Atlantic Richfield Company

Eric J. Larson
Operations Project Manager

Remediation Management 1 W. Pennsylvania Avenue Suite 440 Towson, MD 21204 Phone: (410) 825-2880 Mobile: (443) 807-6233 Fax: (410) 825-8675

E-Mail: eric.larson@bp.com

November 13, 2012

Mr. Michael J. Negrelli Remedial Project Manager U.S. Environmental Protection Agency Region 2 290 Broadway Avenue NYC SB2 – 20th Floor New York, NY 10007-1866

2011 Annual Report of Operations and Maintenance Activities Central Elevated Landfill Area Former Sinclair Refinery Site, Operable Unit 1 Wellsville, New York

Dear Mike:

Enclosed are two copies of the 2011 Annual Report of Operations and Maintenance Activities for the Central Elevated Landfill Area at the Former Sinclair Refinery Site, Operable Unit 1 (OU1) in Wellsville, New York. The report presents a discussion of the operation and maintenance activities that occurred for this OU1 project during 2011.

If you have any guestions regarding this submittal, please do not hesitate to contact me at 443-807-6233.

Sincerely,

Eric J. Larson Project Manager

Enclosures

Cc: (with attachments)

Maurice Moore, NYSDEC Martin Schmidt, URS

Jerry Palmer, On-Site Technical Services David A. Howe Public Library, Wellsville NY

2011 ANNUAL REPORT OF OPERATIONS AND MAINTENANCE ACTIVITIES

FORMER SINCLAIR REFINERY SITE OPERABLE UNIT ONE CENTRAL ELEVATED LANDFILL AREA

WELLSVILLE, NEW YORK

Prepared For
Atlantic Richfield Company
A BP affiliated company
1 W. Pennsylvania Avenue, Suite 440
Towson, MD 21204

Prepared By
On-Site Technical Services, Inc.
72 Railroad Avenue
Wellsville, New York 14895
Ph: 585-593-1824

TABLE OF CONTENTS

1.0	OVERVIEW	1
1.1	Introduction	1
1.2	PROJECT BACKGROUND	
1.3	REPORT FORMAT	
	OPERATIONS REQUIREMENTS	
2.0		
2.1	Inspection Requirements	
2.2	SUBSIDENCE AND SETTLEMENT SURVEYS	
2.3	GROUNDWATER OBSERVATION REQUIREMENTS	
2.4	STATIC GROUNDWATER ELEVATIONS	
2.6	GAS VENT EVALUATION	
2.7	STORM WATER EVALUATION	5
3.0	MAINTENANCE REQUIREMENTS	5
3.1	VEGETATION	
3.2	GAS VENT SYSTEM	
3.3	OBSERVATION WELLS AND OPEN WELL PIEZOMETERS	
3.4	Surface Drainage Features	
3.5	Access Roads	
3.6	SECURITY FENCE	6
4.0	2011 OPERATIONS AND MAINTENANCE ACTIVITIES	6
4.1	VISUAL INSPECTIONS	6
4.1.1		
4.1.2		
4.1.3		
4.1.4		
4.1.5		
4.1.6		
4.2	2011 MONITORING ACTIVITIES	
4.2.1	SETTLEMENT PLATE SURVEY	7
4.2.2	2 Groundwater Evaluation	8
4.2.3		
4.2.4		
4.2.5		
4.2.6		
4.3	MAINTENANCE ACTIVITIES	10
5.0	RESULTS	10
5.1	Liquid Levels	10
5.1.1		
5.1.2		
5.2	GROUNDWATER CONDITIONS	11
5.2.1	MCL AND DWEL COMPARISON	11
5.2.2	2 Statistical Analysis	12
6.0	CONCLUSIONS AND RECOMMENDATIONS	13
6.1	Inspections	13
6.2	MONITORING PROGRAMS	
6.2.1		
6.2.2		
6.3	Maintenance	
6.4	REVISED OM&M PROCEDURES	14
REFE	RENCES	15
	, , , ,	

Table 1 – Comparison of 1993 Baseline Groundwater Data to 2011 Groundwater Data

Table 2- Groundwater Analytical results (2004 – 2011)

Table 3 – 2011 Groundwater Duplicate Sample Comparison

Table 4 - 2011 Equipment Rinsate Blank Results

Table 5 – 2011 Liquid Level Monitoring

Table 6 – Storm Water Analytical Results (2005 – 2011)

Table 7A – Select Groundwater Analytical Results (1998 – 2011)

Table 7B - Groundwater Analytical Results 1998 - 2011 Used in Statistical Analysis

Table 7C – Statistical Analysis of Groundwater Data (1998 – 2011)

Table 8 – 2011 Groundwater Monitoring Field Parameters

Table 9 – 2011 LNAPL Measurements and Removal

Figures

Figure 1A – Site Location

Figure 1B - Site Features Prior to 2011 Construction Activities

Figure 1C – Site Features Following 2011 Construction Activities

Figure 2 – June 13, 2011 Water Table Contour Map

Figure 3 – July 13, 2011 Water Table Contour Map

Figure 4 - LNAPL Thickness 1993 - 2011

Appendices

Appendix A – CD containing electronic copy of this report

Appendix B – USEPA Correspondence

Appendix C - Inspection Checklists

Appendix D – Groundwater Sampling Field Forms

Appendix E – Gas Vent Monitoring Field Forms

1.0 OVERVIEW

1.1 Introduction

This document presents the 2011 Annual Report of the Operation and Maintenance Activities for the Central Elevated Landfill Area (CELA) at the Former Sinclair Refinery Site Operable Unit 1 (OU1) located in the Town of Wellsville, New York, (please see Figure 1A). This document has been prepared by On-Site Technical Services, Inc. (On-Site), of Wellsville, New York for the Atlantic Richfield Company (Atlantic Richfield). Operation and Maintenance procedures for this project are detailed in the *Operations and Maintenance Plan for Central Elevated Landfill Area and Refinery Surface Soils, Wellsville, New York*, dated April 1993 (O&M Plan), prepared by GeoSyntec Consultants (GeoSyntec), Atlanta, Georgia with subsequent updates. An electronic copy of this report is included as Appendix A.

1.2 Project Background

An Administrative Order of Consent (AOC), between Atlantic Richfield and the United States Environmental Protection Agency (USEPA) dated May 1, 1992, provided that Atlantic Richfield remediate the CELA and excavate certain surface soils in sections of Operable Unit 2 (OU2). To accomplish the CELA remediation, a contract to construct a soil-bentonite cutoff wall and a RCRA cap over the consolidated wastes at the CELA was awarded to Geo-Con, Inc., Monroeville, Pennsylvania, in spring 1992. The contractor mobilized in May 1992 and the final project inspection was conducted on July 7, 1993 (please see Figure 1b for site features). The excavation of surface soils in OU2 was completed by a combination of Geo-Con and Bakers of Jericho Hill, Inc., Alfred, New York. The surface soil remedy included removal of defined soils to an approximate depth of one foot at several locations on the Site, and backfilling with a 12-inch layer of approved borrow material.

Subsection 38 of the AOC provided that Atlantic Richfield prepares an O&M plan for operations and maintenance of the CELA and defined surface soils. GeoSyntec prepared the O&M Plan in April 1993. The O&M Plan has been modified since 1993, with concurrence from the USEPA, on specific requirements, which are discussed in this report. O&M of the defined surface soil excavation areas is covered under routine OU2 operations. No change in land use occurred at the former refinery surface soil areas during 2011. Regrading and restoration work of the CELA cover is associated with the Phase II-2 Remedial Action construction plans and was conducted during 2011. Due to the construction activities, some maintenance activities were not conducted and some site features were modified. Current site features are presented in Figure 1C.

1.3 Report Format

The remainder of this report is organized as follows.

- Section 2 outlines the currently approved operation requirements.
- Section 3 presents the currently approved maintenance requirements.
- Section 4 details O&M activities completed during 2011.
- Section 5 provides the results of 2011 monitoring activities.
- Section 6 presents the conclusions and recommendations.

2.0 OPERATIONS REQUIREMENTS

2.1 Inspection Requirements

The O&M Plan outlines the following visual inspections to be performed on a quarterly basis, or following any extreme natural event, which may jeopardize the integrity of the project components. These requirements are based on the 1993 O&M plan. A revised O&M plan was submitted to the USEPA on November 1, 2011 and is currently under review.

<u>CELA Cap Vegetative Cover:</u> visually inspect for erosion; stressed vegetation; sediment build-up; local subsidence or loss of grade; water ponding; turf height; evidence of activity of burrowing animals; growth of trees, weeds or undesirable vegetation; evidence of fires or vandalism; perform soil pH test (every three years); evidence of unauthorized traffic on cover; and slope instability or sloughing.

<u>Gas Vent System:</u> visually inspect for excess sediment accumulation and vegetative growth over the vent pipes; erosion or washout around the vent pipes; and damage to vent pipes due to vandalism, cap traffic, or natural disaster.

<u>Open Well Piezometers:</u> visually inspect for excess sediment accumulation and any vegetative growth over the protective cover; erosion around the surface casing/CELA Cap interface; proper function of the protective cover cap and lock; excess rust on the surface casing and lock; ponding between protective casing and the riser pipe; or any evidence of vandalism, damage, or any conditions which would allow willful, negligent, or accidental discharge of any undesired substances into the piezometers.

<u>Groundwater Monitoring Wells:</u> visually inspect for excess sediment accumulation and any vegetative growth over the protective cover; erosion around the concrete surface seal; cracks in the concrete surface seal; separation between the concrete surface seal

and the surface casing; proper function of the surface casing cap and lock; excess rust on the surface casing and lock; ponding between the surface casing and the riser pipe; or any evidence of vandalism, damage, or any conditions which would allow willful, negligent, or accidental discharge of any undesired substances into the monitoring wells.

<u>Surface Water Drainage System:</u> visually inspect for any condition which would in any way impede, restrict, or redirect surface water drainage such as dislodged riprap; washouts; erosion; sediment accumulation; gullies and ruts in the drainage swales and appurtenances; excess rusting, holes, cracks, sediment accumulation; foreign objects; and washouts at the berm-culvert interface in the drainage culvert which penetrates the Genesee River Channelization Dike.

<u>Security Fence</u>: visually inspect for proper clearance between fence gates and the ground; proper function of gate lock and hinges; holes; excess rust; ruts or burrows beneath the fence; vegetation growing onto or through the fence; improper connection between posts and chain link mesh; loose posts; cracks in the post foundations; and general signs of deterioration.

2.2 Subsidence and Settlement Surveys

Twenty-five settlement plates, each consisting of a sleeved metal rod attached to a flat metal plate, incorporated into the cap design, were previously surveyed by a New York State licensed professional land surveyor to detect settlement or subsidence of the materials underlying the cap. In a letter dated October 5, 2009, Atlantic Richfield proposed that the annual settlement plate survey be suspended until after the RCRA cell is constructed on top of the existing CELA for placement of impacted soils from the Phase II remedial action activities at Operable Unit 2 (OU2) and operation and maintenance requirements for the combined area are determined. In an e-mail dated October 8, 2009, the EPA agreed with the proposal to temporarily suspend the annual survey. The settlement plates were removed during 2010 as part of OU2 Phase II remedial construction activities. A revised O&M plan was submitted on November 1, 2011.

2.3 <u>Groundwater Observation Requirements</u>

A total of 11 groundwater observation wells and six open well piezometers have been installed on and around the CELA. Section 6.2.3 of the O&M Plan provides that groundwater wells be sampled quarterly for one year to establish baseline conditions and

twice per year thereafter. Samples obtained from both upgradient and downgradient wells are used to determine if there is any statistical change in groundwater conditions.

The statistical analysis performed in 2000, as documented in the 2000 Annual Report of Operations and Maintenance Activities, recommended the groundwater sampling requirement be reduced to annual sampling starting in 2001. This recommendation was approved by the USEPA in a letter dated June 2001 (Appendix B), and was implemented in 2001. Fluid level measurements, including non-aqueous phase liquid (NAPL) measurements, have continued on a semi-annual basis due to seasonal fluctuations.

In 2002 Atlantic Richfield requested to discontinue dissolved metals and semi-volatile organic compound (SVOC) analysis and to continue total metals, volatile organic compounds (VOC) and field parameter testing. In a November 2002 letter (Appendix B), the USEPA approved the discontinuation of the dissolved metal analysis contingent upon New York State Department of Environmental Conservation (NYSDEC) collecting split samples during the 2003 sampling event. NYSDEC collected split samples as part of the 2003 sampling event and dissolved metal analysis was discontinued starting in 2004. Also, in a June 27, 2005 email from USEPA to Atlantic Richfield (Appendix B), the USEPA agreed to suspend SVOC analysis. SVOC analysis was discontinued starting with the 2005 sampling event. Therefore, the current groundwater sampling frequency is annual with analysis for total metals and VOCs.

Groundwater data is compared with historical data to evaluate fluctuation of constituents. Graphs are prepared for groundwater indicator parameters and other constituents of interest. Groundwater data is compared with federal Maximum Contaminant Levels (MCLs) and Drinking Water Equivalent Levels (DWELs).

2.4 Static Groundwater Elevations

Semi-annual static groundwater elevations are routinely evaluated in the observation wells and piezometers. Groundwater contour maps are constructed semi-annually and included in the annual report.

2.5 <u>Piezometer Evaluation Program</u>

The liquid level within the CELA is evaluated semi-annually to determine the apparent thickness of light non-aqueous phase liquid (LNAPL), if present, and to document that the liquid level remains a minimum of 1 ft below the elevation of the tie-in of the CELA cap to

the top of the slurry wall. The elevation of the top of the slurry wall varies from 1497 ft to 1501 ft. Also, if the accumulation of LNAPL in any of the piezometers is greater than 2 ft, it will be removed and properly disposed.

2.6 Gas Vent Evaluation

As part of OU2 Phase II-2 construction activities a majority of the gas vents were removed. Gas vents GV-1 and GV-13 remain. Each gas vent is evaluated semi-annually, using a Photo-Ionization Detector (PID) or Flame-Ionization Detector (FID), for emission of organic compounds. At least one monitoring event is conducted during the summer months. Results of the gas vent evaluation are recorded on a form located in Appendix C of the O&M Plan.

2.7 Storm Water Evaluation

To comply with the substantive requirements of a storm water discharge permit, a storm water grab sample is required to be collected from the outfall of the 42-inch diameter drainage culvert semi-annually (shown on Figure 1B). A grab sample is collected following a storm event that is greater than 0.1 in. of precipitation and at least 72 hours has passed since the previous storm event of at least 0.1 in. of precipitation. Analytical parameter lists for this sampling are located in section 6.6.2 of the O&M Plan. However, due to the site construction no storm water samples were collected in 2011. Storm water from the CELA was managed in accordance with the site construction Storm Water Pollution Prevention Plan.

3.0 MAINTENANCE REQUIREMENTS

3.1 <u>Vegetation</u>

Vegetation is mowed during the summer months after the grass goes to seed and reaches a height of more than six inches. Mowing is not lower than four inches. Prior to winter, grass is allowed to grow to eight to twelve inches. Fertilizer is applied as needed, based on agronomic soil tests performed every three years. Lime is applied as necessary to maintain soil pH above 5.8. Replacement of eroded topsoil, reseeding, and mulching is performed on an as needed basis. Routine maintenance includes the removal of sediment and removal of woody or undesirable vegetation.

3.2 Gas Vent System

The only anticipated maintenance of the passive gas vent system is repair or replacement of standpipes in the event they are damaged.

3.3 Observation Wells and Open Well Piezometers

Routine maintenance of the observation wells and piezometers includes removal of sediment accumulation and vegetation from the casing surface; repair of erosion around the concrete surface seals; filling cracks in the concrete surface seal and casing; and replacement of the surface casing cap and locks.

3.4 Surface Drainage Features

As part of restoration work completed on the CELA in 2010, the rip-rap within the rock chutes was removed and replaced with vegetation as per the approved OU2 Phase II-2 Remedial Action construction plans. Routine maintenance of the culvert includes removal of foreign objects and mowing of the vegetation.

3.5 Access Roads

Maintenance of the access roads is performed as needed and includes repairs due to water ponding; removal of woody growth; and addition of new aggregate to fill ruts or depressed areas.

3.6 Security Fence

Routine maintenance of the security fence includes the removal of soil below the fence gate to ensure proper clearance; repair or replacement of gate locks and hinges; repair of holes; replacement of soil whenever ruts or burrows occur below the fence; removal of vegetation growing onto or through the fence; resetting of connection between posts and chain link mesh; replacement of rusted chain link mesh; and securing of loose posts.

4.0 2011 OPERATIONS AND MAINTENANCE ACTIVITIES

4.1 <u>Visual Inspections</u>

Visual inspections of the CELA were completed on March 14, May 9, August 16 and November 18, 2011. The inspections consisted of a complete walk-through visual inspection and completion of the Inspection Checklists (please see Appendix C). A summary of the inspections are included in the following sections.

4.1.1 CELA Cap Vegetative Cover

The CELA cap was mowed, as construction activities allowed, two times during 2011. Construction activities were ongoing at the CELA re-use area during 2011 (Please see

Figure 1B for site features prior to 2011). Regrading and restoration work of the CELA cover in 2011 were associated with the approved OU2 Phase II-2 Remedial Action construction plans (please see Figure 1C for site features following 2011 construction activities).

4.1.2 Gas Vent System

The gas vent system appears to be in good condition. No notable changes from previous conditions were observed during the 2011 inspections.

4.1.3 Open Well Piezometers

The six open well piezometers were inspected and appear in good condition.

4.1.4 Groundwater Observation Wells

The 11 groundwater observation wells were inspected and are in good condition.

4.1.5 Surface Water Drainage System

The surface water drainage system is functioning as designed. Rip-rap within East-West trending rock chutes was removed and replaced with vegetation during 2010 as part of OU2 Phase II remedial construction activities.

4.1.6 Security Fence

The security fence is in overall excellent condition with no visible damage to the surrounding area at the base of the fence poles. All ground rods are properly bonded to the fence and ground posts. An additional gate was installed at the Southwest side for the temporary haul road as part of OU2 Phase II remedial construction activities.

4.2 2011 Monitoring Activities

4.2.1 Settlement Plate Survey

As stated in Section 2.2, the settlement plates were removed during 2010 as part of OU2 Phase II remedial action construction activities. As approved by USEPA, settlement plate monitoring has been temporarily suspended.

Based on visual observations, the cap continues to have positive drainage with no areas of ponding water or abnormally soft ground. Quarterly visual inspections of the CELA cap

are continuing as required. Any signs of CELA cap differential settlement will be immediately addressed.

4.2.2 Groundwater Evaluation

On-Site performed annual groundwater sampling at the 11 observation wells (MWR-01 through MWR-11) between June 13 and 16, 2011 (see Figure 1C for well locations). A bladder pump was utilized for purging and sampling the wells. Field parameters including pH, Conductivity, Turbidity, Dissolved Oxygen, Temperature and Oxidation Reduction Potential were measured throughout purge and at time of sampling (please see Table 8). Laboratory analysis of groundwater samples was performed by Lancaster Laboratories of Lancaster, Pennsylvania for total Target Analyte List metals (method 6010B) and Target Compound List VOCs (method 8260B). Discussion of groundwater conditions are presented in Section 5.2. Groundwater analytical results are presented in Tables 1 through 4. Groundwater sampling field forms are included as Appendix D.

4.2.3 Liquid Level Evaluation

Static water levels were measured with an oil/water interface probe in the 11 observation wells and six piezometers prior to the annual groundwater sampling event on June 13, 2011 and during the static water level monitoring event on July 13, 2011. The static water levels are presented in Table 5 and water table contour maps for the June and July 2011 events are provided as Figures 2 and 3, respectively.

The static water level data were subtracted from the surveyed elevation of the top of the casing to calculate the water elevations as shown in Table 5. These data were plotted and contoured on a site base map to represent the potentiometric surface for the June 2011 monitoring event (Figure 2) and July 2011 monitoring event (Figure 3). Each contour represents a line of equivalent water elevation. The direction of groundwater flow is from higher to lower elevation approximately perpendicular to the contours. The O&M plan discusses determining both groundwater flow direction and rate. As presented on Figures 2 and 3, the direction of groundwater flow is generally towards the CELA; however, the presence of the slurry wall restricts flow across the landfill. The soil-bentonite slurry wall is designed to restrict groundwater flow with a hydraulic conductivity of 1 X 10⁻⁷ cm/sec or less.

Light Non-Aqueous Phase Liquid (LNAPL) was detected at MWR-02, which was socked three times prior to sampling. The last sock was removed on June 16, 2011 prior to sampling MWR-02. Based on the manufacturer information, the total

approximate amount of LNAPL removed from MWR-02 by socking is 132 fluid ounces. Additional discussion of liquid level monitoring is provided in Section 5.1.

4.2.4 Gas Vent Evaluation

Gas vents GV-1 and GV-13 were evaluated with a Mini Rae Photo Ionization Detector (PID) on August 16, 2011 and September 26, 2011 (see Figure 1C for locations). Prior to use, the PID was calibrated according to manufacturer specification with 100 ppm Isobutylene gas. PID readings were measured directly at the gas vent, and approximately five feet upwind and downwind of each vent. Weather conditions on August 16, 2011 were approximately 77°F, sunny with winds at approximately 5 to 10 mph from the northwest. Weather conditions on September 26, 2011 were approximately 77°F with light winds out of the southwest at approximately 0 to 5 mph. Emission levels at upwind and downwind locations vary during the evaluations and are listed in the table below.

Date	Gas Vent Location	Upwind Reading	Downwind Reading	Vent Reading
8/16/2011	V-1	0.5	0.5	0.5
8/16/2011	V-13	24.6	24	28
9/26/2011	V-1	0.5	1.7	27.6
9/26/2011	V-13	0.5	2	30.3

Gas vent evaluation data are included in Appendix E of this report.

4.2.5 Storm Water Evaluation

There were no storm water samples collected from the CELA Outfall culvert at the North end of the CELA during 2011 (please see Figure 1C). Storm water from the CELA was managed in accordance with the site construction Storm Water Pollution Prevention Plan. Table 6 compares storm water results from 2005 to 2011.

4.2.6 Soil pH and Agronomic Soil Test

Discontinuation of annual soil pH analysis but continuation of agronomic soil testing (includes soil pH) every three years, was approved by USEPA via a June 27, 2005 email correspondence from USEPA to Atlantic Richfield (included in Appendix B). This change was based upon demonstrated stable soil pH values over several years. Agronomic soil testing was performed as scheduled during 2009 as documented in the 2009 annual report.

4.3 Maintenance Activities

Maintenance activities during 2011 included routine mowing of the cap. The CELA was mowed two times during 2011. During the first quarter 2011 inspection, it was noted that a sunken area was present in the northern most area of the west side of the CELA. The area was filled in and no further maintenance has been required. There was no other maintenance or repair required in 2011.

5.0 RESULTS

5.1 Liquid Levels

5.1.1 Liquid Elevations vs. Slurry Wall Elevation

Liquid level elevation inside the slurry wall should be a minimum of 1 ft below the elevation of the top of the slurry wall. The slurry wall elevation varies between 1497 and 1501 ft. The highest water level measured inside the CELA slurry wall during 2011 was 1492.98 ft in P-02 on June 13, 2011. This level is well below the minimum of 1 ft below the top of the slurry wall and is consistent with historical measurements. The static water elevations and water table contours for June and July 2011 are presented as Figures 2 and 3, respectively and are consistent with historic levels.

5.1.2 LNAPL Thickness

Since 1993, LNAPL has been detected intermittently in observation wells MWR-02 and MWR-03 and piezometers P-4 and P-6. The maximum apparent LNAPL thickness of 1.02 ft was measured in MWR-02 during May 2007 and again in June 2011. The maximum apparent LNAPL thickness measured inside the slurry wall was 0.40 ft, measured in P-6 during August 1993. This measured thickness is well below the 2 ft thickness requiring removal. A graph of LNAPL thickness over time for each of the two wells and two piezometers is presented as Figure 4. During 2011, LNAPL was detected at MWR-02 in both June and July monitoring events with an apparent thickness of 1.02 ft and 0.28 ft, respectively. Generally, it appears that LNAPL thicknesses have varied over time, with observation well MWR-02 consistently containing the most LNAPL. Historically LNAPL has been removed from wells using absorbent socks prior to each groundwater sampling event. In 2011, approximately 132 oz. of LNAPL were recovered from MWR-02 (please see Table 9).

5.2 Groundwater Conditions

5.2.1 MCL and DWEL Comparison

Table 1 compares frequency of detection, minimum detection, and maximum detection between the baseline sampling conducted in 1993 and the 2011 event. Table 2 presents the analytical results for each well from 2003 to 2011. Table 3 presents a comparison between the 2011 MWR-07 sample and its duplicate. Analytical results from the duplicate sample compare favorably with the original sample results.

Well sampling was conducted using a non-dedicated bladder pump. After each well was sampled, the pump and tubing were cleaned using a three step washing procedure: (i) Liqui-Nox® soap and tap water wash; (ii) tap water rinse; followed by (iii) distilled water rinse. An equipment rinsate blank was collected from the pump and tubing used for sampling. The equipment blank was collected by: i) following the cleaning procedure detailed above; ii) pumping laboratory provided de-ionized water through the pump and tubing; and iii) collecting the de-ionized water in sample bottles. Table 4 presents the equipment blank results as non-detect, with the following exception. A low level estimated concentration of 2-Butanone (0.0034 J mg/L) was detected in the field equipment rinsate blank, however it was not detected in any of the groundwater samples and therefore has no effect on the data useability.

Since 1993, several metals, Bis (2-ethylhexyl) phthalate and Methylene Chloride have exceeded USEPA Maximum Contaminant Levels (MCLs) at one time or another. The 2011 annual groundwater sampling event was conducted between June 13 and June 16, 2011. Analytical results from the 11 observation wells sampled indicate various metal detections. VOCs were not detected in 2011. The 2011 groundwater analytical results were compared to MCLs and New York State Department of Environmental Conservation (NYSDEC) Class GA Groundwater Standards (NYSDEC Class GA Standards). Arsenic and chromium are the only parameters exceeding MCLs or DWELs during 2011. The table below lists the 2011 exceedances.

Location	Date Sampled	Parameter	Result (mg/L)	USEPA MCL
MWR-02	6/16/2011	Arsenic	0.0283	0.01
MWR-03	6/15/2011	Arsenic	0.0537	0.01
MWR-05	6/15/2011	Chromium	0.892	0.1
MWR-10	6/14/2011	Arsenic	0.0587	0.01
MWR-11	6/14/2011	Chromium	0.553	0.1

Total Metals including antimony, arsenic, beryllium, cadmium, chromium, lead, and thallium; bis (2-ethylhexyl) phthalate (SVOC); and methylene chloride (VOC) have periodically exceeded MCLs in water samples collected from observation wells. The maximum detected arsenic concentration exceeded the MCL for potable water (revised in 2001) every year since the 1993 baseline sampling, with exceedances periodically occurring at each well. Total chromium has exceeded the MCL every year except 2000 and 2001.

5.2.2 Statistical Analysis

Antimony, Arsenic, Beryllium, Cadmium and Chromium are the parameters that have shown MCL exceedances since 2004. Therefore, these parameters were evaluated for statistical analysis. The evaluation included reviewing the last 16 results for each of these five metals from the eleven monitoring wells, which includes data from 1998 through 2011 (Please see Table 7A). Monitoring well analytical results with three or more detections of an individual metal were included in the statistics. Parameters with three or more detections at a given monitoring well include: (i) Arsenic at MWR-01, MWR-02, MWR-03, MWR-08, MWR-09 and MWR-10; and (ii) Chromium at MWR-01, MWR-04, MWR-05, MWR-06 and MWR-11. Therefore, statistical analysis was performed on these 11 metal/location combinations. In conducting this analysis, one-half the detection limit was used for non-detect results and field duplicate results were excluded. Table 7B presents the data used in the statistical analysis and includes one-half detection limit for non-detects.

The statistical analysis was conducted using the Mann-Kendall test using a normal approximation method in accordance with *USEPA Data Quality Assessment: Statistical Methods for Practitioners EPA QA/G-9S*, dated February 2006. In this analysis, a null hypothesis of "There is no trend" is tested against an alternative hypothesis of either "There is an upward trend" or "There is a downward trend". This analysis involves using a triangular table to compute a Statistic (S) and test it against a critical value and a probability value at a 5% significance level (95% confidence level). If both criteria are met, then the null hypothesis of no trend is rejected in favor of the alternative hypothesis. Rejecting the null hypothesis suggests that the alternative hypothesis may be true. Alternative hypotheses are upward trend for S greater than zero and downward trend for S less than zero. If only one criterion or neither criteria are met, then the result is not enough evidence to show a trend. These statistical analyses are presented in Table 7C attached.

The statistical analysis showed the following results: (i) Arsenic exhibits evidence of decreasing trends at MWR-01, MWR-02 and MWR-08; and (ii) No statistically significant trend at the 5% significance level (95% confidence level) at the other metal/location combinations tested. Please refer to Table 7C for additional details.

6.0 CONCLUSIONS AND RECOMMENDATIONS

6.1 <u>Inspections</u>

Inspections of the CELA are being conducted on a quarterly basis. Groundwater observation wells, open well piezometers, gas vents, and pipe sleeves appear in good condition. Other physical aspects such as the fences, gates, CELA vegetative cover, and drainage swales are operating or growing properly and serve their function. Inspections will continue to be performed quarterly, consistent with the current O&M Plan.

6.2 Monitoring Programs

6.2.1 Groundwater Evaluation

In general, the 2011 groundwater analytical results are consistent with recent historical data obtained from the Site. Various metals have historically been detected at the Site and were also observed in 2011. Statistical analysis of Arsenic and Chromium concentrations in groundwater indicate a combination of decreasing and stable trends. VOCs continue to be non-detect.

6.2.2 Other Evaluations

Other activities are being conducted, including: liquid level evaluation; gas vent evaluation; and storm water evaluation. These evaluations have shown that the CELA is performing as designed.

6.3 Maintenance

Maintenance continues to be conducted as indicated by the O&M Plan. Anticipated maintenance for 2011 includes routine moving during the summer months in areas not under construction.

6.4 Revised OM&M Procedures

Atlantic Richfield has submitted a revised operation, maintenance and monitoring (OM&M) plan for USEPA and NYSDEC comment on November 1, 2011. Agency comments have been received and a final draft OM&M plan is anticipated to be submitted to the agencies in the fourth quarter 2012.

REFERENCES

"Operation and Maintenance Plan for Central Elevated Landfill Area and Areas of Remediated Refinery Surface Soils", GeoSyntec Consultants, April 1993.

"Statistical Evaluation of 1993 Groundwater Monitoring Data Sinclair Refinery Site Wellsville, New York", GeoSyntec Consultants, March 1994.

