BLANK               | Water  | Yes |          |                 |                                                                                                            |

#### Note:

arcadis.com 15

Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant, or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable.

#### **DATA USABILITY SUMMARY REPORT**

VALIDATION PERFORMED BY: Dilip Kumar

SIGNATURE:

DATE: March 11, 2024

PEER REVIEW: Joe Houser

DATE: March 13, 2024

arcadis.com 16

| Chain of Custody | Corrected Samp | ole Analysis Data | Sheets |
|------------------|----------------|-------------------|--------|
|                  |                |                   |        |
|                  |                |                   |        |
|                  |                |                   |        |
|                  |                |                   |        |
|                  |                |                   |        |
|                  |                |                   |        |
|                  |                |                   |        |

#### **Eurofins Buffalo**

10 Hazelwood Drive Amherst, NY 14228-2298

## **Chain of Custody Record**

💸 eurofins

**Environment Testing** 

| Phone: 716-691-2600 Fax: 716-691-7991                                                                                     |                        |             |                                                                      |                |              |                |                  | -                       | CVI             | acus                 |                                                                     |                                   |
|---------------------------------------------------------------------------------------------------------------------------|------------------------|-------------|----------------------------------------------------------------------|----------------|--------------|----------------|------------------|-------------------------|-----------------|----------------------|---------------------------------------------------------------------|-----------------------------------|
| Client Information                                                                                                        | Kaitlyn flem           | ing 3 Baile | y K. Scho                                                            | ve, Jol        | hn R         |                |                  |                         | 7               | alou-                | COC No:<br>480-192151-36                                            | 782.1                             |
| Client Contact:<br>Nicholas Beyrle                                                                                        | Phone: (19-727         | -1921       | / E-Mail<br>John                                                     |                | /e@e         | et.eur         | ofins            | sus.com                 | State of Origin | <i>‡</i> 225         | Page 1 of 2                                                         |                                   |
| Company:<br>ARCADIS US Inc                                                                                                |                        | PWSID:      |                                                                      |                |              |                |                  | Analysis Red            | quested         |                      | Job#                                                                |                                   |
| Address:<br>295 Woodcliff Drive, Suite 301                                                                                | Due Date Requested:    |             |                                                                      |                |              |                |                  |                         |                 |                      | Preservation Co                                                     | des:                              |
| City<br>Fairport                                                                                                          | TAT Requested (days):  | 1           |                                                                      |                |              |                |                  |                         |                 |                      | - HCL<br>- NaOH                                                     | N - None<br>O - AsNaO2            |
| State, Zip:<br>NY, 14450                                                                                                  | Compliance Project: A  |             |                                                                      |                |              |                |                  |                         |                 |                      | <ul> <li>Zn Acetate</li> <li>Nitric Acid</li> <li>NaHSO4</li> </ul> | P - Na2O4S<br>Q - Na2SO3          |
| Phone:                                                                                                                    | PO#:                   | Tes A NO    |                                                                      |                |              | 88             |                  |                         |                 |                      | - MeOH<br>- Amchlor                                                 | R - Na2S2O3<br>S - H2SO4          |
| Email:                                                                                                                    | 4506273390<br>Wo#      |             |                                                                      | No)            |              | Semivolatiles  | -                | 480-216887 Ch           | ain of Custoo   | ly                   | - Ascorbic Acid                                                     | T - TSP Dodecahydrate U - Acetone |
| nicholas.beyrle@arcadis.com Project Name:                                                                                 |                        |             |                                                                      | 8              |              | Semi           |                  |                         | 1 1 1           |                      | J - DI Water<br>K - EDTA                                            | V - MCAA<br>W - pH 4-5            |
| NYSEG Former MGP Site - Penn Yan                                                                                          | Project #:<br>48024595 |             |                                                                      | ) O            |              | PAH            |                  |                         |                 |                      | L - EDA                                                             | Y - Trizma<br>Z - other (specify) |
| Site New York                                                                                                             | ssow#:                 |             |                                                                      | S S            |              | Level PAH      | . Total          |                         |                 |                      | Other:                                                              |                                   |
| Sample Identification                                                                                                     |                        |             | Matrix (W=water, S=solid, O=waste/oil, BT=Tissue, A=Air) ation Code: | Fleid Filtered | 8260C - BTEX | 8270D_LL - Low | 9012B - Cyanide, |                         |                 |                      |                                                                     | nstructions/Note:                 |
| PRMW-1S                                                                                                                   | 2/5/2024 11            | 40 G        | Water                                                                | 22             | A<br>X       | N<br>X         | B                |                         |                 |                      |                                                                     |                                   |
| PRMW-2S                                                                                                                   |                        | 15 G        | Water                                                                | 44             | X            | X              | X                |                         |                 |                      |                                                                     |                                   |
| PRMW-2D                                                                                                                   | 1                      | 130 6       | Water                                                                | 44             | X            |                | ×                |                         |                 |                      | 0                                                                   |                                   |
| PRMW-3S                                                                                                                   |                        | 35 G        | Water                                                                | 7              | ×            |                |                  |                         |                 |                      | 8                                                                   |                                   |
| PRMW-3D                                                                                                                   | 1 11                   | 35 6        | Water                                                                | 44             | ×            | ×              | X                |                         |                 |                      |                                                                     |                                   |
| PRMW-4S                                                                                                                   | 111                    | 40 G        | Water                                                                | 44             | X            | X              | X                |                         |                 |                      | 0                                                                   |                                   |
| PRMW-5S                                                                                                                   | 1. 1                   | 10 G        | Water                                                                | 44             | X            | X              | X                |                         |                 |                      |                                                                     |                                   |
| PRMW-5D                                                                                                                   |                        | 25 6        | Water                                                                | 27             | V            | X              | X                |                         |                 |                      |                                                                     |                                   |
| PRMW-6S                                                                                                                   | 2/6/2024 09            |             | Water                                                                | 44             | X            | $\overline{}$  | K                |                         |                 |                      |                                                                     |                                   |
| PRMW-6D                                                                                                                   |                        | 50 G        | Water                                                                | 44             | X            | X              | X                |                         |                 |                      |                                                                     |                                   |
| THING (1) DUP-20240205                                                                                                    | 2/5/2024 -             | - G         | Water                                                                | NH             | X            | X              | X                |                         |                 |                      | 0                                                                   |                                   |
| Possible Hazard Identification  Non-Hazard Flammable Skin Imitant  Deliverable Requested: I, II, III, IV, Other (specify) | Poison B Unknown       | Radiologica | al                                                                   |                | $\square_R$  | Return         | 1 To             | Client Client           | Disposal By L   |                      | ned longer than chive For                                           | Month) Months                     |
| Empty Kit Relinquished by:                                                                                                | Date                   | <u> </u>    |                                                                      | Time:          | _            | _              | _                | ///                     | Method o        | f Shipment:          |                                                                     |                                   |
| Relinquished by                                                                                                           | Date/Time:<br>2-6-24   | 1536        | Company                                                              | _              | Rece         | eived-b        | 1                | 41                      |                 | Date/Time: 2/6/24    | 1576                                                                | Company                           |
| Relinquished by:                                                                                                          | Date/Time:             | 1000        | Company                                                              | حلمة           | Rece         | eived b        | у                |                         |                 | Date/Time: 3-7-24    |                                                                     | Company (10                       |
| Relinquished by                                                                                                           | Date/Time:             |             | Company                                                              |                | Rece         | eived b        | <b>1</b> /: 1    | ~                       |                 | 0-1-24<br>Date/Time: | 1030                                                                | Company 4/3                       |
| Custody Seals Intact: Custody Seal No.:                                                                                   |                        |             | L                                                                    |                | Cool         | er Tem         | npera            | ture(s) °C and Other Re | emarks a        |                      |                                                                     |                                   |
| Δ Yes Δ No                                                                                                                |                        |             |                                                                      |                |              |                | )                | 3 21                    | 2.5             | 2.0                  | ICE                                                                 |                                   |

#### **Eurofins Buffalo**

10 Hazelwood Drive Amherst, NY 14228-2298

## **Chain of Custody Record**

| P. C. | C.       |  |
|-------|----------|--|
| 40    | eurofins |  |
|       | Cuivilli |  |

**Environment Testing** 

| Phone: 716-691-2600 Fax: 716-691-7991                  |                        |                 |                    |                       |                   |       |               |                  |            |           |            |            |            |              |              |                                   |                                    |
|--------------------------------------------------------|------------------------|-----------------|--------------------|-----------------------|-------------------|-------|---------------|------------------|------------|-----------|------------|------------|------------|--------------|--------------|-----------------------------------|------------------------------------|
| Client Information                                     | Sampler Kaitl Bailty   | yn Fle<br>Kudla | ming \$<br>William | Lab<br>Sch            | nove, J           | lohn  | R             |                  |            |           |            | ier Treki  |            | CU           | 10           | COC No:<br>480-192151-367         | 82.2                               |
| Client Contact:<br>Nicholas Beyrle                     | Phone:                 | 127-19          |                    | E-M                   |                   | ove@  | det ei        | rofins           | sus.cor    | n         | Stat       | e of Ongli | THE        | <del>-</del> |              | Page 2 of 2                       |                                    |
| Company:                                               |                        |                 | PWSID:             | 100.                  |                   | 0106  | 901.00        | 11011110         |            |           |            |            | 世          | TOF          |              | Job#:                             |                                    |
| ARCADIS US Inc Address                                 | Due Date Requeste      | d:              |                    |                       |                   |       |               |                  | Ana        | alysis    | Reque      | sted       | 11-2       | -2           | B            |                                   |                                    |
| 295 Woodcliff Drive, Suite 301                         | Due Date Requeste      | ru.             |                    |                       | 0                 | 9- L  |               |                  |            |           |            |            |            |              |              | Preservation Cod                  | les:<br>M - Hexane                 |
| City:<br>Fairport                                      | TAT Requested (da      | iys):           |                    |                       | 100               | 8     |               |                  |            |           |            |            |            |              |              | A - HCL<br>B - NaOH               | N - None<br>O - AsNaO2             |
| State, Zip:                                            | S+                     | andra           | wd                 |                       |                   | 1     |               |                  |            |           |            |            |            |              |              | C - Zn Acetate<br>D - Nitric Acid | P - Na2O4S                         |
| NY, 14450                                              | Compliance Projec      | t: A Yes        | Δ No               |                       | 88                | и.    |               |                  |            |           |            |            |            |              |              | E - NaHSO4<br>F - MeOH            | Q - Na2SO3<br>R - Na2S2O3          |
| Phone:                                                 | PO#<br>4506273390      |                 |                    |                       |                   | и.    | tiles         |                  |            |           |            |            |            |              |              | G - Amchlor                       | S - H2SO4<br>T - TSP Dodecahydrate |
| Email:                                                 | WO #:                  |                 |                    |                       | 2                 |       | Semivolatiles |                  |            |           |            |            |            |              |              | H - Ascorbic Acid                 | U - Acetone                        |
| nicholas.beyrle@arcadis.com Project Name:              | 0                      |                 |                    |                       | 0 3               | 3     | Sem           |                  |            |           |            |            |            |              |              | J - DI Water<br>K - EDTA          | V - MCAA<br>W - pH 4-5             |
| NYSEG Former MGP Site - Penn Yan                       | Project #:<br>48024595 |                 |                    |                       | 8                 | -     | AH            |                  |            |           |            |            |            |              |              | L - EDA                           | Y - Trizma<br>Z - other (specify)  |
| Site<br>New York                                       | SSOW#                  |                 |                    |                       | Town or           |       | Level PAH     | Total            |            |           |            |            |            |              | 0            | Other:                            |                                    |
|                                                        |                        |                 | Sample             | Matrix                | S par             | Z X   | ≩             | 9012B - Cyanide, |            |           |            |            |            |              | per of       |                                   |                                    |
|                                                        |                        |                 | Туре               | (W=water,<br>S=solid, | Hd FIRe           | RTEX  | =             | ò                |            |           |            |            |            |              | Nun          |                                   |                                    |
| Sample Identification                                  | Sample Date            | Sample<br>Time  |                    | O=waste/oil,          |                   | RZEDC | 2700          | 0128             |            |           |            |            |            |              | Total        |                                   |                                    |
| Campia identification                                  | Sample Date            | Tillie          | G=grab) B          |                       | N A               | A     | N             | В                |            |           | 10.00      |            |            |              |              | Special In:                       | structions/Note:                   |
| (LCF)                                                  |                        |                 | T                  | Water                 | T                 | 1     | -             |                  |            |           |            |            |            | ++           |              |                                   |                                    |
|                                                        |                        |                 |                    | Water                 | $\dagger \dagger$ | +     | +             |                  |            |           |            |            | ++         | +            |              |                                   |                                    |
|                                                        |                        |                 |                    | Water                 | $\dagger \dagger$ | +     |               |                  |            | +         |            |            | ++         | +            |              |                                   |                                    |
|                                                        |                        |                 |                    | Water                 | $\dagger \dagger$ | +     |               |                  |            | +         |            |            | ++         |              |              |                                   |                                    |
|                                                        |                        |                 |                    | Water                 | T                 | +     | +             |                  |            |           |            | ++         | ++         |              |              |                                   |                                    |
|                                                        |                        |                 |                    | Water                 | 11                |       | 1             |                  |            |           |            | 11         |            |              |              |                                   |                                    |
| Trip Blank                                             | 1/25/2024              | _               | _                  | Water                 | M                 | 1 7   | (             |                  |            |           |            |            |            |              | 2            |                                   |                                    |
| ASING STANLEY CO.                                      |                        |                 |                    | Water                 | 11                |       |               |                  |            |           |            |            |            |              |              |                                   |                                    |
| FIELD BLANK - 20240206                                 | 2/6/2024               | 1120            | G                  | Water                 | 14,               | 37    | 1 4           | X                |            |           |            |            |            |              | 6            |                                   |                                    |
| EQUIPMENT BLANK - 20240206                             | 2/6/2024               |                 | G                  | Water                 | 24                |       | X             | _                |            |           |            |            |            |              | 6            |                                   |                                    |
|                                                        |                        |                 |                    |                       | П                 |       |               |                  |            |           |            |            |            |              |              |                                   |                                    |
| Possible Hazard Identification                         | , []                   |                 |                    |                       | s                 | amp   | le Dis        | sposa            | I (A fe    | e may     | be asse    | ssed if    | samples    | are ret      | aine         | ed longer than 1                  | month)                             |
|                                                        | Poison B Unkn          | own             | Radiological       |                       |                   |       |               |                  | Client     | - 1       |            | osal By    | Lab        | ۾ لــا       | Archi        | ive For                           | Months                             |
| Deliverable Requested: I, II, III, IV, Other (specify) |                        |                 |                    |                       | S                 | pecia | al Inst       | ructio           | ns/QC      | Requir    | ements:    |            |            |              |              |                                   |                                    |
| Empty Kit Relinquished by:                             |                        | Date:           |                    |                       | Time              | 9:    |               |                  | //         | 11        |            | Method     | of Shipmen | t:           |              |                                   |                                    |
| Relinguisted by:                                       | Date/Time:             | 15              | 36                 | aread                 | 14                | Re    | ceived        | by               | 1          | 1         | 7          |            | Date/Tin   | ge /2.       | <del>-</del> | 1536                              | Company                            |
| Refinquished by:                                       | Date/Time:             |                 |                    | ompany                |                   | Re    | ceived        | by:              |            |           |            |            | Date/Tin   | ne: . 24     | <del>:</del> |                                   | Company                            |
| Relinquished by                                        | Date/Time:             |                 | c                  | ompany                |                   | Re    | ceived        | by:              | ~          | _         |            |            | Date/Tin   | ne:          |              | 1030                              | Company                            |
| Custody Seals Intact: Custody Seal No.:                |                        |                 |                    |                       |                   | Co    | oler Te       | mperat           | ture(s) °( | C and Off | ner Remark | s          |            |              |              |                                   |                                    |
| Δ Yes Δ No                                             |                        |                 |                    |                       |                   |       |               |                  |            |           |            |            |            |              |              |                                   |                                    |
|                                                        |                        |                 |                    |                       |                   |       |               |                  |            |           |            |            |            |              |              |                                   | Ver: 06/08/2021                    |

Client: New York State Electric & Gas Job ID: 480-216887-1

Project/Site: NYSEG Former MGP Site - Penn Yan

Client Sample ID: EQUIPMENT BLANK-20240206

Lab Sample ID: 480-216887-1 Date Collected: 02/06/24 12:15 **Matrix: WQ** 

Date Received: 02/07/24 10:30

Cyanide, Total (SW846 9012B)

| Analyte                      | Result    | Qualifier | RL       | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|-------|------|---|----------------|----------------|---------|
| Benzene                      | ND        |           | 1.0      | 0.41  | ug/L |   |                | 02/07/24 18:48 | 1       |
| Ethylbenzene                 | ND        |           | 1.0      | 0.74  | ug/L |   |                | 02/07/24 18:48 | 1       |
| Toluene                      | ND        |           | 1.0      | 0.51  | ug/L |   |                | 02/07/24 18:48 | 1       |
| Xylenes, Total               | ND        |           | 2.0      | 0.66  | ug/L |   |                | 02/07/24 18:48 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |       |      |   | Prepared       | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 101       |           | 77 - 120 |       |      |   |                | 02/07/24 18:48 | 1       |
| 4-Bromofluorobenzene (Surr)  | 100       |           | 73 - 120 |       |      |   |                | 02/07/24 18:48 | 1       |
| Dibromofluoromethane (Surr)  | 99        |           | 75 - 123 |       |      |   |                | 02/07/24 18:48 | 1       |
| Toluene-d8 (Surr)            | 100       |           | 80 - 120 |       |      |   |                | 02/07/24 18:48 | 1       |
| Method: SW846 8270D LL       |           | _         |          |       |      |   |                |                |         |
| Analyte                      |           | Qualifier | RL       | MDL   |      | D | Prepared       | Analyzed       | Dil Fac |
| Acenaphthene                 | ND        |           | 0.52     | 0.037 | ug/L |   | 02/08/24 10:57 | 02/09/24 17:30 | 1       |
| Acenaphthylene               | ND        |           | 0.31     | 0.058 | •    |   | 02/08/24 10:57 | 02/09/24 17:30 | 1       |
| Anthracene                   | ND        |           | 0.52     | 0.035 | ug/L |   | 02/08/24 10:57 | 02/09/24 17:30 | 1       |
| Benzo[a]anthracene           | ND        |           | 0.31     | 0.035 | ug/L |   | 02/08/24 10:57 | 02/09/24 17:30 | 1       |
| Benzo[a]pyrene               | ND        |           | 0.19     | 0.13  | ug/L |   | 02/08/24 10:57 | 02/09/24 17:30 | 1       |
| Benzo[b]fluoranthene         | ND        |           | 0.31     | 0.065 | ug/L |   | 02/08/24 10:57 | 02/09/24 17:30 | 1       |
| Benzo[g,h,i]perylene         | ND        |           | 0.52     | 0.060 | ug/L |   | 02/08/24 10:57 | 02/09/24 17:30 | 1       |
| Benzo[k]fluoranthene         | ND        | ¥ UJ      | 0.31     | 0.072 | ug/L |   | 02/08/24 10:57 | 02/09/24 17:30 | 1       |
| Chrysene                     | ND        |           | 0.52     | 0.076 | ug/L |   | 02/08/24 10:57 | 02/09/24 17:30 | 1       |
| Dibenz(a,h)anthracene        | ND        |           | 0.52     | 0.072 | ug/L |   | 02/08/24 10:57 | 02/09/24 17:30 | 1       |
| Fluoranthene                 | ND        |           | 0.52     | 0.082 | ug/L |   | 02/08/24 10:57 | 02/09/24 17:30 | 1       |
| Fluorene                     | ND        |           | 0.52     | 0.060 | ug/L |   | 02/08/24 10:57 | 02/09/24 17:30 | 1       |
| Indeno[1,2,3-cd]pyrene       | ND        |           | 0.52     | 0.11  | ug/L |   | 02/08/24 10:57 | 02/09/24 17:30 | 1       |
| Naphthalene                  | 0.19      | J         | 1.0      | 0.066 | ug/L |   | 02/08/24 10:57 | 02/09/24 17:30 | 1       |
| Phenanthrene                 | ND        |           | 0.21     | 0.064 | ug/L |   | 02/08/24 10:57 | 02/09/24 17:30 | 1       |
| Pyrene                       | ND        |           | 0.52     | 0.078 | ug/L |   | 02/08/24 10:57 | 02/09/24 17:30 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |       |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl             | 98        |           | 37 - 120 |       |      |   | 02/08/24 10:57 | 02/09/24 17:30 | 1       |
| Nitrobenzene-d5 (Surr)       | 78        |           | 26 - 120 |       |      |   | 02/08/24 10:57 | 02/09/24 17:30 | 1       |
| p-Terphenyl-d14 (Surr)       | 109       |           | 64 - 127 |       |      |   | 02/08/24 10:57 | 02/09/24 17:30 | 1       |
| General Chemistry            |           |           |          |       |      |   |                |                |         |
| Analyte                      | Result    | Qualifier | RL       | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |

02/08/24 20:18

0.010

ND

0.0041 mg/L

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

Client Sample ID: FIELD BLANK-20240206 Lab Sample ID: 480-216887-2

Date Collected: 02/06/24 11:20 Matrix: WQ

Date Received: 02/07/24 10:30

| Analyte                      | Result    | Qualifier | RL          | MDL     | Unit    | D     | Prepared       | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|-------------|---------|---------|-------|----------------|----------------|---------|
| Benzene                      | ND        |           | 1.0         | 0.41    | ug/L    |       |                | 02/07/24 19:10 | 1       |
| Ethylbenzene                 | ND        |           | 1.0         | 0.74    | ug/L    |       |                | 02/07/24 19:10 | 1       |
| Toluene                      | ND        |           | 1.0         | 0.51    | ug/L    |       |                | 02/07/24 19:10 | 1       |
| Xylenes, Total               | ND        |           | 2.0         | 0.66    | ug/L    |       |                | 02/07/24 19:10 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits      |         |         |       | Prepared       | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 102       |           | 77 - 120    |         |         |       |                | 02/07/24 19:10 | 1       |
| 4-Bromofluorobenzene (Surr)  | 102       |           | 73 - 120    |         |         |       |                | 02/07/24 19:10 | 1       |
| Dibromofluoromethane (Surr)  | 102       |           | 75 - 123    |         |         |       |                | 02/07/24 19:10 | 1       |
| Toluene-d8 (Surr)            | 105       |           | 80 - 120    |         |         |       |                | 02/07/24 19:10 | 1       |
| Method: SW846 8270D LL - S   |           |           | ompounds by | y GC/MS | - Low L | _evel |                |                |         |
| Analyte                      |           | Qualifier | RL          |         | Unit    | D     | Prepared       | Analyzed       | Dil Fac |
| Acenaphthene                 | ND        |           | 0.50        | 0.036   | ug/L    |       | 02/08/24 10:57 | 02/09/24 17:58 | 1       |
| Acenaphthylene               | ND        |           | 0.30        | 0.055   | ug/L    |       | 02/08/24 10:57 | 02/09/24 17:58 | 1       |
| Anthracene                   | ND        |           | 0.50        | 0.034   | -       |       | 02/08/24 10:57 | 02/09/24 17:58 | 1       |
| Benzo[a]anthracene           | ND        |           | 0.30        | 0.034   | ug/L    |       | 02/08/24 10:57 | 02/09/24 17:58 | 1       |
| Benzo[a]pyrene               | ND        |           | 0.18        | 0.13    | ug/L    |       | 02/08/24 10:57 | 02/09/24 17:58 | 1       |
| Benzo[b]fluoranthene         | ND        |           | 0.30        | 0.062   | ug/L    |       | 02/08/24 10:57 | 02/09/24 17:58 | 1       |
| Benzo[g,h,i]perylene         | ND        |           | 0.50        | 0.057   | ug/L    |       | 02/08/24 10:57 | 02/09/24 17:58 | 1       |
| Benzo[k]fluoranthene         | ND        | × UJ      | 0.30        | 0.069   | ug/L    |       | 02/08/24 10:57 | 02/09/24 17:58 | 1       |
| Chrysene                     | ND        |           | 0.50        | 0.073   | ug/L    |       | 02/08/24 10:57 | 02/09/24 17:58 | 1       |
| Dibenz(a,h)anthracene        | ND        |           | 0.50        | 0.069   | ug/L    |       | 02/08/24 10:57 | 02/09/24 17:58 | 1       |
| Fluoranthene                 | ND        |           | 0.50        | 0.079   | ug/L    |       | 02/08/24 10:57 | 02/09/24 17:58 | 1       |
| Fluorene                     | ND        |           | 0.50        | 0.057   | ug/L    |       | 02/08/24 10:57 | 02/09/24 17:58 | 1       |
| Indeno[1,2,3-cd]pyrene       | ND        |           | 0.50        | 0.11    | ug/L    |       | 02/08/24 10:57 | 02/09/24 17:58 | 1       |
| Naphthalene                  | ND        |           | 0.99        | 0.063   | ug/L    |       | 02/08/24 10:57 | 02/09/24 17:58 | 1       |
| Phenanthrene                 | ND        |           | 0.20        | 0.061   | ug/L    |       | 02/08/24 10:57 | 02/09/24 17:58 | 1       |
| Pyrene                       | ND        |           | 0.50        | 0.075   | ug/L    |       | 02/08/24 10:57 | 02/09/24 17:58 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits      |         |         |       | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl             | 102       |           | 37 - 120    |         |         |       | 02/08/24 10:57 | 02/09/24 17:58 | 1       |
| Nitrobenzene-d5 (Surr)       | 83        |           | 26 - 120    |         |         |       | 02/08/24 10:57 | 02/09/24 17:58 | 1       |
| p-Terphenyl-d14 (Surr)       | 117       |           | 64 - 127    |         |         |       | 02/08/24 10:57 | 02/09/24 17:58 | 1       |
| General Chemistry            |           |           |             |         |         |       |                |                |         |
| Analyte                      |           | Qualifier | RL          |         | Unit    | D     | Prepared       | Analyzed       | Dil Fac |
| Cyanide, Total (SW846 9012B) | 0.0046    | J B F1    | 0.010       | 0.0041  | mg/L    |       |                | 02/08/24 21:02 | 1       |

Job ID: 480-216887-1

Client: New York State Electric & Gas

Analyte

Cyanide, Total (SW846 9012B)

Project/Site: NYSEG Former MGP Site - Penn Yan

Client Sample ID: PRMW-1S Lab Sample ID: 480-216887-3

Date Collected: 02/05/24 11:40 Matrix: Ground Water

| Analyte                      | Result    | Qualifier   | RL       | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------------|-----------|-------------|----------|-------|------|---|----------------|----------------|---------|
| Benzene                      | ND        |             | 1.0      | 0.41  | ug/L |   |                | 02/07/24 19:32 | 1       |
| Ethylbenzene                 | ND        |             | 1.0      | 0.74  | ug/L |   |                | 02/07/24 19:32 | 1       |
| Toluene                      | ND        |             | 1.0      | 0.51  | ug/L |   |                | 02/07/24 19:32 | 1       |
| Xylenes, Total               | ND        |             | 2.0      | 0.66  | ug/L |   |                | 02/07/24 19:32 | 1       |
| Surrogate                    | %Recovery | Qualifier   | Limits   |       |      |   | Prepared       | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 103       |             | 77 - 120 |       |      |   |                | 02/07/24 19:32 | 1       |
| 4-Bromofluorobenzene (Surr)  | 100       |             | 73 - 120 |       |      |   |                | 02/07/24 19:32 | 1       |
| Dibromofluoromethane (Surr)  | 102       |             | 75 - 123 |       |      |   |                | 02/07/24 19:32 | 1       |
| Toluene-d8 (Surr)            | 98        |             | 80 - 120 |       |      |   |                | 02/07/24 19:32 | 1       |
| Method: SW846 8270D LL       |           |             |          |       |      |   |                |                |         |
| Analyte                      |           | Qualifier   | RL       | MDL   |      | D | Prepared       | Analyzed       | Dil Fac |
| Acenaphthene                 | ND        |             | 0.54     | 0.039 | ug/L |   | 02/08/24 10:57 |                | 1       |
| Acenaphthylene               | ND        |             | 0.32     | 0.060 | ū    |   | 02/08/24 10:57 |                | 1       |
| Anthracene                   | ND        |             | 0.54     | 0.037 |      |   | 02/08/24 10:57 | 02/09/24 18:26 | 1       |
| Benzo[a]anthracene           | ND        |             | 0.32     | 0.037 | -    |   | 02/08/24 10:57 | 02/09/24 18:26 | 1       |
| Benzo[a]pyrene               | ND        |             | 0.19     |       | ug/L |   | 02/08/24 10:57 | 02/09/24 18:26 | 1       |
| Benzo[b]fluoranthene         | ND        |             | 0.32     | 0.068 | ug/L |   | 02/08/24 10:57 | 02/09/24 18:26 | 1       |
| Benzo[g,h,i]perylene         | ND        |             | 0.54     | 0.062 | ug/L |   | 02/08/24 10:57 | 02/09/24 18:26 | 1       |
| Benzo[k]fluoranthene         | ND        | <b>≫</b> UJ | 0.32     | 0.075 | ug/L |   | 02/08/24 10:57 | 02/09/24 18:26 | 1       |
| Chrysene                     | ND        |             | 0.54     | 0.080 | ug/L |   | 02/08/24 10:57 | 02/09/24 18:26 | 1       |
| Dibenz(a,h)anthracene        | ND        |             | 0.54     | 0.075 | ug/L |   | 02/08/24 10:57 | 02/09/24 18:26 | 1       |
| Fluoranthene                 | ND        |             | 0.54     | 0.086 | ug/L |   | 02/08/24 10:57 | 02/09/24 18:26 | 1       |
| Fluorene                     | ND        |             | 0.54     | 0.062 | ug/L |   | 02/08/24 10:57 | 02/09/24 18:26 | 1       |
| Indeno[1,2,3-cd]pyrene       | ND        |             | 0.54     | 0.12  | ug/L |   | 02/08/24 10:57 | 02/09/24 18:26 | 1       |
| Naphthalene                  | ND        |             | 1.1      | 0.069 | ug/L |   | 02/08/24 10:57 | 02/09/24 18:26 | 1       |
| Phenanthrene                 | ND        |             | 0.22     | 0.067 | ug/L |   | 02/08/24 10:57 | 02/09/24 18:26 | 1       |
| <b>_</b>                     | ND        |             | 0.54     | 0.082 | ug/L |   | 02/08/24 10:57 | 02/09/24 18:26 | 1       |
| Pyrene                       |           |             |          |       |      |   | Prepared       | Analyzed       | Dil Fac |
| Surrogate                    | %Recovery | Qualifier   | Limits   |       |      |   |                |                |         |
| •                            | %Recovery | Qualifier   | 27 - 120 |       |      |   |                | 02/09/24 18:26 |         |
| Surrogate                    |           | Qualifier   |          |       |      |   | 02/08/24 10:57 |                | 1       |

Dil Fac

Analyzed

02/08/24 21:13

Job ID: 480-216887-1

RL

0.010

MDL Unit

0.0041 mg/L

D

Prepared

Result Qualifier

ND

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

Client Sample ID: PRMW-2D

Cyanide, Total (SW846 9012B)

Lab Sample ID: 480-216887-4

Date Collected: 02/05/24 13:15 **Matrix: Ground Water** Date Received: 02/07/24 10:30

| Analyte                      | Result         | Qualifier  | RL          | MDL   | Unit    | D     | Prepared       | Analyzed       | Dil Fac |
|------------------------------|----------------|------------|-------------|-------|---------|-------|----------------|----------------|---------|
| Benzene                      | ND             |            | 1.0         | 0.41  | ug/L    |       |                | 02/07/24 19:54 | 1       |
| Ethylbenzene                 | ND             |            | 1.0         | 0.74  | ug/L    |       |                | 02/07/24 19:54 | 1       |
| Toluene                      | ND             |            | 1.0         | 0.51  | ug/L    |       |                | 02/07/24 19:54 | 1       |
| Xylenes, Total               | ND             |            | 2.0         | 0.66  | ug/L    |       |                | 02/07/24 19:54 | 1       |
| Surrogate                    | %Recovery      | Qualifier  | Limits      |       |         |       | Prepared       | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 102            |            | 77 - 120    |       |         |       |                | 02/07/24 19:54 | 1       |
| 4-Bromofluorobenzene (Surr)  | 102            |            | 73 - 120    |       |         |       |                | 02/07/24 19:54 | 1       |
| Dibromofluoromethane (Surr)  | 102            |            | 75 - 123    |       |         |       |                | 02/07/24 19:54 | 1       |
| Toluene-d8 (Surr)            | 102            |            | 80 - 120    |       |         |       |                | 02/07/24 19:54 | 1       |
| Method: SW846 8270D LI       | Semivolatile ( | Organic Co | ompounds by | GC/MS | - Low L | .evel |                |                |         |
| Analyte                      | Result         | Qualifier  | RL          | MDL   | Unit    | D     | Prepared       | Analyzed       | Dil Fac |
| Acenaphthene                 | ND             |            | 0.52        | 0.038 | ug/L    |       | 02/08/24 10:57 | 02/09/24 18:53 | 1       |
| Acenaphthylene               | ND             |            | 0.31        | 0.058 | ug/L    |       | 02/08/24 10:57 | 02/09/24 18:53 | 1       |
| Anthracene                   | ND             |            | 0.52        | 0.035 | ug/L    |       | 02/08/24 10:57 | 02/09/24 18:53 | 1       |
| Benzo[a]anthracene           | ND             |            | 0.31        | 0.035 | ug/L    |       | 02/08/24 10:57 | 02/09/24 18:53 | 1       |
| Benzo[a]pyrene               | ND             |            | 0.19        | 0.14  | ug/L    |       | 02/08/24 10:57 | 02/09/24 18:53 | 1       |
| Benzo[b]fluoranthene         | ND             |            | 0.31        | 0.066 | ug/L    |       | 02/08/24 10:57 | 02/09/24 18:53 | 1       |
| Benzo[g,h,i]perylene         | ND             |            | 0.52        | 0.060 | ug/L    |       | 02/08/24 10:57 | 02/09/24 18:53 | 1       |
| Benzo[k]fluoranthene         | ND             | > UJ       | 0.31        | 0.073 | ug/L    |       | 02/08/24 10:57 | 02/09/24 18:53 | 1       |
| Chrysene                     | ND             |            | 0.52        | 0.077 | ug/L    |       | 02/08/24 10:57 | 02/09/24 18:53 | 1       |
| Dibenz(a,h)anthracene        | ND             |            | 0.52        | 0.073 | ug/L    |       | 02/08/24 10:57 | 02/09/24 18:53 | 1       |
| Fluoranthene                 | ND             |            | 0.52        | 0.083 | ug/L    |       | 02/08/24 10:57 | 02/09/24 18:53 | 1       |
| Fluorene                     | ND             |            | 0.52        | 0.060 | ug/L    |       | 02/08/24 10:57 | 02/09/24 18:53 | 1       |
| Indeno[1,2,3-cd]pyrene       | ND             |            | 0.52        | 0.11  | ug/L    |       | 02/08/24 10:57 | 02/09/24 18:53 | 1       |
| Naphthalene                  | ND             |            | 1.0         | 0.067 | ug/L    |       | 02/08/24 10:57 | 02/09/24 18:53 | 1       |
| Phenanthrene                 | ND             |            | 0.21        | 0.065 | ug/L    |       | 02/08/24 10:57 | 02/09/24 18:53 | 1       |
| Pyrene                       | ND             |            | 0.52        | 0.079 | ug/L    |       | 02/08/24 10:57 | 02/09/24 18:53 | 1       |
| Surrogate                    | %Recovery      | Qualifier  | Limits      |       |         |       | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl             | 99             |            | 37 - 120    |       |         |       | 02/08/24 10:57 | 02/09/24 18:53 | 1       |
| Nitrobenzene-d5 (Surr)       | 80             |            | 26 - 120    |       |         |       | 02/08/24 10:57 | 02/09/24 18:53 | 1       |
| p-Terphenyl-d14 (Surr)       | 95             |            | 64 - 127    |       |         |       | 02/08/24 10:57 | 02/09/24 18:53 | 1       |
| p-respirentys-a 1+ (Gair)    |                |            |             |       |         |       |                |                |         |
| General Chemistry            |                |            |             |       |         |       |                |                |         |

02/08/24 21:15

Job ID: 480-216887-1

0.010

0.0041 mg/L

ND

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

**Client Sample ID: PRMW-2S** 

Cyanide, Total (SW846 9012B)

Lab Sample ID: 480-216887-5

Date Collected: 02/05/24 14:30 **Matrix: Ground Water** Date Received: 02/07/24 10:30

| Analyte                      | Result          | Qualifier     | RL       | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------------|-----------------|---------------|----------|-------|------|---|----------------|----------------|---------|
| Benzene                      | ND              |               | 1.0      | 0.41  | ug/L |   |                | 02/07/24 20:17 | 1       |
| Ethylbenzene                 | ND              |               | 1.0      | 0.74  | ug/L |   |                | 02/07/24 20:17 | 1       |
| Toluene                      | ND              |               | 1.0      | 0.51  | ug/L |   |                | 02/07/24 20:17 | 1       |
| Xylenes, Total               | ND              |               | 2.0      | 0.66  | ug/L |   |                | 02/07/24 20:17 | 1       |
| Surrogate                    | %Recovery       | Qualifier     | Limits   |       |      |   | Prepared       | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 103             |               | 77 - 120 |       |      |   |                | 02/07/24 20:17 | 1       |
| 4-Bromofluorobenzene (Surr)  | 100             |               | 73 - 120 |       |      |   |                | 02/07/24 20:17 | 1       |
| Dibromofluoromethane (Surr)  | 103             |               | 75 - 123 |       |      |   |                | 02/07/24 20:17 | 1       |
| Toluene-d8 (Surr)            | 100             |               | 80 - 120 |       |      |   |                | 02/07/24 20:17 | 1       |
| Method: SW846 8270D LL -     |                 | _             |          |       |      |   |                |                |         |
| Analyte                      |                 | Qualifier     | RL       |       | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Acenaphthene                 | ND              |               | 0.52     | 0.037 | -    |   | 02/08/24 10:57 |                | 1       |
| Acenaphthylene               | ND              |               | 0.31     | 0.058 | •    |   |                | 02/09/24 19:21 | 1       |
| Anthracene                   | ND              |               | 0.52     | 0.035 | ug/L |   | 02/08/24 10:57 | 02/09/24 19:21 | 1       |
| Benzo[a]anthracene           | ND              |               | 0.31     | 0.035 | U    |   | 02/08/24 10:57 | 02/09/24 19:21 | 1       |
| Benzo[a]pyrene               | ND              |               | 0.19     | 0.13  | ug/L |   | 02/08/24 10:57 | 02/09/24 19:21 | 1       |
| Benzo[b]fluoranthene         | ND              |               | 0.31     | 0.065 | ug/L |   | 02/08/24 10:57 | 02/09/24 19:21 | 1       |
| Benzo[g,h,i]perylene         | ND              |               | 0.52     | 0.060 | ug/L |   | 02/08/24 10:57 | 02/09/24 19:21 | 1       |
| Benzo[k]fluoranthene         | ND              | 🥦 UJ          | 0.31     | 0.072 | ug/L |   | 02/08/24 10:57 | 02/09/24 19:21 | 1       |
| Chrysene                     | ND              |               | 0.52     | 0.076 | ug/L |   | 02/08/24 10:57 | 02/09/24 19:21 | 1       |
| Dibenz(a,h)anthracene        | ND              |               | 0.52     | 0.072 | ug/L |   | 02/08/24 10:57 | 02/09/24 19:21 | 1       |
| Fluoranthene                 | ND              |               | 0.52     | 0.082 | ug/L |   | 02/08/24 10:57 | 02/09/24 19:21 | 1       |
| Fluorene                     | ND              |               | 0.52     | 0.060 | ug/L |   | 02/08/24 10:57 | 02/09/24 19:21 | 1       |
| Indeno[1,2,3-cd]pyrene       | ND              |               | 0.52     | 0.11  | ug/L |   | 02/08/24 10:57 | 02/09/24 19:21 | 1       |
| Naphthalene                  | <del>0.13</del> | <b>-</b> J∙UB | 1.0      | 0.066 | ug/L |   | 02/08/24 10:57 | 02/09/24 19:21 | 1       |
| Phenanthrene                 | ND              |               | 0.21     | 0.064 | ug/L |   | 02/08/24 10:57 | 02/09/24 19:21 | 1       |
| Pyrene                       | ND              |               | 0.52     | 0.078 | ug/L |   | 02/08/24 10:57 | 02/09/24 19:21 | 1       |
| Surrogate                    | %Recovery       | Qualifier     | Limits   |       |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl             | 98              |               | 37 - 120 |       |      |   | 02/08/24 10:57 | 02/09/24 19:21 | 1       |
| Nitrobenzene-d5 (Surr)       | 79              |               | 26 - 120 |       |      |   | 02/08/24 10:57 | 02/09/24 19:21 | 1       |
| p-Terphenyl-d14 (Surr)       | 93              |               | 64 - 127 |       |      |   | 02/08/24 10:57 | 02/09/24 19:21 | 1       |
| General Chemistry            |                 |               |          |       |      |   |                |                |         |
| Analyte                      | Result          | Qualifier     | RL       | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
| -                            |                 |               |          |       |      |   |                |                |         |

02/08/24 21:18

Job ID: 480-216887-1

0.010

0.10 <del>B</del>

0.0041 mg/L

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

Client Sample ID: PRMW-3D

Cyanide, Total (SW846 9012B)

Lab Sample ID: 480-216887-6

Date Collected: 02/05/24 15:35 **Matrix: Ground Water** Date Received: 02/07/24 10:30

| Analyte                      | Result           | Qualifier        | RL          | MDL   | Unit      | D     | Prepared       | Analyzed       | Dil Fac |
|------------------------------|------------------|------------------|-------------|-------|-----------|-------|----------------|----------------|---------|
| Benzene                      | ND               |                  | 1.0         | 0.41  | ug/L      |       |                | 02/07/24 20:39 | 1       |
| Ethylbenzene                 | ND               |                  | 1.0         | 0.74  | ug/L      |       |                | 02/07/24 20:39 | 1       |
| Toluene                      | ND               |                  | 1.0         | 0.51  | ug/L      |       |                | 02/07/24 20:39 | 1       |
| Xylenes, Total               | ND               |                  | 2.0         | 0.66  | ug/L      |       |                | 02/07/24 20:39 | 1       |
| Surrogate                    | %Recovery        | Qualifier        | Limits      |       |           |       | Prepared       | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 104              |                  | 77 - 120    |       |           |       |                | 02/07/24 20:39 | 1       |
| 4-Bromofluorobenzene (Surr)  | 98               |                  | 73 - 120    |       |           |       |                | 02/07/24 20:39 | 1       |
| Dibromofluoromethane (Surr)  | 102              |                  | 75 - 123    |       |           |       |                | 02/07/24 20:39 | 1       |
| Toluene-d8 (Surr)            | 101              |                  | 80 - 120    |       |           |       |                | 02/07/24 20:39 | 1       |
| Method: SW846 8270D LL -     | - Semivolatile ( | Organic Co       | ompounds by | GC/MS | 6 - Low L | .evel |                |                |         |
| Analyte                      |                  | Qualifier        | RL          | MDL   |           | D     | Prepared       | Analyzed       | Dil Fac |
| Acenaphthene                 | ND               |                  | 0.53        | 0.038 | ug/L      |       | 02/08/24 10:57 | 02/09/24 19:50 | 1       |
| Acenaphthylene               | ND               |                  | 0.32        | 0.060 | ug/L      |       | 02/08/24 10:57 | 02/09/24 19:50 | 1       |
| Anthracene                   | ND               |                  | 0.53        | 0.036 | ug/L      |       | 02/08/24 10:57 | 02/09/24 19:50 | 1       |
| Benzo[a]anthracene           | ND               |                  | 0.32        | 0.036 | ug/L      |       | 02/08/24 10:57 | 02/09/24 19:50 | 1       |
| Benzo[a]pyrene               | ND               |                  | 0.19        | 0.14  | ug/L      |       | 02/08/24 10:57 | 02/09/24 19:50 | 1       |
| Benzo[b]fluoranthene         | ND               |                  | 0.32        | 0.067 | ug/L      |       | 02/08/24 10:57 | 02/09/24 19:50 | 1       |
| Benzo[g,h,i]perylene         | ND               |                  | 0.53        | 0.062 | ug/L      |       | 02/08/24 10:57 | 02/09/24 19:50 | 1       |
| Benzo[k]fluoranthene         | ND               | ≫ UJ             | 0.32        | 0.074 | ug/L      |       | 02/08/24 10:57 | 02/09/24 19:50 | 1       |
| Chrysene                     | ND               |                  | 0.53        | 0.079 | ug/L      |       | 02/08/24 10:57 | 02/09/24 19:50 | 1       |
| Dibenz(a,h)anthracene        | ND               |                  | 0.53        | 0.074 | ug/L      |       | 02/08/24 10:57 | 02/09/24 19:50 | 1       |
| Fluoranthene                 | ND               |                  | 0.53        | 0.085 | ug/L      |       | 02/08/24 10:57 | 02/09/24 19:50 | 1       |
| Fluorene                     | ND               |                  | 0.53        | 0.062 | ug/L      |       | 02/08/24 10:57 | 02/09/24 19:50 | 1       |
| Indeno[1,2,3-cd]pyrene       | ND               |                  | 0.53        | 0.12  | ug/L      |       | 02/08/24 10:57 | 02/09/24 19:50 | 1       |
| Naphthalene                  | <del>0.14</del>  | <del>-J</del> UB | 1.1         | 0.068 | ug/L      |       | 02/08/24 10:57 | 02/09/24 19:50 | 1       |
| Phenanthrene                 | ND               |                  | 0.21        | 0.066 | ug/L      |       | 02/08/24 10:57 | 02/09/24 19:50 | 1       |
| Pyrene                       | ND               |                  | 0.53        | 0.081 | ug/L      |       | 02/08/24 10:57 | 02/09/24 19:50 | 1       |
| Surrogate                    | %Recovery        | Qualifier        | Limits      |       |           |       | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl             | 101              |                  | 37 - 120    |       |           |       | 02/08/24 10:57 | 02/09/24 19:50 | 1       |
| Nitrobenzene-d5 (Surr)       | 81               |                  | 26 - 120    |       |           |       | 02/08/24 10:57 | 02/09/24 19:50 | 1       |
| p-Terphenyl-d14 (Surr)       | 104              |                  | 64 - 127    |       |           |       | 02/08/24 10:57 | 02/09/24 19:50 | 1       |
| General Chemistry            |                  |                  |             |       |           |       |                |                |         |
| Analyte                      | Result           | Qualifier        | RL          | MDL   | Unit      | D     | Prepared       | Analyzed       | Dil Fac |
|                              |                  |                  |             |       |           |       |                |                | -       |

02/08/24 21:20

Job ID: 480-216887-1

0.010

0.0041 mg/L

ND

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

Client Sample ID: PRMW-3S

Cyanide, Total (SW846 9012B)

Lab Sample ID: 480-216887-7

Date Collected: 02/05/24 13:15 **Matrix: Ground Water** Date Received: 02/07/24 10:30

| Analyte                      | Result          | Qualifier   | RL       | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------------|-----------------|-------------|----------|-------|------|---|----------------|----------------|---------|
| Benzene                      | ND              |             | 1.0      | 0.41  | ug/L |   |                | 02/07/24 21:01 | 1       |
| Ethylbenzene                 | ND              |             | 1.0      | 0.74  | ug/L |   |                | 02/07/24 21:01 | 1       |
| Toluene                      | ND              |             | 1.0      | 0.51  | ug/L |   |                | 02/07/24 21:01 | 1       |
| Xylenes, Total               | ND              |             | 2.0      | 0.66  | ug/L |   |                | 02/07/24 21:01 | 1       |
| Surrogate                    | %Recovery       | Qualifier   | Limits   |       |      |   | Prepared       | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 101             |             | 77 - 120 |       |      |   |                | 02/07/24 21:01 | 1       |
| 4-Bromofluorobenzene (Surr)  | 101             |             | 73 - 120 |       |      |   |                | 02/07/24 21:01 | 1       |
| Dibromofluoromethane (Surr)  | 98              |             | 75 - 123 |       |      |   |                | 02/07/24 21:01 | 1       |
| Toluene-d8 (Surr)            | 101             |             | 80 - 120 |       |      |   |                | 02/07/24 21:01 | 1       |
| Method: SW846 8270D LL -     |                 | _           |          |       |      |   |                |                |         |
| Analyte                      |                 | Qualifier   | RL       |       | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Acenaphthene                 | ND              |             | 0.50     | 0.036 | ug/L |   | 02/08/24 10:57 | 02/09/24 17:01 | 1       |
| Acenaphthylene               | ND              |             | 0.30     | 0.056 | ug/L |   | 02/08/24 10:57 | 02/09/24 17:01 | 1       |
| Anthracene                   | ND              |             | 0.50     | 0.034 | ug/L |   | 02/08/24 10:57 | 02/09/24 17:01 | 1       |
| Benzo[a]anthracene           | ND              | F1 F2 UJ    | 0.30     | 0.034 | ug/L |   | 02/08/24 10:57 | 02/09/24 17:01 | 1       |
| Benzo[a]pyrene               | ND              | F1 F2       | 0.18     | 0.13  | ug/L |   | 02/08/24 10:57 | 02/09/24 17:01 | 1       |
| Benzo[b]fluoranthene         | ND              | F F2        | 0.30     | 0.063 | ug/L |   | 02/08/24 10:57 | 02/09/24 17:01 | 1       |
| Benzo[g,h,i]perylene         | ND              | F1\F2       | 0.50     | 0.058 | ug/L |   | 02/08/24 10:57 | 02/09/24 17:01 | 1       |
| Benzo[k]fluoranthene         | ND              | F1 + F2     | 0.30     | 0.070 | ug/L |   | 02/08/24 10:57 | 02/09/24 17:01 | 1       |
| Chrysene                     | ND              | F1 F2       | 0.50     | 0.074 | ug/L |   | 02/08/24 10:57 | 02/09/24 17:01 | 1       |
| Dibenz(a,h)anthracene        | ND              | F1 F2       | 0.50     | 0.070 | ug/L |   | 02/08/24 10:57 | 02/09/24 17:01 | 1       |
| Fluoranthene                 | ND              |             | 0.50     | 0.080 | ug/L |   | 02/08/24 10:57 | 02/09/24 17:01 | 1       |
| Fluorene                     | ND              |             | 0.50     | 0.058 | ug/L |   | 02/08/24 10:57 | 02/09/24 17:01 | 1       |
| Indeno[1,2,3-cd]pyrene       | ND              | F1F2 UJ     | 0.50     | 0.11  | ug/L |   | 02/08/24 10:57 | 02/09/24 17:01 | 1       |
| Naphthalene                  | <del>0.32</del> | <b>J</b> UB | 1.0      | 0.064 | ug/L |   | 02/08/24 10:57 | 02/09/24 17:01 | 1       |
| Phenanthrene                 | ND              |             | 0.20     | 0.062 | ug/L |   | 02/08/24 10:57 | 02/09/24 17:01 | 1       |
| Pyrene                       | ND              |             | 0.50     | 0.076 | ug/L |   | 02/08/24 10:57 | 02/09/24 17:01 | 1       |
| Surrogate                    | %Recovery       | Qualifier   | Limits   |       |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl             | 115             |             | 37 - 120 |       |      |   | 02/08/24 10:57 | 02/09/24 17:01 |         |
| Nitrobenzene-d5 (Surr)       | 92              |             | 26 - 120 |       |      |   | 02/08/24 10:57 | 02/09/24 17:01 | 1       |
| p-Terphenyl-d14 (Surr)       | 112             |             | 64 - 127 |       |      |   | 02/08/24 10:57 | 02/09/24 17:01 | •       |
|                              |                 |             |          |       |      |   |                |                |         |
| General Chemistry            |                 |             |          |       |      |   |                |                |         |

02/08/24 21:35

Job ID: 480-216887-1

0.010

0.0041 mg/L

0.0065 J B UB

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

Client Sample ID: PRMW-4S

Date Collected: 02/05/24 11:40 Date Received: 02/07/24 10:30 Lab Sample ID: 480-216887-8

**Matrix: Ground Water** 

Job ID: 480-216887-1

| Analyte                      | Result            | Qualifier        | RL       | MDL    | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------------|-------------------|------------------|----------|--------|------|---|----------------|----------------|---------|
| Benzene                      | ND                |                  | 1.0      | 0.41   | ug/L |   |                | 02/07/24 21:23 | 1       |
| Ethylbenzene                 | ND                |                  | 1.0      | 0.74   | ug/L |   |                | 02/07/24 21:23 | 1       |
| Toluene                      | ND                |                  | 1.0      | 0.51   | ug/L |   |                | 02/07/24 21:23 | 1       |
| Xylenes, Total               | ND                |                  | 2.0      | 0.66   | ug/L |   |                | 02/07/24 21:23 | 1       |
| Surrogate                    | %Recovery         | Qualifier        | Limits   |        |      |   | Prepared       | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 101               |                  | 77 - 120 |        |      |   |                | 02/07/24 21:23 | 1       |
| 4-Bromofluorobenzene (Surr)  | 100               |                  | 73 - 120 |        |      |   |                | 02/07/24 21:23 | 1       |
| Dibromofluoromethane (Surr)  | 100               |                  | 75 - 123 |        |      |   |                | 02/07/24 21:23 | 1       |
| Toluene-d8 (Surr)            | 103               |                  | 80 - 120 |        |      |   |                | 02/07/24 21:23 | 1       |
| Method: SW846 8270D LL - \$  |                   | _                |          |        |      |   |                |                |         |
| Analyte                      |                   | Qualifier        | RL       | MDL    |      | D | Prepared       | Analyzed       | Dil Fac |
| Acenaphthene                 | ND                |                  | 0.54     | 0.039  | ug/L |   |                | 02/09/24 20:18 | 1       |
| Acenaphthylene               | ND                |                  | 0.32     | 0.060  | ug/L |   |                | 02/09/24 20:18 | 1       |
| Anthracene                   | ND                |                  | 0.54     | 0.037  | ug/L |   | 02/08/24 10:57 | 02/09/24 20:18 | 1       |
| Benzo[a]anthracene           | ND                |                  | 0.32     | 0.037  | ug/L |   | 02/08/24 10:57 | 02/09/24 20:18 | 1       |
| Benzo[a]pyrene               | ND                |                  | 0.19     | 0.14   | -    |   | 02/08/24 10:57 | 02/09/24 20:18 | 1       |
| Benzo[b]fluoranthene         | ND                |                  | 0.32     | 0.068  |      |   | 02/08/24 10:57 | 02/09/24 20:18 | 1       |
| Benzo[g,h,i]perylene         | ND                |                  | 0.54     | 0.062  | -    |   | 02/08/24 10:57 | 02/09/24 20:18 | 1       |
| Benzo[k]fluoranthene         | ND                | * <b>&gt;</b> UJ | 0.32     | 0.075  | ug/L |   | 02/08/24 10:57 | 02/09/24 20:18 | 1       |
| Chrysene                     | ND                |                  | 0.54     | 0.080  | ug/L |   | 02/08/24 10:57 | 02/09/24 20:18 | 1       |
| Dibenz(a,h)anthracene        | ND                |                  | 0.54     | 0.075  | ug/L |   | 02/08/24 10:57 | 02/09/24 20:18 | 1       |
| Fluoranthene                 | ND                |                  | 0.54     | 0.086  | ug/L |   | 02/08/24 10:57 | 02/09/24 20:18 | 1       |
| Fluorene                     | ND                |                  | 0.54     | 0.062  | ug/L |   | 02/08/24 10:57 | 02/09/24 20:18 | 1       |
| Indeno[1,2,3-cd]pyrene       | ND                |                  | 0.54     | 0.12   | ug/L |   | 02/08/24 10:57 | 02/09/24 20:18 | 1       |
| Naphthalene                  | ND                |                  | 1.1      | 0.069  | ug/L |   | 02/08/24 10:57 | 02/09/24 20:18 | 1       |
| Phenanthrene                 | ND                |                  | 0.22     | 0.067  | ug/L |   | 02/08/24 10:57 | 02/09/24 20:18 | 1       |
| Pyrene                       | ND                |                  | 0.54     | 0.082  | ug/L |   | 02/08/24 10:57 | 02/09/24 20:18 | 1       |
| Surrogate                    | %Recovery         | Qualifier        | Limits   |        |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl             | 97                |                  | 37 - 120 |        |      |   | 02/08/24 10:57 | 02/09/24 20:18 | 1       |
| Nitrobenzene-d5 (Surr)       | 79                |                  | 26 - 120 |        |      |   | 02/08/24 10:57 | 02/09/24 20:18 | 1       |
| p-Terphenyl-d14 (Surr)       | 105               |                  | 64 - 127 |        |      |   | 02/08/24 10:57 | 02/09/24 20:18 | 1       |
| General Chemistry            |                   |                  |          |        |      |   |                |                |         |
| Analyte                      | Result            | Qualifier        | RL       | MDL    | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Cyanide, Total (SW846 9012B) | <del>0.0070</del> | JB UB            | 0.010    | 0.0041 | mg/L |   |                | 02/08/24 21:42 | 1       |

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

Client Sample ID: PRMW-5D Lab Sample ID: 480-216887-9

Date Collected: 02/06/24 11:25 Matrix: Ground Water

Date Received: 02/07/24 10:30

Cyanide, Total (SW846 9012B)

| Analyte                      | Result         | Qualifier   | RL          | MDL   | Unit    | D    | Prepared       | Analyzed       | Dil Fac |
|------------------------------|----------------|-------------|-------------|-------|---------|------|----------------|----------------|---------|
| Benzene                      | ND             |             | 1.0         | 0.41  | ug/L    |      |                | 02/07/24 21:45 | 1       |
| Ethylbenzene                 | ND             |             | 1.0         | 0.74  | ug/L    |      |                | 02/07/24 21:45 | 1       |
| Toluene                      | ND             |             | 1.0         | 0.51  | ug/L    |      |                | 02/07/24 21:45 | 1       |
| Xylenes, Total               | ND             |             | 2.0         | 0.66  | ug/L    |      |                | 02/07/24 21:45 | 1       |
| Surrogate                    | %Recovery      | Qualifier   | Limits      |       |         |      | Prepared       | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 102            |             | 77 - 120    |       |         |      |                | 02/07/24 21:45 | 1       |
| 4-Bromofluorobenzene (Surr)  | 100            |             | 73 - 120    |       |         |      |                | 02/07/24 21:45 | 1       |
| Dibromofluoromethane (Surr)  | 99             |             | 75 - 123    |       |         |      |                | 02/07/24 21:45 | 1       |
| Toluene-d8 (Surr)            | 100            |             | 80 - 120    |       |         |      |                | 02/07/24 21:45 | 1       |
| Method: SW846 8270D LL -     | Semivolatile ( | Organic Co  | ompounds by | GC/MS | - Low L | evel |                |                |         |
| Analyte                      | Result         | Qualifier   | RL          | MDL   |         | D    | Prepared       | Analyzed       | Dil Fac |
| Acenaphthene                 | ND             |             | 0.53        | 0.038 | ug/L    |      | 02/08/24 10:57 | 02/09/24 20:47 | 1       |
| Acenaphthylene               | ND             |             | 0.32        | 0.059 | ug/L    |      | 02/08/24 10:57 | 02/09/24 20:47 | 1       |
| Anthracene                   | ND             |             | 0.53        | 0.036 | ug/L    |      | 02/08/24 10:57 | 02/09/24 20:47 | 1       |
| Benzo[a]anthracene           | ND             |             | 0.32        | 0.036 | ug/L    |      | 02/08/24 10:57 | 02/09/24 20:47 | 1       |
| Benzo[a]pyrene               | ND             |             | 0.19        | 0.14  | ug/L    |      | 02/08/24 10:57 | 02/09/24 20:47 | 1       |
| Benzo[b]fluoranthene         | ND             |             | 0.32        | 0.066 | ug/L    |      | 02/08/24 10:57 | 02/09/24 20:47 | 1       |
| Benzo[g,h,i]perylene         | ND             |             | 0.53        | 0.061 | ug/L    |      | 02/08/24 10:57 | 02/09/24 20:47 | 1       |
| Benzo[k]fluoranthene         | ND             | <b>™</b> UJ | 0.32        | 0.074 | ug/L    |      | 02/08/24 10:57 | 02/09/24 20:47 | 1       |
| Chrysene                     | ND             |             | 0.53        | 0.078 | ug/L    |      | 02/08/24 10:57 | 02/09/24 20:47 | 1       |
| Dibenz(a,h)anthracene        | ND             |             | 0.53        | 0.074 | ug/L    |      | 02/08/24 10:57 | 02/09/24 20:47 | 1       |
| Fluoranthene                 | ND             |             | 0.53        | 0.084 | ug/L    |      | 02/08/24 10:57 | 02/09/24 20:47 | 1       |
| Fluorene                     | ND             |             | 0.53        | 0.061 | ug/L    |      | 02/08/24 10:57 | 02/09/24 20:47 | 1       |
| Indeno[1,2,3-cd]pyrene       | ND             |             | 0.53        | 0.12  | ug/L    |      | 02/08/24 10:57 | 02/09/24 20:47 | 1       |
| Naphthalene                  | ND             |             | 1.1         | 0.067 | ug/L    |      | 02/08/24 10:57 | 02/09/24 20:47 | 1       |
| Phenanthrene                 | ND             |             | 0.21        | 0.065 | ug/L    |      | 02/08/24 10:57 | 02/09/24 20:47 | 1       |
| Pyrene                       | ND             |             | 0.53        | 0.080 | ug/L    |      | 02/08/24 10:57 | 02/09/24 20:47 | 1       |
| Surrogate                    | %Recovery      | Qualifier   | Limits      |       |         |      | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl             | 110            |             | 37 - 120    |       |         |      | 02/08/24 10:57 | 02/09/24 20:47 | 1       |
| Nitrobenzene-d5 (Surr)       | 90             |             | 26 - 120    |       |         |      | 02/08/24 10:57 | 02/09/24 20:47 | 1       |
| p-Terphenyl-d14 (Surr)       | 104            |             | 64 - 127    |       |         |      | 02/08/24 10:57 | 02/09/24 20:47 | 1       |
|                              |                |             |             |       |         |      |                |                |         |
| General Chemistry            |                |             |             |       |         |      |                |                |         |

