

Site Investigation Summary Report

Vapor Intrusion Evaluations for New York State Remedial Sites

Wellsville-Andover Landfill

NYSDEC Site # 9-02-004

Town of Wellsville Allegany County

NYSDEC Project Manager: Linda Ross

NYSDOH Project Manager: Charlotte Bethoney

August, 2006

Table of Contents

- 1. Site Background and Status
- 2. Soil Vapor and Groundwater Investigation
- 3. Structure Sampling
- 4. Summary of Findings
- 5. Recommendations

Tables

- Table 1 Field Sampling Information
- Table 2 Summary of Detected Constituents Soil Vapor and Structure Sampling (Air) Data
- Table 3 Summary of Detected Constituents Groundwater Analytical Data

Figures

Figure 1 Shallow Soil Vapor and Groundwater Sampling Results

Attachments

Attachment A: URS Corp. Site Characterization Letter Report, July 2006.

Executive Summary

A preliminary soil vapor investigation was conducted at the Wellsville-Andover Landfill, NYSDEC Site ID # 9-02-004, Town of Wellsville, Allegany County, NY in March 2006. A total of two groundwater grab samples and two shallow soil vapor samples were collected from the vicinity of the site. Based on the information developed during this preliminary investigation, the New York State Department of Environmental Conservation, (NYSDEC), in consultation with the New York State Department of Health (NYSDOH), has determined that **further investigation of the site and the surrounding area is needed to address potential exposures associated with vapor intrusion**.

1. Site Background and Status

Although the soil vapor pathway has been historically evaluated at New York State sites, improvements in analytical techniques and knowledge gained from sites in New York and in other states has led to a more complete understanding of soil vapor as an environmental media of concern. Based on this additional information, New York has re-evaluated previous assumptions and decisions regarding the potential for vapor intrusion at sites. To this effort, the State has conducted a limited soil vapor investigation at the site to evaluate the vapor intrusion pathway. The Wellsville-Andover Landfill is currently listed as a Class 4 site and has an operational remedial system (pump and treat) on-site.

1.1 Site Description

The Wellsville-Andover Landfill is located in the town of Wellsville, Allegany County, New York. The site is approximately 100 acres and is a capped landfill surrounded by forested lands and private residences. It is bounded by Duffy Hollow Road to the east; Snyder Road to the west; Pixley Hill Road to the north; and a private residence to the south. The hazardous waste site consists of parcels denoted on the Allegany County Tax Map as 201.-1-20, 201.-1-15.2, and 214.-1-2.1. The original landfill was located on the northern portion of the site. In 1997, the original landfill was excavated, consolidated and capped on the southern portion of the site.

The landfill was operated by the Village of Wellsville from 1964 until 1983, and accepted both municipal and industrial wastes. The site was contaminated by volatile organic compounds (VOCs), primarily trichloroethene (TCE), vinyl chloride (VC), and cis-1,2-dichloroethene (DCE).

1.2 Site Record of Decision (ROD)

A 1994 ROD called for the following remedies:

- Consolidation of the northwest area into the south/south-central area.
- Capping the areas that contain wastes with an engineered cover that minimizes the infiltration of water to produce leachate. The cover system included a passive landfill gas venting system.
 - Upgrade of the leachate collection system, which included:
 - collection of leachate and treatment at the Village wastewater treatment plant.
 - installation of an up-gradient groundwater cutoff trench to minimize leachate production.
- Evaluation of the practicability of off-site groundwater collection and treatment.

1.3 Site Geology and Groundwater Flow

The bedrock beneath the site consists of thin sandstones and siltstones, which are overlain by dense glacial till. The till encountered during the limited soil vapor investigation consisted of tight, dense clay with occasional gravel. The bedrock encountered during previous investigations is at depths of approximately 10 feet to 64 feet below grade, and is highly fractured at the surface.

Surface water flow at the site drains southwest towards an unnamed tributary to Duffy Creek. This intermittent tributary begins along the western site boundary and flows south-southeast until it converges with Duffy Creek (a Class C stream), approximately 1,500 feet southeast of the site. Duffy Creek flows south and joins Dyke Creek (a Class C stream) approximately 1.8 miles south-southeast of the site. Dyke Creek eventually flows into the Genesee River. Surface water flow generally follows the site topography, which slopes towards the south at approximately 5% to 6% grade.

Local groundwater flow in the overburden and bedrock is generally to the southeast towards Duffy Creek.

2. Soil Vapor and Groundwater Investigation

2.1 Groundwater

A total of two (2) temporary groundwater grab samples and one (1) private water supply dug well were sampled as part of the investigation. Groundwater sampling was conducted on April 12 and 13, 2006. All groundwater samples were submitted to Life Science Laboratories of East Syracuse, New York, for analysis of VOCs via USEPA Method 8260B.

2.1.1 Groundwater Grab Samples

A total of two (2) groundwater grab samples were collected from the vicinity of the site. Both samples were collected from locations where borings were installed in apparently dry soils, but upward gradients in the groundwater resulted in the points (V-2 and V-3) to be saturated with groundwater, and were subsequently utilized as groundwater sample points. The borings were installed via geoprobe push technology. At location V-2, a four (4) foot deep soil boring was left open to see if water infiltrated. Within a few hours, the open hole was filled with water at two (2) feet below grade. This water was collected with a peristaltic pump, and submitted to the lab as sample ID# 902004-GW-2. At location V-3, another four (4) foot deep boring was left open and remained dry for a few hours. Since no water was observed infiltrating the boring, a vapor implant was installed in the

boring. The implant was constructed using 6-inch sampling screen attached to dedicated laboratory grade polyethylene tubing. The borehole was backfilled with filter sand to a minimum of 6 inches above the sampling screen and then backfilled with bentonite to the ground surface. When the implant was attempted to be sampled the following day, a peristaltic pump was used to purge the soil vapor, but instead of vapors, pulled groundwater into the tubing. This groundwater was collected and submitted to the lab as sample ID# 902004-GW-3.

2.1.2 Residential Dug Well Grab Samples

One groundwater grab sample was collected from a residential dug well along Duffy Hollow Road, approximately 1,500 feet east of the landfill. This sample was collected from a garden hose attached to the downgradient pipeline from the dug well to the residence. This sample was submitted to the lab as sample ID# 902004-GW-6.

2.2 Soil Vapor

A total of two (2) shallow soil vapor samples were collected on April 13, 2006 from the vicinity of the site. Due to the shallow groundwater levels at the site, no deep soil vapor samples were collected. Soil vapor samples were collected from a depth of 4 feet below grade. Temporary soil vapor points were installed via geoprobe push technology. The implants were constructed using 6-inch sampling screen attached to dedicated laboratory grade polyethylene tubing. The borehole was backfilled with filter sand to a minimum of 6 inches above the sampling screen and then backfilled with bentonite to the ground surface. A minimum of 24 hours was provided to allow the bentonite to sufficiently hydrate prior to sampling. Helium tracer gas was used at all vapor sample locations to verify the integrity of the bentonite seal between the ground surface and the borehole sampling point. The soil vapor samples were collected over a 2-hour period into 6 liter Summa canisters and were submitted to Pace Analytical Services of Minneapolis, Minnesota, for analysis of Volatile Organic Compounds (VOCs) by USEPA Method TO-15.

Refer to Table 1 for additional field sampling information regarding the soil vapor investigation.

3. Structure Sampling

In consultation with the NYSDOH, three (3) residential structures were sampled for sub-slab vapor (or crawl space), basement, first-floor, and outdoor ambient air. One (1) structure was sampled on Duffy Hollow Road, and two (2) structures were sampled on Snyder Road. Structure

sampling was conducted on April 13, and April 28, 2006. All samples were collected over a 24hour period into 6 liter Summa canisters and were submitted to Pace Analytical Services of Minneapolis, Minnesota, for analysis of Volatile Organic Compounds (VOCs) by USEPA Method TO-15. All indoor and outdoor ambient air samples showing trichloroethene (TCE) as non-detect via standard Method TO-15 were further analyzed by Selective Ion Monitoring (SIM) TO-15 analysis for TCE. Method TO-15 with SIMS enables an analytical detection limit of less than 0.25 micrograms per cubic meter (ug/m³) for TCE.

Structure sampling was preceded by building surveys and household product inventories The sampling was done in accordance with the NYSDOH February 2005 Draft Guidance for Evaluating Soil Vapor Intrusion in the State of New York.

Refer to Table 1 for additional field sampling information regarding the structure sampling..

4. Summary of Findings

4.1 Groundwater

The groundwater sampling findings are presented below. Refer to Table 2 and Figure 1 for a summary of the detected groundwater constituents.

A total of two (2) shallow groundwater grab samples were collected in the vicinity of the site. The grab samples were located in the vicinity of the temporary soil vapor points V-2 and V-3, along the western and southern landfill borders and downgradient from the landfill itself. One (1) additional sample was collected from the piping extending from a residential dug well, which was located along Duffy Hollow Road, and approximately 1,500 feet east of the landfill.

None of the site's contaminants of concern (TCE, 1,2-(cis)Dichloroethene [cis-DCE], and vinyl chloride [VC]) were detected in any of the groundwater samples.

4.2 Soil Vapor

The soil vapor sampling findings are presented below. Refer to Table 3 and Figure 1 for a summary of the detected soil vapor constituents.

None of the site's contaminants of concern (TCE, cis-DCE, and VC) were detected in any

of the soil vapor samples. However, tetrachloroethene (PCE) was detected in both samples. PCE was detected at 4.8 ug/m^3 in sample ID# 902004-V-4, and at 2.8 ug/m^3 (estimated) in sample ID# 902004-V-3. In addition, low levels of benzene, toluene, ethylbenzene, and xylene (BTEX) were detected in both soil vapor samples.

4.3 Structure Sampling

The structure sampling findings are presented below. Refer to Table 4 for a summary of detected constituents.

A total of three (3) structures were sampled. Two of these structures had basements with concrete slab floors. These two structures (sample ID#s 902004-STR-1 and 902004-STR-2) were sampled for sub-slab vapor, basement ambient air (BA), first-floor ambient air (FA), and outdoor ambient air (OA). The third structure (902004-STR-3) had a crawl space with a dirt floor. This structure was sampled for crawl space ambient air (CS), first floor ambient air (FA) and outdoor ambient air (OA).

4.3.1 Sub-Slab Vapor

TCE was detected in both sub-slab samples at 5.3 ug/m³ (STR-1) and 0.164 ug/m³ (STR-2). PCE and cis-DCE were detected in STR-1 at 3.5 ug/m³ and 5.1 ug/m³, respectively. BTEX compounds were also detected in both sub-slab samples.

4.3.2 Basement/Crawl Space Ambient Air

None of the site's contaminants of concern (TCE, 1,2-(cis)Dichloroethene [cis-DCE], and vinyl chloride [VC]) were detected in the crawl space sample. TCE was detected in both of the basement ambient air samples (2.68 and 0.213 ug/m³, estimated). BTEX compounds were also detected in both basement ambient air samples.

4.3.3 First Floor Ambient Air

TCE was detected in the first floor ambient air in all the structures sampled. Concentrations ranged from 0.12 ug/m³ (estimated) to 5.4 ug/m³. PCE was detected in two (2) of the structures at concentrations of 3.7 and 3.2 ug/m³. 1,1,1-Trichloroethane (TCA) was detected in one of the structures at 4.4 ug/m³. BTEX compounds were also detected in all first floor ambient air samples.

4.3.4 Outdoor Ambient Air

Low levels of TCE were detected in all the outdoor ambient air samples. Concentrations ranged from 0.0983 ug/m³ (estimated) to 0.169 ug/m³ (estimated). Cis-DCE was also detected in all outdoor air samples, ranging in concentration from 1.2 ug/m³ to 2.1 ug/m³.

5. Recommendations

Based on the distribution of the soil vapor and groundwater concentrations observed, the possibility of vapor intrusion can not be ruled out. Although some of the site-related contaminants were detected in low concentrations in the indoor air, it is possible that these detections were due to indoor sources (cleaners and other household chemicals). Due to the detection of site-related contaminants in the sub-slab vapor samples, the **NYSDEC and NYSDOH recommend follow-up structure sampling during the 2006-2007 heating season**, in accordance with the February 2005 NYSDOH Draft Guidance for Evaluating Soil Vapor Intrusion in the State of New York. The goal of this follow-up sampling should be to identify any indoor sources as well as monitor the structures for vapor intrusion during the heating season.

TABLE 1

FIELD SAMPLING INFORMATION

New York State Department of Environmental Conservation

Soil Vapor Intrusion Evaluation

Work Assignment # D004433-2 Wellsville-Andover Landfill Site # 902004

Table 1. Site Sampling Summary - Wellsville-Andover Landfill

Location ID	NYSDEC Sample ID	General Location/Comments	Date	Depth to GW (ft bgs)	Depth to SG Implant Base (ft bgs)	Leak-Test Successful? (yes or no)	Start Vacuum (in. Hg)	End Vacuum (in. Hg)	Start Time	Stop Time	Duration (hours)
902004-V-1S	Not sampled	Near landfill entrance gate at top of Snyder Rd./Soil Gas Implant	4/11/2006	< 8	8.0	NA	NA	NA	NA	NA	NA
902004-V-1D	Not sampled	Near landfill entrance gate at top of Snyder Rd./Soil Gas Implant	4/11/2006	< 8	18.5	NA	NA	NA	NA	NA	NA
902004-V-2S	Not Sampled	Adjacent to residence at 3899 Snyder Road/Soil Gas Implant	4/11/2006	2	4.0	NA	NA	NA	NA	NA	NA
902004-V-2D	Not Sampled	Adjacent to residence at 3899 Snyder Road./Open borehole	4/11/2006	2	NA	NA	NA	NA	NA	NA	NA
902004-V-2D	902004-GW-2	Adjacent to residence at 3899 Snyder Road/GW sample from open borehole	4/11/2006	2	4.0	NA	NA	NA	NA	NA	NA
902004-V-3S	Not sampled	1,500 ft S.of V-2 location on Snyder Road/Soil Gas Implant	4/12/2006	NA	4.0	NA	NA	NA	NA	NA	NA
902004-V-3S	902004-GW-3	1,500 ft S.of V-2 location on Snyder Road/GW sample from soil gas implant	4/13/2006	NA	4.0	NA	NA	NA	NA	NA	NA
902004-V-4S	902004-V-4S	Western Edge of Dufy Hollow Road/Soil gas sample from implant	4/12/2006	NA	4.0	Yes	-30	-6.5	1510	1710	2
902004-V-5S	902004-V-5S	LaDue Residence at 3914 Snyder Road/Soil gas sample from implant	4/12/2006	NA	4.0	Yes	-30	-4	1347	1547	2
902004-GW-6	902004-GW-6	Ormsby Residence at 4011 Duffy Hollow Road/GW sample from	4/12/2006	NA	NA	NA	NA	NA	NA	NA	NA
902004-SS-1A	902004-SS-1A	Ormsby Residence at 4011 Duffy Hollow Road/Sub-slab sample	4/13/2006	NA	NA	NA	-30	-10	940	940	24

Table 1.	Site Sampling	Summary -	Wellsville-Andover	Landfill (cont'd)
				(

Location ID	NYSDEC Sample ID	General Location/Comments	Date	Depth to GW (ft bgs)	Depth to SG Implant Base (ft bgs)	Leak-Test Successful? (yes or no)	Start Vacuum (in. Hg)	End Vacuum (in. Hg)	Start Time	Stop Time	Duration (hours)
902004-SS-1B	902004-SS-1B	Ormsby Residence at 4011 Duffy Hollow Road/Sub-slab sample	4/13/2006	NA	NA	NA	-30	-3	945	945	24
902004-BA-1	902004-BA-1	Ormsby Residence at 4011 Duffy Hollow Road/Basement sample	4/13/2006	NA	NA	NA	-28	0	952	940	24
902004-FA-1	902004-FA-1	Ormsby Residence at 4011 Duffy Hollow Road/First floor sample	4/13/2006	NA	NA	NA	-28	-2	951	951	24
902004-OA-1	902004-OA-1	Ormsby Residence at 4011 Duffy Hollow Road/Outside air sample	4/13/2006	NA	NA	NA	-30	-2	958	958	24
902004-SS-2	902004-SS-2	LaDue Residence at 3914 Snyder Road/Sub-slab sample	4/13/2006	NA	NA	NA	-30	-4	1046	1046	24
902004-BA-2	902004-BA-2	LaDue Residence at 3914 Snyder Road/Basement sample	4/13/2006	NA	NA	NA	-30	-5	1048	1048	24
902004-FA-2	902004-FA-2	LaDue Residence at 3914 Snyder Road/First floor sample	4/13/2006	NA	NA	NA	-30	-4.5	1052	1052	24
902004-OA-2	902004-OA-2	LaDue Residence at 3914 Snyder Road/Outside air sample	4/13/2006	NA	NA	NA	-30	-6.5	1102	1100	24
902004-CS-3	902004-CS-3	Rosini Residence at 3899 Snyder Road/Crawl-space air sample	4/27/2006	NA	NA	NA	-30	-3	1416	1342	22.8
902004-FA-3	902004-FA-3	Rosini Residence at 3899 Snyder Road/First-floor air sample	4/27/2006	NA	NA	NA	-30	-5	1407	740	12.9
902004-OA-3	902004-OA-3	Rosini Residence at 3899 Snyder Road/Outside air sample	4/27/2006	NA	NA	NA	-30	-5	1412	921	15.8

NA = Not Applicable GW = Groundwater

SS = Sub-slab

BA = Basement Ambient

FA = First Floor Ambient

OA = Outside Ambient CS = Crawl Space

TABLE 2

SUMMARY OF DETECTED CONSTITUENTS SOIL VAPOR AND STRUCTURE (AIR) ANALYTICAL DATA

Location ID		H-001	H-001	H-001	H-001	H-002
Sample ID		902004-OA-1	902004-BA-1	902004-FA-1	902004-SS-1A	902004-OA-2
Matrix		Ambient Air	Indoor Air	Indoor Air	Sub-Slab Air	Ambient Air
Depth Interval (ft)		-	-	-	-	-
Date Sampled	<u>-</u>	04/13/06	04/13/06	04/13/06	04/13/06	04/13/06
Parameter	Units		(2-2)			
Volatile Organic Compounds						
1,1,1-Trichloroethane	UG/M3	2.9 UJ	1.9 J	4.4	1.5 U	1.7 U
1,1,2,2-Tetrachloroethane	UG/M3	3.7 UJ	1.9 U	2.0 U	1.9 U	2.2 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/M3	4.2 UJ	2.1 U	2.3 U	2.2 U	2.5 U
1,1,2-Trichloroethane	UG/M3	2.9 UJ	1.5 U	1.6 U	1.5 U	1.7 U
1,1-Dichloroethane	UG/M3	2.2 UJ	1.1 U	1.2 U	1.1 U	1.3 U
1,1-Dichloroethene	UG/M3	2.1 UJ	1.1 U	1.2 U	1.1 U	1.2 U
1,2,4-Trichlorobenzene	UG/M3	2.6 UJ	1.3 U	1.4 U	1.4 U	1.5 U
1,2,4-Trimethylbenzene	UG/M3	6.6 UJ	6.4 J	3.6 U	211 J	3.8 U
1,2-Dibromoethane (Ethylene dibromide)	UG/M3	4.2 UJ	2.1 U	2.3 U	2.2 U	2.5 U
1,2-Dichlorobenzene	UG/M3	3.2 UJ	1.6 U	1.7 U	1.7 U	1.8 U
1,2-Dichloroethane	UG/M3	2.2 UJ	1.1 U	1.2 U	2.6	1.3 U
1,2-Dichloroethene (cis)	UG/M3	2.1 UJ	1.1 U	1.2 U	5.1	1.2 U
1,2-Dichloroethene (trans)	UG/M3	2.1 UJ	1.1 U	1.2 U	1.1 U	1.2 U
1,2-Dichloropropane	UG/M3	2.5 UJ	1.3 U	1.3 U	1.3 U	1.4 U
1,2-Dichlorotetrafluoroethane	UG/M3	3.7 UJ	1.9 U	2.0 U	1.9 U	2.2 U
1,3,5-Trimethylbenzene (Mesitylene)	UG/M3	6.6 UJ	3.4 U	3.6 U	48.6	3.8 U
1,3-Butadiene	UG/M3	1.2 UJ	0.60 U	0.64 U	0.62 U	0.69 U
1,3-Dichlorobenzene	UG/M3	3.2 UJ	1.6 U	1.7 U	1.7 U	1.8 U
1,3-Dichloropropene (cis)	UG/M3	2.4 UJ	1.2 U	1.3 U	1.3 U	1.4 U
1,3-Dichloropropene (trans)	UG/M3	2.4 UJ	1.2 U	1.3 U	1.3 U	1.4 U
1,4-Dichlorobenzene	UG/M3	3.2 UJ	1.6 U	1.7 U	19.0	1.8 U
2-Hexanone	UG/M3	2.2 UJ	1.1 U	1.2 U	1.1 UJ	1.3 U
4-Ethyltoluene	UG/M3	6.6 UJ	3.4 U	3.6 U	59.7	3.8 U

Flags assigned during chemistry validation are shown.