"Data Quality Assessment: Statistical Methods for Practitioners", EPA QA/G-9S. Office of Environmental Information. Washington DC, February 2006

Comparison of 1993 Baseline Groundwater Data to 2011 Groundwater Data Former Sinclair Refinery Site (OU-1) Wellsville, New York

(mg/L)

	1993							
Parameter	Baseline Detection	2011 Detection Frequency	1993 Minimum Detection ¹	2011 Minimum Detection	1993 Maximum Detection ¹	2011 Maximum Detection	2011 MCL ² Exceedances	MCL ²
	Frequency ¹							
Aluminum	42/44	4/11	0.231	0.0882	17.789	0.183		
Antimony	2/44	0/11	0.068		0.083	0.0058 U		0.006
Arsenic	36/44	5/11	0.012	0.0062	0.16	0.0587	3	0.01
Arsenic, dissolved	4/44	NA	0.01		0.056	NA		
Barium	18/44	11/11	0.241	0.0464	0.763	0.477		2
Barium, dissolved	9/44	NA	0.232		0.398	NA		
Beryllium	11/44	0/11	0.007		0.009	0.00024 U		0.004
Cadmium	16/44	6/11	0.005	0.00034	0.08	0.0017		0.005
Calcium	33/44	11/11	16.1	13.4	48.33	52.2		
Calcium, dissolved	28/44	NA	15.96		46.08	NA		
Chromium	29/44	9/11	0.015	0.0015	11.2	0.892	2	0.1
Chromium, dissolved	3/44	NA	0.005		0.014	NA		
Cobalt	2/44	7/11	0.003	0.00067	0.025	0.0023		
Copper	10/44	7/11	0.026	0.0018	0.153	0.0134		1.3
Copper, dissolved	4/44	NA	0.026	2.2310	0.042	NA		
Iron	44/44	11/11	0.6	0.341	65.2	54.7		
Iron, dissolved	32/44	NA	0.104	0.041	22.6	NA		
Lead	28/44	3/11	0.005	0.0022	0.7	0.0025		0.015
Lead, dissolved	8/44	NA	0.004	0.0022	1.003	0.0025 NA		0.010
Magnesium	38/44	11/11	4.71	3.86	63.581	39.1		
	36/44	NA		3.00		NA		
Magnesium, dissolved	42/44		6.07	0.0000	61.021			
Manganese		11/11	0.212	0.0209	16.013	12.5		
Manganese, dissolved	43/44	NA	0.193	0.004	14.98	NA		
Nickel	8/44	9/11	0.04	0.001	0.2	0.0816		
Nickel, dissolved	3/44	NA	0.054		0.118	NA		
Potassium	14/44	11/11	1.87	1.19	59.34	3.46		
Potassium, dissolved	12/44	NA	1.72		5	NA		
Selenium	2/44	0/11	0.08		0.1	0.0069 U		0.05
Silver	5/44	0/11	0.017		0.473	0.00091 U		
Silver, dissolved	1/44	NA	0.015		0.015	NA		
Sodium	39/44	11/11	6.5	5.36	23.37	21.6		
Sodium, dissolved	39/44	NA	5		20.02	NA		
Thallium	6/44	0/11	0.132		0.396	0.0042 U		0.002
Thallium, dissolved	1/44	NA	0.156		0.156	NA		
Vanadium	1/44	9/11	0.061	0.0011	0.061	0.0042		
Zinc	27/44	9/11	0.022	0.0032	0.2	0.0093		
Zinc, dissolved	7/44	NA	0.023		0.063	NA		
Benzo(a)anthracene	1/44	NA	0.001		0.001	NA		
bis(2-Ethylhexyl) phthalate	2/44	NA	0.005		0.007	NA		0.006
Di-n-butylphthalate	9/44	NA	0.0009		0.005	NA		
Di-n-octylphthalate	1/44	NA	0.001		0.001	NA		
Naphthalene	1/44	NA	0.001		0.001	NA		
Pyrene	1/44	NA	0.008		0.008	NA		
1,1-Dichloroethane	1/44	0/11	0.001		0.001	0.001 U		
Acetone	3/44	0/11	0.006		0.019	0.006 U		
Benzene	1/44	0/11	0.0009		0.0009	0.0005 U		0.005
cis/trans1,2-Dichloroethene	1/44	NA	0.0003		0.0009	0.0003 U		0.003
Dichloromethane (Methylene chloride)	4/44	0/11	0.002		1.342	0.0008 U		0.005
Tetrachloroethene			0.001		0.002	0.002 U		0.005
i etracilioroetriene	1/44	0/11	0.002		0.002	U.0006 U		0.005

Notes:

NA - Not analyzed

1/44 - One parameter detection out of 44 samples

U - Concentration not detected at specified detection limit

¹ Geosyntec, 1994

² United States Environmental Protection Agency Maximum Contaminant Level

2004 - 2011 Groundwater Analytical Results Former Sinclair Refinery Site (OU-1) Wellsville, New York (mg/L)

Parameter	MWR-01	MWR-01	MWR-01	MWR-01	MWR-01	MWR-01	MWR-01	MWR-01
Parameter	6/15/2004	7/7/2005	5/31/2006	5/30/2007	5/29/2008	5/27/2009	6/9/2010	6/16/2011
Inorganic Compounds								
Aluminum	0.1 U	0.2 U	0.1 U	0.2 U	0.0802 U	0.0802 U	0.0834 U	0.0801 U
Antimony		0.005 U	0.089		0.0097 U		0.01 U	0.0058 U
Arsenic	0.0126	0.005	0.008 U	0.008 U	0.0102 U	0.0072 U	0.0098 U	0.0062 J
Barium	0.245	0.21	0.2 U	0.2 U	0.172	0.164	0.166	0.187
Beryllium	0.005 U	0.005 U	0.0201	0.001 U	0.0009 U	0.0014 U	0.0015 J	0.00024 U
Cadmium	0.004 U	0.004 U	0.008	0.004 U	0.002 U	0.002 U	0.002 U	0.00027 U
Calcium	36.8	34.3	31.8	27.7	30.4	28.3	29	31.9
Chromium	0.01 U	0.01 U	0.01 U	0.01 U	0.003 U	0.0085 J	0.0075 J	0.0121 J
Cobalt	0.05 U	0.05 U	0.05 U	0.05 U	0.0022 J	0.0022 J	0.0023 U	0.0022 J
Copper	0.025 U	0.025 U	0.025 U	0.025 U	0.0027 U	0.0044 J	0.0027 U	0.003 J
Iron	2.91	1.54	1	1.02	1.16	1.43	1.69	2.39
Lead	0.003 U	0.003 U	0.003 U	0.003 U	0.0069 U	0.0069 U	0.0069 U	0.0024 J
Magnesium	25	22.7	21.6	20.5	19.4	18.8	19.2	20.3
Manganese	14	13.5	12.5	11.7	13.3	11.7	11.3	12.5
Mercury		0.0002 U	0.0002 U	0.0002 U	0.000056 U	0.000056 U	0.000056 U	0.000026 U
Nickel	0.04 U	0.04 U	0.04 U	0.04 U	0.0056 U	0.0018 U	0.0105	0.0019 J
Potassium	5 U	5 U	5 U	10 U	1.74	1.37	1.38	1.47
Selenium	0.005 U	0.005 U	0.01 U	0.01 U	0.0107 U	0.0089 U	0.0089 U	0.0069 U
Silver	0.01 U	0.01 U	0.01 U		0.0022 U	0.0023 U	0.0023 U	0.00091 U
Sodium	23.2	24.3	23.5	23.1	24.2	22	22.1	21.6
Thallium		0.01 U	0.01 U		0.014 U	0.014 U	0.014 U	0.0042 U
Vanadium		0.05 U	0.05 U				0.0025 U	0.0034 J
Zinc	0.02 U	0.0221	0.02 U	0.02 U	0.0081 U	0.0081 U	0.0081 U	0.0032 J

Volatile Organic Compounds								
1,1,1-Trichloroethane	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
1,1,2,2-Tetrachloroethane	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
1,1,2-Trichloroethane	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
1,1-Dichloroethane	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
1,1-Dichloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
1,2-Dichlorobenzene	0.002 U							
1,2-Dichloroethane	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
1,2-Dichloropropane	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
1,3-Dichlorobenzene	0.002 U							
1,4-Dichlorobenzene	0.002 U							
2-Butanone (MEK)	0.01 U	0.01 U	0.01 U	0.01 U	0.003 U	0.003 U	0.003 U	0.003 U
2-Hexanone	0.005 U	0.005 U	0.005 U	0.005 U	0.003 U	0.003 U	0.003 U	0.003 U
4-Methyl-2-pentanone	0.005 U	0.005 U	0.005 U	0.005 U	0.003 U	0.003 U	0.003 U	0.003 U
Acetone	0.01 U	0.01 U	0.01 U	0.01 U	0.006 U	0.006 U	0.006 U	0.006 U
Benzene	0.001 U	0.001 U	0.001 U	0.001 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U
Bromodichloromethane					0.001 U	0.001 U	0.001 U	0.001 U
Bromoform	0.004 U	0.004 U	0.004 U	0.004 U	0.001 U	0.001 U	0.001 U	0.001 U
Bromomethane	0.002 U	0.002 U	0.002 U	0.002 U	0.001 U	0.001 U	0.001 U	0.001 U
Carbon disulfide	0.002 U	0.002 U	0.002 U	0.002 U	0.001 U	0.001 U	0.001 U	0.001 U
Carbon tetrachloride	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Chlorobenzene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
Chloroethane	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Chloroform	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
Chloromethane	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
cis-1,2-Dichloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
cis-1,3-Dichloropropene	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Dibromochloromethane	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Dichlorobromomethane	0.001 U	0.001 U	0.001 U	0.001 U				
Dichloromethane (Methylene chloride)	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
Ethyl benzene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
m&p-Xylene	0.0005 J	0.001 U	0.001 U	0.001 U				

2004 - 2011 Groundwater Analytical Results Former Sinclair Refinery Site (OU-1) Wellsville, New York (mg/L)

	MWR-01	MWR-01	MWR-01	MWR-01	MWR-01	MWR-01	MWR-01	MWR-01
Parameter	6/15/2004				5/29/2008	5/27/2009	6/9/2010	6/16/2011
VOC's Continued								
o-Xylene	0.001 U	0.001 U	0.001 U	0.001 U				
Phenol	0.005 U							
Styrene	0.005 U	0.005 U	0.005 U	0.005 U	0.001 U	0.001 U	0.001 U	0.001 U
Tetrachloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
Toluene	0.0011	0.001 U	0.001 U	0.001 U	0.0007 U	0.0007 U	0.0007 U	0.0007 U
trans-1,2-Dichloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
trans-1,3-Dichloropropene	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Trichloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Vinyl chloride	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Xylenes (total)					0.0008 U	0.0008 U	0.0008 U	0.0008 U

2004 - 2011 Groundwater Analytical Results Former Sinclair Refinery Site (OU-1) Wellsville, New York (mg/L)

Parameter	MWR-02	MWR-02	MWR-02	MWR-02	MWR-02	MWR-02	MWR-02	MWR-02
Parameter	6/17/2004	7/12/2005	6/2/2006	6/4/2007	5/30/2008	5/28/2009	6/10/2010	6/16/2011
•								
Inorganic Compounds								
Aluminum	0.2 U	0.1 U	0.1 U	0.2 U	0.0802 U	0.0802 U	0.0834 U	0.141 J
Antimony	0.005 U	0.005 U	0.006 U	0.006 U	0.0097 U	0.0097 U	0.01 U	0.0058 U
Arsenic	0.0532	0.005 U	0.0501	0.0491	0.0524	0.058	0.045	0.0283
Barium	0.458	0.2 U	0.416	0.416	0.365	0.381	0.369	0.477
Beryllium	0.005 U	0.005 U	0.001 U	0.001 U	0.0009 U	0.0014 U	0.0016 J	0.00024 U
Cadmium	0.004 U	0.004 U	0.004 U	0.004 U	0.002 U	0.002 U	0.002 U	0.0017 J
Calcium	39.8	5 U	34.3	30.3	36.7	31	38.8	48.5
Chromium	0.01 U	0.01 U	0.01 U	0.01 U	0.003 U	0.0034 U	0.0034 U	0.0018 J
Cobalt	0.05 U	0.05 U	0.05 U	0.05 U	0.0021 U	0.0021 U	0.0023 U	0.00062 U
Copper	0.025 U	0.025 U	0.025 U	0.025 U	0.0027 U	0.0027 U	0.0027 U	0.00094 U
Iron	40.7	0.1 U	37.2	35.7	40.3	37.2	46.9	54.7
Lead	0.003 U	0.003 U	0.003 U	0.003 U	0.0069 U	0.0069 U	0.0069 U	0.0022 U
Magnesium	31.4	5 U	27	25.7	25.1	24.5	31.1	39.1
Manganese	7.98	0.015 U	7.69	7.74	8.74	8.03	7.89	10.6
Mercury	0.0002 U	0.0002 U	0.0002 U	0.0002 U	0.000056 U	0.000056 U	0.000056 U	0.000026 U
Nickel	0.04 U	0.04 U	0.04 U	0.04 U	0.0056 U	0.0018 U	0.003 U	0.0028 J
Potassium	5 U	5 U	5 U	10 U	1.62	1.77	2.03	2.26
Selenium	0.005 U	0.005 U	0.01 U	0.01 U	0.0107 U	0.0089 U	0.0089 U	0.0069 U
Silver	0.01 U	0.01 U	0.01 U	0.01 U	0.0022 U	0.0024 J	0.0023 U	0.00091 U
Sodium	18.7	5 U	21.3	21.5	20.9	20.9	18.4	18.7
Thallium	0.01 U	0.01 U	0.01 U	0.01 U	0.014 U	0.014 U	0.014 U	0.0042 U
Vanadium	0.05 U	0.05 U	0.05 U	0.05 U	0.0025 U	0.0025 U	0.0025 U	0.0039 J
Zinc	0.02 U	0.02 U	0.02 U	0.02 U	0.0081 U	0.0081 U	0.0081 U	0.0032 U

Volatile Organic Compounds								
1,1,1-Trichloroethane	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
1,1,2,2-Tetrachloroethane	0.001 U	0.001 U	0.001 U	0.001 U				
1,1,2-Trichloroethane	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
1,1-Dichloroethane	0.001 U	0.001 U	0.001 U	0.001 U				
1,1-Dichloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
1,2-Dichlorobenzene	0.002 U							
1,2-Dichloroethane	0.001 U	0.001 U	0.001 U	0.001 U				
1,2-Dichloropropane	0.001 U	0.001 U	0.001 U	0.001 U				
1,3-Dichlorobenzene	0.002 U							
1,4-Dichlorobenzene	0.002 U							
2-Butanone (MEK)	0.01 U	0.01 U	0.01 U	0.01 U	0.003 U	0.003 U	0.003 U	0.003 U
2-Hexanone	0.005 U	0.005 U	0.005 U	0.005 U	0.003 U	0.003 U	0.003 U	0.003 U
4-Methyl-2-pentanone	0.005 U	0.005 U	0.005 U	0.005 U	0.003 U	0.003 U	0.003 U	0.003 U
Acetone	0.01 U	0.01 U	0.01 U	0.01 U	0.006 U	0.006 U	0.006 U	0.006 U
Benzene	0.001 U	0.001 U	0.001 U	0.001 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U
Bromodichloromethane					0.001 U	0.001 U	0.001 U	0.001 U
Bromoform	0.004 U	0.004 U	0.004 U	0.004 U	0.001 U	0.001 U	0.001 U	0.001 U
Bromomethane	0.002 U	0.002 U	0.002 U	0.002 U	0.001 U	0.001 U	0.001 U	0.001 U
Carbon disulfide	0.002 U	0.002 U	0.002 U	0.002 U	0.001 U	0.001 U	0.001 U	0.001 U
Carbon tetrachloride	0.001 U	0.001 U	0.001 U	0.001 U				
Chlorobenzene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
Chloroethane	0.001 U	0.001 U	0.001 U	0.001 U				
Chloroform	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
Chloromethane	0.001 U	0.001 U	0.001 U	0.001 U				
cis-1,2-Dichloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
cis-1,3-Dichloropropene	0.001 U	0.001 U	0.001 U	0.001 U				
Dibromochloromethane	0.001 U	0.001 U	0.001 U	0.001 U				
Dichlorobromomethane	0.001 U	0.001 U	0.001 U	0.001 U				
Dichloromethane (Methylene chloride)	0.002 U	0.002 U	0.002 U	0.002 U				
Ethyl benzene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
m&p-Xylene	0.001 U	0.001 U	0.001 U	0.001 U				

2004 - 2011 Groundwater Analytical Results Former Sinclair Refinery Site (OU-1) Wellsville, New York (mg/L)

Parameter	MWR-02 6/17/2004	MWR-02 7/12/2005	MWR-02 6/2/2006		MWR-02 5/30/2008	MWR-02 5/28/2009	MWR-02 6/10/2010	MWR-02 6/16/2011
VOC's Continued								
o-Xylene	0.001 U	0.001 U	0.001 U	0.001 U				
Phenol	0.005 U							
Styrene	0.005 U	0.005 U	0.005 U	0.005 U	0.001 U	0.001 U	0.001 U	0.001 U
Tetrachloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
Toluene	0.00033 J	0.001 U	0.001 U	0.001 U	0.0007 U	0.0007 U	0.0007 U	0.0007 U
trans-1,2-Dichloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
trans-1,3-Dichloropropene	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Trichloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Vinyl chloride	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Xylenes (total)					0.0008 U	0.0008 U	0.0008 U	0.0008 U

2004 - 2011 Groundwater Analytical Results Former Sinclair Refinery Site (OU-1) Wellsville, New York (mg/L)

Parameter	MWR-03	MWR-03	MWR-03	MWR-03	MWR-03	MWR-03	MWR-03	MWR-03
Parameter	6/17/2004	7/12/2005	6/1/2006	6/4/2007	5/29/2008	5/28/2009	6/10/2010	6/15/2011
•								
Inorganic Compounds								
Aluminum	0.2 U	0.1 U	0.1 U	0.2 U	0.0802 U	0.0802 U	0.0834 U	0.141 J
Antimony	0.005 U	0.005 U	0.006 U	0.006 U		0.0097 U	0.01 U	0.0058 U
Arsenic	0.0124	0.01	0.008 U	0.008 U	0.0128 J	0.0072 U	0.0098 U	0.0537
Barium	0.251	0.286	0.243	0.257	0.23	0.204	0.197	0.274
Beryllium	0.005 U	0.005 U	0.001 U	0.001 U	0.0009 U	0.0014 U	0.0016 J	0.00024 U
Cadmium	0.004 U	0.004 U	0.004 U	0.004 U	0.002 U	0.002 U	0.002 U	0.00039 J
Calcium	41.4	43.6	35.7	33.2	33.6	27.8	29.1	37.8
Chromium	0.01 U	0.01 U	0.01 U	0.01 U	0.003 U	0.0034 U	0.0034 U	0.0038 J
Cobalt	0.05 U	0.05 U	0.05 U	0.05 U	0.0021 U	0.0021 U	0.0023 U	0.00067 J
Copper	0.025 U	0.025 U	0.025 U	0.025 U	0.0027 U	0.0027 U	0.0027 U	0.0033 J
Iron	3.7	3.97	3.66	3.59	3.97	1.99	2.02	10.8
Lead	0.003 U	0.003 U	0.003 U	0.003 U	0.0069 U	0.0069 U	0.0069 U	0.0025 J
Magnesium	23.2	24.8	21.9	21.6	19.9	16.6	17.5	24.3
Manganese	3	3.31	2.73	2.87	2.82	2.45	2.5	3.79
Mercury	0.0002 U	0.0002 U	0.0002 U	0.0002 U	0.000056 U	0.000056 U	0.000056 U	0.000026 U
Nickel	0.04 U	0.04 U	0.04 U	0.04 U	0.0056 U	0.0018 U	0.003 U	0.00095 U
Potassium	5 U	5 U	5 U	10 U	2.12	1.87	1.66	1.99
Selenium	0.005 U	0.005 U	0.01 U	0.01 U	0.0107 U	0.0089 U	0.0089 U	0.0069 U
Silver	0.01 U	0.01 U	0.01 U	0.01 U	0.0022 U	0.0023 U	0.0023 U	0.00091 U
Sodium	12.2	12.5	11.2	10.7	11.2	10.6	11	11.8
Thallium	0.01 U	0.01 U	0.01 U	0.01 U	0.014 U	0.014 U	0.014 U	0.0042 U
Vanadium	0.05 U	0.05 U	0.05 U	0.05 U	0.0025 U	0.0025 U	0.0025 U	0.0012 J
Zinc	0.02 U	0.02 U	0.02 U	0.02 U	0.0081 U	0.0081 U	0.0081 U	0.0054 J

Volatile Organic Compounds								
1,1,1-Trichloroethane	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
1,1,2,2-Tetrachloroethane	0.001 U	0.001 U	0.001 U	0.001 U				
1,1,2-Trichloroethane	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
1,1-Dichloroethane	0.001 U	0.001 U	0.001 U	0.001 U				
1,1-Dichloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
1,2-Dichlorobenzene	0.002 U							
1,2-Dichloroethane	0.001 U	0.001 U	0.001 U	0.001 U				
1,2-Dichloropropane	0.001 U	0.001 U	0.001 U	0.001 U				
1,3-Dichlorobenzene	0.002 U							
1,4-Dichlorobenzene	0.002 U							
2-Butanone (MEK)	0.01 U	0.01 U	0.01 U	0.01 U	0.003 U	0.003 U	0.003 U	0.003 U
2-Hexanone	0.005 U	0.005 U	0.005 U	0.005 U	0.003 U	0.003 U	0.003 U	0.003 U
4-Methyl-2-pentanone	0.005 U	0.005 U	0.005 U	0.005 U	0.003 U	0.003 U	0.003 U	0.003 U
Acetone	0.01 U	0.01 U	0.01 U	0.01 U	0.006 U	0.006 U	0.006 U	0.006 U
Benzene	0.001 U	0.001 U	0.001 U	0.001 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U
Bromodichloromethane					0.001 U	0.001 U	0.001 U	0.001 U
Bromoform	0.004 U	0.004 U	0.004 U	0.004 U	0.001 U	0.001 U	0.001 U	0.001 U
Bromomethane	0.002 U	0.002 U	0.002 U	0.002 U	0.001 U	0.001 U	0.001 U	0.001 U
Carbon disulfide	0.002 U	0.002 U	0.002 U	0.002 U	0.001 U	0.001 U	0.001 U	0.001 U
Carbon tetrachloride	0.001 U	0.001 U	0.001 U	0.001 U				
Chlorobenzene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
Chloroethane	0.001 U	0.001 U	0.001 U	0.001 U				
Chloroform	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
Chloromethane	0.001 U	0.001 U	0.001 U	0.001 U				
cis-1,2-Dichloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
cis-1,3-Dichloropropene	0.001 U	0.001 U	0.001 U	0.001 U				
Dibromochloromethane	0.001 U	0.001 U	0.001 U	0.001 U				
Dichlorobromomethane	0.001 U	0.001 U	0.001 U	0.001 U				
Dichloromethane (Methylene chloride)	0.002 U	0.002 U	0.002 U	0.002 U				
Ethyl benzene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
m&p-Xylene	0.001 U	0.001 U	0.001 U	0.001 U				

2004 - 2011 Groundwater Analytical Results Former Sinclair Refinery Site (OU-1) Wellsville, New York (mg/L)

Parameter	MWR-03 6/17/2004		MWR-03		MWR-03 5/29/2008	MWR-03 5/28/2009	MWR-03 6/10/2010	MWR-03 6/15/2011
	0/1//2004	1/12/2003	0/1/2000	0/4/2007	3/29/2000	3/20/2009	0/10/2010	0/13/2011
VOC's Continued								
o-Xylene	0.001 U	0.001 U	0.001 U	0.001 U				
Phenol	0.005 U							
Styrene	0.005 U	0.005 U	0.005 U	0.005 U	0.001 U	0.001 U	0.001 U	0.001 U
Tetrachloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
Toluene	0.00071 J	0.001 U	0.001 U	0.001 U	0.0007 U	0.0007 U	0.0007 U	0.0007 U
trans-1,2-Dichloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
trans-1,3-Dichloropropene	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Trichloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Vinyl chloride	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Xylenes (total)					0.0008 U	0.0008 U	0.0008 U	0.0008 U

2004 - 2011 Groundwater Analytical Results Former Sinclair Refinery Site (OU-1) Wellsville, New York (mg/L)

Parameter	MWR-04	MWR-04	MWR-04	MWR-04	MWR-04	MWR-04	MWR-04	MWR-04
Parameter	6/16/2004	7/11/2005	6/1/2006	6/1/2007	5/29/2008	5/28/2009	6/10/2010	6/15/2011
Inorganic Compounds	·							
Aluminum	0.2 U	0.1 U	0.1 U	0.2 U	0.0802 U	0.0802 U	0.0834 U	0.0801 U
Antimony	0.005 U	0.005 U			0.0097 U	0.0109 J	0.01 U	0.0058 U
Arsenic		0.005 U			0.0102 U	0.0072 U		0.0051 U
Barium	0.2 U	0.2 U	0.2 U	0.2 U	0.0762	0.0617	0.0792	0.0949
Beryllium	0.005 U	0.005 U	0.001 U	0.001 U	0.0009 U	0.0014 U	0.0016 J	0.00024 U
Cadmium	0.004 U	0.004 U	0.004 U	0.004 U	0.002 U	0.002 U	0.002 U	0.00027 U
Calcium	17.9	17.5	16	17.6	15.7	15.5	15	17.9
Chromium	0.01 U	0.01 U	0.01 U	0.0697	0.0287	0.0034 U	0.0494	0.0559
Cobalt	0.05 U	0.05 U	0.05 U	0.05 U	0.0021 U	0.0021 U	0.0023 U	0.0016 J
Copper	0.025 U	0.025 U	0.025 U	0.025 U	0.0027 U	0.0027 U	0.0027 U	0.00094 U
Iron	0.1 U	0.125	0.1 U	0.171	0.131 J	0.0522 U	0.484	0.341
Lead	0.003 U	0.003 U	0.003 U	0.003 U	0.0069 U	0.0069 U	0.0069 U	0.0022 U
Magnesium	5 U	5 U	5 U	5.1	4.42	4.23	4.4	5.2
Manganese	3.12	0.971	0.665	3.27	2.88	1.5	1.99	3.38
Mercury		0.0002 U						0.000026 U
Nickel	0.04 U	0.04 U	0.04 U			0.0071 J	0.0355	0.0341
Potassium	5 U	5 U	5 U	10 U	1.23	1.28	1.24	1.3
Selenium	0.005 U	0.005 U	0.01 U		0.0107 U	0.0089 U	0.0089 U	0.0069 U
Silver	0.01 U	0.01 U			0.0022 U	0.0023 U	0.0023 U	0.00091 U
Sodium	8.23	8.59	8.06	10 U	7.88	9.38	8.67	8.16
Thallium	0.01 U	0.01 U	0.01 U	0.01 U	0.014 U	0.014 U	0.014 U	0.0042 U
Vanadium		0.05 U			0.0025 U	0.0025 U		0.0011 J
Zinc	0.02 U	0.02 U	0.02 U	0.02 U	0.0081 U	0.0081 U	0.0081 U	0.0032 J

		0.001 U	0.001 U	0.0008 U		U 8000.0	0.0008 U
0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	U 8000.0	0.0008 U
0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
0.002 U							
0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
0.002 U							
0.002 U							
0.01 U	0.01 U	0.01 U	0.01 U	0.003 U	0.003 U	0.003 U	0.003 U
		0.005 U	0.005 U	0.003 U	0.003 U	0.003 U	0.003 U
0.005 U	0.005 U	0.005 U	0.005 U	0.003 U	0.003 U	0.003 U	0.003 U
0.01 U	0.01 U	0.01 U	0.01 U	0.006 U	0.006 U	0.006 U	0.006 U
0.001 U	0.001 U	0.001 U	0.001 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U
				0.001 U	0.001 U	0.001 U	0.001 U
0.004 U	0.004 U	0.004 U	0.004 U	0.001 U	0.001 U	0.001 U	0.001 U
0.002 U	0.002 U	0.002 U	0.002 U	0.001 U	0.001 U	0.001 U	0.001 U
0.002 U	0.002 U	0.002 U	0.002 U	0.001 U	0.001 U	0.001 U	0.001 U
0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
0.001 U	0.001 U	0.001 U	0.001 U				
		0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
0.001 U	0.001 U	0.001 U	0.001 U				
	0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.002 U 0.001 U 0.002 U 0.002 U 0.005 U 0.005 U 0.001 U	0.001 U	0.001 U 0.001 U 0.001 U 0.001 U 0.002 U 0.001 U 0.001 U 0.001 U 0.002 U 0.005 U 0.005 U 0.005 U 0.001 U 0.01 U 0.001 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.002 U 0.002 U 0.002 U 0.002 U 0.002 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0	0.001 U 0.005 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U <t< td=""><td> 0.001 U</td><td>0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.0008 U 0.0001 U 0.001 U 0.0008 U 0.0001 U 0.001 U 0.003 U 0.006 U 0.006 U 0.006 U</td><td> 0.001 U</td></t<>	0.001 U	0.001 U 0.0008 U 0.0001 U 0.001 U 0.0008 U 0.0001 U 0.001 U 0.003 U 0.006 U 0.006 U 0.006 U	0.001 U

2004 - 2011 Groundwater Analytical Results Former Sinclair Refinery Site (OU-1) Wellsville, New York (mg/L)

Parameter	MWR-04 6/16/2004	MWR-04 7/11/2005	_	MWR-04 6/1/2007	MWR-04 5/29/2008	MWR-04 5/28/2009	MWR-04 6/10/2010	MWR-04 6/15/2011
VOC's Continued								
o-Xylene	0.001 U	0.001 U	0.001 U	0.001 U				
Phenol	0.005 U							
Styrene	0.005 U	0.005 U	0.005 U	0.005 U	0.001 U	0.001 U	0.001 U	0.001 U
Tetrachloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
Toluene	0.001 U	0.001 U	0.001 U	0.001 U	0.0007 U	0.0007 U	0.0007 U	0.0007 U
trans-1,2-Dichloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
trans-1,3-Dichloropropene	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Trichloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Vinyl chloride	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Xylenes (total)					0.0008 U	0.0008 U	0.0008 U	0.0008 U

2004 - 2011 Groundwater Analytical Results Former Sinclair Refinery Site (OU-1) Wellsville, New York (mg/L)

