

10 February 2016

TECHNICAL MEMORANDUM

FROM:	Ben Young	LOCATION:	EA Science and Technology
TO:	Brian Sadowski	LOCATION:	NYSDEC – Buffalo, NY
CC:	Michael Hinton	LOCATION:	NSYDEC – Buffalo, NY
RE:	Contract/Work Assignment (WA) No Remedial System Optimization/Site		Patton's Busy Bee Disposal Site

EA Engineering, P.C., and its affiliate EA Science and Technology (EA) were tasked by the New York State Department of Environmental Conservation (NYSDEC) under WA No. D007624-28 to perform a Remedial System Optimization (RSO) evaluation for the Patton's Busy Bee Disposal site in Allegany County. The WA scope of work included conducting a site visit, performing a historic file review, surveying pertinent site features, and preparation of a RSO Memo that would identify potential alternatives for long-term leachate management. Each of the alternatives evaluated would include a conceptual layout, regulatory requirements, and any major design features needed for implementation. At the request of the NYSDEC, EA has prepared this technical memorandum to serve as a summary of the RSO evaluation.

1. PROJECT BACKGROUND

1.1 SITE DESCRIPTION

Patton's Busy Bee Disposal Site is currently a Class 4 site on the New York State (NYS) Registry of Inactive Hazardous Waste Disposal Sites (Site No. 902014). The site is located on Clark Road, one mile east of Alfred Station in the Town of Alfred, Allegany County. There is an adjacent landfill (Henry Landfill), located north of Patton's Busy Bee Disposal Site in the Town of Hartsville, Steuben County. The Busy Bee Disposal Site is located on top of a hill, and covers approximately eight acres. The Henry Landfill is located on the northeast side of the same hill and covers approximately five acres. Towner Living Trust owns a 23.2 acre parcel that contains the Henry Landfill and Busy Bee Disposal Site. A site location map is provided as Figure 1.

1.2 SITE HISTORY

1.2.1 Operational/Disposal History

In 1980, LaVerne Patton received a permit from NYSDEC to operate Busy Bee as a sanitary landfill, accepting municipal and industrial waste that was deposited into three unlined trenches. The three unlined trenches were approximately 12 feet (ft) deep, up to 600 ft long, and up to

45 ft wide.¹ Patton's Busy Bee accepted waste from 1980 to 1988. From 1980 to 1986, the disposal site reportedly received municipal, non-hazardous industrial waste, and sewage sludge from wastewater treatment plants. From February to August 1981, SKF industries reported disposing of 77 tons of corrosive alkaline metal cleaning solution at Busy Bee. It was reported that trenches were covered daily with a clayey-silt soil found at a borrow source at the site. Mr. Patton began constructing a "remedial trench" in 1987 along the southern and eastern sides of the unlined disposal trenches at Busy Bee (Figure 2). The remedial trench was reportedly lined with clay and a leachate collection system to intercept leachate from the unlined waste trenches. Leachate collected within the remedial trench was directed to four leachate collection tanks buried adjacent to unlined waste trenches. The remedial trench also provided the landfill with additional volume and was filled with primarily construction and demolition debris and automobile shredder waste. Disposal activities continued above and beyond the limits of each of the trenches to form the present topography.

Busy Bee Disposal Site was capped in two stages. During the Summer and Fall of 1987, the western half of the landfill was capped and a vegetative cover established. The eastern half was capped during the Summer and Fall of 1989. Final capping of the landfill was completed in 1991. It was reported that the cap material consists of 2-4 ft of low permeability material with five gas vents installed through the cap into waste material.

1.2.2 Remedial History

The NYSDEC issued two Consent Orders with Mr. Patton to close Busy Bee Landfill in 1986 and 1987. In 1988, Patton's Busy Bee Disposal Site was listed on the NYS Registry of Inactive Hazardous Waste Disposal Sites as a Class 2a site. Two years later, the NYSDEC conducted a Preliminary Site Assessment (PSA) to evaluate conditions at the site and obtain information to reclassify the site. Volatile organic compounds (VOCs) were found at high levels in monitoring wells down gradient of the landfill during the PSA. The site was reclassified in 1991 to a Class 2 site, which identifies a site that presents a significant threat to public health or the environment. It was assigned a priority ranking of I, due to the threat to private water supplies located downgradient of the site.

Between 1991 and 1993, the NYSDEC pursued Potentially Responsible Parties without success to implement a remedial program. In 1993, the NYSDEC issued a WA under a State Superfund Standby Contract with URS Consultants (URS) to perform a Remedial Investigation (RI) and Feasibility Study (FS). The RI was conducted from April 1994 through August 1994. Results of the RI showed that VOC groundwater contamination decreased significantly laterally and vertically from Busy Bee Landfill.

The Record of Decision (ROD) issued in October 1996 recommended remedial actions for the landfill and associated groundwater contamination which included continued maintenance of the

¹ URS Consultants, Inc. 1995, Remedial Investigation at the Patton's Busy Bee Disposal Site. November.

6712 Brooklawn Parkway, Suite 104 Syracuse, New York 13211-2158 Telephone: 315-431-4610 www.eaest.com

leachate collection system, leachate removal, and groundwater monitoring. The site was eventually reclassified to Class 4 in 1997. Since the ROD, site management activities have included operations and maintenance (O&M) of the landfill cover system and infrastructure (i.e., monitoring wells, collection tanks, etc.) and long term groundwater monitoring.

1.2.3 Historic Investigations

The PSA conducted by URS in 1990 found groundwater contamination in both the shallow and deep monitoring wells located along the western and southern borders of the site². The detected contaminants were VOCs including trichloroethene (TCE) and trans-1,2-dichloroethene at maximum concentrations of 110,000 and 59,000 μ g/L, respectively.

Results of the RI and previous investigations indicate that contaminants, which were present in all solid and aqueous media sampled at the site, include VOCs, semi-volatile organic compounds (SVOCs), and metals.³ Groundwater sampling found high concentrations of VOCs, low concentrations of SVOCs, and varying concentrations of metals. Pesticides and polychlorinated biphenyls (PCBs) were detected in two samples which were obtained from waste at the site. The RI concluded that pesticides and PCBs did not appear to migrate, as they were not detected in other site media sampled during the RI.

Soil gas screening conducted during the RI found the two highest concentration samples along southeast of site with VOC concentrations of 17,829 parts per billion (ppb) and 17,068 ppb. Chlorinated hydrocarbons were detected in 28 samples, vinyl chloride was detected in 24 samples up to 16,696 ppb, and benzene, toluene, ethylbenzene and total xylenes was detected at 10 locations.

Soil gas with companion soil samples were collected at four locations along the southern portion of the site. VOCs were detected at all four locations, but only tetrachloroethylene was detected in one companion subsurface soil sample.

Surficial soils sampling during the RI found VOCs at 9 of the 19 sample locations, but concentrations did not exceed stringent cleanup goals (SCGs). SVOCs were detected in 15 of 16 soil samples, most frequently found polycyclic aromatic hydrocarbons and phthalates. Metals were found elevated concentrations relative to SCGs. Highest concentrations were aluminum, arsenic, barium, beryllium, calcium, cobalt, iron, magnesium, manganese, nickel, and thallium. Additionally, higher metal concentrations occurred where surface water was present.

A soil boring collected as part of the RI through the waste disposal area found VOCs exceeding SCGs including acetone (1,300 ppb), 2-butanone (1,100 ppb), benzene (85 ppb), toluene (1,700 ppb), and xylene (5,100 ppb). Soil boring samples also contained SVOCs: 10,700 ppb total polycyclic aromatic hydrocarbons, 1,054,400 ppb total phthalates, and 6,700 ppb of

² URS Consultants, Inc. 1990. Preliminary Site Assessment, Patton's Busy Bee Disposal Site.

³ URS Consultants, Inc. 1995, Remedial Investigation at the Patton's Busy Bee Disposal Site. November.

4-methylphenol. Pesticides were detected at high concentrations (380 ppb endrin aldehyde). Three PCBs detected for a total PCB concentration of 21,900 ppb. All 23 target analyte list (TAL) metals were detected in the soil boring sample. Elevated concentrations of barium, (2,900 ppm), cadmium (48.7 ppm), chromium (163 ppm), copper (1,070 ppm), iron (131,000 ppm), lead (3,190 ppm), nickel (437 ppm), silver (6 ppm), sodium (4,090 ppm), and zinc (6,210 ppm) were observed. Such high concentrations of VOCs, SVOCs, pesticides, PCBs, and metals in the soil samples collected from the waste mass suggest that Busy Bee contains a large source of these contaminants to surface water, groundwater, and soil.

Groundwater samples collected from onsite monitoring wells in October 2007 as part of the biennial monitoring, detected low levels of VOCs in 8 of 13 wells. The following VOCs were detected below NYSDEC Ambient Water Quality Standards (AWQS): Acetone, Chlorobenzene, 1,3-dichlorobenzene, chloroform, 2-butanone, and *cis*-1,2-dichloropropane. Trichloroethene and *cis*-1,2-dichloroethene exceeded NYSDEC AWQS with maximum concentrations of 9.1 μ g/L and 12 μ g/L, respectively.

2. CURRENT CONDITIONS

2.1 TOPOGRAPHY

Topography surrounding the site drops off steeply, particularly to the west. Surface runoff from the landfill drains in a radial pattern, eventually discharging to Canacadea Creek to the west or Crosby Creek to the east. Both streams then discharge to the Canisteo River. One small pond is located in the former borrow pit east of the landfill.

2.2 GEOLOGY & HYDROGEOLOGY

The site is located in the Alleghany Plateau of the Appalachian Upland Physiographic Province. The plateau has been eroded and dissected by streams and glaciers producing the present landscape of hills and valleys. Bedrock in the vicinity of the site is the Upper Devonian-age Caisteo Shale Member of the Machias Formations. The formation consists of thin-bedded shales with interbedded fine-grained sandstone that reportedly dips approximately 2 degrees to the southwest.

Bedrock at the site consists of nearly horizontal alternating layers of shale and sandstone. Most of the groundwater is within the sandstone layers; however, there are fractures within the shale that allow vertical groundwater migration. Overburden at the site consists of gravelly, clayey silt. Previous engineering reports found hydraulic conductivities within the overburden and weathered bedrock to be low, about 10⁻⁴ centimeters per second or less permeable⁴. Groundwater flow within the bedrock is directed along bedding plane fractures and higher angle fractures. Groundwater migrating horizontally within the sandstone units discharges as seeps or

⁴ JEB Consultants. 1986. Patton's Busy Bee Disposal Service Liner Certification Report.

springs on the slopes surrounding the site. Mean hydraulic conductivity at the site was 1.44×10^{-3} cm/sec, indicating bedrock at the site is relatively permeable (where fractured), and that groundwater movement occurs as fracture flow. Groundwater recharge occurs by infiltration through overburden soil (including the landfill cover system and waste).

2.3 REMAINING CONTAMINATION

Contaminants found onsite include VOCs, SVOCs, metals, pesticides, and PCBs. Previous sampling and investigations determined that contaminants were present in surficial soil, subsurface soil, groundwater, and surface water. The most prevalent of which is VOC, SVOC, and metals contamination in groundwater.

2.4 SELECTED REMEDY/SITE MANAGEMENT ACTIVITIES

The response action in the ROD called for institutional actions for Busy Bee Landfill and associated groundwater. On-going remedial actions include: 1) continued maintenance of the Busy Bee Landfill leachate collection system, 2) leachate removal, 3) transportation of leachate to an offsite disposal facility, 4) maintenance of the landfill cap, roads, and 5) long-term groundwater monitoring.

Select residential wells were historically monitored annually; however, due to consistent non-detection of site-related contaminants, this program ceased in 2006. It was concluded that continued management of the leachate collection system should minimize contaminant migration to groundwater. In addition, with routine cap maintenance, contaminants in groundwater should naturally attenuate. Under the NYS Superfund Program, the NYSDEC is implementing the site management requirements outlined in the ROD. Current site management activities include site and landfill cap inspections, mowing, leachate removal, road maintenance, and biennial sampling of groundwater monitoring wells. All criteria of site management are being performed by NYSDEC staff or contractors.

A NYSDEC Region 9 Solid and Hazardous Waste staff member visits the site five to six times per year, and inspects the four leachate tanks and logs leachate levels. During periods of high leachate generation (spring and early summer) the tanks may be checked more frequently. Conversely, during the winter months, accessibility to the tanks is restricted due to weather conditions, and therefore, less frequent monitoring can be performed. Leachate removal has been performed by a NYSDEC Emergency Spill Remediation contractor approximately every 2-3 months from 1997 to 2006. From 2006 to 2008, leachate removal occurred biannually. Presently, leachate is removed about four to five times per year dependent upon site access.

2.5 REMEDIAL SYSTEM/LEACHATE COLLECTION SYSTEM

The remedial trench and leachate collection, and conveyance system was installed in 1987. The remedial trench was constructed, in part, to intercept and collect leachate migrating to the south and east from the three unlined trenches. It is significantly wider and several ft deeper than the

unlined disposal trenches. The remedial trench was reportedly constructed with a 2-ft thick liner consisting of compacted low permeability material (approximately 1 x 10⁻⁸ cm/sec), and perforated leachate collection pipe laid on top of the liner. This trench was then reportedly filled with construction and debris, and automobile shredder waste. Leachate enters the lined trench by percolating through the unlined disposal trench walls of the group of three unlined trenches (Figure 2). Leachate generated at the Busy Bee Disposal site is directed via collection system drain pipes, constructed within the remedial trench, to metal underground storage tanks located northwest and northeast of the fill area (Figure 2). Leachate from the western half of the remedial trench reportedly drains northwest to a 2,000- and 4,000-gallon tanks. Leachate from the eastern half of the trench reportedly drains northeast to two tanks of 15,000- and 18,000-gallon capacity.

Leachate is directed into two pairs of collection tanks located to the east and northwest of the landfill (BB-T1-North, BB-T1-South, BB-T2-North, and BB-T2-South). These tanks have been gauged and emptied regularly by a NYSDEC contractor since the Spring of 1994. Leachate removed from the site is disposed of at an off-site treatment facility.

2.6 REMEDIAL SYSTEM COST EVALUATION

The average annual cost of leachate removal is approximately \$25,000. This cost includes fourfive trips per year with about ten loads of leachate removed per trip over the course of two to three days. The average annual cost also includes the price of some small miscellaneous repair items. However, it does not include time or travel costs for the NYSDEC. An NYSDEC representative is usually onsite for leachate removal meaning (four to five trips per year), approximately two to three days per trip, four hours driving (to and from site in Buffalo) each day, and eight hours onsite per trip. Additionally, the \$25,000 leachate removal cost does not include groundwater monitoring activities, which occur every two years or biannual mowing.

To estimate costs associated with the current remedial system, it was assumed that leachate was removed five times per year over the course of three days. This would imply a NYSDEC staff member would be traveling to site at a minimum five times a year, three days per event. Each work day is assumed to involve eight hours onsite, with round trip travel of four hours per day. Four hours of reporting is also assumed per event. With an assumed labor rate of \$88 per hour, the current remedial system costs NYSDEC \$17,600 in labor. Including vehicle costs, the price rises to approximately \$18,660. Added to the \$25,000 subcontractor cost, five leachate removal events per year costing approximately \$43,739.

The current remedial action also involves regular sampling and monitoring of leachate and groundwater. Leachate tanks are gauged about four times per year to monitor levels in each collection tank. One leachate samples is collected annually and the 13 onsite monitoring wells are sampled biennially. Leachate and groundwater samples are both analyzed for TAL metals and VOCs. In addition, groundwater samples are also analyzed for SVOCS and organochloropesticides/PCBs. Pricing from NYSDEC Standby Laboratory Contractors was used

to estimate analytical costs, and it was assumed that monitoring well sampling would take two 8-hour days of sampling, four hours of travel time, four hours of preparation, and four hours for reporting. With a \$50 expenditure allowance in field supplies (paperwork, gloves, field book, etc.), the cost of each groundwater sampling event is approximately \$8,000. The annual cost of leachate monitoring is approximately \$2,600 and includes four 4-hour trips to and from the site, one hour of work onsite, and four hours reporting and lab analysis of one sample.

If leachate removal continued for the next 30 years, the total cost for just the leachate removal, monitoring and site maintenance (mowing) is approximately \$842,300. This value assumes an annual discount rate of 5 percent, and does not include tank replacement, or additional repair costs.

2.7 DATA TRENDS

2.7.1 Leachate

Leachate samples are submitted annually for chemical analyses. Results of leachate testing were included in the 2000-2007 annual reports and included in the historical data package provided by NYSDEC. The most recent results from 2013 and 2014 were also included in the historical data package. Between 2000 and 2007, samples were collected annually in October. In May 2013, and November 2014 leachate samples was collected. Leachate data collected from historical documents is presented in Table 1.

VOC concentrations exceeded NYSDEC AWQS standards on three occasions between 2000-2007. In 2000, concentrations of *cis*-1,3-dichloroethene (57 μ g/L) and vinyl chloride (26 μ g/L) exceeded AWQS standards of 5 μ g/L and 0.3 μ g/L, respectively. In 2005, TCE exceeded the AWQS standard of 5 μ g/L with a concentration of 68 μ g/L. Vinyl chloride also reported a concentration exceeding the standard with a concentration of 3 μ g/L. Most recently in 2014, *cis*-1,3-dichloroethene, TCE and vinyl chloride reported concentrations of 77 μ g/L, 75 μ g/L, and 3.7 μ g/L, respectively.

SVOCs were inconsistently detected in leachate samples. The sample collected on 30 May 2013, reported the largest number of detections, and the only known sample with SVOC concentrations exceeding AWQS standards. The following SVOCs were detected above standards in the 2013 leachate sample: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, and indeno(1,2,3-cd)pyrene.

Metals were detected in every leachate sample, and most samples had at least one metal exceeding AWQS standards, with the exception of the 2005 leachate sample. Eight metals (aluminum, barium, calcium, lead, magnesium, manganese, nickel, and sodium) were detected in the 2005 sample, but all concentrations were below their respective AWQS standards. Iron, manganese, and sodium reported concentrations exceeding AWQS standards (300 μ g/L, 300, μ g/L, and 20,000 μ g/L, respectively) in each of the samples shown in Table 1, with the exception

of the 2005 sample. Iron concentrations ranged from 2.8 μ g/L to 406,000 μ g/L, and manganese ranged from 2.7 μ g/L to 11,300 μ g/L.

Organochloropesticides have only been detected in samples from 2004, 2013, and 2014. Concentrations of endosulfan II (beta), dieldrin, and endosulfan II exceeded their respective AWQS standards in 2004, 2013, and 2014, respectively.

As mentioned, detections and exceedances of VOCs, SVOCs, pesticides, and metals in leachate are not consistent, nor do the results indicate a decreasing trend. Based on the varying detection and range of concentrations varying widely from year to year, the Busy Bee Disposal site could be a continuing source of groundwater contamination.

2.7.2 Groundwater

Groundwater samples are collected from monitoring wells surrounding Busy Bee Disposal site, and analytical results were available from the RI and for the period of 2000 to 2007. Groundwater data collected from historical documents has been collated and presented in Table 2. This data was compared to the leachate data in Table 3 to determine if any correlations existed, and if there were differences between wells to the south and east of the remedial trench (capture wells) and wells to the north and west (non-capture wells).

The Exhibit 1 table summarizes the detections and exceedances in groundwater samples collected between 2000 and 2008. A detection was determined to be an exceedance if the concentration of the compound was greater than or equal to the NYSDEC AWQS standards for Class GA water. Each compound listed in this table was detected every year from 2000 to 2007. NYSDEC AWQS exceedances are listed in bold text, while detections are listed in italicized text.

6712 Brooklawn Parkway, Suite 104 Syracuse, New York 13211-2158 Telephone: 315-431-4610 www.eaest.com

DWAIEK	LCTIONS IN GROUN	1 HISTORICAL DEI	EXHIBIT
Metals	VOCs	Location	Well ID
Iron, magnesium, manganese, sodium	Benzene, chlorobenzene	North side between Henry and Busy Bee Landfill	MW-101D
Iron, manganese, magnesium, sodium	Acetone	North side between Henry and Busy Bee Landfill	MW-101I
Iron, sodium	Acetone	South side of Busy Bee Landfill	MW-102D
Iron, sodium	DCE, TCE	South-west side of Busy Bee Landfill	MW-103D
Iron, sodium	DCE, TCE	South-west side of Busy Bee Landfill	MW-103I
Magnesium, manganese, sodium	DCE, TCE	West side of Busy Bee Landfill	MW-104D
Iron, sodium	DCE, TCE, Chloroform	West side of Busy Bee Landfill	MW-104I
Iron, manganese, sodium	Non-detect	Northeast side of Busy Bee, south-east of Henry Landfill	MW-107IR
Iron, manganese, magnesium, sodium	Non-detect	Northeast side of Busy Bee, south-east of Henry Landfill	MW-107SR
Iron, magnesium, sodium	Non-detect	South-east side of Busy Bee Landfill	MW-108D
Iron, sodium	Non-detect	South-east side of Busy Bee Landfill	MW-108I
Iron, sodium	Acetone	South of Busy Bee Landfill	MW-109
Iron, manganese, magnesium, sodium	Non-detect	North of Busy Bee and Henry's Landfill	MW-113

EXHIBIT 1 HISTORICAL DETECTIONS IN GROUNDWATER

Wells on the north, west, and south-west sides of Busy Bee Landfill had exceedances of VOCs, while monitoring wells on the north-east and east sides did not. The "remedial" collection trench collects leachate from the east and south sides of the landfill, but not from the north and west sides.

As previously mentioned, groundwater flow occurs horizontally between the sandstone units onsite and vertically through fracture flow. During the RI, it was determined that horizontal flow in upper sandstone units went in a south west direction. Groundwater flow also flows to the west/southwest in middle sandstone. In the lower unit, however, groundwater flows to the north west.

Evaluating the spatial variations in VOC and metal detection could suggest that not all of the leachate is being captured in the collection and conveyance system. Some leachate might be migrating to the north and west (in the direction of groundwater flow), which might be why

wells MW-101D, MW-101I, MW-102D, MW-103D, MW-103I, MW-104D, and MW-104I had detections and exceedances of VOCs.

3. REMEDIAL SYSTEM OPTIMIZATION

3.1 DATA GAPS

There are several areas where knowledge of the site is incomplete, the first of which is limited survey data and elevations of the leachate collection system components.

In regards to the current remedial system and processes, data gaps were identified as follows:

- There are no construction drawings of the unlined trenches or "remedial" trenches with the leachate collection and conveyance system.
- Some information is known about the system through previous investigations; however, the elevation, dimensions, and detailed schematic of the perforated piping in the lined trench, leachate conveyance lines, and leachate collection tanks are not known.
- Similarly, the condition of the system components (i.e., perforated and conveyance piping, tanks, etc.) is unknown.
- There is no consistent log of leachate volumes or results of sampling. Annual results from 2009-2012 are missing.
- Additionally, these partial records do not indicate if the tanks reach capacity or overflow, which has reportedly occurred at the site. As a result, the actual volume of leachate is unknown, as is the quality and volume of water in the landfill.
- There are partial records of chemical testing of the leachate and groundwater from 2000 to 2008 and 2013 to 2014 for VOCs, SVOCs, metals, and organochloropesticides.
- Site background conditions are unknown.
- It is also unclear what effects an overflow had or may have on surface water/groundwater quality in the event leachate was/is discharged into the environment.
- Since the leachate collection trenches only border the south and east sides of the three original disposal trenches, it is unclear if the current system captures all or only a portion of the leachate.
- A detailed waste profile of the material disposed of at Busy Bee Landfill is also unknown.

In addition to the alternatives described in Section 4, a data gap investigation is a possible next step in maintaining the current remedial action or implementing a new system.

3.2 STATEMENT OF PROBLEM/OBJECTIVES

The objective of this RSO evaluation is to identify potential remedial alternatives that could be implemented to more effectively manage and treat leachate at Busy Bee Disposal Site. The alternatives developed are based on available data with the goal of reducing the overall remedial life-cycle costs (LCC).