Location ID		H-001	H-001	H-001	H-001	H-002
Sample ID		902004-OA-1	902004-BA-1	902004-FA-1	902004-SS-1A	902004-OA-2
Matrix		Ambient Air	Indoor Air	Indoor Air	Sub-Slab Air	Ambient Air
Depth Interval (ft)		-	-	-	-	-
Date Sampled	<u>_</u>	04/13/06	04/13/06	04/13/06	04/13/06	04/13/06
Parameter	Units		(2-2)			
Volatile Organic Compounds						
4-Methyl-2-pentanone	UG/M3	2.2 UJ	1.1 U	1.2 U	37.0 J	1.3 U
Acetone	UG/M3	29.5 J	13.3 J	1.2	163 J	12.7 J
Benzene	UG/M3	1.7 UJ	2.6 J	2.3	36.9	1.0 U
Bromodichloromethane	UG/M3	3.7 UJ	1.9 U	2.0 U	1.9 U	2.2 U
Bromoform	UG/M3	5.5 UJ	2.8 U	3.0 U	2.9 U	3.2 U
Bromomethane	UG/M3	2.1 UJ	1.1 U	1.1 U	1.1 U	1.2 U
Carbon disulfide	UG/M3	1.7 UJ	0.84 U	0.90 U	34.0	0.97 U
Carbon tetrachloride	UG/M3	3.4 UJ	1.7 U	1.9 U	1.8 U	2.0 U
Chlorobenzene	UG/M3	2.5 UJ	1.3 U	1.3 U	1.3 U	1.4 U
Chloroethane	UG/M3	1.4 UJ	0.72 U	1.3	0.75 U	0.83 U
Chloroform	UG/M3	2.6 UJ	1.3 U	1.4 U	1.4 U	1.5 U
Chloromethane	UG/M3	1.1 UJ	0.56 U	0.60 U	0.58 U	0.65 U
Cyclohexane	UG/M3	1.8 UJ	0.91 U	0.97 U	0.94 U	1.0 U
Dibromochloromethane	UG/M3	4.5 UJ	2.3 U	2.4 U	2.3 U	2.6 U
Dichlorodifluoromethane	UG/M3	2.8 J	2.7 J	3.4	2.1	3.1 J
Ethyl acetate	UG/M3	1.9 UJ	0.98 U	1.0 U	207 J	1.1 U
Ethylbenzene	UG/M3	2.3 UJ	30.1 J	2.0	81.1	1.4 U
Heptane	UG/M3	2.2 UJ	3.1 J	1.2 U	1.1 U	1.3 U
Hexachlorobutadiene	UG/M3	5.8 UJ	2.9 U	3.1 U	3.0 UJ	3.4 U
Hexane	UG/M3	1.9 UJ	12.7 J	5.1	94.9	1.1 U
Methyl ethyl ketone (2-Butanone)	UG/M3	14.5 J	10.5 J	0.86 U	377 J	2.9 J
Methyl tert-butyl ether	UG/M3	1.9 UJ	0.98 U	1.0 U	1.0 U	1.1 U
Methylene chloride	UG/M3	13.9 J	3.8 J	2.5	12.3	1.1 U

Flags assigned during chemistry validation are shown.

Location ID		H-001	H-001	H-001	H-001	H-002
Sample ID		902004-OA-1	902004-BA-1	902004-FA-1	902004-SS-1A	902004-OA-2
Matrix		Ambient Air	Indoor Air	Indoor Air	Sub-Slab Air	Ambient Air
Depth Interval (ft)		-	-	-	-	-
Date Sampled	_	04/13/06	04/13/06	04/13/06	04/13/06	04/13/06
Parameter	Units		(2-2)			
Volatile Organic Compounds						
Naphthalene	UG/M3	7.1 UJ	7.5 J	3.9 U	78.2	4.2 U
Propylene	UG/M3	0.92 UJ	0.47 U	0.50 U	0.48 U	0.54 U
Styrene	UG/M3	2.3 UJ	1.2 U	1.2 U	22.2	1.3 U
Tetrachloroethene	UG/M3	3.7 UJ	1.9 U	3.7	3.5	2.2 U
Tetrahydrofuran	UG/M3	1.6 UJ	0.80 U	0.86 U	118 J	0.92 U
Toluene	UG/M3	5.9 J	19.8 J	22.8	342 J	2.3 J
Trichloroethene	UG/M3	0.169 J	2.68 J	0.12 J	5.3	0.0983 J
Trichlorofluoromethane	UG/M3	2.9 UJ	2.6 J	3.9	2.1	1.7 U
Vinyl acetate	UG/M3	1.9 UJ	0.95 U	1.0 U	0.98 U	1.1 U
Vinyl chloride	UG/M3	1.4 UJ	0.70 U	0.74 U	0.72 U	0.80 U
Xylene (total)	UG/M3	4.6 UJ	169 J	11.4	581 J	2.7 U

Flags assigned during chemistry validation are shown.

Location ID		H-002	H-002	H-002	H-002	H-003
Sample ID		902004-SS-2-DUP	902004-BA-2	902004-FA-2	902004-SS-2	902004-OA-3
Matrix		Sub-Slab Air	Indoor Air	Indoor Air	Sub-Slab Air	Ambient Air
Depth Interval (ft)		-	-	-	-	-
Date Sampled	-	04/13/06	04/13/06	04/13/06	04/13/06	04/28/06
Parameter	Units	Field Duplicate (1-1)	(2-2)			
Volatile Organic Compounds						
1,1,1-Trichloroethane	UG/M3	1.6 U	1.6 U	1.1 U	1.5 U	1.6 U
1,1,2,2-Tetrachloroethane	UG/M3	2.0 U	2.0 U	1.4 U	1.9 U	2.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/M3	2.3 U	2.3 U	1.6 U	2.2 U	2.3 U
1,1,2-Trichloroethane	UG/M3	1.6 U	1.6 U	1.1 U	1.5 U	1.6 U
1,1-Dichloroethane	UG/M3	1.2 U	1.2 U	0.82 U	1.1 U	1.2 U
1,1-Dichloroethene	UG/M3	1.2 U	1.2 U	0.81 U	1.1 U	1.2 UJ
1,2,4-Trichlorobenzene	UG/M3	1.4 U	1.4 U	0.99 U	1.4 U	1.4 U
1,2,4-Trimethylbenzene	UG/M3	18.3	24.3	17.0	14.9 J	14.0
1,2-Dibromoethane (Ethylene dibromide)	UG/M3	2.3 U	2.3 U	1.6 U	2.2 U	2.3 U
1,2-Dichlorobenzene	UG/M3	1.7 U	1.7 U	1.2 U	1.7 U	1.7 U
1,2-Dichloroethane	UG/M3	1.2 U	1.2 U	0.82 U	1.1 U	1.2 U
1,2-Dichloroethene (cis)	UG/M3	1.2 U	1.2 U	0.81 U	1.1 U	1.2 U
1,2-Dichloroethene (trans)	UG/M3	1.2 U	1.2 U	0.81 U	1.1 U	1.2 U
1,2-Dichloropropane	UG/M3	1.3 U	1.3 U	0.94 U	1.3 U	1.3 U
1,2-Dichlorotetrafluoroethane	UG/M3	5.4	5.9	1.4 U	1.9 U	2.0 U
1,3,5-Trimethylbenzene (Mesitylene)	UG/M3	5.3	6.7	6.6	7.0 J	3.6 U
1,3-Butadiene	UG/M3	0.64 U	0.64 U	0.45 U	0.62 U	0.64 U
1,3-Dichlorobenzene	UG/M3	1.7 U	1.7 U	2.3	1.7 U	1.7 U
1,3-Dichloropropene (cis)	UG/M3	1.3 U	1.3 U	0.92 U	1.3 U	1.3 U
1,3-Dichloropropene (trans)	UG/M3	1.3 U	1.3 U	0.92 U	1.3 U	1.3 U
1,4-Dichlorobenzene	UG/M3	1.7 U	1.7 U	2.7	1.7 U	1.7 U
2-Hexanone	UG/M3	1.2 UJ	1.2 UJ	0.83 U	1.1 U	1.2 UJ
4-Ethyltoluene	UG/M3	5.1	7.0	6.7	4.3 J	3.6 U

Flags assigned during chemistry validation are shown.

Location ID		H-002	H-002	H-002	H-002	H-003
Sample ID		902004-SS-2-DUP	902004-BA-2	902004-FA-2	902004-SS-2	902004-OA-3
Matrix		Sub-Slab Air	Indoor Air	Indoor Air	Sub-Slab Air	Ambient Air
Depth Interval (ft)		-	-	-	-	-
Date Sampled	<u>.</u>	04/13/06	04/13/06	04/13/06	04/13/06	04/28/06
Parameter	Units	Field Duplicate (1-1)	(2-2)			
Volatile Organic Compounds						
4-Methyl-2-pentanone	UG/M3	1.2 UJ	1.2 UJ	0.83 U	1.1 U	1.2 UJ
Acetone	UG/M3	40.0 J	40.3 J	33.8	82.5 J	1.8 J
Benzene	UG/M3	20.0	25.5	14.0	12.0 J	0.93 U
Bromodichloromethane	UG/M3	2.0 U	2.0 U	1.4 U	1.9 U	2.0 U
Bromoform	UG/M3	19.6	3.0 U	2.1 U	2.9 U	3.0 U
Bromomethane	UG/M3	6.9	1.1 U	0.79 U	1.1 U	1.1 U
Carbon disulfide	UG/M3	10.7	1.2	0.63 U	19.3 J	0.90 U
Carbon tetrachloride	UG/M3	1.9 U	1.9 U	1.3 U	1.8 U	1.9 U
Chlorobenzene	UG/M3	1.3 U	1.3 U	0.94 U	1.3 U	1.3 U
Chloroethane	UG/M3	0.77 U	0.77 U	0.54 U	0.75 U	0.77 U
Chloroform	UG/M3	1.4 U	1.4 U	0.99 U	1.4 U	1.4 U
Chloromethane	UG/M3	0.60 U	0.60 U	0.42 U	0.58 U	0.60 U
Cyclohexane	UG/M3	3.2	0.97 U	0.68 U	16.7 J	0.97 U
Dibromochloromethane	UG/M3	2.4 U	2.4 U	1.7 U	2.3 U	2.4 U
Dichlorodifluoromethane	UG/M3	87.5	96.4	73.5	44.9 J	1.8
Ethyl acetate	UG/M3	1.4	7.6	0.73 U	1.0 U	1.0 UJ
Ethylbenzene	UG/M3	12.3	16.2	13.2	7.1 J	1.3 U
Heptane	UG/M3	1.2 U	1.2 U	17.9	35.7 J	1.2 U
Hexachlorobutadiene	UG/M3	3.1 UJ	3.1 UJ	2.2 U	3.0 U	3.1 U
Hexane	UG/M3	19.1	25.6	20.8	37.4 J	1.0 U
Methyl ethyl ketone (2-Butanone)	UG/M3	10.0 J	14.9 J	9.8	18.7 J	0.86 UJ
Methyl tert-butyl ether	UG/M3	1.0 U	1.0 U	0.73 U	1.0 U	1.0 U
Methylene chloride	UG/M3	1.0 U	1.0 U	0.71 U	3.3 J	1.0 U

Flags assigned during chemistry validation are shown.

Location ID		H-002	H-002	H-002	H-002	H-003
Sample ID		902004-SS-2-DUP	902004-BA-2	902004-FA-2	902004-SS-2	902004-OA-3
Matrix		Sub-Slab Air	Indoor Air	Indoor Air	Sub-Slab Air	Ambient Air
Depth Interval (ft)		-	-	-	-	-
Date Sampled		04/13/06	04/13/06	04/13/06	04/13/06	04/28/06
Parameter	Units	Field Duplicate (1-1)	(2-2)			
Volatile Organic Compounds						
Naphthalene	UG/M3	20.4	20.9	11.8	7.9 J	62.7
Propylene	UG/M3	0.50 U	0.50 U	0.35 U	0.48 U	0.50 U
Styrene	UG/M3	2.4	3.2	9.1	1.2 U	1.2 U
Tetrachloroethene	UG/M3	2.0 U	2.0 U	3.2	1.9 U	2.0 U
Tetrahydrofuran	UG/M3	0.86 U	11.8	0.60 U	0.83 U	0.86 U
Toluene	UG/M3	69.2	87.5	64.6	41.5 J	1.1 U
Trichloroethene	UG/M3	0.186 J	0.213 J	5.4	0.142 J	0.118 J
Trichlorofluoromethane	UG/M3	9.0	9.6	35.1	6.2 J	1.6 U
Vinyl acetate	UG/M3	1.0 U	1.0 U	0.71 U	0.98 U	1.0 U
Vinyl chloride	UG/M3	0.74 U	0.74 U	0.52 U	0.72 U	0.74 U
Xylene (total)	UG/M3	62.2	82.0	64.7	45.9 J	2.5 U

Flags assigned during chemistry validation are shown.

Location ID		H-003	H-003	H-003	V-04S	V-05S
Sample ID		20060427-CS-3-DUP	902004-CS-3	902004-FA-3	902004-V-4S	902004-V-5S
Matrix		Indoor Air	Indoor Air	Indoor Air	Soil Gas	Soil Gas
Depth Interval (ft)		-	-	-	-	-
Date Sampled	-	04/28/06	04/28/06	04/28/06	04/13/06	04/13/06
Parameter	Units	Field Duplicate (2-2)	(2-2)			
Volatile Organic Compounds						
1,1,1-Trichloroethane	UG/M3	1.5 U	1.6 U	1.9 U	1.7 U	2.1 J
1,1,2,2-Tetrachloroethane	UG/M3	1.9 U	2.0 U	2.4 U	2.2 U	1.9 UJ
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/M3	2.2 U	2.3 U	2.8 U	2.5 U	2.2 UJ
1,1,2-Trichloroethane	UG/M3	1.5 U	1.6 U	1.9 U	1.7 U	1.5 UJ
1,1-Dichloroethane	UG/M3	1.1 U	1.2 U	1.4 U	1.3 U	1.1 UJ
1,1-Dichloroethene	UG/M3	1.1 U	1.2 U	1.4 UJ	1.3 U	1.1 UJ
1,2,4-Trichlorobenzene	UG/M3	1.4 U	1.4 U	1.7 U	1.6 U	1.4 UJ
1,2,4-Trimethylbenzene	UG/M3	3.4 U	3.6 U	5.2	5.0	3.7 J
1,2-Dibromoethane (Ethylene dibromide)	UG/M3	2.2 U	2.3 U	2.8 U	2.5 U	2.2 UJ
1,2-Dichlorobenzene	UG/M3	1.7 U	1.7 U	2.1 U	1.9 U	1.7 UJ
1,2-Dichloroethane	UG/M3	1.1 U	1.2 U	1.4 U	1.3 U	1.1 UJ
1,2-Dichloroethene (cis)	UG/M3	1.1 U	1.2 U	1.4 U	1.3 U	1.1 UJ
1,2-Dichloroethene (trans)	UG/M3	1.1 U	1.2 U	1.4 U	1.3 U	1.1 UJ
1,2-Dichloropropane	UG/M3	1.3 U	1.3 U	1.6 U	1.5 U	1.3 UJ
	UG/M3	1.9 U	2.0 U	2.4 U	2.2 U	1.9 UJ
1,3,5- I rimethylbenzene (Mesitylene)	UG/M3	3.4 U	3.6 U	4.3 U	4.0 U	3.4 UJ
1,3-Butadiene	UG/M3	0.62 U	0.64 U	0.78 U	0.72 U	0.62 UJ
1,3-Dichlorobenzene	UG/M3	1.7 U	1.7 U	2.1 U	1.9 U	1.7 UJ
1,3-Dichloropropene (cis)	UG/M3	1.3 U	1.3 U	1.6 U	1.5 U	1.3 UJ
1,3-Dichloropropene (trans)	UG/M3	1.3 U	1.3 U	1.6 U	1.5 U	1.3 UJ
1,4-Dichlorobenzene	UG/M3	1.7 U	1.7 U	2.1 U	1.9 U	1.7 UJ
2-Hexanone	UG/M3	1.1 UJ	1.2 UJ	1.4 UJ	1.3 U	1.1 UJ
4-Ethyltoluene	UG/M3	3.4 U	3.6 U	4.3 U	4.0 U	3.4 UJ

Flags assigned during chemistry validation are shown.