02/08/24 21:45

Job ID: 480-216887-1

0.010

ND

0.0041 mg/L

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

Client Sample ID: PRMW-5S

Lab Sample ID: 480-216887-10

**Matrix: Ground Water** 

Job ID: 480-216887-1

Date Collected: 02/06/24 10:10 Date Received: 02/07/24 10:30

Cyanide, Total (SW846 9012B)

| Analyte                      | Result    | Qualifier     | RL       | MDL   | Unit | D     | Prepared       | Analyzed       | Dil Fac |
|------------------------------|-----------|---------------|----------|-------|------|-------|----------------|----------------|---------|
| Benzene                      | 1.7       |               | 1.0      | 0.41  | ug/L |       |                | 02/07/24 22:08 | 1       |
| Ethylbenzene                 | 0.82      | J             | 1.0      | 0.74  | ug/L |       |                | 02/07/24 22:08 | 1       |
| Toluene                      | ND        |               | 1.0      | 0.51  | ug/L |       |                | 02/07/24 22:08 | 1       |
| Xylenes, Total               | ND        |               | 2.0      | 0.66  | ug/L |       |                | 02/07/24 22:08 | 1       |
| Surrogate                    | %Recovery | Qualifier     | Limits   |       |      |       | Prepared       | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 102       |               | 77 - 120 |       |      |       |                | 02/07/24 22:08 | 1       |
| 4-Bromofluorobenzene (Surr)  | 101       |               | 73 - 120 |       |      |       |                | 02/07/24 22:08 | 1       |
| Dibromofluoromethane (Surr)  | 101       |               | 75 - 123 |       |      |       |                | 02/07/24 22:08 | 1       |
| Toluene-d8 (Surr)            | 102       |               | 80 - 120 |       |      |       |                | 02/07/24 22:08 | 1       |
| Method: SW846 8270D LL       |           | _             |          | •     |      | .evel |                |                |         |
| Analyte                      |           | Qualifier     | RL       | MDL   |      | D     | Prepared       | Analyzed       | Dil Fac |
| Acenaphthene                 | 13        |               | 0.52     | 0.037 | ug/L |       | 02/08/24 10:57 | 02/09/24 21:15 | 1       |
| Acenaphthylene               | 1.8       |               | 0.31     | 0.058 | ug/L |       | 02/08/24 10:57 | 02/09/24 21:15 | 1       |
| Anthracene                   | 0.16      | J             | 0.52     | 0.035 | ug/L |       | 02/08/24 10:57 | 02/09/24 21:15 | 1       |
| Benzo[a]anthracene           | ND        |               | 0.31     | 0.035 | ug/L |       | 02/08/24 10:57 | 02/09/24 21:15 | 1       |
| Benzo[a]pyrene               | ND        |               | 0.19     | 0.13  | ug/L |       | 02/08/24 10:57 | 02/09/24 21:15 | 1       |
| Benzo[b]fluoranthene         | ND        |               | 0.31     | 0.065 | ug/L |       | 02/08/24 10:57 | 02/09/24 21:15 | 1       |
| Benzo[g,h,i]perylene         | ND        |               | 0.52     | 0.060 | ug/L |       | 02/08/24 10:57 | 02/09/24 21:15 | 1       |
| Benzo[k]fluoranthene         | ND        | <b>*</b> ⊁ UJ | 0.31     | 0.072 | ug/L |       | 02/08/24 10:57 | 02/09/24 21:15 | 1       |
| Chrysene                     | ND        |               | 0.52     | 0.076 | ug/L |       | 02/08/24 10:57 | 02/09/24 21:15 | 1       |
| Dibenz(a,h)anthracene        | ND        |               | 0.52     | 0.072 | ug/L |       | 02/08/24 10:57 | 02/09/24 21:15 | 1       |
| Fluoranthene                 | 0.78      |               | 0.52     | 0.082 | ug/L |       | 02/08/24 10:57 | 02/09/24 21:15 | 1       |
| Fluorene                     | 4.5       |               | 0.52     | 0.060 | ug/L |       | 02/08/24 10:57 | 02/09/24 21:15 | 1       |
| Indeno[1,2,3-cd]pyrene       | ND        |               | 0.52     | 0.11  | ug/L |       | 02/08/24 10:57 | 02/09/24 21:15 | 1       |
| Naphthalene                  | 6.4       |               | 1.0      | 0.066 | ug/L |       | 02/08/24 10:57 | 02/09/24 21:15 | 1       |
| Phenanthrene                 | 0.94      |               | 0.21     | 0.064 | ug/L |       | 02/08/24 10:57 | 02/09/24 21:15 | 1       |
| Pyrene                       | 0.46      | J             | 0.52     | 0.078 | ug/L |       | 02/08/24 10:57 | 02/09/24 21:15 | 1       |
| Surrogate                    | %Recovery | Qualifier     | Limits   |       |      |       | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl             | 97        |               | 37 - 120 |       |      |       | 02/08/24 10:57 | 02/09/24 21:15 | 1       |
| Nitrobenzene-d5 (Surr)       | 80        |               | 26 - 120 |       |      |       | 02/08/24 10:57 | 02/09/24 21:15 | 1       |
| p-Terphenyl-d14 (Surr)       | 98        |               | 64 - 127 |       |      |       | 02/08/24 10:57 | 02/09/24 21:15 | 1       |
| General Chemistry            |           |               |          |       |      |       |                |                |         |
| Analyte                      | Result    | Qualifier     | RL       | MDL   | Unit | D     | Prepared       | Analyzed       | Dil Fac |

02/08/24 21:47

0.010

0.0041 mg/L

0.029

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

Client Sample ID: PRMW-6D

Lab Sample ID: 480-216887-11

**Matrix: Ground Water** 

Job ID: 480-216887-1

Date Collected: 02/06/24 10:50 Date Received: 02/07/24 10:30

| Analyte                      | Result           | Qualifier | RL       | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------------|------------------|-----------|----------|-------|------|---|----------------|----------------|---------|
| Benzene                      | ND               |           | 1.0      | 0.41  | ug/L |   |                | 02/07/24 22:30 | 1       |
| Ethylbenzene                 | ND               |           | 1.0      | 0.74  | ug/L |   |                | 02/07/24 22:30 | 1       |
| Toluene                      | ND               |           | 1.0      | 0.51  | ug/L |   |                | 02/07/24 22:30 | 1       |
| Xylenes, Total               | ND               |           | 2.0      | 0.66  | ug/L |   |                | 02/07/24 22:30 | 1       |
| Surrogate                    | %Recovery        | Qualifier | Limits   |       |      |   | Prepared       | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 101              |           | 77 - 120 |       |      |   |                | 02/07/24 22:30 | 1       |
| 4-Bromofluorobenzene (Surr)  | 99               |           | 73 - 120 |       |      |   |                | 02/07/24 22:30 | 1       |
| Dibromofluoromethane (Surr)  | 100              |           | 75 - 123 |       |      |   |                | 02/07/24 22:30 | 1       |
| Toluene-d8 (Surr)            | 100              |           | 80 - 120 |       |      |   |                | 02/07/24 22:30 | 1       |
| Method: SW846 8270D LL       |                  | _         |          |       |      |   |                |                |         |
| Analyte                      |                  | Qualifier | RL       |       | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Acenaphthene                 | 0.089            | J         | 0.48     | 0.034 | •    |   | 02/08/24 10:57 |                | 1       |
| Acenaphthylene               | ND               |           | 0.29     | 0.053 | •    |   | 02/08/24 10:57 | 02/09/24 21:43 | 1       |
| Anthracene                   | ND               |           | 0.48     | 0.032 |      |   | 02/08/24 10:57 | 02/09/24 21:43 | 1       |
| Benzo[a]anthracene           | ND               |           | 0.29     | 0.032 | J    |   | 02/08/24 10:57 | 02/09/24 21:43 | 1       |
| Benzo[a]pyrene               | ND               |           | 0.17     |       | ug/L |   | 02/08/24 10:57 | 02/09/24 21:43 | 1       |
| Benzo[b]fluoranthene         | ND               |           | 0.29     | 0.060 |      |   |                | 02/09/24 21:43 | 1       |
| Benzo[g,h,i]perylene         | ND               |           | 0.48     | 0.055 | ug/L |   | 02/08/24 10:57 | 02/09/24 21:43 | 1       |
| Benzo[k]fluoranthene         | ND               | ₹ UJ      | 0.29     | 0.067 | ug/L |   | 02/08/24 10:57 | 02/09/24 21:43 | 1       |
| Chrysene                     | ND               |           | 0.48     | 0.070 | ug/L |   | 02/08/24 10:57 | 02/09/24 21:43 | 1       |
| Dibenz(a,h)anthracene        | ND               |           | 0.48     | 0.067 | ug/L |   | 02/08/24 10:57 | 02/09/24 21:43 | 1       |
| Fluoranthene                 | ND               |           | 0.48     | 0.076 | ug/L |   | 02/08/24 10:57 | 02/09/24 21:43 | 1       |
| Fluorene                     | ND               |           | 0.48     | 0.055 | ug/L |   | 02/08/24 10:57 | 02/09/24 21:43 | 1       |
| Indeno[1,2,3-cd]pyrene       | ND               |           | 0.48     | 0.10  | ug/L |   | 02/08/24 10:57 | 02/09/24 21:43 | 1       |
| Naphthalene                  | <del>-0.11</del> | → UB      | 0.95     | 0.061 | ug/L |   | 02/08/24 10:57 | 02/09/24 21:43 | 1       |
| Phenanthrene                 | ND               |           | 0.19     | 0.059 | ug/L |   | 02/08/24 10:57 | 02/09/24 21:43 | 1       |
| Pyrene                       | 0.074            | J         | 0.48     | 0.072 | ug/L |   | 02/08/24 10:57 | 02/09/24 21:43 | 1       |
| Surrogate                    | %Recovery        | Qualifier | Limits   |       |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl             | 117              |           | 37 - 120 |       |      |   | 02/08/24 10:57 | 02/09/24 21:43 | 1       |
| Nitrobenzene-d5 (Surr)       | 94               |           | 26 - 120 |       |      |   | 02/08/24 10:57 | 02/09/24 21:43 | 1       |
| p-Terphenyl-d14 (Surr)       | 118              |           | 64 - 127 |       |      |   | 02/08/24 10:57 | 02/09/24 21:43 | 1       |
| General Chemistry            |                  |           |          |       |      |   |                |                |         |
| Analyte                      | Result           | Qualifier | RL       | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

**Client Sample ID: PRMW-6S** 

Lab Sample ID: 480-216887-12

**Matrix: Ground Water** 

Job ID: 480-216887-1

Date Collected: 02/06/24 09:50 Date Received: 02/07/24 10:30

| Analyte                      | Result            | Qualifier          | RL       | MDL    | Unit | D     | Prepared       | Analyzed       | Dil Fac |
|------------------------------|-------------------|--------------------|----------|--------|------|-------|----------------|----------------|---------|
| Benzene                      | ND                |                    | 1.0      | 0.41   | ug/L |       |                | 02/07/24 22:52 | 1       |
| Ethylbenzene                 | ND                |                    | 1.0      | 0.74   | ug/L |       |                | 02/07/24 22:52 | 1       |
| Toluene                      | ND                |                    | 1.0      | 0.51   | ug/L |       |                | 02/07/24 22:52 | 1       |
| Xylenes, Total               | ND                |                    | 2.0      | 0.66   | ug/L |       |                | 02/07/24 22:52 | 1       |
| Surrogate                    | %Recovery         | Qualifier          | Limits   |        |      |       | Prepared       | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 100               |                    | 77 - 120 |        |      |       |                | 02/07/24 22:52 | 1       |
| 4-Bromofluorobenzene (Surr)  | 101               |                    | 73 - 120 |        |      |       |                | 02/07/24 22:52 | 1       |
| Dibromofluoromethane (Surr)  | 100               |                    | 75 - 123 |        |      |       |                | 02/07/24 22:52 | 1       |
| Toluene-d8 (Surr)            | 101               |                    | 80 - 120 |        |      |       |                | 02/07/24 22:52 | 1       |
| Method: SW846 8270D LL -     |                   |                    |          |        |      | .evel |                |                |         |
| Analyte                      |                   | Qualifier          | RL       |        | Unit | D     | Prepared       | Analyzed       | Dil Fac |
| Acenaphthene                 | ND                |                    | 0.56     | 0.040  | J.   |       | 02/08/24 10:57 |                | 1       |
| Acenaphthylene               | ND                |                    | 0.33     | 0.062  | ug/L |       | 02/08/24 10:57 | 02/09/24 22:10 | 1       |
| Anthracene                   | ND                |                    | 0.56     | 0.038  | ug/L |       | 02/08/24 10:57 | 02/09/24 22:10 | 1       |
| Benzo[a]anthracene           | ND                |                    | 0.33     | 0.038  | ug/L |       | 02/08/24 10:57 | 02/09/24 22:10 | 1       |
| Benzo[a]pyrene               | ND                |                    | 0.20     | 0.14   | ug/L |       | 02/08/24 10:57 | 02/09/24 22:10 | 1       |
| Benzo[b]fluoranthene         | ND                |                    | 0.33     | 0.070  | ug/L |       | 02/08/24 10:57 | 02/09/24 22:10 | 1       |
| Benzo[g,h,i]perylene         | ND                |                    | 0.56     | 0.064  | ug/L |       | 02/08/24 10:57 | 02/09/24 22:10 | 1       |
| Benzo[k]fluoranthene         | ND                | <b>&gt;&gt;</b> UJ | 0.33     | 0.078  | ug/L |       | 02/08/24 10:57 | 02/09/24 22:10 | 1       |
| Chrysene                     | ND                |                    | 0.56     | 0.082  | ug/L |       | 02/08/24 10:57 | 02/09/24 22:10 | 1       |
| Dibenz(a,h)anthracene        | ND                |                    | 0.56     | 0.078  | ug/L |       | 02/08/24 10:57 | 02/09/24 22:10 | 1       |
| Fluoranthene                 | ND                |                    | 0.56     | 0.089  | ug/L |       | 02/08/24 10:57 | 02/09/24 22:10 | 1       |
| Fluorene                     | ND                |                    | 0.56     | 0.064  | ug/L |       | 02/08/24 10:57 | 02/09/24 22:10 | 1       |
| Indeno[1,2,3-cd]pyrene       | ND                |                    | 0.56     | 0.12   | ug/L |       | 02/08/24 10:57 | 02/09/24 22:10 | 1       |
| Naphthalene                  | <del>-0.079</del> | <b>→</b> UB        | 1.1      | 0.071  | ug/L |       | 02/08/24 10:57 | 02/09/24 22:10 | 1       |
| Phenanthrene                 | ND                |                    | 0.22     | 0.069  | ug/L |       | 02/08/24 10:57 | 02/09/24 22:10 | 1       |
| Pyrene                       | ND                |                    | 0.56     | 0.084  | ug/L |       | 02/08/24 10:57 | 02/09/24 22:10 | 1       |
| Surrogate                    | %Recovery         | Qualifier          | Limits   |        |      |       | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl             | 89                |                    | 37 - 120 |        |      |       | 02/08/24 10:57 | 02/09/24 22:10 | 1       |
| Nitrobenzene-d5 (Surr)       | 73                |                    | 26 - 120 |        |      |       | 02/08/24 10:57 | 02/09/24 22:10 | 1       |
| p-Terphenyl-d14 (Surr)       | 90                |                    | 64 - 127 |        |      |       | 02/08/24 10:57 | 02/09/24 22:10 | 1       |
| General Chemistry            |                   |                    |          |        |      |       |                |                |         |
| Analyte                      | Result            | Qualifier          | RL       | MDL    | Unit | D     | Prepared       | Analyzed       | Dil Fac |
| Cyanide, Total (SW846 9012B) | ND                |                    | 0.010    | 0.0041 | mg/L |       |                | 02/08/24 21:53 |         |

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

Client Sample ID: DUP-20240205

Lab Sample ID: 480-216887-13 Date Collected: 02/05/24 00:00 **Matrix: Ground Water** 

Date Received: 02/07/24 10:30

**General Chemistry** 

Cyanide, Total (SW846 9012B)

| Analyte                      | Result           | Qualifier  | RL          | MDL   | Unit      | D     | Prepared       | Analyzed       | Dil Fac |
|------------------------------|------------------|------------|-------------|-------|-----------|-------|----------------|----------------|---------|
| Benzene                      | ND               |            | 1.0         | 0.41  | ug/L      |       |                | 02/07/24 23:14 | 1       |
| Ethylbenzene                 | ND               |            | 1.0         | 0.74  | ug/L      |       |                | 02/07/24 23:14 | 1       |
| Toluene                      | ND               |            | 1.0         | 0.51  | ug/L      |       |                | 02/07/24 23:14 | 1       |
| Xylenes, Total               | ND               |            | 2.0         | 0.66  | ug/L      |       |                | 02/07/24 23:14 | 1       |
| Surrogate                    | %Recovery        | Qualifier  | Limits      |       |           |       | Prepared       | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 103              |            | 77 - 120    |       |           |       |                | 02/07/24 23:14 | 1       |
| 4-Bromofluorobenzene (Surr)  | 101              |            | 73 - 120    |       |           |       |                | 02/07/24 23:14 | 1       |
| Dibromofluoromethane (Surr)  | 101              |            | 75 - 123    |       |           |       |                | 02/07/24 23:14 | 1       |
| Toluene-d8 (Surr)            | 104              |            | 80 - 120    |       |           |       |                | 02/07/24 23:14 | 1       |
| Method: SW846 8270D LL       | - Semivolatile ( | Organic Co | ompounds by | GC/MS | S - Low L | .evel |                |                |         |
| Analyte                      |                  | Qualifier  | RL          | MDL   | Unit      | D     | Prepared       | Analyzed       | Dil Fac |
| Acenaphthene                 | ND               |            | 0.53        | 0.038 | ug/L      |       | 02/08/24 10:57 | 02/09/24 22:38 | 1       |
| Acenaphthylene               | ND               |            | 0.32        | 0.059 | ug/L      |       | 02/08/24 10:57 | 02/09/24 22:38 | 1       |
| Anthracene                   | ND               |            | 0.53        | 0.036 | ug/L      |       | 02/08/24 10:57 | 02/09/24 22:38 | 1       |
| Benzo[a]anthracene           | ND               | UJ         | 0.32        | 0.036 | ug/L      |       | 02/08/24 10:57 | 02/09/24 22:38 | 1       |
| Benzo[a]pyrene               | ND               |            | 0.19        | 0.14  | ug/L      |       | 02/08/24 10:57 | 02/09/24 22:38 | 1       |
| Benzo[b]fluoranthene         | ND               |            | 0.32        | 0.066 | ug/L      |       | 02/08/24 10:57 | 02/09/24 22:38 | 1       |
| Benzo[g,h,i]perylene         | ND               |            | 0.53        | 0.061 | ug/L      |       | 02/08/24 10:57 | 02/09/24 22:38 | 1       |
| Benzo[k]fluoranthene         | ND               | **         | 0.32        | 0.074 | ug/L      |       | 02/08/24 10:57 | 02/09/24 22:38 | 1       |
| Chrysene                     | ND               |            | 0.53        | 0.078 | ug/L      |       | 02/08/24 10:57 | 02/09/24 22:38 | 1       |
| Dibenz(a,h)anthracene        | ND               | <b>V</b>   | 0.53        | 0.074 | ug/L      |       | 02/08/24 10:57 | 02/09/24 22:38 | 1       |
| Fluoranthene                 | ND               |            | 0.53        | 0.084 | ug/L      |       | 02/08/24 10:57 | 02/09/24 22:38 | 1       |
| Fluorene                     | ND               |            | 0.53        | 0.061 | ug/L      |       | 02/08/24 10:57 | 02/09/24 22:38 | 1       |
| Indeno[1,2,3-cd]pyrene       | ND               | UJ         | 0.53        | 0.12  | ug/L      |       | 02/08/24 10:57 | 02/09/24 22:38 | 1       |
| Naphthalene                  | ND               |            | 1.1         | 0.067 | ug/L      |       | 02/08/24 10:57 | 02/09/24 22:38 | 1       |
| Phenanthrene                 | ND               |            | 0.21        | 0.065 | ug/L      |       | 02/08/24 10:57 | 02/09/24 22:38 | 1       |
| Pyrene                       | ND               |            | 0.53        | 0.080 | ug/L      |       | 02/08/24 10:57 | 02/09/24 22:38 | 1       |
| Surrogate                    | %Recovery        | Qualifier  | Limits      |       |           |       | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl             | 116              |            | 37 - 120    |       |           |       | 02/08/24 10:57 | 02/09/24 22:38 | 1       |
| Nitrobenzene-d5 (Surr)       | 94               |            | 26 - 120    |       |           |       | 02/08/24 10:57 | 02/09/24 22:38 | 1       |
| p-Terphenyl-d14 (Surr)       | 121              |            | 64 - 127    |       |           |       | 02/08/24 10:57 | 02/09/24 22:38 | 1       |

Dil Fac

Analyzed

02/08/24 21:55

Job ID: 480-216887-1

RL

0.010

MDL Unit

0.0041 mg/L

D

Prepared

Result Qualifier

ND

Client: New York State Electric & Gas Job ID: 480-216887-1

Project/Site: NYSEG Former MGP Site - Penn Yan

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-216887-14

Date Collected: 02/05/24 00:00 Matrix: WQ Date Received: 02/07/24 10:30

| Analyte                      | Result    | Qualifier | RL       | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|------|------|---|----------|----------------|---------|
| Benzene                      | ND        |           | 1.0      | 0.41 | ug/L |   |          | 02/07/24 23:36 | 1       |
| Ethylbenzene                 | ND        |           | 1.0      | 0.74 | ug/L |   |          | 02/07/24 23:36 | 1       |
| Toluene                      | ND        |           | 1.0      | 0.51 | ug/L |   |          | 02/07/24 23:36 | 1       |
| Xylenes, Total               | ND        |           | 2.0      | 0.66 | ug/L |   |          | 02/07/24 23:36 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |      |      |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 102       |           | 77 - 120 |      |      |   |          | 02/07/24 23:36 | 1       |
| 4-Bromofluorobenzene (Surr)  | 99        |           | 73 - 120 |      |      |   |          | 02/07/24 23:36 | 1       |
| Dibromofluoromethane (Surr)  | 103       |           | 75 - 123 |      |      |   |          | 02/07/24 23:36 | 1       |
| Toluene-d8 (Surr)            | 100       |           | 80 - 120 |      |      |   |          | 02/07/24 23:36 | 1       |



# NYSEG Penn Yan Former MGP Site

# Data Usability Summary Report

Penn Yan, New York

Volatile Organic Compound (VOC), Semi-volatile Organic Compound (SVOC), and Cyanide Analyses

SDG # 480-222956-1

Analyses Performed By: Eurofins Buffalo Amherst, New York

Report # 55890R Review Level: Tier III Project: 30174322.2

## **Summary**

This Data Usability Summary Report (DUSR) summarizes the review of Sample Delivery Group (SDG) # 480-222956-1 for samples collected in association with the NYSEG Penn Yan Former MGP Site. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

| 0 1 15       |               |        | Sample                   | Parent  |     | Analy | sis     |
|--------------|---------------|--------|--------------------------|---------|-----|-------|---------|
| Sample ID    | Lab ID        | Matrix | Collection<br>Date       | Sample  | VOC | svoc  | CYANIDE |
| PRMW-1S      | 480-222956-1  | Water  | 8/28/2024                |         | Х   | Х     | Х       |
| PRMW-2S      | 480-222956-2  | Water  | 8/28/2024                |         | Х   | Х     | Х       |
| PRMW-2D      | 480-222956-3  | Water  | 8/28/2024                |         | Х   | Х     | Х       |
| PRMW-3S      | 480-222956-4  | Water  | 8/28/2024                |         | Х   | Х     | Х       |
| PRMW-3D      | 480-222956-5  | Water  | 8/28/2024                |         | Х   | Х     | Х       |
| PRMW-4S      | 480-222956-6  | Water  | 8/ <mark>29</mark> /2024 |         | Х   | Х     | Х       |
| PRMW-5S      | 480-222956-7  | Water  | 8/ <mark>29</mark> /2024 |         | Х   | Х     | Х       |
| PRMW-5D      | 480-222956-8  | Water  | 8/28/2024                |         | Х   | Х     | Х       |
| PRMW-6S      | 480-222956-9  | Water  | 8/28/2024                |         | Х   | Х     | Х       |
| PRMW-6D      | 480-222956-10 | Water  | 8/28/2024                |         | Х   | Х     | Х       |
| DUP-20240829 | 480-222956-11 | Water  | 8/28/2024                | PRMW-3S | Х   | Х     | Х       |
| TRIP BLANK   | 480-222956-12 | Water  | 8/28/2024                |         | Х   |       |         |

#### Notes:

VOC = Volatile Organic Compounds

SVOC = Semi-volatile Organic Compounds

www.arcadis.com

1

## **Analytical Data Package Documentation**

The table below evaluates the data package completeness.

| Items Reviewed                                          | Reported |   | Performance<br>Acceptable |     | Not<br>Required |
|---------------------------------------------------------|----------|---|---------------------------|-----|-----------------|
|                                                         | No Yes   |   | No                        | Yes | Required        |
| Sample receipt condition                                |          | X |                           | Х   |                 |
| 2. Requested analyses and sample results                |          | Х |                           | Х   |                 |
| Master tracking list                                    |          | Х |                           | Х   |                 |
| 4. Methods of analysis                                  |          | Х |                           | Х   |                 |
| 5. Reporting limits                                     |          | Х |                           | Х   |                 |
| 6. Sample collection date                               |          | Х | Х                         |     |                 |
| 7. Laboratory sample received date                      |          | Х |                           | Х   |                 |
| 8. Sample preservation verification (as applicable)     |          | Х |                           | Х   |                 |
| 9. Sample preparation/extraction/analysis dates         |          | Х |                           | Х   |                 |
| 10. Fully executed chain-of-custody form                |          | Х |                           | Х   |                 |
| 11. Narrative summary of QA or sample problems provided |          | Х |                           | Х   |                 |
| 12. Data package completeness and compliance            |          | Х |                           | Х   |                 |

#### Note:

QA = quality assurance

Sample collection date for samples PRMW-4S and PRMW-5S were updated as 08/28/24 instead of 08/29/24. Form1s and text updated as per the chain if custody.

www.arcadis.com 2

## **Organic Analysis Introduction**

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260C and 8270D. Data were reviewed in accordance with USEPA National Functional Guidelines for Organic Superfund Methods Data Review, EPA 540-R-20-005, November 2020 (with reference to the historical USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, OSWER 9240.1-05A-P, October 1999), as appropriate and applicable Region II SOPs. USEPA NFGs and Region II SOPs were followed for qualification purposes.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
  - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
  - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
  - E The compound was quantitated above the calibration range.
  - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
  - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
  - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
  - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
  - UB Compound is considered non-detect at the listed value due to associated blank contamination.
  - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
  - R The sample results are rejected.

The "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

www.arcadis.com 3

## **Volatile Organic Compound (VOC) Analyses**

## 1. Holding Times

The specified holding times for the following methods are presented in the table below.

| Method       | Matrix | Holding Time                                    | Preservation                                                                 |
|--------------|--------|-------------------------------------------------|------------------------------------------------------------------------------|
| SW-846 8260C | Water  | 14 days from collection to analysis (preserved) | Cool to <6 °C; preserved to a pH of less than 2 s.u. with hydrochloric acid. |

#### Note:

s.u. = standard units

All samples were analyzed within the specified holding times.

The samples that exceeded temperature preservation are presented in the following table.

| Sample IDs   | Temperature | Criteria                                |
|--------------|-------------|-----------------------------------------|
| PRMW-1S      |             |                                         |
| PRMW-2S      |             |                                         |
| PRMW-2D      |             |                                         |
| PRMW-3S      |             |                                         |
| PRMW-3D      |             |                                         |
| PRMW-4S      | > 10°C      | < 6°C                                   |
| PRMW-5S      | 7100        | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |
| PRMW-5D      |             |                                         |
| PRMW-6S      |             |                                         |
| PRMW-6D      |             |                                         |
| DUP-20240829 |             |                                         |
| TRIP BLANK   |             |                                         |

Sample results associated with sample locations analyzed by analytical method SW-846 8260C were qualified, as specified in the table below. All other samples met temperature preservation requirements.

|                   | Qualification        |                        |  |
|-------------------|----------------------|------------------------|--|
| Criteria          | Detected<br>Analytes | Non-detect<br>Analytes |  |
| Temperature > 6°C | J                    | UJ                     |  |

#### 2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

www.arcadis.com 4

Toluene was detected in the associated TRIP BLANK; however, the associated sample results were non-detect. Therefore, no other qualification of the sample results was required.

### 3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock. System performance and column resolution were acceptable.

#### 4. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

#### 4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

## 4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the continuing calibrations were within the specified control limits.

## 5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

#### 6. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

www.arcadis.com 5

## 7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

The MS/MSD analysis performed on sample PRMW-3S. The MS/MSD analysis exhibited acceptable recoveries and RPDs.

## 8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

### 9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water.

Results for duplicate samples are summarized in the following table.

| Sample ID / Duplicate ID | Compound             | Sample Result<br>(µg/L) | Duplicate Result<br>(μg/L) | RPD |
|--------------------------|----------------------|-------------------------|----------------------------|-----|
| PRMW-3S / DUP-20240829   | All target compounds | U                       | U                          | AC  |

#### Notes:

U = Non detect

AC = Acceptable

The calculated differences between the parent and field duplicate sample were acceptable.

## 10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

## 11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

www.arcadis.com

## **Data Validation Checklist for VOCs**

| VOCs: SW-846 8260C                              | Re      | eported |    | ormance<br>eptable | Not<br>Required |
|-------------------------------------------------|---------|---------|----|--------------------|-----------------|
|                                                 | No      | Yes     | No | Yes                |                 |
| GAS CHROMATOGRAPHY/MASS SPECTROMETRY            | (GC/MS) |         |    |                    |                 |
| Tier II Validation                              |         |         |    |                    |                 |
| Holding times/Preservation                      |         | Х       | X  |                    |                 |
| Reporting limits (units)                        |         | X       |    | X                  |                 |
| Blanks                                          |         |         |    |                    |                 |
| A. Method blanks                                |         | X       |    | X                  |                 |
| B. Equipment blanks/Field Blanks                | X       |         |    |                    | X               |
| C. Trip blanks                                  |         | Х       |    | X                  |                 |
| Laboratory Control Sample (LCS) %R              |         | Х       |    | Х                  |                 |
| Laboratory Control Sample Duplicate (LCSD) %R   | Х       |         |    |                    | Х               |
| LCS/LCSD Precision (RPD)                        | Х       |         |    |                    | Х               |
| Matrix Spike (MS) %R                            |         | Х       |    | Х                  |                 |
| Matrix Spike Duplicate (MSD) %R                 |         | Х       |    | Х                  |                 |
| MS/MSD Precision (RPD)                          |         | Х       |    | Х                  |                 |
| Field/Lab Duplicate (RPD)                       |         | Х       |    | Х                  |                 |
| Surrogate Spike Recoveries                      |         | Х       |    | Х                  |                 |
| Dilution Factor                                 |         | Х       |    | Х                  |                 |
| Moisture Content                                | Х       |         |    |                    | Х               |
| Tier III Validation                             |         |         |    |                    |                 |
| System performance and column resolution        |         | Х       |    | Х                  |                 |
| Initial calibration %RSDs                       |         | Х       |    | Х                  |                 |
| Initial calibration %Ds                         |         | Х       |    | Х                  |                 |
| Continuing calibration RRFs                     |         | Х       |    | Х                  |                 |
| Continuing calibration %Ds                      |         | Х       |    | Х                  |                 |
| Instrument tune and performance check           |         | Х       |    | Х                  |                 |
| Ion abundance criteria for each instrument used |         | Х       |    | Х                  |                 |
| Internal standard                               |         | Х       |    | Х                  |                 |
| Compound identification and quantitation        |         |         |    |                    |                 |

| VOCs: SW-846 8260C                                          |     | Reported |    | ormance<br>eptable | Not<br>Required |  |
|-------------------------------------------------------------|-----|----------|----|--------------------|-----------------|--|
|                                                             |     | Yes      | No | Yes                | required        |  |
| GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/                   | MS) |          |    | _                  |                 |  |
| A. Reconstructed ion chromatograms                          |     | Х        |    | Х                  |                 |  |
| B. Quantitation Reports                                     |     | Х        |    | Х                  |                 |  |
| C. RT of sample compounds within the established RT windows |     | X        |    | Х                  |                 |  |
| D. Transcription/calculation errors present                 |     | X        |    | X                  |                 |  |
| E. Reporting limits adjusted to reflect sample dilutions    |     | Х        |    | Х                  |                 |  |

#### Notes:

%RSD = Relative standard deviation

%R = Percent recovery

RPD = Relative percent difference

%D = Percent difference

## Semi-volatile Organic Compound (SVOC) Analyses

## 1. Holding Times

The specified holding times for the following methods are presented in the table below.

| Method       | Matrix | Holding Time                                                                 | Preservation  |
|--------------|--------|------------------------------------------------------------------------------|---------------|
| SW-846 8270D | Water  | 7 days from collection to extraction and 40 days from extraction to analysis | Cool to <6 °C |

All samples were analyzed within the specified holding time criterion.

The samples that exceeded temperature preservation are presented in the following table.

| Sample ID    | Temperature | Criteria |
|--------------|-------------|----------|
| PRMW-1S      |             |          |
| PRMW-2S      |             |          |
| PRMW-2D      |             |          |
| PRMW-3S      |             |          |
| PRMW-3D      |             |          |
| PRMW-4S      | > 10°C      | < 6°C    |
| PRMW-5S      |             |          |
| PRMW-5D      |             |          |
| PRMW-6S      |             |          |
| PRMW-6D      |             |          |
| DUP-20240829 |             |          |

Sample results associated with sample locations analyzed by analytical method SW-846 8270D were qualified, as specified in the table below. All other samples met temperature preservation requirements.

|                   | Qualification        |                        |  |  |
|-------------------|----------------------|------------------------|--|--|
| Criteria          | Detected<br>Analytes | Non-detect<br>Analytes |  |  |
| Temperature > 6°C | J                    | UJ                     |  |  |

#### 2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore, detected sample results were not associated with blank contamination.

### 3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock. System performance and column resolution were acceptable.

#### 4. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

#### 4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

## 4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the continuing calibrations were within the specified control limits.

## 5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. SVOC analysis requires that two of the three SVOC surrogate compounds within each fraction exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

#### 6. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

### 7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on samples where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

The MS/MSD analysis performed on sample PRMW-3S. The MS/MSD analysis exhibited acceptable recoveries and RPDs.

## 8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

## 9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water.

Results for duplicate samples are summarized in the following table.

| Sample ID / Duplicate ID | Compound             | Sample Result<br>(µg/L) | Duplicate Result<br>(μg/L) | RPD |
|--------------------------|----------------------|-------------------------|----------------------------|-----|
| PRMW-3S / DUP-20240829   | All target compounds | U                       | U                          | AC  |

#### Notes:

U = Non detect

AC = Acceptable

The calculated differences between the parent and field duplicate sample were acceptable.

## 10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

## 11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

## **Data Validation Checklist for SVOCs**

| SVOCs: SW-846 8270D                                         | Re   | ported |    | ormance<br>eptable | Not<br>Required |
|-------------------------------------------------------------|------|--------|----|--------------------|-----------------|
|                                                             |      | Yes    | No | Yes                | required        |
| GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/M                  | /IS) |        |    |                    |                 |
| Tier II Validation                                          |      |        |    |                    |                 |
| Holding times/Preservation                                  |      | X      | Х  |                    |                 |
| Reporting limits (units)                                    |      | X      |    | X                  |                 |
| Blanks                                                      |      |        |    |                    |                 |
| A. Method blanks                                            |      | X      |    | X                  |                 |
| B. Equipment blanks/Field blanks                            | Х    |        |    |                    | Х               |
| Laboratory Control Sample (LCS) %R                          |      | Х      |    | X                  |                 |
| Laboratory Control Sample Duplicate (LCSD) %R               | Х    |        |    |                    | Х               |
| LCS/LCSD Precision (RPD)                                    | Х    |        |    |                    | Х               |
| Matrix Spike (MS) %R                                        |      | Х      |    | Х                  |                 |
| Matrix Spike Duplicate (MSD) %R                             |      | Х      |    | Х                  |                 |
| MS/MSD Precision (RPD)                                      |      | Х      |    | Х                  |                 |
| Field/Lab Duplicate (RPD)                                   |      | Х      |    | Х                  |                 |
| Surrogate Spike Recoveries                                  |      | Х      |    | Х                  |                 |
| Dilution Factor                                             |      | Х      |    | Х                  |                 |
| Moisture Content                                            | Х    |        |    |                    | Х               |
| Tier III Validation                                         |      |        |    |                    |                 |
| System performance and column resolution                    |      | Х      |    | Х                  |                 |
| Initial calibration %RSDs                                   |      | Х      |    | Х                  |                 |
| Initial calibration %Ds                                     |      | Х      |    | Х                  |                 |
| Continuing calibration RRFs                                 |      | Х      |    | Х                  |                 |
| Continuing calibration %Ds                                  |      | Х      |    | Х                  |                 |
| Instrument tune and performance check                       |      | Х      |    | Х                  |                 |
| Ion abundance criteria for each instrument used             |      | Х      |    | Х                  |                 |
| Internal standard                                           |      | Х      |    | Х                  |                 |
| Compound identification and quantitation                    |      |        |    |                    |                 |
| A. Reconstructed ion chromatograms                          |      | Х      |    | Х                  |                 |
| B. Quantitation Reports                                     |      | Х      |    | X                  |                 |
| C. RT of sample compounds within the established RT windows |      | Х      |    | Х                  |                 |
| D. Transcription/calculation errors present                 |      | X      |    | X                  |                 |

## Data Usability Summary Report

| SVOCs: SW-846 8270D                                      |  | Reported Performance Acceptable |    |     | Not<br>Required |
|----------------------------------------------------------|--|---------------------------------|----|-----|-----------------|
|                                                          |  | Yes                             | No | Yes |                 |
| GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/I               |  |                                 |    |     |                 |
| E. Reporting limits adjusted to reflect sample dilutions |  | Х                               |    | Х   |                 |

#### Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

## **Inorganic Analysis Introduction**

Analyses were performed according to United States Environmental Protection Agency USEPA Method 9012B. Data were reviewed in accordance with USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review, EPA 542-R-20-006, November 2020 (with reference to the historical USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, EPA 540-R-04-004, October 2004), as appropriate.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and that it was already subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with the USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
  - U The analyte was analyzed for but not detected. The associated value is the analyte instrument detection limit.
  - J The reported value was obtained from a reading less than the reporting limit (RL), but greater than or equal to the method detection limit (MDL).
- Quantitation (Q) Qualifiers
  - E The reported value is estimated due to the presence of interference.
  - N Spiked sample recovery is not within control limits.
  - \* Duplicate analysis is not within control limits.
- Validation Qualifiers
  - J The analyte was positively identified; however, the associated numerical value is an estimated concentration only.
  - UJ The analyte was not detected above the reporting limit. However, the reported limit is approximate and may or may not represent the actual limit of detection.
  - UB Analyte considered non-detect at the listed value due to associated blank contamination.
  - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

## **General Chemistry Analyses**

## 1. Holding Times

The specified holding times for the following methods are presented in the following table.

| Method                           | Matrix | Holding Time                        | Preservation                                                   |
|----------------------------------|--------|-------------------------------------|----------------------------------------------------------------|
| Total Cyanide by<br>SW-846 9012B | Water  | 14 days from collection to analysis | Cool to <6 °C; preserved to a pH of greater than 12 with NaOH. |

All samples were analyzed within the specified holding times.

The samples that exceeded temperature preservation are presented in the following table.

| Sample ID    | Temperature | Criteria |
|--------------|-------------|----------|
| PRMW-1S      |             |          |
| PRMW-2S      |             |          |
| PRMW-2D      |             |          |
| PRMW-3S      |             |          |
| PRMW-3D      |             |          |
| PRMW-4S      | > 10°C      | < 6°C    |
| PRMW-5S      |             |          |
| PRMW-5D      |             |          |
| PRMW-6S      |             |          |
| PRMW-6D      |             |          |
| DUP-20240829 |             |          |

Sample results associated with sample locations analyzed by analytical method 9012B were qualified, as specified in the table below. All other samples met temperature preservation requirements.

|                   | Qualification                         |    |  |  |
|-------------------|---------------------------------------|----|--|--|
| Criteria          | Detected Non-detect Analytes Analytes |    |  |  |
| Temperature > 6°C | J                                     | UJ |  |  |

### 2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Cyanide was not detected above the MDL in the associated blanks; therefore, detected sample results were not associated with blank contamination.

#### 3. Calibration

Satisfactory instrument calibration is established to provide that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument's continuing performance is satisfactory.

### 3.1 Initial Calibration and Continuing Calibration

The correct number and type of standards were analyzed. The correlation coefficient of the initial calibration was greater than 0.995 for all non-ICP analytes and all initial calibration verification standard recoveries were within control limits.

All initial and continuing calibration verification standard recoveries were within the control limit.

All analytes associated with calibration standard recoveries were within control limits, with the exception of the analytes presented in the following table.

| Sample ID | Initial/Continuing | Analyte    | Standard<br>Recovery |
|-----------|--------------------|------------|----------------------|
| PRMW-1S   |                    |            |                      |
| PRMW-2D   | CCV                | Cyanide    | 112%                 |
| PRMW-3D   | 000                | - Cyariide | 11270                |
| PRMW-4S   |                    |            |                      |

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

| Control Limit | Sample Result | Qualification |  |  |  |
|---------------|---------------|---------------|--|--|--|
| < 90%         | Non-detect    | J             |  |  |  |
| 100%          | Detect        | UJ            |  |  |  |
| > 110%        | Non-detect    | J             |  |  |  |
| 211070        | Detect        | UJ            |  |  |  |

# 4. Matrix Spike (MS)/Matrix Spike Duplicate (MSD)/Laboratory Duplicate Analysis

MS/MSD and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

## 4.1 MS/MSD Analysis

All analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS recovery control limits do not apply for MS/MSD performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS concentration by a factor of four or greater. In instance where this is true, the data will not be qualified even if the percent recovery does not meet the control limits and the laboratory flag will be removed.

The MS/MSD analysis performed on samples PRMW-2D, PRMW-5D, PRMW-2S and PRMW-3S. The MS/MSD analysis exhibited acceptable recoveries and RPDs. All analytes associated with MS recoveries were within control limits with the exception of the following analytes present in the table below.

| Sample ID | Analyte        | MS Recovery |
|-----------|----------------|-------------|
| PRMW-2S   | Cyanide, Total | 146%        |

The criteria used to evaluate MS recoveries are presented in the following table. In the case of an MS deviation, the sample results are qualified. The qualifications are applied to all sample results associated with this SDG.

| Control limit                  | Sample Result | Qualification |
|--------------------------------|---------------|---------------|
| MS percent recovery 30% to 74% | Non-detect    | UJ            |
| We percent recovery 30% to 74% | Detect        | J             |
| MS percent recovery <30%       | Non-detect    | R             |
| Wo percent recovery 250%       | Detect        | J             |
| MS percent recovery >125%      | Non-detect    | No Action     |
| WO percent recovery >12070     | Detect        | J             |

## 4.2 Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the RL. A control limit of 20% for water matrices and 35% for soil matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of one time the RL is applied for water matrices and two times the RL for soil matrices.

Laboratory duplicate analysis was not performed on sample within this SDG.

## 5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Results for duplicate samples are summarized in the following table.

| Sample ID / Duplicate ID | Analyte | Sample Result<br>(mg/L) | Duplicate Result<br>(mg/L) | RPD |
|--------------------------|---------|-------------------------|----------------------------|-----|
| PRMW-3S / DUP-20240829   | Cyanide | U                       | U                          | AC  |

#### Note:

U = Non detect

AC = Acceptable

The calculated differences between the parent and field duplicate sample were acceptable.

## 6. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit a percent recovery between the control limits of 80% and 120%.

The LCS analysis exhibited recoveries within the control limits.

### 7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

## **Data Validation Checklist for General Chemistry**

| General Chemistry: SW-846 9012B                       | Rep | orted |    | rmance<br>eptable | Not<br>Required |
|-------------------------------------------------------|-----|-------|----|-------------------|-----------------|
|                                                       | No  | Yes   | No | Yes               | Required        |
| Miscellaneous Instrumentation                         |     |       |    |                   |                 |
| Tier II Validation                                    |     |       |    |                   |                 |
| Holding Times/Preservation                            |     | Х     | Х  |                   |                 |
| Reporting limits (units)                              |     | Х     |    | Х                 |                 |
| Blanks                                                | '   |       |    |                   |                 |
| A. Instrument Blanks                                  | Х   |       |    |                   | Х               |
| B. Method Blanks                                      |     | Х     |    | Х                 |                 |
| C. Equipment/Field Blanks                             | Х   |       |    |                   | Х               |
| Laboratory Control Sample (LCS) %R                    |     | Х     |    | X                 |                 |
| Laboratory Control Sample Duplicate (LCSD) %R         | Х   |       |    |                   | Х               |
| LCS/LCSD Precision (RPD)                              | Х   |       |    |                   | Х               |
| Matrix Spike (MS) %R                                  |     | Х     | Х  |                   |                 |
| Matrix Spike Duplicate (MSD) %R                       |     | Х     |    | Х                 |                 |
| MS/MSD Precision (RPD)                                |     | Х     |    | X                 |                 |
| Field/Lab Duplicate (RPD)                             |     | Х     |    | X                 |                 |
| Tier III Validation                                   |     |       |    |                   |                 |
| Initial Calibration Verification                      |     | Х     |    | Х                 |                 |
| Continuing Calibration Verification                   |     | Х     | Х  |                   |                 |
| Transcription/calculations acceptable                 |     | Х     |    | X                 |                 |
| Raw Data                                              |     | Х     |    | X                 |                 |
| Reporting limits adjusted to reflect sample dilutions |     | Х     |    | X                 |                 |

#### Notes:

%R Percent recovery

RPD Relative percent difference

#### **DATA USABILITY SUMMARY REPORT**

## **SAMPLE COMPLIANCE REPORT**

| Sample                  |               |          |                       | Sample ID Matrix |    | Complian                                                                                                     | cy <sup>1</sup> |                                                                                                                      |  |  |
|-------------------------|---------------|----------|-----------------------|------------------|----|--------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------|--|--|
| Delivery<br>Group (SDG) | Sampling Date | Protocol | Sample ID             |                  |    | svoc                                                                                                         | CYANIDE         | Noncompliance                                                                                                        |  |  |
|                         | 8/28/2024     | SW846    | PRMW-1S               | Water            | No | No                                                                                                           | No              | VOC – Temperature exceedance<br>SVOC – Temperature exceedance<br>Cyanide - Temperature exceedance,<br>CCV %D         |  |  |
|                         | 8/28/2024     | SW846    | PRMW-2S               | Water            | No | No                                                                                                           | No              | VOC – Temperature exceedance<br>SVOC – Temperature exceedance<br>Cyanide - Temperature exceedance,<br>MS %R recovery |  |  |
|                         | 8/28/2024     | SW846    | PRMW-2D               | Water            | No | No                                                                                                           | No              | VOC – Temperature exceedance<br>SVOC – Temperature exceedance<br>Cyanide - Temperature exceedance,<br>CCV %D         |  |  |
|                         | 8/28/2024     | SW846    | PRMW-3S               | Water 1          |    | No                                                                                                           | No              | VOC – Temperature exceedance<br>SVOC – Temperature exceedance<br>Cyanide - Temperature exceedance                    |  |  |
| 480-222956-1            | 8/28/2024     | SW846    | PRMW-3D Water No No N |                  | No | VOC – Temperature exceedance<br>SVOC – Temperature exceedance<br>Cyanide - Temperature exceedance,<br>CCV %D |                 |                                                                                                                      |  |  |
|                         | 8/28/2024     | SW846    | PRMW-4S               | Water            | No | No                                                                                                           | No              | VOC – Temperature exceedance<br>SVOC – Temperature exceedance<br>Cyanide - Temperature exceedance,<br>CCV %D         |  |  |
|                         | 8/28/2024     | SW846    | PRMW-5S               | Water            | No | No                                                                                                           | No              | VOC – Temperature exceedance<br>SVOC – Temperature exceedance<br>Cyanide - Temperature exceedance                    |  |  |
|                         | 8/28/2024     | SW846    | PRMW-5D               | Water            | No | No                                                                                                           | No              | VOC – Temperature exceedance<br>SVOC – Temperature exceedance<br>Cyanide - Temperature exceedance                    |  |  |
|                         | 8/28/2024     | SW846    | PRMW-6S               | Water            | No | No                                                                                                           | No              | VOC – Temperature exceedance<br>SVOC – Temperature exceedance<br>Cyanide - Temperature exceedance                    |  |  |
|                         | 8/28/2024     | SW846    | PRMW-6D               | Water            | No | No                                                                                                           | No              | VOC – Temperature exceedance<br>SVOC – Temperature exceedance<br>Cyanide - Temperature exceedance                    |  |  |

arcadis.com 15

#### **DATA USABILITY SUMMARY REPORT**

| Sample                  |               |          |              |        |     | Compliand | y <sup>1</sup> |                                                                                                   |  |
|-------------------------|---------------|----------|--------------|--------|-----|-----------|----------------|---------------------------------------------------------------------------------------------------|--|
| Delivery<br>Group (SDG) | Sampling Date | Protocol | Sample ID    | Matrix | voc | svoc      | CYANIDE        | Noncompliance                                                                                     |  |
|                         | 8/28/2024     | SW846    | DUP-20240829 | Water  | No  | No        | No             | VOC – Temperature exceedance<br>SVOC – Temperature exceedance<br>Cyanide - Temperature exceedance |  |
|                         | 8/28/2024     | SW846    | TRIP BLANK   | Water  | No  |           |                | VOC – Temperature exceedance<br>SVOC – Temperature exceedance<br>Cyanide - Temperature exceedance |  |

#### Note:

arcadis.com 16

Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant, or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable.

#### **DATA USABILITY SUMMARY REPORT**

VALIDATION PERFORMED BY: Dilip Kumar

SIGNATURE:

DATE: September 23, 2024

PEER REVIEW: Joe Houser

DATE: September 24, 2024

arcadis.com 17

| Chain of Custody | Corrected Samp | ole Analysis Data | Sheets |
|------------------|----------------|-------------------|--------|
|                  |                |                   |        |
|                  |                |                   |        |
|                  |                |                   |        |
|                  |                |                   |        |
|                  |                |                   |        |
|                  |                |                   |        |
|                  |                |                   |        |

Arcaclis Received by: Received by: Company Relinquished by: Company Relinquished by: Date/Time Company Received by: Date/Time: Company Custody Seals Intact: Custody Seal No. Cooler Temperature(s) °C and Other Remarks: Δ Yes Δ No

Ver: 06/08/2021

Page

36

으

38













| U  |
|----|
| Ø  |
| 2  |
| ge |
| 37 |
| 으  |
| 38 |
| ω  |

#### 10 Hazelwood Drive **Chain of Custody Record** Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991

💸 eurofins

**Environment Testing** 

| Client Information                                     | Sampler: Kait          | yn Fle         | eming                                            | B Lab                                                     | PM:    |         |                         |                  |           |             | C        | arrier TC   |          | 201       | 1            | COC No                     |                |     |
|--------------------------------------------------------|------------------------|----------------|--------------------------------------------------|-----------------------------------------------------------|--------|---------|-------------------------|------------------|-----------|-------------|----------|-------------|----------|-----------|--------------|----------------------------|----------------|-----|
| Client Contact:                                        |                        |                |                                                  |                                                           | ove, J | John    | R                       |                  |           |             |          | 0           | yr       | aul       | <u>18</u>    | COC No:<br>430-195975-3678 | 32.2           |     |
| Nicholas Beyrle Company:                               | 619                    | - フてフ          |                                                  |                                                           | n.Sch  | ove@    | et.eu                   | ırofins          | sus.co    | m           | Si       | ate of Orig | in:      | 00        | PR01         | Page:<br>Page 2 of 2       |                |     |
| Arcadis U.S., Inc.                                     |                        |                | PWSID:                                           |                                                           |        |         |                         |                  | Α         | مادداد      |          |             | 11       | 4         | 5            | Job #:                     |                |     |
| Address:<br>295 Woodcliff Drive, Suite 301             | Due Date Requeste      | ed:            |                                                  |                                                           |        |         | _                       | Т                | An        | alysis      | Requ     | ested       |          |           |              | Preservation Code          | 001            |     |
| City:<br>Fairport                                      | TAT Requested (da      | ays):          |                                                  |                                                           | - 1    |         |                         |                  |           |             |          |             |          |           |              | A - HCL<br>N - None        | 15.            |     |
| State, Zip:                                            | -                      |                |                                                  |                                                           |        |         |                         |                  |           |             |          |             |          |           |              | B - NaOH                   |                |     |
| NY, 14450                                              | Compliance Project     | ct: A Yes      | Δ No                                             |                                                           |        |         |                         |                  |           |             |          |             |          |           |              |                            |                |     |
| Phone:                                                 | PO#:<br>4506628846     |                |                                                  |                                                           |        | 9       | 8                       |                  |           |             |          |             |          |           |              | 1                          |                |     |
| Email:                                                 | WO #:                  |                |                                                  |                                                           | 9      |         | olatil                  |                  |           |             |          |             | İ        |           |              |                            |                |     |
| nicholas.beyrle@arcadis.com<br>Project Name:           |                        |                |                                                  |                                                           | 0      | Q       | in s                    |                  |           |             |          |             |          |           |              |                            |                |     |
| NYSEG Former MGP Site - Penn Yan                       | Project #:<br>48024595 |                |                                                  |                                                           | S      | 0       | AHS                     |                  |           |             |          |             |          |           | Iner         | A                          |                |     |
| Site:<br>New York                                      | SSOW#:                 |                |                                                  |                                                           |        |         | Level PAH Semivolatiles | Total            |           |             |          |             |          |           | container    | Other:                     |                |     |
|                                                        |                        |                |                                                  |                                                           | -8     | 1       | ≥                       | de, T            |           |             |          |             |          |           | 0            |                            |                |     |
|                                                        |                        |                | Sample                                           | Matrix                                                    | ğ      | BTEX    | LL - Low                | 9012B - Cyanide, |           | 8           |          |             |          |           | Total Number | 1                          |                |     |
| Sample Identification                                  |                        | Sample         | (C=comp,                                         | (W=water,<br>S=solid,<br>O=waste/oil,<br>BT=Tissue, A=Air | E .    | 5       | 9 9                     | 28 - (           |           |             |          |             |          |           | N            |                            |                |     |
| Cample Identification                                  | Sample Date            | Time           | G=grab)                                          | BT=Tissue, A=Air                                          | ه اشار |         | 8270D                   | 901              |           |             |          |             |          |           | Tota         | Special In                 | structions/Not | to. |
| TMW-2DR                                                |                        |                | Preserva                                         | ation Code:                                               | X      | XA      | N                       | В                |           |             |          |             |          |           | X            |                            |                |     |
|                                                        |                        |                | -                                                | Water                                                     |        | +       | -                       | -                |           | -           | +        | ++          |          |           | -            |                            |                |     |
| Dup-20240829                                           | 8/28/24                |                | G                                                | Water                                                     | Mr     | ンメ      | X                       | X                |           |             |          |             | $\top$   |           | 6            |                            |                |     |
|                                                        |                        |                |                                                  | Water                                                     | 11     |         | +                       | 1                | +         | -           | ++       | +           | +        | -         | 0            |                            |                |     |
|                                                        |                        |                | <del>                                     </del> | <del></del>                                               | ++     | +       | +-                      | -                | $\vdash$  |             |          | +           |          | $\sqcup$  |              |                            |                |     |
|                                                        | <del> </del>           |                | -                                                | Water                                                     | 11     | $\perp$ |                         | -                |           |             |          |             |          |           |              |                            |                |     |
|                                                        |                        |                |                                                  | Water                                                     |        |         |                         |                  |           |             |          |             |          |           |              |                            |                |     |
|                                                        |                        |                |                                                  | Water                                                     |        |         | $\top$                  |                  |           |             |          |             |          |           |              |                            |                |     |
| TRIP BLANK                                             |                        |                |                                                  | Water                                                     |        |         |                         | +                |           |             |          | ++          | +        |           | 50           | <del></del>                |                |     |
| TRIP BLANK                                             |                        |                |                                                  |                                                           |        | ,       |                         | -                | -         | _           |          | -           | _        |           |              |                            |                |     |
| FIELD BLANK                                            |                        |                |                                                  | Water                                                     | 41     | 1 >     | 4                       |                  |           |             |          |             |          |           | 2            |                            |                |     |
|                                                        |                        |                |                                                  | Water.                                                    |        |         |                         |                  | $\vdash$  | _           |          | -           |          |           | 10.000       |                            |                |     |
| EQUIPMENT BLANK                                        |                        |                |                                                  | Water                                                     |        | -       | -                       |                  |           |             |          |             |          |           |              |                            |                |     |
|                                                        |                        |                |                                                  |                                                           | 11     | +       |                         |                  | $\vdash$  | _           | ++       | +           | _        | $\vdash$  |              |                            |                |     |
| Possible Hazard Identification                         |                        |                |                                                  |                                                           | 4      | Samn    | lo Dis                  | 20000            | 1/04      |             |          |             |          |           |              |                            |                |     |
| Non-Hazard Flammable Skin Irritant Pois                | son B Unkn             | nown $\square$ | Radiologica                                      | a/                                                        | ľ      |         | Retu                    | m To             | Client    | ee may<br>[ | De ass   | essea n     | sample   | es are re | etaine       | ed longer than 1           | month)         |     |
| Deliverable Requested: I, II, III, IV, Other (specify) |                        |                |                                                  |                                                           | s      | peci    | al Inst                 | ructio           | ns/QC     | Requir      | ements   | posal By    | Lab      |           | Arch         | hive For                   | Months         |     |
| Empty Kit Relinquished by:                             |                        | Date:          |                                                  |                                                           | Time   |         |                         |                  |           |             |          |             |          |           |              |                            |                |     |
| Relinquished by: Show Summy                            | Date/Time:             |                |                                                  | Company                                                   |        |         | coived                  | bur              |           |             |          | Method      | of Shipm |           |              |                            |                |     |
| Relinquished by:                                       | Date/Time: 9/7/21      | 1/ 125         | 52                                               | Arcad.                                                    | Ś      |         | ceived                  | Uy.              |           |             |          |             | Date     | 29/       | 24           | 1252                       | Company        |     |
|                                                        | Date/Time:             |                |                                                  | Company                                                   |        |         | ceived                  |                  |           |             |          |             |          | /Time:    |              | 1204                       | Company        |     |
| Relinquished by:                                       | Date/Time:             |                |                                                  | Company                                                   |        | Re      | ceived                  | by:              |           |             |          |             | Data     | /Time:    |              |                            |                |     |
| Custody Seals Intact: Custody Seal No.:                |                        |                |                                                  |                                                           |        |         |                         |                  |           |             |          |             | Date     | rime:     |              |                            | Company        |     |
| Δ Yes Δ No                                             |                        |                |                                                  |                                                           |        | Co      | oler Te                 | mperat           | ture(s) ° | C and Oth   | ner Rema | rks:        |          |           |              |                            |                |     |
|                                                        |                        |                |                                                  |                                                           |        |         |                         |                  |           |             |          |             |          |           |              |                            | Ver: 06/08/202 |     |









Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

**Client Sample ID: PRMW-1S** 

Date Collected: 08/28/24 10:40 Date Received: 08/29/24 12:52

| Lab Sample | ID: 480-222956-1 |
|------------|------------------|
|------------|------------------|

**Matrix: Ground Water** 

| Method: SW846 8260C - Vo     | latile Organic | Compoun   | ds by GC/MS |      |      |   |          |                |         |
|------------------------------|----------------|-----------|-------------|------|------|---|----------|----------------|---------|
| Analyte                      | Result         | Qualifier | RL          | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| Benzene                      | ND             | UJ        | 1.0         | 0.41 | ug/L |   |          | 08/30/24 00:16 | 1       |
| Ethylbenzene                 | ND             |           | 1.0         | 0.74 | ug/L |   |          | 08/30/24 00:16 | 1       |
| Toluene                      | ND             |           | 1.0         | 0.51 | ug/L |   |          | 08/30/24 00:16 | 1       |
| Xylenes, Total               | ND             | <b>V</b>  | 2.0         | 0.66 | ug/L |   |          | 08/30/24 00:16 | 1       |
| Surrogate                    | %Recovery      | Qualifier | Limits      |      |      |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) |                |           | 77 - 120    |      |      |   |          | 08/30/24 00:16 | 1       |
| 4-Bromofluorobenzene (Surr)  | 105            |           | 73 - 120    |      |      |   |          | 08/30/24 00:16 | 1       |
| Dibromofluoromethane (Surr)  | 112            |           | 75 - 123    |      |      |   |          | 08/30/24 00:16 | 1       |
| Toluene-d8 (Surr)            | 112            |           | 80 - 120    |      |      |   |          | 08/30/24 00:16 | 1       |

| Analyte                | Result Qualifier    | RL       | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|---------------------|----------|-------|------|---|----------------|----------------|---------|
| Acenaphthene           | ND UJ               | 0.53     | 0.038 | ug/L |   | 08/30/24 13:14 | 09/03/24 13:20 | 1       |
| Acenaphthylene         | ND                  | 0.32     | 0.059 | ug/L |   | 08/30/24 13:14 | 09/03/24 13:20 | 1       |
| Anthracene             | ND                  | 0.53     | 0.036 | ug/L |   | 08/30/24 13:14 | 09/03/24 13:20 | 1       |
| Benzo[a]anthracene     | ND                  | 0.32     | 0.036 | ug/L |   | 08/30/24 13:14 | 09/03/24 13:20 | 1       |
| Benzo[a]pyrene         | ND                  | 0.19     | 0.14  | ug/L |   | 08/30/24 13:14 | 09/03/24 13:20 | 1       |
| Benzo[b]fluoranthene   | ND                  | 0.32     | 0.066 | ug/L |   | 08/30/24 13:14 | 09/03/24 13:20 | 1       |
| Benzo[g,h,i]perylene   | ND                  | 0.53     | 0.061 | ug/L |   | 08/30/24 13:14 | 09/03/24 13:20 | 1       |
| Benzo[k]fluoranthene   | ND                  | 0.32     | 0.074 | ug/L |   | 08/30/24 13:14 | 09/03/24 13:20 | 1       |
| Chrysene               | ND                  | 0.53     | 0.078 | ug/L |   | 08/30/24 13:14 | 09/03/24 13:20 | 1       |
| Dibenz(a,h)anthracene  | ND                  | 0.53     | 0.074 | ug/L |   | 08/30/24 13:14 | 09/03/24 13:20 | 1       |
| Fluoranthene           | ND                  | 0.53     | 0.084 | ug/L |   | 08/30/24 13:14 | 09/03/24 13:20 | 1       |
| Fluorene               | ND                  | 0.53     | 0.061 | ug/L |   | 08/30/24 13:14 | 09/03/24 13:20 | 1       |
| Indeno[1,2,3-cd]pyrene | ND                  | 0.53     | 0.12  | ug/L |   | 08/30/24 13:14 | 09/03/24 13:20 | 1       |
| Naphthalene            | ND                  | 1.1      | 0.067 | ug/L |   | 08/30/24 13:14 | 09/03/24 13:20 | 1       |
| Phenanthrene           | ND                  | 0.21     | 0.065 | ug/L |   | 08/30/24 13:14 | 09/03/24 13:20 | 1       |
| Pyrene                 | ND V                | 0.53     | 0.080 | ug/L |   | 08/30/24 13:14 | 09/03/24 13:20 | 1       |
| Surrogate              | %Recovery Qualifier | Limits   |       |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 92                  | 37 - 120 |       |      |   | 08/30/24 13:14 | 09/03/24 13:20 | 1       |
| Nitrobenzene-d5 (Surr) | 81                  | 26 - 120 |       |      |   | 08/30/24 13:14 | 09/03/24 13:20 | 1       |
| p-Terphenyl-d14 (Surr) | 106                 | 64 - 127 |       |      |   | 08/30/24 13:14 | 09/03/24 13:20 | 1       |

| General Chemistry            |        |           |       |        |      |   |          |                |         |
|------------------------------|--------|-----------|-------|--------|------|---|----------|----------------|---------|
| Analyte                      | Result | Qualifier | RL    | MDL    | Unit | D | Prepared | Analyzed       | Dil Fac |
| Cyanide, Total (SW846 9012B) | ND     | ₩ UJ      | 0.010 | 0.0041 | mg/L |   |          | 09/06/24 10:20 | 1       |