Parameter	MWR-05	MWR-05	MWR-05	MWR-05	MWR-05	MWR-05	MWR-05	MWR-05
Parameter	6/16/2004	7/11/2005	6/1/2006	6/1/2007	5/29/2008	5/28/2009	6/10/2010	6/15/2011
•								
Inorganic Compounds								
Aluminum	0.2 U	0.1 U	0.1 U	0.2 U	0.0802 U	0.0802 U	0.0834 U	0.0801 U
Antimony	0.005 U	0.005 U	0.006 U	0.006 U	0.0097 U	0.0097 U	0.01 U	0.0058 U
Arsenic	0.005 U	0.005 U	0.008 U	0.008 U	0.0102 U	0.0072 U	0.0098 U	0.0051 U
Barium	0.2 U	0.2 U	0.2 U	0.2 U	0.0472	0.0584	0.0473	0.0606
Beryllium	0.005 U	0.005 U	0.001 U	0.001 U	0.0009 U	0.0014 U	0.0016 J	0.00024 U
Cadmium	0.004 U	0.004 U	0.004 U	0.004 U	0.002 U	0.002 U	0.002 U	0.00027 U
Calcium	15.7	83.6	12.9	11	11.5	14	11.4	13.4
Chromium	0.0247	0.01 U	0.0197	0.0613	0.094	0.0378	0.0801	0.892
Cobalt	0.05 U	0.05 U	0.05 U	0.05 U	0.0021 U	0.0021 U	0.0023 U	0.00062 U
Copper	0.025 U	0.025 U	0.025 U	0.025 U	0.0027 U	0.0027 U	0.0027 U	0.0097 J
Iron	0.137	0.267	0.166	0.488	0.603	0.24	0.522	3.58
Lead	0.003 U	0.003 U	0.003 U	0.003 U	0.0069 U	0.0069 U	0.0069 U	0.0022 U
Magnesium	5 U	66.7	5 U	5 U	3.28	4.16	3.34	3.86
Manganese	0.371	0.0777	0.0198	0.015 U	0.0327	0.0312	0.0186	0.0209
Mercury	0.0002 U	0.0002 U	0.0002 U	0.0002 U	0.000056 U	0.000056 U	0.000056 U	0.000026 U
Nickel	0.04 U	0.04 U	0.04 U	0.04 U	0.0595	0.0261	0.0617	0.032
Potassium	5 U	5 U	5 U	10 U	1.11	1.34	1.13	1.19
Selenium	0.005 U	0.005 U	0.01 U	0.01 U	0.0107 U	0.0089 U	0.0089 U	0.0069 U
Silver	0.01 U	0.01 U	0.01 U	0.01 U	0.0022 U	0.0023 U	0.0023 U	0.00091 U
Sodium	9.4	174	8.35	10 U	8.01	9.54	8.71	9.05
Thallium	0.01 U	0.01 U	0.01 U	0.01 U	0.014 U	0.014 U	0.014 U	0.0042 U
Vanadium	0.05 U	0.05 U	0.05 U	0.05 U	0.0025 U	0.0025 U	0.0025 U	0.0042 J
Zinc	0.02 U	0.02 U	0.02 U	0.02 U	0.0081 U	0.0081 U	0.0081 U	0.0043 J

		0.001 U	0.001 U	0.0008 U		U 8000.0	0.0008 U
0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	U 8000.0	0.0008 U
0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
0.002 U							
0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
0.002 U							
0.002 U							
0.01 U	0.01 U	0.01 U	0.01 U	0.003 U	0.003 U	0.003 U	0.003 U
		0.005 U	0.005 U	0.003 U	0.003 U	0.003 U	0.003 U
0.005 U	0.005 U	0.005 U	0.005 U	0.003 U	0.003 U	0.003 U	0.003 U
0.01 U	0.01 U	0.01 U	0.01 U	0.006 U	0.006 U	0.006 U	0.006 U
0.001 U	0.001 U	0.001 U	0.001 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U
				0.001 U	0.001 U	0.001 U	0.001 U
0.004 U	0.004 U	0.004 U	0.004 U	0.001 U	0.001 U	0.001 U	0.001 U
0.002 U	0.002 U	0.002 U	0.002 U	0.001 U	0.001 U	0.001 U	0.001 U
0.002 U	0.002 U	0.002 U	0.002 U	0.001 U	0.001 U	0.001 U	0.001 U
0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
0.001 U	0.001 U	0.001 U	0.001 U				
		0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
0.001 U	0.001 U	0.001 U	0.001 U				
	0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.002 U 0.001 U 0.002 U 0.002 U 0.005 U 0.005 U 0.001 U	0.001 U	0.001 U 0.001 U 0.001 U 0.001 U 0.002 U 0.001 U 0.001 U 0.001 U 0.002 U 0.005 U 0.005 U 0.005 U 0.001 U 0.01 U 0.001 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.002 U 0.002 U 0.002 U 0.002 U 0.002 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0	0.001 U 0.005 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U <t< td=""><td> 0.001 U</td><td>0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.0008 U 0.0001 U 0.001 U 0.0008 U 0.0001 U 0.001 U 0.003 U 0.006 U 0.006 U 0.006 U</td><td> 0.001 U</td></t<>	0.001 U	0.001 U 0.0008 U 0.0001 U 0.001 U 0.0008 U 0.0001 U 0.001 U 0.003 U 0.006 U 0.006 U 0.006 U	0.001 U

2004 - 2011 Groundwater Analytical Results Former Sinclair Refinery Site (OU-1) Wellsville, New York (mg/L)

Parameter	MWR-05 6/16/2004	MWR-05 7/11/2005			MWR-05 5/29/2008	MWR-05 5/28/2009	MWR-05 6/10/2010	MWR-05 6/15/2011
VOC's Continued								
o-Xylene	0.001 U	0.001 U	0.001 U	0.001 U				
Phenol	0.005 U							
Styrene	0.005 U	0.005 U	0.005 U	0.005 U	0.001 U	0.001 U	0.001 U	0.001 U
Tetrachloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
Toluene	0.00033 J	0.001 U	0.001 U	0.001 U	0.0007 U	0.0007 U	0.0007 U	0.0007 U
trans-1,2-Dichloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
trans-1,3-Dichloropropene	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Trichloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Vinyl chloride	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Xylenes (total)					0.0008 U	0.0008 U	0.0008 U	0.0008 U

2004 - 2011 Groundwater Analytical Results Former Sinclair Refinery Site (OU-1) Wellsville, New York (mg/L)

Parameter	MWR-06	MWR-06	MWR-06	MWR-06	MWR-06	MWR-06	MWR-06	MWR-06
Farameter	6/16/2004	7/11/2005	6/1/2006	5/31/2007	5/29/2008	5/27/2009	6/9/2010	6/15/2011
Inorganic Compounds								
Aluminum	0.2 U	0.1 U	0.1 U	0.2 U	0.0802 U	0.0802 U	0.0834 U	0.0801 U
Antimony		0.0057	0.0517	0.006 U	0.0097 U		0.01 U	0.0058 U
Arsenic	0.005 U	0.005 U	0.008 U	0.008 U	0.0102 U		0.0098 U	0.0067 J
Barium	0.2 U	0.2 U	0.2 U	0.2 U	0.12	0.103	0.112	0.144
Beryllium	0.005 U	0.005 U	0.0104	0.001 U	0.0009 U	0.0014 U	0.0016 J	0.00024 U
Cadmium	0.004 U	0.004 U	0.0044	0.004 U	0.002 U	0.002 U	0.002 U	0.00035 J
Calcium	26.9	28.9	26.8	26.2	25.9	21.8	23.8	28.1
Chromium	0.01 U	0.01 U	0.01 U	0.01 U	0.003 U	0.0034 U	0.004 J	0.006 J
Cobalt	0.05 U	0.05 U	0.05 U	0.05 U	0.0021 U	0.0021 U	0.0023 U	0.0023 J
Copper	0.025 U	0.025 U	0.025 U	0.025 U	0.0027 U	0.0027 U	0.0027 U	0.00094 U
Iron	0.996	3.29	3.19	3.85	3.87	3.41	4.54	7.13
Lead	0.003 U	0.003 U	0.003 U	0.003 U	0.0069 U	0.0069 U	0.0069 U	0.0022 U
Magnesium	8.8	9.61	9.79	9.45	9.21	8.16	8.92	10.2
Manganese	5	7.03	6.76	6.82	6.59	5.87	6.52	7.95
Mercury	0.0002 U	0.0002 U	0.0002 U	0.0002 U	0.000056 U	0.000085 J	0.000056 U	0.000026 U
Nickel	0.04 U	0.04 U	0.04 U	0.04 U	0.0056 U	0.0018 U	0.003 U	0.001 J
Potassium	5 U	5 U	5 U	10 U	1.74	1.67	1.54	1.71
Selenium	0.005 U	0.005 U	0.01 U	0.01 U	0.0107 U	0.0089 U	0.0089 U	0.0069 U
Silver	0.01 U	0.01 U	0.01 U	0.01 U	0.0022 U	0.0023 U	0.0023 U	0.00091 U
Sodium	7.35	7.68	7.89	10 U	8.87	8.95	8.18	7.94
Thallium		0.01 U	0.01 U	0.01 U	0.014 U	0.014 U	0.014 U	0.0042 U
Vanadium	0.05 U	0.05 U	0.05 U		0.003 J	0.0025 U	0.0025 U	0.002 J
Zinc	0.02 U	0.02 U	0.02 U	0.02 U	0.0081 U	0.0081 U	0.0081 U	0.0032 U

Voiatile Organic Compounds								
1,1,1-Trichloroethane	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	U 8000.0
1,1,2,2-Tetrachloroethane	0.001 U	0.001 U	0.001 U	0.001 U				
1,1,2-Trichloroethane	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
1,1-Dichloroethane	0.001 U	0.001 U	0.001 U	0.001 U				
1,1-Dichloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
1,2-Dichlorobenzene	0.002 U							
1,2-Dichloroethane	0.001 U	0.001 U	0.001 U	0.001 U				
1,2-Dichloropropane	0.001 U	0.001 U	0.001 U	0.001 U				
1,3-Dichlorobenzene	0.002 U							
1,4-Dichlorobenzene	0.002 U							
2-Butanone (MEK)	0.01 U	0.01 U	0.01 U	0.01 U	0.003 U	0.003 U	0.003 U	0.003 U
2-Hexanone	0.005 U	0.005 U	0.005 U	0.005 U	0.003 U	0.003 U	0.003 U	0.003 U
4-Methyl-2-pentanone	0.005 U	0.005 U	0.005 U	0.005 U	0.003 U	0.003 U	0.003 U	0.003 U
Acetone	0.01 U	0.01 U	0.01 U	0.01 U	0.006 U	0.006 U	0.006 U	0.006 U
Benzene	0.001 U	0.001 U	0.001 U	0.001 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U
Bromodichloromethane					0.001 U	0.001 U	0.001 U	0.001 U
Bromoform	0.004 U	0.004 U	0.004 U	0.004 U	0.001 U	0.001 U	0.001 U	0.001 U
Bromomethane	0.002 U	0.002 U	0.002 U	0.002 U	0.001 U	0.001 U	0.001 U	0.001 U
Carbon disulfide	0.002 U	0.002 U	0.002 U	0.002 U	0.001 U	0.001 U	0.001 U	0.001 U
Carbon tetrachloride	0.001 U	0.001 U	0.001 U	0.001 U				
Chlorobenzene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
Chloroethane	0.001 U	0.001 U	0.001 U	0.001 U				
Chloroform	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
Chloromethane	0.001 U	0.001 U	0.001 U	0.001 U				
cis-1,2-Dichloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	U 8000.0
cis-1,3-Dichloropropene	0.001 U	0.001 U	0.001 U	0.001 U				
Dibromochloromethane	0.001 U	0.001 U	0.001 U	0.001 U				
Dichlorobromomethane	0.001 U	0.001 U	0.001 U	0.001 U				
Dichloromethane (Methylene chloride)	0.002 U	0.002 U	0.002 U	0.002 U				
Ethyl benzene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
m&p-Xylene	0.001 U	0.001 U	0.001 U	0.001 U				

2004 - 2011 Groundwater Analytical Results Former Sinclair Refinery Site (OU-1) Wellsville, New York (mg/L)

	MWR-06	MWR-06	MWR-06	MWR-06	MWR-06	MWR-06	MWR-06	MWR-06
Parameter	6/16/2004				5/29/2008	5/27/2009	6/9/2010	6/15/2011
VOC's Continued								
o-Xylene	0.001 U	0.001 U	0.001 U	0.001 U				
Phenol	0.005 U							
Styrene	0.005 U	0.005 U	0.005 U	0.005 U	0.001 U	0.001 U	0.001 U	0.001 U
Tetrachloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
Toluene	0.00061 J	0.001 U	0.001 U	0.001 U	0.0007 U	0.0007 U	0.0007 U	0.0007 U
trans-1,2-Dichloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
trans-1,3-Dichloropropene	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Trichloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Vinyl chloride	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Xylenes (total)					0.0008 U	0.0008 U	0.0008 U	0.0008 U

2004 - 2011 Groundwater Analytical Results Former Sinclair Refinery Site (OU-1) Wellsville, New York (mg/L)

Parameter	MWR-07	MWR-07	MWR-07	MWR-07	MWR-07	MWR-07	MWR-07	MWR-07
Parameter	6/16/2004	7/7/2005	6/1/2006	5/31/2007	5/29/2008	5/27/2009	6/9/2010	6/14/2011
Inorganic Compounds	1							
Aluminum				0.2 U				0.0882 J
Antimony			0.0082	0.006 U		0.0097 U		0.0058 U
Arsenic	0.005 U			0.008 U	0.0102 U	0.0072 U	0.0098 U	0.0051 U
Barium	0.2 U	0.2 U	0.2 U	0.2 U	0.0507	0.0403	0.0502	0.0464
Beryllium	0.005 U	0.005 U	0.001 U	0.001 U	0.0009 U	0.0014 U	0.0014 J	0.00024 U
Cadmium	0.004 U	0.004 U	0.004 U	0.004 U	0.002 U	0.002 U	0.002 U	0.00044 J
Calcium	17.7	15.9	14.6	14.3	17.2	15.1	16.2	19.4
Chromium	0.01 U	0.01 U	0.01 U	0.01 U	0.003 U	0.0034 U	0.0034 U	0.0082 J
Cobalt	0.05 U	0.05 U	0.05 U	0.05 U	0.0021 U	0.0021 U	0.0023 U	0.00062 U
Copper	0.025 U	0.025 U	0.025 U	0.025 U	0.0027 U	0.0027 U	0.0028 J	0.0031 J
Iron	0.1 U	0.409	0.1 U	0.111	0.114 J	0.562	0.414	0.607
Lead	0.003 U	0.003 U	0.003 U	0.003 U	0.0069 U	0.0069 U	0.0069 U	0.0022 U
Magnesium	5.15	5 U	5 U	5 U	4.56	4.21	3.89	3.93
Manganese	0.877	2.58	0.24	0.402	0.884	1.49	0.503	0.771
Mercury	0.0002 U	0.0002 U	0.0002 U	0.0002 U	0.000056 U	0.000056 U	0.000056 U	0.000026 U
Nickel	0.04 U	0.04 U	0.04 U	0.04 U	0.0056 U	0.0018 U	0.003 U	0.0015 J
Potassium	5 U	5 U	5 U	10 U	1.72	1.84	1.92	1.62
Selenium	0.005 U	0.005 U	0.01 U	0.01 U	0.0107 U	0.0089 U	0.0089 U	0.0069 U
Silver	0.01 U	0.01 U	0.01 U	0.01 U	0.0022 U	0.0023 U	0.0023 U	0.00091 U
Sodium	9.39	9.93	9.33	10 U	9.89	9.74	10.2	9.79
Thallium	0.01 U	0.01 U	0.01 U	0.01 U	0.014 U	0.014 U	0.014 U	0.0042 U
Vanadium	0.05 U	0.05 U	0.05 U	0.05 U	0.0025 U	0.0025 U	0.0025 U	0.0011 J
Zinc	0.02 U	0.02 U	0.02 U	0.02 U	0.0081 U	0.0081 U		0.0061 J

voiatile Organic Compounds								
1,1,1-Trichloroethane	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
1,1,2,2-Tetrachloroethane	0.001 U	0.001 U	0.001 U	0.001 U				
1,1,2-Trichloroethane	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
1,1-Dichloroethane	0.001 U	0.001 U	0.001 U	0.001 U				
1,1-Dichloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
1,2-Dichlorobenzene	0.002 U							
1,2-Dichloroethane	0.001 U	0.001 U	0.001 U	0.001 U				
1,2-Dichloropropane	0.001 U	0.001 U	0.001 U	0.001 U				
1,3-Dichlorobenzene	0.002 U							
1,4-Dichlorobenzene	0.002 U							
2-Butanone (MEK)	0.01 U	0.01 U	0.01 U	0.01 U	0.003 U	0.003 U	0.003 U	0.003 U
2-Hexanone	0.005 U	0.005 U	0.005 U	0.005 U	0.003 U	0.003 U	0.003 U	0.003 U
4-Methyl-2-pentanone	0.005 U	0.005 U	0.005 U	0.005 U	0.003 U	0.003 U	0.003 U	0.003 U
Acetone	0.01 U	0.01 U	0.01 U	0.01 U	0.006 U	0.006 U	0.006 U	0.006 U
Benzene	0.001 U	0.001 U	0.001 U	0.001 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U
Bromodichloromethane					0.001 U	0.001 U	0.001 U	0.001 U
Bromoform	0.004 U	0.004 U	0.004 U	0.004 U	0.001 U	0.001 U	0.001 U	0.001 U
Bromomethane	0.002 U	0.002 U	0.002 U	0.002 U	0.001 U	0.001 U	0.001 U	0.001 U
Carbon disulfide	0.002 U	0.002 U	0.002 U	0.002 U	0.001 U	0.001 U	0.001 U	0.001 U
Carbon tetrachloride	0.001 U	0.001 U	0.001 U	0.001 U				
Chlorobenzene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
Chloroethane	0.001 U	0.001 U	0.001 U	0.001 U				
Chloroform	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
Chloromethane	0.001 U	0.001 U	0.001 U	0.001 U				
cis-1,2-Dichloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
cis-1,3-Dichloropropene	0.001 U	0.001 U	0.001 U	0.001 U				
Dibromochloromethane	0.001 U	0.001 U	0.001 U	0.001 U				
Dichlorobromomethane	0.001 U	0.001 U	0.001 U	0.001 U				
Dichloromethane (Methylene chloride)	0.002 U	0.002 U	0.002 U	0.002 U				
Ethyl benzene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
m&p-Xylene	0.001 U	0.001 U	0.001 U	0.001 U				

2004 - 2011 Groundwater Analytical Results Former Sinclair Refinery Site (OU-1) Wellsville, New York (mg/L)

Parameter	MWR-07 6/16/2004		MWR-07 6/1/2006	MWR-07 5/31/2007	MWR-07 5/29/2008	MWR-07 5/27/2009	MWR-07 6/9/2010	MWR-07 6/14/2011
VOC's Continued								
o-Xylene	0.001 U	0.001 U	0.001 U	0.001 U				
Phenol	0.005 U							
Styrene	0.005 U	0.005 U	0.005 U	0.005 U	0.001 U	0.001 U	0.001 U	0.001 U
Tetrachloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
Toluene	0.00062 J	0.001 U	0.001 U	0.001 U	0.0007 U	0.0007 U	0.0007 U	0.0007 U
trans-1,2-Dichloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
trans-1,3-Dichloropropene	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Trichloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Vinyl chloride	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Xylenes (total)					0.0008 U	0.0008 U	0.0008 U	0.0008 U

2004 - 2011 Groundwater Analytical Results Former Sinclair Refinery Site (OU-1) Wellsville, New York (mg/L)

Parameter	MWR-08	MWR-08	MWR-08	MWR-08	MWR-08	MWR-08	MWR-08	MWR-08
	6/15/2004	7/7/2005	5/31/2006	5/30/2007	5/28/2008	5/27/2009	6/8/2010	6/13/2011
Inorganic Compounds								
Aluminum	0.1 U	0.2 U	0.1 U	0.2 U		0.0802 U	0.0834 U	0.0801 U
Antimony	0.005 U	0.005 U	0.0252	0.006 U	0.0097 U	0.0097 U	0.01 U	0.0058 U
Arsenic	0.0086	0.005 U	0.008 U	0.015	0.0102 U	0.0072 U	0.0098 U	0.0051 U
Barium	0.2 U	0.2 U	0.2 U	0.2 U	0.0965	0.0954	0.0823	0.117
Beryllium	0.005 U	0.005 U	0.0044	0.001 U	0.0009 U	0.0014 U	0.0014 J	0.00024 U
Cadmium	0.004 U	0.004 U	0.004 U	0.004 U	0.002 U	0.002 U	0.002 U	0.00027 U
Calcium	21	18.2	18.4	19.8	23.6	21.8	18.9	34.8
Chromium	0.01 U	0.01 U	0.01 U	0.01 U	0.003 U	0.0034 U	0.0034 U	0.0011 U
Cobalt	0.05 U	0.05 U	0.05 U	0.05 U	0.0021 U	0.0021 U	0.0023 U	0.00088 J
Copper	0.025 U	0.025 U	0.025 U	0.025 U	0.0027 U	0.0027 U	0.0027 U	0.0035 J
Iron	3.37	2.69	3.07	6.27	2.44	2.38	1.73	1.83
Lead	0.003 U	0.003 U	0.003 U	0.003 U	0.0069 U	0.0069 U	0.0069 U	0.0022 U
Magnesium	22.8	18.3	18.4	18.6	19.2	18	14.7	22.1
Manganese	3.07	2.81	2.91	2.16	2.36	2.7	3.06	2.02
Mercury	0.0002 U	0.0002 U	0.0002 U	0.0002 U	0.000056 U	0.000056 U	0.000056 U	0.000026 U
Nickel	0.04 U	0.04 U	0.04 U	0.04 U	0.0056 U	0.0074 J	0.0061 J	0.0086 J
Potassium	5 U	5 U	5 U	10 U	2.13	1.86	1.66	2.27
Selenium	0.005 U	0.005 U	0.01 U	0.01 U	0.0107 U	0.0089 U	0.0089 U	0.0069 U
Silver	0.01 U	0.01 U	0.01 U	0.01 U	0.0022 U	0.0023 U	0.0023 U	0.00091 U
Sodium	8.13	7.7	7.09	10 U	7.07	6.39	6.76	5.36
Thallium	0.01 U	0.01 U	0.01 U	0.01 U	0.014 U	0.014 U	0.014 U	0.0042 U
Vanadium	0.05 U	0.05 U	0.05 U	0.05 U	0.0025 U	0.0025 U	0.0025 U	0.00096 U
Zinc	0.02 U	0.02 U	0.02 U	0.02 U	0.0081 U	0.0081 U	0.0081 U	0.0093 J

.0008 U
00411
.001 U
.0008 U
.001 U
.0008 U
.001 U
.001 U
.003 U
.003 U
.003 U
.006 U
.0005 U
.001 U
.001 U
.001 U
.001 U
.001 U
.0008 U
.001 U
U 8000.
.001 U
.0008 U
.001 U
.001 U
.002 U
U 8000.

2004 - 2011 Groundwater Analytical Results Former Sinclair Refinery Site (OU-1) Wellsville, New York (mg/L)

	1414/D 00	1010	1414/D 00	1414D 00	1414/D 00	101/D 00	1414/D 00	1014D 00
Parameter	MWR-08	MWR-08	MWR-08	MWR-08	MWR-08	MWR-08	MWR-08	MWR-08
	6/15/2004	7/7/2005	5/31/2006	5/30/2007	5/28/2008	5/27/2009	6/8/2010	6/13/2011
VOC's Continued								
o-Xylene	0.001 U	0.001 U	0.001 U	0.001 U				
Phenol	0.005 U							
Styrene	0.005 U	0.005 U	0.005 U	0.005 U	0.001 U	0.001 U	0.001 U	0.001 U
Tetrachloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
Toluene	0.0004 J	0.001 U	0.001 U	0.001 U	0.0007 U	0.0007 U	0.0007 U	0.0007 U
trans-1,2-Dichloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
trans-1,3-Dichloropropene	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Trichloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Vinyl chloride	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Xylenes (total)					0.0008 U	0.0008 U	0.0008 U	0.0008 U

2004 - 2011 Groundwater Analytical Results Former Sinclair Refinery Site (OU-1) Wellsville, New York (mg/L)

Parameter	MWR-09	MWR-09	MWR-09	MWR-09	MWR-09	MWR-09	MWR-09	MWR-09	
Parameter	6/15/2004	7/6/2005	5/31/2006	5/31/2007	5/28/2008	5/26/2009	6/9/2010	6/13/2011	
Inorganic Compounds	In a serie Common and a								
Aluminum	0.1 U	0.2 U	0.1 U	0.2 U	0.0802 U	0.0802 U	0.0834 U	0.0801 U	
Antimony		0.005 U	0.0506	0.006 U	0.0002 U		0.0034 U	0.0058 U	
Arsenic		0.016	0.0202	0.008 U	0.0162 J		0.0098 U	0.0051 U	
Barium	0.2 U	0.215	0.0202	0.2 U	0.162	0.206	0.16	0.21	
Beryllium		0.005 U	0.0103	0.001 U	0.0009 U		0.0015 J	0.00024 U	
Cadmium	0.004 U	0.004 U	0.0043	0.004 U	0.002 U	0.002 U	0.002 U	0.00034 J	
Calcium	42.7	38.5	36	38.8	34.9	38.7	37.9	52.2	
Chromium		0.01 U	0.01 U	0.01 U	0.003 U		0.0034 U	0.0011 U	
Cobalt	0.05 U	0.05 U	0.05 U	0.05 U	0.0021 U	0.0021 U	0.0023 U	0.00062 U	
Copper	0.025 U	0.025 U	0.025 U	0.025 U	0.0027 U	0.0027 U	0.0027 U	0.0018 J	
Iron	8.35	11.7	11.9	9.63	8.74	12.4	7.93	5.59	
Lead	0.003 U	0.003 U	0.003 U	0.003 U	0.0069 U	0.0069 U	0.0069 U	0.0022 U	
Magnesium	21.6	21	20.3	20.2	16.9	20	17.6	23.6	
Manganese	9.05	7.71	6.67	5.63	4.5	6.06	3.17	2.26	
Mercury	0.0002 U	0.0002 U	0.0002 U	0.0002 U	0.000056 U	0.000063 J	0.000056 U	0.000026 U	
Nickel	0.04 U	0.04 U	0.04 U	0.04 U	0.0056 U	0.0018 U	0.003 U	0.00095 U	
Potassium	5 U	5 U	5 U	10 U	2.57	2.32	2.52	2.87	
Selenium	0.005 U	0.005 U	0.01 U	0.01 U	0.0107 U	0.0089 U	0.0089 U	0.0069 U	
Silver	0.01 U	0.01 U	0.01 U	0.01 U	0.0022 U	0.0023 U	0.0023 U	0.00091 U	
Sodium	20.5	20.4	16.8	15.7	13.9	14	11.5	15	
Thallium	0.01 U	0.01 U	0.01 U	0.01 U	0.014 U	0.014 U	0.014 U	0.0042 U	
Vanadium	0.05 U	0.05 U	0.05 U	0.05 U	0.0025 U	0.0025 U	0.0025 U	0.00096 U	
Zinc	0.02 U	0.02 U	0.02 U	0.02 U	0.0081 U	0.0081 U	0.0081 U	0.0044 J	

Volatile Organic Compounds

Volatile Organic Compounds								
1,1,1-Trichloroethane	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
1,1,2,2-Tetrachloroethane	0.001 U	0.001 U	0.001 U	0.001 U				
1,1,2-Trichloroethane	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
1,1-Dichloroethane	0.001 U	0.001 U	0.001 U	0.001 U				
1,1-Dichloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
1,2-Dichlorobenzene	0.002 U							
1,2-Dichloroethane	0.001 U	0.001 U	0.001 U	0.001 U				
1,2-Dichloropropane	0.001 U	0.001 U	0.001 U	0.001 U				
1,3-Dichlorobenzene	0.002 U							
1,4-Dichlorobenzene	0.002 U							
2-Butanone (MEK)	0.01 U	0.01 U	0.01 U	0.01 U	0.003 U	0.003 U	0.003 U	0.003 U
2-Hexanone	0.005 U	0.005 U	0.005 U	0.005 U	0.003 U	0.003 U	0.003 U	0.003 U
4-Methyl-2-pentanone	0.005 U	0.005 U	0.005 U	0.005 U	0.003 U	0.003 U	0.003 U	0.003 U
Acetone	0.01 U	0.01 U	0.01 U	0.01 U	0.006 U	0.006 U	0.006 U	0.006 U
Benzene	0.001 U	0.001 U	0.001 U	0.001 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U
Bromodichloromethane					0.001 U	0.001 U	0.001 U	0.001 U
Bromoform	0.004 U	0.004 U	0.004 U	0.004 U	0.001 U	0.001 U	0.001 U	0.001 U
Bromomethane	0.002 U	0.002 U	0.002 U	0.002 U	0.001 U	0.001 U	0.001 U	0.001 U
Carbon disulfide	0.002 U	0.002 U	0.002 U	0.002 U	0.001 U	0.001 U	0.001 U	0.001 U
Carbon tetrachloride	0.001 U	0.001 U	0.001 U	0.001 U				
Chlorobenzene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
Chloroethane	0.001 U	0.001 U	0.001 U	0.001 U				
Chloroform	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
Chloromethane	0.001 U	0.001 U	0.001 U	0.001 U				
cis-1,2-Dichloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
cis-1,3-Dichloropropene	0.001 U	0.001 U	0.001 U	0.001 U				
Dibromochloromethane	0.001 U	0.001 U	0.001 U	0.001 U				
Dichlorobromomethane	0.001 U	0.001 U	0.001 U	0.001 U				
Dichloromethane (Methylene chloride)	0.002 U	0.002 U	0.002 U	0.002 U				
Ethyl benzene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
m&p-Xylene	0.001 U	0.001 U	0.001 U	0.001 U				

2004 - 2011 Groundwater Analytical Results Former Sinclair Refinery Site (OU-1) Wellsville, New York (mg/L)

	MANA/D 00	1414/D 00	MANA/D 00	MANA/D 00	MANA D. OO	MAND OO	MANA/D 00	MANA/D 00
Parameter	MWR-09	MWR-09	MWR-09	MWR-09	MWR-09	MWR-09	MWR-09	MWR-09
r dramotor	6/15/2004	7/6/2005	5/31/2006	5/31/2007	5/28/2008	5/26/2009	6/9/2010	6/13/2011
VOC's Continued								
o-Xylene	0.001 U	0.001 U	0.001 U	0.001 U				
Phenol	0.005 U							
Styrene	0.005 U	0.005 U	0.005 U	0.005 U	0.001 U	0.001 U	0.001 U	0.001 U
Tetrachloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
Toluene	0.00045 J	0.001 U	0.001 U	0.001 U	0.0007 U	0.0007 U	0.0007 U	0.0007 U
trans-1,2-Dichloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
trans-1,3-Dichloropropene	0.001 U	0.001 U	0.001 U	0.001 U				
Trichloroethene	0.001 U	0.001 U	0.001 U	0.001 U				
Vinyl chloride	0.001 U	0.001 U	0.001 U	0.001 U				
Xylenes (total)					0.0008 U	0.0008 U	0.0008 U	0.0008 U

2004 - 2011 Groundwater Analytical Results Former Sinclair Refinery Site (OU-1) Wellsville, New York (mg/L)