Location ID		H-003	H-003	H-003	V-04S	V-05S
Sample ID		20060427-CS-3-DUP	902004-CS-3	902004-FA-3	902004-V-4S	902004-V-5S
Matrix		Indoor Air	Indoor Air	Indoor Air	Soil Gas	Soil Gas
Depth Interval (ft)		-	-	-	-	-
Date Sampled		04/28/06	04/28/06	04/28/06	04/13/06	04/13/06
Parameter	Units	Field Duplicate (2-2)	(2-2)			
Volatile Organic Compounds						
4-Methyl-2-pentanone	UG/M3	1.1 UJ	1.2 UJ	1.4 UJ	1.3 U	3.6 J
Acetone	UG/M3	2.6 J	3.3 J	29.4 J	13.9	17.2 J
Benzene	UG/M3	0.90 U	0.93 U	1.1 U	3.2	5.1 J
Bromodichloromethane	UG/M3	1.9 U	2.0 U	2.4 U	2.2 U	1.9 UJ
Bromoform	UG/M3	2.9 U	3.0 U	3.6 U	3.3 U	2.9 UJ
Bromomethane	UG/M3	1.1 U	1.1 U	1.4 U	1.3 U	1.1 UJ
Carbon disulfide	UG/M3	0.87 U	0.90 U	1.1 U	1.0 U	12.9 J
Carbon tetrachloride	UG/M3	1.8 U	1.9 U	2.6	2.1 U	1.8 UJ
Chlorobenzene	UG/M3	1.3 U	1.3 U	1.6 U	1.5 U	1.3 UJ
Chloroethane	UG/M3	0.75 U	0.77 U	0.93 U	0.86 U	0.75 UJ
Chloroform	UG/M3	1.4 U	1.4 U	1.7 U	1.6 U	1.4 UJ
Chloromethane	UG/M3	0.58 U	0.60	0.73 U	0.67 U	0.58 UJ
Cyclohexane	UG/M3	0.94 U	0.97 U	1.2 U	1.1 U	0.94 UJ
Dibromochloromethane	UG/M3	2.3 U	2.4 U	2.9 U	2.7 U	2.3 UJ
Dichlorodifluoromethane	UG/M3	2.1	1.7	2.4	2.4	2.0 J
Ethyl acetate	UG/M3	1.0 U	1.0 U	1.3 UJ	1.2 U	1.0 UJ
Ethylbenzene	UG/M3	1.2 U	1.3 U	3.1	3.6	2.6 J
Heptane	UG/M3	1.1 U	1.2 U	3.3	1.3 U	6.0 J
Hexachlorobutadiene	UG/M3	3.0 UJ	3.1 UJ	3.8 U	3.5 U	3.0 UJ
Hexane	UG/M3	0.99 U	1.0 U	1.2 U	1.1 U	5.2 J
Methyl ethyl ketone (2-Butanone)	UG/M3	1.3 J	3.1 J	12.9 J	6.1	6.1 J
Methyl tert-butyl ether	UG/M3	1.0 U	1.0 U	1.3 U	1.2 U	1.0 UJ
Methylene chloride	UG/M3	0.98 U	7.5	1.2 U	1.1 U	1.4 J

Flags assigned during chemistry validation are shown.

Location ID		H-003	H-003	H-003	V-04S	V-05S
Sample ID		20060427-CS-3-DUP	902004-CS-3	902004-FA-3	902004-V-4S	902004-V-5S
Matrix		Indoor Air	Indoor Air	Indoor Air	Soil Gas	Soil Gas
Depth Interval (ft)		-	-	-	-	-
Date Sampled		04/28/06	04/28/06	04/28/06	04/13/06	04/13/06
Parameter	Units	Field Duplicate (2-2)	(2-2)			
Volatile Organic Compounds						
Naphthalene	UG/M3	3.7 U	3.9 U	6.8	4.3 U	3.7 UJ
Propylene	UG/M3	0.48 U	0.50 U	0.77	0.56 U	0.48 UJ
Styrene	UG/M3	1.2 U	1.2 U	1.5 U	2.3	3.1 J
Tetrachloroethene	UG/M3	1.9 U	2.0 U	2.4 U	4.8	2.8 J
Tetrahydrofuran	UG/M3	0.83 U	0.86 U	1.0 U	0.95 U	0.83 UJ
Toluene	UG/M3	1.1 U	1.1 U	8.0	18.2	11.3 J
Trichloroethene	UG/M3	1.5 U	1.6 U	4.26 J	1.7 U	1.5 UJ
Trichlorofluoromethane	UG/M3	1.5 U	1.6 U	1.9 U	1.7 U	1.5 UJ
Vinyl acetate	UG/M3	0.98 U	1.0 U	1.2 U	1.1 U	0.98 UJ
Vinyl chloride	UG/M3	0.72 U	0.74 U	0.90 U	0.83 U	0.72 UJ
Xylene (total)	UG/M3	2.4 U	2.5 U	13.1	11.4	10.4 J

Flags assigned during chemistry validation are shown.

Location ID	V-05S		
Sample ID	902004-V-5S-DUP		
Matrix	Soil Gas		
Depth Interval (ft)		-	
Date Sampled		04/13/06	
Parameter	Units	Field Duplicate (1-1)	
Volatile Organic Compounds			
1,1,1-Trichloroethane	UG/M3	1.7 U	
1,1,2,2-Tetrachloroethane	UG/M3	2.2 U	
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/M3	2.5 U	
1,1,2-Trichloroethane	UG/M3	1.7 U	
1,1-Dichloroethane	UG/M3	1.3 U	
1,1-Dichloroethene	UG/M3	1.2 U	
1,2,4-Trichlorobenzene	UG/M3	1.5 U	
1,2,4-Trimethylbenzene	UG/M3	14.7	
1,2-Dibromoethane (Ethylene dibromide)	UG/M3	2.5 U	
1,2-Dichlorobenzene	UG/M3	2.2	
1,2-Dichloroethane	UG/M3	1.3 U	
1,2-Dichloroethene (cis)	UG/M3	1.2 U	
1,2-Dichloroethene (trans)	UG/M3	1.2 U	
1,2-Dichloropropane	UG/M3	1.4 U	
1,2-Dichlorotetrafluoroethane	UG/M3	2.2 U	
1,3,5-Trimethylbenzene (Mesitylene)	UG/M3	3.8 U	
1,3-Butadiene	UG/M3	0.69 U	
1,3-Dichlorobenzene	UG/M3	1.8 U	
1,3-Dichloropropene (cis)	UG/M3	1.4 U	
1,3-Dichloropropene (trans)	UG/M3	1.4 U	
1,4-Dichlorobenzene	UG/M3	1.8 U	
2-Hexanone	UG/M3	1.3 UJ	
4-Ethyltoluene	UG/M3	3.8 U	

Flags assigned during chemistry validation are shown.

Location ID	V-05S	
Sample ID	902004-V-5S-DUP	
Matrix	Soil Gas	
Depth Interval (ft)	-	
Date Sampled	_	04/13/06
Parameter	Units	Field Duplicate (1-1)
Volatile Organic Compounds		
4-Methyl-2-pentanone	UG/M3	2.6 J
Acetone	UG/M3	73.4 J
Benzene	UG/M3	6.3
Bromodichloromethane	UG/M3	2.2 U
Bromoform	UG/M3	3.2 U
Bromomethane	UG/M3	1.2 U
Carbon disulfide	UG/M3	34.9
Carbon tetrachloride	UG/M3	2.0 U
Chlorobenzene	UG/M3	1.4 U
Chloroethane	UG/M3	0.83 U
Chloroform	UG/M3	1.5 U
Chloromethane	UG/M3	0.65 U
Cyclohexane	UG/M3	1.0 U
Dibromochloromethane	UG/M3	2.6 U
Dichlorodifluoromethane	UG/M3	1.5 U
Ethyl acetate	UG/M3	3.0
Ethylbenzene	UG/M3	4.5
Heptane	UG/M3	7.1
Hexachlorobutadiene	UG/M3	3.4 UJ
Hexane	UG/M3	9.2
Methyl ethyl ketone (2-Butanone)	UG/M3	14.1 J
Methyl tert-butyl ether	UG/M3	1.1 U
Methylene chloride	UG/M3	1.1 U

Flags assigned during chemistry validation are shown.

Location ID	V-05S		
Sample ID	902004-V-5S-DUP		
Matrix	Soil Gas		
Depth Interval (ft)	-		
Date Sampled	04/13/06		
Parameter Units		Field Duplicate (1-1)	
Volatile Organic Compounds			
Naphthalene	UG/M3	8.3	
Propylene	UG/M3	6.0	
Styrene	UG/M3	3.8	
Tetrachloroethene	UG/M3	2.2 U	
Tetrahydrofuran	UG/M3	3.5	
Toluene	UG/M3	18.3	
Trichloroethene	UG/M3	1.7 U	
Trichlorofluoromethane	UG/M3	1.7 U	
Vinyl acetate	UG/M3	1.1 U	
Vinyl chloride	UG/M3	0.80 U	
Xylene (total)	UG/M3	23.1	

Flags assigned during chemistry validation are shown.

TABLE 3

SUMMARY OF DETECTED CONSTITUENTS GROUNDWATER ANALYTICAL DATA

Location ID		GW-02	GW-02	GW-03	GW-06
Sample ID		20060411-FD-1	902004-GW-2	902004-GW-3	902004-GW-6
Matrix		Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-	-	-
Date Sampled		04/11/06	04/11/06	04/13/06	04/12/06
Parameter	Units	Field Duplicate (1-1)			
Volatile Organic Compounds					
1,1,1-Trichloroethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
1,2,4-Trichlorobenzene	UG/L	1 U	1 U	1 U	1 U
1,2-Dibromo-3-chloropropane	UG/L	1 U	1 U	1 U	1 U
1,2-Dibromoethane (Ethylene dibromide)	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichlorobenzene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethene (cis)	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethene (trans)	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloropropane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
1,3-Dichlorobenzene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
1,3-Dichloropropene (cis)	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
1,3-Dichloropropene (trans)	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
1,4-Dichlorobenzene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
2-Hexanone	UG/L	R	R	R	R
4-Methyl-2-pentanone	UG/L	5 U	5 U	5 U	5 U
Acetone	UG/L	R	R	6.05 J	R
Benzene	UG/L	0.11 J	0.5 U	0.5 U	0.5 U
Bromodichloromethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U

Flags assigned during chemistry validation are shown.

Location ID		GW-02	GW-02	GW-03	GW-06
Sample ID		20060411-FD-1	902004-GW-2	902004-GW-3	902004-GW-6
Matrix		Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-	-	-
Date Sampled		04/11/06	04/11/06	04/13/06	04/12/06
Parameter	Units	Field Duplicate (1-1)			
Volatile Organic Compounds					
Bromoform	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
Bromomethane	UG/L	1 U	1 U	1 U	1 U
Carbon disulfide	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
Carbon tetrachloride	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
Chloroethane	UG/L	1 U	1 U	1 U	1 U
Chloroform	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
Chloromethane	UG/L	1 U	1 U	1 U	1 U
Cyclohexane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
Dibromochloromethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
Dichlorodifluoromethane	UG/L	1 U	1 U	1 U	1 U
Ethylbenzene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
Isopropylbenzene (Cumene)	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
Methyl acetate	UG/L	R	R	R	R
Methyl ethyl ketone (2-Butanone)	UG/L	R	R	R	R
Methyl tert-butyl ether	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
Methylcyclohexane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
Methylene chloride	UG/L	2 U	2 U	2 U	2 U
Styrene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
Tetrachloroethene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
Toluene	UG/L	0.12 J	0.5 U	0.10 J	0.5 U
Trichloroethene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
Trichlorofluoromethane	UG/L	1 U	1 U	1 U	1 U

Flags assigned during chemistry validation are shown.

Location ID		GW-02	GW-02	GW-03	GW-06
Sample ID		20060411-FD-1	902004-GW-2	902004-GW-3	902004-GW-6
Matrix		Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-	-	-
Date Sampled		04/11/06	04/11/06	04/13/06	04/12/06
Parameter	Units	Field Duplicate (1-1)			
Volatile Organic Compounds					
Vinyl chloride	UG/L	1 U	1 U	1 U	1 U
Xylene (total)	UG/L	1 U	1 U	1 U	1 U

Flags assigned during chemistry validation are shown.

Made By AMK 6/5/06 Checked By 6/5/06

J:\11174635.00000\DB\Program\EDMS.mdk Printed: 6/5/2006 11:30:48 AM [LOGDATE] > #4/01/2006# AND [MATRIX] = 'WG'

FIGURE 1

SHALLOW SOIL VAPOR AND GROUNDWATER SAMPLING RESULTS

ATTACHMENT A

URS Corp. Site Characterization Letter Report, July 2006.

LETTER REPORT

SOIL VAPOR INTRUSION EVALUATION FOR THE WELLSVILLE-ANDOVER LANDFILL SITE SITE #9-02-004 WELLSVILLE, NEW YORK

Prepared For:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF ENVIRONMENTAL REMEDIATION WORK ASSIGNMENT # D004433-2

Prepared By:

URS CORPORATION 77 GOODELL STREET BUFFALO, NEW YORK 14203

DRAFT

JUNE 2006

TABLE OF CONTENTS

1.0	INTRODUCTION	i
2.0	FIELD ACTIVITIES	l
3.0	SAMPLE COLLECTION	3
REFER	ENCES	l

TABLES

(Following Text)

Table 1Site Sampling Summary

ATTACHMENTS

Attachment ABoring Logs and Soil Vapor Conduit Construction DrawingsAttachment BPhotograph LogAttachment CData Summary Usability ReportAttachment DSoil Vapor Sampling RecordsAttachment EChain of Custody RecordsAttachment FHousehold Product InventoriesAttachment GResidential Air Sampling Records

1.0 INTRODUCTION

The New York State Department of Environmental Conservation (NYSDEC) requested URS Corporation (URS), under it's State Superfund Standby Contract, to perform a Vapor Intrusion Evaluation at the Wellsville-Andover Landfill site (Site No. 9-02-004) in Wellsville, New York. The site consists of a capped and closed landfill that is surrounded by woodlands, agricultural land and several residences. Groundwater, soil vapor, and residential sub-slab and indoor air sampling were conducted to assess potential soil vapor intrusion of chlorinated volatile organic compounds (VOCs) into the residences that surround the landfill.

The results of this vapor intrusion evaluation are presented in this letter report. Section 2.0 includes a general description of the field activities completed. Section 3.0 provides the analytical results of the groundwater, soil vapor and residential sampling.

2.0 FIELD ACTIVITIES

The following field activities were completed at the Wellsville-Andover Landfill site during the soil vapor intrusion investigation. All of the fieldwork completed followed the requirements and specifications presented in the URS-prepared Work Plan, Field Sampling Plan and Health and Safety Plan.

- Site visit to mark out drilling locations;
- Drilling and installation of five shallow and one deep soil vapor implants;
- Sampling and analysis of soil vapor samples from two soil vapor implants;
- Sampling and analysis of three groundwater grab samples from soil borings and a spring;
- Scheduling of appointments for residential surveys and indoor air samples;

- Conducting interviews with homeowners and completing the indoor air quality questionnaire/residential building survey. For confidentiality purposes, homeowner questionnaires are not included in this report; and
- Collection of first floor indoor air samples, basement indoor air samples, outdoor air samples and sub-slab soil vapor samples at 3 residential locations.

Soil Vapor Implant Drilling and Installation

On April 6, 2006, representatives from URS, NYSDEC and the Town of Wellsville marked out drilling locations for soil vapor implants. Utility locators were also notified of the boring locations and completed utility mark outs.

On April 11 through 12, 2006, URS supervised the drilling and construction of temporary soil vapor implants at five locations. The locations were identified as 902004-V-1 through 902004-V-5 (see Table 1). GeoLogic NY, a drilling contractor from Homer, New York, performed the drilling. Soil vapor implant construction consisted of first drilling an approximate 3-inch diameter boring using direct-push drilling techniques and macro core drilling tools. A 6-inch long stainless steel screen (implant) was then placed in the borehole to the desired sampling depth and connected to a 3/8-inch diameter polyethylene tube brought to approximately 3-feet above ground surface. Sand or glass beads were placed in the borehole to cover the screen, and hydrated bentonite was then placed in the remainder of the borehole. Shallow soil gas implants were installed at each of the five locations, and a deep soil gas implant was installed at location 902004-V-1. Boring logs and soil vapor implant construction drawings are provided in Attachment A.

3.0 SAMPLE COLLECTION

Photographic Log

Photographs were taken during the sampling of the soil vapor implants and residences. No photos were collected for the sampling performed at the 3899 Snyder Road residence. A photographic log is provided in Attachment B.

Soil Vapor Sampling

One soil vapor sample was collected at location 902004-V-4 and location 902004-V-5 on April 13, 2006. Sample designations were 902004-V-4S and 902004-V-5S. A duplicate sample of 902004-V-5S was also collected and labeled 20060413–FD-2. Samples could not be collected at the other soil vapor implants because of shallow groundwater conditions. Soil vapor sampling and helium testing followed procedures presented in URS' approved Field Sampling Plan (URS, 2006). Samples were collected using 6-liter Summa® canisters over a two-hour period. During testing, helium tracer gas testing was conducted to ensure that the soil vapor samples were not affected by ambient air being drawn into the Summa® canisters. Soil vapor samples were shipped overnight to Pace Analytical Services (Pace) in Minneapolis, Minnesota for analysis of volatile organic compounds (VOCs) using USEPA Method TO-15.

A summary of the soil vapor samples collected is presented in Table 1. Validated analytical results are provided in the Data Usability Summary Report (DUSR) provided in Attachment C. Sample collection records are located in Attachment D and Chain of Custody forms are provided in Attachment E.

Groundwater Sampling

Three groundwater grab samples were collected from April 11 through 13, 2006. One sample, 902004-GW-2, was collected from an open borehole at location 902004-V-2. A
duplicate sample from this location was also collected and designated 200604-FD-1. A second sample, 902004-GW-3, was collected from a shallow soil vapor implant designated 902004-V-3S. A third groundwater sample was collected from a spring and designated 902004-GW-6. Groundwater samples GW-2 and GW-3 were collected using a peristaltic pump. The groundwater sample from the spring was collected from a garden hose supplied by the spring. Groundwater samples were shipped overnight to Life Science Laboratories of East Syracuse, New York.

Validated laboratory results for the groundwater samples are provided in the DUSR in Attachment C. Chain of Custody forms are provided in Attachment E.

Indoor Air, Outdoor Air, and Sub-slab Air Sampling

URS personnel performed residential building surveys and completed household product inventories prior to sampling. Procedures used followed those specified in the NYSDOH guidance (NYSDOH, 2005). URS collected indoor, sub-slab and outdoor air samples from two residences on April 13. A third residence was sampled on April 27, 2006 for indoor air, outdoor air and from a crawl space.

The samples were collected using six-liter Summa® canisters equipped with flow controller valves precalibrated at the laboratory to collect the sample over a 24-hour period. Household product inventories are provided in Attachment F. Sampling Field Logs (Summa® Canister Sampling Field Data Sheets) are presented in Attachment G and the Chain of Custody forms are provided in Attachment E.

All samples were shipped via Federal Express to Pace for analysis of VOCs using USEPA Method TO-15. Laboratory results are presented in the DUSR in Attachment B.

REFERENCES

New York State Department of Health (NYSDOH). 2005. Guidance for Evaluating Soil Vapor Intrusion in the State of New York. Public Comment Draft, February 2005.

URS Corporation (URS). 2006. Field Sampling Plan for the Vapor Intrusion Evaluations for New York State Remedial Sites.

URS. 2006. Vapor Intrusion Work Plan/Budget Estimate for Bell Aerosapce - Textron Site.

URS. 2006. Health and Safety Plan, Bell Aerospace – Textron Site.