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

**Client Sample ID: PRMW-2S** Lab Sample ID: 480-222956-2

Date Collected: 08/28/24 12:05 Date Received: 08/29/24 12:52

**Matrix: Ground Water** 

| Analyte                      | Result    | Qualifier | RL       | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|------|------|---|----------|----------------|---------|
| Benzene                      | MD        | UJ        | 1.0      | 0.41 | ug/L |   |          | 08/30/24 00:38 | 1       |
| Ethylbenzene                 | ND        | 1         | 1.0      | 0.74 | ug/L |   |          | 08/30/24 00:38 | 1       |
| Toluene                      | ND        |           | 1.0      | 0.51 | ug/L |   |          | 08/30/24 00:38 | 1       |
| Xylenes, Total               | ND        | <b>V</b>  | 2.0      | 0.66 | ug/L |   |          | 08/30/24 00:38 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |      |      |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) |           |           | 77 - 120 |      |      |   |          | 08/30/24 00:38 | 1       |
| 4-Bromofluorobenzene (Surr)  | 103       |           | 73 - 120 |      |      |   |          | 08/30/24 00:38 | 1       |
| Dibromofluoromethane (Surr)  | 109       |           | 75 - 123 |      |      |   |          | 08/30/24 00:38 | 1       |
| Toluene-d8 (Surr)            | 110       |           | 80 - 120 |      |      |   |          | 08/30/24 00:38 | 1       |

| Analyte                | Result    | Qualifier | RL       | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|-------|------|---|----------------|----------------|---------|
| Acenaphthene           | ND        | UJ        | 0.52     | 0.038 | ug/L |   | 08/30/24 13:14 | 09/03/24 13:47 | 1       |
| Acenaphthylene         | ND        |           | 0.31     | 0.058 | ug/L |   | 08/30/24 13:14 | 09/03/24 13:47 | 1       |
| Anthracene             | ND        |           | 0.52     | 0.035 | ug/L |   | 08/30/24 13:14 | 09/03/24 13:47 | 1       |
| Benzo[a]anthracene     | ND        |           | 0.31     | 0.035 | ug/L |   | 08/30/24 13:14 | 09/03/24 13:47 | 1       |
| Benzo[a]pyrene         | ND        |           | 0.19     | 0.14  | ug/L |   | 08/30/24 13:14 | 09/03/24 13:47 | 1       |
| Benzo[b]fluoranthene   | ND        |           | 0.31     | 0.066 | ug/L |   | 08/30/24 13:14 | 09/03/24 13:47 | 1       |
| Benzo[g,h,i]perylene   | ND        |           | 0.52     | 0.060 | ug/L |   | 08/30/24 13:14 | 09/03/24 13:47 | 1       |
| Benzo[k]fluoranthene   | ND        |           | 0.31     | 0.073 | ug/L |   | 08/30/24 13:14 | 09/03/24 13:47 | 1       |
| Chrysene               | ND        |           | 0.52     | 0.077 | ug/L |   | 08/30/24 13:14 | 09/03/24 13:47 | 1       |
| Dibenz(a,h)anthracene  | ND        |           | 0.52     | 0.073 | ug/L |   | 08/30/24 13:14 | 09/03/24 13:47 | 1       |
| Fluoranthene           | ND        |           | 0.52     | 0.083 | ug/L |   | 08/30/24 13:14 | 09/03/24 13:47 | 1       |
| Fluorene               | ND        |           | 0.52     | 0.060 | ug/L |   | 08/30/24 13:14 | 09/03/24 13:47 | 1       |
| Indeno[1,2,3-cd]pyrene | ND        |           | 0.52     | 0.11  | ug/L |   | 08/30/24 13:14 | 09/03/24 13:47 | 1       |
| Naphthalene            | ND        |           | 1.0      | 0.067 | ug/L |   | 08/30/24 13:14 | 09/03/24 13:47 | 1       |
| Phenanthrene           | ND        |           | 0.21     | 0.065 | ug/L |   | 08/30/24 13:14 | 09/03/24 13:47 | 1       |
| Pyrene                 | ND        | Ψ         | 0.52     | 0.079 | ug/L |   | 08/30/24 13:14 | 09/03/24 13:47 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits   |       |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 94        |           | 37 - 120 |       |      |   | 08/30/24 13:14 | 09/03/24 13:47 | 1       |
| Nitrobenzene-d5 (Surr) | 80        |           | 26 - 120 |       |      |   | 08/30/24 13:14 | 09/03/24 13:47 | 1       |
| p-Terphenyl-d14 (Surr) | 105       |           | 64 - 127 |       |      |   | 08/30/24 13:14 | 09/03/24 13:47 | 1       |
| General Chemistry      |           |           |          |       |      |   |                |                |         |
| Analyte                | Result    | Qualifier | RL       | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |

| General Chemistry            |                      |       |          |     |   |          |                |         |
|------------------------------|----------------------|-------|----------|-----|---|----------|----------------|---------|
| Analyte                      | Result Qualifier     | RL    | MDL U    | nit | D | Prepared | Analyzed       | Dil Fac |
| Cyanide, Total (SW846 9012B) | 0.11 <del>F1</del> J | 0.010 | 0.0041 m | g/L | _ |          | 09/09/24 09:23 | 1       |

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

**Client Sample ID: PRMW-2D** 

Date Collected: 08/28/24 13:25 Date Received: 08/29/24 12:52

| Lab Samp | le ID: | 480-222 | 2956-3 |
|----------|--------|---------|--------|
|----------|--------|---------|--------|

**Matrix: Ground Water** 

| Analyte                      | Result    | Qualifier | RL       | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|------|------|---|----------|----------------|---------|
| Benzene                      | ND        | UJ        | 1.0      | 0.41 | ug/L |   |          | 08/30/24 01:00 | 1       |
| Ethylbenzene                 | ND        | 1         | 1.0      | 0.74 | ug/L |   |          | 08/30/24 01:00 | 1       |
| Toluene                      | ND        |           | 1.0      | 0.51 | ug/L |   |          | 08/30/24 01:00 | 1       |
| Xylenes, Total               | ND        | 1         | 2.0      | 0.66 | ug/L |   |          | 08/30/24 01:00 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |      |      |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 106       |           | 77 - 120 |      |      |   |          | 08/30/24 01:00 | 1       |
| 4-Bromofluorobenzene (Surr)  | 102       |           | 73 - 120 |      |      |   |          | 08/30/24 01:00 | 1       |
| Dibromofluoromethane (Surr)  | 109       |           | 75 - 123 |      |      |   |          | 08/30/24 01:00 | 1       |
| Toluene-d8 (Surr)            | 111       |           | 80 - 120 |      |      |   |          | 08/30/24 01:00 |         |

| Analyte                | Result    | Qualifier | RL       | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|-------|------|---|----------------|----------------|---------|
| Acenaphthene           | ND        | UJ        | 0.50     | 0.036 | ug/L |   | 08/30/24 13:14 | 09/03/24 14:15 | 1       |
| Acenaphthylene         | ND        |           | 0.30     | 0.056 | ug/L |   | 08/30/24 13:14 | 09/03/24 14:15 | 1       |
| Anthracene             | ND        |           | 0.50     | 0.034 | ug/L |   | 08/30/24 13:14 | 09/03/24 14:15 | 1       |
| Benzo[a]anthracene     | ND        |           | 0.30     | 0.034 | ug/L |   | 08/30/24 13:14 | 09/03/24 14:15 | 1       |
| Benzo[a]pyrene         | ND        |           | 0.18     | 0.13  | ug/L |   | 08/30/24 13:14 | 09/03/24 14:15 | 1       |
| Benzo[b]fluoranthene   | ND        |           | 0.30     | 0.063 | ug/L |   | 08/30/24 13:14 | 09/03/24 14:15 | 1       |
| Benzo[g,h,i]perylene   | ND        |           | 0.50     | 0.058 | ug/L |   | 08/30/24 13:14 | 09/03/24 14:15 | 1       |
| Benzo[k]fluoranthene   | ND        |           | 0.30     | 0.070 | ug/L |   | 08/30/24 13:14 | 09/03/24 14:15 | 1       |
| Chrysene               | ND        |           | 0.50     | 0.074 | ug/L |   | 08/30/24 13:14 | 09/03/24 14:15 | 1       |
| Dibenz(a,h)anthracene  | ND        |           | 0.50     | 0.070 | ug/L |   | 08/30/24 13:14 | 09/03/24 14:15 | 1       |
| Fluoranthene           | ND        |           | 0.50     | 0.080 | ug/L |   | 08/30/24 13:14 | 09/03/24 14:15 | 1       |
| Fluorene               | ND        |           | 0.50     | 0.058 | ug/L |   | 08/30/24 13:14 | 09/03/24 14:15 | 1       |
| Indeno[1,2,3-cd]pyrene | ND        |           | 0.50     | 0.11  | ug/L |   | 08/30/24 13:14 | 09/03/24 14:15 | 1       |
| Naphthalene            | ND        |           | 1.0      | 0.064 | ug/L |   | 08/30/24 13:14 | 09/03/24 14:15 | 1       |
| Phenanthrene           | ND        |           | 0.20     | 0.062 | ug/L |   | 08/30/24 13:14 | 09/03/24 14:15 | 1       |
| Pyrene                 | ND '      | Ψ         | 0.50     | 0.076 | ug/L |   | 08/30/24 13:14 | 09/03/24 14:15 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits   |       |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 99        |           | 37 - 120 |       |      |   | 08/30/24 13:14 | 09/03/24 14:15 | 1       |
| Nitrobenzene-d5 (Surr) | 77        |           | 26 - 120 |       |      |   | 08/30/24 13:14 | 09/03/24 14:15 | 1       |
| p-Terphenyl-d14 (Surr) | 107       |           | 64 - 127 |       |      |   | 08/30/24 13:14 | 09/03/24 14:15 | 1       |

| General Chemistry            |                  |       |          |     |   |          |                |         |
|------------------------------|------------------|-------|----------|-----|---|----------|----------------|---------|
| Analyte                      | Result Qualifier | RL    | MDL U    | nit | D | Prepared | Analyzed       | Dil Fac |
| Cyanide, Total (SW846 9012B) | ND NU UJ         | 0.010 | 0.0041 m | g/L |   |          | 09/06/24 10:42 | 1       |

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

**Client Sample ID: PRMW-3S** Date Collected: 08/28/24 12:40

Date Received: 08/29/24 12:52

**Matrix: Ground Water** 

| Analyte                      | Result    | Qualifier | RL       | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|------|------|---|----------|----------------|---------|
| Benzene                      | ND        | UJ        | 1.0      | 0.41 | ug/L |   |          | 08/30/24 01:22 | 1       |
| Ethylbenzene                 | ND        | 1         | 1.0      | 0.74 | ug/L |   |          | 08/30/24 01:22 | 1       |
| Toluene                      | ND        |           | 1.0      | 0.51 | ug/L |   |          | 08/30/24 01:22 | 1       |
| Xylenes, Total               | ND        | <b>V</b>  | 2.0      | 0.66 | ug/L |   |          | 08/30/24 01:22 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |      |      |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 109       |           | 77 - 120 |      |      |   |          | 08/30/24 01:22 | 1       |
| 4-Bromofluorobenzene (Surr)  | 105       |           | 73 - 120 |      |      |   |          | 08/30/24 01:22 | 1       |
| Dibromofluoromethane (Surr)  | 111       |           | 75 - 123 |      |      |   |          | 08/30/24 01:22 | 1       |
| Toluene-d8 (Surr)            | 112       |           | 80 - 120 |      |      |   |          | 08/30/24 01:22 | 1       |

| Analyte                      | Result    | Qualifier | RL       | MDL    | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|--------|------|---|----------------|----------------|---------|
| Acenaphthene                 | ND        | UJ        | 0.48     | 0.034  | ug/L |   | 08/30/24 13:14 | 09/03/24 12:52 | 1       |
| Acenaphthylene               | ND        | 1         | 0.29     | 0.053  | ug/L |   | 08/30/24 13:14 | 09/03/24 12:52 | 1       |
| Anthracene                   | ND        |           | 0.48     | 0.032  | ug/L |   | 08/30/24 13:14 | 09/03/24 12:52 | 1       |
| Benzo[a]anthracene           | ND        |           | 0.29     | 0.032  | ug/L |   | 08/30/24 13:14 | 09/03/24 12:52 | 1       |
| Benzo[a]pyrene               | ND        |           | 0.17     | 0.12   | ug/L |   | 08/30/24 13:14 | 09/03/24 12:52 | 1       |
| Benzo[b]fluoranthene         | ND        |           | 0.29     | 0.060  | ug/L |   | 08/30/24 13:14 | 09/03/24 12:52 | 1       |
| Benzo[g,h,i]perylene         | ND        |           | 0.48     | 0.055  | ug/L |   | 08/30/24 13:14 | 09/03/24 12:52 | 1       |
| Benzo[k]fluoranthene         | ND        |           | 0.29     | 0.067  | ug/L |   | 08/30/24 13:14 | 09/03/24 12:52 | 1       |
| Chrysene                     | ND        |           | 0.48     | 0.070  | ug/L |   | 08/30/24 13:14 | 09/03/24 12:52 | 1       |
| Dibenz(a,h)anthracene        | ND        |           | 0.48     | 0.067  | ug/L |   | 08/30/24 13:14 | 09/03/24 12:52 | 1       |
| Fluoranthene                 | ND        |           | 0.48     | 0.076  | ug/L |   | 08/30/24 13:14 | 09/03/24 12:52 | 1       |
| Fluorene                     | ND        |           | 0.48     | 0.055  | ug/L |   | 08/30/24 13:14 | 09/03/24 12:52 | 1       |
| Indeno[1,2,3-cd]pyrene       | ND        |           | 0.48     | 0.10   | ug/L |   | 08/30/24 13:14 | 09/03/24 12:52 | 1       |
| Naphthalene                  | ND        |           | 0.95     | 0.061  | ug/L |   | 08/30/24 13:14 | 09/03/24 12:52 | 1       |
| Phenanthrene                 | ND        |           | 0.19     | 0.059  | ug/L |   | 08/30/24 13:14 | 09/03/24 12:52 | 1       |
| Pyrene                       | ND        | <b>V</b>  | 0.48     | 0.072  | ug/L |   | 08/30/24 13:14 | 09/03/24 12:52 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |        |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl             | 96        |           | 37 - 120 |        |      |   | 08/30/24 13:14 | 09/03/24 12:52 | 1       |
| Nitrobenzene-d5 (Surr)       | 81        |           | 26 - 120 |        |      |   | 08/30/24 13:14 | 09/03/24 12:52 | 1       |
| p-Terphenyl-d14 (Surr)       | 110       |           | 64 - 127 |        |      |   | 08/30/24 13:14 | 09/03/24 12:52 | 1       |
| General Chemistry            |           |           |          |        |      |   |                |                |         |
| Analyte                      | Result    | Qualifier | RL       | MDL    | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Cyanide, Total (SW846 9012B) | ND        | UJ        | 0.010    | 0.0041 | mg/L |   |                | 09/06/24 11:35 | 1       |

| Eu | rofins | Buffa | lc |
|----|--------|-------|----|
|    |        |       |    |

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

Lab Sample ID: 480-222956-5 **Client Sample ID: PRMW-3D** 

Date Collected: 08/28/24 14:45 Date Received: 08/29/24 12:52

Fluoranthene

Naphthalene

Indeno[1,2,3-cd]pyrene

Fluorene

**Matrix: Ground Water** 

08/30/24 13:14 09/03/24 14:42

08/30/24 13:14 09/03/24 14:42

08/30/24 13:14 09/03/24 14:42

08/30/24 13:14 09/03/24 14:42

Job ID: 480-222956-1

| Analyte                                                                                                                                           | Result                                                         | Qualifier  | RL                                                   | MDL                                                               | Unit                                         | D         | Prepared                                                                                                                   | Analyzed                                                                                                                          | Dil Fac      |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------|------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------|
| Benzene                                                                                                                                           | MD                                                             | UJ         | 1.0                                                  | 0.41                                                              | ug/L                                         |           |                                                                                                                            | 08/30/24 01:44                                                                                                                    | 1            |
| Ethylbenzene                                                                                                                                      | ND                                                             |            | 1.0                                                  | 0.74                                                              | ug/L                                         |           |                                                                                                                            | 08/30/24 01:44                                                                                                                    | 1            |
| Toluene                                                                                                                                           | ND                                                             |            | 1.0                                                  | 0.51                                                              | ug/L                                         |           |                                                                                                                            | 08/30/24 01:44                                                                                                                    | 1            |
| Xylenes, Total                                                                                                                                    | ND \                                                           | <b>V</b>   | 2.0                                                  | 0.66                                                              | ug/L                                         |           |                                                                                                                            | 08/30/24 01:44                                                                                                                    | 1            |
| Surrogate                                                                                                                                         | %Recovery                                                      | Qualifier  | Limits                                               |                                                                   |                                              |           | Prepared                                                                                                                   | Analyzed                                                                                                                          | Dil Fac      |
| 1,2-Dichloroethane-d4 (Surr)                                                                                                                      | 108                                                            |            | 77 - 120                                             |                                                                   |                                              |           |                                                                                                                            | 08/30/24 01:44                                                                                                                    | 1            |
| 4-Bromofluorobenzene (Surr)                                                                                                                       | 102                                                            |            | 73 - 120                                             |                                                                   |                                              |           |                                                                                                                            | 08/30/24 01:44                                                                                                                    | 1            |
| Dibromofluoromethane (Surr)                                                                                                                       | 110                                                            |            | 75 - 123                                             |                                                                   |                                              |           |                                                                                                                            | 08/30/24 01:44                                                                                                                    | 1            |
|                                                                                                                                                   |                                                                |            |                                                      |                                                                   |                                              |           |                                                                                                                            |                                                                                                                                   |              |
| Toluene-d8 (Surr)  Method: SW846 8270D LL                                                                                                         | 110<br>- Semivolatile (                                        | Organic Co | 80 - 120<br>ompounds by                              | v GC/MS                                                           | S - Low L                                    | evel      |                                                                                                                            | 08/30/24 01:44                                                                                                                    | 1            |
| Toluene-d8 (Surr)  Method: SW846 8270D LL  Analyte                                                                                                | - Semivolatile C                                               | Organic Co |                                                      | y GC/MS                                                           |                                              | evel<br>D | Prepared                                                                                                                   | 08/30/24 01:44  Analyzed                                                                                                          | 1<br>Dil Fac |
| Method: SW846 8270D LL                                                                                                                            | - Semivolatile C                                               | Qualifier  | ompounds by                                          | •                                                                 | Unit                                         |           | Prepared 08/30/24 13:14                                                                                                    |                                                                                                                                   | ·            |
| Method: SW846 8270D LL<br>Analyte                                                                                                                 | - Semivolatile C                                               | Qualifier  | ompounds by                                          | MDL                                                               | Unit<br>ug/L                                 |           |                                                                                                                            | Analyzed                                                                                                                          | ·            |
| Method: SW846 8270D LL Analyte Acenaphthene                                                                                                       | - Semivolatile C<br>Result                                     | Qualifier  | ompounds by RL 0.48                                  | MDL<br>0.034                                                      | Unit<br>ug/L<br>ug/L                         |           | 08/30/24 13:14                                                                                                             | Analyzed 09/03/24 14:42 09/03/24 14:42                                                                                            | ·            |
| Method: SW846 8270D LL Analyte Acenaphthene Acenaphthylene                                                                                        | - Semivolatile ( Result ND                                     | Qualifier  | ompounds by RL 0.48 0.29                             | MDL<br>0.034<br>0.053                                             | ug/L<br>ug/L<br>ug/L<br>ug/L                 |           | 08/30/24 13:14<br>08/30/24 13:14                                                                                           | Analyzed 09/03/24 14:42 09/03/24 14:42 09/03/24 14:42                                                                             | ·            |
| Method: SW846 8270D LL Analyte Acenaphthene Acenaphthylene Anthracene                                                                             | - Semivolatile ( Result ND ND ND                               | Qualifier  | 0.48<br>0.29<br>0.48                                 | MDL<br>0.034<br>0.053<br>0.032<br>0.032                           | ug/L<br>ug/L<br>ug/L<br>ug/L                 |           | 08/30/24 13:14<br>08/30/24 13:14<br>08/30/24 13:14                                                                         | Analyzed 09/03/24 14:42 09/03/24 14:42 09/03/24 14:42 09/03/24 14:42                                                              | ·            |
| Method: SW846 8270D LL Analyte Acenaphthene Acenaphthylene Anthracene Benzo[a]anthracene                                                          | - Semivolatile C<br>Result<br>ND<br>ND<br>ND<br>ND             | Qualifier  | 0.48<br>0.29<br>0.48<br>0.29                         | MDL<br>0.034<br>0.053<br>0.032<br>0.032                           | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L         |           | 08/30/24 13:14<br>08/30/24 13:14<br>08/30/24 13:14<br>08/30/24 13:14                                                       | Analyzed 09/03/24 14:42 09/03/24 14:42 09/03/24 14:42 09/03/24 14:42 09/03/24 14:42                                               | ·            |
| Method: SW846 8270D LL Analyte Acenaphthene Acenaphthylene Anthracene Benzo[a]anthracene Benzo[a]pyrene                                           | - Semivolatile C<br>Result<br>ND<br>ND<br>ND<br>ND<br>ND       | Qualifier  | 0.48<br>0.29<br>0.48<br>0.29<br>0.47                 | MDL<br>0.034<br>0.053<br>0.032<br>0.032<br>0.12                   | Unit ug/L ug/L ug/L ug/L ug/L ug/L           |           | 08/30/24 13:14<br>08/30/24 13:14<br>08/30/24 13:14<br>08/30/24 13:14<br>08/30/24 13:14<br>08/30/24 13:14                   | Analyzed 09/03/24 14:42 09/03/24 14:42 09/03/24 14:42 09/03/24 14:42 09/03/24 14:42                                               | ·            |
| Method: SW846 8270D LL Analyte Acenaphthene Acenaphthylene Anthracene Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[g,h,i]perylene | - Semivolatile C<br>Result<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND | Qualifier  | 0.48<br>0.29<br>0.48<br>0.29<br>0.17<br>0.29         | MDL<br>0.034<br>0.053<br>0.032<br>0.032<br>0.12<br>0.060          | Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L |           | 08/30/24 13:14<br>08/30/24 13:14<br>08/30/24 13:14<br>08/30/24 13:14<br>08/30/24 13:14<br>08/30/24 13:14                   | Analyzed 09/03/24 14:42 09/03/24 14:42 09/03/24 14:42 09/03/24 14:42 09/03/24 14:42 09/03/24 14:42 09/03/24 14:42                 | ·            |
| Method: SW846 8270D LL Analyte Acenaphthene Acenaphthylene Anthracene Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene                      | - Semivolatile C Result ND ND ND ND ND ND ND ND ND ND ND ND ND | Qualifier  | 0.48<br>0.29<br>0.48<br>0.29<br>0.17<br>0.29<br>0.48 | MDL<br>0.034<br>0.053<br>0.032<br>0.032<br>0.12<br>0.060<br>0.055 | ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L      |           | 08/30/24 13:14<br>08/30/24 13:14<br>08/30/24 13:14<br>08/30/24 13:14<br>08/30/24 13:14<br>08/30/24 13:14<br>08/30/24 13:14 | Analyzed  09/03/24 14:42 09/03/24 14:42 09/03/24 14:42 09/03/24 14:42 09/03/24 14:42 09/03/24 14:42 09/03/24 14:42 09/03/24 14:42 | ·            |

| PI | nenanthrene           | ND                  | 0.19     | 0.059 ug/L | 08/30/24 13:14 | 09/03/24 14:42 | 1       |
|----|-----------------------|---------------------|----------|------------|----------------|----------------|---------|
| P  | yrene                 | ND <b>V</b>         | 0.48     | 0.072 ug/L | 08/30/24 13:14 | 09/03/24 14:42 | 1       |
| S  | urrogate              | %Recovery Qualifier | Limits   |            | Prepared       | Analyzed       | Dil Fac |
| 2- | Fluorobiphenyl        | 88                  | 37 - 120 |            | 08/30/24 13:14 | 09/03/24 14:42 | 1       |
| N  | itrobenzene-d5 (Surr) | <i>75</i>           | 26 - 120 |            | 08/30/24 13:14 | 09/03/24 14:42 | 1       |
| p- | Terphenyl-d14 (Surr)  | 104                 | 64 - 127 |            | 08/30/24 13:14 | 09/03/24 14:42 | 1       |

0.48

0.48

0.48

0.95

0.076 ug/L

0.055 ug/L

0.10 ug/L

0.061 ug/L

ND

ND

ND

ND

| General Chemistry<br>Analyte | Result Qualifier | RL    | MDL Unit    | D | Prepared | Analyzed       | Dil Fac |  |
|------------------------------|------------------|-------|-------------|---|----------|----------------|---------|--|
| Cvanide, Total (SW846 9012B) | ND 🛰 UJ          | 0.010 | 0.0041 mg/L |   |          | 09/06/24 10:48 | 1       |  |

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

**Client Sample ID: PRMW-4S** 

Date Collected: 08/28/24 09:20 08/29/24

Date Received: 08/29/24 12:52

Lab Sample ID: 480-222956-6

**Matrix: Ground Water** 

| Analyte                      | Result Qua    | alifier    | RL             | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|---------------|------------|----------------|------|------|---|----------|----------------|---------|
| Benzene                      | ND UJ         | J          | 1.0            | 0.41 | ug/L |   |          | 08/30/24 02:06 | 1       |
| Ethylbenzene                 | ND            |            | 1.0            | 0.74 | ug/L |   |          | 08/30/24 02:06 | 1       |
| Toluene                      | ND            |            | 1.0            | 0.51 | ug/L |   |          | 08/30/24 02:06 | 1       |
| Xylenes, Total               | ND <b>V</b>   |            | 2.0            | 0.66 | ug/L |   |          | 08/30/24 02:06 | 1       |
| Surrogate                    | %Recovery Qua | alifier Li | mits           |      |      |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 110           | 77         | <i>'</i> - 120 |      |      |   |          | 08/30/24 02:06 | 1       |
| 4-Bromofluorobenzene (Surr)  | 103           | 73         | 3 - 120        |      |      |   |          | 08/30/24 02:06 | 1       |
| Dibromofluoromethane (Surr)  | 110           | 75         | 5 - 123        |      |      |   |          | 08/30/24 02:06 | 1       |
| Toluene-d8 (Surr)            | 111           | 80         | 120            |      |      |   |          | 08/30/24 02:06 | 1       |

| Analyte                     | Result    | Qualifier | RL       | MDL    | Unit | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|--------|------|---|----------------|----------------|---------|
| Acenaphthene                | ND        | UJ        | 0.51     | 0.036  | ug/L |   | 08/30/24 13:14 | 09/03/24 15:10 | 1       |
| Acenaphthylene              | ND        | 1         | 0.30     | 0.057  | ug/L |   | 08/30/24 13:14 | 09/03/24 15:10 | 1       |
| Anthracene                  | ND        |           | 0.51     | 0.034  | ug/L |   | 08/30/24 13:14 | 09/03/24 15:10 | 1       |
| Benzo[a]anthracene          | ND        |           | 0.30     | 0.034  | ug/L |   | 08/30/24 13:14 | 09/03/24 15:10 | 1       |
| Benzo[a]pyrene              | ND        |           | 0.18     | 0.13   | ug/L |   | 08/30/24 13:14 | 09/03/24 15:10 | 1       |
| Benzo[b]fluoranthene        | ND        |           | 0.30     | 0.064  |      |   | 08/30/24 13:14 | 09/03/24 15:10 | 1       |
| Benzo[g,h,i]perylene        | ND        |           | 0.51     | 0.059  | ug/L |   | 08/30/24 13:14 | 09/03/24 15:10 | 1       |
| Benzo[k]fluoranthene        | ND        |           | 0.30     | 0.071  | ug/L |   | 08/30/24 13:14 | 09/03/24 15:10 | 1       |
| Chrysene                    | ND        | 1         | 0.51     | 0.075  | ug/L |   | 08/30/24 13:14 | 09/03/24 15:10 | 1       |
| Dibenz(a,h)anthracene       | ND        |           | 0.51     | 0.071  | ug/L |   | 08/30/24 13:14 | 09/03/24 15:10 | 1       |
| Fluoranthene                | ND        |           | 0.51     | 0.081  | ug/L |   | 08/30/24 13:14 | 09/03/24 15:10 | 1       |
| Fluorene                    | ND        |           | 0.51     | 0.059  | ug/L |   | 08/30/24 13:14 | 09/03/24 15:10 | 1       |
| Indeno[1,2,3-cd]pyrene      | ND        |           | 0.51     | 0.11   | ug/L |   | 08/30/24 13:14 | 09/03/24 15:10 | 1       |
| Naphthalene                 | ND        |           | 1.0      | 0.065  | ug/L |   | 08/30/24 13:14 | 09/03/24 15:10 | 1       |
| Phenanthrene                | ND        |           | 0.20     | 0.063  | ug/L |   | 08/30/24 13:14 | 09/03/24 15:10 | 1       |
| Pyrene                      | ND        | <b>V</b>  | 0.51     | 0.077  | ug/L |   | 08/30/24 13:14 | 09/03/24 15:10 | 1       |
| Surrogate                   | %Recovery | Qualifier | Limits   |        |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl            | 94        |           | 37 - 120 |        |      |   | 08/30/24 13:14 | 09/03/24 15:10 | 1       |
| Nitrobenzene-d5 (Surr)      | 82        |           | 26 - 120 |        |      |   | 08/30/24 13:14 | 09/03/24 15:10 | 1       |
| p-Terphenyl-d14 (Surr)      | 106       |           | 64 - 127 |        |      |   | 08/30/24 13:14 | 09/03/24 15:10 | 1       |
| General Chemistry           |           |           |          |        |      |   |                |                |         |
| Analyte                     | Result    | Qualifier | RL       | MDL    | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Cvanide Total (SW846 9012B) | ND        | Nr 111    | 0.010    | 0.0041 | ma/l |   |                | 09/06/24 10:51 |         |

| General Chemistry            |                  |       |           |      |   |          |                |         |
|------------------------------|------------------|-------|-----------|------|---|----------|----------------|---------|
| Analyte                      | Result Qualifier | RL    | MDL Ur    | nit  | D | Prepared | Analyzed       | Dil Fac |
| Cyanide, Total (SW846 9012B) | ND July UJ       | 0.010 | 0.0041 mg | ıg/L |   |          | 09/06/24 10:51 | 1       |
|                              |                  |       |           |      |   |          |                |         |

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

Lab Sample ID: 480-222956-7

**Matrix: Ground Water** 

Job ID: 480-222956-1

**Client Sample ID: PRMW-5S** Date Collected: <del>08/28/24</del> 08:35 08/29/24

Date Received: 08/29/24 12:52

| Analyte                      | Result    | Qualifier | RL       | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|------|------|---|----------|----------------|---------|
| Benzene                      | 1.9       | J         | 1.0      | 0.41 | ug/L |   |          | 08/30/24 02:28 | 1       |
| Ethylbenzene                 | 1.1       | Ĵ         | 1.0      | 0.74 | ug/L |   |          | 08/30/24 02:28 | 1       |
| Toluene                      | ND        | UJ        | 1.0      | 0.51 | ug/L |   |          | 08/30/24 02:28 | 1       |
| Xylenes, Total               | ND        | UJ        | 2.0      | 0.66 | ug/L |   |          | 08/30/24 02:28 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |      |      |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) |           |           | 77 - 120 |      |      |   |          | 08/30/24 02:28 | 1       |
| 4-Bromofluorobenzene (Surr)  | 102       |           | 73 - 120 |      |      |   |          | 08/30/24 02:28 | 1       |
| Dibromofluoromethane (Surr)  | 111       |           | 75 - 123 |      |      |   |          | 08/30/24 02:28 | 1       |
| Toluene-d8 (Surr)            | 112       |           | 80 - 120 |      |      |   |          | 08/30/24 02:28 |         |

| Analyte                      | Result    | Qualifier | RL       | MDL    | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|--------|------|---|----------------|----------------|---------|
| Acenaphthene                 | 4.5       | J         | 2.4      | 0.17   | ug/L |   | 08/30/24 13:14 | 09/03/24 15:37 | 5       |
| Acenaphthylene               | 0.61      | J         | 1.4      | 0.27   | ug/L |   | 08/30/24 13:14 | 09/03/24 15:37 | 5       |
| Anthracene                   | 0.19      | J         | 2.4      | 0.16   | ug/L |   | 08/30/24 13:14 | 09/03/24 15:37 | 5       |
| Benzo[a]anthracene           | ND        | UJ        | 1.4      | 0.16   | ug/L |   | 08/30/24 13:14 | 09/03/24 15:37 | 5       |
| Benzo[a]pyrene               | ND        | 17        | 0.86     | 0.62   | ug/L |   | 08/30/24 13:14 | 09/03/24 15:37 | 5       |
| Benzo[b]fluoranthene         | ND        |           | 1.4      | 0.30   | ug/L |   | 08/30/24 13:14 | 09/03/24 15:37 | 5       |
| Benzo[g,h,i]perylene         | ND        |           | 2.4      | 0.28   | ug/L |   | 08/30/24 13:14 | 09/03/24 15:37 | 5       |
| Benzo[k]fluoranthene         | ND        |           | 1.4      | 0.33   | ug/L |   | 08/30/24 13:14 | 09/03/24 15:37 | 5       |
| Chrysene                     | ND        |           | 2.4      | 0.35   | ug/L |   | 08/30/24 13:14 | 09/03/24 15:37 | 5       |
| Dibenz(a,h)anthracene        | ND        | Ψ         | 2.4      | 0.33   | ug/L |   | 08/30/24 13:14 | 09/03/24 15:37 | 5       |
| Fluoranthene                 | 0.66      | 1 1       | 2.4      | 0.38   | ug/L |   | 08/30/24 13:14 | 09/03/24 15:37 | 5       |
| Fluorene                     | 1.6       |           | 2.4      | 0.28   | ug/L |   | 08/30/24 13:14 | 09/03/24 15:37 | 5       |
| Indeno[1,2,3-cd]pyrene       | ND        | UJ        | 2.4      | 0.52   | ug/L |   | 08/30/24 13:14 | 09/03/24 15:37 | 5       |
| Naphthalene                  | 3.4       | J         | 4.8      | 0.30   | ug/L |   | 08/30/24 13:14 | 09/03/24 15:37 | 5       |
| Phenanthrene                 | 0.37      | J         | 0.95     | 0.30   | ug/L |   | 08/30/24 13:14 | 09/03/24 15:37 | 5       |
| Pyrene                       | 0.40      | J         | 2.4      | 0.36   | ug/L |   | 08/30/24 13:14 | 09/03/24 15:37 | 5       |
| Surrogate                    | %Recovery | Qualifier | Limits   |        |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl             | 56        |           | 37 - 120 |        |      |   | 08/30/24 13:14 | 09/03/24 15:37 | 5       |
| Nitrobenzene-d5 (Surr)       | 48        |           | 26 - 120 |        |      |   | 08/30/24 13:14 | 09/03/24 15:37 | 5       |
| p-Terphenyl-d14 (Surr)       | 72        |           | 64 - 127 |        |      |   | 08/30/24 13:14 | 09/03/24 15:37 | 5       |
| General Chemistry            |           |           |          |        |      |   |                |                |         |
| Analyte                      | Result    | Qualifier | RL       | MDL    | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Cyanide, Total (SW846 9012B) | 0.020     | J         | 0.010    | 0.0041 | mg/L |   |                | 09/09/24 09:29 | 1       |

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

Client Sample ID: PRMW-5D

Date Collected: 08/28/24 14:40 Date Received: 08/29/24 12:52 Lab Sample ID: 480-222956-8

**Matrix: Ground Water** 

| Method: SW846 8260C - Vo     | olatile Organic Compoun | ds by GC/MS | ;    |      |   |          |                |         |
|------------------------------|-------------------------|-------------|------|------|---|----------|----------------|---------|
| Analyte                      | Result Qualifier        | RL          | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| Benzene                      | ND UJ                   | 1.0         | 0.41 | ug/L |   |          | 08/30/24 02:50 | 1       |
| Ethylbenzene                 | ND                      | 1.0         | 0.74 | ug/L |   |          | 08/30/24 02:50 | 1       |
| Toluene                      | ND                      | 1.0         | 0.51 | ug/L |   |          | 08/30/24 02:50 | 1       |
| Xylenes, Total               | ND 🗸                    | 2.0         | 0.66 | ug/L |   |          | 08/30/24 02:50 | 1       |
| Surrogate                    | %Recovery Qualifier     | Limits      |      |      |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 108                     | 77 - 120    |      |      | - |          | 08/30/24 02:50 | 1       |
| 4-Bromofluorobenzene (Surr)  | 102                     | 73 - 120    |      |      |   |          | 08/30/24 02:50 | 1       |
| Dibromofluoromethane (Surr)  | 110                     | 75 - 123    |      |      |   |          | 08/30/24 02:50 | 1       |
| Toluene-d8 (Surr)            | 113                     | 80 - 120    |      |      |   |          | 08/30/24 02:50 | 1       |

| Analyte                | Result    | Qualifier | RL       | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|-------|------|---|----------------|----------------|---------|
| Acenaphthene           | ND        | UJ        | 0.48     | 0.034 | ug/L |   | 08/30/24 13:14 | 09/03/24 16:05 | 1       |
| Acenaphthylene         | ND        |           | 0.29     | 0.053 | ug/L |   | 08/30/24 13:14 | 09/03/24 16:05 | 1       |
| Anthracene             | ND        |           | 0.48     | 0.032 | ug/L |   | 08/30/24 13:14 | 09/03/24 16:05 | 1       |
| Benzo[a]anthracene     | ND        |           | 0.29     | 0.032 | ug/L |   | 08/30/24 13:14 | 09/03/24 16:05 | 1       |
| Benzo[a]pyrene         | ND        |           | 0.17     | 0.12  | ug/L |   | 08/30/24 13:14 | 09/03/24 16:05 | 1       |
| Benzo[b]fluoranthene   | ND        |           | 0.29     | 0.060 | ug/L |   | 08/30/24 13:14 | 09/03/24 16:05 | 1       |
| Benzo[g,h,i]perylene   | ND        |           | 0.48     | 0.055 | ug/L |   | 08/30/24 13:14 | 09/03/24 16:05 | 1       |
| Benzo[k]fluoranthene   | ND        |           | 0.29     | 0.067 | ug/L |   | 08/30/24 13:14 | 09/03/24 16:05 | 1       |
| Chrysene               | ND        |           | 0.48     | 0.070 | ug/L |   | 08/30/24 13:14 | 09/03/24 16:05 | 1       |
| Dibenz(a,h)anthracene  | ND        |           | 0.48     | 0.067 | ug/L |   | 08/30/24 13:14 | 09/03/24 16:05 | 1       |
| Fluoranthene           | ND        |           | 0.48     | 0.076 | ug/L |   | 08/30/24 13:14 | 09/03/24 16:05 | 1       |
| Fluorene               | ND        |           | 0.48     | 0.055 | ug/L |   | 08/30/24 13:14 | 09/03/24 16:05 | 1       |
| Indeno[1,2,3-cd]pyrene | ND        |           | 0.48     | 0.10  | ug/L |   | 08/30/24 13:14 | 09/03/24 16:05 | 1       |
| Naphthalene            | ND        |           | 0.95     | 0.061 | ug/L |   | 08/30/24 13:14 | 09/03/24 16:05 | 1       |
| Phenanthrene           | ND        |           | 0.19     | 0.059 | ug/L |   | 08/30/24 13:14 | 09/03/24 16:05 | 1       |
| Pyrene                 | ND        | <b>V</b>  | 0.48     | 0.072 | ug/L |   | 08/30/24 13:14 | 09/03/24 16:05 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits   |       |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 74        |           | 37 - 120 |       |      |   | 08/30/24 13:14 | 09/03/24 16:05 | 1       |
| Nitrobenzene-d5 (Surr) | 59        |           | 26 - 120 |       |      |   | 08/30/24 13:14 | 09/03/24 16:05 | 1       |
| p-Terphenyl-d14 (Surr) | 104       |           | 64 - 127 |       |      |   | 08/30/24 13:14 | 09/03/24 16:05 | 1       |
| General Chemistry      | Result    |           | RI       |       |      |   |                |                |         |

| Analyte                      | Result | Qualifier | KL    | MDL    | Unit | ט | Prepared | Analyzed       | DilFa |
|------------------------------|--------|-----------|-------|--------|------|---|----------|----------------|-------|
| Cyanide, Total (SW846 9012B) | ND     | UJ        | 0.010 | 0.0041 | mg/L |   |          | 09/03/24 13:18 |       |
|                              |        |           |       |        |      |   |          |                |       |
|                              |        |           |       |        |      |   |          |                |       |

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

**Client Sample ID: PRMW-6S** 

Date Collected: 08/28/24 11:10 Date Received: 08/29/24 12:52 Lab Sample ID: 480-222956-9

**Matrix: Ground Water** 

| Method: SW846 8260C - Vo     | olatile Organic | Compoun   | ds by GC/MS | ;    |      |   |          |                |         |
|------------------------------|-----------------|-----------|-------------|------|------|---|----------|----------------|---------|
| Analyte                      | Result          | Qualifier | RL          | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| Benzene                      | MD              | UJ        | 1.0         | 0.41 | ug/L |   |          | 08/30/24 03:13 | 1       |
| Ethylbenzene                 | ND              |           | 1.0         | 0.74 | ug/L |   |          | 08/30/24 03:13 | 1       |
| Toluene                      | ND              |           | 1.0         | 0.51 | ug/L |   |          | 08/30/24 03:13 | 1       |
| Xylenes, Total               | ND              | •         | 2.0         | 0.66 | ug/L |   |          | 08/30/24 03:13 | 1       |
| Surrogate                    | %Recovery       | Qualifier | Limits      |      |      |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 110             |           | 77 - 120    |      |      |   |          | 08/30/24 03:13 | 1       |
| 4-Bromofluorobenzene (Surr)  | 103             |           | 73 - 120    |      |      |   |          | 08/30/24 03:13 | 1       |
| Dibromofluoromethane (Surr)  | 110             |           | 75 - 123    |      |      |   |          | 08/30/24 03:13 | 1       |
| Toluene-d8 (Surr)            | 110             |           | 80 120      |      |      |   |          | 08/30/24 03:13 | 1       |

| Analyte                      | Result    | Qualifier | RL       | MDL    | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|--------|------|---|----------------|----------------|---------|
| Acenaphthene                 | ND        | UJ        | 0.48     | 0.034  | ug/L |   | 08/30/24 13:14 | 09/03/24 16:32 | 1       |
| Acenaphthylene               | ND        | 1         | 0.29     | 0.053  | ug/L |   | 08/30/24 13:14 | 09/03/24 16:32 | 1       |
| Anthracene                   | ND        |           | 0.48     | 0.032  | ug/L |   | 08/30/24 13:14 | 09/03/24 16:32 | 1       |
| Benzo[a]anthracene           | ND        |           | 0.29     | 0.032  | ug/L |   | 08/30/24 13:14 | 09/03/24 16:32 | 1       |
| Benzo[a]pyrene               | ND        |           | 0.17     | 0.12   | ug/L |   | 08/30/24 13:14 | 09/03/24 16:32 | 1       |
| Benzo[b]fluoranthene         | ND        |           | 0.29     | 0.060  | ug/L |   | 08/30/24 13:14 | 09/03/24 16:32 | 1       |
| Benzo[g,h,i]perylene         | ND        |           | 0.48     | 0.055  | ug/L |   | 08/30/24 13:14 | 09/03/24 16:32 | 1       |
| Benzo[k]fluoranthene         | ND        |           | 0.29     | 0.067  | ug/L |   | 08/30/24 13:14 | 09/03/24 16:32 | 1       |
| Chrysene                     | ND        |           | 0.48     | 0.070  | ug/L |   | 08/30/24 13:14 | 09/03/24 16:32 | 1       |
| Dibenz(a,h)anthracene        | ND        |           | 0.48     | 0.067  | ug/L |   | 08/30/24 13:14 | 09/03/24 16:32 | 1       |
| Fluoranthene                 | ND        |           | 0.48     | 0.076  | ug/L |   | 08/30/24 13:14 | 09/03/24 16:32 | 1       |
| Fluorene                     | ND        |           | 0.48     | 0.055  | ug/L |   | 08/30/24 13:14 | 09/03/24 16:32 | 1       |
| Indeno[1,2,3-cd]pyrene       | ND        |           | 0.48     | 0.10   | ug/L |   | 08/30/24 13:14 | 09/03/24 16:32 | 1       |
| Naphthalene                  | ND        |           | 0.95     | 0.061  | ug/L |   | 08/30/24 13:14 | 09/03/24 16:32 | 1       |
| Phenanthrene                 | ND        |           | 0.19     | 0.059  | ug/L |   | 08/30/24 13:14 | 09/03/24 16:32 | 1       |
| Pyrene                       | ND        | <b>\</b>  | 0.48     | 0.072  | ug/L |   | 08/30/24 13:14 | 09/03/24 16:32 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |        |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl             | 51        |           | 37 - 120 |        |      |   | 08/30/24 13:14 | 09/03/24 16:32 | 1       |
| Nitrobenzene-d5 (Surr)       | 44        |           | 26 - 120 |        |      |   | 08/30/24 13:14 | 09/03/24 16:32 | 1       |
| p-Terphenyl-d14 (Surr)       | 91        |           | 64 - 127 |        |      |   | 08/30/24 13:14 | 09/03/24 16:32 | 1       |
| General Chemistry            |           |           |          |        |      |   |                |                |         |
| Analyte                      | Result    | Qualifier | RL       | MDL    | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Cyanide, Total (SW846 9012B) | ND        | UJ        | 0.010    | 0.0041 | mg/L |   |                | 09/03/24 13:24 | 1       |

| Eurofins B |
|------------|
|------------|

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

**Client Sample ID: PRMW-6D** Date Collected: 08/28/24 09:55

Date Received: 08/29/24 12:52

| Lab | Sampl | e l | D: | 48 | 30-2 | 22956-10 | ) |
|-----|-------|-----|----|----|------|----------|---|
|     |       | _   |    | -  | _    |          |   |

**Matrix: Ground Water** 

| Method: SW846 8260C - Vo     | od: SW846 8260C - Volatile Organic Compounds by GC/MS |           |          |      |      |   |          |                |         |  |  |  |
|------------------------------|-------------------------------------------------------|-----------|----------|------|------|---|----------|----------------|---------|--|--|--|
| Analyte                      | Result                                                | Qualifier | RL       | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |  |  |  |
| Benzene                      | ND                                                    | UJ        | 1.0      | 0.41 | ug/L |   |          | 08/30/24 03:35 | 1       |  |  |  |
| Ethylbenzene                 | ND                                                    | 1         | 1.0      | 0.74 | ug/L |   |          | 08/30/24 03:35 | 1       |  |  |  |
| Toluene                      | ND                                                    |           | 1.0      | 0.51 | ug/L |   |          | 08/30/24 03:35 | 1       |  |  |  |
| Xylenes, Total               | ND                                                    | Ψ         | 2.0      | 0.66 | ug/L |   |          | 08/30/24 03:35 | 1       |  |  |  |
| Surrogate                    | %Recovery                                             | Qualifier | Limits   |      |      |   | Prepared | Analyzed       | Dil Fac |  |  |  |
| 1,2-Dichloroethane-d4 (Surr) | 108                                                   |           | 77 - 120 |      |      |   |          | 08/30/24 03:35 | 1       |  |  |  |
| 4-Bromofluorobenzene (Surr)  | 102                                                   |           | 73 - 120 |      |      |   |          | 08/30/24 03:35 | 1       |  |  |  |
| Dibromofluoromethane (Surr)  | 110                                                   |           | 75 - 123 |      |      |   |          | 08/30/24 03:35 | 1       |  |  |  |
| Toluene-d8 (Surr)            | 110                                                   |           | 80 - 120 |      |      |   |          | 08/30/24 03:35 | 1       |  |  |  |

| Analyte                | Result    | Qualifier | RL       | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|-------|------|---|----------------|----------------|---------|
| Acenaphthene           | ND        | UJ        | 0.48     | 0.034 | ug/L |   | 08/30/24 13:14 | 09/03/24 17:00 | 1       |
| Acenaphthylene         | ND        | 1         | 0.29     | 0.053 | ug/L |   | 08/30/24 13:14 | 09/03/24 17:00 | 1       |
| Anthracene             | ND        |           | 0.48     | 0.032 | ug/L |   | 08/30/24 13:14 | 09/03/24 17:00 | 1       |
| Benzo[a]anthracene     | ND        |           | 0.29     | 0.032 | ug/L |   | 08/30/24 13:14 | 09/03/24 17:00 | 1       |
| Benzo[a]pyrene         | ND        |           | 0.17     | 0.12  | ug/L |   | 08/30/24 13:14 | 09/03/24 17:00 | 1       |
| Benzo[b]fluoranthene   | ND        |           | 0.29     | 0.060 | ug/L |   | 08/30/24 13:14 | 09/03/24 17:00 | 1       |
| Benzo[g,h,i]perylene   | ND        |           | 0.48     | 0.055 | ug/L |   | 08/30/24 13:14 | 09/03/24 17:00 | 1       |
| Benzo[k]fluoranthene   | ND        |           | 0.29     | 0.067 | ug/L |   | 08/30/24 13:14 | 09/03/24 17:00 | 1       |
| Chrysene               | ND        |           | 0.48     | 0.070 | ug/L |   | 08/30/24 13:14 | 09/03/24 17:00 | 1       |
| Dibenz(a,h)anthracene  | ND        |           | 0.48     | 0.067 | ug/L |   | 08/30/24 13:14 | 09/03/24 17:00 | 1       |
| Fluoranthene           | ND        |           | 0.48     | 0.076 | ug/L |   | 08/30/24 13:14 | 09/03/24 17:00 | 1       |
| Fluorene               | ND        |           | 0.48     | 0.055 | ug/L |   | 08/30/24 13:14 | 09/03/24 17:00 | 1       |
| Indeno[1,2,3-cd]pyrene | ND        |           | 0.48     | 0.10  | ug/L |   | 08/30/24 13:14 | 09/03/24 17:00 | 1       |
| Naphthalene            | ND        |           | 0.95     | 0.061 | ug/L |   | 08/30/24 13:14 | 09/03/24 17:00 | 1       |
| Phenanthrene           | ND        |           | 0.19     | 0.059 | ug/L |   | 08/30/24 13:14 | 09/03/24 17:00 | 1       |
| Pyrene                 | ND        | <b>\</b>  | 0.48     | 0.072 | ug/L |   | 08/30/24 13:14 | 09/03/24 17:00 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits   |       |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 54        |           | 37 - 120 |       |      |   | 08/30/24 13:14 | 09/03/24 17:00 | 1       |
| Nitrobenzene-d5 (Surr) | 47        |           | 26 - 120 |       |      |   | 08/30/24 13:14 | 09/03/24 17:00 | 1       |
| p-Terphenyl-d14 (Surr) | 103       |           | 64 - 127 |       |      |   | 08/30/24 13:14 | 09/03/24 17:00 | 1       |

| General Chemistry Analyte    | Result | Qualifier | RL    | MDL    | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|--------|-----------|-------|--------|------|---|----------|----------------|---------|
| Cyanide, Total (SW846 9012B) | ND     | UJ        | 0.010 | 0.0041 | mg/L |   | -        | 09/03/24 13:28 | 1       |

Client: New York State Electric & Gas

Project/Site: NYSEG Former MGP Site - Penn Yan

Client Sample ID: DUP-20240829

Date Collected: 08/28/24 00:00

Lab Sample ID: 480-222956-11

Matrix: WQ

Job ID: 480-222956-1

| ite Received: 08/29/24 12: | .5Z                       |          |          |   |          |          |
|----------------------------|---------------------------|----------|----------|---|----------|----------|
| Method: SW846 8260C - V    | olatile Organic Compounds | by GC/MS |          |   |          |          |
| nalyte                     | Result Qualifier          | RL       | MDL Unit | D | Prepared | Analyzed |

| Analyte        | Result | Qualitier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|----------------|--------|-----------|-----|------|------|---|----------|----------------|---------|
| Benzene        | ND     | UJ        | 1.0 | 0.41 | ug/L |   |          | 08/30/24 03:57 | 1       |
| Ethylbenzene   | ND     |           | 1.0 | 0.74 | ug/L |   |          | 08/30/24 03:57 | 1       |
| Toluene        | ND     |           | 1.0 | 0.51 | ug/L |   |          | 08/30/24 03:57 | 1       |
| Xylenes, Total | ND     | <b>V</b>  | 2.0 | 0.66 | ug/L |   |          | 08/30/24 03:57 | 1       |
|                |        |           |     |      |      |   |          |                |         |

| Surrogate                    | %Recovery | Qualifier | Limits   |   | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|---|----------|----------------|---------|
| 1,2-Dichloroethane-d4 (Surr) | 108       |           | 77 - 120 | _ |          | 08/30/24 03:57 | 1       |
| 4-Bromofluorobenzene (Surr)  | 104       |           | 73 - 120 |   |          | 08/30/24 03:57 | 1       |
| Dibromofluoromethane (Surr)  | 108       |           | 75 - 123 |   |          | 08/30/24 03:57 | 1       |
| Toluene-d8 (Surr)            | 110       |           | 80 - 120 |   |          | 08/30/24 03:57 | 1       |

| Analyte                | Result | Qualifier | RL   | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|--------|-----------|------|-------|------|---|----------------|----------------|---------|
| Acenaphthene           | ND     | UJ        | 0.48 | 0.034 | ug/L |   | 08/30/24 13:14 | 09/03/24 17:28 | 1       |
| Acenaphthylene         | ND     | T         | 0.29 | 0.053 | ug/L |   | 08/30/24 13:14 | 09/03/24 17:28 | 1       |
| Anthracene             | ND     |           | 0.48 | 0.032 | ug/L |   | 08/30/24 13:14 | 09/03/24 17:28 | 1       |
| Benzo[a]anthracene     | ND     |           | 0.29 | 0.032 | ug/L |   | 08/30/24 13:14 | 09/03/24 17:28 | 1       |
| Benzo[a]pyrene         | ND     |           | 0.17 | 0.12  | ug/L |   | 08/30/24 13:14 | 09/03/24 17:28 | 1       |
| Benzo[b]fluoranthene   | ND     |           | 0.29 | 0.060 | ug/L |   | 08/30/24 13:14 | 09/03/24 17:28 | 1       |
| Benzo[g,h,i]perylene   | ND     |           | 0.48 | 0.055 | ug/L |   | 08/30/24 13:14 | 09/03/24 17:28 | 1       |
| Benzo[k]fluoranthene   | ND     |           | 0.29 | 0.067 | ug/L |   | 08/30/24 13:14 | 09/03/24 17:28 | 1       |
| Chrysene               | ND     |           | 0.48 | 0.070 | ug/L |   | 08/30/24 13:14 | 09/03/24 17:28 | 1       |
| Dibenz(a,h)anthracene  | ND     |           | 0.48 | 0.067 | ug/L |   | 08/30/24 13:14 | 09/03/24 17:28 | 1       |
| Fluoranthene           | ND     |           | 0.48 | 0.076 | ug/L |   | 08/30/24 13:14 | 09/03/24 17:28 | 1       |
| Fluorene               | ND     |           | 0.48 | 0.055 | ug/L |   | 08/30/24 13:14 | 09/03/24 17:28 | 1       |
| Indeno[1,2,3-cd]pyrene | ND     |           | 0.48 | 0.10  | ug/L |   | 08/30/24 13:14 | 09/03/24 17:28 | 1       |
| Naphthalene            | ND     |           | 0.95 | 0.061 | ug/L |   | 08/30/24 13:14 | 09/03/24 17:28 | 1       |
| Phenanthrene           | ND     |           | 0.19 | 0.059 | ug/L |   | 08/30/24 13:14 | 09/03/24 17:28 | 1       |
| Pyrene                 | ND     | Ψ         | 0.48 | 0.072 | ua/l |   | 08/30/24 13:14 | 09/03/24 17:28 |         |

| Surrogate              | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|----------------|----------------|---------|
| 2-Fluorobiphenyl       | 57        |           | 37 - 120 | 08/30/24 13:14 | 09/03/24 17:28 | 1       |
| Nitrobenzene-d5 (Surr) | 50        |           | 26 - 120 | 08/30/24 13:14 | 09/03/24 17:28 | 1       |
| p-Terphenyl-d14 (Surr) | 96        |           | 64 - 127 | 08/30/24 13:14 | 09/03/24 17:28 | 1       |

| General Chemistry            |        |           |       |        |      |   |          |                |         |
|------------------------------|--------|-----------|-------|--------|------|---|----------|----------------|---------|
| Analyte                      | Result | Qualifier | RL    | MDL    | Unit | D | Prepared | Analyzed       | Dil Fac |
| Cyanide, Total (SW846 9012B) | ND     | UJ        | 0.010 | 0.0041 | mg/L |   |          | 09/03/24 13:31 | 1       |

9/9/2024

Client: New York State Electric & Gas Job ID: 480-222956-1

Project/Site: NYSEG Former MGP Site - Penn Yan

**Client Sample ID: TRIP BLANK** 

Lab Sample ID: 480-222956-12 Date Collected: 08/28/24 00:00

Matrix: WQ

Date Received: 08/29/24 12:52

| Analyte                      | Result    | Qualifier  | RL       | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|------------|----------|------|------|---|----------|----------------|---------|
| Benzene                      | ND        | UJ         | 1.0      | 0.41 | ug/L |   |          | 08/30/24 04:19 | 1       |
| Ethylbenzene                 | ND        | UJ         | 1.0      | 0.74 | ug/L |   |          | 08/30/24 04:19 | 1       |
| Toluene                      | 0.52      | <b>y</b> J | 1.0      | 0.51 | ug/L |   |          | 08/30/24 04:19 | 1       |
| Xylenes, Total               | ND        | UJ         | 2.0      | 0.66 | ug/L |   |          | 08/30/24 04:19 | 1       |
| Surrogate                    | %Recovery | Qualifier  | Limits   |      |      |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 109       |            | 77 - 120 |      |      |   |          | 08/30/24 04:19 | 1       |
| 4-Bromofluorobenzene (Surr)  | 103       |            | 73 - 120 |      |      |   |          | 08/30/24 04:19 | 1       |
| Dibromofluoromethane (Surr)  | 111       |            | 75 - 123 |      |      |   |          | 08/30/24 04:19 | 1       |
| Toluene-d8 (Surr)            | 112       |            | 80 - 120 |      |      |   |          | 08/30/24 04:19 | 1       |

# **Appendix E**

**Field Sampling Logs** 

|                                   |                |              | GR              | OUND                                    |             |           | PLING L            |           |                    |             |                 |               |         |
|-----------------------------------|----------------|--------------|-----------------|-----------------------------------------|-------------|-----------|--------------------|-----------|--------------------|-------------|-----------------|---------------|---------|
| Site: NYSEG Penn                  | Yan Form       | ner MGP      | ı               | NYSEG Penn Yan, NY Event: February 2024 |             |           |                    |           |                    |             | 24 GWS          |               |         |
| Sampling Personnel:               | Bailey         | KudlaWilli   | ams / Kait      | lyn Flemii                              | ng          | We        | II ID: PR          | MW-1      |                    |             |                 |               |         |
| Client / Job Number:              |                | 3 / 301743   | 122             |                                         |             | Dat       |                    | 12.024    |                    |             |                 |               |         |
| Weather: Cloudy                   | / <u>, 33°</u> |              |                 |                                         |             | Tin       | <u>ie in: / ()</u> | <u>60</u> | Time Out:          | 120         | 20              |               |         |
| Well Information                  |                |              |                 | _                                       |             |           |                    |           |                    |             |                 |               |         |
|                                   | 1.91           |              | (feet TIC)      | _                                       |             | We        | І Туре:            | Flu       | ishmount) Stick-Up |             |                 |               |         |
| Total Depth: (                    | 29.69          | 78           | (feet TIC)      | _                                       |             | We        | l Material:        | Sta       | inless Steel       | (evc        | )               |               |         |
| Volume of Water in Well           |                | <u> </u>     | (feet)<br>(gal) | _                                       |             | We        | Locked.            |           | Yes                |             | No              |               |         |
| Screen Interval:                  | NA             | <u> </u>     | (feet)          | _                                       |             | Mea       | asuring Point      | Marked:   | Yes                |             | (No)            |               |         |
| Depth to pump Intake:             | 258            | გ            | (feet TIC)      |                                         |             | We        | l Diameter:        | 2         | 4*                 |             |                 |               |         |
| Purging Information               |                |              |                 |                                         |             |           |                    | _         |                    |             |                 |               |         |
|                                   |                |              |                 |                                         |             |           |                    |           |                    | Солу        | ersion Fac      | tors          |         |
| Purging Method:                   | Bailer         |              | Peristalti      |                                         | Grundfos    |           | Other:             |           | gal /              |             | 2 10            |               | 'ID     |
| Tubing/Bailer Material:           | St. Stee       |              | Polyethy        | 197e                                    | Teflon      |           | Other:             |           | of wa              | 1 0041      |                 |               | 469     |
| Sampling Method:                  | Bailer         | (            | Peristalti      | 6)                                      | Grundfos    |           | Other:             |           | 1 gai              | = 3.785 L = | 3/83 MI # U.    | .1337 cubic f | Cest    |
| Duration of Pumping: //           | 0 900          | (min)        |                 |                                         |             |           | · · ·              |           |                    |             | nit Stability   |               |         |
| Average Pumping Rate:             | 120            | (ml/min)     |                 | Water-                                  | Quality Met | er Type:  | YSI/Lamotte        | 2020      | pH                 | DO ± 10%    | Cond<br>4 ± 3.0 | _             | _       |
| Total Volume Removed:             | 2.5            | (gal)        |                 |                                         | Did wel     | l go dry: | Yes                | <b>6</b>  | ±0.1               | 1 1 107     | M [ I 3.0       | 76   1 10     | 1110_1  |
|                                   | 1              | 2            | 3               | 4                                       | 5           | 6         | 7                  | 8         | 9                  | 10          | 11              | 12            | 13      |
| Parameter:                        | 1020           | 1025         | 1030            | 1035                                    | 1040        | 1045      | 1050               | 1055      | 1100               | 1105        | 1110            | 1115          | 1120    |
| Volume Purged (gal)               |                | 0.5          |                 |                                         |             | 1.0       |                    |           |                    | 1.5         |                 |               |         |
| Rate (mL/min)                     | 120            | 120          | 120             | 120                                     | 120         | 120       | 120                | 120       | 120                | 120         | 120             | 120           | 120     |
| Depth to Water (ft.)              | 11.99          | 12.21        | 12.67           | 13.02                                   | 13.65       | 14.08     | 14.61              | 15.07     | 15.48              | 15.89       | 16.31           | 16.56         | 16-82   |
| pH                                | 8.43           | 8.43         | 8.44            | 8.44                                    | 8.44        | 8.44      | 8.43               | 8.40      | 8.24               | 8.06        | 7.89            | 7.76          | 7.70    |
| Temp. (C)                         | 10.9           | 10.7         | 10.7            | 10.6                                    | 10.5        | 10.7      | 10.8               | 10.8      | 10.9               | 11.0        | 10.9            | 10.5          | 10.6    |
| Conductivity (mS/cm)              | 0.405          | 0.406        | 6.407           | 0.405                                   | 0.405       | 0.405     | 0.407              | 0.417     | 0.474              | 0.571       | 0.687           | 0.858         | 0.899   |
| Dissolved Oxygen (mg/l)           | 9.77           | 9.71         | 9.70            | 9.64                                    | 9.64        | 9.58      | <b>1</b> .51       | 9.55      | 9.32               |             | 8.31            | 7.57          | 6.97    |
| ORP (mV)                          | 106.3          | 81.9         | 66.1            | 40.4                                    | 40.5        | 52.2      | 59.8               | 63.5      | 71.5               | 81.4        | 90.7            | 100.1         | 105.0   |
| Turbidity (NTU)                   | 227,92         | 725.17       | 707.51          | 218.77                                  | 213.17      | 215.05    | 215.88             | 205.41    | 206.69             | 187.57      | 169.14          | 146.67        | 12.6.8  |
| Notes:                            |                |              |                 |                                         |             |           |                    |           |                    |             |                 |               |         |
| Sampling Information              | L              | <u> </u>     | <u> </u>        |                                         | <u> </u>    | 1         | Proble             | ms / Obs  | ervation           | s           |                 | !             | <u></u> |
| Analyses #                        | Lab            | oratory      |                 | 4 140 1 10                              |             |           |                    |           |                    |             |                 |               |         |
| BTEXs 3                           | Buffa          | alo-Test Ame | nica            | Initial P                               | 'urge:      |           |                    |           |                    |             |                 |               |         |
| PAHs 7                            |                | do-Test Ame  |                 | 0                                       |             |           |                    |           |                    |             |                 |               |         |
| Cyanide                           |                | do-Test Ame  |                 | Fur                                     | np ,        | 20        | @ 10               | 10        |                    |             |                 |               |         |
| Secreta ID: G deat 6 1            |                | do-Test Ame  |                 |                                         |             |           |                    |           | . +                | urbid       |                 |               |         |
| Sample ID: PRMW - I               |                | ple Time: /  | OFF             | Final P                                 | urge:       |           |                    |           | )                  |             | n               | o ode         | 20      |
| MS/MSD.                           |                |              |                 |                                         |             |           |                    |           |                    |             |                 |               |         |
| Duplicate:                        |                | Time:        |                 | Yum                                     | 16 o        | A /       | a 12.              | ah        |                    |             |                 |               |         |
| Chain of Custody Signed By:   (4) |                |              |                 |                                         |             |           | , 10               | 00 .<br>J | tu                 | bid,        | <b>nd</b> (     | odor          |         |
|                                   |                |              |                 |                                         |             |           | •                  |           |                    |             |                 |               |         |