4. ALTERNATIVES EVALUATION

The seven preliminary remedial options described in Table 4 were initially developed to achieve a reduction of annual and LCC associated with leachate management and removal. In order to evaluate a larger set of options, EA considered both passive and active RSO alternatives. Active systems would require some sort of electrical component, and therefore would require the installation of a power source at the site. A preliminary ranking of costs (i.e., high, moderate, and low) was included with each alternative described in Table 4.

The remedial options were initially evaluated for implementability, reasonableness, cost, and regulatory acceptability. Discussions with the NYSDEC eliminated active systems since power at the site was not an acceptable option. The passive options were further evaluated using the historical data review and recently collected survey data. The results identified four remaining alternatives, including the current remedial action, which are discussed in this section and presented in Table 5.

4.1 SURVEYING

EA contracted Popli Design Group to perform a limited topographic survey of the site. EA identified major site features including the location and elevation of BB-T1 tanks, BB-T2 tanks, cleanouts in the leachate collection/conveyance system, monitoring well locations, location of overhead power lines, wood shed location, Borrow Pond, engineered swale, and location of the gravel drive into and around the property.

Figure 6 shows the results of the topographic survey. The survey revealed that ground surface at BB-T2 is approximately 8 ft higher than ground surface BB-T1. This survey data was used to assess the feasibility and implementability of the list of RSO alternatives for the site.

4.2 LEACHATE COLLECTION & MANAGEMENT ALTERNATIVES

The RSO evaluation included three passive leachate management alternatives along with the existing action as described in this section and summarized in Table 5. It was assumed that any change to existing remedial action operations (RA[O]) would require an Explanation of Significant Difference or amendment to the ROD. Each of the alternatives also includes the

assumption that biennial groundwater monitoring would continue until the remedy has met the remedial action objectives identified in the ROD and/or amended ROD. Additionally, the passive alternatives would each require some level of treated effluent discharge and associated permitting.

4.2.1 Alternative 1: Maintain Current Remedial System (No Action)

This alternative keeps the current RA(O) in place. However, it was assumed that leachate tanks would be removed and replaced, and leachate levels would continue to be checked by NYSDEC personnel. Leachate will be removed by truck and disposed of at an offsite treatment facility. The no action alternative is being used as a basis for comparison for each of the RSO alternatives evaluated.

Costs associated with Alternative 1 are based upon reported pricing from the NYSDEC, and the assumptions stated in Section 2.6. Groundwater samples will be analyzed for VOCs and TAL metals, the cost of which was estimated from NYSDEC's list of standby laboratories. Additional costs associated with this Alternative include travel and field time, as well as any reimbursement. Annual reporting requirements are estimated at 10 hours per year assuming an \$88/hour labor rate.

4.2.2 Alternative 2: Passive Treatment using Borrow Pond

This alternative is aimed at reducing VOC, SVOC, and metals concentrations in leachate to meet requirements for surface discharge to the environment by passively treating leachate onsite. The leachate lines would be combined and directed to one treatment area. Leachate from the west tanks (BB-T2) could be gravity fed to the east tanks (BB-T1) using a trenched in, 4-inch poly vinyl chloride (PVC) pipe. The east tanks will have a spill over and piping that will daylight leachate into a channel constructed along the slope between BB-T1 and the borrow pond. A geotextile liner will be installed along the channel to prevent leachate from infiltrating and possibly impacting shallow groundwater. Stone will be spread on top of the liner to aerate leachate and volatize VOCs. The length and dimension of the open channel would be determined based upon bench-scale pilot testing results. The borrow pond would act as an intermediate settling basin to help precipitate insoluble organics and reduce total suspended solids, before discharge to the surface or subsurface. This alternative currently assumes treated effluent will be discharged the existing drainage swale that runs adjacent to the access road toward Clark Road.

It was assumed that a treatability and/or pilot test would be conducted to show proof of concept. Once proof of concept was achieved, and Explanation of Significant Difference or ROD amendment could proceed. In the conceptual design, the piping between the leachate storage tanks and wetland would be a 4-inch PVC pipe that would be placed at 4 ft below grade (below the frost line). Approximately 800 feet of 4-inch PVC piping would be needed with two man holes for pipe repair and cleanout. The stone channel built between tank BB-T1 and the borrow pit pond is estimated at 75 ft in length, and lined with a combination of geotextiles and smaller

stone/gravel. For the cost estimation, it was also assumed that the borrow pond would be minimally excavated and regraded. Due to possible accumulation of sediment and solids in the borrow pond, it was also assumed that dredging and disposal of these solids would occur every five years. However, dredging and disposal frequency will be dependent upon the results of pilot testing. Dredged material was assumed to have a density of 120 lbs/ft³. Additional treatment options could be added to the sequence (i.e., activated carbon vessel) based on the results of the treatability testing.

Permitting, monitoring, and reporting requirements would include the current monitoring/reporting schedule, and any additional monitoring requirements as a result of discharging leachate onsite. For costing, it was assumed that state pollutant discharge elimination system (SPDES) monitoring would occur monthly for the first three years and quarterly thereafter. Samples would be analyzed for VOCs, SVOCs, metals, pesticides, and PCBs. Figure 3 shows the proposed layout for this alternative.

4.2.3 Alternative 3: Passive Treatment with Constructed Wetland

Alternative 3 incorporates several of the design elements and assumptions of Alternative 2, with the exception that Borrow Pond would be altered to create a constructed wetland. The constructed wetland would be used as a settling and treatment basin for leachate. Wetland plants will provide uptake for contaminants and slow flow through the pond to allow solids to settle out.

In addition to the piping and channel construction described in Alternative 2, the borrow pond would be excavated and regraded. Compost would be added to the floor of the wetland area to grow native plants and vegetation. One plant will be planted for every one square ft. It was assumed that dredging and disposal of accumulated solids, along with wetland replanting, will also occur every five years. Treated effluence would either discharge to the surface or subsurface, and additional treatment options could be added to the sequence based on the results of the treatability testing.

Alternative 3 would also have the same permitting, sampling, and monitoring requirements as described in Alternative 2. Figure 4 shows the proposed layout for this alternative.

4.2.4 Alternative 4: Passive Treatment with Two Constructed Wetlands

Since the existing grades will not allow the leachate collected in the east tanks to flow to the west tanks without significant earthwork, separate passive treatment systems could be constructed for each set of leachate tanks.

Leachate collected in BB-T1 tanks would daylight on the eastern slope of the landfill and run down an open channel to a constructed wetland as described in Alternative 3. Grasses and other plant species would be planted to uptake VOCs and metals before the treated leachate was discharged into the engineered swale running along the eastern edge of the property.

6712 Brooklawn Parkway, Suite 104 Syracuse, New York 13211-2158 Telephone: 315-431-4610 www.eaest.com

On the western side of the landfill, leachate from BB-T2 would be released into an open channel on the north-west side of the property, into the woods. The area would be cleared of all trees and brush so a treatment wetland could be constructed in the north-west corner of the property. A wetland area equivalent to the volume of the two BB-T2 tanks would be excavated to treat the leachate. Vegetation would also be planted to provide uptake. Treated leachate could be discharged to the surface or subsurface. In developing costs for this alternative, it was assumed effluent would be discharged into the woods.

Permitting, monitoring, and reporting requirements would include the requirements described in Alternatives 2 and 3. With two effluent discharge points, however, the sampling and analysis costs of monitoring the treated effluent would double. If the effluent is discharged to the surface, SPDES permitting and monitoring will be required. As mentioned in Alternative 2, it was assumed SPDES monitoring would occur monthly in years 1-3 and quarterly thereafter for two outfall locations. Figure 5 shows the proposed layout for this alternative.

4.2.5 Closing Data Gaps

In order to implement the aforementioned alternatives, additional work will need to be completed to close the data gaps associated with this site. First, the leachate collection and conveyance system needs to be fully investigated and delineated. The effectiveness of the remedial trench should also be evaluated to determine if it is capturing all of the leachate. For Alternatives 2-4, a treatability/pilot study will need to be conducted to evaluate the efficacy of the proposed treatment options and for a basis of design. The costs associated with closing these data gaps have not been included in the cost breakdown with each alternative.

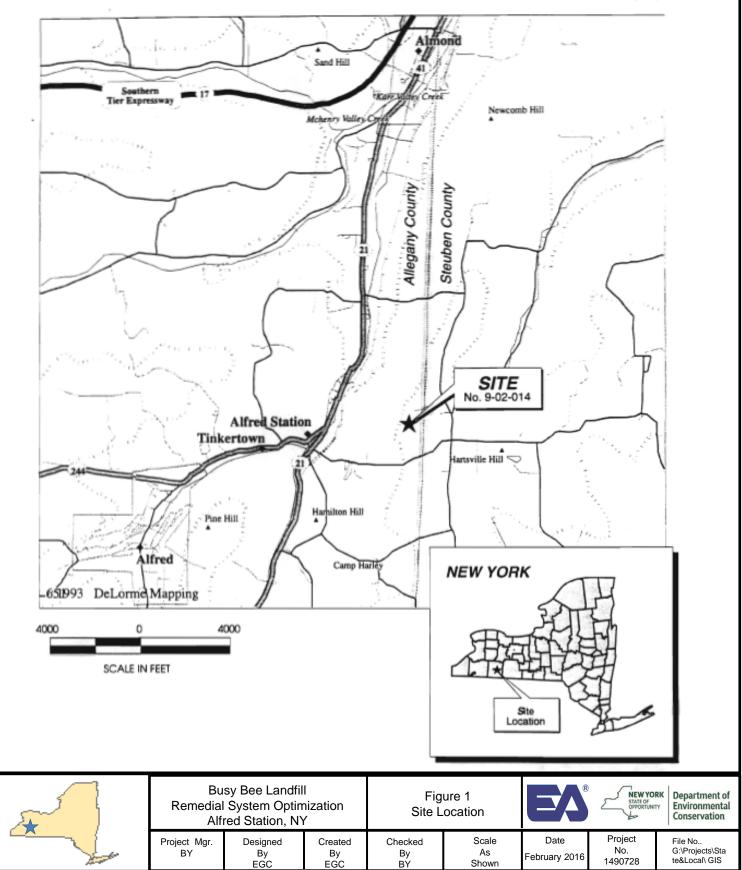
4.3 ESTIMATED COSTS OF RSO ALTERNATIVES

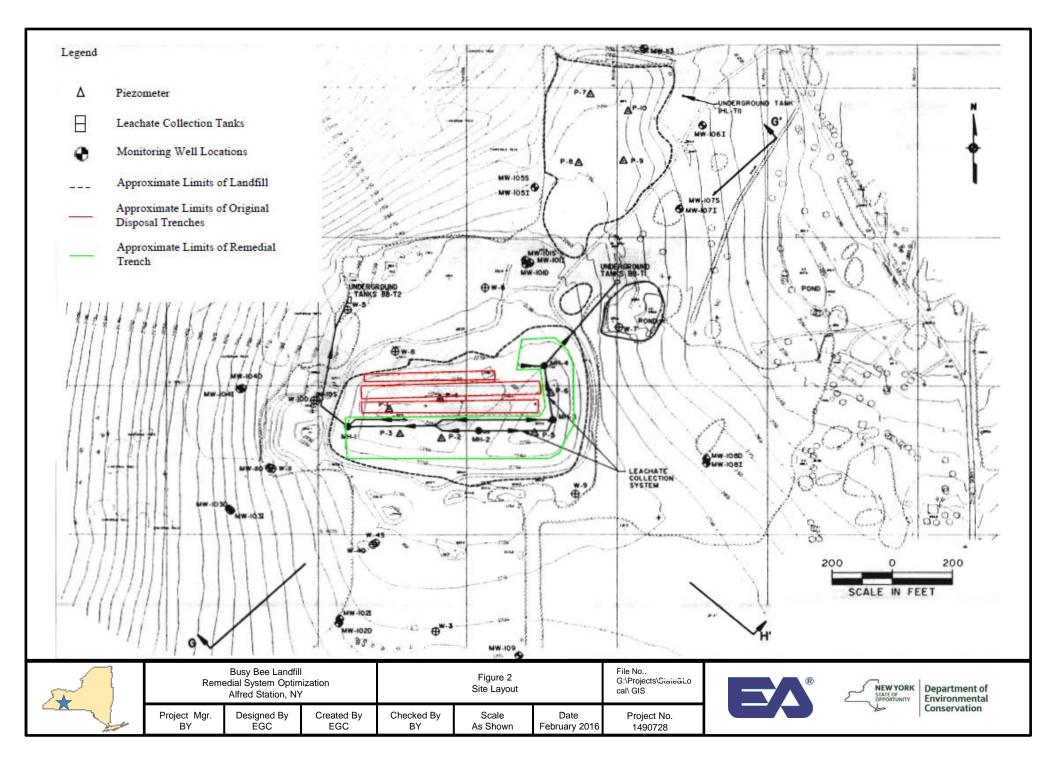
Costing of the RSO alternatives described in the above section was completed using RS Means and engineering estimates. As previously mentioned, each alternative is proposed with the replacement of all four leachate collection tanks. The following table summarizes the costs associated with each alternative.

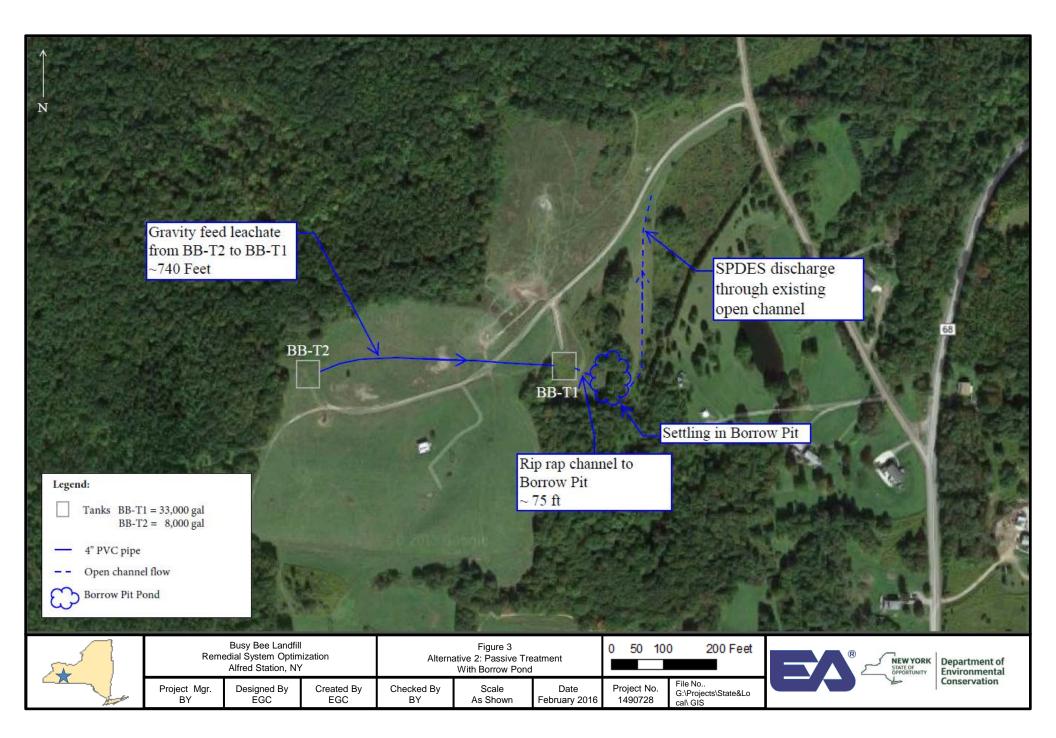
Alternative	Cap	oital Cost	l Long-term nitoring	Total I	Lifetime (30 years/5%)
1	\$	74,000	\$ 57,610	\$	960,000
2	\$	147,000	\$ 25,090	\$	934,000
3	\$	187,000	\$ 25,090	\$	1,055,000
4	\$	191,000	\$ 32,770	\$	1,360,000

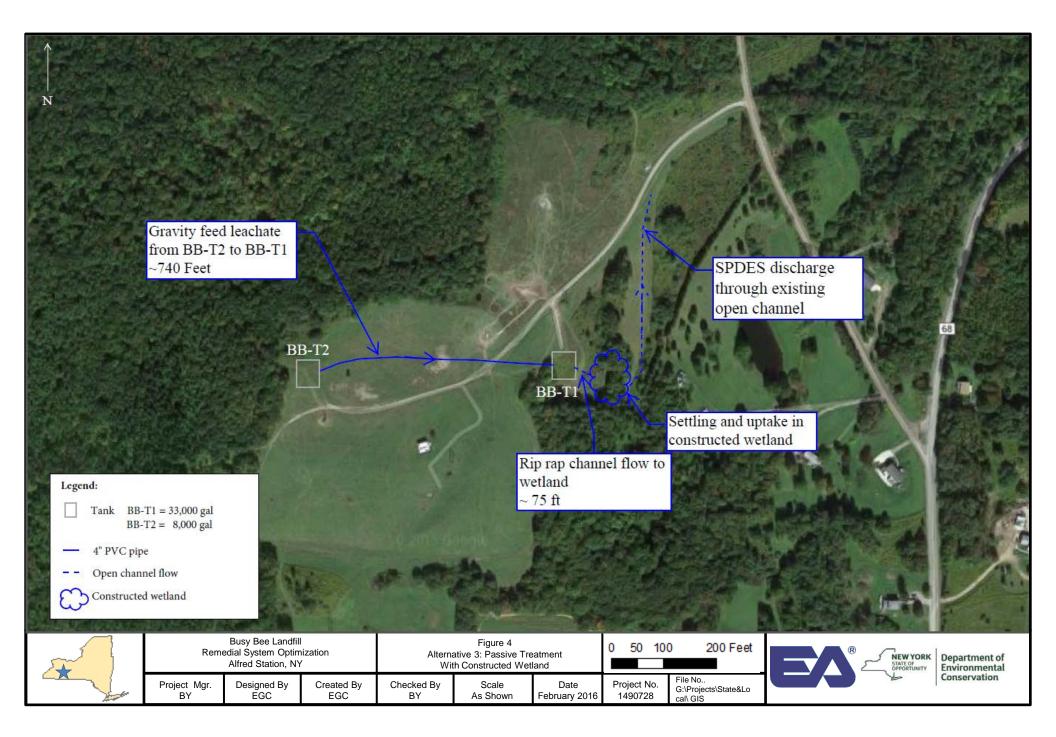
EXHIBIT 2 ALTERNATIVES COSTING SUMMARY

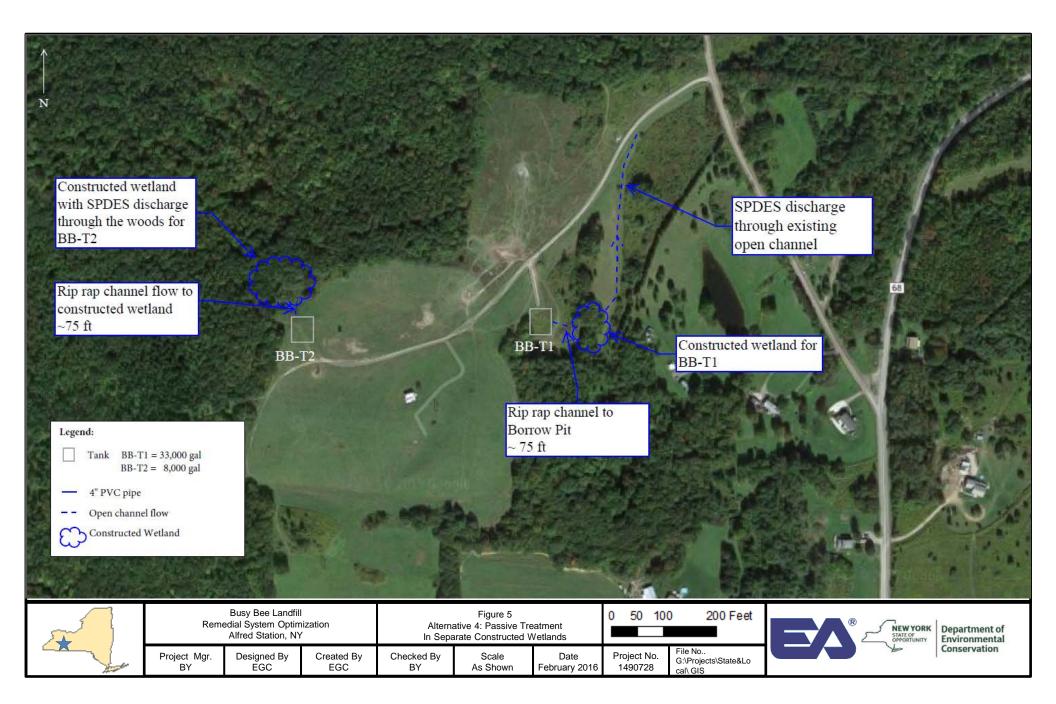
A detailed accounting of costs is presented in Table 6.

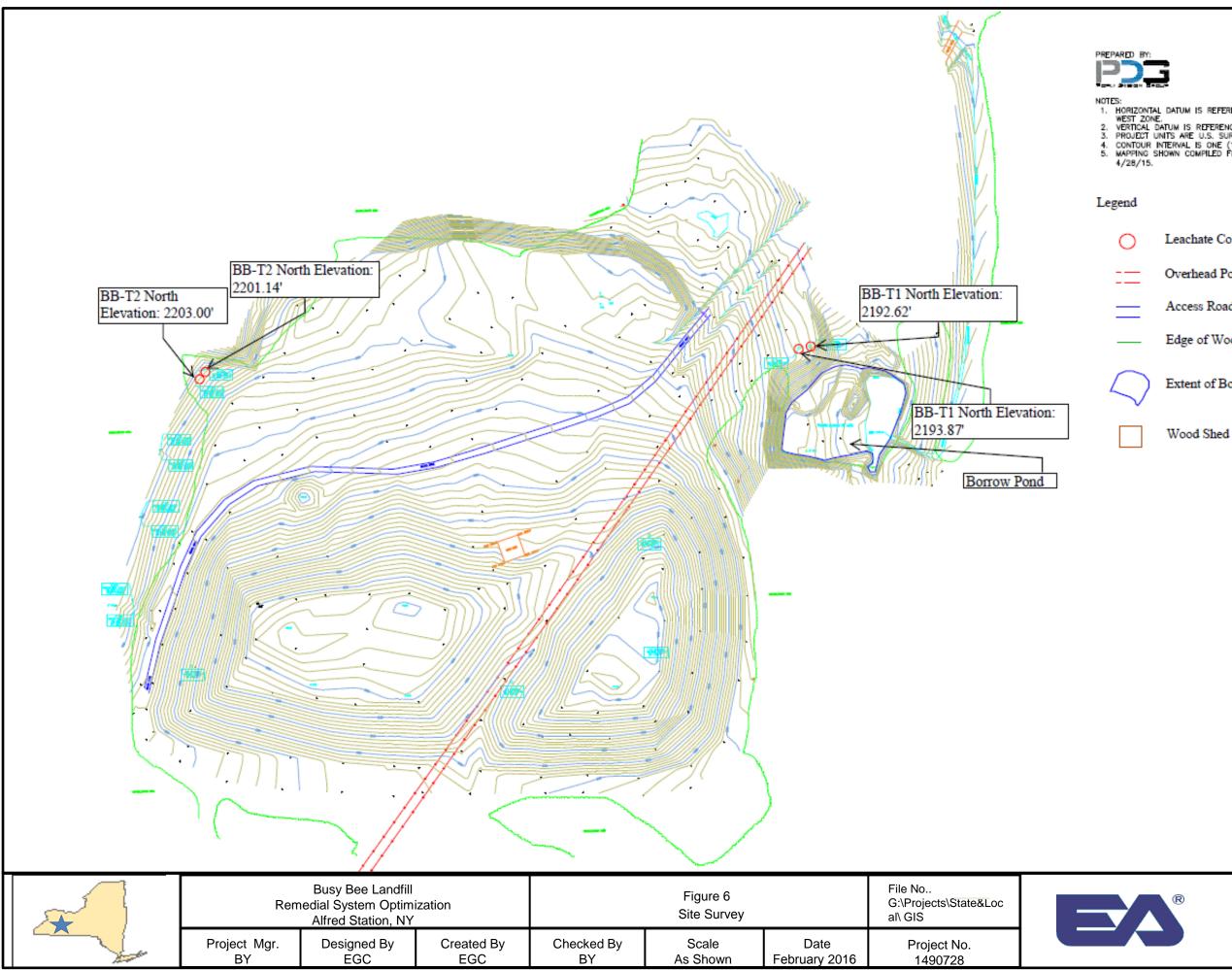

5. SUMMARY


There are currently many data gaps associated with operating the current remedial action at Busy Bee Disposal site as well as it being labor intensive. The alternatives presented above have the potential to mitigate these drawbacks and provide a better solution for the human health and the environment. Replacing the leachate storage tanks will reduce any leaks due to aging infrastructure. Eliminating the need to periodically remove leachate from the storage tanks by allowing leachate to also be held in a pond or wetland for treatment will reduce the risks of overflow.