Parameter	MWR-10	MWR-10	MWR-10	MWR-10	MWR-10	MWR-10	MWR-10	MWR-10	
Farameter	6/15/2004	7/6/2005	5/31/2006	5/31/2007	5/28/2008	5/26/2009	6/8/2010	6/14/2011	
Inorganic Compounds	Û r			1					
Aluminum		0.2 U	0.1 U	0.2 U	0.0802 U		0.0834 U	0.0801 U	
Antimony		0.005 U	0.0605	0.006 U	0.0097 U		0.01 U	0.0058 U	
Arsenic		0.0475	0.0373	0.0371	0.0381	0.0311	0.0534	0.0587	
Barium		0.228	0.251	0.239	0.228	0.242	0.322	0.305	
Beryllium	0.005 U	0.005 U	0.0131	0.001 U	0.0009 U	0.0014 U	0.0014 J	0.00024 U	
Cadmium	0.004 U	0.004 U	0.0055	0.004 U	0.002 U	0.002 U	0.002 U	0.00077 J	
Calcium	33.6	31.6	30.7	29.9	30.4	29.6	33.8	33.6	
Chromium	0.01 U	0.01 U	0.01 U	0.01 U	0.003 U	0.0034 U	0.0034 U	0.0015 J	
Cobalt	0.05 U	0.05 U	0.05 U	0.05 U	0.0021 U	0.0021 U	0.0023 U	0.0013 J	
Copper	0.025 U	0.025 U	0.025 U	0.025 U	0.0027 U	0.0027 U	0.0027 U	0.00094 U	
Iron	14.2	13.3	18.7	17	17	19.4	32.9	26.6	
Lead	0.003 U	0.003 U	0.003 U	0.003 U	0.0069 U	0.0069 U	0.0069 U	0.0022 U	
Magnesium	23.4	20.6	19.1	19.3	17.7	16.7	16.8	17.6	
Manganese	8.46	7.68	8.43	7.82	7.33	7.79	9.39	8.43	
Mercury	0.0002 U	0.0002 U	0.0002 U	0.0002 U	0.000056 U	0.000056 U	0.000056 U	0.000026 U	
Nickel	0.04 U	0.04 U	0.04 U	0.04 U	0.0056 U	0.0018 U	0.003 U	0.0011 J	
Potassium	5 U	5 U	5 U	10 U	1.66	1.3	1.21	1.38	
Selenium	0.005 U	0.005 U	0.01 U	0.01 U	0.0107 U	0.0089 U	0.0089 U	0.0069 U	
Silver	0.01 U	0.01 U	0.01 U	0.01 U	0.0022 U	0.0023 U	0.0023 U	0.00091 U	
Sodium	22.8	24.8	21.9	20.3	20.3	17.8	17.6	17.4	
Thallium	0.01 U	0.01 U	0.01 U	0.01 U	0.014 U	0.014 U	0.014 U	0.0042 U	
Vanadium	0.05 U	0.05 U	0.05 U	0.05 U	0.0031 J	0.0025 U	0.0025 U	0.003 J	
Zinc	0.02 U	0.02 U	0.02 U	0.02 U	0.0081 U	0.0081 U	0.0081 U	0.0045 J	

Volatile Organic Compounds

Volatile Organic Compounds								
1,1,1-Trichloroethane	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
1,1,2,2-Tetrachloroethane	0.001 U	0.001 U	0.001 U	0.001 U				
1,1,2-Trichloroethane	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
1,1-Dichloroethane	0.001 U	0.001 U	0.001 U	0.001 U				
1,1-Dichloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
1,2-Dichlorobenzene	0.002 U							
1,2-Dichloroethane	0.001 U	0.001 U	0.001 U	0.001 U				
1,2-Dichloropropane	0.001 U	0.001 U	0.001 U	0.001 U				
1,3-Dichlorobenzene	0.002 U							
1,4-Dichlorobenzene	0.002 U							
2-Butanone (MEK)	0.01 U	0.01 U	0.01 U	0.01 U	0.003 U	0.003 U	0.003 U	0.003 U
2-Hexanone	0.005 U	0.005 U	0.005 U	0.005 U	0.003 U	0.003 U	0.003 U	0.003 U
4-Methyl-2-pentanone	0.005 U	0.005 U	0.005 U	0.005 U	0.003 U	0.003 U	0.003 U	0.003 U
Acetone	0.01 U	0.01 U	0.01 U	0.01 U	0.006 U	0.006 U	0.006 U	0.006 U
Benzene	0.001 U	0.001 U	0.001 U	0.001 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U
Bromodichloromethane					0.001 U	0.001 U	0.001 U	0.001 U
Bromoform	0.004 U	0.004 U	0.004 U	0.004 U	0.001 U	0.001 U	0.001 U	0.001 U
Bromomethane	0.002 U	0.002 U	0.002 U	0.002 U	0.001 U	0.001 U	0.001 U	0.001 U
Carbon disulfide	0.002 U	0.002 U	0.002 U	0.002 U	0.001 U	0.001 U	0.001 U	0.001 U
Carbon tetrachloride	0.001 U	0.001 U	0.001 U	0.001 U				
Chlorobenzene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
Chloroethane	0.001 U	0.001 U	0.001 U	0.001 U				
Chloroform	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
Chloromethane	0.001 U	0.001 U	0.001 U	0.001 U				
cis-1,2-Dichloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
cis-1,3-Dichloropropene	0.001 U	0.001 U	0.001 U	0.001 U				
Dibromochloromethane	0.001 U	0.001 U	0.001 U	0.001 U				
Dichlorobromomethane	0.001 U	0.001 U	0.001 U	0.001 U				
Dichloromethane (Methylene chloride)	0.002 U	0.002 U	0.002 U	0.002 U				
Ethyl benzene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
m&p-Xylene	0.001 U	0.001 U	0.001 U	0.001 U				

2004 - 2011 Groundwater Analytical Results Former Sinclair Refinery Site (OU-1) Wellsville, New York (mg/L)

Parameter	MWR-10	MWR-10	MWR-10	MWR-10	MWR-10	MWR-10	MWR-10	MWR-10
- urameter	6/15/2004	7/6/2005	5/31/2006	5/31/2007	5/28/2008	5/26/2009	6/8/2010	6/14/2011
VOC's Continued								
o-Xylene	0.001 U	0.001 U	0.001 U	0.001 U				
Phenol	0.005 U							
Styrene	0.005 U	0.005 U	0.005 U	0.005 U	0.001 U	0.001 U	0.001 U	0.001 U
Tetrachloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
Toluene	0.00041 J	0.001 U	0.001 U	0.001 U	0.0007 U	0.0007 U	0.0007 U	0.0007 U
trans-1,2-Dichloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
trans-1,3-Dichloropropene	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Trichloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Vinyl chloride	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Xylenes (total)					0.0008 U	0.0008 U	0.0008 U	0.0008 U

2004 - 2011 Groundwater Analytical Results Former Sinclair Refinery Site (OU-1) Wellsville, New York (mg/L)

Danamatan	MWR-11	MWR-11	MWR-11	MWR-11	MWR-11	MWR-11	MWR-11	MWR-11
Parameter	6/17/2004	7/7/2005	5/31/2006	5/30/2007	5/28/2008	5/26/2009	6/8/2010	6/14/2011
Inorganic Compounds								
Aluminum	0.2 U	0.2 U	0.1 U	0.2 U	0.0964 J	0.0802 U	0.0834 U	0.183 J
Antimony	0.005 U	0.005 U	0.006 U	0.006 U	0.0097 U	0.0097 U	0.01 U	0.0058 U
Arsenic	0.005 U	0.005 U	0.008 U	0.008 U	0.0102 U	0.0072 U	0.0098 U	0.0051 U
Barium	0.2 U	0.2 U	0.2 U	0.2 U	0.0736	0.107	0.11	0.0939
Beryllium	0.005 U	0.005 U	0.001 U	0.001 U	0.0009 U	0.0014 U	0.0014 J	0.00024 U
Cadmium	0.004 U	0.004 U	0.004 U	0.004 U	0.002 U	0.002 U	0.002 U	0.00027 U
Calcium	28.1	27.3	25.5	24	24.3	41	44.8	34.6
Chromium	0.193	0.604	0.21	0.24	0.309	0.282	0.23	0.553
Cobalt	0.05 U	0.05 U	0.05 U	0.05 U	0.0021 U	0.0025 J	0.0023 U	0.0017 J
Copper	0.025 U	0.025 U	0.025 U	0.025 U	0.0063 J	0.0082 J	0.0094 J	0.0134
Iron	0.781	2.79	0.942	0.974	1.5	1.68	1.57	3.3
Lead	0.003 U	0.003 U	0.003 U	0.003 U	0.0069 U	0.0069 U	0.0069 U	0.0022 J
Magnesium	6.12	6.04	5.78	5.85	5.82	9.2	9.5	7.02
Manganese	0.0152	0.0454	0.0241	0.015 U	0.0129	0.0503	0.0359	0.0421
Mercury	0.0002 U	0.0002 U	0.0002 U	0.0002 U	0.000056 U	0.000056 U	0.000056 U	0.000026 U
Nickel	0.105	0.218	0.079	0.0643	0.102	0.206	0.0918	0.0816
Potassium	5 U	5 U	5 U	10 U	3.93	3.95	3.82	3.46
Selenium	0.005 U	0.005 U	0.01 U	0.01 U	0.0107 U	0.0089 U	0.0089 U	0.0069 U
Silver	0.01 U	0.01 U	0.01 U	0.01 U	0.0022 U	0.0023 U	0.0023 U	0.00091 U
Sodium	30.2	29	27.7	24.6	23.7	29.3	28.8	20.8
Thallium	0.01 U	0.01 U	0.01 U	0.01 U	0.014 U	0.014 U	0.014 U	0.0042 U
Vanadium	0.05 U	0.05 U	0.05 U	0.05 U	0.0025 U	0.0025 U	0.0025 U	0.0034 J
Zinc	0.02 U	0.0374	0.02 U	0.02 U	0.0081 U	0.0081 U	0.0081 U	0.0038 J
Volatile Organic Compounds			·					
1,1,1-Trichloroethane	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
1,1,2,2-Tetrachloroethane	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
1.1.2-Trichloroethane	0.00111	0.001.11	0.001 11	0.001.11	0.0008.11	0.0008.11	0.0008.11	0.0008.11

Volatile Organic Compounds								
1,1,1-Trichloroethane	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
1,1,2,2-Tetrachloroethane	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
1,1,2-Trichloroethane	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
1,1-Dichloroethane	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
1,1-Dichloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
1,2-Dichlorobenzene	0.002 U							
1,2-Dichloroethane	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
1,2-Dichloropropane	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
1,3-Dichlorobenzene	0.002 U							
1,4-Dichlorobenzene	0.002 U							
2-Butanone (MEK)	0.01 U	0.01 U	0.01 U	0.01 U	0.003 U	0.003 U	0.003 U	0.003 U
2-Hexanone	0.005 U	0.005 U	0.005 U	0.005 U	0.003 U	0.003 U	0.003 U	0.003 U
4-Methyl-2-pentanone	0.005 U	0.005 U	0.005 U	0.005 U	0.003 U	0.003 U	0.003 U	0.003 U
Acetone	0.01 U	0.01 U	0.01 U	0.01 U	0.006 U	0.006 U	0.006 U	0.006 U
Benzene	0.001 U	0.001 U	0.001 U	0.001 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U
Bromodichloromethane					0.001 U	0.001 U	0.001 U	0.001 U
Bromoform	0.004 U	0.004 U	0.004 U	0.004 U	0.001 U	0.001 U	0.001 U	0.001 U
Bromomethane	0.002 U	0.002 U	0.002 U	0.002 U	0.001 U	0.001 U	0.001 U	0.001 U
Carbon disulfide	0.002 U	0.002 U	0.002 U	0.002 U	0.001 U	0.001 U	0.001 U	0.001 U
Carbon tetrachloride	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Chlorobenzene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
Chloroethane	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Chloroform	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
Chloromethane	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
cis-1,2-Dichloroethene	0.00067 J	0.0012	0.00095 J	0.00066 J	0.0008 U	0.0008 U	0.0008 U	0.0008 U
cis-1,3-Dichloropropene	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Dibromochloromethane	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Dichlorobromomethane	0.001 U	0.001 U	0.001 U	0.001 U				
Dichloromethane (Methylene chloride)	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
Ethyl benzene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
m&p-Xylene	0.001 U	0.001 U	0.001 U	0.001 U				

2004 - 2011 Groundwater Analytical Results Former Sinclair Refinery Site (OU-1) Wellsville, New York (mg/L)

Parameter	MWR-11	MWR-11	MWR-11	MWR-11	MWR-11	MWR-11	MWR-11	MWR-11
	6/17/2004	7/7/2005	5/31/2006	5/30/2007	5/28/2008	5/26/2009	6/8/2010	6/14/2011
VOC's Continued								

o-Xylene	0.001 U	0.001 U	0.001 U	0.001 U				
Phenol	0.005 U							
Styrene	0.005 U	0.005 U	0.005 U	0.005 U	0.001 U	0.001 U	0.001 U	0.001 U
Tetrachloroethene	0.00047 J	0.00083 J	0.00057 J	0.00058 J	0.0008 U	0.0008 U	0.0008 U	0.0008 U
Toluene	0.00068 J	0.001 U	0.001 U	0.001 U	0.0007 U	0.0007 U	0.0007 U	0.0007 U
trans-1,2-Dichloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.0008 U	0.0008 U	0.0008 U	0.0008 U
trans-1,3-Dichloropropene	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Trichloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Vinyl chloride	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Xylenes (total)					0.0008 U	0.0008 U	0.0008 U	0.0008 U

Notes:

 $\boldsymbol{\mathsf{U}}$ - Concentration not detected at specified detection limit

J/UJ - Estimated value

2011 Groundwater Duplicate Sample Comparison Former Sinclair Refinery Site (OU-1) Wellsville, New York (mg/L)

	Parameter	MWR07-0611	DUP1-0611
--	-----------	------------	-----------

Inorganic Compounds		
Aluminum	0.0882 J	0.0801 U
Antimony	0.0058 U	0.0058 U
Arsenic	0.0051 U	0.0051 U
Barium	0.0464	0.0475
Beryllium	0.00024 U	0.00024 U
Cadmium	0.00044 J	0.00046 J
Calcium	19.4	20
Chromium	0.0082 J	0.0083 J
Cobalt	0.00062 U	0.00062 U
Copper	0.0031 J	0.00094 U
Iron	0.607	0.649
Lead	0.0022 U	0.0026 J
Magnesium	3.93	4.04
<u>Manganese</u>	0.771	0.793
Mercury	0.000026 U	0.000026 U
Nickel	0.0015 J	0.0017 J
Potassium	1.62	1.65
Selenium	0.0069 U	0.0069 U
Silver	0.00091 U	0.00091 U
Sodium	9.79	10
Thallium	0.0042 U	0.0042 U
Vanadium	0.0044	0.0040.1

0.0011 J

0.0061 J

0.0013 J

0.0065 J

Valatila	Organia	Compounds
voiatile	Organic	Compounds

Vanadium

1,1,1-Trichloroethane	0.0008 U	0.0008 U
1,1,2,2-Tetrachloroethane	0.001 U	0.001 U
1,1,2-Trichloroethane	0.0008 U	0.0008 U
1,1-Dichloroethane	0.001 U	0.001 U
1,1-Dichloroethene	0.0008 U	0.0008 U
1,2-Dichloroethane	0.001 U	0.001 U
1,2-Dichloropropane	0.001 U	0.001 U
2-Butanone (MEK)	0.003 U	0.003 U
2-Hexanone	0.003 U	0.003 U
4-Methyl-2-pentanone	0.003 U	0.003 U
Acetone	0.006 U	0.006 U
Benzene	0.0005 U	0.0005 U
Bromodichloromethane	0.001 U	0.001 U
Bromoform	0.001 U	0.001 U
Bromomethane	0.001 U	0.001 U
Carbon disulfide	0.001 U	0.001 U
Carbon tetrachloride	0.001 U	0.001 U
Chlorobenzene	0.0008 U	0.0008 U
Chloroethane	0.001 U	0.001 U
Chloroform	0.0008 U	0.0008 U
Chloromethane	0.001 U	0.001 U
cis-1,2-Dichloroethene	0.0008 U	0.0008 U
cis-1,3-Dichloropropene	0.001 U	0.001 U

Parameter	MWR07-0611	DUP1-0611

VOC's Continued

Dibromochloromethane	0.001 U	0.001 U
Dichloromethane (Methylene chloride)	0.002 U	0.002 U
Ethyl benzene	0.0008 U	0.0008 U
Styrene	0.001 U	0.001 U
Tetrachloroethene	0.0008 U	0.0008 U
Toluene	0.0007 U	0.0007 U
trans-1,2-Dichloroethene	0.0008 U	0.0008 U
trans-1,3-Dichloropropene	0.001 U	0.001 U
Trichloroethene	0.001 U	0.001 U
Vinyl chloride	0.001 U	0.001 U
Xylenes (total)	0.0008 U	0.0008 U

Notes:

U - Concentration not detected at specified detection limit

J/UJ - Estimated value

2011 Field Equipment Rinsate Blank Analytical Results Former Sinclair Refinery Site (OU-1) Wellsville, New York (mg/L)

Parameter	EB1-0611
-----------	----------

Parameter EB1-0611

Inorg	ianic	Com	noun	ahı

Aluminum	0.0801 U
Antimony	0.0058 U
Arsenic	0.0051 U
Barium	0.0012 J
Beryllium	0.00024 U
Cadmium	0.00027 U
Calcium	0.0705 U
Chromium	0.0011 U
Cobalt	0.00062 U
Copper	0.0462
Iron	0.0141 U
Lead	0.0022 U
Magnesium	0.0093 J
Manganese	0.0024 J
Mercury	0.000026 U
Nickel	0.0011 J
Potassium	0.0874 U
Selenium	0.0069 U
Silver	0.00091 U
Sodium	0.0647 U
Thallium	0.0042 U
Vanadium	0.00096 U
Zinc	0.0032 U

Dibromochloromethane	0.001 U
Dichloromethane (Methylene chloride)	0.002 U
Ethyl benzene	0.0008 U
Styrene	0.001 U
Tetrachloroethene	0.0008 U
Toluene	0.0007 U
trans-1,2-Dichloroethene	0.0008 U
trans-1,3-Dichloropropene	0.001 U
Trichloroethene	0.001 U
Vinyl chloride	0.001 U
Xylenes (total)	0.0008 U

Notes:

 $\boldsymbol{\mathsf{U}}$ - Concentration not detected at specified detection limit

J/UJ - Estimated value

Volatile Organic Compounds

1,1,1-Trichloroethane	0.0008 U
1,1,2,2-Tetrachloroethane	0.001 U
1,1,2-Trichloroethane	0.0008 U
1,1-Dichloroethane	0.001 U
1,1-Dichloroethene	0.0008 U
1,2-Dichloroethane	0.001 U
1,2-Dichloropropane	0.001 U
2-Butanone (MEK)	0.0034 J
2-Hexanone	0.003 U
4-Methyl-2-pentanone	0.003 U
Acetone	0.006 U
Benzene	0.0005 U
Bromodichloromethane	0.001 U
Bromoform	0.001 U
Bromomethane	0.001 U
Carbon disulfide	0.001 U
Carbon tetrachloride	0.001 U
Chlorobenzene	0.0008 U
Chloroethane	0.001 U
Chloroform	0.0008 U
Chloromethane	0.001 U
cis-1,2-Dichloroethene	0.0008 U
cis-1,3-Dichloropropene	0.001 U

2011 Liquid Level Monitoring Former Sinclair Refinery Site (OU-1) Wellsville, New York

Location	Depth to Water (ft)	Dept to Product (ft)	Measuring Point Elevation	Water Elevation (ft amsl)
June 13, 2011				
MWR-01	9.75		1502.04	1492.29
MWR-02	15.48	14.46	1506.48	1491.00
MWR-03	14.62		1506.59	1491.97
MWR-04	14.43		1507.52	1493.09
MWR-05	13.60		1507.62	1494.02
MWR-06	12.81		1508.50	1495.69
MWR-07	13.08		1508.29	1495.21
MWR-08	13.54		1508.60	1495.06
MWR-09	10.51		1505.46	1494.95
MWR-10	9.36		1502.25	1492.89
MWR-11	10.69		1511.30	1500.61
P-01	16.67		1509.23	1492.56
P-02	19.39		1512.37	1492.98
P-03	17.28		1510.18	1492.90
P-04	16.67		1509.45	1492.78
P-05	13.14		1505.81	1492.67
P-06	19.65		1512.21	1492.56
July 13, 2011				
MWR-01	10.37		1502.04	1491.67
MWR-02	15.28	15.00	1506.48	1491.20
MWR-03	15.05		1506.59	1491.54
MWR-04	14.67		1507.52	1492.85
MWR-05	13.83		1507.62	1493.79
MWR-06	13.16		1508.50	1495.34
MWR-07	13.54		1508.29	1494.75
MWR-08	13.77		1508.60	1494.83
MAND OO	44.00		4505.40	4.466 ===

1505.46

1502.25

1511.30

1509.23

1512.37

1510.18

1509.45

1505.81

1512.21

1493.77

1492.94

1499.84

1491.89

1492.21

1492.11

1492.04

1491.93

11.69

9.31

11.46

17.34

20.16

18.07

17.41

13.88

20.30

MWR-09

MWR-10

MWR-11

P-01

P-02

P-03

P-04

P-05

P-06

Storm Water Analytical Results (2005-2011) Former Sinclair Refinery Site (OU-1) Wellsville, New York (mg/L except where noted)

Davamatar	6/6/2005	3/9/2006	12/1/2006	3/2/2007	10/24/2007	8/6/2008	1/25/2010	Class A
Parameter	OF-0605	OF-0306	OF-1206	OF-0307	OF-1007	OF-0808	OF-0110	Standard ¹
Inorganic Compounds								
Arsenic	0.005 U	0.008 U	0.008 U	0.008 U	0.008 U	0.0102 U	0.0072 U	0.05
Barium	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	1.54	0.0261	1
Calcium	29.9	21.8	45.3	19.3	34.6	56.7	18.8	
Chromium	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.003 U	1	0.05
Lead	0.003 U	0.003 U	0.003 U	0.0038	0.003 U	0.0069 U	0.0069 U	0.05
Magnesium	5.25	5 U	9.41	5 U	5.25	47.9	3.18	35
Magnesium, dissolved	5 U	5 U	9.54	5 U	5.08	4.21	2.96	
Mercury	0.0002 U	0.0002 U	0.0004 U	0.0002 U	0.0002 U	0.000056 U	0.000056 U	0.0007
Selenium	0.005 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0107 U	0.0089 U	0.01
Silver	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0022U	0.0023 U	0.05
Oil & Grease		•	•	•	•			
Oil & Grease	5.2 U	5.1 U	5.1 U	5 U	5 U	2.7 J	1.4 U	
рН								
Field pH (std. units)	7.98	7.6	7.78	7.6	7.73	8.11	7.4	6.5-8.5
Wet Chemistry								
Biochemical Oxygen Demand	2 U	6.1	2 U	3.7	2 U	3.7 U	2.9 U	
Chemical Oxygen Demand	20 U	• • • • • • • • • • • • • • • • • • • •	20 U	44.6	20 U	5	23.5 J	
Cvanide	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.005 U	0.005 U	9
Nitrate Nitrogen	5.4	0.86	1.2	1.4	3.3	1.9	0.13	10
Nitrate-Nitrite	5.4	0.86	1.2	1.4	3.3	2.1	0.13	10
Nitrite Nitrogen	0.01	0.01 U	0.01 U	0.01 U	0.01 U	0.015 U	0.015 U	1
Phosphorus	0.11	İ	0.05 U	0.13	0.14	0.08 U	0.12	
Total Dissolved Solids	108	76	156	62	109	102	74.5	500
Total Kjeldahl Nitrogen	0.57		0.53	0.8	0.37	0.5 U	0.5 U	
Total Organic Carbon (TOC)	2.9	10.3	2.9	4.8	2.2	2.6	5.6	
Total Suspended Solids	4	20	4 U	6	5	3 U	18	
Acute Toxicity		•	•					
Ceriodaphnia dubia (24-H) (% Mortality)	ND	0	0	NA	NA	NA	NA	
Ceriodaphnia dubia (48-H) (% Mortality)	ND	0	10	0	5	50	5	
Pimephales promelas (24-H) (% Mortality)	ND	0	0	NA	NA	NA	NA	
Pimephales promelas (48-H) (% Mortality)	ND	0	2.5	0	0	2.5	5	

Notes:

ND - Non detect (0% Mortality)

NA - Not Analyzed

J - Estimated Value

¹ New York State Department of Environmental Conservation 6 NYCRR Parts 700-706 Class A Surface Water Standard Concentrations in **bold** exceed Class A Standards

² Storm water sampling and analysis was not conducted during 2011 due to ongoing OU2 Phase II construction activities.

U - Concentration not detected at specified detection limit

Table 7A

Select Groundwater Analytical Results 1998-2011 Former Sinclair Refinery Site OU-1 (mg/L)

MWR-01

Parameter	9/25/1998	5/6/1999	10/22/1999	4/20/2000	10/11/2000	5/9/2001	4/19/2002	4/24/2003	6/15/2004	7/7/2005	5/31/2006	5/30/2007	5/29/2008	5/27/2009	6/9/2010	6/16/2011	Detections
Antimony	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.006 U	0.06 U	0.06 U	0.005 U	0.005 U	0.089	0.006 U	0.0097 U	0.0097 U	0.01 U	0.0058 U	1
Arsenic	0.0104	0.0205	0.0112	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0126	0.005	0.008 U	0.008 U	0.0102 U	0.0072 U	0.0098 U	0.0062 J	6
Beryllium	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.004 U	0.005 U	0.005 U	0.005 U	0.005 U	0.0201	0.001 U	0.0009 U	0.0014 U	0.0015 J	0.00024 U	2
Cadmium	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.004 U	0.004 U	0.008	0.004 U	0.002 U	0.002 U	0.002 U	0.00027 U	1
Chromium	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.003 U	0.0085 J	0.0075 J	0.0121 J	3

MWR-02

Parameter	9/25/1998	5/7/1999	10/21/1999	4/20/2000	10/12/2000	5/9/2001	4/19/2002	4/24/2003	6/17/2004	7/12/2005	6/2/2006	6/4/2007	5/30/2008	5/28/2009	6/10/2010	6/16/2011	Detections
Antimony	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.006 U	0.06 U	0.06 U	0.005 U	0.005 U	0.006 U	0.006 U	0.0097 U	0.0097 U	0.01 U	0.0058 U	0
Arsenic	0.0765	0.0447	0.0681	0.0697	0.0557	0.0496	0.0562	0.0579	0.0532	0.005 U	0.0501	0.0491	0.0524	0.058	0.045	0.0283	15
Beryllium	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.004 U	0.005 U	0.005 U	0.005 U	0.005 U	0.001 U	0.001 U	0.0009 U	0.0014 U	0.0016 J	0.00024 U	1
Cadmium	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.004 U	0.004 U	0.004 U	0.004 U	0.002 U	0.002 U	0.002 U	0.0017 J	1
Chromium	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.003 U	0.0034 U	0.0034 U	0.0018 J	1

MWR-03

Parameter	9/24/1998	5/6/1999	10/21/1999	4/20/2000	10/11/2000	5/8/2001	4/18/2002	4/24/2003	6/17/2004	7/12/2005	6/1/2006	6/4/2007	5/29/2008	5/28/2009	6/10/2010	6/15/2011	Detections
Antimony	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.006 U	0.06 U	0.06 U	0.005 U	0.005 U	0.006 U	0.006 U	0.0097 U	0.0097 U	0.01 U	0.0058 U	0
Arsenic	0.0203	0.01 U	0.0128	0.01 U	0.0129	0.01 U	0.01 U	0.01 U	0.0124	0.01	U 800.0	0.008 U	0.0128 J	0.0072 U	0.0098 U	0.0537	7
Beryllium	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.004 U	0.005 U	0.005 U	0.005 U	0.005 U	0.001 U	0.001 U	0.0009 U	0.0014 U	0.0016 J	0.00024 U	1
Cadmium	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.004 U	0.004 U	0.004 U	0.004 U	0.002 U	0.002 U	0.002 U	0.00039 J	1
Chromium	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.003 U	0.0034 U	0.0034 U	0.0038 J	1

MWR-04

Parameter	9/24/1998	5/6/1999	10/21/1999	4/20/2000	10/11/2000	5/7/2001	4/18/2002	4/23/2003	6/16/2004	7/11/2005	6/1/2006	6/1/2007	5/29/2008	5/28/2009	6/10/2010	6/15/2011	Detections
Antimony	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.006 U	0.06 U	0.06 U	0.005 U	0.005 U	0.006 U	0.006 U	0.0097 U	0.0109 J	0.01 U	0.0058 U	1
Arsenic	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.005 U	0.005 U	U 800.0	U 800.0	0.0102 U	0.0072 U	0.0098 U	0.0051 U	0
Beryllium	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.004 U	0.005 U	0.005 U	0.005 U	0.005 U	0.001 U	0.001 U	0.0009 U	0.0014 U	0.0016 J	0.00024 U	1
Cadmium	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.004 U	0.004 U	0.004 U	0.004 U	0.002 U	0.002 U	0.002 U	0.00027 U	0
Chromium	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.225	0.01 U	0.01 U	0.01 U	0.01 U	0.0697	0.0287	0.0034 U	0.0494	0.0559	5

MWR-05

Parameter	9/24/1998	5/6/1999	10/21/1999	4/20/2000	10/11/2000	5/7/2001	4/18/2002	4/23/2003	6/16/2004	7/11/2005	6/1/2006	6/1/2007	5/29/2008	5/28/2009	6/10/2010	6/15/2011	Detections
Antimony	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.006 U	0.06 U	0.06 U	0.005 U	0.005 U	0.006 U	0.006 U	0.0097 U	0.0097 U	0.01 U	0.0058 U	0
Arsenic	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.005 U	0.005 U	U 800.0	0.008 U	0.0102 U	0.0072 U	0.0098 U	0.0051 U	0
Beryllium	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.004 U	0.005 U	0.005 U	0.005 U	0.005 U	0.001 U	0.001 U	0.0009 U	0.0014 U	0.0016 J	0.00024 U	1
Cadmium	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.004 U	0.004 U	0.004 U	0.004 U	0.002 U	0.002 U	0.002 U	0.00027 U	0
Chromium	0.0508	0.0567	0.0414	0.0114	0.01 U	0.0303	0.14	0.0348	0.0247	0.01 U	0.0197	0.0613	0.094	0.0378	0.0801	0.892	14

MWR-06

Parameter	9/24/1998	5/6/1999	10/21/1999	4/19/2000	10/11/2000	5/8/2001	4/18/2002	4/23/2003	6/16/2004	7/11/2005	6/1/2006	5/31/2007	5/29/2008	5/27/2009	6/9/2010	6/15/2011	Detections
Antimony	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.006 U	0.06 U	0.06 U	0.005 U	0.0057	0.0517	0.006 U	0.0097 U	0.0097 U	0.01 U	0.0058 U	2
Arsenic	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.005 U	0.005 U	0.008 U	0.008 U	0.0102 U	0.0072 U	0.0098 U	0.0067 J	1
Beryllium	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.004 U	0.005 U	0.005 U	0.005 U	0.005 U	0.0104	0.001 U	0.0009 U	0.0014 U	0.0016 J	0.00024 U	2
Cadmium	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.004 U	0.004 U	0.0044	0.004 U	0.002 U	0.002 U	0.002 U	0.00035 J	2
Chromium	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0594	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.003 U	0.0034 U	0.004 J	0.006 J	3

Table 7A

Select Groundwater Analytical Results 1998-2011 Former Sinclair Refinery Site OU-1 (mg/L)

MWR-07

Parameter	9/24/1998	5/5/1999	10/20/1999	4/19/2000	10/10/2000	5/7/2001	4/18/2002	4/23/2003	6/16/2004	7/7/2005	6/1/2006	5/31/2007	5/29/2008	5/27/2009	6/9/2010	6/14/2011	Detections
Antimony	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.006 U	0.06 U	0.06 U	0.005 U	0.005 U	0.0082	0.006 U	0.0097 U	0.0097 U	0.01 U	0.0058 U	1
Arsenic	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.005 U	0.005 U	0.008 U	0.008 U	0.0102 U	0.0072 U	0.0098 U	0.0051 U	0
Beryllium	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.004 U	0.005 U	0.005 U	0.005 U	0.005 U	0.001 U	0.001 U	0.0009 U	0.0014 U	0.0014 J	0.00024 U	1
Cadmium	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.004 U	0.004 U	0.004 U	0.004 U	0.002 U	0.002 U	0.002 U	0.00044 J	1
Chromium	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.003 U	0.0034 U	0.0034 U	0.0082 J	1