New York State Department of Environmental Conservation

Soil Vapor Intrusion Evaluation

Work Assignment # D004433-2 Wellsville-Andover Landfill Site # 902004

Table 1. Site Sampling Summary - Wellsville-Andover Landfill

Location ID	NYSDEC Sample ID	General Location/Comments	Date	Depth to GW (ft bgs)	Depth to SG Implant Base (ft bgs)	Leak-Test Successful? (yes or no)	Start Vacuum (in. Hg)	End Vacuum (in. Hg)	Start Time	Stop Time	Duration (hours)
902004-V-1S	Not sampled	Near landfill entrance gate at top of Snyder Rd./Soil Gas Implant	4/11/2006	< 8	8.0	NA	NA	NA	NA	NA	NA
902004-V-1D	Not sampled	Near landfill entrance gate at top of Snyder Rd./Soil Gas Implant	4/11/2006	< 8	18.5	NA	NA	NA	NA	NA	NA
902004-V-2S	Not Sampled	Adjacent to residence at 3899 Snyder Road/Soil Gas Implant	4/11/2006	2	4.0	NA	NA	NA	NA	NA	NA
902004-V-2D	Not Sampled	Adjacent to residence at 3899 Snyder Road./Open borehole	4/11/2006	2	NA	NA	NA	NA	NA	NA	NA
902004-V-2D	902004-GW-2	Adjacent to residence at 3899 Snyder Road/GW sample from open borehole	4/11/2006	2	4.0	NA	NA	NA	NA	NA	NA
902004-V-3S	Not sampled	1,500 ft S.of V-2 location on Snyder Road/Soil Gas Implant	4/12/2006	NA	4.0	NA	NA	NA	NA	NA	NA
902004-V-3S	902004-GW-3	1,500 ft S.of V-2 location on Snyder Road/GW sample from soil gas implant	4/13/2006	NA	4.0	NA	NA	NA	NA	NA	NA
902004-V-4S	902004-V-4S	Western Edge of Dufy Hollow Road/Soil gas sample from implant	4/12/2006	NA	4.0	Yes	-30	-6.5	1510	1710	2
902004-V-5S	902004-V-5S	LaDue Residence at 3914 Snyder Road/Soil gas sample from implant	4/12/2006	NA	4.0	Yes	-30	-4	1347	1547	2
902004-GW-6	902004-GW-6	Ormsby Residence at 4011 Duffy Hollow Road/GW sample from	4/12/2006	NA	NA	NA	NA	NA	NA	NA	NA
902004-SS-1A	902004-SS-1A	Ormsby Residence at 4011 Duffy Hollow Road/Sub-slab sample	4/13/2006	NA	NA	NA	-30	-10	940	940	24

Table 1.	Site Sampling	Summary -	Wellsville-Andover	Landfill (cont'd)
				(

Location ID	NYSDEC Sample ID	General Location/Comments	Date	Depth to GW (ft bgs)	Depth to SG Implant Base (ft bgs)	Leak-Test Successful? (yes or no)	Start Vacuum (in. Hg)	End Vacuum (in. Hg)	Start Time	Stop Time	Duration (hours)
902004-SS-1B	902004-SS-1B	Ormsby Residence at 4011 Duffy Hollow Road/Sub-slab sample	4/13/2006	NA	NA	NA	-30	-3	945	945	24
902004-BA-1	902004-BA-1	Ormsby Residence at 4011 Duffy Hollow Road/Basement sample	4/13/2006	NA	NA	NA	-28	0	952	940	24
902004-FA-1	902004-FA-1	Ormsby Residence at 4011 Duffy Hollow Road/First floor sample	4/13/2006	NA	NA	NA	-28	-2	951	951	24
902004-OA-1	902004-OA-1	Ormsby Residence at 4011 Duffy Hollow Road/Outside air sample	4/13/2006	NA	NA	NA	-30	-2	958	958	24
902004-SS-2	902004-SS-2	LaDue Residence at 3914 Snyder Road/Sub-slab sample	4/13/2006	NA	NA	NA	-30	-4	1046	1046	24
902004-BA-2	902004-BA-2	LaDue Residence at 3914 Snyder Road/Basement sample	4/13/2006	NA	NA	NA	-30	-5	1048	1048	24
902004-FA-2	902004-FA-2	LaDue Residence at 3914 Snyder Road/First floor sample	4/13/2006	NA	NA	NA	-30	-4.5	1052	1052	24
902004-OA-2	902004-OA-2	LaDue Residence at 3914 Snyder Road/Outside air sample	4/13/2006	NA	NA	NA	-30	-6.5	1102	1100	24
902004-CS-3	902004-CS-3	Rosini Residence at 3899 Snyder Road/Crawl-space air sample	4/27/2006	NA	NA	NA	-30	-3	1416	1342	22.8
902004-FA-3	902004-FA-3	Rosini Residence at 3899 Snyder Road/First-floor air sample	4/27/2006	NA	NA	NA	-30	-5	1407	740	12.9
902004-OA-3	902004-OA-3	Rosini Residence at 3899 Snyder Road/Outside air sample	4/27/2006	NA	NA	NA	-30	-5	1412	921	15.8

NA = Not Applicable GW = Groundwater

SS = Sub-slab

BA = Basement Ambient

FA = First Floor Ambient

OA = Outside Ambient CS = Crawl Space

					l	JRS Col	rpol	rat	ion					TEST BO	RING	LOG	
														BORING NO:	902004	-V-1D	
PROJEC	CT:			Wells	sville Va	por Intrusic	on Inv	/est	igation					SHEET:	1 of 1		
CLIENT				NYS	DEC									JOB NO.:	1	117463	5.00000
BORING	G C	ON.	TRA	CTOF	र:	GeoLogic N	IY, In	c.						BORING LOCA	TION:	Snyder I	Road
GROUN	DW	ΆΤ	ER:						CAS.	SAMPLER	CORE	TUE	Ε	GROUND ELEV	ATION:	NA	
DATE	٦	ΓІМ	E	LE	EVEL	TYPE	TYPE	E		Macrocore				DATE STARTE	D:	4/11/06	
							DIA.			2"				DATE FINISHE	D:	4/11/06	
							WT.							DRILLER:		Jud Pow	vell
							FALI	L						GEOLOGIST:		John Bo	yd
							* F	POC	KET PEN	NETROMETE	ER REA	DING		REVIEWED BY:			
					SAMP	SAMPLE DESCRIPTION											
DEPTH							MATERIAL									RE	MARKS
FEET	ST	RA	TA	NO.	TYPE	RECOVERY %	COL	OR		D	ESCRIF	PTION			USCS	PID	MOISTURE
	Ш		Ш				Bro	wn	0-0.3'. S	ILT, some or	ganics.				ML	0 ppm	Moist
	Ĭ	Ŭ	Ы	1	Macro	100%	yellow 0.3-1.2'. SILT, trace very fine gravel.							ML			
	þ	4	Þ		Core	10070	brov	wn	1.2-1.5'.	SILT, some l	broken f	ine to	m	ed. gravel.	GM		
	٩	P	Ŷ						1.5-4.0'.	SILT, trace of	rumbly	clay v	// g	ray mottling.	ML		
5	ľ	þ	ĥ						4-8'. SIL	T, trace clay	and fine	grav	əl.		ML	0 ppm	
	Ţ	ď	-	2	Macro	96%											
	þ	9	Þ		Core												
	٩	P	Ŷ														
	ľ	þ	<u>ال</u> ا						8-11.5'. \$	SILT, little cla	ay and v	ery fir	le t	to med.	GM	0 ppm	
10	Ţ	ď	-	3	Macro	100%				gravel.							
	þ	9	Þ		Core				11.5-12.0	0'. SILT and	CLAY, s	ome	ine	e to med.	CL		
	٩	P	Ŷ							gravel							
	ľ	þ	Ĺ						12.0-12.9	9'. SILT, som	ie clay.				CL	0 ppm	wet
	ļ	9	Þ	4	Macro	75%		_	12.9-15.0	0'. SILT and	CLAY, s	ome	. to	o med. gravel	CL		moist
15	þ	9	Þ		Core				15.0-15.	5'. Silt, trace	clay.				ML		wet
	9	-	ĥ				gray	/br.	15.5-16.0	0'. SILT and	CLAY				CL		
	þ	þ	Þ						16.0-17.0	0'. SILT and	CLAY.				CL	0 ppm	
	M	M	ΥΠ	5	Macro	63%	•		17.0-18.	5'. SILT and	CLAY, S	ome	. to	o med. gravel	CL		
					Cole				Refusal	on rock at 18	.5						
20																	
25																	
25																	
30																	
- 50																	
35																	
COMME	NT	S: (Geor	orobe	5400 us	ing a 4' x 3"	macro	ocor	e to a de	oth of 18.5' F	GS.			PROJECT NO	111746	35.0000	0
Soil van	or in	npl	ant i	nstalle	ed at 18	5' bas (see v	vell co	onst	ruction di	agram)				BORING NO.	902004	-V-1D	-
		1.1.				<u> </u>				5 /							

			l	JRS Col		TEST BO	RING	LOG					
										BORING NO:	902004	-V-1S	
PROJEC	CT:	Wells	sville Va	por Intrusio	on Invest	igation				SHEET:	1 of 1		
CLIENT		NYS	DEC							JOB NO.:		11174635	00000
BORING	CONTRA	CTOF	R:	GeoLogic N	IY, Inc.	1				BORING LOCAT	TION:	Snyder R	load
GROUN	DWATER:					CAS.	SAMPLER	CORE	TUBE	GROUND ELEV	ATION:	NA	
DATE	TIME	LE	EVEL	TYPE	TYPE		Macrocore			DATE STARTED):	4/11/06	
					DIA.		2"			DATE FINISHED):	4/11/06	
					WT.					DRILLER:		Jud Pow	ell
					FALL					GEOLOGIST:		John Boy	′d
					* POC		NETROMETE	R REA	DING	REVIEWED BY:			
			SAMP	LE			D	ESCRIF	PTION				
DEPTH			TVDE								11000	RE	
FEEI	SIRAIA	NO.	IYPE	RECOVERY %	COLOR		D	ESCRIF	TION		USCS	PID	MOISTURE
						.							
		1	Macro			See bor	ing log for 9	02004-\	/-10 for	geologic			
			Oole			aescript	ions.						
Б													
5			Macro										
		2	Core										
						Terminat	te boring at 8	BGS					
10						1 on mar	to borning at o	200					
20													
25													
30													
25													
35													
	NTS: Carr	roha	5400···-	ing o 4' × 2"	maaraas	o to o de					111740	35 00000	
	n implant	netell	ad at 9 0	ling a 4 x 3						ROJECT NO.	002004	-\/_1C	
	21 III piant I	isidilt	Ju ai 0.0	มนูร (ระษ W			granij.				302004	-v-13	

					l	URS Col	rpo	rat	tion				TEST BO	RING	LOG	
													BORING NO:	902004	-V-2D	
PROJEC	CT:			Wells	sville Va	apor Intrusio	on In	vest	igation				SHEET:	1 of 1		
CLIENT				NYS	DEC								JOB NO.:		1117463	5.00000
BORING	CC	DNT	RA	CTOF	R:	GeoLogic N	IY, Ir	nc.		_		_	BORING LOCA	TION:	Snyder I	Road
GROUN	DW	AT	ER:						CAS.	SAMPLER	CORE	TUBE	GROUND ELEV	ATION:	NA	
DATE	T	ΊMI	Ε	LE	EVEL	TYPE	TYP	Е		Macrocore			DATE STARTE	D:	4/11/06	
							DIA.			2"			DATE FINISHE) :	4/11/06	
							WT.						DRILLER:		Jud Pow	/ell
							FAL	L					GEOLOGIST:		John Bo	yd
							*	POC	KET PE	NETROMETE	ER REA	DING	REVIEWED BY:			
					SAMP	PLE				D						
DEPTH											MATER			RE	MARKS	
FEET	ST	RA	TA	NO.	TYPE	RECOVERY %	COL	OR		D	ESCRIF	PTION		USCS	PID	MOISTURE
	Ш						Bro	wn	0-0.3'. S	ILT, some or	ganics, t	trace v.	. gravel.	ML	0 ppm	Moist
	Ĭ	Ĵ		1	Macro	77%	١	7	0.3-1.3'.	SILT, some f	fine -me	dsand	and gravel.	GM		
	þ	9	Þ	•	Core	11 /0	lig	ht	1.3-2.6'.	SILT, some	clay and	l v.f.to n	ned. gravel	GM		▼
	9	P					bro	wn	2.6-4.0'.	SILT, little f	med. gr	avel.		GM		dry
5	ľ	þ	비						4-8'. Cla	yey SILT, so	me brok	en rock	fragments	GM	0 ppm	moist
	Ĭ	Ĭ	۶.	2	Macro	100%				(limestone),	gray mo	ottling n	oted.			
	þ	9	Þ	_	Core	10070										
	9	P	ш													▼
	ľ	þ	║						8.0-8.3'.	SILT, some f	f-med. g	ravel a	nd med. sand	GM	0 ppm	wet
10	Į	Ă	۶.	3	Macro	67%			8.3-8.8'.	Rock fragme	ents, sor	ne claye	ey silt.	GM		moist
	þ	9	Þ	-	Core				8.8-10.7	'. Clayey SIL	T, some	f-med.	Gravel, tr. sand	GM		
	٩	P	<u> </u>				1	7	10.7-12.	0'. Silty CLA	/, little i	ounded	f. gravel.	GM		
	ß	þ	١l				gra	ay-	12.0-12.	4'. SILT, som	ie vffin	e grave		GM	0 ppm	wet
	ļ	d	þ	4	Macro	100%	bro	wn	12.4-16.	0'. Clayey Sl	LT, som	e vf n	ed. gravel,	GM		moist
15	þ	9	Þ		Core			_		trace sand						
	9	PII	Ŷ١													
									End of b	oring at 16'						
20																
25																
20																
30																
30																
35																
- 55																
	NT	3.0	leor	orobe	5400	ing a 4' v 3"	macr	000	re to a de	nth of 16' BC	s			1117/6	35 0000	0
	or in	o. e nnla	ant r	never	installed	Borehole f	illed v	with	hentonite					902004	-\/_2D	•
		ihic	ai it I		nstalleu		ncu	vvitil	SCHIOHILE					302004	- V - Z U	

			l	URS Col		TEST BOR	RING	LOG					
										BORING NO:	902004	-V-2S	
PROJE	CT:	Wells	sville Va	apor Intrusio	on Invest	igation				SHEET:	1 of 1		
CLIENT	:	NYS	DEC							JOB NO.:		1117463	5.00000
BORING	GONTRA	СТО	र:	GeoLogic N	IY, Inc.					BORING LOCAT	FION:	Snyder F	Road
GROUN	DWATER:					CAS.	SAMPLER	CORE	TUBE	GROUND ELEV	ATION:	NA	
DATE	TIME	LE	EVEL	TYPE	TYPE		Macrocore			DATE STARTED):	4/11/06	
					DIA.		2"			DATE FINISHED):	4/11/06	
					WT.					DRILLER:		Jud Pow	ell
					FALL					GEOLOGIST:		John Bo	yd
					* POC		NETROMETE	ER REA	DING	REVIEWED BY:			
			SAMF	PLE			D	ESCRIF	PTION				
DEPTH								MATER	RIAL			RE	MARKS
FEET	STRATA	NO.	TYPE	RECOVERY %	COLOR		D	ESCRIF	PTION		USCS	PID	MOISTURE
		1	Macro			See bori	ing log for 9	02004-\	/-2D for	geologic			
			Core			descript	ions.						
5			Maara										
		2	Core										
			0010										
						Terminat	te horing at 4	BGS					
10						rennina	to borning at 4	000					
20													
25													
25													
30													
35													
COMME	NTS: Geop	orobe	5400 us	ing a 4' x 3"	macrocor	e to a de	pth of 4' BGS	S.		PROJECT NO.	111746	35.00000)
Soil vapo	or implant i	nstalle	ed at 4.0	bgs (see w	ell constru	uction dia	gram).			BORING NO.	902004	-V-2S	

			l	JRS Col	rporat	ion				TEST BO	RING	LOG	
										BORING NO:	902004	-V-3S	
PROJE	CT:	Wells	sville Va	por Intrusio	on Invest	igation				SHEET:	1 of 1		
CLIENT	:	NYS	DEC							JOB NO.:		1117463	5.00000
BORING	G CONTRA	CTOF	र:	GeoLogic N	IY, Inc.					BORING LOCAT	FION:	Snyder F	Road
GROUN	DWATER:					CAS.	SAMPLER	CORE	TUBE	GROUND ELEV	ATION:	NA	
DATE	TIME	LE	EVEL	TYPE	TYPE		Macrocore			DATE STARTED):	4/12/06	
					DIA.		2"			DATE FINISHED):	4/12/06	
					WT.					DRILLER:		Jud Pow	ell
					FALL					GEOLOGIST:		John Bo	/d
					* POC	KET PEN	NETROMETE	R REA	DING	REVIEWED BY:			
			SAMP	LE			D	ESCRIF	PTION				
DEPTH			-				_					RE	MARKS
FEEI		NO.	IYPE	RECOVERY %	COLOR		D	ESCRIF		<u> </u>	USCS	PID	MOISTURE
	IV 4 V V 4 P				Brown	0-0.7'. S	ILI, some or	ganics a	and med	. Sand and	GM	0 ppm	moist
	0 0 P	1	Macro	58%	linkt	0740	v.t. gravel				014	0	
			Oole		lignt	0.7-4.0.	SILI, some i	-mea. S	and and	a r-mea.	GIVI	0 ppm	moist
5					DIOWII		gravei						
5													
						Terminat	te boring at 4	BGS					I
10							to bolling at 1	200					
20													
25													
20													
30													
35													
COMME	NTS: Geo	orobe	5400 us	ing a 4' x 3"	macrocor	e to a de	pth of 4' BGS	5.		PROJECT NO.	111746	35.00000)
Soil vap	or implant i	nstalle	ed at 4.0	bgs (see w	ell constru	uction dia	gram).			BORING NO.	902004	-V-3S	
			-				- /						

				l	URS Co	rporat	ion				TEST BO	RING	LOG	
											BORING NO:	902004	-V-4S	
PROJEC	CT:		Wells	sville Va	apor Intrusio	on Invest	igation				SHEET:	1 of 1		
CLIENT			NYS	DEC							JOB NO.:		11174635	5.00000
BORING	G CO	NTRA	CTOF	र:	GeoLogic N	IY, Inc.					BORING LOCAT	FION:	Duffy Ho	llow Road
GROUN	DWA	TER:					CAS.	SAMPLER	CORE	TUBE	GROUND ELEV	ATION:	NA	
DATE	TI	ME	LE	EVEL	TYPE	TYPE		Macrocore			DATE STARTED):	4/12/06	
						DIA.		2"			DATE FINISHED):	4/12/06	
						WT.					DRILLER:		Jud Pow	ell
						FALL					GEOLOGIST:		John Boy	/d
						* POC	KET PE	NETROMETE	R REA	DING	REVIEWED BY:			
				SAMP	PLE			D	ESCRIF	PTION				
DEPTH									MATER	IAL			RE	MARKS
FEET	STR	ΑΤΑ	NO.	TYPE	RECOVERY %	COLOR		D	ESCRIF	PTION		USCS	PID	MOISTURE
	ļ	ļ				Brown	0-0.3'. S	ILT, some or	ganics a	and fme	ed. Gravel,	GM	0 ppm	moist
	9	p	1	Macro	69%			trace sand.						
				Core			0.3-4.0'.	Clayey SILT,	some f	-med. G	ravel and	GM	0 ppm	moist
	916	IIIII				•		med. Sand.						
5														
							Terminat	te boring at 4	BCS					
10							Termina	le bonng at 4	000					
10														
20														
25														
30														
35														
- 55														
	NTO	Geo	nrohe	5400	ing a 4' v 3"	macrocor	e to a de	nth of A' RCS				1117/6	35 00000)
Soil van	or im	lant i	install	ed at 4 0	"' has (see w	all constru	uction dia	aram)			BORING NO	902004	-\/-4.9	,
					- 290 (000 W			3.2.1.1.				552004	. +0	

				l	JRS Co l	rporat	ion				TEST BOR	RING	LOG	
											BORING NO:	902004	-V-5S	
PROJE	CT:		Wells	sville Va	apor Intrusio	on Invest	igation				SHEET:	1 of 1		
CLIENT	:		NYS	DEC							JOB NO.:		1117463	5.00000
BORING	G CO	NTRA	CTOP	र:	GeoLogic N	NY, Inc.					BORING LOCA	FION:	La Due I	Residence
GROUN	DW/	ATER:					CAS.	SAMPLER	CORE	TUBE	GROUND ELEV	ATION:	NA	
DATE	Т	ME	LE	EVEL	TYPE	TYPE		Macrocore			DATE STARTED):	4/12/06	
						DIA.		2"			DATE FINISHED):	4/12/06	
						WT.					DRILLER:		Jud Pow	ell
						FALL					GEOLOGIST:		John Bo	yd
						* POC		NETROMETE	ER REA	DING	REVIEWED BY:			
			1	SAMF	PLE			D	ESCRIF	PTION		1		
DEPTH									MATER	IAL			RE	MARKS
FEET	ST	RATA	NO.	TYPE	RECOVERY %	COLOR		D	ESCRIF	PTION		USCS	PID	MOISTURE
	ļ	႞႞႞				Brown	0-0.3'. S	ILT, some or	ganics a	and fine	gravel,	GM	0 ppm	moist
	4	o p	1	Macro	73%	light		trace sand.						
	þ	9 9		Core		brown	0.3-2.5'.	Clayey SILT	, some s	sand and	d f-med gravel	GM	0 ppm	moist
	МП	1111					2.5-4.0'.	SILT and fr	ned. gra	avel, tr. s	and	GM	0 ppm	moist
5														
							Terminat	te horing at 4	BGS					
10							rennina	to borning at 4	000					
10														
20														
25														
20														
30														
35														
COMME	NTS	: Geo	probe	5400 us	ing a 4' x 3"	macrocor	e to a de	pth of 4' BGS	S.		PROJECT NO.	111746	35.0000)
Soil vap	or im	plant	installe	ed at 4.0	bgs (see w	ell constru	uction dia	gram).			BORING NO.	902004	-V-5S	
		•			U (11 11			- /			_			