Due to the time and monetary cost of leachate removal (about \$25,000 annually), the NYSDEC sought to explore alternatives to the current remedial action. The alternatives and cost evaluation showed that it is possible to reduce the annual long-term monitoring costs by establishing a passive treatment system.


The proposed alternatives for passive treatment systems, however, will require higher upfront capital costs, regular monitoring, and periodic maintenance. The maintenance costs associated with a wetland or storage pond area can be quite high, nearing \$200,000, but are offset with reduced monitoring needs and long-term monitoring costs in the future. As mentioned, it was assumed that SPDES sampling would occur monthly in years 1-3 of operation of a passive treatment system and quarterly thereafter. Over time, monitoring requirements could decrease further, reducing the annual operating costs of Alternatives 2-4. Additionally, the maintenance (dredging/disposal) of a wetland or storage area could occur less frequently than every five years based on results of pilot testing.


Å



NOTES: 1. HORIZONTAL DATUM IS REFERENCED TO NAD83(2011) - NYSPCS, WEST ZONE. 2. VERTICAL DATUM IS REFERENCED TO NAVD88. 3. PROJECT UNITS ARE U.S. SURVEY FEET. 4. CONTOUR INTERVAL IS ONE (1) FOOT. 5. MAPPING SHOWN COMPILED FROM FIELD SURVEY COMPLETED 4/28/15.

)	Leachate Collection Tank
_	Overhead Power Lines
_	Access Road
	Edge of Wooded Area
\bigtriangledown	Extent of Borrow Pond
_	

Department of Environmental Conservation

ŝ 002

		10.0	-ir		ir	-		-	l'		AC 0 1 0		10.0		20.35		10.0	11
		19-Oct-00	17-Oct-0		9-Oct-(8-Oct-03		20-Oct-04	_	26-Oct-05		18-Oct-07		30-May-1		12-Sep-	
Analyte	AWQS Standard Units	BB-T2-S	BB-T2-	-	BB-T1-		BB-T2-S		BB-T1-S		BB-T2-S		BB-T2-S		BB-T1-S		BB-T2-	·S
	· · · · · · · · · · · · · · · · · · ·			10d: 8	ii	atile (Organic Comp	oun								-	r	
1,1,1-Trichloroethane	5 μg/L	1	ND		ND		ND		ND		3.8		ND		ND		ND	
1,1-Dichloroethane	5 μg/L	2.5	ND		ND	Ш	ND		ND		1.1		ND		ND		1.5	\downarrow
1,1-Dichloroethene	5 μg/L	0.21	ND		ND		ND		ND		ND		ND		ND		0.56	J
1,1-Dichloropropene	5 μg/L	0.64	ND		ND		ND		ND		ND		ND		ND		ND	
1,4-Dichlorobenzene	3 μg/L	0.54	ND		ND		ND		ND		ND		ND		ND		ND	
Acetone	50 µg/L		22	J	16	J	4	J	ND		2.6	J	ND		ND		ND	
cis-1,2-Dichloroethane	5 µg/L	ND	ND		ND		ND		ND		16		ND		ND		ND	
cis-1,3-dichloroethene	5 μg/L	57	ND		ND		ND		ND		ND		ND		ND		77	
Dichlorodifluoromethane	5 µg/L	3.1	ND		ND		ND		ND		ND		ND		ND		ND	
Methylene chloride	5 µg/L	ND	ND		ND		ND		ND		ND		6.8	В	ND		ND	
trans-1,2-Dichloroethene	5 µg/L	3.9	ND		ND		ND		ND		ND		ND		ND		ND	
Trichloroethene	5 µg/L	ND	ND		ND		ND		ND		68		ND		ND		75	
Vinyl Chloride	0.3* µg/L	26	ND		ND		ND		ND		3		ND		ND		3.7	
			Metho	d: 827	/0D - Semiv	olatil	e Organic Cor	npou	inds									
Benzaldehyde	- μg/L	-	0.7	J	ND		0.5	J	ND		NS		NS		0.38	J	0.43	J
1,4-Dichlorobenzene	3 μg/L	-	1	J	ND		0.6	J	ND		ND		ND		ND		ND	
bis(2-Ethylhexyl)phthalate	5 µg/L	-	1	J	3	BJ	0.6	J	ND		ND		ND		2	J	ND	
Diethylphthalate	- μg/L	-	1	J	ND		0.6	J	ND		ND		ND		0.83	J	ND	
di-n-Octylphthalate	- μg/L	-	0.4	J	0.7	J	ND		ND		ND		ND		1.6	JB	ND	
4-Methylphenol	5 μg/L	-	0.3	J	ND		ND		ND		ND		ND		ND		0.38	J
Acetophenone	- μg/L	-	ND		1	J	ND		ND		NS		NS		ND			
Butylbenzylphthalate	- μg/L	-	ND		0.4	J	ND		ND		ND		ND		1.6	JB	ND	
di-n-Butylphthalate	50 µg/L	-	ND		1	J	0.8	J	ND		ND		ND		1.3	JB	ND	
Naphthalene	10 µg/L	-	ND		ND		0.4	J	ND		ND		ND		ND		ND	
2,4-Dimethylphenol	50 µg/L	-	ND		ND		0.4	J	ND		ND		ND		ND		ND	
2,4-Dinitrotoluene	5 μg/L	-	ND		ND		ND		ND		ND		ND		0.65	J	ND	
4-Bromophenyl phenyl ether	- μg/L	-	ND		ND		ND		ND		ND		ND		0.45	J	ND	
4-Chlorophenyl phenyl ether	- μg/L	-	ND		ND		ND		ND		ND		ND		0.36	J	ND	
Benzo(a)anthracene	0.002 µg/L	-	ND		ND		ND		ND		ND		ND		1.4	JB	ND	
Benzo(a)pyrene	ND µg/L	-	ND		ND		ND		ND		ND		ND		0.92	J	ND	
Benzo(b)fluoranthene	0.002 µg/L	-	ND		ND		ND		ND		ND		ND		1.6	JB	ND	
Benzo(g,h,i)perylene	- μg/L	-	ND		ND		ND		ND		ND		ND		0.45	J	ND	
Benzo(k)fluoranthene	0.002 µg/L	-	ND		ND		ND		ND		ND		ND		1.8	J	ND	
Carbazole	- μg/L	-	ND		ND		ND		ND		ND		ND		0.54	J	ND	
Chrysene	0.002 µg/L	-	ND		ND		ND		ND		ND		ND		0.57	J	ND	
Dimethyl phthalate	50 µg/L	-	ND		ND	\square	ND		ND		ND		ND		0.42	J	ND	
Fluoranthene	50 µg/L	-	ND		ND		ND		ND		ND		ND		0.44	J	ND	
Indeno(1,2,3-cd)pyrene	0.002 µg/L	-	ND		ND		ND		ND		ND		ND		0.47	J	ND	
N-Nitrosodiphenylamine	50 µg/L	-	ND		ND	\square	ND		ND		ND		ND		0.64	J	ND	
Phenanthrene	50 μg/L	-	ND		ND	\square	ND		ND		ND		ND		0.49	J	ND	
Pyrene	50 µg/L	-	ND	1	ND	П	ND		ND		ND		ND		0.79	J	ND	

TABLE 1 HISTORICAL LEACHATE DATA

EA Project No. 14907.28 Table 1, Page 1 of 2 February 2016

			19-Oct-	00	17-Oct-01	1	9-Oct-0	2	8-Oct-03		20-Oct-0	4	26-Oct-05	18-Oct-07	30-May	-13	12-Sep-	-14
Analyte	AWQS Standard	Units	BB-T2-	S	BB-T2-S	5	BB-T1-	S	BB-T2-S		BB-T1-S	5	BB-T2-S	BB-T2-S	BB-T1	-S	BB-T2	2-S
							Method: 6	010C	- Metals									
Aluminum	100	µg/L	35.7	В	1,270		ND		386		37.6	В	0.82	28,400	0.065	J	ND	Т
Antimony	3	µg/L	ND		ND		5.4	В	ND		ND		ND	ND	ND		ND	Τ
Arsenic	25	µg/L	ND		14.6		7.5	В	19.4		2.8	В	ND	180	ND		ND	Τ
Barium	1,000	µg/L	452	Е	1,000		737		597		420		0.11	1,600	0.14		190	Τ
Beryllium	3	µg/L	ND		ND		0.21	В	0.35	В	ND		ND	2.4	ND		ND	
Cadmium	5	µg/L	ND		ND		0.3	В	ND		ND		ND	18	ND		ND	Τ
Calcium	-	µg/L	160,000	Е	223,000		91,900	Е	165,000		488,00		37.9	225,000	25.7		59,800	Τ
Chromium	50	µg/L	1.9	В	2.9	В	32.4		1.3	В	23.8		ND	42	6.5		ND	Τ
Cobalt	5	μg/L	4.8	В	13.2	В	5.9	В	5.6	В	3.6	В	ND	47	1.2	J	4.7	Т
Copper	200	µg/L	2.1	В	8.1	В	6.4	В	3.6	В	6.1	В	ND	80	10		ND	Т
Iron	300	µg/L	8,890		42,100		6,710		33,200	Ν	7,570		2.8	406,000	2,200		1,400	
Lead	25	µg/L	2.8	В	ND		8.3		3.9		8.1		ND	100	ND		ND	Т
Magnesium	35,000	µg/L	87,900	Е	203,000		51,300		79,300		25,000		10.2	128,000	9,400		24,800	Т
Manganese	300	µg/L	3,720	Е	1,780		2,410		5,270		1,200		2.7	11,300	340		3,300	Т
Nickel	100	μg/L	16.5	В	35.7	В	199		14.5	В	129		7.4	91	41		ND	Т
Potassium	-	µg/L	80,700		174,000		50,800	ΒE	46,800		28,300	В	ND	149,000	9,100		18,100	Т
Selenium	10	µg/L	ND		ND		ND		5.3	В	ND		ND	ND	ND		ND	Т
Sodium	20,000	µg/L	396,000		1,114,000		938,000		273,000		685,000		27	732,000	189,000		100,000	
Thallium	0.5	µg/L	ND		ND		ND		4.6	В	ND		ND	ND	ND		ND	
Vanadium	14	µg/L	ND		2.2	В	4.1	В	1.8	В	3	В	ND	46	ND		ND	
Zinc	2,000	µg/L	18	В	51.6		35.6		18.5	В	12.4	В	ND	6,400	10		12	
Mercury	1	µg/L	ND		ND		0.195	В	ND		ND		ND	ND	ND		ND	
					Met	hod:	8081B - Or	gano	chlorine Pesti	cides								
4,4'-DDD		µg/L	-		-		-		-		0.024	J	-	-	0.019	JB		Τ
4,4'-DDE		µg/L	-		-		-		-				-	-	0.012	J	0.016	
4,4'-DDT		µg/L	-		-		-		-				-	-			0.031	
Aldrin	ND	µg/L	-		-		-		-				-	-	0	J		
alpha-BHC		µg/L	-		-		-		-				-	-	0.016	J		
alpha-Chlordane	0.05	μg/L	-		-		-		-				-	-	0.035	J		Т
beta-BHC		µg/L	-		-		-		-				-	-	0.025	J		
delta-BHC		µg/L	-		-		-		-		0.095		-	-	0	J B	0.013	J
Dieldrin	0.004	µg/L	-		-		-		-				-	-	0.011	J		
Endosulfan I	0.009		-		-		-		-				-	-	0	J		T
Endosulfan II	0.009		-		-		-		-				-	-			0.026	
Endosulfan II (Beta)	0.009		-		-		-	\square	-		0.033	J	-	-				╈
Endrin	ND	μg/L	-		-		-	\square	-		0.065	J	-	-				╈
gamma-BHC (Lindane)		μg/L	-		-		-		-				-	-	0.017	JB	0.013	J
gamma-Chlordane	0.05	μg/L	-		-		-	\square	-			\square	-	-	0.027	JB	0.011	J
Heptachlor		µg/L	-	1	-	İ	_		-	i	0.039	Τ		-	0.009	J	1	

TABLE 1 HISTORICAL LEACHATE DATA

Quality S lards, if no s ble, used gu ampl npa Notes:

B = The analyte was detected below contract required detection limit

E = The result value was estimated du to interference

J = Estimated value, concentration below laboratory reporting limit

ND = Not detected

Bold values indicate that the analyte was detected above the NYSDEC Ambient Water Quality Standards.

EA Project No. 14907.28 Table 1, Page 2 of 2 February 2016

			T	ABLE 2 HISTO	RIC GROU	NDV	WATER M	ONľ	TORING	RES	ULTS									
						MW	/-101D													
	Standards	1-Jul-94	1-Sep-94	1-Jun-95	19-Oct-0	0	17-Oct-0	1	9-Oct-0	2	8-Oct-03	3	20-Oct-0	4	26-Oct-0)5	4-Oct-0	6	18-Oct-	07
						VOC	s (µg/L)											•		
Chlorobenzene	5	6	7	4	6.6		3	J	4	J	6		6	J	NS		6.3		0.73	J
Dichlorodifluoromethane	5	ND	ND	ND	13		ND		ND		ND		ND		NS		ND		ND	
1,4-Dichlorobenzene	3	ND	ND	ND	0.9		ND		ND		0.9	J	ND		NS		1.1		ND	
Acetone	50	ND	ND	14	ND		3	J	ND		ND		ND		NS		ND		3.8	J
2-Butanone	0.4	ND	ND	ND	ND		1	J	ND		ND		ND		NS		ND		ND	
Benzene	1	1	1	ND	ND		1	J	1	J	1		ND		NS		1.2		ND	
Toluene	5	3	ND	ND	ND		ND		ND		ND		ND		NS		ND		ND	
1,3-Dichlorobenzene	3	ND	ND	ND	ND		ND		ND		ND		ND		NS		ND		0.41	J
						Metal	ls (µg/L)		•						•		•			
Aluminum		6480	631	2390	43.6	В	213		32.5	U	129	В	18.4	U	NS		200	U	NS	
Antimony	3		1.4		5	U	3	U	5.4	U	4.1	U	5	U	NS		20	U	NS	
Arsenic	25	13.8	9	9.1	11.9		9.6	В	4	В	11.5		4.9	В	NS		10	U	NS	
Barium	1000	549	537	665	623	E	523		611		675		676		NS		750		NS	T
Beryllium	3		0.57	0.83	0.5	U	1	U	0.2	U	0.21	В	0.19	U	NS		2	U	NS	
Cadmium	5		1.2	0.93	0.6	U	1.1	BN	3.33	В	0.53	В	0.34	U	NS		1	U	NS	
Calcium		133000	138000	141000	135000	E	12200		124000	E	128000		120000		NS		129000		NS	
Chromium	50	10.2	0.97	3	2	В	1	U	0.6	U	0.9	U	1	В	NS		4	U	NS	
Cobalt		10.1	6.4	9.1	5.4	В	5	В	4.8	В	4	U	3.4	В	NS		4	U	NS	
Copper	200	11.8	3.5	5.6	1.7	В	14.9	В	6.3	В	6.6	В	3.8	В	NS		10	U	NS	
Iron	300	13700	2330	5410	1270		891		270		809	Ν	443		NS		810		NS	
Lead	25	13.7	1.7	4.4	2.6	U	2	U	7.3		13.1		4.9		NS		5	U	NS	
Magnesium	35000	80900	82900	88200	82000	Е	69300		78700		77800		72500		NS		79100		NS	
Manganese	300	7190	7560	9020	7200	Е	4290		5900		5970		6980		NS		7400		NS	
Mercury	0.7				0.15	U	0.072	U	0.115	В	0.055	U	0.087	U	NS		0.2	U	NS	
Nickel	100	20	14.9	15.8	9.1	В	9.8	В	9	В	8.9	В	7.2	В	NS		10	U	NS	
Potassium		109000	13000	10800	11900		12400		11400	E	11300		10100		NS		11400		NS	
Selenium	10		3.9	2	7.3		5	U	4	U	4.4	В	5	U	NS		15	U	NS	
Silver	50		1.2		1.5	U	2	U	0.5	U	0.7	U	0.9	U	NS		3	U	NS	
Sodium	2000	57100	65500	63800	57900		51200		49000		44900		42700		NS		45500		NS	
Thallium	0.5		3.3	5.2	5	U	4	U	3.9	U	3.8	U	5.1	U	NS		20	U	NS	
Vanadium		4.4	1.1	3.1	1	U	1	U	0.7	U	0.91	В	0.58	U	NS		5		NS	
Zinc	2000	75.9	20.6	43.5	8	В	16.3	В	4.5	В	4.7	В	1.9	В	NS		10		NS	

 (a) Results reported in micrograms per liter (µg/L)
 (b) Sample results compared to NYSDEC Ambient Water Quality Standards, if no standard was available, used guidance values in *italics* Notes:

U = The analyte was analyzed for, but was not detected above the detection limit B = The analyte was detected below contract required detection limit

E = The result value was estimated du to interference N = Spike sample recovery not within quality control limits

ND = Not detected

NS = Not sampled

Bold values indicate that the analyte was detected above the NYSDEC Ambient Water Quality Standards.

FABLE 2 HIS	STORIC GRC	UNDWATER	MONITORING	RESULTS

						MV	V-101I													
	Standards	1-Jul-94	1-Sep-94	1-Jun-95	19-Oct-0	0	17-Oct-0	1	9-Oct-0	2	8-Oct-0.	3	20-Oct-0	4	26-Oct-0)5	4-Oct-0	6	18-Oct-0	7
	· · ·					VOC	's (µg/L)													
Acetone	50	ND	ND	ND	ND		2	J	1		ND		ND		NS		ND		2.1	J
		•		•	•	Meta	ls (µg/L)		•		•				•		•		•	
Aluminum		434	6170	357	8500		61300		NS		21200		8730		2.22		23900		51400	
Antimony	3	ND	1.7	ND	5	U	3	U	NS		4.1	U	5	U	20	U	20	U	20	U
Arsenic	25	2.2	9.1	3.3	6.9	В	54.5		NS		22.2		5.5	В	12		16		35	
Barium	1000	386	396	272	175	BE	694		NS		273		173		290		290		490	
Beryllium	3	ND	0.63	ND	0.57	В	4.3	В	NS		1.5	В	0.19	U	2	U	2	U	3.7	
Cadmium	5	ND	ND	ND	0.6	U	1	UN	NS		0.3	U	0.42	В	2.7		1		2.1	
Calcium		124000	150000	103000	81300	E	88600		NS		82300		81100		92300		89400		101000	
Chromium	50	ND	6.9	ND	9	В	74.3		NS		23.2		7.5	В	27		27		58	
Cobalt		ND	7.9	2.3	6.9	В	69.2		NS		21.7		6.8	В	17		20		45	
Copper	200	3.7	8.3	ND	13.8	В	175		NS		38		14.7		90		38		75	
Iron	300	835	10100	1110	9190		131000		NS		41500	Ν	12300		34800		39700		91300	
Lead	25	1.3	3.6	ND	4.9		48.1		NS		14.3		4.7		18		15		34	
Magnesium	35000	65400	73700	47700	35400	E	55200		NS		41800		36200		44200		45600		56100	
Manganese	300	30700	2570	1100	564	E	2850		NS		920		486		790		750		1600	
Mercury	0.7	ND	ND	ND	0.15	U	0.072	U	NS		0.055	U	0.087	U	0.2	U	0.2	U	0.2	U
Nickel	100	5.2	18	2.5	9.6	В	136		NS		42.3		11.8	В	40		40		88	
Potassium		5530	9100	5310	7810		17500		NS		10600		7720		13000		12800		20700	
Selenium	10	ND	2.3	ND	5	U	9.7		NS		4.1	В	5	U	15	U	15	U	15	U
Silver	50	ND	0.28	ND	1.5	U	2	U	NS		0.7	U	0.69	U	3	U	3	U	3	U
Sodium	20000	14100	14400	10100	6700		7400		NS		6590		5880		7200		6600		6700	
Thallium	0.5	ND	3.3	ND	5	U	4	U	NS		5	В	5.1	U	20	U	20	U	20	U
Vanadium		ND	9.1	ND	13.5	В	78.2		NS		26.8	В	12.1	В	31		31		69	
Zinc	2000	29.6	53.1	4.6	47.4		364		NS		100		27.9		160		99		210	

TABLE 2 HISTORIC	CROUNDWATER	MONITORING RESULTS
TADLE 2 HISTORIC	GROUNDWATER	MONITOKING KESULIS

						MW	V-102D													
	Standards	1-Jul-94	1-Sep-94	1-Jun-95	19-Oct-0)	17-Oct-0)1	9-Oct-0	2	8-Oct-0	3	20-Oct-0)4	26-Oct-	05	4-Oct-0	6	18-Oct-0	7
						voc	's (μg/L)													
Acetone	50	ND	ND	ND	ND		ND		3	J	ND		ND		ND		ND		ND	J
				•		Meta	ls (µg/L)		•				•		•		•			
Aluminum		350	394	211	292		118		32.5	U	358		104	В	980		200	U	450	
Antimony	3	ND	1.7	ND	5	В	3	U	5.4	U	4.1	U	5	U	20	U	20	U	20	U
Arsenic	25	1.5	ND	84.7	3.4	U	4	U	4	U	3.8	В	2.6	U	10	U	10	U	10	U
Barium	1000	75.6	83.8	ND	81	BE	86.7	В	88.1	В	95.1		72.5	В	98		84		88	
Beryllium	3	ND	0.1	ND	0.5	U	1	U	0.2	U	0.18	В	0.19	U	2	U	2	U	2	U
Cadmium	5	ND	0.6	ND	4.5	В	1.7	BN	1.8	В	3.5	В	7.5		6.8		1.2		3.8	
Calcium		44200	43400	46000	43200	Е	47000		43000	E	45900		41400		47800		45400		45300	
Chromium	50	ND	ND	ND	1.2	U	1	U	0.6	U	0.9	U	0.65	U	10		4	U	4	U
Cobalt		ND	ND	ND	1	U	1	U	0.5	U	0.7	U	0.86	U	4	U	4	U	4	U
Copper	200	4	2.6	ND	5.8	В	1.1	В	2.4	В	5	В	3.2	В	4	U	10	U	16	
Iron	300	475	468	277	249		72.1		150		614	Ν	121		2000		110		640	
Lead	25	ND	ND	ND	2.6	U	2	U	2.3	U	1.6	U	1.3	U	5	U	5	U	5	U
Magnesium	35000	15500	15300	16700	14500	Е	15100		14200		15500		14000		15700		16100		14900	
Manganese	300	13.3	20.9	10.4	8.9	BE	2.8	В	7	В	15.6		4.3	U	45		4.8		13	
Mercury	0.7	ND	ND	ND	0.15	U	0.072	U	0.11	В	0.055	U	0.087	U	0.2	U	0.2	U	0.5	U
Nickel	100	ND	1.1	ND	1.5	U	1.5	U	1	U	2.2	В	2	В	10	U	10	U	10	U
Potassium		2690	2540	1970	2620	В	2330	В	2680	BE	3010	В	2700	В	3100		2900		3600	
Selenium	10	ND	ND	ND	5	U	5	U	4	В	5.5	В	5	U	15	U	15	U	15	U
Silver	50	ND	ND	ND	1.5	U	2	U	0.5	U	0.7	U	0.69	U	3	U	3	U	3	U
Sodium	2000	4660	4060	3820	3960	В	3780	В	3970	В	4410	В	3360		4000		4100		3700	
Thallium	0.5	ND	1.9	ND	5	U	4	U	3.9	U	3.8	U	5.1	U	20	U	20	U	20	U
Vanadium		ND	ND	ND	1	U	1	U	0.7	U	0.8	U	0.58	U	5	U	5	U	5	U
Zinc	2000	55.5	15.7	3.4	12.6	В	2	U	9.8	В	7.9	В	2.6	В	20	U	10	U	10	U