\* Tried bringing tubing up & emptying flow thru cell.

https://arcadiso365-my.sharepoint.com/personal/kaitlyn\_fleming\_arcadis-us\_com/Documents/Desktop/NYSEG Sites/Penn Yan/GW Sampling Flagge / of Z
Template.docx

GROUNDWATER SAMPLING LOG NYSEG Penn Yan, NY Event: February 2024 GWS Site NYSEG Penn Yan Former MGP Bailey KudlaWilliams / Kaitlyn Fleming Sampling Personnel: Well ID: Client / Job Number: NYSEG / 30174322 Date: Time in: Firme Out: Weather: Well Information (feel FIC) Depth to Water Well Type: **Flushmount** Stick-Up **Total Depth** (feet TIC) Well Material: Stainless Steel **PVC** Length of Water Column: (feet) Well Locked: Νo Volume of Water in Well: (gal) Measuring Point Marked: Yes No Screen Interval: (feet) Well Diameter. Depth to pump intake: (feet TIC) **Purging Information** Conversion Factors Bailer Peristattic Grundfos Purging Method: Other. 1º ID 2° ID 4" 10 6° ID St Steel 1.469 0.653 0 041 0 163 Tubing/Bailer Material: Polyethylene Teflon Other. 1 gal = 3.785 L = 2.785 ml = 0 1337 cubic feet Bailer Penstaltic Sampling Method: Grundfos Other: **Duration of Pumping** (min) **Unit Stability** Cond. ORR DO Average Purpoing Rate: (ml/min) Water-Quality Meter Type: YSI/Lamotte 2020 ±0.1 ± 10% ± 30% ± 10 mV Total Volume Removed: No (gal) Did well go dry: Yes 13 8 9 10 2 3 5 6 1125 1135 1130 Volume Purged (gal) 2.0 Rate (mL/min) 120 120 120 A Depth to Water (ft.) 17.32 17.63 M 18.03 7.63 ρ 7.65 L Temp. (C) 9.6 9.9 9.2 Conductivity (mS/cm) 1.080 1.108 1.08 7.13 Dissolved Oxygen (mg/l) 7.27 7.02 ORP (mV) 110.4 112.7 118.7 Turbidity (NTU) 119.63 151.22 Sampling Information Problems / Observations **Analyses** Laboratory Initial Purge: BTEXS Buffalo-Test America **PAHs** Buffal Test America Bullalo-Test America Cyanide See 2 1,4-Dioxane Buffalo-Test America Sample ID: Sample Time: Final Purge: Yes

MS/MSD:

Duplicate:

Duplicate ID Chain of Custody Signed By:

Yes

No

Dup. Time

|                                |          |             | GR         | OUND       | WATE        | RSAMI     | PLING I      | LOG       |                       |             |               |               |          |
|--------------------------------|----------|-------------|------------|------------|-------------|-----------|--------------|-----------|-----------------------|-------------|---------------|---------------|----------|
| Site: NYSEG Penr               | Yan For  | ner MGP     | )          |            | NYSE        | G Penn    | Yan, NY      | /         | E                     | vent: Fe    | bruary 202    | 24 GWS        |          |
| Sampling Personnel:            | Bailey   | KudlaWilli  | ams / Kait | lyn Flemir | <b>1</b> 9  | Wel       | IID: PR      | MW - 3    | 25                    |             |               |               |          |
| Client / Job Number:           | NYSE     | 3 / 301743  | 322        |            |             | Dat       |              | 12024     |                       |             |               |               |          |
| Weather: cloudy                | / , 33 ° | + 10        | artly s    | gunny      |             | Tim       | ne In: 126   | 20        | Time Out:             | 734         | 0             |               |          |
| Well Information               |          |             |            | _          |             |           |              |           |                       |             |               |               |          |
| Depth to Water                 |          | 5.13        | (feet TIC) | _          |             | Wel       | Type:        | Elem      | hanariat              | Stick       | 110           |               |          |
| Total Depth:                   | 22       | .96         | (feet TIC) |            |             |           | l Material:  |           | hmount<br>niess Steel | _           |               |               |          |
| Length of Water Colum          | n:       | 7.83        | (feet)     |            |             |           | Locked:      |           |                       | <u></u>     |               |               |          |
| Volume of Water in We          |          | 27          | (gal)      |            |             |           |              | Madradi   | (Yes)                 |             | No            |               |          |
| Screen Interval:               | NA 21    |             | (feet)     | _          |             |           | suring Point |           | (Yes)                 | n.          | No            |               |          |
| Depth to pump Intake.          | ~ 71     | . 5         | (feet TIC) |            |             | vvei      | l Diameter:  | <u> ②</u> | 4*                    |             |               |               |          |
| Purging Information            |          |             |            |            |             |           |              |           |                       |             |               |               |          |
|                                | Dellas   |             |            |            |             |           |              |           |                       | Conv        | ersion Fac    | tors          | $\Box$   |
| Purging Method:                | Bailer   |             | Peristatti |            | Grundfos    |           | Other:       |           | gai /                 |             | 2" 10         | 4° 1D 6°      | .10      |
| Tubing/Bailer Material:        | St. Stee | 9 (         | Polyethy   | lene       | Tellon      |           | Other:       |           | of wa                 | 0041        | 1 1           |               | 469      |
| Sampling Method:               | Bailer   |             | Peristalt  |            | Grundfos    |           | Other:       |           | 1 gal                 | = 3.785 L = | 3785 ml = 0.  | .1337 cubic f | ect      |
| Duration of Pumping:           | 85       | (min)       |            |            |             |           | <del></del>  |           |                       | U           | nit Stability | f             |          |
| Average Pumping Rate:          | 100      | (mVmin)     |            | Water-     | Quality Met | er Type:  | YSI/Lamotte  | 2020      | рН                    | DO          | Cond          |               | _        |
| Total Volume Removed:          | 2.0      | ) (gal)     | _          |            | Did wel     | l go dry: | Yes          | (No)      | ±0.1                  | ± 105       | 6 ± 3.0       | % ± 10        | mV       |
|                                |          | ,           |            |            |             |           |              | 0         |                       |             |               |               |          |
|                                | 1        | 2           | 3          | 4          | 5           | 6         | 7            | 8         | 9                     | 10          | 11            | 12            | 13       |
| Parameter:                     | 1215     | 1220        | 1225       | 1230       | 13.35       | 1240      | 1245         | 1250      | 1255                  | 1300        | 1305          | 1310          | 1315     |
| Volume Purged (gal)            |          |             |            | 0.5        |             |           |              | 1.0       |                       |             |               | 1.5           | 5        |
| Rate (mL/min)                  | /00      | 100         | 100        | 100        | 100         | 100       | 100          | 100       | 100                   | 100         | 100           | 100           | A        |
| Depth to Water (ft )           | 15.32    | 15.37       | 15.37      | 15.37      | 15.37       | 15.37     | 15.37        | 15.37     | 15.37                 | 15.37       | 15.37         | 15.37         | M        |
| pH                             | 7.39     | 7.41        | 7.4        | 7.40       | 7.39        | 7.39      | 7.38         | 7.38      | 7.37                  | 7.36        | 7.36          | 7.36          | P        |
| Temp. (C)                      | 10.0     | 10.7        | 10.1       | 10.4       | 10.4        | 9.8       | 10.0         | 10.3      | 10.1                  | 10.1        | 10.0          | 10.0          | <u></u>  |
| Conductivity (mS/cm)           | 1.665    | 1.667       | 1.677      | 1.708      | 1.743       | 1.764     | 1,775        | 1.787     | 1.803                 | 1.821       | 1.830         | 1.838         | E        |
| Dissolved Oxygen (mg/l)        | 4.12     | 3.90        | 3.65       | 3.77       | 2.78        | 2.63      | 2.38         | 2.20      | 2.04                  | 1.86        | 1.73          | 1.71          |          |
| ORP (mV)                       |          | _           | 1          |            |             |           | 158.0        | 1         |                       |             |               | 168.2         | $\vdash$ |
| Turbidity (NTU) Notes:         | 23.96    | 21.10       | 14.64      | 11.20      | 11.30       | 7.96      | 7.78         | 7.35      | 6.61                  | 5.74        | 5.54          | 5.00          | 4        |
| Notes.                         |          |             |            |            |             |           |              |           |                       |             |               |               |          |
|                                | }        | ì           |            |            |             |           |              | }         | ŀ                     |             | ŀ             |               |          |
|                                |          |             |            |            |             | ·         |              |           |                       |             |               |               |          |
| Sampling Information Analyses  |          | oratory     | T          |            |             |           | Proble       | ms / Obs  | ervation              | <u>s</u>    |               |               |          |
| BTEXs 2                        |          | lo-Test Ame | rica       | Initial P  | urge:       |           |              |           |                       |             |               |               |          |
| PAHs 7                         |          | lo-Test Ame | rica       |            |             |           |              |           |                       |             |               |               |          |
| Cyanide                        | Buffa    | lo-Test Ame | erica      | Pu         | mo          | on        | @ ,          | 210       |                       |             |               |               |          |
| 4 <del>pt Maximo</del>         |          | do-Test Ame |            | 1 0        | 11          |           | @ 1          | 210       | 2                     | clea        | r, $n$        | o od          | 01       |
| Sample ID: PRMW -              |          | ple Time: / | 315        | Final P    | urge:       |           |              |           |                       |             |               |               |          |
| MIS/MISD.                      | es (No)  |             |            |            | •           |           |              |           |                       |             |               |               |          |
| Duplicate: Y                   | es (49)  | _           |            | Pin        | 20 0        | ar i      | െ            | 32-       |                       |             |               | 0.0           |          |
| Duplicate ID                   | Dup.     | Time:       |            | 10-11      | 1 ,         | (         | <u>බ</u> 1   | 1222      | , (                   | lear        | no            | odor          | -        |
| Chain of Custody<br>Signed By. | KCF      |             |            |            |             |           |              |           | -                     |             |               |               |          |

GROUNDWATER SAMPLING LOG NYSEG Penn Yan, NY Site: NYSEG Penn Yan Former MGP Event: February 2024 GWS Well ID: PRMW-2D Sampling Personnel: Bailey KudlaWilliams / Kaitlyn Fleming NYSEG / 30174322 Client / Job Number: Date: 2/5/2024 1450 Weather: Partly cloudy Time in: Time Out: Well information Depth to Water: 15.20 (feet TIC) Well Type: Stick-Up **Elushmount** 36.78 Total Depth: (feet TIC) Well Material Staintess Steet (PVC) 21.58 Length of Water Column: (feet) Well Locked. (Yes No 3.51 Volume of Water in Well: (gal) Measuring Point Marked: (Yes Screen Interval: NΑ (feet) No Well Diameter. Depth to pump Intake: ~35 (Z) (feet TIC) 4-Purging Information Conversion Factors Purging Method: Bailer Peristaltic Grundfos Other. 6° ID 1" 10 2° ID 4" ID gal / ft. of water St. Steel 1.469 Tubing/Bailer Material: Polyethylene Teflon 0.041 0 163 0.653 Other: 1 gal = 3,785 L =3785 ml = 0.1337 cubic feet Sampling Method: Bailer Peristaltic. Grundfos Other: **Duration of Pumping:** 50 (min) Unit Stability ORP DO pΗ Cond Average Pumping Rate: (ml/min) 140 Water-Quality Meter Type: YSI/Lamotte 2020 ±0.1 ± 10% ± 3.0% ± 10 mV 1.5 Total Volume Removed: (No) (gal) Did well go dry: Yes 9 10 11 12 13 2 3 8 1345 350 1355 1400 1405 1420 1425 1430 Parameter: Volume Purged (gal) Endy 0.5 Emply Rate (mL/min) Abw. 140 140 140 140 140 flow 140 140 140 Thru Depth to Water (ft.) 16.03 20.01 18.02 18.60 Thru 20.56 21.02 22.22 5 cert CELL 7.63 7.65 7.76 7.84 7.86 7.86 7.72 A Temp. (C) 10.4 (aise 10.7 10.2 10.3 10.2 10.3 10.1 M triping Conductivity (mS/cm) 0.643 0.641 0.664 0.653 0.651 0.640 ტ.639 Dissolved Oxygen (mg/l) 3.91 5.40 L 1.83 1.29 1.63 5,05 5.28 E 85.4 ORP (mV) 68.7 65.3 69.2 Turbidity (NTU) 90.10 48.55 46.75 53.17 Notes: Sampling Information Problems / Observations Analyses Laboratory Initial Purge: 3 **BTFXs** Buffalo-Test America **PAHs** 2 Buffalo-Test America Pump on Cyanide Buffalo-Test America Sel-Distance. Buffalo-Test America Sample Time: 1430 Sample ID: # (2MW - 2D) Final Purge: Yes (No) MS/MSD: Yes (No) Duplicate: Pump off @ 1450; Dup. Time: -Duplicate ID Chain of Custody Signed By: KCF

| Sampling Personnet:   Bailey KudlaWilliams / Kaitlyn Fleming   Well ID: \$\( \frac{P(P(N) \neq -35)}{2} \)   Date: 2 - 5 - 24   Time Out: 14 \( \frac{P(N)}{2} \)   Westher: \( \frac{N}{2} \)   So \( \frac{P(N)}{2} \)   Cloud Ag   Time In: 1/2 \( \frac{P(N)}{2} \)   Time Out: 14 \( \frac{P(N)}{2} \)   Well Information   Depth to Water: \( \frac{1}{2} \)   Cloud Ag   (feet TIC)   Well Information   15 \( \frac{R}{2} \)   (feet TIC)   Well Information   Well Information   15 \( \frac{R}{2} \)   (feet TIC)   Well Information   Well Information   15 \( \frac{R}{2} \)   (feet TIC)   Well Information   Well Information   15 \( \frac{R}{2} \)   (feet TIC)   Well Information   Well Information   15 \( \frac{R}{2} \)   (feet TIC)   Well Information   Well Information   15 \( \frac{R}{2} \)   (feet TIC)   Well Information   Vision   15 \( \frac{R}{2} \)   (feet TIC)   Well Information   Vision   15 \( \frac{R}{2} \)   (feet TIC)   (feet TIC)   Well Information   Vision   15 \( \frac{R}{2} \)   (feet TIC)   (feet TIC)   Well Information   Vision   15 \( \frac{R}{2} \)   (feet TIC)   (feet TIC)   Well Information   Vision   15 \( \frac{R}{2} \)   (feet TIC)   (feet TIC)   Well Information   Vision   15 \( \frac{R}{2} \)   (feet TIC)   (feet TIC)   Vision   15 \( \frac{R}{2} \)   (feet TIC)    Site: NYSEG Penr              | Yan For | ner MGF   | )          |              | NYSE         | G Penn     | Yan, N       | Y         |          | Event: Fet  | oruary 20                                        | 24 GW       | S        |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------|-----------|------------|--------------|--------------|------------|--------------|-----------|----------|-------------|--------------------------------------------------|-------------|----------|---|
| Well Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sampling Personnel:           | Bailey  | KudiaWill | iams / Kai | itlyn Flemi  | ing          | We         | IIID: PR     | mw-3      | 35       |             | ***                                              |             |          |   |
| Depth to Water   Co. 9   A   (feet TIC)   Total Depth:   2 2 8   80   (feet TIC)   (feet)   (fe |                               |         |           |            |              |              |            |              |           |          |             |                                                  |             | _        |   |
| Depth to Water   12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Weather: ~35                  | partly  | clou      | طع         |              |              | Tin        | ne In: 123   | 20        | Time Out | : 1440      |                                                  |             |          |   |
| Total Depth: 12,80   (teet TIC)   Length of Water Column. 15,88   (teet)   Volume of Water in Welt. 2,59   (gal)   Screen Interval:   n / A   (feet)   (fe | Well Information              |         | •         | 3          |              |              |            |              |           |          |             |                                                  |             |          |   |
| Total Volume Removed:   1.2.5   (seet)   (seet |                               |         |           | (feet TIC) |              |              |            | II Type:     |           | ıshmount | Stick       | Ūn)                                              |             |          |   |
| Volume Purpord (gail)   Vest   Total Depth: 2                |         | _         | (feet TIC) |              |              | We         | II Material: |           |          |             | _                                                | •           |          |   |
| Screen Interval:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |         |           | (feet)     |              |              |            |              |           |          |             |                                                  |             |          |   |
| Depth to pump Inflake:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               | 1 -     | 1         |            |              |              |            |              | t Marked  |          |             |                                                  | •           |          |   |
| Purging Information   Purging Method   Bailer   Penstaltic   Grundfos   Other:   gal / π   1° 10   2° 10   4° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10   6° 10     |                               |         |           |            | _            |              |            |              |           |          |             | No                                               |             |          |   |
| Purging Method   Bailer   Peristatic   Grundfos   Other:   Grundfos   Other:   Grundfos   Other:   Grundfos   Other:   Grundfos   Other:   Depth to pump Intake:         | んないろ    |           | (feet TIC) |              |              |            | II Diameter: | (2)       | 4*       |             |                                                  |             |          |   |
| Purging Method   Bailer   Peristatic   Grundfos   Other.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Purging Information           |         |           |            |              |              |            |              |           |          | _           |                                                  |             |          |   |
| Tubing/Bailer Material: St. Steel Polyethylipie Teflon Other:  Sampling Method: Bailer Peristatic Grundfos Other:  Duration of Pumping: 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Purging Method                | Bailer  | (         | Peristalt  | ic           | Grundfos     |            | Other        |           |          | 14 ID       | 1                                                |             | 60.10    |   |
| Sampling Method.   Bailer   Peristatic   Grundfos   Other.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | St Ste  | el C      | > <        |              |              |            |              |           |          | n. —        | <del>                                     </del> | <del></del> |          |   |
| Duration of Pumping:   1,7 + (min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |         |           | > <        | $\leftarrow$ |              |            |              |           | 1 ga     |             |                                                  | <u>'</u>    | <u>'</u> |   |
| Average Pumping Rate: 153 (ml/min) Water-Quality Meter Type: YSI/Lamotte 2020  Total Volume Removed: 1.25 (gal) Did well go dry: Yes (No  Parameter: 1230 1235 1240 1245 1250 1255 1300 1305 1310 1315  Volume Purged (gal) Pump 0.5 0.75 1.00 5  Rate (ml/min) 0.1 200 180 150 150 150 150 125 125 A  Depth to Water (ft) (6.91 7.58 7.73 7.87 7.95 8.05 8.05 8.09 M  Temp. (C) 8.2 7.44 7.5 7.9 7.37 7.37 7.36 7.36 0  Dissolved Oxygen (mg/l) 2.47 2.10 1.74 1.60 1.39 1.25 1.24 1.20 D  Dissolved Oxygen (mg/l) 2.47 2.10 1.74 1.60 1.39 1.25 1.24 1.20 D  Notes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |         | (         | rensian    |              | Granaios     |            | Other:       |           |          |             |                                                  |             |          |   |
| Total Volume Removed: 1.25 (gal)  Parameter: 1230 1235 1240 1245 1250 1255 1300 1305 1310 1315  Volume Purged (gal)  Pump  O.5 0.75 1.00 150 150 150 150 150 150 150 150 150 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |         | (min)     |            |              |              |            |              |           |          |             |                                                  | _           | 000      |   |
| Total Volume Removed: 1.25 (gal)  Did well go dry: Yes (No)  Parameter: 1/230 1/235 1/400 1/245 1/250 1/255 1/300 1/305 1/310 1/315  Volume Purged (gal)  Pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Average Pumping Rate:         | 453     | (ml/min)  |            | Water-       | -Quality Met | er Type:   | YSI/Lamotte  | 2020      | <u> </u> | <del></del> |                                                  |             |          |   |
| Parameter: 1230 1235 1240 1245 1250 1255 1300 1305 1310 1315  Volume Purged (gai) Pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Total Volume Removed:         | 1.25    | (gal)     |            |              | Did we       | ll go dry: | Yes          | (No)      | _ 10.    | 1 1 ± 10%   | / ± 3.1                                          | 776   I     | 101114   |   |
| Volume Purged (gal)  Rate (mL/min)  On 200 180 150 150 150 150 125 A  Depth to Water (ft)  O, 9/ 7,58 7,73 7,87 7,95 8.05 8.09  M  PH  1 7,42 7,41 7,39 7,38 7,37 7,37 7,36 7,36 P  Temp. (C)  Conductivity (mS/cm)  Dissolved Oxygen (mg/l)  ORP (mV)  Turbidity (NTU)  Notes:  O,65 0.55 0.75 1.00 125 125 A  1.00 150 150 150 150 125 125 A  1.00 1,50 150 150 125 1.25 1.24 1.36 P  1.00 1,50 150 150 125 1.24 1.20 D  1.00 1,50 11.5 11.5 11.6 11.6 110.7 109.7 T  1.00 1,50 11.5 11.6 110.7 109.7 T  1.00 1.50 150 150 125 1.24 1.20 D  1.00 1,50 11.5 11.5 11.6 110.7 109.7 T  1.00 1,50 11.5 11.6 110.7 109.7 T  1.00 1.50 150 150 125 1.24 1.20 D  1.00 1,50 11.5 11.6 110.7 109.7 T  1.00 1,50 11.5 11.6 110.7 109.7 T  1.00 1.50 150 150 125 1.24 1.20 D  1.00 1.50 150 150 125 1.24 1.20 D  1.00 1.50 150 150 125 125 1.24 1.20 D  1.00 1.50 125 1.24 1.20 D  1.00 1.50 125 1.24 1.20 D  1.00 1.50 125 1.24 1.20 D  1.00 1.50 125 1.24 1.20 D  1.00 1.50 125 1.24 1.20 D  1.00 1.50 125 1.24 1.20 D  1.00 1.50 125 1.24 1.20 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               | 1       | 2         | 3          | 4            | 5            | 6          | 7            | 8         | 9        | 10          | 11                                               | 1:          | 2 1      | 3 |
| Rate (mL/min)  On 200 180 150 150 150 150 125 A  Depth to Water (ft.)  (c, 9/ 7.58 7.73 7.87 7.95 8.05 8.05 8.09 M  PH  7.42 7.41 7.39 7.38 7.37 7.36 7.36 7  Temp. (C)  8.2 7.4 7.5 7.9 7.5 7.9 7.7 7.5 L  Conductivity (mS/cm)  0.632 0.618 0.611 0.610 0.578 0.603 0.579 0.579 E  Dissolved Oxygen (mg/l)  0.42 108.8 111.0 111.5 112.1 111.6 110.7 107.7  Turbidity (NTU)  8.05 2.62 2.29 2.50 3.16 2.87 2.98 3.44  Notes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Parameter:                    | 1230    | 1235      | 1240       | 1245         | 1250         | 1255       | 1300         | 1305      | 1310     | 1315        |                                                  |             |          | _ |
| Rate (mL/min)       OA       200       180       150       150       150       125       125       A         Depth to Water (ft.)       6.91       7.58       7.73       7.87       7.95       8.05       8.09       M         pH       7.42       7.41       7.39       7.38       7.37       7.36       7.36       9         Temp. (C)       8.2       7.4       7.5       7.9       7.7       7.5       L         Conductivity (mS/cm)       0.632       0.618       0.611       0.610       0.598       0.603       0.599       0.599       E         Dissolved Oxygen (mg/l)       2.47       2.10       1.74       1.60       1.39       1.25       1.24       1.20       D         ORP (mV)       104.2       103.8       111.0       111.5       112.1       111.6       110.7       109.7         Turbidity (NTU)       3.05       2.62       2.29       2.50       3.16       2.87       2.98       3.44         Notes:       10.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Volume Purged (gal)           | Pump    |           |            | 0.5          |              | 0.75       |              | 1.0       |          | 5           |                                                  |             |          |   |
| pH       7.42       7.41       7.39       7.38       7.37       7.37       7.36       7.36       ρ         Temp. (C)       8.2       7.4       7.5       7.9       7.7       7.5       L         Conductivity (mS/cm)       0.632       0.618       0.611       0.610       0.598       0.603       0.599       0.599       E         Dissolved Oxygen (mg/l)       2.47       2.10       1.74       1.60       1.39       1.25       1.24       1.20       D         ORP (mV)       104.2       108.8       111.0       111.5       112.1       111.6       110.7       109.7         Turbidity (NTU)       3.05       2.62       2.29       2.50       3.16       2.87       2.98       3.44         Notes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rate (mL/min)                 | 1       | 200       | 180        | 150          | 150          | 150        | 150          | 125       | 125      | A           |                                                  |             |          |   |
| Temp. (C) 8.2 7.4 7.5 7.9 7.5 7.9 7.7 7.5 L  Conductivity (mS/cm) 0.632 0.618 0.611 0.610 0.598 0.603 0.599 0.599 E  Dissolved Oxygen (mg/l) 2.47 2.10 1.74 1.60 1.39 1.25 1.24 1.20 D  ORP (mV) 104.2 108.8 111.0 111.5 112.1 111.6 110.7 109.7  Turbidity (NTU) 3.05 2.62 2.29 2.50 3.16 2.87 2.98 3.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Depth to Water (ft.)          | 6.91    | 7.58      | 7.73       | 7.87         | 7.95         | 8.05       | 8.05         | 8.09      |          | m           |                                                  |             |          |   |
| Conductivity (mS/cm)  0.632 0.618 0.611 0.610 0.598 0.603 0.599 0.599 E  Dissolved Oxygen (mg/l)  2.47 2.10 1.74 1.60 1.39 1.25 1.24 1.20 D  ORP (mV)  104.2 108.3 111.0 111.5 112.1 111.6 110.7 109.7  Turbidity (NTU)  3.05 2.62 2.29 2.50 3.16 2.87 2.98 3.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pH                            | 1       | 7.42      | 7.41       | 7.39         | 7.38         | 7.37       | 7.37         | 7.36      | 7.36     | P'          |                                                  |             |          |   |
| Dissolved Oxygen (mg/l)  247 2.10 1.74 1.60 1.39 1.25 1.24 1.20 D  ORP (mV)  104.2 108.8 111.0 111.5 112.1 111.6 110.7 107.7  Turbidity (NTU)  Notes:  1.24 1.20 D  1.25 1.24 1.20 D  1.26 1.27 1.20 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Temp. (C)                     | 1       | 8.2       | 7.4        | 7.5          | 7.9          | 7.5        | 7.9          | 7.7       | 7.5      | 1           |                                                  |             |          |   |
| Dissolved Oxygen (mg/l) 2.47 2.10 1.74 1.60 1.39 1.25 1.24 1.20 D  ORP (mV) 104.2 108.8 111.0 111.5 112.1 111.6 110.7 109.7   Turbidity (NTU) 3.05 2.62 2.29 2.50 3.16 2.87 2.98 3.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Conductivity (mS/cm)          |         | 0.632     |            | 0.61         | 0.610        | 0.598      | 0.603        | 0.599     | 0.549    | E           |                                                  |             |          |   |
| ORP (mV)  104.2 108.8 111.0 111.5 112.1 111.6 110.7 109.7  Turbidity (NTU)  3.05 2.62 2.29 2.50 3.16 2.87 2.98 3.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dissolved Oxygen (mg/l)       |         | 1         |            | 1.74         |              | 1          | 1            | 1.24      | 1.20     | D           |                                                  |             |          |   |
| Notes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ORP (mV)                      |         |           | 1          |              | 1            |            | ľ.           | · .       |          |             | 11                                               |             |          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Turbidity (NTU)               |         | 3.05      | 2.62       | 2.29         | 2.50         | 3.16       | 2.87         | 2.98      | 3.44     |             |                                                  |             |          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Notes:                        | 1       |           |            |              |              |            |              |           |          |             |                                                  | 1           |          |   |
| Sampling Information Problems / Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |         | 1         | <u> </u>   |              |              | l .        | Proble       | ems / Obs | ervation | i l         |                                                  |             |          |   |
| Analyses # Laboratory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sampling Information          | n .     |           |            |              |              |            |              |           | THEY     |             |                                                  |             |          |   |
| BTEXs 12 Buffalo-Test America Initial Purge: Pump on at 1230 iclear, no odor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sampling Information Analyses |         | oratory   |            |              |              |            | 3,7 20,0     |           |          |             |                                                  |             |          |   |

Duplicate ID Duf-20240105 Dup. Time: —

Chain of Custody
Signed By: ICCF

1,4-Dioxane

MS/MSD:

Duplicate:

Sample ID: PRMW-35

**Buffalo-Test America** 

Sample Time: 1315

No

No

Final Purge: Pump off at 1437: clear, noodor

|                                                   | GROUNDW                       | IATER SAMPLING LOG   | 3               |                       |     |
|---------------------------------------------------|-------------------------------|----------------------|-----------------|-----------------------|-----|
| Site: NYSEG Penn Yan Former                       | MGP                           | NYSEG Penn Yan, NY   | E               | vent: February 2024 ( | ₹WS |
| Sampling Personnel: Bailey Ku                     | dlaWilliams / Kaitlyn Fleming | Well ID: PRMW        | 1-3D            |                       |     |
| Client / Job Number: NYSEG /                      | 30174322                      | Date: 2-5-24         |                 |                       |     |
| Weather: 35°F, Sun                                |                               | Time In: 1440        | Time Out:       | 1600                  |     |
| Well Information  Depth to Water: 5.53            | (feet TIC)                    | Well Type            | Flushmount      | (Stick-Up)            |     |
| Total Depth: 35-80  Length of Water Column: 30.27 | (feet TIC)                    | Well Material:       | Stainless Steel | PVC                   |     |
| Volume of Water in Well: 4.93                     | (gal)                         | Well Locked.         | (PES)           | No                    |     |
| Screen Interval: n/a                              | (feet)                        | Measuring Point Mark | ed: (Yes)       | No                    |     |
| Depth to pump Intake: ~ 35                        | (feet TIC)                    | Well Diameter.       | (2.) 4.         |                       |     |

#### **Purging Information**

| Purging Method:         | Bailer    |          | Peristaltic | Grundfos                  | Other:                                       |
|-------------------------|-----------|----------|-------------|---------------------------|----------------------------------------------|
| Tubing/Bailer Material: | St. Steel |          | Polyethyle  | e Teflon                  | Other:                                       |
| Sampling Method:        | Bailer    |          | Peristaltic | Grundfos                  | Other:                                       |
| Duration of Pumping:    | 70        | (min)    |             |                           | <u>-                                    </u> |
| Average Pumping Rate:   | ~100      | (ml/min) |             | Water-Quality Meter Type: | YSI/Lamotte 2020                             |
| Total Volume Removed:   | 1.5       | (gal)    |             | Did well go dry:          | Yes (No                                      |

|             | Conver    | sion Fac   | ctors     |          |
|-------------|-----------|------------|-----------|----------|
| gai / ft.   | 1" 10     | 2° ID      | 4" ID     | 6. 1D    |
| of water    | 0 041     | 0.653      | 1.469     |          |
| 1 gal = 3.1 | 785 L =37 | '85 ml = ( | ).1337 cu | bic feet |

|      | Unit Stability |        |         |  |  |  |  |  |  |  |  |  |
|------|----------------|--------|---------|--|--|--|--|--|--|--|--|--|
| pH   | DO             | Cond   | ORP     |  |  |  |  |  |  |  |  |  |
| ±0.1 | ± 10%          | ± 3.0% | ± 10 mV |  |  |  |  |  |  |  |  |  |

|                         | 1    | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12              | 13 |
|-------------------------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----------------|----|
| Parameter:              | 1440 | 1445  | 1450  | 1455  | 1500  | 1505  | 1510  | 1515  | 1520  | 1525  | 1530  | 1535            |    |
| Volume Purged (gai)     | Pump |       |       | 0.5   |       |       | 1.0   | (A)   | 1.25  |       |       | 1.5             |    |
| Rate (mL/min)           | On   | 120   | 120   | 120   | 100   | 100   | 100   | 100   | 100   | IDO   | 100   | 100             |    |
| Depth to Water (ft.)    | 5.56 | 6.20  | 6.43  | 6.57  | 6.60  | 6.79  | 6.90  | 6.95  | 6.92  | 6.92  | 6.93  | 5               |    |
| рН                      | 1    | 7.79  | 7.72  | 7.70  |       | 7.68  | 7.68  | 7.67  | 7.67  | 7.67  | 7.67  | A               |    |
| Temp. (C)               |      | 7.3   | 7.7   | 7.9   | 7.8   | 8.0   | 7,8   | 7.8   | 8.2   | 8.4   | 8.3   | m               |    |
| Conductivity (mS/cm)    |      | 0.427 | 0.423 | 0.420 | 0.418 | 0.416 | 0.416 | 0,415 | 0.415 | 0.416 | 0.417 | $\dot{\varrho}$ |    |
| Dissolved Oxygen (mg/l) |      | 3.06  | 1.46  | 0.89  | 0.71  | 0.59  | 0.52  | 0.48  | 0.45  | 0.44  | 0.43  |                 |    |
| ORP (mV)                |      | 82.7  | 81.3  | 75.1  | 64.1  | 43.3  | 6.4   | -7.5  | -18.3 | -20.2 | -267  | E               |    |
| Turbidity (NTU)         |      | 19.24 | 19.04 | 18.78 | 19.28 | 17.40 | 16.73 | 14.98 | 16.40 | 5.39  | 15.87 | D               |    |
| Notes:                  |      |       |       |       |       |       |       |       |       |       |       |                 |    |

Sampling Information

| Analyses                       | #     | Laboratory           |
|--------------------------------|-------|----------------------|
| BTEXs                          | 3     | Buffalo-Test America |
| PAHs                           | 2     | Buffalo-Test America |
| Cyanide                        | 1     | Buffalo-Test America |
| 1,4-Dioxane                    |       | Buffalo-Test America |
| Sample ID: PR                  | MW-3D | Sample Time:1535     |
| MS/MSD:                        | Yes   | <b>6</b>             |
| Duplicate:                     | Yes   | <b>®</b>             |
| Duplicate ID                   | _     | Dup. Time:           |
| Chain of Custody<br>Signed By: | γ     | CF                   |

#### Problems / Observations

Initial Purge: Pump on at: 1440, clear, no odor

Final Purge: Pump off at: 1550: alexx, no odor

| Site: NYSEG Penr                            | Yan Fon       | mer MGF       |            |            | NYSE        | G Peni     | n Yan, N      | Ÿ         | - 1          | Event: Fe   | ebruary 20    | 24 GWS      |       |
|---------------------------------------------|---------------|---------------|------------|------------|-------------|------------|---------------|-----------|--------------|-------------|---------------|-------------|-------|
| Sampling Personnel:                         | Bailey        | KudlaWill     | iams / Kai | tlyn Flemi | ing         | W          | ell ID: PA    | mw-       | 45           |             |               |             |       |
| Client / Job Number:                        |               | G / 30174     | 322        |            |             |            | te: 2/5       | /24       |              |             | 5             |             |       |
| Weather: ~30 °F,                            | <u>Dverca</u> | <u> 51</u>    |            |            |             | Ti         | me In: 195    | 0         | Time Out:    | 1200        |               |             |       |
| Well Information                            |               |               |            |            |             |            |               |           |              |             |               |             |       |
|                                             | .44           | _             | (feet TIC) |            |             | W          | ell Type:     | Chi       | shmount      | (Cha        | k-Up          | •           |       |
| Total Depth: 2                              | 7.10          |               | (feet TIC) |            |             | -          | ell Material: | -         | inless Steel | _           | -             |             |       |
| Length of Water Column                      |               |               | (feet)     | _          |             | _          | ell Locked:   |           |              | Cove        | -             | •           |       |
| Volume of Water in We<br>Screen Interval: ✓ | 7             | <del>57</del> | (gal)      |            |             |            | sasuring Poin | t Markari | (Yes         |             | No            |             |       |
| Screen Interval:   ✓  Depth to pump Intake: | 710           | 5             | (feet)     |            |             |            | ell Diameter. | _         | (Yes)        |             | No            |             |       |
| DOSATIO DOTTO TITLENCE                      | - 43**        |               | (feet TIC) |            |             |            | en Diameter   | (2')      | 4*           |             |               | •           |       |
| Purging Information                         |               |               |            |            |             |            |               |           |              |             |               |             |       |
| Purging Method:                             | Bailer        |               | Davisanti  | \          | 0 16        |            |               |           |              | Com         | version Fac   | tors        |       |
|                                             |               | _ <           | Peristalt  |            | Grundfos    |            | Other:        |           | gal /        |             | 2"10          | 4" ID (     | 6° ID |
| Tubing/Bailer Material:                     | St. Ste       | el C          | Polyethy   | le ne      | Teflon      |            | Other         |           | of wa        | 0.04        |               |             | 1.469 |
| Sampling Method:                            | Bailer        |               | Penstalt   | 9          | Grundfos    |            | Other:        |           | 1 gal        | = 3.785 L = | =3785 ml = 0  | .1337 cubic | feet  |
| Duration of Pumping:                        | 113           | (min)         |            |            |             |            | -             | ,         |              |             | Init Stabilit | Y           |       |
| Average Pumping Rate:                       | 130           | (ml/min)      |            | Water-     | Quality Met | er Type:   | YSI/Lamotte   | 2020      | рН           | DO          | Con           | d. OF       | ₹P    |
| Total Volume Removed:                       | 2.7           | (gai)         |            |            | Didwo       | ll go dry: | Yes           |           | ±0.1         | ± 10        | % ± 3.0       | % ± 10      | mV    |
|                                             | ~//-          | (901)         |            |            | DIG WE      | ii go diy. | 163           | ₩)        |              |             |               |             |       |
|                                             | 1             | 2             | 3          | 4          | 5           | 6          | 7             | 8         | 9            | 10          | 11            | 12          |       |
| Parameter:                                  | 1005          | 1010          | 1015       | 1020       | 1025        | 1030       | 1035          | 1040      | 1045         | 1050        | 1055          | 1100        | 110   |
| /olume Purged (gal)                         | Pump          |               |            | 0.5        |             |            | 1.0           |           |              | 1.25        |               | 1.5         |       |
| Rate (mL/min)                               | on            | 180           | 180        | 130        | 130         | 130        | 130           | 130       | 130          | 130         | 130           | 130         | 130   |
| Depth to Water (ft.)                        | 6.43          | 6.41          | 7.85       | 7,82       | 7.83        | 7.85       | 7.84          | 7.92      | 7.96         | 7.95        | 7.92          | 7.92        | 7,0   |
| oH.                                         | 1             | 7.20          | 7.33       | 7,34       | 7.31        | 7.28       | 7.26          | 7.25      | 7.23         | 7.23        | <u> </u>      | 7.20        | 7.:   |
|                                             |               |               |            |            |             |            | 7,7           | + · · ·   |              |             | 7 - 7         |             | _     |

|                         | 1    | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13    |
|-------------------------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Parameter:              | 1005 | 1010  | 1015  | 1020  | 1025  | 1030  | 1035  | DHOI  | 1045  | 1050  | 1055  | 1100  | 1105  |
| Volume Purged (gal)     | Pump |       |       | 0.5   |       |       | 1.0   |       |       | 1.25  |       | 1.5   |       |
| Rate (mL/min)           | on   | 180   | 180   | 130   | 130   | 130   | 130   | 130   | 130   | 130   | 130   | 130   | 130_  |
| Depth to Water (ft.)    | 6.43 | 6.41  | 7.85  | 7,82  | 7.83  | 7.85  | 7.84  | 7.92  | 7.96  | 7.95  | 7.92  | 7.92  | 7,92  |
| pH                      | 1    | 7.20  | 7.33  | 7,34  | 7.31  | 7.28  | 7.26  | 7.25  | 7.23  |       | 1     | 7.20  | 7.20  |
| Temp. (C)               |      | 8.5   | 8.6   | 8.0   | 7.6   | 7.7   | 7.8   | 8.0   | 8.1   | 7.8   | 7.9   | 7.8   | 7.8   |
| Conductivity (mS/cm)    |      | 0.585 | 0.592 | 0.595 | 0.621 | 0.652 | 0.696 | 0,735 | 0.767 | 2783  | 0.836 | 0.359 | 0.878 |
| Dissolved Oxygen (mg/l) |      | 1.97  | 1.18  | 0.99  | 0.91  | Ĭ .   | 0.76  |       | 0.65  |       | 0.57  |       | 0.51  |
| ORP (mV)                |      | 148.3 | 138.1 | 134.1 | 133.0 | 1314  | 128.8 | l     | 123.3 | 119.4 |       | 114.8 | 111.9 |
| Turbidity (NTU)         | 1    | 57.40 | 63.02 | 69.15 | 59.48 | 49.48 | 42.19 | 34.40 | 30.81 | 30.59 | 28.10 | 24.79 | 24.40 |
| Notes:                  | 1    |       |       |       |       |       |       |       |       |       |       |       |       |
|                         |      |       |       |       |       |       |       | ,     |       |       | 1     |       |       |
|                         | 1    |       |       |       |       |       |       |       |       |       |       |       |       |

Sampling Information

| Analyses #                     | Laboratory           |
|--------------------------------|----------------------|
| BTEXs 3                        | Buffalo-Test America |
| PAHs 2                         | Buffalo-Test America |
| Cyanide                        | Buffalo-Test America |
| 1,4-Dioxane                    | Buffalo-Test America |
| Sample ID:PRMW-4S              | Sample Time: 1140    |
| MS/MSD: Yes                    | 6                    |
| Duplicate: Yes                 | <b>(40)</b>          |
| Duplicate ID                   | Dup. Time:           |
| Chain of Custody<br>Signed By: | ILCF                 |

#### Problems / Observations

Initial Purge: Pump on at 1005: yellow/brown color, no odor

Final Purge: Pump off at 1158 : Clear, no odor

**GROUNDWATER SAMPLING LOG** NYSEG Penn Yan, NY Site: NYSEG Penn Yan Former MGP Event: February 2024 GWS Well ID: PRMU) - 45 Sampling Personnel: Bailey KudlaWilliams / Kaitlyn Fleming NYSEG / 30174322 Date: Client / Job Number: Time Out: Time In: Weather: **Well Information** Depth to Water (feet TIC) Well Type: Flushmount Stick-Up Total Depth: (feet TIC) Watt Material: Stainless Steel **PVC** Length of Water Column (feet) Well Locked: Yes No Volume of Water in Well: (gal) Measuring Point Marked: No Tes Screen Interval: (feet) Depth to pump Intake Well Diameter: (feet TIC) 2° 4° **Purging Information** Conversion Factors Bailer Peristaltic Purging Method: Grundfos Other: 1" 10 2° 10 4° ID 6° ID gal / ft. of water St. Steel Polyethylen Teff 99 0 041 0.163 0 653 1 469 Tubing/Bailer Material: Other: 1 gal = 3,785 L =3785 ml = 0.1337 cubic feet Grundfos Sampling Method: Bailer Peristaltic Other. **Duration of Pumping:** (min) Unit Stability ORP pΗ DO Average Pumping Rate: (mlimin) Water-Quality Meter Type: ¥SVLamotte 2020 ± 10% ± 10 mV ± 3.0% ±0.1

|                         | 1     | 2     | 3     | 4     | 5     | 6     | 7    | 8 | 9 | 10 | 11 | 12 | 13 |
|-------------------------|-------|-------|-------|-------|-------|-------|------|---|---|----|----|----|----|
| Parameter:              | 1110  | 1115  | 1120  | 1125  | 1130  | 1135  | 1140 |   |   |    |    |    |    |
| Volume Purged (gal)     | 1.75  |       | 2.0   |       | 2.5   |       | 5    |   |   |    |    |    |    |
| Rate (mL/min)           | 130   | 130   | 130   | 130   | 130   | 130   | 4    |   |   |    |    |    |    |
| Depth to Water (ft.)    | 7.92  | 7.93  | 7.94  | 7.94  | 7,94  | 7.94  | m    |   |   |    |    |    |    |
| pН                      | 7.20  | 7.18  | 7.18  | 7.17  | 7.17  | 7.17  | P    |   |   |    |    |    |    |
| Temp. (C)               | 7.8   | 7.7   | 7.9   | 7.9   | 7.8   | 7.9   | L    |   |   |    |    |    |    |
| Conductivity (mS/cm)    | 7     | 0.921 | 0.951 | 0.973 | 0.979 | 1.001 | E    |   |   |    |    |    |    |
| Dissolved Oxygen (mg/l) | 0.49  | D.47  | 045   | 0.43  | 0.42  | 0.41  | D    |   |   |    |    |    |    |
| ORP (mV)                | 108.3 | 105.9 | 103.0 | 100.2 | 97.5  | 95.4  |      |   |   |    |    |    |    |
| Turbidity (NTU)         | 21.94 | 22.06 | 20,35 | 19.75 |       | 18.16 | l    |   |   |    |    |    |    |
| Notes:                  |       |       |       |       |       |       |      |   |   |    |    | ĺ  |    |

Did well go dry;

No

Total Volume Removed:

(gal)

Sampling information Problems / Observations Analyses Laboratory **Initial Purge: BTEXs Buffalo-Test America PAHs** Hutlalo-Test America Cyanide Buffalo-Tou America Buffalo-Test Amenu 1,4-Dioxane See page I Sample ID: Sample Time: Final Purge: Yes MS/MSD: No Yes No Duplicate: Dup. Time: Duplicate ID Chain of Custody Signed By:

**GROUNDWATER SAMPLING LOG** NYSEG Penn Yan, NY Event: February 2024 GWS Site: NYSEG Penn Yan Former MGP Well ID: PRMW-55 Date: 2-6-24 Bailey KudlaWilliams / Kaitlyn Fleming Sampling Personnel: NYSEG / 30174322 Client / Job Number: Weather: 30°F, Sun Time Out: 1040 **Well Information** Depth to Water: (feet TIC) Well Type: Stick-Up Flushmount Total Depth: (feet TIC) Well Material Stainless Steel PVC Length of Water Column: 15.98 (feet) Well Locked Yes No Volume of Water in Well: (gal) Measuring Point Marked: Yes No (feet)

Well Diameter.

2

4

#### **Purging Information**

| Purging Method.         | Bailer    | (        | Peristaltic  | Grundfos                  | Other:           |
|-------------------------|-----------|----------|--------------|---------------------------|------------------|
| Tubing/Bailer Material: | St. Steel |          | Polyethylene | Teflon                    | Other:           |
| Sampling Method:        | Bailer    |          | Peristaltic  | Grundfos                  | Other:           |
| Duration of Pumping:    | 95        | (min)    |              |                           |                  |
| Average Pumping Rate:   | 130       | (ml/min) | _            | Water-Quality Meter Type: | YSI/Lamotte 2020 |
| Total Volume Removed.   | 2.5       | (gal)    |              | Did well go dry:          | Yes No           |

(feet TIC)

| Conversion Factors                           |       |       |       |       |  |  |  |  |  |  |  |
|----------------------------------------------|-------|-------|-------|-------|--|--|--|--|--|--|--|
| gal / ft.                                    | 1" ID | 2" 10 | 4° (D | 6° ID |  |  |  |  |  |  |  |
| of water                                     | 0.041 | 0.163 | 0 653 | 1,469 |  |  |  |  |  |  |  |
| 1 gal = 3.785 L =3765 ml = 0.1337 cubic feet |       |       |       |       |  |  |  |  |  |  |  |

|      | Unit: | Stability |         |
|------|-------|-----------|---------|
| pН   | DO    | Cond      | ORP     |
| ±0.1 | ± 10% | ± 3.0%    | ± 10 mV |

|                         | 1    | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11   | 12    | 13    |
|-------------------------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|-------|-------|
| Parameter:              | OROD | 0905  | 0910  | 0915  | 0920  | 0925  | 0930  | 0935  | 0940  | 0945  | 0450 | 0955  | 1000  |
| Volume Purged (gal)     | Pump |       | 0.5   |       | 1-0   |       | 1.25  |       | 1.5   |       | 1.75 |       | 20    |
| Rate (mL/min)           | on ` | 130   | 130   | 130   | 130   | 130   | 130   | 130   | 130   | 130   | 130  | 130   | 130   |
| Depth to Water (ft.)    | 6,69 | 6.90  | 6.90  | 6.92  | 6.93  | 6.93  | 6.93  | 6.94  | 6.86  | 6.97  | 6.97 | 6.97  | 6.98  |
| pH                      | )    | 7.43  | 7.38  | 7.35  | 7.34  | 7.34  | 7.34  | 7.33  | 7.33  | 7.33  | 7.33 | 7.33  | 7.32  |
| Temp. (C)               |      | 7.8   | 7.7   | 7.7   | 7.8   | 7.8   | 8.0   | 8.1   | 8.1   | 8.2   | 8.2  | 8,1   | 8.3   |
| Conductivity (mS/cm)    |      | 0,488 | 0.485 | 0.486 | 0.498 | 0.490 | 0.490 | 0.497 | 0.496 | 0,497 | 0498 | 0.501 | 0.503 |
| Dissolved Oxygen (mg/l) |      | 0.94  | 0.68  | 0.52  | 0.48  | 0.41  | 0.38  | 0.34  | 0.33  | 0.32  | 0.31 | 0,30  | 0.30  |
| ORP (mV)                |      | 93.6  | 90.8  | 78.1  | 68.2  | 43.1  | 29.5  | 9.1   | 2.7   | -1.8  | -7.9 | -15.8 | -20.2 |
| Turbidity (NTU)         |      | 7.82  | 5.12  | 4.22  | 4.10  | 4.16  | 4.39  | 2.32  | 3-81  | 2-36  | 2.22 |       | 1.81  |
| Notes:                  |      |       |       |       |       |       |       | :     |       | Į:    |      |       |       |

Sampling Information

| Analyses                       | #     | Laboratory           |
|--------------------------------|-------|----------------------|
| BTEXs                          | 3     | Buffalo-Test America |
| PAHs                           | 2     | Buffalo-Test America |
| Cyanide                        |       | Buffalo-Test America |
| 1,4-Dioxane                    |       | Buffalo-Test America |
| Sample ID:                     | 1W-55 | Sample Time: 1010    |
| MS/MSD:                        | Yes   | (No)                 |
| Duplicate:                     | Yes   | <b>6</b>             |
| Duplicate ID                   | _     | Dup. Time:           |
| Chain of Custody<br>Signed By: | 10    | cf                   |

#### Problems / Observations

Initial Purge: Pump on at 0900; clear, no odor

Final Purge: Pump offat 1035: clear, slight odor

GROUNDWATER SAMPLING LOG NYSEG Penn Yan, NY Event: February 2024 GWS Site: NYSEG Penn Yan Former MGP Well ID: PRMW-55 Bailey KudlaWilliams / Kaitlyn Fleming Sampling Personnel: NYSEG / 30174322 Client / Job Number Date: Weather: Time In: Time Out: Well Information Depth to Water: (feet TIC) Well Type: **Flushmount** Stick-Up Total Depth (feet TIC) Stainless Steel Well Material. **PVC** Length of Water Column: (feet) Well ocked: Yes No Volume of Water in Well (gal) Measuring PolyMarked No Screen Interval: Yes (feet Well Diameter. Depth to pump Intake: (feet TIC) 4° Purging Information Conversion Factors Railer Purging Method: Peristaltic Grundfas Other. **4°** ID 6° ID 2" ID 1110 gal / ft. of water St. Steel 0.041 0.163 0 653 1.469 Tubing/Bailer Material: Teflon Polyethylene Other: 1 gal = 3.785 L =3785 ml = 0.1337 cubic feet Sampling Method: Bailer Peristallic, Grundfos Other: **Duration of Pumping:** (min) **Unit Stability** DO Cond **ORP** Average Pumping Rate (ml/min) Water-Quality Meter Type: YSVLamona 2020 ±0.1 ± 10% ± 3.0% ± 10 mV Total Volume Removed: (gal) Did well go dry: Yes 13 2 3 5 6 7 8 9 10 11 12 Parameter: Volume Purged (gal) 5 Rate (mL/min) 130 Depth to Water (ft.) pH 7.32 Temp. (C) 8.4 Conductivity (m\$/cm) 0.503 E Dissolved Oxygen (mg/l) b.29 ORP (mV) -24.5 Turbidity (NTU) 2,13 Notes: Sampling Information Problems / Observations Analyses Laboratory Initial Purge: **BTEXs Buffalo-Test America PAHs** Buffalo-Test America Cyanide Buffale-Test America See Page 1 Buffalo-Test America 1.4-Dioxane Sample ID: Sample Time: Final Purge: Yes MS/MSD: No Yes Duplicate: Dup. Time: Duplicate ID Chain of Custody Signed By:

|                                             | N                                                  |                       |            | ROUND      | WATE         | R SAI      | n Yan, N       | LOG _<br>Y      |                          | Event: Fe     | bruary 20   | 24 GW               | s            |          |
|---------------------------------------------|----------------------------------------------------|-----------------------|------------|------------|--------------|------------|----------------|-----------------|--------------------------|---------------|-------------|---------------------|--------------|----------|
| Site: NYSEG Penn                            |                                                    |                       |            |            |              |            |                |                 | CD.                      |               |             |                     |              |          |
| Sampling Personnel:<br>Client / Job Number: |                                                    | KudlaWil<br>G / 30174 |            | itlyn Flem | ing          |            | vell ID: PR    | -24             |                          |               |             |                     | _            |          |
| Weather: ~30°F                              |                                                    |                       |            |            |              | Т          | ime In: 10     | 40              | Time Out                 | 1145          |             |                     |              |          |
|                                             |                                                    |                       |            |            |              |            |                |                 |                          |               |             |                     |              |          |
| Well Information  Depth to Water: 2.        | 91                                                 |                       | (feet TIC) | _          |              |            | full Type:     | el.             |                          | Stick         | 50          | -                   |              |          |
| Total Depth: 31                             |                                                    | _                     | (feet TIC) |            |              | _          | fell Type:     |                 | ishmount<br>ainless Stee |               | 7           | -                   |              |          |
| Length of Water Column                      |                                                    | 23                    | (feet)     |            |              |            | fell Material: |                 |                          | <u> </u>      | No.         | -                   |              |          |
| Volume of Water in Wel                      | 1 4.60                                             | 2                     | (gal)      |            |              | _          | fell Locked.   | 4 8 8 - ol o od | (Yes                     |               | No          | •                   |              |          |
| Screen Interval: 1/0                        |                                                    |                       | (feet)     |            |              | _          | easuring Poin  | it Marked:      | (Yes                     | ,             | No          | -                   |              |          |
| Depth to pump Intake:                       | 228                                                |                       | (feet TIC) |            |              |            | fell Diameter: | $-\bigcirc$     | 4*                       |               |             | •                   |              |          |
| Purging Information                         |                                                    |                       |            |            |              |            |                |                 |                          |               | - I Fa      |                     |              | 7        |
| Purning Mothod:                             | Bailer                                             |                       | Peristalt  | ic         | Grundfos     |            | Other:         |                 | -                        | 4° ID         | 2" ID       | 4° ID               | 6" ID        | -        |
| Purging Method:                             | St. Ste                                            | ~ <                   | >          |            |              |            |                | _               | gal /                    | π.            | +           | 0.653               | 1.469        | _        |
| Tubing/Bailer Material:                     | 3C 3E                                              | (                     | Polyethy   |            | Teflon       |            | Other:         |                 | 1 02                     | i = 3.785 L = |             |                     | aic feet     | 1        |
| Sampling Method:                            | Bailer                                             |                       | Peristalt  | ic)        | Grundfos     |            | Other:         |                 | . 9-                     | 0.7001        |             |                     |              | _1<br>_2 |
| Duration of Pumping:                        | 60                                                 | (min)                 |            |            |              |            |                |                 |                          |               | nt Stabilit | -                   |              | 1        |
| Average Pumping Rate:                       | ~116                                               | (ml/min)              |            | Water-     | Quality Me   | ter Type:  | YSI/Lamott     | e 2020          | pH                       |               | Con         |                     | ORP          | -        |
| Total Volume Removed:                       | 1.0                                                | (gal)                 |            |            | Did we       | il go dry: | Yes            | No              | ±0.                      | 1 ± 109       | 6   ± 3.0   | <i>7</i> 6 <u>I</u> | <u>10 mV</u> |          |
|                                             | 1                                                  | 2                     | 3          | 4          | 5            | 6          |                | 8               | 9                        | 10            | 11          | 1:                  | 2            | 13       |
| Parameter:                                  | 1040                                               | 1045                  | 1050       | 1655       | 1100         | 1105       | 1110           | 1115            | 1120                     | 1125          | _           | -                   | +            | _        |
| Volume Purged (gal)                         | Pump                                               | 1                     | 100        | 0.5        | <del> </del> |            | 0.75           |                 | -                        | 9             |             |                     | +            |          |
| Rate (mL/min)                               | 0/1                                                | 130                   | 130        | 120        | 110          | 110        | 110            | 110             | 110                      | A             |             |                     | +            |          |
| Depth to Water (ft.)                        | 2.96                                               | 3.97                  | 4,40       | 4.78       | 5.08         | 5.38       | 5.57           | 5.82            | 5.99                     | m             | _           |                     | +            | _        |
| pH                                          | <del>  </del>                                      | 7.68                  | 7.64       | 7.62       | 7.61         | 7.60       | 7.60           | 7.60            | 7.100                    | -;            |             |                     | +-           |          |
| Temp. (C)                                   | <del>                                     </del>   | 8.9                   | 8.8        | 9.1        | 9.2          | 9.5        | 9.6            | 9.5             | 9.5                      | 4             |             | -                   | +            |          |
| Conductivity (mS/cm)                        | <del>      -   -   -   -   -   -   -   -   -</del> | OADI                  | 0.397      | 0.398      | 0.3%         | 0.396      |                | 0.397           | 0.397                    | E             | _           |                     | _            |          |
| Dissolved Oxygen (mg/l)                     | <del>                                     </del>   | 1.98                  | 0.97       | 0.67       |              | 0.44       | 0.38           | 0.37            | 0.34                     | D             |             |                     | -            |          |
| ORP (mV)                                    | <del>                                     </del>   | 54.6                  | 37.4       | 13.4       | -4.9         | -17.3      | -26.3          | -32.0           |                          |               |             |                     |              |          |
| Turbidity (NTU) Notes:                      |                                                    | 1527                  | 13.35      | 13.22      | 12.59        | 12.56      | 13,12          | 13.69           | 13.41                    |               |             |                     | $\perp$      |          |
|                                             |                                                    |                       |            |            |              |            | 1              |                 |                          |               |             |                     |              |          |
|                                             | 1                                                  |                       | = _ =      |            |              | ļ          |                | 1               |                          |               |             |                     |              |          |
| Sampling Information                        |                                                    |                       |            |            |              | •          | Proble         | ems / Obs       | envation                 |               |             | J                   |              |          |
| Analyses #                                  |                                                    | oratory               |            |            | _            |            |                |                 |                          |               |             |                     |              |          |
| BTEXs 3                                     | Buff                                               | alo-Test Ame          | enica      | Initial P  | urge: β      | ump .      | on at          | 1040            | ciear                    | , no o        | dor         |                     |              |          |
| PAHS 2                                      |                                                    | alo-Test Am           |            |            |              |            |                |                 |                          |               |             |                     |              |          |
| Cyanide 1,4-Dioxane                         |                                                    | alo-Test Ame          | -          |            |              |            |                |                 |                          |               |             |                     |              |          |
| Sample ID: PRMW-5                           |                                                    | alo-Test Ame          |            |            |              |            |                |                 |                          |               |             |                     |              |          |
| MS/MSD:                                     |                                                    | nple Time: )          | 745        | Final P    | urge: β,     | LMP        | off at         | 1140            | clea                     | ( no          | odor        | -                   |              |          |
| MSIMOD.                                     |                                                    |                       |            |            |              |            |                |                 |                          | ,             |             |                     |              |          |
| Duplicate: Te                               |                                                    | . Time:               |            |            |              |            |                |                 |                          |               |             |                     |              |          |

Duplicate ID

Chain of Custody
Signed By:

KCF

|                             |         |                | GF         | ROUNE         | WATE        | R SAM      | PLING         | LOG        |                        |                                                  |                |            | _     |
|-----------------------------|---------|----------------|------------|---------------|-------------|------------|---------------|------------|------------------------|--------------------------------------------------|----------------|------------|-------|
| Site: NYSEG Penr            | Yan For | mer MGI        | >          |               | NYSE        | G Penr     | Yan, N        | Y          |                        | Event: Fe                                        | bruary 202     | 4 GWS      |       |
| Sampling Personnel:         | Bailey  | KudlaWill      | liams / Ka | itlyn Flem    | ing         | We         | HID: PR       | MW-        | ,5                     |                                                  |                |            |       |
| Client / Job Number:        |         | G/30174        |            |               |             | Da         | te: 2/4       | 12024      |                        |                                                  |                |            |       |
| Weather: 27°                | Sunn    | <del>y -</del> |            |               |             | Tir        | ne In: O      | 340        | Time Out               | : / <u>0/</u> 0                                  | <u> </u>       |            |       |
| Well Information            |         | <b>,</b>       |            |               |             |            |               |            |                        |                                                  |                |            |       |
| Depth to Water:             | 5.88    |                | (feet TIC) |               |             | - VAIo     | II Type:      | - Chu      |                        |                                                  |                |            |       |
| Total Depth:                | 23.05   |                | (feet TIC) |               |             |            |               |            | shmount<br>inless Stee | Stick                                            |                |            |       |
| Length of Water Column      | 17.     | 17             | (feet)     |               |             |            | II Material:  |            |                        | 2.00                                             |                |            |       |
| Volume of Water in Wel      |         | 79             | (gal)      |               |             |            | II Locked:    |            | Yes                    |                                                  | No             |            |       |
| Screen Interval:            | NA      |                | (feet)     |               |             | _          | asuring Point | _          | Yes                    |                                                  | No             |            |       |
| Depth to pump Intake:       | ~27     | 2              | (feet TIC) | 1             |             | We         | Il Diameter:  | (2)        | 4                      | <u> </u>                                         |                |            |       |
| Purging Information         |         |                |            |               |             |            |               |            |                        |                                                  |                |            |       |
|                             |         |                |            |               |             |            |               |            |                        | Com                                              | ersion Fac     | tors       |       |
| Purging Method:             | Bailer  |                | Peristalt  | ie            | Grundfos    |            | Other:        |            | gal                    | / n. 1º 10                                       | 2"10           | 4° iD      | 6" ID |
| Tubing/Bailer Material:     | St. Ste | el (           | Polyethy   | tene          | Teflon      |            | Other:        |            | of w                   |                                                  | 1 0.163        | 0.653      | 1.469 |
| Sampling Method:            | Bailer  |                | Peristalt  | ic            | Grundfos    |            | Other:        |            | 1 ga                   | al = 3.785 L =                                   | :3785 ml = 0.  | 1337 cubic | feet  |
| Duration of Pumping: 7      | 0       | (min)          |            |               |             |            |               |            |                        | υ                                                | init Stability |            |       |
| Average Pumping Rate:       | 100     | (ml/min)       |            | Water-        | Quality Met | er Type:   | YSI/Lamotte   | 2020       | pl                     | I DO                                             | Conc           | i. Of      | RP    |
| Total Volume Removed:       | ~1.     | 7 (gal)        |            |               | Did we      | li go dry: | Yes           | No         | ±0.                    | 1 ± 10                                           | % ± 3.0        | % ± 10     | ) mV  |
| Total Totalio Troniovos,    |         | t (Ani)        |            |               | DIG WG      | ii go uiy. | 163           |            |                        |                                                  |                |            |       |
|                             | 1 1     | 2              | 3          | 4             | 5           | 6          | 7             | 8          | 9                      | 10                                               | 11             | 12         | 13    |
| Parameter:                  | 0905    | 0910           | i          | 6920          | 0925        | 1          | 0935          | 0940       |                        |                                                  |                |            |       |
| Volume Purged (gal)         | 0,00    | <u> </u>       | 0.5        | 01.00         | 0.103       | 1.0        | 0.0-          | 0,10       | 1.5                    | 5                                                |                |            |       |
| Rate (mL/min)               | /00     | 100            | 100        | 100           | 100         | 100        | 100           | 100        | 100                    | A                                                |                |            |       |
| Depth to Water (ft.)        | 5.96    | 7.75           | 9.61       | 9.61          | 9.61        | 10.72      | 10.72         | 12.03      |                        | M                                                |                |            |       |
| pH                          | 7.87    | 7.85           | 7.84       |               | 7.84        | 7.84       | 7.83          | 7.83       | 7.83                   | P                                                |                |            |       |
| Temp. (C)                   | 7.8     | 7.3            | 8.0        |               | 9.5         | 8.7        | 8.8           | 9.0        | 8.9                    | L                                                |                |            |       |
| Conductivity (mS/cm)        | 0.405   | 0.405          | 6.399      |               | 0.401       | 0.402      | 0.403         |            | 0.405                  | F                                                |                |            |       |
| Dissolved Oxygen (mg/l)     | 0.74    | 0.48           | 0.37       |               | 0.24        | 0.55       | 0.20          | 0.20       | 0.2                    | 1 1                                              |                |            |       |
| ORP (mV)                    | 59.2    | 47.0           | 39.8       |               | 27.4        | 21.3       | 16.6          | 11.2       | 6.9                    | <del>     </del>                                 |                |            |       |
| Turbidity (NTU)             | 17.42   |                | 18:17      |               | 15.92       |            | 18.24         | 18.30      | 18.49                  | <del>                                     </del> |                |            |       |
| Notes:                      | 77.10   | 10.12          | 16.1 7     | of the last   | 13.12       | 10.32      | 10.67         | 10.30      | 10.77                  | -                                                |                |            |       |
|                             |         |                |            |               |             |            |               |            | ]                      |                                                  |                |            |       |
|                             |         |                |            |               | 1           | İ          |               |            |                        | 1                                                |                |            | 1     |
| ampling Information         |         |                |            |               |             |            | Proble        | ms / Obs   | ervation               | ns                                               | <u> </u>       |            |       |
| Analyses #                  |         | oratory        |            | I to the time |             |            |               |            |                        | _                                                |                |            |       |
| BTEXs 3                     | Buffa   | lo-Test Ame    | rica       | Initial P     | 'urge:      |            |               |            |                        |                                                  |                |            |       |
| PAHs 2                      |         | lo-Test Ame    | _          |               |             |            |               |            |                        |                                                  |                |            |       |
| Cyanide                     |         | lo-Test Ame    |            | Pu            | me o        | on (       | ව ර           | 300.       | -10                    |                                                  |                | 1          |       |
| Sample ID: PRMW-(           |         | lo-Test Ame    |            |               | 1           | ,          |               | ,00        | CIE                    | ar, i                                            | 10 00          | 107        |       |
| MS/MSD: Ye                  |         | ple Time: C    | , 150      | Final P       | urge:       |            |               |            |                        |                                                  |                |            |       |
| Duplicate: Ye               | s No    |                |            | 0             |             | $\sim$     |               |            |                        |                                                  |                |            |       |
| Duplicate ID                | Đup.    | Time:          | _          | run           | op d        | + (        | @ 101         | <b>o</b> : | clear                  | , 10                                             | odo            | _          |       |
| Chain of Custody Signed By: | 6       |                |            |               |             |            |               | ,          | -                      |                                                  |                |            |       |
| C. Silve Di.                |         |                |            |               |             |            |               |            |                        |                                                  |                |            |       |

| Site: NYSEG Penn               | Yan Form   | ner MGP     |            |            |             |            | PLING I<br>Yan, N         |          | Eve                     | ent: Febr   | uary 2024     | GWS        |       |
|--------------------------------|------------|-------------|------------|------------|-------------|------------|---------------------------|----------|-------------------------|-------------|---------------|------------|-------|
| Sampling Personnel:            | Bailey I   | KudlaWilli  | ams / Kair | llvn Flemi | na          | Wei        | IIID: <i>QQ</i>           | MW-G     | ס                       |             |               |            |       |
| Client / Job Number:           | NYSEC      | 3 / 301743  |            |            |             | Dat        |                           | 12024    |                         |             |               |            |       |
| Weather: Sunny                 | , 276      |             |            |            |             | Tim        | e in: '/c                 | 210      | Time Out:               | 學的          | 1110          |            |       |
| Well Information               |            |             |            | _          |             |            |                           |          |                         |             |               |            |       |
| Depth to Water:                | 3,0        | .2.         | (feet TIC) |            |             | - VAfel    | Type:                     | -        | -h                      | Stick-U     |               |            |       |
| Total Depth:                   | 36         | .89         | (feet TIC) |            |             |            | Material:                 | -        | shmount<br>inless Steel |             | <u> </u>      |            |       |
| Length of Water Column         |            | 3.27        | (feet)     |            |             |            | Locked.                   |          |                         | (VC)        |               |            |       |
| Volume of Water in Wel         |            | .42         | (gal)      |            |             |            |                           |          | (Yes)                   |             | No            |            |       |
| Screen Interval:               | NA         |             | (feet)     | _          |             |            | suring Point  I Diameter: |          | (Yes)                   |             | No            |            |       |
| Depth to pump Intake:          | ~ 3!       | כ           | (feet TIC) |            |             |            | Diameter.                 | (2)      | 4*                      |             |               |            |       |
| Purging Information            |            |             |            |            |             |            |                           |          |                         |             |               |            |       |
| Purning Method:                | Bailer     | -           | Peristalti | 2          | Grundfos    |            | <u> </u>                  |          |                         |             | sion Facto    |            |       |
| Purging Method:                |            | ->          | -          |            |             |            | Other:                    |          | gal / ft.               | 1" 10       |               | _          | S' ID |
| Tubing/Bailer Material:        | St. Stee   | 1           | Polyethy   | lejne      | Tefton      |            | Other:                    |          | -                       | 0.041       |               |            | .469  |
| Sampling Method:               | Bailer     | (           | Peristalt  | <u> </u>   | Grundfos    |            | Other:                    |          | 1 gal =                 | 3.785 L =37 | 785 ml = 0.13 | 37 CUDIC I | eet   |
| Duration of Pumping:           | <b>5</b> 5 | (min)       |            | -          |             |            |                           |          |                         | Unit        | t Stability   |            |       |
| Average Pumping Rate:          | 125        | (ml/min)    |            | Water-     | Quality Met | er Type:   | YSI/Lamotte               | e 2020   | pH                      | DO          | Cond          | QR         | _     |
| Total Volume Removed:          | 1.5        | (gal)       |            |            | Did wel     | ll go dry: | Yes                       | No       | ±0.1                    | ± 10%       | ± 3.0%        | <u> </u>   | mV_[  |
|                                | 1          | 2           | 3          | 4          | 5           | 6          | 7                         | 8        | 9                       | 10          | 11            | 12         | 1     |
| Parameter:                     | 1020       | 1025        |            | 1035       | 1240        | 1045       | 1050                      | ļ        |                         |             |               |            |       |
| Volume Purged (gal)            |            |             | 0.5        |            |             | 1.0        | 5                         |          | <u> </u>                | - 11        |               |            |       |
| Rate (mL/min)                  | 125        | 125         | 125        | 125        | 125         | 125        | A                         |          |                         |             |               |            |       |
| Depth to Water (ft.)           | 4.19       | 4.19        | 4.65       | 4.65       | 4.92        | 4.92       | M                         | ļ        |                         |             |               |            |       |
| pH                             | 7.86       | 7.86        | 7.86       | 7.86       | 7.86        | 7.86       | P                         |          |                         |             |               |            |       |
| Temp. (C)                      | 9.9        | 9.3         | 9.5        | 10.0       | 9.7         | 16.2       | L                         |          |                         |             |               |            |       |
| Conductivity (mS/cm)           | 0.438      | 0.436       | 0.439      | 0.437      | 0.439       | 0.438      | E                         |          |                         |             |               |            |       |
| Dissolved Oxygen (mg/l)        | 0.87       | 0.60        | 0.42       | 0.34       | 0.32        | 0.26       | 1                         |          |                         |             |               |            |       |
| ORP (mV)                       | -63.9      | -71.4       | -78.3      | -91.9      | -92.0       | -101.4     |                           |          |                         |             |               |            |       |
| Turbidity (NTU)                | 5.96       |             | 6.54       |            |             | 5.38       | +                         |          |                         |             |               |            |       |
| Notes:                         |            |             |            |            |             |            |                           |          |                         |             |               |            |       |
| ampling Information Analyses # | _          | oratory     |            |            |             |            | Proble                    | ems / Ob | servations              |             |               |            |       |
| BTEXs 2                        |            | lo-Test Ame | nca        | Initial P  | urge:       |            |                           |          |                         |             |               |            |       |
| PAHs 2                         |            | lo-Test Ame | nica       |            |             |            |                           |          |                         |             |               |            |       |
| Cyanide                        | Buffa      | lo-Test Ame | nica       | R          |             | 0          | _                         |          |                         |             |               |            |       |
| Blogund.                       | Buffa      | lo-Test Ame | nica       | INC        | or or       | , 6        | 10                        | 15       | ; clear                 | , no        | odo           |            |       |
| Sample ID: PRINH - ()          |            | ple Time:   | 850        | Final P    | IIIOO.      |            |                           |          |                         |             |               |            |       |
| MS/MSD:                        | es No      |             |            | FINAL F    | urge.       |            | 4.1.1                     | 10       |                         |             |               |            |       |
| Duplicate: Ye                  | es No      |             |            | <b>Q</b>   | e off       | 6          | 11 i                      |          |                         |             | _ 1.          |            |       |
| Duplicate ID                   | Dup        | Time        |            | della      | r oft       | 6          | TIE                       | ا مد     | ; clear                 | , 00        | data          | £.         |       |
| Chain of Custody<br>Signed By: | KOP        |             |            |            |             |            |                           | _        |                         |             |               |            |       |

**GROUNDWATER SAMPLING LOG** Penn Yan, NY Event: August 2024 GWS Site: NYSEG Penn Yan Former MGP PRMW-15 Well ID: Adam Svensson / Kaltlyn Fleming Sampling Personnel: NYSEG / 30229918.1 Date: 8 28 2024 Client / Job Number: Weather: Cloudy Time in: 0905 Time Out: 1105 Well Information Depth to Water 10.57 (feet TIC) Well Type. Stick-Up Flushmount Total Depth 29.68 (feet TIC) Stainless Steel Well Material (PVC) Length of Water Column 19.11 (feet) Well Locked Yes Volume of Water in Well 3.11 (gal) (No Measuring Point Marked Yes Screen Interval (feet) Well Diameter 4" Depth to pump Intake (2. (feet TIC) ~ 28 **Purging Information** 

| Purging Method        | Bailer   | (       | Penstaltic   | Grundfos                  | Other           |      |
|-----------------------|----------|---------|--------------|---------------------------|-----------------|------|
| Tubing/Bailer Matenal | St Steel |         | Połyethylene | ) Teflon                  | Other:          |      |
| Sampling Method       | Bailer   |         | Peristaltic  | Grundfos                  | Other:          |      |
| Duration of Pumping   |          | (min)   |              |                           |                 |      |
| Average Pumping Rate: | 120      | (mVmln) | 1            | Water-Quality Meter Type: | YSI/Lamotte 202 | 0    |
| Total Volume Removed  |          | (cal)   |              | Did well go dry:          | Yes             | (No) |

|                      | Conve     | sion Fac   | tors      |          |
|----------------------|-----------|------------|-----------|----------|
| gal / ft.            | 1° ID     | 210        | 4° ID     | 6 ID     |
| gai / n.<br>of water | 0.041     | 0 163      | 0 653     | 1 469    |
| 1 gal = 3.7          | 785 L =37 | 785 ml = 0 | .1337 cul | ole feet |

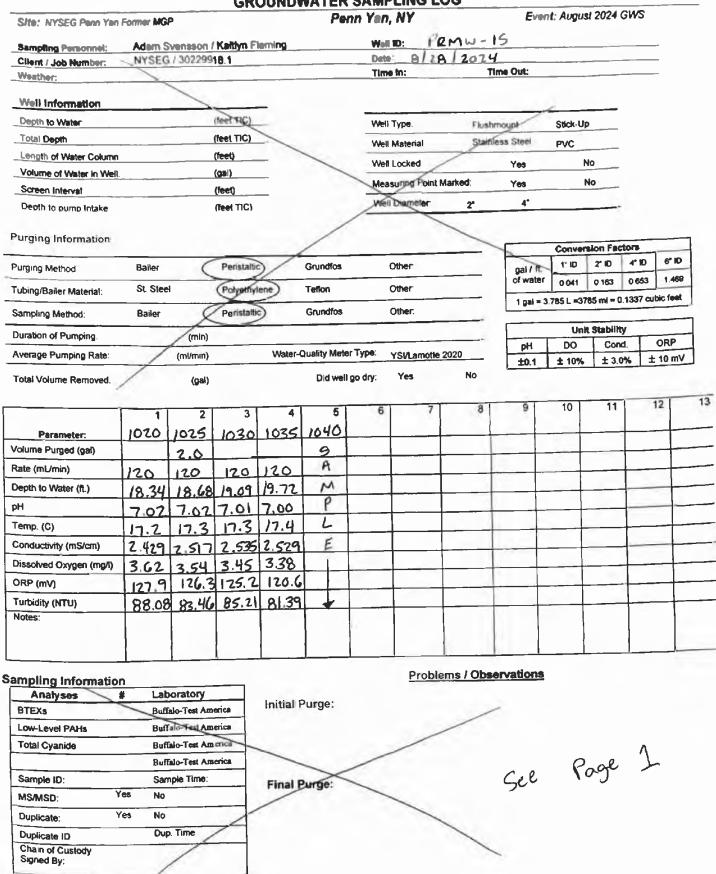
|      | Unit Stability |        |         |  |  |  |  |  |  |  |  |  |
|------|----------------|--------|---------|--|--|--|--|--|--|--|--|--|
| pН   | DO             | Cond   | ORP     |  |  |  |  |  |  |  |  |  |
| ±0.1 | ± 10%          | ± 3.0% | ± 10 mV |  |  |  |  |  |  |  |  |  |

|                         |         |        |       |        |        |        |        |        |        |       |       |       | - 10  |
|-------------------------|---------|--------|-------|--------|--------|--------|--------|--------|--------|-------|-------|-------|-------|
|                         | 1       | 2      | 3     | 4      | 5      | 6      | 7      | 8      | 9      | 10    | 11    | 12    | 13    |
| Parameter:              | 0915    | 0920   | 0925  | 0930   | 0935   | 0940   | 0945   | 0950   | 0955   | 1000  | 1005  | 1010  | 1015  |
| Volume Purged (gal)     |         |        | 0000  | 0.5    |        |        | 1.0    |        |        | 1.5   |       |       |       |
| Rate (ml/min)           | 120     | 120    | 120   | 120    | 120    | 120    | 120    | 120    | 120    | 120   | 120   | 120   | 120   |
| Depth to Water (ft.)    | 11.27   | 12.39  |       | 13.55  | 14.18  | 14.71  | 15.28  | 15.85  | 16.23  | 16.63 | 17.10 |       | 17.92 |
| pH                      | 7.16    | 7.25   | 7.26  | 7.19   | 7.14   | 7.10   | 7.10   | 7.08   | 7.06   | 7.06  | 7.06  | 7.04  | 7.03  |
| Temp. (C)               | 17.9    | 17.9   | 17.7  | 17.5   | 17.5   | 17.3   | 17.3   | 17.2   | 17.3   | 17.2  | 17.3  | 17.4  | 17.3  |
| Conductivity (mS/cm)    | 1.553   | 1.366  | 1.340 | 1.460  | 1.587  | 1.749  | 1.766  | 1.882  | 1.961  | 2.046 | 2.107 | 2.242 | 2.343 |
| Dissolved Oxygen (mg/l) | 5.04    | 5.47   | 5.61  | 5.38   | 5.09   | 4.77   | 4.68   | 4.46   | 4.29   | 4.17  | 4.03  | 3,85  | 3.72  |
| ORP (mV)                | 153.0   | 147.1  | 143.1 | 144.2  | 143.4  | 142.3  | 139.3  | 137.6  | 136.3  | 134.6 | 132.0 | 130.7 | 129.5 |
| Turbidity (NTU)         | 185.68  | 186.80 | _     | 160.48 | 146.95 | 133.97 | 128.08 | 112.88 | 105.00 | 98.83 | 93.96 | 72.85 | 115.1 |
| Notes:                  | 11/2-00 |        |       |        |        |        |        |        |        |       |       |       |       |
|                         |         |        |       |        |        | }      |        |        |        |       | 1     |       |       |
|                         |         |        |       |        |        |        |        |        |        |       |       |       |       |

Sampling Information

| Analyses                       | #    | Laboratory           |
|--------------------------------|------|----------------------|
| BTEXs                          | 3    | Buffalo-Test America |
| Low-Level PAHs                 | 2    | Buffalo-Test America |
| Total Cyanide                  | 1    | Buffalo-Test America |
|                                |      | Buffalo-Test America |
| Sample ID: P2M                 | W-15 | Sample Time: J04C    |
| MS/MSD:                        | Yes  | <b>®</b>             |
| Duplicate:                     | Yes  | <b>®</b>             |
| Duplicate ID                   |      | Dup. Time:           |
| Chain of Custody<br>Signed By: | A    | JS                   |

#### **Problems / Observations**


Initial Purge:

on @ 0910; turbid, no odor

Final Purge:

Pump of @ 1100; turbid, no odor

### **GROUNDWATER SAMPLING LOG**



| Site: NYSEG Penn Yen                        | Former MGF   | •           |             |            |              | nn Yan, | LING L      |           | Ev          | ent: Augu    | st 2024    | GWS          |               |   |
|---------------------------------------------|--------------|-------------|-------------|------------|--------------|---------|-------------|-----------|-------------|--------------|------------|--------------|---------------|---|
|                                             |              | vensson /   | Valles El   | lemina     |              | Well    | m. 00       | MW-7      | 75          |              |            |              |               |   |
| Sampling Personnel:<br>Client / Job Number: |              | / 302299    |             | er i in ig |              | Date    |             | 31202     |             |              |            |              | _             |   |
| Weether: Cloudy                             | 76           |             |             |            |              | Time    |             |           | lime Out:   | 177          | 5          |              | _             |   |
| _Well Information                           | 7            |             |             |            |              |         |             |           |             |              |            |              |               |   |
|                                             | 15,91        |             | (feet TIC)  | -          |              |         |             |           |             |              |            |              |               |   |
|                                             | 23.03        |             | (feet TIC)  |            |              |         | Туре        |           | mount       | Stick-U      | 0)         |              |               |   |
| Length of Water Column                      | 7.1          |             | (feel)      |            |              |         | Material    | Stain     | iless Sieel | (PVC)        |            |              |               |   |
| Volume of Water in Well                     | 1,1          |             | (gal)       |            |              | Well    | Locked      |           | Yes         |              | No         |              |               |   |
| Screen Interval.                            | NA           |             | (feet)      | _          |              | Mea     | sunng Point | Marked    | (Yes)       |              | No         |              |               |   |
| Deoth to pump Intake:                       | ~ 21.        | 5           | (feet TIC)  |            |              | Well    | Diameter    | 2         | 4'          |              |            |              |               |   |
| Purging Information                         |              |             |             |            |              |         |             |           |             |              |            |              |               |   |
|                                             |              |             |             |            |              |         |             |           |             |              | rsion Fac  |              | 61            |   |
| Purging Method.                             | Bailer       |             | Peristaltic | )          | Grundfos     |         | Other       | 4         | gal / t     |              | 2' ID      | 4° ID        | 14            | - |
| Tubing/Bailer Material                      | St. Steel    |             | Polyethyl   | ene        | Teflon       |         | Other       |           |             | = 3 785 L =3 | 0 163      | 0 653        |               |   |
| Sampling Method                             | Bailer       | (           | Peristaltic | )          | Grundfos     |         | Other       |           | 1 gar       | ■ 3 /85 L =3 | 765 mi = 0 | ), (33) C    |               |   |
| Duration of Pumping                         | 70           | (min)       |             |            |              |         |             |           |             |              | n Stabili  | -            |               | - |
| Average Pumping Rate                        | 100          | (ml/mln)    |             | Water-0    | Quality Mete | r Type  | YSI/Lamotte | 2020      | pH          | 00           | Con        | _            | ORP<br>± 10 n | _ |
| Total Volume Removed:                       |              |             |             |            | Did well     | oo dry  | Yes         | No        | ±0.1        | ± 10%        | ± 3.6      | J76 <u> </u> | <u> </u>      |   |
| TOWN FORMING REMIORED.                      | 1.           | (gal)       |             |            | 0,0 ,,,,,,   | 3       |             |           |             |              |            |              |               |   |
|                                             | 1            | 2           | 3           | 4          | 5            | 6       | 7           | 8         | 9           | 10           | 11         |              | 12            |   |
| Parameter:                                  | 1120         | 1125        | 1130        | 1135       | 1140         | 1145    | 1150_       | 1155      | 1200        | 1205         |            | <del> </del> | -+            |   |
| Volume Purged (gal)                         |              |             | 0.5         |            |              | 1.0     |             |           | 1.5         | 5            |            | -            |               |   |
| Rate (mUmin)                                | 100          | 100         | 100         | 100        | 100          | 100     | 100         | 100       | 100         | A            |            | -            | -             |   |
| Depth to Water (ft.)                        | 16.12        | 16.15       | 16.15       | 16.19      | 16.19        | 16.19   | 16.19       | 16.19     | 16.19       | M            |            | -            |               | _ |
| pH                                          | 7.30         | 7.29        | 7.30        | 7.29       | 7.28         | 7.27    | 7.25        | 7.25      | 7.25        | P            |            |              |               | _ |
| Temp. (C)                                   | 18.6         | 18.3        | 18.4        | 18.5       | 18.8         | 18.8    | 18.6        | 18.6      | 19.7        | L            |            |              |               |   |
| Conductivity (mS/cm)                        | 1.722        | 1.701       | 1.691       | 1.753      |              | 1.786   | 1.836       | 1.853     | 1.858       | E            |            |              |               |   |
| Dissolved Oxygen (mg/l)                     | 0.99         | 1.06        | 1.21        | 1.33       | 1.33         | 1.36    | 1.29        | 1.24      | 1.23        |              |            |              |               |   |
| ORP (mV)                                    |              | 121.0       |             |            |              | 102.2   | 100.2       | 98.0      | 93.8        |              |            |              |               |   |
| Turbidity (NTU)                             | 824          | 12.05       | 16.20       | 19.28      | 23.66        | 23.50   | 23.93       | 73.28     | 23.10       | +            |            |              |               | _ |
| Notes:                                      | 0.37         | 1           | 10.60       |            |              |         |             |           |             |              |            |              |               |   |
|                                             |              | ļ           |             |            |              |         |             |           |             |              |            |              |               |   |
|                                             |              | <u> </u>    | <u> </u>    |            |              |         |             | 1         |             |              |            |              |               |   |
| ampling Information                         | n            |             |             |            |              |         | Proble      | ems / Obs | ervation    | <u>s</u>     |            |              |               |   |
|                                             |              | oratory     |             | Initial F  | Purae:       |         |             |           |             |              |            |              |               |   |
| BTEXs                                       |              | io-Test Am  |             |            |              |         |             |           |             |              |            |              |               |   |
|                                             |              | lo-Test Am  |             | 8.         | m 0          | 30      | (0)         | 1115      |             | lear         | n          | 2 0          | do            | _ |
| Total Cyanide                               |              | alo-Test Am |             |            |              | 0       | 0           | 1112      | 1           |              | 1          |              |               |   |
| Sample ID: PRMW -                           |              | alo-Test Am |             |            |              |         |             |           |             |              |            |              |               |   |
|                                             | (es do       |             | 1503        | Final P    | urge:        |         |             |           |             |              |            |              |               |   |
|                                             | (es <b>6</b> |             |             |            |              |         |             |           |             |              |            |              |               |   |
| Duplicate ID                                |              | . Time: —   | _           | Pu         | mo           | 220     | 0           |           |             |              |            |              |               |   |
| Chain of Custody                            |              |             |             |            | 1            | ~ , ,   | 6           | 1/17      | 5 ;         |              |            | -            | doc           |   |

AJS

**GROUNDWATER SAMPLING LOG** Penn Yan, NY Event: August 2024 GWS Site: NYSEG Penn Yan Former MGP WHITE: PRMW - 2D Adam Svensson / Kaltlyn Fleming Sempling Personnel: 8/18/1024 NYSEG / 30229918.1 Client / Job Number: 1345 Time Out: Partly clarga Time in: 1225 Well Information Depth to Water 15.77 (feet TIC) Well Type (Stick-Up) Flushmount Total Depth 37.32 (feet TIC) Well Material Stainless Steel PVC Length of Water Column 21,55 (feet) Well Locked No (es) Volume of Water in Well 3.51 (gal) Measuring Point Marked 105 No Screen Interval (feet) Depth to pump Intake ~ 35 (feet TIC) Well Diameter 2 **Purging Information** Conversion Factors 6" ID Purging Method Railer Grundfos Other 210 10.10 gal / ft. of water 0 653 1 469 0 163 0.041 Tubing/Bailer Material St. Steel Teflon Other 1 gal = 3 785 L =3785 ml = 0.1337 cubic feet Grundfos Sampling Method. Other Bailer Penstaltio Unit Stability **Duration of Pumping** 70 (min) ORP DO Cond Average Pumping Rate (ml/min) Water-Quality Meter Type: 30 YSI/Lamotte 2020 ± 10% ± 3.0% ± 10 mV ±0.1 Total Volume Removed: Did well go dry: Yes (No) 1.7 (gal) 13 12 11 10 3 8 2 325 1310 1315 1320 1255 1300 1305 1145 1250 Parameter: 1240 Volume Purged (gal) 1.5 1.0 0.5 A Rate (mL/min) 130 130 130 130 130 30 130 130 130 130 M Depth to Water (ft.) 26.94 22.70 23.40 24.27 19.80 20,23 19.02 pН 7.69 7.69 7.72 7.72 7.71 7.71 7.69 7.73 7.70 7.74 L 20.3 19.6 20.6 19.8 Temp. (C) 19.5 18.9 19.0 19.1 19.9 19.8 0.701 0.704 0.704 0.703 6.703 0.703 6.702 0.703 Conductivity (mS/cm) 0.704 0.705 0.99 0.99 0.99 1.23 1.08 .04 1.01 Dissolved Oxygen (mg/l) 1.12 1.05 1.17 98.9 62.5 56.3 50.9 82.3 53.0 ORP (mV) 73.8 70.0 30.39 30.31 30.02 30.37 30.49 30.07 30.56 Turbidity (NTU) Notes: Problems / Observations Sampling Information Analyses Laboratory Initial Purge: 3 BTEXA **Buffalo-Test America** Low-Level PAHs Buffalo-Test America Pump on @ **Total Cyanide** 1230 : clear, no odor Buffalo-Test America Buffalo-Test America Sample Time: 1325 Sample ID: PRMW-2D Final Purge: Yes (No) MS/MSD: Yes (NO) Duplicate: Pump off @ 1340; clear, no odor Dup. Time Duplicate ID

Chain of Custody Signed By:

ATS

| Site: NYSEG Penn Yen                                                                             | Former MGP             |                                  | Peni                                           | r Yan, NY                     |           | Ever                    | it: Augu                            | st 2024                                  | GWS                           |                   |
|--------------------------------------------------------------------------------------------------|------------------------|----------------------------------|------------------------------------------------|-------------------------------|-----------|-------------------------|-------------------------------------|------------------------------------------|-------------------------------|-------------------|
| Sampling Personnel:                                                                              | Adam Svensso           | n / Kaitlyn Fleming              |                                                | WOULD: PRM                    | w-35      |                         |                                     |                                          | _                             | _                 |
| Client / Job Number:                                                                             | NYSEG / 30229          | 918 1                            |                                                | Date: 8/28/                   | 24        |                         | 4                                   |                                          |                               | _                 |
| Weather: 75°FC                                                                                   | loudy                  |                                  |                                                | Time In: /140                 | TI        | me Out: /               | 330                                 |                                          |                               | _                 |
| Well Information                                                                                 | /                      |                                  |                                                |                               |           |                         |                                     |                                          |                               |                   |
| Depth to Water                                                                                   | 7.18                   | (feet TIC)                       |                                                | Well Type                     | Flush     | mount (                 | Stick-U                             | 5                                        |                               |                   |
| Total Depth                                                                                      | 22.79                  | (feet TIC)                       |                                                | Well Material                 |           | ess Steel               | PVC                                 | -                                        |                               |                   |
| Length of Water Column                                                                           | ₩1561                  | (feet)                           |                                                |                               |           | 1                       |                                     | No                                       |                               |                   |
| Volume of Water in Well                                                                          | 2.5                    | (gal)                            |                                                | Well Locked                   |           | (Yes                    |                                     |                                          |                               |                   |
| Screen Interval                                                                                  | NA                     | (feet)                           |                                                | Measuring Point M             | arked     | (Yes)                   |                                     | No                                       |                               |                   |
| Depth to pump Intake                                                                             | ≈ 22                   | (feet TIC)                       |                                                | Well Diameter                 | (2)       | 4"                      |                                     |                                          |                               |                   |
| Purging Information                                                                              |                        |                                  |                                                |                               |           |                         |                                     |                                          |                               |                   |
| מסוזבותוסותו עיויציי                                                                             |                        |                                  |                                                |                               |           |                         |                                     |                                          |                               |                   |
|                                                                                                  |                        |                                  |                                                |                               |           |                         | Сопуел                              | sion Fac                                 | tors                          |                   |
|                                                                                                  | Bailer (               | Peristatuc                       | Grundfos                                       | Other                         | _         | cal / ft.               | Conver                              | sion Fac                                 | tors<br>4° ID                 | 6" ID             |
| Purging Method Tubing/Bailer Material:                                                           | Bailer (               | Peristaltic                      | Grundfos<br>Teffon                             | Other                         | _         | gal / fL<br>of water    |                                     |                                          |                               | 6° 1D             |
| Purging Method<br>Tubing/Bailer Material:                                                        | ,                      |                                  | -                                              |                               |           | of water                | 1" ID                               | 2 ID<br>0 163                            | 4° ID<br>0 653                | 1 469             |
| Purging Method<br>Tubing/Bailer Material:<br>Sampling Method.                                    | St. Steel Baller       | Poly@thylene Peristaltic         | Tefion                                         | Other                         |           | of water                | 1" ID<br>0 041<br>785 L =37         | 2 ID<br>0 163                            | 4° ID<br>0 653<br>0.1337 cul  | 1 469             |
| Purging Method Tubing/Bailer Material: Sampling Method. Duration of Pumping                      | St. Steel Baller (min  | Poly#thylene Peristaltic         | Tefion                                         | Other:                        | 020       | of water                | 1° ID<br>0 041<br>785 L =37<br>Unit | 2 ID<br>0 163<br>65 ml = 0<br>t Stabilit | 4" ID<br>0 653<br>0.1337 cul  | 1 469<br>bic feet |
| Purging Method Tubing/Bailer Material: Sampling Method. Duration of Pumping Average Pumping Rate | St. Steel  Baller (min | Poly#thylene Penstaltic          | Teffon<br>Grundfos<br>er-Quality Meter T       | Other: Other:  YSI/Lamotte 2: |           | of water                | 1" ID<br>0 041<br>785 L =37         | 2' ID<br>0 163<br>85 ml = 0              | 4" ID<br>0 653<br>0.1337 cul  | 1 469<br>bic feet |
| Purging Method Tubing/Bailer Material: Sampling Method. Duration of Pumping Average Pumping Rate | St. Steel Baller (min  | Poly#thylene Penstaltic          | Teflon<br>Grundfos                             | Other: Other:  YSI/Lamotte 2: | 020<br>No | of water  1 gal = 3  pH | 1° ID<br>0 041<br>785 L =37<br>Unit | 2 ID<br>0 163<br>65 ml = 0<br>t Stabilit | 4" ID<br>0 653<br>0.1337 cul  | 1 469<br>bic feet |
| Purging Method Tubing/Bailer Material: Sampling Method. Duration of Pumping                      | St. Steel  Baller (min | Polyethylene Penstaltic  )  Wate | Teflon Grundfos er-Quality Meter 1 Did well go | Other: Other:  YSI/Lamotte 2: |           | of water  1 gal = 3  pH | 1° ID<br>0 041<br>785 L =37<br>Unit | 2 ID<br>0 163<br>65 ml = 0<br>t Stabilit | 4" ID 0 653 0.1337 cull 197 d | 1 469<br>bic feet |

|                         | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9    | 10 | 11 | 12 | 13 |
|-------------------------|-------|-------|-------|-------|-------|-------|-------|-------|------|----|----|----|----|
| Parameter:              | 1200  | 1205  | 1210  | 1215  | 1220  | 1225  | 1230  | 1235  | 1240 |    |    |    |    |
| Volume Purged (gal)     | 0.1   | 0.2   | 0.3   | 0.5   | 0.6   | 0.7   | 0.9   | 1.1   | 5    |    |    |    |    |
| Rate (mL/min)           | 150   | 150   | 150   | 150   | 150   | 150   | 150   | 150   | A    |    |    |    |    |
| Depth to Water (ft )    | 7.53  | 7.72  | 7.90  | 8.00  | 8.11  | 821   | 8.31  | 9.41  | m    |    |    |    | _  |
| pH                      | 7.24  | 7.22  | 7.22  | 7.21  | 7.21  | 7.21  | 7.19  | 7.18  | P    |    |    |    |    |
| Temp. (C)               | 18.5  | 18.8  | 18.7  | 18.7  | 18.2  | 17.7  | 18.3  | 18.2  | L    |    |    |    |    |
| Conductivity (mS/cm)    | 0.736 | 0.737 | 0.736 | 0.739 | 0.731 | 0.723 | 0.731 | 0.736 | F    |    |    |    |    |
| Dissolved Oxygen (mg/l) | 3.21  | 1.04  | 0.81  | 6.72  | 0.67  | 0.64  | 0.61  | 0.59  |      |    |    |    | _  |
| ORP (mV)                | 107.8 | 92.7  | 80.9  | 73.0  | 68.2  | 64.3  | 61.9  | 58.7  |      |    |    |    |    |
| Turbidity (NTU)         | 18.20 | 9.03  | 7.26  | 2.46  | 2.51  | 1.12  | 1.25  | 1.36  |      |    |    |    |    |
| Notes.                  | 1     | 1.114 |       |       |       |       |       |       | i    |    |    |    |    |
|                         |       |       |       |       |       |       |       |       | )    | 1  | ļ  |    |    |
|                         | 1     |       |       |       |       |       |       |       | 1 1  |    |    |    |    |

Sampling Information

| Analyses          | #       | Laboratory           |
|-------------------|---------|----------------------|
| BTEXs             | 12      | Buffalo-Test America |
| Low-Level PAHs    | 8       | Buffalo-Test America |
| Total Cyanide     | 4       | Buffalo-Test America |
|                   | -       | Buffalo-Test America |
| Sample ID. PRIME  | 1-35    | Sample Time: 1240    |
| MS/MSD:           | (Per    | No                   |
| Duplicate:        | (Yes)   | No                   |
| Duplicate ID/DUA. | ·2 0240 | 28 Pup. Time. —      |
| Chain of Custody  | 755     |                      |

### Problems / Observations

Initial Purge: pump on @ 1155 Clear, no odor

Final Purge: pump of @ 1325 Clear, no alor

| Site: NYSEG Penn Yen I                  | Former MCD | ,           | JIN         | 301101    |              | nn Yan,      | LING L           |                  | E          | ent: Augu    | rst 2024 GV   | /S          |     |
|-----------------------------------------|------------|-------------|-------------|-----------|--------------|--------------|------------------|------------------|------------|--------------|---------------|-------------|-----|
| One: NYSEGPERN TRN                      |            |             |             |           |              |              |                  | M. 1 3 N         |            |              |               |             |     |
| Sampling Personnel:                     |            |             | Kaitlyn Fl  | erning    |              | Well         |                  | Mn.)-3D<br>(/24  | ,          |              |               |             |     |
| Client / Job Number:<br>Weather: 75 F C |            | / 302299    | 18.1        |           |              | Date<br>Time |                  |                  | Time Out:  | 1500         |               |             |     |
| 73 / 7.0                                | ouay .     |             |             |           |              |              | , <u>, _</u> , , |                  |            |              |               |             |     |
| Well Information                        |            |             |             | _         |              |              |                  |                  |            |              |               |             |     |
| Depth to Water                          | 5.83       | <u> </u>    | (feet TIC)  | _         |              | Well         | Тура.            | Flusi            | hmount     | Sticks       |               |             |     |
| Total Depth                             | 35.7       | 5           | (feet TIC)  | _         |              |              | Material:        |                  | less Steel | PVC          | )             |             |     |
| Length of Water Column                  | 799        | 2           | (feet)      | _         |              | -            |                  |                  | 1          |              | No            |             |     |
| Volume of Water in Well                 | 4.9        |             | (gal)       | _         |              | -            | Locked.          |                  | Yes        |              |               |             |     |
| Screen Interval                         | MA         |             | (feet)      | _         |              | Mea          | suring Point     | Marked.          | (Yes)      |              | No            |             |     |
| Depth to pump Intake:                   | ≈ 34       |             | (feet TIC)  |           |              | Well         | Diameter         | (z)              | 4"         |              | _             |             |     |
| ourging information                     |            |             |             |           |              |              |                  |                  |            | Canua        | rsion Factor  | •           |     |
| Ourging Method                          | Bailer     | (           | Penstaltic  | )         | Grundfos     |              | Other            |                  | gal/       | 41.10        |               |             | ID  |
| Tubing/Bailer Material:                 | St. Steel  |             | Polyethyl   | -         | Teffon       |              | Other:           |                  | of wal     |              | 0 163 0       | 653 1 4     | 169 |
|                                         | Of olec    | -           | -           |           |              |              |                  |                  | 1 gal      | = 3 785 L =3 | 785 ml = 0.13 | 37 cubic fe | et  |
| Sampling Method.                        | Bailer     | (           | Peristaltic | )         | Grundfos     |              | Other            |                  | `          |              |               |             |     |
| Duration of Pumping.                    | 65_        | (min)       |             |           |              |              |                  |                  |            | DO I         | Cond          | ORE         | ,   |
| Average Pumping Rate                    | 150        | (ml/min)    |             | Water-0   | Quality Mete | r Type.      | YSI/Lamotte      | 2020             | pH<br>±0.1 | ± 10%        |               | ± 10 f      |     |
| Total Volume Removed                    | 1.5        | (gal)       |             |           | Did well     | go dry:      | Yes              | (H)              |            | 1 = :=       |               | <u> </u>    |     |
|                                         | 1 1        | 2           | 3           | 4         | 5            | 6            | 7                | 8                | 9          | 10           | 11            | 12          |     |
| Parameter:                              | 1355       | 1400        | 1405        | 1410      | 1415         | 1420         | 1425             | 1430             | 1435       | 1440         | 1445          |             |     |
| Volume Purged (gal)                     | 0.1        | 0.2         | 0.3         | 0.5       | 0.6          | 0.7          | 0,9              | 1.1              | 1.2        | 1.3          | 5             |             | _   |
| Rate (mUmin)                            | 150        | 150         | 150         | 150       | 150          | 150          | 150              | 150              | 150        | 150          | A             |             | _   |
| Depth to Water (ft.)                    | 6.82       | 7.14        | 7.45        | 7.76      | 7.84         | 7.92         | 7.81             | 7.70             | 7.74       | 7.69         | m             |             |     |
| pH                                      | 7.64       | 7.61        | 7.60        | 7.58      | 7.52         | 7.52         | 7.51             | 7.51             | 7.53       | 7.52         | $\rho$        |             | _   |
| Temp (C)                                | 18.1       | 18.0        | 17.2        | 16.9      | 16.9         | 16.8         | 17.0             | 17.8             | 17.9       | 18.0         | L             |             | _   |
| Conductivity (mS/cm)                    |            |             | 0.442       | 7.5       | 0.438        | 0.437        | 0.440            | 0.443            | 0,449      | 0.451        | E             |             |     |
| Dissolved Oxygen (mg/l)                 | 0.456      | 3.25        | 0.98        | 1.54      | 1.01         | 0.78         | 0.67             | 0.63             | 0.63       | 0.61         |               |             |     |
| ORP (mV)                                | 3,41       |             |             | -935      |              |              | -107.2           | 40004            | -113.0     |              |               |             |     |
| <del></del>                             | 75.9       | -76.5       |             |           |              |              | 4237             |                  | 20.86      |              |               |             |     |
| Turbidity (NTU) Notes:                  | 180.31     | 129.27      | _           | 157.41    |              | 30.11        | 72.77            |                  |            | <u> </u>     |               |             |     |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | EMPIRE     | 1           | cell        | emorie.   | 1            |              |                  | 1                |            | 1            |               |             |     |
|                                         | cell       |             | Len         | raised    |              |              |                  |                  |            |              |               |             |     |
|                                         |            | 1           |             | ~33'      | ·            |              |                  |                  |            |              |               |             |     |
| ampling Information                     |            |             |             | •         |              |              | Probl            | ems / Ob         | servauor   | 13           |               |             |     |
|                                         |            | oratory     |             | Initial F | Purge: 1     | Jumn         | an A             | 1750             |            |              |               |             |     |
| BTEXs 3                                 |            | alo-Test Am |             |           | - /          | -            | un @             |                  |            |              |               |             |     |
| Low-Level PAHs 7                        |            | lo-Test An  |             |           |              | clea         | 1,00             | oclor            |            |              |               |             |     |
| Total Cyanide                           |            | alo-Test An |             |           |              |              | , .              | •                |            |              |               |             |     |
| Complete Da :                           |            | alo-Test An |             |           |              |              | A N              |                  |            |              |               |             |     |
| Sample ID: PRNW-                        | es (No)    | pie tune.   | 1445        | Final F   | Purge: /     | Dump         | offe             | 9 1455<br>9 odoj |            |              |               |             |     |
| INOMISD.                                |            |             |             |           | •            | پ<br>ا م     | _                |                  |            |              |               |             |     |
| Duplicate:                              | es (No     |             |             |           |              | Cle          | ar, no           | 0001             |            |              |               |             |     |

Dup. Time.

AJ5

Ouplicate ID Chain of Custody Signed By

GROUNDWATER SAMPLING LOG Site: NYSEG Penn Yan Former MGP Penn Yan, NY Event: August 2024 GWS Sampling Personnel: Adam Svensson / Kaitlyn Fleming Well ID: PRMW-45 Client / Job Number: NYSEG / 30229918.1 Weather: Partly cloudy 0945 Well Information Depth to Water 6.86 (feet TIC) Well Type Flushmount Stick-Up Total Depth 27.10 (feet TIC) Well Material Stainless Steel (PVC) Length of Water Column 20.24 (feet) Well Locked No (Yes Volume of Water in Well 3.29 (gal) Measuring Point Marked (Yes) No Screen Interval NA (feet) Depth to pump Intake Well Diameter ~ 25.5 (feet TIC) 4" Purging Information Conversion Factors Purging Method 4° ID 6° ID Bailer Peristaltic Grundfos Other 11 ID 2° ID gal / ft. of water 1 469 0 653 0.041 0 163 Tubing/Bailer Material St Steel Polyethylene Teffon Other: 1 gal = 3.785 L =3785 ml = 0.1337 cubic feet Sampling Method Bailer Peristaltic) Grundfos Other **Unit Stability Duration of Pumping:** (min) IJδ ORP DO Cond. Average Pumping Rate: (ml/min) Water-Quality Meter Type: 130 YSI/Lamotte 2020 ± 10% ± 3.0% ± 10 mV ±0.1 No Total Volume Removed Did well go dry: 2.0 (gal) 13 12 10 11 8 4 2 0900 0855 0850 0810 0815 0820 0825 0830 0835 0840 0845 Parameter: Volume Purged (gal) 1.5 1.0 0.5 130 130 130 Rate (mL/min) 130 130 130 130 130 130 130 130 130 130 7.75 7.75 Depth to Water (ft.) 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.17 7.19 7.18 7.20 pΗ 7.33 7.33 7.32 7.28 7.26 7.24 7.21 7.21 7.22 17.7 17.7 17.8 17.6 17.6 Temp. (C) 17.8 17.7 17.7 18.0 18.0 12.8 18.0 18.1 1.228 1.195 0.831 1.143 1.163 0.905 0.979 1.640 1.079 1.101 Conductivity (mS/cm) 0.810 0.43 0.43 0.45 0.44 Dissolved Oxygen (mg/l) 0.68 0.61 0.57 0.54 0.50 6.46 0.45 0.91 -90.5 -94.4 -92.4 -89.2 -101.8 -101.9 -98.5 -95.7 ORP (mV) -100.4 -97.0 -75.2 49.26 49.78 49.92 49.05 49.45 Turbidity (NTU) Notes: **Problems / Observations** Sampling Information **Analyses** Laboratory Initial Purge: **BTEXs** 3 Buffalo-Test America 2 Low-Level PAHs Buffalo-Test America 0755; clear, no odor Pump **Total Cyanide** Buffalo-Test America Buffalo-Test America Sample ID: PRMW-45 Sample Time: 0920 Final Purge: Yes MS/MSD: (Ng) Yes (10) Duplicate: clear, no odor

Dup. Time: -

ASS

Duplicate ID Chain of Custody Signed By:

Pamp

0940 .

#### GROUNDWATER SAMPLING LOG

|                         | Former MGF |             |                |         |               |        |                |           |                       |           |             |         |       |
|-------------------------|------------|-------------|----------------|---------|---------------|--------|----------------|-----------|-----------------------|-----------|-------------|---------|-------|
| Sampling Personnel:     | Adam S     | vensson /   | Kaitlyn Fl     | erning  |               | Well   |                | W-45      |                       |           |             |         |       |
| Client / Job Number:    | NYSEG      | / 302299    | 18.1           |         |               | Date   | 1: 8/29        | 2024      |                       |           |             |         | -     |
| Weather;                |            |             |                |         |               | Time   | e în:          | TI        | me Out:               |           |             |         |       |
| Well Information        |            |             |                | _       |               |        |                |           |                       |           |             |         |       |
| Depth to Water          |            |             | (feet TIC)     | _       |               | Well   | Туре           | Flushr    | nount                 | Stick-U   | p /         | -       |       |
| Total Depth             |            |             | (feet TIC)     | _       |               | Well   | Material       | Stainle   | ess Steel             | PVC       |             |         |       |
| Length of Water Column  | 1          |             | (feet)         | _       |               |        | Locked         |           | Voc                   | /         | No          |         |       |
| Volume of Water in Well |            |             | (gai)          | _       |               |        | suring Point M | arkad     | Yes                   |           | No          |         |       |
| Screen Interval         |            |             | (feet)         | _       |               |        |                | aixeo     | Yes .                 |           |             |         |       |
| Depth to pump intake    |            |             | (feet TIC)     |         |               | Well   | Diameter:      | 1         | 4'                    |           |             |         |       |
| urging Information      |            |             |                |         |               | \      |                |           |                       |           | - et        |         |       |
| )i                      |            |             | Dominion       |         | Grundfos/     | /      | ~              | _         | -                     | 1° ID     | 2° ID       | 4° ID   | 6° ID |
| Purging Method          | Bailer     |             | Peristaltic    |         | /             |        | Other:         |           | gal / ft.<br>of water | <u> </u>  | 0 163       | 0 653   | 1 469 |
| ubing/Bailer Material.  | St. Steel  |             | Polyethyle     | ene)    | Perlon        |        | Other          |           |                       | 0 041     | 85 ml = 0 1 |         | _     |
| Sampling Method         | Bailer     |             | Peristaltic    | 1       | Grundfos      |        | Other:         |           | 1 00                  | 785 L =37 | 85 ml = 0   | 337 000 |       |
| Duration of Pumping     |            | (min)       | 7              |         |               |        |                |           |                       | Uni       | Stability   |         |       |
| Average Pumping Rate    |            | (pat/min)   |                |         | Quality Meter | ľvpe:  | YSI/Lamotte 2  | 020       | pH                    | DO        | Cond        |         | RP    |
|                         | -          | 3,111117    |                |         |               |        |                |           | ±0 1                  | ± 10%     | ± 3.09      | ± '     | 10 mV |
| Total Volume Removed    |            | (gal)       |                |         | Did well go   | o dry: | Yes            | No        |                       |           |             |         |       |
|                         | 1          | 2           | 3              | 4       | 5             | 6      | 7              | 8         | 9                     | 10        | 11          | 12      | 2     |
| Parameter:              | 0905       | 0910        | 0915           | 6920    |               |        |                |           |                       |           |             |         | +-    |
| /olume Purged (gal)     |            |             | 2.0            | 5       |               |        |                |           |                       |           |             |         |       |
| Rate (mL/min)           | 130        | 130         | 130            | A       |               |        |                |           |                       |           |             |         | +-    |
| Depth to Water (ft.)    | 7.75       | 7.75        | 7.75           | M       |               |        |                |           |                       |           |             |         |       |
| ρΗ                      | 7.15       | 7.15        | 7.14           | P       |               |        |                |           |                       |           |             |         | -     |
| Temp. (C)               | 17.7       | 17.7        | 17.7           | L       |               |        |                |           |                       |           |             |         | -     |
| Conductivity (mS/cm)    | 1.283      | 1.288       |                | E       |               |        |                |           |                       |           |             |         | +     |
| Dissolved Oxygen (mg/l) | 0.41       | 0.41        | 0.41           | 1       |               |        |                |           |                       |           |             |         |       |
| ORP (mV)                | -84.4      | - 83.5      | -82.1          |         |               |        |                |           |                       |           |             |         |       |
| Turbidity (NTU)         | 49 17      | 49.45       | -82.1<br>49.21 | 4       |               |        |                |           |                       |           |             |         | -     |
| Notes                   | 11,15      | 77.13       |                |         |               |        |                |           |                       |           |             |         |       |
|                         |            |             |                |         |               |        |                |           |                       |           |             |         |       |
| ampling Information     | ·          |             |                |         |               |        | Probler        | ns / Obse | rvations              | -         |             |         |       |
| Analyses #              | Lab        | oratory     |                | Initial | Purge:        |        |                |           |                       |           |             |         |       |
| BTEXs                   |            | do-Test Am  |                | mual    | uiye.         |        |                |           |                       |           |             |         |       |
| Low-Level PAHs          |            | alo Test Am |                |         |               |        |                |           |                       |           | 0~0         | ne      |       |
| Total Cyanide           |            | alo-Test Am |                |         |               | /      |                |           | Sel                   | ,         | 100         | )       |       |
|                         |            | alo-Test Am | enca           | 1       | /             |        |                |           | See                   |           |             |         |       |
| Sample ID:              |            | ple Time:   |                | Final   | Purge.        |        |                |           |                       | ,         | 1           |         |       |
| WISHNISD.               |            |             |                |         |               | 1      | \              |           |                       | •         |             |         |       |
| Duplicate: Y            | es No      | 90mm        |                |         |               |        |                |           |                       |           |             |         |       |
| Duplicate ID            | Dup        | . Time:     |                |         |               |        |                | 1         |                       |           |             |         |       |
| Chain of Custody        |            | /           |                |         |               |        |                |           |                       |           |             |         |       |

#### GROUNDWATER SAMPLING LOG

|                                 |            | 0110011011            |                   |                 |                       |
|---------------------------------|------------|-----------------------|-------------------|-----------------|-----------------------|
| Site: NYSEG Penn Yan            | Former MGP |                       | Penn Yan, NY      | E               | Event: August 2024 GW |
| Sampling Personnel:             |            | son / Kaitlyn Fleming | Well ID: PRIM     |                 |                       |
| Client / Job Number:            | NYSEG / 30 | 229918 1              | Date: 8/29/       | /24             |                       |
| Weather: 70°F C                 | loudy      |                       | Time In: 071      | b Time Out:     | 0900                  |
| Well Information Depth to Water | 6.28       | (feet TIC)            | Well Type         | Firehmount      | Stick-Up              |
| Total Depth                     | 22.58      | (feet TIC)            | veii type         | Flushmount      |                       |
| Length of Water Column          | 14.3       | (feet)                | Well Material     | Stainless Steel | (PVC)                 |
| Volume of Water in Well         | -          | (gal)                 | Well Locked       | (fee            | No                    |
| Screen Interval                 | NA         | (feet)                | Measuring Point M | larked Yes      | No                    |
| Depth to pump Intake            | 2.21       | (feet TIC)            | Well Diameter     | (2) 4           |                       |

#### **Purging Information**

| Purging Method         | Bailer    |              | Peristaltic | Grundfos                | Other:           |  |  |
|------------------------|-----------|--------------|-------------|-------------------------|------------------|--|--|
| Tubing/Bailer Material | St. Steel | Polyethylene |             | Teffon                  | Other            |  |  |
| Sampling Method        | Bailer    |              | Peristaltic | Grundfos                | Other-           |  |  |
| Duration of Pumping    | 60        | (min)        |             |                         |                  |  |  |
| Average Pumping Rate   | 150       | (mVmin)      | W           | ater-Quality Meter Type | YSI/Lamotte 2020 |  |  |
| Total Volume Removed   | 13        | (gal)        |             | Did well go dry:        | Yes (M)          |  |  |

|                       | Conver    | sion Fac        | ctors   |         |  |
|-----------------------|-----------|-----------------|---------|---------|--|
| gal / ft              | 1" 10     | 2" 10           | 4° ID   | 6° ID   |  |
| gal / ft.<br>of water | 0 041     | 0 163           | 0 653   | 1 469   |  |
| 1 gal = 3             | 785 L ≃37 | 1<br>785 ml = 0 | 1337 cu | oic fee |  |

|      | Unit Stability |        |         |  |  |  |  |  |  |  |  |
|------|----------------|--------|---------|--|--|--|--|--|--|--|--|
| рН   | DO             | Cond   | ORP     |  |  |  |  |  |  |  |  |
| ±0.1 | ± 10%          | ± 3.0% | ± 10 mV |  |  |  |  |  |  |  |  |

| 1    | 2                                                                     | 3                                                                                                      | 4                                                                                                                                                                 | 5                                                                                                                                                                                       | 6                                                                                                                                                                                                                                             | 7                                                                                                                                                                                                                                                                                                           | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                             | 11                                                                                                                                                                                                        | 12                                                                                                                                                                                                                                                                                                                                                                                                      | 13                                                                                                                                                                                                    |
|------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0755 |                                                                       | 0805                                                                                                   | 0810                                                                                                                                                              | 0815                                                                                                                                                                                    | 0820                                                                                                                                                                                                                                          | 0825                                                                                                                                                                                                                                                                                                        | 0830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                         | -0-                                                                                                                                                                                                   |
|      |                                                                       | 0.3                                                                                                    | 0,5                                                                                                                                                               | 0.6                                                                                                                                                                                     | 0.7                                                                                                                                                                                                                                           | 0.9                                                                                                                                                                                                                                                                                                         | 1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                       |
|      |                                                                       | 150                                                                                                    | 150                                                                                                                                                               | 150                                                                                                                                                                                     | 150                                                                                                                                                                                                                                           | 150                                                                                                                                                                                                                                                                                                         | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                       |
| 1    |                                                                       | 6.50                                                                                                   | 6.51                                                                                                                                                              | 6.52                                                                                                                                                                                    | 6.52                                                                                                                                                                                                                                          | 6.52                                                                                                                                                                                                                                                                                                        | 6.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                              |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                       |
|      | -                                                                     | 7.38                                                                                                   | 7.38                                                                                                                                                              | 7.38                                                                                                                                                                                    | 7.38                                                                                                                                                                                                                                          | 7.38                                                                                                                                                                                                                                                                                                        | 7.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                       |
| 1.4  |                                                                       | 16.4                                                                                                   | 16.6                                                                                                                                                              | 16.6                                                                                                                                                                                    | 16.7                                                                                                                                                                                                                                          | 16.8                                                                                                                                                                                                                                                                                                        | 16.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                       |
|      | 1                                                                     | 0.516                                                                                                  | 0.519                                                                                                                                                             | 0.571                                                                                                                                                                                   | 0.524                                                                                                                                                                                                                                         | 0.525                                                                                                                                                                                                                                                                                                       | 0.527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                       |
| 1    | 1.29                                                                  | 0.95                                                                                                   | 0.86                                                                                                                                                              | 0.78                                                                                                                                                                                    | 0.74                                                                                                                                                                                                                                          | 0.72                                                                                                                                                                                                                                                                                                        | 0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                       |
| -    | -100.9                                                                | -1019                                                                                                  | -104.4                                                                                                                                                            | -1084                                                                                                                                                                                   | -114.1                                                                                                                                                                                                                                        | -117.4                                                                                                                                                                                                                                                                                                      | - 119.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                       |
|      |                                                                       | 25.74                                                                                                  | 19.61                                                                                                                                                             | 12.62                                                                                                                                                                                   | 12.01                                                                                                                                                                                                                                         | 11.79                                                                                                                                                                                                                                                                                                       | 11.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                |                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                       |
|      |                                                                       |                                                                                                        |                                                                                                                                                                   |                                                                                                                                                                                         |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                       |
|      |                                                                       |                                                                                                        |                                                                                                                                                                   |                                                                                                                                                                                         |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                       |
|      | 0755<br>0.1<br>150<br>6.48<br>7.43<br>16.6<br>0.521<br>4.23<br>-103.0 | 0.1 0.2<br>150 150<br>6.48 6.49<br>7.43 7.38<br>16.6 16.2<br>0.521 0.515<br>4.23 1.29<br>-103.0 -100.9 | 0755 0800 0805<br>0.1 0.2 0.3<br>150 150 150<br>6.48 6.49 6.50<br>7.43 7.38 7.38<br>16.6 16.2 16.4<br>0.521 0.515 0.516<br>4.23 1.29 0.95<br>-103.0 -100.9 -101.9 | 0758 0800 0805 0810 0.1 0.2 0.3 0.5 150 150 150 150 6.48 6.49 6.50 6.51 7.43 7.38 7.38 7.38 16.6 16.2 16.4 16.6 0.521 0.515 0.516 0.519 4.23 1.29 0.95 0.86 -103.0 -100.9 -101.9 -104.4 | 0755 0800 0805 0810 0815  0.1 0.2 0.3 0.5 0.6  150 150 150 150 150  6.48 6.49 6.50 6.51 6.52  7.43 7.34 7.38 7.38 7.38  16.6 16.2 16.4 16.6 16.6  0.521 0.515 0.516 0.519 0.521  4.23 1.29 0.95 0.86 0.78  -103.0 -100.9 -101.9 -104.4 -108.6 | 0755 0800 0805 0810 0815 0820<br>0.1 0.2 0.3 0.5 0.6 0.7<br>150 150 150 150 150 150<br>6.48 6.49 6.50 6.51 6.52 6.52<br>7.43 7.38 7.38 7.38 7.38 7.38<br>16.6 16.2 16.4 16.6 16.6 16.7<br>0.521 0.515 0.516 0.519 0.521 0.524<br>4.23 1.29 0.95 0.86 0.78 0.74<br>-103.0 -100.9 -101.9 -104.4 -108.6 -114.1 | 0755         0800         0805         0810         0815         0820         0825           0.1         0.2         0.3         0.5         0.6         0.7         0.9           150         150         150         150         150         150         150           6.48         6.49         6.50         6.51         6.52         6.52         6.52           7.43         7.38         7.38         7.38         7.38         7.38         7.38           16.6         16.2         16.4         16.6         16.7         16.8           0.511         0.515         0.516         0.519         0.521         0.524         0.525           4.23         1.29         0.95         0.86         0.78         0.74         0.72           -103.0         -100.9         -101.9         -104.4         -108.6         -114.1         -117.4 | 0755       0800       0805       0810       0815       0820       0825       0830         0.1       0.2       0.3       0.5       0.6       0.7       0.9       1.1         150       150       150       150       150       150       150         6.48       6.49       6.50       6.51       6.52       6.52       6.52       6.52         7.43       7.38       7.38       7.38       7.38       7.38       7.38       7.38       7.38       7.38       7.38       16.9         16.6       16.2       16.4       16.6       16.7       16.8       16.9         0.511       0.515       0.516       0.519       0.521       0.524       0.525       0.527         4.23       1.29       0.95       0.86       0.78       0.74       0.72       0.69         -103.0       -100.9       -101.9       -104.4       -108.6       -114.1       -117.9       -119.4 | 0755 0800 0805 0810 0815 0820 0825 0830 0835  0.1 0.2 0.3 0.5 0.6 0.7 0.9 1.1 5  150 150 150 150 150 150 150 150 150 A  6.48 6.49 6.50 6.51 6.52 6.52 6.52 6.52 M  7.43 7.38 7.38 7.38 7.38 7.38 7.38 7.38 7.3 | 0755 0800 0805 0810 0815 0820 0825 0830 0835  0.1 0.2 0.3 0.5 0.6 0.7 0.9 1.1 5  150 150 150 150 150 150 150 150 150 A  6.48 6.49 6.50 6.51 6.52 6.52 6.52 M  7.43 7.38 7.38 7.38 7.38 7.38 7.38 7.38 7.3 | 0755 0800 0805 0810 0815 0820 0825 0830 0835  D.1 0.2 0.3 0.5 0.6 0.7 0.9 1.1 5  150 150 150 150 150 150 150 150 150 A  6.48 6.49 6.50 6.51 6.52 6.52 6.52 M  7.43 7.38 7.38 7.38 7.38 7.38 7.38 7.38 P  16.6 16.2 16.4 16.6 16.6 16.7 16.8 16.9 L  0.521 0.515 0.516 0.519 0.521 0.524 0.525 0.527 E  4.23 1.29 0.95 0.86 0.78 0.74 0.72 0.69  -103.0 -100.9 -101.9 -104.4 -108.6 -114.1 -117.8 -119.4 | 0755 0800 0805 0810 0815 0820 0825 0830 0835  0.1 0.2 0.3 0.5 0.6 0.7 0.9 1.1 5  150 150 150 150 150 150 150 150 A  6.48 6.49 6.50 6.51 6.52 6.52 6.52 M  7.43 7.38 7.38 7.38 7.38 7.38 7.38 7.38 7.3 |

Sampling Information

| Analyses                       | #    | Laboratory           |
|--------------------------------|------|----------------------|
| BTEXs                          | 3    | Buffalo-Test America |
| Low-Level PAHs                 | 2    | Buffalo-Test America |
| Total Cyanide                  | 1    | Buffalo-Test America |
|                                |      | Buffalo-Test America |
| Sample ID PRM                  | W-55 | Sample Time() 435    |
| MS/MSD:                        | Yes  | No                   |
| Duplicate:                     | Yes  | <b>®</b>             |
| Duplicate ID                   |      | Dup. Time:           |
| Chain of Custody<br>Signed By: | AJS  |                      |