MWR-08

Parameter	9/24/1998	5/6/1999	10/22/1999	4/20/2000	10/12/2000	5/1/2001	4/17/2002	4/22/2003	6/15/2004	7/7/2005	5/31/2006	5/30/2007	5/28/2008	5/27/2009	6/8/2010	6/13/2011	Detections
Antimony	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.006 U	0.06 U	0.06 U	0.005 U	0.005 U	0.0252	0.006 U	0.0097 U	0.0097 U	0.01 U	0.0058 U	1
Arsenic	0.0257	0.01 U	0.0107	0.0106	0.0167	0.01 U	0.01 U	0.01 U	0.0086	0.005 U	0.008 U	0.015	0.0102 U	0.0072 U	0.0098 U	0.0051 U	6
Beryllium	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.004 U	0.005 U	0.005 U	0.005 U	0.005 U	0.0044	0.001 U	0.0009 U	0.0014 U	0.0014 J	0.00024 U	2
Cadmium	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.004 U	0.004 U	0.004 U	0.004 U	0.002 U	0.002 U	0.002 U	0.00027 U	0
Chromium	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.003 U	0.0034 U	0.0034 U	0.0011 U	0

MWR-09

Parameter	10/13/1998	5/5/1999	10/20/1999	4/19/2000	10/10/2000	5/1/2001	4/17/2002	4/22/2003	6/15/2004	7/6/2005	5/31/2006	5/31/2007	5/28/2008	5/26/2009	6/9/2010	6/13/2011	Detections
Antimony	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.006 U	0.06 U	0.06 U	0.005 U	0.005 U	0.0506	0.006 U	0.0097 U	0.0097 U	0.01 U	0.0058 U	1
Arsenic	0.0432	0.0146	0.0261	0.0184	0.0278	0.0112	0.0123	0.0238	0.005 U	0.016	0.0202	0.008 U	0.0162 J	0.0174 J	0.0098 U	0.0051 U	12
Beryllium	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.004 U	0.005 U	0.005 U	0.005 U	0.005 U	0.0103	0.001 U	0.0009 U	0.0014 U	0.0015 J	0.00024 U	1
Cadmium	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.004 U	0.004 U	0.0043	0.004 U	0.002 U	0.002 U	0.002 U	0.00034 J	2
Chromium	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.003 U	0.0034 U	0.0034 U	0.0011 U	0

MWR-10

Parameter	10/13/1998	5/5/1999	10/20/1999	4/19/2000	10/10/2000	5/1/2001	4/17/2002	4/22/2003	6/15/2004	7/6/2005	5/31/2006	5/31/2007	5/28/2008	5/26/2009	6/8/2010	6/14/2011	Detections
Antimony	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.006 U	0.06 U	0.06 U	0.005 U	0.005 U	0.0605	0.006 U	0.0097 U	0.0097 U	0.01 U	0.0058 U	1
Arsenic	0.0426	0.0319	0.035	0.0304	0.0359	0.0448	0.0586	0.0437	0.045	0.0475	0.0373	0.0371	0.0381	0.0311	0.0534	0.0587	16
Beryllium	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.004 U	0.005 U	0.005 U	0.005 U	0.005 U	0.0131	0.001 U	0.0009 U	0.0014 U	0.0014 J	0.00024 U	2
Cadmium	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.004 U	0.004 U	0.0055	0.004 U	0.002 U	0.002 U	0.002 U	0.00077 J	2
Chromium	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.003 U	0.0034 U	0.0034 U	0.0015 J	1

MWR-11

Parameter	10/13/1998	5/5/1999	10/20/1999	4/19/2000	10/10/2000	5/8/2001	4/17/2002	4/22/2003	6/17/2004	7/7/2005	5/31/2006	5/30/2007	5/28/2008	5/26/2009	6/8/2010	6/14/2011	Detections
Antimony	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.006 U	0.06 U	0.06 U	0.005 U	0.005 U	0.006 U	0.006 U	0.0097 U	0.0097 U	0.01 U	0.0058 U	0
Arsenic	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.005 U	0.005 U	0.008 U	0.008 U	0.0102 U	0.0072 U	0.0098 U	0.0051 U	0
Beryllium	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.004 U	0.005 U	0.005 U	0.005 U	0.005 U	0.001 U	0.001 U	0.0009 U	0.0014 U	0.0014 J	0.00024 U	1
Cadmium	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.004 U	0.004 U	0.004 U	0.004 U	0.002 U	0.002 U	0.002 U	0.00027 U	0
Chromium	0.19	0.174	0.0902	0.0378	0.0998	0.0597	0.836	0.122	0.193	0.604	0.21	0.24	0.309	0.282	0.23	0.553	16

Notes:

U - Concentration not detected at specified detection limit

J/UJ - Estimate value

Select results include results for parameters that have exceeded the USEPA MCL since 2004.

Detections - Number of results above detection limits

Table 7B

Groundwater Analytical Results 1998-2011 Used in Statistical Analysis Former Sinclair Refinery Site OU1 (mg/L with 1/2 detection limit for non-detects)

MWR-01

Parameter	9/25/1998	5/6/1999	10/22/1999	4/20/2000	10/11/2000	5/9/2001	4/19/2002	4/24/2003	6/15/2004	7/7/2005	5/31/2006	5/30/2007	5/29/2008	5/27/2009	6/9/2010	6/16/2011	Detections
Arsenic	0.0104	0.0205	0.0112	0.005	0.005	0.005	0.005	0.005	0.0126	0.005	0.004	0.004	0.005	0.0036	0.0049	0.0062 J	6
Chromium	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.0015	0.0085 J	0.0075 J	0.0121 J	3
			•														
								MWR-02									_
Parameter	9/25/1998	5/7/1999	10/21/1999	4/20/2000	10/12/2000	5/9/2001		4/24/2003			6/2/2006	6/4/2007		5/28/2009			
Arsenic	0.0765	0.0447	0.0681	0.0697	0.0557	0.0496	0.0562	0.0579	0.0532	0.0025	0.0501	0.0491	0.0524	0.058	0.045	0.0283	15
								MWR-03									
Parameter	9/24/1998	5/6/1999		4/20/2000	10/11/2000			4/24/2003			6/1/2006			5/28/2009			Detections
Arsenic	0.0203	0.005	0.0128	0.005	0.0129	0.005	0.005	0.005	0.0124	0.01	0.004	0.004	0.0128 J	0.0036	0.0098	0.0537	7
l 5	0/04/4000	= 1011000	40/04/4000	1/00/0000	10/11/0000	= /= /0.004	1/10/0000	MWR-04		=////	0/4/0000	0/4/0007	= 100 10000	= (0.0 (0.000)	0/40/0040	0/45/0044	5
Parameter	9/24/1998				10/11/2000			4/23/2003			6/1/2006			5/28/2009			Detections
Chromium	0.005	0.005	0.005	0.005	0.005	0.005	0.225	0.005	0.005	0.005	0.005	0.0697	0.0287	0.0017	0.0494	0.0559	5
								MANA/D OF	_								
ъ .	0/04/4000	5/0/4000	40/04/4000	4/00/0000	10/11/0000	E/7/0004	4/40/0000	MWR-05		7/44/0005	0/4/0000	0/4/0007	F/00/0000	E/00/0000	0/40/0040	0/45/0044	D (()
Parameter	9/24/1998	5/6/1999 0.0567		4/20/2000				4/23/2003		0.005	6/1/2006		0.094	5/28/2009		0.892	
Chromium	0.0508	0.0567	0.0414	0.0114	0.005	0.0303	0.14	0.0348	0.0247	0.005	0.0197	0.0613	0.094	0.0378	0.0801	0.892	14
								MWR-06	2								
Parameter	9/24/1998	5/6/1999	10/21/1999	4/19/2000	10/11/2000	5/8/2001	4/18/2002	4/23/2003		7/11/2005	6/1/2006	5/31/2007	5/29/2008	5/27/2009	6/9/2010	6/15/2011	Detections
Chromium	0.005	0.005	0.005	0.005	0.005	0.005	0.0594	0.005	0.005	0.005	0.005	0.005	0.0015	0.0017	0.004 J	0.006 J	3
Omomani	0.000	0.000	0.000	0.000	0.000	0.000	0.0004	0.000	0.000	0.000	0.000	0.000	0.0010	0.0017	0.00+0	0.0000	
								MWR-08	3								
Parameter	9/24/1998	5/6/1999	10/22/1999	4/20/2000	10/12/2000	5/1/2001	4/17/2002	4/22/2003		7/7/2005	5/31/2006	5/30/2007	5/28/2008	5/27/2009	6/8/2010	6/13/2011	Detections
Arsenic	0.0257	0.005	0.0107	0.0106	0.0167	0.005	0.005	0.006	0.0086	0.0025	0.004	0.015	0.0051	0.0036	0.0098	0.00255	6
								MWR-09)								
Parameter	10/13/1998	5/5/1999	10/20/1999	4/19/2000	10/10/2000	5/1/2001	4/17/2002	4/22/2003	6/15/2004	7/6/2005	5/31/2006	5/31/2007	5/28/2008	5/26/2009	6/9/2010	6/13/2011	Detections
Arsenic	0.0432	0.0146	0.0261	0.0184	0.0278	0.0112	0.0123	0.0238	0.0025	0.016	0.0202	0.004	0.0162 J	0.0174 J	0.0534	0.00255	12
		•						•	•		•					•	<u></u>
								MWR-10)								
Parameter	10/13/1998	5/5/1999	10/20/1999	4/19/2000	10/10/2000	5/1/2001	4/17/2002	4/22/2003	6/15/2004	7/6/2005	5/31/2006	5/31/2007	5/28/2008	5/26/2009	6/8/2010	6/14/2011	Detections
Arsenic	0.0426	0.0319	0.035	0.0304	0.0359	0.0448	0.0586	0.0437	0.045	0.0475	0.0373	0.0371	0.0381	0.0311	0.0534	0.0587	16
																	_
								MWR-11									
Parameter	10/13/1998				10/10/2000			4/22/2003								6/14/2011	
Chromium	0.19	0.174	0.0902	0.0378	0.0998	0.0597	0.836	0.122	0.193	0.604	0.21	0.24	0.309	0.282	0.23	0.553	16

Statistical Analysis of Groundwater Data 1998-2011 Former Sinclair Refinery Site OU1 (mg/L with 1/2 detection limit for non-detects)

MWR-01 Arsenic

COMPUTATIONS: Compute Statistic (S).

Date	09/25/98	05/06/99	10/22/99	04/20/00	10/11/00	05/09/01	04/19/02	04/24/03	06/15/04	07/07/05	05/31/06	05/30/07	05/29/08	05/27/09	06/09/10	06/16/11		
Event	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		
Result	0.0104	0.0205	0.0112	0.005	0.005	0.005	0.005	0.005	0.0126	0.005	0.004	0.004	0.005	0.0036	0.0098	0.0062	Count "+"	Count "-"
0.0104	0	+	+	-	-	-	-	-	+	-	-	-	-	-	-	-	3	12
0.0205		0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	14
0.0112			0	-	-	-	-	-	+	-	-	-	-	-	-	-	1	12
0.005				0	0	0	0	0	+	0	-	-	0	-	+	+	3	3
0.005					0	0	0	0	+	0	-	-	0	-	+	+	3	3
0.005						0	0	0	+	0	-	-	0	-	+	+	3	3
0.005							0	0	+	0	-	-	0	-	+	+	3	3
0.005								0	+	0	-	-	0	-	+	+	3	3
0.0126									0	-	-	-	-	-	-	-	0	7
0.005										0	-	-	0	-	+	+	2	3
0.004											0	0	+	-	+	+	3	1
0.004												0	+	-	+	+	3	1
0.005													0	-	+	+	2	1
0.0036														0	+	+	1	0
0.0098															0	-	0	0
																	30	66
																	Total "+"	Total "-"

STEP 4. a) Critical Value:

STEP 4. b) Probability Value:

S = Total Number of "+" minus Total Number of "-" = -36

 H_0 : There is no trend.

STEP 2. Alternative Hypothesis: H_A: There is a downward trend.

STEP 3. Test Statistics:

STEP 1. Null Hypothesis:

 $z_0 = S - sign(S) / V(S)^0.5$ Where: sign(S) = 1 if S > 0, 0 if S = 0, and -1 if S < 0

and V(S) = 1/18{n(n-1)(2n+5) - [$t_1(t_1-1)(2t_1+5)+[t_2(t_2-1)(2t_2+5)+\dots$ up to t_g]}

Where: n (number of samples) = 16

t₁ = number of tied samples in the first group = 7 t₂ = number of tied samples in second group = 2

g = the number of tied sample groups

V(S) = 448.00 $z_0 = -1.6536$

STEP 5. a) Conclusion: For testing the hypothesis, H_0 (no trend) against H_A - reject H_0 if absolute value of z_0 is > $z_{0.95}$ Since absolute value $z_0 = 1.6536$ > 1.645

we reject the null hypothesis of no trend

STEP 5. b) Conclusion: For testing the hypothesis, H0 (no trend) against HA - reject H0 if p-value is less than significance

level = 0.05.

Since p-value = 0.04914 < 0.05

From Table A-2, $z_{0.95}$ (critical value at 5% significance level) = 1.645

Using Table A-1, p-value = $(P(Z > z_0) = 0.04914$

we reject the null hypothesis of no trend

Therefore: We reject the null hypothesis of no trend in favor of the alternative hypothesis (i.e.

evidence of a downward trend).

Statistical Analysis of Groundwater Data 1998-2011 Former Sinclair Refinery Site OU1 (mg/L with 1/2 detection limit for non-detects)

MWR-01 Chromium

COMPUTATIONS: Compute Statistic (S).

Date	09/25/98	05/06/99	10/22/99	04/20/00	10/11/00	05/09/01	04/19/02	04/24/03	06/15/04	07/07/05	05/31/06	05/30/07	05/29/08	05/27/09	06/09/10	06/16/11		
Event	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		
Result	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.0126	0.005	0.004	0.004	0.0015	0.0085	0.0075	0.0121	Count "+"	Count "-"
0.005	0	0	0	0	0	0	0	0	+	0	-	-	-	+	+	+	4	3
0.005		0	0	0	0	0	0	0	+	0	-	-	-	+	+	+	4	3
0.005			0	0	0	0	0	0	+	0	-	-	-	+	+	+	4	3
0.005				0	0	0	0	0	+	0	-	-	-	+	+	+	4	3
0.005					0	0	0	0	+	0	-	-	-	+	+	+	4	3
0.005						0	0	0	+	0	-	-	-	+	+	+	4	3
0.005							0	0	+	0	-	-	-	+	+	+	4	3
0.005								0	+	0	-	-	-	+	+	+	4	3
0.0126									0	-	-	-	-	-	-	-	0	7
0.005										0	-	-	-	+	+	+	3	3
0.004											0	0	-	+	+	+	3	1
0.004												0	-	+	+	+	3	1
0.0015													0	+	+	+	3	0
0.0085														0	-	+	0	1
0.0075															0	+	0	0
																	44	37
																	Total "+"	Total "-"

S = Total Number of "+" minus Total Number of "-" = 7 STEP 4. a) Critical Value:

H₀: There is no trend.

STEP 4. b) Probability Value: Using Table A-1, p-value = (P(Z > z_o) = 0.617862

STEP 2. Alternative Hypothesis: H_A: There is an upward trend.

2. Alternative hypothesis.

STEP 3. Test Statistics:

STEP 1. Null Hypothesis:

 $z_0 = S - sign(S) / V(S)^0.5$ Where: sign(S) = 1 if S > 0, 0 if S = 0, and -1 if S < 0

and V(S) = 1/18{n(n-1)(2n+5) - [$t_1(t_1-1)(2t_1+5)+[t_2(t_2-1)(2t_2+5)+\dots$ up to t_g]}

Where: n (number of samples) = 16

 t_1 = number of tied samples in the first group = 9 t_2 = number of tied samples in second group = 2

g = the number of tied sample groups

V(S) = 400.33

 $z_0 = 0.2999$

STEP 5. a) Conclusion: For testing the hypothesis, H_0 (no trend) against H_A - reject H_0 if absolute value of z_0 is $> z_{0.95}$

Since absolute value $z_0 = 0.2999 < 1.645$

From Table A-2, z_{0.95} (critical value at 5% significance level) = 1.645

we fail to reject the null hypothesis of no trend

STEP 5. b) Conclusion: For testing the hypothesis, H0 (no trend) against HA - reject H0 if p-value is less than significance

level = 0.05.

Since p-value = 0.617862 > 0.05

we fail to reject the null hypothesis of no trend

Therefore:

We fail to reject the null hypothesis of no trend at the 5% significance level (i.e. there is evidence of an upward trend but not enough to over rule no trend).

Statistical Analysis of Groundwater Data 1998-2011 Former Sinclair Refinery Site OU1 (mg/L with 1/2 detection limit for non-detects)

MWR-02 Arsenic

COMPUTATIONS: Compute Statistic (S).

Date	09/25/98	05/07/99	10/21/99	04/20/00	10/12/00	05/09/01	04/19/02	04/24/03	06/17/04	07/12/05	06/02/06	06/04/07	05/30/08	05/28/09	06/10/10	06/16/11		
Event	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		
Result	0.0765	0.0447	0.0681	0.0697	0.0557	0.0496	0.0562	0.0579	0.0532	0.0025	0.0501	0.0491	0.0524	0.058	0.045	0.0283	Count "+"	Count "-"
0.0765	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	15
0.0447		0	+	+	+	+	+	+	+	-	+	+	+	+	+	-	12	2
0.0681			0	+	-	-	-	-	-	-	-	-	-	-	-	-	1	12
0.0697				0	-	-	-	-	-	-	-	-	-	-	-	-	0	12
0.0557					0	-	+	+	-	-	-	-	-	+	-	-	3	8
0.0496						0	+	+	+	-	+	-	+	+	-	-	6	4
0.0562							0	+	-	-	-	-	-	+	-	-	2	7
0.0579								0	-	-	-	-	-	+	-	-	1	7
0.0532									0	-	-	-	-	+	-	-	1	6
0.0025										0	+	+	+	+	+	+	6	0
0.0501											0	-	+	+	-	-	2	3
0.0491												0	+	+	-	-	2	2
0.0524													0	+	-	-	1	2
0.058														0	-	-	0	2
0.045															0	-	0	1
																	37	82
																	Total "+"	Total "-"

S = Total Number of "+" minus Total Number of "-" = -45 STEP 4. a) Critical Value:

STEP 1. Null Hypothesis: H₀: There is no trend. STEP 4. b) Probability Value: Using Table A-1, p-value = $(P(Z > z_0) = 0.02384)$

STEP 2. Alternative Hypothesis: H_A: There is a downward trend.

STEP 3. Test Statistics:

 $z_0 = S - sign(S) / V(S)^0.5$ Where: sign(S) = 1 if S > 0, 0 if S = 0, and -1 if S < 0

and V(S) = 1/18{n(n-1)(2n+5) - [$t_1(t_1-1)(2t_1+5)+[t_2(t_2-1)(2t_2+5)+\dots$ up to t_g]}

Where: n (number of samples) = 16

> t_1 = number of tied samples in the first group = 0 t₂ = number of tied samples in second group =

g = the number of tied sample groups

V(S) = 493.33

-1.9810 $z_0 =$

From Table A-2, $z_{0.95}$ (critical value at 5% significance level) = 1.645

STEP 5. a) Conclusion: For testing the hypothesis, H_0 (no trend) against H_A - reject H_0 if absolute value of Z_0 is $> Z_{0.95}$

> Since absolute value z₀ = 1.9810 1.645

we reject the null hypothesis of no trend

STEP 5. b) Conclusion: For testing the hypothesis, H0 (no trend) against HA - reject H0 if p-value is less than significance

level = 0.05.

Since p-value = 0.02384 0.05

we reject the null hypothesis of no trend

Therefore: We reject the null hypothesis of no trend in favor of the alternative hypothesis (i.e.

evidence of downward trend).

Statistical Analysis of Groundwater Data 1998-2011 Former Sinclair Refinery Site OU1 (mg/L with 1/2 detection limit for non-detects)

MWR-03 Arsenic

COMPUTATIONS: Compute Statistic (S).

Date	09/24/98	05/06/99	10/21/99	04/20/00	10/11/00	05/08/01	04/18/02	04/24/03	06/17/04	07/12/05	06/01/06	06/04/07	05/29/08	05/28/09	06/10/10	06/10/10		
Event	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Ī	
Result	0.0203	0.005	0.0128	0.005	0.0129	0.005	0.005	0.005	0.0124	0.01	0.004	0.004	0.0128	0.0036	0.0098	0.0537	Count "+"	Count "-"
0.0203	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	1	14
0.005		0	+	0	+	0	0	0	+	+	-	-	+	-	+	+	7	3
0.0128			0	-	+	-	-	-	-	-	-	-	0	-	-	+	2	10
0.005				0	+	0	0	0	+	+	-	-	+	-	+	+	6	3
0.0129					0	-	-	-	-	-	-	-	-	-	-	+	1	10
0.005						0	0	0	+	+	-	-	+	-	+	+	5	3
0.005							0	0	+	+	-	-	+	-	+	+	5	3
0.005								0	+	+	-	-	+	-	+	+	5	3
0.0124									0	-	-	-	+	-	-	+	2	5
0.01										0	-	-	+	-	-	+	2	4
0.004											0	0	+	-	+	+	3	1
0.004												0	+	-	+	+	3	1
0.0128													0	-	-	+	1	2
0.0036														0	+	+	2	0
0.0098															0	+	1	0
																	45	62
																	Total "+"	Total "-"

S = Total Number of "+" minus Total Number of "-" = -17

STEP 1. Null Hypothesis: H_0 : There is no trend.

STEP 2. Alternative Hypothesis: H_A: There is a downward trend.

STEP 3. Test Statistics:

 $z_0 = S - sign(S) / V(S)^0.5$ Where: sign(S) = 1 if S > 0, 0 if S = 0, and -1 if S < 0

and $V(S) = 1/18\{n(n-1)(2n+5) - [t_1(t_1-1)(2t_1+5)+[t_2(t_2-1)(2t_2+5)+... \text{ up to } t_q]\}$

Where: n (number of samples) = 16

 t_1 = number of tied samples in the first group = 5 t_2 = number of tied samples in second group = 2 t_3 = number of tied samples in third group = 2

g = the number of tied sample groups

V(S) = 474.67 $z_0 = -0.7344$ STEP 4. a) Critical Value: From Table A-2, $z_{0.95}$ (critical value at 5% significance level) = 1.645

STEP 4. b) Probability Value: Using Table A-1, p-value = $(P(Z > z_0) = 0.231336$

STEP 5. a) Conclusion: For testing the hypothesis, H_0 (no trend) against H_A - reject H_0 if absolute value of z_0 is $> z_{0.95}$

Since absolute value $z_0 = 0.7344 < 1.645$

we fail to reject the null hypothesis of no trend

STEP 5. b) Conclusion: For testing the hypothesis, H0 (no trend) against HA - reject H0 if p-value is less than significance

level = 0.05.

Since p-value = 0.231336 > 0.05

we fail to reject the null hypothesis of no trend

Therefore:

We fail to reject the null hypothesis of no trend at the 5% significance level (i.e. there is evidence of a downward trend but not enough to over rule no trend).

Statistical Analysis of Groundwater Data 1998-2011 Former Sinclair Refinery Site OU1 (mg/L with 1/2 detection limit for non-detects)

MWR-04 Chromium

COMPUTATIONS: Compute Statistic (S).

Date	09/24/98	05/06/99	10/21/99	04/20/00	10/11/00	05/07/01	04/18/02	04/23/03	06/16/04	07/11/05	06/01/06	06/01/07	05/29/08	05/28/09	06/10/10	06/15/11		
Event	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		
Result	0.005	0.005	0.005	0.005	0.005	0.005	0.225	0.005	0.005	0.005	0.005	0.0697	0.0287	0.0017	0.0494	0.0559	Count "+"	Count "-"
0.005	0	0	0	0	0	0	+	0	0	0	0	+	+	-	+	+	5	1
0.005		0	0	0	0	0	+	0	0	0	0	+	+	-	+	+	5	1
0.005			0	0	0	0	+	0	0	0	0	+	+	-	+	+	5	1
0.005				0	0	0	+	0	0	0	0	+	+	-	+	+	5	1
0.005					0	0	+	0	0	0	0	+	+	-	+	+	5	1
0.005						0	+	0	0	0	0	+	+	-	+	+	5	1
0.225							0	-	-	-	-	-	-	-	-	-	0	9
0.005								0	0	0	0	+	+	-	+	+	4	1
0.005									0	0	0	+	+	-	+	+	4	1
0.005										0	0	+	+	-	+	+	4	1
0.005											0	+	+	-	+	+	4	1
0.0697												0	-	-	-	-	0	4
0.0287													0	-	+	+	2	1
0.0017														0	+	+	2	0
0.0494															0	+	1	0
																	50	24
																	Total "+"	Total "-"

S = Total Number of "+" minus Total Number of "-" = 26 STEP 4. a) Critical Value: From Table A-2, z_{0.95} (critical value at 5% significance level) = 1.645

STEP 1. Null Hypothesis: H_0 : There is no trend. STEP 4. b) Probability Value: Using Table A-1, p-value = $(P(Z > z_0) = 0.903642)$

STEP 2. Alternative Hypothesis: H_A: There is an upward trend.

STEP 3. Test Statistics:

 $z_0 = S - sign(S) / V(S)^0.5$ Where: sign(S) = 1 if S > 0, 0 if S = 0, and -1 if S < 0

and $V(S) = 1/18\{n(n-1)(2n+5) - [t_1(t_1-1)(2t_1+5)+[t_2(t_2-1)(2t_2+5)+... \text{ up to } t_q]\}$

Where: n (number of samples) = 16

 t_1 = number of tied samples in the first group = 10 t_2 = number of tied samples in second group = 0

g = the number of tied sample groups

V(S) = 368.33 $z_0 = 1.3026$

y = the humber of tied sample groups

Therefore:

STEP 5. b) Conclusion: For testing the hypothesis, H0 (no trend) against HA - reject H0 if p-value is less than significance

level = 0.05.

Since absolute value z₀ =

Since p-value = 0.903642 > 0.05

1.3026

we fail to reject the null hypothesis of no trend

we fail to reject the null hypothesis of no trend

We fail to reject the null hypothesis of no trend at the 5% significance level (i.e. there is evidence of a upward trend but not enough to over rule no trend)

For testing the hypothesis, H_0 (no trend) against H_A - reject H_0 if absolute value of z_0 is $> z_{0.95}$

1.645

Reference: USEPA Data Quality Assessment: Statistical Methods for Practitioner EPA QA/G-9S, dated February 2006

STEP 5. a) Conclusion:

Statistical Analysis of Groundwater Data 1998-2011 Former Sinclair Refinery Site OU1 (mg/L with 1/2 detection limit for non-detects)

MWR-05 Chromium

COMPUTATIONS: Compute Statistic (S).

Date	09/24/98	05/06/99	10/21/99	04/20/00	10/11/00	05/07/01	04/18/02	04/23/03	06/16/04	07/11/05	06/01/06	06/01/07	05/29/08	05/28/09	06/10/10	06/15/11		
Event	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		
Result	0.0508	0.0567	0.0414	0.0114	0.005	0.0303	0.14	0.0348	0.0247	0.005	0.0197	0.0613	0.094	0.0378	0.0801	0.892	Count "+"	Count "-"
0.0508	0	+	-	-	-	-	+	-	-	-	-	+	+	-	+	+	6	9
0.0567		0	-	-	-	-	+	-	-	-	-	+	+	-	+	+	5	9
0.0414			0	-	-	-	+	-	-	-	-	+	+	-	+	+	5	8
0.0114				0	-	+	+	+	+	-	+	+	+	+	+	+	10	2
0.005					0	+	+	+	+	0	+	+	+	+	+	+	10	0
0.0303						0	+	+	-	-	-	+	+	+	+	+	7	3
0.14							0	-	-	-	-	-	-	-	-	+	1	8
0.0348								0	-	-	-	+	+	+	+	+	5	3
0.0247									0	-	-	+	+	+	+	+	5	2
0.005										0	+	+	+	+	+	+	6	0
0.0197											0	+	+	+	+	+	5	0
0.0613												0	+	-	+	+	3	1
0.094													0	-	-	+	1	2
0.0378														0	+	+	2	0
0.0801															0	+	1	0
																	71	47
																	Total "+"	Total "-"

S = Total Number of "+" minus Total Number of "-" = 24

STEP 1. Null Hypothesis: H_0 : There is no trend.

STEP 2. Alternative Hypothesis: H_A: There is an upward trend.

STEP 3. Test Statistics:

 $z_0 = S - sign(S) / V(S)^0.5$ Where: sign(S) = 1 if S > 0, 0 if S = 0, and -1 if S < 0

and V(S) = $1/18\{n(n-1)(2n+5) - [t_1(t_1-1)(2t_1+5)+[t_2(t_2-1)(2t_2+5)+... \text{ up to } t_g]\}$

Where: n (number of samples) = 16

 t_1 = number of tied samples in the first group = t_2 = number of tied samples in second group = t_2

g = the number of tied sample groups

V(S) = 492.33

 $z_0 = 1.0366$

STEP 4. a) Critical Value: From Table A-2, $z_{0.95}$ (critical value at 5% significance level) = 1.645

STEP 4. b) Probability Value: Using Table A-1, p-value = $(P(Z > z_0) = 0.850018$

STEP 5. a) Conclusion: For testing the hypothesis, H_0 (no trend) against H_A - reject H_0 if absolute value of z_0 is > $z_{0.95}$

Since absolute value $z_0 = 1.0366 < 1.64$

we fail to reject the null hypothesis of no trend

STEP 5. b) Conclusion: For testing the hypothesis, H0 (no trend) against HA - reject H0 if p-value is less than

significance level = 0.05.

Since p-value = 0.850018 > 0.05

we fail to reject the null hypothesis of no trend

Therefore:

We fail to reject the null hypothesis of no trend at the 5% significance level (i.e. there is evidence of a upward trend but not enough to over rule no trend)

Statistical Analysis of Groundwater Data 1998-2011 Former Sinclair Refinery Site OU1 (mg/L with 1/2 detection limit for non-detects)

MWR-06 Chromium

COMPUTATIONS: Compute Statistic (S).