				TA	ABLE 2 HIS	10	RIC GROU	ND	WATER M	ONI	FORING .	RES	ULTS									
								MW	V-103D													
	Standards	1-Jul-94	1-Sep-94		1-Jun-95		19-Oct-00)	17-Oct-0)1	9-Oct-0	2	8-Oct-0.	3	20-Oct-0	4	26-Oct-0)5	4-Oct-0	6	18-Oct-0	7
			•		•			voc	's (μg/L)													
cis-1,2-dichloroethene	5	9	15		13		20		8	J	14		NA		6	J	3.7		5.4		4.5	
Trichloroethene	5	2	4		4		6.6		4	J	5	J	NA		4	J	2.2		5.9		9.1	
]	Meta	ls (µg/L)													
Aluminum		366	1210		137		2470		293		32.5	U	151	В	37.1	В	1700		200	U	1500	
Antimony	3	ND	ND		ND		5	U	3	U	5.4	U	4.1	U	5	U	20	U	20	U	20	U
Arsenic	25	ND	2.4		ND		3.4	U	4	U	4	U	5.2	В	2.6	U	10	U	10	U	10	U
Barium	1000	46.3	77.3		68.7		72.8	BE	59.1	В	67.9	В	6.9		59.9	В	42		57		70	
Beryllium	3	ND	0.5		ND		0.5	U	1	U	0.2	U	0.1	U	0.19	U	2	U	2	U	2	U
Cadmium	5	ND	2.5		ND		2.5	В	1.7	BN	0.44	В	0.3	U	0.34	U	1.1		1	U	2.3	
Calcium		42700	42200		305000		20900	Е	25400		23100	E	24100		29200		13200		23200		20500	
Chromium	50	ND	1.4		ND		1.8	В	1	U	0.6	U	0.9	U	0.65	U	4.1		4	U	4	U
Cobalt		ND	1.2		ND		1.5	В	1	U	0.5	U	0.7	U	0.86	U	4	U	4	U	4	U
Copper	200	ND	3.6		ND		4	В	1	U	0.82	В	1.7	U	1.3	U	10		10	U	10	
Iron	300	595	1430		144		2600		368		400		191	В	36.8	В	1800		86		1900	
Lead	25	ND	1.8		ND		4.5		2	U	2.3	U	1.6	U	1.3	U	5	U	5	U	5	U
Magnesium	35000	17300	17500		13100		7550	Е	9080		8540		8790		11300		5000		9000		7800	
Manganese	300	22.3	75		8.8		94.9	Е	19.4		26.6		5.4		3.2	В	45		5.5		56	
Mercury	0.7	ND	ND		ND		0.15	U	0.072	U	0.078	В	0.055	U	0.087	U	0.2	U	0.2	U	0.2	U
Nickel	100	ND	5.8		ND		2.8	В	1.5	U	1	U	1.5	В	1.2	U	10	U	10	U	10	U
Potassium		3380	2890		1450		2590	В	1970	В	1930	BE	1980	В	1820	В	3.6		2400		2300	
Selenium	10	ND	ND		ND		5	U	5	U	4	U	2.8	U	5	U	15	U	15	U	15	U
Silver	50	ND	0.33		ND		1.5	U	2	U	0.67	В	0.7	U	0.69	U	3	U	3	U	3	U
Sodium	2000	9960	7810		4190		4140	В	4160	В	3930	В	4260	В	3620	В	2800		3900		3300	\bot
Thallium	0.5	ND	ND		ND		5	U	4	U	3.9	U	3.8	U	5.1	U	20	U	20	U	20	U
Vanadium		ND	2		ND		3.8	В	1	U	0.7	U	0.8	В	0.58	U	5	U	5	U	5	U
Zinc	2000	8.8	34.9		6.9		13.2	В	2.6	В	4.1	U	6.9	В	0.81	U	20	U	10	U	10	U

1				11	IDEE 2 IIIO	10		_	VALEKI	0.11	10Killio	1120										
			 						V-103I													
	Standards	1-Jul-94	1-Sep-94		1-Jun-95		19-Oct-0	0	17-Oct-0)1	9-Oct-0	12	8-Oct-0	3	20-Oct-0)4	26-Oct-	05	4-Oct-0)6	18-Oct-0)7
								VOC	s (µg/L)													
cis-1,2-dichloroethene	5	16	40		24		28		15		12		NA		8	J	ND		6.4		12	
Trichloroethene	5	5	10		9		9.2		7	J	4	J	NA		6	J	ND		7.5		5.7	
								Metal	ls (µg/L)													
Aluminum		5240	2820		896		780		620		1890		646		323		2000		200	U	20800	T
Antimony	3	ND	ND		ND		5	U	3	U	5.4	U	4.1	U	5	U	20	U	20	U	20	U
Arsenic	25	3.7	4.6		ND		304		4.2	В	4.1	В	3.3	U	2.6	U	10	U	10	U	25	
Barium	1000	180	129		81.1		59.6	BE	65.1	В	98.9	В	71.9	В	83.2	В	43		55		320	
Beryllium	3	1	0.37		0.3		5	U	1	U	0.2	U	0.1	U	0.19	U	2	U	2	U	2	U
Cadmium	5	1.6	0.37		ND		2	В	2.4	BN	0.3	U	3.3	В	0.36	В	1	U	1	U	1.5	
Calcium		42200	36800		27800		19400	E	22300		25600	E	23200		30000		5400		2280		20800	
Chromium	50	ND	2.9		ND		1.2	U	1	U	0.6	U	0.9	U	0.65	U	10		4	U	22	
Cobalt		5.6	2		ND		1	U	1	В	0.96	В	0.7	U	0.86	U	4	U	4	U	18	
Copper	200	9.2	4.1		2.1		1.3	В	6.1	В	1.9	В	1.8	В	1.7	В	4	U	10	U	19	
Iron	300	10000	4380		1270		869		817		2920		1030	Ν	258		2300		140		24500	
Lead	25	ND	2.2		ND		4.7		2	U	2.3	U	1.6	U	1.3	U	5	U	5	U	16	
Magnesium	35000	19100	14100		10800		5970	E	6710		8250		7820		11300		1600		8300		10700	
Manganese	300	267	102		51.6		37.1	E	28.2		61		28.9		27		68		13		1200	
Mercury	0.7	ND	ND		ND		0.15	U	0.072	U	0.122	В	0.055	U	0.087	U	0.2	U	0.2	U	0.2	U
Nickel	100	8.8	6.2		ND		1.5	U	1.8	В	2	В	2.7	В	1.2	U	10	U	10	U	32	
Potassium		3940	2840		1540		1910	В	2040	В	2820	BE	2150	В	1850	В	2000		1700		8900	
Selenium	10	ND	1.5		ND		5	U	5	U	4	U	2.8	U	5	U	15	U	15	U	15	U
Silver	50	ND	0.24		ND		1.5	U	2	U	0.5	U	0.7	U	0.69	U	3	U	3	U	3	U
Sodium	2000	5350	4890		4360		4290	В	4490	В	3910	В	4320	В	3580	В	1300		4000		3800	
Thallium	0.5	ND	ND		ND		5	U	4	U	3.9	U	3.8	U	5.1	U	20	U	20	U	20	U
Vanadium		6.2	3.9		ND		1.1	В	1	U	2.8	В	1.1	В	0.58	U	5	U	5	U	27	
Zinc	2000	36.7	24.5		38.3		9.8	В	8.3	В	8.6	В	3.6	В	2.4	В	20	U	10	U	66	

						MV	V-104D												
	Standards	1-Jul-94	1-Sep-94	1-Jun-95	19-Oct-0	0	17-Oct-0	1	9-Oct-()2	8-Oct-0	3	20-Oct-0)4	26-Oct-0)5	4-Oct-0	6	18-Oct-07
						voo	Cs (µg/L)												
cis-1,2-dichloroethene	5	ND	2	ND	ND		NS		1	J	2		2	J	NS		ND		NS
Trichloroethene	5	ND	ND	ND	ND		NS		ND		0.5	J	ND		NS		ND		NS
						Meta	ils (µg/L)												
Aluminum		16300	2910	102	35300		NS		32.5	U	187	В	114	В	NS		200	U	NS
Antimony	3	ND	ND	ND	8	В	NS		5.4	U	4.1	U	5	U	NS		20	U	NS
Arsenic	25	7.8	3.4	ND	32.7		NS		4	U	3.3	U	2.6	U	NS		10	U	NS
Barium	1000	235	96.1	57	334	Е	NS		76.9	В	67.8	В	49.4	В	NS		50		NS
Beryllium	3	1.7	0.4	ND	2.3	В	NS		0.2	U	0.13	В	0.19	U	NS		2	U	NS
Cadmium	5	1.8	2.3	0.93	0.6	U	NS		0.3	U	0.77	В	1.3	В	NS		2.2		NS
Calcium		48600	53300	47900	53900	E	NS		51300	Е	52800		46600		NS		49900		NS
Chromium	50	16.7	3.1	ND	41.1		NS		0.6	U	0.9	U	0.65	U	NS		4	U	NS
Cobalt		11.5	2.2	ND	36.8	В	NS		0.5	U	0.7	U	0.86	U	NS		4	U	NS
Copper	200	24.5	5.5	1.4	57.1		NS		2.9	В	5.7	В	5.3	В	NS		4	U	NS
Iron	300	34600	5360	161	62000		NS		146		175	Ν	147		NS		88		NS
Lead	25	13.2	3.4	ND	59.7		NS		2.3	U	1.6	U	1.3	U	NS		5	U	NS
Magnesium	35000	30400	29000	26500	38900	E	NS		31100		25300		21800		NS		25000		NS
Manganese	300	592	70.6	3.7	1090	E	NS		4.4	В	3.7	В	8.8	В	NS		3.2		NS
Mercury	0.7	ND	ND	ND	0.15	U	NS		0.065	U	0.055	U	0.087	U	NS		0.2	U	NS
Nickel	100	29.7	6.1	ND	57.7		NS		1	U	1.3	В	1.2	U	NS		10	U	NS
Potassium		7110	4010	2430	14000		NS		3640	BE	3300	В	2610	В	NS		3000		NS
Selenium	10	ND	ND	ND	9.1		NS		4	U	3.3	В	5	U	NS		15	U	NS
Silver	50	ND	ND	ND	1.5	U	NS		0.5	U	0.7	U	0.69	U	NS		3	U	NS
Sodium	2000	5970	4520	5470	5480		NS		4950	В	5300		4510	В	NS		5300		NS
Thallium	0.5	ND	ND	ND	5	U	NS		3.9	U	3.8	U	5.1	U	NS		20	U	NS
Vanadium		25.5	3.7	ND	47.6	В	NS		0.7	U	0.8	U	0.58	U	NS		5	U	NS
Zinc	2000	91.4	31.8	6	145		NS		5.5	В	2	В	1.6	В	NS	1	18		NS

TABLE 2 HISTORIC	GROUNDWATER	MONITORING RESULTS

r				11		10	KIC GKUU		V-104I	0.11		1120	CLID									
		4 7 1 0 4	4.0.04		47.05		10.0 . 0						0.0.0						10.0		10.0	
	Standards	1-Jul-94	1-Sep-94		1-Jun-95		19-Oct-0		17-Oct-0	1	9-Oct-0	12	8-Oct-0.	\$	20-Oct-0	4	26-Oct-0	J5	4-Oct-0	0	18-Oct-0	1
								voc	s (µg/L)													
cis-1,2-dichloroethene	5	34	44		36		15		10		15		2		10		2.9		2.2		2.2	
Trichloroethene	5	10	13		7		5		3	J	4	J	4		7	J	3.4		3.6		5.2	
Toluene	5	10	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
Chloroform	7	ND	ND		ND		ND		ND		ND		1		ND		1.3		1.1		0.55	J
								Metal	ls (μg/L)													
Aluminum		1330	1250		1480		3960		572		2610		1620		133	В	900		330		6200	
Antimony	3	ND	ND		ND		5	U	3	U	5.4	U	4.1	U	5	U	20	U	20	U	20	U
Arsenic	25	ND	2.5		ND		3.4	U	4	U	11.2		6.3	В	2.6	U	10	U	10	U	10	U
Barium	1000	119	107		84.5		109	BE	65.9	В	112	В	51.2		60.7	В	36		26		130	
Beryllium	3	ND	0.3		ND		0.5	U	1	U	0.27	В	0.19	В	0.19	U	2	U	2	U	2	U
Cadmium	5	ND	1.5		1		0.6	U	1.4	BN	0.3	В	0.59	В	0.37	В	1.9		1.4		2.7	
Calcium		49000	48800		50400		35300	E	46400		48100	Е	9530		23700		9400		7500		29000	
Chromium	50	ND	2.1		1.6		3.8	В	1	U	1	В	1.6	В	0.65	U	4	U	4	U	16	
Cobalt		ND	ND		ND		2.3	В	1	U	2.9	В	1.7	В	0.86	U	4	U	4	U	4	U
Copper	200	7.9	3.1		2.8		6.7	В	6.2	В	4.2	В	2.9	В	1.5	В	10	U	10	U	10	U
Iron	300	2620	1860		1550		3790		812		4990		2820	Ν	136		1200		410		7700	
Lead	25	1	12		ND		6.7		2	U	2.3	U	1.6	U	1.3	U	5	U	5	U	5.9	
Magnesium	35000	13100	12600		14300		8910	E	12400		12200		3040	В	5470		2600		2400		8200	
Manganese	300	63.2	29.9		24.4		98.6	E	15.3		114		54		7.8	В	27		12		150	
Mercury	0.7	ND	ND		ND		0.15	U	0.072	U	0.065	U	0.055	U	0.087	U	0.2	U	0.2	U	0.2	U
Nickel	100	ND	3.9		ND		4.2	В	1.6	В	5.1	В	4.4	U	1.2	U	10	U	10	U	10	U
Potassium		2700	2430		1920		3260	В	2220		3000	BE	1860		1370	В	1400		1000		3900	
Selenium	10	ND	ND		ND		5	U	5	U	4	U	2.8	U	5	U	15	U	15	U	15	U
Silver	50	ND	0.23		ND		1.5	U	2	U	0.5	U	0.7	U	0.69	U	3	U	3	U	3	U
Sodium	2000	10700	9230		9050		8690		7070		7610		7690		6940		6400		6500		6700	
Thallium	0.5	ND	2		ND		5	U	4	U	5.7	В	3.8	U	5.1	U	20	U	20	U	20	U
Vanadium		ND	1.6		1.8		6.6	В	1.1	В	4.4	В	2.2	В	0.58	U	5	U	5	U	9.2	
Zinc	2000	84.3	23.5		57.6		71.1		9.9	В	16.7	В	8.5	В	1.6	В	20		10	U	19	

						MW	-107IR												
	Standards	1-Jul-94	1-Sep-94	1-Jun-95	19-Oct-0)	17-Oct-0	1	9-Oct-0	2	8-Oct-0	3	20-Oct-0	4	26-Oct-0)5	4-Oct-0	6	18-Oct-07
						Meta	ls (µg/L)												
Aluminum		486	376000	745	41900		16400		135000		20500		2430		28400		8700		NS
Antimony	3	ND	25.4		5.8	В	3	U	15	В	4.1	U	5	U	20	U	20	U	NS
Arsenic	25	ND	530	3.3	34.2		95.3		78.5		17.2		4.1	В	16		10	U	NS
Barium	1000	168	5040	270	410	Е	1450		1240		265		241		320		160		NS
Beryllium	3	ND	25		2.8	В	7.8		6.2		1.2	В	0.19	U	2	U	2	U	NS
Cadmium	5	ND		0.73	0.6	U	1	UN	0.3	U	0.3	U	0.66	В	4.5		1	U	NS
Calcium		30800	288000	33700	54100	Е	101000		84800	E	59400		62100		68200		61900		NS
Chromium	50	ND	637	1.4	45.7		279		215		32.4		2.7	В	42		13		NS
Cobalt		ND	476	5.6	26.4	В	153		128		17.5	В	16.7	В	23		7.1		NS
Copper	200	3.8	663	6.6	48.2		219		160		19.9	В	17.8	В	81		10	U	NS
Iron	300	886	10800000	1890	64000		344000		284000		37600	Ν	6000		45600		12800		NS
Lead	25	1	406	4	20.3		144		146		28.6		34.4		52		14		NS
Magnesium	35000	10900	200000	14100	1800	Е	84400		72800		21400		16700		25800		19800		NS
Manganese	300	371	26600	923	1270	Е	4570		3700		533		840		790		310		NS
Mercury	0.7	ND	0.12		0.15	U	0.072	U	0.242	В	0.055	U	0.087	U	0.2	U	0.2	U	NS
Nickel	100	ND	1010	4.6	52.2		360		300		41.4		10.1	В	54		15		NS
Potassium		2410	43400	2430	14200		30400		22600	В	9170		3870	В	12200		6100		NS
Selenium	10	ND	49.8		5	U	17.6		6		4.3	В	5	U	15	U	15	U	NS
Silver	50	ND			1.5	U	2	U	0.5	В	0.7	U	0.69	U	3	U	3	U	NS
Sodium	2000	4360	25700	5770	5430		11900		8430		7310		6260		7800		7200		NS
Thallium	0.5	ND	63	2.8	5	U	5	В	3.9	U	4.6	В	5.1	U	20	U	20	U	NS
Vanadium		ND	446		60.1		187		156		26.5		4.6	В	38		12		NS
Zinc	2000	34	2290	31.8	142		777		631		83.9		17.6	В	290		33		NS

						MW	-107SR													
	Standards	1-Jul-94	1-Sep-94	1-Jun-95	19-Oct-00)	17-Oct-0	L	9-Oct-0	2	8-Oct-03		20-Oct-0	4	26-Oct-0	15	4-Oct-0	6	18-Oct-0	7
						voc	's (μg/L)		•						•					
Acetone	50	NS	31	ND	ND		4	J	ND		ND		ND		ND		ND		6.8	
Carbon disulfide	50	NS	1	ND	ND		ND		ND		ND		ND		ND		ND		ND	
2-Butanone	50	NS	5	ND	ND		ND		ND		ND		ND		ND		ND		1.8	J
4-Methyl-2-pentanone	50	NS	2	ND	ND		ND		ND		ND		2	J	ND		ND		ND	
]	Meta	ls (µg/L)													
Aluminum		NS	185000	1510	41900		116000		58900		881		113	В	200	U	1400		640020	
Antimony	3	NS	3.7	ND	5.8	В	3	U	8.6	В	4.1	U	5	U	20	U	20	U	20	U
Arsenic	25	NS	376	16.1	34.2		110		36.5		3.3	U	2.6	U	10	U	10	U	10	U
Barium	1000	NS	464	559	410	E	1230		408		38.9	В	41.3	В	40		43		150	
Beryllium	3	NS	18.1	2.3	2.8	В	6.3		2.8		0.14	В	0.19	U	2	U	2	U	2	U
Cadmium	5	NS	ND	1.6	0.6	U	1	UN	11.9		0.72	В	0.34	U	1	U	1.1		1.7	
Calcium		NS	351000	90100	54100	E	190000		274000	E	20500		33400		29000		20500		77000	
Chromium	50	NS	208	1.2	45.7		133		71.9		0.9	U	0.65	U	4	U	4	U	7.3	
Cobalt		NS	85.9	8.7	26.4	В	93.3		32.6	В	0.88	В	0.86	U	4	U	4	U	4	U
Copper	200	NS	163	21.7	48.2		222		97.7		2.9	В	2.3	В	10	U	10	U	10	U
Iron	300	NS	229000	4430	64000		216000		76000		1220	Ν	171		98		1700		7400	
Lead	25	NS	318	47.8	20.3		80.5		42.2		1.6	U	1.3	U	5	U	5	U	5	U
Magnesium	35000	NS	64800	14600	18000	Е	50900		31100		5060		7590		7200		5800		14800	
Manganese	300	NS	5440	1270	1270	E	6050		2340		211		681		230		560		370	
Mercury	0.7	NS	0.61	ND	0.15	E	0.072	U	0.087	В	0.000	U	0.087	U	0.2	U	0.2	U	0.2	U
Nickel	100	NS	195	13.3	52.2		187		67.9		4.2	В	3.8	В	10	U	10	U	10	
Potassium		NS	57600	2380	14200		17400		7670	E	1530	В	1280	В	1300		1600		4400	
Selenium	10	NS	69.2	ND	5	U	13.5		4	U		U	5	U	15	U	15	U	15	U
Silver	50	NS	ND	ND	1.5	U	2	U	0.5	U		U	0.69	U	3	U	3	U	3	U
Sodium	2000	NS	1490000	10200	5430		5690		5250		5660		8860		10100		9000		8600	
Thallium	0.5	NS	9.9	ND	5	U	4	U	3.9	U	210	U	5.1	U	20	U	20	U	20	U
Vanadium		NS	243	8.8	60.1		144		75.8		1.4	В	0.71	В	5	U	5	U	9.8	
Zinc	2000	NS	1880	346	142		743		443		6.2	В	1.8	В	20	U	10	U	19	1

TABLE 2 HISTORIC	CROUNDWATER	MONITOPINC	DESIL TS
TADLE 2 HISTORIC	GROUNDWATER	MONITOKING	RESULIS

						MV	V-108D													
	Standards	1-Jul-94	1-Sep-94	1-Jun-95	19-Oct-00)	17-Oct-0	1	9-Oct-0	2	8-Oct-03	;	20-Oct-0	4	26-Oct-0)5	4-Oct-0	6	18-Oct-0	17
						voc	's (μg/L)													
Acetone	50	NS	NS	42	ND		ND		ND		ND		ND		ND		ND		6.8	
				•]	Meta	ls (µg/L)		•				•		•		•			
Aluminum		NS	NS	441	303		407	U	32.5	U	757		111	В	1000		600		1100	
Antimony	3	NS	NS	ND	5	U	3	U	5.4	U	4.1	U	5	U	20	U	20	U	20	U
Arsenic	25	NS	NS	ND	3.4	U	4		4	U	6	В	2.6	U	10	U	10	U	10	U
Barium	1000	NS	NS	48.3	102	BE	92.2		138	В	154	В	121	В	140		130		130	
Beryllium	3	NS	NS	ND	0.5	U	1	U	0.2	U	0.21	В	0.19	U	2	U	2	U	2	U
Cadmium	5	NS	NS	ND	0.76	В	1	UN	0.3	U	0.68	В	0.79	В	4.9		1	U	1.2	
Calcium		NS	NS	13500	20900	Е	17200		32000	E	32500		30200		40700		28300		31700	
Chromium	50	NS	NS	ND	1.2	U	1	U	0.6	U	1.5	В	0.65	U	13		4	U	4	U
Cobalt		NS	NS	ND	1	U	1	U	0.5	U	0.98	В	0.86	U	4	U	4	U	4	U
Copper	200	NS	NS	1.7	2.9	В	4.2	В	0.97	В	5.1	В	2.1	В	42		10	U	24	
Iron	300	NS	NS	2440	915		1530		510		2780	Ν	660		4800		1900		1700	
Lead	25	NS	NS	ND	2.6	U	2.4	В	2.3	U	1.6	U	1.3	U	6.8		5	U	5	U
Magnesium	35000	NS	NS	5240	12000	Е	13300		14700		13200		12700		18200		12100		13400	
Manganese	300	NS	NS	28.4	164	Е	96.9		239		336		291		380		300		290	
Mercury	0.7	NS	NS	ND	0.15	U	0.072	U	0.065	U	0.055	U	0.087	U	0.2	U	0.2	U	0.2	U
Nickel	100	NS	NS	ND	1.5	U	3.2	В	1	U	3	В	1.4	В	10	U	10	U	10	U
Potassium		NS	NS	10100	2660	В	2950	В	2610	BE	2660	В	2200	В	5900		2500		4400	
Selenium	10	NS	NS	ND	5	U	5	U	4	U	2.8	U	5	U	15	U	15	U	15	U
Silver	50	NS	NS	ND	1.5	U	2	U	0.58	В	0.7	U	0.69	U	3	U	3	U	3	U
Sodium	2000	NS	NS	5690	3910	В	4320	В	3760	В	4010	В	3400	В	4100		3800		3900	
Thallium	0.5	NS	NS	ND	5	U	4	U	3.9	U	3.8	U	5.1	U	20	U	20	U	20	U
Vanadium		NS	NS	ND	1	U	1	U	0.7	U	1.3	В	0.58	U	5	U	15	U	5	U
Zinc	2000	NS	NS	18.4	15.8	В	17.8	В	7.3	В	10.1	В	6	В	42		25		10	U