J:\11174635.00000\EXCEL\[Soil Gas Well Construction Logs.xls]902004-V-1D

J:\11174635.00000\EXCEL\[Soil Gas Well Construction Logs.xls]902004-V-1S

J:\11174635.00000\EXCEL\[Soil Gas Well Construction Logs.xls]902004-V-2S

J:\11174635.00000\EXCEL\[Soil Gas Well Construction Logs.xls]902004-V-3S

J:\11174635.00000\EXCEL\[Soil Gas Well Construction Logs.xls]902004-V-4S

J:\11174635.00000\EXCEL\[Soil Gas Well Construction Logs.xls]902004-V-5S

902004-SS-1A Wellsville-Andover Landfill Site

902004-SS-1B Wellsville-Andover Landfill Site

902004-BA-1 Wellsville-Andover Landfill Site

902004-FA-1 Wellsville-Andover Landfill Site

902004-SS-2 Wellsville-Andover Landfill Site

902004-BA-2 Wellsville-Andover Landfill Site

902004-FA-2 Wellsville-Andover Landfill Site

902004-OA-2 Wellsville-Andover Landfill Site

902004-OA-1 Wellsville-Andover Landfill Site

902004-V-4S Wellsville-Andover Landfill Site

902004-V-5S Wellsville-Andover Landfill Site

DATA USABILITY SUMMARY REPORT

WELLSVILLE-ANDOVER LANDFILL SITE NO. 9-02-004 WORK ASSIGNMENT D004433-2

Analyses Performed by:

PACE ANALYTICAL SERVICES, INC. and LIFE SCIENCE LABORATORIES, INC. - BRITTONFIELD

Prepared by:

URS CORPORATION 77 GOODELL STREET BUFFALO, NY 14203

JUNE 2006

TABLE OF CONTENTS

I.	INTRODUCTION	1
II.	ANALYTICAL METHODOLOGIES	1
III.	DATA DELIVERABLE COMPLETENESS	2
IV.	HOLDING TIMES/SAMPLE RECEIPT	2
V.	NONCONFORMANCES	3
VI.	SUMMARY	4

TABLES

(Following Text)

Table 1	Summary of Data Qualifications
Table 2	Validated Air Sample Analytical Results
Table 3	Validated Groundwater Sample Analytical Results
Table 4	Validated Groundwater Field QC Sample Analytical Results

ATTACHMENTS

Attachment A Support Documentation

Attachment B Validated Form I's

I. INTRODUCTION

This Data Usability Summary Report (DUSR) has been prepared following the guidelines provided in New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation *Guidance for the Development of Data Usability Summary Reports*, dated June 1999. Analytical data for the soil gas, sub-slab, indoor and ambient air samples collected on April 13 and 28, 2006 are discussed in this DUSR. Analytical data for the groundwater samples collected on April 11 and 13, 2006 are also discussed in this DUSR.

II. ANALYTICAL METHODOLOGIES

The air data being evaluated are from the April 13 and April 28, 2006 sampling of 7 indoor air samples, 2 sub-slab air samples, 2 soil gas samples, 3 ambient air samples, and 3 field duplicates. The analytical laboratory that performed the analyses is Pace Analytical Services, Inc., located in Minneapolis, MN. The samples were analyzed for volatile organic compounds (VOCs) following USEPA Compendium Method TO-15, *Determination of VOCs in Air Collected in Specially Prepared Canisters and Analyzed By Gas Chromatography/Mass Spectrometry (GC/MS)*. The canister containing sample 902004-SS-1B was cross-contaminated with a calibration standard mix by the laboratory. Once this occurred, it was not possible to report any valid results for this sample. Selective ion monitoring (SIM) TO-15 analysis for trichloroethene (TCE) only was performed on those indoor and ambient air samples that showed TCE as being non-detect by standard Method TO-15.

The groundwater data being evaluated are from the April 11 and 13, 2006 sampling of 3 groundwater samples, 1 field duplicate, 1 matrix spike/matrix spike duplicate (MS/MSD) pair, and 1 trip blank. The analytical laboratory that performed the analyses is Life Science Laboratories, Inc. - Brittonfield located in East Syracuse, NY. The groundwater samples were analyzed for volatile organic compounds (VOCs) following USEPA Method 8260B.

A limited data validation was performed on the samples following the guidelines in USEPA Region II Validating Canisters of Volatile Organics in Ambient Air, Rev. 0, April 1994, and USEPA Region II Standard Operating Procedure for the Validation of Organic Data Acquired using SW-846 *Method* 8260B, SOP HW-24, Revision 1, June 1999. The validation consisted of a review of the deliverable completeness, quality control problems, and verification of sample results.

Qualifications applied to the data include 'J' (estimated concentration), 'UJ' (estimated quantitation limit), and 'R' (rejected). Documentation supporting the qualification of data is presented in Attachment A. Copies of the validated laboratory results (i.e., Form I's) are presented in Attachment B. Only problems affecting data usability are discussed in this report.

Table 1 summarizes the qualifications applied to the sample results. The validated analytical results are presented on Tables 2, 3, and 4.

III. DATA DELIVERABLE COMPLETENESS

Full deliverable data packages (i.e., NYSDEC ASP Category B or equivalent) were provided by the laboratories, and included all reporting forms and raw data necessary to fully evaluate and verify the reported analytical results.

IV. HOLDING TIMES/SAMPLE RECEIPT

All samples were received by the laboratories intact and under proper chain-of-custody.

Several air samples were analyzed outside of the USEPA Region II technical holding time for polar volatile organic compounds [i.e., acetone, 2-butanone (MEK), 4-methyl-2-pentanone (MIBK), and 2-hexanone], which is 7-days from the validated time of sample receipt (VTSR). The results for these compounds in the affected samples listed on Table 1 have been qualified 'J' or 'UJ'. Some of the samples listed on Table 1 were also analyzed outside of the USEPA Region II 14-day (from VTSR) technical holding time for other compounds. The results for the affected compounds in these samples were qualified 'J' or 'UJ'. It should be noted that all samples were analyzed within the holding time specified in the analytical method (i.e, < 30 days from sample collection).

V. NONCONFORMANCES

• Initial Calibrations

The average relative response factors (RRF) for acetone, methyl acetate, 2-butanone, and 2-hexanone were below 0.05 in the initial calibration (ICAL) standards associated with all groundwater samples and the associated trip blank. The detected result for acetone in sample 902004-GW-3 has been qualified 'J'. All other sample results for these compounds were non-detect and have been qualified 'R'.

• Continuing Calibrations

The percent difference (%D) between the ICAL average RRF and the RRF in one of the continuing calibration (CCAL) standards associated with the air samples exceeded the QC limit of 25%D for 1,1-dichlorethene and ethyl acetate. The results for these compounds in the associated air samples listed on Table1 have been qualified 'UJ'.

• Laboratory Control Samples

The recovery percentage of hexachloro-1, 3-butadiene was below the lower QC limit of 50% in one of the laboratory control samples associated with the air samples. The nondetect results for hexachloro-1,3-butadiene in the associated air samples listed on Table 1 have been qualified 'UJ'.

• Surrogate Compounds

The recovery percentage of surrogate hexane-d14 was above the QC limit of 130 in air sample 902004-BA-1. The recovery of surrogate 1,4-dichlorobenzene-d4 was above the QC limit of 130% in samples 902004-SS-2 and 902004-OA-2. The results for the detected compounds in these samples have been qualified 'J'.

The recovery percentage of surrogate hexane-d14 was below the QC limit of 70% in sample 902004-V-5S. The results for all compounds in this sample have been qualified 'J' or 'UJ'.

VI. SUMMARY

All sample analyses were found to be compliant with the method criteria, except where previously noted. Those results qualified 'J' (estimated) or 'UJ' (estimated quantitation limit) are considered conditionally usable. Those results qualified 'R' (rejected) are not usable. All other sample results are usable as reported. URS does not recommend the re-collection of any samples at this time.

Prepared By:	Ann Marie Kropovitch, Chemist	Date:
Reviewed By:	James J. Lehnen, Senior Chemist	Date:

DEFINITIONS OF USEPA REGION II DATA QUALIFIERS

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- D The sample results are reported from a separate secondary dilution analysis.
- NJ Presumptive evidence of a compound at an estimated value.

TABLE 1

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	FRACTION	ANALYTICAL	QUALIFICATION
Groundwater samples 902004- GW-3, 2060411-FD-1 (902004- GW-2), 902004-GW-6, Trip Blank, and 902004-GW-3	VOCs	ICAL RRF < 0.05 for acetone, methyl acetate, 2- butanone, 2-hexanone.	Qualify detects 'J' and non-detects 'R'.
Air samples 902004-CS-3, 20060427-FD-3 (902004-CS- 3), 902004-FA-3, 902004-OA- 3, 902004-BA-2, 20060413- FD-1 (902004-SS-2), 20060413-FD-2 (902004-V-5S)	VOCs	Analyzed outside of the 7-day (from VTSR) technical holding time for polar compounds.	Qualify detects 'J' and non-detects 'UJ'.
Air sample 902004-SS-1A	VOCs	Analyzed outside of the 7-day (from VTSR) technical holding time for polar compounds and 14-day technical holding time for all compounds analyzed on 5/4/06 (acetone, 2-butanone, ethyl acetate, tetrahydrofuran, toluene, 1,2,4- trimethylbenzene, total xylene).	Qualify detects 'J' and non-detects 'UJ'.
Air samples 902004-BA-1, 902004-FA-1, 902004-OA-1, 902004-SS-2, 902004-BA-2, 902004-OA-2, 902004-SS-2 DUP, 902004-OA-3, 902004- FA-3	VOCs	Analyzed outside the 14 day technical holding time for TCE by SIM TO-15 analysis	Qualify detects 'J'.
902004-OA-1	VOCs	Analyzed outside the 14-day technical holding time (from VTSR).	Qualify detects 'J' and non-detects 'UJ'.
Air samples 902004-CS-3, 20060427-FD-3 (902004-CS- 3), 902004-SS-1A, 902004-BA- 2, 20060413-FD-1 (902004-SS- 2), 20060413-FD-2 (902004-V- 5S)	VOCs	%R of hexachloro-1,3- butadiene < QC limit of 50% in LCS	Qualify non-detects 'UJ'.
Air samples 902004-FA-3, 902004-OA-3	VOCs	CCAL %D > 25% for 1,1- dichlorethene and ethyl acetate	Qualify non-detect results 'UJ'.
Air sample 902004-BA-1	VOCs	%R of surrogate hexane-d14 > QC limit.	Qualify detects 'J'.
Air sample 902004-SS-2 and 902004-OA-2	VOCs	%R of surrogate 1,4- dichlorobenzene-d4 > QC limit.	Qualify detects 'J'.
Air sample 902004-V-5S	VOCs	%R of surrogate hexane-d14	Qualify detects 'J' and
TABLE 1

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	FRACTION	ANALYTICAL DEVIATION	QUALIFICATION
		< QC limit.	non-detects 'UJ'.

ATTACHMENT A

SUPPORT DOCUMENTATION

Location ID		H-001	H-001	H-001	H-001	H-002
Sample ID		902004-OA-1	902004-BA-1	902004-FA-1	902004-SS-1A	902004-OA-2
Matrix		Ambient Air	Indoor Air	Indoor Air	Sub-Slab Air	Ambient Air
Depth Interval (ft)		-	-	-	-	-
Date Sampled	-	04/13/06	04/13/06	04/13/06	04/13/06	04/13/06
Parameter	Units		(2-2)			
Volatile Organic Compounds						
1,1,1-Trichloroethane	UG/M3	2.9 UJ	1.9 J	4.4	1.5 U	1.7 U
1,1,2,2-Tetrachloroethane	UG/M3	3.7 UJ	1.9 U	2.0 U	1.9 U	2.2 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/M3	4.2 UJ	2.1 U	2.3 U	2.2 U	2.5 U
1,1,2-Trichloroethane	UG/M3	2.9 UJ	1.5 U	1.6 U	1.5 U	1.7 U
1,1-Dichloroethane	UG/M3	2.2 UJ	1.1 U	1.2 U	1.1 U	1.3 U
1,1-Dichloroethene	UG/M3	2.1 UJ	1.1 U	1.2 U	1.1 U	1.2 U
1,2,4-Trichlorobenzene	UG/M3	2.6 UJ	1.3 U	1.4 U	1.4 U	1.5 U
1,2,4-Trimethylbenzene	UG/M3	6.6 UJ	6.4 J	3.6 U	211 J	3.8 U
1,2-Dibromoethane (Ethylene dibromide)	UG/M3	4.2 UJ	2.1 U	2.3 U	2.2 U	2.5 U
1,2-Dichlorobenzene	UG/M3	3.2 UJ	1.6 U	1.7 U	1.7 U	1.8 U
1,2-Dichloroethane	UG/M3	2.2 UJ	1.1 U	1.2 U	2.6	1.3 U
1,2-Dichloroethene (cis)	UG/M3	2.1 UJ	1.1 U	1.2 U	5.1	1.2 U
1,2-Dichloroethene (trans)	UG/M3	2.1 UJ	1.1 U	1.2 U	1.1 U	1.2 U
1,2-Dichloropropane	UG/M3	2.5 UJ	1.3 U	1.3 U	1.3 U	1.4 U
1,2-Dichlorotetrafluoroethane	UG/M3	3.7 UJ	1.9 U	2.0 U	1.9 U	2.2 U
1,3,5-Trimethylbenzene (Mesitylene)	UG/M3	6.6 UJ	3.4 U	3.6 U	48.6	3.8 U
1,3-Butadiene	UG/M3	1.2 UJ	0.60 U	0.64 U	0.62 U	0.69 U
1,3-Dichlorobenzene	UG/M3	3.2 UJ	1.6 U	1.7 U	1.7 U	1.8 U
1,3-Dichloropropene (cis)	UG/M3	2.4 UJ	1.2 U	1.3 U	1.3 U	1.4 U
1,3-Dichloropropene (trans)	UG/M3	2.4 UJ	1.2 U	1.3 U	1.3 U	1.4 U
1,4-Dichlorobenzene	UG/M3	3.2 UJ	1.6 U	1.7 U	19.0	1.8 U
2-Hexanone	UG/M3	2.2 UJ	1.1 U	1.2 U	1.1 UJ	1.3 U
4-Ethyltoluene	UG/M3	6.6 UJ	3.4 U	3.6 U	59.7	3.8 U

Flags assigned during chemistry validation are shown.

Location ID		H-001	H-001	H-001	H-001	H-002
Sample ID		902004-OA-1	902004-BA-1	902004-FA-1	902004-SS-1A	902004-OA-2
Matrix		Ambient Air	Indoor Air	Indoor Air	Sub-Slab Air	Ambient Air
Depth Interval (ft)		-	-	-	-	-
Date Sampled	<u>_</u>	04/13/06	04/13/06	04/13/06	04/13/06	04/13/06
Parameter	Units		(2-2)			
Volatile Organic Compounds						
4-Methyl-2-pentanone	UG/M3	2.2 UJ	1.1 U	1.2 U	37.0 J	1.3 U
Acetone	UG/M3	29.5 J	13.3 J	1.2	163 J	12.7 J
Benzene	UG/M3	1.7 UJ	2.6 J	2.3	36.9	1.0 U
Bromodichloromethane	UG/M3	3.7 UJ	1.9 U	2.0 U	1.9 U	2.2 U
Bromoform	UG/M3	5.5 UJ	2.8 U	3.0 U	2.9 U	3.2 U
Bromomethane	UG/M3	2.1 UJ	1.1 U	1.1 U	1.1 U	1.2 U
Carbon disulfide	UG/M3	1.7 UJ	0.84 U	0.90 U	34.0	0.97 U
Carbon tetrachloride	UG/M3	3.4 UJ	1.7 U	1.9 U	1.8 U	2.0 U
Chlorobenzene	UG/M3	2.5 UJ	1.3 U	1.3 U	1.3 U	1.4 U
Chloroethane	UG/M3	1.4 UJ	0.72 U	1.3	0.75 U	0.83 U
Chloroform	UG/M3	2.6 UJ	1.3 U	1.4 U	1.4 U	1.5 U
Chloromethane	UG/M3	1.1 UJ	0.56 U	0.60 U	0.58 U	0.65 U
Cyclohexane	UG/M3	1.8 UJ	0.91 U	0.97 U	0.94 U	1.0 U
Dibromochloromethane	UG/M3	4.5 UJ	2.3 U	2.4 U	2.3 U	2.6 U
Dichlorodifluoromethane	UG/M3	2.8 J	2.7 J	3.4	2.1	3.1 J
Ethyl acetate	UG/M3	1.9 UJ	0.98 U	1.0 U	207 J	1.1 U
Ethylbenzene	UG/M3	2.3 UJ	30.1 J	2.0	81.1	1.4 U
Heptane	UG/M3	2.2 UJ	3.1 J	1.2 U	1.1 U	1.3 U
Hexachlorobutadiene	UG/M3	5.8 UJ	2.9 U	3.1 U	3.0 UJ	3.4 U
Hexane	UG/M3	1.9 UJ	12.7 J	5.1	94.9	1.1 U
Methyl ethyl ketone (2-Butanone)	UG/M3	14.5 J	10.5 J	0.86 U	377 J	2.9 J
Methyl tert-butyl ether	UG/M3	1.9 UJ	0.98 U	1.0 U	1.0 U	1.1 U
Methylene chloride	UG/M3	13.9 J	3.8 J	2.5	12.3	1.1 U

Flags assigned during chemistry validation are shown.