Date	09/24/98	05/06/99	10/21/99	04/19/00	10/11/00	05/08/01	04/18/02	04/23/03	06/16/04	07/11/05	06/01/06	05/31/07	05/29/08	05/27/09	06/09/10	06/15/11		
Event	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		
Result	0.005	0.005	0.005	0.005	0.005	0.005	0.0594	0.005	0.005	0.005	0.005	0.005	0.0015	0.0017	0.004	0.006	Count "+"	Count "-"
0.005	0	0	0	0	0	0	+	0	0	0	0	0	-	-	-	+	2	3
0.005		0	0	0	0	0	+	0	0	0	0	0	-	-	-	+	2	3
0.005			0	0	0	0	+	0	0	0	0	0	-	-	-	+	2	3
0.005				0	0	0	+	0	0	0	0	0	-	-	-	+	2	3
0.005					0	0	+	0	0	0	0	0	-	-	-	+	2	3
0.005						0	+	0	0	0	0	0	-	-	-	+	2	3
0.0594							0	-	-	-	-	-	-	-	-	-	0	9
0.005								0	0	0	0	0	-	-	-	+	1	3
0.005									0	0	0	0	-	-	-	+	1	3
0.005										0	0	0	-	-	-	+	1	3
0.005											0	0	-	-	-	+	1	3
0.005												0	-	-	-	+	1	3
0.0015													0	+	+	+	3	0
0.0017														0	+	+	2	0
0.004															0	+	1	0
_																	22	42
																	Total "+"	Total "-"

S = Total Number of "+" minus Total Number of "-" = -20 STEP 4. a) Critical Value: From Table A-2, z_{0.95} (critical value at 5% significance level) = 1.645

STEP 1. Null Hypothesis: H_0 : There is no trend. STEP 4. b) Probability Value: Using Table A-1, p-value = $(P(Z > z_0) = 0.147222$

STEP 2. Alternative Hypothesis: H_A: There is a downward trend.

 $z_0 = S - sign(S) / V(S)^0.5$ Where: sign(S) = 1 if S > 0, 0 if S = 0, and -1 if S < 0

and V(S) = 1/18{n(n-1)(2n+5) - [$t_1(t_1-1)(2t_1+5)+[t_2(t_2-1)(2t_2+5)+\dots$ up to t_g]}

Where: n (number of samples) = 16

 t_1 = number of tied samples in the first group = 11 t_2 = number of tied samples in second group = 0

g = the number of tied sample groups

V(S) = 328.33

STEP 3. Test Statistics:

z_o = -1.0486

STEP 5. a) Conclusion: For testing the hypothesis, H_0 (no trend) against H_A - reject H_0 if absolute value of z_0 is $> z_{0.95}$

Since absolute value $z_0 = 1.0486 < 1.645$

we fail to reject the null hypothesis of no trend

STEP 5. b) Conclusion: For testing the hypothesis, H0 (no trend) against HA - reject H0 if p-value is less than significance

level = 0.05.

Since p-value = 0.147222 > 0.05

we fail to reject the null hypothesis of no trend

Therefore:

We fail to reject the null hypothesis of no trend at the 5% significance level (i.e. there is evidence of a downward trend but not enough to over rule no trend)

Statistical Analysis of Groundwater Data 1998-2011 Former Sinclair Refinery Site OU1 (mg/L with 1/2 detection limit for non-detects)

MWR-08 Arsenic

COMPUTATIONS: Compute Statistic (S).

Date	09/24/98	05/06/99	10/22/99	04/20/00	10/12/00	05/01/01	04/17/02	04/22/03	06/15/04	07/07/05	05/31/06	05/30/07	05/28/08	05/27/09	06/08/10	06/13/11		
Event	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		
Result	0.0257	0.005	0.0107	0.0106	0.0167	0.005	0.005	0.005	0.0086	0.0025	0.004	0.015	0.005	0.0036	0.0098	0.0025	Count "+"	Count "-"
0.0257	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	15
0.005		0	+	+	+	0	0	0	+	-	-	+	0	-	+	-	6	4
0.0107			0	-	+	-	-	-	-	-	-	+	-	-	-	-	2	11
0.0106				0	+	-	-	-	-	-	-	+	-	-	-	-	2	10
0.0167					0	-	-	-	-	-	-	-	-	-	-	-	0	11
0.005						0	0	0	+	-	-	+	0	-	+	-	3	4
0.005							0	0	+	-	-	+	0	-	+	-	3	4
0.005								0	+	-	-	+	0	-	+	-	3	4
0.0086									0	-	-	+	-	-	+	-	2	5
0.0025										0	+	+	+	+	+	0	5	0
0.004											0	+	+	-	+	-	3	2
0.015												0	-	-	-	-	0	4
0.005													0	-	+	-	1	2
0.0036														0	+	-	1	1
0.0098															0	-	0	1
																	31	77
																	Total "+"	Total "-"

S = Total Number of "+" minus Total Number of "-" = -46 STEP 4. a) Critical Value: From Table A-2, z_{0.95} (critical value at 5% significance level) = 1.645

STEP 1. Null Hypothesis: H_0 : There is no trend. STEP 4. b) Probability Value: Using Table A-1, p-value = $(P(Z > z_0) = 0.019645$

STEP 2. Alternative Hypothesis: H_A: There is a downward trend.

STEP 3. Test Statistics:

 $z_0 = S - sign(S) / V(S)^0.5$ Where: sign(S) = 1 if S > 0, 0 if S = 0, and -1 if S < 0

and V(S) = $1/18\{n(n-1)(2n+5) - [t_1(t_1-1)(2t_1+5)+[t_2(t_2-1)(2t_2+5)+... \text{ up to } t_g]\}$

Where: n (number of samples) = 16

 t_1 = number of tied samples in the first group = 5 t_2 = number of tied samples in second group = 0

g = the number of tied sample groups

V(S) = 476.67

 $z_o = -2.0611$

STEP 5. a) Conclusion: For testing the hypothesis, H_0 (no trend) against H_A - reject H_0 if absolute value of z_0 is $> z_{0.95}$

Since absolute value $z_0 = 2.0611 > 1.645$

we reject the null hypothesis of no trend

STEP 5. b) Conclusion: For testing the hypothesis, H0 (no trend) against HA - reject H0 if p-value is less than

significance level = 0.05.

Since p-value = 0.019645 < 0.05

we reject the null hypothesis of no trend

Therefore: We reject the null hypothesis of no trend in favor of the alternative hypothesis (i.e.

evidence of downward trend).

Statistical Analysis of Groundwater Data 1998-2011 Former Sinclair Refinery Site OU1 (mg/L with 1/2 detection limit for non-detects)

MWR-09 Arsenic

COMPUTATIONS: Compute Statistic (S).

Date	10/13/98	05/05/99	10/20/99	04/19/00	10/10/00	05/01/01	04/17/02	04/22/03	06/15/04	07/06/05	05/31/06	05/31/07	05/28/08	05/26/09	06/09/10	06/13/11		
Event	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		
Result	0.0432	0.0146	0.0261	0.0184	0.0278	0.0112	0.0123	0.0238	0.0025	0.016	0.0202	0.004	0.0162	0.0174	0.0534	0.0025	Count "+"	Count "-"
0.0432	0	-	-	-	-	-	-	-	-	-	-	-	-	-	+	-	1	14
0.0146		0	+	+	+	-	-	+	-	+	+	-	+	+	+	-	9	5
0.0261			0	-	+	-	-	-	-	-	-	-	-	-	+	-	2	11
0.0184				0	+	-	-	+	-	-	+	-	-	-	+	-	4	8
0.0278					0	-	-	-	-	-	-	-	-	-	+	-	1	10
0.0112						0	+	+	-	+	+	-	+	+	+	-	7	3
0.0123							0	+	-	+	+	-	+	+	+	-	6	3
0.0238								0	-	-	-	-	-	-	+	-	1	7
0.0025									0	+	+	+	+	+	+	0	6	0
0.016										0	+	-	+	+	+	-	4	2
0.0202											0	-	-	-	+	-	1	4
0.004												0	+	+	+	-	3	1
0.0162													0	+	+	-	2	1
0.0174														0	+	-	1	1
0.0534															0	-	0	1
																	48	70
																	Total "+"	Total "-"

S = Total Number of "+" minus Total Number of "-" = -22 STEP 4. a) Critical Value: From Table A-2, z_{0.95} (critical value at 5% significance level) = 1.645

STEP 1. Null Hypothesis: H_0 : There is no trend. STEP 4. b) Probability Value: Using Table A-1, p-value = $(P(Z > z_0) = 0.172225$

STEP 2. Alternative Hypothesis: H_A: There is a downward trend.

STEP 3. Test Statistics:

 $z_0 = S - sign(S) / V(S)^0.5$ Where: sign(S) = 1 if S > 0, 0 if S = 0, and -1 if S < 0

and V(S) = 1/18{n(n-1)(2n+5) - [$t_1(t_1-1)(2t_1+5)+[t_2(t_2-1)(2t_2+5)+...$ up to t_g]}

Where: n (number of samples) = 16

 t_1 = number of tied samples in the first group = 0 t_2 = number of tied samples in second group = 0

g = the number of tied sample groups

V(S) = 493.33

 $z_0 = -0.9455$

Since absolute value $z_0 = 0.9455 < 1.645$

we fail to reject the null hypothesis of no trend

STEP 5. b) Conclusion: For testing the hypothesis, H0 (no trend) against HA - reject H0 if p-value is less than significance

level = 0.05.

Since p-value = 0.172225 > 0.05

we fail to reject the null hypothesis of no trend

Therefore:

STEP 5. a) Conclusion:

We fail to reject the null hypothesis of no trend at the 5% significance level (i.e. there is evidence of a downward trend but not enough to over rule no trend)

For testing the hypothesis, H_0 (no trend) against H_A - reject H_0 if absolute value of Z_0 is $> Z_{0.95}$

Statistical Analysis of Groundwater Data 1998-2011 Former Sinclair Refinery Site OU1 (mg/L with 1/2 detection limit for non-detects)

MWR-10 Arsenic

COMPUTATIONS: Compute Statistic (S).

Date	10/13/98	05/05/99	10/20/99	04/19/00	10/10/00	05/01/01	04/17/02	04/22/03	06/15/04	07/06/05	05/31/06	05/31/07	05/28/08	05/26/09	06/08/10	06/14/11		
Event	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		
Result	0.0426	0.0319	0.035	0.0304	0.0359	0.0448	0.0586	0.0437	0.045	0.0475	0.0373	0.0371	0.0381	0.0311	0.0534	0.0587	Count "+"	Count "-"
0.0426	0	-	-	-	-	+	+	+	+	+	-	-	-	-	+	+	7	8
0.0319		0	+	-	+	+	+	+	+	+	+	+	+	-	+	+	12	2
0.035			0	-	+	+	+	+	+	+	+	+	+	-	+	+	11	2
0.0304				0	+	+	+	+	+	+	+	+	+	+	+	+	12	0
0.0359					0	+	+	+	+	+	+	+	+	-	+	+	10	1
0.0448						0	+	-	+	+	-	-	-	-	+	+	5	5
0.0586							0	-	-	-	-	-	-	-	-	+	1	8
0.0437								0	+	+	-	-	-	-	+	+	4	4
0.045									0	+	-	-	-	-	+	+	3	4
0.0475										0	-	-	-	-	+	+	2	4
0.0373											0	-	+	-	+	+	3	2
0.0371												0	+	-	+	+	3	1
0.0381													0	-	+	+	2	1
0.0311														0	+	+	2	0
0.0534															0	+	1	0
																	78	42
																	Total "+"	Total "-"

S = Total Number of "+" minus Total Number of "-" = 36 STEP 4. a) Critical Value: From Table A-2, z_{0.95} (critical value at 5% significance level) = 1.645

STEP 1. Null Hypothesis: H_0 : There is no trend. STEP 4. b) Probability Value: Using Table A-1, p-value = $(P(Z > z_0) = 0.942438$

STEP 2. Alternative Hypothesis: H_A : There is an upward trend.

•

STEP 3. Test Statistics:

 $z_0 = S - sign(S) / V(S)^0.5$ Where: sign(S) = 1 if S > 0, 0 if S = 0, and -1 if S < 0

and V(S) = $1/18\{n(n-1)(2n+5) - [t_1(t_1-1)(2t_1+5)+[t_2(t_2-1)(2t_2+5)+... \text{ up to } t_g]\}$

Where: n (number of samples) = 16

 t_1 = number of tied samples in the first group = 0 t_2 = number of tied samples in second group = 0

g = the number of tied sample groups

V(S) = 493.33

 $z_0 = 1.5758$

STEP 5. a) Conclusion: For testing the hypothesis, H_0 (no trend) against H_A - reject H_0 if absolute value of z_0 is $> z_{0.95}$

Since absolute value $z_0 = 1.5758 < 1.645$ we fail to reject the null hypothesis of no trend

STEP 5. b) Conclusion: For testing the hypothesis, H0 (no trend) against HA - reject H0 if p-value is less than significance

level = 0.05.

Since p-value = 0.942438 > 0.05

we fail to reject the null hypothesis of no trend

Therefore:

We fail to reject the null hypothesis of no trend at the 5% significance level (i.e. there is evidence of an upward trend but not enough to over rule no trend)

Statistical Analysis of Groundwater Data 1998-2011 Former Sinclair Refinery Site OU1 (mg/L with 1/2 detection limit for non-detects)

MWR-11 Chromium

COMPUTATIONS: Compute Statistic (S).

Date	10/13/98	05/05/99	10/20/99	04/19/00	10/10/00	05/08/01	04/17/02	04/22/03	06/17/04	07/07/05	05/31/06	05/30/07	05/28/08	05/26/09	06/08/10	06/14/11		
Event	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		
Result	0.19	0.174	0.0902	0.0378	0.0998	0.0597	0.836	0.122	0.193	0.604	0.21	0.24	0.309	0.282	0.23	0.553	Count "+"	Count "-"
0.19	0	-	-	-	-	-	+	-	+	+	+	+	+	+	+	+	9	6
0.174		0	-	-	-	-	+	-	+	+	+	+	+	+	+	+	9	5
0.0902			0	-	+	-	+	+	+	+	+	+	+	+	+	+	11	2
0.0378				0	+	+	+	+	+	+	+	+	+	+	+	+	12	0
0.0998					0	-	+	+	+	+	+	+	+	+	+	+	10	1
0.0597						0	+	+	+	+	+	+	+	+	+	+	10	0
0.836							0	-	-	-	-	-	-	-	-	-	0	9
0.122								0	+	+	+	+	+	+	+	+	8	0
0.193									0	+	+	+	+	+	+	+	7	0
0.604										0	-	-	-	-	-	-	0	6
0.21											0	+	+	+	+	+	5	0
0.24												0	+	+	-	+	3	1
0.309													0	-	-	+	1	2
0.282														0	-	+	1	1
0.23															0	+	1	0
																	86	33
																	Total "+"	Total "-"

S = Total Number of "+" minus Total Number of "-" = 53 STEP 4. a) Critical Value: From Table A-2, z_{0.95} (critical value at 5% significance level) = 1.645

STEP 1. Null Hypothesis: H_0 : There is no trend. STEP 4. b) Probability Value: Using Table A-1, p-value = $(P(Z > z_0) = 0.990424$

STEP 2. Alternative Hypothesis: H_A: There is an upward trend.

STEP 3. Test Statistics:

 $z_0 = S - sign(S) / V(S)^0.5$ Where: sign(S) = 1 if S > 0, 0 if S = 0, and -1 if S < 0

and V(S) = $1/18\{n(n-1)(2n+5) - [t_1(t_1-1)(2t_1+5)+[t_2(t_2-1)(2t_2+5)+... \text{ up to } t_g]\}$

Where: n (number of samples) = 16

 t_1 = number of tied samples in the first group = 0 t_2 = number of tied samples in second group = 0

g = the number of tied sample groups

V(S) = 493.33

 $z_0 = 2.3412$

STEP 5. a) Conclusion: For testing the hypothesis, H_0 (no trend) against H_A - reject H_0 if absolute value of z_0 is $> z_{0.95}$

Since absolute value $z_0 = 2.3412 > 1.645$

we reject the null hypothesis of no trend

STEP 5. b) Conclusion: For testing the hypothesis, H0 (no trend) against HA - reject H0 if p-value is less than

significance level = 0.05.

Since p-value = 0.990424 > 0.05

we fail to reject the null hypothesis of no trend

Therefore:

We fail to reject the null hypothesis of no trend at the 5% significance level (i.e. there is evidence of an upward trend but not enough to over rule no trend)

Table 8

2011 Groundwater Field Parameters Former Sinclair Refinery Site OU-1 Wellsville, New York

Monitoring Well	Date	pH (s.u.)	Conductivity (us/cm)	Turbidity (NTU)	D.O. (mg/L)	Temp (°C)	ORP (mV)
MWR-1	16-Jun-11	6.44	423	12.2	0.99	13.76	86.4
MWR-2	16-Jun-11	6.56	721	5.06	0.98	11.77	-65.2
MWR-3	15-Jun-11	6.69	424	53.3	6.55	13.61	22.9
MWR-4	15-Jun-11	6.55	175	3.94	0.28	15.77	93.0
MWR-5	15-Jun-11	6.34	144	14.7	0.42	14.20	84.3
MWR-6	15-Jun-11	6.43	279	7.24	0.49	12.17	14.0
MWR-7	14-Jun-11	6.39	185	5.08	0.51	10.78	78.6
MWR-8	13-Jun-11	6.40	336	4.97	1.86	12.8	55.1
MWR-9	13-Jun-11	6.28	484	8.90	0.50	12.88	-8.9
MWR-10	14-Jun-11	6.41	449	45.6	1.76	10.75	-7.2
MWR-11	14-Jun-11	6.58	321	30.0	2.61	10.93	87.7

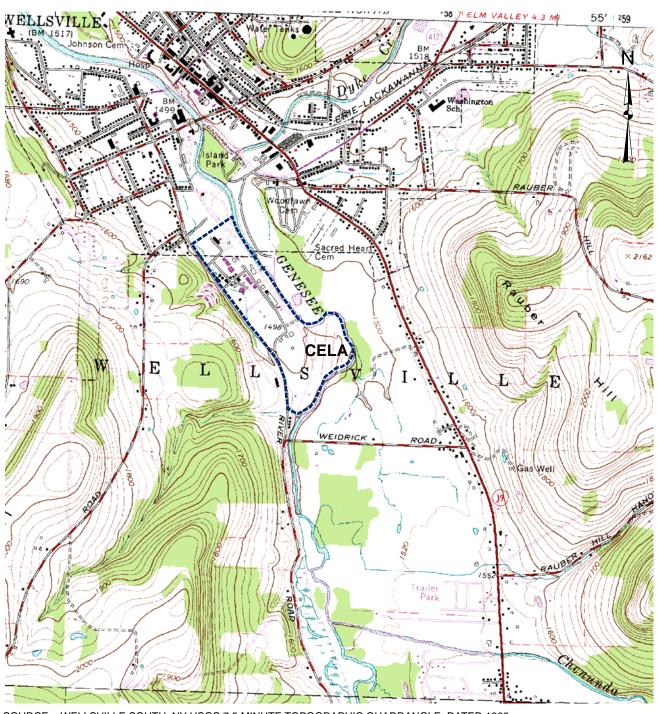
Note:

pH, Conductivity, Dissolved Oxygen (D.O.), Temperature and Oxygen Reduction Potential (ORP) are measured with a YSI 556 meter. Turbidity is measured with a YSI 2200P meter.

2011 LNAPL Measurements and Removal Former Sinclair Refinery Site OU-1 Wellsville, New York

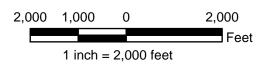
II Date I		Depth to Vater (ft)	Apparent LNAPL Thickness (ft)	Comment	Sock LNAPL Saturation (in)	Approximate LNAPL Removed (oz)
-----------	--	------------------------	-------------------------------------	---------	-------------------------------	--------------------------------------

MWR-02						
6/13/2011	14.46	15.48	1.02	1 30" sock installed	NA	NA
6/14/2011	14.57	NM	NM	1 30" sock removed - 1/2 saturated	16	43
6/14/2011	MM	NM	NM	1 30" sock installed	NA	NA
6/15/2011	14.67	NM	NM	1 30" sock removed - 1/2 saturdated	17	46
6/15/2011	MM	NM	NM	1 30" sock installed	NA	NA
6/16/2011	14.74	15.46	0.72	1 30" sock removed - 1/2 saturated	16	43
2011 Total LNAPL Removed (oz): 132						132


Notes:

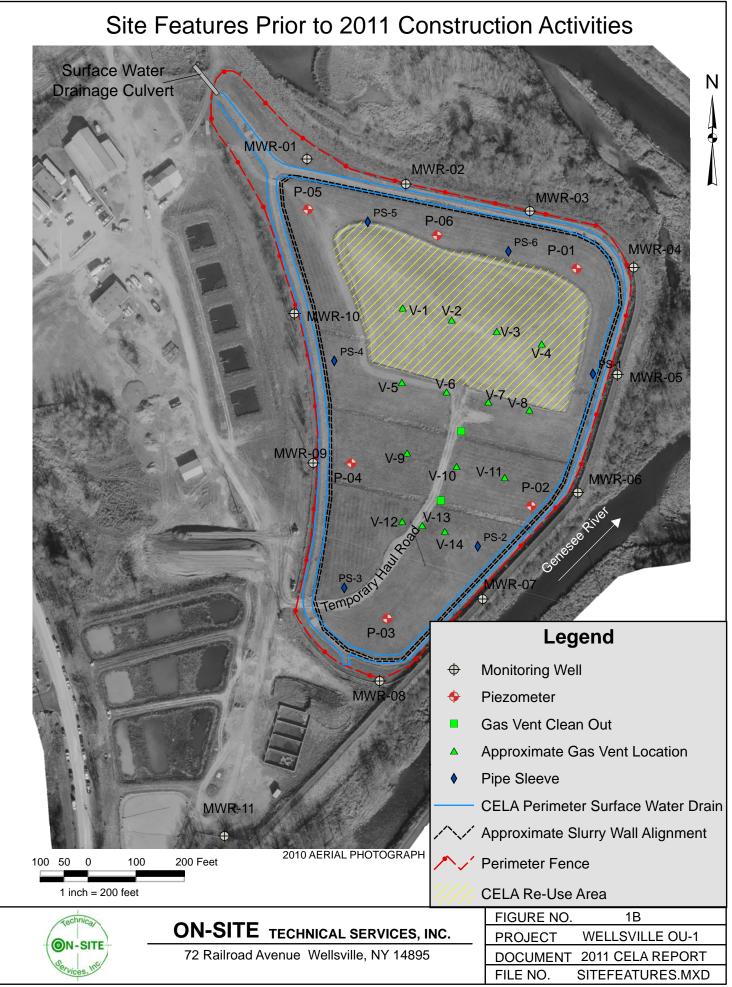
The approximate quantities of LNAPL removed are based on the length of sock saturation and the manufacturers information indicates that one $3" \times 30"$ sock absorbs 81 oz of NAPL. Every inch of absorbancy on sock = 2.7 oz of NAPL. Ex: 4" of absorbancy on 30" sock (2.7oz x 4 in.) = 10.8 oz.

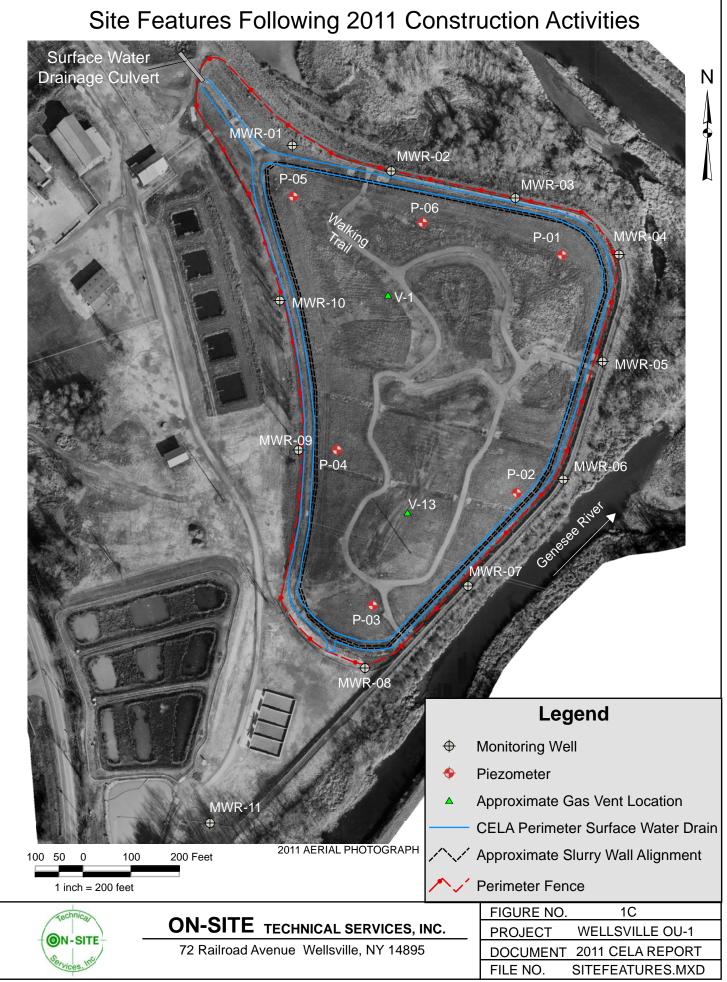
NM - Not measured


NA - Not applicable

SITE LOCATION

SOURCE: WELLSVILLE SOUTH, NY USGS 7.5 MINUTE TOPOGRAPHIC QUADRANGLE, DATED 1965.





ON-SITE TECHNICAL SERVICES, INC.

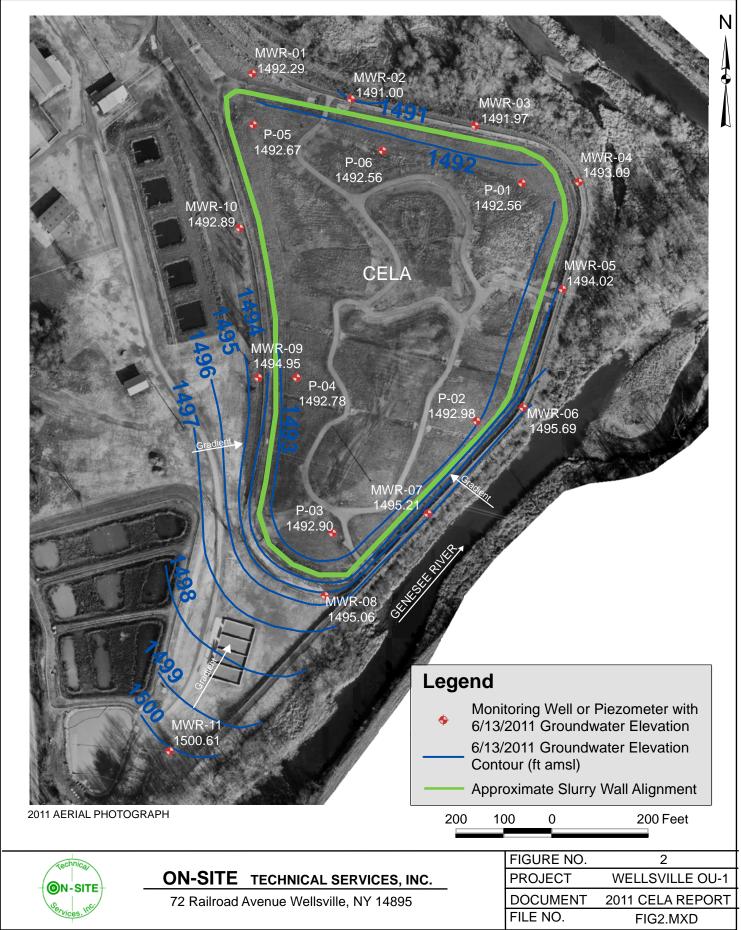

72 Railroad Avenue Wellsville, NY 14895

FIGURE NO.	1a
PROJECT	WELLSVILLE OU-1
DOCUMENT NO.	2011 CELA REPORT

JUNE 13, 2011 WATER TABLE CONTOUR MAP

JULY 13, 2011 WATER TABLE CONTOUR MAP

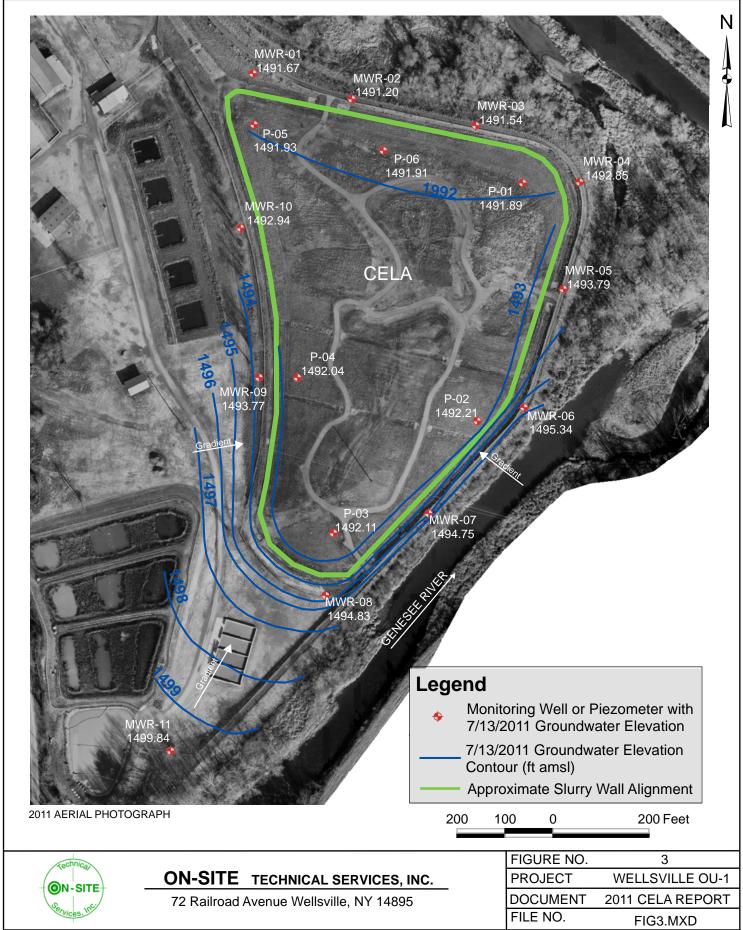
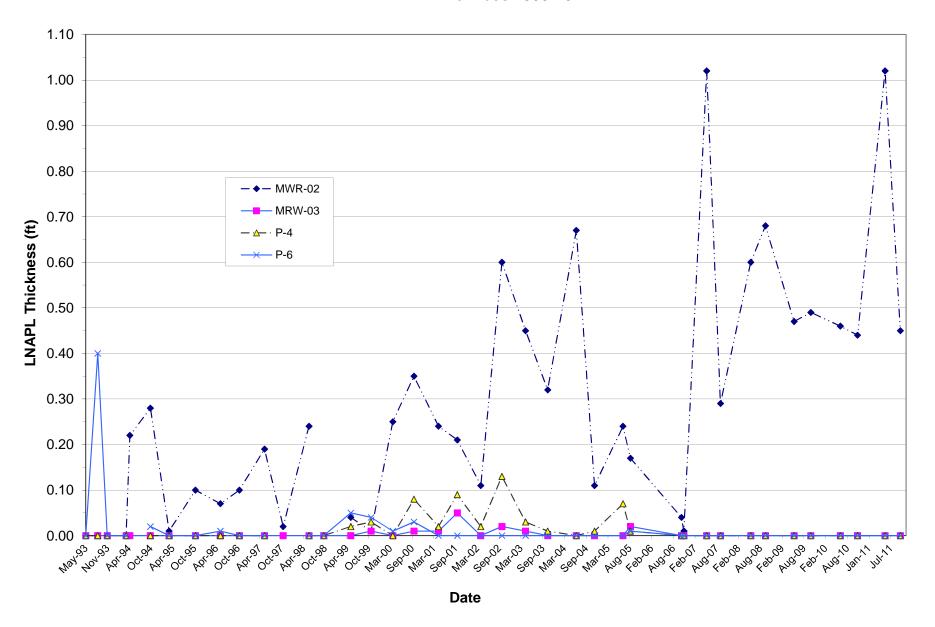



Figure 4

LNAPL Thickness 1993-2011

Atlantic Richfield Company

Eric J. Larson
Operations Project Manager

Remediation Management 1 W. Pennsylvania Avenue Suite 440 Towson, MD 21204 Phone: (410) 825-2880 Mobile: (443) 807-6233 Fax: (410) 825-8675 E-Mail: eric.larson@bp.com

May 24, 2010

Mr. Michael J. Negrelli Remedial Project Manager U.S. Environmental Protection Agency Region 2 290 Broadway Avenue NYC SB2 – 20th Floor New York, NY 10007-1866

2009 Annual Report of Operations and Maintenance Activities Central Elevated Landfill Area Former Sinclair Refinery Site, Operable Unit 1 Wellsville, New York

Dear Mike:

Please find enclosed two copies of the 2009 Annual Report of Operations and Maintenance Activities for the Central Elevated Landfill Area at the Former Sinclair Refinery Site, Operable Unit 1 (OU1) in Wellsville, New York. This report presents a discussion of the operation and maintenance activities that occurred for the OU1 project during 2009.