							MW	/-108I													
	Standards	1-Jul-94	1	1-Sep-94	1-Jun-95	19-Oct-00)	17-Oct-0	1	9-Oct-0	2	8-Oct-0.	3	20-Oct-0	4	26-Oct-0)5	4-Oct-0	6	18-Oct-0	37
							VOC	s (µg/L)													
Acetone	50	NS		NS	11	ND		ND		ND		ND		ND		ND		ND		6.8	Т
]	Metal	s (µg/L)													
Aluminum		NS		NS	2520	382		1290		2750		1470		462		2000		920		570	T
Antimony	3	NS		NS	ND	5	U	3	U	7.7	В	4.1	U	5	U	20	U	20	U	20	1
Arsenic	25	NS		NS	3.2	3.4	U	5.3	В	4	U	4.7	В	2.6	U	10	U	10	U	10	1
Barium	1000	NS		NS	48.6	60.8	BE	75.7	В	89.7	В	104	В	69.4	В	81		68		68	
Beryllium	3	NS		NS	ND	0.5	U	1	U	0.32	В	0.21	В	0.19	U	2	U	2	U	2	1
Cadmium	5	NS		NS	ND	0.6	U	1	UN	0.4	В	1	В	0.49	В	1	U	1	U	1	1
Calcium		NS		NS	50100	33300	E	35100		37700	E	30200		29400		37600		38500		39100	
Chromium	50	NS		NS	6.9	1.2	U	3	В	3.2	В	2.2	В	0.65	U	4	U	4	U	4	1
Cobalt		NS		NS	ND	1	U	1.6	В	2.4	В	1.4	В	0.86	U	4	U	4	U	4	1
Copper	200	NS		NS	3.4	2.3	В	5.2	В	4	В	2.1	В	1.9	В	10	U	10	U	16	
Iron	300	NS		NS	4140	408		2860		5280		2600	Ν	509		1900		1200		870	
Lead	25	NS		NS	1.1	2.6	U	2	U	2.3	U	1.6	U	1.3	U	5	U	5	U	5	1
Magnesium	35000	NS		NS	11800	17600	E	17600		17800		12100		13900		19600		22600		22000	T
Manganese	300	NS		NS	130	8.8	BE	60.4		88.1		51.7		13.7	В	34		27		18	
Mercury	0.7	NS		NS	ND	0.15	U	0.072	U	0.078	В	0.055	U	0.087	U	0.2	U	0.2	U	0.2	1
Nickel	100	NS		NS	2.7	1.5	U	5.9	В	5	В	3.8	в	1.2	U	10	U	10	U	10	1
Potassium		NS		NS	6050	3290	В	3840	В	4350	BE	3270	В	2830	В	4100		3600		5000	
Selenium	10	NS		NS	ND	5	U	5	U	4	U	2.8	U	5	U	15	U	15	U	15	1
Silver	50	NS		NS	ND	1.5	U	2	U	0.5	U	0.7	U	0.69	U	3	U	3	U	3	1
Sodium	2000	NS		NS	6830	3300	В	3670	В	3430	В	3470	В	3150	В	3500		3600		3800	
Thallium	0.5	NS		NS	ND	5	U	4	U	3.9	U	3.8	U	5.1	U	20	U	20	U	20	1
Vanadium		NS		NS	6.1	1	U	1.9	В	3.9	В	1.9	В	0.67	В	5	U	5	U	5	1
Zinc	2000	NS		NS	80.2	11.3	В	17.1	В	13.4	В	8.3	В	2.8	В	20	U	10	U	10	1

FABLE 2 HIS	STORIC GRC	UNDWATER	MONITORING	RESULTS

				17	ADLE 2 HIS	10	ine skot				10Killio	1100										
								M	W-109													
	Standards	1-Jul-94	1-Sep-94		1-Jun-95		19-Oct-0)	17-Oct-0	01	9-Oct-0	12	8-Oct-03	3	20-Oct-0	4	26-Oct-	05	4-Oct-0	6	18-Oct-0)7
			•				•	voc	's (µg/L)		•				•		•		•			
Acetone	50	NS	NS		42		ND		ND		2	J	7		ND		ND		2.6	J	1.8	J
								Meta	ls (µg/L)													
Aluminum		NS	NS		2040		119	В	151		32.5	U	205		18.4	U	1300		3200		670	
Antimony	3	NS	NS				5	U	3	U	5.4	U	4.1	U	5	U	20	U	20	U	20	U
Arsenic	25	NS	NS		7.2		3.4	U	4	U	4	U	3.9	В	2.6	U	10	U	10	U	10	U
Barium	1000	NS	NS		155		81.2	BE	65.6	В	150	В	107	В	86.2	В	180		220		140	
Beryllium	3	NS	NS		0.3		0.5	U	1	U	0.2	U	0.12	В	0.19	U	2	U	2	U	2	U
Cadmium	5	NS	NS				0.6	U	1	UN	0.3	U	1.3	В	0.34	U	1	U	2		1.7	
Calcium		NS	NS		102000		23900	E	19100		3400	E	27600		22100		31800		52900		28600	
Chromium	50	NS	NS		3.2		1.2	U	1	U	0.6	U	1.9	В	0.65	U	4.1		11		5	
Cobalt		NS	NS				1	U	1	U	0.76	В	1.8	В	0.86	U	4	U	4	U	4	U
Copper	200	NS	NS		4.4		3.2	В	1	U	2.6	В	14.4	Ν	6.3	В	10	U	130		44	
Iron	300	NS	NS		3480		1110		2570		2920		2290	U	513		11900		23600		4700	
Lead	25	NS	NS		2.9		2.6	U	2	U	2.3	U	1.6		1.3	U	5	U	5	U	5	U
Magnesium	35000	NS	NS		1490		9090	Е	9340		12100		11700		10100		12900		13500		10200	
Manganese	300	NS	NS		115		98.5	E	82.9		271		167		146		350		750		210	
Mercury	0.7	NS	NS				0.15	U	0.072	U	0.08	В	0.055	U	0.087	U	0.2	U	0.2	U	0.2	U
Nickel	100	NS	NS		3.1		1.6	В	1.5	U	1	U	4.9	В	1.4	В	10	U	11		10	U
Potassium		NS	NS		8730		2560	В	2780	В	3180	BE	3200	В	2230	В	3200		8800		4800	
Selenium	10	NS	NS				5	U	5	U	4	U	2.8	U	5	U	15	U	15	U	15	U
Silver	50	NS	NS				0.15	U	2	U	0.54	В	0.7	U	0.69	U	3	U	3	U	3	U
Sodium	2000	NS	NS		16100		3900	В	4120	В	3810	В	4070	В	3340	В	3600		4400		3700	
Thallium	0.5	NS	NS				5	U	4	U	3.9	U	3.8	U	5.1	U	20	U	20	U	20	U
Vanadium		NS	NS		5.9		1	U	1	U	0.7	U	0.8	U	0.58	U	5	U	5	U	5	U
Zinc	2000	NS	NS		43.5		12.2	В	4.4	В	4.1	В	13.3	В	3.1	В	20	U	48		27	

								M	W-113													
	Standards	1-Jul-94		1-Sep-94		1-Jun-95	19-Oct-0	0	17-Oct-0)1	9-Oct-0)2	8-Oct-0.	3	20-Oct-0	4	26-Oct-0	5	4-Oct-0	6	18-Oct-0)7
								voo	Cs (μg/L)													
Acetone	50	NS		NS		160	ND		2	J	ND		6		ND		10		ND		9.5	
Benzene	0.7	NS		NS		1	ND		ND		ND		ND		ND		ND		ND		ND	
2-Butanone	50	NS		NS		4	ND		ND		ND		ND		ND		ND		ND		2	J
1,2-Dichloropropane		NS		NS		ND	ND		ND		ND		ND		ND		ND		ND		0.48	J
								Meta	ils (µg/L)													
Aluminum		NS		NS		5660	19400		3520		1700		13900		3280		27900		7700		NS	
Antimony	3	NS		NS		ND	5.2	В	3	U	6.5	В	4.1	U	5	U	20		20	U	NS	
Arsenic	25	NS		NS		10.3	17.3		8.4	U	29.5		23.6		4.4	В	30		10	U	NS	
Barium	1000	NS		NS		69.4	166	BE	56.3		214		151	В	77.5	В	250		79		NS	
Beryllium	3	NS		NS		0.5	1.2	В	1	U	0.95	В	0.87	В	0.19	U	2		2	U	NS	
Cadmium	5	NS		NS		ND	2.5	В	1	UN	0.3	U	0.3	U	0.34	U	2.1		1	U	NS	
Calcium		NS		NS		49600	67100	Е	6200		61000	E	60200		55500		66600		55300		NS	
Chromium	50	NS		NS		6.5	28		3.4	В	26.9		17.6		2.7	В	49		11		NS	
Cobalt		NS		NS		4.1	19.2	В	7.4	В	17.8	В	14.7		8.7	В	23		7.5		NS	
Copper	200	NS		NS		9.2	109		14.9	В	45.4		28.9		14.5	В	100		12		NS	
Iron	300	NS		NS		7470	43700		9140		40800		29000	Ν	6070		49200		13500		NS	
Lead	25	NS		NS		8.3	31		8.1		25.3		15.9		11		30		8.6		NS	
Magnesium	35000	NS		NS		12000	26600	E	25200		25300		26100		22500		29200		24700		NS	
Manganese	300	NS		NS		202	1210	E	325		910		702		499		1400		410		NS	
Mercury	0.7	NS		NS		ND	0.15	U	0.072	U	0.187	В	0.055	U	0.087	U	0.2		0.2	U	NS	
Nickel	100	NS		NS		8.6	42.3		15	В	45.5		30.7	В	6.4	В	57		14		NS	
Potassium		NS		NS		11400	12900		7690		9110	E	7260		3900	В	12500		5400		NS	
Selenium	10	NS		NS		ND	5	U	5	U	4	В	2.8	U	5	U	15		15	U	NS	
Silver	50	NS		NS		ND	1.5	U	2	U	0.5	U	0.7	U	0.69	U	3		3	U	NS	
Sodium	2000	NS		NS		16300	5550		5200		4660	В	4500	В	3880	В	7300		4400		NS	
Thallium	0.5	NS		NS		ND	5	U	4	U	3.9	U	3.8	U	5.1	U	20		20	U	NS	
Vanadium		NS		NS		14.4	26.7	В	4.7	В	21.2	В	17.4	В	4.2	В	36		96		NS	
Zinc	2000	NS	1	NS	17	53.4	248	1 -	31.7	1	91	17	62	1 7	12.7	В	200		31	1 1	NS	17

TABLE 3 COMPARISON OF LEACHATE AND GROUNDWATER VOC AND METAL RESULTS

5			1																										
	Standards	MW-101	I	MW-101	D	MW-102	D	MW-103	D	MW-103	3 I	MW-104D		MW-104	I	MW-107	IR	MW-1078	R	MW-108	D	MW-108	81	MW-10	9	MW-11	3	Leachat (BB-T2-	
	· · · ·											VOCs (µg	g/L	.)															
Chlorobenzene	5	ND		3	J	ND		ND		ND		NS	T	ND		ND		ND		ND		ND		ND		ND		ND	
Dichlorodifluoromethane	5	ND		NS		ND		ND		ND		ND		ND		ND		ND		ND									
1,4-Dichlorobenzene	3	ND		NS		ND		ND		ND		ND		ND		ND		ND		ND									
Acetone	50	2	J	3	J	ND		ND		ND		NS		ND		ND		4	J	ND		ND		ND		2	J	22	J
2-Butanone	0.4	ND		1	J	ND		ND		ND		NS		ND		ND		ND		ND		ND		ND		ND		ND	
Benzene	1	ND		1	J	ND		ND		ND		NS		ND		ND		ND		ND		ND		ND		ND		ND	
1,3-Dichlorobenzene	3	ND		NS		ND		ND		ND		ND		ND		ND		ND		ND									
cis-1,2-dichloroethene	5	ND		ND		ND		8	J	15		NS		10		ND		ND		ND		ND		ND		ND		ND	
Trichloroethene	5	ND		ND		ND		4	J	7	J	NS		3	J	ND		ND		ND		ND		ND		ND		ND	
	· · · ·											Metals (µ	g/L	.)															
Aluminum		61300		213		118		293		620		NS	Т	572		16400		116000		407	U	1290		151		3520		1,270	
Antimony	3	3	U	3	U	3	U	3	U	3	U	NS		3	U	3	U	3	U	3	U	3	U	3	U	3	U	ND	
Arsenic	25	54.5		9.6	В	4	U	4	U	4.2	В	NS		4	U	95.3		110		4		5.3	В	4	U	8.4	U	14.6	
Barium	1000	694		523		86.7	В	59.1	В	65.1	В	NS		65.9	В	1450		1230		92.2		75.7	В	65.6	В	56.3		1,000	
Beryllium	3	4.3	В	1	U	1	U	1	U	1	U	NS		1	U	7.8		6.3		1	U	1	U	1	U	1	U	ND	
Cadmium	5	1	UN	1.1	BN	1.7	BN	1.7	BN	2.4	BN	NS		1.4	BN	1	UN	1	UN	1	UN	1	UN	1	UN	1	UN	ND	
Calcium		88600		12200		47000		25400		22300		NS		46400		101000		190000		17200		35100		19100		6200		223,000	
Chromium	50	74.3		1	U	1	U	1	U	1	U	NS		1	U	279		133		1	U	3	В	1	U	3.4	В	2.9	В
Cobalt		69.2		5	В	1	U	1	U	1	В	NS		1	U	153		93.3		1	U	1.6	В	1	U	7.4	В	13.2	В
Copper	200	175		14.9	В	1.1	В	1	U	6.1	В	NS		6.2	В	219		222		4.2	В	5.2	В	1	U	14.9	В	8.1	В
Iron	300	131000		891		72.1		368		817		NS		812		344000		216000		1530		2860		2570		9140		42,100	
Lead	25	48.1		2	U	2	U	2	U	2	U	NS		2	U	144		80.5		2.4	В	2	U	2	U	8.1		ND	
Magnesium	35000	55200		69300		15100		9080		6710		NS		12400		84400		50900		13300		17600		9340		25200		203,000	
Manganese	300	2850		4290		2.8	в	19.4		28.2		NS		15.3		4570		6050		96.9		60.4		82.9		325		1,780	
Mercury	0.7	0.072	U	NS		0.072	U	0.072	U	0.072	U	0.072	U	0.072	U	0.072	U	0.072	U	ND									
Nickel	100	136		9.8	В	1.5	U	1.5	U	1.8	в	NS		1.6	в	360		187		3.2	в	5.9	В	1.5	U	15	в	35.7	В
Potassium		17500		12400		2330	в	1970	В	2040	В	NS		2220		30400		17400		2950	В	3840	В	2780	В	7690		174,000	
Selenium	10	9.7		5	U	5	U	5	U	5	U	NS		5	U	17.6		13.5		5	U	5	U	5	U	5	U	ND	
Silver	50	2	U	2	U	2	U	2	U	2	U	NS		2	U	2	U	2	U	2	U	2	U	2	U	2	U		
Sodium	2000	7400		51200		3780	В	4160	В	4490	В	NS		7070		11900		5690		4320	В	3670	В	4120	В	5200		1,114,000	
Thallium	0.5	4	U	4	U	4	U	4	U	4	U	NS		4	U	5	В	4	U	4	U	4	U	4	U	4	U	ND	
Vanadium		78.2		1	U	1	U	1	U	1	U	NS		1.1	В	187		144		1	U	1.9	В	1	U	4.7	В	2.2	В
Zinc	2000	364		16.3	В	2	U	2.6	В	8.3	В	NS		9.9	В	777		743		17.8	В	17.1	В	4.4	В	31.7		51.6	

(b) Sample results compared to NYSDEC Ambient Water Quality Standards, if no standard was available, used guidance values in italics

Notes:

U = The analyte was analyzed for, but was not detected above the detection limit

B = The analyte was detected below contract required detection limit

E = The result value was estimated du to interference

N = Spike sample recovery not within quality control limits

J = Estimated value, concentration below laboratory reporting limit

ND = Not detected

NS = Not sampled

Bold values indicate that the analyte was detected above the NYSDEC Ambient Water Quality Standards.

TABLE 3 COMPARISON OF LEACHATE AND GROUNDWATER VOC AND METAL RESULTS

												2007																	
	Standards	MW-101	I	MW-10	1D	MW-102	2D	MW-103	3D	MW-10	31	MW-104D		MW-104	II	MW-107I	R	MW-1075	SR	MW-108	D	MW-10	81	MW-109	9	MW-11	13	Leachar (BB-T2-	
												VOCs (µg	g/L`	.)															
Chlorobenzene	5	ND		0.73	J	ND		ND		ND		NS		ND		NS		ND		ND		ND		ND		ND		ND	
Dichlorodifluoromethane	5	ND		ND		ND		ND		ND		NS		ND		NS		ND		ND		ND		ND		ND		ND	
1,4-Dichlorobenzene	3	ND		ND		ND		ND		ND		NS		ND		NS		ND		ND		ND		ND		ND		ND	
Acetone	50	2.1	J	3.8	J	ND		ND		ND		NS		ND		NS		6.8		ND		ND		1.8	J	9.5		ND	
2-Butanone	0.4	ND		ND		ND		ND		ND		NS		ND		NS		1.8	J	ND		ND		ND		2	J	ND	
Benzene	1	ND		ND		ND		ND		ND		NS		ND		NS		ND		ND		ND		ND		ND		ND	
1,3-Dichlorobenzene	3	ND		0.41	J	ND		ND		ND		NS		ND		NS		ND		ND		ND		ND		ND		ND	
cis-1,2-dichloroethene	5	ND		ND		ND		4.5		12		NS		2.2		NS		ND		ND		ND		ND		ND		ND	
Trichloroethene	5	ND		ND		ND		9.1		5.7		NS		5.2		NS		ND		ND		ND		ND		ND		ND	
Chloroform	7	ND		ND		ND		ND		ND		NS		0.55	J	NS		ND		ND		ND		ND		ND		ND	
1,2-Dichloropropane		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		0.48	J	ND	
Methylene chloride		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		6.8	В
												Metals (µ	g/L	L)															
Aluminum		51400		NS		450		1500		20800		NS	Т	6200		NS		640020		1100		570		670		NS		28,400	\square
Antimony	3	20	U	NS		20	U	20	U	20	U	NS		20	U	NS		20	U	20	U	20	U	20	U	NS		ND	
Arsenic	25	35		NS		10	U	10	U	25		NS		10	U	NS		10	U	10	U	10	U	10	U	NS		180	
Barium	1000	490		NS		88		70		320		NS		130		NS		150		130		68		140		NS		1,600	
Beryllium	3	3.7		NS		2	U	2	U	2	U	NS		2	U	NS		2	U	2	U	2	U	2	U	NS		2.4	
Cadmium	5	2.1		NS		3.8		2.3		1.5		NS		2.7		NS		1.7		1.2		1	U	1.7		NS		18	
Calcium		101000		NS		45300		20500		20800		NS		29000		NS		77000		31700		39100		28600		NS		225,000	
Chromium	50	58		NS		4	U	4	U	22		NS		16		NS		7.3		4	U	4	U	5		NS		42	
Cobalt		45		NS		4	U	4	U	18		NS		4	U	NS		4	U	4	U	4	U	4	U	NS		47	
Copper	200	75		NS		16		10		19		NS		10	U	NS		10	U	24		16		44		NS		80	
Iron	300	91300		NS		640		1900		24500		NS		7700		NS		7400		1700		870		4700		NS		406,000	
Lead	25	34		NS		5	U	5	U	16		NS		5.9		NS		5	U	5	U	5	U	5	U	NS		100	
Magnesium	35000	56100		NS		14900		7800		10700		NS		8200		NS		14800		13400		22000		10200		NS		128,000	
Manganese	300	1600		NS		13		56		1200		NS		150		NS		370		290		18		210		NS		11,300	
Mercury	0.7	0.2	U	NS		0.5	U	0.2	U	0.2	U	NS		0.2	U	NS		0.2	U	0.2	U	0.2	U	0.2	U	NS		ND	
Nickel	100	88		NS		10	U	10	U	32		NS		10	U	NS		10		10	U	10	U	10	U	NS		91	
Potassium		20700		NS		3600		2300		8900		NS	T	3900		NS		4400		4400		5000		4800		NS		149,000	
Selenium	10	15	U	NS		15	U	15	U	15	U	NS	T	15	U	NS		15	U	15	U	15	U	15	U	NS		ND	
Silver	50	3	U	NS		3	U	3	U	3	U	NS	Т	3	U	NS		3	U	3	U	3	U	3	U	NS		ND	
Sodium	2000	6700		NS		3700		3300		3800		NS		6700		NS		8600		3900		3800		3700		NS		189000	
Thallium	0.5	20	U	NS		20	U	20	U	20	U	NS	Т	20	U	NS		20	U	20	U	20	U	20	U	NS		ND	
Vanadium		69		NS		5	U	5	U	27		NS	T	9.2		NS		9.8		5	U	5	U	5	U	NS		ND	
Zinc	2000	210		NS		10	U	10	U	66		NS		19		NS		19		10	U	10	U	27		NS	T	12	Γ

	Key Components	Capital Costs	- Annual Costs	Implementability	Concerns	Data Gaps	Survey Needs	Status
	ney components	Costs			Passive Management Options	Dum Supp	Bui (ej 1(eeus	Dentub
Option 1 (Decommission System)	Treatability Study; ROD Amendment; Groundwater Monitoring; Reporting & Management	Minimal	Low	Easily implementable	 Possible accumulation of contaminants in surrounding soil, surface water, and groundwater Community acceptance Human health & environmental receptors Development of leachate seeps and landfill cover/cap 	 Rate of accumulation and/or sorption of metal/VOCs in soil Unknown source longevity Preferential flow paths Rate of leachate generation (hydrogeo) Lack of construction detail for leachate collection/conveyance system 	Tanks, general topography	Eliminated due to potential impacts to groundwater and impacts on human health/environment
Option 2 (Maintain Existing System)	Leachate Removal; Groundwater Monitoring; Reporting & Management; Replace USTs	Low	Moderate	N/A	 Is current management of leachate capturing 100% of volume (collection system on two sides of landfill & potential seeps due to infrequent monitoring) Long-term costs Requires long-term management Maintenance & upkeep of tanks and piping (age of system/schedule 40 PVC) 	 Rate of accumulation and/or sorption of metal/VOCs in soil Rate of leachate generation (hydrogeo) Lack of construction detail and condition of leachate conveyance/collection system 	Tanks, general topography	"No Action" alternative, kept to provide comparison. Added tank replacement to alternative
Option 3 (Passive Treatment w/ Borrow Pond)	Bench Scale Testing; Basis of Design; ROD Amendment; Permitting (SPDES); Design; Reporting & Management; Replace USTs	Moderate	Low	Easily implementable (with proof of concept and ability to meet treatment requirements)	 Rate of flow Full leachate profile for SPDES Human health and environmental receptors Site security Onsite versus offsite discharge locations? Monitoring requirements? Treatment effectiveness Community acceptance 	 Rate of accumulation and/or sorption of metal/VOCs in soil Rate of leachate generation (hydrogeological) Lack of construction detail and condition of leachate conveyance/collection system Leachate characteristics 	Tanks, borrow pond, drainage swale, general topography	Kept due to potential to reduce frequency of site visits; Added tank replacement to alternative