Location ID		H-001	H-001	H-001	H-001	H-002
Sample ID		902004-OA-1	902004-BA-1	902004-FA-1	902004-SS-1A	902004-OA-2
Matrix		Ambient Air	Indoor Air	Indoor Air	Sub-Slab Air	Ambient Air
Depth Interval (ft)		-	-	-	-	-
Date Sampled		04/13/06	04/13/06	04/13/06	04/13/06	04/13/06
Parameter	Units		(2-2)			
Volatile Organic Compounds						
Naphthalene	UG/M3	7.1 UJ	7.5 J	3.9 U	78.2	4.2 U
Propylene	UG/M3	0.92 UJ	0.47 U	0.50 U	0.48 U	0.54 U
Styrene	UG/M3	2.3 UJ	1.2 U	1.2 U	22.2	1.3 U
Tetrachloroethene	UG/M3	3.7 UJ	1.9 U	3.7	3.5	2.2 U
Tetrahydrofuran	UG/M3	1.6 UJ	0.80 U	0.86 U	118 J	0.92 U
Toluene	UG/M3	5.9 J	19.8 J	22.8	342 J	2.3 J
Trichloroethene	UG/M3	0.169 J	2.68 J	0.12 J	5.3	0.0983 J
Trichlorofluoromethane	UG/M3	2.9 UJ	2.6 J	3.9	2.1	1.7 U
Vinyl acetate	UG/M3	1.9 UJ	0.95 U	1.0 U	0.98 U	1.1 U
Vinyl chloride	UG/M3	1.4 UJ	0.70 U	0.74 U	0.72 U	0.80 U
Xylene (total)	UG/M3	4.6 UJ	169 J	11.4	581 J	2.7 U

Flags assigned during chemistry validation are shown.

Location ID		H-002	H-002	H-002	H-002	H-003
Sample ID		902004-SS-2-DUP	902004-BA-2	902004-FA-2	902004-SS-2	902004-OA-3
Matrix		Sub-Slab Air	Indoor Air	Indoor Air	Sub-Slab Air	Ambient Air
Depth Interval (ft)		-	-	-	-	-
Date Sampled	_	04/13/06	04/13/06	04/13/06	04/13/06	04/28/06
Parameter	Units	Field Duplicate (1-1)	(2-2)			
Volatile Organic Compounds						
1,1,1-Trichloroethane	UG/M3	1.6 U	1.6 U	1.1 U	1.5 U	1.6 U
1,1,2,2-Tetrachloroethane	UG/M3	2.0 U	2.0 U	1.4 U	1.9 U	2.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/M3	2.3 U	2.3 U	1.6 U	2.2 U	2.3 U
1,1,2-Trichloroethane	UG/M3	1.6 U	1.6 U	1.1 U	1.5 U	1.6 U
1,1-Dichloroethane	UG/M3	1.2 U	1.2 U	0.82 U	1.1 U	1.2 U
1,1-Dichloroethene	UG/M3	1.2 U	1.2 U	0.81 U	1.1 U	1.2 UJ
1,2,4-Trichlorobenzene	UG/M3	1.4 U	1.4 U	0.99 U	1.4 U	1.4 U
1,2,4-Trimethylbenzene	UG/M3	18.3	24.3	17.0	14.9 J	14.0
1,2-Dibromoethane (Ethylene dibromide)	UG/M3	2.3 U	2.3 U	1.6 U	2.2 U	2.3 U
1,2-Dichlorobenzene	UG/M3	1.7 U	1.7 U	1.2 U	1.7 U	1.7 U
1,2-Dichloroethane	UG/M3	1.2 U	1.2 U	0.82 U	1.1 U	1.2 U
1,2-Dichloroethene (cis)	UG/M3	1.2 U	1.2 U	0.81 U	1.1 U	1.2 U
1,2-Dichloroethene (trans)	UG/M3	1.2 U	1.2 U	0.81 U	1.1 U	1.2 U
1,2-Dichloropropane	UG/M3	1.3 U	1.3 U	0.94 U	1.3 U	1.3 U
1,2-Dichlorotetrafluoroethane	UG/M3	5.4	5.9	1.4 U	1.9 U	2.0 U
1,3,5-Trimethylbenzene (Mesitylene)	UG/M3	5.3	6.7	6.6	7.0 J	3.6 U
1,3-Butadiene	UG/M3	0.64 U	0.64 U	0.45 U	0.62 U	0.64 U
1,3-Dichlorobenzene	UG/M3	1.7 U	1.7 U	2.3	1.7 U	1.7 U
1,3-Dichloropropene (cis)	UG/M3	1.3 U	1.3 U	0.92 U	1.3 U	1.3 U
1,3-Dichloropropene (trans)	UG/M3	1.3 U	1.3 U	0.92 U	1.3 U	1.3 U
1,4-Dichlorobenzene	UG/M3	1.7 U	1.7 U	2.7	1.7 U	1.7 U
2-Hexanone	UG/M3	1.2 UJ	1.2 UJ	0.83 U	1.1 U	1.2 UJ
4-Ethyltoluene	UG/M3	5.1	7.0	6.7	4.3 J	3.6 U

Flags assigned during chemistry validation are shown.

Location ID		H-002	H-002	H-002	H-002	H-003
Sample ID		902004-SS-2-DUP	902004-BA-2	902004-FA-2	902004-SS-2	902004-OA-3
Matrix		Sub-Slab Air	Indoor Air	Indoor Air	Sub-Slab Air	Ambient Air
Depth Interval (ft)		-	-	-	-	-
Date Sampled		04/13/06	04/13/06	04/13/06	04/13/06	04/28/06
Parameter	Units	Field Duplicate (1-1)	(2-2)			
Volatile Organic Compounds						
4-Methyl-2-pentanone	UG/M3	1.2 UJ	1.2 UJ	0.83 U	1.1 U	1.2 UJ
Acetone	UG/M3	40.0 J	40.3 J	33.8	82.5 J	1.8 J
Benzene	UG/M3	20.0	25.5	14.0	12.0 J	0.93 U
Bromodichloromethane	UG/M3	2.0 U	2.0 U	1.4 U	1.9 U	2.0 U
Bromoform	UG/M3	19.6	3.0 U	2.1 U	2.9 U	3.0 U
Bromomethane	UG/M3	6.9	1.1 U	0.79 U	1.1 U	1.1 U
Carbon disulfide	UG/M3	10.7	1.2	0.63 U	19.3 J	0.90 U
Carbon tetrachloride	UG/M3	1.9 U	1.9 U	1.3 U	1.8 U	1.9 U
Chlorobenzene	UG/M3	1.3 U	1.3 U	0.94 U	1.3 U	1.3 U
Chloroethane	UG/M3	0.77 U	0.77 U	0.54 U	0.75 U	0.77 U
Chloroform	UG/M3	1.4 U	1.4 U	0.99 U	1.4 U	1.4 U
Chloromethane	UG/M3	0.60 U	0.60 U	0.42 U	0.58 U	0.60 U
Cyclohexane	UG/M3	3.2	0.97 U	0.68 U	16.7 J	0.97 U
Dibromochloromethane	UG/M3	2.4 U	2.4 U	1.7 U	2.3 U	2.4 U
Dichlorodifluoromethane	UG/M3	87.5	96.4	73.5	44.9 J	1.8
Ethyl acetate	UG/M3	1.4	7.6	0.73 U	1.0 U	1.0 UJ
Ethylbenzene	UG/M3	12.3	16.2	13.2	7.1 J	1.3 U
Heptane	UG/M3	1.2 U	1.2 U	17.9	35.7 J	1.2 U
Hexachlorobutadiene	UG/M3	3.1 UJ	3.1 UJ	2.2 U	3.0 U	3.1 U
Hexane	UG/M3	19.1	25.6	20.8	37.4 J	1.0 U
Methyl ethyl ketone (2-Butanone)	UG/M3	10.0 J	14.9 J	9.8	18.7 J	0.86 UJ
Methyl tert-butyl ether	UG/M3	1.0 U	1.0 U	0.73 U	1.0 U	1.0 U
Methylene chloride	UG/M3	1.0 U	1.0 U	0.71 U	3.3 J	1.0 U

Flags assigned during chemistry validation are shown.

Location ID		H-002	H-002	H-002	H-002	H-003
Sample ID		902004-SS-2-DUP	902004-BA-2	902004-FA-2	902004-SS-2	902004-OA-3
Matrix		Sub-Slab Air	Indoor Air	Indoor Air	Sub-Slab Air	Ambient Air
Depth Interval (ft)		-	-	-	-	-
Date Sampled		04/13/06	04/13/06	04/13/06	04/13/06	04/28/06
Parameter	Units	Field Duplicate (1-1)	(2-2)			
Volatile Organic Compounds						
Naphthalene	UG/M3	20.4	20.9	11.8	7.9 J	62.7
Propylene	UG/M3	0.50 U	0.50 U	0.35 U	0.48 U	0.50 U
Styrene	UG/M3	2.4	3.2	9.1	1.2 U	1.2 U
Tetrachloroethene	UG/M3	2.0 U	2.0 U	3.2	1.9 U	2.0 U
Tetrahydrofuran	UG/M3	0.86 U	11.8	0.60 U	0.83 U	0.86 U
Toluene	UG/M3	69.2	87.5	64.6	41.5 J	1.1 U
Trichloroethene	UG/M3	0.186 J	0.213 J	5.4	0.142 J	0.118 J
Trichlorofluoromethane	UG/M3	9.0	9.6	35.1	6.2 J	1.6 U
Vinyl acetate	UG/M3	1.0 U	1.0 U	0.71 U	0.98 U	1.0 U
Vinyl chloride	UG/M3	0.74 U	0.74 U	0.52 U	0.72 U	0.74 U
Xylene (total)	UG/M3	62.2	82.0	64.7	45.9 J	2.5 U

Flags assigned during chemistry validation are shown.

Location ID		H-003	H-003	H-003	V-04S	V-05S
Sample ID		20060427-CS-3-DUP	902004-CS-3	902004-FA-3	902004-V-4S	902004-V-5S
Matrix		Indoor Air	Indoor Air	Indoor Air	Soil Gas	Soil Gas
Depth Interval (ft)		-	-	-	-	-
Date Sampled	Ē	04/28/06	04/28/06	04/28/06	04/13/06	04/13/06
Parameter	Units	Field Duplicate (2-2)	(2-2)			
Volatile Organic Compounds						
1,1,1-Trichloroethane	UG/M3	1.5 U	1.6 U	1.9 U	1.7 U	2.1 J
1,1,2,2-Tetrachloroethane	UG/M3	1.9 U	2.0 U	2.4 U	2.2 U	1.9 UJ
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/M3	2.2 U	2.3 U	2.8 U	2.5 U	2.2 UJ
1,1,2-Trichloroethane	UG/M3	1.5 U	1.6 U	1.9 U	1.7 U	1.5 UJ
1,1-Dichloroethane	UG/M3	1.1 U	1.2 U	1.4 U	1.3 U	1.1 UJ
1,1-Dichloroethene	UG/M3	1.1 U	1.2 U	1.4 UJ	1.3 U	1.1 UJ
1,2,4-Trichlorobenzene	UG/M3	1.4 U	1.4 U	1.7 U	1.6 U	1.4 UJ
1,2,4-Trimethylbenzene	UG/M3	3.4 U	3.6 U	5.2	5.0	3.7 J
1,2-Dibromoethane (Ethylene dibromide)	UG/M3	2.2 U	2.3 U	2.8 U	2.5 U	2.2 UJ
1,2-Dichlorobenzene	UG/M3	1.7 U	1.7 U	2.1 U	1.9 U	1.7 UJ
1,2-Dichloroethane	UG/M3	1.1 U	1.2 U	1.4 U	1.3 U	1.1 UJ
1,2-Dichloroethene (cis)	UG/M3	1.1 U	1.2 U	1.4 U	1.3 U	1.1 UJ
1,2-Dichloroethene (trans)	UG/M3	1.1 U	1.2 U	1.4 U	1.3 U	1.1 UJ
1,2-Dichloropropane	UG/M3	1.3 U	1.3 U	1.6 U	1.5 U	1.3 UJ
1,2-Dichlorotetrafluoroethane	UG/M3	1.9 U	2.0 U	2.4 U	2.2 U	1.9 UJ
1,3,5-Trimethylbenzene (Mesitylene)	UG/M3	3.4 U	3.6 U	4.3 U	4.0 U	3.4 UJ
1,3-Butadiene	UG/M3	0.62 U	0.64 U	0.78 U	0.72 U	0.62 UJ
1,3-Dichlorobenzene	UG/M3	1.7 U	1.7 U	2.1 U	1.9 U	1.7 UJ
1,3-Dichloropropene (cis)	UG/M3	1.3 U	1.3 U	1.6 U	1.5 U	1.3 UJ
1,3-Dichloropropene (trans)	UG/M3	1.3 U	1.3 U	1.6 U	1.5 U	1.3 UJ
1,4-Dichlorobenzene	UG/M3	1.7 U	1.7 U	2.1 U	1.9 U	1.7 UJ
2-Hexanone	UG/M3	1.1 UJ	1.2 UJ	1.4 UJ	1.3 U	1.1 UJ
4-Ethyltoluene	UG/M3	3.4 U	3.6 U	4.3 U	4.0 U	3.4 UJ

Flags assigned during chemistry validation are shown.

Location ID		H-003	H-003	H-003	V-04S	V-05S
Sample ID		20060427-CS-3-DUP	902004-CS-3	902004-FA-3	902004-V-4S	902004-V-5S
Matrix		Indoor Air	Indoor Air	Indoor Air	Soil Gas	Soil Gas
Depth Interval (ft)		-	-	-	-	-
Date Sampled		04/28/06	04/28/06	04/28/06	04/13/06	04/13/06
Parameter	Units	Field Duplicate (2-2)	(2-2)			
Volatile Organic Compounds						
4-Methyl-2-pentanone	UG/M3	1.1 UJ	1.2 UJ	1.4 UJ	1.3 U	3.6 J
Acetone	UG/M3	2.6 J	3.3 J	29.4 J	13.9	17.2 J
Benzene	UG/M3	0.90 U	0.93 U	1.1 U	3.2	5.1 J
Bromodichloromethane	UG/M3	1.9 U	2.0 U	2.4 U	2.2 U	1.9 UJ
Bromoform	UG/M3	2.9 U	3.0 U	3.6 U	3.3 U	2.9 UJ
Bromomethane	UG/M3	1.1 U	1.1 U	1.4 U	1.3 U	1.1 UJ
Carbon disulfide	UG/M3	0.87 U	0.90 U	1.1 U	1.0 U	12.9 J
Carbon tetrachloride	UG/M3	1.8 U	1.9 U	2.6	2.1 U	1.8 UJ
Chlorobenzene	UG/M3	1.3 U	1.3 U	1.6 U	1.5 U	1.3 UJ
Chloroethane	UG/M3	0.75 U	0.77 U	0.93 U	0.86 U	0.75 UJ
Chloroform	UG/M3	1.4 U	1.4 U	1.7 U	1.6 U	1.4 UJ
Chloromethane	UG/M3	0.58 U	0.60	0.73 U	0.67 U	0.58 UJ
Cyclohexane	UG/M3	0.94 U	0.97 U	1.2 U	1.1 U	0.94 UJ
Dibromochloromethane	UG/M3	2.3 U	2.4 U	2.9 U	2.7 U	2.3 UJ
Dichlorodifluoromethane	UG/M3	2.1	1.7	2.4	2.4	2.0 J
Ethyl acetate	UG/M3	1.0 U	1.0 U	1.3 UJ	1.2 U	1.0 UJ
Ethylbenzene	UG/M3	1.2 U	1.3 U	3.1	3.6	2.6 J
Heptane	UG/M3	1.1 U	1.2 U	3.3	1.3 U	6.0 J
Hexachlorobutadiene	UG/M3	3.0 UJ	3.1 UJ	3.8 U	3.5 U	3.0 UJ
Hexane	UG/M3	0.99 U	1.0 U	1.2 U	1.1 U	5.2 J
Methyl ethyl ketone (2-Butanone)	UG/M3	1.3 J	3.1 J	12.9 J	6.1	6.1 J
Methyl tert-butyl ether	UG/M3	1.0 U	1.0 U	1.3 U	1.2 U	1.0 UJ
Methylene chloride	UG/M3	0.98 U	7.5	1.2 U	1.1 U	1.4 J

Flags assigned during chemistry validation are shown.

Location ID		H-003	H-003	H-003	V-04S	V-05S
Sample ID		20060427-CS-3-DUP	902004-CS-3	902004-FA-3	902004-V-4S	902004-V-5S
Matrix		Indoor Air	Indoor Air	Indoor Air	Soil Gas	Soil Gas
Depth Interval (ft)		-	-	-	-	-
Date Sampled	_	04/28/06	04/28/06	04/28/06	04/13/06	04/13/06
Parameter	Units	Field Duplicate (2-2)	(2-2)			
Volatile Organic Compounds						
Naphthalene	UG/M3	3.7 U	3.9 U	6.8	4.3 U	3.7 UJ
Propylene	UG/M3	0.48 U	0.50 U	0.77	0.56 U	0.48 UJ
Styrene	UG/M3	1.2 U	1.2 U	1.5 U	2.3	3.1 J
Tetrachloroethene	UG/M3	1.9 U	2.0 U	2.4 U	4.8	2.8 J
Tetrahydrofuran	UG/M3	0.83 U	0.86 U	1.0 U	0.95 U	0.83 UJ
Toluene	UG/M3	1.1 U	1.1 U	8.0	18.2	11.3 J
Trichloroethene	UG/M3	1.5 U	1.6 U	4.26 J	1.7 U	1.5 UJ
Trichlorofluoromethane	UG/M3	1.5 U	1.6 U	1.9 U	1.7 U	1.5 UJ
Vinyl acetate	UG/M3	0.98 U	1.0 U	1.2 U	1.1 U	0.98 UJ
Vinyl chloride	UG/M3	0.72 U	0.74 U	0.90 U	0.83 U	0.72 UJ
Xylene (total)	UG/M3	2.4 U	2.5 U	13.1	11.4	10.4 J

Flags assigned during chemistry validation are shown.

Location ID	V-05S	
Sample ID		902004-V-5S-DUP
Matrix	Soil Gas	
Depth Interval (ft)		-
Date Sampled		04/13/06
Parameter	Units	Field Duplicate (1-1)
Volatile Organic Compounds		
1,1,1-Trichloroethane	UG/M3	1.7 U
1,1,2,2-Tetrachloroethane	UG/M3	2.2 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/M3	2.5 U
1,1,2-Trichloroethane	UG/M3	1.7 U
1,1-Dichloroethane	UG/M3	1.3 U
1,1-Dichloroethene	UG/M3	1.2 U
1,2,4-Trichlorobenzene	UG/M3	1.5 U
1,2,4-Trimethylbenzene	UG/M3	14.7
1,2-Dibromoethane (Ethylene dibromide)	UG/M3	2.5 U
1,2-Dichlorobenzene	UG/M3	2.2
1,2-Dichloroethane	UG/M3	1.3 U
1,2-Dichloroethene (cis)	UG/M3	1.2 U
1,2-Dichloroethene (trans)	UG/M3	1.2 U
1,2-Dichloropropane	UG/M3	1.4 U
1,2-Dichlorotetrafluoroethane	UG/M3	2.2 U
1,3,5-Trimethylbenzene (Mesitylene)	UG/M3	3.8 U
1,3-Butadiene	UG/M3	0.69 U
1,3-Dichlorobenzene	UG/M3	1.8 U
1,3-Dichloropropene (cis)	UG/M3	1.4 U
1,3-Dichloropropene (trans)	UG/M3	1.4 U
1,4-Dichlorobenzene	UG/M3	1.8 U
2-Hexanone	UG/M3	1.3 UJ
4-Ethyltoluene	UG/M3	3.8 U

Flags assigned during chemistry validation are shown.