#### Problems / Observations

Initial Purge: Pump on @ 0750 Clear, no odor

Final Purge: pump off@ 0850 clear, no odor

| Site: NYSEG Penn Yai                   | n Former MC | SP.                 |                     |           | Pe           | enn Yai   | n, NY        |           | Evi                   | int: Augu  | st 2024     | GWS           |         |    |
|----------------------------------------|-------------|---------------------|---------------------|-----------|--------------|-----------|--------------|-----------|-----------------------|------------|-------------|---------------|---------|----|
| Sampling Personnel:                    | Adam        | Svensson            | / <b>Kaiti</b> vn F | Terning   |              | We        | IIID: PR     | MW - 5    | D                     |            |             |               |         |    |
| Client / Job Number:                   |             | 3 / 302 <b>29</b> 9 |                     |           |              | Dat       |              | 8/2024    |                       |            |             |               | _       |    |
| Weather: cloudy                        | , 76        | ō                   |                     |           |              | Tin       |              |           | lme Out:              | 1500       |             |               | _       |    |
| Well Information                       |             |                     |                     | _         |              |           |              |           |                       |            |             |               |         |    |
|                                        | 17          |                     | (feet TIC)          |           |              | We        | ft Type:     | Fhigh     | mount                 | Stock-L    |             |               |         |    |
| Total Depth 31                         | 2.07        |                     | (feet TIC)          |           |              | _         | Il Material: |           | ess Steel             | PVC        |             |               |         |    |
| Length of Water Column                 |             |                     | (feet)              |           |              |           | II Locked    |           |                       |            | No No       |               |         |    |
| Volume of Water in Well                |             | 7 ]                 | (Jal)               |           |              |           | asunng Point | Marked    | (es)                  |            |             |               |         |    |
| Screen Interval                        | NA          |                     | (feet)              |           |              |           |              | ~         | (Yes)                 |            | No          |               |         |    |
| Depth to pump intake                   | ~ 28        |                     | (feet TIC)          |           |              | - vve     | II Diameter  | (2")      | 4"                    |            |             |               |         |    |
| Purging Information                    |             |                     |                     |           |              |           |              |           |                       |            |             |               |         | 7  |
| Purging Method                         | Bailer      | -                   | Peristalti          | 6)        | Grundfos     |           | Other        |           |                       | Convei     | 2º ID       | tors<br>4° ID | 6° ID   | 1  |
|                                        | St. Stee    | H                   | Polyethy            |           | Teffon       |           | Other:       |           | gal / ft.<br>of water |            | 0 163       | 0 653         | 1 469   | 1  |
| Tubing/Bailer Material                 | Bailer      |                     | Peristatti          | _         | Grundfos     |           | Other        |           | 1 gal =               | 3 785 L =3 | 785 ml = 0. | .1337 cut     | ic feet |    |
| Sampling Method:  Duration of Pumping: |             | (min)               | renstatu            | <u> </u>  | Giundios     | · ·       | Other        |           |                       | Uni        | t Stability |               |         | 1  |
| Average Pumping Rate:                  | 60          | (min)<br>(ml/min)   |                     | \\/ater.i | Quality Met  | er Tyne   |              |           | pН                    | DO         | Cond        |               | ORP     | 1  |
| Average Fulliping Nate.                | 110         | <u> </u>            |                     | vvaler-   | Quality Well | 51 1ypc.  | YSI/Lamotte  |           | ±0.1                  | ± 10%      | ± 3.0       | % ±           | 10 mV   | ]  |
| Total Volume Removed                   | 1.2         | _ (gal)             |                     |           | Did wel      | l go dry: | Yes          | №         |                       |            |             |               |         |    |
| _                                      | 1           | 2                   | 3                   | 4         | 5            | 6         | 7            | 8         | 9                     | 10         | 11          | 1:            | 2       | 13 |
| Parameter:                             | 1405        | 1410                | 1415                | 1420      | 1425         | 1430      | 1435         | 1440      |                       |            |             |               |         |    |
| Volume Purged (gal)                    |             |                     | 0.5                 |           |              | 1.0       |              | 5         |                       |            |             |               |         |    |
| Rate (mL/min)                          | 110         | 110                 | 110                 | 110       | 110          | 110       | 110          | A         |                       |            |             |               |         |    |
| Depth to Water (ft )                   | 4.48        | 4.48                | 4.48                | 5.46      | 5.46         | 5.46      | 5.46         | M         |                       |            |             |               |         |    |
| pH                                     | 7.71        | 7.70                | 7.7                 | 7.71      | 7,71         | 7.71      | 7.72         | ρ         |                       |            |             |               |         |    |
| Temp. (C)                              | 19.8        | 20.1                | 19.4                | 19.5      | 19.1         | 18.8      | 18.1         | L         |                       |            |             |               |         |    |
| Conductivity (mS/cm)                   | 0.465       | 0.465               |                     | 0.463     | 0.463        | ,         | 0.462        | E         |                       |            |             |               |         |    |
| Dissolved Oxygen (mg/l)                | 0.63        |                     | 0.45                | 0.41      | 0.40         | 0.38      | 0.36         | 1         |                       |            |             |               |         |    |
| ORP (mV)                               | -           | ·                   |                     |           |              | -156.0    | -154.8       |           |                       |            |             |               |         |    |
| Turbidity (NTU)                        |             |                     |                     | 1         | 1            | 1         | 45.46        |           |                       |            |             |               |         |    |
| Notes:                                 | 10.5        | 1                   | ,                   | 1= 1= 1   |              |           |              |           | ĺ                     |            |             |               |         |    |
|                                        |             |                     |                     |           |              |           |              |           |                       |            |             |               |         |    |
|                                        |             | L                   | <u> </u>            | <u> </u>  | 1            | <u> </u>  |              |           |                       |            |             | l             |         |    |
| ampling Information Analyses           |             | oratory             |                     |           |              |           | Proble       | ms / Obse | rvations              |            |             |               |         |    |
| BTEXs                                  |             | alo-Test Ame        | rica                | Initial P | urge:        |           |              |           |                       |            |             |               |         |    |
| Low-Level PAHs                         |             | alo-Test Ame        |                     |           |              |           |              |           |                       |            |             |               |         |    |
| Total Cyanide                          |             | alo-Test Ame        | <del></del>         | ρ.        | mp           | 0.0       | 6            | HOO .     | Cla.                  | 21 1       | 10 0        | مريم للم      | •       |    |
|                                        | Buffa       | alo-Test Ame        | rica                | 1 0       | ar ip        | UM        | (0)          | 400       | Cle                   | ,          | - 0         | ~ O I         |         |    |
| Sample ID: PRMW-                       | 5D Sam      | ple Time:           | 440                 | Final P   | nrae.        |           |              |           |                       |            |             |               |         |    |
| MCMCD: Y                               | es Ko       | ١                   |                     | i midi F  | aryo.        |           |              |           |                       |            |             |               |         |    |

Pump off @ 1500; clear, no odor

Yes

AJS

Duplicate:

Duplicate ID

Chain of Custody
Signed By:

1

Dup. Time:

|                         |           |             | GR         | OUND      |             |           | PLING L       | .OG                         |                       |                   |            |           |         |    |
|-------------------------|-----------|-------------|------------|-----------|-------------|-----------|---------------|-----------------------------|-----------------------|-------------------|------------|-----------|---------|----|
| Site: NYSEG Penn Yen    | Former MC | SP.         |            |           | Pe          | enn Yai   |               |                             |                       | n <b>t: A</b> ugu | st 2024    | GWS       |         |    |
| Sampling Personnel:     |           | Svensson    |            | Terning   |             | We        | HID: PRN      | 14 -65                      |                       |                   |            |           | _       |    |
| Client / Job Number:    |           | 3 / 302299  | 18 1       |           |             | Dat       |               | 3/24                        |                       | 17.3              |            |           | -       |    |
| Weather: 73°F C         | lovay     |             |            |           |             | Tin       | ne in:        | 0201000                     | Time Out:             | 130               |            |           | -       |    |
| Well Information        |           |             |            |           |             |           |               |                             |                       |                   |            |           |         |    |
| Depth to Water          | 6.0       | 50          | (feet TIC) |           |             | We        | fl Type       | Fine                        | shmount (             | Shck-U            | 5          |           |         |    |
| Total Depth             | 23.0      | 79          | (feet TIC) | _         |             |           | Material      |                             | nless Steel           | PVG               | 5          |           |         |    |
| Length of Water Column  |           |             | (feet)     |           |             |           | Il Locked     |                             | 0                     |                   |            |           |         |    |
| Volume of Water in Well | 2,8       |             | (gal)      |           |             |           |               | 10 and 10 and 10            | Yes                   |                   | No         |           |         |    |
| Screen Interval         | NP        | r           | (feet)     |           |             |           | asuring Point | Marked:                     | (Yes)                 |                   | No         |           |         |    |
| Depth to pump Intake    | 22        | 2           | (feet TIC) |           |             | We        | Il Diameter   | $-\left(\frac{r}{r}\right)$ | 4"                    |                   |            |           |         |    |
| Purging Information     |           |             |            |           |             |           |               |                             |                       |                   |            |           |         | 1  |
| Purging Method          | Bailer    | (           | Peristalt  | 6)        | Grundfos    |           | Other         |                             |                       | 1° ID             | z iD       | 4° ID     | 6° ID   |    |
| Tubing/Bailer Material  | St. Stee  | 1           | Polyethy   |           | Teffon      |           | Other:        |                             | gal / ft.<br>of water | 0.041             | 0 163      | 0 653     | 1 469   |    |
| Sampling Method         | Bailer    |             | Penstalt   |           | Grundfos    |           | Other         |                             | 1 gal = 3             | 785 L =37         | 85 ml = 0  | .1337 cub | ic feet |    |
| Duration of Pumping     | 60        | (min)       |            |           |             |           |               |                             |                       | Uni               | t Stabilit | у         |         | 1  |
| Average Pumping Rate:   | 150       | (ml/min)    |            | Water-    | Quality Met | er Type:  | YSI/Lamotte   | 2020                        | pH                    | DO                | Conc       | d. C      | ORP     |    |
| Total Volume Removed.   | 1.3       | (gal)       |            |           | Did wel     | l go dry: | Yes           | (No)                        | ±0.1                  | ± 10%             | ±30        | %   ± 1   | 10 mV   | J  |
| Parameter:              | 1030 1    | 1035        | 1046       | 1045      | 1050        | 1055      | 1100          | 1105                        | 1/10                  | 10                | 11         | 12        | : [     | 13 |
| Volume Purged (gal)     | 0.1       | 0.2         | 0.3        | 0.5       | 0.6         | 0.7       | 0.9           | 1.1                         | 5                     |                   |            |           |         |    |
| Rate (mL/min)           | 150       | 150         | 150        | 150       | 150         | 150       | 150           | 150                         | A                     |                   |            |           |         |    |
| Depth to Water (ft.)    | 6.4       | 7.68        | 8.69       | 9.51      | 10.34       | 11.17     |               | 12.99                       | m                     |                   |            |           |         |    |
| pH                      | 7.61      | 7.60        | 7.59       | 7.58      | 7.57        | 7.58      | 7.58          | 7.59                        | P                     |                   |            |           |         |    |
| Temp. (C)               | 7.1.7     | 19.5        | 19.5       | 19.8      | 19.4        | 18.7      | 18.9          | 18.7                        | 4                     |                   |            |           |         |    |
| Conductivity (mS/cm)    | 0.404     | 0383        | 0.390      | 0.390     | 0.380       | 0.371     | 0.372         | 0.370                       | F                     |                   |            |           |         |    |
| Dissolved Oxygen (mg/l) | 4.06      | 0.93        | 0.76       | 0.67      | 0.63        | 0.60      | 0.57          | 0.57                        |                       |                   |            |           |         |    |
| ORP (mV)                | -818      | -127.6      |            |           |             |           | -148.0        |                             |                       |                   |            |           |         |    |
| Turbidity (NTU)         | 13.14     | 8.75        | 1.94       | 4.12      | 3.08        | 3.71      | 3.81          | 1.28                        |                       |                   |            |           |         |    |
| Notes:                  |           |             |            |           |             |           |               |                             |                       |                   |            |           |         |    |
| ampling Information     |           |             | 1          |           |             | ·         | Proble        | ems / Obs                   | ervations             |                   |            |           |         |    |
| Analyses #              |           | oratory     |            |           |             |           |               |                             |                       |                   |            |           |         |    |
| BTEXs 3                 | Buffa     | lo-Test Ame | rica       | Initial F | 'urge: $f$  | mp        | on w          | · Char                      | 1025                  |                   |            |           |         |    |
| Low-Level PAHs Z        | Buff      | do-Test Ame | erica      |           |             | ر ا       |               |                             |                       |                   |            |           |         |    |
| Total Cyanide           | Buff      | lo-Test Ame | nca        |           |             | Clea      | 1, no         | odor                        | •                     |                   |            |           |         |    |
|                         |           | do-Test Ame |            |           |             |           |               |                             |                       |                   |            |           |         |    |
| Sample ID: PRMW-6       |           | ple Time: / | 110        | Final P   | urge: D     | IMD       | offe          | 1175                        | •                     |                   |            |           |         |    |
| MS/MSD:                 | ×s (No)   |             |            |           | - 1         | 1         | J., C         | 1 6                         |                       |                   |            |           |         |    |

Clear, no odor

Dup. Time:

Duplicate:

Duplicate ID

Chain of Custody
Signed By:

| Site: NYSEG Penn Yan                              | Former MG                                                           | P           |             |           | Pe           | nn Yan   | , NY         |           | E           | <b>rent:</b> Augi | ıst 2024 (   | ews      |         |
|---------------------------------------------------|---------------------------------------------------------------------|-------------|-------------|-----------|--------------|----------|--------------|-----------|-------------|-------------------|--------------|----------|---------|
| Sampling Personnel:                               | Adam S                                                              | ensson      | / Kaltlyn F | leming    |              | Wel      | 110: PRh     | nw-61     | )           |                   |              |          | -       |
| Client / Job Number:                              |                                                                     | / 302299    | 18 1        |           |              | Date     | 8/28         | 124       |             |                   |              |          |         |
| Weather: 75°F C                                   | lovely                                                              |             |             |           |              | Tim      | e In: 090    | <b>U</b>  | Time Out:   | 1020              |              |          | -       |
| Well Information                                  |                                                                     |             |             |           |              |          |              |           |             |                   |              |          |         |
| Depth to Water                                    | 3.79                                                                |             | (feet TIC)  | _         |              | Well     | Туре         | Ehra      | hmount      | Chiate 1          |              |          |         |
| Total Depth                                       | 36.88                                                               |             | (feet TIC)  | _         |              |          | Matenal:     |           | niess Steel | Stick             |              |          |         |
| Length of Water Column                            | 33,0                                                                |             | (feel)      |           |              |          |              |           |             | PVC               |              |          |         |
| Volume of Water in Well                           | 5.4                                                                 |             | (gal)       | _         |              |          | Locked       |           | (es)        |                   | No           |          |         |
| Screen Interval                                   |                                                                     | AL          | (feet)      |           |              | Mea      | suring Point | Marked    | (Yes)       |                   | No           |          |         |
| Depth to pump Intake                              | ≈ 3r                                                                | ,           | (feet TIC)  |           |              | Wel      | Diameter     | (2°)      | 4°          |                   |              |          |         |
| urging Information                                |                                                                     |             |             |           |              |          |              |           |             |                   |              |          |         |
| urging Method                                     | Bailer                                                              |             | Penstaltu   |           | Grundfos     |          | Other        |           |             |                   | rsion Fact   |          | er 10   |
| aiging Method                                     |                                                                     |             |             |           |              |          | Other        |           | gal / f     |                   | 2 10         | 4"  D    | 6° ID   |
| ubing/Bailer Material                             | St Stee                                                             | #<br>       | Polyethy    | lene)     | Teflon       |          | Other:       |           |             | 004.              | 0 163        | 0 653    | 1 469   |
| ampling Method                                    | Bailer                                                              |             | Penstalti   | 9         | Grundfos     |          | Other        |           | 1 gal       | = 3.785 L =3      | /85 mi = U 1 | 337 CUDI | ic reer |
| Puration of Pumping:                              | 70                                                                  | (min)       |             |           |              |          |              | -         |             | Un                | it Stability |          |         |
| verage Pumping Rate                               | 150                                                                 | (mVmin)     | •           | Water-    | Quality Mete | er Type: | YSI/Lamotte  | 2020      | рН          | DO                | Cond         | C        | ORP     |
| otal Volume Removed                               | 1.7                                                                 | (gal)       |             |           | Did well     |          | Yes          | (No)      | ±0.1        | ± 10%             | ± 3.09       | 6   ± 1  | 10 mV   |
|                                                   | 1                                                                   | 2           | 3           | 4         | 5            | 6        | 7            | 8         | 9           | 10                | 11           | 12       | 2       |
| Parameter:                                        | 0910                                                                | 0915        | 0970        | 0925      |              | 0935     | 0940         | 0945      | 0950        | 0955              |              |          | +       |
| olume Purged (gal)                                | 0.1                                                                 | 0.2         | 0.3         | 0.5       | 0.6          | 0.7      | 0,9          | 1.1       | 1.2         | 5                 |              |          | -       |
| ate (mL/min)                                      | 150                                                                 | 150         | 150         | 150       | 150          | 150      | 150          | 150       | 150         | A                 |              |          |         |
| epth to Water (ft )                               | 4.39                                                                | 4.62        | 4.85        | 4.91      | 4.98         | 4.98     | 4.99         | 4.99      | 4.99        | m                 |              |          |         |
| Н                                                 | 7.64                                                                | 7.56        | 7.58        | 7.58      | 7.58         | 7.59     | 7.59         | 7.59      | 7.60        | P                 |              |          |         |
| emp. (C)                                          | 17.5                                                                | 18.1        | 18.0        | 17.7      | 17.7         | 18.0     | 17.7         | 18.0      | 18.1        | L                 |              |          | 7       |
| onductivity (mS/cm)                               | 0.407                                                               | 0.413       | 0.410       | 0.408     | 0.408        | 0.407    | 0.407        | 0.413     | 0.413       | E                 |              |          |         |
| issolved Oxygen (mg/l)                            | 3.18                                                                | 1.16        | 0.88        | 0.78      |              | 0.69     | 0.66         | 0.62      | 0.61        |                   |              |          |         |
| ORP (mV)                                          | -37.7                                                               | -94.7       | -173.7      | -133.2    |              |          | -1445        | -/47.3    | -149.7      |                   |              |          |         |
| urbidity (NTU)                                    | 0.05                                                                | 1.91        | 4.41        | 3.42      | - 4          | 3.15     | 3.69         | 3.22      | 3,38        |                   |              |          |         |
| lotes:                                            |                                                                     | 1.77        |             |           |              |          |              |           |             |                   |              |          |         |
|                                                   |                                                                     |             | <u> </u>    |           |              |          | n 11         | 101       |             |                   |              |          |         |
| mpling Information Analyses #                     |                                                                     | oratory     |             |           |              |          |              | ems / Obs | servation   | <u>s</u>          |              |          |         |
| BTEXs 3                                           | Buffa                                                               | do-Test Am  | enica       | Initial F | Purge:       | omp      | on @         | 0905      |             |                   |              |          |         |
|                                                   |                                                                     |             |             |           |              |          |              |           |             |                   |              |          |         |
| Total Cyanide Buffalo-Test America Claur, no odor |                                                                     |             |             |           |              |          |              |           |             |                   |              |          |         |
| Buffalo-Test America                              |                                                                     |             |             |           |              |          |              |           |             |                   |              |          |         |
|                                                   | Sample ID: PRMW-6D Sample Time: 0955  MS/MSD: Yes No Clear, no odor |             |             |           |              |          |              |           |             |                   |              |          |         |
|                                                   |                                                                     | ple Time: ( | 7955        | Final P   | urae: 1      | uma      | offe         | 1015      |             |                   |              |          |         |
| Sample ID: PRmw-6<br>MS/MSD:                      |                                                                     | ple Time: ( | 7955        | Final P   | urge:        | ump      | offe         | 1015      |             |                   |              |          |         |

Duplicate: Duplicate ID Chain of Custody Signed By:

AJS

# **Appendix F**

**Well Decommissioning Records** 

#### FIGURE 1

SITE NAME: NYSEG Penn Yan Former MGP Penn Yan, New York

#### MONITORING WELL FIELD INSPECTION LOG NYSDEC WELL DECOMMISSIONING PROGRAM

SITE ID.: INSPECTOR: DATE/TIME: No. 8620094 K. Fleming

WEll ID.:

07/16/2024 TMW-1D

|                                                                                                       | YES         | NO       |
|-------------------------------------------------------------------------------------------------------|-------------|----------|
| WELL VISIBLE? (If not, provide directions below)                                                      | Х           |          |
| WELL I.D. VISIBLE?                                                                                    |             | Х        |
| WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)                                | Х           |          |
| WELL I D. AG VIT A DDE A DG GAV DD GITTEGEN IT GA GAVIG GD WITH I                                     |             |          |
| WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:                                                 | YES         | NO       |
| SURFACE SEAL PRESENT?                                                                                 |             | NO       |
| SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)                                     | X           |          |
| PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)                                     | X           |          |
| TROTLETIVE CASING IN GOOD CONDITION: (II dainaged, describe below)                                    | ^           |          |
| HEADSPACE READING (ppm) AND INSTRUMENT USED                                                           | N           | 4        |
| TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)                               | Surface I   | Road Box |
| PROTECTIVE CASING MATERIAL TYPE:                                                                      | Ste         | el       |
| MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):                                                   | 8 In        | ches     |
|                                                                                                       | YES         | NO       |
| LOCK PRESENT?                                                                                         |             | Х        |
| LOCK FUNCTIONAL?                                                                                      |             |          |
| DID YOU REPLACE THE LOCK?                                                                             |             | Х        |
| IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)                              |             | Х        |
| WELL MEASURING POINT VISIBLE?                                                                         | Х           |          |
|                                                                                                       |             |          |
| MEASURE WELL DEPTH FROM MEASURING POINT (Feet):                                                       |             | .20      |
| MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):                                                   | <u>5.</u> ´ | 12       |
| MEASURE WELL DIAMETER (Inches):                                                                       |             | ches     |
| WELL CASING MATERIAL:                                                                                 | P\          |          |
| PHYSICAL CONDITION OF VISIBLE WELL CASING:                                                            | Go          |          |
| ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE                                   | N           |          |
| PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES                                                        | N           | Α        |
| DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead  |             |          |
| power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECE        |             |          |
| Well accessible to drill rig, no obstructions.                                                        |             |          |
|                                                                                                       |             |          |
|                                                                                                       |             |          |
| DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, et | c.)         |          |
| AND ASSESS THE TYPE OF RESTORATION REQUIRED.                                                          |             |          |
| Well in grass near sidewalk on east side of building.                                                 |             |          |
| <u> </u>                                                                                              |             |          |
|                                                                                                       |             |          |
| IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT                                    |             |          |
| (e.g. Gas station, salt pile, etc.):                                                                  |             |          |
|                                                                                                       |             |          |
| None.                                                                                                 |             |          |
|                                                                                                       |             |          |
| REMARKS:                                                                                              |             |          |
| None.                                                                                                 |             |          |
|                                                                                                       |             |          |

## FIGURE 3 WELL DECOMMISSIONING RECORD

| Site Name: NYSEG Former MGP Site  | Well I.D.: TMW-1D          |
|-----------------------------------|----------------------------|
| Site Location: Penn Yan, New York | Driller: Mark Eaves        |
| Drilling Co.: Parratt-Wolff, Inc. | Inspector: Kaitlyn Fleming |
|                                   | Date: 7/16/24              |

| DECOMISSIONING 1                                    | WELL SCHEMATIC* |                                                                        |  |  |
|-----------------------------------------------------|-----------------|------------------------------------------------------------------------|--|--|
| (Fill in all that app                               | Depth           |                                                                        |  |  |
|                                                     | 3)              | (feet)                                                                 |  |  |
| <u>OVERDRILLING</u>                                 |                 | ,                                                                      |  |  |
| Interval Drilled                                    | NA              | —— 0 <b>—</b> ——————————————————————————————                           |  |  |
| Drilling Method(s)                                  | NA              | l —                                                                    |  |  |
| Borehole Dia. (in.)                                 | NA              | 2-inch PVC                                                             |  |  |
| Temporary Casing Installed? (y/n)                   | NA              | grouted in                                                             |  |  |
| Depth temporary casing installed                    | NA              | place place                                                            |  |  |
| Casing type/dia. (in.)                              | NA              |                                                                        |  |  |
| Method of installing                                | NA              |                                                                        |  |  |
|                                                     | <del>.</del>    | grout                                                                  |  |  |
| <u>CASING PULLING</u>                               |                 | backfill                                                               |  |  |
| Method employed                                     | NA              | 20                                                                     |  |  |
| Casing retrieved (feet)                             | NA              | l                                                                      |  |  |
| Casing type/dia. (in)                               | NA              | l — ₩                                                                  |  |  |
| CACINIC DEDEODATING                                 |                 | l —                                                                    |  |  |
| <u>CASING PERFORATING</u> Equipment used            | NA              | l —  XXI                                                               |  |  |
| * *                                                 |                 | 30 —                                                                   |  |  |
| Number of perforations/foot<br>Size of perforations | NA<br>NA        | l —                                                                    |  |  |
| Interval perforated                                 | NA<br>NA        | l —                                                                    |  |  |
| interval periorated                                 | INA             | l —                                                                    |  |  |
| <u>GROUTING</u>                                     |                 |                                                                        |  |  |
| Interval grouted (FBLS)                             | 0 - 64.0'       | 40 <del></del>                                                         |  |  |
| # of batches prepared                               | 1               |                                                                        |  |  |
| For each batch record:                              |                 | l —                                                                    |  |  |
| Quantity of water used (gal.)                       | 7.6             |                                                                        |  |  |
| Quantity of cement used (lbs.)                      | 94              |                                                                        |  |  |
| Cement type                                         | Portland I/II   | l ──"=                                                                 |  |  |
| Quantity of bentonite used (lbs.)                   | 4               |                                                                        |  |  |
| Quantity of calcium chloride used (lbs.)            | NA              |                                                                        |  |  |
| Volume of grout prepared (gal.)                     | 10.5            |                                                                        |  |  |
| Volume of grout used (gal.)                         | 10.5            | J60 <b></b>                                                            |  |  |
| COMMENTS:                                           |                 | * Sketch in all relevant decommissioning data, including: interval     |  |  |
| COMMINICATION.                                      |                 | overdrilled, interval grouted, casing left in hole, well stickup, etc. |  |  |
|                                                     |                 |                                                                        |  |  |
|                                                     |                 |                                                                        |  |  |
|                                                     |                 |                                                                        |  |  |

Drilling Contractor

Department Representative

#### FIGURE 1

SITE NAME: NYSEG Penn Yan Former MGP Penn Yan, New York

#### MONITORING WELL FIELD INSPECTION LOG NYSDEC WELL DECOMMISSIONING PROGRAM

SITE ID.: INSPECTOR: DATE/TIME:

No. 8620094 K. Fleming

WEll ID.:

07/16/2024 TMW-2D

| WELL LD. VISIBLE?  WELL LO. AS IT APPEARS ON PROTECTIVE CASING OR WELL:  WELL ID. AS IT APPEARS ON PROTECTIVE CASING OR WELL:  SURFACE SEAL PRESENT?  SURFACE SEAL PRESENT?  SURFACE SEAL PRESENT?  SURFACE SEAL PRESENT?  SURFACE SEAL PRESENT?  SURFACE SEAL PRESENT?  SURFACE SEAL PRESENT?  SURFACE SEAL PRESENT?  SURFACE SEAL PRESENT?  SURFACE SEAL PRESENT?  SURFACE SEAL PRESENT?  HEADSPACE READING (ppm) AND INSTRUMENT USED.  TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)  PROTECTIVE CASING MATERIAL TYPE:  MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):  Steel  MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):  LOCK PRESENT?  LOCK PUNCTIONAL?  DID YOU REPLACE THE LOCK?  STHERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)  X  WELL MEASURING POINT VISIBLE?  MEASURE WELL DEPTH FROM MEASURING POINT (Feet):  MEASURE WELL DEPTH TO WATER FROM MEASURING POINT (Feet):  MEASURE WELL DIAMETER (Inches):  2 Inches  WELL CASING MATERIAL:  PPUC  PHYSICAL CONDITION OF VISIBLE WELL CASING:  Good  ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE  NA  PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES.  DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY.  Well accessible to drill rig, no obstructions.  DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)  AND ASSESS THE TYPE OF RESTORATION REQUIRED.  Well in gravel on west side of building. |                                                                                                         | YES      | NO       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------|----------|
| WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | WELL VISIBLE? (If not, provide directions below)                                                        | Х        |          |
| WELL LD. AS IT APPEARS ON PROTECTIVE CASING OR WELL:  SURFACE SEAL PRESENT?  SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)  X  PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)  X  HEADSPACE READING (ppm) AND INSTRUMENT USED.  TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)  PROTECTIVE CASING MATERIAL TYPE:  BINCHES  LOCK PRESENT?  LOCK PRESENT?  LOCK FUNCTIONAL?  DID YOU REPLACE THE LOCK?  STHERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)  WELL MEASURE WELL DEPTH FROM MEASURING POINT (Feet):  MEASURE WELL DIPTH TO WATER FROM MEASURING POINT (Feet):  MEASURE WELL DIAMETER (Inches):  WELL CASING MATERIAL:  PHYSICAL CONDITION OF VISIBLE WELL CASING:  GOOD  ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE  NA  PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES.  DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY.  Well accessible to drill rig, no obstructions.  DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)  AND ASSESS THE TYPE OF RESTORATION REQUIRED.  Well in gravel on west side of building.  IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (c.g. Gas station, salt pile, etc.):  None.                                                                                                                                                                                          | WELL I.D. VISIBLE?                                                                                      |          | Χ        |
| SURFACE SEAL PRESENT?  SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)  SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)  HEADSPACE READING (ppm) AND INSTRUMENT USED.  HEADSPACE READING (ppm) AND INSTRUMENT USED.  FROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)  PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)  Steel  REASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):  LOCK PRESENT?  LOCK PRESENT?  LOCK FUNCTIONAL?  DID YOU REPLACE THE LOCK?  STHERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)  WELL MEASURING POINT VISIBLE?  MEASURE WELL DEPTH FROM MEASURING POINT (Feet):  MEASURE WELL DEPTH FROM MEASURING POINT (Feet):  MEASURE WELL DIAMETER (Inches):  WELL CASING MATERIAL:  PLYSICAL CONDITION OF VISIBLE WELL CASING:  ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE  PRESENTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE  NA  DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY.  Well accessible to drill rig, no obstructions.  DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)  AND ASSESS THE TYPE OF RESTORATION REQUIRED.  Well in gravel on west side of building.  IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.):  NONE.                                                                                           | WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)                                  | Х        |          |
| SURFACE SEAL PRESENT?  SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)  SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)  HEADSPACE READING (ppm) AND INSTRUMENT USED.  HEADSPACE READING (ppm) AND INSTRUMENT USED.  FROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)  PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)  Steel  REASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):  LOCK PRESENT?  LOCK PRESENT?  LOCK FUNCTIONAL?  DID YOU REPLACE THE LOCK?  STHERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)  WELL MEASURING POINT VISIBLE?  MEASURE WELL DEPTH FROM MEASURING POINT (Feet):  MEASURE WELL DEPTH FROM MEASURING POINT (Feet):  MEASURE WELL DIAMETER (Inches):  WELL CASING MATERIAL:  PLYSICAL CONDITION OF VISIBLE WELL CASING:  ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE  PRESENTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE  NA  DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY.  Well accessible to drill rig, no obstructions.  DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)  AND ASSESS THE TYPE OF RESTORATION REQUIRED.  Well in gravel on west side of building.  IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.):  NONE.                                                                                           |                                                                                                         |          |          |
| SURFACE SEAL PRESENT?  SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)  X  NA  PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)  HEADSPACE READING (ppm) AND INSTRUMENT USED.  TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)  PROTECTIVE CASING MATERIAL TYPE:  MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):  LOCK PRESENT?  LOCK FUNCTIONAL?  DID YOU REPLACE THE LOCK?  IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)  WELL MEASURING POINT VISIBLE?  MEASURE WELL DEPTH FROM MEASURING POINT (Feet):  MEASURE WELL DIAMETER (Inches):  WELL CASING MATERIAL:  PVC  PHYSICAL CONDITION OF VISIBLE WELL CASING:  GOOD  ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE.  NA  PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES.  DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY.  Well accessible to drill rig, no obstructions.  DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)  AND ASSESS THE TYPE OF RESTORATION REQUIRED.  Well in gravel on west side of building.  REMARKS:                                                                                                                                                                                                                                                                                                                                                | WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:                                                   |          |          |
| SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)    X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                         | YES      | NO       |
| PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)    READSPACE READING (ppm) AND INSTRUMENT USED.   NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                         |          |          |
| HEADSPACE READING (ppm) AND INSTRUMENT USED.  TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)  Steel  BASURE PROTECTIVE CASING MATERIAL TYPE:  MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):  LOCK PRESENT?  LOCK PRESENT?  NA  LOCK PRESENT?  NA  LOCK FUNCTIONAL?  NA  DID YOU REPLACE THE LOCK?  IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)  MEASURE WELL DEPTH FROM MEASURING POINT (Feet):  MEASURE WELL DEPTH TO WATER FROM MEASURING POINT (Feet):  MEASURE WELL DAMETER (Inches):  WELL CASING MATERIAL:  PVC  PHYSICAL CONDITION OF VISIBLE WELL CASING:  ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE  NA  PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES.  DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig. natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY.  Well accessible to drill rig, no obstructions.  DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)  AND ASSESS THE TYPE OF RESTORATION REQUIRED.  Well in gravel on west side of building.  IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.):  None.                                                                                                                                                                                                                                                                                                                                   |                                                                                                         |          |          |
| TYPE OF PROTECTIVE CASING MATERIAL TYPE:  MEASURE PROTECTIVE CASING MATERIAL TYPE:  MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):  LOCK PRESENT?  LOCK FUNCTIONAL?  DID YOU REPLACE THE LOCK?  IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)  MEASURE WELL DEPTH FROM MEASURING POINT (Feet):  MEASURE WELL DEPTH FROM MEASURING POINT (Feet):  MEASURE WELL DIAMETER (Inches):  WELL CASING MATERIAL:  PVC  PHYSICAL CONDITION OF VISIBLE WELL CASING:  ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE  MAPROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES.  DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY.  Well accessible to drill rig, no obstructions.  DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)  AND ASSESS THE TYPE OF RESTORATION REQUIRED.  Well in gravel on west side of building.  IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.):  None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)                                       | X        | <u> </u> |
| TYPE OF PROTECTIVE CASING MATERIAL TYPE:  MEASURE PROTECTIVE CASING MATERIAL TYPE:  MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):  LOCK PRESENT?  LOCK FUNCTIONAL?  DID YOU REPLACE THE LOCK?  IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)  MEASURE WELL DEPTH FROM MEASURING POINT (Feet):  MEASURE WELL DEPTH FROM MEASURING POINT (Feet):  MEASURE WELL DIAMETER (Inches):  WELL CASING MATERIAL:  PVC  PHYSICAL CONDITION OF VISIBLE WELL CASING:  ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE  MAPROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES.  DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY.  Well accessible to drill rig, no obstructions.  DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)  AND ASSESS THE TYPE OF RESTORATION REQUIRED.  Well in gravel on west side of building.  IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.):  None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HEADSPACE READING (ppm) AND INSTRUMENT USED                                                             | N        | Δ        |
| PROTECTIVE CASING MATERIAL TYPE:  MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):  MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):  LOCK PRESENT?  LOCK FUNCTIONAL?  NA  DID YOU REPLACE THE LOCK?  IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)  WELL MEASURING POINT VISIBLE?  MEASURE WELL DEPTH FROM MEASURING POINT (Feet):  MEASURE WELL DEPTH FROM MEASURING POINT (Feet):  MEASURE WELL DIAMETER (Inches):  WELL CASING MATERIAL:  PYC  PHYSICAL CONDITION OF VISIBLE WELL CASING:  GOOD  ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE.  NA  DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY.  Well accessible to drill rig, no obstructions.  DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)  AND ASSESS THE TYPE OF RESTORATION REQUIRED.  Well in gravel on west side of building.  IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT  (e.g. Gas station, salt pile, etc.):  None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                         |          |          |
| MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):  LOCK PRESENT? LOCK FUNCTIONAL?  NA  DID YOU REPLACE THE LOCK?  IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)  MEASURE WELL DEPTH FROM MEASURING POINT (Feet):  MEASURE WELL DEPTH TO WATER FROM MEASURING POINT (Feet):  MEASURE WELL DEPTH TO WATER FROM MEASURING POINT (Feet):  MEASURE WELL DIAMETER (Inches):  MEASURE WELL DIAMETER (Inches):  MEASURE WELL CASING MATERIAL:  PVC PHYSICAL CONDITION OF VISIBLE WELL CASING:  ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE  ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE  MA PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES.  DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY.  Well accessible to drill rig, no obstructions.  DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)  AND ASSESS THE TYPE OF RESTORATION REQUIRED.  Well in gravel on west side of building.  IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.):  None.                                                                                                                                                                                                                                                                                                                                                                           | = = ·                                                                                                   |          | _        |
| LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE?  MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE WELL DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PYC PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE NA PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES. NA DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Well accessible to drill rig, no obstructions.  DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Well in gravel on west side of building.  IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None.  REMARKS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                       |          |          |
| LOCK PRESENT? LOCK FUNCTIONAL? LOCK FUNCTIONAL? LOCK FUNCTIONAL?  IDID YOU REPLACE THE LOCK?  IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)  WELL MEASURING POINT VISIBLE?  MEASURE WELL DEPTH FROM MEASURING POINT (Feet):  MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):  MEASURE WELL DIAMETER (Inches):  WELL CASING MATERIAL:  PVC PHYSICAL CONDITION OF VISIBLE WELL CASING:  ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE  NA PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES.  NA  DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY.  Well accessible to drill rig, no obstructions.  DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)  AND ASSESS THE TYPE OF RESTORATION REQUIRED.  Well in gravel on west side of building.  IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.):  None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ME/ISORETROTECTIVE CRISING INSIDE DIVINETER (licites).                                                  |          |          |
| LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE?  MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PYC PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well iD is confirmed) and IDENTIFY MARKER TYPE NA PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES.  DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Well accessible to drill rig, no obstructions.  DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Well in gravel on west side of building.  IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None.  REMARKS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LOCK PRESENT?                                                                                           | TES      |          |
| DID YOU REPLACE THE LOCK?  IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)  WELL MEASURING POINT VISIBLE?  MEASURE WELL DEPTH FROM MEASURING POINT (Feet):  MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):  MEASURE WELL DIAMETER (Inches):  MEASURE WELL DIAMETER (Inches):  MEASURE WELL DIAMETER (Inches):  PYC PHYSICAL CONDITION OF VISIBLE WELL CASING:  ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE  NA PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES.  NA DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY.  Well accessible to drill rig, no obstructions.  DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)  AND ASSESS THE TYPE OF RESTORATION REQUIRED.  Well in gravel on west side of building.  IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.):  None.  REMARKS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         |          |          |
| IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)  WELL MEASURING POINT VISIBLE?  MEASURE WELL DEPTH FROM MEASURING POINT (Feet):  MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):  MEASURE WELL DIAMETER (Inches):  DESCRIBE WELL CASING MATERIAL:  PVC PHYSICAL CONDITION OF VISIBLE WELL CASING:  ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE  NA PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES.  DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY.  Well accessible to drill rig, no obstructions.  DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)  AND ASSESS THE TYPE OF RESTORATION REQUIRED.  Well in gravel on west side of building.  IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.):  None.  REMARKS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2001101(0101)                                                                                           |          | V        |
| WELL MEASURING POINT VISIBLE?  MEASURE WELL DEPTH FROM MEASURING POINT (Feet):  MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):  MEASURE WELL DIAMETER (Inches):  MEASURE WELL CASING MATERIAL:  PVC  PHYSICAL CONDITION OF VISIBLE WELL CASING:  MA  ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE  NA  PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES.  NA  DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY.  Well accessible to drill rig, no obstructions.  DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)  AND ASSESS THE TYPE OF RESTORATION REQUIRED.  Well in gravel on west side of building.  IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.):  None.  REMARKS:                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                         |          |          |
| MEASURE WELL DEPTH FROM MEASURING POINT (Feet):  MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):  MEASURE WELL DIAMETER (Inches):  WELL CASING MATERIAL:  PVC PHYSICAL CONDITION OF VISIBLE WELL CASING:  ACTIVACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE  NA PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES.  DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY.  Well accessible to drill rig, no obstructions.  DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)  AND ASSESS THE TYPE OF RESTORATION REQUIRED.  Well in gravel on west side of building.  IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.):  None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                         | V        |          |
| MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):  1,50  MEASURE WELL DIAMETER (Inches):  2 Inches  WELL CASING MATERIAL:  PVC  PHYSICAL CONDITION OF VISIBLE WELL CASING:  ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE  NA  PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES.  NA  DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY.  Well accessible to drill rig, no obstructions.  DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)  AND ASSESS THE TYPE OF RESTORATION REQUIRED.  Well in gravel on west side of building.  IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.):  None.  REMARKS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WEEL MEASURING FORM VISIBLE:                                                                            |          |          |
| MEASURE WELL DIAMETER (Inches): 2 Inches WELL CASING MATERIAL: PVC PHYSICAL CONDITION OF VISIBLE WELL CASING: Good ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE NA PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES. NA DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Well accessible to drill rig, no obstructions.  DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Well in gravel on west side of building.  IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MEASURE WELL DEPTH FROM MEASURING POINT (Feet):                                                         | 39       | .21      |
| MEASURE WELL DIAMETER (Inches):  WELL CASING MATERIAL:  PVC PHYSICAL CONDITION OF VISIBLE WELL CASING:  ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE  NA PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES.  DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY.  Well accessible to drill rig, no obstructions.  DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)  AND ASSESS THE TYPE OF RESTORATION REQUIRED.  Well in gravel on west side of building.  IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.):  None.  REMARKS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):                                                     | 1.5      | 50       |
| WELL CASING MATERIAL: PYC PHYSICAL CONDITION OF VISIBLE WELL CASING: Good ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE NA PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES. NA  DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Well accessible to drill rig, no obstructions.  DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Well in gravel on west side of building.  IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MEASURE WELL DIAMETER (Inches):                                                                         |          |          |
| ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WELL CASING MATERIAL:                                                                                   |          |          |
| PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PHYSICAL CONDITION OF VISIBLE WELL CASING:                                                              | Go       | od       |
| DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY.  Well accessible to drill rig, no obstructions.  DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)  AND ASSESS THE TYPE OF RESTORATION REQUIRED.  Well in gravel on west side of building.  IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.):  None.  REMARKS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE                                     | N        | Α        |
| power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY.  Well accessible to drill rig, no obstructions.  DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)  AND ASSESS THE TYPE OF RESTORATION REQUIRED.  Well in gravel on west side of building.  IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT  (e.g. Gas station, salt pile, etc.):  None.  REMARKS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES                                                          | N        | A        |
| power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY.  Well accessible to drill rig, no obstructions.  DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)  AND ASSESS THE TYPE OF RESTORATION REQUIRED.  Well in gravel on west side of building.  IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT  (e.g. Gas station, salt pile, etc.):  None.  REMARKS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig. natural obstructions, overhead    |          |          |
| Well accessible to drill rig, no obstructions.  DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)  AND ASSESS THE TYPE OF RESTORATION REQUIRED.  Well in gravel on west side of building.  IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.):  None.  REMARKS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · · · · · · · · · · · · · · · · · · ·                                                                   | SSARY    |          |
| DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)  AND ASSESS THE TYPE OF RESTORATION REQUIRED.  Well in gravel on west side of building.  IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT  (e.g. Gas station, salt pile, etc.):  None.  REMARKS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                         | 55711(1. |          |
| AND ASSESS THE TYPE OF RESTORATION REQUIRED.  Well in gravel on west side of building.  IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT  (e.g. Gas station, salt pile, etc.):  None.  REMARKS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | vveii accessible to driii rig, no obstructions.                                                         |          |          |
| AND ASSESS THE TYPE OF RESTORATION REQUIRED.  Well in gravel on west side of building.  IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT  (e.g. Gas station, salt pile, etc.):  None.  REMARKS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                         |          |          |
| Well in gravel on west side of building.  IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.):  None.  REMARKS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc. | c.)      |          |
| IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT  (e.g. Gas station, salt pile, etc.):  None.  REMARKS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AND ASSESS THE TYPE OF RESTORATION REQUIRED.                                                            |          |          |
| IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT  (e.g. Gas station, salt pile, etc.):  None.  REMARKS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Well in gravel on west side of huilding                                                                 |          |          |
| (e.g. Gas station, salt pile, etc.):  None.  REMARKS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | vvoir in gravor on wood olde or ballang.                                                                |          |          |
| (e.g. Gas station, salt pile, etc.):  None.  REMARKS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                         |          |          |
| None.  REMARKS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                         |          |          |
| REMARKS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (e.g. Gas station, salt pile, etc.):                                                                    |          |          |
| REMARKS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | None.                                                                                                   |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                         |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DEMARKS                                                                                                 |          |          |
| None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KEMAKKS:                                                                                                |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | None.                                                                                                   |          |          |

## FIGURE 3 WELL DECOMMISSIONING RECORD

| Site Name: NYSEG Former MGP Site  | Well I.D.: TMW-2D          |
|-----------------------------------|----------------------------|
| Site Location: Penn Yan, New York | Driller: Mark Eaves        |
| Drilling Co.: Parratt-Wolff, Inc. | Inspector: Kaitlyn Fleming |
|                                   | Date: 7/16/24              |

| DECOMISSIONING                           | WELL SCHEMATIC* |                                                                        |  |  |
|------------------------------------------|-----------------|------------------------------------------------------------------------|--|--|
| (Fill in all that app                    | Depth           |                                                                        |  |  |
|                                          | <i>J</i> /      | (feet)                                                                 |  |  |
| <u>OVERDRILLING</u>                      |                 |                                                                        |  |  |
| Interval Drilled                         | NA              | — · <del>–</del> —                                                     |  |  |
| Drilling Method(s)                       | NA              | l — 📉                                                                  |  |  |
| Borehole Dia. (in.)                      | NA              | 2-inch PVC                                                             |  |  |
| Temporary Casing Installed? (y/n)        | NA              | grouted in                                                             |  |  |
| Depth temporary casing installed         | NA              | place                                                                  |  |  |
| Casing type/dia. (in.)                   | NA              |                                                                        |  |  |
| Method of installing                     | NA              |                                                                        |  |  |
|                                          |                 | grout                                                                  |  |  |
| CASING PULLING                           |                 | backfill                                                               |  |  |
| Method employed                          | NA              | 20                                                                     |  |  |
| Casing retrieved (feet)                  | NA              | l                                                                      |  |  |
| Casing type/dia. (in)                    | NA              | l —                                                                    |  |  |
| GAGDIG DEDEODATING                       |                 | l — ∭                                                                  |  |  |
| CASING PERFORATING                       | NIA             | l —                                                                    |  |  |
| Equipment used                           | NA              | 30 —                                                                   |  |  |
| Number of perforations/foot              | NA              | l —  XXI                                                               |  |  |
| Size of perforations                     | NA              | l — 🔀                                                                  |  |  |
| Interval perforated                      | NA              | l —                                                                    |  |  |
| GROUTING                                 |                 | l ∭ —                                                                  |  |  |
| Interval grouted (FBLS)                  | 0 - 60.0'       | 40 —                                                                   |  |  |
| # of batches prepared                    | 1               | I — 🔀                                                                  |  |  |
| For each batch record:                   |                 | l —                                                                    |  |  |
| Quantity of water used (gal.)            | 7.6             | l —                                                                    |  |  |
| Quantity of cement used (lbs.)           | 94              |                                                                        |  |  |
| Cement type                              | Portland I/II   |                                                                        |  |  |
| Quantity of bentonite used (lbs.)        | 4               | I                                                                      |  |  |
| Quantity of calcium chloride used (lbs.) | NA              | I                                                                      |  |  |
| Volume of grout prepared (gal.)          | 10              | l — 🔀                                                                  |  |  |
| Volume of grout used (gal.)              | 10              | 60.0'                                                                  |  |  |
| COMMENTS:                                |                 | * Sketch in all relevant decommissioning data, including: interval     |  |  |
| COMMENTO.                                |                 | overdrilled, interval grouted, casing left in hole, well stickup, etc. |  |  |
|                                          |                 |                                                                        |  |  |
|                                          |                 |                                                                        |  |  |
| _                                        |                 | <u> </u>                                                               |  |  |

Drilling Contractor

#### FIGURE 1

SITE NAME: NYSEG Penn Yan Former MGP Penn Yan, New York

### MONITORING WELL FIELD INSPECTION LOG

SITE ID.: INSPECTOR: DATE/TIME: WEll ID.:

No. 8620094 K. Fleming 07/16/2024 TMW-2DR

NYSDEC WELL DECOMMISSIONING PROGRAM

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | YES       | NO       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|
| WELL VISIBLE? (If not, provide directions below)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Х         |          |
| WELL I.D. VISIBLE?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | Х        |
| WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Х         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |          |
| WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | YES       | NO       |
| SURFACE SEAL PRESENT?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Х         |          |
| SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Х         |          |
| PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Χ         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |          |
| HEADSPACE READING (ppm) AND INSTRUMENT USED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N.        | A        |
| TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Surface I | Road Box |
| PROTECTIVE CASING MATERIAL TYPE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ste       | eel      |
| MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8 In      | ches     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | YES       | NO       |
| LOCK PRESENT?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           | Х        |
| LOCK FUNCTIONAL?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |          |
| DID YOU REPLACE THE LOCK?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | Х        |
| IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | Х        |
| WELL MEASURING POINT VISIBLE?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Χ         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |          |
| MEASURE WELL DEPTH FROM MEASURING POINT (Feet):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 59        | .07      |
| MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9       | 90       |
| MEASURE WELL DIAMETER (Inches):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | ches     |
| WELL CASING MATERIAL:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P\        |          |
| PHYSICAL CONDITION OF VISIBLE WELL CASING:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Go        |          |
| ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N         |          |
| PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N         | Α        |
| DECORDE ACCESS TO WELL (L.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |          |
| DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CCADV     |          |
| power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SSAKY.    |          |
| Well accessible to drill rig, no obstructions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |          |
| DECORDE WELL CETTING (F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . )       |          |
| DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, et                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | c.)       |          |
| AND ASSESS THE TYPE OF RESTORATION REQUIRED.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |          |
| Well in gravel on west side of building.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |          |
| IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |          |
| (e.g. Gas station, salt pile, etc.):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |          |
| None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |          |
| TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL |           |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |          |
| REMARKS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |          |
| None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |          |

## FIGURE 3 WELL DECOMMISSIONING RECORD

| Site Name: NYSEG Former MGP Site  | Well I.D.: TMW-2DR         |
|-----------------------------------|----------------------------|
| Site Location: Penn Yan, New York | Driller: Mark Eaves        |
| Drilling Co.: Parratt-Wolff, Inc. | Inspector: Kaitlyn Fleming |
|                                   | Date: 7/16/24              |

| DECOMISSIONING DATA                                                      |               | WELL SCHEMATIC*                                                        |
|--------------------------------------------------------------------------|---------------|------------------------------------------------------------------------|
| (Fill in all that apply)                                                 |               | Depth                                                                  |
| (2 m m an and apprij)                                                    |               | (feet)                                                                 |
| <u>OVERDRILLING</u>                                                      |               |                                                                        |
| Interval Drilled                                                         | NA            | — 0 <b>–</b> — — — — — — — — — — — — — — — — — — —                     |
| Drilling Method(s)                                                       | NA            | l — 📉                                                                  |
| Borehole Dia. (in.)                                                      | NA            | 2-inch PVC                                                             |
| Temporary Casing Installed? (y/n)                                        | NA            | grouted in                                                             |
| Depth temporary casing installed                                         | NA            | place                                                                  |
| Casing type/dia. (in.)                                                   | NA            | 10 — 10 —                                                              |
| Method of installing                                                     | NA            |                                                                        |
| GA GRAG RIVA RAG                                                         |               | — grout                                                                |
| CASING PULLING                                                           | NA            | — backfill                                                             |
| Method employed                                                          | NA            | 20 —                                                                   |
| Casing retrieved (feet)                                                  | NA            | l —                                                                    |
| Casing type/dia. (in)                                                    | NA            | l —                                                                    |
| CASING PERFORATING                                                       |               | −                                                                      |
| Equipment used                                                           | NA            | 30                                                                     |
| Number of perforations/foot                                              | NA            | l ——" <u>—</u>                                                         |
| Size of perforations                                                     | NA            |                                                                        |
| Interval perforated                                                      | NA            |                                                                        |
| CD OLYMPIA                                                               |               | l — ∭                                                                  |
| GROUTING                                                                 |               | 40 —                                                                   |
| Interval grouted (FBLS)                                                  | 0 - 60.0'     | l — 🔀                                                                  |
| # of batches prepared                                                    | 1             | l — 🔀                                                                  |
| For each batch record:                                                   | 7.6           | l —                                                                    |
| Quantity of water used (gal.)                                            | 7.6           | l — 🔀                                                                  |
| Quantity of cement used (lbs.)                                           | <i>z</i> .    | 50 —                                                                   |
| Cement type                                                              | Portland I/II | l —                                                                    |
| Quantity of palairm shlorida yand (lbs.)                                 | A NIA         | l — ₩                                                                  |
| Quantity of calcium chloride used (lbs.) Volume of grout prepared (gal.) | NA<br>10      | — ₩                                                                    |
| Volume of grout prepared (gal.) Volume of grout used (gal.)              | 10            | l —                                                                    |
| volume of grout used (gal.)                                              | 10            | 60.0'                                                                  |
| COMMENTS:                                                                |               | * Sketch in all relevant decommissioning data, including: interval     |
|                                                                          |               | overdrilled, interval grouted, casing left in hole, well stickup, etc. |
|                                                                          |               |                                                                        |
|                                                                          |               |                                                                        |

Drilling Contractor

# **Appendix G**

Former MGP Building Maintenance Photographic Log

### **Appendix G**



### Former MGP Building Maintenance Photographic Log

Periodic Review Report New York State Electric & Gas Penn Yan Former Manufactured Gas Plant Penn Yan, New York



Photograph 1: Northeast-facing Window - Before



Photograph 2: Northeast-facing Window – After



Photograph 3: Southeast-facing Window - Before



Photograph 4: Southeast-facing Window - After

www.arcadis.com 1

# **Appendix H**

**Request to Import Materials Document and NYSDEC Approval** 



Mr. Gerald Pratt, PG
New York State Department of Environmental Conservation
Division of Environmental Remediation
625 Broadway, 12<sup>th</sup> Floor
Albany, New York 12233-7014

Date: June 20, 2024, revised July 10, 2024

Our Ref: 30174322

Subject: Request to Import Material - Revised

New York State Electric & Gas Corporation

Penn Yan Former Manufactured Gas Plant, Penn Yan, New York

NYSDEC Site No. 862009

Arcadis of New York, Inc. 100 Chestnut Street Suite 1020 Rochester, NY 14604 United States Phone: 585 385 0090

Fax: 585 546 1973 www.arcadis.com

Dear Mr. Pratt,

On behalf of New York State Electric & Gas Corporation (NYSEG), please find enclosed for your review and approval, Request to Import Material forms for proposed work at the NYSEG Penn Yan Former Manufactured Gas Plant (MGP) site (New York State Department of Environmental Conservation [NYSDEC] Site No. 862009), located in the Village of Penn Yan, Town of Milo, Yates County, New York.

The adjacent property owner, Mrs. Cindy Rosato, is proposing to import Bank Run Gravel, Screened Gravel, and Rip-Rap material to the site to create parking for the site. Please see attached project narrative (Attachment 1) and project design map and profile (Attachment 2). Import request forms and associated information are included in Attachment 3. The mine is a NYSDEC registered mine (Permit No. 80856) and the mine owner attests that the material is virgin.

The Site Management Plan<sup>1</sup>, prepared by AECOM, requires the soil cover at the site to be comprised of a minimum of 24-inches of clean soil. The material requested for import will be place on top of the existing site cover, separated by geotextile fabric, and work proposed herein will not breech or reduce the site cover thickness or remove the current site cover system.

Please let NYSEG know if this request to import material is approved and/or if additional forms or information is required. Please contact John Ruspantini of NYSEG at 607.725.3801 or <a href="mailto:jiruspantini@nyseg.com">jiruspantini@nyseg.com</a> with any questions or comments.

<sup>&</sup>lt;sup>1</sup> AECOM. 2023. Site Management Plan, Penn Yan Former Manufactured Gas Plant Site, Yates County, Penn Yan, New York. January.

Mr. Gerald Pratt, PG New York State Department of Environmental Conservation June 20, 2024, Revised June 10, 2024

Sincerely,

Arcadis of New York, Inc.

Nicholas (Klaus) Beyrle, PG

Principal Geologist

Email: nicholas.beyrle@arcadis.com

Direct Line: 585.662.4044

CC. John Ruspantini, CHMM, NYSEG

#### **Enclosures:**

Attachment 1 - Project Narrative

Attachment 2 - Design Drawing and Profile

Attachment 3 – Request to Import Forms and Supporting Information

# **Attachment 1**

**Project Narrative** 



June 4, 2024

RE:

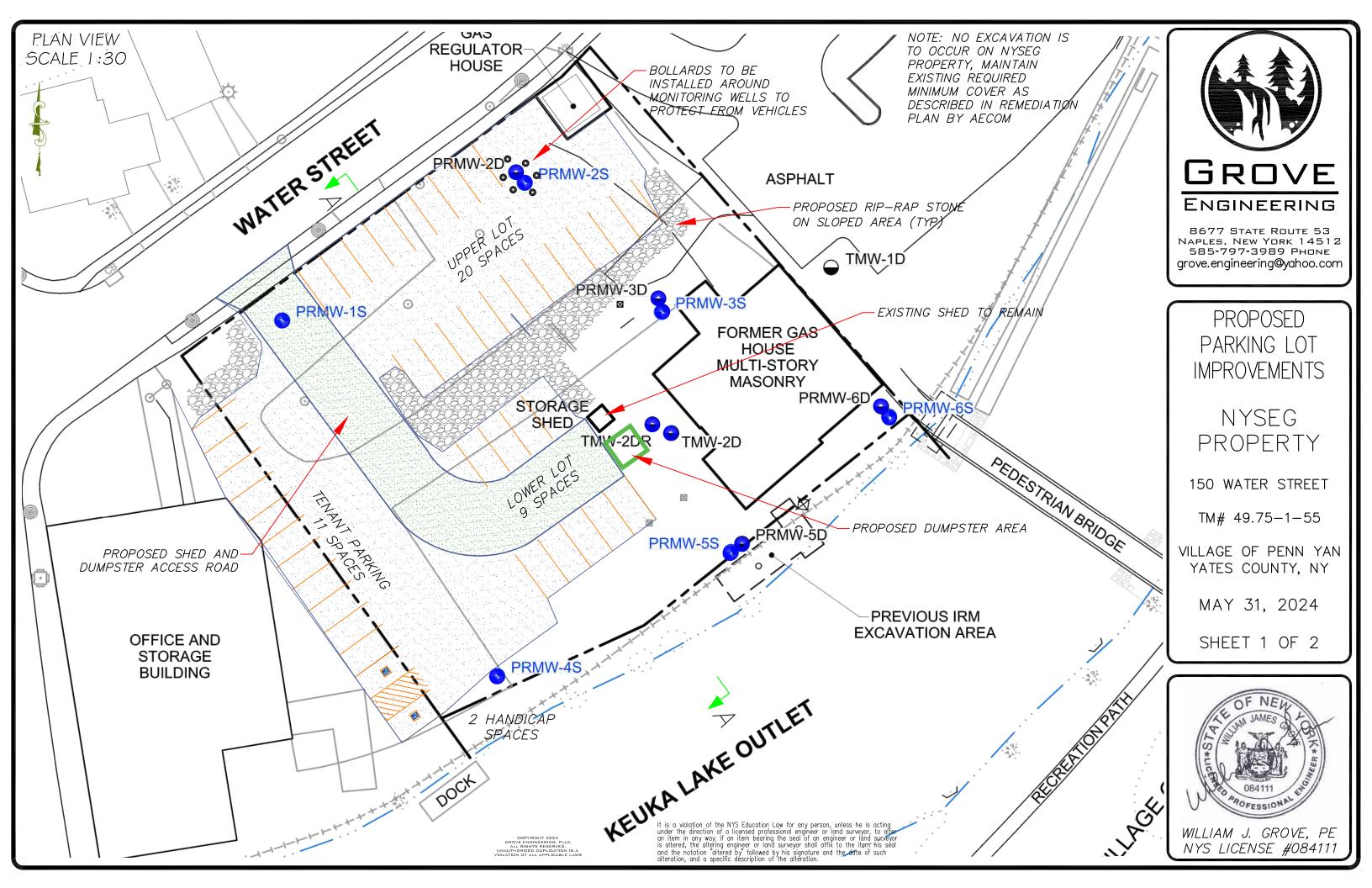
Rosato Project

150 Water Street Village of Penn Yam Yates County, New York

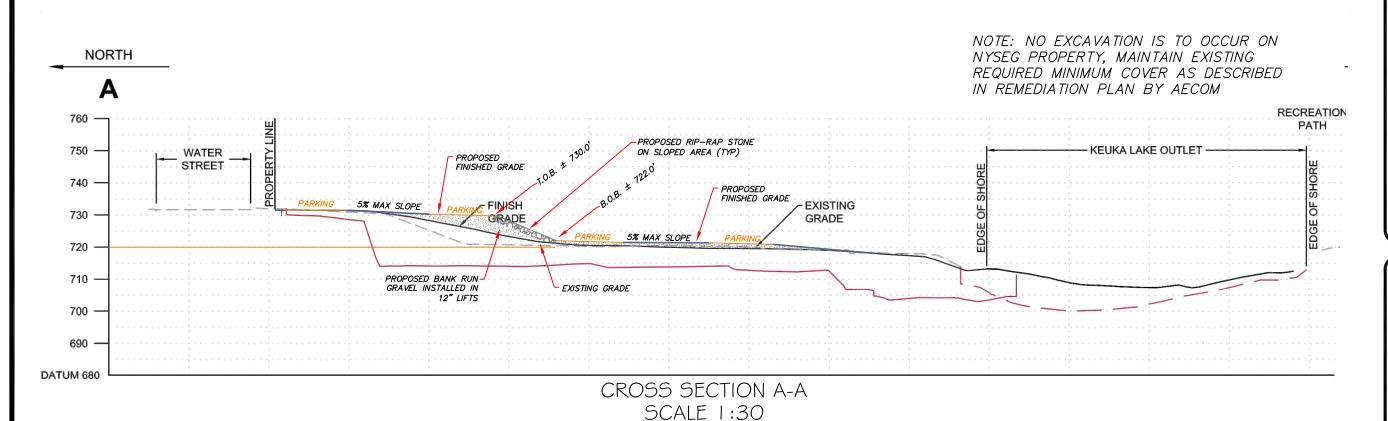
### Project Narrative

Cindy B. Rosato intends to hire Mike Morehouse to install gravel and rip-rap stone to be able to utilize the existing NYSEG remediation site at 150 Water Street in the Village of Penn Yan as an expanded parking area to serve the building she owns and operates at 111 Liberty Street. The parking area will consist of two terraces of parking, with the top terrace having 20 spaces and the lower terrace having 9 spaces.

Access will be maintained to the existing monitoring wells and storage shed on the property.


Materials used to construct the proposed parking area will be screened gravel and bank run gravel sourced from Mike Morehouse's gravel pit located at 895 Rice Road in Himred, NY, DEC Mine #80856. A geotextile fabric, Mirafi 500X or equal, will be installed under the parking and driveway areas.

The proposed rip-rap stone sloped area will consist of approximately 24" of 4-12" cobble stone rip-rap sourced from Mike Morehouse's gravel pit located at 895 Rice Road in Himrod, NY, DEC Mine #80856.


No exeavation will occur on the NYSEG property. Proposed work will not adversely affect the two-foot soil cover that is acting as an engineering countrol to reduce the potential for exposure to potentially impacted soils beneath, as described in the remediation plan prepared by AECOM.

# **Attachment 2**

**Design Drawing and Profile** 





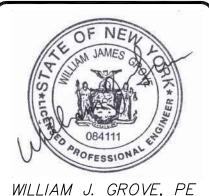




8677 STATE ROUTE 53
NAPLES, NEW YORK 14512
585-797-3989 PHONE
grove.engineering@yahoo.com

PROPOSED
PARKING LOT
IMPROVEMENTS

NYSEG PROPERTY


150 WATER STREET

TM# 49.75-1-55

VILLAGE OF PENN YAN YATES COUNTY, NY

MAY 31, 2024

SHEET 2 OF 2



WILLIAM J. GROVE, PE NYS LICENSE #084111

COPYRIGHT 2024 GROVE ENGINEERING, PLLC ALL RIGHTS RESERVED. NAUTHORIZED DUPLICATION IS A It is a violation of the NYS Education Law for any person, unless he is acting under the direction of a licensed professional engineer or land surveyor, to after an item in any way. If an item bearing the seal of an engineer or land surveyor is altered, the altering engineer or land surveyor shall affix to the item his seal and the notation "altered by" followed by his signature and the date of such alteration, and a specific description of the alteration.