TABLE 4 INITIAL MATRIX OF PRELIMINARY REMEDIAL OPTIONS

EA Project No. 14907.28 Version: DRAFT Table 3, Page 1 of 2 February 2016

					RIX OF PRELIMINARY REMED			
	Key Components	Capital Costs	Annual Costs	Implementability	Concerns	Data Gaps	Survey Needs	Status
Option 4 (Passive Treatment w/ Constructed Wetland)	Bench Scale Testing; Basis of Design; ROD Amendment; Permitting (SPDES); Design; Wetland Construction; Reporting & Management; Replace USTs	Moderate	Low	Easily implementable (with proof of concept and ability to meet treatment requirements)	 Rate of flow Full leachate profile for SPDES Human health and environmental receptors Site security Onsite versus offsite discharge locations? Monitoring requirements? Treatment effectiveness Community acceptance 	 Rate of accumulation and/or sorption of metal/VOCs in soil Rate of leachate generation (hydrogeological) Lack of construction detail and condition of leachate conveyance/collection system Leachate characteristics 	Tanks, borrow pond, drainage swale, general topography	Kept due to potential to reduce frequency of site visits; Added tank replacement to alternative
Option 5 (Evaporation)	Bench Scale Testing/Modeling; Basis of Design; ROD Amendment; Design; Channel Construction; Reporting & Management	Moderate	Low	Easily implementable (with proof of concept); additional effort required to prove effectiveness	 Rate of flow Full leachate profile Human health and environmental receptors Site security Monitoring requirements Treatment effectiveness Community acceptance Additional precipitation inputs Existing stormwater flow paths 	 Rate of accumulation and/or sorption of metal/VOCs in soil Rate of leachate generation (hydrogeological) Lack of construction detail and condition of leachate conveyance/collection system Leachate characteristics 	Tanks, general topography	Eliminated due to results of the survey and concerns over effectiveness of system due to rain/snow/runoff inputs
				E	lectrically Powered Options			
Option 6 (Treatment at WWTP)	Analytical Testing; ROD Amendment; Design; Electrical Install; Reporting & Management	High	Low	Moderately difficult given electrical requirements & availability, and location of sewer	 Rate of flow Full leachate profile Monitoring requirements Community acceptance Availability of electrical power (if needed) Distance to discharge location 	 Rate of leachate generation (hydrogeo) Lack of construction detail and condition of leachate conveyance/collection system Leachate characteristics Location of municipal sewer 	Tanks, general topography	Eliminated due to location of nearest sewer system and power would not be an option per conversations with NYSDEC
Option 7 (Pump Leachate from BB-T1 to Constructed Wetland North of BB-T2)	Bench Scale Testing; Basis of Design; ROD Amendment; Permitting (SPDES); Design; Wetland Construction; Reporting & Management	High	Low	Moderately difficult given electrical requirements & availability, and construction of wetland	 Rate of flow Full leachate profile for SPDES Human health and environmental receptors Site security Onsite versus offsite discharge location Monitoring requirements Treatment effectiveness Community acceptance Availability of electric power 	 Rate of accumulation and/or sorption of metal/VOCs in soil Rate of leachate generation (hydrogeo) Lack of construction detail and condition of leachate conveyance/collection system Leachate characteristics 	Tanks, general topography	Eliminated as installing power would not be an option per conversations with NYSDEC

TABLE 4 INITIAL MATRIX OF PRELIMINARY REMEDIAL OPTIONS

EA Project No. 14907.28 Version: DRAFT Table 3, Page 2 of 2 February 2016

	Г	T	r	TABLE 5 MAT	RIX OF ALTERNATIVES		-
	Key Components	Capital Costs	Annual Costs	Implementability	Concerns	Data Gaps	
				Passive	Management Options		
Alternative 1 (Maintain Existing System)	Leachate Removal; Groundwater Monitoring; Reporting & Management; Replace USTs	None	Moderate	N/A	 Is current management of leachate capturing 100% of volume (collection system on two sides of landfill & potential seeps due to infrequent monitoring) Indefinite costs Imposes long-term management Maintenance & upkeep of tanks and piping (age of system/schedule 40 PVC) 	 Rate of accumulation and/or sorption of metal/VOCs in soil Rate of leachate generation (hydrogeo) Lack of construction detail for leachate conveyance/collection system 	,
Alternative 2 (Passive Treatment w/ Borrow Pond)	Bench Scale Testing; Basis of Design; ROD Amendment; Permitting (SPDES); Design; Reporting & Management; Replace USTs	Moderate	Low / High	Easily implementable (with proof of concept and ability to meet treatment requirements)	 Rate of flow Full leachate profile for SPDES Human health and environmental receptors Site security Onsite versus offsite discharge locations? Monitoring requirements? Treatment effectiveness Community acceptance 	 Rate of accumulation and/or sorption of metal/VOCs in soil Rate of leachate generation (hydrogeological) Lack of construction detail for leachate conveyance/collection system Leachate characteristics 	
Alternative 3 (Passive Treatment w/ Constructed Wetland)	Bench Scale Testing; Basis of Design; ROD Amendment; Permitting (SPDES); Design; Wetland Construction; Reporting & Management; Replace USTs	Moderate	Low / High	Easily implementable (with proof of concept and ability to meet treatment requirements)	 Rate of flow Full leachate profile for SPDES Human health and environmental receptors Site security Onsite versus offsite discharge locations? Monitoring requirements? Treatment effectiveness Community acceptance 	 Rate of accumulation and/or sorption of metal/VOCs in soil Rate of leachate generation (hydrogeological) Lack of construction detail for leachate conveyance/collection system Leachate characteristics 	1
Alternative 4 (Passive Treatment w/ Constructed Wetlands for each Tank)	Bench Scale Testing; Basis of Design; ROD Amendment; Permitting (SPDES); Design; Wetland Construction; Reporting & Management; Replace USTs	Moderate	Low / High	Easily implementable (with proof of concept); additional effort required to prove effectiveness	 Rate of flow Full leachate profile for SPDES Human health and environmental receptors Site security Onsite versus offsite discharge locations? Monitoring requirements? Treatment effectiveness Community acceptance 	 Rate of accumulation and/or sorption of metal/VOCs in soil Rate of leachate generation (hydrogeological) Lack of construction detail for leachate conveyance/collection system Leachate characteristics 	- (1

TABLE 5 MATRIX OF ALTERNATIVES

EA Project No. 14907.28 Version: DRAFT Table 4, Page 1 February 2016

Survey Needs	Status
-	
Tanks, general topography	"No Action" alternative, kept to provide comparison. Added tank replacement to alternative
Tanks, borrow pond, drainage swale, general topography	Kept due to potential to reduce frequency of site visits; Added tank replacement to alternative
Tanks, borrow pond, drainage swale, general topography	Kept due to potential to reduce frequency of site visits; Added tank replacement to alternative
Tanks, drainage swale, general topography	Added based upon survey results

	TABI	LE 6 ALTI	ERNATIV	E COSTI	NG SHE	ETS	S				-	
TECHNOLOGY		I	.OCATIO	N	N	1ED	θIA		nated C mpleme		\$	960,000
Alternative 1		Bus	y Bee Lan	dfill	L	each	ate		Constr	uction Time:	1	months
Maintain Existing System			ed Station		Gro	undv	water		Оре	eration Time:	-	months
								Post F	Remediation	n Monitoring	30	years
		Quar	ntities			Cost	t Breakdov	vn (if availab	le)		Combined Unit Costs	
Description	Data Source	Quantity	Quantity	Material	Materia	ıl	Labor	Labor	Equipmen	t Equipment		Option
	(Means ¹ or Other)	Amount	Unit	Unit Cost	Total Co	ost	Unit Cost	Total Cost	Unit Cost	Total Cost	Unit Cost	Total Cost
REMEDIAL ACTION			CAPITAL ounded to 1		ousand)					1		\$74,000
Leachate Tank (UST) Replacement		1				\$0		\$11,425		\$4,628	\$59,053	\$59,053
Removal		_						<i>+,</i>		+ - , = = =	,,	
BB-T1 North (15,000 g	02 65 10.30 0130	1	tank	\$-	\$-	\$	\$ -	\$1,193	\$-	\$655	\$1,849	\$1,848.5
BB-T1 South (18,000 g	02 65 10.30 0130	1	tank	\$-	\$-	\$	\$ -	\$1,193	\$ -	\$655	\$1,849	\$1,848.5
BB-T2 North (2,000 ga	02 65 10.30 0110	1	tank	\$ -	\$ -	\$	\$-	\$711	\$ -	\$116	\$827	\$827.02
BB-T2 North (4,000 ga	02 65 10.30 0110	1	tank	\$ -	\$ -	\$	\$-	\$711	\$-	\$116	\$827	\$827.02
Replacement												
2,000 gal tank	Engineer's Estimate		tank	\$3,000			\$-	\$1,422		\$232	\$4,654	
4,000 gal tank	Engineer's Estimate		tank	\$5,000			\$ -	\$1,422		\$232	\$6,654	
15,000 gal tank	Engineer's Estimate		tank	\$15,000			\$ -	\$2,386		\$1,311	\$18,697	\$18,697
20,000 gal tank	Engineer's Estimate	1	tank	\$20,000	\$ -	5	\$ -	\$2,386	\$ -	\$1,311	\$23,697	\$23,697
Mobilization and Demobilization												\$5,905
10% of Total Costs of Site Work, Treatment											\$59,053	
Contingency												\$8,858
15% of Total Construction Activities											\$59,053	\$8,858.0
Professional/Technical Services										1		\$10,039
5% Project Management											\$59,053	\$2,952.6
6% Remedial Design												\$3,543.2
6% Construction Management												\$3,543.2

TECHNOLOGY		I	.OCATIO	N			ME	DIA	4		Estin Iı		d Co emen		0	\$	960,000
Alternative 1		Bus	sy Bee Lar	ndfill			Lea	chat	te			С	onstru	iction	n Time:	1	months
Maintain Existing System			ed Statior			G	Froun					C			n Time:		months
			cu station	, , , ,			, oun		uter		Post F	Remed	-		itoring		years
		Quar	ntities				C	ost B	Breakdov	vn (i	f availab					nbined t Costs	
Description	Data Source (Means ¹ or Other)	Quantity	Quantity	Materi			terial		Labor		Labor			_	ipment		Option
	(Wealls of Other)	Amount	Unit	Unit Co	st	Tota	ll Cost	Ur	nit Cost	10	tal Cost			-	al Cost	t Cost	Total Cost
LONG TERM MONITORING															M CO .TM (1)	\$57,610 \$885,600
Monitoring, Sampling, Testing and Analysis (Per	Event)																
Assume 20% of combined sampling event for on-	site and off-site																\$6,042
Site Monitoring																	\$3,554
Inspection of landfill cover	Engineer's Estimate	1	hr	\$ -		\$	-	\$	88.00	\$	88	\$	-	\$	-	\$ 88	\$88
Groundwater sampling for 1 event - Includes co	ollection of field parameters	13	wells	\$ -		\$	-	\$	88.00	\$	1,408	\$	424	\$	424	\$ 512	\$1,832
Materials	Engineer's Estimate	1	event	\$ 50.	00	\$	-	\$	-	\$	-	\$	-	\$	-		\$50
Mobilization/Demobilization of Field Crew	Engineer's Estimate	1	event	\$ -		\$	-	\$	88.00	\$	704	\$	-	\$	-	\$ 704	\$704
Reporting		10	hrs	\$ -	-	\$	-	\$	88.00	\$	880	\$	-	\$	-	\$ 88	\$880
Groundwater Sampling Laboratory analysis																	\$2,488
Metals, plus 20% QA/QC	Recent bid from Accutest	13		\$ -		\$	-	\$	-	\$	-	\$	-	\$	-	\$ 83	\$1,287
VOCs, plus 20% QA/QC	Recent bid from Accutest	13	ea	\$ -	_	\$	-	\$	-	\$	-	\$	-	\$	-	\$ 77	\$1,201
Annual Leachate Management																	\$2,660
Leachate Tank Gauging (4 trips/year; 1 hour ons	site)	4	trips	\$ -		\$	-	\$	88.00	\$	1,760		-	\$	-	\$ 88	\$1,760
Reporting		4	hrs	\$ -		\$	-	\$	88.00	\$	352	\$	-	\$	-	\$ 88	\$352
Metals, plus 20% QA/QC	Recent bid from Accutest	1	ea	\$ -		\$	-	\$	-	\$	-	\$	-	\$	-	\$ 83	\$99
VOCs, plus 20% QA/QC	Recent bid from Accutest	1	ea	\$ -		\$	-	\$	-	\$	-	\$	-	\$	-	\$ 77	\$92
SVOCs, plus 20% QA/QC	Recent bid from Accutest	1	ea	\$ -		\$	-	\$	-	\$	-	\$	-	\$	-	\$ 165	\$198
Pesticides / PCBs, plus 20% QA/QC	Recent bid from Accutest	1	ea	\$ -		\$	-	\$	-	\$	-	\$	-	\$	-	\$ 132	\$158
Maintenance- Cap Maintenance																	
Mowing brush, tractor with rotary mower, Medium density 2x per year	32 01 90.19 1670	55	msf	\$ -		\$	-	\$	-	\$	-	\$	-	\$	-	\$ 74.80	\$4,089
	_																
Leachate Disposal (includes 5 events/year)	Engineer's Estimate	1	annual	\$ -	\dashv	\$	-	-	\$88		\$18,661	\$	-	\$ 2	25,000	\$ 25,088	\$43,749
Lifetime Long Term Monitoring (Net Present Val	ue)																
30 Years of Bi-Annual Monitoring					Τ												
5% Discount Factor (per NYSDEC)																	

TOTAL ESTIMATED NPV TECHNOLOGY COST (Capital + Lifetime O&M + Post Remediation Monitoring)

\$960,000

		TAB	BLE 6 ALTERNATI	VE COSTI	NG SHEETS			
	TECHNOLOGY		LOCATI	ON	MEDIA	Estimated Cost to Implement	\$	6960,000
	Alternative 1		Busy Bee La	ndfill	Leachate	Construction Time:	1	months
	Maintain Existing System	l	Alfred Statio		Groundwater	Operation Time:	-	months
)		Post Remediation Monitoring		years
			Quantities		Cost Breakdov	wn (if available)	Combined Unit Costs	
	Description	Data Source (Means ¹ or Other)	QuantityQuantityAmountUnit	Material Unit Cost	MaterialLaborTotal CostUnit Cost	LaborEquipmentEquipmentTotal CostUnit CostTotal Cost	Unit Cost	Option Total Cost
Assumpt	tions:							
	Working condition is Safety Level: Weighted Average of city cost index (Buffalo, NY Costs are loaded with a profit factor Inflation)		roductivity: cable for cost	82%; Equipmen as derived from vendor qu	at productivit 100%) uotes).		Labor
Estimate	d number of groundwater samples		13 samples		times sampled	1.00 hrs/sample	\$88	Cost per hr
	Characterization Cost	Table A (per CWM)	\$593.48 per sample	20%	added for QA/QC sample	worker sampling	2	days / sampling event
	Analytical cost	TAL Metals	\$75.00 per sample					hours prep
	Analytical cost	VOCs	\$73.00 per sample \$62.00	-			4	nours prep
	For each sampling event, assumed:	1003	\$50 for materia	als (gloves no	tebooks etc.)	Total Hours Mob	8	hrs
Typical F	Rental Rates - Includes G&A and 10% Profit	ţ		uis (gio (es, iio		Total Hours Work		hrs
-51	Mini-Rae Survey Mode PID		\$96.08 per day		1.6 tons/cy			1
	Truck/SUV (1/2 ton or smaller)		\$70.74 per day					
	Horiba U-10 Water Quality Meter		\$73.77 per day					
	Submersible Pump		\$42.16 per day		Labor Costs for Leacha	ate Disposal Event		
	2 in Pump Control Box		\$72.27 per day		Labor Rate	\$88 per hour		
	Generator: 110 V		\$57.24 per day		Travel Time	4 hours round trip		
	Level D PPE		\$11.91 per day		Days/Trip	3 days		
					Reporting	4 hrs		
Work day	consists of:		8 hrs		Hours/Event	40 hours/event		
					Total Hours/Year	200 hours		
					Total Labor Cost/Year	\$17,600 cost/year		
Notes								
sy	square yard	mo	month		Total Labor + Repoting	\$18,661.10 cost/year		
cy	cubic yard	ls	lump sum		+ Truck			
lcy	loose cubic yard	O&M	Operation and mainten	ance				
bcy	bank cubic yard	H&S	Health and Safety					
lf	linear feet		2					
sf	square feet							
msf	1,000 square feet							

	TAB	LE 6 ALT	TERNATI	VE COSTI	NG SHE	ETS					
TECHNOLOGY		1	OCATIO	N	М	EDIA		nated Co mplemen		\$	6934,0
Alternative 2		Bus	sy Bee Lar	ndfill	Le	achate		Constru	ction Time:	1	months
Treatment in Borrow Pit			ed Statior			ndwater			ration Time:		months
Treatment in Dortow Th		AIII	eu Statioi	1, 191	GIUU	nuwater	Dost	Remediation		30	
		0.000	ntities			Cost Breakdow			Wolltoring	Combined	
Description	Data Source	Quantity	Quantity	Material	Material	Labor	Labor		Equipment	Unit Costs	6 (
Description	(Means ¹ or Other)	Amount	Unit	Unit Cost	Total Cost		Total Cost	Unit Cost	Total Cost	Unit Cost	
REMEDIAL ACTION		-	CAPITAL	COST nearest the	ousand)						
Leachate Tank (UST) Replacement		1			\$0		\$11,425		\$4,628	\$53,702	
Removal	02 (5 10 20 0120	1	. 1	¢	¢	¢	¢1 102	¢		¢	<u> </u>
BB-T1 North (15,000 ;	02 65 10.30 0130		tank	\$ -	\$ -	\$ -	\$1,193		\$655	-	<u> </u>
BB-T1 South (18,000)	02 65 10.30 0130	1	tank	\$ -	\$ -	\$ -	\$1,193		\$655	· · · · · · · · · · · · · · · · · · ·	
BB-T2 North (2,000 ga	02 65 10.30 0110	1	tank	\$ -	\$ -	\$ -	\$711		\$116	-	
BB-T2 North (4,000 ga	02 65 10.30 0110	1	tank	\$ -	\$-	\$ -	\$711	\$-	\$116	\$ -	<u> </u>
Replacement											<u> </u>
2,000 gal tank	Engineer's Estimate	1	tank	\$3,000	\$-	\$-	\$1,422	\$ -	\$232	\$4,654	÷
4,000 gal tank	Engineer's Estimate	1	tank	\$5,000	\$-	\$-	\$1,422	\$ -	\$232	\$6,654	ł
15,000 gal tank	Engineer's Estimate	1	tank	\$15,000	\$ -	\$ -	\$2,386	\$ -	\$1,311	\$18,697	1
20,000 gal tank	Engineer's Estimate	1	tank	\$20,000	\$-	\$ -	\$2,386	\$ -	\$1,311	\$23,697	/
Permitting/Reporting/Site Preparation											
ROD Ammendment		1	ls	\$ -	\$ -	\$ -	\$-	\$ -	\$ -	\$15,000)
SPDES Permit Application		1	ls	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$12,000)
Utiliity Locator (based on recent bid)	recent quote	1	day	s -	s -	\$ -	\$ -	\$ -	\$ -	\$2,465	;
Work Plan Preparation	Engineer's Estimate		ls	s -	s -	\$ -	\$ -	\$ -	\$ -	\$10,000	
Erosion and Sediment Control Plan	Engineer's Estimate	1	ls	s -	s -	\$ -	\$ -	s -	\$ -	\$5,000	
Treatability Study	Engineer's Estimate	1	ls	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$25,000	
Piping Between BB-T2 and BB-T1											
Excavation; trenching (4-6' deep); 3/4 CY bucket	31 23 16.13 0110	11,184	bcy	\$ -	\$ -	\$3	\$38,025.60	\$3	\$31,091.52	\$6	
Public sanitary sewer piping, PVC, 4" diameter, 20' lengths	33 31 13.25 2000	800	-	\$1	-		\$33,025.00		\$ -	\$5	
Backfill; 105 HP Dozer; Existing Stockpile	31 23 23.14 3020		lcy	\$1 \$-	\$1,120	\$1	\$9,087	\$ -	Ŧ	\$1	
Backini, 105 III DOZI, LAisung Stockpic	51 25 25.14 5020	13,980	ley	ф -	- ڊ	φı	\$2,087	φı	\$8,807.40	١٩	
Borrow Pond Construction	31 23 16.13 0062 /	7									<u> </u>
Excavate for open channel; trenching (1-4' deep); 3/4 CY bucl	Engineer's Estimate 03 05 13.25 1050 /	13	bcy	\$ -	\$-	\$8	\$98	\$6	\$80	\$14	<u> </u>
Stone; 3/4" to 1 1/2"	Engineer's Estimate	200	су	\$68	\$13,620)\$-	\$ -	\$ -	\$ -	\$68	3
Geotextile Fabric, non-woven, 120lb tensile strength	31 32 19.16 1550 / Engineer's Estimate	175	sy	\$2	\$391	\$ 0.70	\$ 122.33	\$ -	\$ -	\$3	3
Excavate/Dredge Pond	31 23 16.13 0050 / Engineer's Estimate	7		\$ -	\$ -		\$ 8,176.68			\$20	
	Linguicer's Louilluie	000		φ -	φ -	φ 13.30	φ 0,170.00	φ 0.20	φ3,133.22	φ20	<u> </u>
Mobilization and Demobilization 10% of Total Costs of Site Work, Treatment										\$246,046	; ;
Contingency 15% of Total Construction Activities										\$246,046	5
											<u> </u>
Professional/Technical Services											<u> </u>
5% Project Management										\$246,046	i
6% Remedial Design											\square
6% Construction Management											

EA Project No. 14907.28 Table 6, Page 4 of 12 February 2016

,000
IS
IS
Option Total Cost
\$147,000
\$59,053
\$1,848.55
\$1,648.33
\$1,848.55
\$827.02
\$827.02
\$4,654
\$6,654
\$18,697
\$23,697
\$69,465
\$15,000
\$12,000
\$2,465
\$10,000
\$5,000
\$25,000
\$91,284
\$69,117.12
\$4,272
\$17,894
\$26,244
\$178.37
\$13,620.00
\$513.77
\$11,931.90
\$24,605
\$24,604.60
\$36,907
\$36,906.90
,
\$41,828
\$12,302.30
\$14,762.76
\$14,762.76