As you are aware, Operable Unit 2 Phase II-2 construction activities related to the CELA spoil re-use area have commenced. Atlantic Richfield is committed to maintaining the CELA as required by the current O&M requirements. However, due to ongoing construction activities, certain O&M activities such as cap mowing, gas vent monitoring and storm water monitoring may realize only partial completion during 2010.

If you have any questions regarding this submittal, please do not hesitate to contact me at 443-807-6233.

Sincerely,

Eric J. Larson

Operations Project Manager

Attachments

Cc: (with attachments)

Maurice Moore, NYSDEC

Martin Schmidt, URS
Jerry Palmer, On-Site Technical Services
David A. Howe Public Library, Wellsville NY

----Original Message----

From: Negrelli.Mike@epamail.epa.gov [mailto:Negrelli.Mike@epamail.epa.gov] Sent: Thursday, October 08, 2009 5:22 PM

To: Larson, Eric J

Cc: mfmoore@gw.dec.state.ny.us

Subject: Sinclair Refinery

Eric-

This email will serve as EPA's response to BP/ARCO's proposals to EPA in correspondence dated October 5, 2009 with respect to the ongoing remediation at the Sinclair Refinery Site in Wellsville, NY.

The first proposal entails the suspension of the annual CELA cap settlement plate surveying done under operation and maintenance activities for the OU1 remedial action. As past surveys have supported the overall stability of the cap, and given that an additional cell will be constructed on top of the CELA as part of 2010 construction activities, EPA agrees with the proposal to temporarily suspend the annual survey.

The second proposal involves the suspension of the annual groundwater quality monitoring laid out in ARCO's April 29, 2003 letter to EPA to monitor the groundwater conditions at the site on an interim basis while the Phase 2 remedy at the site was designed and constructed. Following our telephone conversation earlier today, both ARCO and EPA agree that another round of interim groundwater monitoring collected in 2009 will produce useful data in the evaluation of the Phase 2 groundwater remedy recently constructed and operating at the site. The frequency and nature of future groundwater monitoring events will be discussed in the near future as part of the operation, maintenance, and monitoring component of the Phase 2 remedial action.

Should you have any questions regarding these issues, please do not hesitate to contact me either by email or by phone at (212) 637-4278.

Mike Negrelli Remedial Project Manager New York Remediation Branch

Atlantic Richfield Company

Eric J. Larson

Project Manager

Remediation Management 1 W. Pennsylvania Avenue Suite 440 Towson, MD 21204

Phone: (410) 825-2880 Mobile: (443) 807-6233 Fax: (410) 825-8675 E-Mail: eric.larson@bp.com

October 5, 2009

Mr. Michael J. Negrelli Remedial Project Manager U.S. Environmental Protection Agency Region 2 290 Broadway Avenue NYC SB2 – 20th Floor New York, New York 10007-1866

Suspension of CELA Cap Survey at Operable Unit 1 Former Sinclair Refinery Site Wellsville, New York

Dear Mike:

As indicated in the 2008 Annual Report of Operation and Maintenance Activities Central Elevated Landfill Area (CELA), Atlantic Richfield Company (ARC) is requesting suspension of the annual CELA cap survey at Operable Unit 1 (OU1) former Sinclair Refinery Site in Wellsville, New York.

CELA cap settlement plate surveying has been conducted since remedial construction was completed in 1992 as required by the operation and maintenance plan (O&M Plan). The O&M Plan provides that if a change in settlement exceeding 0.02 feet does not occur after two years, the frequency of surveys can be reduced to once every 10 years. Since 2005, the maximum two-year settlement has ranged between 0.03 feet and 0.04 feet. Also, based on visual observations, the cap continues to have positive drainage with no areas of ponding water or abnormally soft ground.

Based on surveying and visual observations conducted to date, the CELA cap does not exhibit abnormal settlement and should be considered stable. As you are aware, ARC will be constructing a RCRA Cell on top of the existing CELA in 2010 to place impacted soils from Operable Unit 2 Phase II remedial activities. ARC proposes that the annual settlement plate survey be suspended until after the new cell is constructed and operation and maintenance requirements for the combined area are determined. Quarterly visual inspections of the CELA cap will continue to be performed as required. Any signs of differential settlement will be immediately addressed.

If you have any questions regarding this letter, please do not hesitate to contact me at (443) 807-6233.

Sincerely,

Eric Larson
Project Manager

cc: Jonathan Brandes, On-Site Technical Services

Martin Schmidt, URS

File Copy

----Original Message----

From: Negrelli.Mike@epamail.epa.gov [mailto:Negrelli.Mike@epamail.epa.gov] Sent: Monday, June 27, 2005 4:08 PM

To: Hufford, Walter

Cc: mfmoore@gw.dec.state.ny.us

Subject: OU1 Monitoring

Walt-

After discussion with Maurice, we agree to ARCO's proposal to suspend SVOC analysis from the CELA monitoring program as they have been non-detect since 1998. However, EPA reserves the right to have SVOC analysis resume should conditions at the CELA change at some point in the future that would lead us to believe the analysis should be resumed. Further, I believe we have previously agreed to your request to changing the soil pH analysis from annually to every three years, both in the CELA monitoring program and partial river channelization monitoring program. Please inform Jerry Palmer and Jon Brandis at On-Site Health and Safety of this determination.

If you have any questions on this matter, please do not hesitate to contact me.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 2 200 BROADWAY NEW YORK, NY 10007-1868

NEV 0 8 2002

BY FEDEX

Terry Moore Environmental Manager BP/ARCO Environmental Remediation, L.L.C. 1701 Summit Avenue, Suite 2 Plano, TX 75074

Sinclair Refinery Site, Wellsville, New York Re:

Dear Mr. Moore:

This letter is in response to the Atlantic Richfield Company's ("ARCO's") letter to the U.S. Environmental Protection Agency ("EPA"), dated April 24, 2002, regarding proposed modifications to certain Operation and Maintenance (O&M) requirements for the first operable unit (OUI) at the Sinclair Refinery site in Wellsville, New York. Specifically, ARCO's letter requests modifications to the frequency of elevation surveys of the river channel and banks associated with OU1 and discontinuation of analyzing dissolved metals in the annual ground water sampling (total metals will continue to be analyzed).

ARCO notes that the O&M Manual for OU1 states that the frequency of surveying of cross sections of the dikes will depend on significant changes in surveying data (the elevation surveys of the river bed have no corresponding mention of changing the frequency based on observations). Surveys performed by ARCO annually for the past ten years have indicated no significant changes in survey data for either the dike cross sections or river bed. Accordingly, EPA approves modifying the survey frequency from annually to every five years. As ARCO notes in its letter, annual inspections and periodic patrols following high water events shall continue.

ARCO also requests a discontinuation of the analysis for dissolved metals in the annual ground water sampling. This request is based on recent sampling events showing metals to be below MCLs and a good correlation between dissolved and total metals concentrations (ARCO will continue to perform total metals analysis annually). Therefore, EFA approves of ARCO's proposal to discontinue dissolved metals analysis in the annual ground water sampling at OUI. However, at the request of the New York State Department of Environmental Conservation (NYSDEC), this approval shall be effective starting with the 2003 annual sampling event in order to allow the NYSDEC to collect split samples during the 2002 sampling event. Please contact Maurice Moore at the NYSDEC regional office (716-851-7220) at least two weeks prior to the sampling event in order to make arrangements.

Internet Address (URL) • http://www.epa.gov Recycled/Recyclable • Frinted with Vagetoble Oil Based Inks on Recycled Paper (Minimum 50% Postconsumor content) 2

If you have any questions on this matter, please contact me at (212) 637-4278 or by email at negrelli.mike@epa.gov.

Sincerely yours,

Michael J.Negrelli

Remedial Project Manager New York Remediation Branch

cc:

Wayno Mizerak - NYSDEC

Maurice Moore - NYSDEC/R.9

. Lagrelle

09:50am

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 2 290 BROADWAY NEW YORK, NY 10007-1866

MIN 28 200

BY FEDEX

Terry Moore
Environmental Manager
BP/ARCO Environmental Remediation, L.L.C.
2300 West Plano Parkway, Room PRC-J1633
Plano, TX. 75075-8499

Re: Sinclair Refinery Site, Wellsville, New York; Annual Reporting Requirements - OU1.

Dear Mr. Moore:

This is in response to your letter to the U.S. Environmental Protection Agency (EPA) dated April 18, 2001 whereby you request modification of the annual reporting requirements associated with the Central Elevated Landfill Area and Partial River Channelization (OU1) at the Sinclair Refinery Site in Wellsville, New York. Specifically, you request that water quality measurements (chemical analysis of water samples) be performed once per year in the Spring instead of the current Spring and Fall schedule. The reasoning behind your request is that statistical analysis of groundwater quality data show no significant trends in groundwater quality over time.

Upon EPA's review of your request, and in consultation with the New York State Department of Environmental Conservation (NYSDEC), EPA approves this modification to the annual reporting requirements. However, as you state in your letter, fluid level measurements, including non-aqueous phase liquid (NAPL) measurements, will continue on a semi-annual basis due to seasonal fluctuations and all other parameters will continue to be performed in accordance with the schedule set forth in the OUI Operation and Maintenance Plan.

If you have any questions on this matter, please call me at (212) 637-4278.

Sincerely yours,

Michaly

Michael J. Negrelli () Remedial Project Manager

New York Remediation Branch

ce;

M. Brekhus - BP/ARCO (Los Angeles)

D. Keenan - NYSDEC

C. Berns - EPA/ORC

internet Address (URL) • http://www.epa_gov Recycled/Recyclabia • Printed with Vesetable Off Based Into on Recycled Paper (Minhum 80% Postconsumer)

CELA INSPECTION CHECKLIST FOR VEGETATIVE COVER

Completed By: Sent Warson Title: Site manager Verified By: J. Brandes Title: S. Ceologist Type of Inspection (check only one): () Quarterly () Other (explain)	Sheet of _7
Item Description A. VEGETATIVE COVER 1. Erosion 2. Stressed Vegetation 3. Sediment Build-Up 4. Local Subsidence or Loss of Grade 5. Water Ponding 6. Turf Height 7. Burrowing Animals 8. Weeds or Undesirable Vegetation 9. Evidence of Fires or Vandalism 10. Soil pH Check 11. Unauthorized Traffic 12. Slope Instability or Sloughing	Condition*/Remarks

^{*} Indicate satisfactory condition with a check; briefly describe conditions other than satisfactory; use additional sheets if more space is needed.

CELA INSPECTION CHECKLIST FOR GAS VENT SYSTEM

·	ed By: Scort Watson		1 of 7
	Site manager	Date:	3-14-11
Verifie	s. Geologist	Nate:	2/1/12
Type of	Inspection (check only one):		
	Quarterly Other (explain)		
Item Des	scription	Conditi	on*/Remarks
B. GAS	V.ENT SYSTEM		
2.	Excess Sediment Build-Up and Vegetation Growth Over Vent Pipes Erosion or Washout Around Vent Pipes		

^{*} Indicate satisfactory condition with a check; briefly describe conditions other than satisfactory; use additional sheets if more space is needed.

CELA INSPECTION CHECKLIST FOR OPEN WELL PIEZOMETERS

Comp	let	ed By: Scott Watson	Sheet	<u>3</u> of <u>7</u>
Titl	e:	Site manager	Date:	3-14-11
Veri Titl		d By: J. Brandes S. Geologist	 Date:	2/1/12
Туре	of	Inspection (check only one):		
(1)		Quarterly Other (explain)		
Item	De.	scription	<u>Conditi</u>	on*/Remarks
C.	OPE!	N WELL PIEZOMETERS		
	1. 2.	Excess Sediment Build-Up and Vegetation Growth Over Casing Erosion or Washout Around Piezometer		
	3.	Casings Proper Functioning of the Protective Cover Cap and Lock (Test)		
	4.	Excess Rust on the Surface Casing /		
	5.	Ponding Between Protective Casing and Riser Pipe		

^{*} Indicate satisfactory condition with a check; briefly describe conditions other than satisfactory; use additional sheets if more space is needed.

CELA INSPECTION CHECKLIST FOR GROUND-WATER MONITORING WELLS

Tit	le:	Site manager d By:	_ Date:	4 of 7 3-14-11 2/1/12
		Inspection (check only one): Quarterly Other (explain)		
		scription UND-WATER MONITORING WELLS	<u>Condit</u>	ion*/Remarks
	1. 2. 3. 4. 5. 6.	Separation Between the Concrete Surface Seal and the Surface Casing Proper Function of the Surface Casing Cap and Lock Excess Rust on the Surface Casing and Lock 		

^{*} Indicate satisfactory condition with a check; briefly describe conditions other than satisfactory; use additional sheets if more space is needed.

CELA INSPECTION CHECKLIST SURFACE WATER DRAINAGE SYSTEM

Completed By: Scott WATSON	Sheet <u>5</u> of <u>7</u>
Title: Site manager	Date: 3-14-11
Verified By: J-Brindes Title: S. Ocslagist	Date: 2/1/2
Type of Inspection (check only one): () Quarterly () Other (explain)	
<u>Item Description</u>	Condition*/Remarks
E. SURFACE-WATER DRAINAGE SYSTEMS	
 Dislodged Riprap Washouts Erosion Sediment Build-Up on Riprap Gullies and Ruts Excess Rusting of Drainage Culvert Holes and Cracks in Drainage Culvert Sediment Build-Up in Drainage Culvert Foreign Objects Washout at Berm/Culvert Interface 	
<pre>* Indicate satisfactory condition with a check;</pre>	briefly describe

^{*} Indicate satisfactory condition with a check; briefly describe conditions other than satisfactory; use additional sheets if more space is needed.

CELA INSPECTION CHECKLIST SECURITY FENCE

Completed By: Scott WATSON	Sheet	_6 of 7
Title: Site manager	Date:	3-14-11
Verified By: J. Brandes		
Verified By: J. Brandes Title: S. Coologist	Date:	2/1/2
Type of Inspection (check only one):		
Regular () Immediately after heavy storm (2 in. in 24 hour) () Other (explain)	٠	
Item Description	Conditi	on*/Remarks
F. SECURITY FENCE		
 Proper Clearance (B in. (200 mm) Between Fence Gate and the Ground Proper Function of Gate Lock and Hinges Solution Holes Solution Excess Rust Solution Ruts or Burrows Beneath the Fence Solution Vegetation Growing Onto or Through the Fence Solution Improper Connection Between Posts and Solution Solution Loose Posts Solution Cracks in the Post Foundation General Signs of Deterioration 		

* Indicate satisfactory condition with a check; briefly describe conditions other than satisfactory; use additional sheets if more space is needed.

VISUAL OBSERVATIONS OF SETTLEMENT

Completed By: Scorr Warson	Sheet <u>7</u> of <u>7</u>
Title: S.ta manager	Date: 3-14-11
Verified By: J. Brandes	
Verified By: 3- Brandes Title: S. Ocologist	Date: 211/2
Type of Inspection (check only one): () Semi-Annual () Other (explain)	næ
SKETCH SHOWING LOCATION OF AREA OF CONCERN:	
* * * * * * * * * * * * * * * * * * *	
7:p Rap	>
DESCRIPTION OF CONDITIONS* (use additional sheets as necessions)	
Northern must area on west side 5×10' area ground level. Somen area. Last photo in inspect	a foot below

^{*} Attach photographic documentation.

CELA INSPECTION CHECKLIST FOR VEGETATIVE COVER

Completed By: S. Watson Title: Site manager Verified By: J. Grades Title: S. Geologist	Sheet of
Type of Inspection (check only one): (Date. Criff
Item Description A. VEGETATIVE COVER 1. Erosion / 2. Stressed Vegetation / 3. Sediment Build-Up / 4. Local Subsidence or Loss of Grade / 5. Water Ponding / 6. Turf Height / 7. Burrowing Animals / 8. Weeds or Undesirable Vegetation / 9. Evidence of Fires or Vandalism / 10. Soil pH Check / 11. Unauthorized Traffic / 12. Slope Instability or Sloughing /	Condition*/Remarks

^{*} Indicate satisfactory condition with a check; briefly describe conditions other than satisfactory; use additional sheets if more space is needed.

CELA INSPECTION CHECKLIST FOR GAS VENT SYSTEM

Complete	ed By: S. Wetso-	Sheet <u>2</u> of <u>7</u>
Title:	Site manager	Date. 5-9-11
Verifie	1 By: J. Brandes	
Title:	S. beologist	Date: 2/1/12
	Inspection (check only one): Quarterly Other (explain)	
Item Des	scription	Condition*/Remarks
B. GAS	V.ENT SYSTEM	
	Excess Sediment Build-Up and Vegetation — Growth Over Vent Pipes Erosion or Washout Around Vent Pipes — Damaged Vent Pipe	

^{*} Indicate satisfactory condition with a check; briefly describe conditions other than satisfactory; use additional sheets if more space is needed.

CELA INSPECTION CHECKLIST FOR OPEN WELL PIEZOMETERS

Com	plet	ed By: 5. Watson	Sheet	3 of 7
Tit	le:	Site Manager	Date:	5-9-11
Ver		d By: J. Brandes	Date:	2/1/12
Тур	e of	Inspection (check only one):		
(Quarterly Other (explain)		
<u>Ite</u>	m De:	scription	<u>Condiți</u>	on*/Remarks
C.	OPE	N WELL PIEZOMETERS		
	1. 2. 3. 4.	Excess Sediment Build-Up and Vegetation Growth Over Casing Erosion or Washout Around Piezometer Casings Proper Functioning of the Protective Cover Cap and Lock (Test) Excess Rust on the Surface Casing and Lock Ponding Between Protective Casing and Riser Pipe		

^{*} Indicate satisfactory condition with a check; briefly describe conditions other than satisfactory; use additional sheets if more space is needed.

CELA INSPECTION CHECKLIST FOR GROUND-WATER MONITORING WELLS

Completed By: S. Watson.	_ Sheet <u>4</u> of <u>7</u>
Title: <u>Site manager</u>	_ Date: <u>5-9-11</u>
Verified By: J. Braks	_
Title: S. Geologist	_ Date: 2/1/2
Type of Inspection (check only one):	
() Quarterly () Other (explain)	
Item Description	Condition*/Remarks
D. GROUND-WATER MONITORING WELLS	
 Excess Sediment-Buildup and Vegetation Growth Over the Surface Casing Erosion Around the Concrete Surface Seal Seal Separation Between the Concrete Surface Seal Seal and the Surface Casing Proper Function of the Surface Casing Cap and Lock Excess Rust on the Surface Casing and Lock Ponding Between the Surface Casing and the Riser Pipe 	

^{*} Indicate satisfactory condition with a check; briefly describe conditions other than satisfactory; use additional sheets if more space is needed.

CELA INSPECTION CHECKLIST SURFACE WATER DRAINAGE SYSTEM

Completed By: 5. Wotson	Sheet <u>5</u> of <u>7</u>
Title: Site manager	Date: <u>5-9-11</u>
Verified By: J. Brandes	
Verified By: J. Brandes Title: S. Crologist	Date: 2/1/2
Type of Inspection (check only one):	
() Quarterly () Other (explain)	
<u>Item Description</u>	Condition*/Remarks
E. SURFACE-WATER DRAINAGE SYSTEMS	
 Dislodged Riprap Washouts Erosion Sediment Build-Up on Riprap Gullies and Ruts Excess Rusting of Drainage Culvert Holes and Cracks in Drainage Culvert Sediment Build-Up in Drainage Culvert Foreign Objects Washout at Berm/Culvert Interface 	
<pre>* Indicate satisfactory condition with a check;</pre>	briefly describe

^{*} Indicate satisfactory condition with a check; briefly describe conditions other than satisfactory; use additional sheets if more space is needed.

CELA INSPECTION CHECKLIST SECURITY FENCE

Completed By: 5. Water	Sheet	6	of _	7
Title: Sitc manager	Date:	5-9	7-11	
Verified By: J. Brandes				
Verified By: J. Brandes Title: S. Caslogist	Date:	21	1/2	
Type of Inspection (check only one):			•	
Regular () Immediately after heavy storm (2 in. in 24 hour) () Other (explain)				
Item Description	Conditi	on*/R	Lemar	ks_
F. SECURITY FENCE				
 Proper Clearance (8 in. (200 mm) Between Fence Gate and the Ground Proper Function of Gate Lock and Hinges Gate Holes Gate Lock and Hinges Gate Lock and Hinges Gate Lock an				

^{*} Indicate satisfactory condition with a check; briefly describe conditions other than satisfactory; use additional sheets if more space is needed.

VISUAL OBSERVATIONS OF SETTLEMENT

Completed By: 5. Weta-	Sheet <u>7</u> of <u>7</u>
Title: Site manager	Date: <u>5-9-11</u>
Verified By: J. Brandes	
Title: S. Geologist	Date: 2///2
Type of Inspection (check only one):	
<pre>Semi-Annual Other (explain)</pre>	
SKETCH SHOWING LOCATION OF AREA OF CONCERN: Holo (settlement) at northern reported previous	ly

DESCRIPTION OF CONDITIONS* (use additional sheets as necessary):

GA920852.FRM

^{*} Attach photographic documentation.

CELA INSPECTION CHECKLIST FOR VEGETATIVE COVER

Completed By: K. Dye, S. Webson Title: Verified By: J. Brandles Title: S. Ceologist Type of Inspection (check only one): (X) Quarterly Other (explain)	Sheet 1 of 7 Date: 8-16-11 Date: 2/1/12
Item Description A. VEGETATIVE COVER 1. Erosion 2. Stressed Vegetation 3. Sediment Build-Up 4. Local Subsidence or Loss of Grade 5. Water Ponding 6. Turf Height 7. Burrowing Animals 8. Weeds or Undesirable Vegetation 9. Evidence of Fires or Vandalism 10. Soil pH Check	CECA cap under construction walking tenils

^{*} Indicate satisfactory condition with a check; briefly describe conditions other than satisfactory; use additional sheets if more space is needed.

CELA INSPECTION CHECKLIST FOR GAS VENT SYSTEM

Completed By: K. Dye S. Wotson	Sheet	2 of 7
Title:	Date:	8-16-11
Verified By:		
Title: So Geologist	Date:	2/1/12
Type of Inspection (check only one):		·
(X) Quarterly () Other (explain)		
Item Description	Conditi	on*/Remarks
B. GAS VENT SYSTEM		
1. Excess Sediment Build-Up and Vegetation		
Growth Over Vent Pipes 2. Erosion or Washout Around Vent Pipes		
3. Damaged Vent Pipe Only 2- vent pipes remain coffer constr	setion	

^{*} Indicate satisfactory condition with a check; briefly describe conditions other than satisfactory; use additional sheets if more space is needed.

CELA INSPECTION CHECKLIST FOR OPEN WELL PIEZOMETERS

Title: _ Verified Title: _	By: J. Brades		3 of 7 8-16-11 2/1/12
	Quarterly Other (explain)		
Item Desc	<u>cription</u>	<u>Condit</u>	ion*/Remarks
C. OPEN	WELL PIEZOMETERS		
2. 3. 4. 5.	Excess Sediment Build-Up and Vegetation Growth Over Casing Erosion or Washout Around Piezometer Casings Proper Functioning of the Protective Cover Cap and Lock (Test) Excess Rust on the Surface Casing and Lock Ponding Between Protective Casing and Riser Pipe		

^{*} Indicate satisfactory condition with a check; briefly describe conditions other than satisfactory; use additional sheets if more space is needed.

CELA INSPECTION CHECKLIST FOR GROUND-WATER MONITORING WELLS

Complet	ed By: K. Dye S. Watson	Sheet	<u>4</u> of 7
Title:	•	Date:	8-16-11
Verifie	d By: 5. Bracles		·
Title:	S. Cologist	Date:	2/1/12
Type of	Inspection (check only one):		
(×)	Quarterly Other (explain)		
Item De.	scription	Condit	ion*/Remarks
D. GRO	UND-WATER MONITORING WELLS	. •	
1. 2. 3. 4. 5.	Excess Sediment-Buildup and Vegetation Growth Over the Surface Casing Erosion Around the Concrete Surface Seal Cracks in the Concrete Surface Seal Separation Between the Concrete Surface Seal and the Surface Casing Proper Function of the Surface Casing Cap and Lock Excess Rust on the Surface Casing and Lock Ponding Between the Surface Casing and the Riser Pipe		

^{*} Indicate satisfactory condition with a check; briefly describe conditions other than satisfactory; use additional sheets if more space is needed.

CELA INSPECTION CHECKLIST SURFACE WATER DRAINAGE SYSTEM

Completed By: K. Dye, S. Wotson	_ Sheet	<u>5</u> of <u>7</u>
Title:	_ Date:	8-16-11
Verified By: J. Brades	_	
Title: S. Ceologist	_ Date:	2/1/12
Type of Inspection (check only one):		·
() Quarterly () Other (explain)		
Item Description	<u>Condit</u>	ion*/Remarks
1. Dislodged Riprap 2. Washouts 3. Erosion 4. Sediment Build-Up on Riprap 5. Gullies and Ruts 6. Excess Rusting of Drainage Culvert 7. Holes and Cracks in Drainage Culvert 8. Sediment Build-Up in Drainage Culvert 9. Foreign Objects 10. Washout at Berm/Culvert Interface	ien rei	noved during on struction ip cemains

^{*} Indicate satisfactory condition with a check; briefly describe conditions other than satisfactory; use additional sheets if more space is needed.

CELA INSPECTION CHECKLIST SECURITY FENCE

Completed By: K. Dye S. Watson	Sheet <u>6</u> of <u>7</u>
Title:	Date: 8-16-11
Verified By: J. Bandes	_
Verified By: J. Bandes Title: S. Ceologist	Date: 2/1/12
Type of Inspection (check only one):	
Regular () Immediately after heavy storm (2 in. in 24 hour () Other (explain))
Item Description	Condition*/Remarks
F. SECURITY FENCE	
 Proper Clearance (8 in. (200 mm) Between Fence Gate and the Ground Proper Function of Gate Lock and Hinges Holes Excess Rust Ruts or Burrows Beneath the Fence Vegetation Growing Onto or Through the Fence Improper Connection Between Posts and Chain Link Mesh Loose Posts Cracks in the Post Foundation General Signs of Deterioration 	

^{*} Indicate satisfactory condition with a check; briefly describe conditions other than satisfactory; use additional sheets if more space is needed.

VISUAL OBSERVATIONS OF SETTLEMENT

Completed By: K. Dye S. Watson	Sheet	<u> </u>
Title:	Date:	8-16-11
Verified By: J. Brandos	_	
Title: S. Ocologist	Date:	2/1/12
Type of Inspection (check only one):		
Semi-Annual Other (explain)		
SKETCH SHOWING LOCATION OF AREA OF CONCERN:		
Northern area hole reported in last que been filled properly.	eter	hus

DESCRIPTION OF CONDITIONS* (use additional sheets as necessary):

GA920B52.FRM

 $[\]star$ Attach photographic documentation.

CELA INSPECTION CHECKLIST FOR VEGETATIVE COVER

Completed By: S.W. K.Dye	Sheet	_/ of _7
Title: Tech	Date:	11-18-11
Verified By: J. Brades Title: S. Ceologist	Date:	2/1/12
Type of Inspection (check only one):		
(X) Quarterly () Other (explain)		
Item Description A. VEGETATIVE COVER	<u>Conditi</u>	on*/Remarks
1. Erosion 2. Stressed Vegetation 3. Sediment Build-Up 4. Local Subsidence or Loss of Grade 5. Water Ponding 6. Turf Height 7. Burrowing Animals 8. Weeds or Undesirable Vegetation 9. Evidence of Fires or Vandalism 10. Soil pH Check AA 11. Unauthorized Traffic 12. Slope Instability or Sloughing		

^{*} Indicate satisfactory condition with a check; briefly describe conditions other than satisfactory; use additional sheets if more space is needed.

CELA INSPECTION CHECKLIST FOR GAS VENT SYSTEM

Completed By: S. Webser K. Dyc	Sheet <u>2</u> of <u>7</u>
Title: Tech	Date:
Verified By: J. Brandes	
Title: S. Cobjist	Date:
Type of Inspection (check only one):	,
<pre>(×) Quarterly (/) Other (explain)</pre>	
Item Description	Condition*/Remarks
B. GAS V.ENT SYSTEM	
 Excess Sediment Build-Up and Vegetation Growth Over Vent Pipes Erosion or Washout Around Vent Pipes Damaged Vent Pipe 	

^{*} Indicate satisfactory condition with a check; briefly describe conditions other than satisfactory; use additional sheets if more space is needed.

CELA INSPECTION CHECKLIST FOR OPEN WELL PIEZOMETERS

Completed By: 5.W.fa-, K.D.ga	Sheet <u>3</u> of <u>7</u>
Title: Tech	Date:
Verified By: J. Bandes Title: S. Ceologist	Date: 2 1 1/2
Type of Inspection (check only one):	· ,
() Quarterly () Other (explain)	
Item Description	Condition*/Remarks
C. OPEN WELL PIEZOMETERS	
 Excess Sediment Build-Up and Various Growth Over Casing Erosion or Washout Around Piez Casings Proper Functioning of the Prot Cover Cap and Lock (Test) Excess Rust on the Surface Cas and Lock Ponding Between Protective Cas and Riser Pipe 	cometer cective cectiv

^{*} Indicate satisfactory condition with a check; briefly describe conditions other than satisfactory; use additional sheets if more space is needed.

CELA INSPECTION CHECKLIST FOR GROUND-WATER MONITORING WELLS

Complete	ed By: S. Wotzan, K. Dje	Sheet 4 of 7
	Tech	Date: <u>11-18-11</u>
Verified Title:	By: J. Brandes Secrology	
Type of	Inspection (check only one):	
<i>[~]</i>	Quarterly Other (explain)	
Item Des	scription	Condition*/Remarks
D. GROU	IND-WATER MONITORING WELLS	
2. 3. 4. 5.	Excess Sediment-Buildup and Vegetation Growth Over the Surface Casing Erosion Around the Concrete Surface Seal Cracks in the Concrete Surface Seal Separation Between the Concrete Surface Seal and the Surface Casing Proper Function of the Surface Casing Cap and Lock Excess Rust on the Surface Casing and Lock Ponding Between the Surface Casing and the Riser Pipe	

^{*} Indicate satisfactory condition with a check; briefly describe conditions other than satisfactory; use additional sheets if more space is needed.