Location ID	V-05S	
Sample ID	902004-V-5S-DUP	
Matrix	Soil Gas	
Depth Interval (ft)	-	
Date Sampled		04/13/06
Parameter	Units	Field Duplicate (1-1)
Volatile Organic Compounds		
4-Methyl-2-pentanone	UG/M3	2.6 J
Acetone	UG/M3	73.4 J
Benzene	UG/M3	6.3
Bromodichloromethane	UG/M3	2.2 U
Bromoform	UG/M3	3.2 U
Bromomethane	UG/M3	1.2 U
Carbon disulfide	UG/M3	34.9
Carbon tetrachloride	UG/M3	2.0 U
Chlorobenzene	UG/M3	1.4 U
Chloroethane	UG/M3	0.83 U
Chloroform	UG/M3	1.5 U
Chloromethane	UG/M3	0.65 U
Cyclohexane	UG/M3	1.0 U
Dibromochloromethane	UG/M3	2.6 U
Dichlorodifluoromethane	UG/M3	1.5 U
Ethyl acetate	UG/M3	3.0
Ethylbenzene	UG/M3	4.5
Heptane	UG/M3	7.1
Hexachlorobutadiene	UG/M3	3.4 UJ
Hexane	UG/M3	9.2
Methyl ethyl ketone (2-Butanone)	UG/M3	14.1 J
Methyl tert-butyl ether	UG/M3	1.1 U
Methylene chloride	UG/M3	1.1 U

Flags assigned during chemistry validation are shown.

Location ID		V-05S
Sample ID		902004-V-5S-DUP
Matrix		Soil Gas
Location ID Sample ID Matrix Depth Interval (ft) Date Sampled Irameter Units Volatile Organic Compounds ug/M3 iphthalene ug/M3 opylene ug/M3 trachloroethene ug/M3 luene ug/M3 chloroethene ug/M3 upl chloride ug/M3		-
Date Sampled	_	04/13/06
Parameter	Units	Field Duplicate (1-1)
Volatile Organic Compounds		
Naphthalene	UG/M3	8.3
Propylene	UG/M3	6.0
Styrene	UG/M3	3.8
Tetrachloroethene	UG/M3	2.2 U
Tetrahydrofuran	UG/M3	3.5
Toluene	UG/M3	18.3
Trichloroethene	UG/M3	1.7 U
Trichlorofluoromethane	UG/M3	1.7 U
Vinyl acetate	UG/M3	1.1 U
Vinyl chloride	UG/M3	0.80 U
Xylene (total)	UG/M3	23.1

Flags assigned during chemistry validation are shown.

Location ID		GW-02	GW-02	GW-03	GW-06
Sample ID		20060411-FD-1	902004-GW-2	902004-GW-3	902004-GW-6
Matrix		Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-	-	-
Date Sampled		04/11/06	04/11/06	04/13/06	04/12/06
Parameter	Units	Field Duplicate (1-1)			
Volatile Organic Compounds					
1,1,1-Trichloroethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
1,2,4-Trichlorobenzene	UG/L	1 U	1 U	1 U	1 U
1,2-Dibromo-3-chloropropane	UG/L	1 U	1 U	1 U	1 U
1,2-Dibromoethane (Ethylene dibromide)	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichlorobenzene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethene (cis)	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethene (trans)	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloropropane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
1,3-Dichlorobenzene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
1,3-Dichloropropene (cis)	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
1,3-Dichloropropene (trans)	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
1,4-Dichlorobenzene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
2-Hexanone	UG/L	R	R	R	R
4-Methyl-2-pentanone	UG/L	5 U	5 U	5 U	5 U
Acetone	UG/L	R	R	6.05 J	R
Benzene	UG/L	0.11 J	0.5 U	0.5 U	0.5 U
Bromodichloromethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U

Flags assigned during chemistry validation are shown.

Location ID		GW-02	GW-02	GW-03	GW-06
Sample ID		20060411-FD-1	902004-GW-2	902004-GW-3	902004-GW-6
Matrix		Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-	-	-
Date Sampled	_	04/11/06	04/11/06	04/13/06	04/12/06
Parameter	Units	Field Duplicate (1-1)			
Volatile Organic Compounds					
Bromoform	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
Bromomethane	UG/L	1 U	1 U	1 U	1 U
Carbon disulfide	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
Carbon tetrachloride	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
Chloroethane	UG/L	1 U	1 U	1 U	1 U
Chloroform	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
Chloromethane	UG/L	1 U	1 U	1 U	1 U
Cyclohexane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
Dibromochloromethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
Dichlorodifluoromethane	UG/L	1 U	1 U	1 U	1 U
Ethylbenzene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
Isopropylbenzene (Cumene)	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
Methyl acetate	UG/L	R	R	R	R
Methyl ethyl ketone (2-Butanone)	UG/L	R	R	R	R
Methyl tert-butyl ether	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
Methylcyclohexane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
Methylene chloride	UG/L	2 U	2 U	2 U	2 U
Styrene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
Tetrachloroethene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
Toluene	UG/L	0.12 J	0.5 U	0.10 J	0.5 U
Trichloroethene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
Trichlorofluoromethane	UG/L	1 U	1 U	1 U	1 U

Flags assigned during chemistry validation are shown.

Location ID		GW-02	GW-02	GW-03	GW-06
Sample ID		20060411-FD-1	902004-GW-2	902004-GW-3	902004-GW-6
Matrix		Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-	-	-
Date Sampled	_	04/11/06	04/11/06	04/13/06	04/12/06
Parameter	Units	Field Duplicate (1-1)			
Volatile Organic Compounds					
Vinyl chloride	UG/L	1 U	1 U	1 U	1 U
Xylene (total)	UG/L	1 U	1 U	1 U	1 U

Flags assigned during chemistry validation are shown.

Made By AMK 6/5/06 Checked By 6/5/06

J:\11174635.00000\DB\Program\EDMS.mdk Printed: 6/5/2006 11:30:48 AM [LOGDATE] > #4/01/2006# AND [MATRIX] = 'WG'

ATTACHMENT B

VALIDATED FORM I's

J:\11174635.00000\WORD\DRAFT\Wellsville Air-GW Spring 06 DUSR.doc

Location ID		FIELDQC
Sample ID	Ocation ID FIELDQC Sample ID Trip Blank Matrix Water Quality th Interval (ft) - te Sampled 04/11/06 Trip Blank (1-1) - te Sampled 04/11/06 Units Trip Blank (1-1) ic Compounds UG/L 0.5 U UG/L 0.5 U 0.5 U uroethane UG/L 0.5 U UG/L 0.5 U	
Matrix		Water Quality
Depth Interval (ft)	Location ID FIELDQC Sample ID Trip Blank Matrix Water Quality Depth Interval (ft) - Date Sampled 04/11/06 eter Units Volatile Organic Compounds Image: Compounds ichloroethane UG/L 0.5 U Tetrachloroethane UG/L 0.5 U ichloroethane UG/L 0.5 U ichlorobenzene UG/L 1 U ormo-3-chloropropane UG/L 0.5 U ichoroethane UG/L 0.5 U	
Date Sampled		04/11/06
Parameter	Units	Trip Blank (1-1)
Volatile Organic Compounds		
1,1,1-Trichloroethane	UG/L	0.5 U
1,1,2,2-Tetrachloroethane	UG/L	0.5 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	0.5 U
1,1,2-Trichloroethane	UG/L	0.5 U
1,1-Dichloroethane	UG/L	0.5 U
1,1-Dichloroethene	UG/L	0.5 U
1,2,4-Trichlorobenzene	UG/L	1 U
1,2-Dibromo-3-chloropropane	UG/L	1 U
1,2-Dibromoethane (Ethylene dibromide)	UG/L	0.5 U
1,2-Dichlorobenzene	UG/L	0.5 U
1,2-Dichloroethane	UG/L	0.5 U
1,2-Dichloroethene (cis)	UG/L	0.5 U
1,2-Dichloroethene (trans)	UG/L	0.5 U
1,2-Dichloropropane	UG/L	0.5 U
1,3-Dichlorobenzene	UG/L	0.5 U
1,3-Dichloropropene (cis)	UG/L	0.5 U
1,3-Dichloropropene (trans)	UG/L	0.5 U
1,4-Dichlorobenzene	UG/L	0.5 U
2-Hexanone	UG/L	R
4-Methyl-2-pentanone	UG/L	5 U
Acetone	UG/L	R
Benzene	UG/L	0.5 U
Bromodichloromethane	UG/L	0.5 U

Flags assigned during chemistry validation are shown.

Location ID		FIELDQC
Sample ID		Trip Blank
Matrix		Water Quality
Depth Interval (ft)		-
Date Sampled		04/11/06
Parameter	Units	Trip Blank (1-1)
Volatile Organic Compounds		
Bromoform	UG/L	0.5 U
Bromomethane	UG/L	1 U
Carbon disulfide	UG/L	0.5 U
Carbon tetrachloride	UG/L	0.5 U
Chlorobenzene	UG/L	0.5 U
Chloroethane	UG/L	1 U
Chloroform	UG/L	0.5 U
Chloromethane	UG/L	1 U
Cyclohexane	UG/L	0.5 U
Dibromochloromethane	UG/L	0.5 U
Dichlorodifluoromethane	UG/L	1 U
Ethylbenzene	UG/L	0.5 U
Isopropylbenzene (Cumene)	UG/L	0.5 U
Methyl acetate	UG/L	R
Methyl ethyl ketone (2-Butanone)	UG/L	R
Methyl tert-butyl ether	UG/L	0.5 U
Methylcyclohexane	UG/L	0.5 U
Methylene chloride	UG/L	2 U
Styrene	UG/L	0.5 U
Tetrachloroethene	UG/L	0.5 U
Toluene	UG/L	0.5 U
Trichloroethene	UG/L	0.5 U
Trichlorofluoromethane	UG/L	1 U

Flags assigned during chemistry validation are shown.

Location ID		FIELDQC
Sample ID		Trip Blank
Matrix		Water Quality
Depth Interval (ft)		-
Date Sampled		04/11/06
Parameter	Units	Trip Blank (1-1)
Volatile Organic Compounds		
Vinyl chloride	UG/L	1 U
Xylene (total)	UG/L	1 U

Flags assigned during chemistry validation are shown.

Summa Canister Sampling Field Data Sheet

÷

3

				Sui
Site:	h	izlls	ville	, E
Sample	ers:	Jor	m B	Oyp
Date:	41	(3/	86	

		r	T	<u> </u>	T
Sample #	902004-8-45				
Location	DUBY Hollow ROAD, Wellsvilly				
Summa Canister ID	629				
Flow Controller ID	605				
Additional Tubing Added (NO/ YE9 - How much	NO/ YES - How much	NO/ YES - How much	NO/ YES - How much	NO/ YES - How much
Purge Time (Start)	1456				
Purge Time (Stop)	1502				
Total Purge Time (min)	6 MIN				
Purge Volume	1 LITER.				
PID Test of Purge Air	OPPb				
Initial Tracer Gas Results	0 196				
Pressure Gauge - before sampling	- 30+				
Sample Time (Start)	1510				
Sample Time (Stop)	1710				
Total Sample Time (min)	120 MW				
Pressure Gauge - after sampling	-6.5				
Sample Volume	6 LITER				
Canister Pressure Went To Ambient Pressure?	YES /NO	YES / NO	YES / NO	YES / NO	YES / NO
Final Tracer Gas Results	0 ppm				
Associated Ambient Air Sample Number	Mone				
General Comments:					

Summa Canister Sampling Field Data Sheet

Date: 1/1-3/	m 150y0				
Sample #	902004-V-55	2006 0413-FD-	2		
Location			-		
Summa Canister ID	633	176	······································		
Flow Controller ID	701	A16			
Additional Tubing Added	NO/ YES- How much	NO/ YES - How much	NO/ YES - How much	NO/ YES - How much	NO/ YES - How muc
Purge Time (Start)	1230	13 At			
, Purge Time (Stop)	13.32	1332			
Total Purge Time (min)	Jmin	FMIN			
Purge Volume	1 LITER	1 Liter			
PID Test of Purge Air	OPPb	0 PP5			
Initial Tracer Gas Results	150Ppb	150 ppb			
Pressure Gauge - before sampling	-30+	-28			
Sample Time (Start)	1347	1347			
Sample Time (Stop)	13471547	1347154	7		
Total Sample Time (min)	120 M	120 M			
Pressure Gauge - after sampling	-4	-3			
Sample Volume	6 littles	6 LITERS			
Canister Pressure Went To Ambient Pressure?	YES NO	YESNO	YES / NO	YES / NO	YES / NO
Final Tracer Gas Results	85,000 ppm	\rightarrow			
Associated Ambient Air Sample Number	none	None			
General Comments:	<u></u>	DUP 9 ADZONULU-55			

5 g

 $\boldsymbol{\lambda}^{t}$

- 24

СЦА	CHAIN OF CUSTODY RECOR										TESTS								
PROJECT NO. 11174564 SITE NAME SITE NAME SUIL & -N450.								3608							LAB Life Ser	ences)	
SAMPLERS	(PRINT/SIGN	IATURE)						В	OTTL	е түр	e and	PRESE	RVATIN	/E	COOLER	of of			
		Edex		_ AIRBILL N	10.:		- NO.# OF AINERS	ML							REMARKS	E TYPE	VING (IN FEET)	G (IN FEET)	1.01 NO. # AS)
LOCATION IDENTIFIER	DATE	TIME	COMP/ GRAB	SA	MPLE ID	MATRIX	TOTAL	40								SAMPL	BEGIN	ENDIN DEPTH	FIELD (ERPIN
	4/11/06	1600	GRAB	902004-	GW-Z	ws	3	1								NI	-	-	-
				200604	111-FD-1	WG	3	~								FR	-	-	
		1600		902004-	6h.2-115	w6	2						_			N,		-	
	112/1	1600		902004-	GU-2-MSA	WE	1									<u>N</u> ,		-	
	4112/04			402004.	-GW-6	NG	3	1								,	-		
			-													-		• • <u></u>	
	1000 No.																		
								ļ						ļ					
MATRIX	AA - AME SE - SED		L	SL - SLUDGE WP - DRINKIN	G WATER SO	- GROUN - SOIL - DBILL CI			WL - LEA GS - SOII WC - DB	CHATE		WO - (WS - S WQ - V	CEAN WA		LH - HAZARDOUS LF - FLOATING/FRE	JQUID WA E PRODU	STE CT ON G	W TAB	ILE
SAMPLE	TB# - TR S SD# - M/	P BLANK		RB# - RINSE E	BLANK N# REPLICATE MS	- NORMAL # - MATRI	ENVIRON	MENTAL	SAMPLE	(# - :	SEQUENTI	IAL NUMBER	(FROM 1	TO 9) TO	ACCOMMODATE MULTIP	E SAMPLI	S IN A	SINGLE	DAY)
	HED BY (s		DA M/n	TE TIME		Y (SIGN	ATURE)			DATE	TIME	SPE	CIAL II	NSTRL	ALL KOPON	rch,	UR S		
RELINQUISH	HED BY (s	IGNATURE)	DAT	E TIME	RECEIVED FO	DR LAB	BY (SI	GNATUR	iE)	DATE		6	QVE	STUM	+16 852	573	f		
Distribution:	Original ac	companies s	hipment	copy to co	ordinator field fi	es													

- {

URSF-075C/1 OF 1/CofCR/GCM

....

									\$ *	<u>.</u>	TESTS	;					
CH/			DF C	US	TODY REC	;OR	D	17						U			
PROJECT	NO.	-			SITE NAME			Ň	2	2				LAB Ace			
SAMPLEPS	1625	· 00			Wallsville			Ŕ	10-1	122				COOLER	of		
JOh		bou		A	ut Bat	starter 1	-		BOTT		PE AND F	PRESERV	ATIVE	PAGE	of	1	
V	51	lev	2	\rightarrow	0		14	***	-								£ *
DELIVERY S	SERVIC)E: _			_ AIRBILL NO.:		VO.#	N.	K.					REMARKS	TYPE	V FEE'	N FEE
LOCATION	<u> </u>	<u></u>		COMP		1	DTAL N	118	P					HEWARKS	MPLE	GINNI PTH (I	PTH (II E1.D I.(
IDENTIFIER	DA		TIME	GRAB	SAMPLE ID	MATRIX		6	6	- <u> </u>		_			¥s		
	417	3/06	0940	27 11	402004-55-1A	65		V							N,	-	
<u></u>	++		0945	 	402004-55-18			/	<u> </u>						N,	-	
			0952		402004-BA-1	44	1404	⊈							<u>N,</u>	_	
			0451		402004-FA-1			<u> </u>							V ,	-	
			0458		402004-0M-1			1								-	· -
			1046		902004-55-2	<u> </u>						_				- 4	
	l		1648		902004-BA-2						a a constante a	. 			N,		*
			1052		Q02004-FA-2		1								N.	<u> </u>	
		ļ	1100	_	902004-0A-2	V.		ļ	1						N,	- **	
-		 	1347	<u> </u>	962004-V-55	G	1	۷							M	\square	
		ļ	15/0		902004-V-45	63		V	<u> </u>						M	- [
		_			20060413-FD-1	+T-			V	4					HR,		
				J	10060413-FV-2			V	WL - LE	ACHATE		WO - OCEAN	N WATER	LH - HAZARDOUS L	QUID WAST	<u> </u>	
MATRIX	SE	- AMBR - SEDIN - HAZA	IENT RDOUS SOLID W	ASTE	WP - DRINKING WATER S WW - WASTE WATER D	O - SOIL C - DFIILL CI	UTTINGS		GS - 50 WC - D	DIL GAS RILLING V	VATER	WS - SURFA WQ - WATER	R FIELD QC	LF - FLOATING/FREE	PRODUCT	ON GW	TABLE
SAMPLE YPE CODE	TE S SC	3# - TRIP)# - MA1	BLANK RIX SPIKE DUPL	ICATE	RB# - RINSE BLANK N FR# - FIELD REPLICATE N	N# - NORMAL AS# - MATRIÌ	L ENVIRON X SPIKE	MENTAL	. SAMPL	E (# ·	SEQUENTIAL	NUMBER (FRC	ом 1 то в) то	ACCOMMODATE MULTIPLI	E SAMPLES	IN A SIN	IGLE DAY)
RELINQUIS	HEDE	BY (SI	NATURE)	DA	TE TIME RECEIVED	BY ISIN	ATURE)		-	DATE	TIME	SPECIA	L INSTRU	ICTIONS	utch F	51	
$\overline{}$	gen	WH6	m	4/1	4/06 1800		DV /c			DATE	TIME	Guss	CA MAN	prover propor			
RELINQUISI	HED E	BY (SIC	NATURE)			-OH LAB	DI (SI	anatu	HE)	DATE	HME	Quest	716	856.5636			
	- Star					<i>C</i> 1			l		1					λ.	
)istribution:	Origin	al acc	ompanies sl	nipment	, copy to coordinator field	tiles											

9

.