	TAB	LE 6 ALT	ERNATI	VE	COSTI	NG	SHEE	TS										
TECHNOLOGY		1	OCATI(ON			MI	EDIA	L.		Estin Iı		ed Co emer)		\$	6934 ,
Alternative 2		Bus	y Bee La	ndfi	11		Lea	chat	e			(Constru	iction	Time:		1	months
Treatment in Borrow Pit			ed Statio				Grou	ndwa	ter				Ope	ration	Time:		-	months
											Post I	Reme	diation	Mon	itoring		30	years
		Quar	ntities				0	Cost B	reakdow	n (if a	availabl	e)					mbined it Costs	
Description	Data Source (Means ¹ or Other)	Quantity Amount	Quantity Unit		laterial nit Cost		aterial al Cost		.abor iit Cost		abor al Cost		ipment it Cost		ipment al Cost		it Cost	Т
NG TERM MONITORING			YEARS YEARS YEARS	1-3 3 + ((No Poi	nd M	laint.)	1				AN AN AN	NUAI NUAI NUAI TETIN	L LT L LT	м со м со м со	DST DST DST		1
onitoring, Sampling, Testing and Analysis (Per I	Event)																	
Assume 20% of combined sampling event for on-sit	e and off-site																	<u> </u>
Site Monitonia -														_		-		──
Site Monitoring Inspection of landfill cover		1	hr	\$		\$		\$	88.00	\$	88	\$		\$		\$	88	──
Groundwater sampling for 1 event - Includes col	lection of field parameters		well	\$	-	\$ \$	-	\$	88.00	\$ \$	1,144	\$	424	\$	424	\$	512	
Materials	Engineer's Estimate	13	event	\$	50.00	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	+
Mobilization/Demobilization of Field Crew	Engineer's Estimate	1	event	\$	-	\$	-	\$	88.00	\$	704	\$	-	\$	-	\$	704	+
Reporting		10	hr	\$	88.00	\$	880	\$	-	\$	-	\$	-	\$	-	\$	-	
SPDES Monitoring, Years 1 - 3 (monthly)		12	events															
Outfall Sampling		1	event	\$	-	\$	-		\$88	\$	374	\$	71	\$	71	\$	159	
Reporting (one report needed for each event)	Engineer's Estimate	1	report	\$	-	\$	-		\$88	\$	176	\$	-	\$	-	\$	88	
SPDES Monitoring, Years 3+ (quarterly)			events															
Outfall Sampling Reporting (one report needed for each event)	Engineer's Estimate	1	event report	\$ \$	-	\$ \$	-		\$88 \$88	\$ \$	374 176	\$ \$	71	\$ \$	- 71	\$ \$	159 88	
reporting (one report needed for each overn)	Engineer's Estimate	1	report	Ŷ		Ŷ			<i>400</i>	Ŷ	170	Ψ		Ψ		Ψ	00	
Groundwater Sampling Laboratory Analysis																		<u> </u>
Metals, plus 20% QA/QC VOCs, plus 20% QA/QC	Recent bid from Accutest Recent bid from Accutest	13 13		\$ \$	-	\$ \$	-	\$ \$	-	\$ \$	-	\$ \$	-	\$ \$	-	\$ \$	83 77	
vocs, plus 20% QA/QC	Recent but from Accutest	15	ca	φ		Ş	-	ę	-	ę	-	ې	-	Ģ	-	φ	//	
SPDES Sampling Laboratory Analysis		1	event															
Metals, plus 20% QA/QC	Recent bid from Accutest	1	ea	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	83	
VOCs, plus 20% QA/QC	Recent bid from Accutest	1	ea	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	77	
SVOCs, plus 20% QA/QC	Recent bid from Accutest	1	ea	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	165	
Pesticides / PCBs, plus 20% QA/QC	Recent bid from Accutest	1	ea	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	132	
intenance- Cap Maintenance				-														
Mowing brush, tractor with rotary mower, Medium density 2x per year	32 01 90.19 1670	55	msf	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	74.80	
intenance- Pond Maintenance																		
Excavate/Dredge Pond	31 23 16.13 0050	606		\$	-	\$	-	\$	6.75		088.34	\$	3.10		877.61		\$10	
Confirmation Sampling (TCLP)	Recent bid from Accutest	2	samples	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	539.00	
Transpotation & Disposal	recent quote / Engineer's Estimate	872	tons	\$	-	\$	-	\$	-	\$	-	\$ 2	200.00	\$ 17	4,436	\$	200.00	<u> </u>
etime Long Term Monitoring (Net Present Valu	ie)			+														
30 Years of Bi-Annual Monitoring																1		1
5% Discount Factor (per NYSDEC)				1		1		1				1		1		1		1

EA Project No. 14907.28 Table 6, Page 5 of 12 February 2016

4,000
nths
nths
rs
Option
Total Cost
\$25,090
\$15,740
\$197,220
\$786,800
\$5,778
\$3,290
\$88
\$1,568
\$50
\$704 \$880
\$08U
\$7,449
\$445
\$176
\$2,483
\$445
\$176
\$2.400
\$2,488 \$1,287
\$1,201
\$548
\$99
\$92
\$198
\$158
\$4,089
\$4,089
\$181,480
\$5,965.95
\$1,078
\$174,436
\$934,000

			TAB	LE 6 ALT	ERNATI	VE COSTI	ING SHEE	ETS					
	TECHNOLOGY			I	OCATIO	N	M	EDIA		mated C mpleme		\$	5934 ,
	Alternative 2			Bus	y Bee Lar	dfill	Lea	achate		Constr	uction Time:	1	months
	Treatment in Borrow Pit			Alfr	ed Statior	, NY	Grou	ndwater		Оре	eration Time:	-	months
									Post	Remediation	n Monitoring	30	years
				Onar	ntities		(Cost Breakdov	vn (if availab	le)		Combined	
	Description	Data Source		-		Maturial	Material	1	-	-	(E	Unit Costs	5
	Description	(Means ¹ or Othe	er)	Quantity Amount	Quantity Unit	Material Unit Cost	Total Cost	Labor Unit Cost	Labor Total Cost	Unit Cost	t Equipment Total Cost	Unit Cost	
Assumptions				Timount	Cint	Clift Cost	Total Cost	Cint Cost	Total Cost	enit cost	Total Cost	enit cost	
-	orking condition is Safety Level:			D/C	(Labor pro	ductivity:	82%	; Equipment	productivity	100%)		
We	ighted Average of city cost index (Buffalo, NY))		101.4%	(not applic	able for costs	derived fro	m vendor quo	otes).		-		
Cos	sts are loaded with a profit factor			10%									
Inf	ation			3%	per year		-			-			Labor
Estimated nu	mber of groundwater samples			13	samples		times samp		1.00	hrs/sample		\$88	Cost pe
					,	20%	added for Q	A/QC samples	1	worker san	npling		-
	aracterization Cost	Table A (per CWM)			per sample								hrs / we
An	alytical cost	TAL Metals			per sample							1	1 worker
F	1 1 . 1	VOCs		\$62.00		(1)	1 1						
	each sampling event, assumed: al Rates - Includes G&A and 10% Profit			\$ 5 0	for material	s (gloves, not	ebooks, etc.)						
	ni-Rae Survey Mode PID			\$06.08	per day		16	tons/cy				2	days / s
	ick/SUV (1/2 ton or smaller)				per day		1.0	tons/cy					4 hours p
	riba U-10 Water Quality Meter				per day								nours p
	omersible Pump				per day					Total Hour	s Mob	5	8 hrs
	n Pump Control Box				per day					Total Hour			hrs
	nerator: 110 V				per day								
Lev	vel D PPE				per day				SPDES M	onitoring			
				10	1.				T	E D G	0.00		J.
Work day cons	ISTS OI:			10	hrs				Time to Site Mileage (Ro		lo Office		2 hr 0 miles
									Sampling Ti	-			5 hr
									Reporting	lile			2 hr
									reporting				
									Cost of One	Event		\$620.74	
Volume Calo	culations								(includes tru	ck, and time	cost)		
Tre	nch / Piping				_	Tank Volu	nes	BB-T1 North	15,000	gals	Pond Dredg	ging	_
	Length of trench between BB-T1 and	BB-T2		800				BB-T1 South	18,000	gals	Depth	2	2 ft
	Depth of trench			6	1			BB-T2 North	,	gals	Area	5451.12	2 sq ft
	Width (of 3/8 CY bucket			2	ft			BB-T2 South	4,000	gals			-
				44.40	1.			T . 1	-	J	Vol		7 bcy
	VOLUME			11,184				Total	39,000	4	Density		0 lb/ft3
				13,980	lcy			FS 50%	60,000	- -~	T- (-1 T		ton/cy
	Open Channel		Lonat		f.	Borner D'		Aroc		cu ft	Total Tons	872.2	2
	Open Channel		Length Depth		ft	Borrow Pit		Area Depth	5451.12 1.47140955		Sample Den	eity	
			Depth	349.5				Depui	1.4/140953	<u>'</u> 1"	Sample Den		1 sample/
Notes				12.944432		Wetland Pla	nt Density		2725 56	1 plant per	2 square feet	1	- sample/
	are yard	mo		month	,				2123.30	1 pant per	2 square reel		
• •	vic yard	ls		lump sum									
•	se cubic yard	O&M		Operation a	nd maintena	ice							
•	ik cubic yard	H&S		Health and									
•	ear feet												
	are feet												
	00 square feet												

EA Project No. 14907.28 Table 6, Page 6 of 12 February 2016

,000	
hs	
hs	
Option	
Total Cost	
per hr well sampling	
er/gw sample	
sampling event	
prep	
rr	
7	
le/500 tons	

TECHNOLOGY		1	LOCATIO	DN		ME	DIA			ed Co lemen		\$1	,055,000
Alternative 3		Bus	y Bee Lar	ndfill]	Lea	chate			Constru	ction Time:	1	months
Treatment in Constructed Wet	land		ed Statior		Gr	oun	dwater			Oper	ration Time:	-	months
								Post	Rem	ediation	Monitoring	30	years
		0				0					e	Combined	J2
			ntities				ost Breakdov	-	-			Unit Costs	
Description	Data Source (Means ¹ or Other)	Quantity Amount	Quantity Unit	Material Unit Cost	Materi Total C		Labor Unit Cost	Labor Total Cost	-	uipment nit Cost	Equipment Total Cost		Option Total Cost
REMEDIAL ACTION			CAPITAL ounded to	COST	ousand))		1			1	1	\$187,00
						# 0		.	_		\$4 (20	\$53.503	\$5 0.0
Leachate Tank (UST) Replacement		1		-		\$0		\$11,42	• 		\$4,628	\$53,702	\$59,0
Removal	00 / 5 10 20 0100	-	t	¢	¢		¢	A1 10			A	¢	
BB-T1 North (15,000)	02 65 10.30 0130		tank	\$ -	\$ -	-	\$ -	\$1,19	-	-	\$655		\$1,848.
BB-T1 South (18,000 ;	02 65 10.30 0130	1	tank	\$ -	\$ -	-	\$ -	\$1,19	-	-	\$655		\$1,848.
BB-T2 North (2,000 g:	02 65 10.30 0110	1	tank	\$ -	\$ -	-	\$ -	\$71	-	-	\$116		\$827
BB-T2 North (4,000 g:	02 65 10.30 0110	1	tank	\$ -	\$ -		\$ -	\$71	1 \$	-	\$116	\$ -	\$827
Replacement													
2,000 gal tank	Engineer's Estimate	1	tank	\$3,000	\$ -	_	\$ -	\$1,42	2 \$	-	\$232	\$4,654	\$4,6
4,000 gal tank	Engineer's Estimate	1	tank	\$5,000	\$ -		\$-	\$1,42	2 \$	-	\$232	\$6,654	\$6,6
15,000 gal tank	Engineer's Estimate	1	tank	\$15,000	\$ -	.	\$-	\$2,38	5\$	-	\$1,311	\$18,697	\$18,6
20,000 gal tank	Engineer's Estimate	1	tank	\$20,000	\$ -		\$ -	\$2,38	6\$	-	\$1,311	\$23,697	\$23,6
)						_							¢(0,4
Permitting/Reporting/Site Preparation									-				\$69,4
ROD Ammendment	Engineer's Estimate		ls	\$ -	\$ -		\$ -	\$ -	\$	-	\$ -	\$15,000	\$15,
SPDES Permit Application	Engineer's Estimate	1	ls	\$ -	\$ -		\$-	\$ -	\$	-	\$ -	\$12,000	\$12,0
Utiliity Locator (based on recent bid)	based on recent quote	1	day	\$ -	\$ -		\$-	\$-	\$	-	\$ -	\$2,465	\$2,4
Work Plan Preparation	Engineer's Estimate	1	ls	\$ -	\$ -		\$-	\$-	\$	-	\$ -	\$10,000	\$10,0
Erosion and Sediment Control Plan	Engineer's Estimate	1	ls	\$ -	\$ -		\$-	\$-	\$	-	\$ -	\$5,000	\$5,0
Treatability Study	Engineer's Estimate	1	ls	\$ -	\$ -		\$-	\$ -	\$	-	\$ -	\$25,000	\$25,0
Piping Between BB-T2 and BB-T1				-		-			-				\$91,2
Excavation; trenching (4-6' deep); 3/4 CY bucket	31 23 16.13 0110	11,184	bcy	\$ -	s -		\$3	\$ \$38,025.6		\$2	\$31,091.52	\$6	. ,
		800		\$ -	1		\$3		-	ţ,	\$ -		. ,
Public sanitary sewer piping, PVC, 4" diameter, 20' lengths	33 31 13.25 2000	13,980			\$1,	120	\$4 \$1		-	-		\$5	
Backfill; 105 HP Dozer; Existing Stockpile	31 23 23.14 3020	13,980	lcy	\$ -	\$ -		\$1	\$9,08	/	\$1	\$8,807.40	\$1	\$17,
Wetland Construction	21 22 16 12 0062	/											\$58,3
Excavation; trenching (1-4' deep); 3/4 CY bucket	31 23 16.13 0062 / Engineer's Estimate	12	bcy	s -	s -		\$8	\$ \$9		\$6	\$80	\$14	\$178
Excavation, uchening (1-4 ucep); 5/4 C I bucket	31 23 16.13 0050 /	/	JULY	φ -	۰. در ا		\$8	\$9	5	<i>0</i>	\$80 \$	\$14	\$1/8
Excavation of wetland area	Engineer's Estimate 03 05 13.25 1050 /	606	bcy	\$ -	\$ -		\$20	\$12,26	5	\$6	\$3,755	\$26	\$16,020
Stone; 3/4" to 1 1/2"	Engineer's Estimate 31 32 19.16 1550 /	200.00	су	\$68	\$13,	620	\$ -	\$ -	\$	-	\$-	\$68	\$13,620
Geotextile Fabric, non-woven, 120lb tensile strength	Engineer's Estimate	175	sy	\$2	\$	391	\$ 0.70	\$ 122.33	\$	-	\$-	\$3	\$513
Native wetland plants	based on recent quote	5,500	plants	\$ -	\$ -		\$ -	\$ -	\$	-	\$ -	\$4	\$22,
Compost	based on recent quote	202		\$30	\$6,	057	\$ -	\$ -	\$	-	\$ -	\$30	\$6,
Mobilization and Demobilization				1									\$27,8
10% of Total Costs of Site Work, Treatment	1			1					+			\$278,191	\$27,819
												,	
Contingency													\$41,7
15% of Total Construction Activities												\$278,191	\$41,728
Professional/Technical Services									-				\$47,2
5% Project Management					-				-			\$278,191	\$13,909
Project Wanagement		1	1	1	1			1	1		1	µ \$∠76,191	\$15,909
6% Remedial Design						1							\$16,691

EA Project No. 14907.28 Table 6, Page 7 of 12 February 2016

TECHNOLOGY			LOCATIO	DN			MI	EDIA		Estimated Cost to Implement							\$1,055,000		
Alternative 3		Bus	sy Bee La	ndfil	1		Lea	chate	5			C	onstru	iction	Time:		1	months	
Treatment in Constructed Wetla	ind		ed Statio			G		ndwat					Oper	ation	Time:		-	months	
				,							Post R	Remed	liation	Mon	itoring	;	30	years	
		Qua	ntities				C	Cost Bi	reakdow	n (if a	vailable	e)			-		mbined		
Description	Data Source	Quantity	Quantity	М	laterial	Mate	rial	La	abor	La	ıbor	Equi	pment	Equi	ipment	-	it Costs	Option	
	(Means ¹ or Other)	Amount	Unit	Un	nit Cost	Total	Cost	Uni	it Cost	Tota	l Cost	Unit	t Cost	Tota	al Cost	U	nit Cost	Total Cost	
NG TERM MONITORING			YEARS	1-3								ANN	NUAL	LT	M CO)ST		\$25,0	
			YEARS	3 + (1	No Poi	ıd Ma	int.))				ANN	NUAL	LT	мсо)ST		\$15,7	
			YEARS	3+0	Incl. P	ond D	redg	ging)				ANN	NUAL	LT	мсо	DST		\$225,2	
				Ì			c	5 0/				LIF	ETIN	IE L'	TM (1	NPV	N)	\$867,7	
onitoring, Sampling, Testing and Analysis (Per E	vent)		1					1	_		-				(-	Γ	. ,	<i>+•••</i> ,	
Assume 20% of combined sampling event for on-site				1												-		\$	
1.0																			
Site Monitoring																		\$	
Inspection of landfill cover	Engineer's Estimate		hr	\$	-	\$	-	\$	88.00	\$		\$	-	\$	-	\$	88		
Groundwater sampling for 1 event - Includes colle	-			\$	-	\$	-	\$	88.00	\$		\$	424	\$	424	\$	512	5	
Materials	Engineer's Estimate	1	event	\$	50.00	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-		
Mobilization/Demobilization of Field Sampling (Engineer's Estimate	1 10	event	\$ \$	-	\$	-	\$ \$	88.00	\$ \$	704	\$	-	\$	-	\$	704	 	
Reporting	Engineer's Estimate	10	hr	\$	88.00	\$	880	\$	-	\$	-	\$	-	\$	-	\$	88		
SPDES Monitoring, Years 1 - 3 (monthly)		12	events	+												-		5	
Outfall Sampling		1	event	\$	-	\$	-		\$88	\$	374	\$	71	\$	71	\$	159		
Reporting (one report needed for each event)	Engineer's Estimate	1	report	\$	-	\$	-		\$88	\$		\$	-	\$	-	\$	88		
SPDES Monitoring, Years 3+ (quarterly)		4	events																
Outfall Sampling		1	event	\$	-	\$	-		\$88	\$		\$	71	\$	71	\$	159		
Reporting (one report needed for each event)	Engineer's Estimate	1	report	\$	-	\$	-		\$88	\$	176	\$	-	\$	-	\$	88		
Groundwater Sampling Laboratory Analysis																+		5	
Metals, plus 20% QA/QC	Recent bid from Accutest	13	ea	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	83		
VOCs, plus 20% QA/QC	Recent bid from Accutest	13	ea	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	77	5	
SPDES Sampling Laboratory Analysis		1	event																
Metals, plus 20% QA/QC	Recent bid from Accutest	1	ea	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	83		
VOCs, plus 20% QA/QC	Recent bid from Accutest	1	ea	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	77		
SVOCs, plus 20% QA/QC	Recent bid from Accutest	1	ea	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	165		
Pesticides / PCBs, plus 20% QA/QC	Recent bid from Accutest	1	ea	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	132		
intenance- Cap Maintenance																_		\$	
Mowing brush, tractor with rotary mower, Medium density 2x per year	32 01 90.19 1670	55	msf	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	74.80	5	
		55		Ť		-		۲ –		÷		÷		Ť		Ť		,	
intenance- Pond Maintenance		1	event													1		\$20	
Excavate/Dredge Pond	31 23 16.13 0050	606	bcy	\$	-	\$	-	\$	6.75	\$ 4,0	088.34	\$	3.10	\$1,8	77.61		\$10	\$5,9	
Confirmation Sampling (TCLP)	Recent bid from Accutest	2	samples	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	539.00	:	
Native wetland plants	based on recent quote		plants	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\vdash	\$4	\$2	
Compost	based on recent quote recent quote / Engineer's	202	су	-	\$30	\$6	5,057	\$	-	\$	-	\$	-	\$	-	+	\$30	5	
Transpotation & Disposal	Estimate	872	tons	\$	-	\$	-	\$	-	\$	-	\$ 2	00.00	\$ 17	4,436	\$	200.00	\$17	
atima Long Term Monitoring (Not Dresort Volu	9)]					\vdash			
Setime Long Term Monitoring (Net Present Valu 30 Years of Bi-Annual Monitoring				-												+			
5% Discount Factor (per NYSDEC)				-												\vdash			

EA Project No. 14907.28 Table 6, Page 8 of 12 February 2016

			TAB	LE 6 ALT	ERNATI	VE COST	ING SHEE	TS					
	TECHNOLOGY			I	OCATIO	N	MI	EDIA		ated Co		\$ 1	1,055
	Alternative 3			Bus	y Bee Lar	ndfill	Lea	chate		Constr	uction Time:	1	months
	Treatment in Constructed We	tland		Alfr	ed Statior	n, NY	Grou	ndwater		Оре	eration Time:	-	months
									Post R	emediatio	n Monitoring	30	years
				Quar	ntities			Cost Breakdov	wn (if available)		Combined	
	Description	Data Source		Quantity	Quantity	Material	Material	Labor	Labor	Equipmen	t Equipment	Unit Costs	5
	-	(Means ¹ or Oth	er)	Amount	Unit	Unit Cost	Total Cost	Unit Cost	Total Cost	Unit Cost	Total Cost	Unit Cost	1
Assum	vorking condition is Safety Level:			D/C	(T abor pro	du ativitus	82%	. Fauinmont	nuoduotivityu	100%	Ъ.		
					(Labor pro	-			productivity:	100%)		
	Weighted Average of city cost index (Buffalo, NY)			(not applie	able for costs	s derived fro	m vendor quo	ites).				
	Costs are loaded with a profit factor			10%									
T	Inflation				per year		Ŀ.		1.00			\$00	Labor
Estimate	ed number of groundwater samples			13	samples		times sample			nrs/sample		\$88	Cost per
					ı .	20%	added for Q	A/QC samples	1	worker san	npling		
	Characterization Cost	Table A (per CWM)			per sample								hrs / we
	Analytical cost	TAL Metals			per sample								l worker/
		VOCs		\$62.00						Fotal Hour			8 hrs
	For each sampling event, assumed:			\$50	for material	s (gloves, not	ebooks, etc.)			Fotal Hour	s Work	16	hrs
Typical	Rental Rates - Includes G&A and 10% Profit	t			1				SPDES Mon	itoring			
	Mini-Rae Survey Mode PID				per day		1.6	tons/cy					-
	Truck/SUV (1/2 ton or smaller)			\$70.74	per day				Time to Site F	rom Buffal	o Office		2 hr
	Horiba U-10 Water Quality Meter			\$73.77	per day				Mileage (Rour	nd Trip)		190	miles
	Submersible Pump			\$42.16	per day				Sampling Tim	e		0.25	5 hr
	2 in Pump Control Box			\$72.27	per day				Reporting			2	2 hr
	Generator: 110 V			\$57.24	per day								-
	Level D PPE			\$11.91	per day								
Work da	y consists of:			10	hrs				Cost of One E (includes truck		cost)	\$620.74	
Volume	e Calculations								. <u> </u>				
	Trench / Piping					Tank Volun	nes	BB-T1 North	15,000	gals	Pond Dredg	ging	-
	Length of trench between BB-T1 and	BB-T2		800	ft			BB-T1 South	18,000	gals	Depth		2 ft
	Depth of trench			6	ft			BB-T2 North	2,000	gals	Area	5451.12	2 sq ft
	Width (of 3/8 CY bucket			2	ft			BB-T2 South	4,000	gals			_
											Vol	605.7	7 bcy
	VOLUME			11,184	bcy			Total	39,000		Density	120	0 lb/ft3
				13,980	lcy			FS 50%	60,000	gal		1.44	ton/cy
l					•				8,021	cu ft	Total Tons	872.2	2
	Open Channel		Length	75	ft	Borrow Pit		Area	5451.12	sq. ft			-
			Depth		ft			Depth	1.47140955	ît	Sample Den	sity	
			-	349.5	cu ft				·		-	1	l sample/
Notes				12.944432		Wetland Pla	ant Density		5451.12	l plant per	1 square feet		<u> </u>
sy	square yard	mo		month			-				•		
cy	cubic yard	ls		lump sum									
lcy	loose cubic yard	O&M		Operation a	nd maintena	ice							
bcy	bank cubic yard	H&S		Health and									
lf	linear feet			. iouini ulu	Survey								
sf	square feet												
msf	1,000 square feet												
11151	1,000 square reer												