# **Attachment 3**

**Request to Import Forms and Supporting Information** 



# NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION



## Request to Import/Reuse Fill or Soil

\*This form is based on the information required by DER-10, Section 5.4(e) and 6NYCRR Part 360.13. Use of this form is not a substitute for reading the applicable regulations and Technical Guidance document.\*

| SECTION 1 – SITE BACKGROUND                                                                                                                                              |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| The allowable site use is: Restricted Residential Use Material: Bank Run                                                                                                 |  |  |  |
| Have Ecological Resources been identified? no                                                                                                                            |  |  |  |
| Is this soil originating from the site? no                                                                                                                               |  |  |  |
| How many cubic yards of soil will be imported/reused? 300-400                                                                                                            |  |  |  |
| If greater than 1000 cubic yards will be imported, enter volume to be imported:                                                                                          |  |  |  |
| CECTION A MATTERIAL OTHER THAN CON                                                                                                                                       |  |  |  |
| SECTION 2 – MATERIAL OTHER THAN SOIL                                                                                                                                     |  |  |  |
| Is the material to be imported gravel, rock or stone? yes                                                                                                                |  |  |  |
| Does it contain less than 10%, by weight, material that passes a size 100 sieve? yes                                                                                     |  |  |  |
| Is this virgin material from a permitted mine or quarry? yes                                                                                                             |  |  |  |
| Is this material recycled concrete or brick from a DEC registered processing facility? no                                                                                |  |  |  |
|                                                                                                                                                                          |  |  |  |
| SECTION 3 - SAMPLING                                                                                                                                                     |  |  |  |
| Provide a brief description of the number and type of samples collected in the space below:                                                                              |  |  |  |
| Per DER-10 Section 5.4(e)5, chemical testing is not required for import of virgin stone containing an average of less than 10 percent by weight passing a No. 100 sieve. |  |  |  |
| Example Text: 5 discrete samples were collected and analyzed for VOCs. 2 composite samples were collected and analyzed for SVOCs, Inorganics & PCBs/Pesticides.          |  |  |  |
| If the material meets requirements of DER-10 section 5.4(e)5 (other material), no chemical testing needed.                                                               |  |  |  |

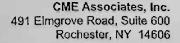
| SECTION 3 CONT'D - SAMPLING                                                                                        |    |  |
|--------------------------------------------------------------------------------------------------------------------|----|--|
| Provide a brief written summary of the sampling results or attach evaluation tables (compare to DER-1 Appendix 5): | 0, |  |
| Sieve results are attached.                                                                                        |    |  |
|                                                                                                                    |    |  |
|                                                                                                                    |    |  |
|                                                                                                                    |    |  |
|                                                                                                                    |    |  |
|                                                                                                                    |    |  |
|                                                                                                                    |    |  |
| Example Text: Arsenic was detected up to 17 ppm in 1 (of 5) samples; the allowable level is 16 ppm.                |    |  |
| If Ecological Resources have been identified use the "If Ecological Resources are Present" column in Appendix 5.   |    |  |
|                                                                                                                    |    |  |
| SECTION 4 – SOURCE OF FILL                                                                                         |    |  |
| Name of person providing fill and relationship to the source:                                                      |    |  |
| Mike Morehouse, Owner, Morehouse Gravel                                                                            |    |  |
| Location where fill was obtained:                                                                                  |    |  |
| 895 Rice Road, Himrod, NY 14842                                                                                    |    |  |
| Identification of any state or local approvals as a fill source:                                                   |    |  |
| DEC Mine #80856                                                                                                    |    |  |
| If no approvals are available, provide a brief history of the use of the property that is the fill source:         |    |  |
|                                                                                                                    |    |  |
|                                                                                                                    |    |  |
|                                                                                                                    |    |  |
| Provide a list of supporting documentation included with this request:                                             |    |  |
| State of New York Quarry/Mine Permit                                                                               |    |  |
| Sieve Analysis                                                                                                     |    |  |

Revised April 2023

The information provided on this form is account and complete.

Mike Morehouse

6/4/24


Date

Mike Morehouse

Print Name

Morehouse Gravel

Firm





# **Material Test Report**

Client:

Morehouse Gravel

CC:

Ethel Barrera-Vasquez Miko Morehouse

Project:

2400228 - 2024 Laboratory Testing Services

Location:

Rochester, NY

Report ID: MAT:03-24-1510-02 Issue No: 1

This issue replaces all provious issues of this report

This report and the results contained herein are the exclusive property of CME Associates, Inc. and shall only be reproduced in full when written consent is provided by CME Associates, Inc.

Submitted By:

Peter Schedel, Division Manager / MSI 5/31/2024

Limits

Date of Issue:

## Sample Details

Sample ID

03-24-1510-02

**Date Sampled** 

5/21/2024

Material

Bank Run Gravel

## **Particle Size Distribution ASTM C136**

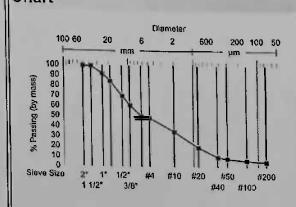
Method:

Drying By:

None

Date Tested: 5/30/2024

Tested By:


Michael Bedet

## Other Test Results

| Description | Method     | Result | Limits |
|-------------|------------|--------|--------|
| Cu          | ASTM D2487 | 21.38  |        |
| Cc          |            | 0.59   |        |
| Procedure   | ASTM C117  | А      |        |

| Sieve Size | % Passing |
|------------|-----------|
| 2in        | 100       |
| 11∕₂in     | 100       |
| 1in        | 92        |
| ¾in        | 85        |
| 1∕₂in      | 70        |
| 3/8in      | 62        |
| ¼in        | 50        |
| No.4       | 49        |
| No.10      | 35        |
| No.20      | 20        |
| No.40      | 10        |
| No.50      | 8         |
| No.100     | 6         |
| No.200     | 5.1       |

## Chart



## Comments

N/A

The New York State
Department of Environmental Conservation
has issued a

# **MINING PERMIT**

pursuant to the Environmental Conservation Law for the mining operation being conducted on this site. For more information regarding the nature and extent of work approved, contact the Mined Land Reclamation Specialist shown below. Please refer to the mine file number shown when contacting the DEC.

Mine File Humber 80856 Permit Expiration Date 7-27-2019

**DEC Contact** 

**Phone Numb** 

M. Army, NYSO C Minerals

NOTE: THIS IS



# NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION



## Request to Import/Reuse Fill or Soil

\*This form is based on the information required by DER-10, Section 5.4(e) and 6NYCRR Part 360.13. Use of this form is not a substitute for reading the applicable regulations and Technical Guidance document.\*

| SECTION 1 – SITE BACKGROUND                                                                                                                                                                                                |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| The allowable site use is: Restricted Residential Use  Have Ecological Resources been identified? no  Material: Screened Gravel                                                                                            |  |  |  |
| Is this soil originating from the site? no                                                                                                                                                                                 |  |  |  |
| How many cubic yards of soil will be imported/reused? 500-800                                                                                                                                                              |  |  |  |
| If greater than 1000 cubic yards will be imported, enter volume to be imported:                                                                                                                                            |  |  |  |
| SECTION 2 – MATERIAL OTHER THAN SOIL                                                                                                                                                                                       |  |  |  |
| Is the material to be imported gravel, rock or stone? yes                                                                                                                                                                  |  |  |  |
| Does it contain less than 10%, by weight, material that passes a size 100 sieve? no                                                                                                                                        |  |  |  |
| Is this virgin material from a permitted mine or quarry? yes                                                                                                                                                               |  |  |  |
| Is this material recycled concrete or brick from a DEC registered processing facility? no                                                                                                                                  |  |  |  |
|                                                                                                                                                                                                                            |  |  |  |
| SECTION 3 - SAMPLING                                                                                                                                                                                                       |  |  |  |
| Provide a brief description of the number and type of samples collected in the space below:                                                                                                                                |  |  |  |
| Proposing not to collect analytical samples per DER-10 Section 5.4(e)5. Sieve results indicate exactly 10                                                                                                                  |  |  |  |
| percent by weight passed the No. 100 sieve. The Screened Gravel source is virgin Bank Run Gravel (glacial in origin) that is screened to limit the amount of larger sized components. Please see the import form and sieve |  |  |  |
| results for the Bank Run Gravel (where less than 10 percent by weight passed the No. 100 sieve).                                                                                                                           |  |  |  |
|                                                                                                                                                                                                                            |  |  |  |
|                                                                                                                                                                                                                            |  |  |  |
|                                                                                                                                                                                                                            |  |  |  |
| Example Text: 5 discrete samples were collected and analyzed for VOCs. 2 composite samples were collected and analyzed for SVOCs, Inorganics & PCBs/Pesticides.                                                            |  |  |  |
| If the material meets requirements of DER-10 section 5.4(e)5 (other material), no chemical testing needed.                                                                                                                 |  |  |  |

| SECTION 3 CONT'D - SAMPLING                                                                                        |    |  |
|--------------------------------------------------------------------------------------------------------------------|----|--|
| Provide a brief written summary of the sampling results or attach evaluation tables (compare to DER-1 Appendix 5): | 0, |  |
| Sieve results are attached.                                                                                        |    |  |
|                                                                                                                    |    |  |
|                                                                                                                    |    |  |
|                                                                                                                    |    |  |
|                                                                                                                    |    |  |
|                                                                                                                    |    |  |
|                                                                                                                    |    |  |
| Example Text: Arsenic was detected up to 17 ppm in 1 (of 5) samples; the allowable level is 16 ppm.                |    |  |
| If Ecological Resources have been identified use the "If Ecological Resources are Present" column in Appendix 5.   |    |  |
|                                                                                                                    |    |  |
| SECTION 4 – SOURCE OF FILL                                                                                         |    |  |
| Name of person providing fill and relationship to the source:                                                      |    |  |
| Mike Morehouse, Owner, Morehouse Gravel                                                                            |    |  |
| Location where fill was obtained:                                                                                  |    |  |
| 895 Rice Road, Himrod, NY 14842                                                                                    |    |  |
| Identification of any state or local approvals as a fill source:                                                   |    |  |
| DEC Mine #80856                                                                                                    |    |  |
| If no approvals are available, provide a brief history of the use of the property that is the fill source:         |    |  |
|                                                                                                                    |    |  |
|                                                                                                                    |    |  |
|                                                                                                                    |    |  |
| Provide a list of supporting documentation included with this request:                                             |    |  |
| State of New York Quarry/Mine Permit                                                                               |    |  |
| Sieve Analysis                                                                                                     |    |  |

Revised April 2023

The information provided on this form is account and complete.

Mike Morehouse

6/4/24

Date

Mike Morehouse

Print Name

Morehouse Gravel

Firm



CME Associates, Inc. 491 Elmgrove Road, Suite 600 Rochester, NY 14606

Material Test Report

Client:

Project:

Morehouse Gravel

CC: Ethel Barrera-Vasquez Mike Morehouse

2400228 - 2024 Laboratory Testing Services

Location: Rochester, NY

Report ID: MAT:03-24-1510-01 Issue No: 1

This issue replaces all previous issues of this report

This report and the results contained herein are the exclusive property of CME Associates, inc. and shall only be reproduced. In full when written consent is provided by CME Associates, Inc.

PARILL

Submitted By: Date of Issue:

Peter Schedel, Division Manager / MSI

Limits

5/31/2024

Sample Details

Sample ID
Date Sampled

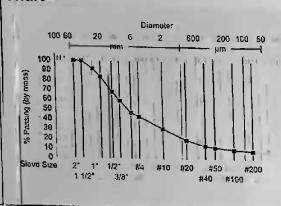
03-24-1510-01 5/21/2024

Material

Screened Gravel

Particle Size Distribution

Method: ASTM C136 Drying By: None Date Tested: 5/30/2024


Tested By: Michael Bedet

Sieve Size % Passing 2in 100 11/2in 100 1in 92 3/4in 84 1/2in 68 3/8in 59 1/ain 47 No.4 44 No.10 31 No.20 20 No.40 14 No.50 12 No.100 10 No.200 8.9

Other Test Results

| Description | Method     | Result | Limits |
|-------------|------------|--------|--------|
| Cu          | ASTM D2487 | 74.70  |        |
| Cc          |            | 2.65   |        |
| Procedure   | ASTM C117  | Α      |        |

Chart



Comments

4 No. MAT.03-24-1510-01

N/A

The New York State
Department of Environmental Conservation
has issued a

# **MINING PERMIT**

pursuant to the Environmental Conservation Law for the mining operation being conducted on this site. For more information regarding the nature and extent of work approved, contact the Mined Land Reclamation Specialist shown below. Please refer to the mine file number shown when contacting the DEC.

Mine File Humber 80856 Permit Expiration Date 7-27-2019

**DEC Contact** 

**Phone Numb** 

M. Army, NYSO C Minerals

NOTE: THIS IS



# NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION



## Request to Import/Reuse Fill or Soil

\*This form is based on the information required by DER-10, Section 5.4(e) and 6NYCRR Part 360.13. Use of this form is not a substitute for reading the applicable regulations and Technical Guidance document.\*

| SECTION 1 – SITE BACKGROUND                                                                                                                |                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| The allowable site use is: Restricted Residential Use Have Ecological Resources been identified? no                                        | Material: Rip Rap               |
| Is this soil originating from the site? no                                                                                                 |                                 |
| How many cubic yards of soil will be imported/reused? 100-200                                                                              |                                 |
| If greater than 1000 cubic yards will be imported, enter volume to be im                                                                   | ported:                         |
| SECTION 2 – MATERIAL OTHER THAN SO                                                                                                         | DIL .                           |
| Is the material to be imported gravel, rock or stone? yes                                                                                  |                                 |
| Does it contain less than 10%, by weight, material that passes a size 100 sieve?                                                           | yes                             |
| Is this virgin material from a permitted mine or quarry? yes                                                                               |                                 |
| Is this material recycled concrete or brick from a DEC registered processing fac                                                           | cility? no                      |
| SECTION 3 - SAMPLING                                                                                                                       |                                 |
| Provide a brief description of the number and type of samples collected in the s                                                           | pace below:                     |
| Per DER-10 Section 5.4(e)5, chemical testing is not required for import of virg of less than 10 percent by weight passing a No. 100 sieve. | in stone containing an average  |
| Example Texts: 5 discrete samples were collected and analyzed for WOCs. 2 composite samples SWOCs, Inonganius & PCBs/Pesticides.           | were collected and analyzed for |
| If the material meets requirements of DER-10 section 5.4(e)5 (wither material), no chemical tes                                            | ting needed                     |

| SECTION 3 CONT'D - SAMPLING                                                                                          |
|----------------------------------------------------------------------------------------------------------------------|
| Provide a brief written summary of the sampling results or attach evaluation tables (compare to DER-10, Appendix 5): |
| No sieve analysis required and the minimum particle size of the rip-rap stone is approximately 4 inches in diameter. |
|                                                                                                                      |
| Example Text: Arsenic was detected up to 17 ppm in 1 (of 5) samples; the allowable level is 16 ppm.                  |
| If Ecological Resources have been identified use the "If Ecological Resources are Present" column in Appendix 5.     |
| SECTION 4 – SOURCE OF FILL                                                                                           |
| Name of person providing fill and relationship to the source:                                                        |
| Mike Morehouse, Owner, Morehouse Gravel                                                                              |
| Location where fill was obtained:                                                                                    |
| 895 Rice Road, Himrod, NY 14842                                                                                      |
| Identification of any state or local approvals as a fill source:                                                     |
| DEC Mine #80856                                                                                                      |
| If no approvals are available, provide a brief history of the use of the property that is the fill source:           |
|                                                                                                                      |
| Provide a list of supporting documentation included with this request:                                               |
| State of New York Quarry/Mine Permit                                                                                 |
|                                                                                                                      |

Mike Morehouse

Print Name

Morehouse Gravel

Firm

The information provided on this form is accurate and complete.

The New York State
Department of Environmental Conservation
has issued a

# **MINING PERMIT**

operation being conducted on this site. For more information regarding the nature and extent of work approved, contact the Mined Land Reclamation Specialist shown below. Please refer to the mine file number shown when contacting the DEC.

Mine File Number

Permit Expiration Date 7-27-2019

**DEC Contact** 

Phone Numb

M. Army, NYSO C Minerals

NOTE: THIS IS NOT A PERMIT

#### NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Remedial Bureau C 625 Broadway, 12th Floor, Albany, NY 12233-7014 P: (518) 402-9662 | F: (518) 402-9722 www.dec.ny.gov

Mr. John Ruspantini New York State Electric and Gas 18 Link Dr, Binghamton, New York 13904 Binghamton, NY 13902-5224

Re: Proposed Parking Lot Improvements and Request to Import Material.

Dear: Mr Ruspantini,

The Department has reviewed the proposed work plan (July 10,2024) and included soil import forms for the proposed parking areas.

The Department approves of the work plan and will not require analytical testing of the imported materials.

Sincerely,

Gerald Pratt P.G.

Section Chief,Remedial Bureau C Division of Environmental Remediation

Genell Pratto

ec: N. Beyrle (Arcadis)

Cindy B. Rosato (cindybrosato@gmail.com)



# **Appendix I**

**2022 Restoration Monitoring Report** 



New York State Electric & Gas

# 2022 Restoration Monitoring Report

Penn Yan Former Manufactured Gas Plant Site NYSDEC Site Number: 862009

May 2023

## **2022 Restoration Monitoring Report**

Penn Yan Former Manufactured Gas Plant Site NYSDEC Site Number: 862009

May 2023

#### Prepared By:

Arcadis of New York, Inc. 100 Chestnut Street, Suite 1020 Rochester New York 14604 Phone: 585 385 0090

Fax: 585 546 1973

# Our Ref: 30126623

**Prepared For:** 

New York State Electric & Gas 18 Link Drive Binghamton New York 13904

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

## **Contents**

| A   | cronym | ns and Abbreviations                            | ii  |
|-----|--------|-------------------------------------------------|-----|
| 1   | Intro  | oduction                                        | . 1 |
|     | 1.1    | Background                                      | . 1 |
|     | 1.2    | Objectives                                      | . 1 |
| 2   | Site   | Restoration                                     | . 3 |
| 3   | Res    | toration Monitoring and Sampling                | . 4 |
|     | 3.1    | Assessment Methods                              | . 4 |
|     | 3.2    | Performance Criteria                            | . 4 |
|     | 3.3    | Monitoring Activities and Results               | . 5 |
|     | 3.3.1  | l Vegetation Monitoring                         | . 5 |
|     | 3.3    | 3.1.1 Herbaceous Ground Cover                   | 5   |
|     | 3.3    | 3.1.2 Shrubs                                    | 5   |
|     | 3.3    | 3.1.3 Trees                                     | 6   |
|     | 3.3    | 3.1.4 Aquatic Vegetation                        | 6   |
|     | ,      | 3.3.1.4.1 Aquatic Vegetation Area 1             | 6   |
|     | ,      | 3.3.1.4.2 Aquatic Vegetation Area 2             | 6   |
|     | ,      | 3.3.1.4.3 Aquatic Vegetation Area 3             | 6   |
|     | ;      | 3.3.1.4.4 Aquatic Vegetation Area 4             | 7   |
|     | ,      | 3.3.1.4.5 Aquatic Vegetation Area 5             | 7   |
|     | ;      | 3.3.1.4.6 Aquatic Vegetation Area 6             | 7   |
|     | ;      | 3.3.1.4.7 Aquatic Vegetation Summary            | 7   |
| , , |        | 2 Restored Riverbank Qualitative Assessment     | . 7 |
|     | 3.3.3  | 3.3.3 Benthic Invertebrate Community Assessment |     |
|     | 3.3.4  |                                                 |     |
| 4   | Rec    | ommended Corrective Actions                     |     |
| 5   | Con    | iclusions                                       | 11  |
| 6   | Refe   | erences                                         | 12  |

## **Tables**

- Table 1 Cover Class System
- Table 2a Upland Vegetation Quadrat Data
- Table 2b Bank Vegetation Monitoring Quadrat Data
- Table 3a Submerged Aquatic Vegetation Area 1
- Table 3b Submerged Aquatic Vegetation Area 2
- Table 3c Submerged Aquatic Vegetation Area 3
- Table 3d Submerged Aquatic Vegetation Area 4
- Table 3e Submerged Aquatic Vegetation Area 5
- Table 3f Submerged Aquatic Vegetation Area 6
- Table 4a Benthic Community Monitoring Petite Ponar Dredge Data Cell 1-B
- Table 4b Benthic Community Monitoring Petite Ponar Dredge Data Cell 2-B
- Table 4c Benthic Community Monitoring Petite Ponar Dredge Data Cell 3-B
- Table 4d Benthic Community Monitoring Petite Ponar Dredge Data Cell 4-B
- Table 4e Benthic Community Monitoring Petite Ponar Dredge Data Cell 5A-B
- Table 4f Benthic Community Monitoring Petite Ponar Dredge Data Cell 5B-B
- Table 4g Benthic Community Monitoring Petite Ponar Dredge Data Cell 6A-B
- Table 4h Benthic Community Monitoring Petite Ponar Dredge Data Cell 6B-B

## **Figures**

- Figure 1 SLM
- Figure 2 Restoration Areas
- Figure 3 2022 Vegetation Monitoring Locations
- Figure 4 2022 Benthic Monitoring Locations

## **Appendices**

**Appendix A – Restoration Monitoring Photographs** 

# **Acronyms and Abbreviations**

EPT Ephemeroptera, Plecoptera, Trichoptera

HBI Hilsenhoff biotic index

MGP Manufactured Gas Plant

NYSDEC New York State Department of Environmental Conservation

RD Remedial Design Report

SAV submerged aquatic vegetation

Site Penn Yan Former Manufactured Gas Plant Site

## 1 Introduction

This Restoration Monitoring Report summarizes the 2022 Restoration Monitoring results for the restored upland, bank, and aquatic portions of the New York State Electric & Gas Penn Yan Former Manufactured Gas Plant (MGP) Site (Site). The Site is located on Water Street between Liberty Street and Main Street and the Keuka Lake Outlet in the Village of Penn Yan, Town of Milo, Yates County, New York (Figure 1).

The Restoration Plan (Remedial Design Report [RD] Appendix G [AECOM 2015]) requires post-construction monitoring and maintenance of the restored upland, bank, and submerged aquatic vegetation (SAV) beds to evaluate restoration performance and to identify proposed maintenance and/or corrective actions (if necessary) to remain compliant. This report summarizes the data collected during the August 30-31, 2022 Restoration Monitoring event.

## 1.1 Background

The Site is approximately 0.815 acres and comprises a vacant masonry building, 2 feet of grass-covered soil (meeting restricted-residential use soil cleanup objectives [6 New York Codes, Rules, and Regulations Part 375-6.7(d)]), an asphalt driveway and parking area, and a riparian area along the Keuka Lake Outlet. The off-site project area, which is adjacent and downstream of the Site, comprises approximately 1.7 acres of submerged sediments beneath the Keuka Lake Outlet (Class C waterway) restored with a 6-inch-thick geoweb infilled with 1 inch of AquaGate® overlain by 5 inches of Aquablok® and a minimum of 1 foot of clean soil (AECOM 2023).

AECOM completed the Site remedy between July 2015 and May 2020 in accordance with the New York State Department of Environmental Conservation (NYSDEC)-approved RD for the Site (AECOM 2015) and Design Modifications 001-004 (AECOM 2016 a, b and 2018a,b).

The Restoration Plan (RD Appendix G [AECOM 2015]) requires post-construction monitoring, maintenance, and reporting of the restored upland (approximately 0.76 acres), restored bank (approximately 1,800 square feet along the Keuka Lake Outlet), and restored SAV and near-shore emergent vegetation beds (collectively known as aquatic vegetation) (remediated sediment area within the Keuka Lake Outlet; approximately 1.7 acres) shown on Figure 2. The Restoration Plan specified annual monitoring during each of the first five full growing seasons following Site restoration construction and annual reports to assess vegetative community recovery. AECOM completed upland, bank, and aquatic vegetation restoration per the Restoration Plan by July 2, 2020, with any deviations detailed in the Final Engineering Report (AECOM 2023).

Additionally, the Interim Site Management Plan (AECOM 2020) stated that a one-time, post-remediation inspection to assess biotic community reestablishment within the Keuka Lake Outlet remediated area would be performed prior to the first Periodic Review Report.

## 1.2 Objectives

The objectives of this report are to:

- Summarize Site restoration;
- Summarize Site restoration evaluation methods:

#### 2022 Restoration Monitoring Report

- Summarize the restoration monitoring data collected and compare the data/observations to the performance metrics;
- Evaluate the Keuka Lake Outlet restored bank stability;
- · Assess benthic community reestablishment in the Keuka Lake Outlet remediated areas; and
- Summarize the completed and/or recommended corrective actions and proposed future restoration monitoring.

To document achieving the objectives, this report presents:

- Site-wide data collected during the 2022 Restoration Monitoring event; and
- Conclusions and monitoring modification recommendations, as appropriate.

## 2 Site Restoration

In general, the RD (AECOM 2015) required post-remediation vegetative cover material installation to reestablish the upland, bank, and aquatic Site areas shown on Figure 2. The remediation contractor restored the upland on August 21, 2019 and bank September 19-20, 2019 by placing a clean soil layer and applying a riparian seed mix to establish a native vegetation cover. In addition to the riparian seed mix, the bank restoration included planting the following within the approximately 1,800-square-foot area:

- Five shrub species (gray dogwood [Cornus racemosa], red-osier dogwood [Cornus stolonifera], pussy willow [Salix discolor], speckled alder [Alnus rugosa], and elderberry [Sambucus canadensis]) for a total of 25 shrubs, which were installed on December 13, 2019; and
- Three trees (two black walnut [Juglans nigra] and one silver maple [Acer saccharinum]), which were installed on July 2, 2020.

The remediation contractor planted SAV and near-shore emergent vegetation beds from June 21 through July 12, 2017, and May 27 to 28, 2020, within six near-shore areas covering approximately 1.7 acres (AECOM 2023). More than 18,000 individual plant plugs comprising five aquatic plant species were installed between 2017 and 2020 and included white water lily (*Nymphaea odorata*), long-leaved pondweed (*Potamogeton nodosus*), common arrowhead (*Sagittaria latifolia*), soft-stem bulrush (*Schoenoplectus tabernaemontani*), and wild celery (*Valisneria americana*). SAV restoration area limits are shown on Figure 2.

## 3 Restoration Monitoring and Sampling

Arcadis conducted 2022 Site upland, bank, and aquatic restoration monitoring that included the following:

- Quantitative total percent vegetation cover evaluation within the upland, bank, and restored SAV and nearshore emergent vegetation beds;
- Tree and shrub survival evaluation;
- Restored riverbank stability qualitative assessment;
- Benthic community sampling and assessment; and
- Wildlife observations.

## 3.1 Assessment Methods

Arcadis conducted vegetative cover quantitative assessments by placing a 1-square-meter quadrat at three random locations within both the seeded upland and bank Site areas, and five quadrats along a representative transect within each SAV and near-shore emergent vegetation bed planting area (Figure 3) to assess:

- Overall vegetative cover;
- · Percent coverage by species;
- Predominant species observed;
- Invasive species observations; and
- · Signs of stress or herbivory impacts.

Individual shrub and tree counts were performed to assess survivability. The restored riverbank was evaluated for evidence of significant erosion, excessive settlement, and/or drainage issues that may impact the riverbank stability. A petite ponar dredge was used to collect invertebrate samples to assess benthic community reestablishment within the restored channel bottom substrates installed in the Keuka Lake Outlet remediated sediment cells. Direct habitat and wildlife observations were made to assess the general wildlife community and the restored habitat's ability to support aquatic life and other wildlife.

## 3.2 Performance Criteria

The performance criteria specified in the Restoration Plan (RD Appendix G [AECOM 2015]) for the second year of monitoring (i.e., 2022) are as follows:

- 95% minimum vegetative cover;
- 100% tree and shrub survival;
- No invasive plant species currently listed as prohibited on the list of New York State Prohibited and Regulated Invasive Plants; and
- Less than 5% of any other invasive plant species not identified as prohibited.

## 3.3 Monitoring Activities and Results

Arcadis field personnel conducted the 2022 post-restoration monitoring and bank stability observation August 30-31, 2022. Monitoring activities and results are summarized in the following subsections.

## 3.3.1 Vegetation Monitoring

Arcadis performed an herbaceous ground cover, aquatic SAV cover, and tree vegetative cover quantitative assessment at the Site during the restoration monitoring event. Vegetation assessment observations and results are discussed in the following subsections.

#### 3.3.1.1 Herbaceous Ground Cover

Arcadis field personnel conducted restored upland and bank area herbaceous ground cover monitoring at three randomly placed 1-square-meter quadrat locations in each area (i.e., Figure 3 – OU-1 through OU-3 and BK-1 through BK-3). Individual observed species were counted to provide the overall species richness (i.e., total number of species present within the vegetated habitat) and assigned an individual species cover. Total percent cover was visually estimated, using a cover class system (Table 1) based on the Daubenmire system (Barbour et al 1999), for each species identified in each quadrat. This revised cover class system provides a refined percent cover estimation by adding two cover classes and modifying the cover percentage range into seven classes. The percent cover type was also visually estimated for each quadrat by assigning an absolute percent cover value (ranging from 0% to 100%), as viewed from above, that does not account for overlapping cover types. Observed cover type categories included vegetation, bare soil, woody debris, and boulders/rock. This data was used to calculate target species percent cover (i.e., native species), invasive species percent cover, and total vegetation cover in the herbaceous layer.

Quadrat photographs and general Site condition photographs are included in Appendix A (see Photos 1 through 12). Summarized vegetation monitoring data by quadrat plot for the upland and bank restoration areas are provided in Table 2a and Table 2b, respectively.

Upland area quadrat results (UP-1, UP-2, and UP-3) indicate that overall vegetative cover was approximately 90%. The relative target species percent cover (i.e., native species) was approximately 48%, with the remaining 36% accounting for naturalized or introduced species. Invasive species observed within the quadrats included spotted knapweed (*Centaurea stoebe*), which accounted for approximately 5.6% of the relative percent cover. The species richness ranged from eight to nine herbaceous species observed. Birds-foot trefoil (*Lotus corniculatus*) and grass (*Poa sp.*) were the two dominant herbaceous plant species observed.

Bank area quadrat results (BK-1, BK-2, and BK-3) indicate that overall vegetative cover was approximately 98%. The relative target species percent cover was approximately 53%, with the remaining 45% accounting for naturalized or introduced species. No invasive species were observed within the quadrats. The species richness ranged from eight to 11 herbaceous species observed. Birds-foot trefoil and grass were the two dominant herbaceous plant species observed, similar to the upland results.

#### 3.3.1.2 Shrubs

Field personnel conducted a planted stock and natural recruit meander survey in the bank area during the Restoration Monitoring event. From the initial 25 shrubs planted by AECOM in 2019, 12 shrubs were alive and

remained in the restored bank area. These shrubs included four red-osier dogwood, four pussy willow, two elderberry, and two gray dogwood. No speckled alder shrub plantings were present, despite being planted during Site restoration activities. The bank area condition suggested that shrubs were trampled from human and dog usage from the surrounding public access trail.

#### 3.3.1.3 Trees

During the Restoration Monitoring event, Arcadis personnel observed two black walnut trees and one silver maple tree (i.e., consistent with the tree types that AECOM planted in 2019) in the bank area. The trees appeared to be in good health, fully leaved, and exhibited no signs of stress or herbivory. Tree photographs are included in Appendix A (see Photos 1 and 2).

## 3.3.1.4 Aquatic Vegetation

Arcadis field staff established one representative transect in each aquatic vegetation bed planting area, as shown on Figure 3. Five individual quadrats were assessed along each transect to estimate the planted and naturally occurring aquatic plant species vegetative cover and to evaluate the substrate. In addition, field personnel measured and recorded water depth and photographed each location. Tables 3a through 3f summarize observed SAV and emergent vegetation species within the six established Keuka Lake Outlet planting areas. Photographs 13-18 in Appendix A provide a representative quadrat picture from each planting area.

## 3.3.1.4.1 Aquatic Vegetation Area 1

Area 1 quadrat results (Table 3a) indicate that overall vegetative cover was approximately 63%. The relative target species percent cover was approximately 73%. Eurasian watermilfoil (*Myriophyllum spicatum*) was the only invasive species observed within the quadrats and accounted for approximately 25% of the relative cover. The species richness ranged from three to four species observed within each quadrat. Eight distinct species were observed across the Area 1 transect. Water star grass (*Heteranthera dubia*) and Eurasian watermilfoil were the two observed dominant herbaceous plant species.

## 3.3.1.4.2 Aquatic Vegetation Area 2

Area 2 quadrat results (Table 3b) indicate that overall vegetative cover was approximately 76%. The relative target species percent cover was approximately 95%. Eurasian watermilfoil was the only invasive species observed within the quadrats and accounted for approximately 5.1% of the relative cover. The species richness ranged from three to six species found within each quadrat. Seven distinct species were observed across the Area 2 transect. White water-lily (*Nymphaea odorata*) and long-leaved pondweed (*Potamogeton nodosus*) where the two observed dominant herbaceous plant species.

#### 3.3.1.4.3 Aquatic Vegetation Area 3

Area 3 quadrat results (Table 3c) indicate that overall vegetative cover was approximately 84%. The relative target species percent cover was approximately 85%. Eurasian watermilfoil was the only invasive species observed within the quadrats and accounted for approximately 16% of the relative cover. The species richness ranged from one to six species observed within each quadrat. Seven distinct species were observed across the Area 3 transect. White water-lily and long-leaved pondweed were the two observed dominant herbaceous plant species.

## 3.3.1.4.4 Aquatic Vegetation Area 4

Area 4 quadrat results (Table 3d) indicate that overall vegetative cover was approximately 68%. The relative target species percent cover was approximately 97%. Eurasian watermilfoil was the only invasive species observed within the quadrats and accounted for approximately 3.1% of the relative cover. The species richness ranged from three to four species found within each quadrat. Seven distinct species were observed across the Area 4 transect. Coontail (*Ceratophyllum demersum*) and white water-lily were the two observed dominant herbaceous plant species.

### 3.3.1.4.5 Aquatic Vegetation Area 5

Area 5 quadrat results (Table 3e) indicate that overall vegetative cover was approximately 72%. The relative target species percent cover was approximately 93%. Eurasian watermilfoil was the only invasive species observed within the quadrats and accounted for approximately 7.4% of the relative cover. The species richness ranged from two to six species found within each quadrat. Nine distinct species were observed across the Area 5 transect. Water star grass and eelgrass (*Vallisneria americana*) were the two observed dominant herbaceous plant species.

## 3.3.1.4.6 Aquatic Vegetation Area 6

Area 6 quadrat results (Table 3f) indicate that overall vegetative cover was approximately 68%. The relative target species percent cover was approximately 93%. Eurasian watermilfoil was the only invasive species observed within the quadrats and accounted for approximately 7.2% of the relative cover. The species richness ranged from four to six species found within each quadrat. Eight distinct species were observed across the Area 6 transect. Water star grass and eelgrass were the two observed dominant herbaceous plant species.

### 3.3.1.4.7 Aquatic Vegetation Summary

Aquatic vegetation results overall indicate:

- Nine distinct submerged plant species, including one invasive species (Eurasian watermilfoil) and two
  emergent species (Arrowhead [Sagittaria latifolia] and flowering rush [Butomus umbellatus]) were observed in
  the SAV planting areas.
- Four of the five planted SAV species were observed along the planting area transects. Soft-stem bulrush was
  not observed in the transect quadrats but was observed within near-shore habitats within planting areas 1, 2,
  and 6A.
- The existing SAV vegetative cover in the planting areas ranged from 63% to 84%.
- Eurasian watermilfoil presence was observed across each planting area at relative covers ranging from 3.1% to 25%. The proposed remediation areas pre-dredging baseline assessment identified a coverage dominance of Eurasian watermilfoil, indicating that this species previously inhabited the areas and is not a result of remediation (AECOM 2015).

#### 3.3.2 Restored Riverbank Qualitative Assessment

The restored bank qualitative assessment indicated that the overall vegetative cover spatial distribution was high throughout the restored bank area. Field personnel did not observe significant soil erosion or upland drainage

issues within the restored bank area. The near-shore emergent vegetation and riparian vegetation communities were observed to be healthy and well-established.

## 3.3.3 Benthic Invertebrate Community Assessment

Arcadis conducted benthic invertebrate community assessment in each restored sediment cell to determine whether the benthic community had re-colonized after remediation and backfilling. Field personnel collected a representative petite ponar grab sample within each restored sediment cell. Samples were collected in substrates that allowed enough surface penetration to obtain a suitable sample for resident benthic organism taxonomic identification. Sample locations are shown on Figure 4. Samples were sieved and processed in the field, preserved with isopropanol, and sent to Normandeau Associates in Stowe, Pennsylvania, for identification and enumeration.

Restored substrates observed during sampling are a mix of predominately fine to coarse gravels with sands and silts. Organic materials include varying amounts of both fine and coarse particulate organic matter (i.e., leaf fragments, detritus, woody debris) and shell fragments (primarily zebra mussels and snail shells). Depositional silts and finer organic materials were observed in higher percentages within the shoreline of Cell 6A and Cell 2 when compared to sample locations in other cells. The remaining restored sediment cells had less fine-grained material and were typically composed of fine to coarse gravels and sand. Representative substrate photographs are included in Appendix A (Photographs 19 through 22).

The benthic community taxonomy results are provided in Tables 4a through 4h and indicate re-colonization has occurred within the Keuka Outlet remediated areas as invertebrates were observed in each of the samples. Similar to typical lake outlet waters, several benthic organism orders were more prevalent, including Tubificida (aquatic worms), Gastropoda (aquatic snails), and Chironomidae (midge larvae).

Chironomidae (midges) were the most observed organism, comprising an approximate 40% average of the invertebrate population across the eight restored sediment cells. Midges were most common in Cell 6A and Cell 2, comprising 71% and 65% of the benthic invertebrate samples, respectively, due to a higher frequency of observed soft substrates (i.e., silts and clays) in these cells. Gastropoda and Tubificida averaged approximately 11% and 6% of the community within the six restored sediment cells, respectively. In addition to these benthic organism orders, freshwater bivalves species (Veneroidea), including pill clams and zebra mussels, were relatively abundant, comprising an approximate 13% average of the community across the restored sediment cells.

Several community metrics were derived from each sample to facilitate comparing results, as summarized below:

- <u>Species richness</u> Species richness ranged from 8 to 25, with an average of 20, which is within the index range of 7 to 24 for similar outlet waters (NYSDEC 2021).
- <u>EPT richness</u> EPT richness was low and ranged from 0 to 2, with an average of 1, which is within the index range of 0 to 12 (NYSDEC 2021). Lake outlet waters that receive cold-water hypolimnion releases tend to interfere with the life cycles of Ephemeroptera, Plecoptera, Trichoptera (EPT) species such as mayflies, stoneflies, and caddisflies (NYSDEC 2021). As a result, these species are not as common in lake outlet locations.
- Hilsenhoff biotic index (HBI) HBI measures an organism's potential to tolerate perturbation (i.e., nutrient loading or other pollution) and typically is a water quality indicator. A low HBI indicates organisms have a low tolerance to perturbation and, therefore, indicates a higher water quality. HBI observed within the restored

- sediment cells ranged from 6.26 to 7.38, with an average of 6.75, which is within the index range of 4.48 to 8.22 (NYSDEC 2021).
- <u>Percent model affinity</u> The percent model affinity is a metric used to compare how similar a study site is with respect to a model non-impacted community and is based on the percent abundance of seven major macroinvertebrate groups (Novak and Bode 1992). The higher the percentage, the less potentially impacted the site. The restored sediment cell benthic community samples ranged from 39% to 71%, with an average of 58%, which is within the index range of 24% to 67% (NYSDEC 2021).

Overall, the benthic community results indicate successful restored sediment substrate re-colonization and the identified invertebrate community results are within the expected ranges for this type of system (i.e., lake outlet waters) in New York State.

## 3.3.4 Aquatic Wildlife Observations

Several sunfish species (i.e., bluegill and pumpkinseed), along with larger macroinvertebrates (i.e., crayfish), were observed within the near-shore SAV areas during the Restoration Monitoring event. Limited on-site wildlife was observed during the monitoring event; however, the near-shore habitat and observed ample aquatic vegetation would support both passerine bird species and common migratory birds, such as waterfowl and herons. Pioneering species and those planted during Site restoration work are performing well to provide a diverse aquatic habitat for fish cover and wildlife.

## 4 Recommended Corrective Actions

The following corrective actions are recommended to meet the desired performance standards detailed in the Restoration Plan:

- Plant 13 replacement shrubs in the fall of 2023 to achieve 25 total shrubs planted and alive and meet the 100% survival performance standard requirement in the RD (AECOM 2015). Considering the lack of speckled alder and very few gray dogwood, the 13 replacement shrubs should comprise pussy willow, elderberry, and red-osier dogwood.
- Overseed the upland area. Vegetative cover in the upland area is relatively stable at 90% but is slightly less than the 95% performance standard for this restored area. Overseeding using an upland seed mix similar to the one used during restoration activities should be applied in the fall of 2023, at a rate of 30 pounds per acre, to fill in any thin patches observed. Additionally, spotted knapweed observed in the upland restoration area may require maintenance and control during future visits, as its presence is slightly greater than 5%. This will continue to be monitored and, if needed, manual plant removal during late spring of 2024 will be recommended to target this species.

## 5 Conclusions

Overall, the 2022 Restoration Monitoring results indicate satisfactory vegetative cover that is supporting achieving the restoration objectives identified in the Restoration Plan (RD Appendix G [AECOM 2015]). Specific recommendations to meet the desired performance standards detailed in the Restoration Plan metrics (number of planted species alive, etc.) are provided in Section 4.

The restored upland area was stable with no observed erosion and exhibited a high vegetative cover spatial distribution. The restored bank area was stable and had a diverse mix of seeded species, along with some remaining planted shrubs within the understory. Three trees planted along the bank were healthy and did not exhibit signs of stress. Similar to the baseline assessment, SAV beds within the Keuka Lake Outlet indicated a diverse native and non-native species community. Invasive Eurasian watermilfoil was observed at a lower frequency/coverage relative to the baseline assessment when it was observed to be a dominant species in most areas identified for remediation. Biological drift from upstream plants within the Keuka Lake Outlet would make it difficult to meet the desired performance standard for invasive aquatic species control. Aquatic life and potential wildlife use is supported by upland, bank, and aquatic restoration areas, which provide in-water shelter and food, along with near-shore vegetation for nesting and cover. Benthic community sampling results indicated that the restored sediment areas have been re-colonized, and the community is similar to what would be expected in lake outlet waters observed in New York State.

Invasive Eurasian watermilfoil was observed in the restored SAVs. Additionally, invasive starry stonewort may also become established in the restored subaquatic areas as it has been observed in Keuka Lake. Manual pulling or chemical treatments could be used to reduce the invasive plant species' presence; however, this is not recommended at this time due to the risk of continued re-invasion from Keuka Lake and the fact that the invasive species' coverage is less than the coverages observed during the baseline assessment.

Site restoration monitoring will continue in 2023, constituting the third year post-remediation monitoring event.

## 6 References

AECOM. 2015. Remedial Design Report, Penn Yan Former MGP Site, Penn Yan, New York, NYSDEC Site No., 8-62-009. February.

AECOM. 2016a. Design Modification No. 001 (Rev 1) – Untitled. (Subject: Flow Control Modifications). September 15.

AECOM. 2016b. Design Modification No. 002 (Rev 2) – Modification of Excavation/Dredging Procedures in Cell 6. December 22.

AECOM. 2018a. Design Modification No. 003 (Rev 0) – Excavation Procedures and Underpinning of the Former MGP Building. January 9.

AECOM. 2018b. Design Modification No. 004 (Rev 0) - Bank Area Excavation Redesign. January 9.

AECOM. 2020. Interim Site Management Plan, Penn Yan Water Street MGP Site, Penn Yan, New York, NYSDEC Site No., 8-62-009. December 2020.

AECOM. 2023. Final Engineering Report, Penn Yan Water Street MGP Site, Penn Yan, New York, NYSDEC Site No., 862009. January 2023.

Barbour, M.G., J.H. Burk, and W.D. Pitts. 1999. Terrestrial plant ecology. 3rd edition. Benjamin/Cummings Publishing Company, Menlo Park, California.

Novak, M.A. and R.W. Bode. 1992. Percent model affinity, a new measure of macroinvertebrate community composition. J. North American Benthological Society 11(1):80-85.

NYSDEC. 2021. Standard Operating Procedure: Biological Monitoring of Surface Waters in New York State. Division of Water. Albany, New York. SOP-208\_V21-1. April 2021.

# **Tables**

# Table 1 Cover Class System



2022 Restoration Monitoring Report New York State Electric & Gas Penn Yan Former Manufactured Gas Plant Site Penn Yan, New York

|                    | Percent Cover Classes |       |  |  |  |  |  |  |  |  |
|--------------------|-----------------------|-------|--|--|--|--|--|--|--|--|
| Range of Cover (%) | Cover Class Midpoint  | Class |  |  |  |  |  |  |  |  |
| <1%                | 0.5                   | 0     |  |  |  |  |  |  |  |  |
| 1-5%               | 3.0                   | 1     |  |  |  |  |  |  |  |  |
| 6-15%              | 10.5                  | 2     |  |  |  |  |  |  |  |  |
| 16-25%             | 20.5                  | 3     |  |  |  |  |  |  |  |  |
| 26-50%             | 38.0                  | 4     |  |  |  |  |  |  |  |  |
| 51-75%             | 63.0                  | 5     |  |  |  |  |  |  |  |  |
| 76-95%             | 85.5                  | 6     |  |  |  |  |  |  |  |  |
| >95%               | 98.0                  | 7     |  |  |  |  |  |  |  |  |

#### Note:

### Reference:

Barbour, M.G., J.H. Burk, and W.D. Pitts. 1999. Terrestrial plant ecology. 3rd edition. Benjamin/Cummings Publishing Company, Menlo Park, California.

<sup>1.</sup> Based on the Daubenmire cover class system (Barbour et al 1999).

# Table 2a Upland Vegetation Monitoring Quadrat Data



2022 Restoration Monitoring Report New York State Electric & Gas Penn Yan Former Manufactured Gas Plant Site Penn Yan, New York

| Upland Quadrat I.D.    |                     |             |                     | Target Species<br>(Y/N) | Invasive<br>(Y/N) | Canopy Cover (%) | Species            | С               | anopy Cover Cla | ss              |
|------------------------|---------------------|-------------|---------------------|-------------------------|-------------------|------------------|--------------------|-----------------|-----------------|-----------------|
| Scientific Name        | Common Name         | Growth Form | Indicator<br>Status |                         |                   |                  | Composition (%)    | Quadrat<br>UP-1 | Quadrat<br>UP-2 | Quadrat<br>UP-3 |
| Poa sp.                | Grasses             | graminoid   | FACU                | Υ                       | N                 | 29               | 24                 | 4               | 4               | 2               |
| Symphyotrichum pilosum | Frostweed aster     | herbaceous  | FACU                | Υ                       | N                 | 13               | 10                 | 4               |                 |                 |
| Lotus corniculatus     | Birds-foot trefoil  | herbaceous  | FACU                | N                       | N                 | 46               | 38                 | 4               | 4               | 5               |
| Festuca sp.            | Fescue              | graminoid   | FACU                | Υ                       | N                 | 7.8              | 6.5                | 3               |                 | 1               |
| Achillea millefolium   | Common yarrow       | herbaceous  | FACU                | Υ                       | N                 | 2.0              | 1.7                | 1               | 1               |                 |
| Trifolium pratense     | Red clover          | herbaceous  | FACU                | Y                       | N                 | 2.0              | 1.7                | 1               | 1               |                 |
| Phleum pratense        | Timothy             | graminoid   | FACU                | N                       | N                 | 2.0              | 1.7                | 1               |                 | 1               |
| Panicum sp.            | Switchgrass species | graminoid   | FAC                 | Y                       | N                 | 3.5              | 2.9                | 2               |                 |                 |
| Taraxacum officinale   | Common dandelion    | herbaceous  | FACU                | N                       | N                 | 3.0              | 2.5                | 1               | 1               | 1               |
| Aster sp.              | Aster species       | herbaceous  | FACU                | Υ                       | N                 | 1.0              | 0.83               |                 | 1               |                 |
| Plantago major         | Common plantain     | herbaceous  | FACU                | N                       | N                 | 2.0              | 1.7                |                 | 1               | 1               |
| Rumex crispus          | Curly dock          | herbaceous  | FAC                 | N                       | N                 | 1.0              | 0.83               |                 | 1               |                 |
| Cichorium intybus      | Chicory             | herbaceous  | FACU                | N                       | N                 | 1.0              | 0.83               |                 |                 | 1               |
| Picris hieracioides    | Hawkweed oxtongue   | herbaceous  | NI                  | N                       | N                 | 1.0              | 0.83               |                 |                 | 1               |
| Centaurea stoebe       | Spotted knapweed    | herbaceous  | NI                  | N                       | Y                 | 6.8              | 5.6                |                 |                 | 3               |
| Cover Type - % Cover   |                     |             |                     |                         |                   |                  |                    |                 |                 |                 |
|                        |                     |             | <u> </u>            | <u> </u>                | <u> </u>          | Vegetat          | tion (Cover Class) | 7               | 6               | 6               |
|                        |                     |             |                     |                         |                   | Vegetation       | (Raw Estimates)    | 98              | 85              | 98              |
| Species Richness       |                     |             |                     |                         |                   |                  |                    |                 |                 |                 |
|                        |                     |             |                     |                         |                   | ;                | Species Richness   | 9               | 8               | 9               |

| (Cover Class) Total Vegetative Percent Cover (%) | 90  |
|--------------------------------------------------|-----|
| Relative Percent Cover of Target Species (%)     | 48  |
| Relative Percent Cover of Invasive Species (%)   | 5.6 |

### Notes:

- 1. Vegetative cover of individual species estimated at each plot using cover class midpoints shown on Table 1.
- 2. Canopy cover values can add up to greater than 100% due to overlapping vegetation.
- 3. Species composition is a proportional scaling of 0% to 100% and represents the percent a species contributes to the total vegetative cover.
- 4. -- = not applicable.

### **Acronyms and Abbreviations:**

FAC = Facultative FACU = Facultative Upland NI = No Indicator Status

# Table 2b Bank Vegetation Monitoring Quadrat Data



2022 Restoration Monitoring Report New York State Electric & Gas Penn Yan Former Manufactured Gas Plant Site Penn Yan, New York

| Bank Quadrat I.D.           |                    |             |                     |                         | Invasive (Y/N) | Canopy Cover<br>(%) | Species            | C               | anopy Cover Cla | ss              |
|-----------------------------|--------------------|-------------|---------------------|-------------------------|----------------|---------------------|--------------------|-----------------|-----------------|-----------------|
| Scientific Name             | Common Name        | Growth Form | Indicator<br>Status | Target Species<br>(Y/N) |                |                     | Composition<br>(%) | Quadrat<br>BK-1 | Quadrat<br>BK-2 | Quadrat<br>BK-3 |
| Poa sp.                     | Grasses            | graminoid   | FACU                | Y                       | N              | 3.5                 | 3.1                |                 | 2               |                 |
| Daucus carota               | Queen Anne's lace  | herbaceous  | UPL                 | Y                       | N              | 4.5                 | 4.0                |                 | 1               | 2               |
| Mentha arvensis             | Wild mint          | herbaceous  | FACW                | Y                       | N              | 1.0                 | 0.89               |                 | 1               |                 |
| Verbena hastata             | Blue vervain       | herbaceous  | FACW                | Y                       | N              | 1.0                 | 0.89               |                 |                 | 1               |
| Solidago altissima          | Tall goldenrod     | herbaceous  | FACU                | N                       | N              | 7.0                 | 6.2                |                 | 2               | 2               |
| Elymus riparius             | Riverbank rye      | graminoid   | FACW                | Y                       | N              | 12.7                | 11.3               | 4               |                 |                 |
| Cirsium vulgare             | Bull thistle       | herbaceous  | FACU                | Y                       | N              | 2.0                 | 1.8                | 1               | 1               |                 |
| Symphyotrichum pilosum      | Frostweed aster    | herbaceous  | FACU                | Y                       | N              | 1.0                 | 0.89               |                 |                 | 1               |
| Lotus corniculatus          | Birds-foot trefoil | herbaceous  | FACU                | N                       | N              | 32                  | 29                 | 3               | 4               | 4               |
| Festuca sp.                 | Fescue             | graminoid   | FACU                | Y                       | N              | 26                  | 23                 | 4               | 3               | 3               |
| Trifolium pratense          | Red clover         | herbaceous  | FACU                | Y                       | N              | 8.0                 | 7.1                | 1               | 2               | 2               |
| Phleum pratense             | Timothy            | graminoid   | FACU                | N                       | N              | 1.0                 | 0.9                | 1               |                 |                 |
| Plantago major              | Common plantain    | herbaceous  | FACU                | N                       | N              | 2.0                 | 1.8                |                 | 1               | 1               |
| Rumex crispus               | Curly dock         | herbaceous  | FAC                 | N                       | N              | 2.0                 | 1.8                | 1               | 1               |                 |
| Cichorium intybus           | Chicory            | herbaceous  | FACU                | N                       | N              | 1.0                 | 0.89               | 1               |                 |                 |
| Picris hieracioides         | Hawkweed oxtongue  | herbaceous  | NI                  | N                       | N              | 7.0                 | 6.2                |                 | 2               | 2               |
| Cover Type - % Cover        |                    |             |                     |                         |                |                     |                    |                 |                 |                 |
|                             |                    | <u> </u>    |                     | <u> </u>                |                | Vegetat             | ion (Cover Class)  | 7               | 7               | 7               |
|                             |                    |             |                     |                         |                | Vegetation          | (Raw Estimates)    | 100             | 100             | 100             |
| Plant Height/Species Richne | SS                 |             |                     |                         |                |                     |                    |                 |                 |                 |
|                             | <u> </u>           |             |                     |                         |                |                     | Species Richness   | 8               | 11              | 9               |

| (Cover Class) Total Vegetative Percent Cover (%) | 98  |
|--------------------------------------------------|-----|
| Relative Percent Cover of Target Species (%)     | 53  |
| Relative Percent Cover of Invasive Species (%)   | 0.0 |

#### Notes:

- 1. Vegetative cover of individual species estimated at each plot using cover class midpoints shown on Table 1.
- 2. Canopy cover values can add up to greater than 100% due to overlapping vegetation.
- 3. Species composition is a proportional scaling of 0% to 100% and represents the percent a species contributes to the total vegetative cover.
- 4. -- = not applicable.

### **Acronyms and Abbreviations:**

FAC = Facultative FACU = Facultative Upland FACW = Facultative Wetland NI = No Indicator Status UPL = Upland

### Table 3a Submerged Aquatic Vegetation - Area 1



2022 Restoration Monitoring Report New York State Electric & Gas Penn Yan Former Manufactured Gas Plant Site Penn Yan, New York

| Quadrat I.D.           |                       | T 0                     | Invasive<br>(Y/N) | Cover<br>(%) | Species<br>Composition<br>(%) | Canopy Cover Class |             |             |             |             |  |
|------------------------|-----------------------|-------------------------|-------------------|--------------|-------------------------------|--------------------|-------------|-------------|-------------|-------------|--|
| Scientific Name        | Common Name           | Target Species<br>(Y/N) |                   |              |                               | Quadrat 1-1        | Quadrat 1-2 | Quadrat 1-3 | Quadrat 1-4 | Quadrat 1-5 |  |
| Nymphaea odorata       | White water-lily      | Y                       | N                 | 2.1          | 3.2                           |                    |             |             |             | 2           |  |
| Sagittaria latifolia   | Arrowhead             | Y                       | N                 | 2.1          | 3.2                           |                    |             |             | 2           |             |  |
| Vallisneria americana  | Wild celery           | Y                       | N                 | 0.60         | 0.91                          | 1                  |             |             |             |             |  |
| Najas minor            | Brittle waternymph    | Y                       | N                 | 1.2          | 1.8                           | 1                  |             | 1           |             |             |  |
| Elodea canadensis      | Canada waterweed      | Y                       | N                 | 1.2          | 1.8                           |                    |             | 1           |             | 1           |  |
| Ceratophyllum demersum | Coontail              | Y                       | N                 | 2.7          | 4.1                           |                    | 1           |             | 2           |             |  |
| Myriophyllum spicatum  | Eurasian watermilfoil | N                       | Υ                 | 17           | 25                            | 3                  | 2           | 2           | 1           | 4           |  |
| Heteranthera dubia     | Water star grass      | Y                       | N                 | 40           | 60                            | 4                  | 5           | 4           | 4           | 3           |  |
| Cover Type - % Cover   | ,                     |                         |                   |              |                               |                    | '           |             |             |             |  |
|                        |                       |                         |                   | Vegeta       | tion (Cover Class)            | 5                  | 5           | 5           | 4           | 6           |  |
|                        |                       |                         |                   | Vegetatio    | n (Raw Estimates)             | 65                 | 75          | 55          | 50          | 80          |  |
| Species Richness       |                       |                         |                   | J            | . ,                           |                    |             |             | '           |             |  |
|                        | ·                     | <u> </u>                |                   |              | Species Richness              | 4                  | 3           | 4           | 4           | 4           |  |

| (Cover Class) Total Vegetative Percent Cover (%) | 63 |
|--------------------------------------------------|----|
| Relative Percent Cover of Target Species (%)     | 75 |
| Relative Percent Cover of Invasive Species (%)   | 25 |

- 1. Vegetative cover of individual species estimated at each plot using cover class midpoints shown on Table 1.
- 2. Canopy cover values can add up to greater than 100% due to overlapping vegetation.
- 3. Species composition is a proportional scaling of 0% to 100% and represents the percent a species contributes to the total vegetative cover.
- 4. -- = not applicable.

### Table 3b Submerged Aquatic Vegetation - Area 2



2022 Restoration Monitoring Report New York State Electric & Gas Penn Yan Former Manufactured Gas Plant Site Penn Yan, New York

| Quadrat I.D.           |                                        | Towns Consists          | Invasive<br>(Y/N) | Cover<br>(%) | Species            | Canopy Cover Class |             |             |             |             |  |
|------------------------|----------------------------------------|-------------------------|-------------------|--------------|--------------------|--------------------|-------------|-------------|-------------|-------------|--|
| Scientific Name        | Common Name                            | Target Species<br>(Y/N) |                   |              | Composition (%)    | Quadrat 2-1        | Quadrat 2-2 | Quadrat 2-3 | Quadrat 2-4 | Quadrat 2-5 |  |
| Nymphaea odorata       | White water-lily                       | Y                       | N                 | 45           | 49                 | 6                  | 4           | 4           | 5           |             |  |
| Vallisneria americana  | Wild celery                            | Y                       | N                 | 1.2          | 1.3                |                    |             | 1           | 1           |             |  |
| Elodea canadensis      | Canada waterweed                       | Y                       | N                 | 1.2          | 1.3                |                    | 1           | 1           |             |             |  |
| Potamogeton nodosus    | Long-leaved pondweed                   | Y                       | N                 | 27           | 30                 |                    | 4           | 2           | 1           | 6           |  |
| Ceratophyllum demersum | Coontail                               | Y                       | N                 | 6.3          | 6.8                | 2                  | 2           |             | 2           |             |  |
| Myriophyllum spicatum  | Eurasian watermilfoil                  | N                       | Υ                 | 4.7          | 5.1                |                    | 3           | 1           |             |             |  |
| Heteranthera dubia     | Water star grass                       | Y                       | N                 | 6.5          | 7.0                | 1                  | 3           | 1           | 1           | 1           |  |
| Cover Type - % Cover   |                                        |                         |                   |              |                    |                    |             |             |             |             |  |
|                        |                                        |                         |                   | Vegeta       | tion (Cover Class) | 6                  | 6           | 4           | 6           | 6           |  |
|                        | Vegetation (Raw Estimates) 90 90 45 80 |                         |                   |              |                    |                    |             |             |             | 95          |  |
| Species Richness       |                                        |                         |                   |              |                    |                    |             |             |             |             |  |
|                        |                                        |                         |                   |              | Species Richness   | 3                  | 6           | 6           | 5           | 2           |  |

| (Cover Class) Total Vegetative Percent Cover (%) | 76  |
|--------------------------------------------------|-----|
| Relative Percent Cover of Target Species (%)     | 95  |
| Relative Percent Cover of Invasive Species (%)   | 5.1 |

- 1. Vegetative cover of individual species estimated at each plot using cover class midpoints shown on Table 1.
- 2. Canopy cover values can add up to greater than 100% due to overlapping vegetation.
- 3. Species composition is a proportional scaling of 0% to 100% and represents the percent a species contributes to the total vegetative cover.
- 4. -- = not applicable.

### Table 3c Submerged Aquatic Vegetation - Area 3



2022 Restoration Monitoring Report New York State Electric & Gas Penn Yan Former Manufactured Gas Plant Site Penn Yan, New York

| Quadrat I.D.             |                                                                         | Towns Consiss        | Invesive          | Cover<br>(%) | Species<br>Composition<br>(%) | Canopy Cover Class |             |             |             |             |  |
|--------------------------|-------------------------------------------------------------------------|----------------------|-------------------|--------------|-------------------------------|--------------------|-------------|-------------|-------------|-------------|--|
| Scientific Name          | Common Name                                                             | Target Species (Y/N) | Invasive<br>(Y/N) |              |                               | Quadrat 3-1        | Quadrat 3-2 | Quadrat 3-3 | Quadrat 3-4 | Quadrat 3-5 |  |
| Nymphaea odorata         | White water-lily                                                        | Y                    | N                 | 25           | 25                            | 4                  | 4           | 2           |             | 4           |  |
| Potamogeton richardsonii | Richardson's pondweed                                                   | Y                    | N                 | 0.60         | 0.59                          |                    |             | 1           |             |             |  |
| Potamogeton nodosus      | Long-leaved pondweed                                                    | Y                    | N                 | 35           | 35                            | 4                  |             | 1           | 7           | 4           |  |
| Ceratophyllum demersum   | Coontail                                                                | Y                    | N                 | 2.1          | 2.1                           | 2                  |             |             |             |             |  |
| Myriophyllum spicatum    | Eurasian watermilfoil                                                   | N                    | Υ                 | 16           | 16                            | 1                  | 4           | 4           |             |             |  |
| Heteranthera dubia       | Water star grass                                                        | Y                    | N                 | 16           | 16                            | 1                  | 4           | 4           |             |             |  |
| Najas minor              | Brittle waternymph                                                      | Y                    | N                 | 6.8          | 6.7                           | 1                  |             | 3           |             | 2           |  |
| Cover Type - % Cover     |                                                                         |                      |                   |              |                               |                    |             |             |             |             |  |
|                          |                                                                         |                      |                   | Vegeta       | tion (Cover Class)            | 6                  | 6           | 6           | 7           | 5           |  |
|                          | Vegetation (Raw Estimates)         95         85         85         100 |                      |                   |              |                               |                    |             |             |             | 75          |  |
| Species Richness         |                                                                         |                      |                   |              |                               |                    |             |             |             |             |  |
|                          |                                                                         |                      |                   |              | Species Richness              | 6                  | 3           | 6           | 1           | 3           |  |

| (Cover Class) Total Vegetative Percent Cover (%) | 84 |
|--------------------------------------------------|----|
| Relative Percent Cover of Target Species (%)     | 85 |
| Relative Percent Cover of Invasive Species (%)   | 16 |

- 1. Vegetative cover of individual species estimated at each plot using cover class midpoints shown on Table 1.
- 2. Canopy cover values can add up to greater than 100% due to overlapping vegetation.
- 3. Species composition is a proportional scaling of 0% to 100% and represents the percent a species contributes to the total vegetative cover.
- 4. -- = not applicable.