URSF-075C/1 OF 1/CofCR/GCM

											TESTS								
СНА		DF C	USI	rody	RE	COR	D	00							U				
PROJECT N	0. 4635.4	10000		SITE NAME	nlla			260							LAB Life S	-I ZN	с с		
SAMPLERS	(PRINT/SIGNA	TURE)		10 1				10							COOLER	of .			
PhN	Boya	$\sum 2$	luty	Son		r		B	OTTLE	TYPE	AND F	RESEF	VATIV	E	PAGE	of . T	-/		
DELIVERY S		Fels	2		D.:		L NO.# OF AINERS	41						-	REMARKS	E TYPE	NING I (IN FEET)	G I (IN FEET)	1.01'NO.# MS)
LOCATION IDENTIFIER	DATE	TIME	COMP/ GRAB	SAN		MATRIX	TOTAL	3								SAMPL	BEGIN	ENDIN	FIELU (ERPII
6w-3	4/13/06	1748	GRAG	902004	1-6w-3	WG	3									ν_{i}	-	-	-
			ļ																
													$\left\{ \begin{array}{c} \\ \end{array} \right\}$		· · · · · · · · · · · · · · · · · · ·				
															<u>,,</u>				
												+	┼┼						
													┟──┤						
															· · · · · · · · · · · · · · · · · · ·				
					<u> </u>			†				1			· · · · · · · · · · · · · · · · · · ·				
								1											
	·																		
													ļļ						
																	STE		
MATRIX	AA - AMBIE SE - SEDIN	ENT AIR MENT RDOUS SOLID V	VASTE	SL - SLUDGE WP - DRINKING WW - WASTE N	S WATER WATER	WG - GROUND SO - SOIL DC - DRILL CU	TTINGS		WL - LEAC GS - SOIL (WC - DRILL	HATE GAS JNG WA	TER	WG - SL WG - W/	RFACE WAT		LF - FLOATING/FREE	PRODUC		IW TAB	LE
SAMPLE	TB# - TRIP			RB# - RINSE BI		N# - NORMAL MS# - MATRIX	ENVIRON SPIKE	MENTAL	SAMPLE	(# - S	EQUENTIAL	NUMBER	FROM 1 T	O 9) TO	ACCOMMODATE MULTIPLE	SAMPLE	S IN A S	SINGLE	DAY)
RELINQUISH	ED BY (SIC	ANATURE)	DAT	E TIME	RECEIVED	BY (SIGNA	TURE)	_	D	ATE	TIME	SPEC	IAL IN	STRU	ICTIONS		Y/TO	·6	
Delis	tBayl	-	4/14	100 1700			At ?	3				lon	OVES	Ar Tim	5. 716.8	56-	56	36	
RELINQUISH	IED BY (SIC	GNATURE)	- DAT	E TIME	RECEIVED	FOR LAB	BY (si	GNATUF		ATE	TIME	\mathcal{O}°	Ψ ==			-	-		
2					undinator fick	d files			L	I									
Distribution:	Uriginal acc	ompanies s	nipment,																

URSF-075C/1 OF 1/CofCR/GCM

							8	in anaran in		_	
CHAIN OF CUS	TODY RECO	ORD	- alens		TESTS			U		5	
PBOJECT NO	SITE NAME		1 0					P	1. 1		
1174635 00000	I. WILLE . ANDAND	/ ANDER L	N N				LAB_IACE ANALYTICAL				
	1 accessive / Frome	L/ 10/ 12-	F 12				COOL	<u> 1+2</u>	of	ć	-
LOB MURPHY DASH	. la		вот			RESERVATIVE	PAGE	1	of	1	
POD MUTINI / ROO III	mp f				1					1	1
DELIVERY SERVICE: FEP EX	(8569 7928 10	L NO.# OF	ter de				REM	ARKS	E TYPE	NING (IN FEET)	G (IN FEET) 1.0T NO. # 4S)
LOCATION IDENTIFIER DATE TIME GRA	P/ B SAMPLE ID M	ATRIX	212				Summa CAN#	Regulator	SAMPL	BEGIN	ENDIN DEPTH FIELD (ERPIN
CS-3 4/28/46 14/6 12/12 24/h	r 902001-65-3 1	AA I	1				050	394	N,		
FD-3 4/23/06	20060427-FD-3 +	AA I	1				708	146	FR,		
FA-3 4/28/05 1907 740	902004-FA-3 1	AA I	1				801	323	N,		
0A-3 4/28/06 1412 921 V	902004-0A-31	AA I	1	-	· .		040	379	N,		
				_							
								· .			
2 · ·											
			·								
AA - AMBIENT AIR	SL - SLUDGE WG - G	GROUND WATER	WL -	LEACHATE		WO - OCEAN WATER	LH - H/	ZARDOUS LIQU	ID WAS	TE	
CODES SE - SEDIMENT SH - HAZARDOUS SOLID WASTE	WP - DRINKING WATER SO - SO WW - WASTE WATER DC - D		GS - WC -	DRILLING WA	ATER	WS - SURFACE WATER WQ - WATER FIELD QC		DATING/FREE PI	RODUCI	ON GV	/ TABLE
SAMPLE TB# - TRIP BLANK TYPE CODES SD# - MATRIX SPIKE DUPLICATE	RB# - RINSE BLANK N# - N FR# - FIELD REPLICATE MS# -	IORMAL ENVIRONM	IENTAL SAMP	LE (#•S	EQUENTIAL	NUMBER (FROM 1 TO 8) TO	ACCOMMODA	TE MULTIPLE S	AMPLES	IN A 81	NGLE DAY)
RELINQUISHED BY (SIGN/TURE) DA	THE TIME RECEIVED BY	(SIGNATURE)		DATE	TIME	SPECIAL INSTRU Contact Anne	E Marie	Kropovit	h;	For	
RELINQUISHED BY (SIGNATURE) DA	ATE TIME RECEIVED FOR	LAB BY (sig	NATURE)	DATE	TIME	Questions	716-8	56-565	6		
						Summe #676	+ 0 - 1	D. 194-) 🗚	J.	sed
Distribution: Original accompanies shipmer	nt, copy to coordinator field files						i regris	tor (Crr			-
				·····	I						

URSF-075C/1 OF 1/CofCR/GCM

4/12/06

与

12. PRODUCT INVENTORY FORM

902004-1 ppb RAE Make & Model of field instrument used:

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition	Chemical Ingredients	Field Instrument Reading	Photo " Y/N
	gran alan	1502	UO	Ethylen glycol	(uaits) (PB	
11	STARRA Loys for	1/ LB	$\frac{3}{1}$	Monelicza	0	N
tı	BLATS The WALL	10.3 07		Petrolaum Naphthy		. 4
i i	floor Adherive	ØT.		MEXANI	3131	4
	BARN DAINT	Grs /	00	Miss Lat Spiditt	0	ir
	NAphtha	-74	<u> </u>	N/A Ola Tura	0	4
V	SPRAY PAINT	9121	U	Tout ha mot	165	11 -
ч	(high hear) (5CANS	1203	UO	Acetonet Xiplane	19.4 ppm	¥ .
u	909 allaner	2203	rŗ -U	Label Obscripted	6	.11
• 4	SPANY (2 CANS)	603	U ·	NO CAPRIER LISTER	C	
t (CLAZING PUTTY	12 PINT	VO	NMe LISTED		
'r	Engunel PAINT	PINT	V	mineral SP112:TS		
	MIN WAX Finishing har	1603	U	Mone Listed (NL)	:0	
	Marulsh Stain	803	5	N/I		
	Water recellant finish	lat	11		0	
	Likilar Ar a man	$\frac{1}{1}$	11	11		1
	in the second second	$\frac{1}{1}$	u	NL	0	
	Linseed U.I Putty	2pt	<u> </u>	NL	\mathcal{O}	
	Enamel Paint	(pt	U	NL	\mathcal{O}	
	oil based point	2 gals	U	Mineral Spinits/ Ethylene	Ö	
	Maknown black can	3. Jul	И	NL	\tilde{O}	

Brosenant brehand = 2 pp5

4/12/06

902004-1

12. PRODUCT INVENTORY FORM

Make & Model of field instrument used:

PPB RAE

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition	Chemical Ingredients	Field Instrument Reading (units)	Photo " Y/N
Stairs	1 WO & Tile Could	6 6 02	40	NL	()	
	Latex Eramel	Sot.	u	NL	\mathcal{O}	1
	Clean Finish	a pt.	U	NL	\bigcirc	
	Enamel Paint	apt.	u	Mineral Spinits,	\bigcirc	
	Latex Enamel	lgt.	u	obscured	0	
	All purpose Epoxy	2×502	U	NL	0	
V	Wood Stain	2 pt.	U	Aliphatic hydrocophons .	0	
Dining Rm	Spray & Voc	2402	UU	NL	0	
1 Hallwar	Olde English Polish	802	U	NL	0	
Pantry	Snittin Shoeldon	2202	U	NL	0	
	Lamp Oj	6 oz	U	pet. dist.	0	
V	3:1 01	3 02	U	pet. dist	0	
Kitchen	Liquid Wrench	11 02	U	PCE, mineral oil polytety fluxethy lene	Û	
	WD40	132 02	U	pet. dist.	111	
	Acryllic Latex Enand	8oz	U	2-(2-Methoxy ethoxy) Ethonol	0	
C	Butane	2.102	U	NL	0	
opa	Hot Shot Insectionly	102	U	NL	\mathcal{O}	
	Scotch - Gard	1402	Ü	popanoi Alt Fluoroaliphatic	0	
		<u> </u>				1//

Pg-2/4

4/12/04

902004-1

12. PRODUCT INVENTORY FORM

Make & Model of field instrument used: ppb R72

Pg 3/4

List specific products found in the residence that have the potential to affect indoor air quality.

		1					
~~~	Location	Product Description	Size (units)	Condition	Chemical Ingredients	Field Instrument Reading (units)	Photo " Y / N
t	Dasement	rusted unk. con	lgal	a D	NL (unreadable	0	No
		Soray enamel	11 02.	U	toluene, aceton, pet. Jist.	0	
		Paint (Latex)	19+	<b></b>	NL (unread ble)	O	
		Intervice enamel	lgt	u	mineral spinits	O	
		Later Paint	4 gals	₩D	NL/unrendable	0	
		Enamel point	la pt	4	NL	Ő	
		Plawox wood finish	12 pt	40	mineral spinits	$\bigcirc$	·
ł		Floor Adhesive	l gal	<u>u</u>	pet. dist., tokuol,	12	
ŀ		11 3×5 pitt	lgt	<b>P</b>	obscured (smasted	0	
F	·	latex enamed pist	là pint	U	NL	0	
· F		$\frac{ arex paint}{  }$	lgt	U	NL	0	
. F		Al'achies	3 gol	E D	obscured	O	
·		Al sall	5 0Z	u	NL	0	
·. †		3) / to an	Igal		pet. distillates	0	
-		U) Loter Paint	3 gales	u	NL	0	
		Learner cond.	1202	U	NL	$\bigcirc$	
		Cunknown Paint	xx gal	u	NL	0	
	$\forall \uparrow$	todo stropper	1 * 5gal	U	NL	0	
L			<u> </u>				$\sim$

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D) ** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

8

4/12/06

## 902004-1

ae

Pg 4/4

## 12. PRODUCT INVENTORY FORM

Make & Model of field instrument used:

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition	Chemical Ingredients	Field Instrument Reading (units) Pb	Photo " Y/N
Stain	Insectic'i de	Boz	u	Pet. Jist.	$\bigcirc$	11
	DAP Glazing Compas	lpt.	u	NL	()	
	Spray Lacquer	Boz	U	Toluene	0	+
	Later Eramel	12 pt	4	NL	0	+ + - +
	Beats The Nails	10.3 oz.	ч	fet Naptha, hexane	()	
	Spray Enamel	2×1102	U	Methylene Chlonise	357	
	Silicon Sealer	2.8 oz	u	NL	0	
	Spray Eramel	1102	U	Toluene, acetone, pet. dist.	1036	
	Clear Wasd Seater	1 pt	U	fet.d.st.	0	
<u>-</u>	Shellac	lpt.	4	alcohol	0	
·	Later Gloss Engreed	l qt.	UO	pepylene glycol	O	
	Raid Ant& Road	1602	U	pet dist.	Ö	
	Bake lube	Yoz	U	pet. List.	0	
	Asphalt Base Caulk	lloz	UO	NL	Ò.	
	Enamel Paint	2 oz	40	pet. d.st.	0	
	Radiator Sealer	5.502	U	NL	0	
	Spray Paint	13 02	U	Methylen chloriden toluene, set. dist	C)	
, K	Spray Paint	16 02	y	Aliphotic & avomatic	2547	V
V	linuar Polyemethe	ipt ]	u	Pet. thinners"	0	J

## **12. PRODUCT INVENTORY FORM**

Make & Model of field instrument used:

4/12/04

902004-2 pph RAE

List specific products found in the residence that have the potential to affect indoor air quality.

Location M <del>Ascares</del>	Product Description	Size (units)	Condition	Chemical Ingredients	Field Instrument Reading (units) for	Photo ' Y / N
1/	CALLAR PATINS	GA1	U	2 Hylene gby col	0	N
1	- 15 mit Cement	303	U	None Cisized	0	N
1/	21N1 01	303	U	Ret. distillates	0	4)
4	Silline Cault	10.3	U	more Cister	0	
	Prainel print	YZ PINI	J	Petral dissillates	0	<u>A1</u>
	gAsolin & Engine	1/2 94	Ų	GASoline	70.10	
Litchen	ound penetrant	403	U	Ketrolaun DisTillaTis	· G ·	N
11	Clamp	500 g	UO	Mane (ISFE)		
-11	10:10 Clane	1603	U	PETrate undes illures	179	N.
AT AND	hood clane	9 03	$\mathcal{O}$		0	N
Man	Newtover	10 3	U	Acetone	0	~
			· · ·			

Brement bringend = Oppb Kotchen brekground = Oppb Bath room brek ground = Oppb

pg

902004-3

Pa 1/3

## **13. PRODUCT INVENTORY FORM**

Mal	ke & Model of field instrum	ient used	1: <u> </u>	fal.			
List	specific products found in	the resid	lence that ha	ve the potential to affect indoor air o	quality.	hunless?	0
	Il chemicaks	Mo	ved to	Kilchen.	C PP	themise	Jeel.
Location	Product Description	Size (units)	Condition	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y / N</u>	•
Kitchen	FILE Drtinguista	1602	UO	The Chenica	0	N	
	PROPANE	19.10z	UO	Propane	0	N	
	fer ghangeo	2202	·U	fert plus r	0	N	-
	Fabric Soflener	4202	U	Hot listed	22	1	
	Suare	looz	U	toronim Lucrel etc	Ø	N	1
	ASEPT Dilinfector	120	U	2-prony planol, Ethnol. 4-tert-Amyloherod	2	N	1
	Neutra - A, R (450)	1000	d	Not listed.	49	N	1
	Shower mag C	32æ	U	Not lister	4	N	
	Spraypaint (manage)	1702	U	Which Nappha, Propane, Colon Controle, N-Butane, Micral sphils	56	N	1
	Down w/ Bloach	3Tml	U	Surfactures + Enzymes	Owhen	N	150
	Ameria	6402	J	Ammonia	æ	LA .	0
	Const (Powder)	140	U	Calchun corbonate, sodius	20	N	1
	ATAX w/ Bach	Na	el	blands, perfine	75	N	
 	TANDIK	2402	J	Not liked.	ð	N	
	Caneo Stailors	Poz	U	Notlixed	Ø	N	
	Hausehold Cenent.	102	U	Occtone + Aschaly acetate	10.50m	N	
	Glade plyin		U	^	2	N	
¥	KIKK BEADS	5.75	d	Not listed	$\bigcirc$	N	
	Tinks #67 War into	102	U	Not/isled.	ð		

902004-3

M 2/3

#### **13. PRODUCT INVENTORY FORM**

Make & Model of field instrument used:

List specific products found in the residence that have the potential to affect indoor air quality.

	T	<b>T</b>			ppb (unle	softenui)e
Location	Product Description	Size (units)	Condition	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y/N</u>
Filmen	ODOR ABSORBING	1402	U	Not listed	89.	N
1	ALEACOVIC later ph	5.5	UO	Not listed	Ð	N
	1 Silicone					
	Nall Polish Perover	GFZ	U	Acetore uter fragence	- 29	N
	Real Kill powert.	20.50	L L	Tragathan 1-thans Altohn	0	N
	Lighter Fluid	502	U	Naptha	79	N
	ORTHUN ANT STOP	18:40	, U	LACT ingrediants/Petroleum DS	fillide O	N
				Xylere)		
	Tol Bouldaner	2402	CL	Nydrogen Chloride 200%. Other 90%	SZ	N
	Bissel Glass Clever	Moz	U	Notlight	0	N
	Bathroom Cleaner. Coulds non	2002	U	Not listed.	Z2	N
	(Twitte WAX)	1007	d	Not listed	13	N
ļį	Arter cleaner.	1802	U	2-Bistoppetrastamona.	Ø	N
	Crpet Fresh.	10,50	U	Potlisted	Ø	N
	Pegroager.	2202	U	Not I sted.	100	N
	flot shat doput tok	Ha	d	Other Ingredients	0	$\sim$
	Vignteetent.	2002	U	N-AIRY, Ethonol	$\mathcal{O}$	N
	Day Spiath	80Z	И	Venot. Akore', vole perfunes	22	N
	Home Jet Bomb.	1202	d	Lorains straten Distille	384	N

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D) ** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Opb RAZ

902004-3

PJ3/3

#### **13. PRODUCT INVENTORY FORM**

Make & Model of field instrument used:

List specific products found in the residence that have the potential to affect indoor air quality.

8

	1				PP 5	
Location	Product Description	Size (units)	Condition	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y / N</u>
kitchen	Ciquid morenen	402	a	Petroleun Dis laces,	31	S.
	3-in-lal	302	CL	12 01	Q	N
	2 stroke engine oil	3.20	uo		0	N
	Skeeladde protector	4.2	U	N/N-Hethy -m-talunide	Ó	N
C	BINGO DABBERS	302	U	Not 1.sted	Ð.	N
	Clorox	3qt	U	Soduen hypochlorka	Ð	N
	Artificere	1 Color	U	Not Litled	Ð	N
	A Carper Deoderico	-2102	J	Not / sleel	ð	N
	Noselike	202	U	Petoleun distillales	11	N
	Avon - V. Lanoist had	6	U	Stycol storck, Colycon Ispropyi Pala & Marcol	$\mathcal{O}$	لم
				(others) ol.		
	Heaven Sert Pertore	$\frown$	U	Not listed,	20	N
$\mathbf{V}$	"Kills Fals + Mice"	402	U	Warforin. Wincon	0	N

All products which Wo Back Round Readings IN House HAND products which Wo Back Round Readings IN House HAND ited ppbRive Readings were plustic carpet oppo moved outside to shed after No Abdiceble doortodoy (4/2 IN vertory before seginming No Abdiceble doortodoy (4/2