CELA INSPECTION CHECKLIST SURFACE WATER DRAINAGE SYSTEM

Completed By: 5.162, K. byc Title: Tech Verified By: 5. Brules Title: S. Ceolog, St	Sheet <u>5</u> of <u>7</u> Date: <u>//-/8-//</u>
Type of Inspection (check only one): (X) Quarterly () Other (explain)	Date: <u>2(//2</u>
Item Description E. SURFACE-WATER DRAINAGE SYSTEMS 1. Dislodged Riprap Anoth end only Council of 2. Washouts 2. Washouts 3. Erosion 4. Sediment Build-Up on Riprap 5. Gullies and Ruts 6. Excess Rusting of Drainage Culvert 7. Holes and Cracks in Drainage Culvert 8. Sediment Build-Up in Drainage Culvert 9. Foreign Objects 10. Washout at Berm/Culvert Interface	Condition*/Remarks 6 rip-rap has been ed as part alo IT-2 Remadial Struction work 12 B 2/1/12

^{*} Indicate satisfactory condition with a check; briefly describe conditions other than satisfactory; use additional sheets if more space is needed.

CELA INSPECTION CHECKLIST SECURITY FENCE

Completed By: S. Wetsen K. Dye	Sheet	6	of <u>7</u>
Title: Tach	Date:	_11-	18-4
Verified By: J. Bredes			_
Title: S. Ocologist	Date:	21	1/12
Type of Inspection (check only one):			
<pre>(\times) Regular (') Immediately after heavy storm (2 in. in 24 hour) (') Other (explain)</pre>	٠		
Item Description	Conditi	on*/R	<u>Lemarks</u>
F. SECURITY FENCE			
 Proper Clearance (8 in. (200 mm) Between Fence Gate and the Ground Proper Function of Gate Lock and Hinges Holes Excess Rust Ruts or Burrows Beneath the Fence 			
 Ruts or Burrows Beneath the Fence Vegetation Growing Onto or Through the Fence Improper Connection Between Posts and 			
Chain Link Mesh 8. Loose Posts 🗸			

* Indicate satisfactory condition with a check; briefly describe conditions other than satisfactory; use additional sheets if more space is needed.

VISUAL OBSERVATIONS OF SETTLEMENT

Sheet	<u> </u>
Date:	11-18-11
Date:	2/4/12
Se Hlu	went
	Date: Date:

DESCRIPTION OF CONDITIONS* (use additional sheets as necessary):

^{*} Attach photographic documentation.

Project: OU-1 Well	Date: <u>le/16/</u>	/11			
Monitoring Well: MWR-01 Samp	ole ID: MWROI-(Doll	Arrival Time:_	0930	
	Weather	Conditions			
Temp. <u>&&</u> °F()Sunr	y ('Y Partly Cloudy () Cloudy () Lig	ht Rain()Heavy Rai	n () Snow	
W	ind Conditions: \mathcal{O} -	5			
	Well Condi	tion Checklist			
Bump posts: γ / α	Pro. casing/lock:	δK	Surface pad:	ok	
Well Visibility (paint):	Well Label:(<u>0K. </u>	omment:		
_	Denth & Purg	ing Information	· 1		
swl. <u>9.89</u>	_ftTD34.90	ft Start Pu	rge: <u>() 9,35</u>		
LNAPL Present: (Y)(N)Well Socked P	rior to Purging: (Y) (Ñ)How Many? <u>/</u>	Sock Saturation	1: <u>Ha</u>	
	_	. 16 .	•		
Purging Method: () Submersible () Popul Start :	Sampling: 1050	Purge Dur	ration: <u>////////////////////////////////////</u>	_Purge Vol:	9.0
Meters: <u>YSI 556 (sn</u> : <i>D</i> 5H1715 AO)	Field Pa	arameters			
		•	.O. Temp.	ORP	DTW
(gal) 5,2 1020 Switch 6,4 1030 6,49 7,75 1040 6,45 8,0 1050 6,44		tu) (m <i>16,9</i>	19/L) (°C) 13.39 71 13.76	(mV) 84.4 84.3 86.4	(ft) 9.90 9.90 9.89 9.90
Stabilization Criteria: 1) field parameters ± 0				ty; 2) 3 well vo	lumes or dry
Final Sample Oil	Sheen: (V None ()	Light () Mediu	m()Heavy()NAI	PL	
Other Observations/Comments:					
Analysis Requested: MHals/VC)/'q		Number of Cont	ainers: 4	
Well Sampling Completion: Time //0	4 Date 6/16	Samplers_	Michelle Der	ohoff.	

Project: OU-1 Wellsville, New York					Date: <u> </u>	111		
Monitoring \	Well:_ <i>ทุ</i> กแ	<i>R-02</i> ,Sam	ple ID: <u>MIURO</u>	2-0611		•		
			Weath	ner Conditio	ns			
	Temp. <u>(</u>	F()Sunr <u>ول</u>	ny (") Partly Cloud	y () Cloudy	(ƳLight Rai	n () Heavy Ra	in () Snow	
		V	/ind Conditions:			<u></u>		
			Well Co	ndition Ched	cklist			
Bump posts:	n/a	a	Pro. casing/lock	k: <u>Ó</u> I	<u>K' </u>	Surface pad:	OK	
Well Visibility	(paint):	OK_	Well Label:	OK	Comme	nt: Flush 1	mount	
			Donth & P	uraina Infor	mation		\b	
	SWL: /	15.46	ft TD	arging inion ft S	tart Purge:	1120	المار	اما ¹⁵ امار
LNAPL Prese	-nt: ((Ŷ))(N) '	Well Socked F	Depth & Programmer of TD	(N) How Ma	any? <u>3</u>	Sock Saturatio	n: <u>/=/6", /</u>	= <u>17", 1=16</u> "
Purging Meth	od: () Sub	mersible () P	eristaltic (VOther	: pump	# /			
Pumping Rat	e: <i>[125]5</i>	500ml_Start	eristaltic(v)Other Sampling: <u>130</u>	<u>() </u>	ge Duration:	1hr 40 m	_ Purge Vol:_	8.25
			Field	l <u>P</u> arameters	•			
Meters: YS	I 556 (sn: <i>D</i>	5H1715 AO	, Hach 2100P (sn: <i>(</i>	25020001	<u>(1881)</u> Me	easured in: (🏏	low Cell()	Cup
Purge	Time	рН	Conductivity 7	Turbidity	D.O.	Temp.	ORP	DTW
(gal)	1230	Switch	(us/cm) 10 (P)	(ntu) G ムロ	(mg/L)	(°C)	(mV)	(ft)
5,75	1240	6.54	720	4.46	1.77	11.69	-60.9	<u> 15.48</u>
7.25	1300	6.56 6.56	721	5.06	0.98	11,74	-65,2	15,50 15:49
								
Stabilization C	riteria: 1) fiel	d parameters ±	0.1 pH, ±3% conduc	ctivity, ±10 mv	ORP, ±10% [OO, ±10% Turbid	ity; 2) 3 well vo	lumes or dry
Final Sample			olorless.					
	Fi		Sheen: (V) None				PL	
Other Observ	ations/Com	ments: <u>//</u>	ny light si	uch It C	inij at	au.		
 		· 			-		•	
Analysis Req	uested: M	nalalalil	N's			Number of Con	tainers: 4	
	• •	n: Time <u>/3/</u>				helle Denl		
	3 22piocio			I VI	. p. 0, 0 <u>; / / / /</u>	PLANE PARTY		

Project: <u>OU-1 We</u>	Date: <u> <i>lø 15 11</i> </u>					
Monitoring Well: MUR-03 Sar	mple ID: <u>ကျယ</u> R	03-0611	A	.rrival Time:	1400	
Temp. <u>'7,3</u> ° F (V∕Su			() Light Rain		in () Snow	
Bump posts: <u>nac</u> Well Visibility (paint): <u>DK</u>	Pro. casing/l	Condition Checock: DK	<u>′</u> s	urface pad:_ FluSh	<u>OK</u> Mount	
	Depth &	Purging Infor	mation			
swl: <u>14.68</u>						
LNAPL Present: (Y) (N)Well Socked						
Purging Method: () Submersible ()	Peristaltic (🗸) Otl	her: <u>Plump</u>	#	سر ر ا	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Purging Method: () Submersible () Pumping Rate: 10.5.5 500mL Star	t Sampling: <u>/ 5</u>	10 Pur	ge Duration:_/	1 hr 5 m	. Purge Vol:_	8.0
Meters: <u>YSI 556 (sn: <i>D5H1715 RE</i></u>	Fi	eld Parameters	3		_	
6.0 1450 6.71 7.0 1500 6.69 8.0 1510 6.69	Conductivity (us/cm) (1) (2) 425 424	Turbidity (ntu) 71.3 62.5 56.2 53.3	D.O. (mg/L) 6.14 6.41 6.55	Temp. (°C) j4.41 j3.52 13.61	ORP (mV)	DTW (ft) 14.71 14.70 14.71
Stabilization Criteria: 1) field parameters:	± 0.1 pH, ±3% cond	ductivity, ±10 mv	ORP, ±10% DC	, ±10% Turbid	ity; 2) 3 well v	olumes or dry
Final Sample clarity\color: <u>CLCV</u> Final Sample C Other Observations/Comments:	1910TUSS Dil Sheen: (VNoi				PL	
Analysis Requested: Metals/\	/C	***************************************	Nւ	ımber of Con	tainers: 4	
Well Sampling Completion: Time 15	ارگر) Date	<i> </i>	plers <u>]WIC</u> K	elle Dec	phoff	

Project: OU-1 Wellsville, New York	Date: <u>6/15/11</u>				
Monitoring Well: <u>MWR-04</u> Sample ID: <u>MWR</u>	04-0611	A	rrival Time:_	1245	
We	eather Condition	ns			
Temp. <u> </u>	oudy () Cloudy (() Light Rain	() Heavy Ra	in () Snow	
	· :				
•	Condition Chec		_	alz	
Bump posts: n/a Pro. casing/					
Well Visibility (paint): UK Well Label:	OK	Comment:	+1031111	NOULOT.	······································
Depth 8	& Purging Inforr	nation			
swl: <u>14,50</u> ft TD <u>20</u>	<u>6.92</u> ft St	art Purge:	1250		
LNAPL Present: (Y) (N) Well Socked Prior to Purging		4		n: <u>pla</u>	
Purging Method: () Submersible () Peristaltic ()O	ther: <u> </u>)# [']			
Pumping Rate: 105s/500ml Start Sampling: 1.3	50 Pur	ge Duration:	ihr	_ Purge Vol:_	6,7
•					
F Meters: <u>YSI 556 (sn: <i>O.5H</i> 1715 AO. Hach 2100P (s</u>	Field Parameters เละ <i>050ป00ป</i>	1 <u>33 (</u>) Mea	sured in: (🏏 f	Flow Cell ()	Cup
Purge Time pH Conductivity	Turbidity	D.O.	Temp.	ORP	DTW
(gal) 3.0 /320 Switch-to Cell	(ntu) 6.93	(mg/L)	(°C)	(mV)	(ft) 14 51a
4.2 1330 6.59 176	5.38	0.43	15.45	96.9	14.57
$\frac{5.5}{6.7}$ $\frac{1340}{1350}$ $\frac{4.57}{1.55}$ $\frac{176}{175}$	<u>6.00</u> 3.94	0.30	15.54	93.0	14.56
		<u></u>			171500
					
			. ————		
Stabilization Criteria: 1) field parameters ± 0.1 pH, ±3% cor	nductivity, ±10 mv	ORP, ±10% DC	, ±10% Turbid	ity; 2) 3 well v	olumes or dry
,					
Final Sample Clarity\color: Clay COCOVICSS Final Sample Oil Sheen: (1) No.	Sample Odc	or: (Y) or(N)E	xplain:		
Final Sample Oil Sheen: (\) No	one()Light()	Medium () F	leavy () NAI	PL	
Other Observations/Comments:					
Analysis Requested: Metals/VOCs			umber of Con	tainers: <u></u>	
Well Sampling Completion: Time //356 Date	e <u>[d]5/11</u> Sam	plers M 】	schoff		

Project: OU-1 Wellsville, New York	Date: <u>lo//5///</u>
Monitoring Well: MUR-05 Sample ID: MUR05-06	11 Arrival Time: 1043
Weather Con	ditions
Temp° F (V Sunny () Partly Cloudy () Clo	
Well Condition	Checklist
Bump posts: n/a Pro. casing/lock:	OKSurface pad:OK
Well Visibility (paint): OK Well Label: Ok	Comment: Flush mount
Depth & Purging I	
SWL: <u>/3.63</u> ft TD <u>32.89</u>	tt Start Purge: 7055
LNAPL Present: (Y) (N) Well Socked Prior to Purging: (Y) (N) Hor Purging Method: () Submersible () Peristaltic () Other:	
Pumping Rate: 1385/500m1 Start Sampling: 1230	
Tumping Nate. 1.38.3/3007/1 Start Sampling. 1800	ruige Duration. 17/1 SOM. Purge Vol. 7/3
Field Param Meters: <u>YSI 556 (sn: <i>()</i>5H1715</u> HD), <u>Hach 2100P (sn: <i>()</i>50 200</u>	eters <u>COU33I</u>) Measured in: (4) Flow Cell()Cup
Purge Time pH Conductivity Turbidity (gal) 3.0 (12.5 Switch to Cell 25.3 6.0 (21.5 6.34 144 9.5) 7.0 1225 6.32 144 13.0 7.5 1230 6.34 144 14.7	D.O. Temp. ORP DTW (mg/L) (°C) (mV) (ft)
Stabilization Criteria: 1) field parameters \pm 0.1 pH, \pm 3% conductivity, \pm 1	0 mv ORP, ±10% DO, ±10% Turbidity; 2) 3 well volumes or dry
Final Sample clarity\color: <u>Clar Colorles</u> Sample Final Sample Oil Sheen: (V) None () Light Other Observations/Comments:	() Medium () Heavy () NAPL
Analysis Requested: Mtals/V00's Well Sampling Completion: Time 1239 Date 1/15/11	Number of Containers: 4 Samplers MICHELLE SENHOFF

Project: OU-1 Wellsville, New York					D	ate: <u>/p//5/</u>	<u> </u>	
Monitoring	Well: <u>//////</u>	<i>R-06</i> Sam	ple ID: <u>///////</u>	06 - Ol 1	#	Arrival Time:	0834	
			We	eather Conditio	ns			
	Temp. <u>5</u>	<u>5</u> ° F (√ Sunt	ny () Partly Clo	oudy () Cloudy	() Light Rain	() Heavy Ra	in () Snow	
							` -	
	, /			Condition Chec			. 17	
				lock: Č				
Well Visibilit	y (paint):	OK	Well Label:_	ok	Comment	: HUISMM	10UNC	
			Depth 8	& Purging Infor	mation			
	SWL:	12.87		<i>F.36</i> fts		1850		
LNAPL Pres	ent: (Y) (N)\	Nell Socked F	rior to Purging:	(Y) N How Ma	any? //////	ock Saturatio	on: <u>n/a</u>	
Purging Met	hod: () Sub	mersible () P	eristaltic (🗸 O	ther: <i><u>/)(/////)#</u></i>	1			
Pumping Ra	te:/2/s/5	00mLStart	Sampling: 10	ther: <i>f)UM()*</i> # <i>30</i>	ge Duration:_/	hr. 40m.	_ Purge Vol:_	10.2
	1							
Meters: Y	SI 556 (sn:)	5H1715A0)	F Hach 2100P (s	ield Parameters n: <i>05020001</i>	s <u>/33/</u>) Mea	sured in: (🏏	Flow Cell()	Cup
Purge	Time	pН	Conductivity	Turbidity	D.O.	Temp.	ORP	DTW
(gal)	0945	Switch-	(us/cm) לו מיל ל	(ntu) 10	(mg/L)	(°C)	<u>(m</u> V)	(ft) 12 90
7,0	1000	6.42	278	71.4	0.98	11.44	21.9	12.91
9.5	1010 1020	6.43	279	10,2 8.01	0.51	<u> 11.68</u> 12.12	20.8	12.89
10.2	1030	6.43	279	7.24	0.49	12.17	14.0	12.89
								
					***************************************			***************************************
Stabilization 0	Criteria: 1) field	i parameters ±	0.1 pH, ±3% con	ductivity, ±10 mv	ORP, ±10% DC), ±10% Turbid	lity; 2) 3 well v	olumes or dry
C:! O!		Manular	lovlago	Sample Ode	~~ ~~			
ғіпаі S атіріе				Sample Odo ne () Light ()			DI .	
Other Oheer			i Sneen: (V) No	ne()Lignt()	iviedium () i	Heavy () NA	IPL .	
ouler obser	vations/Com	ments						
Analysis Rec	uested M	retals/vc	V's		N	umber of Con	_{stainers} . 4	
	-	n: Time <u>//</u>		10/15/11 Sam		<u> </u>	· · · · · · · · · · · · · · · · · · ·	
	.5 -5piodo		Dulo	The can	.p.v.v <u>r111</u>		11 IVE	

On-Site Technical Services, Inc.

Groundwater Purging and Sampling

dup 1 = 15'ai

Date: <u>6/14/11</u> Project: OU-1 Wellsville, New York Monitoring Well: MWR-07Sample ID: MWR07 - 0611 Arrival Time: 13.34 **Weather Conditions** Temp. $\underline{58}^{\circ}$ F () Sunny () Partly Cloudy () Light Rain () Heavy Rain () Snow Wind Conditions: **Well Condition Checklist** Bump posts: n/a Pro. casing/lock:<u> かん</u> Surface pad: へん Well Label: <u>OK</u> Comment: <u>FLUSh Mo</u>urt Well Visibility (paint):_____ **Depth & Purging Information** SWL: 13,12 ft TD 34,81 ft Start Purge: 1343 LNAPL Present: (Y) (N) Well Socked Prior to Purging: (Y) (N) How Many? n/c Sock Saturation: n/c

Purging Method: () Submersible () Peristaltic (YOther: Diaddev# |

Pumping Rate: 1713 | 500mL Start Sampling: 1510 Purge Duration: 1/2 9 Purge Vol: 5.0 **Field Parameters** Meters: YSI 556 (sn: 05H1715 AO), Hach 2100P (sn: 050-2000) 1331) Measured in: (VFlow Cell () Cup Purge Time Conductivity Turbidity D.O. Temp. **ORP** DTW (us/cm) (mg/L) (°C) (mV) Stabilization Criteria: 1) field parameters ± 0.1 pH, ±3% conductivity, ±10 mv ORP, ±10% DO, ±10% Turbidity; 2) 3 well volumes or dry Final Sample clarity\color: Clar/colorius. Sample Odor: (Y) or (N)Explain: Final Sample Oil Sheen: () None () Light () Medium () Heavy () NAPL Other Observations/Comments: Analysis Requested: Mrtals/V0C's _Number of Containers:<u> 4</u>/ Well Sampling Completion: Time 1530 Date 19/14/11 Samplers Michelle Senha

Project: OU-1 Wellsville, New York Date:	6/13/11
Monitoring Well: MUR - 08 Sample ID: MUR 08 - 0611 Arrival	Time: <u>0830</u>
Weather Conditions Temp. <u>62</u> ° F()Sunny(√Partly Cloudy()Cloudy()Light Rain()Hea	au Pain / Nemau
remp. <u>مريح</u> ۴ () Sunny (O) Partly Cloudy () Cloudy () Light Rain () Hea	avy Rain () Snow
vvilla conditions.	
Well Condition Checklist	
Bump posts: Pro. casing/lock: OK Surface Well Visibility (paint): OK Well Label: OK Comment:	pad: <i>OK</i>
Well Visibility (paint): UK. Well Label: UK. Comment:	TOTAL PROPERTY OF THE PROPERTY
Depth & Purging Information	
SWL: 13.54 ft TD 29.78 ft Start Purge: 1100	<u> </u>
LNAPL Present: (Y) (N) Well Socked Prior to Purging: (Y) (N) How Many? Sock Sa	aturation:
Purging Method: () Submersible () Peristaltic (y Other: <u>Dump#</u>	
Purging Method: () Submersible () Peristaltic (Y Other: <u>DUMP</u> # Pumping Rate: <u>1175/500 mL</u> Start Sampling: <u>/245</u> Purge Duration: <u>/// /45</u>	<u>5 т.</u> Purge Vol: //. 2
Field Parameters	
Meters: YSI 556 (sn: 05H1715 A), Hach 2100P (sn: 050200011331) Measured in	in: () Flow Cell () Cup
Purge Time pH Conductivity Turbidity D.O. Ten	
(gal) (us/cm) (ntu) (mg/L) (°C 	Cell (mV) (ft) 13.62
<u> 1.5 1215 6.45</u> 331 6.07 2.37 13.	61 62.4 13.68
	. <u>68 61.1 13.68</u> 09 <u>57.6 pilled</u>
11.2 1845 6.40 336 4.97 1.86 12	.80 55./
	
Stabilization Criteria: 1) field parameters ± 0.1 pH, ±3% conductivity, ±10 mv ORP, ±10% DO, ±10%	Turbidity: 2) 3 well volumes or dry
	- , - , - , - , - , - , - , - , - , - ,
Final Sample clarity\color: (Llar/Colorled) Sample Odor: (Y) or (N) Explain:	
Final Sample Oil Sheen: (None () Light () Medium () Heavy	
Other Observations/Comments:	
- Martala Durata	
	of Containers: 4
Well Sampling Completion: Time 1300 Date 1/3/1/ Samplers M. Dunho	P

Project: OU-1 Wellsville, New York					D	ate: <u>6/13</u>	/1/	
Monitoring	Well: <u>/ทุเม</u>	<i>R-09</i> Sam	ple ID: MWR	209-0611	A	Arrival Time:	1330	
			We	eather Conditio	ns			
	Тетр. <u></u>	<u>′7</u> °F()Sun	ny (પ)∕Partly Clo	oudy () Cloudy	() Light Rain	() Heavy Ra	in () Snow	
		٧	Vind Conditions	*		<u> </u>		
			Well	Condition Che	cklist			
Bump posts	: nla	7.		lock:		Surface pad:	/\K	
				OK				
	C/V/I ·	in 417	-	& Purging Infor ' <u>.4.2</u> ft S		1240		
INADI Dros	SVVL ((i)) (V) ont:	Nell Socked I	Prior to Durging	. (Y) (N)How Ma	anv2 6/4 S	Cock Saturation	n: pla	
Purging Met	hod: () Sub	mersible () F	Peristaltic (\(\forall O\)	ther: 1011200	::::::::::::::::::::::::::::::::::::::	ock Saluralic	"" <u>- 140-</u>	
Pumping Ra	ite:///08/3	o.o.o.o.(). 500mLStart	Sampling: /	ther: <u> </u>	ge Duration:	19170	Purge Vol:	9.0
. 0					J			
Meters: Y	SI 556 (sn; <i>[</i>):	5H1715A	F Hach 2100P (s	ield Parameter n: 050ସ0୯୦୮k	s <u>33 </u>) Mea	sured in: 🚫	Flow Cell()	Cup
Purge	Time	рН	Conductivity	Turbidity	D.O.	Temp.	ORP	DTW
(gal) 	1420	Switch	to Cell	(ntu) 13.9	(mg/L)	(°C)	(mV)	(ft) <u>10.58</u>
· · · · · · · · · · · · · · · · · · ·	<u> 1430 </u>	6,29	484	10.6	0.96 0.74	13.96	-0,6 -50	10.58
	1450	6.28	484	8.88	0.56	12.54	-6.1	10.57
9.0	1500	6.28	<u>484</u>	<u>8,40</u>	10,50	<u>12.88</u>	-8.9	<u>10.58</u>
					-			
	#1#							
Stabilization C	Oriteria: 1) field	d parameters ±	0.1 pH, ±3% cor	ductivity, ±10 mv	ORP, ±10% DO), ±10% Turbic	lity; 2) 3 well v	olumes or dry
			- -				• •	•
Final Sample	e clarity\color	:clear/c	olorless	Sample Od	or: (Y) or (N)	explain:		
	Fi	nal Sample O	il Sheen: (V) No	one()Light()	Medium () H	łeavy () NA	.PL	
Other Obser	vations/Com	ments:						
		14-1-1.	n dla					
		utals/V		1 /12/11/2	1	umber of Cor	itainers: <u> </u>	
Well Samplin	ng Completio	n: Time <u>/5/</u>	Date	<i>[0]13]]]</i> Sam	nplers <u>///</u>	Senhoff.		***************************************

Project: OU-1 Wellsville, New	<u>York</u>	Date: 10/14/11	
Monitoring Well: MWR-10 Sample ID: MW	R10-0611	_ Arrival Time: <u> </u>	······································
· · · · · · · · · · · · · · · · · · ·	Veather Conditions		
Temp. <u>5.</u> 2 °F()Sunny()Partly 0	Cloudy () Cloudy () Light R	ain()Heavy Rain()Snow	
Wind Condition	18: <u>5 mph</u>	anany see	
We	Il Condition Checklist		
Bump posts: NUC Pro. casin	g/lock: DK	Surface pad:	
Well Visibility (paint): OK Well Label:	: <i>D</i>	ent:	
Denth	& Purging Information	st bottom	
swl: <u>9.42</u> ftTD <u>.3</u>	2.9 ft Start Purge:	0900	
LNAPL Present: (Y) (N) Well Socked Prior to Purgin			
-	,		
Purging Method: () Submersible () Peristaltic () Pumping Rate 116 S (500 m L Start Sampling: 1	030 Purge Duratio	n: <u>/// 30 n7.</u> Purge Vol	10.75
		ľ	
Meters: YSI 556 (sn: 05H1715 AQ, Hach 2100P	Field Parameters (sn: 050000011331_)	Measured in: (ソFlow Cell() Cup
Purge Time pH Conductivity		Temp. ORP	DTW
(gal) 6.0 0955 Switch to (ell	(ntu) (mg/L)	(°C) (mV)	9.44
$\frac{7.2}{1.2} \frac{1005}{1005} \frac{6.37}{1000} \frac{450}{1000}$	50.2 3.18	10.35 -5.8	9.46
9.6 1025 6.40 449	<u> </u>	10.72 - 7.1	Diilled
10.15 <u>10.30 6.41 449</u>	45.6 1.76	10.75 -7.2	
			
Stabilization Criteria: 1) field parameters ± 0.1 pH, ±3% c	onductivity, ±10 mv ORP, ±10%	DO, ±10% Turbidity; 2) 3 well	volumes or dry
File I I I I Aliciai Alexan	de a la compa de	<i>-</i> 20− · ·	
Final Sample clarity\color: Standard Clorus	Sample Odor: (Y) or((r	VEXPIAIN:	
Final Sample Oil Sheen: (V) Nother Observations/Comments:	vone () Light () Meaium () neavy () NAPL	
Carlor Observations/Continents.			
Analysis Requested: Metals VOC'S - MS	lms is	Number of Containers: /	3
	te 6 14 11 Samplers M		

Project: OU-1 W	ellsville, New Yo	<u>ork</u>	D	ate: <u>//</u> /	4/11_	
Monitoring Well: <u>MWR-11</u> Sa	mple ID: MUI	211-0611	A	Arrival Time:_	1100	-
	We	eather Conditio	ns			
Temp. <u>55</u> °F()Su	nny (২) Partly Clo	oudy () Cloudy	() Light Rain	() Heavy Ra	in () Snow	
	Wind Conditions	·				
	Well	Condition Ched	cklist			
Bump posts: n/a				Surface pad:	<u>ok</u>	
Bump posts: n/a Well Visibility (paint): OK	Well Label:_	OK	Comment	•		
	D41- 1	n Barrelo e la Car	4!			
SMI: 11 74	Depth &	R Purging Infor	mation	///		
SWL: 10, 174 LNAPL Present: (Y) (N) Well Socked	Prior to Purging	(V) (NI) How Ma	anus nla s	Cock Saturation	$\frac{1}{n}$	
Purging Method: () Submersible ()	Peristaltic (XO:	ther: $\Omega / / \Omega / \Omega$	#/	ock Gaturatio	<u>771.0</u>	
Pumping Rate: 1148/500 in L Sta	ort Sampling: $/2$	<i>30</i> Pur	ge Duration: /	1hr 20m.	Purae Vol:	5,6
					_ 5 -	
Meters: <u>YSI 556 (sn: <i>O5</i>H 1715 A</u>	F <u>(), Hach 2100P (s</u>	ield Parameters n: <u>05000000</u>	s <u> 33 </u>) Mea	sured in: (VI	Flow Cell ()	Cup
Purge Time pH	Conductivity	Turbidity	D.O.	Temp.	ORP	DTW
(gal) 3.0 1155 Switc	h 10 (ell	(ntu) 7.3, 8	(mg/L)	(°C)	(mV)	(ft)
<u> 3.15 1205 6.65</u> 4.5 1215 6.62	<u>316</u> 318	49.8	3.06 2.82	<u> 11,24</u> 10,97	<u>74.1</u> 78.7	10.76
5.25 12.25 4.58	321	30.3	2.67	10.89	86.0	10.76
<u>5,6 12.30 12.58</u>	_321_	<u>30,0</u>	2.61	<u>10.43</u>	87.7	pulled
	<u> </u>					
			-			-
Stabilization Criteria: 1) field parameters	± 0.1 pH, ±3% cor	iductivity, ±10 mv	ORP. ±10% DO	O, ±10% Turbid	ity; 2) 3 well v	olumes or dry
, ,	• •	•	·			·
Final Sample clarity\color: Clarity	colorless.	Sample Odd	or: (Y) or (N)E	Explain:		
	Oil Sheen: (۾ No					
Other Observations/Comments:					· · ·	
Andria De La Matala la	1006					<u> </u>
Analysis Requested: Mtas		Idulli c		umber of Con Ao lo/37 7	tainers: 4	
Well Sampling Completion: Time	pate	<i>.[0</i>]14∏1_Sam	ibieta 🚺 📝	UNIUM.		

GAS VENT MONITORING

Completed By: K. Dye 5 Workson	Sheet _/_ of _/_
Title:	Date: 8-16-11
Verified By:	
Title:	Date:
Type of Monitoring (check only one):	77°F 5-10 mph winds from NW
<pre>(X) Semi-Annual () Other (explain) () Type of Monitoring Device</pre>	

Gas Vent Identification	Upwind Reading	Downwind Reading	Gas Venting Reading	
V-13	24.6	24.0	28.0	1
V-I	24.6 0.5	0.5	28.0 0.5	-05 backgroune
			,	7
4	•			
		 		
				7
				7
			\\\\\\\\\\	1
		1		1

COMMENTS OR PERIMETER FENCE MONITORING RESULTS (Attach additional sheets if required):

GAS VENT MONITORING

Completed By: 5 Wests	Sheet	l ofl
Title: Site manager	Date:	9-26-11
Verified By:		
Title:	Date:	
Type of Monitoring (check only one):	77°F 0-5.9ph	winds from Sw
<pre>(X) Semi-Annual (C) Other (explain) (C) Type of Monitoring Device</pre>		

Gas Vent Identification	Upwind Reading	Downwind Reading	Gas Venting Reading
V-13	0.5	2.0	30,3
V-1	0.5	w	30.3 27.6
	<u>-</u>		
			
			-
	-		
		:	

COMMENTS OR PERIMETER FENCE MONITORING RESULTS (Attach additional sheets if required):

0.5 ppm background