### Table 3d Submerged Aquatic Vegetation - Area 4



2022 Restoration Monitoring Report New York State Electric & Gas Penn Yan Former Manufactured Gas Plant Site Penn Yan, New York

| Quadrat I.D.             |                                                                                  | T                    | Invasive | Cover        | Species            | Canopy Cover Class |             |             |             |             |
|--------------------------|----------------------------------------------------------------------------------|----------------------|----------|--------------|--------------------|--------------------|-------------|-------------|-------------|-------------|
| Scientific Name          | Common Name                                                                      | Target Species (Y/N) | (Y/N)    | Cover<br>(%) | Composition<br>(%) | Quadrat 4-1        | Quadrat 4-2 | Quadrat 4-3 | Quadrat 4-4 | Quadrat 4-5 |
| Nymphaea odorata         | White water-lily                                                                 | N                    | N        | 23           | 27                 |                    | 4           | 3           | 3           | 4           |
| Vallisneria americana    | Wild celery                                                                      | Υ                    | N        | 4.1          | 4.7                | 3                  |             |             |             |             |
| Potamogeton nodosus      | Long-leaved pondweed                                                             | Y                    | N        | 7.6          | 8.8                |                    |             |             |             | 4           |
| Potamogeton richardsonii | Richardson's pondweed                                                            | Y                    | N        | 15           | 18                 | 4                  |             |             |             | 4           |
| Ceratophyllum demersum   | Coontail                                                                         | N                    | N        | 27           | 31                 | 3                  | 4           | 4           | 4           |             |
| Myriophyllum spicatum    | Eurasian watermilfoil                                                            | N                    | Υ        | 2.7          | 3.1                |                    |             | 2           | 1           |             |
| Heteranthera dubia       | Water star grass                                                                 | Y                    | N        | 6.9          | 7.9                | 2                  | 1           |             | 2           | 2           |
| Cover Type - % Cover     |                                                                                  |                      |          |              |                    |                    |             |             |             |             |
|                          |                                                                                  |                      |          | Vegeta       | tion (Cover Class) | 5                  | 5           | 5           | 6           | 5           |
|                          | Vegetation (Raw Estimates)         75         70         75         80         6 |                      |          |              |                    |                    |             |             |             | 65          |
| Species Richness         |                                                                                  |                      |          |              |                    |                    |             |             |             |             |
|                          |                                                                                  |                      |          |              | Species Richness   | 4                  | 3           | 3           | 4           | 4           |

| (Cover Class) Total Vegetative Percent Cover (%) | 68  |
|--------------------------------------------------|-----|
| Relative Percent Cover of Target Species (%)     | 97  |
| Relative Percent Cover of Invasive Species (%)   | 3.1 |

- 1. Vegetative cover of individual species estimated at each plot using cover class midpoints shown on Table 1.
- 2. Canopy cover values can add up to greater than 100% due to overlapping vegetation.
- 3. Species composition is a proportional scaling of 0% to 100% and represents the percent a species contributes to the total vegetative cover.
- 4. -- = not applicable.

### Table 3e Submerged Aquatic Vegetation - Area 5



2022 Restoration Monitoring Report New York State Electric & Gas Penn Yan Former Manufactured Gas Plant Site Penn Yan, New York

| Quadrat I.D.  Scientific Name Com |                       | Target Species | cies Invasive<br>(Y/N) | Cover<br>(%) | Species<br>Composition<br>(%) | Canopy Cover Class |             |             |             |             |
|-----------------------------------|-----------------------|----------------|------------------------|--------------|-------------------------------|--------------------|-------------|-------------|-------------|-------------|
|                                   | Common Name           | (Y/N)          |                        |              |                               | Quadrat 5-1        | Quadrat 5-2 | Quadrat 5-3 | Quadrat 5-4 | Quadrat 5-5 |
| Nymphaea odorata                  | White water-lily      | Y              | N                      | 4.2          | 5.3                           |                    |             |             | 2           | 2           |
| Potamogeton nodosus               | Long-leaved pondweed  | Y              | N                      | 7.6          | 9.5                           | 4                  |             |             |             |             |
| Potamogeton richardsonii          | Richardson's pondweed | Y              | N                      | 4.1          | 5.2                           | 3                  |             |             |             |             |
| Butomus umbellatus                | Flowering rush        | Y              | N                      | 7.6          | 9.5                           |                    |             |             |             | 4           |
| Vallisneria americana             | Wild celery           | Y              | N                      | 11           | 14                            |                    | 1           | 3           | 3           | 2           |
| Elodea canadensis                 | Canada waterweed      | Y              | N                      | 2.7          | 3.4                           |                    |             |             | 1           | 2           |
| Ceratophyllum demersum            | Coontail              | Y              | N                      | 1.2          | 1.5                           |                    |             | 1           | 1           |             |
| Myriophyllum spicatum             | Eurasian watermilfoil | N              | Υ                      | 5.9          | 7.4                           | 1                  |             | 1           | 1           | 3           |
| Heteranthera dubia                | Water star grass      | Y              | N                      | 35           | 44                            | 4                  | 5           | 4           | 4           |             |
| Cover Type - % Cover              |                       |                |                        |              |                               |                    |             |             |             |             |
|                                   |                       |                |                        | Vegeta       | tion (Cover Class)            | 6                  | 5           | 5           | 5           | 6           |
|                                   |                       |                |                        | Vegetatio    | n (Raw Estimates)             | 80                 | 65          | 60          | 70          | 80          |
| Species Richness                  |                       |                |                        |              |                               |                    | '           |             | '           |             |
|                                   | ·                     | <u> </u>       |                        | <u>"</u>     | Species Richness              | 4                  | 2           | 4           | 6           | 5           |

| (Cover Class) Total Vegetative Percent Cover (%) | 72  |
|--------------------------------------------------|-----|
| Relative Percent Cover of Target Species (%)     | 93  |
| Relative Percent Cover of Invasive Species (%)   | 7.4 |

- 1. Vegetative cover of individual species estimated at each plot using cover class midpoints shown on Table 1.
- 2. Canopy cover values can add up to greater than 100% due to overlapping vegetation.
- 3. Species composition is a proportional scaling of 0% to 100% and represents the percent a species contributes to the total vegetative cover.
- 4. -- = not applicable.

### Table 3f Submerged Aquatic Vegetation - Area 6



2022 Restoration Monitoring Report New York State Electric & Gas Penn Yan Former Manufactured Gas Plant Site Penn Yan, New York

| Quadrat I.D.  Scientific Name Common Name | T                     |                      | 0     | Species                     | Canopy Cover Class |             |             |             |             |             |
|-------------------------------------------|-----------------------|----------------------|-------|-----------------------------|--------------------|-------------|-------------|-------------|-------------|-------------|
|                                           | Common Name           | Target Species (Y/N) | (Y/N) | Invasive Cover<br>(Y/N) (%) | Composition (%)    | Quadrat 6-1 | Quadrat 6-2 | Quadrat 6-3 | Quadrat 6-4 | Quadrat 6-5 |
| Nymphaea odorata                          | White water-lily      | N                    | N     | 8.3                         | 9.9                | 2           |             | 3           | 2           |             |
| Vallisneria americana                     | Wild celery           | Y                    | N     | 25                          | 30                 |             | 4           | 2           | 4           | 4           |
| Potamogeton richardsonii                  | Richardson's pondweed | Y                    | N     | 9.7                         | 12                 | 2           |             | 4           |             |             |
| Najas minor                               | Brittle waternymph    | Y                    | N     | 0.6                         | 0.7                |             |             |             |             | 1           |
| Elodea canadensis                         | Canada waterweed      | N                    | N     | 0.60                        | 0.72               |             |             |             |             | 1           |
| Ceratophyllum demersum                    | Coontail              | N                    | N     | 4.8                         | 5.7                |             | 2           | 1           | 2           |             |
| Myriophyllum spicatum                     | Eurasian watermilfoil | N                    | Υ     | 6                           | 7.2                | 1           | 2           | 2           | 1           | 1           |
| Heteranthera dubia                        | Water star grass      | Y                    | N     | 29                          | 35                 | 4           | 4           | 3           | 2           | 4           |
| Cover Type - % Cover                      |                       |                      |       |                             |                    |             |             |             |             |             |
|                                           |                       |                      |       | Vegeta                      | tion (Cover Class) | 5           | 6           | 5           | 5           | 5           |
|                                           |                       |                      |       | Vegetation                  | n (Raw Estimates)  | 65          | 80          | 70          | 65          | 65          |
| Species Richness                          |                       |                      |       |                             |                    |             |             | '           | '           |             |
|                                           |                       |                      |       |                             | Species Richness   | 4           | 4           | 6           | 5           | 5           |

| (Cover Class) Total Vegetative Percent Cover (%) | 68  |
|--------------------------------------------------|-----|
| Relative Percent Cover of Target Species (%)     | 93  |
| Relative Percent Cover of Invasive Species (%)   | 7.2 |

- 1. Vegetative cover of individual species estimated at each plot using cover class midpoints shown on Table 1.
- 2. Canopy cover values can add up to greater than 100% due to overlapping vegetation.
- 3. Species composition is a proportional scaling of 0% to 100% and represents the percent a species contributes to the total vegetative cover.
- 4. -- = not applicable.



| Location: Cell 1-B          |                       |                          |                      |  |  |
|-----------------------------|-----------------------|--------------------------|----------------------|--|--|
| Taxon                       | Common Name           | Number of<br>Individuals | Percent<br>Abundance |  |  |
| Hiridinida                  |                       |                          |                      |  |  |
| Erpobdellidae               |                       |                          |                      |  |  |
| Erpobdella sp.              | leech                 | 2                        | 1.7%                 |  |  |
| Tubificida                  |                       |                          |                      |  |  |
| Tubificinae                 |                       |                          |                      |  |  |
| Limnodrilus sp.             | tube worm             | 27                       | 23.1%                |  |  |
| Gastropoda                  |                       |                          |                      |  |  |
| Hydrobiidae                 |                       |                          |                      |  |  |
| Amnicola sp.                | dusky snail           | 2                        | 1.7%                 |  |  |
| Planorbidae                 |                       |                          |                      |  |  |
| Ferrissia sp.               | limpet snail          | 1                        | 0.9%                 |  |  |
| Gyraulus sp.                | orb snail             | 6                        | 5.1%                 |  |  |
| Pisidiidae                  |                       |                          |                      |  |  |
| Pisidium sp.                | pill clam             | 6                        | 5.1%                 |  |  |
| Amphipoda                   |                       |                          |                      |  |  |
| Gammaridae                  |                       |                          |                      |  |  |
| Gammarus sp.                | side swimmer          | 2                        | 1.7%                 |  |  |
| Ephemeroptera               |                       |                          |                      |  |  |
| Caenidae                    |                       |                          |                      |  |  |
| Caenis sp.                  | mayfly                | 3                        | 2.6%                 |  |  |
| Odonata                     |                       |                          |                      |  |  |
| Coenagrionidae              |                       |                          |                      |  |  |
| Enallagma sp.               | damselfly             | 2                        | 1.7%                 |  |  |
| Coleoptera                  |                       |                          |                      |  |  |
| Elmidae                     |                       |                          |                      |  |  |
| Dubiraphia sp.              | riffle beetle         | 8                        | 6.8%                 |  |  |
| Diptera                     |                       |                          |                      |  |  |
| Ceratopogonidae             |                       |                          |                      |  |  |
| Culicoides sp.              | sand fly              | 3                        | 2.6%                 |  |  |
| Chironomidae                |                       |                          |                      |  |  |
| Ablabesmyia sp.             | midge                 | 3                        | 2.6%                 |  |  |
| Clinotanypus pinguis        | midge                 | 4                        | 3.4%                 |  |  |
| Cryptochironomus fulvus gr. | midge                 | 1_                       | 0.9%                 |  |  |
| Cryptotendipes sp.          | midge                 | 7                        | 6.0%                 |  |  |
| Labrundinea sp.             | midge                 | 4                        | 3.4%                 |  |  |
| Microchironomus sp.         | midge                 | 1                        | 0.9%                 |  |  |
| Orthocladiinae              | midge                 | 7                        | 6.0%                 |  |  |
| Paratanytarsus sp.          | midge                 | 16                       | 13.7%                |  |  |
| Polypedilum illinoense gr.  | midge                 | 6                        | 5.1%                 |  |  |
| Procladius sp.              | midge                 | 4                        | 3.4%                 |  |  |
| Tanytarsus sp.              | midge                 | 2                        | 1.7%                 |  |  |
|                             | Total Taxa:           | 22                       |                      |  |  |
|                             | Total Specimens:      | 117                      | 100%                 |  |  |
| Community Density           | (no. / square meter): | 17,804                   |                      |  |  |

| Community Metrics:                              | <u>Value</u> |
|-------------------------------------------------|--------------|
| Species Richness                                | 22           |
| Ephemeroptera, Plecoptera, Trichoptera Richness | 1            |
| Hilsenhoff Biotic Index                         | 7.38         |
| Percent Model Affinity (Ponar)                  | 68%          |



| Location: Cell 2-B        |                         |             |           |  |  |
|---------------------------|-------------------------|-------------|-----------|--|--|
|                           |                         | Number of   | Percent   |  |  |
| Taxon                     | Common Name             | Individuals | Abundance |  |  |
| Tubificida                |                         |             |           |  |  |
| Tubificinae               |                         |             |           |  |  |
| Aulodrilus piguetti       | tube worm               | 2           | 2.2%      |  |  |
| Limnodrilus sp.           | tube worm               | 5           | 5.4%      |  |  |
| Gastropoda                |                         |             |           |  |  |
| Hydrobiidae               |                         |             |           |  |  |
| Amnicola sp.              | dusky snail             | 4           | 4.3%      |  |  |
| Planorbidae               |                         |             |           |  |  |
| Gyraulus sp.              | orb snail               | 4           | 4.3%      |  |  |
| Planorbella sp.           | ram's-horn snail        | 2           | 2.2%      |  |  |
| Veneroidea                |                         |             |           |  |  |
| Pisidiidae                |                         |             |           |  |  |
| Pisidium sp.              | pill clam               | 2           | 2.2%      |  |  |
| Odonata                   |                         |             |           |  |  |
| Coenagrionidae            |                         |             |           |  |  |
| Enallagma sp.             | damselfly               | 8           | 8.6%      |  |  |
| Trichoptera               |                         |             |           |  |  |
| Hydropsychidae            |                         |             |           |  |  |
| Hydropsyche sp.           | caddisfly               | 1           | 1.1%      |  |  |
| Hydroptilidae             |                         |             |           |  |  |
| Oxyethira sp.             | caddisfly               | 1           | 1.1%      |  |  |
| Diptera                   |                         |             |           |  |  |
| Ceratopogonidae           |                         |             |           |  |  |
| Probezzia sp.             | sand fly                | 1           | 1.1%      |  |  |
| Chironomidae              |                         |             |           |  |  |
| Ablabesmyia sp.           | midge                   | 3           | 3.2%      |  |  |
| Cladopelma sp.            | midge                   | 2           | 2.2%      |  |  |
| Clinotanypus pinguis      | midge                   | 2           | 2.2%      |  |  |
| Corynoneuria sp.          | midge                   | 2           | 2.2%      |  |  |
| Dicrotendipes sp.         | midge                   | 10          | 10.8%     |  |  |
| Guttipelopia sp.          | midge                   | 1           | 1.1%      |  |  |
| Labrundinea sp.           | midge                   | 1           | 1.1%      |  |  |
| Nanocladius sp.           | midge                   | 5           | 5.4%      |  |  |
| Paratanytarsus sp.        | midge                   | 7           | 7.5%      |  |  |
| Polypedilum halterale gr. | midge                   | 5           | 5.4%      |  |  |
| Polypedilum tritum        | midge                   | 6           | 6.5%      |  |  |
| Procladius sp.            | midge                   | 5           | 5.4%      |  |  |
| Psectrocladius sp.        | midge                   | 2           | 2.2%      |  |  |
| Pseudochironomus sp.      | midge                   | 3           | 3.2%      |  |  |
| Tanytarsus sp.            | midge                   | 6           | 6.5%      |  |  |
| Tabanidae                 |                         | _           |           |  |  |
| Chrysops sp.              | deer fly                | 3           | 3.2%      |  |  |
|                           | Total Taxa:             | 26          |           |  |  |
|                           | Total Specimens:        | 93          | 100%      |  |  |
| Community Densit          | y (no. / square meter): | 4,043       |           |  |  |

| Community Metrics:                              | <u>Value</u> |
|-------------------------------------------------|--------------|
| Species Richness                                | 25           |
| Ephemeroptera, Plecoptera, Trichoptera Richness | 2            |
| Hilsenhoff Biotic Index                         | 6.86         |
| Percent Model Affinity (Ponar)                  | 55%          |





| Location: Cell 3-B                 |                     |                          |                      |  |  |
|------------------------------------|---------------------|--------------------------|----------------------|--|--|
| Taxon                              | Common Name         | Number of<br>Individuals | Percent<br>Abundance |  |  |
| Gastropoda                         |                     |                          |                      |  |  |
| Hydrobiidae                        |                     |                          |                      |  |  |
| Amnicola sp.                       | dusky snail         | 6                        | 6.7%                 |  |  |
| Planorbidae                        |                     |                          |                      |  |  |
| Micromenetus dilitatus             | orb snail           | 3                        | 3.3%                 |  |  |
| Veneroidea                         |                     |                          |                      |  |  |
| Pisidiidae                         |                     |                          |                      |  |  |
| Pisidium sp.                       | pill clam           | 7                        | 7.8%                 |  |  |
| Amphipoda                          |                     |                          |                      |  |  |
| Crangonyctidae                     |                     |                          |                      |  |  |
| Crangonyx sp.                      | side swimmer        | 1                        | 1.1%                 |  |  |
| Gammaridae                         |                     |                          |                      |  |  |
| Gammarus sp.                       | side swimmer        | 4                        | 4.4%                 |  |  |
| Odonata                            |                     |                          |                      |  |  |
| Coenagrionidae                     |                     |                          |                      |  |  |
| Enallagma sp.                      | damselfly           | 5                        | 5.6%                 |  |  |
| Gomphidae                          |                     |                          |                      |  |  |
| Gomphus sp.                        | dragonfly           | 1                        | 1.1%                 |  |  |
| Trichoptera                        |                     |                          |                      |  |  |
| Leptoceridae                       |                     |                          |                      |  |  |
| Leptocerus americanus              | caddisfly           | 1                        | 1.1%                 |  |  |
| Coleoptera                         |                     |                          |                      |  |  |
| Elmidae                            |                     |                          |                      |  |  |
| Dubiraphia sp.                     | riffle beetle       | 47                       | 52.2%                |  |  |
| Diptera                            |                     |                          |                      |  |  |
| Chironomidae                       |                     |                          |                      |  |  |
| Clinotanypus pinguis               | midge               | 3                        | 3.3%                 |  |  |
| Cryptochironomus fulvus gr.        | midge               | 1                        | 1.1%                 |  |  |
| Paralaterborniella nigrohalteralis | midge               | 3                        | 3.3%                 |  |  |
| Polypedilum halterale gr.          | midge               | 1                        | 1.1%                 |  |  |
| Procladius sp.                     | midge               | 5                        | 5.6%                 |  |  |
| Tanytarsus sp.                     | midge               | 1                        | 1.1%                 |  |  |
| Xenochironomus xenolabis           | midge               | 1                        | 1.1%                 |  |  |
|                                    | Total Taxa:         | 16                       |                      |  |  |
|                                    | Total Specimens:    | 90                       | 100%                 |  |  |
| Community Density (n               | o. / square meter): | 6,957                    |                      |  |  |

| Community Metrics:                              | <u>Value</u> |
|-------------------------------------------------|--------------|
| Species Richness                                | 16           |
| Ephemeroptera, Plecoptera, Trichoptera Richness | 1            |
| Hilsenhoff Biotic Index                         | 6.26         |
| Percent Model Affinity (Ponar)                  | 57%          |



|                                    | ocation: Cell 4-B   |                          |           |  |
|------------------------------------|---------------------|--------------------------|-----------|--|
| <b>-</b>                           | Common Name         | Number of<br>Individuals |           |  |
| Taxon Tubificida                   | Common Name         | individuals              | Abundance |  |
| Tubificinae                        |                     |                          |           |  |
| Spirosperma ferox                  | tubo worm           | 1                        | 0.9%      |  |
| · · ·                              | tube worm           | <u> </u>                 | 0.9%      |  |
| Gastropoda<br>Hydrobiidae          |                     |                          |           |  |
| •                                  | duolay anail        | 16                       | 15 10/    |  |
| <i>Amnicola sp.</i><br>Planorbidae | dusky snail         | 10                       | 15.1%     |  |
|                                    | liman et en eil     | 2                        | 2.8%      |  |
| Ferrissia sp. Veneroidea           | limpet snail        | 3                        | 2.8%      |  |
|                                    |                     |                          |           |  |
| Dreissinidae                       |                     | 2                        | 2.8%      |  |
| Dreissina polymorpha               | zebra mussel        | 3                        | 2.8%      |  |
| Pisidiidae                         | fingerneil elem     | 2                        | 1.00/     |  |
| Musculium sp.                      | fingernail clam     | 2                        | 1.9%      |  |
| Pisidium sp.                       | pill clam           | 17                       | 16.0%     |  |
| Amphipoda                          |                     |                          |           |  |
| Gammaridae                         |                     | 0                        | 4.00/     |  |
| Gammarus sp.                       | side swimmer        | 2                        | 1.9%      |  |
| Decapoda                           |                     |                          |           |  |
| Cambaridae                         |                     | 4                        | 2 22/     |  |
| Orconectes sp.                     | crayfish            | 1                        | 0.9%      |  |
| Odonata                            |                     |                          |           |  |
| Coenagrionidae                     |                     | •                        | 7.50/     |  |
| Enallagma sp.                      | damselfly           | 8                        | 7.5%      |  |
| Trichoptera                        |                     |                          |           |  |
| Leptoceridae                       | 1                   | 4                        | 2 22/     |  |
| Oecetis sp.                        | caddisfly           | 1                        | 0.9%      |  |
| Coleoptera                         |                     |                          |           |  |
| Elmidae                            |                     | 0.5                      | 00.00/    |  |
| Dubiraphia sp.                     | riffle beetle       | 25                       | 23.6%     |  |
| Diptera                            |                     |                          |           |  |
| Chironomidae                       |                     | 0                        | 4.00/     |  |
| Ablabesmyia sp.                    | midge               | 2                        | 1.9%      |  |
| Clinotanypus pinguis               | midge               | 2                        | 1.9%      |  |
| Labrundinea sp.                    | midge               | 1                        | 0.9%      |  |
| Nanocladius sp.                    | midge               | 4                        | 3.8%      |  |
| Paralaterborniella nigrohalteralis | midge               | 1                        | 0.9%      |  |
| Paratanytarsus sp.                 | midge               | 2                        | 1.9%      |  |
| Polypedilum flavum                 | midge               | 3                        | 2.8%      |  |
| Procladius sp.                     | midge               | 6                        | 5.7%      |  |
| Tanytarsus sp.                     | midge               | 5                        | 4.7%      |  |
| Tabanidae                          | , ,                 |                          |           |  |
| Chrysops sp.                       | deer fly            | 1                        | 0.9%      |  |
|                                    | Total Taxa:         | 21                       |           |  |
|                                    | Total Specimens:    | 106                      | 100%      |  |
| Community Density (n               | o. / square meter): | 6,145                    |           |  |

| Community Metrics:                              | <u>Value</u> |
|-------------------------------------------------|--------------|
| Species Richness                                | 20           |
| Ephemeroptera, Plecoptera, Trichoptera Richness | 1            |
| Hilsenhoff Biotic Index                         | 6.33         |
| Percent Model Affinity (Ponar)                  | 59%          |



| Location: Cell 5A-B        |                         |                          |                      |
|----------------------------|-------------------------|--------------------------|----------------------|
| Taxon                      | Common Name             | Number of<br>Individuals | Percent<br>Abundance |
| Tubificida                 |                         |                          |                      |
| Tubificinae                |                         |                          |                      |
| Ilyodrilus templetoni      | tube worm               | 6                        | 5.9%                 |
| Limnodrilus sp.            | tube worm               | 8                        | 7.8%                 |
| Gastropoda                 |                         |                          |                      |
| Planorbidae                |                         |                          |                      |
| Gyraulus sp.               | orb snail               | 5                        | 4.9%                 |
| Veneroidea                 |                         |                          |                      |
| Pisidiidae                 |                         |                          |                      |
| Pisidium sp.               | pill clam               | 1                        | 1.0%                 |
| Amphipoda                  |                         |                          |                      |
| Gammaridae                 |                         |                          |                      |
| Gammarus sp.               | side swimmer            | 9                        | 8.8%                 |
| Hyalellidae                |                         | _                        |                      |
| Hyalella azteca            | side swimmer            | 3                        | 2.9%                 |
| Ephemeroptera              |                         |                          |                      |
| Caenidae                   |                         |                          |                      |
| Caenis sp.                 | mayfly                  | 1                        | 1.0%                 |
| Odonata                    |                         |                          |                      |
| Coenagrionidae             |                         | 4.4                      | 40.70/               |
| Enallagma sp.              | damselfly               | 14                       | 13.7%                |
| Gomphidae                  | -lu fl                  | 4                        | 4.00/                |
| Gomphus sp.                | dragonfly               | 1                        | 1.0%                 |
| Trichoptera                |                         |                          |                      |
| Hydroptilidae              | and diaffy              | 4                        | 4.00/                |
| Oxyethira sp. Coleoptera   | caddisfly               | 1                        | 1.0%                 |
| Elmidae                    |                         |                          |                      |
| Dubiraphia sp.             | riffle beetle           | 20                       | 19.6%                |
| Diptera                    | Time beede              | 20                       | 13.070               |
| Ceratopogonidae            |                         |                          |                      |
| Palpomyia gr.              | sand fly                | 1                        | 1.0%                 |
| Chironomidae               |                         | ÷                        | ,                    |
| Ablabesmyia sp.            | midge                   | 5                        | 4.9%                 |
| Clinotanypus pinguis       | midge                   | 4                        | 3.9%                 |
| Corynoneuria sp.           | midge                   | 1                        | 1.0%                 |
| Dicrotendipes sp.          | midge                   | 3                        | 2.9%                 |
| Labrundinea sp.            | midge                   | 7                        | 6.9%                 |
| Nanocladius sp.            | midge                   | 4                        | 3.9%                 |
| Paratanytarsus sp.         | midge                   | 1                        | 1.0%                 |
| Polypedilum illinoense gr. | midge                   | 5                        | 4.9%                 |
| Procladius sp.             | midge                   | 1                        | 1.0%                 |
| Tanytarsus sp.             | midge                   | 1                        | 1.0%                 |
| <u> </u>                   | Total Taxa:             | 22                       |                      |
|                            | Total Specimens:        | 102                      | 100%                 |
| Oit - Dit                  | / (no. / square meter): | 4,435                    |                      |

| Community Metrics:                              | <u>Value</u> |
|-------------------------------------------------|--------------|
| Species Richness                                | 22           |
| Ephemeroptera, Plecoptera, Trichoptera Richness | 2            |
| Hilsenhoff Biotic Index                         | 7.24         |
| Percent Model Affinity (Ponar)                  | 71%          |





| Location: Cell 5B-B        |                  |             |           |
|----------------------------|------------------|-------------|-----------|
|                            |                  | Number of   | Percent   |
| Taxon                      | Common Name      | Individuals | Abundance |
| Hirudinida                 |                  |             |           |
| Glossophoniidae            |                  |             |           |
| Helobdella sp.             | leech            | 1           | 0.9%      |
| Gastropoda                 |                  |             |           |
| Hydrobiidae                |                  |             |           |
| Amnicola sp.               | dusky snail      | 8           | 7.3%      |
| Physidae                   |                  |             |           |
| Physella sp.               | pouch snail      | 1           | 0.9%      |
| Planorbidae                |                  |             |           |
| Ferrissia sp.              | limpet snail     | 4           | 3.6%      |
| Helisoma anceps            | ram's-horn snail | 1           | 0.9%      |
| Planorbella sp.            | ram's-horn snail | 3           | 2.7%      |
| Pleuroceridae              |                  |             |           |
| Goniobasis virginica       | horn snail       | 1           | 0.9%      |
| Pleurocera acuta           | horn snail       | 2           | 1.8%      |
| Viviparidae                |                  |             |           |
| Viviparus georgiana        | mystery snail    | 1           | 0.9%      |
| Veneroidea                 |                  |             |           |
| Dreissinidae               |                  |             |           |
| Dreissina polymorpha       | zebra mussel     | 31          | 28.2%     |
| Pisidiidae                 |                  |             |           |
| Pisidium sp.               | pill clam        | 9           | 8.2%      |
| Amphipoda                  |                  |             |           |
| Gammaridae                 |                  |             |           |
| Gammarus sp.               | side swimmer     | 1           | 0.9%      |
| Isopoda                    |                  |             |           |
| Asellidae                  |                  | _           |           |
| Caecidotea sp.             | water slater     | 3           | 2.7%      |
| Odonata                    |                  |             |           |
| Coenagrionidae             |                  | 4.0         | 2.40/     |
| Enallagma sp.              | damselfly        | 10          | 9.1%      |
| Libellulidae               | dragonfly        | 2           | 1.8%      |
| Trichoptera                |                  |             |           |
| Leptoceridae               | 1 0              | •           | F 50/     |
| Leptocerus americanus      | caddisfly        | 6           | 5.5%      |
| Coleoptera                 |                  |             |           |
| Elmidae                    | -:               | •           | 0.70/     |
| Dubiraphia sp.             | riffle beetle    | 3           | 2.7%      |
| Diptera                    |                  |             |           |
| Chironomidae               | .,               | 4           | 0.00/     |
| Ablabesmyia sp.            | midge            | 1           | 0.9%      |
| Chironomini                | midge            | 3           | 2.7%      |
| Cladopelma sp.             | midge            | 2           | 1.8%      |
| Dicrotendipes sp.          | midge            | 3           | 2.7%      |
| Nanocladius sp.            | midge            | 1           | 0.9%      |
| Polypedilum illinoense gr. | midge            | 2           | 1.8%      |
| Procladius sp.             | midge            | 6           | 5.5%      |
| Pseudochironomus sp.       | midge            | 1           | 0.9%      |
| Tanytarsus sp.             | midge            | 4           | 3.6%      |
|                            | Total Taxa:      | 26          |           |
|                            | Total Specimens: | 110         | 100%      |

| Community Metrics:                              | <u>Value</u> |
|-------------------------------------------------|--------------|
| Species Richness                                | 24           |
| Ephemeroptera, Plecoptera, Trichoptera Richness | 1            |
| Hilsenhoff Biotic Index                         | 6.84         |
| Percent Model Affinity (Ponar)                  | 59%          |

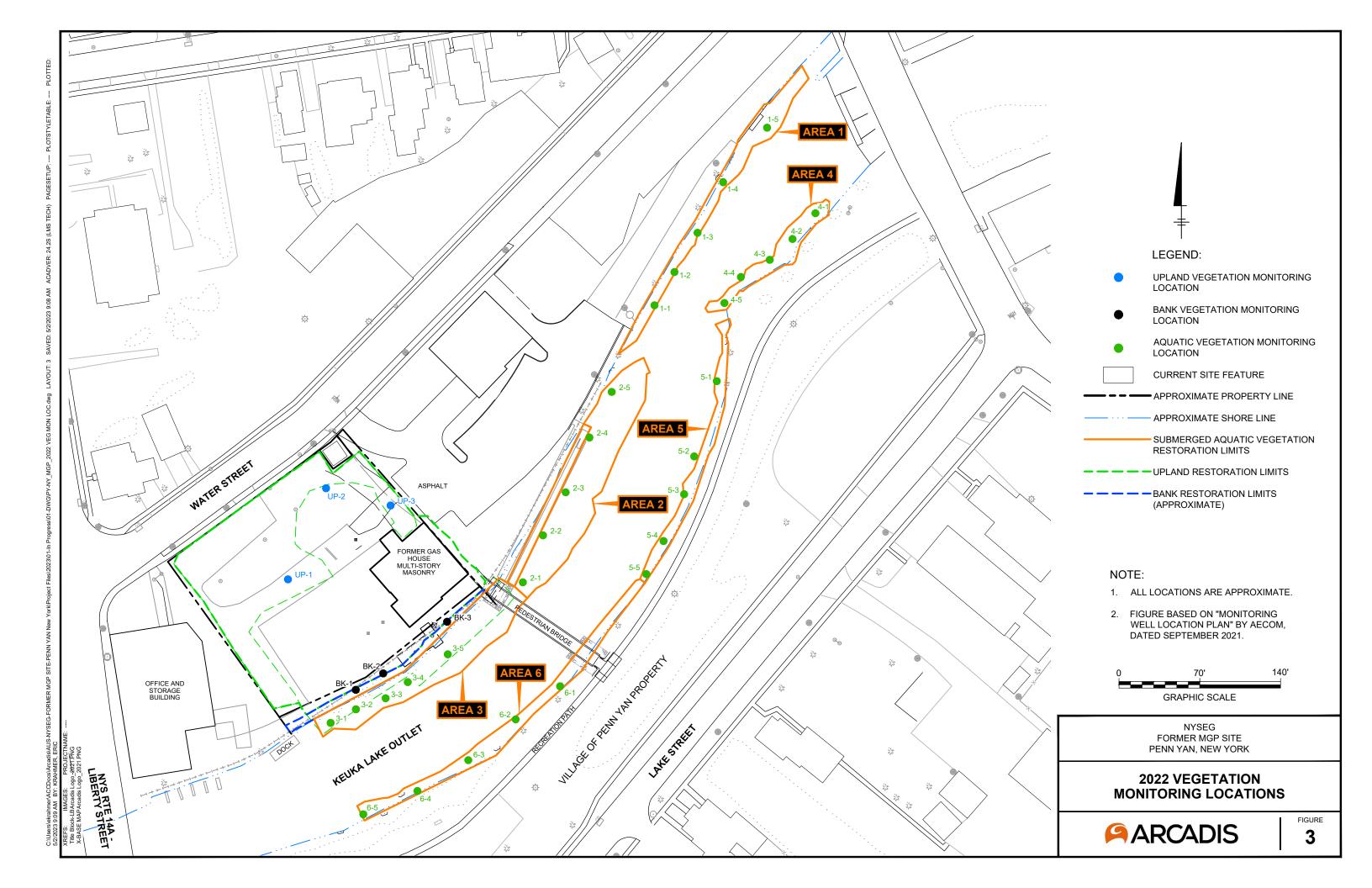


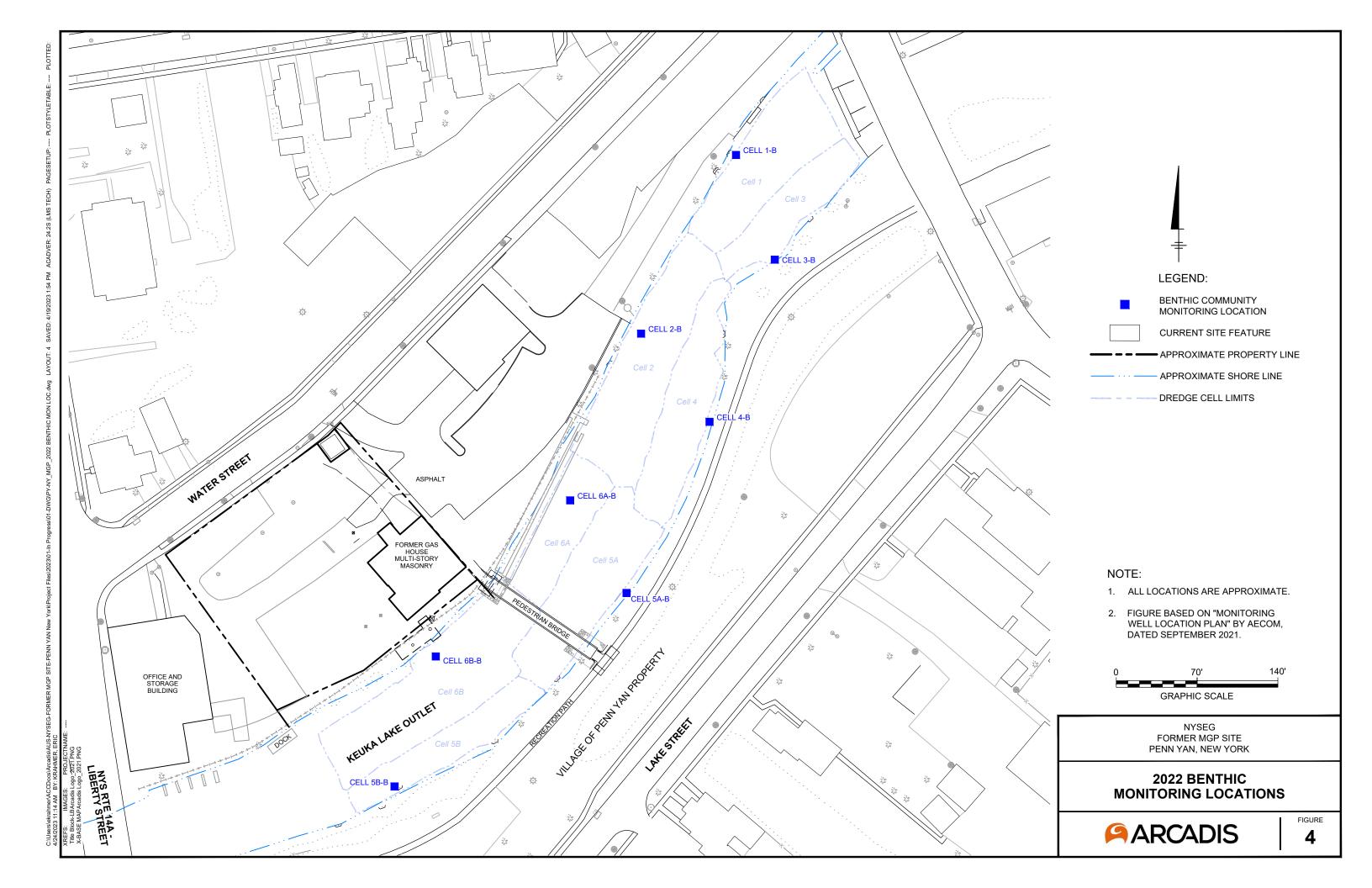
| Location: Cell 6A-B  |                            |                          |                      |
|----------------------|----------------------------|--------------------------|----------------------|
| Taxon                | Common Name                | Number of<br>Individuals | Percent<br>Abundance |
| Hirudinida           |                            |                          |                      |
| Glossophoniidae      |                            |                          |                      |
| Helobdella stagnalis | leech                      | 1                        | 3.6%                 |
| Gastropoda           |                            |                          |                      |
| Hydrobiidae          |                            |                          |                      |
| Amnicola sp.         | dusky snail                | 1                        | 3.6%                 |
| Veneroidea           |                            |                          |                      |
| Pisidiidae           |                            |                          |                      |
| Pisidium sp.         | pill clam                  | 6                        | 21.4%                |
| Diptera              |                            |                          |                      |
| Chironomidae         |                            |                          |                      |
| Chironomini          | midge                      | 13                       | 46.4%                |
| Clinotanypus pinguis | midge                      | 1                        | 3.6%                 |
| Dicrotendipes sp.    | midge                      | 3                        | 10.7%                |
| Tanypodinae          | midge                      | 1                        | 3.6%                 |
| Tanytarsini          | midge                      | 2                        | 7.1%                 |
|                      | Total Taxa:                | 8                        |                      |
|                      | Total Specimens:           | 28                       | 100%                 |
| Community Dens       | sity (no. / square meter): | 1,217                    |                      |

| Community Metrics:                              | <u>Value</u> |
|-------------------------------------------------|--------------|
| Species Richness                                | 8            |
| Ephemeroptera, Plecoptera, Trichoptera Richness | 0            |
| Hilsenhoff Biotic Index                         | 6.36         |
| Percent Model Affinity (Ponar)                  | 39%          |

## Note:


This matrix was processed in its entirety but did not produce enough specimens (100) to calculate valid community metrics. As a result, community metrics for Species and Ephemeroptera, Plecoptera, Trichoptera Richness are biased high.





| Number of Percer            |                       |             | Percent   |
|-----------------------------|-----------------------|-------------|-----------|
| Taxon                       | Common Name           | Individuals | Abundance |
| Gastropoda                  |                       |             |           |
| Hydrobiidae                 |                       |             |           |
| Amnicola sp.                | dusky snail           | 10          | 9.3%      |
| Physidae                    |                       |             |           |
| Physella sp.                | pouch snail           | 1           | 0.9%      |
| Planorbidae                 |                       |             |           |
| Helisoma anceps             | ram's-horn snail      | 3           | 2.8%      |
| Planorbella sp.             | ram's-horn snail      | 4           | 3.7%      |
| Veneroidea                  |                       |             |           |
| Dreissinidae                |                       |             |           |
| Dreissina polymorpha        | zebra mussel          | 1           | 0.9%      |
| Pisidiidae                  |                       |             |           |
| Pisidium sp.                | pill clam             | 12          | 11.1%     |
| Amphipoda                   |                       |             |           |
| Gammaridae                  |                       |             |           |
| Gammarus sp.                | side swimmer          | 1           | 0.9%      |
| Hyalellidae                 |                       |             |           |
| Hyalella azteca             | side swimmer          | 1           | 0.9%      |
| Odonata                     |                       |             |           |
| Coenagrionidae              |                       |             |           |
| Enallagma sp.               | damselfly             | 22          | 20.4%     |
| Corduliidae                 |                       |             |           |
| Epicordulia princeps        | dragonfly             | 1           | 0.9%      |
| Libellulidae                | dragonfly             | 2           | 1.9%      |
| Sympetrum sp.               | dragonfly             | 1           | 0.9%      |
| Diptera                     |                       |             |           |
| Ceratopogonidae             |                       |             |           |
| Culicoides sp.              | sand fly              | 2           | 1.9%      |
| Sphaeromais sp.             | sand fly              | 2           | 1.9%      |
| Chironomidae                |                       |             |           |
| Ablabesmyia sp.             | midge                 | 2           | 1.9%      |
| Clinotanypus pinguis        | midge                 | 1           | 0.9%      |
| Dicrotendipes sp.           | midge                 | 10          | 9.3%      |
| Endochiromus nigricans      | midge                 | 1           | 0.9%      |
| Phaenopsectra punctipes gr. | midge                 | 1           | 0.9%      |
| Polypedilum halterale gr.   | midge                 | 1           | 0.9%      |
| Polypedilum illinoense gr.  | midge                 | 12          | 11.1%     |
| Procladius sp.              | midge                 | 4           | 3.7%      |
| Pseudochironomus sp.        | midge                 | 9           | 8.3%      |
| Tanytarsus sp.              | midge                 | 2           | 1.9%      |
| Tabanidae                   |                       |             |           |
| Chrysops sp.                | deer fly              | 2           | 1.9%      |
|                             | Total Taxa:           | 25          |           |
|                             | Total Specimens:      | 108         | 100%      |
| Community Density           | (no. / square meter): | 5,366       |           |

| Community Metrics:                              | <u>Value</u> |
|-------------------------------------------------|--------------|
| Species Richness                                | 24           |
| Ephemeroptera, Plecoptera, Trichoptera Richness | 0            |
| Hilsenhoff Biotic Index                         | 6.72         |
| Percent Model Affinity (Ponar)                  | 57%          |

# **Figures**







# **Appendix A**

**Restoration Monitoring Photographs** 



NYSEG Former MGP Site Penn Yan, New York



Photo: 1

**Location:** Former MGP Site; Penn Yan, NY.

**Description:** Planted and healthy black walnut trees (*Juglans nigra*). Photographed at Liberty St. bridge, facing southwest.



Photo: 2

**Location:** Former MGP Site; Penn Yan, NY.

**Description:** Planted and healthy silver maple (*Acer saccharinum*). Facing northeast; Keuka Lake Outlet Trail bridge and former MGP building in background.



NYSEG Former MGP Site Penn Yan, New York



Photo: 3

**Location:** Former MGP Site; Penn Yan, NY.

**Description:** Restored upland area. Facing north; former MGP Building in the background



Photo: 4

**Location:** Former MGP Site;

Penn Yan, NY.

**Description:** Restored upland area. Facing northwest; Water Street in

background.



NYSEG Former MGP Site Penn Yan, New York



Photo: 5

Location: Former MGP Site; Penn Yan, NY.

**Description:** Restored upland area. Facing east; Water Street in background.



Photo: 6

**Location:** Former MGP Site; Penn Yan, NY.

**Description:** Restored bank area. Facing east; Keuka Lake Outlet Trail Bridge in

background.



NYSEG Former MGP Site Penn Yan, New York



Photo: 7

Location: Quadrat UP-1

**Description:** Upland vegetation quadrat UP-1.



Photo: 8

**Location:** Quadrat UP-2

**Description:** Upland vegetation quadrat UP-2.



NYSEG Former MGP Site Penn Yan, New York



Photo: 9

Location: Quadrat UP-3

**Description:** Upland vegetation quadrat UP-3.



Photo: 10

**Location:** Quadrat BK-1

**Description:** Bank

vegetation quadrat BK-1.



NYSEG Former MGP Site Penn Yan, New York



Photo: 11

**Location:** Quadrat BK-2

**Description:** Bank

vegetation quadrat BK-2.



Photo: 12

**Location:** Quadrat BK-3

**Description:** Bank

vegetation quadrat BK-3.



NYSEG Former MGP Site Penn Yan, New York



Photo: 13

**Location:** SAV Area 1; Quadrat 1-1.

**Description:** Example

submerged aquatic vegetation quadrat from SAV Area 1. A total of 5 quadrats surveyed in SAV

Area 1.



Photo: 14

**Location:** SAV Area 2;

Quadrat 2-1.

**Description:** Example submerged aquatic vegetation quadrat from SAV Area 2. A total of 5 quadrats surveyed in SAV

Area 2.



NYSEG Former MGP Site Penn Yan, New York



Photo: 15

**Location:** SAV Area 3; Quadrat 3-1.

**Description:** Example submerged aquatic vegetation quadrat from SAV Area 3. A total of 5 quadrats surveyed in SAV Area 3.



Photo: 16

**Location:** SAV Area 4; Quadrat 4-1.

**Description:** Example submerged aquatic vegetation quadrat from SAV Area 4. A total of 5 quadrats surveyed in SAV Area 4.



NYSEG Former MGP Site Penn Yan, New York



Photo: 17

**Location:** SAV Area 5; Quadrat 5-1.

**Description:** Example submerged aquatic vegetation quadrat from SAV Area 5. A total of 5 quadrats surveyed in SAV Area 5.



Photo: 18

**Location:** SAV Area 6; Quadrat 6-1.

**Description:** Example submerged aquatic vegetation quadrat from SAV Area 6. A total of 5 quadrats surveyed in SAV Area 6.



## **Appendix A Restoration Monitoring Photographs**

NYSEG Former MGP Site Penn Yan, New York



Photo: 19

Location: Benthic Cell 2-B

**Description:** Benthic sample Cell 2-B prior to being

sieved.



Photo: 20

Location: Benthic Cell 2-B

**Description:** Benthic sample

Cell 2-B post-sieving.



## **Appendix A Restoration Monitoring Photographs**

NYSEG Former MGP Site Penn Yan, New York



Photo: 21

Location: Benthic Cell 5B-B

**Description:** Benthic sample Cell 5B-B prior to being

sieved.



Photo: 22

**Location:** Benthic Cell 5B-B

**Description:** Benthic sample

Cell5B-B post-sieving.

# **Appendix J**

**Certification Statements** 

#### NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Remedial Bureau C 625 Broadway, 12th Floor, Albany, NY 12233-7014 P: (518) 402-9543 | F: (518) 402-9722 www.dec.ny.gov

8/9/2024

John Ruspantini Environmental Analyst NYSEG 18 Link Drive P.O. Box 5224 Binghamton, NY 13902-5224 JJRuspantini@nyseg.com Please note that edits to this certification form are presented in RED font to update items in Boxes 3 and 4 in accordance with the Site Management Plan as well as to appropriately number the boxes presenting information/questions. Signing this IC/EC Certification Submittal assumes the Department accepts these edits.

Re: Reminder Notice: Site Management Periodic Review Report and IC/EC Certification Submittal

Site Name: NYSEG - Penn Yan Water St. MGP

**Site No.:** 862009

**Site Address:** Water St Penn Yan, NY 14527-

#### Dear John Ruspantini:

This letter serves as a reminder that sites in active Site Management (SM) require the submittal of a periodic progress report. This report, referred to as the Periodic Review Report (PRR), must document the implementation of, and compliance with, site-specific SM requirements. Section 6.3(b) of DER-10 *Technical Guidance for Site Investigation and Remediation* (available online at http://www.dec.ny.gov/regulations/67386.html) provides guidance regarding the information that must be included in the PRR. Further, if the site is comprised of multiple parcels, then you as the Certifying Party must arrange to submit one PRR for all parcels that comprise the site. The PRR must be received by the Department no later than **November 30, 2024**. Guidance on the content of a PRR is enclosed.

Site Management is defined in regulation (6 NYCRR 375-1.2(at)) and in Chapter 6 of DER-10. Depending on when the remedial program for your site was completed, SM may be governed by multiple documents (e.g., Operation, Maintenance, and Monitoring Plan; Soil Management Plan) or one comprehensive Site Management Plan.

A Site Management Plan (SMP) may contain one or all of the following elements, as applicable to the site: a plan to maintain institutional controls and/or engineering controls ("IC/EC Plan"); a plan for monitoring the performance and effectiveness of the selected remedy ("Monitoring Plan"); and/or a plan for the operation and maintenance of the selected remedy ("O&M Plan"). Additionally, the technical requirements for SM are stated in the decision document (e.g., Record of Decision) and, in some cases, the legal agreement directing the remediation of the site (e.g., order on consent, voluntary agreement, etc.).

When you submit the PRR (by the due date above), include the enclosed forms documenting that all SM requirements are being met. The Institutional Controls (ICs) portion of the form (Box 6) must be signed by you or your designated representative. The Engineering Controls (ECs) portion of the form (Box 7) must be signed by a Qualified Environmental Professional (QEP). If you cannot certify that all SM requirements are being met, you must submit a Corrective Measures Work Plan that identifies the actions to be taken to restore compliance. The work plan must include a schedule to be approved by the Department. The Periodic Review process will not be considered complete until all necessary corrective measures are completed and all required controls are certified. Instructions for completing the certifications are enclosed.



All site-related documents and data, including the PRR, must be submitted in electronic format to the Department of Environmental Conservation. The required format for documents is an Adobe PDF file with optical character recognition and no password protection. Data must be submitted as an electronic data deliverable (EDD) according to the instructions on the following webpage:

#### https://www.dec.ny.gov/chemical/62440.html

Documents may be submitted to the project manager either through electronic mail or by using the Department's file transfer service at the following webpage:

#### https://fts.dec.state.ny.us/fts/

The Department will not approve the PRR unless all documents and data generated in support of the PRR have been submitted using the required formats and protocols.

You may contact Gerald Pratt, the Project Manager, at 518-402-9667 or gerald.pratt@dec.ny.gov with any questions or concerns about the site. Please notify the project manager before conducting inspections or field work. You may also write to the project manager at the following address:

New York State Department of Environmental Conservation Division of Environmental Remediation, BURC 625 Broadway Albany, NY 12233-7014

#### **Enclosures**

PRR General Guidance Certification Form Instructions Certification Forms

ec: w/ enclosures

Nys Electric & Gas Corporation - jjruspantini@nyseg.com

ec: w/ enclosures

Gerald Pratt, Chief Bureau C

Sarah Saucier, Director Bureau C David Pratt, Hazardous Waste Remediation Supervisor, Region 8

#### **Enclosure 1**

#### **Certification Instructions**

#### **I. Verification of Site Details** (Box 1 and Box 2):

Answer the three questions in the Verification of Site Details Section. The Owner and/or Qualified Environmental Professional (QEP) may include handwritten changes and/or other supporting documentation, as necessary.

#### II. Certification of Institutional Controls/ Engineering Controls (IC/ECs)(Boxes 3, 4, and 5)

- 1. Review the listed IC/ECs, confirming that all existing controls are listed, and that all existing controls are applicable. If there is a control that is no longer applicable the Owner / Remedial Party should petition the Department separately to request approval to remove the control.
- 2. In Box 5, complete certifications for all Plan components, as applicable, by checking the corresponding checkbox.
- 3. If you <u>cannot</u> certify "YES" for each Control listed in Box 3 & Box 4, sign and date the form in Box 5. Attach supporting documentation that explains why the **Certification** cannot be rendered, as well as a plan of proposed corrective measures, and an associated schedule for completing the corrective measures. Note that this **Certification** form must be submitted even if an IC or EC cannot be certified; however, the certification process will not be considered complete until corrective action is completed.

If the Department concurs with the explanation, the proposed corrective measures, and the proposed schedule, a letter authorizing the implementation of those corrective measures will be issued by the Department's Project Manager. Once the corrective measures are complete, a new Periodic Review Report (with IC/EC Certification) must be submitted within 45 days to the Department. If the Department has any questions or concerns regarding the PRR and/or completion of the IC/EC Certification, the Project Manager will contact you.

#### **III. IC/EC Certification by Signature** (Box 6 and Box 7):

If you certified "YES" for each Control, please complete and sign the IC/EC Certifications page as follows:

- For the Institutional Controls on the use of the property, the certification statement in Box 6 shall be completed and may be made by the property owner or designated representative.
- For the Engineering Controls, the certification statement in Box 7 must be completed by a Professional Engineer or Qualified Environmental Professional, as noted on the form.



# Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form



| Sit       | Site Details<br>e No. 862009                                                                                                                                |     | Box 1            |          |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------|----------|
| Sit       | e Name NYSEG - Penn Yan Water St. MGP                                                                                                                       |     |                  |          |
| Cit<br>Cc | e Address: Water St Zip Code: 14527-<br>y/Town: Penn Yan<br>unty: Yates<br>e Acreage: 0.889                                                                 |     |                  |          |
| Re        | porting Period: March 22, 2023 to October 31, 2024                                                                                                          |     |                  |          |
|           |                                                                                                                                                             |     | YES              | NO       |
| 1.        | Is the information above correct?                                                                                                                           |     | X                |          |
|           | If NO, include handwritten above or on a separate sheet.                                                                                                    |     |                  |          |
| 2.        | Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?                          |     | X                |          |
| 3.        | Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?                                                         |     |                  | X        |
| 4.        | Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?                  |     | X                |          |
|           | If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form. |     |                  |          |
| 5.        | Is the site currently undergoing development?                                                                                                               |     |                  | X        |
|           |                                                                                                                                                             |     | <del>Box 2</del> |          |
|           |                                                                                                                                                             |     | YES              | NO Box 2 |
| 6.        | Is the current site use consistent with the use(s) listed below? Restricted-Residential, Commercial, and Industrial                                         |     | X                |          |
| 7.        | Are all ICs in place and functioning as designed?                                                                                                           | X   |                  |          |
|           | IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.                           | i   |                  |          |
| Corr      | ective Measures Work Plan must be submitted along with this form to address these i                                                                         | ssu | es.              |          |
| Siç       | nature of Owner, Remedial Party or Designated Representative Date                                                                                           |     |                  |          |
|           |                                                                                                                                                             |     |                  |          |

Box 3 **SITE NO. 862009** 

#### **Description of Institutional Controls**

<u>Parcel</u> <u>Owner</u> **Institutional Control** 

NYS Electric & Gas Corporation 049.75-1-55 Site Management Plan

049.75-1-56

Ground Water Use Restriction

Soil Management Plan Landuse Restriction Monitoring Plan Site Management Plan

IC/EC Plan

Ground Water Use Restriction

Seil Management Plan Landuce Restriction Monitoring Plan IC/EC Plan

Box 4

#### **Description of Engineering Controls**

**Engineering Control** <u>Parcel</u>

049.75-1-55 049.75-1-56

Cover System Upland Cover and AquaGate/AquaBlok Cover

-Menitering Wells

Controlled Low Strength Material

|                                                                                                                                                                                             | Periodic Review Report (PRR) Certification Statements                                                                                                                                                                                                       |           |    |   |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----|---|--|--|--|--|
| 1.                                                                                                                                                                                          | I certify by checking "YES" below that:                                                                                                                                                                                                                     |           |    |   |  |  |  |  |
|                                                                                                                                                                                             | <ul> <li>a) the Periodic Review report and all attachments were prepared under the directic<br/>reviewed by, the party making the Engineering Control certification;</li> </ul>                                                                             | n of, and | I  |   |  |  |  |  |
|                                                                                                                                                                                             | b) to the best of my knowledge and belief, the work and conclusions described in the are in accordance with the requirements of the site remedial program, and generally analyses are properties program, and the information properties are sent complete. |           |    | - |  |  |  |  |
|                                                                                                                                                                                             | engineering practices; and the information presented is accurate and complete.                                                                                                                                                                              | X         |    |   |  |  |  |  |
| 2.                                                                                                                                                                                          | For each Engineering control listed in Box 4, I certify by checking "YES" below that all of following statements are true:                                                                                                                                  |           |    |   |  |  |  |  |
| (a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;                                 |                                                                                                                                                                                                                                                             |           |    |   |  |  |  |  |
| (b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;                                                                       |                                                                                                                                                                                                                                                             |           |    |   |  |  |  |  |
| (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;                      |                                                                                                                                                                                                                                                             |           |    |   |  |  |  |  |
| (d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and                                                         |                                                                                                                                                                                                                                                             |           |    |   |  |  |  |  |
| (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document. |                                                                                                                                                                                                                                                             |           |    |   |  |  |  |  |
|                                                                                                                                                                                             |                                                                                                                                                                                                                                                             | YES       | NO |   |  |  |  |  |
|                                                                                                                                                                                             |                                                                                                                                                                                                                                                             | X         |    |   |  |  |  |  |
|                                                                                                                                                                                             | IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.                                                                                                                                       |           |    |   |  |  |  |  |
| A Corrective Measures Work Plan must be submitted along with this form to address these issues.                                                                                             |                                                                                                                                                                                                                                                             |           |    |   |  |  |  |  |
|                                                                                                                                                                                             | Signature of Owner, Remedial Party or Designated Representative Date                                                                                                                                                                                        |           | -  |   |  |  |  |  |
|                                                                                                                                                                                             |                                                                                                                                                                                                                                                             |           |    |   |  |  |  |  |
|                                                                                                                                                                                             |                                                                                                                                                                                                                                                             |           |    |   |  |  |  |  |
|                                                                                                                                                                                             |                                                                                                                                                                                                                                                             |           |    |   |  |  |  |  |
|                                                                                                                                                                                             |                                                                                                                                                                                                                                                             |           |    |   |  |  |  |  |
|                                                                                                                                                                                             |                                                                                                                                                                                                                                                             |           |    |   |  |  |  |  |

## IC CERTIFICATIONS SITE NO. 862009

Box 6

#### SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal aw.

| I <u>John Ruspan</u><br>print | at                                          | ghamton, NY 13904<br>business address |
|-------------------------------|---------------------------------------------|---------------------------------------|
| am certifying as _            | NYSEG/Remedial Party                        | (Owner or Remedial Party)             |
|                               |                                             |                                       |
| for the Site name             | d in the Site Details Section of this form. |                                       |

#### **EC CERTIFICATIONS**

| Box 7 Qualified Environmental Professional Signature                                                                                                                                             |                            |          |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------|--|--|--|--|--|--|--|
| I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. |                            |          |  |  |  |  |  |  |  |
| I John Ruspantini at 18 Link Dr, Binghamton, NY 13904 , print name print business address                                                                                                        |                            |          |  |  |  |  |  |  |  |
| am certifying as a Qualified Environmental Professional for the <u>NYSEG/Remedial Party</u> (Owner or Remedial Party)                                                                            |                            |          |  |  |  |  |  |  |  |
| For NYSEG John Drupantin                                                                                                                                                                         | CHMM 10302                 | 11/20/24 |  |  |  |  |  |  |  |
| Signature of Qualified Environmental Professional, for the Owner or Remedial Party, Rendering Certification                                                                                      | Stamp<br>(Required for PE) | Date     |  |  |  |  |  |  |  |

### Enclosure 3 Periodic Review Report (PRR) General Guidance

- I. Executive Summary: (1/2-page or less)
  - A. Provide a brief summary of site, nature and extent of contamination, and remedial history.
  - B. Effectiveness of the Remedial Program Provide overall conclusions regarding;
    - 1. progress made during the reporting period toward meeting the remedial objectives for the site
    - 2. the ultimate ability of the remedial program to achieve the remedial objectives for the site.
  - C. Compliance
  - 1. Identify any areas of non-compliance regarding the major elements of the Site Management Plan (SMP, i.e., the Institutional/Engineering Control (IC/EC) Plan, the Monitoring Plan, and the Operation & Maintenance (O&M) Plan).
    - 2. Propose steps to be taken and a schedule to correct any areas of non-compliance.
  - D. Recommendations
    - 1. recommend whether any changes to the SMP are needed
    - 2. recommend any changes to the frequency for submittal of PRRs (increase, decrease)
    - 3. recommend whether the requirements for discontinuing site management have been met.

#### II. Site Overview (one page or less)

- A. Describe the site location, boundaries (figure), significant features, surrounding area, and the nature and extent of contamination prior to site remediation.
- B. Describe the chronology of the main features of the remedial program for the site, the components of the selected remedy, cleanup goals, site closure criteria, and any significant changes to the selected remedy that have been made since remedy selection.

#### III. Evaluate Remedy Performance, Effectiveness, and Protectiveness

Using tables, graphs, charts and bulleted text to the extent practicable, describe the effectiveness of the remedy in achieving the remedial goals for the site. Base findings, recommendations, and conclusions objective data. Evaluations and should be presented simply and concisely.

#### IV. IC/EC Plan Compliance Report (if applicable)

- A. IC/EC Requirements and Compliance
  - 1. Describe each control, its objective, and how performance of the control is evaluated.
  - 2. Summarize the status of each goal (whether it is fully in place and its effectiveness).
  - 3. Corrective Measures: describe steps proposed to address any deficiencies in ICECs.
  - 4. Conclusions and recommendations for changes.
- B. IC/EC Certification
  - 1. The certification must be complete (even if there are IC/EC deficiencies), and certified by the appropriate party as set forth in a Department-approved certification form(s).

#### V. Monitoring Plan Compliance Report (if applicable)

- A. Components of the Monitoring Plan (tabular presentations preferred) Describe the requirements of the monitoring plan by media (i.e., soil, groundwater, sediment, etc.) and by any remedial technologies being used at the site.
- B. Summary of Monitoring Completed During Reporting Period Describe the monitoring tasks actually completed during this PRR reporting period. Tables and/or figures should be used to show all data.
- C. Comparisons with Remedial Objectives Compare the results of all monitoring with the remedial objectives for the site. Include trend analyses where possible.
- D. Monitoring Deficiencies Describe any ways in which monitoring did not fully comply with the monitoring plan.
- E. Conclusions and Recommendations for Changes Provide overall conclusions regarding the monitoring completed and the resulting evaluations regarding remedial effectiveness.

#### VI. Operation & Maintenance (O&M) Plan Compliance Report (if applicable)

- A. Components of O&M Plan Describe the requirements of the O&M plan including required activities, frequencies, recordkeeping, etc.
- B. Summary of O&M Completed During Reporting Period Describe the O&M tasks actually completed during this PRR reporting period.
- C. Evaluation of Remedial Systems Based upon the results of the O&M activities completed, evaluated

the ability of each component of the remedy subject to O&M requirements to perform as designed/expected.

- D. O&M Deficiencies Identify any deficiencies in complying with the O&M plan during this PRR reporting period.
- E. Conclusions and Recommendations for Improvements Provide an overall conclusion regarding O&M for the site and identify any suggested improvements requiring changes in the O&M Plan.

#### VII. Overall PRR Conclusions and Recommendations

- A. Compliance with SMP For each component of the SMP (i.e., IC/EC, monitoring, O&M), summarize;
  - 1. whether all requirements of each plan were met during the reporting period
  - 2. any requirements not met
  - 3. proposed plans and a schedule for coming into full compliance.
- B. Performance and Effectiveness of the Remedy Based upon your evaluation of the components of the SMP, form conclusions about the performance of each component and the ability of the remedy to achieve the remedial objectives for the site.
- C. Future PRR Submittals
  - 1. Recommend, with supporting justification, whether the frequency of the submittal of PRRs should be changed (either increased or decreased).
- 2. If the requirements for site closure have been achieved, contact the Departments Project Manager for the site to determine what, if any, additional documentation is needed to support a decision to discontinue site management.

#### VIII. Additional Guidance

Additional guidance regarding the preparation and submittal of an acceptable PRR can be obtained from the Departments Project Manager for the site.

Arcadis of New York, Inc. 100 Chestnut Street, Suite 1020 Rochester New York 14604 Phone: 585 385 0090

Fax: 585 546 1973 www.arcadis.com