EA Project No. 14907.28 Table 6, Page 9 of 12 February 2016

5,000	
hs	
hs	
Option	
Total Cost	
per hr	
well sampling	
er/gw sample	
7	
e/500 tons	

TECHNOLOGY		I	OCATIO	ON			ME	DIA			Estin Iı		ed Co emer		0	\$1	1,360,000
Alternative 4		Duy	y Bee La	ndfil	1		Loo	chate				_			n Time:	1	months
Treatment in Two Constructed Wet	heel		ed Statio				Groun								n Time:	1	months
Treatment in 1 wo constructed we	lianu	AIII	eu Statio	u, 191	1		Groui	uwau	ci		Post D	omo	•		nitoring	- 30	vears
				1									uiation	I WIO	ntoring	Combined	years
		Qua	ntities				С	ost Bre	eakdow	n (if a	availabl	<i>.</i>				Unit Costs	
Description	Data Source (Means ¹ or Other)	Quantity Amount	Quantity Unit		laterial nit Cost		faterial otal Cost		bor Cost		abor al Cost	1	iipment it Cost	1	uipment tal Cost	Unit Cost	Option Total Co
REMEDIAL ACTION		-	CAPITAI			ousa	and)					ſ		1			\$19 1
Leachate Tank (UST) Replacement		1					\$0			¢1	1,425				\$4,628	\$59,053	\$
· · · · · ·		1					фU			\$1	1,423				94,020	\$39,033	φ.
Removal BB-T1 North (15,000	02 65 10.30 0130	1	tank	\$	-	\$		\$			\$1,193	s			\$655	\$1,849	\$
BB-T1 South (18,000	02 65 10.30 0130	1	tank	\$ \$	-	3 S	-	\$ \$	-		\$1,193		-	+	\$655	\$1,849	
BB-T2 North (2,000 g	02 65 10.30 0110	1	tank	\$	-	\$	-	3 S	-		\$711	\$	-	-	\$116	\$1,849	ې. م
BB-12 North (4,000 g	02 65 10.30 0110	1	tank	\$	-	\$ \$	-	\$ \$	-		\$711	-	-		\$116	\$827	
Replacement	52 00 10.00 0110			Ť		Ť		Ŧ			<i>~</i> ,11	Ť		1	<i></i>	<i>4021</i>	
2,000 gal tank	Engineer's Estimate	1	tank	-	\$3,000	\$	-	\$	-		\$1,422	\$	-		\$232	\$4,654	
4,000 gal tank	Engineer's Estimate		tank	1	\$5,000	-	-	\$ \$	-		\$1,422	-	-	+	\$232	\$6,654	
4,000 gai tank 15,000 gal tank	Engineer's Estimate		tank	- ·	\$5,000	-	-	3 S	-		\$1,422		-	+	\$1,311	\$18,697	
20,000 gal tank	Engineer's Estimate		tank	-	\$13,000 \$20,000		_	3 S	-		\$2,386		-	+	\$1,311	\$23,697	
20,000 gai talik	Engineer s Estimate		canx.		<i>φ20,000</i>	ې	-	ې	-		<i>ψ</i> 2,300	ې	-	1	φ1,311	923,097	
Permitting/Reporting/Site Preparation				1										1			\$
ROD Ammendment	Engineer's Estimate	1	ls	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$15,000	
SPDES Permit Application	Engineer's Estimate		ls	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$12,000	
Utiliity Locator (based on recent bid)	based on recent quote	1	day	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$2,465	
Work Plan Preparation	Engineer's Estimate		ls	\$	-	\$	-	\$	-	\$	-	s	-	\$	-	\$10,000	
Erosion and Sediment Control Plan	Engineer's Estimate		ls	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$5,000	
Treatability Study	Engineer's Estimate	1	LS	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$25,000	
	~																
Eastern Wetland Construction	21.22.16.12.0062.0																\$
Excavate for open channel; trenching (1-4' deep); 3/4 CY buc	31 23 16.13 0062 / Engineer's Estimate 31 23 16.13 0050 /	13	bcy	\$	-	\$	-		\$8		\$98		\$6	5	\$80	\$14	
Excavation of wetland area	Engineer's Estimate	606	bcy						\$14		\$8,177		\$6	5	\$3,755	\$20	\$11
	03 05 13.25 1050 /				.			<u>_</u>								.	
Stone; 3/4" to 1 1/2"	Engineer's Estimate 31 32 19.16 1550 /	200	су	_	\$68		\$13,620	\$	-	\$	-	\$	-	\$	-	\$68	\$13
Geotextile Fabric, non-woven, 120lb tensile strength	Engineer's Estimate	175	sy		\$2		\$391	\$	0.70	\$ 1	122.33	\$	-	\$	-	\$3	
Native wetland plants	based on recent quote		plants	\$	- -	\$	-	\$	-	\$		ŝ	-	\$	-	\$4	
Compost	based on recent quote	202		Ť	\$30	Ť	\$6,057	\$	-	\$	-	\$	-	\$	-	\$30	
Northern Western Wetland Construction				-										-			\$
TOT IICT II WESTELLI WELIANU COUSU UCUON	31 23 16.13 0062 /			-										-			.
Excavate for open channel; trenching (1-4' deep); 3/4 CY buc	Engineer's Estimate	13	bcy	\$	-	\$	-		\$8		\$98		\$6	5	\$80	\$14	
Excavation of watland area	31 23 16.13 0050 / Engineer's Estimate		bey	¢		¢			¢1.4		¢0.		¢.		¢A	620	
Excavation of wetland area	03 05 13.25 1050 /	0	bcy	\$	-	\$	-		\$14		\$0		\$6	, 	\$0	\$20	
Stone; 3/4" to 1 1/2"	Engineer's Estimate 31 32 19.16 1550 /	200.00		-	\$68		\$13,620		-	\$	-	\$	-	\$	-	\$68	
	Engineer's Estimate	175	-	-	\$2		\$391		0.70		122.33	\$	-	\$	-	\$3	
Geotextile Fabric, non-woven, 120lb tensile strength			plants	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$4	
Native wetland plants	based on recent quote				\$30		\$8,000	S	-	\$	-	\$	-		-	\$30	
· · · · · · · · · · · · · · · · · · ·		800 267		-	\$30		1 -)	ې		-		<u> </u>	-	\$		330	
Native wetland plants Compost	based on recent quote				\$30			à		Ŧ			-	\$		<i>\$</i> 30	
Native wetland plants Compost Mobilization and Demobilization	based on recent quote				\$30			¢		-			_	\$			\$2
Native wetland plants Compost	based on recent quote				\$30			à		-				3		\$208,331	\$20
Native wetland plants Compost Mobilization and Demobilization 10% of Total Costs of Site Work, Treatment	based on recent quote				\$30			ې ب						\$			\$20
Native wetland plants Compost Mobilization and Demobilization 10% of Total Costs of Site Work, Treatment Contingency	based on recent quote				330			\$						3		\$208,331	\$20 \$
Native wetland plants Compost Mobilization and Demobilization	based on recent quote				\$30			3						3			\$20
Native wetland plants Compost Mobilization and Demobilization 10% of Total Costs of Site Work, Treatment Contingency 15% of Total Construction Activities	based on recent quote				\$30			•					-	3		\$208,331	\$2(\$ \$31
Native wetland plants Compost Mobilization and Demobilization 10% of Total Costs of Site Work, Treatment Contingency 15% of Total Construction Activities Professional/Technical Services	based on recent quote				\$30			•						3		\$208,331 \$208,331	\$20 \$ \$31 \$ \$
Native wetland plants Compost Mobilization and Demobilization 10% of Total Costs of Site Work, Treatment Contingency 15% of Total Construction Activities	based on recent quote				330			•						3		\$208,331	\$2(\$ \$31

EA Project No. 14907.28 Table 6, Page 10 of 12 February 2016

)00	
ption al Cost	
\$191,000	
\$59,053	
\$1,848.55	
\$1,848.55	
\$827.02	
\$827.02	
¢027.02	
\$4,654	
\$6,654	
\$18,697	
\$23,697	
\$25,677	
\$69,465	
\$15,000	
\$12,000	
\$2,465	
\$10,000	
\$5,000	
\$25,000	
\$54,301	
\$178.37	
\$11,931.90	
\$13,620.00	
\$513.77	
\$22,000	
\$6,057	
\$25,512	
\$178.37	
\$178.37 \$0.00	
\$178.37 \$0.00 \$13,620.00	
\$178.37 \$0.00	
\$178.37 \$0.00 \$13,620.00 \$513.77	
\$178.37 \$0.00 \$13,620.00 \$513.77 \$3,200 \$8,000	
\$178.37 \$0.00 \$13,620.00 \$513.77 \$3,200 \$8,000 \$20,833	
\$178.37 \$0.00 \$13,620.00 \$513.77 \$3,200 \$8,000	
\$178.37 \$0.00 \$13,620.00 \$513.77 \$3,200 \$8,000 \$20,833 \$20,833.14	
\$178.37 \$0.00 \$13,620.00 \$513.77 \$3,200 \$8,000 \$20,833 \$20,833.14 \$31,250	
\$178.37 \$0.00 \$13,620.00 \$513.77 \$3,200 \$8,000 \$20,833 \$20,833.14	
\$178.37 \$0.00 \$13,620.00 \$513.77 \$3,200 \$8,000 \$20,833 \$20,833.14 \$31,250 \$31,249.71	
\$178.37 \$0.00 \$13,620.00 \$513.77 \$3,200 \$8,000 \$20,833 \$20,833.14 \$31,250 \$31,249.71 \$35,416	
\$178.37 \$0.00 \$13,620.00 \$513.77 \$3,200 \$8,000 \$20,833 \$20,833.14 \$31,250 \$31,249.71 \$35,416 \$10,416.57	
\$178.37 \$0.00 \$13,620.00 \$513.77 \$3,200 \$8,000 \$20,833 \$20,833.14 \$31,250 \$31,249.71 \$35,416	

	1	LOCATIO	'n		MI	Estimated Cost to Implement							\$ _	1,360,000		
Alternative 4		Bus	y Bee Lar	dfill		Lea	chate		Construction Time						1	months
Treatment in Two Constructed V	Vetland	Alfr	ed Station	ı, NY	7	Grou	ndwater				Oper	atior	n Time:		-	months
									Post F	Remed	liation	Mon	nitoring		30	years
		Qua	ntities			C	ost Breakdov	vn (if	availabl	e)					nbined t Costs	
Description	Data Source	Quantity	Quantity		aterial	Material	Labor		Labor	-	-	-	ipment			Option
	(Means ¹ or Other)	Amount	Unit	·	it Cost	Total Cost	Unit Cost	To	tal Cost		t Cost		tal Cost	·	it Cost	Total Co
ONG TERM MONITORING			YEARS 1							ANI	NUAI	LT	CM CO	OST		\$32
			YEARS 3	3 + (1	No Poi	nd Maint.)				ANI	NUAI	LT	CM CO	OST		\$1
			YEARS 3	3 + (1	lncl. P	ond Dredg	ging)			ANI	NUAI	LT	CM CO	ST		\$314
										LIF	ETIN	ſE I	LTM (1	NPV)	\$1,16
Ionitoring, Sampling, Testing and Analysis (Per	Event)															
Assume 20% of combined sampling event for on-s	ite and off-site															
Site Monitoring			-													
Inspection of landfill cover	11		hr	\$	-	\$ -	\$ 88.00	\$	88	\$	-	\$	-	\$	88	
Groundwater sampling for 1 event - Includes co	1	13	well	\$	-	\$ - ©	\$ 88.00 \$ -	\$ \$	1,144	\$ \$	424	\$	424	\$	512	
Materials Mobilization/Demobilization of Field Sampling	Engineer's Estimate	1	event event	\$ \$	50.00	\$ - \$ -	\$ - \$ 88.00	5	- 704	\$ \$	-	\$ \$	-	\$ \$	- 704	
Reporting	CIEW	10		\$	-	s -	\$ 88.00	\$	880	\$ \$		\$		\$	88	
Reporting		10	m	Ģ	-	- پ	\$ 00.00	Ģ	000	φ	-	φ	-	φ	00	
SPDES Monitoring, Years 1 - 3 (monthly)		12	events													
Outfall Sampling		1	event	\$	-	ş -	\$88	\$	462	\$	71	\$	71	\$	159	
Reporting (one report needed for each event)	Engineer's Estimate	1	report	\$	-	s -	\$88	\$	176	\$	-	\$	-	\$	88	
SPDES Monitoring, Years 3+ (quarterly)		4	events													
Outfall Sampling		1		\$	-	\$ -	\$88	\$	396	\$	71	\$	71	\$	159	
Reporting (one report needed for each event)	Engineer's Estimate	1	report	\$	-	\$ -	\$88	\$	176	\$	-	\$	-	\$	88	
Groundwater Sampling Laboratory Analysis																
Metals, plus 20% QA/QC	Recent bid from Accutest	13	ea	\$	-	s -	s -	\$	-	\$	-	\$	-	\$	83	
VOCs, plus 20% QA/QC	Recent bid from Accutest	13		\$	-	\$ -	\$ -	\$	-	\$	-	\$	-	\$	77	
	*															
SPDES Sampling Laboratory Analysis		1	event													\$1
Metals, plus 20% QA/QC	Recent bid from Accutest	1	ea	\$	-	s -	\$-	\$	-	\$	-	\$	-	\$	83	
VOCs, plus 20% QA/QC	Recent bid from Accutest	1	ea	\$	-	s -	\$ -	\$	-	\$	-	\$	-	\$	77	
SVOCs, plus 20% QA/QC	Recent bid from Accutest	1	ea	\$	-	ş -	s -	\$	-	\$	-	\$	-	\$	165	
Pesticides / PCBs, plus 20% QA/QC	Recent bid from Accutest	1	ea	\$	-	s -	s -	\$	-	\$	-	\$	-	\$	132	
Iaintenance- Cap Maintenance																
Mowing brush, tractor with rotary mower, Medium density 2x per year	32 01 90.19 1670		msf	\$		s -	s -	\$		\$		\$		\$	74.80	
Medium density 2x per year	52 01 90.19 10/0	35	11151	ې	-	э -	ş -	ş	-	\$	-	¢	-	¢	/4.00	
Iaintenance- Pond Maintenance																\$2
Excavate/Dredge Pond	31 23 16.13 0050	695	bcy	\$	-	ş -	\$ 6.75	\$ 4	1,689.84	\$	3.10	\$2,	153.85		\$10	
Confirmation Sampling (TCLP)	Recent bid from Accutest	3		\$	-	s -	\$-	\$	-	\$	-	\$	-	\$:	539.00	
Native wetland plants	based on recent quote	6300	plants	\$	-	s -	\$-	\$	-	\$	-	\$	-		\$4	
Compost	based on recent quote	2100	су		\$30	\$63,000	\$ -	\$	-	\$	-	\$	-		\$30	
	recent quote / Engineer's	1 00-		6		<u>_</u>	¢						00.100		200 05	
Transpotation & Disposal	Estimate	1,000	tons	\$	-	\$ -	\$ -	\$	-	\$ 2	200.00	\$ 2	00,100	\$ 2	200.00	\$
ifetime Long Term Monitoring (Net Present Val	116)							+				-				
30 Years of Bi-Annual Monitoring				-				\vdash				-				
reas or Di-Failuar Monitoring			1	1				1		1		1		1		

EA Project No. 14907.28 Table 6, Page 11 of 12 February 2016

000
ption al Cost
\$32,770
\$18,040
5314,801
,168,510
\$5,778
\$3,290
\$88
\$1,568
\$50
\$704 \$880
\$880
\$8,505
\$533
\$176
\$2,571
\$467
\$176
¢2 400
\$2,488 \$1,287
\$1,201
*1 100 00
\$1,100.00
\$99 \$92
\$92
\$158
÷190
\$4,089
\$4,089
\$296,761
\$6,843.69
\$1,617
\$25,200 \$63,000
\$200,100
60,000

						-	~				
	TECHNOLOGY		LOCA	FION	МІ	EDIA		nated Cos mplement		\$1	1,360,000
	Alternative 4		Busy Bee	Landfill	Lea	chate		Construc	tion Time:	1	months
	Treatment in Two Constructed V	Vetland	Alfred Sta	tion, NY	Grou	ndwater		Opera	tion Time:	-	months
							Post F	Remediation N	Monitoring	30	years
			Quantities		C	Cost Breakdow	vn (if availabl	le)		Combined Unit Costs	
	Description	Data Source (Means ¹ or Other)	Quantity Quan Amount Uni	-	Material Total Cost	Labor Unit Cost	Labor Total Cost	Equipment Unit Cost	Equipment Total Cost	Unit Cost	Optior Total Co
Assump	otions:	1			1		I	11			1
-	Working condition is Safety Level:		D/C (Labor	productivity:	82%	; Equipment	productivity:	100%)		
	Weighted Average of city cost index (Buffalo, NY)	101.4% (not ap	plicable for cos	ts derived fro	m vendor que	otes).				
	Costs are loaded with a profit factor		10%								
	Inflation		3% per yea	r							Labor
Estimate	ed number of groundwater samples		13 sample		times sample	ed	1.00	hrs/sample		\$88	Cost per hr
	с .		1	20%	added for Q	A/QC samples	1	worker sampl	ing		
	Characterization Cost	Table A (per CWM)	\$593.48 per san	ple					Ŭ	1	hrs / well samp
	Analytical cost	TAL Metals	\$75.00 per san								worker/gw sam
		VOCs	\$62.00	1				Total Hours M	Mob		hrs
	For each sampling event, assumed:			erials (gloves, no	otebooks. etc.)			Total Hours V			hrs
Typical	Rental Rates - Includes G&A and 10% Profit		75 T		,,		SPDES Mo		-		
	Mini-Rae Survey Mode PID		\$96.08 per day		1.6	tons/cy					
	Truck/SUV (1/2 ton or smaller)		\$70.74 per day				Time to Site	From Buffalo	Office	2	hr
	Horiba U-10 Water Quality Meter		\$73.77 per day				Mileage (Rou	und Trip)			miles
	Submersible Pump		\$42.16 per day				Sampling Tir	1		0.25	hr
	2 in Pump Control Box		\$72.27 per day				Reporting				hr
	Generator: 110 V		\$57.24 per day				1 0				1
	Level D PPE		\$11.91 per day								
Work do	y consists of:		10 hrs				Cost of One	Event ck, and time co	act)	\$620.74	
			10 mrs				(includes true	ck, and time co	JSL)		
Volume	Calculations										
	Trench / Piping			Tank Volu	mes	BB-T1 North	15,000	gals			
	Length of trench between BB-T1 and	BB-T2	800 ft			BB-T1 South	18,000	- C			
	Depth of trench		6 ft			BB-T2 North	2,000	gals			
	Width (of 3/8 CY bucket		2 ft			BB-T2 South	4,000	gals			
							BB-T1		BB-T2		
	VOLUME		11,184 bcy			Total	33,000	gal	6,000	gal	
			13,980 lcy			FS 50%	50,000	gal		gal	
							6,684	4 ⊢	1203		
	Open Channel	Lengt	th 75 ft	Borrow Pit		Area	5451.12	sq. ft	802	sqft	
		Dept				Depth	1.22617003	ft			
			349.5 cu ft			•					
			349.5 cu ft					1 plant per		1 plant per	
			349.5 cu ft 12.944432 bcy	Wetland P	lant Density	-	5451.12	1 plant per 1 square	802	1 square	
				Wetland P		d Duodoing	5451.12	1 plant per 1 square feet	802	1 square feet	
Notos				Wetland P	BB-T1 Pon			1 plant per 1 square feet	802 BB-T2 Pond	1 square feet I Dredging	le.
			12.944432 bcy	Wetland P	BB-T1 Pon Depth	2	ft	1 plant per 1 square feet	802 BB-T2 Pone Depth	1 square feet 1 Dredging 2	ft
sy	square yard	mo	12.944432 bcy	Wetland P	BB-T1 Pon		ft	1 plant per 1 square feet	802 BB-T2 Pond	1 square feet 1 Dredging 2	ft sq ft
sy cy	cubic yard	ls	12.944432 bcy month lump sum		BB-T1 Pon Depth Area	2 5451.12	ft sq ft	1 plant per 1 square feet	802 BB-T2 Pone Depth Area	1 square feet 1 Dredging 2 802	sq ft
sy cy lcy	cubic yard loose cubic yard	ls O&M	12.944432 bcy month lump sum Operation and main		BB-T1 Pon Depth Area Vol	2 5451.12 605.7	ft sq ft bcy	1 plant per 1 square feet	802 BB-T2 Pone Depth Area Vol	1 square feet 1 Dredging 2 802 89.1	sq ft bcy
sy cy lcy bcy	cubic yard loose cubic yard bank cubic yard	ls	12.944432 bcy month lump sum		BB-T1 Pon Depth Area	2 5451.12 605.7 120	ft sq ft bcy lb/ft3	1 plant per 1 square feet	802 BB-T2 Pone Depth Area	1 square feet 1 Dredging 2 802 89.1 120	sq ft bcy lb/ft3
cy lcy bcy lf	cubic yard loose cubic yard bank cubic yard linear feet	ls O&M	12.944432 bcy month lump sum Operation and main		BB-T1 Pon Depth Area Vol Density	2 5451.12 605.7 120 1.44	ft sq ft bcy lb/ft3 ton/cy	1 plant per 1 square feet 1	802 BB-T2 Pond Depth Area Vol Density	1 square feet 1 Dredging 2 802 89.1 120 1.44	sq ft bcy
sy cy lcy bcy lf sf	cubic yard loose cubic yard bank cubic yard linear feet square feet	ls O&M	12.944432 bcy month lump sum Operation and main		BB-T1 Pon Depth Area Vol	2 5451.12 605.7 120	ft sq ft bcy lb/ft3 ton/cy	1 plant per 1 square feet 1	802 BB-T2 Pone Depth Area Vol	1 square feet 1 Dredging 2 802 89.1 120	sq ft bcy lb/ft3
sy cy lcy bcy lf	cubic yard loose cubic yard bank cubic yard linear feet	ls O&M	12.944432 bcy month lump sum Operation and main		BB-T1 Pon Depth Area Vol Density Total Tons	2 5451.12 605.7 120 1.44 872.2	ft sq ft bcy lb/ft3 ton/cy	1 plant per 1 square feet 1 <td>802 BB-T2 Pone Depth Area Vol Density Fotal Tons</td> <td>1 square feet 1 Dredging 2 802 89.1 120 1.44 128.3</td> <td>sq ft bcy lb/ft3</td>	802 BB-T2 Pone Depth Area Vol Density Fotal Tons	1 square feet 1 Dredging 2 802 89.1 120 1.44 128.3	sq ft bcy lb/ft3
sy cy lcy bcy lf sf	cubic yard loose cubic yard bank cubic yard linear feet square feet	ls O&M	12.944432 bcy month lump sum Operation and main		BB-T1 Pon Depth Area Vol Density	2 5451.12 605.7 120 1.44 872.2 sity	ft sq ft bcy lb/ft3 ton/cy	1 plant per 1 square feet 1 2 1 2 1 2 1 1 1 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 <td>802 BB-T2 Pond Depth Area Vol Density</td> <td>1 square feet 1 Dredging 2 802 89.1 120 1.44 128.3 sity</td> <td>sq ft bcy lb/ft3</td>	802 BB-T2 Pond Depth Area Vol Density	1 square feet 1 Dredging 2 802 89.1 120 1.44 128.3 sity	sq ft bcy lb/ft3

EA Project No. 14907.28 Table 6, Page 12 of 12 February 2016

